diff --git a/README.md b/README.md
index 710162e..6abc3a1 100644
--- a/README.md
+++ b/README.md
@@ -40,12 +40,708 @@
# 프로젝트 코드 (Validation)
-
+Import Packages
+``` python
+
+import os
+import time
+import cv2
+import math
+import numpy as np
+%matplotlib inline
+import matplotlib.pyplot as plt
+import torch
+import torch.nn.functional as F
+from torchvision import transforms
+from sklearn.metrics import accuracy_score
+import yaml
+
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+
+```
+
+
+
+
+
+Classfication
+
+
+
+``` python
+
+def crop_and_classify(img, boxes, classification_model, transform):
+ # classification_model.to(device)
+ # classification_model.eval()
+
+ for box in boxes:
+ x1, y1, x2, y2 = box
+ # Expand the bounding box by 10%
+ width = x2 - x1
+ height = y2 - y1
+ x1 = max(int(x1 - 0.1 * width), 0)
+ y1 = max(int(y1 - 0.1 * height), 0)
+ x2 = min(int(x2 + 0.1 * width), img.shape[1] - 1)
+ y2 = min(int(y2 + 0.1 * height), img.shape[0] - 1)
+
+ # Crop the image
+ cropped_img = img[y1:y2, x1:x2]
+
+ # Transform the image to fit the input size of the classification model
+ transformed_img = transform(cropped_img)
+ transformed_img = transformed_img.unsqueeze(0)
+
+ # Classify the cropped image
+ with torch.no_grad():
+ outputs = classification_model(transformed_img)
+ _, predicted = torch.max(outputs.data, 1)
+ confidence = torch.nn.functional.softmax(outputs, dim=1)[0][predicted].item()
+
+ # Print the classification result
+ print(f"Class: {predicted.item()}, Confidence: {confidence:.2f}")
+
+ # Draw the bounding box and classification result on the image
+ cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
+ cv2.putText(img, f"Class: {predicted.item()}, Confidence: {confidence:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0,255,0), 2)
+ return img
+
+```
+
+
+
+
+
+
+Detection
+
+
+
+``` python
+
+def run_detection_model(img, model_detect):
+ # img = transforms.ToTensor()(img).unsqueeze(0).to(device) # Convert image to tensor and add batch dimension
+ # model_detect.eval() # Set model to evaluation mode
+ img = transforms.ToTensor()(img).unsqueeze(0)
+
+ # Move the model to the GPU
+ model_detect = model_detect.to(device)
+
+ # Run inference
+ with torch.no_grad():
+ detections = model_detect(img)
+
+ # Extract bounding boxes and confidence scores
+ boxes = detections.pred[0][:, :4].cpu().numpy().tolist()
+ scores = detections.pred[0][:, 4].cpu().numpy().tolist()
+
+ return boxes, scores
+
+
+```
+
+
+
+
+
+
+Load detection model
+
+
+
+``` python
+
+weights_detect = "C:/Users/pinb/Desktop/pytorch/yolov5/runs/train/dduk_64_/weights/best.pt"
+model_detect = torch.hub.load('ultralytics/yolov5', 'custom', path=weights_detect)
+model_detect = model_detect.to(device).eval()
+
+```
+
+``` planetext
+
+Using cache found in C:\Users\pinb/.cache\torch\hub\ultralytics_yolov5_master
+YOLOv5 2023-6-12 Python-3.10.9 torch-1.12.1 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
+
+Fusing layers...
+Model summary: 157 layers, 7012822 parameters, 0 gradients, 15.8 GFLOPs
+Adding AutoShape...
+
+```
+
+
+
+
+
+
+Load classification model
+
+
+
+``` python
+
+weights_cls = "C:/Users/pinb/Desktop/pytorch/yolov5/runs/train-cls/dduk_cls3/weights/best.pt"
+model_cls = torch.hub.load('ultralytics/yolov5', 'custom', path=weights_cls)
+model_cls = model_cls.to(device).eval()
+
+```
+
+``` planetext
+
+Using cache found in C:\Users\pinb/.cache\torch\hub\ultralytics_yolov5_master
+YOLOv5 2023-6-12 Python-3.10.9 torch-1.12.1 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
+
+Fusing layers...
