diff --git a/compare.py b/compare.py new file mode 100644 index 0000000..42bacc0 --- /dev/null +++ b/compare.py @@ -0,0 +1,54 @@ +import os +from glob import glob + +img_dir = 'C:/Users/pinb/Desktop/imgs' +mask_dir = 'C:/Users/pinb/Desktop/masks' + +names = ['gold_ii', + 'gold_ie', + 'gold_io', + 'gold_ee', + 'gold_ei', + 'gold_eo', + 'gold_oi', + 'gold_oe', + 'gold_oo', + 'silver_ii', + 'silver_ie', + 'silver_io', + 'silver_ee', + 'silver_ei', + 'silver_eo', + 'silver_oi', + 'silver_oe', + 'silver_oo'] + + +list_imgs = glob(os.path.join(img_dir, '**', '*.png'), recursive=True) +list_masks = glob(os.path.join(mask_dir, '**', '*.png'), recursive=True) + +remove_file = [] + +# 마스크 파일 이름 목록 생성 (확장자 제거 및 '_mask' 추가) +list_imgs_basenames = set([x.replace('_mask', '').replace(mask_dir, img_dir) for x in list_masks]) + +# list_imgs에서 list_masks에 없는 파일 찾기 +imgs_to_delete = [mask for mask in list_imgs_basenames if mask not in list_imgs] + +print(len(list_imgs)) +print(len(list_masks)) +print(len(imgs_to_delete)) +print(imgs_to_delete) + +masks_to_delete = set([x.replace('.png', '_mask.png').replace(img_dir, mask_dir) for x in imgs_to_delete]) + +for mask in masks_to_delete: + os.remove(mask) + print(f'Deleted: {mask}') + + +list_imgs = glob(os.path.join(img_dir, '**', '*.png'), recursive=True) +list_masks = glob(os.path.join(mask_dir, '**', '*.png'), recursive=True) + +print(len(list_imgs)) +print(len(list_masks)) \ No newline at end of file diff --git a/cuda_Test.py b/cuda_Test.py new file mode 100644 index 0000000..4616ecf --- /dev/null +++ b/cuda_Test.py @@ -0,0 +1,31 @@ +import torch + +print("PyTorch 버전:", torch.__version__) + +# CUDA 사용 가능 여부 확인 +if torch.cuda.is_available(): + print("CUDA is available! Testing CUDA...") + + # CUDA 디바이스 설정 + device = torch.device("cuda") + + # CUDA 디바이스에 텐서를 생성하고 연산 수행 + x = torch.rand(5, 5, device=device) + y = torch.rand(5, 5, device=device) + z = x + y + + # 결과 출력 + print("Successfully performed a CUDA operation:") + print(z) +else: + print("CUDA is not available.") + + +# PyTorch 버전 확인 +print("PyTorch version:", torch.__version__) + +# CUDA 사용 가능 여부 및 버전 확인 +cuda_available = torch.cuda.is_available() +print("CUDA available:", cuda_available) +if cuda_available: + print("CUDA version:", torch.version.cuda) \ No newline at end of file diff --git a/images/confusionmatrix.png b/images/confusionmatrix.png new file mode 100644 index 0000000..71aeec8 Binary files /dev/null and b/images/confusionmatrix.png differ diff --git a/images/f1score.png b/images/f1score.png new file mode 100644 index 0000000..099348c Binary files /dev/null and b/images/f1score.png differ diff --git a/images/loss-dice/confusion-matrix.png b/images/loss-dice/confusion-matrix.png new file mode 100644 index 0000000..78ab67d Binary files /dev/null and b/images/loss-dice/confusion-matrix.png differ diff --git a/images/loss-dice/f1.png b/images/loss-dice/f1.png new file mode 100644 index 0000000..2859696 Binary files /dev/null and b/images/loss-dice/f1.png differ diff --git a/images/loss-dice/loss.png b/images/loss-dice/loss.png new file mode 100644 index 0000000..18798f2 Binary files /dev/null and b/images/loss-dice/loss.png differ diff --git a/images/loss-dice/output-test.png b/images/loss-dice/output-test.png new file mode 100644 index 0000000..b7653c4 Binary files /dev/null and b/images/loss-dice/output-test.png differ diff --git a/images/loss-dice/pr.png b/images/loss-dice/pr.png new file mode 100644 index 0000000..d3958ee Binary files /dev/null and b/images/loss-dice/pr.png differ diff --git a/images/loss-dice/result.txt b/images/loss-dice/result.txt new file mode 100644 index 0000000..9dc6969 --- /dev/null +++ b/images/loss-dice/result.txt @@ -0,0 +1,8 @@ +Data types: int32 int32 +Shapes: (262144,) (262144,) +Label sample: [0 0 0 ... 0 0 0] +Output sample: [0 0 0 ... 0 0 0] +Accuracy: 0.9977531433105469 +Precision: 0.9608572440665958 +Recall: 0.9866327180140039 +F1 Score: 0.9735744089012517 \ No newline at end of file diff --git a/images/loss-focal/confusion-matrix.png b/images/loss-focal/confusion-matrix.png new file mode 100644 index 0000000..b6303f2 Binary files /dev/null and b/images/loss-focal/confusion-matrix.png differ diff --git a/images/loss-focal/f1.png b/images/loss-focal/f1.png new file mode 100644 index 0000000..71db9da Binary files /dev/null and b/images/loss-focal/f1.png differ diff --git a/images/loss-focal/loss.png b/images/loss-focal/loss.png new file mode 100644 index 0000000..c082a8d Binary files /dev/null and b/images/loss-focal/loss.png differ diff --git a/images/loss-focal/output-test.png b/images/loss-focal/output-test.png new file mode 100644 index 0000000..b1954a7 Binary files /dev/null and b/images/loss-focal/output-test.png differ diff --git a/images/loss-focal/pr.png b/images/loss-focal/pr.png new file mode 100644 index 0000000..84b3960 Binary files /dev/null and b/images/loss-focal/pr.png differ diff --git a/images/loss-focal/result.txt b/images/loss-focal/result.txt new file mode 100644 index 0000000..4b361d1 --- /dev/null +++ b/images/loss-focal/result.txt @@ -0,0 +1,8 @@ +Data types: int32 int32 +Shapes: (262144,) (262144,) +Label sample: [0 0 0 ... 0 0 0] +Output sample: [0 0 0 ... 0 0 0] +Accuracy: 0.9964599609375 +Precision: 0.9360505166475316 +Recall: 0.9564758329422807 +F1 Score: 0.9461529534640826 \ No newline at end of file diff --git a/images/loss-l1+l2/confusion-matrix.png b/images/loss-l1+l2/confusion-matrix.png new file mode 100644 index 0000000..03e7763 Binary files /dev/null and b/images/loss-l1+l2/confusion-matrix.png differ diff --git a/images/loss-l1+l2/f1.png b/images/loss-l1+l2/f1.png new file mode 100644 index 0000000..bb60eae Binary files /dev/null and b/images/loss-l1+l2/f1.png differ diff --git a/images/loss-l1+l2/loss.png b/images/loss-l1+l2/loss.png new file mode 100644 index 0000000..b6dcd9a Binary files /dev/null and b/images/loss-l1+l2/loss.png differ diff --git a/images/loss-l1+l2/output-test.png b/images/loss-l1+l2/output-test.png new file mode 100644 index 0000000..498b273 Binary files /dev/null and b/images/loss-l1+l2/output-test.png differ diff --git a/images/loss-l1+l2/pr.png b/images/loss-l1+l2/pr.png new file mode 100644 index 0000000..7b8ec59 Binary files /dev/null and b/images/loss-l1+l2/pr.png differ diff --git a/images/loss-l1+l2/result.txt b/images/loss-l1+l2/result.txt new file mode 100644 index 0000000..efb99dd --- /dev/null +++ b/images/loss-l1+l2/result.txt @@ -0,0 +1,8 @@ +Data types: int32 int32 +Shapes: (262144,) (262144,) +Label sample: [0 0 0 ... 0 0 0] +Output sample: [0 0 0 ... 0 0 0] +Accuracy: 0.9957275390625 +Precision: 0.9423006583760059 +Recall: 0.9546970539188439 +F1 Score: 0.9484583525080534 \ No newline at end of file diff --git a/images/loss-l1/confusion-matrix.png b/images/loss-l1/confusion-matrix.png new file mode 100644 index 0000000..7a8a26a Binary files /dev/null and b/images/loss-l1/confusion-matrix.png differ diff --git a/images/loss-l1/f1.png b/images/loss-l1/f1.png new file mode 100644 index 0000000..b5bfe90 Binary files /dev/null and b/images/loss-l1/f1.png differ diff --git a/images/loss-l1/loss.png b/images/loss-l1/loss.png new file mode 100644 index 0000000..3f7d1cc Binary files /dev/null and b/images/loss-l1/loss.png differ diff --git a/images/loss-l1/output-test.png b/images/loss-l1/output-test.png new file mode 100644 index 0000000..0411145 Binary files /dev/null and b/images/loss-l1/output-test.png differ diff --git a/images/loss-l1/pr.png b/images/loss-l1/pr.png new file mode 100644 index 0000000..29be145 Binary files /dev/null and b/images/loss-l1/pr.png differ diff --git a/images/loss-l1/result.txt b/images/loss-l1/result.txt new file mode 100644 index 0000000..7d4e7a4 --- /dev/null +++ b/images/loss-l1/result.txt @@ -0,0 +1,8 @@ +Data types: int32 int32 +Shapes: (262144,) (262144,) +Label sample: [0 0 0 ... 0 0 0] +Output sample: [0 0 0 ... 0 0 0] +Accuracy: 0.9977951049804688 +Precision: 0.9486012970670796 +Recall: 0.9952269726820351 +F1 Score: 0.9713549410248785 \ No newline at end of file diff --git a/images/loss-l2/confusion-matrix.png b/images/loss-l2/confusion-matrix.png new file mode 100644 index 0000000..8783d4c Binary files /dev/null and b/images/loss-l2/confusion-matrix.png differ diff --git a/images/loss-l2/f1.png b/images/loss-l2/f1.png new file mode 100644 index 0000000..cbc35a7 Binary files /dev/null and b/images/loss-l2/f1.png differ diff --git a/images/loss-l2/loss.png b/images/loss-l2/loss.png new file mode 100644 index 0000000..7ca2c7e Binary files /dev/null and b/images/loss-l2/loss.png differ diff --git a/images/loss-l2/output-test.png b/images/loss-l2/output-test.png new file mode 100644 index 0000000..a579afe Binary files /dev/null and b/images/loss-l2/output-test.png differ diff --git a/images/loss-l2/pr.png b/images/loss-l2/pr.png new file mode 100644 index 0000000..91b3117 Binary files /dev/null and b/images/loss-l2/pr.png differ diff --git a/images/loss-l2/result.txt b/images/loss-l2/result.txt new file mode 100644 index 0000000..dbf5473 --- /dev/null +++ b/images/loss-l2/result.txt @@ -0,0 +1,8 @@ +Data types: int32 int32 +Shapes: (262144,) (262144,) +Label sample: [0 0 0 ... 0 0 0] +Output sample: [0 0 0 ... 0 0 0] +Accuracy: 0.998199462890625 +Precision: 0.9588396707173658 +Recall: 0.9947132980886539 +F1 Score: 0.9764471057884232 \ No newline at end of file diff --git a/images/lossperecpoch.png b/images/lossperecpoch.png new file mode 100644 index 0000000..63991a0 Binary files /dev/null and b/images/lossperecpoch.png differ diff --git a/images/model_epoch10.pth.png b/images/model_epoch10.pth.png new file mode 100644 index 0000000..f282ca8 Binary files /dev/null and b/images/model_epoch10.pth.png differ diff --git a/images/op-rms/confusion-matrix.png b/images/op-rms/confusion-matrix.png new file mode 100644 index 0000000..7466828 Binary files /dev/null and b/images/op-rms/confusion-matrix.png differ diff --git a/images/op-rms/f1.png b/images/op-rms/f1.png new file mode 100644 index 0000000..4328514 Binary files /dev/null and b/images/op-rms/f1.png differ diff --git a/images/op-rms/loss.png b/images/op-rms/loss.png new file mode 100644 index 0000000..0d083ab Binary files /dev/null and b/images/op-rms/loss.png differ diff --git a/images/op-rms/output-test.png b/images/op-rms/output-test.png new file mode 100644 index 0000000..82af719 Binary files /dev/null and b/images/op-rms/output-test.png differ diff --git a/images/op-rms/pr.png b/images/op-rms/pr.png new file mode 100644 index 0000000..eaa9673 Binary files /dev/null and b/images/op-rms/pr.png differ diff --git a/images/op-rms/result.txt b/images/op-rms/result.txt new file mode 100644 index 0000000..d5c96ed --- /dev/null +++ b/images/op-rms/result.txt @@ -0,0 +1,8 @@ +Data types: int32 int32 +Shapes: (262144,) (262144,) +Label sample: [0 0 0 ... 0 0 0] +Output sample: [0 0 0 ... 0 0 0] +Accuracy: 0.9981002807617188 +Precision: 0.9655700766110861 +Recall: 0.9892880229014683 +F1 Score: 0.9772851669403393 \ No newline at end of file diff --git a/images/op-sgd/confusion-matrix.png b/images/op-sgd/confusion-matrix.png new file mode 100644 index 0000000..b07d668 Binary files /dev/null and b/images/op-sgd/confusion-matrix.png differ diff --git a/images/op-sgd/f1.png b/images/op-sgd/f1.png new file mode 100644 index 0000000..d2c4545 Binary files /dev/null and b/images/op-sgd/f1.png differ diff --git a/images/op-sgd/loss.png b/images/op-sgd/loss.png new file mode 100644 index 0000000..fb31b24 Binary files /dev/null and b/images/op-sgd/loss.png differ diff --git a/images/op-sgd/output-test.png b/images/op-sgd/output-test.png new file mode 100644 index 0000000..047967f Binary files /dev/null and b/images/op-sgd/output-test.png differ diff --git a/images/op-sgd/pr.png b/images/op-sgd/pr.png new file mode 100644 index 0000000..e5ff9a6 Binary files /dev/null and b/images/op-sgd/pr.png differ diff --git a/images/op-sgd/result.txt b/images/op-sgd/result.txt new file mode 100644 index 0000000..63bfbef --- /dev/null +++ b/images/op-sgd/result.txt @@ -0,0 +1,8 @@ +Data types: int32 int32 +Shapes: (262144,) (262144,) +Label sample: [0 0 0 ... 0 0 0] +Output sample: [0 0 0 ... 0 0 0] +Accuracy: 0.9965438842773438 +Precision: 0.947846012832264 +Recall: 0.9684397827308485 +F1 Score: 0.9580322401334075 \ No newline at end of file diff --git a/images/output1.png b/images/output1.png new file mode 100644 index 0000000..de33090 Binary files /dev/null and b/images/output1.png differ diff --git a/images/output2.png b/images/output2.png new file mode 100644 index 0000000..c4c7afb Binary files /dev/null and b/images/output2.png differ diff --git a/images/output3.png b/images/output3.png new file mode 100644 index 0000000..3355c13 Binary files /dev/null and b/images/output3.png differ diff --git a/images/prcurve.png b/images/prcurve.png new file mode 100644 index 0000000..71d1d25 Binary files /dev/null and b/images/prcurve.png differ diff --git a/images/test/dice(mini)-pr-0.95.png b/images/test/dice(mini)-pr-0.95.png new file mode 100644 index 0000000..2b42bb2 Binary files /dev/null and b/images/test/dice(mini)-pr-0.95.png differ diff --git a/images/test/dice-pr-0.95.png b/images/test/dice-pr-0.95.png new file mode 100644 index 0000000..03d5847 Binary files /dev/null and b/images/test/dice-pr-0.95.png differ diff --git a/images/test/focal-pr-0.95.png b/images/test/focal-pr-0.95.png new file mode 100644 index 0000000..70cfae7 Binary files /dev/null and b/images/test/focal-pr-0.95.png differ diff --git a/images/test/l1+l2-pr-0.95.png b/images/test/l1+l2-pr-0.95.png new file mode 100644 index 0000000..1e18742 Binary files /dev/null and b/images/test/l1+l2-pr-0.95.png differ diff --git a/images/test/l1-pr-0.95.png b/images/test/l1-pr-0.95.png new file mode 100644 index 0000000..6106a60 Binary files /dev/null and b/images/test/l1-pr-0.95.png differ diff --git a/images/test/l2-pr-0.95.png b/images/test/l2-pr-0.95.png new file mode 100644 index 0000000..d1f47b3 Binary files /dev/null and b/images/test/l2-pr-0.95.png differ diff --git a/images/test/mini-pr-0.95.png b/images/test/mini-pr-0.95.png new file mode 100644 index 0000000..314b3fa Binary files /dev/null and b/images/test/mini-pr-0.95.png differ diff --git a/images/test/pr-0.5.png b/images/test/pr-0.5.png new file mode 100644 index 0000000..73ab320 Binary files /dev/null and b/images/test/pr-0.5.png differ diff --git a/images/test/pr-0.7.png b/images/test/pr-0.7.png new file mode 100644 index 0000000..006b2fb Binary files /dev/null and b/images/test/pr-0.7.png differ diff --git a/images/test/pr-0.9.png b/images/test/pr-0.9.png new file mode 100644 index 0000000..52fc01d Binary files /dev/null and b/images/test/pr-0.9.png differ diff --git a/images/test/pr-0.95.png b/images/test/pr-0.95.png new file mode 100644 index 0000000..d54a17d Binary files /dev/null and b/images/test/pr-0.95.png differ diff --git a/images/test/rmsprop-pr-0.95.png b/images/test/rmsprop-pr-0.95.png new file mode 100644 index 0000000..a5e01f9 Binary files /dev/null and b/images/test/rmsprop-pr-0.95.png differ diff --git a/images/test/sgd-pr-0.95.png b/images/test/sgd-pr-0.95.png new file mode 100644 index 0000000..32f552b Binary files /dev/null and b/images/test/sgd-pr-0.95.png differ diff --git a/images/unet-mini/confusion-matrix.png b/images/unet-mini/confusion-matrix.png new file mode 100644 index 0000000..c4804e7 Binary files /dev/null and b/images/unet-mini/confusion-matrix.png differ diff --git a/images/unet-mini/f1.png b/images/unet-mini/f1.png new file mode 100644 index 0000000..e0ac3a7 Binary files /dev/null and b/images/unet-mini/f1.png differ diff --git a/images/unet-mini/loss.png b/images/unet-mini/loss.png new file mode 100644 index 0000000..7efdd0a Binary files /dev/null and b/images/unet-mini/loss.png differ diff --git a/images/unet-mini/output-test.png b/images/unet-mini/output-test.png new file mode 100644 index 0000000..0e33569 Binary files /dev/null and b/images/unet-mini/output-test.png differ diff --git a/images/unet-mini/pr.png b/images/unet-mini/pr.png new file mode 100644 index 0000000..37181fa Binary files /dev/null and b/images/unet-mini/pr.png differ diff --git a/images/unet-mini/result.txt b/images/unet-mini/result.txt new file mode 100644 index 0000000..c524eb0 --- /dev/null +++ b/images/unet-mini/result.txt @@ -0,0 +1,8 @@ +Data types: int32 int32 +Shapes: (262144,) (262144,) +Label sample: [0 0 0 ... 0 0 0] +Output sample: [0 0 0 ... 0 0 0] +Accuracy: 0.9976158142089844 +Precision: 0.9365956036672927 +Recall: 0.994021101992966 +F1 Score: 0.9644543024512312 \ No newline at end of file diff --git a/images/unet/confusion-matrix.png b/images/unet/confusion-matrix.png new file mode 100644 index 0000000..71aeec8 Binary files /dev/null and b/images/unet/confusion-matrix.png differ diff --git a/images/unet/f1.png b/images/unet/f1.png new file mode 100644 index 0000000..099348c Binary files /dev/null and b/images/unet/f1.png differ diff --git a/images/unet/loss.png b/images/unet/loss.png new file mode 100644 index 0000000..63991a0 Binary files /dev/null and b/images/unet/loss.png differ diff --git a/images/unet/model_epoch10.pth.png b/images/unet/model_epoch10.pth.png new file mode 100644 index 0000000..f282ca8 Binary files /dev/null and b/images/unet/model_epoch10.pth.png differ diff --git a/images/unet/output-test.png b/images/unet/output-test.png new file mode 100644 index 0000000..3355c13 Binary files /dev/null and b/images/unet/output-test.png differ diff --git a/images/unet/output1.png b/images/unet/output1.png new file mode 100644 index 0000000..de33090 Binary files /dev/null and b/images/unet/output1.png differ diff --git a/images/unet/output2.png b/images/unet/output2.png new file mode 100644 index 0000000..c4c7afb Binary files /dev/null and b/images/unet/output2.png differ diff --git a/images/unet/prcurve.png b/images/unet/prcurve.png new file mode 100644 index 0000000..71d1d25 Binary files /dev/null and b/images/unet/prcurve.png differ diff --git a/images/unet/result.txt b/images/unet/result.txt new file mode 100644 index 0000000..2cc1055 --- /dev/null +++ b/images/unet/result.txt @@ -0,0 +1,4 @@ +Accuracy: 0.9975090026855469 +Precision: 0.9646868359809775 +Recall: 0.9690994104492783 +F1 Score: 0.9668880888393083 diff --git a/test copy.py b/test copy.py new file mode 100644 index 0000000..296f57b --- /dev/null +++ b/test copy.py @@ -0,0 +1,47 @@ +import os +import shutil +from PIL import Image +import cv2 + +image_path = 'C:/Users/pinb/Desktop/image/' +mask_path = 'C:/Users/pinb/Desktop/mask/' + +# names = ['gold_ii', +# 'gold_ie', +# 'gold_io', +# 'gold_ee', +# 'gold_ei', +# 'gold_eo', +# 'gold_oi', +# 'gold_oe', +# 'gold_oo', +names = ['silver_ii', + 'silver_ie', + 'silver_io', + 'silver_ee', + 'silver_ei', + 'silver_eo', + 'silver_oi', + 'silver_oe', + 'silver_oo'] + + +for name in names: + image_forder = image_path + name + mask_forder = mask_path + name + for dir in os.listdir(image_forder): + image_bar_folder = os.path.join(image_forder, dir) + for file in os.listdir(image_bar_folder): + new_filename = os.path.join(image_bar_folder, file) + png_filename = os.path.splitext(os.path.basename(file))[0] + '.png' + new_png_file = os.path.join(image_bar_folder, png_filename) + img = cv2.imread(new_filename, cv2.IMREAD_GRAYSCALE) + cv2.imwrite(new_png_file, img) + os.remove(new_filename) + print(f'Converted "{new_filename}" to "{new_png_file}"') + # with Image.open(new_filename) as img: + # # PNG로 저장 + # img.save(new_png_file, 'PNG') + # img.close() + # os.remove(new_filename) + # print(f'Converted "{new_filename}" to "{new_png_file}"') diff --git a/test.py b/test.py new file mode 100644 index 0000000..70f83ea --- /dev/null +++ b/test.py @@ -0,0 +1,86 @@ +import os +import shutil +from PIL import Image +import cv2 + +# # 변환하고자 하는 폴더의 경로 +# folder_path = 'C:/Users/pinb/Desktop/image/silver_oe/' + +# # 변경하고자 하는 문자열과 변경될 문자열 +# old_string = 'ie' +# new_string = 'oe' + +# # 폴더 내의 모든 파일에 대해 반복 +# for dir in os.listdir(folder_path): +# bar_folder = os.path.join(os.path.dirname(folder_path), dir) +# for filename in os.listdir(bar_folder): +# if old_string in filename: +# # 파일의 새 이름 생성 +# new_filename = filename.replace(old_string, new_string) + +# # 파일 이름 변경 +# old_file_path = os.path.join(bar_folder, filename) +# new_file_path = os.path.join(bar_folder, new_filename) + +# # 파일 이름 변경 실행 +# os.rename(old_file_path, new_file_path) +# print(f'Renamed "{filename}" to "{new_filename}"') + + +image_path = 'C:/Users/pinb/Desktop/image/' +mask_path = 'C:/Users/pinb/Desktop/mask/' + +#names = ['gold_ii', + # 'gold_ie', +# 'gold_io', +# 'gold_ee', +# 'gold_ei', +# 'gold_eo', +# 'gold_oi', +names = ['gold_oe', + 'gold_oo'] + # 'silver_ii', + # 'silver_ie', + # 'silver_io', + # 'silver_ee', + # 'silver_ei', + # 'silver_eo', + # 'silver_oi', + # 'silver_oe', + # 'silver_oo'] + + +for name in names: + image_forder = image_path + name + # mask_forder = mask_path + name + # mask_origin = mask_path + name + '_mask.png' + for dir in os.listdir(image_forder): + image_bar_folder = os.path.join(image_forder, dir) + # mask_bar_folder = os.path.join(mask_forder, dir) + # if not os.path.exists(mask_bar_folder): + # os.makedirs(mask_bar_folder) + for file in os.listdir(image_bar_folder): + # filename = os.path.splitext(os.path.basename(file))[0] + '_mask.png' + # new_filename = os.path.join(mask_bar_folder, filename) + # shutil.copy2(mask_origin, new_filename) + # print(f'Copied "{mask_origin}" to "{new_filename}"') + + new_filename = os.path.join(image_bar_folder, file) + png_filename = os.path.splitext(os.path.basename(file))[0] + '.png' + new_png_file = os.path.join(image_bar_folder, png_filename) + # with Image.open(new_filename) as img: + # # PNG로 저장 + # img.save(new_png_file, 'PNG') + # img.close() + # os.remove(new_filename) + # print(f'Converted "{new_filename}" to "{new_png_file}"') + try: + split = os.path.splitext(os.path.basename(file))[1] + if split == '.bmp': + img = cv2.imread(new_filename, cv2.IMREAD_GRAYSCALE) + cv2.imwrite(new_png_file, img) + os.remove(new_filename) + print(f'Converted "{new_filename}" to "{new_png_file}"') + except: + os.remove(new_filename) + pass diff --git a/thesis_model_test.ipynb b/thesis_model_test.ipynb new file mode 100644 index 0000000..c521c6d --- /dev/null +++ b/thesis_model_test.ipynb @@ -0,0 +1,376 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualize" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import cv2\n", + "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, precision_recall_curve\n", + "\n", + "base_dirs = ['./2nd_Battery/unet',\n", + " './2nd_Battery/unet-mini',\n", + " './2nd_Battery/unet-dice-loss',\n", + " './2nd_Battery/unet-focal-loss',\n", + " './2nd_Battery/unet-sgd',\n", + " './2nd_Battery/unet-rmsprop',\n", + " './2nd_Battery/unet-l1',\n", + " './2nd_Battery/unet-l2',\n", + " './2nd_Battery/unet-l1+l2']\n", + "colors = ['red', 'orange', 'yellow', 'pink', 'green', 'gold', 'magenta', 'cyan', 'violet']\n", + "losses = [0.2072, 0.1324, 0.3879, 0.0112, 0.1787, 0.1666, 0.0357, 0.0241, 0.0550]" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "unet - precision: 0.582, recall: 0.895, accuracy: 0.958, f1: 0.685, iou: 0.550\n", + "unet-mini - precision: 0.708, recall: 0.929, accuracy: 0.973, f1: 0.794, iou: 0.676\n", + "unet-dice-loss - precision: 0.509, recall: 0.934, accuracy: 0.946, f1: 0.642, iou: 0.492\n", + "unet-focal-loss - precision: 0.894, recall: 0.762, accuracy: 0.984, f1: 0.818, iou: 0.711\n", + "unet-sgd - precision: 0.541, recall: 0.960, accuracy: 0.956, f1: 0.681, iou: 0.530\n", + "unet-rmsprop - precision: 0.855, recall: 0.789, accuracy: 0.984, f1: 0.794, iou: 0.696\n", + "unet-l1 - precision: 0.670, recall: 0.885, accuracy: 0.971, f1: 0.752, iou: 0.618\n", + "unet-l2 - precision: 0.778, recall: 0.788, accuracy: 0.977, f1: 0.777, iou: 0.649\n", + "unet-l1+l2 - precision: 0.714, recall: 0.908, accuracy: 0.976, f1: 0.790, iou: 0.667\n" + ] + } + ], + "source": [ + "lst_rst, lst_cdata = [], []\n", + "idx = 0\n", + "\n", + "for base_dir in base_dirs:\n", + " result_dir = os.path.join(base_dir, 'result')\n", + "\n", + " ##\n", + " lst_data = os.listdir(os.path.join(result_dir, 'numpy'))\n", + "\n", + " lst_gt = [f for f in lst_data if f.startswith('gt')]\n", + " lst_pr = [f for f in lst_data if f.startswith('pr')]\n", + "\n", + " lst_gt.sort()\n", + " lst_pr.sort()\n", + "\n", + " ##\n", + " # id = 0\n", + " length = 1000\n", + " tp_list, tn_list, fp_list, fn_list, rst_list = [], [], [], [], []\n", + "\n", + " for id in range(0, length):\n", + " # img = np.load(os.path.join(result_dir,\"numpy\", lst_img[id]))\n", + " gt = np.load(os.path.join(result_dir,\"numpy\", lst_gt[id]))\n", + " pr = np.load(os.path.join(result_dir,\"numpy\", lst_pr[id]))\n", + "\n", + " tp = np.sum(np.logical_and(gt == 1, pr == 1))\n", + " tn = np.sum(np.logical_and(gt == 0, pr == 0))\n", + " fp = np.sum(np.logical_and(gt == 0, pr == 1))\n", + " fn = np.sum(np.logical_and(gt == 1, pr == 0))\n", + "\n", + " precision = tp / (tp + fp) # precision = TP / (TP + FP)\n", + " recall = tp / (tp + fn) # recall = TP / (TP + FN), SE(Sensitivity), hit rate\n", + " accuracy = (tp + tn) / (tp + tn + fp + fn)\n", + " f1 = 2 * precision * recall / (precision + recall)\n", + " iou = tp / (tp + fn + fp) \n", + "\n", + " tp_list.append(tp)\n", + " tn_list.append(tn)\n", + " fp_list.append(fp)\n", + " fn_list.append(fn)\n", + "\n", + "\n", + " # output_binary = (pr > 0).astype(np.int32)\n", + " # label_flat = gt.flatten().astype(np.int32)\n", + " # output_flat = output_binary.flatten().astype(np.int32)\n", + "\n", + " # accuracy = accuracy_score(label_flat, output_flat)\n", + " # precision = precision_score(label_flat, output_flat)\n", + " # recall = recall_score(label_flat, output_flat)\n", + " # f1 = f1_score(label_flat, output_flat)\n", + "\n", + " rst_list.append((precision, recall, accuracy, f1, iou))\n", + " \n", + " # avg_precision = sum(item[0] for item in rst_list) / len(rst_list)\n", + " # avg_recall = sum(item[1] for item in rst_list) / len(rst_list)\n", + " # avg_accuracy = sum(item[2] for item in rst_list) / len(rst_list)\n", + " # avg_f1 = sum(item[3] for item in rst_list) / len(rst_list)\n", + " # avg_iou = sum(item[4] for item in rst_list) / len(rst_list)\n", + " avg_precision = np.mean([item[0] for item in rst_list])\n", + " avg_recall = np.mean([item[1] for item in rst_list])\n", + " avg_accuracy = np.mean([item[2] for item in rst_list])\n", + " avg_f1 = np.mean([item[3] for item in rst_list])\n", + " avg_iou = np.mean([item[4] for item in rst_list])\n", + " print(f'{os.path.basename(base_dir)} - precision: {avg_precision:.3f}, recall: {avg_recall:.3f}, accuracy: {avg_accuracy:.3f}, f1: {avg_f1:.3f}, iou: {avg_iou:.3f}')\n", + "\n", + " total_tp = np.sum(tp_list)\n", + " total_tn = np.sum(tn_list)\n", + " total_fp = np.sum(fp_list)\n", + " total_fn = np.sum(fn_list)\n", + " y_true = np.concatenate([np.ones(total_tp + total_fn), np.zeros(total_tn + total_fp)])\n", + " y_score = np.concatenate([np.ones(total_tp), np.zeros(total_fn), np.ones(total_fp), np.zeros(total_tn)])\n", + "\n", + " lst_cdata.append((y_true, y_score))\n", + " lst_rst.append((losses[idx], avg_precision, avg_recall, avg_accuracy, avg_f1, avg_iou))\n", + " idx += 1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGzCAYAAADaCpaHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADr0UlEQVR4nOydd3hTZRuH7zTdk9WyoZS9LBvZW/aSDQrIUKYCiop+LBURBVFxoGzZG1FBkCV7711W2VAK3TPJ+/3xtklDd5vu976uXG1OznjOSM7vPO8zNEIIgUKhUCgUCkUOxSqrDVAoFAqFQqFID0rMKBQKhUKhyNEoMaNQKBQKhSJHo8SMQqFQKBSKHI0SMwqFQqFQKHI0SswoFAqFQqHI0Sgxo1AoFAqFIkejxIxCoVAoFIocjRIzCoVCoVAocjRKzChSxDfffIOXlxdarZYaNWpktTmKNLBv3z40Gg379u3Lku1PmzYNjUaTJdtOKTqdjg8//JCSJUtiZWVFt27dLLp+T09PBg8ebDbNx8eH1157DTc3NzQaDVu2bAHgxIkTNGzYECcnJzQaDWfPnrWoLXmRhI5/StFoNEybNs2i9igshxIzOZSlS5ei0WiML3t7eypUqMCYMWN48uSJRbe1c+dOPvzwQxo1asSSJUv48ssvLbr+vMbgwYPNzt3L5zEnExYWxrRp07JMMKWXxYsX880339CzZ0+WLVvG+PHjE523efPmxvNmZWWFq6srFStW5M033+Tff/9N8TYHDRrEhQsXmDFjBsuXL6dOnTpER0fTq1cvnj9/zty5c1m+fDmlS5e2xC5anNSe81hRrdFoWLFiRYLzNGrUCI1GQ7Vq1SxoqSI3Y53VBijSx2effUaZMmWIiIjg4MGD/PLLL2zbto2LFy/i6OhokW3s2bMHKysrFi1ahK2trUXWmdexs7Nj4cKF8aZrtdossMZyhIWFMX36dEDe7OPyv//9j48//jgLrEo5e/bsoXjx4sydOzdF85coUYKZM2cCEBoayo0bN9i0aRMrVqygd+/erFixAhsbG+P8165dw8rK9AwZHh7OkSNH+PTTTxkzZoxx+tWrV/H19WXBggUMGzbMQnuXMSR1zpPC3t6eVatW8cYbb5hNv3PnDocPH87xwl6RuSgxk8Np3749derUAWDYsGEULFiQb7/9lj/++IN+/fqla91hYWE4Ojry9OlTHBwcLCZkhBBERETg4OBgkfXlRKytreP9iOd2rK2tsbbO3j85T58+JV++fCme383NLd55/Oqrr3j33Xf5+eef8fT0ZNasWcbP7OzszOb18/MDiLfNp0+fJjg9PYSGhuLk5GSx9aWXDh06sHXrVp49e0ahQoWM01etWkXhwoUpX748L168yEILFTkJNcyUy2jZsiUAt2/fNk5bsWIFtWvXxsHBgQIFCtC3b1/u3btntlzz5s2pVq0ap06domnTpjg6OvLJJ5+g0WhYsmQJoaGhRtfw0qVLARlf8Pnnn1O2bFns7Ozw9PTkk08+ITIy0mzdnp6edOrUiR07dlCnTh0cHBz49ddfje7mdevWMX36dIoXL46Liws9e/YkMDCQyMhIxo0bh4eHB87Ozrz11lvx1r1kyRJatmyJh4cHdnZ2VKlShV9++SXecYm14eDBg9SrVw97e3u8vLz4/fff480bEBDA+PHj8fT0xM7OjhIlSjBw4ECePXtmnCcyMpKpU6dSrlw57OzsKFmyJB9++GE8+9LKyZMn0Wg0LFu2LN5nO3bsQKPR8NdffwHg6+vLqFGjqFixIg4ODhQsWJBevXpx586dZLeTWAxB8+bNzZ6yo6KimDJlCrVr18bNzQ0nJyeaNGnC3r17jfPcuXMHd3d3AKZPn268XmLjDBKKmUntNZSS85cQoaGhvP/++5QsWRI7OzsqVqzI7NmzEUIYbddoNOzdu5dLly4ZbU/LcJlWq+WHH36gSpUq/PjjjwQGBprtR+zxnjZtmnHoaOLEiWg0GuPnzZo1A6BXr15oNBqzc3H16lV69uxJgQIFsLe3p06dOmzdutXMhthh6P/++49Ro0bh4eFBiRIljJ9v376dJk2a4OTkhIuLCx07duTSpUtm6xg8eDDOzs48ePCAbt264ezsjLu7Ox988AF6vd543JI650nRtWtX7OzsWL9+vdn0VatW0bt37wS9lCm9XoQQfPHFF5QoUQJHR0datGgRb/9iCQgIYNy4ccZro1y5csyaNQuDwZCk/cHBwYwbN874O+Hh4UGbNm04ffp0svuusDzZ+zFJkWpu3rwJQMGCBQGYMWMGkydPpnfv3gwbNgw/Pz/mzZtH06ZNOXPmjNmTn7+/P+3bt6dv37688cYbFC5cmDp16vDbb79x/Phx47BIw4YNAekJWrZsGT179uT999/n2LFjzJw5kytXrrB582Yzu65du0a/fv145513GD58OBUrVjR+NnPmTBwcHPj444+5ceMG8+bNw8bGBisrK168eMG0adM4evQoS5cupUyZMkyZMsW47C+//ELVqlXp0qUL1tbW/Pnnn4waNQqDwcDo0aPNbLhx4wY9e/Zk6NChDBo0iMWLFzN48GBq165N1apVAQgJCaFJkyZcuXKFIUOGUKtWLZ49e8bWrVu5f/8+hQoVwmAw0KVLFw4ePMjbb79N5cqVuXDhAnPnzuX69evGAM7kiCuOYrG1tcXV1ZU6derg5eXFunXrGDRokNk8a9euJX/+/LRt2xaQgaKHDx+mb9++lChRgjt37vDLL7/QvHlzLl++bJHhxqCgIBYuXEi/fv0YPnw4wcHBLFq0iLZt23L8+HFq1KiBu7s7v/zyCyNHjqR79+68/vrrALzyyiuJrjc111BKzl9CCCHo0qULe/fuZejQodSoUYMdO3YwceJEHjx4wNy5c3F3d2f58uXMmDGDkJAQ49BR5cqV03S8tFot/fr1Y/LkyRw8eJCOHTvGm+f1118nX758jB8/nn79+tGhQwecnZ0pXLgwxYsX58svv+Tdd9+lbt26FC5cGIBLly7RqFEjihcvzscff4yTkxPr1q2jW7dubNy4ke7du5ttY9SoUbi7uzNlyhRCQ0MBWL58OYMGDaJt27bMmjWLsLAwfvnlFxo3bsyZM2fw9PQ0Lq/X62nbti3169dn9uzZ7Nq1izlz5lC2bFlGjhyZpnMei6OjI127dmX16tWMHDkSgHPnznHp0iUWLlzI+fPn4y2T0utlypQpfPHFF3To0IEOHTpw+vRpXnvtNaKioszWFxYWRrNmzXjw4AHvvPMOpUqV4vDhw0yaNIlHjx7x3XffJWr/iBEj2LBhA2PGjKFKlSr4+/tz8OBBrly5Qq1atZLdf4WFEYocyZIlSwQgdu3aJfz8/MS9e/fEmjVrRMGCBYWDg4O4f/++uHPnjtBqtWLGjBlmy164cEFYW1ubTW/WrJkAxPz58+Nta9CgQcLJycls2tmzZwUghg0bZjb9gw8+EIDYs2ePcVrp0qUFIP755x+zeffu3SsAUa1aNREVFWWc3q9fP6HRaET79u3N5m/QoIEoXbq02bSwsLB49rZt21Z4eXmZTYu1Yf/+/cZpT58+FXZ2duL99983TpsyZYoAxKZNm+Kt12AwCCGEWL58ubCyshIHDhww+3z+/PkCEIcOHYq3bFwGDRokgARfbdu2Nc43adIkYWNjI54/f26cFhkZKfLlyyeGDBmS5DE4cuSIAMTvv/9unBZ7vPfu3Wt2XAYNGhRv+WbNmolmzZoZ3+t0OhEZGWk2z4sXL0ThwoXNbPHz8xOAmDp1arx1Tp06VcT9yUnLNZTc+UuILVu2CEB88cUXZtN79uwpNBqNuHHjhtl+V61aNcn1pXTezZs3C0B8//33ZvsR93jfvn1bAOKbb74xWzb2XK1fv95seqtWrUT16tVFRESEcZrBYBANGzYU5cuXN06L/X1o3Lix0Ol0xunBwcEiX758Yvjw4Wbrffz4sXBzczObHnudfvbZZ2bz1qxZU9SuXdv4PqlznhBx9+2vv/4SGo1G3L17VwghxMSJE43f3ZePb0qvl6dPnwpbW1vRsWNH43dWCCE++eQTAZgd/88//1w4OTmJ69evm63z448/Flqt1miXECLePrq5uYnRo0enaJ8VGY8aZsrhtG7dGnd3d0qWLEnfvn1xdnZm8+bNFC9enE2bNmEwGOjduzfPnj0zvooUKUL58uXNhghAjue/9dZbKdrutm3bAJgwYYLZ9Pfffx+Av//+22x6mTJljJ6Elxk4cKBZkGT9+vURQjBkyBCz+erXr8+9e/fQ6XTGaXHjbgIDA3n27BnNmjXj1q1bZu59gCpVqtCkSRPje3d3dypWrMitW7eM0zZu3Ii3t3e8J1zAOESyfv16KleuTKVKlcyOa+wQ38vHNSHs7e35999/472++uor4zx9+vQhOjqaTZs2Gaft3LmTgIAA+vTpk+AxiI6Oxt/fn3LlypEvXz6Luby1Wq0xZspgMPD8+XN0Oh116tRJ8zZSew2l5Pwlth2tVsu7774bbztCCLZv354m+5PD2dkZkMMRluD58+fs2bOH3r17ExwcbLzu/P39adu2LT4+Pjx48MBsmeHDh5sN1/z7778EBATQr18/s2tXq9VSv379BK/dESNGmL1v0qRJssc8pbz22msUKFCANWvWIIRgzZo1icb6pfR62bVrF1FRUYwdO9ZsWHPcuHHx1rl+/XqaNGlC/vz5zY5H69at0ev17N+/P1Hb8+XLx7Fjx3j48GGq9lmRMahhphzOTz/9RIUKFbC2tqZw4cJUrFjRmC3h4+ODEILy5csnuGxcAQFQvHjxFAf5+vr6YmVlRbly5cymFylShHz58uHr62s2vUyZMomuq1SpUmbv3dzcAChZsmS86QaDgcDAQOMw2qFDh5g6dSpHjhwhLCzMbP7AwEDjuhLaDkD+/PnNggxv3rxJjx49ErUV5HG9cuWKMVbgZWKDN5NCq9XSunXrJOfx9vamUqVKrF27lqFDhwJyiKlQoUJG4QQyI2bmzJksWbKEBw8eGONAgHiCLj0sW7aMOXPmcPXqVaKjo43Tkzq3SZHaaygl5y+x7RQrVgwXFxez6bFDSC9vx1KEhIQAxNtuWrlx4wZCCCZPnszkyZMTnOfp06cUL17c+P7lc+Pj4wNgdv3ExdXV1ey9vb19vOs8Jcc8pdjY2NCrVy9WrVpFvXr1uHfvHv37909w3pReL7F/X/7dc3d3J3/+/GbTfHx8OH/+fJq+y19//TWDBg2iZMmS1K5dmw4dOjBw4EC8vLyS3mlFhqDETA6nXr16xmymlzEYDGg0GrZv355gMF3sk2MsackuSmkRtKTWnVg6cmLTY2/WN2/epFWrVlSqVIlvv/2WkiVLYmtry7Zt25g7d268AL7k1pdSDAYD1atX59tvv03w85dFWHro06cPM2bM4NmzZ7i4uLB161b69etnlhU0duxYlixZwrhx42jQoIGx+Frfvn2TDWJM7Pzp9Xqz47VixQoGDx5Mt27dmDhxIh4eHmi1WmbOnGmM00orKb2GLHX+MouLFy8CxLv5ppXYc/nBBx8k6uV8eVsvf+9i17F8+XKKFCkSb/mXs80yo1RA//79mT9/PtOmTcPb25sqVaokOb8lCy8aDAbatGnDhx9+mODnFSpUSHTZ3r1706RJEzZv3szOnTv55ptvmDVrFps2baJ9+/YWs1GRMpSYycWULVsWIQRlypRJ8kuZFkqXLo3BYMDHx8csSPLJkycEBARkSoGvP//8k8jISLZu3Wr21J6SYZ7EKFu2rPEmlNQ8586do1WrVhle0bZPnz5Mnz6djRs3UrhwYYKCgujbt6/ZPBs2bGDQoEHMmTPHOC0iIoKAgIBk158/f/4E5/P19TV7wtywYQNeXl5s2rTJbJ+nTp1qtlxqjkdmXUOlS5dm165dBAcHm3lJrl69avzc0uj1elatWoWjoyONGze2yDpjz4eNjU2yXr3EKFu2LAAeHh5pXsfLpPc70LhxY0qVKsW+ffvM0thfJqXXS+xfHx8fs2vYz88vnkepbNmyhISEpPlYFC1alFGjRjFq1CiePn1KrVq1mDFjhhIzWYCKmcnFvP7662i1WqZPnx7v6VUIgb+/f5rX3aFDB4B40f6x3oqEsjcsTexT48vDKkuWLEnzOnv06MG5c+fiZdLE3U7v3r158OABCxYsiDdPeHi4MWvEElSuXJnq1auzdu1a1q5dS9GiRWnatKnZPFqtNt75nTdvnjF9NinKli3L0aNHzbI8/vrrr3ip+wkd62PHjnHkyBGz+WIzp1IipDLrGurQoQN6vZ4ff/zRbPrcuXPRaDQWv/Ho9Xreffddrly5wrvvvhtv6CateHh40Lx5c3799VcePXoU7/PYmjVJ0bZtW1xdXfnyyy/NhgpTs46XSc05TwiNRsMPP/zA1KlTefPNNxOdL6XXS+vWrbGxsWHevHlm12tCmUm9e/fmyJEj7NixI95nAQEBZvF5cdHr9fGGcD08PChWrJjFyjMoUofyzORiypYtyxdffMGkSZO4c+cO3bp1w8XFhdu3b7N582befvttPvjggzSt29vbm0GDBvHbb78REBBAs2bNOH78OMuWLaNbt260aNHCwnsTn9deew1bW1s6d+7MO++8Q0hICAsWLMDDwyPBH/uUMHHiRDZs2ECvXr0YMmQItWvX5vnz52zdupX58+fj7e3Nm2++ybp16xgxYgR79+6lUaNG6PV6rl69yrp164z1dJJCp9MlWsq9e/fuZsXN+vTpw5QpU7C3t2fo0KFmFWQBOnXqxPLly3Fzc6NKlSocOXKEXbt2GeOKkmLYsGFs2LCBdu3a0bt3b27evMmKFSuMT/Bxt7Fp0ya6d+9Ox44duX37NvPnz6dKlSrG2BCQwxpVqlRh7dq1VKhQgQIFClCtWrUEy9Jn1jXUuXNnWrRowaeffsqdO3fw9vZm586d/PHHH4wbNy7evqaGwMBA43kMCwszVgC+efMmffv25fPPP7fIPsTy008/0bhxY6pXr87w4cPx8vLiyZMnHDlyhPv373Pu3Lkkl3d1deWXX37hzTffpFatWvTt2xd3d3fu3r3L33//TaNGjeKJvuRIzTlPjK5du9K1a9ck50np9RJbC2fmzJl06tSJDh06cObMGbZv325WnA/k933r1q106tTJmOYfGhrKhQsX2LBhA3fu3Im3DMig7hIlStCzZ0+8vb1xdnZm165dnDhxwsxDqshEMj1/SmERYlMvT5w4key8GzduFI0bNxZOTk7CyclJVKpUSYwePVpcu3bNOE9SaaYJpWYLIUR0dLSYPn26KFOmjLCxsRElS5YUkyZNMksbFUKmo3bs2DHe8omlnya2b7GpvX5+fsZpW7duFa+88oqwt7cXnp6eYtasWWLx4sUCELdv307WhpdTkIUQwt/fX4wZM0YUL15c2NraihIlSohBgwaJZ8+eGeeJiooSs2bNElWrVhV2dnYif/78onbt2mL69OkiMDAw/kGMQ1Kp2S/bLYQQPj4+xs8OHjwYb30vXrwQb731lihUqJBwdnYWbdu2FVevXo2XBpxQarYQQsyZM0cUL15c2NnZiUaNGomTJ0/GOy4Gg0F8+eWXonTp0sLOzk7UrFlT/PXXX2LQoEHx0uUPHz4sateuLWxtbc3SWV9OzRYi/ddQQucvIYKDg8X48eNFsWLFhI2NjShfvrz45ptvzFJ3Y9eXmtTsuOfN2dlZlC9fXrzxxhti586dCS6T3tRsIYS4efOmGDhwoChSpIiwsbERxYsXF506dRIbNmwwzpPc78PevXtF27ZthZubm7C3txdly5YVgwcPFidPnjTOk9j3PqHzmNg5T2zbie1bXBI6Fym9XvR6vZg+fbooWrSocHBwEM2bNxcXL15MsBRBcHCwmDRpkihXrpywtbUVhQoVEg0bNhSzZ882KxkRd78iIyPFxIkThbe3t3BxcRFOTk7C29tb/Pzzz0nukyLj0AiRTaPnFAqFQqFQKFKAiplRKBQKhUKRo1FiRqFQKBQKRY5GiRmFQqFQKBQ5GiVmFAqFQqFQ5GiUmFEoFAqFQpGjUWJGoVAoFApFjiZHFM0zGAw8fPgQFxeXDC8fr1AoFAqFwjIIIQgODqZYsWLxCn5akhwhZh4+fGjR5n0KhUKhUCgyj3v37lGiRIkMW3+OEDOxzeHu3btnsT4nCoVCoVAoMpagoCBKlixp1uQ1I8gRYiZ2aMnV1VWJGYVCoVAochgZHSKiAoAVCoVCoVDkaJSYUSgUCoVCkaNRYkahUCgUCkWORokZhUKhUCgUOZpUi5n9+/fTuXNnihUrhkajYcuWLckus2/fPmrVqoWdnR3lypVj6dKlaTBVoVAoFAqFIj6pFjOhoaF4e3vz008/pWj+27dv07FjR1q0aMHZs2cZN24cw4YNY8eOHak2VqFQKBQKheJlUp2a3b59e9q3b5/i+efPn0+ZMmWYM2cOAJUrV+bgwYPMnTuXtm3bpnbzCoVCoVAoFGZkeMzMkSNHaN26tdm0tm3bcuTIkUSXiYyMJCgoyOylUCgUCoVCkRAZLmYeP35M4cKFzaYVLlyYoKAgwsPDE1xm5syZuLm5GV+qlYFCoVAoFIrEyJbZTJMmTSIwMND4unfvXlabpFAoFAqFIpuS4e0MihQpwpMnT8ymPXnyBFdXVxwcHBJcxs7ODjs7u4w2TaFQKBQKRS4gwz0zDRo0YPfu3WbT/v33Xxo0aJDRm1YoFAqFQpEHSLVnJiQkhBs3bhjf3759m7Nnz1KgQAFKlSrFpEmTePDgAb///jsAI0aM4Mcff+TDDz9kyJAh7Nmzh3Xr1vH3339bbi8UityGEBB1DcIPQtRNsC0HdtXAtgpoM7b7rMKC6IMh6jIYgkBbELSF5F+NI2Rw4z2FIi+RajFz8uRJWrRoYXw/YcIEAAYNGsTSpUt59OgRd+/eNX5epkwZ/v77b8aPH8/3339PiRIlWLhwoUrLVijiIqIg4gyEHYTwAxB+CPTPEp7XxhNsq0lxE/uyrQRWamg2y4gVLZGXIeoSRMa8dInE+2nszcVNSv5aOSsBpFAkgkYIIbLaiOQICgrCzc2NwMBAXF1ds9ochSL96IMg4mgc8XIMxEvZfRp7cHhVCpWomxB1EXSPElmhFmzLxxE3sX/LgibDQ+PyDoYQKVgiL8WIl1jRcjfxZayLSkGify4FqohK48ZtwDoV4kdbEKzclABKDyIaDOEgwgCBjMzQyL8aq5j3sf9rXnofO02Tp89BZt2/1a+cQpEZ6B6ZhEvYQYg8BxjM59EWBIfG8uXYGOxrgcbWfB69f8wN9GKc1wUwBEDUVfkK3mCaX2MHtpXNvTh21cC6VJ7+gU0WQwhEXokRLbGelsug8018GW0RsKtqetlWBbsqoM1vmkcIEKGgewYGf/lX7y9Fjj7u/y/9FRFAtLyOEhW0CWEN2gLJi564IskqX8zNOJsidCaBEftXhIMhNX/D4q8job/oLGT0y0InAUGEVcx38mVBFDN/PPGU2HpSMe/LIszjG7CrZKF9zlyUZya3IAzyR0/3BPRPTH/1/mBdXMZa2FUBrbu6iWU0ceNdwg7Iv9G34s9nUwYcmkjh4tAYbCum7SYihLzBRV18SeRcinmiTAArl5ib7UsiR+uRt64PQ6gULXGHhiIvpUC0VIkjWGJFS4EMtDMscbGToDDyl6IpTVjFCKDUDIPlAxGZMoFg9jcNQoRoCx7YVB6Xlx9Achulj4JDfYuuMrPu30rMZGeEHvR+5gLlZbFinPaUFH3RtAVNwibuX+uieesmZklSFO+iATtvcGwS431pBDbFM9guA0TfMYkbo9i5SqI3BG0h82Equ2ryZq3Nl7G2ZjRG0RJnaCjqkjw+iaEtHPP9iONtsasiv0M5AUNE4p6exP4agrPa6tShcZAvK8c0/HUEK4eU/dXYmX4fhUAOORnkSxhM74XBNB1DzLyGlz5LaF5h/j6peVO6zrh2pXSdzp3B2t2ip0iJmTjkKjEjdDEC5XHyIkX/jFQ/CWgLyR9h65iXVX6Ivit/xKNvIy/kBLByiy9w7CqDdcns7XLOClIa72JfP454eRW0bllj78uIaIjyecmLcxGib5Do9WFdIr4Xx7ayvClkJwxhEHUljpflchzRksi+aT1ivCxVzIeJcoposSQiKkbYJODpSeyvIcB8HRp7ywiIZAWGvXoAywEoMROHbC9mRDTonsYRJo8T8Z7EDPsk9qOaIBopUKyLmERKXLFiNs0dNDaJr8oQJoc/jE+ol+XfqBuAPpHNO0lR87I3x8YTNNpU7EcOJiXxLlYFYoaLmiQe75LdMYTJmJuXRU5iGTlowKYs2FV/SeSUT/o6tKitcYaGkhPsWvf4Q0O2VWW8iCLtCJ1MPdfYx7zUw4/ChBIzccgSMWOIlEM3ZoIkEZFieJ7KlVvJH1brwikQKYUyPhvFEAnRPjFZGpfjCJ3rJDocobGXWTYve3NyevZMquJdGps8L2mNd8kJ6ANiroeLEHEhZrjqQowwTwgbGURoHK6Kic2xKZPwMQoMBFfXhJ+yDeExnpbLmAXjJilaCr00NBTjdbGw+1yhUCSPEjNxyLCDEbROutsTEikvu06TRQvWHnFESJFEvCeFY4pm5QCvhoiOSQl+WeRclcF+CaGxBdsKCcTllM+enorUxLsYxUsmxLtkd4SQYj820DhuTE5icRcax5jA2Womb87uu9B7NDR7FdbMBKtb5nEt0bdIXLQUNBctsf8r0aJQZBuUmIlDhh2MO/Ug4kQSM9iYCxSjICkSX6RoC+TeJ/OXEXr5ZGwmcC7L4avEsmdi66DEihujJ6ciWNlnnu2pineJGTbKTvEu2R0h5LDUy6njUVcSF8AhgAOQmL63KpBAynNVlZmnUOQAlJiJQ4YdjGefQbSvuUh5OXhW/VimHGEwBRu/LHQSzZKwAhsvcy+OXZWYirZO6bcpVfEusfVdamdPL1JORuikly/WgxN4Em7+A8V0pmpXAcDzAlCjB9hXjxOIm8fSxRWKXIQSM3HI9gHAiqQRAnQPTN6bWJETeQkMLxJfzsYzgeGqyqBN5BpIdbxLbH2XSnnHq5YdiIyEli3h8GGoWg72/g6XHkC7ARAZBX37wooVoM0BQ7EKhSJJVAVgRe5BowGbEvLl9JppujHu4uXhqstyevQd+QrdZr6+uEUA7arIvjgpineJre9SIoN3WJEoQsDIkVLIuLnBxr/AvSI0BzY6QLdusGYNODrCggVgpUSmQqFIHuWZUWRPdM9MWSxxhY7uYdLLaezBvl6c+i4NVLxLdmLuXJgwQYqU7dvhtdfMP1+/XnpmDAZ491347js1xKRQ5GCUZ0aRt7EuBNZNpCiJiz4gTqpujMDR2Jo8L3a1VPfo7Mr27fDBB/L/b7+NL2QAevWC8HAYNAh++AGcnODLLzPXToVCkeNQYkaRs9Dmk94WhwZZbYkiNVy9avK4DB0qvS6JMXAghIbCqFEwcyY4O8Mnn2SerQqFIsehBqQVOROdTt7w/P3lDVKRfXnxArp0gaAgaNwYfv45+aGjkSPhm2/k/59+Ct9/n/F2KhSKHIvyzChSj04HERGmV2Rkwv+n931Sn+njtF+oVAn++QdKl866Y6JIGJ0OevcGHx95fjZuBNsUpr1/8AGEhMD06TBunBxyGjYsQ81VKBQ5EyVmcit6PVy+DOfOySfitIqGhN5nN0/I1avQujXs3w9Fi2a1NYq4TJgAu3ZJIbJ1K3h4pG75qVOloJkzB95+W66nX7+MsVWhUORYlJjJDQgBt27BiROm16lTEJZYNV4LYmMDdnZgb296JfU+rZ8lNq+/PzRrBjduQJs2sG8fFFKNA7MFCxbAvHny/+XL4ZVXUr8OjUYON4WGwvz58OabMm27a1fL2qpQKHI0SszkRB49MhcuJ07A8wSaXTo7Q61a4O5uOfEQ972dXdYXNnNygt27oUkTuHQJ2rWT791UOnaWsn+/DOAF+Pxz6N497evSaOCnn6SgWb5cDltt3Qpt21rGVoVCkeNRdWayO4GBcPIkHD9uEi7378efz9YWvL2hXj2oW1e+KlbMerGRWVy9Ck2bgp8fNGoEO3ZIoaPIfG7fltfhs2cyg2nVKsvUitHp5Po2bgQHBxkn1bRp+terUCgyDNXOIA55RsyEh8PZsybRcvw4XL8efz6NBqpUkYIlVrxUry49JXmZs2ehRQsICJAxNH/+Kb1IiswjOBgaNoSLF6F2bemhcXS03PqjomSV4O3bwcVFxuPUq2e59SsUCouixEwccqWY0elkgG5cj8uFC3L6y5QpY/K21K0rh45cXDLf5pzA0aNSyISGynTgDRtkXI8i4zEY4PXX4Y8/oEgR6VEsXtzy2wkPhw4dZHxU/vzyb1ricRQKRYajxEwccryYEQJu3jR5W06cgNOn5Y/yy3h4mA8V1akjY14UKWfvXnmzi4hQTQszk08/ldV67ezgv/+gfv2M21ZwsKwgfPSo/M7s3y+HVRUKRbZCiZk45Dgx8/Ch+VDRyZOycNjLuLhIsRJ3uKhkSdWLxhJs2yaHI6KjZcXZ335TTQszklWrYMAA+f/y5fDGGxm/zYAAOax49qz0AB04IL2YCoUidfj4SI9qbLsRC6J6M+UUXryQYiWueHmYQDNEOzuoUcPkcalXDypUUDfYjKJDB3mD7dMHFi2SwcCqaWHGcOKEFIwAH32UOUIGIF8+2LlTpuZfuQKtWklBkxFDWwpFbmXFCllxOyQEvLzkUHEORImZ1BAeDmfOmMe5+PjEn8/KCqpWNY9zqV495ZVPFZahZ09YvBgGD5ZNC11c4Isvstqq3MXDh7LmS0QEdOoEM2Zk7vbd3WUQcJMmstZS69ZyiCu1xfkUirxGaCiMGQNLl8r3zZvDq69mpUXpQomZxIiOlnVL4npcLl40L6Mfi5eX+VBRzZqyxosi6xk0SH5pR4+WN1pnZ/j446y2KncQHi6H8h49kuJ95cqsiU0qVsxUa+jqVRlLs3evDA5WKBTxOX9eeq2vXpUP31Onypi3HBxbqMQMyADdGzfMPS6nT8unzZcpUsR8qKhOHShYMPNtVqScUaOkC/Wjj2DSJCloxozJaqtyNkLIPkknTsjrf+tWyMp4Nk9PKWiaNpUtPNq3h3//VVl/CkVchIBff5W9ziIj5YPAqlVyqDaHk7fFzOefyyyIkydlMOHLuLmZAnRjxUvx4iruIify4YdS0Hz+OYwdKwXN4MFZbVWyhEeHc+XZFWoVrZXVppgza5b8EbS2lunvXl5ZbZGMQfv3X+kuP3YMOneWgeCWrHOjUORUAgJg+HD5fQXo2FEOMeWS9i95O5upYUM4ckT+b2cnh4fipkWXL68CdHMTQsD778PcufK8rl4tS+NnY97Y9AYrL6xkWbdlDPQemNXmSLZulcNLQsAvv8CIEVltkTknT0LLljJ9u1072LJFFZRU5G2OHZNlKu7ckXW3vvoKxo/PlAdzlZodhww7GGvWyI7SdetCtWqquFpeQAh45x3ZBNHaGjZvloGr2ZC7gXcp830ZDMJA+QLluTL6ClqrLB7TvnBBPgSEhMjhu59+ylp7EuPgQRk7Ex4uszPWrpXnW6HISxgMsuP8J5/IgqxeXvK+V7duppmQWWImb7sd+vaFt9+WHhklZPIGGo30JvTvL7/cPXvCnj1ZbVWCzD85H4MwAODz3Ic/rv2RtQY9eyarKoeESM/Hd99lrT1J0bixrJthawubNskhRYMhq63KnQQFyT5ZCcUYKrIOPz/5oPbhh/K3rk8fGQuaiUImM8nbYkaRN9Fq5Vhxt24yCK5LFzh8OKutMiNCF8GC0wsAqFtM/vjMOjSLLHOkRkVJ4XfnDpQtC+vXZ/8HgDZtpJ1arcy0GjlSeuYUlsFggGXLZKxS+/Yyo+2vv7LaKgXIbD5vb9nDzN5eFg1dvVrGgeZSlJhR5E1sbKS79bXXZOp2hw7yqSWbsObiGp6FPaOUWym29N2CndaO4w+Os993f+YbI4QMmv7vP5kdtHUrFCiQ+XakhS5dZFEwjUb+oL//vhI0luDUKen9GjwYnjyRMWi3bsmg606dZPsWReaj08k061atZMmEKlVkxuHw4bk+cUWJGUXexc5Oxsw0aQKBgdC2rWz+mcUIIZh3fB4AI+uMpJhLMd6q8RYgvTOZzk8/SSGg0UgBWKVK5tuQHvr2hYUL5f9z58K0aVlqTo7m2TMZc1a3rkyecHKSwaRPn8rhDGtr+Ptv6aWZMgXCwrLa4rzD/ftSxHz2mRTsQ4dKIVOtWlZbljmIHEBgYKAARGBgYFabosiNBAYKUaeOECBE0aJC3LiRpeYcvntYMA1h97md8Av1E0II4ePvI6ymWwmmIc49Ppd5xuzaJYRWK4/NN99k3nYzgh9+kPsBQsyaldXW5Cyio4X48Uch8uc3HcP+/YW4f998vitXhGjd2jRP6dJCbNokhMGQJWbnGf78U4iCBeUxd3YWYtWqrLbISGbdv5VnRqFwdZUBjNWqSddsq1Zw716WmRPrlelfvT+FHGUNiHIFytGjcg8Avjn8TeYY4uMDvXrJqtcDB8ohmpzM2LEwc6b8/6OPsm8mVnbjwAGoXVsWmnzxQsZi7N8v45Be7oNVqZLsl7VxI5QqBb6+MpusXTu4di1r7M/NREXBhAlyeM/fH2rVki13+vXLassynwyVShZCeWYUmcKjR0KULy+fbipUEOLx40w34WHQQ2H9mbVgGuLUw1Nmn514cEIwDaGdrhV3XtzJWEMCAoSoVEkei1dfFSI8PGO3l5l8+qnJc7BkSVZbk325f1+Ifv1Mxyp/fiF++kl6aVJCaKg81ra2cnkbGyE++kiI4OCMtTuvcOOGyaMMQrz3nhAREVltVTyUZ0ahyGyKFJFNC0uVguvXZTbM8+eZasJvp35DZ9DRsGTDeFV/6xSrQ8syLdELPXOPzs04I/R6GWdy9SqUKCHjiuztM257mc3nn8N778n/hw6Fdeuy1p7sRmSkrPBcsaLMgNFoZAmL69dlbaGU1utxdJSNXS9dkgH20dFyvZUry2OuArHTztq1sqTIyZMyGP+PP2SphLxcHDJDpZKFUJ4ZRabi4yNEkSLyaadePRlTkwlE6iJFkdlFBNMQqy+sTnCeHTd2CKYhHGc4imehzzLGkPffl/vu4CDEqVPJz58TMRiEGDZM7qe1tYw5UAixbZvJOwlCNGggxMmT6V+vwSDE1q1ClCljWnfLlkJcupT+declQkOFGD7cdAwbNxbi7t2stipJlGdGocgqypWTHpqCBWXz0c6dMyUrY+PljTwOeUxR56K8Xvn1BOdp49WGGkVqEBYdxs8nfra8EUuXyoqhIGuI1MpmPaEshUYD8+ebF0/cvTurrco6bt6UaewdOshYqcKF5fk/eFDGy6QXjUZ+jy5dktlk9vayWKW3t4zFCgpK/zZyO5cuyXY7CxbI4/m//8l6MiVLZrVl2YMMlUoWQnlmFFnCqVNCuLrKJ6B27TJ8PLrhooaCaYhpe6clOd+q86sE0xCFvi4kQqNCLWfAoUOm+IYpUyy33uxMVJQQ3brJfXZ0FOLgway2KHMJDRXif/8Tws7O5KV6//2M90beumU67iA9ocuXq6ynhDAYhFiwQHpKY4/Vrl1ZbVWKyaz7txIzCkVSHDwob3IgRPfuKQ9+TCWnHp4STEPYfGYjHgU/SnLeaH208PzOUzAN8eOxHy1jgK+vEB4ecj979BBCr7fMenMCERFCvPaa3HdXV8sMq8Rh9qHZYszfY0REdDYKzjQYhFi3ToiSJU2ConVrIS5fzlw7tm8Xolw5kw1NmghxLhNLD2R3AgOF6NvXdHxeey1LEhPSgxIzcVBiRpGl/PuvyWPxxhsZcqMfvGWwYBqi/8b+KZp/3rF5gmmIMt+VEdH6dAqskBAhatSQ++ftLd/nNUJDhWjaVB6DAgWEuHDBIqs9+eCkYBqCaYi+G/oKvSEbiMSLF4Vo0cK8FszGjVnnFYmIEOLLL00PDVZWQowdK8SLF1ljT3bhxAkhypaVx0SrFeKrr3LkQ4aKmVEosgutW8OGDTKLY8UKmdFhwUwMv1A/Vl9YDcDYemNTtMyQmkMo5FiI2wG32XB5Q9o3bjDAoEFw9ix4eMhWBU5OaV9fTsXRUfYVqldPZrC1aSNjR9LJ//b+z/j/motr+HjXx+leZ5oJCIBx42Scyt69Mm5l6lRZ9fr117Ou3L2dHUyaBFeuyNglgwHmzZM9n5YsyXsNQoWQmUkNG8pYptKlZa2fjz6SbSMUCaKOjEKREjp3NvX4+fVX+OADiwmaRWcWEamPpHbR2tQvXj9FyzjaOBqFz9eHvk57A8rPPpMFzmxsZHfpUqXStp7cgIuLbMz3yivw+LEsnujrm+bVHfA9wD83/sHayprPW3wOyIKH847Ns5TFKcNgkKKgYkX4/nuZet+tmxQx06ZJIZcdKFVKNgb9919ZfM/PD4YMgUaNslXftAzF318GYo8fL1PZX39dFsFr0CCrLcv+ZKjfx0KoYSZFtmHRIpN7furUdK8uWh8tSn5bUjANsfTM0lQt+yz0mXCc4SiYhth5Y2fqN75unWlfFi9O/fK5lcePhahYUR6XcuWEePgw1aswGAyi8eLGgmmIEX+OEEIIMWP/DME0hGaaRmy8vNHSVifM8eNC1K9vOs8VKwqxY0fmbDs9REbK9hnOztJujUaIESOE8PfPassyjv37hSheXO6vnZ0sUJgLAqJVzEwclJhRZCu+/950c0hnv6KNlzcaM5PCo1NfZffdbe8KpiFaLWuVugVPnzZlR0yYkOrt5nru3RPC01MenypVhPDzS9Xi2322C6Yh7L+wF/cDZf8ig8EgRvw5wjj9oG8GZk49fSrE0KFSBMT26/nmGykSchL378seULHft4IFhfj1VyF0uqy2zHLodEJ89pmMFYqtPn7mTFZbZTGUmImDEjOKbMeXX5p+YH/5Jc2rabG0hWAa4pNdn6Rp+dsvbgvtdK1gGuLkgxRm4Tx+bMpiadcud90YLMnNm0IUKyaPU82aKQ5INRgMotavtQTTEO/veN/ss2h9tOi8qrNgGqLArALiqt9Vy9ocHS3Ftpub6fp88800eZeyFfv2CVGtmmmf6tQR4tixrLYq/Tx8KIsHxu7XwIG5rt2DEjNxUGJGkS2ZNMnkAv/991QvfuHJBWOvpbsBaa/iOWDjAME0RO/1vZOfOSJCVnWNHXLI6xkjyXHlihDu7vJ4NWyYohvNhksbBNMQzl86G7uexyUkMkTUW1BPMA3h+Z1nsqn4KWbfPiGqVzfdGGvUyF11c6KjhfjuO1PtJ5Dep6dPs9qytLF9u+nacnISYtmyrLYoQ1BiJg5KzCiyJQaDTCGNTSfdsCFVi7/z5zuCaYgea3uky4xzj88JpiGspluJG/43krZ30CBpb758Qly/nq7t5hnOnpXHK7YEfxJNN3V6naj8Y2XBNMSUPYkXHnwa8lSU+6GcYBqi1q+1RHBkOp7G790Tok8f0w2+QAHpLcytHrfHj03Xcey1/OOPOWd/o6KE+PBDk/3e3kJctbCHLhuhxEwclJhRZFv0eiHeesvUFXjbthQt9jzsuTF4d9/tfek2o92KdoJpiJF/jUx8ptmzTTUrdqYhYDgvc/SoKRi1Y8dEY0+WnV1mHEIKCA9IcpU+/j6i0NeFBNMQ7Va0E1G6qNTZlFB9lpEjhXiWQT27shuHDpnqI+UUT9Tt2+YB2aNH566O9AmgxEwclJhRZGt0OtOTsb29dPcnw7eHvxVMQ1T7uZowWCBjYe/tvcbA0ichT+LPsG2bKcDwhx/Svb08yb598vyCEL16xfMEROoiRZnvygimIWYdnJWiVR69d1Q4fOEgmIYYsmVIyq+Fv/4yr5zbqJEM6s5r6HQy6yfWcxYbd/LIQkN3lmTDBlMsU758slBhHkCJmTgoMaPI9kRFCdG5sylz5OjRRGfVG/Si7PdlBdMQv5781SKbNxgMou5vdQXTEP/b/T/zDy9fNsUZDB+eK9I9s4zt26UHDuRQR5yKrD8f/1kwDVFkdpFU9czaenWrsJpulaK+XMLHR3qGYm/cRYsKsWKFOqdPn8prOzZ7y9VViLlzM6z9SKoID5ces9hz9uqr0kOTR1BiJg5KzChyBOHhQrRqZXryOns2wdn+uvaXYBoi31f5REhkCloHpLAEfmzgaf6v8ptiMPz9TSXRmzbNeam52ZFNm+RQHQgxapQQBoMIiwoTRWcXTXO/rPkn5hvbHiw6vSj+DCEhMuA8tq2GjY0QEycKERRkgR3KRRw7JkTduibhUK1aijylGcaVK0K88orJno8+kg8+eQglZuKgxIwixxAcLLNeQGYqXLkSb5a2y9smmLYbD4NBiJPvCbHOTYjryad/6/Q6Uf6H8oJpiLlH5sofzVhx5emZc7M+siMrVpi8ABMnim8Ofi2Yhig9t7SI1KVNMH6y6xNjdtu26zGxVwaDEKtXm4qpEdNsMBcHjKYbvV52mS5Y0HTM+vUT4sGDzLVj6VJTPJO7uxD//JO5288mKDETByVmFDmKFy9kXRKQN6Fbt4wfXXt2zVgF9ubzm0mv58xHQqzE9DrxrhDJNJX89eSvgmmIkt+WFLrRo0zDXufPW2DHFGb89pvxZvllGxn3suTMkjSvzmAwiIGbBwqmIZxmOImLu9YI0ayZ6Ybs6SnE5s1qSCml+PvL4Z24hQO//jrjvZNBQbK2T+x5a9Uq59f5SQdKzMRBiRlFjsPPT1aOBSG8vGQlU2Gq2NtpVaekl7/0tUnE7O9h+n9POyEiE8+SCY8OF4W/KSze7oSpBs6WLZbcM0Vc5s413rRmdndPdwfzSF2k6PZLM/F9PUS0Faag8unThQgLs4zNeY1Tp0y1lUCISpWE+PffjNnWmTNClC9vyi774ouckzKeQWRrMfPjjz+K0qVLCzs7O1GvXj1xLJlKjHPnzhUVKlQQ9vb2okSJEmLcuHEiPBXpaErMKHIkDx6Y4lUqVRLB924Jly9dBNMQO24k0R/HZ4FJvFyKyYrx3SDEGgc57c/KQgQn7tVZ8f0wERVzIzR88YWFd0oRl2ehz8RnrW1NN8pf0xHQHTM8oi9kGh75p4azeH7ljMXszbPo9XLYx8PDdK569hTC19cy6zcYhJg3zxTTVKKEEAcOWGbdOZxsK2bWrFkjbG1txeLFi8WlS5fE8OHDRb58+cSTJwmkgwohVq5cKezs7MTKlSvF7du3xY4dO0TRokXF+PHjU7xNJWYUOZY7d+QPG4inFUoIt48QFeZVEPrEgnp9NwixykqKltMfmn/mf0qITcXkZxsKCvFkf/zlb94U+oIFhACxshrir6t/Wn6fFEYm7pwomIpY3NbD5Albvjz1Kzp61CxwNapiedFvhLtgGqLhooYiLEp5ZSzCixdCvPeeKYDb0VGIGTNkzZ608vy5EN27m0RSly55p9ZPCsi2YqZevXpi9OjRxvd6vV4UK1ZMzJw5M8H5R48eLVq2bGk2bcKECaJRo0Yp3qYSM4oczbVrwlC4sBAgDpdA/LInkeaUj/4VYrWtFCtHhyUcGxH6QIjtteU8q22EuLnE9FlQkLF/jW+FIsL+U0TTJU0zZJcUQjwMemisEfP3tb+EGDMm9dWgHz82FV0EIVxchPj2WyGiosTFJxdFvq/yCaYhuq/pLnT6vD1cYVHOnZPZfbHHvVy5FBe8NOPQISFKlTJlmH33nYppeolsKWYiIyOFVqsVmzdvNps+cOBA0aVLlwSXWblypXBzczMORd28eVNUqlRJzJgxI9HtREREiMDAQOPr3r17SswocjSHt/0m/O3lD2d0sybx4x/8jgqx1ikmRqanEEnduKJD5TyxQ1GnPxQiKtJU56ZoUfHwyglh85mNYBriyL0jGbtzeZTRf482ek4MBkPqqkFHRcl4m7h9hgYNilfsbd/tfcL2c1vBNMTYbWMtUmBREYPBIMTKlbJWT+w56NrVLGA/UfR6IWbONHl4ypUT4mQKG73mMbKlmHnw4IEAxOHDh82mT5w4UdSrVy/R5b7//nthY2MjrK2tBSBGjBiR5HamTp0qgHgvJWYUOZUuq7uIOsMRYQ428Uviv7goxPoCUpjsbiOELgUub4NeiHOTTYLml3JC2CGEnZ2xm/BbW94STEN0W9MtA/csb3L7xW2jWDRrR/FyNei9e+MvvHu3EFWrmm6gtWsL8dJvalzWXFhjrEHzzaFEvHqKtBMYKMQHHwhhbW06b9OmJR5w/fixEG3amM5f//5yHYoEyTViZu/evaJw4cJiwYIF4vz582LTpk2iZMmS4rPPPkt0O8ozYyEe7ZLZL7dXZrUleZrbL24LzTSNYBrizh+/C+HgYCqJH+BjioP5p74QUalsOHh7pRArbOTyXyLEyu+NH11+etmYBn7FL369G0XaGbxlsGAaos3vbeJ/GLcadBFHIf5oL8Q/rwqx720hRjeWohNkHZTffktRtsucw3OMgmb1hdUZsEcKcfmyqS4TCFGmjBB//GE+bPTvv0LEDBkLBwchFi1Sw0rJkFlixppUUKhQIbRaLU+ePDGb/uTJE4oUKZLgMpMnT+bNN99k2LBhAFSvXp3Q0FDefvttPv30U6ysrOItY2dnh52dXWpMU8QlOgjOfAg3fpXvH/0DEU+g0vistSuP8vOJnxEI2ni1oXSXN2GzB3TpAjvWw7p/wCkY3KpA87/Bxjl1K39aDmYAY4DSgP2X8Kw+FKpPZffKdKnYha3XtjL78GwWdlmYAXuX97jid4Xfz/0OwIyWM+LPYGMD69bBqPpQ9zyEbIcQgKPQEKgHhBWFmgPAszwQDWiT3Ob4V8dzN/Au3x/7nkFbBlHEuQjNPZtbdL/yPJUrw7//woYNMGEC3L4NXbtChw4wZw4sXw4zZ0qpU60arF0LVapktdUpRwjQhULkU4jwg4inMf/HvI98CjW+AscSWW1pmkiVmLG1taV27drs3r2bbt26AWAwGNi9ezdjxoxJcJmwsLB4gkWrlV9cIUQaTFYkyaN/4dgwCLsr37s3Br+DcHoCRL2A6tNBo8laG/MQYdFhLDwtRcTYemPlxLZtYfUiuPamFDIRLtB1B9gVTN3KHzyAbt3gUTQcaA1vPoWA87CrGby6BDz78VGjj9h6bSvLzy/nsxafUcylmGV3MA8ydd9UDMJAt0rdqFu8bvwZooPg7HhofV6+9wV2AuWA2nbgGgmuj+DmbPnS2svvaeGW8lWgNliZ/zRrNBrmvDaH+0H32XhlI93WdOPgkINU86iW0bubt9BooFcvKWBmzIDZs2HbNvmK5e234bvvwMEhy8w0oo+IESIx4sQoUPziCJWnps/14Umvr/yovCFmACZMmMCgQYOoU6cO9erV47vvviM0NJS33noLgIEDB1K8eHFmzpwJQOfOnfn222+pWbMm9evX58aNG0yePJnOnTsbRY3CAkQHwekP4OYC+d7ZC+ovAo9mcPkrOPcJXPxcCpra34MmvkdMYXlWXVjFi4gXlMlXhg7lO8iJujBw+VV6UgKAz4Lh+o/yqS+lQjM8PEbIPJJPib9tAnvg8AB48Ccc7g9BV2lYfSqNSjbi0L1DfH/0e2a1mZUh+5lXOPPoDOsvr0eDhs9bfB5/hqcH4MhACL0DaKDse7DwFPjeh7dnQN++8rMne+DxHvk34jE83iVfADau8ntbuCUUaQVuVUFjhdZKy4rXV/Bk+RMO3j1I+5XtOTr0KMVdi2fiEcgjODnBl1/C4MHw3nvwzz/g6goLFkDv3hm3XYMOIp+Zi5O4YuRlT0p0UOq3obUHOw+wj3nZuZv+z6FCBkAj0uAe+fHHH/nmm294/PgxNWrU4IcffqB+/foANG/eHE9PT5YuXQqATqdjxowZLF++nAcPHuDu7k7nzp2ZMWMG+fLlS9H2goKCcHNzIzAwEFdX19Sam/t5tDPGG3NPvq8wFmrMBGsn0zw+v8CJ0YAAzzfg1cVgZZMl5uYVhBDU/LUm556c45s23/BBww/AEA37u8PDv8HGDQLHwvAv5AJffAGffpqSFUP//rBmDRQsCCdOQJky8jODHs5NgivfyPelerOtYC86ruuFq50rd8fdxc3eLWN2OA/QcVVHtvlsY0D1Aax4fYXpA30knJ8Sc9wFOHlCg9/Bo4k8X4mJVCEg6EqMsNkNT/ZBdID5PHbuULiFUdw81+an0ZLGXH12lVcKv8L+wfvVOc1IhIBjx6B0aShaNJXLGuQDZGKekpc9KZH+qbdPYw327okLFDsP+Xns/9ZOmeqdz6z7d5rETGajxEwiRAXCmQ/gZkwshLMX1F8MhZslPP+dVXBkEAgdFO8CjddKla7IEA74HqDp0qY4WDtwf8J9Ctjng8Nvgu8q0DpAi53g0RjmzpVj9CD/Hzcu6RV/+aUUPdbWsGsXNEvgfN9cAifeAUM0okBdWtwO4L+nPsxqPYsPG31o6V3NExy6e4jGSxqj1Wi5OuYq5QqUkx+8OA9H3pRDfABeQ6D2XOlhSS0GPQScNYmbpwdAH2Y+j2NJQvLX45NLu9j0IpBKJVuxbcA2bLW26do/ReI8Cn6Eq50rTjaOoAuOH3OSqCfFD4Q+lVvTgF2hZARKnP9t8mXr0AElZuKgxEwCPNwBx4dB2H35vsK7UONLc29MQjz4Gw72lGOtHs2h2Vawcclwc/Mivdf3Zv3l9QyvNZzfOv0Kp96Vw0kaa2j6BxTvYJr5889hyhT5/4IFEBMwH48//pDDSwC//irH7xPj6X448DpE+hNqnZ8mt17w2KYot9+7jZ21CrBPDUIImi9rzn7f/bxd621+7fyrFB5Xv4Xz/wNDlLzB1F8AJbpabsP6KPA/LoejnuyGZ0ekdy8O16LgvkN5Wr46A03hFmBfyHLbz4vowiD4BgRfIzrgEhd8NhAdeIli1hqKWFthQ2rFCVJwxPWOvCxI4r63LQhWuScEQ4mZOCgxE4eoQDjzPtxcJN87l5VDRh5NU76OJ//Bf53lE0aBOtB8u/oBtDAPgh5Q+rvS6IWecyPO8cqTjXDxM0ADDVeAZ3/zBYSAjz6Cb76RT1krV0K/fubznD8PDRtCaCiMGQPz5iVvSPBNea6DrhBm0PDGY0HHlgsZWmuoxfY1L7Dz5k7armiLndaOG+/eoISVDo4OkoIRoHhnqLcAHApnrCG6MPA7JIXN4z2I56fQYDCfJ5+3Kd7Go0naPES5HWGQw/JB1+Qr+Lrp/9jkiSQIE1ZE2+TD0cUTG4diCXtMYt/buUMe9popMRMHJWZieLgdjr8d443RQMX3wHsGWDumfl3PT8HedjLYzK2KHPJwVIGElmLynsl8ceALmpZuyn8NesCp9+QHdX6ECqMTXkgIGD0afvkFtFrYuFGmhgL4+UHduuDrC61bw/btcpgpJUQFwqE+8GgHAN+GFWLckMdY5aKnv4xECEG9hfU4+fAk4+uP49sK3nDyXfkwYO0MteZC2aFZ4+qPCmD3salcPP8DLR2h+ssON40WCtSVwqZwSyjUAKyzQRZOZhEVGCNWrpkLl2CfJDN7wjR2nAuL5Fo0PMKZVt6jsHEpy4rrO1h2dRv+0REA2Gpt6VapG8NqDqOVVyusVGJFPJSYiUOeFzNRATK1+tYS+d65nEy99WicvvUGXoW9baQ4cvKElv+CS7n0WpvnidRFUuq7UjwNfcqxVmOod/dH+UH1z6D65KQXNhjgrbfg99/B1hb++kvGxLRuDQcOQLlyMhixQIHUGWXQEXViDLY3Ze2huwWaU6rNP6BVw03JsfnKZl5f9zql7Ry5Wr859o9i0nTdG8kgX2evrDUQ+Py/z5mybwpFrDVsbfE+dbWBcmgq5Kb5jFZ24N4QCseIm4J1cn4igCEaQm7F97AEX5NxK4lhZSM9264VwaUiuFbkbFg47/w3h+P+twEY5D2IuW3nkt8hv3GxwIhAVl9czcLTCzn16JRxemm30gypOYS3arxFSbeSGba7OQ0lZuKQp8XMg23SGxP+gHR7YxIi1Bd2t4aQG2BfWHpo8r9imXXnUZafW87ALQMZXKggiwsEoBF6ed5qzU3Z07tOJ1N4N26UtSxatJB1LlxdpZCpVCnNtv3xZzs6Bu3AWgOiUEM0TTdLd7giQfQGPd7zvfEMu8TqEk64GELlTbD6Z1B5YraJbRBC8Pafb7PwzEIcrB3YM2gPr5Z4VX6/Y1PAn+yG8EfmC1o7yyHqwq2gSEvI90r2LNsghBQmL3tYgq5JISN0iS/rUDRGrFQwihZcK8oHuJh6PiFRIUzaNYkfT8gHj+Iuxfmt82+mcgqJcObRGRadWcTKCysJiAgAQIOGduXaMazWMDpV6JTnA7OVmIlDnhQzUQFwejzcWirfu5SXmUrp9cYkRPgT2NsWAs7JQLXm28C9geW3k0eov7A+dv7H2V3SGht04PkmNFiauptEVJQM9N2+Xb63spJemvbt02Xbk5AnvPVrSVZ6RJNfi/xBb/Yn5FPF1xJizZmFBB4dzjuxmc9uVWXMU/4aWWlWgugMOrqu6co2n20UcizE4SGHKV+wvGkGIaQAeLw7Rtzshajn5iuxKwgeLaSwKdwSXCpk7vCZLkwOAcX1sMQKl+jAxJfTOsYXKy4V5LRkYob23N7DsK3DuB0gvTHDag5j9muzU5XuHh4dzqYrm1h4ZiH77uwzTnd3dGeQ9yCG1hpKpUJpfwjJySgxE4c8J2Ye/B3jjXkIaGQbglc+t5w3JiGiAuC/TjK4UOsITbdA0TYZt71cyvEHxxmxvD57S4CbFTIwtMnGtLnyw8OhUyfYswe+/RbGW6YdxYi/RrD3/K/s9XSkGGHy6bzRGije0SLrzy3onuznwc5WlNbqEGjQVBovvaLZuJxBSFQILZa14OTDk5TNX5bDQw/j4ZSI500Y4MW5GGGzRwYz60LM53EoHhNMHCNunEql38iXg2/jelmSDL7VSPH9smhxrQgOxVLtUQqKDOLDfz/k11Ny6LWUWykWdF7Aa2VfS/u+ATee32DxmcUsObuExyGPjdMbl2rM0JpD6VWlF062yWSd5iKUmIlDnhEzUS/g1Hi4vUy+d6kgY2PcG2bO9nWhcKCHDBS1soGGq6FUj8zZdi5h4sauTAzdioc1sopr8+3pC7g0GODhQyhhucqcPv4+VPyxIvmtBL516uL84oS8EdScDRXHZeuaFZmCPgouTsdwaSZWCO7rrCjY8k8cSiQ95JBdeBLyhAaLGnA74DZ1i9Vl76C9Kbt5GqLB/4RJ3PgdBkOk+TzO5UzCpnCLpIcoowISjmMJ9pGlIRLDNn8csRJHuLiUs5iQ3HFjB8P/HM69IFlodGSdkcxqPQsXO8uVqdAZdGzz2cbC0wvZ5rMNfUy9GRdbF/pX78+wWsOoXbQ2mlz+fVNiJg55Qsw8+CvGG/MI6Y2ZEOONyeTMA30UHHkD7q6XN7h6C6DskMy1IYfi53easG21KW0Doc6VcGp/LNumxfZa34sNlzfw1isDWFzM0dQGo+xwmXGVV8f5Ay/D4TfgxRkAlgVBxCuzeKdhzio0eN3/Og0XNcQ/3J9OFTqxuc9mrK1SmP0Wiy4cnh02tV54fiJ+Abh81WP6SdWVnuRY4ZKG4Fvj0JBdoQwT1AERAby/430Wn10MQJl8ZVjUZREtyrTIkO3F8jD4IcvOLmPRmUXcfGEKyn6l8CsMqzmMAa8MoIBDKoP6cwhKzMQhV4uZqBdwahzcll14M90bkxAGPZwYYaosXHMOVJ6QdfbkBCKe8WxrZQrpnuFrsKd0T99sHVh74sEJ6i2sh7WVNTfH3qDU482yfpEwyGKKTTaCXe78cU0QYYBrP8DZj8EQSbiVI28+COOEthTXx1zPkUUGj9w7QsvfWxKhi+DtWm8zv9P89HkBooPkUFRsQHHAueSXSUHwbWbx9/W/eeevd3gQ/AANGsbWG8uXrb7M1CEfgzDw353/WHRmERsubyBSLz1fdlo7elTpwdCaQ2nu2TxXpXgrMROHXCtm7v8pS86HP5JekEoTZJZEdqgDIQSc/cjU46fq/+CVz9QQREJEB2PY1QKrF6e4Fw0nq35H9zrvZbVVydJyWUv23tnLuPrjmNturozVOtRP1k9xLgfN/5I3ntxO6F04+pa8QQO6wm2ocfYUl0Kes6jLIobUzLmeyS1Xt/D62tcRCL5o8QWfNk1B76+UEuEHT/dJcRNwHhxLxgm8rZii4NvM4Hn4c8b9M47l55cDUL5AeRZ3XUzjUhmQTJEKXoS/YOWFlSw8vZBzT0zC0Cu/F0NrDmVwjcG5osu9EjNxyHViJvK59MbckV8uXCtC/SXZL4NICFPHbYDyo6HOD9kzdTOr0EfAvo7wZA/P9NDdvyC7xz7MEemYO27soN3KdjjZOHF3/F3p5g64KCsGh96RjTCbbIAirbPa1IxBCLizEk6OkZkyWkeoNYcvHvoxed8UKhSswKVRl1I/PJPN+On4T4zZPgaApV2XMqjGoCy2KPPYcnULI/8eyeOQx1hprBj/6ng+a/EZjjYZmEyRSoQQnH50moWnF7Lq4iqCImUnbCuNFR3Ld2RozaF0KN8BG23OrAekxEwccpWYub8Vjr8DEY9jvDEfQPVp2cMbkxiq43bCGHRwsBfc30KY0NL0np4O9SfzWYvPstqyFBG3q/fnLT7nf03/Jz+IeCp7OvkdkhVk68yD8iOz1lhLE+kPJ0bK2DCAgvWhwXKe2xSkzPdlCIoMYk2PNfSp1idr7bQQH/37EV8f/hprK2u29d9Gm7K5O1PxWdgzxm4fy5qLawCoVKgSS7oukbV3sjGhUaFsuLyBhWcWcvDuQeP0Is5FGOw9mCE1h5in2+cAlJiJQ64QM5HPZaPBOyvle9dK8OpSKFQ/S81KMXdWw5GBMR23O0OjtdlbgGU0QsCxoXBrCQYrW1rdjeJgpDW+43xzlGt41YVVDNg0AHdHd3zH+eJgE3NO9ZFwbLjJe1hhLNT6NtPjHDKEh//AsSExw7vWUG0KVJ0EVtZM2jWJrw59hXdhb06/czrXxC4YhIE3N7/JqgurcLF1Yf9b+6lRpEZWm5UhrL+0ntHbRuMX5odWo2Viw4lMbT4Ve+vsm1KfEFefXWXxmcUsPbsUvzA/4/RmpZsxrNYwelTuYfq+ZmOUmIlDjhcz9/+I8cY8kd6YyhOlNyYb16tIELOO281iOm7nwPORXoSAMxPh6hzQWPGjXQvGXthNn6p9WNNzTVZblyp0Bh3lfiiHb6AvP3f4mZF143hgXh5mLNpWiljblBcTy1boQuHMh+Dzs3zvWgkaLJcl/YHHIY/x+t6LcF04W/tupXPFzllorOWJ1EXSfmV79t7ZS1HnohwZeoTS+UpntVkW40nIE0ZvG83GKxsBqOZRjSVdl1CnWJ0stix9ROmj+Ov6Xyw8vZAdN3dgELKxqJudG2+88gZDaw6lZtGaWWxl4igxE4ccK2Yi/WVDOt9V8r1r5RhvTL0sNStdPN0P+zrl7Y7bl2Yab/AhNefhvmkiEboIDr51kEalGmWxcaln3rF5vPvPu3jl9+LamGvxY0TubYLDb4I+TF7Dzf4El7JZY2xaeXYMjrwpa5wAVHgXanxl5l18d/u7zDs+j1dLvMrhIYdzZf2PgIgAmixpwsWnF6lcqDKHhhwy6zuUExFCsPriasZuH8vz8OdYW1kzqfEkPm3yaY7MQkuKe4H3WHp2KYvOLMI30Nc4vVbRWgyrOYx+1fuRzz5f1hmYAErMxCFHipl7W2R6s9Eb8yFUn5rzvDEJ8fy0bH8Q+Uze3FruBEfLFXXL1vj8Ks8rQM05fPNcz4e7PqRGkRqcfvt0jrwBhkaFUvq70viH+7O251p6V+0df6bnZ2RgcPgDWfK+ySbZ0ye7Y4iGizPg0heyRopDcdla4qWgZt8AX8rPK0+0IZrdA3fTskzLrLE3E7gfdJ9XF77Kg+AHNC3dlB1v7MhxQzCxPAp+xIi/R7D12lYAahSpwZKuS3LtEFosBmFg963dLDqziM1XNxOljwLAwdqBnlV6MqzWMJqUapItfo8y6/6dOwaEsxMRz+BQfzjQXQoZtyrw2lGoMTN3CBmAArWg9QEpYIKuwL+NIfhGVluV8fiuk0GjAFU/RV/xPX4+KYcsxtYbmy1+ONKCk60TY+rJbJdZh2aR4PNNgZrQ9rj0xkX6w57WcHNJJluaSoKuwc6GcHG6FDKl+0HHCwlmZ33232dEG6JpVaZVrhYyACVcS7B9wHZc7VzZ77ufQVsGGYcucgpCCJadXUaVn6uw9dpWbKxs+Kz5ZxwfdjzXCxmQmU5tyrZhTc81PJjwgLlt51LVvSrhunCWn19Os6XNqPRTJb4+9LVZS4XcjPLMWJJ7m+TNLuKpzAKp8pEMLtTmLlenkVBf2NNGuu5ze8fthztgf2f5pF9uBNT9mT+ubaXb2m4UcCjA/fH3c0QwXmI8C3tGqbmlCNeFs+vNXbTyapXwjLowWZPl7jr5vvIH4P1VtukeDchYn+s/wdkPQR8um6fW/QU8+yY4+7Vn16jycxUMwsDRoUepXyKHBOWnk72399J2RVuiDdFMeHUCc9rOyWqTUsT9oPu8/efbbL8hm7DWKVaHxV0WU71w9Sy2LGsRQnD8wXEWnl7I6ourCY0OBUCr0dK5YmeG1RxG23JtM73UgPLM5CQinsHBvrKvUcRT2Vn3taMxTelyqZABcCotPTT5a0gv1K5msp9LbsPvsExVNkRDqT6y3L9Gw48nfgRkl92cLGQACjkWYmjNoYD0ziSKtaNsSlltqnx/ZbY8NtEhiS+TmYQ9gL3t4NRYKWSKtIGOFxMVMgBT903FIAx0qdglzwgZgBZlWrC021IAvj36Ld8d/S5L7UkOIQQLTi2g6s9V2X5jO3ZaO75q9RVHhh7J80IGQKPRUL9EfRZ0WcCj9x+xsPNCGpRogF7o2XJ1C51Wd8LzO0/+t+d/3HpxK6vNtTjKM5Ne7m6U3phIvxhvzMdQbXLuFjEvE6/j9mYomr7Os9mGgAvwb1OIDoCi7aDpH6C15YrfFar8XAUrjRW33r2VK7JC7gTcodwP5dALPafePkWtorWSWWANHB0smxHme0UGBluiq3Ja8V0rv4tRL+SQbo1voMKoJIs8nn18lpq/1kSDhrMjzvJK4VzqWUyCrw99zUe7PkKDhnW91tGzSs+sNikedwLuMPzP4ey6tQuAV0u8yuIui6nsXjmLLcv+XHp6iUVnFvH7ud/xD/c3Tm9VphXDag2jW6VuGRozpTwz2Z0IPzjYR6YqR/qBWzVoewy8v8hbQgbANp8cYiraTma8/NcJ7m7IaqvST8gt2POaFDKFGspquDGVfX88Lr0yXSp2yRVCBsAzn6exSNw3h79JwQJ9ofV/cogx4DzsqAfPjmawlQkQ9ULGqR3qK/8vUAfanYGKY5KtVj1572QA+lbrmyeFDMDEhhMZXXc0AsEbm97ggO+BrDbJiEEY+PnEz1T/pTq7bu3C3tqeOa/N4eBbB5WQSSFVParybdtveTDhAet6ruO1sq+hQcPu27vpt7EfxeYU473t73HhyYWsNjVdKM9MWri7AU6MiuONmQTV/pf3RMzL6KNk+uvddTm/43b4IxnYHHJLdgZu/R/YyhTWwIhAin9bnNDo0IzPfBECdDqwyZyKy7GeCiuNFT5jffDK75X8QqH3ZKZTwDmwspMVoj37Z7yxAI93wZHBMstKo4Wqn8rvYgoqVB+5d4SGixui1Wi5MvpKjqusakn0Bj091/dky9Ut5LfPz6Ehh7JcLNx8fpNhfw5j3519ADQp1YRFXRbl6fNkKe4E3GHJmSUsPruY+0H3jdNXvb6KftX7WXRbyjOTHYl4Cgd7yxL2kX7yJtf2GHh/ni2FjBCCm89vojfoM2eDWltouArKDpddiI8NhSs5I6jQjKgXMvU85BY4e0GLHUYhA7Ds3DJCo0Op4l6FFp4tMs4OIeDKbTh8Du5nTkZCjSI1aFu2LQZh4Nsj36ZsIaeS0OYglOgqh5wOD4DzU+Q1kFHowuHkezIAPfwBuJSHNofglekpbrXx6R7ZdPGtGm/l+Ruk1krLqtdX0aBEA15EvKD9yvY8Cn6UJbYYhIHvj37PK/NfYd+dfTjaOPJDux/YN3hfnj9PlsIznyfTW0znznt32D5gOz0q98DVzpV25dpltWlpRomZlOK7Dv6uKnu5aLQyLqbtSShQO6stS5DQqFDe3Pwm5eaVo8uaLpknaKy0UO9XWVcH4MwHcO5/8sacE9CFyqKAARfAoSi0/Ff+jcEgDMYhpjF1x2RsOvaDp+D3XP5/8z488U96fgvxYSN57hafWYxfqF8yc8dg4yxrz1T5SL6/+Lkc9tGFWd7A56fgn1pw/Qf5vvxIaH8mVa1Bdt/azd47e7HV2jK52WTL25gDcbBxYGu/rZQvUB7fQF86rupIcGRwptpw3f86TZc0ZdyOcYRFh9HCswUXRl5gbP2xuaa1RHZCa6WlXbl2bOi9gYcTHuboAorq6kiOiKdwoBcc6iOLxOV7RdbbeOUzY/xEduO6/3XqL6zPyguyD9Q2n218tOujzDNAo4Gas8B7pnx/aYbsTJzda1noo2RG2rPDMp23xQ7pmYnDzps78Xnug5udG296v5lxtgSHwq0Y969LTIffa3fgeWDGbTOGFp4tqFOsDuG6cKNwSxEaK1lV99Ul0jtyd73McAt7aBnDDDq4+AXseBWCroJ9EWi+Der+DNZOKV6NEIJP9sgKziPrjKSUWxYGLWczCjkW4p83/sHDyYMzj8/Qc31PovXRGb5dvUHP7MOz8Z7vzaF7h3C2deaXjr+wa+CulA11KtKNk23Kv0PZESVmEkMImR3xdxW4t8HUkK7tCVk0Lpuy6com6vxWh0t+lyjiXITJTeVT55wjc1h2dlnmGlP1Y1nfA43sh3NkoExvzo4Y9NK+RztkRlbzbXIY8SXmHZ8HyKEJZ1vnjLFFp4PLN+U1WCgf1KwM7vljeiXdlEInA9FoNHzUSIrfH0/8SGhUKrfnNRha7paVgp+fhB11ZdXo9BDkA/82gfOTZbPTUr1kynWx9qle1Z/X/+T4g+M42jgyqfGk9NmVC/HK78Xf/f/G0caRnTd38vZfbydcSNFCXPa7TKPFjZj4r2wL0sarDRdHXmREnRHKG6NIMepKSYjwJzJL6VBfWe00n3eMN2Z6tvXG6Aw6Ju6cSI91PQiOCqZJqSacfvs0n7X4zCho3v7rbY7cO5K5hpUfIeNoNNayY/j+12W8Q3ZCCOk5urtWehSabAL3BvFmu/H8Btt9ZKGuUXVHZZwt13whIgrsbaGip/R0VSoD+VxAb4ALPhAekTHbj6F7pe6UK1CO5+HPWXh6YepX4NFEfmfcqkD4QxlMfW9T6tcjhGwhsb0G+B8FGzdosEI2vLQrmOrVGYSB/+35HwDj6o+jsHPh1NuUB6hTrA7re61Hq9Gy9OxSpu6bavFt6Aw6Zh6YSc1fa3LswTFc7VxZ2HkhO97YkWsyBBWZhxIzcRFC1s7YVlX+8GqsZXfrtsdlOfdsyuOQx7T6vRWzj8wG4P0G77N74G6KushYj2nNp9G9Unei9FF0X9vdLHo9U/DsG1OfxR4e/gX72kN0UObakBTnJ8ON+YBG3iiLtU1wtp9P/IxA0L5c+4wLRHzoB89eSAFT2QusY6p1WllB1XLg7ADROjjvA1EZ5+XSWmn5oMEHgCyolqahBmcvaHM4JmU/XA7hXfoy5fFT4Y9kmv+JETLlv3BL6HABygyQxycNrL24lgtPL+Bm58YHDT9I0zpShd4gvWmnr8iYp5wSOwZ0KN+B+Z3mA/D5/s9ZcGqBxdZ94ckFXl34Kp/s+YQofRQdynfg0qhLDK01NMe2BVFkLUrMxBL+WP7YHu5n8sa0OxHTHDJ7emMADvgeoOavNdnvux9nW2fW91rP7NdmY6M1ZXRYaaz4vfvvVPeozpPQJ3Rb042w6AwIzEyK4h1kLRobV3j6H+xuKSsnZzVXvpUxPQD15kPpBJosAiFRISw+sxiQfZgyhOBQuHlP/u9VHFxfGsay1kL1CtJjExEpPTS6jAvsHug9EA8nD+4G3mXtpbVpW4mtmyymV/E9+f7cp3I4T5+MZ+nuRthWHR5uk+netebKYGynkmmzA4jWRzNl3xRA1lbJ8GBHgwEu3QC/F/LcXr0Nxy/CIz/5WQ5gWK1hTGkqj9nIv0fy9/W/07W+aH00n/33GbV/q82pR6fIZ5+PZd2W8Ve/vyjhmkea1SoyBCVmhIA7q2Sm0v3NMd6Y6VLI5K+R1dYlihCCuUfm0mJZCx6HPKaKexVODj+ZaPVOZ1tntvbbSiHHQpx6dIqhW4dm6Dh4gng0gVZ7wc5dZqTsagJhmewlisvNJXDmffm/95dQ7u1EZ115fiWBkYGUK1COtuUS9tykC50eLt+S12PBfFA8keEPWxspaGysISRMPvVn0I3RwcaB9+pLEfL1oa/Tfr1YWUPt76DufJkJeGcF7G4lg+tfJioQDg+MKUbpD/lrQrtTUGlcsgXwkmPZuWXceH4Dd0d33nv1vXStK1kMBrh0E14ESa9aicLynEVEwnVfOHZBptvrMynLMB1Maz6NwTUGoxd6em/ozcmHJ9O0njOPzlB3QV2m7ptKtCGarhW7cnnUZQZ6D1TeGEW6ydtiJvyx7CtzeABEPY/54TwJ1aekuFZFVhAcGUzvDb2ZsHMCeqGnX7V+HBt2jIqFKia5nGc+Tzb02oC1lTVrLq5h5sGZmWRxHArUgjYHwLGkzEj5t7EM7sxs7m2B48Pk/5Xel20oEkEIYQz8HV13tOWDEoWA63fkjc4uTpxMYjjaQ7Vy8ib5IkhmOWWQMB1ZZyTOts5ceHqBf278k76VlX9HZojZ5JMZYzvqyRT4WJ7sg22vwJ3lUrhU/UT2OMtXNX3bBSJ0EUz/bzoAnzT5JOOCt0EKmcu3ZOaZlZU8V2VLQv3q8q+tjRwivHkfjl4A34cy6DubotFo+K3Tb7Qt25aw6DA6ruqYqt4+kbpIJu+ZTL2F9Tj35BwFHQqyusdqNvfZbBwKVyjSS94VM7pwWavi/hYpXKp/Jgvg5ffOasuS5LLfZeouqMuGy1KUzGs/j5Wvr0zxj3Mzz2b82F6m236651P+uPpHRpqbMK4VZZE1lwqy8/auJvDiXOZt/8lemWovDOA1BGp+k6R42HdnH5f8LuFk48RbNd6yvD2PnsmhiNg4GZsUdLV1dYaqZeUyT5+b0rgtTH6H/LxdS3qskmxAmVKKtJLfM5fy8tzvbCjj005/IIcew+7KWJvWB2IatVpmiPfXk79yP+g+JVxLMKLOCIusM0EMBrhyC/wDwEojhUz+mKqnWq300NSvDhVKg72dFDF3HsLR8/IcZmAcVHqw0dqwvtd6ahapydPQp7Rb0Y5nYckPE594cILav9XmiwNfoDPo6FWlF5dHX6Zvtb7KG6OwKHlXzFg7QIV3IX8tWfyu+uRs7Y0BWHNxDfUW1OOa/zWKuxRn/+D9jKmX+sJt79R5h1F1ZDbOG5vf4OLTixlhbtI4lZIeGmPH7eaZ03Hb/yT81wUMUVCiuyzwl8zxi/XKDPQeiJu9m2XtCQmDG3fl/2WKg1sqPAYF3ORNEeD+E7iXMVWCxzcYj7WVNf/5/sex+8fSv0LXCtLjUrgl6EJkrNrVOYCQ1aPbnwP3hunfTgwhUSHMOCDjoqY0nZJxTfWEkHExzwLkNVU1jpCJi5UVFHWHetWgchlwcpCBwvcew7Hz8nqIiMwYG9OBi50Lf/f/m9JupfF57kPn1Z0Tjb2L0EXw8a6PeXXRq1zyu4S7ozvre61nXa91eDh5ZLLlirxA3hUzAJU/gLZHIX/2bjAXpY/ive3v0W9jP0KjQ2lZpiWn3zlNg5Lx04fjkcjww3ftvqOFZwtCokLosroL/mGZU13WDHsPGUPj3lg2c9zTGh7uyLjtBV6VmVS6EHkjbbRKxnMkwd3Au/xxTXqvRtcdbVl7dHpTPZkCbvKpPbUUKSRFEMgn+wyoElzCtQQDqg8A4OvDX1tmpXYFoMU/pjglew8ZKFz/N1lN2IL8cOwH/ML8KFegHINrDLbouo3ECplYD1vVsvKcJoVGAx4FoXYVKXxcnMAgZOXn4xfl8GFYxqbgp5aiLkXZPmA7+e3zc/T+UQZsGhCvuviRe0eo+WtNZh2ahUEY6FetH5dHX86W3bgVuYe8LWasrLO9N+ZB0ANaLGvBD8dl6fZJjSex842dyT/dCCGf1g+flTe5l0RNrNu4TL4y3A64Ta/1vTKl0mc8bPPJOIrY9N39nTOm43boXdjbRlZxLlAXmm6RqeLJ8MuJXzAIAy3LtKSqR/pjN4wIAT6+EB4Jdjayjkxa3e4li0DxmOshg6oET2w4EYDNVzZz3f+6ZVZqZSODgtudhE7XoHgny6w3Di/CX/D1ISnApjefbpblZzGEkMf96XN5DquUlUHcKUWjiSmOWAleqSDrCQkBj5/BiYtS8IZkcvZhElR2r8zWflux09qx5eoW3t3+LkIIwqLDeH/H+zRa3Iirz65SxLkIW/psYVWPVRRyLJTVZityOXlbzGRz9tzeQ81fa3L43mHc7Nz4o+8ffNnqS7RW2qQXjM2MuXlP/n/vcYJDEAUdC7K131acbZ3Ze2cv43eMz6A9SQZrR1mHplQfWSH4UB+4uchy6494KhsSht0H18qyuq+NS7KLhUeHs+C0rK1h8XTsx8/kzQ9SHieTGBqNDCzNwCrBVT2q0qlCJwSC2YdnW27FGo3sb2abz3LrjMPsw7MJjAykukd1+lbra/kNxAqZWI9YZS8pTNKCRiOHpbwrSmFTMMaz4/cCTl2WqfiBIZawOt00LtWYla+vRIOGn0/+zJhtY/Ce7823R79FIBjkPYjLoy7TtVLXrDZVkUdQYiYbIoRg1sFZtFneBr8wP7wLe3Pq7VN0qdgl+YVDwuD0ZVPhNfeYWhq3HyQ4BFHNo5rxR+mnEz/x68lfLbw3KURrCw1XymEHYYBjw+CKBW6a0UGwtz0EXwfHUtByJ9in7ClxzcU1+If7U8qtFJ0rdE6/LbHEi5NJXlglSyZUCY5tcbDs3LIs66icGp6EPOG7Y98B8HmLzzMoC83X9L2q4mX6vqUXV2eoVl4OQbkXkNOeB8LZq3D2msxiy+ICfD2q9GBu27kA/HzyZ248v0Fxl+L83f9vlnZbmqObFuZJ9Posv6bSgxIz2YyAiAC6r+3Ox7s/xiAMDPIexOGhhylboGzyCz9+Bmeuxgxd2EKNitLlHRuLkcgQRJeKXfii5RcAjNk+hv/u/GfBPUoFVlo57BDbefnMRFlkLa1fMF24DPZ9cVrWtmn5LzimrDBX3HTsUXVGJe8NSyl6vcx2MQj5FF6yiGXWC6YqwU4ZUyW4canGNCzZkCh9FD8c+8Fi680oZh6cSVh0GPWK10vZg0BqEEIK0scxGT2Vy5hEhyVxdpQiqW41GR+l0UBgMJy/Lr/rz15k6Q3ovVff45PGn6DVaBlWcxiXRl2iQ/kOWWaPIgGEkL8HIWHy9/+RH9x5IO8H56/DyUtw6AwcPJPtYrRSg0ZkeuW01BMUFISbmxuBgYG4uiaQHZBLOP/kPK+vfZ2bL25iq7VlXvt5DK81PPlsJYNB/rA+ivlhze8qf1xtYuIDhJA3UL8XoLUC70qmTszEziLov6k/ay6uoaBDQU4MP0GZ/GUyYC9TyOVZcDam9kv5UVBnXuqKphl0MkvmwVZZdbjVvlS1pDh87zCNFjfC3tqe++PvU9Ax9X2A4hF3SMLWRj5122ZADEdklHyCj4iSN8MaFWVasAX44+ofdFvbDTc7N+6Ov4urXfb8Pt4NvEv5eeWJ0kfx75v/0tqrteVWLoQcwn0QU/SvUhkobIHrIyVERMlie4+emYolOjlIUexRIO1xV+kkSh+FbTaulJ5riRUqkVExr2j5NyrafFpKC2tWL5984Hoqyaz7dzoG6hWW5PdzvzPirxGE68Ip7VaaDb03UKdYneQXDI80DxAsXQxKFzX/UYsdgojSyae6iz5yTN7eLs4sGhZ1WYSPvw+nHp2i65quHB56OGOLiyVFlY9kcbUTI2XH7agAaLA0ZQHbwgDHhkoho7WXWTKp7K0V65XpX62/ZYQMSBETN7YiI4QMSK9c9QpS0ISEyUq0sUX20knnip2pVKgSV59d5bdTv2VOf6M08Pl/nxOlj6KFZwtalWlluRULIYvdxQqZip6ZJ2RAtrIoVwpKFZUB/g/9IDRcZlLdeQilikh7LHCuU4MSMhmAwRBHlMT5GxVHpERFp9wzZ20tkw3sbOP8tZW/Q7H/W1vIA50FKM9MFhOpi2TcP+OYf0o2dGtbti0rX1+Zshuof4D8EdPp5YVauUzSqlqnk+PtoeHgYC8FzUuBp/eD7lPntzo8CX1C90rd2dB7g+VjDVLDnTVw5E0QOijWERqvlzWCEkMIOD0ern0vS+c32QwlUhfv8ij4EaW+K4XOoOP026epWdQCTUZDw2WzQYMBPItJ0ZnRBIXAuetymx4F0pcxFYfFZxYzdOtQirkU49a7t7Cztkt+oUzEx9+Hyj9VRi/0HB5yOGUlDFKCEDIz8P4T+b5CaVkvJivR6aSwevBUPqGDvDmVLCxts5BHTmFh9Po4AiUqAdESZTqfKcH2JZESV6DY2YCtrfTKZwGZdf9WYiYL8Q3wpef6npx8eBINGqY0m8LkppOTj88QQgb0xmYouTjJ2Bj7FDwdRUbJsfbIKHB1glcqxrvIj9w7QvNlzYnSRzGl6RSmt5ieth20FA+2wcEesjmhR1PpabFJ5Dq48DlckI3xaLAcyryR6s1N2zeN6f9Np1HJRhwccjAdhseg10shExYhhwCrl8+84QD/QNnsUAgZO1U27Y0aY4nUReL1gxcPgx+yqMsihtQcYgFDLUf/jf1ZfXE1Hct35K/+f1lmpULIOIO7Md+58qWgWDYq/qbXy6Gne49NcVLW1lDCQ6btWysnfKYghHy4TMiLEle0pLRBrEaTuBclrnDJxtWUlZiJQ24UMztu7KD/pv48D39OAYcCrOi+gvbl2ye/YFS0jH8JCJbvi3uAV4nUuZVDw+UQhE4v62HElsWPw7Kzyxj8x2AA1vVcR6+qvVK+/ozg6QH4r5PMTspfSxZcs3/pqfj6z3AyprBd7R+gYurTqaP0UZT+rjSPQx6zpsca+lTrk37br92GxxkcJ5MUj5/JWB2AsiWgRPqDjmcfns3EfydSqVAlLo26lLXeuzicf3KeGvNrIBCceecMNYrUsMyK7zwA35gMrnIlE28EmtUYDHIo8+5jUxVhrZUUXiUKZ/61l5sQQv7+JuRFMQqXVMSnaK0S96LE/m9jna2FSkpQYiYOuUnMGISBL/Z/wbR90xAIahetzYbeG/DM55n8wgHBUshERcsvQgVPOXyQFgJiMiKEgGLuchz+pS/NBzs/YM6ROThYO3BoyCHLDLekh+dnYG9biPQD10rQYic4xXga7qyWDUMRUG0qvDItTZtYdWEVAzYNoKhzUXzH+aa/yNoTfzkUCLIgWkLl7TODu4+kNw/kcKRH+uI8giKDKDW3FIGRgWzpsyXb1BPpuqYrW69tpXfV3qztudYyK/V9KONRwGJiMMMRAvyeS1ETGi6nWWnk0FOJwmbxcooEiIqG4DAZcxb7ioxS8SlpQImZOOQWMfM8/DlvbHqD7Te2A/B2rbf5vv33yfeKia3mG9tM0NFeelMck4gdSQl+z2VxPZD1TkqZd7DVG/R0Wt2Jf278Q0nXkpwYfoLCzln8RBp0LaYA3r2YujG7INgH9neVcTUVxkivTBqfZhouasiR+0eY3nw6U5pNSZ+tYeFwKiZOpnQxGSuTVcTNwNFo5FBXOoXVpF2T+OrQVzQs2ZBDQw5ZyNC0c+z+MV5d9CpWGisuj7qcbBf5FBFXBHqVsGwqfWYghBxqvPvIVEhRo5FBwiWLyN+SvIwQUqSEhJmLl6RKGmTj+JTsiBIzccgNYubUw1P0WNcD30Bf7K3t+aXjLynrE6PTySGCZwHyvUcBGXhoqcC++0/kTQ5kZkYR84JyAREB1F9Yn+v+12lYsiF7Bu7J+oDP0LtS0ARfl/VjdCGyFYLnAGjwe+pSuONw6uEp6iyog42VDXfH36WIczpuXHoDnLkin4rzuUivTFa7i+Ol6FeU8VZp5FHwIzy/9yRKH8WBtw7QuFRjCxqbelr/3prdt3fzVo23WNx1cfpXeO+x6QEiAbGfoxBCemPvPjINUYMs8leqqEzhz+0IIbM/YwVLcKj8m1j8iqO9PC6xL0f7bB+fkh1Rqdm5BCEEi84sYsy2MUTqI/HK78XG3htTNpYfEibTrsMj5ReoXEnpJrbkl6lEYflkcv+JrGZqa2OWEZXPPh9b+26l/sL6HL53mFF/j2Jhl4Wp7tRtUWI7bu9tBy/OyGnFOsKrS9IsZMCUjt27au/0CRmAm3elkLGxlmnY2eEHMDZFP1onb2gXYlL0HdL2dF7UpSiDvAex4PQCZh2alaViZs/tPey+vRsbKxumNpua/hXG9YSWLpazhQyYWiXkd5VZbncfSY+N3wv5KuAm9zE1XduzM0LI71/IS0NF+gTiWTQaKVRcHMHZKUa8OKhMsByG8sxkIOHR4YzeNpolZ5cA0LlCZ37v/jv57PMlv/DjZ7IRoUFI92WVsjL7KCOI7fj79HmiT+w7buygw6oOGISB79t9z7v1380YW1JDVCCcGCFTsOstSDplOxn8Qv0oObckkfpIjgw9wqslXk27XdklTiYxdHoZAB4aDg52UKNSmgNDr/tfp9KPlRAILo68aNlmnClECEHDxQ05ev8oY+qOYV6Heelb4YOnpnYTpYqaupLnNkLCZEyN33PTNDcXWacqn0v2EOApwWCQ17JxmChUvjckcGuz0oBTjKfFJeavk0Om1+XJS6hhpjjkRDFz68UteqzrwdnHZ7HSWPFFiy/4qPFHyWd96A3mZdILuEKldDYiTAmGmH4+AcFyWzUryxtdHOYemcuEnROw0ljxz4B/aFO2TcbalInMPDCTT/Z8Qp1idTg+7HjaPU9hEbI3lt6QvW+EcasEuzhKAZvGJ9Ee63qw6comBnkPYmm3pZa1MwX8df0vOq/ujIO1A7feu5U+r9pDP/kQATKmpEzxnHNTTythEXJI7Ym/KcDVxUkW4CuYL3vtv04PoS/Ft4RFJByYq7UyHyZycZIemOy0P3kAJWbikNPEzJ/X/mTgloEERATg7ujO6h6raeWVgiqk4REyIDe2mq9njHs7s758ZkX17GKK6pme2IUQDNk6hKVnl5LPPh/Hhx2nfMHymWNbBqIz6PD63ot7QfdY1m0ZA70Hpm1FBoOsJxMaLt313hWz9w9nWIQUNNE66T1KY5Xg2MBbaytrbr93mxKuKet/ZQkMwkDNX2ty/sl5Pmr0EV+1/irtK3vkJ4daQQ6/epXI3ufP0mS3Vgmx/YTiBucm1jzV2trkaYl9OdjlrfOXTVFiJg45RczoDXqm7J3Clwe/BODVEq+yvtf6lP24P3sBV+/I4lexcRZZMTwRt6ieixN4VzB7Yo/URdJiWQuO3D9CpUKVODr0KG72lu3lkdlsvLyRnut74u7ozt3xd5PPLkuM677yhmhjLevJ2OWAEu8WqhLcfGlz/vP9jwmvTmBO2zkZYGjCrL24lr4b++Jq58rt925TwCGNpQri1uIp7iGLC+bVG2FUtKlVgj4mONbeLmNbJcRmFMUVL5FRCc9ra/OScHGSWUR59Xxlc5SYiUNOEDN+oX7039SfXbd2ATC23lhmvzY7+Z4lL1fzdY2p5puVN8Jkiuo9DnlM3QV1uR90nw7lO7C171bLdZXOAlosa8G+O/v4pPEnzGg1I20refpcZgpBhjRry1AsUCV4u892OqzqgLOtM3fH3SW/Q/4MMNQcnUFH1Z+rct3/Op81/4zJzSanbUVxY5wSqbmUJ8mIVgmxqdAv13BJLBXa3s48vsXZURX+y2EoMROH7C5mjt4/Sq/1vbgfdB9HG0cWdF5A/+r9k18wKlpmKwWGyPdpqeabUQQGyyd2IaBoIShf2uwH/tTDUzRZ0oRwXTgfNvyQWW1mZaGxaefCkwu8Mv8VtBotd8bdSdsQSXgEnIqNkykCZTJvmMVipLNKsBAC7/neXHh6gRktZ/BJk08sb+NLxPaIKuRYiFvv3sLFziX1K4krQou6yzYFSsiYk9ZWCULI78bLNVxSkgodK15UG4Ycj0rNzgEIIfj5xM+M3zGeaEM0FQpWYGPvjVTzqJb8wi9X863oCe5pdJFnBG4ucqjr8k35Q2Zna9YcsXax2izpuoS+G/vy9eGvqeZRjTe938xCg9PGj8d/BKB75e5pEzIGg4xz0htknIxnNg34TY4iheS1ePuB7Apta5uq6tIajYYPG33Im5vf5Ptj3zP+1fE42KSzqGMSROoimf6f7Bk2qfGktAkZvzhCpkghJWQSQ6uVHrti7uatEu48lAKnWIyoSSjGJaHS/hqNjMWJG9+iUqEV6UR5ZtJIaFQo7/z1DisvrASgR+UeLO66GFe7ZOwTQv4AxFYVdbSHquWybyXOuGmqCRTV+9+e/zHjwAzstHb8N/g/6peon/k2ppEX4S8oMbcEYdFh/Df4P5qWbpr6lfj4ytgCa2uok0PiZBIjnVWCo/XRlJtXjruBd5nfcT7v1Hknw0ydd2we7/7zLsVdiuMz1if1wunZCylChZBxIBU9lZBJKQm1SkgMKyspXOIOE6lU6DxFZt2/1RWVBq77X6f+wvqsvLASrUbL7DazWd9rffJCRqeDSzdNQqZwQahVOfsKGZBPXLEl3K/dkfEVcfisxWd0rdiVSH0k3dd250HQg8y3MY0sObuEsOgwqntUp0mpJqlfgd9zKWRABs7mZCED8mZetqSsCiuEjKMJDkvx4jZaGya8OgGA2UdmozeksDNwKgmNCmXGARnbNLnp5DQImQCTkPEooIRMatFoZG+v2lXkg1hsTSqtVnp0ixeW34c6VaFxTfkbV760HMZzcVJCRpEhqKsqlWy6sok6v9Xhkt8lijgXYc+gPbzf8P3k65IEh8k+Pf4B8segfGn5I5oTXKtlipuGHC7fNPV4Aaw0Vizvvpyq7lV5FPKI7mu7Ex6dzNNaNkBv0PPTiZ8AGayd6roy4ZFwLU49koI5KOA3KWKrBOdzkUNnF67LfU0hw2oNo4BDAW48v8Hmq5szxMR5x+fxJPQJXvm9GFJzSOoW9g+Q17AQclg3jdlbCuRxK5RPlnBoWAMa1YAaFWWl8sIFpQdGHVtFJpEmMfPTTz/h6emJvb099evX5/jx40nOHxAQwOjRoylatCh2dnZUqFCBbdu2pcngrEJn0DFx50R6rOtBcFQwTUo14fTbp1M2NPHIT/bpiYgEe1v55S9m4bYEGYlGI4VXPhdTcb049R5c7FzY2m8rBR0KcuLhCYb/OZzsPnq5/cZ2br24RT77fAx4ZUDqFjYY4MpNGRjp6pS1DSQzAisrmcHm5CDjIC5cT7rxXhycbJ0YU3cMALMOzbL4dRAQEcDXh74GYHrz6anrav48UHpGhYBC+WX38JzyHczOaDSyHIE6loosJNViZu3atUyYMIGpU6dy+vRpvL29adu2LU+fPk1w/qioKNq0acOdO3fYsGED165dY8GCBRQvnnMCJR+HPKbV762YfWQ2AO83eJ/dA3dT1CWZfi16PVy7LeuPCCHTdWtVSVdzvyzDykq6lJ1jb3A+Zjc4r/xebOi9AWsra1ZeWMk3h7/JQmOTJzbwd2jNoTjapLLJ3q370tNmrYXKZXOn29zaWsbM2NtKz8xFH1PNkWQYU28MDtYOnHx4kr139lrUrDmH5/Ai4gVV3KvQr1q/lC/4IsiUfl4onxIyCkUuI9W/wt9++y3Dhw/nrbfeokqVKsyfPx9HR0cWL064S+3ixYt5/vw5W7ZsoVGjRnh6etKsWTO8vb3TbXxmcMD3ADV/rcl+3/042zqzvtd6Zr82O/knwvAIWXzusb98X6a4rLCa0W0JMhJrLVQrL2NDwiPh4g2zG1xzz+b80O4HAD7e9TF/Xf8rqyxNkmvPrrHj5g40aBhVd1TqFn72QgbIghyisM/hcTJJYWcL1SvIazY4THo1EspOeQl3J3fj8E+sF8USPA19ytyjcwH4osUXKa9tFBAkr1WDkMOBlb1ypwBVKPIwqfpGR0VFcerUKVq3bm1agZUVrVu35siRIwkus3XrVho0aMDo0aMpXLgw1apV48svv0SfxFNeZGQkQUFBZq/MRgjB3CNzabGsBY9DHlPFvQonh5+kZ5WeyS/87IWMj4ntmvxKhcxtS5CR2NnCK+WlsAkONQVSxjCy7khG1B6BQNB/Y38u+13OQmMTJjZWplOFTnjl90r5ghGRplosJQrLgoK5HUd7U5uDF0EmL2MyTGgge3jtuLmDs4/PWsSUrw5+RWh0KHWK1aFbpW4pWyggGC7ckCKsgJssSKmEjEKR60jVt/rZs2fo9XoKFy5sNr1w4cI8fvw4wWVu3brFhg0b0Ov1bNu2jcmTJzNnzhy++OKLRLczc+ZM3NzcjK+SJVNfkTQ9BEcG03tDbybsnIBe6OlXrR/Hhh2jYqGKSS9oMMjU1kux8RTOMuI/u3VNTi+ODtJDY6WRcQg+5je479t/T7PSzQiOCqbL6i48D3+exMoyl+DIYJaeXQrIwN8UE1tPRqeXw4TZtYFkRuDqLEUAyDojt5PPWPPK70Xvqr0BLDLkeD/oPj+f+BmAGS1npCxgOzBEDo8ZDPI7WFUJGYUit5Lh32yDwYCHhwe//fYbtWvXpk+fPnz66afMnz8/0WUmTZpEYGCg8XXv3r2MNtPIZb/L1F1Qlw2XZfzHvPbzWPn6SpxtnZNeMDIKzl+XPU1APrl7V8j56bqJ4eYs3fUgi+r5PjJ+ZKu1ZUPvDXjm8+Tmi5v0Xt8bnUGXRYaa8/u53wmOCqZiwYopa/4Zy+0H0hNlrYUqeXCYoqCbDAIHWScp9jpPgg8bfgjI/kl3Au6ka/Of//c5kfpImpZuShuvFHRrDwqRgct6gwxcr5q2JpoKhSJnkKpvd6FChdBqtTx5Yv5D9uTJE4oUSbj8edGiRalQoQLaOCnIlStX5vHjx0RFJdxIzM7ODldXV7NXZrDm4hrqLajHNf9rFHcpzv7B+xlTb0zyT4EvgmQ5+8AQWc23SllZryO3/3gWyi+rpgL4PpRZW7EfORZia9+tONk4sfv2bt7f8X4WGWlCCMGPJ2Tg75h6Y7DSpPD8PAsw3bwresp+MXmRIoVMHqmb92QrgCSoWbQmbbzaoBd65hxOe/PJG89vsPisjMlLkVcmOBTO+5iqMlcrJ7+XCoUi15Kqb7itrS21a9dm9+7dxmkGg4Hdu3fToEGDBJdp1KgRN27cwBAncPD69esULVoUW9vs4bWI0kfx3vb36LexH6HRobQs05LT75ymQcmE98mIEHD3kfTIROtkKmutKrLoWF6hmIfsRwQynsI/wPhR9cLVWfH6CgB+OP4DC08vzAIDTey6tYurz67iYuvCIO9BKVsoIlJmpIEsIFgoD53bhChZRB4HkM0ZXyQdz/ZRo48AWHRmEc/CnqVpk9P2TUNn0NG+XHsal2qc9MzBYfL7GDvMW718zqjlpFAo0kWqH1cmTJjAggULWLZsGVeuXGHkyJGEhoby1ltvATBw4EAmTZpknH/kyJE8f/6c9957j+vXr/P333/z5ZdfMnr0aMvtRTp4EPSAFsta8MNxmYUzqfEkdr6xEw8nj6QXjNbJDIm41XxrVsre1XwzCs/icv9BxpUEhRg/6lapG5+3+ByAUX+P4uDdg1lhISCLrQEMrjE4Zb18DAbZu0enl+XYvXJgA0lLk8oqwS3LtKRW0VqE68KN6fCp4eLTi6y6sAqAL1omHmcHyF5A56/J8+XqpISMQpGHSLWY6dOnD7Nnz2bKlCnUqFGDs2fP8s8//xiDgu/evcujR6b4iZIlS7Jjxw5OnDjBK6+8wrvvvst7773Hxx9/bLm9SCN7bu+h5q81OXzvMG52bvzR9w++bPVl8imfwaFw+rIMftVooEIOquabEcQeg/yuUgBcvGFWVO/TJp/Sq0ovog3RvL72dXwDfDPdxNsvbhtTxUfXTaGQvvMQgkLlec2t9WTSQiqqBGs0GqN35sfjPxIaFZrgfIkxee9kBIKeVXpSq2itxGcMDZcemdgA7eoVZHyTQqHIE+TZRpOhUaF4/eDF09CneBf2ZmPvjZQtUDbphYSQwa437sr/7W1lfExOLIKXEej0cO6afEK2t5OeKltZjycsOozGixtz5vEZvAt7c2jIIZxsM++4Tdw5kdlHZvNa2dfY8caO5BfwD5CiDOQ5zktDhylFp4Oz16SQcLCDGqbzHRe9QU+FHytw68Utfmj3A2PrpyyL7MSDE9RbWA8rjRUXR16ksnvlhGcMDZfXXbRONjL0riCL/ikUiiwnsxpN5lkxA7Djxg7WXlrLjx1+TL4KrF4PPndlairIGiMVPXN2EbyMICo6pnVDlBya8a5o9FjdC7xHnQV1eBr6lB6Ve7Cu17qUB+Gmg7DoMEp8W4IXES/4s9+fdKrQKekFIqPg5GV5sy7mYQpyVsQnMgrOXk3wfMfllxO/MGrbKEq7lcZnrE+K2hC8tvw1/r31L4O8B7G029KEZwqLkEImKlpWp36lovpOWhAhBDqdLsm6YApFXLRaLdbW1sZAfSVm4pBZByNRwiJkc7rYdvdlistAyNxQBC8jCIupfqzTQQFXs7TYw/cO03xpc6IN0UxvPp0pzaZkuDkLTy9k+J/DKZOvDD5jfZIeRhRCehuCQuRTfs1KangpOcIipKCJ1smhxmrx06DDo8Mp/V1p/ML8WPn6SvpX75/kKvfd2UeLZS2wsbLh2phrlMlfJv5M4RHyXEVFy+B7byVkLElUVBSPHj0iLCzlndMVCgBHR0djkk9m3b/VNz85/J7Lqq96g/yhrOIF+XJZETxL42gP1cvBuevwPEh6tCqUBo2GhiUbMr/TfIZuHcrUfVOp5lGN1yu/nmGmCCGMgb+j645OPh7q9gMpZLR5tJ5MWoitEnzuuqlKcEVPM7HvYOPAu/XfZfLeyXx96Gv6VeuXaIq1EIJP93wKwPBawxMRMpEmj4yjvayyrYSMxTAYDNy+fRutVkuxYsWwtbVNfWd5RZ5DCEFUVBR+fn7cvn2b8uXLZ9q2lWcmMQwGuPUAHsTUF4ktEpdbi+BlBM8CZLYLQOmiMusphvH/jOe7Y9/haOPI4SGH8S6SMb269vvup9nSZjjaOHJ//H3yOyQR+/I8UDbQBClk3AtkiE25Fv9AWXEXpOfypeyv5+HPKTW3FKHRofwz4B/almub4Gq2+Wyj46qO2Fvbc/PdmxRzeakreUSk9MhERkkh410xwVgdRdqJiIjg9u3blC5dGkfHVDZiVeR5wsLC8PX1pUyZMkRFRWXK/Vs9diZEZJR86nsQt5pvRSVkUkuhfFC+tPzf9xE8NBXV++a1b2jj1Yaw6DC6rOnC09CEu66nl1ivzBvV30hayERGybopAMXclZBJC8lUCS7gUIC3a78NwKxDsxJchUEY+N+e/wGy3UR8IRPz3YyMkkHHr1RQQiYDsVKeSUUayIrrRl2pLxNbzTc2JbdqTDVf5WJNG8XcZZNNkD2cYorqWVtZs7bnWsoXKM/dwLv0XNeTKH3CFaHTyv2g+2y+shmQFX8TRQhZTyZaJ4NIy2ZuL7BcRTJVgse/Oh5rK2v23tnLiQcn4i2+8fJGzjw+g4utizGl20jsQ0ZElMyWUw8YCoUiBiVmYhFCluSPW823dmVV8dUSeBaDIvGL6uV3yM/WfltxtXPlwN0DjNk2BkuOes4/OR+90NOsdDOqF66e+Ix3HppaUah6MukniSrBJd1KGoN/vz78tdliOoOOKftkQPj7Dd6noGNB04dGIRMpSyIoIaNQKOKgfrXBVM33zkP5vkghqFkZHPJgNd+MQKORw00F4hTVC5NF9SoVqsSaHmvQoGHB6QXGzsjpJUIXwW+nfgOS6Y79Iki2pAAZpJwXKzhbmmSqBE9sOBGQXhgffx/j9BXnV3D12VUKOhRkfIPxpvVFRcuHjPBIKWC8K0pBo1AoFDEoMRMcKoeVngeClQYqeMZU81WHxqJYxTTgdHGU4vHCdXmTAtqXb8/XbeRT+nv/vMfuW7uTWlOKWHdpHX5hfpRwLUHXSl0TnikySg4vARQtBB4FE55PkXqSqBJczaMaHct3RCCYc0Q2oIzURTJt3zQAPm78Ma52MYGCUdHSIxMWEUfI5NFGn4oUc+TIEbRaLR07dsyU7S1dupR8+fJlyrYUCZN379hCwMOnsh5KZMwYfM3K8qamyBi0WqhWXh7riCiZOaSTxbjeb/A+b77yJnqhp9f6Xtx8fjNdm4rtAzSyzkisrRJI2RVCDoHEDimWVYXxLI6VlYw5c3KIJ2Bj42GWnl3K45DHLDy9EN9AX4o6FzW1m4iO8ciERcggX+8KMuhXoUiGRYsWMXbsWPbv38/Dhw+z2hxFJpB3xYzBILMthJDVfGtXlkXSFBmLrY1sAGhjLdseXL4JBgMajYbfOv9G/eL1eRHxgi5ruhAUmXRH5sQ4dv8YJx6ewE5rx/BawxOeyfcRBASbPEbKE5cxWFvL821vKz0zF31Ar6dxqca8WuJVIvWRzDo4iy8OyCaSk5tOxsEmRvycvy4LVdraSI+MGvbNMoSA0NCseaU2jC4kJIS1a9cycuRIOnbsyNKlS42f9e/fnz59+pjNHx0dTaFChfj9998BCA4OZsCAATg5OVG0aFHmzp1L8+bNGTduXJqP3927d+natSvOzs64urrSu3dvnjwxZfudO3eOFi1a4OLigqurK7Vr1+bkyZMA+Pr60rlzZ/Lnz4+TkxNVq1Zl27ZtabYlt5J3f8G1WnkT8yohnx5VL5fMI7bImpWVqciaENhb27O5z2aKuRTjst9lBmwagN6Q+jLqsenYfav1xd3JPf4ML4JksDeoOJnMwM5WNn60sZaxM5duohHC6J357th3PA55jGc+T4bWGiorR5+/DiHhchnvCuocZTFhYeDsnDWv1BYgXrduHZUqVaJixYq88cYbLF682JhYMGDAAP78809CQkKM8+/YsYOwsDC6d+8OwIQJEzh06BBbt27l33//5cCBA5w+fTrNx85gMNC1a1eeP3/Of//9x7///sutW7fMRNWAAQMoUaIEJ06c4NSpU3z88cfY2MiSA6NHjyYyMpL9+/dz4cIFZs2ahbOzc5rtya3kXTED0hOj2hJkDa7OsjAdyH5XMcHXRV2KsqXPFuyt7fnr+l9M3js5Vat9EvKEdZfWAYmkY0dFm+rJFCkEhVWcTKaQgIDtUqEzFQtWNM4yvfl0bIUVnPeRXjsba+mRcXTIQsMVOY1FixbxxhtvANCuXTsCAwP577//AGjbti1OTk5s3rzZOP+qVavo0qULLi4uBAcHs2zZMmbPnk2rVq2oVq0aS5YsSVdvqt27d3PhwgVWrVpF7dq1qV+/Pr///jv//fcfJ07I8gR3796ldevWVKpUifLly9OrVy+8vb2NnzVq1Ijq1avj5eVFp06daNq0aZrtya3kbTGjyFoK5pOeEZAZRQ9l4by6xeuyqMsiAGYenMnqC6tTvMrfTv1GtCGaV0u8Sp1idcw/jI2TiS2BX07Vk8lUXJ2lNxTgiT9Wdx4ZvTOVC1VmQOW+Mo4qOBSstbIgnpMSMtkBR0cICcmaV2oKEF+7do3jx4/Tr18/AKytrenTpw+LFi0yvu/duzcrV64EIDQ0lD/++IMBAwYAcOvWLaKjo6lXr55xnW5ublSsWJG0cuXKFUqWLEnJkqbfmypVqpAvXz6uXLkCSG/QsGHDaN26NV999RU3b5piBt99912++OILGjVqxNSpUzl//nyabcnNKDGjyFqKukPpmCqvPnfh2QsA+lfvz8eNPgZgyNYhCRZYe5lofTTzT80HEknHvvtIegWMcTLJ9GlSWJ6XqgQPdm/P+l7r2dFvG9pLt2SxSmut7H6tYtiyDRoNODllzSs1jvNFixah0+koVqwY1tbWWFtb88svv7Bx40YCAwMBOaSze/dunj59ypYtW3BwcKBdu3YZdORSxrRp07h06RIdO3Zkz549VKlSxeg9GjZsGLdu3eLNN9/kwoUL1KlTh3nz5mWpvdkRJWYUWU/ponLIB2SqdKAcz57RagadK3QmQhdBt7XdeBT8KMnVbLqyiYfBDynsVJieVXqafxgQbKojVL6UeuLPSuJUCdbcvE/PAs0peTfC1ODzlQoyhV+hSAU6nY7ff/+dOXPmcPbsWePr3LlzFCtWjNWrpYe3YcOGlCxZkrVr17Jy5Up69epljE/x8vLCxsbGOPwDEBgYyPXr19NsV+XKlbl37x737t0zTrt8+TIBAQFUqVLFOK1ChQqMHz+enTt38vrrr7NkyRLjZyVLlmTEiBFs2rSJ999/nwULFqTZntyKinpVZD0ajRxuioqW9X4u+kDNylg52rPi9RU0WNSAy36X6b62O/sG78PeOuFg0B9PyHTsd2q/g602TlG1qGhTPZnCBU3CSZF1lCwiz8uDp7IrPcQImfLg4pSlpilyJn/99RcvXrxg6NChuLm5mX3Wo0cPFi1axIgRIwCZ1TR//nyuX7/O3r17jfO5uLgwaNAgJk6cSIECBfDw8GDq1KlYWVkl2zVcr9dz9uxZs2l2dna0bt2a6tWrM2DAAL777jt0Oh2jRo2iWbNm1KlTh/DwcCZOnEjPnj0pU6YM9+/f58SJE/To0QOAcePG0b59eypUqMCLFy/Yu3cvlStXtsARy10oz4wie6DRyIBgF0dZeyamJomrnStb+24lv31+jj04xtt/vp1gy4Ozj89y8O5BrK2seafOO6YPXo6TKa/qyWQL4lYJBpkaX728jKtRKNLAokWLaN26dTwhA1LMnDx50hhvMmDAAC5fvkzx4sVp1KiR2bzffvstDRo0oFOnTrRu3ZpGjRpRuXJl7O2TzqgLCQmhZs2aZq/OnTuj0Wj4448/yJ8/P02bNqV169Z4eXmxdu1aALRaLf7+/gwcOJAKFSrQu3dv2rdvz/Tp0wEpkkaPHk3lypVp164dFSpU4OefLVMpPTehEZZshpNBBAUFZUoLcUU2ICoazl6VNUmcHWU2i7WW3bd203ZFW/RCz+w2s3m/4ftmiw39YyiLzy6mb7W+rO4RJ2D47iO4/UDGydSqrIaXshsGAzz2BzdndW6yEREREdy+fZsyZcokexPP7YSGhlK8eHHmzJnD0KFDs9qcHEHc6ycqKipT7t/KM6PIXiRSVK+VVyu+a/cdAB/u+pDtPtuNi/iH+bPq4ioAxtSNk44dGCyFDMjMJXWzzH5YWcnO6urcKLIJZ86cYfXq1dy8eZPTp08bM526dk2kLYoiW6DEjCL74WAvBc1LRfVG1x3N27XexiAM9N3Yl6vPrgKw6MwiInQR1CxSk4YlG8p1ROtMcTIeBVScjEKhSDGzZ8/G29ub1q1bExoayoEDByhUSP2GZGdUALAie+LiJNOnL/rIonq2Nmi8SjCvwzyuPLvCgbsH6LK6C4eHHjZ22h5bb6wM0ouNk4mMlsKoQmlVGFGhUKSImjVrcurUqaw2Q5FKlGdGkX15qSYJD55iq7VlY++NlHYrjc9zH+otqIdvoC8FHQrSt1pfOe/9J6Yu6FW8VD0ZhUKhyOUoMaPI3hQpBJ4xRfVuyKJ67k7u/NH3DxxtHLkdIFsTDKs1TDYoDAyBW/fl/GVLqcJrCoVCkQdQYkaR/SlVFIrGLaoXjHcRb5Z3Xw6AVqNlZJ2R5nEy7gVMyygUCoUiV6NiZhTZH40GyscU1fMPhIs3oEYlXq/8Ov8M+AdrK2tKu5WCSzchMgoc7FScjEKhUOQhlJhR5Aw0GqjsBeeuy0aEF3ygZiXalmsrP7//GPwDYuYrK/v7KBQKhSJPoIaZFDkHrRaql5Oel8goKWh0etnT51acejKqr49CoVDkKZSYUeQsbGygegVZVC80HC7dkHEyQsjS+EXds9pChUKhyBSaN2/OuHHjLD5vTkSJGUXOw8FOFtXTWslu2BFRYK/iZBQKheTIkSNotVo6duyYKdtbunQpGo0GjUaDlZUVJUqU4K233uLp06cZut1Nmzbx+eefW3zenIgSM4qcSWxRPY3G1KTSWoWAKRQK2XRy7Nix7N+/n4cPH2bKNl1dXXn06BH3799nwYIFbN++nTfffDPBefV6PQaDId3bLFCgAC4uLhafNyeixIwi51LADepUgTpVpbhRKBQZghCC0KjQLHmlthdySEgIa9euZeTIkXTs2JGlS5caP+vfv///27vvsKbOtw/g37DCBgGZIqgI4gAnKlahFQVX1VJExb1aLagvTlor2mktbhytIqh1oLWopS4cWEQqKoIDRItaF45aZO887x/Pj0hkSBASAvfnunKRnHNyzn2SQ3LnmfD29pbYvri4GEZGRti5cycAIDs7Gz4+PtDS0oKZmRnWrFlToyoagUAAU1NTmJubY9CgQZg9ezZOnTqF/Px8hIWFQV9fH0eOHEH79u0hFArx4MEDFBYWYv78+bCwsICWlhZ69uyJ6Ohoif3GxsbC1dUVmpqaaNasGdzd3ZGRkQGgYtXRpk2b0LZtW6irq8PExAQff/yxeN2b22ZkZGDChAlo1qwZNDU1MWjQINy5c0e8vizmEydOwN7eHtra2vDw8EB6enoN3gXZo5+yRLFp0gSFhNS3vOI8aH+vLZdj5wTkQEut5j9W9u/fj3bt2sHOzg7jxo3D3LlzERAQAIFAAB8fH3h5eSEnJwfa2vx8Tpw4gby8PIwcORIA4O/vj9jYWBw5cgQmJiZYunQpEhIS0LlzZ6ni1tDQgEgkQklJCQAgLy8PP/zwA7Zt2wZDQ0MYGxvD19cXycnJ2LdvH8zNzREREQEPDw9cv34dbdu2RWJiIvr3748pU6Zg3bp1UFFRwdmzZ1FaWlrheJcvX8bs2bOxa9cuODs747///kNMTEyV8U2aNAl37tzBkSNHoKuri0WLFmHw4MFITk6GqqqqOOagoCDs2rULSkpKGDduHObPn4/du3dL9VrIAiUzhBBCGo2QkBCMGzcOAODh4YHMzEycO3cOrq6ucHd3h5aWFiIiIsRVQHv27MGHH34IHR0dZGdnY8eOHdizZw/69+8PAAgNDYW5ublUMdy5cwdbtmxB9+7dxVU7xcXF2LRpExwdHQEADx48QGhoKB48eCDe//z583H8+HGEhobiu+++w8qVK9G9e3ds2rRJvO8OHTpUeswHDx5AS0sLQ4cOhY6ODqysrNClS5cq4zty5AhiY2Ph7Mwn5929ezcsLS1x6NAheHl5iWPesmUL2rRpAwDw9fXFV199JdVrISuUzBBCCKmWpqomcgJy5HbsmkpNTUV8fDwiIiIAACoqKvD29kZISAhcXV2hoqKCUaNGYffu3Rg/fjxyc3Nx+PBh7Nu3DwBw9+5dFBcXw8nJSbxPPT092NnZvfXYmZmZ0NbWhkgkQkFBAd577z1s27ZNvF5NTQ0ODg7ix9evX0dpaSlsbW0l9lNYWAhDQ0MAQGJiojixeJsBAwbAysoKrVu3hoeHBzw8PDBy5EhoalZ8/VJSUqCiooKePXuKlxkaGsLOzg4pKSniZZqamuJEBgDMzMzqvVFzbVEyQwghpFoCgUCqqh55CQkJQUlJiURJCmMMQqEQwcHB0NPTg4+PD1xcXPD8+XNERUVBQ0MDHh4e73xsHR0dJCQkQElJCWZmZtDQkKwC19DQgKBcb8ucnBwoKyvjypUrUH5jMtyyKrA391GT40dHR+PkyZNYunQpli1bhkuXLkFfX79W51RW3VRGIBBI3YZJVqgBMCGEEIVXUlKCnTt3YtWqVUhMTBTfkpKSYG5ujr179wIAnJ2dYWlpifDwcOzevRteXl7iL+3WrVtDVVUVly5dEu83MzMTt2/ffuvxlZSUYGNjg9atW9coCenSpQtKS0vx/Plz2NjYSNxMTU0BAA4ODjh9+nSNXwMVFRW4ublh5cqVuHbtGu7fv48zZ85U2M7e3h4lJSW4ePGieNnLly+RmpqK9u3b1/h4DQmVzBBCCFF4kZGRyMjIwNSpU6GnpyexztPTEyEhIfj0008B8F5NW7Zswe3bt3H27Fnxdjo6Opg4cSIWLFgAAwMDGBsbIzAwEEpKShKlKnXB1tYWPj4+mDBhAlatWoUuXbrgxYsXOH36NBwcHDBkyBAEBASgU6dOmDVrFj799FOoqanh7Nmz8PLygpGR5ES6kZGRuHv3Lvr164dmzZrh6NGjEIlElVaRtW3bFsOHD8f06dPx008/QUdHB4sXL4aFhQWGDx9ep+cpK1QyQwghROGFhITAzc2tQiID8GTm8uXLuHbtGgDAx8cHycnJsLCwQJ8+fSS2Xb16NXr37o2hQ4fCzc0Nffr0gb29PdTV1es85tDQUEyYMAHz5s2DnZ0dRowYgUuXLqFly5YAeMJz8uRJJCUlwcnJCb1798bhw4ehUsmYWvr6+vjtt9/wwQcfwN7eHlu2bMHevXurbDAcGhqKbt26YejQoejduzcYYzh69GiFqiVFIWANtQKsnKysLOjp6SEzMxO6urryDocQQhq1goIC3Lt3D61ataqXL3FFkpubCwsLC6xatQpTp06VdzgKofz1U1RUJJPvb6pmIoQQQv7n6tWruHXrFpycnJCZmSnuiqyo1S9NBSUzhBBCSDlBQUFITU2FmpoaunXrhpiYmAptVEjDQskMIYQQ8j9dunTBlStX5B0GkRI1ACaEEEKIQqNkhhBCCCEKjZIZQgghhCg0SmYIIYQQotAomSGEEEKIQqNkhhBCCCEKjZIZQgghpBFwdXXF3LlzxY+tra2xdu1aucUjS5TMEEIIaVTi4uKgrKyMIUOGyOR4YWFhEAgEEAgEUFJSgpmZGby9vfHgwQOZHJ9QMkMIIaSRCQkJgZ+fH/788088efJEJsfU1dVFeno6Hj9+jIMHDyI1NRVeXl4yOTahZIYQQsjbMAbk5srnJuVcyDk5OQgPD8fMmTMxZMgQhIWFideNHTsW3t7eEtsXFxfDyMgIO3fuBABkZ2fDx8cHWlpaMDMzw5o1aypU31RGIBDA1NQUZmZmcHZ2xtSpUxEfH4+srCzxNocPH0bXrl2hrq6O1q1bY/ny5SgpKRGvf/XqFT755BOYmJhAXV0dHTt2RGRkJADg5cuXGDNmDCwsLKCpqYlOnTph7969Ur02jRlNZ0AIIaR6eXmAtrZ8jp2TA2hp1Xjz/fv3o127drCzs8O4ceMwd+5cBAQEQCAQwMfHB15eXsjJyYH2/87nxIkTyMvLw8iRIwEA/v7+iI2NxZEjR2BiYoKlS5ciISEBnTt3rnEMz58/R0REBJSVlaGsrAwAiImJwYQJE7B+/Xr07dsXaWlpmDFjBgAgMDAQIpEIgwYNQnZ2Nn755Re0adMGycnJ4ucXFBSgW7duWLRoEXR1dfHHH39g/PjxaNOmDZycnGocW6PFFEBmZiYDwDIzM+UdCiGENHr5+fksOTmZ5efn8wU5OYzxMhLZ33JypIrd2dmZrV27ljHGWHFxMTMyMmJnz56VeLxz507x9mPGjGHe3t6MMcaysrKYqqoqO3DggHj9q1evmKamJpszZ06VxwwNDWUAmJaWFtPU1GQAGAA2e/Zs8Tb9+/dn3333ncTzdu3axczMzBhjjJ04cYIpKSmx1NTUGp/rkCFD2Lx588SPXVxcJOK0srJia9asqfH+6kr560dW399UMkMIIaR6mpq8hERex66h1NRUxMfHIyIiAgCgoqICb29vhISEwNXVFSoqKhg1ahR2796N8ePHIzc3F4cPH8a+ffsAAHfv3kVxcbFESYeenh7s7OzeemwdHR0kJCSguLgYx44dw+7du/Htt9+K1yclJSE2NlZiWWlpKQoKCpCXl4fExES0aNECtra2le6/tLQU3333Hfbv34/Hjx+jqKgIhYWF0JTi9WnMKJkhhBBSPYFAqqoeeQkJCUFJSQnMzc3FyxhjEAqFCA4Ohp6eHnx8fODi4oLnz58jKioKGhoa8PDweOdjKykpwcbGBgBgb2+PtLQ0zJw5E7t27QLA2/IsX74cH330UYXnqqurQ0NDo9r9//jjj1i3bh3Wrl2LTp06QUtLC3PnzkVRUdE7x94YUANgQgghCq+kpAQ7d+7EqlWrkJiYKL4lJSXB3Nxc3FjW2dkZlpaWCA8Px+7du+Hl5QVVVVUAQOvWraGqqopLly6J95uZmYnbt29LHc/ixYsRHh6OhIQEAEDXrl2RmpoKGxubCjclJSU4ODjg0aNHVR4rNjYWw4cPx7hx4+Do6IjWrVvXKq7GqlbJzMaNG2FtbQ11dXX07NkT8fHxNXrevn37IBAIMGLEiNoclhBCCKlUZGQkMjIyMHXqVHTs2FHi5unpiZCQEPG2Y8eOxZYtWxAVFQUfHx/xch0dHUycOBELFizA2bNncfPmTUydOhVKSkoQCARSxWNpaYmRI0di6dKlAIClS5di586dWL58OW7evImUlBTs27cPS5YsAQC4uLigX79+8PT0RFRUFO7du4djx47h+PHjAIC2bdsiKioKFy5cQEpKCj755BM8e/bsXV+2RkPqZCY8PBz+/v4IDAxEQkICHB0d4e7ujufPn1f7vPv372P+/Pno27dvrYMlhBBCKhMSEgI3Nzfo6elVWOfp6YnLly/j2rVrAAAfHx8kJyfDwsICffr0kdh29erV6N27N4YOHQo3Nzf06dMH9vb2UFdXlzqm//u//8Mff/yB+Ph4uLu7IzIyEidPnkSPHj3Qq1cvrFmzBlZWVuLtDx48iB49emDMmDFo3749Fi5ciNLSUgDAkiVL0LVrV7i7u8PV1RWmpqZUMFCOgDHpOvH37NkTPXr0QHBwMABAJBLB0tISfn5+WLx4caXPKS0tRb9+/TBlyhTExMTg1atXOHToUI2PmZWVBT09PWRmZkJXV1eacAkhhEipoKAA9+7dQ6tWrWr1Jd6Y5ObmwsLCAqtWrcLUqVPlHY5CKH/9FBUVyeT7W6qSmaKiIly5cgVubm6vd6CkBDc3N8TFxVX5vK+++grGxsY1vhAKCwuRlZUlcSOEEELq29WrV7F3716kpaUhISFBXA01fPhwOUdGqiNVb6Z///0XpaWlMDExkVhuYmKCW7duVfqc8+fPIyQkBImJiTU+zvfff4/ly5dLExohhBBSJ4KCgpCamgo1NTV069YNMTExMDIykndYpBr12jU7Ozsb48ePx9atW6W6EAICAuDv7y9+nJWVBUtLy/oIkRBCCBHr0qULrly5Iu8wiJSkSmaMjIygrKxcoQX1s2fPYGpqWmH7tLQ03L9/H8OGDRMvE4lE/MAqKkhNTUWbNm0qPE8oFEIoFEoTGiGEEEKaKKnazJQVuZ0+fVq8TCQS4fTp0+jdu3eF7du1a4fr169L9Pn/8MMP8f777yMxMZFKW8g7274d+N+YVIQQQpooqauZ/P39MXHiRHTv3h1OTk5Yu3YtcnNzMXnyZADAhAkTYGFhge+//14862d5+vr6AFBhOSHS+uMPoKxNebduQPv28o2HEEKIfEidzHh7e+PFixdYunQpnj59is6dO+P48ePiRsEPHjyAkhINLEzqV3Y2MHPm68fr1wNbtsgvHkIIIfIj9Tgz8kDjzJA3zZnDExh9feDVK0BDA3j0CDAwkHdkhCg+GmeGvIsGP84MIQ3BX38BGzbw+/v3Aw4OQH4+sG2bfOMihBAiH5TMEIVSVARMmwYwBkyYAAwYwEtpACA4GCgpkW98hBBCZI+SGaJQVq4Ebt4EmjcHVq/my8aOBYyMgIcPASlmySCENFJxcXFQVlbGkCFDZHrc/Px8GBgYwMjICIWFhTI9dlNHyQxRGLduAV9/ze+vWwcYGvL76urAJ5+8Xk4IadpCQkLg5+eHP//8E0+ePJHZcQ8ePIgOHTqgXbt2Us0/WB8YYyhpQkXVlMwQhSASATNm8GqmQYOA0aMl18+aBaioAOfPAwkJ8omRkEaLMUCUK5+blH1UcnJyEB4ejpkzZ2LIkCEICwsTrxs7diy8vb0lti8uLoaRkRF27twJgI9c7+PjAy0tLZiZmWHNmjVwdXXF3Llz33rskJAQjBs3DuPGjUNISEiF9Tdv3sTQoUOhq6sLHR0d9O3bF2lpaeL127dvR4cOHSAUCmFmZgZfX18AwP379yEQCCSmBXr16hUEAgGio6MBANHR0RAIBDh27Bi6desGoVCI8+fPIy0tDcOHD4eJiQm0tbXRo0cPnDp1SiKuwsJCLFq0CJaWlhAKhbCxsUFISAgYY7CxsUFQUJDE9omJiRAIBPj777/f+prISr1OZ0BIXdm6FYiJAbS0gM2bAYFAcr25OeDlBezdy0tnduyQT5yENEosD7itLZ9j2+YAAq0ab75//360a9cOdnZ2GDduHObOnYuAgAAIBAL4+PjAy8sLOTk50Nbm53PixAnk5eVh5MiRAPhYarGxsThy5AhMTEywdOlSJCQkoHPnztUeNy0tDXFxcfjtt9/AGMP//d//4Z9//oGVlRUA4PHjx+jXrx9cXV1x5swZ6OrqIjY2Vlx6snnzZvj7+2PFihUYNGgQMjMzERsbK/XLtXjxYgQFBaF169Zo1qwZHj58iMGDB+Pbb7+FUCjEzp07MWzYMKSmpqJly5YA+PhwcXFxWL9+PRwdHXHv3j38+++/EAgEmDJlCkJDQzF//nzxMUJDQ9GvXz/Y2NhIHV+9YQogMzOTAWCZmZnyDoXIwePHjOnqMgYwtnZt1dv99RffRk2NsadPZRcfIY1Nfn4+S05OZvn5+XxBaQ5jKZDPrTRHqtidnZ3Z2v99UBQXFzMjIyN29uxZicc7d+4Ubz9mzBjm7e3NGGMsKyuLqaqqsgMHDojXv3r1imlqarI5c+ZUe9zPP/+cjRgxQvx4+PDhLDAwUPw4ICCAtWrVihUVFVX6fHNzc/bFF19Uuu7evXsMALt69ap4WUZGBgMgPrezZ88yAOzQoUPVxskYYx06dGAbNmxgjDGWmprKALCoqKhKt338+DFTVlZmFy9eZIwxVlRUxIyMjFhYWFiV+y9//cjq+5uqmUiD5+sLZGUBTk78flV69uS3oiIaQI+QOiXQ5CUk8rgJNGscZmpqKuLj4zFmzBgAfA5Ab29vcZWPiooKRo0ahd27dwMAcnNzcfjwYfj4+AAA7t69i+LiYjg5OYn3qaenBzs7u2qPW1paih07dmDcuHHiZePGjUNYWJh4PsLExET07dsXqqqqFZ7//PlzPHnyBP3796/xuVale/fuEo9zcnIwf/582NvbQ19fH9ra2khJScGDBw/EcSkrK8PFxaXS/Zmbm2PIkCHYvn07AOD3339HYWEhvLy83jnWukTVTKRB++03ICKCt4fZtg1QVq5++zlzeO+mzZuBxYsBmq+UkDogEEhV1SMvISEhKCkpgbm5uXgZYwxCoRDBwcHQ09ODj48PXFxc8Pz5c0RFRUFDQwMeHh7vdNwTJ07g8ePHFdrjlJaW4vTp0xgwYAA0NDSqfH516wCIR9Vn5doPFRcXV7qtlpbk+zR//nxERUUhKCgINjY20NDQwMcff4yioqIaHRsApk2bhvHjx2PNmjUIDQ2Ft7c3NDVrnmTKApXMkAbr1avXJTGLFgGdOr39OR9/zNvPPHvGB9QjhDQNJSUl2LlzJ1atWiUxuXFSUhLMzc2xd+9eAICzszMsLS0RHh6O3bt3w8vLS1xa0rp1a6iqquLSpUvi/WZmZuL27dvVHjskJASjR4+WOG5iYiJGjx4tLhVycHBATExMpUmIjo4OrK2tJSZxLq958+YAgPT0dPGy8o2BqxMbG4tJkyZh5MiR6NSpE0xNTXH//n3x+k6dOkEkEuHcuXNV7mPw4MHQ0tLC5s2bcfz4cUyZMqVGx5apeq3EqiPUZqZpmjGDt4GxtWWsrOq+Jr75hj+vWzfGRKL6i4+QxqpCmxkFEBERwdTU1NirV68qrFu4cCHr3r27+PEXX3zB2rdvz1RUVFhMTIzEttOmTWOtWrViZ86cYTdu3GCenp5MR0eHzZ07t9LjPn/+nKmqqrJjx45VWHf06FEmFArZy5cv2b///ssMDQ3ZRx99xC5dusRu377Ndu7cyW7dusUYYywsLIypq6uzdevWsdu3b7MrV66w9evXi/fVq1cv1rdvX5acnMyio6OZk5NTpW1mMjIyJGIYOXIk69y5M7t69SpLTExkw4YNYzo6OhJtgCZNmsQsLS1ZREQEu3v3Ljt79iwLDw+X2M/nn3/O1NTUmL29faWvQ3nyaDNDyQxpkM6d4wkJwO9L4/lzxoRC/tzY2PqJj5DGTBGTmaFDh7LBgwdXuu7ixYsMAEtKSmKMMZacnMwAMCsrKyZ64xdPVlYWGzt2LNPU1GSmpqZs9erVzMnJiS1evLjSfQcFBTF9ff1KG/YWFhYyfX19tm7dOsYYY0lJSWzgwIFMU1OT6ejosL59+7K0tDTx9lu2bGF2dnZMVVWVmZmZMT8/P/G65ORk1rt3b6ahocE6d+7MTp48WaNk5t69e+z9999nGhoazNLSkgUHBzMXFxeJZCY/P5/93//9HzMzM2NqamrMxsaGbd++XWI/aWlpDABbuXJlpa9DefJIZmiiSdLgFBQAjo7A7dt8bJmffpJ+H1OnAtu3A6NGAeHhdR8jIY0ZTTT5Wm5uLiwsLLBq1SpMnTpV3uHITUxMDPr374+HDx/CxMSk2m1poklCAHz7LU9kzMyAH36o3T7K5ms6eJBPc0AIITVx9epV7N27F2lpaUhISBD3dBo+fLicI5OPwsJCPHr0CMuWLYOXl9dbExl5oWSGNCjXrwMrVvD7wcGAvn7t9uPgALi6AqWlwKZNdRUdIaQpCAoKgqOjI9zc3JCbm4uYmBgYGRnJOyy52Lt3L6ysrPDq1SusXLlS3uFUiaqZSINRWgo4OwPx8cDIkbxb9rs4dIjvx8CAl840sJ6EhDRYVM1E3gVVM5EmbeNGnsjo6vJSmXc1bBjQqhXw33/A/8bIIoQQ0ghRMkMahH/+AT7/nN9fuZKPFfOulJVfj1Ozbp3U89URQghREJTMELljjM96nZsL9O0LTJ9ed/ueMoVPTnnzJnDmTN3tlxBCSMNByQyRu337gKNHATU14OefAaU6vCr19YFJk/j9devqbr+EEEIaDkpmiFy9fPm6G/WXXwLt2tX9Mfz8+N/ISCAtre73TwghRL4omSFyNW8e8OIF0LEjsHBh/RzDzg7w8ODVWRs21M8xCCGEyA8lM0RuoqKAHTv4hLxbt/JqpvpSVvqzfTuQlVV/xyGEECJ7lMwQucjLAz75hN/39QV69arf4w0cyEtosrOBsLD6PRYhRL7i4uKgrKyMIUOGyOR4YWFhEAgEFW7btm0DwGe7Hjt2LGxtbaGkpIS5c+fWaL8vXrzAzJkz0bJlSwiFQpiamsLd3R2xsbH1eDaKiZIZIheBgcC9e4ClJZ++oL4pKQGzZ/P7GzYAIlH9H5MQIh8hISHw8/PDn3/+iSdPnsjkmLq6ukhPT5e4lU2FUFhYiObNm2PJkiVwdHSs8T49PT1x9epV7NixA7dv38aRI0fg6uqKly9f1tdpoKioqN72XZ8omSEyl5AArF7N72/eDOjoyOa4EyYAenrA33/z3lOEkBpiDCjJlc9NygGicnJyEB4ejpkzZ2LIkCEIK1cUO3bsWHh7e0tsX1xcDCMjI+zcuRMAkJ2dDR8fH2hpacHMzAxr1qyBq6vrW0tTBAIBTE1NJW4aGhoAAGtra6xbtw4TJkyAnp5ejc7j1atXiImJwQ8//ID3338fVlZWcHJyQkBAAD788EOJ7T755BOYmJhAXV0dHTt2RGRkpHj9wYMH0aFDBwiFQlhbW2PVqlUSx7G2tsbXX3+NCRMmQFdXFzNmzAAAnD9/Hn379oWGhgYsLS0xe/Zs5Obm1ih2eVCRdwCkaSku5jNai0TA6NGAjEqBAQDa2sC0acCqVbyb9tChsjs2IQqtNA/Yry2fY4/KAVS0arz5/v370a5dO9jZ2WHcuHGYO3cuAgICIBAI4OPjAy8vL+Tk5EBbm5/PiRMnkJeXh5EjRwIA/P39ERsbiyNHjsDExARLly5FQkICOnfuXB9nVyVtbW1oa2vj0KFD6NWrF4RCYYVtRCIRBg0ahOzsbPzyyy9o06YNkpOToaysDAC4cuUKRo0ahWXLlsHb2xsXLlzArFmzYGhoiEllY1aAz0W1dOlSBAYGAgDS0tLg4eGBb775Btu3b8eLFy/g6+sLX19fhIaGyuT8pUXJDJGpNWuAxEQ+X5I8xn3x9eUxnDrFB9Lr0EH2MRBC6k9ISAjGjRsHAPDw8EBmZibOnTsHV1dXuLu7Q0tLCxERERg/fjwAYM+ePfjwww+ho6OD7Oxs7NixA3v27EH//v0BAKGhoTCvwZDkmZmZ4gQJ4MnI06dPa30eKioqCAsLw/Tp07FlyxZ07doVLi4uGD16NBwcHAAAp06dQnx8PFJSUmBrawsAaN26tXgfq1evRv/+/fHll18CAGxtbZGcnIwff/xRIpn54IMPMG/ePPHjadOmwcfHR1wa1bZtW6xfvx4uLi7YvHlzg5yvi5IZIjN//83bygC8dMTYWPYxWFsDw4cDERHA+vXATz/JPgZCFI6yJi8hkdexayg1NRXx8fGIiIgAwBMCb29vhISEwNXVFSoqKhg1ahR2796N8ePHIzc3F4cPH8a+ffsAAHfv3kVxcTGcnJzE+9TT04Odnd1bj62jo4OEhATxYyUpRv+MiYnBoEGDxI9/+ukn+Pj4wNPTE0OGDEFMTAz++usvHDt2DCtXrsS2bdswadIkJCYmokWLFuJE5k0pKSkYPny4xLI+ffpg7dq1KC0tFZfgdO/eXWKbpKQkXLt2DbvLTWrHGINIJMK9e/dgb29f43OTFUpmiEwwBnz6KVBQAPTvD0ycKL9Y5szhycyuXcD33/NSIkJINQQCqap65CUkJAQlJSUSJSmMMQiFQgQHB0NPTw8+Pj5wcXHB8+fPERUVBQ0NDXh4eLzzsZWUlGBjY1Or53bv3h2JiYnixyYmJuL76urqGDBgAAYMGIAvv/wS06ZNQ2BgICZNmiRuk/OutLQk39ucnBx88sknmF3Wa6Kcli1b1skx6xo1ACYysWMHcPo0oKHBS0MEAvnF0q8f4OgI5Ofz8W0IIYqvpKQEO3fuxKpVq5CYmCi+JSUlwdzcHHv37gUAODs7w9LSEuHh4di9eze8vLygqqoKgFfRqKqq4tKlS+L9ZmZm4vbt2/Uau4aGBmxsbMQ3nWp6RbRv317cENfBwQGPHj2qMj57e/sK3bhjY2Nha2srLpWpTNeuXZGcnCwRU9lNrT4HBHsHVDJD6t2zZ4C/P7+/fDnQpo184xEIeOnMlCnAxo18FGIV+k8gRKFFRkYiIyMDU6dOrdBjyNPTEyEhIfj0008B8F5NW7Zswe3bt3H27Fnxdjo6Opg4cSIWLFgAAwMDGBsbIzAwEEpKShC84y+wspKXnJwcvHjxAomJiVBTU0P79u0r3f7ly5fw8vLClClT4ODgAB0dHVy+fBkrV64UVx25uLigX79+8PT0xOrVq2FjY4Nbt25BIBDAw8MD8+bNQ48ePfD111/D29sbcXFxCA4OxqZNm6qNddGiRejVqxd8fX0xbdo0aGlpITk5GVFRUQgODn6n16HeMAWQmZnJALDMzEx5h0JqYfRoxgDGunRhrLhY3tFw+fmMNW/O4zpwQN7RENKw5Ofns+TkZJafny/vUGps6NChbPDgwZWuu3jxIgPAkpKSGGOMJScnMwDMysqKiUQiiW2zsrLY2LFjmaamJjM1NWWrV69mTk5ObPHixVUeOzQ0lOnp6VUbH4AKNysrqyq3LygoYIsXL2Zdu3Zlenp6TFNTk9nZ2bElS5awvLw88XYvX75kkydPZoaGhkxdXZ117NiRRUZGitf/+uuvrH379kxVVZW1bNmS/fjjjxLHsbKyYmvWrKlw/Pj4eDZgwACmra3NtLS0mIODA/v222+rPccy5a8fWX1/CxiTshO/HGRlZUFPTw+ZmZnQ1dWVdzhECpGRwLBhgLIyEB8PdO0q74he+/JL4JtvgPfeA2Ji5B0NIQ1HQUEB7t27h1atWjXIniuylJubCwsLC6xatQpTp06VdzgKofz1U1RUJJPvb2ozQ+pNdjYwcya/7+/fsBIZgMemogKcP88H8iOEkKtXr2Lv3r1IS0tDQkKCeBTfN3sFkYaFkhlSb774Anj0CGjdGli2TN7RVGRuDowaxe/LY8wbQkjDFBQUBEdHR7i5uSE3NxcxMTEwMjKSd1ikGlTNROpFXBzQpw/vkh0VBbi5yTuiysXHAz178hm7HzwAyvWIJKTJomom8i6omok0CkVFwPTpPJGZOLHhJjIA4OTEZ+wuKgK2bJF3NIQQQmqDkhlS5374gU8V0Lw5H+m3oZszh//dvBkoLJRvLIQQQqRHyQypU7du8R5CAJ8uwNBQvvHUhKcnYGHBx8PZv1/e0RBCCJEWJTOkzohEvHqpqAgYPBjw9pZ3RDWjqgrMmsXvr1vHq8cIIYQoDkpmSJ35+WfezVlLi1fZyHPKAmnNmAEIhcCVK8CFC/KOhhBCiDQomSF14vFjYNEifv+774AGOhdZlYyMgP8NJ0HdtAkhRMFQMkPqhK8vkJXFuzl/9pm8o6mdsobAv/0GPHwo31gIIbJx//59CAQCiVmr38bV1RVz586tsDwsLAz6+vp1FhupOUpmyDv77Tfg0CE+mu62bXzqAkXk4AC4ugKlpXwCSkIIIYqBkhnyTl69el0Ss3gx0LGjXMN5Z2WlMz//DOTlyTcWQoj0XF1d4efnh7lz56JZs2YwMTHB1q1bkZubi8mTJ0NHRwc2NjY4duxYlfs4d+4cnJycIBQKYWZmhsWLF6OkpESGZ0GkRckMeSeLFgFPnwJ2dnz6AkU3bBjQqhWQkQH88ou8oyGkgWCMF1nK41aL7oU7duyAkZER4uPj4efnh5kzZ8LLywvOzs5ISEjAwIEDMX78eORV8ovl8ePHGDx4MHr06IGkpCRs3rwZISEh+KZszAnSIKnIOwCiuM6d4yUYALB1K9AYRj1XVubtf+bN4+PkTJ+uWL2yCKkXIhFw/qp8jv1eF6nrrh0dHbFkyRIAQEBAAFasWAEjIyNMnz4dALB06VJs3rwZ165dg6mpqcRzN23aBEtLSwQHB0MgEKBdu3Z48uQJFi1ahKVLl0JJicoAGiJ6V0itFBTw7swA8MknQN++8o2nLk2ZwruX37wJnD4t72gIIdJycHAQ31dWVoahoSE6deokXmbyv0nYnj9/XuG5KSkp6N27NwTlfsX06dMHOTk5ePToUT1GTd4FlcyQWvnmG+D2bcDMjE9f0Jjo6wOTJvFGwOvWNey5pQiRCSUlXkIir2NLSVVVVeKxQCCQWFaWqIhEolqFpKuri8zMzArLX716BT09vVrtk7wbKpkhUrt27XUCs3Ej0Bj/d/38+N8//gD+/lu+sRAidwIBr+qRx03G9bz29vaIi4sDK9dWJzY2Fjo6OmjRogUAwM7ODgkJCRWem5CQAFtbW5nFSl6jZIZIpbSUtyMpKQE++ggYOVLeEdUPOztg0CDe9jA4WN7REEJkZdasWXj48CH8/Pxw69YtHD58GIGBgfD39xe3l5k5cyZu376N2bNn49q1a0hNTcXq1auxd+9ezJs3T85n0DRRMkOkEhwMxMfz0pgNG+QdTf0q66a9fTsfEJAQ0vhZWFjg6NGjiI+Ph6OjIz799FNMnTpV3KAYAFq3bo0///wTt27dgpubG3r27In9+/fjwIED8PDwkGP0TZeAsYY/rV5WVhb09PSQmZkJXV1deYfTZP3zD9ChA5CbC/z00+sGwI0VY0D79nwm8HXrgNmz5R0RIbJRUFCAe/fuoVWrVlBvDN0UiUyVv36Kiopk8v1NJTOkRhgDZs7kiUzfvsC0afKOqP4JBK8TmA0beO9UQgghDQ8lM6RG9u4Fjh0D1NT4mDJNZaiFCRN476a//waOHpV3NIQQQirTRL6SyLv499/X7UeWLuWNY5sKLa3XpVA0mzYhhDRMlMyQt5o3jyc0HTsCCxbIOxrZ8/XlJVGnTvGB9AghhDQstUpmNm7cCGtra6irq6Nnz56Ij4+vctutW7eib9++aNasGZo1awY3N7dqt5ely5eB2Fh5R9GwRUUBO3fy9iPbtvFqpqbGygoYMYLfX79erqEQQgiphNTJTHh4OPz9/REYGIiEhAQ4OjrC3d290mGhASA6OhpjxozB2bNnERcXB0tLSwwcOBCPHz9+5+Df1aJFwHvvAc7OQEQENfB8U24un6oA4IPI9ewp33jkqayabdcu4L//5BsLIbJS2xFySdMmj+tG6q7ZPXv2RI8ePRD8v5HERCIRLC0t4efnh8WLF7/1+aWlpWjWrBmCg4MxYcKEGh2zPrpmFxcDs2bxUoeiIr7M1pZXqUyY0DgmTXxX8+cDq1YBLVsCN24AOjryjkh+GAO6dgUSE4EVK3giTEhjJRKJcOfOHSgrK6N58+ZQU1OTmKuIkMowxlBUVIQXL16gtLQUbdu2RU5Ojky6ZkuVzBQVFUFTUxO//vorRpSVuwOYOHEiXr16hcOHD791H9nZ2TA2NsaBAwcwdOjQSrcpLCxEYWGh+HFWVhYsLS3r5cVIT+fdbjdvBl694suMjXmX3JkzAQODOj2cwrhyBXBy4qVVR4/y0XCburAwYPJkwNISuHsXUKGZzUgjVlRUhPT0dOTl5ck7FKJgNDU1YWZmBjU1NZmNEydVMvPkyRNYWFjgwoUL6N27t3j5woULce7cOVy8ePGt+5g1axZOnDiBmzdvVjkY07Jly7B8+fIKy+vzxcjOBkJCgDVrgAcP+DItLWDqVOD//g+wtq6XwzZIxcU8kUlMBMaMAfbskXdEDUNBAS+levEC2L8f8PKSd0SE1C/GGEpKSlBaWirvUIiCUFZWhoqKirgkT1bJjEx/W65YsQL79u1DdHR0taNKBgQEwN/fX/y4rGSmPunoAHPnAp99xr+ofvwRSEriDT43bgRGjeI9ebrIaeJYWVqzhicyBgbA2rXyjqbhUFcHPv0U+Ppr3k2bkhnS2JXNNv3mLNSENDRSNQA2MjKCsrIynj17JrH82bNnMDU1rfa5QUFBWLFiBU6ePAkHB4dqtxUKhdDV1ZW4yYqqKuDjA1y9Cpw8Cbi58ckV9+7lbSYGDODLG/4kELXz999AYCC/v3o1r3Ijr82cyauXYmN5VRwhhBD5kyqZUVNTQ7du3XD69GnxMpFIhNOnT0tUO71p5cqV+Prrr3H8+HF079699tHKkEDAE5eoKCAhARg7ls9Gf+oU4O7OS2h++YVXyTQWjPHeSwUFPImrYfvsJsXMjJfSATSIHiGENBRSd8329/fH1q1bsWPHDqSkpGDmzJnIzc3F5MmTAQATJkxAQECAePsffvgBX375JbZv3w5ra2s8ffoUT58+RU5OTt2dRT3r0gXYvRtIS+NddLW0eBXU+PFAmza8WiY7W95RvruwMODMGUBDg08kSZ0XKlfWTXvfPuDpU/nGQgghpBbJjLe3N4KCgrB06VJ07twZiYmJOH78OExMTAAADx48QHp6unj7zZs3o6ioCB9//DHMzMzEt6CgoLo7CxmxsuJtSB48AL79llfBPHwI+PvzhqEBAbx3lCJ69ox3SweAr74CWreWbzwNmZMT0KsXL5XbskXe0RBCCJF6nBl5kFVraGkVFPBB1IKCgNu3+TI1NV5iM38+0K6dfOOTxujRQHg4bxd08SJ1O36bfft4Ty9jY57cCoXyjkgxiUTA6dN8IEJDQ8mbpiaVDhKi6Bpk12x5aajJTBmRCDhyhPeAunDh9fIPP+Q9oPr0adgfypGRwLBhvE3QpUtNo8fWuyouBlq1Ah4/BnbsoPZFtcEYH7iyqtItobBigvO2W7Nm/DomhDQMlMyU09CTmfIuXOBJzeHDr3s89eoFLFzIk5uG9kGbnQ20bw88esRj/OEHeUekOL77DvjiC16adflyw05YGxrG+FAI69fz183ZmQ9a+fIlv9W2Yb1AAOjrV57oGBhUnQRRKRAh9YOSmXIUKZkpk5rKpwLYuRMoG8y4bdvX0yVoaMg3vjJ+fkBwMG8jc/06/1AnNfPvv3w04IIC4Px5XgJH3o4xnjiXNZsLCQGmTJFcn5PzOrGp6S0rq/YxUSkQIfWDkplyFDGZKfPsGZ8uYeNGyekS/Px4Ebs8p0uIi+NfwIzxLuf9+8svFkU1bRr/Mvby4oMtkrdbsoQ3oAd4FVPZZKbvqriYt7357z/pkqD6KAV6szSoY0fgLUNxEdIoUTJTjiInM2VycviX3urVr6dL0NTk0yX4+8t+uoSiIt42JjmZzze0fbtsj99YXL8OODjwX+j37vGSGlK1r78Gli7l99ev50m9PMmqFEgo5PO//W8EC0KaDEpmymkMyUyZ4mLgwAHeriYxkS9TVua/7Bcs4O0vZOGrr/hIv8bGQEpK051Qsy588AFw9iyfSXvFCnlH03D98AOweDG/HxT0eigARVRWClRdwlO2/vFjPkYVAPj68h80NDsAaSoomSmnMSUzZRjjXVJ//JFPj1Cmf3+e1AwcWH8NElNSgM6deenMvn2At3f9HKepOHwYGDGCt6F49IjaHVVmzRpeAgnwKqbPP5dvPLIkEvESqWXL+ON+/fgPGpoqhDQFsvr+lnrQPFI3BAI+ZcCJE3weKB8fXkJz+jTg4cGTjfqYLkEkAqZP54nMkCGvh+YntTd0KO+mnZHB3zMiaePG14lMYGDTSmQAQEmJn/fhw3xC2z//BLp35z3gCCF1g5KZBqAscUlL491VtbSAa9deT5ewenXdTZfw8898kkRtbWDTJuqOWheUlV+3/Vi/vvFOQlobW7fyqhWAVzGVTWLaFH34IRAfD9ja8pHD33uP93YkhLw7SmYaECsrXhz/8CEfw8TEhN+fN483LH3X6RIeP+ZdYgG+/5Yt6yZuwrsWa2sDN2/y0jXCBxMs66nk78+vuaaePLdrxxOaoUP5kA0TJ/IfMI1pwlpC5IGSmQaoWTOeuNy/z3/Z2tkBmZm8cam1Ne8BlZIi3T4ZAz77jJfw9OrFu4WTuqOnB0yaxO/TbNrAnj285w5jvGQmKIgSmTJ6erzKqaxX17p1vI3cixfyjYsQRUYNgBWASMSnHFi5klcRlRk2jDcWfu+9t39RHDwIfPwx70Vx9SrQoUP9xtwU3b7NE0+BgN+3sZF3RPLx6698rq/SUmDGDN4lWYl+NlXq0CFenZyTw0tKIyJk16OREFmgBsBETEmJ17efP8+nSxg5kn9h/v477xnh7Az89hv/8qhMRoZkuwVKZOqHrS0weDAvjdiwQd7RyMfhw3wCztJSXlJFiUz1RozgE7u2bcvHn+rThxqRE1Ib9DGjYHr35onLrVv8V69QCPz1F+DpCdjbAz/9BOTnSz5n0SLg6VNeX//FF/KJu6mYM4f/DQ19t+H1FdHRo3y8pJIS3jtv2zZKZGqifXvejmbwYD41xvjxvI1RSYm8IyNEcdBHjYKyteWJyz//8OHhmzUD7twBPv2UNyT++ms+YNe5c7zdDcD/CoXyjbuxGzCAJ5XZ2TyhaSqiooCPPuINWb28gLAwmrdIGvr6vKR1yRL+eM0awN2dz/9FCHk7ajPTSOTk8CkJVq/mCQ7AB2/T1gaeP+dJzubN8o2xqdiyBZg5k3erT01t/F/q0dHAoEG8VGHECD5HFY1wW3u//cYno83N5T9MIiL41COEKCJqM0Okoq0NzJ4N/P03sHcv//DLy+OJjLk5DbMvS+PH81/aaWm86qUxO3+edzMuKOCDMO7bR4nMu/roI96OxsaG/zDp04f/TxNCqkbJTCOjosJ7kly5wmfC/uQT/stOT0/ekTUdWlp8lGWgcXfT/usv3s4jN5d3Lf71V6rGrCsdOvB2NIMG8TZwY8cC8+dTOxpCqkLVTITUg3/+AVq35t3qr18HOnaUd0R168oVPo9YZibw/vt86ACak6rulZYCX34JfP89f+zmxku/DA3lGxchNUXVTIQoMCsr3n4E4FMcNCZJSbyhc2YmH+Po998pkakvysp85OT9+/lrfOoUn9cpKUnekRHSsFAyQ0g9KeumvWsX71nWGNy4wUsHMjL4SNJHj/JqNVK/vLx4tV7r1nxk8N69gfBweUdFSMNByQwh9aRvXz6JaEHB6+7xiuzWLZ7I/Psv0K0bcOwYnwWayEanTsClS7x9Un4+bxu3cGHVg2US0pRQMkNIPREIXpfObNyo2I03//4b+OAD4NkzwNEROHmS99gismVgwEvDFi3ij3/8kTcS/u8/+cZFiLxRMkNIPRo9GmjeHHj0iPcqU0T37vFEJj2d97I5dYp/qRL5UFbmQy3s28fb0URFAT168IbmhDRVlMwQUo/U1fmAhYBidtN+8IAnMg8f8ukwTp8GjIzkHRUBAG9vPldbq1bA3bu8DdOBA/KOihD5oGSGkHo2cyYfSC42lndpVhSPH/NE5v59PoDb6dOAiYm8oyLlOTrydjQDBvBBMkeNAgICqB0NaXoomSGknpmZ8S8ZQHFKZ54+5ePIpKXxX/5nzvCRpEnDY2jI29HMn88fr1jBR2POyJBvXITIEiUzhMhAWUPgfft4otCQvXjBey2lpgKWljyRsbSUd1SkOioqvDHwnj2AhgZw4gRvR3PjhrwjI0Q2KJkhRAZ69OBjgxQX84koG6r//uNVFjdv8pKYM2cAa2t5R0VqaswY3o7G2pqXqvXqBRw8KO+oCKl/lMwQIiNlpTObNwOFhfKNpTKvXvExTJKSeNuYM2d4WxmiWDp35u1oPviAz5v18cfAF19QOxrSuFEyQ4iMfPQRYGHBZzJvaKO3ZmUBHh68gbKREW/sa2cn76hIbRkZ8aomf3/++LvvgGHDeMJKSGNEyQwhMqKqCnz2Gb+/bh3QUKZ4zcnhDUYvXuTjx5w6xceTIYpNRQVYtQr45Rc+RMCxY4CTE5CcLO/ICKl7lMwQIkMzZvAvloQE3lVb3vLy+C/28+cBPT0+AJujo7yjInXJx4dfay1bAnfuAD17Ku4AjoRUhZIZQmTI0BAYN47fl3c37YICPrN3dDSfY+nECaBrV/nGROpH167A5cvA++/zkriPPgK+/BIQieQdGSF1g5IZQmRs9mz+NyKCj7ArD4WFgKcnL4nR0uJVED17yicWIhvNm/M5tebO5Y+/+QYYPhzIzJRrWITUCUpmCJGxTp14T5PSUj4BpawVF/Oh8I8e5WOSREYCffrIPg4ieyoqwJo1wM6dvLozMpK3o0lJkXdkhLwbSmYIkYOybtpbt/Lus7JSUgKMHQscPgwIhcCRI4Crq+yOTxqG8eN5OylLS+D2bV4qd/iwvKMipPYomSFEDoYMAVq35kPO//KLbI5ZWgpMmAD8+iugpsarudzcZHNs0vB068bb0bi4ANnZvP3UsmXUjoYoJkpmCJEDZWXAz4/fX7++/rtpi0TA1KnA3r28quHAAWDQoPo9Jmn4jI15u6mya3H5cmDkSD7uECGKhJIZQuRk8mRAW5uP+3HqVP0dRyQCPv0U2LGDJ1H79gEfflh/xyOKRVWVJ9RhYa+rHp2cgFu35B0ZITVHyQwhcqKnB0yaxO/XVzdtxnjvqa1bASUlYNcu3ouJkDdNnAjExAAtWvBJRp2cgN9/l3dUhNQMJTOEyFFZ8f4ff/ABzeoSY8C8ebzHlEAAbN/OJyIkpCo9evB2NH378nY0H34IfPUVtaMhDR8lM4TIka0tMHgwv79hQ93tlzEgIIB3wwWAn3/mv7wJeRsTEz43l68vfxwYyEvzqB1N41JYyOdiCwnh7/V77wH//ivvqGpPwFhDmSGmallZWdDT00NmZiZ0dXXlHQ4hderkScDdnbefefwYqItLPDCQ/6IGeMnMrFnvvk/S9ISG8vZWRUVAu3a8+7atrbyjItLKyAASE/nt6lX+NyWFD9VQ3qlTQP/+dXtsWX1/q9TbngkhNTJgAGBvzz9cQkNfj0FTW99++zqRWbOGEhlSe5MnA+3b8+kPbt3i1VB79vChBUjDwxjw8KFk0nL1KvDPP5Vvb2AAdOnCb5078wE9FRWVzBDSAGzZAsycCbRpwxtfKivXbj9BQcCCBfz+Dz8ACxfWXYyk6Xr6FPj4Yz5hpUDAk+XPP+eNyol8lJTwBLN84pKYCPz3X+Xbt2rFE5bOnV8nLy1a8PezPsnq+5uSGUIagNxc/sHy6hXvGjtsmPT7WL/+danOV1/xiQQJqStFRXxep82b+eOPPuLduXV05BlV05CTA1y/Llnacv06b/fyJhUVXppWlrB06QI4OgL6+jIO+n8omSmHkhnSFCxcCPz4I6+zlnbcmbKSHQBYsgT4+uu6j48QANi2DfjsM57ctG8PHDoEtG0r76gaj2fPKpa23L5d+cCa2toVS1s6dODjBTUUlMyUQ8kMaQr++YdPcSAS8V9dHTvW7Hnbt/PRfQGeEK1YUf9Fx6Rp++svXjKTns7HS9q7l0aUlpZIBNy9K1nakpjIX9PKmJlJlrZ07sw/Lxp6VR8lM+VQMkOaio8/Bg4eBKZP592p32bXLt7lmjFexbRmDSUyRDbS0/n1euECf6ylxRuUGhryv+Vv1S1rSKUI9aWwELh5UzJxSUri1UdvEgh4j7E3q4lMTGQddd2gZKYcSmZIUxETA/TrB6irA48e8Q/8qoSH8xmwRSJexVQ2OB4hslLWjmbLltrPL6apWbOk582bhkadnkqdefWqYjfo5OSK3aAB/n/eqZNkaYuDA08MGwtKZsqhZIY0FYzx2YyvXgW+/x5YvLjy7X77DRg1is+EPW0a8NNPDb+4mTReWVnAixe8J81//wEvX76+X92ydxlZWENDuhKg8klQXST9jPEfHG9WE92/X/n2Zd2gyycudna8wW5jRslMOZTMkKZkxw4+Z1OLFrxOXVVVcv3vv/P2CiUlwIQJfGwaSmSIohGJeBL0ZoJTk2SotLT2xxUKqy7tqSoZ0tcHHjyo2DD35cvKj2FtLZm0dOkim27QDRElM+VQMkOaksJCoGVL4PlzXpU0atTrdcePA8OH8+L90aOBX36p/Zg0hCgixvi8UdKWAr18WXlVz7so6wZdPnFxdASaNavb4ygyGgGYkCZKKORDyH/1FZ9NuyyZOX0aGDGCJzKensDOnZTIkKZHIOBTfujq8hKQmmKMN7iVthTo5UuguLjybtDt2/N2L0T+qGSGkAbo6VNeOlNcDFy6xAfVGzQIyM/nA+r9+iugpibvKAlp/BgD8vJ4WxuqzpWerL6/6a0hpAEyNQW8vfn9OXP4XDj5+YCHB3DgACUyhMiKQMB7F1Ei07DR20NIA1U2NcGFC7xkxs2N92JqCuNyEEKINGqVzGzcuBHW1tZQV1dHz549ER8fX+32Bw4cQLt27aCuro5OnTrh6NGjtQqWkKake3egTx9+38UFOHy44Y6tQQgh8iR1MhMeHg5/f38EBgYiISEBjo6OcHd3x/Pnzyvd/sKFCxgzZgymTp2Kq1evYsSIERgxYgRu3LjxzsET0tjt2gVs2ABERvLBxQghhFQkdQPgnj17okePHggODgYAiEQiWFpaws/PD4srGeHL29sbubm5iIyMFC/r1asXOnfujC1bttTomNQAmBBCCFE8DbIBcFFREa5cuQI3N7fXO1BSgpubG+Li4ip9TlxcnMT2AODu7l7l9gBQWFiIrKwsiRshhBBCSGWkSmb+/fdflJaWwuSNGa9MTEzw9OnTSp/z9OlTqbYHgO+//x56enrim6WlpTRhEkIIIaQJaZC9mQICApCZmSm+PXz4UN4hEUIIIaSBkmoEYCMjIygrK+PZs2cSy589ewZTU9NKn2NqairV9gAgFAohpP6nhBBCCKkBqUpm1NTU0K1bN5w+fVq8TCQS4fTp0+jdu3elz+ndu7fE9gAQFRVV5faEEEIIIdKQem4mf39/TJw4Ed27d4eTkxPWrl2L3NxcTJ48GQAwYcIEWFhY4PvvvwcAzJkzBy4uLli1ahWGDBmCffv24fLly/j555/r9kwIIYQQ0iRJncx4e3vjxYsXWLp0KZ4+fYrOnTvj+PHj4ka+Dx48gFK5cZ+dnZ2xZ88eLFmyBJ9//jnatm2LQ4cOoWPHjnV3FoQQQghpsmiiSUIIIYTUiwY5zgwhhBBCSENDyQwhhBBCFBolM4QQQghRaJTMEEIIIUShUTJDCCGEEIUmdddseSjrcEUTThJCCCGKo+x7u747TitEMpOdnQ0ANOEkIYQQooCys7Ohp6dXb/tXiHFmRCIRnjx5Ah0dHQgEgjrbb1ZWFiwtLfHw4cNGO35NYz9HOj/F19jPkc5P8TX2c6zP82OMITs7G+bm5hID6tY1hSiZUVJSQosWLept/7q6uo3yAi2vsZ8jnZ/ia+znSOen+Br7OdbX+dVniUwZagBMCCGEEIVGyQwhhBBCFFqTTmaEQiECAwMhFArlHUq9aeznSOen+Br7OdL5Kb7Gfo6N4fwUogEwIYQQQkhVmnTJDCGEEEIUHyUzhBBCCFFolMwQQgghRKFRMkMIIYQQhUbJTCMWHR0NgUCAV69e1fg5kyZNwogRI+o8FldXV8ydOxcAYG1tjbVr19b5McoTCAQ4dOhQne2PMYYZM2bAwMAAAoEAiYmJdbbvqrztHGrz/hJSlxr7NRgWFgZ9fX15h9Hg3L9/X2afgzVFyYwUyn8hKwJnZ2ekp6dLNfriunXrEBYWVn9BAbh06RJmzJhRr8eoa8ePH0dYWBgiIyORnp6Ojh07yjukBunFixeYOXMmWrZsCaFQCFNTU7i7uyM2Nla8zdWrV+Ht7Q0zMzMIhUJYWVlh6NCh+P3338WT0ZV9WJbddHR00KFDB3z22We4c+fOO8U4adIk8X5VVVXRqlUrLFy4EAUFBeJtytb/9ddfEs8tLCyEoaEhBAIBoqOjxcvPnTuHDz74AAYGBtDU1ETbtm0xceJEFBUVAXj9pV92MzExgaenJ+7evftO5yKt6n6s/Pzzz3B1dYWurq7CJihVnd9///0HPz8/2NnZQUNDAy1btsTs2bORmZkp+yAh2/fhbQnZ999/jx49ekBHRwfGxsYYMWIEUlNT3+mY8kDJTCOmpqYGU1NTqeaz0tPTq/dfIs2bN4empma9HqOupaWlwczMDM7OzjA1NYWKikLMBCJznp6euHr1Knbs2IHbt2/jyJEjcHV1xcuXLwEAhw8fRq9evZCTk4MdO3YgJSUFx48fx8iRI7FkyZIKXy6nTp1Ceno6kpKS8N133yElJQWOjo44ffr0O8Xp4eGB9PR03L17F2vWrMFPP/2EwMBAiW0sLS0RGhoqsSwiIgLa2toSy5KTk+Hh4YHu3bvjzz//xPXr17FhwwaoqamhtLRUYtvU1FQ8efIEBw4cwM2bNzFs2LAK2wC8JLCkpOSdzlFaeXl58PDwwOeffy7T48rCkydP8OTJEwQFBeHGjRsICwvD8ePHMXXqVHmHVoG070NZ4l9b586dw2effYa//voLUVFRKC4uxsCBA5Gbm1vrfcoFaySsrKzYmjVrJJY5OjqywMBAxhhjANjWrVvZiBEjmIaGBrOxsWGHDx+W2P769evMw8ODaWlpMWNjYzZu3Dj24sULxhhjEydOZAAkbvfu3ZPBmb3m4uLCfH192Zw5c5i+vj4zNjZmP//8M8vJyWGTJk1i2trarE2bNuzo0aOMMcbOnj3LALCMjAzGGGOhoaFMT0+PHT9+nLVr145paWkxd3d39uTJE/ExJk6cyIYPH/5Ocebk5LDx48czLS0tZmpqyoKCgpiLiwubM2cOY6zie5WRkcFmzJjBjI2NmVAoZB06dGC///67eH1MTAx77733mLq6OmvRogXz8/NjOTk51cYAgEVERIgfX7t2jb3//vtMXV2dGRgYsOnTp7Ps7Gzx+rNnz7IePXowTU1Npqenx5ydndn9+/cZY4wNGzZM4n1XU1NjsbGxzM/PjzVv3pwJhULWp08fFh8fLxHDjRs32JAhQ5iOjg7T1tZm7733Hvv7778ZY4zFx8czNzc3ZmhoyHR1dVm/fv3YlStXqj2HN735/jLG2K+//srat2/P1NTUmJWVFQsKCpJ4zsaNG5mNjQ0TCoXM2NiYeXp6itcdOHCAdezYUfwa9e/f/62vc3kZGRkMAIuOjq50fU5ODjM0NGQjR46sch8ikYgxxti9e/cYAHb16lWJ9aWlpczV1ZVZWVmxkpKSGsdWXmXX+EcffcS6dOkifgyALVmyhOnq6rK8vDzx8gEDBrAvv/ySAWBnz55ljDG2Zs0aZm1tXe0xK3uvdu/ezQCwW7duidcfPXqUde3alamqqrKzZ8+ygoKCaq+zsudFRkayTp06MaFQyHr27MmuX79e43OvSazSbCvPa1Caz6/9+/czNTU1VlxcXOU2ZZ+Z5W3atIm1bt2aqaqqMltbW7Zz507xOpFIxAIDA5mlpSVTU1NjZmZmzM/PT7y+7NyVlJSYmpqaxLm/qabvQ9n/ijTnUJ3nz58zAOzcuXNvPWb5/8/o6GjWo0cPpqamxkxNTdmiRYskXtvq3tvqPn9rqkmVzCxfvhyjRo3CtWvXMHjwYPj4+OC///4DALx69QoffPABunTpgsuXL+P48eN49uwZRo0aBYBXv/Tu3RvTp09Heno60tPTYWlpKfNz2LFjB4yMjBAfHw8/Pz/MnDkTXl5ecHZ2RkJCAgYOHIjx48cjLy+v0ufn5eUhKCgIu3btwp9//okHDx5g/vz5dRrjggULcO7cORw+fBgnT55EdHQ0EhISKt1WJBJh0KBBiI2NxS+//ILk5GSsWLECysrKAHiJiIeHBzw9PXHt2jWEh4fj/Pnz8PX1rXE8ubm5cHd3R7NmzXDp0iUcOHAAp06dEu+jpKQEI0aMgIuLC65du4a4uDjMmDFD/Gvnzp07cHBwgKmpKWJjY7Fp0yYEBwfj4MGD2LFjBxISEmBjYwN3d3fx9fT48WP069cPQqEQZ86cwZUrVzBlyhTxr+3s7GxMnDgR58+fx19//YW2bdti8ODByM7OrvXrfuXKFYwaNQqjR4/G9evXsWzZMnz55ZfiasPLly9j9uzZ+Oqrr5Camorjx4+jX79+AID09HSMGTMGU6ZMQUpKCqKjo/HRRx+Jq31qQltbG9ra2jh06BAKCwsrrD958iRevnyJhQsXVrmPt/3CVFJSwpw5c/DPP//gypUrNY6tOjdu3MCFCxegpqYmsbxbt26wtrbGwYMHAQAPHjzAn3/+ifHjx0tsZ2pqivT0dPz5559SHVdDQwMAxFVRALB48WKsWLECKSkpcHBwwMKFC6u9zsosWLAAq1atwqVLl9C8eXMMGzYMxcXFUsVTF+R9DUojMzMTurq6UpWyRkREYM6cOZg3bx5u3LiBTz75BJMnT8bZs2cBAAcPHhSX9N25cweHDh1Cp06dAEie+8iRI+Hs7Cw+94akrHTUwMCgxs95/PgxBg8ejB49eiApKQmbN29GSEgIvvnmGwDVv7dv+/ytMalSnwasJiUzS5YsEa/LyclhANixY8cYY4x9/fXXbODAgRLPf/jwIQPAUlNTGWNMonRBHlxcXNh7770nflxSUsK0tLTY+PHjxcvS09MZABYXF1dpyQwAcekAY/yXgomJifjxu5bMZGdnMzU1NbZ//37xspcvXzINDY1KS2ZOnDjBlJSUxK/xm6ZOncpmzJghsSwmJoYpKSmx/Pz8KuNAuVKNn3/+mTVr1kziF94ff/zBlJSU2NOnT9nLly+rLVHQ0dFhY8aMYVZWVowxfu2oqqqy3bt3i7cpKipi5ubmbOXKlYwxxgICAlirVq1YUVFRlTGWV1paynR0dCRKpCBlyczYsWPZgAEDJLZZsGABa9++PWOMsYMHDzJdXV2WlZVVYV9XrlxhAKT+NfSmX3/9lTVr1oypq6szZ2dnFhAQwJKSkhhjjK1YsYIBYP/99594+/j4eKalpSW+lZ1/VSUzjDGWkpLCALDw8PBaxThx4kSmrKzMtLS0mFAoZACYkpIS+/XXX8XblL32a9euZe+//z5jjLHly5ezkSNHikugykpmSkpK2KRJkxgAZmpqykaMGME2bNjAMjMzxft787168uQJc3Z2ZhYWFqywsFC8/tChQ+Ln1OQ6K3vevn37xNuU/b9V9vrUd8mMvK/Bmn5+vXjxgrVs2ZJ9/vnn1W73ZqmGs7Mzmz59usQ2Xl5ebPDgwYwxxlatWsVsbW0r/b8vf+51+T7UZclMaWkpGzJkCOvTp0+Njln2//n5558zOzs7cckqY/y7RVtbm5WWllb73r7t87emmlTJjIODg/i+lpYWdHV18fz5cwBAUlISzp49K/51qa2tjXbt2gHgpQMNRflzUFZWhqGhoTjzBwATExMAEJ/XmzQ1NdGmTRvxYzMzsyq3rY20tDQUFRWhZ8+e4mUGBgaws7OrdPvExES0aNECtra2la5PSkpCWFiYxPvi7u4OkUiEe/fu4bvvvpNY9+DBgwr7KGtnoaWlJV7Wp08fiEQipKamwsDAAJMmTYK7uzuGDRuGdevWIT09Xbytv78/wsPD8ezZM6xYsQLR0dEoLi5Gnz59xNuoqqrCyckJKSkp4vPq27cvVFVVKz2vZ8+eYfr06Wjbti309PSgq6uLnJycSuMHgEGDBonPsUOHDpVuk5KSIhFT2XneuXMHpaWlGDBgAKysrNC6dWuMHz8eu3fvFpfgOTo6on///ujUqRO8vLywdetWZGRkVHqc6nh6euLJkyc4cuQIPDw8EB0dja5du1bZqNzBwQGJiYlITExEbm5ujdqJsP/9Un+XdgLvv/8+EhMTcfHiRUycOBGTJ0+Gp6dnhe3GjRuHuLg43L17F2FhYZgyZUqFbZSVlREaGopHjx5h5cqVsLCwwHfffYcOHTpIXEcA0KJFC2hpacHc3By5ubk4ePCgRIlQ9+7dxffT0tLeep2V6d27t/h+2f/bm9u8K0W5Bt8mKysLQ4YMQfv27bFs2TLx8g4dOojPb9CgQVKdX9lr7eXlhfz8fLRu3RrTp09HRESE+Jouf+4xMTF49OhRlSXob1M+1rL3ovznYFXxv81nn32GGzduYN++feJln376qcS+K5OSkoLevXtL/E/26dMHOTk5ePToUbXv7ds+f2uq0SQzSkpKFYoj3yxmffOLRSAQQCQSAQBycnIwbNgw8Qdr2e3OnTsNqiiwsnMov6zsYio7r5o8/83XTZbKitqrkpOTg08++UTiPUlKSsKdO3fQpk0bfPrppxLrzM3NaxVHaGgo4uLi4OzsjPDwcNja2op7sixbtgyLFi2ChoYGzpw5U6Ou6287r4kTJyIxMRHr1q3DhQsXkJiYCENDQ4kqh/K2bdsmPsejR49KfX4AoKOjg4SEBOzduxdmZmZYunQpHB0d8erVKygrKyMqKgrHjh1D+/btsWHDBtjZ2eHevXtSH0ddXR0DBgzAl19+iQsXLmDSpEkIDAxE27ZtAUCip4RQKISNjQ1sbGxqvP+yL45WrVpJHVsZLS0t2NjYwNHREdu3b8fFixcREhJSYTtDQ0MMHToUU6dORUFBQbVfEhYWFhg/fjyCg4Nx8+ZNFBQUYMuWLRLbxMTE4Nq1a8jKykJiYqJE0l8WV0OlSNdgVbKzs+Hh4QEdHR1ERERIfB4ePXpUfH7btm2r1f4tLS2RmpqKTZs2QUNDA7NmzUK/fv1QXFwsce4aGhriH1m16a1UPtay96L852Bt4vf19UVkZCTOnj2LFi1aiJd/9dVXEvuujbe9t9V9/tZUo0lmmjdvLpHNZWVlSfVP0LVrV9y8eRPW1tbiD9eyW9kHTGW9E4ikNm3aQFVVFRcvXhQvy8jIwO3btyvd3sHBAY8ePapyfdeuXZGcnFzhPbGxsYGamhoMDAwkllVW/21vb4+kpCSJ1vmxsbFQUlKSKDHq0qULAgICcOHCBXTs2BF79uwRrzM2Noauri5OnjyJESNGQElJSaK7cXFxMS5duoT27duLzysmJqbKdguxsbGYPXs2Bg8ejA4dOkAoFOLff/+tdFuAf1GWnaOVlVWl29jb20vEVHYcW1tbcRskFRUVuLm5YeXKlbh27Rru37+PM2fOAOCJbZ8+fbB8+XJcvXoVampqiIiIqDKmmmrfvj1yc3MxcOBAGBgY4Icffqj1vkQiEdavX49WrVqhS5cu7xwbwH8Iff7551iyZAny8/MrrJ8yZQqio6MxYcIE8ev4Ns2aNYOZmVmFHiGtWrVCmzZtoKOj89Z9tGnTBmpqatVeZ2XKf/CX/b/Z29vXKNaaUuRrEODfCQMHDoSamhqOHDkCdXV1ifVWVlbi87OwsJDq/Mq/HxoaGhg2bBjWr1+P6OhoxMXF4fr16xLn3r17d3zwwQcS5y6N8rGWvRflPwerir8yjDH4+voiIiICZ86cqfAjwdjYWGLflbG3t0dcXJzED+PY2Fjo6OiIE6O3vbfVff7WRKPpX/rBBx8gLCwMw4YNg76+PpYuXVrjDx6AF69t3boVY8aMwcKFC2FgYIC///4b+/btw7Zt26CsrAxra2tcvHgR9+/fh7a2NgwMDKCk1GjywTqhra2NqVOnYsGCBTA0NISxsTG++OKLKl8nFxcX9OvXD56enli9ejVsbGxw69YtCAQCeHh4YNGiRejVqxd8fX0xbdo0aGlpITk5GVFRUQgODq5RTD4+PggMDMTEiROxbNkyvHjxAn5+fhg/fjxMTExw7949/Pzzz/jwww9hbm6O1NRU3LlzBxMmTEB+fj4WLFgAgDcUjo2NxdWrV9GlSxcsWLAABgYGaNmyJVauXIm8vDxxV09fX19s2LABo0ePRkBAAPT09PDXX3/ByckJdnZ2aNu2LXbt2oXu3bsjKysLCxYseGtpztvMmzcPPXr0wNdffw1vb2/ExcUhODgYmzZtAgBERkbi7t276NevH5o1a4ajR49CJBLBzs4OFy9exOnTpzFw4EAYGxvj4sWLePHihVRfiC9fvoSXlxemTJkCBwcH6Ojo4PLly1i5ciWGDx8ObW1tbNu2Dd7e3hgyZAhmz56Ntm3bIicnB8ePHweACv+zL1++xNOnT5GXl4cbN25g7dq1iI+Pxx9//CHV//fbeHl5YcGCBdi4cWOFBvEeHh548eIFdHV1K33uTz/9hMTERIwcORJt2rRBQUEBdu7ciZs3b2LDhg21jklLSwszZ86s9jor89VXX8HQ0BAmJib44osvYGRkVGUJYmZmZoVf2IaGhlBVVcXTp0/x999/AwCuX78OHR0dtGzZssaNQeV9DVZ1fs2aNYO3tzfy8vLwyy+/ICsrC1lZWQD4D+GaXksLFizAqFGj0KVLF7i5ueH333/Hb7/9hlOnTgHgY7qUlpaiZ8+e0NTUxC+//AINDQ1YWVlJnHtOTg5SU1NRWloKxpg43rp6H95UWlpa4TURCoWwt7fHZ599hj179uDw4cPQ0dHB06dPAfBhOmr6mTRr1iysXbsWfn5+8PX1RWpqKgIDA+Hv7w8lJaVq39vqPn+l8k4tbhqQzMxM5u3tzXR1dZmlpSULCwur0AD4zcaUenp6LDQ0VPz49u3bbOTIkUxfX59paGiwdu3asblz54obNaWmprJevXoxDQ0NuXXNfrMBcmUNn8vOtaqu2eVFRERINB6ri67Z2dnZbNy4cUxTU5OZmJiwlStXVts1++XLl2zy5MnM0NCQqaurs44dO7LIyEjx+vj4eDZgwACmra3NtLS0mIODA/v222+rjeHN97u6rtlPnz5lI0aMYGZmZuLupEuXLmWlpaWssLCQjR49munr6zMAzNzcnPn6+rKMjAzm5+fHjIyMquyanZSUxAYOHMg0NTWZjo4O69u3L0tLS2OMMZaQkMC6d+/O1NXVWdu2bdmBAwcqvC6VXbPlVdctVlVVlbVs2ZL9+OOP4nUxMTHMxcWFNWvWjGloaDAHBwdxI9Hk5GTm7u4u7gJsa2vLNmzYUO1r/KaCggK2ePFi1rVrV6anp8c0NTWZnZ0dW7JkiUT35kuXLrGPP/6YGRsbMxUVFWZoaMjc3d3Zvn37KnTNLrtpamoye3t7NmvWLHbnzh2p4npTVdf4999/z5o3by7uHFDVa/9mA+CEhAQ2btw41qpVKyYUCpmhoSHr168fO3LkiPg5b2vMWdX6/Pz8aq+zsuf9/vvvrEOHDkxNTY05OTmJG11Xdu7lX9ey29SpU1lgYGCl68p/RtYkbnleg1WdX5s2bSpd/rbPcWm7ZkdERLCePXsyXV1dpqWlxXr16sVOnTpV4dyVlZXr7H2oSQPgql4TxliVr0t177u0XbOre2+r+/yVhuB/J0MIIUTBREdH4/3330dGRgYNu0+aNKojIYQQQohCo2SGEEIIIQqNqpkIIYQQotCoZIYQQgghCo2SGUIIIYQoNEpmCCGEEKLQKJkhhBBCiEKjZIYQQgghCo2SGUIIIYQoNEpmCCGEEKLQKJkhhBBCiEL7f66PyGXmeStsAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "avg_loss_list = [item[0] for item in lst_rst]\n", + "avg_precision_list = [item[1] for item in lst_rst]\n", + "avg_recall_list = [item[2] for item in lst_rst]\n", + "avg_accuracy_list = [item[3] for item in lst_rst]\n", + "avg_f1_list = [item[4] for item in lst_rst]\n", + "avg_iou_list = [item[5] for item in lst_rst]\n", + "model_list = ['unet', 'mini', 'dice-loss', 'focal-loss', 'SGD', 'RMSProp', 'L1-loss', 'L2-loss', 'L1+L2-loss']\n", + "\n", + "plt.plot(model_list, avg_loss_list, '-', color='blue', label=f'Avg Loss')\n", + "plt.plot(model_list, avg_precision_list, '-', color='green', label=f'Avg Precision')\n", + "plt.plot(model_list, avg_recall_list, '-', color='red', label=f'Avg Recall')\n", + "plt.plot(model_list, avg_accuracy_list, '-', color='gold', label=f'Avg Accuracy')\n", + "plt.plot(model_list, avg_f1_list, '-', color='orange', label=f'Avg F1-Score')\n", + "plt.plot(model_list, avg_iou_list, '-', color='pink', label=f'mIoU')\n", + "plt.title('Performance Evaluation of Different Models')\n", + "plt.legend(bbox_to_anchor=(0.69, 0.4))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "unet PR AUC: 0.704, minDist: 0.497, (0.885424512257604, 0.51682025846915)\n", + "unet-mini PR AUC: 0.780, minDist: 0.375, (0.9224052152557138, 0.6334823172698756)\n", + "unet-dice-loss PR AUC: 0.692, minDist: 0.555, (0.931617865125619, 0.44876511258753)\n", + "unet-focal-loss PR AUC: 0.822, minDist: 0.277, (0.7487617009547043, 0.8840717896362793)\n", + "unet-sgd PR AUC: 0.731, minDist: 0.497, (0.9538732855195041, 0.5053105923119683)\n", + "unet-rmsprop PR AUC: 0.813, minDist: 0.283, (0.7531937969524044, 0.8625253033281114)\n", + "unet-l1 PR AUC: 0.754, minDist: 0.393, (0.8766366499467493, 0.626387811957221)\n", + "unet-l2 PR AUC: 0.760, minDist: 0.349, (0.7813983872652583, 0.7285129156027101)\n", + "unet-l1+l2 PR AUC: 0.789, minDist: 0.341, (0.9011364203573499, 0.6734219064478764)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3iUZfq2z2npjRpCCEnoNaEjCoKAAgooiCACEwTrqmtb/a1usXyr7q5l1YXFAkhCBwUBURClSxELCb2HHlpIb1Oe749nZt6Z9IQJoTznccwBedu8kzZX7ue+r0snhBAoFAqFQqFQ3IToa/sGFAqFQqFQKGoLJYQUCoVCoVDctCghpFAoFAqF4qZFCSGFQqFQKBQ3LUoIKRQKhUKhuGlRQkihUCgUCsVNixJCCoVCoVAoblqUEFIoFAqFQnHTooSQQqFQKBSKmxYlhBQKhUKhUNy0KCGkUCiqzaxZs9DpdK6Hn58frVq14umnn+bcuXOu49avX+9xnMFgoGHDhowaNYp9+/ZV6TmPHDnC448/TrNmzfDz8yMkJITbbruNjz76iPz8fG+/RIVCcYNjrO0bUCgU1z9vvvkmsbGxFBQUsHnzZqZNm8a3337L7t27CQgIcB33xz/+ke7du2OxWEhJSeGTTz5h/fr17N69m0aNGlX4PCtXruSBBx7A19cXs9lMhw4dKCoqYvPmzbz00kvs2bOHzz77rCZfqkKhuMFQQkihUFwxQ4YMoVu3bgA88sgj1KtXjw8++IBly5YxduxY13F9+vRh1KhRro9bt27Nk08+SVJSEi+//HK5z3Hs2DEefPBBoqOjWbt2LREREa59Tz31FIcPH2blypVeeT25ubkEBgZ65VoKheLaRi2NKRQKr9O/f39Aipfy6NOnDyCXuyri3//+Nzk5OcyYMcNDBDlp0aIFzz77LACpqanodDpmzZpV4jidTsfrr7/u+vj1119Hp9Oxd+9eHnroIerUqUPv3r1577330Ol0HD9+vMQ1XnnlFXx8fLh8+bJr2/bt2xk8eDChoaEEBATQt29ffvrppwpfl0KhqF2UEFIoFF7HKWzq1atX7nGpqakA1KlTp8JrrlixgmbNmnHrrbde8f2VxgMPPEBeXh5vv/02jz76KKNHj0an07Fo0aISxy5atIi77rrLdd9r167l9ttvJysri9dee423336bjIwM+vfvz88//1wj96tQKLyDWhpTKBRXTGZmJhcvXqSgoICffvqJN998E39/f4YOHepxXHZ2NhcvXnT1CD333HPodDruv//+cq+flZXF6dOnuffee2vsNcTHxzNv3jyPbbfccgsLFy7kpZdecm3bsWMHR48edVWVhBA88cQT3HHHHXz33XfodDoAHn/8cdq3b89f//pXvv/++xq7b4VCcWUoIaRQKK6YgQMHenwcHR3N3LlziYyM9Ng+adIkj48bNGjA7Nmz6d69e7nXz8rKAiA4ONgLd1s6TzzxRIltY8aM4bnnnuPIkSM0b94cgIULF+Lr6+sSZTt37uTQoUP89a9/5dKlSx7nDxgwgNmzZ2O329HrVQFeobgWUUJIoVBcMVOnTqVVq1YYjUbCw8Np3bp1qW/8f//73+nTpw85OTksXbqUBQsWVEoghISEALKiVFPExsaW2PbAAw/wwgsvsHDhQl599VWEECxevJghQ4a47unQoUMAJCQklHntzMzMSi3/KRSKq48SQgqF4orp0aOHa2qsPDp27OiqHt13333k5eXx6KOP0rt3b6Kioso8LyQkhMaNG7N79+5K3Y9zeao4NputzHP8/f1LbGvcuDF9+vRh0aJFvPrqq2zbto0TJ07wr3/9y3WM3W4H4N1336VTp06lXjsoKKhS961QKK4+qlarUChqjX/+858UFBTw1ltvVXjs0KFDOXLkCFu3bq3wWGf1JSMjw2N7aRNgFTFmzBiSk5M5cOAACxcuJCAggGHDhrn2O5fMQkJCGDhwYKkPk8lU5edVKBRXByWEFApFrdG8eXPuv/9+Zs2aRVpaWrnHvvzyywQGBvLII494uFY7OXLkCB999BEgRUn9+vXZuHGjxzH/+9//qnyP999/PwaDgfnz57N48WKGDh3q4THUtWtXmjdvznvvvUdOTk6J8y9cuFDl51QoFFcPtTSmUChqlZdeeolFixbx4Ycf8s9//rPM45o3b868efMYM2YMbdu29XCW3rJlC4sXL2bixImu4x955BH++c9/8sgjj9CtWzc2btzIwYMHq3x/DRs25I477uCDDz4gOzubMWPGeOzX6/VMnz6dIUOG0L59ex5++GEiIyM5ffo069atIyQkhBUrVlT5eRUKxdVBVYQUCkWt0q1bN/r168e0adPIzMws99jhw4eTkpLCqFGjWLZsGU899RR//vOfSU1N5f333+fjjz92Hfv3v/+dyZMn8+WXX/Lyyy9js9n47rvvqnWPY8aMITs7m+DgYO6+++4S+/v168fWrVvp1q0bU6ZM4ZlnnmHWrFk0atSI559/vlrPqVAorg46IYSo7ZtQKBQKhUKhqA1URUihUCgUCsVNixJCCoVCoVAoblqUEFIoFAqFQnHTooSQQqFQKBSKmxYlhBQKhUKhUNy0KCGkUCgUCoXipuWmM1S02+2cOXOG4ODgMvOIFAqFQqFQXFsIIcjOzqZx48aVCmuuLDedEDpz5ky54Y4KhUKhUCiuXU6ePEmTJk28dr2bTggFBwcD8hMZEhJSy3ejUCgUCoWiMmRlZREVFeV6H/cWN50Qci6HhYSEKCGkUCgUCsV1hrfbWlSztEKhUCgUipsWJYQUCoVCoVDctCghpFAoFAqF4qZFCSGFQqFQKBQ3LUoIKRQKhUKhuGlRQkihUCgUCsVNixJCCoVCoVAoblqUEFIoFAqFQnHTooSQQqFQKBSKmxYlhBQKhUKhUNy01KoQ2rhxI8OGDaNx48bodDq+/vrrCs9Zv349Xbp0wdfXlxYtWjBr1qwav0+FQqFQKBQ3JrUqhHJzc4mPj2fq1KmVOv7YsWPcc8893HHHHezcuZPnnnuORx55hNWrV9fwnSoUCoVCobgRqdXQ1SFDhjBkyJBKH//JJ58QGxvL+++/D0Dbtm3ZvHkz//nPfxg0aFBN3aZCoVAoFIoblOuqR2jr1q0MHDjQY9ugQYPYunVrla918dAmKMgAIbx0dwqFQqFQKGqKc+dyauS6tVoRqippaWmEh4d7bAsPDycrK4v8/Hz8/f1LnFNYWEhhYaHr46ysLAB0SzuwZZvgYsgBQhpvIi58A3UNIWCMAZ9Y8GsO/s3ALxBMRtDpavS1KRQKhUKhKB27XTB8+PwaufZ1JYSqwzvvvMMbb7xRYrteQNt0ID0cUkdRpB/F+gZ20hscITRqCXFBz9Ig/RzYG4ItEkQT0DcFQzSYYsG3Ofg1AT9f8PUBH5MSSwqFQqFQ1AB6vY7XX+/Hgw96/9rXlRBq1KgR586d89h27tw5QkJCSq0GAbzyyiu88MILro+zsrKIioril/BPyC64m4amtjSzGQnPF8Sf08O5lrD7/8gz/h+rI6xcbryX0Ibf0tl/Do3EMnkRG5AH5PqCLQJsjeVDFwV6h1AyNQO/+lIk+fqAr0mKJf11tRqpUCgUCkWt8NtvZzl/PpfBg1sAMGRIyxp5nutKCPXq1Ytvv/3WY9uaNWvo1atXmef4+vri6+tbYvudE18hJCSEzFOLWfnDvzi7czgRPqOJrBdJE52NuoWCHieNcDIOiCPL98+siLSR0fgYYfVX08X3MyLtJ8GYKh/FsQHZwZDRWBNKtkjQNXUsv8WAb7CbSHITTEosKRQKheImxW4XvPfeFv7617UEBfmQkvIkTZqE1Njz1aoQysnJ4fDhw66Pjx07xs6dO6lbty5NmzbllVde4fTp0yQlJQHwxBNPMGXKFF5++WUmTZrE2rVrWbRoEStXrqz2PYQ2eYCHJj4A4gLHUv7IgmMrOfbd7fQ8M4lmTfvh28SHJjorIYWC3kcNcLQF0IJL/k+zOBqyogqoE3mUrj4biC74DSzHwHYcxEXQZ4P+AJgOlP7khfUhz00kOf/VR4EpCnz9pTByryo5/6/EkkKhUChuME6ezCQh4WvWrUsFoF+/GPz9a1aq6ISovbGp9evXc8cdd5TYnpCQwKxZs5g4cSKpqamsX7/e45znn3+evXv30qRJE/72t78xceLESj9nVlYWoaGhZGZmEhJSmsK0IbIXsHX/X5h99gT713Shf8q9DLKMwtg+FluMhUidFX+b51lng3T8FmMgK9aHejFGuocUEGs5hq7omBRHlqNQeBSKjjqEUgXd78IAtkZuAqmx5/+NDRy9SaWIJOfHBkOlPy8KhUKhUNQmixfv4fHHv+Hy5QICAkx8/PFgJk3qjM7Rf1vx+3f1qFUhVBtU7RN5kIKzf2dF2lck7beye0cUQw4M5d6D99LFpw9nbtUhoq1E6Kz42D3PTA3T81u0kexYI/ViTPQM1tMS0IEc2bddcggkt0fRUcf/jwOW8m/N7i8Fkb3Y0ptTLIkAMBo8RZKPD/g5GrudgsmoxJJCoVAoag+7XfDII8v54oudAHTv3pi5c0fSsmU9j+OUEPIS1ftE5oBlFucvvMP8E2dITIZDx4O488idDD8wnKFH78GnSRgnb7MimloI19kwFvusHqyn59dYE9kxRhpEG+kVoKcNDmFUHGED65lSBJLjYT0DVPBls4e5CaRiIsnWCDDJ4wyGspff3CtLaiJOoVAoFDXEU0+t5JNPfuWVV3rz2mt9MZlK/pGuhJCXuLJPpAA2Qc6/2JX9LbN3w5wUOJel55ZTtzDswDBGHbqX5hltyGlp5XQvC0RZaaCzlXCu3BVu4NcYI9kxRhpGm7jNV0d7KulwaS8E6/GSAslyDIqOgT29gpehd9gCRHj2JjlFk72+553o9WWLJPfKkhJLCoVCoagEVqudrKxC6taVE995eRaSk9Po1SuqzHOUEPIS3vtEngb7J9gKpvDj2QwSk2HpPsi3QrP0Zgw/MAzzkQeJP9odfHTkt7RypqcVXdNC6hW7klUHOxsb+CXaRE6skYgoI71NOuKopvW3LbOkOHL/WOSXf77wAdEYrI3BGlGsT6kxiBBK1LL0Ok+R5FNKlUkZUyoUCsVNz7Fjlxk/fikmk54ffzRjMFTunU4JIS/h/U9kEbAELB+SZd/OV3shKQXWp8q9Yflh3Ht4KI+feYRuu3pgyvHHHmgnv6WVtJ6F6KMKCLN7dsQX6WFHEyM7YozkxhqJjDTSx6CjE14Y8xMCbOdKEUjO6tJJ5Ox/eQRLg0lbJFgagSXCraoUAfiVfppOV0plya1/yem1pMSSQqFQ3HAIIZgzJ4WnnvqW7OwiQkJ8+emnSXTo0LBS5ysh5CVq6hMpSQYxBeyzSc0uZE4KJP0OhzLkXqPNyIgz9/DHyy/Q45eu+JwIBMAeaqeguYXzfS5haGggyObjcdU8I2xvamR7jIncGCPREQZu1+vogqvTx3sIqxRDxQWSUzTZzlV8DRoCTcDuEEZFjaEw3LHs1pBy5ZxO51ZNKqN3SYklhUKhuK7IyCjgySdXsmDBbgBuuy2KOXNGEhMTVulrKCHkJWpWCDm5DMwC+xSE7ijbT0NSMiz4HS47iy0CRlmG8VzG/9Hj166YfvYFoUMgsNe1U9jxAhdvzcAYHIq/1bPCkuULPzU1sT3WSF60kdhwA311OroDPtQw9jywpJbexG05BvasCi5gBH0kEOWoKjWWFaXCcChsCPa6lNFC7klxE8rivUvKxVuhUCiuCTZsSGXChKWcPJmFwSCjMv78594YjVX7Ha2EkJe4OkLIiR34HpgC4lsKbYJvDkLSVvj2pOwNAjBiYGzDMfwx43k67+iMYY0OcuQ3iEBgj8yl6NZ9XOqow2iMxLeYMLrkr2NzjJFtjopRq3p6+up09KDMRaqaQQiwXy5dIFmOSQElisq/hi4ADE1BFw04lt+sEVAUDgXhUOQrn6cy+JjKEEnKxVuhUCiuBna7oHPnT0lJOUfz5nWYO3ckPXs2qda1lBDyEldXCLlzFJgGYgboLnMhV1aIEjfCr26WQXVMIYxvZ+YPOU/RektrdN8IOKm9WQudwNZtJ5bux7kcXRejtTWmYktpZ4J1bI42sTXWSG6MkXZhBvoCtwABV+W1loGwe9oCuJbcHMLJepoKbQEM9cAQIwNwdVFy+c3Z1F3YAAqBQkvlxZLJWIZ1gFvvUiUb+RQKhUJRkuTkNKZO3cEHHwwiKKj66xZKCHmJ2hNCTvKABcBU4DcA9pyH2d/BnENw2q3pp1VYc8ydHuZh/cM0Xt8YlgO/eF5NNEzF1mcrlrYZZNZphTE/DkOx5uvUMD2bYoxscVSM4oL19ANuBQJr7HVWA3shWE8Ua+R2qy7ZLlVwAR0YI2XorSFaCiXRVC6/WSOgqA4U2qCoCAqLwF7Jb32jsXJeSwqFQnGTI4Rg+vTfyMkp4vnny84BrQ5KCHmJ2hdCTgSwHblstgh0Fmx2WPs7JK2EJUWQ5yaK7oi5A3O8mVGhowj6IUiKoh8EFLj10/hlITp/j7X7XixN9WTr+2HMbYteeFY0DtbTszHWxJYYI7nRRroE6OkL3AbU5mekQmxZWn9S8SZuyzEQeeWfr/MBYzT4xMrgW0MsrqZuawQUBUGRRYqkQse/dnv513RSmot3aV5LCoVCcYNy8WIejz66gq+/3o/RqGfnzsdp375yE2GVQQkhL3HtCCF3zgHTgU+AUwBk58GS+ZC0C9aFgXDoHX+DHyPb3Y853syA8AEY1hpgBfANkOZ2SZ0NWv2E6LYaa8fTWPybkWsbiiEnBp1bM7Id2B1uYFOskZ+ijeRFm+juq6Mf0BsIq+mX7i2EANsFTSQV906ynACs5V9DHyyrSaZmjn9jZGXJ7nDlthg9RZLzYaukWCrLxdtpHeDno1y8FQrFdcn33x9h4sSvOXs2B5NJzzvvDOD553uh13vv95kSQl7i2hRCTqzIUs8UYJ1r64lfdcxZIEgsgoN1taMbBzVmfNx4zPFm2tdvL5fNVjgukVLs0o0OQpfl2Luswxqpx2q5gzzLEAy5jTzvwGHuuDHGxOYYIwVRRm4x6egL9IESZpDXDcIKllOlN3EXHQVbWsXXMIRLgeQT6xBKjoc+GmzhUGTXRJJz+c35sbUibyYHpbp4F1uKUy7eCoXiGqGgwMorr/zAhx9uB6Bt2/rMm3c/nTo1quDMqqOEkJe4toWQO3uA/wFJgEyqF7l6dnxuJ/EXWBAJ6W6dz10iumCOMzO241gaBjaE48gq0XKkpnLPcA26DPErofMK7B1+xUo8FtswCgr6os8N87iLQgP8EmlkU4yRjbFGCiON3GaQwuh2pGPQDYE9323ZrZSMN3tmBRcwgCnKUyCZYsHHUV2iPhRZPStJHpUlC1grqFg5cbp4+5TRr6RcvBUKxVXAZrPTq9cMduw4A8BTT3Xn3/++k4AArzvcAUoIeY3rRwg5yUKKoanAftfWwo0+fDuziKRCWNkSLI72E6PeyJAWQzDHmxnaaih+Rj95ie+R1aKVgHvPscEKbTZAl2XQZQX2OhYshQOwipEU5nRDl+c5Z5Zrgu1RRlfFyBJhoLdeCqO+gPf/BrhGsF0uOeXmYQtQWP75On+51FZcIDkfhlC5xFa8klT8/5ZKiiWdrmyRpFy8FQqFl/joo2289dYmZs68l6FDW9Xocykh5CWuPyHkRABrkYJoGbK7B7joz8WPCliwRZDUHHZEameE+YXxYPsHMcebuaXJLeh0OpmesRVZKVqBu7aSNN0PnZZAl+WIZj9jt8Vitd+HxTacooy26Ao8lb7T3HFTrJGNMUZsDQ3crtOEUfXcIq4zhB2saSWn3Jx9StZTuL5eZaGvU7pAMsWCKRr0Dkcou71kj1JRMdFUZCn/uZy4XLzLCdNVYkmhULiRlpbDxYt5rlgMu12Qnp5P/fo1b86ihJCXuH6FkDsngE+Bz4ELcpPVAN8Fsu+jLGYDs+PgVKh2Rou6LTDHmZkQP4GYsBhtxyGkIFoBbMIzZizsMsQvgy5fQ4c1CN887NaOWAwJWAv6U3SpKboiz4m0iwE6Nkcb2RRjYlOMEeEwd3QKo2jvfiKuD0SRbNYuNQT3KNguVnwNpy2Ax7Kb419jJOjcJtLs9pLTb+7/L3L8v7KUFqDrUWFSxpQKxc3AihUHmDRpOWFhfvz+++NX5AlUHZQQ8hI3hhByUggsRjZXb9c2p9bD9s8s1q+3kNQWvmoHuW7fr32j+8pR/HajCPF1+xykA6uQ1aJVgHtbjI8FOm6GuIXQ+Ruodxoh9Nh0A7DqJ2DJuwXr+fqevUhIc0enKNoYY8TgMHfsC/QDYqlUoMaNjT2nlCk3N3sAkVvBBUyyalSikdtRXTLUK1nVEaJkJamEYKqCMWXxypJPKVUmJZYUiuuSvDwLf/rT90ybJo3s4uLCWbbswSrlhHkDJYS8xI0lhNz5BblsNh8pkICCQPgylJw3zrA0ABI7wdpYbRTfz+jHiDYjSIhPYGCzgRj0blUFC7JCtNzxOFbs6VoedoiiryDmd9CBwA+b33gs9vuxZsVhTfMvEWTvNHd09hiZgvUuYdQXaIkSRh4IIStGZTVxW45TsS1AULFqUjNP0aQvw1bTJZYsZfQuFXnHxdvHYR2gXLwVimuO3347y7hxS9i/X1auX3yxF2+91R9f33LCs2sIJYS8xI0rhJxcBGYC04BUuUnoYG8svHmRk6uzmNsREuNhfwPtrIigCMZ1HIc53kzH8I6elxTAXrTR/G14JmE0zICuq6BDErRbCz5SiAlTE6z+j2K1DMGS3hzbWV2JBI0D9fUuUbQ52ohfgJ7b0YRRW5QwKhdhk9EkZYXgWs9UfA1DA00gFbcGMDUFXTkTIELIBu6yRJJy8VYorkvsdsF7723hr39di8ViJyIiiKSkEQwc2KzW7kkJIS9x4wshJzbgW2SVaLW2OacRzAtDvLKfX/wgKR7mx+m45K99G3Rq1ImE+ATGdhhLeFB4yUufR06frUBOo7mv3PhboOtv0CER4r6C0POOHTpEaB+sPglY8m/Heq4BtjTPBmJ3c8eNMSa2NTXi76vzEEbtAVUzqAL2gpK2AO59SvbLFVxAD8YmZTRxx4KxEegq+IoIIX2USl2GuwIX79KW35SLt0LhFYQQ3H33PFatOsyIEW34/PNh1KtXq2mVSgh5i5tHCLlzEFkh+gJX44/dH3a2h7+eoej7M3zXQi6dfdNah0UvvyUMOgODWwzGHG9meOvhchS/OAVInyJntei02z6dgA4n5Wh+20+hyR6tvGMKw17/Xqy6MVizu2E55YP9oucboVUHvzc2uHqMfo4yEmDS0QdNGMUB6i3vCrBllN3EbUkFUVD++To/T1uA4vYAhrDK3YcQYLNJUVRQiiGl8/+2ShpTGvSliyR37yVlTKlQlMBqtWM0yj9u0tJyWLXqMAkJ8XLquJZRQshL3JxCyEkuMBfZXL1L25zRAZJC4C+/cMlWxMIOkNRJx/ZI7Vsj1DeUMe3HYI43c2vUraX/UAhgJ9po/q/F9jfJhls2Q9vPoMVKMLp1VofFYa9zP1b7MCzpLbAet2O/7CmMCg2wo4nR1WP0W6SBQIOnMOoEXP2V6xsUYQfbuVIEkkM0WU9SsS1AWLEpN/fKUoxmC1BZSqssXZGLdzlVJV+TXKq7Bt4AFIqaJju7kD/+cRU6HcyceW9t306pKCHkJW5uIeREAJuRy2Zf4Wq2tYfDL13grydgzR4O1IPZ8TC7i4ETQdqbS/M6zZkQN4EJ8RNoVqec9eLTSHfrFcAPuHq4AQi2Qq/90GkRNJ8KQenaPmMQhPfHFno/1sIBWNPCsByzILI9v1XzTLDNYe64KdZIciMDgXodvdGEUVegZjxOFQgLWE6WHYJrO1/xNYwRxfLd3ESTsYmnLUBlcVaWSlt+KyqCAm+4eLv9X7l4K65ztm07xbhxSzh69DJ6vY6UlCe8GpbqLZQQ8hJKCBXnDNKP6BO01FYjXL4DZgXCG2uxZ2WxIVr2E30ZZyDHoImiPk37YI4380C7Bwj1Cy3l+g5ykWJoOVIcub9HGgR0vQA9foTWH0PdbZ7nhrRGNBqMPfBerDndsJzQYU21IvI8v3WzfKWH0WbHqP6+hgYCdDpuQxNG3YGr63xxE2PPlctrpTVxW46BPbuCCxhls3bxKTeXG3eD6guQmnTxLs13SRlTKq5BrFY7b7+9iTff3IDNJmjaNJQ5c0bQp8+16fimhJCXUEKoLIqApcgq0SZts70D7OgOrx+CVZvJNcHStpDUzcQPURaPUfx7W99LQnwCdza/E6O+nAUqO7ADbQltV7H9LQqg907oOAcafg76Im2fwQ8a9pPCyPceLBeaYE21Yj1uRRR6fiunB+jYGG1kY6zsMTpSV4+/TkcvNGHUE6ji4ozCGwgBtktlh+BajlPClKo4usBSptzcpt/0QVd2j+4u3kXFBZM3XLyLLcspsaS4ihw7dpnx45eyZctJAMaO7cD//ncPYWHX7m9EJYS8hBJClSEFKYjmAHmObaGQMQJm+sL7K+DMGU4Hw9w4SLzFn73B+a6zwwPDXaP48Y3iK366VDR36/V4vv/VtUPfU9DtO4j5kBKZIIGx0HgwInwwNvphPeWDJdWC9YS1xPvouWAd693MHU+FGfAFbkETRrcAtTsXoQActgBnijVyu1WWrGco4cVQHEP90hu4XbYAXqgNuly8y1mKUy7eimsMm81O27ZTOXQonZAQX/73v7sZNy6utm+rQpQQ8hJKCFWFDGAWUhQd1jbb74Rfb4F/7YJl3yCsVn6LgKSuRuZ1NnDRoDUDxYfHY44381DHh2gUVIlI1izktP9y5PS/W+sQJgG9c6HXz9B+JugXg92tWqQ3QYPeEDEYET4EW24bLKlWWTE6ZS1h7niijp71MUY2RUsfo3PBekxADzRhdCtwhXUFRU1gLwTrcbeepGIZb/b0Ci6g12JLSrMGMEZUbAtQWWrKxdvHx2FEqVy8FVXn228P8c47m5k9e8RVd4iuLkoIeQklhKqDHViDnDZbifaXeDRkT4BZBpi6AA4cwKKHVS0gsXcQK5rmU+RQH3qdnkHNB2GON3Nv63vxN/lX/LRWYAvaaP7BYvs72OGOo9B5KdT5FPKOeO73bwwRg2XFqN5ArOeDsKZasaRasJ22lSgoHKmvZ62jYvRTtJHLAXqMQDc0YXQboL5rrgNsmQ7/pFKauC3HQOSXf77OtwxbAMfSm6GOd+/XaUxZnnVAYZF3XLyVMeVNycaNx8nMLGDYsNaubUKIa2IsvrIoIeQllBC6Uo4hPYlmoJVrfEGMhZTe8NFPsHAh5OWR7g+LOupJ6hvG1kDtL/QQ3xBGtxuNOd5M76a9K/+DeBBNFG3Gc3I7HBiUCT03Q+wMyFoFNrc3O50e6t0CjYfIilFgZ6wn7XIZLdWKLc2zXGQHDjQysDZGM3fM9tWhB7qgCaM+QFglP3OKawQh5ESb5WgpGW/HZEBu8fJhcfShpQfgmpo5bAEqIfSrc9+luXgXFVuWq7SLt6F86wBfHyWWbgCKimy8/vp6/vnPzYSG+pGS8gRRUeUMtlzDKCHkJZQQ8hb5wAJkleg3t+09IH8yLLDBZ0mwTU6AHaoLSb2DmN3ZwHGdluYaGxaLOd7MhLgJNK/bvPJPfwn4DimMViGX1Jz4Af1t0O8AxC0G6yLI3Ot5vm99iBgkK0YRg7CLeliPy2U0yzFLCXNHmw72NDawxjGq/3MTIwUmHTqkd5G7MKpX+VehuBYRVjdbgOJN3Mekt1JFGBqVHoBrigVTE9DVkNvVVXHxLrYUp1y8r1kOHLjIuHFL+PXXswBMmtSJDz8cTHCwby3fWfVQQshLKCHkbQQy+X4qsAg5fQZQH3gUDvaHT76F2bPh4kXsOtjUFJIGN2Jx4wyy3ZyLb4u6DXO8mdHtRxPmF1b5WygCNqJVi1KL7e8KDM6A7j9C2Fw49wNY3Ue3dVC3q2sZjXo9sefpXcto1lRrCXNHqwFSmhhZ7WbuaDHIylZHNGF0O3DtuXEorgh7nmdsSXF7AHtWBRcwgimq9ABcUywYGtbs9Ji7i3dpIumKXLwdvUulRZ54+zUJAZnZsiLmY4LQYDV150AIwfTpv/Hcc6vJy7NQp44fn38+jPvvb1fbt3ZFKCHkJZQQqknOA9ORS2enHNv0wHCwPAbLcmDGTFi9GoQgzwRfd/YnaUB91viexu5Y6/I1+HJvm3sxx5m5q/ldmAxVsEQUwB600fztePYCNQGG2qDvXohdDOkr4PJOz2uYwiDiTle1iIBIbBk2WTE6JsVRcXPHIhP81tTId44A2eRGBux6+Uu5LdAPTRxVomVccb0ihMxvKysE15IKoqj8a+gCHP1JpYXgxoLhKv3ecq8sFZURfVJtF+9SGryr4uJ94TIcPuFpX+BjghZNoYGX+7euM2w2Ow88sJilS+WEbf/+sSQm3keTJtf/+50SQl5CCaGrgRWpQqYAa922twH+AKcGwBdfwcyZkJoKwJlgmDeoMYnxgt22s64zGgY25KEOD5HQKYH48Grk3ZzDMyA2z21fIHAXslrUeRUULYOz30NRsYmjsI6OatEQqH8bQm/Cnm73qBgVN3fM99Xxa7SRlY6K0f6GeoTj3luhiaK+SG2muEkQdk9bgOKN3NZTVGwLUK/0AFyfZmBsCvqruOxRkYt3oaWKxpRliCR3F++LGbD3SNnXadf8phdDzz77HdOm/cLbbw/ghRd6odffGJUyJYS8hBJCV5u9wP+ARCDHsS0ImAD2J2HtOZgxA5YsgaIiGVfW1ETSfc2YG36OC5YM15U6NuzoGsVvHNy46reSjwyIdVaLzrjt0wG9gKF26LMbgpdA2iq49DMeb0zGQAgfIJfQIgZDUCxCCOzntcbr0swdcwN07Ig2siLWxEaHuaPzr9/meAqja9PTVXFVsBeC9UQZIbjHpAllueg0W4DS/JOMjb1nC1BZvO3iXdFblq8JesbdVMtkBQVWsrIKadgwEID8fAuHDqUTFxdey3fmXZQQ8hJKCNUW2cBsZJVon9v2O4CnIL0PzF0oRVFyMgAWPay+LZykgfVZpjtEkcMzSK/Tc2ezO0mIT+DeNvcSYKqGBaJA9ng7jRx/K7a/GTAMGJwJzVfBxe/g7CooKNYoG9zKNYlGw75g9EfYBbY0m1YxKsXcMStYx/YYE8tijWyMluaOTqLxFEbNkDpNocCWXWyprdjkm8gr/3ydDxiji025uU2+6evWjoAo18XbzWupssS3grCb4/f7nj3neeihJYSF+bF2rRmD4cb1kFJCyEsoIVTbCGRZZirwNdoMfBPgcRCPwG+nYfp0mDcPsmTj6eUAHYtHtSOpg42f8jR36WCfYB5o9wDmeDN9ovugr+5fu6eQGWjLkat57gGxocAQZLWo127IXylF0YWfpAOyE4OfFEPOZbTgVqDTIWwC22mbVjEqxdzxch0922KMLI2RFaPzQdrriMSzx6glShgpSkEIsF0ou4nbcgJXwHJZ6INLF0jO/+tr0XfdboezF+DwyYqPbRsLDW/s+U0hBFOm/MxLL62hsNBGgwYBbN48iVatbtzXrYSQl1BC6FriJPApMvTVmcJqAh4Anoa8OPhqiawSbdjgOutwi7rMfqAVSXVOkpp32rU9JiyGCXETmBA3gZb1Wlb/tnKQ/pErkOLogts+A3JGfhgwOBuC18CZVVIY5RX7BR0Yo02ihfcHUzAAwiKwntIar21nSpo7XqyvZ2usiSXRRjbEGMnw14RRIzwrRm1RwkhRCYQVrKfLDsG1nq34Gobw0gNwTc3kJFxN2QI4yciC5OLOqqVwg1eE0tJyePjhZaxaJR3/hwxpwRdf3Et4+I3tg6+EkJdQQuhapBD4Erls5p483xl4ChgLh8/I5upZs+Cs/IVt18FPg9uTeEcdFlmTyS7SRuJ7NemFOd7MmPZjqON/BY2TNuBntNH8PcX2twGGA0MFtN8H51bB2e/g/MaS8R/1b9OW0cI6upYgRKHAesJaprmjAM43MrA1xsjiGBObmhrJ8dWkTwPkmH4/pDBqj5zVUyiqhD3f0xbAo0/pKNgzK7iAwc0WoFgArilWiqgrXXYTArallLJMZgff9WAPBX136Nn5hu0RWrHiAJMmLefixTz8/Iy8++6dPPVU9+vKIbq6KCHkJZQQutb5FblsNh9wegzVASYDT4K1KXz3nawSffONy+skPzSAZRN6kNS6gNXpP2MXcsnNx+DD8NbDMceZGdxicNVG8UvjKFpf0QY8VxrqAfcgq0UDciFvvawUnVkFOYc9r+PfWI7mNx4CjQaCjybW7Hl2zdwxtaS5o9BBWmMDW2JMLIw1stlh7uikLlIYOStGcchClkJxRdgul93EbUkFUVj++Tp/z9iS4hlvhkq6HV+4rE2N+awFexOwtoKgKRCYCPrGEPFfCB55Ja/2msRqtdOly6fs2nWeuLhw5s0bSfv2N49TmRJCXkIJoeuFS8AXyImzY45tOuBuZJVoEKSdh6QkKYoOauXys51bMO+BNiQGHWFXutaY3SCgAQ91fAhzvJnOjTpf+V9QmUhX6xXIgNjLbvt8kCWa4UhhVOewtoR2bh3Y3JpanfEfzmW0ul09Jnvs2VIYlWXuaDfA2SZGNscYmR9rYmtjzdwRZARIb7SKUSeghhcwFDcbwg7WtJICySmarKfwzMQpBX2dskNwTdGg99OOvXAZjn8BgS9C/j2Q/Troz0L9EaBzPE/klzekGNq16xyzZ6fw//7fHfj63lw/yUoIeQklhK43bEi1McXxr5PmwB+Ah0GEwU8/SUG0aBHkOUSG0Ujy6NtJ6hPK3JwtnMvVJr7aN2iPOd7MuI7jiAyJvPLbtAI/oY3mHyq2Px4piIYBnQvg0mZNGGUWW2/ziP+4C/w8/+KzZciJNGfFqLi5o90Ep5sa2RxjYm6MkW1u5o4AwUhh5KwYdUV2ZikUNYYocsSWlBGCa7tQ8TU8bAGi4fJUaV4pTHBhBYh6EPon8NuAtBFoAs2Pge76rYfa7YL339+C3S74v//rXdu3U+soIeQllBC6njmEdK3+AshwbPMHxiGrRJ3klNmCBVIU/fyz60xrk8Z8P7EPSc1z+PrUDxTaZBlfh46BzQaSEJ/AfW3uI9An0Du3egBNFP2E5x/DjYChyGrRAECcgLOrpShK+wEsxSIanPEfEYOh/i2g1/4KFEJo5o7HLNLDqJi5o81Xx6loI5tijMyJMbHDzdwRpK/krUhR1A/ojixoKRRXDXtOGQG4juk3kVv++UIP+SOgsD/UeUrbHrUOAvvV6K3XFKdOZZGQ8DVr1x7DYNCxe/cfaNOmfm3fVq2ihJCXUELoRiAXmIfsJUp2234b8DQwEvCB3bulIJo9Gy5pRnQZA3vz5cg2JPrsZfOpLa7tQT5BjGo3CnOcmb4xfas/il+ci8iA2OXAaqSlkhM/YCCOhmsg3AIXt2rVosu/e17LFAqN7nQYOg6CAE9f6uLmjpbjFk8rAMAWoOOEw/E6KcbI727mjiClZS+0ilFPx20qFLWCEGC76CmOctdA3tqSx15cBGEvgzFVftx4HoSMvaq36w0WL97D449/w+XLBQQEmPjoo8FMnuyF5fzrHCWEvIQSQjcSAllumYqcOnN2LocDjwGPA5FQWAjLlklRtGaN5kwbFsaRCUOZc2sgSefXcPTyUdeVm4Y2dY3it67f2nu3XIRssnZWi44X298duXw2HNnlXJAmYz/OrpJVo+LxH6EdtEm0BreBwTNewWXueEyKotLMHa3BOk7EmNgQayQxxkRKqKcA9EWKoX5IYXQLUItuMgoF5K6Hk3eU3J43CqyxEPKu/Pg6qwhlZxfy7LOr+OKLnQB069aYuXNH3tDeQFVBCSEvoYTQjcpZ4DOkL5HTD8UAjEBWiW4HdHD8uBzB/+IL+X8HonMnfjLfQVKTSyw6vIzMQm1UuGdkTxLiExjTYQx1/et675YFsAttNP/nYvuj0Jqt+wEmG6T/ok2iXSqWKGsMlH5FTmEUFFvyKSth7mito+d4jJH1MSYSY4zsDvIURiagB1rF6FZkaIpCcdUQNjgSI32R3H8G7P5waTHUe1BOYl5HPUJWq53OnT9l9+7z6HTw6qt9eO21vphM18f9Xw2UEPISSgjd6FiQjtVTgI1u2zsg+4jGA0HSpfbHH2WVaOlSaesP4OdH/v3DWTGsNYnWX1h95HtsDvdok97EsNbDMMeZGdJyCD4GL3fSnEULiF2DzEZzEgQMQoqiu5HmQYWX4OwaR7WojPgP5yRaw75gLFnHqYy5o7W+nmOxJtbFGEmMNrLP31MYGZEN184eo9sA9ZOlqHGyl8DpUY4PhPy+1QFZL4DxJLR88LqbGvvvf7fz3ntbmTNnBH36RNf27VxzKCHkJZQQupnYhVw2m40WOx8CTEROnDmWvC5dgjlzpCjatUs7vVkz0h5+gPnd/Eg6voydaTtdu+oH1Gdsh7GY4810jejq/bX7fOBHNM8id9NfPbKJx1ktagNgh4wUrbfowk/SSdiJe/xHxGAIaV2q4ZyHueMxK7ZzthLHWBsZOBZjZG2MiaSmRvb5el5HD3RBqxj1QY7wKxReJ3sJnHvWMZ7vwBoFOfOh563XvKnisWOXycwspFOnRoDs8cvOLiIkxLeCM29OlBDyEkoI3YxkAIlIUeQ+134nctnsHsAge4d++UUKovnzXTln6PUweDApDw0gqe5J5u5dQFpOmusqbeu3xRxvZnzceJqEeDYvewU7WkDscmBnsf3N0URRb+TaVVEmnFvrWEb7rpT4j2hNFDUa4Ir/KPHUFZg7ogNrpIGjMSZ+jDEyp4mRfSZd8UOIRxNGtyO9JxUKryBskLdJNlGfe0ZOmF3+CNpMhDrX5u94IQRz5+7iD39YSYMGgezc+TjBwUr8VIQSQl5CCaGbGTvwA3LZ7Bu0NaBo4AngEcAxnpqXB19+KcNfN23SLtGgAVbzeH64uw1Jl9ezdP9SCqzSAVuHjgHNBmCOMzOi7QiCfGqoc+aE4/ZXIANi3ZI8CEMGxA5z/BuGFHhZ+7Rq0fkNnvEfOiM06O2YRBsMYXFl/iVtz7a7ptFKM3fEALYmRo7EGPkh1sS8xgb2GkpeqyOewujm8cZV1CjnnofLH0LhbWCYBR1a1PYdlSAjo4Ann1zJggW7AbjttigWLXqAxo1L/2NEoaGEkJdQQkghOQZ8AsxAuliDnI8ag6wSddcOPXhQ5pwlJkKaVgni1lvJfHgsX7bXkXRgERuPaz1JgaZA7m93PwnxCfSL6ee9UfziZCP7iZYj+4suuu0zItelnNWi5o7t1lw4t0GrFpWI/4hwqxYNBN+yG8QrMnfEBLamRo7EmFgTY2RBIwN79CWFUVu0HqO+SKslhaLKFB2Go63k3ziXvoJud4PftVNp2bjxOBMmLOXEiUwMBh2vv96PP/+5N0ajSgesDEoIeQklhBSe5AOLkFWiX9y2d0cKotG4XHQsFi3nbOVKV84ZQUEwZgzHxg5hjnEPSSmzOZyuiYuokCjGx43HHG+mTf02NfdSbMB2tNH8vcX2t0Nzt74FLYAs+7AczT+zSi6nlYj/6AkRQ0qN/3CnMuaOOl8dtmgjh2KNrIkxsbiBnl2lVJ9aoVWM+gI1sOCouFE5eQ/kfgu5Y6HOv6FZ7X/3WK12/v73dfzzn5sRApo3r8PcuSPp2bP27+16QgkhL6GEkKJsfkYKooVo6031kUtmTyCX0BycPSsrRDNnwiG3vqN27RCTJrH1zjYknVjBwj0LySjIcO3uEdkDc5yZBzs8SL2AGu6UOYJnQKx733N9ZGvUcOAutPl3WyFc2FR+/Eeju6QoanQX+IeX+fRCCGzn3SpGpZg76gJ02GKMHIox8X2MkaV19STrdMUH12iGpzCKqcKnQXGTkbMKTg0BeyBc/h563SL7/GoRIQRDh87n228PMWlSJz78cLDqCaoGSgh5CSWEFBVzHrlkNg1wNhnrkaWUp5G5GI4qhhCyh2jGDFi8GPIdM+8mEwwfTsHDE/gmupDEXbP57tB3HqP497S6B3OcmXta3eP9UfziZCCj2pYjXa4z3Pb5AP3RqkVRbvtyT7rFf6ypUvxHcTzMHVMd5o5Wz2N0ITpEjImDMUZWx5hYEarnN0rGdUbjKYya4fqKKG52hB2OtgHLIcj6P2j6J2h09aMphBAUFdlcwajnz+eyefMJRo5se9Xv5UZBCSEvoYSQovJYkV3JU5FN1k5aIz2JzECotjkzU8s527FD296kCUycyPmxw5mftYWklCR+O/uba3dd/7quUfzujbvXvI2+BdiMNoV2pNj+Tmju1l2QGhDAboGL2zRDx8u/eZ5nCpU9RU7vooDyy/7CJrCetroqRqWZO+rr6BExRg7GmPguxsh3QXp+ocRhRKKJon5AS5QwuqlJ/wjOPyddpgtXQJd2V3WU/tKlPB59dAXBwb4kJt531Z73RkcJIS+hhJCieuwH/gfMQgsLCwQmIEVRB8/DU1KkIJozB9LdYjEGDIDJk9nduxVJ+xcyJ2UOZ3M0k6DW9Vq7RvGbhjatwdfjQCBfmlMUbcWz/BKBVikagAwic5J/zq1a9L00eHQntIM2idagd4n4jxK3YhFYT2qN16WZO+ob6CHGxIEYI6ujjaz21/MzJVJDaIRnxagtShjdVNgy4XCkHKVP/x90mAAhV8f/fM2aIyQkfM3ZszmYTHp27/6DisjwEkoIeQklhBRXRjbSoHEqnt3IfZHLZvcijXwcFBRoOWc//KDlnNWpA+PGYZs0kR9DLpGUnMSSfUvIt8qlNR067oi9A3Ocmfvb3V9zo/jFuQB8ixRGq4Ect33+SOulYciAWPfRLrsN0n/VJtHSf5ZLFE6c8R/OalFQswpvpTLmjoZGBoh1VIyijPzgq2M7JVqRaIAc03cKow5ohS7FDUraU5DxPyjoB74zoG3F33NXQkGBlVdf/ZH//GcbAG3b1mfu3JF07hxRo897M6GEkJdQQkjhHQSyA3kKMtLD+SYdiQx7fZQSQ+CpqTLj7Isv4KSbwWGXLvDII2SNvIevzvxIUkoS61PXu3YHmAK4v+39mOPN3BFzBwb9VcoeKgTWo1WLinky0gNtNL8jniWXwkuQ9oO2jFaQ5nlucEuHKBpSZvxHcSpj7miINKBzVoyaGFlr0rEVz7QSgLp4CqM4tCE6xQ1C4T441g6EHi4tgx6DwMdU8XnVYM+e8zz00BJSUmTMzR/+0I13372LgICaeb6bFSWEvIQSQgrvcwoZ9voZstEaZFVoFHLZ7FY8VILNJqtDM2bA11/LsXwAPz8YNQomTyY1Ppo5u+aSlJzEoXRtKi0yONI1it+uQbuaf2lOBJCCNpq/o9j+aLQltL5ISybXuQIyksuO/9D7SjHkXEYLaVOpfg6XuaMjQNaeUdLc0RhlRBdt5GCsidWNDawz6PgJLXDFSSjScsnZY9QJacOkuM45cSfk/QC5Zqj/DkQ39vpTWK12Wrb8L6mpGTRoEMDMmfcydGgrrz+PQgkhr6GEkKLmKAS+Qi6bbXHb3gm5bDYWKFb5uHhRyznbvVvb3rw5TJqESEhguzhJUnISC3Yv4HLBZdch3Rp3c43iNwhsUEOvqQzO4BkQW+C2LxgZEDscGRBbvD3CkgVp7vEfJzz3e8R/9AdT5X5OK2PuaGxqRB9j4mCskTXhBtbrdWxG6/pyfwm90SpGXfFY8FRcL2Qvg9P3gT0UMlfDLT1qpGl61arD/Pe/PzNz5nDCw6/SMvZNiBJCXkIJIcXV4XekIJqLphLqAA8jA1+bex4uBPz8sxRECxZAtuOtWa+Hu++GyZMpHDSQb46tJikliW8PfYvVLqsqRr2Ru1veTUJ8Ave0vAdf41X2J8lDBsQuRw7Zua+C6ZFx9M4ptNbFzhUCsvZrS2jnN4DdrcNHZ4QGt2nLaOXEf3heVmC/5FYxKs3c0U8nhVGskcMxJr5voGeDTscmILPY9QKRdT2nMOqOZ9FLcY0ibHCkBVhTIfNv0Ox5aFDnii/7zTcHKSqyeYzCCyFqfuLzJueGFUJTp07l3XffJS0tjfj4eP773//So0ePMo//8MMPmTZtGidOnKB+/fqMGjWKd955Bz8/v0o9nxJCiqtLOvAFcuLsqGObDhiMrBINpkTbbm6u9CSaMQM2b9a2h4eD2QyTJ3OhSV0W7F5AUkoSv5zRHLHr+NXhwQ4PYo430zOy59X/xWxHGnQ7jRyTi+1viSaKbqPk+pM1D86tl8Lo7CrIPuS536+RtoTW6M5y4z/c8TB3PGbFcqIUc8dAHcZoI4ZYE4ejjfxYVwqjjcivojv+QC80YdQTl/+44lrj0rtw4WWwtALbMuhUfXf3vDwLf/rT90yb9guhob6kpDxJ06ahFZ+o8Ao3pBBauHAhZrOZTz75hJ49e/Lhhx+yePFiDhw4QMOGJWMY582bx6RJk5g5cya33norBw8eZOLEiTz44IN88MEHlXpOJYQUtYMd6Wg4Belo6KQZskL0MLKFtxgHDmg5Z+fOadtvuw0mT4bRo9mTm8rslNnMSZnD6ezTrkNa1WuFOU6O4keHRZe89tXgOLJKtBxYh+ecex3k0tkwpB4s7f0k+4gj/uO7cuI/HMKobleoZCO5sAtsZ21axagMc0dTjAlDjJGjMSbWhupZD2xEDte544sUQ05h1IsSi6CK2sKWDoebgMiH9M8hfhwE+ld8XjF+++0s48YtYf9+Gej3wgu38PbbA1yGiYqa54YUQj179qR79+5MmTIFALvdTlRUFM888wx//vOfSxz/9NNPs2/fPn788UfXthdffJHt27ez2f0v53JQQkhR+xxGulbPRLN49gceQjZXdy55isUC336r5ZzZHY3BwcHw4IMweTK2bl1Zd3w9icmJLNm3hDyLJhr6xfTDHGdmVLtRBPvWUsp1FvA9slK0Ei3rFmRlqC9aw3Vpk862QriwWVtGy9ztud+3niP+Y0iF8R/FEVaB9YysFllTrVhPl2LuWFePMdqIMcbEsRgj64L0bEDODhabicOEHKpzCqNb0VJMFLXA2UchczoUDISA6dCq8n8Y2O2C99/fwl/+shaLxU5ERBCJifdx553NKz5Z4VVuOCFUVFREQEAAX375Jffdd59re0JCAhkZGSxbtqzEOfPmzeMPf/gD33//PT169ODo0aPcc889TJgwgVdffbXU5yksLKSwUKuBZ2VlERUVpYSQ4hogD5iHrBK5ryHdihREo5D5F8U4c0bLOTvslhzfvr2sEk2YQHawL0v2LSEpJYl1x9YhHM6E/kZ/RrYdiTnezIDYAVdvFL84NqR5o3M0f3+x/e3RltB6UPpse0XxH3W6aMto9XuVG/9RnMqaOzorRieijaz3lxWjDcDpYtczIhuuncKoN6B++1xFCpIhtRMIA6R/Az0HgrHi7weLxcaQIXP58cdjAIwY0YbPPhtG/fqq3lcb3HBC6MyZM0RGRrJlyxZ69erl2v7yyy+zYcMGtm/fXup5H3/8MX/6058QQmC1WnniiSeYNm1amc/z+uuv88Ybb5TYroSQ4tpBIKfMpgKL0dZowpF+RI9Tav66ELBxo6wSffmlZ87ZvffCI4/AwIGcyDnNnJQ5JCUnceDSAdfpjYMbM67jOBLiE2jfsH0Nvr5KcAitr2gTntWYBkgDx2FIQ8fSSit2C1zcrk2ilRf/ETEIAqNKuUjZiAKB5YTFNZVWlrmjMVZWjE42NbLBR+eqGB0vdqwemV7iFEZ9gLAq3ZGiyhy/HfI3Qc4kaPQ2NKlcxfD551fx2We/8dFHg5k8ubNqiK5FlBAC1q9fz4MPPsg//vEPevbsyeHDh3n22Wd59NFH+dvf/lbq86iKkOL6Ig34HPgEOaMOshxyH7K5ui+lhkVkZsL8+TB9Ovz6q7Y9KgoefhgefhgRHc2OMztISk5i/u75pOdrLcBdIrpgjjMztuNYGgaW7M+7qlxGtlGtcPzrPsLliwyIHY4UR2XFmeWfk7EfZ1ZB2upS4j/aa5NolYj/KI6HueMxC/ZLxTyM9GBobMAUY8IYY+RMEyMbTDpXxehosevpgHg0YXQ7JV0HFFdI1mI4MxpsdSH3e+jepdQJxOzsQrKzi2jcWC4hFxRYOXUqixYtKteYr6g5bjghVJ2lsT59+nDLLbfw7rvvurbNmTOHxx57jJycHPT6ik3zVY+Q4vrAgnSsnop863TSHrlsNh7pdlMKyclaztllh++QTufKOeO++yg06vj20LckpSSx8uBKLHbZxWzQGRjScggJ8QkMbTUUP2Mtz0JZkBUip5FjcQXRGc3dugulB4rZbbJCdOY7WTG6tN0z/sMQIOM/nMtowVXv/aisuaMxxogpxkRaYwMbDFrF6GAp1+yANHd0CqNalqfXP8ICR2LBehoy34CWz0Jdzw79bdtOMX78Eho1CmL9+okYjSqI5VrihhNCIJule/TowX//+19ANks3bdqUp59+utRm6a5duzJw4ED+9a9/ubbNnz+fyZMnk52djcFQcb+DEkKK64/dSEE0G8h1bAsGJiInzsoYBy4okM7VzpwzJ3XrwvjxUhTFxXEx7yILdy8kMTmRHWc0y+gwvzDGtB+DOd5Mrya9an9JQAD70ETRVjz7diLRltD64xkQ605huiP+47vS4z+CWshKUcRgCO9XqfiP4tgu22TF6JjD3DGnFHPHaCOmaBPGWCMXwg1s1GsVo32lXLMtnkGyKsGqGlx8Cy7+FSztQbcUOrQEpDv0229v4s03N2CzCZo2DWX9+gRiY6/cc0jhPW5IIbRw4UISEhL49NNP6dGjBx9++CGLFi1i//79hIeHYzabiYyM5J133gFkv88HH3zAZ5995loae/LJJ+natSsLFy6s1HMqIaS4fskEEpGiyL2GMBBZJRpKmcEQx45pOWenTmnbu3WTgmjsWAgNZd+FfcxOmc3slNmcytKOa1G3hWsUP7ZOrLdfWPU4jwyIXY6cRst12xeA7CcaDtyDbLcqDSEgI0WbRLuwuZT4j9s1YVTJ+A/Ppyhm7phqReSXYu4YrVWMLjXQs1GnVYx2lXLdVngKo7JWCRVuWM/D4SigCC7Ngi4Pciwtj/Hjl7JliwzTGzu2A//73z2EhSlnqGuNG1IIAUyZMsVlqNipUyc+/vhjevbsCUC/fv2IiYlh1qxZAFitVt566y1mz57N6dOnadCgAcOGDeOtt94iLCysUs+nhJDi+seOtHKeiiyNOJdhmgJPAI8gO4xLwWaDNWtklWjZMi3nzN/flXPG7bdjE3bWp64nKSWJr/Z+Ra5FUxm3R9+OOc7MA+0fIMT3GvkZKkAGxDqrRW5aDx3S5Mc5hdae0pfQoOL4j4CmboaOAyod/+GOEALbObc4kHLMHU2xsscoo46eTQ5htB45Y1j8F3czPIVRTJXv7CbhTAJkJSHyhjB33Uv84Y1tZGcXERzsw7Rp9zBuXFxt36GiDG5YIXS1UUJIcWNxHNlY/TmaMY8PMAbZXF22SzsXLsg+ounTYe9ebXvLljBpEiQkQEQEOUU5LN23lMTkRNYeW+saxfcz+jGizQjM8WYGNhuIsQrj6TWKAHaijeb/Wmx/DJooup1SHQrkdQRkHdBEUbnxH4MhLL5aOVZVMXd0VowyQ/VsBlfF6Dc0OeykKVqPUV+kUFLzTkD+DjjeA0uRD93vf4vkw7ncdlsUs2ePUEth1zhKCHkJJYQUNyYFwCKkJ5F7NHw3pCAaQ5khEELA9u1azllOjtxuMLhyzrj7bjCZOJl5krm75pKYnMj+i5r5T6OgRq5R/I7hHWviBVafM2ju1j/iGRAbgnS1HoZ0uS5vMMiaJ8XQGWf8R7EWZ79GcjS/8ZAqxX8Up4S54ylrCZWjr6t3iSJjtJGcID0/gati9Asl/CCJxLNi1IqbWBil3gIF29mb8hRLfh3Kn9+6SzVGXwcoIeQllBBS3Pj8jFw2W4i25lIPuWT2BOUumuTkaDlnP/2kbW/USFaIJk2CVq0QQvDr2V9J3JnI/N3zuZSvjad3atQJc5yZhzo+RHhQ5d2drwq5wA9onkXn3fYZ8AyIbVXBtXKOaqLo3FqwujUp6fRQt4e2jFa3W6XjP4rjMnd0NF7bzpZt7miMMWKMNpLnr2cLWsXoZzzTTQAa4SmM2nJjCyOLxcbrr6/H39/EX585CWfHg60BFHwPXapXzVNcXZQQ8hJKCCluHi4AM5BxHs5eFz2yqfopZJN1OX8F798vBVFSEpx3Uwx9+sgq0ahREBhIka2I7w59R1JKEisOrPAYxR/cYjDmeDPDWw+v/VH84tiRxTPnElrxjuRWaKP5t1JmHzrgiP/4SVtGKyv+w2noWIX4j+JUytwxwqBVjJoayffRsQ2tYrSdEm1JNECuFDqFUQfK/e64rjh48BLjxi3hl1/OYDDoOLD/cZqLeLCdg4y3oe0zEKpCUK51lBDyEkoIKW4+bMi1oanAGrftrZDj9xMpPfHUgcUC33wjRdF333nmnI0dK0VR9+6g03Ep7xIL9ywkKTmJ7ac1U9RQ31BGtx9NQnwCt0bdWvuj+KWRilYpWo9nCaUuculsODCIivMx8k45wmKd8R+ZnvvrdNYm0erfAnpTtW+7SuaOsUaMTYwUGnVsR6sYbQXyi123LtLxuh9SGMVRetLJtYwQgunTf+O551aTl2ehTh0/Pv98GPff3w4uvAaX3oSiTmD6CtqWFnCnuJZQQshLKCGkuLk5APwPmIVMQQUIRBo0PgVU0N9z+rSWc3bkiLa9Y0cpiMaPh3rSE/nAxQOuUfwTmdr0VbM6zTDHmZkQP4Fmda7RN58sYDVaQGy62z4TUhk4q0UxFVzLboWL22S16OwqSC/WvW0KcYv/GFzl+I8ST5dtd43pV8bc0dDYgMWgYweaMPoJTzcCkFK5D1rFqDPlF8lqm4sX83j00RV8/bXsZevfP5bExPto0sTxe99yBo5EA1ZInwtdR4FvWZ3zimsBJYS8hBJCCgVADjAH2Vy9x2377cjm6vuQ7/hlYLfDhg2ySvTVV9K8EcDHB+67T4qigQNBr8cu7GxI3UBSShJf7v2SnKIc12V6N+1NQnwCD7R7gFC/cqpStYkVWTJxjuYfKLa/I1IQDUMO6VW0nlRwHs5+L5fQyo3/GAwN+lQ5/qM4lTZ3dPQYGcINWPU6fkUTRpuB7GLXDUa2VPVDCqOulPsdc1WxWGy0bTuVI0cuYzLpeeedATz/fC/0+mKVyNMPQvZCyB8OdaZBTOPauWFFpVBCyEsoIaRQuCOAjUhBtBRt1qgxMuz1USr0MM7IgHnzpCj6zS3stGlTV84Z0dEA5Bbl8vX+r0lMTuSHoz94jOLf2/pezPFm7mp+17Uzil8aB9H6ijbjOdEVjjRwHI5swQqs4Fqu+A9HtejStlLiP+7QltGqEf/hjtPc0b1iVJG5o76BHptOx040YbQRzwg4HC/1VrSKUXdkNFxt8b//7WDKlJ+ZO3cknTuX8T2c9xOc6A3CFzJXQ48+UImoJkXtoISQl1BCSKEoi1PAZ47HOcc2IzAKuWx2GxXOFe3cqeWcZWTIbTod3HmnrBLdey/4yrfH01mnXaP4ey9oPkbhgeGM6zgOc7yZ+Ebx3nt5NUE6Mhh2ObAKbbURpAoYgBYQG1mJ6xVdhrNrtGW0/LOe+4NaaJNo4f3AWJHSKp8S5o7HLVDkeYwuUKc1XscY0dfRY9fpSMFTGKUXu7Yf0AutYtSTMg0cvMLu3efJz7fQvXuk67UVFFjx9y+nTiUEpHaFwt8h+xmIfh0aqnDVaxUlhLyEEkIKRUUUAV8hm6vdRuiJRwqih6iw1JGfD0uXSlG0dq22vV49Leeso+xHEkLwe9rvJO5MZN7ueVzMu+g6PC48DnOcmXFx42gU1Mgrr67GKEIqAme1KLXY/q5oo/mdqHhWXQjI2KWJogubwe7Wwe2M/3Auo4W0veIR8OqYO+pD9diRC6wb3B4Xil3bFymGnBWjXsgklCtFCMGUKT/z0ktriIgIJjn5CUJCqlCLyvgC0iaBLQIsa6BTey/claImUELISyghpFBUhZ1IQTQXba4oDHgYOXHWouJLHD2q5ZydPq1t794dHnkEHnwQHD+LFpuFVYdXkZSSxPIDyymyyfKEXqdnUPNBmOPN3Nv6XvxNZSWqXiMIpDJwiqLteHr/NEHrK7qDypVKLNnSr+jMKhkYm3vcc78X4j9KvAyrwHra6qoYVWjuGGNEH6h35eO6C6Ni0baYkMtnfZFVo1uBqg6wp6Xl8PDDy1i16jAAQ4a0IClpBPXrV0Fi2fNl/pj9EmS8Cx3+AEHekGgKb6OEkJdQQkihqA6XgS+Qouio2/bByObqwVQ4XG2zwerVskq0fDlYHaWGgAB44AFZJerd21XVSM9PZ9GeRSQlJ7H11FbXZUJ8QxjdbjTmeDO3Nb0Nve466Ok4h5w+W4EMiM1z2xcI3IUURfcADStxPff4j7Or4Nz6UuI/btUm0ep08ophoCgSWE9VwtwxVjpeG6ON6P2lMDqEJorWA6eLXduA9EF3Vox6U75LwTffHGTSpGVcuJCHn5+Rd9+9k6ee6l49a4bzr0D6P6GwG/gvhlYxVb+GosZRQshLKCGkUFwJduRc+RRkc4zz10csskI0ifJzKhycPw+zZ0tRtG+ftr1VKy3nrJG2FHbo0iGSkpOYnTKb45laJSQ2LJYJcROYED+BFnUrUZ26FigA1qJVi8647dMBt6AtobWjcnbP1jw4v1FOopUX/xExGCLulAaPXqA65o46Hx0CKafdK0bF6lvokSP6zopRH2Qt0mKx8eyzq5g27RcA4uLCmTdvJO3bV0ZBloHlOBxpBtghfRF0HwGma7hh/yZFCSEvoYSQQuEtjiBdq2ciK0Yg13geQvYSdan4EkLAtm1azlmuw73GYIChQ2WVaMgQMMo3Jbuws+n4JpKSk1i8dzHZRdpQ961Rt5IQn8Do9qMJ8wvz1ousWQTwO9po/m/F9sei+RXdTuXn03OOaoaO5370jP9AB/V6aJNoVxD/URx7nl1rvE4tw9wx0qDFgTQxojNKpXccT2F0pNi1dcgutduFYOt9C9mx/AAvvtiLt97qj6+vF0TLqZGQsxTy7oeGU6DJNd6TdhOihJCXUEJIofA2ecB8ZJVop9v2XkhBNIpKDVJnZ8OiRVIUbdWWwoiI0HLOWrbUntWSx9f7vyYpOYk1R9dgd4yd+xp8Gd56OOZ4M4OaD8JkuFbcbSrBKaQJ+ApkQKx7DkYocgVyODAEqGxQunv8x9lVsgHbHZ+6EOEe/+E9AeBh7njMij2zHHPHWBOGCAM6gxRGp3BbSrMLDhVYIcDxtbyQCynn6DCgmatidDuVW1V0YgM2AWeRBhF9ctdhONkfhB9k/QA9blX5Y9cYSgh5CSWEFIqaQiCdB6cCi9EyKhoi/YgeByrpmrx3r3SvTkqCC27zR7ffLhus779f9hY5OJN9hnm75pGYnMju81rOV8PAhjzU4SHM8WY6Nep0bUZ7lEUOMiB2OVIcuY9hGZBNNM5qUcsSZ5dN3mlZLTq7Sho7lhb/4ZxEq9/riuI/imO7bPOoGJUwd/QBY1NPc8dTp7NISPiaOo2DGT1npKvHaF8p12+LZ5BsWQ5YS4BnkWLLSRMh2HMsjpCi3ZD9PDR7DepdoyafNylKCHkJJYQUiqtBGjAd+AStLdYA3Itsru5HpZpfiopkztn06bLR2plzFhICDz0kl866dnX95S6EYGfaTpKSk5i7ay4X8jT10KFhBxLiE3io40M0Dr7OHIRtyAh5ZxZasUxX2qD1FfWi8qFgditc2q4ZOqb/4rnfGCzjPxoPkdWiwKZX8io88DB3PGbFerykueOyg4d5fumPZOQWEuBvYtfuJ2jWTPagnUe6FTirRsUzc0HqQ2fFqC9yWG8JskZZ/I1PBzx2+VM+OfcEWKNArIGOrb32ehVXjhJCXkIJIYXiamJBljSmIP+Od9IOuWw2ARnWUAlOnYJZs2Sl6NgxbXtcnJZzVldr1LbYLHx/5HsSkxNZfmA5hTa5zqTX6bmz2Z2Y483c1+Y+AkzX4aj0MbRm6w14ev3UQwuIvYuKA2LdccZ/nF0lq0aFFz33h7bTJtEa9gGD9ywS3c0dL+/L48UpPzD/N1n36RIZzqejBtGiaZ0S5o7OKt8l5FKXs2KUTEmx0wwp0fMonUB7LmcPRRIsMuHyh9DpcfCvSRtIRVVQQshLKCGkUNQWe5DLZklokZ7BQAJy4qxt5S5jt8P69VrOWaGjkcbHB0aOlKKof3+PqITL+ZdZvHcxSclJ/HRSM4kM9gnmgXYPYI430ye6z/Uxil+cTKSr9QrgW7S+dZDN1XegeRZFV+G6wg7pv0lRdOa7suM/nMtowd6Z2tu27RTjxi3h6NHL6PU6/jT+Fv7vjh7ozooS5o76UL0WBxJrQh/i9jVHJqA4K0a/UcICqVTeP/cCL1z+DxT2gqCF0PzKQnAV3kMJIS+hhJBCUdtkIsXQVDwTTAcgq0TDqHSu+eXLMHeuFEU7d2rbY2K0nLMozzeyw+mHmZ08m6SUJFIzUl3bo0OjmRA3AXO8mZb1qtJ0cw1hRZqBO6tFh4rtj0PrK+pGxQGx7hRdhrQftGW0/DOe+4Oaa5No1Yz/KCqy0aLFx5w8mUXTpqHMmTOCPn2kequuuaOTLOAt4N8V3EOzoiMcPtoSHQIuL4Uew+QUo6LWUULISyghpFBcKwjkaNRU5Lu2810tCngCeIQqzQH99psURHPnQqajAVing7vuklWi4cNdOWcgR/F/OvETSclJLNq7iKxCLSisV5NemOPNjG4/mrr+13H21AG00fyf8BQOjZAZaMOQAbFVWSGsMP7DR4v/iBgsl9Qq2ai+Zs0RZs1KZurUuwkLK3tZShQJrCe1xutyzR1jpLnjRj89d1TiHi6eHEq93JWQ+yA0/hgiGlTq3hU1ixJCXkIJIYXiWuQEsrH6c8DZl+IDjEY2V/egcs6CyJyzJUukKFq3Tttevz5MmCBFUXvPPKl8Sz7LDiwjKTmJ1UdWu0bxfQw+DGs1jIT4BAa3GHx9jeIX5xJy6WwFcikt222fH1IMDUOKo6r2kluy4dw6bRktN9Vzf0CUtoQWPgB85DSWEII5c1IwmQw8+GCH6rwqFx7mjses2M4XM3fUgb6RgekxRr6LMbGtqZFcH13xQ2gCHMtZjeHUYLAHQt466NpNjdJfAygh5CWUEFIormUKkKP3U5BjUk66IgXRGKAKOWNHjsjm6lmz4IzbUk7PnlIQPfggBHs2a5/NPusaxd91XptFqh9Q3zWK3yWiy/U1il+cImTjjLNaVNzWuRvaElo8ldaggKwWZR/UltDOrwdbgbZfZ4D6t5IRNJgn32vIgiWnCQ72YffuP9C0qffG1e25dqzHyzZ3tOjh10gDm2JMbIwx8ksTI0VGHV8CI4UdjrYFy0HIehla/RXCKtnUr6gxlBDyEkoIKRTXCzuQy2YL0JwF6yKXzJ4EYip/KatVyzlbscIz52z0aOlNdGtJA73ktGTXKP653HOu7e0btMccb2Zcx3FEhkRW9wVeGwjkOL5TFG0vtj8Kz4DYKgS7A2DNh/MbtGW0rANs2BfNhGkjOXkpFIPezuuTM/jzyz0xRg3yWvxHcexZmrljZqoV/2LmjvlGyG9ipLHT3NH3E3SXngFrLOi/h3bXSYTLDYwSQl5CCSGF4nrjIjADGefhLF3okGs4TwF3UqWu33PnpFHjjBlwwK1Zu3VrWSUymyE83OMUq93K90e+Jyk5ia/3f+0axdehY2CzgZjjzYxoM4JAn6o3CF9zpOEZEJvvti8IOZI/HDmiX8XWmaIiG6+/+jX//GA3QkDz8MvM/cOX9Gzh9JpyxH84l9Hqdvda/EdxLJdt7Eu1oku14pNqoWFp5o71fsTUYD1Gv9sw9B2Jzq+qKlDhTZQQ8hJKCCkU1ys25Dv0VOQ7tJOWyPH7ichYzkoiBGzZIgXRokVazpnRqOWcDR7syjlzklGQwZd7vyQxOZHNJza7tgf5BDGq3SjMcWb6xvS9Pkfxi5OPDIh1VovOuu3TAbeiVYvaUu4SWmGhlT59vmDHDrlEOWlSJz76YABBBTu0ZbSMFM+TajD+w503hGDeRTvjUy08n1q6uaPOR2CM9cEYK6fS9PX11/fy6HWIEkJeQgkhheJG4CDwP+AL5GA0yLGn8cgqUVzVLpedDQsXSlG0bZu2vXFjmDhR5pw1b17itCPpR5iTMoeklCSOXj7q2t40tCnjO47HHG+mdf0bxJ3YjjTjcY7m7yy2vzmau3VvSg2I/dOfvmfmzN/5/PNh3H9/u5IHeMR/rAFLhuf+Op20SbQGt3ot/uMC0BTZobYB6OM0dzx8Buv+LVgu3ApWzx4hXaCuTHNHRc2ghJCXUEJIobiRyAHmIpur3XMn+iCbq0dQ+ch2B3v2aDlnF92clfv1k1Wi++8Hf8+GbSEEW05uITE5kUV7FpFZqOV39YzsiTnezJj2Y6gXUDP9L7XCSWQG2nJk1ajIbV8YMAQu9s0j/zYLUR1kE3RhoZWLF/OIjKzE7167FS79rE2ilRn/4RBGVxj/8QTwKVLHLXPfceJORM46bGdfwWJ9DusFH6wnraWbO8YYXeLI3dxR4R2UEPISSggpFDciAhmwMAWZJuUcnY5Ahr0+RtkRnGVQVATLl8sq0erVcikNIDRU5pw98gh06VLitHxLPisOriApOYlVh1dhE/JeTHoTw1oPwxxnZkjLIfgYfKrzQq9NsoE1yGrRN8BF+J4jJPA1sYSxse/DGO/VS5VRsrBWOQrOyyqRK/7jguf+kLaaoWM14j8OICPbdMhAV1cdL3sFnB4O9hAoXAedu1yxuaOieigh5CWUEFIobnROA585HmmObUbgfuSyWW+qNg8OnDyp5ZylpmrbO3WSVaJx46BOnRKnncs5x7xd80hKSWJn2k7X9nr+9RjbYSzmeDPdGne7oZZUCnKtvDLpBz5cJMfP2lKf75lAE2foWVu00fxbqHxArDvu8R9nV8HFrcXiP/zd4j+GVDr+YzhSyz2OdLWSz2WDIy3AmgpZf4G2r0Kwp/uk09zROZVWmrmjoaHBVTEyRhvR+ylhVFWUEPISSggpFDcLRcjq0FRk6pSTOKQgGgdUccrLbpcmjTNmSNNGZ86Zr6+Wc3bHHR45Z05SzqUwO3k2c3bNIS0nzbW9bf22rlH8qNDrO9dq9+7zPPTQV+zadR6AP/yhG+8+eRcBP5ikwtiI55JSfeAepCi6i0rn75ag6DKk/SiX0MqK/3AZOt5RZvzHBmRSvR/S4tM1FHfpPbjwElhagmk1tIkt93bsBXasJ6zlmjsaGhlcGWnGKCM6nxtHDNcUSgh5CSWEFIqbkWSkIJqDNg8eCjyMnDirRrZYerqWc5acrG2PjZXN1RMnQpMmJU6z2q38cPQHkpKTWLp/KQVWaTaoQ0f/2P4kxCcwou0IgnyCqn5PtYQQgilTfuall9ZQWGijQYMAZs68l6FDW3kemIFnQGyG2z4fpE+Rs1pUXU0oBGTu1ibRLmwqGf/RoI+2jOYW/yGQHua/AG8Af3eeY0uHQ02AfMj4DLo+DKZK5uGhmTs6K0bFzR3RgzHSqFWMmhjRGZUwKo4SQl5CCSGF4mbmMjALKYqOuG0fhGyuHkKV12qE0HLO5s3Tcs70ehg0SFaJhg0Dn5I9QZkFmXy590uSUpLYeHyja3ugKZD7292POc5Mv5h+GGrIS8dbFBXZuOWW6fz+expDhrTgiy/uJTy8AiFnQeafLXc8jhTb3wltNL8rVQuI9XieiuI/mmiTaI0GssAnlLHIatAJZHUIgLOPQuZ0KBgI9WZDVPVH+d3NHa2pVuzFzB0xgjFKa7w2NDag0ythpISQl1BCSKFQyM7W75HN1d+iNXTEICtEk4BqTHjl5ckls+nTYcMGbXuDBlrOWbtSxsaBY5ePuUbxD6cfdm1vEtKECXETMMebaVO/TdXvqQYRQrj6m/bvv8gPPxzlqae6V73nSQD70Ubzt+LZfByB9M8cDgygSikrxW4Ysg9poqiU+A9rgz40v/1rTviE8pmw86jTD6pgF6TGgTBA9nfQfaBX8seEENgz7C5RZEm1IEozd2yqNV4bGhluqL6yyqKEkJdQQkihUHhyFOlaPQNZMQJZBxiL7CXqWr3LHj6s5ZyddXMivOUWKYjGjCmRcwbyjXHbqW0kJieycM9CMgoyXPu6N+6OOd7Mgx0epH5A/erdlxfIy7Pw4ouradgwkDfeqEyeexW5iNSny4HVSJcEJ/5IM3FnQOyVeCxa8+H8Rrf4j/0AfNDmeV7s8gFtsg6yZ/db6BsPhkZ3wrn7IX8j5EyC2PehXtgVPHnpCCGwX/SsGImCYuaO/jqM0W6j+hWYOwq7wHrCisgR6IJ0GJsar8sKkxJCXkIJIYVCUTp5yFyzKcDvbttvQQqiB6h60BYy12zVKi3nzOZonA0MlGJo8mTo1avU6kKBtYBvDn5DUnIS3x761mMU/55W92COM3N3y7vxNV696IfffjvLuHFL2L//IkajnsOHnyE6OqzmnrAQWI9WLTpZbH8PNCPHjlR5INCDnGNwdjVZ5zcQ1f0TsnxC+Wb9Pdxz5lt54ajm0OAw2OuAdT3EVdG4sxoIp7mjs2J03OLp2YSbuWOsY1Q/TBNGRfuKyFudh8jW3up1wToCBgXg0/b6snBQQshLKCGkUCjKRwDbkH1Ei5DNLCC7Rh5FWu9Vs5M3LU3LOTt4UNvepo2Wc9awYamnns89z/xd80lKSeK3s7+5ttf1r8uD7R8koVMC3RtXY1mqktjtgvfe28Jf/7oWi8VOREQQiYn3ceed1TUGqgYCSEETRTuK7W+KJor6Ui3d6uQlu4339Ab6ZR9h3aaRWvxHBwP42CDzdShKg8iejviPKvpUVRNhE9jO2rSKUTnmjvhA0Y6i0i8EBI4KvK7EkBJCXkIJIYVCUXnOAdORrjKnHNv0wL3I5uo7qFYJQgj46Sct5ywvT243GmVj9eTJstHaWPpk0u7zu0lKTmJOyhzO5mjLbq3rtcYcb2Z83Hiahl6Z07I7J09mkpDwNevWpQIwYkQbPv98GPXqBZR/Yk1zFmnguAL4gZIBsYORwuhu5Kh+FTgJNENqjF+BLnlnpJFjxgcQuBssbeHEYMj8jzwhLF6bRPNi/EdFuMwdjznG9U+XNHcsC12IjtBnQq+bZTIlhLyEEkIKhaLqWJEliCnAOrftbZHLZhOAav4+ycqSOWfTp8PPP2vbIyO1nLNmzUo91Wa38eOxH0lKTmLJviXkW6US0KGjX0w/EuITGNl2JMG+1TXokbEYLVr8l1OnsggIMPHxx4OZNKnztdesmwf8iBRFK9C8NEFq11vRRvNbUyn9Oh4Z4PKQ418ArBfgcBRQCJc+h+xESP8JDwdFYzA0GqB5FwVGX9FLqwpOc8fC5EIseywVHh80IQhTzNURbVeKEkJeQgkhhUJxZexBBr4moXXxBgEJSFHUtvqX3r1bVolmz4ZLl7Ttd9whq0QjR5bIOXOSVZjFV3u/IiklifWp613bA0wBjGw7EnOcmf6x/as1iv/ZZ7/y+ee/MXfuSFq1ug7y0uzIMs5ypChKLra/BZoo6o00Hi+F34EuSEOFY7gtiJ6ZCFmJkD8YwhOhrg7S1jgMHcuI/3CKooa3Vzn+ozoU7S4id2luhccFjgjEp8P1sTymhJCXUEJIoVB4hyykGJqKnP120h8piIZT5jtsRRQWajln33+v5ZyFhck4j8mToXPnMk8/nnGcOSlzSExO5FD6Idf2yOBIxseNxxxvpl2D0sf4AbZtO4UQgl695Fu/EAKr1Y7JdG37GZXJcbQltLVobV8AdZD2UcOQS2lhnqf2R9YAXwTec24s+BVSu4EwQu4a6NpXa3YXdrj8u2boeHGrjOlwYvCHhv20ZbTgFl4Zwy+OJdVCzuycCo9TFSElhGr7dhQKxXWPQL67TkXmljsbNJogG6sfBUpvgK4UJ07AF1/Ix/Hj2vbOnaUgeuihUnPOQAqY7ae3k5ScxILdC7hccNm1r2tEVxLiE3iww4M0CJRhElarnbff3sSbb24gMjKE5OQnCAur+erFVSUbaSG1HFgJuBXeMAK3o1WLmslDhiIXPk/itgCa2gsKtkHOY9DiXQgr4/2kKAPSfnB4F62C/NOe+4OaaZloDfuByTuO4sIuyPw402NarDiqR0iihJBCoVB4jRPAp8DngHN5xAc5ev800JNqz3fb7fDjj7JKtHQpFDmmgfz8tJyzfv1KzTkDKLQWsvLQShKTE/n20LdY7XLUyKg3cnfLuxlU90Fmv57Ltq3yjXrs2A5Mm3YPoaE3mBByx4YcEHQuoe0rtr892IdDh7/CvgB4H3jBuS9rPpx5CGz1gY3QvhJLokJA5h7N0LHM+A+H03Vo+yuqFhXtKyL3y7KXx9TUmEQJIYVCofA6hcBiZHP1drftXZCC6EGqb4+M7B+aO1c2WO/apW1v1kzLOYuMLPP0C7kXWLB7AUkpSfxy+hdIiYOV90CRLz4Bdl79Zzx/f3rEtdcQXdMcRhvN34QUSsD0yfDodIi6BEc2gWkgEFgEh5qC/RxkvAWd/gR+VRQVlpxi8R/HPPd7xH8MAJ+wKr+k0nyE8IPAodeXCAIlhLyGEkIKheLq8gty2Ww+UiAB1AUmA08C5SeZl4sQ8Msvsko0f76cQANZFRo8WFaJhg4tNecM5ETYiAeT+O5rh0th1AkYuQTqZNCybkvXKH5MWEz17/F65TLwHbACCtZCdAqcD4d5Y2HsUmTzUL9voMcTULceBH8LsWWLzwrxiP9YBefXlYj/oH4vbRmtTifQlV79K3Fph7N04bZCLIcs+HT2IXBoYPXvtZZQQshLKCGkUChqh4vATGScR6pjmw64B9lcfRfVTxZFehF9+aUURRu1AFcaNJBGjZMnQ1vP5RshBCNHLmLFigP8/bXb6TnGwtw9s/lq31fkWfJcx/WL6Yc5zsz97e4nxPcm/L1pgf93Ev7eDLrugh1xxRY42/4Gt5rg8fbQTX9l7tZOrPly6ezMdx7xHy78GkKjQXIZrdFd4FexUVLR/iJyF+diaGgg5PHr7+uohJCXUEJIoVDULjZkkNZUZJCWkxbIwNeJyFGmK+DQIS3nLM3NUOfWWylKmEThsBEER9QF4OLFPI4evUyPHlo1I7swmyX7lpCUksS6Y+sQDo8cf6M/I9qOICE+gQGxA6o1in+9chFpXJ0PrE+FvguQy2hb7SDcBGxjZKP1MGTV6ApWQD3ISZWj+WdXyeZrq/tEmA7qdtMm0er1gFK+NvZsO5kfZoIOwl4KQ+d7fS19KiHkJZQQUigU1w4HkRWiL4BMx7YAYByyShR/ZZe3WuHbb2WVaOVKDtrCGMdImhuzmW8ORPfIZBkCW04v0InME8xJmUNSchIHLh1wbY8IinCN4ndo2OHK7vM64Umkx/hQpAYC4PgOmDcV1t0Lm4dDvpsACcAzIDbcSzdiK4KLW7RltIxiRkk+dWRIbOMhJeI/Mj/OxJ5pJ2h8EKbY62Ns3okSQl5CCSGFQnHtkYv0Lp4CuDU/0xvZXD0COX1WPYQQTH9/Hc+9uok8C9Qhn2SmEUUWtGsnl80mTJDLaOVcY8eZHSQlJzF/93zS89Nd+7pEdMEcZ2Zsx7E0DLwCq4BrnINAG6Rhwj7H/xECjnWDot/g4rNw/p/wg59USqfcTtYhA2Kdo/kd8M4SGkDeGUj73rGM9j1YMjz3h8W7JtFyNnfBsteGXz8//PuUUq6y2+SSXP5ZKaAa9Cm1ulQbKCHkJZQQUigU1y4C2IwUREvQ0jQbAY8DjyHXXirPxYt5PProCr7+WvaY9O8fQ+KTETRZMRcWL4Z8R0CXyQTDh0tRdNddYCj7za/IVsTKgytJSkli5cGVWBwj4AadgSEth2COMzOs9TD8jDfe6P19SLeox5BGCQBkzIK0h8EWDoZN0Kal/FImo43m/1LsQjFoS2h9uRKd64ndCpd2yGrR2VXy/27xHwXZz5B//g1Mjc8Q9GCQZ/zHySXw67OQ56bgAppA148gaqSXbrD6KCHkJZQQUigU1wdngM+Qb7fOPh8jMBK5bNaHikoKa9YcISHha86ezcFk0vP22wN44YVe6J0GepmZsGCBXDrb4Rbl3qSJlnMWW/5U28W8iyzcvZDE5ER2nNGuEeYXxpj2YzDHm+nVpNcNM4q/Cem56It0jWoIYC+Aw03Afgky/w1dnpPC0p0zSHfr5chMNLeBMEKAQchq0RCgohQTm+NGzgIRyG+FsnRrwQVH/McqSFuNNaMJ2ad/QKe/RGhMS3ShbWRfkSkIdv+jlAs4vm59vqx1MaSEkJdQQkihUFxfFAFLkc3Vm9y2d0QKonHIrDNPCgqstGwpw1Lbtq3P3Lkj6dw5osRxLnbt0nLO0rVlLwYMkFWiESOkeWM57Luwj9kps5mdMptTWVpVoXmd5pjjzUyIm0BsnSuwC7gGEEhbzB3Aa8Drzh3nX4H0f0JRNwhbDk3L+VznIsXQcqQ4Oue2Tw/chmdArDtLgGfxXHZrAnyE1Mjl3rwdcXEnGZ9Fgd1ISNOeGEyHKjgJQCcrQ8OP1eoymRJCXkIJIYVCcf2SghREc5Bx6wChyEmzPwCtPI5eu/YYX321l3ffvYuAgEo2xhYWwtdfS1H0ww9azlmdOlrOWadO5V7CLuysT11PYnIiX+39ilyL5m58e/TtmOPMjGo3ilC/0Mrd0zXGImAMUB9ZFfIHsJyEI7GADbK+hO4jK+cKbUeqKqeR465i+1shBdFwpGAag0fQPaAVBr+kYjEEZM3KwnbSRsA94Ft/LRz9As6srPjEAesgvF/Fx9UQSgh5CSWEFArF9U8GMAspig4DUq9MmWKmTp07GD9+AmWvlVSB48e1nLMTJ7TtXbrAI4/A2LEyCLYccopyWLpvKUkpSfx49EfXKL6f0Y8RbUZgjjczsNlAjPpqBtTWAlak2cFx5MLlY84dp+6HnCWQNxKaTof61bBBSEVbQluPZ0CsHi3Krjg6ZGXoGBV+6fPW5FG4rRCfrj4E3h0IqfNhy0MV39ut8yBmbMXH1RBKCHmJyn4ibTYbFoulzP0KheL6xWQyYSinGfj6wQ6sIS3tEx5+OJBVq1oSFFTIvn1f06TJRKR7dUUNJ5XAZpM5Z9Ony2qR83ejnx+MGiWrRH37VlgBOZV1ijkpc0hMTmT/Rc0gsFFQI8Z1HIc53kxceNyV3+9V4EPgeWTBZh8OK8y8DXCiHwg/KNoA8T2u7EmykFZTK5Ad2lmVOGcd0K/8Q5wZZIZwAyGPhcC59fDjHRVfW1WEbgwq+kQKIUhLSyMjI+Pq35xCobhqhIWF0ahRo+u+iXfFigNMmrScixfz8PMTvPvuBp56ar1Dk/gCY5G9RN2884QXL8KcOXLpbPdubXvz5lrOWePyJ9uEEPx69leSkpOYt2sel/K1CPhOjTphjjPzUMeHCA/ylvGO98kGopDuT8uRq1cIAUc7gmUPZD8H7d6GQC85Ks4BJlTiuHnIL3k5lDBWNNlheQzknabkuhuoHqEbjIo+kWfPniUjI4OGDRsSEBBw3f+SVCgUngghyMvL4/z584SFhRERUU5T6zVMXp6FP/3pe6ZNk3PZcXHhzJs3kvbtg4EFyBH839zO6IkURKORAukKEUJOmjlzzrKz5Xa9Hu6+W1aJ7rmn5PRUMYpsRXx36DuSUpJYcWCFxyj+oBaDMMeZGd56OP4mb1k0e4//A/6NnH5f79yY8RmkPQ7WSPDZBK281By+HqhE0aYyFSFwM1acEIQpxiRH5zeNcux1lwVqauyGo7xPpM1m4+DBgzRs2JB69bxQTlYoFNcsly5d4vz587Rq1eq6WybLz7fQrdvn7N17AYAXX+zFW2/1x9fXvc9GIJPvpyLbe4sc2xsAjwBPIEMjvEBurvQkmjEDNm/WtoeHazlnrYuPP5XkUt4lFu5ZSFJyEttPb3dtD/UNZXT70ZjjzdwWdds18wfqKWRkrhXZ79wNwJ4LhyJBZELmh9D1aTB64fvLhvQeKqdoU9keIYCcr3Kw7LXgd4cf/r0dIrNUH6Eo6PphrYsgUELIa5T3iSwoKODYsWPExMTg73/t/fWhUCi8R35+PqmpqcTGxuJXwVj4tcj//d8aZs9OITHxPu68s3kFR58HpiPjPJxvcnrkKNJTwAC8ZnN84IDMOUtMhHNuc+G33SYF0ejREFhx8vmBiwdco/gnMrVG7WZ1mmGOMzMhfgLN6jTzzj1fAROQq1YPAvOdG8+9CJc/gMJboP4yiPSS2/YSoLSiDcgvXyWnxgAKtheQ/30+ppYmaazoxG6DI9NhxxNgCoGRl8BwbTSyKyHkJSojhK7XX4wKhaLyXG8/76dOZWGx2IiNlZNIRUU2srMLqVcvoApXsSI7b6cAa922t0EKIjPS3c8LWCweOWfYHeNOwcHw4INSFPXoUWGDtV3Y2Xh8I4nJiXy590tyirSw0d5Ne2OOM/NA+wcI8wvzzn1XkZ1AZ2QR5iiOGlvRUTjaAhCQsxy6Dq3cKH1lKM1HKBSYSaVFEID1tJXsmdnoAnSEvhDqWWWzFcCiIBA2uO8UBESWfaGrSE0JIX3Fh9QsU6dOJSYmBj8/P3r27MnPP/9c7vEZGRk89dRTRERE4OvrS6tWrfj222+v0t0qFArF1Wfx4j3ExU1j7NivsFhsAPj4GKoogkA6U49AuvntQYqfIGA/8AwQ6di298pv2mSCe++F5cvh5El4+21o0UL2En3+uQx77dgR/vMf2YBdBnqdnn4x/fji3i9IezGNOSPmcFfzu9ChY/OJzTz2zWM0eq8RD375IN8e+har3VrmtWqCTsh6mg3paQiATzMIuMfxAuZCRrb3nnAkcsR+HVK3Om+iiitXhnADGEDkCeyXi83kG/wgpI38/+Wd1b/X64RaFUILFy7khRde4LXXXuO3334jPj6eQYMGcf78+VKPLyoq4s477yQ1NZUvv/ySAwcO8PnnnxMZeW2o1Zudv/3tbzz22GMVH6jwGn/+85955plnavs2FDVEdnYhkyYtY/ToL7l8uQCbTZCenu+lq7dDVobOIPuI2gI5wP+A9kB/4Cu0vLMroHFjeOUVOHgQ1q+XAa/+/rBnD7zwgtz/wAOwerUc1S+DQJ9AxsWNY/X41Zx8/iT/Gvgv2jVoR6GtkIV7FnLPvHto8kETXlj9AslpyWVex9u86Pj3c+QUGQD1HD+Xft/A6aPefUIDsiH6NcfHm4HLVbuEzqjDECGbiaynSvkah8XLf4sn29+IiFqkR48e4qmnnnJ9bLPZROPGjcU777xT6vHTpk0TzZo1E0VFRdV+zszMTAGIzMzMEvvy8/PF3r17RX5+frWvf6PTt29f8eyzz5bYfvbsWREcHCxSU1NL7NuyZYvQ6/Xi7rvvLrFv3bp1AhCXL18usS86Olr85z//8di2du1aMWTIEFG3bl3h7+8v2rZtK1544QVx6tSp6r6kCsnPzxd/+MMfRN26dUVgYKAYOXKkSEtLK/cc5Ap+ice///1v1zGXLl0SDz30kAgODhahoaFi0qRJIjs7u9TrHTp0SAQFBYnQ0FCP7RcuXBDBwcHiyJEjV/w6bzau9Z/3rVtPiubNPxLwutDpXhd/+cuPoqjIWoPPaBdC/CiEGCmE0AshcDyaCCH+nxCi/O/5KpORIcS0aUJ06yaEnEGTj6goIf7+dyGOHavcXdvt4tczv4o/fvtHUf/f9QWv43rETYsT7/30njiTdca79178HoQQ7YT8bL3r2mgT4lArIfYhxPaXhMgvqJkndz7x/Kqfmvt9rkh/M13kfptbcueefwsxFyE2PXCld+g1ynv/vhJqrSJUVFTEr7/+ysCBA13b9Ho9AwcOZOvWraWes3z5cnr16sVTTz1FeHg4HTp04O2338ZWzl8QiqvD9OnTufXWW4mOji6xb8aMGTzzzDNs3LiRM2fOVPs5Pv30UwYOHEijRo346quv2Lt3L5988gmZmZm8//77V3L75fL888+zYsUKFi9ezIYNGzhz5gwjR5Zfhz579qzHY+bMmeh0Ou6//37XMePGjWPPnj2sWbOGb775ho0bN5ZaUbNYLIwdO5Y+ffqU2Fe/fn0GDRrEtGnTrvyFKq4JrFY7/+//baB375kcOXKZpk1DWb9+Iv/4R39MppqcbtOhVYFSgb8gI0VPAX9DuuaMA7ZS+thSFQkNhSeekCP4O3fCM8/IGI+TJ+HNN6FZM7jzThkKW1BQ5mV0Oh1dIrrw0ZCPOPPCGZY/uJxR7UbhY/Ah5VwKf1rzJ5r8pwlD5g5hwe4F5Fu8VVFzuwe0qtBHOMygdXqtKhSwCE6XvtJxxQx1/Lui6qcaI2UTdKkVoTqd5L+XVUWoVKxWq5g+fboYO3asGDBggLjjjjs8HpXh9OnTAhBbtmzx2P7SSy+JHj16lHpO69atha+vr5g0aZL45ZdfxIIFC0TdunXF66+/XubzFBQUiMzMTNfj5MmTN2RFqLTqSXx8vHjttddcHwPi888/F/fdd5/w9/cXLVq0EMuWLfM4Z9euXWLw4MEiMDBQNGzYUIwfP15cuHBBCCFEQkJCiQrHMcdfbe3btxdTpkwpcV/Z2dkiKChI7N+/X4wZM0a89dZbHvsrWxE6efKk8PHxEc8991ypr7+0871BRkaGMJlMYvHixa5t+/btE4DYunVrpa9z7733iv79+7s+3rt3rwDEjh07XNu+++47odPpxOnTpz3Offnll8X48ePFF198UaIiJIQQiYmJokmTJlV4VQohrt2f98JCq+ja9VMBr4uxY78Uly/X5v0VCCHmCCFuEVqFCCFEZyHEdCFEKZWEKyE/X4j584UYONCzSlS3rhB//KMQycmVvtSlvEti2o5potf0Xh5VopB3QsTkZZPFhtQNwma3ee3WC4QQ4UJ+duY4N1qzhNgf5KgKTRPC5r3nc7HJ8aR1hBCWqp1qy7SJ9DfTRfr/Sxf2QrvnzvxzsiI0VyeEJcdLN3tlXFMVoWeffZZnn30Wm81Ghw4diI+P93jUFHa7nYYNG/LZZ5/RtWtXxowZw1/+8hc++eSTMs955513CA0NdT2ioqKq9qRCSI+M2njUwEDfG2+8wejRo0lJSeHuu+9m3LhxpDuSpjMyMujfvz+dO3fml19+YdWqVZw7d47Ro0cD8NFHH9GrVy8effRRV6UjKiqK9PR09u7dS7duJZ1rFy1aRJs2bWjdujXjx49n5syZiGq8rsWLF1NUVMTLL79c6v6wcvKOhgwZQlBQUJmP9u3bl3nur7/+isVi8ahctmnThqZNm5ZZuSzOuXPnWLlyJZMnT3Zt27p1K2FhYR6fs4EDB6LX69m+XfNPWbt2LYsXL2bq1KllXr9Hjx6cOnWK1NTUSt2P4tpDCIHdLn8ufHwMzJ07ktmzRzBv3v2EhdXmRJsvWhXoF+BhwA/4HelF1AR4CTkv5QX8/ORE2Zo1cOwY/P3vEBUF6enw8ccQHw/du8Mnn0BmZrmXqutflye6PcGWyVs4+PRB/nb734gOjSarMIsZv8+g76y+tPi4Ba+te43D6Yev+NZ9gacd/38fR83MEAyhEx0HzIPz6Vf8PCW4BaiL7BHaUrVT9SF6dCE6EGA9U6wq5NcQ/CMAARnFk2BvLKplDrBgwQIWLVrE3XffXe0nrl+/PgaDgXPuPhPIN41GjRqVek5ERESJjKC2bduSlpZGUVERPj4+Jc555ZVXeOGFF1wfZ2VlVU0M5eVBUFDFx9UEOTmV8tuoChMnTmTsWOm//vbbb/Pxxx/z888/M3jwYKZMmULnzp15++23XcfPnDmTqKgoDh48SKtWrfDx8SEgIMDja3TixAmEEDQuxVZ/xowZjB8/HoDBgweTmZnJhg0b6NevX5Xu+9ChQ4SEhFTLBXj69Onk55ddDjeV43yblpaGj49PCaEVHh5OWlpapZ4/MTGR4OBgj+W0tLQ0Gjb09BYxGo3UrVvXdd1Lly4xceJE5syZU+6oqPPzfvz4cWJiYip1T4prh4yMAp58ciXNm9fhH//oD0Dr1vVp3bp+Ld9ZcboiZ7Tfdfw7Dene9x7yrf9u5MTZILwyhxMTA2+8IcXQmjVyDH/ZMvjlF/l44QUt5+z228sdT29ZryVv3vEmr/d7nU3HN5GUnMTivYs5lnGMNze+yZsb3+TWqFsxx5kZ3X40dfyrEZYKPAm8jZSJ63EYQdd5GjKmgM9mOPsrNBpUrWuXiRH5qZ+DDGu9vYqnRxqxZFmwnbZJh2l3wuIh/6ycHKt/i1du91qkWt+tPj4+tGjR4oqe2MfHh65du/Ljjz+6ttntdn788Ud69epV6jm33XYbhw8fxm7XRv0OHjxIREREqSIIwNfXl5CQEI/HzUxcnBZoGBgYSEhIiGtKLzk5mXXr1nlUS9q0kSOUR44cKfOaTpFR3IvlwIED/Pzzzy7hZTQaGTNmDDNmzKjyfQshqu0mGxkZSYsWLcp8lNbX5E1mzpzJuHHjquxV8+ijj/LQQw9x++3l/2Zzmn/m5eVV+x4VtcPGjceJj/+EBQt28+67Wzh9ujKpmrVNPWQV6BCyMWUwsv6xEvmO3Ar4gCqPMZWFwQCDB0vn6tOn4YMPoH17yM+H2bOhXz/pWv3Pf8LZs+VeSq/T0zemLzPunUHan9KYN3Ieg1sMRq/Ts+XkFp5Y+QQR70cwevFovjn4DRZb1YK36yFrZiClIQC+rcH/TtAJsM+GrJzST74SrqRPqInqE6qWEHrxxRf56KOPqrXE4c4LL7zA559/TmJiIvv27ePJJ58kNzeXhx+W30pms5lXXnnFdfyTTz5Jeno6zz77LAcPHmTlypW8/fbbPPXUU1d0H+USECArM7XxCKi8R4hery/x9bBYSv4QF69+6HQ6l7DMyclh2LBh7Ny50+Nx6NChct+M69eXf7levuz5i2/GjBlYrVYaN26M0WjEaDQybdo0vvrqKzIdZW2nMM0spcydkZFBaGgoAK1atSIzM5OzFfyiK40rWRpr1KgRRUVFJUJ4y6tcurNp0yYOHDjAI488UuK6xW0irFYr6enpruuuXbuW9957z/W5mzx5MpmZmRiNRmbOnOk6z7m02aBBgwrvR3FtUFRk49VXf6Rfv1mcOJFJ8+Z12LhxIpGR19MfagbkO/B3wEFkFnsYcATZOhwJPIq0HPQSDRrA88/Drl2wbRs8+qis2B86JMfzo6Jg+HBZOSrl9587AaYAxnYcy3fjvuPk8yd598536dCwA4W2QhbvXcyw+cOI/CCS51Y9x+9nf6/0+93zyObplchUegDq/VH+678czhyv5osvh0HIytB+oIqrfO5CqMRrdI7Q3+heQtVpLLrvvvtEaGioiI2NFUOHDhUjRozweFSF//73v6Jp06bCx8dH9OjRQ2zbts21r2/fviIhIcHj+C1btoiePXsKX19f0axZM/HWW28Jq7XyI6U36vh8jx49xEsvveT6ODMzU/j7+5doll66dKnHeaGhoeKLL74QQgjx6quvitatWwuLpeyOuzvvvFM8/fTTHttsNpsICQnxuLbFYhHh4eHi/fffF7t27fJ4NG/eXEybNk0IIURWVpbQ6/Xiq6++8rjmkSNHBCA2b94shBDixIkT1W6WPnXqlDh06FCZj9JG/p04m6W//PJL17b9+/dXulk6ISFBdO3atcR2Z7P0L7/84tq2evVqj2bpvXv3enze/vGPf4jg4GCxa9cukZ6e7jrvhx9+ECaTSeTl5VV4PwqN2vp5P3DgoujW7TMBrwt4XUya9LXIyqqh0eqrTo4Q4jMhRJzwbK6+Tcj57kLvP2V2thAzZwpx222eDdaNGgnxf/8nxIEDlb6U3W4Xv535TTz33XOi4bsNPZqsO/yvg/j35n+L01mnK7zOfUK+6kdcF7YKcTDW0TT9FyEKq28BUyZ3OJ70w6qdZrfYRfpb6SL9zXRhTS/2XpqxTzZMLwwUwlaT1g2Vo6aapaslhCZOnFju41rmRhVCf/7zn0WjRo3Exo0bRUpKirjvvvtEUFBQlYTQ6dOnRYMGDcSoUaPEzz//LA4fPixWrVolJk6c6BKbjz76qOjevbs4duyYuHDhgrA5piBGjhwpXnzxRdd1ly5dKnx8fERGRkaJe3355ZdFt27dXB8/9thjIiYmRixbtkwcPXpUbNiwQdxyyy3illtuEXa7NskwdepUodPpxKRJk8T69etFamqq2Lx5s3jsscfECy+8cKWfwjJ54oknRNOmTcXatWvFL7/8Inr16iV69erlcUzr1q3FkiVLPLZlZmaKgIAAl+grzuDBg0Xnzp3F9u3bxebNm0XLli3F2LFjy7yPsqbGXnvtNY+JNEXlqI2f97y8ItGw4bsCXhd16vxTLF6856o999XFLuQ40xghhFFogihcCPE3IUQN+X7t2yfESy8J0bChpyjq00eIWbOEyKn89FORtUh8c+AbMXrxaOH7/3xdgkj/hl4Mmj1IzE2ZK3KLSp+a2yzkq/UVbu5Ll96XQiilhRDHKhZTVeYDx5MOqPqpmTMyRfqb6aIgpZggt1mFWOAvxVBm5QVlTXFNCaHrmRtVCGVmZooxY8aIkJAQERUVJWbNmlXq+Hx5QkgIIQ4ePChGjBghwsLChL+/v2jTpo147rnnXILkwIED4pZbbhH+/v4e4/PffvutiIyMdAmjoUOHlmqgKIQQ27dvF4BIdozC5ufni9dee020adNG+Pv7i9jYWPHYY4+5xvbdWbNmjRg0aJCoU6eO8PPzE23atBF/+tOfxJkzNWeY5jRUrFOnjggICBAjRowQZ8+e9TgG8Pg8CiHEp59+Kvz9/UsVg0JIQ8WxY8eKoKAgERISIh5++OEyDRWFKFsItW7dWsyfXw03tZuc2vp5nz79V9G/f6I4edK7v8yvXc4IIV4XQkQITRAZhBCjhBDrhRRNXqaoSIilS4W45x4h9HpNEAUHC/HYY0Js3y6EvfLPm56XLj795VNx24zbPKpEQW8HiYe/flisO7bOYxTfLoToKeQr/Ztzo/WyEPsCpBj6eXqVnr9SHHQ8oVEIUcVvrdzV5RgrruohhdDxRV64ySujpoTQFYWuXrhwgQMHDgDQunXr66JHQYWu1gxCCHr27Mnzzz/vao5W1DzfffcdL774IikpKRiN10ZC9PXC1fp5X7PmCP7+Jnr3bgrgUAKg13sphPO6wQJ8jYz12Oi2vQNy2mw8MvfMy5w+DYmJMHMmuA99dOwoJ87Gj4d69Sp9ucPph5mdPJuklCRSM1Jd26NDo5kQN4EJ8RNoVa8Vi4HRyAbqE0AAwNnHIfMzKOgPkV9Cg+pNp5VJG+AAsAh4oPKnFe0pIndJLoZGBkIeLdantv0xOPI5tH8V4t/y4s1WnWsqdDU3N5dJkyYRERHB7bffzu23307jxo2ZPHmymly5SdHpdHz22WdYrVc38PBmJzc3ly+++EKJoGuQggIrL7ywmrvumsNDD33F5ctyulKn092EIgjAhHx33gCkAI8j5cFu5OB5JDJW/YB3nzYyEl59VeacrVsnhY+fn2y4fu45mXM2Zgx8/z3Y7RVerkXdFrxxxxsc+eMRNk7cyCOdHyHEN4Tjmcf5x6Z/0HpKa3rN6MW5HZ8QbbdxCUhynlzH4TTkuwHO1MAklnN67JuqneZsmLadsyEsxWojN8HkWLWE0AsvvMCGDRtYsWIFGRkZZGRksGzZMjZs2MCLL75Y8QUUNySdOnViwoQJtX0bNxWjRo2iZ8+etX0bimLs2XOenj2n85//bANg2LBW+PoqsarREfgEOA18CLQEsoCPkWWNu4DlyEx3L6HXy1H72bPlmP3UqdClCxQVwaJFMGgQxMbC66/D8Yonu/Q6PX2i+/D58M9JezGN+ffPZ0iLIeh1erad2sYz3z7JqTUvAfD/inIotFnAryP49QWdDayJkOvluI9hjn+/pUqfOl2IDl1wGcaKdW78ybFqLY3Vr1+fL7/8soQp3rp16xg9ejQXLlzw1v15HbU0plAooGZ+3oUQTJnyMy+9tIbCQhsNGgQwc+a9DB3ayivXv3GxAz8gl82+QcsyiwaeQLpY15DB5M6d0qxxzhxw2mTodDLnbPJkuPde8PWt9OXOZp9l/u75JCYnkpJ+BJ4/Cf51CF46gYf96vLHdk1onv8y2MPAuA1atfbea7Eg4+EygJ+AWyt/as7iHCz7Lfj398fvNrefB0s2LHa8V468AH61Z/R5TS2N5eXlER4eXmJ7w4YN1dKYQqG4KcnLs3D33fP44x9XUVhoY8iQFuza9aQSQZVCj1YFOgK8jOyuOQ68gozymAjs8P5Td+oE//2vrBLNmwf9+8vW6u+/l0tmkZFyCW1X5WImIoIjeKHXCyQ/kczOST/R/ezvAGR3eZSPf/6Y1okvczbfCPoMLl/8DLzZTmAChjj+X0VzRZef0Oli92MKhqDm8v8ZN+byWLWEUK9evXjttdcocEsEzs/P54033ijTFVqhUChuZPz9jQQF+eDra+C//x3CypUPER5eS/E81zWxwL+Ak8AsoBtQCCQCPYCeyK6bshPpq4WfH4wdCz/+KJuq//pXKYIuXYKPPoK4OOjRAz77DLIq5wAe3yiepc36YxICom9nYO9XMep9+eigFBtH+IC7vhjAnJQ55Bbleud1XGGfUKnGiq4+oZ1XcmfXLNVaGtu9ezeDBg2isLDQFbKanJyMn58fq1evLtept7ZRS2MKhQK88/Oel2fBYrERGirPT0/P5+zZbNq3b1jBmYqq8TNy2WwhUOTYVh+5ZPYEcgmtBrDZZGVoxgxYvlxzqw4IgAcekEtnvXuXm3MGkICUbqOBTwsyWLH3C0b7vYivXtDrB9h2CQJNgYxqN4qE+AT6xvRFr6tmXls6cnnMhoyCi6ncacIqyPhXBtgh5OkQDHW0TE92/T/Y9XeImQC3JpV5jZqmppbGqj0+n5eXx9y5c9m/fz8gw0/HjRvnyj26VlFCSKFQwJX/vP/++1keemgJHTs2ZOHCUdXOwlNUhfPADGTg60nHNj2yS/hpYAAy4KImnvq8bLSeMQP27dO2t2oFkyZBQgKUEbuTDHRy3OkRHNrk9ETITmTXxebct8PG0axU1/FRIVFMiJuAOd5M6/rV6CHqi3Qo+C/y01JJsmZkYTtjI3BEID4d3PI7T62AjcMhrCPcnVL1+/ES15wQul5RQkihUED1f97tdsH772/hL39Zi8ViJyIiiF9/fYyIiOAavFuFJ1bk2s9UZJO1k9ZITyIzEFozTy2EzDmbMQMWLIBcx5KWwQBDh8oq0ZAhUMzS4i5gDfAc8B+Agt8gtSsIA8K6ni2hOpKSk1i4ZyGZhVr2Yo/IHiTEJzCm/RjqBVTS7+g9ZC7uXcDqyr+0vNV5FP5ciG93XwIGu2Vd5p6AZdGgM8LoHDBUvnncm9S6EFq+fDlDhgzBZDKxfPnyco8dPny4V26uJlBCSKFQQPV+3k+dyiIh4WvWrj0GwIgRbfjss2HUr1/5gGSFt9kP/A/ZT5Tt2BYITECKog4199Q5OXL0fsYM2LJF2x4RIStEkyZBy5aA1CODkZaRJ/n/7J15WFTl24DvmWHfUUBEUFQCxMzdUjOXTFwyrfxU3M2lRSvTss3SrCxLf6lZWgoupalZprlmpmlqruEGbogbAqJsssPM8/1xYGCcAXHF5dzXdS7OebfzvsPMnGee91mU9LScag55/0LGcKg7A+xtyc7P5vfjv7PwwELWn1yPXhQ/eGutNU8HPs2A+gPo/FBnbHQ2lMpRoA5gA1wCyimj5x3OI3NFJrqqOlyGlng+isAvlSEvBTruh0oNyzfgLabCBSGtVktCQgJeXl5otaXvXWo0GvT6Wxj74RajCkJ3N/7+/owaNYpRo0aVq/2WLVto27YtKSkpuLm5Gcv79+9PnTp1eO+9927PRFXMeOedd8jMzOTrr7+u6KmUi+v9vC9fHsXw4b+TkpKDg4M106d3ZMiQhuqW2F3DFeAHFC1RVIny1ij7Q91Q3KpuE9HRikC0cCGUDCHzxBMwdCjy/PM84uDAYRRT8LEA6UvgQhjoK4PtLgiobTJkYkYiiw8tZuHBhUQmRBrLK9tXJuzhMAbUH0ATnybm70EBAlEy0f8CPFe+JehT9aR/nQ5acBvrhsa6xLh/toWLW+CxeVBrUPkGvMXcLkFIzTVWgns519idonXr1vL666/ftvEvXrwomZmWExlaIjc3V+Lj402Ss0ZGRkqlSpUs5u1avHixaLVaeeWVV8zqSsvlJWI5T9vy5culdevW4uLiIo6OjlKvXj356KOP5PLly+We//Vy+fJl6dOnjzg7O4urq6u88MILZeYni42NFZSvRbNj2bLi3EG7d++Wdu3aiaurq7i5uUmHDh0kMjLSZKwDBw7I448/Lra2tuLr6yuTJ082qU9KShJnZ2eJiYm5tYu+TVzP5z0zM098ff8nMEGaNPlejh27dAdmqHJjGERks4g8L0pOs6L8ZtVEZKKIxJfa85aQmyvyyy8inTub5jlzcZGIBQuUmRgMkisiYsgTOeZdmH9skkhB6RneDyQckDc3vCneU7xN8p3VmVlHPtv2mZxNPWvaYZQoyx5c/qkbDAZJ+V+KJE9Mlvwz+aaVe0cpOcf2vl7+AW8xtyvX2A2apZuTWhSISkXlJvD09MTBofzbDDY2Nnh7e5v8Ivr666/5v//7P5yczF2Xw8PDGTt2LD/99JNJ+Ifr5f3336dXr140bdqUdevWcfjwYaZOncqBAwf44Ycfbnjca9G3b1+OHDnCxo0bWb16NVu3bmX48OGltvfz8yM+Pt7k+Oijj3BycqJTJyXgSEZGBh07dqR69ers2rWLf/75B2dnZ0JDQ8kv9JJJT0+nQ4cO1KhRg3379vHll18yYcIEvv/+e+O9PDw8CA0NZdasWbdt/RWFg4M1Cxd25733HmfHjhcIDCx/biqVO40GaAMsB04D41DcqOKAD4HqQB+UiIO3wUTWxgaeew7WrFEiVH/yiRKxOj2dPsOG4R0fT5xGw7INGyDlCri/pPSz/QkuppQ67CNVHuHLDl9y7o1zrOu7jrCHw7CzsiP6UjTvbnqXGtNq0H5hexYeWEhGXkZxlOk1KPEqy4FGo8GqWrEbvQn3c6qNG5GePv/8c1myZInxukePHqLRaMTHx8fsV+Tdxv2qEapRo4Z89dVXJmWWss/PmTNHunfvLvb29hIQECArV6406XPo0CHp2LGjODo6ipeXl/Tr18+YBX7gwIFmWoWi7PNXU6Rd+f333yUwMFDs7e3l+eefl8zMTJk/f77UqFFD3Nzc5NVXX5WCEr+Crl7Htea8efNmASQlJUVERAoKCsTV1VVWr15tNqdTp04Zs8E/+uijsmjRIotztgQlNEK7du0SQKZNm2axbdFcbjVRUVECyJ49e4xl69atE41GI3FxceUep0GDBvLCCy8Yr/fs2SOAnD1b/Ivy4MGDAsiJEydEROTbb78Vd3d3yc3NNbZ5++23JSgoyGTsBQsWiK+v73WvrSIo6/Oen6+XiRO3yLx5/935iancBnJEZJGItJBiDREi0kBE5opI+bXQN4ReL7Jpk0ifPvLpBx8IIlL/v//EYGMjMqSbSJSVohXav+y6stKn5aRJ+P5waT2vtYmWyOFTBxm0dJDkO+Ury/y3/FPN3p4tyROT5crSqzTNyf8pGqFlbtc1x1vJXaURmj17Nn5+fgBs3LiRP//8k/Xr19OpUyfeeuutmxTN7jJEoCCzYo7b4ND30Ucf0bNnTw4ePEjnzp3p27cvycnJgKLVa9euHQ0bNmTv3r2sX7+exMREevbsCcD06dNp3rw5w4YNM2oXit4HlsjKymLGjBksWbKE9evXs2XLFp599lnWrl3L2rVr+eGHH/juu+9Yvnz5Dc/5ag4ePEhaWhpNmjQxq5s3bx5dunTB1dWVfv36ER4eXt6XzYRFixbh5OTEK6+8YrG+pK3S1dStWxcnJ6dSjyItjSV27tyJm5ubydrat2+PVqtl165d5Zr7vn37iIyMZMiQIcayoKAgKleuTHh4OHl5eWRnZxMeHk6dOnXw9/c33vuJJ57AxqbYQDM0NJRjx46RklL8K7ZZs2acP3+e06dPl2s+dyOxsSm0aTOfDz/cwsiRa4mPv3LtTip3ObYUa4H2A0MAOyASJRaRLzAGxbn9NqDVKhGrFy3ipdGjccjP50CDBvz1+OMQvhI2FGm0F8DJU+Ue1sXWhRcavsCWQVs49dopJraZSEClALLys5gfPZ9favwCwF8z/iI6KfoaoymUjDAtJZ9BLiGgtYb8VMg6Z7nzPcoNZQFMSEgwPgBXr15Nz5496dChA/7+/vdfAkh9FiyroOiwPTPAyvGWDjlo0CDCwsIAmDRpEjNmzGD37t107NiRmTNn0rBhQyZNmmRsHxERgZ+fH8ePHycwMBAbGxscHBzwLiVeRkny8/OZNWsWtWsrBoA9evTghx9+IDExEScnJ0JCQmjbti2bN2+mV69eNzTnqzlz5gw6nQ4vL9OAdgaDgfnz5xsNeXv37s2YMWOMxrLXw4kTJ6hVqxbW1tdveLl27VrjdpMlyorDVeSsUBIrKysqVapEQkJCue5fJOC0aFGchMjZ2ZktW7bQvXt3Pv74YwAeeughNmzYYMxqn5CQYPY6FaXZSUhIwN3dHQAfHx9A+T8UCVH3CiLCokWHeOWVNVy5koeLiy3ffttZdYu/72gIzAW+ACJQYhKdAv6H4tjeEcW4uiM3mHyhTCq5ufECSnjIqb/+ypPvvQc/L4CO+WC3EZbOhX/+U9zwn3mm3HnOarrX5IPWHzDuiXH8e/5fFh5YyOaozfQ60otKmyoR8m0ITXyaMLD+QHo/3BsPB8s5w3RVdaAFyRAMaQZ0boWBFXU24FIHUg8qEaYdq9+S1+Nu4Ib+y+7u7pw7p0iE69evp3379oDyRXI3e4ypwCOPPGI8d3R0xMXFhYsXLwJKdPDNmzebaCiCg4MBiIkp/ZdSSS1HSY2Gg4ODUQgC5cHp7+9vYrtTpUoV4/1vZM5Xk52dja2trZkXxcaNG8nMzKRz586AYs/y1FNPERERUea9LSE3oamrUaMGAQEBpR7VqlW74bGvRXZ2NosXLzbRBhWVDxkyhJYtW/Lvv/+yfft2Hn74Ybp06UJ29vVlxy4S5O61nIOpqTn07fsr/fuv4MqVPFq29OPAgZfo2/eRa3dWuUepBLwJnEAxpOmEsuO/DugCPARMRQnVfGsZhWLJtM7VlSPffAMbL0JWbdDkwVOpsGcv9OwJvr4wejQcOVLusTUaDc39mjPr6VlMmz4N0QoNEhvgn+bP3gt7eXXdq1SdWpXuS7qzInoFuQW5pv2tNeiqKMKP/vxVz/P71E7ohjRCzz33HH369OGhhx7i8uXLxofff//9R0BAwC2dYIWjc1A0MxV173Ki1WrNHtCWNA9XazE0Gg0Gg2JJl5GRQdeuXZk8ebJZv6pVq5Z675JajpIaDUv3Kuv+pXE9fTw8PMjKyiIvL89kGyc8PJzk5GST+RkMBg4ePMhHH32EVqvFxcWFzMxMDAaDSYiIIkcAV1clQFtgYCD//PMP+fn5160Vqlu3LmfOnCm1vlWrVqxbt85inbe3t5kAWFBQQHJycrk0dMuXLycrK4sBAwaYlC9evJjTp0+zc+dO47oXL16Mu7s7K1eupHfv3nh7e5OYmGjSr+i65L2Ltiw9PT2vOZ+7hezsfBo3jiA2NhWdTsOECW14553HsbK69doAlbsRLdC58DiJoiGKQNESvQl8gLKtNgJFm3Tz1AaeBX5F0UOFOzhA7Q8hfiA4rYAvpsCH78OFC/DVV8rx6KOKlqh3b3C+Skup18O2bUri2KpVoVUr0Omw87aD5sB2OFj9IBGPRbDw4EL2x+9n5bGVrDy2kkr2lehdtzcD6g+gWbVmisG0rxX6eD0FcQWmEabdlJRapEbektfhbuGGPulfffUVI0eOJCQkhI0bNxp/4cfHx5dqN3HPotEo21MVcVxHfBJPT0/i4+ON1+np6cTGxl7XUhs1asSRI0fw9/c301Q4OipbdDY2NmZav5Jajtup0SgPDRo0ACAqqjiOyOXLl1m5ciVLliwhMjLSePz333+kpKTwxx9/AIqtTEFBAZGRkSZj7t+/H1AEIIA+ffqQkZHBt99+a3EOZXlQrl271mQOVx9z584ttW/z5s1JTU1l3759xrK//voLg8FQri3p8PBwnnnmGTMhJSsrC61Wa6JFK7ouEjibN2/O1q1bTYTrjRs3EhQUZNwWAyUPobW19V2db/Bq7O2t6dWrLrVru7N9+wuMG/eEKgQ9sASgaIHigDlAfSAbJa1HI6Al8BPF+c5unDGFf38EEgCce4LGA3SJUP8yxJ6G1avh2WeVKNW7dsHw4Uoaj8GDYft2xY7011/B3x/atoU+fZS//v5KORiTsDr/4czrj73OvuH7OPTyIca2GIuPsw/J2cl8u/dbHgt/jDrf1GHStkmkVkoFHiDPsVtqen0PcL96jb3zzjvi7e0tW7dulYMHD0r37t3FycnJzGvs6lg4rq6uMm/ePBERiYuLE09PT+nRo4fs3r1bTp48KevXr5dBgwYZPbuGDRsmTZs2ldjYWElKShK9Xm9xPpY8sMaPHy/169c3KRs4cKB069bNeG3Ja6ysOV/tNSYi0qhRI/n666+N11999ZVUrVrVJNZQET179pQePXoYrzt06CD169eXP//8U06dOiXr1q2ToKAg6dWrl0m/sWPHik6nk7feekt27Nghp0+flj///FN69OhRqjfZraBjx47SsGFD2bVrl/zzzz/y0EMPSVhYmLH+/PnzEhQUJLt27TLpd+LECdFoNLJu3TqzMaOjo8XW1lZefvlliYqKksOHD0u/fv3E1dVVLly4ICIiqampUqVKFenfv78cPnxYlixZIg4ODvLdd9+ZjDV+/Hhp167dbVj5rSU7O19SU68YP++5uQWSnp5T0dNSueswiMg/IhImIlZS7G1WRUQ+EJHzNzV688LRxhUVJL6reI8daCRysUQ8soQEkS+/FAkOLo5LBCI+PqbXRYdGoxy//CJyuPAmtiKSYXr/An2BbDi5Qfr+0lfsP7E3ep1Vn1Bdkicmy6WPL0laRolnZc4lxXNsESJ5t9ZzqzxUuNfYqlWrjL8GV61aVeahcud59913ad26NU8//TRdunShe/fuJvY55cHHx4ft27ej1+vp0KED9erVY9SoUbi5uRm3TN588010Oh0hISF4enpy9uzZ27Gcm2Lo0KEsWrTIeB0REcGzzz5rMQLw888/z6pVq7h06RIAS5cupXXr1rz44ovUrVuX1157jW7duplpaiZPnszixYvZtWsXoaGh1K1bl9GjR/PII48wcODA27a2RYsWERwczJNPPknnzp15/PHHTWL55Ofnc+zYMTMbnYiICHx9fenQoYPZmMHBwfz+++8cPHiQ5s2b06pVKy5cuMD69euNW6Kurq788ccfxMbG0rhxY8aMGcOHH35oFsNoyZIlDBs27Das/NYgIiQlZRIVlcS5c+nG7WQbGx3OzhWTP0nlbkaDogVajJIYYyLgAyQCH6Nkve8BbOFGYhIVaYW+BTIB3F8BdGCzHy5sK25YpQq8+SZERSmaoMGDwdFR2TqzRJGZxKhREKRXsrzmAptMm+m0OjrU7sCPz/1I4puJRDwTQRv/NpzlLImSiFa0dJ3Wlf4r+rMxZiN6azdw8FU6px667vXeragpNkqgpti4P8jOziYoKIilS5fSvHnzip7OA8O6desYM2YMBw8eNHqb3U3k5+s5cyaN1FQlkKajowa9PpmAgNrq513lOsgHfkNJ5fF3ifK6KHZE/VEyil0bPUomjFOFo70CcPZ5yPoVsrpD4CJwKsVWdO1a6NLl2jfZvBl+baNkoh+KsuN3Dc6knuHS4kvUulyLDwwf8A3fAODj7EM/NzsGaE5Rt+VMCBxhuh6Dnm1ntxF/JZ6qzlVpVb0VOq3u2jcsJ7crxUa5NUIGg8HoumswGEo97mYhSOXBwN7enoULFxq1PCp3hszMTObNm3dXCkFpaTlERSWRmpqDRgO+vi74+7uh06m2QCrXizXwfyhaoEPASyhJXo+giDLVgNdQMp+WjQ7FgwwUx309gMfrSoH9Oog7UXrntLTS60oSH2+0EypvlOkabjWoW1+x8xtbcywvN3kZdzt3Lly5wBfnTvHwWWiyZgIzds0gKVPJq/Zr9K/4T/en7YK29Pm1D20XtMV/uj+/Rv9avnlWIOXWCN0vqBohFZUHB4NBiItLJzExEwA7Oytq1XLHwcFa/byr3ELSgAUoep3jJcrbo2iJnqY0J+0MlKQfKcAKoLsIxDwCBYchYxTU/xKsLfTdskUxjL4WmzdD8zbgUXizPYB5vFkz8s/kk7EwA42zBtfXXcnT57HmxBoW/vsZa87upciM2kprRUPvhuy5sMdsDA2KOcLynst5rk45M7+WQYVrhEry2muvMWPGDLPymTNnljtruIqKisqdICND8fDx8nKkTh0PHBxuYwZylQcUVxQtUDTwB0qmey3wJ4qjfG3gcyDJrKcTik4JYAoo3sKVX1MK7JZBQqJZH0Bxkff1Ld27WKMBPz+lnS1QZB64unwrsvKxAg3IFUHSBVsrW56r8xy/Pb+YCzVhhpcVTao2psBQYFEIApBCu6lR60ehN9y9u0U3JAj98ssvtGzZ0qy8RYsW10yXoKKionI7kULXHgCtVkPNmu4EBFSienVXdStM5TajBZ5CsSE6BbwDVAbOAu+ipPIYAOw26TUSZcNtO7ALwLUv4AZWF+Dir5bTLel0MH26cl6aMDRtmtIOipOw/l6+lZQMrGjiRu9cG087R151LWBPrx+Y121emeMIwrn0c2w7u63MdhXJDX0rXL582RhcriQuLi6qXYaKikqFkZ+v58SJZOLiivOD2dlZ4eambn2p3GlqAJ8B51G2zZqixB/6AXi08HoBkIMP0Lew11QArQO4vaAUWC2C5HTLt3juOVi+HCzFb5s2TakvojOKE9x+lDBJ5aBk3jEjGi24FUZcT4nEVlc+b8v4K/HXblRB3JAgFBAQwPr1683K161bR61atW56UioqKirXS2pqDkeOJJGensvFi5nk59+9qniVBwk7irVAuwrPbYG9wCAULdE7jC6UTn4BYgEqjQQ0YLsLLuwsffjnnoPTpxVboMWLlQjUACWSIQPghSJ/gWI0XQ50vhY0QlAiwvQBqjqXnnWgJOVtVxHckCA0evRoxo4dy/jx4/n777/5+++/+fDDD3nnnXd44403bvUcVVRUVEpFrzdw5kwqJ08mU1BgwN7eijp1PLC2vnVuuyoqt4ZmKFqgcyjaourAZWAy9ahOB/7DAExDwKYm2Be6x+fPg+yc0ofV6aBNGwgLgxGFLu1LlphvqRV5j5XXTqiaohHSJ+iRghJjGSNMR9Kqeit8XXyNhtFXo0GDn4sfraq3Kt9NK4AbEoReeOEFpk6dSnh4OG3btqVt27b8+OOPzJo1664OpqaionJ/kZmZR3T0JZKSlACSVao4UqeOJ/b2qkG0yt2MJ4r90CkUe6KnAANjeBuAcLJIYTZ4DFWa262GuFPlG7pbNyVj/dGjcOiqoIdFdkJ/omQOuQZady0aBw3oFWHIiHuhRijlADqtjukdFVul0oShaR2n3dJ4QreaG7YcfPnllzl//jyJiYmkp6dz6tQps2SOKioqKrcLvd7AiRPJ5OQUYG2tJTCwMn5+rmi15c/Rp6JSsehQPMz+AI7yFHWox2EyceR7YsGhD+g8QZsFaQuU5KrXwsUFOndWzpcuNa2rB/ihCEF/XXuoogSscNX2mFs9QAM5CZCdyHN1nmN5z+VUczG1VarqVPWWuc7fTm5YECooKODPP//k119/NXpoXLhwgYyMCsrUrnLXM3/+fNzc3IzXEyZMMCZJvV0MGjSI7t2739Z7lGTTpk3UqVNHDSx6B9DptPj6umAwZPLUU4+Qnm7umqyicu8QhIbpjCEAgBmMJk+TD5ULHZBsl0DiBpTI1tegVy/l79XbYxqu23vMoiBk5QjODynnqUoC1ufqPMfp10+zeeBmqjhWAeDH536864UguEFB6MyZM9SrV49u3boxYsQIkpKUL6DJkyfz5ptv3tIJqtxdtGnT5pbFinrzzTfZtGnTtRveQ4wdO5Zx48ah05mqgbOzs6lUqRIeHh7k5uaa9dNoNPz2229m5ZYEuZMnTzJ48GB8fX2xtbWlZs2ahIWFsXfv3lu5FDO++eYb/P39sbOz49FHH2X37t3X7JOamsqIESOoWrUqtra2BAYGsnbtWmP9lStXGDVqFDVq1MDe3p4WLVqwZ09xTJL8/Hzefvtt6tWrh6OjI97eVQkL68uFwhxLlSvb07RpAAMGDGD8+PG3ftEqKneYMOyoClygCks4AK7PANZgdRYSt4L4o+Q8K8ML6+mnwcEBTp2Cffuuqiv8u5pypUfTVSs0mI4rLRN9ZHFbrY42/m1o4K3UxabEXvsGdwE3JAi9/vrrNGnShJSUFOzt7Y3lzz777H33YFO5fTg5OVG5cuWKnsYt459//iEmJobnn3/erO6XX36hbt26BAcHWxR4ysvevXtp3Lgxx48f57vvviMqKooVK1YQHBzMmDFjrj3ADbJ06VJGjx7N+PHj2b9/P/Xr1yc0NJSLFy+W2icvL4+nnnqK06dPs3z5co4dO8acOXOoVsLVd+jQoWzcuJEffviBQ4cO0aFDB9q3b09cnOJBk5WVxf79+3n//fdZtWoLn332PYcPR9O16zOAIkBqNBoGDx7MokWLSE5Ovm2vgYrKncAGJTQjwFTqILrfwLWfUqDdDumewHgUQ+sw4B/MJBpHR+haqPpZssS0ri3ggOJCH3nt+RgDK6YLhvQS+TmMgtABsz4BlRSt1snkk9e+wd3AjaSsr1Spkhw9elRERJycnCQmJkZERGJjY8Xe3v5GhrxjpKWlCSBpaWlmddnZ2RIVFSXZ2dkVMLObo0aNGvLVV1+ZlNWvX1/Gjx9vvAZkzpw50r17d7G3t5eAgABZuXKlSZ9Dhw5Jx44dxdHRUby8vKRfv36SlJQkIiIDBw4UlE+c8YiNjS11TvPmzRM/Pz+xt7eX7t27y5QpU8TV1dVYP378eKlfv75Jn/DwcAkJCREbGxvx9vaWESNGGOtSUlJkyJAh4uHhIc7OztK2bVuJjIws83UZOHCgdOvWzXidk5Mjr776qnh6eoqtra20bNlSdu/ebaxPTk6WPn36iIeHh9jZ2UlAQIBERESIiEhubq6MGDFCvL29xdbWVqpXry6TJk0y9h0xYoT06NHD4jzatGkjs2fPllmzZslTTz1lVg/IihUrypy/wWCQunXrSuPGjUWv15u1TUlJKfO1uBmaNWtm8r/Q6/Xi4+Mjn332Wal9Zs2aJbVq1ZK8vDyL9VlZWaLT6WT16tUm5Y0aNZL333/feH3lSq4cPJgge/bEyZ49cbJ69V8CyJkzZ0z61axZU+bOnVvuNd3Ln3eV+5tkEXEUJTLoHyIiucdEohGJ0ogc+UFEWhbWFh31ReR7EckoHmTFChEQ8fMTufr7oltht4nlm0/a92mSPDFZco/kFheeXyOyCJHVIWbtv9r5lTAB6bHM8vfhjVLW8/tmuCGNUGnJVc+fP4+zs/ONymR3KQJkVtBx69PAffTRR/Ts2ZODBw/SuXNn+vbta/wVnZqaSrt27WjYsCF79+5l/fr1JCYm0rNnTwCmT59O8+bNGTZsGPHx8cTHx+Pn52fxPrt27WLIkCGMHDmSyMhI2rZtyyeffFLm3GbNmsWIESMYPnw4hw4dYtWqVQQEBBjr/+///o+LFy+ybt069u3bR6NGjXjyySevSwswduxYfvnlFxYsWMD+/fsJCAggNDTUOMYHH3xAVFQU69atIzo6mlmzZuHh4QHAjBkzWLVqFcuWLePYsWMsWrQIf39/49jbtm2jSRPzJD4xMTHs3LmTnj170rNnT7Zt28aZM2fKPeciIiMjOXLkCGPGjEGrNf/olrS/uppJkybh5ORU5nH27FmLffPy8ti3bx/t27c3lmm1Wtq3b8/OnaXHN1m1ahXNmzdnxIgRVKlShYcffphJkyYZvzsKCgrQ6/Vmeb7s7e35559/EBEuXLjC0aOXyM3VY2OjIyioMra2ejQajdl6mzVrxrZtd2/0WhWV8uIOFIZTVAIs2gSC7VOgEchZD7l/Af+hpJO3Bw4Aw1FiEo0GTkLHjorh9LlzcPXn9HrthKpZCKxYpBFKPwYFpi5oD4RGqGfPnjJs2DARUTRCp06dkitXrki7du1k0KBBt1JQu+Vcv0YoQ0wl7zt5lJDur0F5NULjxo0rXllGhgCybt06ERH5+OOPpUOHDiZjnDt3TgA5duyYiIi0bt1aXn/99WvOJywsTDp37mxS1qtXrzI1Qj4+PiaagJJs27ZNXFxcJCcnx6S8du3a8t1335U6j5IalYyMDLG2tpZFixYZ6/Py8sTHx0e++OILERHp2rWrDB482OJYr776qrRr104MBoPFeldXV1m4cKFZ+XvvvSfdu3c3Xnfr1s3k/yJSPo3Q0qVLBZD9+/eXttxSuXz5spw4caLMIz8/32LfuLg4AWTHjh0m5W+99ZY0a9as1HsGBQWJra2tvPDCC7J3715ZsmSJVKpUSSZMmGBs07x5c2ndurXExcVJQUGB/PDDD6LVaiUwMFCio5OMWqCYmGTJz9dLdna2NGrUSPr06WN2vzfeeEPatGlT7tdE1Qip3M3EiIhWlCfBIRGRK2sUrdARZ5FTx0u0TBaRqSJSS0yfHx1FprYT0SLy6qumg18o0Sz+2nPJOZAjyROTJS2ixHPTYBBZ7qFohS7tMWkfnRQtTECcJjmV+n15I9xVGqEpU6awfft2QkJCyMnJoU+fPvj7+xMXF8fkyZNvlYymcht45JFHjOeOjo64uLgY7TwOHDjA5s2bTbQEwcHBgKLVKI26desa23fq1AmA6OhoHi2KcFpI8+bNSx3j4sWLXLhwgSeffNJi/YEDB8jIyKBy5com84uNjSUmJoazZ8+alE+aNMlsjJiYGPLz803y5FlbW9OsWTOio6MBJSzEkiVLaNCgAWPHjmXHjh3GtoMGDSIyMpKgoCBee+01/vjjD5Pxs7OzzbQber2eBQsW0K9fP2NZv379mD9/PgaDgetBLOUbKieVKlUiICCgzMPKynJ27BvFYDDg5eXF999/T+PGjenVqxfvv/8+s2fPNrb54YcfEBGqVauGra0tM2bMICwsDK1Wi7W1Fp1OQ82abtSq5Y6Inp49eyIizJo1y+x+9vb2ZGVl3dI1qKhUFLWAIn+r/wE4dgRtTdBegeSFYPz+cEfRAp0A1lKcS2M9jP5LKa48H/QlvCqromT4gHJFmS7yHNPHlwisqNEUa4VSTe2EarrVRKvRkpGXwcXM0u0I7xZu6JvPz8+PAwcOsHTpUuMDasiQIfTt29fEePr+wAGoqJAADuVuqdVqzR6U+fnmbpbW1qaB5jQajfGBnJGRQdeuXS0Ks1Wrlh4efe3atcZ73ej//1r9MjIyqFq1Klu2bDGrc3Nzw83NjcjISGNZpUqVbmgenTp14syZM6xdu5aNGzfy5JNPMmLECKZMmUKjRo2IjY1l3bp1/Pnnn/Ts2ZP27dsbEw17eHiQclVY+w0bNhAXF0evInfWQvR6PZs2beKpp54CwNnZmbS0NLP5pKamGvP6BQYGAnD06FEaNmx4XeuaNGmSReGwJFFRUVSvXt2s3MPDA51OR2KiaRbsxMREvL29Sx2vatWqWFtbm3jQ1alTh4SEBPLy8rCxsaF27dr8/fffZGZmkpycStWqVenbN4xatWpRo4Yber0BW1sr8vPz6dmzJ2fOnOGvv/7CxcXF7H7Jycl4enpe66VQUblnGAMsB34EPtVoqVp5JCSNAdvFkDQKqpR0NtECnQqPGGAWSATUSoHxV0DvC/QDRgCNFO+xPSjeY0PKnkdRYEXJEvSJeuNWGW71IeFPE88xAFsrW6q7Vud06mlOJJ+gilOVm3wlbi/XrRHKz8+ndu3anDhxgr59+/LFF1/w7bffMnTo0PtQCAJFsnasoKP8geE8PT2Jjy92p0xPTyc29vpcFxs1asSRI0fw9/c30xY4OjoCYGNjY2YfVqNGDWO7Io+gOnXqsGvXLpN2//77b6n3dnZ2xt/fv1Svw0aNGpGQkICVlZXZ3Dw8PMzKLQlCtWvXxsbGhu3btxvL8vPz2bNnDyEhIcYyT09PBg4cyI8//si0adP4/vvvjXUuLi706tWLOXPmsHTpUn755RejfVHDhg2JiooyuWd4eDi9e/cmMjLS5Ojduzfh4eHGdkFBQey7ys1Vr9dz4MABowDUoEEDQkJCmDp1qkVtUmpqamkvLy+99JLZHK4+fHx8LPa1sbGhcePGJv8bg8HApk2bytTytWzZkpMnT5rM9fjx41StWhUbGxuTtgaDFSkpVhw4cJoNGzbQrVs3rKy0JkLQiRMn+PPPP0v1NDx8+PB1C4gqKnczjwEtUCIHzYTCRKz2YHUKEsrKk1EbmAKa87CglWJOpMsDIoDGyqhdC8NY/AGUkb0DCgMrVrMQT+h+8Ry7kf00Hx8fiYqKupVbdHeM+9Vr7J133hFvb2/ZunWrHDx4ULp37y5OTk5mNkJX26G4urrKvHnzRESxBfH09JQePXrI7t275eTJk7J+/XoZNGiQFBQUiIjIsGHDpGnTphIbGytJSUkWvZdERHbu3ClarVa+/PJLOX78uHz99dfi5uZWpo3Q/Pnzxc7OTqZPny7Hjx+Xffv2yYwZM0RE8Zh6/PHHpX79+rJhwwaJjY2V7du3y3vvvSd79uyR0rjaa+z1118XHx8fWbdunRw5ckQGDhwo7u7ukpycLCIiH3zwgfz2229y4sQJOXz4sDz99NNGO5ipU6fK4sWLJTo6Wo4dOyZDhgwRb29v42swY8YMady4sfFeFy9eFGtra6MNVknWrl0rtra2cvnyZRERWbx4sdjb28s333wjx48fl//++09eeOEFcXV1lYSEBGO/Xbt2ibOzs7Ro0ULWrFkjMTExcuDAAfnkk0/kiSeeKPV1uFmWLFkitra2Mn/+fImKipLhw4eLm5ubydz69+8v77zzjvH67Nmz4uzsLCNHjpRjx47J6tWrxcvLSz755JMSr8M6WbjwF/ntt50yc+ZPEhRUV5o1a2b0NMvLy5NnnnlGfH19JTIyUuLj441Hbm6xB0tmZqbY29vL1q1by72me/nzrvLg8KsopjzuUmg1en6YYiv0X1uR9MxrD/Dnn4r3WEcXEX1vEbFWRjQgUi1OGXzdxWsOk7UtS5InJsuV5VeKC1MOKjZCy1wUm6ESvPT7S8IE5P1Nlu0+b4TbZSN0Q4LQp59+KgMHDizVuPJu5n4VhNLS0qRXr17i4uIifn5+Mn/+fIvG0mUJQiIix48fl2effVbc3NzE3t5egoODZdSoUUaDt2PHjsljjz0m9vb213SfDw8PF19fX7G3t5euXbuWy31+9uzZEhQUJNbW1lK1alV5tYSRX3p6urz66qvi4+Mj1tbW4ufnJ3379pWzZ8+WOoerBaHs7Gx59dVXxcPDw6L7/Mcffyx16tQRe3t7qVSpknTr1k1OnTolIiLff/+9NGjQQBwdHcXFxUWefPJJE8Ply5cvi52dnTG0xJQpU8TNzc2i+3hubq64ubnJ9OnTjWWLFi2Sxo0bi7Ozs1SpUkU6d+4sBw4cMOt77NgxGTBggPj4+IiNjY3UqFFDwsLCbsiI+nr4+uuvpXr16mJjYyPNmjWTf//916S+devWMnDgQJOyHTt2yKOPPiq2trZSq1Yt+fTTT41CdXZ2nkydOkeqVash1tY24ulZRV555RVJTU019o+NjTUL2VB0bN682dhu8eLFEhQUdF3ruZc/7yoPDgUiUluUh/XXIiI5hwtd6bUi0f9ce4D8fBEvL0UYWrdOFOvoj0WkmsiLs5SBX/lGRJ4Tkb9E5Grj5gIR2Sx5sesleWKypE5PKa7S54n8ZKMIQ1dOmfSasn2KMAHp9XOvG1m2RW6XIKQRuX4LzKLAiU5OTsaIryX59ddfb0ZJdVtJT0/H1dWVtLQ0MzuDnJwcYmNjqVmzppnRq4pKeXjrrbdIT0/nu+++q+ip3LWICJcuZXHuXDoGg6DTafD3d8Pd/ca31h977DFee+01+vTpU+4+6udd5V7hG2AkigH1cUB3qg3k/Q1Zg6DeHLC+hrnvyJHwzTcwaBDMm1dYmA+rd0PXllD9DJz2L7TGCEGxI+oPbAReB84jeY6kfnEaRIfrqO1onQtDVK9rBCn/Qatfwe9Z4y1XHl1J96XdaVy1MXuH35qo92U9v2+GG/Iac3Nz4/nnnyc0NBQfHx9cXV1NDhWVB5X333+fGjVqXLdH2IOEwSDEx2dgMAjOzjbUret1U0LQpUuXeO655wgLC7uFs1RRuXsYhOIbdgpYCeDxulJhtwLiz117gCJnjRUrwJjixxratQQ74GwNOPQJim1qFIogVAV4HjgPgMYmE52XYgNZcH4OUKjwKMVOqKSN0A3oW+4o1+U1ZjAY+PLLLzl+/Dh5eXm0a9eOCRMm3KdG0ioq14+bmxvvvfdeRU/jrkan01KzphuZmflUqeKIRnNz2eI9PDwYO3bsLZqdisrdhyPwCvApSoDF55y7gsYXtOfh0g/g94Hizl4aLVtCtWoQFwcbNsAzSooaHID2KJ5jq9+HR0YCC1F0UMfMhtH57kGfWI+C802wqTMK6KZ4jgGkRpq0reVeC4C03DQuZ1/Gw8HjRpd/27kujdCnn37Ke++9h5OTE9WqVWPGjBmMGDHids1NRUXlPsBgEM6dSyMpKdNY5uxsi7e3000LQSoqDwojUfKQ7QB2aqyg0itKhfViuJxadmetFgozBJjlHiuZhBVX4FXAPE4XgFU1ZYurIK4JcA7YVqpGyN7aHl8XX+Du9xy7LkFo4cKFfPvtt2zYsIHffvuN33//nUWLFqnbACoqKhbJzs4nOjqJxMRMzp1LJz/fPDWPiorKtfEG+haeTwWoNBywBetjEL/h2gP07q38XbUKSgYeLRKE/gWMsQ8TLA5h5bsHAP2FBojeGogH98IgvZmnIS/VpP294kJ/XYLQ2bNn6dy5s/G6ffv2aDQaLly4cMsnpqKicu8iIiQmZhAVlUR2dgFWVlpq1XLH2lp37c4qKioWGVP4dwUQo6sMjoXCjX4eZF0jGFDTplCzJmRmwpoS4aSrAQ1RfDHXFRVaDqCrrRSDxv4y6O3QJ9RT2tm4g2MNpcFVWqGHKj0E3GeCUEFBgZl3hbW1tcUIxioqKg8m+fl6TpxI5ty5dETA1dWWunU9cXNTPbNUVG6GukBHwABMA/AcpVTYboK4Q2V31miKjaav3h4zS8LaCiWBq+nWtUYDVr5F22NPFbajhJ2QZYPpE8knyp5bBXNdxtIiwqBBg7C1tTWW5eTk8NJLL5m40N/N7vMqKiq3D73eQFRUEvn5BjQaDX5+Lnh6Oqi2QCoqt4gxwHqUGNEf2TWgknVzyN8JV+aAvhHoytC69uoFn38Oa9dCerqSnR6U7bGJwAYgD7DRAdOBHijCULHXl67aXvJPhFJwfhA0K7yXewOIW2WWauO+3BobOHAgXl5eJq7y/fr1M3OhV1FReTDR6bR4eDhgb29FSIgHXl437xWmoqJSzJPAI0AW8B2Ax2tKhe0vkBBfaj8A6teHoCDIyVFshYpojGKElAH8XVT4HEqms2omQ1j5HgZAf77E9pl7oUaoDBf6u5nr0gjNMwZiUlFRUVHIyspDq9VgZ6ck9K1a1ZmqVZ3RalUBSEXlVqMB3gQGAF8Do12exzbBG3QJkLQIfMaW7kpftD02cSIsXQr9+inlWqALEI7iPfZUUYfngG7ANuAXYCZWPkoSckOaAcMVA1pnbbHnWNphMOSDVvkuqO1eG4Dk7GSSs5OpZH9jybBvNzcUUFFFpTz89ttvBAQEoNPpGDVq1B2556BBg+jevXuZbfz9/Zk2bdodmQ/ABx98wPDhw+/Y/e4UIkJCQgbR0Zc4dSoVg0FRn2u1mgoXgmbPnk3Xrl2v3VBF5R6kF+ADxAM/aazB/SWlQrsI0jKu0bnQTmjDBkhJKS4vaSdkEv9QB7QB3gZAY7sTnZdSUxBXmIDV0R+snMGQB+nF8YccbRyp6qRojmKSY8q/wDuMKgipXBdt2rQpt1Dz4osv0qNHD86dO8fHH398eyd2l5KQkMD06dN5//33zep27tyJTqejS5cuZnVbtmxBo9FYzChvSZDbvHkznTt3pnLlyjg4OBASEsKYMWOIi4u7VUsxIS9Pz6FDcbz66kiefLIuTZvWpEeP50lMTCyzX0ZGBiNHjsTX1xd7e3tCQkKYPXu2sT45OZlXX32VoKAg7O3tqV69Oq+99hppaWnGNgcOHCAsLAw/Pz/s7e2pU6cO06dPN7nPCy+8wP79+9m2bdutXbiKyl2ADVC4Icb/AKn0klJqcwjiNpXdOSQE6tWD/Hwl0nQR7QFbIBaIttTRF/AHDOh8FT97YyZ6jbbE9likSa97YXtMFYRUbgsZGRlcvHjRmIbF2dm5oqdUIcydO5cWLVpQo0YNs7rw8HBeffVVtm7delMhKL777jvat2+Pt7c3v/zyC1FRUcyePZu0tDSmTp16M9O3SHJyNkeOXGTixPfYtm0jERE/8vffW4iPj+e5554rs+/o0aNZv349P/74I9HR0YwaNYqRI0eyqtBe4cKFC1y4cIEpU6Zw+PBh5s+fz/r16xkyZIhxjH379uHl5cWPP/7IkSNHeP/993n33XeZOXOmsY2NjQ19+vRhxowZt3z9Kip3Ay8CTsAhYKNVFXAo/OzlzYXcvLI7F8UUKuk95gi0Kzz//eoORSheYla++wHQny8RF6xoe6wUz7G7WRC6oezz9zL3a/b5GjVqyFdffWVSZin7/Jw5c6R79+5ib28vAQEBsnLlSpM+hw4dko4dO4qjo6N4eXlJv379JCkpSUSUTO5clQHcUvb5zZs3l5opfPny5RISEmLMmj5lyhSTvjk5OTJ27Fjx9fUVGxsbqV27tsydO1dERAoKCuSFF14Qf39/sbOzk8DAQJk2bZpJ/6uzzZfntTpz5ow888wz4ujoKM7OzvJ///d/kpCQYKyPjIyUNm3aiJOTkzg7O0ujRo1kz549IiJy+vRpefrpp8XNzU0cHBwkJCRE1qxZY+xbt25dmTlzptkcrly5Ik5OTnL06FHp1auXfPrppxZfw5SUlDLnf+7cObGxsZFRo0ZZXKul/jdKQYFeYmNTZM+eONm8OVqsrKxl0aIlxvro6GgBZOfOnaWOUbduXZk4caJJWaNGjeT9998vtc+yZcvExsZG8vPzS23zyiuvSNu2bU3K/v77b7GxsZGsrCyLfe7lz7uKiojI66Ikj39KRCRrV2FWemuRmMiyO548qWSj1+lEEhOLy78pHPDx0jp+LyJIQVKYJE9MluRJyWIoKMxWf2KOkoV+U3uTHp9u/VSYgAxYMeC613c1tyv7vKoRuhYioNdXzHEbEtV99NFH9OzZk4MHD9K5c2f69u1LcnIyAKmpqbRr146GDRuyd+9e1q9fT2JiIj0LQ7NPnz6d5s2bM2zYMOLj44mPj8fPz8/sHi1atODYMWWf+JdffiE+Pp4WLVqwb98+evbsSe/evTl06BATJkzggw8+YP78+ca+AwYM4KeffmLGjBlER0fz3Xff4eTkBCi57nx9ffn555+Jioriww8/5L333mPZsmU3/HoYDAa6detGcnIyf//9Nxs3buTUqVP0KtpHB/r27Yuvry979uxh3759vPPOO1hbK8aAI0aMIDc3l61bt3Lo0CEmT55snG9ycjJRUVE0adLE7L7Lli0jODiYoKAg+vXrR0RExA0lJvz555/Jy8srNdeWm5tbqX07deqEk5NTqUfdunVN2mu1GrKzlZhhFy+eoKAgn86dQ431wcHBVK9enZ07d5Z6zxYtWrBq1Sri4uIQETZv3szx48fp0KFDqX2KMk1bWZXu25GWlkalSqaGmE2aNKGgoIBdu3aV2k9F5V7mdZRtnY3AQftmoGsImnxInQNlZXyoXRuaNFGeM7/8UlxeFGV6B3DZUscnANBWXoHGDigAfWKhVqhkqo0S32X3gkbourzGHkgMBvjnv4q59+MNy44JcQMMGjTImKV70qRJzJgxg927d9OxY0dmzpxJw4YNmTRpkrF9REQEfn5+HD9+nMDAQGxsbHBwcMDb27vUe9jY2ODlpVjTVapUydj2f//7H08++SQffPABAIGBgURFRfHll18yaNAgjh8/zrJly9i4cSPt27cHoFatWsZxra2t+eijj4zXNWvWZOfOnSxbtsworF0vmzZt4tChQ8TGxhqFuoULF1K3bl327NlD06ZNOXv2LG+99RbBwcEAPPTQQ8b+Z8+e5fnnn6devXpm8z179iwigo+Pj9l9w8PD6VfosdGxY0fS0tL4+++/adOmzXXN/8SJE7i4uFC1quVIsGUxd+5csrOzS623trZGRBBRhCCNRkPNmu7k5+s5fvwKNjY2ZoJWlSpVSEiwHJ4f4Ouvv2b48OH4+vpiZWWFVqtlzpw5PPHEExbbX7p0iY8//rhMY/MdO3awdOlS1pSMlgs4ODjg6urKmTNnSu2ronIvUxMlP/zPKLZC8z1fh4RBYPszXBwHZXxP06sX7N2reI+9/LJSVh3FN/8gSpTpfld3CgS80GguovO9QsFJZwrOF2DlYwWudRVbodwkyI4HB+V7ryi69InLd29QRVUj9IDxyCOPGM8dHR1xcXHh4kXF8O3AgQNs3rzZRCtQ9PCPiSnd4r9u3brG9p06dSq1XXR0NC1btjQpa9myJSdOnECv1xMZGYlOp6N169aljvHNN9/QuHFjPD09cXJy4vvvv+fs2bMW2y5atMhkLZYMZ6Ojo/Hz8zPRbIWEhODm5kZ0tGIxOHr0aIYOHUr79u35/PPPTV6L1157jU8++YSWLVsyfvx4Dh48aKwrEjKujsZ+7Ngxdu/ebRRIrays6NWrF+Hh4aWuuzRE5Ibj9FSrVo2AgIBSD2/vahw7dpkLF64Y+9jZWeHsbFvGqGXz9ddf8++//7Jq1Sr27dvH1KlTGTFiBH/++adZ2/T0dLp06UJISAgTJkywON7hw4fp1q0b48ePt6hVsre3J6tkXiUVlfuMorQbi4ELLr0BD9BdhMQlZfSiOAnr1q1Q0kbRLMp0STTA4wBYVTsKgD6uUCNkZQ8uyvOipJ1Q7UqKC31SVhJpOcVOD3cTd4VG6JtvvuHLL78kISGB+vXr8/XXX9OsWbNr9luyZAlhYWF069aN33777fZMTqtVNDMVgbb8cqpWqzXbWrGU+qRoS6cIjUZjTJqbkZFB165dmTx5slm/sjQOa9euNd7L3t6+3HO+mmv1XbJkCW+++SZTp06lefPmODs78+WXX5a69fHMM8/w6KOPGq+rVatmsd21mDBhAn369GHNmjWsW7eO8ePHs2TJEp599lmGDh1KaGgoa9as4Y8//uCzzz5j6tSpvPrqq3h4eACQkpKCp6encbzw8HAKCgpMNEUigq2tLTNnzsTV1RWXwoivaWlpZlqX1NRUY+DSwMBA0tLSiI+Pv26tUKdOncr0qqpSpRpLl24mOzufKlUcTfKEeXt7k5eXR2pqqsn8EhMTS9UWZmdn895777FixQqjp9wjjzxCZGQkU6ZMMWoBAa5cuULHjh1xdnZmxYoVZu9bgKioKJ588kmGDx/OuHHjLN4zOTnZ5LVXUbnfeBRFNPkH+Fpry2duwyD1M9AshCvDwNnRcsfq1aFFC9ixA37+GV5/XSl/GvgUJXx1PmD20WsF/IqV7yagabHnGCipNtKiFM8xH+VHsYutC16OXlzMvEhMSgyNqja6RSu/dVS4Rmjp0qWMHj2a8ePHs3//furXr09oaKhRS1Eap0+f5s0336RVq1a3d4IajbI9VRHHdfzS9/T0JD6+OKpoeno6sbGx17XURo0aceTIEfz9/c20A0UpVGxsbNDrTTOI16hRw9iuLGGjTp06bN++3aRs+/btBAYGotPpqFevHgaDgb///tti/+3bt9OiRQteeeUVGjZsSEBAQJmaKmdnZ5M1WBK06tSpw7lz5zh37pyxLCoqitTUVEJCQoxlgYGBvPHGG/zxxx8899xzJsFF/fz8eOmll/j1118ZM2YMc+bMAaB27dq4uLgQFRVlbFtQUMDChQuZOnUqkZGRxuPAgQP4+Pjw008/Acr2m1arZd++fSbzPXXqFGlpaQQGBgLQo0cPbGxs+OKLLyy+Bpbc74uYO3euyRwiIyPZu3c/q1b9zQ8/bGDatB9wcrIhJMTTLFlq48aNsba2ZtOmYlfdY8eOcfbsWZo3b27xfvn5+eTn56O9SsDX6XRGYRyU926HDh2wsbFh1apVZho1gCNHjtC2bVsGDhzIp59+avF+MTEx5OTk0LBhBf2QUVG5QxRphWYDGZVHgliBzX8QZ/m71Igl77FmgCeQjhJH0YxCz7FqiwAwpBowZBR+fkvaCZXgbrcTqnBB6H//+x/Dhg1j8ODBxpgiDg4ORERElNpHr9fTt29fPvroIxObjAeZdu3a8cMPP7Bt2zYOHTrEwIED0V2nfdGIESNITk4mLCyMPXv2EBMTw4YNGxg8eLBR+PH392fXrl2cPn2aS5cumTzArsWYMWPYtGkTH3/8McePH2fBggXMnDmTN9980zj2wIEDeeGFF/jtt9+IjY1ly5YtRmPohx56iL1797JhwwaOHz/OBx98wJ49e65rjVfTvn176tWrR9++fdm/fz+7d+9mwIABtG7dmiZNmpCdnc3IkSPZsmULZ86cYfv27ezZs4c6deoAMGrUKDZs2EBsbCz79+9n8+bNxjqtVkv79u35559/jPdbvXo1KSkpDBkyhIcfftjkeP75543bY87OzgwdOpQxY8awatUqYmNj2bp1K3379uWxxx6jRYsWgCKEffXVV0yfPp0hQ4bw999/G+f54osvlhm/6eqtsSpV/MjLc8XFpSp+fjVp3LgOQUGVsbU1Vxy7uroyZMgQRo8ezebNm9m3bx+DBw+mefPmPPbYY8Z2wcHBrCiMVeLi4kLr1q1566232LJlC7GxscyfP5+FCxfy7LPPAsVCUGZmJuHh4aSnp5OQkEBCQoLxPXj48GHatm1Lhw4dGD16tLE+KSnJZI7btm2jVq1a1K5d+/reFCoq9xhdgYeAVGCetQ/YP6NUZM9R4gWVRo8eyg/uf/+F06eVsqIo06BEmTajPuCExjYOrafipm/UChmTr0aa9LjbBaEKdZ/Pzc0VnU4nK1asMCkfMGCAPPPMM6X2+/DDD6V79+4icm136ZycHElLSzMe586duy/d59PS0qRXr17i4uIifn5+Mn/+fIvu81e/1q6urjJv3jzj9fHjx+XZZ58VNzc3sbe3l+DgYBk1apQYDIqL5LFjx+Sxxx4Te3v7Ut3nRRS3bUq4zRdR5D5vbW0t1atXly+//NKkPjs7W9544w2pWrWq2NjYSEBAgERERIiI8r8cNGiQuLq6ipubm7z88svyzjvvSP369Y39b7X7fG5urvTu3Vv8/PzExsZGfHx8ZOTIkcb3yMiRI6V27dpia2srnp6e0r9/f7l06ZJx7LVr10q1atVEr9eLiMjTTz8tnTt3tjivXbt2CSAHDhwwvhbjx4+X4OBgsbe3l5o1a8rw4cON4QxKsnHjRgkNDRV3d3exs7OT4OBgefPNN+XChQtlvhZF5OfrZf/+C7JnT5wcPJggV67kXrNPdna2vPLKK+Lu7i4ODg7y7LPPSnx8vEkbwOT9FR8fL4MGDRIfHx+xs7OToKAgmTp1qvH9ZSn0AleFahg/frzF+ho1apjcu0OHDvLZZ5+VOf979fOuonI134ri+V5TRAoy/i50pbcVOX2k7I5t2yqu9JMnF5f9UjhYgIgYLHXqICJIxu+7JXlismT+makUZyUoLvSLNCL5GcbWE7dMFCYgg38bfOMLlNvnPl+hglBcXJwAsmPHDpPyt956S5o1a2axz7Zt26RatWomsW3KevCV9qV5vwlCKncnBoNBmjZtKosXL67oqVyTpKRMiY1NkYICfUVP5aY5fPiweHl5SWpqaqlt1M+7yv1EpohUFuWh/rPBIHKsriIM7X9DxGBRmlGYPVsRhBo1Ki5LFxGbwsGOWur0sYggOf9Nk+SJyZI+P7246pcqijCU9K+xaPHBxcIEpFVEqxtfoKhxhADFgLJ///7MmTPHaIh6Ld59913S0tKMR0lbEBWV241Go+H777+noKDg2o3vICJCUlIm6em5xjIPDwf8/d3Q6e6prwWLxMfHs3DhQqNRuYrK/Y4DUOgEz1SNBjwKjZ9tlsIli0GBFJ5/XrFJ3b8fThS6uDujpBeDUrzHiuyEfgag4EIBoi901rEQYfpu3xqr0G88Dw8PdDqdWX6i0jxPYmJiOH36NF27dsXKygorKysWLlzIqlWrsLKysmg4a2tri4uLi8mhonInadCgAf3796/oaRjJz9cTE5PCmTNpxMamUFBQfjuve4X27dsTGhp67YYqKvcRI1HykP0L7HAbALiB7gIk/Fx6Jw8PKPLYXLq0uLwouKJFO6FmgDVajx1o7AxKYMWLhU40RXZCJXKOFQlC8RnxZOZlXt+i7gAVKgjZ2NjQuHFjE88Tg8HApk2bLHqeBAcHc+jQIRMvl2eeeYa2bdsSGRlpMcqxiopKMWlpOURFJZGamoNGA1WqOKHTVWymeBUVlVtDFaDoJ9cUrS24FOboM8yHzNKDp1r0HisShP4BUq7uYA80RaMRdNUUJwWjwbQFzzF3e3cq21cG7k6tUIXrwEePHs2cOXNYsGAB0dHRvPzyy2RmZjJ48GBASbnw7rvvAkpguqs9bdzc3HB2dubhhx/GxsamIpeionLXYjAI586lceJEMvn5BuzsrKhTxwNvb6cbDsiooqJy9zG68O9vwEmPUSBasN0NcTtK79S9O9jYwJEjcPiwUlYTqAvoUWIKmVG0PRYJlEjAWpSFPvUASLG2+W7eHqtwQahXr15MmTKFDz/8kAYNGhAZGcn69eupUqUKoKQpKBkfR0VF5fooKDAQHZ1EYqKikvb0dKBOHQ8cHNQfDioq9xshQGcUr6BpNr5g21GpyPwOCvSWO7m5QcfCdpa2x8qyE/JVUtsUxBVqhJwDQWcHBZlwpdhcRRWErsHIkSM5c+YMubm57Nq1yyQa8JYtW0yScl7N/Pnzb19UaRWV+wCdToO9vTVWVloCAipRo8b9YRCtoqJimaIAixHAZa/ChMy2qyGhjCC7RYmmly4tTppalG5jHWDm79ES0KCrtgoAQ4oBQ6YBtFbg+rDS5B4xmFa/DVVU7kPy8/UUFP7602g0VK/uSt26nri5mUdpVlFRub9oCzQAsoHZjk+ANhC02XBprklmeBOeeQbs7RXPsf8KE40/BlRGidRotrPmBtRDa5eO1iMDsGQnFGlsbRSEUlRBSEVF5TaTmprDkSNJnD6dZsw/Z2WlNUuToaKicn+ioVgrNFOjIbfyKOXC6idIKSXxqZMTFOYANG6P6VD22eAa22PHgRJ2QkbPMVUjpKKicgfR6w2cOZPKyZPJFBQYyM0tQK8v5defiorKfU0voBqQACx2Hww4g9VZiP+19E5F3mMlt8fKdKMvEoQ2AyXshIyxhCKNLYsEofPp58nOL8ODrQJQBSGVe4b58+ebZWIHeOKJJ1i8ePGdn9BdRGZmHtHRl0hKygKgShVH6tTxxMrq9nzEe/fuzdSpU2/L2CoqKjePNVAYUpGpWjvEaaByURABObmWO3XurGiGzpyBXbuUslDACjgKmClzijzHFOGq4EIBYhBwf0SpzjoPuUowx8r2lXG1VQKcnko5dZOru7WogpDKddGmTRtGjRpV0dMwsmrVKhITE+ld9EumBJ999hk6nY4vv/zSrG7ChAk0aNDArPz06dNoNBoiIyONZSLC999/z6OPPoqTkxNubm40adKEadOmkZWVdSuXY8LZs2fp0qULDg4OeHl58dZbb5lFqBYREhIyOHr0Etu3b6Vp02o0bVqN6tUVg2iNRoNGozEmpz127Bht27alSpUq2NnZUatWLcaNG0d+icSMR44c4fnnn8ff3x+NRsO0adPM5jZu3Dg+/fRT0tJKUbOrqKhUOMMAJ+AIsKHKO0qhzQ6I2225g709dOumnBfFFHIFniisN9MK+QC10HoeRWNbAPmgT9SDtQs4FSZEL9we02g0d+32mCoIqdzTzJgxg8GDB6PVmr+VIyIiGDt2LBERETd1j/79+zNq1Ci6devG5s2biYyM5IMPPmDlypX88ccfNzV2aej1erp06UJeXh47duxgwYIFzJ8/nw8//NCkncEgXLyYiQi0avU4586dJz4+3ngMHTqUmjVr0qRJEwCsra0ZMGAAf/zxB8eOHWPatGnMmTOH8ePHG8fMysqiVq1afP755xYjvAM8/PDD1K5dmx9//PG2rF9FReXmcQOGFp5Pta4G1u1BI3DlOzCUElG+yHts2TLQF9r8FHmPlWInpARWVNJXmW+PFdsJPVT5IQBOJJ+4/sXcTm5p5rJ7gLKStt3LSRivzqguIhazz8+ZM0e6d+8u9vb2EhAQICtXrjTpc+jQIenYsaM4OjqKl5eX9OvXzyTBLaVkBL+a06dPy9NPPy1ubm7i4OAgISEhsmbNGmP9ypUrJSAgQGxtbaVNmzYyf/58ASQlJcXYZt68eeLn5yf29vbSvXt3mTJliri6uhrrL168KBqNRg4fPmx2/y1btki1atUkLy9PfHx8ZPv27Sb148ePN8laX0RsbKwA8t9//4mIyNKlSwWQ3377zaytwWAoM6nnzbB27VrRarWSkJBgLJs1a5a4uLhIbm6uMVu7iMiVKzly8WKGSZmISF5ennh6esrEiRPLvNcbb7whjz/+uMU6S++rIj766KNS+90L3MufdxWV8hIrIjpR8qf+l7FVScR6xFHkQqzlDjk5Im5uSiLWLVuUshOFA1iJiNlX3lwRQbI2fyPJE5MlY0Vh1vmDHynJV3cMMLYct2mcMAF58fcXb2gtatLVCkJEyMzLrJBDSnNzvAk++ugjevbsycGDB+ncuTN9+/YlOTkZgNTUVNq1a0fDhg3Zu3cv69evJzExkZ49ewIwffp0mjdvzrBhw4wah9LSmowYMYLc3Fy2bt3KoUOHmDx5Mk5OTgDExsbSo0cPunfvzoEDB3jxxRd5//33Tfrv2rWLIUOGMHLkSCIjI2nbti2ffPKJSZt//vkHBwcH6tSpY3b/8PBwwsLCsLa2JiwsjPDw8Bt6vRYtWkRQUBDditTFJdBoNGUm9XRycirzeOmll0rtu3PnTurVq2cMLAoQGhpKeno6f/zxL5cuFW/JOTnZ4unpaBYhetWqVVy+fNkYpd0SJ0+eZP369bRu3brUNqXRrFkzdu/eTW5uKfYGKioqFY4/0KPw/H8Oj4OmFmgzIWme5Q62tvDss8p5kfdYABCMEktow9UdigymlXhCZhqhe8BzzKqiJ3C3k5WfhdNnThVy74x3M3C0cbylYw4aNIiwsDAAJk2axIwZM9i9ezcdO3Zk5syZNGzYkEmTJhnbR0RE4Ofnx/HjxwkMDMTGxgYHB4dSt0yKOHv2LM8//zz16tUDoFatWsa67777jqCgIKPtTlBQEIcPH+bTTz81tpk+fTodO3Zk7FglGFhgYCA7duxg/friWO9nzpyhSpUqZtti6enpLF++nJ07dwLQr18/WrVqxfTp043CWHk5ceIEQUFB19WniJJ2RpYoKwFwQkKCiRAE4OjoDkBMzFl8fB7C3d2+TGPo8PBwQkND8fX1Natr0aIF+/fvJzc3l+HDhzNx4sQy52oJHx8f8vLySEhIoEaNGtfdX0VF5c4wBlgK/KTR8JnH21RLehG0P0Lam+DqbN6hd2+YNw+WL4cZM8DKSvEeO4piJ9SzZOOHAC901f4FwJCsBFbUFqXaSI8CfR7obO5aQUjVCD1gPPLII8ZzR0dHXFxcuHjxIgAHDhxg8+bNJlqL4OBgAGJiYiyOB1C3bl1j+06dOgHw2muv8cknn9CyZUvGjx/PwYMHje2PHTtG06ZNTcZo1qyZyXV0dLRJhHHALBFvdnY2dnbmAQJ/+uknateuTf36ygexQYMG1KhRg6UlQ8eXk5vRygUEBJR5eHl5lXsOFy5c4fhxxfvC2lrLQw9VKlMIOn/+PBs2bGDIkCEW65cuXcr+/ftZvHgxa9asYcqUKde9Pnt7e4DbajCuoqJy8zRFsXcuAL52HwA4gNUpiF9luUO7dkpW+qQk2Ky4xhvthNai5B8zogFaobVPQ1tZyc5aEFcADtXB2g0M+ZAeDRRrhM6mnSW34O7RJKsaoWvgYO1AxrsZFXbv8qLVas0e2iU9gYqwtrY2udZoNBgKjeYyMjLo2rUrkydPNutXtWrVUu+9du1a472KHo5Dhw4lNDSUNWvW8Mcff/DZZ58xdepUXn311XKv6Vp4eHiQkmKWFpnw8HCOHDmClVXx29tgMBAREWEUDFxcXCx6PKWmpgIYt7wCAwM5evToDc3vWtqnfv36MXv2bIt13t7ehdtOBcTGppKRkcfly0qW56ZNg3B2ti1z7Hnz5lG5cmWeeeYZi/VFW5ohISHo9XqGDx/OmDFj0OnKH3SxaEvV09Oz3H1UVFQqhjHAVmC21o73HQfjnPkN5M6FvJ5gY/pcwMoKevSA2bMV77GnnoIWgDtwGfgXJcOGkVbAL1j5HiDvchslsGKgjZKA9eLfSoRp9/p4OXrhZONERl4GsamxBHsE34mlXxNVELoGGo3mlm9P3Q48PT1NktOmp6cTG1tGXhkLNGrUiF9++QV/f38TIaIkNjY26PWmiftK2xbx8/PjpZde4qWXXuLdd99lzpw5vPrqqwQFBbF27VqTtkXu3UXUqVOHXUVxLAr5999/Ta4bNmxIQkICKSkpuLsr20aHDh1i7969bNmyhUqVKhnbJicn06ZNG44ePUpwcDBBQUGcP3+exMREky2o/fv3Y2dnR/Xq1QHo06cPvXv3ZuXKlWZ2QiJCenp6qXZCN7M11rx5cz799FP++ScaV9fKaLUaYmL24uLiwiOPPFzmuCLCvHnzGDBggJngawmDwUB+fj4Gg+G6BKHDhw/j6+uLh4dHufuoqKhUDE8DgcBxIKLqOF4/+Q3YbIW4SKjZ1LxDr16KIPTrrzBrlpKdvhOwGMV7zEwQAivf9eQdaGNqJ3TxbzMX+siESE4mn7xrBCF1a+w+oV27dvzwww9s27aNQ4cOMXDgwOt6qIFi4JycnExYWBh79uwhJiaGDRs2MHjwYKPw4+/vz65duzh9+jSXLl0yapOuZtSoUWzYsIHY2Fj279/P5s2bjUbNL774IkePHuXtt9/m+PHjLFu2zJhYt8jg97XXXmP9+vVMmTKFEydOMHPmTBP7IFAEIQ8PD7Zv324sCw8Pp1mzZjzxxBM8/PDDxuOJJ56gadOmRqPp0NBQgoKCCAsLY8eOHZw6dYrly5czbtw4Xn/9deNr17NnT3r16kVYWBiTJk1i7969nDlzhtWrV9O+fXs2F6mNLXAzW2MdOnQgJCSEjz8exfnzx7lw4T8+/3wiI0aMwNZW0Qbt3r2b4OBg4uLiTPr+9ddfxMbGMnToULNxFy1axLJly4iOjubUqVMsW7aMd999l169ehmFpry8PCIjI4mMjCQvL4+4uDgiIyM5edJ0X3/btm106NCh1DWoqKjcPWiBNwrPp1l5U2DVFjQGSPvWcv6xVq2galVITYWiMCGlRpmuDzhjVW0boGyNiUGKU21YiDB9V9kJ3VIftHuA+9V9Pi0tTXr16iUuLi7i5+cn8+fPt+g+v2LFCpN+rq6uMm/ePOP18ePH5dlnnxU3Nzext7eX4OBgGTVqlNE1+9ixY/LYY4+Jvb19me7zI0eOlNq1a4utra14enpK//795dKlS8b6q93nZ82aJYDJax8eHi6+vr5ib28vXbt2NXOfFxEZO3as9O7dW0REcnNzpXLlyvLFF19YnNPkyZPFy8tL8vLyREQkLi5OBg4cKNWrVxd7e3sJCQmRzz//3FhfhF6vl1mzZknTpk3FwcFBXFxcpHHjxjJ9+nTJysqyeK8bJT09R7KylPufPn1aOnXqJPb29uLh4SFjxoyR/Px8Y9vNmzdb/B+EhYVJixYtLI6/ZMkSadSokTg5OYmjo6OEhITIpEmTTF73ohACVx+tW7c2tsnOzhZXV1fZuXPnrVv8HeZe/ryrqNwImSLiIYon/NLMXYWu9K4iiXGWO7z2muJG36+fcp0sxb74p65uHCoGvVaSP0+Q5InJkh+fL3J5v+JC/3MlkcJnyDsb3xEmICPWjLju+d8u93mNyG3w0b6LKdrKSEtLM9uayMnJITY2lpo1a1o0wlW5fXz66afMnj2bc+fOXVe/hIQE6taty/79++9pzyWDQYiPv0J8fAYODtYEB3ug1Wqu3bGCmDVrFitWrLhtASXvBOrnXeVBZDwwEWgmwr/HaqDhHOR/CvXeM2+8cye0aKGk3bh4UYk83Qb4G5gBmJh8fgqM48qP/1AQG4JDZwdsGwDLnEAKoNtZcPQj4r8IhqwaQofaHdjQz8wXv0zKen7fDOrWmEqF8O2337Jnzx5OnTrFDz/8wJdffsnAgQOvexxvb2/Cw8M5e/bsbZjlnSEnp4CjRy8RH68Y5Ts4WN+WGFK3Emtra77++uuKnoaKisp1MgKwBXZrNGz3KgpZsgAyLHh/PvYYVK8OGRmwbp1SVmqU6SI7oS0AFJwvAJ0tuBbGeSuMMH03bo2pgpBKhXDixAm6detWaAfzMWPGjGHChAk3NFb37t1p1arVrZ3gHUBESErKJCoqiaysfHQ6DbVquePvr+QJu5sZOnToDcdXUlFRqTi8gAGF51Pde4HYgvVxuLDWvLFGU5xyoyj3WJGd0BbgSsnGzQAbrKptAQoFISi2E0qJBIoFodOpp8nT593kam4Nd/e3rcp9y1dffcWFCxfIycnh+PHjfPDBB6V6qt2P6PUGYmJSOHMmDYNBcHa2oW5dLypVsq/oqamoqNznjC78u1Jjwwnnwv2trO/hqqTOQLEgtHq1ohkKQomhmA+Y7IzbAU3R+e4FCgMrZhnMIkxXdaqKvZU9BjFwJvXMrVzWDaMKQioqFYBWq6GgwIBGA76+LgQGVsbG5vq8/FRUVFRuhGCgC4oXxFfebyuFtn9B/GHzxo0aQUAAZGfD74X7YaV6j7VCa5+KtnIiAPo4vRJLCIwaobsxC70qCKmo3CEMBsFgUGx/NBoNNWu6UaeOB97eTmZ5wlRUVFRuJ2MK/8638uCSdSho9JA829yVvuT2WFF0/iI7oTVcFWW60E6omhIXruB8QfHWWEYM5Ct7aaogpKLyAJKdnU90dBJxcenGMltbKxwcbCpwVioqKg8qbYBGQDYwy0fJ+4jVz5CcZN64d2/l77p1SlyhxwFXIAkwiYXbAtBg5bsJKEy1YecJ9j6AQOohQBWEVFQeKESExMQMoqIukZ1dwOXL2RQUWA5CqaKionKn0FCsFZpp9zA5mhqgS4aEH8wbP/wwhIRAXh6sXAnWQMfCOhPvMTfgEXS+hRqhosCKRjuhSKCEIJSiCkIqKvc1+fl6Tp5M5ty5dEQEFxdb6tb1LDNZqoqKisqd4v8AX+CiRsOiKtOVQsM8yLGQELVIK3S195gFOyGd51GwyYU80CfpS0SYvjtd6NVvZBWV20Bqag5HjiSRlpaLRgPVq7vy0EOVsLZWDaJVVFTuDqyBUYXnU127YBAbsD4C5y0ESi2yE/rzT7h0Sck7pgUOAiZh3Fqh0Rqw8jkCFBlMN1CqCjVCD1V6CIBTKacoMFjwVLvDqIKQisot4IknnmDx4sUAFBQYiI1NoaDAgL29FSEhnnh5OaoG0beYd955h1dfffXaDVVUVEplKOAMRGusWO/+kVKYORv0V23hBwZCw4aKi/2vv0JlFJMguEorVBRYUcnDWHC+oNhzLPUQGPRUc6mGrc6WAkMBZ9MqPhiuKgipXBdt2rRh1KhRFT2Nu4pVq1aRmJhI70LVsZWVlurVXalSxZGVK+fi5GTHl19+adZvwoQJNGjQwKz89OnTaDQak+z1IsL333/Po48+ipOTE25ubjRp0oRp06aRlWUhIuwt4uzZs3Tp0gUHBwe8vLx46623KLAUa6QEx48fp1u3bnh4eODi4sLjjz9ulpz2tddeo3Hjxtja2lp8DY4dO0bbtm2pUqUKdnZ21KpVi3HjxpGfn29s8+abb7JgwQJOnTp1S9aqovIg4goMKzyf6vmycmKzERKPmje+2nvM4vZYVaA2Vr67gUJByCkAdA6gz4YrJ9BqtNSuVBu4O7bHVEFI5Y6g1+tLzVR/p7nVc5kxYwY9evThypXiKKmVKzvg5+fKvHnzGDt2LBERETd1j/79+zNq1Ci6devG5s2biYyM5IMPPmDlypW3Ld+XXq+nS5cu5OXlsWPHDhYsWMD8+fP58MMPy+z39NNPU1BQwF9//cW+ffuoX78+Tz/9NAkJCSbtXnjhBXoVfbFehbW1NQMGDOCPP/7g2LFjTJs2jTlz5jB+/HhjGw8PD0JDQ5k1a9bNL1ZF5QHmdUAH/KVz5T/7MNDkwyULrvRFn9ctWyAhodiN/i8gs2TDVuiq7QPAcNmAIVcDbo8oVXejndAtTeF6D3C/Zp+vUaOGfPXVVyZllrLPz5kzR7p37y729vYSEBAgK1euNOlz6NAh6dixozg6OoqXl5f069dPkpKSRERk4MCBZhnJS8s+P2/ePHF1dZWVK1dKnTp1RKfTSWxsrNSoUUM+/vhj6d+/vzg6Okr16tVl5cqVcvHiRXnmmWfE0dFR6tWrJ3v27DGOdfr0aXn66afFzc1NHBwcJCQkRNasWSMixRnYV69eLfXq1RNbW1t59NFH5dChQ9ecS3JysvTv31/c3NzE3t5eOnbsKMePHzfrt2LFCgkICBBbW1vp0KGDnD171tjm/Pl40Wg0smTJXxIZGS/5+Xpj3ZYtW6RatWqSl5cnPj4+sn37dpPXaPz48VK/fn2z164o+/t///0nIiJLly4VQH777TeztgaDQVJTUy3+D26WtWvXilarlYSEBGPZrFmzxMXFRXJzcy32SUpKEkC2bt1qLEtPTxdANm7caNa+tNfAEm+88YY8/vjjJmULFiwQX1/fcvW/mnv5866icqsJEyWpfN+cGCUr/WFPkZRk84aPPqpkpP/6axGDiNQs7Gjy9RQuIkjqzEOSPDFZ8k7kiex6UclE/987IiIyev1oYQLyxvo3yj3H25V9XtUIXQsRMGRWzHEbEm9+9NFH9OzZk4MHD9K5c2f69u1LcnIyAKmpqbRr146GDRuyd+9e1q9fT2JiIj179gRg+vTpNG/enGHDhhEfH098fDx+fn6l3isrK4vJkyczd+5cjhw5gpeXF6Ck12jZsiX//fcfXbp0oX///gwYMIB+/fqxf/9+ateuzYABA4yJR0eMGEFubi5bt27l0KFDTJ48GScnJ5N7vfXWW0ydOpU9e/bg6elJ165dTbZRLM1l0KBB7N27l1WrVrFz505EhM6dO5v1+/TTT1m4cCHbt28nNTXVuAWWnJzNkiVrsbOzp3btQKpVc0GnK7YDCg8PJywsDGtra8LCwggPD7+h/9miRYsICgqiW7duZnUajQZXV9dS+zo5OZV5vPTSS6X23blzJ/Xq1aNKlSrGstDQUNLT0zly5IjFPpUrVyYoKIiFCxeSmZlJQUEB3333HV5eXjRu3Pg6Vm3KyZMnWb9+Pa1btzYpb9asGefPn+f06dM3PLaKikqxK/1Sm5qct6oHuiSI/9G8YUnvMQ2lJGEtshPaDhTZCTVQqlLuPo3Qg5Pc6UaRLDjudO12t4PADNA43tIhBw0aRFhYGACTJk1ixowZ7N69m44dOzJz5kwaNmzIpEmTjO0jIiLw8/Pj+PHjBAYGYmNjg4ODA97e3te8V35+Pt9++y3169c3Ke/cuTMvvvgiAB9++CGzZs2iadOm/N///R8Ab7/9Ns2bNycxMRFvb2/Onj3L888/T7169QCoVauW2b3Gjx/PU089BcCCBQvw9fVlxYoVRiHu6rmcOHGCVatWsX37dlq0UCz+Fi1ahJ+fH7/99ptxLvn5+cycOZNHH33UOHadOnX47bdN+PrWIS7uHB4enjz8cBXs7Io/Tunp6SxfvpydO3cC0K9fP1q1asX06dPNhLhrceLEiRtOcFrSzsgSLi4updYlJCSYCEGA8frqba4iNBoNf/75J927d8fZ2RmtVouXlxfr16/H3d39+iYPtGjRgv3795Obm8vw4cOZOHGiSb2Pjw8AZ86cwd/f/7rHV1FRUWgMtAb+1miYUeVrvohrA/kRkPcS2FgXN/y//4PRo2H7djh3Dp72gxkoUaYNFBrcBABVsKq2i7yDPZXAinWLDKYjgbtLEFI1Qg8YjzzyiPHc0dERFxcXLl68CMCBAwfYvHmzicYgODgYgJiYmFLHrFu3rrF9p06djOU2NjYm97M0h6IHa5GQU7KsaF6vvfYan3zyCS1btmT8+PEcPHjQbMzmzZsbzytVqkRQUBDR0dGlziU6OhorKyujgAPF2oyS/aysrGjatKnxOiAgEGdnVyIjlQiptrYGnJ0dTYQggJ9++onatWsbBa8GDRpQo0YNlhYZGV4HchOawYCAgDKPIi3drUJEGDFiBF5eXmzbto3du3fTvXt3unbtSnx8/HWPt3TpUvbv38/ixYtZs2YNU6ZMMam3t1eS1N5Og3EVlQeFNwv/fufUinSNO9hEQpypowPVqkErRePDsmWK9OQEJAD7ihppgFamgRVdH1bKs+Mh56JREIpJiUFvMMnTccdRNULXQuOgaGYq6t7lRKvVmj0wS27xFGFtbW1yrdFojIbDGRkZdO3alcmTJ5v1q1q1aqn3Xrt2rfFeRQ+monNLLuMl51BUb6msaF5Dhw4lNDSUNWvW8Mcff/DZZ58xderU63KdLm0u14uVlRaNRvkbFFSZWrV8SUlJMWsXHh7OkSNHsLIq/ogZDAYiIiIYMmQIoGhj0tLSzPqmpqYCGLe8AgMDOXrUggdHObiW9qlfv37Mnj3bYp23tze7d+82KUtMTDTWWeKvv/5i9erVpKSkGLVN3377LRs3bmTBggW888471zX/oq3XkJAQ9Ho9w4cPZ8yYMeh0Sjymom1dT0/P6xpXRUXFnM4oyeWPabSEV57CG5eGQPpsMLQHbQm9Se/esHWr4j02ZgyEAr+geI8Zfzc+gc5rBVjnQK4dhlQHdM4BcOUEpBzAr0pbrLXW5OnziLsSR3XX6nd4tcWoGqFrodGA1rFijut4cHt6epr84k5PTyc2Nva6ltqoUSOOHDmCv7+/mebA0VHZorOxsUGvN5Xea9SoYWxXrVq167pnefHz8+Oll17i119/ZcyYMcyZM8ek/t9//zWep6SkcPz4cerUqVPqeHXq1KGgoIBdu3YZyy5fvsyxY8cICQkxlhUUFLBjx7/k5ytrPnbsGOnpabRr1wxnZ1saNmxIQkKCiTB06NAh9u7dy5YtW4iMjDQeW7ZsYefOnUahJigoiPPnzxuFiyL279+PnZ0d1asrXwx9+vTh+PHjrFy50mwdImJRmCqi5P0tHVdvNZWkefPmHDp0yKiZA9i4cSMuLi4mr1FJijQzWq3pV4tWq71pTz2DwUB+fr7JOIcPH8ba2pq6deve1NgqKiqKQDC68Hx6pT4UoAObtZB0VYiK559XBKM9eyAmplQ7IY1Wj1W1/cBVdkKpB7DSWlHLXTFzOHH5xO1ZUDlRBaH7hHbt2vHDDz+wbds2Dh06xMCBA42/msvLiBEjSE5OJiwsjD179hATE8OGDRsYPHiwUfjx9/dn165dnD59mkuXLt0Rl/hRo0axYcMGYmNj2b9/P5s3bzYTciZOnMimTZs4fPgwgwYNwsPDg+7du5c65kMPPUS3bt0YNmwY//zzDwcOHKBfv35Uq1bNaJQsIlhbW/PSSyNZuXITe/fuZdCgQTz22GO0aPEYAA0bNsTDw4Pt27cbxw4PD6dZs2Y88cQTPPzww8bjiSeeoGnTpkaj6dDQUIKCgggLC2PHjh2cOnWK5cuXM27cOF5//XXj/69nz5706tWLsLAwJk2axN69ezlz5gyrV6+mffv2ZjF6SnIzW2MdOnQgJCSE/v37c+DAATZs2MC4ceMYMWIEtra2AOzevZvg4GDi4uIARXhyd3dn4MCBHDhwgOPHj/PWW28RGxtLly5djGOfPHmSyMhIEhISyM7ONgpmeXlKCIJFixaxbNkyoqOjOXXqFMuWLePdd9+lV69eJtrDbdu20apVKxNNpIqKyo3TH/AEzmjt+MVlFGhy4eJVWmMvL3jySeV82TIlyrQG+A+IK2pUD3DBqpryI7UgrkQm+qtzjlW0ndAt9UG7B7hf3efT0tKkV69e4uLiIn5+fjJ//nyL7vMrVqww6efq6irz5s0zXh8/flyeffZZo0t5cHCwjBo1SgwGg4iIHDt2TB577DGxt7cvl/v81Vhy8796Xle7j48cOVJq164ttra24unpKf3795dLly6JSLH7/O+//y5169YVGxsbadasmRw4cOCacylyn3d1dRV7e3sJDQ01us/n5+tl8uSZ4uTkIpMnzxE/P3+xtbWV9u3by5kzZ0zGGTt2rPTu3VtERHJzc6Vy5cryxRdfWHxdJk+eLF5eXpKXlyciInFxcTJw4ECpXr262NvbS0hIiHz++efG+iL0er3MmjVLmjZtKg4ODuLi4iKNGzeW6dOnS1ZWlsV73QpOnz4tnTp1Ent7e/Hw8JAxY8ZIfn6+sb7o9S/5PtizZ4906NBBKlWqJM7OzvLYY4/J2rVrTcZt3bq1WSiGkuMsWbJEGjVqJE5OTuLo6CghISEyadIks89mUFCQ/PTTTze0tnv5866icjuZIIpHfJO8i2KIRuRwVZH0dNNGc+cqbvSPPKJcNy/sNLtko06SeyxUkicmS+q3qSLnVysu9KsfFhGR19e9LkxA3tzwZrnmdbvc51VBqATqF+O9R9GDOCUl5ZaNmZ6eIwcOJMiHH/5PnJxc5MKFdKMgaIn4+HipVKmSnD59+pbNQeXarF27VurUqWMimF0P6uddRcUyF0XEThQB4e/YzkpcoaPfmTa6fFnE2loRhqKiRD4t7PB0yUaTRJ9RWZInJkvyxGTRXz6nCEKLdSIF2fL1rq+FCUj3Jd3LNS81jpCKym3GYBDi4tI5duwyeXl6rK216HQaqlZ1LtPQ2tvbm/DwcM6erficOQ8SmZmZzJs3z8QgXUVF5ebxBAYUnk+tUug8kztXyTNWRKVK0KGDcr50abGd0J+A0YmzFVrHy2jdzwCgT/YC28ogekiLumu2xlRBSEWlEBEhOTkbAA8PB3x8nMvdt3v37rQqcilVuSP06NHDJPyBiorKraPIaPp3u7ocsw4Gmz0Qt920UVFwxaVLoa5AdSAHJeUGoLiQ2WLlW2QnpDexEzK60CfHYJCKS8GkCkIq9zRt2rRBRHBzc7uh/oXKXAB0Oi01a7pTu7Y7/v5uvPDCC0ZXdhUVFZUHiSAUJY9oNHzlMVUpTPvWNOPBM8+ArS0cPQqHDlrwHrMFmhXHE7oqwnQN1xroNDqyC7KJv3L9ccZuFaogpPLAkp+vJyYmhaSk4mB8Tk42uLurHkgqKioqRWk3FriEkqTzAKvf4fK54gYuLlDkDbp0qWk2eqO81AqransB0MfpEdfiCNPWOmv83fyBit0eUwUhlQeStLQcoqKSSE3NIS4unYKCilPLqqioqNyNPIGSeiNHo2OW2wegzYbE70wbFWWkX7IEWgs4AhdQXOkBaIWuyhGwzkZyBQNNlOKUAyByV9gJqYKQygOFwSCcO5fGiRPJ5OcbsLOzIijIAysr9aOgoqKiUhINxWk3ZlYeSrbGDuQHKJnSpksXcHSE2Fg4vBeeKixfXdSgBRqtYOWj5N8oSK0BWmvIT4PMMzxU6SEATiRXXFBF9dtf5YEhOzuf6OgkEhMzAfD0dKBOHQ8cHKyv0VNFRUXlwaQHig10ktaBH12GgtU5iPu5uIGjI3QtNA5assSCnZALUB+raoV2QhcA18JI8KkHVI2QisqdoqBAT3T0JbKzC7Cy0hIQUIkaNdzQ6dSPgIqKikppWAGvF57/z+N9DGgg+3somWqpyHts2TLoWGhmsBcw2j+3Quer2AldHWFaFYRUVO4QVlY6vL2dcHW1pW5dT9zc7Cp6SioqKir3BENR9DpHrb1Z59gZbHZA/N7iBh07KobT58/DqR3QrLB8TVGDVlgVeo4ZkgyIU2Fm1qsEIbkqcfidQhWEVG4L8+fPvyGX9ry8PAICAtixY8dNzyE1NYfs7HzjddWqTgQEVMLa+vpysN3v5OXl4e/vz969e6/dWEVF5YHDBRheeD6l8ifKSfLMYld6W1t49lnl/GrvMUAJrHgJrbuSCLwgrzD+V8oB/N380Wq0ZOZnkphpmoD6TqEKQirXRZs2bRg1atR194uPj6dPnz4EBgai1WpLHWP27NnUrFmTFi1amNW9+OKL6HQ6fv75Z7O6QYMGGZOs6vUGzpxJ5eTJZJYsWY1GoyE1NRWNRoNGoyEvL48vvviC+vXr4+DggIeHBy1btmTevHnk5+ebjX2rOHjwIK1atcLOzg4/Pz+++OKLMtvPnz/fOOerj6KM8Fu2bLFYn5CQYHHMzz//HI1GY/L629jY8Oabb/L222/fsrWqqKjcX7yGsk22xaEB+20bgtUKSC3xPVPkPfbzz9C5cNtsI0qARaoADxnd6AvSlKzzZMZia8ihumt1oOK2x1RBSOWOkJubi6enJ+PGjaN+/foW24gIM2fOZMiQIWZ1WVlZLFmyhLFjxxIREVHqfTIz84iOvmSMDeToaGoInZeXR2hoKJ9//jnDhw9nx44d7N69mxEjRvD1119z5MiRm1hl6aSnp9OhQwdq1KjBvn37+PLLL5kwYQLff/99qX169epFfHy8yREaGkrr1q3NssYfO3bMpJ2lrPJ79uzhu+++45FHHjGr69u3L//8889tW7+Kisq9jR/Qs/B8aqUPQZsJ8SW+v9q3V9JuJCZC6t/gi5JqY3NRg1bFgRUTrMFBEX5IPVjhdkKqIHSf4O/vz7Rp00zKGjRowIQJE4zXGo2GuXPn8uyzz+Lg4MBDDz3EqlWrTPocPnyYTp064eTkRJUqVejfvz+XLl0CFK3L33//zfTp042ah9OnT5d7ftOnT2fAgAG4urpabLNv3z5iYmLoUhSgqwQ///wzISEhvPPOO2zdupVz586ZtcnJKeDo0Uvk5BRgba0lMLAyXl5OJm2mTZvG1q1b2bRpEyNGjKBBgwbUqlWLPn36sGvXLh566KFyred6WbRoEXl5eURERFC3bl169+7Na6+9xv/+979S+9jb2+Pt7W08dDodf/31l0VB0cvLy6StVmv60c7IyKBv377MmTMHd3d3s/7u7u60bNmSJUuW3PxiVVRU7kuKAiwudXmGs1Z+YFgAOblKobU1PP98YYMlFrfHiuyE9HF6xK2BUpwSSYC7Kgjd3QiQWUHHbbAb++ijj+jZsycHDx6kc+fO9O3bl+TkZABSU1Np164dDRs2ZO/evaxfv57ExER69lR+B0yfPp3mzZszbNgwo+bBz8/vls1t27ZtBAYG4uxsnuMrPDycfv364erqSqdOnZg/f76xrqDAQFpaDjk5BYiAm5sddet64uJiazbOokWLaN++PQ0bNjSrs7a2xtHR0eLczp49i5OTU5nHpEmTSl3bzp07eeKJJ7CxsTGWhYaGcuzYMVJSUsp6WYwsXLgQBwcHevToYVbXoEEDqlatylNPPcX27dvN6keMGEGXLl1o3759qeM3a9aMbdu2lWsuKioqDx6NgLaAXqNlhvsYsIqFuBXFDYq8x375BToWJmj9ncJnWSt0XkfAKgvJEQzWbZX6u8CFXk3bfC2yAKdrtro9ZKBE6byFDBo0iLCwMAAmTZrEjBkz2L17Nx07dmTmzJk0bNjQ5IEeERGBn58fx48fJzAwEBsbGxwcHPD29r61EwPOnDmDj4+PWfmJEyf4999/+fXXXwHo168fo0ePZty4cWg0GnS64szwNWq44uHhUGq2+BMnTtCmTZvrnpuPjw+RkZFltqlUqVKpdQkJCdSsWdOkrEqVKsY6S1qaqwkPD6dPnz7Y2xenAKlatSqzZ8+mSZMm5ObmMnfuXNq0acOuXbto1KgRAEuWLGH//v3s2bOnzPF9fHw4c+bMNeehoqLy4DIGZbdrjvswPrz8AS6Z34GhJ2i10Lo1VKmibI/JJrAPhXPAIeCRWmh0nlj5RFJwtgUFOc3QgaIR8leCD1VUUEVVI/SAUdI+xNHRERcXF6Ph7YEDB9i8ebOJliM4OBiAmJiYUsesW7eusX2nTp1ueG7Z2dnY2Zm7tUdERBAaGoqHhwcAnTt3Ji0tjT//3AQoW35OTjY4O9vi6elYqhAE3LB7ppWVFQEBAWUeZQlCN8vOnTuJjo422xYLCgrixRdfpHHjxrRo0YKIiAhatGjBV199BcC5c+d4/fXXWbRokcXXtiT29vZklYwYq6KionIVnYA6QLrWgbmuQ8F6KyQeVCp1Ovi//1POVyyGIgX076DEqW6FriiwYnrhD8PUwzzkrpxXlAu9KghdCwcUzUxFHA7ln6ZWqzV7A1nygLK2NjUe1mg0GAxKAKyMjAy6du1KZGSkyXHixAmeeOKJUu+9du1aY9u5c+eWf9JX4eHhYbZNpNfrWbBgAWvWrMHKygorKyscHBxITk7mm2+KDfXc3d3IyEg3GzM1NRWdTmfc8goMDOTo0aPXPbeb3Rrz9vYmMdHUNbToujzatblz59KgQQMaN258zbbNmjXj5ElFxbxv3z4uXrxIo0aNjK/f33//zYwZM7CyskJfIihacnIynp6e1xxfRUXlwUULjC48n1bpbfI1Wrj0dXGDIu+x336D0MJnkAU7oYJEB7ByAkMutXQFaNCQnpvOpaxLt38RV6FujV0LDbd8e+p24OnpSXy8MYwn6enpxMbGXtcYjRo14pdffsHf3x8rK8tvDRsbG5OHJ0CNGjWuf8IWaNiwIbNmzUJEjFqdtWvXcuXKFf777z+0Wi1JSVlcvJjJqVPHmDhxNJcvJ1O5ciWCgoJYsmQJubm52NoW2wbt37+fmjVrGgXAPn368N577/Hff/+Z2Qnl5+eTl5dn0U7oZrfGmjdvzvvvv09+fr5xLhs3biQoKOia22IZGRksW7aMzz77rMx2RURGRlK1alUAnnzySQ4dh5XElQAAPJpJREFUOmRSP3jwYIKDg3n77bfR6YpjKh0+fNii7ZSKiopKSfoB7wPnrKuw3LkHYWnLIW0yuHpAixbg66sEV7TbBHSEXcBFwKsVVr4fA4WBFWs8hiblT+wyjuLr4su59HOcTD6Jp+Od/UGmaoTuE9q1a8cPP/zAtm3bOHToEAMHDjR5yJWHESNGkJycTFhYGHv27CEmJoYNGzYwePBgo/Dj7+/Prl27OH36NJcuXTJqk8pDkdYoIyODpKQkIiMjiYqKMta3bduWjIwMExfu8PBwunTpQnBwXaytq+Li4kdAQDA9e/bE3d2NJUt+AhT3b41Gw4ABA9i3bx8nT54kIiKCadOmMWbMGON4o0aNomXLljz55JN88803HDhwgFOnTrFs2TIee+wxTpywvEd9s1tjffr0wcbGhiFDhnDkyBGWLl3K9OnTGT16tLHNihUrjFuRJVm6dCkFBQX069fPrG7atGmsXLmSkydPcvjwYUaNGsVff/3FiBEjAHB2dubhhx82ORwdHalcuTIPP/ywyVjbtm2jQ4cOpa5BRUVFBcAOGFF4PqXSu4g2HeILdwO0Wih0sOHPBYqFtQBrAR5G65SL1k2xRSyg0JSiglNtqILQfcK7775L69atefrpp+nSpQvdu3endu3a1zWGj48P27dvR6/X06FDB+rVq8eoUaNwc3MzumO/+eab6HQ6QkJC8PT05OzZs+Uev2HDhjRs2JB9+/axePFiGjZsSOfOnY31lStX5tlnn2XRokWAsnW0Zs0aOnR4miNHksjIyEOn01CzphsBAUrb8PBwANzc3Ni2bRv5+fk888wzNGjQgBkzZvC///2PF1980XgPW1tbNm7cyNixY/nuu+947LHHaNq0KTNmzOC1114zEw5uFa6urvzxxx/ExsbSuHFjxowZw4cffsjw4cONbdLS0jh27JhZ3/DwcJ577jmLkbrz8vIYM2YM9erVo3Xr1hw4cIA///yTJ5988rrmt3PnTtLS0ix6pKmoqKhczSsoAtF++0f426E1FERAXuFWWJH32KpVEJqnnP8OoANaFtsJ5Rbm4kipWM8xjVRUco8KIj09HVdXV9LS0nBxcTGpy8nJITY2lpo1a17TsFTl9nDw4EGeeuopYmJicHJyIj9fz+HDF9HrBScnG2rWdMPWVt3RvdX06tWL+vXr895771X0VO4Y6uddReXmeBmYDTx9ZQ2/xz0NdivAv7uSeiMgAE6dgkl/wHtPKd7XlwDbz8nZHUv2hs+xqp6Js7Uf2HnxRZUxvP3n2/Sp14dFzy2yeL+ynt83g6oRUrmreOSRR5g8ebLRvsnaWkeNGm74+DgTFFRZFYJuA3l5edSrV4833nijoqeioqJyD/EGihntaucuHLUJgvRZihCk0RQbTe+eDVVRHID+BpPAihcdEbSQc5EAp8qAujWmooLBILRv/xzVqxdHeK5UyR4fH+cy3eJVbhwbGxvGjRtnEp9IRUVF5VoEAs8Unn/l/gZYb4KkQrvPIkFo3Rp4qnB7bDVAE3RVToBVNpIDBhvFxz5Aq7R5YAWhb775Bn9/f+zs7Hj00UfZvXt3qW3nzJlDq1atcHd3x93dnfbt25fZXuXeIScnn6NHL5GQkEFsbCp6ffkNsVVUVFRU7jxFrigLXAdx0aoSJM1UCh55BIKDITcXKhVGu/8dEFs0ukboqh4AoADFTrS2KG7zydnJJGcn38EV3AWC0NKlSxk9ejTjx49n//791K9fn9DQUGOQv6vZsmULYWFhbN68mZ07d+Ln50eHDh2Ii4u7wzNXuVWICElJmURFXSIrKx+dTkONGq7odBX+9lRRUVFRKYPHgaZArtaWb91fAc1SyEw13R6Lngm2wGkgCkziCeU0AcDxShQ+zkpmgTutFarwJ83//vc/hg0bxuDBgwkJCWH27Nk4ODiUmmF80aJFvPLKKzRo0IDg4GDmzp2LwWBg06ZNd3jmKreC/Hw9MTEpnDmThsEgODvbULeuF+7u6jaNioqKyt2OhmKt0Ddur5Kty4a4eUpBkSC0aRU8UdJ7rBVWhZ5j+rTCOHQV6DlWoYJQXl4e+/btM0kEqdVqad++PTt37izXGFlZWeTn55cawyU3N5f09HSTQ+XuID9fT1RUEqmpOWg04OvrQmBgZWxsri/+kYqKiopKxfE8UAO4ZFWZha4DIDcc9HqoU0fZIisoAK/CXIerAZpj5bsfAH2KA2JwgivHCHDzBx4wQejSpUvo9Xpj8skiqlSpQkJCQrnGePvtt/Hx8Sk1q/Znn32Gq6ur8biV2dJVbg5rax0uLrbY2VlRp44H3t5OqkG0ioqKyj2GFTCq8Px/7mMwWEdB3EaloCim0JlvlL87gUsuaJ290bqeA9FQYGgLYiDAXslw/kAJQjfL559/zpIlS1ixYkWpcUDeffdd0tLSjMe5c+fu8CxVSpKdnU9+fnGKjurVXalTxwMHB5sKnJWKioqKys0wBHAFjtsGssapC6TNVFzpi7bHdiyFuvlgANaBSQJWUSJMB1gVAA+YIOTh4YFOp7OYjPJaiSinTJnC559/zh9//GGSUf1qbG1tcXFxMTlU7jwiQmJiBlFRSZw+nWpMEKvTaVWjaBUVFZV7HGegKE7+1EpjwGoDJMdArVrQtCkYDOCneIoZ7YSK4gkVGkwHiJJ0+4EShGxsbGjcuLGJoXOR4XPz5s1L7ffFF1/w8ccfs379epo0aXInpqpyncyfP9+YEiI/X8+JE8mcO5dOURxzg8FyQPPLly/j5eXF6dOn78xEVcjLy8Pf35+9e/dW9FRUVFTuYV5D2Sb726ENe+3rQ2KhK32RViihMB/ZBiDvcax8le+cgjQ/RKB2vpKyKSkribSctDs27wr/KT569GjmzJnDggULiI6O5uWXXyYzM5PBgwcDMGDAAN59911j+8mTJ/PBBx8QERGBv78/CQkJJCQkkJGRUVFLeKBo06YNo0aNKnf71NQcjhxJ4rffVjBiRG86dnyExo1r8vjjLdmwYYNZ+08//ZRu3brh7+9vVhcaGopOp2PPnj3lnldJgayI9PR03n//fYKDg7Gzs8Pb25v27dvz66+/cjszzmzZsoVGjRpha2tLQEAA8+fPL7P9hAkT0Gg0Zoejo6NJu9TUVEaMGEHVqlWxtbUlMDCQtWvXmrQpK1aXjY0Nb775Jm+//fYtW6uKisqDhy9QaBGkaIVkEeRkFCdhjZwDHnpIB7ZVQeedDbocJNcWQ34tXK4cwcvRC4CYlJg7Nu8KF4R69erFlClT+PDDD2nQoAGRkZGsX7/eaEB99uxZ4uPjje1nzZpFXl4ePXr0oGrVqsZjypQpFbUEFQsYDAYMBuHkyWQKCgwcOrSbZ57pxLp169i3bx9t27ala9eu/Pfff8Y+WVlZhIeHM2TIELPxzp49y44dOxg5cmSpoRXKQ2pqKi1atGDhwoW8++677N+/n61bt9KrVy/Gjh1LWtrt+RUSGxtLly5daNu2LZGRkYwaNYqhQ4daFAaLePPNN4mPjzc5QkJC+L//+z9jm7y8PJ566ilOnz7N8uXLOXbsGHPmzKFatWrGNuWJ1dW3b1/++ecfjhw5clvWr6Ki8mBQ5Er/s/P/ccbWAc7/AH5+0LIlYIBaR5UGq0Gja14cWDGvBRRkEODqC8CJyyfu3KTlASMtLU0ASUtLM6vLzs6WqKgoyc7ONpYZRCSjgg7DdayrRo0a8tVXX5mU1a9fX8aPH2+8BmTOnDnSvXt3sbe3l4CAAFm5cqVJn0OHDknHjh3F0dFRvLy8pF+/fpKUlCQiIgMHDhTA5IiNjbU4n/DwcHF2dpE9e+Lk7NlU0evNVxMSEiIfffSR8frnn38WT09Pi+NNmDBBevfuLdHR0eLq6ipZWVkm9a1bt5bXX3/drN+8efPE1dXVeP3yyy+Lo6OjxMXFmbW9cuWK5OfnW7z/zTJ27FipW7euSVmvXr0kNDS03GNERkYKIFu3bjWWzZo1S2rVqiV5eXml9mvWrJmMGDHCeK3X68XHx0c+++wzk3Zt27aVcePGlXs+9zqWPu8qKio3z5Migoi8cXmqyMEGInq9yNdfi4DIQ2OVytoiYpgvmX9MlOSJyZIxa4HIImTgj22ECcgnf39iNm5Zz++bocI1Qnc7WShJcyviyLoN6/noo4/o2bMnBw8epHPnzvTt25fkZCWceWpqKu3ataNhw4bs3buX9evXk5iYSM9Cteb06dNp3rw5w4YNM2ooSoYjKHzvA0o8KK1WQ2BgZfz8XNFqTd3iDQYDV65cMYn/tG3bNho3bmw2ZxFh3rx59OvXj+DgYAICAli+fPl1r91gMLBkyRL69u2Lj4+PWb2TkxNWVpaTum7btg0nJ6cyj0WLLGdMBti5c6dZiIfQ0NByx8sCmDt3LoGBgbRq1cpYtmrVKpo3b86IESOoUqUKDz/8MJMmTUKvVzzzridWV7Nmzdi2bVu556OioqJiiSKt0FzXoaTZnoL4v6FHD9Bq4cQ3YCMQAxxrh1U1xU5In9MQgABrpe/JlDtnMK2m8n7AGDRoEGFhYQBMmjSJGTNmsHv3bjp27MjMmTNp2LAhkyZNMraPiIjAz8+P48ePExgYiI2NDQ4ODmZefXl5emJjU3Bzs6NKFSdjuYuLrcV5TJkyhYyMDKOQBXDmzBmLAsqff/5JVlYWoaGhAPTr14/w8HD69+9/XWu/dOkSKSkpBAcHX1c/gCZNmhAZGVlmm6vjYZUkISHBYrys9PR0srOzr5nwNCcnh0WLFvHOO++YlJ86dYq//vqLvn37snbtWk6ePMkrr7xCfn4+48ePLzNW19GjR03KfHx8OHPmTJnzUFFRUbkWHYEQIErnwhy3Ybx58Wt4+Fdo0wb++gv8Y+F4LfjdF6sXFQNpfYYP4uFIAErQ4zvpOaYKQtfAAagoM2yH2zBmyVADjo6OuLi4GG1FDhw4wObNm3FycjLrFxMTQ2BgoMUxg4NDOHtWeYA2bPgoW7f+WeYcFi9ezEcffcTKlSvx8vIylmdnZ1uMBxUREUGvXr2M2pqwsDDeeustYmJiqF279jVWXIzchCG0vb09AQEBN9z/ZlmxYgVXrlxh4MCBJuUGgwEvLy++//57dDodjRs3Ji4uji+//JLx48df1z3s7e3JyrodekgVFZUHCQ0wGhgKTHd/ndcvB2OdekbxHvvrL8j6GXgbVmvQvhWExuU8ku5LQW5DArSKbZAqCN1FaADHa7aqeLRardmDPj8/36ydtbW1ybVGo8FgULK8Z2Rk0LVrVyZPnmzWr2rVqmZler2Bs2fT+fLL+RQU5GNvb8VDD3mXGRdoyZIlDB06lJ9//tlsq8jDw4OUlBSTsuTkZFasWEF+fj6zZs0qcW89ERERfPrppwC4uLhYNHROTU3F1dUVAE9PT9zc3Mw0IeVh27ZtdOrUqcw23333HX379rVY5+3tbTFelouLyzW1QaBsiz399NNmmp2qVatibW2NTleclqROnTokJCSQl5d3XbG6kpOT8fT0vOZcVFRUVK5FX+B9Ec5b+7HMtTt9E76B58bCiBFwfhbwNmwHkttjVW0v+em+FOQ0pbbNPwAkZCSQkZeBk435D/NbjWojdJ/g6elp4l2Xnp5ObGzsdY3RqFEjjhw5gr+/PwEBASZHkcu2jY0Ner2ejIw8oqKSuHw5i6pVfWnWrB4dOjSjdu0apY7/008/MXjwYH766Se6dOliVt+wYUOioqJMyv6/vTuPi6pe/wD+mYUZBhlmQEBAAUHccgEVRfQaahimWfa7KS4ZpmldsVzKJdMsLbcwLdLMQjEvidkt67qV1yX3JRUXUJBdURRkX2d7fn+MTo6AMsSwPu/Xa145Z77ne57Dl+k8nPNdoqKi0KZNG1y8eBExMTGG1+rVqxEZGWnoC9OxY0ecP3++Qp3nz5833MkSCoUYM2YMoqKicOvWrQpli4qKoNFoKo39waOxx71eeOGFKs/d39+/wsLA+/fvf+x8WQ+kpKTg0KFDlY6m69+/PxITEw3JLAAkJCTA2dkZEonEpLm6rly5gh49ejwxHsYYexJLANPvL5m02u4dkHYrYGMNBAYCSAMc7wJaAPue/WtiRc3TsBUBLS31Ex8n5dTREPpa7XrdCJg6aqyxmD9/Pjk5OdGRI0fo0qVLNHLkSLK2tq4wauznn3822k+hUNDmzZuJiCgjI4McHBzo5ZdfpjNnzlBiYiLt27ePJk6cSBqNhoiIpkyZQr6+vvTrr6dp//7LdOHCLSooKKsQz6OjtaKiokgsFtO6devo9u3bhldeXp6hzKVLl0gsFlNOTo5hm7e3N82bN69C/Xl5eSSRSGjXrl1ERJSUlESWlpb01ltv0cWLF+natWu0evVqEovFtHfvXsN+9+7do06dOlGbNm1oy5YtFBsbSwkJCRQREUFeXl6Um5tb3R+5SZKTk8nKyormzJlDV69epXXr1pFIJKJ9+/YZyoSHh9PgwYMr7Ltw4UJycXExtMHD0tPTSS6X0/Tp0yk+Pp527dpFjo6O9PHHf424iI6OJqlUSpGRkRQXF0dTp04lpVJJmZmZRnW5u7vTd999V4tn3bA15u87Y41BNhHJdDoCER1MG0iUFEEUGakfPdZyo354zVgdqW8MpJwlOZS7IoV0/wb5feFO+BD0Y+yPRvWZa9QYJ0IPacz/Y8zPz6fg4GCysbEhV1dXioyMrHT4/OMSISKihIQEeumll0ipVJJMJqNOnTrRzJkzSafTD3+Pj4+nvn37kqWljADQ9etJlcbzaCIUEBBQYeg9AAoJCTHar0+fPrRhwwYiIvrzzz8JAJ05c6bSYzz33HP00ksvGd6fOXOGhgwZQg4ODqRQKMjPz6/C+RLpk6j58+dT+/btSSKRUKtWrSgwMJB+/vlnw3maw6FDh8jHx4ckEgl5enoa/dyJiBYvXkzu7u5G27RaLbVp04YWLFhQZb0nTpwgPz8/kkql5OnpSZ988kmFpCk8PJzc3NxIIpFQnz596NSpUxXqUCqVFaYlaMoa8/edscZiGukTjWGFu4gu9SbKzSWSSIjgr/9ASaQr+SflfHKbcpbkkCbSg8Z/7Un4ELTi6AqjusyVCAmIzDiVbgNUUFAAhUKB/Pz8CuuOlZWVISUlBR4eHlUu4tocERFyckohk1nAysrCsM0cK8Xv3r0bc+bMwZUrVyAU8pPbuhIcHAxvb28sWLCgvkOpM/x9Z8z8EgF0IAIJBIhL7ozOVhHAm6uAX/4LWBUAJS2Aw9tQkNQS2ozesHJ8A8uFR/DRrTt4vcfr+OaFbwx1Pe76/XfwlYY9lkajQ0pK3v1XrqEvijmSIAAYPnw4pk6dioyMDLPUzypSqVTo1q0bZs2aVd+hMMaaGC8AL96/XnxmNxu498X9tcd0gOj+zPr/DXhoAdbeaE/ZAIDrOXUzuzQnQqxKhYXliIvLQk5OKQDA1lZmtgToYTNnzjSaqJGZl0QiwcKFC6s1eo0xxkz1YILFrTYTcMfiJPBMH0AmAwq36T/Y5Qxxm/tLbWj84CXWD4KpqyH0nAixCnQ6ws2bBYiPvweVSgupVIROnezh4iKvk0SIMcZY09EfgB8RyoWWWGc3GciLBJ5/HsBvgFALxAsgVunnlNOWdoaXSD+LXkZhBkrU5p/bjBMhZkSt1uLatWxkZuqnkbS3t8JTTznA2lpSz5ExxhhrjAQA3rn/R/R65TSUaLYBY4IBFAIW+qV+hIeGQyC/BZAYNmofKC30qxIk5yabPT5OhJgRsVgIkUgAkUgAT09btG2rfOwEiYwxxtiTvASgLelwT2yP7+wCAe9iwNoaKN+hL/Bfv7/6CZX3hpdU/8d3XTwe4yscg1qtNeoE7eFhiy5dHGFnx31GGGOM/X1iALME+pTjM7vZ0JV+A4wcCWCXvsBRW4jt9BPqatS94SUqB8CJEKsD+flliIvLws2bhYZtEokIEonoMXsxxhhjppkEQElaXJd0wH+VdkDIQADJgDgB0AggTncDAGjKfOElVAHgRIiZkU5HuHEjH9ev50Ct1qGgoBxare7JOzLGGGM1YA3gDYH+j+zVdu8Azn8ASiWg2QkAEB30B4QqkNoR3UX65Zo4EWJmUVqqxtWrWbhzpxgA4OBghc6d7bkvEGOMMbN6C4CYdDhq9TTOyNKASWMA/BcAINjdDaJWlwEAnXS9AXAixGoZEeHOnSLExWWhtFQDsVgILy87uLvXfofoyMhIKJXKWq3zUQKBADt37jR5vwkTJmDZsmW1HxCr0oYNGzBixIj6DoMxVs9aAxiH+4ux2k8DRlkCOAkIcoEcCcSimwAAZ/IFAKTnp6NMU2bWmDgRakY0Gh1u3SoEEaBQSNGliwOUStOWFhg4cCBmzpxp8rFv376NcePGoUOHDhAKhTWq43FSU1MxefJkeHh4QCaToV27dli8eDFUKpVRuYsXL2LPnj14++23K9Sxbds2iEQihIaGVvjscYldZQnZf/7zHwwcOBAKhQLW1tbo3r07lixZgpycnBqf45Pk5ORg/PjxsLGxgVKpxOTJk1FUVFRl+dTUVAgEgkpfO3bsMJQ7e/YsnnnmGSiVStja2iIoKAgXL140quuHH36Aj48PrKys4O7ujk8//dTo80mTJuH8+fM4evRo7Z40Y6zRmX1/KP2P8peRansWcHEEaDcAQJzoBACQaHtDLhSCQEjJTTFrPJwINSMWFiK0bauEm5sCXl52sLCouw7R5eXlcHBwwMKFC+Ht7V2tfSZOnIgPP/ywWmWvXbsGnU6Hr7/+GrGxsVizZg02bNhQYe2s8PBwjBo1CtbW1hXqiIiIwNy5c7Ft2zaUldX8L5D3338fwcHB6N27N/bu3YsrV65g9erVuHjxIrZu3Vrjep9k/PjxiI2Nxf79+7Fr1y4cOXIEU6dOrbK8q6srbt++bfT66KOPYG1tjeeeew4AUFRUhKFDh8LNzQ2nT5/GsWPHIJfLERQUBLVaDQDYu3cvxo8fjzfffBNXrlzB+vXrsWbNGnz55ZeGY0kkEowbNw5ffPGF2c6fMdY4eAMIJA10AhE+d/gn8PEIPBg9Jv5df33QFndFF7F+LiGzPx6r1SVcGwFTV5/X6XSkK6+nlwkrobu7u9OaNWuMtnl7e9OMGfMoN1d/PgDom2++oZEjR5JMJiMvLy/65ZdfjPa5fPkyDR06lFq0aEGOjo70yiuvUFZWFhERhYSEVFg9PiUlpdJ4Hl19/mEBAQE0Y8aMJ55TSEgILV68uMrPAVS6uvwDq1atIg8PD8N7jUZDCoWCdu3aVaFscnIyyWQyysvLIz8/P4qKijL6/HHn83Acp0+fJgC0du3aSsvm5uZWGe/fERcXRwDo7Nmzhm179+4lgUBAGRkZ1a7Hx8eHJk2aZHh/9uxZAkDp6emGbZcuXSIAdP36dSIiGjt2LL388stG9XzxxRfUpk0bo9/hP/74gyQSSYNZ4Z5Xn2es/uwj/eLz1poCyr00lAgKIqhJBx3lfhpPOUtyaMFKf8KHoM9OfEZE5lt9XmzeNKsJUAN5K/Pq5dDKeUqghhM6FxerUFamQUmJGqmpeejWTT99+UcffYRVq1bh008/RXh4OMaPH4+0tDTY2dkhLy8PgwcPxuuvv441a9agtLQU8+bNw+jRo3Hw4EF8/vnnSEhIQNeuXbFkyRIAgIODQy2dbe3Lz8+HnZ2d4f2lS5eQn58PX1/fCmU3b96M4cOHQ6FQ4JVXXkFERATGjRtn8jGjoqJgbW2NadOmVfr54/pNdenSBWlpaVV+PmDAAOzdu7fSz06ePAmlUml0boGBgRAKhTh9+jReeumlJ8Z+7tw5xMTEYN26dYZtHTt2RMuWLREREYEFCxZAq9UiIiICnTt3Rtu2bQHo7/ZZWVkZ1SWTyXDz5k2kpaUZyvn6+kKj0eD06dMYOHDgE+NhjDVdzwLoqi3DFZEcGx27Y+5LOcDPRyHAIIjVWVDDAb2FvgBOmv2OED8aa2KICJmZRbh2LRs6HUEoFMDT86/O0BMnTsTYsWPh5eWFZcuWoaioCGfOnAEAfPnll+jRoweWLVuGTp06oUePHti0aRMOHTqEhIQEKBQKSCQSWFlZwcnJCU5OThCJGuZ8Q4mJiQgPD8cbb7xh2JaWlgaRSARHR0ejsjqdDpGRkXjllVcAAGPGjMGxY8eQkmL6c+nr16/D09MTFhYWJu+7Z88exMTEVPn69ttvq9w3MzOzwnmJxWLY2dkhMzOzWsd/kOD069fPsE0ul+Pw4cP497//DZlMBmtra+zbtw979+6FWKz/OyooKAg//fQTDhw4AJ1Oh4SEBKxevRqAvm/YA1ZWVlAoFI9N9hhjzYMAwGyRvo/qF3ZvQTXDBQ9Gj4kTbAEA7QX3R47lmjcR4jtCT2Jx/85MPR3bFBqNDgkJ91BYqO8gLBIJ4ehoBRubvzpEd+/e3fDvFi1awMbGBnfv3gWg70h86NChSvvPJCUloUOHDpUe9+E7GY+7a/EkUVFRRolLeXk5BAIBwsLCDNv27t2LAQMGPLaejIwMDB06FKNGjcKUKVMM20tLSyGVSissHLt//34UFxdj2LBhAAB7e3sMGTIEmzZtwtKlS006ByIyqfzD3N3da7zv31VaWorvv/8eixYtqrB98uTJ6N+/P7Zt2watVouwsDAMHz4cZ8+ehUwmw5QpU5CUlITnn38earUaNjY2mDFjBj788EMIhcZ/a8lkMpSUmH8RRcZYwzcOwAJtKTIs2uAHL3u8YvcHkAOIj3gCnqVwUNfNEHpOhJ5AIBDU+PFUXRIIhLh9uxCFhSoIhQK4utpAKNRVuBA9eqdCIBAYltcoKirCiBEjsHLlygr1Ozs7V3nsPXv2GDrOymQ1X5bjhRdegJ+fn+H9vHnz0Lp1a6MRXq1bt35sHbdu3cKgQYPQr18/bNy40egze3t7lJSUQKVSQSL5q1EjIiKQk5NjFLtOp8OlS5fw0UcfQSgUwsbGBsXFxdDpjH+meXl5AACFQgEA6NChA44dOwa1Wm3yXaG/82jMycnJkNA+oNFokJOTAycnpyce+8cff0RJSQleffVVo+3ff/89UlNTcfLkScN5f//997C1tcUvv/yCMWPGQCAQYOXKlVi2bBkyMzPh4OCAAwcOAAA8PT2N6svJyWnQj1MZY3VHCuAtoRTvAwhrGYrxS9+FIDQeovQOAAphoW4FV7giNS8VKq3qCbXVHCdCTYSjowOKiu7BysoCnp62UKlKTH6007NnT/znP/9B27ZtDY89HiWRSKDVao221dadDLlcDrlcbvTezs4OXl5e1do/IyMDgwYNQq9evbB58+YKSaCPjw8AIC4uzvDve/fu4ZdffkF0dDS6dOliKKvVavGPf/wDv//+O4YOHYqOHTtCo9EgJiYGPXv2NJQ7f/48ABjulj0YGbV+/XrMmDGjQox5eXlV9hN6OKGszOOSTH9/f+Tl5eHcuXPo1asXAODgwYPQ6XRGyWVVIiIi8MILL1RIUkpKSiAUCo3uoj14/yCBfkAkEhkS1W3btsHf39+ovqSkJJSVlaFHjx5PjIcx1jy8KRDiE50KFy19cHCoM54R7IZA0xGiskJoLW3xD0FvbKMbSMtLQyuLVmaJgfsINWJFRSqoVPqkZPDgwfj11x3IyrqK69evIiQkxOT+O6GhocjJycHYsWNx9uxZJCUl4bfffsNrr71mSH7atm2L06dPIzU1FdnZ2RUuho/zoK9LUVERsrKyEBMTg7i4OJNirEpGRgYGDhwINzc3hIWFISsrC5mZmUb9YxwcHNCzZ08cO3bMsG3r1q1o2bIlRo8eja5duxpe3t7eGDZsGCIiIgDo79Y8++yzmDRpEg4cOICUlBTs27cP06ZNQ3BwsCEB8PPzw9y5c/HOO+9g7ty5OHnyJNLS0nDgwAGMGjUKW7ZsqfIc3N3d4eXlVeXrcXfDOnfujKFDh2LKlCk4c+YMjh8/junTp2PMmDFwcXEx/Iw6depk6BP2QGJiIo4cOYLXX3+9Qr1DhgxBbm4uQkNDcfXqVcTGxuK1116DWCzGoEGDAADZ2dnYsGEDrl27hpiYGMyYMQM7duzA2rVrjeo6evQoPD090a5duyrPgzHWvNgBeI3015HVjmOBofprgjhef5d9sFj/eOx6znXzBVGrY9AaAVOHzzdEOp2OMjIK6OzZDIqPzyadTkf5+fkUHBxMNjY25OrqSpGRkeTt7W00/ByVDDdXKBS0efNmw/uEhAR66aWXSKlUkkwmo06dOtHMmTMNw6Dj4+Opb9++JJPJTB4+j0eG3gMgd3f3Ks/TlOHzmzdvrrT+R3/F169fT3379jW879atG02bNq3S+rdv304SicQwfUBubi69/fbb1K5dO5LJZNS+fXuaO3cuFRYWVrrv008/TXK5nFq0aEHdu3enJUuWmG34PBHRvXv3aOzYsWRtbU02Njb02muvGcWWkpJCAOjQoUNG+7333nvk6upKWq220np///136t+/PykUCrK1taXBgwfTyZMnDZ9nZWVR3759qUWLFmRlZUXPPPMMnTp1qkI9zz77LC1fvrx2TrYWNJbvO2NNXSIRCXRaAhFdOTWGCLlU3q2ccpbk0Lll+wkfgj4/9bnZhs8LiP5G785GqKCgAAqFAvn5+bCxsTH6rKysDCkpKfDw8IClpWkzLteV8nINUlLyUFSkf15qZydD27aKCo+BWOVKS0vRsWNHbN++Hf7+/vUdTrMRGxuLwYMHG0YfNgSN4fvOWHPxT3UufrKwxaS8TYjwbAktPY+C2QXQQg1XnTum9JmCj/t/XOX1++/gq2cjQUS4d68EsbFZKCpSQSQSwMNDCU9PW06CTCCTyfDdd98hOzu7vkNpVm7fvo3vvvuuwSRBjLGG5R0L/ZD5f9uMR+YbCRDmCSEo1UIEC3jD26wjx7izdCOg1eqQlpaPnJxSAIC1tQQeHkpIpdx8NcGT+dW9wMDA+g6BMdaA9QPQV5WFUxIHrJtmiaUrdBCnWEL9lBp90Af77u0227H5VkIjUVysfxTm4iJHx44tOQlijDHWpLwr1t8VWu8yDsWdrkB8U3+d8xX4IiU/DRqdxizH5USogdLpyDA5n0gkhKenLTp1soeLi7zChICMMcZYYzdSKIan+h5yRC2x5aM7EN3Qj3zuLfCFRqfFjfwbZjkuJ0INUFmZBteuZePu3WLDthYtJLC2bgQzOzLGGGM1IAIw8/6SCmuGd4QgUwxoASc4ow3aIDk32SzH5USoASEiZGUVIy4uCyUlamRmFkGrrf48PYwxxlhj9pqFDWy1RUhs4Y7/jrsHUeb9u0LozYlQU6dWa5GUlIu0tHzodAS5XILOnR0Mi6UyxhhjTZ01gDfVeQCA1fNVEN/Q9xPqLeiNJDNNqshX2QYgP78McXFZyMsrg0AAtGljgw4dWkIiaZgruzPGGGPmMt2yDSxIjeMdXJAquZ8IoTeSsy6Z5XicCNUzlUqLxMQcqNU6WFqK0bmzPZycrE3uED1w4EDMnDnTPEFWw8SJEzFy5MgGEw9jjLHGyQXAuBL9WplfBusHDXVHd9zMuWmW4/EY7HomkYjg4iKHSqVFmzY2TeZR2E8//WTy6uuMMcYYALwja4stAL5+2QJLPxDAQmaBFsWOAGp/5FjTuOo2IkSEu3eLUVLy1yrjTk7WcHdXNpkkCADs7OyMVpJnjDHGqqubUIJnS+KhEwuRINffs/HW9TTLsZrOlbcRUKv1j8HS0/ORnJwLnU5/y6+25gXSaDSYPn06FAoF7O3tsWjRIsNcRFu3boWvry/kcjmcnJwwbtw43L1717Bvbm4uxo8fDwcHB8hkMrRv3x6bN282fH7jxg2MHj0aSqUSdnZ2ePHFF5GamlplLI8+Gmvbti2WLVuGSZMmQS6Xw83NDRs3bjTax9RjMMYYa7reEeknWPzZT99f1l9rnvUhORGqpuJiVZWvsjLNE8tmZBTgzz9v4c6dYggEgKNjCwgEVddbE1u2bIFYLMaZM2fw+eef47PPPsO3334LAFCr1Vi6dCkuXryInTt3IjU1FRMnTjTsu2jRIsTFxWHv3r24evUqvvrqK9jb2xv2DQoKglwux9GjR3H8+HFYW1tj6NChUKmqH+vq1avh6+uLCxcuYNq0afjXv/6F+Pj4Wj0GY4yxpmGI1BHdylJwvN39Gabha5bjcB+harK2Xl7lZ8OGtcfu3eMM7x0dw4wefT3M19cFR45MhEym7z/Ttu3nyM4uqVCOaLHJMbq6umLNmjUQCATo2LEjLl++jDVr1mDKlCmYNGmSoZynpye++OIL9O7dG0VFRbC2tkZ6ejp69OgBX1/f+3G1NZTfvn07dDodvv32W8Pdq82bN0OpVOLw4cN49tlnqxXfsGHDMG3aNADAvHnzsGbNGhw6dMiwGnxtHIMxxljTIADwjqYM05zF0AgAG4vaW3H+YXxHqI61aGFhSIJqW9++fY0es/n7++P69evQarU4d+4cRowYATc3N8jlcgQEBAAA0tPTAQD/+te/EB0dDR8fH8ydOxcnTpww1HPx4kUkJiZCLpfD2toa1tbWsLOzQ1lZGZKSkqodX/fu3Q3/FggEcHJyMjyeq61jMMYYazrGtugEhTYHsa3MN50M3xGqpqKi96r87NFOznfvvgtA3zH6+vUclJdr4O6ugI2NJYRC4/5Aqakzaj/YR5SVlSEoKAhBQUGIioqCg4MD0tPTERQUZHjs9NxzzyEtLQ179uzB/v378cwzzyA0NBRhYWEoKipCr169EBUVVaFuBweHasfx6CgygUAAnU4/c3ZtHYMxxljTIREI8FZRHM626QWPVPMcgxOhamrRonrrfKlUWlhaig3JUZcujhAIAAuLyrPZ6tZbHadPnzZ6f+rUKbRv3x7Xrl3DvXv3sGLFCri6ugIA/vzzzwr7Ozg4ICQkBCEhIRgwYADmzJmDsLAw9OzZE9u3b4ejoyNsbMxza7IujsEYY6zxecO2F2Y4AqPNVD8/GqtFOTmliI29i5s3CwzbJBJRlUlQbUtPT8fs2bMRHx+Pbdu2ITw8HDNmzICbmxskEgnCw8ORnJyMX3/9FUuXLjXa94MPPsAvv/yCxMRExMbGYteuXejcuTMAYPz48bC3t8eLL76Io0ePIiUlBYcPH8bbb7+NmzdrZ4KrujgGY4yxxsdObAWPsqtmq58ToVqg1eqQmpqH5ORcaLWEkhK14ZFPXXr11VdRWlqKPn36IDQ0FDNmzMDUqVPh4OCAyMhI7NixA0899RRWrFiBsLAwo30lEgnee+89dO/eHU8//TREIhGio6MBAFZWVjhy5Ajc3Nzwf//3f+jcuTMmT56MsrKyWrt7UxfHYIwx1jhNdG+BHFntTDXzKAE9mGimmSgoKIBCoUB+fn6FC2xZWRlSUlLg4eEBS0vLatVXVKRCSkouysu1AABnZ2s4O8sr9AVijDUsNfm+M8bqz3/DUvDCHM9Kr99/B/cRqiEiwu3bRbh1qxCA/hGYh4cScrm0niNjjDHGmh6bNn+YpV5+NFZDarUOd+8WAwDs7GR46ikHToIYY4wxM+kx7P/MUi/fEaohiUSEtm0V0GoJLVta1Xc4jDHGGKsBToSqSaPRIT09H3Z2llAqZQBg+C9jjDHGGidOhKqhsLAcKSl5UKm0KCwsr3RiRMYYY4w1PpwIVeLBQDqdjnDrViEyM4sAAFKpCB4etpwEMdYENLMBs4yxKnAi9JAHS0CUlJRAIBAjOTnPsHiqvb0VXF1tKiynwRhrnEpK9IsdP7r0C2OseeFE6CEikQhKpRK3b2eivDwPRGIIhQK0bm0DhcISarUK6soXlWeMNRJEhJKSEty9exdKpRIiUd3M/M4Ya5g4EXqEk5MTACA+/iaI9HeCcnKKkZNTz4ExxmqVUqk0fN8ZY80XJ0L37d+fhC5dHOHiIoezszMUCjsAOu4PxFgTZGFhwXeCGGMAGkgitG7dOnz66afIzMyEt7c3wsPD0adPnyrL79ixA4sWLUJqairat2+PlStXYtiwYTU6dlmZBu+99z+sXXsagYGe+O23VyAUCmBlxZMjMsYYY01dvff83b59O2bPno3Fixfj/Pnz8Pb2RlBQEO7evVtp+RMnTmDs2LGYPHkyLly4gJEjR2LkyJG4cuWKyce+cuUu+vT5BmvXngYAdOhgB7Va+7fOhzHGGGONR70vuurn54fevXvjyy+/BADodDq4urrirbfewvz58yuUDw4ORnFxMXbt2mXY1rdvX/j4+GDDhg1PPN6DRVdXrjyADz44gfJyLRwcrLBp04t4/vkOtXdijDHGGKs1j1s0/e+o1ztCKpUK586dQ2BgoGGbUChEYGAgTp48Wek+J0+eNCoPAEFBQVWWr8q8eftRXq7Fc8954fLlf3ESxBhjjDVD9dpHKDs7G1qtFq1atTLa3qpVK1y7dq3SfTIzMystn5mZWWn58vJylJeXG97n5+cDACwsNPjkkwGYOrUXBAIdCgoK/s6pMMYYY8yMHlyna/tBVoPoLG1Oy5cvx0cffVRhu1odhrlzwzB3bj0ExRhjjLEauXfvHhQKRa3VV6+JkL29PUQiEe7cuWO0/c6dO1XO7+Hk5GRS+ffeew+zZ882vM/Ly4O7uzvS09Nr9QfJTFdQUABXV1fcuHGjVp/3sprh9mg4uC0aDm6LhiM/Px9ubm6ws7Or1XrrNRGSSCTo1asXDhw4gJEjRwLQd5Y+cOAApk+fXuk+/v7+OHDgAGbOnGnYtn//fvj7+1daXiqVQiqtOBReoVDwL3UDYWNjw23RgHB7NBzcFg0Ht0XDIRTWbvfmen80Nnv2bISEhMDX1xd9+vTB2rVrUVxcjNdeew0A8Oqrr6J169ZYvnw5AGDGjBkICAjA6tWrMXz4cERHR+PPP//Exo0b6/M0GGOMMdYI1XsiFBwcjKysLHzwwQfIzMyEj48P9u3bZ+gQnZ6ebpT99evXD99//z0WLlyIBQsWoH379ti5cye6du1aX6fAGGOMsUaq3hMhAJg+fXqVj8IOHz5cYduoUaMwatSoGh1LKpVi8eLFlT4uY3WL26Jh4fZoOLgtGg5ui4bDXG1R7xMqMsYYY4zVl3pfYoMxxhhjrL5wIsQYY4yxZosTIcYYY4w1W5wIMcYYY6zZapKJ0Lp169C2bVtYWlrCz88PZ86ceWz5HTt2oFOnTrC0tES3bt2wZ8+eOoq06TOlLb755hsMGDAAtra2sLW1RWBg4BPbjpnG1O/GA9HR0RAIBIaJT9nfZ2pb5OXlITQ0FM7OzpBKpejQoQP/v6qWmNoWa9euRceOHSGTyeDq6opZs2ahrKysjqJtuo4cOYIRI0bAxcUFAoEAO3fufOI+hw8fRs+ePSGVSuHl5YXIyEjTD0xNTHR0NEkkEtq0aRPFxsbSlClTSKlU0p07dyotf/z4cRKJRLRq1SqKi4ujhQsXkoWFBV2+fLmOI296TG2LcePG0bp16+jChQt09epVmjhxIikUCrp582YdR940mdoeD6SkpFDr1q1pwIAB9OKLL9ZNsE2cqW1RXl5Ovr6+NGzYMDp27BilpKTQ4cOHKSYmpo4jb3pMbYuoqCiSSqUUFRVFKSkp9Ntvv5GzszPNmjWrjiNvevbs2UPvv/8+/fTTTwSAfv7558eWT05OJisrK5o9ezbFxcVReHg4iUQi2rdvn0nHbXKJUJ8+fSg0NNTwXqvVkouLCy1fvrzS8qNHj6bhw4cbbfPz86M33njDrHE2B6a2xaM0Gg3J5XLasmWLuUJsVmrSHhqNhvr160fffvsthYSEcCJUS0xti6+++oo8PT1JpVLVVYjNhqltERoaSoMHDzbaNnv2bOrfv79Z42xuqpMIzZ07l7p06WK0LTg4mIKCgkw6VpN6NKZSqXDu3DkEBgYatgmFQgQGBuLkyZOV7nPy5Emj8gAQFBRUZXlWPTVpi0eVlJRArVbX+gJ7zVFN22PJkiVwdHTE5MmT6yLMZqEmbfHrr7/C398foaGhaNWqFbp27Yply5ZBq9XWVdhNUk3aol+/fjh37pzh8VlycjL27NmDYcOG1UnM7C+1df1uEDNL15bs7GxotVrD8hwPtGrVCteuXat0n8zMzErLZ2Zmmi3O5qAmbfGoefPmwcXFpcIvOjNdTdrj2LFjiIiIQExMTB1E2HzUpC2Sk5Nx8OBBjB8/Hnv27EFiYiKmTZsGtVqNxYsX10XYTVJN2mLcuHHIzs7GP/7xDxARNBoN3nzzTSxYsKAuQmYPqer6XVBQgNLSUshksmrV06TuCLGmY8WKFYiOjsbPP/8MS0vL+g6n2SksLMSECRPwzTffwN7evr7DafZ0Oh0cHR2xceNG9OrVC8HBwXj//fexYcOG+g6t2Tl8+DCWLVuG9evX4/z58/jpp5+we/duLF26tL5DYzXUpO4I2dvbQyQS4c6dO0bb79y5Aycnp0r3cXJyMqk8q56atMUDYWFhWLFiBf73v/+he/fu5gyz2TC1PZKSkpCamooRI0YYtul0OgCAWCxGfHw82rVrZ96gm6iafDecnZ1hYWEBkUhk2Na5c2dkZmZCpVJBIpGYNeamqiZtsWjRIkyYMAGvv/46AKBbt24oLi7G1KlT8f777xstEs7Mq6rrt42NTbXvBgFN7I6QRCJBr169cODAAcM2nU6HAwcOwN/fv9J9/P39jcoDwP79+6ssz6qnJm0BAKtWrcLSpUuxb98++Pr61kWozYKp7dGpUydcvnwZMTExhtcLL7yAQYMGISYmBq6urnUZfpNSk+9G//79kZiYaEhGASAhIQHOzs6cBP0NNWmLkpKSCsnOgwSVeOnOOlVr12/T+nE3fNHR0SSVSikyMpLi4uJo6tSppFQqKTMzk4iIJkyYQPPnzzeUP378OInFYgoLC6OrV6/S4sWLefh8LTG1LVasWEESiYR+/PFHun37tuFVWFhYX6fQpJjaHo/iUWO1x9S2SE9PJ7lcTtOnT6f4+HjatWsXOTo60scff1xfp9BkmNoWixcvJrlcTtu2baPk5GT6/fffqV27djR69Oj6OoUmo7CwkC5cuEAXLlwgAPTZZ5/RhQsXKC0tjYiI5s+fTxMmTDCUfzB8fs6cOXT16lVat24dD59/IDw8nNzc3EgikVCfPn3o1KlThs8CAgIoJCTEqPwPP/xAHTp0IIlEQl26dKHdu3fXccRNlylt4e7uTgAqvBYvXlz3gTdRpn43HsaJUO0ytS1OnDhBfn5+JJVKydPTkz755BPSaDR1HHXTZEpbqNVq+vDDD6ldu3ZkaWlJrq6uNG3aNMrNza37wJuYQ4cOVXoNePDzDwkJoYCAgAr7+Pj4kEQiIU9PT9q8ebPJxxUQ8b08xhhjjDVPTaqPEGOMMcaYKTgRYowxxlizxYkQY4wxxpotToQYY4wx1mxxIsQYY4yxZosTIcYYY4w1W5wIMcYYY6zZ4kSIMcYACAQC7Ny5EwCQmpoKgUCAmJiYeo2JMWZ+nAgxxurdxIkTIRAIIBAIYGFhAQ8PD8ydOxdlZWX1HRpjrIlrUqvPM8Yar6FDh2Lz5s1Qq9U4d+4cQkJCIBAIsHLlyvoOjTHWhPEdIcZYgyCVSuHk5ARXV1eMHDkSgYGB2L9/PwD9iuDLly+Hh4cHZDIZvL298eOPPxrtHxsbi+effx42NjaQy+UYMGAAkpKSAABnz57FkCFDYG9vD4VCgYCAAJw/f77Oz5Ex1vBwIsQYa3CuXLmCEydOQCKRAACWL1+O7777Dhs2bEBsbCxmzZqFV155BX/88QcAICMjA08//TSkUikOHjyIc+fOYdKkSdBoNACAwsJChISE4NixYzh16hTat2+PYcOGobCwsN7OkTHWMPCjMcZYg7Br1y5YW1tDo9GgvLwcQqEQX375JcrLy7Fs2TL873//g7+/PwDA09MTx44dw9dff42AgACsW7cOCoUC0dHRsLCwAAB06NDBUPfgwYONjrVx40YolUr88ccfeP755+vuJBljDQ4nQoyxBmHQoEH46quvUFxcjDVr1kAsFuOf//wnYmNjUVJSgiFDhhiVV6lU6NGjBwAgJiYGAwYMMCRBj7pz5w4WLlyIw4cP4+7du9BqtSgpKUF6errZz4sx1rBxIsQYaxBatGgBLy8vAMCmTZvg7e2NiIgIdO3aFQCwe/dutG7d2mgfqVQKAJDJZI+tOyQkBPfu3cPnn38Od3d3SKVS+Pv7Q6VSmeFMGGONCSdCjLEGRygUYsGCBZg9ezYSEhIglUqRnp6OgICASst3794dW7ZsgVqtrvSu0PHjx7F+/XoMGzYMAHDjxg1kZ2eb9RwYY40Dd5ZmjDVIo0aNgkgkwtdff413330Xs2bNwpYtW5CUlITz588jPDwcW7ZsAQBMnz4dBQUFGDNmDP78809cv34dW7duRXx8PACgffv22Lp1K65evYrTp09j/PjxT7yLxBhrHviOEGOsQRKLxZg+fTpWrVqFlJQUODg4YPny5UhOToZSqUTPnj2xYMECAEDLli1x8OBBzJkzBwEBARCJRPDx8UH//v0BABEREZg6dSp69uwJV1dXLFu2DO+++259nh5jrIEQEBHVdxCMMcYYY/WBH40xxhhjrNniRIgxxhhjzRYnQowxxhhrtjgRYowxxlizxYkQY4wxxpotToQYY4wx1mxxIsQYY4yxZosTIcYYY4w1W5wIMcYYY6zZ4kSIMcYYY80WJ0KMMcYYa7Y4EWKMMcZYs/X/HWrCteohwi4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import precision_recall_curve, auc\n", + "\n", + "idx = 0\n", + "for cdata in lst_cdata:\n", + " y_true, y_score = cdata\n", + "\n", + " # PR 커브 계산 및 그리기\n", + " precision, recall, _ = precision_recall_curve(y_true, y_score)\n", + "\n", + " # AUC 계산\n", + " pr_auc = auc(recall, precision)\n", + " plt.plot(recall, precision, '-', color=colors[idx], label=f'{os.path.basename(base_dirs[idx])}(AUC = {pr_auc:.3f})')\n", + "\n", + " # (1, 1)에 가장 가까운 점 찾기\n", + " min_distance = float('inf')\n", + " closest_point = None\n", + " for i in range(len(recall)):\n", + " distance = ((1 - recall[i])**2 + (1 - precision[i])**2)**0.5\n", + " if distance < min_distance:\n", + " min_distance = distance\n", + " closest_point = i\n", + " plt.scatter(recall[closest_point], precision[closest_point], color=colors[idx], marker='o')\n", + "\n", + " print(f'{os.path.basename(base_dirs[idx])} PR AUC: {pr_auc:.3f}, minDist: {min_distance:.3f}, {(recall[closest_point], precision[closest_point])}')\n", + " idx += 1\n", + "\n", + "plt.plot([0.0, 1.05], [0.0, 1.05], '--', color='navy', label='baseline')\n", + "plt.xlabel('Recall')\n", + "plt.ylabel('Precision')\n", + "plt.title('PR Curve')\n", + "plt.legend()\n", + "plt.xlim([0.0, 1.0])\n", + "plt.ylim([0.0, 1.05])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "unet ROC AUC: 0.789, minDist: 0.121, (0.03855843283619862, 0.885424512257604)\n", + "unet-mini ROC AUC: 0.789, minDist: 0.081, (0.02485883834974988, 0.9224052152557138)\n", + "unet-dice-loss ROC AUC: 0.789, minDist: 0.087, (0.05330329573045489, 0.931617865125619)\n", + "unet-focal-loss ROC AUC: 0.789, minDist: 0.251, (0.004573449270014527, 0.7487617009547043)\n", + "unet-sgd ROC AUC: 0.789, minDist: 0.063, (0.0434974242368962, 0.9538732855195041)\n", + "unet-rmsprop ROC AUC: 0.789, minDist: 0.247, (0.0055918602005307965, 0.7531937969524044)\n", + "unet-l1 ROC AUC: 0.789, minDist: 0.126, (0.024355441418179306, 0.8766366499467493)\n", + "unet-l2 ROC AUC: 0.789, minDist: 0.219, (0.013563852969138058, 0.7813983872652583)\n", + "unet-l1+l2 ROC AUC: 0.789, minDist: 0.101, (0.020355838523738234, 0.9011364203573499)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3UklEQVR4nOydeXxTVd6Hn5s9adqmpaVQWvalBZVVFBBFRAGVEVBBAQVR1BlcEPdxHLd3cGbcQHHEYVVBEdz3ZRBcERVl32STraxtumbPef+4SZo0SRdoaaHn8XM/Te49595zI0m++a2KEEIgkUgkEolE0gjR1PcCJBKJRCKRSOoLKYQkEolEIpE0WqQQkkgkEolE0miRQkgikUgkEkmjRQohiUQikUgkjRYphCQSiUQikTRapBCSSCQSiUTSaJFCSCKRSCQSSaNFCiGJRCKRSCSNFimEJBKJRCKRNFqkEJJIJJWyYMECFEUJbTqdjhYtWjBhwgT2798fc44Qgtdee43zzz8fm82GxWLhzDPP5PHHH6e0tDTutd59912GDh1KWloaBoOBzMxMRo0axVdffVWttTqdTp577jnOOecckpOTMZlMdOzYkdtuu41t27Yd1/1LJJLTG0X2GpNIJJWxYMECbrjhBh5//HHatGmD0+nkxx9/ZMGCBbRu3ZoNGzZgMplC430+H2PGjGHJkiX079+fkSNHYrFY+Pbbb3n99dfp3Lkz//vf/8jIyAjNEUIwceJEFixYQPfu3bnqqqto1qwZeXl5vPvuu6xevZrvv/+evn37xl3n0aNHGTJkCKtXr+byyy9n0KBBWK1Wtm7dyuLFizl48CBut7tOXyuJRHIKIiQSiaQS5s+fLwDx888/R+y///77BSDefPPNiP3Tpk0TgLjnnnuizvXBBx8IjUYjhgwZErH/qaeeEoCYMmWK8Pv9UfNeffVVsWrVqkrXedlllwmNRiPeeuutqGNOp1Pcfffdlc6vLh6PR7hcrlo5l0QiqX+kEJJIJJUSTwh99NFHAhDTpk0L7SsrKxMpKSmiY8eOwuPxxDzfDTfcIACxcuXK0JzU1FSRk5MjvF7vca3xxx9/FICYNGlStcZfcMEF4oILLojaP378eNGqVavQ8127dglAPPXUU+K5554Tbdu2FRqNRvz4449Cq9WKRx99NOocW7ZsEYB44YUXQvsKCgrEnXfeKbKysoTBYBDt2rUT//znP4XP56vxvUokktpFxghJJJLjYvfu3QCkpKSE9n333XcUFBQwZswYdDpdzHnXX389AB999FFoTn5+PmPGjEGr1R7XWj744AMArrvuuuOaXxXz58/nhRde4Oabb+aZZ56hefPmXHDBBSxZsiRq7JtvvolWq+Xqq68GoKysjAsuuICFCxdy/fXX8/zzz9OvXz8efPBBpk6dWifrlUgk1Sf2J5VEIpFUoLCwkKNHj+J0Olm1ahWPPfYYRqORyy+/PDRm06ZNAHTt2jXueYLHNm/eHPH3zDPPPO611cY5KmPfvn1s376d9PT00L7Ro0dzyy23sGHDBs4444zQ/jfffJMLLrggFAP17LPPsmPHDn777Tc6dOgAwC233EJmZiZPPfUUd999N9nZ2XWybolEUjXSIiSRSKrFoEGDSE9PJzs7m6uuuoqEhAQ++OADsrKyQmOKi4sBSExMjHue4LGioqKIv5XNqYraOEdlXHnllREiCGDkyJHodDrefPPN0L4NGzawadMmRo8eHdq3dOlS+vfvT0pKCkePHg1tgwYNwufz8c0339TJmiUSSfWQFiGJRFItXnzxRTp27EhhYSHz5s3jm2++wWg0RowJCpGgIIpFRbGUlJRU5ZyqCD+HzWY77vPEo02bNlH70tLSuOiii1iyZAlPPPEEoFqDdDodI0eODI37/fffWbduXZSQCnL48OFaX69EIqk+UghJJJJq0bt3b3r16gXA8OHDOe+88xgzZgxbt27FarUCkJubC8C6desYPnx4zPOsW7cOgM6dOwOQk5MDwPr16+POqYrwc/Tv37/K8YqiIGJUDvH5fDHHm83mmPuvueYabrjhBtasWUO3bt1YsmQJF110EWlpaaExfr+fiy++mPvuuy/mOTp27FjleiUSSd0hXWMSiaTGaLVannzySQ4cOMDMmTND+8877zxsNhuvv/56XFHx6quvAoRii8477zxSUlJ444034s6pimHDhgGwcOHCao1PSUnBbrdH7f/jjz9qdN3hw4djMBh48803WbNmDdu2beOaa66JGNOuXTtKSkoYNGhQzK1ly5Y1uqZEIqldpBCSSCTHxYABA+jduzfTp0/H6XQCYLFYuOeee9i6dSsPPfRQ1JyPP/6YBQsWMHjwYM4999zQnPvvv5/Nmzdz//33x7TULFy4kJ9++inuWvr06cOQIUOYM2cO7733XtRxt9vNPffcE3rerl07tmzZwpEjR0L71q5dy/fff1/t+wew2WwMHjyYJUuWsHjxYgwGQ5RVa9SoUaxcuZLPP/88ar7dbsfr9dbomhKJpHaRlaUlEkmlBCtL//zzzyHXWJC33nqLq6++mpdeeolbb70VUN1Lo0eP5u233+b888/nyiuvxGw2891337Fw4UJyc3NZtmxZRGVpv9/PhAkTeO211+jRo0eosvTBgwd57733+Omnn/jhhx/o06dP3HUeOXKESy65hLVr1zJs2DAuuugiEhIS+P3331m8eDF5eXm4XC5AzTI744wz6Nq1KzfeeCOHDx9m1qxZZGRkUFRUFCoNsHv3btq0acNTTz0VIaTCWbRoEePGjSMxMZEBAwaEUvmDlJWV0b9/f9atW8eECRPo2bMnpaWlrF+/nrfeeovdu3dHuNIkEslJpn7LGEkkkoZOvIKKQgjh8/lEu3btRLt27SKKIfp8PjF//nzRr18/kZSUJEwmk+jSpYt47LHHRElJSdxrvfXWW+KSSy4RqampQqfTiebNm4vRo0eLFStWVGutZWVl4umnnxZnn322sFqtwmAwiA4dOojbb79dbN++PWLswoULRdu2bYXBYBDdunUTn3/+eaUFFeNRVFQkzGazAMTChQtjjikuLhYPPvigaN++vTAYDCItLU307dtXPP3008Ltdlfr3iQSSd0gLUISiUQikUgaLTJGSCKRSCQSSaNFCiGJRCKRSCSNFimEJBKJRCKRNFqkEJJIJBKJRNJokUJIIpFIJBJJo0UKIYlEIpFIJI2WRtdrzO/3c+DAARITE1EUpb6XI5FIJBKJpBoIISguLiYzMxONpvbsOI1OCB04cIDs7Oz6XoZEIpFIJJLjYO/evWRlZdXa+RqdEEpMTATUFzIpKameVyORSCQSiaQ6FBUVkZ2dHfoery0anRAKusOSkpKkEJJIJBKJ5BSjtsNaZLC0RCKRSCSSRosUQhKJRCKRSBotUghJJBKJRCJptEghJJFIJBKJpNEihZBEIpFIJJJGixRCEolEIpFIGi1SCEkkEolEImm0SCEkkUgkEomk0SKFkEQikUgkkkaLFEISiUQikUgaLfUqhL755huGDRtGZmYmiqLw3nvvVTlnxYoV9OjRA6PRSPv27VmwYEGdr1MikUgkEsnpSb0KodLSUrp27cqLL75YrfG7du3isssu48ILL2TNmjVMmTKFm266ic8//7yOVyqRSCQSieR0pF6brg4dOpShQ4dWe/ysWbNo06YNzzzzDAC5ubl89913PPfccwwePLiulimRSCQSieQ05ZTqPr9y5UoGDRoUsW/w4MFMmTKlfhYkkUgkEonkhBFC4PF7cHgcOLwOHO4CnM59OAv2499px3VQy6Y8U51c+5QSQgcPHiQjIyNiX0ZGBkVFRTgcDsxmc9Qcl8uFy+UKPS8qKqrzdUokEolEcqoihMDlc5WLEo8Dp9cZeuzwBp5HHHfg8Bbi8NhxuAtUIeMpxOEpxuEpRbgV9B4zBo8FozuJJqUtSC9rQZq7Oaneptj8TbApNkzGZIxmC3p9UxKVZmjpBYDfL5gwc06d3O8pJYSOhyeffJLHHnusvpchkUgkEkmN8Qt/hOioKEBii5IYoiXm+DIcntKAiCnD4XHi8Dpxej1x15NAAilh/6WSig0bTUQTWnha0MaXQ5o/jVQllSQlCYvOgklvQqOpEJKsAAmBrQocOigwa7huWB/+Pv+EXs6YnFJCqFmzZhw6dChi36FDh0hKSoppDQJ48MEHmTp1auh5UVER2dnZdbpOiUQikZx++Py+mguQWKKlBudw+9x1ci8WLCExk0nLkKBJJZUURd3fRDShqa8paaRiU2wkaKxoNZXIBm3l13QrYDcpHLFqKLAoFJiU8r9mdV+RQWDxFpLqPYLYsouEomKu+lNzOtnac6fnTCmE+vTpwyeffBKx78svv6RPnz5x5xiNRoxGY10vTSKRSCQnEY/Pc0KiJHQ8zvhY+7x+b73es04DZh2Y9WDSgVkLKXoL6ZoUmig20pRyEZPsTyFJpGD1q5vFm4LJm4LZk4rBk4JGGKq+oELs3HIPKA4lsGlwolBgVjicBHub+tmZBVtb6tjVVEeBWcFu1pBvVnDqldApknyF5Li3kOvcQ467iAu9CjmaFNqZ26FNyOHp57bzt7+twWo1cMewy0lOSKqz0JZ6FUIlJSVs37499HzXrl2sWbOG1NRUWrZsyYMPPsj+/ft59dVXAbj11luZOXMm9913HxMnTuSrr75iyZIlfPzxx/V1CxKJRNKoEULg9rlrbhWpgSiJNd4nfPV63watFrNOi0mnYNYpqkDRCUw6gVnvx6zzY9b7MenLxUuEiAnbZ9JCgsaM1ZdCgj8oWFIwelPRu23o3CnoXKngtCEcKfgdqQiHDVGcAr4TCCD2glKmChqNQxN6HPncj+IrxW0oY3dbP5tzNWzsbGRLjp4t2Tq2pplx6OJLiSzPXrq4N5NTtJscVyE5XshVkmlm6oCS1ANSzokYv3dvIeNHvsHy5bsBGDCgNWZz3UqVehVCv/zyCxdeeGHoedCFNX78eBYsWEBeXh579uwJHW/Tpg0ff/wxd911FzNmzCArK4s5c+bI1HmJRCJBFSXhIqKmbpiI4zUQMQJRr/dt0pkw60yYdAbMegNmnR6zXodJp8Ws02DWa1TBoROqQNF5MWs9mHRuzDoPZp0bs96NSe/BbPBWLloCm1bjA6LFmPCYEI40/A5VtAhHqvq31Ia/NBVRlKKKGEcqfmcKwmlDuFLBH1/QCCB+1A6qoHEoKGUBARN4HBI1ZZowC46CxulBoQRMZSgpbkjzQ3MFsgwczbGw+awktrQ0siVFYYvBy2as7FaaIBQl5uX1wk1H9zZyXFvIcW8n12EnxyPoKGwkmnMhsQekXgxx5gdZunQjt9zyEQUFTiwWPc8/P4SJE7ujVDHvRFGEEPX7L/gkU1RURHJyMoWFhSQlJdX3ciQSyWmKX/irLUCOR5TEGu/0Ouv1nhUUzHpzQJiYMevNmHWB54HH6l8TJp0Os04bEClKwJIiMOsEZr0Pk86nihS9KlRMWgdmXRlmbRlmfSkmXSlmfRlGfRkajb/W70W4TIiSFESxDX9JKqIsBVGagihLUQWMIwXhSkG4miDcqfjdKQhPcqWCpkq8AsUhUBxaNA5thJiJEDQVrDh4QNG5wFICyQ5I9UIG0EIL2UZoZ4U2FmimQAb4EmG3AltQt83AFiHYgo9jSnz7iM1XQK5rs+rScm0hx3mMHLefNv5UdKYzILE7JHUGXTXcbmH4/YKbbvqA+fPXAHD22ZksWjSSDh2aRIyrq+/vUypGSCKRSI4Hr9974rEkcYJd442pqyDX6qJVtNUSJaHjFZ9HjDFi1ukCQsWvihS9V7Ws6D2YdE7MOhcGbRmKUgIUl2+iGCgEsU99rpSA4qibm/aimk6Cfz0gnEZVwJSm4HeoQkY4UxGuJvg96Qh3OsLTBOFJRXhs+D1JCE8C+Gv2ZR6Bz49S5g6IGgVNmR7FYURxaKMtNGGiBrcqJkMYyiCxDGwBq02WarWhtVkVNs01quDJABJMQKQIKwW2ESZ2UAXPNsBFBSuLohCUBK08u0OCJ8e9hRxHHrlOH+k0RzGeAZZukHQlNE2q0spTHTQaBbNZh0aj8OCD5/HIIxeg11cReV2LSIuQRCI5aYQXTTuhWJIaZuDUd5CrXqOPYRWpuSiJOz7Gcb1WCwRFSRER4iRqi3NchB1T6uA19BMpXMIETMXHwmUIuJlS8XuaI7zNEZ5mCG9TVdD4miB8NoQ3CeG14HebEW4T+E7gC9XvQ3E4UMpcKGVeNA5UMVNmRHGY0TisKGXaCFETU9CEYy6DJCc08UBTIFMLLY2qsMnUlgubplTUNTERwGHChA7lwmdPJfOMfied3FtDYifXtZkc1y46OvxYaA36LmDuCkk9IDEbKqa/nyBer5+iIhepqWrGd1mZh7VrD9KnT/ysbmkRkkgktUp40bQTiiWpoSjxi9p3Y9QEo9ZYI0ER27VTfVFi0pnQVZZyHEIALioXKkerOB4uYEpP/MWK9V1eDdESd59IQPibIHxZCF8L/P5MhMhAiCYIXyrCZ8PvS0R4rAiPGeE24nfpES4deE/A8iB8KJ4yFEcZSmkZmhInSqkPxaFBcejRlJlQHFYURzJKWXK5hcZViaAJ4QerE2wuaFMea0MrE7TQlQubDCAdMFgAS41vwQvspII7K7DZK5mX5j2iCh335kAMzxZyXNto5RRo6QC6zmA6ExKugLRcOAlZ1rt2FTBu3Lvo9RqWLbserVaDxaKvVATVJVIISSQNgGDRtJMRSxLc13CCXCu6YWomSqqOR4kUJRqlNn/Z+ii3ugS3imKlKmtM+JhasrqEf3dXZnWJtT+WgPGbgCTQ2ECXDIZkhDYFQXOEaIpfpCH8qQivDeFLQngT8LstauCw24BwavE7FYRDVBH1WxV+FOFE8ZagOIvRlJSgFJWiFDpQir0oZTo0DiOKw4JSlojiSEHjSANXExTSqn8ZjR8SHZDphaaiPNYmSx8pbDKANA3ojk/cxKIY2Eq0hed34r90ivDTxrMrUuwEtjS3Av4OoM0Fw5lgGQYZXcGaUiturZoghGDhwnVMnvwJxcVukpKMbN58lDPOaHpS11ERKYQkkgoEi6adaCxJTc7h8rmqXlgdEgxyrYnb5nhESfhxo9ZY59kg0QjASc2ESmXHa8HqEovqWliqOu7TgTYZ9DbQJ4E+ucLfJIQuBeFPQ9AEoUnGr01G+K0IYUH4TfgxINwgHELdnAJ/mf84BI2IeKxoPaqo8ZWgcRWhlOWjFNpRCopR8svQ5LtRHHoUhxmlzIrGkQyuNBQygEwgsWaX1/rUWJt0nxo0nGVQLTaBAOKQOyoDaKIBTe0Im1gIII9IsRN8vL+SeWZ/WcCis6XcyuPeQgf375h8GvC1ByVHdWuZLoO07pCYBZWkt58s7HYnf/7zxyxevAGAfv2yWbhwJK1b2+p3YUghVCv4/D6+3fMtecV5NE9sTv+W/dFqTl6g1+mMx+c5KbEk4fs8/hP6yXrCBINcazOWpCpRotfo60GUVJdYVpcTETInIdalJmKl4j4vgAZ0qlDBUFG8hP21lj8XmmSESAnEyCTi91gQbh2iTBUwfqcfYVeFTFDU+B1+qDKmu5L3gwKK3q+KGpwovlJV1DgKUIqPoNgPoTlagHKoGOWIE6XMgOJIQHElo4hws0pzoCs1tqoYfJDqUa02mVpooY8UNuGbTQtK7A4EdYUb2EFsd1ZxJfMyvIfJcW+KDFh2bSHbuxeN0ICvJYiOoO0MpkvB1g0Sc8BsOulWnurw9de7ue66d9m7twitVuHRRwfwwAPnodPVbtzR8SKF0AnyzuZ3uPOzO9lXtC+0LyspixlDZjAyd2Q9rqx2CRZNO5mxJA6Po96Lpuk1+kotHrUd4GrWm6sZT9KQCY91qYlb6GRbXZSAABHH5zaKcB2FnVdnjWt9QZ8MxiRIjC9uhCYR4bUgHKjWF4e/3BrjEPgLI5/HFzRuqqFyVBRQTAqKUaBovSg40fhLUVzFKI58lJJjaAoPoRzbj3J4H8qBfJT9pSgOE4oImlEqbmeimlhqGHNi8kFawGpT0WJTcUvUglL/PzrtxHZn7SC+7NYKH+3ce8hxbyDHvSkUsNzJvZUUv10d5EsHXwfQ5IJhKFi7QtJZkGADbf3fd3Xw+wV33PEZe/cW0a5dCosWjeScc7Lqe1kRyKyxE+Cdze9w1ZKrouIsgsF1b416q07EUKzOwCejxHx9x5MYtcaTFuAafNx4LHvxrC7H6zaqC6uLAl5NQHwIcPurb4GpKGB8EPXPWWtSxYiuCitMRXETPlaXCIF/M8IfLVZiCZgol9MJZt0rZqV8Mwg0OFH8ZSjuIhSHHU3JUZTCwyj5B1AO70E59AfKvj9QDvvAbSO+6giP+NXXbFGJPkgXkKmBZproU4ZrqWo04awPBLCX6MysLcDBSuZZ/U5yXDvJca8jx70+ZOVp59mBUQT+Z/sTwNcO6KQGL5vPAmsPSMwEg75BWnlqwtq1B3nxxZ959tnBWK3HX5agrrLGpBA6Tnx+H61ntI6wBFUk3ZLO/Cvmh9KFKxUlvuqLmPoumgbUzA1zgrEkZp0Zo85Yy0GupzpBq8uJxLeEHy+rm2X6tODVBqwvAtwCPF71cU1jYOIlmyna6guVuH8TQRvbclGloAkImCiX0wmGfSkmBcWiqH/NChqzBsXoR/E5UDwBUVN6DKXwkCpqju5DObgH5fAhOHIEDuVDWQJVC5umQBpVdsysiC1gtYklbCqe/gRqDJ5sXKiByRXFzlYqt01megvJce8k17WGHNfqkEurhXd/eey60KpuLX/ArWU8U63Jk9gREsy1nqJeHwghmDPnV0pK3Nx1V/w+oMeDTJ9vYHy759tKRRDAkbIjXP7G5XW6Do2iqbnFoyZZOjGOG7SGBhxP0pCpaHU5UbdRHVhdhAa8+oCACXMdeXzg9oLbV0OrS+w2BCFCLqMKwsQSQ7AEBU1Fi43WXK1fzMIfiI8pC/wtChcwfoSjLKbVRrhO7LdiUMgEN41ZE2GxUbwlaFyFKEFLTUEeytH9KPsOw+HAduSI+rfQQXzFcV6F501quFChTqnMFRWRBn5qW0vziY7b2YKaoh5Pc+uEnw7eY+S4d5LjWEOOexW57vV0cm8lyV8h6sfXFLwdQDMkrCbPmWq2lv70/Oo9erSMSZM+5L33tqDTabjkknZ06VK/GWHV4fT8v3ESyCvOq9a4VsmtyEzMrJYoqUqAxNqn0+ikKKkzYmUYnYjbqK6sLgbw68GrC3MdAR5/QLx4wOWungXG76dapgytOVqoWOIIlVh/DclqLM1xWPkiBI1DIBze6DiaCi4nUVb7gkYxKWgsmoj9GhMo7mI1A6roMEp+HsrRI9GCJvj42DHATPwYm6iI35otWisCbqc44ibcJZWmnHbfCH7gD2K7s45UMi9JeMn1HiXHtYNcx2/kOL8jx/Mbbd070Vf8AeJPAG87EJ0C2VpnQkJ3SGwOZuMp79aqLl98sYMJE94jL68EvV7Dk09eRG5uen0vq1qcZv/sTx7NE5tXa9yC4QsY0HpA3S5GEka41eVE3UZ1ZXXRgt+oChifTrW+eJTA5letLm4PuN3gdKn7KnMb1SgoVhcQKWGCJCGeUAkXNBXcTZoaxojEehn8QUtM5TEz4S6n4P4TQTFGupyirDThz02geIpRCo+gHAsTMTtjiJsjR+DoUfD5UFO7YymPs4hWIDVMA9eL+MKm4paqwKnvbakSBzFaSaC6syoLJMgWblXwOLeTExA8ua5vyfAdii6jKLTgba3W5NHkQrDVRGIHSLCA7tS2kB0vTqeXBx/8H9OnrwIgNzeN11+/km7dmtXzyqqPFELHSf+W/clKymJ/0f6YQcQKCllJWfRv2b8eVncqUZnV5XiETB1ZXfxmVbz4jQHxErC+RLiOfKrlxeUClxNcnjhWF19gnTVZqxIpRqyVCZVKrDCa2v+FKvyqtSXkcnLEFjCxYmtOBMVYwUJTUdAELTaBx4pFQTGC4iiLts5sq8Rq4wmmj9uIVhpnxNiXgWrlqQGmOKeJtdmU2BWfT3MEaqnKWO6s3UTHvgcxCEFHPOQELDw5ZavJLfuGjs6vsFIYe5IvA7ztgU6gPxMsZ4H1DLDawHjqBy/XFj6fn/PPn8/PPx8AYPLks/n3vy/GYjnxH0onEymEjhOtRsuMITO4aslVUceCWWPTh9yEVrMEtUZGf2ocjNhg8XHiKdHhx+sgRV7oQFjKBYxPHxAvgdgXbyDrKGh9cbnB5QCnA5zOGFYXR2A7DnQJ5WnT1iqESqx0a31SwI1Utx++QoiqxUv4vrB4mxPCSGwBU1lsjVlB0QReD4cj0irzRxxBE3zsDNoIFCCVaKXRJca+40gDt1aYXpm4SaRRiptY+IBdxHZn5VcyLwXIFV5yfEfJdf1OTumv5JR+TWvXcnTxmlD4rarg8QdaTRjPhIRukNQcLKbTIni5LtFqNYwdeya7d9uZN+8KLr+8Y30v6biQWWMnyDub3+GG92+gyFUU2ped1ITpQ2Bk7rGwkVnADKA+agvVdjXdOrK6iITAZlJL+odcRzrwaFTx4hEB8eJVXUculypeHGXgLCnPRqqNdlYaY/WFStzA3kQ4yXWBYgmaWALG74wWOSeEgeiYmYriJYbVRtFWUABut+piqkzMhD8uKQmbrEGN5I0XCBPcmgXG1fD/TXKMU8WLvWmgaeANhVJU11VFC8824jt6FaAVkCP85PqOkePeTk7pr+SWfEWa6weUeInsQqe6tXztQZMTaDXRFaztwWpRU9Ql1eLgwRKOHi0LtcXw+wX5+Q7S0uquEncQmTXWQBmZO5Jv93zL9B+nc3mHy7m779n0b/kI2qgfEvuBq4C3qJ4YqsrqUlMhUxeFCfUgkoAE1fIiTOAzhgXuKuWZR25/mHgJs744StTN7UH9aKyNRpFaMFQhWKJiYGKMjZNOfbIQItrlFEvAxHQ5nYimMVC1gAk+D0/xrihogvh8alDw4cOwrxrixm6vcAId0WImlyhho2kG/lRqHBQTyygUT9ycQmngDQEBHCK2O6uyzugmoBOQIwQ5fjs57h3klq2mQ/EKLK5fQewg7mear3mF4OWgWytJtfJIt9Zx8+GHW5k48QNsNhO//XYLVqsBjUY5KSKoLpFCqCr8PjjyLTjywNwc0vuHCqYFKXKq1qA+2ecwoPXLcU4U/Ga6AfgW9Qu/MhFznG6YKrECiSASVdeRsIS5jvSBrCNNwLIiKgTuOgOuo1JVvLiKwXcMOFbVRauPLrH6QiWeFUZraVAfdkIIcFF5ZtPJEDQB0aIxBfYFBEyU6IknaIL4/VBQoAqXXdUQNseOQZTh2UCkyugEnB+5T9sCaAo+W/XuN2gFVCg3ClXlkmpKjWsDSqLxENkZPVz4xInCAdT/TTmBLddfGkhL/5WWxV+jda0H32bi/jjyJ6puLV/7QE2esyChKyQ2VWvyNID+WqcLZWUe7rnnC1566RcAMjMTOXq07ISKIzYk5L+Uytj7Dqy+E8rC6gVZsqDnDMgut+oUOAsASDEdAyqvLaSKnOk1WIQBNYAgsIUETMD64gvWfAkL3A25jjzlriOnA5zF4CkGTyF4DnJi37IV0JqrFixxU6qDVXmtUSKzIVGloHHGFzUn9FLro11OlWY6VVfQlN8YFBXBwWq4oY4cUTdfrF/jFiIVRkciVIcuS7Xa+NLAV41MqfBLaKla1AS346gNKKkeRcR2Z20nfkcyDdAG1YaXA+T4PeR4dpHj/JUmpT+BYx14NhK3PrPQq24tb3tQAsHLCWdBQluwJoDJ0KB++Jxu/PprHmPHvsOWLUcBuPvuPvzjHwMxGk8f+XD63Elts/cd+PYqor7Byvar+/u/FRJDdqcdAJupilRrgfrh7r8QvDmRFXfD06aDWUeOMvCUgrsQPEXg2a/+FbWY0h1Mp6609ksVokaXCNpT55eBEALcVVto6kLQVEvAmANWm6DLSXccH/KlpfEFTax97nhRGeFp4B2IKNqnywJdpvrYkwq+KjKlKv6z1VM9YZOB6r6ScasnBQEcILY7q7LO6BbKrTs5BOJ4vPtp71yDyfEblK0F93rw7yS+WytTdWv5OoK+s+rWSugCiQG31inSX+t0wO8XPP30D/ztb1/h8fhp3tzKq6+OYNCgtvW9tFpHCqFY+H2qJSjmt15g30+3gNcJvhIK7FsBSNn7q1rCxgNkAu1RHeG/UF5pF4Dlge1EUMJESk1iYCqIG+2p6zOPJ2gqdTsFrDYnFExdUdDEcTlFiZzjETRBnM5ya0x1rDZllQW02yhXGO2JEDaGLFCagz8N3ClqwHo8Qp3Sw6hRGjgyU6oecaNacmK5s0oqmdeMMHdW8LE3nyzXWjSudVC6FlzrwLuZuIkV/mRV8Hjbl9fkSegK1oBb6zTor3WqoyiwfPluPB4/I0bkMHv2MJo0ObVjgeIhhVAsjnwb6Q6LhesorBwLgD3wqWHL+4FQlmawoGYJ0RW9tJZq9D+qygqTcFxVeRsicQVNxYJ6MQKFT0jQ6IgUMNV1O52IoAni8URnRlUmbIqKKjmZgtobIQNoC/QhFGNjahmItckAbyq4ktUsvFjEEjYQmQZe1WZFipsGhp1ooRPsjB4vhUILtCNM6AQ3vwObezO41qsWHsda8GwAcTj2iYQevG1UwSM6guEMtdVEQms1W0umqDc4vF4/Op0GRVGYP/8KPvtsO+PHdz2tOxhIIRQLR171xiV1hsT2FOz6FPCQ0ukWSC0F/UK1dBBAS9TH+uC2BDRX18Wq6x0h1NT1WAX1qrLanLCgqU6qdkWXk74W39g+H+TnVz/lu6CgihOGp4G3Vf9qmoO5jWq10TQHX7pqtXFawR/jy8RH/CS86qaBZ6D6PCQNGj9qdGJFV9Zm1KyteCQSKXSCwqed8GPw7FQFj3OdKnpcQbdWnDert0V58LIuELxszYXERLXy8mnaX+t0objYxR13fIaiwLx5VwDQrJmVCRO61e/CTgLyX2YszNVrn8HZL+Jvej5FK9SX0dbtMbBmACOAsYBT/YUMQDZqkHR91BGqGRGCprpxNEGX04lk6WsDFpoKLqdQZlM8l1NtCpogQqhp3JUJmvB9x44F+nRVRjANvDVwjuqCsrRRrTa6gNXG00S12pRZQFS4Lz+VVxiQaeCnPU4iO6MHxc5WKq/u1YIY7ixUD77iPaKKHNc6KFsHzrUBt1aczFV/sip4gpWXDYHg5SbpqlurEfXXOl348cd9jB37Djt3FqDRKNx9d59TollqbSGFUCzS+6vZYWX7iR0npKjH0/tT6CwMtdiwmWyB4yNRS+//AtwNXE59VJaOK2hiuJyEs4KFphYETazU7EqtNnUhaIIIoRbeq058TfCvtzpB6UZUddFD/ZvQNmC1yVatNv50cNugLAnKKqgPQeXCJjwNvDJRI9PATzuOEdudtYtKOqOjhrNXdGd1ApIA/GXg2hSw8qxVRY9nA4g47UeFMeDWagf+juU1eRJbQaIFLOZG21/rdMHr9TNt2rc8/vjX+HyCli2TWbhwRKMSQSCFUEwEGryZryB++w9a8w9odeGussCXdc/poNGGMsbMOjNGnTFs3NHA36uAc09sPUKAN7bLqSqrzQkLmuqmaof1dULHyfEnl5VVT9AE97mq0VUdUH1B2UCGKmqs7cAYsNooYVabkgRwVAgmrqompEwDlwTwoeZSxHJnHa1kXjKRYif4uA0BLSx8EO7WcqwF53rwx5FRQgFfwK3lbQfaXDB2hYQcsFpVt5bsr3XasWtXAePGvcsPP+wF4Nprz+A//7kMm63xmYulEKqAe7Obss/LEMXdgdlY0u9Em/QaXlcndMatgTpC02OkztsqnCn4Kys9Yq/wVD9VO+RyKjtBQaMJWGgqVgOO09cpKHLQnyRBE8Ttrn5W1OHDaop4tUkEssHYCpI6qC6pYKyNv6kaa+NIhCIzOMPeFg6qrm0p08AllVBGeWf0cAvPNirvjN6SaFdWDuo/o9C70nso4NZarwoexzrwbiG+W8sGnvblwcvGM8F8JqQ0UQVPggxebgz4fH4GD17I77/nk5Rk5D//uZSxY8+q72XVG1IIheHe7Kb0rQpfror6geIuvg5/7qUYep8FGm1I0DjyHPSjH2dqzsT1m0vNbHK4Ec5/IMpSEM5UhKMoJHJiZuVUF018C01lVpuTLmiCeL1qZlR1a9kUVlaDNhY20GeDrZNqtTG1Am2marXxpoEzGUoToNAErsCHu4tyjVoZZqrnkpJp4BJUL+cRYruz/iB++SkjatnJigHLHanQqsxfBq6NkbE87vUg4tiOhBG8bctT1HVdwHwWWLMhMaE8RV3SKNFqNUyfPoQnn/yO114bQevWtvpeUr0im64GEH5B4fOFiOLIl0NnXo6iKcHr7IUQzVESlFoVNNXq4WRWrTb1JmiC+P1qZlR1rTbHatp6QwFNU0jJUa02CW1UoaNpDiKQIVWWBMVmsBvAU8PXQqaBS04QL7Cb2O6syvIAU4ntzmpNBe+n8IF7e6SVx7UefLuIKaeEAr7scsGj5Kgp6gmdwJqoCh7ZX0sCfPPNHxQWOhk2rFNonxDilEqLl01X6xjvHm+UCALwOi6MeB4xRgNOnZM9rj0Is+CM7DMCBfWOoJheQGMWKOZ/RokcDPUsaIIIoVphqhs8fPRonNYKlaGDJp0guWO51SaYIeVrAk6barWxm6BACz5FjRStroaSaeCSOqCE8lYS4Rae36m8M3prYruz0isOFgJ8YW4t57pAq4nNxHWY+VLLBY+/gxq8bD4TkpqA1Sz7a0li4nb7ePTRFfzzn9+RnGxi3bpbyc5OBhrI91ADQL5rAoiS2IYxrek7jNZ3cRVfg891NqYLTRjOMKAxCFj1Hc9umsM9zkWMbTuGhVcuCsz6HngWOAu1V9hJQojKWyvEeuyJ1yGoEmzpkBIQN5awDCkRFmtTbIF8A+QrcEypWV/WYG3AytxRMg1ccoII1O5WsVpJ7K1kXrAzekULTwdUj2oU/pJyt5Zznbq5NoCI86YQpoBbKxC8rMkFU1ewZqliJ8Ei+2tJqsXWrUcZO/YdVq9WE35GjsxplMHQVSGFUADFGvtDRW9egTF5Pu6yIQDosnRov3of7rwT9u2jYCBwPqS8+T4o78DIkcQLlD4uHI7qVR4OPnZWFn4Zh8RESMuKjLUJZkh50wIZUlY11uaYFgqU8gra1aE6aeDBLR2ZBi6pVYKd0SuKnS1U3hm9KbGLDbYkTry78Ea6tZzr1GytuG4tDfiyymvyiA6B4OWOYAu4tRJkfy1JzRFCMGfOr0yZ8jllZR5SUkzMnj2MK6/sXN9La5BIIRRA11KHkqhEuccUTaB/ht+MkqSgW/0hXH2Van1B9egA2I6VwlVXwVtvwchgAGMMIeR2R7dWqOxxSWVdf+JgNkPTptCkZViGVEWrTZJqtSnQw2GNWqCkJsg0cEkDo4jYfbO2Ez+kT4NatzuWOys13oWEAG9eueBxrQ9za8Up0eBrUm7h8XVQKy+bz4Dk1IDgkf21JLWDz+fn6quX8u67WwAYOLANr7wynKys2oupOd2QQiiAolGwDLZEZ40FhJAQJiwDTSiX3hkSQQAFQSHkQN1/882Q1QN6A8vXwwsjI8WN3V7zxen1qrBJbwqprVSrjbl1WKxNwGpTGrDaHNGqdfX/qOF1DMR3Q8k0cEkDQKB2QI+VnXWgknnBzugV3VntUTO34uIvUd1Y4YLHtR5EfpwFmsrjeDzt1OBl05mQkFUueGR/LUkdotVqyM5OQq/XMG3aRUyd2geNRgrsypBCKAxDrgGuIlBHSBU7GqUYAPPHTdA/DRw5G7Wrj0rQIpQS9EgdOwa/fRkQQhvh3Y3RF9JqIS2tXNwkt1YrEsez2uTr4JCiftrX1PNVVRp4+JaMzJSSNAiCndFjubMqs5E2J7Y7qwVV6HbhBfe2GG6t3XHGa8DXMtLKY+iiurVSEgLBy7K/luTk4HR6KSpy0bSpWnThn/8cxI039uCsszLqeWWnBvJdWgFDrgH9Jj2FPxYikgSKULt+67ckwxEj8BZqteh3ASgIREfawgVK+1Q4ooGMUXD7JaA0i7TaFBjhsKJabbagBjHUBJkGLjlNKCC2O2snlXdGb0+0hacTakmnShECvAci3VrOdeDeTNx8MF9aueDxtleDl81dwJoSKEIo+2tJ6o+NGw8zZsw72GwmvvrqerRaDWazXoqgGiCFUEV8oExR4Br1qaIPhFO6zKiKQgCzUCsVp3PT6gxu/TmDAbvC1MfgdPDV8KW1Uf2YG5kGLjmF8KNmYcVyZ1XVGb1i3E4uakxPtXIxfUWRbi3XOnBuABGn4o/fHCl4REcwngEJmZBiUa08sr+WpIEghGDmzJ+4994vcbl8pKdb2LGjgI4dm9T30k45pBCqyLeonq/AK6Ns6A8LPobCYEd6DapieQWAiWtinCP4U7aJBzL0VQubplQRqCCRNHycqHV2KrqzquqMnkXszujNqaYxU3gquLUCVh5fnCA5oQ24tdqVZ2zpOoOlA9gSymN5jDJFXdIwOXiwhBtueJ/PPtsOwNCh7Zk//woyMqz1vLJTEymEKqKWW0DoAgHRP18O9swYA9cDa5lxziH2Jx7i3h8OkV52GJ66B8bcCelbQf8bahd6ieT04Six3VlxksQBtSJCB2K7sxKre2EhwLsvhltrK/HdWukBwdNBFTx0AnNnSLCV1+SR/bUkpxAffriViRM/4OjRMkwmHU89dTGTJ58tiyOeAFIIVaQ5CES5RcgZNNUIIn6fpj2O0/4WU4aqT/+6qwX8+3kYOQDYFBhfC3WEJJJ6wIeadBir2GBlndFtxHZntaGGHza+wgpurYClR9hjj/cnhBUhbA++9oFWE80hyQxWi+yvJTnl8Xr9PPTQVxw9WsZZZ2Xw+usj6dKlaX0v65RHCqGK9AeyKU8xKQvWilXK/2QBv7+BPeNdwIeCQtKWXaDToxZTDP4ulr5aScMm2Bk9XOxsDuyLUxEHgFbEdmc1pYax+cINrq2Rgse1Hrx74ozXlmdreTqo1h5tLpjbQaKlPHhZ9teSnIbodBoWLRrJa6+t44knLsRolF/htYF8FSuiBZ5B/UYAFEdY0fzg5+p0wOfGrleDgZKNyWh0wV+awd/LKciXV9IQEMBhYruzKis1ZUTtgl7RwhPVGb1aixDg3Rtt4XFXkjbpa1pu4fG2A39HMOWqbq0Us+yvJTnt8fsFzzzzA36/4P77zwPgzDMz+Pe/L67nlZ1eyE+QGIhLRUgIES6EslBF0EjggL28mKLZFja7FttrSCQ1wIsapxPLnVVZZ/QmxO6M3orjLAjus0dbeJwbQMRpaOFPCIvjaVcevJzQDGxm2V9L0ijZt6+I8ePf46uvdqHVKlxxRQ45OWn1vazTEimEYhGsx6/xo7gCueqzgRso/2YoLCwvpmhKCZtcSXsNiaQWKCG6yOBm1IyteCWpFNQ4nVjurOP+aBVucG2J4daK07JUaMHbOjJFnY5gaVfu0goGL8v+WpJGzNKlG7nllo8oKHBiseiZMWMInTrJUIu6QgqhGAivGuOj6PzgDgih84n8eWy3lxdTNNnCDgQtQlK5S44fgZrAGMudta+SeWaiO6PnUEln9GotRqgxO851kYLHvZW4Xbx8GWFurfaqtcfYCRKSILlC8LK08kgkABQXu7jzzs+YP38NAL16ZbJo0UhZG6iOkUIoBkEhhManVoOG6CKGdnu5RcgcbhGSrjFJ9fEAO4jtziqqZF5TYruzwuP8jwtfQbSFx7UB/HFW47dGWni87UHTCSwZgeBl2V9LIqkOXq+fvn3nsWHDYRQF/vrX/jzyyAXo9dI6WtdIIRSLwI9cReMDX6CGbUUhFOYasxltYQeka0wSTSGx3Vk7qLwzejuixU4nKumMXl38LjVQ2VXByuPdH3u80AXcWu3KLTz+DmBuBQkJkGqW/bUkkhNAp9Nw8809ePrplSxcOIL+/VvV95IaDfITKwYhi5AS1u0ohkWooFKLkHSNNTYEqtsqViuJvErmJRAdt5NDNTqjV2tRfvD8EW3lcW8lbjcvX/NIC4+nHeg7qm6tFLPsryWR1BK7dhVQWOiiW7dmANx2W2/Gj+9GUpJsNXAykUIoFkGLUOiBH4wVzPphrrHYMULSInS64kLtjB7LnVVaybzmxHZntaCW+uL68surLYe7tUScfu3+xDC3ViBjS3SEhPSwwOVgiro0z0sktYUQgkWL1vOXv3xMenoCa9bcQmKiEUVRpAiqB6QQikHIIhT8xWxyg2KKHBQWLB07a0xahE51CogWOptRO6P748zRUd4ZvaI7K7m2FuZ3qt3So7K1DsQeL/Rh2Vph8TymlqpbKzmsJo/sryWR1Cl2u5M///ljFi/eAMBZZ2VQXOwmMVEKoPpCCqFYBA1BIvDA5AEqCKHwGCFpETpl8QN7iO3OOlzJvCRiu7PaofbVqhWEHzy7o+N43L8T362VqQodT1jGlqaN6tZKqpCiLoOXJZKTyjff/MF1173Lnj2FaLUKjz46gAceOA+dTr4X6xMphGIQsgj5g0IoRjir3U5BkvqwPEZIIIVQw8SBWmenotjZGjgWj2yi+2blAM2oJXdWEO/R2NlaIo6zzZ8cFscT+OtrB5aAWytV9teSSBoKXq+fv/99Of/853cIAe3apbBo0UjOOServpcmQQqh2IRCgwK/us2xhZA90Ouu3CJUSnmHJukaqw+OEtudtZv4ndENxO+Mbq3tBfodqlurYk0e38HY44UevG0q1ORpD/pM1bITHrws+2tJJA0SrVZh7dpDCAETJ3Zj+vQh0hXWgJBCKAYhi5AvIIDMMdwQhYUxCioGrUFmjqMbk6Sa+FCFTSx31rFK5tlQhU7FgOXW1MEbQfjBszNGttbvxI0w8raIrslDK0hILBc7sr+WRHJKIITA7fZhNOpQFIX586/gu+/2MHJkbn0vTVIB+Wkai6BFyBe0CEV/cfntBRQGBH15sLR0i9Umpahd0CuKnao6o7cmtjsrnVp2ZwXxHgkInXArz0YQZbHH+5MjA5c9HcDXFkwpquCxhdXkkf21JJJTjmPHypg06UMSE4288spwAJo2TZAiqIEihVAMQhYhT3whVFxWgD8Q31ZuEZIZYzUl2Bk9ljtrTyXzjKiuq4rurI5El3yqNfxl4NoUbeXxHYo9XhgDbq12kW4tTVOwJkCSGdlfSyI5vfjyyx2MH/8eeXkl6PUaHnqov2yR0cCRQigGoV5j3oAAivHNanfaATBqDJj1wS5O0iIUDy9q2nksd5a9knlpRGdm5QItOc7O6NVB+FS3VsU4Hs92YkYaCQV8Mdxa/pZgSSivxSP7a0kkpy1Op5e//nUZzz33IwC5uWmyT9gpghRCsQi6xjxxhJDbjT3gnIlMnZftNYpRM7EqWngq64yuIXZn9E6cBNua91CMbK2NIOLkkvltkanp3vbgbQuGpEC2luyvJZE0NjZuPMyYMe+wbp1qHf7LX3rx1FOXYLHIjM1TASmEYhByjbnjCKGwQOkUc3jXp8bRXiPYGT2WOytOpypAfRljubM6EFWlqfbxl6kCp2JNHt+R2OOFURU4EW6tdkB6pHVH9teSSBo1Xq+fyy9/g9277aSnW5g37wouv7xjfS9LUgPkp3csQhahgCBKqKS9htkWduD0co25Ke+MXtGdVVzJvAxiu7OyOMHO6NVB+MC9PdrK49lBfLdWdrTg8WWBKSB2ZH8tiUQSB51Ow0svXcYLL/zEvHl/IiOj1otuSOoYKYRiELIIBVOTEipEoxQWljdcPQ3aa9iJ7c6qrDO6lvid0VPizKlVhFCDlCv21nJvAuGMPceXGi14vG1Ba1UtO8myv5ZEIqmajz7ahtvtC2WBDRnSnsGD26HIH0mnJPUuhF588UWeeuopDh48SNeuXXnhhRfo3bt33PHTp0/npZdeYs+ePaSlpXHVVVfx5JNPYjLVonMlaBFyB55XZhE6RdprCGAv0a6sLUCcUn6AWlCwotgJtpI4aeXA/CUBt1bFbK2jsccLU8CtFRa87GkPIlWN2wlmasn+WhKJpAaUlXm4554veOmlX0hONtKrVyYtW6pdBKUIOnWpVyH05ptvMnXqVGbNmsU555zD9OnTGTx4MFu3bqVp06ZR419//XUeeOAB5s2bR9++fdm2bRsTJkxAURSeffbZWltXuUUo8A87ocLLFNZwtaEJIRflrSTCxc5WKu+Mnklsd1YmdVR7JxbCG+bWCrPyeHbGGa9RXVgVm4n6WoDeWCF4WfbXkkgkx8+vv+Yxduw7bNmi/gC78cbuZGTIwrmnA/UqhJ599lkmTZrEDTfcAMCsWbP4+OOPmTdvHg888EDU+B9++IF+/foxZswYAFq3bs21117LqlWrandhQYuQK+AasVaI/A+zCNWXayyf6LidLVTdGT3YSqKiOyupjtcbgRDgzYtRdXkTiDilEn1NotPTvW1AMRNRcVn215JIJLWI3y945pkfeOihr/B4/DRvbuWVV4Zz8cXt6ntpklqi3oSQ2+1m9erVPPjgg6F9Go2GQYMGsXLlyphz+vbty8KFC/npp5/o3bs3O3fu5JNPPuG6666Lex2Xy4XLVf7lWlRUVOXayi1CgS/TBEPkgLAYoXKLkIfyiji1YxHyA38Q250VJ9cJUEVNUOSEW3naUoud0auLrxjcG6Njefz5sccLU5g7K0z0iBTVhRVsKCr7a0kkkjrG4/ExdOgili3bBcCIETn897/DSEurs7Ktknqg3oTQ0aNH8fl8ZGRkROzPyMhgy5YtMeeMGTOGo0ePct555yGEwOv1cuutt/LXv/417nWefPJJHnvssZotLmgRcgYEUGUWoVDn+aA1SENNw4UdxG4lsRWIE/YLqJ3RY7mzMjiJ7qwgwgvubTGytXbFGa8BX8toK48vE7Q6VeTYwgKXrbK/lkQiObno9VrOPLMpK1fuY8aMIdx4Y3cZC3Qackp9s6xYsYJp06bxn//8h3POOYft27dz55138sQTT/Dwww/HnPPggw8yderU0POioiKys7MrvU65RSgghBIq/MOPGSwdFEJNiJUkLgIjYrmzdlN5Z/SORLuzOlIHndGrgxDgPRAdx+PeDMIde44vLYZbqzVgUtPREyrU5JH9tSQSST1RXOyiuNhNZmYiAE8+OYjJk3vTvn1qFTMlpyr1JoTS0tLQarUcOhTZp+nQoUM0a9Ys5pyHH36Y6667jptuugmAM888k9LSUm6++WYeeughNDECYY1GI0Zj1flNPuBb1EKBA32qAFEcgXmxCiqq75Gohqs+MthFbHdWHGeQeh6iO6PnoFZcrrckbl8RuDZEW3n8BbHHC3Og6nKFFHVhU1PREyyBFHXZX0sikTQ8fvxxH+PGvUOzZlZWrJiATqfBZNJJEXSaU29CyGAw0LNnT5YtW8bw4cMB8Pv9LFu2jNtuuy3mnLKysiixow18kQoRz6ZSNe8AdwL7As+3eAVNAcUZRwjZ7eS3sECzTvyY0oYVwBY6sIV1bKMTcewiKEArIsVO8HEa9eDOCiI8YW6tdeAMCB7vH3HGawNurYpFCDNB0apxO4myv5ZEIjk18Hr9TJv2LY8//jU+n8Dj8bN3byFt2pyUqmiSeqZeXWNTp05l/Pjx9OrVi969ezN9+nRKS0tDWWTXX389LVq04MknnwRg2LBhPPvss3Tv3j3kGnv44YcZNmxYSBDVlHeAq4h0TZkDFaWFw8TBDNiSXsGd9d//khewWv0tNCs7sKntIoKtJMLFTgfqsDN6dRACvPti9NbaTNxOYL70gODpEObeag0YVXEj+2tJJJJTmF27Chg37l1++GEvANdeewb/+c9l2Gx13vhH0kCoVyE0evRojhw5wt///ncOHjxIt27d+Oyzz0IB1Hv27ImwAP3tb39DURT+9re/sX//ftLT0xk2bBj/+Mc/juv6PlRLUEVbkjEQLH3md03YEiucKOi6Kz1MH1MKZ2r15PAZOcwgh5604v/qvpVEVfgKK7i11qnP/fbY40UCeNoSVZNHJKvCJsEUHbyslynqEonk1EQIwaJF6/nLXz6muNhNYqKBl166jLFjz6rvpUlOMoo4EZ/SKUhRURHJyckUFhbya1ISF1Y4rvELjv7DDkD7u5OxGzVkCuimK7fwNLvmCi7v8R048vE+7EWr0QK3AS+i2oieOHk3JNzg2hpt5fHuiTNeC75WqtDxdCgXPP7mgAImY2RdngSL7K8lkUhOOzweH2efPZu1aw/Rr182r702QrrCGjjh399JSbVX/e6UyhqrbfJi7DP6yh9/01eh3Rb48DBcHfaab1u5DHJLSdJbAyII6ryqtBDg3VvBwrNeFUFx3VoZYXE87cKytQxqkLLVDDbZX0sikTQ+9Hotr79+Je+8s5kHHjgPna7e7fiSeqJRC6HmMfYZveUGss7rQfFDU3PYAJ+PAp/arMJmtIUdqEUh5LPHiOPZAP7C2OOFNeDW6hApfERAvYWCl2V/LYlE0jjxeHw8+ugKzGY9f/vb+QB07pxO584Nrzek5OTSqIVQfyAL2E95nJApEB/kx4/iV/DrvJynD3uZiovLiylawlMqj6O9hnCDa0u0lce7L854nerWqpii7m8GKKAPFCJsIvtrSSQSSZBt244xduw7/PLLAbRahWuvPYN27WRKvESlUQshLTADNWssSNAi5NMEfGQmN9rwlym8mKI53J9ciUVICPD8EaO31lZCZawr4m8W2WLC2x68rYBAGnqCGVJkfy2JRCKJhxCCOXN+ZcqUzykr85CSYmL27GFSBEkiaNRCCGAk8BbwF+AQYA6E2whFbV2qMbmJSHoP6zxf3l4jWDca8OnB9U2MbK3i2AsQiQHBU7EIYaBiY7C/ljUslkf215JIJJJKOXq0jEmTPuS999SWTQMHtuGVV4aTlXVSW0xLTgEarxASPihdAb48Rmqb08bSnx6KliY+1SJkJGgRqmCxKSzEbgKDBs5M9kHha+D6GVxecAHeM+JcTw++1mEp6oF4Hn+gM5hWE+ivFSZ4ZH8tiUQiqTEej49zz53Djh0F6PUannzyIu66qw8ajfwBKYmm8X7L7jwDzAdCT70Jl0H2RzQJNlwVgQdmL7h3lVt4zJ9yw+NwTwboNB9C3ofR5/ZnRtbk8bRTRVDw5TYbIUn215JIJJK6QK/XMnVqH2bO/IlFi0bSvXus1BiJRKXxCiHvgYinbp8dgARXIWrT1DL1gPkP2Hlu+cAkyAhYVh1eI2bROeDaCmZstVOzuKC8v1YT2V9LIpFI6pINGw7jcHg4++wWAPz5z7244YZumM0ydlJSOY1XCFUwvrg16pvF4i4AmqDgVA+YS1W3lr8tuFUrz7Qd3/KfPWu4v8Vt3J51DSgCLNshpQASOsn+WhKJRHKSEEIwc+ZP3HvvlzRvnsjatbeSlGREURQpgiTVovEKoQq4FQMAlkCwtOINWHU0OXD4G0IvlcvJit+/YL8fbC3bQffOYFkMmhuBy1DDriUSiURS1xw8WMINN7zPZ59tByA3Nw2321fFLIkkksYrhDztAfXNQ/FduMRQABJcTQEfeJPVYwlaaNemPJ7n/vspKNkKLcDWNEu1/oRS52tQQ0gikUgkx81HH21j4sT3OXKkDJNJx1NPXczkyWejSCu8pIY0XiHkOpeQEHJ3x61VY4IsviNAKor3MNAUbE7IalU+z27HHjAWlafP13F7DYlEIpEAakbYnXd+xksv/QLAWWdl8PrrI+nSpWk9r0xyqtKISw6HBSw3uR639U0AzL5AbJBXrSNEQoVfF4WFoTpCNpMtsFMKIYlEIjkZ6HQa9u9X67LdfXcffvrpJimCJCdE47UIicinbtQYIZNHtfIoISEUqRWFvaC8xYYpaBE6jvYaEolEIqkWfr/A6fRisehRFIU5c4axbl1vLrqobX0vTXIa0HgtQsIc8dQVsOaYCeTGewJKqYIQKi3OxxfYJS1CEolEUrfs3VvIoEGvcvPN5TXb0tMTpAiS1BqN1yLkuRyYpT7OfwG38QoATGgBD0oge4yEyJo/BY4CAPSKDos+2HpDCiGJRCKpbZYu3cjNN3+E3e7EYtGza1cBbdqkVD1RIqkBjVcINQ1rupd7LW6b+jzYdBVXIDYoIfIlsrsLAbAZksKyE6RrTCKRSGqL4mIXt9/+Ka+8shaAs8/OZNGikVIESeqExiuE8Jc/tKXgDoiaYGsxxRMQOdawglxCUOBRg/RSQm4xJ1ASeCwtQhKJRHIi/PjjPsaOfYedOwvQaBQefPA8HnnkAvR6WZFfUjc0YiEU1kxV0eAKPAxZhNyBN11CmBAqLcVuUAWUzRy0KAXdYnpAdjWWSCSS48Xt9jFq1FL27i2iZctkFi4cQf/+raqeKJGcAI1YCAUtQmrkszvwzBC0CLkCL43VUD6lsJCCYMZYQpPAznC3mCzkJZFIJMeLwaBl7tw/sWDBWl588VJsNlN9L0nSCGi8QkgEhZBq+SkXQqpFSHEHLEHWMHOs3R5KnZcZYxKJRHJiCCFYuHAder2Wa645A4CLL27HxRe3q+eVSRoTjVcIEexHU9EiFHCNOQNCyBI2xW6vpJiiDJSWSCSS6mK3O/nznz9m8eINJCYa6Ns3m5Ytk+t7WZJGSOMVQiLSNRaMEdKHXGMBl1gFIRS/mKK0CEkkEkl1+Prr3Vx33bvs3VuEVqtw3339yMxMrO9lSRopjVgIBS1Cka4xfcgiZFT/hguhwkLpGpNIJJLjxO328eijK/jnP79DCGjXLoVFi0ZyzjlZ9b00SSOm8Qoh4gkh9a8SSwjZ7eXB0mbZXkMikUiqi8vlpX//+fz88wEAJk7sxowZQ7GGJ6RIJPVAIxZCsV1julBBxdgxQtIiJJFIJDXHaNRx/vmt2L49n9mzh3HllZ3re0kSCdCohVDsYGldxYKKFVxjwWDp8hghKYQkEokkFkePluFweMjOVoOg//GPgdx117m0aCFrrkkaDo246WrAIqREusa0QYtQsN5ieBmLmBYh6RqTSCSSinzxxQ7OPPMlRo9+C69X/bw1GnVSBEkaHI1XCMUpqKgNWoS8CpickTUSY8YISYuQRCKRBHE6vdx112cMHryQgwdLsNudHDxYUvVEiaSeaLyusQpZY8EYIU24RcjkJtwk5C0soCQQQ61ahHzAscBRKYQkEknjZsOGw4wZ8zbr1x8G4C9/6cVTT12CxaKvYqZEUn80XiEUK0ZICDThFiGrJ2KGvfRY6HGyMRkoAALCiVQkEomkMSKEYObMn7j33i9xuXykp1uYN+8KLr+8Y30vTSKpksYrhES0a8zgC/OEeSlvRR/A7igAwKo1o9fqKXeLpaA2XZVIJJLGh8fjZ/78NbhcPoYObc/8+VeQkWGt72VJJNWiEQuhgEUoLFjaGN6Q3quAOVIIFbgKAbAZgsF+Mj5IIpE0XoQQKIqCwaDl9dev5H//28nkyWejKLIBteTUofEKIaJjhEzB+CBQLUJmX8QMu7cYiNVeQ2aMSSSSxkNZmYe77/6cpk0TeOyxCwHIyUkjJ0d+FkpOPRqxEAqKnnLXmDEohIQXBQXM/vLhTid2jRozZLPIjDGJRNI4+fXXPMaOfYctW46i02mYOLE7rVrZ6ntZEslx04jT56NbbARDgpRgar05zEIUXkwxIfirR1qEJBJJ48DvF/z7399z7rlz2LLlKM2bW/nkkzFSBElOeRqvRSgUIxTDIuQPHLNECqFQMUVZQ0gikTQi9u4tZPz491i+fDcAI0bkMHv2MJo0sVQ+USI5BWi8QihGrzFTUBv5A8fiNVyV7TUkEkkjweXy0rfvPPbtK8Ji0fP880OYOLG7DIiWnDZI11i4a8wTtAgFhVDYG12215BIJI0Qo1HHww+fT69emfz22y3ceGMPKYIkpxXSIoQWX+BZKEbIGxBJCWE60W4PxQjJzvMSieR05scf9yGEoE+fbAAmTerBDTd0Q6/X1vPKJJLap/FahMLqCAX7jIVihHyBv+FCKCxGSLrGJBLJ6YjX6+fxx7/mvPPmcc01b2O3OwFQFEWKIMlpSyO2CJWnzwf7jJVbhIJCKOzlCYsRUi1CAukak0gkpwu7dhUwbty7/PDDXgD69ctGesAkjYFGLIRiWIR8YQ1XIUoI2SM6z5cCzsBBaRGSSCSnJkIIFi5cx+TJn1Bc7CYpych//nMpY8eeVd9Lk0hOCo1XCIV1nw8KIUvQIhTstWoN6x9WWIg9IkYo6BYzAwl1uFCJRCKpG1wuLxMmvM/ixRsA1Qq0cOFIWre21e/CJJKTSOONEQpLnw+6xqzBrDFPwB4cJoSEvaC8oKIpBekWk0gkpzoGgxan04tWq/DEExeyYsUEKYIkjY7GaxEKpc9rQhahhEBskOIJBAUmGEKjHUX5BHerFqH1gSPSLSaRSE4d3G4fLpeXxEQjiqIwe/Ywdu48j969W9T30iSSekFahBRdtGvMHVA81nKdWFCqWoC0aLAarJS7xqRFSCKRnBps23aMfv3mMWnShwih/vBLS7NIESRp1DRei1AoRkgJCSFzMFssKIQSylMm7E47ADadNVBMLOgakxYhiUTSsBFCMGfOr0yZ8jllZR527Mhn374isrOT63tpEkm903iFUDB9XtGFYoQswUQyVyA2KKzFRoGrEIAUQ/CDQ9YQkkgkDZ+jR8uYNOlD3ntvCwADB7bhlVeGk5WVVM8rk0gaBo1YCEXHCJmCFqEYQsjuKQZkew2JRHLq8OWXOxg//j3y8krQ6zVMm3YRU6f2QaORBYIkkiCNWAgFY4Q0Ya6xwK6KQsjrpSBQM8hmSQ3slBYhiUTScHE6vUyc+AF5eSXk5qaxaNFIundvXt/LkkgaHFIIhdURCjVd9QRiyINCqKiovJiiNWgBkkJIIpE0XEwmHa+8Mpy3397EU09dgsWir3qSRNIIacRCqLygYnSLjYDZOCiEwjvPhyxC0jUmkUgaDkIIZs78iZQUM+PGqVWhBw5sw8CBbep5ZRJJw6bxCiERdI3FaLHhAbRe0AdenrDO87LhqkRSf/j9ftxud9UDGxlHjpTy179+xbff/kFCgp7zzsukWTNrfS9LIqkxBoMBjebkVvZpvEIoRrC0MdwiZHIRennCOs+rwdIewB6YJYWQRHIycLvd7Nq1C7/fX/XgRkRZmYdjx8oYOzaLceOySUkx4XAcYdeuI1VPlkgaGBqNhjZt2mAwGKoeXEs0YiFUnj4fFEIGb1jTVZObUA+xsM7zasPVY4EZGiBoIZJIJHWFEIK8vDy0Wi3Z2dkn/RdjQ8Tn83PwYAmlpU5SU20YjVqys5MwmWQskOTUxO/3c+DAAfLy8mjZsmWgZl/d04iFUPBXpRKKETKEW4TMnvKh4TFCEQ1Xm9Coi3NLJCcJr9dLWVkZmZmZWCyWqiec5vj9fjZtOorT6QV0ZGQk0KJFkkyLl5zypKenc+DAAbxeL3r9yRH1jVgIBasnRluEVNeYt3xoYWGFGCHZXkMiOZn4fOr79WSayxsyGo0Gm83EsWNltGljIynJVN9LkkhqheB73OfzSSFU95RnjcV0jSWHCaEoi9AfgQMyPkgiOZmcLFN5Q8Tt9iGEwGhUP7YzMxNp1iwBnU5bzyuTSGqP+niP17tf58UXX6R169aYTCbOOeccfvrpp0rH2+12Jk+eTPPmzTEajXTs2JFPPvnkOK4cjBEqD5bWRwRL+8qHhsUIRbrGpBCSSCR1T36+g40bD7NzZwF+v/rZpdEoUgRJJLVAvQqhN998k6lTp/LII4/w66+/0rVrVwYPHszhw4djjne73Vx88cXs3r2bt956i61btzJ79mxatDiezsnRdYR03rD0eUt5ZoqvsICiiGBp6RqTSCR1j8/nZ/duOzt3FuDzCYRQ99WEhx9+mJtvvrmOViiJxaxZsxg2bFh9L0NSTepVCD377LNMmjSJG264gc6dOzNr1iwsFgvz5s2LOX7evHnk5+fz3nvv0a9fP1q3bs0FF1xA165dj+PqwRihcteYLiJYWoRGFhYfDT1WLUKy87xEIqlbSkrcbNp0hKNHywBo3txKTk4aen20FWjAgAFMmTIlav/BgweZMWMGDz30UNSxlStXotVqueyyy6KOrVixAkVRsNvtUcdat27N9OnTI/YtX76cSy+9lCZNmmCxWOjcuTN33303+/fvr97NHgdOp5PJkyfTpEkTrFYrV155JYcOHap0zqFDh5gwYUIo6H7IkCH8/vvvoeP5+fncfvvtdOrUCbPZTMuWLbnjjjsoLCwMjTl27BhDhgwhMzMTo9FIdnY2t912G0VFRaExEydO5Ndff+Xbb7+t/RuX1Dr1JoTcbjerV69m0KBB5YvRaBg0aBArV66MOeeDDz6gT58+TJ48mYyMDM444wymTZsWCqSsESIodFTXmNYv0AZ/aHkBS7kQspeq6fIWxYhBa0C6xiQSSV0hhODAgWK2bDmKy+XDYNDSqVOT48oKmzNnDn379qVVq1ZRx+bOncvtt9/ON998w4EDB457vS+//DKDBg2iWbNmvP3222zatIlZs2ZRWFjIM888c9znrYq77rqLDz/8kKVLl/L1119z4MABRo4cGXe8EILhw4ezc+dO3n//fX777TdatWrFoEGDKC0tBeDAgQMcOHCAp59+mg0bNrBgwQI+++wzbrzxxtB5NBoNV1xxBR988AHbtm1jwYIF/O9//+PWW28NjTEYDIwZM4bnn3++zu5fUouIemL//v0CED/88EPE/nvvvVf07t075pxOnToJo9EoJk6cKH755RexePFikZqaKh599NG413E6naKwsDC07d27VwCi8JurhdiMEPvvEZOEEBaXX+Q/ni/yH88Xfr1fiHG/h86x+oKOgkcRmf9oEtgzUAiBEGLRib0IEomkWjgcDrFp0ybhcDjqeyk1olWrVuK5556L2Ne1a1fxyCOPhJ4DYvbs2WL48OHCbDaL9u3bixdeeFX8/PN+sWNHvvB4fGL9+vViyJAhIiEhQTRt2lSMGzdOHDlyRAghxPjx4wVq0GNo27VrlxBCiC5duoiZM2dGrau4uFhYrVaxZcsWMXr0aPGPf/wj4vjy5csFIAoKCiq9p7179wqDwSCmTJkS8/5jza8N7Ha70Ov1YunSpaF9mzdvFoBYuXJlzDlbt24VgNiwYUNon8/nE+np6WL27Nlxr7VkyRJhMBiEx+OJO2bGjBkiKysrYt/XX38tDAaDKCsrq+5tSUTl7/XCwkL1+7uwsFavWe/B0jXB7/fTtGlT/vvf/9KzZ09Gjx7NQw89xKxZs+LOefLJJ0lOTg5t2dnZ6gERmTVm9JZbgPABlvJfXgVu1eSZYkwO7JEWIYmkXhECSkvrZxOi6vXVkMcee4yrr76adevWcemll/Lgg3/BZvPTtm0KJSVFDBw4kO7du/PLL7/w2WefcejQIUaNGgXAjBkz6NOnD5MmTSIvL4+8vDyys7PJz89n06ZN9OrVK+p6S5YsIScnh06dOjFu3DjmzZuHOI77Wrp0KW63m/vuuy/mcZvNFnfu0KFDsVqtcbcuXbrEnbt69Wo8Hk+ERyEnJ4eWLVvG9Si4XGo0qMlUXmpAo9FgNBr57rvv4l6rsLCQpKQkdLrYSdYHDhzgnXfe4YILLojY36tXL7xeL6tWrYp7bknDoN7S59PS0tBqtVE+3UOHDtGsWbOYc5o3b45er0erLfeR5+bmcvDgQdxud8waIw8++CBTp04NPS8qKlLFkBLsNaa6xszBbHm/H8WvQEK5ELJ7i4FgfBBIISSR1DNlZWCtp15aJSWQkFCrp7ziitFccMHltGiRxLRp03j++efZvn0D7dtnMXPmTLp37860adNC4+fNm0d2djbbtm2jY8eOGAwGLBZLxGfnnj17EEKQmZkZdb25c+cybtw4AIYMGUJhYSFff/01AwYMqNG6f//9d5KSkmjevHmN73nOnDk4HI64xyurIXPw4EEMBkOU0MrIyODgwYMx5wSF0oMPPsjLL79MQkICzz33HPv27SMvLy/mnKNHj/LEE0/EDDa/9tpref/993E4HAwbNow5c+ZEHLdYLCQnJ/PHH39EzZU0LOrNImQwGOjZsyfLli0L7fP7/Sxbtow+ffrEnNOvXz+2b98e0Wto27ZtNG/ePG6hNaPRSFJSUsQGhDVd1UVahILnTgiILSEo8KvBiimWVFTLs+w8L5FITpziYtVKkZXVgYMHS3C7fSQkJJCUlBTKnl27di3Lly+PsJbk5OQAsGPHjrjnDoqMcAsIwNatW/npp5+49tprAdDpdIwePZq5c+fWeP1CiOOu+9KiRQvat28fd4sV13Qi6PV63nnnHbZt20ZqaioWi4Xly5czdOjQmC1bioqKuOyyy+jcuTOPPvpo1PHnnnuOX3/9lffff58dO3ZE/OAOYjabKSsrq9X7kNQ+9VpQcerUqYwfP55evXrRu3dvpk+fTmlpKTfccAMA119/PS1atODJJ58E4M9//jMzZ87kzjvv5Pbbb+f3339n2rRp3HHHHcdx9cj0+WAhacVXQQiVlGA3qiLJZk0HClGjqUEKIYmknrBYVMtMfV27mmg0miiXk8fjQQjBvn1FHDyo3oPZbKRTpzQMBvVzR1GU0A++kpIShg0bxr/+9a+o81dmiUlLUz+fCgoKSE8vt17PnTsXr9cbYSkSQmA0Gpk5cybJycmhH4yFhYVRVhe73U5yshom0LFjRwoLC8nLy6uxVWjo0KGVZlW1atWKjRs3xjzWrFkz3G43drs9Yn2VeRQAevbsyZo1aygsLMTtdpOens4555wT5T4sLi5myJAhJCYm8u6778a0TjVr1oxmzZqRk5NDamoq/fv35+GHH454HfLz8yNee0nDpF6F0OjRozly5Ah///vfOXjwIN26deOzzz4jIyMDUE274Uo9Ozubzz//nLvuuouzzjqLFi1acOedd3L//ffX/OJKZEHFkEXIF/ibEHhpwhuuWptQ7hazArKsvURSLyhKrbun6oL09PQIt0tRURG7du3i6NGykAgCyM5OwmqNbdXu0aMHb7/9Nq1bt44bp2IwGKKyZ9u1a0dSUhKbNm2iY8eOgNqz7dVXX+WZZ57hkksuiRg/fPhw3njjDW699VY6dOiARqNh9erVEZaZnTt3UlhYGDrfVVddxQMPPMC///1vnnvuuah1VRQq4ZyIa6xnz57o9XqWLVvGlVdeCaiWrj179sT1KIQTFHK///47v/zyC0888UToWFFREYMHD8ZoNPLBBx9EWdRiERStwTgkUK11TqeT7t27VzlfUr/Ue4uN2267jdtuuy3msRUrVkTt69OnDz/++GMtXDmyjpAxZBEKCCFr4E0Y0V4jBVlDSCKRVJeBAweyYMEChg0bhs1m4+GHH0ZRNHg8frRahVatbAAxXTNBJk+ezOzZs7n22mu57777SE1NZfv27SxevJg5c+ag1Wpp3bo1q1atYvfu3VitVlJTU0PlSL777juGDx8OwEcffURBQQE33nhjSAwEufLKK5k7dy633noriYmJ3HTTTdx9993odDrOPPNM9u7dy/3338+5555L3759AfXH6XPPPReqo3P99dfTunVr9u3bx6uvvorVao2bQn98hXBVkpOTufHGG5k6dSqpqakkJSVx++2306dPH84999zQuJycHJ588klGjBgBqMHd6enptGzZkvXr13PnnXcyfPjwkCgsKirikksuoaysjIULF1JUVBSqD5Seno5Wq+WTTz7h0KFDnH322VitVjZu3Mi9994bqm0X5Ntvv6Vt27a0a9fuuO9TcnI4pbLGapdgjJAqhEyhhquBw2FCKNhwVbbXkEgkNeHBBx/kggsu4PLLL+eyyy5jxIgRtGnTFoNBS5cuTUlNNVd5jszMTL7//nt8Ph+XXHIJZ555JlOmTMFms4UE1D333INWq6Vz586kp6ezZ88eAG666SYWL14csljMnTuXQYMGRYkgUIXQL7/8wrp16wA1G238+PHcf//9dOnShQkTJnDWWWfx4YcfRsQF/eUvf+GLL75g//79jBgxgpycHG666SaSkpK45557Tvg1jMdzzz3H5ZdfzpVXXsn5559Ps2bNeOeddyLGbN26NaIYYl5eHtdddx05OTnccccdXHfddbzxxhuh47/++iurVq1i/fr1tG/fnubNm4e2vXv3Amrcz+zZsznvvPPIzc3lrrvu4k9/+hMfffRRxLXfeOMNJk2aVGf3L6k9FHE8OZOnMEVFRSQnJ1P4zSCS0v8HTf5Nr/R7abLNzeI3S9EedpE0sxl84oKhRvjoIy5dPIxPO8C8P83jhu5+4CbgUuDjer4biaRx4HQ62bVrF23atKmWq6IhUVTkRFEUEhONAKGYoZPRXFIIwTnnnMNdd90VCo6W1D0bN25k4MCBbNu2LabolMSnsvd66Ps7UNKgtmi8FiEl0iJkDm+vARD010d1npeuMYlEUjV+v2Dv3kK2bctn1y47Xq/6maMoyknrsK0oCv/973/xer1VD5bUGnl5ebz66qtSBJ0i1HuMUP0RTMGvkD7vDmjDYB2h8GDpiIarUghJJJLYOBwedu4swOFQBUhyspGTpH2i6NatG926daufizdSwgs9Sho+jVgIRQZLh9LnPYG0+WCGbGFhHIuQTJ2XSCSRCCE4fLiUffuKEAJ0Og2tW9uw2U4td55E0phoxEKoPH3eRbhFKPCSBIVQWLB0iklahCQSSWx8Pj87dhRQVKSmUCcnG2nd2hazW7xEImk4NF4hpMSxCLkjLUJO+1FcWepjmTUmkUjiodEoaLUKigLZ2cmkp1tOWiyQRCI5fhqvECJOi41gTGFACBWUqMJHg0KiMRHpGpNIJEF8Pn/IBaYoal2gzEwfZnP8YoASiaRhUWtZY++88w5nnXVWbZ3uJBAMltZEWoSCWWMBl769LB+AZI0FjaJBWoQkEglAWZmbzZuP8scf9lBKvE6nkSJIIjnFqJEQevnll7nqqqsYM2YMq1atAuCrr76ie/fuXHfddfTr169OFlk3qEJIhHqNhVmEjM7QK1PgLADAprMCTiBYFl9ahCSSxogQgoMHS9i8+ShOp5eSEjcej7/qiRKJpEFSbSH0z3/+k9tvv53du3fzwQcfMHDgQKZNm8bYsWMZPXo0+/bt46WXXqrLtdYy6geXT6NHENZiw6uA0R0aZXep5dVTjMmUu8X0gKwPIZE0NtxuH9u2HQtlhdlsJjp3Tg81S5VIJKce1RZC8+fPZ/bs2fzyyy98+umnOBwOfvjhB7Zv384DDzxASkpKXa6z9gk0XXUHwqTKW2woYCoXQgVe1QIUGSidBsggSImkMZGf72DjxsMUF7vRaBRatUqmXbuURpEV1rp1a6ZPn17t8StWrEBRFOx2e8T+6667jmnTptXu4iSVMmvWLIYNG1bfy2jQVFsI7dmzh4EDBwLQv39/9Ho9jz32GAmnQAfo2AS6BaP68yOCpU0e9bEQ2P2lAKQkhHeel24xiaQx4fP52bevCJ9PYLHo6dw5nfT0hAaTFTZgwACmTJlSZ+f/+eefufnmm6s9vm/fvuTl5UVUVl67di2ffPIJd9xxR9T4N954A61Wy+TJk6OOLViwIG4He0VReO+99yL2vf322wwYMIDk5GSsVitnnXUWjz/+OPn5+dVef03Jz89n7NixJCUlYbPZuPHGGykpKal0zo4dOxgxYgTp6ekkJSUxatQoDh06FHOsy+WiW7duKIrCmjVrIo4tWbKEbt26YbFYaNWqFU899VTE8YkTJ/Lrr7/y7bffntA9ns5UWwi5XK6Ivh8Gg4HU1NQ6WdTJQU2fd2uCQkjdq3gUMAeEkNOJXaeOs1nTkO01JJLGiVarFkZs3txKTk4aJlPjSrhNT0/HYrFUPTCAwWCgWbNmEULxhRde4Oqrr8ZqtUaNnzt3Lvfddx9vvPEGTqfzuNf50EMPMXr0aM4++2w+/fRTNmzYwDPPPMPatWt57bXXjvu8VTF27Fg2btzIl19+yUcffcQ333xTqXAsLS3lkksuQVEUvvrqK77//nvcbjfDhg0LNcgN57777iMzMzNq/6effsrYsWO59dZb2bBhA//5z3947rnnmDlzZmiMwWBgzJgxPP/887Vzs6cjopooiiJuueUWcdddd4m77rpLGAwGMXHixNDz4NbQKSwsFIAo/L6zEJsRe4o/Ewghlr5eJPIfzxfObk4huu1UB+flibsvQfAo4p7P7xZCTBdCIIQYXX83IJE0QhwOh9i0aZNwOBwn5Xp+v1/s318kjhwpPaHztGrVSjz33HMR+7p27SoeeeSR0HNAzJ49WwwfPlyYzWbRvn178f7770fMWb9+vRgyZIhISEgQTZs2FePGjRNHjhwRQggxfvx4gVohNrTt2rUr5nrmz58vkpOTxYcffig6duwozGazuPLKK0VpaalYsGCBaNWqlbDZbOL2228XXq837n1Utebly5cLQBQUFAghhPB6vSI5OVl89NFHUWvauXOnMJvNwm63i3POOUcsWrQo5ppjAYh3331XCCHEqlWrBCCmT58ec2xwLbXNpk2bBCB+/vnn0L5PP/1UKIoi9u/fH3PO559/LjQajSgsLAzts9vtQlEU8eWXX0aM/eSTT0ROTo7YuHGjAMRvv/0WOnbttdeKq666KmL8888/L7KysoTf7w/t+/rrr4XBYBBlZWUncqsnhcre66Hv77DXrTaotkXo/PPPZ+vWrfz222/89ttv9O3bl507d4ae//bbb1EmuwZNoKCiW1EtQkEjkBojFCi2GNFwNbyqtHSNSST1ihDgLa2TzVVayLZNezi47xD7dufhLiuKHBNIla9NHnvsMUaNGsW6deu49NJLGTt2bMiVY7fbGThwIN27d+eXX37hs88+49ChQ4waNQqAGTNm0KdPHyZNmkReXh55eXlkZ2fHvVZZWRnPP/88ixcv5rPPPmPFihWMGDGCTz75hE8++YTXXnuNl19+mbfeeuu411yRdevWUVhYSK9evaKOzZ8/n8suu4zk5GTGjRvH3Llzq/uyRbBo0SKsVit/+ctfYh6P514D6NKlC1arNe42dOjQuHNXrlyJzWaLuLdBgwah0WhC2dUVcblcKIqC0WgM7TOZTGg0Gr777rvQvkOHDjFp0iRee+21mBa5ip4aALPZzL59+/jjjz9C+3r16oXX6427nsZOte27K1asqMNl1AeRMULm8BghS8A0GdVwdW9grnSNSST1iq8MlkS7WGoDI9ApfMe2CgNGlYCudmMjJ0yYwLXXXgvAtGnTeP755/npp58YMmQIM2fOpHv37hFBxvPmzSM7O5tt27bRsWNHDAYDFouFZs2aVXktj8fDSy+9RLt27QC46qqreO211zh06BBWq5XOnTtz4YUXsnz5ckaPHn1ca67IH3/8gVarpWnTphH7/X4/CxYs4IUXXgDgmmuu4e6772bXrl20adOmynsJ5/fff6dt27bo9TWv4/TJJ5/g8XjiHjebzXGPHTx4MOq+dDodqampHDx4MOacc889l4SEBO6//36mTZuGEIIHHngAn89HXl4eoJZpmDBhArfeeiu9evVi9+7dUecZPHgwd911FxMmTODCCy9k+/btPPPMMwDk5eXRunVrACwWC8nJyRHiSFJOjeoIFRUV8eWXX/Lxxx9z5MiRqic0aFSx41bUjI+IgormgCiKsAjZkMUUJRJJXRBejDYhIYGkpCQOHz4MqEHGy5cvj7BQ5OTkAGrAbTzCrRzhFg2LxRISQQAZGRm0bt06InYnIyMjdP3jWXNFHA4HRqMxKrj8yy+/pLS0lEsvvRSAtLQ0Lr74YubNm1fptWMhTsBS16pVK9q3bx93a9GixXGfOxbp6eksXbqUDz/8EKvVSnJyMna7nR49eqDRqF/LL7zwAsXFxTz44INxzzNp0iRuu+02Lr/8cgwGA+eeey7XXHMNQOg8QcxmM2VlZbV6H6cL1bYIrVmzhksvvTSkcBMTE1myZAmDBw+us8XVLYH0eUV9CSKyxsI6zwcbrsrO8xJJA0JrUS0ztYDP52fzliO4XeqPo+bNrTRrZo2fEaatftCwRqOJ+oKOZXmoaMVQFCUUNFtSUsKwYcP417/+FTWvefPmca8dbuUIt2jEulZl149HTeakpaVRVlaG2+3GYDCE9s+dO5f8/PyI9fn9ftatW8djjz2GRqMhKSmJ0tJS/H5/xJd7MDU/mJnWsWNHvvvuOzweT42tQl26dKnUWtK/f38+/fTTmMeaNWsWJQC9Xi/5+fmVWuguueQSduzYwdGjR9HpdNhsNpo1a0bbtm0BtVjxypUrI9xnoLq5xo4dyyuvvIKiKPzrX/9i2rRpHDx4kPT0dJYtWwYQOk+Q/Px80tPlj/hYVFsI3X///bRp04a3334bk8nEE088wW233cbvv/9el+urO4IxQsE6QsEerF4lovN80CIkO89LJA0IRak195RWB7YmgoICB23apGC1GqqeVE3S09NDrg5Qreq7du2q0Tl69OjB22+/TevWrdHpYn9kGwwGfD5fxL5WrVrVfMF1RLdu3QDYtGlT6PGxY8d4//33Wbx4MV26dAmN9fl8nHfeeXzxxRcMGTKETp064fV6WbNmDT169AiN+/XXXwFVAAGhzKj//Oc/3HnnnVFrsNvtceOETsQ11qdPH+x2O6tXr6Znz56AKmL8fj/nnHNO3HlB0tLSQnMOHz7Mn/70JwCef/55/u///i807sCBAwwePJg333wz6rxarTZktXrjjTfo06dPhOjZsWMHTqeT7t27V7mexki1hdDq1av54osvQv8Q582bR2pqKkVFRSQlJdXZAusO9VeaK+AaC1mEPIAl8EswLEZIusYkktMHp1P1hQfT4DMzE2ne3IpWW2vtFwEYOHAgCxYsYNiwYdhsNv7+97+j1dasAOPkyZOZPXs21157Lffddx+pqals376dxYsXM2fOHLRaLa1bt2bVqlXs3r0bq9VKampqlGukPklPT6dHjx589913ISH02muv0aRJE0aNGhVlfbv00kuZO3cuQ4YMoUuXLlxyySVMnDiRZ555hrZt27J161amTJnC6NGjQwLgnHPO4b777uPuu+9m//79jBgxgszMTLZv386sWbM477zzYgokODHRmJuby5AhQ5g0aRKzZs3C4/Fw2223cc0114RS3vfv389FF13Eq6++Su/evQE1SDw3N5f09HRWrlzJnXfeyV133UWnTmqEWsuWLSOuE3RdtmvXjqysLACOHj3KW2+9xYABA3A6ncyfP5+lS5fy9ddfR8z99ttvadu2bYRLVFJOtd8p+fn5oRcf1Aj8hIQEjh07VicLq3sCMUIBLWgIjxFKUF8Wf6GdwlCwdBIQzIiQrjGJ5FRECMGRI6Vs2nSEnTsL8PvVH0AajVLrIgjgwQcf5IILLuDyyy/nsssuY/jw4TX+MsrMzOT777/H5/NxySWXcOaZZzJlyhRsNltI7Nxzzz1otVo6d+5Meno6e/bsqfV7OVFuuukmFi1aFHo+b948RowYEdMFeeWVV/LBBx9w9KgajvDmm29ywQUXcMstt9ClSxfuuOMOrrjiCubMmRMx71//+hevv/46q1atYvDgwXTp0oWpU6dy1llnMX78+Dq7t0WLFpGTk8NFF13EpZdeynnnncd///vf0HGPx8PWrVsjYnS2bt3K8OHDyc3N5fHHH+ehhx7i6aefrvG1X3nlFXr16kW/fv3YuHEjK1asCImtIG+88QaTJk06/hs8zVFENSPMNBoNX331VUQRxb59+7JkyZIIgdTQO9AXFRWRnJxM4crmJNnyeL/NZoYbczg4rQCDD5KeSUI75Q94tC2Fk2/E1lQN2nM8tBeTLpiS6gZkh2mJ5GThdDpDmUQV04Wri8fj448/CrHb1YJ9iYkG2rVLQac7/VtkNAQcDgedOnXizTffpE+fPvW9nEbDxo0bGThwINu2bYuo9N1Qqey9Hvr+LiysVU9UjcqjXnTRRVGBf5dffjmKoiCEQFGUKD91gyXUa0wLQmAIjxFKUF+WguIj0BRM6DDpigMTbUgRJJGcWhQWOtm9247H40dRoEWLJDIyGk6LjMaA2Wzm1VdfDVl5JCeHvLw8Xn311VNCBNUX1RZCNQ3wa/ioyselaDGGaTdVCKm/EO1lqivMpklAtteQSE49/H7B/v1FHDqk9gw0mXS0bZuCxSJ/zNQHAwYMqO8lNDoGDRpU30to8FRbCL3yyivcc889Neo307ApryMUCpQGNX3eqn5IFjjtAKToE5GB0hLJqUlJiRuApk0TaNEisU5igSQSyalLtT8RHnvssSq76Z5aBIOltaFiigihGooC6bN2dyEANkMSsr2GRHJqINSGgIAaBN2mTQrt26fSsmWyFEESiSSKaluETqRqZ4MkGCOkaMotQj6BggJWtYBVgVcVfmp7Dekak0gaOh6Pj1277FgserKy1GBKk0nX6LrFSySS6lOjT4fTK7Aw2GtMG9ZeI3AoaBHyq6mONksTpGtMImnY2O1qQLTX66ekxE1GRgJ6vcwIk0gklVMjIdSxY8cqxVC87sMNj6BrTIPJE2yvEbg3qxY8Hgo0amyBLTEN6RqTSBomPp+fffuKOHJE/eFiNqsB0VIESSSS6lAjIfTYY4+dRil45cHSofYanoAQSgAKC8vbayRlAKsD86RFSCJpKJSWutm1yx6qFJ2RkUCLFkloNKeT9VoikdQlNRJC11xzDU2bNq2rtZxcQr3GwmKEPIFASguRnectqUjXmETSsPD5/Pz+ez5erx+9XkObNikkJRmrniiRSCRhVDuF4vSKD4JQrzE0YTFCgXu0ENF5Xm24KjvPSyQNCa1WQ1ZWEjabiS5d0qUIOk4WLFgQ0Yz00UcfDfUDqysmTJjA8OHD6/Qa4Sxbtozc3NxTp+DvacDRo0dp2rQp+/btq++lVEm1hdBplzVGDItQMFi6okXIlIy0CEkk9Y/d7qS42BV63qSJWbbJQC1UOGXKlFo51z333MOyZctq5VwNhfvuu4+//e1vUQ1vHQ4HqamppKWl4XK5ouYpisJ7770XtT+WkNu+fTs33HADWVlZGI1G2rRpw7XXXssvv/xSm7cSxYsvvkjr1q0xmUycc845/PTTT5WO93g8PP7447Rr1w6TyUTXrl357LPPIsa89NJLnHXWWSQlJZGUlESfPn349NNPI8bs2LGDESNGkJ6eTlJSEqNGjeLQoUOh42lpaVx//fU88sgjtXezdUS1hZDf7z993GJAeYyQBmO4RUjrVTtohHWeTzGbAWdgnrQISSQnm9JSN0ePlrFvXxE7dxbg9arvX0VRTkNrdf1itVpp0qRJfS+j1vjuu+/YsWMHV155ZdSxt99+my5dupCTkxNT8FSXX375hZ49e7Jt2zZefvllNm3axLvvvktOTg533333Cay+ct58802mTp3KI488wq+//krXrl0ZPHgwhw8fjjvnb3/7Gy+//DIvvPACmzZt4tZbb2XEiBH89ttvoTFZWVn885//ZPXq1fzyyy8MHDiQK664go0bNwJQWlrKJZdcgqIofPXVV3z//fe43W6GDRuG3+8PneeGG25g0aJFDT+JSjQyCgsLBSAKf0aIzYjrfWVizG9Okf94vigaVySEpVgdOHeuyJyK4FHE6gMfCrVGm0kI4a/H1UskjY+VK/eK8877r/j00x/Ezz//IfbtKxQ+36nxPmzVqpV47rnnIvZ17dpVPPLII6HngJg9e7YYPny4MJvNon379uL999+PmLN+/XoxZMgQkZCQIJo2bSrGjRsnjhw5IoQQYvz48QLV1x/adu3aFXdN8+fPF9nZ2cJsNovhw4eLp59+WiQnJ4eOP/LII6Jr164Rc+bOnSs6d+4sDAaDaNasmZg8eXLoWEFBgbjxxhtFWlqaSExMFBdeeKFYs2ZNpa/L+PHjxRVXXBF67nQ6xe233y7S09OF0WgU/fr1Ez/99FPoeH5+vhgzZoxIS0sTJpNJtG/fXsybN08IIYTL5RKTJ08WzZo1E0ajUbRs2VJMmzYtNHfy5MniqquuirmOAQMGiFmzZomXXnpJXHzxxVHHAfHuu+9Wun6/3y+6dOkievbsKXw+X9TYgoKCSl+LE6F3794R/y98Pp/IzMwUTz75ZNw5zZs3FzNnzozYN3LkSDF27NhKr5WSkiLmzJkjhBDi888/FxqNRhQWFoaO2+12oSiK+PLLLyPmtWnTJjSvOjgcDrFp0ybhcDiijoW+v8OuWxs0+jKrbjSYAq4xxaOASU2Zx24PixEK+szSAfnrUyI5GXi9fh5//GvOO28ee/cWotVqaNPGFsgKAyitp632wwQee+wxRo0axbp167j00ksZO3Zs6Fe03W5n4MCBdO/enV9++YXPPvuMQ4cOMWrUKABmzJhBnz59mDRpEnl5eeTl5ZGdnR3zOqtWreLGG2/ktttuY82aNVx44YX83//9X6Vre+mll5g8eTI333wz69ev54MPPqB9+/ah41dffTWHDx/m008/ZfXq1fTo0YOLLrqoRlaA++67j7fffptXXnmFX3/9lfbt2zN48ODQOR5++GE2bdrEp59+yubNm3nppZdIS1Ot888//zwffPABS5YsYevWrSxatIjWrVuHzv3tt9/Sq1evqGvu2LGDlStXMmrUKEaNGsW3337LH3/8Ue01B1mzZg0bN27k7rvvRqOJ/koNj7+qyLRp07BarZVue/bsiTnX7XazevXqiF5iGo2GQYMGsXLlyrjXdLlcUV3dzWYz3333XczxPp+PxYsXU1paSp8+fULnUBQFo7E8Ls9kMqHRaKLO07t3b7799tu462kINPpyq25FITUohLzlQshlP4oj0JfRZgr6jqVbTCI5GZSUuBk8eCE//LAXgMsv70hmZiIJCYbAiDLAWl+rQ62xUXtMmDCBa6+9FlC/HJ9//nl++uknhgwZwsyZM+nevTvTpk0LjZ83bx7Z2dls27aNjh07YjAYsFgsNGvWrNLrzJgxgyFDhnDfffcBam24H374ISpGJJz/+7//4+677+bOO+8M7Tv77LMB1e30008/cfjw4dCX4tNPP817773HW2+9xc0331zlvZeWlvLSSy+xYMEChg4dCsDs2bP58ssvmTt3Lvfeey979uyhe/fuIUETLnT27NlDhw4dOO+881AUhVatWkWc/48//iAzMzPquvPmzWPo0KGkpKQAMHjwYObPn8+jjz5a5ZrD+f333wHIycmp0TyAW2+9NSRo4xFr7aAGI/t8PjIyMiL2Z2RksGXLlrjnGzx4MM8++yznn38+7dq1Y9myZbzzzjtRgeTr16+nT58+OJ1OrFYr7777Lp07dwbg3HPPJSEhgfvvv59p06YhhOCBBx7A5/ORl5cXtf5wt1tDRFqEUCKDpU0eAOxFR0JjkoyOwCMZKC2RnAwSEvRkZyeRlGRk4cIRPP30Jad1baCzzjor9DghIYGkpKRQnMfatWtZvnx5hJUg+KW7Y8eOuOfs0qVLaHxQYGzevJlzzjknYlzwV34sDh8+zIEDB7joootiHl+7di0lJSU0adIkYn27du1ix44d7NmzJ2J/uJgLsmPHDjweD/369Qvt0+v19O7dm82bNwPw5z//mcWLF9OtWzfuu+8+fvjhh9DYCRMmsGbNGjp16sQdd9zBF198EXF+h8MRZQHx+Xy88sorjBs3LrRv3LhxLFiwICLGpTqIE0gkSk1NpX379pVuOl3t2itmzJhBhw4dyMnJwWAwcNttt3HDDTdEWbM6derEmjVrWLVqFX/+858ZP348mzZtAiA9PZ2lS5fy4YcfYrVaSU5Oxm6306NHj6jzmM1mysrKavUeaptGbxFyoUSmz5vVJ/aSI5ACyZjQao4FRkshJJHUFXa7E79fkJpqRlEUXnrpMux2J23apOB0OiuMtqBaZuoDS7VHajSaqC9Kj8cTNU6v10c8VxQl9IVcUlLCsGHD+Ne//hU1r3nz5nGv/cknn4SuZTabq73mcKqaV1JSQvPmzVmxYkXUMZvNhs1mY82aNaF9qampx7WOoUOH8scff/DJJ5/w5ZdfctFFFzF58mSefvppevTowa5du/j000/53//+x6hRoxg0aBBvvfUWoGYvFRQURJzv888/Z//+/YwePTpiv8/nY9myZVx88cUAJCYmUlhYGLUeu90eKi7csWNHALZs2UL37t1rdF/Tpk2LKQ7D2bRpEy1btozan5aWhlarjcjUAjh06FCllsH09HTee+89nE4nx44dIzMzkwceeIC2bdtGjDMYDCEXaM+ePfn555+ZMWMGL7/8MgCXXHIJO3bs4OjRo+h0Omw2G82aNYs6T35+PunpDfu7s9ELoWiLkGoeLChVxY9Nm4BsryGR1C1ff72b6657l169Mnn77VEoikJKipmUlHhfxAq17Z6qC9LT0yNcBUVFRezatatG5+jRowdvv/02rVu3jmsdMBgMUa6Nii4igNzcXFatWhWx78cff4x77cTERFq3bs2yZcu48MILY67t4MGD6HS6CHdVOOHxRLFo164dBoOB77//PrRmj8fDzz//HFESID09nfHjxzN+/Hj69+/Pvffey9NPPw1AUlISo0ePZvTo0Vx11VUMGTKE/Px8UlNT6d69e8iSEWTu3Llcc801PPTQQxH7//GPfzB37tyQEOrUqROrV69m/PjxoTE+n4+1a9dy0003AdCtWzc6d+7MM888w+jRo6MsIna7PW6c0Im4xgwGAz179mTZsmWhVH6/38+yZcu47bbbKj0nqDE9LVq0wOPx8Pbbb1e5Dr/fH7PEQDBW66uvvuLw4cP86U9/iji+YcMGBgwYUOV66hMphFAi0+fN6oeJ3WkHIEWXiOw8L5HUDW63j0cfXcE///kdQoDBoOXIkTKaNm34Iqc6DBw4kAULFjBs2DBsNht///vfo2rZVMXkyZOZPXs21157Lffddx+pqals376dxYsXM2fOHLRaLa1bt2bVqlXs3r0bq9VKampqzMDdO+64g379+vH0009zxRVX8Pnnn1caHwRqgcVbb72Vpk2bMnToUIqLi/n++++5/fbbGTRoEH369GH48OH8+9//pmPHjhw4cICPP/6YESNGxAxSrkhCQgJ//vOfuffee0lNTaVly5b8+9//pqysjBtvvBGAv//97/Ts2ZMuXbrgcrn46KOPyM3NBeDZZ5+lefPmdO/eHY1Gw9KlS2nWrFlIfAwePJhXXnkldL0jR47w4Ycf8sEHH3DGGWdErOX6669nxIgRIRE1depUbrzxRnJycrj44ospLS3lhRdeoKCgICSEFEVh/vz5DBo0iP79+/PQQw+Rk5NDSUkJH374IV988QVff/11zHtPTU09bisZwNSpUxk/fjy9evWid+/eTJ8+ndLSUm644YaIe2rRogVPPvkkoAbM79+/n27durF//34effRR/H5/KG4M4MEHH2To0KG0bNmS4uJiXn/9dVasWMHnn38eGjN//nxyc3NJT09n5cqV3Hnnndx111106tQpNKasrIzVq1dXafWqd2o1B+0UoGL6fE+/X0z/sETkP54vyi4oE+LiTUIIId64tKXgUcSAZ88SQvxJqOnzL9fn0iWS04otW46Inj1fFvCogEfFxInviaIiZ8yxlaXUNmQKCwvF6NGjRVJSksjOzhYLFiyImT5fMUU7OTlZzJ8/P/R827ZtYsSIEcJmswmz2SxycnLElClThN+vlhHYunWrOPfcc4XZbK4yfX7u3LkiKytLmM1mMWzYsGqlz8+aNUt06tRJ6PV60bx5c3H77beHjhUVFYnbb79dZGZmCr1eL7Kzs8XYsWPFnj174q6hYvq8w+EQt99+u0hLS4uZPv/EE0+I3NxcYTabRWpqqrjiiivEzp07hRBC/Pe//xXdunUTCQkJIikpSVx00UXi119/Dc09duyYMJlMYsuWLUIIIZ5++mlhs9mE2+2OWpfL5RI2m03MmDEjtG/RokWiZ8+eIjExUWRkZIhLL71UrF27Nmru1q1bxfXXXy8yMzOFwWAQrVq1Etdee23EWuqCF154QbRs2VIYDAbRu3dv8eOPP0Ycv+CCC8T48eNDz1esWCFyc3OF0WgUTZo0Edddd53Yv39/xJyJEyeKVq1aCYPBINLT08VFF10kvvjii4gx999/v8jIyBB6vV506NBBPPPMM6F/j0Fef/110alTpxrdT32kzytCnHYloyulqKiI5ORkCn+GJCuc2cnP5PfLGL3ejflzM6a0nfBeZ14a3IS/9M1nRMYFvHOrB/gBeBsYWc93IJGc2gghmDPnV6ZM+ZyyMg8pKSZmzx7GlVd2jjvH6XSya9cu2rRpExX4KpFUxb333ktRUVEovkVycjj33HO54447GDNmTLXnVPZeD31/FxaSlJRUa+ts3FljQsGtKKE6QngAi/rY7i8FwGZpgmyvIZHUHqWlHv7v/76lrMzDwIFtWLfuz5WKIInkRHnooYdo1apVjTPCJMfP0aNHGTlyZKgsREOmkccIaXBDZIyQRQG/nwJFDQpLSUxHBktLJLWH1Wpg4cIRrFq1n6lT+5zWafGShoHNZuOvf/1rfS+jUZGWlhYRd9SQkUIIyi1CXlQhVFxc3nA1KQ2wB8ZLi5BEUlOcTi9//esycnPTmDSpJwD9+7eif//orCaJRCI52TRyIaTFRQWLUIImsuFqYrBmiAZIqYc1SiSnLhs2HGbMmLdZv/4wCQl6hg/PIT399MgIk0gkpweNO0Yo5BoLa7EREEIhi5ApaLZPBWqW9iqRNFaEELzwwip69fov69cfJj3dwuLFV0kRJJFIGhyN3CKkCiFzuGssQQuFhaGGqzZTMKlOusUkkupw8GAJN9zwPp99th2AoUPbM3/+FWRk1FdvMIlEIolPoxZCAm1ksLRHgQR9hEUosvO8RCKpjOJiF927v8zBgyWYTDqeeupiJk8+G0WRAdESiaRh0qiFkBcDggrB0lZ9BdeYOzBaZoxJJFWRmGjkppu688EH23j99ZF06dK0vpckkUgkldKoY4TcGlXtRARLW/WIcIuQWXael0gq47ff8ti69Wjo+d//fgE//XSTFEESieSUoHELISUohMItQgZK7IfxBV4ZmynY4VoKIYkkHL9f8NRT33POOXMYM+Yd3G61T59er8VobNTG5gbNe++9R/v27dFqtRFNTeuSCRMmhBqDxqN169ZMnz79pKwH4OGHH+bmm28+adeTwKxZsxg2bFh9LyOKRi2EXAEhZIqwCJkoKDoEgEFoMesKAqOla0wiCbJvXxEXX/wa9933PzweP61aJeNweOp7WY2WAQMGVFvU3HLLLVx11VXs3buXJ554om4X1kA5ePAgM2bMiOo+D7By5Uq0Wi2XXXZZ1LEVK1agKAp2uz3qWCwht3z5ci699FKaNGmCxWKhc+fO3H333ezfv7+2biUKp9PJ5MmTadKkCVarlSuvvJJDhw5VOqekpITbbruNrKwszGYznTt3ZtasWaHju3fvRlGUmNvSpUsBWLt2Lddeey3Z2dmYzWZyc3OZMWNGxHUmTpzIr7/+yrffflv7N34CNGoh5FaMaP0CXTAxzAtYddhLVDO/TTGhKMcCB6VFSCIBWLp0I2ed9RJffbULi0XP7NnDePvtUSQnyx5gDZ2SkhIOHz7M4MGDyczMJDExsb6XVC/MmTOHvn370qpVdFHPuXPncvvtt/PNN99w4MCB477Gyy+/zKBBg2jWrBlvv/02mzZtYtasWRQWFvLMM8+cyPIr5a677uLDDz9k6dKlfP311xw4cICRIyvvkTl16lQ+++wzFi5cyObNm5kyZQq33XYbH3zwAQDZ2dnk5eVFbI899hhWq5WhQ4cCsHr1apo2bcrChQvZuHEjDz30EA8++CAzZ84MXcdgMDBmzBief/75Orv/46JWW7ieAoR3n/99+3nC6vSL/MfzRf7j+cKv9wuxW4gV158veBTR6YkMIcSZQu08/3k9r1wiqV9KS93ihhveC3WL79Xrv2Lr1qMn5dqnavf5Vq1aieeeey5iX6zu87NnzxbDhw8XZrNZtG/fXrz//vsRc9avXy+GDBkiEhISRNOmTcW4cePEkSNHhBBqJ3cgYovVfX758uVR45YvXy6EEOKtt94SnTt3DnVNf/rppyPmOp1Ocd9994msrCxhMBhEu3btxJw5c4QQQni9XjFx4kTRunVrYTKZRMeOHcX06dMj5lfsNl+d1+qPP/4Qf/rTn0RCQoJITEwUV199tTh48GDo+Jo1a8SAAQOE1WoViYmJokePHuLnn38WQgixe/ducfnllwubzSYsFovo3Lmz+Pjjj0Nzu3TpImbOnBm1huLiYmG1WsWWLVvE6NGjxT/+8Y+Yr2FBQUGl69+7d68wGAxiypQpMe811vzawG63C71eL5YuXRrat3nzZgGIlStXxp3XpUsX8fjjj0fs69Gjh3jooYfizunWrZuYOHFipev5y1/+Ii688MKIfV9//bUwGAyirKws5pz66D7f6C1CofggCLTYALvDDoBNZwWCQaDSIiRp3BgMWjZvPoqiwEMP9eeHHybSsWOT+lmMEODz1c8mRNXrqyGPPfYYo0aNYt26dVx66aWMHTuW/Px8AOx2OwMHDqR79+788ssvfPbZZxw6dIhRo0YBMGPGDPr06cOkSZNCv9azs7OjrtG3b1+2bt0KwNtvv01eXh59+/Zl9erVjBo1imuuuYb169fz6KOP8vDDD7NgwYLQ3Ouvv5433niD559/ns2bN/Pyyy9jtap1ofx+P1lZWSxdupRNmzbx97//nb/+9a8sWbLkuF8Pv9/PFVdcQX5+Pl9//TVffvklO3fuZPTo0aExY8eOJSsri59//pnVq1fzwAMPoNfrAZg8eTIul4tvvvmG9evX869//Su03vz8fDZt2kSvXr2irrtkyRJycnLo1KkT48aNY968eYjj+P+9dOlS3G533F5bNpst7tyhQ4ditVrjbl26dIk7d/Xq1Xg8HgYNGhTal5OTQ8uWLVm5cmXceX379uWDDz5g//79CCFYvnw527Zt45JLLol7nTVr1nDjjTfGPSdAYWEhqampEft69eqF1+tl1apVlc49mTTqiEaXYg7FB+EFRShggQJ3IQA2YzKwJzBACiFJ48Pr9eP3CwwGLTqdhoULR7B/fzHnn1/PfcL8fvjut/q59nndQVu7VeYnTJgQ6tI9bdo0nn/+eX766SeGDBnCzJkz6d69O9OmTQuNnzdvHtnZ2Wzbto2OHTtiMBiwWCw0a9Ys7jUMBgNNm6qZfKmpqaGxzz77LBdddBEPP/wwAB07dmTTpk089dRTTJgwgW3btrFkyRK+/PLL0Bds27ZtQ+fV6/U89thjoedt2rRh5cqVLFmyJCTWasqyZctYv349u3btCom6V199lS5duvDzzz9z9tlns2fPHu69915ycnIA6NChQ2j+nj17uPLKKznzzDOj1rtnzx6EEGRmZkZdd+7cuYwbNw6AIUOGUFhYyNdff82AAQNqtP7ff/+dpKQkmjdvXqN5oLrtHA5H3ONBsReLgwcPYjAYooRWRkYGBw8ejDvvhRde4OabbyYrKwudTodGo2H27Nmcf/75McfPnTuX3Nxc+vbtG/ecP/zwA2+++SYff/xxxH6LxUJycjJ//PFH3LknG2kRCs8YAzCD3VcKQIolEQgGgMpgaUnjYteuAi64YAF/+9tXoX3t2qXWvwg6DTnrrLNCjxMSEkhKSuLw4cOAGoS6fPnyCKtA8Mt/x44dcc/ZpUuX0PhgHEcsNm/eTL9+/SL29evXj99//x2fz8eaNWvQarVccMEFcc/x4osv0rNnT9LT07Farfz3v/9lz549MccuWrQo4l5iBc5u3ryZ7OzsCMtW586dsdlsbN68GVDjWm666SYGDRrEP//5z4jX4o477uD//u//6NevH4888gjr1q0LHQuKDJMpMqZt69at/PTTTyFBqtPpGD16NHPnzo173/EQQhx3EdEWLVrQvn37uFusuKYT5YUXXuDHH3/kgw8+YPXq1TzzzDNMnjyZ//3vf1FjHQ4Hr7/+eqXWoA0bNnDFFVfwyCOPxLQqmc1mysrKavUeToQGYRF68cUXeeqppzh48CBdu3blhRdeoHfv3lXOW7x4Mddeey1XXHEF7733Xo2v61YMkTWEDE7QmCjwq0LIZg32RbICMhBU0jgQQrBw4TomT/6E4mI3mzYd4b77+pGWZql68slCo1EtM/V17WoP1US5Vjye6Oy6ir/yFUXB7/cDaoDzsGHD+Ne//hU1rzKLwyeffBK6ltlsrvaaK1LV3MWLF3PPPffwzDPP0KdPHxITE3nqqafiuj7+9Kc/cc4554Set2jR4rjW9eijjzJmzBg+/vhjPv30Ux555BEWL17MiBEjuOmmmxg8eDAff/wxX3zxBU8++STPPPMMt99+O2lp6o/agoIC0tPLLf1z587F6/VGWIqEEBiNRmbOnElycjJJSUmA6vKpaHWx2+0kJycDqlWtsLCQvLy8GluFhg4dWmlWVatWrdi4cWPMY82aNcPtdmO32yPWd+jQobjWQofDwV//+lf+v737DmvqeuMA/k0CCWFjAQFFVBBwoThAHHVUheLC2h+IoOKsilVrW0drxVG31lVHRYaDqrWto4qoVamzoiiKC1RA1AJq2SIkJO/vD+TWmICiQICcz/Pkecy559x7bq6QlzP37dvHzZRzcnJCXFwcVq5cqdDNBgC//vorCgoKMGLECJXnu3XrFj766COMHz8ec+bMUZknMzNT4bNXN7UHQnv27MH06dOxefNmuLq6Ys2aNXB3d0dCQgLXjKtKSkoKvvrqK3Tr1u2dry3h6UBH9sqGq6IigETIRiEAwMSg9BdAzXlgDFOVsrMLMXHiYezefQMA0KWLNXbu/KRmBUEAwONVevdUVTAzM0NaWhr3Pjc3F8nJyRU6R7t27fDbb7+hcePG0NJS/StbKBRCJpMppL1ty0Hz5s1x7tw5hbRz587B3t4eAoEArVu3hlwux19//aX0pViat3Pnzpg0aRKXVl5LlYGBwRtnqzVv3hwPHz7Ew4cPuVahW7duITs7Gy1atODy2dvbw97eHl988QV8fX0RFhaGwYMHAyiZ6TRhwgRMmDABs2fPRnBwMD7//HPY2trC0NAQt27dgr29PQCguLgY27dvx6pVq5RaMLy8vLBr1y5MmDABzZo1A5/PR2xsrMLnm5SUhJycHO58n376KWbNmoXly5dj9erVSvf3eqDyqvfpGmvfvj20tbVx4sQJDBkyBEBJS1dqairc3NxUlpFKpZBKpeC/FuALBAIuGH9VSEgIBg4cqDKQuXnzJnr16oWRI0di0aJFKq93//59FBYWwtlZTX/IqFKpQ6/fgYuLCwUGBnLvZTIZWVlZ0ZIlS8osU1xcTJ07d6atW7e+1WyEV706a+xw6kTq9EBCmQsyKXtKNpHZE6L8fBrhBcI80LJTw6hkxljHd79BhqkloqOTydr6BwLmkUAwnxYu/IukUpm6q0VEtXfW2KxZs8jCwoJOnz5N169fJy8vL9LX11eaNbZv3z6FckZGRhQWFkZERI8fPyYzMzP69NNPKSYmhu7du0dRUVEUEBBAxcXFREQ0btw46tixIyUnJ9PTp09JJlP93LKyshRmixERxcbGEp/PpwULFlBCQgKFh4eTWCzmrk9EFBAQQNbW1rRv3z5KSkqiU6dO0Z49e4iIaO3atWRoaEhRUVGUkJBAc+bMIUNDQ2rTpg1XvqKzxuRyObVt25a6detGsbGxdPHiRWrfvj11796diIgKCgooMDCQTp06RSkpKXT27FmytbWlGTNmEBHR1KlTKSoqipKSkig2NpZcXV3J29ubu9Ynn3xCX375Jfd+3759JBQKKTs7W6leM2bMoA4dOnDvx48fT40bN6YDBw5QUlIS/fXXX9SpUyfq1KkTyeVyLt+GDRuIx+PR6NGjKTo6mqvn+PHjafr06eV+Fu9jwoQJ1KhRIzp58iRdvnyZ3NzcyM3NTSGPg4MD/f7779z77t27U8uWLenUqVOUlJREYWFhpKOjQxs3blQod/fuXeLxeHTkyBGl68bHx5OZmRn5+/tTWloa93ry5IlCvrCwMGratGmZ9VfHrDG1BkJFRUUkEAiUfgmMGDGCBg4cWGa5uXPnkpeXFxG9+QessLCQcnJyuNfDhw+5QGjfoynU815JIJQzKYfI+hHR48c0wLckENpyeQSVfESe73+zDFODZWe/ICOjJQTMI1vbtfT33w/VXSUFtTUQysnJIR8fHzI0NCRra2sKDw9XOX2+vECIiCgxMZEGDx5MxsbGJBaLydHRkaZNm8Z98SYkJFCnTp1ILBaXOX2eSHUgRPTf9HltbW1q1KgRrVixQuH4ixcv6IsvviBLS0sSCoVkZ2dHoaGhRFTyOzYgIICMjIzI2NiYJk6cSLNmzXqvQIio/OnzRUVFNHToULK2tiahUEhWVlY0efJk7v/H5MmTydbWlkQiEZmZmdHw4cPp2bP/lnqIjIykBg0acAFj//79ydNT9e/5ixcvEgC6du0a91kEBQWRo6MjicViatKkCY0fP55bzuBVx48fJ3d3dzIxMSEdHR1ydHSkr776iv75559yP4v38eLFC5o0aRKZmJiQrq4uDR48mNLS0hTyAFD4/5WWlkYBAQFkZWVFOjo65ODgQKtWrVII7IiIZs+eTdbW1ioD7aCgIKXlGQCQjY2NQr6+ffuW29ChcYHQ48ePCQCdP39eIf3rr78mFxcXlWXOnDlDDRo0UFhDo7wfsLIeTs4l0J7HX5PHnaKSQGhcDlGzZKKbN6nbqJJA6JcbpS1CIyvlfhmmJtu2LY5Gj95PubmF6q6KktoaCDE1k1wup44dO9LPP/+s7qpolBs3bpC5ubnKlrdSbB2hN8jLy8Pw4cMRHBzMDXh7k9mzZyMnJ4d7PXz4kDsm4YkUt9fQKQays5HFbbjKdp5n6iYiQnBwLP78M4lLGzGiDUJCBsHAQKTGmjFM1ePxeNiyZQuKi4vfnJmpNGlpadi+fTs3qLymUOtgaVNTUwgEAqV9UMoa4X7//n2kpKQobNpWOphLS0sLCQkJsLW1VSgjEokgEqn+xV70+vR5sQzIyeF2njfWYTvPM3XPs2cFGDfuD+zffweWlvq4eXMSTEzefVYRw9RGbdu2Rdu2bdVdDY2iarB9TaDWFiGhUIj27dvjxIkTXJpcLseJEydUjnB3dHREfHw84uLiuNfAgQPRs2dPxMXFqVxNtTwSnhA6Lyda8Ip5JYFQdjayXn4nmHA7z7MWIaZuOHbsPpycNmH//jvQ1uZj+nQ3tkcYwzAaTe3T56dPn46RI0eiQ4cOcHFxwZo1a/D8+XOMGjUKQMnS7g0aNMCSJUugo6ODVq1aKZQvnYL4evrbKFlH6NUWITmkWf/iufDluXVyX+ZkLUJM7VZYWIzZs//EmjUla7s0b26KiIhP4Oxc8ZVvGYZh6hK1B0I+Pj54+vQp5s6di/T0dLRt2xZRUVGoX78+gJLl0F9f36CySHhC6Lxc24xXzAN0Cdk5/y1DbqST9fJfLBBiaq+cnEJ06xaG+PiSlYonTeqAFSv6Qle37PVIGIZhNIXaAyEAmDx5MiZPnqzyWHR0dLllX90YsKKKeCLovNoiZETIzn0C6AAGJIQWv3TDVdY1xtRehoYitGpljvT0fISGDkL//vbqrhLDMEyNUSMCIXVR2GJDygN0ecjOfwboAMY8HQCsa4ypndLT86GtzccHH+iCx+Nh48Z+KCoqRv36+uquGsMwTI1Sq6bPVzYJT1txiw1dHrIKMgEAJtqls2i0ANSsqX4MU54//khA69abMGbMQW6fK2NjHRYEMQzDqKDRgVDR64Ol9fjILswGABiLSmfSmAJ4t12EGaY6FRRIMWnSYQwcuBvPnhUgOTkbWVmF6q4WwzBMjabRgZCEJ1RcUFGfjyxpSXeYibg0EGLdYkzNd+VKGtq334JNmy4DAKZP74SYmLGoV4+tD8RUrfDwcJUbiH744Yf4+eefq79CGmzo0KFYtWqVuqtR62h4IKT9WouQANnSkrWDjHVLF2FkgRBTc8nlhOXLz6FTp624c+cZLC31ceyYP1atcodIpNFDADVKjx49MG3aNHVXg3Pw4EFkZGRg6NChSseWLFkCgUCAFStWKB2bN2+eykUOU1JSwOPxEBcXx6UREbZs2QJXV1fo6+vD2NgYHTp0wJo1a1BQUFCZt6MgNTUV/fr1g66uLszNzfH111+/cYXqK1euoE+fPjA2NsYHH3yA8ePHIz8/XyEPj8dTeu3evZs7Hh0drTJPevp/M53nzJmDRYsWIScnp3Jvuo7T+EBIYfq8njayqOQHyES/dGoxmzHG1Fz5+RJs3HgJUqkcgwc7Ij5+Ivr0sX1zQYapQuvWrcOoUaNULn0SGhqKGTNmIDQ09L2uMXz4cEybNg2DBg3CqVOnEBcXh++++w4HDhzAsWPH3uvcZZHJZOjXrx8kEgnOnz+Pbdu2ITw8HHPnzi2zzD///IPevXvDzs4OFy9eRFRUFG7evImAgAClvGFhYUhLS+NeXl5eSnkSEhIU8pibm3PHWrVqBVtbW+zcubMybldzVOrOZbUAt2nbJZBP7hnaG5FLmQsyqbBNIdGeR/TZIAFhHmjeERcq2XA1UN1VZhglr+4KffbsAwoOjlXaKbouqa2brr6+ozoRqdx9Pjg4mLy8vEgsFpOdnR0dOHBAoUx8fDx5eHiQnp4emZubk7+/v8LG03htU+mydp9PSUmh/v37k7GxMenq6lKLFi3o8OHD3PEDBw6QnZ0diUQi6tGjB4WHhxMAysrK4vKEhYWRtbU1icVi8vLyopUrV5KRkRF3/MmTJ8Tj8ejGjRtK14+OjqYGDRqQRCIhKysrOnfunMLxoKAghV3rSyUnJxMAunr1KhER7dmzhwDQ/v37lfLK5fJyN/V8H5GRkcTn8yk9PZ1L27RpExkaGlJRUZHKMj/99BOZm5sr7Nh+/fp1AkB3797l0gDQvn37yrz2qVOnlJ6FKvPnz6euXbu+3Q3VQGzT1WpW0jVW8m9eMQ8QAVnaJXtuGHMTbFiLEFNz5OUVYdSoA9iyJZZL69KlEcaObQceT3MG9RMRnkueq+VFL2fiVab58+fD29sb169fh6enJ/z8/JCZWTKDNTs7G7169YKzszMuX76MqKgoZGRkwNvbGwCwdu1auLm5Ydy4cVwrQVnbDQUGBqKoqAinT59GfHw8li1bBn39kl92ycnJ+PTTT+Hl5YVr167hs88+w7fffqtQ/uLFixgzZgwmT56MuLg49OzZE99//71CnrNnz0JXVxfNmzdXun5ISAh8fX2hra0NX19fhISEvNPnFRERAQcHBwwaNEjpGI/HK3dTT319/XJfEyZMKLPshQsX0Lp1a27BXwBwd3dHbm4ubt68qbJMUVERhEKhQuuYWFwydu/s2bMKeQMDA2FqagoXFxeEhoaq/L/Wtm1bWFpaok+fPjh37pzScRcXF8TExKCoqKjM+2AUafQgAglPS3FBRZ6U23DVRP/lJmRsjBBTQ/z99yP4+f2OpKQs/PrrLfzvfy01djB0gbQA+kvUsxxA/ux86An1KvWcAQEB8PX1BQAsXrwY69atQ0xMDDw8PPDjjz/C2dkZixcv5vKHhobC2toaiYmJsLe3h1AohK6ursrNql+VmpqKIUOGoHXr1gCApk2bcsd++uknODg4cGN3HBwccOPGDSxatIjLs3btWnh4eGDGjBkAAHt7e5w/fx5RUVFcngcPHqB+/fpK3WK5ubn49ddfceHCBQCAv78/unXrhrVr13LB2Nu6e/cuHBwcKlSm1KvjjFQxNDQs81h6erpCEASAe//qWJ1X9erVC9OnT8eKFSswdepUPH/+HLNmzQJQsht7qQULFqBXr17Q1dXFsWPHMGnSJOTn52PKlCkAAEtLS2zevBkdOnRAUVERtm7dih49euDixYto164ddx4rKytIJBKkp6fDxsam3HtlSmh4IPRaixD+C4SMxaXTjlkgxKhXcbEcixefwYIFf0EmIzRqZIQdOwZrbBBUFzk5OXH/1tPTg6GhIZ48KdkS5dq1azh16pTKYOH+/fuwt1e9UnjLli3x4MEDAEC3bt1w5MgRTJkyBRMnTsSxY8fQu3dvDBkyhLt2QkICOnbsqHAOFxcXhfe3b9/G4MGDFdLc3NwUAqEXL15AR0d5I99du3bB1tYWbdq0AVDSsmFjY4M9e/ZgzJgxqj+YMrxPq5ydnd07l30XLVu2xLZt2zB9+nTMnj0bAoEAU6ZMUQoWv/vuO+7fzs7OeP78OVasWMEFQg4ODgrBX+fOnXH//n2sXr0aO3bs4NJLW5uqcsB4XaPRgZDSOkLSArbzPFOjJCdnwd9/H86ffwgA8PVthY0b+8HYWLN3jNfV1kX+7Pw3Z6yia78tPp+v9KUtlUqV8mlrK+77xuPxIJfLAQD5+fkYMGAAli1bplTO0rLsTXMjIyO5a5V+OY4dOxbu7u44fPgwjh07hiVLlmDVqlX4/PPP3/qe3sTU1BRZWVlK6SEhIbh58ya0tP772pHL5QgNDeUCIUNDQ5UznrKzswGA6/Kyt7fHnTt33ql+b2p98vf3x+bNm1Ues7CwQExMjEJaRkYGd6wsw4YNw7Bhw5CRkQE9PT3weDz88MMPCi1yr3N1dcXChQtRVFQEkUikMo+Li4tS91ppl6qZGfsj/m1pdCBU0jVW8m9eMQ+Q5vzXIsR2nmfULDu7EO3bb0FWViEMDITYtKkf/Pyc3lxQA/B4vErvnqoKZmZmCt0fubm5SE5OrtA52rVrh99++w2NGzdWCCJeJRQKIZPJFNLK6haxtrbGhAkTMGHCBMyePRvBwcH4/PPP4eDggMjISIW8ly5dUnjfvHlzXLx4USHt77//Vnjv7OyM9PR0ZGVlwcTEBAAQHx+Py5cvIzo6GvXq1ePyZmZmokePHrhz5w4cHR3h4OCAR48eISMjQ6EL6sqVK9DR0UGjRo0AlAQWQ4cOxYEDB5TGCRERcnNzyxwn9D5dY25ubli0aBGePHnCzdY6fvw4DA0N0aJFi3LPC/zXjRYaGgodHR306dOnzLxxcXEwMTEpMwgqzfN6MHzjxg00bNgQpqbsj/i3VqlDr2uBV2eNtStMpjursihzQSZJ60tJHraPtL4DYR7oYQ6PSmaNpam7yowGCwo6RV26hFBSUqa6q6JWtXXW2KxZs8jCwoJOnz5N169fJy8vL9LX11eaNfb6bCEjIyMKCwsjIqLHjx+TmZkZffrppxQTE0P37t2jqKgoCggIoOLiYiIiGjduHHXs2JGSk5Pp6dOnCjOUXjV16lSKioqipKQkio2NJVdXV/L29iYioqSkJNLW1qYZM2ZQQkIC7dmzhxo2bEgAuFlYFy5cID6fTytWrKDExERav349GRsbK8waKy4uJjMzM/rjjz8Uruvq6qqyTi4uLvTVV18REZFUKqWWLVtSz5496dy5c3T//n3au3cvWVpa0syZM7kycrmcfHx8SCwW06JFi+jSpUuUkpJCf/zxB/Xq1avc2Vfvo7i4mFq1akV9+/aluLg4ioqKIjMzM5o9ezaX5+LFi+Tg4ECPHj3i0tavX0+xsbGUkJBAP/74I4nFYlq7di13/ODBgxQcHEzx8fF09+5d2rhxI+nq6tLcuXO5PKtXr6b9+/fT3bt3KT4+nqZOnUp8Pp/+/PNPhTqOHDmSRo8eXSX3Xx3UMWtMowOhVkUPKWVZJmUuyKTiesWUv2EjYV5JIJRXBCr5eCTqrjKjQf76K4Vu3XrCvZdKZSSVqv5S0yS1NRDKyckhHx8fMjQ0JGtrawoPD1c5fb68QIiIKDExkQYPHkzGxsYkFovJ0dGRpk2bxi2ZkJCQQJ06dSKxWFzu9PnJkyeTra0tiUQiMjMzo+HDh9OzZ8+4469Pn9+0aRMBUPjcQ0JCqGHDhiQWi2nAgAFK0+eJiGbMmEFDhw4lIqKioiL64IMPaPny5SrrtGzZMjI3NyeJpOR37ePHj2nkyJHUqFEjEovF1KJFC1q6dCl3vJRMJqNNmzZRx44dSVdXlwwNDal9+/a0du1aKigoUHmtypCSkkIff/wxicViMjU1pS+//JKkUil3vHSa+6vPYPjw4VSvXj0SCoXk5ORE27dvVzjnkSNHqG3btqSvr096enrUpk0b2rx5s0JAu2zZMrK1tSUdHR2qV68e9ejRg06ePKlwnhcvXpCRkRFduHCham6+GqgjEOIRVcFc0BqstMk05xLQoU06Tq8QQiQDjH7Qwz+zFsC6cBG0iAdJEIHHMwag3NfNMJVNKpVh3rxoLFlyFm3aWODvv8ewlaFfUVhYiOTkZDRp0kTlQFymaixatAibN2/Gw4cPK1QuPT0dLVu2xJUrV9jMpWq0adMm7Nu3r8oWlKwO5f2sc9/fOTnldmFWlEb/ppWSFkSl3er8ImTnPQG0AWO+Nng8Cdj4IKY6JCb+Cz+/33H58j8AAGdnCxQXy1HO0ACGqRIbN25Ex44d8cEHH+DcuXNYsWIFJk+eXOHzWFhYICQkBKmpqSwQqkba2tpYv369uqtR62h0IASZACULsQI8LQmynv8LGAPGWkIAErAZY0xVIiJs3XoF06YdRUGBFCYmOtiyZQA+/fTNgy4ZpircvXsX33//PTIzM9GoUSN8+eWXmD179judS9X2EEzVGjt2rLqrUCtpdCDEkwlQMm8egLYE2QWZgDFgIiydyspahJiqkZdXhBEj9mP//pIpwL16NcG2bV5o2LDymnsZpqJWr16N1atXq7saDFOtNHqLDZ6sJA4kOQBtCbKKsgEAxuLS+JAFQkzVEIu18eTJc2hr87FiRR8cPz6cBUEMwzBqoNEtQnyZoOQfMoAnliJbUrJ2kIlu6cfCusaYylNUVNL6KBJpQUuLj507ByM7uxDOzmUviscwDMNULY1tESIAgtJAqJgH6BQju7hkpVpj3dLNK1mLEFM5bt58AheXrfjmmxNcWpMmJiwIYhiGUTONDYSKIeC21+AVAxDLkEUle7OY6JeuKMBahJj3Q0RYv/4iOnQIxvXrGdi5Mx5ZWS/UXS2GYRjmJY3tGiviibjtNVDMA8QyZKMIAGCsx3aeZ95feno+Ro8+gCNH7gEAPDzsEBY2CCYmbLNUhmGYmkJjAyHJKxuu8qUAxHJkaZVsUGiiK3mZiwVCzLs5dCgRo0cfwNOnBRCJBFi5si8CAzuCx+O9uTDDMAxTbTS2a0zK04aodMNVKQ8QFv+34aru85e5WNcYU3FZWS/g7/87nj4tgJNTfcTGjsfkyS4sCGKYavbhhx/i559/Vnc1NMrQoUOxatUqdVejQjQ2ECqCCDovW4RQjJLp8y8DIROx9GUu1iLEVJyJiRgbN/bD9OmdEBMzFi1bmqu7Skwd16NHD0ybNk3d1ahRDh48iIyMDAwdOlTp2JIlSyAQCLBixQqlY/PmzUPbtm2V0lNSUsDj8RR2rycibNmyBa6urtDX14exsTE6dOiANWvWoKCgoDJvR0Fqair69esHXV1dmJub4+uvv0ZxcXG5ZRITEzFo0CCYmprC0NAQXbt2xalTp7jj4eHh4PF4Kl9PnjxROt+5c+egpaWl9FnNmTMHixYtQk5OTqXca3XQ2EBIyhNygRCvmAdoSf9rEdIBAB0AeuqqHlOLyOWEFSvO4ejRe1zasGGtsWqVO9svjKnRZDIZ5HK5uqsBoPLrsm7dOowaNQp8vvLXXGhoKGbMmIHQ0ND3usbw4cMxbdo0DBo0CKdOnUJcXBy+++47HDhwoMr2+5LJZOjXrx8kEgnOnz+Pbdu2ITw8HHPnzi23XP/+/VFcXIyTJ08iNjYWbdq0Qf/+/ZGeng4A8PHxQVpamsLL3d0d3bt3h7m54h9z2dnZGDFiBD766COl67Rq1Qq2trbYuXNn5d10VavULVxrgdLda/+OcyD/K4WUuSCT8vzyiEYcI4PZJTvPJzwDETVUd1WZWuDhwxzq1WsbAfPIwmIlZWXVrt3Ra4vauvu8jY0NrV69WiFN1e7zwcHB5OXlRWKxmOzs7OjAgQMKZeLj48nDw4P09PTI3Nyc/P396enTp0RENHLkSELJiiDcq6zd58PCwsjIyIgOHDhAzZs3J4FAQMnJyWRjY0MLFy6k4cOHk56eHjVq1IgOHDhAT548oYEDB5Kenh61bt2aLl26xJ0rJSWF+vfvT8bGxqSrq0stWrSgw4cPE9F/O7AfOnSIWrduTSKRiFxdXSk+Pv6NdcnMzKThw4eTsbExicVi8vDwoMTERKVy+/btIzs7OxKJRNS3b19KTU3l8jx58oR4PB7duHFD6TOIjo6mBg0akEQiISsrKzp37pzC8aCgIGrTpo1SueTkZAJAV69eJSKiPXv2EADav3+/Ul65XE7Z2dkqn8H7ioyMJD6fT+np6Vzapk2byNDQkIqKilSWefr0KQGg06dPc2m5ubkEgI4fP66yzJMnT0hbW5u2b9+udMzHx4fmzJlT5mc1f/586tq1awXvrIQ6dp/X2BahVwdLQwrIeIXIe7nJpYkOwLrFmDfZu/cmnJw24eTJZOjpaWPRol4wMmI7pVYLIkD+XD0vojfXr4Lmz58Pb29vXL9+HZ6envDz80NmZiaAkr++e/XqBWdnZ1y+fBlRUVHIyMiAt7c3AGDt2rVwc3PDuHHjuL/kra2ty7xWQUEBli1bhq1bt+LmzZvcX/urV69Gly5dcPXqVfTr1w/Dhw/HiBEj4O/vjytXrsDW1hYjRowAvbz/wMBAFBUV4fTp04iPj8eyZcugr6+vcK2vv/4aq1atwqVLl2BmZoYBAwZAKpWWW5eAgABcvnwZBw8exIULF0BE8PT0VCq3aNEibN++HefOnUN2drZCF9jZs2ehq6uL5s2bK91/SEgIfH19oa2tDV9fX4SEhFT0cQEAIiIi4ODggEGDBikd4/F4MDIyKrOsvr5+ua8JEyaUWfbChQto3bo16tevz6W5u7sjNzcXN2/eVFnmgw8+gIODA7Zv347nz5+juLgYP/30E8zNzdG+fXuVZbZv3w5dXV18+umnCulhYWFISkpCUFBQmXV0cXFBTEwMioqKysxTk2hsu72EJ+Smz/OKeSikPO6YMQuEmHLk5RVhypQohIfHAQA6drRCRMQnaNbsA/VWTJNQAZCo/+Z8VcE+H+BVbrd5QEAAfH19AQCLFy/GunXrEBMTAw8PD/z4449wdnbG4sWLufyhoaGwtrZGYmIi7O3tIRQKoaurCwsLizdeSyqVYuPGjWjTpo1CuqenJz777DMAwNy5c7Fp0yZ07NgR//vf/wAAM2fOhJubGzIyMmBhYYHU1FQMGTIErVu3BgA0bdpU6VpBQUHo06cPAGDbtm1o2LAh9u3bxwVxr9fl7t27OHjwIM6dO4fOnTsDKAk4rK2tsX//fq4uUqkUP/74I1xdXblzN2/eHDExMXBxccGDBw9Qv359pW6x3Nxc/Prrr7hw4QIAwN/fH926dcPatWuVgrg3uXv3LhwcHCpUptSr44xUMTQse7ud9PR0hSAIAPe+tJvrdTweD3/++Se8vLxgYGAAPp8Pc3NzREVFwcTERGWZkJAQDBs2DGLxf8t93L17F7NmzcKZM2egpVV2+GBlZQWJRIL09HTY2NiUma+m0OhASPTKYOn8l4GQHo8PbYEcbMYYo0pm5gt07BiMpKQs8HjAN990Q1BQd2hrC9RdNaYWc3Jy4v6tp6cHQ0NDboDqtWvXcOrUKZVf1Pfv34e9vb3Kc7Zs2RIPHjwAAHTr1g1HjhwBAAiFQoXrqapD6RdraZDzatqTJ09gYWGBKVOmYOLEiTh27Bh69+6NIUOGKJ3Xzc2N+3e9evXg4OCA27dvc2mv1+X27dvQ0tLiAhzgv9aMV8tpaWmhY8eO3HtHR0cYGxvj9u3bcHFxwYsXL6Cjo6N0j7t27YKtrS0XeLVt2xY2NjbYs2cPxowZo/whloPeo2XQzs7uncu+CyJCYGAgzM3NcebMGYjFYmzduhUDBgzApUuXYGmpuML9hQsXcPv2bezYsYNLk8lkGDZsGObPn1/m/7lSpcFTVQ4Yr0waHQi92iKUL8sGABhrCQDIwVqEGFXq1ROjc2drFBfLsWPHYHz4Yc3/a6dO4umWtMyo69pvic/nK31hvtrFU0pbW1vxEjweN3A4Pz8fAwYMwLJly5TKvf4F9qrIyEjuWq/+VS8Wi1Uu5fBqHUqPq0orrdfYsWPh7u6Ow4cP49ixY1iyZAlWrVqFzz//vMw6va6surwvU1NTZGVlKaWHhITg5s2bCq0ZcrkcoaGhXCBkaGiocsZTdnY2AHBdXvb29rhz58471e9NrU/+/v7YvHmzymMWFhaIiYlRSMvIyOCOqXLy5EkcOnQIWVlZXGvTxo0bcfz4cWzbtg2zZs1SyL9161a0bdtWodssLy8Ply9fxtWrVzF58mQAJZ8dEUFLSwvHjh1Dr169AIDr1jUzqx3foxobCEl52grT53NfBkImIgEAKViLEFMqOTkLenpCmJuXdIds2OAJuZxgbKz8FydTTXi8Su+eqgpmZmZIS0vj3ufm5iI5OblC52jXrh1+++03NG7cuMzuCKFQCJlMppBWHV0S1tbWmDBhAiZMmIDZs2cjODhYIRD6+++/0ahRIwBAVlYWEhMTVY7bKdW8eXMUFxfj4sWLXNfYv//+i4SEBLRo0YLLV1xcjMuXL8PFxQUAkJCQgOzsbO7czs7OSE9PR1ZWFtf1Ex8fj8uXLyM6Ohr16tXjzpWZmYkePXrgzp07cHR0hIODAx49eoSMjAyFLqgrV65AR0eHu59hw4Zh6NChOHDggNI4ISJCbm5umeOE3qdrzM3NDYsWLcKTJ0+48V3Hjx+HoaGhwmf0qtKWmde7Cvl8vtJMvfz8fPzyyy9YsmSJUp3i4+MV0jZu3IiTJ0/i119/RZMmTbj0GzduoGHDhjA1rR3foxo7WLqIJ/pvQcViHnJKW4TEbMNVpgQRYceOa2jTZjPGjDnI/WVvaChiQRDzVnr16oUdO3bgzJkziI+Px8iRIyEQVKwbNTAwEJmZmfD19cWlS5dw//59HD16FKNGjeKCn8aNG+PixYtISUnBs2fPqmVK/LRp03D06FEkJyfjypUrOHXqlFKQs2DBApw4cQI3btxAQEAATE1N4eXlVeY5mzVrhkGDBmHcuHE4e/Ysrl27Bn9/fzRo0EAh2NDW1sbnn3+OixcvIjY2FgEBAejUqRMXGDk7O8PU1BTnzp3jyoSEhMDFxQUffvghWrVqxb0+/PBDdOzYkRs07e7uDgcHB/j6+uL8+fNISkrCr7/+ijlz5mDq1Knc8/P29oaPjw98fX2xePFiXL58GQ8ePMChQ4fQu3dvhTV6XmdnZ1fu6/Xp6q/q27cvWrRogeHDh+PatWs4evQo5syZg8DAQIhEJZM1YmJi4OjoiMePHwMoCZ5MTEwwcuRIXLt2DYmJifj666+RnJyMfv36KZx/z549KC4uhr+/v0I6n89X+NxatWoFc3Nz6OjooFWrVtDT++8PkzNnzqBv375l3kNNo7GBkOSVdYRQDGTJS5ryTFggxADIzi7EsGG/Y8SI/cjLkyA7uxC5ubVjBgRTc8yePRvdu3dH//790a9fP3h5ecHW1rZC57CyssK5c+cgk8nQt29ftG7dGtOmTYOxsTH3F/5XX30FgUCAFi1awMzMDKmpqVVxOwpkMhkCAwPRvHlzeHh4wN7eHhs3blTIs3TpUkydOhXt27dHeno6/vjjDwiFwnLPGxYWhvbt26N///5wc3MDESEyMlKhm05XVxczZ87EsGHD0KVLF+jr62PPnj3ccYFAgFGjRiEiIgIAIJFIsHPnTgwZMkTlNYcMGYLt27dDKpVy3TyNGjWCr68vWrVqhaCgIEydOhULFy7kyvB4PPz888/44YcfsH//fnTv3h1OTk6YN28eBg0aBHd39wp/pm9DIBDg0KFDEAgEcHNzg7+/P0aMGIEFCxZweQoKCpCQkMB1jZqamiIqKgr5+fno1asXOnTogLNnz+LAgQNKg+ZDQkLwySefwNjY+J3qV1hYiP3792PcuHHvfI/VjUfvM+KrFiptrvzpjjfoVii8b0ggjhLjZ/OBGNP2OIY318F270IAfwH4UN3VZdTg9OkHGD58H1JTcyAQ8DB/fg/MmtUVAoHG/t2gdoWFhUhOTkaTJk1UDoJlapbo6Gj07NkTWVlZ7/yFWpbw8HBMmzaNG7NTlvT0dLRs2RJXrlypFTOX6opNmzZh375977ygZHk/66Xf3zk5OeV2H1aUxo4RkvCEMHhlHaFnVDKwzliX7TyvqaRSGebNi8aSJWdBBNjamiAi4hO4ujZUd9UYhqkgCwsLhISEIDU1lQVC1UhbWxvr169XdzUqRGMDoSKeCKYvYx5eMQ/P+C+7xvTYPmOa6sWLYuzadQNEwJgxzlizxgP6+uU34zMMU3OVNx6JqRpjx45VdxUqTGMDoZLd5//ba+yJ4GWLkA4A8ACoXmSKqVtKe4Z5PB4MDUX4+echePw4F0OGqJ59wTDMm/Xo0eO91tkpT0BAAAICAqrk3Ixm0thASMITQiz9b7D0U2HJuhEmYgD4AABbIK+ue/asAGPHHkTfvraYNKlkcbZOnVg3GMMwjCbR2NGfJStLl/ybR8XIFJdMN2Xba2iGY8fuo3XrTThwIAHffHMCOTmF6q4SwzAMowYaHQhx0+f5Rch6ufBqyYartWMRKKbiCguL8cUXUXB334n09Hw0b26K6OgAGBmxmUgMwzCaSKO7xkSlg6V5UmS//B5kLUJ1140bTzBs2G+Ijy/Zw2nSpA5YsaIvdHW131CSYRiGqas0NxDCf5uuEr8IWS8DoZIxQqxFqK75998CuLmFID9fAjMzXYSGDkL//uVvHMgwDMPUfZobCL2y6Sp4RZC8/CRYi1Dd9MEHupgxozMuXHiEsLBBqF+//E0PGYZhGM2g0WOESluEZPySgbJ8AAZCgAVCdcMffyTgxo0n3PtvvumGw4eHsSCI0Vjh4eHvtNKzRCKBnZ0dzp8/X/mVYso0dOhQrFq1St3VqPM0NxCCEOKXaydK8QIAYCzkgccDWNdY7VZQIMXEiYcwcOBu+Pn9jsLCkqY/gYAPHo/3htIMU/v06NED06ZNq3C5tLQ0DBs2DPb29uDz+WWeY/PmzWjSpAm3I/yrPvvsMwgEAuzdu1fpWEBAgMpFDaOjo8Hj8RS2yZBIJFi+fDnatGkDXV1dmJqaokuXLggLC+P2zKoK169fR7du3aCjowNra2ssX778jWVOnDiBzp07w8DAABYWFpg5cyaKi4u549HR0Rg0aBAsLS2hp6eHtm3bcvuevSo7OxuBgYGwtLSESCSCvb09IiMjueNz5szBokWLkJOTUzk3y6iksYGQnITczUt4zwEAxiK24Wptd+VKGtq1+wmbN8cCAHr3bgIW+zCMakVFRTAzM8OcOXOUNt8sRUT48ccfMWbMGKVjBQUF2L17N2bMmIHQ0NB3rodEIoG7uzuWLl2K8ePH4/z584iJiUFgYCDWr1+PmzdvvvO5y5Obm4u+ffvCxsYGsbGxWLFiBebNm4ctW7aUWebatWvw9PSEh4cHrl69ij179uDgwYOYNWsWl+f8+fNwcnLCb7/9huvXr2PUqFEYMWIEDh06pHDPffr0QUpKCn799VckJCQgODgYDRo04PK0atUKtra22LlzZ5XcP/MSaZicnBwCQEOSdlHmgkzKXJBJj5wPEeaB2m/kExGI6Iq6q8lUkEwmp2XLzpK29gIC5pGl5Uo6fvy+uqvFVJIXL17QrVu36MWLF+quSoXY2NjQ6tWrFdLatGlDQUFB3HsAFBwcTF5eXiQWi8nOzo4OHDigUCY+Pp48PDxIT0+PzM3Nyd/fn54+fUpERCNHjiQACq/k5GSV9QkLCyMjIyOVx7p3705Tp05VSr906RLx+XzKzc1VOhYeHk6dOnWi7Oxs0tXVpdTUVIXjI0eOpEGDBimVO3XqFAGgrKwsIiJatmwZ8fl8unJF+XevRCKh/Px8lXV+Xxs3biQTExMqKiri0mbOnEkODg5llpk9ezZ16NBBIe3gwYOko6Oj8jMq5enpSaNGjeLeb9q0iZo2bUoSiaTcOs6fP5+6du36plupM8r7WS/9/s7JyanUa2psixDkIu6fL3j5AABjXfnLFNY1VptkZb1A797bMXPmn5BK5Rg82BHx8RPRu3dTdVeNqSoE4LmaXlWwc8T8+fPh7e2N69evw9PTE35+fsjMLNn/MDs7G7169YKzszMuX76MqKgoZGRkwNvbGwCwdu1auLm5Ydy4cUhLS0NaWhqsra0rrW5nzpyBvb09DAwMlI6FhITA398fRkZG+PjjjxEeHv5O14iIiEDv3r3h7OysdExbWxt6enoqy6WmpkJfX7/c1+LFi8u87oULF/Dhhx9CKPxvT0F3d3ckJCQgKytLZZmioiKlXdHFYjEKCwsRGxtb5rVycnJQr1497v3Bgwfh5uaGwMBA1K9fH61atcLixYshk8kUyrm4uCAmJgZFRUVlnpt5Pxo7a4xkJYGQTA4UCEq6xkx0S4+yrrHaxNBQBKlUDl1dbaxb54HRo53ZWKC6rgCAusa85wNQ/b38zgICAuDr6wsAWLx4MdatW4eYmBh4eHjgxx9/hLOzs8IXemhoKKytrZGYmAh7e3sIhULo6urCwsKicisG4MGDB7CyslJKv3v3Lv7++2/8/vvvAAB/f39Mnz4dc+bMqfDP3927d9GjR48K183KygpxcXHl5nk1+Hhdeno6mjRpopBWv3597piJifKek+7u7lizZg127doFb29vpKenY8GCBQBKxlyp8ssvv+DSpUv46aefuLSkpCScPHkSfn5+iIyMxL179zBp0iRIpVIEBQUp3KNEIkF6ejpsbGzKvVfm3WhsIMSTlfwFICce8vkvW4REQMlvV7bKcE2Xl1cEbW0BdHS0IBDwERHxCYqKitGs2QfqrhrDVJiTkxP3bz09PRgaGuLJk5IZj9euXcOpU6egr68c+d2/fx/29qrXw2rZsiUePHgAAOjWrRuOHDnyTnV78eKFUgsIUBKMubu7w9S0pAXd09MTY8aMwcmTJ/HRRx9V6Br0jhu0amlpwc7O7p3Kvqu+fftixYoVmDBhAoYPHw6RSITvvvsOZ86cAZ+v3Mly6tQpjBo1CsHBwWjZsiWXLpfLYW5uji1btkAgEKB9+/Z4/PgxVqxYoRAIicUl2x4UFBRU/c1pKI0NhOhl1xjJgbyXgRBbTLF2+PvvR/Dz+x0DBthjzRoPAECjRkZqrhVTrXRR0jKjrmu/JT6fr/Qlr2oGlLa24urmPB4PcnlJV31+fj4GDBiAZcuWKZWztLQs89qRkZHctUq/TN+Fqakp4uPjFdJkMhm2bduG9PR0aGlpKaSHhoZygZChoSEXjL0qOzsbAoGA6/Kyt7fHnTt3Kly31NRUtGjRotw833zzDb755huVxywsLJCRkaGQVvq+vNa16dOn44svvkBaWhpMTEyQkpKC2bNno2lTxe74v/76CwMGDMDq1asxYsQIhWOWlpbQ1taGQPDfBt/NmzdHeno6JBIJ111X2kVqZsZ6KqqKxgZC/OKS/2Qk4yFH8LJFiC2mWKMVF8uxePEZLFjwF2Qywv79d7BgQU8YGoreXJipW3io9O6pqmBmZqbQXZKbm4vk5OQKnaNdu3b47bff0LhxY4Wg41VCoVBpbElldaM4Oztj06ZNICKuyysyMhJ5eXm4evWqwhf5jRs3MGrUKGRnZ8PY2BgODg7YvXs3ioqKIBL993N65coVNGnShAsAhw0bhm+++QZXr15VGicklUohkUhUjhN6364xNzc3fPvtt5BKpVxdjh8/DgcHB5XdYq/i8Xhcl+GuXbtgbW2Ndu3accejo6PRv39/LFu2DOPHj1cq36VLF/z888+Qy+VcS1JiYiIsLS0VxizduHEDDRs25FremMqnsYOl+fKS//QkA7JfBkJsw9WaKzk5C927hyMoKBoyGWHYsNaIi5vAgiCmRuvVqxd27NiBM2fOID4+HiNHjlQIHN5GYGAgMjMz4evri0uXLuH+/fs4evQoRo0axQU/jRs3xsWLF5GSkoJnz55xrUlvIy4uDnFxccjPz8fTp08RFxeHW7duccd79uyJ/Px8hSnsISEh6NevH9q0aYNWrVpxL29vbxgbG3Nr5vj5+YHH42HEiBGIjY3FvXv3EBoaijVr1uDLL7/kzjdt2jR06dIFH330ETZs2IBr164hKSkJv/zyCzp16oS7d++qrHtp11h5r/ICoWHDhkEoFGLMmDG4efMm9uzZg7Vr12L69Olcnn379sHR0VGh3IoVKxAfH4+bN29i4cKFWLp0KdatW8c921OnTqFfv36YMmUKhgwZgvT0dKSnp3OtOwAwceJEZGZmYurUqUhMTMThw4exePFiBAYGKlzrzJkz6Nu3b5n3wFSCSp2DVguUTr/zvnSNMhdk0uOvcmhZr1GEeaCfr4OIRqi7iswr5HI5bd8eRwYGiwmYR4aGS2jnzmvqrhZTzWrr9PmcnBzy8fEhQ0NDsra2pvDwcJXT5/ft26dQzsjIiMLCwrj3iYmJNHjwYDI2NiaxWEyOjo40bdo0ksvlRESUkJBAnTp1IrFYXOHp83ht6j0AsrGxUcjj7e1Ns2bNIiKi9PR00tLSol9++UXlNSZOnEjOzs7c+4SEBBo8eDBZWVmRnp4etWnThoKDg7m6lyosLKQlS5ZQ69atSUdHh+rVq0ddunSh8PBwkkqlKq9VGa5du0Zdu3YlkUhEDRo0oKVLlyocDwsLo9e/Knv27ElGRkako6NDrq6uFBkZqXBc1ZIGAKh79+4K+c6fP0+urq4kEomoadOmtGjRIiouLuaOv3jxgoyMjOjChQuVe9M1mDqmz/OI3nGUWi2Vm5sLIyMjDP37NjYeq4/CTAHWJIzDctdfEDkM+LjZlwBWqruazEvPnhXAzm4dcnKK0KWLNXbu/ASNGxuru1pMNSssLERycjKaNGmicuAuU7WuX7+OPn364P79+yoHbTNVY9OmTdi3bx+OHTum7qpUm/J+1ku/v3NycmBoaFhp19TcMUKyl7dezMO/opLR+GywdM1jaqqLn37qj7t3MzFrVldoaWlsby7DqI2TkxOWLVuG5ORktG7dWt3V0Rja2tpYv369uqtR52lsICR4GQjxioGn4pJAiA2WVj+JRIZ586LRtWsjeHo2AwD4+LRSc60YhgkICFB3FTTO2LFj1V0FjVAj/rzesGEDGjduDB0dHbi6uiImJqbMvMHBwejWrRtMTExgYmKC3r17l5u/LNrFJYPaeFIeFwiZsEBIrRISnqFz5xAsWXIWo0YdQF4eW0mVYRiGqVpqD4T27NmD6dOnIygoCFeuXEGbNm3g7u7OLSb2uujoaPj6+uLUqVO4cOECrK2t0bdvXzx+/LhC1xXIS1qE+BLgufDVFiHWNVbdiAjBwbFo124LYmPTYGKig40bPWFgwGaEMQzDMFVL7YHQDz/8gHHjxmHUqFFo0aIFNm/eDF1d3TJ3Mo6IiMCkSZPQtm1bODo6YuvWrZDL5Thx4kSFriuQlbQI8aU8FGgXQKwFiLQA1iJUvZ49K8Ann/yC8eMPoaBAil69muD69YkYMqT8RdIYhmEYpjKodYyQRCJBbGwsZs+ezaXx+Xz07t0bFy5ceKtzFBQUQCqVlrlWRFFRkcJmdbm5uQAAneKSyXJ8SUkgZMwNTmeBUHV5+vQ52rTZjLS0fGhr87FkyUf44gs38PlsnzCGYRimeqi1RejZs2eQyWTcJnel6tevj/T09Lc6x8yZM2FlZYXevXurPL5kyRIYGRlxr9JdmUUvAyFBEVCgXfByxpgWALZVQ3UxM9ND3762aN7cFBcvjsWXX3ZmQRDDMAxTrWr1rLGlS5di9+7diI6OLnNtkdmzZyusEpqbmwtra2uIikveCxRahExRsnY/U1Vu3nwCU1Nd1K9fshbJjz96gs/nQVdX+w0lGYZhGKbyqbVFyNTUFAKBQOWmd+VteAcAK1euxNKlS3Hs2DGFnZtfJxKJYGhoqPACAJGspEWIJyVIBBK2vUYVIyKsX38R7dtvwejRB7mNKPX1hSwIYhiGYdRGrYGQUChE+/btFQY6lw58dnNzK7Pc8uXLsXDhQkRFRaFDhw7vdO3SFiE5SQEeW0OoKqWn58PT82dMmRKFoqKSvZGeP1fegZthmKoVHh4OY2PjCpf7999/YW5ujpSUlEqvE1O2Tp064bffflN3Neo8tc8amz59OoKDg7Ft2zbcvn0bEydOxPPnzzFq1CgAwIgRIxQGUy9btgzfffcdQkND0bhxY24zu/z8/Apdt3SwtIwkAFggVFX++CMBrVtvQlTUPejoaOHHHz/GoUO+0NcXvrkwwzBvpUePHpg2bVqFy/3+++/o06cPzMzMYGhoCDc3Nxw9elQp36JFizBo0CA0btxY6Zi7uzsEAgEuXbr01vVSFZDl5ubi22+/haOjI3R0dGBhYYHevXvj999/R1XuBBUdHY127dpBJBLBzs4O4eHhbyxz9OhRdOrUCQYGBjAzM8OQIUOUgsSIiAi0adMGurq6sLS0xOjRo/Hvv/+qPN/u3bvB4/Hg5eWlkD5nzhzMmjWrQpvoMhWn9kDIx8cHK1euxNy5c9G2bVvExcUhKiqKG0CdmpqKtLQ0Lv+mTZsgkUjw6aefwtLSknutXFmx/cGEL1uEil8GQqxrrHIVFEgxceIhDBy4G8+eFcDJqT4uXx6HwEAX8HhsHBbD1ASnT59Gnz59EBkZidjYWPTs2RMDBgzA1atXuTwFBQUICQnBmDFjlMqnpqbi/PnzmDx5cplLnryN7OxsdO7cGdu3b8fs2bNx5coVnD59Gj4+PpgxYwZycnLe+dzlSU5ORr9+/dCzZ0/ExcVh2rRpGDt2rMpg8NUygwYNQq9evRAXF4ejR4/i2bNn+OSTT7g8586dw4gRI7hd7ffu3YuYmBiMGzdO6XwpKSn46quv0K1bN6VjH3/8MfLy8nDkyJHKuWFGtUrdwrUWKN29dvuWR5S5IJPSut4nzAOtPAciClJ39eqM3NxCsrVdS8A8+vLLo1RYWHW7RzN13+s7UsuJKF9NL8U908tnY2NDq1evVkhTtft8cHAweXl5kVgsJjs7Ozpw4IBCmfj4ePLw8CA9PT0yNzcnf39/evr0KRGp3um8IrvPv65FixY0f/587v3evXvJzMxMZd558+bR0KFD6fbt22RkZEQFBQUKx7t3705Tp059Yz0mTpxIenp69PjxY6W8eXl5Vbb7/IwZM6hly5YKaT4+PuTu7l5mmb1795KWlhbJZDIu7eDBg8Tj8UgikRAR0YoVK6hp06YK5datW0cNGjRQSCsuLqbOnTvT1q1baeTIkTRo0CCl640aNYr8/f0remu1ljp2n1d7i5C6iEqGqqAQhQBKN1xlXWPvQy4nyOUlTdgGBiLs2jUEx48Px8qVfSES1eoJikwNUwBAX02vgiq4n/nz58Pb2xvXr1+Hp6cn/Pz8kJmZCaCktaRXr15wdnbG5cuXERUVhYyMDHh7ewMA1q5dCzc3N4wbNw5paWlIS0vjlgmpKLlcjry8PIV12c6cOYP27dsr5SUihIWFwd/fH46OjrCzs8Ovv/76TtfcvXs3/Pz8YGVlpXRcX18fWlqqf3+cOXMG+vr65b4iIiLKvPaFCxeUll5xd3cvdx279u3bg8/nIywsDDKZDDk5OdixYwd69+4Nbe2SiR9ubm54+PAhIiMjQUTIyMjAr7/+Ck9PT4VzLViwAObm5ipb20q5uLjgzJkzZR5n3p/GfjuVriNUGgix7TXez6NHuRg5cj8GDXLAlCmuAICOHRuouVYMUzsEBATA19cXALB48WKsW7cOMTEx8PDwwI8//ghnZ2csXryYyx8aGgpra2skJibC3t4eQqEQurq6b5xt+yYrV65Efn4+F2QBwIMHD1QGKH/++ScKCgrg7u4OAPD390dISAiGDx9eoWs+e/YMWVlZcHR0rHB9O3TogLi4uHLzvL5O3avS09NVrmOXm5uLFy9eQCwWK5Vp0qQJjh07Bm9vb3z22WeQyWRwc3NDZGQkl6dLly6IiIiAj48PCgsLUVxcjAEDBmDDhg1cnrNnzyIkJOSN9beyssLDhw8hl8vB52ts20WV0thPtXTWWEFpixAbLP3O9u69CSenTTh5MhkLFvyF/HyJuqvE1HG6APLV9NKtgvt5dQkQPT09GBoacvstXrt2DadOnVJo5SgNGu7fv1/mOVu2bMnl//jjj99Yh59//hnz58/HL7/8AnNzcy79xYsXKtdpCw0NhY+PD9da4+vri3PnzpVbJ1XoPQZCi8Vi2NnZlfsyMDB45/Orkp6ejnHjxmHkyJG4dOkS/vrrLwiFQnz66afcvdy6dQtTp07F3LlzERsbi6ioKKSkpGDChAkAgLy8PAwfPhzBwcEwNS3/D3CxWAy5XK6wQwJTuTS+RSif9+qGqywQqoi8vCJMmRKF8PA4AEDHjlaIiPiEzQhjqhwPgJ66K/EW+Hy+0he9VKq8dERpl0opHo/HzRTKz8/HgAEDsGzZMqVylpaWZV47MjKSu5aqlo1X7d69G2PHjsXevXuVuopMTU2RlZWlkJaZmYl9+/ZBKpVi06ZNXLpMJkNoaCgWLVoEADA0NFQ50Dk7OxtGRiWr+JuZmcHY2Bh37twpt46qnDlz5o1B3k8//QQ/Pz+VxywsLFSuY2doaFjmZ7ZhwwYYGRlh+fLlXNrOnTthbW2NixcvolOnTliyZAm6dOmCr7/+GkBJoKunp4du3brh+++/R0ZGBlJSUjBgwADuHKXPW0tLCwkJCbC1tQVQ8lnr6em98Rky705jAyGdlwsq5r4MhErGCLGusbf199+P4Of3O5KSssDjAd980w1BQd2hrS1Qd9UYpsYwMzNTmPWam5uL5OTkCp2jXbt2+O2339C4ceMyx8oIhULIZDKFNBsbm7c6/65duzB69Gjs3r0b/fr1Uzru7OyMnTt3KqRFRESgYcOG2L9/v0L6sWPHsGrVKixYsAACgQAODg44duyY0jmvXLkCe3t7ACXB4tChQ7Fjxw4EBQUpdcPl5+dDR0dH5b2/b9fY611aAHD8+PFy17ErKChQ6qISCEp+75UGMwUFBUr1Lc1DRHB0dER8fLzC8Tlz5iAvLw9r165VGON148YNODs7l1kfphJU6tDrWqB01Hns9w8oc0Em/dzjZ8I8UNYLEJFE3dWrFdLT80hH53sC5lGjRqvp9OkUdVeJqePKm0lSk82aNYssLCzo9OnTdP36dfLy8iJ9fX2lWWP79u1TKGdkZERhYWFERPT48WMyMzOjTz/9lGJiYujevXsUFRVFAQEBVFxcTERE48aNo44dO1JycjI9ffpUYUbTq16frRUREUFaWlq0YcMGSktL417Z2dlcnuvXr5OWlhZlZmZyaW3atKGZM2cqnT87O5uEQiEdOnSIiIju379POjo69Pnnn9O1a9fozp07tGrVKtLS0qIjR45w5f79919ydHSkhg0b0rZt2+jmzZuUmJhIISEhZGdnR1lZWW/zcVdYUlIS6erq0tdff023b9+mDRs2kEAgoKioKC7P+vXrqVevXtz7EydOEI/Ho/nz51NiYiLFxsaSu7s72djYcLPmwsLCSEtLizZu3Ej379+ns2fPUocOHcjFxaXMupQ1a6x79+60YMGCyrvpGk4ds8Y0NhC6MS+FMhdkUnCvYOLNA8nkRuquWq2yaNFp8vX9lbKyatcXE1M71dZAKCcnh3x8fMjQ0JCsra0pPDxc5fT58gIhIqLExEQaPHgwGRsbk1gsJkdHR5o2bRrJ5SWT+RMSEqhTp04kFosrNH2+e/fuSlPvAdDIkSMVyrm4uNDmzZuJiOjy5csEgGJiYlRe4+OPP6bBgwdz72NiYqhPnz5kZmZGRkZG5OrqqnS/RCVB1KxZs6hZs2YkFAqpfv361Lt3b9q3bx93n1Xh1KlT1LZtWxIKhdS0aVOFz52IKCgoiGxsbBTSdu3aRc7OzqSnp0dmZmY0cOBAun37tkKedevWUYsWLUgsFpOlpSX5+fnRo0ePyqyHqkDo0aNHpK2tTQ8fPnyfW6xV1BEI8YiqcMnOGig3NxdGRka4OycFHwgNse30Nszv/QWyZtoBuKvu6tVIRISdO6+jTRsLODnV59LYwohMdSksLERycjKaNGlS5gbLTNU5fPgwvv76a9y4cYPNXKpGM2fORFZWFrZs2aLuqlSb8n7WS7+/c3JyuH1DK4PGjhHSfrlieb4gnw2ULkd2diEmTjyM3btvoGVLM1y6NA5isTYLghhGg/Tr1w93797F48eP33mNIqbizM3NMX36dHVXo87T2ECoVC4/l22vUYa//krB8OH78PBhLgQCHoYObcUGQzOMhnqXvcyY9/Pll1+quwoaQeMDoTxBHmsReo1EIsO8edFYuvQsiABbWxNERHwCV9eG6q4awzAMw1QqjQ6EZADytfPZ9hqvePr0OTw9f8bly/8AAEaPbos1azxgYCBSc80YhmEYpvJpdCBUDKBAuwDGIoB1jZWoV08MPT1tmJjoYMuWAfj00xbqrhLDMAzDVBkND4R4KNAuQBMNbxF69qwAenraEIu1IRDwsXPnJwCAhg0rb1Q+wzAMw9REGj0PUoaXLUIaPEbo2LH7cHLahBkzjnNpDRsasiCIYRiG0QgaHQjJifdKIKRZXWOFhcWYPv0o3N13Ii0tHydOJOP5c7ZZKsMwDKNZNLprTEYlLUKatvP8zZtPMGzY77h+vWSzwUmTOmDFir7Q1dV+Q0mGYRiGqVs0u0VIztOorjEiwvr1F9G+/RZcv54BMzNd/PGHLzZs6MeCIIbRAOHh4TA2Nq7Sa/B4PKXNWN/G8OHDsXjx4sqvEFOmWbNm4fPPP1d3NdSOBULaBTDR0Qagp+7qVLknT54jKCgaRUUyfPyxHeLjJ6J/f3t1V4thmPfUo0ePd1rwMC0tDcOGDYO9vT34fH6lL5qYkpKCMWPGoEmTJhCLxbC1tUVQUBAkEsVu+GvXriEyMhJTpkxROseuXbsgEAgQGBiodKy8wE5VQPbbb7+hR48eMDIygr6+PpycnLBgwQJkZma+8z2+SWZmJvz8/GBoaAhjY2OMGTMG+fn55Za5f/8+Bg8eDDMzMxgaGsLb2xsZGRkq8xYVFaFt27bg8XiIi4tTOHb9+nV069YNOjo6sLa2xvLlyxWOf/XVV9i2bRuSkpLe6x5rO40OhEheOn3eBEDd3zKifn19BAcPwPr1H+Pw4WGoX19f3VViGEaNioqKYGZmhjlz5qBNmzZvVSYgIADz5s17q7x37tyBXC7HTz/9hJs3b2L16tXYvHkzvvnmG4V869evx//+9z/o6yv/TgoJCcGMGTOwa9cuFBYWvtV1Vfn222/h4+ODjh074siRI7hx4wZWrVqFa9euYceOHe983jfx8/PDzZs3cfz4cRw6dAinT5/G+PHjy8z//Plz9O3bFzweDydPnsS5c+cgkUgwYMAAyOVypfwzZsyAlZWVUnpubi769u0LGxsbxMbGYsWKFZg3b57CvmWmpqZwd3fHpk2bKudma6tK3cK1FijdvTblmxS6OTOP+HP59E9OS3VXq0o8fy6hiRMP0R9/JKi7KgzzXl7fkVoul5O8SE2vCuyEbmNjQ6tXr1ZIU7X7fHBwMHl5eZFYLCY7Ozs6cOCAQpn4+Hjy8PAgPT09Mjc3J39/f3r69CkRlexajtd2j3/b3edf1b17d5o6deob72nkyJEK9X8dAJW7y5davnw5NWnShHtfXFxMRkZGdOjQIaW8SUlJJBaLKTs7m1xdXSkiIkLheHn382o9Ll68SABozZo1KvNmZWWVWd/3cevWLQJAly5d4tKOHDlCPB6PHj9+rLLM0aNHic/nK+ywnp2dTTwej44fP66QNzIykhwdHenmzZsEgK5evcod27hxI5mYmFBRURGXNnPmTHJwcFA4x7Zt26hhw4bvc5uVSh27z2v0YGm5TA45Xw5jcX11V6XSXbmSBj+/33HnzjP89tttJCVNgZ6eUN3VYpjKIQWyl2Wr5dLGM42BSv5Rmj9/PpYvX44VK1Zg/fr18PPzw4MHD1CvXj1kZ2ejV69eGDt2LFavXo0XL15g5syZ8Pb2xsmTJ7F27VokJiaiVatWWLBgAQDAzKzmjnnMyclBvXr1uPfXr19HTk4OOnTooJQ3LCwM/fr1g5GREfz9/RESEoJhw4ZV+JoRERHQ19fHpEmTVB4vb9xUy5Yt8eDBgzKPd+vWDUeOHFF57MKFCzA2Nla4t969e4PP5+PixYsYPHiwUpmioiLweDyIRP+t5q+jowM+n4+zZ8+id+/eAICMjAyMGzcO+/fvh66ursprf/jhhxAK//vP6u7ujmXLliErKwsmJiYAABcXFzx69AgpKSlo3LhxmfdZl2l2ICSXQyQAxNoW6q5KpZHLCatWnce3356EVCqHpaU+tm3zYkEQw9RgAQEB8PX1BQAsXrwY69atQ0xMDDw8PPDjjz/C2dlZYSBxaGgorK2tkZiYCHt7ewiFQujq6sLComb/Lrt37x7Wr1+PlStXcmkPHjyAQCCAubm5Ql65XI7w8HCsX78eADB06FB8+eWXSE5ORpMmTSp03bt376Jp06bQ1q74pJDIyEhIpdIyj4vF4jKPpaenK92XlpYW6tWrh/T0dJVlOnXqBD09PcycOROLFy8GEWHWrFmQyWRIS0sDUDLxJSAgABMmTECHDh2QkpKi8tqvf07169fnjpUGQqXdag8ePGCBkCaSyWV1ag2hR49yMXLkfpw8mQwAGDzYEcHBA/DBB8p/LTBMrab9smVGTdeubE5OTty/9fT0YGhoiCdPngAoGUh86tQpleNn7t+/D3t71RMeXm3JKK/V4k0iIiLw2Wefce9LWyxeDWaOHDmCbt26lXuex48fw8PDA//73/8wbtw4Lv3FixcQiUTg8RTHaR4/fhzPnz+Hp6cngJLxLH369EFoaCgWLlxYoXsgogrlf5WNjc07l30XZmZm2Lt3LyZOnIh169aBz+fD19cX7dq1A59fMqx3/fr1yMvLw+zZs9/7eqWBXEFBwXufq7bS6ECoWCarMxuupqXlwclpE7KyCqGrq421az0wZoyz0i8XhqkLeDxepXdPVQU+n6/0JayqdeH1lgoej8cNjM3Pz8eAAQOwbNkypXKWlpZlXvvVlozyWi3eZODAgXB1deXez5w5Ew0aNFCY4dWgQYNyz/HPP/+gZ8+e6Ny5s8JgXaAkwCkoKIBEIlHoxgkJCUFmZqZC3eVyOa5fv4758+eDz+fD0NAQz58/h1wu54IEAMjOzgYAGBkZAQDs7e1x9uxZSKXSCrcKvU/XmIWFBRfQliouLkZmZma5rXd9+/bF/fv38ezZM2hpacHY2BgWFhZo2rQpAODkyZO4cOGCQvcZAHTo0AF+fn7Ytm0bLCwslGaalb5/9dqlM+ZqcndqVdPoQEgmL64zawhZWhpg8GBHXL/+BBERn8De/gN1V4lhNJ6ZmRnXnQGUzORJTk6u0DnatWuH3377DY0bN4aWlupf2UKhEDKZTCGtsloyDAwMYGBgoPC+Xr16sLOze6vyjx8/Rs+ePdG+fXuEhYUpBCwA0LZtWwDArVu3uH//+++/OHDgAHbv3o2WLVtyeWUyGbp27Ypjx47Bw8MDDg4OKC4uRlxcHNq1a8flu3LlCgBwrWXDhg3DunXrsHHjRkydOlWpjtnZ2WWOE3qfrjE3NzdkZ2cjNjYW7du3B1ASxMjlcoXgsiympqZcmSdPnmDgwIEAgHXr1uH777/n8v3zzz9wd3fHnj17uPO6ubnh22+/VQj+jh8/DgcHB65bDABu3LgBbW1thc9Z02h0ICSVS2t119jFi4/QqJERLC1LfkmtX+8JbW0+tLUFaq4ZwzAA0KtXL4SHh2PAgAEwNjbG3LlzIRBU7OczMDAQwcHB8PX1xYwZM1CvXj3cu3cPu3fvxtatWyEQCNC4cWNcvHgRKSkp0NfXR7169ZQCjrKUrj2Tn5+Pp0+fIi4uDkKhEC1atKjo7Sp5/PgxevToARsbG6xcuRJPnz7ljpW2SpiZmaFdu3Y4e/YsFwjt2LEDH3zwAby9vZVatT09PRESEgIPDw+0bNkSffv2xejRo7Fq1So0bdoUCQkJmDZtGnx8fLiWKldXV8yYMQNffvklHj9+jMGDB8PKygr37t3D5s2b0bVrV5UBEvB+AWXz5s3h4eGBcePGYfPmzZBKpZg8eTKGDh3Kjc15/PgxPvroI2zfvh0uLi4ASgaJN2/eHGZmZrhw4QKmTp2KL774Ag4ODgCARo0aKVyntNvU1tYWDRs2BFAS/M2fPx9jxozBzJkzcePGDaxduxarV69WKHvmzBl069btvVoNa71KnYNWC7w6ff7k+ATy/RVE9Je6q1UhUqmM5s+PJoFgPrm77yCZ7O2n8zJMbVTelNqaLCcnh3x8fMjQ0JCsra0pPDxc5fT516ebGxkZUVhYGPc+MTGRBg8eTMbGxiQWi8nR0ZGmTZvGTeVPSEigTp06kVgsrvD0ebw29R4A2djYlHlPFZk+HxYWpvL8r3/1bNy4kTp16sS9b926NU2aNEnl+ffs2UNCoZBbPiArK4umTJlCtra2JBaLqVmzZjRjxgzKy8tTWfbDDz8kAwMD0tPTIycnJ1qwYEGVTZ8nIvr333/J19eX9PX1ydDQkEaNGqVQt+TkZAJAp06d4tJmzpxJ9evXJ21tbWrWrBmtWrWq3GUbSs/x6vR5IqJr165R165dSSQSUYMGDWjp0qVKZR0cHGjXrl3vfZ+VRR3T53lE7zGKrBbKzc2FkZERUr5JQeKTPOzzao2N/W4BaK7uqr2V5OQs+Pvvw/nzDwEAvr6tEBIyEGIx2yKDqbsKCwu52UI6Ojrqrg5TyV68eAEHBwfs2bMHbm5u6q6Oxjhy5Ai+/PJLXL9+vcxu1+pW3s966fd3Tk4ODA0NK+2aNePO1UQiL3y54WrN7xojIkRExGPSpMPIy5PA0FCEjRs94efn9ObCDMMwNZhYLMb27dvx7NkzdVdFozx//hxhYWE1JghSF42+e4ms8OUYoXpvyqpWublFmDDhEHbtugEA6NLFGjt2DEaTJiZvKMkwDFM79OjRQ91V0DiffvqpuqtQI2j0XmNF8gKYaIsA1OzBxQIBD5cv/wOBgIcFC3ogOjqABUEMwzAMUwk0ukWoSP4cxtoGb86oBlKpDAIBH3w+D3p6Quze/SmkUhlcXRuqu2oMwzAMU2dodItQofw5TETG6q6GksTEf9G5cyjWrbvIpbVrZ8mCIIZhGIapZBoeCOXBWKfmLKZIRAgOjoWz80+4fPkfLF9+DgUFZS/kxTAMwzDM+9HorrEC5MJYz0rd1QAAPHtWgHHj/sD+/XcAAL16NcG2bV7Q1WXT4hmGYRimqmh0IPQceTAxaPTmjFXs2LH7CAjYj7S0fGhr87F48UeYPt0NfD7bJ4xhGIZhqpJGd43lCfJgpKPecTf//JOHAQN2IS0tH82bm+LixbH46qvOLAhimDqgR48emDZtmtquHxAQAC8vrxpTH4apiTS6RUgqyoWAX1+tdbCyMsCCBT2QmpqDFSv6sq4whmGqzO+//17h3dcZpq7T6EBIJs5Fde88T0TYsOESunZthLZtSzYdnDGji9LGggzDMJWtXr2avXgsw6iDRneNQTcH1bm9Rnp6Pvr1+xmff34Ew4b9hsLCYgBgQRDD1GHFxcWYPHkyjIyMYGpqiu+++w6lWzzu2LEDHTp0gIGBASwsLDBs2DA8efKEK5uVlQU/Pz+YmZlBLBajWbNmCAsL444/fPgQ3t7eMDY2Rr169TBo0CCkpKSUWZfXu8YaN26MxYsXY/To0TAwMECjRo2wZcsWhTIVvQbD1DaaHQgZ5KC6WoQOHUqEk9MmHDlyDyKRAJMmdYRIVLNXtGaYmu75c0mZr9I/NN4m74sX0rfK+y62bdsGLS0txMTEYO3atfjhhx+wdetWAIBUKsXChQtx7do17N+/HykpKQgICODKfvfdd7h16xaOHDmC27dvY9OmTTA1NeXKuru7w8DAAGfOnMG5c+egr68PDw8PSCRvX9dVq1ahQ4cOuHr1KiZNmoSJEyciISGhUq/BMDWZRneNaelXfYtQQYEUX311DJs2XQYAODnVx88/f4KWLc2r9LoMown09ZeUeczTsxkOHx7GvTc3X1nmulzdu9sgOjqAe9+48Vo8e1aglI8oqMJ1tLa2xurVq8Hj8eDg4ID4+HisXr0a48aNw+jRo7l8TZs2xbp169CxY0fk5+dDX18fqampcHZ2RocOHV7WqzGXf8+ePZDL5di6dSvXqhwWFgZjY2NER0ejb9++b1U/T09PTJo0CQAwc+ZMrF69GqdOneJ2g6+MazBMTaaxLUISPiAyeAFAXGXXSEvLQ/v2W7ggaPr0ToiJGcuCIIbRIJ06dVLo/nZzc8Pdu3chk8kQGxuLAQMGoFGjRjAwMED37t0BAKmpqQCAiRMnYvfu3Wjbti1mzJiB8+fPc+e5du0a7t27BwMDA+jr60NfXx/16tVDYWEh7t+//9b1c3Jy4v7N4/FgYWHBdc9V1jUYpibT2BYhCZ8HXXHVrtpcv74+LC31kZNTiG3bvNCnj22VXo9hNE1+/uwyjwkEin/nPXnyVZl5X1+uIiVl6vtV7C0UFhbC3d0d7u7uiIiIgJmZGVJTU+Hu7s51O3388cd48OABIiMjcfz4cXz00UcIDAzEypUrkZ+fj/bt2yMiIkLp3GZmb9/l//osMh6PB7lcDgCVdg2Gqck0OBACxHrySj/vo0e5qFdPDF1dbfD5PEREfAJtbQFMTXUr/VoMo+n09IRqz/smFy9eVHj/999/o1mzZrhz5w7+/fdfLF26FNbW1gCAy5cvK5U3MzPDyJEjMXLkSHTr1g1ff/01Vq5ciXbt2mHPnj0wNzeHoaFhpdX3VdVxDYZRN43tGpPxeDAQV24cuHfvTTg5bcJXXx3j0iwtDVgQxDAaLDU1FdOnT0dCQgJ27dqF9evXY+rUqWjUqBGEQiHWr1+PpKQkHDx4EAsXLlQoO3fuXBw4cAD37t3DzZs3cejQITRv3hwA4OfnB1NTUwwaNAhnzpxBcnIyoqOjMWXKFDx69KhS6l4d12AYddPYQEjKA0yERpVyrry8IowefQDe3r8iK6sQsbFpSrNQGIbRTCNGjMCLFy/g4uKCwMBATJ06FePHj4eZmRnCw8Oxd+9etGjRAkuXLsXKlSsVygqFQsyePRtOTk748MMPIRAIsHv3bgCArq4uTp8+jUaNGuGTTz5B8+bNMWbMGBQWFlZa6011XINh1I1HpQtaaIjc3FwYGRnh9MIHyO4xDAO6nn2v8/399yP4+/+O+/ezwOMB33zTDUFB3aGtzabGM0xlKSwsRHJyMpo0aQIdHR11V4dhmCpS3s966fd3Tk5OpQbiGjtGqJgHmOhavHv5YjkWLz6DBQv+gkxGaNTICDt2DMaHH9pUYi0ZhmEYhqlKGhsIyXgEM91333D16dPnWLv2ImQygq9vK2zc2A/GxuwvVYZhGIapTTQ2EJKCYGLY9J3LW1oaIDR0IPLyJPD3d3pzAYZhGIZhahyNHSxdDIKxscNb58/OLoSv7284cOAOlzZokCMLghiGYRimFtPYFiEZTwZdceO3yvvXXykYPnwfHj7MRXR0Ctzd7aCjo7EfHcMwDMPUGRrbIiSDHDxe+VtdSCQyzJ79J3r23IaHD3Nha2uC/ft9WBDEMGqiYZNcGUbjqONnXGO/0eUoBmBc5vGEhGfw8/sdsbFpAIDRo9ti7dqPoa9feSvOMgzzdgSCkuUoJBIJxOKq2x+QYRj1Kt1epvRnvjpobCAk48kA8FQee/gwB+3abUFBgRQmJjoIDh6AIUNaVG8FGYbhaGlpQVdXF0+fPoW2tjb4fI1tzGaYOksul+Pp06fQ1dWFllb1hScaGwjJecVlHrO2NoK/f2vcu5eFbdu80LAhW0GVYdSJx+PB0tISycnJePDggbqrwzBMFeHz+WjUqBF4PNUNFVVBgwMhxS0wjh+/j5YtzWFlZQAAWLfuY2hrC5R2pWYYRj2EQiGaNWvGNZ0zDFP3CIXCam/xrRGB0IYNG7BixQqkp6ejTZs2WL9+PVxcXMrMv3fvXnz33XdISUlBs2bNsGzZMnh6elbomoSSFqHCwmLMnv0n1qy5iN69m+LoUX/w+TyIRDXio2EY5hV8Pp9tscEwTKVSe0f7nj17MH36dAQFBeHKlSto06YN3N3d8eTJE5X5z58/D19fX4wZMwZXr16Fl5cXvLy8cOPGjQpdl3gS3LjxBC4uwViz5iIAwN6+HqRS2XvfE8MwDMMwtYPaN111dXVFx44d8eOPPwIoGSxlbW2Nzz//HLNmzVLK7+Pjg+fPn+PQoUNcWqdOndC2bVts3rz5jdcr3bTN3ysEe4/8g6IiGczMdBEaOgj9+9tX3o0xDMMwDFNpqmrTVbW2CEkkEsTGxqJ3795cGp/PR+/evXHhwgWVZS5cuKCQHwDc3d3LzF+WnfvvoqhIho8/tkN8/EQWBDEMwzCMBlLrQJhnz55BJpOhfv36Cun169fHnTt3VJZJT09XmT89PV1l/qKiIhQVFXHvc3JyAAACvgRLlvbB+PHtwePJkZub+z63wjAMwzBMFSr9nq7sjqw6PyJ4yZIlmD9/vlK6TP4DZsz4ATNmqKFSDMMwDMO8k3///RdGRkaVdj61BkKmpqYQCATIyMhQSM/IyICFhYXKMhYWFhXKP3v2bEyfPp17n52dDRsbG6SmplbqB8lUXG5uLqytrfHw4cNK7e9l3g17HjUHexY1B3sWNUdOTg4aNWqEevXqVep51RoICYVCtG/fHidOnICXlxeAksHSJ06cwOTJk1WWcXNzw4kTJzBt2jQu7fjx43Bzc1OZXyQSQSQSKaUbGRmx/9Q1hKGhIXsWNQh7HjUHexY1B3sWNUdlrzOk9q6x6dOnY+TIkejQoQNcXFywZs0aPH/+HKNGjQIAjBgxAg0aNMCSJUsAAFOnTkX37t2xatUq9OvXD7t378bly5exZcsWdd4GwzAMwzC1kNoDIR8fHzx9+hRz585Feno62rZti6ioKG5AdGpqqkL017lzZ/z888+YM2cOvvnmGzRr1gz79+9Hq1at1HULDMMwDMPUUmoPhABg8uTJZXaFRUdHK6X973//w//+9793upZIJEJQUJDK7jKmerFnUbOw51FzsGdRc7BnUXNU1bNQ+4KKDMMwDMMw6qL2LTYYhmEYhmHUhQVCDMMwDMNoLBYIMQzDMAyjsVggxDAMwzCMxqqTgdCGDRvQuHFj6OjowNXVFTExMeXm37t3LxwdHaGjo4PWrVsjMjKymmpa91XkWQQHB6Nbt24wMTGBiYkJevfu/cZnx1RMRX82Su3evRs8Ho9b+JR5fxV9FtnZ2QgMDISlpSVEIhHs7e3Z76pKUtFnsWbNGjg4OEAsFsPa2hpffPEFCgsLq6m2ddfp06cxYMAAWFlZgcfjYf/+/W8sEx0djXbt2kEkEsHOzg7h4eEVvzDVMbt37yahUEihoaF08+ZNGjduHBkbG1NGRobK/OfOnSOBQEDLly+nW7du0Zw5c0hbW5vi4+OrueZ1T0WfxbBhw2jDhg109epVun37NgUEBJCRkRE9evSommteN1X0eZRKTk6mBg0aULdu3WjQoEHVU9k6rqLPoqioiDp06ECenp509uxZSk5OpujoaIqLi6vmmtc9FX0WERERJBKJKCIigpKTk+no0aNkaWlJX3zxRTXXvO6JjIykb7/9ln7//XcCQPv27Ss3f1JSEunq6tL06dPp1q1btH79ehIIBBQVFVWh69a5QMjFxYUCAwO59zKZjKysrGjJkiUq83t7e1O/fv0U0lxdXemzzz6r0npqgoo+i9cVFxeTgYEBbdu2raqqqFHe5XkUFxdT586daevWrTRy5EgWCFWSij6LTZs2UdOmTUkikVRXFTVGRZ9FYGAg9erVSyFt+vTp1KVLlyqtp6Z5m0BoxowZ1LJlS4U0Hx8fcnd3r9C16lTXmEQiQWxsLHr37s2l8fl89O7dGxcuXFBZ5sKFCwr5AcDd3b3M/MzbeZdn8bqCggJIpdJK32BPE73r81iwYAHMzc0xZsyY6qimRniXZ3Hw4EG4ubkhMDAQ9evXR6tWrbB48WLIZLLqqnad9C7PonPnzoiNjeW6z5KSkhAZGQlPT89qqTPzn8r6/q4RK0tXlmfPnkEmk3Hbc5SqX78+7ty5o7JMenq6yvzp6elVVk9N8C7P4nUzZ86ElZWV0n90puLe5XmcPXsWISEhiIuLq4Yaao53eRZJSUk4efIk/Pz8EBkZiXv37mHSpEmQSqUICgqqjmrXSe/yLIYNG4Znz56ha9euICIUFxdjwoQJ+Oabb6qjyswryvr+zs3NxYsXLyAWi9/qPHWqRYipO5YuXYrdu3dj37590NHRUXd1NE5eXh6GDx+O4OBgmJqaqrs6Gk8ul8Pc3BxbtmxB+/bt4ePjg2+//RabN29Wd9U0TnR0NBYvXoyNGzfiypUr+P3333H48GEsXLhQ3VVj3lGdahEyNTWFQCBARkaGQnpGRgYsLCxUlrGwsKhQfubtvMuzKLVy5UosXboUf/75J5ycnKqymhqjos/j/v37SElJwYABA7g0uVwOANDS0kJCQgJsbW2rttJ11Lv8bFhaWkJbWxsCgYBLa968OdLT0yGRSCAUCqu0znXVuzyL7777DsOHD8fYsWMBAK1bt8bz588xfvx4fPvttwqbhDNVq6zvb0NDw7duDQLqWIuQUChE+/btceLECS5NLpfjxIkTcHNzU1nGzc1NIT8AHD9+vMz8zNt5l2cBAMuXL8fChQsRFRWFDh06VEdVNUJFn4ejoyPi4+MRFxfHvQYOHIiePXsiLi4O1tbW1Vn9OuVdfja6dOmCe/fuccEoACQmJsLS0pIFQe/hXZ5FQUGBUrBTGqAS27qzWlXa93fFxnHXfLt37yaRSETh4eF069YtGj9+PBkbG1N6ejoREQ0fPpxmzZrF5T937hxpaWnRypUr6fbt2xQUFMSmz1eSij6LpUuXklAopF9//ZXS0tK4V15enrpuoU6p6PN4HZs1Vnkq+ixSU1PJwMCAJk+eTAkJCXTo0CEyNzen77//Xl23UGdU9FkEBQWRgYEB7dq1i5KSkujYsWNka2tL3t7e6rqFOiMvL4+uXr1KV69eJQD0ww8/0NWrV+nBgwdERDRr1iwaPnw4l790+vzXX39Nt2/fpg0bNrDp86XWr19PjRo1IqFQSC4uLvT3339zx7p3704jR45UyP/LL7+Qvb09CYVCatmyJR0+fLiaa1x3VeRZ2NjYEAClV1BQUPVXvI6q6M/Gq1ggVLkq+izOnz9Prq6uJBKJqGnTprRo0SIqLi6u5lrXTRV5FlKplObNm0e2trako6ND1tbWNGnSJMrKyqr+itcxp06dUvkdUPr5jxw5krp3765Upm3btiQUCqlp06YUFhZW4evyiFhbHsMwDMMwmqlOjRFiGIZhGIapCBYIMQzDMAyjsVggxDAMwzCMxmKBEMMwDMMwGosFQgzDMAzDaCwWCDEMwzAMo7FYIMQwDMMwjMZigRDDMAzDMBqLBUIMw9R4AQEB4PF4Sq979+4pHBMKhbCzs8OCBQtQXFwMoGS38FfLmJmZwdPTE/Hx8Wq+K4ZhagIWCDEMUyt4eHggLS1N4dWkSROFY3fv3sWXX36JefPmYcWKFQrlExISkJaWhqNHj6KoqAj9+vWDRCJRx60wDFODsECIYZhaQSQSwcLCQuFVuut36TEbGxtMnDgRvXv3xsGDBxXKm5ubw8LCAu3atcO0adPw8OFD3LlzRx23wjBMDcICIYZh6hyxWFxma09OTg52794NABAKhdVZLYZhaiAtdVeAYRjmbRw6dAj6+vrc+48//hh79+5VyENEOHHiBI4ePYrPP/9c4VjDhg0BAM+fPwcADBw4EI6OjlVca4ZhajoWCDEMUyv07NkTmzZt4t7r6elx/y4NkqRSKeRyOYYNG4Z58+YplD9z5gx0dXXx999/Y/Hixdi8eXN1VZ1hmBqMBUIMw9QKenp6sLOzU3msNEgSCoWwsrKClpbyr7YmTZrA2NgYDg4OePLkCXx8fHD69OmqrjbDMDUcGyPEMEytVxokNWrUSGUQ9LrAwEDcuHED+/btq4baMQxTk7FAiGEYjaOrq4tx48YhKCgIRKTu6jAMo0YsEGIYRiNNnjwZt2/fVhpwzTCMZuER+3OIYRiGYRgNxVqEGIZhGIbRWCwQYhiGYRhGY7FAiGEYhmEYjcUCIYZhGIZhNBYLhBiGYRiG0VgsEGIYhmEYRmOxQIhhGIZhGI3FAiGGYRiGYTQWC4QYhmEYhtFYLBBiGIZhGEZjsUCIYRiGYRiNxQIhhmEYhmE01v8Bveksd1+lbnoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "\n", + "idx = 0\n", + "for cdata in lst_cdata:\n", + " y_true, y_score = cdata\n", + "\n", + " # AUC 계산\n", + " auc = roc_auc_score(y_true, y_score)\n", + "\n", + " # ROC 커브 계산 및 그리기\n", + " fpr, tpr, _ = roc_curve(y_true, y_score)\n", + " plt.plot(fpr, tpr, color=colors[idx], label=f'{os.path.basename(base_dirs[idx])}(AUC = {auc:.3f})')\n", + "\n", + " # (0, 1)에 가장 가까운 점 찾기\n", + " min_distance = float('inf')\n", + " closest_point = None\n", + " for i in range(len(fpr)):\n", + " distance = ((0 - fpr[i])**2 + (1 - tpr[i])**2)**0.5\n", + " if distance < min_distance:\n", + " min_distance = distance\n", + " closest_point = i\n", + " plt.scatter(fpr[closest_point], tpr[closest_point], color=colors[idx], marker='o')\n", + "\n", + " print(f'{os.path.basename(base_dirs[idx])} ROC AUC: {pr_auc:.3f}, minDist: {min_distance:.3f}, {(fpr[closest_point], tpr[closest_point])}')\n", + " idx += 1\n", + "\n", + "plt.plot([0.0, 1.05], [0.0, 1.05], '--', color='navy', label='baseline')\n", + "plt.xlabel('FPR')\n", + "plt.ylabel('TPR')\n", + "plt.title('ROC Curve')\n", + "plt.legend()\n", + "plt.xlim([0.0, 1.0])\n", + "plt.ylim([0.0, 1.05])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAPeCAYAAADOFAM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gUV/s//nuXXgUUsUuQKFGiJPooXyWWTyzhMRqJlScaNWoSoybymFhSjCW2WKOJqLFg/MTejVhjibFXJPaGoKggXfru3r8//LEfkTbAzJ6Bfb+u631diSxnzpxdj3PvzJzRMDMTAAAAAAAAgJnSiu4AAAAAAAAAgEgojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAqoUmTJpFGoynT74aFhZFGo6GoqCh5OwUA8BJPT08aNGiQ8f+PHDlCGo2Gjhw5YtJ+YN4DFMagarGxsTRp0iS6dOmS6K4AAJQZ5jIAqEwwp0FlhMIYVC02NpYmT56MiRcAKjQRc9m3335LmZmZZfrdAQMGUGZmJtWvX1/mXgFAZaDknNa2bVvKzMyktm3byt42QHEsRXcAAAAA5GdpaUmWlmX7Z97CwoIsLCxk7hEAQMm0Wi3Z2tqK7gaYIZwxBkkGDRpEnp6eBf785XvYNBoNjRw5krZv306+vr5kY2NDTZo0ob179xb43YcPH9JHH31EHh4extetXLnS+PMjR47Qv/71LyIiGjx4MGk0GtJoNBQWFib7/gGAeahIc5mnpye9++67dOTIEWrRogXZ2dnR66+/brzvbuvWrfT666+Tra0tNW/enC5evFjsPpVmv3CvHUDFUJHmNGamH374gerUqUP29vbUoUMHunLlSoHXFXWP8enTp+nf//43ubq6koODAzVt2pR++umnfK+5fv069erVi9zc3MjW1pZatGhBO3fuLLZfJVm8eDE1adKEbGxsqFatWjRixAhKTk7O95pbt25Rz549qUaNGmRra0t16tShfv36UUpKivE1Bw4coICAAHJxcSFHR0dq1KgRff311+XqG8gLZ4xBdn///Tdt3bqVPvvsM3JycqKFCxdSz549KTo6mqpWrUpERE+ePCF/f3/jRO3u7k579uyhIUOGUGpqKo0ePZpee+01mjJlCk2cOJE+/vhjeuutt4iIqHXr1iJ3DwDMhBrmstu3b9N//vMf+uSTT6h///40Z84c6tatGy1ZsoS+/vpr+uyzz4iIaMaMGdSnTx+6ceMGabXFf+ctZb8AoPIRPadNnDiRfvjhB/r3v/9N//73v+nChQvUuXNnysnJKbHvBw4coHfffZdq1qxJX3zxBdWoUYOuXbtGf/zxB33xxRdERHTlyhVq06YN1a5dm8aPH08ODg60ceNG6tGjB23ZsoWCgoJKPWaTJk2iyZMnU8eOHWn48OF048YNCg0NpbNnz9Lx48fJysqKcnJyqEuXLpSdnU2jRo2iGjVq0MOHD+mPP/6g5ORkqlKlCl25coXeffddatq0KU2ZMoVsbGzo9u3bdPz48VL3CRTEABIMHDiQ69evX+DPv//+e37xY0REbG1tzbdv3zb+WUREBBMRL1q0yPhnQ4YM4Zo1a/LTp0/ztdevXz+uUqUKZ2RkMDPz2bNnmYh41apV8u4QAJilijSX1a9fn4mIT5w4Yfyzffv2MRGxnZ0d379/3/jnS5cuZSLiw4cPF7lPpdmvVatWMRHxvXv3JPcXAEyvosxpcXFxbG1tzV27dmWDwWD886+//pqJiAcOHGj8s8OHD+ebz3Q6Hb/yyitcv359TkpKytfui229/fbb/Prrr3NWVla+n7du3ZpfffXVEvv48ryX1+fOnTuzXq83vu7nn39mIuKVK1cyM/PFixeZiHjTpk1Ftj1//nwmIo6Pjy+xHyAOLqUG2XXs2JEaNGhg/P+mTZuSs7Mz3b17l4ieX0qzZcsW6tatGzEzPX361JguXbpQSkoKXbhwQVT3AQCISB1zWePGjen//b//Z/z/Vq1aERHR//zP/1C9evUK/Hle38qzXwBQOYmc0w4ePEg5OTk0atSofJd4jx49usTfvXjxIt27d49Gjx5NLi4u+X6W11ZiYiIdOnSI+vTpQ2lpacZ+JyQkUJcuXejWrVv08OHDMvV59OjR+a7EGTZsGDk7O9Pu3buJiKhKlSpERLRv3z7KyMgotK28fu/YsYMMBkOp+gGmg0upQXYvHqzlcXV1paSkJCIiio+Pp+TkZFq2bBktW7as0Dbi4uIU7SMAQElMMZc9e/aMnj17Zvx/CwsLcnd3L7IPeQdgdevWLfTP8/pWnJL2CwAqJ5Fz2v3794mI6NVXX833end3d3J1dS22zTt37hARka+vb5GvuX37NjEzfffdd/Tdd98V2fcaNWpQfHx8vj93c3Mja2vrAq/P63OjRo3y/bm1tTV5eXkZf/7KK6/Qf//7X5o3bx79/vvv9NZbb1H37t2pf//+xrm5b9++tHz5cho6dCiNHz+e3n77bXr//fepV69eJd7+AqaDwhgkeXkBlzx6vb7AnxW1kikzExEZvynr378/DRw4sNDXNm3atCzdBAAoltrmsjlz5tDkyZON/1+/fv18C14V1YeS+lac8vwuAKhLRZvTlJLX9y+//JK6dOlS6Gu8vb0pJiaGXnnllXx/fvjwYWrfvn25tj937lwaNGgQ7dixg/bv30+ff/45zZgxg06dOkV16tQhOzs7+uuvv+jw4cO0e/du2rt3L23YsIH+53/+h/bv34+nAKgECmOQxNXVtcAKfET/921aabi7u5OTkxPp9Xrq2LFjsa8tasIHACgLtc1lH374IQUEBBj/387OrtT9AADzVVHmtLxnot+6dYu8vLyMP4+Pjy/xapW8y7//+eefIvuV16aVlVWxfbeysqIDBw7k+7NmzZoV+tq8Pt+4cSNfn3NycujevXsFtvP666/T66+/Tt9++y2dOHGC2rRpQ0uWLKEffviBiJ4/hurtt9+mt99+m+bNm0fTp0+nb775hg4fPlzieINp4Nw9SNKgQQNKSUmhy5cvG//s0aNHtG3btlK3ZWFhQT179qQtW7bQP//8U+DnL17i4uDgQERU6KQPAFBaapvLvLy8qGPHjsa0adOm1P0AAPNVUea0jh07kpWVFS1atCjf1SkLFiwosV9vvvkmvfLKK7RgwYIC28trq3r16tS+fXtaunQpPXr0qMi+29ra5utfx44di7yUu2PHjmRtbU0LFy7M1+cVK1ZQSkoKde3alYiIUlNTSafT5fvd119/nbRaLWVnZxPR83ugX+bn50dEZHwNiIczxiBJv379aNy4cRQUFESff/45ZWRkUGhoKDVs2LBMCzHMnDmTDh8+TK1ataJhw4ZR48aNKTExkS5cuEAHDx40TiANGjQgFxcXWrJkCTk5OZGDgwO1atWqwGUwAABSYC4DgMqkosxp7u7u9OWXX9KMGTPo3XffpX//+9908eJF2rNnD1WrVq3YPmm1WgoNDaVu3bqRn58fDR48mGrWrEnXr1+nK1eu0L59+4iI6JdffqGAgAB6/fXXadiwYeTl5UVPnjyhkydP0oMHDygiIqJUY+Hu7k4TJkygyZMn0zvvvEPdu3enGzdu0OLFi+lf//oX9e/fn4iIDh06RCNHjqTevXtTw4YNSafT0Zo1a4xfNBARTZkyhf766y/q2rUr1a9fn+Li4mjx4sVUp06dfGfYQSwUxiBJ1apVadu2bfTf//6Xxo4dS6+88grNmDGDbt26VaaJ18PDg86cOUNTpkyhrVu30uLFi6lq1arUpEkTmjVrlvF1VlZWtHr1apowYQJ9+umnpNPpaNWqVTiYBIAywVwGAJVJRZrTfvjhB7K1taUlS5YYi+/9+/cbz7wWp0uXLnT48GGaPHkyzZ07lwwGAzVo0ICGDRtmfE3jxo3p3LlzNHnyZAoLC6OEhASqXr06vfHGGzRx4sRSjwXR8+cYu7u7088//0whISHk5uZGH3/8MU2fPp2srKyI6Pml2F26dKFdu3bRw4cPyd7enpo1a0Z79uwhf39/IiLq3r07RUVF0cqVK+np06dUrVo1ateuHU2ePNm4QBeIp2GstgEAAAAAAABmDPcYAwAAAAAAgFlDYQwAAAAAAABmDYUxAAAAAAAAmDUUxgAAAAAAAGDWUBgDAAAAAACAWUNhDAAAAAAAAGYNhTEAAAAAAACYNUupL9RoNEr2AwBAEjU+eh3zIwCoAeZHAIDCSZkfccYYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAKCS8PPzI3d3d9HdAKhwNMzMkl6o0SjdFyiEm5sbJSYmiu4GgGpInLJMCvOjGNWrV6ecnBxKTk4W3RUAVcD8CEREp0+fJo1GQ/fu3aNp06ZRamoqxcXFUUZGhuiuAQgjZX5EYaxi9evXpw0bNtDx48dJr9fTsmXLKDY2FhMbmDUc+AHR8/kxPDycnj59SqdPn6Zly5bRvXv3SK/Xi+4agDCYH8HS0pJOnTpFzZs3JyIivV5PzEy7du2iJUuW0NGjRyk7O1twLwFMT9L8yBIREWLihISE5HsPkpKS+MaNGzx48GC2tbUV3j8EERE1Ej0m5hh/f/9870FSUhLPnz+fmzZtKrxvCCIqaiR6TMwtQUFBnJubW+h7kZaWxuHh4ezm5ia8nwhi6kiBe4xVrF+/fvn+38XFhRo2bEjLly+n8+fP04ABA8jf319Q7wAA1MPFxYVGjx5N+/bto8uXL2N+BACzZGNjQ5aWloX+zNHRkQIDA+nUqVP0+eefU7t27Yp8LYBZwjd+6s3p06dLfF/S0tJ48+bN3KxZM7a2thbeZwRROmokekzMMatWrSrxfUlLS+Ndu3bxhAkTuHbt2sL7jCBKR41Ej4m5pVatWnzjxg1J701ubi7v3buXAwIC2N7eXnjfEUTJSIF7jFXqzTffpPDwcPLw8JD0er1eT2vXrqUFCxbQrVu3KC0tTeEeAoghccoyKcyPpnf69Glq2bKlpNcyM0VFRdHOnTtp165ddPbsWXr27BkZDAaFewlgWpgfobTHj0REBoOBduzYQb/88gvmR6i0pMyPKIxVql+/frRu3bpS/96zZ88oNTWV5syZQ9evX6e9e/eq8h9KgLJS4+cZ86PplaYwflFGRgZlZWXRggULaNWqVfTgwQMFegcgBuZHKOvxI1H++fHmzZu0YcMGmXsHIA4K4wqsXbt2tGPHDqpSpUqZ23j27BmdOXOGZs+eTXfv3qWbN2/K2EMAMXDgB0RlL4xfFB0dTStXrqSTJ0/SsWPHKDMzU6beAYiB+RHKUxi/KDs7m2bMmIH5ESoNFMYVnBwHfnmioqJo06ZNtHjxYoqKipKlTQARcOAHRPLOj8xMx44do1u3btGPP/5It27dUuXnDKAkavzcYn40LbkK4zx58+Ps2bPp2LFjlJKSIlvbAKaEwriCk/PAL09cXBxt2bKFjhw5QgcOHKDU1FQ89xMqFBz4AZEy8yPR8ytt1q1bRxcvXqT169eTwWDAgSBUGJgfQe7COA8z06FDh+jmzZsUGRlJ69evp/T0dMrJyZF9WwBKQGFcwSl14EdElJOTQ1lZWbR8+XK6du0arV69mnQ6nSr/UQV4kRo/o5gfTU/J+ZGISKfTUUZGBqWmptKCBQvoypUrtH//fixIA6qG+RH69u1L69evV3QbefPj5s2b6dKlSxQWFkbp6emYH0HVUBhXcEof+OXR6XR0//59Onv2LP388890/PhxxbcJUFY48AMi082PedLS0ujkyZP0448/0qFDh1T5OQRQ4+cS86NpOTo60vHjx6lp06Ym2V7eqv95t6JgfgS1QmFcwQ0cOJDCwsJMus2UlBQ6f/487dq1y3jJTFZWlkn7AFAcNf6Di/nR9ExdGOfJysqikydP0qlTp2j9+vWUnZ1NN27cMHk/AAqD+RGI1DM/RkVFUWpqqsn7AVAYFMYVnL+/P508eVJoH7Zv3268jDAhIUGV/+iCeVHjZxDzo+mJOvB7WWpqKv3+++80a9YsevDgAdZsAKEwPwKReubHgwcP0uLFi+nAgQP07Nkz0d0BM4fCuIJTQ2FM9HzJ/vT0dFq4cCFlZmbS1q1bKSoqinQ6neiugRnCgR8QqefAL8+zZ89oyZIldOPGDVq9ejXp9Xrcbwcmh/lRDDs7O2rWrBmdOnVKdFeISF3zY05ODp06dYp2795NiYmJmB9BGBTGFZxaCuOXPXnyhBITE2natGl07949OnHihOgugRnBgR8QES1btoyGDRsmuhsF5Obm0sOHD+nvv/+m0NBQzI9gUpgfxdBqteTs7EzJycmiu0JE6iqMX4T5EURCYVzB9enThzZs2CC6G8VKTEykK1eu0MaNG+nEiRP0zz//YOl+UBQO/IBIvV8cvujF+XHbtm308OFD0V2CSg7zIxCptzB+EY4fwdRQGFdwFWFiexEz0/bt22n69Ol07tw50d2BSgoHfkBUMQrjF129epXOnz9PCxcuLDA/arVacnd3N36O9Ho9xcfHi+gmVHCYHyuOwMBAatCgAW3evJmSkpIoOztbtrYr6vHjnDlz6OLFi5SZmWn82YvzY25uLiUkJAjsKVRkKIxNyMvLi+zs7OjWrVtE9PxykfL8A9WkSRPau3cv1alTR64umkx0dDQtWLCAFi9eLOtED0CEAz94rqIVxnmio6Pp119/pTNnzpCPjw85OzuTk5MTffbZZ2RpaUlEz58O0KtXL/r7778F9xYqGsyPFYezszNdvnyZqlevTps3b6Z//vmHli5dSqmpqeV+HytaYZwnJyeHduzYQUuXLqU///yTiIhq1qxJkZGR5ODgQA8ePKCFCxfSL7/8gnuUodQk/b1iiYgIKSbz5s3jp0+fckxMDEdHR/MXX3zB/fr1Y29v7zK1169fP6lvjSrp9XpetWoV29vbc8eOHbl79+6s1WqFv09IxY8aiR4Tc8yIESNEv+3lkpqayjqdrsifT5gwQfgYIxUvaiR6TNQajUbDtWrV4jVr1jAzs8Fg4JiYGP7iiy84MDCwzO3Wq1ePb9++LfhdL5+EhASuXbs2ExFbWFjw4MGD+eTJk8zMHB8fz76+vsLfP6TiRQoUxjLF2dmZu3btyjExMfnG7d69e3zy5EleuXIl+/v7c/Xq1Utsy8rKio8fP16KKUSdDAYDX7hwgdPS0jgnJ4ePHz/OzZs3Z6LnE7dGoxH+viEVL2okekzMMadPnxb9titq0aJFbGlpKXyckYoVNRI9JmqPs7Mz//rrr3zmzBnOzc1lZubMzEw+fPgwd+jQgRs1alSq9ir6iRVm5qioKK5Ro0a+/apatSqHh4czM744RMoWKVAYyxw/Pz9esGCBcXJ72ZkzZ3jdunX8zTffFFoka7VaHjx4MGdkZEh9ayqUqKgoXrduHV+7do3XrFnDPj4+XKdOHba1tRX+3iEVI2okekzMMZW9MNbpdLx161Zu2bJlgQNEBCkqaiR6TCpKLC0tedasWRwTE8MxMTGclpbGzMyxsbE8f/58rlOnDlepUqXYNlxdXY3FY0WVnJzMLVq0KHT/WrRowY8ePeJLly5xSEgIW1lZCX/fkIoTKVAYKxCtVsuffvopR0ZGFnmpXN4lM+PHj2cnJye2tbVlW1tbHjJkCGdnZ0t9Wyq8nJwczs7O5vXr13O7du2Ev3eI+qNGosfE3OLr68sPHz4U/babRE5ODj958oS///57dnZ2Fj72iLqjRqLHpCJFq9WytbU1W1tbc2BgIG/fvp0zMzM5MzOTs7Oz+dixYzxgwAC2tbVlCwuLfL9rZWXFkyZNEv12l9uTJ0/Y1dW10KsKNRoNV6tWjb///nt+8uQJL1myhENCQtje3l74e4eoP1Jg8S0Fubq6Ut++falNmzbUvXt3cnZ2LvAag8FAcXFxxhvCXVxcyM7OztRdVYWnT5/St99+Sxs2bFDNswBBfSROWSaF+dG0+vXrR+vWrRPdDZNiZtq1axcNHDgQ8yMUCfNj5WJvb09VqlQhDw8PmjBhAr3//vuk1+spMTGRNm3aRGfPnjW+Njg4mNq2bUuOjo4Ce1x+BoOBYmNjacSIEbRz584iX+fh4UEHDx6k1157jR48eEAzZszA8SMUS9L8KPUbHFJBpV+R06RJE16+fDmfOnWq2AVXKqL09HQ+deoU6/V6WdrbunUru7q6Cn/PEHVGjUSPibmlMtxDV1aYH5Hiokaix6SyxMLCgv38/Lh58+bcvHlznjNnDt+7d0/021tuubm5fPLkSc7MzMz354mJidy0adNix2Tz5s35fgfzI1JcpNASmMSVK1do6NCh1LZtW+rZsyd9//33FBUVRc+ePRPdtTJLSUmh4cOH03vvvUdt27alsLAwWdoNCgqiP/74g4KDg0mrxUcUAMxHdnY2TZ06lXr16kU///xzgZ9jfgQwT3q9ni5dukTnz5+n8+fP05dffkldu3atkM88Z2aaNWsWffnll3TixAmKi4sjnU5H9+7do23bthEzU3p6uvERdoVxdHSknJycfH+G+RHKTeo3OqSCSr8yRaPRsKWlJfft25dzcnKkvg2qsX37du7UqVO+fWrVqhU/evTI+JqcnBxOS0sr85nkjIwMnj9/PterV48dHBywQivCRDgjYu6xsLAwPt5ETjqdjm/dusU//vhjkYsnKsVgMBivvOnfvz9rNBq2t7fnjRs3Fvk7L86PdnZ2wt8XRB1RI9FjUpmj1Wr5p59+ku2KPVPS6XScm5vLWVlZfPToUR43bhwPGjSInZycePTo0ezm5lbkfcbvvvsu79q1q8i2cfyIFBYpUBgLjpOTU4V7NFNycjJ36NCh0P0JCAjg7du389GjR7l///7s7u7OEydOLNcz9RISEjguLo6XLl3KrVq1Ev6eIWKjRqLHxJxiY2NT4LF45WUwGHjixIns7e3N+/fvl7VtKXbs2ME1a9ZkJycn435+++23bDAYSvzdhIQEjoyM5P79+2OFVsQEn9bSEz0mlT02NjYVdpX+xMRE7tOnD7/33nuS97dOnTqcnJwsqX0cPyIvRgoUxipIcHBwgXsr1GzIkCHF7o+dnV2Bezzq1avHY8eO5UOHDvGhQ4c4Li6uTNt+8uQJ9+7dm11cXIS/b4iYqJHoMTGXWFtb88yZM2W9yiYnJ4cnTpzItWvX5r1798rWblEuXLjAhw4d4gkTJnDTpk25adOmhc5n06dPL1W7Op2OIyIiivzSEjGPqJHoMTGHHDt2TNH38ODBg9y0aVMeNGgQ37p1S7Z2nz59yv7+/qzVavnbb7/lMWPGlLivP/30U5m2heNHRAoUxiqIpaUlnzt3rkx/0U3twIEDhT5/ubRp0aIFL126lJ88eVKmfmzcuJE9PT0LvcwGqdxRI9FjYi6pVasWZ2VlyfrezZ07l6tXr65YUZydnc23b9/m5cuXc/fu3blq1aqS9vWrr74q00KNjx494tDQUMyPZho1Ej0m5pBBgwYp9v5t3brV+FzhsWPHckhICN++fVuWK3fi4+PZ399f8n76+PiU+1F9x48f5z59+mB+NMNIgcJYJendu3eZ/5KbisFgYF9fX9n2WaPRsK+vb5kvs05LS+OffvqJ69atyw4ODsLfQ8Q0USPRY2Iukbswjo2NZV9fX/7yyy9la/NFN27c4EGDBrGFhUWpD8KsrKw4NDS0zPcOYn40z6iR6DExh7Ro0UKR9y4tLY3ffvtt43Y0Gg1rNBrWarVcq1YtvnDhQrG/n5GRwSkpKfznn3/y6NGjee/evTxhwgSOi4tjvV7PT58+5TZt2rC1tbWk/axZsyafOnVKlv3Kmx+dnZ1xG4qZRAoUxipJr169yvwX3FQMBgM3btxY9n0PDAwsV7+SkpL48uXL/Omnn3KLFi3wLWAljxqJHhNzSVBQkKwLY4WGhjLR87MgSsjJyeHx48eXeX9tbGw4IiKiXH3A/GheUSPRY2IO+eKLLxR573bt2lVk0dqjRw8+e/Zsvtfv27ePL1y4wAaDgTdu3Mht2rRhNzc3tre3ZyJie3t71mg03K5dO46Pj2dm5tGjR5fqFpA6deoU2G5ZJSUlcUJCAoeGhmJ+NINIgcJYJakIhfGGDRvYxsZG9n23t7fnxYsXS1popiRxcXF85coVHjZsGLdt2xaTXCWMGokeE3OJ3KtR5x2MKVUYMzPfu3ePu3Tpwg0bNiywPx4eHiUuCNO3b1/Z+oL5sfJHjUSPiTlEqXuMi1pTpkaNGnz16tV8rz1//jw7OTlx9erVuVOnTlytWrUi+1utWjWOiopiZuZhw4aVen+rV6/OgwYN4tTUVNn2NW9+3L17N3fu3Jk9PT2Fv6+IvJEChbFKUhEK47yzK0qkbt26ZV6QqyiZmZm8a9cubtmyJderV0/4e4zIEzUSPSbmEG9v73LfW/ayvMLY29ubjx8/zteuXeOUlBRZt5Hn7t27HB4eni8XL17k5ORkDg8P5507d7KPj0+B/XZzc+Pt27fL3p/MzEzeu3cvT5kyhX18fPKtiI1U3KiR6DGp7HFycuLz58/L/r7du3eP69SpU+g2AwMDOSMjI9/rjx07Zvx57dq1i51TtFot79mzhw8dOsR169Yt875/+OGHnJaWJvu+MzPfvHmTw8PDuWPHjtygQQPh7zNS/kiBwlglqQiFcWRkJI8ePVqx58F16NDBeGmNnAwGA8fExPCiRYu4W7duxkt6kIoZNRI9JuYQJe6he/Hyvbx75zp27MgjRozIly+++IKjo6MVOwDLc/369UKLY09PT0W3bTAYODw8nOfNm8e1a9dmCwsL4e83Uraokegxqezp2bOnIu9bREREsdsdPXo05+Tk8MGDB/mrr77ioKCgUvU7b84t7/4HBgbyrl27ZLnqsDAGg4GTk5N5wYIFmB8reKRAYayCaLVaXrBgQZn/0ppSbm4uT5kyRbFL8Dp06CD7meMXZWZm8qFDhzgoKIi1Wq3w9x4pfdRI9JiYQ+QujO/evcve3t6St+/k5MS+vr588+ZNWfvxsqtXrxa47Fqr1fIHH3xQ4AyNElJSUnjatGns5eUl/D1HSh81Ej0mlT1KLd76yy+/FHucZGFhwZs3b+a0tDQeOHCg0DFwdnbmGTNmKHJy5UUvzo+4FaXiRQoUxiqIpaWl8V6LiiA7O5unTJmi2Jnj+vXr8+LFixXdh4yMDD5+/DgHBgZiNcIKFjUSPSbmELkL4507d5apH02aNFG8OL5y5Qp37do136I3Go2G+/fvL+s9dcW5dOkSd+vWTdYnESDKR41Ej0lljqWlpWwLUb0sJiaGL1y4wM2aNSty++vWrTMutFWlShXh49GpUyc+fPiwIuPxoocPH/KsWbO4a9eu7OjoKHy/EWmRAoWxCiKiMH7y5AlfvnzZmNI+TzjvzLHUJfZLG09PT0XPHOfR6XR85MgRPnjwIPfu3Zt9fX25Zs2awj8TSNFRI9FjYg5ZuXKlrO/Z0qVLy9wXb29vnjBhAmdmZsrapxfp9XqeM2dOgTO3+/fvV2ybhYmJicH8WIGiRqLHpDKnZs2aHBsbq+j7N2vWrCK3P2vWLI6MjOTc3Fxev349V6tWjRs3biz0cmN7e3v+5ZdfZF+ToignT57k33//nZs2bcq+vr6KHRcj5Y8UKIxVEFMVxtnZ2Tx9+nQeNmyY8WHteWnRogUPGzaMIyIiODExUVJ7BoOBN2zYwM2bN1dkXBYtWqTwiBQuMjKSQ0JC2MXFRfhnAykYNRI9JuYQOVdd1ev1pbqMuqh89dVX/PTp03zJycmRrZ/Mz5+1HBAQwLa2tkxE3K5dO9m3URqRkZG8bNkybtmypSJPKUDKFzUSPSaVOePGjVP0vTMYDDxp0qRi+2BpackffPABDxs2jGfOnMlJSUn822+/8bJly7h169bCxqZJkyY8Z84ck86XBoOB169fj/lRpZEChbEK4u/vL7kYLSuDwcAhISEl3ldrZ2fHderU4ZkzZ3J4eDjr9foS246KiuKRI0eynZ2drOOycOFCRcekODqdju/cucNfffUVt2/fXrHLxpHSR41Ej0llT8OGDfnevXuyvV+5ubmyFMYWFhbs4OCQLx9//DHPnj3bmFWrVpX72cuZmZm8fv16trW1ZQsLCx43bpykuVlJmZmZvHbtWsyPKosaiR6TypwJEyYo+t49ffqUXV1dJffH1taW33vvPQ4PD+fc3FyOiIgwHnd6enqyt7e3Sc8mW1hY8DfffGPy+TJvfhwzZgy7ublhwS6VRAoUxoJjbW3Nq1atKuvfPcmuXbvG1atXL1XfnJycuHPnzrxt2za+fft2se3r9Xq+c+cODxkyhKtWrSrL2AwfPlzomZE8ycnJfOfOHQ4JCSnXYwUQeaJGosekskfuVftXrlxpsmLO2tqafX19y/04lczMTA4ICGAiYisrK169erVMo1E+mB/VFTUSPSaVNVWrVuWYmBhF37v4+Hh2cHAodd+cnJzYy8uL69aty5aWlhwYGMiTJk3iR48ecWRkJPfr189k9+ZaWVnx77//rug4FSc6OpqPHj3KgYGBWPRVcKRAYSw41atX5/T09DL/hZMiNzeXQ0JCytXPBg0acLt27Tg8PLzAQ91fdunSJf7kk0/KfS+ao6NjidsytevXr/M333yDB78LjBqJHpPKni+++ELW92v+/Pkm34cBAwbw3bt3y9Xv2NhYPnLkCG/atIk7d+6s+OOjSuv69es8YcIELGgoMGokekxMmcaNG7Ofnx+7ubkpvq1vv/1W8TOhZS2MX4yFhQW3bt2aP/74Y75w4YJx5egzZ85w37592c/Pj2vXrq3oWHl7ewu7PS9PTk4OHzt2jBcsWIDHhgqKFCiMBWfEiBGs0+nK/BdNCjkmthdTpUoV/vTTTzkqKqrYvl++fJlDQkLYw8PDeH9caTN48GDFx6cs7t27x1OmTCnzfiFljxqJHpPKHCXWYBBRGBMR16tXjwcOHMgjR47kmJiYch3UXrhwgbOzs4v8uV6v5ydPnpj8EkK9Xs+bNm1iPz8/4Z8dc4waiR4TU8TR0ZGXLVtm/LLq2LFjvGLFCq5fv74i27O0tOR169Yp/t7JffxIRNyqVSsePHgwR0ZGGuewyMhIDgsLY39/f3Z3d1dkzEJCQhQfL6l2797NHTt2FP65NbdIgcJYYDQaDYeFhZX5L5ZUGzduVOQbfHt7ex4zZgwvW7aMs7OzC73sWafTcUZGBq9du5bbtWtX6m1YWVnxjRs3FB+jstDr9dy7d2/hnyNzixqJHpPKHBsbG75//76s75eowvjFODo68tixY3natGl86dIl2W8bSU9P5169evHt27fZYDDI2rYUd+7c4caNGwsfZ3OLGokeE6Xj7u7OU6dOLfSLqvPnz3O9evVk3Z5Go+Evv/zSJCcNlCiM82Jra8tDhw7ls2fPGvclKyuL4+Pj+dtvv+WqVavKdsuLra0tb968WfHxKo1bt25hBWsTRwoUxgLTuHFjxS+FS05O5g4dOii6H1ZWVlyvXj329PTk0NDQIh+z9PTpUx46dCj36dOH69SpI6ltrVbL169fV3SMyqNfv37CP0fmFjUSPSaVOcOHD5f9AFANhfGLqVq1Knt5efG+fftk3c/t27fz6NGjy30Jd1kkJCRwmzZthI+tuUWNRI+J0vH19S12//fu3Svr9jp37sxZWVkmee/+/PNPxVdXdnNz4wEDBvCGDRvyPY7u4cOHfOzYMe7WrVu5783VarX8wQcfqOb2k4SEBO7atavwz665RQoUxgLz3nvvlfXvlGQREREm368mTZpwly5d+NixY3z69OlCJ6IbN27wiRMnjBkyZAi3bNmyQFq1amXyZzxLdeXKFa5WrZrwz5G5RY1Ej4kp06xZM27SpInJtjd+/HhZ36vU1FST9l9qNBqN7Psq0saNG4WPqTlGjUSPidJZvnx5sft/+vRp2bal1Wr54MGDJnrnmLdt22bSs5oODg7s7+/PEydONB4/Zmdn88mTJ3nRokXs4+NTrrHbsmULp6ammmz8ihIcHCz8c2uOkQKFsaDY2tryiRMnyvyXSioRhfHL6dSpE3/66ad8//594Y8YkdOIESOEj605Ro1Ej4kp4uLiwv379+e0tDROTEzktWvX8pAhQxR9DIVWq+Vp06bJ+l6Fhoaq8vFCNjY2/PDhQ1n3VZSTJ0/iS0NBUSPRY6J0SipU5SyMLSwsSnxKiJyGDBkidGw7derEu3bt4ocPH7Jer+f4+Hheu3YtDxgwgGvXrl2m2wT79+/PMTExnJKSYrJxfJm/v7/wz605RgoUxoISFBRkkvu+fvzxR+H7mpe8e5J//fVXzsrKUuWiWlJFRkZKvhwckTdqJHpMlE6tWrX41KlTBZ7Hm52dzcOGDWONRqPIdmvWrCnrt/sGg4E//vhj4eNZWCwsLHjFihWclZVVob9AzM7O5sGDBwsfT3ONGokeEyXj7e1d4q0KKIzLF0tLS3ZwcOCVK1ca50edTsdZWVkcGhrKvr6+pfqCVqvVcs2aNfnAgQMmG8eXoTAWEylQGAuIhYUFX7hwocx/oaSKiYlR5SWD1tbWXKtWLR4yZAj//vvvnJiYqPhYyEmv1/O4ceOEj6O5Ro1Ej4mSqVWrFh8/frzIfc/MzOTmzZsrsu358+fL+gXizZs3TfbszLLEzs6Oa9WqxePGjePIyEjZ9ttUMjMzeejQoYpeRYAUHzUSPSZKZuLEiSXuPwpjefLi/Pj7778bs2rVKl6yZAkHBweXuKZO7dq1+csvv+RHjx4JWZSQmfn+/fvs7e0tfDzNMVKgMBaQOnXqKP5Qdmbmn376Sfi+SkmTJk14yZIlFeYywnv37nH16tWFj5u5Ro1Ej4lS0Wg0ku5nU+Lb74YNGxqfdymX3bt3K3Z2W+7UqVOHW7RoYczUqVP5+PHjHBkZyVevXuVTp06p7qqbU6dOKb5QD1J81Ej0mCiV2rVrc3R0dIn7X1EL41u3bin26CQ5Y2Njw2vWrGFm5pSUFD5z5gyPHz+eW7duzXZ2dvle+8UXX5hk7Iqzfv164WNmrpEChbGJ4+joyKdOnSrzXyip9Hp9hftGqmnTpty7d28+deqUqovkqVOnCh8rc44aiR4TJaLVajk4OFjSKp5KFMZ+fn6yv09dunQRPq7lTfXq1blGjRpsZWXF7733Hvfu3ZsjIiJkH6vSunPnjmLPbEWkR41Ej4kSqV27Np88eVLS/g8fPly27Xbr1s1kKysfOXJE+DhLTdOmTXnu3LkFHnu3d+9e3rhxI/ft25fr16/PixYtMsnYFQeFsbhIgcLYxKlatapJJrWKWBjnxdLSkqtXr87ff/89JyYmCrvcpTAJCQn89ttvCx8jc44aiR4TJdK7d2/OyMiQtP9KFMbffPON7O9TZSiMC8vIkSMlv1dK0Ol0/P333wsfBwTzoymi0Wh48eLFkvb98uXLXLt2bVm2a29vz+Hh4Qq/W/+nU6dOwse6NNFqtTxs2DCeM2cOp6Wl5SuSdTod5+TkqOIqGxTG4iKFJQGojE6no7i4OJoyZQqFhobSl19+Sa+++ir16NFDdNfo22+/pT///FN0NwAUVaVKFfrkk0/Izs5OWB86duwobNsVTWhoKP3xxx80fvx4srGxMf65Vqul999/nxwdHRXd/r59+2j69OmKbgNALRo0aEADBgwo8XUGg4HWrFlDDx8+lGW7Go1G8b/LL9LpdCbblhwMBgP9+uuvZGFhQT/++CO1bt2a3nvvPercuTPVqlWLLCwsRHcRKgKp33CQCir9yhCcMS5bbG1tuXXr1rxv3z7OzMxUfPwKc/XqVXZzcxM+FuYeNRI9JnKnpOdyMj+/esLf35/9/PzY3t5e1u1XrVqVL168KOt7dPz4cXZychI+tqaMhYUF//nnn7KO48t0Oh0HBAQI31fkedRI9JjIHSnzI/Pz2wvkXo8kJCRE4Xfr/6h1Bf/SpkGDBjxt2jSTLlpWHJwxFhcptAQmlZqaSuvWrRPdjQonKyuLTpw4QV26dKFu3brRvn37KC0tzaR9WLRoESUmJpp0mwCmZmdnR6+++mqJr1uxYgWdOXOGLl26RBkZGbL2ISAggPz8/GRtMzU11eRzhmh6vZ5CQ0MV3caOHTvowoULim4DQC2kzo/JycnUs2dPiouLk3X7qampJjuTO3v2bOrUqZNJtqWkO3fu0DfffENdunShHj16CDl+fFFCQoKwbUPJUBibWG5uLl27dk10Nyq0gwcP0r///W/q27cvhYeHm2Sb//zzD+3cudMk2wIQKSAggN56661iX/PgwQNavXo1GQwG459pNBp65513qFq1akp3EUrhxUurlXD79m3ZvxgBUCMrKyuaM2dOifMjEdHWrVvpn3/+kb0Pv/32G0VHR8vebmGcnZ2pXr16JtmWKdy5c4d27NhB//73v2nLli1C+pCbm0s//vijkG2DNCiMoUIyGAy0Z88e+vnnn+nZs2eKbouZZb1PCEDNWrduTRqNptjXxMfH05UrV4iIyNPTk6pXr07du3enDRs20LRp08q1fY1GQ/7+/uVqA56ztLSkr7/+WnQ3ACo8KysrWrBgAX3yySclzo9ERH/99ZciZ3YNBgMxs+ztmhODwUCnT58Wcg91REQEpaammny7IB0K40pKq9XSjz/+SK6urqK7oqgDBw4oflmKXq+njRs3KroNADXQaDTUp0+fEl938+ZN438nJibSs2fP6Pz587R27Vqyt7cvVx+0Wi317t27XG3A/3FwcBDdBYAKT6/X0y+//EJRUVElvvb69eu0Y8cO5TsFZbZ+/Xq6fv26ybe7d+9eSkpKMvl2QToUxiam1WrJ3d3dJNsKCgqilStXUpUqVUyyPVHi4+MVbT8pKanCrc4IUFYl3RP37NkzmjNnjvH/U1NTKSMjgx48eEAPHjyglStXKt3FMnFwcCh30V7R6PV6WrFihWLtY80MMBcGg4EePXok6Wzt/fv3KTk5WZF+dO/enWrWrKlI2+YkOTmZFi1ahGM7KACFsYm5uLjQiBEjTLa9Hj16UK9evUy2PVPT6XQ0bdo00uv1im0jLCyMHjx4oFj7AGrBzDRo0KBiF1M6ePAgnTt3rsCf29vb05EjR+jMmTPl6kP79u0VuU/5rbfeooCAANnbVTNmprVr19Ldu3cVaT8nJ4du3bqlSNsAamJjY0M///wzeXl5lfjamTNnKtYPT09Pk33BFxsbS6dOnTLJtkRYsWIF/fLLL6K7ASqDwtjENBoNabUYdjnt3r2bzp49q1j7uJ8HzMn9+/epZ8+eFBERUehn/8UFt17UtWtXsra2pvT09HJtv2nTpopd5SJl0ZzK5s6dO7RhwwZF2sbcCOYiOzubPvvsM5o0aRLdv3+/yM8+Mxc5R8rBlMePT58+Na4lURnp9Xr6+++/TbY9zJcVAyo0E3v11VdN+pDxmzdvClt9z1Ryc3MVvRzmlVdeITs7O8XaB1CbqKgo6tKlCzVu3JhWr15Ne/bsoT179tDYsWPp888/L/R3Nm3aRIcPHy7Xdq2srKhhw4blaqM477//vqSFcyobpf4NmDdvHlakBrORkpJCU6dOpYCAAHrzzTdp27Zt+Rb/1Ov11LlzZ8W+qHdxcaGRI0cq0ra5evTokUnu+U1NTaUPP/yQfvrpJ8W3BeVjKboD5mbw4MEmLbKioqIUu9fFXLz//vs0b968Sn1JEcDLnjx5Qk+ePKFBgwaZbJvOzs7Uv39/xdq3sbEhV1dXPI9cBtnZ2XTr1i2cBQGzk7eewvvvv09t2rQhb29vmjBhAkVHR9OZM2coMzNTke1aWFiY9HF4S5YsMdm2RNFoNCb7svTx48f09OlTk2wLyg5njCux3Nzccj86BZ7/Y7R27VqaOHEiVa1aldzc3HA5PIAClL53rkGDBjRw4ECzO2usxMrUFy9epK1bt8reLkBFcvz4cVq9ejW98cYbtHbtWkW/KDLl4oG5ubkUGRlpsu2J4uXlRS4uLopvx9nZmT7//HNydnZWfFtQTiwRESHlTNWqVfnEiRNSh7xcDAYD79q1iy0sLITvt9Lx9vbmu3fvKjaOp0+f5h07dnBOTg6npKRwUlIST5o0iYODg1mr1Qrff3OLGokek8qSn376SfH3asuWLWxjYyN8X02ZAwcOyD6OgYGBwvcLKRg1Ej0mlSWmmB/zhIeHV/rjR0tLS75x44ZJxlOv13Nubi7v2rWL3333XRw7CooUOO1lQjVq1CB/f3/Ft5Obm0vjx4+nYcOGKbpas1r4+fnRK6+8Inu7J06coA8++IACAwPpP//5D7322ms0e/ZsevToEX3//fe0atUqOnv2LPXs2ZPefPNN2bcPYG5sbW0V34aVlZXi21CTWrVqUe3atWVt89ChQ3TkyBFZ2wSA4plifsxz6dKlSn/86O3tTa6uropug5npwIED9M4775CPjw/98ccfNGbMGDp48CB17twZVx+qkdRvO0gFlX5FT+fOncv6ZVOpJCYmsrOzs/D9NUUsLCz44MGDso/htWvXuGXLloVus379+hwSEsI3b940vv7x48e8YsUK9vHxET4mlT1qJHpMKkNsbW158+bNir9Xw4cPF76vpkyvXr1kHT+DwYCzxSqOGokek8oQU82PzM/Pbnp7ewvfZyVjaWnJ8+fPV2wMMzMz+dixY9y5c2e2tbXNt+3q1atz+/btOTQ0lN955x12dXWt9OOtlkiBwtiE2b9/f5n/kpXGr7/+ylZWVsL31xR59913OS0tTdbxS0tLYy8vrxK37e7uzqNHj+bY2FhOSUkx/u6yZcvY09OTLS0thY9PZYwaiR6TypAmTZqwwWBQ/L0yp8LYwsKCN27cKOv47d+/32y+eK2IUSPRY1IZYqr5kfn5cYynp6fwfVYy1atX5/T0dEXGLzs7m8eMGSO5Lw0aNODhw4fz4sWLuU+fPuzk5CR8fCprpMA5/EomISGBVqxYQbm5uaK7ojh7e3v65JNPyNHRUbY2s7KyaOjQoXTv3r0SXxsfH08//fQTeXt7U+fOnWnmzJkUHR1NgwYNoitXrtDs2bPJx8cHl8oASGCqx9gp+YxRtdFoNNSyZUvZ2svKyqKlS5dSamqqbG0CgLqEhYXR/fv3RXdDUe3bt1fkthpmpq+//prmz58v+Xfu3LlDS5cupdOnT5Ovry+1b99e9n5BKUj9BoRUUOlX5NSoUYMjIiLK+gWUZFeuXGGNRiN8f02RDh06cFZWlqzjd+zYMbazsytzn9zd3dnb25tXrVrFR48e5bi4OJ43bx5bW1sLH6/KEjUSPSaVIevXr1f8fbp165ZZne1s3Lgxx8XFyTZ+5Z0fEeWjRqLHpDLEVGeMc3JyeOjQocL3V8lUqVKFDx06pMj43bhxg2vWrClbXy0tLblbt25m9e+WkpECzzE2kTfeeIOaNm2q+HYWLVpkNs+VHDBgANnY2MjWXlZWFv3000/legZhfHw8xcfH0+DBg6lKlSrk6+tLer3erM5SAZSFm5ub4tvIycmhtLQ0xbejFt27dyd3d3fZ2lu7dq1iz2gFgKJ9/vnnJnnM3LNnz2jjxo2Kb0ektm3bUocOHWRvNy0tjXr27EmPHj2SrU1mpidPnpjFVaBqgcLYRKpUqaL4Ni5fvkw7duxQfDtqUK9ePWrbtq2sbUZERNCWLVtkay8lJYWOHz8uW3sAAFLVqVOHgoKCZGsvNjaWDh06JFt7ACCdEk/eMEe2trY0fvx4RdpOSkqS/RJ0vV5PZ86ckbVNKB5ufjQBjUZD33zzjeLbiY2NlfWbKjXr168fNWjQQNY2f/jhB7M52w6gJt7e3uTl5SW6G5WGRqOhSZMmyXp/cUJCAt28eVO29gBAGlPOj4cOHaLs7GyTbEuELl26KPbY1Llz55rVFUmVFQpjEzG3Z2cqqXbt2jRw4EBZ23z06BHFxMTI2iYASPPqq6/K/kWXOXvttdeob9++srY5bdo0fHEIIIAp58c///xTNYVx3bp1qVq1arK1p9Vq6bvvvlNkQdTU1FS6du2a7O2C6aEwNoEaNWqQnZ2d6G5UClqtln777Tdq3LixrO1GRERQRESErG0CgLr89NNPlb64c3V1pR9++EHW1fpPnTpFe/fula09AFCfe/fu0datW0V3wyg9PZ2ysrJkaWvcuHF08uRJ8vX1laW9lz18+JAOHjyoSNtgWrjHuAzs7e1Jp9NRTk6OpNf37NmT6tWrp3CvzMO///1vWS8PJHq+uMFvv/0ma5sAIJ2Li4tJtlPZH0FCRNStWzdZ7y0mIoqKiqKUlBRZ2wSAkmk0Gvrwww9Nsq2lS5fSkydPTLItKRITE2Vry9PTU/Zjxxf99ttvlf5LV3OBM8alZGlpSaGhofTmm29Ker2trS117NhR4V4R6XQ62r17t+LbEcnOzk725xbnuXjxouxtAkDJNBoNff3114pv59atW3Tr1i3FtyOSjY0Nffvtt7K2ycw0bdo0WdsEAGk0Gg298cYbim/n1q1btGnTJsW3UxkZDAY6f/686G6ATFAYl5Kfnx91796dfvnlF6pfv36Jr7e1taV27dop3q///d//pdDQUMW3I1Lr1q0V+ZLhxo0blJqaKnu7ACCNKdZg2LBhA929e1fx7Yg0aNAg2RfpuXHjhqxnbgBAuoYNG5Kzs7Pi27lz506lnx+VcvToUTp69KjoboBMUBiXUrdu3cjFxYXefPNN6tevn0meKydFRkYG6fV60d1QjL29PY0aNYpsbW1lb/vQoUMUGxsre7sAULJatWopvgbDgwcPaPny5YpuQzRnZ2f673//SxYWFrK2i/kRQJyOHTtSzZo1Fd1GbGws/fDDD4puozK7du2a5Fsr1cjLy4vatm1L9vb2oruiCiiMS2nLli2UlJRERETff/89rVu3rthnFAcHB5ODg4OpuldpeXp6Uvfu3WVvNzMzk9auXSt7uwAgTVBQkKJrMDAzhYWFVfr7i93d3alWrVqyton5EUAcrVZLrq6uim6DmWnlypV0/PhxRbcjUt26dalz586KtJ2SkkLz5s1TpG1TcXNzoz/++IM2bNhAPj4+orsjHArjUrpy5QqtX7+eDAYD2dnZUc+ePYtc6ESj0VCzZs0Uv0wwOzu70q8Y2r17d0XOzufm5tLVq1dlbxcASmZra0tdunRRdBsJCQk0f/58RbchmlarpXHjxsm+/kJ6ejpduXJF1jYBQBonJycaPXq0ottIS0ujBQsWKLoN0apWrUqvvPKKIm2vW7eO7ty5o0jbpnLt2jVKTEykffv20Y0bN0R3RzisSl1Ker2eQkJC6MmTJ/Taa69R7969qW3bthQWFlbgtV5eXjRgwADF+5SdnU1///234tsRpU6dOoqN4/nz51XzzD4Ac2Nra0sBAQGKtZ+SkkJDhw41XuVTWb366qvUv39/2dudN28eVqMGEESj0SjyzN0XnT9/njIzMxXdhmgTJ05U7LZHg8GgSLumlJGRQc2bN6fk5GSsrE0ojMskOzubJk+eTFZWVvTDDz9QcnJyoa+zsLBQ5J5Yc/P666/L/tziPDt27KCMjAxF2gYAcZKSkmjIkCG0Y8cO0V1R3Pjx4xW5TzsjIwMHSgCCjBw5UvGFtyr7MVBAQAB16tRJdDdUjZkpISFBdDdUA4VxOeTm5tI///xT5M+HDh2q+Ld9RES///47PXv2TPHtiKDRaGjo0KGKtJ2bm1vklxoAoLz+/fsr8vg1ouePYNu2bZsibatJ8+bNqWvXrrK3GxsbS3/88Yfs7QJAyaysrKhRo0YmOYaszLy8vBT7NyYjI4PWrFmjSNsgDv7GKcTCwoKaNWum+HYMBgNFRkZSbm6u4tsSoU2bNtShQwdF2o6KiqL//d//VaRtACieVqul119/nSwt8f1sedSrV4/c3d1lbzchIYHu3bsne7sAULKQkBD64IMPFN1GfHw8HTt2TNFtiKTRaGj8+PGKta/T6XBPbiWEwlghb731lmIF3Yvu3btHq1evVnw7orzxxhuKrcrIzLhMEEAQU63BUJlptVr67rvvFGn7hx9+qBT3zwFUNHnrqij9ONDExES6dOmSotsQ6fXXXyc3NzfF2j9z5gzWqKmEUBgrxMrKSvHVqImeLwaWlZWl+HZEcHJyolGjRinW/o8//ogDPwBBmjRpgjUYyik4OJiaNGkie7uJiYmV/vFWAGr12muvka+vr+LbmTVrVqU+Bmrbti15eHgo1v4ff/xRqe/PNlcojCu4ZcuWVdqJbfDgwYotsU9E9OTJE8XaBoDiffzxx4qeEVmyZIlibauBVqulhg0bkrW1textX7p0iU6fPi17uwCgDpcuXarUawg4ODjQwIEDFWv/wYMHZrGwoznCzV0V2KVLl2jz5s2iu6EIrVZLTZo0Uez+wxs3blBkZKQibQNA8SwtLRW7oiYzM5P+/vtvOnTokCLtq4WSV9RU1n9XAIAoOTmZQkNDKT4+XnRXFBMUFERNmzZVrP2EhASKjo5WrH0QB4VxBXX58mUKCgqqtJe7eXt704cffqhY+zExMZV27ADUTqk1GHbt2kWhoaF0+PDhSnuLSZ7WrVsrdin68ePHFWkXAMQ6ePAgDRgwgOLi4kR3RVGtWrVS5GoaIqLo6Gj66KOPKu3VmuYOhbFClLjvK8+lS5coKCiIoqKiFNuGaF9//bWi9x/OnDlTsbYBoHiWlpayXw0SFhZGI0eOpPT0dFnbVSMHBwcaPny4Is8ujo6OptTUVNnbBQBplDp+3LdvH33wwQeV/pm1np6eiq7o/dFHH9GFCxcUax/Ewj3GChkyZIgi7V64cKHSF8Vvvvkmvfvuu4q1j4VlACqX/fv30+eff24WRTER0b/+9S9F5kiDwUC//fZbpf73BUDtlDh+vHz5Mg0YMKDSF8VERKNHj1bsaSbh4eFYf6GSwxnjCiIhIYEWLlxoFgctw4cPp6pVqyrW/v/+7//S7du3FWsfAEwnJSWFFi5cSGlpaaK7YhI+Pj7022+/KbJwWUZGBi1cuFD2dgFArOTk5Ep9T3GeFi1a0Pvvv69I29nZ2fTzzz/Ts2fPFGkf1AGFcQXw559/0gcffEDx8fGV/p6GZs2aUbdu3RRrPy0tjWbNmqVY+wBgWvPnz6fw8HDR3TAJrVZLAwcOpLp16yrS/okTJ/D4EYBK5vLly7Ru3TrR3VCcVqulpUuXKjY/Hj16lP766y9F2gb1wKXUCpFrxeP9+/dT37596cmTJ5W+KLa0tKSPPvpI0efOLVq0iB4/fqxY+wBgOvv376eff/6ZmFl0V0yiT58+NGbMGMXaP3DggNlcjg5Q2WVmZtKmTZsoKCio0j++juj5/Pj6668r0nZGRgaFhoZifjQHLBERIaWIi4sLnzx5UurwFmrPnj1crVo14ftiqnh7e3NycnK5xqw4sbGxXL9+feH7iZQvaiR6TCpaWrVqxSkpKeUac3ObH728vPjSpUsyfWILwvxYOaJGosekoiU4OJgjIyPLNeZpaWn8ySefsEajEb4/poidnR2fO3dOpk9sQXfv3mVLS0uT7U+PHj14+vTp/Ndff/HMmTO5efPm3KRJE+HjXNEjBQpjBfPBBx+wwWAo9V/AtLQ0szvos7Cw4MWLF5d6rEojIiKCLSwshO8rUr6okegxqYhZt25dmcd7//79mB9lNm3aNLM5iK7MUSPRY1IR06hRozIdPzIzP3nyhIcNGyZ8H0yZAQMGcFZWlsyf3P8jYn4cNmxYvs9ASkoK//bbb/zJJ59wjRo12NraWvi4V7RIgcJYwVSrVo1PnjzJOp1O0hgbDAZOTEzkwMBAtrKyEt5/U8bb21vRSc1gMHDv3r2F7ydS/qiR6DGpiKlZs2ap5kdmZp1OxwcPHuSqVasK778pY4r5sUePHsL3Eyl/1Ej0mJQ3Li4uPG7cOO7atavJzhrmHT+WRt78WL16dbP6ksvFxYX/+usvhT69zPfv3+fGjRubfL/69u3LZ8+eLfR9zsjI4OXLl3NISAg7ODiY9Gx2RY4UKIwVjouLC/fr14/Xr1/Pjx8/LnaMw8LCuFatWsL7LCJhYWFSP4plcurUKbazsxO+n0j5o0aix6SipjTzY2JiIr/33nvs7OwsvN+mDuZHRGrUSPSYlDeWlpY8YsQIXr58OX/33XccGBhoku3WrFmTw8LCODU1tcQxNuf5sWfPnqzX6xX7/C5YsEDIftWvX7/E2wv1ej3HxMRweHg49+3bl/v27cu+vr7C3xO1RgoNs7RVS5R4NIS58fHxoY8//phat26d78/1ej398MMP9Pfff5vNI0de5OTkRH/88Qe1bdtWsW28//77tG3bNsXaB9OROGWZFObH8subH9u0aUPNmjUjGxsb0ul0dOnSJbpw4QItWrSI/vnnH9HdNDk/Pz86dOiQYs/lJML8WJlgflRO9erVyc/Pj/z9/alt27Y0depUevToEd28eVPR7fr5+ZGtrS316dPHePzYuHFjio+PNz6Cafr06bRz505F+6FW27dvp/fee0+x9ps3b04XLlxQrP2i2Nra0tSpUykkJIQsLCwk/96DBw/owYMH9NNPP9GBAwfM4tnVUkmaH6V+Y0IqqPSRypl27dpJ/RiWSXp6Or5Bq0RRI9FjUpmi0Wj43Xff5X79+nFQUJDZrwuwfPlyRT+7f/31F7u6ugrfT0SeqJHoMZErAwYM4NzcXGZ+fvtBTEwM9+zZU0hfOnTowF5eXsLHRHR8fHw4JiZGsc+u6PnR0tKyXOtLnDhxggcPHsxubm7C3ys1RAoUxojwzJw5s8x/6aUICwtT7f02tWvX5smTJ3PXrl3N7r7yskaNRI8JUjnj5+fHjx49UvSzu2LFCuH7icgXNRI9JnKlRYsWHBMTw5mZmZyUlMQ9e/bMd2xhZWXFISEh3LBhQ7axsRHeX3OIksePubm53L9/f+H72Lx5c+PnrixrTeh0Or548SJ//PHHZv+5lAKFcRFxdXXlXr16mf3ZClPkwoULpf6LLlVmZiY3bNhQ+D4WlS1btjDz85XIDxw4wF27dhXeJ7VHjUSPCVI5M2jQIEU/t2fPnuW6desK309EvqiR6DGRK/b29lyzZk1jXryf18bGhkNDQ1mn0/HTp0/5xo0bPHDgQHZwcBDe78ocJY8fz5w5w1WqVBG+j0TE7u7uXLNmTfby8irzQmM5OTm8ZMkS1mq1wvdHVKRAYVxI3NzcePDgwZyTk8Pnz5/nZcuWcZs2bczq8SCmSvXq1fnmzZtl+ksuxc2bN1V9CcmyZcvy9TcjI4NHjBhh1hNXSVEj0WMiIlZWVuzv72/230ArFa1Wy5MmTVLsM5udnc2DBg0Svp9S065dOz579iyHhIRwmzZt8gXF/f9FjUSPiSlSrVo1TktLy7ffBoOBIyIiePPmzficKpB3332X09PTFfvcfvPNN8L3sbB4eHjw4cOHy7RPd+7cqVDzvtyRAoVxIQkKCip0DE6fPs3Dhg1DgSxTNBoNh4SESP0IlppOp+ORI0cK38/i4uvrW6DfWVlZ/OGHHwrvm1qjRqLHRETGjBnDubm5HB4ezv7+/sL7U9ny4YcfKvqIpujo6Ap1+8bgwYOL3JerV6/yN998wzVq1BDeT9FRI9FjYopYW1vzypUrix2HK1eu8ObNmzkgIIDt7e2F97kix9ramg8ePKjYZ/bp06eqXpsmMDCwVPtz7Ngx7tmzJ/fs2ZMbNWokvP+iIgUK40LSsGFDvnv3bqHjoNfrOSIigkeMGIHLrMuZKlWqKHr/3J07d9jW1lb4fhaXwgpjZubp06cL75tao0aix0RE+vbtyzk5OczMHBMTwxMmTFD937eKEo1Gw7Nnz1b0M1uRLqmzsLAo8coig8HAUVFRPGHCBHZycmJra2vh/RYRNRI9JqaKv78/JyYmljgeOp2OV61ahattyhGlzxarfX7s0qVLiY+o0uv1nJ6ezikpKfzBBx8I77MaIgUK4yLy448/FjseOTk53L17d+H9rMj55ptv2GAwSP0IltqQIUOE72NJQWFc+qiR6DEREWdnZz5x4oRxDPR6Pf/+++/ctm1b4X2r6KlTp06Jz68sj7i4OG7RooXw/ZQaCwsLvnPnjqR90+v1HBcXx+Hh4SZ73qyaokaix8RUsbS0LPKkysv0ej1/8cUXwvtcUTN9+nRFP7N9+vQRvo/Fxdramo8ePVrsPixZsoSrV6/O7u7uqi7yTRkptASFWrZsGT1+/LjIn1tZWdGECRPI0tLShL2qXBwcHBR7vmFqairduXNHkbYB4Pnfsd69exvnSa1WS//5z39o2LBhgntW8Wm1WrK3t1es/Tt37tC5c+cUa18krVZL7u7uFBgYSBs3bqRLly7RiRMnyMXFRXTXoJLT6XQ0d+5cSa9V+u84lN3ly5dp//79ortRrJycHMrJySny5wcOHKD//ve/FBcXR/Hx8WQwGAq8pkWLFtS+fXtq3749NWrUSMnuVigojItw+/ZtWrt2bbEPg65Vq1aleXC9CBs3bqSUlBRF2j569CgdOXJEkbYB4LkmTZqQg4OD6G5AKS1fvlx0F0zC0dGRmjVrRs2aNaPq1auL7g6Yga1bt9I///xT4ut0Oh0lJycr36FKKikpifR6vSJtL1y4sEK/N3q9nubPn08ZGRmF/rxGjRq0Zs0aOnjwIB0+fJgOHz5M+/btozfffNPEPVUnFMbFmDNnDmVlZYnuRqV18+ZNys7Olr1dnU5HP/zwg+ztmgozF/tNIIBaHDlypMCVNS1atKC6desK6lHlkJSUpNgXexcvXqTdu3cr0rbSDAYDPXv2rNS/Z29vT//9738V6BFAfo8ePaKVK1eW+LrY2FhasWKFCXpUOS1evJgSEhJkb1en01FERITs7ZqSwWCgK1euFPozjUZDY8aMof79+1OVKlWMf16/fn2aMWOGqbqoaiiMi/Hs2TM6f/58kT8v7mwylCw3N5dOnTole7s7d+4s9n1Tu/T0dDp+/LjobgCUKCcnh6ZPn57vz3x8fOj9998X1KPKIS0tTZFLnQ0GA4WFhRV7m5Ca/frrr9SkSRP6+++/S/27TZo0oXfffVeBXgHkt3nzZrpx40aJr8MxZNnl5OTIfvxoMBjo66+/posXL8rarprUqlWLPv7440J/ptWiJCRCYVystLQ0Wrx4cZFnjXft2qXYpRzmIDc3l7Zt2yZrm8xMkZGRFfp9cXR0pA4dOojuBkCJNBoN1alTp8Cf9+nTR0BvKpclS5ZQYmKirG3eunWL1q5dK2ubphIXF0eLFy+m6Oho6t27Nz169KhUvx8QEEDr1q0r8qAQKidHR0dasWIFLVy4kDp37mySe81jYmKoT58+uOJQQUocP+p0Olq3bl2FPn4kIgoLCytyfoyLi6Pp06cXuCrxwYMHlXbdidLCylElWL9+PdWoUYOmT59Otra2+X7WvXt3+u9//1voTe1QMo1GQ+7u7rK2+fjxYwoNDZW1TRHc3NzI0tKSdDqd6K4AFKuwb5kbN25MAQEBZTqzB889ffpU1r//Op2OQkND6enTp7K1aSqurq5kaWlp/LeWnz9Ro9TtODo60ty5c0mv19OqVavwb3cl5+joSG+//TZ99NFHREQ0atQoOnXqFN2/f5+mTp1KN27cUOzf2IcPH9LTp08L/eKQiMjS0pLc3NzoyZMn5dqOm5sbubu7U3R0NGVmZparLXO3cePGCjk/vuzp06eUm5tb6M9yc3Np9uzZdO7cObK2tjb+eUxMjKR7482C1KXLSQXLbItMz549ecSIEbx161bjI4auXbvGlpaWwvtWUWNvb8+PHz+W+hGUZOrUqcL3qzRxc3PjY8eOFdgPnU7Hq1ev5mbNmrGVlZXwfqopaiR6TESmT58+hY5J7969ZduGlZUVu7i4cJUqVYTvr6lib2/PT548ke0zGhsby3Z2dsL3q7TRaDQ8YcIEZmbetm0bL1q0KN9jwsoiOTmZPT09K+UjTNRI1FjUr1+f582bV2ifcnNzOSwsjMeNG8fOzs6laler1fKAAQN40aJFXL9+/SJf98033xQ7LuPHjy/X/rm7u/ORI0fYYDDwli1beMaMGVytWjW2t7cX/jk0RQYNGiTbZzQ5OZnbtGkjfJ9KkwMHDhS6L3jcZ9GRAoVxKePg4MDTpk3jR48ecf/+/YX3pyJH7gO/tLS0Cvls6WXLlhW5T7dv3+ZmzZqxVqs1HsRpNBrWaDTC+y0qaiR6TF6Ovb09Dx8+nEeNGsW9e/fO9/mRO3379i10TOQqjJs3b85Llizh5ORkjomJ4c8//5ydnJwq/d8BuefHjRs3Vsgvct3c3Dg+Pl62cciTnJxcIZ51X9qokaix8PT05EuXLhXbN51Ox/fv3+fRo0fzqFGj2MPDo8R2hwwZwnv37uWFCxfyhx9+WOhr7O3tedu2bcVue8KECWXet2rVqvHhw4fztWcwGDg5OZn/+usvHjVqFDds2LBSz5NyFsYxMTFsa2srfJ9Kk6IK4xkzZgjvm1ojBQrjMqZevXrs6OgovB8VOXIf+P35558V8uxqYYWxwWDgefPm8ahRo3jIkCF87do1vnHjBv/44488Z84cnjNnDnft2pW7du3KHTp0qNT/+L0cNRI9Ji+nRo0anJmZyczMmZmZfOPGDY6MjOTg4GBZz7paWlryuXPnCh0TOQpja2trXrFiRb52DQYD37lzh/ft28c1a9YUPtZKRe758YMPPhC+T2VJmzZtOCMjQ7ZxeFF6enqFO0tUUtRI1Fg4ODgUmD9Kcv/+fZ4wYYLx31cnJ6d8bVarVo0XL17MXbt25fr167ODg0Oh2/bw8Cjxc1uewviDDz4ocV9iY2N57ty5bGNjI/xzqUTkLIxHjx5d4Y6jiiqM4+LiuH///uzq6iq8j2qLFCiMEWGR88AvIyODu3btKnyfSht/f3+OiYkpsD+5ubncqlUr9vLy4vnz57Nery923w8ePMhTpkxhX1/fAv+QV7aokegxeTnW1tbcqVMnvnz5coG+rl27ttSXDhYVjUZT5OWC5S2MbW1t+ccffyz2s3/58mUODg4WPt5KRM758ebNm1yjRg3h+1TaFDU/yqlz587C91POqJHI8WjYsCEnJiaWue+nTp3itWvXctOmTdnX15fDw8P5nXfeYSLiOnXqFHnZstKF8ctni4ui1+v522+/Ff65VCJyFcYVcX587733OCEhoch9un79Ovv5+Qnvp9oiBQpjRFjkPPA7d+6c8P0pbUo66Ltz5w4/evSo1GMRFhZW4b75LE3USPSYFJUGDRrwsGHDeNy4cazT6Yz9DQoKkm0b7733Hufm5uYbj9u3b7Onp2e52m3Tpo2ksf/mm2+Ej7MSkXN+PHr0qPD9KW18fX0VLYozMzP5+PHjXKdOHeH7KmfUSPSYBAYGclJSkmz706dPnxIvux0+fHi+Ofdler2eR48eXab9sba2LnRtkqKsXr2avb29edmyZfnSpk2bCnf58IuRqzCuSPOjg4MDd+vWje/du1foZ/rRo0c8fPjwSn+CpKyRAoUxIixyHvjNnj1b+P6UJi1atJD1oE+n0xmzZMkSFMYmJnpMSkqVKlXyHUjJWRhbWlryqVOn8o3H8ePHy9WmRqPhffv2SRr78px1UXPkmh9v3LjBPj4+wvenNNFqtTx79uxy73thdDodHzx4UFJxUxGjRqLHRKPRcJcuXXj79u3FXoEiVWZmJm/YsIHffvvtQrdXvXp1Pnv2bLFtREdHl3mRrK5duxZbdL/IYDDwypUrOSAgwLhw7Iv7sWnTJh4zZgz36tWLLSwsKtSxg1yFcVHvo1ri6+vLo0ePZk9PTw4MDOSpU6dy/fr12dvb23hVmMFgYIPBwMOGDRPeXzVHChTGiLDIdeD38OHDCnXg5+zszHfv3i33fjMzHz58mJcvX87e3t7s5eXFXl5elX5FSjUSPSZSEhwczNu2beO5c+cWeV8c0fODuh49enCPHj3Y19dXUtsvrxJc3sK4Y8eOxnukixMbG8vu7u7Cx1aJyDU/btq0Sfi+lDYBAQHluvy1MPfu3eNZs2axl5eXbLcSqDFqJHpM8uLg4MDt2rXjPXv2yFIgJyUl8bBhwwrMQX5+fiX+7v3798u0Jkpxt68UZu7cuezu7s62trbFftmYkZHBd+7c4alTp1aYRfrkKowDAgKE70txcXZ2Zi8vrwJPFfjqq684Pj6ed+3axVOnTuWQkBCcKS4hUqAwRoRFrgO/BQsWCN+X0sTFxYWTk5PLtK/Xr1/nL774gtu1a8ft2rUzywXg1Ej0mMgZf39/vnDhAsfHx3NMTAz7+/uX+DsbN27MNx4bNmwoVx+GDx8uadwnTJhQoc5wlCZyzI+xsbGqP+grKqNGjSrXvue5e/cuT5o0ib29vYXvkymiRqLH5OVYW1tz+/bt+dChQ5yenl7u/YuIiODhw4ezn58f+/n58YYNG0r8nRMnTpSpALWwsODbt29L6teTJ0/Yy8uLiYgdHR350KFDJf5Obm4uHzt2jH/55RfVn3CQozBOSkqqEPfijhs3jn18fNjCwsK46KS9vT23bt2aLSwshPevokQKFMYqi1ar5eDgYP70009la9PZ2Zk9PDxU95dHjgO/nTt3Fnv2S42xtrbmDz74gCMjIzk7O1vyvh44cICrVasmvP+io0aix+TFWFpasoeHR7m/NGnfvj1HRUXxmjVrSnytn59fvjO8LVq0KPN2pR743bp1q9z3Mas5csyPFfmxHXXq1OFx48bxkydPClwCKkVcXBxPmDCB69WrJ3xfTBk1Ej0mxeXTTz/lx48fc1paGjMzJyQk8OPHj415ef2EkmRlZXFOTk6xr0lISOBu3bqVqb9OTk4cFRUlqS+zZ882PqbPw8ODBw4cWCCbN2/mx48fF3q/amJiIoeFhfHgwYPZw8NDdU/9KG9hnJqaKuttRaaIs7Mz79ixgwcNGiS8LxUxUqAwVlE0Gg3379+fMzMzed26dbK06e7uzsePH+e0tDSeNWsWDx48mK2srBR7pmlpUt4Dv9TUVH733XeF70dZY2try8OGDeNz586VeFnX4cOHuWrVqsL7rIaokegxeTF+fn6cnp7O4eHh7ObmVq7L4uzs7CQ96kOr1eY7S1Kewtjf37/Y1TbznDhxQrYxs7S05E6dOrGVlZVqzkCb+/xI9PzfxKpVq/LkyZM5Pj6+xALZYDBwQkICT506ld3d3VXzXpoyaiR6TIqLVqtle3t7DgwM5OnTpxtvR8rLF198wdeuXeOcnJxi7+vV6XR8/PhxHjhwYJELY+n1etbr9RwQEFDmExWff/65pC+KYmJiSrwVxtXVlUNCQtjV1ZW7detWZLu5ubmcnp7OoaGhPGHCBG7fvr0qTrSUpzBOT0/nHj16VMg5Quq/y0jBSIHCWEVp2rQpp6WlsV6v5/Hjx8vW5ouys7P5/v37vHz5cm7VqpXQ/S3vgV9ISEiFnNRejpubGw8YMIA3btzIcXFxBfYzMzOT+/btK7yfaokaiR6TF9O8eXNjv2JiYvivv/7i3r17K35Z3Lhx44xf8JSnMA4JCZE05osXL5at759++imnpqby/fv3eebMmdyzZ88C93OZOpgf86dWrVo8Y8aMIs+WRUdH848//si1a9cW3leRUSPRY1LeuLu7c7169bhfv368cePGQp8WMW7cOHZxceHatWvzlStXCvw8IyODR40axUuWLGFra+sy9aOw57oXRcoXh5aWllynTh3WarVsa2vLP/30k6S2k5OTeceOHdy7d2+uW7eusPelPIXxwYMHUVyaYaRAYayitGjRgpmfLxJSvXp1Wdq0t7fnnTt3FvqexsfH89q1a7lZs2ZCDqDKc+B369Yt2cZITfH19eUuXbrwsWPH+MyZM3zmzBnevXu36i5hEhk1Ej0mLyYoKKjQPt6/f1/R51nWrl2bs7KymFn5wjghIYGbNGkiS78tLS15wYIF+do3GAx89uxZ7t27N7u5uQl5H21sbPjcuXNl+jxmZGSU+VJNtcfb25snTpxonB/PnDnDJ06cKNdnrjJFjUSPidxp3Lgxt27dmsePH89nzpzhHTt2sIeHBxM9/6J73bp1fObMGZ42bRq3bt2aW7duzS1atGALCwuuX79+mbdbtWpV4yXfJVm/fn2p27ezs+PWrVtzQEAA7969m1NTU0vczo0bN/jbb7/lFi1amHzhz7IWxpV5fkSKjxQojFUUNzc3Dg4OlrwSrNQsX768xElizZo17OPjY9ICrKyFcWZmJo8aNUr4+4WIiRqJHpMXU9zzLTdt2qTY33E7OzteuXIl6/V6XrhwYZnacHR05OPHj5c43nLdakL0fN4t7nnhx44d4w8//JBdXV1N/l6W9cCvIj2XE5E3aiR6TMoTa2vrUn8JX61aNa5Ro4bsJxyGDx8u+Z7nli1blnt7pZ1/9uzZw126dOGaNWua5Ha9ss6PY8aMEf65QsREChTGZpB+/fqVuBgE8/PLrJcsWcJNmzY1yf0jZS2Mt23bVqkuEURKFzUSPSYvprjCWK/XK/rcXwcHB46NjeXo6Ghu2rRpqX9fyhkRnU7HgwcPlrXfEyZMKHGb586d4yFDhph0fYayHvh16tRJ+OcQERM1Ej0m5UnHjh350aNHPHnyZO7evTvb2NiUOAccOHCAo6Oj2cXFRdZHHy1dulTSeEdGRspyS4GHhwefP3++VO91Tk4Op6WlKXJbg6+vL9eqVYuJni/SOGzYsFJ/Fq9fv16pF21Eio8UKIzNIE5OTnzy5EnJE0dCQgKHhoYqfv9FWQpjvV7Pb775pvAxRcRFjUSPyYsprjBmZv7rr78U27aVlRXv2rWLmZnDwsJKXURKKYyzsrK4Tp06sva7W7duki5RzM7O5sDAQJO9l2UpjGNiYlT/mBVEuaiR6DEpT/766y/jfqSnp/PDhw958uTJ3LBhwyJ/58iRI6zX6zk2NpaXLFlS4jaqV69e4pxWpUoV/vPPP0sca71ez1999ZVs+1/SFYfFOXHiBAcHB3OjRo1k6UtwcLDxlonx48cXupJ2cQwGA3///ffCP1OIuEihJTPi6elJXl5eorthcmlpadS7d2+KjY2V9Ho3Nzfq378/ValSReGeld769evpypUrorsBUKnY2tpShw4d6MiRI3TmzBk6c+YMjR07llq3bk22traS28nNzaX169fT5cuXKSQkhAwGg+x9/e233+jJkyeythkeHk5nz54t8XXW1tY0YcIEsrCwkHX7RXny5Ak9e/asVL+zZcsWun79ukI9AjAvLx4H2dvbU61atWjixIm0f/9+On36NPXo0YP8/PwK/J5Wq6WaNWuSq6triduoVasWbd68mYKDg4t8TZ06dahDhw4ltpWbm0vr1q0r8XVS3b9/v8zz+P/7f/+P1q5dS5988glZWlqWuy8JCQnG+dDZ2ZlcXFxK9fsPHz6k5cuXl7sfUMlJ/aaFVFDplzfz58/nW7duyX4Pb0WIRqPhcePGGRfHKUlsbKzijwcq7RnjtLQ09vf3Fz6WiNiokegxeTGlPWNsY2PDs2fPLvL1c+fOLdXVI0FBQbx169Yy9b2kM8Y6nY5DQkIUGbeiFi172cWLF2W9PLKkXLhwQVK/mJmTkpLKtbgPUvGjRqLHpDw5cuRIifuXnJzMq1atMt6LPHjwYOPPdu3axR9//DG7uLgUuY02bdrww4cP+eTJk9yxY0eeOHEi16xZM99rmjRpUuJjmnQ6Hf/666+yrqjv5ubGDx8+LNf7n5uby+PGjZNlfQsPDw/+5ptv+Nq1a6Xqg16vx9liRNJnxawK48DAQH769CkPHz5ceF9ERKPR8Pjx40t8r5OSkjggIEDx/jg7Oxf6eKKiPH78mB0dHYWPIyI2aiR6TF5MaQpjOzs7njt3brEHXAaDgbt06SJ5+xqNpsyFY0mF8f379xVb+bRRo0Z87969Et/rPn36mPT9PHXqVIl9yjN79mzhnz9EbNRI9JiUJx07dpS8nzNnzmSi58+Sz2MwGPjhw4e8d+9ednFxKfCoJjs7Ox48eDBPmDCBx4wZww4ODjx06FBet25dvrVUiiqMs7KyeObMmXz9+nW+c+eOIvOjlOPGl+l0Ok5PT+dVq1bxhAkTeOzYseU+2WJhYcGnTp2S9Bznlz1+/JirVKki/POEiI0UZlUYazQadnd3V8WDyUWlfv36fPv27WLf63v37pnkjMg333xjfO6pFF9++SUW3UIkf15MSfSYvBiphbG9vT1fuXJF0iqnV69eLfaeOrlSUmH86aefKrr9OXPmlDgWPXv2NOn7+e6775bYJ+bnX2i+fJYJMb+okegxKU86dOggeT93797Njo6O+QrjPHq9np88ecJ79uzhgQMH8sCBA3nYsGF8+/btQhcTdHJyyvf/tWvX5uvXrxdod+HChazVatnV1ZXd3d1l338bGxv+/fffS/2er1u3jj08PGRdqyYoKEjyqtwvSkpK4m7duuH4EZH0eTGbwtjOzo7nzZvHixYtUuyMg62tLbdt25bbtm1r8ue5lSa//fZbse+1qQrjTz75RNJq2czM+/fv52rVqgkfO0R81Ej0mLyYwgrj8ePH86+//srM/1cYOzg4lOqKjYiICFkv0Ssszs7OHBkZWej2d+7cqfgjk5o3b17sGFy8eLHYSyKViKOjY4kL4Fy+fJk//fRTk66YjagzaiR6TMqT0hTGUVFRXLNmzUIL4+KkpaXxkCFDSuzLmDFj+MiRI8bs2rVL8RWWq1WrJvnZyS9auXKlrP2oX78+T506tdT9YGbesWOH8M8Roo5IYTaFcatWrYxnJxcvXiz7AZ6trS3PmzfPeIlHaGioaotjtRTGtra2fPXq1WL7kpKSwrt27Sr1cwSRyhs1Ej0mL6awwvjzzz/nRYsWMfP/Fca1a9fmhIQEyfuYnZ3NISEhsswNdnZ2Rc6PISEhBbadlpbGzZs3V3zsfH19iz0IlPsxUVLj4OBgfEb0izA/Ii9HjUSPSXlSmsJ42bJlbGlpWarLr/OcPn1alV9sqaUw9vHx4SlTppTpfufOnTsLH0dEHZHCbArj7du3G/fFYDDwpk2buEOHDuzo6FjuyyscHBx4/vz5+e57MBgMJn2sR2milsKY6PmB6M2bN1mn0+XrQ2ZmJsfHx/O7776ryn8sEHFRI9Fj8mIKK4z1er1xfvryyy+ZiHjGjBml3s+8xa/KeztKvXr1ijzTUVhhvHbtWpONX1FnZ0+cOMEeHh7C3lcbGxseMWIEL168mJcuXcpjxozhjh07Yn5E8kWNRI9JeVKawjgnJ4d9fX356NGjpR6joKAg4ftaWNRSGBM9vx2ybt26PHXqVE5JSZF8rzEKYyQvUphNYTxhwoQCf4nS0tI4Li6OGzRoUKY2nZycePjw4RwVFVWgsGNm1RbGI0aMKLS/eUxZGBM9fz7f6NGjedmyZca0adOG3dzccE8IUiBqJHpMXkxx9xjfvHmT69Wrx0TEM2fOLNO+Zmdn84wZMxS75/jlwvj8+fNct25dk41fzZo1+cSJE8btp6Wl8ZIlS1Rz/66VlZUsq7silTNqJHpMypPSFMbMzImJiaW+DzY2Npb9/PyE72thKWthfOzYMXZzc1OkT1qtlmvUqMHz5s3jnTt3ltgXFMZIXqQwm8LY29u70IWeoqKiuHbt2pLb0Wq1HBAQwMOGDSt0IYQXqbUwrlGjBmdmZhbZb1MXxghSmqiR6DF5MStWrCiyn0lJSTx48GDu2LEjr1+/vlz7fO3aNQ4MDCz08XdVqlTh3r1785kzZ7hVq1al6n/16tU5Ojqaz507x0OGDBFylrZmzZr8119/cUpKCgcHB+MLOqTCRI1Ej0l54uDgwIcPH1Z0fCIiIrhfv3585swZbtGiRZn72rp1a7548SJHRkZyZGQkf/XVV9yhQ4cCK2GXJmUtjJmZmzZtqvj7Y29vz76+vjxhwoRCb817+vSpSW7DQSpGpDCbwtje3p63bdtm3J/z589z165duXHjxpLbsLS05C+++ELSs4AvXLigyAqBcqSkwjgjI4N79+4tvJ8IUljUSPSYvJiXF5CaOXMmBwcH53tm+PLly4u9aqQ0YmNjuW3btkz0fFXp4ODgfGdcY2JiuEOHDtywYUNu2LBhiYWuVqvlAwcOcMuWLYWOY6NGjTg4OFj4+4kgpYkaiR6T8kbKWUm5bNiwoUyFrLe3d6H33+r1ej548KDx1sHStqv2wvjF1K1blwMDA3nbtm1848YNvnHjBi9btkz45wdRT6Qwm8KYiDggIIDXrFnD58+fL9NKfg0aNJBUFDM/X0FV9P4Wlrp160o6KJ44cSLOkiCqjBqJHpMX83JhHBsbyzNmzOCDBw9ycnIyZ2dn88iRIzkhIaFMz4MszNmzZ9na2pqnT59eaJsGg4H1ej3r9Xq+fPlyifOvGu6bDQoK4v379wvvB4KUJmokekzKEwsLCw4PD5d1PIo7MZGVlcU+Pj6l7mdAQECx2zQYDLxr1y6ePXs216xZkx0cHCS1W5EK47xoNBrWarWs1WpxHIvkixRmVRgTEVtbW0ueEF6Mh4dHic8HfVF5LodRMp9//rmk/ickJKj2jDdi3lEj0WPyYl4sjPMK0sGDB7OLiwu7uLhwcHAw29jYsLu7O8+cOZPj4+PLvf86nY7Xr18v+QBq+/btwseppFhZWZXpDAuCiIwaiR6T8iQgIKBMz84tyo0bN3jw4MHGLwpf/iJx1apVZfpi8MCBA5L7kJKSwufPn+eRI0eyn59fscWjo6NjmS8lF1UYI0hRkcLsCuOypmXLlpIng+joaK5fv77wPheWwMBASftgMBh4zZo1BR4yjyCio0aix+TFeHt7c3h4OO/atYv9/f3Zx8en2L/HnTp1yneZdWkYDIYS11p4WXR0tGq/OESQih41Ej0m5UmzZs3KPD8WZs2aNWxnZ8c+Pj7cvXt3XrdunfFn6enpZTpbXKNGDb5y5UqZ+vPkyRP+9ddfiz1hNHbs2DK1jcIYUVukQGEsMb6+vpycnCxprNR8T0Pjxo35ypUrHBcXJ2lfVq9ejeIYUVXUSPSYlDfLli0r037n5ORwixYteOjQoYXOj3mF85UrV/jp06d84cKFClkUazQaoY9qQhCpUSPRY1LedO3atdDFW8tizZo1xnZ9fX05KSnJ+LNffvmlTCvO9+rVq9z9On78OAcFBbGrq2u+ti0sLHj27NllahOrQSNqixQojEuRop5v+aKsrCzVrkadF41Gwy1btuSYmBhJ7/1vv/2G+zQQ1USNRI9JeVPUqv0lycnJMT7+qVevXgUuOczNzeVPP/2UNRoN+/v7q+Le4dJGq9VycHAwX7x4sUxncxDElFEj0WNS3nh5eXF6erosY/FiYezk5MRr1qxhZubQ0NAyn2GVozDO89dff/HixYvZ09OTLSwseOTIkZyTk1OmtmJiYtjf31/4+4cgeZEChXEp4uXlVeyiCczMe/fuZXt7e+F9lZIPP/xQ0nv/9OnTCnmWB6mcUSPRY1LeeHt7l+k+uhcL49q1axc6P65atUr4/pUntWrV4tTUVGZmPnDggPD+IEhxUSPRY1LeaDQa7tu3Lx86dKjcY/H7778b23377bd527ZtfP/+/UIfeyc1PXv2lOFdyu/8+fM8c+bMMhfFeWJiYnD8iKgmUqAwLkUsLCz4p59+KnKMwsPDFXuguRJxdHTk3377TdL7f+/ePa5SpYrwPiOIGokek/LGysqKV65cWer9frEwLmp+PHjwIDs7Owvfx7Kmc+fOxi8Njh07Jrw/CFJc1Ej0mJQneQXr2LFj+ejRo+Uei7S0tHxnhp2cnLhWrVrl6qODgwOfO3dOhndKGTh+RNQSKbQEkun1evrll18oISGhwM/Cw8Ppww8/pMTERNm3q9FoqEmTJmRnZydru8+ePaORI0dSUFAQPXjwoNjXVqtWjerUqSPr9gFAHXJzc2n69On0P//zP7Rv3z66fv16qdvQ6/V0/fp10ul0+f787bffprfeekuurppcly5dyMLCQnQ3AECArKwsql27Nn3yySdUt27dcrfn6OhI1tbWxv9PS0uj2NjYcrWZnp5Oc+fOJZ1ORxcuXKCgoCD6888/y9tV2dStW5c++eQT0d0AkEbqNz6kgkpfDbGxsSnwEPVz584ptjCLm5sbr1ixgjMyMnjHjh28cuVK7tWrl+wLYrVq1arYxcUMBgPPmTNH+PgjiBqJHhO54+Liwn/++Senp6fz2LFj+fTp04Xu94tnjImez1ePHz8u8Lrjx4+ztbW18P0qS+zt7XnIkCEcExODM8aI6qNGosekvHF2duZ9+/bJNh5KXFpcrVo17tu3L1tYWDARcfXq1fnMmTOy9bm8QkNDhb+PCCIFzhiXUuvWrcnJySnfnzVr1ow8PDwU2Z6DgwMNGDCA7OzsqHv37jR48GBau3YthYeHU40aNWTbzvnz5yk8PLzInz979ozmzJkj2/YAQL06dOhA1tbWFBERQcuXL6eNGzcW+jqDwUDMbPz/4cOHU/Xq1Qu8zt/fn9555x1F+qrVasnS0jJf5JSRkUErVqygiRMnFjgbDgCVX2pqKl29elWWtl6cL+X09OlT2rBhA+n1eiIiiouLo7t37xZ4ncFgwDwGUAwUxqXg4eFB69evL1AYW1pa0htvvGGyflhZWVFAQACtX79etuJYp9PRkiVLKDk5udCfMzPl5OTIsi0AULcTJ07Q1q1bacOGDZSamkp//vkn3bt3r8Drfv3113yXAVpbW5NGoynwOq1WS99++60ilySHhITQrVu3jLly5Qp9+OGH5OzsLOt2Nm7cSMHBwbK2CQAVw9WrVyk3N7fc7Vy8eJHc3Nxk6FHpZWRk0NChQ+nVV18t0+0yAGZB6mUQpIJT4KJTu3ZtzsrKKnR8Dh8+rMg269atW+yqgIcPH+Y333zTePlMeRMUFJTvuXp5UlJSKtTCYkjljRqJHhMlYmFhkW9RmF9//TXfPicmJnLDhg2NP7eysuKlS5cWOUa3b9+WbZ56MVOnTi10excuXOAPP/yQq1evLnwsEcRUUSPRYyJHfHx8OCUlRZbxSE1N5Z07d3LLli25efPmbGdnp0if58yZwwaDwbjdkJAQtre35127dsn2+CmpNm/ezLa2tsLfR8S8IwUK41JkzJgxRT7rc8eOHYps097enn/77bdinzGak5PD69evl+0Zm23btuUhQ4bk+0cgJyeHQ0JC2NLSUvj7gJh31Ej0mCiRoUOH5ltXYO7cucaDrKioKO7Vq1e+QtfHx4ezs7OLHCOlCuPx48cXOz+ePXuWf/vtNzyDGDGLqJHoMZEj8+fPV2x8/Pz8FOmzvb09BwcH8/z58zk2NpbXrVvH8+fP54yMDMX2pThz5sxhd3d34e8lYr6RAoWxxGg0Gl6/fn2R46Pkc9ocHR0LLPhVmKtXr+Y7g1OeODg48JMnT/K1r9PpOCQkhDUajfD3AzHfqJHoMVEiixYt4hMnTnCNGjXY2tqaBwwYYLx6ZebMmfleW69ePT5//nyxYxQaGqrI3OHk5FTogl8vu3r1Kg8fPrzCLgKGIFKiRqLHRI4sXLhQsfFRqjDOi4WFBdvZ2bGDgwNXq1aNt2zZwkuWLOEpU6bwrFmzCn3+vBL0ej3HxMTw2LFj2cnJCceSiMkjBQpjifHz8yv2WzYlJzaNRsOjRo2S9D6dOHFClsmmsMKYmTkrK4tDQkKEvx+I+UaNRI+JElm0aBEzMz9+/JhjYmI4LS2NmZljYmLynX2tW7eupNVP33vvPUX6aWdnx48ePZL0PuXm5vLNmzd54MCB7OjoKHyMEUTuqJHoMSlvPD09ZbuM+kWRkZGcmZmpeGFM9PzJI6GhoXz//n1OTEw0PkvZ2dmZExMTS+xrTEwM7927V5b9NhgMHBMTw6NGjVLsiS4IUlikQGEsMWvXri12fMLCwhTdfmBgoPHAtDgZGRn8xRdflPuSRa1Wy8OHDy/0PpTMzEz+8ssvuVWrVrhnBDF51Ej0mJQltWvXLvbWCF9f30LnnK1bt+Z7XZ8+fSSNkVKFsVar5U8//VTS/PiiRYsWCX8PEETuqJHoMSlvbG1tuVWrVuzv78+HDx8u8zhkZ2fzpEmTeO3atRweHs6ffPIJf//992xvb6/4Pnz33XccEhLCmZmZ/M0333C1atWY6PnZ5BkzZhTb75iYGPb39+dGjRrx+fPn8923XF5Xr17lgwcPctu2bdnGxkb4e41U7kiBwlhiTpw4Uez4KLX41ov54osviu1DZmYmnz17lpcvX86NGjWS5X7gI0eOFLk9vV7PLVu2FP7eIOYVNRI9JmXJ1KlTeeDAgUX+3NnZma9cucLR0dH5smzZsnyvk1IYZ2VlcefOnRXdnz///LNU79nDhw85ICBA+PuAIHJGjUSPiZzx8PAoc3GclZVlXNCwWbNmJr2UOCgoiOfNm2dcjyHvjLGdnR0fPXq02H5HRkYa7w22tbXlvn378uXLlzk6OprT09M5JSWl2HUepDAYDLxr1y6eN28e16pVC5dZI4pEChTGElPSxGGKwrhevXocERFRZB9Gjx7NVlZWHBwczKmpqTxy5Mhyb/Ptt98udsK7du0a+/j4sK2trTH41g9RMmokekxKG41Gw1OmTOG6desW+zorKyu2trbOl5e/cJNSGB89elTxAx1PT89i58fCXLhwQfh7gSByRo1Ej4ncadKkCYeHhxf5lJKi7Nu3T9gtHBqNhocMGWJcIHHp0qXs4+PDvXr14rS0tGIXTjx69Ci7uLjkay/v34ZBgwbxd999x2FhYeX6jOQxGAycmJjI06ZNYw8PD6wJgcgaKVAYS0zHjh2LHR9TFMZExF5eXnz58uUC279+/brxm8jFixcz8/ODvho1apRre9bW1jxu3Dhet25dkRNnQkICP3r0yJhz585x7969FVmBVs0JDAzkevXqCe9HZY8aiR6T0qZu3bqclJTEu3btYldX13K1JaUwFj0/FiUiIkL4e4EgckaNRI+J3Ml7lF1ycnKpxmHixInGNhwcHLhfv34mvR3NwsKCP/nkE2NB/9tvv3FaWhqHhYVxcHBwkf2eNWtWkW1qtVp2cHDg1q1by3YPcp64uDg+c+YMDxgwwHiGG0HKEylQGEuMvb09L1iwgO/fv19gbB4/fswdOnQwWV+8vLz44sWLxu3rdDoeO3as8ed5hTEz85EjR9jf35+1Wm25tlncPceFyc3N5QsXLvC5c+f43LlzPHr0aA4ICOBGjRoJfy+VSr9+/fjOnTs8aNAg4X2pzFEj0WNS2nh6enJubi4zc7kPODp06MCpqanFjs+KFStMtm+1a9fmESNGSCqQb9++Xe4vD0ubpk2bckBAALdp0wZX1yCyR41Ej4kS8fPzK9W6BnFxcfm+OJ83bx6npaWZ/DnrdnZ2fPbsWWO/rly5wo0aNeJ33nmn0H5PmTKFa9euLaltR0fHUt/SIlVsbCwvXbqUmzVrJvy9RypupEBhXMr4+Pjw1KlT+e7du3z37l2+ceMGt2vXzuT98PT05OPHj3NGRganpKTkO+vzYmHM/HzBhy+++KJM9xzXqlWLW7RowZs3b+atW7eWeABckujoaJ47dy57enpylSpVhL+fcqZq1aq8Y8cO/vTTT4X3pTJHjUSPSWljb2/PW7Zs4YMHD8ry97Bdu3a8Y8eOQscmLS2NGzdubPJ9dHd356CgIO7fv3+xB7BDhgwxWZ9atmzJ8fHxzPz8ksE9e/bwli1bOCgoiD09PfGMT6TcUSPRYyJHXFxcWKvVsp2dHbdq1Ypv375dqjHIzMzk4cOHs6enJ3t6evLu3bs5PT3d5IUx0fPjxwsXLnBkZCR7e3szEfE777zDOTk5+Y7xLly4wJ6enqVqe/PmzXJ/fPJJSEjg5cuXc4MGDYwLiCGI1EiBwrgM0Wg0bGlpaYyoflhYWHCvXr1427Zt+e7/eLkwZn5+Vrk09xw7ODjw999/z7GxsazT6aTPWvz8H4C8s1FFyc3N5cOHD3NwcHClWtlaq9WW++w8UnzUSPSYlCXt2rXjd955p0y/261bN7axsWErKyvjn9WtW7fQe+6UXrG/pFhbW/Pnn3/OMTExhb53mzdvNtl9bD169Ci0D3q9nnNzczkyMpJnzZrFEyZMYGdnZ3ZwcKhU8yOifNRI9JiUN25ubnzw4EH+6aefePDgwaU+JsqT9/c8NDSUZ8yYwRs3bjTJitSFxdPT01gUExF7e3vzyJEjuUePHrx7924eO3ZsqYtirVbL27dvl/nTU7jc3Fy+dOkSDx8+nB0cHPL9W4QgRUUKFMaVIPb29vkWtimsMGZmPn/+vKTLBt9++23esmVLmZbkj4qK4pYtW3JISEiJxTHz81UaT58+zX369EFBiUiKGokeEyVibW3NAwYMKLCatKenJx84cIC3bdvGgYGBxj+vXbt2gcI4NzeXhw8fLnxfiJ4/x7OwsxlpaWkmW53az89P0jOX9Xo9x8fHc3x8PJ8+fZqHDBnCvr6+wscQUX/USPSYlDdarZaXLFnCzFzqx8IVJikpiXv06MF2dnbC9y0vDRs25JCQENZqtWUu1lu1alXqBcnKKycnh+Pj43n58uX4EhEpMVKgMK6EKaowZn5+z3FxxXHfvn3L/CB7nU7Hbdq0YSJiS0tLXrBggeTfzc7O5lOnThVY+RBBXo4aiR4TJeLo6Mg7d+7kjRs3Gv/M09OTz58/z8zMx44dy3ePbGGF8fbt2xU7I1KlShVevXo1T5s2TfIZXxsbG54+fXqBMz7FLS4jJRYWFjx+/HiOiIjgiIgInjhxInfo0IE7dOhQYHGz4h6BV5x79+5x8+bNhX8uEHVHjUSPiRypWbMmf/rpp/nWdymtqKgo4yKmvXv3Fr5PeWnTpg3v2rWLx40bV6527O3t+cCBAzJ9akpHr9dzZGRkvi9rEeTlSIHCuBKmuMKY+fl9I6NGjWJvb29jfHx8eM2aNaVeZfFFOp2Ovby8jP0YPny4pLPGL/5+SEiI8PFD1B01Ej0mSqZJkyZM9PysyYwZM5iZOSYmhtu2bZvvSpVmzZoVWLleyXvoXF1d+dixY6zX60t1QGdlZcWhoaH5+lnewvjTTz/lnJycQj8bJ06c4AEDBrC3tze7uLjwhAkTyvw5i4qKwsr3SLFRI9FjImfc3d15165dfOfOnVI9u/fp06fs6+vL48eP51u3bpX5NhalkjfPlyeenp588+ZNBT9JJYuPj+cWLVoIH09EnZEChXElzPz580t8Pw0GA+v1+nwpr5cLYwsLC164cGGp2li1ahUuqUaKjRqJHpMXU6tWLZ49ezYvWLCAFyxYwPXr15elXVtbW16zZg2npKTwtWvXePDgwfnWWFizZk2+MTEYDLxhwwa2s7NjBweHfK+1sLCQZX2G4OBg1ul0fPXqVfbx8ZHc5ptvvskxMTGs1+s5Nja2XE8VqFOnjvEselEMBgPn5uby0aNHyz3X4pJqpLiokegxkTsajYbt7Ox43bp1ksdg8eLFxkdYVtZjHFtbW96yZYuCnyRpgoKChI8Fos5IgcK4EqZq1aqKLZlfnJcLYyLi3r17l6qNzMxM9vHxET6GiHqjRqLH5MVYWFjw6NGjOTc3lw0GA7dq1Uq2tm1tbdnV1ZWdnZ0L/Gzt2rX5xiQ6OpqdnJyY6Pnlwy9e4ta+fXueNGkSa7XafGedS5u6desaz9SmpKTwtGnTJB90tmrViidOnFim2zc0Gg1rNBquU6cOnzx50qSftY8//lj4ZwxRb9RI9JgolQ4dOvDu3btLXI/lyZMnqjiL6e/vX675trA4ODiwn58fExEHBgYqviq1FBcvXqy0Xz4g5YsUWoJKJyEhgX7++WfKyMgQ2g+NRkONGjUq1e/Y2tqSpaWlQj0CqPz0ej39/PPP9Prrr5Ovry9dvnyZbG1tqVOnTtSlSxdydnYuc9tZWVmUlJREqamp+f68d+/e1LVr13x/9uOPP1JaWhoREVWpUoWsra2NP3v99ddpwoQJ9M8//9Dly5dpwIAB1KZNm3y/7+TkRJ6entShQweytbUtsW/Ozs701Vdf0fnz56lly5Ylvv706dM0ZcoUSk5OLvG1eVxcXGjdunX0zz//0D///EN///03+fv7S/59Ody5c8ek2wOAwh0+fJj69u1LnTp1on379tHNmzcLfV1UVBSdO3fOxL3Lr0WLFtSzZ0/q3LkzNWnSpNzt+fn5Uf369cnOzo5effVVIiLas2dPuduVg729veguQEUm9RsYUkGlj5QuX331lfH9e/r0KV+9erXYPHz4sPRfzb3g5TPGNWrU4NjY2FK3g0sFkeKiRqLHpKQMHz7ceAnviRMneM+ePcYsWrSIGzRoUOa2AwICOCkpqcCYvLi4zMWLF41nOl1dXfnWrVsFXp+WlpbvrHJoaCjfuHGDc3Nz+ciRI4U+C7lu3boF7mtmfn62urSPGikuGo2Gvb29VXE25O233xb+eULUGzUSPSamSoMGDfjYsWOcnp6eb/9Pnz4tvG+urq68detWZmbetGkT+/j4sKOjY7nbtbS0ZB8fH/bx8eFly5bx48ePRXzE8vnrr79kPzOOVI5IgcK4Eqdbt27MzBwXF8ft2rUzXv5XVBo1asSRkZFFLiJTkpcL47IsMpOVlYVLqZFio0aix6SkODo68q5du4rsf1JSEoeGhvLAgQNLfQlanz59CrSn0+n4vffeM77m4sWLnJyczKGhoXz48OEi+7F79262sbHhpk2bFviibuvWrQUuR3R0dOTdu3cX2tb06dMlP9tSq9XylClTjIt4vfPOO/zLL78Ys3TpUlke0yKH/fv3C/88IeqNGokeE1NGo9Fwjx49+NChQ8b9/+qrr4w/r1KlivFeY1PH09PTOI8ZDAZevXp1mR9xVKVKFbaxseExY8YYb9uRQ2pqarkWgb1w4YJs62oglS9SoDCuxMkrjEeMGCH5dxwcHMo80clRGK9cuRL3hiDFRo1Ej0lJcXJy4vDw8BL3Izs7mz/55BPWarWS7/8trDA+depUvoWwpD7iJD09nbt06cJz584t9OcDBgzIt22tVsvTpk0r9LU6nY5/+eUXfvPNN0vcD0tLS7579y6fO3eOiYg7d+7Mu3fvln2BQjkcOHBA+OcJUW/USPSYmCp+fn7G9Rfq16/PGRkZfPPmTePVKzY2Nnz9+nV+8803hfRPo9FwcHAwp6WlsV6v59zcXA4LCyt1cWxhYcFjxoxhf39/joyMlO1zcvv2bW7atCl7e3sXOOsulRru5UbUGylwM2cll5aWRrdu3ZL8+vT0dPrpp59ox44d1KpVKxoxYgT9v//3/xTs4f/JyMigWbNmkcFgMMn2AMxFr169SK/X0507d+jatWtERPTaa69RgwYN8r3O2tqa5s2bR2PGjCEiomPHjtHSpUvpzJkzpdqes7Mzubu706NHj0r1e/b29rR+/XpycHAo9OfffvstPXv2jHJzc8nT05M+//xzqlq1aqGvtbCwoM8++4x69+5Nu3fvplGjRtGzZ88KfS0z06FDh4z3RO/fv59OnDhBNWrUyPe6//73v1S3bl2ysLCgt99+O9990wBgvlxdXWn06NG0Y8cOOnr0KGVlZRER0cWLFykqKsr4OicnJ9JqxSzvw8y0fv16On36tLEPPXv2pF9++YWWLVtGp0+fNr62cePGdPXq1ULb0ev1NHfuXCIiWr16NbVr146IiNzc3Kh169Zl7l9kZCRdvnyZLCwsKDQ01PjvkBR6vZ4OHjxI8fHxZd4+ABFJLJ/ZfL7xq0xp164d9+/fv1xtuLq6cocOHbhDhw787bff8t27d4v8jJTnjHF2djZPmjRJ8qWPiPlGjUSPiZRotdp89xL7+PjwtWvXSty3p0+fcs+ePblx48aFXs1R2Blj5v+7x9jV1ZWvX78u95CXisFgKNcjmQoby6LOVCsNZ4yR4qJGosfEFBk4cKDxNrRjx45xmzZtuH379vnWTLG2tuZZs2YZV+tXQxwcHHjWrFn8/fffG/9Mq9XyyZMnjatNS83LTyYorW3bthnbknr8ePPmTT506BCvWrWKq1atKnw8EXVHChTGCsXKyopdXV2F90Pu1K5dm4cMGcJDhgzhYcOG8dWrVzknJ4cNBgNv2bIl34T/5ptv8v3794v9XO3bt4+HDBnCffr0wWIJiKSokegxKWsaNWrEly9f5mvXrvGwYcP4119/ZZ1OV+g+ZmZm8pAhQ7hatWpsZWXFGo2GPTw8Cn1u5e3bt42XD3p7e3N0dLTSb0GJ9uzZI+vYDR48WMh+oDBGiosaiR4TU8TNzY2fPHnCzM8LY9H9KW18fX25SZMmTPS8MA4LC+NatWqVqo1JkyaV63MSHh5uPDnSvHlzTkhIKPb1x44dMxbDfn5+bGNjI3wcEXVH0nwl9QMremcqWjp06MBz5swR3g+lY29vz8OHD+fJkycXusJhixYtODo6usDBdmJiIs+cOZPd3NyE7wNSsaJGosekPLGzs2N7e3smev6F3pIlS4rcz5ycHE5LS+NFixbxpEmTOCkpqdC1CE6cOGH8okuj0fClS5eUHH5Jxo4dK9uYWVlZ8apVq4TsBwpjpLiokegxMVU6derEs2fPrpALiDZq1IgbNmxo/H9ra+tSt3Hs2LFyfU50Oh0HBAQw0fP7mIubY7Ozs3nQoEHCxw2pWJE0X0n9wIremYoWOzs7trOzE94PNaRWrVrs5+fHGzdu5K1bt/K8efO4bt26wvuFVMyokegxkSsajYb/+uuvco9HVlYWBwYGsoWFBX///feFPlLJlO7cucN16tSRbZyaN29erpVTyyMiIoI9PDyEf1YQdUaNRI8JYpoEBATw3r17y7VCdbt27YztOTg4cFhYWIHXZGRk8NChQ4Wt7o1U3Eiar6R+WEXvDIIgCBEO/JSMRqPhffv2Fdi/W7du8dOnT0s1JsePH+epU6eW+fFvcsjKyuITJ05w06ZNZR2nmTNnCtsnZs73vGcEeTFqJHpMKlp69OghvA9ljbOzMx84cKDIz8Lt27c5IiKi0FX+k5OTC6zY7eTkxGFhYXz//n3u1q0bDxw4kD/++GPceoeUKVJgVWoAACAiImamwYMHU8eOHfP9+YEDB6h+/frUsGFD8vX1pdGjR5OVlVWB33/27BkdO3aM1q9fT0RENjY2lJmZWehrlaDX6+np06d0+vRp2rJlC6WmptKOHTvo+bF55XDq1Cm6fPmy6G4AgEK2b98uugtl5ubmRu3bt8/3Z2lpaZSenk7z5s2jtWvXUnZ2Ni1ZsoR69uxpfM2zZ89oyJAhdOHChQK/+9lnn5GXlxf9888/ptgFMHf4xg9BkIoUNRI9JqaMVqvljz/+mOfPn89ZWVnGMUhKSuLAwMB8K8vb29sbF6RRkl6v519//ZW//PJLdnBwUHx1e1FnjC9cuCDrJeFI5YsaiR4TxHRxcXHJd6/x1q1buUOHDmxnZ8cWFhbs7u7OR48eNT6nODc3l5OTkzkoKAhngRHFI2m+wsSGIEhFihqJHhMR0Wq1PGjQIE5PT+eEhATu2rVrgddYW1vzsmXLOCkpSdHx37x5s0kf9fbhhx/m+1LAFHJzc3nkyJHC33dE3VEj0WOCmDbBwcG8YcMGTk5O5vj4eB4yZAgTEbdt25aHDx/OSUlJ7Ovry4sWLeIOHTpw7dq1URQjJokUmv9/0iqRRqOR8jIAAEVJnLJMylznR41GQ2+88Qbl5OQUe5nb9u3b6b333lOkD9nZ2dS2bVs6c+aMIu0XRqvV0ptvvknr1q0jb29v2dpNSEig27dvG7fxxhtvkKXl8zuenj17Rp6enpSQkCDb9qDywfwIahEREUG2trb0/fff0/r166levXoUGBhInp6e9O2335JerxfdRTAzkuZHfOOHIEhFihqJHhO1p3r16rxv3z5OS0uTNJ6PHz/mmJgYvn79Og8cOJCDg4P59OnTBV53584dDg4OZltbWyH7NWrUKH78+LEsn6Hc3Nx8Z90tLCw4KCiIT58+zTExMbxo0aIyPUIFMa+okegxQcRk//79vHDhQuPZ4M6dOzMz886dO4XN2Yh5R9J8hYkNQZCKFDUSPSYVIZaWlvzee+8Z7y0ryrFjx9jDw4Otra3zFYJ169bliIgI4+vu3Lkj+2rTpY1Go2EPDw8+evRouT9DWVlZXKtWrQLbsLKyYmtrazyaBJEUNRI9JoiYWFlZ5bvFxcvLi7/77jv29/cX3jfEPCNpvsLEhiBIRYoaiR6TihJbW1s+ePBgkeOYnZ3NAwcOLPL3Q0JCWK/Xc1RUFPv5+Qnfn7xUr16dDx8+XK7PUFGFMYKUJmokekwQBEGIpM2PWgIAADCBrKwsWrhwIWVkZBT4WUZGBo0ePZrWrFlT5O9nZGTQ/fv3KSwsjC5duqRgT0snLi6O+vbtS3fv3i3T7+fk5NAPP/xA8fHxMvcMAAAAJMM3fgiCVKSokegxqWiJjIzMN34HDx7kTp06lfh7tra23KhRI+H9LyojR47kjIyMUn12srOz+bvvvmOtViu8/0jFjxqJHhMEQRAiafPj8+UuAQAATGTnzp3k5eVFe/fupTNnztDKlSslnS3NysqiGzdumKCHZfPLL79QfHw8ffbZZ9SiRQuys7MrdEXenJwc0ul0REQ0Y8YMmjZtmipXEwYAADAneFwTAFQoaiwgMD+WjrW1Nbm4uFBaWhplZmaK7o7sHB0dycHBgebPn0/BwcFE9Pxzu2XLFkpLS6NNmzbR+fPniYgoKSmJcnNzRXYXKhHMjwAAhZMyP6IwBoAKBQd+UFE4OzvTK6+8Yvz/a9euUU5OjsAeQWWH+REAoHAojAGg0sGBHwBA4TA/AgAUTsr8iFWpAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArElelRoAAAAAAACgMsIZYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwhlKZPXs2eXl5kYWFBfn5+Qnrx6RJk0ij0Uh6rUajoUmTJinbIQCACm7QoEHk6ekpuhsAAABCoDA2U7GxsTRp0iS6dOmS5N/Zv38/jR07ltq0aUOrVq2i6dOnK9dBAIBKqizzLwCAGmE+g8rEUnQHQIzY2FiaPHkyeXp6Sj7ze+jQIdJqtbRixQqytrZWtoMAAJVUWeZfAAA1wnwGlQnOGINkcXFxZGdnh6IYAAAAAGTBzJSZmSm6G5JkZGSI7gIoCIWxYEXd0/XyPbQajYZGjhxJ27dvJ19fX7KxsaEmTZrQ3r17C/zuw4cP6aOPPiIPDw/j61auXGn8+ZEjR+hf//oXERENHjyYNBoNaTQaCgsLK7KfGo2GVq1aRenp6QVer9PpaOrUqdSgQQOysbEhT09P+vrrryk7O7tAO3v27KF27dqRk5MTOTs707/+9S9au3at8efHjh2j3r17U7169cjGxobq1q1LISEhsk+YFy9epMDAQHJ2diZHR0d6++236dSpU/lek5ubS5MnT6ZXX32VbG1tqWrVqhQQEEAHDhwwvubx48c0ePBgqlOnDtnY2FDNmjXpvffeo6ioKFn7CwDyqyjzLxHRuXPnqEuXLlStWjWys7OjV155hT766KN8r0lISKABAwaQs7Mzubi40MCBAykiIqLQ9vP2xdbWlnx9fWnbtm0ljBYAqFlFms88PT3p3XffpX379lGLFi3Izs6Oli5dSkeOHCGNRkMbN26kyZMnU+3atcnJyYl69epFKSkplJ2dTaNHj6bq1auTo6MjDR48uMCx5oEDByggIIBcXFzI0dGRGjVqRF9//XW+Pms0GtqwYQN9/fXXVKNGDXJwcKDu3btTTExMvrbat29Pvr6+dP78eWrbti3Z29sb24qLi6MhQ4aQh4cH2draUrNmzWj16tX5fj8qKoo0Gg3NmTOH5s+fT/Xr1yc7Oztq164d/fPPP8WOEYiBS6krkL///pu2bt1Kn332GTk5OdHChQupZ8+eFB0dTVWrViUioidPnpC/v79x4nN3d6c9e/bQkCFDKDU1lUaPHk2vvfYaTZkyhSZOnEgff/wxvfXWW0RE1Lp16yK3vWbNGlq2bBmdOXOGli9fnu/1Q4cOpdWrV1OvXr1ozJgxdPr0aZoxYwZdu3Yt38FWWFgYffTRR9SkSROaMGECubi40MWLF2nv3r30n//8h4iINm3aRBkZGTR8+HCqWrUqnTlzhhYtWkQPHjygTZs2yTKOV65cobfeeoucnZ1p7NixZGVlRUuXLqX27dvT0aNHqVWrVkT0/B+TGTNm0NChQ6lly5aUmppK586dowsXLlCnTp2IiKhnz5505coVGjVqFHl6elJcXBwdOHCAoqOjsYgNQCUicv6Ni4ujzp07k7u7O40fP55cXFwo6v9j777Do6ja94Hfu+khAUKAEFoQECJE5BUVRBSRoogIiAiINJEmWBAFeXkt2EA6IiBIR0SkiwLSq/TeSUJJKGmk92T3+f3BL/kSE5JNMrszu3N/ruu+LrLZPXPmzOYwz+6U69exdu3a3OeYzWZ07NgRR44cwdChQxEYGIgNGzagb9+++drbunUrunbtigYNGmD8+PG4e/du7gd8ROT41JzPcly+fBk9e/bE4MGDMXDgQNSvXz/3d+PHj4eHhwc+/fRThISEYObMmXBxcYHRaERcXBy+/PJLHDp0CIsXL8ZDDz2Ezz//HMC9/btXXnkFjRo1wldffQU3NzeEhITgwIED+Zb/7bffwmAwYPTo0YiKisL06dPRpk0bnDp1Ch4eHrnPu3v3Ltq3b48ePXrgrbfegp+fH9LS0vD8888jJCQEw4cPx0MPPYRVq1ahX79+iI+PxwcffJBnWUuXLkVSUhKGDRuG9PR0zJgxAy+88ALOnj0LPz+/4m9Ash4hVfXt21cCAgLyPf7FF1/I/ZsHgLi6ukpISEjuY6dPnxYAMnPmzNzHBgwYIP7+/hITE5OnvR49eki5cuUkNTVVRESOHj0qAGTRokXF6muZMmXyPHbq1CkBIO+8806exz/++GMBIDt37hQRkfj4ePH29pamTZtKWlpanueazebcf+f0737jx48Xg8EgN27cyH3s3+NTGADyxRdf5P7cuXNncXV1ldDQ0NzHbt++Ld7e3vLcc8/lPvbYY49Jhw4dHthuXFycAJBJkyZZ1A8i0hZ7mX/XrVsnAOTo0aMPfM6aNWsEgEyfPj33MZPJJC+88EK+ZTVu3Fj8/f0lPj4+97GtW7cKgALHg4i0z17mMxGRgIAAASBbtmzJ8/iuXbsEgAQFBUlmZmbu4z179hSDwSDt27fP8/ynn346zzpPmzZNAEh0dPQDl52zjGrVqkliYmLu47///rsAkBkzZuQ+1rJlSwEgP/30U542pk+fLgDkl19+yX0sMzNTnn76afHy8spt99q1awJAPDw85ObNm7nPPXz4sACQESNGFDZMpAIeSm1H2rRpgzp16uT+3KhRI5QtWxZXr14FcO8cjTVr1qBjx44QEcTExOTmxRdfREJCAk6cOKFonzZt2gQA+Oijj/I8PnLkSADAX3/9BeDeoS1JSUn49NNP4e7unue59x/ic/+ndCkpKYiJiUHz5s0hIjh58mSp+2symbB161Z07twZtWvXzn3c398fb775Jvbv34/ExEQAQPny5XH+/HkEBwcX2FbO+da7d+9GXFxcqftGRNql5vxbvnx5AMCff/6JrKysAp+zZcsWuLi4YODAgbmPGY1GDBs2LM/z7ty5g1OnTqFv374oV65c7uNt27ZFgwYNStQ/IrIvWtiffOihh/Diiy8W+Ls+ffrAxcUl9+emTZtCRPKdPtK0aVOEh4cjOzsbwP/NlRs2bIDZbC50+X369IG3t3fuz6+//jr8/f1z92tzuLm5oX///nke27RpE6pUqYKePXvmPubi4oL3338fycnJ2LNnT57nd+7cGdWqVcv9+amnnkLTpk3zLYvUx8LYjtSsWTPfYz4+PrlFWXR0NOLj4zFv3jxUqlQpT3L+qKOiogpdRnJyMiIiInITHR1d6PNv3LgBo9GIunXr5nm8SpUqKF++PG7cuAEACA0NBQAEBQUV2l5YWBj69euHChUqwMvLC5UqVULLli0BAAkJCQ98XWxsbJ5+P+i50dHRSE1NzXPITo5HHnkEZrM59xyTr776CvHx8ahXrx4effRRfPLJJzhz5kzu893c3PD9999j8+bN8PPzw3PPPYeJEyciIiKi0HUkIvuj5vzbsmVLdO3aFePGjUPFihXRqVMnLFq0KM+5dTdu3IC/vz88PT3ztPnvuTlnTn744YfzLb+geZGIHI8W9icfeughi/uX8yFejRo18j1uNptz9/m6d++OZ555Bu+88w78/PzQo0cP/P777wUWyf+eAw0GA+rWrZvvGjHVqlXLd9HZGzdu4OGHH4bRmLeMeuSRR3J/X9iyAKBevXq8Ho0G8Rxjld3/ben9TCZTvsecnJwKfK6IAEDuH/5bb71V4HllwL1PBQszefJkjBs3LvfngIAAi/5wH7QexWEymdC2bVvExsZi9OjRCAwMRJkyZXDr1i3069ev0E//XnvttTyf0PXt27fIiz8U5bnnnkNoaCg2bNiArVu3Yv78+Zg2bRp++uknvPPOOwCADz/8EB07dsT69evx999/47PPPsP48eOxc+dO/Oc//ynV8onIuuxl/jUYDFi9ejUOHTqEjRs34u+//8bbb7+NKVOm4NChQ/Dy8iq0XSJyfPYyn+W4/whBS/tXVL89PDywd+9e7Nq1C3/99Re2bNmClStX4oUXXsDWrVsf+PrCFNZPcjwsjFXm4+OD+Pj4fI//+9MmS1SqVAne3t4wmUxo06ZNoc990ATap08ftGjRIvfnoiaEgIAAmM1mBAcH535SBty7aEN8fDwCAgIAIPeQnXPnzuX7BiPH2bNnceXKFSxZsgR9+vTJffz+q0A/yJQpU/Iczly1atUCn1epUiV4enri8uXL+X536dIlGI3GPJ9IVqhQAf3790f//v2RnJyM5557Dl9++WVuYZyzbiNHjsTIkSMRHByMxo0bY8qUKfjll1+K7DcRqcfe5t9mzZqhWbNm+Pbbb/Hrr7+iV69e+O233/DOO+8gICAAu3btQmpqap5vjUNCQvK0kTMnF3SKSEHzIhHZB3ubz6zFaDSidevWaN26NaZOnYrvvvsOY8eOxa5du/Ksy7/nQBFBSEhIkQU/cG8ePXPmDMxmc55vjS9dupT7+/sVNN9euXKFF2nVIB5KrbI6deogISEhzyG6d+7cKdGtM5ycnNC1a1esWbOmwMvA338YS5kyZQAg3yRau3ZttGnTJjfPPPNMoct8+eWXAQDTp0/P8/jUqVMBAB06dAAAtGvXDt7e3hg/fjzS09PzPDfnk76cT/Jyfs7594wZMwrtAwA0adIkT78fdK6ck5MT2rVrhw0bNuT55DIyMhK//vorWrRogbJlywK4dyXC+3l5eaFu3bq5hy+mpqbmW5c6derA29u7wFtVEZG22Mv8GxcXl2deBIDGjRsDQO5c8+KLLyIrKws///xz7nPMZjNmzZqV53X+/v5o3LgxlixZkueUk23btuHChQvFXGsi0gp7mc+sKTY2Nt9j/54rc+RcKTrH6tWrcefOHbRv377I5bz88suIiIjAypUrcx/Lzs7GzJkz4eXllXsKYI7169fj1q1buT8fOXIEhw8ftmhZZFv8xlhlPXr0wOjRo9GlSxe8//77SE1NxZw5c1CvXr0SXdhgwoQJ2LVrF5o2bYqBAweiQYMGiI2NxYkTJ7B9+/bcSaNOnTooX748fvrpJ3h7e6NMmTJo2rRpoed8FOSxxx5D3759MW/ePMTHx6Nly5Y4cuQIlixZgs6dO6NVq1YAgLJly2LatGl455138OSTT+LNN9+Ej48PTp8+jdTUVCxZsgSBgYGoU6cOPv74Y9y6dQtly5bFmjVrFL+w1TfffJN7n7t3330Xzs7OmDt3LjIyMjBx4sTc5zVo0ADPP/88mjRpggoVKuDYsWNYvXo1hg8fDuDep32tW7fGG2+8gQYNGsDZ2Rnr1q1DZGQkevTooWifiUh59jL/LlmyBLNnz0aXLl1Qp04dJCUl4eeff0bZsmVzP5zs3LkznnrqKYwcORIhISEIDAzEH3/8kbvM+7/VGT9+PDp06IAWLVrg7bffRmxsLGbOnImGDRsiOTm52OtNROqzl/nMmr766ivs3bsXHTp0QEBAAKKiojB79mxUr149z7fXwL0jAlu0aIH+/fsjMjIS06dPR926dfNcwPBBBg0ahLlz56Jfv344fvw4atWqhdWrV+PAgQOYPn16not6Afeu9dCiRQsMHToUGRkZmD59Onx9fTFq1ChF158UYPPrYFM+W7dulaCgIHF1dZX69evLL7/8UuDl9YcNG5bvtQEBAdK3b988j0VGRsqwYcOkRo0a4uLiIlWqVJHWrVvLvHnz8jxvw4YN0qBBA3F2drboUvsF3a5JRCQrK0vGjRsnDz30kLi4uEiNGjVkzJgxkp6enu+5f/zxhzRv3lw8PDykbNmy8tRTT8mKFStyf3/hwgVp06aNeHl5ScWKFWXgwIG5txG4v3+luV2TiMiJEyfkxRdfFC8vL/H09JRWrVrJP//8k+c533zzjTz11FNSvnx58fDwkMDAQPn2229zbyEQExMjw4YNk8DAQClTpoyUK1dOmjZtKr///rtF/SIi9dnD/HvixAnp2bOn1KxZU9zc3KRy5cryyiuvyLFjx/I8Lzo6Wt58803x9vaWcuXKSb9+/eTAgQMCQH777bc8z12zZo088sgj4ubmJg0aNJC1a9c+8HYvRGQf7GE+y1lWQbfDzLmV0qpVq/I8vmjRogJvWZezbjm3Z9qxY4d06tRJqlatKq6urlK1alXp2bOnXLlyJd8yVqxYIWPGjJHKlSuLh4eHdOjQIc9tQUXu3a6pYcOGBa5DZGSk9O/fXypWrCiurq7y6KOP5lvvnNs1TZo0SaZMmSI1atQQNzc3efbZZ+X06dOFjhGpwyDyr+OziIiIyCGsX78eXbp0wf79+21yKCMRkZbt3r0brVq1wqpVq/D6669bdVnXr1/HQw89hEmTJuHjjz+26rJIGTzHmIiIyAGkpaXl+dlkMmHmzJkoW7YsHn/8cZV6RUREZB94jjEREZEDeO+995CWloann34aGRkZWLt2Lf755x989913vOUIERFREVgYExEROYAXXngBU6ZMwZ9//on09HTUrVsXM2fOzL1gIBERET0YzzEmIiIiIiIiXeM5xkRERERERKRrLIyJiIiIiIhI11gYExERERERka6xMCYiIiIiIiJds/iq1AaDwZr9ICKyiBavF8j5kYi0gPMjEVHBLJkf+Y0xERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6Zqz2h0gIiIqrqpVq8LV1RXx8fGIj49XuztERERk5/iNMRER2Z3Vq1cjODgYGzZswMSJE1G3bl04OTmp3S0iIiKyUwYREYueaDBYuy9EREWycMqyKc6PtlW7dm1s374dDz30UO5j8fHxWLx4MRYtWoQzZ86o2Dsi9XB+pBxeXl7o1q0bnJycEBERgT///FPtLhGpypL5kYWxxgUFBaF///5o27Zt7mMbNmzA7t27cfjwYSQnJ6vYOyLb444flStXDvv370dQUFC+30VERGDjxo1YuXIlTp8+jZiYGBV6SKQOzo+UY/r06Xj//fdhMBiQnJyMY8eO4auvvsL+/fuRlZWldveIbI6FsZ0LDAzEzp074e/vX+Dv9+7di8TExNxCOSwsDJmZmTbuJZFtccePAODw4cN46qmnCn3O0aNHERYWhq+//hoXL17k/EgOj/MjAQ/efzSZTPjuu+/wyy+/AACioqJ4jQbSDYvmR7EQAMbGadasmUXbxmw2S3Z2tixdulQef/xx8fb2Vr3vDGOtaJHaY6LHHD582OLtk52dLZ999pl4eXmp3m+GsWa0SO0x0WNatWr1wO1hNpvFZDKJyWSSXbt2Sc+ePcXT01P1PjOMtWMJfmOsYc2bN8eBAweK9Zrk5GQkJiZi0qRJWLx4MT8JJIdj4ZRlU5wfbc+Sb4zvl52djdDQUMyYMQMigt9++w0JCQmafD8RlZQW38+cH21v165deP755y16bkZGBk6fPo1u3bohLCzMuh0jUpEl8yMLYw37448/0LFjxxK/PmcncN26dbh586aCPSNSD3f8CCh+YfxvoaGhuHHjBiZNmoSrV6/iypUrCvaOSB2cHwko2fx49OhRvP766yyOyWGxMLZzpd3xy3Hu3DksW7YMf/75J1JTU3H9+vXSd45IJdzxI0C5+REArl+/jlWrVmHx4sXIzs5GcHCwJt9nREXR4vuW86PtlXR+vHjxIm7cuIHx48fj2LFjSE1NtULviNTBwtjOKbnjB9x7Q0RHR2PJkiWYPHkyUlJSkJKSolj7RLbAHT8ClJ8fgXvvrZSUFKxYsQInT57Eb7/9hpSUFF60i+wG50cCSj8/igg2btyI4OBgTJo0CdHR0TCbzQr2kMj2WBjbOWvs+AH33hjJyck4e/YsVq1ahS1btuDKlSsQEU3+p0p0Py2+Rzk/2p615scc2dnZSE1NxerVq3Hq1CksXrwYKSkp3DkkTeP8SABw8OBBNGvWrNTtiAgSExMxY8YMxMXFISUlBUuWLEF2dnbu77X4niMqCAtjO2ftHb8ckZGRSEpKwrFjx/Djjz8W+4JfRLakxf+EOT/aVrVq1bBr1y48/PDDNlmeiOD69esIDg7GxIkTsXPnTk2+D4m0+L7k/Gh7r776KjZs2KB4uyaTCdevX899ny1btgwnT55EeHg4Tp06pfjyiJTEwtjOjRkzBt99951Nl5mQkIBt27bh22+/hdlsxpUrV5Cenm7TPhAVhjt+1KNHD6xYsUKVZaenp+PgwYM4dOgQfvvtN1y/fh2JiYmq9IXo3zg/EgA0a9YMBw8etNnyIiIicOHCBSxatAh///03oqOjbbZsIkuxMLZzI0aMwNSpU1Xtw/r16xEbG4s///wT+/fvR2xsLEwmk6p9In3jjh+pWRj/2/bt2zF79mzs378fmZmZSEhIULtLpGOcHwmwfWF8v6NHj2LRokVYvXo1EhISeI0G0gwWxnZOzYnt3zIzM5GZmYmffvoJ0dHR2LFjB06ePMnz7cjmuONH3bt3x2+//aZ2N3LlzI9Xr17F8uXLkZ6ejvnz5/OKrmRznB8JUH//MTs7G+np6Vi5ciXOnj2LBQsWIDk5WbX+EAEsjO2e2hNbYWJjY7Fp0yasX78ee/fu5WEzZDPc8aPAwEBs3boVNWrUULsrBTKbzQgPD8eECRMQEhKC7du3q90l0gnOjwRoa/9RRHLnw7Vr1yIyMlLtLpFOsTC2c1qa2Apz9uxZ3Lp1C8OGDcPVq1fV7g45OO74kZYOpS5Kamoq9u7di6+//hoRERGcI8mqOD8SAHh7e2P9+vV44YUX1O5KHjt37sTo0aNhNptx/vx5ZGRkqN0l0hFL5kdnG/SDSqhXr15qd8Eijz76KB599FFs3LgRS5YswfTp03lOCRFZTdmyZdXugsU8PT3x0ksv4aWXXkJ4eDiWL1+OGTNmFPjc//znP4iOjsaNGzd4FA4RlVhSUpIm55AXXngBR48ehYjgjz/+QGJiIlJSUvDZZ58hJiZG7e4R8RtjLbPV7ZqUZDabsWDBAvz00084ceKE2t0hB8RvRPTN1dUVly9fRq1atdTuSomIyAO/JXFycsq9NVRQUBCysrJs3Duyd5wfCQCqV6+OzZs3IygoSO2uWGTPnj25p5xs2rSJ+49kFTyU2s7ZY2GcIywsDK+99hqOHz+udlfIwXDHT9/c3NwQEhKC6tWrq90VqwkLC0PdunVZGFOxcX4kwH5OxSvIlStX8Nhjj/FWoaQ4S+ZHow36QSXQtm1bNGjQQO1ulFjNmjXx448/wsfHR+2uEBHZlSpVquDNN99UuxtERDZz6tQpHDp0CCEhIZr8gIf0gecYa1SdOnXg5eWldjdKJDo6GkuXLsXSpUsRFxendneIiOyKq6srHnnkEVSvXh0ZGRmaPFeQiLSrb9++qi4/NTUVsbGxWLx4Mc6fP5/nd126dEHz5s1zf16zZg0OHjyIP//8EykpKbbuKlEePJRag1xdXXHlyhUEBASo3ZUimc1mZGZmIjU1FbNmzUJmZiZWrFiBa9eu8R7HZBVa/CSZ86PttGnTBmvXroW3t7faXbEqk8kEk8mE8PBwvPbaa7hy5QoPLaQicX4kJycnHDp0CE888YTNl52VlYVt27Zh3rx52Lx5M7KysvK9J52cnODk5JT7c3Z2NvcXySZ4VWo7FRQUpJmrrkZGRmLbtm0P/P2FCxewePFimM1mREVFleg/5cqVK6Ndu3bIzs7GunXrePl+IiqQh4cHBg0a5JBF8ZkzZ5CYmIgWLVoA+L+dxzp16mD37t1ISEjAhAkTsHLlSsTHx6vbWSLSrI4dO+Kxxx6z+XKjo6Px1ltv4cCBA4V+85vzoR+RJomFADA2yueff27pZrGaa9euyeTJk6VevXpWX9+WLVuKiIjJZJKTJ09K27ZtVd8GjHajRWqPiV5StWpVSU9PV3tzKyopKUkGDRok/v7+UqFCBWnSpIk0adJEFi1aVODz165dKz4+PqpvC0ab0SK1x0RPcXFxkYMHDyq+DWNiYuSNN97InZ+aNGkiy5Ytk6ioKBERiYqKkjZt2qi+/gxTWCyaryz9o1B7ZfQSJycnmTp1aslmLgWNHz9ejEajTdY5pzDOERkZyQmWeWC0SO0x0UtGjx4tJpNJ7c2tqMOHDxe4ro8//rjEx8cX+Jp169ZJuXLlVN8ejPaiRWqPiZ7SvXt3SU1NVXwb/vzzzwUu76mnnpKuXbvKE088ofq6M0xRsQQPpdaYypUrY/DgwWp3AyNGjMDFixexdOlSqy/L1dU1z8+VK1fGihUr8MYbb+Dw4cNIS0vT5HlTRGRbQUFBMBptdzOF8PBwzJo1CwDQtGlTdOnSRfFl1KhRA40bN4a/vz98fX1RoUIFXLhwAe3atYOLi0uBr+ncuTN+//13zJs3D3/++SdPPyEieHt7Y8iQIfDw8FC03a1bt2LUqFEF/u7IkSM4cuSIossjUhMLY40xGAx5LkqglrNnz9qsH5999lm+xypWrIg//vgDqampmDp1Kq5cuYL169ezQCYim8nOzsaqVasQFham6IeEaWlpuHz5cm5B/Omnn6J9+/Zwc3ODk5MT0tPTi7wrQbt27fDss8/i+PHjWLhwITIzM/H777/z3sdEOuXt7Y2nn35a0Tb//vtv9OzZk3cYIf2w9DAKaOArcD3EWufQ3bhxQ6ZPny49evSw6PmjR4+22Tq3b99eoqOjC+1Penq6nD59WqZPny4eHh6qbydGvWiR2mOihzRs2FDi4uJsvm1v3Lghp0+flrCwsGK/9tChQ7Js2TJp3ry5bN68WXbu3ClLly6VBg0aSJUqVaRPnz6yc+dO2blzp+zevVsyMjJK3M/s7Gw5ffq0tGrVSvVtxagXLVJ7TPSSFi1aSGZmpmLbLSkpSdq3b6/6epU2ZcqUkRYtWoiTk5PqfWHUjUXzlaV/IGqvjF4SFBRUqp2jgphMJvn0008FgMyePbvQ56alpcn//vc/qVu3rk3Xu3379nL37l2L1mf79u3c+dNxtEjtMdFDnnjiCbU3s8Wio6Nl4cKFUqZMGYvXz2g0Srt27eSDDz6Q69evl3jZd+7ckTlz5kitWrXEYDCovt0Y20aL1B4TvWTZsmWKbrfTp0+rvk6lzYsvvig7d+6UjIwMGTVqlLi4uKjeJ0a9WDRfWfoHovbK6CVLly4t8ST2IIsWLRJXV1dp1KiR3Lp1q9Dnbt++XbV1/+6778RsNlu0TpGRkfL111+Lr6+vlC1blp8E6ihapPaY6CEtWrRQezMXKTs7W2bNmiWNGzcuVVFavnx5+eOPPyyeDwuSlJQkM2bMkBo1anB+1FG0SO0x0UuULozHjRun+jqVJq6urjJ9+vTc9TGZTDJ69GgpW7aseHl5qd4/xvaxaL6y9A9E7ZXRS5Se2EREBgwYIACkS5cuRT73ueeeU23dy5cvL5s3b7Z4vcxms8TGxsrdu3dl/Pjx0rt3b3F2dlZ9GzLWjRapPSZ6yNatW9XezAXavHmzzJkzR+bMmSMjR45U7BuJsmXLyh9//FHq/sXFxXF+1FG0SO0x0UuU3H+8fv261K9fX/V1Kk0GDBggCQkJedYrMzNT7t69Kzdu3JBhw4aJt7e36v1kbBeL5itL/0jUXhk9pGzZsrJjx47izV5FSEpKkpdeekkAywrjJk2aqDoGAwcOLPG6ZmVlyYULF2TZsmXSrl078fPzU32bMspHi9QeEz1k3759Vtl258+flytXrpTotUuWLLHqjlX58uXlwoULiqxnVlaWnDlzRrp168b50YGjRWqPiR7SsGHDB97erST++OMP1deptKlQoYI0aNBAfvjhB9m5c6eEhobmu5XVlStXZMiQIdKuXTupU6eO6n1mrBuL5itL/0jUXhk9xBrn0G3bti23/bZt28qwYcOkffv2MnXqVLl165akpaXJxYsXc9OwYUNVx6BGjRqlOr/ufidPnpT33ntPAgMDxc3NTfXtyygTLVJ7TBw9LVq0kNjYWMW327Vr16RWrVoyceLEEr2+UaNGD+yzj4+PuLq65nnMy8tLAgMDi3UP4iFDhii81vfkzI/+/v6qb19GuWiR2mOihyi5/2gymaRjx46qr5NSGT58uPj7+0vz5s3lueeee+DRRyEhIbJp0yaZM2eOBAYGiq+vr+p9Z5SNJQz/f9IqksFgsORpVApPPPEEjh49qlh7Z8+excsvv4ybN28W+Pt69eqhUaNGWLNmTe5jFr4drOrIkSN48sknFWtPRLBq1SpcuXIF06ZNQ1xcnCbWk0pGi9uO86N1vf7661i1apXi7Z45cwZt2rTB1atXi7w90r8lJCRg2LBhCA4Ozr2Pp7e3N/z8/PDBBx+gUaNGCAsLQ3x8fO5rateujfbt22Pnzp24ePEiAOCnn37C+fPnH7icqlWrYu3atWjatGnxV9ACly5dwvbt2xEfH8/50QFocdtxfrS+CRMmYPTo0Yq0ZTabUb9+fYSEhCjSntoGDBiA9u3bY/r06di/fz8qVqyI7t2747nnnsPrr78Oo9GY7zUigsOHD+PYsWOYM2cObt++jbS0NN4z3s5ZND9a+gkSNFDpO3pGjBhh6eYoktlslk8++UT1dSpJXnnlFcXG4d9jEh0dLZ9++qlUqlRJ9fVkShYtUntMHD2vv/66VbbbrFmzpHPnzhbfCcBkMklcXJxMmTJFqlatKpMnT5br169Ls2bNZPDgwRIcHCxJSUnF6sOlS5ckMDCw0It1Va9eXY4dO1aSVbRYzvw4ZswY6dKlixiNRtW3O1P8aJHaY6KHKHmqyYkTJxxqH8loNBZ4youHh4csX768yPFISkqS+Ph4+f3336VNmza82r8dxxIsjDUUJSc2k8lk81suKZXGjRvLrl27FBuLgly/fl2GDRum+royxY8WqT0mjhyDwSCfffaZVbbbqlWr5OzZsw/8fVxcnGzcuFE2btwoX375pdSrV09q1aqV2zcPDw+pV6+eDBo0SNLS0krcjzt37sj06dMLPeVj0KBBit6jtDCpqaly4MABad++PW9vYmfRIrXHxNFTpUoVxa5FICISExMjAQEBqq+XLeLl5SU//PCDhIeHWzQ2CQkJsnHjRnn++edV7ztT/FiChbGGomRhvHr1avHw8FB9nUqaevXqiclkUmw8CpKamio7duyQcePGSVBQkAQFBUmFChVUX3em8GiR2mPiyHF2dlbsugP/9tlnnxV4C7vIyEg5c+aMvP766xb10cnJSVq2bCkHDx4scV/MZrPs27dPOnToUOA5yJ6enoUW8daQnZ0tu3fvlpkzZ0pQUJA0aNCA3yRrPFqk9pg4epQ+osZkMkmLFi1UXy9bplmzZhYXxyL39h83btwoTz31lAQFBdntF1F6iyVYGGsoShXGZrNZvv32W6v1s0qVKvLTTz/JTz/9JPXr11fkGwWj0ShvvPGGdO3aVV599VVZuXKlImNRXPv27VN0vRjlo0Vqj4kjx5qF8f327dsnAwcOlIEDB8oTTzxRor5Wr15dkeJ127Zt0rVrV/H19c1zD+LAwMASX0FbCenp6bJw4UKpX7++lC9fXvX3BpM/WqT2mDh6rHGqyYYNG1RfL1vn8ccfl5kzZ5bo6t6xsbEyb9486du3L28BpeFYgoWxRmIwGOTAgQPF/mMsSExMjFWvple5cmWZMWOGpKSkSEJCgowbN06cnZ3zpTjfLNSqVUtSU1MlIyND0tPTJTs7W5GxKKmUlBSZPXu2NG7cOM+OKaN+tEjtMXHkNGvWzCpXpL5fVlaWYvfsHDBggCLnA2dkZEhSUpKMGDEizxzUsGFDuXLlipjNZgXWvGRSUlIkNDRUhg8fLh4eHvwWWUPRIrXHxJFjNBpl5syZim4vs9ksI0aMUH3d1Iizs7MEBgbKpUuXSjR2mZmZcvz4cfn444+lcePGnBs1FkuwMNZIXnrppVKdo3a/MWPGWP3iAEajUWrVqiW1a9eWr7/+Wnbs2CGhoaF5Mm/ePIu/ealSpYpcvnxZRO59c9O0aVMJCQlRZDxKIyoqSoKDg2XAgAG8dL9GokVqj4kj59NPP7X69svKyspz7nBpU6NGDVmxYkWxL8RVkLS0NDly5IjUq1cvt/0qVarIkiVLFFjz0jGZTHLt2jVZv349z7nTSLRI7TFx5FjjiBp7vkaNUvnss89K/eFjVFSUzJ8/Xzp37sz9R43EEiyMNRKlDoVJS0uTbt262bz///vf/wo8PyMqKkqWLl0qjRs3lsaNGxd6QYfJkyeLiOReFGvMmDGqf3N8v1OnTsmgQYN430+Vo0Vqj4mjxtnZWaZPn27VbZeVlSVTpkwRd3d3xfvfr18/uXjxoiL9HDlyZJ62H3vsMUUKb6UkJSXJ7t27ZezYsYp+yMAUL1qk9pg4cqpVqya3b99WdHuxMIb4+fkV65zjomzcuFGCgoJ4RWuVYwkWxhpJ//79S/wHd79Dhw6p9ofXsGFDmThxokREREhUVFSB/QsNDZXFixfL4sWLZd68eVKnTh3x8/OTTz75JPfcvD179oirq6u4uLhIr1695M6dO4qMjVJOnz4tI0aM4DnIKkWL1B4TR03lypUlJSXFqtvu6tWr4unpabV18PHxkaFDh8qNGzckIiJCIiIiSnR00BdffJFnbndxcZGZM2dq6sPDHNeuXZPGjRur/v7RY7RI7TFx5FjjiJotW7bwPFnc+3JGyYvApqamyuLFi3kNGxVjCRbGGoizs7MEBweX+I8tR2hoqDRo0EDVdXFychIPDw+pWLGibNmyRTIzMws9HCUtLU1SU1PzTD4mk0kWLlwozz33nLRu3Tr3EGstyc7OlrFjx6r+3tFjtEjtMXHU+Pv7W7UwjoyMlGbNmtlkXTw8PHLTv39/SU9PL1Zfk5KSpGvXrnnadHFxkVmzZllpdEpHC/8f6TFapPaYOHLGjh2r+PaaNm2a6uulhXh4eMiYMWMU/eZY5N5+L/cf1YklWBhrIEqdIzJ+/HjV1+X+lC1bVmrWrCkTJ06UlStXysqVK+XQoUMWr098fLwkJCRIVlZWqcfGGg4dOqT6GOsxWqT2mDhqpk6datWLTJ0+fVqV9TIajdK3b1/5559/itXf7du3S9myZfO01bhxY4mIiLDSCJVOjx49VH8P6S1apPaYOGp8fX0VP4xahIXxv9OpUyfFx5j7j+rEEs4g1fn7+8PNza3ErzeZTDh16hTmzp2rYK9KLzExEYmJiRg1alTuYxUrVkTbtm0xevRoNGrUCAaD4YGvL1eunC26WSKxsbH49ttv1e4GkUMrX758oXOEvTKbzViyZAn+/PNPPPzww7mPP/HEE3j33XfxyCOPFPi65ORkZGdn53ns1KlT6NmzJ3777TdUrlzZqv0ujgsXLmD79u1qd4PIYdWqVQs+Pj5qd8Ph7dq1Cx07dsScOXNQvXp1RdqcMWOGIu2QFVj66QY0UOk7akp7O5KEhATx8fFRfT2KE09PT+ndu7dcunRJoqOjS7zuapk3b57qY6jXaJHaY+KICQgIkNDQUKtts7S0NHnvvfdUX89/p2LFitKzZ0/p2bOnTJ06VcLDwyU8PFx++ukneeqppx74uu+//17VWzj9W85FFBnbRovUHhNHzcKFCxXfVklJSfLMM8+ovm5aTOPGjXPn5p49e8rKlStLNOdu2bJFKlasqPr66DGWYGGsgZT24gnp6en5zj2zl7i6ukrdunXlyy+/lD179kh6erqmdu7+LS4uTsaNGycVKlRQfez0Gi1Se0xsFScnJ3Fzc8uNNe/xbc3bNJnNZnnvvfc0f4VQo9Fo8VhXrlxZEhMT861rRkaGzefUU6dOSfXq1VUfPz1Gi9QeE0eNNQrjqKgoXnjLwvj4+BT7i53U1FRetV/FWIKFscrx9fVV5PywWbNmqb4upU3ZsmWlWrVqMmXKFPnjjz9KPSZKu3v3rnTo0EH1cdJ7tEjtMbFF3NzcZNasWXLr1q3cLFmyxGpXdN61a5fVtpcj3o6kTJkysm/fvjzrmZWVJa+//rpcu3bNamP5b5mZmRIUFKT6eOg1WqT2mDhifHx8ZPfu3Ypvq1GjRmn+A0OtxGAwyOjRoy0e27S0NHnnnXes+oEyU3gswXOMVfbQQw9p+lxaW8o5J3nkyJFwd3dHUFAQnn32WQwcOPCB59zZ0vvvv4+//vpL7W4Q2VybNm0wceJEPPbYYzAajbmPv/nmm1iwYAH27t2rYu+KJzU1FTt37lS7G4pLSUnBjz/+iIoVKyIwMBAAYDAY0LJlS9SqVctm/Vi2bBmuXLlis+UR6VFAQABatmypaJtpaWkIDg6GiCjarqMSESxevBhDhgxBamoq5s+fj3379gEAqlWrho8//jj3/8uZM2fi0qVLOH36NMdX6yz9pAMaqPQdMUodCuMI3xg/KFWqVJHhw4fL9evXS3UudmkcPnyY54RoJFqk9phYM61bt5bIyMgHrvvcuXMVX6aHh4ccPHjQKtsqNTVV3nvvPfHy8lJ9bK2RqlWryo4dOyQpKckq41eYuLg4efzxx1UfAz1Hi9QeE0dMq1atFN9O58+f57fFJciLL74oVapUUb0fTNGxxP999E82ZzAY4OzML+2LEhERgR9//BEPP/wwXn75Zfz3v//FxYsXkZaWZrM+XL9+HTExMTZbHpEWuLq6YtasWQ+82nFWVhbGjx+v+HLbtGmDpk2bKt5ujuDgYCQnJ1utfTXdvn0b7dq1w5tvvok///zTpt9OJCUl4cKFCzZbHpEeOTk54fPPP1e83b/++ovfZv6Lh4cHPD0988XJySn3OX///TciIiJU7CUpytJPkqCBSt/REhQUJKmpqSX8bO//ZGZmyoABA1RfH1vGx8dHateuLT///LPVvxnJysqSRo0aqb7OzL1okdpjYo24urrK7NmzJTs7+4HrnZmZKTVr1lR82da4b2SO2NjYfPcCdtR4e3vL2rVrrTaW/zZ06FDV11nv0SK1x8TR8tJLL0lmZqbi2+nFF19Ufd20lKeeekpCQkIkMjIyX8aOHctv1+0wFs1Xlv7BqL0yjpjGjRuXeAK736lTpxz2sEBL0rNnT4mPj1dkLP8tMzNTvvjiC3F1dVV9PZl70SK1x0TpeHp6yiuvvFLkh04///yzuLi4KLpso9Eoe/futdq2SkxM1NUHXeXKlZNVq1ZZbTxzXLhwgVfr10C0SO0xcaRYc35kYZw3X3/99QPHKjw8XFq1aiUtW7a02gUoGeVjCRbGKkapwviDDz5QfV3Uzv1XY01KSpLw8HBFxvbSpUvi4eGh+vox/xctUntMlErZsmWlffv2smPHjiLXOS4uTho3bqx4H5ycnCQkJMSq22vatGmqj7Ut06RJE6uOpwi/LdZKtEjtMXGkWGt+PHHihFSuXFn19dNKKlasKOfPn7do7GbNmsX9RDuJJXiCq4rc3NzU7oLDWLt2LZo2bYrU1FQMHToUYWFh2L9/f6nbnTJlik3PZSZSi5ubG5YuXYqOHTvmufL0g2RkZODy5cs26BlpnclkwunTp9XuBhGVUGRkJKKiotTuhmZ4eHigbt26Fj136NChMBqNeP/995GVlWXlnpG1sTBWUdu2bdXugsP44YcfEB0djW3btiE6OhpPPfVUqduMjY3FxYsXFegdkfYZDAa4u7tbVBTbO9HZBWYMBoNV29+8eTOOHDli1WUQEdlK06ZN81xgqzAGgwEDBw7EkSNHsGjRIiv3jKzN8feANIxXpFaOyWTCL7/8gsjISJjNZtSvX7/Ubd68eVORb52J7EF6ejp69eqFzZs3q90Vq0pMTMTs2bPV7oZNjRo1ymptm0wmjB8/HtnZ2VZbBhFZF+89/n/KlSuH4cOHW1wYA/euFO7u7m7FXpGtsDBW0YNugUKl4+3tjY8++qjU7fz8888K9IbIfty9exd9+vTBli1binyuj48PevTooXgffHx84Orqqni7OUREV0Wcl5cXateubbX2Y2NjERYWZrX2iej/WGN+FBHMmTNH0Tbtka+vL3r06IFNmzahZcuWxX59pUqVdHHElaPjFlTRI488onYXHFKHDh3QqFGjUrWRnZ2NM2fOKNQjIvsRExODXr164e+//0Z6evoDn+fq6oqGDRsqfphu7969UaNGDUXbvF+5cuXw/vvvW619rfHz80P58uWt1v7ixYtx8+ZNq7VPRP/H2vOjXvn5+WH9+vX49ddf0bx58xK1MWbMGPTu3Ruenp4K945siYWxipTaodTb+XJFUWJcd+zYgX/++UeB3hDZn9jYWHTp0gVdunTBjz/+iLCwMJjNZogIzGZz7vMGDhyIatWqKbpsW3zibu1zbrUkNDQUd+7csVr7/P+HyHasMT8aDAY8++yzirdrT7755hu0aNGiVP83uLu7Y+7cudi5cyc/vLBjLIxV0rp1a0UuEHX9+nUsX75cgR45BhcXF3zyySelbicrK0tXh1sS/VtaWhq2bNmC9957Dy1atECDBg3wyCOPoEGDBpg5cyZWrlyJZ555BhEREYots3z58hg+fLhi7REROQprzo+vvfaaVdq1F0qdH+zm5oamTZti1apVLI7tFK/+pBIvLy94eHiUup3MzEzExcUp0CPHYDAYUKlSpVK1ISKYO3euQj0isn/h4eF5frbWochOTk6oWLGiVdom5SUkJPCDWSIb4fxoP5o2bYp27dphwYIFaneFionfGNu51NRUtbugKR4eHsW6kmBB0tLScOHCBYV6RESW6ty5M+/vbkeysrIQGhqqdjeIdMGa567+/vvvAO7tQ+npVBMACAgIQLNmzRRt8+bNmzhw4ICibZJt8BtjFRgMhhJd8a4g33zzTZ5z/vTMaDTi3XffRZUqVUrVzsKFC3Ht2jWFekVElnrqqafg4uKidjccSt26dRU/DzzH/v37kZWVZZW2iSivjz/+GF5eXlZpO+cDyf/9739ITEzE3LlzER8fb5VlaU3FihVRt25dRdu8e/cuLl26pGibZBv8xlgFRqMRr776qiJtFXbVWL2ZNGkSPvnkk1J92pmYmIgpU6bwgjJEZPcMBgN69eqFhx56SPG2c+4HnZmZqXjbRJSfNe+TO2jQIFSuXBk+Pj747rvvdHXI9qOPPqpoe5GRkRgxYoSibZLtsDBWQdeuXa32Cb5e1atXD7169YKPj0+p2rl58yaio6MV6hURaY3JZFL0gmFa5u/vj8GDByvebmJiIoYMGYJt27Yp3jYR5efu7g5fX1+rtf+f//wHw4YNQ8eOHbF27VrcunXLasvSGqW/YFq/fj127dqlaJtkOyyMVVCtWjVFPvnLysrip/W4dwjQsGHD4OfnV6p2TCYTJk+ejJSUFIV6RkSWqlq1Kp577jmrLycxMRFz5syx+nLUZjAYMGTIEPj7+yvarojg3XffxYoVKxRtl4gerE6dOla/cvTnn3+O6tWr4+bNm0hLS7PqsrRk27Zt+OijjxQ5LSQ5ORkTJ05UoFekFhbGNubu7q7Yzt8///yDnTt3KtKWvTIajZg0aZIitzAICQnBL7/8okCviKi4fHx8UL9+fbW74TAqV65slauHm0wmHD58WPF2iUg9169fx/Xr15Geno69e/eq3R2bunv3LlauXAmTyVTqthYtWsRr1Ng5XnzLxsqUKYM2bdoo0pbJZFLkD9me5ZyvrcRN781mM+9dTKSSRo0a2eRqqOfOndPFBaNGjRqFsmXLKt7u0qVLcf36dcXbJSL15Fy0NC0tDTt27FC5N7b36KOPlvqOJgkJCZg8eTKvUWPn+I2xHfvhhx/U7oKqnJ2dMXLkyFJfhTrHzJkzOaERqaR///42Wc6KFSsc/jBBDw8PPPzww4p/0JCUlIRp06bxA0QiG3v//fet+sGhu7u7VS/upWX169fHsmXLSn1HhPDwcNy9e1ehXpFa+I2xHdP74RoBAQH44osvFLnvaUZGBi5evKhAr4iouOrXr4969eqp3Q2H8eSTT6Jjx46KtxsXF4cbN24o3i4RFc4aV5YvSGJiom5uAdqxY0e88cYb8PX1RaVKlUrVVnZ2Nq9R4yBYGNtYaQ/VoHsMBgPGjBkDDw8PRdrbu3ev7s6rIdIKEbHJzlhMTAyOHz9u9eWoyWg04vPPP1e8XRHBxIkTkZSUpHjbRPRgdevWRe3ata26DBFBVlYWvv/+eyQnJ1t1WVrg6emJIUOG4OWXX1akvdDQUPz666+KtEXqYmFsYx9//DHKlCmjdjfs3iOPPILu3bsr1t6xY8d08ykpkdZ069bNJt+IREVF4ejRo1Zfjppat26NFi1aKN5uaGgoli5dqni7RFS4hx9+GHXq1LHqMvbs2YPevXsjLi7OqsvRgvLly6N79+6KXe8HAI4fP85TTBwEC2MbK1eunE0uMOPoRo0aBS8vL0XaioiIwLx58xRpi4iKx2g0onfv3mp3wyEYjUZ8+umnipxe8m/BwcG6+CaJSI/S09Nx8+ZNtbthEwEBAfjpp58UbXPZsmW8Ro2D4MW3yO40adIE7du3V6y9tWvX8iqrRCrx8vKCs7NtPqONj4+3yXLU8vLLL+Opp56ySts//PADd/yIbMxgMKBPnz5qd8Nh+Pv7Y9CgQYq2efr0aZw6dUrRNkk9/MbYhipXrownnnhC7W7YNYPBgHfeeQeVK1dWpL3k5GRs27ZNkbaIqPh69epl9cMEc3zzzTcOW9x5eHhg8ODBih1Jc7/g4GBcuXJF8XaJqHAGgwH/+c9/rL6czZs3W30ZanNzc8OuXbsUv9DjwoULERERoWibpB5+Y2xDlSpVUmyCCw4O1sW5IP9mNBrRtm1bxdqbMGECNmzYoFh7RFQ8trog4e3btxEeHm6TZanBw8MDLVu2tErboaGhuHr1qlXaJqIHq1evnlXuR36/S5cuYfXq1VZdhhb069cPdevWVfR0RhHB1q1bFWuP1MfC2IZGjhyp2B/knj17HHon70GqVaum6PlzycnJDvsNEpHWOTk5oVatWlZfjoigX79+OHfunNWXpZZhw4ZZ5cKOIoKpU6cq3i4RFa1Nmzbw9/e3WvsmkwkLFy7E7du3rbYMLShbtiw++ugjxT+IXb16NU/FczAsjG2oevXqanfB7nXt2lWxcbxz5w7++usvRdoiouLz9vbGgAEDrL6cv//+G4cOHbL6ctTi4uKCwMBAGI3K/5eemJjIb4uJHNTNmzd1cfHRvn37Kn7Lq7S0NMyYMQPp6emKtkvqYmFsI4GBgYqe1+Ds7Ax3d3e4uroq1qY9UHJ97969yx0+IhW5urra5Cr9ly5dcuj77zZs2BA9evSwSttLlixBaGioVdomosK5uLhYpd20tDRkZWVh8uTJSEhIsMoytMLPzw9vv/224hd5TElJwfnz5xVtkzRALASAKUXGjRtn6VBbJC0tTQ4ePCiLFi0So9Go+vrZIuXLl5c7d+4oNoY9evRQfZ2Y4keL1B4Te82ECRPEbDZbddskJiZK9erVVV9Xa2bt2rUcO0YAzo+OlLJly8qtW7essk1Gjx4t/fr1E09PT9XX09pp2LChVf6fGTNmjBgMBtXXj7E8luA3xjZgNBrRvXt3Rdt0d3dHs2bN8M8//8BsNivatlYZjUZFz6HjPTmJ1FWmTBmrf2McGhrq0LdpatGihaIXJLyfo48dkZYZjUZ4enpape3//e9/uHr1KlJTU63SvpZ8/PHHiv8/ExYWhgULFvAaNQ6IhbENvPzyy6hWrZri7aalpSE4OFjxdrWqd+/e8PDwUKStM2fO4OjRo4q0RUTF5+LigvLly1t1GVlZWZg+fbpDfwhWu3Ztq9yiCQAWL17s0GNHpGW+vr5Wu2q/l5cXvL29rdK2ljRp0gQdOnRQvN3Zs2cjKipK8XZJfSyMrczDwwPvvvuuVXZcDh48iN27dyverlYFBgYqdo7IzZs3ERkZqUhbRFR8Dz30EHr27GnVZVy/fh2//PKLVZehJnd3d4wdO9YqbUdHR2Pfvn1WaZuIivbBBx/ooni1FoPBgMGDB6NSpUqKt81zix0XC2Mrc3Nzw9NPP22VtnkIR8l99dVXaneBSNcMBoNVrqJ8v/379zv0qSa9e/dG3bp1rdJ2XFwcTp06ZZW2iaho1jzN5ObNm7hx44bV2teCRx99FK+++qri7d68eZO3aHJgLIytrG7duopfCS/H999/b5V2tcjLy0vR212lpaUp1hYRFd/o0aOtfn7xmjVrHPYDRGdnZwQFBVntw4WJEyc69IcKRFoXHByM7Oxsq7R95coVh76vu7OzMwYMGAA/Pz/F23b0sdM7FsZW5OrqihEjRih+GHVUVBQWLlyIgwcPKtqultWsWVOx80S2bNnC2zQRqcwaOyz3S01NdejzY2vVqoX+/ftbpe3U1FTeoolIZbNnz8asWbMUbzcuLg4zZsxQvF0tKVOmDPr06WOVtiMiIqzSLmmDdb7KJAD3dlyUvrdkeHg4unTpguPHjyvartYpdWXGjIwMzJo1y6F3mIn0Lj4+HqNHj8aePXvU7orVvPfee1Y7//DQoUO6un4FkRaZTCbcunVLsfbMZjOio6MxYMAA/PXXX4q1q0UdO3a02hW99XS0ph6xMLYio9Go6KGCN2/exGuvvaa7ohgAPv/8c0XGMjMzE4cOHVKgR0SkRdu3b0fv3r0d+oqhPj4+aNy4sdXa5yHUROorV64cRo4cqVh7v/zyC95//30kJiYq1qZWNW3aFK6uroq3KyKcHx0cC2Mr+vTTTxUtjDdu3Ihjx44p1p69aNmyJVq3bq1IW7NmzUJcXJwibRFRyVSsWBGVK1dWvN2bN2+iZ8+eiImJUbxtLXn++efx7LPPWq39CRMmWK1tIiraU089hXfffVexKyovXrwYw4cPR0pKiiLtaVmHDh3Qq1cvq7S9evVqXLlyxSptkzawMLYiJS8Rv3XrVowePVqx9uyFwWDAxx9/rMghMVlZWbh8+TJMJpMCPSOikvrPf/6DJ554QtE2k5OT8c033+Du3buKtqs1Xl5eGDFihNUuXLZp0yYcPnzYKm0TUdGaNGmCTZs2wdfXt9RtiQiWLVuG999/XxdFsZeXF0aPHg0fHx/F2zabzbh8+TIyMzMVb5s0RCwEgClGGjRoIGFhYZYOb6Hi4+OlQ4cOqq+TrWMwGKRjx44SHx+vyDheu3ZNnJ2dVV8vpnTRIrXHxN7Stm1bxbfBpk2bVF8vW6Rz586Kj12O9PR0ad++verryJQ8WqT2mNhb5s+fr9jYr1q1Sjw8PFRfJ1vFmvNjZGSk+Pr6qr6OTMljCV6V2kqqVauGGjVqlLqdhIQE9OzZE5s2bVKgV/ajYsWKGDt2LH755ReUK1dOkTZ37drFc0OIHIzZbMaZM2fw7rvvqt0Vq2vcuLFVryabkZGBo0ePWq19Iipa06ZNFWknISEB8+bN083tKY1GIz777DOrtT99+nSHPyKJeCi11URFRSEiIgJVqlQpcRuxsbHo168fNm/erGDPtK9y5cr45Zdf0LZtW8XajImJwdy5c1kYEzmQtLQ0fPjhh1i7dq3Dn1fs6emJ33//HTVr1rTaMn788UfExsZarX0iso2c/cdt27ap3RWbeeONN/Doo49ape3U1FRcvHjRKm2Txlh6CAE08BW4vaV9+/ZiNptLdMhGbGysvPrqq6qvg61TsWJF2bp1a4nGrDDLly9Xfd0YZaJFao+JvaVp06aSkJBQqjFPSkqSwYMHi8FgUH19bJH33ntPsrKyFHrH5nf79m0JCAhQfT2Z0kWL1B4Te8vgwYNLPeYrV65UfT1sGQ8PDzl27JgC79aC7d27V5ycnFRfT6Z0sQQLYyumbNmysmbNmmIXx3FxcfLKK6+o3n9bx2AwyIgRI4o1VpZITU2VoKAg1dePUSZapPaY2GNWrFhR4vGOjIyUgQMHqr4OtkqdOnXk7NmzCr5j8zt9+jR3/BwgWqT2mNhb/P39Ze/evSUa66SkJNm8ebNUrFhR9fWwZXr37i3p6ekKv3P/T5cuXVRfR6b0sQQLYyvH29tb1q5da9En/VlZWbJ27Vp58cUXdfMtyP0pV66c3Llzx9K3pMWWL1+uy/F01GiR2mNij/H395eDBw9KZmamxeMcHx8vX3/9tVSuXFlXf9OrVq2y4rtXxGw2S7du3VRfT6b00SK1x8Qe4+/vLxMnTpSUlBSLxzk+Pl7at28vLi4uqvfflilfvnyJP0iwxI0bN6RBgwaqrydT+liChbEN4uXlJW3btpXffvtNQkJCChzf8PBwadGihXh6eqreXzVSpkwZWbZsmZhMJkvfkhZbunSp6uvHKBctUntM7DXly5eXmjVryurVqwsd3/DwcPntt990eSQNAFm/fr1V37+HDh3S1ZVrHTlapPaY2GsMBoO88cYbFhV9sbGxup0fu3btapV9xxzTp09XfR0ZZWIJg4gILGCteybqTe3atVG5cmUAQJcuXbBu3ToA9y6UoOebhrdq1Qrbt2+H0ajshdIzMjLQsmVL3pfTgVg4ZdkU58fSKV++PAIDA/HGG2+gefPmeX63Y8cOLFmyRLfzY+PGjbFz506r3Jczx2uvvZb7fxHZN86Pjuf++fGZZ57BY489Bjc3N2RnZ+PUqVM4ceIEZs6ciXPnzqndVVWsX78enTp1slr7TZo0wYkTJ6zWPtmOJfMjC2NSnaurKzZu3Ih27dop3vaKFSvw9ttvIz09XfG2SR3c8SM9mT9/PgYMGGC19lNTU9G0aVPd7lQ7Gs6Pjs1gMKBDhw7w8vJCRkYG/vjjD5hMJrW7pZrAwEBs27YN1atXt0r7+/btQ6dOnRAXF2eV9sm2LJkfebsmUt0zzzyDNm3aWKXt06dPsygmIrv1+OOPW7X9tWvX4vz581ZdBhEpQ0Tw559/qt0NzejXr5/ViuLs7GzMmzePRbHOKHvcKlEJfPHFF4ofQg0At2/fxrx58xRvl4jIFurUqYMKFSpYrX2TyYTjx49r8ltGIqLC1KlTBz169LBa+ydPnsTGjRut1j5pEwtjUlXlypVRtWpVq7Q9depUxMfHW6VtIiJrMhqN6N27NwICAqy2jKtXr2Lp0qVWa5+IyBqsPT9mZmZi9uzZSEhIsEr7pF0sjEk1BoMBvXr1wsMPP6x42xkZGbh8+TK/CSEiu+Tn54fhw4dbdRlLlixBbGysVZdBRKQ0a8+PkZGRWL58udXaJ+3iOcakGnd3d3zyySdWafvIkSP466+/rNI2Ed3j4uICFxeXPI9lZ2cjMzNTpR45hvLly+O3336Dr6+v1ZaRkJCAPXv2WK19a/Pw8EBGRgbMZrPaXSEiGzIYDPjwww+tOj9u2rRJ1xc10zN+Y0yqMRgMcHJyskrb48aN47fFRFb27rvv4tq1a3myceNGVKxYUe2u2bVy5crh6aeftuoyduzYgYMHD1p1Gdbi4uKC/fv3F3phsrp166J///7o378/evfuDTc3Nxv2kIispVq1ahg8eLDV2o+Ojsb8+fP5oZteWXqDa2jgxsyMY8XT01MiIyOLcZv1opnNZpk5c6Z4enqqvn6MdaJFao+JWnnrrbckPT0933hcuXJF2rZtq3r/7DXTp0+3+nu2e/fuqq9nSeLr6yuHDx+WzMxMWbduXZ7fvf7663Lq1Ck5deqUhIWF5a6ryWSSs2fPyqlTp6RFixaqr4M1o0VqjwnjWKlZs6ZkZmZa7f26dOlS1deRsU4smq8sfaOovTKM48Xd3V0uXLhQ4smrIBkZGVK9enXV142xXrRI7TFRKy4uLnLjxo0Cx2TTpk3i5OSkeh/tMe3bt5fs7GyrvV8vXbokVatWVX09i5OAgACZOnWqbNmyJXds4uLi5I033pChQ4fKhg0bJC4ursh1P3TokPTp00eMRqPq62SNaJHaY8I4VqpWrSpRUVFWe782bdpU9XVkrBOL5itL3yhqrwzjmOnfv3+JJ6+CbN68Wby8vFRfL8Z60SK1x0StGI1GmTlzZoFjEh8fLy1btlS9j/aYGjVqSFJSktXer6NHj1Z9HS2NwWCQl156Se7evVvguphMJjGbzcVa/7S0NOnZs6fq62aNaJHaY8I4Xlq1amWVOfLEiRNSpUoV1dePsU4swXOMSVWi4HnAqampmDt3LpKTkxVrk4gezGw2Y9++fQX+LikpCSdOnLBxjxzDrVu3MH/+fKu0HRISgpUrV1qlbWvw8fHBkiVLHng/Z6PRCIPBUKw23d3d0aJFCyW6R0QqOHz4MFJSUhRt02w2Y/HixYiIiFC0XbIvLIxJVevXr8fFixcVaSs+Ph5btmxRpC0iKh1XV1f4+fmp3Q27VK5cOTRr1kzxdkUEy5cvx/Xr1xVv21oMBgM8PT0Vb7d79+6oVauW4u0SkfWlpaVh2rRpirYZHByMX3/9VdE2yf6wMCZVxcfHIz09XZG2oqOjeSVqIo0wGAwwGvlfTEnExcVh9erVit8uJCsry2rfRFtLv3794OHhoXi7vr6+eO+99xRvl4isT0QQGRmpWHvZ2dmYM2cOYmJiFGuT7BP3WsghmEwmfPfdd8jIyFC7K0S64eTkhC5duhT4u4yMDNy+fdvGPXIcc+bMwd27dxVtc+vWrYiLi1O0TWsyGo149NFHrXZbv06dOqFu3bpWaZuI7EdYWBjmzp2rdjdIA1gYk0M4e/Ys1q1bp3Y3iHTFyckJzzzzTIG/q1atGgYOHKjIcnK+ff53yHLJycn4+eefFT8vz5oGDhyInj17Wq3969evIywszGrtE5F9+O677xQ7epHsG/csSFXVq1dHuXLlSt2OyWRCVlaWAj0iIku4urpi/Pjx8Pf3L/D3BoMB7u7upV5OvXr1cPDgQVy8eDFfRo4cWewLL+nVkSNHsHnzZrW7YbGhQ4di6tSpcHV1tdoynn76aaxbt47vISIdO3fuHH7//Xe1u0Ea4ax2B0jf2rRpg9q1a5e6nVmzZinQGyLtq1mzJubPn4+9e/di/fr1AO5dxdiWh8jWqlULw4cPx4cffmjVb27r16+PtWvXokGDBgX+/ttvv0VkZCR++eUXq/XBUSxcuNBuPjzs3LkzJk+ebJWLbt3P09OTF+Ai0rmpU6ciKSlJ7W6QRrAwJrt34sQJu/omhKg0vLy80KZNG7Rt2xZff/01AGDv3r24cOECpkyZgri4OJjNZqsVys888wxWrVr1wG+KlVKjRg1s2LAB9evXf+Bz3Nzc8Mgjj8BgMPDCe4W4ceMGDh8+rHY3LOLu7o63337b6kUxcO9iZJmZmVZfDhEpr0yZMqVug/uP9G8sjMnuhYSE8L5zpAsPutLzc889h+eeew59+vSB2WxGcnIyZsyYgaysLERERODXX38tdeH43HPPAQB+++03i4tis9lc4uW9/vrrhRbFOd59913MmDEDUVFRJV6Wo4uKikJISIja3bBIeno69uzZg44dOyrSntlszvfez8jIwMKFC3Hu3DlERUXxQxUiO+Ph4YHRo0eXqg2z2YxFixZx/5HyYGFMdi07Oxvff/+92t0gsrpatWqhR48eGDZs2APPicz5ls3Lywvjx48HcK8IePjhh3H8+HFs3brV4iu3u7i4oF27dnBxcYG/vz++++47iAh8fHwsev3t27exYMECi577b/7+/nj77bcteu6CBQsUv3qzo/n222/V7kKxXLp0CcnJyfDy8ipVO7t378a0adNw7ty5PI+bzWaEhYWV6oMbIlKPwWCAm5tbqdq4fPkyVq5cqVCPyGGIhQAwjOLp16+fpW/BAi1btkzc3NxUXw/GdtEiW6z30KFDS9VHk8kkP/zwg3h4eBS5rDp16siECRMkOzu7xMv7559/xNnZuUTr2qlTJ4uWceLECalVq5bq70lrxNPTUyIjI0s8/jni4uKkcePGqq9PcdO3b19JTEws9vpmZmbK119/LS1bthQvLy/V18PW0SK1x4RxvJR2fszKypIPPvhA9fVgbBtL8BtjsltmsxmXL1/mvYvJ4Xl4eOD1118vVRtGoxHvvfceAOCTTz4p9O/mxx9/xEsvvVSq5U2bNg3Z2dkleq23t3eRz8nKysK4ceNw/fr1Ei1D60QESUlJqFy5cqnaWb9+PU6dOqVMp2xoyZIluHPnDt577z106NDBoitHZ2VlYcKECfjyyy/5bTARPVBYWBjmzZundjdIiyz9dAUaqPQZx0tpvjG+c+eOlCtXTvV1YGwbLbL2OpctW1aio6OL1SeTySS7du2SxYsXy5kzZyQzM1Oys7PFZDJJ586dC13e5s2bSzUe4eHhEhQUVKJ1dXJykosXLxa5jEOHDomTk5Mi4+vi4qJYW0pm0KBBpdoOe/bskcqVK6u+HqVJuXLlZNy4cRIdHS1ms7nQ9T148KAmt6Mto0VqjwnjeCntN8YDBw5UfR0Y28cSvI8x2a2JEyciMTFR7W4QWV1SUhKmTp1arNcYjUaEhYVh0KBBeOGFF1C3bl1069YNa9aswZ07dx74Oj8/P1SpUqVU/Q0LC8t3XmdxuLi4FPmcEydOwGQylXgZOVq2bInz589j/fr16NatG1555RWr3oKqOEpzxeS7d++iR48edn9RsoSEBHzxxRd47LHH8P333+PGjRsPfK7ZbFbkPUFEjuvixYtYsWKF2t0gjeKh1GSXQkJCsHz5cl5NlHRBRBAcHIz09HS4u7tb/LqXX34ZP/74IwYNGgTgXsG6bt26PM/5+uuv8cILL+T+XL58+QfeN1grYmNjFbl3ub+/P3788Uc8/PDDePjhh/HKK68gKysLx48fh9lsxvTp07Fjxw7ExsYq0Ovii4mJQWpqaoluXTRr1ixERkZaoVcPVqtWLfTs2ROvvPJKnsePHTuG//73v0hJSSlx27dv38aYMWOwYMECVKlSBZ999hl8fHxQu3ZtZGRk4NatW7hw4UJpV4GI7EB6ejrmzJmDL774otivnTRpEpKTk63QK3IIlh52AA18Bc44Xt544w3JzMws9mEwI0eOVL3vjDrRIlust8FgsOgQ43+LiYmRWbNmSc2aNaVq1ari4uKSp10/Pz/ZtWuXouMxZMiQEq9nhw4dJCkpqdD2V6xYodi4zp8/v9Bl7du3TxYvXiyBgYH5xs4WOXHiRLHH/8aNG1KnTh2b93XJkiUP7NMTTzxhlWU2b968xIftO2K0SO0xYRwzJTkV7/jx4+Ln56d63xl1YgltHC9GurVmzZpif8p/+fJlrFmzxko9ItKuklzMytfXF++++y6uXLmCq1evYubMmQgKCsr9fWRkJLp37459+/aV+GJZ/3bs2LESv7ZevXqF3qbHZDJh69atJW7/37Zt24a0tLQH/r5Fixbo27cvTp8+jVGjRsHV1VWxZVvLihUrEBoaavPlZmVlPfBQ5tJezO1B/vnnn1Idtk9E+iAimD9/vs2PpCH7wsKYVGUymYp19VARwYoVKxz2SrREDyIi2Lx5c4lf7+bmBjc3NwwePBjLly+Hs/P/nUkTFRWFLl26qP6Bk6urKx577LFCn5OdnY1t27YptsxVq1ZhypQpRT7P1dUVn3/+Ofbu3Ztn7LTm5s2bWLx4sSrL/vjjj9G/f3/s378/3+8qVaqkQo+IiO65ePEi1q5dq3Y3SOt4KAyjdopzqGB4eLhUq1ZN9T4z6kWLbLXuLVq0kEuXLuUuNzY2VuLj40VEJCwsTF588UV54okn8mXmzJly8OBByczMlISEBOndu3dum+XKlZOFCxfK8ePHS3Xf4vuV9LBZX1/fIg+jnjdvnuKHNFerVk0OHDhg0bplZGRI3759bbbNi3so9fTp01X/G61QoYIsX748z5XUrXUoNZM3WqT2mDCOmYoVK+b5/7AwWVlZ8uGHH6reZ0bdWEK7H3uTbixZsgT/+c9/inye2WzG/PnzcevWLRv0ikh7QkJC8Pnnn+f+fOvWLTg7O8PPzw+XLl3CmTNnCnzdsWPHYDQa0aFDByQnJ2PXrl25v3Nzc0OjRo3w+OOPK9LH/fv34+rVqyV6bY8ePQq9uFhcXBxmz56NrKysknavQLdu3cIbb7yB7du3IzAwsNDnOjk5lehiWLYQHx+PadOmqd0NxMbGolevXmjWrBlq1qwJAKoc2k1EjismJga3bt1C/fr1i3xuYmIiFixYYINekd3jJ36M2qlRo4ZcuHChyPdgREQE71vMWDpl2ZTaY1Ka1K5dW4KDgxUbixUrVoinp6fF95P18PAQT09PCQgIKPLb0evXr4ubm5vVxmL06NFFrt+VK1fE1dXVZtvn0KFDFo/9pEmTVH8/MepGi9QeE8Zx07JlS4uOdFqxYoVN521Gm7FovuLExmghY8eOFbPZ/MD3X1xcnHTs2FEMBoPqfWXUjRapPSalSatWrRQdi7S0NImIiJCOHTsWueznn39erl27JhERERITE1Nk26W52rUlCQgIkJCQkEL70K9fP5tun1deecWicd+xY4dUrFhR9fcTo260SO0xYRw3Li4u8tVXXxW5/9iqVSvV+8qoH4vmK05sjBZStWpVuX79eoHvvSNHjkjnzp1V7yOjjWiR2mNSmihdGOc4fvy41KpVq8Bl+vj4yOuvvy5RUVEWt5eUlCRt27a1+ng0adJE0tPTC+zDyZMnpXz58jbdPl5eXkXeUiolJUVeffVV1d9LjPrRIrXHhHHsFLb/ePfuXe4/MrmxaL7ixMZoJUFBQTJhwgQJDQ2V0NBQOXv2rPTo0UO8vLxU7xujnWiR2mNSmjRr1kxSUlKsMi6nTp2Sxx57TGrXri1ff/21rFu3TtatW2fxha7uFxERIY8//rjVx8PNzU2WLVtWYB/69++vyjYqU6aMLFy4UEwmU74+bd26VVq3bq36+4jRRrRI7TFhHD85+4+3b98WEZGYmBgJCQmRTp06qd43RjuxhOH/T1pFMhgMljyNqFQMBgOMxv+7i9iD7olJ+mXhlGVT9j4/vvPOO5g6dSq8vb1L3VZycjIAwN3dHc7Ozrl/w0ajsVTjFBkZiQ4dOuD48eOl7mNRRo0ahQkTJuTp74kTJ/Dyyy+rdg9MNzc3vPPOO3kuTmY2m7Fs2TLExMSo0ifSHs6PpFcGgwEBAQHo2rUrdu/ejVOnTnEfkvKwaH7kJ34Mw9hTtEjtMSltjEajVK1aVbZu3VqqcUhPT5eGDRtKgwYN5MyZMwqN7v/54YcfLL6oV2ni5eUla9euzV1udna2DB8+XPXtxDBFRYvUHhOGYRjAsvnx/76aIyIiXTKbzbh9+zbWrVtXqnauXbuGiIgIXL9+HW+++SaefPJJxMbGKtRLYOjQoRg6dKhi7T1IcnIyfvjhByQkJAAAZs+ejZ9++snqyyUiIiL1sDAmIiJFrFixAnfv3kVqairOnTuHEydO4Oeff873vEmTJuGjjz7C/v37i9W+s7Mz6tevD2dnZ6W6/EC7d+/GiBEjcPfuXcyePRvZ2dlWXyYRERGph4UxEREBAA4cOICIiIgSvVZEkJGRkecxs9mMS5cu5XvuyJEj8eijj8JsNhd7OUOGDMHAgQNL1MficHFxQVhYGNLS0nD16lWrL4+IiIjUxcKYiIgAAGfPnn3ghZzk3l0MEBoailOnTuHHH3/EwYMHc4vbO3fuYM6cOfled/HixXyHaBuNRrzwwgsluiiPwWCAk5NTsV9XHM7OzpgwYQLWr1+fu0wiIiJycLx4AsMw9hQtUntMlMxLL70k0dHRuesWFRUl165dk379+klgYKBUq1ZNKleuLADE19dXAgMDZfbs2fLGG2+IwWAosE1PT0+ZOXOmImOdnp4u1atXt9r6t2jRQs6ePStZWVkiIpKVlSVDhw5VfbswjCXRIrXHhGEYBuB9jBmGccBokdpjonTat28vFy5cEJPJJNHR0bJ79+5Stzl8+PA8BXdJZWZmSpMmTay27kuXLs23zJCQEPn222/F3d1d9W3DMIVFi9QeE4ZhGICFMcMwDhgtUntMlI6Tk5MMHjxYMjIyRETk7t27MnnyZHFzcytVu88//7yEh4fL3bt35e7du5Kenl6i8Q4ODpY5c+ZIy5YtpUKFClKmTBlF1rtmzZpy+fLlBy53ypQpUr58edW3D8M8KFqk9pgwDMMAls2Phv8/aRWJ51gRkRZYOGXZlKPMjwaDAQEBARg0aBBGjhwJV1fX3N/FxMSgVq1aSElJKdUyvLy8YDAY4OPjg5UrV6JZs2bFer3ZbIbReO/yGOnp6cjKyso953nVqlWlen80adIEx44de+DvTSYTLl68iMcffxxZWVklXg6RtXB+JCIqmCXzIy++RUREAIAePXrgwIEDGDNmTJ6iuDRq1KiB5s2b5/6cnJyMpKQk3LlzB8HBwcVqKzExEf/73/9y7y/s7u4Ob29vPPvss1iyZAn++9//ok6dOor0uyBOTk4IDAzE5MmT0bhxY6sth4iIiGyP3xgTkV3hNyLWU61aNSxYsADNmzeHt7d3nt9Z+o2xj48PnJycUK1aNbzyyit46623kJycjNatWyMxMTHPcxs3box9+/bBy8vLov5t3LgRBoMBcXFxaN26NapWrZrvOaGhofj999+xcuVKXLt2Ld8yC1PUN8b3i4iIwK+//oqRI0da3D6RtXF+JCIqmEXzI88RYRjGnqJFao9JaeLl5ZXvseHDh+dbx2XLlomLi0uBbfj4+Ejfvn2lZs2asnHjRjl06FCe14aGhkrdunXzva58+fISFxdXojHv06ePnD59utDnbNu2TWbPni0BAQFSuXJlcXV1LXQsWrZs+cC20tLS8vX19u3b0rhxY9W3IcPkRIvUHhOGYRiAF99iGMYBo0Vqj0lp0q5du3yPrVu3Lt86rlix4oGF8Y4dOyQzM1NSUlLEbDbne+3169clMDAw3+vc3d3ljz/+sHic9+7dK9nZ2SJyr1DN+XdRUlJSJCkpSebNm1foFa23b9+e53U7duyQ+Ph4mTp1qvTp00cCAwPlypUreZ7TpUsX1bchw+REi9QeE4ZhGMCy+dEZRESkW1u3bs332OTJk9GpU6fcQyD37duHBQsWFHjBqerVq6NatWpwcXGBi4tLgcvw8/NDjRo1cOnSpTyPp6enY86cOWjVqlWBh1OfO3cOjzzyCJycnLBnzx4EBwfDx8cHQUFBcHd3t3gdPT09AQADBw5E+/bt0bVrVxw5ciTf8w4ePIj4+PjcnxctWgSj0YisrCw89thjqFGjBqpVq5bnNWPGjMGGDRtgNpst7g8RERFpDwtjIiLK49atWzh27BgOHDiA+vXr4/PPP3/gubfNmzdH/fr1C23P3d0do0aNwo4dO/IVkElJSfkK7vj4eISGhuLatWtITU2Fk5MTPvjgA5w+fRqff/45goKCSrxu1atXx5o1a/D000/j5s2beX732WefFfgaZ2dndOrUCW+99VZukZ2jQoUKJe4LERERaQgPhWEYxp6iRWqPiVp59dVXZe/evRaNUVJSkrRv3z73tVWqVJEuXbpItWrVJCQkJPd5iYmJhR6e3KhRI5k8ebLcvn1b0tLSSrS9zGazfPjhhxavp7Ozs7Rv316OHTuWr63ExETp1q2bGAwG1bcHw2iR2mPCMAwD8BxjhmEcMFqk9pioEU9PT9m4cWOxxmnEiBECQGrVqiXTpk2TzMxMSUtLyz0vOTU1Vbp06VJkkWk0GqVOnTpy6tSpEm2vzMzMAs95LizOzs75LiqWIykpSd544w0Wx4zq0SK1x4RhGAawbH7kfYyJiKjY0tPTcf78+RK9VkTw0ksvwcXFBe7u7rnnMh86dAibN28u8pYKZrMZ4eHheOutt3DmzJliL//QoUPw9/cv1muys7PxzTffFPg7Ly8vLFiwAB988EGx2yUiIiJtYGFMRETFZjabMXv27AIvYvUgNWrUgLOzM0SkwItVHThwAJmZmRa1lZmZiXPnzqFLly7Ytm0bkpOTLe7Hs88+izVr1qBr164WvwYA9uzZg127dhX4Oy8vL0ybNg2//fYbnnjiCTg5ORWrbSIiIlIZD4VhGMaeokVqj4maqVGjhly+fNmicUpKShJfX1/x8/OTnTt35vt9TExMgfdVtiSDBw+W1NTUYm23ixcvFnt58+fPL7LdzMxMGTFihFSsWFH17cPoK1qk9pgwDMMAPJSaiIis7NatW4iLi7PouTt37kRqaioiIyMxfPjwIg+ZLo558+ZhxIgRBd5S6kHq16+Pbt26FWs5o0ePxp49ewp9jouLCyZPnoy9e/ciMDCQ3x4TERHZARbGRERUYkFBQahRo0aRz9u9ezfmzJmDtLQ0AEBsbCyWLl2KZcuWITExEQBw8uRJZGdnl6gfIoL58+dj6NChWLZsWe79iI8ePYply5Zh2bJluH37dp7XGAwGPPHEE3B2tvzOhXfv3sXcuXORnp5e6POMRiMeeeQRHDhwANOnT0eTJk2KvU5ERERkOwax8CP7nIujEBGpSclvGZWi9/nxn3/+wdNPP13g7yIjI7Fp0yaMGDECCQkJBT6nYcOGcHd3x40bNxATE6NInwIDA1GmTBmEh4cjKioKAFC3bl0MHjwYI0aMyP0WNzs7GzNmzMDYsWORkZFhUdtGoxEDBgzA1KlT4eXlZdFrIiMjcfPmTdy6dQuTJk3Kffz06dNISkoq5toRFYzzIxFRwSyZH1kYE5Fd4Y6f9qxevRqPP/54vsc3b96MhQsX4vjx4yr0qmAuLi4YP348Pvjgg9xvikUEX331Fb788stitTV48GBMnToVnp6eJe7Pnj17cPfuXWzduhVr165FdHR0idvSugEDBmDdunWIjY1VuysOi/MjEVHBWBgTkcPhjp/2ODk5FTgGZrO5wKtPq83Z2RkXL15E3bp1cx8LDg7Gjz/+iB9++MHidgwGAwYMGIBZs2bB1dW1VH0ym824cOECNm3ahFWrVuH06dPFOl/aHqxevRpHjhzBxIkT1e6Kw+L8SERUMEvmR55jTEREpWIymZCdnZ0vWiyKAaBBgwYoW7ZsnscefvhhfPTRR+jZs6fFF8sSESxcuBDDhw+3+DDsBzEajQgKCsKoUaOwc+dO/Pzzz/Dw8ChVm1qzY8cOnD17Vu1uEBERFYjfGBORXeE3IlQaY8eOxbBhw+Dv71/g7yMiIvDQQw8VeXGt+5UtWxbXrl1DhQoVlOomRAQXL17Ep59+io0bNyrWLjk2zo9ERAXjN8ZERET32b59O0wmU4G/GzNmDPr27YvMzMxitfnmm2/C29tbie7lMhgMaNCgARYtWoQOHToo2jYRERHlx8KYiIhU5+npqXhxWZDDhw+jS5cu+a5+febMGSxduhRbt24t1iHgRqMRjz76KFxcXJTuKgDA19cXv/zyC9q3b89v3oiIiKyIhTEREanGYDAgICAAu3fvxty5c0t9EStLHD9+HH/99VfuYVUnT57ErFmz8t3n2BI1a9ZEv379FO5hXuXLl8eSJUsUPVSbiIiI8mJhTERExRIYGIhOnTqVup2xY8fi3Llz2LdvH5588kk0btw49xZKlnB3d0fbtm0RFBRUrOWKCIYPH462bdtizZo16NSpE+bNm1fc7gMAMjIycODAAatfQdrX1xdTpkyx+L7JREREVDy8+BYR2RVeXEZ9Y8aMwcWLF7F+/foSt1GtWjUcOHAAAQEBuY/dvXsXtWrVQnJyskVtDBs2DD/88AMiIiLQsmVLhISElLg/peHk5ITnn38eY8eORZUqVQAAFSpUgJ+fn+LLevTRR3Hu3DnF2yXHwPmRiKhgFs2PYiEADMMwqkeL1B4TW8dgMJS6jTFjxuQbx/T0dOnRo4fFbVSvXl0iIyPFbDbLd999J2XKlBE3NzdVxyUnjRo1khkzZkhsbKzEx8cr9l778ssvVd/+jHajRWqPCcMwDGDZ/MhvjInIrlg4ZdkU58fiCQgIwKZNm9CgQYN8v9u5cydee+01JCQkFNmOwWCAj48PRowYgaioKDz55JMwGAwYMmQIUlJSrNH1YnF2doanpyc8PT3x0UcfwdXVFa+99hqqVasGo7FkZzJ9/vnn+PrrrxXuKTkKzo9ERAWzZH5kYUxEdoU7fvYtICAAa9asQZMmTQr8vdlsRufOnUt0715/f3/06tULb7/9NqZPn47169cjKiqqtF1WVPXq1VG9enXs2rUL7u7uxX49D6WmwnB+JCIqmCXzIy++RURENpOdnQ1fX98H/t5oNGLEiBEoU6ZMsdu+c+cOpk2bhkGDBuG1115DYGBgabpqFTdv3sSJEyewbNmyYr/2zz//xLVr16zQKyIiIrL88p9EDiEKxAAAd7NJREFURESldOvWLXz00Ue5tx5q3rw5Xn/9dZQtWzb3OT4+PvD29i7R4dAmkwn79+/HSy+9pFiflZaZmYm5c+eia9euFt+CSUQQEhKiiUPEiYiIHBEPpSYiu8JDBR2Li4sLGjZsiPfffx/dunXDggULcPLkSSxZskTtrlmVi4sLQkJCULNmzQc+x2QyAbh31eutW7eie/fuiI+Pt1EPyR5xfiQiKhjPMSYih8MdP8fk4uKCqlWrIiwsTJPbWGmFFcZHjhzB9evX8e2336Jy5cp49913sWTJEmzYsEGFnpI90eLfDudHItICFsZE5HC440eOwNnZGXv27EHz5s1zH4uLi8POnTsxZMgQxMTEqNg7slecH4mICmbJ/MhzjImIiGxMRBAREZH78/r16zFlyhTs379fxV4RERHpFwtjIiIiK6lUqRIGDRqU57G//voLly5dQqNGjWA2mxEfH4/Zs2ezKCYiIlIRD6UmIrvCQwXJnvTu3RtLly7N81hsbCw2btyIU6dOoVy5cvj5559x+/ZtlXpIjoTzIxFRwXgfYyIiIpWUL18e7733Xr7HK1SogL59+2LatGl46qmnkJGRUeDrK1WqhPHjx8PHx8faXSUiItI9FsZEREQK8/b2xvz58/Hkk08W+ryXX34Zv/zyCwICAvIUwL6+vvj111/x6aefYtKkSTAa+d81ERGRNfF/WiIiIoW9/fbbeO211yx67ksvvYQrV67ghx9+gMFggIuLCz7++GO0adMGALB582aYzWZrdpeIiEj3ePEtIiIiBT333HP473//W6xzK11dXdG1a1ecP38eLVu2RIsWLXJ/l52dbY1uEhER0X1YGBMRESmoW7duqFy5crFf5+HhgfHjx1uhR0RERFQUHkpNRESkAcnJyXnubQwAFy5cwNGjR1XqERERkX6wMCYiIlLQtm3bkJSUZNFzzWYzUlNTsXnzZrz11lto1qwZduzYgR07diA1NRXz58/nrZyIiIhsgPcxJiK7wvt0ktYZDAZ06tQJS5YsQdmyZQHce98ePXoUIoKmTZvi9OnTOHHiBMLDwzFr1iykpKQgJSUFAODl5QUA8PT0RGxsLM8xJotxfiQiKpgl8yMLYyKyK9zxI3sRGBiIESNG4OTJkzh48CBu374NEUG1atUQGRmZ77BpotLi/EhEVDAWxkTkcLjjR0RUMM6PREQFs2R+5DnGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6ZvFVqYmIiIiIiIgcEb8xJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjMkuPP/883j++efV7gYRkeZwfiQiR6fGPNevXz/UqlXLpsskdbEwJpu7ffs2vvzyS5w6dapU7cyZMwfdunVDzZo1YTAY0K9fP0X6R0SkFiXmx/DwcIwbNw5PPfUUfHx8ULFiRTz//PPYvn27ch0lIiohe90PvHv3LiZNmoTnnnsOlSpVQvny5dGsWTOsXLnSqssl22FhTDZ3+/ZtjBs3rtQT4vfff4+dO3eiYcOGcHZ2VqZzREQqUmJ+3LBhA77//nvUrVsX33zzDT777DMkJSWhbdu2WLRokXKdJSIqAXvdDzx48CDGjh2LChUq4H//+x++/fZbeHp6okePHvjiiy+svnyyPlYTZLf27NmT+ymhl5eX2t0hItKEVq1aISwsDBUrVsx9bMiQIWjcuDE+//xz9O/fX8XeEREpozT7gbVq1UK/fv3w5ZdfWvyahg0bIjg4GAEBAbmPvfvuu2jTpg2+//57jBo1CmXKlClWP0hb+I2xjj3o3Ikvv/wSBoMh92eDwYDhw4dj/fr1CAoKgpubGxo2bIgtW7bke+2tW7fw9ttvw8/PL/d5CxcuzP397t278eSTTwIA+vfvD4PBAIPBgMWLFxe7/wEBAXn6SUSkFHueHxs2bJinKAYANzc3vPzyy7h58yaSkpKK1R4ROSZ7nucA2+8HPvTQQ3mKYuDe2HTu3BkZGRm4evWqzfpC1sFvjMki+/fvx9q1a/Huu+/C29sbP/zwA7p27YqwsDD4+voCACIjI9GsWbPcCbRSpUrYvHkzBgwYgMTERHz44Yd45JFH8NVXX+Hzzz/HoEGD8OyzzwIAmjdvrubqERGVmL3MjxEREfD09ISnp6ci7RGRftjLPKeGiIgIAMj3gSTZHxbGZJGLFy/iwoULqFOnDoB7h+o99thjWLFiBYYPHw4AGDt2LEwmE86ePZs7SQ4ZMgQ9e/bEl19+icGDB8PPzw/t27fH559/jqeffhpvvfWWautERKQEe5gfQ0JCsHbtWnTr1g1OTk6KtUtE+mAP85waYmNjMX/+fDz77LPw9/dXuztUSjyUmizSpk2b3MkQABo1aoSyZcvmHjYiIlizZg06duwIEUFMTExuXnzxRSQkJODEiRNqdZ+IyGq0Pj+mpqaiW7du8PDwwIQJE6y2HCJyXFqf5wqTkZGRpz8xMTEwm81ITU3N93hxmM1m9OrVC/Hx8Zg5c6aVek+2xG+MySI1a9bM95iPjw/i4uIAANHR0YiPj8e8efMwb968AtuIiooqdBnJyclITk7O/dnJyQmVKlUqRa+JiKxPy/OjyWRCjx49cOHCBWzevBlVq1Yt8jVERP+m5XmuKCtWrCjwooOTJk3CpEmT8jwmIha3+95772HLli1YunQpHnvssVL3k9THwljHHnTBApPJlO+xBx16lzOBmM1mAMBbb72Fvn37FvjcRo0aFdqfyZMnY9y4cbk/BwQE4Pr164W+hojIGhxlfhw4cCD+/PNPLF++HC+88EKRzyci/XCUea4oL774IrZt25bnsbfeegvt2rVDnz59StTmuHHjMHv2bEyYMAG9e/cudR9JG1gY65iPjw/i4+PzPX7jxo1it1WpUiV4e3vDZDKhTZs2hT73QRNxnz590KJFi9yfPTw8it0PIiIlOML8+Mknn2DRokWYPn06evbsWbxOE5HDc4R5zhL+/v75zv91d3dH7dq1i+xrQWbNmoUvv/wSH374IUaPHq1IH0kbWBjrWJ06dZCQkIAzZ87kfop3584drFu3rthtOTk5oWvXrvj1119x7tw5BAUF5fl9dHR07uEwOfd4+/dkXLt2bdSuXbsEa0JEpCx7nx8nTZqEyZMn47///S8++OCDYveZiByfvc9zali5ciXef/999OrVC1OnTlW7O6QwFsY61qNHD4wePRpdunTB+++/j9TUVMyZMwf16tUr0QUSJkyYgF27dqFp06YYOHAgGjRogNjYWJw4cQLbt29HbGwsgHsTcfny5fHTTz/B29sbZcqUQdOmTfHQQw8Va3kbN27E6dOnAQBZWVk4c+YMvvnmGwDAq6++WuQhO0RED2LP8+O6deswatQoPPzww3jkkUfwyy+/5Pl927Zt4efnV+x1ICLHYs/zHGD7/cAjR46gT58+8PX1RevWrbF8+fI8v2/evLnmC3sqHAtjHfP19cW6devw0UcfYdSoUXjooYcwfvx4BAcHl2hC9PPzw5EjR/DVV19h7dq1mD17Nnx9fdGwYUN8//33uc9zcXHBkiVLMGbMGAwZMgTZ2dlYtGhRsSfENWvWYMmSJbk/nzx5EidPngQAVK9enYUxEZWYPc+POTuKwcHBBZ77tmvXLhbGRGTX8xxg+/3ACxcuIDMzE9HR0Xj77bfz/X7RokUsjO2cQYpz+TUiIiIiIiIiB8P7GBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESka86WPtFgMFizH0REFtPa7dc5PxKRVnB+JCIqWFHzI78xJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1zVrsD9GAGgwGPPvooXF1dkZWVhTNnzkBE1O4WEREREWnU/fuPAHDnzh3cunVL5V4RaR+/Mdawjh074sCBAzh69CgOHTqEpUuXIjAwEC4uLmp3jYhIde7u7vD394efn5/aXSEi0pQePXrg6NGjOHr0KLZs2YJPPvkEFStWVLtbRJrGwljDGjRoAC8vLwD3dgDfeustnDp1Cj/++CMaN24MJycnlXtIRKSeDh064OrVqzh37hzGjRuHbt26wdXVlR8eEpGuiQiOHz+e+3NQUBAmTJiAI0eO4MMPP4SnpyecnXnQKFE+YiEAjI3z6aefPnB73L17VxYuXCjdu3eXNm3aqN5XhrFltEbt8dBjnJ2d5eTJk3m2Q2pqqoSFhcnZs2elZ8+e4unpqXo/GcbW0Rq1x0OPMRgM8vXXXxe4PUwmk4SHh8vGjRu5/8joLkUx/P9Jq0gGg8GSp5GCPv30U4wfP77I5yUnJ+Ps2bPYsmULli9fjtDQUBv0jkg9Fk5bNsP50fb69OmDefPmwc3NDVlZWTh9+jTMZnPukTYighMnTmDixIm4cuUKTp8+rbn3DZE1aO19zvnR9pydnREcHIxatWoV+rz79x+3bNmC8+fPIyUlxTadJFJBUfMjD6V2AF5eXnj66acxbtw47NixA9999x2qVq0Kf39/GI3cxETkeKpWrQo3NzcAgMlkQmhoKEJCQpCWlgbg3s54kyZNsHLlSvzzzz+8RgMR6UaHDh0sOp/4/v3Hw4cPY+3atZg1axZq1KjB/UfSJx4Ko90Udih1Ycxms6Snp0tSUpJMmjRJatWqJa6urqqvD8MoFa1Rezz0mJLMj+np6TJ37lwZMWKEeHp6irOzs+rrwTBKR2vUHg89pqT7jzly9h8HDBjA/UfGoVIUfhzkgAwGA9zc3ODl5YWPP/4Yhw8fxvHjx9GzZ0+4u7ur3T0iIlW4ublh0KBBmDRpEi5fvoy1a9eiR48eqFmzptpdIyJSzKVLl5CcnFzi1+fsP86ePRvHjx/HW2+9hWbNminYQyJt4jnGGmbpOcaWEhGcPHkSEyZMQHBwMM+5I7ultfct50fbq1mzJg4dOgR/f/9StxUcHIyIiAh88803OHDgAM+xI7vG+ZEsPce4OGJiYrBt2zb88MMPCAsLw+3btxVrm8hWipofWRhrmNKF8f1SU1OxceNGmM1mzJgxAzdu3EBERIRVlkWkNO74kTV2/ABg69atCA0Nxffff4/ExETExcUp2j6RtXF+JGvNjznOnDmD8+fPc/+R7A4LYztmzcL4fllZWYiLi8O8efNw6tQp/PHHH8jKyrL6colKijt+ZO0dv8zMTJw9exZ//fUX1q5di0uXLiEjI8MqyyJSEudHsvb8mIP7j2RvWBjbMVsVxvdLTU3FiRMnMHv2bJw8eRKXLl2y6fKJLMEdP7LVjh8AxMbGIjExERMmTEBoaCi2b99u9WUSlRTnR7Ll/JiD+49kD1gY2zE1CuP7hYeH486dO5g0aRJCQkJw6tQp1fpCdD/u+JEaO34AkJSUhIsXLyIzMxNfffUVbt++jfPnz9u0D0SF4fxIas2POcLDw7F+/XrMnTuX8yNpCgtjO6Z2YXy/5ORkbN68GQcPHsTq1asRHR2N9PR0tbtFOsUdPzIYDPjqq6/wv//9T9V+REVFYdeuXfjzzz/x119/8ZxkUh3nR1K7MM5x//y4Z88epKenIzo6WtU+kb6xMLZjWiqMc5jNZmRnZ2Pt2rU4f/48Zs2ahZSUFGRmZqrdNdIR7vgRAHTt2hWrV69WuxsAAJPJhJMnT2LLli1YuXIlQkJC+OEhqYLzI2mlMM5hMplgMplw48YNrFy5Etu3b8fhw4dhNpu5/0g2xcLYjmmxML6fiCAqKgqXL1/GlClTsHHjRs39h0yOSWvvM86P6tBSYXy/uLg4JCQk8JxkUgXnR9JaYfxviYmJSElJQXBwMH7++WccO3aM5ySTTRQ1PzrbqB/kgAwGA/z8/ODn54emTZvi7NmzOHDgAH7++WeeU0JEuuXj4wMfHx/89NNPSExMxJUrV7B27Vr8/vvvCA0NVbt7RESqKlu2LMqWLQt/f38899xzCA8Px9q1a7Fq1SpcuHCBp6SQaviNsUJ8fHzg7e2NtLQ0xc6f0Po3xg8SGRmJNWvWYMyYMUhMTFS7O+SA+I0IOTk5Yc2aNejUqZPaXbHY1atX8euvv2LOnDm4ffu22t0hB8X5kbT+jXFh9u/fj9mzZ+PAgQN5Hn/mmWcQHByMc+fO8TQVKrEi50exEACmkLRu3VpWrlwpp0+flg8//FA8PT3FxcWlVG1++umnlm4eTRo6dKjq24VxzGiN2uOhx3h4eMj169fV3vTFZjabJSIiQpo3b676GDKOGa1Rezz0GHudH3NkZ2dLZmZmnmRnZ0tWVpZMnz5dnJ2dVR9jxj5TFCNIETt27ED//v3x/vvv49lnn0VoaChWrFiBPn36wN/fX+3u2VxiYiJCQkLU7gYROah33nkH1atXV7sbxZZzCkqTJk3U7goROSh7nR9zODk5wcXFJU+cnJzg7OyMYcOGoVevXmp3kRwUC2MFpaamYs+ePejVqxe6deuGcuXK4aeffsKePXuwd+9etGnTBg0aNFC7m1YXHx+PAQMGYNu2bWp3hYgcVJkyZeDk5KR2N0pk165d+P3339XuBhFpWIMGDbB9+/bc/Ud3d3eLXufi4oJHHnnEbufHf0tLS8OdO3dyf3Z2dsann36qi/1pUoGlhzVAA19/22PatWsnw4YNkxs3bojZbJbbt2/L6tWrpXv37uLj4/PA15UrV06OHTtWqkNRbCkrK0uuX78uv/76q7Ro0UL1cWccO1qj9njYe9544w35/fff5auvvpJatWpJjRo1xGAwPPD59jY/5khISJChQ4dKlSpVVB9zxnGjNWqPhz2nW7ducuPGDTGZTLJly5bc/cdatWpJrVq1pGrVqvleM2LECMnOzlZ7sysmMTFRQkND8z0eHBwsq1evlrZt2xb5fwbD5KQoLIxtFG9vbxkxYoQsXLhQ0tLSJDs7W/755x/p16+feHp65jlfwmg0yoABAyQrK6t4s4dK0tLSZPLkyeLq6ipGo7FE42MwGOSVV14RHx8fTm5MkdEatcfD3lOmTBkZOXKkhIWFSWJioiQkJMikSZOkWrVq+eZHANK3b1+7mh/DwsJkzJgx8tJLL5VofPz8/OSzzz7j/MhYFK1RezzsPd7e3jJy5EgJDw8Xk8mUe65tVlaW3Lp1Sz777DMpX768eHp6ypAhQ+TMmTNqb3Kbys7OlsTERHnjjTc4PzJFpigsjG0cV1dXeeyxx2ThwoWyePFiiY6OloiICJk1a5Y0adJEAMiAAQMkLS2tVBOFrVy6dEkaNWokrq6upRqXwMBASUpKkoiICOnevbvq24nRdrRG7fFwlPj6+spjjz0mly9fFhGRmJgYiYyMlFmzZknfvn3F29tbKlSoIPv27VN5ixctMzNTli9fLo0aNRJfX99SjUtQUJCYTCbOj4xF0Rq1x8NR4uvrK2PHjs2dH3OYzWaJioqSyMhIyczMVGkrqy8pKYnzI1NkisLCWOU0aNBAXnnlFdm4caPUqlVLWrVqJUlJSaWaHGzh7NmzMmLECKlRo4Yi4xAUFCRms1lE7h1u2LNnT9W3DaPdaI3a4+FoqVGjhjRu3Fh69+6d55Dp8+fPy6VLl1Tc0pZJTU2VDz74QJycnB64ju7u7tK+fXuLxuPf8+M777zDw7GZB0Zr1B4PR0tgYKBs3brVbr5AsaWEhATZuHGj+Pv7q76dGG2mKCyMNZYuXbqUalKwJrPZLNevX7fKOXJly5aVv//+O3dZCQkJsmzZMgkMDBQ/Pz/VtwujrWiN2uPhyClXrpx06dJFfvjhB7s5fDo4OLjQohi4Vxhbemj11KlT8y1j3759EhgYyNuWMPmiNWqPhyPGYDBIu3btZPfu3WpvXk06ceKEvP/++5wfmXwpikHEsjvB8wbttlG3bl38/fffqF27tlXaz87OxqxZs3D79m288MILaNeuXb5tazabkZqaih07duCff/7JfTwzMxMLFixAUlKSVfrWuXNn/Pbbb3Bzc8vT39DQUGzYsAGpqamYMWMGEhISir5BNzk0rW1/zo/W5+TkhGnTpuG9995TuyuFSktLw6xZszBq1Kgi36dGoxFms/mBv2/VqhVeeukldO/eHQEBAfl+n5WVhUWLFuHSpUuYN28esrKykJmZWep1IPvG+VE/qlSpglWrVuGpp56Cq6ur2t2xquzsbJw7dw5lypTBww8/XOTzTSYTFixYgPj4eGzcuBFHjhzh/EhFz4+WfvoCDVT5eom1PgE8fvy4DBs2LPcTtIoVK0pkZGSe51y5ckXGjh0rlSpVEg8PD5uud5kyZQpdd7PZLJGRkfLxxx/zMEKdR2vUHg+9RItH1Kxbt04WLFggCxYskPnz50tQUFCpr7kAQFq3bi0xMTEW9SErK0uioqLk999/F29vb9W3E6NutEbt8XD0eHt7S7du3SQxMVHtTW01//zzjwwYMEDKlSuX5+hCSyUmJnJ+ZATgodR2GWsUxhEREVK9evXcZbi5ucnkyZPzHJqYlpYmjRs3VnXdu3XrJqmpqUWuz+7du+WZZ54p8VWwGfuO1qg9HnqJlgrj0NBQGT9+vLi7u1tlXT/55JMS3XLlwoULvACNzqM1ao+HHuLk5CRbt25Ve1OXWmxsrOzatStPevTokecChrNmzSpx+xcuXOA1GnSeorAw1liaNWtm8bcExfHVV1/lXsbe3d1dJk2alHsxlxzh4eGlvnqqEvnggw8sKo7T09NlxIgRPAdZh9EatcdDL3nnnXfU3tQSHh4uR44ckfr161t1XV1cXGTChAly584dycjIkISEBIv7GB8fL8uWLePOn06jNWqPh16ipQ8O75eVlSWhoaESEhIit27dyvO71NRUGTNmjHTq1Ek6deokzZo1K3I9vb29ZdmyZWIymUrcp5xzkLn/qL8UhYWxxtKjR48S/6E/yOXLl3N34h5//HH59ddf8xXFIiJjxoxRff2BexeV2Llzp0XrZjab5eLFizJ58mT58ssvxcfHx2rf4DDaidaoPR56iLOzs4SEhCi63bKysoq1c3XkyBHx9/cv8sJaJYmbm5t4eXmJl5eXeHp6CnBvLqxbt67069dPXnzxRVm9enWBc/eDHDx4UCZPniwNGzaUMmXKqL4NGdtEa9QeD73EGvuPpTVlyhR55513xMXFRZycnKRWrVoycuTI3HTr1q1E9x729PSU999/X8LDw0vct5z9xxEjRoiXl5cip8Aw2k9RWBhrKE5OTnL27NkS/5E/SKtWrXLbnzlz5gOf9+mnn6o+BjnZsWNHsdfTbDZLTEyM7Ny5U9555x2pW7eu6uvBWCdao/Z46CHOzs5y9epVxbZZdna2fPLJJ3L8+HGLnp+VlSVDhw612vq9+uqrsmHDBomOjpZ9+/YVuLNYpkwZCQ0NLfa6xsfHy7Vr12Tw4MHi5eWl+rZkrButUXs89BBr7T+WxqVLl/KcwmeNNGvWrFTFsci9uT06OlpWrVrFw6x1kKKwMNZQlN7xExH566+/ci+iFRgYKHfv3n3gc+29MP63sLAwmTx5srRq1UrKlSun+joxykVr1B4PPUTp+XHmzJni7Owshw8ftuj56enp0rx5c6uuo6+vr3Tv3l3++usveeaZZwp8TpcuXSQ2NrZE65zzDcnGjRulRYsWvEaDg0Zr1B4PPcQa+48llZaWJps3b5bAwECbrHu7du0U7X9ISIjs27dP2rZtK25ubqpvW0bZFIWFsYbStWtXSUlJKdUf9L8tX748t/2vv/660OeeOnVK6tSpo/o4AMoUxvfbt28f74vsQNEatcdDD1FyfoyJiZGGDRsKAIsLYxGRNWvWaGJHqWfPnqUeg/T0dNm4caN89dVXUrduXV6t1YGiNWqPhx6ipcL46tWrNr1/cM45x8U5zcQSZrNZtm3bJn/88Ufu/iPvi2z/KQoLYw1l1KhRpfoj/resrCzp0aNHbvtFFcYiIkuXLtXEtwjDhg2TpKQkRcdD5N7hkxcuXMg9p0Tt9WRKFq1Rezz0ECXnx/Dw8NwCd+/evbmPZ2VlyeTJk2XEiBEyatQoiY6OzvM6s9ksy5YtkyeeeELVsahYsaJidy8wm82SnZ0tf/31l0ycOFGqVaumif8DmJJHa9QeDz1ES4VxQkKCtG/fvkTnDpc0np6esnz5csWL4/tlZGTIvHnzWCDbeYrCwlgjcXd3l99++61Uf7T/lpaWJlWrVs1dhiWFcXp6ugwePFj18XBycpIaNWpY7Z7OWVlZcvXqVWnatKlNJ29GmWiN2uPh6FF6fry/MA4KCpKQkBAxm82ycuXKPBfWatWqlURFReV7/Y0bN+Txxx9XdUwqV65slfkxLi5Ovv76a16jwY6jNWqPhx5iq8J47dq1MnfuXJk7d26hF0mNjo6WihUr2nQMPD09ZdmyZVYfg4SEBJk1a5Y0adKE+492mKKwMNZIKlWqpPg3pDnn0OUs49+Fsclkkj179uS7KXxKSoqMGDFCAgICVB+XypUry4oVK0p8Tl1RIiMj5ezZs9K/f39p0aIFJzk7idaoPR6OHqXnx/sLYwBSo0YNCQoKKvBCMW3btpVt27bJtWvX8rRx48YN6dy5szRp0kS1calYsaL06NHDKvNjWFiYTJo0Sdq0aSNly5ZV/T3AWB6tUXs89BBbFMYbN27MvWYNAClfvry8+uqrBc6PZrNZvv32W5uPg7e3txw6dMiq45Dj/v3HNm3aSK1atVR/HzBFpygsjDUSaxTGn3/+eZ5lNGzYUI4ePSqXL1+WsWPHyksvvSRubm7SokUL6dChg3Tp0kWOHz+ee4W/ixcvymeffWb1qwpakq5du0p8fLyi4/NvaWlpsmnTJvnyyy+lXr16PNRaw9EatcfD0aP0/BgRESH+/v7F6kNgYKC88sorsnPnzjw7oDExMbJ48WKpV6+eVW7jZEmaNWsmS5culStXrkhmZqZi45Tj/ms01KtXTxPnWTMPjtaoPR56iLUK4xs3bsjly5dl+vTp0rhx4wcuPzAwUDp06CAdOnSQuXPnyquvviqNGjVSZSzUum3V5cuXZePGjdK6dWvuP2o4RWFhrJHYojAGIEajsdDzx4xGo9SoUUM++OAD+eSTT+TWrVty4cIFmT59urRv317VewS3bdtWVq1aJampqYqOU0FMJpNs3LhRXnnllTyfkDLaiNaoPR6Onho1aih+YcLPPvusRH0xGo3i4+Mj7733nixZskQSEhIkKytL0tPT5aeffpK6deuqslNkMBjE2dlZJk6cKAkJCVYpkE0mk5hMJvn111+lWbNmvO+nRqM1ao+HHmKNwnjfvn3i7+8vRqOxWEfTqX3kXcWKFeWff/5RdCyK4/79x7Jly/KaDRpLUVgYayQdO3aUjIyMUv0x3i8pKUk6duxY6n6VL19emjRpIrNnz5YDBw7Ili1bZOjQoaodMuLu7i4tWrSQW7duKTZWhUlNTZXt27fL0KFDpU6dOqpP+My9aI3a4+HoKez+6yVV0AeHxY2rq2tukXzy5EkRuXf+WXBwsAwcOFA8PDxsPme4uLiIj4+PvPPOO3Lw4EHFxy1HUlKS/PbbbzJkyBCpXLmy6u8R5v+iNWqPhx6idGH8zz//FPuoGi3l559/VmwsSio1NVXu3r0rX3/9tbz11luqHVHE5E1RWBhrIN7e3rJly5ZS/QH+27/PoVMifn5+MmDAAPn777/l2LFj8tVXX4mLi4sqY1arVi35/vvvxWQyKTpuRY3pyZMnpUuXLry1icrRGrXHw9GzYMECRbdXenq69O7dW9E+3j8/RkVFiclkkkuXLsn58+f/X3t3HtfEtf4P/EnCvoMiqKhcRaWA1au4VK2W1rXuVVRqW+W61db161brUq0/16vVauuGK7TiLkoVFRdQ61JREAVFUVFUUDYBCSQkeX5/eKVSlgSYmTNJnvfr9Xm9WkjOnHkSjnOSmTM4depUbNiwoeB1q1OnTqUL5HDlwYMHOGPGDPzkk0/oW2QRRGxY18MYEhgYyOlZIlx8cMgyYpgYv0upVGJcXBwdP4og2tDEWARp2bJlTf7eysXHxPjdtGnTBnv06MFsYgzw5tualStX8nLKoDa7du3Cxo0bM3/vGGvEhnU9DDnu7u4l6x5wRYjx8e2aDU+ePEFExMTERDx27Bh27dpV0DNuevTogSkpKZzWryIqlQpPnz6NHTp0YP6+MeaIDet6GEO4vt2n2CbGLi4ulZ6Z0rhxYzx06BAeP34cjx8/XjLuihEdP7KNNjQxFkEWLVpUoz+y8vB94FdRzMzM0N7eHu3t7QX55kAmk+HKlStRpVJxXkNtcnJysF+/fnR6NYOIDet6GHI6dOjA+et1//59QcYnqVSKDRs2xEmTJmFERATK5XLUaDSYlZWF69evxxEjRqC1tTXv/XBxccFJkybhpEmTcPv27ZzX859SU1Nx0aJFtD4Do4gN63oYemxsbDg/M4TlxFgqlZYcR9rb26ObmxvGxsZiXFwcrlu3DufNm4cODg4lv2/WrBnGx8dzuv98o+NHdtGGJsYiyLlz52ry91UuVhPjdu3a4c6dOzErKwt37dqFXbp04f0P39TUFFeuXMl5DXWRkZGBtWrVYv4eMraIDet6GHKOHTvG+esVGBgo+H5YWlpijx49cP369fj777+jWq3GwsJC/Ouvv/Dbb79FHx8fQQ6S/P39Oa9nedRqNU6aNIn5+8cYIzas62HoGTBgAKdr1CCynRjXrl0bz507h9nZ2ZiTk4N79uxBjUZT0je1Wo05OTkl+ectR/XFq1evsE+fPszfP8YWbWhizDh+fn6cr7aKyG5iDABobW2Nnp6e2Lp1a9y2bRsGBwfj1KlT8ZNPPil1X2UuY2FhgWFhYZzXUZuVK1fSggoMIjas62GoqVOnDt68eZPz12vhwoVMVwo1MzNDT09PHDNmDMbExCAiYlpaGm7evBl79erF24dtEokE582bx3k9y5OamkqLcjGK2LCuhyFn4MCBmJOTw/lrxvpUahcXl1LjoyGSy+Xo7e3N/D1kbNGGJsbvxMHBAbdv344REREYERGBCxYsQE9PT15vvTFgwICa/F1V6Pr160yv/303tWvXxpEjR2JcXByGhIRg165deTl9sEuXLpx/alqZtLQ09PDwYF5fY4zYsK6HoWbcuHG8vF6sJ8bvpnbt2tirVy8MCgrCO3fuoEKhwPDwcPTy8kIXFxdOtmFhYYGenp44ZcoULCws5KWm7yooKMBvv/2WThNkFLFhXQ9DjY2NDV69epXz16u4uBi//fZb5vsH8Pf4OGjQILxx44agx3h8UiqVuGzZMlqskEG0oYnx/2Jubo5Hjx4ts98ajQa3bdvG2z/wfE2MAwICmNf0n5FIJPj+++/jhAkTcN68ebh48WJ0dXXl7ADV1dVVkHscv7Vq1So68GMUsWFdD0OMtbU15/flfGv//v2CXNtblUgkEpRKpRgQEICLFi3CrKwsjI2NxUmTJqGDgwM6ODhU65pdOzs7XLlyZalTEfkWERHBvJ7GHLFhXQ9DzfDhw3l5vbi63SfXeTs+/vXXX3o/QU5ISODtDEpK5dGGJsb/yyeffIL5+fnl7ntSUhJv3y4MHDhQ97+kKhg+fDjzmlYWa2trHD16NKalpeEPP/yAAQEBVb6J/D9Tt25dwSbGz549w/fff595HY01YsO6HoYQiUSCX375JU6aNAl9fX0xJCSEt9uxaTQanD17NvN9rihSqRRdXV1x1apV+OLFC8zJycFXr17h8ePHsW/fviiVSiv9N+ntJNvMzAzj4+MFXZxQo9HQqtSMIzas62GIkclkeOvWLd5eM9anUlcWa2tr/OKLL3D9+vWYlZUl6Id+XHj27Bm2b9+eeR2NNdrQxBgArays8MCBAxXuO18TY5lMhpcuXdL1JdBZXFycXtwnTSqVooeHBw4aNAgPHz6Mp06dws2bN2Pv3r2rfI1dhw4dMDQ0VLABcuPGjczrZ8wRG9b1MIRIpVIMCgrCCxcu4IULF3i9DVthYSF+8cUXzPdZl7i7u+OaNWswMjISVSoV5ufn4927dzEmJgYHDBiAVlZWZZ4THByMd+/exaSkJEFvZ6dSqXDp0qXM1regvInYsK6HIUYmk2FycjIvr5e+jY8fffQRnjp1isndSaqDjh/ZRhujnxhbWVlhr169Kv2DOn/+PC8T4zp16vByr7WRI0cyr2t14uXlhb169cKoqCiMiorC0aNHo5eXV6XXStepUwdDQ0N5WXyiIidPntSLDx4MOWLDuh6GlB49euC9e/d4PchhuThhdWNqaordunXDqKiokrObNBoNXrhwAU+ePImBgYHo5eWFw4cPx+zsbFSpVJiRkcFbDcuTkpKCTk5OzGtl7BEb1vUwxPj7+/N2hlx6ejrWr1+f+T5WJaampujn54fTpk3DhIQEQY8JqyInJwc9PT2Z18uYo41RT4zNzc1x06ZNlX7LeOfOHWzUqBHn2+ZzdVB9P41NIpFg//798cSJE5iRkYHBwcG4YcMG/O9//4v+/v64YcOGkly+fJmXGlZEoVBg//79mdfI2CM2rOthSDl9+jTvr5c+Tozf5u34ePLkyTIHxu/+WyaXy/H69eu81/Ldmvr6+jKvD4XGR0OPtbU1L7f5fJeYT6XWFolEgh999BF+++23eP/+fSwuLua1VlWxY8cO5vUx9mhj1BPjL7/8stJr2DQaDc6bN4+XbdeuXRszMzN1Lb/OkpKSeJnIs4iFhQU6ODjgggUL8PHjx6hSqbCoqIjzmlXFmTNneF2lnKJbxIZ1PQwpCxYs4P2SCH2eGL+NhYUF9u7dG9euXYuPHz9mdp2dRqPB3bt30zVzIorYsK6HocXZ2bnCNXG4Eh4eLroFCqsTGxsbnDJlCt66dYv5tchKpRJHjx7NvCbGHm2MdmIsk8nwv//9b6X7vGfPHt6WUl+6dCkvf6ShoaHMa8tH3NzcsHXr1nj48GFBV55+F92XUzwRG9b1MKSYmZnhvn37eH29MjMz0cvLi/m+chU3NzecP38+Hjt2TNDxUa1W0zXFIozYsK6HoYWv48d3KZVK/OSTT5jvK1dxcXHB8ePHM70v8sqVK1EmkzGvhbFHG6OdGFtbW+PLly8r3F+5XI7t2rXjbftBQUG6ll5nGo0Gf/rpJ+a15TMSiQQ7deqEo0aNwjt37gj2CWBBQQFOmDCBbs8kkogN63oYWvgYH//pzp07VV7kT+x5Oz6GhYUJMj6mpKQYXA0NIWLDuh6GFiHGR8Q33xpX5xZxYo6zs7Pgx4+IiLGxsdi4cWPm+0+hiXGFGTZsGBYWFpa7r2q1Grdt28brp+B8DGxFRUXo5ubGvLZCxcrKCoODg3m7pcu7Tpw4wXx/KX9HbFjXw9AixIFfUVERuru7G+y9JPkeH9VqNU6bNo35flLKRmxY18PQItTEGBFx1apVzPeXjwh5/BgXF0eTYhFFGykYIQcHBxg7dixYWFiU+/uUlBSYOHEiKBQKgXtGqkIul8O4cePg999/531bP/74I+/bIIQI59q1a9C9e3eYMmUK667w4u34uHv3bl7af/bsGWzZsoWXtgnRJ1Kp4R5KDx48GJo1a8a6G5zje3x8CxHh66+/hocPH/K6HcIdw/1rrkCtWrUgJCQEPvnkkwofc+vWLZoU64mioiKYMGECxMTE8LaNp0+fwosXL3hrnxAivGbNmkG7du1gzJgxUK9ePdbd4UVRURGEhYXx0jYiglKp5KVtQvRF7969ISYmBhwdHVl3hRfu7u4wYsQIkEgkrLvCuaKiIti4cSNkZ2fzto2wsDCIjY3lrX3CPaObGPv4+EDfvn0rfcy2bdtAo9EI1CPuSKVScHV1hSZNmoCDgwPr7gimoKAACgsLeWv/7Nmz8ODBA97aJ4QIr06dOjBmzBjw9PSEvXv3Guzk+Pz583Dr1i3O2920aROoVCrO2yVEnxQVFUFhYSEgoiDba9y4MXz66aeCbOut2bNnwxdffCHoNoVy6dIliIyM5KVthUIBq1evpi/a9IzRTYyTkpIgOjq6wonU3bt34ebNm7z2QSaTVXgad02YmprCnj174NKlSzB48GAAADA3Nwd7e3vOtyU2e/fu5a3tgoIC3tomhLDXuXNnOHjwoEFOjjMyMmDz5s2ctqlSqSAhIUGwyQAhYnXu3Dno1KkTvHr1SpDt2djYCD5OmZubwzfffAPu7u5gYmIi6LaFMHHiRDh9+jTn7Wo0GvpSRR/pevE4iOCCaa5iYWGBQ4cOxby8PFSpVKVWpouMjOR9+97e3qhUKqt+BX8VvHjxAmfPno27du3C06dPIwAY9IrK9evXx1u3bnFeR7lcju7u7sz3j1I6YsO6HoYWIReXedelS5dw+vTp6OnpaVDjZf369TE+Pp6zOv35558Gu2iZIURsWNfDkPL+++8zex3z8/NxxowZBnnLoYYNG3J+qzu5XI716tVjvm+U0tHGKCfGAG8mie7u7tikSRNcvHgxhoWFYVhYGLZp04b3bQs9sF26dAnr1q2LP/30Ew4YMKAkzZo1Y/46cJldu3ZxXjtjuAWWPkZsWNfDkGJnZ4enTp1i+nqmp6fj+vXrsXXr1szrwVW8vLwqvBNDVfXq1Yv5/lAqjtiwrochheXEGBGxsLAQz58/b3AfjLm6unI+MdZoNLh//360t7dnvn+Uv6ON0U6MWUbogS0gIAAbNGiACoWi1M8fPnyIK1asQA8PD+Y14SJ8TIwREdPS0vCjjz5ivn+UvyM2rOthSGF94PeutLQ03Lp1K7Zs2RLr1KnDvDY1CZcHfr6+vsz3h1JxxIZ1PQwpvXr1Yv1y4uPHj9HU1JR5LbgMHxPjtwICAmhyLKJoY3TXGIvB8OHDBdvW1atX4fTp06BWq0Eul5f63b/+9S+YNWsWXLhwAbZt2wb+/v5ga2srWN/0haurK4SGhsKqVavAxcXFIFdnJEQsbGxsBN3egwcP4Nq1a+X+ztXVFUaPHg1xcXFw+PBhcHd3N6qFDctz+fJlSElJYd0NQozSjBkzBN9mXl4eZGRkQEZGBhQWFkJWVpbgfdBnu3fvhm3bttHxo77Q9RMPEMEs31By5syZGn36VBXBwcEI8ObU8b59++KKFSswJCSk1HXVbykUCrxw4QLWq1dP766vc3FxwZiYGF5q+PYG8BqNBnNycnDRokV6WSNDitiwroch5fjx44K9biqVCn/88Uf8+uuvsaioCIuLi1GlUlX4+IKCAkxISMDx48ejmZkZSqVS5vXSNfXq1ePkG5GQkBDm+0KpPGLDuh6GkiZNmmBycrKgr11ISAi2a9cOra2t0draGgcNGoRWVlbMa8F1hg0bxuvaP+8eP9atW5f5/hpztKGJscBxdXXldBGUyigUCvTx8SnTB3Nzc1yxYkW5k2NExNTUVJw+fbpeTfxGjRrFef3kcjnu378fR48ejYcOHcJnz56VqtGCBQsM5jR0fYvYsK6HIUWoDw4VCgV26NABzc3NUSaTobu7O7q7u6Ofnx8eOnQIDx06VOGHbcXFxfjw4UMMDQ3Fzp07M6+ZLlmzZk2FY35VaJsYN2zYEAcNGkQHfwwjNqzrYSjp16+foK9bamqq0RzjcH0pnlwux7CwsJJ/Sw4dOoRHjhzBoqIiPH/+PPbo0UOvjrENKdrQxFjgCDWwKZVKXLJkCZqZmZXbD3Nzc1y5ciUWFxeX+/zCwkKMjIxELy8v5jXTFgcHB7xx4wbnNZw9e3apgcvLywu7du2KXbt2xaNHj+KNGzfw0KFDuGTJErS0tGReB2OK2LCuhyFFiIlxXFwc+vn5VTg+vo2Li0vJ33z37t0xOjoab9y4gTdu3MAXL14gImJOTg4ePHgQW7VqJdrVWi0tLTE8PJyT2mmbGLu4uGBgYCDu27cPp02bhg0bNmS+/8YWsWFdD0OJkBNjjUaDK1euZL7PQqRZs2aYnp7OWe3y8/Nx/PjxZSa+UqkUO3TogIGBgXjp0iX85JNPmO+7MUYbmhgLnICAgBr9wenqzp07Wg/6ZDJZpZNjjUaDa9euZV4zbRk5ciTn9bt3755Ot2kyMTHB4cOHo6OjI/M6GFPEhnU9DCWtWrXC58+f8/56BQQE1Livvr6+OGrUKBw1ahROnz4dnzx5gmvWrEFXV1fmdfxnWrduzVntdD2V2tbWFr/66iucMmUK/vTTT+jn54fOzs70LYkAERvW9TCUCHX8iIh44MABgzxlurysWrWK09pFREQw3ydKxdHG8O7ULWIymQzmzZsnyLaWLVsGSqWy0seo1WpYsGABfPzxx/D48WO4d+9eqd8XFxfDmjVr+OxmjZmYmMD333/Pebu7d+/WaYEZlUoFe/bs4Xz7hBgjd3d3qFu3Lu/bQcQatxETEwMxMTEAACCRSGDjxo0AAFBYWFjjtrnWrVs3ztpSq9U6PS4/Px+Cg4PBxMQEmjVrBkOHDoWZM2fCpUuXYOvWrfDixQtOXgdCjIGQx48AAHFxcWUWbDVEEokE2rdvz1l7t2/fhgkTJnDWHhEeTYwFZmZmxvs2srOz4eHDh1ofZ2pqCrNnz4avv/4aEhMT9XIQbNasGTg6OnLa5pMnTyAkJITTNgkhlZNKpTBnzhzet5OdnQ1Pnz7ltE1EFO34Wb9+fRg1ahQnbSkUCli5cmWVnqNSqSAxMREWLlwIjo6OYG9vD6NGjYKzZ89CVlYWPHjwgJO+EWLIPDw8wMnJSZBtpaenw5YtWwTZFms9e/aEtm3bctZeXFwcrdqv52hiLKA6deqAubk579u5d+8eXLx4UevjiouLYdGiRbz3h0/9+/cHZ2dnTts8f/48HawRIjCJRCLIgd/Zs2d1Gh8NgUwmg5CQEHjvvfc4aQ8RIScnp9rPz8nJgZycHFi+fDlYWFiAk5MTdOjQAVJSUiA9PZ2TPhJiiD799FNwdXUVZFuPHz+u0d+5vpDJZDBr1izOjsuVSmXJmUNEf9HEWEDDhw+HBg0asO6GwbCzs4MBAwZw2mZxcTHs3buX0zYJIeKxevVq1l0QhFQqBVdXV/Dw8OCszfDwcHj16hUnbRUVFcHz58/h+fPnnLRHiKGSSCSC3d+9uLgYli9fDsXFxYJsjyUbGxtOx8cjR45AbGwsZ+0RNmhibIBUKhXrLgji008/hTZt2nDapkKhKLlukBAiHKlUChKJhHU3DEadOnXg5s2bnH4LHx8fL8prqAkxZI6OjjB16lRBthUbGwvh4eGCbIslKysr2LlzJ7i5uXHWZmxsLI2PBkDKugPGwszMDLy9vQXZ1tKlSwXZDksODg4wfvx4MDU15bTdTZs2QUZGBqdtEkK0GzlyJDRq1Ih1NwzGrFmzwMnJibMPGwoLCyEpKYmTtgghumvRogVYWloKsq3Y2FidF9jTZx07doTevXtzNj6mpaVBUFAQJ20RtugbY4HY2trC0KFDBdmW2K8N8fHxAQsLi5L/v3XrFigUiiq10aVLF/joo4847dfLly/h119/NYp/FAgRG1tbWzAx4fefpNOnT0NCQgKv2+CCu7s7bN68GRYvXgzp6emQnJxcped7eHjAiBEjOP0GPjMzE44cOcJZe4QYKxsbG9i/f3/J6dFFRUWwePFimDp1Kmg0Gli+fDm8ePECUlNToXHjxrBnzx7BJsY7d+4UZDsseXh4wO+//87pmj+PHj2C3Nxcztoj7NDE2MAUFRVpvU0TS1KpFA4cOADNmzcHgDeLuYSHh8O9e/fghx9+0Hll1//7v//jvG8KhYKudyPEgGVmZkJ+fj7rbmiVk5MDBw4cgIMHD4JSqYSoqCg4ePAgnD17FvLy8rQ+/+uvv4Y6depw2qfQ0FCjuUyHED4NGzYMPv7441J3KXn3lmqDBw+Gu3fvQkxMDDg4OAi26JbYjx+5wsf4uG7dOqO4LtsY0MRYIH5+foKsSB0eHi76i//fHTwkEgn0798fNBoNJCQk6PRpZfPmzXk55fL06dP0bTEhBkqtVsPp06dZd0Mnubm5EBQUBHfu3IFvvvkGRowYAcOGDYNLly7Bhg0bYN++fRU+VyqVQrt27TjtDyLCtWvXQKPRcNouIcaodevWWm/d6enpCZ6engL16A19OH6sKW9vbxg8eDCnbT59+lQvzkQiuqGJsUC6d+/O+z2MNRoNXL9+HRCR1+3UhEajgcmTJ0NoaCi4uLiU/Pz+/ftw4MABrc+XSCTw+eefg7u7O6f9ysrKgi1bttDEmBADdfv2bTh8+DDrblTJxYsXISYmBh48eABNmzYFACj5UNDMzAyaNm1a5oCsR48enE+Mb9y4AcePH+e0TUKMUZMmTeCLL75g3Y0y9OH4sabe3r6O6+PH1NRUuH37NqdtEoZQRwBAqUE2b96sa6mrbevWrWhmZsZ8X3WJn58fpqenl/T92LFjOj3PxMQEHz58yHntLl26xLwmFN0jNqzroe/x9vbGu3fv8vb6KJVKHD9+PPP95DImJibo5uZW6mcymQzPnj3Lef2GDh3KfH8pukdsWNdDTGnevDmq1WrWL0kpSqUSf/zxR705fqxu3Nzc8NmzZ5zXj8ZH/Yo29I2xANzc3MDPz4/XbeTk5MCGDRv05vqQc+fOQd++fUu+BTl37pxOz+vduzc4Oztz3p+QkBDO2ySEaGdiYgLfffddyboDfEhOTja4RWVUKhU8ffq01M8+/fRTaNu2LafbiYiIgDNnznDaJiHGSqVSQUFBAdja2rLuSomMjAxYsmSJ3hw/VodUKoXx48dDvXr1OG87JSWF8zYJOzQxFoCDgwOnNxEvz9GjR+HmzZu8boNrMTExVb5nsI+PD+c3utdoNHDt2jVO2ySE6Mbb2xuGDx/O6zZWrFhR5ZXv9Y2VlRWMGzeO0/FRoVDAhAkTICsri7M2CTFmDx8+hJCQEPjmm29Yd6VEZGSkwS+s5+TkBJMmTeK83Vu3bsGzZ884b5ewQ/cxNhAnT540+Otja9WqxcvApo8fKhBiKObNm8f7bZoM+ZuQt6ytrTm/hV1CQoJOq2ATQnSDiBAXFyeqFYyN4fixVatWpW4TygWNRgMhISE0MTYw9I2xAKZOncrp/ST/KTExEU6dOsVb+2IxceLEUgt2cQER4c6dO6L6R4oQY+Hg4MDLCvPvMpbx8ZtvvgErKyvO2lMqlbBx40bIycnhrE1CCMD27dvB2toaxo8fL/jK0//0+vVrgz8jxMrKCiZPnsz5nWGKi4vh999/57RNwh59Y8wzCwsLXq+dAwDYsGGDwQ9sjRo1gq+++gqkUm7fskqlEn755RdO2ySE6KZTp06cXxP7T0+fPjX48dHU1BQ8PT05HR9fvnxJay8QwgO1Wg1r166Fjz/+GKZOnQpPnz5lthq0MXxw2LZtW+jXrx/rbhA9QRNjnvn5+UGnTp14a//27dtw5MgR3toXi4CAAGjcuDHn7Z4/fx7y8/M5b5cQIg6LFy9m3QXetWjRAvz9/Vl3gxBSBWlpabBu3Trw9vaGOXPmQHBwsOCXfZw4cULQ7bEwb948Xtql40fDRBNjnkmlUl5Po05ISCizMqkh6tmzJy/tXrx4kQY2QgzUkydPID09nXU3eLdgwQKQyWScthkbG2vw1x0SwhoiQl5eHqxYsQLGjRsH7du3h3v37gm2/YiICMG2xYKbmxvUr1+fl7bp+NEw0cSYZ1zfSPxdxcXFsH79et7aF4suXbpAmzZtOG/35cuXEBwczHm7hBDd8Dk+AgBcvnwZkpOTed0Ga126dIGPP/6Y83Z3795t8CvVEiImCoUC4uLiYNCgQXD37l3et3f69Gm4ffs279thafDgwfDee+9x3i4dPxoumhjzSCqVwuTJk3lr/8iRIxAbG8tb+2LwtoZ83PPv5cuX8Pz5c87bJYRox/f4CADw6tUrXtsXg3/961+iuicqIaRmEhMTYdOmTbxv58GDB/D69Wvet8OKTCbj5U4mAAA7duyAJ0+e8NI2YYtWpdZTOTk5sHnzZpDL5ay7wquOHTvy8m0IwJt7mxrDbVwIMSaICAqFAqKjo2HOnDmsu8Mrc3NzmDt3LutuEEL0jFwuh2XLlrHuBq8++OADcHJy4qXtuLg40Gg0vLRN2KJvjHnk6ekJdnZ2nLeblZUFn3/+OZw+fZrztsXE3Nwcxo0bB46Ojry0T6cJEmJ4tm/fDo0bNwZ/f3+Dv9VQYGAgL4sSEkIM18WLF+Gbb76B1NRU1l3hDd/Hj8Rw0cSYR927dwdXV1fO2kNEiImJgZEjRxrFSoI+Pj4wZMgQXtq+ffu2wd+igBAx02g0sHbtWk7bPHPmDEydOhXS0tIMflEUExMTeO+99zhfdAuAxkdCWDIxMYGGDRty3m5WVhYMGzYMBg4cCLt27TLobzxtbW1h0KBBvLRN46Nho1OpeSKVSsHBwYHTNrOzs2HgwIHw7NkzTtsVI1NTU5gxYwZYWlry0n5qaipkZ2fz0jYhRDdcXqOVk5MDq1evNuhr5t7l7u4OY8aM4aXtX375hcZHQhixtbXl/G87JycHvvzyS4Nfhfqtzz//HCwsLHhpm8ZHA4c6AgBKFeLo6IjZ2dm6ller7Oxs7NmzJ/P9EiqtW7dGtVrNWf3epVKpsEOHDsz3kVL9iA3reuhr+vTpU6U6q1QqfPjwIS5duhSVSmXJz/Pz841qfJRIJBgUFMT12xgREW/evIn16tVjvo+U6kdsWNdD3+Lo6Ii5ubmc1d/Yjh9dXV0xNjaWs/q9i8ZH/Y82dCo1j7g6xe3tNcUnT57kpD19MH/+fJBK+Xl7hoeHw/Xr13lpmxCiu7Zt21bp8adOnYK2bdvC2rVrobi4GADejI87duyAc+fO8dFFUWrevDl8/vnnnLer0WggODiYVusnxEAY4/Fjnz59oFWrVry0nZCQQOOjodP1UxIQwSxfn8LVJ36ZmZnYp08f5vsjZLp06YJ5eXk1rl15lEoltm/fnvk+UmoWsWFdD32MVCrFpKSkKtX5/Pnz2KpVK3R0dMRTp07h+fPnjW58dHJywrCwMF7ex0VFRejm5sZ8Hyk1i9iwroe+hY4fqx86fqRoizY0MeYp9vb2+Pjx4xr9EapUKuzXrx/zfREyDg4OeOTIkRrVrTJ79uxBS0tL5vtJqVnEhnU99DVz5sypUp0LCgowPDyceb9ZZuTIkfy8iZHGR0OJ2LCuh76Fi+PH7Oxs7N27N/N9ETJSqRQPHjzI0bu2LBofDSPa0KnUPMnNzYVhw4ZBZmZmtds4ffo0nD9/nsNeid/IkSOhf//+vLSdl5cHmzZtgsLCQl7aJ4RUTWxsLBQVFen0WI1GA1OnTuVtpVF9IJPJeLs3M42PhIjD2+PH6p6ym5OTAwEBAUaz0NZbHTt2BD8/P17aRkS4ffs2jY/GQNdPSkAEs3x9i0QiwZCQkCp/KpWVlYXr169HR0dH5vsgZMzNzTE4OLjK9dLVs2fP0NzcnPl+UmoesWFdD32NmZkZvv/++7h9+3bcuXNnhacPFhYW4s6dO7F27drM+8wyPj4++OLFC17ew2FhYWhiYsJ8Hyk1j9iwroe+Zvjw4VWudVZWFvbq1Yt534UO38ePaWlp6OTkxHw/KTWPNjQx5jl2dnbYu3dvfPbsmdYaazQavHr1qtFdE/I2vr6+WFBQoOtbsspmzpyJEomE+X5Sah6xYV0PQ4mXlxf26dMH//zzT1SpVJiZmYlRUVE4ZswYlEqlzPvHOtOmTePtPRwQEMB8/yjcRGxY10NfY2dnh1u2bMHnz59rrTEdP9LxI0W3aEMTY4HSqlUrHDx4MP7111/48OHDUosDPH/+HOPj43Ho0KFoZWXFvK8sYmpqirt3767eiKWDe/fu0aIyBhSxYV0PQ4uZmRn269ePbqv2TmxtbfHq1au8vH9pfDSsiA3reuh7WrVqhWvWrMGHDx9iYWFhqdoqFAo6fqTjR0oVoo0EERF0IJFIdHkY0UImk4FEIoHu3btDixYtAABg3759kJqaCmq1mnHv2GndujVcu3aNt1s0Xbx4ET788ENe2ibC03HYEgyNj4RvI0aMgO3bt4OZmRnnbc+fPx/+3//7f5y3S9ig8dHwSCQSkMlkMGTIEGjYsGHJz1++fAm//fYbqFQqhr1ji+/jRxofDYu28ZEmxkQUDh8+DAMHDuSt/R49ekBkZCRv7RNh0YEfMSaOjo5w+PBh6Nq1K+dtP3r0CLp37w4PHjzgvG3CBo2PxJjwffz4wQcfwJUrV3hrnwhL2/hIq1IT5jp37gzdunXjrf1Tp07Bn3/+yVv7hBDCp65du/IyKUZECA0NpUkxIRxwcHCAjz76CNzc3Fh3xWgIcfwYHx/PW/tEfGhiTJhr0qQJ2NjY8NK2SqWCNWvWgFwu56V9Qgjhk6+vL2zZsoWXtouLi2HTpk28tE2IsfH09IRjx45BREQEHD58GDp16gRWVlasu2WwJBIJTJs2jY4fCadoYkyYMjc3h++//5639ouKiuD27du8tU8IAfDz84PatWuDpaUl664YFIlEAmPHjgVnZ2de2j937hy8evWKl7YJMTZXrlyBiIgI8PHxgYEDB0J0dDSEhITAqlWrYNiwYTQ+cuzDDz/k7b7FAABnzpyhsw2Nka6rsoEIVhKjGF7GjRuHKpWq6ssE6mjVqlV0mxcDjNiwrgfrODo6YmhoKF66dAmHDBnCvD+GEh8fH0xPT+flPVtQUICDBw9mvo8U7iM2rOshZFq2bIlqtbpMDQoLC/HSpUvo7+9Pt/3hIHzft5jGR8ONNvSNMWHGxMQEvL29QSaT8dJ+ZmYmrFu3DjQaDS/tE0LeyMnJgYkTJ0JERARdj8URExMTGDt2LLi4uPDSfm5uLhw7doyXtgkxVpmZmZCamlrm5xYWFvDBBx9ASEgIzJ07F0xMTBj0znBYWVnBgAEDeGufxkfjRRNjwoytrS2MGjWKt/bT0tLgxYsXvLVPCPlbVlYWLF68GO7du8e6KwaB7/Fx586doFQqeWufEGP07NkzGDJkCOTn55f7e3Nzc5gxYwZv18USbtD4aLxoYswTc3Nz1l0QPblcDidOnOClbY1GA8uWLQOFQsFL+4QQwidE5G38Sk1NheDgYDqbhhAe3Lx5E8LCwir8vaWlJfTu3Vu4DpEqofHRuNHEmCddunSB1q1bg729PeuuiJZCoYBLly7x0vbNmzfh0KFDvLRNCCF8y83NhZ9++omXtg8fPgx3797lpW1CjF1xcTFs2bIFcnJyyv29mZkZdOzYUeBeEV2lp6fT+GjEaGLMk8jISEhJSYHCwkLWXTFKS5cupW+LCSF6CxFh69atEBkZyXnb+/bt47xNQsjfLl68COfOnWPdDVINK1euZN0FwhBNjHmUnZ1N1yho8erVKyguLua0zYsXL8KZM2c4bZMQQoSWmZkJP//8M6dtXrx4ERITEzltkxBS1saNG1l3gVQRHT8SmhhXw7hx42DZsmV0TzoO/Pbbb5CSksJZe2q1GjZt2lThKUyEEH7Y2tqCmZkZ2NnZgZ2dHVhYWLDuEvkHGh8JEU5SUhJ9CMWTPn36cP5vDI2PBIAmxlUikUhg2LBhMGnSJJgyZQp8+OGHnLX7bowJIgIictaeWq2GCxcucNYeIUQ7W1tbuH79OvTo0QOioqLg0aNH8OOPP7Lult6TSCTQqVMnztqj8ZEQ4aSmpsLDhw9Zd8Mg8XG7KxofCQAA3UhNRy1btoStW7dCixYtSlac7tevH5w6dapG7To7O0NQUBA0bdq05Ge//PIL3LlzB86fP0+r4lXRzp07IS0tjXU3CDEqBQUF0K9fP0hJSYH4+HhYsmQJnVHDAYlEAoMHD+asPRofCRGHhg0bgrW1NRQUFNSoHVtbW+jWrRt06tQJTp06BXl5eXDlyhWOeilewcHB0LRpU/j+++85a5PGRwIAAKgjADDqzJs3D9VqdUk91Go1Lly4sMbtjh07ttx6KxQKPH78OPr4+DDfdz4jlUoxKSlJ17dhpbKzsw2+XpQ3ERvW9RBbFixYgOvWrWPeD30PjY+U6kRsWNeDVVq1aoUvX74styYajQY9PT1rvI1ff/21VLu5ubl4/PhxnD59OtarV495DfhM48aNMTU1lZP3qEqlwmnTpjHfJwr/0Tpe6fqmYb0jrGNubo7jxo3De/fuYXFxMf7+++9oYWFRozZlMhnev3+/0rrfv38fmzRpwnz/+QqXB36bN29GExMT5vtE4T9iw7oeYou9vT3OmzePeT/0PTQ+UqoTsWFdD1bp1q0bIiIWFhaiXC4vVZPo6Gh0dHSsUfvt2rWrcGKo0Wjw3r172LJlSzQ1NWVeCz7C5fj46NEjtLKyYr5PFP6jjaiuMRbzNbYKhQK2bNkCbdq0genTp8OWLVugqKioRm22bNkSHBwcKn2Mh4cH1K1bt0bbMRZ//vknqFQq1t3gnEQiAXd3d5gwYQJ4eXmx7g4hWuXl5cGqVatYd4P8T0ZGBmzfvt0gx0dCxCo1NRV++eUX+Oyzz2Du3LklP1coFLB169YaLfIkk8lg27Zt4ObmVu7vJRIJNG3aFC5evMjp5RiGavny5SCXy1l3g4iBrp+mAM8zeA8PD/zzzz/x5MmT2KtXL/Tw8GD+qQLfmT59uk6179y5M/O+8hWuPvFLSEhAe3t75vvDZWxsbHDQoEF448YNfPLkCR49erTGnzAbSsSGdT0ohhmuxseQkBDm+0IRLmLDuh5iiJOTEyYnJyMi4o8//ohSqbRG7TVp0gSfP3+uU/2/+uor5vvPR+j4kVKdaCOab4z9/f2hY8eO0KNHD4iIiIATJ07AsmXLwN3dnXXXeCGTycDZ2Zl1NwxGSkoK5Obmsu4Gp9q2bQsHDx6Ex48fw7hx4yAwMJBuI0AIqZL8/HxYu3Yt624QYtSys7Nh2bJlEB0dDdu3b6/xwqoDBw7U6WzCoqIigzs24pohHj+SGtD1ExXgeQY/Z86ccreblpaG69evx8GDBxvU+f+1a9fGvLw8rXWPjY3FunXrMu8vX+HiE7/Y2FiDW2TC19cXHz9+jAUFBditWzfm/RFbxIZ1PSiGGalUinFxcVV+P6pUKszJycEjR45gr169mO8HRdiIDet6iCkSiaTGbVhbW+PZs2d1qv2FCxeY7zNf4eL4UalUYseOHZnvC0W4aB2vdH3z8N3RiibGbxUVFeH58+dx0qRJ2Lx5c04GF5ZxdnbG/Pz8SvdZrVbj1KlTq70NiUSCUqm0JGKsWU0HNpVKVaMaiTFSqRRjY2MRETEzMxPt7OyY90lsERvW9aAYbgYPHlyl92JycjLOmTMH7e3ta7xAJEU/Izas62FoqV27ttbjx7e6d+/OvL98pabHj2q1GmfOnIkymYz5vlCEi9bxStc3EN8d1TYxftfz589x7dq12LJlS+YFrm6WLl2KGo2m0v1MSkrCOnXqVKt9CwsLXLNmDd69e7cka9asEV3NajKwKRQKnDlzpsGtuCiRSPDw4cP4119/4ciRI2t8LZIhRmxY14NiuLG2tsatW7fq9D68f/8+3ZKJwvNoV3Ws62Fo6dSpExYWFmqt+8mTJ9HS0rJG23JwcEA/Pz+D/GKlJsfYFP2N1vFK1zcQ3x0dN24cKpXKKr2p09LScPPmzejl5YW1a9dmXuyqJCgoqNJ9q+k91SZMmIAqlapMu8+fP8eTJ09iQEAAenp6Mr99R00Gtvj4eIP9RqR27dpYq1Yt5v0Qa8SGdT0o1c+6devw5MmTOHXqVKxfvz7z/pQXGxsbPHbsmNb34YoVK5j3lcI+YsO6HoYWbcePb/3666813lZwcDAWFhZiZGQkLlmyBL28vERzFltNjh/pvsXGG63jla5vIr47KpVKcfny5ZidnV0qxcXFWvum0Wjw6tWrOG7cOHR0dBT9N4j169fHxMTESvfpxYsXaG1tXe1t2NjY4NGjRyvdhlKpxJ07d6KPjw+zFfmqO7CpVCoMCAhg/lpS2ERsWNeDUv1cvXq15HVMSkrCDRs2YJcuXdDR0VFU35Js3rxZ6/uQJsYUABofDTkymQyDg4O11ry4uBjd3d1rvL13x0fEN8fbJ0+exEGDBqGjoyPT05BrMjGm+xYbb7SOV7q+iYTorImJCdrZ2ZXK9OnTMSgoSKdvk5VKJebm5uLq1atFfc1Ay5Ytte7LwYMHazzB79u3r04LfOXn5+Pjx49x2rRp2KNHD0FP3a3uwBYbGyv6D0Ao/EVsWNeDUv2sXLmyzOspl8sxMzMT586di/7+/qK4nIEmxhRdIzas62FI8fb2RoVCobXmV65cQScnpxpvr7zxEfHNuj+5ubm4YsUKbNasGZMxsiYT4/HjxzN/LSlsoo2oJsYVRSaToaenp86r8OXl5WGPHj2YF7+ihIaGVtr/3NxcTlYilkgkOGXKFF1f4pJtHz9+XLBrSqo7sA0ZMoT560hhF7FhXQ9K9dOhQ4dKX1u5XI6XL1/G/v37M12jgSbGFF0jNqzrYUh5//33dar5smXLONmetvER8c0lerdu3cLhw4djhw4dBKtFdY8f9+/fL5rTwSnCRxu9mBi/jYuLC4aHh+OrV68q7euVK1eYXztbWc6cOVNp/2/cuMHZtlxdXfHu3bu6vswl5HI5Dhs2TJB6TJs2rUp9u3DhAjo4ODB/HSnsIjas60Gpfuzt7TEqKkqn1/n58+e4adMmbNasmeD91DYxVqlUOH36dOb1pLCP2LCuhyFlw4YNWuudk5PD2SJ89vb2GBoaqnWx2He3LeQXF1U9fszNzUVfX1/mryOFXbSRgh558eIF9OvXDwYPHgwTJ06ER48eQVZWFmRlZcGLFy9g5syZMH78ePj8889BpVKx7m653n//ffD09Kz0Mfv27eNse+np6bBx40ZQKpVVep65uTnUqVOHs35U5t69ezo/VqPRwIYNG+DVq1f8dYgQYjRyc3Nh/fr18Pr1a62PrVu3LowfPx4iIiLAxMREgN79TS6XAyJW+PunT5/Cpk2bBOwRIURozZs31/oYpVIJDx8+5GR7ubm5MGPGDMjLy9Pp8Q4ODrBt2zbo1asXJ9vXpirHjwAAR48ehZiYGJ56QwyCrp+ygAhm+f+MjY0N2tralkRMC6VUlH79+lVaZ41Gg126dOF0mzKZDPfv36/rS42IiCkpKYItTNC7d2+d+3X16lVOrpuh6HfEhnU9KDWLRCLBAQMG4PHjx3V6vXfs2CH4NXV169bF3NzcCvs0YcIE5nWkiCNiw7oehpRTp05p/fb2wIEDnK7BIpFIcPny5VV6zWfPni1IPby8vPDx48c69am4uBg9PT2Zv4YUttFGr74x/qfXr19Dfn5+SbCST9P1xenTp+HatWuctqlWq2HJkiVQXFys83Nu3boFCoWC035UJDo6Gi5duqT1cUqlErZs2QLZ2dkC9IoQYiwQEY4cOQLDhg2DPXv2aH380aNHQaPRCNCzv7148QKmTp1a7jfbeXl5kJycLGh/CDE23t7erLsAgYGBMHfuXEhMTKzwMX/88UeVjve0QURYs2YNREdH6/ycbt26gbW1NWd9qEhiYqLO3xo/fPgQcnJyeO4R0Xd6PTHWN1KpFCZMmFDpY16/fg2FhYWcbzsrK0vnDw5ev34NP/30E6jVas77UR65XK7TQV1SUhLs3r1bgB4RQoxRfn4+/PLLL5U+5vXr10wu5dBoNLBjxw7o3r07fPzxxzBgwAC4du0axMfHw9dffw2RkZGC94kQY/L2y4KRI0dCx44dwcLCQvA+PHv2DJYtWwYrVqyAx48fl/l9cnIynDx5kvPtvnjxAlatWqXz8WlkZCQUFBRw3o/yPH/+XOtj1Go1bNmyBV68eCFAj4he0/W0CBDB19/6Hmtra3z48GGFNVar1bzdm7dBgwZllvgvKCjAjIyMkoSEhOCYMWOwb9++gtfGx8en1OlBKpUKMzIyMD8/HxER79y5g82bN2f+GlLEEbFhXQ8Kd1m3bh0ivlmAsLxTFqOjo5n3kUKpLGLDuh5cp3PnzpiWloYHDx7EoKAgZndBGThwYJla830K87Vr17S+3mq1GidNmiRYHf55/PhPKpUK165dK+pFeSnCRRthVw8xcqNHjwZ3d/cKf6/RaODy5cu8bDs/Px/++usv+OCDD+D58+ewb98+OHPmDFy4cKHkMQqFgtPTb6oiMzMT4uPjoWXLlqBWq2HDhg3w/fffQ8eOHaFHjx6wfft2SEpKYtI3QojxaNeuHeTk5MB//vMfaNWqFdjY2ECfPn2gefPmIJFIBDuThhAiThcvXgR/f3+YOHEiBAYGQmJiIpw6dUrwfty/fx9SU1OhQYMGAACAiLwdQwIASCQSkEgkWh/35MkT2Lp1K2/9+Cd8c4edcvuGiPDLL7/AzJkzRbsoLxEZrVPn/wERzPL1OQ4ODpiSklJpjYuLi9Hd3Z23Pvj7+2OrVq2wfv36zOtRXqZMmYKJiYnYvn17tLS0ZN4fingjNqzrQeEu9evXx4YNG5b6mYuLC06ePBnDwsLoVh8U0UdsWNeDr1hYWGCTJk3Q3t6eWR8WL16MERERqFKp8OTJk2hhYcHbtgYOHIhFRUVaX++HDx8K+u2smZkZhoaGlunH/fv3cfHixbzWhKJ/0Ubyv0FLK10+JSJ/s7W1hd27d0NKSgps3boVRowYAf/3f/8HMpmswueoVCpo2rQppKSkCNdRAclkMnjvvfdKajBkyBBQq9Vw+PBhAHizzH9AQAAsX77cYGtAuKHjsCUYGh8JIWJB46NxMTU1hfbt28OrV6/g9u3bvGxDIpHAzJkzYcWKFVofW1RUBP/5z38gNDSUl76Up1mzZlC/fn34/vvvwdnZGfbu3Qv79u2DBw8eCNYHoh+0jo/G/okfXzEzM8Ndu3bpWl5ERDx27Bja2toy7ztfsbe3x9TUVK11OHLkCPO+UsQdsWFdDwqFQnkbsWFdD0rNY2Fhgc+fP9f5NZ81axbzPlMo5UUbWpWaJ0qlEm7cuFGl59y+fRvy8/N56hF7ubm58OWXX8L+/ftBpVJVeL1H06ZNK70WmxBCCCGEiJNUStMLop/oncsTU1NTeO+993R+vFKphLt371b4+zZt2oCXlxcXXWMqKioKRo4cCU2bNoVWrVrBnj17ytyX87333oODBw/S5JgQQgghhLHmzZtX6fZU3377LTg5OfHYI0L4QatS82TatGkwZswYnR+fm5sL+/btK/d3zZo1g2PHjoFCoYCwsDDYsWMHPH78WG9vVF5YWFhyDXFAQAD4+vqCh4cHzJo1q+QxzZo1g27dugm6siEhhBBCCCltyJAh4OjoqPPjHRwcKl1ThxCxookxT65duwY5OTlQu3ZtnR5/4MCBkpvH/5OFhQXY29uDhYUFTJ48GSZPngwXLlyALVu2QHh4OOTm5nLZdcHFxMRATEwM7Nmzp+RnPXv2hEePHjHsFSGEEEKI4bG2tgZra2vIyclhdptOQsSITqXmyblz58Df3x/27dundQW0ly9fwvbt2yu85vb27duwf//+Uj/78MMPYfv27RAZGQkjR440uFUfT548Cffu3WPdDUIIIYQQgzJx4kR49OgRzJ49G0xM+PmOjL4xJvqIJsY8ioqKglGjRsHGjRsrfdyJEycgJiamwt9rNBpYunQpFBUVlfq5qakptG3bFrZs2QJz586lxQ4IIYQQQkilHj16BBKJBObPnw/Xr18Hf39/sLS05Kx9a2trmDFjBmftESIYsS+3b2VlhT4+PiiRSJgv8V2TfejZsydeunSp3Jujf/TRR1rbMDU1xYULF6JCoSj39Xn27Bmam5sz31cKRYiIDet6UCgUytuIDet6UMpGIpHgd999V/IaaTQavHr1Kvbs2bPMY+vUqYMPHjyo8uuenp6O27dvR3t7e+b7S6G8jdbxSuwD29q1a7GgoABDQkJw165d2K5dO3R2dmZe2OpEIpHgnDlzSk1uo6Ki0NXVVafnS6VS3LBhAxYXF2NaWlpJlEol3r17lybGFKOJ2LCuB0X4DB06FHfu3Ine3t7M+0KhvBuxYV0Pyt9xcnJCCwsLBAAcM2ZMmdcqIyMDe/bsiS4uLiiVShEA0MvLC5VKZbVf//3796ONjQ3zfadQAAxgYnz+/PlS/SgqKsL09HScP38+Dhw4UO++SZZKpXj69GlUqVR44cIFdHFx0fm5VlZWGBYWhhMnTkRLS8uSTJgwAX19fZnvG4UiVMSGdT0owqdfv36Yl5eHd+/eRU9PT+b9oVDeRmxY14PyJt7e3piUlIShoaE4f/58zMjIQETE8PBwXL58OS5ZsgSfPXuGCoUC8/LycNmyZThnzhy8fv16jV5/jUaDU6ZMYb7/FAqAAUyMfX19MTw8HNVqdZk+FRQUYMuWLZkXuapp1aoV+vv7o4ODg87PcXZ2xsTERJw1axbWqlWL+T5QKCwjNqzrQRE+EokEp0+fjoiI165dQ5lMxrxPFAoAjY+UsjExMcG4uLhyX5/MzEycNm0aAgBevnyZl/fA9u3b0czMjHkdKBRtRD8xBgA0MzPDhQsX4rVr1zA/Px8R33wCtW3bNqM5PWPRokUlHw7Ex8fj6NGj9e7bcgqFq4gN63pQ2MTFxQVHjRqFMTExNDGmiCZiw7oelDfr1Dx+/LjC1+jJkyd44cIFzMvL4+U9kJ+fj7Vr12ZeBwpFG724j7FSqYSFCxfCwoULoVevXlC7dm1Qq9UQFhYGhYWFrLsnCHd395JVp1u0aAHr168HjUYDu3btAo1Gw7h3hBBifF68eAG7d++Gtm3bsu4KIYRUW4MGDaBBgwasu0EIc3oxMX7XiRMnWHeBiTNnzsDnn39ecr85S0vLkttA/fbbb3SDdkIIAQATExOQSqWgVqtBrVbzth2ZTAb//ve/Yfz48dC1a1fetkMIIfrOzMwMunXrBnv37gVEZN0dQipEN77VE6dOnSoz+TU3N4dffvkFzp49Cw0bNmTUM0IIEY+9e/dCcnIyBAUFwbBhw6BWrVqcb6NTp06wY8cOOHnyJIwZM4buIU8IIZUwMzODoKAgGD58OOuuEFIp+tdcz1lZWUHnzp3h9OnTsGDBAmjSpAnrLhFCCDN16tSBBg0aQGBgIOzZsweioqJgwoQJ4OvrC6amppxsAxHBz88PnJycAADAzc0NZs6cCe7u7py0TwghXKpbty6YmZkx7YONjQ1s3LgRAgICmPaDkErpeuE8iOCCaWOOq6sryuVyra9TSkoKLl26tEq3gaJQ9C1iw7oelDdp164dvnz5stzXSK1W4+HDh7FDhw6cjI8rVqwos4379+9jmzZtSu4TSqGwiNiwrgcFcM6cOazfBiXy8vIwICAA7e3tmdeFYnzRhr4xNjCNGjWC7777Dm7dugXdu3dn3R1CCBFMo0aNwNnZudzfISIMHDgQoqOj4datW7BgwQKoVasWZ98iAwB4eHjApUuXICgoCDp37lyyJgQhhBgapVIJCoUClEpllZ5na2sLwcHBEBERAfXq1eOpd4RUD02M9URhYSEkJCTo9FiJRALOzs7w+++/g4uLC889I4QQ8duwYQNs2rQJoqOjwdnZGRYtWgS3bt2COXPmcLodMzMz+OKLL+CPP/6APXv2gJ+fH6ftE0JIVd29exfkcnmN28nMzIQ9e/ZAcHAwtGzZEjw8PKBNmzbw22+/wdWrV3Vux8TEBD744APYu3cv9OnTp8b9IoQzup76ACL4+tvY06hRI0xLS9P5dJWioiKsV68e835TKFxHbFjXg/Imfn5+Ze7DmZ+fj99++y26ubkhAKCNjQ126NChJNbW1tXa1uTJk7G4uFjre+PVq1d4+fJlnDVrFrq7uzOvEcXwIzas60EBNDExwfPnz9fodczIyMBevXpVuA1nZ2dMSkqqcruFhYUYFRWFfn5+aGlpybxWFMOONjQx1qNIJBKcN28eKhSKMq+PWq3G1NRUTE1NLbnG7uXLl3StMcUgIzas60H5O6NGjcKCgoKS1+bq1au8bMfExAQHDRqE8+bN0/kDy/v372NoaCh27dqVeZ0ohhuxYV0Pypv06dOn3ONHXa1fv17rNqZNm1aj98qaNWvQzc2t2h9YUijaog1NjPUsUqkU586di2q1utTrs3PnTrSyskJzc3N0d3fHBQsWoJ+fH/P+Uih8RGxY14PydyQSCY4cORJfvXqFq1atwtGjR/O+PRcXFzx37pxO3yAjIqanp+OPP/6I/fv3R1NTU+Y1oxhWxIZ1PShvUtHxoy4KCwuxQYMGWrfRuXPnarX/lkajwaKiIjxw4ADa29vT+EjhPNrQxFgPY2pqinPnzkWVSoWIiJmZmdixY0fm/aosdnZ2GBAQgL6+vsz7QtH/iA3relBKRyqVYt26dVEmkwm2TTs7Oxw0aBCePn1a5/dNfn4+nj17FgMCAnDIkCF0EEjhJGLDuh6Uv/PP40dERLlcjqGhoXjhwoUKX8PCwkKsW7eu1vbNzMwwIiKixu8ZjUaDaWlpND5SOI/W8UrXNynrHaGUjqmpKfr6+mK7du3Qy8uLeX+0xdPTEzUaDaanp+PVq1cxMDCQTvOmVDtiw7oeFGFjbm6OP/zwA3bv3h29vb1L/c7Ozg7btWuHu3fvrtJ7SKVS4bVr13DgwIF0GxNKjSI2rOtBKR1TU1OcM2cOJiUlYXh4OLZq1QolEgk6OTmhv78/ZmRklHkNFQoFdujQQWvbdnZ2GBUVxfl7SKVSYUxMDO7cuZOzW+5RjDPaSP43aGklkUh0eRgxEDKZDMaOHQsfffQRrFmzBuLj46GwsLDa7Xl6ekJiYmKp99H169fh/v378N///hcSEhJAoVBw0XViBHQctgRD46NxadWqFcTExIBMJoOXL1/CuXPnAADg6tWrcODAAahVqxaEhoaCp6dntdqPjo6GDRs2wOXLl6GwsBAyMzO57D4xcDQ+El00aNAA5HI5ZGVllfp5aGgoDB8+vMzjHz9+DFeuXIG1a9fClStXym1zwIABEBYWxkd3S7l+/TokJyfDnTt3YPv27ZCdnQ0FBQW8b5foP63jo66f1oAIZvkU4eLu7o5FRUWIiKhUKnHPnj04f/58dHJyQjMzsyq3V9mCDEqlEoODg7Fjx45oYmLCfN8p4o/YsK4HpXpp06YNjh8/HqVSaZWet3///nLfB2q1GhUKBSqVyhq/p1QqFSoUCkxMTMTJkyejhYUF83pR9CNiw7oelKpl5MiRpU61/id/f/9yn9euXTtMTU0V8J315pRrhUKBR48exUWLFtE3yRSt0YYmxpRy4+zsjPHx8WUGoPT0dDx//jwOGDAAJRKJzu3pcs3Jq1evcM+ePWhra8t8/ynijtiwrgel6jExMcHff/8dlUolLlq0qEqT40OHDgn6/iouLsbk5GQMDAyk8ZGiNWLDuh6UqsXNza3ki5HylDcxZjEpLk9UVBS6uroyryFFvNGGTqUmFXJzcwNXV9dyf/fll1+Cq6srbNu2DS5evKj1xvERERHQq1cvnba7Z88e+PrrryE3N7fKfSbGQcdhSzA0PuqngIAA2L17NyiVSli2bBksWbIEiouLK31O69at4cyZM+Dg4CBMJ/+BxkeiDY2PpCbc3NwgOTkZzM3Ny/39gwcP4LfffoPIyEgAAAgMDIQ+ffpUeLwotLFjx8LWrVtZd4OIlLbxkSbGpNratWsHO3bsgM8++wySkpIqfJyFhQWcOHECunbtqnPbQ4YMgYMHD3LRTWKA6MCP1JSpqSkcPXq05AM7jUYDx48fL7OWwtq1a+GTTz6BFi1aAACAnZ0dtGjRAurVqyd4n9/6+OOPS65rJuSfaHwkNeHq6grx8fHg7OzMuivVcvfuXWjbti28fv2adVeICGkdH3U9PQFE8PU3RXzRZfn8Hj16oEajqfC9pVarUS6XY2FhIRYXF6NcLseYmBjm+0YRb8SGdT0oVY+5uTkmJyejXC4vk3evrysuLi4Zv65cuYJffvklOjs787Lyqq569erFvH4U8UZsWNeDUvX88MMPJeOeRqMpNT4WFhYyfkdVTqPRYGBgIPMaUsQZbUyAkBrQdtohAIBUKq3wE2NEhBUrVsC6devAysoKOnXqBJGRkTqfdk0IIdWhUCjggw8+AJlMVuZ3I0aMgPfff7/Uz5RKJSxcuBCePXsGAG9WoK7KWTBcmjt3Lpw4cYLJtgkhhu/nn38GX19fkEqlkJycDCtXrgS1Wg0AAA4ODjBr1qxSY6eJiQl89tlnYGFhwarLJSQSSbnjOiG6oFOpCe8mTJgAGzZsKPd3oaGhEBgYSLdqIlWi47AlGBofjc+KFStg1qxZVX7e7t274fXr19CiRQto27YtmJhU/fPp+Ph4aNmyZZWfR4wDjY+EC05OTlBUVKR1DRmAN1+A+Pj4gKenJ8yYMQN8fX2Zve7JycnwwQcf0G3uSLm0jY/0jTHhlUQigUmTJpX7O41GA/fu3aNJMSHEKOTl5cEPP/wAycnJYG9vDykpKcwW8SKEkMpkZ2fr/FiNRgPx8fEQHx8Pf/zxB/Ts2RO6desG33zzTcljXr9+DQUFBeDi4sJHd0vI5XKaFJNqk7LuADFeubm58PPPP7PuBiGECCI0NBSSk5NZd4MQQngjl8vh8OHDsHnzZkhLSwNEhKNHj8LQoUOhU6dOcPPmTV63r8slfoRUhL4xJswgYsk1K4QQoi9sbGzAy8urys/TaDQ89IYQQsQnPj4eXr58CQqFAr744gvIz88HAIDBgwdDWFgY+Pj48LLdxYsX89IuMQ70jTHhFSLC6tWry/3dr7/+SsvpE0L0ir29PQQFBUHfvn1r1I5KpYJHjx5V67kPHjyo0bYJIUQI8+bNg++++65kUgzwZvwaOHAgxMXFcb69rKwsSE1N5bxdYjxoYkx4d//+/TL3BgUASEtLo29QCCF65eeff4bhw4dX+PunT5/C06dPy/y8sLAQdu/eXfL/BQUFsGbNGkhPT69yH9avX1/l5xBCiND++OMP2Lt3b5mfP3jwAFauXMn5ac/h4eFw48YNTtskxoUmxoR3Fy5cgJEjR0J0dHTJz1JTU+Hy5csMe0UIIVX3z9s4Abw5MyYnJwcWLlwIAQEBEBkZWWbly+LiYkhISCj1s99++w0+/PBDuHXrFq99JoQQsdm7d2+Nxz61Wl3yxYtarYbly5dz0TVixOgaY8I7RIT9+/dDVFQULFiwAKysrGDLli28nEZDCCF88fDwgOTkZPDw8IADBw6UTH6zsrJg1apVkJmZCbNnz4bAwECd2kNESE5Ohs8++wyOHDmi03XLqampkJaWVqP9IIQQ1jQaDSxevBgOHz5crecjIixbtgz27t0L+/fvh6ZNm9K6NaTGaGJMBJORkVHhrZsIIUTssrKy4JtvvoHatWvD3bt3y31MRadZP3r0CFQqVbm/S05OhgEDBsChQ4egRYsWAPDmGuTly5dDYmIi/Prrr+Do6AgAAAcOHKhw24QQok/+uc7MX3/9BXK5HExMTKBDhw6V3uc9NTUVNm/eDE+fPoXz58/DtWvX4MmTJ3x3mRg4mhgTQgghOsjJyQEAqPAemXZ2dmBubl7m57du3YIhQ4aULEBjamoKlpaWkJeXV/KY5ORk6N+/P7Rs2RIAAJRKJURGRoJKpYL//Oc/0K1bN1Cr1bBhwwaud4sQQpjatm0bhIeHw9mzZyE/Px9MTEygZ8+eMHfuXGjVqhVYWloCwJvJsFKphIMHD0JISEip9RwyMzNBqVSy2gViIGhiTAghhNSQra0t7Ny5E5o3b17q52q1GmbPng3JyclgamoK06ZNg+bNm0PDhg0hLi4Ofv31V3j58iXI5XJISUmBlJSUMm2fPHkSunXrJtCeEEKIcDIzM2Hjxo1w/fr1kp+pVCo4duwYnDhxAsaOHQs//vgjrFmzBrZu3QrZ2dmg0WhKLmWRSqVgYmJCk2LCDdQRAFAoFIooIjas60FhG1tbWzx06BBqNJoy742oqCg0MzPD1q1b49dff40qlarU77OzszEhIQG9vb0rbH/27NmIiHjz5k2sU6cO8/2liDtiw7oeFPGmW7duuGvXLpRIJBU+RiaToZOTU4WPCQwMxGfPnqGLiwvz/aGIP9rQqtSEEEJIDdja2sK///1vkEgkJT9Tq9WwYsUKGDVqFCiVSqhVqxbMmjULZDJZqec6OjqCu7s7eHh4VNj+sWPHQKlUQlBQELx8+ZK3/SCEECE1bdoU9u3bV/Ltr5OTE9SqVavUY9RqNWRnZ5dZ6R8AoEuXLrBs2TL44YcfICMjQ5A+E8NGp1ITQgghNfD8+XPo06cPjBgxAoYOHQoAAAcPHoT58+eX3KezT58+8K9//avc5z9+/BiOHj1aYftKpRJu3rwJO3bs4L7zhBDCQK9evWDFihUQHR0N9+/fhw4dOsCECRNAIpGU+QDw4MGDcPz48TKTX6lUCgsWLICtW7cK2XViwCRY3kcw5T3wnU/CCSGEJR2HLcHQ+EgA3rwPpNI3J2K9ew2cm5sbHDlyBFq3bl3u8+7cuQPe3t6Vvq+lUiloNBruO00MDo2PRB+MGzcOVq9eDQAAlpaWIJVKK3yvICKsW7cOpk6dKmAPiSHSNj7SqdSEEEIIBxAR1Go1qNXqUv/4rl69usJJsa5oUkwIMSSJiYnQvn178PX1hYSEhEo/QHn3Q0dC+ESnUhNCCCE8qF+/Prz33nvQqFGjSh937949gXpECCHicPHixZL/njVrFhw6dAisrKwY9ogQmhgTQgghnLC3t4fOnTvDkCFDYO3atbB582Zo37691udt2rRJdKe/EkII37p37w6TJ08Gb2/vSifFr1+/ht9++03AnhFjRRNjQgghhANubm6wevVqqF+/Pnz11VcglUrh9evXYGFhASYm5f9zq1KpQKVSCdxTQghhSyKRwOrVq6FFixZaHxsWFgZxcXH8d4oYPTphnxBCCOFAQkICtGvXDv7973/Dpk2bYOPGjdC2bVtYvHhxhdcIR0dHQ3R0tMA9JYQQ9nRdmO3KlSugVCp57g0htCo1IUQPie20UxofSWXMzMzAx8cHtmzZAm3atCn5+ZMnT2Dw4MEQExPDsHfE0ND4SPTFgQMHYPDgwZU+5vXr1zBixIhKb2lHiK60jY80MSaE6B068CP6qGHDhuDt7Q3jxo0Dd3d3GDt2LE2KCedofCT6olatWhAUFAReXl4lP6tfvz7Y2NgAAMCjR49g+fLlsGXLFlZdJAaGJsaEEINDB35En0kkEpBIJHQLJsILGh+JPnk7Hr7Vt29faNSoESAihIaGQlZWFsPeEUNDE2NCiMGhAz9CCCkfjY+EEFI+beMjLb5FCCGEEEIIIcSo0cSYEEIIIYQQQohRo4kxIYQQQgghhBCjpvM1xoQQQgghhBBCiCGib4wJIYQQQgghhBg1mhgTQgghhBBCCDFqNDEmhBBCCCGEEGLUaGJMCCGEEEIIIcSo0cSYEEIIIYQQQohRo4kxIYQQQgghhBCjRhNjQgghhBBCCCFGjSbGhBBCCCGEEEKMGk2MCSGEEEIIIYQYtf8PwcLkQK5DzGAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "id = 7\n", + "\n", + "fig, axs = plt.subplots(3, 3, figsize=(10, 10))\n", + "idx = 0\n", + "for base_dir in base_dirs:\n", + " result_dir = os.path.join(base_dir, 'result')\n", + "\n", + " ##\n", + " lst_data = os.listdir(os.path.join(result_dir, 'numpy'))\n", + "\n", + " lst_gt = [f for f in lst_data if f.startswith('gt')]\n", + " lst_pr = [f for f in lst_data if f.startswith('pr')]\n", + "\n", + " lst_gt.sort()\n", + " lst_pr.sort()\n", + "\n", + " ##\n", + " # img = np.load(os.path.join(result_dir,\"numpy\", lst_img[id]))\n", + " # gt = np.load(os.path.join(result_dir,\"numpy\", lst_gt[id]))\n", + " pr = np.load(os.path.join(result_dir,\"numpy\", lst_pr[id]))\n", + "\n", + " axs[idx//3,idx%3].imshow(pr, cmap='gray')\n", + " axs[idx//3,idx%3].axis('off')\n", + " axs[idx//3,idx%3].set_title(f'{os.path.basename(base_dir)}')\n", + "\n", + " idx += 1\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/unet_batterry.ipynb b/unet_batterry.ipynb new file mode 100644 index 0000000..84764cd --- /dev/null +++ b/unet_batterry.ipynb @@ -0,0 +1,45772 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\pinb\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "from glob import glob\n", + "import numpy as np\n", + "import torch\n", + "from torch.utils.data import Dataset\n", + "from PIL import Image\n", + "import matplotlib.pyplot as plt\n", + "from torchvision import transforms, datasets\n", + "import random\n", + "import cv2\n", + "\n", + "class CustomDataset(Dataset):\n", + " def __init__(self, list_imgs, list_masks, transform=None):\n", + " self.list_imgs = list_imgs\n", + " self.list_masks = list_masks\n", + " self.transform = transform\n", + "\n", + " def __len__(self):\n", + " return len(self.list_imgs)\n", + "\n", + " def __getitem__(self, index):\n", + " img_path = self.list_imgs[index]\n", + " mask_path = self.list_masks[index]\n", + "\n", + " img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)\n", + " mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)\n", + "\n", + " # 이미지 크기를 512x512로 변경\n", + " img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)\n", + " mask = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_NEAREST)\n", + "\n", + " img = img.astype(np.float32) / 255.0\n", + " mask = mask.astype(np.float32) / 255.0\n", + "\n", + " if img.ndim == 2:\n", + " img = img[:, :, np.newaxis]\n", + " if mask.ndim == 2:\n", + " mask = mask[:, :, np.newaxis]\n", + "\n", + " data = {'input': img, 'label': mask}\n", + "\n", + " if self.transform:\n", + " data = self.transform(data)\n", + " \n", + " return data\n", + "\n", + "def create_datasets(img_dir, mask_dir, train_ratio=0.7, val_ratio=0.2, transform=None):\n", + " list_imgs = sorted(glob(os.path.join(img_dir, '**', '*.png'), recursive=True))\n", + " list_masks = sorted(glob(os.path.join(mask_dir, '**', '*.png'), recursive=True))\n", + "\n", + " combined = list(zip(list_imgs, list_masks))\n", + " random.shuffle(combined)\n", + " list_imgs, list_masks = zip(*combined)\n", + "\n", + " num_imgs = len(list_imgs)\n", + " num_train = int(num_imgs * train_ratio)\n", + " num_val = int(num_imgs * val_ratio)\n", + "\n", + " train_set = CustomDataset(list_imgs[:num_train], list_masks[:num_train], transform)\n", + " val_set = CustomDataset(list_imgs[num_train:num_train + num_val], list_masks[num_train:num_train + num_val], transform)\n", + " test_set = CustomDataset(list_imgs[num_train + num_val:], list_masks[num_train + num_val:], transform)\n", + "\n", + " return train_set, val_set, test_set\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Dataset Loader" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAEjCAYAAAAYIvrbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZmUlEQVR4nO29d5xdVb33/zm9l+mTTouGUERBIKKCEMiD0UcQ76NXxajYuIGHoqjcl5eADbtcFMHyQOx4wY6KYmgqkRKMECCRhIRJMr2c3s/Zvz/m912ss2f3s0+ZmfV+vc5rZnZZe+199uz12d+2HJIkSRAIBAKBQCDoIJzt7oBAIBAIBAKBHCFQBAKBQCAQdBxCoAgEAoFAIOg4hEARCAQCgUDQcQiBIhAIBAKBoOMQAkUgEAgEAkHHIQSKQCAQCASCjkMIFIFAIBAIBB2HECgCgUAgEAg6DiFQBAKBQNDxHDhwAA6HA1/5yldsa/PBBx+Ew+HAgw8+aFubAvsQAmWesnXrVjgcDjzxxBPt7goAIJfL4frrrzf8j04Phrvvvru5HRMIBG2l055VgvmDECgCW8jlcrjhhhvEm4hAIBAIbEEIFIFAIBAIBB2HECgLiPe+970Ih8M4fPgwLrjgAoTDYfT19eFjH/sYqtUq24735X7961/HqlWrEAgEcOaZZ2LXrl11bZ511lk466yzFI91xBFHsPb6+voAADfccAMcDgccDgeuv/56U/2//vrr4XA48K9//Qvvfve7EYvF0NfXh//6r/+CJEk4ePAg3vKWtyAajWJwcBBf/epX6/YvlUq47rrrcPLJJyMWiyEUCuF1r3sdHnjggTnHmpqawsUXX4xoNIp4PI5Nmzbhn//8JxwOB7Zu3Vq37e7du/G2t70N3d3d8Pv9OOWUU/Cb3/zG1LkJBAJlzPzfEnrPLUD83y4EhEBZYFSrVWzYsAE9PT34yle+gjPPPBNf/epX8Z3vfGfOtj/4wQ9w8803Y/Pmzbj22muxa9cunH322RgbGzN1zL6+Ptx6660AgAsvvBA//OEP8cMf/hBvfetbLZ3D29/+dtRqNXzhC1/Aaaedhs9+9rO46aabcO6552LZsmX44he/iGOOOQYf+9jH8PDDD7P9UqkUvve97+Gss87CF7/4RVx//fWYmJjAhg0bsHPnTrZdrVbDm9/8Zvz0pz/Fpk2b8LnPfQ4jIyPYtGnTnL4888wzOP300/Hcc8/hk5/8JL761a8iFArhggsuwC9/+UtL5ycQCF7C6P8tYeS5Jf5vFwiSYF5yxx13SACkxx9/nC3btGmTBED69Kc/XbftK1/5Sunkk09mf+/fv18CIAUCAenQoUNs+aOPPioBkK666iq27Mwzz5TOPPPMOcfftGmTtGrVKvb3xMSEBEDasmWLof4/8MADEgDprrvuYsu2bNkiAZA+9KEPsWWVSkVavny55HA4pC984Qts+czMjBQIBKRNmzbVbVssFuuOMzMzIw0MDEjvf//72bKf//znEgDppptuYsuq1ap09tlnSwCkO+64gy0/55xzpBNOOEEqFApsWa1Wk17zmtdIq1evNnSuAsFiRulZxWP0/9bMc8vo/y09hx544IFGT1PQBIQFZQHykY98pO7v173udXjhhRfmbHfBBRdg2bJl7O9TTz0Vp512Gn7/+983vY9afOADH2C/u1wunHLKKZAkCZdccglbHo/H8fKXv7zuvFwuF7xeL4BZK8n09DQqlQpOOeUUPPnkk2y7e++9Fx6PBx/84AfZMqfTic2bN9f1Y3p6Gvfffz/+z//5P0in05icnMTk5CSmpqawYcMGPP/88zh8+LDt5y8QLCaM/t8Ses8t8X+7cBACZYHh9/tZPAjR1dWFmZmZOduuXr16zrKXvexlOHDgQLO6Z4iVK1fW/R2LxeD3+9Hb2ztnufy8vv/97+PEE0+E3+9HT08P+vr68Lvf/Q7JZJJt8+KLL2LJkiUIBoN1+x5zzDF1f+/duxeSJOG//uu/0NfXV/fZsmULAGB8fLzh8xUIFjtG/m8JveeW+L9dOLjb3QGBvbhcLlvbczgckCRpznI+6NZulM5B7bz4vv3oRz/Ce9/7XlxwwQW45ppr0N/fD5fLhRtvvBH79u0z3Y9arQYA+NjHPoYNGzYobiMXNQKBwBzi/1aghhAoi5jnn39+zrJ//etfLDsHmLW+KLmHXnzxxbq/HQ6H7f0zy913342jjjoKv/jFL+r6Q29NxKpVq/DAAw8gl8vVWVH27t1bt91RRx0FAPB4PFi/fn0Tey4QLF6M/t8Ses8t8X+7cBAunkXMr371qzpf7GOPPYZHH30U559/Plt29NFHY/fu3ZiYmGDL/vnPf+Jvf/tbXVs00CcSieZ2WgOysvBWlUcffRTbt2+v227Dhg0ol8v47ne/y5bVajXccsstddv19/fjrLPOwre//W2MjIzMOR5/TQQCgTWM/t8Ses8t8X+7cBAWlEXMMcccg9e+9rW49NJLUSwWcdNNN6Gnpwcf//jH2Tbvf//78bWvfQ0bNmzAJZdcgvHxcdx222047rjjkEql2HaBQABr167Fz372M7zsZS9Dd3c3jj/+eBx//PEtO583velN+MUvfoELL7wQGzduxP79+3Hbbbdh7dq1yGQybLsLLrgAp556Kj760Y9i7969WLNmDX7zm99genoaQL016JZbbsFrX/tanHDCCfjgBz+Io446CmNjY9i+fTsOHTqEf/7zny07P4FgPnP77bfj3nvvnbP8rLPOMvR/Sxh5bon/24WBECiLmPe85z1wOp246aabMD4+jlNPPRXf/OY3sWTJErbNscceix/84Ae47rrrcPXVV2Pt2rX44Q9/iJ/85Cdzytp/73vfw+WXX46rrroKpVIJW7ZsaalAee9734vR0VF8+9vfxh//+EesXbsWP/rRj3DXXXfV9dXlcuF3v/sdrrjiCnz/+9+H0+nEhRdeiC1btuCMM86A3+9n265duxZPPPEEbrjhBmzduhVTU1Po7+/HK1/5Slx33XUtOzeBYL5DtZLkDA0NIZPJ6P7fEkaeW+L/dmHgkJQiIAULmgMHDuDII4/El7/8ZXzsYx9rd3c6hl/96le48MIL8de//hVnnHFGu7sjEAgEixoRgyJYlOTz+bq/q9UqvvGNbyAajeJVr3pVm3olEAgEAkK4eASLkssvvxz5fB7r1q1DsVjEL37xCzzyyCP4/Oc/j0Ag0O7uCQQCwaJHCBTBouTss8/GV7/6Vdxzzz0oFAo45phj8I1vfAOXXXZZu7smEAgEArQ5BuWWW27Bl7/8ZYyOjuIVr3gFvvGNb+DUU09tV3cEAsE8QDw3BILFQdtiUH72s5/h6quvxpYtW/Dkk0/iFa94BTZs2CBKEAsEAlXEc0MgWDy0zYJy2mmn4dWvfjW++c1vApgtlLVixQpcfvnl+OQnP9mOLgkEgg5HPDcEgsVDW2JQSqUSduzYgWuvvZYtczqdWL9+vWL1wGKxiGKxyP6mGS97eno6osS6QLAYkSQJ6XQaS5cuhdPZfGOs2ecGIJ4dAkGnYea50RaBMjk5iWq1ioGBgbrlAwMD2L1795ztb7zxRtxwww2t6p5AIDDBwYMHsXz58qYfx+xzAxDPDoGgUzHy3JgXWTzXXnstrr76avZ3MpnEypUrARifpE6SJN1taRs1r5fWumbgcDgQCASwatUqrFixAitWrEBfXx+i0Sjcbjc8Hg/cbjfcbjdcLhe8Xi+cTidcLhecTif7UL/L5TKq1SpqtVrdeTgcDraPy+WCy+VibdL+wOz14efNoP0cDgdqtRqbRbRSqaBarbLjpdNp7N+/H8888wxWr16NwcFBRKNRSJKEYrHIapI4nU54PB54PJ66fnk8HkSjURSLRZRKJVQqFZRKJXZcOpdarQan04larYZqtQpJkiBJEpt5ORAIIBQK1fWfrpHP50Mmk0GxWEQmk0EikcDk5CT27duHPXv2YHh4mJ2foJ5IJNLuLqii9ewQCATtw8hzoy0Cpbe3Fy6XC2NjY3XLx8bGMDg4OGd7n88Hn883Z7nD4TBlptXblgZyp9OpKVJaBR3L6XTC6/XC7/cjEAjA7/ezgdzr9TKR4vF4mMBwOp1wu93snFwuFwqFAhu4abDl11MbNHC73e46gULLHQ4HqtVqnRCSCxQSEaVSCZFIBLlcDi+88AJCoRCCwSCCwSATYB6PhwkGEln03fp8Pvj9fgSDQeTzeVQqFZTLZRSLRXY8XqDQT1pGIiUajSIYDLJ1vECh7cLhMFwuF6rVKiqVCjKZDLu+dE9Qu/x9IBd7SijtR8vnq6tB7ZyahdnnBqD+7BAIBO3FyHOjLVk8Xq8XJ598MrZt28aW1Wo1bNu2DevWrWvKMY0+RGnA7sRBgxcI/DLekkEDLm/94Jfxooe3mvDWE/m+/DHky/n1/O/0kSQJ8XgcsVgMXq93zvHpd7fbDa/Xy0QWiS6fz4dYLMbOlX7yooE/XyUrUFdXF2KxGBN1/LZ8m3SOvPVI7iNVui/kYoX/0DIj+xpF/v3z/ec/C412PDcEAkH7aJuL5+qrr8amTZtwyimn4NRTT8VNN92EbDaL973vfabbstv10mpXjhZ8P+SWArKE6AUa8S4Y+WAp/0ntKQ1wvAtMPgiSWFDaP5FIAECd64bcOaVSCYFAAPF4HD6fDy6Xi7mIACAYDGLJkiWYnp6G3+9n1hMAKBQKSCaTTFTIrSYOhwPBYBCRSIS1C9QLNYK/NnKhZTUAlL+P5MK3UeuDvB36Xd5eJ93LdmDnc0MgEHQ2bRMob3/72zExMYHrrrsOo6OjOOmkk3DvvffOCYAzwkJ6AKtBIgMAsxB4PB4EAgH2xq9m+aDfS6USG4jl1gMAcwb4Wq3G9ufdQvw+SvvLB3eK7SDXVDQaxeDgILq6ujA1NQW3281iQ4CXBAKdX6FQAABmZQmFQnA6nSiXywiHw2x9KpWC2+1GrVZDqVSC3+9HLBZj/SdhUq1W2fWUiyz+POTnIl9HKC3TEh5a4sSscFH6HtT6tBCw87khEAg6m7YGyV522WUdW1q8mcGyZlxIkiTB7/cjHA6zOIpAIIDe3l72d6lUYtv7fD5UKhXmrnC5XCzAdGRkhLlGePcIb30AwKwt5XIZbrcbfr+/zsIiSRKzhpBwoTZ4awMdH5iNSwkEAohEIli9ejUGBgbqLB3UFvDSQEtBwOS24dun3ymmpVarIRwOo1qtolgswuPxoFKpwOv1srgbvm256OD7oeRC04ohoeVKv/Mota+2jRZ696URF898tqx08nNDIBDYx7zI4uk0Gn2wGw2UpIGTRAJZSoLBIE488UTUajWkUimUy+W6oFISA06nE93d3RgcHMQLL7zAAmC9Xi+LB6FjU4As76ap1WpwuVx1QakUsOt0Oplwojaq1SpKpRIKhQIcDgcLyqVjhUIhxONxRKNRZo0JhUIoFovMqkHXgc45Ho/D5XIhn8/XnSdtT0KLFzGBQIAJKcro4YNceRHFW4nK5TL7fviYG6XvzMj3atZ9Y0fsk5alx8h6gUAg6BSEQNFA/pbZjIe7XltkyaB02VqthlAohFQqxURIIBBAPp+H2+1m8RtkeRkcHES5XGZWFko3drlcLLuB3Ck+n48FpjqdTqRSKdRqNRSLRZYRxKcZVyoVOJ3OurRnp9OJdDrN0oDHx8cxNTWFXC6HdDqNWCwGv98P4KVAWYo3UbrO1E+v1zsnnRgAO1degPDCha4ZCRESKySQ+AwkOj+lwFk11ASF1eBXIxlBVtoF5lqKBAKBoJMRAsUANHA0461Tb7AgIcCLDpfLxdwqZGkgQUBCpFKpIBgMwu12Y3x8nFlDSqUS++lwzKb5ymMXJiYmmHuHxAswKwbIlUPXZGJiAtPT06wfvb29LCWYUndLpRK6u7tZemi5XEYwGGSChuqh8K4pp9OJYDDILEeZTIYJNd7dxPdbKWiXj7fh42roOLxg4eNmlGJ0lL6bRtYrYcQ1Y7R9XpjoxdEIBAJBpzGvBUqz3gSb+ZYpz4SR/1TanqwAAOD3++vcGn6/H36/H+l0mrljHA4Hc1fMzMwgmUwCQF2QKLmC8vk8QqEQC7pNp9Mol8t1hd4o8JSvKUHLqOYJ/Z1IJDAwMIBQKITR0VFks1kUi0XmquJFAAksao/KksuzaDweD+LxOPL5PEql0pw0Xv668lYIEh5Op7POSsMvB8DWyYN7+RgaJeRioVEXjxHUgnTl9xK/rZowkd93QrgIBIJOYl4LlGabq5Ue9HbEnyiZ8bXOo1qtsjd9si6QQCG3jNfrZS4X2mdsbIzFnfDuC9rX4/GgWCwimUwiGo0CmLVKeDweZqEh6wltT/EndA7BYBCSJDHhkMvlMDQ0VJdxRMXOgsEgotEouru7mfWiUCigXC6zTBw6BsWzlEolFvAqd1VRf/mBmc9SUkqXdjqdLN1YKyOHrqNSLRQ7sPPe1XINabl15Pe3QCAQdBLzWqA0C7losPsBbnZgosGZz8DhhUYmk2FiA3jJvZFKpdDd3V1XqZVcPbywyeVyyGazrF4I/+HdWxRMS7EhgUCAxbSUy2VmTaHsG9qOxA5lHYVCIdZuLpdDPp9HPp9HJpNBqVSC0+lEOBxGLBZDLpdjrqpoNIpcLgdJklgALvWxUqmwfpIFiD9vQl4aH5grdkjo0HdlNCuGMCI+7AqGNXo8I/cwL3Tmc5aPQCBYGAiBooLcXE7Lmnkstb8pBoViNvhUWxINsVgM6XSaxazwgzVl0VDmSyQSgc/nY+m4gUCAWSuCwSB8Pl9doCl9SGz4/X4mZsh94/F4kM1mWWwLiQbgpUqxoVCIZdX4fD4mlsLhMNxuN3p6eljxtUQigdHRUQQCAVYOn9ohaw0/5w6feVSr1VAoFJjrSi5ISKjJ59bh3TvUbyPipB3o3TNK7hz5/vL1rbjXBQKBwChCoCigJE5acUxA+c2aYiQoToQvXe92uxEIBDA5OcksGBQvQpkvbrcbuVwOmUwGlUoF2WwW6XQaPp+PuVBorh4ArKIriRoSJ+SuiUajrA8Uk0Ipx2NjY3UZMrw7ilw5+XyeCRQ6N7fbjXA4jFAohFgshu7ubhYPQ26ocrnMRA1dJ74wHe9W4q075CKj49E5kWAD6q0nfCaQXhYP//0ZcdfZidYxteKa+PV8WwKBQNBJzGuB0qyBoNUDjFZwJe9uoLlk+FgUr9eLWq2GmZmZOksCxYWQICC3RygUYuKFBl6ywgSDQVSrVSSTSSY4qA+UpRONRlVFVK1WYynPJGpIOFAcCe+ior7ysTR8QHBfXx/C4TCzdlDKMx+Pw8/nQ+KCZjyuVCooFotM2JBAoWBc2g4AE0/8LMxy0aglWtthZdETREazi0SgrEAg6ETmtUBpdpCsGaxYXMykjFIcB/CSy4Rqljz//PNIpVLMFUQDvcvlgt/vh8/nq7MKaAWQUoBsqVTCzMwMm0E5FAohHA6zIFOK76hWq8jn83WF0/jiaMDsJG9UW4ViSEhM0XKq90KiCpi1yni9XhabEgqFEIlEDH/n1Ca1S+4o+psEDx+AWygUMDMzg2q1imw2y65Lu+8zO4+vJYiV4lBEPIpAIGgH81qgNHvQMPNgtiO7xwgkOoLBICqVCnbt2sXcNZSKS/EqlNbLl6GXB38SNJMwxXhQHEq5XEY6nUa1WkUgEGBWEXK9kIWC+kXpzXQcssxks1k2YR/FyJDLiARRLpdjVg3KFspmsyzbJ5vNsiBb6icJDHJTkdtLXjWXPzfajq4Tf3xeMFWrVTYLc7vRiymRb9fI/wYfGC0QCATtYl4LlGbSSuuM3rH4eIhgMAiXy4WDBw+yCfgoGJTiLgqFArOyULAqDbJ8ijCf1UMT+fHpvnxZe0mSMDY2xqwh5J6h4moUiEtBsmQ9IUsPuZT4mA+5K4qsGrQNVbAlcZHL5VAsFpFOp+vcRGT94K04JEzIdUTTBFBNFEqfBsD2IzcUABZrQ0G6zUg1thsr96yae4cX50KoCASCdrAgBIoRS4dZM3Wzzdpmgir52hzpdBrpdBperxeRSITNZixJs9VYKZCW2q1Wq6yQGh8TQkXWaDuqKEvWEbfbjUKhwFKSyb1TLpcxNjaGcrmMWCxWN5syWU/k50j942uUUFxLsVhEoVBg8R+0PYkS3hLC10OhmBqymJBbiywqJJxIrFApfxJJVJuF+kHXmDKEKKWbF3adhNz1YkaY8PsoBdO2250lEAgEwAIQKEYfplbERqf44MmqQMIiHA4z6wBfp4OsCpQZw2ek8AG5ZHUg4eJwOJhVgj6VSgU+nw8ej4dVryU3SldXFzKZDBKJBBwOB3p7e5llQmmeGxI8ZC3hs2codRkAOx7F2pD1h9xBfJAwn2pMViAqn0+ip1KpoFAoIJPJsGNR+3ydF3IVUUwKX9Olq6uLldvvBLQsG0b/F9RiUNp9nwsEAgFPZzx1bUKrDoRRlMzkzXhoK2VQqMFbOkhA0ODKpxxLksTiQHh3CYkSGoDkFVlp0KdtyUUEgG0bjUaZu4cKrdHkhOl0mpXcJysKiQoSP9R/soCQqKC+U/0V2pcEAn+9KO6GxBnwUvYQfSgoOBQKMeFBJfIrlQoTNjSvD1lJSIBQUHAmk2FTCQAvWVDaOYgrWTvsdkWqBcwKBAJBq5nXAkXt4dzIQ9WoyFHKdrCK3iDDzxUD1BccU1oeCARYii2Ausn+yEpA+/CxHCQwSFg4HA5mPSBBQy4VilmhNlwuF5sPiDJ8CApCJRFA1grqOwXfkpggVxI/Xw6JGHI7keWFz7AhkULxMGSxKZVKbE4gKq1PgoiCZSnQ1uPx1KVlUzYUuZrkxd1aCW85MeoeFAgEgvnKvBYozbB0yP3zam3bVeTKyABDAzzv0uD35wcrGqB9Ph8KhUKdy4csHnzKMV+EjLcqUNAoBbfWajVW3wQACx6t1WrMQlKpVJDJZFjVWLJU8EKnUCgwgURWGAAsi6ZSqbBsH3nBN6rfQhk2/E8+9bpYLCIQCLCJB8vlMgKBAILBYN31pJgVylCiGBcqt08TKtIkiXzMxkKgk9L0BQKBQM68FijNoNUPbK0gR94NREGtvHuHL8xGgqNUKrGgUPlbdqFQqHP10HKqnwKAWT/kxeDy+TwAsMq1gUCA9TMYDLL6JiQI8vk84vE4EyPUH956QlAaMQW2knuHL8gmr6BLoon6TXEjwKwASaVSdfEzFDxLMTG8dcXn88Hv9zNxwosksqCEQiEW39LJIkWphokaSm5GIVoEAkGnMO8FSisGinYNRvKBg5+5F3gpVZeyYmh+HeAlIUEDqsvlQi6Xqyv4xld/pWBZ+pAooIn6+En/5BkttH8qlWKWnlKpxNKSo9EoExtUqZVvg9KMKWiXXC7AS7Mhy2uR0HnLa7yUy2XmuiGx5XK5kM/nmeCgKrLFYhFer5fNEUTCiKxKVBaf5guKRqOYmJhowjetjVIasN628t+tHEue5dOpokwgECxM5r1AUUu1bPRhqpSKqXXsRjCSZkzb0Ns/Dcput5vFjdCkfyQmyEVBbh76AGAFyRwOB3p6epibhlwZ1B6JGT6LhY8NITweD6LRKBMoJERossJwOFxXmI0XWVRaHsAcywkFsCql+ZJg47Nz+BL11CYFDNO1pDgcEk90XLpWdFzKXKJ5guLxOCYnJ1VrhzSbZokEPeuJECcCgaAddFZxBwsoxYLYLRrU2rProW2khgsN0mRdIBFA9UOoHD1ZUfi0YOAlawnV+KB2yb3Bixga8JUqqGoFiXo8HkQiERakSpYdKrhGooOfrI+Kr9F50fEDgUCdWFIbOPkYGjomVblNpVKYmppCoVBgoo4PHg6Hw3UZTmSV4eNuKBaFCr4Z/c7shPpO59gsF4ya9UWIE4FA0A7mvUBZCP5ytXPgl/OuHD6Ow+VyIRKJIB6PszRjCo6lgZUvzsZPrkeCJ5vNzjHnRyKROVYLsnZoFS0Lh8MIh8N1LiOyTpD1hKwYZGHhLTuUrkzWG7V5g5SuW6VSQS6XQy6XQzabZW4dij3h409oRmZ5RgxNbMhbFSjAV5723Cw6LUNH3p9O6ZdAIFjYzHuBIsfOt71G/flG4d+Q5cvpJ18WngI+KTsmFoux9FjgJRcMVWLly85T4CttV6lUMDU1xeqXUL0R3jJBfaBKtXpQCi/1mY/tIEsFFWvjl9Hkh9RnPuhV7frTNZELEz4jiQQQFWGj+XyAl+qbkPXG6/WyGBU+5icajTLRxdNsa4ZeNlmraNV5CwQCAbHgBIrd2Ok2UoIPTNXrBw2wZJWgwFin08mCTGkwp5l7efcIX/OkVCohn8/XZf9Uq1VEIpG6FF+C5ugxUlGVyuPT4E/xKNQPPgiW3FckpsgFlM/nmRDjK88StDybzSKdTiOfz7MPLyxInFDBOYon4VOcaRuKYeEDZh0OB4uhoXot8u+F/y4bQUmM2FVrxw7afXyBQLC4WBACxegg30jbSsubDX8MGmT5PtGAkc/nkcvl2ODqcDhY7Q8+wJQGbBInFI9C6ctUp4SKshGlUgnlcplVVTUCZf/w/ae4DmoPABNQNJcPTTbIp0Tz3wFZZEqlEmZmZpDJZFAsFpHL5VisiVwIkeCo1WrMdcVbZyjImEQPWV74CRqpHoqSe8tIKq+R+0Wtto6aha0dCMuJQCBoFQtCoADNfbvTcr+0Aj4rhU8tJrcFWTcozoJmNaay8nzAKgWJ8hYDGsgjkUhdVgsdu1QqsckEjULuGhIlkiTNqWgLvBTYygfw8qnISnEiJMCojglfwp7aI0sRbw0JhUJMsLndbrZObp3gLU4ULMwHz8pdf1r3gt2B2+0WCCSWOkUwCQSChcuCESjAwjVB04BA5d8piJPEA0+1WoXH42GDPAXR8u4TsmbwFVs9Hg+bnbi7uxupVIq5jajwm1Kf1HA4HHVpyuRuAqBqGSHRks/nmVtH7qaiQNhSqcQKsVG9FpqDhw8EJhESDocRCoWYmJH3lVxm9LfT6UQwGEQ8Hmdl8Pk5e9S+J6toiQ+lde0QyM20VAoEAoGceV8HpRW0K0iRLAJUMZViTqg4GVkI6HeKq/D5fKysO+/CIfcEWQaobaqUShPwOZ1ORKNRjI+PIx6PIxwO1/WLhASJITUCgQC8Xi+zclB/5TEl/MBH1hxKdeZL1NMxAbD+UrwNWVDcbjey2SwLcq3VaqwKLF0DvvYKzTNEFik6P7L+ZLNZdh3dbvec1Gu76uMo1fJR+rsdaLk4F+pLgUAgaD8LxoLS7Ae52oO4mamXcusCVYelZVRLhC8wRsIjEAiwuBR5Ngw/hw3tR4GjdCyv14uenh7MzMwgkUiwPtHATtYVLWhSQXLJUPu8+4iuKwkYCtb1eDzMIsLHffh8PkQiEZZp5HQ6EQgEWEl7fqLBarXKUpbJTcPHkbhcLhbzIo9boTgVCiQmCxSJIvn3JLcGKS3X+66VRJvW9kbpBJEjEAgEZpnXAkUuGtohUpqV5SO32pDVguIp+LgU3iJBAzFVmKUPbz0hywKJFafTyQJgqYgZtdXV1YVkMolkMlmXGkyzDuvN7ksWHxr4yWJB1iESKWQJonMPBAKIRCKGrRHktqEUY7KODAwMMNcVFYojYUPuH7rG/DWk2ZkB1Am/WCxWJ5jUrGv8udHfapYI/hyNnKsV64wQKQKBYL4xrwWKfPBqhrm5FRU8efSOQQMqHwgKvDQI8UXRyHrhcrnYefBxICQaKL6CLCPUB7IYRKNRTE5OYnJyss4V4vF4kMlk2N9KkGCi9hwOB0sFpn5Qn4FZgeTz+RCLxVjMjBo0w3KlUmH95tumKrk0U7HcjZPNZuvqsNB37HK5kMlkmHWFnzgxGo0aqgUDaNcwUVouF21a7TYDIWIEAkEnMa8FCjC3mJrdD1mlN2Gj/WnkmPzvfHwGX7KeMmPkAybFSng8HlYKn5aTq4ivdUKBpeTa4N0wZPUYGBhALpfDoUOH2IR8NGfOxMQEExnyAFQSSmSpcblcLGaEj02hjCMAiMfjdbEtSte0Wq0inU6zcvlUC4bSq7u6uurm+AFQFwOTSCSYOCGhJ0lSXcwMf/2pyB1ZV8ygZElRs/6RSLHzPjZqhTKSjSQQCAStYt4LFDl2Pki13mTV4gsaPb7a/hRXwW9DQoQCOKnSKcV+RKNRlqFDVgxKSQbAYjQikQgbyKmSKh9b4/V6EQgE0NvbC6fTibGxMTidThSLRVaafnJykqU9y68TWR8oiBWon9OHn+QvEAiwOBu+ND9PpVJBIpFAtVqFz+djGT25XA4AEI1GEYvF6uJFqB8AmCWIrCbkEiNrD/8dKM2YrCZQ1Kwi8nVKf9MyLWFi9d6ywxVqJfBXIBAIGsG0QHn44Yfx5je/GUuXLoXD4cCvfvWruvWSJOG6667DkiVLEAgEsH79ejz//PN120xPT+Nd73oXotEo4vE4LrnkEmQyGcsn0cw4ELNBsFbffNX2o3MiK4M85oSfFJAsAlTrgy/UVqvVMD4+zlwi1GY8Hmcl8ikYlNKUKbWZLB+hUAj9/f1MDIRCIRbrQRkvlFXD95/6Sm1RejRZTCTppQkFg8Gg5lw/1WoV09PTqFarCIfDKBQK8Pl8yGazLLiWzlceYOtyuTAxMcGyoXirBS/gSLzw7h+6xmRRUvu+5MLVyj2kRiP3llIQb6uOD3Tmc0MgEHQ2pgVKNpvFK17xCtxyyy2K67/0pS/h5ptvxm233YZHH30UoVAIGzZsqHtzf9e73oVnnnkG9913H+655x48/PDD+NCHPmTpBBoVJ/KBRO3Nlo6hFHCo9/A3ks2hFshI+/ETBNKbP1kmqIgYiRKaZyaXy7GU2qmpKSQSCXYMj8eDaDSKSCTCirBRzRGyGJBFhA+wdbvd6OvrY3PeuN1uFphKwoS39gBgwoPEE++i4uNoyC1FfVG6HolEAqVSiQXQUvVYCtp1Op1IpVLMmkJUq1WMjY0hn8+ztGU6Dl3PbDbL+kWBsXTufB0XEjd636fePWmXcDGDkWM1oz+d9twQCASdj+k6KOeffz7OP/98xXWSJOGmm27Cpz71KbzlLW8BAPzgBz/AwMAAfvWrX+Ed73gHnnvuOdx77714/PHHccoppwAAvvGNb+CNb3wjvvKVr2Dp0qWmT8KI+Zkf9OSBtWqBjEptyPdTC6KVt2NUQCkNDhQTQtk7fMCry+WC3+9HMBhksSEULDoxMcGCPUdHRwHMioVYLIalS5ey8vBdXV1wOBxsrhqK0yAXijxrxeFwoL+/H5OTk+jv74ff70c2m2UWnng8jkKhwKwhFLtBQoQq2VL2Trlcrqt9UiwWmRAhIUZuoGw2i56eHni9XkxPT8PtdjN3D7mgcrlc3XXM5/MYGhrC9PQ0q5RLUEwPBdfy9wlZTigehp8ywMh3qnU/yGNO7MKMK6aVbptOfG4IBILOxtYYlP3792N0dBTr169ny2KxGE477TRs374dALB9+3bE43H2kAGA9evXw+l04tFHH1Vst1gsIpVK1X14zAQAKmVS0KCv1o7R5WrWHKODgNp2VJOD6p0QFDcRiURY4TK3241isYjh4WEcPnwY6XQahw4dYqXeI5EIli1bhr6+PmYVoJRayvohVw+JCPk183g8LF5kbGwMDsds+q3X60W5XGZmd3r79fv9LPCURAmf3kvbeb1eZLNZHD58GDMzM0gmk0gkEpiZmcH09DTy+TwGBgYQjUaRTCaZ0CG3jM/nQzgcRk9PD4LBIAKBAIrFIg4cOIDJyUlWbZasNvwsxwDqit6RtQgAc++QVUlp8kI5Wla2VlpMgPr7khdEauKo1bEmzXpuAPrPDoFA0LnYKlDoLX1gYKBu+cDAAFs3OjqK/v7+uvVutxvd3d1sGzk33ngjYrEY+6xYsaJuvdkHvllfvFb7SlkZdg9ANJ8N8NIgSgMo/1YfCARQqVQwMjKCkZERpNNplMtlSJKEYDCIUCiE7u5uDA4OMncFuUf4IFKaWTgUCtXN68OfXyAQQDweR3d3N8rlMhM/tG8ymUSpVEKhUGAiiIJk+bTiWq2GdDoNt9uNTCaD8fFxZLNZFq9Cac7Lli3DqlWrEAwGkcvlkM1mWSyMPJuJLC6lUgn79+/H1NQUK/rGnycJJa/Xy9w+8nmCKL6GD0Km87GCkWBZK21avac7oUZKs54bgP6zQyAQdC7zIovn2muvZcXCkskkDh48yNaZNVPbGbDIt6H2t5E3ba0gRnI18Bk8vDjxeDzsTb9arWJ8fByTk5NIp9Mshdfn88Hr9SIej6Onp4dZFijlt1gssjoofMwFZcdQrAsVWKN+ud1uhMNhxGIxZLNZFAoF+P1+VKtVxGIxJBKJurokJFD4uXhSqRRLF85kMsjn88wl5Pf7mfDhA175WYspRkZe4bVcLjPLCRWc42dO5q9fIBDAkiVL0NXVhVqthkQigdHRUUxOTiKVSqFYLDLBBrxUz6VTUbrH1WKnaN1CRevZIRAIOhtb5+IZHBwEAIyNjWHJkiVs+djYGE466SS2zfj4eN1+lUoF09PTbH85Pp+PzRPDoxaQqpUazD+o7X5AKw0CcpO6Vl/VxBP9TQM9FVCjcvA0P0wikUAikWBz0ZBLiMrAU9AnDbwul4tlwZAVgqACbgQF4srL29NAHw6HmdvF5/OhVquht7eXiRQKlCVrELlmUqlUXeouuZloIkBKF+b7QdeEBBMfGAzMxpzs27cPMzMzcLlc6O7uZnVbeOhcuru7MT4+jpUrV8Lr9bLaMRQ/w7t26NhaBeRajVrtFLV7S/4/oOT2aaVoadZzA1B/dggEgs7HVgvKkUceicHBQWzbto0tS6VSePTRR7Fu3ToAwLp165BIJLBjxw62zf33349arYbTTjvN1PHU/Ppqlgu5L14p7qSRN2M1C4iZfZWguAj6UDApn2lCtUEou0Y+8R1l5uTzeSYaADBxQ6XuCXm9D3ItkQVkZmYGIyMjmJycZGKmt7cXpVIJMzMzGBsbq8v4SafTCIfD8Hq9kCQJuVwOmUwG5XIZfr+fpTGT9YQsJ/LBhQJ7PR4PKywXDodZG4VCAXv37sXU1BQcDge6urqYVYc+uVwOqVQK+XwekUgE3d3dAIC//e1vSCaTde4qSoumc+cnapyv6LmZeCtZK2j1c0MgEMwPTFtQMpkM9u7dy/7ev38/du7cie7ubqxcuRJXXnklPvvZz2L16tU48sgj8V//9V9YunQpLrjgAgDAsccei//1v/4XPvjBD+K2225DuVzGZZddhne84x0NReLLA1SVHq5Gs3UawUgQolxM6bXHB5aSi4dSY0lYlMtlTE9Ps0GfBmN5MTK/349cLscyf2KxGIB6QUIWDx4KHOVdOy6XCzMzM8jn8+jq6kIwGMTKlSsxMzOD0dFRDA0NMetNMpkEUD/PTTgcRiAQYPVTlixZgvHxcVQqFUSjUTYhIfWF5hWKx+Mol8ssvoXcXLlcDnv27MHMzAzcbjei0SirDMvPP0SxMV6vF/39/ahWqzjiiCNQKpUwOTnJRF8kEkE6nWYxJ5QxRXE9zbQ0mM3GsbJO/r/SzHiUTn1uCASCzsW0QHniiSfwhje8gf199dVXAwA2bdqErVu34uMf/ziy2Sw+9KEPIZFI4LWvfS3uvffeujf0H//4x7jssstwzjnnwOl04qKLLsLNN9/c8MnIzdVy1Pzw/GBjZODROoYR8WH2DZWyaWgfEgrBYJC5XV588UVkMhkUi8W6jB964+/p6WEiolwus989Hg/S6TTy+TxzryQSCRb/QfEp1A7wkrunWq2iv78f2WwWIyMjCAQC6OnpQV9fH3O/kMgIBoNIJpMol8twuVysPD3NKByLxVg9FSqIRtYdgmq3ZLNZBINBpFIpdg2TySSef/55zMzMwOPxIBKJIBaL1QkTiquhcv8DAwPwer3IZDLw+Xx42ctehv7+fqRSKTz55JOIx+NM0NG8PR6PZ05F32ZgpG09YWImDZo/bjNESic/NwQCQWfikOZhhFwqlWKzyvIPYqU3QX6dUu0SLayKFCNtmXlr9fl8WLZsGc444wyceuqpWL16NZYsWYIjjjgC4XAYhw4dwoEDB1g9EBIpFPcRj8dx3HHHwel0Ynp6Gj6fD729vQBm/fjpdJqJGUr57e7uRiaTYenJoVAI5XKZCSTalywzxWIRExMTrPy9w+FgFp9UKoVyucyCYZ9++mkceeSROO6445BIJJBKpVhqsCRJLJ6EBBhfi4QsRIFAAFNTU8wNc+DAASSTSTgcsynPXV1dzB1F1xCYTTstl8tIpVJYu3Yt3G43pqen2aSC5A7asWMHduzYweYgmpqawgsvvIDdu3fj0UcfZUXd7Maslc+qmFD6H1D7v9BKs5ckCclkck59mU6Fnh0CgaC9GHlu2Bok227UggX5dcBccWAlSNDswCAfCLT6yu/Dx5/QPuSq8fl8SCaTGB4eZrMKk3uH3vb9fj96e3tZumy1WkU0GmWBqB6PB9lsFqlUirVLgak0Lw9lEdHcPSRQeDdQIBDAihUrUKlUUCwWUSgUMDk5iUAgwGZNpv5XKhX4fD5mXeHdRocPH0Yul2MF2wKBACKRSN1MyFTYjYJV9+/fz1KVKc6F5vPJ5XJMtJHLh9xEVMROkqS6AGC3242jjjoK//jHPzA2NoZgMMiEED+RYKMo3We8SDByH+oJXCNuRv648n20jt/qYFqBQLC4WBACRelhygsAPj5F78EsX9as/vIiRQ1eLFF9DsrG8fl8yGQyOHToEBKJBJsNmAZu2o4EB7lreKsHkcvlkM/nWaouWaYcDgerg0IiQq+vJHpcLhcymQxLPaZ5d9xuN0tz5gvPBQIBjIyMwO/3IxwOs7Re+h2YTS+mlF+qQHv48GGkUik2OSKJCa/XC5/Ph1wux6rUzszMsIDenp4eJsr4wFc6D5fLhcHBQTz77LMsXoXcWnZlgRkRHzzNEgTy+1AuoLUsKAKBQNAsFoRA4dGyTMgfwkoxK60IpOUx4uLh01xJKDgcDlaQjawE9GZPQiEQCCAcDiMcDtelGVP8B1V4nZmZgSTNFnOjKrQDAwPMCmHEWiTfhjKHSKRQ/2h2ZX6iQLfbjWQyiWq1iq6uLgwODrLsGWq3VquxWisOx2z9k9HRURYv09XVhVAoxGZwBlBn6aHzpTmBKCYmk8kwy0gsFmPfebFYRCQSQSQSwdjYGMsSkp9rK8RsM9crbSO3Jiq5RwUCgaDZzItCbUbQEybyh6vaW3CzH8BKqc1Gtqd5bshVk06nMTo6yiq2UlqxJM2Wrw8EAohGo6wEPjA7UA8ODiKTySCZTKJSqWBsbAy5XA7lcplZXPL5PMbHx5lryQpOpxPxeBxut5tZdvhquMVikQWtlstllEolFi/jcrlQLpdZunStVkOpVGKp0dlsFhMTE0gkEvB4POjr60Nvby96enpYqnKlUkEmk4HL5UI8HseyZcsQi8WYBYXOjSrWlkolpNNp5vLJZDIssygSiSCbzSKbzbLAXrtREsla8SF67kEeq/c0b+kTCASCVrNgLChWggXl/n6lNpudRmrkDVguUCqVCoaGhjA1NcWyXRwOB8tO8fl8iMfjLBCW1lF6MVV+TSaTGBoaYi4Pik0BZgOYJiYm0NPTM8eaYZRwOIyBgQFkMhlks1mEw2GkUil2LjRJH2UJAWDF1UhwUfxLoVBgrqhsNovp6WkEAgH09/ejv78f0WgUkiSxGi+SJLF5h9xuNyYnJ5lbSZKkurgbimWhwZiKyDkcDhbDUywWWRAuX23XLpQyyZTWWcHq/4awnggEgnayICwoelkGhJIpWy8GpBlYGTD4+WtefPFFjIyMsEnuqC4KWUBCoRD6+/tZNgxl6VSrVVZBNhqN4tChQyiVSjj66KPR3d2NWq2GUCjE4jjGxsYwOjrKrBETExMYHx9n7hkjdHV1YdmyZahWq2yuoEqlwiwnFBND1gxyYZFgoTL7FIuSTqeRSqXQ3d2No446CoODgwgEAnUiDQD6+/tZtd18Pl83EzSV1afAXyqxT24p6iMJM5rRmdKVKWDXagaNEloCQG41sfO4RhDiRCAQtIMFIVDUHtitjicxglq8i94+9FY/OTmJZDLJYjcoGJR+hkIhlirLz3FD6buxWAyBQAC1Wg0HDx5ENBpFIpFAJpNh1oRoNMramJiYwMTEBPx+P/x+PwqFAoaHh5FOp1nQKrlr1AiHw6xtqnpLgoQCf6vVKjweDwYHB1lQLMXAkDCgarnLly/HypUrWcE0aguYLQQXjUZZG3T+ZCFxOp0sLobWk5uH0k8peJfcQBT4ywsUO1Fy6diJlXu/1SJIIBAI5CwYF48aelk8hJJZvVloWXXUtq9Wq3WWAGA2EJVP+yWh4na7kc/n4fF4EAwG0dvbC6fTiXK5zOJRJicn2d/d3d1spl8a6Mk9NDk5ibGxMdY2BY1OTU2xwZ1iR8hiIX/Lp/L15GLi3TZ8VszAwACznHi9XhbQOzU1hZGRESQSCRx11FHo7e3F8PAwKzZHMygXi0Xk83l0d3ejUqnA7/djenqauZRI6NEMyGSRIksJzZBM15wESrVaZccB6tOrG83kUdrX6D1hRuA2ijxwtlMEv0AgWLgsGIGi9cCW+9H14k300isbxaho4peTBYWERyAQqJuRl+qeUNl3skwMDg6yiqwOx2yZ91wuh4MHDyIQCKCvrw9dXV3MilAul1kqME3CNj4+juHhYSxfvhzhcBjT09PMakLz8hQKBZZBQyKJ+gbMWlFGRkaY+4YsLxRrEgqFEI/H6859cnISu3fvRiqVQigUwvLlyxGNRnH48GG43W5WjI1mN85kMqzyqMPhQDKZZNVnXS4XstksmzuIUooBsOuXz+cRDAZZEC+JEwqsDYVCLBPKru+/kTbMtGklhsjIcQUCgaBZLBiBYibdUp4RoZYB1CyRIj++0X1KpRKy2SwbyMnd4HK5WHYPiRCXy4Vly5bVlYunqrHFYhHZbBbRaBThcJjVCaHsF6qDQrVAqtUqJicnMT4+jt7eXkSjUUxOTtaV4E8kEhgdHWXCxefzob+/H8FgEKFQiLlhqG/5fB6lUglerxe1Wo1lD9H8Qfv378eBAwcAACtXrkQkEoEkSZiamsL09DSOOeYYpFIp+Hw+VhlWkiR0dXWxY1EFXACYmppiNVFIeACz4iQcDjMLVaFQQKFQqJsNmj7VahXd3d1MpPDnb+X711pvVgjo1UxpVFgopeMLK4pAIGgmC0agyNGylBhZRm3w21j15Vsx4Sv1JZ/PI5/Ps3LtpVKJFVfj3/ZdLhdLu6V9KZ4kEAhgYmIC0WgUTqcThw4dYqKDsoRoQCZrxxFHHIFYLIZDhw5hYmKCTWFPA342m62rd+JwOFAoFBAMBtl2NKin02kAYNYgOl6lUkEqlWJ1WZLJJLxeL1asWAG/388sJPv372d1U3w+H6uDQkKDLEE0kSAJu5GRERZDQgKGYngokJa2pXL6fHo0ub7i8Ti6urpw+PDhhu4LI9+3VVHRDCuHsJwIBIJWs2AFCo8d5m2rg5AdsQk0CCYSCRacSm/v1WoVpVKJWTyoBH4sFmOpvNPT02z2X8r4oUE/n89j9+7dAMAECT8LMgmIQqHAZiSmbByPx8PSf8nNQu4PKkE/OTmJnp4eZh0plUrMlUQT90UiEVSrVRw4cAB+v59Vdu3r62MBqS6XC8PDw6wcP9Ukof4ODAzA4XBgbGyMpRx7PB5I0uxcQBQo7Pf76yrG9vT0MIHk8XiYJYWyjOg7oPOiMvlkbSKsxi8ppRObbUOOne4cYSURCATtYsEKlEZqP9jxgG9GnEEul8Pk5CSWLl3KBlkaRCkuJRAIwOPxsIDU6elpNvuwJElIp9PMxQKAxVZkMhmW7QKAxYdQ2i4JHD4bhtolSExQOi/Fp9BkgSQmqPAazRtEab5utxvxeBwTExMsTiUYDKJarWJsbAzJZBJHHXUUcrkcqwDb09OD/v5+VCoVTE9PI5vNstiUiYkJeDweTExMoFAoMFcOWUOcTidCoRCmpqbY9abaLGQJou+R5jciF5Xb7WZF3ZREhZHvXy3uSe5uNOsS5LOC7AzeVTqOEDACgaBZLFiBQljJdrAiTuQPa7se3PKsiZmZGVawLBwOM8tJT09PXYBoOp2Gz+djswRT5szQ0BASiQQAsHl2qtUqqyNCFgRKM+ZnR6ZjUXow1QuheWro2PSTXCzUd3KjkDuKxA5ZZlwuF6ampljBuWAwCJfLhcnJSbz44ouIRCLMvUXHIVdVKpVicSjFYhGHDx9mfSdRQhYfCiCmirxUlC0SibCMH+ClInGlUgnFYrEue4f/Xeke06ppwgdIy9sw44LUQinOSqkPAoFA0KkseIHSTt95IwOBWpBjMplEKpVCOp1mlV8DgQBisRgbhGmQpjl3AoEAyuUykskkDh06hFQqhVqtxgQEZQCR+CDhQRYFSZKYBQaYzbjhB3JKI6Zjk2VHLkTob74GSiaTYZPw0f7VahWRSASlUgmTk5OYmZlhmUHpdJoJDKfTiXw+D4fDgWw2y/p34MABdu7UP6qxkslkkE6nmUtnbGyM7UfWKOovxaHQtQoGgwgGgwDAspP478bId65kpbNTLKhZT9SEkUAgEHQq81qg2J2ZoNS+0sPcqPCwQ5zITf1utxu5XI5ZMCKRCJvkjzJ5aPB1Op3IZrMsRuTw4cNIJBKs+BjVD6EMHnK7UBAsACYAKMCUhAG5a6j2CQ3mZK2g33mxwn+ommwgEGBBtLQf1TShqrUUkxIOhyFJEivTTwHBU1NTKJVKCIfD8Pv9GB0dZcd1OBysHszk5CRLTx4dHWUCLZPJAABSqRSzsvDl+MmyRNlJdI3URKQRkSL/vs3cE1qobWO3RU8gEAiazbwWKI0+LM3uS4OEPHhV3p7cLWMWtf0laXZ+GZqFGABL000mkyzmBABzk1AQKwWoUryKy+Vipd0ppoS3jJCrhyw08XiciQ5gtihcOp1mlhE+k4gm9qPz4IvL0fZUHI0CUyuVCgu0pVor1WoVfr8f8XicuWHIWkLHPHz4MHNl9fb2MpcTZfLQRIgAEAwGEQ6HEYvFkM/n2bw/+XyeTRhI7ixenEiSVBcQWyqVWEE6qzSaRtzs/dSwGgwsEAgEZpnXAqUVqJnKm+3HVxNf4XAYwKyLoVQqYXR0FLFYjNUJ4QuQkQjwer3MOhKNRhEIBBCJRODz+VhwKs3WS6nDgUAAq1atQigUqpvJl4qYeb1eBAIB5i4BwMQJxYkQ1Ccqc099q1QqzK1CMSE0XxDNv7N8+XLUajUWKyJJErNwkEWD6sPwwojOjwrIvexlL0NXVxeA2QDgWCzGYnkoNZmPSSE3FwkV+p2sPDRHEAk2ve+NR81CZnR/gUAgWAwIgaKDUrChVjBtIy4hPUgc8Gm6NGjSgMnPPExumkwmg6mpKfT09GDVqlV1lg7K7CkWiyiVSvD7/VixYgW6u7sRj8dRKpUQiUQwNDTE0pmB2VgYqrMyMzPDBnASKDRw008+nkWSZuuNkBWILDaU1hyJRBCPx5m1KJFIMPEFvCRuyJJRqVRYfA25jCjLJxAIIBQKobu7m1XY5ef/4d1alFHEBwXz8TL0k85HqaKsFZehHahlnzUzOFYE2woEgmYiBIoOcmGiJkoayQAyAu8aodgSmi+HBloArG4JiYFUKoWJiQmEw2Ece+yxyOfzrKoqXxHV7Xajt7cX4XAYAwMD7BgOhwNerxfd3d2YmppiVoxyuYyRkREcddRRyGazioM4WR7outGA7nA4WDAuABb/UiwWWZ0SiqehEv/UV6pxUi6Xkc/nEQqFWFry9PR0Xel7irMpl8vIZrPM+kTiiPpJgbFU66VSqbAZjPlqsRQDRBlPRiYN1ApW1dq+kfvIrjgUIUAEAkE7EQLFAPIBQ808byfytmmwKBaLLPOFBlmyDFD1VqqFMjw8jOnpafh8PvT19aFUKuHw4cMsjZjiTsrlMrq7u9Hb24t0Oo2hoSEMDAzA4/EglUohEokgEAiwAmkkPIrFIg4cOACfz8cGeT7ehNwjlAVD1hTalrfaALPVZSkI+NChQ4jFYohGoyyF2ev1snl5yEUzMTFRF4SbSCTqSve7XC6EQiEMDQ0xF4/T6cTExATrIwXTJpNJFAoFxGIxJvjoeyAxQxlBlP1EyO8JpcweJaGiJEYaSSuWux8bjYUSCASCdjGvBYrZglRa2xlND9Xqh3wbuwUMuWMoCJRiLiKRCMt+8fv98Hq9OHjwIKamphAOh1nK7tDQEGq1GgKBAMtgKRaLLE2ZD1bdv38/qzZLooMmAyQ3E9Uo6e/vZzExZC0hywNdV6ogS9eYhEg6nYbH46mLneHdV7VaDUuXLsXw8DCreZJOp+H3++FwOJBKpZjVhK9i29/fz+JLHA4HisUiO38AbJoASkemzCEKHs7lckz4Uc0TXqSQBUXJ4qEkYOXr+XvNzrgTrToqZgRHM1KgBQKBwAzzWqC0IlgVMDbxmt3BjWpuI5qRl7JoqKAaBcP6fD5MTExgYmICwWAQbrcb3d3drKYITdBHsw2TGCiVSggGg+z3crmMRCLBLAt9fX1wu91sokDgpQyi8fFxNpcPffjrxosccj85nU5kMhnMzMywuXBoLh2Xy8VmRSaLCKU1864hshpRyi8FxZIwobiS3t5exONxJJNJ7Nmzh8XekOWF3GJkNeHdVSSqyMXGW6z4TB6le9Copc3ofWNENKi5k1qVNSQQCAR2Ma8FilnUBI2ZOhR6VhS7kL9x8/EvNDlfV1cXi98oFAqIx+OYmZnB6OgoAoEAEyBDQ0Pw+/0YGxtjmTxut5tNPFipVNiswzQHT7FYZBk+kiRhYmICS5YsYTVX+AJmJGLIjcNnE/H9JuFC8SbJZJIN8i6XC+FwmLl5aD+aILGnpwdTU1Ms9ZjaIYsOzZFDWUgTExNYsWIFAoEA9uzZg3A4XDfBIZX4J+HE12aharMkjGgb3h3ET6xIlhX6ruT3DL9cKY5JSUToBbwauV/45Y1aGAUCgaDVLCqBAjQWQGg1NsDsfmoxCeSWoQGT2q5Wq8hmsyybhqwDNKNvOp1GuVxmA/zMzAwLct23bx+i0ShWr16NWCzGXCeVSgV+vx9LlixBJpNhVhK/349ly5ZhdHQUo6OjKBaLKBaLzKJAokHuwqDzoNRicu9QfRWn04nJyUnmRqL4kUKhAGBWjExMTLCJDqmWC1kzEokEm+Qwn88zEUJxIlTIjc6LAm7z+TwymQzLBqpUKsjlcsyKUygU2PlR9hMANjcPH1uj9J3pffdaLke9ZXaLCSFOBAJBJ7HoBIoSRlKD9YSGUjqyvD21Y+m1RdAgymfYSJLEgl6HhoZY2XgKQCXrwMTEBEqlUl2J+j179iCVSmFmZgalUgnxeJxVY6VsoXQ6zVwvu3fvxjHHHIO+vj5WHI6ft6ZQKNQVc+PjTmjwr1QqSCQSyOVy6OnpYSKBLBI0rw9ZLPL5fF1VW160BAIBFth78OBBpFIpFp8TDofhdDqRSCRYxdpkMsmERiQSwfT0NKanp1kcDllOMpkM/H4/Ow7VPiFrE/8d0aSB/D1iVXSYvcfkFhr5cv6nHXFaAgGxcuVKvPKVrwQAPPHEExgfH8eKFSvwwgsvtLlngoXEohQoRh7CShYAvTa1/pYvN5Jqyh+f0nRrtRpSqVRdmfZarYZgMMhSb6lYGb35Z7NZjI6OsswbsmLQ75VKhRVH8/l8dVYBn8/HaomEQiHs2rULK1asYBYZmkWZRAS5QKhCK1lTcrkckskk8vk80uk0kskkBgYGsGbNGiacKpUKMpkMQqEQADBxQW4WCuIlkZDL5TA+Po5UKoWnnnoKABCLxRAIBADMlq6neiherxfxeByxWAyhUAgDAwMoFAqszD25qqgonPwakauLL9hG7fJVc9VERqMuQD3hK79X+PVm718hUgQejweRSIT9vWLFCrz+9a8HMHt/vPe972UC5bHHHsOOHTtw3nnn4dZbb2WCnajVavjd736HVCqleCz+RacTCIVC7HlGlMtlpNPpNvVo8eKQ5uGTKJVKIRaLsXgJs3TKA1gpXkFL2Hg8HqxYsQK1Wg1+vx+rV69m+yxbtgwTExM4fPhw3Zw45PYgVxAANshLksSsBuQuIfcQBdHST77SqxLkegkGg2wiPbfbzebqoaDYTCaDbDbLsm9e9apXYc2aNQgEAhgZGYHD4UAwGITf72f9DwaDiEajmJiYYCm+FNRaqVRw4MABNsszTTq4f/9+5PN51rdyucyEViQSgcvlQiQSYW4n6i9ZRLLZLCqVCmKxGJLJJCYmJuDz+dg0A8PDwyw7iS+Dr/Y9m7GUqKF3jxg5fiOWPaV2yZIWjUZN798O6NkhmEskEsHAwAAA4CMf+Qje8573sHU+n6+h75imrpAjSRJuuukm3HXXXXXLp6amMDMzY/l4Zujr62P3RCgUwn//939j7dq1ddu8+OKLuPTSS9lM8Gag0g6Ceow8N+a9QAGsvZ22Q6QYPZ7a+TidTpx22mmoVCp4/vnn2cy6pVIJsVhsTtwDBX3SwMtXYCX3CQB0d3fD5XJhZmYG+XyeFTijPpP1hubNAV4qCEfWA7ImeL1e5jKimixU5ZYGdBI6VOn13HPPRW9vL4aHh1k2Tn9/P3uzCoVCCIfDLAaFD449ePAgDh48iDVr1uD444/HQw89hOeff55ZcqLRKHp6ejA2NoapqSlWI4X6FY/HMT4+zuJ1SIyFQiG43W6ceeaZePHFF/Hoo48ylw+AusBY/jop/W13hlczY6G0stXkLiwhUOY3g4OD+OxnP8uux4oVK/CKV7wCAJirtBXUarU5VpcnnngCn/rUp1AsFgEABw8exOHDh205nsPhQCQSwUknnYT3vOc9eO1rX4tVq1axdXLrCcEXdzTDN77xDXz84x9vqM8LESPPjXnv4rH64Fd6k2xFurLSseUoDSbUvx07drD5ZyiThuI3/H4/c4cAYG4KGpTJhcHPt+NwzE6+R3EgZFGgD1lWHA4Hm1+Hsmiy2Syr/hoOh9ncNjTJIIkjCigFwLJ86O98Po+//e1vrAhbd3c3uru7MTw8zKrAknWGKtlOTk4ik8mwLCS/349//vOfePbZZ+tK1BeLRVb2nq4PBcSuWLECyWSSXVs+gNfpdCKXyyEQCODvf/97Xb+VYj60Aq/lWTtq2Tl697Ed96eaG0op60etD3b1RdB+Xv/61+P973+/7RmIZqH/b57Xvva1ePDBB3HZZZehXC6jr69PU6DwAfFax7n66quxceNGhMNhHH/88ab6SQUjzdLu6zufmfcCxS70akvYdZM1mi1EAZvAS5kkZBmhIFLqL1lLKFiWqqBWq1V4vV42Zw5lxdA/OV9XhYqoVSoVhMNhxONxFkNCJeGp/kgqlaqrFksuGvkASAXYgJeqw7rdbkxOTmJoaIilHvOF3QCw+ikkwkh05fP5uskM+bRgOi65qHp6erBs2TIAs3En5Prxer0snoefHJCKt8kzk7S+M6X4IaP7qmEmYFvvGFp9Ndof8dCd/9x///3Yu3cvVq9e3e6uqPLss8/igQce0NwmFArhjjvuwKte9SrN7RwOB1asWMFc0K2gUqngV7/6VcuOt9BY1ALFqEWjVeLE7JspDdg0fw0VOaMgVYovIUFA88309/ezwZ9iNsrlMmKxGCvutmzZMpRKJRxzzDFIp9N4/PHHMTg4iMOHDyOZTMLpdGLVqlXIZrNIJBJ1AbEEzRHk8/lQq9XqrjcJGa/Xy4JRSdDwkwrKXQ4kXMhlxW9HFiXah4RFpVJBd3c3VqxYgWKxCIfDwYKGAbBAWXJVkdDxer0IhUIsfVv+XfHfqdw6oWZhMXovqd0LdtyLSrFPSu0rnYMQJguHyclJ/PjHP8b111/f7q40RCQSwbnnnot4PN7urtRRqVRw44034rHHHmt3V+Yti1qgmMmkUdvfzAPbaAaP2rHk6+n4ZP0gEUCDMKUl83VFgNmBe2BgAFNTU6jVaujq6sLY2BizjLhcLjZoP//88yxolEysLpcLwWAQwWAQ4+PjyGazc86JFw1UcZaPGaK+kkuFBJSSKOFFCO1Lf9O5kWuHrCtUlwUAyzTK5/OYnJysS2sul8vw+/0swJaESCwWg9frZXEwvBDh+6X0vSltaxY9t1Ej8PehlljROr58X8H85F//+hcefPBBOBwOvOpVr6rL3BFYh8TJZz7zGWbxFpjHVBTUjTfeiFe/+tWIRCLo7+/HBRdcgD179tRtUygUsHnzZvT09CAcDuOiiy7C2NhY3TZDQ0PYuHEjgsEg+vv7cc011+hmQrSaRl0xWm2SJcDM27SauCHrA/BS6XkKOiOLQDAYxKpVq3DiiSfimGOOgdvtRjqdhsvlYvPtUBXaqakpTE5O4vDhw5icnMTMzAxLVwaAcDiMWq2GmZkZPPXUU5iZmakbkOUDF8XA8OdK7hbeksK7dOQf/nrRMrLOUOo0iQsSLFQjxeVyYenSpejq6sL+/fsxNjbGirpRrZNMJsPadrvdiEQicDqdmJ6eZpYhOj8tV4m8r1rfmxm07pVG29VbLj8vq8dcTM+O+cRPf/pTvOENb8BZZ52F973vfbj77rvrgsHbCV8Ycb5Qq9Xwpz/9CZ/85CeFOLEBUwLloYcewubNm/H3v/8d9913H8rlMs477zxks1m2zVVXXYXf/va3uOuuu/DQQw9heHgYb33rW9n6arWKjRs3olQq4ZFHHsH3v/99bN26Fdddd519Z6VCI2+eRgWFkSBDYO7bK79cbZlSH2q1GvL5PHK5HFKpFBKJBEuRLRaLcLvdWLJkCU444QQcffTRGBgYQH9/P3K5HLLZLHK5HLxeL9auXctmJaZqqolEgs2XQ+nBY2NjyGQyKBQKdfEmcpFCkMtEnvnBZwiQYKE5dZT2l//OH4s/Js0tJEkSy8Sh4mu80KI4F0mSWOl9aiebzWJ6epq1o4WSGGkWjbiMtNpUakMraNbKuc73Z8di4Oc//zne8Y534BOf+ERHiJRnn30WTzzxRLu7YZixsTH853/+Jy688EJ89atfFeLEBhpKM56YmEB/fz8eeughvP71r2eTyv3kJz/B2972NgDA7t27ceyxx2L79u04/fTT8Yc//AFvetObMDw8zHLub7vtNnziE5/AxMSEoUjpRuugWMVojIjR7czEGPCDk5KbR8nl4Ha7EQgEcMIJJ2DlypVIJBKsMuzw8DCLH4lEIjjiiCMwMzOD3bt31/1j0TVWso7oQcenyrBKHyoMB4DNzkwPR7lVhfojt67IrxHF4cTjcWYdOvroozE+Po6dO3eiWq3C5/MhGAwilUrVta8UDKt2zmrfiRwjMR5q7cvdRFqxLkbR2kfuwpL3gT8XEptW0ozb/ewQqON0OvG///f/xi233IKlS5e2rR9f/vKXDaXnDg4O4rnnnmtrDMo999yDz33ucyzrT6CPkedGQ4nulKbZ3d0NANixYwfK5TLWr1/PtlmzZg1WrlyJ7du3AwC2b9+OE044gT1gAGDDhg1IpVJ45plnFI9TLBaRSqXqPjytEilalgyzfZGbzZWOYwSlt2o+/oMsHU899RSmp6eRyWQwPT2NQCCAXC6Hrq4ueL1eTE5OYunSpXC73XXpetRPvi6KkfOiAFOKjeEn46NUZLJc0HKKB6H5gPi4FLpWJCAoI0keT0Hb8LMxezwenHvuubj++uvZfUfZUHK3kZI4kVtItOJN1IScUtyHnsvE6LU2ur28L2a3szPmpFOeHYK51Go1/PrXv8ZnPvMZ7Nu3ry2xRhMTE7jtttsMb6+XZdcs0uk0br/9drz73e8W4qQJWBYotVoNV155Jc444wyWTz46OspKivMMDAxgdHSUbcM/YGg9rVPixhtvRCwWY58VK1YAmDs4GKVRQaNnSTBrZZH3R24VUIt7MHLsUqmEJ598Evv27cNTTz2FvXv34plnnsGePXuQyWSQSCTg9XpRKpXwwgsvsLiUYDDIBncSLPwArdRHedVZesMmoUHVbSlWhEQUpQNTHInP52PuGWpDfl6UYk0p0gDYsQiKyUmn0xgaGsK+fftwxBFH1AXpUoCuUgEmuQVB7RrzKAkGLWEjX66G3I2md2wj7aihdT/yy6z+H3XCs0OgjSRJuO222/Da174WX/jCF5BKpSwVKTMDWePuvvtu3H777aYKs33+85/H/fff38TeKfPVr34VH/jAB5jgFtiLZYGyefNm7Nq1C3feeaed/VHk2muvRTKZZJ+DBw8CsK9ImxH0jqUWH2A0JkUNpQFFbi1R248olUooFAooFAqsmBo9cCRpttw9bRONRtnAT5k/dB6U3ksl7KmIG2URUVl7ft4aqidCcScej4dZSfx+P6vaSOKEKtN6PB6EQiFmtuetKQTVMFm+fDkTUXRODoejbuLC++67D3/+85+RTqeZ6NBzEWrFYehdc/l3L3dJ2WH1s9KG1XtSyZpi9Y21E54dAmOMjo5iy5YtOO644/Dd734Xw8PDth8jk8ng0KFDeOyxx3D88cfj3//93/HJT36SBf/rUa1W8a9//QtXXnklc+G2isnJybZYbhYLltKML7vsMtxzzz14+OGHsXz5crZ8cHAQpVIJiUSi7k1obGwMg4ODbBt5XjhF6tM2cqgYWKsxYz5X8tdr7ccPVlpvxPLt+AHGyJu9fBlvOSgUCmx9X18fCoVCnQuEP3+ygFCbainBfIls6j8JFP760LnwMSV0jFwux8QQCRuysFA71FYqlWL1XvhrRRVsqcYLlbLv7e1l66iaLgXIqn1P/PkpWResWPCsxI7I27AbvdgUK+cqZ7E8OxYS5XIZhw4dwmWXXYYtW7bg4osvxpYtWxAOhw23MTQ0hM997nPI5XJz1h08eBC7du1CV1cXDh06ZLp/k5OT+P3vf49qtYrXv/71uO666/C+970PPT09ptsSdBamBIokSbj88svxy1/+Eg8++CCOPPLIuvUnn3wyPB4Ptm3bhosuuggAsGfPHgwNDWHdunUAgHXr1uFzn/scxsfH0d/fD2D27TYajc6ZoKmdGAlWNbuv1vbyt2sjAwEN3Gr+VyUBwweDAmAihYqZpdNpxOPxOtcP9UvtzYT6TvEkvIAg4aHUH3IH8cXRJElix6T5Oej4/Dbyc+BTgck6Qu6hYrEIj8fD0q337NnDJlUkV5J8LhBCLSDViItGy2Ji1frBH7tRkaPWvpF1ZsXKYnp2LFQqlQrGxsbwla98Bffffz/OPvtsbN68GUcccYTuvr/5zW/wne98R3ObqakpS/3inzHpdBof//jHkU6nccMNN1hqT9A5mBIomzdvxk9+8hP8+te/RiQSYX5fmuI+FovhkksuwdVXX43u7m5Eo1FcfvnlWLduHU4//XQAwHnnnYe1a9fi4osvxpe+9CWMjo7iU5/6FDZv3tyUN51G3/qMDPz8cYxaXdSCY5WsDEptUXwIADagqw2a8uX83xQXkslk0N3djUAggMHBQUSjURw6dAijo6Ns8OdFh5K1SCmWg99GzZqjta1ctJF1hiwrVC1W3m65XIYkSUgmk6y8//DwMFavXo3ly5djZGSEpSRrCRS1a6l3XylZvuzAatyVWltm+tXIeczHZ4dAnSeffBJPPvkkEokEvvnNb+pef6/Xa4sFzgiSJOE3v/kNtmzZ0rIJDwXNwdS3d+uttyKZTOKss87CkiVL2OdnP/sZ2+brX/863vSmN+Giiy7C61//egwODuIXv/gFW+9yuXDPPffA5XJh3bp1ePe73433vOc9+PSnP23fWXFYjTfhrQ16okPvH8/IQ13PfaDUBmWiKLlalPor/53+rlQqSKfTSKVS6Ovrw9TUFJYtW4YlS5awYFdeHBiJozB63altpb7xgzGfzUOWI6U4D/nvfOG64eFhll5N21QqFc30VCVhqPS3UkyGPO5EqT0jqMWNNCp6zMaVNHK8+fjsEOhzxx13GJpr5k1velNLXS6lUknRnSSYXzRUB6Vd8HVQCDNvq3Kzvdp6vl1Cyaqhdmy7L60RQWDEBUXr+fZcLhe6urqwZs0aFItFHHnkkXA6nfjTn/7EJtEDrKXzWY1fUBIhwEu1UBwOB5vckA+gpeUOhwN+vx/d3d3snjnppJMwMTGBxx9/nKU1B4NBTE1NacahaLl61GJKzLqEtK5Do22Ywei9RC40K3VQ2oWog2I/p556KrZt26YZk1IqlfDRj34Ut9xyS0usKA6HA+9///tx8803IxgMNu04v/3tb3HhhRfOu4q3nUDT66B0CvzDWv671tunEauD2X7I27RjINE6D7VjGdmehyrSjo6O4rjjjkMikUCtVsPKlSvraqNQPRSzWLmmSm/0lAnkdrvhcDjqUpbl+1LtFZqfhyxFa9asYdO7VyqVunoqShiJHzGyTMviw6+Xf5TWK+1vBj1ribxfAoEajz32GD7zmc9obuP1enHllVciEAi0pE+SJOH222/H//2//1e39s3jjz9uObvrmGOOEW6kJjLvr6zaw9Os+4F/a9QaBOTWFTUTf6vednnkbhGz+9IAnk6n4ff7kU6nsWTJEvh8PiYMvF5vXSG3VsBn6IRCIRx99NEslVltkKd1xWIR09PTcDhmg3gpS6C/v59tR/Vb9NASIUquKr195WhZKpR+NuJi0xKweusEAjkPP/ww0um05jYrV67EmWee2aIezf4P3HHHHXjd616Hv/71r4q1Sg4dOoQLL7wQV1xxhaVj9PT0zAn4FtjHvBcoWvCDhjxuQukhr2VV4dFyV+jFZzRqVVHaV8l6YAWPx4MTTjgBzz77LHp6elAqlVCtVlmMBn9uRqwK/DojViCl/QiyiPCl8LXiV3jy+TxCoRAqlQqy2SxeeOEFLFu2rK6YnNU+Kp2nme2N3m/y9c2MF1FrT8v1KVjcPP3005iZmdHcxuPx4M1vfnOLejRLrVbDU089hfPPPx9nn302/vWvf7F1kiThe9/7HoaHh/HEE09YSnHu7+/Hy1/+cju7LOBYsAJFLT5ESayo7W8knoUw6lIxYlpXa0dtXyOCyQiVSgXJZBKjo6N48cUX4fF4UCqVEAgEmGtHL9XYCEa3UxIfpVIJBw4cYMHBtFxtP3IDDQwMwOVyoVwuI5lMIh6P17l5GrUKWXURNmIFaSed3DdB6ykUCvjTn/6ku91JJ53U/M4okMlk8OSTT2Ljxo143/veh/vvvx8f/vCH8bWvfQ2SJOHgwYP40pe+ZLg4HI8Q681jwQoUQilQkf+p5cKRt9MqrGZ60E+rVoBisYi9e/eiVqvhX//6FwqFArLZLJtTh/pm9VrouUG09uOpVCool8u6Abv8RIczMzMsODKRSKBareLoo4+GJM1mCEUiEdseNFZFh9xFZ8aiYheNfL+CxUu1WsW+fft0t+vt7UVfX18LeqTM3r17sXXrVpxzzjn47ne/W+eWuuOOOzA+Pm66zSuvvHLOFAwCe1jwAgV46WGv5aKQo+fCaIVqNhsn0EicA1EsFhEIBJDJZDA5OYlcLodoNDrnH9DK+dt5zcxaocbGxuDz+VhQbT6fx7nnngu/349kMolcLodgMMisKnai58ZRCp41e38qHctIf4z0RSAwwt13342JiQnNbVavXo13vvOdLepRa3jDG96Az33ucy2PzVsMLAqBAsx9OzWaUtroMa1iJEjRiKVHyUKkBgWVZjIZ5HI5VKvVOancSoOtUraJGlaFjVnrC1WnpX3K5TJSqRQikQgqlQr27duHXC6Ho446qq7abH9/v+0PGrtdX422YTUOyOy+gsXFvn37cM011+hOKnjppZe21YqiRqFQwF//+ldL+77zne/ELbfcIiwpNrNoBAqg7v6QW1fsPJ7S31YsHUbdNo32nwZrSZIwNTXFsnn42YX5/pnN9rAi2hrNiKJ9ZmZmEI/H4XK5UKlU8MQTTzD3lSRJyGazyGQyiEQidZMk2omaqFTKDGsVQnQI7ECSJPziF7/Ajh07NLdbtWpVR9aiqVQq2L17t6V9A4EAPvzhD+M73/mOsKTYyKIRKPI4FKPbE3b55rUCWhtpQy1Q1MrbMllOyPVBMxj7/X42a7FaWi5v7WjVwKck5uQzHwOzb0gvvvgigFkLy8jICKLRKFavXs0KvmWzWXi9XgSDQUVB2eg5qbl4mole+1ZjnoSwEchJp9P4xCc+oZnR4/P58O///u8t7FXrOO+883DJJZe0uxsLhkUjUOwQBY2a6tUycNSQZ7AYOaZS9pIVaDbjWq2GE088EcViEcFgELFYDH6/X7NuiNGMJivoXUNeSPIihdKJ0+k0q4vidrsxMjKCV77ylTjrrLPgdDpRLpeRTqfhcrnY/CFa52SX5a2Zg72Re0BJkOttK+JTBEo8+OCD+MEPfqCa8edwzFZ55Wet7hSy2WxD97Xf78fHP/5xvOMd7xCWFBtYNAIF0A8+tOuBq5epYWRbpQGRj8NoxuAgj9Gp1WqsCqPf74fP50OpVILL5WIuELNVFK1akKyIQ/m1IsGVz+eRTCaRz+cxMzOD/fv3Y9OmTVi6dCmLwykUCgiFQnUiRe0Y/E8rdELmjNFYpUbdbYKFjyRJuPbaa+vmUZIzODiIM844o4W9MsbPf/5zZDKZhto4+uijcfvtt7NZuQXWWfACRc08zwsAvXgKO/vSStO4XhaQXr8qlQoSiQQOHDgAAMzVUywW4fV6WSCqmkixe9BVOx8racuFQgGZTAbFYhGTk5P49a9/jVe/+tXweDysRD6JFCqrr9QXvfglM995u0UKoSeY7BBlgoVNPp/Hn//8Z1Urit/vx1VXXcXKF3QK6XQaIyMjDbcTCATwn//5nzj66KNt6NXiZcELFC2Xhzz9uFX9sSM+w0xwqpo1Rt4npXaKxSJeeOEFeDweFItFDA4OIhwOw+12s4cLP4ArBXw2Eiysd25qy+VZW/J1NDdPPp9HKpXCk08+ibGxsbp4lFKphFKphO7ubkPz9ZDbiH53uVwIBAJ18Sx6+3cSQoAIGuHuu+/Gc889p7r+da97HS677LIW9kifqakpfOtb37Ll3n/FK16Bu+++G+eff76l/YPBoOYEjIuBeT+bsZEHP586rLWdGYyKDH47s5daaWA32oaSVUhJhMj7p2RZ8fl8WLt2LarVKjKZDJYvX45IJIJ//OMfmJycBADVSfuU+qS3XO16abkd9OJDlK4dTYLo8/kQDAaxcuVKHH300fjDH/6A6elpALPBtMFgED6fD9VqFel0ui6Nktqke9HtdqNcLgMAwuEwjj/+eKRSKezduxeFQkHTpddJGLl/yA0oZjMWqPHhD38Yt956q+r9PTQ0hPPPPx/PPvtsi3umTn9/P/7yl7/gZS97mS3t7d27Fz/5yU9w6623YnR0VHGbpUuX4iMf+QibVgQAzjjjDPh8Przzne/E3r17belLJ2HkubEoBAqh5sqxYtGwuo8W8kHUjECxGtuhdB58W2QJWL58OY477jj885//hMvlwrHHHotUKoUXX3wRMzMzzCKhdZ5GlmsNiErbaEHCxOPxsIBZvk2aANHhcCAQCCAQCODII49EMpnEc889x4QGTSYYDAZZbZVIJIJEIoFisciynhyOl7KHXC4X/H4/QqEQfD4fEokEksnknBoR8mtthWZmTCm1LQ88FgJFoMbJJ5+Mxx57TDNWbevWrXjf+97Xwl7p86c//QnnnnuurW1u27YNW7ZsYZWwn3/+ebz85S/HcccdhyuuuAKvfOUrFffbsWMH1q9fj0QiYWt/2o2R58aicPHoDYxWHu52DAhmMieMrDeK0ePwloyZmRkWi5JKpbB7926kUilIkgSPxwOn02k5al0vQ4bfxkqwLLld5IKWd/EVCgWkUim88MIL8Hq9WLp0KXuboXNMpVJIpVKo1WqIRCJ45StfiWg0ygJp6Rherxc+nw/AbFbAzMwMnE4nq1JrJP7JzP1lRqSbRc8yJRBosWfPHvz85z/X3Oa8887ruIDZn/70p7a7OM855xz85S9/wfbt27F9+3b89a9/xaOPPoqtW7eqihNgdv6iCy+80Na+zBcWvEAB5loXlERLqwxJRiwEauvNxGBotWfE2sIPQpI0W4l1bGwMbrebZff4/X643W5Uq1W4XC4mVLTaNDOoNSIg+bd8cq3IBRS/TbVaRbVaRSKRQKFQwAUXXIATTjgBq1atgt/vR6FQYLEpqVQKzz33HB555BEkEom6iQtdLhecTieq1Spze9VqNZTL5ToLk142jJ6rzMz9aqdbqVUB5YKFQSaTwY9+9CPNbZYuXYrbb78dPT09LeqVPj//+c/x/PPP294uPQO9Xi9OPPFEQ1mQLpdr0VaoXRQCBVB/67MraNVMH6yiZQkyMmDJLRL8Tz03S61Wg9PpZEFb5XIZiUSCuUgonkMvmNRo/+jvRq+Z0+lErVZDtVqtExIELSN3RbVaxcTEBHbu3AmXy4Wjjz4aK1aswJIlSxCNRhEMBuH1eploq1QqzK1D14Dup3K5zD6FQoEJFCvXQr7OyHXR28bIPWNUJAsEjXDMMcfgi1/8oumyBc0il8uhVCq1uxuLHne7O9AqeBFiNV5DaT+rbfH7U//s6I8SRgSY3vparYZgMIhgMMgG4WQyCZ/PB7/fD6/Xi3Q6zSwsSmJA71jNtmJVq9U5g3utVmOBrRQfMjU1hZ07dyIWi8Hr9cLtdqO/vx+1Wg2lUglerxcTExPI5XJMuNGHYlKWLl2KsbExlEolZp3Ryiijv1slAIzcO/MwPE0wT3E6nfi3f/s3/PrXv8Zvf/vbdncHkiRheHgYxx9/fLu7gkwmg/vvv7/d3WgLnSFX5zFmTe1Kg1KjA4HeG7URt5LcBSbfl1wk4XAY4XAYkiSxom35fB7pdBqVSgWSJMHn87FCbnrH0utXI5BVRC9mIhwO17l/JElCOp3G8PAwRkdHMTExgUOHDmFychLFYhGxWAzHH388+vr6EAqFmEunVCqxOJTh4WH2N4kBtYBkpd/tuB523VfCaiJoBdFoFD/4wQ+wcePGdncF1WoVX//611EoFNrdFezbtw979uxpdzfawqISKGpiwIy5vNGAWiO/G+2XlXNpZLDJ5/OQJAnBYLBusI1EIgBmfaUkCPjAUfkgpxQTZDdq2VtK55/JZOpEBAXTSpKEXC6HVCrFSuRPTk7iwIEDOHz4MJxOZ125bipeB8ymXWuJE/7vTrdUdHr/BAuHeDyOd7zjHR3h6nnwwQfx8MMPt7sb+POf/4xkMtnubrSF9t8FLUDrAWtUnNjxkFYbpM1kpuhZJfjMFLN9UxNhDoeDWUrGxsZY0GmtVkM2m0V3dzcqlQpcLhdz8Xg8Hs0qkc16K+dFgdbx+KybQqHA3D/AS9eQsn9ohudSqYRCoYBkMomJiQnMzMxgenoabrcbgUAADoeDnTM/G7LRgGS9ZXbQSLvtCiwXLC42btyINWvWtLsbKBQKuO+++9p6nz/99NP4yle+0rbjt5sFLVDkA67Sm7wR9GIDzFg6qC0rFgS97A87zPFq+3u9Xni9XhSLReRyOVbCulAoIJ/PIxAIoFgsAgALBpXPY6P2PciX2TWI6n1n9JZGszNTVhLFolDgK113+pTLZWQyGaTTaWQyGWQyGaRSKRQKBTbJolJ/5Mv0MnXsgr+2Ro5tpB36WyDQY9WqVaa27+rqwmWXXdYRk+39+Mc/ZjOgt4ODBw+qFndbDCxogaL1xseb3htpU22ZHmruDyvYFVypJoCo2mo8HofDMVuMjDJeqFAXPUyouBmJFCUhwhdIo2V2unyUrgfNI0RQ1VtKHaZ+UP/4qri8JYXShyl7h7KDyuUyisUi8vk8isUiWy8vzMZfB6v3oBXsOoawmgjMsHbtWnzuc58zvd/GjRtZ3aB2MjIygr/+9a9tO/5izyRaEAJFL1tELXvCzKBu54PZLlO50nnxH7sCHMnS4Pf7mSuHhIrT6UQ+n4fX62WzHAPQHJwlSZqTcmvEetLI9+XxeFh1V7oufPoxZd+QaKFYGjpHqm9CfacaJ3R9KFCWnxyNT19WO49mB6E2q+1WCSvB/CYYDCIUCpneL5vNdsz91ejsxlYpl8v49re/3ZZjdwoLQqCooWZZkL+5tvIfQcncrhWDYFRMqVl27BAqDocDkUgEbrebpRnz1h9ye/AzGzscDpbVIz+2XEQZxUpQMO1TLpcRDAZZ5VdaTkKKUoj5lGFy19B5kCWFv29IqJAwUQp+beeD1ooYN4pw8Qiaxd13341cLtfubgAAvv3tbyOdTrf8uA8//DC2bdvW8uN2EgtCoGg9KPVEgBm/ut0DjV6sAr+N1nq9fjXytksuj3g8jmAwiCOPPBI9PT11rhG3241sNgufz4dCocAsDXych5ZQVDuu1t9G+s1Tq9VYzZZQKKTo3y6Xy3UiRS4weOsRLZckqU7k8AJFrx6MlfOwgtXvXy+4vFPecAWdi9VsnHPPPRfBYNDm3lhj586dePLJJ1t6zCeeeAIf+MAHmMt8sbIgBIoevMVEzd0j317rb7VlVtBLgdXC6CDeSNsOx2zKcCgUQigUYq4Z3j9cq9VQqVRYJVVgNm6FipwB6tlFasv4dY1af6iPuVwObrcb0WhU0+xM6cJ039A58C4fOicSJiROlARLI1ixGinR6P1lVz8Ei4t3vvOdlkTKySefjDe/+c1N6JE1duzYoeqytpvHH38c//Zv/8bmPlvMLJpKsoRVVwnta9Rsz29rJAhUKS5FbeCWr5MfS96mUnCwVr95KLvF4/EgGAwinU6zNGNy7dDgVyqVEA6HkcvlEAqFWH0RtX4rHdvIW7uR70F+LEmSkM/n4XK5EAqFVGcGdTgc8Pv9yOVybH+v14t8Ps+CZ5VchPJjtephZgWjVjf+egsxIjBLPB7H61//ekv7ejwebN68GXfddVdH/C996lOfQl9fHy6++OKG29q1axd+/OMfs7+POeYYnH322QBms3Y2bdokxMn/z6ISKPKB0sjbrVVTtpIgURugzbSv1hY/mPDbGRUH/Lbydj0eD+LxOCKRCF544YW6qrHVapXV/sjlcujp6akTMHwwrBVxqNZHI8ivR7lcxtTUFDweDwqFwpzvlgZisp7Qej4jiawo8v34YzbrvuKFkZ7rT61vRvbRQrh1BEaJxWJYvXq15f2PP/54HHvssXjmmWds7JU18vk8vvKVr+CMM87AUUcdZbmdTCaDT3/607jrrrvYMrI2A2A1lwSzLFiBojT4yH/XcokYtaQ02je1tvTcN3qxMmrnb+Qc+G34uWYcDgdmZmZQLpfrUnb5rJdUKgWHw4FcLsdSbfnBXt53eX/MCEd5G0rnya+r1WqYnp5m/ZWLSKVrQ4LE4XCwuBs1y5RSf9SwImL0rHB8PxoVI2r/I2bPUyCwSldXF5YsWdIRAgUAnnrqKZxzzjk49dRT8fa3v33O/8bq1atV5+4pFAr485//jB/+8Id14gSYDdTP5/NN6/d8ZsEKFCMWA619lX7nsfoGrLS/0tuwWv/1XCRa22i1qXUuXq8XY2NjzGLi9XpZKXdqk6rHUpAsxaXo9Uet/42+5StdU7lFRKlvNHkgH4NC28stJ2rHNNtHLYyIWaV21SwsjV5bgaCVXHzxxfjzn//c7m4wDhw4gAMHDuB//ud/5qxbuXIlfvSjH+H000+H2+3GQw89hKeeegrAbKDtD37wg7oyBAJ9FqxA4ZEPWI36060+4LUsCITeAGJGZBi1whi5JocPH0Yul4MkvRQ0yk+SR+IFqB/I5a4no+dq1IWhdl5GYieUjl+pVDAyMsIsLFr+bzN91OuzWptGxLISetYxgWA+0N3d3e4uGGZoaAhvfOMb8aY3vQm9vb346U9/iqmpqXZ3a15jKrz61ltvxYknnohoNIpoNIp169bhD3/4A1tfKBSwefNm9PT0IBwO46KLLsLY2FhdG0NDQ9i4cSOCwSD6+/txzTXXzCnaZRX5Q1/PddKIBcQqWm+2/HIll5RWH4y8Wav9rWep8Xg8yGQyGBoaYmKkVquxjB0SArylgZaT66RRV4NaP/nzMXsMNTdeqVTSLDSn1EczLjijlhOrKMXVNNKmHWKn058dAoEdZDIZ3HnnnfjmN78pxIkNmBIoy5cvxxe+8AXs2LEDTzzxBM4++2y85S1vYT7Cq666Cr/97W9x11134aGHHsLw8DDe+ta3sv2r1So2btyIUqmERx55BN///vexdetWXHfddfaelUHMPrDtfvukwcMO4WPkWFZxu90ol8vIZrMoFoustgfVCqHf5QXLeLHFD5JGB021/Y2cX7utZFp90LMaqW1n5Bz1BJ2Ve86OuJOF9uwQCATNxyE1OOp2d3fjy1/+Mt72trehr68PP/nJT/C2t70NALB7924ce+yx2L59O04//XT84Q9/wJve9CYMDw9jYGAAAHDbbbfhE5/4BCYmJlgksx6pVAqxWIzFCRhBy5ffCoGgh9ZgpDRwme2zkjtDrx0KDD322GPx/PPPQ5IkVtI+EokgmUwil8vB5XKht7cXU1NTcyLQ5YOhmbdxef/Mujha/b3qWcXMoOay0woI1ttO3lc1F5vRa0e1XpLJJKLRqO72ctr57BA0n1WrVmHXrl0Ih8OW27jnnns6qh6KwD6MPDcsF2qrVqu48847kc1msW7dOuzYsQPlchnr169n26xZswYrV67E9u3bAQDbt2/HCSecwB4wALBhwwakUinNSO1isYhUKlX3MYNWNkSjg5gdpni9eAm9N2m15XqDu9GAyVQqhWq1yrJYHA5H3WR/APDyl78csVis7g1dK57CaP/po+T6UsPIAGuHNcxoto7ad6tlzVATDmoYsa7IvwcjAeCNuuiUmE/PDkF7Weyl3hc7pgXK008/jXA4DJ/Ph4985CP45S9/ibVr12J0dBRerxfxeLxu+4GBATZd9OjoaN0DhtbTOjVuvPFGxGIx9lmxYoXidlqxAHa4AOx4I5e7PtSEkxkRJT9vflA3Eiiqd5xEIjFn0KcZeylQ1u/3Y/ny5XOsWkbdOUouIF7gGI1FMbK+EYx8L0b6yp+bkgBVug5aLiC5gDMj6LT6x/+UCxuzbXfys0PQeaRSKTz44IPt7oagjZgWKC9/+cuxc+dOPProo7j00kuxadMmPPvss83oG+Paa69FMplkn4MHDypup/Sw13tbtJoZoWVet9KeVjt6b878W65Zq4Vaf/i/qahZsVhkgaP9/f0sHbdWq2HXrl0YHBxUtXaYeQvnt5Vfc6UAUKuDsJUMGS2RIBcmciuE0jqlNvl99K6bkXgW/t6w6m5S+mm2rU5+dgg6i7/85S8444wzsHPnznZ3RdBGTKcZe71eHHPMMQBm50t4/PHH8d///d94+9vfjlKphEQiUfcmNDY2hsHBQQDA4OAgHnvssbr2KFKftlHC5/PB5/OZ7SpDbfC3y72jJAzU+qH0hqv0O79tOywG1CYFwrpcLjZzb6VSweTkJAuWdTgcGB0d1X2zNurKkO+jNJhrHcPIwMkLOy03i5Vrryd85N+xXDwYEaTy35WOp+ZWMnq/qmE1vmc+PjsErSeRSODGG2/Erl272t0VQZtpeLJAKs178sknw+Px1PkM9+zZg6GhIaxbtw4AsG7dOjz99NMYHx9n29x3332IRqNYu3atpeMbeVA2+qathFF/vlaf1Nq0wyogj98w0x6/LdU04dsqlUoYGxtjKceSJNXVD9FrU225VXecfMA1eq5a21kZhJVEpVE3jdF4Frn4Ubq3la6fluXHLHb9H7X72SHoPGq1Gq644grce++97e6KoAMwZUG59tprcf7552PlypVIp9P4yU9+ggcffBB//OMfEYvFcMkll+Dqq69Gd3c3otEoLr/8cqxbtw6nn346AOC8887D2rVrcfHFF+NLX/oSRkdH8alPfQqbN2+2/JZj1oXRDJFipi9qg5hRy4vWOqXBiz+OFfiCZfybPi9EKA7FjAtHzR3CL5P/rRVnYcVdY+f9oCRY1c7BqquFb4c/rpJVRE2YWrlORvqhRyc+OwTNZWxsDB/60Idw8803o7e319A+P//5z/GLX/yi4XtTsDAwJVDGx8fxnve8ByMjI4jFYjjxxBPxxz/+Eeeeey4A4Otf/zqcTicuuugiFItFbNiwAd/61rfY/i6XC/fccw8uvfRSrFu3DqFQCJs2bcKnP/1pe89KRqfc7FoPdKVBh0dtMFVygViNM1ATOPQ3Dz+FOs1tY7YdNcGhdkwj10/p3I1eE6uCRekclcSnVWsboSTM+OPptdvo/4Ge+0iL+frsEFinUCjgpz/9KSYnJ3H77bejv79fMx18165d+OAHP4hMJtPCXgo6mYbroLQDI3VQ1N5W9YSAEawMDEoWACPH0dpH641ZT+So9UnJukHL6W8SJ3x8SrFYhMvlMnwt+DaNbq93Dvw2RlCywPCuLDP90mpbrV96x5Hfw1piVE/Q2mG5kbdBljSrdVDagaiD0h76+vrwmte8Bh//+Mfxmte8pm6dJEnYu3cvPvzhD+OBBx5oUw8FraapdVA6HSPio5E4DzMPej0XhF57RgZC+d9aIsDMm7B84AZecvtQTRS322148DNzzY24I9QsJkaOKY8NMSKc6LsyI07Uvl+148hjRvSuq1K/jVwDs/c/L5TsdJUKFj4TExP49a9/jbe97W143/veh23btrF4orvvvhuvec1rhDgRzGFRW1DMotaW2ZgHtdgJJWuFkfNTOobS30rWC73rZETkUQE3KxYptWuhtb2V694KjFiwCCPna+T+0OuH2vGN9kGvjWq1KiwoAtM4HA4cffTRWLZsGZ588kmk0+l2d0nQYow8NxbsbMZK/n61Qd1sm3rL1PaVD/pqA41Ry488zkFvsNcatNQGfjU3CL9eLk6MXGOlN3EtIaV1DvL+qfXBrLDR6rfS33pWFS1BoOSiUxMn/Pdt1LqmdO81Ik4adRcJFjfk1tm7d2+7uyLoYBasi4cwagmwgtYgqNYPpWVaMRRGrQrUnh0Dh5aQ0RM5apYDLRcN/1Hri9bArvW7kqDg1xu5L7REnJaVRGtA17Lqyfus950qXUO19vWsL1rHUDqmQCAQNIsFL1Dkgye/TP67XZh5+Cu5cYwOmmasN0rXwYgbwChqbekJCzWrknzA1RJ4cguSfBv5965lSTMiZpSupdL+Wm2rrdey0indv/y+SveRXptqaP2PiPgTgUDQChasi4dH621a7Q3Y6ENY7S3ZThO4HRYSM5YeIzEOeuvVLABqbgczYkutv3p94d0jRqxXetdIyyqi1Wd5v/T6oYXa9VC7541ec6Xvz8i9IRAIBHax4C0oei4CpQHGjhgVM64ZI1jtk9pbtdbxjbx5a7k25H+biZVQalutf0a3V9rOroHW6KCtJRD1hIJeu1ptm7n/G7H+CAQCgd3Me4Gi9+DUejBrDXSd6l+38qatJyaUlpsVFUaW67Wp1Ibe4KsX32L0OGYwI6j0YkLMoHQt1NyW8utiJDZKy4Wk145AIBDYzbwXKHqDnpIZXu8BrGd+V9rHDGbcQGYHdCNoHddMW2qxEPRT7+1fbV/5MRoZ0K0KWCNtK7WjFteiZcnSal9P2Gm5rBqx2mihJIAEAoHAbua9QAG0H7ZabgwjD1kzriE9lAYxI4NUM95ajVpH9Pqg9qauNojp/a0mUtSwKoT0XCNK6FnjtPZTOm+te1P+u9K9w7chj1NS2k4ICoFAMJ9YEALFKlqDoV5cgZkB0crgYCZwVO2tnT9+I/3R6os8XsWM4FPrFz/AGr3OjVhCjMTc8H1pJJ7GyPeqJ2S1xKLSMqW4I6tWPyv7CgQCgRUWnUCRD0Zqb9H8A92OQEqzb/lGj2t0G7MDjNp1UWvHqKDSE1NyrAg7qygJECVXjvzDL1drh9/f6DEbERNy15AZt6JWP5XWCQQCQTNYVAJF7tZRczcYeVtt9pu90X2txpJonZfaYGQ2NqdRzFx7LStIs/vUiMDSsjypiSO1fqkJIyvXRE1cCXEiEAhaxaIRKFpBilbeVBtxv5jBjgHBSKyD0t/8/rVabc62jYo0JauM1vZ66xu1dvFiwWg7SqLAzL1hNCBVDyWLh1bfhNAQCASdzqIRKHIRouXyMBMAa2VANGr10AugNfOmbDXmQMmapDbg2RGvY2V7tf6puU/ULBN2x1YYEYby+1Av3kepXTWhoxQcK+JHBALBfGFeCxSzb4F6A5EZF08jGB3IlfoqH4z4QdiKQNAaLPllWm0b6SePXW/xeoJMLeBZHjhqpW3+p9E2lfYxenwr97qZ5VrrmyXgBAKBQIt5LVDMmuHlvyu9Xdo1EDS6v5m34mYc38h+WgOX1jqjYsou65WSBUUpqFWpf2b6qfa9KJ2vWlCsmvWOvzebKaDVLIxKQlgIFoFA0EzmtUAxitJDnx60aoOr1ePYlXVi1D3QSCCt0b400p7VN3l5n4wOikrWGXk2i1ZAqpobxUgfjfRL6W+r36FRy5gVlK6DcBUJBIJWsigEihy1QcqujJt2WzfkmHE7mG1TS+DZdT2V/tY7vpkgXjP90FvO908ppkTp3jP6/fDtqcXRqB3DKnK3GG85E4G2AoGgmSxKgaL3lmz0LZ3f3ul0wul02jYwah3bThO/VcuBnQG5Wu2qBTfzA6aRY2uJJiPnrOXGUtpOPohrfWdGgl7VBIkRwWPH/dLsuCyBQCCQsygFitIbrdZbrt5btJpbodE3TCPuH7sCTqmNThl89AZxtWVK+1oRpFouQL3jaFl1jLSlJNL0Yn7U9uWXmRHejQo6gUAgaJQFIVCa/cCUZ4TwA5Hag7xRS0ojb7pW9m2VO0lve7lLoZFjqH1nVjDiYjIiFtXicrTiO8z2Wev4ZvvWaF8EAoHAKgtCoNj10JRnKJg1n/O06y3TrOVGaXuzQbBWLDpGXB6NBtjK27ciUvSOpXaPmHEJqZ2/XhB3owJOa18hRAQCQbtZEALFDjHAD7ZKgYhmzepaGSxq+2sFPtqFlpvDypu6UmyImX2NBFyaFRRGB3i9dowcm3cFyeNPjPbX6jZay5XuXeGaEQgE84kFIVDseGOUWwHk7hu73uaN9IEXSHa+7fPH0lqmZj2idUoWCTU3mFb/1NwadgX+NtqGUZFCyK+Z0e9Py71j1DojX650P1t1/fHnZfaaCAQCgVUWhEBpRCQYfQttdj+a0U6jxzXiXjCyj5F1Ro5pBDsHTiviUCvY1Uw7amJH637Viz1pxPUnXD8CgaDVzHuBIncVWEErjkTtwWzkeK1+mFs5ntKgZ9Rdo/SWbhUjbgizlgwjga1abRhFKQbHSjuElrXDjOvQDhpxkwkEAkEjzHuB0ohrQM/doZelw9NILIFd2/OYzXTh95HHVBjpl9r3YMc5m42hMHp8O+4XvfaNBFUbcevoxerYLYZF3IpAIGg3816gEFb961rLlAZvrbgJvcwNOwZEJfTOQ+8YjV47u6weau1pWWfULBZ6gatGgl/5/YxkzMgFnlHk94f8pxnXm90Il45AIGgXC0agNIJR64fcmmI0KFX+Rm/VfdDpNOJmM9I2oWU10xq85f2zs69GXS9G3YJmBZXdKN3jzfx+BQKBQM68Fyh2DzJm1iu9pWvBZ1MYHXCsBpaqLW+mONIK5DTrntE6b61AUbVlVoM81QSD0jZaGTZmjq0XO6NlkWvE5al0fGFBEQgE7WLeCxQ7MRoUqhUwa9TdYcYKYyRDw8xytbbN9MkoZiwWagJQbX+jQsiMUDNrMVA6PyWLDS/c1ISF2vEaDdg1K3J5ES2sJgKBoF3Ma4HSaOaI3Ri1jBh5Q9Ub0LTaNjKoKrk71GIg9NASAEpv/1p91BJLSgKGb08rToXWmzm22rmpwZ8r3x8jriWlY+q5Bo0Kh0ZdT63OHBIIBAKgQYHyhS98AQ6HA1deeSVbVigUsHnzZvT09CAcDuOiiy7C2NhY3X5DQ0PYuHEjgsEg+vv7cc0116BSqTTSlZYgf6uUvyGbacfodlrt67kc1NbxQspqkKy8H1oDqNWB1Mi1lfdfK5jZrJvJyD56AtNI1o4cK9+rnahZfuxisT03BAKBNSwLlMcffxzf/va3ceKJJ9Ytv+qqq/Db3/4Wd911Fx566CEMDw/jrW99K1tfrVaxceNGlEolPPLII/j+97+PrVu34rrrrrPUD6tvlUbQcuXIt7HbPWJ0cDayTGvAU3uztxJ/QvvJXQR6rhs9jPRFLevG7ABrJp7HTN+URI9esC+/nRWhYEXQ8N+fWv8boVOeGwKBoPOxJFAymQze9a534bvf/S66urrY8mQyif/3//4fvva1r+Hss8/GySefjDvuuAOPPPII/v73vwMA/vSnP+HZZ5/Fj370I5x00kk4//zz8ZnPfAa33HILSqVSwydkp9/cjoGt0ePbEatiROQoBWBajX2Q/82LBrPXyWzciZGgVjWsBOaqCUIjsSxGrTNW72cr+2gJsUbv8U5+bggEgs7DkkDZvHkzNm7ciPXr19ct37FjB8rlct3yNWvWYOXKldi+fTsAYPv27TjhhBMwMDDAttmwYQNSqRSeeeYZxeMVi0WkUqm6jxZ6wZV2I3/bNCss1No0k5FhZQCRD3zyN3WtuBGt8+LPXe17UBrAtWJDtFxIatktdmSxmF2v1qdm9KOZyN2Ydrh6Wv3cAMw/OwQCQefgNrvDnXfeiSeffBKPP/74nHWjo6Pwer2Ix+N1ywcGBjA6Osq24R8ytJ7WKXHjjTfihhtuUO2TXlBjs333/APcrLDQa9No0K2eJURpuVxMGRnYjfRL7c1fKy7DCEpuEKPbKqHVFyVXnlW3mx5Kg7+ZeBk73YpqrrFGj9GO5wag/+wQCASdiykLysGDB3HFFVfgxz/+Mfx+f7P6NIdrr70WyWSSfQ4ePNiyY+uhZSlp1RuwUraHPCZEaVs5ckuFXMzQ70YsDEqDv7xdJQGj1A+l/ZUGT7MBzGbidYwsN+te02vbyP52uTIbtfhp0a7nBtDZzw6BQKCNKYGyY8cOjI+P41WvehXcbjfcbjceeugh3HzzzXC73RgYGECpVEIikajbb2xsDIODgwCAwcHBOdH59DdtI8fn8yEajdZ9APOBi60QDEYGRittGd1e/nujri6zFha1/jRyLYx8z0qixWwgrpK7S68NpZgnuUCTCzwj2OEiMopS/+w8brueG4D6s0MgEHQ+pgTKOeecg6effho7d+5kn1NOOQXvete72O8ejwfbtm1j++zZswdDQ0NYt24dAGDdunV4+umnMT4+zra57777EI1GsXbtWtMnoPRwteONuVHsbNeMdUZpUOTXGX1T1ouzMOOCMHI8o+1qxbXIj2tW4ClZoozup+XaU7MUKe2vdb2a7apUcwM2Sic+NwQCQedjKgYlEong+OOPr1sWCoXQ09PDll9yySW4+uqr0d3djWg0issvvxzr1q3D6aefDgA477zzsHbtWlx88cX40pe+hNHRUXzqU5/C5s2b4fP5THVeyQVgNguhGQ99+eDU6DGU4h/0rApGLChGBmCtQcuIhcQuF4Rem1quJ6PnKXcVGd1XrS0zVhO1+A++rVa6DNXcdFbotOeGQCCYH5gOktXj61//OpxOJy666CIUi0Vs2LAB3/rWt9h6l8uFe+65B5deeinWrVuHUCiETZs24dOf/nRDx9V7qDb77VMOH0xq5UGvNyApxZaoDbBqbakF1CodS/67HYHASij1Qamf8v5YHby17he7xJWeYNWK+ZFvYzda92YrRVG7nhsCgaBzcUitegLZSCqVQiwWg8PhgNM566VSG9TaSaOWFDOWCiUri1nLgZHja21npu1Gkbdt9li8cNP6nvTEm1q7Sr9r9dVI+3ZfT61zV+u7fP9arYZkMjlvYjvo2SEQCNqLkefGvJ6LBzAfSNpqGgmYVbII8eerNMgpCRUj/dM6vlUa2VcprsPpdKoOmmaPpeRO4dtSCnw10y7/u5G+GhGwjd7nRkV8o1YpgUAgsIN5L1DkGA10bMXD165j6Fk41JYbsbx0GnKRpScSrAgVI/eEXQGifFty8dIqNw5/TPnx9IJ3hUgRCATtYsEJFHmwod4g3irklg+r1gmtt16twXy+DDRqFiL+mlmJf9ESN2quHjPtax1H7XidgJZI6pQ+CgSCxcmCEyg8nTJoqwWZGh385G/gWvtZFT3NFmyNXmujlrFG3CRq7jQly0Kj7jN+fbutW1rXst19EwgEi5cFKVCUBjAjZv1WxLNYeegrWV7sdF81ct5GrQF2WiLMtKfkxpALPSNCQUsgad1rdrmlrGBEjGnFvggLikAgaCcLUqAAc+t1qMU2aGUq2C1YGjHt22mBaNabsVYAr9Y+zUTP6qQkFhqJDTHiVjTrorIjOFYumoy6PoVIEQgE7WLBChS1t1yt+BSlQEZ+Xzv6ZKbPSui5eowMxEaOY3ZQlvfNaFvNihHSCv5UskApxZ+YPZ4Zq4qZ82v0WpixkAhBIhAIOoUFK1DkyMWGfJCyK3DRinig/hixbOhZKRq10BixLKn1h0fPStDItTbjUjIijui7NxLgqtYOfzy58FH6vsxamqwgtyDKl6v1WSAQCDqBRSNQ+IBHpTdnuwIFrQ48dqa0WmlbPlgb2VcvVbbZbjO1towe1+h5GkVu3TJz3Y0u10LrHpZvZyZOq5E+CQQCgVUWjUDhkb/x0jL+72YcU/4ma/cArma9sSqWzFhPlCw7Sm/ojbpS+DaMxhWZEU12DcJKFjq+/2bjUIxg5NoaFTECgUDQbmyfi6fTURug5INds47LD1hK1opGBgo7B1k7AjONLDcSj6G2jdr5armc9Fw1Zs9b7iKUf69yN4tRy0Uz7sNmfacCgUDQDBadBUXvzdWIhcOuPigNVGrmdzUa7aNaTEszMn20RIuV81CzgsnXax1DaVsjqAlNLQEi36eZglitv1bXCwQCQatZdAKFR8/0r7S8WRkVWi4AM+1ooWfeb7eZX02gKQ3kfEwR/U0/7bo2Wt+DkdgcvaDoVogCu11XAoFA0CoWnUDRMv/z65vp6lESPUbEkrwdM9vTcZSWtWKgNDpAGhEESudu9DvUiv+QWzjU2jACL7SMCBa9thrZr1ViSCAQCOxkUQgUI2+zSj/V1lvtg/x3uwJz7QzwtSJ8zLZrZjszbi898al0ndQsZHILjVJ7SuhZo1ptrVI6XifEKAkEAoEei0Kg2OGmUXInWO2D3ZkUaoOpFdTaaCQmxk7UsmLky9T6o3XtlYKWze5vBLMWDavfq57VSalfZtoWIkUgEDSTRSFQAP23ZiODgDxjwyzNDMDVEhZGg02V+qIVw6BmsWhlbIXeMqPrlYKF9bY3i9V4EPl3qGdRsuraMdsvEdciEAiayaIQKI0EOyph1eVj5m3cyP5K28sHMquxD0biJjrlLbodMRZmA2CNCD6tY5l10ViJezFjJRNxLQKBoNksCoGi97aptl5tWbPjCBp5+FuJNWjE8qDk9jJjjTLLfHprVxIWSjVS5L8bbdvIOjMiWK8PdroSBQKBQI9FIVDsotW1K5SObwYz2UBaAs7oG7uZ4zY7o8WuQdQuK4RePIuZe8poDImWaLTqouTFuRAqAoGgmSwIgWL2YWvV5dFqs3ajg5YZYWHFBSY/vtHrY9ZiZYV2ZCABxoVao/FGcuGoFHdiVjQqxbrY0V+BQCCwwrwWKI0GrVo5ltYyMwOsnW+fjZrd7QjaVHuzVhMuRlwMjXyndt0PZq4t7wJRsjBYtT6oWbm0rqsVcSv/3oy4fAQCgaBZzGuBAlgLOmw0A0fell4f7LQMqNHqzBneoqT0Rq/UJ6tZLGrtqS1r5Bhqx1UTXvLflf5W6qsVq4xcfCjFsJg9hvx7U7Oo8d+3CJAVCAStYN4LFKD1g7PaeqU3XaNvtHYMqM26DvJzUwvuVHubt5JRwrehJWzMBgLbdY3k8RhG9zHbBy1RYIcLRq1PZuJZBAKBoBksCIECNFekNBoQ2Mj+Wm+sRtwmdqH2Fi9fryRmtFwUZo4pR+2aKFkz7Mi8aqYlzMi1kIs1K4JH7dhK18WIdVAgEAiaxYIRKM3EqEm73Q/xZog0uchQO47SMrkoMBIrpLZeSdyoWVQaSd812y87s4WMLLf7/JTEnN65CveOQCBoBe52d8AulAL8Gg0eVTuO1mCsNKCr9ZPHqguoGeeodVw9K4hWnITSejWxoxYDQb+rvfErHdMu1NrX+u6aHazbLAuOXlq0QCAQNJsFY0FRevtrxhuf3mCkFHdhR80IowGnzbKi8JhJX5bvr9SWklVATQRaDYZuNEZDfnw72lND3u9m3D/yZc2wOgkEAkEjLBiBwqP21t5MlCwCSoLJ7MBm5a3ZjpgEtb4YiQuxWxhotS8/jtySpdWWERpx7ViNWdETa3quGK3+qAk/rfuWlgnhIhAIWsmCFChGg0rNtilHK6tE7c3X7ENeb+BQolFXgF7cg9I6NfGiFTNh5dqo9UUvNsPOwdWoRamRwGj+dzVrlBnMWPL03JBCqAgEglawIAWK1iBGNMuSofQmbwat7bUyLazGsFjtm1aQqlof+d/prV3J2qK03IxVRs3iYASrAlBNIFkRpPJ4GyvWErW2+Z9q/VMSRXaIJIFAIDDDvBcoWm/rSrTy4ao24Gqh13+jroVmuXl4gaG3j1J8jNJ3pNRf+SCt1y+1fc0KRqOCgheGakLVTOyOkvizy12mdHy9e1Mt5kkgEAhaxbwXKITRYFE74hLMYPdx7LTIaKE0mMndBEoxNvJj68VPyL8PLVeRXhyEkaBPo/sr/a2E2rVQasOIEKDzb6YgMCLkhRtHIBC0G1MC5frrr58Tc7BmzRq2vlAoYPPmzejp6UE4HMZFF12EsbGxujaGhoawceNGBINB9Pf345prrkGlUmn4RIy4H1qBknnerr7ouX+Mxsnotas32NoR4yOP1VFyI2hZVYwEcTZ67bX2VbLIaMXgGHE72tVvPXgrmF68iV108rNDIBB0JqbroBx33HH485///FID7peauOqqq/C73/0Od911F2KxGC677DK89a1vxd/+9jcAQLVaxcaNGzE4OIhHHnkEIyMjeM973gOPx4PPf/7zlk6gU03PaoNrswYetQGajq20rVYciZ6VQwkjIok/ptmgVr3YCK3jGsHq9loxGnKxavXYVmOa5P1TuydaQac9OwQCQYcjmWDLli3SK17xCsV1iURC8ng80l133cWWPffccxIAafv27ZIkSdLvf/97yel0SqOjo2ybW2+9VYpGo1KxWDTcj2QyKQGQAEgOh0P143Q62c92f1wuV1M/brdb8+PxeOo+SsusbCPfXuvYar9b+VttG7N9tvuj9z0Y+dD32Yz7hL8fle5RM/e0w+GQAEjJZHJePjvER3zEp30fI88N0zEozz//PJYuXYqjjjoK73rXuzA0NAQA2LFjB8rlMtavX8+2XbNmDVauXInt27cDALZv344TTjgBAwMDbJsNGzYglUrhmWeeUT1msVhEKpWq+6jRbt+5lslcaqK1h9pXOwa/3mg/zL61y+NHtFwIetkpRiwqStu06/tXOherfTEaM2MU/ntvxBLTKJ3+7BAIBJ2FKYFy2mmnYevWrbj33ntx6623Yv/+/Xjd616HdDqN0dFReL1exOPxun0GBgYwOjoKABgdHa17wNB6WqfGjTfeiFgsxj4rVqxQ3M6oj78VtMq3bxa1QdyIcFHbxujArORmaPb3087rbfXY/HW2o/9aAc/y4zaLTn92CASCzsNUDMr555/Pfj/xxBNx2mmnYdWqVfif//kfBAIB2ztHXHvttbj66qvZ36lUqq0PGv5NVGkd/1Mee6AV+6HVrt1oxUzwfeT7pBdjwp8zj9J5yZdZOW8j16uVAkjtuzaLHVk8ateXvz9bKd7Fs0MgEJiloTTjeDyOl73sZdi7dy8GBwdRKpWQSCTqthkbG8Pg4CAAYHBwcE5kPv1N2yjh8/kQjUbrPko0241CmHmwGxmw1Ab2ZvRLTWDI36jlgay8i0DtHPg25Oettl0jWBU1dm0rF2+NHIvf3i6riVx4yq0n7bQuddqzQyAQdB4NCZRMJoN9+/ZhyZIlOPnkk+HxeLBt2za2fs+ePRgaGsK6desAAOvWrcPTTz+N8fFxts19992HaDSKtWvXNtIVRTrNnaI2ONv1Jit/K1ZzvWgNhFruGSXRwq/XEiVK/VPrg9ZyPfSsMlrXR2tbtfV6liC9WBx5X5TuEaVrbxW7YlAa3b/Tnx0CgaD9OCQTT5qPfexjePOb34xVq1ZheHgYW7Zswc6dO/Hss8+ir68Pl156KX7/+99j69atiEajuPzyywEAjzzyCIDZVMGTTjoJS5cuxZe+9CWMjo7i4osvxgc+8AFTqYLJZHKOv9oIWu6VZqE1cLfzmI30Q8n9o7Reb7meq6zdAc9W0BOFWvsYiVsyIzDUBKvchWcW+T6JRAKxWExzn/n+7BAIBPZi5LlhKs347W9/u7RkyRLJ6/VKy5Ytk97+9rdLe/fuZevz+bz0H//xH1JXV5cUDAalCy+8UBoZGalr48CBA9L5558vBQIBqbe3V/roRz8qlctlM92Q9u3b1/YUKfERH/GZ/Rw8eFA8O8RHfMTH1MfIc8OUBaVTSCQS6OrqwtDQkL4CE5iGAgkPHjwofPZNYKFcX0mSkE6nsXTpUjid82PWDPHsaC4L5d7uVBbC9TXz3DBdSbYToJOKxWLz9kuaD4igwuayEK7vfBvkxbOjNSyEe7uTme/X1+hzY3689ggEAoFAIFhUCIEiEAgEAoGg45iXAsXn82HLli3w+Xzt7sqCRFzf5iKub/sQ1765iOvbXBbb9Z2XQbICgUAgEAgWNvPSgiIQCAQCgWBhIwSKQCAQCASCjkMIFIFAIBAIBB2HECgCgUAgEAg6DiFQBAKBQCAQdBzzUqDccsstOOKII+D3+3Haaafhsccea3eXOp4bb7wRr371qxGJRNDf348LLrgAe/bsqdumUChg8+bN6OnpQTgcxkUXXTRnivuhoSFs3LgRwWAQ/f39uOaaa1CpVFp5KvOCL3zhC3A4HLjyyivZMnF924t4blhDPDtai3h2cJiaaasDuPPOOyWv1yvdfvvt0jPPPCN98IMflOLxuDQ2NtburnU0GzZskO644w5p165d0s6dO6U3vvGN0sqVK6VMJsO2+chHPiKtWLFC2rZtm/TEE09Ip59+uvSa17yGra9UKtLxxx8vrV+/XvrHP/4h/f73v5d6e3ula6+9th2n1LE89thj0hFHHCGdeOKJ0hVXXMGWi+vbPsRzwzri2dE6xLOjnnknUE499VRp8+bN7O9qtSotXbpUuvHGG9vYq/nH+Pi4BEB66KGHJEmSpEQiIXk8Humuu+5i2zz33HMSAGn79u2SJEnS73//e8npdEqjo6Nsm1tvvVWKRqNSsVhs7Ql0KOl0Wlq9erV03333SWeeeSZ7yIjr217Ec8M+xLOjOYhnx1zmlYunVCphx44dWL9+PVvmdDqxfv16bN++vY09m38kk0kAQHd3NwBgx44dKJfLddd2zZo1WLlyJbu227dvxwknnICBgQG2zYYNG5BKpfDMM8+0sPedy+bNm7Fx48a66wiI69tOxHPDXsSzozmIZ8dc5tVsxpOTk6hWq3VfAgAMDAxg9+7dberV/KNWq+HKK6/EGWecgeOPPx4AMDo6Cq/Xi3g8XrftwMAARkdH2TZK157WLXbuvPNOPPnkk3j88cfnrBPXt32I54Z9iGdHcxDPDmXmlUAR2MPmzZuxa9cu/PWvf213VxYMBw8exBVXXIH77rsPfr+/3d0RCJqCeHbYj3h2qDOvXDy9vb1wuVxzopfHxsYwODjYpl7NLy677DLcc889eOCBB7B8+XK2fHBwEKVSCYlEom57/toODg4qXntat5jZsWMHxsfH8apXvQputxtutxsPPfQQbr75ZrjdbgwMDIjr2ybEc8MexLOjOYhnhzrzSqB4vV6cfPLJ2LZtG1tWq9Wwbds2rFu3ro0963wkScJll12GX/7yl7j//vtx5JFH1q0/+eST4fF46q7tnj17MDQ0xK7tunXr8PTTT2N8fJxtc9999yEajWLt2rWtOZEO5ZxzzsHTTz+NnTt3ss8pp5yCd73rXex3cX3bg3huNIZ4djQX8ezQoN1Ruma58847JZ/PJ23dulV69tlnpQ996ENSPB6vi14WzOXSSy+VYrGY9OCDD0ojIyPsk8vl2DYf+chHpJUrV0r333+/9MQTT0jr1q2T1q1bx9ZTKtt5550n7dy5U7r33nulvr6+eZ/K1iz4SHxJEte3nYjnhnXEs6P1iGfHLPNOoEiSJH3jG9+QVq5cKXm9XunUU0+V/v73v7e7Sx0PAMXPHXfcwbbJ5/PSf/zHf0hdXV1SMBiULrzwQmlkZKSunQMHDkjnn3++FAgEpN7eXumjH/2oVC6XW3w28wP5Q0Zc3/YinhvWEM+O1iOeHbM4JEmS2mO7EQgEAoFAIFBmXsWgCAQCgUAgWBwIgSIQCAQCgaDjEAJFIBAIBAJBxyEEikAgEAgEgo5DCBSBQCAQCAQdhxAoAoFAIBAIOg4hUAQCgUAgEHQcQqAIBAKBQCDoOIRAEQgEAoFA0HEIgSIQCAQCgaDjEAJFIBAIBAJBx/H/AROqjcB4EvW7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 사용 예시\n", + "dir_img = 'C:/Users/pinb/Desktop/imgs'\n", + "dir_mask = 'C:/Users/pinb/Desktop/masks'\n", + "train_set, val_set, test_set = create_datasets(dir_img, dir_mask)\n", + "\n", + "# 첫 번째 이미지 확인 (예: train set)\n", + "data = train_set.__getitem__(7777) # 이미지 불러오기\n", + "\n", + "input_img = data['input']\n", + "label = data['label']\n", + "\n", + "# 이미지 시각화\n", + "plt.subplot(121)\n", + "plt.imshow(input_img.reshape(input_img.shape[0], input_img.shape[1]), cmap='gray')\n", + "plt.title('Input Image')\n", + "\n", + "plt.subplot(122)\n", + "plt.imshow(label.reshape(label.shape[0], label.shape[1]), cmap='gray')\n", + "plt.title('Label')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Argumentation" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# 트렌스폼 구현하기\n", + "class ToTensor(object):\n", + " # def __call__(self, data):\n", + " # label, input = data['label'], data['input']\n", + "\n", + " # label = label.transpose((2, 0, 1)).astype(np.float32)\n", + " # input = input.transpose((2, 0, 1)).astype(np.float32)\n", + "\n", + " # data = {'label': torch.from_numpy(label), 'input': torch.from_numpy(input)}\n", + "\n", + " # return data\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " # 이미지가 이미 그레이스케일이면 채널 차원 추가\n", + " if label.ndim == 2:\n", + " label = label[:, :, np.newaxis]\n", + " if input.ndim == 2:\n", + " input = input[:, :, np.newaxis]\n", + "\n", + " # 채널을 첫 번째 차원으로 이동\n", + " label = label.transpose((2, 0, 1)).astype(np.float32)\n", + " input = input.transpose((2, 0, 1)).astype(np.float32)\n", + "\n", + " data = {'label': torch.from_numpy(label), 'input': torch.from_numpy(input)}\n", + "\n", + " return data\n", + "\n", + "class Normalization(object):\n", + " def __init__(self, mean=0.5, std=0.5):\n", + " self.mean = mean\n", + " self.std = std\n", + "\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " input = (input - self.mean) / self.std\n", + "\n", + " data = {'label': label, 'input': input}\n", + "\n", + " return data\n", + "\n", + "class RandomFlip(object):\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " if np.random.rand() > 0.5:\n", + " label = np.fliplr(label)\n", + " input = np.fliplr(input)\n", + "\n", + " if np.random.rand() > 0.5:\n", + " label = np.flipud(label)\n", + " input = np.flipud(input)\n", + "\n", + " data = {'label': label, 'input': input}\n", + "\n", + " return data\n", + " \n", + "# class Resize(object):\n", + "# def __init__(self, output_size):\n", + "# assert isinstance(output_size, (int, tuple))\n", + "# self.output_size = output_size\n", + "\n", + "# def __call__(self, data):\n", + "# label, input = data['label'], data['input']\n", + "\n", + "# h, w = input.shape[:2]\n", + "# if isinstance(self.output_size, int):\n", + "# if h > w:\n", + "# new_h, new_w = self.output_size * h / w, self.output_size\n", + "# else:\n", + "# new_h, new_w = self.output_size, self.output_size * w / h\n", + "# else:\n", + "# new_h, new_w = self.output_size\n", + "\n", + "# new_h, new_w = int(new_h), int(new_w)\n", + "\n", + "# input = cv2.resize(input, (new_w, new_h))\n", + "# label = cv2.resize(label, (new_w, new_h))\n", + "\n", + "# return {'label': label, 'input': input}\n", + "\n", + "class Rotate(object):\n", + " def __init__(self, angle_range):\n", + " assert isinstance(angle_range, (tuple, list)) and len(angle_range) == 2\n", + " self.angle_min, self.angle_max = angle_range\n", + "\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " # NumPy 배열로 변환 (필요한 경우)\n", + " if not isinstance(input, np.ndarray):\n", + " input = np.array(input)\n", + " if not isinstance(label, np.ndarray):\n", + " label = np.array(label)\n", + "\n", + " # (H, W, C) 형태를 (H, W)로 변경 (필요한 경우)\n", + " if input.ndim == 3 and input.shape[2] == 1:\n", + " input = input.squeeze(2)\n", + " if label.ndim == 3 and label.shape[2] == 1:\n", + " label = label.squeeze(2)\n", + "\n", + " # 랜덤 각도 선택 및 회전 적용\n", + " angle = np.random.uniform(self.angle_min, self.angle_max)\n", + " h, w = input.shape[:2]\n", + " center = (w / 2, h / 2)\n", + " rot_matrix = cv2.getRotationMatrix2D(center, angle, 1.0)\n", + " input = cv2.warpAffine(input, rot_matrix, (w, h))\n", + " label = cv2.warpAffine(label, rot_matrix, (w, h))\n", + "\n", + " return {'label': label, 'input': input}\n", + " \n", + "# class Crop(object):\n", + "# def __init__(self, output_size):\n", + "# assert isinstance(output_size, (int, tuple))\n", + "# if isinstance(output_size, int):\n", + "# self.output_size = (output_size, output_size)\n", + "# else:\n", + "# assert len(output_size) == 2\n", + "# self.output_size = output_size\n", + "\n", + "# def __call__(self, data):\n", + "# label, input = data['label'], data['input']\n", + "\n", + "# h, w = input.shape[:2]\n", + "# new_h, new_w = self.output_size\n", + "\n", + "# top = np.random.randint(0, h - new_h)\n", + "# left = np.random.randint(0, w - new_w)\n", + "\n", + "# input = input[top: top + new_h, left: left + new_w]\n", + "# label = label[top: top + new_h, left: left + new_w]\n", + "\n", + "# return {'label': label, 'input': input}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Arguemtation" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAFHCAYAAADUevqbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzbElEQVR4nO29eZgkVZnv/819rbWXahpsBEGxZVMQKFHxQkuL6IjgvepltFWuXrBhUBSV+SmIo4O7KKOgg4qoqAOKM+I2yOaoDUIjSLMJDtIsXb3WmntWxu+Pvu/pN0+diDiRGVmVWf1+nqeeyozlnBORkRHffLcTcRzHgSAIgiAIgrCoiS70AARBEARBEITOI6JPEARBEARhL0BEnyAIgiAIwl6AiD5BEARBEIS9ABF9giAIgiAIewEi+gRBEARBEPYCRPQJgiAIgiDsBYjoEwRBEARB2AsQ0ScIgiAIgrAXIKJPEARBELqMv/3tb4hEIvj85z8fWpu33347IpEIbr/99tDaFHoLEX17Oddccw0ikQjuueeehR4KAKBYLOLjH/+49U2JbmI33HBDZwcmCIJgQbfdUwWBI6JP6CqKxSIuvfRS+SUqCIIgCCEjok8QBEEQBGEvQESfMId3vOMdyOfzeOaZZ3Daaachn89j2bJl+OAHP4jZ2Vm1HY85+dKXvoT9998fmUwGJ5xwAjZt2tTU5qte9Sq86lWvMvb13Oc+V7W3bNkyAMCll16KSCSCSCSCj3/844HG//GPfxyRSAR/+ctf8Pd///cYGBjAsmXL8LGPfQyO4+Cpp57CG97wBvT392PFihX4whe+0LR/tVrFxRdfjKOOOgoDAwPI5XJ4xStegdtuu21OXzt37sTb3vY29Pf3Y3BwEOvWrcP999+PSCSCa665pmnbRx55BG9605swPDyMdDqNo48+Gv/xH/8R6NgEQehtgtxfCL/7KyD3F8EOEX2CkdnZWaxduxZLlizB5z//eZxwwgn4whe+gG984xtztr322mvxla98BevXr8dFF12ETZs24cQTT8TWrVsD9bls2TJceeWVAIA3vvGN+O53v4vvfve7OP3001s6hje/+c1oNBr49Kc/jWOPPRaf/OQncfnll+PVr3419t13X3zmM5/BQQcdhA9+8IP47W9/q/abmprC1VdfjVe96lX4zGc+g49//OPYvn071q5di/vuu09t12g08PrXvx4/+MEPsG7dOnzqU5/Cli1bsG7dujljefDBB3Hcccfh4Ycfxkc+8hF84QtfQC6Xw2mnnYYbb7yxpeMTBKH3sL2/EDb3V7m/CNY4wl7Nt7/9bQeAc/fdd6tl69atcwA4n/jEJ5q2ffGLX+wcddRR6v0TTzzhAHAymYzz9NNPq+V33XWXA8B5//vfr5adcMIJzgknnDCn/3Xr1jn777+/er99+3YHgHPJJZdYjf+2225zADjXX3+9WnbJJZc4AJz3vOc9alm9Xnf2228/JxKJOJ/+9KfV8vHxcSeTyTjr1q1r2rZSqTT1Mz4+7oyMjDjvete71LIf//jHDgDn8ssvV8tmZ2edE0880QHgfPvb31bLTzrpJOewww5zyuWyWtZoNJyXvexlzsEHH2x1rIIgdD+meyrH9v4S5P5qe3+h++Vtt93W7mEKPYpY+gRXzj777Kb3r3jFK/Df//3fc7Y77bTTsO+++6r3xxxzDI499lj84he/6PgYvfg//+f/qNexWAxHH300HMfBWWedpZYPDg7iBS94QdNxxWIxJJNJALutebt27UK9XsfRRx+Ne++9V233q1/9ColEAu9+97vVsmg0ivXr1zeNY9euXbj11lvxv/7X/8L09DR27NiBHTt2YOfOnVi7di0ee+wxPPPMM6EfvyAI3Yft/YXwu7/K/UUIgog+wUg6nVbxdcTQ0BDGx8fnbHvwwQfPWfb85z8ff/vb3zo1PCtWrVrV9H5gYADpdBpLly6ds1w/ru985zs4/PDDkU6nsWTJEixbtgw///nPMTk5qbZ58sknsc8++yCbzTbte9BBBzW9f/zxx+E4Dj72sY9h2bJlTX+XXHIJAGDbtm1tH68gCL2Bzf2F8Lu/yv1FCEJ8oQcgdCexWCzU9iKRCBzHmbOcJ4aEjekY3I6Lj+173/se3vGOd+C0007DhRdeiOXLlyMWi+Gyyy7DX//618DjaDQaAIAPfvCDWLt2rXEbXSgKgrA4kfuLsJCI6BPa5rHHHpuz7C9/+YvKygV2WwlNruEnn3yy6X0kEgl9fEG54YYbcOCBB+InP/lJ03joVzOx//7747bbbkOxWGyy9j3++ONN2x144IEAgEQigTVr1nRw5IIgdDu29xfC7/4q9xchCOLeFdrmpz/9aVPMyB//+EfcddddOOWUU9Sy5z3veXjkkUewfft2tez+++/H73//+6a2SDxNTEx0dtAekDWQW//uuusubNiwoWm7tWvXolar4V//9V/Vskajga9+9atN2y1fvhyvetWr8PWvfx1btmyZ0x8/J4IgLG5s7y+E3/1V7i9CEMTSJ7TNQQcdhJe//OU455xzUKlUcPnll2PJkiX40Ic+pLZ517vehS9+8YtYu3YtzjrrLGzbtg1XXXUVXvSiF2Fqakptl8lksHr1avzoRz/C85//fAwPD+PQQw/FoYceOm/H87rXvQ4/+clP8MY3vhGnnnoqnnjiCVx11VVYvXo1ZmZm1HannXYajjnmGHzgAx/A448/jkMOOQT/8R//gV27dgFotlp+9atfxctf/nIcdthhePe7340DDzwQW7duxYYNG/D000/j/vvvn7fjEwSh83zrW9/Cr371qznLX/WqV1ndXwib+6vcXwRbRPQJbfP2t78d0WgUl19+ObZt24ZjjjkG//Iv/4J99tlHbfPCF74Q1157LS6++GJccMEFWL16Nb773e/iuuuumzPl2tVXX43zzjsP73//+1GtVnHJJZfMq+h7xzvegbGxMXz961/Hr3/9a6xevRrf+973cP311zeNNRaL4ec//znOP/98fOc730E0GsUb3/hGXHLJJTj++OORTqfVtqtXr8Y999yDSy+9FNdccw127tyJ5cuX48UvfjEuvvjieTs2QRDmB6o5qrN582bMzMz43l8Im/ur3F8EWyKOKbpeECz429/+hgMOOACf+9zn8MEPfnChh9M1/PSnP8Ub3/hG/O53v8Pxxx+/0MMRBEEQBAAS0ycIbVEqlZrez87O4oorrkB/fz9e8pKXLNCoBEEQBGEu4t4VhDY477zzUCqVMDo6ikqlgp/85Cf4wx/+gH/+539GJpNZ6OEJgiAIgkJEnyC0wYknnogvfOELuOmmm1Aul3HQQQfhiiuuwLnnnrvQQxMEQRCEJhYspu+rX/0qPve5z2FsbAxHHHEErrjiChxzzDELMRRBEITQkXucIAjdxoLE9P3oRz/CBRdcgEsuuQT33nsvjjjiCKxdu1amihEEYVEg9zhBELqRBbH0HXvssXjpS1+Kf/mXfwGwu6Dtc57zHJx33nn4yEc+Mt/DEQRBCBW5xwmC0I3Me0xftVrFxo0bcdFFF6ll0WgUa9asca1IXqlUUKlU1PtGo4Fdu3ZhyZIlXTFtlyAIC4/jOJiensbKlSsRjS5cYQK5xwmCEDZh3d/mXfTt2LEDs7OzGBkZaVo+MjKCRx55xLjPZZddhksvvXQ+hicIQo/z1FNPYb/99luw/uUeJwhCp2j3/tYT2bsXXXQRLrjgAvV+cnISq1atwrXXXts00T2wWw03Gg3Mzs6iXq9jdnYWtVoNjuOgXq+jVquh0Wio//V6Xf3RPny53g69rlarap1pWbVaRaPRUP/5/jQe/kdjN/2Z1sXjcQwPDyOXyyGXyyGVSiGZTCIej6u5HaPRKCKRCCKRCGKxGCKRiFoWjUabfi2QNYHOn+M4Tcvovb4fvaZtqT89aoDW831NfczOzmJ2dhaNRgPJZBKTk5N45plnEI/Hkc/nkclk1HHW63VEo1Gk02l1fDRG6pPGS+fe9AuJjhmA+swikQhmZ2dVO6lUynhctB8/BrdrsVaroVwuo1wuo1gsYnp6GoVCAdVqFcVicU7bgj+HHHIIPvnJTyKRSKBYLOKtb30r+vr6FnpYgXG7xwmCIHDavb/Nu+hbunQpYrEYtm7d2rR869atWLFihXGfVCqFVCo1Z/lnPvMZALtdIyTWSHi5CahW/wgSKiZRY3poB3HN0P7UFhdEeju0DYmaeDyu/mgZCbxYLKbEDhd/biZiEn2mcVGbBBeWfLnNa9OxkyAn8ZdOp5HNZuE4DlKpFHK5HPr7+5FKpVAul9Wxu/VDx8i348vpPHLxlsvl0Gg01DL+efDtaNy68OPLG41G0zmj44rFYk1/btdPq4TRnt+163aN6terfl2HSaPRQC6XQyKRsB53pwnzHicIgsBp9/4276IvmUziqKOOwi233ILTTjsNwO4b9y233BK4ttmDDz447zd4btEiuDDkDzabsbltq7ejb6eLDX18wO7z6iZ09P5oXaPRMI7btMwrrkB/8PvtzwVWLBZTFjL+PpVKYXBwENlsVgkpboXk/ZAgJqFKQpaLMK/PSRfFXsKf2tfb4ueU1nExysVy2NdxGOLK9GPDdK7dXtO2+jqvsenreVsm6vV611lIw7zHCYIghMmCuHcvuOACrFu3DkcffTSOOeYYXH755SgUCnjnO98Zaj+mh1Yr+5oEl9eDzNSnl4DT9/eylOhtmqxwpn1pG7fzwcUIiRT+0HazYnLLlmmMboLKJBJIcOqCK5lMol6vI5PJIJ1OqzHF43HlCnYTImTlpO3I9c3PBQlEvh+5dk3HyvsxnRfdSmyyqtJxtnONdgovS7OXCHRrh7/X11Mbfv2b1jnO7pCNbmS+7nGCIAhBWBDR9+Y3vxnbt2/HxRdfjLGxMRx55JH41a9+NSfwuV3cRFuQfW3apWU2Fgwvwedn1dAfhLqlz88CQ+910UWxdNwq6HaMentkOaP/JLJMYpTWewkFHlNHD3QSaolEQgk4YLd4rNfrTcLULZZQ30bfnp9LLwumvp+Xtc9LLOnjChO/a9EPk+BzE2+mY/U6brd++DLTa30Z/a9Wq/YHNo/M1z1OEAQhCAuWyHHuuefOm6uj3Yeq24MpaLu60PISZzZCkMeZkXAj8eFn1SMBRvsmEgm1fTweR61WUxYvHhfH29AFZDKZVOMiYUbL4vE4stkscrlc0/6UAANACcJyuYxqtYpEIoFyuazGSbFv8Xhc9U3WPtP54jGNAJri9Phx6OfW5DbXj5u20/vz2pfOuSnRJkzh52eVNeFmxXbbzqt9m+9Lu8KU0ONPu4n5vMcJgiDY0BPZuzZ4PXA64T7zemh5ubRM4zG91y0spna4wOBuUS6IKJuX3mezWSU8KJsUAPL5vBJ6qVQKlUpFZTgT1A6PDUwkEojFYioztlwuN1kN+bjr9TpKpZKy4tE4s9kskskkJiYmlHWP2q7X62qslARBfQK7xSQJQorv0s8VJbfox6N/VjaCJ4h1l9rkbnKTwOuEtc80Dr/1Jsu47mp120+/Xm2snHpfbmLVa/zk4pUkCEEQBH8WjejzskB0qi+/BxLH6+GmPzj1Prza7+vrUyVbyP2pZ/CS8Mtms8hkMiiXy6jVaiiVSnAcB7lcTvWRTqfR19eHHTt2qD509y0toz8SeiRE9VIxjUZDZVdS6RpKMkmlUpidnUU2m0W1WsXExISKv6N2aPy8hAqNAdgj6riY1N3g1J6X+5BEKC/fYvoc9Nd+1j2yRvHPl59LfkydxktctRMG4fdDxrYNt/g9N7o5rk8QBKHbWDSibyEwJTq4PbTcXLl+yQFeFhYSNCSSyBVLNeVItFDNu3Q6jVKphGKxqMqGkGB0HAfJZBJ9fX2o1WqoVquo1WpNrl0u6iiebmZmBgCUy5UnSpClMZVKqXqKxWJRtUH19SqVCqamppTVkfp0HAfpdBqpVEpZ/MhSSQ/7er2OSqWihJUudOmPZ9JyAUaCjYtSsh7Se8dxlGuZ4Mku+jK3z5+fSz2zWL+O2sXvB4m+Xhe0XqEHNv0SbhZE3pcbNlZ6HkogCIIgeCOizxKTu9VPyJlcXW4PslasLNVqFYVCAclkUomVeDyuRApv23F2T+FCUz0lEglkMhlVAgWAspKRKOQuZBJ1JOxqtZpqi9f+4+eD3Mn5fB6RSERZGKn/RCKhEjempqYA7LY0kujkbmkSfxQjqEPFj8kNTC5f6ofHL+rnhR8r7cdLvNDxkEjkiRw8kYW2138EmLKhAe8SOn74WexsQg/c2rOxsOlt+lna3a5vrx9AunXUrW+6pgRBEARvRPS54GbtsHkQuj3oTCJQ38ftvQmaCYTEChdetD+fDYTi4cgKRiKKu1JpxggunOjBGo1GkUgkmqyA1CcXmbQ8kUigv78fsVgMk5OTSkzS9hRTqIststxQAeZEItEkumk7YE9mbywWQzqdVhbASqWCarWqZr8woSde6AWt+WfOLXIEF1eRyJ6kF37u+WfOLbK0D/8LQlBR57etfm226u71wq8d03eACz/9hxeNVyx9giAIdojocyGMB51NnKHJMqNbBd3a4aKCRBZtSw9Cbqkj6x5NYTY7O4tSqYRaraZcmmRl4xYubsGjbbnFTU/uoD9K5iiVSk3iLhKJKEsed79STN7s7CxyuZxyKXPXbKVSUcWZ6Rxxly63eJLbmo+TF32m/WgMFHvIhRt3o9P0fNxyR+v4f9NySpLh0/O1I/pawS1mLox2bfs2Wfb0ZbpbXLf46ZZUiekTBEGwQ0RfiwRxfxFesU28Xf7fqz9uPdLj6fg6co2S1Y6Wk4CJx+NKjHDroT59GwlJ3g+918cWi8UQj8dRLBZVzB2JpWQy2TQtGgkictEmEgn09fVhenpatcvnOAbQJCD1Y+fuU26BTCaTympIVkte+48fny42yAVMAoOSUfhy/bPj4+XThFEmcb1eV0K1HdFncs2a8HKxel3PuhBzw2+9nzXb7YeP23oS1CL6BEEQ7BDR1yK27i83Fy9f77bOBl2I0TISRalUCn19fWo9uWrpYcktZVT2hNy95AqmcVFcH0/m0IUrHQ+JRHow02uKr6NsYxKCFI8XiUSQz+fnxO7pIo/3w5NMSLxRu9yCWCqVUKlUkEgkkE6nlXWzWq0qUUlilY6HHz9ZL3k8H50P3fpH55ULx1gspo6Lzq2pBmI72FxDfmEHJguzzY8ck4gLImZNgtVNxJpiJgVBEARvRPS1gZ9lxG0f3SJkEoKm9yb3GHc38v+UHZtOp5FMJpusVLysyezsLOr1elNSBbAnW7dUKjXNtMEzZ8kayAUlxdyR9YyLTEqs4IKLjqdWq8FxHKRSKeRyuSbLGQlMso5RX9wSScfNBR8/VyRCK5WK+puZmVFjJqscF2nc9UuWSW7d5H2QBZEEoKlANo2BLIk8BlCPo2sXm7bcfnCYrt1WLJFh7qP/qODfCUnkEARBsENEXwsEsWD4PXx1t5lpWz2InffNCw6TlYuyXalMC1mjgD1uUop741ZBSnogYQKgqcAz9c+FFgkmWh+JRFSCCGX4zs7OqrIt3MJF60ulkhKF+XweiURC1RDk9QC5+5nGxgs36y5W3YrGLZn69F00di4cuQAkEchFH4lCHh9oysgltzX1TQk16XRaxWGGGdNnc83ROdKX0XLTeFoJaQgDN+sjIYkcgiAIdojoa4Ggbi6OWzC7aV89gN30IOdFh2dnZ5V1j8QI1ewjwcHns6Up0Hg2KS9xwqc70/un5Xo9OxKJFCfoOLtr7Q0NDanxcGtYuVxWlsdMJoO+vr4m65eeDasnmPBkCe5i5W3Q9jxZhbbjLlou4qg9LgB5H1zsmcQIiWvdBc6TTriFL6jws43dc3OXzpflzoagrmP+A0hi+gRBEOwR0TcP8AeWKZhdd/PqD2svqw2PZyLrni5gyNVKAo8nc5BQ41YxXXCZxsxdnWSlo/2LxaIqtJxMJrFkyZI5JVZqtRqKxaISYMlkEoODg0gkEspqp49Hd7+SmOXWP+pDL7nCS9rQ2Lnoo/35LB9kkaPx8CQS7lLkbZHbmcQzF808eYYvb0X0ma4PU4yeTTu6EGxHGLZCK8fN/4voEwRBsENE3wLiJuyCxHWR2KDsUIrPoxIt5EKtVCpzXJ+UPcuTIUwWMoJeU/atXuOOLIVUEobEZ6FQUMupVEmhUFAilNy6mUxGxWiRqOICjidJ8MQVPgbuZqZ9SCxSe/xYeNKKnqBB8YtkueQWSvoja2YkEmmysPIx8VIxNAbK2NXnM24HP6HmJuq8BGQ34BdvKIkcgiAIdojoW0D0B1hQVxwJILJK1et1Ze2Lx+OoVCooFApz3KSUQMAzcLl1UIe7Ucntq4sYGicJIYpZo7l1SXxSUgkVgCa3LhVxrtfrqvgzFylk1SOhSGPnlj+yrNEyntTBj4Vq8tFr7t7m6+kcU9vUJsUQArsFMBeY3A3ME194cgcv9MzLxnCx7Rbb6bbOdA3x60cPFTBZb/k+3YSXANWtroIgCII7IvpaJEz3F3dXmly8bpYOshRxEUOuS5qFgrsyuWjgfep96duTYKFlvHizDndZkuCJRqOqUHK1WsX09LRyySWTSQwMDCg3KrmhOdx6RgkRJMK4e5pEGc/w1c8zt+p5Wbh4bB+9JislWf54qRj9j849P9+mvvR6gV74xX/qIs9tWx1+XQR1My8E+rUsiRyCIAh2iOhrkaBxSH4PXZNA0fsxWWCWLFmCgYEBVWSZMkVJmNBDXJ+Jws+yo7tTAcyxfpmOjxdgTqfTytoWjUaRTCZVTTyydGUyGZXcQbGHlF1MNe2mp6eVIOIZunQs3H1K6+mY+fhIiFJ/fFsuenmySCQSaZovmFs5eYkcHtNHQs7Unj5NHgn1bDaLiYmJOZ+9m4jTt3O7TtyEob7O9Fl2K/oxiegTBEGwQ0Rfh/FzlenWFTfxB5gf0uVyGbt27cLg4KCazYILPmqDhBF31eqijsfL0TamByoXI+Rq5VDNP56Vm0wmUalUMD09rQRfKpVCPB5XMX+xWEy9zmazSKfTKBaLTdO18RI1ZHXTLWy6q9WUaUuxdLxmIYlOmooOgKp3SMdF1ko6L/q5azQayuWrW/h4P1ywkhAly6D+2Ztctqbt3IS8aT1f5+by7Rb8QhzEvSsIgmBHT4u+bntImSxgQTFZYnTXK4fmzqVkBV5eRd+WrEq83h0JQVN8IblJeXwat1TxfSnWL5VKKQHjOI5KbqjVapiYmFCJD/F4HLlcTpWUoeQNx3GQyWSaatiR65PH39EYdIHHx68LGj7HL63TM5zpGLgLm/fLXd36Z+w4TpM1kH+WfLq1Wq2mjodnTnOxqF8LXteJabkeBuDVTrdhGr8bEtMnCIJgT0+Lvm5zRbkFx9vsY7K42IhGPmcsQQLILROXLEp8yjKymgHNM1vopVw4PBGEBEw8Hm9y2cbjcSX4isWisiTm83nk83lUq1W1b6VSURa2bDar+idhGI1GlRgjyx9ZI3URxs+nLlj5eeJu2UQioebnTaVSqFQqKBaLSuDqtQ55OzypRXcrk3WVzgW3AJLoq9fryGazmJycnGOB1WMx9Wujm74DYWB7PLobXxAEQfCmp0VfL2ISqiahYnptcutxyxMlFujw5ATajluj6I/Ekz7vLc18weEJEbzECc3GwfstFAqqbh+Ng5I36LhmZmZQqVQAANVqFbt27UI2m1VWQRJtdLx8HmAeX8eP36sOHolGfsw8YYTK3NB4yPLp9flRHJ9+3mls+owh/PxWq1Vks1mkUinlcnb73E0/CrxEoNuPo2770RQUOjdSp08QBMEOEX0dxsZVZXqIu7npdKhECu1PLkreP9BcL05vi1vEaJYM7grlwoMSMkg4kjCKRCJIJpPo6+sDsDvLNp1Oo1wuo1AoNBVbzmazTVbF6elpNe0axfbxEic0swUvL0NClxdn5gWWebFo3RJEVk1yp/LPqV6vq6LRPLaPfza8fz4TSSKRMFoBSVDz5BHufiaxSJnMZBG1sRwHsSZ3MzYC1G0bSeQQBEGwo/2KsIIrfgHo/D/gnk1pek1w8aPX2jNZiPg8tHohYVoOoCnDlospcstSvT0SPYlEAplMpqn48ezsLHbt2qUKQ0ciuwsY9/X1KYFVKBTU+lgspqyEek07apOOtVqtqnp+3IJG4+TFp/XzR+2S8CKLY7lcVhZHEpJ6rCBvi7vGyVLIY/T0/ah/HhNIFlI6LpqGju/jZ6XTQwNsY0m7SQy2I17JZS4IgiB4I6Kvg3g9yLwyJk1ize2hxoUXJQpwVycXGgCa3LR6Biot4yKCx/XFYjH09fUp62K5XG4SmqlUCsAeax65dXkh4lwup2LzuNs3FoupdTSOUqnUFFPoVraFH4Mev8frC+oCu1KpYGZmRln2isUiKpWKchmbYgX5uaTzqydj8HIt/DyT2OSijiyb6XRalaqh88jxsvrxY7MVP4tJJEkihyAIgh0i+hYAvwcud+16iUNqS89a5e3wOL94PK7Kj3AXJb3WRSBP3uAxg/pctLFYDJlMpsl6Vi6XMT093TR7RjKZRCaTQbVaRalUQqlUUgItl8upLF2y0JHFjdcb5O5dOkaegcsFGD839J/WUemX2dlZTE1NYWpqSokHcu1yC6eeFU3HSfPs0jI6Tv458s+D/pOLmY41lUqp48/lcsa4PDdh5xbzF3SbXkXcu4IgCHZITN8C4PXA1cWezX48e5Ti32g5L5ZM7kfHcZRFi4Qab5vXj+Oij+L9qMAyWbnS6bRy7SaTSZWtS1Y+ip/LZrPKwlapVJR1MBKJqP9UwJlEGSU1kJjjmbQkmHTrGXdLU6Yv/TcJOHIXE3pZGNP55hZQfh6pHw6fdo3OK30e3PVNgjibzaoSMibRz1/bxsK5LV8M4o8SbQRBEARvRPR1mKAB6n5JHX5xghQbxuP6KMmABBNtwxM4uBgi0cmtblS0eGJiomm7bDaLbDbblDgRjUYxMzOjBF8ikUA+n0c2m1UxeACaavFRNjAJOxKGXFySaONJGzRWysSlPvl5JdHIxTQvzsyTL8h6R+hiklvcqAg1dy86zp7ahNSuLthI9JEopvNLJV1o7mRTKR6/5A7bBBCv5b2GZO8KgiDYIaJvHvEKvvfDbVu3RBBee4/+SKBw8aPXrtNr79Fr7vqt1WoqDm14eFhZ7YDdU6YVi0VlcaQizH19fU2iLJ1OK3HUaDSaCjADuwUVuVh1F66XVYe7QHnCBJ0fHjNIySB0zFzQAXviH/WSMI6zp6wNb49nUvMsXT42EpVcgHPS6TQqlQoSiYTKjNY/Xy/hv1iEXBD0RB5BEATBjMT0dRge19WJBzJ37dJrPjsHn5KNb0vjIQsbt4Rx0afH0FG7RKFQaHLHzszMYHJyck7yRqPRQKVSQaFQgOM4qnizntxA7adSKTWTBxegZOnjcYxcxPLkCXK70h8lTVDffHYQPpMIn12EZw9z9y0vZ6Nn7XKxyuH1FHnGKXdZUzkbPo2ejskazK+HvQ1J5BAEQbBDLH3zQJD4PNv1BAmRer2OSqWixJKe4KFPH0aWLRJ2ujDlMWo8o5eWURFmskaVSiXlviXBQ2VceAYvWcm4JY6XViFRmkgkkE6n52QTA2iaQo7OAf3xeXj5MZEoI4HGy8twt3G5XG5K4tAth3qhahKWvACzKSuaxkH96HP+Uls0Qwkfky18rHuTxU8SOQRBEOxYNKJPz5TcW9CFDl+ul2yh9ySCTIkCPF6PLIM8A5a3kcvlkEwmMTk5iWKxqEQKiUnKbOVWtUwmo2agiMViSizyGERe+65arap4N7LYccuOntRAcCtiIpFQ4+CzetCMIrrLlqylXMBRezR+HgtIY6ckGS7o9KxhAE2iklspaVtKfEkkEk0C0i9WzyvW08Y13KtInT5BEAQ7FoV7d7E9xIBg9dZImHEBw61yunAjFyXtSyKNZ8PyeXnpj0QQCTKKw8vn86oQM8X7JZPJOTNekFWR+iJRRq5hbv2jMZIw4y5eXjSZHzMXwORG5YKPltHrarWKSqWihBVlNJvqHJLgTKVSyOfzqkQNF8nAbgHCS93wa5OSTag9Qo81JNFHfejtBGWhvh/z1a8kcgiCINixKESfHjC/GHArFWKCxIxJaOj1+Ohc8SLGVBiZz7nLXYV8mjMSYHye2UQioVy75MrNZDLI5/Mqk5csY+Vyuan2HiVy8OPm8X08a1cXRzyxg4s1Hk9IwpSLKZ6sQvFzlUoFxWJRWRYpeYXEZzqdVoKR1wPkFtFyuTznM+DZw/zc0nLdQs2tfZlMRpWy6TSd6mM+xi6JHIIgCHYsCtHXKRbKQuL2AHMTguQ+5VOx0Tpe3oTaoPWU2EDCiP54/B25IqnIMgkYbsUj4cinM6PsXcrkpaQM+gP2TAVXq9VUbCAtoz551i5P5CDrjh67R+OOxWLIZrNIJpPq+NPpdFPyBSVulEolFAoFdc6oDeojl8thaGhIHTMXoHQuy+WyEou64ONZwPp6fv7oeGgZZTmHeR16uYDDhv8Y6+R3SRI5BEEQ7Oh50dfJh8lCWQ+CHhMJFN3iR3ArmJ7NSv1RXBTfl7t4edIBt7zx8XJBOD09rdy9elHliYkJTExMNM2KUS6Xm843WfC4IOJ9ksClfnlCCrmfqchxo9FQFj5deBUKBRQKBbUPiVUSiiS8HMdRIpnOKUH1BHmCB7fmkSvZZJHmmdLULmVTkwWVW1V7lU5+l/h0eYIgCII7PZ/IITf7PeiuUd3tqVuoeJkWHgsIYI4rmMeg8Tg5AMpFS+KFLHVTU1Mqvi+bzTZlFBeLRczOziKXyyn3MU0/xq1p1D4XazxWkY4V2FOmhQQTL5Acj8dRLpeb3LRc8FH8HM/CpXNWKpXUmGheXB4HWC6XlRvaVKqFF2nm1j3alpfXISGcTCbRaDSQTqeRy+XU8l5ivpKrxNInCIJgx15r6TPt57as2xNF9Hg2/p4nUpggKxav5UfoFhRymw4MDDTF/5XLZczMzKj3JP5IuFQqFZWtS+5dcqtOTU0pN3SpVFJikwtYOi7dCqlnJ/MkCT6FHIlSKshM/2nWEJr3tlgsqsxcAMrCRlPPUaIHuZfL5bKqO8itgzweUk+iofHxxBTuNnccRxW7pnjDfD7fFBPYK8zXDzKJ6RMEQbCj954kjKBirBXLQy88TLjAIysYt5RxVyNtx4UZxaPRtvRfL1cSjUaRTqdVnT0SKVNTU6jX66roMbdIkXCanJxEOp1GNptVljMqyUJjKRQKKiuYWxy5BY7PEMJj/mhb2pesZuRWpf/kFi6Xy6quIc15SwKNXLz5fF69p77pfbFYbBKNHP45mKxzdC55nCTBE1PI5Uuxh3x+YGEPkr0rCIJgR0+LvqA1x3Srldf6+XJNtQtZuyj2i5cvAfZY3Whbek3ZreSOBaCsXNFotCkxgYhGoyoxgqxplLFL+0ciESXqSPCRsCyVSqroMlnNaLo1Ej/T09MYGhpSY6T/XCBRv8AeUUivuYVwenoapVJpzvmYnp5WLtS+vj44jqPGzGczoeLSlCRDIpgEX7VabZpKjhfFNgk+PamB3MHUF21fLpebhC6VvykWi21dKwuBn6W51Tb5uRT3riAIgh0979414ScE9fVuWbHdDrfekTuQZ7MCc12dtB8AlTCQSqWU0DG5WumPXLqU0es4jhJ8AFRZFiqPks1mkc1mAeyxVk1NTTXFBJIFjsRZrVZrKvFC46Wx0TGZMnh54gcJM7L20ZhJJObzeQwODqpYPxJYfK7fZDLZVHMwmUyiVCqpJBRaRmMyWVf1rGhe9JmsjhRTODQ0hHQ6rc4liUhqv5vx+s7xH2c24RJ6gpAXugtdEARBcKe7nyQ+6NY4P6uC23rdYtjtMXwEP45KpaLq4umZusCehy0XIjxLlCwms7OzKBQKTYWZyRXb19enLIPkIgX2WKJ4zb1MJqMyZmmstGxyclKJTdqHBB8AVKtVFAqFpiQM7g6NRqNzXHp6Nm2pVGrK8CWhmU6nMTw8jL6+PgB7hKqba5zOHcXa7dy5U9Xjoxp6+rmlffhnREKvWCyiVCqhWq02ueWpj3w+35QQwl3sQa6HboGHC9B/23G6bacvF0ufIAiCHYFF329/+1u8/vWvx8qVKxGJRPDTn/60ab3jOLj44ouxzz77IJPJYM2aNXjssceattm1axfOPPNM9Pf3Y3BwEGeddVZTIoAtQdyxQd21vSL8gD21+ijWjic3AHvEHy90TBYlsoTx0ilkdQN2C65cLod0Oq366O/vV1YvXs6lVqupwsuUeED9UTwdvSeLXz6fb3KRkiu1Wq0q4cYzjUmg6jUJuTiixBHqn9zYVPA4k8k0JU4AzdcHubGpj9nZWUxPT2P79u1K6NKYefatnlU8ODioXLVk6SShrRd3rlQqmJmZUVZO7mYmi19QC3a3EHRcQcM23GInW6Gb7m+CIAhhE1j0FQoFHHHEEfjqV79qXP/Zz34WX/nKV3DVVVfhrrvuQi6Xw9q1a5vcgGeeeSYefPBB3Hzzzbjpppvw29/+Fu95z3taOgBbC52f4NPj/brRauJFuVzG1NSUek8PTrLM8TIoiURCJV2USiWUSiVUKhUUCgVVSoXEUiaTwcqVK5FKpVCv15FOp1VSQTabVbFsuVxOWdO4mKLpxGgc3O1br9eRTCaRy+VUhmoqlcLs7KzK8qVZMrjVkkqx0DFScgUJLhoT/fFCx7lcrqmWHwlI+k8JKuQqr9VqKJVK2LVrl3pwJ5NJdYzcnc4TR/r6+pBOp5FKpTA5Oamyl+mz4C5Jbg2cmZlpyhImi2w3CzqvsZGoddvGbbke/+gFTzpql267vwmCIIRJ4ESOU045BaeccopxneM4uPzyy/HRj34Ub3jDGwAA1157LUZGRvDTn/4Ub3nLW/Dwww/jV7/6Fe6++24cffTRAIArrrgCr33ta/H5z38eK1euDDQe7jbyerAEFXGdSuQIasVwQxe75JrVY6fojyxLNBMFWerI3Viv11EqldTcuSQ2hoaGkMlkMD09rTJmafYKSi7IZrNK0JRKpaaYO6qbRwKRZv8ggUTxdFTUuVqtIpfLqTIpfHYQigPkiRvUD4kqAE0uVjrmTCajrHMUc0gzgehTu9F2VKNvx44d6phJMOvJITz7OR6Po6+vD7Ozs+jr60OhUFCZwsAedzV38VI7vEgzZTZ7XQPz/ePET8TZtuHVNn9tc3zcitwu3XZ/EwRBCJNQY/qeeOIJjI2NYc2aNWrZwMAAjj32WGzYsAEAsGHDBgwODqobIgCsWbMG0WgUd911l7HdSqWCqamppj8dU3yfHlflFUzutcwm+NyWMC02unWSZ7jqD0sSFBTXRskaxWJRCSzanyxd2WwWAwMDyr1IbshyuYxEIoFCodA0YwS5JGnOWMp8JWHHZ/MAoNzMNBayfpFAImsgrSNLIp1DcieTK5e7Q+kzI+sigCY3L/XJ5+flMXkkQLdv347JyUklOkm46VY67hqmYyJL5tDQEBKJhBImPNtZt8KS5ZK7unkdOn79LIQ1Wo/N049f/66YfpSZrk3TchNuSVdhWfq86NT9DbC7xwmCILRLqKJvbGwMADAyMtK0fGRkRK0bGxvD8uXLm9bH43EMDw+rbXQuu+wyDAwMqL/nPOc5c7bxK8Hihpf44w+2bnP38vGQhYOSDPQCx7z4byaTQTweR7FYRKFQaCpHwi1j6XRaiRX+4CahVSqVVGYribVisahEEQnP2dnZpni1qakpTExMKCtXNBpFJpNR21UqlSYXczabVfvzKcpisZgaO50DWk+zawBQopSybTOZjHLLplKppoQWfi5LpRK2b9+O6elpAFBimax0gLkINLmRKas3Eomgv78fIyMjWLZsmRLRfNo5EnoA1JjIZU1WLF1cdSum8fn9aDIJRtMyt6xengTUSTp1fwPs7nGCIAjt0hPZuxdddBEmJyfV31NPPTVnm6DZt0Fi/LodnkSglzYhKNs0lUqpmSS4hQ9otoTl83nk83k4jqMEF7A7s5aSKigZhOr6kWuTZ/jy2Siq1SomJiYwPj6OXbt2oVgsqvg7ElTkdp2ensbk5CRKpZKK85uenm5KFCmXy2oKNH6c1B8AJR71kickpuh4uDiu1+vYtm2bcmnzTGPal8QIWSRzuZxK1shkMk2fDQnGoaEhjIyMYGRkRIlcsk4SZG3lY1yo7FTTDyKvbbwEG9/GJiFF385rLHSeehmbe5wgCEK7hFqcecWKFQCArVu3Yp999lHLt27diiOPPFJts23btqb96vU6du3apfbXIbHihu7O9Mvi5f/11177B4mhajXeKmgf3CVJSRpclJCLk5IK6vU6pqenmwQfCUZutaJ6eY7jqHg2vo6yeclKRVOrAXvcbTxhghIiaGo2KstCoo1i7njtPYq/I8HF59+lbahP6r9Wq6njIWFIQnFqakqVWanX6yphglyolKAxPT2tCjiTCCbXOM2BS58TnzGEspup5A2AOUkY5O7dtm0bpqamlLWQC1N+Hmu1mrVQasWy7ec21mP4/Fy0fujxgPr3Vl9nc1zz5d7t1P0N8L/HCYIghEGolr4DDjgAK1aswC233KKWTU1N4a677sLo6CgAYHR0FBMTE9i4caPa5tZbb0Wj0cCxxx7bUr9c5LjhFgvktq2fS8nvIefm5vIjiFA0xSryeDbdXUsWORJbZEHiBYTJLek4zpx6cuQ61YsMU/FjymilBAmywJC1jDJaSQhSYsbMzAzGx8cxNTWFSCSCXC6n1gNQFkG9CC9ZFkl88ZqCfBzkyp6cnMT4+DgKhYJyU5NgoNeTk5OYmJhQMYTpdFoJN3JnA3uSSEi8ktCLRCLK7cytriTkSJhns1lEIhFVIocyiKlt/XMk62q7MaF+oQpeP570UAc/y58NbsdkEny6BZBez5elb6Hub4IgCGER2NI3MzODxx9/XL1/4okncN9992F4eBirVq3C+973Pnzyk5/EwQcfjAMOOAAf+9jHsHLlSpx22mkAgBe+8IV4zWteg3e/+9246qqrUKvVcO655+Itb3lLS5lt/MGgPyD0ZSbcMhH9rButWPE65TKm8emzWNDyZDKJdDoNx3GUhY8sYnoxYW4dJAsdiUZKZKAsXxJdJA6p9AtlnZJoIyFGSSO0jtylVJ6FihdzS1cikUC5XG5KeOCCSH/gZzIZ1R5PHCEXLVk7TfF0xWIRk5OTyupHwlOfGYPvA0CdK27V5HGStJ4+A0r2oOnoSIDzKfE4lHHtZfUKem3ZxsC6xRJ6fWeC/vii5SQoTT+6+DoTYYm+bru/CYIghElg0XfPPffgf/yP/6HeX3DBBQCAdevW4ZprrsGHPvQhFAoFvOc978HExARe/vKX41e/+pWK/wKA73//+zj33HNx0kknIRqN4owzzsBXvvKVwIPnDwaTVaLVB5DfOq995jMW0CRG9dIVPFuVEiL49F9A88wdAJSljdrmCQx8CjayHJKQI7ctsDuBIp1Oo1gsolgsKiHFy67Q2Mjdygsxk3VOF3jktqWyMJVKRVniotEoisUiKpWKKgHDZx3hxau51ZDqFU5NTSlXMLnDyR1NsYFkHSXhqrueKYaPtiPBSLGDvGA2WU0pdpC+I4VCoWkuYGCPm7jV68tmX5Prl7t3TT96vMIkWhmj7TrdDRyWe7eb7m+CIAhhE3F6KWPh/zE1NYWBgYE5os7L7eRlJbDFL/4pKO2KRDr+XC6HXC6HgYEB7LvvvqpYMmUC0gwau3btwsTEBMrlclNNP24RS6fTKvtwZmYGkUgEw8PDSthQqROyrNDDlqxo3BVMSSC5XE7F7JG1kaxtvKQKCVHKbiXLIC0vFArq9fbt21Gv17F8+XJVc5BnzFLJGMqkJfFIcYxkqaRkDopzpCSWbDbbFH8I7HbR0rgpy5aOnyyLPEaQhCcJ04GBAWVp3Lp1q5rDt1wuI5vNYnh4GFNTU9ixYweeeOIJdZ5IUDz11FNKTAaJ+9SxCT3g3xc3V2sQwvj+mdoEdlt3P/GJT+Dggw/GG97wBkxOTqK/vz/UvuYbuscJgiBw2r2/hZrIsdC4PVTC0rW6ZS0sEdnKOLjbjScvkIDj2yYSCTXjBp/JgtaTy5LcuBRDRlY+surRTBhkTaN9SVyRFY8EFtXBowQLXvakVCop8UnWO56FS8dDAo2SKXgcIolQ03YkwOhc8bhFirmj/cg9TSViaNq5aDSqMobJyhmJRJDJZJBIJFRpGbI8csFHllOKbaR4SP650HlPpVJYunQpcrmcGv/WrVuVm5gEJB2/X6KSjUXOxuqnCz++LgidEHz6OOYjkUMQBKHX6XnRZ/tACfOhw+OPwiSI5U9/4NEfiQnuriWLG4kdPRifxCK5NUm08Xl1qV0qIUIijrJguWjkSRdUxiQajaJSqQDYkxASieyZSYSXJaHPlMQqWeTS6bRyJZPY5XPu0vHoZWt4e9Qn1RUkF3EymURfX58q1kxuWV60OZVKqWMg8UVCmPqi80uJJdQ3WUppXLy4c61Ww1NPPYV8Pq+E8cDAAGZmZlTpG24RdXO5UntBsHGp6gIwKJ0QfECzBZKssYIgCII7PS369AefV5B4GH3xtvR+bR62JheaWx+6ZYUfq76OLEwkgEi00X/KLuUWQX08JCpI/ADA+Pi4sjaR65bKs5CgoXl4qW8SSZT9yhNFKFGD1+QjiyCApng5ACp5odFooFAoqBg7qgnILWu0H23vOLtnBqHi0cCe6c/y+byaTo4EXz6fV9uQyOSWUxoLfU48JpBbEAl+jsnySnGB/POmP5rfFwD23Xdf5T4mKymdT5PgM1nj9OtIF21BvxOdEm7twI+bJ9YIgiAIZnqiOLMb3ArV6YeSqQ+eYKCvN42LP+S9RKKXK42LTr49WZF4DBxZnqjIMRcqJsFHoo8sWAMDA6jVaigWi6qmHE2rxt3JFEtHSRs8ZpCLM3K7krWQsnxp1gyqhdff39/k6szlcohEIioZhD/gufWMixyKkSO3MwlAOg/lcllN97Z06VI1Tm6VA6Bq7/EZP/hsGdxyx93GPNuUF8/WLZO0PJFIYMmSJYhEIhgbG1MudrqGSHi7CTd+DkzXon5dLSZIpAuCIAje9LSlr1swPVT1uDl9fSt9uLVPUM07qgFHbi+KwdPHS+KAsltJZAG7BRzFr1Fh5UgkojJNqQQJFZQlN+/MzAwymYzKTKVMWnKvkqgk4ZdOp5HNZpVISiaT6O/vb8pCppi4crmMfD7fVMjYrXbf4OBgU7kXKtQ8OTmJ6elpzMzMqL5o+jeaoo5i51KpFKrVqorXo/PPy6vwzGgSoFzspVIpJRTL5XJTlif/AUBFqEdGRvDMM88A2F1qh1syedYyxyR63QThYkREnyAIgh2LUvR1KnDcqz/A/aFLmB7Epm1MmZN6+yaoWDCJORIjZN0idy9PbCArGIk3slhRhi7NUgFAibpUKoX+/n4leEgAkWuVhBZZuPisGJQEwbNpScgBu8vF8Dg6ihtMp9MolUpNU6bxZA4ef0flYiqVinKRzszMYMuWLRgfH8fs7Cyy2aya83d6elpl65KrlWbrIEFJlr5qtaoEL5VgoePjljwS0v39/cpaSueRXLe6iK9UKsjn81i1ahWeeOIJJcgpa5ifD/2aCxrfZxsa4bVvKwSJWw2CJHIIgiD4syhF30JaNGz7dhOAbhmTfv1wNyM9AKkQM7lhSRQBe8q0JJNJVf6GyqT09fUhFouhVCqh0WioTNadO3ei0Wggm80qCxQlPgBoKucyOzur5qOlen5Ur4+7TynmjqyKJLTq9boqGUPCjdongUgWOT51G9XOo+QSmn5tbGwMk5OTym3NZ/sg4UrCjVzkZH3j55cEJQAljsnSpFv50um0cmPr7m4uKAlKaFm5ciV27dqFLVu2KGsibU9WUy7avEIA3ASh7Q8JnXYFW9A4WNs2F2p+YkEQhF5iUYo+Yr5imdoVmSbXrQk3qwyP6eNTgfFEA7L+kYWJF0cG9iRRUM04XnOPYvmoWDJl7lIMII2B3lerVZXUQCKMRCW5SUmoUZ08mrN2fHwcqVRKiSU+9Rmwu3Ygz06mpBISgmThpJp7k5OT2LFjhyof09fXp4QoFWSmrGDK2KWkCd26R4kU5Mqm2TRoH+qfxkfuYVpHgo+EKhfotJ7iDvv6+rB161YAe2IuyfLKY/bcBJ/JWqwLRFMsqh/d6CLm518QBEFwp6dFn5+biT/UTNmw84XNOG32p3Gb2uPxZOT2pIQM+iOhRCKC3hcKBQB7ihoDUNZBsohRIWEqKZLP5xGJ7Cl/QlmvFLs3PT2NSqWCyclJleyRTqdRKBSajoHcv2QFJFEYi8WUK5iXRCEXNrmHSUDxZAkSl6VSCcViUc2GQYWayXI2PT3dZHmjY6BzlEqllPUtk8mo/mdmZtRyqt1Hrm06rmw221TyRv/cuLWP106kuogkosldT0KSjqFcLs+5dvTkDTfrXivXftghE2F+/0T0CYIg2NHTos/mIWR6uMx3FqONMDWNye3BbRJ+ZDWisijZbLapdIs+6wVZ+sjqRqKIatUBUFaqSqWCqakpALvdsZQoQuOhtmKxGIrFIhKJBPL5PGZmZlCpVDA+Pq6SJCi5gkQWJXRUKhUl3shaR9ZEcr/SuGj2CxJ9JHAp/q1YLCo3M50nEnt0HiYnJ1GtVjE4OKjc4ORGTiaTytJJ54DaoRk06LxRcWZ+PihhhYtmngjCPwc967ZWq2FoaEidHxJ3vHB1Pp9Xx+3m4uXXnds11G0WviCiVP9uiHtXEATBn54WffOFn2UwyANU39btAUzCjrYxjYnDa/VxixkJEl6AmU+7Rn3FYjH09fVhYGAAuVwO09PTKJVKakYKsq6RJZDETjabVTNhkKWQYuHIUlUsFpsKDPOkD3Lj8uxLOvbp6WkUi0XkcjkAu13BPC6OLHa6mCLXLs2iQQKRzwRCbl2aFo3GQZZMEru0fzQaxdTUFMrlclNRaABNBanpPcU8cjFOApAsU6bacuVyGcPDwxgYGMBTTz2lzh8JVsdxkM1mlbC1ufbc4j9tCcMybivobPvRwyFE9AmCIPgjos8CvwdROxYTatstgSPIA5uEhN4OTy7gCR0knmKxGPL5vEq8oLloSRiVSiW1H8Wz0XtKmCArFW+bijNXKhVlSaNMYl6vjwQfF6Lc/UlWRp7IwEu6kEWPhBttSyKR3KIAVGwiLaMZPsgqx/vnCSIzMzMqsYRc6PT58MQROi8kdMmaqYt7PamGrIl0nvr6+lStwi1btqhzRsIvn8+rMjFBCWq1s7W80bZeP2CC9uPWrv6DSBf/giAIwlxE9HUA21hDvzhDtzZMy/mDdXBwEH19fRgfH3d9GJKgoti5vr4+OI6jSpoUi0VVj65arSrrVbVabZr/llvtyLJFYolPD6eLExJI3C3KZ6vgyRp8/LwkDW1D4pUnTPDp10hMFgoFNfsHiSfuZiV3KVlLKTuZzgcX1NQ+recZ0sViEcBuix9ZMSkphM49H5vuPqaZU6LRKPr7+zE+Po7JycmmYs25XA4zMzPK2tcKYcbpeVmlw2iXXvPrRb8uBEEQBG9E9CH8LF9bd5spk5K/D9I2t9yVSiUsW7asyQpC8Xv0xzNzSZzQbBskcAjal9pLJpMqc5VDwkt3t/LMYuqT2uJJJiTk6PhpnPqDX5+Fg4QSz/LlAjAWiynXLBWW5oKV+iELJiWPUHxeJpNRFkp+TDRuKhXDi0HTVG8UE8jnQuazonDhSeeEhHV/fz8ajQby+TxKpZJKSKFxtWPto/47RdiJH7xd03v9uhMEQRDm0tPTsHlh+8DR4+u6hVbGQskF27dvV7M/cNFELlASHXz2CXLpFgoFFT8Wj8dVZi+JMFMGMAkXEkyUgEHWRLJo0dy51Da1xRMoyMXKE1aoHV1M0nuyMHILGY2Z1wicnZ1Vs4XQWHix41gspgpQ02whVKOQF7PmbedyOeTzedVOJpPB0NCQih+ktrmVkCyDelFpSlapVqtwHAfLli1T54USOciK6jgOcrmcKuESFlx8htmmTX/t9C0xfYIgCP4sSkufraXNZDUwJVYslAUhaIIIWXyKxSKmp6cxNDSE6enpJtFEljUSC46zeyYIsnpRbB9Z0CYnJ1WZFV6njlunKG6NW5y4JZGLO/5gTyaTTXPpcpFHLmHdJarHPpI7VrfacUslCSWaSYTc1NQGCTMaP7liuZuarJBUQ5Day2azys2aTCbR19cHAGpuXy58qS8uvHlcZTqdRiaTQSQSQX9/vyoYXavVMD093ZTwQokhuVwOlUol9GvUJvxA356Ox6Y9v76pLdvvIZ+lRBAEQTCzKEVfkKBxN3dRNzxAglo9uECamJhQ876SICOxx+d/BaDm1qWpyEjE1et1le3Kiw/zmDoSgXr5EO6q5a5UKnrsOLsLEXOBxcUaiT5u8fP6zLjLmsbJXcDJZFJZ5HjtOxLBJDTJ+jk7O4tCoaAscJTJy6dlc5zdGcZUx4/iBOv1ujpnfGzkguaimfpKpVJYsWIFIpEISqUSJiYmAOwuzzI5OalcvPrUcH19fao0TqeuWVM4gulz0M87346uiaBjtN1e5t4VBEHwZ1GKPj9sLBh+lg63xItWH7xuyRlBhB+Jp2g0iunpaWQyGSxZskRZtchVSEJDn42DRB65e8nKR22ScOPJESRAKE6OLIRU+49cvTyGL5FINNXX47GHJL64gNXPE0/UoPHTay6IeIkaOnYeX0fHRCK40Wg0nR/KPKb3NC5KOCEhR4WbSeDxuEg6HuqTkkTo86Bzm0wmkclk1L47duxQMYrpdFqV0SHLH10fdI4rlYr1daKfS45+zbXj6rX98RWGVV0sfYIgCP4sGtFncssC/mUggvZB+5n27YSLLSgkKrjVCoCKRyM3JneH8gxcmsGCW6rIFcwTLuhck6ji1jpKDuFTqHGXbTweV6VhgOZ4LP3c0ri4652vSyQSSmCR8KIkDJ6AwsWkPvMGzZ6hC0Lajls66VjofFJ2M4nKUqmEmZkZdSy8Rh+NA4CaVYPc2zTTBx0DzVBCllRyS1OdQEo8KRaLcxJqbHH7EcMtpG7be7XVKrrr3gbaXix9giAI/iwK0eeWDeuGng3qtw29X8hEDxsrIo9L45msPBmAb0MJA+RqJFFE73kcHU/SIJFG2/DZIbLZLAYGBtQ2ZIUjYUl1/igBgqyCeiweCUlT9i6HpnbjiRLUL78uKCmF5gIm8UfCkwoy61mgJHTJkkbzENM6AGqGjlQqpUQZuYz1bGQSgDwTmIQen/+XhCMVmh4ZGUEsFsP4+LiKFaS5g8OwcukC0ITuMvdqww0b62KQ9k3WXkEQBMHMohB9HNNDKUhwuZe40tsOYo1oJYi9lXZIAFDs2NatW1UGKpU2ocxbvSwLLzjMXcBk0UokEk3iimegZjIZZLNZ5HI5ZVGk9rioo/2mpqYwPDyshJI+fy4fm17ihH+2/FioT177jkQpr3HHy6dwS10kElGCjgQuiVyyulHiRqPRUNZMmod3cnJSjYPOUzweb3K90jnjMYxkJS0UCkilUkilUqoYdLFYRF9fnxr30NAQisWiSh7ppNgxCUG/TFy3/Wz6ckvg4G25HatY+gRBEPxZFKJPF2Nugs/mAeQlGlt1PQV5KHsJTr/xk2uT/mq1GlKpFBzHUYH+mUxGuRp5XByfiYInadAcvtw9yl2h0WgUmUymKeuXlxWhfcklyWPjdu7cqbJUeRwfP0632D4OzWhRr9ebLJz8nJHY5bOWUNxhPB5X4oksljw2kB9vJBJBX18fKpUKCoUCksmkEnk8YYbK5ZCbllsF6fyaLIGUdMIzjCORCCYmJhCPxzE0NITJyUlMTEw0fX5hYvoh5Lddu1Zwrz5sf+wIgiAI3vS06CPLDeAeZ+cW60f72AgzPwuEG2E/kP3aI7FC8+QODQ3BcZwmVye1wwUyCTkSIhSnl0qlVHIBFRnm55NEISUSUC0+LmAoSYH3RVCySF9fn4pxI3RRBDQX4KXxk5uUkk9oejdyZfM4NbLIkdWSu53JysfLs9BrPo9vsVhEf3+/sprSFHW81l88Hkc6nVZlVkgcU7FmsqryaeJ4pm+hUFBWPrKubtu2TcUZUv1AHpfZSbwsbybcxsSvG7+4Qb6tV5u0ThI5BEEQ/Olp0eeGboFwe2B4CTi/IPduhMZWrVaVGAOg4vW465SyUOn8RCIRFYfHRV+lUkGlUlEChc4Fd+mSRapQKChLFj20ycJF89xyoUOuVUpo4BmwBHfJcrcvbUfCkGIF6T0fqx4fSNY+immk9rlwmJ2dVSKUYvBoe2BP3cBGo6HWU2IJHVexWFSikayw3J1LVk9K5uCWWkoeicViKBaL6tzW63Wk02kVA+h2nXoRxALtZ4ELsp9Xv/oPEa82TfuLpU8QBMGfnhZ9QQSY/sAwWQD9HmJB4gVNfbQjGN3iD03tklAjd6YOT5Yg4UfTeeVyOSWKqB0upEiopFIpJej4OGh7EmUUowYA2Wy2Kd6NRFKpVGrKAtaP1e3c8xktKpWKis0DoObN5XGCXPSSmNLHT+Mi0ceTVshtSwWaqYYhbU//TQkdvAA0nSeyfJZKpSaL3/bt27Fz504lZKrVqqrFx0WvyboVxPKnH7dNXJ2+b7t4fQfdxmNaRoJaEARBcKenRZ9OEFctobuRbPuwoV2rYKuuu9nZWYyNjWHVqlVqmjUueAgSfLVaDeVyGf39/RgYGFBuyVKpNMfdRq7KSCSCYrGoXMfkGiV3Mo2jUqkglUo1TRlGrlUAyn05MzOjLF56kWU65zyGTbf6URkY/TzwadP4cdB6brmkPgA0xeyl02nVzszMDCYnJ5X1jc4tzdFLgo9bE3XBOTs7qwot03o6d/39/YjH4xgbG1NxmNytza8Hm5g60zVk8+PFKyyC7+MWNuE2LpOYd7P86dt7iVKx9AlCa1DYCPf6cG8JnxedfoAGIRKJ4AUveAFe+MIXqqkvaeKAJ598EjfffLN8f+eRnhZ9fgKs3fXtbk+0Kv7cHvB+7VJc2NNPP63mgdWtIGTlA6DciGTdSiQSSCaTqmYfAGVBIzHD4+/IYsVdqSTCSBhRfCDVxJuamkKlUlEuS7J+8YQS+s9duVxAkXWnXC6rRBJ+TniSBN1UeE1BvfYeFyCTk5PYvHmzEpRcPFJsIAk2soT29fVheHgYxWJRtUWimqyApVKpqT8+rRrN3Ts8PKzOCR2r3+ceNHzBph0v165pma3VnK+3ceXaxBPKQ0MQgpPJZPCOd7wDL3vZy9Q9m+qrUpkv/v+vf/0rPvKRj2DHjh1zxCEJOhJ1tM+SJUtw8cUX48gjj5zzvR8bG8Mpp5yCTZs2LeRp2KvoadEHuJeJ8BNarVrR9L782gvDtdsK1WpVZcz29fWpab1IpHA3KI+LI1FC05VR4gHtS7Fq1WpVxa/xIshU7w6ASjigGSbK5TIGBgYQjUYxOTnZVG6Ex9WRZSsejzdl+1K8G0HJFDRFWi6XUxZFslKSpZPOSSQSQSaTUcdG54HHOpKldPv27QCa5wzm1ik6ThJmMzMz2Llzpxoblbyhmx8AjI+PK2spr4dI/2lGjmg0iuHhYezatUv1oQsdv2vLbbnJfe63j6lft2U2YRJ+VkSbtjgi+gQhGMuWLcM//dM/4cwzz0Q+n7fa59BDD8VLXvIS5UUhAwGF5xC8/BfFh5vYuXNnYMuh0B49L/rc3LNusUF8mRtBAuLdLBym5aYHbVhxfvw1WZAoAQPYU0iYu18BKGsVsGdmDO525Na3Wq2GmZkZbN++HfV6HdlsVk1Bxtvm06vxuWwTiYTKOqXtACgRRCKvVqshGo0im82iVCop1zG3jpF7mcRguVxGo9HAAQccgHQ6PScbmM4BiVZgT+YvF3vlchnbtm3D9u3b5ySE6DX4uCWOLHl03iiT+XnPex7GxsbUXL7koualY3iBZrIo8llNyNqqX1NucW76NcK3dbteworRc8NrXPx9q0j2rhA2JGT4d8z0p69r1Q06n/T19eFNb3oT3vnOdzaVufIjGo1i//33D2UM5XIZH/vYx/Dkk0+G0p5gR8+LPhu8xJfXtjbbA2bh2emHKPXrNhYSYNlsFgCaChYDaJrOS7e8xONxFIvFpoQQchnv2rVLlXAZHx9viq3TBQz1yxNGuPuWxI8uqshNzOcGpsQMGgtvj4Tftm3bAAAHHHCAqlNIlkeyKlLyBT9GctWWSiVMT0+rGT7omEznWxe1dC6pHAxZOSlJA4ASo1SDjxI3CMq4puLP27dvbxLops/cRujYuGw5nbh2223TT5iKpU8Ii1gshiVLluCCCy7Avvvuq1yVFIfG3ZemZfF4HL/73e9w4YUXqhqdJncp7UuvadagX//613O+961CPx6B3d/BwcFBvOUtb8FrXvMavPzlLw8k+MJkdnYW3/ve93D77bfLj7V5pudFX6sPE9PD3C8oXd/fJshct7D4tdsu/BhqtRqmp6cB7EmC4IWTaaYIGiNZ3Gh2iEKhoLJiSXhRHB4JJbKwUJFmsrhRn7zeHv0Bex7SVPKEx9jRNpTwQQkNVKOOjoXHKpKAGhsbw/j4uMrcpRtsqVRSIo9utOSmpn4jkT3zC6fTaWVB5LErNGY6b7wsTiqVwsDAABqNBnK5nHL5kkgFoJJZpqenlUUzEokgl8shlUopKyQvD2P7mXvF6NlaloP+6HGzHtpi+/31246EvyAEJZlMIp/PI5lM4tBDD8Upp5yCgw8+GK997WvV9zYop512Gk444YQmgwC3BNL1rIeOlMtlvOMd78BPf/rTwH1GIhEcddRRGB4eVm7X/fbbD+94xztUvF0ul8O+++47L0YJNxqNBq677jp85CMfUc8nYf7oedFH2LqoTCIs6BfA5FIziUB921aFXquu4Gq1im3btqFWq6Gvrw/AHkFFsXBcBJLLlbteeeICFScmscdr7kUie7KASQRy6yJZ5shSR23zGTtmZ2eRTqdVJhmVYiGRRcKQhCQloJDFDYCaAYPE3vT0tHJT6+5ek1jRb85006dj5GKMLJsk8lKplLIwUixiqVRS1kz6Zc+FMU8SKRaL6le5zS/9MG7cfm3Y/ujx2jboWLxc0V6YyhMJAv9hxv8fdthheOlLX4qXvexlOOmkk9QP1/7+/rb7jEQiGB4eDrxfKpXChz70IfziF79QYR22vOhFL8KPf/xjDA8PN/3IXihrnhv33HMPPvShD6n4Z2F+WTSizy2WzoRfXJNXYLxX235j8LIuej3gbB5++nFUKhWMj48rMURCplQqKQsWzfhAsWME1eyLx+NqW7LykdWPBBvNVAFgjpuX3LWEPm0YL2RMbhAqe1IoFFAsFueUK6HEEhKW/Nzk83nlwuWiibbVz5Pp/PJ6hOSuJfFK4o1DIjSfz6NUKqFQKDS5quv1upqlhMcmktgm8UzBzjR9Gwlbm9ACHdvvQiuhDKbt2/lBwzF9JvprvW+OWPoEnZe97GX4yEc+ouqFksUrnU5j2bJlGBkZWeghzmHlypVIJpOBRd+yZcuwcuVKdc/vRnbt2oUvfelL2Lp160IPZa+le6+OeUC39rUi6vz2sRGTbmNqFRIdxWIRY2NjSKfTKBQKKlECgHLhAntizUjEURYpWdMoXo2XSeEWOl67D4ASTRx+jqLRKIaGhlCv1zEzM9MU9zI8PKzcynxqMoL6o1kwAKiYGkoqIdHL3ad6zKV+rqkf3eJHx8ktc/F4XCVsRCIRNRY+Iwm1QdOyUV0+Pg4eS0mJH2S11OP93D5nW7ibye+HQxjttev2NaH/SOPQtSoIxMqVK/G1r30NRxxxxEIPJRArVqzABz/4QXzmM59R1RRsePjhh3HjjTdizZo1GBoa6uAIW2NychL/+I//iB//+McSx7eA9LTo0wWXyWpn247ptY7JsuFm0bNt0ws/l7GX6w2AEm+VSgXFYhGxWEzFrpAwJPFCJU74lGW8aDBtPzs7q8QVuVdJWFGMG4mgTCaDSqWCeDyOgYEBlEolTE5OqhvS2NiYmrWC4k/i8TieeeaZOeVceBwd7UPu5Xg8rpIgSEDxeMRIJKKmeSNLJwBlMSQxxqG++XkgAcddvlSfLxKJNLnKqT1y1yaTyTlucyIejyOfz6sYRuqj1YxU0/XP37cSzhA0HCKM69+rTdOPLhF9Aueggw7CwQcfvNDDCEwqlcKHP/xhbN++HV/72tesvz9jY2N417vehe9+97s47bTTOjvIgDQaDVx22WW45pprQktSEVqjp0Wfm3vK5qEU1DUV9MHXSryVlyXK1lpoasNx9hQ+dhwHuVxOxcLRrBkkrHh2Lbk09bZIZFGcH7dKUXIICaRUKqVEIcXkbd26talkSSwWw8DAAOLxOJ588kmVuMFFPD9ucjVnMhkVhJ3JZJqOPZfLIZvNKutbIpHAkiVLMDMzg/HxcRXf52at4pYsfU5gnrxCsTsDAwOo1+vYsWOHUTDS+dLFFwlxEqz6sQb57PXtw4j50/sN8r0Jy8LnNyZ6Lw8TgRgZGcGnPvUpZDKZhR5KS6TTaZx99tm48cYb8eyzz1rvNzMzgxtvvBFr167tmmPfsmULbrjhBvzgBz9Qzwdh4ehp0Wei3Qed2wNWt1y024/eRhDriVccl74tX8fr7lERY0ro0OPtTO47KkfCCybz6XtIQNLDt1AoqCBqXnSZBBMJnb6+PpRKJTXfrO5qNZ0vx3GQTCYxNDSkRKw+fRsJKm51I8vbtm3b5tTb0/tyHKdJ9JLI4+ViyN1L603u6EgkgpmZmaa2yPqYz+dVAgjFAFIMpemztMF0fZrOn22Igt5OK2PiBBWxNuiflbB3U6lUsHnzZhx33HFdHePmRavPmZtuugn/9V//hZNPPrkDowrGn/70J/zDP/wD7rnnnjmJdMLC0Jvfhv9H0C+FKSbI9OAJak0LiskN7denl9DzEqg6JPxisRhyuZxy91arVZV5yxMlSOhkMhlVhoSSD+hXG5UCoFg3CkCmxAW66ZJbNJVKYcWKFQB2iy+yxnHR5mbtohi6oaEhLF26FLlcTlkp+T48EYKmfpuensbs7Kwq6sxdxnosnz4GLmwprpEEIM2gQRZTvp8poSUWiyGdTqOvrw+JREJlPZPllNdP9COopdpkBXS7nt2uL9s+3bYJ40eTaQxi6ROIiYkJfOADH8Af//hHnHfeeXje85630EOyplarYcOGDbjooosCWfmIXbt24fe//z1OPPHEBRG8FKt9880347Of/Sw2btwoMXxdRE+LPsC7xp7btm4EjQNs5cHl5iIO0/rh5+amJA7HcdSctcPDwxgbG1OCiCxnsVgMfX19WLJkCaLRqFpP8XJk9SPrIVmt9DIrJNbob9euXapuHs/Q9YKye4eHhzE0NKRKEXBhxV2rfNo2smoWCgWVVGFyW7qJa6rtR21SLCMt27Vr15zMYmqTrKEkqNPptIpBrNVqmJqaQrlcnpOp7PX5ui1zi6ULy9XrNjZTbG27SSNB9necuXMUC3s3Y2NjuOKKK/DQQw/hYx/7GA444ADst99+Cz0sX372s5/h7LPPbgoVCcqPfvQjvOUtb8ELX/jCkEfnDj0Xrr76anzrW9/CY489ppIFhe6hp0WfbexS0Ngir+2DxA267d9q3277tzIWsnhFo1EsXboUiURC1aeiWnfxeBy5XA59fX0ol8uYnJxUAohi9UisUPHmoaEhZTHkblJyXfJj5MkaXsdErtD+/n4MDg4il8spSx6wx7VH/0mYURILlUOhpItkMqmEFndjE1wQcjduLBZT8Ya0LpfLIZPJ4JlnnlEJKdQGsFtsZrPZpvGSoKYEG6rlR8di8/l6xSDy/WyFn1tco+32pjg/29g/t3Zt+yfBJyVbBJ1Go4Hf/OY3uPvuu/Hc5z4X//t//2+cffbZqm5ptzE1NYVrr71WzfvdKo899hguuugiXH311Vi6dGlIo3PniSeewEUXXYQnnngCDz/8sBRd7mKi/pvs4bLLLsNLX/pS9PX1Yfny5TjttNPw6KOPNm1TLpexfv16LFmyBPl8HmecccacmjybN2/Gqaeeimw2i+XLl6vpalohrBg+W9q1xHntH8RqaduXn6u3UChgYmICpVJJxZhRrB2JFKrNR8WKKbYP2D11WDKZVA9dElk89o0gwdjf34/ly5dj6dKlaoYNnjRB1eTT6TTy+Tz6+/uVK5TEKk2nRhmxVBS5XC5jenoa4+PjmJqaUtZEch+nUin09fVhaGhIxfhls1nk83kMDAygv79fJYak02lVUNlxHFWYmRc9HRwcVOcqFoup+YhJlNTrdRSLRczMzKBYLKJQKGBqagoTExMYHx9XLmf++btdF6ZYR9PnbRJ6fmEMrcQN6n3or03YXNt+7ma9f3ofhujrxnuc0B6O42BiYgL33XcfLrnkEpx55pm44447utLlWKlU8Ne//rXtdkjsfv/733dNnti+fTtuvvlm/Pu//ztuu+22lmPunn76aZxzzjn4t3/7N/zxj38UwdflBLL03XHHHVi/fj1e+tKXol6v4x//8R9x8skn46GHHkIulwMAvP/978fPf/5zXH/99RgYGMC5556L008/Hb///e8B7LYwnXrqqVixYgX+8Ic/YMuWLXj729+ORCKBf/7nfw7/CGEntOh1mG4wrz71IHrbvk0B+Rw366epfbKMTUxMYGpqqmk9TUVWLpdRKpVU0WAAKv6PijsnEommWTW46KN+ycrW19enkit48gXFY5FVj4+PrHaUXUyzWNBrmn2DzxxC1j0AykpHiRaUgBKPx1Gr1ZTrln8OfFsSpCT6qKh0KpVCNptFuVxW5WD6+/ubEmcoUcbr8zR9jm7b+WFKzrARUUEJYg13s97pgtTGKuglYsNI5OjVe5xgR6lUws9+9jMUi0V86lOfwgte8AIMDg4u9LAUFD4TBoVCAZdeeilKpRJe97rXNVUTKJVKuPzyy3HjjTei0WjgwAMPxI9//GMceeSRgfv57W9/i1tuuaUrRbQwl4jTxie1fft2LF++HHfccQde+cpXYnJyEsuWLcN1112HN73pTQCARx55BC984QuxYcMGHHfccfjlL3+J173udXj22WdVNfSrrrpK1SWymTJmamoKAwMDTQWB28Umps7kLuvUhW7j9gzaXtCkl76+Puyzzz7YsWMHyuWyElgkiHbu3KksXrxuXyKRUEKHslfT6TT6+/vV9o7jYGZmBqVSSU21pls6aRkfN8X1URYubU9WRb/j5NfMzp071dRnJEDJTczHQxX8ybJIom9wcBBLly7F9u3bsX37djWNHM9UtolX9HKDuiWVuC3T29W3D/P74jZeLxHntd72HJi2SyaTOP/88/HpT38ak5OToUylBSz8PU7oDHQfOvzww3HUUUfhwx/+MFauXNlU5FsvA9UKDz/8MJLJJEZGRpToSqVSyGQyaDQa2LFjByYmJvCzn/0M27dvx6ZNm/DrX/86VKswzfRDYS/0Q5pz9NFH4+abbw4sgIvFIt773vfi2muvFdE3T7R7f2srpm9ychIA1ByDGzduRK1Ww5o1a9Q2hxxyCFatWqVuiBs2bMBhhx3WNP3N2rVrcc455+DBBx/Ei1/84jn9VCqVJmvJ1NRU4LG6PYAIPSbK9MA0PWS9HlxhiUK3IP2gIo7jtj/vY3p6Wv3yJOtXqVRCJBJBf3+/co+WSiWVJeY4DlKpFOLxOIrFIoDdoimfz6vsXl6eJBLZXVxZP78mi6Y+KwYt12P69Ha4xY7qB9L0cVSYmsce6uctnU43fd4Uu0dTr01NTanklVKppKykftX0w7w2/Pqha9tkZW4F22tc/z7wZSYXren7o3833cbTiZItvXSPE+yhwvV//OMfcffdd2PDhg3YZ599lLcgn8/jrW99K9auXdvSHLrAbovvFVdcgVtvvRUjIyNKbI2OjuL9738/Hn74YVxyySXYunUrnn322cDTrtmiX1tutHI/mp2dxZNPPimCr4doWfQ1Gg28733vw/HHH49DDz0UwO5sKYpz4oyMjGBsbExto893SO9pG53LLrsMl156aatDNWKyCrnFPfk9bLzeh0mQ2KkgbbmhZ7jSQzUSiWBiYgKO4yjXar1eRyaTUTN8kLCKRCJzplMjtyfVrjM90HVrGxdv09PTqjwKHyv9SjeVO3EcR8UkkoDliSRuop4sl1x8ALt/PedyOezYsaPJUkkuaNrey5Jlk7Rg6/Z1s/55/dAJw+rnJdy8vjutjM3LagiEPyNHr9/jBDscx8F9992H++67r2n5zTffjLe97W1Yu3YtXv7yl7c0T288Hsejjz7aFBf6pz/9Cb/5zW8wPj6OZ555pt3ht00+n8eZZ56JfD4feN9HH30Ujz/+eAdGJXSKQIkcnPXr12PTpk344Q9/GOZ4jFx00UWYnJxUf0899ZRxO108eFkjdGuQF25i0Ktvv3ZtYpf8rBudwmSR4X8k2ur1OiYnJ1XpFipHAux+YPb39yOVSqnkC3ItAFDzzFICBtX343+0PRdyNHVcoVDAzMyM+qNSLFQcmlwZ3KVB/VA8Ik+gcLs+yKpI54KEI7mw6bj088bb0NtsF9N4Cf26sbl+gmzr1g9fbrLs0bht++XH6DYu/fsddp2+brzHCfNHuVzG1VdfjTPPPBNf+MIXAv+oIC+BTrVaxaZNm7pC8AHAS1/6Urzzne9UyXlB2LFjh+sPGaE7aUn0nXvuubjppptw2223NdU9WrFiBarVKiYmJpq237p1qyrGu2LFijmZbvSettFJpVLo7+9v+jPhZq3R8bLutSu2bPr02q4bsDmHBJUecZzdU71R5i3FyKXTaeXWnZmZUW6GeDyu5vA1CUu/8fH5gXmNPr6/yYqn1/Pz6pOSQUyihUqw0JzF/HxRAosN/HqzFWhBr1G/a8/P2mjC5kePvp2bK9jN2srXm5broRdhWvq69R4nzC90X/vBD36AG264IdA1Fo1G8Xd/93d4wQte0MERtkc8Hsdpp53WcvwoJbcJvUMg0ec4Ds4991zceOONuPXWW3HAAQc0rT/qqKOQSCRwyy23qGWPPvooNm/ejNHRUQDA6OgoHnjgAWzbtk1tc/PNN6O/vx+rV69u51gA2IsprwenboHg/92WcfEQhoUuyIM4zC+d/iD1etjy/sk6R2VWqOzLkiVL1Ly6FFtCsXnpdFpt59W+CS9LF1+vfx768dEy0xjIqkeWTYo/pL9CoTCn1iDfZyFuhp24XrwsbTbWTO7mNZ1/v374OrdrJSzR1wv3OGH+efrpp3HhhRdi48aNgfY7/vjjcf7551sl7ywES5Yswcte9rKW9p2ZmcHVV18t0x/2GIFE3/r16/G9730P1113Hfr6+jA2NoaxsTEVsD4wMICzzjoLF1xwAW677TZs3LgR73znOzE6OorjjjsOAHDyySdj9erVeNvb3ob7778fv/71r/HRj34U69evVyU2ghJUZJlcuyYhw+OT/Nox7dsOfi63INY4L8ISADTv7vT0NEqlkortoyw5iqWbnZ1tWseTJHj7fscUxG3J0YWeSUTQMkoWIfctHQMVpyYXNCcejyuXTlD3vq1gsw1HCOM61MflJbr09Vxw6985t3ZMP7D4Pm4i03HCqdPXrfc4YeF55pln8IlPfCLQ1GiRSARnnHEGVq5c2cGRtU4mk8GBBx7Y0r733ntv048foTcIJPquvPJKTE5O4lWvehX22Wcf9fejH/1IbfOlL30Jr3vd63DGGWfgla98JVasWIGf/OQnan0sFsNNN92EWCyG0dFR/P3f/z3e/va34xOf+ETgwZusYX4WIH07k+Bwe1jp23kJQrextkoQq4gJ03HS61baNrlRZ2dnMT09DcdxsGTJEjjO7rIsVOSYxB9lzVISB4kpL6srf+3nAjRZ+2zdx7SexCq5j8mCR7UB+Ry+fHz5fF4Vs7Y9b/rx6sesC1TTer0Nt3VhYRJ7Nj9ETMdu2td0Tbq1T6/DsDh02z1O6B6o4PG9994baL9sNtuVoi8SieD4449HNpsNvG+1WsVVV12lKjQIvUNbdfoWilbq9Hk9hExiwqtdPwugW99BY6bCemCTW5JKpQQZg96OSVjxcVJNqpUrV2Lbtm2o1+vI5/Mol8soFAoq/i+Xy6kioZR8wdtzExN8bG5C3m3M+jK380vWvL6+viZX9MzMDBKJBPbdd1+kUils2rSpqRRCNBrFihUr1HGbrFJuYinoZx3EimZDkOuZtjeNyWZ7P4HX6hjf8pa34Pvf/36odfoWCqnT151EIhGcdtppuOGGGxCN2tlMHMfBN77xDZx99tkdHl0w8vk8/v3f/x0nnnhi4H03bdqEl73sZTL7xgLQ7v2t5ezdbsXNIuJm5fFy77lZh9we1H5C0W8bt7aCupdNtFvl3Usg8deO4yCbzWJqakrFsZDbjSxojuOoDFuKlXOznnpZbt2sdm6fqcny5XY9RCIRlfnrOE5TAsp+++2nxq9DZWi8BJ/beG0skF7LvCyIfujXdyvXtgmT1VXf12TJ9LJMu1kwZZozodM4joM//elPePLJJ633iUQi2Hfffbsuri+ZTLY0Awew+3kiVr7eZNGJPo4ev8WX2zwYvdxkthYKLhC99vFyxfkt93ogU582M0MQXgLDT4xSeZXJyUkV20biiVy5juMoF6jj7JnWjI/ZTbx7jTnIct6XaRmJPho/WSipZt/k5OQcIc33MbVpckEHHa8+Rr5PkPPl50I2tWMSzCarty7gvQSd17hslvP1ElAuzAdPPvkk1q9fH+hHxpo1a3DwwQd3cFTBoXJarUDhLkLvsehEn61g0dfZuhD1dW4PWjf3p9cDsFVPu5f1shWXnZdlzKtvOo9PP/00gN1Wr3w+r8q6kDuEz8BBM2ToNxC/2Df9ON3GZBoj7et23mhuX4o5pPmEKfZw586dqji1vr+foDFZRt2EoJv1zetHi60l2eaHiKlffWyma9n2x5Dt9m7faf0679SMBoLAcRwHf/nLX3xn3OGkUqmm0j8LTTqdxic/+cmWZxsB9iS6Cb3FohN9HFvrhZv4chOJpnX6w9vL7WYSM60KPjdsH/4cL7GkL/OyrFWrVQwMDKBer6NcLiuXLkGxmCT4IpHInPjMIJYhm3MXxLqby+Wa4nX4NRKLxTA+Pm50bdDsJLZjNwlmv+1M7eri0RY397Bpvf4jh/er7+/23TAdr+0PHz+rIyDuXWH+ePbZZ/HLX/7SevtIJIJ3v/vdLRVA7gRHH3003vjGN7ZsrbvhhhuspnYTuo9FJ/qCuLjaaV9f5me54G6wTo1N7y/MdmysftxytH37diX6kskkBgYGmgopc1FFAsAUGB22GNbHq5NOp5HNZpUQBaBcuiRMKW5PbyuTyag5eEkgegV76xZVG9emlzALeqx+16zXjyXbMdi2wbfR27O1cIqlT5gvSqUSPve5z2HTpk3W+yxfvrylqc7CZmhoCFdccQWGhoZa2r9YLOL++++XcIoeZdGJPjdLlI2lwLTOy/3r1rfpAa632Wrskh9B9vc7LhsxYhIkjuNgfHwcExMTKsavr69P/cql+EIeZ2g6JzZCM8h2+jhNbWSzWUSjUVWahaZwo/mEaVo43WoVjUZRr9eV8IhEdmcAB8kwp/10i5lJAOnvg54D23Ntstrxbd2uEV3sua33EptuVnq377Y8hIT5ZOPGjfja175m7eY95phjcMEFFyx4Qkc0Gm2pTAvx7LPP4s477wxxRMJ8suhEHxBusDh/qHm5qbza4w8rN8uH3wPNBhtLnP7exhJjI3z1dRTHR4WY4/E4li9f3iSEyPLn1oZprJ2yktJnQzOL0NhmZ2dVEkoikcDSpUvnzKcZiUSUIKRsX8dxlGAMaq0M8gPFZj0dn9syG/eqX19eIRFebbUi1k3fJzrfgjBfOI6DH//4x9i4caPVdzyVSuGkk04yzsc7XySTSbz3ve/FqlWrWtq/XC7jO9/5DsbHx0MemTBfLDrR5ybOwmqb/6fXfi5lU9C7VwC/ad92x2zTlltMn8kFaWO5oTp8hUIBxWIRz3nOczA4OIhIJKKSJIA95WRaPdagQtm0nix7fBuy8NH4otGoqg+pQ1nJ3I0ftC5iEFoRv/pnZ2vZ0/GLP7Q9Zr8fTCY3r9cPJbeC2ILQKbZt24bzzjsPTzzxhNX22Wx2QV28p59+Oi688MKWheeWLVvw3e9+V+L5ephFJ/qA4BYEW1qNx3N7kLYiUG1iq0xiMoxx28KPpVarqWSOdDqNffbZB5lMBo6zO3OX5ql161NPJrBNdjAdi5cLM5FIqJlDgN0V5ylrl/4cx8GWLVuwc+dOY9u8HqGX+9JrzEEEU6sE3dckqltxM+sW8lYt8qbt+PkXhPnkwQcfxJe//GVMTk76bnvIIYfg9a9/vXVh5zA56KCD8N73vhd9fX1ttdPJOGuh8yxK0QcEt2rZYBtfZnrvFpgeNCbLTdD5xVSFhY3w1a2LpVJJFWJetmwZli1bpuJaHMdRok8/DpNI8OqTu+FtILdsLpdDX18fUqkUUqlUk1uW2oxGo6hUKti2bRvK5fKcz3N2drbJ0mQj5E1j7ZT7msbkJ8hM49bHaZO04bY+qBtY//54CWURfcJCUKvVcO211+Khhx7y3TaVSmHdunVYsmTJPIxsD8997nPx1a9+Fccff3xb7WzYsAG7du0KaVTCQrDoRJ+t29TGGhEmNmIwyP5eAfB8vdfDMgjtuMtrtRp27NiBsbExpFIpHHjggao+lElsBPncbOIr3dqLx+MYGBjA4OCgsjpSIelEIoFUKqWEUjweV3F7eh9kBfQav8lFrm/bCcGn99mOYLPd1o+g16SfdZfGI+5dYaGYnp7G9ddfb3UNLl26dN6SOeLxOI488kh8+ctfxpo1a9qyME5MTOAHP/gBZmZmQhyhMN8sGtHXajB7K+20i1+ckmkMtrFPpv3DELJ+cYsm+MN9ZmYG27dvx1//+ldEo1GVyUs3IZMl1M3y5xXXZWMxJXduPp9Hf3+/KiMTiewp+5FMJpFMJpWVjxeR9hJ9frFuXsJwvtwmtgIvrB8MrY6D+vb6vPUYUkFYCGZnZ3HvvfdaJTjQD8hOE4vFcPrpp+PGG2/E6173urZdyjMzM/jLX/4S0uiEhWLRiD6g9axdNzrxsDNZ4Frtx+ZY3SxMtu20MiaTsKlWqxgfH8euXbvw+OOPI51OI5FIKCsavyHpNydd+PnFyXG3rEkUx+Nx5PN5FVBdLpfVvlRnD4By/SYSCXWT1l2IkUhkjhDU3fZuYwwTNzexSWzqcZKm/ei1bdhBu+M1rdd/CPhZ/KROn7CQ/P73v8dHP/pRdT9xY2BgAIceemhHxxKNRnHqqafi85//PJ773OeGEkOo36eF3mTRfIImS5Hfdn502t1m81A1beflmnaLvWrXwmQTy+e1XaPRUFm85XIZL33pS7F69WoMDw8jlUrNmX9Xn8XDC9P5dBMz0WgUmUxGCbWZmRlUq1WUy2WUSiVUKhWVdUvlZRzHQblcRrVanSP6otEo+vv7lSgMGlfYCm7u43bachOiYRyH13fTyyXvFt9pWg+Ie1dYWOr1Oh566CHf2NLh4WGcffbZWLlyZcfGss8+++CjH/0onvOc54TWJnk7hN6mp0WfmxvQZp9W+5pP3ALobawkfP923HTcctYuNENHIpHA5s2bAUC5enO5nHKn2rrh/cZkaieZTCKdTqPRaGB6ehqFQgG1Wg2VSgXFYlHV2iPBx8vJRCKROTF9sVgMuVyu6Wbodr68hH6QmDkbV7bXOfQSjZ1ILDEdq+131/QdcAuPEPeusND89a9/tSpc/JrXvAZnn312R8aQTqdx/vnn44gjjgi13UcffRTbt28PtU1h/ulp0eclZsK2tnQ63srLPej3IDYJCZMFpVOCN4jodhwHhUIB999/PzZv3oxCoYBqtYq+vj709/c3xce162rULaMUnxeJRFThZXpNGbtUr69QKGBmZgaJRELN0kFFmznRaBQ7duxAoVBwPV4366qXBdfWqtrOdekloDrVp+24TPiNT9y7wkKzdetWXHXVVb7JDvF4vGOWvnQ6jRNPPDH0ZJEnnngCW7duDbVNYf7padFnQn9g+L3vFoI+8HUrHhDMAmQb+2grPry2pfWNRgOlUgk7duxQs3XQfhMTE6hWq74xIySW/OL6TJYrEn18blxgT6wKWR0bjYZy5c7OziIWiyGRSKBUKs2pKZhIJFQRZ75cPx9elj0vt6pbGzbufi9ajdULw/Ln9x3Uz40+VrcxiKVPWGgcx8GmTZusfoDk8/mmkJaw2G+//bBs2bJQ25yZmcG9994bapvCwrBoRJ9uHfKyFiwkrYhO/eFuygK1jcszvfaLEfOKFTRt42VhJLFHcXK1Wk2tr9frqnQKiTA3sdSKaI1Go6r4Mrf60ftYLIZaraamXXMcB7VaDcViUVkEOZTV6xXDY4ph88JNMAZtx40wfvS0+x1qxVqrY7omJaZP6AYqlYrV9+yVr3wl/uf//J+h93/wwQe3PM2aG7/73e/wjW98I9Q2hYVh0Yg+oLXyHQuFm0jyCqg3WT38BBjgfR5MVrN2XXh+55ySKRzHQbFYRLVaVeIpkUggkUggk8kgmUwiFot5Cp4gbl/abnZ2VpVN4Jm3s7OzyrJH4yRrXrFYnHNOSETaFgX2ivVzOzYvS65+/fgJRX0b03ubY5hva7lNokckEhHRJ3QFtVptzg9EE/vssw8+8IEPYP/99w+1/05YvKemplAsFkNvV5h/FpXoMz0Uu82d62bJMY3VbewmUev2Wm/HbRu/MQdx+folEcTjcaRSKTUFGxVEnp2dRaVSQSQSwcjICEZGRpBOp+dkjJlEoI0FzXEc1ReP46M2Go2GiimkTDVq1/TrncbFb/BeFlEv66m+jf6jwPaHgc02/C8o7f6QasfS7Ye4d4VuwFTA3Y2XvOQl+PrXv47nPve5ofUf9ry4s7Oz+OEPfxhqm8LCsahEn45uEekkQfuwSbIwWS5Ny+m1m0hwa9d2HH5jp/38XK60XzKZRKPRQCqVUpa3RqOBeDyuEixWrVqF448/HvF4HJlMxlgqwCuW0LSs0WgolzJNDUeuZLLCccsiWRopzk93q1M8n1+/+jnzc5Xr7fh9JibrnZsbnFtGbb4bftfSfP6o6tV4XWHvwta9C+z2Frz61a/Gl770JVWwvl1KpVKoP4Ci0Si2bdsWWnvCwtLTos9kgTK5TLvRxWsSSW6uSrdlXu26uUT9xKCbC9IPG3HAP59SqYRMJqMSKyhzlmL6qLI9CbJ0Oj0n6Jm3ZxLEJssaZeDGYjEMDg4ikUiounzcypdMJpWlb2JiQok+3nc6nVZtm3CzSPoJOtN2fHs36y7fXz8/+jqv/t3W+1mebWjnu+h2rgShm6D7iS3RaBQnn3wyzj333FCKH//5z3/Gxo0b226HoB+4wuKgp0WfWyyTvmw+6ER/Xg/ZIJYj0/nxcg/6CRM/i55bHzRuEnlUMoWWUYHmaDSKLVu24N5770U0GlXJHlRU2e1YvSx+1E80GkU6ncaSJUvgOLvLx/Bfxdy1Wy6XXYuRkuizsYJ5WST9sBFufv2b+rZx8bYiqLzGGrZA87qWBWGhcJzgSUXZbBbnn38+nv/857fd/8TEBLZs2dJ2O8T4+Dimp6dDa09YWHpa9PnFxfXCw8A2Bsxmf76Pn/jTt3GzmLq1ZYPb+Kk0SrlcVvEv9D8ej2N2dhaJRAIzMzNIJpPIZDJoNBro7+9HX1+fb1yi2zmIRCIYGhrCihUrUK/XMT4+rn6VU3wh7RuLxVCtVpU41V279OvXyzJqEmxB4iFNnw/1p1/vftZGL+ufG/oPKLfjsf2BENYPI/28dKMlX9h7cRzHdyo2E6tWrcJ3v/tdHHnkkW2PIcykpkceeQQPP/xwaO0JC0tPiz6TpcJLvIRFmA8Zm4ei/nAP2r/uWjX1F9Z5sokRoxk46MbUaDTQaDRU1luj0UClUkEymUQymUQul0M6nUa9Xp9j7dPb1l2j+nhoDuCJiQmVyBGJRJT7NhKJqH4dp3kuXk4kEsHOnTt9g6Z1UeJ3frxc+fyY/MQkPwde7Zl+LPmNzw+bttq53kTkCd2ObUY/JxKJ4Oijj8bXv/71tuvstSI6hb2DnhZ9Ol5WnzDplAXRzR3KcbNyBXV16e3YCBPbc+k3Bpr1glvWyKJGImx6ehqVSkUFRdMUbZFIxNPl6ufqLxQKyqWri8NYLIZUKoVly5Yhn89j6dKlSCaTyv2rtxckWNpkNfMS+abPk1v5vOL9vD5Pt7jCTv2QaWeboN+zXrDsC4ufWq2Gu+++26psi4kjjzwSb3rTm9r6ToY5Ow2VthIWB4tK9PUaYVhXTA9vN/dXq5a9VgWlCYqjowLIvG1K5qDkjomJCdRqNczMzCAWi6Gvr8+Y0BFkLHosG60nl3N/fz9Wr16tYli4hVXfh0rMtCs2TPF1bkLN5M51i8/Ux6sLQr3fbhJNXjGngtDNVKtV/OIXv2jJ2gfsrhrwnOc8py3RF6Z7l5LrhMWB2WTSY7Ti8jS1Acyv68gr/sn0wNYxjdl0LtzOj2m5yQ1s87C1PW+RSAT1eh3xeBx9fX2o1+tqhg49Zs5xHPWLtVqt4uCDD0YymcS2bdvUesp2M02Dpo+dltO2fB1l66ZSKWzZskVZA/VSLfzmF8RCpn9WXp8Jb982Fs/Lpc379VrWTW7TIGPhFlBB6AaCZvDqtDtvbpjuXRF9i4tFa+kLar3oxoeGVwwXrfez3rmJC7fjbfVGFWQ/KoKcyWRUrT46RnLvAlCCENh9E5ucnEQul2vLNek4joobpD6pVEs0GlWJIrQN/VFffIo4mj3E1p1pcj3r27jt65fg4bafvs98W8vC7M/0fQjjB58ghA2VhmoV2/uKG2Fa+hKJhGtIjdB79Lzo0x9sukBaSMudzXo3q5pfWzZxd/qD3jZg30+cuG3rNS59GyqUrP+K5C4REma07NFHH8Wtt96qZu2gbbxuriZLqW6tIxGXy+WwdOlSPPvss0qYurmHg4o+L9xEbCsxbX7CvxUXf7clXbiFLAhCt1Cr1doqkLzffvuhr6+v5f3DtPTts88+OOaYY0JrT1hYel70+bm8bLabj7G4rfdzzZq282rbzaLjJyZNbkQb958p0cCP2dlZzMzMqDl3dQsOzZRBy0jYRaNRFAqFOdOe+Z133aVKbfJ4PioMvWvXLuzcuRO1Wk2JTX5MNJbZ2Vk1V3AYBVX58fA+abymBA0vC66NcBfBJAid4a677sJ1113XclzfiSeeiBNOOKHl72iYiRxDQ0M49NBDQ2tPWFh6XvQRbkHrRDc+4HSxEiQ+zC3+z9bdR/t5xZD59es1bjchRoKrUCigUqmgWCyqbXnNPp4xRrX7SJiRdS7oZ0puW/1GTG7barWKLVu2GGP5aOy6qKaxtApP0qD2+Lj0ZTZu/nbGYqIbvjte7uluTEQR9m7Gx8fxne98B4VCoaX9BwcH8X//7//FkiVLWto/TPcuAKRSqVDbExaORSP6/ALku5EgyQ+ESfCZ3IEmF5ib69st+UNv0/SeL7O1LjnO7or1tVoN5XK5aRwkoGgqtEhk98wXkUgElUol0GTmJkh08nHTvL/1el0FYMfjcWMwNe+bMpApLtFrWy/8rK/6tl6fZzsCqJu/N24C2E0wC8JC024yx8tf/vKWCzWHXadveHhYpmJbJPS86PNzQbYbj9RtDxK3eC/TWG2C3ef7GPUxUWwcWfUoUYLi9sjdG41GVaFkXki5lQe+7jol924kEmmyAnoJTC4eg7pPw7BMmdy4boK+1yxgtmES3fj9FASi3WSOWCzWstAK29L32te+Fvvvv3+obQoLQ8+LPsDdwtHuw66bH5j8mL22IXSR5LefW3KBW/vUR5B2dXctsPtmxS2BjrN7SiN6zePy2oGPg8cV1mo1JTyTyWSTINShYtIkQoP27fV5mCy6tvGrbv0tJK2I8jDaEoSFwm02H1tSqRROP/30lsq3+M0UFJSnnnoKk5OTobYpLAw9LfpMMWg2YiXsMXQak4vVza1rEgedfOByi5PfvnxsFF9H8XQkrLglj7LfKGnCy7oZ1JVKljqaHaSvrw9LlixRWbzJZBLpdFrFFtL4eJ90Q/e6sYf1w4H6NbUXRPB5uec7Sbf+eBKETkE/VFslFovh1FNPxejoaOB9H3jgATz99NMt963zl7/8Bdu3bw+tPWHh6GnRRwR9EIbdd6fb9gvk99qXXgcRZBzbxA0b+H40167j7J7+jOpA8TGQ+ONuVN01axKcQWIlyZIHADMzM4hEIliyZAmSyaRyr9D4TD8oqtWqpyvFy+3uN7agBBHBJlewIAjhQXOJt8PSpUtxwAEHBN7v4YcfDk308R/gQu+zKEQfYFdepFfwsg65Hace56QLFD/XoJ+lTheOrZxfPga6ifBsWmqT3L6m2D3TcepWXhs3KD8eSuAoFouIxWIqaLlSqahkDT22hu8b9IbYiWvT9vqXpAdBmB+GhobaLmociURacu/SPS0MSqUSfvzjH4fSlrDw9LToM8Xv6YKpF91KNu5SWze2zUPeT+z5bRMEGiu3nJGljCxuAwMDWLFihZopg8bh5t7lbk9bNzPfrlQqYdu2bSiVSgD2CNGZmRkUi8WmOYH1PoO6cNpx99pYbG3b6RW6Oa5WENwYHBzEF7/4xZZLrhAU/hIUqiUaBpFIROL5FhE9LfpMVh56rce9hdHXfO7XLYQ9fvpM9F/AuVxO3dwSiQRe+cpXqpItfCx6TB0lUnjFvHkdC7l4+U2yXq8jnU6r7N1oNIpsNttUmoXX8QuaxNHutdSuVXshr8lWxtrr3yFh7yOVSuH5z39+2+1EIpGWauTVajXceeedbfcP7KmoICwOAn2SV155JQ4//HD09/ejv78fo6Oj+OUvf6nWl8tlrF+/HkuWLEE+n8cZZ5yBrVu3NrWxefNmnHrqqchms1i+fDkuvPDCls3QJitUUBdkKzFyQQjDSmGqxxak/U5ZSlppl1ylyWSyaTYLbtUrFAp40YtehOXLlysLm1sGrZfA84ql4+c0n88rERqLxVSNq/7+flWvL5VKqfFS23IjDE5Y34dO0W33OKE3OeaYY9Df3992O+RNCMrs7CyuvvpqPPLII22PIR6Py71uERHok9xvv/3w6U9/Ghs3bsQ999yDE088EW94wxvw4IMPAgDe//7342c/+xmuv/563HHHHXj22Wdx+umnq/1nZ2dx6qmnolqt4g9/+AO+853v4JprrsHFF1/c8gG4iaGgWZ3djI371m//Vvpsdxsvy5rjOCojl25sdGMpFovYuXMnXvSiF8252fh9rraCmCeIUAav4zgolUrYvHkzjjrqKBx00EGqvV27dqFUKqnx82niFppuGMN8Eab13kQ33uOE3iISieDII49ENpttqx3HcXDDDTfgu9/9bkv7P/744/j7v/97bNq0qa1x7NixAxMTE221IXQPEafNJ8bw8DA+97nP4U1vehOWLVuG6667Dm9605sAAI888ghe+MIXYsOGDTjuuOPwy1/+Eq973evw7LPPYmRkBABw1VVX4cMf/jC2b99uHbA6NTWFgYGBJqtLpx8GYaMnV7Qyfr1sS6viLmhMGnczBi2VQuVQeOFScmFUKhUVV/eSl7wEuVwOd955p3Kz8n6ptItpfH7Hxs9TNBpFOp2G4zioVqvKEnn44Yfjb3/7G8bHx1VhaO5eplIuhUKhY1acTl7T8/190T+LoNedDZRlODk5GYqVhVjIe5zQe+RyOTzwwAMtZd1yfvGLX2DdunXYsWNHW+0cfvjh+Pa3v42XvOQlc9bxEBXHcYyJJ9/4xjfw3ve+VzJ4u4R2728tpxbNzs7i+uuvR6FQwOjoKDZu3IharYY1a9aobQ455BCsWrVK3RA3bNiAww47TN0MAWDt2rU455xz8OCDD+LFL36xsa9KpdJUbHJqagoAfAWfTRKClzCYj3Is+rIgD+Kgrmzbcdj22YpYJAFHIm92dlaJOApabjQa2LRpE3K5nOpTt3b61aZzK3ejv280GiiXy00xoI1GA/fee29TvCCwxwVNpVxGRkbw3//9377H3Cq2CSm9gP55BQmrcDtG/TMO+/vaDfc4Ye9kfHwcV155ZduCDwD+/Oc/48wzz8R73vMeRKNRVKtVde+tVCqqEH69Xseb3vQm9Pf3o1qtol6vo1Kp4Jvf/KYIvkVEYNH3wAMPYHR0FOVyGfl8HjfeeCNWr16N++67D8lkEoODg03bj4yMYGxsDAAwNjbWdDOk9bTOjcsuuwyXXnqp6/ogsV6225kyRTspAtux8nkta3UsnTpWerCNjIyociexWAyVSkUJrGg0ilqthunp6TmxfNwt63cMHK9zw29oXPgRvAgzrSsWi3j66aeNVj7bLOJ2CVtQdkJEhi18dYuv17at0o33OKG3qFarLe/rOA6+/vWv49e//nVo43nkkUdw4YUX+iafXXvttSqxDYD6USwsHgJHZ77gBS/Afffdh7vuugvnnHMO1q1bh4ceeqgTY1NcdNFFmJycVH9PPfUUAG+rk8k61A7dFjdlOvZOZnH6WUuD7O84DrZv345yuawsf/xGlEgk5lhvyApIy9r9PFoVI9R3tVpFoVAwCtD5sr4FPQd+560T43aL6wyzvbDppnuc0HvUajX87ne/w8zMTEv7/+53v8M3v/nN0OfPtZkycnp6GpOTk5iensb09DQKhYJY+RYZgUVfMpnEQQcdhKOOOgqXXXYZjjjiCHz5y1/GihUrUK1W5wR8bt26FStWrAAArFixYk6mG72nbUykUimVTUd/gN0UU4sNOkYulNpx7ZqsJm5WRL8x2fZZq9VUTF+j0UC1WkUsFlNz3abTaWOsIs1124pwsbFe+v1I4Ou9BFQ7wiRINnYnRf58hza0007YY+2me5zQe1SrVfzDP/wD/u7v/g6bNm2ytvo1Gg3ceeedOOecc/D44493eJTC3krbediNRgOVSgVHHXUUEokEbrnlFrXu0UcfxebNm9XcgaOjo3jggQewbds2tc3NN9+M/v5+rF69OnDfekxbO27ebsIt/kn/7ydSOiFK2oXcszSfLok4muqMygPwgqRULNk0/y4nSDaxTTykLqptRXY715yX9bpdka+370avxArq56pT3/WFvMcJvUmxWMRtt92GV7/61Xjf+96Hu+66SyWp6TiOg2KxiM997nPzYlUW9m4CxfRddNFFOOWUU7Bq1SpMT0/juuuuw+23345f//rXGBgYwFlnnYULLrgAw8PD6O/vx3nnnYfR0VEcd9xxAICTTz4Zq1evxtve9jZ89rOfxdjYGD760Y9i/fr1LRWgBJoFkOlh1QsPLx23Ywgaw2cjgriQDCvD0iRcdOsUT5Co1+solUqqdMrg4CCq1SqKxaLalrfhNj7Teloe9Fzx89FqEkK76NZOWze6V5xqUFf8QmMz5jATObrxHif0LmNjY7jyyitxww034J3vfCfOOussZLNZrFixArFYDM888wyuv/563H777bj99tslgUfoOIFE37Zt2/D2t78dW7ZswcDAAA4//HD8+te/xqtf/WoAwJe+9CVEo1GcccYZqFQqWLt2Lb72ta+p/WOxGG666Sacc845GB0dRS6Xw7p16/CJT3yipcFzMaRbZPTtesV6YUO7iQJu4rhVt6HfGP0exo7jKNdtvV7Hrl27mtzXuhClffg6PyuvLqBMmZ9u8Wc2buFuSfLpRcu2F14JJ/pnGMZ12233OGFxsH37dlx++eX43ve+h6GhIZx44omIRCK49957cc8990iyhDBvtF2nbyGgGlbpdLope3Kxi735IkzLSSufAReLYV+eXtZALzevG0EEnx5D2YNfva7BLe60E3X6FgKp0ycIgol27289P7eKbs0Jy727EEJxvkWAn4XE1hVoOud8eVA3KcX9uSWaBMV0jejjtk3g8GrbD694vU4SJDmkV5AfcoIgCMHpadGnW6RM7r5WY9Js9gv7wTMfbkI34WEretwEkJ8Fy/R5BBGbYSVHmNoyta3HCvaaKApCL1nDFyq+UhAEYTHQ06KPF+51swp18mHWiQeOn0BphyBtucXK+Qkkr2W2bls9OSds/KzBXlnPvSKOOLaJEL2CKdZTEARB8KenRV+rwdw2iQW2/XcKk+jSM2HDbldPvHBLptDb83Jbeok/L7pFiOgJQq1cGwt9LGFcL92Cm3teEARB8KenRR/Qmhs3rIdFGCLMDa9M0nbH30osW9AHrUmE24omt+QKG3dwGJ9tO8dNdJNYauecLFQcoi0i/ARBEOzpadHnFmfWSTHmNY5u7ctLFHmVKvHqk59zP1dwkNIq+vZe23n16UUrAk63hgZpaz4SKbwssWH3FVYbXgT5jLpRjAqCIHQjPS36CLnp++Mn7GyW6+5et1p3fkkdenteD3gbV3zQz79dd6ee5OGFX/yg33Kb8fi16zfesFzWrSZNmWilDI4gCILgzaIQfXocmul/LxOGFchkdXOLv7MRBm5uWzdBqL+m9wv9wPYTuKbtgwjoTmebBj1/Jgtt0HG57dfKZ2ljofQa20JfP4IgCL1EoBk5ug09xs3G/deLhH0MNkkvbhakIOeaW/7mQ3yH2Y+Ny1vPMm4lvnQ+8LMutiIc/dpuF9O5XgzfZUEQhIWkpy19bgH/nFYfwN324LbFL37OL3FDf+/nPtT35RY/0zIbWi3HEfY++rF4ubbbGcNC0wtjDsudLAiCsDfT06IvGjUPX48rA7rvAdGO1cLP3RVmdrKbdctrTCZXsu0+1E+3WXX0eEW+3PS6lYQPUzs2y93W27bTbefalsUguAVBEOaTnhZ9HP2h7PVgs3nIdfpB2M4DyraMhltsnldcH7XvJ3Bs+jOVPnHbx8aSM9/ixORWtB1T0IQPmzZtra227XSjSPISqm4/Imyt0YIgCHs7i0b0BYk9azVofT5pJaOyle2D7K/H53kJOpPI1h/afuJjISw5bmN069/GFd2tYqQbx9VK/OF8xYwKgiD0Oj0t+mKxGABvK1G7Dzabh74NQR9KYTyQw3Tzmiwtbm5ct8/DJPK6zZXrJlD19W7LuJU0qKgVzJi+yyLyBEEQgrMoRJ8bfg/dMISY34O7FfEZ1gPNTaR6CS1dyJnG73Ye/ASTbcxZJ2jFomkSc7wtN3GrJ4C06i5vddtW6VYh5fXZtZr0IwiCsDfS06IvmUyq1yark9trTrc9TPUYsjDwEiduMWoma5VJ+PDXukD0sui5Wf70Mdoss8FP7Nrs7+X2dUscCuv6CjruTl3X7Zz/VvezTVwS8ScIguBNT4s+svS5JRCYEgmCxJR5YeuyCyo0whR8Nu7FdvpzE3umtr1iLv3cwW59BKWd5Aq9bzerpW7d4/3Ol2BqdXubc9vq+W/1O+B2jYprXBAEITg9L/q4qLN1TQYJ1HfDK3jcT0x1q1uT0K1UbsdjEj50XvQ23ATXQlqwwhDjbq5bt31b+TyC7rOQPzRaxXTNeG2j022xoYIgCN1IT4u+RCLRJDQIv5grHa/t/fCy+Cw0ftYltwQNWsf/mzBZ79zcxbqA9BPbbpZBP2zEmY0o9/v8/OIaqR03t283Mp9jc7tOvLCJRRUEQRDc6WnR5+beJUzCJWyLgK2w9Nun05iSEGwFUqvYPohbcQsH7bMTSSQ2lst2Xbudws1Ky993csx+Ltug502sfIIgCP70tOiLx92nDvZy6Zqwfbi4uYb9xrBQ2IzRFO8YFC9LHl/ears22FrwwhYzfkkp83EdeB1XK2NyuybmS7y28qOj24S1IAhCt7EoRZ8eH+SWLNAKQR9Cttt32rLiFlvHl3lZLU3xkq0kDPiJiHYTHoIIHDeroq3Y8AsL4O3YhhCYXMRBrV2tuk5NfflZWufTkmmy3IvQEwRBsMfdVNYD+NXp80IXOWFaY7jVa6HcU2H1HVS0AO6uTi+XXruWRj9Mgmg+rVim5BibMXTCSuj1Y8QUaxlEAHcCr+9qL8RKCoIgdAs9LfoSiUTL+3byIdUNbl2vRIxOCVx6b3rdDcyXMPALAfASXGGM0TbswOSWNiWfBOkriFD0wytOspuuK0EQhF6hp9270ajd8PnDNAxXVDvux3b2D4qbpS3M/lvNstUJa0ytJNa00q5fVrOX69ht/yCZ0kHX++1jMz4/SIyFKfj09/P9HRIEQVhM9LTo4zNymOKnTISRUNDuQ20+XJmtip9WxmXjKmwV23g8wkt42I7HTbC10paJMK+lMAjLGhzmsejC2ebz6IZzKQiC0M30tOizjenT3VhuVpZ2LC02bXUqhtCtfy83mNuxdtOD028sunjiGad6NnHQvvTYv05YR4PE74WRfe5mJTPF8bXaRxi4xV3qInChMosFQRB6lUUj+oI+mE0PFi+B5Odemo8AfD9sLFSm7WzphKXQL77Ntj1d6HmtN/Vtim8LAz+rHrdMtnN+bYWtX6ynTVJPEPzcsX7rg1wH3fSDRRAEoRvpadHH3bucdl2UbpmWtvvrbc2nhcRWOAQRU4TJGuYmpPR1fjFaXv0GXe/VLx+n7TkIIib8rHVu59P2WgvLZd5pgcSPx2Rx1o83aDiCV5uCIAiCmZ4WfV7uXe7us7HgmESILuRMwqUV8eS1rFvQH8puAq8Va2KnRIeXldM2zjNsF7zenpe1bz7Qvwt+Fut2Ejr0PoOOUf/O+VlNxdInCILgTU+XbPGakaMVV5n+sPJ7GLcSKxZ0/3YwuQ7bcWG6WW1MfZr2tW2/lTG59eXmOrUR4UHG4jZ2rx8R/H+rPwBaEYxe4imIWG51PEHGbBtvKAiCIPjT05a+eDzekgWtVbFlekDzpAnTOLzWtzMG221s3azt9B/U2hnUpetlMdRf8/NtmzDh9/m089n5WZvdYuuCtO+G17g79YOjVZHWijs/DKukIAjC3kRPi75YLNaS6yhILJeXcAtiCfSKGQxCO8H+fH3Q2LEgx+kmolqx5AHm8ZrclG7ud794uXYFELeA2vzg0C1t3CLb6rjaCTOYb7wswUHEnf79FARBELzpadGnz8hhEwzvFxfklwTgFvtl88D3Cl5fqIdWp2Lr3I6t1fguHb8HvR6npwuFVsbjNRb+3w2v+LR2Yz5tXepen40brY6NH5etJdUvOcPPaisIgiC409Oijyx9ujvPRJAHl5t4DCLWTKLELykiLFpJomin/1bd6UGC/Vtxg7YixsLYzm1fG9E431arVuLvWonJ8zt2t/d8f5OrXCx8giAI9iwK0eclcohWLTp+AsrvvY21JQi2Yo67DG36ajdurRX8rKpey4O0Dcy19unuxE5ajHSRZOvKDeO8Bt1eF8o24wrj2vG6FkwxqiL2BEEQgtPToi+RSFgnNtgKQ78g/6BuKlOsV7sWI7fl/IHdDa7jTmNrYXSzNvHrQv/swra86oQRm+nVXxBhZLK42l4/tjF4+vXZqjAVd64gCELr9LToi0b9h28bV0TrbWLF3N67BaO3I/jCECAmS0mnaOfB7obu4nPbxiTu/Vz+pnEuhCUp7P5sr5kw+vWzmpoEpC5M/T4zN0ut2/aCIAjCXHpa9Nlk79oKPsLmgWVq36sNvixoIH2rAsRtnzBEpNc5tRFobrhZZFt1Awe1UM0XQa/JVrGJfbO5Fm3DA2zcvm6ubf0z1i2DfDu3H1Ui/gRBELzpadGXTCatrH1B4Q8X0wOFrwsa32QTM9XqmE3t6eMMKo5M6/1c4K3idV5tx+l1vKZz7+X6X0gREXbffi5ft3PO1/PXpnACvX09xMFrXH7n3yvMwuvaFgRBEPbQlmL69Kc/jUgkgve9731qWblcxvr167FkyRLk83mcccYZ2Lp1a9N+mzdvxqmnnopsNovly5fjwgsvRL1eDz74Dgg+04ORCyo/65FN3CD/Hza6mLQRe7oL3E/k6cvDjoEztc/78RJpfJ2b1TbIeN0sUza0IrCDbmeD23h14RQkrMEPkygzWR5trLG21vywWej7myAIQti0rJruvvtufP3rX8fhhx/etPz9738/fvazn+H666/HHXfcgWeffRann366Wj87O4tTTz0V1WoVf/jDH/Cd73wH11xzDS6++OLAY4jH4x21xugPKb+H+EJai9zGpo8vTAHX6dhAXRj4xQt6WbH0fU1/bvu5uRP96AZ3YxArrJc49DpPtI0uuP365dv7jXO+z2U33N8EQRDCpiXRNzMzgzPPPBP/+q//iqGhIbV8cnIS3/zmN/HFL34RJ554Io466ih8+9vfxh/+8AfceeedAID//M//xEMPPYTvfe97OPLII3HKKafgn/7pn/DVr34V1Wo10Dh00ReWm5G3p+MWc2YbNzUfeFkT/USq1/Zey+YLm779Po+FJkhMZ1iYXN6mHzWmc+dlVfXaxjSGoAJ6IT7Lbrm/CYIghE1Lom/9+vU49dRTsWbNmqblGzduRK1Wa1p+yCGHYNWqVdiwYQMAYMOGDTjssMMwMjKitlm7di2mpqbw4IMPGvurVCqYmppq+gPmJnL4WamCiC/bB5pbn6YYKC/Cfqj5PWBtrDd+uB13N4rCVoV3u/F+bp+Dn4s6LLjL281danKZ22xjM17bcIhusIoS831/A9zvcYIgCGESD7rDD3/4Q9x77724++6756wbGxtDMpnE4OBg0/KRkRGMjY2pbfgNkdbTOhOXXXYZLr300rmD/3+WPr/YHx5obotbcLqN5UsPcHfrWx+XbQxTmHiNzTQWv7hF27hH288jrCD9IOLDZAkL0h6nlesuTPTPy+sHikmA+X3ebm2Y1vEx6N+Rdo87jDaAhbm/Ae73OEEQhDAJZOl76qmncP755+P73/8+0ul0p8Y0h4suugiTk5Pq76mnngKw29LHCdvKY+tK9OonqOUrDMFnMya/PtuxcLXqNnbbrlOWQzeRE3bfNokUXtu127ffjwm35Bf9x0iQcZpi/GwEfCe/q34s1P0NcL/HCYIghEkg0bdx40Zs27YNL3nJSxCPxxGPx3HHHXfgK1/5CuLxOEZGRlCtVjExMdG039atW7FixQoAwIoVK+Zku9F72kYnlUqhv7+/6Q/ofCJHEEwPV7fYP76P6XWr/fPXrbji3Gg17qpbY+rmCy8rscmC5hZD2i5+bXiJO5tEC7d4Qb4PX+523GFZ61ploe5vgPs9ThAEIUwCib6TTjoJDzzwAO677z71d/TRR+PMM89UrxOJBG655Ra1z6OPPorNmzdjdHQUADA6OooHHngA27ZtU9vcfPPN6O/vx+rVqwMNPh6Pq7ItttYUW0yCyQbTg85mTGG6L4OKMD7eVoSHyTVq2m8hH+hBxFMr43Rzg5uEvZsgD2ssbrhdm0F+pHhd27pI1H988PaCWgBtj68duu3+JgiCEDaBYvr6+vpw6KGHNi3L5XJYsmSJWn7WWWfhggsuwPDwMPr7+3HeeedhdHQUxx13HADg5JNPxurVq/G2t70Nn/3sZzE2NoaPfvSjWL9+PVKpVKDBk3vXL8asFYJarYI+cEwut05YLW2OoxV3rF/wfquuYdsYsqAEEdphWEP94uLm2yrqZ4X2wusatQ2B8BKMYR17u5bCbru/CYIghE3gRA4/vvSlLyEajeKMM85ApVLB2rVr8bWvfU2tj8ViuOmmm3DOOedgdHQUuVwO69atwyc+8YnAfemJHIBdvJCNsDAFwPu554JCbS6ki9ov/o9vYztek6uP3rt9BibLWLsslLvQ5tpxWxdkmddy03a2Y/b6jN3W2ViRvda3ynx/f+bz/iYIghA2EacHA6+mpqYwMDCAb33rW/jgBz+IycnJeUuW6ISQsBFTQR5uXmN0S1pwc0+2Yhn0SxzQtwnzwc3bauWz6qRQNIk9UyyoKUYuzDG4iTab5X5j8zt/bscdxnE6joNGo4HJycmej4mje5wgCAKn3ftbT8+9a7L0ecVNhUEYDye3RAu/fWzxGqNNvB+3ztjEnpmsUraCj/67xRMGxc2t7DYek7uzU5Yj/rmbzrFJ/IWJ3peflVe30un/TdexV5tuYrwHf3cKgiD0JKG7d+cTr+xd2wdJK1amoPu4WTK4xSOI67kT2FoHiXbG6WZVDBs/16JpXZgCJKh1lu8TthWM96G/5uiWUr5cH4+fRdckMhcylEEQBGFvp6ctfdFo1Cqw3GSNcHtg2cQE+i3TcbN+uMVuLQStuHFpP/3BzkWBm9gNMp5usgQFHbsbbhYyk+AyvW8H22vc9rPTr28/93onPs+wLMWCIAiLmZ4WfZFIBPG4vbEySDC723q3ZUHdr7rlY74ejhw/V7jJCubmBuZtelmKvFyMprHprzuFrWiwGYubcNP7s2nPxloZFFth14qVURf9eh9hHYfeT6fCOQRBEBYTPS36AAQSfbb4PZjaebj4uRP94qzCxi/Wjcbk9+BuRZyEdXxBBKLX+vkUDW7JEbb7tIpuhbUJjwjygySo5bsdbMS1IAiCsIeejumLRqNzpmIzocdJ8eXA3DglP0uIjVXMDz1uS19u+h82XrGEbsdtI0rdzoXpHIcpZLz6tl3f7jj84hX1z9y03i0EwOYz8cPtunM7Hr+29G3FxSoIgtC99LylL5lMWm3HH3S64PCL7+NZimFlVvoJIz6eTloyTFY8vzhDN3EYJC6wXZef1z6trmtnW8A+5pOEl1fsY6d+bFA7bte6X2yhvk+r/dvAwyDcwgo64ToWBEFYrPS86KNp2ILgZWnSLSFBY/yCYBKQYT3Yg7ThJX65G9AtVsvrwesnnFu1YtpkjNrSjqsyKLoVz9baNl9xjRxbK6Lfj4Qw0IWyqX9x8wqCIHjT0+7dSCSiLH22D3svCwoPCDe5Pm3cd+2OxUSQtmxi9GzGoT/w3QSBreXTVli1+wBvJaYvTAHJ9/Ubj411z2Zdu7j96Gi1z7Bj9kzvOxXyIAiCsJjpeUsfJXIEjW1yi0HysyYQnUoICCKk9H3CtJi5bevlGnRrz0bwteoq7ARhjMVLSPoJlm45D+0Stijz+s6alguCIAjN9Lzo4+5dGytPK3F5XtazdoSWl3ji61uNm2sVN2Gix6GZxhP0wesV2xhE9Nr0H+TzbvWz1dtxa9vvdauEJXy8QiA6PRY9ls903el9iOATBEHwp+dFXyqVarsNr7izTmCyjOnCxc0C2U4iiY0FU1/nZ9kD7EummESEbqEN6hYP0wLbSvya1zLbhANTvFqn3Num8bkt77Sg0gVdkL6CuOkFQRCE3fS06ItEIlYlWwjTQ8a0jWkf6i9Mq5LtWExxVp1w5boJPL8+g1rkeIykblHU+3Kz8njtaxq7zbi9jt1rG78kAy/rspfA7yRelkW/95wwxhm2JV0QBEEw09OiDwASiUQo7Xi5kAB3K5Ub7VicTA873r/J7TUftGoJ89suiAXSTeiZPjuelGPCa51pfLYi0Gs93053oZo+c6/17RD0h48b7YypHcurm1gWBEEQ3Olp0ReJBJuGza2NVjI+W8VGqLltw0VKpywgXoK3m/ASSbbnmPaxwc3ay/vm23pZ97yuOT+rYFh4WUjnK8RBF/Bu2wmCIAjh0NMlW4DW6vRxbCw9buv93J1ursBWsW231X78hKbpPV/u1oYbprbc2jcJIK9EA1M7rXzW/LjcznEQS6XXWN3iOzuJ/tny5X7W6nbGZiOe3cYpCIIgtEZPW/qA5hk5OvVg0N2pXu4+L8KynPj1G2YSQBDhFPT8e8Useo3NNi7Oqw19Gy/3vdvnbXvMukveDS/rY6csvLpl0S/MQR+PH17HHNTKKgiCILRHT1v6wnDvBukLcLeMmLY10YpVbr4eeu1a6TrZr631z2t/PS6S70Pr3drUrXF6m6Zt/capX1N+CRTcJRr2NdGKpdYN/by4idggllNBEAShfXre0scTOeYj9swt1slLgHgJxXYE33zEXrmxkA9mL7eu27aAOdmDY2sd1OPRTNYst3hDv8QPvr2b1a3Vc+8nnIO4qfl6t/3czrduOfU7d4IgCEI49LToI0ufyWoTNl5uKr/+bB/0QdrgY7Jxd+p9tyKAugGTlc60DWEjmt2wccf6CR59mZ8F0Ga7VvFKEGnVBeuXdWxqw++cC4IgCJ2hp0UfAMRisTlCwNZS0Gqyg1eMVytt2z7o9AepKR6Lr3MbN2+rFRf1QtKqK9htuyDbhk0QMRRW/JuXG7UTn7mtAOfrRfgJgiB0hp6P6aNEjm4TKV7iM4zMWnkwdoZOxMu1MgbCRgjxMdtY5tz2038UmNo0XYdBspgX+twKgiDszSwKSx8R9IHSiWB4W3erm2s2yLhMlpogrrvFhF/igC1Bz1UQkaUvs7V8dQo/VzN/7RcyYLoW/SyXQWIzBUEQhPbpedFH2bs2LtcwH6LtJlDYlA8J2oaprW4lrAe9SUDN1/HbWAVN47KNt7SlWz5vU7KK3zUqgk8QBGH+WBSiz+vBEpYFyNS2zTKvvsO2dpisM25jWGih0G7/3VDeI6hw8bL6LQRhjKedHz9+FkRBEAQhXHpe9HH3LtEtbqMgcVbz8eALYkkKMp5ObRuknfk4f50QbQuVPR2031avHRF0giAI3UPPi75EImE9FVvYVgXbB6CbRUN/kHbK6tGKMAmyT5DM0k4J8fkQ+G7W3U4Jm07UYGxnrHrShu31u1C1JAVBEIRmel70UckWjpfbqJNWNRtLkF5aRf/f7sMxrIdrp8Rnt1p+unVcreJW11H/H+SaM5UMcutPF4WL7fwKgiD0IotS9HEWMm6onZIt7YzX9AA2ubyDxiAGxU10dyMLPa4gNfvc8HOr2tRvtB2f7br5QASlIAiCHT1dpw/Y7d61eeiY6pN12nXWatwUYDc9m5c1R0900P/Px4NaF5hBC1YvtJiYT8KIUQxqsaNz3K5oEtElCILQG/S8pS8ajVpbzlopizJftJI16YVf9m634SUcOmWpNSUn7A0Cxi28wG1brzJI84Fff918XQuCIHQTPS/6bC19RLeUidBrmvklefhh46r1K+nSSYLWawvD3Untux1nt2R5t0orWdOma8BGVLnF781HlnGvfj6CIAjdRs+LPr+YPhPznU1oW7BWJ4jLz89aY9PXfIlAG4trmFbZxSoaOpFh7bXfQvxo8OpfEARBCMZeKfpsH1h+LsdW+/Mq42Kzvz6GMB6ArQjhVh78ftuHLSbadZsvNnHR7g+eTp6PIG7cbio0LgiC0Cv0vOgL6t4l2rEgzJfLydat1umZRtyg8fmJUtN+Xm2GMbawWKxWwlbx++zm63x1c3yuIAhCt9Lzos9rGjYv9FplJtysPp2qN+dXTiNMy57eh15XzW8fjtvDvtUZLKSYbzOdOBedsKYGjQ20ISxruyAIgrAIRF9Q965brTL+n157Zb926kFsk5Wrv++0S9R0HoK6qIMi8VsLT5DP1kb4+bXn9iPB67sY5MeKIAjC3k7P1+kLaulzExNccOkZpfo6r+LHXv22UpTZbQym9Z1wO7tZRDstelu1Ei5Gwrbs2uKW9d1Om0Gha8J0fZsyvEX4CYIguLPXWfq84FYDP5Hntr8bNi5k/bVN7Fu7ljYvayYfR6su9FZEhu1yIThupXC8ygfx9TbXQ5iJIqbvRyvfP0EQBGERiD5bS5+bBcnPoqQnT/DkBU4rCRA2lgmbJAn92IJkBfuVTGnnOGlM8jDuLvj1wj9n/QePbTs6nY53DesHjyAIwt5GINH38Y9/fM6v/UMOOUStL5fLWL9+PZYsWYJ8Po8zzjgDW7dubWpj8+bNOPXUU5HNZrF8+XJceOGFqNfrLR+An+gzWexaLffgZ5WzFThusXBBH7pBtzX15TY2U/tB3cdertpWxjbfbSwk83ENBN03aBxnK+My7WNrQQ/DItyN9zhBEISwCBzT96IXvQi/+c1v9jQQ39PE+9//fvz85z/H9ddfj4GBAZx77rk4/fTT8fvf/x4AMDs7i1NPPRUrVqzAH/7wB2zZsgVvf/vbkUgk8M///M8tHYCfe9cUj+Qn0IKKHh535LWdLV7j8sqUDSIau9kCF8TS5HYM7Qqh+Tw3QSzH7VqZTdv7Ha/JkmyyFraD17Xr950L2/3fbfc4QRCEsAgs+uLxOFasWDFn+eTkJL75zW/iuuuuw4knnggA+Pa3v40XvvCFuPPOO3HcccfhP//zP/HQQw/hN7/5DUZGRnDkkUfin/7pn/DhD38YH//4x5FMJgMfQCt1+vgDxvSaMAk+U1KHaXlYdKJNvW19WdiJA52KyeuUMJtvMaxfg16feRjXmb6/bi1zS3DS9/frI4x4Tr8xdOLa6rZ7nCAIQlgEjul77LHHsHLlShx44IE488wzsXnzZgDAxo0bUavVsGbNGrXtIYccglWrVmHDhg0AgA0bNuCwww7DyMiI2mbt2rWYmprCgw8+6NpnpVLB1NRU0586gGi0bauOHsxuK4ZomW1ma6fdlm5jb9cdp4sSt3g/036dEnxBsbUg2bbRqeMy/aDQ+zJ9nu24Ur2yc72uifmKqfO6pjsxjm67xwmCIIRFINF37LHH4pprrsGvfvUrXHnllXjiiSfwile8AtPT0xgbG0MymcTg4GDTPiMjIxgbGwMAjI2NNd0MaT2tc+Oyyy7DwMCA+nvOc56j1kUiESQSCeN+fg9Ck5vMz83kZiUJM8ZJtzDaiCv9ve5qtunbrS9T/KIN3SL4CJN48lqv0wlXsql9blXWQxLCwit203acJsKyTLtZOfXz4fVDrRW68R4nCIIQFoHcu6eccop6ffjhh+PYY4/F/vvvj3/7t39DJpMJfXDERRddhAsuuEC9n5qaaropuok+26QK0zJdeBHz4RIN2qaX+61VC5DJgunXbzdjey3YihYv61gruPVrG7cWdAxelusgbZjGEMb3weZ7psfShkG33uMEQRDCoK3izIODg3j+85+Pxx9/HK9+9atRrVYxMTHR9Et469atKj5mxYoV+OMf/9jUBmW+mWJoiFQqhVQq5bo+Fou1cRTBcLOcecVJ2aJbd4TO4Be/6bcv4SY63GJFvYSd6b2pL5MIdLPO+l1HXqLNrV23cZna49vTOgrHiEQiiEajTctoW1pOr01WvUQigUQigWg0imQyqbL477//fs9jDkq33OMEQRDCoC3RNzMzg7/+9a9429vehqOOOgqJRAK33HILzjjjDADAo48+is2bN2N0dBQAMDo6ik996lPYtm0bli9fDgC4+eab0d/fj9WrV7c0Bi/3bquYBJyXRdDvwRckts3mYe1neWxXeLa6byt9BbVm2goZN2HlJdDcEhv4OtNnza8Bt2vGyxrrtlwXerolkgsp2tfrz20bvjwajSIejyMWiyEejyORSCAWiyGRSCAej1st46/5f2qTt8//qG9aT6KO+qHX/EceP1/FYlHde8KiG+5xgiAIYRFI9H3wgx/E61//euy///549tlncckllyAWi+Gtb30rBgYGcNZZZ+GCCy7A8PAw+vv7cd5552F0dBTHHXccAODkk0/G6tWr8ba3vQ2f/exnMTY2ho9+9KNYv359W79yeUmFVjC5jfTlJtHgZvEwtW+DX6yUrZgLQ7B1MgnDTex5iUC3DE5TPKOX8LY9d/p/3eJE63ThRf/5ev5H4ocLJtOfm6DS/3NB5CWYSGTpwosLMtqHH4dJALeybD5o9z4AdO89ThAEIQwC3SWffvppvPWtb8XOnTuxbNkyvPzlL8edd96JZcuWAQC+9KUvIRqN4owzzkClUsHatWvxta99Te0fi8Vw00034ZxzzsHo6ChyuRzWrVuHT3ziE4EGTQ/6YrGIWq3WdlyPl9Dw2sbkZmtHLHm522wzZoNaz2yOPUwikQgajcacPvhyvoxvZxJ4HBI0yWRSuf24eOLLSUzxZXwdF15ugkm3VnFLlNsyk/D0Elj8tUlshg19Bvpn0QsUi0UA7V273XaPEwRB4LQdL+304N3lv//7v/G85z1voYchCEIX8tRTT2G//fZb6GG0hdzjBEEw0e79rX1/yAIwPDwMYPd0RwMDAws8mvagLL2nnnoK/f39Cz2ctlhMxwIsruPZG47FcRxMT09j5cqVCzi6cJB7XHcix9Kd7A3HEtb9rSdFH7nDBgYGev4DJvr7++VYupTFdDyL/Vh6XSARco/rbuRYupPFfixh3N8Cz8ghCIIgCIIg9B4i+gRBEARBEPYCelL0pVIpXHLJJYuiBIIcS/eymI5HjqW3WEzHKMfSncixdCedPpaezN4VBEEQBEEQgtGTlj5BEARBEAQhGCL6BEEQBEEQ9gJE9AmCIAiCIOwFiOgTBEEQBEHYC+hJ0ffVr34Vz33uc5FOp3Hsscfij3/840IPaQ6//e1v8frXvx4rV65EJBLBT3/606b1juPg4osvxj777INMJoM1a9bgsccea9pm165dOPPMM9Hf34/BwUGcddZZmJmZmcejAC677DK89KUvRV9fH5YvX47TTjsNjz76aNM25XIZ69evx5IlS5DP53HGGWdg69atTdts3rwZp556KrLZLJYvX44LL7wQ9Xp9Pg8FV155JQ4//HBV9HJ0dBS//OUve+44THz6059GJBLB+973PrWsl47n4x//uJpTmP4OOeQQtb6XjqVd5P42v8g9rvuOw0Qv3+O66v7m9Bg//OEPnWQy6XzrW99yHnzwQefd7363Mzg46GzdunWhh9bEL37xC+f/+//+P+cnP/mJA8C58cYbm9Z/+tOfdgYGBpyf/vSnzv333+/83d/9nXPAAQc4pVJJbfOa17zGOeKII5w777zT+a//+i/noIMOct761rfO63GsXbvW+fa3v+1s2rTJue+++5zXvva1zqpVq5yZmRm1zdlnn+085znPcW655RbnnnvucY477jjnZS97mVpfr9edQw891FmzZo3zpz/9yfnFL37hLF261Lnooovm9Vj+4z/+w/n5z3/u/OUvf3EeffRR5x//8R+dRCLhbNq0qaeOQ+ePf/yj89znPtc5/PDDnfPPP18t76XjueSSS5wXvehFzpYtW9Tf9u3be/JY2kHub/N7f3Mcucd143Ho9Po9rpvubz0n+o455hhn/fr16v3s7KyzcuVK57LLLlvAUXmj3xQbjYazYsUK53Of+5xaNjEx4aRSKecHP/iB4ziO89BDDzkAnLvvvltt88tf/tKJRCLOM888M29j19m2bZsDwLnjjjscx9k97kQi4Vx//fVqm4cfftgB4GzYsMFxnN0PiGg06oyNjaltrrzySqe/v9+pVCrzewAaQ0NDztVXX92zxzE9Pe0cfPDBzs033+yccMIJ6obYa8dzySWXOEcccYRxXa8dSzvI/W1h72+OI/e4bjuOxXCP66b7W0+5d6vVKjZu3Ig1a9aoZdFoFGvWrMGGDRsWcGTBeOKJJzA2NtZ0HAMDAzj22GPVcWzYsAGDg4M4+uij1TZr1qxBNBrFXXfdNe9jJiYnJwHsmRB+48aNqNVqTcdyyCGHYNWqVU3Hcthhh2FkZERts3btWkxNTeHBBx+cx9HvYXZ2Fj/84Q9RKBQwOjras8exfv16nHrqqU3jBnrzc3nsscewcuVKHHjggTjzzDOxefNmAL15LK0g97eFv78Bco/rtuNYLPe4brm/xUM4lnljx44dmJ2dbTpwABgZGcEjjzyyQKMKztjYGAAYj4PWjY2NYfny5U3r4/E4hoeH1TbzTaPRwPve9z4cf/zxOPTQQwHsHmcymcTg4GDTtvqxmI6V1s0nDzzwAEZHR1Eul5HP53HjjTdi9erVuO+++3rqOADghz/8Ie69917cfffdc9b12udy7LHH4pprrsELXvACbNmyBZdeeile8YpXYNOmTT13LK0i97eFvb8Bco/rpuMAFs89rpvubz0l+oSFZf369di0aRN+97vfLfRQWuYFL3gB7rvvPkxOTuKGG27AunXrcMcddyz0sALz1FNP4fzzz8fNN9+MdDq90MNpm1NOOUW9Pvzww3Hsscdi//33x7/9278hk8ks4MiEvQm5x3UPi+ke1033t55y7y5duhSxWGxOVsvWrVuxYsWKBRpVcGisXsexYsUKbNu2rWl9vV7Hrl27FuRYzz33XNx000247bbbsN9++6nlK1asQLVaxcTERNP2+rGYjpXWzSfJZBIHHXQQjjrqKFx22WU44ogj8OUvf7nnjmPjxo3Ytm0bXvKSlyAejyMej+OOO+7AV77yFcTjcYyMjPTU8egMDg7i+c9/Ph5//PGe+2xaRe5vC3d/A+QeR2PtluNYzPe4hby/9ZToSyaTOOqoo3DLLbeoZY1GA7fccgtGR0cXcGTBOOCAA7BixYqm45iamsJdd92ljmN0dBQTExPYuHGj2ubWW29Fo9HAscceO29jdRwH5557Lm688UbceuutOOCAA5rWH3XUUUgkEk3H8uijj2Lz5s1Nx/LAAw803eRvvvlm9Pf3Y/Xq1fNzIC40Gg1UKpWeO46TTjoJDzzwAO677z71d/TRR+PMM89Ur3vpeHRmZmbw17/+Ffvss0/PfTatIve3+b+/AXKP69bjWMz3uAW9vwXNQllofvjDHzqpVMq55pprnIceesh5z3ve4wwODjZltXQD09PTzp/+9CfnT3/6kwPA+eIXv+j86U9/cp588knHcXaXNBgcHHT+/d//3fnzn//svOENbzCWNHjxi1/s3HXXXc7vfvc75+CDD573kgbnnHOOMzAw4Nx+++1N6ebFYlFtc/bZZzurVq1ybr31Vueee+5xRkdHndHRUbWe0s1PPvlk57777nN+9atfOcuWLZv3tPmPfOQjzh133OE88cQTzp///GfnIx/5iBOJRJz//M//7KnjcINntjlObx3PBz7wAef22293nnjiCef3v/+9s2bNGmfp0qXOtm3beu5Y2kHub/NfskXucd13HG706j2um+5vPSf6HMdxrrjiCmfVqlVOMpl0jjnmGOfOO+9c6CHN4bbbbnMAzPlbt26d4zi7yxp87GMfc0ZGRpxUKuWcdNJJzqOPPtrUxs6dO523vvWtTj6fd/r7+513vvOdzvT09Lweh+kYADjf/va31TalUsl573vf6wwNDTnZbNZ54xvf6GzZsqWpnb/97W/OKaec4mQyGWfp0qXOBz7wAadWq83rsbzrXe9y9t9/fyeZTDrLli1zTjrpJHUz7KXjcEO/IfbS8bz5zW929tlnHyeZTDr77ruv8+Y3v9l5/PHH1fpeOpZ2kfvb/CL3uO47Djd69R7XTfe3iOM4TjDboCAIgiAIgtBr9FRMnyAIgiAIgtAaIvoEQRAEQRD2AkT0CYIgCIIg7AWI6BMEQRAEQdgLENEnCIIgCIKwFyCiTxAEQRAEYS9ARJ8gCIIgCMJegIg+QRAEQRCEvQARfYIgCIIgCHsBIvoEQRAEQRD2AkT0CYIgCIIg7AWI6BMEQRAEQdgL+P8BqWRdOriGcVgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 트랜스폼 잘 구현되었는지 확인\n", + "transform = transforms.Compose([Normalization(mean=0.5, std=0.5), RandomFlip(), Rotate(angle_range=(-90, 90)), ToTensor()])\n", + "\n", + "dir_img = 'C:/Users/pinb/Desktop/imgs'\n", + "dir_mask = 'C:/Users/pinb/Desktop/masks'\n", + "train_set, val_set, test_set = create_datasets(img_dir=dir_img, mask_dir=dir_mask, transform=transform)\n", + "\n", + "\n", + "data = train_set.__getitem__(12599) # 한 이미지 불러오기\n", + "input = data['input']\n", + "label = data['label']\n", + "\n", + "# 불러온 이미지 시각화\n", + "plt.subplot(122)\n", + "plt.hist(label.flatten(), bins=20)\n", + "plt.title('label')\n", + "\n", + "plt.subplot(121)\n", + "plt.hist(input.flatten(), bins=20)\n", + "plt.title('input')\n", + "\n", + "# 이미지 시각화\n", + "plt.subplot(121)\n", + "plt.imshow(input.squeeze(), cmap='gray')\n", + "plt.title('Input Image')\n", + "\n", + "plt.subplot(122)\n", + "plt.imshow(label.squeeze(), cmap='gray')\n", + "plt.title('Label')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model Network (Origin)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "## 라이브러리 불러오기\n", + "import os\n", + "import numpy as np\n", + "\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch.utils.data import DataLoader\n", + "from torch.utils.tensorboard import SummaryWriter\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "## 네트워크 구축하기\n", + "class UNet(nn.Module):\n", + " def __init__(self):\n", + " super(UNet, self).__init__()\n", + "\n", + " # Convolution + BatchNormalization + Relu 정의하기\n", + " def CBR2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True): \n", + " layers = []\n", + " layers += [nn.Conv2d(in_channels=in_channels, out_channels=out_channels,\n", + " kernel_size=kernel_size, stride=stride, padding=padding,\n", + " bias=bias)]\n", + " layers += [nn.BatchNorm2d(num_features=out_channels)]\n", + " layers += [nn.ReLU()]\n", + "\n", + " cbr = nn.Sequential(*layers)\n", + "\n", + " return cbr\n", + "\n", + " # 수축 경로(Contracting path)\n", + " self.enc1_1 = CBR2d(in_channels=1, out_channels=64)\n", + " self.enc1_2 = CBR2d(in_channels=64, out_channels=64)\n", + "\n", + " self.pool1 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc2_1 = CBR2d(in_channels=64, out_channels=128)\n", + " self.enc2_2 = CBR2d(in_channels=128, out_channels=128)\n", + "\n", + " self.pool2 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc3_1 = CBR2d(in_channels=128, out_channels=256)\n", + " self.enc3_2 = CBR2d(in_channels=256, out_channels=256)\n", + "\n", + " self.pool3 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc4_1 = CBR2d(in_channels=256, out_channels=512)\n", + " self.enc4_2 = CBR2d(in_channels=512, out_channels=512)\n", + "\n", + " self.pool4 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc5_1 = CBR2d(in_channels=512, out_channels=1024)\n", + "\n", + " # 확장 경로(Expansive path)\n", + " self.dec5_1 = CBR2d(in_channels=1024, out_channels=512)\n", + "\n", + " self.unpool4 = nn.ConvTranspose2d(in_channels=512, out_channels=512,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec4_2 = CBR2d(in_channels=2 * 512, out_channels=512)\n", + " self.dec4_1 = CBR2d(in_channels=512, out_channels=256)\n", + "\n", + " self.unpool3 = nn.ConvTranspose2d(in_channels=256, out_channels=256,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec3_2 = CBR2d(in_channels=2 * 256, out_channels=256)\n", + " self.dec3_1 = CBR2d(in_channels=256, out_channels=128)\n", + "\n", + " self.unpool2 = nn.ConvTranspose2d(in_channels=128, out_channels=128,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec2_2 = CBR2d(in_channels=2 * 128, out_channels=128)\n", + " self.dec2_1 = CBR2d(in_channels=128, out_channels=64)\n", + "\n", + " self.unpool1 = nn.ConvTranspose2d(in_channels=64, out_channels=64,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec1_2 = CBR2d(in_channels=2 * 64, out_channels=64)\n", + " self.dec1_1 = CBR2d(in_channels=64, out_channels=64)\n", + "\n", + " self.fc = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0, bias=True)\n", + " \n", + " # forward 함수 정의하기\n", + " def forward(self, x):\n", + " enc1_1 = self.enc1_1(x)\n", + " enc1_2 = self.enc1_2(enc1_1)\n", + " pool1 = self.pool1(enc1_2)\n", + "\n", + " enc2_1 = self.enc2_1(pool1)\n", + " enc2_2 = self.enc2_2(enc2_1)\n", + " pool2 = self.pool2(enc2_2)\n", + "\n", + " enc3_1 = self.enc3_1(pool2)\n", + " enc3_2 = self.enc3_2(enc3_1)\n", + " pool3 = self.pool3(enc3_2)\n", + "\n", + " enc4_1 = self.enc4_1(pool3)\n", + " enc4_2 = self.enc4_2(enc4_1)\n", + " pool4 = self.pool4(enc4_2)\n", + "\n", + " enc5_1 = self.enc5_1(pool4)\n", + "\n", + " dec5_1 = self.dec5_1(enc5_1)\n", + "\n", + " unpool4 = self.unpool4(dec5_1)\n", + " cat4 = torch.cat((unpool4, enc4_2), dim=1)\n", + " dec4_2 = self.dec4_2(cat4)\n", + " dec4_1 = self.dec4_1(dec4_2)\n", + "\n", + " unpool3 = self.unpool3(dec4_1)\n", + " cat3 = torch.cat((unpool3, enc3_2), dim=1)\n", + " dec3_2 = self.dec3_2(cat3)\n", + " dec3_1 = self.dec3_1(dec3_2)\n", + "\n", + " unpool2 = self.unpool2(dec3_1)\n", + " cat2 = torch.cat((unpool2, enc2_2), dim=1)\n", + " dec2_2 = self.dec2_2(cat2)\n", + " dec2_1 = self.dec2_1(dec2_2)\n", + "\n", + " unpool1 = self.unpool1(dec2_1)\n", + " cat1 = torch.cat((unpool1, enc1_2), dim=1)\n", + " dec1_2 = self.dec1_2(cat1)\n", + " dec1_1 = self.dec1_1(dec1_2)\n", + "\n", + " x = self.fc(dec1_1)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model Network (Mini)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "## 라이브러리 불러오기\n", + "import os\n", + "import numpy as np\n", + "\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch.utils.data import DataLoader\n", + "from torch.utils.tensorboard import SummaryWriter\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "## 네트워크 구축하기\n", + "class UNet(nn.Module):\n", + " def __init__(self):\n", + " super(UNet, self).__init__()\n", + "\n", + " # Convolution + BatchNormalization + Relu 정의하기\n", + " def CBR2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True): \n", + " layers = []\n", + " layers += [nn.Conv2d(in_channels=in_channels, out_channels=out_channels,\n", + " kernel_size=kernel_size, stride=stride, padding=padding,\n", + " bias=bias)]\n", + " layers += [nn.BatchNorm2d(num_features=out_channels)]\n", + " layers += [nn.ReLU()]\n", + "\n", + " cbr = nn.Sequential(*layers)\n", + "\n", + " return cbr\n", + "\n", + " # 수축 경로(Contracting path)\n", + " self.enc1_1 = CBR2d(in_channels=1, out_channels=64)\n", + " self.pool1 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc2_1 = CBR2d(in_channels=64, out_channels=128)\n", + " self.pool2 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc3_1 = CBR2d(in_channels=128, out_channels=256)\n", + " self.pool3 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc4_1 = CBR2d(in_channels=256, out_channels=512)\n", + " self.pool4 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc5_1 = CBR2d(in_channels=512, out_channels=1024)\n", + "\n", + " # 확장 경로(Expansive path)의 깊이 감소\n", + " self.dec5_1 = CBR2d(in_channels=1024, out_channels=512)\n", + " self.unpool4 = nn.ConvTranspose2d(in_channels=512, out_channels=512, kernel_size=2, stride=2)\n", + "\n", + " self.dec4_1 = CBR2d(in_channels=512 + 512, out_channels=256)\n", + " self.unpool3 = nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=2, stride=2)\n", + "\n", + " self.dec3_1 = CBR2d(in_channels=256 + 256, out_channels=128)\n", + " self.unpool2 = nn.ConvTranspose2d(in_channels=128, out_channels=128, kernel_size=2, stride=2)\n", + "\n", + " self.dec2_1 = CBR2d(in_channels=128 + 128, out_channels=64)\n", + " self.unpool1 = nn.ConvTranspose2d(in_channels=64, out_channels=64, kernel_size=2, stride=2)\n", + "\n", + " self.dec1_1 = CBR2d(in_channels=64 + 64, out_channels=64)\n", + " self.fc = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0, bias=True)\n", + " \n", + " # forward 함수 정의하기\n", + " def forward(self, x):\n", + " enc1_1 = self.enc1_1(x)\n", + " pool1 = self.pool1(enc1_1)\n", + "\n", + " enc2_1 = self.enc2_1(pool1)\n", + " pool2 = self.pool2(enc2_1)\n", + "\n", + " enc3_1 = self.enc3_1(pool2)\n", + " pool3 = self.pool3(enc3_1)\n", + "\n", + " enc4_1 = self.enc4_1(pool3)\n", + " pool4 = self.pool4(enc4_1)\n", + "\n", + " enc5_1 = self.enc5_1(pool4)\n", + "\n", + " dec5_1 = self.dec5_1(enc5_1)\n", + "\n", + " unpool4 = self.unpool4(dec5_1)\n", + " cat4 = torch.cat((unpool4, enc4_1), dim=1)\n", + " dec4_1 = self.dec4_1(cat4)\n", + "\n", + " unpool3 = self.unpool3(dec4_1)\n", + " cat3 = torch.cat((unpool3, enc3_1), dim=1)\n", + " dec3_1 = self.dec3_1(cat3)\n", + "\n", + " unpool2 = self.unpool2(dec3_1)\n", + " cat2 = torch.cat((unpool2, enc2_1), dim=1)\n", + " dec2_1 = self.dec2_1(cat2)\n", + "\n", + " unpool1 = self.unpool1(dec2_1)\n", + " cat1 = torch.cat((unpool1, enc1_1), dim=1)\n", + " dec1_1 = self.dec1_1(cat1)\n", + "\n", + " x = self.fc(dec1_1)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load, Save Network" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "## 네트워크 저장하기\n", + "def save(ckpt_dir, net, optim, epoch):\n", + " if not os.path.exists(ckpt_dir):\n", + " os.makedirs(ckpt_dir)\n", + "\n", + " torch.save({'net': net.state_dict(), 'optim': optim.state_dict()},\n", + " \"%s/model_epoch%d.pth\" % (ckpt_dir, epoch))\n", + "\n", + "## 네트워크 불러오기\n", + "def load(ckpt_dir, net, optim):\n", + " if not os.path.exists(ckpt_dir):\n", + " epoch = 0\n", + " return net, optim, epoch\n", + "\n", + " ckpt_lst = os.listdir(ckpt_dir)\n", + " ckpt_lst.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))\n", + "\n", + " dict_model = torch.load('%s/%s' % (ckpt_dir, ckpt_lst[-1]))\n", + "\n", + " net.load_state_dict(dict_model['net'])\n", + " optim.load_state_dict(dict_model['optim'])\n", + " epoch = int(ckpt_lst[-1].split('epoch')[1].split('.pth')[0])\n", + "\n", + " return net, optim, epoch" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Train" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "torch.cuda.empty_cache()\n", + "os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "dir_img = 'C:/Users/pinb/Desktop/imgs'\n", + "dir_mask = 'C:/Users/pinb/Desktop/masks'\n", + "transform = transforms.Compose([Normalization(mean=0.5, std=0.5), RandomFlip(), Rotate(angle_range=(-90, 90)), ToTensor()])\n", + "train_set, val_set, test_set = create_datasets(img_dir=dir_img, mask_dir=dir_mask, transform=transform)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# 훈련 파라미터 설정하기\n", + "lr = 1e-3\n", + "batch_size = 4\n", + "num_epoch = 10\n", + "\n", + "# base_dir = './2nd_Battery/unet'\n", + "# base_dir = './2nd_Battery/unet-mini'\n", + "# base_dir = './2nd_Battery/unet-dice-loss'\n", + "# base_dir = './2nd_Battery/unet-focal-loss'\n", + "# base_dir = './2nd_Battery/unet-sgd'\n", + "# base_dir = './2nd_Battery/unet-rmsprop'\n", + "# base_dir = './2nd_Battery/unet-l1'\n", + "base_dir = './2nd_Battery/unet-l2'\n", + "ckpt_dir = os.path.join(base_dir, \"checkpoint\")\n", + "log_dir = os.path.join(base_dir, \"log\")\n", + "\n", + "# 네트워크 생성하기\n", + "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", + "net = UNet().to(device)\n", + "\n", + "# 손실함수 정의하기\n", + "fn_loss = nn.BCEWithLogitsLoss().to(device)\n", + "\n", + "# Optimizer 설정하기\n", + "optim = torch.optim.Adam(net.parameters(), lr=lr)\n", + "\n", + "# 그 밖에 부수적인 functions 설정하기\n", + "fn_tonumpy = lambda x: x.to('cpu').detach().numpy().transpose(0, 2, 3, 1)\n", + "fn_denorm = lambda x, mean, std: (x * std) + mean\n", + "fn_class = lambda x: 1.0 * (x > 0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(net)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - Dice Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "class DiceLoss(nn.Module):\n", + " def __init__(self, smooth=1e-6):\n", + " super(DiceLoss, self).__init__()\n", + " self.smooth = smooth\n", + "\n", + " def forward(self, preds, targets):\n", + " preds = torch.sigmoid(preds)\n", + " intersection = (preds * targets).sum()\n", + " dice = (2. * intersection + self.smooth) / (preds.sum() + targets.sum() + self.smooth)\n", + " return 1 - dice\n", + "\n", + "fn_loss = DiceLoss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - Focal Loss" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class FocalLoss(nn.Module):\n", + " def __init__(self, alpha=0.8, gamma=2.0):\n", + " super(FocalLoss, self).__init__()\n", + " self.alpha = alpha\n", + " self.gamma = gamma\n", + "\n", + " def forward(self, preds, targets):\n", + " BCE = nn.functional.binary_cross_entropy_with_logits(preds, targets, reduction='none')\n", + " BCE_exp = torch.exp(-BCE)\n", + " focal_loss = self.alpha * (1 - BCE_exp) ** self.gamma * BCE\n", + " return focal_loss.mean()\n", + "\n", + "fn_loss = FocalLoss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - SGD Optimizers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "optim = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - RMSprop Optimizers" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "optim = torch.optim.RMSprop(net.parameters(), lr=lr, alpha=0.9)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - L1 Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "class L1Loss(nn.Module):\n", + " def __init__(self):\n", + " super(L1Loss, self).__init__()\n", + "\n", + " def forward(self, preds, targets):\n", + " return torch.mean(torch.abs(preds - targets))\n", + " \n", + "fn_loss = L1Loss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - L2 Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "class L2Loss(nn.Module):\n", + " def __init__(self):\n", + " super(L2Loss, self).__init__()\n", + "\n", + " def forward(self, preds, targets):\n", + " return torch.mean((preds - targets) ** 2)\n", + " \n", + "fn_loss = L2Loss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Train" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TRAIN: EPOCH 0001 / 0010 | BATCH 0001 / 3410 | LOSS 0.1304\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0002 / 3410 | LOSS 0.1869\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0003 / 3410 | LOSS 0.1842\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0004 / 3410 | LOSS 0.1529\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0005 / 3410 | LOSS 0.1357\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0006 / 3410 | LOSS 0.1222\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0007 / 3410 | LOSS 0.1111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0008 / 3410 | LOSS 0.1027\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0009 / 3410 | LOSS 0.0988\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0010 / 3410 | LOSS 0.0953\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0011 / 3410 | LOSS 0.0902\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0012 / 3410 | LOSS 0.0866\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0013 / 3410 | LOSS 0.0844\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0014 / 3410 | LOSS 0.0836\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0015 / 3410 | LOSS 0.0805\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0016 / 3410 | LOSS 0.0780\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0017 / 3410 | LOSS 0.0760\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0018 / 3410 | LOSS 0.0738\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0019 / 3410 | LOSS 0.0717\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0020 / 3410 | LOSS 0.0698\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0021 / 3410 | LOSS 0.0684\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0022 / 3410 | LOSS 0.0670\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0023 / 3410 | LOSS 0.0652\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0024 / 3410 | LOSS 0.0639\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0025 / 3410 | LOSS 0.0627\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0026 / 3410 | LOSS 0.0614\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0027 / 3410 | LOSS 0.0603\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0028 / 3410 | LOSS 0.0592\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0029 / 3410 | LOSS 0.0583\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0030 / 3410 | LOSS 0.0573\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0031 / 3410 | LOSS 0.0562\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0032 / 3410 | LOSS 0.0550\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0033 / 3410 | LOSS 0.0540\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0034 / 3410 | LOSS 0.0529\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0035 / 3410 | LOSS 0.0520\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0036 / 3410 | LOSS 0.0511\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0037 / 3410 | LOSS 0.0506\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0038 / 3410 | LOSS 0.0498\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0039 / 3410 | LOSS 0.0492\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0040 / 3410 | LOSS 0.0487\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0041 / 3410 | LOSS 0.0480\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0042 / 3410 | LOSS 0.0476\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0043 / 3410 | LOSS 0.0470\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0044 / 3410 | LOSS 0.0466\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0045 / 3410 | LOSS 0.0461\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0046 / 3410 | LOSS 0.0457\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0047 / 3410 | LOSS 0.0452\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0048 / 3410 | LOSS 0.0446\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0049 / 3410 | LOSS 0.0441\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0050 / 3410 | LOSS 0.0435\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0051 / 3410 | LOSS 0.0429\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0052 / 3410 | LOSS 0.0424\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0053 / 3410 | LOSS 0.0419\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0054 / 3410 | LOSS 0.0413\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0055 / 3410 | LOSS 0.0409\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0056 / 3410 | LOSS 0.0406\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0057 / 3410 | LOSS 0.0401\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0058 / 3410 | LOSS 0.0397\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0059 / 3410 | LOSS 0.0394\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0060 / 3410 | LOSS 0.0390\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0061 / 3410 | LOSS 0.0386\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0062 / 3410 | LOSS 0.0383\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0063 / 3410 | LOSS 0.0381\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0064 / 3410 | LOSS 0.0378\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0065 / 3410 | LOSS 0.0375\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0066 / 3410 | LOSS 0.0371\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0067 / 3410 | LOSS 0.0370\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0068 / 3410 | LOSS 0.0367\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0069 / 3410 | LOSS 0.0364\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0070 / 3410 | LOSS 0.0361\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0071 / 3410 | LOSS 0.0358\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0072 / 3410 | LOSS 0.0355\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0073 / 3410 | LOSS 0.0352\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0074 / 3410 | LOSS 0.0349\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0075 / 3410 | LOSS 0.0347\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0076 / 3410 | LOSS 0.0344\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0077 / 3410 | LOSS 0.0343\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0078 / 3410 | LOSS 0.0341\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0079 / 3410 | LOSS 0.0339\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0080 / 3410 | LOSS 0.0337\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0081 / 3410 | LOSS 0.0335\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0082 / 3410 | LOSS 0.0333\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0083 / 3410 | LOSS 0.0332\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0084 / 3410 | LOSS 0.0330\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0085 / 3410 | LOSS 0.0328\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0086 / 3410 | LOSS 0.0327\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0087 / 3410 | LOSS 0.0324\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0088 / 3410 | LOSS 0.0322\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0089 / 3410 | LOSS 0.0320\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0090 / 3410 | LOSS 0.0318\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0091 / 3410 | LOSS 0.0316\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0092 / 3410 | LOSS 0.0314\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0093 / 3410 | LOSS 0.0312\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0094 / 3410 | LOSS 0.0311\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0095 / 3410 | LOSS 0.0309\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0096 / 3410 | LOSS 0.0307\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0097 / 3410 | LOSS 0.0305\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0098 / 3410 | LOSS 0.0303\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0099 / 3410 | LOSS 0.0301\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0100 / 3410 | LOSS 0.0299\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0101 / 3410 | LOSS 0.0298\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0102 / 3410 | LOSS 0.0296\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0103 / 3410 | LOSS 0.0294\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0104 / 3410 | LOSS 0.0293\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0105 / 3410 | LOSS 0.0291\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0106 / 3410 | LOSS 0.0289\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0107 / 3410 | LOSS 0.0288\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0108 / 3410 | LOSS 0.0286\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0109 / 3410 | LOSS 0.0285\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0110 / 3410 | LOSS 0.0283\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0111 / 3410 | LOSS 0.0282\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0112 / 3410 | LOSS 0.0280\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0113 / 3410 | LOSS 0.0279\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0114 / 3410 | LOSS 0.0277\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0115 / 3410 | LOSS 0.0276\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0116 / 3410 | LOSS 0.0275\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0117 / 3410 | LOSS 0.0274\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0118 / 3410 | LOSS 0.0273\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0119 / 3410 | LOSS 0.0272\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0120 / 3410 | LOSS 0.0271\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0121 / 3410 | LOSS 0.0270\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0122 / 3410 | LOSS 0.0269\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0123 / 3410 | LOSS 0.0268\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0124 / 3410 | LOSS 0.0266\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0125 / 3410 | LOSS 0.0265\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0126 / 3410 | LOSS 0.0265\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0127 / 3410 | LOSS 0.0264\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0128 / 3410 | LOSS 0.0263\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0129 / 3410 | LOSS 0.0261\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0130 / 3410 | LOSS 0.0260\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0131 / 3410 | LOSS 0.0259\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0132 / 3410 | LOSS 0.0258\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0133 / 3410 | LOSS 0.0257\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0134 / 3410 | LOSS 0.0256\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0135 / 3410 | LOSS 0.0255\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0136 / 3410 | LOSS 0.0254\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0137 / 3410 | LOSS 0.0253\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0138 / 3410 | LOSS 0.0252\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0139 / 3410 | LOSS 0.0251\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0140 / 3410 | LOSS 0.0250\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0141 / 3410 | LOSS 0.0249\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0142 / 3410 | LOSS 0.0248\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0143 / 3410 | LOSS 0.0247\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0144 / 3410 | LOSS 0.0246\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0145 / 3410 | LOSS 0.0245\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0146 / 3410 | LOSS 0.0244\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0147 / 3410 | LOSS 0.0243\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0148 / 3410 | LOSS 0.0243\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0149 / 3410 | LOSS 0.0242\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0150 / 3410 | LOSS 0.0241\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0151 / 3410 | LOSS 0.0240\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0152 / 3410 | LOSS 0.0239\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0153 / 3410 | LOSS 0.0238\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0154 / 3410 | LOSS 0.0238\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0155 / 3410 | LOSS 0.0237\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0156 / 3410 | LOSS 0.0236\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0157 / 3410 | LOSS 0.0235\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0158 / 3410 | LOSS 0.0234\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0159 / 3410 | LOSS 0.0233\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0160 / 3410 | LOSS 0.0232\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0161 / 3410 | LOSS 0.0232\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0162 / 3410 | LOSS 0.0232\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0163 / 3410 | LOSS 0.0231\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0164 / 3410 | LOSS 0.0230\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0165 / 3410 | LOSS 0.0230\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0166 / 3410 | LOSS 0.0229\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0167 / 3410 | LOSS 0.0228\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0168 / 3410 | LOSS 0.0227\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0169 / 3410 | LOSS 0.0226\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0170 / 3410 | LOSS 0.0226\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0171 / 3410 | LOSS 0.0225\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0172 / 3410 | LOSS 0.0224\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0173 / 3410 | LOSS 0.0224\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0174 / 3410 | LOSS 0.0223\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0175 / 3410 | LOSS 0.0223\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0176 / 3410 | LOSS 0.0222\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0177 / 3410 | LOSS 0.0221\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0178 / 3410 | LOSS 0.0220\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0179 / 3410 | LOSS 0.0220\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0180 / 3410 | LOSS 0.0220\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0181 / 3410 | LOSS 0.0219\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0182 / 3410 | LOSS 0.0218\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0183 / 3410 | LOSS 0.0217\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0184 / 3410 | LOSS 0.0217\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0185 / 3410 | LOSS 0.0216\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0186 / 3410 | LOSS 0.0216\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0187 / 3410 | LOSS 0.0216\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0188 / 3410 | LOSS 0.0215\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0189 / 3410 | LOSS 0.0214\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0190 / 3410 | LOSS 0.0213\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0191 / 3410 | LOSS 0.0213\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0192 / 3410 | LOSS 0.0212\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0193 / 3410 | LOSS 0.0212\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0194 / 3410 | LOSS 0.0211\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0195 / 3410 | LOSS 0.0211\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0196 / 3410 | LOSS 0.0210\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0197 / 3410 | LOSS 0.0209\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0198 / 3410 | LOSS 0.0209\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0199 / 3410 | LOSS 0.0209\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0200 / 3410 | LOSS 0.0208\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0201 / 3410 | LOSS 0.0208\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0202 / 3410 | LOSS 0.0207\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0203 / 3410 | LOSS 0.0207\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0204 / 3410 | LOSS 0.0206\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0205 / 3410 | LOSS 0.0206\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0206 / 3410 | LOSS 0.0205\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0207 / 3410 | LOSS 0.0205\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0208 / 3410 | LOSS 0.0204\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0209 / 3410 | LOSS 0.0204\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0210 / 3410 | LOSS 0.0204\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0211 / 3410 | LOSS 0.0203\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0212 / 3410 | LOSS 0.0202\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0213 / 3410 | LOSS 0.0202\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0214 / 3410 | LOSS 0.0201\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0215 / 3410 | LOSS 0.0201\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0216 / 3410 | LOSS 0.0200\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0217 / 3410 | LOSS 0.0200\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0218 / 3410 | LOSS 0.0199\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0219 / 3410 | LOSS 0.0199\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0220 / 3410 | LOSS 0.0199\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0221 / 3410 | LOSS 0.0198\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0222 / 3410 | LOSS 0.0198\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0223 / 3410 | LOSS 0.0197\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0224 / 3410 | LOSS 0.0197\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0225 / 3410 | LOSS 0.0197\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0226 / 3410 | LOSS 0.0196\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0227 / 3410 | LOSS 0.0195\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0228 / 3410 | LOSS 0.0195\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0229 / 3410 | LOSS 0.0194\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0230 / 3410 | LOSS 0.0194\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0231 / 3410 | LOSS 0.0194\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0232 / 3410 | LOSS 0.0193\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0233 / 3410 | LOSS 0.0193\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0234 / 3410 | LOSS 0.0192\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0235 / 3410 | LOSS 0.0192\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0236 / 3410 | LOSS 0.0192\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0237 / 3410 | LOSS 0.0191\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0238 / 3410 | LOSS 0.0191\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0239 / 3410 | LOSS 0.0190\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0240 / 3410 | LOSS 0.0190\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0241 / 3410 | LOSS 0.0189\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0242 / 3410 | LOSS 0.0189\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0243 / 3410 | LOSS 0.0189\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0244 / 3410 | LOSS 0.0188\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0245 / 3410 | LOSS 0.0188\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0246 / 3410 | LOSS 0.0188\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0247 / 3410 | LOSS 0.0187\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0248 / 3410 | LOSS 0.0187\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0249 / 3410 | LOSS 0.0187\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0250 / 3410 | LOSS 0.0186\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0251 / 3410 | LOSS 0.0186\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0252 / 3410 | LOSS 0.0186\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0253 / 3410 | LOSS 0.0185\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0254 / 3410 | LOSS 0.0185\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0255 / 3410 | LOSS 0.0185\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0256 / 3410 | LOSS 0.0184\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0257 / 3410 | LOSS 0.0184\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0258 / 3410 | LOSS 0.0184\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0259 / 3410 | LOSS 0.0183\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0260 / 3410 | LOSS 0.0183\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0261 / 3410 | LOSS 0.0183\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0262 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0263 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0264 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0265 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0266 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0267 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0268 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0269 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0270 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0271 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0272 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0273 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0274 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0275 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0276 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0277 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0278 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0279 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0280 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0281 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0282 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0283 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0284 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0285 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0286 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0287 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0288 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0289 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0290 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0291 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0292 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0293 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0294 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0295 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0296 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0297 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0298 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0299 / 3410 | LOSS 0.0177\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0300 / 3410 | LOSS 0.0177\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0301 / 3410 | LOSS 0.0177\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0302 / 3410 | LOSS 0.0177\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0303 / 3410 | LOSS 0.0176\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0304 / 3410 | LOSS 0.0176\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0305 / 3410 | LOSS 0.0176\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0306 / 3410 | LOSS 0.0176\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0307 / 3410 | LOSS 0.0176\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0308 / 3410 | LOSS 0.0175\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0309 / 3410 | LOSS 0.0175\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0310 / 3410 | LOSS 0.0175\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0311 / 3410 | LOSS 0.0175\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0312 / 3410 | LOSS 0.0174\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0313 / 3410 | LOSS 0.0174\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0314 / 3410 | LOSS 0.0174\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0315 / 3410 | LOSS 0.0174\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0316 / 3410 | LOSS 0.0174\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0317 / 3410 | LOSS 0.0173\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0318 / 3410 | LOSS 0.0173\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0319 / 3410 | LOSS 0.0173\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0320 / 3410 | LOSS 0.0172\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0321 / 3410 | LOSS 0.0172\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0322 / 3410 | LOSS 0.0172\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0323 / 3410 | LOSS 0.0172\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0324 / 3410 | LOSS 0.0171\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0325 / 3410 | LOSS 0.0171\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0326 / 3410 | LOSS 0.0171\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0327 / 3410 | LOSS 0.0171\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0328 / 3410 | LOSS 0.0171\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0329 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0330 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0331 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0332 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0333 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0334 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0335 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0336 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0337 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0338 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0339 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0340 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0341 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0342 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0343 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0344 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0345 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0346 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0347 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0348 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0349 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0350 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0351 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0352 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0353 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0354 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0355 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0356 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0357 / 3410 | LOSS 0.0166\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0358 / 3410 | LOSS 0.0166\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0359 / 3410 | LOSS 0.0166\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0360 / 3410 | LOSS 0.0166\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0361 / 3410 | LOSS 0.0166\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0362 / 3410 | LOSS 0.0165\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0363 / 3410 | LOSS 0.0165\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0364 / 3410 | LOSS 0.0165\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0365 / 3410 | LOSS 0.0165\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0366 / 3410 | LOSS 0.0164\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0367 / 3410 | LOSS 0.0164\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0368 / 3410 | LOSS 0.0164\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0369 / 3410 | LOSS 0.0164\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0370 / 3410 | LOSS 0.0164\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0371 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0372 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0373 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0374 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0375 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0376 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0377 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0378 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0379 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0380 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0381 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0382 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0383 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0384 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0385 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0386 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0387 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0388 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0389 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0390 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0391 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0392 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0393 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0394 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0395 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0396 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0397 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0398 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0399 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0400 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0401 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0402 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0403 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0404 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0405 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0406 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0407 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0408 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0409 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0410 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0411 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0412 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0413 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0414 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0415 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0416 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0417 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0418 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0419 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0420 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0421 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0422 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0423 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0424 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0425 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0426 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0427 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0428 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0429 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0430 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0431 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0432 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0433 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0434 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0435 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0436 / 3410 | LOSS 0.0154\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0437 / 3410 | LOSS 0.0154\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0438 / 3410 | LOSS 0.0154\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0439 / 3410 | LOSS 0.0154\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0440 / 3410 | LOSS 0.0154\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0441 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0442 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0443 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0444 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0445 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0446 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0447 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0448 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0449 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0450 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0451 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0452 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0453 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0454 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0455 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0456 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0457 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0458 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0459 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0460 / 3410 | LOSS 0.0150\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0461 / 3410 | LOSS 0.0150\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0462 / 3410 | LOSS 0.0150\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0463 / 3410 | LOSS 0.0150\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0464 / 3410 | LOSS 0.0150\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0465 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0466 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0467 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0468 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0469 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0470 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0471 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0472 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0473 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0474 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0475 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0476 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0477 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0478 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0479 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0480 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0481 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0482 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0483 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0484 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0485 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0486 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0487 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0488 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0489 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0490 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0491 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0492 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0493 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0494 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0495 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0496 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0497 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0498 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0499 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0500 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0501 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0502 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0503 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0504 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0505 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0506 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0507 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0508 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0509 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0510 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0511 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0512 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0513 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0514 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0515 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0516 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0517 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0518 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0519 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0520 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0521 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0522 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0523 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0524 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0525 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0526 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0527 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0528 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0529 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0530 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0531 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0532 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0533 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0534 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0535 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0536 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0537 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0538 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0539 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0540 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0541 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0542 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0543 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0544 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0545 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0546 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0547 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0548 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0549 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0550 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0551 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0552 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0553 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0554 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0555 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0556 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0557 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0558 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0559 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0560 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0561 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0562 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0563 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0564 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0565 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0566 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0567 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0568 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0569 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0570 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0571 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0572 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0573 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0574 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0575 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0576 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0577 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0578 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0579 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0580 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0581 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0582 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0583 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0584 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0585 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0586 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0587 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0588 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0589 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0590 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0591 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0592 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0593 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0594 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0595 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0596 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0597 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0598 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0599 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0600 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0601 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0602 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0603 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0604 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0605 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0606 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0607 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0608 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0609 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0610 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0611 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0612 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0613 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0614 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0615 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0616 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0617 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0618 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0619 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0620 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0621 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0622 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0623 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0624 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0625 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0626 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0627 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0628 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0629 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0630 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0631 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0632 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0633 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0634 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0635 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0636 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0637 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0638 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0639 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0640 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0641 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0642 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0643 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0644 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0645 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0646 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0647 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0648 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0649 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0650 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0651 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0652 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0653 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0654 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0655 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0656 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0657 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0658 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0659 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0660 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0661 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0662 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0663 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0664 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0665 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0666 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0667 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0668 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0669 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0670 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0671 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0672 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0673 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0674 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0675 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0676 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0677 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0678 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0679 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0680 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0681 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0682 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0683 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0684 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0685 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0686 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0687 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0688 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0689 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0690 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0691 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0692 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0693 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0694 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0695 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0696 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0697 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0698 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0699 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0700 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0701 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0702 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0703 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0704 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0705 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0706 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0707 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0708 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0709 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0710 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0711 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0712 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0713 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0714 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0715 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0716 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0717 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0718 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0719 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0720 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0721 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0722 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0723 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0724 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0725 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0726 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0727 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0728 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0729 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0730 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0731 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0732 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0733 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0734 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0735 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0736 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0737 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0738 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0739 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0740 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0741 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0742 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0743 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0744 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0745 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0746 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0747 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0748 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0749 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0750 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0751 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0752 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0753 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0754 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0755 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0756 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0757 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0758 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0759 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0760 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0761 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0762 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0763 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0764 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0765 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0766 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0767 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0768 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0769 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0770 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0771 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0772 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0773 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0774 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0775 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0776 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0777 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0778 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0779 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0780 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0781 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0782 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0783 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0784 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0785 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0786 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0787 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0788 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0789 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0790 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0791 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0792 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0793 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0794 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0795 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0796 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0797 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0798 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0799 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0800 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0801 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0802 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0803 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0804 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0805 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0806 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0807 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0808 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0809 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0810 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0811 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0812 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0813 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0814 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0815 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0816 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0817 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0818 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0819 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0820 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0821 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0822 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0823 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0824 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0825 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0826 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0827 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0828 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0829 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0830 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0831 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0832 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0833 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0834 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0835 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0836 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0837 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0838 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0839 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0840 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0841 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0842 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0843 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0844 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0845 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0846 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0847 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0848 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0849 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0850 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0851 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0852 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0853 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0854 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0855 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0856 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0857 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0858 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0859 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0860 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0861 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0862 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0863 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0864 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0865 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0866 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0867 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0868 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0869 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0870 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0871 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0872 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0873 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0874 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0875 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0876 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0877 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0878 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0879 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0880 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0881 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0882 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0883 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0884 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0885 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0886 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0887 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0888 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0889 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0890 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0891 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0892 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0893 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0894 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0895 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0896 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0897 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0898 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0899 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0900 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0901 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0902 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0903 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0904 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0905 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0906 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0907 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0908 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0909 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0910 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0911 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0912 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0913 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0914 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0915 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0916 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0917 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0918 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0919 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0920 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0921 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0922 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0923 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0924 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0925 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0926 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0927 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0928 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0929 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0930 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0931 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0932 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0933 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0934 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0935 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0936 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0937 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0938 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0939 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0940 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0941 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0942 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0943 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0944 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0945 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0946 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0947 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0948 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0949 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0950 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0951 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0952 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0953 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0954 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0955 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0956 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0957 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0958 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0959 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0960 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0961 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0962 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0963 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0964 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0965 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0966 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0967 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0968 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0969 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0970 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0971 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0972 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0973 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0974 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0975 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0976 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0977 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0978 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0979 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0980 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0981 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0982 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0983 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0984 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0985 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0986 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0987 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0988 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0989 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0990 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0991 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0992 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0993 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0994 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0995 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0996 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0997 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0998 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0999 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1000 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1001 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1002 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1003 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1004 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1005 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1006 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1007 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1008 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1009 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1010 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1011 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1012 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1013 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1014 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1015 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1016 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1017 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1018 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1019 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1020 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1021 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1022 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1023 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1024 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1025 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1026 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1027 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1028 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1029 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1030 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1031 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1032 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1033 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1034 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1035 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1036 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1037 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1038 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1039 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1040 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1041 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1042 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1043 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1044 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1045 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1046 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1047 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1048 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1049 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1050 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1051 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1052 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1053 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1054 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1055 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1056 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1057 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1058 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1059 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1060 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1061 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1062 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1063 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1064 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1065 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1066 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1067 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1068 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1069 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1070 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1071 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1072 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1073 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1074 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1075 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1076 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1077 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1078 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1079 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1080 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1081 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1082 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1083 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1084 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1085 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1086 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1087 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1088 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1089 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1090 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1091 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1092 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1093 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1094 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1095 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1096 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1097 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1098 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1099 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1100 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1101 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1102 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1103 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1104 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1105 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1106 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1107 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1108 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1109 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1110 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1111 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1112 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1113 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1114 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1115 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1116 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1117 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1118 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1119 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1120 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1121 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1122 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1123 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1124 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1125 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1126 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1127 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1128 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1129 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1130 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1131 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1132 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1133 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1134 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1135 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1136 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1137 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1138 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1139 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1140 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1141 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1142 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1143 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1144 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1145 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1146 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1147 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1148 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1149 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1150 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1151 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1152 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1153 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1154 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1155 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1156 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1157 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1158 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1159 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1160 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1161 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1162 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1163 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1164 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1165 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1166 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1167 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1168 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1169 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1170 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1171 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1172 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1173 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1174 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1175 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1176 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1177 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1178 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1179 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1180 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1181 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1182 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1183 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1184 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1185 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1186 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1187 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1188 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1189 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1190 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1191 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1192 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1193 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1194 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1195 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1196 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1197 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1198 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1199 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1200 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1201 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1202 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1203 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1204 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1205 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1206 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1207 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1208 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1209 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1210 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1211 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1212 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1213 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1214 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1215 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1216 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1217 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1218 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1219 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1220 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1221 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1222 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1223 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1224 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1225 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1226 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1227 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1228 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1229 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1230 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1231 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1232 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1233 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1234 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1235 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1236 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1237 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1238 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1239 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1240 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1241 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1242 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1243 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1244 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1245 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1246 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1247 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1248 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1249 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1250 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1251 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1252 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1253 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1254 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1255 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1256 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1257 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1258 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1259 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1260 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1261 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1262 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1263 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1264 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1265 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1266 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1267 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1268 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1269 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1270 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1271 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1272 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1273 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1274 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1275 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1276 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1277 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1278 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1279 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1280 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1281 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1282 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1283 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1284 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1285 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1286 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1287 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1288 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1289 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1290 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1291 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1292 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1293 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1294 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1295 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1296 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1297 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1298 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1299 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1300 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1301 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1302 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1303 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1304 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1305 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1306 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1307 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1308 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1309 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1310 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1311 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1312 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1313 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1314 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1315 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1316 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1317 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1318 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1319 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1320 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1321 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1322 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1323 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1324 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1325 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1326 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1327 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1328 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1329 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1330 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1331 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1332 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1333 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1334 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1335 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1336 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1337 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1338 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1339 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1340 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1341 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1342 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1343 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1344 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1345 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1346 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1347 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1348 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1349 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1350 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1351 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1352 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1353 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1354 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1355 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1356 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1357 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1358 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1359 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1360 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1361 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1362 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1363 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1364 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1365 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1366 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1367 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1368 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1369 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1370 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1371 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1372 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1373 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1374 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1375 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1376 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1377 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1378 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1379 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1380 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1381 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1382 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1383 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1384 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1385 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1386 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1387 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1388 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1389 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1390 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1391 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1392 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1393 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1394 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1395 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1396 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1397 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1398 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1399 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1400 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1401 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1402 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1403 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1404 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1405 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1406 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1407 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1408 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1409 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1410 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1411 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1412 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1413 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1414 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1415 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1416 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1417 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1418 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1419 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1420 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1421 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1422 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1423 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1424 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1425 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1426 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1427 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1428 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1429 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1430 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1431 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1432 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1433 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1434 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1435 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1436 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1437 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1438 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1439 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1440 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1441 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1442 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1443 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1444 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1445 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1446 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1447 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1448 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1449 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1450 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1451 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1452 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1453 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1454 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1455 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1456 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1457 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1458 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1459 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1460 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1461 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1462 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1463 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1464 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1465 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1466 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1467 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1468 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1469 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1470 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1471 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1472 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1473 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1474 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1475 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1476 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1477 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1478 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1479 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1480 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1481 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1482 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1483 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1484 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1485 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1486 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1487 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1488 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1489 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1490 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1491 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1492 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1493 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1494 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1495 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1496 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1497 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1498 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1499 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1500 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1501 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1502 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1503 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1504 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1505 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1506 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1507 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1508 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1509 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1510 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1511 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1512 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1513 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1514 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1515 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1516 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1517 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1518 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1519 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1520 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1521 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1522 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1523 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1524 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1525 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1526 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1527 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1528 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1529 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1530 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1531 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1532 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1533 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1534 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1535 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1536 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1537 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1538 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1539 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1540 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1541 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1542 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1543 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1544 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1545 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1546 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1547 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1548 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1549 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1550 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1551 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1552 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1553 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1554 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1555 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1556 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1557 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1558 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1559 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1560 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1561 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1562 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1563 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1564 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1565 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1566 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1567 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1568 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1569 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1570 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1571 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1572 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1573 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1574 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1575 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1576 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1577 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1578 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1579 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1580 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1581 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1582 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1583 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1584 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1585 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1586 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1587 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1588 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1589 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1590 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1591 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1592 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1593 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1594 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1595 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1596 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1597 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1598 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1599 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1600 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1601 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1602 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1603 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1604 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1605 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1606 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1607 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1608 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1609 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1610 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1611 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1612 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1613 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1614 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1615 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1616 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1617 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1618 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1619 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1620 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1621 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1622 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1623 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1624 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1625 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1626 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1627 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1628 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1629 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1630 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1631 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1632 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1633 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1634 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1635 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1636 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1637 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1638 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1639 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1640 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1641 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1642 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1643 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1644 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1645 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1646 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1647 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1648 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1649 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1650 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1651 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1652 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1653 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1654 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1655 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1656 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1657 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1658 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1659 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1660 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1661 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1662 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1663 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1664 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1665 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1666 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1667 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1668 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1669 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1670 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1671 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1672 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1673 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1674 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1675 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1676 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1677 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1678 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1679 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1680 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1681 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1682 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1683 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1684 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1685 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1686 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1687 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1688 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1689 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1690 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1691 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1692 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1693 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1694 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1695 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1696 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1697 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1698 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1699 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1700 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1701 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1702 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1703 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1704 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1705 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1706 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1707 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1708 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1709 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1710 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1711 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1712 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1713 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1714 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1715 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1716 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1717 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1718 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1719 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1720 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1721 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1722 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1723 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1724 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1725 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1726 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1727 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1728 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1729 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1730 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1731 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1732 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1733 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1734 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1735 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1736 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1737 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1738 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1739 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1740 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1741 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1742 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1743 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1744 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1745 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1746 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1747 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1748 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1749 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1750 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1751 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1752 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1753 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1754 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1755 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1756 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1757 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1758 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1759 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1760 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1761 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1762 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1763 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1764 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1765 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1766 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1767 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1768 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1769 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1770 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1771 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1772 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1773 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1774 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1775 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1776 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1777 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1778 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1779 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1780 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1781 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1782 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1783 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1784 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1785 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1786 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1787 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1788 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1789 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1790 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1791 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1792 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1793 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1794 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1795 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1796 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1797 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1798 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1799 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1800 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1801 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1802 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1803 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1804 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1805 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1806 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1807 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1808 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1809 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1810 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1811 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1812 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1813 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1814 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1815 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1816 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1817 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1818 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1819 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1820 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1821 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1822 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1823 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1824 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1825 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1826 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1827 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1828 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1829 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1830 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1831 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1832 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1833 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1834 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1835 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1836 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1837 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1838 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1839 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1840 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1841 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1842 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1843 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1844 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1845 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1846 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1847 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1848 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1849 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1850 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1851 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1852 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1853 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1854 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1855 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1856 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1857 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1858 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1859 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1860 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1861 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1862 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1863 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1864 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1865 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1866 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1867 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1868 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1869 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1870 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1871 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1872 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1873 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1874 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1875 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1876 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1877 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1878 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1879 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1880 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1881 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1882 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1883 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1884 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1885 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1886 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1887 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1888 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1889 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1890 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1891 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1892 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1893 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1894 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1895 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1896 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1897 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1898 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1899 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1900 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1901 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1902 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1903 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1904 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1905 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1906 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1907 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1908 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1909 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1910 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1911 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1912 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1913 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1914 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1915 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1916 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1917 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1918 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1919 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1920 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1921 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1922 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1923 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1924 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1925 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1926 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1927 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1928 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1929 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1930 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1931 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1932 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1933 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1934 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1935 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1936 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1937 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1938 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1939 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1940 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1941 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1942 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1943 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1944 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1945 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1946 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1947 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1948 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1949 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1950 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1951 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1952 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1953 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1954 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1955 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1956 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1957 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1958 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1959 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1960 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1961 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1962 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1963 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1964 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1965 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1966 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1967 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1968 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1969 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1970 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1971 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1972 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1973 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1974 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1975 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1976 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1977 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1978 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1979 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1980 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1981 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1982 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1983 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1984 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1985 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1986 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1987 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1988 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1989 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1990 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1991 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1992 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1993 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1994 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1995 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1996 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1997 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1998 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1999 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2000 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2001 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2002 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2003 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2004 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2005 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2006 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2007 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2008 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2009 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2010 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2011 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2012 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2013 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2014 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2015 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2016 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2017 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2018 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2019 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2020 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2021 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2022 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2023 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2024 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2025 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2026 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2027 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2028 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2029 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2030 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2031 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2032 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2033 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2034 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2035 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2036 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2037 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2038 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2039 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2040 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2041 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2042 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2043 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2044 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2045 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2046 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2047 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2048 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2049 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2050 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2051 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2052 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2053 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2054 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2055 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2056 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2057 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2058 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2059 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2060 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2061 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2062 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2063 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2064 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2065 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2066 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2067 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2068 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2069 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2070 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2071 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2072 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2073 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2074 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2075 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2076 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2077 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2078 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2079 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2080 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2081 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2082 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2083 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2084 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2085 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2086 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2087 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2088 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2089 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2090 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2091 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2092 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2093 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2094 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2095 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2096 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2097 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2098 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2099 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2100 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2101 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2102 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2103 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2104 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2105 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2106 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2107 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2108 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2109 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2110 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2111 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2112 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2113 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2114 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2115 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2116 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2117 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2118 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2119 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2120 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2121 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2122 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2123 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2124 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2125 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2126 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2127 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2128 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2129 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2130 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2131 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2132 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2133 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2134 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2135 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2136 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2137 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2138 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2139 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2140 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2141 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2142 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2143 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2144 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2145 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2146 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2147 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2148 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2149 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2150 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2151 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2152 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2153 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2154 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2155 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2156 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2157 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2158 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2159 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2160 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2161 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2162 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2163 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2164 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2165 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2166 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2167 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2168 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2169 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2170 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2171 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2172 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2173 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2174 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2175 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2176 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2177 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2178 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2179 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2180 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2181 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2182 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2183 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2184 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2185 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2186 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2187 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2188 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2189 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2190 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2191 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2192 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2193 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2194 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2195 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2196 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2197 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2198 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2199 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2200 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2201 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2202 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2203 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2204 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2205 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2206 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2207 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2208 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2209 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2210 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2211 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2212 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2213 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2214 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2215 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2216 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2217 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2218 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2219 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2220 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2221 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2222 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2223 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2224 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2225 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2226 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2227 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2228 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2229 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2230 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2231 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2232 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2233 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2234 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2235 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2236 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2237 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2238 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2239 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2240 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2241 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2242 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2243 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2244 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2245 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2246 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2247 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2248 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2249 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2250 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2251 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2252 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2253 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2254 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2255 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2256 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2257 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2258 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2259 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2260 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2261 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2262 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2263 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2264 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2265 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2266 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2267 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2268 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2269 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2270 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2271 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2272 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2273 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2274 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2275 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2276 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2277 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2278 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2279 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2280 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2281 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2282 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2283 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2284 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2285 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2286 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2287 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2288 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2289 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2290 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2291 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2292 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2293 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2294 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2295 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2296 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2297 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2298 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2299 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2300 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2301 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2302 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2303 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2304 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2305 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2306 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2307 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2308 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2309 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2310 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2311 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2312 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2313 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2314 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2315 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2316 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2317 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2318 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2319 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2320 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2321 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2322 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2323 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2324 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2325 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2326 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2327 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2328 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2329 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2330 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2331 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2332 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2333 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2334 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2335 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2336 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2337 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2338 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2339 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2340 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2341 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2342 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2343 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2344 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2345 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2346 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2347 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2348 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2349 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2350 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2351 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2352 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2353 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2354 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2355 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2356 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2357 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2358 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2359 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2360 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2361 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2362 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2363 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2364 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2365 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2366 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2367 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2368 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2369 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2370 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2371 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2372 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2373 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2374 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2375 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2376 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2377 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2378 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2379 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2380 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2381 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2382 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2383 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2384 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2385 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2386 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2387 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2388 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2389 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2390 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2391 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2392 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2393 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2394 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2395 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2396 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2397 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2398 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2399 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2400 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2401 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2402 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2403 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2404 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2405 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2406 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2407 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2408 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2409 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2410 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2411 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2412 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2413 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2414 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2415 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2416 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2417 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2418 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2419 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2420 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2421 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2422 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2423 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2424 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2425 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2426 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2427 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2428 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2429 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2430 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2431 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2432 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2433 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2434 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2435 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2436 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2437 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2438 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2439 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2440 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2441 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2442 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2443 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2444 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2445 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2446 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2447 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2448 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2449 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2450 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2451 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2452 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2453 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2454 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2455 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2456 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2457 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2458 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2459 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2460 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2461 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2462 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2463 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2464 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2465 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2466 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2467 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2468 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2469 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2470 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2471 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2472 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2473 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2474 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2475 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2476 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2477 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2478 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2479 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2480 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2481 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2482 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2483 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2484 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2485 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2486 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2487 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2488 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2489 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2490 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2491 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2492 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2493 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2494 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2495 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2496 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2497 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2498 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2499 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2500 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2501 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2502 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2503 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2504 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2505 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2506 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2507 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2508 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2509 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2510 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2511 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2512 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2513 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2514 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2515 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2516 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2517 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2518 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2519 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2520 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2521 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2522 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2523 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2524 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2525 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2526 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2527 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2528 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2529 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2530 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2531 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2532 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2533 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2534 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2535 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2536 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2537 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2538 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2539 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2540 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2541 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2542 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2543 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2544 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2545 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2546 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2547 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2548 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2549 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2550 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2551 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2552 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2553 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2554 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2555 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2556 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2557 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2558 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2559 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2560 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2561 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2562 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2563 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2564 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2565 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2566 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2567 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2568 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2569 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2570 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2571 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2572 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2573 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2574 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2575 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2576 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2577 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2578 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2579 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2580 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2581 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2582 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2583 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2584 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2585 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2586 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2587 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2588 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2589 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2590 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2591 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2592 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2593 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2594 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2595 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2596 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2597 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2598 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2599 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2600 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2601 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2602 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2603 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2604 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2605 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2606 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2607 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2608 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2609 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2610 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2611 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2612 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2613 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2614 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2615 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2616 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2617 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2618 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2619 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2620 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2621 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2622 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2623 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2624 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2625 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2626 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2627 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2628 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2629 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2630 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2631 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2632 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2633 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2634 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2635 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2636 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2637 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2638 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2639 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2640 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2641 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2642 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2643 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2644 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2645 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2646 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2647 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2648 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2649 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2650 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2651 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2652 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2653 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2654 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2655 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2656 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2657 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2658 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2659 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2660 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2661 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2662 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2663 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2664 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2665 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2666 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2667 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2668 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2669 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2670 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2671 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2672 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2673 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2674 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2675 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2676 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2677 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2678 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2679 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2680 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2681 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2682 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2683 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2684 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2685 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2686 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2687 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2688 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2689 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2690 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2691 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2692 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2693 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2694 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2695 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2696 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2697 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2698 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2699 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2700 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2701 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2702 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2703 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2704 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2705 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2706 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2707 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2708 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2709 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2710 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2711 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2712 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2713 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2714 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2715 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2716 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2717 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2718 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2719 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2720 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2721 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2722 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2723 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2724 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2725 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2726 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2727 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2728 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2729 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2730 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2731 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2732 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2733 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2734 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2735 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2736 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2737 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2738 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2739 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2740 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2741 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2742 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2743 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2744 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2745 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2746 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2747 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2748 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2749 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2750 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2751 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2752 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2753 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2754 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2755 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2756 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2757 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2758 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2759 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2760 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2761 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2762 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2763 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2764 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2765 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2766 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2767 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2768 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2769 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2770 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2771 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2772 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2773 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2774 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2775 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2776 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2777 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2778 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2779 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2780 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2781 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2782 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2783 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2784 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2785 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2786 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2787 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2788 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2789 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2790 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2791 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2792 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2793 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2794 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2795 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2796 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2797 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2798 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2799 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2800 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2801 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2802 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2803 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2804 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2805 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2806 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2807 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2808 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2809 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2810 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2811 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2812 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2813 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2814 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2815 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2816 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2817 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2818 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2819 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2820 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2821 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2822 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2823 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2824 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2825 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2826 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2827 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2828 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2829 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2830 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2831 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2832 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2833 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2834 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2835 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2836 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2837 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2838 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2839 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2840 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2841 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2842 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2843 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2844 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2845 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2846 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2847 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2848 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2849 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2850 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2851 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2852 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2853 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2854 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2855 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2856 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2857 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2858 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2859 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2860 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2861 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2862 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2863 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2864 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2865 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2866 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2867 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2868 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2869 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2870 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2871 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2872 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2873 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2874 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2875 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2876 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2877 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2878 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2879 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2880 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2881 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2882 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2883 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2884 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2885 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2886 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2887 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2888 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2889 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2890 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2891 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2892 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2893 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2894 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2895 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2896 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2897 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2898 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2899 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2900 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2901 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2902 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2903 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2904 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2905 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2906 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2907 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2908 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2909 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2910 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2911 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2912 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2913 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2914 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2915 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2916 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2917 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2918 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2919 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2920 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2921 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2922 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2923 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2924 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2925 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2926 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2927 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2928 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2929 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2930 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2931 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2932 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2933 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2934 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2935 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2936 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2937 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2938 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2939 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2940 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2941 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2942 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2943 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2944 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2945 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2946 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2947 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2948 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2949 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2950 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2951 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2952 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2953 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2954 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2955 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2956 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2957 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2958 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2959 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2960 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2961 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2962 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2963 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2964 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2965 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2966 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2967 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2968 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2969 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2970 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2971 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2972 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2973 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2974 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2975 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2976 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2977 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2978 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2979 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2980 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2981 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2982 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2983 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2984 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2985 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2986 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2987 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2988 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2989 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2990 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2991 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2992 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2993 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2994 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2995 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2996 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2997 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2998 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2999 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3000 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3001 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3002 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3003 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3004 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3005 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3006 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3007 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3008 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3009 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3010 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3011 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3012 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3013 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3014 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3015 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3016 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3017 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3018 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3019 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3020 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3021 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3022 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3023 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3024 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3025 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3026 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3027 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3028 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3029 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3030 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3031 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3032 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3033 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3034 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3035 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3036 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3037 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3038 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3039 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3040 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3041 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3042 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3043 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3044 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3045 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3046 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3047 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3048 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3049 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3050 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3051 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3052 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3053 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3054 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3055 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3056 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3057 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3058 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3059 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3060 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3061 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3062 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3063 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3064 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3065 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3066 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3067 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3068 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3069 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3070 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3071 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3072 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3073 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3074 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3075 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3076 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3077 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3078 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3079 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3080 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3081 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3082 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3083 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3084 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3085 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3086 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3087 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3088 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3089 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3090 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3091 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3092 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3093 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3094 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3095 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3096 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3097 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3098 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3099 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3100 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3101 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3102 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3103 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3104 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3105 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3106 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3107 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3108 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3109 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3110 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3111 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3112 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3113 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3114 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3115 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3116 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3117 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3118 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3119 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3120 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3121 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3122 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3123 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3124 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3125 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3126 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3127 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3128 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3129 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3130 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3131 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3132 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3133 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3134 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3135 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3136 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3137 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3138 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3139 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3140 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3141 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3142 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3143 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3144 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3145 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3146 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3147 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3148 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3149 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3150 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3151 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3152 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3153 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3154 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3155 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3156 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3157 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3158 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3159 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3160 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3161 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3162 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3163 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3164 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3165 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3166 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3167 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3168 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3169 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3170 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3171 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3172 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3173 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3174 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3175 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3176 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3177 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3178 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3179 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3180 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3181 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3182 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3183 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3184 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3185 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3186 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3187 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3188 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3189 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3190 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3191 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3192 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3193 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3194 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3195 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3196 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3197 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3198 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3199 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3200 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3201 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3202 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3203 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3204 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3205 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3206 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3207 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3208 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3209 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3210 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3211 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3212 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3213 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3214 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3215 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3216 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3217 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3218 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3219 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3220 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3221 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3222 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3223 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3224 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3225 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3226 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3227 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3228 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3229 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3230 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3231 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3232 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3233 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3234 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3235 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3236 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3237 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3238 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3239 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3240 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3241 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3242 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3243 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3244 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3245 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3246 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3247 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3248 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3249 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3250 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3251 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3252 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3253 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3254 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3255 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3256 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3257 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3258 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3259 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3260 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3261 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3262 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3263 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3264 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3265 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3266 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3267 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3268 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3269 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3270 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3271 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3272 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3273 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3274 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3275 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3276 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3277 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3278 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3279 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3280 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3281 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3282 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3283 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3284 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3285 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3286 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3287 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3288 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3289 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3290 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3291 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3292 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3293 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3294 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3295 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3296 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3297 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3298 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3299 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3300 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3301 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3302 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3303 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3304 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3305 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3306 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3307 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3308 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3309 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3310 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3311 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3312 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3313 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3314 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3315 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3316 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3317 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3318 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3319 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3320 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3321 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3322 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3323 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3324 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3325 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3326 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3327 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3328 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3329 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3330 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3331 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3332 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3333 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3334 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3335 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3336 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3337 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3338 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3339 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3340 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3341 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3342 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3343 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3344 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3345 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3346 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3347 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3348 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3349 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3350 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3351 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3352 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3353 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3354 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3355 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3356 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3357 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3358 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3359 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3360 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3361 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3362 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3363 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3364 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3365 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3366 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3367 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3368 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3369 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3370 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3371 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3372 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3373 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3374 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3375 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3376 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3377 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3378 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3379 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3380 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3381 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3382 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3383 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3384 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3385 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3386 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3387 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3388 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3389 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3390 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3391 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3392 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3393 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3394 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3395 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3396 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3397 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3398 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3399 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3400 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3401 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3402 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3403 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3404 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3405 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3406 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3407 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3408 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3409 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3410 / 3410 | LOSS 0.0061\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0001 / 0974 | LOSS 0.0031\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0002 / 0974 | LOSS 0.0033\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0003 / 0974 | LOSS 0.0039\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0004 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0005 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0006 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0007 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0008 / 0974 | LOSS 0.0042\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0009 / 0974 | LOSS 0.0041\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0010 / 0974 | LOSS 0.0041\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0011 / 0974 | LOSS 0.0040\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0012 / 0974 | LOSS 0.0040\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0013 / 0974 | LOSS 0.0041\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0014 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0015 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0016 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0017 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0018 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0019 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0020 / 0974 | LOSS 0.0042\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0021 / 0974 | LOSS 0.0042\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0022 / 0974 | LOSS 0.0041\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0023 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0024 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0025 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0026 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0027 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0028 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0029 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0030 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0031 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0032 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0033 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0034 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0035 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0036 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0037 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0038 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0039 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0040 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0041 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0042 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0043 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0044 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0045 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0046 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0047 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0048 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0049 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0050 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0051 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0052 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0053 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0054 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0055 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0056 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0057 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0058 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0059 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0060 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0061 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0062 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0063 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0064 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0065 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0066 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0067 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0068 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0069 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0070 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0071 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0072 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0073 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0074 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0075 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0076 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0077 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0078 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0079 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0080 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0081 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0082 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0083 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0084 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0085 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0086 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0087 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0088 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0089 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0090 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0091 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0092 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0093 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0094 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0095 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0096 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0097 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0098 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0099 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0100 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0101 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0102 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0103 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0104 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0105 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0106 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0107 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0108 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0109 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0110 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0111 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0112 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0113 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0114 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0115 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0116 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0117 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0118 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0119 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0120 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0121 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0122 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0123 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0124 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0125 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0126 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0127 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0128 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0129 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0130 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0131 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0132 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0133 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0134 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0135 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0136 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0137 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0138 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0139 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0140 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0141 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0142 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0143 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0144 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0145 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0146 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0147 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0148 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0149 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0150 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0151 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0152 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0153 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0154 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0155 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0156 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0157 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0158 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0159 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0160 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0161 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0162 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0163 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0164 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0165 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0166 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0167 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0168 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0169 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0170 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0171 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0172 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0173 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0174 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0175 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0176 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0177 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0178 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0179 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0180 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0181 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0182 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0183 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0184 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0185 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0186 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0187 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0188 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0189 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0190 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0191 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0192 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0193 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0194 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0195 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0196 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0197 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0198 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0199 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0200 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0201 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0202 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0203 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0204 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0205 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0206 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0207 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0208 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0209 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0210 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0211 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0212 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0213 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0214 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0215 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0216 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0217 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0218 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0219 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0220 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0221 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0222 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0223 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0224 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0225 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0226 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0227 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0228 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0229 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0230 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0231 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0232 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0233 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0234 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0235 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0236 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0237 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0238 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0239 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0240 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0241 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0242 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0243 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0244 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0245 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0246 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0247 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0248 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0249 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0250 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0251 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0252 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0253 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0254 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0255 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0256 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0257 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0258 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0259 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0260 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0261 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0262 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0263 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0264 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0265 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0266 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0267 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0268 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0269 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0270 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0271 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0272 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0273 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0274 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0275 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0276 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0277 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0278 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0279 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0280 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0281 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0282 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0283 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0284 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0285 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0286 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0287 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0288 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0289 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0290 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0291 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0292 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0293 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0294 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0295 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0296 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0297 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0298 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0299 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0300 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0301 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0302 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0303 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0304 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0305 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0306 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0307 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0308 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0309 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0310 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0311 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0312 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0313 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0314 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0315 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0316 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0317 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0318 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0319 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0320 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0321 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0322 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0323 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0324 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0325 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0326 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0327 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0328 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0329 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0330 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0331 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0332 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0333 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0334 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0335 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0336 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0337 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0338 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0339 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0340 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0341 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0342 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0343 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0344 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0345 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0346 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0347 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0348 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0349 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0350 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0351 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0352 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0353 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0354 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0355 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0356 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0357 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0358 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0359 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0360 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0361 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0362 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0363 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0364 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0365 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0366 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0367 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0368 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0369 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0370 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0371 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0372 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0373 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0374 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0375 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0376 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0377 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0378 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0379 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0380 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0381 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0382 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0383 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0384 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0385 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0386 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0387 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0388 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0389 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0390 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0391 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0392 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0393 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0394 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0395 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0396 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0397 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0398 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0399 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0400 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0401 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0402 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0403 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0404 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0405 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0406 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0407 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0408 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0409 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0410 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0411 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0412 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0413 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0414 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0415 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0416 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0417 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0418 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0419 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0420 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0421 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0422 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0423 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0424 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0425 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0426 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0427 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0428 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0429 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0430 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0431 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0432 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0433 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0434 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0435 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0436 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0437 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0438 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0439 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0440 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0441 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0442 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0443 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0444 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0445 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0446 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0447 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0448 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0449 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0450 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0451 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0452 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0453 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0454 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0455 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0456 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0457 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0458 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0459 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0460 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0461 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0462 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0463 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0464 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0465 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0466 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0467 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0468 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0469 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0470 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0471 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0472 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0473 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0474 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0475 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0476 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0477 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0478 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0479 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0480 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0481 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0482 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0483 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0484 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0485 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0486 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0487 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0488 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0489 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0490 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0491 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0492 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0493 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0494 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0495 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0496 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0497 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0498 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0499 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0500 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0501 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0502 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0503 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0504 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0505 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0506 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0507 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0508 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0509 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0510 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0511 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0512 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0513 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0514 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0515 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0516 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0517 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0518 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0519 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0520 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0521 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0522 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0523 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0524 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0525 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0526 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0527 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0528 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0529 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0530 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0531 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0532 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0533 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0534 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0535 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0536 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0537 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0538 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0539 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0540 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0541 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0542 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0543 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0544 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0545 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0546 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0547 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0548 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0549 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0550 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0551 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0552 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0553 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0554 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0555 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0556 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0557 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0558 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0559 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0560 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0561 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0562 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0563 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0564 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0565 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0566 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0567 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0568 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0569 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0570 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0571 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0572 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0573 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0574 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0575 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0576 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0577 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0578 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0579 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0580 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0581 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0582 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0583 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0584 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0585 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0586 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0587 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0588 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0589 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0590 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0591 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0592 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0593 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0594 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0595 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0596 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0597 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0598 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0599 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0600 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0601 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0602 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0603 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0604 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0605 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0606 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0607 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0608 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0609 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0610 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0611 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0612 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0613 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0614 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0615 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0616 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0617 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0618 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0619 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0620 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0621 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0622 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0623 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0624 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0625 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0626 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0627 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0628 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0629 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0630 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0631 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0632 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0633 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0634 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0635 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0636 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0637 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0638 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0639 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0640 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0641 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0642 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0643 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0644 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0645 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0646 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0647 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0648 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0649 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0650 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0651 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0652 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0653 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0654 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0655 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0656 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0657 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0658 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0659 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0660 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0661 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0662 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0663 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0664 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0665 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0666 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0667 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0668 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0669 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0670 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0671 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0672 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0673 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0674 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0675 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0676 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0677 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0678 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0679 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0680 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0681 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0682 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0683 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0684 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0685 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0686 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0687 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0688 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0689 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0690 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0691 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0692 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0693 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0694 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0695 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0696 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0697 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0698 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0699 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0700 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0701 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0702 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0703 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0704 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0705 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0706 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0707 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0708 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0709 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0710 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0711 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0712 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0713 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0714 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0715 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0716 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0717 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0718 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0719 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0720 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0721 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0722 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0723 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0724 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0725 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0726 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0727 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0728 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0729 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0730 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0731 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0732 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0733 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0734 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0735 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0736 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0737 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0738 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0739 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0740 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0741 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0742 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0743 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0744 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0745 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0746 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0747 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0748 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0749 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0750 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0751 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0752 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0753 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0754 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0755 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0756 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0757 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0758 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0759 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0760 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0761 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0762 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0763 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0764 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0765 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0766 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0767 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0768 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0769 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0770 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0771 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0772 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0773 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0774 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0775 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0776 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0777 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0778 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0779 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0780 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0781 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0782 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0783 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0784 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0785 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0786 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0787 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0788 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0789 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0790 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0791 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0792 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0793 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0794 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0795 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0796 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0797 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0798 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0799 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0800 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0801 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0802 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0803 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0804 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0805 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0806 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0807 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0808 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0809 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0810 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0811 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0812 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0813 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0814 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0815 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0816 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0817 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0818 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0819 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0820 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0821 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0822 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0823 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0824 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0825 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0826 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0827 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0828 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0829 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0830 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0831 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0832 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0833 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0834 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0835 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0836 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0837 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0838 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0839 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0840 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0841 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0842 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0843 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0844 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0845 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0846 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0847 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0848 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0849 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0850 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0851 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0852 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0853 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0854 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0855 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0856 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0857 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0858 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0859 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0860 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0861 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0862 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0863 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0864 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0865 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0866 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0867 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0868 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0869 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0870 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0871 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0872 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0873 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0874 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0875 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0876 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0877 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0878 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0879 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0880 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0881 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0882 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0883 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0884 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0885 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0886 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0887 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0888 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0889 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0890 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0891 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0892 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0893 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0894 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0895 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0896 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0897 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0898 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0899 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0900 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0901 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0902 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0903 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0904 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0905 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0906 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0907 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0908 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0909 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0910 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0911 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0912 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0913 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0914 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0915 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0916 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0917 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0918 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0919 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0920 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0921 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0922 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0923 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0924 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0925 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0926 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0927 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0928 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0929 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0930 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0931 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0932 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0933 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0934 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0935 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0936 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0937 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0938 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0939 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0940 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0941 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0942 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0943 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0944 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0945 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0946 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0947 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0948 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0949 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0950 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0951 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0952 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0953 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0954 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0955 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0956 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0957 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0958 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0959 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0960 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0961 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0962 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0963 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0964 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0965 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0966 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0967 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0968 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0969 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0970 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0971 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0972 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0973 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0974 / 0974 | LOSS 0.0045\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0001 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0002 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0003 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0004 / 3410 | LOSS 0.0048\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0005 / 3410 | LOSS 0.0045\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0006 / 3410 | LOSS 0.0044\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0007 / 3410 | LOSS 0.0045\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0008 / 3410 | LOSS 0.0043\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0009 / 3410 | LOSS 0.0042\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0010 / 3410 | LOSS 0.0042\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0011 / 3410 | LOSS 0.0041\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0012 / 3410 | LOSS 0.0040\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0013 / 3410 | LOSS 0.0040\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0014 / 3410 | LOSS 0.0039\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0015 / 3410 | LOSS 0.0038\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0016 / 3410 | LOSS 0.0038\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0017 / 3410 | LOSS 0.0037\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0018 / 3410 | LOSS 0.0036\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0019 / 3410 | LOSS 0.0036\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0020 / 3410 | LOSS 0.0035\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0021 / 3410 | LOSS 0.0035\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0022 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0023 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0024 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0025 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0026 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0027 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0028 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0029 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0030 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0031 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0032 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0033 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0034 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0035 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0036 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0037 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0038 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0039 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0040 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0041 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0042 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0043 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0044 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0045 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0046 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0047 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0048 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0049 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0050 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0051 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0052 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0053 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0054 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0055 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0056 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0057 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0058 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0059 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0060 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0061 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0062 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0063 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0064 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0065 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0066 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0067 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0068 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0069 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0070 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0071 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0072 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0073 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0074 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0075 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0076 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0077 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0078 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0079 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0080 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0081 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0082 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0083 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0084 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0085 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0086 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0087 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0088 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0089 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0090 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0091 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0092 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0093 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0094 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0095 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0096 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0097 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0098 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0099 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0100 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0101 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0102 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0103 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0104 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0105 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0106 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0107 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0108 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0109 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0110 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0111 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0112 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0113 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0114 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0115 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0116 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0117 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0118 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0119 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0120 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0121 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0122 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0123 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0124 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0125 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0126 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0127 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0128 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0129 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0130 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0131 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0132 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0133 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0134 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0135 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0136 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0137 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0138 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0139 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0140 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0141 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0142 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0143 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0144 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0145 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0146 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0147 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0148 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0149 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0150 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0151 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0152 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0153 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0154 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0155 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0156 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0157 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0158 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0159 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0160 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0161 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0162 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0163 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0164 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0165 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0166 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0167 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0168 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0169 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0170 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0171 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0172 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0173 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0174 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0175 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0176 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0177 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0178 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0179 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0180 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0181 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0182 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0183 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0184 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0185 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0186 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0187 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0188 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0189 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0190 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0191 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0192 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0193 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0194 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0195 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0196 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0197 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0198 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0199 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0200 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0201 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0202 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0203 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0204 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0205 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0206 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0207 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0208 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0209 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0210 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0211 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0212 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0213 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0214 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0215 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0216 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0217 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0218 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0219 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0220 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0221 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0222 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0223 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0224 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0225 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0226 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0227 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0228 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0229 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0230 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0231 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0232 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0233 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0234 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0235 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0236 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0237 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0238 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0239 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0240 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0241 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0242 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0243 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0244 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0245 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0246 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0247 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0248 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0249 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0250 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0251 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0252 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0253 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0254 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0255 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0256 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0257 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0258 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0259 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0260 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0261 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0262 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0263 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0264 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0265 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0266 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0267 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0268 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0269 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0270 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0271 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0272 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0273 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0274 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0275 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0276 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0277 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0278 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0279 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0280 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0281 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0282 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0283 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0284 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0285 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0286 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0287 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0288 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0289 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0290 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0291 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0292 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0293 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0294 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0295 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0296 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0297 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0298 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0299 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0300 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0301 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0302 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0303 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0304 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0305 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0306 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0307 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0308 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0309 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0310 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0311 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0312 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0313 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0314 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0315 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0316 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0317 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0318 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0319 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0320 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0321 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0322 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0323 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0324 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0325 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0326 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0327 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0328 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0329 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0330 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0331 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0332 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0333 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0334 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0335 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0336 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0337 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0338 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0339 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0340 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0341 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0342 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0343 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0344 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0345 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0346 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0347 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0348 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0349 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0350 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0351 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0352 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0353 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0354 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0355 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0356 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0357 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0358 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0359 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0360 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0361 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0362 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0363 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0364 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0365 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0366 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0367 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0368 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0369 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0370 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0371 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0372 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0373 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0374 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0375 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0376 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0377 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0378 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0379 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0380 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0381 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0382 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0383 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0384 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0385 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0386 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0387 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0388 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0389 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0390 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0391 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0392 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0393 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0394 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0395 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0396 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0397 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0398 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0399 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0400 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0401 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0402 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0403 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0404 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0405 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0406 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0407 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0408 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0409 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0410 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0411 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0412 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0413 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0414 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0415 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0416 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0417 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0418 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0419 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0420 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0421 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0422 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0423 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0424 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0425 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0426 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0427 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0428 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0429 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0430 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0431 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0432 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0433 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0434 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0435 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0436 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0437 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0438 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0439 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0440 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0441 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0442 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0443 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0444 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0445 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0446 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0447 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0448 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0449 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0450 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0451 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0452 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0453 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0454 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0455 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0456 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0457 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0458 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0459 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0460 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0461 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0462 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0463 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0464 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0465 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0466 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0467 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0468 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0469 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0470 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0471 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0472 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0473 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0474 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0475 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0476 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0477 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0478 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0479 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0480 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0481 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0482 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0483 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0484 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0485 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0486 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0487 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0488 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0489 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0490 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0491 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0492 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0493 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0494 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0495 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0496 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0497 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0498 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0499 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0500 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0501 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0502 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0503 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0504 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0505 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0506 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0507 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0508 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0509 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0510 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0511 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0512 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0513 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0514 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0515 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0516 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0517 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0518 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0519 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0520 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0521 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0522 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0523 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0524 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0525 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0526 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0527 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0528 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0529 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0530 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0531 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0532 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0533 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0534 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0535 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0536 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0537 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0538 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0539 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0540 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0541 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0542 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0543 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0544 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0545 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0546 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0547 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0548 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0549 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0550 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0551 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0552 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0553 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0554 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0555 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0556 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0557 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0558 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0559 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0560 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0561 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0562 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0563 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0564 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0565 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0566 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0567 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0568 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0569 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0570 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0571 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0572 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0573 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0574 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0575 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0576 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0577 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0578 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0579 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0580 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0581 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0582 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0583 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0584 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0585 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0586 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0587 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0588 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0589 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0590 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0591 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0592 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0593 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0594 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0595 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0596 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0597 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0598 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0599 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0600 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0601 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0602 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0603 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0604 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0605 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0606 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0607 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0608 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0609 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0610 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0611 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0612 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0613 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0614 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0615 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0616 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0617 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0618 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0619 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0620 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0621 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0622 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0623 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0624 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0625 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0626 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0627 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0628 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0629 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0630 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0631 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0632 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0633 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0634 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0635 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0636 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0637 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0638 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0639 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0640 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0641 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0642 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0643 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0644 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0645 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0646 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0647 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0648 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0649 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0650 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0651 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0652 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0653 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0654 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0655 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0656 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0657 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0658 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0659 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0660 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0661 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0662 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0663 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0664 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0665 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0666 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0667 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0668 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0669 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0670 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0671 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0672 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0673 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0674 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0675 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0676 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0677 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0678 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0679 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0680 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0681 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0682 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0683 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0684 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0685 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0686 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0687 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0688 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0689 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0690 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0691 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0692 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0693 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0694 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0695 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0696 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0697 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0698 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0699 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0700 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0701 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0702 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0703 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0704 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0705 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0706 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0707 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0708 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0709 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0710 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0711 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0712 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0713 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0714 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0715 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0716 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0717 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0718 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0719 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0720 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0721 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0722 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0723 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0724 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0725 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0726 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0727 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0728 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0729 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0730 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0731 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0732 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0733 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0734 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0735 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0736 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0737 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0738 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0739 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0740 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0741 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0742 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0743 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0744 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0745 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0746 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0747 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0748 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0749 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0750 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0751 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0752 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0753 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0754 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0755 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0756 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0757 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0758 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0759 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0760 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0761 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0762 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0763 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0764 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0765 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0766 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0767 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0768 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0769 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0770 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0771 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0772 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0773 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0774 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0775 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0776 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0777 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0778 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0779 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0780 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0781 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0782 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0783 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0784 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0785 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0786 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0787 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0788 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0789 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0790 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0791 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0792 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0793 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0794 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0795 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0796 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0797 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0798 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0799 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0800 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0801 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0802 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0803 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0804 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0805 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0806 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0807 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0808 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0809 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0810 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0811 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0812 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0813 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0814 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0815 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0816 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0817 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0818 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0819 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0820 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0821 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0822 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0823 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0824 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0825 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0826 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0827 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0828 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0829 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0830 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0831 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0832 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0833 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0834 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0835 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0836 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0837 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0838 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0839 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0840 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0841 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0842 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0843 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0844 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0845 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0846 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0847 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0848 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0849 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0850 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0851 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0852 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0853 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0854 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0855 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0856 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0857 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0858 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0859 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0860 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0861 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0862 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0863 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0864 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0865 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0866 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0867 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0868 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0869 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0870 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0871 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0872 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0873 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0874 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0875 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0876 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0877 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0878 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0879 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0880 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0881 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0882 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0883 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0884 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0885 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0886 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0887 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0888 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0889 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0890 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0891 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0892 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0893 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0894 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0895 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0896 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0897 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0898 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0899 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0900 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0901 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0902 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0903 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0904 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0905 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0906 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0907 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0908 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0909 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0910 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0911 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0912 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0913 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0914 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0915 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0916 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0917 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0918 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0919 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0920 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0921 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0922 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0923 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0924 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0925 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0926 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0927 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0928 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0929 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0930 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0931 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0932 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0933 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0934 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0935 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0936 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0937 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0938 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0939 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0940 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0941 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0942 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0943 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0944 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0945 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0946 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0947 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0948 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0949 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0950 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0951 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0952 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0953 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0954 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0955 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0956 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0957 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0958 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0959 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0960 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0961 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0962 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0963 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0964 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0965 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0966 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0967 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0968 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0969 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0970 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0971 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0972 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0973 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0974 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0975 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0976 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0977 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0978 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0979 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0980 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0981 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0982 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0983 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0984 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0985 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0986 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0987 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0988 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0989 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0990 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0991 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0992 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0993 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0994 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0995 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0996 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0997 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0998 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0999 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1000 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1001 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1002 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1003 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1004 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1005 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1006 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1007 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1008 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1009 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1010 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1011 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1012 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1013 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1014 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1015 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1016 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1017 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1018 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1019 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1020 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1021 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1022 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1023 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1024 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1025 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1026 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1027 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1028 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1029 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1030 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1031 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1032 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1033 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1034 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1035 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1036 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1037 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1038 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1039 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1040 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1041 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1042 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1043 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1044 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1045 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1046 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1047 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1048 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1049 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1050 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1051 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1052 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1053 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1054 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1055 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1056 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1057 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1058 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1059 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1060 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1061 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1062 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1063 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1064 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1065 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1066 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1067 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1068 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1069 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1070 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1071 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1072 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1073 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1074 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1075 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1076 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1077 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1078 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1079 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1080 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1081 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1082 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1083 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1084 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1085 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1086 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1087 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1088 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1089 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1090 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1091 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1092 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1093 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1094 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1095 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1096 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1097 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1098 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1099 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1100 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1101 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1102 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1103 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1104 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1105 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1106 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1107 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1108 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1109 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1110 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1111 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1112 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1113 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1114 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1115 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1116 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1117 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1118 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1119 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1120 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1121 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1122 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1123 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1124 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1125 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1126 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1127 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1128 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1129 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1130 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1131 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1132 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1133 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1134 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1135 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1136 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1137 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1138 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1139 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1140 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1141 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1142 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1143 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1144 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1145 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1146 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1147 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1148 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1149 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1150 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1151 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1152 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1153 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1154 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1155 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1156 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1157 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1158 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1159 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1160 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1161 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1162 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1163 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1164 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1165 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1166 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1167 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1168 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1169 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1170 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1171 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1172 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1173 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1174 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1175 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1176 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1177 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1178 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1179 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1180 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1181 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1182 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1183 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1184 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1185 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1186 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1187 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1188 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1189 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1190 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1191 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1192 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1193 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1194 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1195 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1196 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1197 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1198 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1199 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1200 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1201 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1202 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1203 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1204 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1205 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1206 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1207 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1208 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1209 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1210 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1211 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1212 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1213 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1214 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1215 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1216 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1217 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1218 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1219 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1220 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1221 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1222 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1223 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1224 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1225 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1226 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1227 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1228 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1229 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1230 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1231 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1232 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1233 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1234 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1235 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1236 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1237 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1238 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1239 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1240 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1241 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1242 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1243 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1244 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1245 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1246 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1247 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1248 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1249 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1250 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1251 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1252 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1253 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1254 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1255 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1256 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1257 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1258 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1259 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1260 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1261 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1262 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1263 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1264 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1265 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1266 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1267 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1268 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1269 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1270 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1271 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1272 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1273 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1274 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1275 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1276 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1277 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1278 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1279 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1280 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1281 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1282 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1283 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1284 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1285 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1286 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1287 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1288 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1289 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1290 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1291 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1292 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1293 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1294 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1295 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1296 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1297 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1298 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1299 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1300 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1301 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1302 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1303 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1304 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1305 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1306 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1307 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1308 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1309 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1310 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1311 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1312 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1313 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1314 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1315 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1316 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1317 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1318 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1319 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1320 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1321 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1322 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1323 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1324 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1325 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1326 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1327 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1328 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1329 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1330 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1331 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1332 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1333 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1334 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1335 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1336 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1337 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1338 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1339 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1340 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1341 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1342 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1343 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1344 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1345 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1346 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1347 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1348 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1349 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1350 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1351 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1352 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1353 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1354 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1355 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1356 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1357 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1358 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1359 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1360 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1361 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1362 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1363 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1364 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1365 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1366 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1367 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1368 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1369 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1370 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1371 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1372 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1373 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1374 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1375 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1376 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1377 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1378 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1379 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1380 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1381 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1382 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1383 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1384 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1385 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1386 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1387 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1388 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1389 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1390 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1391 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1392 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1393 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1394 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1395 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1396 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1397 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1398 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1399 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1400 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1401 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1402 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1403 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1404 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1405 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1406 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1407 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1408 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1409 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1410 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1411 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1412 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1413 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1414 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1415 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1416 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1417 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1418 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1419 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1420 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1421 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1422 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1423 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1424 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1425 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1426 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1427 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1428 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1429 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1430 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1431 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1432 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1433 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1434 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1435 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1436 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1437 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1438 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1439 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1440 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1441 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1442 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1443 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1444 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1445 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1446 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1447 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1448 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1449 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1450 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1451 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1452 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1453 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1454 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1455 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1456 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1457 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1458 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1459 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1460 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1461 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1462 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1463 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1464 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1465 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1466 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1467 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1468 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1469 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1470 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1471 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1472 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1473 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1474 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1475 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1476 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1477 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1478 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1479 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1480 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1481 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1482 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1483 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1484 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1485 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1486 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1487 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1488 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1489 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1490 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1491 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1492 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1493 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1494 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1495 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1496 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1497 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1498 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1499 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1500 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1501 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1502 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1503 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1504 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1505 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1506 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1507 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1508 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1509 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1510 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1511 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1512 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1513 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1514 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1515 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1516 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1517 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1518 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1519 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1520 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1521 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1522 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1523 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1524 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1525 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1526 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1527 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1528 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1529 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1530 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1531 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1532 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1533 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1534 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1535 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1536 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1537 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1538 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1539 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1540 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1541 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1542 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1543 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1544 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1545 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1546 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1547 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1548 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1549 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1550 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1551 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1552 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1553 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1554 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1555 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1556 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1557 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1558 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1559 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1560 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1561 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1562 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1563 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1564 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1565 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1566 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1567 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1568 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1569 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1570 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1571 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1572 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1573 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1574 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1575 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1576 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1577 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1578 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1579 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1580 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1581 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1582 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1583 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1584 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1585 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1586 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1587 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1588 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1589 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1590 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1591 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1592 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1593 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1594 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1595 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1596 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1597 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1598 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1599 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1600 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1601 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1602 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1603 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1604 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1605 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1606 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1607 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1608 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1609 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1610 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1611 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1612 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1613 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1614 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1615 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1616 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1617 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1618 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1619 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1620 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1621 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1622 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1623 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1624 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1625 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1626 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1627 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1628 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1629 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1630 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1631 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1632 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1633 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1634 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1635 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1636 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1637 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1638 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1639 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1640 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1641 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1642 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1643 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1644 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1645 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1646 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1647 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1648 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1649 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1650 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1651 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1652 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1653 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1654 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1655 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1656 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1657 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1658 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1659 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1660 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1661 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1662 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1663 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1664 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1665 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1666 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1667 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1668 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1669 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1670 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1671 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1672 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1673 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1674 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1675 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1676 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1677 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1678 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1679 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1680 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1681 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1682 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1683 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1684 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1685 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1686 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1687 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1688 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1689 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1690 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1691 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1692 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1693 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1694 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1695 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1696 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1697 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1698 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1699 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1700 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1701 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1702 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1703 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1704 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1705 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1706 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1707 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1708 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1709 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1710 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1711 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1712 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1713 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1714 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1715 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1716 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1717 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1718 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1719 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1720 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1721 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1722 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1723 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1724 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1725 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1726 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1727 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1728 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1729 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1730 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1731 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1732 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1733 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1734 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1735 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1736 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1737 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1738 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1739 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1740 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1741 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1742 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1743 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1744 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1745 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1746 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1747 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1748 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1749 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1750 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1751 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1752 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1753 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1754 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1755 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1756 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1757 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1758 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1759 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1760 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1761 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1762 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1763 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1764 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1765 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1766 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1767 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1768 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1769 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1770 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1771 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1772 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1773 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1774 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1775 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1776 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1777 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1778 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1779 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1780 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1781 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1782 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1783 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1784 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1785 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1786 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1787 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1788 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1789 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1790 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1791 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1792 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1793 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1794 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1795 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1796 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1797 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1798 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1799 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1800 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1801 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1802 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1803 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1804 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1805 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1806 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1807 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1808 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1809 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1810 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1811 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1812 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1813 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1814 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1815 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1816 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1817 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1818 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1819 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1820 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1821 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1822 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1823 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1824 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1825 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1826 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1827 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1828 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1829 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1830 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1831 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1832 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1833 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1834 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1835 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1836 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1837 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1838 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1839 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1840 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1841 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1842 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1843 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1844 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1845 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1846 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1847 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1848 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1849 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1850 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1851 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1852 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1853 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1854 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1855 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1856 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1857 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1858 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1859 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1860 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1861 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1862 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1863 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1864 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1865 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1866 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1867 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1868 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1869 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1870 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1871 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1872 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1873 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1874 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1875 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1876 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1877 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1878 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1879 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1880 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1881 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1882 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1883 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1884 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1885 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1886 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1887 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1888 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1889 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1890 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1891 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1892 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1893 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1894 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1895 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1896 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1897 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1898 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1899 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1900 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1901 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1902 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1903 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1904 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1905 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1906 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1907 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1908 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1909 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1910 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1911 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1912 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1913 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1914 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1915 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1916 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1917 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1918 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1919 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1920 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1921 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1922 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1923 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1924 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1925 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1926 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1927 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1928 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1929 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1930 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1931 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1932 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1933 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1934 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1935 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1936 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1937 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1938 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1939 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1940 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1941 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1942 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1943 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1944 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1945 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1946 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1947 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1948 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1949 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1950 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1951 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1952 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1953 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1954 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1955 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1956 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1957 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1958 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1959 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1960 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1961 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1962 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1963 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1964 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1965 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1966 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1967 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1968 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1969 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1970 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1971 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1972 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1973 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1974 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1975 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1976 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1977 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1978 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1979 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1980 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1981 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1982 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1983 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1984 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1985 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1986 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1987 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1988 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1989 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1990 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1991 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1992 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1993 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1994 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1995 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1996 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1997 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1998 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1999 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2000 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2001 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2002 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2003 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2004 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2005 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2006 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2007 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2008 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2009 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2010 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2011 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2012 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2013 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2014 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2015 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2016 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2017 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2018 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2019 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2020 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2021 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2022 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2023 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2024 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2025 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2026 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2027 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2028 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2029 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2030 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2031 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2032 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2033 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2034 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2035 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2036 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2037 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2038 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2039 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2040 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2041 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2042 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2043 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2044 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2045 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2046 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2047 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2048 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2049 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2050 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2051 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2052 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2053 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2054 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2055 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2056 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2057 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2058 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2059 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2060 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2061 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2062 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2063 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2064 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2065 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2066 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2067 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2068 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2069 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2070 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2071 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2072 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2073 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2074 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2075 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2076 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2077 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2078 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2079 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2080 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2081 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2082 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2083 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2084 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2085 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2086 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2087 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2088 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2089 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2090 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2091 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2092 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2093 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2094 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2095 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2096 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2097 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2098 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2099 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2100 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2101 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2102 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2103 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2104 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2105 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2106 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2107 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2108 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2109 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2110 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2111 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2112 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2113 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2114 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2115 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2116 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2117 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2118 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2119 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2120 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2121 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2122 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2123 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2124 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2125 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2126 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2127 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2128 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2129 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2130 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2131 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2132 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2133 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2134 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2135 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2136 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2137 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2138 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2139 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2140 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2141 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2142 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2143 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2144 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2145 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2146 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2147 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2148 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2149 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2150 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2151 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2152 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2153 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2154 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2155 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2156 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2157 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2158 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2159 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2160 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2161 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2162 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2163 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2164 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2165 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2166 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2167 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2168 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2169 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2170 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2171 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2172 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2173 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2174 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2175 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2176 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2177 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2178 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2179 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2180 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2181 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2182 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2183 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2184 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2185 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2186 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2187 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2188 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2189 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2190 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2191 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2192 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2193 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2194 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2195 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2196 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2197 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2198 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2199 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2200 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2201 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2202 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2203 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2204 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2205 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2206 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2207 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2208 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2209 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2210 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2211 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2212 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2213 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2214 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2215 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2216 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2217 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2218 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2219 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2220 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2221 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2222 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2223 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2224 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2225 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2226 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2227 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2228 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2229 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2230 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2231 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2232 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2233 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2234 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2235 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2236 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2237 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2238 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2239 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2240 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2241 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2242 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2243 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2244 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2245 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2246 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2247 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2248 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2249 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2250 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2251 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2252 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2253 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2254 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2255 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2256 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2257 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2258 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2259 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2260 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2261 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2262 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2263 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2264 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2265 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2266 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2267 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2268 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2269 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2270 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2271 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2272 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2273 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2274 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2275 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2276 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2277 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2278 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2279 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2280 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2281 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2282 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2283 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2284 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2285 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2286 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2287 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2288 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2289 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2290 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2291 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2292 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2293 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2294 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2295 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2296 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2297 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2298 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2299 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2300 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2301 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2302 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2303 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2304 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2305 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2306 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2307 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2308 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2309 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2310 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2311 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2312 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2313 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2314 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2315 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2316 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2317 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2318 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2319 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2320 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2321 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2322 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2323 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2324 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2325 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2326 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2327 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2328 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2329 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2330 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2331 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2332 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2333 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2334 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2335 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2336 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2337 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2338 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2339 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2340 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2341 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2342 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2343 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2344 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2345 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2346 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2347 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2348 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2349 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2350 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2351 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2352 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2353 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2354 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2355 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2356 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2357 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2358 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2359 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2360 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2361 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2362 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2363 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2364 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2365 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2366 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2367 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2368 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2369 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2370 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2371 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2372 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2373 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2374 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2375 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2376 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2377 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2378 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2379 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2380 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2381 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2382 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2383 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2384 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2385 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2386 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2387 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2388 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2389 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2390 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2391 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2392 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2393 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2394 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2395 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2396 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2397 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2398 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2399 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2400 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2401 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2402 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2403 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2404 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2405 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2406 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2407 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2408 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2409 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2410 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2411 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2412 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2413 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2414 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2415 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2416 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2417 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2418 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2419 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2420 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2421 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2422 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2423 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2424 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2425 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2426 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2427 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2428 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2429 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2430 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2431 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2432 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2433 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2434 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2435 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2436 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2437 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2438 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2439 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2440 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2441 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2442 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2443 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2444 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2445 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2446 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2447 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2448 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2449 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2450 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2451 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2452 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2453 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2454 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2455 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2456 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2457 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2458 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2459 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2460 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2461 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2462 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2463 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2464 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2465 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2466 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2467 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2468 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2469 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2470 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2471 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2472 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2473 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2474 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2475 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2476 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2477 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2478 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2479 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2480 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2481 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2482 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2483 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2484 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2485 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2486 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2487 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2488 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2489 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2490 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2491 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2492 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2493 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2494 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2495 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2496 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2497 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2498 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2499 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2500 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2501 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2502 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2503 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2504 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2505 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2506 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2507 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2508 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2509 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2510 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2511 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2512 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2513 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2514 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2515 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2516 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2517 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2518 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2519 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2520 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2521 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2522 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2523 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2524 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2525 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2526 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2527 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2528 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2529 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2530 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2531 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2532 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2533 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2534 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2535 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2536 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2537 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2538 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2539 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2540 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2541 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2542 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2543 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2544 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2545 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2546 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2547 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2548 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2549 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2550 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2551 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2552 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2553 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2554 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2555 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2556 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2557 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2558 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2559 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2560 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2561 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2562 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2563 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2564 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2565 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2566 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2567 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2568 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2569 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2570 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2571 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2572 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2573 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2574 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2575 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2576 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2577 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2578 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2579 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2580 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2581 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2582 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2583 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2584 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2585 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2586 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2587 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2588 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2589 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2590 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2591 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2592 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2593 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2594 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2595 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2596 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2597 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2598 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2599 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2600 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2601 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2602 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2603 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2604 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2605 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2606 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2607 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2608 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2609 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2610 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2611 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2612 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2613 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2614 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2615 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2616 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2617 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2618 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2619 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2620 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2621 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2622 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2623 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2624 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2625 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2626 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2627 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2628 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2629 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2630 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2631 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2632 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2633 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2634 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2635 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2636 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2637 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2638 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2639 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2640 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2641 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2642 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2643 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2644 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2645 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2646 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2647 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2648 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2649 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2650 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2651 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2652 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2653 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2654 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2655 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2656 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2657 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2658 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2659 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2660 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2661 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2662 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2663 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2664 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2665 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2666 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2667 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2668 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2669 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2670 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2671 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2672 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2673 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2674 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2675 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2676 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2677 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2678 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2679 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2680 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2681 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2682 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2683 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2684 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2685 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2686 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2687 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2688 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2689 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2690 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2691 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2692 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2693 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2694 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2695 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2696 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2697 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2698 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2699 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2700 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2701 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2702 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2703 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2704 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2705 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2706 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2707 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2708 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2709 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2710 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2711 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2712 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2713 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2714 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2715 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2716 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2717 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2718 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2719 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2720 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2721 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2722 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2723 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2724 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2725 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2726 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2727 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2728 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2729 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2730 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2731 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2732 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2733 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2734 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2735 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2736 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2737 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2738 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2739 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2740 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2741 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2742 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2743 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2744 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2745 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2746 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2747 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2748 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2749 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2750 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2751 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2752 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2753 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2754 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2755 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2756 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2757 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2758 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2759 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2760 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2761 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2762 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2763 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2764 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2765 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2766 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2767 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2768 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2769 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2770 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2771 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2772 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2773 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2774 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2775 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2776 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2777 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2778 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2779 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2780 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2781 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2782 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2783 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2784 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2785 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2786 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2787 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2788 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2789 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2790 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2791 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2792 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2793 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2794 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2795 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2796 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2797 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2798 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2799 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2800 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2801 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2802 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2803 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2804 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2805 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2806 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2807 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2808 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2809 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2810 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2811 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2812 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2813 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2814 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2815 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2816 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2817 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2818 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2819 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2820 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2821 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2822 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2823 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2824 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2825 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2826 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2827 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2828 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2829 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2830 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2831 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2832 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2833 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2834 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2835 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2836 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2837 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2838 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2839 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2840 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2841 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2842 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2843 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2844 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2845 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2846 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2847 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2848 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2849 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2850 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2851 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2852 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2853 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2854 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2855 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2856 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2857 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2858 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2859 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2860 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2861 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2862 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2863 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2864 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2865 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2866 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2867 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2868 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2869 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2870 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2871 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2872 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2873 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2874 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2875 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2876 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2877 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2878 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2879 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2880 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2881 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2882 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2883 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2884 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2885 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2886 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2887 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2888 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2889 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2890 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2891 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2892 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2893 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2894 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2895 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2896 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2897 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2898 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2899 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2900 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2901 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2902 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2903 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2904 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2905 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2906 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2907 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2908 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2909 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2910 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2911 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2912 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2913 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2914 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2915 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2916 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2917 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2918 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2919 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2920 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2921 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2922 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2923 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2924 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2925 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2926 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2927 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2928 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2929 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2930 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2931 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2932 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2933 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2934 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2935 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2936 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2937 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2938 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2939 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2940 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2941 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2942 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2943 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2944 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2945 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2946 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2947 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2948 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2949 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2950 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2951 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2952 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2953 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2954 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2955 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2956 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2957 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2958 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2959 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2960 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2961 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2962 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2963 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2964 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2965 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2966 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2967 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2968 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2969 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2970 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2971 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2972 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2973 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2974 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2975 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2976 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2977 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2978 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2979 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2980 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2981 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2982 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2983 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2984 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2985 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2986 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2987 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2988 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2989 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2990 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2991 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2992 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2993 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2994 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2995 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2996 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2997 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2998 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2999 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3000 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3001 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3002 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3003 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3004 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3005 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3006 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3007 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3008 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3009 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3010 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3011 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3012 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3013 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3014 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3015 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3016 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3017 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3018 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3019 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3020 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3021 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3022 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3023 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3024 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3025 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3026 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3027 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3028 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3029 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3030 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3031 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3032 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3033 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3034 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3035 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3036 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3037 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3038 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3039 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3040 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3041 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3042 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3043 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3044 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3045 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3046 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3047 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3048 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3049 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3050 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3051 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3052 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3053 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3054 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3055 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3056 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3057 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3058 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3059 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3060 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3061 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3062 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3063 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3064 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3065 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3066 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3067 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3068 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3069 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3070 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3071 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3072 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3073 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3074 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3075 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3076 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3077 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3078 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3079 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3080 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3081 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3082 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3083 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3084 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3085 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3086 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3087 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3088 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3089 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3090 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3091 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3092 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3093 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3094 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3095 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3096 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3097 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3098 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3099 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3100 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3101 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3102 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3103 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3104 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3105 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3106 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3107 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3108 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3109 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3110 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3111 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3112 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3113 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3114 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3115 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3116 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3117 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3118 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3119 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3120 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3121 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3122 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3123 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3124 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3125 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3126 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3127 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3128 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3129 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3130 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3131 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3132 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3133 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3134 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3135 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3136 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3137 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3138 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3139 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3140 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3141 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3142 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3143 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3144 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3145 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3146 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3147 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3148 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3149 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3150 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3151 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3152 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3153 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3154 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3155 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3156 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3157 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3158 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3159 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3160 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3161 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3162 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3163 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3164 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3165 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3166 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3167 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3168 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3169 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3170 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3171 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3172 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3173 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3174 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3175 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3176 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3177 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3178 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3179 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3180 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3181 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3182 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3183 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3184 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3185 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3186 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3187 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3188 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3189 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3190 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3191 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3192 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3193 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3194 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3195 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3196 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3197 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3198 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3199 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3200 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3201 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3202 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3203 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3204 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3205 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3206 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3207 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3208 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3209 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3210 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3211 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3212 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3213 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3214 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3215 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3216 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3217 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3218 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3219 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3220 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3221 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3222 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3223 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3224 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3225 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3226 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3227 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3228 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3229 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3230 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3231 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3232 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3233 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3234 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3235 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3236 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3237 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3238 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3239 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3240 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3241 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3242 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3243 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3244 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3245 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3246 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3247 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3248 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3249 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3250 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3251 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3252 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3253 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3254 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3255 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3256 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3257 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3258 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3259 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3260 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3261 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3262 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3263 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3264 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3265 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3266 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3267 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3268 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3269 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3270 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3271 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3272 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3273 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3274 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3275 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3276 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3277 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3278 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3279 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3280 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3281 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3282 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3283 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3284 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3285 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3286 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3287 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3288 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3289 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3290 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3291 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3292 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3293 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3294 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3295 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3296 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3297 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3298 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3299 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3300 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3301 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3302 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3303 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3304 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3305 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3306 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3307 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3308 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3309 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3310 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3311 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3312 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3313 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3314 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3315 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3316 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3317 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3318 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3319 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3320 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3321 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3322 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3323 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3324 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3325 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3326 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3327 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3328 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3329 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3330 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3331 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3332 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3333 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3334 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3335 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3336 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3337 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3338 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3339 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3340 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3341 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3342 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3343 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3344 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3345 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3346 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3347 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3348 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3349 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3350 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3351 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3352 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3353 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3354 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3355 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3356 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3357 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3358 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3359 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3360 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3361 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3362 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3363 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3364 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3365 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3366 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3367 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3368 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3369 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3370 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3371 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3372 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3373 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3374 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3375 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3376 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3377 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3378 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3379 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3380 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3381 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3382 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3383 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3384 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3385 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3386 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3387 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3388 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3389 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3390 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3391 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3392 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3393 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3394 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3395 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3396 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3397 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3398 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3399 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3400 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3401 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3402 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3403 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3404 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3405 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3406 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3407 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3408 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3409 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3410 / 3410 | LOSS 0.0027\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0001 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0002 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0003 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0004 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0005 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0006 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0007 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0008 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0009 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0010 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0011 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0012 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0013 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0014 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0015 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0016 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0017 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0018 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0019 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0020 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0021 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0022 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0023 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0024 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0025 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0026 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0027 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0028 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0029 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0030 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0031 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0032 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0033 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0034 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0035 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0036 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0037 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0038 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0039 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0040 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0041 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0042 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0043 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0044 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0045 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0046 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0047 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0048 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0049 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0050 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0051 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0052 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0053 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0054 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0055 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0056 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0057 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0058 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0059 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0060 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0061 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0062 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0063 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0064 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0065 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0066 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0067 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0068 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0069 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0070 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0071 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0072 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0073 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0074 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0075 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0076 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0077 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0078 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0079 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0080 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0081 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0082 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0083 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0084 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0085 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0086 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0087 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0088 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0089 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0090 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0091 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0092 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0093 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0094 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0095 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0096 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0097 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0098 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0099 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0100 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0101 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0102 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0103 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0104 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0105 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0106 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0107 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0108 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0109 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0110 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0111 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0112 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0113 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0114 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0115 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0116 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0117 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0118 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0119 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0120 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0121 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0122 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0123 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0124 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0125 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0126 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0127 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0128 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0129 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0130 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0131 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0132 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0133 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0134 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0135 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0136 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0137 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0138 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0139 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0140 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0141 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0142 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0143 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0144 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0145 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0146 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0147 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0148 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0149 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0150 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0151 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0152 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0153 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0154 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0155 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0156 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0157 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0158 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0159 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0160 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0161 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0162 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0163 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0164 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0165 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0166 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0167 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0168 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0169 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0170 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0171 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0172 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0173 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0174 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0175 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0176 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0177 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0178 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0179 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0180 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0181 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0182 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0183 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0184 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0185 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0186 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0187 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0188 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0189 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0190 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0191 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0192 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0193 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0194 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0195 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0196 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0197 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0198 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0199 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0200 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0201 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0202 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0203 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0204 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0205 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0206 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0207 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0208 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0209 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0210 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0211 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0212 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0213 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0214 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0215 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0216 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0217 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0218 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0219 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0220 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0221 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0222 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0223 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0224 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0225 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0226 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0227 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0228 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0229 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0230 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0231 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0232 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0233 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0234 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0235 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0236 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0237 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0238 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0239 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0240 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0241 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0242 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0243 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0244 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0245 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0246 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0247 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0248 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0249 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0250 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0251 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0252 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0253 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0254 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0255 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0256 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0257 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0258 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0259 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0260 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0261 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0262 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0263 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0264 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0265 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0266 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0267 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0268 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0269 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0270 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0271 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0272 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0273 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0274 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0275 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0276 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0277 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0278 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0279 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0280 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0281 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0282 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0283 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0284 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0285 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0286 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0287 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0288 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0289 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0290 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0291 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0292 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0293 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0294 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0295 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0296 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0297 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0298 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0299 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0300 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0301 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0302 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0303 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0304 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0305 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0306 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0307 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0308 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0309 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0310 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0311 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0312 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0313 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0314 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0315 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0316 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0317 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0318 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0319 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0320 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0321 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0322 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0323 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0324 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0325 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0326 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0327 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0328 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0329 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0330 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0331 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0332 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0333 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0334 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0335 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0336 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0337 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0338 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0339 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0340 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0341 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0342 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0343 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0344 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0345 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0346 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0347 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0348 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0349 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0350 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0351 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0352 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0353 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0354 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0355 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0356 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0357 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0358 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0359 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0360 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0361 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0362 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0363 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0364 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0365 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0366 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0367 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0368 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0369 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0370 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0371 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0372 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0373 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0374 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0375 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0376 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0377 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0378 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0379 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0380 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0381 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0382 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0383 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0384 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0385 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0386 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0387 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0388 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0389 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0390 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0391 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0392 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0393 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0394 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0395 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0396 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0397 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0398 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0399 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0400 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0401 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0402 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0403 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0404 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0405 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0406 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0407 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0408 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0409 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0410 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0411 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0412 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0413 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0414 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0415 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0416 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0417 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0418 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0419 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0420 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0421 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0422 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0423 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0424 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0425 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0426 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0427 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0428 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0429 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0430 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0431 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0432 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0433 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0434 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0435 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0436 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0437 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0438 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0439 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0440 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0441 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0442 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0443 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0444 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0445 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0446 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0447 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0448 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0449 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0450 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0451 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0452 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0453 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0454 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0455 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0456 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0457 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0458 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0459 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0460 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0461 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0462 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0463 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0464 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0465 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0466 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0467 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0468 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0469 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0470 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0471 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0472 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0473 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0474 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0475 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0476 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0477 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0478 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0479 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0480 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0481 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0482 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0483 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0484 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0485 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0486 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0487 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0488 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0489 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0490 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0491 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0492 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0493 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0494 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0495 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0496 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0497 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0498 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0499 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0500 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0501 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0502 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0503 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0504 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0505 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0506 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0507 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0508 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0509 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0510 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0511 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0512 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0513 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0514 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0515 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0516 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0517 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0518 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0519 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0520 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0521 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0522 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0523 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0524 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0525 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0526 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0527 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0528 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0529 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0530 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0531 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0532 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0533 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0534 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0535 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0536 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0537 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0538 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0539 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0540 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0541 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0542 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0543 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0544 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0545 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0546 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0547 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0548 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0549 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0550 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0551 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0552 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0553 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0554 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0555 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0556 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0557 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0558 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0559 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0560 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0561 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0562 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0563 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0564 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0565 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0566 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0567 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0568 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0569 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0570 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0571 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0572 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0573 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0574 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0575 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0576 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0577 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0578 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0579 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0580 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0581 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0582 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0583 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0584 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0585 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0586 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0587 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0588 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0589 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0590 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0591 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0592 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0593 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0594 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0595 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0596 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0597 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0598 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0599 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0600 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0601 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0602 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0603 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0604 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0605 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0606 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0607 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0608 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0609 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0610 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0611 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0612 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0613 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0614 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0615 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0616 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0617 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0618 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0619 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0620 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0621 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0622 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0623 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0624 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0625 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0626 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0627 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0628 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0629 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0630 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0631 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0632 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0633 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0634 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0635 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0636 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0637 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0638 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0639 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0640 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0641 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0642 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0643 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0644 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0645 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0646 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0647 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0648 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0649 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0650 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0651 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0652 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0653 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0654 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0655 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0656 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0657 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0658 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0659 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0660 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0661 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0662 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0663 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0664 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0665 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0666 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0667 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0668 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0669 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0670 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0671 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0672 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0673 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0674 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0675 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0676 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0677 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0678 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0679 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0680 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0681 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0682 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0683 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0684 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0685 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0686 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0687 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0688 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0689 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0690 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0691 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0692 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0693 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0694 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0695 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0696 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0697 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0698 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0699 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0700 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0701 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0702 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0703 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0704 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0705 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0706 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0707 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0708 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0709 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0710 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0711 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0712 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0713 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0714 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0715 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0716 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0717 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0718 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0719 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0720 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0721 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0722 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0723 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0724 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0725 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0726 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0727 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0728 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0729 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0730 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0731 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0732 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0733 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0734 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0735 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0736 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0737 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0738 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0739 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0740 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0741 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0742 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0743 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0744 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0745 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0746 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0747 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0748 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0749 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0750 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0751 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0752 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0753 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0754 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0755 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0756 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0757 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0758 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0759 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0760 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0761 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0762 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0763 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0764 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0765 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0766 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0767 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0768 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0769 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0770 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0771 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0772 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0773 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0774 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0775 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0776 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0777 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0778 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0779 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0780 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0781 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0782 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0783 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0784 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0785 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0786 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0787 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0788 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0789 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0790 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0791 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0792 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0793 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0794 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0795 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0796 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0797 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0798 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0799 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0800 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0801 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0802 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0803 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0804 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0805 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0806 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0807 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0808 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0809 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0810 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0811 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0812 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0813 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0814 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0815 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0816 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0817 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0818 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0819 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0820 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0821 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0822 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0823 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0824 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0825 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0826 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0827 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0828 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0829 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0830 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0831 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0832 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0833 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0834 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0835 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0836 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0837 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0838 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0839 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0840 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0841 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0842 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0843 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0844 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0845 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0846 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0847 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0848 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0849 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0850 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0851 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0852 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0853 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0854 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0855 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0856 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0857 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0858 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0859 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0860 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0861 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0862 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0863 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0864 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0865 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0866 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0867 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0868 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0869 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0870 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0871 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0872 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0873 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0874 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0875 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0876 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0877 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0878 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0879 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0880 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0881 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0882 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0883 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0884 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0885 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0886 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0887 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0888 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0889 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0890 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0891 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0892 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0893 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0894 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0895 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0896 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0897 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0898 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0899 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0900 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0901 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0902 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0903 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0904 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0905 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0906 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0907 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0908 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0909 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0910 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0911 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0912 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0913 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0914 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0915 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0916 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0917 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0918 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0919 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0920 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0921 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0922 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0923 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0924 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0925 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0926 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0927 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0928 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0929 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0930 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0931 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0932 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0933 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0934 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0935 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0936 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0937 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0938 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0939 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0940 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0941 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0942 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0943 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0944 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0945 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0946 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0947 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0948 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0949 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0950 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0951 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0952 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0953 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0954 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0955 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0956 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0957 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0958 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0959 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0960 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0961 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0962 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0963 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0964 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0965 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0966 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0967 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0968 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0969 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0970 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0971 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0972 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0973 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0974 / 0974 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0001 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0002 / 3410 | LOSS 0.0046\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0003 / 3410 | LOSS 0.0039\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0004 / 3410 | LOSS 0.0035\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0005 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0006 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0007 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0008 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0009 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0010 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0011 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0012 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0013 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0014 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0015 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0016 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0017 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0018 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0019 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0020 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0021 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0022 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0023 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0024 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0025 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0026 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0027 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0028 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0029 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0030 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0031 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0032 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0033 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0034 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0035 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0036 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0037 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0038 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0039 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0040 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0041 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0042 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0043 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0044 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0045 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0046 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0047 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0048 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0049 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0050 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0051 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0052 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0053 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0054 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0055 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0056 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0057 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0058 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0059 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0060 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0061 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0062 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0063 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0064 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0065 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0066 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0067 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0068 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0069 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0070 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0071 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0072 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0073 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0074 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0075 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0076 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0077 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0078 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0079 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0080 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0081 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0082 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0083 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0084 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0085 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0086 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0087 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0088 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0089 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0090 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0091 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0092 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0093 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0094 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0095 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0096 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0097 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0098 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0099 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0100 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0101 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0102 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0103 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0104 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0105 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0106 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0107 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0108 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0109 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0110 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0111 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0112 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0113 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0114 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0115 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0116 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0117 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0118 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0119 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0120 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0121 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0122 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0123 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0124 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0125 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0126 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0127 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0128 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0129 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0130 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0131 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0132 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0133 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0134 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0135 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0136 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0137 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0138 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0139 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0140 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0141 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0142 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0143 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0144 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0145 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0146 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0147 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0148 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0149 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0150 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0151 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0152 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0153 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0154 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0155 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0156 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0157 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0158 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0159 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0160 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0161 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0162 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0163 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0164 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0165 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0166 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0167 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0168 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0169 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0170 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0171 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0172 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0173 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0174 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0175 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0176 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0177 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0178 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0179 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0180 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0181 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0182 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0183 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0184 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0185 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0186 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0187 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0188 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0189 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0190 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0191 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0192 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0193 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0194 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0195 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0196 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0197 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0198 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0199 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0200 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0201 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0202 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0203 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0204 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0205 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0206 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0207 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0208 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0209 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0210 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0211 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0212 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0213 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0214 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0215 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0216 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0217 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0218 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0219 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0220 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0221 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0222 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0223 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0224 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0225 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0226 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0227 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0228 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0229 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0230 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0231 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0232 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0233 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0234 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0235 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0236 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0237 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0238 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0239 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0240 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0241 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0242 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0243 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0244 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0245 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0246 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0247 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0248 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0249 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0250 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0251 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0252 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0253 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0254 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0255 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0256 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0257 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0258 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0259 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0260 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0261 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0262 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0263 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0264 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0265 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0266 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0267 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0268 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0269 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0270 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0271 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0272 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0273 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0274 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0275 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0276 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0277 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0278 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0279 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0280 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0281 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0282 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0283 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0284 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0285 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0286 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0287 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0288 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0289 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0290 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0291 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0292 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0293 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0294 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0295 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0296 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0297 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0298 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0299 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0300 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0301 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0302 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0303 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0304 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0305 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0306 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0307 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0308 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0309 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0310 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0311 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0312 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0313 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0314 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0315 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0316 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0317 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0318 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0319 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0320 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0321 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0322 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0323 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0324 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0325 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0326 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0327 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0328 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0329 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0330 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0331 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0332 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0333 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0334 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0335 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0336 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0337 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0338 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0339 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0340 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0341 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0342 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0343 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0344 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0345 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0346 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0347 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0348 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0349 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0350 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0351 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0352 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0353 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0354 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0355 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0356 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0357 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0358 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0359 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0360 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0361 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0362 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0363 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0364 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0365 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0366 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0367 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0368 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0369 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0370 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0371 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0372 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0373 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0374 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0375 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0376 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0377 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0378 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0379 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0380 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0381 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0382 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0383 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0384 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0385 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0386 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0387 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0388 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0389 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0390 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0391 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0392 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0393 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0394 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0395 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0396 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0397 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0398 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0399 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0400 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0401 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0402 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0403 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0404 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0405 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0406 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0407 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0408 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0409 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0410 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0411 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0412 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0413 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0414 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0415 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0416 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0417 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0418 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0419 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0420 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0421 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0422 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0423 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0424 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0425 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0426 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0427 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0428 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0429 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0430 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0431 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0432 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0433 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0434 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0435 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0436 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0437 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0438 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0439 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0440 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0441 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0442 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0443 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0444 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0445 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0446 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0447 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0448 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0449 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0450 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0451 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0452 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0453 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0454 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0455 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0456 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0457 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0458 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0459 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0460 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0461 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0462 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0463 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0464 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0465 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0466 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0467 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0468 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0469 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0470 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0471 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0472 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0473 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0474 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0475 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0476 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0477 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0478 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0479 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0480 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0481 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0482 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0483 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0484 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0485 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0486 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0487 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0488 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0489 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0490 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0491 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0492 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0493 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0494 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0495 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0496 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0497 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0498 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0499 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0500 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0501 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0502 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0503 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0504 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0505 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0506 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0507 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0508 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0509 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0510 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0511 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0512 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0513 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0514 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0515 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0516 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0517 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0518 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0519 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0520 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0521 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0522 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0523 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0524 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0525 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0526 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0527 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0528 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0529 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0530 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0531 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0532 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0533 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0534 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0535 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0536 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0537 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0538 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0539 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0540 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0541 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0542 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0543 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0544 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0545 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0546 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0547 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0548 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0549 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0550 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0551 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0552 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0553 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0554 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0555 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0556 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0557 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0558 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0559 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0560 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0561 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0562 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0563 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0564 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0565 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0566 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0567 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0568 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0569 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0570 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0571 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0572 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0573 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0574 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0575 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0576 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0577 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0578 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0579 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0580 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0581 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0582 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0583 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0584 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0585 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0586 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0587 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0588 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0589 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0590 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0591 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0592 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0593 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0594 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0595 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0596 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0597 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0598 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0599 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0600 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0601 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0602 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0603 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0604 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0605 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0606 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0607 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0608 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0609 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0610 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0611 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0612 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0613 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0614 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0615 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0616 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0617 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0618 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0619 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0620 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0621 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0622 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0623 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0624 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0625 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0626 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0627 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0628 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0629 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0630 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0631 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0632 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0633 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0634 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0635 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0636 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0637 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0638 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0639 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0640 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0641 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0642 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0643 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0644 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0645 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0646 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0647 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0648 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0649 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0650 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0651 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0652 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0653 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0654 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0655 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0656 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0657 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0658 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0659 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0660 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0661 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0662 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0663 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0664 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0665 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0666 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0667 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0668 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0669 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0670 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0671 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0672 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0673 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0674 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0675 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0676 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0677 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0678 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0679 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0680 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0681 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0682 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0683 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0684 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0685 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0686 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0687 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0688 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0689 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0690 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0691 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0692 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0693 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0694 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0695 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0696 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0697 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0698 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0699 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0700 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0701 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0702 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0703 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0704 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0705 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0706 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0707 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0708 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0709 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0710 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0711 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0712 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0713 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0714 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0715 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0716 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0717 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0718 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0719 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0720 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0721 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0722 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0723 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0724 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0725 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0726 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0727 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0728 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0729 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0730 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0731 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0732 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0733 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0734 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0735 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0736 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0737 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0738 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0739 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0740 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0741 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0742 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0743 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0744 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0745 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0746 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0747 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0748 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0749 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0750 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0751 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0752 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0753 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0754 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0755 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0756 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0757 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0758 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0759 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0760 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0761 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0762 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0763 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0764 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0765 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0766 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0767 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0768 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0769 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0770 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0771 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0772 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0773 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0774 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0775 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0776 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0777 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0778 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0779 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0780 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0781 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0782 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0783 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0784 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0785 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0786 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0787 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0788 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0789 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0790 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0791 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0792 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0793 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0794 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0795 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0796 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0797 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0798 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0799 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0800 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0801 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0802 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0803 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0804 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0805 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0806 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0807 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0808 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0809 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0810 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0811 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0812 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0813 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0814 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0815 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0816 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0817 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0818 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0819 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0820 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0821 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0822 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0823 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0824 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0825 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0826 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0827 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0828 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0829 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0830 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0831 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0832 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0833 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0834 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0835 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0836 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0837 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0838 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0839 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0840 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0841 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0842 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0843 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0844 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0845 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0846 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0847 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0848 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0849 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0850 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0851 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0852 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0853 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0854 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0855 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0856 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0857 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0858 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0859 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0860 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0861 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0862 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0863 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0864 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0865 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0866 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0867 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0868 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0869 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0870 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0871 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0872 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0873 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0874 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0875 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0876 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0877 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0878 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0879 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0880 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0881 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0882 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0883 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0884 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0885 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0886 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0887 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0888 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0889 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0890 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0891 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0892 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0893 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0894 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0895 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0896 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0897 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0898 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0899 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0900 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0901 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0902 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0903 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0904 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0905 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0906 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0907 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0908 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0909 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0910 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0911 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0912 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0913 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0914 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0915 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0916 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0917 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0918 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0919 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0920 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0921 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0922 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0923 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0924 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0925 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0926 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0927 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0928 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0929 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0930 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0931 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0932 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0933 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0934 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0935 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0936 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0937 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0938 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0939 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0940 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0941 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0942 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0943 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0944 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0945 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0946 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0947 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0948 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0949 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0950 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0951 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0952 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0953 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0954 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0955 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0956 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0957 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0958 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0959 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0960 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0961 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0962 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0963 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0964 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0965 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0966 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0967 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0968 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0969 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0970 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0971 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0972 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0973 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0974 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0975 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0976 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0977 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0978 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0979 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0980 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0981 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0982 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0983 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0984 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0985 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0986 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0987 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0988 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0989 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0990 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0991 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0992 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0993 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0994 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0995 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0996 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0997 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0998 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0999 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1000 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1001 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1002 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1003 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1004 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1005 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1006 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1007 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1008 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1009 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1010 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1011 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1012 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1013 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1014 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1015 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1016 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1017 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1018 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1019 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1020 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1021 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1022 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1023 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1024 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1025 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1026 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1027 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1028 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1029 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1030 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1031 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1032 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1033 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1034 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1035 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1036 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1037 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1038 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1039 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1040 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1041 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1042 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1043 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1044 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1045 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1046 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1047 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1048 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1049 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1050 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1051 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1052 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1053 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1054 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1055 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1056 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1057 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1058 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1059 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1060 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1061 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1062 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1063 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1064 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1065 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1066 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1067 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1068 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1069 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1070 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1071 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1072 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1073 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1074 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1075 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1076 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1077 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1078 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1079 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1080 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1081 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1082 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1083 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1084 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1085 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1086 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1087 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1088 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1089 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1090 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1091 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1092 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1093 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1094 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1095 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1096 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1097 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1098 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1099 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1100 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1101 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1102 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1103 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1104 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1105 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1106 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1107 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1108 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1109 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1110 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1111 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1112 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1113 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1114 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1115 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1116 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1117 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1118 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1119 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1120 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1121 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1122 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1123 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1124 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1125 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1126 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1127 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1128 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1129 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1130 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1131 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1132 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1133 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1134 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1135 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1136 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1137 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1138 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1139 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1140 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1141 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1142 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1143 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1144 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1145 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1146 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1147 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1148 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1149 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1150 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1151 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1152 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1153 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1154 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1155 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1156 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1157 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1158 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1159 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1160 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1161 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1162 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1163 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1164 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1165 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1166 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1167 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1168 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1169 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1170 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1171 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1172 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1173 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1174 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1175 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1176 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1177 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1178 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1179 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1180 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1181 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1182 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1183 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1184 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1185 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1186 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1187 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1188 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1189 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1190 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1191 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1192 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1193 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1194 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1195 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1196 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1197 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1198 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1199 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1200 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1201 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1202 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1203 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1204 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1205 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1206 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1207 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1208 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1209 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1210 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1211 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1212 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1213 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1214 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1215 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1216 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1217 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1218 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1219 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1220 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1221 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1222 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1223 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1224 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1225 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1226 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1227 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1228 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1229 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1230 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1231 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1232 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1233 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1234 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1235 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1236 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1237 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1238 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1239 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1240 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1241 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1242 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1243 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1244 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1245 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1246 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1247 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1248 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1249 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1250 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1251 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1252 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1253 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1254 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1255 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1256 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1257 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1258 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1259 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1260 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1261 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1262 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1263 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1264 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1265 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1266 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1267 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1268 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1269 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1270 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1271 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1272 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1273 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1274 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1275 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1276 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1277 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1278 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1279 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1280 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1281 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1282 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1283 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1284 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1285 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1286 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1287 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1288 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1289 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1290 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1291 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1292 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1293 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1294 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1295 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1296 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1297 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1298 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1299 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1300 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1301 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1302 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1303 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1304 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1305 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1306 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1307 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1308 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1309 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1310 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1311 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1312 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1313 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1314 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1315 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1316 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1317 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1318 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1319 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1320 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1321 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1322 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1323 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1324 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1325 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1326 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1327 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1328 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1329 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1330 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1331 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1332 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1333 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1334 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1335 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1336 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1337 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1338 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1339 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1340 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1341 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1342 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1343 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1344 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1345 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1346 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1347 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1348 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1349 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1350 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1351 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1352 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1353 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1354 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1355 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1356 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1357 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1358 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1359 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1360 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1361 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1362 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1363 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1364 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1365 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1366 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1367 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1368 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1369 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1370 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1371 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1372 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1373 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1374 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1375 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1376 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1377 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1378 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1379 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1380 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1381 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1382 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1383 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1384 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1385 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1386 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1387 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1388 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1389 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1390 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1391 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1392 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1393 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1394 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1395 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1396 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1397 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1398 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1399 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1400 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1401 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1402 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1403 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1404 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1405 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1406 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1407 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1408 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1409 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1410 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1411 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1412 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1413 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1414 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1415 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1416 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1417 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1418 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1419 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1420 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1421 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1422 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1423 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1424 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1425 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1426 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1427 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1428 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1429 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1430 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1431 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1432 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1433 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1434 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1435 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1436 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1437 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1438 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1439 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1440 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1441 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1442 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1443 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1444 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1445 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1446 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1447 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1448 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1449 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1450 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1451 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1452 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1453 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1454 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1455 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1456 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1457 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1458 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1459 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1460 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1461 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1462 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1463 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1464 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1465 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1466 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1467 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1468 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1469 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1470 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1471 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1472 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1473 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1474 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1475 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1476 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1477 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1478 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1479 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1480 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1481 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1482 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1483 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1484 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1485 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1486 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1487 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1488 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1489 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1490 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1491 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1492 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1493 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1494 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1495 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1496 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1497 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1498 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1499 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1500 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1501 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1502 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1503 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1504 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1505 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1506 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1507 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1508 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1509 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1510 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1511 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1512 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1513 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1514 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1515 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1516 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1517 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1518 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1519 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1520 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1521 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1522 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1523 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1524 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1525 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1526 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1527 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1528 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1529 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1530 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1531 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1532 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1533 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1534 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1535 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1536 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1537 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1538 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1539 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1540 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1541 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1542 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1543 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1544 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1545 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1546 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1547 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1548 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1549 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1550 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1551 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1552 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1553 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1554 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1555 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1556 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1557 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1558 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1559 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1560 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1561 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1562 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1563 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1564 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1565 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1566 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1567 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1568 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1569 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1570 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1571 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1572 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1573 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1574 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1575 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1576 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1577 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1578 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1579 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1580 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1581 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1582 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1583 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1584 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1585 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1586 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1587 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1588 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1589 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1590 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1591 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1592 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1593 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1594 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1595 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1596 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1597 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1598 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1599 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1600 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1601 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1602 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1603 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1604 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1605 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1606 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1607 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1608 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1609 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1610 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1611 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1612 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1613 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1614 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1615 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1616 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1617 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1618 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1619 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1620 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1621 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1622 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1623 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1624 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1625 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1626 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1627 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1628 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1629 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1630 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1631 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1632 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1633 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1634 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1635 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1636 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1637 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1638 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1639 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1640 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1641 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1642 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1643 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1644 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1645 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1646 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1647 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1648 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1649 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1650 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1651 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1652 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1653 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1654 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1655 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1656 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1657 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1658 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1659 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1660 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1661 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1662 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1663 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1664 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1665 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1666 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1667 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1668 