+Model summary: 117 layers, 4173093 parameters, 0 gradients, 10.4 GFLOPs
+WARNING YOLOv5 ClassificationModel is not yet AutoShape compatible. You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).
+
+```
+
+
+
+
+
+
+Load YAML
+
+
+
+``` python
+
+# # YAML 파일 경로
+yaml_path = "C:/Users/pinb/Desktop/pytorch/yolov5/runs/detect/test/data.yaml"
+
+def read_dataset_paths(file_path):
+ with open(file_path, 'r') as file:
+ data = yaml.safe_load(file)
+ test_path = data.get('test')
+ train_path = data.get('train')
+ val_path = data.get('val')
+
+ return os.path.join(os.path.dirname(file_path), val_path)
+
+# # YAML 파일에서 데이터셋 경로 읽기
+val_path = read_dataset_paths(yaml_path)
+
+# 이미지가 있는 폴더 경로
+folder_path = val_path
+result_path = os.path.join(folder_path, "result")
+# folder_path = "C:/Users/pinb/Desktop/pytorch/yolov5/runs/detect/test/"
+# result_path = "C:/Users/pinb/Desktop/pytorch/yolov5/runs/detect/test/result"
+
+def get_image_and_label_paths(folder_path):
+ image_paths = []
+ label_paths = []
+ for file_name in os.listdir(folder_path):
+ if file_name.endswith(".bmp") or file_name.endswith(".jpg") or file_name.endswith(".png"):
+ image_path = os.path.join(folder_path, file_name)
+ image_paths.append(image_path)
+ file_name = os.path.splitext(file_name)[0] + ".txt"
+ label_path = folder_path.replace("images", "labels")
+ label_path = os.path.join(label_path, file_name)
+ if os.path.exists(label_path):
+ label_paths.append(label_path)
+ else:
+ label_paths.append("")
+
+ return image_paths, label_paths
+
+# 폴더 내의 이미지 파일 경로들을 가져옴
+image_paths, label_paths = get_image_and_label_paths(folder_path)
+
+if not os.path.exists(result_path):
+ os.makedirs(result_path)
+
+```
+
+
+
+
+
+
+Read Label Data
+
+
+
+``` python
+
+def read_label(label_path):
+ labels = []
+ with open(label_path, 'r') as file:
+ lines = file.readlines()
+ for line in lines:
+ label = line.strip().split(' ')
+ label_class = int(label[0])
+ bounding_box = tuple(map(float, label[1:]))
+ labels.append((label_class, bounding_box))
+ return labels
+
+```
+
+
+
+
+
+
+Find closet label class
+
+
+
+``` python
+
+def find_closest_label_class(pred_box, labels):
+ min_distance = float('inf')
+ closest_class = -1
+
+ for i, label in enumerate(labels):
+ label_box = label[1]
+ label_center_x = (label_box[0] + label_box[2]) / 2
+ label_center_y = (label_box[1] + label_box[3]) / 2
+
+ pred_center_x = (pred_box[0] + pred_box[2]) / 2
+ pred_center_y = (pred_box[1] + pred_box[3]) / 2
+
+ distance = math.sqrt((label_center_x - pred_center_x) ** 2 + (label_center_y - pred_center_y) ** 2)
+
+ if distance < min_distance:
+ min_distance = distance
+ closest_class = label[0]
+
+ return closest_class
+
+```
+
+
+
+
+
+
+
+Evaluate
+
+
+
+``` python
+
+lst_result = [[],[],[],[],[]] # class 0~4
+eval_times = []
+
+def Evaluate(model_detect, model_cls, img, img_name, labels, output=True):
+ height, width, _ = img.shape
+ expand_ratio = 0.5 # The ratio to expand the ROI area
+
+ # Inference detection model
+ start_time = time.time()