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1669 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1670 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1671 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1672 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1673 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1674 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1675 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1676 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1677 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1678 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1679 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1680 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1681 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1682 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1683 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1684 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1685 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1686 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1687 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1688 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1689 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1690 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1691 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1692 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1693 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1694 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1695 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1696 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1697 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1698 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1699 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1700 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1701 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1702 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1703 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1704 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1705 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1706 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1707 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1708 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1709 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1710 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1711 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1712 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1713 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1714 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1715 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1716 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1717 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1718 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1719 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1720 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1721 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1722 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1723 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1724 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1725 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1726 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1727 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1728 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1729 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1730 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1731 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1732 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1733 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1734 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1735 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1736 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1737 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1738 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1739 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1740 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1741 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1742 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1743 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1744 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1745 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1746 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1747 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1748 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1749 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1750 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1751 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1752 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1753 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1754 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1755 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1756 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1757 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1758 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1759 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1760 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1761 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1762 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1763 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1764 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1765 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1766 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1767 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1768 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1769 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1770 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1771 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1772 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1773 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1774 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1775 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1776 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1777 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1778 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1779 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1780 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1781 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1782 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1783 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1784 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1785 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1786 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1787 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1788 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1789 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1790 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1791 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1792 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1793 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1794 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1795 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1796 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1797 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1798 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1799 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1800 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1801 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1802 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1803 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1804 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1805 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1806 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1807 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1808 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1809 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1810 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1811 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1812 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1813 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1814 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1815 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1816 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1817 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1818 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1819 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1820 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1821 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1822 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1823 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1824 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1825 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1826 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1827 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1828 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1829 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1830 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1831 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1832 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1833 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1834 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1835 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1836 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1837 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1838 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1839 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1840 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1841 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1842 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1843 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1844 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1845 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1846 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1847 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1848 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1849 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1850 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1851 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1852 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1853 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1854 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1855 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1856 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1857 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1858 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1859 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1860 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1861 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1862 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1863 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1864 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1865 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1866 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1867 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1868 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1869 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1870 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1871 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1872 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1873 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1874 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1875 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1876 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1877 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1878 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1879 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1880 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1881 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1882 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1883 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1884 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1885 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1886 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1887 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1888 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1889 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1890 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1891 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1892 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1893 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1894 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1895 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1896 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1897 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1898 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1899 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1900 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1901 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1902 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1903 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1904 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1905 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1906 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1907 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1908 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1909 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1910 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1911 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1912 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1913 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1914 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1915 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1916 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1917 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1918 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1919 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1920 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1921 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1922 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1923 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1924 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1925 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1926 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1927 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1928 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1929 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1930 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1931 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1932 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1933 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1934 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1935 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1936 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1937 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1938 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1939 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1940 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1941 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1942 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1943 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1944 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1945 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1946 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1947 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1948 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1949 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1950 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1951 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1952 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1953 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1954 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1955 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1956 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1957 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1958 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1959 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1960 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1961 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1962 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1963 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1964 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1965 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1966 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1967 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1968 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1969 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1970 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1971 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1972 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1973 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1974 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1975 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1976 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1977 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1978 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1979 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1980 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1981 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1982 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1983 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1984 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1985 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1986 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1987 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1988 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1989 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1990 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1991 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1992 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1993 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1994 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1995 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1996 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1997 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1998 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1999 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2000 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2001 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2002 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2003 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2004 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2005 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2006 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2007 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2008 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2009 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2010 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2011 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2012 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2013 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2014 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2015 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2016 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2017 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2018 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2019 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2020 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2021 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2022 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2023 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2024 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2025 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2026 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2027 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2028 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2029 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2030 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2031 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2032 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2033 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2034 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2035 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2036 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2037 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2038 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2039 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2040 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2041 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2042 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2043 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2044 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2045 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2046 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2047 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2048 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2049 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2050 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2051 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2052 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2053 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2054 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2055 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2056 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2057 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2058 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2059 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2060 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2061 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2062 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2063 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2064 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2065 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2066 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2067 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2068 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2069 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2070 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2071 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2072 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2073 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2074 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2075 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2076 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2077 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2078 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2079 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2080 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2081 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2082 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2083 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2084 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2085 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2086 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2087 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2088 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2089 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2090 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2091 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2092 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2093 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2094 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2095 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2096 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2097 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2098 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2099 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2100 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2101 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2102 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2103 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2104 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2105 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2106 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2107 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2108 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2109 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2110 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2111 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2112 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2113 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2114 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2115 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2116 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2117 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2118 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2119 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2120 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2121 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2122 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2123 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2124 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2125 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2126 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2127 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2128 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2129 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2130 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2131 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2132 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2133 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2134 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2135 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2136 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2137 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2138 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2139 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2140 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2141 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2142 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2143 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2144 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2145 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2146 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2147 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2148 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2149 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2150 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2151 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2152 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2153 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2154 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2155 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2156 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2157 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2158 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2159 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2160 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2161 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2162 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2163 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2164 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2165 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2166 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2167 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2168 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2169 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2170 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2171 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2172 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2173 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2174 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2175 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2176 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2177 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2178 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2179 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2180 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2181 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2182 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2183 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2184 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2185 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2186 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2187 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2188 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2189 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2190 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2191 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2192 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2193 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2194 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2195 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2196 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2197 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2198 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2199 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2200 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2201 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2202 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2203 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2204 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2205 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2206 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2207 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2208 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2209 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2210 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2211 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2212 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2213 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2214 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2215 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2216 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2217 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2218 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2219 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2220 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2221 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2222 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2223 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2224 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2225 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2226 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2227 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2228 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2229 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2230 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2231 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2232 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2233 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2234 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2235 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2236 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2237 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2238 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2239 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2240 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2241 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2242 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2243 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2244 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2245 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2246 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2247 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2248 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2249 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2250 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2251 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2252 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2253 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2254 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2255 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2256 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2257 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2258 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2259 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2260 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2261 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2262 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2263 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2264 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2265 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2266 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2267 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2268 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2269 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2270 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2271 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2272 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2273 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2274 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2275 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2276 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2277 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2278 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2279 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2280 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2281 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2282 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2283 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2284 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2285 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2286 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2287 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2288 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2289 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2290 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2291 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2292 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2293 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2294 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2295 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2296 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2297 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2298 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2299 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2300 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2301 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2302 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2303 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2304 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2305 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2306 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2307 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2308 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2309 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2310 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2311 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2312 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2313 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2314 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2315 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2316 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2317 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2318 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2319 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2320 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2321 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2322 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2323 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2324 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2325 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2326 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2327 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2328 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2329 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2330 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2331 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2332 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2333 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2334 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2335 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2336 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2337 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2338 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2339 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2340 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2341 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2342 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2343 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2344 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2345 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2346 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2347 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2348 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2349 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2350 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2351 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2352 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2353 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2354 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2355 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2356 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2357 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2358 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2359 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2360 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2361 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2362 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2363 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2364 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2365 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2366 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2367 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2368 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2369 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2370 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2371 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2372 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2373 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2374 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2375 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2376 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2377 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2378 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2379 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2380 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2381 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2382 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2383 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2384 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2385 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2386 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2387 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2388 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2389 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2390 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2391 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2392 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2393 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2394 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2395 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2396 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2397 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2398 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2399 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2400 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2401 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2402 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2403 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2404 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2405 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2406 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2407 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2408 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2409 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2410 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2411 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2412 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2413 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2414 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2415 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2416 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2417 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2418 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2419 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2420 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2421 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2422 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2423 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2424 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2425 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2426 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2427 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2428 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2429 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2430 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2431 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2432 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2433 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2434 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2435 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2436 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2437 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2438 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2439 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2440 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2441 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2442 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2443 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2444 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2445 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2446 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2447 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2448 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2449 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2450 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2451 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2452 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2453 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2454 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2455 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2456 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2457 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2458 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2459 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2460 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2461 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2462 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2463 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2464 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2465 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2466 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2467 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2468 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2469 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2470 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2471 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2472 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2473 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2474 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2475 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2476 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2477 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2478 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2479 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2480 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2481 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2482 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2483 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2484 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2485 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2486 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2487 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2488 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2489 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2490 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2491 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2492 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2493 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2494 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2495 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2496 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2497 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2498 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2499 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2500 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2501 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2502 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2503 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2504 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2505 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2506 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2507 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2508 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2509 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2510 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2511 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2512 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2513 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2514 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2515 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2516 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2517 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2518 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2519 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2520 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2521 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2522 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2523 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2524 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2525 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2526 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2527 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2528 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2529 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2530 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2531 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2532 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2533 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2534 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2535 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2536 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2537 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2538 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2539 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2540 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2541 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2542 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2543 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2544 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2545 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2546 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2547 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2548 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2549 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2550 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2551 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2552 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2553 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2554 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2555 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2556 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2557 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2558 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2559 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2560 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2561 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2562 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2563 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2564 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2565 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2566 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2567 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2568 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2569 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2570 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2571 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2572 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2573 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2574 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2575 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2576 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2577 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2578 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2579 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2580 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2581 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2582 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2583 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2584 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2585 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2586 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2587 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2588 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2589 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2590 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2591 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2592 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2593 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2594 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2595 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2596 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2597 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2598 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2599 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2600 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2601 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2602 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2603 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2604 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2605 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2606 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2607 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2608 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2609 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2610 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2611 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2612 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2613 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2614 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2615 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2616 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2617 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2618 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2619 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2620 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2621 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2622 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2623 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2624 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2625 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2626 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2627 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2628 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2629 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2630 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2631 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2632 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2633 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2634 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2635 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2636 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2637 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2638 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2639 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2640 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2641 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2642 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2643 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2644 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2645 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2646 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2647 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2648 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2649 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2650 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2651 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2652 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2653 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2654 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2655 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2656 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2657 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2658 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2659 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2660 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2661 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2662 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2663 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2664 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2665 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2666 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2667 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2668 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2669 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2670 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2671 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2672 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2673 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2674 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2675 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2676 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2677 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2678 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2679 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2680 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2681 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2682 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2683 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2684 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2685 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2686 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2687 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2688 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2689 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2690 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2691 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2692 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2693 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2694 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2695 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2696 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2697 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2698 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2699 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2700 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2701 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2702 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2703 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2704 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2705 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2706 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2707 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2708 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2709 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2710 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2711 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2712 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2713 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2714 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2715 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2716 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2717 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2718 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2719 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2720 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2721 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2722 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2723 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2724 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2725 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2726 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2727 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2728 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2729 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2730 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2731 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2732 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2733 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2734 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2735 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2736 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2737 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2738 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2739 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2740 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2741 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2742 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2743 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2744 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2745 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2746 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2747 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2748 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2749 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2750 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2751 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2752 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2753 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2754 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2755 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2756 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2757 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2758 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2759 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2760 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2761 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2762 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2763 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2764 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2765 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2766 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2767 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2768 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2769 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2770 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2771 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2772 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2773 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2774 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2775 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2776 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2777 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2778 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2779 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2780 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2781 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2782 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2783 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2784 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2785 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2786 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2787 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2788 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2789 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2790 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2791 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2792 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2793 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2794 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2795 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2796 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2797 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2798 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2799 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2800 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2801 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2802 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2803 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2804 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2805 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2806 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2807 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2808 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2809 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2810 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2811 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2812 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2813 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2814 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2815 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2816 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2817 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2818 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2819 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2820 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2821 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2822 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2823 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2824 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2825 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2826 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2827 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2828 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2829 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2830 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2831 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2832 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2833 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2834 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2835 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2836 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2837 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2838 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2839 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2840 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2841 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2842 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2843 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2844 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2845 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2846 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2847 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2848 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2849 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2850 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2851 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2852 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2853 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2854 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2855 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2856 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2857 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2858 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2859 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2860 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2861 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2862 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2863 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2864 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2865 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2866 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2867 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2868 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2869 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2870 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2871 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2872 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2873 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2874 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2875 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2876 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2877 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2878 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2879 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2880 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2881 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2882 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2883 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2884 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2885 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2886 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2887 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2888 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2889 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2890 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2891 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2892 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2893 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2894 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2895 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2896 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2897 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2898 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2899 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2900 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2901 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2902 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2903 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2904 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2905 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2906 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2907 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2908 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2909 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2910 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2911 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2912 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2913 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2914 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2915 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2916 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2917 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2918 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2919 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2920 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2921 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2922 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2923 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2924 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2925 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2926 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2927 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2928 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2929 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2930 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2931 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2932 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2933 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2934 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2935 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2936 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2937 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2938 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2939 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2940 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2941 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2942 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2943 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2944 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2945 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2946 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2947 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2948 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2949 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2950 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2951 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2952 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2953 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2954 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2955 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2956 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2957 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2958 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2959 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2960 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2961 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2962 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2963 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2964 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2965 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2966 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2967 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2968 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2969 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2970 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2971 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2972 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2973 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2974 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2975 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2976 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2977 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2978 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2979 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2980 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2981 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2982 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2983 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2984 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2985 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2986 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2987 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2988 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2989 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2990 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2991 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2992 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2993 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2994 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2995 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2996 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2997 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2998 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2999 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3000 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3001 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3002 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3003 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3004 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3005 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3006 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3007 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3008 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3009 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3010 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3011 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3012 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3013 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3014 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3015 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3016 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3017 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3018 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3019 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3020 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3021 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3022 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3023 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3024 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3025 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3026 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3027 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3028 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3029 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3030 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3031 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3032 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3033 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3034 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3035 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3036 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3037 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3038 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3039 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3040 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3041 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3042 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3043 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3044 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3045 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3046 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3047 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3048 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3049 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3050 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3051 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3052 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3053 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3054 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3055 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3056 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3057 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3058 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3059 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3060 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3061 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3062 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3063 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3064 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3065 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3066 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3067 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3068 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3069 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3070 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3071 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3072 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3073 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3074 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3075 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3076 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3077 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3078 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3079 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3080 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3081 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3082 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3083 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3084 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3085 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3086 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3087 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3088 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3089 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3090 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3091 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3092 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3093 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3094 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3095 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3096 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3097 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3098 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3099 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3100 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3101 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3102 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3103 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3104 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3105 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3106 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3107 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3108 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3109 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3110 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3111 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3112 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3113 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3114 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3115 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3116 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3117 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3118 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3119 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3120 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3121 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3122 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3123 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3124 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3125 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3126 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3127 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3128 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3129 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3130 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3131 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3132 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3133 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3134 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3135 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3136 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3137 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3138 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3139 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3140 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3141 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3142 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3143 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3144 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3145 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3146 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3147 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3148 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3149 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3150 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3151 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3152 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3153 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3154 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3155 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3156 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3157 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3158 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3159 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3160 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3161 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3162 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3163 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3164 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3165 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3166 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3167 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3168 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3169 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3170 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3171 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3172 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3173 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3174 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3175 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3176 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3177 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3178 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3179 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3180 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3181 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3182 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3183 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3184 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3185 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3186 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3187 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3188 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3189 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3190 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3191 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3192 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3193 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3194 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3195 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3196 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3197 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3198 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3199 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3200 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3201 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3202 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3203 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3204 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3205 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3206 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3207 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3208 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3209 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3210 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3211 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3212 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3213 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3214 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3215 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3216 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3217 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3218 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3219 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3220 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3221 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3222 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3223 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3224 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3225 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3226 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3227 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3228 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3229 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3230 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3231 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3232 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3233 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3234 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3235 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3236 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3237 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3238 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3239 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3240 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3241 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3242 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3243 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3244 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3245 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3246 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3247 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3248 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3249 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3250 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3251 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3252 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3253 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3254 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3255 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3256 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3257 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3258 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3259 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3260 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3261 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3262 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3263 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3264 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3265 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3266 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3267 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3268 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3269 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3270 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3271 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3272 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3273 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3274 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3275 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3276 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3277 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3278 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3279 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3280 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3281 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3282 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3283 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3284 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3285 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3286 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3287 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3288 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3289 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3290 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3291 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3292 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3293 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3294 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3295 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3296 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3297 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3298 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3299 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3300 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3301 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3302 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3303 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3304 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3305 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3306 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3307 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3308 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3309 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3310 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3311 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3312 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3313 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3314 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3315 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3316 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3317 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3318 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3319 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3320 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3321 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3322 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3323 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3324 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3325 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3326 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3327 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3328 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3329 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3330 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3331 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3332 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3333 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3334 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3335 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3336 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3337 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3338 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3339 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3340 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3341 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3342 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3343 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3344 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3345 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3346 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3347 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3348 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3349 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3350 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3351 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3352 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3353 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3354 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3355 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3356 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3357 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3358 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3359 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3360 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3361 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3362 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3363 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3364 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3365 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3366 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3367 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3368 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3369 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3370 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3371 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3372 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3373 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3374 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3375 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3376 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3377 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3378 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3379 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3380 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3381 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3382 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3383 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3384 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3385 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3386 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3387 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3388 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3389 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3390 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3391 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3392 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3393 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3394 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3395 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3396 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3397 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3398 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3399 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3400 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3401 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3402 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3403 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3404 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3405 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3406 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3407 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3408 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3409 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3410 / 3410 | LOSS 0.0019\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0001 / 0974 | LOSS 0.0235\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0002 / 0974 | LOSS 0.0170\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0003 / 0974 | LOSS 0.0182\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0004 / 0974 | LOSS 0.0197\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0005 / 0974 | LOSS 0.0168\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0006 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0007 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0008 / 0974 | LOSS 0.0165\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0009 / 0974 | LOSS 0.0171\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0010 / 0974 | LOSS 0.0164\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0011 / 0974 | LOSS 0.0165\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0012 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0013 / 0974 | LOSS 0.0164\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0014 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0015 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0016 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0017 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0018 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0019 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0020 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0021 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0022 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0023 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0024 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0025 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0026 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0027 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0028 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0029 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0030 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0031 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0032 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0033 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0034 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0035 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0036 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0037 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0038 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0039 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0040 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0041 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0042 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0043 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0044 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0045 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0046 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0047 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0048 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0049 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0050 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0051 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0052 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0053 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0054 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0055 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0056 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0057 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0058 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0059 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0060 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0061 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0062 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0063 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0064 / 0974 | LOSS 0.0149\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0065 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0066 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0067 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0068 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0069 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0070 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0071 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0072 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0073 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0074 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0075 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0076 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0077 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0078 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0079 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0080 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0081 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0082 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0083 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0084 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0085 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0086 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0087 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0088 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0089 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0090 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0091 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0092 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0093 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0094 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0095 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0096 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0097 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0098 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0099 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0100 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0101 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0102 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0103 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0104 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0105 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0106 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0107 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0108 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0109 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0110 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0111 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0112 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0113 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0114 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0115 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0116 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0117 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0118 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0119 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0120 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0121 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0122 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0123 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0124 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0125 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0126 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0127 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0128 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0129 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0130 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0131 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0132 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0133 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0134 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0135 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0136 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0137 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0138 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0139 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0140 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0141 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0142 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0143 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0144 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0145 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0146 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0147 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0148 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0149 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0150 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0151 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0152 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0153 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0154 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0155 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0156 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0157 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0158 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0159 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0160 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0161 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0162 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0163 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0164 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0165 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0166 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0167 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0168 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0169 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0170 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0171 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0172 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0173 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0174 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0175 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0176 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0177 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0178 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0179 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0180 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0181 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0182 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0183 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0184 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0185 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0186 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0187 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0188 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0189 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0190 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0191 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0192 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0193 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0194 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0195 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0196 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0197 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0198 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0199 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0200 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0201 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0202 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0203 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0204 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0205 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0206 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0207 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0208 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0209 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0210 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0211 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0212 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0213 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0214 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0215 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0216 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0217 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0218 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0219 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0220 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0221 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0222 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0223 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0224 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0225 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0226 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0227 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0228 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0229 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0230 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0231 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0232 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0233 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0234 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0235 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0236 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0237 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0238 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0239 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0240 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0241 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0242 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0243 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0244 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0245 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0246 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0247 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0248 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0249 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0250 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0251 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0252 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0253 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0254 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0255 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0256 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0257 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0258 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0259 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0260 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0261 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0262 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0263 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0264 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0265 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0266 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0267 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0268 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0269 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0270 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0271 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0272 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0273 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0274 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0275 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0276 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0277 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0278 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0279 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0280 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0281 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0282 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0283 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0284 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0285 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0286 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0287 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0288 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0289 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0290 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0291 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0292 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0293 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0294 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0295 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0296 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0297 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0298 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0299 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0300 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0301 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0302 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0303 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0304 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0305 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0306 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0307 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0308 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0309 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0310 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0311 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0312 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0313 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0314 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0315 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0316 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0317 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0318 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0319 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0320 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0321 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0322 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0323 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0324 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0325 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0326 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0327 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0328 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0329 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0330 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0331 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0332 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0333 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0334 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0335 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0336 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0337 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0338 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0339 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0340 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0341 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0342 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0343 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0344 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0345 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0346 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0347 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0348 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0349 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0350 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0351 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0352 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0353 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0354 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0355 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0356 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0357 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0358 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0359 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0360 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0361 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0362 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0363 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0364 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0365 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0366 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0367 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0368 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0369 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0370 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0371 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0372 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0373 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0374 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0375 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0376 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0377 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0378 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0379 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0380 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0381 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0382 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0383 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0384 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0385 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0386 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0387 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0388 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0389 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0390 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0391 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0392 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0393 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0394 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0395 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0396 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0397 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0398 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0399 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0400 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0401 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0402 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0403 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0404 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0405 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0406 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0407 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0408 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0409 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0410 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0411 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0412 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0413 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0414 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0415 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0416 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0417 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0418 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0419 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0420 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0421 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0422 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0423 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0424 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0425 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0426 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0427 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0428 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0429 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0430 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0431 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0432 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0433 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0434 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0435 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0436 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0437 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0438 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0439 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0440 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0441 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0442 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0443 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0444 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0445 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0446 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0447 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0448 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0449 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0450 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0451 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0452 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0453 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0454 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0455 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0456 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0457 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0458 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0459 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0460 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0461 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0462 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0463 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0464 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0465 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0466 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0467 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0468 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0469 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0470 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0471 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0472 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0473 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0474 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0475 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0476 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0477 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0478 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0479 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0480 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0481 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0482 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0483 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0484 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0485 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0486 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0487 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0488 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0489 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0490 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0491 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0492 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0493 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0494 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0495 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0496 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0497 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0498 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0499 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0500 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0501 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0502 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0503 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0504 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0505 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0506 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0507 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0508 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0509 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0510 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0511 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0512 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0513 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0514 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0515 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0516 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0517 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0518 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0519 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0520 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0521 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0522 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0523 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0524 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0525 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0526 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0527 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0528 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0529 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0530 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0531 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0532 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0533 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0534 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0535 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0536 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0537 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0538 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0539 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0540 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0541 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0542 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0543 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0544 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0545 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0546 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0547 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0548 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0549 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0550 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0551 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0552 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0553 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0554 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0555 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0556 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0557 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0558 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0559 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0560 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0561 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0562 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0563 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0564 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0565 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0566 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0567 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0568 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0569 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0570 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0571 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0572 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0573 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0574 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0575 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0576 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0577 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0578 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0579 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0580 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0581 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0582 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0583 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0584 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0585 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0586 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0587 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0588 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0589 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0590 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0591 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0592 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0593 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0594 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0595 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0596 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0597 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0598 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0599 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0600 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0601 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0602 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0603 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0604 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0605 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0606 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0607 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0608 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0609 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0610 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0611 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0612 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0613 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0614 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0615 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0616 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0617 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0618 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0619 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0620 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0621 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0622 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0623 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0624 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0625 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0626 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0627 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0628 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0629 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0630 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0631 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0632 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0633 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0634 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0635 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0636 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0637 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0638 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0639 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0640 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0641 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0642 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0643 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0644 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0645 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0646 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0647 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0648 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0649 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0650 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0651 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0652 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0653 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0654 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0655 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0656 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0657 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0658 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0659 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0660 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0661 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0662 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0663 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0664 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0665 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0666 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0667 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0668 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0669 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0670 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0671 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0672 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0673 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0674 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0675 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0676 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0677 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0678 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0679 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0680 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0681 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0682 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0683 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0684 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0685 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0686 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0687 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0688 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0689 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0690 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0691 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0692 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0693 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0694 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0695 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0696 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0697 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0698 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0699 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0700 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0701 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0702 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0703 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0704 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0705 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0706 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0707 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0708 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0709 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0710 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0711 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0712 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0713 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0714 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0715 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0716 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0717 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0718 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0719 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0720 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0721 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0722 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0723 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0724 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0725 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0726 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0727 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0728 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0729 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0730 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0731 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0732 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0733 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0734 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0735 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0736 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0737 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0738 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0739 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0740 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0741 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0742 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0743 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0744 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0745 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0746 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0747 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0748 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0749 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0750 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0751 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0752 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0753 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0754 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0755 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0756 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0757 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0758 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0759 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0760 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0761 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0762 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0763 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0764 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0765 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0766 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0767 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0768 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0769 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0770 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0771 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0772 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0773 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0774 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0775 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0776 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0777 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0778 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0779 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0780 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0781 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0782 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0783 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0784 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0785 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0786 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0787 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0788 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0789 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0790 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0791 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0792 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0793 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0794 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0795 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0796 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0797 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0798 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0799 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0800 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0801 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0802 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0803 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0804 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0805 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0806 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0807 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0808 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0809 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0810 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0811 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0812 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0813 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0814 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0815 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0816 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0817 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0818 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0819 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0820 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0821 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0822 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0823 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0824 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0825 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0826 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0827 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0828 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0829 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0830 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0831 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0832 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0833 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0834 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0835 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0836 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0837 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0838 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0839 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0840 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0841 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0842 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0843 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0844 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0845 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0846 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0847 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0848 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0849 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0850 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0851 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0852 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0853 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0854 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0855 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0856 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0857 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0858 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0859 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0860 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0861 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0862 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0863 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0864 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0865 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0866 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0867 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0868 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0869 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0870 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0871 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0872 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0873 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0874 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0875 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0876 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0877 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0878 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0879 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0880 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0881 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0882 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0883 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0884 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0885 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0886 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0887 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0888 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0889 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0890 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0891 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0892 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0893 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0894 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0895 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0896 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0897 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0898 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0899 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0900 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0901 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0902 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0903 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0904 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0905 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0906 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0907 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0908 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0909 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0910 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0911 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0912 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0913 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0914 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0915 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0916 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0917 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0918 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0919 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0920 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0921 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0922 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0923 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0924 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0925 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0926 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0927 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0928 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0929 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0930 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0931 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0932 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0933 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0934 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0935 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0936 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0937 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0938 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0939 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0940 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0941 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0942 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0943 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0944 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0945 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0946 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0947 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0948 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0949 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0950 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0951 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0952 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0953 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0954 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0955 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0956 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0957 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0958 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0959 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0960 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0961 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0962 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0963 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0964 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0965 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0966 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0967 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0968 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0969 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0970 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0971 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0972 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0973 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0974 / 0974 | LOSS 0.0157\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0001 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0002 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0003 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0004 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0005 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0006 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0007 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0008 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0009 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0010 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0011 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0012 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0013 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0014 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0015 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0016 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0017 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0018 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0019 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0020 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0021 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0022 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0023 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0024 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0025 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0026 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0027 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0028 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0029 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0030 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0031 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0032 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0033 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0034 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0035 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0036 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0037 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0038 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0039 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0040 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0041 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0042 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0043 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0044 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0045 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0046 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0047 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0048 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0049 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0050 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0051 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0052 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0053 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0054 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0055 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0056 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0057 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0058 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0059 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0060 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0061 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0062 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0063 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0064 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0065 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0066 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0067 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0068 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0069 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0070 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0071 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0072 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0073 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0074 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0075 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0076 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0077 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0078 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0079 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0080 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0081 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0082 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0083 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0084 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0085 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0086 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0087 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0088 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0089 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0090 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0091 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0092 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0093 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0094 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0095 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0096 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0097 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0098 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0099 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0100 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0101 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0102 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0103 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0104 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0105 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0106 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0107 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0108 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0109 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0110 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0111 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0112 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0113 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0114 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0115 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0116 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0117 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0118 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0119 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0120 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0121 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0122 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0123 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0124 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0125 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0126 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0127 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0128 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0129 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0130 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0131 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0132 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0133 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0134 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0135 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0136 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0137 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0138 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0139 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0140 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0141 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0142 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0143 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0144 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0145 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0146 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0147 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0148 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0149 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0150 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0151 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0152 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0153 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0154 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0155 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0156 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0157 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0158 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0159 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0160 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0161 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0162 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0163 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0164 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0165 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0166 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0167 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0168 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0169 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0170 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0171 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0172 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0173 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0174 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0175 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0176 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0177 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0178 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0179 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0180 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0181 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0182 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0183 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0184 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0185 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0186 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0187 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0188 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0189 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0190 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0191 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0192 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0193 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0194 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0195 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0196 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0197 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0198 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0199 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0200 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0201 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0202 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0203 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0204 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0205 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0206 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0207 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0208 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0209 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0210 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0211 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0212 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0213 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0214 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0215 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0216 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0217 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0218 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0219 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0220 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0221 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0222 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0223 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0224 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0225 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0226 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0227 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0228 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0229 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0230 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0231 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0232 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0233 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0234 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0235 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0236 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0237 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0238 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0239 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0240 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0241 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0242 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0243 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0244 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0245 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0246 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0247 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0248 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0249 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0250 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0251 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0252 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0253 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0254 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0255 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0256 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0257 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0258 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0259 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0260 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0261 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0262 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0263 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0264 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0265 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0266 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0267 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0268 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0269 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0270 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0271 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0272 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0273 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0274 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0275 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0276 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0277 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0278 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0279 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0280 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0281 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0282 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0283 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0284 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0285 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0286 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0287 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0288 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0289 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0290 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0291 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0292 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0293 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0294 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0295 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0296 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0297 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0298 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0299 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0300 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0301 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0302 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0303 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0304 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0305 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0306 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0307 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0308 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0309 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0310 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0311 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0312 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0313 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0314 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0315 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0316 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0317 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0318 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0319 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0320 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0321 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0322 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0323 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0324 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0325 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0326 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0327 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0328 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0329 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0330 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0331 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0332 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0333 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0334 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0335 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0336 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0337 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0338 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0339 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0340 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0341 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0342 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0343 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0344 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0345 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0346 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0347 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0348 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0349 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0350 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0351 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0352 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0353 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0354 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0355 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0356 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0357 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0358 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0359 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0360 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0361 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0362 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0363 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0364 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0365 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0366 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0367 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0368 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0369 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0370 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0371 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0372 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0373 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0374 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0375 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0376 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0377 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0378 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0379 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0380 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0381 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0382 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0383 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0384 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0385 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0386 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0387 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0388 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0389 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0390 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0391 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0392 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0393 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0394 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0395 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0396 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0397 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0398 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0399 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0400 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0401 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0402 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0403 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0404 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0405 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0406 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0407 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0408 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0409 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0410 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0411 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0412 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0413 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0414 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0415 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0416 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0417 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0418 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0419 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0420 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0421 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0422 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0423 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0424 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0425 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0426 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0427 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0428 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0429 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0430 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0431 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0432 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0433 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0434 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0435 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0436 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0437 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0438 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0439 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0440 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0441 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0442 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0443 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0444 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0445 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0446 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0447 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0448 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0449 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0450 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0451 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0452 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0453 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0454 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0455 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0456 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0457 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0458 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0459 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0460 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0461 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0462 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0463 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0464 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0465 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0466 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0467 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0468 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0469 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0470 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0471 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0472 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0473 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0474 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0475 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0476 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0477 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0478 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0479 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0480 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0481 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0482 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0483 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0484 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0485 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0486 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0487 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0488 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0489 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0490 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0491 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0492 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0493 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0494 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0495 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0496 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0497 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0498 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0499 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0500 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0501 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0502 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0503 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0504 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0505 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0506 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0507 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0508 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0509 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0510 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0511 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0512 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0513 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0514 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0515 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0516 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0517 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0518 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0519 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0520 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0521 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0522 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0523 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0524 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0525 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0526 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0527 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0528 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0529 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0530 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0531 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0532 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0533 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0534 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0535 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0536 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0537 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0538 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0539 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0540 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0541 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0542 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0543 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0544 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0545 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0546 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0547 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0548 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0549 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0550 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0551 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0552 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0553 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0554 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0555 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0556 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0557 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0558 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0559 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0560 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0561 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0562 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0563 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0564 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0565 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0566 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0567 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0568 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0569 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0570 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0571 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0572 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0573 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0574 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0575 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0576 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0577 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0578 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0579 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0580 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0581 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0582 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0583 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0584 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0585 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0586 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0587 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0588 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0589 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0590 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0591 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0592 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0593 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0594 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0595 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0596 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0597 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0598 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0599 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0600 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0601 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0602 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0603 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0604 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0605 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0606 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0607 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0608 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0609 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0610 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0611 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0612 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0613 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0614 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0615 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0616 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0617 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0618 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0619 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0620 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0621 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0622 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0623 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0624 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0625 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0626 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0627 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0628 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0629 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0630 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0631 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0632 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0633 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0634 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0635 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0636 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0637 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0638 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0639 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0640 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0641 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0642 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0643 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0644 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0645 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0646 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0647 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0648 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0649 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0650 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0651 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0652 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0653 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0654 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0655 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0656 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0657 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0658 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0659 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0660 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0661 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0662 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0663 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0664 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0665 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0666 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0667 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0668 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0669 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0670 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0671 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0672 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0673 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0674 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0675 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0676 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0677 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0678 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0679 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0680 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0681 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0682 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0683 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0684 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0685 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0686 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0687 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0688 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0689 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0690 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0691 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0692 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0693 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0694 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0695 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0696 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0697 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0698 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0699 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0700 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0701 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0702 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0703 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0704 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0705 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0706 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0707 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0708 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0709 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0710 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0711 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0712 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0713 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0714 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0715 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0716 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0717 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0718 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0719 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0720 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0721 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0722 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0723 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0724 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0725 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0726 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0727 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0728 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0729 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0730 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0731 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0732 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0733 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0734 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0735 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0736 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0737 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0738 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0739 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0740 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0741 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0742 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0743 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0744 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0745 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0746 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0747 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0748 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0749 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0750 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0751 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0752 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0753 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0754 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0755 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0756 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0757 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0758 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0759 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0760 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0761 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0762 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0763 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0764 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0765 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0766 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0767 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0768 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0769 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0770 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0771 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0772 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0773 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0774 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0775 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0776 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0777 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0778 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0779 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0780 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0781 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0782 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0783 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0784 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0785 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0786 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0787 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0788 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0789 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0790 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0791 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0792 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0793 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0794 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0795 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0796 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0797 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0798 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0799 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0800 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0801 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0802 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0803 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0804 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0805 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0806 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0807 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0808 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0809 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0810 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0811 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0812 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0813 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0814 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0815 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0816 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0817 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0818 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0819 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0820 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0821 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0822 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0823 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0824 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0825 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0826 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0827 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0828 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0829 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0830 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0831 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0832 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0833 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0834 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0835 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0836 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0837 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0838 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0839 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0840 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0841 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0842 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0843 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0844 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0845 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0846 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0847 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0848 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0849 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0850 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0851 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0852 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0853 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0854 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0855 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0856 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0857 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0858 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0859 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0860 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0861 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0862 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0863 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0864 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0865 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0866 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0867 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0868 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0869 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0870 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0871 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0872 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0873 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0874 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0875 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0876 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0877 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0878 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0879 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0880 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0881 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0882 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0883 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0884 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0885 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0886 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0887 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0888 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0889 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0890 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0891 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0892 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0893 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0894 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0895 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0896 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0897 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0898 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0899 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0900 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0901 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0902 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0903 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0904 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0905 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0906 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0907 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0908 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0909 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0910 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0911 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0912 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0913 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0914 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0915 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0916 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0917 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0918 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0919 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0920 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0921 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0922 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0923 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0924 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0925 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0926 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0927 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0928 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0929 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0930 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0931 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0932 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0933 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0934 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0935 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0936 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0937 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0938 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0939 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0940 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0941 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0942 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0943 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0944 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0945 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0946 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0947 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0948 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0949 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0950 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0951 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0952 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0953 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0954 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0955 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0956 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0957 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0958 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0959 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0960 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0961 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0962 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0963 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0964 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0965 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0966 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0967 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0968 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0969 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0970 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0971 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0972 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0973 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0974 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0975 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0976 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0977 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0978 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0979 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0980 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0981 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0982 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0983 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0984 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0985 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0986 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0987 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0988 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0989 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0990 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0991 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0992 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0993 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0994 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0995 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0996 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0997 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0998 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0999 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1000 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1001 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1002 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1003 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1004 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1005 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1006 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1007 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1008 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1009 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1010 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1011 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1012 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1013 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1014 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1015 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1016 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1017 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1018 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1019 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1020 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1021 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1022 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1023 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1024 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1025 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1026 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1027 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1028 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1029 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1030 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1031 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1032 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1033 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1034 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1035 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1036 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1037 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1038 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1039 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1040 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1041 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1042 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1043 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1044 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1045 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1046 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1047 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1048 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1049 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1050 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1051 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1052 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1053 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1054 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1055 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1056 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1057 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1058 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1059 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1060 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1061 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1062 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1063 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1064 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1065 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1066 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1067 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1068 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1069 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1070 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1071 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1072 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1073 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1074 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1075 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1076 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1077 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1078 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1079 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1080 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1081 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1082 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1083 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1084 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1085 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1086 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1087 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1088 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1089 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1090 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1091 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1092 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1093 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1094 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1095 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1096 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1097 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1098 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1099 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1100 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1101 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1102 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1103 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1104 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1105 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1106 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1107 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1108 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1109 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1110 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1111 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1112 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1113 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1114 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1115 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1116 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1117 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1118 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1119 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1120 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1121 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1122 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1123 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1124 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1125 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1126 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1127 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1128 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1129 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1130 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1131 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1132 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1133 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1134 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1135 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1136 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1137 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1138 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1139 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1140 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1141 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1142 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1143 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1144 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1145 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1146 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1147 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1148 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1149 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1150 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1151 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1152 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1153 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1154 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1155 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1156 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1157 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1158 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1159 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1160 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1161 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1162 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1163 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1164 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1165 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1166 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1167 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1168 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1169 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1170 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1171 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1172 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1173 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1174 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1175 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1176 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1177 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1178 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1179 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1180 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1181 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1182 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1183 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1184 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1185 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1186 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1187 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1188 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1189 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1190 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1191 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1192 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1193 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1194 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1195 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1196 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1197 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1198 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1199 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1200 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1201 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1202 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1203 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1204 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1205 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1206 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1207 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1208 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1209 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1210 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1211 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1212 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1213 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1214 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1215 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1216 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1217 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1218 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1219 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1220 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1221 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1222 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1223 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1224 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1225 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1226 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1227 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1228 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1229 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1230 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1231 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1232 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1233 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1234 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1235 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1236 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1237 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1238 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1239 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1240 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1241 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1242 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1243 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1244 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1245 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1246 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1247 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1248 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1249 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1250 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1251 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1252 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1253 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1254 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1255 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1256 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1257 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1258 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1259 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1260 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1261 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1262 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1263 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1264 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1265 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1266 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1267 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1268 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1269 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1270 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1271 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1272 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1273 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1274 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1275 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1276 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1277 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1278 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1279 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1280 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1281 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1282 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1283 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1284 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1285 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1286 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1287 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1288 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1289 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1290 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1291 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1292 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1293 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1294 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1295 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1296 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1297 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1298 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1299 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1300 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1301 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1302 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1303 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1304 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1305 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1306 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1307 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1308 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1309 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1310 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1311 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1312 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1313 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1314 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1315 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1316 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1317 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1318 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1319 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1320 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1321 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1322 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1323 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1324 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1325 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1326 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1327 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1328 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1329 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1330 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1331 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1332 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1333 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1334 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1335 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1336 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1337 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1338 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1339 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1340 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1341 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1342 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1343 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1344 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1345 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1346 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1347 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1348 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1349 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1350 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1351 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1352 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1353 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1354 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1355 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1356 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1357 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1358 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1359 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1360 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1361 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1362 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1363 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1364 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1365 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1366 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1367 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1368 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1369 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1370 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1371 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1372 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1373 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1374 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1375 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1376 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1377 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1378 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1379 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1380 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1381 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1382 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1383 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1384 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1385 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1386 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1387 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1388 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1389 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1390 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1391 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1392 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1393 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1394 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1395 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1396 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1397 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1398 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1399 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1400 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1401 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1402 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1403 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1404 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1405 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1406 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1407 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1408 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1409 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1410 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1411 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1412 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1413 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1414 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1415 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1416 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1417 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1418 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1419 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1420 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1421 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1422 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1423 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1424 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1425 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1426 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1427 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1428 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1429 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1430 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1431 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1432 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1433 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1434 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1435 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1436 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1437 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1438 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1439 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1440 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1441 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1442 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1443 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1444 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1445 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1446 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1447 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1448 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1449 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1450 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1451 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1452 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1453 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1454 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1455 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1456 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1457 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1458 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1459 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1460 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1461 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1462 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1463 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1464 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1465 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1466 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1467 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1468 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1469 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1470 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1471 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1472 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1473 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1474 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1475 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1476 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1477 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1478 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1479 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1480 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1481 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1482 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1483 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1484 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1485 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1486 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1487 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1488 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1489 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1490 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1491 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1492 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1493 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1494 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1495 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1496 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1497 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1498 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1499 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1500 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1501 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1502 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1503 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1504 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1505 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1506 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1507 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1508 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1509 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1510 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1511 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1512 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1513 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1514 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1515 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1516 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1517 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1518 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1519 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1520 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1521 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1522 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1523 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1524 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1525 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1526 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1527 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1528 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1529 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1530 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1531 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1532 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1533 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1534 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1535 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1536 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1537 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1538 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1539 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1540 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1541 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1542 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1543 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1544 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1545 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1546 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1547 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1548 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1549 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1550 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1551 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1552 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1553 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1554 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1555 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1556 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1557 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1558 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1559 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1560 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1561 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1562 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1563 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1564 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1565 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1566 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1567 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1568 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1569 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1570 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1571 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1572 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1573 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1574 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1575 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1576 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1577 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1578 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1579 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1580 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1581 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1582 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1583 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1584 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1585 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1586 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1587 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1588 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1589 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1590 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1591 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1592 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1593 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1594 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1595 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1596 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1597 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1598 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1599 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1600 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1601 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1602 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1603 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1604 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1605 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1606 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1607 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1608 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1609 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1610 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1611 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1612 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1613 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1614 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1615 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1616 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1617 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1618 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1619 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1620 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1621 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1622 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1623 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1624 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1625 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1626 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1627 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1628 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1629 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1630 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1631 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1632 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1633 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1634 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1635 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1636 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1637 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1638 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1639 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1640 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1641 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1642 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1643 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1644 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1645 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1646 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1647 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1648 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1649 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1650 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1651 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1652 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1653 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1654 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1655 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1656 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1657 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1658 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1659 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1660 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1661 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1662 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1663 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1664 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1665 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1666 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1667 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1668 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1669 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1670 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1671 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1672 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1673 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1674 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1675 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1676 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1677 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1678 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1679 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1680 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1681 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1682 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1683 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1684 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1685 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1686 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1687 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1688 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1689 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1690 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1691 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1692 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1693 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1694 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1695 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1696 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1697 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1698 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1699 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1700 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1701 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1702 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1703 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1704 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1705 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1706 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1707 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1708 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1709 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1710 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1711 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1712 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1713 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1714 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1715 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1716 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1717 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1718 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1719 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1720 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1721 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1722 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1723 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1724 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1725 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1726 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1727 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1728 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1729 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1730 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1731 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1732 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1733 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1734 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1735 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1736 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1737 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1738 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1739 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1740 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1741 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1742 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1743 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1744 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1745 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1746 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1747 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1748 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1749 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1750 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1751 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1752 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1753 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1754 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1755 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1756 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1757 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1758 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1759 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1760 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1761 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1762 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1763 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1764 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1765 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1766 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1767 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1768 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1769 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1770 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1771 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1772 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1773 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1774 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1775 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1776 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1777 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1778 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1779 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1780 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1781 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1782 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1783 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1784 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1785 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1786 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1787 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1788 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1789 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1790 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1791 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1792 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1793 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1794 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1795 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1796 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1797 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1798 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1799 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1800 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1801 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1802 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1803 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1804 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1805 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1806 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1807 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1808 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1809 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1810 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1811 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1812 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1813 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1814 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1815 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1816 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1817 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1818 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1819 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1820 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1821 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1822 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1823 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1824 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1825 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1826 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1827 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1828 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1829 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1830 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1831 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1832 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1833 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1834 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1835 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1836 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1837 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1838 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1839 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1840 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1841 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1842 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1843 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1844 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1845 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1846 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1847 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1848 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1849 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1850 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1851 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1852 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1853 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1854 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1855 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1856 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1857 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1858 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1859 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1860 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1861 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1862 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1863 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1864 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1865 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1866 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1867 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1868 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1869 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1870 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1871 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1872 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1873 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1874 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1875 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1876 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1877 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1878 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1879 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1880 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1881 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1882 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1883 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1884 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1885 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1886 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1887 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1888 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1889 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1890 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1891 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1892 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1893 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1894 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1895 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1896 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1897 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1898 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1899 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1900 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1901 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1902 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1903 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1904 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1905 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1906 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1907 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1908 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1909 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1910 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1911 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1912 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1913 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1914 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1915 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1916 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1917 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1918 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1919 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1920 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1921 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1922 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1923 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1924 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1925 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1926 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1927 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1928 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1929 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1930 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1931 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1932 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1933 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1934 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1935 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1936 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1937 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1938 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1939 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1940 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1941 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1942 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1943 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1944 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1945 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1946 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1947 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1948 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1949 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1950 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1951 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1952 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1953 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1954 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1955 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1956 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1957 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1958 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1959 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1960 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1961 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1962 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1963 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1964 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1965 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1966 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1967 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1968 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1969 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1970 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1971 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1972 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1973 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1974 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1975 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1976 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1977 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1978 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1979 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1980 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1981 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1982 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1983 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1984 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1985 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1986 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1987 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1988 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1989 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1990 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1991 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1992 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1993 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1994 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1995 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1996 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1997 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1998 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1999 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2000 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2001 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2002 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2003 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2004 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2005 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2006 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2007 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2008 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2009 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2010 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2011 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2012 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2013 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2014 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2015 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2016 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2017 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2018 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2019 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2020 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2021 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2022 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2023 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2024 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2025 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2026 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2027 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2028 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2029 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2030 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2031 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2032 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2033 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2034 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2035 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2036 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2037 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2038 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2039 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2040 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2041 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2042 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2043 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2044 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2045 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2046 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2047 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2048 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2049 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2050 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2051 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2052 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2053 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2054 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2055 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2056 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2057 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2058 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2059 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2060 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2061 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2062 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2063 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2064 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2065 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2066 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2067 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2068 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2069 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2070 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2071 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2072 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2073 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2074 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2075 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2076 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2077 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2078 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2079 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2080 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2081 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2082 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2083 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2084 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2085 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2086 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2087 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2088 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2089 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2090 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2091 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2092 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2093 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2094 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2095 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2096 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2097 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2098 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2099 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2100 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2101 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2102 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2103 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2104 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2105 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2106 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2107 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2108 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2109 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2110 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2111 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2112 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2113 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2114 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2115 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2116 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2117 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2118 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2119 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2120 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2121 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2122 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2123 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2124 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2125 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2126 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2127 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2128 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2129 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2130 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2131 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2132 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2133 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2134 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2135 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2136 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2137 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2138 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2139 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2140 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2141 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2142 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2143 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2144 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2145 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2146 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2147 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2148 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2149 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2150 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2151 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2152 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2153 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2154 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2155 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2156 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2157 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2158 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2159 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2160 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2161 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2162 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2163 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2164 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2165 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2166 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2167 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2168 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2169 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2170 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2171 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2172 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2173 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2174 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2175 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2176 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2177 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2178 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2179 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2180 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2181 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2182 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2183 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2184 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2185 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2186 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2187 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2188 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2189 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2190 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2191 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2192 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2193 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2194 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2195 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2196 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2197 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2198 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2199 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2200 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2201 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2202 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2203 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2204 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2205 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2206 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2207 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2208 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2209 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2210 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2211 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2212 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2213 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2214 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2215 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2216 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2217 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2218 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2219 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2220 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2221 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2222 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2223 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2224 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2225 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2226 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2227 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2228 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2229 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2230 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2231 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2232 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2233 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2234 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2235 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2236 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2237 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2238 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2239 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2240 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2241 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2242 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2243 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2244 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2245 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2246 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2247 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2248 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2249 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2250 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2251 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2252 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2253 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2254 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2255 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2256 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2257 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2258 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2259 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2260 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2261 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2262 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2263 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2264 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2265 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2266 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2267 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2268 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2269 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2270 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2271 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2272 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2273 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2274 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2275 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2276 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2277 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2278 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2279 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2280 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2281 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2282 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2283 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2284 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2285 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2286 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2287 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2288 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2289 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2290 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2291 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2292 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2293 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2294 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2295 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2296 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2297 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2298 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2299 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2300 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2301 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2302 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2303 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2304 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2305 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2306 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2307 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2308 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2309 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2310 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2311 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2312 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2313 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2314 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2315 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2316 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2317 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2318 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2319 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2320 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2321 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2322 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2323 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2324 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2325 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2326 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2327 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2328 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2329 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2330 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2331 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2332 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2333 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2334 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2335 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2336 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2337 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2338 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2339 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2340 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2341 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2342 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2343 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2344 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2345 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2346 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2347 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2348 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2349 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2350 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2351 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2352 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2353 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2354 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2355 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2356 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2357 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2358 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2359 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2360 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2361 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2362 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2363 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2364 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2365 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2366 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2367 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2368 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2369 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2370 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2371 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2372 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2373 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2374 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2375 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2376 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2377 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2378 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2379 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2380 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2381 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2382 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2383 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2384 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2385 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2386 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2387 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2388 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2389 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2390 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2391 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2392 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2393 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2394 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2395 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2396 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2397 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2398 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2399 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2400 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2401 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2402 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2403 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2404 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2405 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2406 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2407 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2408 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2409 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2410 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2411 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2412 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2413 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2414 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2415 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2416 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2417 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2418 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2419 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2420 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2421 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2422 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2423 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2424 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2425 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2426 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2427 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2428 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2429 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2430 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2431 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2432 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2433 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2434 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2435 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2436 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2437 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2438 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2439 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2440 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2441 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2442 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2443 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2444 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2445 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2446 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2447 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2448 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2449 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2450 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2451 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2452 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2453 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2454 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2455 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2456 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2457 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2458 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2459 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2460 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2461 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2462 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2463 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2464 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2465 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2466 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2467 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2468 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2469 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2470 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2471 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2472 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2473 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2474 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2475 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2476 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2477 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2478 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2479 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2480 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2481 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2482 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2483 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2484 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2485 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2486 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2487 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2488 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2489 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2490 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2491 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2492 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2493 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2494 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2495 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2496 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2497 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2498 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2499 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2500 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2501 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2502 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2503 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2504 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2505 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2506 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2507 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2508 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2509 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2510 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2511 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2512 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2513 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2514 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2515 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2516 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2517 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2518 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2519 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2520 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2521 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2522 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2523 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2524 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2525 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2526 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2527 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2528 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2529 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2530 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2531 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2532 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2533 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2534 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2535 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2536 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2537 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2538 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2539 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2540 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2541 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2542 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2543 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2544 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2545 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2546 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2547 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2548 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2549 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2550 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2551 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2552 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2553 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2554 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2555 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2556 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2557 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2558 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2559 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2560 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2561 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2562 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2563 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2564 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2565 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2566 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2567 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2568 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2569 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2570 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2571 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2572 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2573 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2574 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2575 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2576 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2577 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2578 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2579 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2580 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2581 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2582 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2583 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2584 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2585 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2586 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2587 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2588 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2589 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2590 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2591 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2592 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2593 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2594 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2595 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2596 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2597 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2598 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2599 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2600 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2601 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2602 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2603 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2604 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2605 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2606 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2607 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2608 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2609 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2610 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2611 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2612 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2613 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2614 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2615 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2616 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2617 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2618 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2619 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2620 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2621 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2622 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2623 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2624 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2625 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2626 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2627 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2628 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2629 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2630 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2631 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2632 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2633 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2634 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2635 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2636 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2637 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2638 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2639 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2640 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2641 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2642 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2643 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2644 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2645 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2646 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2647 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2648 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2649 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2650 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2651 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2652 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2653 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2654 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2655 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2656 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2657 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2658 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2659 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2660 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2661 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2662 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2663 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2664 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2665 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2666 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2667 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2668 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2669 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2670 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2671 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2672 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2673 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2674 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2675 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2676 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2677 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2678 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2679 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2680 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2681 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2682 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2683 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2684 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2685 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2686 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2687 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2688 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2689 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2690 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2691 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2692 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2693 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2694 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2695 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2696 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2697 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2698 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2699 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2700 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2701 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2702 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2703 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2704 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2705 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2706 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2707 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2708 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2709 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2710 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2711 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2712 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2713 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2714 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2715 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2716 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2717 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2718 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2719 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2720 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2721 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2722 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2723 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2724 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2725 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2726 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2727 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2728 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2729 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2730 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2731 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2732 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2733 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2734 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2735 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2736 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2737 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2738 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2739 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2740 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2741 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2742 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2743 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2744 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2745 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2746 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2747 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2748 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2749 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2750 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2751 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2752 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2753 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2754 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2755 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2756 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2757 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2758 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2759 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2760 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2761 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2762 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2763 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2764 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2765 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2766 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2767 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2768 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2769 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2770 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2771 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2772 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2773 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2774 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2775 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2776 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2777 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2778 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2779 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2780 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2781 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2782 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2783 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2784 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2785 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2786 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2787 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2788 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2789 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2790 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2791 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2792 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2793 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2794 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2795 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2796 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2797 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2798 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2799 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2800 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2801 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2802 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2803 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2804 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2805 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2806 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2807 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2808 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2809 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2810 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2811 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2812 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2813 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2814 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2815 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2816 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2817 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2818 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2819 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2820 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2821 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2822 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2823 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2824 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2825 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2826 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2827 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2828 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2829 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2830 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2831 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2832 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2833 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2834 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2835 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2836 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2837 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2838 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2839 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2840 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2841 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2842 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2843 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2844 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2845 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2846 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2847 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2848 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2849 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2850 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2851 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2852 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2853 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2854 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2855 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2856 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2857 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2858 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2859 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2860 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2861 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2862 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2863 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2864 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2865 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2866 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2867 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2868 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2869 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2870 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2871 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2872 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2873 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2874 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2875 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2876 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2877 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2878 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2879 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2880 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2881 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2882 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2883 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2884 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2885 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2886 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2887 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2888 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2889 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2890 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2891 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2892 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2893 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2894 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2895 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2896 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2897 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2898 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2899 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2900 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2901 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2902 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2903 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2904 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2905 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2906 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2907 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2908 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2909 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2910 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2911 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2912 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2913 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2914 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2915 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2916 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2917 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2918 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2919 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2920 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2921 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2922 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2923 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2924 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2925 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2926 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2927 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2928 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2929 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2930 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2931 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2932 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2933 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2934 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2935 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2936 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2937 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2938 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2939 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2940 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2941 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2942 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2943 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2944 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2945 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2946 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2947 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2948 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2949 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2950 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2951 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2952 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2953 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2954 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2955 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2956 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2957 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2958 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2959 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2960 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2961 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2962 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2963 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2964 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2965 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2966 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2967 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2968 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2969 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2970 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2971 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2972 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2973 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2974 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2975 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2976 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2977 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2978 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2979 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2980 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2981 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2982 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2983 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2984 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2985 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2986 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2987 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2988 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2989 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2990 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2991 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2992 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2993 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2994 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2995 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2996 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2997 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2998 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2999 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3000 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3001 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3002 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3003 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3004 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3005 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3006 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3007 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3008 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3009 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3010 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3011 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3012 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3013 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3014 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3015 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3016 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3017 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3018 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3019 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3020 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3021 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3022 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3023 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3024 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3025 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3026 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3027 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3028 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3029 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3030 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3031 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3032 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3033 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3034 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3035 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3036 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3037 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3038 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3039 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3040 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3041 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3042 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3043 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3044 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3045 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3046 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3047 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3048 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3049 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3050 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3051 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3052 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3053 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3054 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3055 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3056 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3057 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3058 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3059 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3060 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3061 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3062 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3063 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3064 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3065 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3066 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3067 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3068 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3069 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3070 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3071 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3072 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3073 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3074 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3075 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3076 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3077 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3078 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3079 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3080 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3081 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3082 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3083 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3084 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3085 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3086 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3087 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3088 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3089 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3090 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3091 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3092 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3093 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3094 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3095 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3096 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3097 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3098 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3099 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3100 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3101 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3102 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3103 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3104 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3105 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3106 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3107 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3108 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3109 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3110 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3111 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3112 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3113 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3114 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3115 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3116 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3117 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3118 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3119 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3120 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3121 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3122 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3123 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3124 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3125 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3126 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3127 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3128 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3129 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3130 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3131 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3132 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3133 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3134 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3135 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3136 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3137 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3138 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3139 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3140 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3141 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3142 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3143 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3144 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3145 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3146 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3147 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3148 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3149 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3150 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3151 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3152 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3153 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3154 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3155 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3156 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3157 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3158 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3159 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3160 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3161 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3162 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3163 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3164 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3165 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3166 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3167 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3168 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3169 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3170 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3171 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3172 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3173 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3174 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3175 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3176 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3177 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3178 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3179 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3180 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3181 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3182 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3183 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3184 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3185 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3186 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3187 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3188 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3189 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3190 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3191 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3192 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3193 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3194 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3195 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3196 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3197 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3198 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3199 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3200 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3201 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3202 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3203 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3204 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3205 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3206 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3207 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3208 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3209 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3210 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3211 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3212 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3213 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3214 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3215 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3216 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3217 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3218 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3219 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3220 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3221 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3222 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3223 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3224 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3225 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3226 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3227 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3228 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3229 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3230 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3231 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3232 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3233 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3234 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3235 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3236 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3237 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3238 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3239 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3240 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3241 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3242 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3243 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3244 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3245 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3246 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3247 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3248 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3249 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3250 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3251 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3252 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3253 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3254 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3255 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3256 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3257 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3258 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3259 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3260 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3261 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3262 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3263 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3264 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3265 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3266 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3267 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3268 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3269 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3270 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3271 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3272 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3273 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3274 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3275 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3276 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3277 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3278 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3279 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3280 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3281 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3282 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3283 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3284 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3285 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3286 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3287 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3288 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3289 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3290 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3291 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3292 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3293 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3294 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3295 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3296 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3297 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3298 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3299 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3300 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3301 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3302 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3303 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3304 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3305 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3306 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3307 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3308 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3309 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3310 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3311 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3312 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3313 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3314 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3315 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3316 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3317 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3318 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3319 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3320 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3321 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3322 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3323 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3324 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3325 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3326 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3327 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3328 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3329 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3330 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3331 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3332 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3333 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3334 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3335 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3336 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3337 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3338 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3339 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3340 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3341 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3342 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3343 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3344 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3345 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3346 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3347 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3348 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3349 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3350 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3351 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3352 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3353 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3354 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3355 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3356 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3357 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3358 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3359 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3360 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3361 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3362 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3363 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3364 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3365 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3366 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3367 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3368 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3369 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3370 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3371 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3372 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3373 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3374 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3375 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3376 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3377 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3378 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3379 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3380 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3381 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3382 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3383 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3384 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3385 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3386 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3387 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3388 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3389 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3390 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3391 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3392 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3393 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3394 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3395 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3396 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3397 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3398 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3399 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3400 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3401 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3402 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3403 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3404 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3405 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3406 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3407 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3408 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3409 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3410 / 3410 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0001 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0002 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0003 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0004 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0005 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0006 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0007 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0008 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0009 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0010 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0011 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0012 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0013 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0014 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0015 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0016 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0017 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0018 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0019 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0020 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0021 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0022 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0023 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0024 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0025 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0026 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0027 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0028 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0029 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0030 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0031 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0032 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0033 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0034 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0035 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0036 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0037 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0038 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0039 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0040 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0041 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0042 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0043 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0044 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0045 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0046 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0047 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0048 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0049 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0050 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0051 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0052 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0053 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0054 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0055 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0056 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0057 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0058 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0059 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0060 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0061 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0062 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0063 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0064 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0065 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0066 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0067 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0068 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0069 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0070 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0071 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0072 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0073 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0074 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0075 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0076 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0077 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0078 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0079 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0080 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0081 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0082 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0083 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0084 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0085 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0086 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0087 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0088 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0089 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0090 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0091 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0092 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0093 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0094 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0095 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0096 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0097 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0098 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0099 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0100 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0101 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0102 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0103 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0104 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0105 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0106 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0107 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0108 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0109 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0110 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0111 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0112 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0113 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0114 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0115 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0116 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0117 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0118 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0119 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0120 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0121 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0122 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0123 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0124 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0125 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0126 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0127 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0128 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0129 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0130 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0131 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0132 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0133 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0134 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0135 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0136 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0137 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0138 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0139 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0140 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0141 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0142 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0143 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0144 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0145 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0146 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0147 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0148 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0149 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0150 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0151 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0152 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0153 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0154 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0155 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0156 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0157 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0158 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0159 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0160 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0161 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0162 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0163 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0164 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0165 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0166 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0167 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0168 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0169 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0170 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0171 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0172 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0173 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0174 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0175 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0176 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0177 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0178 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0179 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0180 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0181 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0182 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0183 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0184 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0185 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0186 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0187 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0188 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0189 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0190 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0191 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0192 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0193 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0194 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0195 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0196 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0197 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0198 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0199 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0200 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0201 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0202 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0203 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0204 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0205 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0206 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0207 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0208 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0209 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0210 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0211 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0212 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0213 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0214 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0215 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0216 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0217 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0218 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0219 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0220 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0221 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0222 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0223 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0224 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0225 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0226 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0227 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0228 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0229 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0230 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0231 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0232 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0233 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0234 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0235 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0236 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0237 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0238 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0239 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0240 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0241 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0242 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0243 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0244 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0245 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0246 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0247 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0248 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0249 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0250 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0251 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0252 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0253 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0254 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0255 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0256 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0257 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0258 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0259 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0260 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0261 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0262 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0263 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0264 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0265 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0266 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0267 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0268 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0269 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0270 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0271 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0272 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0273 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0274 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0275 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0276 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0277 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0278 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0279 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0280 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0281 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0282 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0283 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0284 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0285 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0286 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0287 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0288 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0289 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0290 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0291 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0292 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0293 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0294 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0295 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0296 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0297 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0298 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0299 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0300 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0301 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0302 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0303 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0304 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0305 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0306 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0307 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0308 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0309 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0310 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0311 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0312 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0313 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0314 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0315 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0316 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0317 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0318 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0319 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0320 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0321 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0322 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0323 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0324 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0325 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0326 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0327 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0328 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0329 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0330 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0331 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0332 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0333 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0334 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0335 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0336 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0337 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0338 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0339 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0340 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0341 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0342 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0343 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0344 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0345 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0346 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0347 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0348 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0349 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0350 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0351 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0352 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0353 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0354 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0355 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0356 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0357 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0358 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0359 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0360 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0361 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0362 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0363 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0364 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0365 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0366 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0367 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0368 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0369 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0370 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0371 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0372 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0373 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0374 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0375 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0376 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0377 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0378 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0379 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0380 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0381 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0382 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0383 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0384 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0385 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0386 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0387 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0388 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0389 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0390 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0391 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0392 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0393 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0394 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0395 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0396 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0397 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0398 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0399 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0400 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0401 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0402 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0403 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0404 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0405 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0406 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0407 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0408 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0409 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0410 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0411 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0412 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0413 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0414 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0415 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0416 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0417 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0418 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0419 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0420 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0421 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0422 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0423 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0424 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0425 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0426 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0427 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0428 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0429 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0430 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0431 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0432 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0433 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0434 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0435 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0436 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0437 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0438 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0439 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0440 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0441 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0442 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0443 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0444 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0445 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0446 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0447 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0448 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0449 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0450 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0451 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0452 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0453 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0454 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0455 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0456 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0457 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0458 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0459 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0460 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0461 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0462 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0463 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0464 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0465 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0466 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0467 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0468 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0469 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0470 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0471 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0472 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0473 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0474 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0475 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0476 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0477 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0478 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0479 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0480 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0481 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0482 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0483 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0484 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0485 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0486 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0487 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0488 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0489 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0490 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0491 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0492 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0493 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0494 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0495 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0496 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0497 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0498 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0499 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0500 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0501 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0502 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0503 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0504 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0505 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0506 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0507 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0508 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0509 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0510 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0511 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0512 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0513 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0514 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0515 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0516 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0517 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0518 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0519 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0520 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0521 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0522 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0523 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0524 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0525 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0526 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0527 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0528 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0529 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0530 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0531 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0532 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0533 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0534 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0535 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0536 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0537 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0538 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0539 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0540 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0541 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0542 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0543 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0544 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0545 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0546 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0547 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0548 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0549 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0550 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0551 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0552 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0553 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0554 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0555 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0556 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0557 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0558 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0559 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0560 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0561 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0562 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0563 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0564 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0565 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0566 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0567 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0568 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0569 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0570 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0571 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0572 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0573 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0574 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0575 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0576 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0577 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0578 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0579 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0580 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0581 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0582 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0583 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0584 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0585 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0586 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0587 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0588 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0589 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0590 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0591 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0592 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0593 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0594 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0595 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0596 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0597 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0598 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0599 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0600 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0601 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0602 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0603 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0604 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0605 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0606 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0607 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0608 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0609 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0610 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0611 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0612 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0613 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0614 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0615 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0616 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0617 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0618 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0619 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0620 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0621 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0622 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0623 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0624 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0625 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0626 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0627 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0628 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0629 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0630 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0631 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0632 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0633 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0634 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0635 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0636 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0637 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0638 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0639 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0640 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0641 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0642 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0643 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0644 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0645 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0646 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0647 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0648 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0649 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0650 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0651 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0652 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0653 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0654 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0655 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0656 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0657 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0658 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0659 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0660 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0661 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0662 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0663 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0664 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0665 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0666 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0667 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0668 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0669 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0670 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0671 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0672 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0673 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0674 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0675 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0676 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0677 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0678 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0679 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0680 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0681 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0682 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0683 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0684 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0685 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0686 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0687 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0688 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0689 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0690 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0691 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0692 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0693 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0694 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0695 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0696 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0697 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0698 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0699 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0700 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0701 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0702 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0703 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0704 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0705 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0706 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0707 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0708 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0709 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0710 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0711 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0712 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0713 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0714 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0715 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0716 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0717 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0718 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0719 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0720 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0721 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0722 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0723 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0724 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0725 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0726 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0727 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0728 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0729 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0730 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0731 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0732 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0733 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0734 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0735 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0736 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0737 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0738 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0739 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0740 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0741 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0742 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0743 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0744 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0745 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0746 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0747 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0748 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0749 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0750 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0751 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0752 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0753 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0754 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0755 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0756 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0757 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0758 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0759 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0760 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0761 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0762 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0763 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0764 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0765 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0766 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0767 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0768 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0769 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0770 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0771 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0772 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0773 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0774 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0775 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0776 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0777 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0778 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0779 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0780 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0781 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0782 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0783 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0784 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0785 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0786 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0787 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0788 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0789 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0790 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0791 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0792 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0793 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0794 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0795 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0796 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0797 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0798 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0799 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0800 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0801 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0802 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0803 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0804 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0805 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0806 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0807 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0808 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0809 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0810 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0811 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0812 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0813 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0814 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0815 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0816 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0817 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0818 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0819 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0820 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0821 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0822 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0823 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0824 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0825 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0826 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0827 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0828 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0829 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0830 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0831 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0832 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0833 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0834 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0835 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0836 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0837 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0838 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0839 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0840 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0841 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0842 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0843 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0844 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0845 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0846 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0847 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0848 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0849 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0850 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0851 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0852 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0853 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0854 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0855 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0856 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0857 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0858 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0859 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0860 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0861 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0862 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0863 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0864 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0865 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0866 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0867 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0868 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0869 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0870 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0871 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0872 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0873 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0874 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0875 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0876 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0877 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0878 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0879 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0880 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0881 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0882 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0883 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0884 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0885 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0886 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0887 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0888 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0889 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0890 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0891 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0892 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0893 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0894 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0895 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0896 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0897 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0898 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0899 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0900 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0901 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0902 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0903 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0904 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0905 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0906 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0907 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0908 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0909 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0910 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0911 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0912 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0913 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0914 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0915 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0916 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0917 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0918 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0919 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0920 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0921 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0922 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0923 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0924 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0925 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0926 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0927 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0928 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0929 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0930 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0931 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0932 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0933 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0934 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0935 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0936 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0937 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0938 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0939 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0940 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0941 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0942 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0943 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0944 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0945 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0946 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0947 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0948 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0949 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0950 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0951 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0952 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0953 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0954 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0955 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0956 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0957 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0958 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0959 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0960 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0961 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0962 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0963 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0964 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0965 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0966 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0967 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0968 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0969 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0970 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0971 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0972 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0973 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0974 / 0974 | LOSS 0.0015\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0002 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0003 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0004 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0005 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0006 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0007 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0008 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0009 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0010 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0011 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0012 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0013 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0014 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0015 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0016 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0017 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0018 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0019 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0020 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0021 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0022 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0023 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0024 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0025 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0026 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0027 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0028 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0029 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0030 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0031 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0032 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0033 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0034 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0035 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0036 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0037 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0038 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0039 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0040 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0041 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0042 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0043 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0044 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0045 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0046 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0047 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0048 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0049 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0050 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0051 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0052 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0053 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0054 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0055 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0056 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0057 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0058 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0059 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0060 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0061 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0062 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0063 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0064 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0065 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0066 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0067 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0068 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0069 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0070 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0071 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0072 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0073 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0074 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0075 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0076 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0077 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0078 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0079 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0080 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0081 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0082 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0083 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0084 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0085 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0086 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0087 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0088 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0089 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0090 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0091 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0092 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0093 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0094 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0095 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0096 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0097 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0098 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0099 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0100 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0101 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0102 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0103 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0104 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0105 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0106 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0107 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0108 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0109 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0110 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0111 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0112 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0113 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0114 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0115 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0116 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0117 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0118 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0119 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0120 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0121 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0122 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0123 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0124 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0125 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0126 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0127 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0128 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0129 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0130 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0131 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0132 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0133 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0134 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0135 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0136 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0137 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0138 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0139 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0140 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0141 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0142 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0143 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0144 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0145 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0146 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0147 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0148 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0149 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0150 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0151 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0152 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0153 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0154 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0155 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0156 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0157 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0158 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0159 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0160 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0161 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0162 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0163 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0164 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0165 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0166 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0167 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0168 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0169 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0170 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0171 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0172 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0173 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0174 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0175 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0176 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0177 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0178 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0179 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0180 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0181 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0182 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0183 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0184 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0185 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0186 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0187 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0188 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0189 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0190 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0191 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0192 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0193 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0194 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0195 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0196 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0197 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0198 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0199 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0200 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0201 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0202 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0203 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0204 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0205 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0206 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0207 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0208 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0209 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0210 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0211 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0212 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0213 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0214 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0215 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0216 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0217 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0218 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0219 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0220 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0221 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0222 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0223 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0224 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0225 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0226 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0227 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0228 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0229 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0230 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0231 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0232 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0233 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0234 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0235 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0236 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0237 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0238 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0239 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0240 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0241 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0242 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0243 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0244 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0245 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0246 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0247 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0248 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0249 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0250 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0251 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0252 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0253 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0254 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0255 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0256 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0257 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0258 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0259 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0260 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0261 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0262 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0263 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0264 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0265 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0266 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0267 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0268 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0269 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0270 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0271 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0272 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0273 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0274 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0275 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0276 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0277 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0278 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0279 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0280 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0281 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0282 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0283 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0284 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0285 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0286 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0287 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0288 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0289 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0290 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0291 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0292 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0293 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0294 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0295 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0296 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0297 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0298 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0299 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0300 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0301 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0302 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0303 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0304 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0305 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0306 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0307 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0308 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0309 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0310 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0311 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0312 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0313 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0314 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0315 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0316 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0317 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0318 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0319 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0320 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0321 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0322 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0323 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0324 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0325 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0326 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0327 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0328 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0329 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0330 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0331 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0332 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0335 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0336 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0337 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0338 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0339 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0340 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0341 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0342 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0343 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0344 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0345 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0346 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0347 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0348 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0349 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0350 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0351 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0352 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0353 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0354 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0355 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0356 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0357 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0358 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0359 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0360 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0361 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0362 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0363 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0364 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0365 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0366 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0367 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0368 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0369 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0370 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0371 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0372 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0373 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0374 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0375 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0376 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0377 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0378 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0379 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0380 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0381 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0382 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0383 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0384 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0385 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0386 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0387 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0388 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0389 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0390 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0391 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0392 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0393 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0394 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0395 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0396 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0397 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0398 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0399 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0400 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0401 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0402 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0403 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0404 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0405 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0406 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0407 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0408 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0409 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0410 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0411 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0412 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0413 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0414 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0415 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0416 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0417 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0418 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0419 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0420 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0421 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0422 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0423 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0424 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0425 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0426 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0427 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0428 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0429 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0430 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0431 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0432 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0433 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0434 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0435 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0436 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0437 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0438 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0439 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0440 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0441 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0442 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0443 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0444 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0445 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0446 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0447 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0448 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0449 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0450 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0451 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0452 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0453 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0454 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0455 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0456 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0457 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0458 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0459 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0460 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0461 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0462 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0463 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0464 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0465 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0466 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0467 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0468 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0469 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0470 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0471 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0472 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0473 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0474 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0475 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0476 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0477 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0478 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0479 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0480 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0481 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0482 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0483 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0484 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0485 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0486 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0487 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0488 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0489 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0490 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0491 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0492 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0493 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0494 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0495 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0496 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0497 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0498 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0499 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0500 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0501 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0502 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0503 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0504 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0505 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0506 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0507 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0508 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0509 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0510 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0511 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0512 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0513 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0514 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0515 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0516 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0517 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0518 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0519 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0520 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0521 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0522 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0523 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0524 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0525 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0526 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0527 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0528 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0529 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0530 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0531 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0532 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0533 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0534 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0535 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0536 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0537 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0538 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0539 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0540 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0541 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0542 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0543 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0544 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0545 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0546 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0547 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0548 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0549 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0550 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0551 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0552 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0553 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0554 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0555 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0556 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0557 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0558 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0559 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0560 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0561 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0562 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0563 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0564 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0565 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0566 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0567 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0568 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0569 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0570 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0571 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0572 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0573 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0574 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0575 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0576 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0577 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0578 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0579 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0580 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0581 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0582 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0583 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0584 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0585 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0586 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0587 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0588 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0589 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0590 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0591 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0592 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0593 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0594 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0595 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0596 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0597 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0598 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0599 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0600 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0601 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0602 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0603 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0604 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0605 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0606 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0607 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0608 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0609 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0610 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0611 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0612 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0613 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0614 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0615 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0616 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0617 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0618 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0619 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0620 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0621 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0622 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0623 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0624 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0625 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0626 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0627 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0628 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0629 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0630 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0631 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0632 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0633 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0634 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0635 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0636 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0637 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0638 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0639 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0640 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0641 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0642 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0643 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0644 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0645 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0646 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0647 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0648 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0649 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0650 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0651 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0652 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0653 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0654 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0655 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0656 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0657 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0658 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0659 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0660 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0661 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0662 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0663 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0664 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0665 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0666 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0667 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0668 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0669 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0670 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0671 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0672 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0673 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0674 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0675 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0676 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0677 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0678 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0679 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0680 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0681 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0682 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0683 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0684 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0685 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0686 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0687 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0688 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0689 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0690 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0691 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0692 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0693 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0694 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0695 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0696 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0697 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0698 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0699 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0700 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0701 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0702 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0703 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0704 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0705 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0706 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0707 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0708 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0709 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0710 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0711 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0712 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0713 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0714 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0715 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0716 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0717 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0718 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0719 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0720 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0721 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0722 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0723 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0724 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0725 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0726 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0727 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0728 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0729 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0730 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0731 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0732 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0733 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0734 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0735 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0736 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0737 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0738 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0739 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0740 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0741 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0742 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0743 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0744 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0745 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0746 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0747 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0748 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0749 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0750 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0751 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0752 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0753 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0754 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0755 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0756 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0757 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0758 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0759 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0760 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0761 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0762 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0763 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0764 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0765 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0766 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0767 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0768 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0769 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0770 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0771 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0772 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0773 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0774 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0775 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0776 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0777 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0778 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0779 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0780 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0781 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0782 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0783 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0784 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0785 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0786 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0787 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0788 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0789 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0790 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0791 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0792 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0793 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0794 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0795 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0796 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0797 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0798 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0799 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0800 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0801 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0802 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0803 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0804 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0805 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0806 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0807 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0808 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0809 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0810 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0811 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0812 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0813 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0814 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0815 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0816 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0817 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0818 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0819 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0820 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0821 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0822 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0823 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0824 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0825 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0826 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0827 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0828 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0829 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0830 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0831 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0832 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0833 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0834 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0835 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0836 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0837 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0838 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0839 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0840 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0841 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0842 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0843 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0844 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0845 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0846 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0847 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0848 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0849 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0850 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0851 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0852 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0853 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0854 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0855 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0856 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0857 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0858 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0859 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0860 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0861 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0862 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0863 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0864 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0865 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0866 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0867 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0868 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0869 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0870 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0871 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0872 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0873 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0874 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0875 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0876 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0877 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0878 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0879 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0880 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0881 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0882 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0883 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0884 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0885 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0886 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0887 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0888 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0889 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0890 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0891 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0892 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0893 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0894 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0895 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0896 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0897 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0898 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0899 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0900 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0901 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0902 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0903 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0904 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0905 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0906 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0907 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0908 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0909 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0910 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0911 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0912 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0913 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0914 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0915 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0916 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0917 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0918 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0919 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0920 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0921 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0922 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0923 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0924 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0925 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0926 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0927 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0928 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0929 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0930 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0931 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0932 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0933 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0934 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0935 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0936 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0937 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0938 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0939 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0940 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0941 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0942 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0943 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0944 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0945 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0946 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0947 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0948 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0949 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0950 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0951 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0952 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0953 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0954 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0955 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0956 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0957 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0958 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0959 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0960 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0961 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0962 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0963 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0964 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0965 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0966 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0967 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0968 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0969 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0970 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0971 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0972 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0973 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0974 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0975 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0976 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0977 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0978 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0979 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0980 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0981 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0982 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0983 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0984 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0985 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0986 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0987 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0988 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0989 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0990 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0991 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0992 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0993 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0994 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0995 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0996 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0997 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0998 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0999 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1000 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1001 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1002 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1003 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1004 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1005 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1006 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1007 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1008 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1009 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1010 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1011 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1012 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1013 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1014 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1015 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1016 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1017 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1018 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1019 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1020 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1021 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1022 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1023 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1024 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1025 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1026 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1027 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1028 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1029 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1030 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1031 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1032 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1033 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1034 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1035 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1036 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1037 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1038 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1039 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1040 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1041 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1042 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1043 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1044 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1045 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1046 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1047 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1048 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1049 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1050 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1051 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1052 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1053 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1054 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1055 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1056 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1057 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1058 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1059 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1060 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1061 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1062 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1063 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1064 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1065 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1066 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1067 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1068 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1069 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1070 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1071 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1072 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1073 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1074 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1075 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1076 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1077 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1078 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1079 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1080 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1081 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1082 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1083 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1084 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1085 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1086 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1087 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1088 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1089 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1090 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1091 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1092 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1093 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1094 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1095 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1096 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1097 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1098 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1099 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1100 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1101 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1102 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1103 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1104 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1105 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1106 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1107 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1108 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1109 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1110 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1111 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1112 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1113 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1114 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1115 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1116 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1117 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1118 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1119 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1120 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1121 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1122 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1123 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1124 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1125 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1126 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1127 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1128 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1129 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1130 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1131 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1132 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1133 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1134 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1135 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1136 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1137 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1138 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1139 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1140 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1141 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1142 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1143 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1144 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1145 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1146 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1147 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1148 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1149 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1150 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1151 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1152 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1153 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1154 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1155 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1156 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1157 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1158 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1159 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1160 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1161 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1162 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1163 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1164 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1165 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1166 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1167 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1168 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1169 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1170 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1171 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1172 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1173 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1174 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1175 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1176 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1177 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1178 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1179 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1180 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1181 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1182 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1183 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1184 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1185 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1186 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1187 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1188 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1189 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1190 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1191 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1192 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1193 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1194 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1195 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1196 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1197 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1198 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1199 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1200 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1201 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1202 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1203 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1204 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1205 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1206 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1207 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1208 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1209 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1210 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1211 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1212 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1213 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1214 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1215 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1216 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1217 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1218 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1219 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1220 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1221 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1222 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1223 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1224 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1225 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1226 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1227 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1228 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1229 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1230 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1231 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1232 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1233 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1234 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1235 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1236 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1237 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1238 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1239 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1240 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1241 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1242 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1243 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1244 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1245 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1246 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1247 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1248 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1249 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1250 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1251 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1252 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1253 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1254 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1255 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1256 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1257 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1258 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1259 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1260 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1261 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1262 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1263 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1264 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1265 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1266 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1267 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1268 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1269 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1270 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1271 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1272 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1273 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1274 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1275 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1276 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1277 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1278 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1279 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1280 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1281 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1282 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1283 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1284 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1285 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1286 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1287 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1288 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1289 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1290 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1291 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1292 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1293 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1294 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1295 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1296 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1297 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1298 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1299 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1300 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1301 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1302 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1303 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1304 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1305 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1306 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1307 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1308 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1309 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1310 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1311 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1312 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1313 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1314 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1315 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1316 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1317 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1318 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1319 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1320 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1321 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1322 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1323 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1324 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1325 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1326 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1327 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1328 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1329 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1330 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1331 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1332 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1333 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1334 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1335 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1336 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1337 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1338 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1339 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1340 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1341 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1342 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1343 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1344 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1345 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1346 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1347 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1348 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1349 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1350 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1351 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1352 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1353 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1354 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1355 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1356 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1357 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1358 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1359 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1360 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1361 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1362 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1363 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1364 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1365 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1366 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1367 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1368 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1369 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1370 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1371 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1372 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1373 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1374 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1375 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1376 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1377 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1378 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1379 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1380 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1381 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1382 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1383 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1384 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1385 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1386 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1387 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1388 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1389 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1390 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1391 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1392 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1393 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1394 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1395 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1396 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1397 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1398 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1399 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1400 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1401 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1402 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1403 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1404 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1405 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1406 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1407 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1408 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1409 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1410 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1411 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1412 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1413 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1414 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1415 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1416 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1417 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1418 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1419 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1420 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1421 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1422 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1423 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1424 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1425 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1426 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1427 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1428 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1429 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1430 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1431 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1432 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1433 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1434 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1435 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1436 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1437 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1438 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1439 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1440 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1441 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1442 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1443 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1444 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1445 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1446 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1447 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1448 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1449 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1450 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1451 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1452 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1453 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1454 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1455 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1456 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1457 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1458 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1459 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1460 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1461 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1462 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1463 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1464 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1465 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1466 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1467 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1468 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1469 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1470 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1471 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1472 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1473 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1474 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1475 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1476 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1477 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1478 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1479 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1480 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1481 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1482 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1483 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1484 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1485 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1486 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1487 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1488 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1489 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1490 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1491 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1492 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1493 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1494 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1495 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1496 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1497 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1498 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1499 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1500 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1501 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1502 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1503 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1504 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1505 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1506 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1507 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1508 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1509 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1510 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1511 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1512 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1513 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1514 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1515 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1516 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1517 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1518 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1519 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1520 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1521 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1522 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1523 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1524 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1525 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1526 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1527 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1528 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1529 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1530 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1531 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1532 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1533 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1534 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1535 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1536 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1537 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1538 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1539 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1540 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1541 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1542 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1543 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1544 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1545 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1546 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1547 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1548 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1549 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1550 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1551 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1552 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1553 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1554 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1555 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1556 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1557 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1558 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1559 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1560 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1561 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1562 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1563 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1564 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1565 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1566 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1567 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1568 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1569 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1570 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1571 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1572 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1573 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1574 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1575 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1576 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1577 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1578 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1579 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1580 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1581 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1582 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1583 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1584 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1585 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1586 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1587 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1588 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1589 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1590 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1591 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1592 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1593 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1594 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1595 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1596 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1597 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1598 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1599 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1600 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1601 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1602 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1603 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1604 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1605 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1606 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1607 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1608 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1609 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1610 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1611 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1612 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1613 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1614 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1615 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1616 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1617 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1618 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1619 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1620 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1621 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1622 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1623 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1624 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1625 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1626 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1627 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1628 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1629 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1630 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1631 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1632 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1633 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1634 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1635 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1636 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1637 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1638 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1639 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1640 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1641 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1642 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1643 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1644 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1645 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1646 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1647 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1648 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1649 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1650 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1651 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1652 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1653 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1654 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1655 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1656 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1657 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1658 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1659 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1660 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1661 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1662 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1663 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1664 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1665 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1666 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1667 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1668 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1669 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1670 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1671 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1672 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1673 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1674 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1675 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1676 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1677 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1678 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1679 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1680 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1681 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1682 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1683 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1684 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1685 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1686 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1687 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1688 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1689 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1690 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1691 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1692 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1693 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1694 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1695 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1696 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1697 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1698 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1699 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1700 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1701 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1702 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1703 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1704 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1705 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1706 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1707 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1708 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1709 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1710 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1711 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1712 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1713 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1714 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1715 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1716 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1717 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1718 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1719 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1720 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1721 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1722 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1723 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1724 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1725 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1726 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1727 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1728 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1729 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1730 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1731 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1732 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1733 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1734 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1735 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1736 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1737 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1738 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1739 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1740 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1741 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1742 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1743 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1744 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1745 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1746 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1747 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1748 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1749 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1750 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1751 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1752 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1753 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1754 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1755 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1756 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1757 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1758 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1759 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1760 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1761 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1762 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1763 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1764 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1765 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1766 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1767 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1768 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1769 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1770 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1771 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1772 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1773 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1774 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1775 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1776 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1777 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1778 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1779 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1780 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1781 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1782 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1783 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1784 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1785 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1786 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1787 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1788 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1789 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1790 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1791 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1792 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1793 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1794 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1795 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1796 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1797 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1798 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1799 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1800 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1801 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1802 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1803 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1804 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1805 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1806 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1807 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1808 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1809 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1810 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1811 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1812 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1813 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1814 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1815 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1816 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1817 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1818 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1819 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1820 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1821 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1822 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1823 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1824 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1825 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1826 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1827 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1828 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1829 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1830 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1831 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1832 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1833 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1834 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1835 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1836 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1837 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1838 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1839 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1840 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1841 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1842 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1843 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1844 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1845 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1846 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1847 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1848 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1849 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1850 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1851 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1852 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1853 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1854 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1855 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1856 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1857 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1858 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1859 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1860 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1861 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1862 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1863 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1864 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1865 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1866 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1867 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1868 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1869 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1870 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1871 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1872 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1873 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1874 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1875 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1876 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1877 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1878 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1879 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1880 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1881 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1882 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1883 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1884 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1885 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1886 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1887 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1888 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1889 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1890 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1891 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1892 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1893 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1894 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1895 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1896 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1897 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1898 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1899 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1900 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1901 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1902 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1903 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1904 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1905 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1906 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1907 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1908 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1909 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1910 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1911 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1912 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1913 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1914 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1915 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1916 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1917 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1918 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1919 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1920 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1921 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1922 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1923 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1924 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1925 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1926 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1927 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1928 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1929 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1930 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1931 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1932 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1933 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1934 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1935 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1936 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1937 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1938 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1939 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1940 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1941 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1942 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1943 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1944 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1945 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1946 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1947 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1948 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1949 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1950 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1951 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1952 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1953 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1954 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1955 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1956 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1957 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1958 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1959 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1960 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1961 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1962 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1963 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1964 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1965 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1966 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1967 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1968 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1969 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1970 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1971 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1972 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1973 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1974 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1975 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1976 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1977 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1978 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1979 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1980 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1981 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1982 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1983 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1984 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1985 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1986 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1987 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1988 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1989 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1990 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1991 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1992 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1993 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1994 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1995 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1996 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1997 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1998 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1999 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2000 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2001 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2002 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2003 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2004 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2005 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2006 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2007 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2008 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2009 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2010 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2011 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2012 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2013 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2014 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2015 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2016 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2017 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2018 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2019 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2020 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2021 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2022 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2023 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2024 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2025 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2026 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2027 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2028 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2029 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2030 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2031 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2032 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2033 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2034 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2035 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2036 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2037 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2038 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2039 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2040 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2041 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2042 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2043 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2044 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2045 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2046 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2047 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2048 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2049 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2050 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2051 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2052 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2053 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2054 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2055 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2056 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2057 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2058 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2059 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2060 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2061 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2062 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2063 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2064 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2065 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2066 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2067 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2068 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2069 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2070 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2071 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2072 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2073 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2074 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2075 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2076 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2077 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2078 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2079 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2080 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2081 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2082 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2083 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2084 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2085 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2086 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2087 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2088 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2089 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2090 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2091 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2092 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2093 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2094 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2095 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2096 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2097 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2098 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2099 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2100 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2101 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2102 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2103 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2104 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2105 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2106 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2107 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2108 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2109 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2110 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2111 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2112 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2113 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2114 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2115 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2116 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2117 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2118 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2119 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2120 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2121 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2122 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2123 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2124 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2125 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2126 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2127 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2128 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2129 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2130 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2131 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2132 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2133 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2134 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2135 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2136 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2137 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2138 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2139 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2140 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2141 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2142 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2143 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2144 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2145 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2146 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2147 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2148 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2149 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2150 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2151 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2152 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2153 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2154 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2155 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2156 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2157 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2158 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2159 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2160 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2161 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2162 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2163 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2164 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2165 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2166 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2167 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2168 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2169 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2170 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2171 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2172 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2173 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2174 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2175 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2176 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2177 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2178 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2179 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2180 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2181 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2182 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2183 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2184 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2185 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2186 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2187 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2188 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2189 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2190 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2191 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2192 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2193 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2194 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2195 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2196 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2197 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2198 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2199 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2200 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2201 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2202 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2203 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2204 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2205 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2206 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2207 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2208 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2209 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2210 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2211 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2212 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2213 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2214 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2215 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2216 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2217 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2218 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2219 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2220 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2221 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2222 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2223 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2224 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2225 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2226 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2227 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2228 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2229 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2230 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2231 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2232 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2233 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2234 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2235 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2236 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2237 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2238 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2239 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2240 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2241 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2242 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2243 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2244 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2245 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2246 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2247 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2248 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2249 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2250 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2251 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2252 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2253 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2254 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2255 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2256 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2257 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2258 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2259 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2260 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2261 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2262 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2263 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2264 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2265 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2266 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2267 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2268 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2269 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2270 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2271 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2272 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2273 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2274 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2275 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2276 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2277 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2278 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2279 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2280 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2281 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2282 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2283 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2284 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2285 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2286 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2287 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2288 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2289 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2290 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2291 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2292 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2293 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2294 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2295 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2296 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2297 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2298 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2299 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2300 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2301 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2302 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2303 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2304 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2305 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2306 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2307 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2308 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2309 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2310 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2311 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2312 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2313 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2314 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2315 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2316 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2317 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2318 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2319 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2320 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2321 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2322 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2323 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2324 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2325 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2326 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2327 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2328 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2329 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2330 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2331 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2332 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2333 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2334 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2335 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2336 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2337 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2338 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2339 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2340 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2341 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2342 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2343 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2344 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2345 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2346 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2347 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2348 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2349 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2350 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2351 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2352 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2353 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2354 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2355 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2356 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2357 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2358 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2359 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2360 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2361 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2362 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2363 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2364 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2365 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2366 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2367 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2368 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2369 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2370 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2371 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2372 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2373 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2374 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2375 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2376 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2377 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2378 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2379 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2380 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2381 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2382 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2383 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2384 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2385 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2386 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2387 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2388 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2389 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2390 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2391 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2392 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2393 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2394 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2395 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2396 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2397 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2398 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2399 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2400 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2401 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2402 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2403 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2404 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2405 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2406 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2407 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2408 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2409 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2410 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2411 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2412 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2413 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2414 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2415 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2416 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2417 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2418 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2419 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2420 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2421 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2422 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2423 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2424 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2425 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2426 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2427 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2428 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2429 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2430 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2431 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2432 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2433 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2434 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2435 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2436 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2437 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2438 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2439 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2440 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2441 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2442 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2443 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2444 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2445 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2446 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2447 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2448 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2449 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2450 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2451 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2452 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2453 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2454 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2455 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2456 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2457 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2458 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2459 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2460 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2461 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2462 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2463 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2464 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2465 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2466 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2467 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2468 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2469 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2470 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2471 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2472 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2473 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2474 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2475 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2476 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2477 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2478 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2479 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2480 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2481 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2482 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2483 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2484 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2485 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2486 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2487 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2488 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2489 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2490 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2491 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2492 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2493 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2494 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2495 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2496 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2497 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2498 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2499 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2500 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2501 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2502 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2503 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2504 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2505 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2506 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2507 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2508 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2509 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2510 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2511 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2512 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2513 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2514 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2515 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2516 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2517 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2518 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2519 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2520 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2521 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2522 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2523 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2524 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2525 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2526 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2527 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2528 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2529 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2530 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2531 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2532 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2533 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2534 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2535 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2536 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2537 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2538 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2539 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2540 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2541 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2542 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2543 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2544 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2545 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2546 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2547 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2548 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2549 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2550 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2551 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2552 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2553 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2554 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2555 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2556 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2557 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2558 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2559 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2560 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2561 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2562 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2563 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2564 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2565 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2566 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2567 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2568 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2569 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2570 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2571 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2572 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2573 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2574 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2575 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2576 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2577 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2578 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2579 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2580 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2581 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2582 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2583 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2584 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2585 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2586 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2587 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2588 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2589 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2590 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2591 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2592 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2593 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2594 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2595 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2596 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2597 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2598 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2599 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2600 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2601 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2602 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2603 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2604 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2605 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2606 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2607 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2608 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2609 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2610 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2611 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2612 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2613 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2614 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2615 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2616 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2617 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2618 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2619 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2620 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2621 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2622 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2623 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2624 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2625 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2626 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2627 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2628 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2629 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2630 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2631 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2632 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2633 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2634 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2635 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2636 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2637 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2638 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2639 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2640 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2641 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2642 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2643 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2644 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2645 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2646 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2647 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2648 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2649 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2650 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2651 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2652 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2653 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2654 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2655 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2656 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2657 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2658 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2659 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2660 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2661 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2662 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2663 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2664 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2665 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2666 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2667 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2668 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2669 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2670 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2671 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2672 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2673 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2674 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2675 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2676 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2677 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2678 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2679 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2680 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2681 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2682 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2683 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2684 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2685 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2686 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2687 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2688 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2689 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2690 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2691 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2692 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2693 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2694 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2695 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2696 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2697 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2698 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2699 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2700 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2701 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2702 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2703 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2704 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2705 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2706 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2707 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2708 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2709 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2710 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2711 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2712 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2713 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2714 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2715 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2716 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2717 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2718 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2719 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2720 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2721 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2722 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2723 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2724 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2725 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2726 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2727 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2728 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2729 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2730 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2731 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2732 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2733 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2734 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2735 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2736 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2737 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2738 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2739 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2740 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2741 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2742 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2743 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2744 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2745 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2746 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2747 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2748 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2749 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2750 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2751 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2752 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2753 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2754 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2755 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2756 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2757 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2758 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2759 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2760 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2761 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2762 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2763 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2764 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2765 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2766 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2767 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2768 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2769 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2770 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2771 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2772 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2773 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2774 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2775 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2776 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2777 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2778 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2779 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2780 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2781 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2782 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2783 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2784 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2785 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2786 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2787 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2788 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2789 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2790 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2791 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2792 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2793 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2794 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2795 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2796 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2797 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2798 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2799 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2800 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2801 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2802 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2803 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2804 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2805 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2806 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2807 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2808 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2809 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2810 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2811 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2812 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2813 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2814 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2815 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2816 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2817 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2818 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2819 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2820 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2821 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2822 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2823 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2824 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2825 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2826 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2827 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2828 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2829 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2830 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2831 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2832 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2833 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2834 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2835 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2836 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2837 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2838 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2839 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2840 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2841 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2842 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2843 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2844 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2845 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2846 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2847 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2848 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2849 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2850 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2851 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2852 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2853 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2854 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2855 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2856 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2857 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2858 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2859 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2860 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2861 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2862 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2863 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2864 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2865 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2866 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2867 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2868 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2869 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2870 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2871 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2872 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2873 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2874 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2875 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2876 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2877 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2878 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2879 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2880 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2881 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2882 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2883 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2884 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2885 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2886 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2887 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2888 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2889 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2890 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2891 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2892 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2893 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2894 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2895 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2896 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2897 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2898 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2899 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2900 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2901 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2902 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2903 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2904 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2905 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2906 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2907 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2908 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2909 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2910 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2911 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2912 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2913 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2914 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2915 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2916 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2917 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2918 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2919 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2920 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2921 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2922 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2923 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2924 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2925 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2926 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2927 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2928 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2929 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2930 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2931 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2932 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2933 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2934 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2935 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2936 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2937 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2938 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2939 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2940 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2941 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2942 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2943 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2944 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2945 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2946 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2947 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2948 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2949 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2950 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2951 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2952 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2953 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2954 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2955 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2956 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2957 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2958 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2959 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2960 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2961 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2962 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2963 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2964 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2965 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2966 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2967 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2968 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2969 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2970 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2971 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2972 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2973 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2974 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2975 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2976 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2977 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2978 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2979 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2980 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2981 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2982 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2983 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2984 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2985 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2986 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2987 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2988 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2989 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2990 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2991 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2992 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2993 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2994 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2995 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2996 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2997 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2998 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2999 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3000 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3001 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3002 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3003 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3004 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3005 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3006 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3007 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3008 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3009 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3010 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3011 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3012 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3013 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3014 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3015 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3016 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3017 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3018 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3019 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3020 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3021 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3022 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3023 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3024 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3025 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3026 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3027 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3028 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3029 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3030 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3031 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3032 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3033 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3034 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3035 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3036 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3037 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3038 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3039 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3040 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3041 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3042 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3043 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3044 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3045 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3046 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3047 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3048 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3049 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3050 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3051 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3052 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3053 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3054 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3055 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3056 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3057 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3058 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3059 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3060 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3061 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3062 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3063 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3064 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3065 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3066 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3067 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3068 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3069 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3070 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3071 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3072 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3073 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3074 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3075 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3076 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3077 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3078 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3079 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3080 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3081 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3082 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3083 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3084 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3085 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3086 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3087 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3088 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3089 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3090 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3091 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3092 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3093 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3094 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3095 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3096 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3097 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3098 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3099 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3100 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3101 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3102 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3103 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3104 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3105 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3106 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3107 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3108 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3109 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3110 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3111 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3112 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3113 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3114 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3115 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3116 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3117 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3118 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3119 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3120 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3121 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3122 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3123 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3124 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3125 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3126 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3127 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3128 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3129 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3130 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3131 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3132 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3133 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3134 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3135 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3136 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3137 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3138 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3139 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3140 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3141 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3142 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3143 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3144 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3145 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3146 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3147 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3148 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3149 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3150 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3151 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3152 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3153 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3154 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3155 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3156 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3157 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3158 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3159 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3160 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3161 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3162 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3163 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3164 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3165 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3166 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3167 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3168 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3169 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3170 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3171 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3172 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3173 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3174 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3175 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3176 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3177 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3178 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3179 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3180 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3181 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3182 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3183 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3184 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3185 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3186 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3187 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3188 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3189 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3190 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3191 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3192 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3193 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3194 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3195 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3196 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3197 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3198 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3199 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3200 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3201 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3202 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3203 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3204 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3205 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3206 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3207 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3208 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3209 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3210 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3211 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3212 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3213 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3214 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3215 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3216 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3217 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3218 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3219 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3220 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3221 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3222 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3223 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3224 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3225 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3226 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3227 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3228 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3229 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3230 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3231 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3232 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3233 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3234 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3235 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3236 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3237 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3238 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3239 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3240 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3241 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3242 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3243 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3244 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3245 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3246 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3247 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3248 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3249 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3250 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3251 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3252 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3253 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3254 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3255 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3256 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3257 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3258 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3259 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3260 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3261 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3262 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3263 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3264 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3265 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3266 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3267 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3268 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3269 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3270 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3271 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3272 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3273 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3274 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3275 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3276 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3277 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3278 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3279 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3280 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3281 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3282 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3283 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3284 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3285 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3286 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3287 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3288 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3289 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3290 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3291 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3292 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3293 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3294 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3295 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3296 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3297 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3298 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3299 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3300 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3301 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3302 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3303 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3304 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3305 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3306 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3307 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3308 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3309 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3310 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3311 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3312 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3313 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3314 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3315 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3316 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3317 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3318 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3319 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3320 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3321 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3322 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3323 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3324 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3325 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3326 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3327 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3328 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3329 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3330 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3331 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3332 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3335 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3336 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3337 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3338 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3339 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3340 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3341 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3342 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3343 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3344 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3345 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3346 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3347 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3348 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3349 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3350 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3351 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3352 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3353 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3354 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3355 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3356 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3357 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3358 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3359 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3360 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3361 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3362 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3363 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3364 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3365 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3366 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3367 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3368 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3369 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3370 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3371 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3372 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3373 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3374 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3375 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3376 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3377 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3378 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3379 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3380 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3381 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3382 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3383 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3384 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3385 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3386 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3387 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3388 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3389 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3390 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3391 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3392 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3393 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3394 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3395 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3396 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3397 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3398 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3399 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3400 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3401 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3402 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3403 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3404 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3405 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3406 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3407 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3408 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3409 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3410 / 3410 | LOSS 0.0013\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0001 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0002 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0003 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0004 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0005 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0006 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0007 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0008 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0009 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0010 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0011 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0012 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0013 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0014 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0015 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0016 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0017 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0018 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0019 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0020 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0021 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0022 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0023 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0024 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0025 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0026 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0027 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0028 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0029 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0030 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0031 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0032 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0033 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0034 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0035 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0036 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0037 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0038 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0039 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0040 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0041 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0042 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0043 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0044 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0045 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0046 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0047 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0048 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0049 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0050 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0051 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0052 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0053 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0054 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0055 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0056 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0057 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0058 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0059 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0060 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0061 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0062 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0063 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0064 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0065 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0066 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0067 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0068 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0069 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0070 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0071 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0072 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0073 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0074 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0075 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0076 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0077 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0078 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0079 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0080 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0081 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0082 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0083 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0084 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0085 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0086 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0087 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0088 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0089 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0090 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0091 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0092 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0093 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0094 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0095 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0096 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0097 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0098 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0099 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0100 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0101 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0102 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0103 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0104 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0105 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0106 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0107 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0108 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0109 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0110 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0111 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0112 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0113 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0114 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0115 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0116 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0117 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0118 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0119 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0120 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0121 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0122 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0123 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0124 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0125 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0126 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0127 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0128 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0129 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0130 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0131 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0132 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0133 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0134 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0135 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0136 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0137 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0138 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0139 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0140 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0141 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0142 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0143 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0144 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0145 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0146 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0147 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0148 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0149 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0150 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0151 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0152 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0153 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0154 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0155 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0156 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0157 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0158 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0159 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0160 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0161 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0162 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0163 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0164 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0165 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0166 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0167 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0168 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0169 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0170 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0171 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0172 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0173 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0174 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0175 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0176 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0177 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0178 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0179 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0180 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0181 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0182 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0183 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0184 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0185 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0186 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0187 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0188 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0189 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0190 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0191 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0192 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0193 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0194 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0195 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0196 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0197 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0198 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0199 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0200 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0201 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0202 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0203 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0204 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0205 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0206 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0207 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0208 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0209 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0210 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0211 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0212 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0213 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0214 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0215 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0216 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0217 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0218 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0219 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0220 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0221 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0222 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0223 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0224 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0225 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0226 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0227 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0228 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0229 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0230 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0231 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0232 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0233 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0234 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0235 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0236 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0237 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0238 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0239 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0240 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0241 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0242 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0243 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0244 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0245 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0246 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0247 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0248 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0249 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0250 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0251 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0252 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0253 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0254 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0255 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0256 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0257 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0258 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0259 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0260 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0261 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0262 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0263 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0264 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0265 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0266 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0267 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0268 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0269 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0270 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0271 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0272 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0273 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0274 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0275 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0276 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0277 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0278 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0279 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0280 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0281 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0282 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0283 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0284 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0285 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0286 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0287 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0288 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0289 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0290 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0291 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0292 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0293 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0294 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0295 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0296 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0297 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0298 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0299 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0300 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0301 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0302 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0303 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0304 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0305 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0306 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0307 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0308 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0309 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0310 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0311 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0312 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0313 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0314 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0315 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0316 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0317 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0318 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0319 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0320 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0321 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0322 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0323 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0324 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0325 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0326 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0327 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0328 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0329 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0330 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0331 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0332 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0333 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0334 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0335 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0336 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0337 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0338 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0339 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0340 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0341 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0342 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0343 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0344 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0345 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0346 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0347 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0348 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0349 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0350 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0351 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0352 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0353 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0354 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0355 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0356 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0357 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0358 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0359 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0360 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0361 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0362 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0363 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0364 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0365 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0366 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0367 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0368 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0369 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0370 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0371 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0372 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0373 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0374 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0375 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0376 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0377 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0378 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0379 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0380 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0381 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0382 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0383 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0384 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0385 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0386 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0387 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0388 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0389 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0390 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0391 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0392 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0393 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0394 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0395 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0396 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0397 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0398 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0399 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0400 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0401 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0402 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0403 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0404 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0405 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0406 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0407 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0408 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0409 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0410 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0411 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0412 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0413 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0414 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0415 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0416 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0417 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0418 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0419 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0420 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0421 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0422 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0423 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0424 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0425 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0426 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0427 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0428 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0429 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0430 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0431 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0432 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0433 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0434 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0435 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0436 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0437 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0438 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0439 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0440 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0441 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0442 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0443 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0444 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0445 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0446 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0447 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0448 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0449 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0450 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0451 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0452 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0453 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0454 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0455 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0456 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0457 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0458 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0459 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0460 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0461 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0462 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0463 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0464 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0465 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0466 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0467 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0468 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0469 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0470 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0471 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0472 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0473 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0474 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0475 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0476 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0477 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0478 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0479 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0480 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0481 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0482 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0483 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0484 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0485 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0486 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0487 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0488 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0489 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0490 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0491 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0492 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0493 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0494 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0495 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0496 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0497 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0498 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0499 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0500 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0501 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0502 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0503 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0504 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0505 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0506 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0507 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0508 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0509 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0510 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0511 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0512 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0513 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0514 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0515 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0516 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0517 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0518 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0519 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0520 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0521 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0522 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0523 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0524 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0525 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0526 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0527 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0528 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0529 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0530 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0531 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0532 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0533 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0534 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0535 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0536 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0537 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0538 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0539 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0540 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0541 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0542 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0543 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0544 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0545 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0546 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0547 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0548 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0549 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0550 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0551 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0552 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0553 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0554 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0555 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0556 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0557 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0558 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0559 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0560 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0561 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0562 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0563 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0564 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0565 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0566 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0567 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0568 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0569 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0570 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0571 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0572 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0573 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0574 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0575 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0576 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0577 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0578 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0579 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0580 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0581 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0582 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0583 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0584 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0585 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0586 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0587 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0588 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0589 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0590 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0591 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0592 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0593 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0594 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0595 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0596 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0597 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0598 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0599 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0600 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0601 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0602 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0603 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0604 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0605 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0606 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0607 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0608 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0609 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0610 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0611 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0612 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0613 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0614 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0615 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0616 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0617 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0618 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0619 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0620 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0621 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0622 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0623 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0624 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0625 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0626 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0627 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0628 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0629 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0630 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0631 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0632 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0633 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0634 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0635 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0636 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0637 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0638 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0639 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0640 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0641 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0642 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0643 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0644 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0645 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0646 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0647 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0648 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0649 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0650 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0651 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0652 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0653 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0654 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0655 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0656 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0657 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0658 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0659 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0660 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0661 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0662 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0663 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0664 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0665 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0666 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0667 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0668 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0669 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0670 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0671 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0672 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0673 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0674 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0675 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0676 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0677 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0678 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0679 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0680 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0681 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0682 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0683 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0684 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0685 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0686 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0687 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0688 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0689 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0690 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0691 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0692 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0693 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0694 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0695 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0696 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0697 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0698 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0699 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0700 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0701 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0702 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0703 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0704 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0705 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0706 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0707 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0708 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0709 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0710 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0711 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0712 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0713 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0714 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0715 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0716 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0717 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0718 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0719 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0720 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0721 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0722 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0723 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0724 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0725 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0726 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0727 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0728 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0729 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0730 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0731 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0732 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0733 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0734 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0735 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0736 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0737 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0738 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0739 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0740 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0741 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0742 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0743 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0744 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0745 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0746 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0747 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0748 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0749 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0750 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0751 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0752 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0753 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0754 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0755 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0756 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0757 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0758 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0759 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0760 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0761 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0762 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0763 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0764 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0765 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0766 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0767 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0768 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0769 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0770 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0771 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0772 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0773 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0774 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0775 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0776 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0777 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0778 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0779 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0780 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0781 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0782 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0783 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0784 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0785 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0786 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0787 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0788 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0789 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0790 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0791 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0792 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0793 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0794 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0795 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0796 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0797 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0798 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0799 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0800 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0801 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0802 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0803 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0804 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0805 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0806 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0807 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0808 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0809 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0810 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0811 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0812 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0813 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0814 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0815 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0816 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0817 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0818 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0819 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0820 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0821 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0822 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0823 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0824 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0825 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0826 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0827 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0828 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0829 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0830 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0831 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0832 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0833 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0834 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0835 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0836 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0837 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0838 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0839 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0840 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0841 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0842 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0843 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0844 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0845 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0846 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0847 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0848 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0849 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0850 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0851 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0852 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0853 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0854 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0855 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0856 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0857 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0858 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0859 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0860 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0861 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0862 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0863 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0864 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0865 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0866 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0867 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0868 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0869 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0870 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0871 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0872 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0873 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0874 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0875 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0876 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0877 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0878 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0879 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0880 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0881 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0882 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0883 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0884 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0885 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0886 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0887 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0888 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0889 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0890 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0891 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0892 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0893 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0894 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0895 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0896 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0897 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0898 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0899 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0900 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0901 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0902 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0903 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0904 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0905 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0906 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0907 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0908 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0909 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0910 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0911 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0912 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0913 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0914 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0915 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0916 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0917 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0918 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0919 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0920 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0921 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0922 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0923 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0924 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0925 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0926 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0927 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0928 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0929 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0930 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0931 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0932 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0933 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0934 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0935 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0936 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0937 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0938 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0939 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0940 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0941 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0942 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0943 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0944 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0945 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0946 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0947 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0948 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0949 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0950 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0951 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0952 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0953 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0954 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0955 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0956 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0957 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0958 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0959 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0960 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0961 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0962 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0963 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0964 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0965 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0966 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0967 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0968 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0969 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0970 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0971 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0972 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0973 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0974 / 0974 | LOSS 0.0020\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0001 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0002 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0003 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0004 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0005 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0006 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0007 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0008 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0009 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0010 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0011 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0012 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0013 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0014 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0015 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0016 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0017 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0018 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0019 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0020 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0021 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0022 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0023 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0024 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0025 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0026 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0027 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0028 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0029 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0030 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0031 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0032 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0033 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0034 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0035 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0036 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0037 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0038 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0039 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0040 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0041 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0042 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0043 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0044 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0045 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0046 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0047 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0048 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0049 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0050 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0051 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0052 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0053 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0054 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0055 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0056 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0057 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0058 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0059 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0060 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0061 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0062 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0063 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0064 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0065 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0066 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0067 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0068 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0069 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0070 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0071 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0072 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0073 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0074 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0075 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0076 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0077 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0078 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0079 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0080 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0081 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0082 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0083 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0084 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0085 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0086 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0087 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0088 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0089 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0090 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0091 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0092 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0093 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0094 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0095 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0096 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0097 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0098 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0099 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0100 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0101 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0102 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0103 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0104 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0105 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0106 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0107 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0108 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0109 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0110 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0111 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0112 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0113 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0114 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0115 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0116 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0117 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0118 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0119 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0120 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0121 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0122 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0123 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0124 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0125 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0126 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0127 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0128 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0129 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0130 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0131 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0132 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0133 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0134 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0135 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0136 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0137 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0138 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0139 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0140 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0141 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0142 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0143 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0144 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0145 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0146 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0147 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0148 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0149 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0150 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0151 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0152 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0153 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0154 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0155 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0156 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0157 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0158 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0159 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0160 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0161 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0162 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0163 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0164 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0165 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0166 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0167 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0168 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0169 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0170 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0171 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0172 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0173 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0174 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0175 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0176 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0177 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0178 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0179 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0180 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0181 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0182 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0183 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0184 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0185 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0186 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0187 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0188 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0189 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0190 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0191 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0192 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0193 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0194 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0195 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0196 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0197 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0198 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0199 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0200 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0201 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0202 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0203 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0204 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0205 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0206 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0207 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0208 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0209 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0210 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0211 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0212 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0213 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0214 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0215 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0216 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0217 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0218 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0219 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0220 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0221 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0222 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0223 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0224 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0225 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0226 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0227 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0228 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0229 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0230 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0231 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0232 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0233 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0234 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0235 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0236 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0237 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0238 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0239 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0240 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0241 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0242 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0243 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0244 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0245 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0246 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0247 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0248 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0249 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0250 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0251 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0252 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0253 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0254 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0255 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0256 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0257 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0258 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0259 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0260 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0261 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0262 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0263 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0264 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0265 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0266 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0267 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0268 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0269 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0270 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0271 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0272 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0273 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0274 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0275 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0276 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0277 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0278 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0279 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0280 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0281 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0282 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0283 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0284 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0285 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0286 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0287 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0288 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0289 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0290 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0291 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0292 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0293 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0294 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0295 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0296 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0297 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0298 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0299 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0300 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0301 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0302 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0303 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0304 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0305 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0306 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0307 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0308 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0309 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0310 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0311 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0312 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0313 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0314 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0315 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0316 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0317 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0318 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0319 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0320 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0321 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0322 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0323 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0324 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0325 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0326 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0327 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0328 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0329 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0330 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0331 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0332 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0335 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0336 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0337 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0338 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0339 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0340 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0341 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0342 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0343 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0344 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0345 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0346 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0347 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0348 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0349 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0350 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0351 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0352 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0353 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0354 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0355 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0356 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0357 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0358 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0359 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0360 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0361 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0362 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0363 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0364 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0365 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0366 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0367 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0368 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0369 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0370 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0371 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0372 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0373 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0374 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0375 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0376 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0377 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0378 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0379 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0380 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0381 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0382 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0383 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0384 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0385 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0386 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0387 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0388 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0389 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0390 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0391 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0392 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0393 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0394 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0395 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0396 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0397 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0398 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0399 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0400 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0401 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0402 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0403 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0404 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0405 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0406 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0407 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0408 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0409 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0410 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0411 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0412 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0413 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0414 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0415 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0416 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0417 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0418 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0419 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0420 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0421 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0422 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0423 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0424 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0425 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0426 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0427 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0428 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0429 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0430 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0431 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0432 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0433 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0434 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0435 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0436 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0437 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0438 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0439 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0440 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0441 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0442 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0443 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0444 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0445 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0446 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0447 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0448 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0449 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0450 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0451 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0452 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0453 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0454 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0455 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0456 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0457 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0458 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0459 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0460 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0461 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0462 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0463 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0464 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0465 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0466 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0467 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0468 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0469 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0470 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0471 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0472 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0473 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0474 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0475 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0476 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0477 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0478 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0479 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0480 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0481 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0482 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0483 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0484 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0485 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0486 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0487 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0488 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0489 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0490 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0491 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0492 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0493 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0494 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0495 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0496 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0497 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0498 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0499 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0500 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0501 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0502 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0503 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0504 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0505 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0506 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0507 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0508 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0509 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0510 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0511 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0512 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0513 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0514 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0515 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0516 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0517 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0518 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0519 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0520 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0521 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0522 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0523 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0524 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0525 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0526 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0527 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0528 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0529 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0530 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0531 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0532 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0533 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0534 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0535 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0536 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0537 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0538 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0539 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0540 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0541 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0542 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0543 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0544 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0545 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0546 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0547 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0548 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0549 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0550 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0551 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0552 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0553 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0554 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0555 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0556 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0557 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0558 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0559 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0560 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0561 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0562 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0563 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0564 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0565 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0566 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0567 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0568 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0569 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0570 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0571 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0572 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0573 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0574 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0575 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0576 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0577 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0578 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0579 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0580 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0581 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0582 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0583 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0584 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0585 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0586 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0587 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0588 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0589 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0590 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0591 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0592 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0593 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0594 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0595 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0596 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0597 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0598 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0599 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0600 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0601 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0602 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0603 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0604 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0605 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0606 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0607 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0608 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0609 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0610 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0611 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0612 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0613 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0614 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0615 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0616 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0617 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0618 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0619 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0620 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0621 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0622 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0623 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0624 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0625 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0626 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0627 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0628 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0629 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0630 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0631 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0632 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0633 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0634 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0635 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0636 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0637 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0638 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0639 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0640 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0641 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0642 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0643 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0644 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0645 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0646 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0647 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0648 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0649 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0650 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0651 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0652 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0653 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0654 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0655 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0656 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0657 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0658 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0659 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0660 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0661 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0662 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0663 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0664 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0665 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0666 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0667 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0668 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0669 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0670 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0671 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0672 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0673 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0674 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0675 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0676 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0677 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0678 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0679 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0680 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0681 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0682 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0683 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0684 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0685 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0686 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0687 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0688 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0689 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0690 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0691 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0692 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0693 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0694 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0695 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0696 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0697 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0698 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0699 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0700 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0701 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0702 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0703 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0704 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0705 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0706 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0707 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0708 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0709 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0710 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0711 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0712 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0713 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0714 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0715 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0716 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0717 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0718 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0719 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0720 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0721 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0722 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0723 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0724 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0725 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0726 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0727 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0728 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0729 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0730 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0731 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0732 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0733 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0734 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0735 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0736 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0737 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0738 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0739 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0740 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0741 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0742 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0743 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0744 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0745 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0746 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0747 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0748 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0749 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0750 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0751 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0752 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0753 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0754 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0755 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0756 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0757 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0758 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0759 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0760 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0761 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0762 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0763 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0764 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0765 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0766 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0767 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0768 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0769 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0770 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0771 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0772 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0773 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0774 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0775 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0776 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0777 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0778 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0779 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0780 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0781 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0782 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0783 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0784 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0785 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0786 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0787 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0788 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0789 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0790 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0791 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0792 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0793 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0794 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0795 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0796 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0797 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0798 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0799 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0800 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0801 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0802 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0803 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0804 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0805 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0806 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0807 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0808 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0809 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0810 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0811 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0812 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0813 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0814 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0815 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0816 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0817 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0818 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0819 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0820 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0821 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0822 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0823 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0824 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0825 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0826 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0827 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0828 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0829 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0830 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0831 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0832 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0833 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0834 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0835 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0836 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0837 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0838 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0839 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0840 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0841 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0842 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0843 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0844 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0845 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0846 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0847 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0848 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0849 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0850 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0851 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0852 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0853 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0854 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0855 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0856 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0857 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0858 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0859 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0860 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0861 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0862 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0863 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0864 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0865 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0866 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0867 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0868 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0869 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0870 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0871 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0872 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0873 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0874 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0875 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0876 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0877 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0878 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0879 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0880 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0881 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0882 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0883 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0884 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0885 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0886 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0887 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0888 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0889 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0890 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0891 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0892 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0893 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0894 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0895 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0896 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0897 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0898 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0899 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0900 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0901 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0902 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0903 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0904 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0905 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0906 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0907 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0908 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0909 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0910 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0911 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0912 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0913 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0914 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0915 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0916 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0917 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0918 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0919 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0920 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0921 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0922 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0923 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0924 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0925 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0926 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0927 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0928 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0929 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0930 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0931 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0932 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0933 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0934 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0935 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0936 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0937 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0938 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0939 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0940 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0941 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0942 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0943 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0944 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0945 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0946 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0947 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0948 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0949 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0950 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0951 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0952 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0953 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0954 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0955 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0956 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0957 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0958 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0959 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0960 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0961 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0962 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0963 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0964 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0965 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0966 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0967 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0968 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0969 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0970 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0971 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0972 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0973 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0974 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0975 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0976 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0977 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0978 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0979 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0980 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0981 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0982 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0983 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0984 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0985 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0986 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0987 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0988 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0989 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0990 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0991 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0992 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0993 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0994 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0995 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0996 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0997 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0998 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0999 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1000 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1001 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1002 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1003 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1004 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1005 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1006 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1007 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1008 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1009 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1010 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1011 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1012 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1013 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1014 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1015 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1016 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1017 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1018 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1019 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1020 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1021 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1022 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1023 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1024 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1025 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1026 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1027 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1028 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1029 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1030 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1031 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1032 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1033 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1034 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1035 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1036 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1037 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1038 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1039 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1040 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1041 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1042 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1043 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1044 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1045 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1046 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1047 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1048 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1049 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1050 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1051 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1052 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1053 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1054 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1055 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1056 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1057 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1058 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1059 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1060 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1061 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1062 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1063 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1064 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1065 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1066 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1067 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1068 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1069 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1070 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1071 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1072 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1073 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1074 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1075 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1076 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1077 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1078 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1079 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1080 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1081 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1082 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1083 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1084 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1085 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1086 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1087 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1088 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1089 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1090 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1091 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1092 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1093 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1094 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1095 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1096 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1097 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1098 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1099 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1100 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1101 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1102 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1103 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1104 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1105 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1106 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1107 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1108 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1109 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1110 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1111 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1112 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1113 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1114 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1115 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1116 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1117 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1118 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1119 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1120 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1121 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1122 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1123 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1124 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1125 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1126 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1127 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1128 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1129 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1130 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1131 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1132 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1133 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1134 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1135 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1136 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1137 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1138 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1139 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1140 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1141 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1142 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1143 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1144 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1145 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1146 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1147 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1148 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1149 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1150 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1151 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1152 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1153 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1154 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1155 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1156 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1157 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1158 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1159 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1160 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1161 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1162 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1163 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1164 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1165 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1166 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1167 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1168 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1169 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1170 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1171 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1172 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1173 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1174 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1175 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1176 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1177 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1178 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1179 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1180 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1181 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1182 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1183 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1184 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1185 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1186 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1187 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1188 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1189 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1190 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1191 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1192 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1193 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1194 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1195 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1196 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1197 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1198 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1199 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1200 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1201 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1202 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1203 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1204 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1205 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1206 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1207 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1208 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1209 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1210 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1211 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1212 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1213 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1214 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1215 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1216 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1217 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1218 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1219 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1220 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1221 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1222 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1223 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1224 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1225 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1226 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1227 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1228 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1229 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1230 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1231 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1232 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1233 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1234 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1235 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1236 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1237 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1238 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1239 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1240 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1241 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1242 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1243 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1244 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1245 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1246 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1247 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1248 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1249 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1250 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1251 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1252 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1253 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1254 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1255 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1256 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1257 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1258 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1259 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1260 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1261 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1262 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1263 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1264 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1265 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1266 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1267 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1268 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1269 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1270 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1271 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1272 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1273 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1274 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1275 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1276 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1277 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1278 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1279 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1280 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1281 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1282 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1283 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1284 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1285 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1286 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1287 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1288 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1289 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1290 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1291 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1292 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1293 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1294 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1295 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1296 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1297 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1298 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1299 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1300 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1301 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1302 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1303 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1304 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1305 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1306 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1307 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1308 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1309 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1310 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1311 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1312 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1313 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1314 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1315 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1316 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1317 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1318 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1319 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1320 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1321 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1322 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1323 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1324 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1325 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1326 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1327 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1328 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1329 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1330 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1331 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1332 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1335 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1336 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1337 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1338 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1339 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1340 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1341 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1342 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1343 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1344 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1345 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1346 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1347 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1348 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1349 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1350 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1351 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1352 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1353 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1354 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1355 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1356 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1357 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1358 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1359 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1360 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1361 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1362 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1363 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1364 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1365 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1366 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1367 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1368 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1369 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1370 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1371 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1372 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1373 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1374 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1375 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1376 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1377 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1378 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1379 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1380 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1381 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1382 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1383 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1384 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1385 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1386 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1387 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1388 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1389 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1390 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1391 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1392 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1393 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1394 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1395 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1396 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1397 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1398 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1399 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1400 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1401 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1402 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1403 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1404 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1405 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1406 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1407 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1408 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1409 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1410 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1411 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1412 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1413 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1414 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1415 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1416 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1417 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1418 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1419 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1420 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1421 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1422 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1423 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1424 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1425 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1426 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1427 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1428 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1429 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1430 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1431 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1432 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1433 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1434 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1435 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1436 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1437 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1438 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1439 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1440 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1441 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1442 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1443 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1444 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1445 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1446 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1447 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1448 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1449 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1450 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1451 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1452 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1453 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1454 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1455 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1456 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1457 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1458 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1459 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1460 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1461 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1462 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1463 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1464 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1465 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1466 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1467 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1468 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1469 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1470 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1471 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1472 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1473 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1474 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1475 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1476 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1477 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1478 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1479 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1480 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1481 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1482 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1483 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1484 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1485 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1486 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1487 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1488 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1489 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1490 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1491 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1492 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1493 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1494 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1495 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1496 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1497 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1498 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1499 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1500 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1501 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1502 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1503 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1504 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1505 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1506 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1507 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1508 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1509 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1510 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1511 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1512 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1513 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1514 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1515 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1516 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1517 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1518 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1519 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1520 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1521 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1522 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1523 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1524 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1525 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1526 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1527 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1528 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1529 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1530 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1531 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1532 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1533 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1534 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1535 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1536 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1537 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1538 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1539 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1540 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1541 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1542 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1543 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1544 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1545 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1546 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1547 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1548 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1549 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1550 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1551 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1552 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1553 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1554 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1555 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1556 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1557 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1558 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1559 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1560 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1561 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1562 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1563 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1564 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1565 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1566 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1567 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1568 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1569 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1570 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1571 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1572 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1573 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1574 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1575 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1576 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1577 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1578 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1579 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1580 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1581 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1582 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1583 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1584 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1585 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1586 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1587 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1588 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1589 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1590 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1591 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1592 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1593 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1594 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1595 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1596 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1597 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1598 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1599 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1600 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1601 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1602 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1603 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1604 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1605 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1606 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1607 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1608 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1609 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1610 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1611 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1612 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1613 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1614 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1615 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1616 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1617 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1618 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1619 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1620 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1621 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1622 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1623 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1624 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1625 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1626 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1627 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1628 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1629 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1630 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1631 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1632 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1633 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1634 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1635 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1636 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1637 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1638 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1639 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1640 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1641 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1642 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1643 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1644 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1645 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1646 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1647 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1648 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1649 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1650 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1651 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1652 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1653 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1654 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1655 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1656 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1657 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1658 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1659 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1660 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1661 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1662 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1663 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1664 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1665 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1666 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1667 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1668 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1669 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1670 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1671 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1672 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1673 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1674 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1675 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1676 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1677 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1678 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1679 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1680 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1681 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1682 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1683 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1684 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1685 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1686 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1687 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1688 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1689 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1690 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1691 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1692 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1693 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1694 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1695 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1696 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1697 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1698 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1699 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1700 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1701 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1702 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1703 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1704 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1705 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1706 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1707 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1708 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1709 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1710 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1711 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1712 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1713 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1714 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1715 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1716 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1717 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1718 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1719 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1720 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1721 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1722 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1723 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1724 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1725 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1726 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1727 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1728 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1729 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1730 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1731 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1732 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1733 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1734 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1735 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1736 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1737 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1738 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1739 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1740 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1741 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1742 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1743 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1744 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1745 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1746 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1747 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1748 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1749 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1750 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1751 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1752 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1753 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1754 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1755 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1756 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1757 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1758 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1759 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1760 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1761 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1762 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1763 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1764 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1765 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1766 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1767 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1768 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1769 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1770 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1771 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1772 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1773 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1774 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1775 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1776 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1777 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1778 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1779 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1780 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1781 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1782 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1783 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1784 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1785 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1786 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1787 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1788 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1789 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1790 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1791 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1792 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1793 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1794 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1795 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1796 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1797 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1798 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1799 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1800 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1801 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1802 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1803 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1804 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1805 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1806 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1807 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1808 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1809 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1810 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1811 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1812 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1813 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1814 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1815 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1816 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1817 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1818 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1819 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1820 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1821 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1822 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1823 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1824 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1825 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1826 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1827 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1828 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1829 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1830 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1831 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1832 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1833 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1834 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1835 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1836 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1837 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1838 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1839 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1840 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1841 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1842 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1843 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1844 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1845 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1846 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1847 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1848 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1849 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1850 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1851 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1852 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1853 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1854 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1855 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1856 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1857 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1858 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1859 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1860 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1861 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1862 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1863 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1864 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1865 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1866 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1867 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1868 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1869 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1870 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1871 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1872 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1873 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1874 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1875 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1876 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1877 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1878 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1879 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1880 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1881 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1882 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1883 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1884 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1885 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1886 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1887 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1888 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1889 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1890 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1891 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1892 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1893 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1894 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1895 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1896 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1897 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1898 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1899 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1900 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1901 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1902 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1903 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1904 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1905 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1906 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1907 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1908 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1909 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1910 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1911 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1912 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1913 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1914 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1915 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1916 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1917 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1918 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1919 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1920 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1921 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1922 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1923 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1924 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1925 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1926 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1927 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1928 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1929 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1930 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1931 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1932 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1933 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1934 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1935 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1936 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1937 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1938 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1939 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1940 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1941 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1942 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1943 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1944 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1945 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1946 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1947 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1948 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1949 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1950 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1951 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1952 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1953 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1954 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1955 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1956 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1957 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1958 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1959 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1960 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1961 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1962 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1963 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1964 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1965 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1966 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1967 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1968 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1969 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1970 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1971 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1972 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1973 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1974 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1975 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1976 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1977 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1978 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1979 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1980 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1981 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1982 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1983 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1984 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1985 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1986 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1987 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1988 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1989 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1990 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1991 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1992 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1993 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1994 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1995 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1996 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1997 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1998 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1999 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2000 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2001 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2002 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2003 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2004 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2005 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2006 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2007 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2008 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2009 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2010 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2011 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2012 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2013 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2014 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2015 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2016 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2017 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2018 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2019 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2020 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2021 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2022 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2023 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2024 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2025 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2026 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2027 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2028 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2029 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2030 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2031 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2032 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2033 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2034 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2035 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2036 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2037 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2038 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2039 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2040 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2041 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2042 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2043 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2044 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2045 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2046 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2047 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2048 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2049 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2050 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2051 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2052 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2053 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2054 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2055 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2056 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2057 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2058 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2059 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2060 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2061 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2062 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2063 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2064 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2065 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2066 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2067 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2068 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2069 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2070 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2071 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2072 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2073 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2074 