+ results = model_detect(img)
+
+ # For each detection, crop the ROI and classify it
+ for *box, detect_conf, cls in results.xyxy[0]:
+ x1, y1, x2, y2 = map(int, box)
+ fbox = map(float, box)
+
+ # Calculate the width and height of the bounding box
+ bbox_width = x2 - x1
+ bbox_height = y2 - y1
+ roi = (x1, y1, bbox_width, bbox_height)
+
+ # Calculate the expanded coordinates
+ x1_expanded = max(0, x1 - int(bbox_width * expand_ratio))
+ y1_expanded = max(0, y1 - int(bbox_height * expand_ratio))
+ x2_expanded = min(width, x2 + int(bbox_width * expand_ratio))
+ y2_expanded = min(height, y2 + int(bbox_height * expand_ratio))
+
+ roi_flat = (x1_expanded,
+ y1_expanded,
+ bbox_width + int(bbox_width * expand_ratio) * 2,
+ bbox_height + int(bbox_height * expand_ratio) * 2)
+
+ # Crop the expanded ROI from the image
+ # roi = img[y1:y2, x1:x2]
+ roi_expanded = img.copy()
+ roi_expanded = roi_expanded[y1_expanded:y2_expanded, x1_expanded:x2_expanded]
+ roi_expanded = cv2.resize(roi_expanded, (224, 224))
+
+ # Convert numpy array to torch tensor, and normalize pixel values
+ roi_expanded = torch.from_numpy(roi_expanded).float().div(255.0)
+
+ # Reshape tensor to (channels, height, width)
+ roi_expanded = roi_expanded.permute(2, 0, 1)
+
+ # Add an extra dimension for the batch
+ roi_expanded = roi_expanded.unsqueeze(0)
+
+ # Move roi_expanded to the same device as class_model
+ roi_expanded = roi_expanded.to(device)
+ class_result = model_cls(roi_expanded)
+
+ # classfication result
+ probabilities = F.softmax(class_result, dim=1)
+ max_confidence, max_indices = torch.max(probabilities, dim=1)
+ class_pred = max_indices.item()
+ class_conf = max_confidence.item()
+
+ # confidence
+ total_conf = (detect_conf + class_conf) * 0.5
+
+ # label - class
+ class_gt = find_closest_label_class((x1, y1, x2, y2), labels)
+
+ # append (class, confidence, bounding box)
+ lst_result[class_pred].append((class_pred, class_gt, total_conf, (x1, y1, x2, y2)))
+
+ # Put classification result on each ROI
+ thin = 1
+ color = ()
+ if class_pred == 0: # head
+ color = (0, 0, 255)
+ elif class_pred == 1: # helmet
+ color = (255, 0, 0)
+ elif class_pred == 2: # face
+ color = (0, 255, 0)
+ elif class_pred == 3: # mask
+ color = (255, 0, 255)
+ elif class_pred == 4: # helmet & mask
+ color = (255, 255, 0)
+ cv2.putText(img, f'{class_pred}: {total_conf}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, thin)
+ # cv2.rectangle(img, roi_flat, color, thin)
+ cv2.rectangle(img, roi, color, thin)
+ if output is True:
+ print(f'{img_name}\'s det + cls result [{class_pred}]: {total_conf}%, {roi}:')
+
+ end_time = time.time()
+ total_time = end_time - start_time
+ eval_times.append(total_time)
+ if output is True:
+ print(f'Detect + Classfication Time: {total_time}s')
+
+ # Save image
+ cv2.imwrite(f'{result_path}/{img_name}_rst.jpg', img)
+
+
+```
+
+
+
+
+
+
+
+Compare Ground Truth & Bounding Box
+
+
+
+``` python
+
+# Class
+# 0: head
+# 1: helmet
+# 2: face
+# 3: mask
+# 4: helmet & mask
+