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2075 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2076 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2077 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2078 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2079 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2080 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2081 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2082 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2083 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2084 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2085 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2086 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2087 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2088 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2089 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2090 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2091 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2092 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2093 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2094 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2095 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2096 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2097 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2098 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2099 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2100 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2101 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2102 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2103 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2104 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2105 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2106 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2107 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2108 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2109 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2110 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2111 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2112 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2113 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2114 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2115 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2116 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2117 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2118 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2119 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2120 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2121 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2122 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2123 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2124 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2125 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2126 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2127 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2128 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2129 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2130 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2131 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2132 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2133 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2134 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2135 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2136 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2137 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2138 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2139 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2140 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2141 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2142 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2143 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2144 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2145 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2146 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2147 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2148 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2149 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2150 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2151 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2152 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2153 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2154 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2155 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2156 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2157 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2158 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2159 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2160 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2161 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2162 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2163 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2164 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2165 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2166 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2167 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2168 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2169 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2170 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2171 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2172 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2173 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2174 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2175 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2176 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2177 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2178 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2179 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2180 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2181 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2182 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2183 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2184 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2185 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2186 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2187 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2188 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2189 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2190 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2191 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2192 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2193 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2194 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2195 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2196 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2197 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2198 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2199 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2200 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2201 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2202 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2203 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2204 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2205 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2206 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2207 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2208 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2209 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2210 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2211 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2212 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2213 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2214 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2215 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2216 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2217 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2218 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2219 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2220 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2221 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2222 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2223 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2224 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2225 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2226 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2227 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2228 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2229 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2230 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2231 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2232 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2233 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2234 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2235 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2236 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2237 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2238 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2239 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2240 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2241 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2242 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2243 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2244 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2245 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2246 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2247 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2248 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2249 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2250 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2251 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2252 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2253 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2254 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2255 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2256 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2257 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2258 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2259 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2260 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2261 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2262 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2263 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2264 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2265 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2266 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2267 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2268 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2269 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2270 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2271 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2272 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2273 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2274 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2275 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2276 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2277 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2278 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2279 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2280 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2281 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2282 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2283 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2284 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2285 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2286 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2287 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2288 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2289 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2290 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2291 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2292 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2293 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2294 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2295 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2296 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2297 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2298 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2299 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2300 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2301 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2302 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2303 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2304 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2305 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2306 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2307 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2308 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2309 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2310 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2311 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2312 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2313 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2314 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2315 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2316 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2317 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2318 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2319 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2320 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2321 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2322 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2323 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2324 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2325 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2326 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2327 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2328 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2329 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2330 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2331 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2332 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2335 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2336 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2337 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2338 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2339 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2340 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2341 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2342 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2343 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2344 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2345 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2346 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2347 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2348 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2349 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2350 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2351 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2352 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2353 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2354 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2355 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2356 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2357 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2358 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2359 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2360 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2361 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2362 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2363 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2364 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2365 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2366 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2367 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2368 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2369 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2370 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2371 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2372 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2373 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2374 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2375 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2376 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2377 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2378 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2379 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2380 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2381 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2382 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2383 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2384 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2385 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2386 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2387 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2388 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2389 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2390 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2391 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2392 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2393 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2394 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2395 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2396 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2397 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2398 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2399 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2400 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2401 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2402 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2403 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2404 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2405 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2406 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2407 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2408 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2409 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2410 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2411 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2412 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2413 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2414 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2415 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2416 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2417 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2418 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2419 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2420 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2421 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2422 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2423 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2424 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2425 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2426 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2427 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2428 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2429 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2430 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2431 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2432 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2433 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2434 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2435 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2436 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2437 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2438 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2439 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2440 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2441 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2442 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2443 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2444 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2445 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2446 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2447 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2448 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2449 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2450 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2451 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2452 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2453 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2454 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2455 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2456 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2457 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2458 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2459 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2460 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2461 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2462 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2463 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2464 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2465 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2466 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2467 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2468 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2469 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2470 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2471 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2472 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2473 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2474 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2475 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2476 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2477 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2478 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2479 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2480 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2481 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2482 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2483 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2484 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2485 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2486 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2487 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2488 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2489 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2490 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2491 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2492 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2493 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2494 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2495 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2496 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2497 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2498 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2499 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2500 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2501 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2502 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2503 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2504 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2505 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2506 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2507 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2508 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2509 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2510 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2511 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2512 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2513 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2514 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2515 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2516 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2517 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2518 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2519 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2520 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2521 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2522 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2523 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2524 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2525 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2526 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2527 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2528 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2529 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2530 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2531 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2532 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2533 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2534 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2535 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2536 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2537 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2538 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2539 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2540 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2541 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2542 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2543 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2544 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2545 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2546 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2547 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2548 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2549 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2550 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2551 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2552 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2553 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2554 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2555 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2556 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2557 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2558 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2559 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2560 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2561 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2562 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2563 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2564 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2565 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2566 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2567 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2568 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2569 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2570 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2571 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2572 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2573 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2574 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2575 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2576 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2577 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2578 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2579 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2580 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2581 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2582 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2583 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2584 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2585 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2586 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2587 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2588 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2589 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2590 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2591 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2592 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2593 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2594 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2595 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2596 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2597 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2598 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2599 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2600 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2601 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2602 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2603 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2604 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2605 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2606 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2607 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2608 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2609 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2610 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2611 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2612 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2613 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2614 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2615 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2616 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2617 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2618 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2619 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2620 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2621 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2622 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2623 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2624 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2625 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2626 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2627 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2628 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2629 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2630 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2631 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2632 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2633 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2634 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2635 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2636 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2637 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2638 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2639 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2640 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2641 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2642 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2643 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2644 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2645 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2646 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2647 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2648 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2649 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2650 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2651 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2652 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2653 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2654 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2655 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2656 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2657 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2658 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2659 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2660 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2661 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2662 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2663 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2664 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2665 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2666 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2667 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2668 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2669 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2670 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2671 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2672 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2673 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2674 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2675 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2676 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2677 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2678 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2679 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2680 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2681 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2682 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2683 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2684 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2685 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2686 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2687 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2688 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2689 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2690 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2691 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2692 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2693 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2694 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2695 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2696 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2697 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2698 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2699 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2700 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2701 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2702 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2703 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2704 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2705 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2706 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2707 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2708 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2709 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2710 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2711 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2712 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2713 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2714 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2715 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2716 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2717 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2718 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2719 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2720 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2721 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2722 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2723 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2724 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2725 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2726 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2727 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2728 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2729 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2730 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2731 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2732 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2733 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2734 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2735 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2736 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2737 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2738 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2739 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2740 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2741 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2742 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2743 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2744 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2745 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2746 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2747 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2748 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2749 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2750 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2751 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2752 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2753 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2754 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2755 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2756 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2757 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2758 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2759 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2760 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2761 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2762 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2763 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2764 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2765 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2766 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2767 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2768 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2769 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2770 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2771 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2772 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2773 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2774 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2775 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2776 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2777 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2778 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2779 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2780 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2781 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2782 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2783 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2784 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2785 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2786 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2787 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2788 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2789 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2790 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2791 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2792 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2793 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2794 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2795 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2796 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2797 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2798 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2799 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2800 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2801 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2802 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2803 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2804 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2805 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2806 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2807 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2808 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2809 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2810 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2811 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2812 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2813 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2814 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2815 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2816 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2817 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2818 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2819 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2820 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2821 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2822 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2823 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2824 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2825 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2826 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2827 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2828 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2829 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2830 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2831 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2832 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2833 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2834 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2835 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2836 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2837 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2838 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2839 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2840 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2841 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2842 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2843 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2844 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2845 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2846 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2847 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2848 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2849 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2850 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2851 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2852 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2853 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2854 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2855 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2856 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2857 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2858 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2859 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2860 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2861 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2862 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2863 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2864 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2865 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2866 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2867 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2868 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2869 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2870 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2871 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2872 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2873 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2874 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2875 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2876 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2877 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2878 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2879 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2880 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2881 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2882 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2883 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2884 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2885 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2886 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2887 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2888 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2889 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2890 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2891 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2892 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2893 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2894 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2895 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2896 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2897 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2898 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2899 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2900 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2901 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2902 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2903 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2904 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2905 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2906 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2907 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2908 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2909 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2910 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2911 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2912 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2913 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2914 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2915 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2916 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2917 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2918 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2919 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2920 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2921 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2922 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2923 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2924 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2925 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2926 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2927 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2928 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2929 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2930 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2931 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2932 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2933 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2934 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2935 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2936 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2937 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2938 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2939 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2940 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2941 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2942 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2943 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2944 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2945 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2946 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2947 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2948 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2949 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2950 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2951 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2952 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2953 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2954 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2955 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2956 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2957 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2958 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2959 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2960 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2961 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2962 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2963 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2964 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2965 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2966 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2967 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2968 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2969 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2970 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2971 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2972 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2973 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2974 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2975 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2976 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2977 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2978 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2979 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2980 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2981 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2982 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2983 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2984 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2985 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2986 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2987 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2988 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2989 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2990 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2991 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2992 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2993 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2994 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2995 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2996 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2997 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2998 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2999 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3000 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3001 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3002 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3003 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3004 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3005 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3006 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3007 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3008 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3009 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3010 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3011 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3012 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3013 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3014 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3015 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3016 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3017 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3018 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3019 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3020 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3021 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3022 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3023 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3024 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3025 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3026 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3027 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3028 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3029 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3030 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3031 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3032 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3033 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3034 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3035 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3036 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3037 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3038 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3039 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3040 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3041 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3042 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3043 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3044 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3045 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3046 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3047 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3048 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3049 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3050 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3051 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3052 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3053 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3054 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3055 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3056 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3057 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3058 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3059 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3060 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3061 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3062 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3063 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3064 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3065 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3066 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3067 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3068 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3069 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3070 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3071 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3072 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3073 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3074 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3075 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3076 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3077 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3078 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3079 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3080 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3081 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3082 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3083 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3084 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3085 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3086 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3087 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3088 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3089 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3090 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3091 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3092 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3093 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3094 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3095 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3096 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3097 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3098 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3099 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3100 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3101 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3102 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3103 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3104 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3105 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3106 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3107 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3108 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3109 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3110 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3111 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3112 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3113 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3114 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3115 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3116 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3117 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3118 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3119 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3120 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3121 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3122 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3123 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3124 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3125 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3126 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3127 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3128 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3129 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3130 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3131 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3132 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3133 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3134 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3135 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3136 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3137 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3138 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3139 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3140 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3141 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3142 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3143 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3144 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3145 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3146 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3147 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3148 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3149 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3150 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3151 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3152 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3153 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3154 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3155 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3156 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3157 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3158 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3159 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3160 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3161 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3162 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3163 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3164 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3165 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3166 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3167 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3168 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3169 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3170 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3171 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3172 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3173 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3174 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3175 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3176 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3177 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3178 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3179 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3180 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3181 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3182 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3183 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3184 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3185 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3186 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3187 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3188 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3189 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3190 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3191 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3192 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3193 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3194 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3195 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3196 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3197 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3198 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3199 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3200 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3201 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3202 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3203 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3204 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3205 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3206 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3207 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3208 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3209 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3210 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3211 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3212 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3213 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3214 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3215 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3216 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3217 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3218 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3219 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3220 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3221 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3222 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3223 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3224 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3225 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3226 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3227 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3228 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3229 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3230 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3231 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3232 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3233 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3234 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3235 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3236 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3237 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3238 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3239 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3240 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3241 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3242 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3243 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3244 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3245 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3246 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3247 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3248 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3249 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3250 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3251 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3252 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3253 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3254 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3255 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3256 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3257 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3258 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3259 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3260 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3261 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3262 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3263 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3264 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3265 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3266 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3267 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3268 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3269 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3270 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3271 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3272 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3273 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3274 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3275 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3276 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3277 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3278 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3279 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3280 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3281 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3282 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3283 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3284 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3285 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3286 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3287 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3288 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3289 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3290 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3291 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3292 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3293 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3294 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3295 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3296 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3297 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3298 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3299 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3300 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3301 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3302 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3303 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3304 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3305 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3306 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3307 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3308 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3309 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3310 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3311 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3312 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3313 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3314 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3315 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3316 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3317 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3318 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3319 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3320 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3321 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3322 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3323 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3324 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3325 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3326 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3327 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3328 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3329 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3330 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3331 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3332 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3335 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3336 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3337 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3338 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3339 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3340 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3341 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3342 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3343 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3344 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3345 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3346 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3347 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3348 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3349 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3350 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3351 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3352 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3353 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3354 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3355 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3356 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3357 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3358 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3359 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3360 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3361 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3362 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3363 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3364 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3365 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3366 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3367 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3368 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3369 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3370 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3371 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3372 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3373 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3374 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3375 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3376 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3377 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3378 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3379 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3380 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3381 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3382 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3383 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3384 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3385 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3386 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3387 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3388 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3389 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3390 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3391 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3392 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3393 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3394 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3395 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3396 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3397 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3398 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3399 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3400 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3401 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3402 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3403 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3404 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3405 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3406 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3407 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3408 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3409 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3410 / 3410 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0001 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0002 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0003 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0004 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0005 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0006 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0007 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0008 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0009 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0010 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0011 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0012 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0013 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0014 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0015 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0016 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0017 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0018 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0019 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0020 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0021 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0022 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0023 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0024 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0025 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0026 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0027 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0028 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0029 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0030 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0031 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0032 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0033 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0034 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0035 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0036 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0037 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0038 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0039 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0040 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0041 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0042 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0043 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0044 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0045 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0046 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0047 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0048 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0049 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0050 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0051 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0052 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0053 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0054 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0055 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0056 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0057 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0058 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0059 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0060 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0061 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0062 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0063 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0064 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0065 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0066 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0067 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0068 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0069 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0070 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0071 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0072 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0073 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0074 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0075 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0076 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0077 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0078 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0079 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0080 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0081 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0082 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0083 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0084 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0085 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0086 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0087 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0088 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0089 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0090 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0091 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0092 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0093 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0094 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0095 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0096 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0097 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0098 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0099 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0100 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0101 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0102 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0103 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0104 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0105 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0106 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0107 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0108 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0109 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0110 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0111 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0112 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0113 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0114 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0115 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0116 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0117 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0118 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0119 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0120 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0121 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0122 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0123 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0124 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0125 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0126 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0127 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0128 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0129 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0130 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0131 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0132 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0133 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0134 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0135 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0136 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0137 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0138 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0139 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0140 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0141 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0142 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0143 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0144 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0145 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0146 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0147 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0148 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0149 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0150 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0151 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0152 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0153 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0154 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0155 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0156 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0157 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0158 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0159 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0160 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0161 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0162 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0163 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0164 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0165 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0166 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0167 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0168 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0169 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0170 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0171 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0172 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0173 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0174 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0175 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0176 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0177 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0178 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0179 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0180 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0181 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0182 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0183 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0184 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0185 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0186 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0187 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0188 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0189 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0190 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0191 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0192 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0193 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0194 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0195 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0196 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0197 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0198 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0199 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0200 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0201 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0202 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0203 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0204 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0205 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0206 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0207 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0208 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0209 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0210 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0211 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0212 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0213 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0214 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0215 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0216 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0217 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0218 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0219 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0220 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0221 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0222 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0223 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0224 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0225 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0226 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0227 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0228 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0229 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0230 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0231 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0232 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0233 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0234 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0235 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0236 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0237 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0238 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0239 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0240 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0241 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0242 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0243 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0244 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0245 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0246 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0247 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0248 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0249 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0250 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0251 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0252 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0253 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0254 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0255 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0256 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0257 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0258 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0259 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0260 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0261 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0262 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0263 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0264 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0265 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0266 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0267 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0268 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0269 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0270 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0271 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0272 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0273 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0274 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0275 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0276 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0277 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0278 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0279 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0280 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0281 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0282 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0283 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0284 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0285 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0286 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0287 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0288 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0289 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0290 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0291 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0292 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0293 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0294 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0295 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0296 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0297 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0298 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0299 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0300 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0301 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0302 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0303 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0304 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0305 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0306 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0307 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0308 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0309 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0310 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0311 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0312 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0313 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0314 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0315 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0316 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0317 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0318 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0319 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0320 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0321 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0322 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0323 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0324 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0325 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0326 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0327 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0328 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0329 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0330 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0331 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0332 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0333 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0334 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0335 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0336 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0337 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0338 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0339 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0340 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0341 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0342 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0343 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0344 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0345 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0346 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0347 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0348 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0349 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0350 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0351 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0352 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0353 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0354 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0355 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0356 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0357 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0358 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0359 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0360 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0361 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0362 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0363 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0364 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0365 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0366 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0367 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0368 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0369 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0370 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0371 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0372 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0373 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0374 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0375 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0376 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0377 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0378 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0379 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0380 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0381 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0382 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0383 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0384 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0385 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0386 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0387 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0388 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0389 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0390 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0391 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0392 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0393 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0394 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0395 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0396 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0397 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0398 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0399 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0400 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0401 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0402 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0403 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0404 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0405 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0406 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0407 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0408 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0409 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0410 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0411 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0412 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0413 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0414 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0415 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0416 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0417 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0418 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0419 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0420 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0421 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0422 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0423 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0424 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0425 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0426 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0427 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0428 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0429 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0430 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0431 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0432 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0433 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0434 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0435 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0436 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0437 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0438 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0439 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0440 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0441 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0442 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0443 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0444 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0445 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0446 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0447 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0448 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0449 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0450 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0451 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0452 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0453 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0454 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0455 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0456 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0457 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0458 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0459 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0460 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0461 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0462 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0463 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0464 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0465 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0466 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0467 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0468 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0469 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0470 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0471 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0472 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0473 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0474 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0475 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0476 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0477 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0478 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0479 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0480 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0481 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0482 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0483 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0484 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0485 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0486 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0487 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0488 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0489 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0490 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0491 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0492 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0493 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0494 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0495 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0496 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0497 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0498 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0499 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0500 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0501 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0502 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0503 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0504 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0505 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0506 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0507 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0508 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0509 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0510 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0511 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0512 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0513 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0514 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0515 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0516 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0517 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0518 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0519 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0520 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0521 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0522 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0523 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0524 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0525 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0526 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0527 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0528 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0529 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0530 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0531 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0532 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0533 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0534 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0535 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0536 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0537 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0538 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0539 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0540 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0541 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0542 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0543 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0544 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0545 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0546 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0547 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0548 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0549 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0550 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0551 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0552 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0553 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0554 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0555 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0556 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0557 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0558 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0559 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0560 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0561 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0562 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0563 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0564 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0565 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0566 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0567 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0568 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0569 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0570 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0571 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0572 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0573 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0574 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0575 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0576 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0577 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0578 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0579 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0580 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0581 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0582 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0583 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0584 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0585 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0586 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0587 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0588 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0589 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0590 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0591 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0592 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0593 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0594 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0595 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0596 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0597 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0598 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0599 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0600 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0601 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0602 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0603 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0604 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0605 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0606 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0607 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0608 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0609 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0610 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0611 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0612 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0613 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0614 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0615 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0616 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0617 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0618 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0619 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0620 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0621 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0622 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0623 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0624 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0625 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0626 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0627 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0628 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0629 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0630 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0631 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0632 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0633 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0634 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0635 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0636 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0637 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0638 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0639 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0640 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0641 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0642 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0643 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0644 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0645 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0646 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0647 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0648 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0649 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0650 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0651 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0652 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0653 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0654 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0655 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0656 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0657 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0658 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0659 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0660 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0661 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0662 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0663 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0664 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0665 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0666 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0667 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0668 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0669 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0670 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0671 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0672 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0673 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0674 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0675 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0676 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0677 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0678 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0679 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0680 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0681 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0682 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0683 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0684 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0685 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0686 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0687 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0688 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0689 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0690 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0691 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0692 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0693 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0694 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0695 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0696 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0697 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0698 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0699 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0700 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0701 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0702 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0703 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0704 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0705 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0706 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0707 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0708 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0709 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0710 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0711 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0712 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0713 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0714 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0715 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0716 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0717 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0718 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0719 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0720 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0721 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0722 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0723 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0724 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0725 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0726 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0727 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0728 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0729 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0730 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0731 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0732 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0733 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0734 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0735 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0736 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0737 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0738 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0739 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0740 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0741 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0742 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0743 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0744 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0745 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0746 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0747 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0748 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0749 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0750 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0751 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0752 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0753 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0754 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0755 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0756 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0757 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0758 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0759 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0760 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0761 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0762 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0763 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0764 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0765 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0766 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0767 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0768 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0769 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0770 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0771 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0772 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0773 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0774 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0775 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0776 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0777 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0778 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0779 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0780 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0781 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0782 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0783 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0784 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0785 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0786 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0787 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0788 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0789 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0790 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0791 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0792 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0793 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0794 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0795 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0796 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0797 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0798 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0799 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0800 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0801 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0802 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0803 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0804 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0805 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0806 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0807 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0808 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0809 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0810 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0811 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0812 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0813 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0814 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0815 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0816 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0817 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0818 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0819 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0820 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0821 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0822 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0823 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0824 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0825 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0826 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0827 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0828 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0829 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0830 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0831 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0832 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0833 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0834 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0835 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0836 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0837 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0838 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0839 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0840 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0841 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0842 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0843 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0844 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0845 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0846 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0847 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0848 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0849 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0850 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0851 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0852 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0853 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0854 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0855 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0856 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0857 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0858 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0859 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0860 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0861 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0862 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0863 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0864 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0865 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0866 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0867 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0868 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0869 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0870 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0871 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0872 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0873 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0874 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0875 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0876 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0877 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0878 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0879 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0880 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0881 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0882 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0883 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0884 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0885 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0886 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0887 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0888 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0889 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0890 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0891 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0892 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0893 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0894 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0895 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0896 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0897 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0898 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0899 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0900 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0901 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0902 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0903 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0904 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0905 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0906 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0907 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0908 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0909 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0910 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0911 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0912 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0913 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0914 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0915 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0916 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0917 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0918 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0919 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0920 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0921 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0922 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0923 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0924 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0925 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0926 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0927 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0928 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0929 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0930 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0931 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0932 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0933 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0934 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0935 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0936 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0937 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0938 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0939 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0940 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0941 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0942 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0943 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0944 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0945 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0946 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0947 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0948 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0949 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0950 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0951 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0952 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0953 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0954 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0955 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0956 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0957 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0958 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0959 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0960 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0961 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0962 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0963 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0964 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0965 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0966 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0967 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0968 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0969 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0970 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0971 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0972 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0973 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0974 / 0974 | LOSS 0.0012\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0001 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0002 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0003 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0016 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0021 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0022 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0023 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0132 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0133 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0134 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0135 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0136 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0137 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0138 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0139 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0140 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0141 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0142 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0143 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0144 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0145 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0146 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0147 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0159 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0160 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0161 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0162 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0163 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0199 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0200 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0201 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0202 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0203 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0204 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0205 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0206 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0207 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0208 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0209 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0210 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0211 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0212 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0213 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0214 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0215 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0216 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0217 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0218 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0219 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0220 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0221 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0222 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0223 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0224 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0225 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0226 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0227 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0228 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0229 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0230 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0231 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0232 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0233 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0234 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0235 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0236 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0237 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0238 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0239 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0240 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0241 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0242 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0243 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0244 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0245 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0246 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0247 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0248 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0249 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0250 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0251 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0252 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0253 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0254 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0255 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0256 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0257 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0258 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0259 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0260 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0261 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0262 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0263 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0264 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0265 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0266 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0267 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0268 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0269 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0270 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0271 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0272 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0273 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0274 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0275 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0276 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0277 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0278 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0279 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0280 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0281 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0282 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0283 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0284 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0285 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0286 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0287 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0288 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0289 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0290 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0291 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0292 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0293 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0294 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0295 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0296 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0297 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0298 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0299 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0300 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0301 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0302 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0303 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0304 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0305 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0306 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0307 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0308 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0309 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0310 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0311 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0312 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0313 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0314 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0315 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0316 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0317 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0318 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0319 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0320 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0321 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0322 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0323 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0324 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0325 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0326 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0327 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0328 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0329 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0330 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0331 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0332 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0333 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0334 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0335 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0336 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0337 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0338 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0339 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0340 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0341 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0342 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0343 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0344 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0345 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0346 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0347 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0348 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0349 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0350 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0351 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0352 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0353 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0354 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0355 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0356 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0357 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0358 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0359 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0360 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0361 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0362 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0363 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0364 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0365 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0366 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0367 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0368 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0369 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0370 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0371 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0372 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0373 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0374 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0375 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0376 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0377 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0378 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0379 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0380 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0381 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0382 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0383 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0384 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0385 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0386 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0387 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0388 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0389 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0390 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0391 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0392 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0393 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0394 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0395 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0396 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0397 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0398 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0399 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0400 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0401 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0402 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0403 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0404 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0405 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0406 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0407 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0408 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0409 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0410 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0411 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0412 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0413 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0414 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0415 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0416 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0417 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0418 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0419 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0420 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0421 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0422 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0423 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0424 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0425 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0426 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0427 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0428 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0429 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0430 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0431 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0432 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0433 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0434 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0435 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0436 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0437 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0438 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0439 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0440 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0441 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0442 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0443 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0444 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0445 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0446 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0447 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0448 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0449 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0450 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0451 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0452 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0453 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0454 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0455 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0456 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0457 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0458 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0459 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0460 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0461 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0462 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0463 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0464 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0465 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0466 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0467 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0468 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0469 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0470 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0471 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0472 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0473 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0474 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0475 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0476 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0477 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0478 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0479 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0480 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0481 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0482 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0483 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0484 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0485 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0486 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0487 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0488 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0489 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0490 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0491 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0492 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0493 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0494 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0495 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0496 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0497 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0498 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0499 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0500 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0501 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0502 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0503 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0504 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0505 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0506 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0507 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0508 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0509 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0510 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0511 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0512 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0513 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0514 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0515 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0516 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0517 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0518 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0519 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0520 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0521 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0522 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0523 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0524 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0525 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0526 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0527 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0528 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0529 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0530 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0531 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0532 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0533 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0534 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0535 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0536 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0537 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0538 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0539 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0540 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0541 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0542 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0543 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0544 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0545 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0546 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0547 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0548 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0549 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0550 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0551 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0552 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0553 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0554 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0555 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0556 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0557 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0558 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0559 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0560 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0561 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0562 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0563 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0564 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0565 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0566 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0567 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0568 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0569 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0570 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0571 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0572 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0573 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0574 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0575 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0576 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0577 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0578 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0579 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0580 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0581 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0582 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0583 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0584 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0585 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0586 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0587 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0588 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0589 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0590 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0591 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0592 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0593 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0594 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0595 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0596 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0597 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0598 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0599 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0600 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0601 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0602 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0603 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0604 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0605 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0606 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0607 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0608 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0609 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0610 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0611 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0612 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0613 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0614 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0615 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0616 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0617 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0618 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0619 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0620 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0621 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0622 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0623 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0624 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0625 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0626 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0627 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0628 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0629 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0630 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0631 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0632 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0633 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0634 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0635 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0636 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0637 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0638 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0639 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0640 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0641 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0642 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0643 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0644 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0645 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0646 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0647 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0648 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0649 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0650 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0651 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0652 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0653 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0654 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0655 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0656 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0657 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0658 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0659 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0660 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0661 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0662 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0663 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0664 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0665 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0666 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0667 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0668 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0669 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0670 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0671 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0672 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0673 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0674 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0675 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0676 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0677 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0678 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0679 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0680 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0681 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0682 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0683 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0684 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0685 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0686 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0687 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0688 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0689 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0690 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0691 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0692 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0693 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0694 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0695 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0696 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0697 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0698 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0699 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0700 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0701 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0702 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0703 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0704 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0705 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0706 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0707 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0708 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0709 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0710 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0711 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0712 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0713 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0714 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0715 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0716 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0717 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0718 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0719 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0720 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0721 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0722 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0723 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0724 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0725 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0726 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0727 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0728 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0729 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0730 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0731 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0732 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0733 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0734 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0735 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0736 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0737 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0738 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0739 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0740 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0741 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0742 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0743 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0744 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0745 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0746 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0747 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0748 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0749 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0750 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0751 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0752 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0753 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0754 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0755 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0756 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0757 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0758 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0759 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0760 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0761 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0762 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0763 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0764 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0765 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0766 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0767 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0768 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0769 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0770 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0771 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0772 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0773 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0774 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0775 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0776 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0777 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0778 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0779 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0780 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0781 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0782 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0783 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0784 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0785 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0786 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0787 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0788 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0789 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0790 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0791 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0792 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0793 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0794 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0795 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0796 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0797 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0798 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0799 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0800 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0801 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0802 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0803 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0804 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0805 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0806 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0807 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0808 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0809 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0810 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0811 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0812 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0813 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0814 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0815 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0816 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0817 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0818 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0819 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0820 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0821 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0822 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0823 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0824 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0825 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0826 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0827 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0828 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0829 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0830 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0831 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0832 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0833 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0834 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0835 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0836 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0837 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0838 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0839 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0840 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0841 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0842 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0843 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0844 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0845 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0846 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0847 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0848 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0849 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0850 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0851 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0852 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0853 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0854 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0855 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0856 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0857 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0858 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0859 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0860 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0861 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0862 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0863 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0864 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0865 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0866 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0867 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0868 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0869 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0870 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0871 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0872 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0873 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0874 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0875 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0876 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0877 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0878 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0879 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0880 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0881 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0882 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0883 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0884 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0885 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0886 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0887 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0888 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0889 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0890 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0891 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0892 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0893 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0894 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0895 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0896 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0897 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0898 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0899 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0900 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0901 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0902 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0903 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0904 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0905 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0906 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0907 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0908 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0909 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0910 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0911 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0912 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0913 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0914 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0915 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0916 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0917 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0918 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0919 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0920 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0921 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0922 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0923 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0924 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0925 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0926 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0927 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0928 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0929 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0930 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0931 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0932 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0933 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0934 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0935 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0936 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0937 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0938 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0939 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0940 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0941 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0942 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0943 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0944 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0945 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0946 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0947 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0948 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0949 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0950 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0951 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0952 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0953 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0954 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0955 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0956 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0957 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0958 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0959 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0960 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0961 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0962 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0963 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0964 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0965 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0966 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0967 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0968 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0969 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0970 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0971 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0972 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0973 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0974 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0975 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0976 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0977 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0978 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0979 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0980 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0981 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0982 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0983 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0984 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0985 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0986 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0987 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0988 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0989 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0990 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0991 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0992 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0993 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0994 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0995 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0996 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0997 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0998 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0999 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1000 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1001 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1002 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1003 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1004 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1005 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1006 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1007 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1008 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1009 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1010 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1011 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1012 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1013 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1014 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1015 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1016 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1017 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1018 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1019 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1020 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1021 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1022 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1023 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1024 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1025 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1026 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1027 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1028 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1029 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1030 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1031 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1032 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1033 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1034 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1035 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1036 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1037 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1038 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1039 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1040 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1041 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1042 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1043 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1044 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1045 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1046 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1047 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1048 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1049 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1050 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1051 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1052 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1053 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1054 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1055 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1056 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1057 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1058 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1059 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1060 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1061 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1062 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1063 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1064 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1065 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1066 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1067 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1068 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1069 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1070 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1071 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1072 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1073 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1074 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1075 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1076 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1077 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1078 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1079 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1080 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1081 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1082 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1083 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1084 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1085 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1086 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1087 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1088 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1089 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1090 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1091 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1092 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1093 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1094 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1095 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1096 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1097 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1098 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1099 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1100 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1101 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1102 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1103 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1104 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1105 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1106 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1107 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1108 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1109 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1110 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1111 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1112 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1113 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1114 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1115 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1116 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1117 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1118 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1119 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1120 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1121 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1122 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1123 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1124 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1125 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1126 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1127 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1128 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1129 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1130 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1131 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1132 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1133 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1134 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1135 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1136 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1137 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1138 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1139 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1140 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1141 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1142 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1143 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1144 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1145 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1146 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1147 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1148 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1149 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1150 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1151 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1152 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1153 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1154 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1155 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1156 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1157 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1158 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1159 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1160 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1161 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1162 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1163 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1164 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1165 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1166 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1167 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1168 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1169 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1170 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1171 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1172 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1173 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1174 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1175 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1176 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1177 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1178 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1179 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1180 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1181 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1182 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1183 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1184 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1185 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1186 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1187 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1188 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1189 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1190 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1191 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1192 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1193 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1194 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1195 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1196 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1197 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1198 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1199 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1200 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1201 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1202 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1203 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1204 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1205 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1206 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1207 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1208 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1209 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1210 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1211 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1212 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1213 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1214 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1215 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1216 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1217 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1218 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1219 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1220 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1221 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1222 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1223 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1224 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1225 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1226 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1227 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1228 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1229 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1230 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1231 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1232 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1233 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1234 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1235 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1236 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1237 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1238 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1239 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1240 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1241 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1242 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1243 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1244 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1245 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1246 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1247 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1248 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1249 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1250 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1251 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1252 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1253 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1254 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1255 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1256 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1257 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1258 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1259 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1260 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1261 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1262 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1263 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1264 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1265 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1266 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1267 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1268 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1269 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1270 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1271 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1272 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1273 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1274 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1275 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1276 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1277 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1278 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1279 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1280 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1281 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1282 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1283 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1284 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1285 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1286 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1287 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1288 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1289 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1290 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1291 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1292 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1293 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1294 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1295 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1296 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1297 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1298 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1299 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1300 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1301 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1302 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1303 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1304 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1305 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1306 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1307 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1308 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1309 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1310 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1311 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1312 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1313 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1314 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1315 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1316 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1317 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1318 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1319 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1320 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1321 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1322 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1323 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1324 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1325 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1326 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1327 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1328 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1329 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1330 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1331 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1332 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1333 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1334 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1335 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1336 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1337 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1338 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1339 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1340 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1341 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1342 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1343 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1344 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1345 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1346 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1347 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1348 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1349 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1350 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1351 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1352 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1353 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1354 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1355 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1356 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1357 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1358 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1359 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1360 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1361 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1362 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1363 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1364 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1365 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1366 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1367 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1368 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1369 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1370 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1371 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1372 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1373 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1374 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1375 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1376 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1377 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1378 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1379 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1380 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1381 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1382 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1383 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1384 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1385 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1386 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1387 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1388 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1389 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1390 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1391 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1392 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1393 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1394 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1395 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1396 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1397 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1398 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1399 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1400 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1401 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1402 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1403 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1404 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1405 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1406 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1407 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1408 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1409 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1410 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1411 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1412 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1413 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1414 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1415 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1416 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1417 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1418 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1419 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1420 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1421 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1422 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1423 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1424 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1425 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1426 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1427 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1428 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1429 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1430 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1431 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1432 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1433 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1434 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1435 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1436 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1437 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1438 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1439 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1440 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1441 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1442 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1443 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1444 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1445 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1446 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1447 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1448 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1449 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1450 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1451 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1452 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1453 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1454 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1455 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1456 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1457 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1458 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1459 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1460 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1461 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1462 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1463 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1464 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1465 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1466 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1467 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1468 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1469 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1470 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1471 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1472 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1473 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1474 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1475 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1476 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1477 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1478 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1479 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1480 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1481 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1482 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1483 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1484 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1485 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1486 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1487 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1488 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1489 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1490 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1491 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1492 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1493 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1494 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1495 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1496 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1497 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1498 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1499 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1500 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1501 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1502 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1503 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1504 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1505 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1506 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1507 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1508 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1509 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1510 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1511 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1512 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1513 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1514 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1515 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1516 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1517 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1518 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1519 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1520 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1521 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1522 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1523 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1524 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1525 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1526 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1527 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1528 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1529 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1530 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1531 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1532 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1533 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1534 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1535 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1536 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1537 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1538 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1539 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1540 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1541 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1542 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1543 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1544 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1545 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1546 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1547 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1548 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1549 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1550 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1551 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1552 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1553 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1554 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1555 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1556 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1557 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1558 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1559 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1560 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1561 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1562 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1563 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1564 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1565 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1566 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1567 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1568 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1569 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1570 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1571 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1572 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1573 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1574 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1575 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1576 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1577 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1578 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1579 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1580 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1581 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1582 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1583 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1584 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1585 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1586 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1587 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1588 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1589 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1590 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1591 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1592 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1593 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1594 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1595 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1596 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1597 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1598 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1599 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1600 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1601 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1602 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1603 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1604 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1605 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1606 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1607 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1608 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1609 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1610 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1611 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1612 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1613 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1614 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1615 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1616 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1617 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1618 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1619 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1620 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1621 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1622 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1623 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1624 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1625 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1626 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1627 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1628 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1629 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1630 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1631 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1632 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1633 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1634 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1635 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1636 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1637 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1638 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1639 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1640 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1641 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1642 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1643 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1644 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1645 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1646 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1647 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1648 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1649 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1650 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1651 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1652 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1653 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1654 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1655 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1656 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1657 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1658 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1659 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1660 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1661 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1662 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1663 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1664 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1665 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1666 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1667 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1668 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1669 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1670 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1671 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1672 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1673 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1674 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1675 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1676 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1677 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1678 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1679 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1680 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1681 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1682 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1683 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1684 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1685 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1686 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1687 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1688 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1689 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1690 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1691 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1692 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1693 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1694 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1695 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1696 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1697 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1698 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1699 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1700 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1701 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1702 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1703 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1704 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1705 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1706 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1707 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1708 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1709 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1710 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1711 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1712 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1713 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1714 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1715 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1716 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1717 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1718 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1719 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1720 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1721 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1722 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1723 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1724 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1725 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1726 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1727 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1728 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1729 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1730 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1731 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1732 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1733 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1734 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1735 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1736 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1737 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1738 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1739 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1740 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1741 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1742 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1743 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1744 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1745 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1746 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1747 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1748 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1749 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1750 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1751 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1752 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1753 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1754 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1755 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1756 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1757 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1758 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1759 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1760 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1761 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1762 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1763 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1764 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1765 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1766 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1767 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1768 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1769 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1770 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1771 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1772 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1773 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1774 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1775 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1776 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1777 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1778 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1779 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1780 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1781 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1782 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1783 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1784 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1785 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1786 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1787 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1788 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1789 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1790 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1791 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1792 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1793 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1794 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1795 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1796 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1797 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1798 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1799 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1800 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1801 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1802 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1803 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1804 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1805 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1806 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1807 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1808 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1809 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1810 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1811 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1812 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1813 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1814 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1815 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1816 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1817 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1818 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1819 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1820 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1821 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1822 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1823 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1824 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1825 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1826 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1827 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1828 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1829 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1830 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1831 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1832 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1833 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1834 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1835 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1836 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1837 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1838 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1839 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1840 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1841 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1842 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1843 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1844 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1845 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1846 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1847 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1848 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1849 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1850 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1851 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1852 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1853 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1854 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1855 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1856 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1857 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1858 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1859 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1860 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1861 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1862 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1863 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1864 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1865 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1866 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1867 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1868 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1869 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1870 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1871 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1872 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1873 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1874 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1875 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1876 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1877 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1878 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1879 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1880 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1881 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1882 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1883 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1884 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1885 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1886 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1887 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1888 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1889 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1890 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1891 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1892 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1893 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1894 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1895 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1896 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1897 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1898 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1899 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1900 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1901 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1902 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1903 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1904 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1905 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1906 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1907 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1908 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1909 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1910 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1911 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1912 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1913 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1914 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1915 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1916 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1917 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1918 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1919 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1920 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1921 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1922 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1923 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1924 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1925 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1926 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1927 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1928 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1929 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1930 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1931 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1932 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1933 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1934 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1935 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1936 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1937 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1938 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1939 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1940 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1941 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1942 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1943 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1944 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1945 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1946 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1947 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1948 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1949 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1950 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1951 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1952 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1953 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1954 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1955 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1956 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1957 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1958 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1959 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1960 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1961 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1962 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1963 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1964 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1965 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1966 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1967 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1968 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1969 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1970 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1971 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1972 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1973 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1974 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1975 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1976 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1977 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1978 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1979 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1980 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1981 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1982 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1983 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1984 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1985 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1986 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1987 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1988 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1989 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1990 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1991 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1992 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1993 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1994 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1995 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1996 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1997 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1998 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1999 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2000 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2001 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2002 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2003 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2004 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2005 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2006 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2007 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2008 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2009 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2010 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2011 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2012 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2013 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2014 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2015 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2016 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2017 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2018 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2019 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2020 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2021 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2022 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2023 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2024 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2025 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2026 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2027 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2028 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2029 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2030 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2031 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2032 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2033 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2034 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2035 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2036 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2037 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2038 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2039 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2040 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2041 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2042 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2043 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2044 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2045 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2046 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2047 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2048 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2049 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2050 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2051 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2052 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2053 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2054 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2055 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2056 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2057 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2058 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2059 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2060 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2061 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2062 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2063 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2064 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2065 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2066 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2067 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2068 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2069 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2070 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2071 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2072 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2073 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2074 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2075 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2076 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2077 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2078 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2079 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2080 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2081 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2082 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2083 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2084 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2085 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2086 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2087 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2088 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2089 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2090 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2091 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2092 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2093 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2094 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2095 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2096 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2097 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2098 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2099 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2100 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2101 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2102 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2103 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2104 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2105 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2106 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2107 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2108 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2109 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2110 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2111 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2112 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2113 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2114 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2115 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2116 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2117 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2118 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2119 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2120 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2121 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2122 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2123 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2124 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2125 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2126 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2127 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2128 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2129 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2130 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2131 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2132 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2133 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2134 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2135 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2136 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2137 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2138 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2139 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2140 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2141 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2142 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2143 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2144 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2145 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2146 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2147 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2148 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2149 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2150 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2151 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2152 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2153 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2154 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2155 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2156 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2157 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2158 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2159 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2160 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2161 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2162 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2163 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2164 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2165 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2166 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2167 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2168 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2169 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2170 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2171 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2172 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2173 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2174 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2175 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2176 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2177 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2178 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2179 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2180 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2181 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2182 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2183 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2184 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2185 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2186 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2187 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2188 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2189 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2190 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2191 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2192 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2193 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2194 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2195 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2196 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2197 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2198 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2199 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2200 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2201 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2202 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2203 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2204 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2205 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2206 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2207 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2208 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2209 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2210 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2211 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2212 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2213 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2214 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2215 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2216 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2217 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2218 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2219 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2220 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2221 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2222 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2223 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2224 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2225 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2226 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2227 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2228 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2229 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2230 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2231 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2232 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2233 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2234 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2235 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2236 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2237 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2238 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2239 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2240 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2241 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2242 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2243 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2244 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2245 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2246 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2247 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2248 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2249 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2250 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2251 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2252 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2253 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2254 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2255 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2256 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2257 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2258 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2259 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2260 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2261 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2262 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2263 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2264 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2265 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2266 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2267 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2268 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2269 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2270 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2271 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2272 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2273 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2274 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2275 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2276 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2277 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2278 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2279 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2280 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2281 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2282 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2283 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2284 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2285 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2286 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2287 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2288 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2289 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2290 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2291 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2292 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2293 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2294 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2295 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2296 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2297 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2298 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2299 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2300 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2301 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2302 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2303 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2304 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2305 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2306 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2307 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2308 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2309 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2310 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2311 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2312 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2313 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2314 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2315 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2316 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2317 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2318 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2319 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2320 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2321 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2322 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2323 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2324 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2325 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2326 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2327 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2328 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2329 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2330 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2331 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2332 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2333 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2334 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2335 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2336 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2337 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2338 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2339 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2340 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2341 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2342 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2343 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2344 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2345 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2346 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2347 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2348 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2349 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2350 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2351 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2352 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2353 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2354 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2355 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2356 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2357 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2358 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2359 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2360 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2361 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2362 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2363 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2364 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2365 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2366 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2367 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2368 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2369 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2370 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2371 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2372 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2373 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2374 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2375 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2376 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2377 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2378 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2379 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2380 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2381 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2382 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2383 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2384 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2385 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2386 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2387 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2388 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2389 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2390 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2391 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2392 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2393 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2394 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2395 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2396 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2397 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2398 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2399 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2400 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2401 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2402 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2403 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2404 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2405 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2406 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2407 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2408 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2409 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2410 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2411 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2412 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2413 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2414 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2415 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2416 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2417 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2418 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2419 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2420 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2421 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2422 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2423 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2424 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2425 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2426 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2427 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2428 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2429 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2430 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2431 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2432 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2433 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2434 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2435 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2436 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2437 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2438 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2439 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2440 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2441 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2442 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2443 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2444 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2445 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2446 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2447 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2448 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2449 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2450 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2451 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2452 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2453 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2454 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2455 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2456 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2457 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2458 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2459 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2460 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2461 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2462 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2463 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2464 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2465 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2466 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2467 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2468 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2469 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2470 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2471 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2472 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2473 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2474 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2475 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2476 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2477 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2478 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2479 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2480 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2481 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2482 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2483 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2484 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2485 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2486 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2487 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2488 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2489 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2490 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2491 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2492 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2493 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2494 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2495 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2496 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2497 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2498 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2499 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2500 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2501 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2502 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2503 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2504 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2505 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2506 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2507 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2508 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2509 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2510 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2511 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2512 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2513 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2514 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2515 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2516 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2517 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2518 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2519 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2520 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2521 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2522 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2523 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2524 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2525 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2526 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2527 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2528 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2529 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2530 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2531 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2532 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2533 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2534 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2535 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2536 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2537 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2538 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2539 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2540 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2541 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2542 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2543 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2544 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2545 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2546 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2547 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2548 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2549 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2550 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2551 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2552 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2553 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2554 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2555 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2556 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2557 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2558 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2559 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2560 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2561 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2562 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2563 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2564 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2565 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2566 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2567 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2568 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2569 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2570 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2571 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2572 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2573 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2574 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2575 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2576 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2577 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2578 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2579 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2580 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2581 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2582 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2583 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2584 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2585 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2586 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2587 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2588 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2589 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2590 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2591 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2592 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2593 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2594 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2595 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2596 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2597 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2598 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2599 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2600 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2601 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2602 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2603 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2604 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2605 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2606 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2607 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2608 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2609 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2610 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2611 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2612 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2613 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2614 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2615 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2616 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2617 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2618 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2619 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2620 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2621 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2622 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2623 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2624 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2625 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2626 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2627 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2628 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2629 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2630 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2631 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2632 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2633 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2634 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2635 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2636 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2637 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2638 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2639 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2640 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2641 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2642 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2643 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2644 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2645 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2646 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2647 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2648 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2649 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2650 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2651 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2652 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2653 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2654 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2655 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2656 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2657 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2658 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2659 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2660 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2661 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2662 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2663 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2664 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2665 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2666 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2667 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2668 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2669 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2670 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2671 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2672 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2673 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2674 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2675 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2676 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2677 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2678 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2679 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2680 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2681 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2682 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2683 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2684 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2685 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2686 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2687 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2688 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2689 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2690 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2691 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2692 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2693 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2694 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2695 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2696 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2697 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2698 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2699 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2700 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2701 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2702 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2703 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2704 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2705 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2706 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2707 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2708 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2709 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2710 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2711 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2712 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2713 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2714 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2715 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2716 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2717 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2718 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2719 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2720 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2721 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2722 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2723 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2724 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2725 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2726 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2727 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2728 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2729 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2730 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2731 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2732 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2733 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2734 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2735 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2736 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2737 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2738 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2739 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2740 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2741 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2742 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2743 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2744 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2745 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2746 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2747 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2748 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2749 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2750 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2751 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2752 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2753 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2754 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2755 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2756 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2757 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2758 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2759 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2760 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2761 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2762 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2763 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2764 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2765 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2766 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2767 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2768 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2769 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2770 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2771 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2772 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2773 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2774 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2775 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2776 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2777 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2778 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2779 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2780 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2781 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2782 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2783 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2784 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2785 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2786 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2787 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2788 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2789 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2790 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2791 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2792 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2793 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2794 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2795 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2796 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2797 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2798 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2799 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2800 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2801 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2802 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2803 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2804 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2805 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2806 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2807 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2808 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2809 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2810 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2811 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2812 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2813 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2814 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2815 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2816 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2817 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2818 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2819 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2820 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2821 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2822 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2823 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2824 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2825 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2826 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2827 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2828 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2829 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2830 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2831 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2832 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2833 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2834 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2835 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2836 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2837 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2838 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2839 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2840 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2841 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2842 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2843 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2844 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2845 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2846 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2847 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2848 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2849 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2850 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2851 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2852 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2853 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2854 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2855 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2856 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2857 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2858 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2859 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2860 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2861 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2862 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2863 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2864 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2865 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2866 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2867 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2868 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2869 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2870 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2871 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2872 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2873 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2874 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2875 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2876 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2877 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2878 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2879 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2880 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2881 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2882 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2883 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2884 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2885 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2886 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2887 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2888 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2889 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2890 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2891 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2892 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2893 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2894 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2895 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2896 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2897 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2898 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2899 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2900 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2901 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2902 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2903 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2904 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2905 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2906 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2907 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2908 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2909 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2910 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2911 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2912 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2913 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2914 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2915 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2916 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2917 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2918 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2919 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2920 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2921 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2922 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2923 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2924 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2925 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2926 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2927 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2928 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2929 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2930 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2931 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2932 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2933 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2934 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2935 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2936 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2937 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2938 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2939 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2940 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2941 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2942 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2943 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2944 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2945 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2946 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2947 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2948 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2949 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2950 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2951 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2952 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2953 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2954 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2955 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2956 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2957 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2958 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2959 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2960 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2961 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2962 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2963 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2964 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2965 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2966 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2967 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2968 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2969 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2970 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2971 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2972 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2973 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2974 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2975 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2976 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2977 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2978 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2979 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2980 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2981 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2982 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2983 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2984 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2985 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2986 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2987 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2988 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2989 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2990 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2991 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2992 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2993 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2994 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2995 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2996 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2997 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2998 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2999 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3000 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3001 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3002 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3003 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3004 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3005 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3006 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3007 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3008 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3009 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3010 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3011 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3012 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3013 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3014 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3015 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3016 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3017 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3018 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3019 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3020 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3021 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3022 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3023 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3024 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3025 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3026 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3027 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3028 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3029 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3030 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3031 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3032 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3033 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3034 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3035 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3036 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3037 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3038 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3039 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3040 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3041 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3042 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3043 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3044 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3045 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3046 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3047 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3048 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3049 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3050 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3051 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3052 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3053 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3054 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3055 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3056 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3057 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3058 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3059 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3060 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3061 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3062 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3063 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3064 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3065 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3066 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3067 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3068 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3069 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3070 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3071 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3072 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3073 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3074 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3075 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3076 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3077 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3078 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3079 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3080 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3081 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3082 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3083 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3084 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3085 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3086 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3087 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3088 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3089 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3090 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3091 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3092 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3093 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3094 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3095 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3096 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3097 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3098 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3099 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3100 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3101 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3102 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3103 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3104 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3105 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3106 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3107 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3108 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3109 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3110 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3111 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3112 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3113 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3114 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3115 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3116 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3117 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3118 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3119 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3120 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3121 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3122 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3123 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3124 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3125 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3126 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3127 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3128 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3129 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3130 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3131 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3132 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3133 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3134 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3135 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3136 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3137 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3138 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3139 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3140 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3141 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3142 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3143 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3144 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3145 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3146 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3147 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3148 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3149 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3150 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3151 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3152 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3153 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3154 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3155 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3156 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3157 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3158 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3159 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3160 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3161 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3162 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3163 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3164 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3165 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3166 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3167 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3168 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3169 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3170 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3171 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3172 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3173 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3174 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3175 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3176 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3177 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3178 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3179 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3180 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3181 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3182 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3183 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3184 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3185 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3186 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3187 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3188 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3189 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3190 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3191 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3192 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3193 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3194 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3195 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3196 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3197 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3198 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3199 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3200 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3201 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3202 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3203 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3204 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3205 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3206 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3207 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3208 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3209 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3210 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3211 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3212 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3213 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3214 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3215 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3216 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3217 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3218 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3219 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3220 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3221 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3222 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3223 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3224 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3225 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3226 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3227 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3228 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3229 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3230 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3231 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3232 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3233 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3234 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3235 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3236 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3237 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3238 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3239 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3240 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3241 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3242 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3243 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3244 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3245 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3246 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3247 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3248 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3249 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3250 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3251 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3252 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3253 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3254 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3255 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3256 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3257 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3258 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3259 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3260 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3261 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3262 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3263 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3264 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3265 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3266 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3267 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3268 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3269 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3270 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3271 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3272 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3273 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3274 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3275 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3276 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3277 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3278 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3279 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3280 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3281 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3282 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3283 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3284 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3285 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3286 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3287 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3288 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3289 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3290 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3291 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3292 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3293 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3294 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3295 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3296 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3297 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3298 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3299 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3300 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3301 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3302 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3303 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3304 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3305 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3306 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3307 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3308 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3309 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3310 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3311 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3312 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3313 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3314 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3315 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3316 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3317 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3318 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3319 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3320 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3321 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3322 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3323 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3324 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3325 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3326 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3327 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3328 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3329 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3330 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3331 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3332 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3333 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3334 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3335 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3336 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3337 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3338 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3339 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3340 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3341 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3342 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3343 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3344 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3345 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3346 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3347 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3348 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3349 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3350 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3351 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3352 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3353 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3354 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3355 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3356 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3357 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3358 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3359 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3360 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3361 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3362 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3363 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3364 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3365 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3366 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3367 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3368 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3369 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3370 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3371 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3372 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3373 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3374 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3375 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3376 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3377 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3378 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3379 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3380 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3381 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3382 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3383 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3384 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3385 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3386 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3387 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3388 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3389 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3390 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3391 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3392 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3393 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3394 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3395 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3396 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3397 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3398 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3399 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3400 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3401 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3402 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3403 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3404 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3405 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3406 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3407 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3408 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3409 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3410 / 3410 | LOSS 0.0010\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0001 / 0974 | LOSS 0.0029\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0002 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0003 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0004 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0005 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0006 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0007 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0008 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0009 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0010 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0011 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0012 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0013 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0014 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0015 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0016 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0017 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0018 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0019 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0020 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0021 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0022 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0023 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0024 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0025 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0026 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0027 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0028 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0029 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0030 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0031 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0032 / 0974 | LOSS 0.0027\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0033 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0034 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0035 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0036 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0037 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0038 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0039 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0040 / 0974 | LOSS 0.0027\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0041 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0042 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0043 / 0974 | LOSS 0.0027\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0044 / 0974 | LOSS 0.0027\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0045 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0046 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0047 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0048 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0049 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0050 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0051 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0052 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0053 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0054 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0055 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0056 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0057 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0058 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0059 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0060 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0061 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0062 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0063 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0064 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0065 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0066 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0067 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0068 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0069 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0070 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0071 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0072 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0073 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0074 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0075 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0076 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0077 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0078 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0079 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0080 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0081 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0082 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0083 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0084 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0085 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0086 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0087 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0088 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0089 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0090 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0091 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0092 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0093 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0094 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0095 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0096 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0097 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0098 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0099 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0100 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0101 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0102 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0103 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0104 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0105 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0106 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0107 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0108 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0109 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0110 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0111 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0112 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0113 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0114 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0115 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0116 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0117 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0118 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0119 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0120 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0121 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0122 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0123 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0124 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0125 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0126 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0127 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0128 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0129 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0130 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0131 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0132 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0133 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0134 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0135 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0136 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0137 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0138 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0139 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0140 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0141 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0142 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0143 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0144 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0145 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0146 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0147 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0148 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0149 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0150 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0151 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0152 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0153 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0154 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0155 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0156 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0157 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0158 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0159 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0160 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0161 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0162 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0163 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0164 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0165 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0166 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0167 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0168 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0169 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0170 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0171 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0172 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0173 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0174 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0175 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0176 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0177 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0178 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0179 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0180 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0181 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0182 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0183 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0184 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0185 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0186 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0187 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0188 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0189 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0190 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0191 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0192 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0193 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0194 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0195 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0196 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0197 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0198 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0199 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0200 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0201 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0202 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0203 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0204 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0205 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0206 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0207 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0208 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0209 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0210 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0211 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0212 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0213 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0214 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0215 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0216 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0217 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0218 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0219 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0220 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0221 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0222 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0223 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0224 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0225 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0226 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0227 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0228 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0229 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0230 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0231 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0232 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0233 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0234 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0235 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0236 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0237 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0238 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0239 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0240 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0241 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0242 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0243 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0244 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0245 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0246 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0247 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0248 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0249 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0250 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0251 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0252 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0253 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0254 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0255 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0256 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0257 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0258 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0259 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0260 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0261 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0262 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0263 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0264 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0265 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0266 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0267 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0268 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0269 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0270 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0271 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0272 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0273 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0274 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0275 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0276 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0277 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0278 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0279 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0280 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0281 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0282 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0283 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0284 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0285 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0286 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0287 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0288 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0289 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0290 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0291 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0292 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0293 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0294 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0295 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0296 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0297 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0298 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0299 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0300 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0301 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0302 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0303 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0304 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0305 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0306 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0307 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0308 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0309 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0310 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0311 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0312 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0313 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0314 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0315 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0316 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0317 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0318 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0319 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0320 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0321 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0322 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0323 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0324 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0325 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0326 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0327 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0328 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0329 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0330 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0331 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0332 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0333 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0334 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0335 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0336 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0337 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0338 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0339 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0340 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0341 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0342 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0343 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0344 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0345 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0346 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0347 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0348 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0349 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0350 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0351 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0352 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0353 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0354 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0355 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0356 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0357 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0358 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0359 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0360 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0361 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0362 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0363 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0364 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0365 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0366 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0367 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0368 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0369 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0370 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0371 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0372 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0373 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0374 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0375 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0376 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0377 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0378 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0379 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0380 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0381 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0382 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0383 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0384 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0385 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0386 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0387 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0388 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0389 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0390 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0391 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0392 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0393 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0394 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0395 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0396 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0397 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0398 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0399 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0400 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0401 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0402 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0403 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0404 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0405 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0406 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0407 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0408 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0409 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0410 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0411 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0412 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0413 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0414 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0415 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0416 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0417 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0418 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0419 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0420 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0421 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0422 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0423 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0424 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0425 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0426 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0427 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0428 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0429 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0430 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0431 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0432 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0433 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0434 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0435 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0436 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0437 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0438 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0439 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0440 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0441 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0442 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0443 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0444 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0445 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0446 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0447 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0448 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0449 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0450 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0451 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0452 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0453 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0454 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0455 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0456 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0457 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0458 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0459 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0460 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0461 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0462 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0463 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0464 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0465 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0466 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0467 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0468 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0469 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0470 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0471 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0472 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0473 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0474 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0475 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0476 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0477 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0478 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0479 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0480 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0481 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0482 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0483 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0484 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0485 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0486 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0487 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0488 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0489 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0490 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0491 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0492 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0493 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0494 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0495 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0496 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0497 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0498 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0499 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0500 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0501 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0502 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0503 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0504 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0505 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0506 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0507 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0508 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0509 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0510 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0511 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0512 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0513 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0514 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0515 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0516 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0517 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0518 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0519 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0520 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0521 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0522 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0523 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0524 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0525 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0526 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0527 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0528 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0529 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0530 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0531 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0532 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0533 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0534 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0535 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0536 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0537 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0538 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0539 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0540 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0541 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0542 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0543 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0544 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0545 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0546 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0547 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0548 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0549 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0550 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0551 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0552 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0553 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0554 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0555 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0556 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0557 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0558 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0559 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0560 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0561 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0562 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0563 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0564 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0565 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0566 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0567 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0568 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0569 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0570 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0571 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0572 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0573 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0574 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0575 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0576 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0577 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0578 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0579 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0580 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0581 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0582 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0583 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0584 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0585 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0586 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0587 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0588 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0589 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0590 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0591 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0592 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0593 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0594 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0595 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0596 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0597 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0598 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0599 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0600 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0601 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0602 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0603 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0604 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0605 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0606 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0607 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0608 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0609 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0610 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0611 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0612 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0613 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0614 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0615 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0616 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0617 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0618 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0619 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0620 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0621 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0622 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0623 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0624 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0625 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0626 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0627 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0628 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0629 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0630 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0631 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0632 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0633 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0634 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0635 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0636 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0637 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0638 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0639 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0640 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0641 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0642 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0643 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0644 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0645 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0646 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0647 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0648 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0649 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0650 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0651 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0652 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0653 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0654 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0655 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0656 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0657 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0658 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0659 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0660 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0661 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0662 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0663 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0664 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0665 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0666 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0667 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0668 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0669 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0670 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0671 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0672 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0673 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0674 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0675 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0676 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0677 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0678 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0679 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0680 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0681 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0682 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0683 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0684 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0685 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0686 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0687 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0688 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0689 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0690 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0691 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0692 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0693 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0694 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0695 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0696 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0697 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0698 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0699 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0700 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0701 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0702 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0703 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0704 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0705 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0706 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0707 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0708 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0709 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0710 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0711 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0712 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0713 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0714 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0715 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0716 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0717 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0718 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0719 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0720 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0721 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0722 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0723 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0724 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0725 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0726 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0727 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0728 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0729 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0730 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0731 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0732 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0733 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0734 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0735 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0736 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0737 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0738 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0739 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0740 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0741 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0742 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0743 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0744 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0745 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0746 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0747 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0748 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0749 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0750 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0751 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0752 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0753 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0754 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0755 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0756 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0757 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0758 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0759 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0760 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0761 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0762 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0763 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0764 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0765 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0766 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0767 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0768 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0769 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0770 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0771 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0772 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0773 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0774 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0775 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0776 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0777 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0778 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0779 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0780 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0781 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0782 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0783 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0784 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0785 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0786 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0787 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0788 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0789 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0790 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0791 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0792 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0793 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0794 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0795 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0796 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0797 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0798 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0799 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0800 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0801 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0802 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0803 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0804 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0805 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0806 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0807 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0808 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0809 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0810 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0811 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0812 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0813 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0814 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0815 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0816 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0817 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0818 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0819 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0820 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0821 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0822 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0823 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0824 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0825 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0826 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0827 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0828 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0829 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0830 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0831 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0832 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0833 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0834 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0835 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0836 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0837 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0838 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0839 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0840 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0841 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0842 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0843 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0844 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0845 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0846 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0847 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0848 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0849 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0850 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0851 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0852 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0853 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0854 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0855 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0856 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0857 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0858 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0859 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0860 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0861 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0862 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0863 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0864 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0865 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0866 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0867 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0868 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0869 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0870 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0871 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0872 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0873 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0874 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0875 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0876 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0877 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0878 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0879 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0880 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0881 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0882 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0883 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0884 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0885 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0886 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0887 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0888 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0889 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0890 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0891 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0892 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0893 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0894 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0895 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0896 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0897 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0898 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0899 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0900 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0901 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0902 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0903 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0904 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0905 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0906 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0907 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0908 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0909 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0910 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0911 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0912 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0913 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0914 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0915 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0916 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0917 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0918 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0919 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0920 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0921 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0922 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0923 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0924 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0925 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0926 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0927 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0928 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0929 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0930 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0931 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0932 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0933 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0934 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0935 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0936 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0937 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0938 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0939 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0940 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0941 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0942 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0943 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0944 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0945 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0946 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0947 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0948 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0949 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0950 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0951 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0952 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0953 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0954 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0955 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0956 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0957 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0958 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0959 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0960 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0961 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0962 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0963 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0964 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0965 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0966 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0967 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0968 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0969 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0970 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0971 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0972 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0973 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0974 / 0974 | LOSS 0.0024\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0001 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0002 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0003 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0004 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0005 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0006 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0007 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0008 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0009 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0010 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0011 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0012 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0013 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0014 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0015 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0016 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0017 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0018 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0019 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0020 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0021 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0022 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0023 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0024 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0025 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0026 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0027 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0028 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0029 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0030 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0031 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0032 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0033 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0034 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0035 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0036 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0037 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0038 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0039 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0040 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0041 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0132 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0133 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0134 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0135 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0136 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0137 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0138 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0139 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0140 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0141 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0142 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0143 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0144 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0145 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0146 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0147 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0159 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0160 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0161 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0162 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0163 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0199 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0200 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0201 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0202 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0203 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0204 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0205 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0206 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0207 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0208 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0209 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0210 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0211 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0212 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0213 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0214 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0215 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0216 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0217 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0218 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0219 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0220 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0221 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0222 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0223 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0224 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0225 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0226 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0227 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0228 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0229 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0230 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0231 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0232 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0233 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0234 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0235 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0236 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0237 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0238 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0239 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0240 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0241 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0242 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0243 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0244 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0245 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0246 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0247 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0248 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0249 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0250 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0251 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0252 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0253 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0254 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0255 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0256 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0257 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0258 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0259 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0260 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0261 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0262 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0263 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0264 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0265 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0266 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0267 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0268 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0269 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0270 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0271 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0272 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0273 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0274 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0275 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0276 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0277 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0278 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0279 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0280 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0281 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0282 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0283 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0284 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0285 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0286 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0287 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0288 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0289 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0290 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0291 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0292 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0293 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0294 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0295 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0296 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0297 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0298 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0299 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0300 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0301 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0302 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0303 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0304 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0305 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0306 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0307 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0308 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0309 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0310 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0311 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0312 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0313 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0314 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0315 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0316 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0317 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0318 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0319 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0320 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0321 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0322 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0323 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0324 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0325 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0326 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0327 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0328 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0329 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0330 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0331 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0332 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0333 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0334 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0335 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0336 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0337 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0338 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0339 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0340 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0341 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0342 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0343 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0344 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0345 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0346 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0347 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0348 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0349 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0350 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0351 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0352 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0353 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0354 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0355 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0356 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0357 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0358 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0359 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0360 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0361 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0362 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0363 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0364 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0365 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0366 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0367 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0368 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0369 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0370 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0371 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0372 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0373 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0374 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0375 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0376 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0377 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0378 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0379 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0380 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0381 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0382 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0383 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0384 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0385 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0386 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0387 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0388 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0389 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0390 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0391 