+def CompareClass(pr, gt):
+ if gt == 0: # head or face
+ if pr == 0 or pr == 2:
+ return True
+ else:
+ False
+ elif gt == 1: # helmet or mask
+ if pr == 1 or pr == 3 or pr == 4:
+ return True
+ else:
+ return False
+
+```
+
+``` python
+
+def CompareGTandBox(predict, setting_mAP=0):
+ # 0: mAP@.5, 1: mAP@.5:.95 0
+ # 비교하여 TP와 FP 구분
+ results = []
+
+ tp_cnt = 0
+ fp_cnt = 0
+ totalbox_cnt = 0
+ targetbox_cnt = len(predict)
+
+ for p_class, gt_class, confidence, p_box in predict:
+ if CompareClass(p_class, gt_class):
+ # iou = calculate_iou(p_box, l_box)
+ # iou = confidence
+ if setting_mAP == 0: # mAP@.5
+ if confidence >= 0.5:
+ # True Positive (TP)
+ tp_cnt = tp_cnt + 1
+ totalbox_cnt = totalbox_cnt +1
+ # class, confidence, boudingbox, TP/FP, precision, recall
+ results.append((p_class, confidence, p_box, True, tp_cnt/totalbox_cnt, tp_cnt/targetbox_cnt))
+ elif setting_mAP == 1: # mAP@.5:.95
+ if confidence >= 0.5 and confidence < 0.95:
+ # True Positive (TP)
+ tp_cnt = tp_cnt + 1
+ totalbox_cnt = totalbox_cnt + 1
+ # class, confidence, boudingbox, TP/FP, precision, recall
+ results.append((p_class, confidence, p_box, True, tp_cnt/totalbox_cnt, tp_cnt/targetbox_cnt))
+ else: # all P, R
+ tp_cnt = tp_cnt + 1
+ totalbox_cnt = totalbox_cnt + 1
+ results.append((p_class, confidence, p_box, True, tp_cnt/totalbox_cnt, tp_cnt/targetbox_cnt))
+
+ else:
+ # False Positive (FP)
+ totalbox_cnt = totalbox_cnt + 1
+ results.append((p_class, confidence, p_box, False, tp_cnt/totalbox_cnt, tp_cnt/targetbox_cnt))
+
+ return results
+
+```
+
+
+
+
+
+
+Get Precisions, Recalls and PR Curve
+
+
+
+``` python
+
+def GetPR(results):
+ results = sorted(results, key=lambda x: x[5], reverse=True)
+ # results = sorted(results, key=lambda x: x[1], reverse=True)
+ precisions = [item[4] for item in results]
+ recalls = [item[5] for item in results]
+
+ return precisions, recalls
+
+```
+
+
+
+
+
+
+Calculate AP
+
+
+
+``` python
+
+def calculate_AP(precisions, recalls):
+ assert len(recalls) == len(precisions)
+
+ sorted_indices = sorted(range(len(recalls)), key=lambda i: recalls[i])
+ sorted_precisions = [precisions[i] for i in sorted_indices]
+ sorted_recalls = [recalls[i] for i in sorted_indices]
+
+ ap = 0
+ for i in range(1, len(sorted_recalls)):
+ recall_diff = sorted_recalls[i] - sorted_recalls[i-1]
+ ap += recall_diff * (sorted_precisions[i] + sorted_precisions[i-1]) * 0.5
+
+ return ap
+
+```
+
+
+
+
+
+
+Run
+
+
+
+``` python
+
+lst_result = [[],[],[],[],[]] # class 0~4
+eval_times = []
+
+for i in range(0, len(image_paths)):
+ # Image name
+ img_dir = os.path.dirname(image_paths[i])
+ img_name = os.path.basename(image_paths[i])
+
+ # Load image
+ img = cv2.imread(image_paths[i])
+ img = cv2.resize(img, (640, 640))
+ labels = read_label(label_paths[i])
+ Evaluate(model_detect, model_cls, img, img_name, labels, False)
+
+Ps = []
+Rs = []
+ap5s = []
+ap95s = []
+
+# Class
+# 0: head
+# 1: helmet
+# 2: face
+# 3: mask
+# 4: helmet & mask
+
+# each class result
+class_len = len(lst_result)