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0392 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0393 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0394 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0395 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0396 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0397 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0398 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0399 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0400 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0401 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0402 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0403 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0404 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0405 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0406 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0407 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0408 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0409 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0410 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0411 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0412 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0413 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0414 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0415 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0416 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0417 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0418 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0419 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0420 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0421 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0422 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0423 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0424 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0425 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0426 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0427 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0428 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0429 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0430 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0431 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0432 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0433 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0434 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0435 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0436 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0437 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0438 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0439 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0440 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0441 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0442 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0443 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0444 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0445 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0446 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0447 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0448 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0449 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0450 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0451 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0452 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0453 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0454 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0455 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0456 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0457 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0458 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0459 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0460 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0461 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0462 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0463 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0464 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0465 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0466 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0467 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0468 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0469 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0470 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0471 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0472 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0473 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0474 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0475 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0476 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0477 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0478 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0479 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0480 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0481 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0482 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0483 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0484 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0485 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0486 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0487 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0488 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0489 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0490 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0491 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0492 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0493 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0494 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0495 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0496 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0497 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0498 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0499 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0500 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0501 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0502 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0503 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0504 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0505 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0506 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0507 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0508 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0509 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0510 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0511 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0512 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0513 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0514 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0515 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0516 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0517 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0518 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0519 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0520 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0521 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0522 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0523 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0524 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0525 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0526 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0527 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0528 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0529 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0530 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0531 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0532 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0533 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0534 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0535 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0536 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0537 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0538 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0539 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0540 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0541 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0542 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0543 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0544 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0545 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0546 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0547 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0548 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0549 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0550 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0551 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0552 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0553 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0554 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0555 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0556 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0557 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0558 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0559 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0560 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0561 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0562 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0563 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0564 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0565 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0566 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0567 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0568 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0569 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0570 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0571 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0572 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0573 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0574 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0575 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0576 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0577 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0578 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0579 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0580 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0581 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0582 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0583 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0584 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0585 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0586 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0587 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0588 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0589 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0590 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0591 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0592 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0593 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0594 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0595 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0596 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0597 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0598 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0599 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0600 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0601 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0602 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0603 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0604 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0605 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0606 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0607 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0608 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0609 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0610 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0611 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0612 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0613 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0614 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0615 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0616 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0617 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0618 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0619 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0620 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0621 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0622 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0623 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0624 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0625 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0626 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0627 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0628 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0629 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0630 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0631 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0632 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0633 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0634 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0635 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0636 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0637 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0638 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0639 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0640 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0641 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0642 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0643 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0644 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0645 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0646 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0647 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0648 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0649 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0650 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0651 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0652 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0653 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0654 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0655 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0656 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0657 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0658 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0659 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0660 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0661 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0662 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0663 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0664 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0665 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0666 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0667 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0668 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0669 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0670 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0671 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0672 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0673 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0674 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0675 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0676 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0677 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0678 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0679 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0680 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0681 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0682 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0683 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0684 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0685 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0686 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0687 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0688 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0689 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0690 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0691 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0692 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0693 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0694 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0695 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0696 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0697 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0698 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0699 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0700 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0701 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0702 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0703 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0704 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0705 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0706 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0707 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0708 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0709 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0710 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0711 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0712 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0713 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0714 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0715 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0716 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0717 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0718 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0719 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0720 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0721 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0722 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0723 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0724 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0725 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0726 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0727 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0728 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0729 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0730 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0731 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0732 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0733 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0734 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0735 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0736 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0737 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0738 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0739 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0740 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0741 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0742 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0743 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0744 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0745 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0746 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0747 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0748 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0749 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0750 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0751 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0752 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0753 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0754 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0755 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0756 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0757 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0758 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0759 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0760 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0761 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0762 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0763 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0764 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0765 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0766 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0767 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0768 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0769 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0770 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0771 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0772 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0773 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0774 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0775 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0776 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0777 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0778 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0779 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0780 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0781 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0782 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0783 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0784 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0785 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0786 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0787 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0788 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0789 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0790 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0791 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0792 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0793 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0794 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0795 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0796 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0797 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0798 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0799 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0800 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0801 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0802 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0803 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0804 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0805 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0806 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0807 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0808 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0809 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0810 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0811 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0812 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0813 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0814 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0815 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0816 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0817 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0818 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0819 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0820 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0821 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0822 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0823 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0824 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0825 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0826 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0827 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0828 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0829 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0830 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0831 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0832 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0833 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0834 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0835 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0836 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0837 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0838 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0839 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0840 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0841 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0842 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0843 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0844 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0845 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0846 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0847 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0848 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0849 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0850 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0851 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0852 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0853 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0854 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0855 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0856 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0857 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0858 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0859 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0860 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0861 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0862 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0863 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0864 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0865 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0866 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0867 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0868 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0869 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0870 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0871 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0872 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0873 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0874 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0875 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0876 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0877 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0878 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0879 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0880 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0881 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0882 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0883 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0884 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0885 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0886 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0887 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0888 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0889 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0890 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0891 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0892 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0893 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0894 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0895 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0896 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0897 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0898 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0899 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0900 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0901 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0902 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0903 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0904 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0905 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0906 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0907 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0908 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0909 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0910 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0911 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0912 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0913 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0914 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0915 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0916 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0917 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0918 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0919 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0920 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0921 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0922 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0923 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0924 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0925 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0926 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0927 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0928 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0929 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0930 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0931 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0932 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0933 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0934 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0935 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0936 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0937 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0938 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0939 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0940 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0941 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0942 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0943 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0944 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0945 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0946 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0947 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0948 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0949 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0950 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0951 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0952 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0953 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0954 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0955 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0956 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0957 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0958 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0959 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0960 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0961 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0962 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0963 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0964 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0965 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0966 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0967 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0968 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0969 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0970 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0971 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0972 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0973 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0974 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0975 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0976 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0977 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0978 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0979 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0980 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0981 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0982 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0983 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0984 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0985 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0986 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0987 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0988 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0989 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0990 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0991 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0992 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0993 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0994 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0995 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0996 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0997 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0998 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0999 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1000 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1001 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1002 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1003 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1004 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1005 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1006 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1007 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1008 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1009 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1010 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1011 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1012 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1013 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1014 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1015 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1016 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1017 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1018 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1019 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1020 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1021 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1022 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1023 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1024 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1025 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1026 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1027 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1028 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1029 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1030 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1031 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1032 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1033 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1034 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1035 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1036 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1037 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1038 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1039 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1040 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1041 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1042 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1043 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1044 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1045 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1046 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1047 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1048 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1049 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1050 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1051 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1052 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1053 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1054 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1055 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1056 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1057 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1058 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1059 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1060 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1061 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1062 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1063 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1064 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1065 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1066 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1067 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1068 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1069 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1070 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1071 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1072 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1073 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1074 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1075 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1076 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1077 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1078 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1079 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1080 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1081 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1082 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1083 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1084 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1085 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1086 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1087 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1088 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1089 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1090 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1091 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1092 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1093 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1094 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1095 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1096 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1097 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1098 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1099 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1100 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1101 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1102 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1103 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1104 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1105 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1106 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1107 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1108 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1109 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1110 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1111 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1112 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1113 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1114 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1115 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1116 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1117 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1118 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1119 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1120 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1121 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1122 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1123 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1124 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1125 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1126 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1127 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1128 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1129 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1130 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1131 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1132 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1133 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1134 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1135 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1136 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1137 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1138 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1139 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1140 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1141 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1142 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1143 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1144 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1145 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1146 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1147 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1148 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1149 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1150 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1151 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1152 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1153 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1154 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1155 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1156 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1157 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1158 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1159 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1160 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1161 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1162 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1163 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1164 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1165 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1166 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1167 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1168 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1169 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1170 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1171 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1172 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1173 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1174 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1175 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1176 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1177 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1178 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1179 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1180 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1181 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1182 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1183 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1184 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1185 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1186 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1187 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1188 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1189 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1190 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1191 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1192 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1193 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1194 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1195 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1196 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1197 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1198 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1199 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1200 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1201 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1202 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1203 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1204 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1205 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1206 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1207 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1208 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1209 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1210 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1211 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1212 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1213 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1214 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1215 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1216 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1217 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1218 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1219 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1220 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1221 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1222 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1223 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1224 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1225 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1226 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1227 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1228 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1229 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1230 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1231 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1232 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1233 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1234 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1235 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1236 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1237 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1238 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1239 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1240 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1241 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1242 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1243 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1244 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1245 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1246 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1247 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1248 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1249 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1250 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1251 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1252 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1253 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1254 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1255 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1256 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1257 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1258 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1259 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1260 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1261 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1262 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1263 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1264 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1265 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1266 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1267 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1268 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1269 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1270 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1271 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1272 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1273 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1274 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1275 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1276 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1277 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1278 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1279 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1280 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1281 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1282 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1283 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1284 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1285 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1286 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1287 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1288 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1289 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1290 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1291 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1292 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1293 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1294 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1295 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1296 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1297 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1298 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1299 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1300 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1301 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1302 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1303 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1304 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1305 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1306 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1307 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1308 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1309 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1310 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1311 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1312 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1313 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1314 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1315 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1316 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1317 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1318 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1319 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1320 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1321 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1322 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1323 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1324 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1325 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1326 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1327 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1328 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1329 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1330 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1331 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1332 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1333 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1334 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1335 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1336 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1337 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1338 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1339 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1340 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1341 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1342 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1343 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1344 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1345 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1346 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1347 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1348 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1349 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1350 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1351 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1352 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1353 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1354 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1355 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1356 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1357 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1358 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1359 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1360 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1361 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1362 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1363 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1364 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1365 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1366 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1367 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1368 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1369 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1370 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1371 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1372 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1373 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1374 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1375 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1376 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1377 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1378 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1379 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1380 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1381 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1382 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1383 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1384 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1385 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1386 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1387 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1388 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1389 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1390 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1391 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1392 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1393 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1394 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1395 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1396 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1397 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1398 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1399 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1400 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1401 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1402 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1403 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1404 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1405 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1406 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1407 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1408 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1409 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1410 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1411 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1412 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1413 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1414 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1415 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1416 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1417 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1418 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1419 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1420 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1421 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1422 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1423 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1424 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1425 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1426 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1427 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1428 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1429 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1430 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1431 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1432 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1433 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1434 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1435 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1436 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1437 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1438 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1439 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1440 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1441 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1442 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1443 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1444 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1445 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1446 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1447 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1448 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1449 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1450 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1451 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1452 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1453 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1454 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1455 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1456 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1457 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1458 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1459 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1460 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1461 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1462 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1463 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1464 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1465 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1466 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1467 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1468 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1469 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1470 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1471 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1472 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1473 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1474 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1475 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1476 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1477 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1478 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1479 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1480 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1481 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1482 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1483 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1484 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1485 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1486 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1487 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1488 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1489 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1490 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1491 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1492 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1493 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1494 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1495 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1496 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1497 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1498 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1499 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1500 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1501 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1502 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1503 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1504 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1505 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1506 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1507 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1508 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1509 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1510 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1511 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1512 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1513 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1514 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1515 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1516 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1517 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1518 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1519 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1520 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1521 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1522 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1523 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1524 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1525 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1526 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1527 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1528 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1529 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1530 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1531 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1532 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1533 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1534 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1535 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1536 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1537 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1538 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1539 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1540 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1541 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1542 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1543 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1544 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1545 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1546 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1547 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1548 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1549 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1550 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1551 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1552 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1553 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1554 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1555 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1556 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1557 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1558 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1559 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1560 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1561 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1562 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1563 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1564 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1565 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1566 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1567 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1568 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1569 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1570 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1571 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1572 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1573 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1574 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1575 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1576 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1577 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1578 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1579 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1580 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1581 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1582 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1583 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1584 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1585 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1586 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1587 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1588 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1589 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1590 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1591 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1592 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1593 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1594 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1595 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1596 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1597 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1598 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1599 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1600 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1601 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1602 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1603 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1604 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1605 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1606 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1607 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1608 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1609 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1610 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1611 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1612 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1613 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1614 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1615 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1616 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1617 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1618 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1619 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1620 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1621 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1622 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1623 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1624 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1625 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1626 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1627 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1628 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1629 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1630 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1631 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1632 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1633 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1634 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1635 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1636 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1637 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1638 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1639 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1640 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1641 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1642 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1643 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1644 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1645 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1646 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1647 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1648 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1649 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1650 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1651 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1652 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1653 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1654 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1655 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1656 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1657 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1658 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1659 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1660 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1661 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1662 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1663 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1664 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1665 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1666 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1667 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1668 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1669 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1670 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1671 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1672 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1673 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1674 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1675 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1676 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1677 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1678 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1679 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1680 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1681 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1682 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1683 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1684 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1685 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1686 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1687 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1688 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1689 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1690 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1691 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1692 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1693 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1694 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1695 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1696 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1697 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1698 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1699 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1700 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1701 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1702 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1703 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1704 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1705 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1706 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1707 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1708 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1709 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1710 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1711 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1712 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1713 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1714 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1715 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1716 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1717 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1718 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1719 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1720 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1721 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1722 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1723 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1724 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1725 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1726 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1727 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1728 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1729 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1730 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1731 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1732 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1733 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1734 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1735 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1736 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1737 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1738 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1739 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1740 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1741 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1742 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1743 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1744 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1745 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1746 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1747 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1748 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1749 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1750 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1751 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1752 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1753 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1754 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1755 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1756 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1757 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1758 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1759 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1760 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1761 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1762 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1763 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1764 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1765 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1766 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1767 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1768 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1769 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1770 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1771 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1772 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1773 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1774 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1775 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1776 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1777 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1778 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1779 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1780 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1781 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1782 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1783 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1784 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1785 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1786 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1787 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1788 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1789 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1790 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1791 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1792 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1793 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1794 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1795 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1796 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1797 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1798 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1799 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1800 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1801 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1802 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1803 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1804 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1805 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1806 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1807 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1808 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1809 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1810 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1811 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1812 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1813 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1814 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1815 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1816 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1817 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1818 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1819 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1820 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1821 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1822 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1823 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1824 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1825 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1826 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1827 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1828 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1829 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1830 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1831 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1832 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1833 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1834 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1835 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1836 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1837 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1838 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1839 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1840 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1841 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1842 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1843 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1844 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1845 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1846 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1847 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1848 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1849 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1850 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1851 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1852 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1853 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1854 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1855 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1856 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1857 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1858 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1859 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1860 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1861 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1862 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1863 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1864 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1865 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1866 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1867 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1868 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1869 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1870 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1871 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1872 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1873 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1874 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1875 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1876 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1877 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1878 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1879 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1880 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1881 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1882 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1883 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1884 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1885 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1886 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1887 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1888 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1889 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1890 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1891 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1892 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1893 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1894 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1895 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1896 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1897 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1898 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1899 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1900 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1901 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1902 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1903 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1904 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1905 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1906 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1907 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1908 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1909 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1910 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1911 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1912 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1913 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1914 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1915 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1916 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1917 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1918 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1919 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1920 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1921 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1922 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1923 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1924 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1925 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1926 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1927 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1928 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1929 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1930 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1931 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1932 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1933 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1934 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1935 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1936 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1937 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1938 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1939 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1940 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1941 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1942 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1943 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1944 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1945 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1946 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1947 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1948 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1949 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1950 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1951 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1952 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1953 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1954 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1955 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1956 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1957 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1958 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1959 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1960 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1961 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1962 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1963 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1964 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1965 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1966 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1967 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1968 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1969 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1970 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1971 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1972 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1973 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1974 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1975 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1976 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1977 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1978 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1979 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1980 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1981 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1982 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1983 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1984 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1985 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1986 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1987 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1988 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1989 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1990 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1991 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1992 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1993 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1994 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1995 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1996 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1997 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1998 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1999 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2000 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2002 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2003 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2016 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2021 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2022 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2023 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2132 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2133 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2134 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2135 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2136 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2137 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2138 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2139 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2140 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2141 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2142 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2143 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2144 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2145 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2146 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2147 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2159 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2160 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2161 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2162 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2163 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2199 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2200 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2201 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2202 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2203 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2204 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2205 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2206 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2207 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2208 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2209 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2210 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2211 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2212 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2213 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2214 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2215 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2216 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2217 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2218 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2219 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2220 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2221 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2222 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2223 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2224 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2225 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2226 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2227 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2228 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2229 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2230 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2231 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2232 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2233 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2234 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2235 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2236 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2237 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2238 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2239 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2240 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2241 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2242 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2243 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2244 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2245 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2246 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2247 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2248 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2249 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2250 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2251 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2252 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2253 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2254 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2255 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2256 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2257 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2258 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2259 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2260 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2261 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2262 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2263 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2264 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2265 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2266 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2267 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2268 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2269 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2270 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2271 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2272 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2273 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2274 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2275 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2276 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2277 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2278 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2279 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2280 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2281 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2282 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2283 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2284 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2285 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2286 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2287 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2288 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2289 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2290 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2291 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2292 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2293 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2294 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2295 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2296 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2297 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2298 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2299 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2300 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2301 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2302 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2303 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2304 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2305 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2306 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2307 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2308 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2309 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2310 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2311 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2312 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2313 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2314 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2315 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2316 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2317 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2318 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2319 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2320 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2321 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2322 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2323 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2324 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2325 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2326 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2327 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2328 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2329 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2330 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2331 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2332 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2333 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2334 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2335 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2336 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2337 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2338 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2339 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2340 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2341 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2342 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2343 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2344 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2345 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2346 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2347 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2348 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2349 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2350 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2351 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2352 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2353 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2354 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2355 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2356 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2357 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2358 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2359 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2360 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2361 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2362 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2363 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2364 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2365 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2366 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2367 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2368 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2369 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2370 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2371 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2372 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2373 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2374 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2375 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2376 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2377 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2378 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2379 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2380 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2381 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2382 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2383 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2384 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2385 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2386 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2387 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2388 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2389 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2390 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2391 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2392 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2393 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2394 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2395 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2396 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2397 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2398 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2399 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2400 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2401 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2402 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2403 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2404 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2405 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2406 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2407 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2408 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2409 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2410 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2411 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2412 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2413 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2414 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2415 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2416 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2417 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2418 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2419 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2420 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2421 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2422 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2423 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2424 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2425 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2426 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2427 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2428 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2429 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2430 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2431 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2432 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2433 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2434 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2435 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2436 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2437 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2438 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2439 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2440 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2441 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2442 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2443 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2444 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2445 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2446 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2447 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2448 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2449 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2450 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2451 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2452 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2453 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2454 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2455 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2456 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2457 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2458 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2459 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2460 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2461 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2462 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2463 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2464 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2465 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2466 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2467 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2468 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2469 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2470 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2471 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2472 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2473 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2474 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2475 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2476 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2477 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2478 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2479 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2480 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2481 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2482 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2483 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2484 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2485 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2486 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2487 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2488 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2489 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2490 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2491 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2492 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2493 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2494 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2495 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2496 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2497 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2498 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2499 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2500 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2501 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2502 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2503 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2504 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2505 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2506 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2507 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2508 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2509 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2510 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2511 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2512 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2513 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2514 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2515 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2516 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2517 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2518 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2519 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2520 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2521 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2522 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2523 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2524 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2525 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2526 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2527 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2528 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2529 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2530 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2531 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2532 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2533 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2534 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2535 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2536 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2537 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2538 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2539 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2540 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2541 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2542 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2543 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2544 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2545 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2546 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2547 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2548 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2549 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2550 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2551 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2552 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2553 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2554 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2555 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2556 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2557 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2558 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2559 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2560 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2561 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2562 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2563 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2564 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2565 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2566 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2567 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2568 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2569 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2570 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2571 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2572 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2573 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2574 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2575 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2576 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2577 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2578 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2579 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2580 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2581 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2582 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2583 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2584 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2585 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2586 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2587 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2588 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2589 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2590 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2591 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2592 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2593 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2594 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2595 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2596 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2597 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2598 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2599 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2600 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2601 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2602 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2603 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2604 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2605 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2606 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2607 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2608 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2609 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2610 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2611 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2612 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2613 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2614 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2615 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2616 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2617 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2618 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2619 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2620 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2621 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2622 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2623 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2624 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2625 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2626 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2627 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2628 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2629 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2630 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2631 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2632 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2633 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2634 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2635 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2636 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2637 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2638 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2639 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2640 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2641 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2642 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2643 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2644 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2645 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2646 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2647 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2648 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2649 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2650 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2651 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2652 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2653 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2654 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2655 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2656 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2657 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2658 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2659 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2660 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2661 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2662 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2663 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2664 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2665 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2666 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2667 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2668 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2669 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2670 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2671 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2672 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2673 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2674 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2675 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2676 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2677 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2678 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2679 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2680 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2681 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2682 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2683 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2684 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2685 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2686 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2687 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2688 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2689 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2690 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2691 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2692 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2693 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2694 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2695 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2696 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2697 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2698 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2699 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2700 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2701 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2702 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2703 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2704 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2705 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2706 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2707 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2708 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2709 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2710 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2711 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2712 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2713 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2714 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2715 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2716 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2717 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2718 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2719 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2720 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2721 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2722 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2723 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2724 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2725 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2726 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2727 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2728 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2729 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2730 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2731 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2732 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2733 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2734 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2735 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2736 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2737 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2738 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2739 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2740 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2741 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2742 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2743 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2744 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2745 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2746 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2747 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2748 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2749 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2750 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2751 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2752 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2753 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2754 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2755 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2756 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2757 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2758 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2759 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2760 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2761 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2762 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2763 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2764 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2765 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2766 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2767 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2768 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2769 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2770 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2771 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2772 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2773 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2774 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2775 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2776 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2777 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2778 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2779 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2780 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2781 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2782 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2783 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2784 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2785 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2786 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2787 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2788 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2789 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2790 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2791 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2792 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2793 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2794 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2795 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2796 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2797 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2798 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2799 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2800 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2801 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2802 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2803 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2804 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2805 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2806 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2807 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2808 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2809 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2810 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2811 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2812 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2813 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2814 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2815 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2816 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2817 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2818 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2819 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2820 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2821 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2822 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2823 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2824 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2825 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2826 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2827 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2828 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2829 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2830 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2831 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2832 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2833 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2834 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2835 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2836 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2837 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2838 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2839 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2840 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2841 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2842 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2843 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2844 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2845 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2846 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2847 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2848 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2849 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2850 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2851 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2852 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2853 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2854 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2855 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2856 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2857 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2858 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2859 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2860 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2861 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2862 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2863 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2864 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2865 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2866 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2867 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2868 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2869 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2870 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2871 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2872 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2873 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2874 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2875 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2876 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2877 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2878 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2879 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2880 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2881 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2882 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2883 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2884 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2885 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2886 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2887 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2888 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2889 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2890 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2891 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2892 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2893 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2894 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2895 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2896 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2897 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2898 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2899 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2900 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2901 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2902 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2903 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2904 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2905 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2906 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2907 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2908 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2909 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2910 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2911 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2912 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2913 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2914 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2915 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2916 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2917 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2918 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2919 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2920 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2921 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2922 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2923 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2924 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2925 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2926 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2927 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2928 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2929 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2930 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2931 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2932 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2933 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2934 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2935 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2936 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2937 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2938 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2939 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2940 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2941 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2942 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2943 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2944 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2945 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2946 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2947 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2948 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2949 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2950 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2951 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2952 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2953 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2954 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2955 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2956 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2957 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2958 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2959 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2960 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2961 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2962 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2963 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2964 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2965 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2966 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2967 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2968 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2969 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2970 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2971 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2972 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2973 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2974 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2975 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2976 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2977 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2978 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2979 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2980 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2981 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2982 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2983 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2984 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2985 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2986 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2987 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2988 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2989 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2990 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2991 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2992 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2993 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2994 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2995 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2996 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2997 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2998 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2999 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3000 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3002 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3003 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3016 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3021 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3022 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3023 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3132 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3133 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3134 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3135 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3136 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3137 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3138 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3139 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3140 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3141 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3142 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3143 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3144 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3145 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3146 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3147 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3159 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3160 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3161 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3162 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3163 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3199 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3200 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3201 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3202 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3203 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3204 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3205 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3206 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3207 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3208 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3209 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3210 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3211 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3212 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3213 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3214 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3215 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3216 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3217 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3218 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3219 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3220 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3221 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3222 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3223 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3224 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3225 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3226 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3227 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3228 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3229 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3230 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3231 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3232 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3233 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3234 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3235 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3236 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3237 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3238 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3239 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3240 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3241 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3242 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3243 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3244 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3245 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3246 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3247 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3248 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3249 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3250 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3251 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3252 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3253 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3254 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3255 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3256 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3257 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3258 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3259 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3260 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3261 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3262 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3263 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3264 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3265 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3266 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3267 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3268 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3269 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3270 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3271 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3272 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3273 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3274 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3275 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3276 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3277 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3278 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3279 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3280 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3281 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3282 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3283 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3284 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3285 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3286 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3287 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3288 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3289 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3290 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3291 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3292 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3293 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3294 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3295 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3296 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3297 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3298 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3299 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3300 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3301 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3302 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3303 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3304 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3305 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3306 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3307 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3308 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3309 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3310 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3311 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3312 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3313 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3314 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3315 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3316 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3317 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3318 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3319 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3320 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3321 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3322 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3323 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3324 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3325 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3326 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3327 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3328 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3329 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3330 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3331 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3332 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3333 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3334 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3335 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3336 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3337 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3338 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3339 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3340 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3341 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3342 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3343 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3344 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3345 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3346 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3347 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3348 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3349 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3350 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3351 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3352 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3353 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3354 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3355 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3356 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3357 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3358 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3359 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3360 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3361 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3362 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3363 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3364 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3365 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3366 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3367 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3368 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3369 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3370 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3371 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3372 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3373 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3374 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3375 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3376 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3377 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3378 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3379 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3380 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3381 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3382 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3383 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3384 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3385 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3386 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3387 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3388 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3389 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3390 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3391 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3392 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3393 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3394 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3395 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3396 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3397 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3398 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3399 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3400 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3401 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3402 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3403 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3404 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3405 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3406 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3407 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3408 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3409 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3410 / 3410 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0001 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0002 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0003 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0004 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0005 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0006 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0007 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0008 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0009 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0010 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0011 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0012 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0013 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0014 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0015 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0016 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0017 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0018 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0019 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0020 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0021 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0022 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0023 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0024 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0025 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0026 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0027 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0028 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0029 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0030 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0031 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0032 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0033 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0034 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0035 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0036 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0037 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0038 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0039 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0040 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0041 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0042 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0043 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0044 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0045 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0046 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0047 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0048 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0049 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0050 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0051 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0052 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0053 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0054 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0055 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0056 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0057 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0058 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0059 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0060 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0061 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0062 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0063 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0064 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0065 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0066 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0067 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0068 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0069 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0070 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0071 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0072 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0073 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0074 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0075 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0076 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0077 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0078 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0079 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0080 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0081 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0082 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0083 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0084 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0085 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0086 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0087 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0088 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0089 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0090 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0091 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0092 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0093 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0094 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0095 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0096 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0097 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0098 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0099 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0100 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0101 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0102 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0103 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0104 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0105 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0106 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0107 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0108 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0109 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0110 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0111 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0112 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0113 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0114 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0115 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0116 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0117 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0118 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0119 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0120 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0121 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0122 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0123 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0124 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0125 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0126 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0127 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0128 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0129 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0130 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0131 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0132 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0133 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0134 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0135 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0136 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0137 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0138 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0139 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0140 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0141 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0142 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0143 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0144 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0145 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0146 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0147 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0148 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0149 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0150 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0151 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0152 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0153 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0154 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0155 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0156 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0157 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0158 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0159 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0160 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0161 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0162 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0163 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0164 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0165 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0166 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0167 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0168 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0169 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0170 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0171 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0172 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0173 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0174 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0175 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0176 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0177 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0178 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0179 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0180 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0181 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0182 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0183 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0184 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0185 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0186 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0187 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0188 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0189 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0190 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0191 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0192 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0193 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0194 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0195 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0196 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0197 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0198 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0199 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0200 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0201 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0202 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0203 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0204 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0205 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0206 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0207 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0208 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0209 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0210 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0211 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0212 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0213 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0214 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0215 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0216 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0217 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0218 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0219 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0220 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0221 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0222 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0223 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0224 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0225 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0226 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0227 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0228 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0229 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0230 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0231 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0232 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0233 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0234 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0235 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0236 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0237 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0238 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0239 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0240 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0241 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0242 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0243 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0244 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0245 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0246 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0247 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0248 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0249 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0250 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0251 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0252 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0253 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0254 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0255 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0256 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0257 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0258 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0259 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0260 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0261 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0262 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0263 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0264 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0265 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0266 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0267 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0268 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0269 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0270 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0271 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0272 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0273 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0274 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0275 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0276 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0277 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0278 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0279 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0280 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0281 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0282 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0283 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0284 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0285 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0286 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0287 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0288 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0289 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0290 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0291 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0292 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0293 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0294 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0295 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0296 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0297 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0298 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0299 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0300 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0301 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0302 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0303 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0304 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0305 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0306 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0307 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0308 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0309 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0310 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0311 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0312 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0313 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0314 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0315 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0316 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0317 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0318 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0319 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0320 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0321 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0322 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0323 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0324 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0325 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0326 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0327 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0328 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0329 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0330 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0331 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0332 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0333 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0334 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0335 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0336 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0337 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0338 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0339 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0340 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0341 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0342 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0343 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0344 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0345 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0346 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0347 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0348 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0349 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0350 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0351 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0352 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0353 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0354 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0355 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0356 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0357 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0358 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0359 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0360 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0361 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0362 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0363 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0364 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0365 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0366 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0367 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0368 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0369 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0370 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0371 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0372 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0373 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0374 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0375 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0376 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0377 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0378 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0379 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0380 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0381 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0382 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0383 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0384 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0385 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0386 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0387 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0388 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0389 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0390 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0391 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0392 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0393 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0394 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0395 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0396 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0397 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0398 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0399 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0400 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0401 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0402 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0403 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0404 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0405 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0406 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0407 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0408 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0409 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0410 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0411 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0412 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0413 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0414 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0415 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0416 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0417 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0418 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0419 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0420 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0421 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0422 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0423 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0424 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0425 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0426 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0427 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0428 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0429 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0430 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0431 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0432 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0433 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0434 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0435 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0436 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0437 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0438 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0439 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0440 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0441 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0442 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0443 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0444 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0445 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0446 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0447 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0448 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0449 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0450 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0451 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0452 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0453 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0454 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0455 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0456 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0457 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0458 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0459 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0460 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0461 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0462 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0463 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0464 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0465 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0466 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0467 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0468 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0469 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0470 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0471 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0472 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0473 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0474 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0475 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0476 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0477 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0478 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0479 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0480 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0481 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0482 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0483 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0484 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0485 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0486 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0487 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0488 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0489 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0490 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0491 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0492 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0493 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0494 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0495 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0496 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0497 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0498 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0499 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0500 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0501 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0502 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0503 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0504 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0505 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0506 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0507 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0508 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0509 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0510 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0511 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0512 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0513 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0514 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0515 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0516 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0517 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0518 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0519 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0520 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0521 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0522 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0523 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0524 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0525 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0526 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0527 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0528 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0529 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0530 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0531 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0532 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0533 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0534 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0535 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0536 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0537 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0538 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0539 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0540 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0541 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0542 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0543 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0544 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0545 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0546 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0547 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0548 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0549 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0550 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0551 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0552 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0553 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0554 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0555 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0556 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0557 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0558 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0559 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0560 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0561 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0562 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0563 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0564 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0565 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0566 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0567 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0568 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0569 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0570 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0571 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0572 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0573 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0574 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0575 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0576 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0577 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0578 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0579 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0580 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0581 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0582 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0583 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0584 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0585 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0586 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0587 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0588 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0589 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0590 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0591 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0592 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0593 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0594 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0595 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0596 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0597 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0598 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0599 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0600 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0601 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0602 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0603 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0604 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0605 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0606 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0607 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0608 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0609 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0610 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0611 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0612 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0613 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0614 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0615 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0616 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0617 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0618 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0619 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0620 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0621 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0622 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0623 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0624 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0625 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0626 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0627 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0628 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0629 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0630 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0631 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0632 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0633 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0634 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0635 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0636 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0637 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0638 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0639 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0640 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0641 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0642 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0643 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0644 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0645 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0646 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0647 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0648 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0649 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0650 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0651 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0652 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0653 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0654 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0655 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0656 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0657 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0658 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0659 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0660 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0661 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0662 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0663 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0664 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0665 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0666 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0667 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0668 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0669 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0670 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0671 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0672 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0673 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0674 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0675 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0676 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0677 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0678 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0679 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0680 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0681 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0682 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0683 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0684 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0685 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0686 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0687 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0688 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0689 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0690 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0691 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0692 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0693 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0694 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0695 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0696 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0697 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0698 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0699 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0700 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0701 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0702 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0703 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0704 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0705 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0706 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0707 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0708 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0709 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0710 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0711 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0712 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0713 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0714 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0715 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0716 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0717 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0718 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0719 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0720 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0721 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0722 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0723 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0724 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0725 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0726 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0727 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0728 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0729 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0730 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0731 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0732 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0733 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0734 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0735 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0736 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0737 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0738 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0739 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0740 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0741 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0742 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0743 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0744 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0745 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0746 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0747 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0748 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0749 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0750 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0751 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0752 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0753 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0754 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0755 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0756 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0757 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0758 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0759 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0760 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0761 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0762 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0763 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0764 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0765 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0766 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0767 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0768 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0769 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0770 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0771 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0772 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0773 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0774 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0775 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0776 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0777 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0778 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0779 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0780 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0781 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0782 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0783 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0784 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0785 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0786 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0787 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0788 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0789 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0790 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0791 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0792 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0793 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0794 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0795 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0796 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0797 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0798 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0799 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0800 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0801 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0802 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0803 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0804 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0805 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0806 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0807 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0808 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0809 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0810 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0811 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0812 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0813 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0814 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0815 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0816 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0817 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0818 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0819 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0820 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0821 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0822 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0823 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0824 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0825 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0826 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0827 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0828 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0829 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0830 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0831 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0832 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0833 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0834 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0835 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0836 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0837 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0838 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0839 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0840 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0841 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0842 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0843 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0844 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0845 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0846 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0847 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0848 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0849 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0850 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0851 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0852 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0853 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0854 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0855 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0856 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0857 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0858 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0859 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0860 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0861 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0862 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0863 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0864 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0865 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0866 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0867 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0868 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0869 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0870 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0871 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0872 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0873 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0874 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0875 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0876 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0877 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0878 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0879 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0880 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0881 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0882 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0883 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0884 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0885 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0886 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0887 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0888 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0889 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0890 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0891 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0892 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0893 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0894 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0895 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0896 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0897 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0898 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0899 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0900 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0901 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0902 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0903 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0904 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0905 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0906 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0907 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0908 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0909 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0910 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0911 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0912 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0913 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0914 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0915 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0916 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0917 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0918 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0919 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0920 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0921 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0922 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0923 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0924 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0925 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0926 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0927 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0928 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0929 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0930 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0931 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0932 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0933 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0934 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0935 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0936 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0937 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0938 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0939 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0940 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0941 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0942 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0943 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0944 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0945 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0946 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0947 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0948 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0949 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0950 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0951 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0952 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0953 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0954 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0955 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0956 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0957 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0958 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0959 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0960 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0961 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0962 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0963 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0964 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0965 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0966 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0967 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0968 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0969 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0970 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0971 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0972 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0973 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0974 / 0974 | LOSS 0.0012\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0001 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0002 / 3410 | LOSS 0.0006\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0003 / 3410 | LOSS 0.0006\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0004 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0005 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0006 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0007 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0008 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0009 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0010 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0011 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0012 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0013 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0014 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0015 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0016 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0017 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0018 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0019 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0020 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0021 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0022 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0023 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0024 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0025 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0026 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0027 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0028 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0029 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0030 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0031 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0032 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0033 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0034 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0035 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0036 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0037 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0038 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0039 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0040 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0041 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0042 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0043 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0044 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0045 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0046 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0047 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0048 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0049 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0050 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0051 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0052 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0053 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0054 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0055 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0056 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0057 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0058 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0059 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0060 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0061 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0062 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0063 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0064 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0065 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0066 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0067 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0068 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0069 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0070 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0071 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0072 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0073 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0074 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0075 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0076 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0077 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0078 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0079 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0080 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0081 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0082 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0083 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0084 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0085 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0086 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0087 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0088 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0089 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0090 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0091 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0092 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0093 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0094 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0095 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0096 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0097 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0098 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0099 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0100 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0101 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0102 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0103 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0104 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0105 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0106 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0107 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0108 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0109 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0110 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0111 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0112 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0113 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0114 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0115 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0116 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0117 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0118 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0119 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0120 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0121 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0122 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0123 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0124 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0125 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0126 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0127 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0128 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0129 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0130 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0131 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0132 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0133 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0134 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0135 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0136 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0137 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0138 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0139 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0140 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0141 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0142 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0143 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0144 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0145 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0146 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0147 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0148 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0149 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0150 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0151 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0152 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0153 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0154 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0155 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0156 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0157 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0158 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0159 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0160 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0161 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0162 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0163 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0164 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0165 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0166 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0167 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0168 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0169 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0170 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0171 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0172 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0173 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0174 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0175 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0176 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0177 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0178 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0179 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0180 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0181 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0182 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0183 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0184 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0185 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0186 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0187 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0188 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0189 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0190 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0191 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0192 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0193 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0194 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0195 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0196 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0197 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0198 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0199 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0276 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0277 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0278 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0279 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0280 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0281 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0282 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0283 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0284 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0285 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0286 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0287 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0288 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0289 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0290 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0291 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0292 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0293 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0294 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0295 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0296 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0297 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0298 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0299 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0300 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0301 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0302 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0303 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0304 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0305 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0306 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0307 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0308 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0309 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0310 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0311 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0312 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0313 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0314 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0315 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0316 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0317 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0318 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0319 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0320 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0321 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0322 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0323 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0324 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0325 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0326 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0327 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0328 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0329 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0330 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0331 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0332 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0333 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0334 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0335 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0336 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0337 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0338 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0339 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0340 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0341 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0342 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0343 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0344 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0345 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0346 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0347 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0348 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0349 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0350 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0351 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0352 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0353 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0354 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0355 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0356 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0357 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0358 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0359 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0360 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0361 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0362 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0363 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0364 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0365 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0366 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0367 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0368 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0369 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0370 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0371 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0372 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0373 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0374 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0375 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0376 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0377 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0378 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0379 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0380 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0381 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0382 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0383 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0384 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0385 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0386 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0387 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0388 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0389 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0390 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0391 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0392 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0393 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0394 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0395 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0396 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0397 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0398 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0399 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0400 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0401 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0402 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0403 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0404 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0405 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0406 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0407 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0410 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0411 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0412 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0413 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0414 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0415 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0416 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0417 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0418 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0419 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0420 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0421 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0422 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0423 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0424 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0425 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0426 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0427 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0428 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0429 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0430 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0431 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0432 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0433 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0434 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0435 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0436 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0437 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0438 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0439 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0440 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0441 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0442 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0443 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0444 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0445 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0446 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0447 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0448 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0449 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0450 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0451 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0452 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0453 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0454 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0455 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0456 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0457 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0458 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0459 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0460 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0461 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0462 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0463 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0464 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0465 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0466 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0467 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0468 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0469 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0470 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0471 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0472 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0473 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0474 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0475 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0476 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0477 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0478 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0479 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0480 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0481 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0482 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0483 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0484 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0485 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0486 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0487 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0488 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0489 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0490 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0491 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0492 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0493 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0494 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0495 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0496 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0497 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0498 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0499 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0500 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0501 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0502 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0503 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0504 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0505 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0506 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0507 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0508 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0509 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0510 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0511 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0512 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0513 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0514 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0515 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0516 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0517 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0518 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0519 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0520 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0521 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0522 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0523 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0524 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0525 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0526 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0527 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0528 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0529 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0530 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0531 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0532 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0533 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0534 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0535 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0536 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0537 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0538 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0539 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0540 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0541 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0542 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0543 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0544 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0545 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0546 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0547 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0548 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0549 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0550 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0551 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0552 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0553 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0554 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0555 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0556 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0557 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0558 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0559 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0560 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0561 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0562 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0563 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0564 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0565 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0566 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0567 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0568 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0569 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0570 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0571 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0572 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0573 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0574 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0575 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0576 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0577 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0578 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0579 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0580 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0581 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0582 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0583 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0584 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0585 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0586 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0587 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0588 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0589 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0590 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0591 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0592 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0593 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0594 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0595 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0596 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0597 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0598 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0599 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0600 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0601 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0602 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0603 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0604 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0605 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0606 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0607 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0608 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0609 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0610 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0611 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0612 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0613 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0614 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0615 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0616 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0617 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0618 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0619 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0620 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0621 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0622 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0623 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0624 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0625 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0626 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0627 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0628 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0629 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0630 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0631 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0632 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0633 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0634 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0635 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0636 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0637 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0638 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0639 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0640 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0641 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0642 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0643 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0644 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0645 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0646 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0647 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0648 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0649 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0650 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0651 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0652 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0653 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0654 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0655 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0656 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0657 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0658 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0659 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0660 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0661 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0662 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0663 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0664 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0665 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0666 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0667 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0668 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0669 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0670 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0671 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0672 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0673 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0674 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0675 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0676 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0677 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0678 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0679 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0680 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0681 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0682 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0683 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0684 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0685 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0686 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0687 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0688 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0689 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0690 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0691 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0692 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0693 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0694 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0695 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0696 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0697 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0698 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0699 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0700 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0701 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0702 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0703 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0704 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0705 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0706 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0707 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0708 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0709 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0710 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0711 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0712 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0713 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0714 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0715 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0716 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0717 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0718 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0719 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0720 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0721 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0722 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0723 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0724 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0725 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0726 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0727 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0728 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0729 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0730 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0731 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0732 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0733 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0734 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0735 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0736 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0737 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0738 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0739 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0740 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0741 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0742 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0743 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0744 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0745 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0746 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0747 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0748 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0749 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0750 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0751 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0752 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0753 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0754 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0755 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0756 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0757 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0758 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0759 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0760 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0761 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0762 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0763 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0764 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0765 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0766 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0767 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0768 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0769 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0770 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0771 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0772 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0773 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0774 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0775 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0776 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0777 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0778 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0779 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0780 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0781 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0782 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0783 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0784 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0785 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0786 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0787 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0788 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0789 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0790 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0791 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0792 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0793 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0794 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0795 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0796 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0797 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0798 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0799 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0800 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0801 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0802 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0803 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0804 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0805 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0806 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0807 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0808 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0809 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0810 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0811 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0812 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0813 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0814 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0815 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0816 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0817 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0818 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0819 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0820 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0821 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0822 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0823 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0824 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0825 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0826 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0827 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0828 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0829 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0830 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0831 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0832 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0833 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0834 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0835 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0836 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0837 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0838 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0839 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0840 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0841 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0842 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0843 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0844 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0845 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0846 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0847 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0848 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0849 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0850 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0851 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0852 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0853 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0854 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0855 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0856 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0857 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0858 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0859 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0860 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0861 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0862 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0863 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0864 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0865 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0866 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0867 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0868 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0869 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0870 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0871 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0872 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0873 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0874 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0875 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0876 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0877 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0878 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0879 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0880 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0881 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0882 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0883 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0884 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0885 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0886 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0887 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0888 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0889 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0890 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0891 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0892 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0893 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0894 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0895 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0896 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0897 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0898 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0899 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0900 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0901 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0902 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0903 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0904 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0905 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0906 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0907 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0908 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0909 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0910 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0911 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0912 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0913 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0914 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0915 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0916 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0917 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0918 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0919 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0920 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0921 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0922 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0923 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0924 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0925 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0926 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0927 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0928 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0929 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0930 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0931 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0932 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0933 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0934 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0935 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0936 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0937 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0938 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0939 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0940 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0941 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0942 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0943 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0944 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0945 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0946 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0947 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0948 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0949 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0950 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0951 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0952 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0953 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0954 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0955 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0956 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0957 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0958 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0959 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0960 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0961 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0962 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0963 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0964 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0965 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0966 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0967 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0968 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0969 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0970 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0971 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0972 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0973 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0974 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0975 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0976 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0977 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0978 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0979 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0980 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0981 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0982 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0983 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0984 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0985 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0986 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0987 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0988 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0989 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0990 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0991 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0992 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0993 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0994 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0995 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0996 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0997 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0998 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0999 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1000 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1002 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1003 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1016 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1021 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1022 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1023 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1132 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1133 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1134 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1135 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1136 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1137 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1138 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1139 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1140 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1141 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1142 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1143 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1144 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1145 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1146 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1147 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1159 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1160 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1161 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1162 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1163 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1199 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1200 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1201 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1202 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1203 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1204 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1205 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1206 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1207 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1208 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1209 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1210 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1211 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1212 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1213 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1214 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1215 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1216 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1217 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1218 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1219 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1220 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1221 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1222 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1223 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1224 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1225 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1226 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1227 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1228 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1229 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1230 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1231 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1232 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1233 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1234 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1235 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1236 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1237 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1238 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1239 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1240 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1241 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1242 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1243 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1244 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1245 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1246 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1247 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1248 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1249 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1250 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1251 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1252 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1253 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1254 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1255 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1256 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1257 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1258 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1259 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1260 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1261 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1262 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1263 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1264 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1265 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1266 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1267 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1268 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1269 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1270 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1271 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1272 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1273 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1274 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1275 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1276 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1277 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1278 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1279 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1280 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1281 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1282 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1283 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1284 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1285 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1286 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1287 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1288 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1289 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1290 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1291 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1292 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1293 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1294 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1295 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1296 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1297 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1298 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1299 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1300 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1301 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1302 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1303 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1304 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1305 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1306 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1307 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1308 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1309 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1310 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1311 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1312 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1313 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1314 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1315 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1316 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1317 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1318 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1319 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1320 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1321 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1322 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1323 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1324 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1325 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1326 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1327 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1328 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1329 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1330 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1331 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1332 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1333 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1334 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1335 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1336 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1337 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1338 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1339 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1340 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1341 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1342 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1343 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1344 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1345 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1346 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1347 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1348 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1349 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1350 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1351 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1352 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1353 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1354 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1355 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1356 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1357 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1358 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1359 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1360 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1361 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1362 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1363 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1364 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1365 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1366 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1367 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1368 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1369 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1370 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1371 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1372 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1373 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1374 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1375 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1376 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1377 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1378 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1379 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1380 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1381 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1382 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1383 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1384 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1385 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1386 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1387 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1388 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1389 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1390 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1391 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1392 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1393 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1394 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1395 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1396 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1397 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1398 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1399 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1400 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1401 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1402 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1403 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1404 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1405 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1406 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1407 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1408 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1409 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1410 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1411 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1412 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1413 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1414 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1415 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1416 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1417 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1418 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1419 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1420 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1421 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1422 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1423 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1424 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1425 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1426 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1427 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1428 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1429 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1430 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1431 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1432 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1433 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1434 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1435 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1436 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1437 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1438 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1439 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1440 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1441 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1442 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1443 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1444 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1445 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1446 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1447 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1448 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1449 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1450 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1451 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1452 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1453 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1454 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1455 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1456 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1457 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1458 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1459 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1460 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1461 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1462 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1463 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1464 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1465 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1466 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1467 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1468 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1469 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1470 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1471 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1472 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1473 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1474 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1475 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1476 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1477 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1478 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1479 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1480 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1481 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1482 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1483 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1484 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1485 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1486 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1487 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1488 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1489 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1490 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1491 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1492 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1493 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1494 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1495 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1496 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1497 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1498 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1499 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1500 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1501 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1502 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1503 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1504 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1505 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1506 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1507 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1508 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1509 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1510 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1511 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1512 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1513 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1514 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1515 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1516 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1517 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1518 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1519 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1520 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1521 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1522 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1523 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1524 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1525 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1526 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1527 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1528 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1529 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1530 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1531 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1532 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1533 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1534 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1535 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1536 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1537 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1538 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1539 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1540 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1541 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1542 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1543 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1544 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1545 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1546 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1547 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1548 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1549 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1550 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1551 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1552 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1553 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1554 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1555 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1556 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1557 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1558 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1559 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1560 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1561 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1562 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1563 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1564 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1565 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1566 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1567 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1568 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1569 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1570 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1571 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1572 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1573 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1574 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1575 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1576 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1577 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1578 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1579 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1580 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1581 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1582 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1583 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1584 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1585 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1586 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1587 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1588 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1589 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1590 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1591 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1592 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1593 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1594 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1595 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1596 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1597 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1598 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1599 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1600 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1601 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1602 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1603 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1604 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1605 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1606 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1607 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1608 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1609 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1610 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1611 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1612 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1613 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1614 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1615 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1616 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1617 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1618 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1619 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1620 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1621 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1622 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1623 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1624 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1625 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1626 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1627 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1628 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1629 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1630 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1631 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1632 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1633 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1634 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1635 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1636 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1637 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1638 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1639 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1640 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1641 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1642 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1643 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1644 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1645 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1646 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1647 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1648 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1649 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1650 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1651 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1652 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1653 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1654 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1655 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1656 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1657 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1658 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1659 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1660 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1661 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1662 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1663 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1664 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1665 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1666 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1667 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1668 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1669 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1670 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1671 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1672 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1673 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1674 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1675 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1676 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1677 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1678 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1679 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1680 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1681 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1682 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1683 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1684 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1685 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1686 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1687 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1688 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1689 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1690 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1691 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1692 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1693 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1694 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1695 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1696 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1697 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1698 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1699 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1700 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1701 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1702 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1703 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1704 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1705 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1706 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1707 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1708 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1709 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1710 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1711 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1712 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1713 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1714 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1715 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1716 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1717 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1718 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1719 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1720 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1721 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1722 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1723 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1724 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1725 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1726 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1727 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1728 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1729 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1730 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1731 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1732 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1733 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1734 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1735 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1736 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1737 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1738 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1739 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1740 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1741 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1742 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1743 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1744 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1745 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1746 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1747 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1748 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1749 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1750 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1751 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1752 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1753 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1754 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1755 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1756 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1757 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1758 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1759 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1760 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1761 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1762 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1763 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1764 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1765 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1766 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1767 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1768 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1769 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1770 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1771 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1772 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1773 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1774 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1775 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1776 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1777 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1778 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1779 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1780 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1781 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1782 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1783 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1784 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1785 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1786 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1787 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1788 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1789 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1790 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1791 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1792 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1793 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1794 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1795 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1796 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1797 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1798 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1799 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1800 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1801 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1802 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1803 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1804 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1805 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1806 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1807 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1808 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1809 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1810 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1811 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1812 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1813 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1814 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1815 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1816 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1817 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1818 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1819 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1820 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1821 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1822 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1823 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1824 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1825 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1826 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1827 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1828 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1829 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1830 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1831 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1832 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1833 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1834 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1835 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1836 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1837 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1838 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1839 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1840 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1841 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1842 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1843 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1844 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1845 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1846 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1847 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1848 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1849 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1850 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1851 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1852 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1853 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1854 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1855 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1856 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1857 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1858 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1859 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1860 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1861 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1862 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1863 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1864 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1865 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1866 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1867 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1868 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1869 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1870 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1871 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1872 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1873 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1874 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1875 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1876 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1877 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1878 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1879 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1880 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1881 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1882 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1883 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1884 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1885 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1886 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1887 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1888 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1889 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1890 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1891 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1892 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1893 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1894 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1895 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1896 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1897 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1898 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1899 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1900 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1901 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1902 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1903 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1904 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1905 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1906 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1907 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1908 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1909 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1910 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1911 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1912 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1913 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1914 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1915 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1916 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1917 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1918 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1919 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1920 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1921 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1922 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1923 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1924 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1925 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1926 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1927 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1928 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1929 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1930 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1931 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1932 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1933 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1934 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1935 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1936 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1937 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1938 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1939 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1940 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1941 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1942 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1943 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1944 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1945 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1946 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1947 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1948 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1949 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1950 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1951 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1952 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1953 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1954 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1955 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1956 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1957 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1958 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1959 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1960 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1961 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1962 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1963 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1964 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1965 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1966 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1967 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1968 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1969 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1970 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1971 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1972 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1973 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1974 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1975 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1976 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1977 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1978 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1979 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1980 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1981 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1982 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1983 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1984 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1985 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1986 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1987 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1988 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1989 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1990 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1991 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1992 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1993 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1994 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1995 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1996 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1997 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1998 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1999 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2000 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2002 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2003 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2016 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2021 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2022 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2023 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2132 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2133 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2134 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2135 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2136 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2137 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2138 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2139 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2140 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2141 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2142 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2143 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2144 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2145 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2146 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2147 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2159 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2160 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2161 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2162 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2163 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2199 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2200 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2201 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2202 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2203 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2204 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2205 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2206 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2207 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2208 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2209 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2210 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2211 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2212 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2213 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2214 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2215 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2216 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2217 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2218 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2219 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2220 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2221 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2222 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2223 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2224 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2225 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2226 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2227 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2228 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2229 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2230 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2231 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2232 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2233 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2234 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2235 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2236 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2237 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2238 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2239 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2240 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2241 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2242 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2243 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2244 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2245 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2246 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2247 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2248 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2249 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2250 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2251 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2252 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2253 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2254 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2255 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2256 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2257 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2258 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2259 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2260 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2261 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2262 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2263 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2264 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2265 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2266 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2267 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2268 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2269 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2270 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2271 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2272 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2273 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2274 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2275 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2276 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2277 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2278 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2279 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2280 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2281 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2282 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2283 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2284 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2285 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2286 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2287 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2288 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2289 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2290 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2291 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2292 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2293 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2294 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2295 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2296 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2297 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2298 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2299 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2300 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2301 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2302 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2303 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2304 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2305 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2306 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2307 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2308 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2309 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2310 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2311 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2312 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2313 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2314 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2315 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2316 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2317 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2318 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2319 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2320 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2321 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2322 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2323 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2324 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2325 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2326 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2327 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2328 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2329 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2330 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2331 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2332 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2333 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2334 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2335 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2336 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2337 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2338 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2339 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2340 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2341 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2342 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2343 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2344 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2345 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2346 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2347 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2348 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2349 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2350 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2351 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2352 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2353 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2354 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2355 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2356 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2357 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2358 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2359 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2360 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2361 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2362 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2363 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2364 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2365 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2366 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2367 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2368 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2369 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2370 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2371 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2372 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2373 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2374 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2375 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2376 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2377 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2378 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2379 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2380 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2381 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2382 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2383 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2384 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2385 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2386 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2387 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2388 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2389 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2390 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2391 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2392 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2393 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2394 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2395 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2396 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2397 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2398 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2399 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2400 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2401 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2402 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2403 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2404 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2405 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2406 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2407 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2408 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2409 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2410 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2411 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2412 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2413 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2414 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2415 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2416 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2417 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2418 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2419 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2420 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2421 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2422 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2423 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2424 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2425 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2426 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2427 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2428 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2429 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2430 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2431 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2432 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2433 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2434 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2435 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2436 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2437 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2438 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2439 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2440 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2441 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2442 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2443 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2444 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2445 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2446 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2447 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2448 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2449 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2450 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2451 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2452 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2453 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2454 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2455 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2456 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2457 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2458 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2459 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2460 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2461 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2462 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2463 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2464 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2465 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2466 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2467 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2468 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2469 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2470 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2471 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2472 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2473 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2474 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2475 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2476 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2477 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2478 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2479 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2480 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2481 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2482 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2483 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2484 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2485 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2486 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2487 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2488 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2489 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2490 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2491 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2492 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2493 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2494 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2495 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2496 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2497 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2498 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2499 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2500 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2501 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2502 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2503 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2504 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2505 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2506 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2507 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2508 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2509 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2510 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2511 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2512 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2513 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2514 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2515 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2516 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2517 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2518 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2519 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2520 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2521 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2522 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2523 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2524 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2525 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2526 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2527 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2528 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2529 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2530 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2531 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2532 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2533 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2534 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2535 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2536 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2537 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2538 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2539 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2540 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2541 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2542 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2543 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2544 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2545 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2546 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2547 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2548 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2549 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2550 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2551 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2552 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2553 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2554 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2555 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2556 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2557 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2558 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2559 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2560 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2561 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2562 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2563 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2564 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2565 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2566 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2567 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2568 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2569 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2570 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2571 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2572 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2573 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2574 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2575 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2576 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2577 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2578 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2579 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2580 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2581 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2582 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2583 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2584 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2585 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2586 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2587 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2588 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2589 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2590 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2591 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2592 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2593 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2594 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2595 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2596 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2597 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2598 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2599 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2600 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2601 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2602 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2603 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2604 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2605 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2606 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2607 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2608 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2609 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2610 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2611 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2612 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2613 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2614 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2615 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2616 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2617 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2618 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2619 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2620 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2621 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2622 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2623 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2624 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2625 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2626 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2627 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2628 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2629 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2630 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2631 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2632 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2633 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2634 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2635 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2636 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2637 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2638 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2639 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2640 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2641 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2642 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2643 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2644 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2645 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2646 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2647 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2648 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2649 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2650 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2651 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2652 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2653 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2654 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2655 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2656 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2657 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2658 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2659 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2660 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2661 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2662 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2663 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2664 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2665 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2666 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2667 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2668 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2669 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2670 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2671 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2672 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2673 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2674 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2675 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2676 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2677 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2678 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2679 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2680 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2681 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2682 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2683 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2684 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2685 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2686 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2687 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2688 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2689 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2690 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2691 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2692 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2693 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2694 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2695 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2696 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2697 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2698 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2699 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2700 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2701 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2702 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2703 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2704 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2705 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2706 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2707 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2708 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2709 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2710 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2711 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2712 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2713 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2714 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2715 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2716 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2717 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2718 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2719 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2720 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2721 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2722 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2723 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2724 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2725 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2726 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2727 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2728 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2729 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2730 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2731 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2732 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2733 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2734 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2735 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2736 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2737 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2738 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2739 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2740 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2741 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2742 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2743 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2744 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2745 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2746 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2747 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2748 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2749 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2750 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2751 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2752 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2753 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2754 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2755 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2756 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2757 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2758 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2759 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2760 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2761 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2762 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2763 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2764 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2765 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2766 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2767 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2768 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2769 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2770 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2771 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2772 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2773 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2774 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2775 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2776 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2777 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2778 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2779 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2780 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2781 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2782 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2783 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2784 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2785 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2786 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2787 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2788 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2789 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2790 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2791 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2792 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2793 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2794 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2795 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2796 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2797 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2798 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2799 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2800 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2801 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2802 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2803 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2804 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2805 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2806 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2807 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2808 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2809 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2810 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2811 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2812 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2813 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2814 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2815 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2816 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2817 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2818 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2819 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2820 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2821 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2822 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2823 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2824 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2825 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2826 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2827 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2828 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2829 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2830 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2831 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2832 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2833 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2834 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2835 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2836 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2837 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2838 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2839 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2840 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2841 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2842 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2843 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2844 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2845 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2846 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2847 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2848 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2849 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2850 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2851 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2852 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2853 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2854 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2855 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2856 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2857 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2858 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2859 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2860 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2861 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2862 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2863 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2864 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2865 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2866 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2867 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2868 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2869 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2870 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2871 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2872 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2873 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2874 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2875 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2876 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2877 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2878 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2879 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2880 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2881 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2882 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2883 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2884 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2885 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2886 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2887 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2888 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2889 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2890 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2891 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2892 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2893 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2894 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2895 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2896 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2897 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2898 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2899 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2900 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2901 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2902 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2903 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2904 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2905 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2906 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2907 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2908 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2909 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2910 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2911 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2912 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2913 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2914 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2915 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2916 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2917 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2918 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2919 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2920 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2921 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2922 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2923 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2924 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2925 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2926 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2927 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2928 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2929 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2930 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2931 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2932 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2933 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2934 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2935 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2936 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2937 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2938 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2939 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2940 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2941 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2942 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2943 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2944 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2945 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2946 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2947 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2948 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2949 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2950 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2951 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2952 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2953 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2954 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2955 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2956 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2957 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2958 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2959 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2960 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2961 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2962 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2963 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2964 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2965 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2966 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2967 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2968 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2969 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2970 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2971 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2972 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2973 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2974 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2975 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2976 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2977 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2978 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2979 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2980 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2981 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2982 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2983 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2984 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2985 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2986 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2987 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2988 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2989 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2990 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2991 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2992 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2993 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2994 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2995 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2996 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2997 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2998 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2999 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3000 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3002 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3003 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3016 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3021 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3022 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3023 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3111 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3112 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3113 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3114 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3115 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3116 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3117 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3118 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3119 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3120 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3121 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3122 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3123 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3124 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3125 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3126 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3127 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3128 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3129 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3130 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3131 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3132 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3133 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3134 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3135 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3136 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3137 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3138 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3139 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3140 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3141 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3142 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3143 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3144 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3145 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3146 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3147 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3148 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3149 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3150 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3151 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3152 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3153 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3154 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3155 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3156 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3157 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3158 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3159 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3160 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3161 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3162 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3163 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3164 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3165 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3166 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3167 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3168 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3169 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3170 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3171 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3172 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3173 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3174 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3175 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3176 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3177 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3178 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3179 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3180 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3181 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3182 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3183 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3184 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3185 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3186 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3187 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3188 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3189 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3190 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3191 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3192 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3193 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3194 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3195 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3196 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3197 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3198 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3199 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3276 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3277 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3278 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3279 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3280 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3281 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3282 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3283 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3284 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3285 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3286 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3287 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3288 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3289 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3290 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3291 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3292 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3293 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3294 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3295 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3296 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3297 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3298 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3299 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3300 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3301 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3302 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3303 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3304 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3305 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3306 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3307 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3308 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3309 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3310 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3311 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3312 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3313 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3314 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3315 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3316 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3317 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3318 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3319 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3320 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3321 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3322 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3323 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3324 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3325 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3326 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3327 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3328 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3329 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3330 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3331 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3332 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3333 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3334 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3335 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3336 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3337 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3338 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3339 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3340 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3341 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3342 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3343 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3344 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3345 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3346 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3347 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3348 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3349 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3350 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3351 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3352 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3353 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3354 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3355 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3356 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3357 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3358 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3359 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3360 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3361 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3362 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3363 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3364 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3365 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3366 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3367 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3368 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3369 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3370 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3371 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3372 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3373 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3374 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3375 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3376 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3377 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3378 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3379 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3380 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3381 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3382 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3383 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3384 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3385 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3386 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3387 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3388 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3389 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3390 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3391 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3392 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3393 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3394 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3395 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3396 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3397 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3398 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3399 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3400 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3401 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3402 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3403 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3404 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3405 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3406 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3407 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3410 / 3410 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0001 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0002 / 0974 | LOSS 0.0006\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0003 / 0974 | LOSS 0.0006\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0004 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0005 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0006 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0007 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0008 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0009 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0010 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0011 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0012 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0013 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0014 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0015 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0016 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0017 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0018 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0019 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0020 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0021 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0022 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0023 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0024 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0025 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0026 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0027 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0028 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0029 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0030 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0031 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0032 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0033 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0034 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0035 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0036 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0037 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0038 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0039 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0040 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0041 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0042 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0043 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0044 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0045 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0046 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0047 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0048 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0049 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0050 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0051 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0052 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0053 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0054 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0055 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0056 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0057 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0058 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0059 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0060 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0061 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0062 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0063 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0064 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0065 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0066 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0067 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0068 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0069 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0070 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0071 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0072 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0073 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0074 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0075 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0076 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0077 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0078 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0079 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0080 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0081 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0082 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0083 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0084 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0085 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0086 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0087 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0088 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0089 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0090 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0091 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0092 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0093 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0094 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0095 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0096 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0097 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0098 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0099 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0100 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0101 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0102 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0103 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0104 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0105 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0106 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0107 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0108 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0109 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0110 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0111 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0112 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0113 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0114 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0115 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0116 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0117 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0118 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0119 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0120 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0121 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0122 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0123 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0124 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0125 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0126 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0127 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0128 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0129 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0130 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0131 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0132 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0133 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0134 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0135 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0136 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0137 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0138 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0139 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0140 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0141 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0142 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0143 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0144 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0145 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0146 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0147 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0148 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0149 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0150 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0151 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0152 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0153 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0154 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0155 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0156 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0157 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0158 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0159 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0160 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0161 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0162 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0163 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0164 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0165 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0166 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0167 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0168 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0169 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0170 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0171 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0172 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0173 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0174 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0175 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0176 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0177 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0178 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0179 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0180 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0181 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0182 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0183 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0184 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0185 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0186 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0187 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0188 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0189 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0190 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0191 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0192 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0193 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0194 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0195 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0196 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0197 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0198 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0199 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0200 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0201 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0202 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0203 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0204 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0205 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0206 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0207 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0208 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0209 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0210 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0211 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0212 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0213 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0214 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0215 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0216 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0217 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0218 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0219 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0220 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0221 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0222 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0223 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0224 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0225 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0226 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0227 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0228 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0229 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0230 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0231 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0232 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0233 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0234 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0235 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0236 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0237 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0238 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0239 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0240 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0241 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0242 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0243 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0244 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0245 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0246 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0247 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0248 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0249 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0250 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0251 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0252 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0253 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0254 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0255 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0256 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0257 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0258 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0259 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0260 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0261 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0262 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0263 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0264 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0265 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0266 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0267 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0268 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0269 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0270 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0271 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0272 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0273 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0274 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0275 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0276 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0277 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0278 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0279 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0280 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0281 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0282 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0283 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0284 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0285 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0286 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0287 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0288 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0289 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0290 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0291 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0292 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0293 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0294 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0295 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0296 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0297 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0298 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0299 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0300 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0301 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0302 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0303 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0304 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0305 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0306 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0307 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0308 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0309 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0310 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0311 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0312 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0313 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0314 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0315 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0316 