+
+for i in range(0, class_len):
+ results_all = CompareGTandBox(lst_result[i], -1) # all P, R
+ results_5 = CompareGTandBox(lst_result[i], 0) # mAP@.5
+ results_95 = CompareGTandBox(lst_result[i], 1) # mAP@.5:.95
+
+ p, r = GetPR(results_all)
+ p1, r1 = GetPR(results_5)
+ p2, r2 = GetPR(results_95)
+ ap1 = calculate_AP(p1, r1)
+ ap2 = calculate_AP(p2, r2)
+ # print(p1)
+ # print(r1)
+ # print(p2)
+ # print(r2)
+ if len(p) != 0:
+ p = sum(p) / len(p)
+ else:
+ p = 0
+ if len(r) != 0:
+ r = sum(r) / len(r)
+ else:
+ r = 0
+
+ Ps.append(p)
+ Rs.append(r)
+ ap5s.append(ap1)
+ ap95s.append(ap2)
+ print(f'Class {i}')
+ print(f'meanP:', p)
+ print(f'meanR:', r)
+ print(f"AP@.5:", ap1)
+ print(f"AP@.5:.95:", ap2)
+
+ fig, axs = plt.subplots(1, 2, figsize=(8, 4))
+ axs[0].plot(r1, p1)
+ axs[0].set_xlabel('Recall')
+ axs[0].set_ylabel('Precision')
+ axs[1].plot(r2, p2)
+ axs[1].set_xlabel('Recall')
+ axs[1].set_ylabel('Precision')
+ plt.suptitle(f'Class {i} Precision-Recall Curve (mAP@.5, mAP@.5:.95)')
+ print()
+
+# plt.tight_layout()
+plt.show()
+
+mP = sum(Ps) / class_len
+mR = sum(Rs) / class_len
+mAP_5 = sum(ap5s) / class_len
+mAP_95 = sum(ap95s) / class_len
+mean_time = sum(eval_times) / len(eval_times)
+
+print(f'==> Union Model (Detection + Classification) - 5 classes')
+print(f'[mean Precisions] {mP}')
+print(f'[mean Recalls] {mR}')
+print(f'[mAP@.5] {mAP_5}')
+print(f'[mAP@.5:.95] {mAP_95}')
+print(f'[mean time] {mean_time}s')
+print()
+
+
+#### Convert to evaluate ####
+
+# Class
+# 0: head
+# 1: helmet
+# 2: face
+# 3: mask
+# 4: helmet & mask
+
+# => Model 1: (0, 2, 3) - head, (1, 4) - helmet
+# => Model 2: (0, 1, 2) - face, (3, 4) - mask
+
+print(f'==> Convert to Model 1')
+print(f'[mean Precisions] {((Ps[0] + Ps[2] + Ps[3]) / 3 + (Ps[1] + Ps[4]) / 2) / 2}')
+print(f'[mean Recalls] {((Rs[0] + Rs[2] + Rs[3]) / 3 + (Rs[1] + Rs[4]) / 2) / 2}')
+print(f'[mAP@.5] {((ap5s[0] + ap5s[2] + ap5s[3]) / 3 + (ap5s[1] + ap5s[4]) / 2) / 2}')
+print(f'[mAP@.5:.95] {((ap95s[0] + ap95s[2] + ap95s[3]) / 3 + (ap95s[1] + ap95s[4]) / 2) / 2}')
+print(f'[mean time] {mean_time}s')
+print()
+
+print(f'==> Convert to Model 2')
+print(f'[mean Precisions] {((Ps[0] + Ps[1] + Ps[2]) / 3 + (Ps[3] + Ps[4]) / 2) / 2}')
+print(f'[mean Recalls] {((Rs[0] + Rs[1] + Rs[2]) / 3 + (Rs[3] + Rs[4]) / 2) / 2}')
+print(f'[mAP@.5] {((ap5s[0] + ap5s[1] + ap5s[2]) / 3 + (ap5s[3] + ap5s[4]) / 3) / 2}')
+print(f'[mAP@.5:.95] {((ap95s[0] + ap95s[1] + ap95s[2]) / 3 + (ap95s[3] + ap95s[4]) / 2)}')
+print(f'[mean time] {mean_time}s')
+print()
+
+```
+
+
+``` planetext
+
+Class 0
+meanP: 0.2451500387154128
+meanR: 0.1266693073789041
+AP@.5: 0.056300405455419165
+AP@.5:.95: 0.056300405455419165
+
+Class 1
+meanP: 0.8831870385742567
+meanR: 0.43243055555555554
+AP@.5: 0.6344911937169155
+AP@.5:.95: 0.6344911937169155
+
+Class 2
+meanP: 0
+meanR: 0
+AP@.5: 0
+AP@.5:.95: 0
+
+Class 3
+meanP: 0.8349450369473351
+meanR: 0.40800165622897366
+AP@.5: 0.591933273620593
+AP@.5:.95: 0.591933273620593
+
+Class 4
+...
+meanR: 0.43473958333333357
+AP@.5: 0.727062010345605
+AP@.5:.95: 0.727062010345605
+
+```
+
+![output1](/images/output1.png)
+![output2](/images/output2.png)
+![output3](/images/output3.png)
+![output4](/images/output4.png)
+![output5](/images/output5.png)
+
+
``` planetext
+==> Union Model (Detection + Classification) - 5 classes
+[mean Precisions] 0.5704349663931353
+[mean Recalls] 0.2803682204993534
+[mAP@.5] 0.40195737662770653
+[mAP@.5:.95] 0.40195737662770653
+[mean time] 0.042649137104018055s
+
+==> Convert to Model 1
+[mean Precisions] 0.6230357850195234
+[mean Recalls] 0.3059043619902019
+[mAP@.5] 0.4484272475282988
+[mAP@.5:.95] 0.4484272475282988
+[mean time] 0.042649137104018055s
+
+==> Convert to Model 2
+[mean Precisions] 0.6190156182172799
+[mean Recalls] 0.30386862037965345
+[mAP@.5] 0.3349644805230888
+[mAP@.5:.95] 0.8897615083738772
+[mean time] 0.042649137104018055s
+
```
@@ -53,6 +749,33 @@
+# 결과
+
+
+Detection Result
+
+
+![Confusion Matrix](/runs/train/dduk_64_/confusion_matrix.png)
+![F1-Curve](/runs/train/dduk_64_/F1_curve.png)
+![PR-Curve](/runs/train/dduk_64_/PR_curve.png)
+![Results](/runs/train/dduk_64_/results.png)
+![Train-Batch](/runs/train/dduk_64_/train_batch0.jpg)
+![Val-Batch](/runs/train/dduk_64_/val_batch0_pred.jpg)
+
+
+
+
+
+Classification Result
+
+
+![Train-Images](/runs/train-cls/dduk_cls3/train_images.jpg)
+![Test-Images](/runs/train-cls/dduk_cls3/test_images.jpg)
+
+
+
+
+
### 참고[¶]()
- 지능화캡스톤 과목, 김현용 교수
\ No newline at end of file
diff --git a/images/output1.png b/images/output1.png
new file mode 100644
index 0000000..165cb5e
Binary files /dev/null and b/images/output1.png differ
diff --git a/images/output2.png b/images/output2.png
new file mode 100644
index 0000000..fd0c6ac
Binary files /dev/null and b/images/output2.png differ
diff --git a/images/output3.png b/images/output3.png
new file mode 100644
index 0000000..ef6312c
Binary files /dev/null and b/images/output3.png differ
diff --git a/images/output4.png b/images/output4.png
new file mode 100644
index 0000000..0163721
Binary files /dev/null and b/images/output4.png differ
diff --git a/images/output5.png b/images/output5.png
new file mode 100644
index 0000000..2588380
Binary files /dev/null and b/images/output5.png differ
diff --git a/val_dduk.ipynb b/val_dduk.ipynb
index 8e8eb4a..dbd3224 100644
--- a/val_dduk.ipynb
+++ b/val_dduk.ipynb
@@ -23,7 +23,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "# Validation"
+ "# Import Packages"
]
},
{