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0317 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0318 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0319 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0320 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0321 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0322 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0323 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0324 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0325 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0326 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0327 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0328 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0329 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0330 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0331 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0332 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0333 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0334 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0335 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0336 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0337 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0338 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0339 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0340 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0341 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0342 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0343 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0344 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0345 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0346 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0347 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0348 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0349 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0350 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0351 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0352 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0353 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0354 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0355 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0356 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0357 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0358 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0359 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0360 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0361 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0362 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0363 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0364 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0365 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0366 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0367 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0368 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0369 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0370 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0371 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0372 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0373 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0374 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0375 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0376 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0377 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0378 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0379 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0380 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0381 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0382 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0383 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0384 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0385 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0386 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0387 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0388 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0389 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0390 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0391 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0392 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0393 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0394 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0395 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0396 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0397 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0398 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0399 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0400 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0401 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0402 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0403 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0404 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0405 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0406 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0407 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0408 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0409 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0410 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0411 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0412 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0413 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0414 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0415 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0416 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0417 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0418 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0419 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0420 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0421 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0422 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0423 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0424 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0425 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0426 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0427 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0428 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0429 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0430 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0431 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0432 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0433 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0434 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0435 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0436 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0437 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0438 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0439 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0440 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0441 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0442 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0443 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0444 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0445 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0446 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0447 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0448 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0449 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0450 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0451 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0452 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0453 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0454 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0455 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0456 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0457 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0458 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0459 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0460 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0461 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0462 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0463 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0464 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0465 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0466 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0467 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0468 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0469 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0470 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0471 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0472 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0473 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0474 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0475 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0476 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0477 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0478 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0479 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0480 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0481 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0482 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0483 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0484 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0485 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0486 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0487 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0488 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0489 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0490 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0491 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0492 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0493 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0494 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0495 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0496 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0497 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0498 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0499 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0500 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0501 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0502 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0503 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0504 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0505 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0506 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0507 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0508 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0509 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0510 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0511 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0512 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0513 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0514 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0515 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0516 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0517 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0518 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0519 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0520 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0521 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0522 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0523 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0524 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0525 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0526 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0527 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0528 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0529 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0530 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0531 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0532 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0533 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0534 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0535 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0536 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0537 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0538 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0539 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0540 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0541 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0542 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0543 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0544 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0545 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0546 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0547 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0548 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0549 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0550 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0551 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0552 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0553 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0554 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0555 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0556 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0557 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0558 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0559 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0560 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0561 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0562 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0563 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0564 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0565 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0566 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0567 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0568 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0569 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0570 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0571 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0572 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0573 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0574 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0575 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0576 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0577 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0578 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0579 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0580 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0581 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0582 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0583 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0584 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0585 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0586 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0587 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0588 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0589 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0590 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0591 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0592 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0593 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0594 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0595 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0596 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0597 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0598 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0599 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0600 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0601 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0602 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0603 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0604 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0605 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0606 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0607 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0608 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0609 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0610 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0611 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0612 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0613 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0614 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0615 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0616 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0617 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0618 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0619 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0620 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0621 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0622 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0623 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0624 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0625 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0626 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0627 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0628 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0629 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0630 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0631 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0632 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0633 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0634 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0635 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0636 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0637 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0638 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0639 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0640 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0641 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0642 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0643 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0644 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0645 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0646 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0647 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0648 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0649 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0650 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0651 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0652 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0653 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0654 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0655 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0656 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0657 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0658 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0659 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0660 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0661 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0662 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0663 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0664 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0665 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0666 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0667 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0668 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0669 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0670 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0671 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0672 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0673 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0674 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0675 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0676 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0677 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0678 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0679 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0680 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0681 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0682 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0683 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0684 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0685 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0686 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0687 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0688 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0689 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0690 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0691 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0692 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0693 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0694 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0695 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0696 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0697 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0698 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0699 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0700 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0701 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0702 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0703 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0704 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0705 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0706 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0707 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0708 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0709 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0710 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0711 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0712 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0713 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0714 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0715 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0716 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0717 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0718 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0719 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0720 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0721 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0722 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0723 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0724 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0725 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0726 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0727 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0728 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0729 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0730 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0731 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0732 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0733 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0734 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0735 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0736 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0737 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0738 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0739 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0740 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0741 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0742 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0743 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0744 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0745 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0746 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0747 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0748 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0749 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0750 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0751 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0752 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0753 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0754 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0755 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0756 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0757 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0758 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0759 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0760 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0761 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0762 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0763 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0764 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0765 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0766 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0767 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0768 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0769 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0770 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0771 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0772 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0773 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0774 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0775 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0776 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0777 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0778 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0779 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0780 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0781 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0782 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0783 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0784 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0785 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0786 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0787 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0788 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0789 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0790 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0791 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0792 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0793 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0794 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0795 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0796 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0797 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0798 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0799 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0800 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0801 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0802 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0803 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0804 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0805 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0806 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0807 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0808 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0809 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0810 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0811 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0812 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0813 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0814 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0815 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0816 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0817 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0818 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0819 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0820 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0821 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0822 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0823 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0824 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0825 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0826 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0827 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0828 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0829 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0830 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0831 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0832 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0833 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0834 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0835 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0836 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0837 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0838 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0839 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0840 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0841 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0842 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0843 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0844 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0845 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0846 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0847 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0848 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0849 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0850 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0851 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0852 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0853 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0854 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0855 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0856 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0857 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0858 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0859 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0860 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0861 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0862 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0863 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0864 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0865 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0866 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0867 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0868 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0869 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0870 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0871 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0872 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0873 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0874 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0875 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0876 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0877 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0878 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0879 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0880 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0881 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0882 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0883 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0884 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0885 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0886 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0887 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0888 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0889 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0890 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0891 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0892 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0893 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0894 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0895 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0896 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0897 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0898 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0899 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0900 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0901 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0902 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0903 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0904 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0905 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0906 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0907 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0908 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0909 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0910 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0911 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0912 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0913 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0914 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0915 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0916 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0917 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0918 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0919 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0920 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0921 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0922 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0923 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0924 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0925 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0926 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0927 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0928 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0929 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0930 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0931 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0932 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0933 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0934 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0935 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0936 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0937 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0938 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0939 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0940 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0941 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0942 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0943 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0944 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0945 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0946 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0947 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0948 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0949 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0950 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0951 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0952 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0953 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0954 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0955 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0956 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0957 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0958 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0959 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0960 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0961 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0962 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0963 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0964 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0965 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0966 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0967 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0968 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0969 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0970 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0971 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0972 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0973 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0974 / 0974 | LOSS 0.0011\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0001 / 3410 | LOSS 0.0006\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0002 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0003 / 3410 | LOSS 0.0006\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0004 / 3410 | LOSS 0.0006\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0005 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0006 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0007 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0008 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0009 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0010 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0011 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0012 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0013 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0014 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0015 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0016 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0017 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0018 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0019 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0020 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0021 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0022 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0023 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0024 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0025 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0026 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0027 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0028 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0029 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0030 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0031 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0032 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0033 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0034 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0035 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0036 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0037 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0038 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0039 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0040 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0041 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0042 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0043 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0044 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0045 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0046 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0047 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0048 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0049 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0050 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0051 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0052 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0053 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0054 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0055 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0056 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0057 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0058 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0059 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0060 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0061 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0062 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0063 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0064 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0065 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0066 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0067 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0068 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0069 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0070 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0071 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0072 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0073 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0074 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0075 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0076 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0077 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0078 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0079 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0080 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0081 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0082 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0083 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0084 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0085 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0086 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0087 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0088 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0089 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0090 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0091 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0092 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0093 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0094 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0095 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0096 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0097 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0098 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0099 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0100 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0101 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0102 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0103 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0104 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0105 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0106 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0107 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0108 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0109 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0110 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0111 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0112 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0113 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0114 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0115 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0116 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0117 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0118 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0119 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0120 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0121 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0122 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0123 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0124 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0125 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0126 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0127 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0128 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0129 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0130 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0131 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0132 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0133 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0134 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0135 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0136 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0137 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0138 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0139 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0140 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0141 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0142 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0143 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0144 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0145 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0146 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0147 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0148 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0149 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0150 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0151 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0152 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0153 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0154 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0155 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0156 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0157 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0158 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0159 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0160 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0161 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0162 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0163 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0164 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0165 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0166 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0167 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0168 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0169 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0170 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0171 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0172 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0173 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0174 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0175 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0176 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0177 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0178 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0179 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0180 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0181 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0182 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0183 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0184 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0185 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0186 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0187 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0188 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0189 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0190 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0191 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0192 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0193 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0194 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0195 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0196 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0197 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0198 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0199 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0276 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0277 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0278 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0279 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0280 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0281 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0282 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0283 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0284 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0285 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0286 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0287 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0288 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0289 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0290 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0291 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0292 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0293 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0294 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0295 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0296 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0297 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0298 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0299 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0300 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0301 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0302 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0303 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0304 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0305 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0306 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0307 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0308 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0309 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0310 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0311 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0312 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0313 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0314 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0315 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0316 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0317 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0318 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0319 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0320 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0321 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0322 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0323 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0324 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0325 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0326 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0327 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0328 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0329 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0330 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0331 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0332 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0333 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0334 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0335 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0336 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0337 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0338 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0339 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0340 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0341 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0342 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0343 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0344 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0345 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0346 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0347 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0348 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0349 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0350 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0351 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0352 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0353 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0354 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0355 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0356 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0357 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0358 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0359 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0360 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0361 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0362 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0363 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0364 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0365 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0366 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0367 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0368 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0369 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0370 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0371 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0372 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0373 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0374 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0375 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0376 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0377 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0378 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0379 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0380 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0381 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0382 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0383 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0384 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0385 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0386 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0387 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0388 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0389 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0390 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0391 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0392 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0393 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0394 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0395 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0396 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0397 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0398 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0399 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0400 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0401 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0402 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0403 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0404 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0405 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0406 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0407 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0410 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0411 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0412 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0413 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0414 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0415 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0416 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0417 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0418 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0419 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0420 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0421 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0422 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0423 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0424 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0425 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0426 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0427 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0428 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0429 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0430 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0431 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0432 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0433 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0434 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0435 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0436 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0437 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0438 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0439 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0440 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0441 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0442 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0443 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0444 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0445 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0446 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0447 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0448 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0449 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0450 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0451 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0452 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0453 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0454 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0455 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0456 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0457 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0458 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0459 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0460 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0461 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0462 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0463 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0464 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0465 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0466 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0467 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0468 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0469 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0470 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0471 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0472 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0473 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0474 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0475 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0476 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0477 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0478 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0479 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0480 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0481 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0482 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0483 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0484 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0485 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0486 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0487 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0488 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0489 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0490 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0491 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0492 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0493 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0494 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0495 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0496 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0497 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0498 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0499 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0500 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0501 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0502 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0503 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0504 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0505 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0506 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0507 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0508 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0509 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0510 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0511 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0512 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0513 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0514 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0515 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0516 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0517 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0518 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0519 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0520 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0521 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0522 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0523 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0524 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0525 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0526 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0527 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0528 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0529 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0530 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0531 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0532 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0533 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0534 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0535 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0536 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0537 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0538 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0539 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0540 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0541 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0542 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0543 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0544 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0545 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0546 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0547 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0548 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0549 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0550 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0551 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0552 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0553 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0554 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0555 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0556 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0557 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0558 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0559 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0560 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0561 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0562 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0563 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0564 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0565 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0566 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0567 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0568 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0569 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0570 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0571 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0572 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0573 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0574 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0575 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0576 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0577 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0578 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0579 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0580 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0581 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0582 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0583 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0584 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0585 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0586 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0587 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0588 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0589 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0590 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0591 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0592 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0593 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0594 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0595 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0596 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0597 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0598 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0599 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0600 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0601 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0602 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0603 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0604 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0605 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0606 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0607 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0608 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0609 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0610 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0611 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0612 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0613 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0614 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0615 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0616 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0617 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0618 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0619 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0620 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0621 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0622 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0623 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0624 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0625 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0626 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0627 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0628 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0629 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0630 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0631 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0632 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0633 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0634 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0635 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0636 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0637 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0638 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0639 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0640 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0641 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0642 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0643 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0644 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0645 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0646 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0647 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0648 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0649 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0650 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0651 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0652 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0653 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0654 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0655 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0656 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0657 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0658 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0659 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0660 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0661 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0662 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0663 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0664 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0665 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0666 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0667 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0668 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0669 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0670 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0671 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0672 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0673 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0674 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0675 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0676 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0677 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0678 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0679 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0680 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0681 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0682 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0683 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0684 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0685 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0686 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0687 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0688 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0689 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0690 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0691 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0692 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0693 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0694 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0695 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0696 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0697 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0698 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0699 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0700 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0701 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0702 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0703 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0704 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0705 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0706 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0707 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0708 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0709 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0710 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0711 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0712 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0713 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0714 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0715 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0716 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0717 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0718 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0719 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0720 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0721 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0722 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0723 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0724 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0725 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0726 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0727 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0728 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0729 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0730 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0731 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0732 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0733 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0734 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0735 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0736 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0737 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0738 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0739 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0740 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0741 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0742 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0743 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0744 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0745 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0746 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0747 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0748 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0749 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0750 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0751 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0752 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0753 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0754 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0755 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0756 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0757 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0758 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0759 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0760 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0761 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0762 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0763 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0764 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0765 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0766 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0767 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0768 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0769 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0770 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0771 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0772 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0773 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0774 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0775 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0776 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0777 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0778 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0779 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0780 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0781 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0782 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0783 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0784 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0785 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0786 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0787 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0788 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0789 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0790 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0791 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0792 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0793 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0794 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0795 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0796 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0797 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0798 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0799 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0800 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0801 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0802 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0803 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0804 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0805 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0806 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0807 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0808 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0809 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0810 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0811 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0812 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0813 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0814 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0815 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0816 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0817 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0818 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0819 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0820 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0821 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0822 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0823 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0824 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0825 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0826 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0827 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0828 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0829 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0830 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0831 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0832 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0833 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0834 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0835 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0836 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0837 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0838 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0839 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0840 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0841 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0842 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0843 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0844 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0845 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0846 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0847 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0848 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0849 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0850 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0851 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0852 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0853 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0854 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0855 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0856 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0857 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0858 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0859 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0860 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0861 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0862 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0863 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0864 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0865 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0866 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0867 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0868 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0869 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0870 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0871 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0872 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0873 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0874 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0875 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0876 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0877 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0878 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0879 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0880 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0881 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0882 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0883 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0884 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0885 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0886 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0887 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0888 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0889 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0890 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0891 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0892 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0893 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0894 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0895 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0896 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0897 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0898 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0899 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0900 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0901 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0902 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0903 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0904 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0905 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0906 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0907 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0908 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0909 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0910 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0911 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0912 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0913 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0914 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0915 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0916 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0917 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0918 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0919 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0920 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0921 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0922 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0923 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0924 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0925 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0926 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0927 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0928 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0929 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0930 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0931 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0932 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0933 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0934 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0935 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0936 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0937 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0938 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0939 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0940 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0941 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0942 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0943 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0944 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0945 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0946 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0947 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0948 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0949 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0950 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0951 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0952 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0953 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0954 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0955 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0956 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0957 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0958 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0959 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0960 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0961 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0962 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0963 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0964 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0965 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0966 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0967 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0968 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0969 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0970 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0971 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0972 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0973 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0974 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0975 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0976 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0977 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0978 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0979 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0980 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0981 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0982 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0983 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0984 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0985 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0986 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0987 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0988 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0989 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0990 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0991 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0992 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0993 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0994 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0995 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0996 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0997 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0998 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0999 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1000 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1001 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1002 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1003 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1004 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1005 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1006 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1007 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1008 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1009 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1010 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1011 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1012 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1013 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1014 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1015 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1016 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1017 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1018 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1019 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1020 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1021 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1022 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1023 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1024 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1025 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1026 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1027 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1028 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1029 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1030 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1031 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1032 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1033 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1034 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1035 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1036 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1037 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1038 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1039 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1040 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1041 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1042 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1043 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1044 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1045 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1046 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1047 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1048 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1049 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1050 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1051 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1052 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1053 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1054 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1055 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1056 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1057 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1058 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1059 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1060 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1061 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1062 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1063 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1064 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1065 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1066 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1067 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1068 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1069 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1070 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1071 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1072 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1073 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1074 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1075 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1076 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1077 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1078 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1079 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1080 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1081 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1082 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1083 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1084 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1085 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1086 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1087 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1088 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1089 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1090 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1091 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1092 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1093 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1094 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1095 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1096 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1097 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1098 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1099 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1100 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1101 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1102 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1103 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1104 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1105 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1106 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1107 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1108 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1109 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1110 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1111 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1112 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1113 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1114 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1115 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1116 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1117 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1118 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1119 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1120 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1121 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1122 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1123 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1124 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1125 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1126 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1127 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1128 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1129 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1130 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1131 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1132 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1133 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1134 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1135 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1136 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1137 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1138 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1139 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1140 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1141 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1142 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1143 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1144 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1145 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1146 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1147 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1148 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1149 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1150 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1151 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1152 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1153 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1154 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1155 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1156 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1157 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1158 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1159 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1160 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1161 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1162 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1163 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1164 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1165 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1166 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1167 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1168 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1169 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1170 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1171 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1172 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1173 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1174 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1175 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1176 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1177 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1178 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1179 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1180 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1181 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1182 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1183 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1184 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1185 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1186 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1187 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1188 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1189 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1190 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1191 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1192 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1193 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1194 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1195 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1196 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1197 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1198 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1199 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1276 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1277 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1278 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1279 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1280 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1281 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1282 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1283 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1284 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1285 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1286 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1287 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1288 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1289 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1290 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1291 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1292 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1293 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1294 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1295 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1296 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1297 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1298 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1299 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1300 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1301 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1302 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1303 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1304 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1305 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1306 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1307 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1308 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1309 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1310 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1311 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1312 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1313 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1314 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1315 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1316 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1317 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1318 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1319 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1320 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1321 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1322 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1323 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1324 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1325 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1326 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1327 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1328 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1329 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1330 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1331 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1332 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1333 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1334 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1335 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1336 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1337 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1338 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1339 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1340 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1341 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1342 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1343 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1344 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1345 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1346 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1347 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1348 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1349 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1350 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1351 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1352 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1353 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1354 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1355 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1356 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1357 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1358 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1359 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1360 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1361 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1362 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1363 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1364 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1365 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1366 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1367 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1368 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1369 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1370 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1371 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1372 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1373 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1374 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1375 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1376 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1377 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1378 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1379 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1380 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1381 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1382 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1383 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1384 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1385 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1386 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1387 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1388 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1389 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1390 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1391 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1392 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1393 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1394 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1395 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1396 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1397 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1398 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1399 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1400 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1401 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1402 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1403 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1404 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1405 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1406 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1407 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1410 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1411 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1412 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1413 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1414 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1415 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1416 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1417 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1418 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1419 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1420 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1421 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1422 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1423 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1424 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1425 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1426 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1427 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1428 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1429 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1430 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1431 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1432 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1433 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1434 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1435 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1436 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1437 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1438 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1439 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1440 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1441 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1442 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1443 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1444 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1445 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1446 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1447 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1448 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1449 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1450 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1451 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1452 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1453 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1454 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1455 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1456 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1457 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1458 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1459 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1460 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1461 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1462 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1463 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1464 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1465 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1466 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1467 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1468 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1469 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1470 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1471 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1472 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1473 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1474 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1475 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1476 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1477 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1478 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1479 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1480 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1481 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1482 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1483 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1484 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1485 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1486 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1487 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1488 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1489 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1490 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1491 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1492 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1493 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1494 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1495 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1496 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1497 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1498 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1499 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1500 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1501 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1502 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1503 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1504 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1505 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1506 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1507 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1508 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1509 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1510 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1511 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1512 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1513 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1514 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1515 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1516 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1517 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1518 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1519 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1520 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1521 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1522 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1523 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1524 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1525 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1526 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1527 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1528 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1529 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1530 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1531 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1532 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1533 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1534 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1535 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1536 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1537 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1538 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1539 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1540 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1541 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1542 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1543 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1544 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1545 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1546 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1547 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1548 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1549 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1550 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1551 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1552 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1553 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1554 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1555 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1556 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1557 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1558 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1559 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1560 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1561 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1562 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1563 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1564 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1565 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1566 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1567 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1568 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1569 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1570 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1571 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1572 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1573 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1574 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1575 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1576 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1577 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1578 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1579 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1580 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1581 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1582 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1583 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1584 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1585 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1586 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1587 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1588 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1589 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1590 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1591 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1592 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1593 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1594 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1595 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1596 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1597 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1598 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1599 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1600 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1601 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1602 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1603 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1604 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1605 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1606 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1607 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1608 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1609 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1610 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1611 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1612 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1613 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1614 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1615 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1616 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1617 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1618 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1619 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1620 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1621 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1622 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1623 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1624 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1625 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1626 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1627 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1628 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1629 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1630 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1631 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1632 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1633 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1634 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1635 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1636 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1637 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1638 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1639 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1640 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1641 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1642 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1643 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1644 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1645 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1646 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1647 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1648 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1649 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1650 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1651 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1652 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1653 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1654 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1655 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1656 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1657 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1658 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1659 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1660 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1661 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1662 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1663 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1664 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1665 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1666 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1667 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1668 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1669 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1670 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1671 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1672 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1673 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1674 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1675 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1676 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1677 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1678 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1679 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1680 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1681 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1682 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1683 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1684 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1685 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1686 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1687 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1688 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1689 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1690 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1691 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1692 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1693 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1694 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1695 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1696 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1697 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1698 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1699 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1700 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1701 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1702 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1703 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1704 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1705 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1706 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1707 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1708 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1709 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1710 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1711 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1712 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1713 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1714 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1715 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1716 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1717 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1718 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1719 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1720 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1721 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1722 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1723 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1724 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1725 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1726 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1727 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1728 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1729 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1730 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1731 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1732 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1733 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1734 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1735 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1736 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1737 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1738 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1739 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1740 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1741 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1742 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1743 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1744 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1745 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1746 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1747 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1748 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1749 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1750 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1751 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1752 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1753 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1754 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1755 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1756 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1757 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1758 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1759 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1760 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1761 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1762 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1763 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1764 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1765 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1766 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1767 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1768 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1769 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1770 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1771 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1772 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1773 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1774 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1775 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1776 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1777 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1778 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1779 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1780 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1781 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1782 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1783 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1784 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1785 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1786 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1787 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1788 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1789 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1790 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1791 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1792 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1793 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1794 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1795 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1796 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1797 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1798 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1799 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1800 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1801 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1802 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1803 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1804 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1805 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1806 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1807 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1808 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1809 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1810 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1811 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1812 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1813 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1814 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1815 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1816 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1817 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1818 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1819 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1820 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1821 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1822 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1823 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1824 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1825 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1826 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1827 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1828 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1829 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1830 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1831 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1832 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1833 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1834 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1835 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1836 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1837 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1838 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1839 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1840 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1841 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1842 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1843 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1844 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1845 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1846 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1847 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1848 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1849 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1850 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1851 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1852 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1853 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1854 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1855 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1856 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1857 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1858 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1859 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1860 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1861 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1862 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1863 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1864 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1865 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1866 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1867 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1868 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1869 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1870 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1871 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1872 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1873 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1874 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1875 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1876 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1877 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1878 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1879 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1880 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1881 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1882 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1883 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1884 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1885 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1886 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1887 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1888 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1889 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1890 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1891 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1892 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1893 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1894 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1895 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1896 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1897 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1898 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1899 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1900 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1901 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1902 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1903 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1904 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1905 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1906 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1907 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1908 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1909 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1910 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1911 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1912 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1913 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1914 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1915 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1916 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1917 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1918 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1919 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1920 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1921 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1922 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1923 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1924 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1925 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1926 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1927 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1928 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1929 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1930 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1931 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1932 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1933 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1934 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1935 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1936 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1937 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1938 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1939 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1940 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1941 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1942 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1943 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1944 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1945 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1946 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1947 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1948 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1949 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1950 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1951 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1952 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1953 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1954 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1955 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1956 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1957 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1958 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1959 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1960 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1961 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1962 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1963 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1964 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1965 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1966 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1967 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1968 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1969 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1970 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1971 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1972 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1973 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1974 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1975 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1976 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1977 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1978 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1979 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1980 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1981 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1982 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1983 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1984 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1985 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1986 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1987 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1988 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1989 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1990 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1991 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1992 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1993 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1994 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1995 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1996 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1997 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1998 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1999 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2000 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2001 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2002 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2003 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2004 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2005 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2006 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2007 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2008 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2009 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2010 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2011 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2012 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2013 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2014 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2015 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2016 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2017 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2018 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2019 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2020 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2021 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2022 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2023 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2024 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2025 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2026 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2027 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2028 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2029 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2030 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2031 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2032 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2033 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2034 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2035 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2036 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2037 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2038 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2039 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2040 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2041 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2042 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2043 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2044 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2045 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2046 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2047 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2048 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2049 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2050 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2051 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2052 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2053 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2054 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2055 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2056 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2057 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2058 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2059 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2060 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2061 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2062 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2063 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2064 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2065 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2066 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2067 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2068 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2069 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2070 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2071 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2072 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2073 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2074 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2075 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2076 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2077 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2078 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2079 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2080 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2081 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2082 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2083 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2084 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2085 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2086 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2087 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2088 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2089 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2090 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2091 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2092 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2093 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2094 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2095 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2096 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2097 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2098 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2099 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2100 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2101 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2102 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2103 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2104 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2105 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2106 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2107 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2108 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2109 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2110 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2111 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2112 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2113 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2114 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2115 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2116 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2117 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2118 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2119 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2120 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2121 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2122 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2123 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2124 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2125 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2126 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2127 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2128 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2129 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2130 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2131 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2132 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2133 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2134 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2135 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2136 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2137 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2138 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2139 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2140 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2141 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2142 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2143 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2144 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2145 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2146 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2147 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2148 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2149 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2150 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2151 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2152 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2153 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2154 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2155 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2156 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2157 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2158 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2159 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2160 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2161 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2162 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2163 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2164 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2165 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2166 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2167 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2168 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2169 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2170 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2171 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2172 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2173 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2174 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2175 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2176 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2177 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2178 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2179 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2180 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2181 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2182 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2183 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2184 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2185 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2186 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2187 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2188 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2189 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2190 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2191 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2192 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2193 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2194 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2195 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2196 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2197 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2198 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2199 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2276 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2277 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2278 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2279 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2280 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2281 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2282 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2283 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2284 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2285 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2286 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2287 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2288 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2289 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2290 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2291 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2292 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2293 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2294 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2295 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2296 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2297 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2298 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2299 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2300 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2301 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2302 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2303 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2304 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2305 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2306 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2307 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2308 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2309 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2310 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2311 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2312 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2313 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2314 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2315 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2316 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2317 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2318 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2319 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2320 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2321 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2322 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2323 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2324 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2325 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2326 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2327 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2328 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2329 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2330 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2331 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2332 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2333 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2334 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2335 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2336 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2337 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2338 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2339 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2340 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2341 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2342 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2343 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2344 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2345 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2346 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2347 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2348 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2349 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2350 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2351 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2352 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2353 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2354 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2355 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2356 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2357 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2358 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2359 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2360 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2361 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2362 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2363 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2364 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2365 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2366 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2367 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2368 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2369 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2370 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2371 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2372 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2373 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2374 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2375 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2376 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2377 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2378 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2379 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2380 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2381 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2382 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2383 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2384 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2385 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2386 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2387 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2388 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2389 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2390 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2391 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2392 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2393 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2394 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2395 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2396 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2397 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2398 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2399 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2400 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2401 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2402 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2403 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2404 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2405 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2406 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2407 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2410 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2411 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2412 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2413 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2414 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2415 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2416 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2417 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2418 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2419 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2420 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2421 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2422 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2423 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2424 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2425 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2426 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2427 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2428 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2429 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2430 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2431 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2432 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2433 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2434 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2435 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2436 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2437 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2438 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2439 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2440 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2441 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2442 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2443 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2444 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2445 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2446 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2447 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2448 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2449 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2450 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2451 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2452 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2453 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2454 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2455 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2456 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2457 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2458 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2459 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2460 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2461 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2462 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2463 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2464 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2465 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2466 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2467 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2468 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2469 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2470 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2471 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2472 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2473 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2474 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2475 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2476 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2477 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2478 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2479 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2480 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2481 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2482 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2483 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2484 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2485 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2486 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2487 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2488 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2489 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2490 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2491 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2492 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2493 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2494 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2495 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2496 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2497 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2498 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2499 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2500 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2501 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2502 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2503 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2504 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2505 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2506 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2507 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2508 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2509 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2510 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2511 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2512 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2513 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2514 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2515 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2516 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2517 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2518 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2519 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2520 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2521 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2522 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2523 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2524 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2525 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2526 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2527 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2528 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2529 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2530 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2531 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2532 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2533 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2534 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2535 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2536 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2537 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2538 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2539 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2540 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2541 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2542 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2543 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2544 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2545 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2546 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2547 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2548 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2549 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2550 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2551 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2552 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2553 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2554 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2555 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2556 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2557 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2558 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2559 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2560 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2561 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2562 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2563 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2564 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2565 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2566 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2567 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2568 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2569 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2570 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2571 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2572 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2573 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2574 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2575 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2576 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2577 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2578 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2579 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2580 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2581 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2582 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2583 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2584 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2585 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2586 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2587 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2588 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2589 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2590 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2591 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2592 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2593 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2594 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2595 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2596 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2597 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2598 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2599 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2600 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2601 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2602 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2603 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2604 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2605 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2606 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2607 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2608 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2609 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2610 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2611 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2612 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2613 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2614 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2615 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2616 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2617 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2618 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2619 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2620 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2621 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2622 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2623 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2624 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2625 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2626 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2627 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2628 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2629 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2630 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2631 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2632 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2633 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2634 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2635 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2636 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2637 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2638 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2639 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2640 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2641 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2642 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2643 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2644 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2645 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2646 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2647 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2648 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2649 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2650 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2651 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2652 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2653 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2654 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2655 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2656 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2657 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2658 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2659 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2660 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2661 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2662 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2663 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2664 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2665 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2666 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2667 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2668 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2669 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2670 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2671 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2672 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2673 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2674 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2675 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2676 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2677 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2678 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2679 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2680 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2681 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2682 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2683 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2684 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2685 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2686 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2687 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2688 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2689 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2690 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2691 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2692 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2693 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2694 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2695 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2696 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2697 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2698 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2699 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2700 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2701 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2702 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2703 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2704 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2705 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2706 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2707 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2708 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2709 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2710 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2711 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2712 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2713 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2714 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2715 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2716 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2717 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2718 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2719 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2720 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2721 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2722 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2723 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2724 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2725 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2726 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2727 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2728 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2729 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2730 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2731 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2732 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2733 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2734 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2735 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2736 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2737 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2738 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2739 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2740 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2741 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2742 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2743 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2744 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2745 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2746 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2747 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2748 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2749 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2750 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2751 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2752 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2753 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2754 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2755 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2756 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2757 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2758 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2759 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2760 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2761 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2762 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2763 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2764 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2765 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2766 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2767 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2768 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2769 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2770 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2771 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2772 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2773 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2774 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2775 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2776 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2777 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2778 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2779 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2780 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2781 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2782 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2783 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2784 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2785 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2786 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2787 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2788 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2789 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2790 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2791 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2792 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2793 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2794 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2795 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2796 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2797 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2798 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2799 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2800 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2801 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2802 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2803 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2804 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2805 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2806 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2807 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2808 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2809 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2810 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2811 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2812 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2813 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2814 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2815 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2816 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2817 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2818 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2819 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2820 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2821 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2822 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2823 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2824 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2825 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2826 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2827 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2828 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2829 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2830 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2831 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2832 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2833 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2834 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2835 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2836 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2837 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2838 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2839 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2840 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2841 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2842 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2843 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2844 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2845 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2846 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2847 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2848 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2849 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2850 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2851 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2852 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2853 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2854 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2855 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2856 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2857 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2858 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2859 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2860 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2861 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2862 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2863 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2864 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2865 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2866 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2867 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2868 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2869 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2870 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2871 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2872 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2873 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2874 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2875 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2876 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2877 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2878 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2879 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2880 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2881 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2882 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2883 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2884 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2885 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2886 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2887 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2888 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2889 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2890 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2891 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2892 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2893 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2894 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2895 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2896 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2897 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2898 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2899 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2900 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2901 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2902 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2903 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2904 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2905 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2906 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2907 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2908 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2909 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2910 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2911 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2912 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2913 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2914 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2915 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2916 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2917 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2918 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2919 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2920 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2921 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2922 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2923 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2924 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2925 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2926 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2927 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2928 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2929 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2930 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2931 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2932 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2933 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2934 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2935 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2936 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2937 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2938 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2939 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2940 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2941 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2942 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2943 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2944 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2945 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2946 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2947 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2948 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2949 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2950 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2951 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2952 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2953 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2954 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2955 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2956 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2957 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2958 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2959 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2960 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2961 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2962 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2963 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2964 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2965 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2966 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2967 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2968 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2969 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2970 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2971 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2972 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2973 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2974 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2975 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2976 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2977 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2978 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2979 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2980 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2981 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2982 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2983 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2984 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2985 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2986 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2987 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2988 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2989 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2990 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2991 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2992 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2993 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2994 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2995 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2996 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2997 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2998 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2999 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3000 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3001 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3002 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3003 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3004 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3005 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3006 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3007 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3008 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3009 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3010 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3011 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3012 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3013 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3014 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3015 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3016 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3017 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3018 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3019 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3020 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3021 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3022 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3023 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3024 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3025 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3026 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3027 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3028 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3029 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3030 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3031 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3032 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3033 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3034 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3035 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3036 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3037 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3038 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3039 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3040 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3041 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3042 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3043 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3044 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3045 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3046 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3047 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3048 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3049 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3050 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3051 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3052 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3053 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3054 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3055 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3056 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3057 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3058 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3059 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3060 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3061 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3062 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3063 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3064 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3065 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3066 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3067 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3068 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3069 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3070 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3071 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3072 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3073 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3074 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3075 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3076 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3077 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3078 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3079 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3080 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3081 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3082 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3083 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3084 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3085 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3086 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3087 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3088 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3089 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3090 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3091 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3092 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3093 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3094 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3095 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3096 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3097 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3098 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3099 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3100 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3101 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3102 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3103 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3104 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3105 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3106 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3107 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3108 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3109 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3110 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3111 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3112 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3113 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3114 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3115 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3116 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3117 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3118 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3119 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3120 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3121 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3122 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3123 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3124 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3125 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3126 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3127 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3128 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3129 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3130 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3131 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3132 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3133 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3134 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3135 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3136 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3137 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3138 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3139 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3140 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3141 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3142 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3143 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3144 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3145 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3146 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3147 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3148 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3149 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3150 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3151 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3152 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3153 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3154 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3155 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3156 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3157 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3158 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3159 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3160 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3161 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3162 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3163 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3164 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3165 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3166 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3167 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3168 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3169 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3170 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3171 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3172 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3173 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3174 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3175 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3176 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3177 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3178 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3179 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3180 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3181 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3182 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3183 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3184 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3185 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3186 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3187 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3188 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3189 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3190 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3191 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3192 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3193 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3194 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3195 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3196 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3197 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3198 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3199 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3276 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3277 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3278 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3279 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3280 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3281 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3282 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3283 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3284 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3285 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3286 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3287 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3288 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3289 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3290 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3291 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3292 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3293 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3294 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3295 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3296 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3297 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3298 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3299 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3300 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3301 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3302 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3303 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3304 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3305 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3306 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3307 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3308 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3309 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3310 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3311 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3312 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3313 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3314 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3315 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3316 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3317 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3318 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3319 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3320 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3321 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3322 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3323 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3324 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3325 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3326 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3327 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3328 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3329 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3330 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3331 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3332 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3333 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3334 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3335 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3336 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3337 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3338 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3339 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3340 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3341 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3342 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3343 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3344 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3345 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3346 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3347 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3348 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3349 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3350 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3351 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3352 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3353 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3354 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3355 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3356 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3357 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3358 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3359 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3360 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3361 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3362 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3363 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3364 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3365 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3366 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3367 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3368 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3369 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3370 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3371 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3372 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3373 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3374 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3375 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3376 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3377 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3378 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3379 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3380 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3381 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3382 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3383 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3384 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3385 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3386 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3387 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3388 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3389 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3390 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3391 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3392 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3393 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3394 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3395 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3396 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3397 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3398 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3399 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3400 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3401 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3402 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3403 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3404 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3405 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3406 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3407 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3410 / 3410 | LOSS 0.0008\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0001 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0002 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0003 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0004 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0005 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0006 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0007 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0008 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0009 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0010 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0011 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0012 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0013 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0014 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0015 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0016 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0017 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0018 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0019 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0020 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0021 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0022 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0023 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0024 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0025 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0026 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0027 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0028 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0029 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0030 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0031 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0032 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0033 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0034 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0035 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0036 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0037 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0038 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0039 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0040 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0041 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0042 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0043 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0044 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0045 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0046 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0047 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0048 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0049 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0050 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0051 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0052 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0053 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0054 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0055 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0056 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0057 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0058 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0059 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0060 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0061 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0062 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0063 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0064 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0065 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0066 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0067 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0068 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0069 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0070 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0071 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0072 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0073 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0074 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0075 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0076 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0077 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0078 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0079 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0080 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0081 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0082 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0083 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0084 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0085 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0086 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0087 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0088 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0089 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0090 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0091 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0092 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0093 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0094 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0095 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0096 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0097 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0098 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0099 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0100 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0101 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0102 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0103 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0104 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0105 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0106 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0107 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0108 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0109 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0110 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0111 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0112 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0113 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0114 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0115 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0116 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0117 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0118 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0119 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0120 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0121 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0122 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0123 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0124 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0125 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0126 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0127 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0128 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0129 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0130 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0131 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0132 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0133 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0134 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0135 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0136 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0137 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0138 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0139 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0140 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0141 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0142 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0143 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0144 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0145 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0146 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0147 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0148 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0149 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0150 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0151 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0152 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0153 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0154 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0155 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0156 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0157 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0158 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0159 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0160 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0161 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0162 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0163 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0164 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0165 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0166 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0167 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0168 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0169 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0170 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0171 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0172 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0173 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0174 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0175 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0176 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0177 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0178 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0179 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0180 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0181 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0182 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0183 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0184 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0185 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0186 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0187 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0188 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0189 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0190 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0191 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0192 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0193 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0194 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0195 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0196 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0197 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0198 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0199 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0200 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0201 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0202 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0203 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0204 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0205 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0206 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0207 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0208 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0209 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0210 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0211 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0212 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0213 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0214 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0215 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0216 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0217 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0218 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0219 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0220 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0221 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0222 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0223 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0224 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0225 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0226 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0227 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0228 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0229 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0230 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0231 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0232 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0233 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0234 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0235 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0236 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0237 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0238 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0239 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0240 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0241 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0242 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0243 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0244 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0245 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0246 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0247 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0248 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0249 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0250 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0251 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0252 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0253 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0254 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0255 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0256 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0257 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0258 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0259 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0260 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0261 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0262 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0263 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0264 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0265 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0266 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0267 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0268 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0269 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0270 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0271 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0272 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0273 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0274 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0275 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0276 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0277 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0278 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0279 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0280 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0281 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0282 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0283 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0284 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0285 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0286 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0287 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0288 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0289 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0290 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0291 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0292 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0293 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0294 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0295 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0296 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0297 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0298 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0299 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0300 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0301 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0302 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0303 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0304 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0305 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0306 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0307 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0308 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0309 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0310 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0311 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0312 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0313 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0314 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0315 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0316 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0317 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0318 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0319 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0320 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0321 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0322 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0323 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0324 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0325 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0326 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0327 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0328 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0329 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0330 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0331 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0332 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0333 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0334 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0335 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0336 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0337 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0338 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0339 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0340 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0341 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0342 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0343 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0344 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0345 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0346 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0347 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0348 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0349 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0350 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0351 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0352 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0353 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0354 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0355 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0356 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0357 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0358 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0359 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0360 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0361 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0362 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0363 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0364 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0365 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0366 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0367 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0368 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0369 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0370 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0371 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0372 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0373 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0374 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0375 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0376 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0377 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0378 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0379 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0380 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0381 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0382 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0383 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0384 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0385 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0386 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0387 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0388 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0389 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0390 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0391 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0392 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0393 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0394 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0395 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0396 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0397 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0398 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0399 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0400 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0401 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0402 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0403 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0404 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0405 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0406 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0407 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0408 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0409 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0410 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0411 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0412 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0413 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0414 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0415 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0416 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0417 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0418 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0419 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0420 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0421 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0422 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0423 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0424 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0425 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0426 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0427 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0428 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0429 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0430 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0431 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0432 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0433 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0434 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0435 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0436 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0437 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0438 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0439 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0440 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0441 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0442 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0443 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0444 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0445 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0446 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0447 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0448 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0449 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0450 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0451 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0452 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0453 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0454 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0455 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0456 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0457 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0458 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0459 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0460 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0461 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0462 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0463 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0464 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0465 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0466 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0467 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0468 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0469 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0470 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0471 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0472 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0473 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0474 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0475 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0476 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0477 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0478 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0479 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0480 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0481 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0482 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0483 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0484 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0485 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0486 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0487 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0488 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0489 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0490 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0491 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0492 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0493 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0494 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0495 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0496 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0497 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0498 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0499 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0500 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0501 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0502 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0503 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0504 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0505 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0506 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0507 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0508 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0509 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0510 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0511 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0512 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0513 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0514 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0515 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0516 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0517 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0518 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0519 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0520 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0521 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0522 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0523 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0524 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0525 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0526 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0527 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0528 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0529 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0530 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0531 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0532 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0533 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0534 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0535 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0536 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0537 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0538 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0539 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0540 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0541 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0542 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0543 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0544 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0545 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0546 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0547 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0548 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0549 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0550 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0551 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0552 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0553 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0554 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0555 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0556 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0557 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0558 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0559 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0560 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0561 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0562 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0563 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0564 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0565 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0566 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0567 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0568 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0569 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0570 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0571 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0572 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0573 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0574 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0575 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0576 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0577 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0578 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0579 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0580 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0581 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0582 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0583 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0584 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0585 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0586 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0587 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0588 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0589 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0590 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0591 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0592 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0593 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0594 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0595 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0596 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0597 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0598 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0599 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0600 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0601 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0602 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0603 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0604 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0605 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0606 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0607 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0608 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0609 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0610 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0611 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0612 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0613 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0614 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0615 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0616 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0617 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0618 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0619 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0620 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0621 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0622 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0623 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0624 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0625 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0626 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0627 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0628 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0629 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0630 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0631 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0632 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0633 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0634 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0635 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0636 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0637 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0638 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0639 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0640 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0641 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0642 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0643 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0644 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0645 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0646 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0647 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0648 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0649 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0650 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0651 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0652 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0653 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0654 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0655 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0656 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0657 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0658 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0659 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0660 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0661 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0662 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0663 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0664 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0665 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0666 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0667 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0668 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0669 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0670 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0671 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0672 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0673 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0674 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0675 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0676 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0677 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0678 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0679 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0680 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0681 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0682 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0683 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0684 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0685 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0686 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0687 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0688 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0689 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0690 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0691 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0692 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0693 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0694 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0695 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0696 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0697 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0698 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0699 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0700 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0701 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0702 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0703 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0704 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0705 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0706 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0707 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0708 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0709 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0710 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0711 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0712 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0713 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0714 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0715 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0716 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0717 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0718 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0719 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0720 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0721 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0722 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0723 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0724 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0725 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0726 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0727 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0728 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0729 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0730 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0731 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0732 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0733 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0734 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0735 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0736 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0737 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0738 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0739 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0740 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0741 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0742 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0743 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0744 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0745 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0746 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0747 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0748 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0749 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0750 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0751 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0752 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0753 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0754 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0755 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0756 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0757 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0758 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0759 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0760 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0761 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0762 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0763 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0764 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0765 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0766 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0767 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0768 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0769 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0770 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0771 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0772 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0773 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0774 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0775 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0776 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0777 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0778 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0779 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0780 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0781 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0782 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0783 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0784 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0785 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0786 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0787 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0788 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0789 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0790 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0791 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0792 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0793 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0794 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0795 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0796 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0797 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0798 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0799 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0800 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0801 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0802 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0803 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0804 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0805 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0806 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0807 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0808 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0809 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0810 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0811 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0812 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0813 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0814 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0815 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0816 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0817 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0818 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0819 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0820 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0821 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0822 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0823 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0824 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0825 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0826 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0827 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0828 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0829 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0830 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0831 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0832 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0833 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0834 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0835 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0836 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0837 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0838 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0839 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0840 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0841 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0842 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0843 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0844 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0845 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0846 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0847 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0848 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0849 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0850 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0851 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0852 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0853 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0854 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0855 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0856 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0857 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0858 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0859 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0860 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0861 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0862 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0863 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0864 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0865 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0866 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0867 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0868 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0869 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0870 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0871 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0872 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0873 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0874 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0875 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0876 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0877 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0878 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0879 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0880 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0881 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0882 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0883 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0884 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0885 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0886 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0887 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0888 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0889 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0890 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0891 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0892 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0893 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0894 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0895 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0896 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0897 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0898 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0899 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0900 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0901 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0902 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0903 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0904 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0905 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0906 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0907 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0908 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0909 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0910 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0911 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0912 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0913 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0914 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0915 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0916 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0917 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0918 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0919 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0920 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0921 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0922 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0923 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0924 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0925 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0926 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0927 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0928 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0929 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0930 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0931 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0932 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0933 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0934 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0935 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0936 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0937 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0938 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0939 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0940 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0941 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0942 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0943 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0944 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0945 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0946 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0947 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0948 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0949 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0950 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0951 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0952 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0953 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0954 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0955 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0956 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0957 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0958 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0959 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0960 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0961 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0962 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0963 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0964 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0965 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0966 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0967 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0968 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0969 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0970 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0971 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0972 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0973 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0974 / 0974 | LOSS 0.0018\n" + ] + } + ], + "source": [ + "# 훈련을 위한 Transform과 DataLoader\n", + "loader_train = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0)\n", + "loader_val = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=0)\n", + "\n", + "# 그밖에 부수적인 variables 설정하기\n", + "num_data_train = len(train_set)\n", + "num_data_val = len(val_set)\n", + "\n", + "num_batch_train = np.ceil(num_data_train / batch_size)\n", + "num_batch_val = np.ceil(num_data_val / batch_size)\n", + "\n", + "\n", + "# Tensorboard 를 사용하기 위한 SummaryWriter 설정\n", + "writer_train = SummaryWriter(log_dir=os.path.join(log_dir, 'train'))\n", + "writer_val = SummaryWriter(log_dir=os.path.join(log_dir, 'val'))\n", + "\n", + "# 네트워크 학습시키기\n", + "st_epoch = 0\n", + "# 학습한 모델이 있을 경우 모델 로드하기\n", + "net, optim, st_epoch = load(ckpt_dir=ckpt_dir, net=net, optim=optim) \n", + "\n", + "for epoch in range(st_epoch + 1, num_epoch + 1):\n", + " net.train()\n", + " loss_arr = []\n", + "\n", + " for batch, data in enumerate(loader_train, 1):\n", + " # forward pass\n", + " label = data['label'].to(device)\n", + " input = data['input'].to(device)\n", + "\n", + " output = net(input)\n", + "\n", + " # backward pass\n", + " optim.zero_grad()\n", + "\n", + " loss = fn_loss(output, label)\n", + " loss.backward()\n", + "\n", + " optim.step()\n", + "\n", + " # 손실함수 계산\n", + " loss_arr += [loss.item()]\n", + "\n", + " print(\"TRAIN: EPOCH %04d / %04d | BATCH %04d / %04d | LOSS %.4f\" %\n", + " (epoch, num_epoch, batch, num_batch_train, np.mean(loss_arr)))\n", + "\n", + " # Tensorboard 저장하기\n", + " label = fn_tonumpy(label)\n", + " input = fn_tonumpy(fn_denorm(input, mean=0.5, std=0.5))\n", + " output = fn_tonumpy(fn_class(output))\n", + "\n", + " writer_train.add_image('label', label, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')\n", + " writer_train.add_image('input', input, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')\n", + " writer_train.add_image('output', output, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')\n", + "\n", + " writer_train.add_scalar('loss', np.mean(loss_arr), epoch)\n", + "\n", + " with torch.no_grad():\n", + " net.eval()\n", + " loss_arr = []\n", + "\n", + " for batch, data in enumerate(loader_val, 1):\n", + " # forward pass\n", + " label = data['label'].to(device)\n", + " input = data['input'].to(device)\n", + "\n", + " output = net(input)\n", + "\n", + " # 손실함수 계산하기\n", + " loss = fn_loss(output, label)\n", + "\n", + " loss_arr += [loss.item()]\n", + "\n", + " print(\"VALID: EPOCH %04d / %04d | BATCH %04d / %04d | LOSS %.4f\" %\n", + " (epoch, num_epoch, batch, num_batch_val, np.mean(loss_arr)))\n", + "\n", + " # Tensorboard 저장하기\n", + " label = fn_tonumpy(label)\n", + " input = fn_tonumpy(fn_denorm(input, mean=0.5, std=0.5))\n", + " output = fn_tonumpy(fn_class(output))\n", + "\n", + " writer_val.add_image('label', label, num_batch_val * (epoch - 1) + batch, dataformats='NHWC')\n", + " writer_val.add_image('input', input, num_batch_val * (epoch - 1) + batch, dataformats='NHWC')\n", + " writer_val.add_image('output', output, num_batch_val * (epoch - 1) + batch, dataformats='NHWC')\n", + "\n", + " writer_val.add_scalar('loss', np.mean(loss_arr), epoch)\n", + "\n", + " # epoch 5마다 모델 저장하기\n", + " if epoch % 1 == 0:\n", + " save(ckpt_dir=ckpt_dir, net=net, optim=optim, epoch=epoch)\n", + "\n", + " writer_train.close()\n", + " writer_val.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print('train set: ' + str(len(train_set)))\n", + "print('val set: ' + str(len(val_set)))\n", + "print('test set: ' + str(len(test_set)))\n", + "print('total: ' + str(len(train_set)+ len(val_set)+ len(test_set)))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "loader_test = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0)\n", + "\n", + "# 그밖에 부수적인 variables 설정하기\n", + "num_data_test = len(test_set)\n", + "num_batch_test = np.ceil(num_data_test / batch_size)\n", + "\n", + "# 결과 디렉토리 생성하기\n", + "result_dir = os.path.join(base_dir, 'result')\n", + "if not os.path.exists(result_dir):\n", + " os.makedirs(os.path.join(result_dir, 'png'))\n", + " os.makedirs(os.path.join(result_dir, 'numpy'))\n", + "\n", + "net, optim, st_epoch = load(ckpt_dir=ckpt_dir, net=net, optim=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TEST: BATCH 0001 / 0488 | LOSS 0.0019\n", + "TEST: BATCH 0002 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0003 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0004 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0005 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0006 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0007 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0008 / 0488 | LOSS 0.0010\n", + "TEST: BATCH 0009 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0010 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0011 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0012 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0013 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0014 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0015 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0016 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0017 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0018 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0019 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0020 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0021 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0022 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0023 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0024 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0025 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0026 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0027 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0028 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0029 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0030 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0031 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0032 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0033 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0034 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0035 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0036 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0037 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0038 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0039 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0040 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0041 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0042 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0043 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0044 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0045 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0046 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0047 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0048 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0049 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0050 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0051 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0052 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0053 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0054 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0055 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0056 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0057 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0058 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0059 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0060 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0061 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0062 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0063 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0064 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0065 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0066 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0067 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0068 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0069 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0070 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0071 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0072 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0073 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0074 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0075 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0076 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0077 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0078 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0079 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0080 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0081 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0082 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0083 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0084 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0085 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0086 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0087 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0088 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0089 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0090 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0091 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0092 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0093 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0094 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0095 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0096 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0097 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0098 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0099 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0100 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0101 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0102 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0103 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0104 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0105 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0106 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0107 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0108 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0109 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0110 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0111 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0112 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0113 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0114 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0115 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0116 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0117 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0118 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0119 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0120 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0121 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0122 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0123 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0124 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0125 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0126 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0127 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0128 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0129 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0130 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0131 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0132 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0133 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0134 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0135 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0136 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0137 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0138 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0139 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0140 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0141 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0142 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0143 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0144 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0145 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0146 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0147 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0148 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0149 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0150 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0151 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0152 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0153 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0154 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0155 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0156 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0157 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0158 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0159 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0160 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0161 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0162 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0163 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0164 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0165 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0166 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0167 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0168 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0169 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0170 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0171 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0172 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0173 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0174 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0175 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0176 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0177 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0178 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0179 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0180 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0181 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0182 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0183 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0184 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0185 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0186 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0187 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0188 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0189 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0190 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0191 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0192 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0193 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0194 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0195 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0196 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0197 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0198 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0199 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0200 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0201 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0202 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0203 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0204 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0205 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0206 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0207 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0208 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0209 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0210 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0211 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0212 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0213 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0214 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0215 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0216 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0217 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0218 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0219 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0220 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0221 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0222 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0223 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0224 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0225 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0226 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0227 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0228 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0229 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0230 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0231 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0232 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0233 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0234 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0235 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0236 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0237 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0238 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0239 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0240 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0241 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0242 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0243 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0244 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0245 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0246 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0247 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0248 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0249 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0250 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0251 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0252 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0253 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0254 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0255 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0256 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0257 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0258 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0259 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0260 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0261 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0262 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0263 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0264 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0265 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0266 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0267 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0268 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0269 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0270 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0271 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0272 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0273 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0274 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0275 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0276 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0277 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0278 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0279 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0280 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0281 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0282 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0283 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0284 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0285 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0286 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0287 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0288 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0289 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0290 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0291 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0292 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0293 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0294 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0295 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0296 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0297 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0298 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0299 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0300 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0301 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0302 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0303 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0304 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0305 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0306 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0307 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0308 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0309 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0310 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0311 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0312 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0313 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0314 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0315 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0316 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0317 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0318 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0319 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0320 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0321 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0322 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0323 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0324 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0325 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0326 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0327 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0328 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0329 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0330 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0331 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0332 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0333 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0334 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0335 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0336 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0337 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0338 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0339 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0340 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0341 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0342 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0343 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0344 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0345 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0346 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0347 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0348 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0349 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0350 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0351 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0352 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0353 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0354 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0355 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0356 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0357 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0358 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0359 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0360 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0361 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0362 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0363 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0364 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0365 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0366 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0367 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0368 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0369 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0370 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0371 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0372 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0373 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0374 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0375 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0376 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0377 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0378 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0379 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0380 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0381 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0382 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0383 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0384 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0385 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0386 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0387 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0388 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0389 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0390 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0391 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0392 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0393 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0394 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0395 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0396 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0397 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0398 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0399 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0400 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0401 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0402 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0403 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0404 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0405 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0406 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0407 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0408 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0409 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0410 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0411 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0412 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0413 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0414 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0415 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0416 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0417 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0418 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0419 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0420 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0421 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0422 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0423 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0424 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0425 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0426 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0427 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0428 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0429 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0430 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0431 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0432 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0433 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0434 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0435 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0436 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0437 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0438 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0439 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0440 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0441 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0442 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0443 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0444 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0445 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0446 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0447 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0448 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0449 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0450 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0451 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0452 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0453 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0454 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0455 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0456 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0457 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0458 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0459 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0460 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0461 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0462 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0463 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0464 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0465 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0466 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0467 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0468 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0469 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0470 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0471 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0472 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0473 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0474 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0475 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0476 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0477 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0478 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0479 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0480 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0481 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0482 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0483 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0484 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0485 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0486 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0487 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0488 / 0488 | LOSS 0.0017\n", + "AVERAGE TEST: BATCH 0488 / 0488 | LOSS 0.0017\n" + ] + } + ], + "source": [ + "with torch.no_grad():\n", + " net.eval()\n", + " loss_arr = []\n", + "\n", + " for batch, data in enumerate(loader_test, 1):\n", + " # forward pass\n", + " label = data['label'].to(device)\n", + " input = data['input'].to(device)\n", + "\n", + " output = net(input)\n", + "\n", + " # 손실함수 계산하기\n", + " loss = fn_loss(output, label)\n", + "\n", + " loss_arr += [loss.item()]\n", + "\n", + " print(\"TEST: BATCH %04d / %04d | LOSS %.4f\" %\n", + " (batch, num_batch_test, np.mean(loss_arr)))\n", + "\n", + " # Tensorboard 저장하기\n", + " label = fn_tonumpy(label)\n", + " input = fn_tonumpy(fn_denorm(input, mean=0.5, std=0.5))\n", + " output = fn_tonumpy(fn_class(output))\n", + "\n", + " # 테스트 결과 저장하기\n", + " for j in range(label.shape[0]):\n", + " id = num_batch_test * (batch - 1) + j\n", + "\n", + " plt.imsave(os.path.join(result_dir, 'png', 'label_%04d.png' % id), label[j].squeeze(), cmap='gray')\n", + " plt.imsave(os.path.join(result_dir, 'png', 'input_%04d.png' % id), input[j].squeeze(), cmap='gray')\n", + " plt.imsave(os.path.join(result_dir, 'png', 'output_%04d.png' % id), output[j].squeeze(), cmap='gray')\n", + "\n", + " np.save(os.path.join(result_dir, 'numpy', 'label_%04d.npy' % id), label[j].squeeze())\n", + " np.save(os.path.join(result_dir, 'numpy', 'input_%04d.npy' % id), input[j].squeeze())\n", + " np.save(os.path.join(result_dir, 'numpy', 'output_%04d.npy' % id), output[j].squeeze())\n", + "\n", + "print(\"AVERAGE TEST: BATCH %04d / %04d | LOSS %.4f\" %\n", + " (batch, num_batch_test, np.mean(loss_arr)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualize" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "##\n", + "lst_data = os.listdir(os.path.join(result_dir, 'numpy'))\n", + "\n", + "lst_label = [f for f in lst_data if f.startswith('label')]\n", + "lst_input = [f for f in lst_data if f.startswith('input')]\n", + "lst_output = [f for f in lst_data if f.startswith('output')]\n", + "\n", + "lst_label.sort()\n", + "lst_input.sort()\n", + "lst_output.sort()\n", + "\n", + "##\n", + "id = 0\n", + "\n", + "label = np.load(os.path.join(result_dir,\"numpy\", lst_label[id]))\n", + "input = np.load(os.path.join(result_dir,\"numpy\", lst_input[id]))\n", + "output = np.load(os.path.join(result_dir,\"numpy\", lst_output[id]))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAAD4CAYAAAA6lfQMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB69ElEQVR4nO29eZwU1dX//+m9p2eme/YZRjZFlEWQiArjhgsREaNGjNG4YNSoCEYBUYkJosbgEjUxETU+KuoTvrjEbO4EBRLBqCA+iIDiNiCzMFv3zPT0Xr8/+N2yuubeWnp6uqd7zvv16td0Vd2691Z13+lPnXvOuRZJkiQQBEEQBEEQRJawZrsDBEEQBEEQxOCGBClBEARBEASRVUiQEgRBEARBEFmFBClBEARBEASRVUiQEgRBEARBEFmFBClBEARBEASRVUiQEgRBEARBEFmFBClBEARBEASRVUiQEgRBEARBEFmFBGmesnLlSlgsFnz99dfZ7gpB5D2pjreTTz4ZRxxxRFr7MnLkSFx++eVprZMgCKK/IUFK9Duffvopli1bRuKYIAiCyCgrVqzAypUrM9IW/db1DRKkecqll16Knp4ejBgxIttdwaeffoo77riDBilBEASRUTItSOm3LnXs2e4A0T/YbDbYbLZsd4MgCIIgCEIXspDmKWqftpEjR+Kss87Cf/7zHxx77LFwu9045JBD8Oyzz3LP27BhA6655hqUl5fD6/XisssuQ3t7e1JZi8WCZcuW9Wpb6cO2cuVK/OhHPwIAnHLKKbBYLLBYLFi3bl26L5kgBgx///vfMWvWLNTW1sLlcmHUqFG46667EI/HueU3b96M4447DgUFBTj44IPx2GOP9SoTDodx++2349BDD4XL5cKwYcNw8803IxwO9/flEERG+eijjzBz5kx4vV4UFRXhtNNOw3vvvScfX7ZsGSwWS6/zeL9727dvx/r16+XfnpNPPjmpLP3WDRzIQjqI2L17N84//3xceeWVmDNnDp566ilcfvnlmDx5MsaPH59Udv78+SgpKcGyZcuwa9cuPProo/jmm2+wbt067j8CESeddBJ+/vOf4+GHH8YvfvELjB07FgDkvwSRj6xcuRJFRUVYuHAhioqK8Pbbb2Pp0qUIBAK4//77k8q2t7fjzDPPxAUXXICLLroIL7zwAubOnQun04krrrgCAJBIJHD22WfjP//5D66++mqMHTsW27Ztw0MPPYTPPvsMf/vb37JwlQSRfrZv344TTzwRXq8XN998MxwOBx5//HGcfPLJWL9+PaZMmWK4rt/97ne4/vrrUVRUhNtuuw0AUF1dnVSGfusGEBKRlzz99NMSAOmrr76SJEmSRowYIQGQNmzYIJdpbm6WXC6XtGjRol7nTZ48WYpEIvL+++67TwIg/f3vf5f3AZBuv/32Xm2PGDFCmjNnjrz94osvSgCkd955J23XRxADCfV4CwaDvcpcc801ksfjkUKhkLxv2rRpEgDpgQcekPeFw2Fp0qRJUlVVlTwGn3vuOclqtUr//ve/k+p87LHHJADSu+++K+9Tjz+CyCXOPfdcyel0Sl988YW8b9++fVJxcbF00kknSZIkSbfffrvEky/qcShJkjR+/Hhp2rRpwrL0WzdwoCn7QcS4ceNw4oknytuVlZU4/PDD8eWXX/Yqe/XVV8PhcMjbc+fOhd1ux2uvvZaRvhJELlNQUCC/7+zsREtLC0488UQEg0Hs3Lkzqazdbsc111wjbzudTlxzzTVobm7G5s2bAQAvvvgixo4dizFjxqClpUV+nXrqqQCAd955JwNXRRD9Szwex1tvvYVzzz0XhxxyiLx/yJAh+MlPfoL//Oc/CAQCaW2TfusGDjRlP4gYPnx4r32lpaW9/GUAYPTo0UnbRUVFGDJkCEUPEoQBtm/fjl/+8pd4++23e/2A+v3+pO3a2loUFhYm7TvssMMAAF9//TWmTp2Kzz//HDt27EBlZSW3vebm5jT2niCyw/79+xEMBnH44Yf3OjZ27FgkEgns2bMnrW3Sb93AgQTpIEIUdS9JUlrbEQVuEMRgoKOjA9OmTYPX68Wdd96JUaNGwe12Y8uWLbjllluQSCRM15lIJDBhwgQ8+OCD3OPDhg3ra7cJImcQ+XZm+reHfuvSCwlSgsvnn3+OU045Rd7u6upCQ0MDzjzzTHlfaWkpOjo6ks6LRCJoaGhI2mfGMZwgcp1169ahtbUVL7/8Mk466SR5/1dffcUtv2/fPnR3dydZST/77DMAB6J4AWDUqFH4+OOPcdppp9F4IvKWyspKeDwe7Nq1q9exnTt3wmq1YtiwYSgtLQVw4OGvpKRELvPNN9/0Ok9vvNBv3cCBfEgJLn/6058QjUbl7UcffRSxWAwzZ86U940aNQobNmzodZ76qZH90KoHNEHkI2wmQjnzEIlEsGLFCm75WCyGxx9/PKns448/jsrKSkyePBkAcMEFF+Dbb7/FE0880ev8np4edHd3p/MSCCIr2Gw2nH766fj73/+eNGXe1NSEVatW4YQTToDX68WoUaMAIOn3p7u7G88880yvOgsLCzV/e+i3buBAFlKCSyQSwWmnnYYLLrgAu3btwooVK3DCCSfg7LPPlstcddVVuPbaazF79mx8//vfx8cff4w333wTFRUVSXVNmjQJNpsN9957L/x+P1wuF0499VRUVVVl+rIIot857rjjUFpaijlz5uDnP/85LBYLnnvuOaFrTG1tLe699158/fXXOOyww/D8889j69at+NOf/iQHW1x66aV44YUXcO211+Kdd97B8ccfj3g8jp07d+KFF17Am2++iaOPPjqTl0kQ/cKvf/1rrFmzBieccAKuu+462O12PP744wiHw7jvvvsAAKeffjqGDx+OK6+8EosXL4bNZsNTTz2FyspK1NfXJ9U3efJkPProo/j1r3+NQw89FFVVVXIwIEC/dQOKLEf5E/0EL+3TrFmzepWbNm1aUkoMdt769eulq6++WiotLZWKioqkiy++WGptbU06Nx6PS7fccotUUVEheTweacaMGdLu3bu5aWeeeOIJ6ZBDDpFsNhulxSDyDvV4e/fdd6WpU6dKBQUFUm1trXTzzTdLb775Zq/v/rRp06Tx48dLH374oVRXVye53W5pxIgR0h//+MdebUQiEenee++Vxo8fL7lcLqm0tFSaPHmydMcdd0h+v18uR2mfiFxny5Yt0owZM6SioiLJ4/FIp5xyirRx48akMps3b5amTJkiOZ1Oafjw4dKDDz7ITfvU2NgozZo1SyouLpYAyL939Fs38LBIUpojWoicZuXKlfjpT3+KDz74gCwuBEEQRF5Cv3UDD/IhJQiCIAiCILIKCVKCIAiCIAgiq5AgJQiCIAiCILJK1gTpI488gpEjR8LtdmPKlCl4//33s9UVQsHll18OSZLIpyaPoLFGEJmBxlruQL91A4+sCNLnn38eCxcuxO23344tW7bgyCOPxIwZM2j5O4JIMzTWCCIz0FgjiL6RlSj7KVOm4JhjjsEf//hHAAeWxRs2bBiuv/563HrrrZnuDkHkLTTWCCIz0FgjiL6R8cT4kUgEmzdvxpIlS+R9VqsV06dPx6ZNm7jnhMNhhMNheTuRSKCtrQ3l5eW0VBeRN0iShM7OTtTW1sJq7fvkBY01guBDY40gMoOZsZZxQdrS0oJ4PI7q6uqk/dXV1di5cyf3nOXLl+OOO+7IRPcIIuvs2bMHQ4cO7XM9NNYIQhsaawSRGYyMtZxYOnTJkiVYuHChvO33+zF8+HDcdNNNcLlcputLJBLYuHEj2traYLVa5adR5VNpOp6a1W32V92pkkgk5L4o+ydCkiThk7va84PnCWKxWGC321FQUIDi4mL4fD54vV4UFhbC5XINmPuSLcLhMH7729+iuLg4a30QjTWCyEdorBFEZjAy1jIuSCsqKmCz2dDU1JS0v6mpCTU1NdxzXC4XV3i6XC643W7TfQiFQgiHw/I60RaLpZfQUoojI9MnFotFFmHK9wzlNmvPqPuu0bJa7SvrYmVtNpu8X/lejRGxKuoLb393dze6u7vR2NgIi8UCh8OBgoIC+Hw+lJSUwOv1ori4GE6nc1CK1HRN16VzrBFEPkJjjSAyg5GxlvFfe6fTicmTJ2Pt2rXyvkQigbVr16Kuri4jfeju7kYsFjN1jvpmKrfV77XEIE/8mvmnyDtXaeHVe6nr4e1Xb1utVvlls9nk94DY2strl9cfSZIQiUTg9/tRX1+P//u//8PGjRuxdu1abNiwAZs3b8aXX36JlpYWhEKhlMTxYGUgjDWCGAzQWCOIvpOVKfuFCxdizpw5OProo3Hsscfid7/7Hbq7u/HTn/40I+37/X4kEgnNqXqeSDQqJJVWSPbXjBBlQk1kdVXXr66LN7Wu3KesR9mWqG9qkc22laKUCUX2Xu0KYOR+MhKJBCKRCCKRCNrb21FfXw+r1Qq73Y7CwkJ4vV6UlJTA5/PJ0/0UBMAn22ONIAYLNNYIom9kRZD++Mc/xv79+7F06VI0NjZi0qRJeOONN3o5hPcXHR0dvcSoaIq+r9ZLtYg0c65WX7Sm8PXEn6ifIhGrJVhZP5S+uMp7yfNRFYldrX4kEgmEQiGEQiG0trYCOOBm4HA4UFRUhOLiYpSUlKCkpASFhYVwOp0kUpH9sUYQgwUaawTRN7KSh7SvBAIB+Hw+3HbbbaZ9SBOJBP7973+jvb2dK6AAbcuhWURWzL5iVOimqy2edVW5baQOJUan3vWCpdT1KEWq0ieVWVIHMqFQCHfffTf8fj+8Xm+2uwPgu7FGEPkIjTWCyAxGxlpORNmnk0gkgmAw2Gs/z5ppVOwpp6x59IdozKT1T2/6Xo1ayPMErfohgE3zq++j1nUq3QZYHfF4HPF4HKFQCC0tLQAOiFSXy4XCwkJZpPp8Png8HjidTt3rJwiCIAiifxl0grSrqwuRSEQY4KOHWjTx/CiV23p18kQYzyfTCKK6AL5F0kzKJyWpuB/opYxSC1TRdSuFrbo+m80mC17lufF4HMFgEMFgEPv375fLMpHKpvqZJdVut9N0P0EQBEFkkEEnSAOBQJKY4U3XK+FZ8njHlAKSV04kMPsiRtVlRfvU/dVrX00q4liNlsDjBZXx+iLyQ2Vofa7q80Ui1eFwwOv1wufzobS0FMXFxSRSCYIgCKKfGXSCVBnQpCRdYoNNPWtZK/XEkgiR2BWVU06vi4SeqC8sSEk0xS6yFOtdh170v1bglpZAVdetdi3gTe+ricfjiMVi6OnpkfMJ2u12uFwu2Se1tLQUXq8XHo9HzmNLEARBEETfGFSCNJFIoLOzs9d+kRjVEnvq80X5OPXydeqVNdIHZZolJWpBpxZp6mO8c3jtGbkmo9ZUnojUirbnXYfR6X2z5wBALBZDLBaTE/kDB0Sq0+mE1+tFaWmp7JPqdrtJpBIEQRBECgwqQRqJRNDT0yNvK1MViXwcRTk4RQJOy6qoRV9WJDJ6Lu862Hvlfq1Vm3jWV+W9MDrlroeof8p9Rq+bJ3B5fqvKPopywQIHRCoLjmMi1Wq1wuPxJKWf8vl8KCgogN0+qIYZQRAEQZhmUP1SdnV1ySs0qRPgi3xHRUKVl+xeXY6JGxZsw7NQ8vaJLJ56U9t6eU9FbWsFHGkJMz2/UJE1Vst6qpcDVpSSS+kyoBetz8Soekpf3TfedbJ2eWK7q6sLgUAA3377rey2UVhYiKKiIpSWlso+qSRSCYIgCCKZQfWr6Pf7Na2dPPQsqOpyyvcicaOXQ1RtuRWVFR0TpVzSsupqYTQLgZ6o1UuYr4eeBVspFJUrRvHEKS8ZP0+UGr1G3kNFIpGA3++H3+/Ht99+C+DAdL/b7Zb9UZlI9Xg8Rm8DQRAEQeQdg06Qqq2PIsuolsgzGgClnP5WC1qeOOQF4ij3i9wHRP0U9TWVa9HDqPVXTbpST/EEvygll7I8L6eqUjwbEaa86H6RGI7FYujs7ERnZyf27t0Li8Uii9SioiKjl08QBEEQecWgEaTKgCbRlLhyn2i5TC0/TPXa9epzRe/VVkzRFLxo1SKtSHVem3oiUU9IGhGa6nb1XAhSzTzA6w9PbJoJfFK7AqTi+6rl36p+wIhEIohEIvKSqARBEAQx2Bg0gjQUCskBTSIrqBI9Qcl8L/XK6qG2iBr1V1X3RVS3GSFqpJxZi6uRunhllA8NZqP1ecFWgLY1VuszM2ot1QryMrIClVYwGUEQBEHkM4NGkAaDQUSj0ST/TD20fEyVokMpGLUiw7Xa4Fn49PrBsz4amY4XWRSVfTXjX6tE5Fqgrl8U4c9Q+5uKpsCNXJ8aPWEqsoKbyYOqtlqbEaYEQRAEMdgYNILU7/cnbRv1HQX4gUGiekRltKyYWu1qtZMqvL6IrLBGXABEaPnJ8qbKRX0Deuc+7UswlF7wkta1GXEDYHXoBa8ZaY8gCIIgBgOpJ7/MMdSClMHS86jFmFKAak0tG8WoT6kWRqfSlX0203eepdaMWOK1q35vJAjL6L3R89MUCVHlMbP5X9X16vWB12fROSRMCYIgiMHKoBCkohWa2LFU12fnYcZyqFc+VV9Urf1agk99jBfxr9eeqA8ioZqq4AXM+5aKHgr0RCmvn0aFqVabfVkMgSAIgiDyiUHxi6gMaDJiHdPyvVSjJdpEqC2RWm0YFW3qfuj1RcuXU9QX5bl6feK5G/BEqVZgGM/VQTndLlrSlHcdevfRiDgU1aG3lKqWdZxEKUEQBEEMEkHa3d2NaDTaaz+zsPVFFOhZO836gYr8O5XnGxGPWqKUBdnw3BGMCOV0Ti0b8a/kuQLwrKOpWLrV4jDVKXz2YnWo6xFdR6rtEgRBEEQ+MSh+BUX+o0Dyqkj9gZb/pGif3jGleNQSkFoCWa+OvvjL6pGOunnWUaNWTuVfdV9YNL9Z/1ReXUYh31GCIAhisDPoBamaTIgDo36URq2HgDhYyKwfqtY0udZ5vL4ZaU8vxypvO53WRbXl0kxdRvrMq09tVSUIgiCIwU7ep31KJBLo6uoCYMx/1Ih/pBnU9Rm1rImS2hvtm94UPO+YUowqha4RYWwGUfS7Xv+U18QTzqm2z2vLaGJ+3n1ifdNaupTXD5q2JwiCIAYref8L2NPTIwc0KVELBEmSEI/H09p2X8StmaChVC2bvHZEFlez9RpFaSE1YjE0mq/UCCKfTlE9ZlI8mbVM96eLBEEQBEEMdPJekHZ3dyMWi+kKjnSmfmJoRambjYRXRp1r+XzygqjMiEue0FVjVixroexjNoSZkaCzVJLxi+oQQVP3BEEQxGAm7wWp3+83lNrIarXCZrP1mzDQEoyi8noBUUbq4bXflxWEUhGMRqbk03HfWU7ZVCLlRdtm+sVLb6V2ExH5lJptiyAIgiDyibwXpIFAQH6vFEBKaxdL15NJQZCK2NOLhlcHOfHEp960uNoPUt2WkXukJ7SVwUx6Kzfx6k5XMJCWdVgtSo2KXBKVBEEQBGGevBak8XhcuEKTUmD091SxEQutUuwZSevEq58nQrUCiHiCTGuflsuAVr9E1827TjPBWyI3DL38sqL7o3e/RDlGRfWLtil4iSAIgiCSMf3LuGHDBvzgBz9AbW0tLBYL/va3vyUdlyQJS5cuxZAhQ1BQUIDp06fj888/TyrT1taGiy++GF6vFyUlJbjyyivlSPh0olyhCUienu8Pn1E9eMIxkUiY8rlMtU29fX09T5T6iTcdnmrUvp7QU+cQFX3GRn1rleXMfF94U/dq1MJWfV9yaZwRRC5DY40gBgamBWl3dzeOPPJIPPLII9zj9913Hx5++GE89thj+O9//4vCwkLMmDEDoVBILnPxxRdj+/btWLNmDV555RVs2LABV199depXIaCrq4sbOZ8NMarETM5NrXOYUDJ6PTzhq96n5e+pns4344+qhcgyKRLqWv00cz/0+qS85lT9UkX+pHp9zKVxRhC5DI01ghgYWKQ+mOQsFgv++te/4txzzwVwQCjU1tZi0aJFuOmmmwAcCCqqrq7GypUrceGFF2LHjh0YN24cPvjgAxx99NEAgDfeeANnnnkm9u7di9raWt12A4EAfD4fbrvtNrjdbmG5zz77DLt27eolDpi4SDV4RY2eb6XWlLda+Bj9OMwG76j9NbVcBZQR/UbrFtWl17bouMgayqs/HQJU9BmJPhd2//Xa5l2HKMdpPB7Htm3b4Pf74fV65f3ZGmfAd2ONIPIRGmsEkRnUY41HWp3ZvvrqKzQ2NmL69OnyPp/PhylTpmDTpk0AgE2bNqGkpEQeuAAwffp0WK1W/Pe//+XWGw6HEQgEkl5GUK7QpBSMPBHRl6lyI2JU1AbPUqnsn9rip+cfqUR5nnraWdQvPWHMm4YWTddr/TXrpqAO1mKkElVvFCMPCXp+qmbOMUp/jTMg9bFGEPkIjTWCyBxp/SVvbGwEAFRXVyftr66ulo81Njaiqqoq6bjdbkdZWZlcRs3y5cvh8/nk17Bhw3T7EovF5ICm/g5aEqElQLWi7PUECxOWTKyqtxlqC57aZ1FvCp/XP7U1WGRNFW0b+Sy0josCmVJB5LbA2umLqBT5j6aj//01zoDUxhpB5Cs01ggic+REuO+SJUvg9/vl1549e3TPCYfD3BWagO9EgJZo0sKo+FJbEc2KYrX1j2cp1Tomsh4q3QS0AojU/eVZKfWmtrXqMYPeZ2NmTXsjfq/pTN+k5TOcbX9mNamMNYIgzENjjSCSSasgrampAQA0NTUl7W9qapKP1dTUoLm5Oel4LBZDW1ubXEaNy+WC1+tNeunR2dnZK9cog+0XWcG0Uv/wjousnTxfRNa2ljhVTssrxWUqKK2o7KVnrRRZTkWBRurr5LkAsPdmhJ6WCOVZhlO5R0aCuAB+iigziK5dud69UfprnAGpjTWCyFdorBFE5kirID344INRU1ODtWvXyvsCgQD++9//oq6uDgBQV1eHjo4ObN68WS7z9ttvI5FIYMqUKWnri9/vFwqUvk7zGrF0mglOUr4XTb+bRTRVLypjFD1RpjdVz3xZjUbN89rRshQbhfeQIRKZei4JZkWl+uHIbBqygTTOCCKfobFGEJnDbvaErq4u7N69W97+6quvsHXrVpSVlWH48OG48cYb8etf/xqjR4/GwQcfjF/96leora2VoxbHjh2LM844Az/72c/w2GOPIRqNYv78+bjwwgsNRyMaQRnQpEYrEEZvClqE0Wlp0RR8fyLyK1X3xUyAjl5mAQZPzOn5Z5oNeDKLWlTzfGPNtp/uwKpcGWcEkevQWCOIgYFpQfrhhx/ilFNOkbcXLlwIAJgzZw5WrlyJm2++Gd3d3bj66qvR0dGBE044AW+88UZSeqY///nPmD9/Pk477TRYrVbMnj0bDz/8cBou5wCxWExOSsyEFk9wGBWRWlP0WkEwRvwe05U30yhq66LaLUAkWBlG/C956Z/U9yydPppmMNu2EaupmTyw6u+JSMjmwjgjiHyAxhpBDAz6lIc0W+jlIe3q6sL69esRi8WSco4qxYU64lz5Vy1a1ELCzFS1koEWwKKHkaU4RTlIjYh/3n3lpXTi+dSmCyMBbFrWcq3AM7321NcqykOaTSg3IpHP0FgjiMyQ8TykA4VAIIBYLJa0z4hVjBc9rjwmOodHOi2AeoFH2UYv0Elvep6JOLaqltqXlpGuBPhm7h1vMQO2H0gW7UbFKC8lFK1vTxAEQQxm8vJXsKOjI2lbTxxqiU1eeiR1xLkon6VaoKQqOrTSBvU3PJElSrhvVDirg5rUx1gKp3SINCNZFLTOM+pbmkp/1RZSgiAIghis5KUgZQnx04WR9Eh6MAtaqiJLy7KnZ/VL1ZqqletUiZFE/qJzjWQDMIqR6Xcj5QCx37Dy4cTo/TFSL0EQBEEMZkwHNQ10lCs0aaH0S0wl4IbnZ6r8q25HtG2mDXVbevtTTUBv5DyjS5iKrt9IYv/+XBLUjEjX8yMFzIlRns+s1WqVXRYIgiAIYrCRdxbSnp4ehMPhXvuNWBDNpnhS/+Ul3+8LPGuaWSGVbl9TnpBUW0C1kvmbEZlm7yHPrYInJM36kGoJdLMPGLz6zdZDEARBEPlG3glSXkCTFmr/R2UQi56IUUaKi8qYReSPqlW/EeGp9nntj2AstVuC2q9SNHXfH5ZQ3jKnavRSWCm/B8rPmYlUdb+1rsNICjCCIAiCGKzk3ZR9R0cHd9rZSKJ64DvBoBRWepH36nNSXcJSLWyNClxRiiWt6X6eiBaVNytSzV5/X1db0sp5yjsueq/1veEFsZlxx+B9Rsr2yEJKEARBDGbyyiwjSZLmCk089NaKV4oPLdGgTi7fH4gCq1KJJFefJ7Iopivopi/BXFrb6v0iazXPv1Yvub9We4xUIut5YpgspARBEMRgJq8spLyAJvVKTWoRIlqHXG9bS3jyhKuWpdFMhLzRsmYDnHjtaCW6N0tfLIBafVNu88Se0RWlAONiltFXEalsjyykBEEQxGAmr8wywWAQkUgkaZ9ypSYeyqAcPWupaE14M6vzGClnxDqn7rOelTTVoJ50B0XptaX2c2UPEXorP+lZSM20zROpatKVsD+T95cgCIIgBip5JUg7Ozvl1DlqPz8jgowXgKMUfTwRajbdD+/Fw6hQ0fJZ5Yk2M9ZO0fmZRH2f9CyeynKi+847T/k+Ho/3+t6ky4Jp1JeZIAiCIAYTeTVlrwxoUi7tqA5QMmL14h1Tr+1uBqMpm/TKqHN0ioSx8jgvcEu9hryoL+xeak1jp8PPVO+6RUt4qsso6zMyBZ+KwDbzMCJqh9cuidKBj81mo3yxBEEQ/UDe/AKqA5qUP/iiSHqzGBUgasGjZwk1Ynnkte12u+F2uxGJRHqluhLlBlW2y8rw+qAl2owEQ/HOU2PGOqx1741YPs1g9sHDqJDUcgXQC5ojsovb7cZll12GZ599FjfddBNKSkqy3SWCyEusViumTp2Kyy67DCNGjMh2d4gMkjcW0lgshq6url77+zPqnaFnLVRa94xEdisRrWBUW1uLmpoabN26FcFgEADg8XjgdDqFdfDuhdpNga1cJbLoivxSecd4ZdWBUkZdCPR8SM3s08NsrtRUlgzl1U+Wt+xis9ng9XoRDAaTFtfweDxYtGgRbrvtNrhcLlxwwQWwWCz47W9/Sz7ABJFGnE4nbrnlFtx8883weDzYu3cvLrroImzcuDHbXSMyQN5YSLu7uxEKhQD0FiFKf0AjAUNmEAXT8AJ0eO9FQsVisaCwsBA2mw09PT2IRCLyeXa7Haeddhr279+PxsZGNDY2oq2tDX6/P8lSqiVwRaJLaTEVXa/oevTK8o7r1cE7rr5vfU3mr0adeSFdAUxq0r2yF5E6I0eOxJ133on//Oc/WLlyJY4++mj58znzzDNlMQocGH833XQTZs2aRW4WBGGSoUOH4vbbb8eaNWvw3HPPobq6Wj527LHH4rbbbkNRURGsViuGDx+O1atXY9KkSdnrMJEx8sZC2tnZadgHVImRYJm+IBKdWsLYarVi2LBhOOyww7B+/XpIkiQLTafTiUQigc2bN2PXrl3o7OyUp+xjsRgcDge8Xi+AA1ZjLYup8r0o/ZVRf1P1dTHUllaR8BRZXo2kyuI9gGil6RL54Wr55abD0m40OIvILMcffzyeeeYZjBgxAna7HePGjcOoUaPw/e9/H5FIBGeffbYsRhlVVVV48sknsWjRIqxatQoulws9PT1ZugKCyA1OPvlkrFy5Mmkq3uv14kc/+hEikQgmTJjQa6wNGzYMv/nNb3DJJZegra0t010mMkjeCNKOjo5ewkKEWmQp92mVV+/T2tZrT2tVp/Lychx11FEIhULy8puxWAyJREIWpp9++ik6OzsRjUZlwZpIJNDZ2QmPxwMAiEQiXEHKQ+veMX9TkVjVuwdGA7p4pBKAxLsGnvgUpfES0dcVpYDke8HuK5E9nE4nfvWrX2HUqFFJ+ydOnIirrroKlZWV+PGPf8w9t6qqCgsWLEB1dTVGjhyJm266KWmqnyCI7xgzZgxWrVqFIUOGJO2fOXMmfvGLX2Djxo24/vrruefOnDkTt956K1asWIGuri60tLRkostEhskrQarGqH+isjzDbJJ0XpvKlEE8302tdE0WiwWRSAQ2my0pQ4CyTp/Pl7QQgCRJsv+bxWKRxaqZeyCyBKqzFPDui5YlWHSN6jJ6GRBElk+1BZQnOHnXlErEfF/pi0An0svQoUMxfvz4XvtdLhfuuece+YFQxFFHHYWjjjoKe/bswX333Yc9e/b0Z3cJImepqalBTU1Nr/0OhwO333677m/Vz3/+c1x++eX46KOPcN5556G7u7s/u0tkgbxwgIpEIkkBTcwPUo06kbzId1EkrLSEk55fpdF1zyVJwtdff41XXnkFn332WVJb8Xgc8XgcsVgMkiTB4XCgsrISdrtdPpfdi2AwiJ6enpQsNmYT/etZMXn3OhXBzwSk6F5qLW7AyzqQbetkttsngCuvvBK1tbXcY3a73bCbRnV1NS6//HJ5LBIEkczpp5+uKTj1DCculwuVlZU49dRTceaZZ6a7e8QAIC8EaTAYlAOaAMiR4oC2wNGaotdLY6QXsKNOqi/axyMWi+Hjjz/GO++8g9bW1l7BL0rBXVhYmJSCJpFIoKenBz09PbIoTUX4qMWdXvJ91ke9fKEiYarn/8v+xmIxhEIhbt5VpXjQsvJmEtEDj8VikftMgTHZwel0YvLkyWm5/06nEzfddBOmTJmShp4RRH5hsViED35msdvtWLBggeyaRuQPefFL6Pf7UxJdZtIEqYOQeFZBo4JTj66uLkSjUXR1deGbb75BV1eXLOSYhTQej8tTHD6fL8lKGg6H0dPTI1tSeTlIjcKbKuddn57wFy3/yc5TTrfz7iE7brfbZb9Yreh3Xh8zYZHkfS/UabT0sgoQmeHQQw/FhAkT0lZfcXEx5syZA4fDkbY6CSIfKC0txSmnnJK2+o455hjMmjUrbfURA4O8EKRshSajP/JK0cNLDK8VAd8XjNQnSRKi0ai8fGUwGMT+/fvlfUpBygSW2+2WI+sBIBqNymI0EokgGAymFOGtJ0KNXIvyr7JtM5+Vun2RRSvbU+B66ahEyfCz3e/BykUXXZQ2qw1w4PM944wzUFlZmbY6CSIfOO644zB06NC01We32/Gzn/2MspXkGXklSBkiH1It1MKAZ81S+p8qz1P+1Zr+0xs8FRUVqK6uhtVqTRLJwWBQTmuVSCQQiUTkVE/xeBxWqxVlZWVJlkNmGQ0Gg+ju7k4pWl0EL7CI1Styc9DyIxWRDaHWH5ZL5bXzrMJE5rHZbP2S29Dn89EqTgSh4txzz037/7uCgoK01kdkn5z/RQyHw9wVmpToiQx1hLaRwBlRAI0ZEaXuV3l5OSZNmsRNr9TZ2YlwOCyLTSZIWT/cbnevH0JJkhAKhbhi1IhFWRQYJLpGvQh5Nbz2sy3SUs3KoN6Xyv2lafzMUVBQkFbrKEOSJApsIggV77zzTtpXonO73YbTGhK5galf/+XLl+OYY45BcXExqqqqcO6552LXrl1JZUKhEObNm4fy8nIUFRVh9uzZaGpqSipTX1+PWbNmwePxoKqqCosXL+61FrtRlCs0AfzAI/V7NVpTwJmYUmV927t3L/bs2YPi4mK43e6kQKF4PI5AICBP1cfjcXlqnvWvrKws6amRBQFFo9Fe18Dz6TQLT1Cxfcq69Zbd5In8gYzS9UFp9TS7LKwa5fkDcazlE8FgEC+99BI2b96M1tbWtD0MOByOrD9UEeagsdb/vPTSS7jkkkvSmhZt/PjxGDlyZNrqI7KPqf+c69evx7x58/Dee+9hzZo1iEajOP3005PygS1YsAD//Oc/8eKLL2L9+vXYt28fzjvvPPl4PB7HrFmzEIlEsHHjRjzzzDNYuXIlli5dmtIFBAKBJBGjjNo2GnyTDiEkisDnTdWK/FW7u7uxc+dOFBUVYfjw4SgqKkpqIxQKobu7W7aSRqNR2VIKHPCrqayslAUsuy5WTu8+mEGUXkmZr5R3Du8+92ekudG0UnoWTaP+v0bb1PtuDsSxlk8kEgnce++9mDZtGqZNm4bNmzenpV63243Zs2eTlTSHoLHW/4TDYaxevRonnHACdu7cmZY6XS4Xpk2blpa6iIGBReqDMtm/fz+qqqqwfv16nHTSSfD7/aisrMSqVatw/vnnAwB27tyJsWPHYtOmTZg6dSpef/11nHXWWdi3b5+8hu1jjz2GW265Bfv37zdkgg8EAvD5fLjtttvw6aef4vPPPwfwXbontaXKZrMlX3Q/OEIrLWSiqVz1qkbq8spI7EQiIa9Rn0gkks71+XxwOp2wWCyw2+1wOBxwu92w2+2IxWL4+uuv5WUMLRYLCgoKUFZWhpKSkqQfSmX7qd4TdVJ6LdR+tmYfAoxYIXlJ57U+F3V5reT+RlalEvVL2ZZIjMbjcXzyySfw+/1JQWpA9sdavnP++edj1apVaYmQb2trww9+8ANs3LgxDT0j+hMaa5ln7ty5+OMf/5gWI8Qnn3yCk046Ce3t7WnoGdGf8Maamj59I/x+P4ADU8UAsHnzZkSjUUyfPl0uM2bMGAwfPhybNm0CAGzatAkTJkyQBy0AzJgxA4FAANu3b+e2Ew6HEQgEkl7AgR9x3gpNSliAEEOUJ9PstnKfyE1Auc/MKkas316vFx6PRxbUrO+dnZ1y2idmCWVR9Xa7vddawGyKn9evdFlK1fu0puBTsUjr3WuRdVJdjndMlI5KdL+02tLKw6p1r/UeCLI91vKddevWYePGjb1mElKhpKQkaa1uIregsda/rF69Gk888YTub7cRxo0bh8MOO6zvnSIGBCkL0kQigRtvvBHHH388jjjiCABAY2MjnE5nr+Ca6upqNDY2ymWUg5YdZ8d4LF++HD6fT34NGzYMwIEVmvSWDxOldtKyTqoRiSHRPp4oMfOeiTWPx4OhQ4diyJAhKCwslI/HYjEEg0EASBKkzGlcHX3IlhEVpSFKp8WYWUv7+vRr1gLZF2Et+jz0ED1kmL2fev0fCGMt32lpacGFF16IWbNm4c0330xaktcskiQl+bUTuQONtf6nvb0d1113HU444QQ88cQTiEaj2e4SMUBIWTXMmzcPn3zyCVavXp3O/nBZsmQJ/H6//GKO0eqAJi3UKZ20fDq1AqH09ukJUT3hocZut6OkpARDhw5FSUmJLHZCoZC8Vj0T3cxKqgyIUh7nTU33h/uC0WT6Wmjl8DQiQM0eN/Mwot7Ws8AaRVR2IIy1wUBjYyP+9a9/4dxzz8Utt9yS8jSgxWKh6N8chcZaZkgkEti+fTuuu+463H777WmZmSByn5QE6fz58/HKK6/gnXfeSUp2W1NTg0gk0ssU39TUhJqaGrmMOjqRbbMyalwuF7xeb9IL4K/QJJpuVR5X/jUCT2Sq61H7fxpdClO0T32+3W5HdXW17GMUj8fldeqVgjQej8Nms8likAk5m80mTLuRrql7I6slGUX5OabSP61lYdVt8NoUleH1USSWleeJPle9Pg+UsTaYCIVCeOKJJ/Dzn/9cHmNmSOcyiUTmoLGWeWKxGO6//34sW7YsJVFqtVpx3HHH9UPPiGxgSpBKkoT58+fjr3/9K95++20cfPDBSccnT54Mh8OBtWvXyvt27dqF+vp61NXVAQDq6uqwbds2NDc3y2XWrFkDr9eLcePGmeq8OiG+HqJgEj3RoxYcvAT5yve8nKai3KVakedq7HY7Kioq4Ha7ARzwQVL2m9Vls9l6rRhkt9sRDoe5ojQdKaBEyfLV77VQCjmeX6d6m+c/qvcS1cXguXKI2uX1Wwut+8ATwgNprA02YrEY/vnPf+Ktt95Kybp/6qmnyuOUGNjQWMsuTJT+7ne/S+n8H/zgB73iJojcxFSU/XXXXYdVq1bh73//Ow4//HB5v8/nk/0W586di9deew0rV66E1+vF9ddfDwByxGk8HsekSZNQW1uL++67D42Njbj00ktx1VVX4Te/+Y2hfrBoxOOPPx4dHR3cnJd6U9IiH0ct31KRn6lyijoTeTQ7Ojrw7bffIpFIoLS0FE6nEw6HAxaLBW63GzabDV999RXC4TCsVisKCgpQUlIiB0oN1OlEra+iUqSmw5oLmE/Cn0r7et8HpZiNx+PYvn07/H4/br311gE11gYrhx12GN555x3TFs+mpiaccMIJ2L17dz/1jEgHNNYGDtXV1Xjttddw1FFHmTrP7/fjuOOOw6efftpPPSPSQdqj7B999FH4/X6cfPLJGDJkiPx6/vnn5TIPPfQQzjrrLMyePRsnnXQSampq8PLLL8vHbTYbXnnlFdhsNtTV1eGSSy7BZZddhjvvvNPk5UFeEpMnEPSsVlqrBymtiGqrldrKmeoqTX2BTe9I0oEVm5T9YDlJldkFmMW0P/N9ijDaphGfTt5nbeaeK/OypgJr30ybWteuJWwH2lgbrOzevRsrVqww/RBUXl7ey9I2GCkpKYHP5xvQa47TWBsYNDU14Y9//KPp8wZTQFi+06c8pNmCPUmOHTtWnm5W/8NjOUkB84E7PBEhSgCfLhHKm6bWIhAIoL6+Hna7XbZ62u12WK1WOJ1OfPvtt+ju7obNZkNRURF8Ph+sViuKi4vTkmsx3YjcH3hWab18pkpLtfJ9IpFAV1cXOjs74fF4UFhYCKfTaVqkq/Ou8vKwGvleqK9ZaSEdKP5kg91qAwDHHnss1q5d22uhCi38fj+OP/54YcqffMfr9eK0007DbbfdBqfTiRdffBH333//gMs+QGNtYDFixAhs3LjR9IzEGWecgTfffLOfejWw8Xg8mDlzJi677DJYrVY88MADWLduXba71QsjYy2nlxNh/pIifz+A7x9opN50lDECE6JmRXNBQQEcDkdSpD0TNWpxy8SS1WrttUjAQID3TKSVz5Oh/AyUCfrVVutYLIZQKITW1lb09PTIeVkTiQS8Xq8s0HlClidWtcRoqvlVUzmXyAxNTU1obm42JUibmpqwd+/efuzVwKSqqgqnnHIKbrzxRhxxxBHyPTv44IPx+eefZyR6nchd6uvr8cYbb+CKK64wfM7+/ft7LfU6GHC73RgzZgzuuusuzJgxQ/4dmzx5Mk499dS0rYiVSfJi0WWRb59Zq2N/oQ6o0QreMYrNZkNBQYEsuJQiSx24xNbXzoYYNWp95AX1MHjBYGpEmQu6urqwb98+7Nu3D4FAQJ6uD4fDclAY66f6XLZP7aLByyZgNNm/OsBKudQtMTCpr6/HM888Y+qcTz/9VDdHcj5RXl6Os88+G6+++iqeffZZTJ06NUnAezyeAWOJJAYukiSZXuGss7MT+/fv76ceDTxcLhdmz56NNWvWYMOGDTjrrLOSZj2HDBmCn/zkJ1nsYerkvIWU+UaqrYxagSuiJTxTQet8tegQCS61kNaL9AYOXFdhYSH8fj/C4bA8XW+xWJJyjjIharFYZGGaSbR8dbUWI2DnMh9Us4IvHA6jvb0dfr9fFqFK9w7156Y17c87ng4BmYPeMoMSSZLwf//3fwiHw4aieePxON5//33ZnztfsdlsKCsrw9FHH41f/epX+N73vifMLGC1WnHOOefg6aefpkTohCYff/wxQqGQ4SwV69atkxeKyWc8Hg8mTJiA+fPn48ILL0xaBpxXNhfJaUHKUE7dq8UbEzVq8ZEuUaq1vrlSdJlZOlQrSEtZD1tWlE3bq4OuWHn2GijT9VoBTKkGLUUiETmtVWdnJyKRiDw9z2D3wG63y98X5XQ9E+vM4pxu0mEZJ7LDhg0bsGPHDkyaNEm3bHt7O/7xj3/0f6eyhMViweTJk3Heeedh9uzZGDZsWK/V4Xh8/fXXskh3OBzyQh4EoeSTTz7Bzp07DY014MCCFvn6PbLZbJg8eTLOOeccnHXWWRgzZoxulhxJkvDZZ59lqIfpJS8EKWBc/On5a6rTC6nr1LPsqY8bLW+kLvU+h8MBl8uFYDAoWx1sNptsIVXXmw5Bms5gLr0UWkbTaMViMbS3t8tLyTLXBfbgwYQoE6Ps5XA4EI/H4Xa7ccwxx6C7uzsjQSjqRRSIgU97ezvefPNNQz+SWotQ5DoejwdXX301br31VlRVVRl+sAqHw9i0aRMkScLkyZNx2223Yffu3Vi6dOmAC3QisksoFMI///lPQ2MtkUjgtdde6/9OZQGbzYYbb7wRy5YtM+W/HolE8P777wM4MF7vuOMOFBcX44YbbkhpoY9Mkhc+pAytFE/K5TP1LJNqP0/RPqP9UPoN8qbnRcf18l7abDZ4PB5IkoRoNCpfIxNkrA4mxkRT/+yvkRRNRqfO9VA+GPD6ZbSdYDCI5uZmdHR0IBAIIBaLyRZO5s7BLKJK1w6r1SrnbC0tLcVxxx2HL7/8Ei0tLWl72tarR319+fqUnw9IkoT33nsPPT09umUbGhqwb9++DPQqs0yePBnPPvss7rrrLlRXV5uy8r/wwgt4+eWXYbFYMG/ePPzwhz/EFVdcgTFjxvRjj4lc5R//+Ich146uri60trZmoEeZpaKiAn/6059w9913mxKjALB+/Xrs2LEDAHDxxRdj4cKFuPLKK/HLX/5ywOYgZ+S0IDUz5c1QrrLECzbSEp6ibZHYZKgDV0Rt8I6z80WR6IWFhbLfqDLPJrPQKC2EWosEqCPWee/TQSoCX1RPMBhEU1MTOjo6EIlEEI/HEY/HZcGpXEKVF0zEput7enrw5JNPoqGhQbYsp7KMncjVQhTURuQWX331laHPbufOnXkV0GSxWDBt2jQ88cQTmD17tukfyEgkgueeew7BYBAejwfjx48HcCAQ6re//a1waU1i8PLNN98YylJRX1+PL7/8MgM9yhzV1dV47rnncMUVV5hegUqSJLz00kuyJXTGjBmyUebWW2/Fscce2x9dThs5P2WvnppWT3OLRJhIgCnrUf5l56jL6k07A+g1fSfKaapXN28a3ul0ytP0TJiyNtiSoby6Rdta9yUdK1FpuS/w6la7SwAH7mcgEEBbWxui0WhS8IgyyE1Zh7J+Js7tdrv8t6urC11dXYjH47BarSgqKuqTr6fy+0cCND/o7OyUc9hq8dFHH+XNlL3dbscpp5yClStXms4NyQgEAvj8888BAKNHj8aoUaPkY4ceeiiND6IXbW1taGlp0V1cYvv27XkVPDht2jQ8/vjjSSuGmaGjowNr1qwBAIwcOVJe2hZA0szpQCWnLaRKlFO8WkEyrCzv3FRW/eHVK/J/FOW0NNq+2o8VgOwPyQKaLBaLPH3PxBabshf1gddHpUBN1wpPauugEWuhWhDG43G0tbWhqakJPT09SdM6IjGqDPZibhssIX4ikUBHRwcaGxsRDofhcDjgdrtlIS/6Lhm1dOp9F40cIwYGTU1N+OSTTzTLxGIxfPzxxxnqUf9it9uxePFirF69OmUxChyIgm5qakJVVRXuv/9+lJeXAwBaW1uxdOnSQZWyhzCGJEmGZhk++OCDAS+yjDJt2jSsWrUqZTEKAH/5y1/wzTffwOfz4amnnkoat08++ST++9//pqOr/UZOC1I9sZnKNKk656S6TrVwVItJLXGpJWJF9fHKqK/H4XBAkg4kxWcWQ1aGWVCV09fsr9qPk73nTdnzridTKaTYtUSjUbS3t6Otra2XS4LSP1TtfqGeNrdarXC5XEgkEggEAvj2229hs9lQXFyM0tJSuFwuofjkfZdEx0ViNF1+uERm6e7uxuuvv6752XV1dcn+W7mMx+PBokWL8Itf/AJlZWUp1xONRvHss88iGo1i3rx5OPXUUwEcmMa/9957sWrVKhoLRC8SiQRef/11zTLhcDgvVmdisxCrVq3q04NfV1cXHnnkETkY6qSTTpKPvfHGG1i2bNmAn7nJuyl75X7RPr1pWJ4YTPWfZqrnaflxKvtvt9vh8/nQ09MjWzKVEffMEqgUoWqM3A8tP1OjKMWiVg5QhvIzDIVCaG5uRjAYRCwWk69JaTU2Ok3Ocra2t7ejo6MDBQUFsFgs8Hg8mrndzCIK1lLTF19aIrNs2bIF0WhU6Nu1Z88eNDc3Z7hX6cNisWD69Om4+eabeyW3T4VYLAafz4frr78e119/vfx/o6mpCatXr86r6VYivWzcuFEz9++XX36JPXv2ZLhX6cXhcOCXv/wlFi5c2Oextm/fPkSjUdx1111YtGiRPCsaCoWwePHinJiJyHlBCvROz6ScOheJUKPiNFvwxJ+yz+qlQdm1sihz4DvhpRZvrA5lncr96n3psoTyBKOWGGVlgsEgWlpa0NXVBUmSYLVaUVBQIOcSVVqV2dKpvHaV+5ubm9HV1SWnfyoqKkIoFErKW2vEh1RvGt6oDymJ0dyAfd94JBIJ/Pvf/0ZnZ2eGe5U+DjroINx777343ve+l5b6CgoK8D//8z+QJCkp0XllZSVGjRqV84KC6D/27t2r+fD32WefIRAIZLhX6aOyshILFizA4sWL02IIGT16NNatW4eKiopex1IJ0s0GeTFlrzUlrxfZrq7LaLtabWr5DZppRzldrkzjpIZZQZXR9sw6qlzBSdQPZfJ85bYSNi2uxKx/KU8QK6+T1zeW1ikYDMpitLCwEE6ns1d9LJuAUoCzfrNXPB5HR0cHOjs7YbfbUVpaihEjRsDr9cq+t+o+8qbktVwC1O9T8VEmBiY7d+5EU1MT91hXVxdWrFiRsw8Xo0aNwoMPPmg4IblRXC5Xr1V3XC4XpkyZktZ2iPyio6NDGGmfSCTw8ssv5+xYq62txV/+8hcsWbIkbbNyFouFK0btdjvGjh2bljb6m5wWpECy4BQdU8ITD7xjRvwCefWp94vO0drW678Sq9UqC0/lOWw/S/mgRCsHqOiY0v9S6YuqziighZHrVN6zcDgsi1GWzqmwsBAOhwOJRCIp5yjrg91uh9vtRkFBATweDzwej5xvVCkKmWCNRCJobm5Ga2urLN5Z+7zPSU9Ymv0Haca/mcg++/fvFybi/vbbb3M2/2hVVRX+53/+B+eff35GZo0kSUJHR0e/t0PkLh0dHaivr+cea21txdq1azPco/Rgt9txyy234MQTT8xIe4lEQvgQPdDIeUGqRkuYGvFV1DpmRFhqCVaR+BWdq0QUoc8i6R0Oh2whZUE7LpdLjsJXW0HThahfanjXzyvDiMViaGlpSVrFxel0ym4JAOSIeI/Hg8LCQpSWlqKqqgrV1dUoKSmB3W5HIpFAOBxGJBKRLaysrVgshkAggH379iEUCuGggw7qJex5/TSyeIAR1HWTBXXgE4/HhT6iuTqF6PP5sGzZMpx00kkZc2GKRCLYtm1bRtoicpd169Zx97/77rs5+fDHfEbnzp2bsTZ37Nihmx1koJAXPqTq/KA8/1C1KFX6l/Lg+Vjy/AGNWrd45Xj5Us34trIyNpsNDocDkUgEiUQCdrsdLpcLTqcTDodDd0qAl6JK3Tcj16m3rKj6mkQW4Fgshv3796Orq0tO06RMx6RMeq92TVDWG4lEEAwGk1ZtYqJUbQlma3HrZUEw6p6gJy7VU/qZylhA9B3RWNi6deuAj2JVU1xcjGeeeQYzZ87M6Hdw9+7d+OKLLzLWHpGbfPvtt9z9f/vb33JuZomJ0SVLlsiLsmSCHTt2oKurK2Pt9YW8EKTAd6LU6BO+MnJcKzG+3j5lXew90DuPJ6+syGKoFZ3NrpH5Q0YiETidTrjdbnR1dcFischT1Mw6quyPsg1l0I0o6b1StBkRqFpiVM8SzcRZR0cHQqFQUoCa2+2Gw+GQp+UdDkeSqwJwwKoaCoXQ3d2Nzs5OOduA+n4zH1vlMZYaS5TeSu8zVm6bJR0LDhCZY8+ePYjH4/J3CDhgOd26dWv2OpUCpaWlWLhwIWbMmNHvSwqyscl8wm+66aaczkZAZIZPP/1UXuGLEYvFcmYKWsn8+fPxi1/8Iq2ZXHhIkiT/9u3atQsPPPBAv7aXTnJakGqJRrUA0hJ5IjEg8pE0K0D0rG68uvT6zgJ4mAWRrWnPhCqrkxeMpPYRVYpSdf/MWm61rKSiyH4Gm0Jvb2+XfUMlSYLNZpMDI5gbgvrzYEK0u7tbjpZXXxuzspaWlmL06NH46quvYLFYEIvFYLPZeq2JrP5+GMkhawS1dZTILTZv3ozOzk6UlJTI+zo7O7Fz587sdcokpaWluPPOOzF37twkYZ1OQqEQ9u/fj507d2LFihXYu3cv2tra0NHRgba2tn5pk8gv6uvrEQqFkgRpW1sbPvzwwyz2yhwOhwNXXHFF2qLpeUiShG+//Rbr1q3Dli1b5NWa9u7dm1O+2jktSNWorY999YfSSk6vd9ys0BDl+BRdQ0FBAUpLS7F//37Z4seEGludSVmXUqArLYVaiAKeePeWF2xl9B6wAKXm5maEQiE52p3VyUSkejAnEglEIhF0d3ejp6dHDn5SRtmzqPyioiK43W643W5YLBbs379fnjZhvqaZQBToRgx8rFYrhgwZgkAggIaGhiRB2tDQgIaGhux1zgRerxfLly/HlVde2WcxqrYURyIRtLe3Y/369fh//+//4b///S86OztzZsqQGFgUFBT0MqjU19ejp6cnSz0yR39O00uShF27dmHFihXYvHkzvvzySzQ3N+e0kSPnBanIX1SUgzQdQlXUj3TVKxKnytWWWIL4rq4u+P1+RKNROdeYw+GQg5zYtLckSXKOTvZXbaFjQo5F5yvR8ncV7ePBazeRSMh5Rtl6u8q2iouLk8Qom5JQWkRZsvyysjIUFBTI/7DYNH9BQYEcnQ8g475+egFdWvuJ7OFyuTB+/Hicc845OPTQQ3HyySejq6sLI0aMSCrX1NSUE0nenU4nlixZgquuuqpPYrSrqwvr1q3DqlWr4Ha7MWnSJHR0dGDbtm3YsmUL9u7dmzO5D4mBgcViwWGHHSbnwB07dixmzZoFn8+XVG737t0IBoPZ6KIpLBYLlixZ0mcxKkkSWltb8e6778q/a5FIBH/729/w73//Gy0tLenqctbJeUGqxkiqJJ6w6quY5Ak2Zd3qvzx4x5RWX2bx27dvHzo6OpKWz2QijlkmnU4nwuGwHIWvTFekFkdqURqLxeSpcVHuUN495T0UsPcimBhV+owq67bb7SgsLJTbiMViCAaD6OnpQSgUQiQSQTweh8PhQHV1NQoLC2GxWFBUVGTqPqcDkeVYdN9y+Ul2MFBcXIwFCxbg+uuv5+b3U3Lsscfi0Ucfxc0334zGxsYM9dAcFosF06ZNw/z58/skRv1+Px544AHcf//9SVkwCCJViouLcccdd+DSSy/VHWtnnnkm5s2bhzfeeANffPHFgH2QnzZtGm644YY+idFYLIaXX34ZCxcuRGNjY84FTZolpwUps7bxhJ7az1PPmqf+UutNTWv5qCr7pDxHNF2r9OXkWSmZP2VnZ6ccsKP0sVROpcfjcXR3d6OlpUUWciy4iSeYlT6myqn8UCgkR7WLfFh5xONxxONxw0ESyij4aDTa694UFhbCZrMhEokgEomgp6cH4XAY4XBYLu9yuVBVVSVfL+ufXlYEPT/dVFB+Z7Sm50mMDmwqKyvx+OOPY+bMmYb8vjweDy6++GIEg0GsXLkS33zzDVpbW7nf6Wxx7rnn4v777+/TEoXt7e1YtGgR/vd//1cOnCCIvmCxWPDAAw/giiuukA0nWvEZXq8Xf/jDH7B//3784x//wOrVq7Fhw4YBZZGvqanBE088gbKyspTrCAaDWLRoEZ599tmcsAing5wWpGr0LIxa5Xh16UWF623zrGPqbZa6yOFwyFYL5gPK/EGj0Sii0aicBmnYsGFob29HOByW82wqn5xisVjSakQFBQWora2VLZA8oaYOdJIkSbaw2mw2w4LNZrMhHo8n9cnlcvWqn1li2TV2dHT0so6ye9Pe3i73m4nSWCwmZxSorq7utRKM6DNRX7MZgWrUBUSrXS0L/kARLgTkNGCLFy/Gt99+i0mTJuHII4/E2LFjUVNTg6Kiol7/V6xWK6655hrMmTMHLS0t+PLLL/Hxxx/jrbfewmuvvdYvDyFFRUUoKSlBeXk5Zs6ciddffx0ff/xxr3LFxcW4+uqrMWrUqJTb2rdvH6666iq89dZbeW+pITKHxWKBw+HAddddh40bN+Loo4/GqFGjcOqpp2LixInyrJeayspKXHnllbjkkkuwdu1aPPjgg9iwYUO/PSjZ7XaMHDlSfkDds2cPuru7e5WzWq246667cOihh6bcVmNjI5YuXYonn3xyUBkvLFIO/goGAgH4fD4MHz5c/nKIppZ56EXHG/E51bptTOgoU1GJyjNL3qGHHgqr1Yq2tjbEYrFe6YwikQj27duHoqIiFBYWyr6TdrsdsVhMDgTq6upCLBaTBTFrV7mKkc/nk6fymdhUik6lQGJJ9pWWUp6wZr6fXV1daG9vR09PjzyQPB4PysvL5Wl0Vj4ajSIcDqOpqQnd3d297pHT6ZQtrSzPaigUkgOXiouLUVFRIZdJpwuG6LNS3h891JZyPXeSaDSKL7/8En6/H16vNw097jtsrA1GXC6XvKACcOAHqaioCAcddBDGjBkji9QxY8aguroaxcXF3O9dQ0MDfv/73+PFF1/El19+mZa+lZaW4sILL8SPfvQjjB49Gj6fD0VFRdi8eTOeeuopPP/880mR7BdffDGefPJJ4brgWiQSCWzbtg3XXXcd3nvvvbz6gaSxNjBgv2NKHA4HDj/8cFRUVOAHP/gBZs6cKf/+8SyP4XAYa9euxUMPPYQPP/wwbdHldrsdU6dOxYIFC3D66afLU/A7d+7EE088gaeffjrJgjlx4kRs2LAh5c9yx44duOCCC7B9+/a8MlIYGWs5L0iVeSQZRsRIppJAK/Od8mDLX1ZUVMiWROVqQYlEAtFoFKFQCG1tbSgtLYXVapX9J1nwktvtloN92HQ+C3RiUexsOl0plt1utxyBrsxZyoLCJEmC3W6H1+uV22XWSaW4DAaD2L9/P7q7u+V/LEq3B5vNhsrKSlRWVsrXnUgk4Pf70dzcnPTPSJIOpHpS5lMNhUIIhUKySGZWIaVw18qVqiWmjQa96T1Y8I6ZsY7GYjESpDmGw+FAUVERhg0bhsMPPxxHHXUUJk6ciGg0iuLiYowePRqlpaWIx+P4xz/+gauuuqpPU4s2mw3HHHMM7rnnHhx33HFc/7RoNIpNmzbhmmuuweeff46hQ4fi5ZdfxlFHHZVSm6+99hoWLFiAzz77LOV+D1RorOUOzH2rqqoKY8aMAQCUlJRg5syZch7pqVOnwmq1Ytu2bbj88sv77M89depULF68GGeccUZS6ilGLBbDa6+9httvvx3btm1DUVERnnrqKZx33nmm25IkCW+99RYWLVqE7du396nfA5G0C9JHH30Ujz76KL7++msAwPjx47F06VLMnDkTwIG8c4sWLcLq1asRDocxY8YMrFixAtXV1XId9fX1mDt3Lt555x0UFRVhzpw5WL58uan8XGpBykuTJAoy0oKXAF2U1F5NqlYDJhrLyspgs9ng8Xhw8MEHw263o7GxEa2trXIgD/OXdDgcsnWRWS6VKZ9CoZD8PhKJJK09z4RgV1cXurq65IAnVjfzXVWvfuR2u1FYWIjOzs6kYCrmHtDS0pL0Q6sUtRaLRV6LvrKyEqWlpbBYLAiHw2hsbJSvTXkuS/chSZJsFWVC1efzoaKiol/yJ2p9V/SClkRiGNBftpY9JOzevRt+vx9//vOfB9RYI4zDRKLVaoXP58PIkSMRCoXQ0tLSp+UO3W43brrpJsyfPz/pcxbxzTff4J133sHkyZMxfvx40w/h8Xgcb775Jm644Qbs3r071W4PaGis5Q8Wi0X+HQWAjo6OlB/+7HY7zjzzTDz99NOG/EA7Ozuxdu1alJWV4cQTTzQ9QydJEp566inccMMNXDeAfMCIIDXlQzp06FDcc889GD16NCRJwjPPPINzzjkHH330EcaPH48FCxbg1VdfxYsvvgifz4f58+fjvPPOw7vvvgvgwD+4WbNmoaamBhs3bkRDQwMuu+wyOBwO/OY3v0n5QkV+oqnUo/zLq9tIUnszsH6Gw2F5/XWPx4OysjI0NDQgEAjI4o5ZOcvKytDW1oaCggLZwsosjMqpj2g0CovFIi8hygKYmFWHlbPZbIhGowgGgwiHwwgGg+jo6JCtpy6XC11dXejs7EzydWVLfLa2tiYFWDGrqVK4sv1tbW1yn9ra2tDT09NLjDqdTjnIiVl4LRYLXC4XSktL4fV6hWLUzKIFRr43ev9YeMFvyil6Leu42nqqtHYN1LFG6KP0YWtubk7LikQulwu33HILlixZYnjafcSIEbj88stTaq+trQ2PPPIIHnnkkZxcFccMNNbyA0mSei1ukipLly7FggULDAcAFhcX49xzz02pra6uLqxcuRK33npr3opRo/R5yr6srAz3338/zj//fFRWVmLVqlU4//zzARzwsRg7diw2bdqEqVOn4vXXX8dZZ52Fffv2yU+Xjz32GG655Rbs37/fcGQ2b8peidJv00yEeKaRJElOW1RbW4vS0lK43W4cdNBB8Pl8eP3112UBFw6HZX9OZnEEvhM9TPgw0cn2K5/QlamfCgsLZb9TljCe+ZHGYjH09PSgtbVVXiWjoKAAoVAIBQUFch/YdDv7Adbzq2V9Y5+L2mdImdSf+Ziy84qLi1FaWsr9jphdelO0ZKzIAi4KAtMbOlp9UgfNJRIJ+Hw+bN68Wfgkmc2xRmSXmpoafPDBBxg6dGi/t/XNN9/gjjvuwDPPPJNX/qI8aKwRampqarBlyxYMGTKk39sKBAK4+uqr8eKLLw7asaYkZdNePB7H6tWr0d3djbq6OmzevBnRaBTTp0+Xy4wZMwbDhw/Hpk2bAACbNm3ChAkTkqY6ZsyYgUAgoOkzEQ6HEQgEkl6AtgDS8/XTi6JPB8rpWFE0NxNnLHDI7XbD7/dj06ZNCAQCcsASo7u7G4FAAMFgUPbnZAFFTGgzscp8Snt6etDd3Y1wOCxbL9m5wWAQgUAAHR0daG9vR3t7Ozo7OwEAFRUVOOigg+DxeGSByJboZMtzDhkypFdQkehesGtl1l4lSrHK/GCZ0C4sLER5ebnwH3uqq2IpBTrvL3ux6XRlO1qpnNRlRbD7xcqWlpZyyw2EsUZkl7a2Nrz88sv9ngT7iy++wLXXXouVK1fm/Q8kDxprRHt7Ox577DF89dVX/ZpNgonRF154YVCONR6m0z5t27YNdXV1CIVCKCoqwl//+leMGzcOW7duhdPpTFpODwCqq6tlx+LGxsZevk9sW8v5ePny5bjjjjsM91E5basObBGl5Emn1VRPfCr3S5IEh8Mh5w/1er1obGxEU1OTnDpJPR3OE9Oi1EF2uz3Jp40JVxapzqb4leu/M0ssu39smr6oqCjJl7O8vBxutxtOpxOdnZ1ySiY2zc67/ng8Lvum8qbX2b6CggJIkgSPxyNP0fdX9Lzesq96y8Ya2Q+g12eoRj12cmGsEZkhEolg8eLFeOaZZ3DllVdiwoQJGDVqlDyrko5x8cknn+CnP/1pTq0Tni5orBGMcDiMu+66Cw8//DCOOeYYHH300TjrrLMwceLEPuXwVbJjxw4sXboUf/nLX/Iqkr6vmBakhx9+OLZu3Qq/34+XXnoJc+bMwfr16/ujbzJLlizBwoUL5e1AIIBhw4YB0I6KVk/B6olP3nF16h4jU7VGYWLT7XbL/pKBQAB+v1/Otan0D2UoXRKUwk+5zaIOWRvqICPgO/GktqyyNpXlbTabLFKB75LtRyIROUqfRfMzCyq7JiZQWf/UjuYsP6rS5YCl2FG6Eig/I2W/M4nIh9joE64o6p4te6pkoI01IrtEIhFs2bIFW7ZsQUFBAUpKSnDIIYdg/PjxmDlzJs4+++yU/dlDoRBuuukmfPTRR2nudW5AY41QIkkSOjo6sGbNGqxZswa/+93vcNhhh+GMM87AOeecgyOPPJIbdW+07sWLF+PVV19Nc69zH9OC1Ol0yglfJ0+ejA8++AC///3v8eMf/xiRSAQdHR1JT5NNTU2oqakBcMA34/3330+qjznMszI8XC4X15FfbRXkCRStwBVeIIr6vd4xrTq1yjGYAAuFQnC5XGhqakJrayvC4XDSdLzaqsZEKQBZsCmPs2l+llxetIynWsiqy7MybPUmJk5tNht6enqS/FmZLypLUq9cXYkJVPbiTX8r3Q5CoRDC4TAKCwtRVFQkBzpp3UvlPWXHMyFajYhRkQWb4XQ6k1aaYvsGylgjBhY9PT3o6elBQ0MD3n33Xbz88sv4+OOPMXXqVBx66KEYMmQI3G63YYHqdDrx0EMP4YEHHsAzzzzT6yE436GxRmjR09ODjz/+GB9//DF+97vfYfTo0TjrrLPwgx/8AKNGjeqVglALi8WC2267DcFgEOvXr6fpegV9TsbJVgqaPHkyHA4H1q5dKx/btWsX6uvrUVdXBwCoq6vDtm3bkqJO16xZA6/Xi3HjxqXUvhFrpcinTzn9rSdItabhGUohpDxH1EelzyETniwtE3uxKXK1PyqLYme+nco8o+r3kUgE4XBYzl3KRKHa/5QJTV5OV6W1lk3xs6h8VncwGJSXNWXZAkpKSlBTU4Nhw4Zh2LBhGDJkCMrLy1FYWChH/qvvJ7sPsVgMgUAATU1NaG9vT7oXqVipMzU1ov7cjbRbWFjIXW1KSbbHGjFwaWlpwbJlyzBr1ixMnToVxx9/PB588EF8/vnnCAQCut9Bq9WKsWPH4oEHHsCjjz6Kww8/PEM9H5jQWCNEhMNhfPLJJ7jnnntw4okn4thjj8X06dPx0ksvGc57WldXh5dffhm//vWvUV5e3s89zh1MRdkvWbIEM2fOxPDhw9HZ2YlVq1bh3nvvxZtvvonvf//7mDt3Ll577TWsXLkSXq8X119/PQBg48aNAA5MCU+aNAm1tbW477770NjYiEsvvRRXXXWVqfQYLBrxoIMOksWTMv+oFqIco0YQTdcb3a+O/I9Go4jH47JlzOl0IhqNysuCiqyjyvp470Xt8c5V/uW9V4pm1gfmU8r8QZmVl+VDZQFaLGJeWYYtK8osoGx6nwVcqa3AzHfUarXC4/HA5/MJg5t4OWgZ7D5kappfz6quthCPHj0akydPxt133w2/34/ly5cPqLFG5B42mw1erxcHHXQQfvjDH+LCCy/EkCFDNNOmAQe+jzt27MANN9yAdevW5bW1lMYakS5sNhtqa2tx2WWX4ayzzsIRRxyh63OaSCTw/vvv4/LLL8euXbsy1NPskPY8pM3NzbjsssvQ0NAAn8+HiRMnyoMWAB566CFYrVbMnj07KYEww2az4ZVXXsHcuXNRV1eHwsJCzJkzB3feeWcKl5cMz9eThzrHKNA7Z6V6PxOvetP1evtFljNWP5vWVvuFqoWayDVBNKXNE6VaAlftyqBsn/l7MksmC3BStsXuFbOUMkssE5VMgNvtdhQWFiISiaCrq0tOgaXMP6r8XHt6euQ8rMpVpZR9FaVoEl13Kgso6KH1jMdzmQDQ6yl5II81IjeIx+Ny5owdO3bg97//PWprazFz5kxccsklGDFiBIqLi3s94FksFowbNw4vvPACLrroIrz55ptZuoLMQGONSAfxeBx79uzB3XffjQcffBBjx47FjBkzMHXqVEydOhUOhwM+ny/pN8tqtWLq1KnYsGEDZs2aNSgDCpXk9NKhtbW1uhbSvogMXvS3WqTy9rNtvSTt6jygJSUlaGpqgt/vl6fWedHqomvTWkVIXU4p3oyka1KiXq5QGXTEEu8rE/EzNwClzysAOXDKZrMlWWF6enrQ0dEhW4gBJEX3FxcXo7i4uNd9FeUQNYMo0T1vNSblceW5SpQPHTxY3WeccQZ8Pp9sIaXlDIn+gj0YVlVV4bDDDsPEiRNx1FFHyemMioqK5DH+4Ycf4uyzz0ZDQ0OWe90/0Fgj+hur1Yry8nI4HA6ceOKJOO+881BaWgq73Y7vfe97svvav//9b8yaNUtOu5hvpN1CmguoBUNfrF966X5E77WOqZc5tdls8j//UCgkR9eL8p/xxBGriydaeZZjMz6OPEGqjsBXToUryzLLKXsx8cmWEY3H4/JKTUo/VqvVKn9x4/E4XC4XYrGY7K/a2dkJq9WK4uLipH6pPwMtq7ZepgX1fROJUiPWcT2ndbfb3etaCKK/SCS+Wzr4yy+/xBtvvAGLxYKioiJ5nXAmUg899FBMmjQpbwUpQfQ3iUQC+/fvBwA8//zzeP755wEc+H0aOnQojjzySJxzzjk455xzcNxxx+X9jIQWeSFIRVYrre3+RpQKSO07yKLIg8GgbBnVEoypRPGr/RlF0/epCixl+ii1+FXXqRTarC9sap4FYSn7zoSr3W6H0+mEx+NBOByWrcc8K6k6yb3ymLptrQcWnrWT5xuqrEt9jt6yoew74Ha7U153mSD6iiRJ6OzsRGdnJ7744gu8+uqr8qIU2UivRhD5TiKRQH19Perr6/HKK69g+fLlsnAdrOS8IOUJBJ7Frj98BbUwmsrB5XLB6XTKKycpp3h5AshIDlXROSIfS3Ud6rK8e6z0WVULUha8xEQjz99TmaSfnaM8pmyPrValtMY6HI6kNFQOh0MOnlL2SdkWg+cTbNQHWX2/RNZhvfOUf8vKylLOH0kQ/UUikcjb6UOCGEhIkoQvvvgi293IOjkvSBlqQaYn3rTERyatqeFwGBbLd+u6M0uhEWscQxS0Y8Syqjddr97Wq5NNvwOQBTYLaGJ+pMrE/ur62Iv5mbLUV+r6la4AsVgMTqcTxcXFcrqWcDgsn8OzmCqtqyKBqkQrYEyN2bxylPaDIAiCGOzktCDlCRq9qXo9P8tMT0+xfKMsBZRS0Cn7Z3RbFOhkxF9UD55/rjpASnldyjJs6p2drzyPiVQmClkeUlYPO4+t4MTEqlKUAgcEsDLiXw+eQBWlA1NahtXBbrzgNxHqz8FqtQrXsCcIgiCIwULOC1IGT4RqWbx4Qla938j0rRkRy5s+Z0tpslRHTHz1VTiKppFTFdzK+yOqX5Quiu1nwUw80ayctmfnKXOfsnJKFwC2T+kSYLPZktJFmYHnG8sTp7zsCUaFqPJ9IpFAQUFB2tZHJgiCIIhcJacFqRIty2gq4sSIMNWb7tYKlFFayNjqTJIk6U4dq0mnBTQVRH6pRnxV1X1X519VHmPlmcVUKWztdjscDgfcbjfsdjsCgYCwLSNoZU/gldMLXNLyMS0qKtJdoYkgCIIg8p2cF6Ra1jqjlkKjAS1m/C15+3h9YFY2NmVtt9sRCoV6uSP0tT8in01WlhcExrbV/qvqepVt8oSocmpeS+irj4nun7q/iUQCTqcT5eXlaG9v18zdmopA7Svqa1EKWApoIgiCIIg8EKSA8ehzrf0iq6SRgCcjVkmRuGIrGbG/LC+nkTqMIEpHpHVdIlFpBrNiUC0y1RZSrcAtSZIQDofR0NAgW1B5FnOtNvsTkRgFKKCJIAiCIIAcF6RKH0WRT6jI8qesQ89HVIlWhDvvPK1pe+C79E7Mh7Qv60aLxLKWMNOz7KrfK0WrXh+U90BUj3JbZNlUf85q4coE6ZAhQ7B//375fBbdr4Tn4qAVBGcGs6LdbrdTQBNBEARBIMcFKUPPQqonOMxM4xqxtGkJMfX7cDiMeDyelBDfaLtqzAgps5Ze0TS8WREscqHg+Yxq9UVZngn65uZmOd2T2r9TGTCl1Q+tbAtG7xnv8+f5mTqdzgGzbCFBEARBZJO8EKSAOcuWyMKZinVMS0jxjqnfx+NxeYqZ/VUmcudNt/Pa0RNSeuep0QpK0jtfnQrKqAVa63PhXYfy3iQSCTlRPg91xLwZy7CoDO+YnpuA8lhxcTGcTqewDEEQBEEMFnJakGpZ7QBj69kbERFmp/lFfVO/Z3WwaXu2cpE68bten5X9NCuqRaKSZ4VMRfArt7UsxqI6eGIX6J3nlFlJlVP/anjJ8NVtqF0C9MS0XpYDXl9YmdLSUgpoIgiCIAjkuCAF+j5dr1cHO65ET/iZEVpK4allsVS3L6pPeT1GRaRZ30ejLg8isW/2fouOKeuzWq3o7u6Gw+HQ7LtotSZRO3rWY1FfjaxhX1FRodlXgiAIghgs5LQgVYsCkXVUT5QZCYriHTMq5HgiVNQ3tVDtK0atuVr3S8tCqhbRZqateXXp1c/DYjmQPisSiRgS4EqXCN6a91pWS15feHXwUAvosrIy3b4SBEEQxGAgpwWpUURihhfYoiVGteoy2q5auLFttkKT1nS90SlzrX6Lgnm0+qmHWYGuLqsnOLXcHxgsjyuvbrZPPd2vRilSReKUuVaI0BOjDLfbjcLCQmE9BEEQBDGYyHlBKrLu8UQJ71z1cZE/odk+ab1XW0HZevbK7b5YR7UEXCpi26jrg955WuWMWEK1jjFBKhL8ZhGtwmTW51P0+ft8PlqhiSAIgiD+f/IiokIkAC2W3uum653PO6Zl6VSW0ZpmF9WhtLjpCdF0TOGr21a/57WjFLHqHKBG+2qkrJ5FWYTFYoHNZtPtVzrun96a9aJ21W3TCk0EQRAE8R05bSEVWTNFgSh6dWlF5SstbkZ8JI1aSdVT9EZEaaqJ2/X6yTumZVE1UifvM9KzXhoRs2rXCrvdnmQh5bXHqysd99KMNZaVpYAmgiAIgviOnBakPPQEG893UStZu1ZEu1mLG88iqRSiLA+pmfrSKU6NkupUuJHcoqm0b7PZ5HyeIt9UvQeKvt5HkRDmHbPZbBTQRBAEQRAKcl6QKgWFyH+Q954nGIwGA2mlN9Kz7vG2mQ+pWfpTjBqZRk+1zr7UwYNnHWVt8LIkqNHKsqBVTo3e9bF9brcbRUVFwnoIgiAIYrCR84LUCDxh2pd6RAJUJOK0pqYlSZIj7FPpo2gKOp3WUzMWZ722jV6bqA6eeLTZbFx/THV/RPeKLUig10c9cS5aYECN1+uFy+XitkEQBEEQg5GcFqRM0BlJAm8kmTtPXPHK84JUjIhR3nlqMWQEI1a6vohRtTuB2brM+Npq1aG1zdBaDlTPn1S9X9mOEVGtlUNWqx/l5eVZcbUgCIIgiIFKXoX5mhWDenVpCU8j7Rvtm8vlgtVqNSRS0lUmnagj71PxtTUSdMarGzgwBW4kYl3UL63vibpNrWl5PQsqE7kU0EQQBEEQyfRJkN5zzz2wWCy48cYb5X2hUAjz5s1DeXk5ioqKMHv2bDQ1NSWdV19fj1mzZsHj8aCqqgqLFy9GLBZLuR9Gps15ZbXKGWlLuU80da3312azwW63yymVUhVv7HyjYtSoNU9Zt15dZo/ptWukrNVqNR0MxuoQPXSI+sS7V1oinLffZrOhvLzcVF+BgTPWCCKfoXFGENkjZUH6wQcf4PHHH8fEiROT9i9YsAD//Oc/8eKLL2L9+vXYt28fzjvvPPl4PB7HrFmzEIlEsHHjRjzzzDNYuXIlli5dmvpVoLcli7dfvY9n+dISnCLRodUXrf4yodfd3Z3kR6pGPcWcapvqtrWm1fsq3HnoTYFrXYPoXOZDajQorK8PIFoiVs9CLEkSCgoKTK/QNNDGGkHkIzTOCCK7pCRIu7q6cPHFF+OJJ55AaWmpvN/v9+PJJ5/Egw8+iFNPPRWTJ0/G008/jY0bN+K9994DALz11lv49NNP8b//+7+YNGkSZs6cibvuuguPPPIIIpGIqX7wrJJmMWOZE52n3qcldNV9tlgscpS9SJSqhWMqfeP10YhAVPa1r+0b6ZfaGiuyNvP6pbZY8trTEuC8c0U+w3rXJtr2er2mVmgaKGONIPIZGmcEkX1SEqTz5s3DrFmzMH369KT9mzdvRjQaTdo/ZswYDB8+HJs2bQIAbNq0CRMmTEB1dbVcZsaMGQgEAti+fbvpvmhNPYusoEpEqZ5StaTpWVqVsPXS4/F4yqs0aQXWaIlgrXp5glDdhpbl2Yw/qEi48frJE6PM91ZLBPOm0UXfCyPWdSP3QdQXs9P1A2msEUS+QuOMILKP6Sj71atXY8uWLfjggw96HWtsbITT6URJSUnS/urqajQ2NspllAOXHWfHeITDYYTDYXk7EAgkHVeKID1BpBQ8ym1GKknTlVPgWm3ytsPhsOZ0vR5GhLPoWvtar1Z5s1ZdhlY6LR42m81QlgUzFk6eZVjPnUH9+YuEfmVlpWY/lAzEsUYQ+UY2xhlAY40g1JiykO7Zswc33HAD/vznP5uaduwry5cvh8/nk1/Dhg3rVcbM1LuWQNPzDeRZ24y0yYP5PTqdzn5b11zZT3bdSuujGdGoFH7qyHplGWXbZtBamEBUnq1hnw6XDbPHzXznJEmC3W43vELTQB5rBJEv7N27NyvjDKCxRhBqTKmgzZs3o7m5GUcddRTsdjvsdjvWr1+Phx9+GHa7HdXV1YhEIujo6Eg6r6mpCTU1NQCAmpqaXhGKbJuVUbNkyRL4/X75tWfPnl5leFPXWtOyelPrWmJV67jIF1FkMXM6nXA4HADQS5SaEbvKKPtUxJnetZnFrCtEqtZUu92eVLfe9LwePJHJO593TMuNAQAKCgoMr9A0kMcaQeQLW7duzco4A2isEYQaU4L0tNNOw7Zt27B161b5dfTRR+Piiy+W3zscDqxdu1Y+Z9euXaivr0ddXR0AoK6uDtu2bUNzc7NcZs2aNfB6vRg3bhy3XZfLBa/Xm/QCtEUnIPavVGNUgBrx1zRDLBZDT08PgsGg7EfK678RscYTYKLrMbJf6a5gZspf2b7IimoUvXOsVqtsIdU7T0+o8rZ51l7ew41WW8p9Pp/P8ApNA22sEUQ+Mm3atKyMM4DGGkGoMeVDWlxcjCOOOCJpX2FhIcrLy+X9V155JRYuXIiysjJ4vV5cf/31qKurw9SpUwEAp59+OsaNG4dLL70U9913HxobG/HLX/4S8+bNS8tyikoxJPIFNLMCTypTukaFWyQSQTQaRSwWk8VoJpLa867T6HF1wJOZ+6N37/Xuu7pfSuuoFkbzu4ra0zvGs4ry3psJaMqFsUYQuU5xcTEOOuigpH00zggiO6R96dCHHnoIVqsVs2fPRjgcxowZM7BixQr5uM1mwyuvvIK5c+eirq4OhYWFmDNnDu68886U2xRZL/UEFyCeWjbjz8jKGxGnSusZS/ekjLBXi65MCFRe342IR6NilJXXuhalf6refZQkCVarlStIzfqhqsvwlhXlvdeqQ0RVVZVuP8yQjbFGEIMNGmcEkRksUjocBjNMIBCAz+dDaWmpMG8lb1vrGA+tiPu+CBRJkhCPxxEOhxGNRg2tNGRktSSlmEslWImdywQyS6nEXso2jFodjfbHrLXVZrOhpKQEDodDU5BqCWtR3UYxI6CdTidmz56taSUNhUK4++674ff7B8z0HRtrBJGP0FgjiMxgZKyl3UKaacxaOLWmhY34nGpNz+q1ryzPs45qwfPN5AnivgQ0KeEJ4FQj6PsiCHmij0XX22w2zc/DiP+rGWFtNAUUb9vlcqG4uFi3HYIgCIIYjOS8IFULED2Bkg5rGq9u0ZS3etpaeTxV4zQvaEYrF6do6lmN0lKqJXqVZY30M10o27Tb7bpLhpqx4JppW1SPlvgtKyuTsykQBEEQBJFMzgtSRqqWQT2raF+te7xt5j+aiijV82/lWVHVQsmIBbevvqtmxb1eXQx2PWyVq3TBc8kw2zfe58m2y8vLM+IPTBAEQRC5SP9kY88QZqZOterQEoZGjmvl/xRN6bPperOYFTW8/vMEKs8lgFcXOy66LtG9MtpvPeste2+1WjU/fy3U4l1PVKrL8q5TS4wC6LWSC0EQBEEQ35HTglTPuskTDbxyovKi42pBIqpXVJfSOpruaW0j8PquPCbCrPXQaL2ivonaVEfYa33GaiGprNNIv4yIXr06eEsPEgRBEATxHTktSAF9ESoqb7SM0fq1hI96+tpMMFN/IRLEqUxVs22tjAap9oeHzWaTMwDw+qR2TTDzHdF64FC3IzqmfrndbgpoIgiCIAgNctqHVCk49FIiAdpBTDwRyUMruEXZn1RdADKBEUufEWuoSKgZyTeaynnsLxOkRu6hnuDmfQeM1GfGXaC8vJwCmgiCIAhCg5wWpAyeKBWJVC3hKRK3WhZR5bmissr9kiRl3Tqqh/o+iK6Vd54eakEnyiMrsnYyQdoXzFqFUxGxyn5XVFRQQBNBEARBaJAXglQtWgD9FXtEwlMrGb6RPhgpNxCm7BkiEW/E4mykTt55Wkn+9epWrl+v9dBhNIuA6GHDSMJ7I8csFgsqKyuF5xAEQRAEkSeCVAlPTGiJE5E11KzQMVp/qtH1Ax2jgUJGouhFdbDoeqvV2qucyLIqoq8PA0ZcAYADAU2lpaV9aosgCIIg8p2cFqRGRKeynNaUvNY0vciyakR4qQVyqvlH+xvWp1RXY+LVZwSj/pvK6XpmIVUvPJBqP7VWYNL6vLWsq+y9x+NBUVFRSn0jCIIgiMFCTgtSEXr+o7x9RgOkRPVolVG2wdatHwiClHedZn0djbhGKMtp+WMaweFwwGazIRaLmeonr49GxbDRqXueOC4rK4PT6exLVwmCIAgi78lLQQro+xGmw8fUbH/i8fiA8R0F+KJMy39SVIeR/aIpeK06lP6sVqsVLpcLpaWlCIfDvfqv10deNgVRH836j/K+N2wf+Y8SBEEQhD45LUjVQsOM36fWdD8vEtxovVr9Y4J0oPmQqi22evfSqKuEkXaNuFqw/kWjUbS3twsDm9T90vJJ5U3Ji8qmUidwIACrqqpKeH0EQRAEQRwgpwUpoC1K9YSlUTGlF2wj6ov6nEgkglgsxp2yT7VvfcGM3616v3K7P0Wpumw0GoXb7TZU1kzbZtww9Cy67LjdbkdZWZluvQRBEAQx2Ml5QWpkWt3oFKxZYcU7X2Q1SyQSSf6jIvEssvbxMDO1rnVef7gQpNo3I/WqSbUdLZ9hvel7vT5IkoTi4mJ4PJ6U+kYQBEEQg4mcFqQTJ05ER0cHOjo60NPTg3g8zi2nNT3LK6dEzyVA73wGE6Pqes3UweuTcl8qwiyVgB51P1Kp10ybSl9SrRymZuvV268Xxc97iFCeU1JSQgFNBEEQBGGAnBak06ZNg9PpRCgUQkdHB1pbW9HU1ISWlhb4/X6Ew2FhNLaewDQb2KMnztTR9WanqrXQ6ytP4KUjvZOWj63R+2c00p+Xg5T1wchDQ6pWTmX7RoOaGOQ/ShAEQRDGyGlBChwIHPF4PPB4PKitrcWECRMQj8cRDofR0dGBlpYWNDU1obW1VRapIkuqEp5lzIjoEwkXXiCT3pS/UXGl5yOrFp9mfSf7Ez0RqeVba8RlwmgfjJYxamW1Wq0UYU8QBEEQBsl5QcrDZrMliVTgwJQ5s6S2tLSgubkZLS0tCAQCSSI1HUE6apj/aCp1GcmNyot+V/ZFPeXNC6rqC6L+pZI+Sstf1mq1agaN9dUHWO+YUTEqSRIFNBEEQRCECfJSkPKw2WwoLCxEYWEhDjroIAAHRGpPTw86OjrQ3NyM/fv3o6WlBV1dXQiFQmlLz6QMZGLbWgJSVAeQLLrMJvI3U9aMuOuLgOdZcdX9UfqOpsNvVUtYmrkWrc+vqKgIhYWFhusiCIIgiMHMoBGkPGw2G4qKilBUVIShQ4cCOCBSg8EgOjo6sH//fjQ3N6O1tRWdnZ29pvuNihd1QBMgDqDSK6fnGiCaijcrgo24Dqjr7gsiNwKlEFVaSPX6oOeWYNQnVHS+Xpny8nI4HA5u/QRBEARBJDOoBSkPm82G4uJiFBcXY9iwYQCAWCwmi9Tm5mY0NTWhvb0dnZ2diEQimpZUZUCTFumYbtYSWammSzKSNF5kqTXjFqB3/UyQquvVui4zU/JGfYaNilMKaCIIgiAI45AgNYDdbofX64XX68Xw4cMBHBCp3d3dskhtbm5GW1sbOjs7EY1GEY/HZbGkFKz9HUQkSpmkVUZEOn0y+3qu1nS9EQFqpi1eGaNWYEmSYLVaUVFRYagvBEEQBEGQIE0Zu90On88Hn8+HESNGAACi0SiCwSBaW1vlFFStra2IxWKIx+OagU3pEKpmAnGM1mckWMlI0JX6XCNR/kbyj6Zb4GvdQ6PHnE4nysvL09ovgiAIgshnrPpFvmPZsmW9AkzGjBkjHw+FQpg3bx7Ky8tRVFSE2bNno6mpKamO+vp6zJo1Cx6PB1VVVVi8eLEwV2iu4XA44PP5cMghh+CYY47BWWedhYsuughXXXUVLrzwQpx66qkYN24cKisrUVBQoOkTOVAQWVzVwVVa8FI1GYn0V5ZlVmbeebygMd4xrTZFx8xG4gMHApr6ukITjTWCyAw01ghiYGDaQjp+/Hj861//+q4C+3dVLFiwAK+++ipefPFF+Hw+zJ8/H+eddx7effddAAeCe2bNmoWamhps3LgRDQ0NuOyyy+BwOPCb3/wmDZcz8HA6nSgrK0NZWRkOP/xwAAfWtA8EAmhpacG+ffvQ0NAgR/eHw2EA/Tu1byZpPU/kqUWpGQupmWNa5ZRBWrx+mqnXTDJ9I/sqKirSEtBEY40gMgONNYLIPqYFqd1uR01NTa/9fr8fTz75JFatWoVTTz0VAPD0009j7NixeO+99zB16lS89dZb+PTTT/Gvf/0L1dXVmDRpEu666y7ccsstWLZs2aBZZtHpdKKiogIVFRUYM2YMJElCJBKB3+9HS0sLGhoa0NjYKItUvcAps5gVgXr+lEYspH0V2DabjRs0lUquU739ogAtPZcB9j5dCfFprBFEZqCxRhDZx9SUPQB8/vnnqK2txSGHHIKLL74Y9fX1AIDNmzcjGo1i+vTpctkxY8Zg+PDh2LRpEwBg06ZNmDBhAqqrq+UyM2bMQCAQwPbt24VthsNhBAKBpFc+YbFY4HK5UFVVhXHjxuG0007DT37yE1xzzTW46qqrcMEFF+Ckk07CYYcdhvLycjidzl5LaJptr6/oTYGry/YV0fUanfY3ila0vVaqJ/bearWmLcKexhpBZAYaawSRfUxZSKdMmYKVK1fi8MMPR0NDA+644w6ceOKJ+OSTT9DY2Ain04mSkpKkc6qrq9HY2AgAaGxsTBq07Dg7JmL58uW44447zHQ157FYLHC73XC73aiursb48eMhSRJ6enrQ2dmJ5uZm7Nu3D42NjXIKqlgsZsiSmk53gP70gVW6BthstqQcrAytrAKiFE48yyovUEsErxw73+VyobS01NgFakBjjSAyA401ghgYmBKkM2fOlN9PnDgRU6ZMwYgRI/DCCy+goKAg7Z1jLFmyBAsXLpS3A4GAnCN0MGGxWOQlUaurqzFhwgRZpAYCATQ1NcnT/W1tbejq6kIsFutXf1S9nKBsfyp9YMLRarUmWUh5wpTXH619ojKsTVGf9ab907VCE401gsgMNNYIYmDQp7RPJSUlOOyww7B79258//vfRyQSQUdHR9LTZFNTk+ybU1NTg/fffz+pDhatyPPfYbhcLrhcrr50NW9RitSamhoceeSRskjt6OhAY2MjGhoa5BWngsFgv4lUnrUyHe2kK+VTKhZQM/skSUJFRUVSQES6oLFGEJmBxhpBZIc+/XJ2dXXhiy++wKWXXorJkyfD4XBg7dq1mD17NgBg165dqK+vR11dHQCgrq4Od999N5qbm2U/uzVr1sDr9WLcuHGG22VCgEWkE72xWq1ydP+4ceOQSCQQDoflRP4NDQ1oaGhAU1OTZn7UvpAu0cuEbSZEtJkyPDeA0tJShEKhlPqilWEh22ONIPIRGmsEkRkMfb8lEyxatEhat26d9NVXX0nvvvuuNH36dKmiokJqbm6WJEmSrr32Wmn48OHS22+/LX344YdSXV2dVFdXJ58fi8WkI444Qjr99NOlrVu3Sm+88YZUWVkpLVmyxEw3pC+++EICQC965eVrz549NNboRa8MvGis0YtemXnt2bNHdwyYspDu3bsXF110EVpbW1FZWYkTTjgB7733npzm5qGHHoLVasXs2bMRDocxY8YMrFixQj7fZrPhlVdewdy5c1FXV4fCwkLMmTMHd955p5luoKysDMCBZMQ+n8/UuYMB5ou0Z88eeL3ebHdnQDGQ740kSejs7ERtbS2NtRxgIH+XBgID+f7QWMstBvJ3KdsM9HujHGt6WCQp9+YJAoEAfD4f/H7/gPwAsg3dHzF0b8xB90sM3Rtt6P6Yg+6XGLo3YvLp3qSezJIgCIIgCIIg0gAJUoIgCIIgCCKr5KQgdblcuP322yllhgC6P2Lo3piD7pcYujfa0P0xB90vMXRvxOTTvclJH1KCIAiCIAgif8hJCylBEARBEASRP5AgJQiCIAiCILIKCVKCIAiCIAgiq5AgJQiCIAiCILJKTgrSRx55BCNHjoTb7caUKVPw/vvvZ7tL/cry5ctxzDHHoLi4GFVVVTj33HOxa9eupDKhUAjz5s1DeXk5ioqKMHv2bDQ1NSWVqa+vx6xZs+DxeFBVVYXFixcjFotl8lL6nXvuuQcWiwU33nijvI/uTerQWKOxJoLGWvoYbOMMoLFmhkEz1kwttjsAWL16teR0OqWnnnpK2r59u/Szn/1MKikpkZqamrLdtX5jxowZ0tNPPy198skn0tatW6UzzzxTGj58uNTV1SWXufbaa6Vhw4ZJa9eulT788ENp6tSp0nHHHScfZ+stT58+Xfroo4+k1157TaqoqDC93vJA5v3335dGjhwpTZw4Ubrhhhvk/XRvUoPGGo01ETTW0sdgHGeSRGPNKINprOWcID322GOlefPmydvxeFyqra2Vli9fnsVeZZbm5mYJgLR+/XpJkiSpo6NDcjgc0osvviiX2bFjhwRA2rRpkyRJkvTaa69JVqtVamxslMs8+uijktfrlcLhcGYvoB/o7OyURo8eLa1Zs0aaNm2aPHDp3qQOjTUaazxorKUXGmcHoLHWm8E21nJqyj4SiWDz5s2YPn26vM9qtWL69OnYtGlTFnuWWfx+PwCgrKwMALB582ZEo9Gk+zJmzBgMHz5cvi+bNm3ChAkTUF1dLZeZMWMGAoEAtm/fnsHe9w/z5s3DrFmzku4BQPcmVWisHYDGWm9orKUPGmffQWOtN4NtrNmz3QEztLS0IB6PJ91gAKiursbOnTuz1KvMkkgkcOONN+L444/HEUccAQBobGyE0+lESUlJUtnq6mo0NjbKZXj3jR3LZVavXo0tW7bggw8+6HVssN+bVKGxRmONB4219ELj7AA01nozGMdaTglS4sAT0yeffIL//Oc/2e7KgGDPnj244YYbsGbNGrjd7mx3h8gjaKwlQ2ON6C9orCUzWMdaTk3ZV1RUwGaz9Yoka2pqQk1NTZZ6lTnmz5+PV155Be+88w6GDh0q76+pqUEkEkFHR0dSeeV9qamp4d43dixX2bx5M5qbm3HUUUfBbrfDbrdj/fr1ePjhh2G321FdXT1o701foLFGY00NjbX0M9jHGUBjjcegHWvZdmI1y7HHHivNnz9f3o7H49JBBx2U1w7giURCmjdvnlRbWyt99tlnvY4zB+eXXnpJ3rdz506ug7MycvPxxx+XvF6vFAqF+v8i+olAICBt27Yt6XX00UdLl1xyibRt27ZBfW/6Co01GmtKaKz1D4NxnEkSjTUtButYyzlBunr1asnlckkrV66UPv30U+nqq6+WSkpKkiLJ8o25c+dKPp9PWrdundTQ0CC/gsGgXObaa6+Vhg8fLr399tvShx9+KNXV1Ul1dXXycZYC4vTTT5e2bt0qvfHGG1JlZeWATgGRKspoREmie5MqNNZorOlBY63vDMZxJkk01swyGMZazglSSZKkP/zhD9Lw4cMlp9MpHXvssdJ7772X7S71KwC4r6efflou09PTI1133XVSaWmp5PF4pB/+8IdSQ0NDUj1ff/21NHPmTKmgoECqqKiQFi1aJEWj0QxfTf+jHrh0b1KHxhqNNS1orKWHwTbOJInGmlkGw1izSJIkZc5BgCAIgiAIgiCSyamgJoIgCIIgCCL/IEFKEARBEARBZBUSpARBEARBEERWIUFKEARBEARBZBUSpARBEARBEERWIUFKEARBEARBZBUSpARBEARBEERWIUFKEARBEARBZBUSpARBEARBEERWIUFKEARBEARBZBUSpARBEARBEERWIUFKEARBEARBZJX/D2lFCsS73r46AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "## 플롯 그리기\n", + "plt.figure(figsize=(8,6))\n", + "plt.subplot(131)\n", + "plt.imshow(input, cmap='gray')\n", + "plt.title('input')\n", + "\n", + "plt.subplot(132)\n", + "plt.imshow(label, cmap='gray')\n", + "plt.title('label')\n", + "\n", + "plt.subplot(133)\n", + "plt.imshow(output, cmap='gray')\n", + "plt.title('output')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Report" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, precision_recall_curve\n", + "import itertools" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data types: int32 int32\n", + "Shapes: (262144,) (262144,)\n", + "Label sample: [0 0 0 ... 0 0 0]\n", + "Output sample: [0 0 0 ... 0 0 0]\n", + "Accuracy: 0.998199462890625\n", + "Precision: 0.9588396707173658\n", + "Recall: 0.9947132980886539\n", + "F1 Score: 0.9764471057884232\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr0AAAJOCAYAAAC6Ir9vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuTElEQVR4nO3dd3gUZdfH8d+mB0ihJkRD6L1JESNdAqFJl6qG/oiAFGlKBxGlCtJUVIp0KdJEmoBCaIEoICBVUAggkIRQAkn2/YM3K2soCW4mYfP9eM31ujNn7r1n3yfuycmZe0xms9ksAAAAwI45pPUEAAAAgNRG0gsAAAC7R9ILAAAAu0fSCwAAALtH0gsAAAC7R9ILAAAAu0fSCwAAALtH0gsAAAC7R9ILAAAAu0fSC8AunThxQnXq1JGXl5dMJpNWrVpl0/HPnj0rk8mkOXPm2HTcZ1mNGjVUo0aNtJ4GADwUSS+AVHPq1Cn973//U/78+eXm5iZPT09VrlxZU6ZM0e3bt1P1vUNCQnTo0CGNGTNG8+fPV4UKFVL1/YzUvn17mUwmeXp6PvRzPHHihEwmk0wmkyZMmJDi8S9cuKARI0YoPDzcBrMFgPTBKa0nAMA+rVu3Tq+99ppcXV315ptvqmTJkrp7965+/vln9e/fX0eOHNHnn3+eKu99+/ZthYaGavDgwerRo0eqvEdAQIBu374tZ2fnVBn/SZycnHTr1i2tWbNGLVu2tDq2YMECubm56c6dO0819oULFzRy5EjlzZtXZcuWTfZ5GzdufKr3AwAjkPQCsLkzZ86odevWCggI0NatW5U7d27Lse7du+vkyZNat25dqr3/lStXJEne3t6p9h4mk0lubm6pNv6TuLq6qnLlylq0aFGSpHfhwoVq0KCBli9fbshcbt26pUyZMsnFxcWQ9wOAp0F7AwCbGzdunGJiYvTll19aJbyJChYsqF69ellex8XFafTo0SpQoIBcXV2VN29evf/++4qNjbU6L2/evGrYsKF+/vlnvfjii3Jzc1P+/Pk1b948S8yIESMUEBAgSerfv79MJpPy5s0r6X5bQOK/P2jEiBEymUxW+zZt2qQqVarI29tbWbJkUZEiRfT+++9bjj+qp3fr1q2qWrWqMmfOLG9vbzVu3FhHjx596PudPHlS7du3l7e3t7y8vNShQwfdunXr0R/sv7Rt21bff/+9IiMjLfv27dunEydOqG3btknir127pn79+qlUqVLKkiWLPD09Va9ePf3yyy+WmG3btqlixYqSpA4dOljaJBKvs0aNGipZsqTCwsJUrVo1ZcqUyfK5/LunNyQkRG5ubkmuPzg4WFmzZtWFCxeSfa0A8F+R9AKwuTVr1ih//vx6+eWXkxXfuXNnDRs2TOXKldPkyZNVvXp1jR07Vq1bt04Se/LkSbVo0UK1a9fWxIkTlTVrVrVv315HjhyRJDVr1kyTJ0+WJLVp00bz58/XJ598kqL5HzlyRA0bNlRsbKxGjRqliRMnqlGjRtq5c+djz9u8ebOCg4N1+fJljRgxQn379tWuXbtUuXJlnT17Nkl8y5YtdePGDY0dO1YtW7bUnDlzNHLkyGTPs1mzZjKZTFqxYoVl38KFC1W0aFGVK1cuSfzp06e1atUqNWzYUJMmTVL//v116NAhVa9e3ZKAFitWTKNGjZIkde3aVfPnz9f8+fNVrVo1yzhXr15VvXr1VLZsWX3yySeqWbPmQ+c3ZcoU5cyZUyEhIYqPj5ckffbZZ9q4caM+/fRT+fn5JftaAeA/MwOADUVFRZklmRs3bpys+PDwcLMkc+fOna329+vXzyzJvHXrVsu+gIAAsyTzjh07LPsuX75sdnV1Nb/77ruWfWfOnDFLMo8fP95qzJCQEHNAQECSOQwfPtz84H8OJ0+ebJZkvnLlyiPnnfgeX3/9tWVf2bJlzbly5TJfvXrVsu+XX34xOzg4mN98880k79exY0erMZs2bWrOnj37I9/zwevInDmz2Ww2m1u0aGGuVauW2Ww2m+Pj482+vr7mkSNHPvQzuHPnjjk+Pj7Jdbi6uppHjRpl2bdv374k15aoevXqZknmWbNmPfRY9erVrfb98MMPZknmDz74wHz69GlzlixZzE2aNHniNQKArVHpBWBT0dHRkiQPD49kxa9fv16S1LdvX6v97777riQl6f0tXry4qlatanmdM2dOFSlSRKdPn37qOf9bYi/wd999p4SEhGSdc/HiRYWHh6t9+/bKli2bZX/p0qVVu3Zty3U+6K233rJ6XbVqVV29etXyGSZH27ZttW3bNkVERGjr1q2KiIh4aGuDdL8P2MHh/n/24+PjdfXqVUvrxoEDB5L9nq6ururQoUOyYuvUqaP//e9/GjVqlJo1ayY3Nzd99tlnyX4vALAVkl4ANuXp6SlJunHjRrLi//jjDzk4OKhgwYJW+319feXt7a0//vjDan+ePHmSjJE1a1Zdv379KWecVKtWrVS5cmV17txZPj4+at26tZYuXfrYBDhxnkWKFElyrFixYvr777918+ZNq/3/vpasWbNKUoqupX79+vLw8NCSJUu0YMECVaxYMclnmSghIUGTJ09WoUKF5Orqqhw5cihnzpz69ddfFRUVlez3fO6551J009qECROULVs2hYeHa+rUqcqVK1eyzwUAWyHpBWBTnp6e8vPz0+HDh1N03r9vJHsUR0fHh+43m81P/R6J/aaJ3N3dtWPHDm3evFlvvPGGfv31V7Vq1Uq1a9dOEvtf/JdrSeTq6qpmzZpp7ty5Wrly5SOrvJL04Ycfqm/fvqpWrZq++eYb/fDDD9q0aZNKlCiR7Iq2dP/zSYmDBw/q8uXLkqRDhw6l6FwAsBWSXgA217BhQ506dUqhoaFPjA0ICFBCQoJOnDhhtf/SpUuKjIy0rMRgC1mzZrVa6SDRv6vJkuTg4KBatWpp0qRJ+u233zRmzBht3bpVP/7440PHTpzn8ePHkxw7duyYcuTIocyZM/+3C3iEtm3b6uDBg7px48ZDb/5L9O2336pmzZr68ssv1bp1a9WpU0dBQUFJPpPk/gKSHDdv3lSHDh1UvHhxde3aVePGjdO+fftsNj4AJBdJLwCbGzBggDJnzqzOnTvr0qVLSY6fOnVKU6ZMkXT/z/OSkqywMGnSJElSgwYNbDavAgUKKCoqSr/++qtl38WLF7Vy5UqruGvXriU5N/EhDf9eRi1R7ty5VbZsWc2dO9cqiTx8+LA2btxouc7UULNmTY0ePVrTpk2Tr6/vI+McHR2TVJGXLVumv/76y2pfYnL+sF8QUmrgwIE6d+6c5s6dq0mTJilv3rwKCQl55OcIAKmFh1MAsLkCBQpo4cKFatWqlYoVK2b1RLZdu3Zp2bJlat++vSSpTJkyCgkJ0eeff67IyEhVr15de/fu1dy5c9WkSZNHLof1NFq3bq2BAweqadOmeuedd3Tr1i3NnDlThQsXtrqRa9SoUdqxY4caNGiggIAAXb58WTNmzNDzzz+vKlWqPHL88ePHq169egoMDFSnTp10+/Ztffrpp/Ly8tKIESNsdh3/5uDgoCFDhjwxrmHDhho1apQ6dOigl19+WYcOHdKCBQuUP39+q7gCBQrI29tbs2bNkoeHhzJnzqxKlSopX758KZrX1q1bNWPGDA0fPtyyhNrXX3+tGjVqaOjQoRo3blyKxgOA/4JKL4BU0ahRI/36669q0aKFvvvuO3Xv3l2DBg3S2bNnNXHiRE2dOtUSO3v2bI0cOVL79u1T7969tXXrVr333ntavHixTeeUPXt2rVy5UpkyZdKAAQM0d+5cjR07Vq+++mqSuefJk0dfffWVunfvrunTp6tatWraunWrvLy8Hjl+UFCQNmzYoOzZs2vYsGGaMGGCXnrpJe3cuTPFCWNqeP/99/Xuu+/qhx9+UK9evXTgwAGtW7dO/v7+VnHOzs6aO3euHB0d9dZbb6lNmzbavn17it7rxo0b6tixo1544QUNHjzYsr9q1arq1auXJk6cqN27d9vkugAgOUzmlNwxAQAAADyDqPQCAADA7pH0AgAAwO6R9AIAAMDukfQCAADA7pH0AgAAwO6R9AIAAMDu8XCKDCIhIUEXLlyQh4eHTR8xCgBAemc2m3Xjxg35+fnJwSHt63137tzR3bt3bT6ui4uL3NzckhU7duxYrVixQseOHZO7u7tefvllffzxxypSpIglpkaNGknW6P7f//6nWbNmWV6fO3dO3bp1048//qgsWbIoJCREY8eOlZPTPynmtm3b1LdvXx05ckT+/v4aMmSI5QFFiaZPn67x48crIiJCZcqU0aeffqoXX3zRcvzOnTt69913tXjxYsXGxio4OFgzZsyQj49P8j8gMzKE8+fPmyWxsbGxsbFl2O38+fNp/XVsvn37tllOmVLl+nx9fc23b99O1jyCg4PNX3/9tfnw4cPm8PBwc/369c158uQxx8TEWGKqV69u7tKli/nixYuWLSoqynI8Li7OXLJkSXNQUJD54MGD5vXr15tz5Mhhfu+99ywxp0+fNmfKlMnct29f82+//Wb+9NNPzY6OjuYNGzZYYhYvXmx2cXExf/XVV+YjR46Yu3TpYvb29jZfunTJEvPWW2+Z/f39zVu2bDHv37/f/NJLL5lffvnlFH32PJwig4iKipK3t7dciofI5OiS1tMBMqRz2yak9RSADOlGdLQK5vNXZGTkY5+qaITo6Gh5eXnJtXiIZMvv4/i7iv1trqKiouTp6Zni069cuaJcuXJp+/btqlatmqT7ld6yZcvqk08+eeg533//vRo2bKgLFy5YKq6zZs3SwIEDdeXKFbm4uGjgwIFat26dDh8+bDmvdevWioyM1IYNGyRJlSpVUsWKFTVt2jRJ9/867e/vr549e2rQoEGKiopSzpw5tXDhQrVo0UKSdOzYMRUrVkyhoaF66aWXknWNtDdkEIktDSZHF5JeII08zRcRANtJV+19Tm42/T42m/5b20ZUVJQkKVu2bFb7FyxYoG+++Ua+vr569dVXNXToUGXKlEmSFBoaqlKlSlm1GAQHB6tbt246cuSIXnjhBYWGhiooKMhqzODgYPXu3VuSdPfuXYWFhem9996zHHdwcFBQUJBCQ0MlSWFhYbp3757VOEWLFlWePHlIegEAADKi6Ohoq9eurq5ydXV97DkJCQnq3bu3KleurJIlS1r2t23bVgEBAfLz89Ovv/6qgQMH6vjx41qxYoUkKSIiIklPbeLriIiIx8ZER0fr9u3bun79uuLj4x8ac+zYMcsYLi4u8vb2ThKT+D7JQdILAABgNJMkW1ae/38of39/q93Dhw/XiBEjHntq9+7ddfjwYf38889W+7t27Wr591KlSil37tyqVauWTp06pQIFCthk2kYi6QUAALAT58+ft2qlelKVt0ePHlq7dq127Nih559//rGxlSpVkiSdPHlSBQoUkK+vr/bu3WsVc+nSJUmSr6+v5f8m7nswxtPTU+7u7nJ0dJSjo+NDYx4c4+7du4qMjLSq9j4Ykxxpv24HAABARmNysP2m+/cOPLg9Kuk1m83q0aOHVq5cqa1btypfvnxPnHJ4eLgkKXfu3JKkwMBAHTp0SJcvX7bEbNq0SZ6enipevLglZsuWLVbjbNq0SYGBgZLuL7NWvnx5q5iEhARt2bLFElO+fHk5OztbxRw/flznzp2zxCQHlV4AAACjmUw2bm9I2Vjdu3fXwoUL9d1338nDw8PSG+vl5SV3d3edOnVKCxcuVP369ZU9e3b9+uuv6tOnj6pVq6bSpUtLkurUqaPixYvrjTfe0Lhx4xQREaEhQ4aoe/fulmT7rbfe0rRp0zRgwAB17NhRW7du1dKlS7Vu3TrLXPr27auQkBBVqFBBL774oj755BPdvHlTHTp0sMypU6dO6tu3r7JlyyZPT0/17NlTgYGByb6JTSLpBQAAyHBmzpwp6f6yZA/6+uuv1b59e7m4uGjz5s2WBNTf31/NmzfXkCFDLLGOjo5au3atunXrpsDAQGXOnFkhISEaNWqUJSZfvnxat26d+vTpoylTpuj555/X7NmzFRwcbIlp1aqVrly5omHDhikiIkJly5bVhg0brG5umzx5shwcHNS8eXOrh1OkBOv0ZhCWdQFLdWHJMiCNXN83La2nAGRI0dHR8snu9dRr2Np6Ll5eXnIt10Mmx8f326aEOT5WsQempYtrTK/o6QUAAIDdo70BAADAaGnc05sRUekFAACA3aPSCwAAYLh/lhmz2Xh4LJJeAAAAo9HeYDh+LQAAAIDdo9ILAABgNJON2xts2iphn/iEAAAAYPeo9AIAABiNnl7DUekFAACA3aPSCwAAYDR6eg1H0gsAAGA02hsMx68FAAAAsHtUegEAAIxGe4Ph+IQAAABg96j0AgAAGM1ksnGll57eJ6HSCwAAALtHpRcAAMBoDqb7my3Hw2OR9AIAABiNG9kMxycEAAAAu0elFwAAwGg8nMJwVHoBAABg96j0AgAAGI2eXsPxCQEAAMDuUekFAAAwGj29hiPpBQAAMBrtDYbjEwIAAIDdo9ILAABgNNobDEelFwAAAHaPSi8AAIDR6Ok1HJ8QAAAA7B6VXgAAAKPR02s4kl4AAADD2bi9gT/ePxGfEAAAAOwelV4AAACj0d5gOCq9AAAAsHtUegEAAIxmMtl4yTIqvU9CpRcAAAB2j0ovAACA0Xg4heH4hAAAAGD3qPQCAAAYjdUbDEfSCwAAYDTaGwzHJwQAAAC7R6UXAADAaLQ3GI5KLwAAAOwelV4AAACj0dNrOD4hAAAA2D0qvQAAAEajp9dwJL0AAAAGM5lMMpH0Gor2BgAAANg9Kr0AAAAGo9JrPCq9AAAAsHtUegEAAIxm+v/NluPhsaj0AgAAwO5R6QUAADAYPb3GI+kFAAAwGEmv8WhvAAAAgN2j0gsAAGAwKr3Go9ILAAAAu0elFwAAwGBUeo1HpRcAAAB2j0ovAACA0Xg4heFIegEAAAxGe4PxaG8AAACA3aPSCwAAYDCTSTau9NpuKHtFpRcAAAB2j0ovAACAwUyycU8vpd4notILAAAAu0elFwAAwGCs3mA8kl4AAACjsU6v4WhvAAAAgN2j0gsAAGA0G7c3mGlveCIqvQAAALB7VHoBAAAMZusb2Wy7/Jl9otILAAAAu0elFwAAwGBUeo1H0gsAAGA0liwzHO0NAAAAsHskvQAAAAZLbG+w5ZYSY8eOVcWKFeXh4aFcuXKpSZMmOn78uFXMnTt31L17d2XPnl1ZsmRR8+bNdenSJauYc+fOqUGDBsqUKZNy5cql/v37Ky4uzipm27ZtKleunFxdXVWwYEHNmTMnyXymT5+uvHnzys3NTZUqVdLevXtTPJcnIekFAADIYLZv367u3btr9+7d2rRpk+7du6c6dero5s2blpg+ffpozZo1WrZsmbZv364LFy6oWbNmluPx8fFq0KCB7t69q127dmnu3LmaM2eOhg0bZok5c+aMGjRooJo1ayo8PFy9e/dW586d9cMPP1hilixZor59+2r48OE6cOCAypQpo+DgYF2+fDnZc0kOk9lsNj/Nh4VnS3R0tLy8vORaqotMji5pPR0gQ7q+b1paTwHIkKKjo+WT3UtRUVHy9PRM87l4eXkp55tz5eCSyWbjJty9pSvzQp76Gq9cuaJcuXJp+/btqlatmqKiopQzZ04tXLhQLVq0kCQdO3ZMxYoVU2hoqF566SV9//33atiwoS5cuCAfHx9J0qxZszRw4EBduXJFLi4uGjhwoNatW6fDhw9b3qt169aKjIzUhg0bJEmVKlVSxYoVNW3a/f9GJiQkyN/fXz179tSgQYOSNZfkoNILAACQwUVFRUmSsmXLJkkKCwvTvXv3FBQUZIkpWrSo8uTJo9DQUElSaGioSpUqZUl4JSk4OFjR0dE6cuSIJebBMRJjEse4e/euwsLCrGIcHBwUFBRkiUnOXJKD1RsAAAAMllpLlkVHR1vtd3V1laur62PPTUhIUO/evVW5cmWVLFlSkhQRESEXFxd5e3tbxfr4+CgiIsIS82DCm3g88djjYqKjo3X79m1dv35d8fHxD405duxYsueSHFR6AQAADJZaN7L5+/vLy8vLso0dO/aJc+nevbsOHz6sxYsXp/ZlpykqvQAAAHbi/PnzVj29T6ry9ujRQ2vXrtWOHTv0/PPPW/b7+vrq7t27ioyMtKqwXrp0Sb6+vpaYf6+ykLiiwoMx/15l4dKlS/L09JS7u7scHR3l6Oj40JgHx3jSXJKDSi8AAIDRTKmwSfL09LTaHpX0ms1m9ejRQytXrtTWrVuVL18+q+Ply5eXs7OztmzZYtl3/PhxnTt3ToGBgZKkwMBAHTp0yGqVhU2bNsnT01PFixe3xDw4RmJM4hguLi4qX768VUxCQoK2bNliiUnOXJKDSi8AAEAG0717dy1cuFDfffedPDw8LL2xXl5ecnd3l5eXlzp16qS+ffsqW7Zs8vT0VM+ePRUYGGhZLaFOnToqXry43njjDY0bN04REREaMmSIunfvbkm233rrLU2bNk0DBgxQx44dtXXrVi1dulTr1q2zzKVv374KCQlRhQoV9OKLL+qTTz7RzZs31aFDB8ucnjSX5CDpBQAAMFhq3ciWXDNnzpQk1ahRw2r/119/rfbt20uSJk+eLAcHBzVv3lyxsbEKDg7WjBkzLLGOjo5au3atunXrpsDAQGXOnFkhISEaNWqUJSZfvnxat26d+vTpoylTpuj555/X7NmzFRwcbIlp1aqVrly5omHDhikiIkJly5bVhg0brG5ue9JckoN1ejMI1ukF0h7r9AJpIz2u0+vb8Rubr9Mb8dXr6eIa0ysqvQAAAAZL60pvRkTSCwAAYDCSXuOxegMAAADsHpVeAAAAoz2wzJjNxsNjUekF/qN+Hevo52/66/LPE/THlrFaOqmLCgXksor54Yteun1wmtU2dXBrq5iJA1po54IBitwzWbsXD3roewUFFtP2ue/q8s8TdG7rWC2a0Fl5cmezimldr4L2LBmkq7sm6fTGMZo1vJ2yeWW2iunRtoZ+WTlU10In6cT3ozXu3WZydeF3YGRc48d9JHdnk/r17S1Junbtmvr06qnSJYooq4e7CuXPo76931FUVJTVeefOnVPTRg2UzTOT8vjl0nsD+ysuLi4NrgDAk/AtB/xHVcsV1KwlOxR25A85OTlqZI9XtXZmD73Q7APdunPXEvfl8p0aPXOt5fWtO/eSjDXvu92qWCpAJQs9l+RYgF92LZvcVVO/2ar2g+fKK4ubxvVrrsUTu+jlth9LkgLL5Nfs0W9qwMTlWrf9sJ7L5aWpg1trxtA2at1vtiSpVd0KGv1OY701YoFCfzmtQgG59MWoN2SWNHDiCht/OkD6t3/fPn35xWcqVaq0Zd/FCxd08eIFjf14gooVK65z5/5Qz+5v6eLFC1q05FtJUnx8vJo1aiAfX1/9uGOXIiIuqnOHN+Xs7KxRH3yYVpeDZwQ9vcYj6QX+o8Y9rNcJ7Dr8G53f+pFeKO6vnQdOWfbfvnNXl67eeOQ47467/0WaI2v9hya95Yr7y9HBQSOmr1XiSoOfzNuiZZO7ysnJQXFxCapUOp/+uHBVMxZtlyT9ceGqvly+U++2D7KM81KZfAoNP60lG/ZLks5dvKalG/arYsm8T/cBAM+wmJgYdQhppxmzvtBHH35g2V+iZEktXrrc8jp/gQIaMWqMOoa8rri4ODk5OWnzpo06evQ3rfths3x8fFRGZTVsxGgNeX+ghgwbIRcXlocE0hPaGwAb88ziJkm6HnXLan+r+hV0futH2r/sfY3q2Ujubs4pGvfAb+eVYE7Qm41fkoODSZ5Z3NS2wYvauue44uISJEl7fj2j532zKrjK/cc/5srmoaZBZbXh598s4+z+5YxeKO6vCiUCJEl5n8uu4MoltOHnI099zcCzqnfP7qpbr4FeqRX0xNjo/1//1Mnpfr1oz+5QlSxZymoB/dp1ghUdHa3fjvDzhMdLrPTacsPj2X2lN2/evOrdu7d69+6d1lOxmTlz5qh3796KjIxM66ngX0wmk8b3a6FdB0/pt1MXLfuXfL9f5y5e08UrUSpVyE8f9GqswgG5LC0HyfHHhatq+PZ0ffNxR00b3FpOTo7a/ctpNekx0xIT+stpdXh/ruZ/1FFuLs5ydnbU2u2H1PujJf/MZcN+Zc+aWVu+7iOTTHJ2dtTny37S+K822uZDAJ4RS5csVvjBA/p5974nxv79998a++Fodezc1bLvUkSEcj2Q8EqyvL50KcK2k4XdMcnG7Q3cyfZEaVrpbd++vdVvKNmzZ1fdunX166+/puW0gKf2yXstVaJgbr056Gur/V+t2KnNoUd15OQFLf5+vzoNna/Gtcoq3/M5kj22T3YPzRjaVgvW7FGV18crqNNk3b0Xr4UTOlliiub31YQBLTT28+/1cruP9erb0xWQO5s+feCmuarlC6l/x2D1GrtEgW0/Vqu+n6telRIa1KXuf/8AgGfE+fPn1b9vL309b4Hc3NweGxsdHa2mjRqoWLHiGjJshDETBGBzad7eULduXV28eFEXL17Uli1b5OTkpIYNG6b1tB7r7t27Tw5ChjN54GuqX7WkgrtM1V+XIx8bu+/QWUlSAf+cyR7/f62qKTrmtgZP+U6/HP9TOw+cUsfBc/VKpaJ6sVReSVL/DnUUGn5Kk+dt0eETF7Q59Kh6j12i9k1elm+O+4+lHP52Ay1at1dzVobqyMkLWv3jrxo2bY36d6jDn8eQYRw8EKbLly8r8MVyyuLmpCxuTvppx3bNmDZVWdycFB8fL0m6ceOGGjWoKw8PDy35dqWcnf9pS/Lx9dXlS5esxk187ePja9zF4JlEe4Px0jzpdXV1la+vr3x9fVW2bFkNGjRI58+f15UrVyRJAwcOVOHChZUpUyblz59fQ4cO1b171ne9r1mzRhUrVpSbm5ty5Mihpk2bPvL9Zs+eLW9vb23ZskXS/f+gtWvXTpkzZ1bu3Lk1efJk1ahRw6odIm/evBo9erTefPNNeXp6qmvX+3/eWr58uUqUKCFXV1flzZtXEydOtHovk8mkVatWWe3z9vbWnDlzJElnz56VyWTSihUrVLNmTWXKlEllypRRaGio1Tlz5sxRnjx5lClTJjVt2lRXr15N9ucLY0we+JoavVJGdf83VX9cePL/f8oUeV6SFPF31BMi/5HJzUUJCWarffEJ93t5HRzu/8cuk/vDYu6/TvwPovtDxkn4/3H4byYyipqv1NL+g4e0Z3+4ZStXvoJat2mnPfvD5ejoqOjoaDWsV0cuLi76duXqJBXhSi8F6vDhQ7p8+bJl35bNm+Tp6alixYsbfUkAniDNk94HxcTE6JtvvlHBggWVPXt2SZKHh4fmzJmj3377TVOmTNEXX3yhyZMnW85Zt26dmjZtqvr16+vgwYPasmWLXnzxxYeOP27cOA0aNEgbN25UrVq1JEl9+/bVzp07tXr1am3atEk//fSTDhw4kOTcCRMmqEyZMjp48KCGDh2qsLAwtWzZUq1bt9ahQ4c0YsQIDR061JLQpsTgwYPVr18/hYeHq3DhwmrTpo1lncc9e/aoU6dO6tGjh8LDw1WzZk198MEHTxgRRvrkvZZq3aCiQt6fo5ibd+ST3UM+2T3k5nq/IpTv+Rwa1KWuXijmrzy5s6lB9VKaPfoN/RR2QodPXLCMk98/h0oXfk4+OTzl7uqs0oWfU+nCz8nZyVGS9P1PR1S+RB6917WuCuTJqbJFn9dnI17XHxeuKvzYn5KkddsPqfErZdXltSrK+1x2BZbJr4kDWmjfobO6eOV+gr1+x2F1ea2KXgsurwC/7HqlUlEN69ZQ63ccSpIMA/bKw8NDJUqWtNoyZ86sbNmzq0TJkpaE99bNm5r1+ZeKjo5WRESEIiIiLFXgoNp1VKxYcXVq/4Z+/eUXbdr4g0YOH6L/desuV1fXNL5CpHumVNjwWGl+I9vatWuVJUsWSdLNmzeVO3durV27Vg4O9/PxIUOGWGLz5s2rfv36afHixRowYIAkacyYMWrdurVGjhxpiStTpkyS9xk4cKDmz5+v7du3q0SJEpLuV3nnzp2rhQsXWpLgr7/+Wn5+fknOf+WVV/Tuu+9aXrdr1061atXS0KFDJUmFCxfWb7/9pvHjx6t9+/Yp+gz69eunBg0aSJJGjhypEiVK6OTJkypatKimTJmiunXrWq63cOHC2rVrlzZs2PDYMWNjYxUbG2t5HR0dnaI5Ifn+17KaJGnT7N5W+7sMm69v1uzRvXtxeqVSEfVoW1OZ3V3056XrWrUlXB/N/sEqfuawdqpWoZDl9Z4l70mSitQfpnMXr2n7vt/V/v256hMSpL4htXXrzl3t+fWMGnWfoTux9//68c2aPfLI7Ka3WlXXR32aKSrmtrbtPa4hU76zjPvR7A0ym80a/nZD+eXy0t/XY7Rux2GNmLYmNT4e4JkUfvCA9u3dI0kqUbSg1bFjJ84oIG9eOTo6avl3a9WrRzfVqBqozJkzq90bIRo2YlRaTBnAE6R50luzZk3NnHn/7vPr169rxowZqlevnvbu3auAgAAtWbJEU6dO1alTpxQTE6O4uDh5enpazg8PD1eXLl0e+x4TJ07UzZs3tX//fuXPn9+y//Tp07p3755VZdjLy0tFihRJMkaFChWsXh89elSNGze22le5cmV98sknio+Pl6OjY7I/g9Kl/1kQPXfu3JKky5cvq2jRojp69GiSdo3AwMAnJr1jx461+kUAqcf9hR6PPf7npUjV6TzlieMEd3lyzLIfwrTsh7DHxsxcvF0zF29/5PH4+AR9+Pn3+vDz75/4fkBGsnHLNsu/V6teQ7fvPfkvHwEBAVq1Zn0qzgr2iodTGC/N2xsyZ86sggULqmDBgqpYsaJmz56tmzdv6osvvlBoaKjatWun+vXra+3atTp48KAGDx5sdSOZu7v7E9+jatWqio+P19KlS//TPFPKZDJZHiKQ6N/9yJKsboxI/B9tYo/l03rvvfcUFRVl2c6fP/+fxgMAALbDjWzGS/Ok999MJpMcHBx0+/Zt7dq1SwEBARo8eLAqVKigQoUK6Y8//rCKL126tOWmtEd58cUX9f333+vDDz/UhAkTLPvz588vZ2dn7dv3zxqNUVFR+v333584z2LFimnnzp1W+3bu3KnChQtbqrw5c+bUxYv/rNV64sQJ3bpl/cCC5LzPnj17rPbt3r37iee5urrK09PTagMAAMio0ry9ITY2VhER9xfxvn79uqZNm6aYmBi9+uqrio6O1rlz57R48WJVrFhR69at08qVK63OHz58uGrVqqUCBQqodevWiouL0/r16zVw4ECruJdfflnr169XvXr15OTkpN69e8vDw0MhISHq37+/smXLply5cmn48OFycHB44m9M7777ripWrKjRo0erVatWCg0N1bRp0zRjxj+PpH3llVc0bdo0BQYGKj4+XgMHDrSq6ibHO++8o8qVK2vChAlq3Lixfvjhhye2NgAAgPTNZLLtijkUep8szSu9GzZsUO7cuZU7d25VqlRJ+/bt07Jly1SjRg01atRIffr0UY8ePVS2bFnt2rXLcuNYoho1amjZsmVavXq1ypYtq1deeUV79+596HtVqVJF69at05AhQ/Tpp59KkiZNmqTAwEA1bNhQQUFBqly5sooVK/bExcrLlSunpUuXavHixSpZsqSGDRumUaNGWd3ENnHiRPn7+6tq1apq27at+vXrp0yZMqXo83nppZf0xRdfaMqUKSpTpow2btxodXMfAAAAnsxk/nfTaQZ38+ZNPffcc5o4caI6der05BOeEdHR0fLy8pJrqS4yObqk9XSADOn6vmlpPQUgQ4qOjpZPdi9FRUWlebtf4vdx/p7fysE15fcLPUpC7E2d/rRFurjG9CrN2xvS2sGDB3Xs2DG9+OKLioqK0qhR95ea+ffKDAAAAHh2ZfikV7r/4Injx4/LxcVF5cuX108//aQcOXKk9bQAAIC9snFPLw+neLIMn/S+8MILCgt7/LqnAAAAeLZl+KQXAADAaDycwngkvQAAAAZjyTLjpfmSZQAAAEBqo9ILAABgMAcHkxwcbFeeNdtwLHtFpRcAAAB2j0ovAACAwejpNR6VXgAAANg9Kr0AAAAGY8ky45H0AgAAGIz2BuPR3gAAAAC7R6UXAADAYLQ3GI9KLwAAAOwelV4AAACDUek1HpVeAAAA2D0qvQAAAAZj9QbjkfQCAAAYzCQbtzeIrPdJaG8AAACA3aPSCwAAYDDaG4xHpRcAAAB2j0ovAACAwViyzHhUegEAAGD3qPQCAAAYjJ5e45H0AgAAGIz2BuPR3gAAAAC7R6UXAADAYLQ3GI9KLwAAAOwelV4AAACD0dNrPCq9AAAAsHtUegEAAIxm455eUeh9IpJeAAAAg9HeYDzaGwAAAGD3qPQCAAAYjCXLjEelFwAAAHaPSi8AAIDB6Ok1HpVeAAAA2D0qvQAAAAajp9d4JL0AAAAGo73BeLQ3AAAAwO5R6QUAADAYlV7jUekFAACA3aPSCwAAYDBuZDMelV4AAADYPSq9AAAABqOn13gkvQAAAAajvcF4tDcAAADA7lHpBQAAMBjtDcaj0gsAAAC7R6UXAADAYCbZuKfXdkPZLSq9AAAAsHtUegEAAAzmYDLJwYalXluOZa9IegEAAAzGkmXGo70BAAAAdo9KLwAAgMFYssx4VHoBAABg96j0AgAAGMzBdH+z5Xh4PCq9AAAAsHskvQAAAEYz/dPXa4stpU+n2LFjh1599VX5+fnJZDJp1apVVsfbt2+f5D3q1q1rFXPt2jW1a9dOnp6e8vb2VqdOnRQTE2MV8+uvv6pq1apyc3OTv7+/xo0bl2Quy5YtU9GiReXm5qZSpUpp/fr1VsfNZrOGDRum3Llzy93dXUFBQTpx4kTKLlgkvQAAAIZLXLLMlltK3Lx5U2XKlNH06dMfGVO3bl1dvHjRsi1atMjqeLt27XTkyBFt2rRJa9eu1Y4dO9S1a1fL8ejoaNWpU0cBAQEKCwvT+PHjNWLECH3++eeWmF27dqlNmzbq1KmTDh48qCZNmqhJkyY6fPiwJWbcuHGaOnWqZs2apT179ihz5swKDg7WnTt3UnTN9PQCAABkMPXq1VO9evUeG+Pq6ipfX9+HHjt69Kg2bNigffv2qUKFCpKkTz/9VPXr19eECRPk5+enBQsW6O7du/rqq6/k4uKiEiVKKDw8XJMmTbIkx1OmTFHdunXVv39/SdLo0aO1adMmTZs2TbNmzZLZbNYnn3yiIUOGqHHjxpKkefPmycfHR6tWrVLr1q2Tfc1UegEAAAxmSoV/pPvV1Qe32NjYp57jtm3blCtXLhUpUkTdunXT1atXLcdCQ0Pl7e1tSXglKSgoSA4ODtqzZ48lplq1anJxcbHEBAcH6/jx47p+/bolJigoyOp9g4ODFRoaKkk6c+aMIiIirGK8vLxUqVIlS0xykfQCAADYCX9/f3l5eVm2sWPHPtU4devW1bx587RlyxZ9/PHH2r59u+rVq6f4+HhJUkREhHLlymV1jpOTk7Jly6aIiAhLjI+Pj1VM4usnxTx4/MHzHhaTXLQ3AAAAGCy1liw7f/68PD09LftdXV2farwH2wZKlSql0qVLq0CBAtq2bZtq1ar1n+aaVqj0AgAA2AlPT0+r7WmT3n/Lnz+/cuTIoZMnT0qSfH19dfnyZauYuLg4Xbt2zdIH7Ovrq0uXLlnFJL5+UsyDxx8872ExyUXSCwAAYDBbLldm60caP8yff/6pq1evKnfu3JKkwMBARUZGKiwszBKzdetWJSQkqFKlSpaYHTt26N69e5aYTZs2qUiRIsqaNaslZsuWLVbvtWnTJgUGBkqS8uXLJ19fX6uY6Oho7dmzxxKTXCS9AAAAGUxMTIzCw8MVHh4u6f4NY+Hh4Tp37pxiYmLUv39/7d69W2fPntWWLVvUuHFjFSxYUMHBwZKkYsWKqW7duurSpYv27t2rnTt3qkePHmrdurX8/PwkSW3btpWLi4s6deqkI0eOaMmSJZoyZYr69u1rmUevXr20YcMGTZw4UceOHdOIESO0f/9+9ejRQ9L9Xw569+6tDz74QKtXr9ahQ4f05ptvys/PT02aNEnRNdPTCwAAYLCnWVv3SeOlxP79+1WzZk3L68RENCQkRDNnztSvv/6quXPnKjIyUn5+fqpTp45Gjx5t1S6xYMEC9ejRQ7Vq1ZKDg4OaN2+uqVOnWo57eXlp48aN6t69u8qXL68cOXJo2LBhVmv5vvzyy1q4cKGGDBmi999/X4UKFdKqVatUsmRJS8yAAQN08+ZNde3aVZGRkapSpYo2bNggNze3lH1GZrPZnLKPCc+i6OhoeXl5ybVUF5kcXZ58AgCbu75vWlpPAciQoqOj5ZPdS1FRUVY3eaXVXLy8vNTw021yds9is3Hv3Y7R2p410sU1ple0NwAAAMDu0d4AAABgsLRub8iIqPQCAADA7lHpBQAAMJitlxlL7SXL7EGykt7Vq1cne8BGjRo99WQAAACA1JCspDe566CZTCbLM5kBAADwcPT0Gi9ZSW9CQkJqzwMAACDDcDCZ5GDDTNWWY9mr/3Qj2507d2w1DwAAACDVpDjpjY+P1+jRo/Xcc88pS5YsOn36tCRp6NCh+vLLL20+QQAAAHtjSoUNj5fipHfMmDGaM2eOxo0bJxeXf57sVbJkSc2ePdumkwMAAABsIcVJ77x58/T555+rXbt2cnR0tOwvU6aMjh07ZtPJAQAA2KPEJctsueHxUpz0/vXXXypYsGCS/QkJCbp3755NJgUAAADYUoqT3uLFi+unn35Ksv/bb7/VCy+8YJNJAQAA2DMHk+03PF6Kn8g2bNgwhYSE6K+//lJCQoJWrFih48ePa968eVq7dm1qzBEAAMCu8EQ246W40tu4cWOtWbNGmzdvVubMmTVs2DAdPXpUa9asUe3atVNjjgAAAMB/kuJKryRVrVpVmzZtsvVcAAAAMgyKs8Z6qqRXkvbv36+jR49Kut/nW758eZtNCgAAALClFCe9f/75p9q0aaOdO3fK29tbkhQZGamXX35Zixcv1vPPP2/rOQIAANgVenqNl+Ke3s6dO+vevXs6evSorl27pmvXruno0aNKSEhQ586dU2OOAAAAwH+S4krv9u3btWvXLhUpUsSyr0iRIvr0009VtWpVm04OAADAHtl6mTGWLHuyFCe9/v7+D30IRXx8vPz8/GwyKQAAAHtGe4PxUtzeMH78ePXs2VP79++37Nu/f7969eqlCRMm2HRyAAAAgC0kq9KbNWtWq98gbt68qUqVKsnJ6f7pcXFxcnJyUseOHdWkSZNUmSgAAIC9MP3/Zsvx8HjJSno/+eSTVJ4GAAAAkHqSlfSGhISk9jwAAAAyDAeTSQ427MO15Vj26qkfTiFJd+7c0d27d632eXp6/qcJAQAAALaW4hvZbt68qR49eihXrlzKnDmzsmbNarUBAADg8Uwm2294vBQnvQMGDNDWrVs1c+ZMubq6avbs2Ro5cqT8/Pw0b9681JgjAACAXUlcssyWGx4vxe0Na9as0bx581SjRg116NBBVatWVcGCBRUQEKAFCxaoXbt2qTFPAAAA4KmluNJ77do15c+fX9L9/t1r165JkqpUqaIdO3bYdnYAAAB2iPYG46U46c2fP7/OnDkjSSpatKiWLl0q6X4F2Nvb26aTAwAAAGwhxe0NHTp00C+//KLq1atr0KBBevXVVzVt2jTdu3dPkyZNSo05AgAA2BWWLDNeipPePn36WP49KChIx44dU1hYmAoWLKjSpUvbdHIAAACALfyndXolKSAgQAEBAbaYCwAAQIZg6z5cCr1Plqykd+rUqcke8J133nnqyQAAAGQEtl5mjCXLnixZSe/kyZOTNZjJZCLpBQAAQLqTrKQ3cbUGPPvObZvAo6KBNHLnXnxaTwHIkNLjz56DnmIJrSeMh8fjMwIAAIDd+883sgEAACBl6Ok1HpVeAAAA2D0qvQAAAAYzmSQHliwzFEkvAACAwRxsnPTacix79VTtDT/99JNef/11BQYG6q+//pIkzZ8/Xz///LNNJwcAAADYQoqT3uXLlys4OFju7u46ePCgYmNjJUlRUVH68MMPbT5BAAAAe5N4I5stNzxeipPeDz74QLNmzdIXX3whZ2dny/7KlSvrwIEDNp0cAAAAYAsp7uk9fvy4qlWrlmS/l5eXIiMjbTEnAAAAu0ZPr/FSXOn19fXVyZMnk+z/+eeflT9/fptMCgAAALClFCe9Xbp0Ua9evbRnzx6ZTCZduHBBCxYsUL9+/dStW7fUmCMAAIBdMZlsv+HxUtzeMGjQICUkJKhWrVq6deuWqlWrJldXV/Xr1089e/ZMjTkCAADYFQeTSQ42zFRtOZa9SnHSazKZNHjwYPXv318nT55UTEyMihcvrixZsqTG/AAAAID/7KkfTuHi4qLixYvbci4AAAAZgoOe8mEJjxkPj5fipLdmzZqPXQtu69at/2lCAAAAgK2lOOktW7as1et79+4pPDxchw8fVkhIiK3mBQAAYLdsffMZLb1PluKkd/LkyQ/dP2LECMXExPznCQEAAAC2ZrMWkNdff11fffWVrYYDAACwWw4yWVZwsMkmSr1P8tQ3sv1baGio3NzcbDUcAACA3aK9wXgpTnqbNWtm9dpsNuvixYvav3+/hg4darOJAQAAALaS4qTXy8vL6rWDg4OKFCmiUaNGqU6dOjabGAAAgL1yMN3fbDkeHi9FSW98fLw6dOigUqVKKWvWrKk1JwAAAMCmUnQjm6Ojo+rUqaPIyMhUmg4AAID9M5lk0xvZ6Ol9shSv3lCyZEmdPn06NeYCAAAApIoUJ70ffPCB+vXrp7Vr1+rixYuKjo622gAAAPB4ias32HLD4yW7p3fUqFF69913Vb9+fUlSo0aNrB5HbDabZTKZFB8fb/tZAgAA2BFuZDNespPekSNH6q233tKPP/6YmvMBAAAAbC7ZSa/ZbJYkVa9ePdUmAwAAkBGY/v8fW46Hx0tRT6+JhhEAAAA8g1K0Tm/hwoWfmPheu3btP00IAADA3tHTa7wUJb0jR45M8kQ2AAAAIL1LUdLbunVr5cqVK7XmAgAAkCFQ6TVesnt66ecFAADAsyrFqzcAAADgvzGZTDYtKFKcfLJkJ70JCQmpOQ8AAIAMg/YG46X4McQAAADAsyZFN7IBAADgvzOZ7m+2HA+PR6UXAAAAdo9KLwAAgMEcTCY52LA8a8ux7BWVXgAAANg9Kr0AAAAGY/UG41HpBQAAMJrpn5vZbLEphUnvjh079Oqrr8rPz08mk0mrVq2yOm42mzVs2DDlzp1b7u7uCgoK0okTJ6xirl27pnbt2snT01Pe3t7q1KmTYmJirGJ+/fVXVa1aVW5ubvL399e4ceOSzGXZsmUqWrSo3NzcVKpUKa1fvz7Fc0kOkl4AAIAM5ubNmypTpoymT5/+0OPjxo3T1KlTNWvWLO3Zs0eZM2dWcHCw7ty5Y4lp166djhw5ok2bNmnt2rXasWOHunbtajkeHR2tOnXqKCAgQGFhYRo/frxGjBihzz//3BKza9cutWnTRp06ddLBgwfVpEkTNWnSRIcPH07RXJLDZOZRaxlCdHS0vLy8dOlqlDw9PdN6OkCGdOdefFpPAciQoqOjFeCbTVFRaf8dmPh9PP6HX+We2cNm496+eUP9g0s/1TWaTCatXLlSTZo0kXS/surn56d3331X/fr1kyRFRUXJx8dHc+bMUevWrXX06FEVL15c+/btU4UKFSRJGzZsUP369fXnn3/Kz89PM2fO1ODBgxURESEXFxdJ0qBBg7Rq1SodO3ZMktSqVSvdvHlTa9eutcznpZdeUtmyZTVr1qxkzSW5qPQCAADA4syZM4qIiFBQUJBln5eXlypVqqTQ0FBJUmhoqLy9vS0JryQFBQXJwcFBe/bsscRUq1bNkvBKUnBwsI4fP67r169bYh58n8SYxPdJzlySixvZAAAADJZaD6eIjo622u/q6ipXV9cUjRURESFJ8vHxsdrv4+NjORYREaFcuXJZHXdyclK2bNmsYvLly5dkjMRjWbNmVURExBPf50lzSS4qvQAAAHbC399fXl5elm3s2LFpPaV0g0ovAACAwVJrybLz589b9fSmtMorSb6+vpKkS5cuKXfu3Jb9ly5dUtmyZS0xly9ftjovLi5O165ds5zv6+urS5cuWcUkvn5SzIPHnzSX5KLSCwAAYLDEJ7LZcpMkT09Pq+1pkt58+fLJ19dXW7ZsseyLjo7Wnj17FBgYKEkKDAxUZGSkwsLCLDFbt25VQkKCKlWqZInZsWOH7t27Z4nZtGmTihQpoqxZs1piHnyfxJjE90nOXJKLpBcAACCDiYmJUXh4uMLDwyXdv2EsPDxc586dk8lkUu/evfXBBx9o9erVOnTokN588035+flZVngoVqyY6tatqy5dumjv3r3auXOnevToodatW8vPz0+S1LZtW7m4uKhTp046cuSIlixZoilTpqhv376WefTq1UsbNmzQxIkTdezYMY0YMUL79+9Xjx49JClZc0ku2hsAAAAMllo3siXX/v37VbNmTcvrxEQ0JCREc+bM0YABA3Tz5k117dpVkZGRqlKlijZs2CA3NzfLOQsWLFCPHj1Uq1YtOTg4qHnz5po6darluJeXlzZu3Kju3burfPnyypEjh4YNG2a1lu/LL7+shQsXasiQIXr//fdVqFAhrVq1SiVLlrTEJGcuyfqMWKc3Y2CdXiDtsU4vkDbS4zq9U7Ycsvk6vb1qlUoX15heUekFAAAwmIP+6cO11Xh4PHp6AQAAYPeo9AIAABgsrXt6MyKSXgAAAIM5yLZ/budP90/GZwQAAAC7R6UXAADAYCaTSSYb9iTYcix7RaUXAAAAdo9KLwAAgMFM/7/Zcjw8HpVeAAAA2D0qvQAAAAZzMNn44RT09D4RSS8AAEAaIE01Fu0NAAAAsHtUegEAAAzGE9mMR6UXAAAAdo9KLwAAgMF4OIXxqPQCAADA7lHpBQAAMJiDbFt5pIr5ZCS9AAAABqO9wXj8YgAAAAC7R6UXAADAYCbZ9uEU1HmfjEovAAAA7B6VXgAAAIPR02s8Kr0AAACwe1R6AQAADMaSZcYj6QUAADAY7Q3G4xcDAAAA2D0qvQAAAAZjyTLjUekFAACA3aPSCwAAYDCT6f5my/HweFR6AQAAYPeo9AIAABjMQSY52LAT15Zj2SuSXgAAAIPR3mA82hsAAABg96j0AgAAGMz0///Ycjw8HpVeAAAA2D0qvQAAAAajp9d4VHoBAABg96j0AgAAGMxk4yXL6Ol9MpJeAAAAg9HeYDzaGwAAAGD3qPQCAAAYjEqv8aj0AgAAwO5R6QUAADAYD6cwHpVeAAAA2D0qvQAAAAZzMN3fbDkeHo+kFwAAwGC0NxiP9gYAAADYPSq9AAAABmPJMuNR6QUAAIDdo9ILAABgMJNs24dLoffJqPQC6cQHo0bI3dlktZUpWVSSdO3aNfXp1VOlSxRRVg93FcqfR317v6OoqKi0nTTwDLlx44be699XpYrkV+5sWVSnZhUd2L/PcjxrJqeHblMnT7DEnDzxu9q+1lQF/H2Uxyer6taqpp+2//jQ97t29apKFAxQ1kxOioqMTO3LA/AEVHqBdKR4iRJat2Gz5bWT0/0f0YsXLujixQsa+/EEFStWXOfO/aGe3d/SxYsXtGjJt2k1XeCZ0uvtrjr62xHN+nKOcuf209JFC9SkYbB2hx2S33PP6djpP63iN2/coJ7duqhRk2aWfa2bN1b+AgX13fpNcnd318xpU9W6eWMdOPy7fHx9rc7v2a2LipcspQsX/jLk+vBsYcky45H0AumIk6OTfP/1xSlJJUqW1OKlyy2v8xcooBGjxqhjyOuKi4uzJMcAHu727dtavWqFFixdocpVqkmSBg0Zrg3r1+mrL2ZpyIjRSZLW9WtXq2r1GsqbL78k6erff+vUyROaOvNzlSxVWpI0fPSH+vLzmTr622Gr87/8fJaioiI14L0h2rxxg0FXCeBxaG8A0pGTJ08oXx4/FSucX+3faKdz5849MjY6Kkqenp4kvEAyxMXFKT4+Xm5ublb73dzdtDt0Z5L4y5cuaeOG9Xo9pKNlX7bs2VWocBEtWfCNbt68qbi4OM358nPlzJVLZV8ob4k7dvQ3jR/7gWbOniMHB75m8XCmVPgHj8dP43+QN29effLJJ/85BpCkii9W0udfztHqtRs0ddpMnT17RkE1q+rGjRtJYv/++2+N/XC0OnbumgYzBZ49Hh4eqljpJY3/aIwuXrig+Ph4LVm0QPv27NaliIgk8YsWzFMWDw+92ripZZ/JZNLKtT/o11/C5Z/LW75ZM2vG1E/07ap18s6aVZIUGxurzu1f18gPP5a/fx7Drg/PnsQly2y54fFIeh/h/Pnz6tixo/z8/OTi4qKAgAD16tVLV69eTdE4+/btU9eutktMSKLtV3Ddemre4jWVKl1atesEa9Wa9YqKjNTyZUut4qKjo9W0UQMVK1ZcQ4aNSJvJAs+gz76cK7PZrOIF88jHO5M+n/Gpmrds/dBq7IJ5c/Raq7ZWlWGz2az+fXoqR86cWr95m7bsCFX9VxurTYsmirh4UZI0atj7KlykqFq1aWfYdQFIHpLehzh9+rQqVKigEydOaNGiRTp58qRmzZqlLVu2KDAwUNeuXUv2WDlz5lSmTJlScbawV97e3ipYqLBOnTpp2Xfjxg01alBXHh4eWvLtSjk7O6fhDIFnS778BbRu44/680qUDv9+Vlt+2q24e/cUkDefVdyunT/pxO/H9Ub7jlb7d2zbqh++X6cv5y3US4GVVeaFcpo4ZZrc3N21aMG8/4/Zpu9WfKscHq7K4eGqxvXrSJIK+Pto7OgRhlwnng2mVNjweCS9D9G9e3e5uLho48aNql69uvLkyaN69epp8+bN+uuvvzR48GBL7I0bN9SmTRtlzpxZzz33nKZPn2411r8rs5GRkercubNy5swpT09PvfLKK/rll1+szlmzZo0qVqwoNzc35ciRQ02b3v/zWo0aNfTHH3+oT58+MplMMvG3DLsWExOjM6dPydc3t6T7Fd6G9erIxcVF365cnaQ3EUDyZM6cWb65cyvy+nVt2bxR9Rs2sjr+zdyvVfaF8ipVuozV/lu3bklSksqwg4ODEhISJEnzFi3VT3sOaMfuMO3YHaapMz6XJK3fvE2d//d2al0SgGQg6f2Xa9eu6YcfftDbb78td3d3q2O+vr5q166dlixZIrPZLEkaP368ypQpo4MHD2rQoEHq1auXNm3a9MjxX3vtNV2+fFnff/+9wsLCVK5cOdWqVctSPV63bp2aNm2q+vXr6+DBg9qyZYtefPFFSdKKFSv0/PPPa9SoUbp48aIu/v+f02AfBg3op592bNcfZ88qdNcutWrRVI6OjmrZuo0l4b1186Zmff6loqOjFRERoYiICMXHx6f11IFnwpZNP2jzxg364+wZ/bhlk16tG6TChYuo3ZvtLTHR0dH6bsW3Saq8kvRipUB5Z82qt7t00KFff9HJE79r6PsD9MfZM6pTt76k+9Xk4iVKWraAvHklSUWKFFPOXLmMuEw8IxxkkoPJhhu13ifitu9/OXHihMxms4oVK/bQ48WKFdP169d15coVSVLlypU1aNAgSVLhwoW1c+dOTZ48WbVr105y7s8//6y9e/fq8uXLcnV1lSRNmDBBq1at0rfffquuXbtqzJgxat26tUaOHGk5r0yZ+9WGbNmyydHRUR4eHg9d1upBsbGxio2NtbyOjo5OwaeAtPDXX3/qzdfb6NrVq8qRM6derlxF23/erZw5c2rH9m3at3ePJKlE0YJW5x07ccbyxQrg0aKjozVq2GBd+OtPZc2aTa82aaYhI0ZbtQmtWHa/qNG8Zesk52fPkUPfrlqnD0YOVeP6tRV3756KFiuuBUtXJKkKA0h/SHofIbGS+ySBgYFJXj/qRrNffvlFMTExyp49u9X+27dv69SpU5Kk8PBwdenSJeUT/pexY8daJc5I/+YvWPzIY9Wq19Dte8n73ySAh2va/DU1bf7aY2Pad+qi9p0e/d/gF8pX0PLV3yf7PatUq6Hrt+KSHY+Mw9Z9uNR5n4yk918KFiwok8mko0ePWnppH3T06FFlzZpVOXPmTPHYMTExyp07t7Zt25bkmLe3tyQlaal4Wu+995769u1reR0dHS1/f3+bjA0AAP4jsl7D0dP7L9mzZ1ft2rU1Y8YM3b592+pYRESEFixYoFatWlluItu9e7dVzO7dux/ZGlGuXDlFRETIyclJBQsWtNpy5MghSSpdurS2bNnyyPm5uLgkq4fT1dVVnp6eVhsAAEBGRdL7ENOmTVNsbKyCg4O1Y8cOnT9/Xhs2bFDt2rX13HPPacyYMZbYnTt3aty4cfr99981ffp0LVu2TL169XrouEFBQQoMDFSTJk20ceNGnT17Vrt27dLgwYO1f/9+SdLw4cO1aNEiDR8+XEePHtWhQ4f08ccfW8bImzevduzYob/++kt///136n4QAAAgVfBENuOR9D5EoUKFtH//fuXPn18tW7ZUgQIF1LVrV9WsWVOhoaHKli2bJfbdd9/V/v379cILL+iDDz7QpEmTFBwc/NBxTSaT1q9fr2rVqqlDhw4qXLiwWrdurT/++EM+Pj6S7i9LtmzZMq1evVply5bVK6+8or1791rGGDVqlM6ePasCBQo8VYsFAABARmQyJ/eOLTyV3Llza/To0ercuXOaziM6OlpeXl66dDWKVgcgjdy5x/JyQFqIjo5WgG82RUWl/Xdg4vfxlvBzyuJhu7nE3IhWrbJ50sU1plfcyJZKbt26pZ07d+rSpUsqUaJEWk8HAAAgQ6O9IZV8/vnnat26tXr37p1kWTMAAJCx8Rhi41HpTSW9e/dW796903oaAAAgPWLJMsNR6QUAAIDdo9ILAABgMFsvM8aSZU9GpRcAAAB2j0ovAACAwUym+5stx8PjUekFAACA3aPSCwAAYDAWbzAeSS8AAIDRyHoNR3sDAAAA7B6VXgAAAIOxZJnxqPQCAABkMCNGjJDJZLLaihYtajl+584dde/eXdmzZ1eWLFnUvHlzXbp0yWqMc+fOqUGDBsqUKZNy5cql/v37Ky4uzipm27ZtKleunFxdXVWwYEHNmTMnyVymT5+uvHnzys3NTZUqVdLevXtT5ZpJegEAAAyWuGSZLbeUKlGihC5evGjZfv75Z8uxPn36aM2aNVq2bJm2b9+uCxcuqFmzZpbj8fHxatCgge7evatdu3Zp7ty5mjNnjoYNG2aJOXPmjBo0aKCaNWsqPDxcvXv3VufOnfXDDz9YYpYsWaK+fftq+PDhOnDggMqUKaPg4GBdvnz56T7YxzCZzWazzUdFuhMdHS0vLy9duholT0/PtJ4OkCHduRef1lMAMqTo6GgF+GZTVFTafwcmfh//dPhPZfGw3VxibkSrasnnk32NI0aM0KpVqxQeHp7kWFRUlHLmzKmFCxeqRYsWkqRjx46pWLFiCg0N1UsvvaTvv/9eDRs21IULF+Tj4yNJmjVrlgYOHKgrV67IxcVFAwcO1Lp163T48GHL2K1bt1ZkZKQ2bNggSapUqZIqVqyoadOmSZISEhLk7++vnj17atCgQf/1Y7FCpRcAAMBgplTYUurEiRPy8/NT/vz51a5dO507d06SFBYWpnv37ikoKMgSW7RoUeXJk0ehoaGSpNDQUJUqVcqS8EpScHCwoqOjdeTIEUvMg2MkxiSOcffuXYWFhVnFODg4KCgoyBJjS9zIBgAAYLRUWrIsOjraarerq6tcXV2ThFeqVElz5sxRkSJFdPHiRY0cOVJVq1bV4cOHFRERIRcXF3l7e1ud4+Pjo4iICElSRESEVcKbeDzx2ONioqOjdfv2bV2/fl3x8fEPjTl27FjKrj8ZSHoBAADshL+/v9Xr4cOHa8SIEUni6tWrZ/n30qVLq1KlSgoICNDSpUvl7u6e2tNMEyS9AAAABkutJcvOnz9v1dP7sCrvw3h7e6tw4cI6efKkateurbt37yoyMtKq2nvp0iX5+vpKknx9fZOsspC4usODMf9e8eHSpUvy9PSUu7u7HB0d5ejo+NCYxDFsiZ5eAAAAO+Hp6Wm1JTfpjYmJ0alTp5Q7d26VL19ezs7O2rJli+X48ePHde7cOQUGBkqSAgMDdejQIatVFjZt2iRPT08VL17cEvPgGIkxiWO4uLiofPnyVjEJCQnasmWLJcaWqPQCAAAY7GmXGXvceCnRr18/vfrqqwoICNCFCxc0fPhwOTo6qk2bNvLy8lKnTp3Ut29fZcuWTZ6enurZs6cCAwP10ksvSZLq1Kmj4sWL64033tC4ceMUERGhIUOGqHv37pZE+6233tK0adM0YMAAdezYUVu3btXSpUu1bt06yzz69u2rkJAQVahQQS+++KI++eQT3bx5Ux06dLDZZ5OIpBcAACCD+fPPP9WmTRtdvXpVOXPmVJUqVbR7927lzJlTkjR58mQ5ODioefPmio2NVXBwsGbMmGE539HRUWvXrlW3bt0UGBiozJkzKyQkRKNGjbLE5MuXT+vWrVOfPn00ZcoUPf/885o9e7aCg4MtMa1atdKVK1c0bNgwRUREqGzZstqwYUOSm9tsgXV6MwjW6QXSHuv0AmkjPa7TG/rbXzZfpzew+HPp4hrTKyq9AAAARkulJcvwaNzIBgAAALtHpRcAAMBgqbVkGR6NSi8AAADsHpVeAAAAg6X1kmUZEZVeAAAA2D0qvQAAAAZj8QbjkfQCAAAYjazXcLQ3AAAAwO5R6QUAADAYS5YZj0ovAAAA7B6VXgAAAIOxZJnxqPQCAADA7lHpBQAAMBiLNxiPpBcAAMBoZL2Go70BAAAAdo9KLwAAgMFYssx4VHoBAABg96j0AgAAGM3GS5ZR6H0yKr0AAACwe1R6AQAADMbiDcYj6QUAADAaWa/haG8AAACA3aPSCwAAYDCWLDMelV4AAADYPSq9AAAABjPZeMkymy5/Zqeo9AIAAMDuUekFAAAwGIs3GI9KLwAAAOwelV4AAACjUeo1HEkvAACAwViyzHi0NwAAAMDuUekFAAAwmEk2XrLMdkPZLSq9AAAAsHtUegEAAAzGfWzGo9ILAAAAu0elFwAAwGA8hth4JL0AAACGo8HBaLQ3AAAAwO5R6QUAADAY7Q3Go9ILAAAAu0elFwAAwGB09BqPSi8AAADsHpVeAAAAg9HTazySXgAAAIOZ/v8fW46Hx6O9AQAAAHaPSi8AAIDRuJPNcFR6AQAAYPeo9AIAABiMQq/xqPQCAADA7lHpBQAAMBhLlhmPpBcAAMBgLFlmPNobAAAAYPeo9AIAABiNO9kMR6UXAAAAdo9KLwAAgMEo9BqPSi8AAADsHpVeAAAAg7FkmfFIegEAAAxn2yXLaHB4MtobAAAAYPeo9AIAABiM9gbjUekFAACA3SPpBQAAgN0j6QUAAIDdo6cXAADAYPT0Go+kFwAAwGAmGy9ZZtvlz+wT7Q0AAACwe1R6AQAADEZ7g/Go9AIAAMDuUekFAAAwmEm2fXAwhd4no9ILAAAAu0elFwAAwGiUeg1H0gsAAGAwliwzHu0NAAAAsHtUegEAAAzGkmXGo9ILAAAAu0elFwAAwGDcx2Y8Kr0AAACwe1R6AQAAjEap13AkvQAAAAZjyTLj0d4AAAAAu0elFwAAwGAsWWY8kt4Mwmw2S5JuREen8UyAjOvOvfi0ngKQId24cf+7L/G7MD2ItvH3sa3Hs0ckvRnEjRs3JEkF8/mn8UwAAEgbN27ckJeXV5rOwcXFRb6+viqUCt/Hvr6+cnFxsfm49sJkTk+/9iDVJCQk6MKFC/Lw8JCJv4E8c6Kjo+Xv76/z58/L09MzracDZDj8DD7bzGazbty4IT8/Pzk4pP3tTHfu3NHdu3dtPq6Li4vc3NxsPq69oNKbQTg4OOj5559P62ngP/L09OQLF0hD/Aw+u9K6wvsgNzc3ktM0kPa/7gAAAACpjKQXAAAAdo+kF3gGuLq6avjw4XJ1dU3rqQAZEj+DwLOPG9kAAABg96j0AgAAwO6R9AIAAMDukfQCAADA7pH0ApCUvh7PCQCArZH0ApAkmUwmEl8AgN0i6QUyuE6dOqlp06aSSHyB/+rfPz8JCQlpNBMA/0bSC2RgsbGxevHFF7V371517txZEokv8LT++usvmUwmSdJXX30l6f4j4AGkD/w0AhmYq6ur3nzzTX300UfavHmzOnXqJInEF0iprVu3qnHjxvr555/Vp08fde7cWWfOnEnraQF4gFNaTwBA2oiPj5ejo6Pc3d3l4+Oj1q1ba9y4cfLw8NAnn3xiSXwTK1cAHq18+fJycXFRmzZtdOPGDYWFhSlfvnxKSEig2gukE/wkAhmUo6OjJKlfv37q37+/rl69qtKlS+uzzz6j1QFIJrPZrPj4eHl5eal+/fq6dOmS8ubNq8jISMXFxcnBwYGfISCd4DHEQAa2efNmtWzZUqtXr1aVKlV0/fp1LVy4UKNGjVLjxo31+eefSxLVKuAhHvy5iImJ0blz5xQTE6MBAwbo7t27Gjx4sOrWrWv5BfNh5wEwDj91QAZ28eJFeXp6qnz58pKkrFmzqm3bturZs6dmz56t/v37S+JmHODfHkxcP/jgAzVt2lQmk0kvvviili9fLkdHR40ZM0abNm2ynDNmzBhJ/DwBaYWfPCCDeNgfdYoVK6b4+Hjt2LHDsi9r1qxq1KiRsmbNqokTJ2r06NFGThN4JiQmru+9956mT5+uN998U05O92+TyZ49u1avXi1nZ2eNHDlSI0eOVMOGDTV+/HjFx8en5bSBDI2kF8gAEhISLDekmc1mSwLs4+OjggULat68edq3b58lPlOmTAoKCtK6dev0/vvvp8mcgfRu3759WrZsmebPn6833nhDhQoVkiTFxcUpa9as+u6775QvXz7t2rVLknTlyhU5Ojqydi+QRujpBezcgyswTJw4UYcOHVJMTIw++OADFS1aVNu2bVOPHj1UoEAB1ahRQ+XKldOYMWPk7u6uVatWyWQyWVZ6APCP7777Tu+8844OHDig7NmzS/rn5y02Nlaurq6KjY3V7du35eXlJZPJpLi4OEtFGICxqPQCduzBCu/o0aP14YcfysnJSWfPntVLL72k7777TjVq1NBnn32m7Nmz66OPPtLbb7+tW7du6dtvv5XJZFJCQgIJL/CAxFpRlixZlJCQoFOnTlkdM5vNWrhwocLCwuTq6ipvb2/LSigkvEDa4acPsGOJfYcRERG6dOmS1q5dq8DAQElS586d1a5dO82fP19NmzbVSy+9pMjISEVHRytv3rxUpYD/9+/VFhKrufnz55eDg4O+/PJL+fr6Kk+ePHJwcFBcXJy++eYbVahQwXKTqCTWvAbSGO0NgJ1btGiR2rVrpyJFimjBggUqV66c5Vjnzp21ZMkSffPNN2rQoIFVgsuySoD1z8H06dN19OhRHT58WD179lSDBg30008/qVmzZmrcuLEqV66s3Llz69NPP9Xff/+tsLAwfmkE0hG+0QA78++bZJo2baqWLVvq+PHjunDhgqR//jw7e/ZstW3bVk2bNlVoaKjVeSS8wD8/BwMHDtTo0aOVLVs2lStXTp06dVKfPn1Uu3ZtLVu2TFFRURo5cqTGjBmjLFmyaP/+/XJycmK1BiAdodIL2Knvv/9eBQoUUOHChXXnzh21aNFCYWFhWrNmjSpUqGAV+9FHH6lfv35UpYCH+PHHH9WpUyd9++23KleunPbt26dKlSpp/vz5ateunSTp3r17io6OVnx8vHLmzEl7EJAOUcoB7IzZbNbJkyfVoEEDjR8/XqdPn5abm5tWrFihsmXLqnHjxtq/f78lVpIGDRokJycnxcXFpeXUgTQ3atQoHT9+3GrfnTt35O/vr3LlymnRokWqVauWpk+frnbt2unGjRvau3evzGazsmfPrly5cnHTGpBOkfQCduDBP9iYTCYVLFhQ3333nVauXKlx48bp1KlTcnFx0XfffacyZcqoWbNm2rVrV5Iba/iSRkYWFham0NBQFShQwGr/9evXde3aNa1fv17dunXTRx99pG7dukm6/yjvWbNm6erVq1bncNMakP7Q3gDYkcS1QROtXbtWr7/+ulq1aqVBgwYpX758unv3rqpUqaLcuXPru+++S8PZAulP4soM3333nfz8/FSxYkXFxsaqRo0a2rNnj6ZOnaoePXpIuv/z1qJFC3l5eWn+/PkkukA6R9IL2IkPP/xQV69e1eDBg5UtWzbL/nXr1qlp06bq0KGD+vXrp0KFCikuLk4ODg7crAb8i9ls1rlz51SqVCk1aNBAAwcOVNmyZbV69WqNGDFCHh4eGj16tP7880/Nnz9ff/75pw4ePCgnJyerB8EASH/4xgPshLe3tyZPnqypU6fq+vXrku5/gTdo0EDvv/++5s+fb/mydnJykoODA49DBZS0PSggIEArV67U/v37NX78eB09elSvvvqqPvzwQzk4OKh58+aaOnWqvL29deDAAcsqDSS8QPpGpRd4Bj1qDd3Zs2era9euGjJkiHr37m2p+E6cOFEbN26UyWTS+vXrqfAC/+/evXtydnaW9E97UGLFdtOmTeratasCAwM1ZMgQFS9eXJJ0+vRp+fj4KFOmTKzSADxDSHqBZ8yDCe++ffsUHR2tbNmyqWTJknJ2dtbnn3+ut956S0OGDNFrr72mokWLqlWrVurSpYvq1auXZAwgIzpw4IBKly5tSVYnTZqk3bt3Kz4+XlWrVtUbb7yh7NmzWxLfl19+WX379rV6wpokWhqAZwhJL/CMGjhwoJYvX65r167J19dX2bNn1/r16+Xh4aHZs2dryJAhypw5s0wmk9zd3ek7BP7f4MGD9e233+qTTz5RvXr1NG7cOI0ePVrdu3fXL7/8or///lvOzs5atWqVcuXKpc2bN6tLly6qXLmy+vXrp7Jly6b1JQB4CiS9wDNo+vTpGjZsmFatWiUfHx8dP35co0ePVlRUlA4cOKDMmTPr559/1unTpxUTE6OuXbta+g4dHR3TevpAmrpy5YqaNWsms9msvn37auHCheratavq1KkjSdqwYYM++ugjOTk5acWKFfL09NTWrVvVuXNnvfLKK/r444+VPXv2NL4KAClF0gs8A/7djtCxY0dlzZpVEydOlHT/T6xHjhzRm2++qdKlS+urr75K0r5AwouM7sG/cvz9999q3LixYmNjdfPmTS1ZskSlS5eWJMXFxWnlypX64IMPNH36dFWpUkWStGXLFtWuXVuLFy9Wy5Yt0+w6ADwdmvqAdM5sNlsS2O+//1537tzRjRs3FB4ebokxmUwqWbKkGjVqpOPHj+vOnTtJxiHhRUZ3+fJlnT9/XmFhYcqWLZs2b96s5557TsePH9fmzZsVHx8v6f5DWurWrauLFy/q4MGDku7/HNaqVUuVK1fW77//npaXAeApkfQC6diDlamRI0eqT58++uOPP1SnTh1FR0dr1apVVsuOFSxYULGxsQ9NeoGMbOHChXrttddUqVIlVaxYUXnz5tW4ceM0f/58BQUFaf78+Vq9erUlPiEhQT4+PsqSJYuk+79Y/vrrr4qPj1fz5s3T6jIA/AessQKkY4kJ75EjRxQeHq6ZM2eqSJEi8vb21uLFizVr1izFxMSoRYsWunHjhubNm6d8+fIpa9asaTxzIP34+uuv9fbbb2vixIkqWrSonJ2d9dVXX2n06NE6c+aM5s2bpzfeeEP9+vXTxo0bVapUKW3cuFFxcXF64403LOMUKlRIa9eutXr4C4BnBz29QDo3a9YsffXVV5Kk5cuXy9/fX5J07tw5de/eXadPn9aFCxeUN29emc1m7du3T87OzqzSAEg6ePCgXnvtNX344YdWfbhXr17V0qVL1atXL/Xo0UPjxo3Tq6++qh9++EENGjRQxYoV9f7771tuAHVwcODnCXjGUekF0pl/37RWsWJFTZkyRWfOnNHu3bstSW+ePHk0f/58nT9/Xrt27ZKvr68aNmwoR0dHFssH/t/58+eVJUsWVatWzXIzp9lsVvbs2dWmTRtduHBBkyZNUqdOnbRo0SK9/PLLKlasmIYNGyaJG0ABe0KlF0induzYocKFC8vX11dHjx5VixYt9Nxzz2n48OGqXLnyI8/jSxr4x8iRIzVz5kxFRERISvowid9//10lSpTQF198ofbt2ysqKkpZsmSxJMdUdwH7wY1sQDrx4A1pmzZt0ltvvaUZM2bo6tWrKlasmBYuXKjz58/r448/1q5duyyx//69lYQX+EexYsV048YNbdy4UZKSJLH58+eXr6+v5eZPLy8vOTo6Kj4+noQXsDMkvUA68OCyZJ999pm2bNmiS5cuaebMmZoxY4auXLmiMmXKaPHixTp58qTGjx+vH3/8UVLSL3EA/6hQoYLl8dznzp2z7E9cnuzcuXPKkSOHChcubHUevzwC9oekF0gHHlyWbODAgXrhhRc0b9481axZU4sWLdL06dP1999/q0yZMlq0aJG2b9+uDRs2pPGsgfQvf/78mjlzptauXav33ntPBw4ckHQ/qb1165beeecdeXp6qkaNGmk7UQCpjp5eIB0wm836+++/Vbt2bXXp0kXdu3e3HOvVq5eWL1+u//3vf+rWrZty5MihEydOKH/+/FSjgGSIi4vTnDlz1L17d+XMmVNlypSRt7e3zp07pxs3blhWPKEfHrBvVHqBNPJgD6/JZJKnp6ecnJx08+ZNSfe/qCVpypQpyps3r2bPnq2ZM2fq2rVrKlSokKXvEMDjOTk5qXPnztqzZ48aN26s27dvy9nZWQ0bNtT+/fvl7OysuLg4El7AzlHpBdLAg3eFL1++XFWrVlXOnDnVqFEjXbt2TT/++KNcXFwslae33npLYWFhMplMGjRokJo1a8ad5YCNUOEFMgYqvYCBTpw4Iel+ZddsNmvv3r1666235OTkJJPJpJkzZ+rMmTNq3bq1oqOjLZXc69eva8yYMcqWLZsmT55sGQNAyjyszkPCC2QMJL2AQbp3766uXbtq7969ku4nrbdu3ZKnp6eyZMmi+Ph4Pf/881q+fLn27t2rl156SfXr11f58uUVFhamOnXqqF69erp9+7bu3buXxlcDPJv4ZRHIuEh6AYO0a9dOFy5c0Pjx4xUaGipJcnBwUI4cOeTi4mJZDD8wMFC//fabWrRooZIlS6pu3bo6duyYJGnfvn3KkyfPQ6tVAADg0ejpBQyQ+Gjh/fv3q02bNipVqpSGDx+ukydPasqUKdqxY8djz//rr780YcIEzZ8/X9u3b1eJEiUMmjkAAPaBpBdIZYkJb6Ldu3frjTfeULVq1eTt7a2lS5eqT58+unXrlry9veXq6qoTJ07otddeU8WKFRUREaGlS5dq9uzZmjdvnsqWLZt2FwMAwDOKpBdIRQ8mvOvWrVP58uXl6+urPXv26I033tD169fl6empF154QX/99ZcyZcokJycn3b17V5s3b7bcYPP333/LZDIpe/bsaXk5AAA8s0h6gVTy4JJi7733nhYtWqROnTqpf//+cnNzU3h4uFq2bKlSpUppyJAheuGFF5KMERcXJycnJ6OnDgCA3SHpBVLZxx9/rPHjx2vDhg3Knz+/smXLZtXj265dO5UuXVo9e/ZUtWrVLOexDi8AALbD6g1AKrp165Z+/vlnjRgxQhUqVJC3t7ekf9YKrVChgr755htt3LhRP/zwg9W5JLwAANgOfzcFUtGdO3e0Z88e1ahRQ5Is/b2Ojo66deuWYmNjVbFiRYWGhqpIkSJpOFMAAOwblV7ARhKrtw92DLm6uqpSpUr6/fffdfXqVav4ffv2qU+fPrp+/bqKFy8uR0dHyxPYAACAbZH0AjaQkJBgaUeIi4uz7M+cObNeeeUVzZ8/X998840uXbokSYqMjNTkyZN1+fJleXl5WeJ5HCoAAKmDG9mA/+jBZclmzpypbdu2ycHBQWXKlNGgQYMkScOGDdMXX3yhQoUKyd3dXZGRkbp9+7bCwsLk7OycZC1fAABgWyS9gI0MGjRIc+fOVceOHXX37l0tX75cNWrU0FdffSVJWrFihU6ePKkTJ06oSJEi6t27t5ycnFiWDAAAA5D0AjawaNEijRgxQvPmzVOlSpX07bffKiQkRI6OjgoKCtKKFSseel58fDwtDQAAGIC/pwJP4e7du7p165bldVRUlFq3bq1KlSppzZo16tq1qz788ENNmjRJq1evVufOnR86DgkvAADGoNILpNDy5cu1cOFCnTlzRk2bNtXQoUMlSWfOnJGnp6fq1Kmjli1bauDAgTp58qRq1KihCxcuaMCAAfroo4/SePYAAGRMVHqBFPjss8/UsWNHBQQEqHr16ho5cqRmzJghScqXL59OnTqlv//+W82aNbOcU716dW3cuFFjxoxJq2kDAJDhcfcMkEyzZ89Wz549tXTpUjVp0kSSdOnSJcXHx+vSpUvy8fFRjhw55OzsrE8//VTdunVTnz59lClTJtWqVUsmk4keXgAA0gjtDUAybNu2Ta+88opGjBihYcOGWfaXLVtWZrNZZ86cUenSpdWqVSvdu3dPkydPlqOjo3x9ffXTTz/J2dlZZrOZRwsDAJBGaG8AkuG5555TlSpVFBYWpv3790uSmjdvrps3b2rw4MFaunSpIiMjNW/ePAUFBWnPnj1avHixdu3aJWdnZ8XFxZHwAgCQhqj0Asl04sQJvfPOO3J0dLQ8XGL58uXKmzevJOnAgQOqUKGCVq1apUaNGlnO48ETAACkPb6JgWQqVKiQpk6dqtjYWB0+fFiDBg1S3rx5lZCQoMTfHYsVK6bs2bNbnUfCCwBA2qPSC6TQqVOn1L17dzk4OOi9995T1apVJUmvvvqqYmJitGXLFhJdAADSGZJe4CkktjokJr6TJ0/W4cOHdfjwYTk7O9PSAABAOsO3MvAUElsdTCaTXnnlFR05csSS8MbFxZHwAgCQzlDpBf6DY8eOacaMGZo0aZKcnJwUFxcnJyeWvwYAIL0h6QVshIQXAID0i6QXAAAAdo/GQwAAANg9kl4AAADYPZJeAAAA2D2SXgAAANg9kl4AAADYPZJeAAAA2D2SXgD4f+3bt1eTJk0sr2vUqKHevXsbPo9t27bJZDIpMjLykTEmk0mrVq1K9pgjRoxQ2bJl/9O8zp49K5PJpPDw8P80DgCkBZJeAOla+/btZTKZZDKZ5OLiooIFC2rUqFGKi4tL9fdesWKFRo8enazY5CSqAIC0w+OjAKR7devW1ddff63Y2FitX79e3bt3l7Ozs957770ksXfv3pWLi4tN3jdbtmw2GQcAkPao9AJI91xdXeXr66uAgAB169ZNQUFBWr16taR/WhLGjBkjPz8/FSlSRJJ0/vx5tWzZUt7e3sqWLZsaN26ss2fPWsaMj49X37595e3trezZs2vAgAH69wMq/93eEBsbq4EDB8rf31+urq4qWLCgvvzyS509e1Y1a9aUJGXNmlUmk0nt27eXJCUkJGjs2LHKly+f3N3dVaZMGX377bdW77N+/XoVLlxY7u7uqlmzptU8k2vgwIEqXLiwMmXKpPz582vo0KG6d+9ekrjPPvtM/v7+ypQpk1q2bKmoqCir47Nnz1axYsXk5uamokWLasaMGSmeCwCkRyS9AJ457u7uunv3ruX1li1bdPz4cW3atElr167VvXv3FBwcLA8PD/3000/auXOnsmTJorp161rOmzhxoubMmaOvvvpKP//8s65du6aVK1c+9n3ffPNNLVq0SFOnTtXRo0f12WefKUuWLPL399fy5cslScePH9fFixc1ZcoUSdLYsWM1b948zZo1S0eOHFGfPn30+uuva/v27ZLuJ+fNmjXTq6++qvDwcHXu3FmDBg1K8Wfi4eGhOXPm6LffftOUKVP0xRdfaPLkyVYxJ0+e1NKlS7VmzRpt2LBBBw8e1Ntvv205vmDBAg0bNkxjxozR0aNH9eGHH2ro0KGaO3duiucDAOmOGQDSsZCQEHPjxo3NZrPZnJCQYN60aZPZ1dXV3K9fP8txHx8fc2xsrOWc+fPnm4sUKWJOSEiw7IuNjTW7u7ubf/jhB7PZbDbnzp3bPG7cOMvxe/fumZ9//nnLe5nNZnP16tXNvXr1MpvNZvPx48fNksybNm166Dx//PFHsyTz9evXLfvu3LljzpQpk3nXrl1WsZ06dTK3adPGbDabze+99565ePHiVscHDhyYZKx/k2ReuXLlI4+PHz/eXL58ecvr4cOHmx0dHc1//vmnZd/3339vdnBwMF+8eNFsNpvNBQoUMC9cuNBqnNGjR5sDAwPNZrPZfObMGbMk88GDBx/5vgCQXtHTCyDdW7t2rbJkyaJ79+4pISFBbdu21YgRIyzHS5UqZdXH+8svv+jkyZPy8PCwGufOnTs6deqUoqKidPHiRVWqVMlyzMnJSRUqVEjS4pAoPDxcjo6Oql69erLnffLkSd26dUu1a9e22n/37l298MILkqSjR49azUOSAgMDk/0eiZYsWaKpU6fq1KlTiomJUVxcnDw9Pa1i8uTJo+eee87qfRISEnT8+HF5eHjo1KlT6tSpk7p06WKJiYuLk5eXV4rnAwDpDUkvgHSvZs2amjlzplxcXOTn5ycnJ+v/dGXOnNnqdUxMjMqXL68FCxYkGStnzpxPNQd3d/cUnxMTEyNJWrdunVWyKd3vU7aV0NBQtWvXTiNHjlRwcLC8vLy0ePFiTZw4McVz/eKLL5Ik4Y6OjjabKwCkFZJeAOle5syZVbBgwWTHlytXTkuWLFGuXLmSVDsT5c6dW3v27FG1atUk3a9ohoWFqVy5cg+NL1WqlBISErR9+3YFBQUlOZ5YaY6Pj7fsK168uFxdXXXu3LlHVoiLFStmuSkv0e7du598kQ/YtWuXAgICNHjwYMu+P/74I0ncuXPndOHCBfn5+Vnex8HBQUWKFJGPj4/8/Px0+vRptWvXLkXvDwDPAm5kA2B32rVrpxw5cqhx48b66aefdObMGW3btk3vvPOO/vzzT0lSr1699NFHH2nVqlU6duyY3n777ceusZs3b16FhISoY8eOWrVqlWXMpUuXSpICAgJkMpm0du1aXblyRTExMfLw8FC/fv3Up08fzZ07V6dOndKBAwf06aefWm4Oe+utt3TixAn1799fx48f18KFCzVnzpwUXW+hQoV07tw5LV68WKdOndLUqVMfelOem5ubQkJC9Msvv+inn37SO++8o5YtW8rX11eSNHLkSI0dO1ZTp07V77//rkOHDunrr7/WpEmTUjQfAEiPSHoB2J1MmTJpx44dypMnj5o1a6ZixYqpU6dOunPnjqXy++677+qNN95QSEiIAgMD5eHhoaZNmz523JkzZ6pFixZ6++23VbRoUXXp0kU3b96UJD333HMaOXKkBg0aJB8fH/Xo0UOSNHr0aA0dOlRjx45VsWLFVLduXa1bt0758uWTdL/Pdvny5Vq1apXKlCmjWbNm6cMPP0zR9TZq1Eh9+vRRjx49VLZsWe3atUtDhw5NElewYEE1a9ZM9evXV506dVS6dGmrJck6d+6s2bNn6+uvv1apUqVUvXp1zZkzxzJXAHiWmcyPumsDAAAAsBNUegEAAGD3SHoBAABg90h6AQAAYPdIegEAAGD3SHoBAABg90h6AQAAYPdIegEAAGD3SHoBAABg90h6AQAAYPdIegEAAGD3SHoBAABg90h6AQAAYPf+DzSaseg+fGdDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBiUlEQVR4nO3dfZzM9f7/8efM7O7suthdYtdFW+taRdTK/pAj2ixK6dThIJYihRM2FRVbOVlK0oUoJ3TOjYhSQisWFelUrr5dyLVIdlGHZbVXM5/fH9mxY3fZi9mdmY/H/Xab22ne8/58Pq/5cJpX78/r/X5bDMMwBAAAYBJWbwcAAADgSSQ3AADAVEhuAACAqZDcAAAAUyG5AQAApkJyAwAATIXkBgAAmArJDQAAMBWSGwAAYCokN8BlaNCgQYqOji7VMRs2bJDFYtGGDRsqJCZ/d8stt+iWW25xvT948KAsFovmz5/vtZiAyxXJDVAJ5s+fL4vF4noFBweradOmGjlypNLT070dns/LTxTyX1arVTVr1lT37t21efNmb4fnEenp6Ro7dqyaN2+uKlWqqGrVqoqJidE///lPnTx50tvhAX4lwNsBAJeT5557Tg0aNFBWVpY2btyoWbNmadWqVfr+++9VpUqVSotjzpw5cjqdpTrmL3/5i/744w8FBQVVUFSX1rdvX/Xo0UMOh0O7d+/WG2+8oc6dO+ubb75Ry5YtvRZXeX3zzTfq0aOHzpw5o/vuu08xMTGSpG+//VZTpkzR559/rk8//dTLUQL+g+QGqETdu3dXmzZtJElDhgzRFVdcoenTp+ujjz5S3759izwmMzNTVatW9WgcgYGBpT7GarUqODjYo3GU1o033qj77rvP9b5jx47q3r27Zs2apTfeeMOLkZXdyZMndffdd8tms2nbtm1q3ry52+fPP/+85syZ45FrVcTfJcAX8VgK8KIuXbpIkg4cOCDpz1qYatWqad++ferRo4eqV6+u/v37S5KcTqdmzJih6667TsHBwYqMjNSwYcP0v//9r9B5P/nkE3Xq1EnVq1dXaGiobrrpJi1cuND1eVE1N4sWLVJMTIzrmJYtW+qVV15xfV5czc2SJUsUExOjkJAQ1apVS/fdd5+OHDni1if/ex05ckS9evVStWrVVLt2bY0dO1YOh6PM969jx46SpH379rm1nzx5UqNHj1ZUVJTsdrsaN26sqVOnFhqtcjqdeuWVV9SyZUsFBwerdu3a6tatm7799ltXn3nz5qlLly6KiIiQ3W7Xtddeq1mzZpU55gu9+eabOnLkiKZPn14osZGkyMhIPf300673FotFzzzzTKF+0dHRGjRokOt9/qPQzz77TMOHD1dERISuvPJKLV261NVeVCwWi0Xff/+9q+2nn37Svffeq5o1ayo4OFht2rTR8uXLy/elgQrGyA3gRfk/yldccYWrLS8vT/Hx8br55ps1bdo01+OqYcOGaf78+Ro8eLAeeeQRHThwQK+//rq2bdumTZs2uUZj5s+fr/vvv1/XXXedxo8fr/DwcG3btk0pKSnq169fkXGsWbNGffv21a233qqpU6dKknbu3KlNmzZp1KhRxcafH89NN92k5ORkpaen65VXXtGmTZu0bds2hYeHu/o6HA7Fx8crNjZW06ZN09q1a/XSSy+pUaNGevjhh8t0/w4ePChJqlGjhqvt7Nmz6tSpk44cOaJhw4bpqquu0pdffqnx48fr6NGjmjFjhqvvAw88oPnz56t79+4aMmSI8vLy9MUXX+irr75yjbDNmjVL1113ne68804FBATo448/1vDhw+V0OjVixIgyxV3Q8uXLFRISonvvvbfc5yrK8OHDVbt2bU2cOFGZmZm6/fbbVa1aNb333nvq1KmTW9/FixfruuuuU4sWLSRJP/zwgzp06KD69etr3Lhxqlq1qt577z316tVL77//vu6+++4KiRkoNwNAhZs3b54hyVi7dq1x/Phx4/Dhw8aiRYuMK664wggJCTF++eUXwzAMIyEhwZBkjBs3zu34L774wpBkLFiwwK09JSXFrf3kyZNG9erVjdjYWOOPP/5w6+t0Ol3/nJCQYFx99dWu96NGjTJCQ0ONvLy8Yr/D+vXrDUnG+vXrDcMwjJycHCMiIsJo0aKF27VWrFhhSDImTpzodj1JxnPPPed2zhtuuMGIiYkp9pr5Dhw4YEgynn32WeP48eNGWlqa8cUXXxg33XSTIclYsmSJq++kSZOMqlWrGrt373Y7x7hx4wybzWYcOnTIMAzDWLdunSHJeOSRRwpdr+C9Onv2bKHP4+PjjYYNG7q1derUyejUqVOhmOfNm3fR71ajRg2jVatWF+1TkCQjKSmpUPvVV19tJCQkuN7n/527+eabC/259u3b14iIiHBrP3r0qGG1Wt3+jG699VajZcuWRlZWlqvN6XQa7du3N5o0aVLimIHKxmMpoBLFxcWpdu3aioqK0t///ndVq1ZNy5YtU/369d36XTiSsWTJEoWFhem2227TiRMnXK+YmBhVq1ZN69evl/TnCMzp06c1bty4QvUxFoul2LjCw8OVmZmpNWvWlPi7fPvttzp27JiGDx/udq3bb79dzZs318qVKwsd89BDD7m979ixo/bv31/iayYlJal27dqqU6eOOnbsqJ07d+qll15yG/VYsmSJOnbsqBo1arjdq7i4ODkcDn3++eeSpPfff18Wi0VJSUmFrlPwXoWEhLj++dSpUzpx4oQ6deqk/fv369SpUyWOvTgZGRmqXr16uc9TnKFDh8pms7m19enTR8eOHXN7xLh06VI5nU716dNHkvT7779r3bp16t27t06fPu26j7/99pvi4+O1Z8+eQo8fAV/BYymgEs2cOVNNmzZVQECAIiMj1axZM1mt7v+NERAQoCuvvNKtbc+ePTp16pQiIiKKPO+xY8cknX/Mlf9YoaSGDx+u9957T927d1f9+vXVtWtX9e7dW926dSv2mJ9//lmS1KxZs0KfNW/eXBs3bnRry69pKahGjRpuNUPHjx93q8GpVq2aqlWr5nr/4IMP6m9/+5uysrK0bt06vfrqq4Vqdvbs2aP/+7//K3StfAXvVb169VSzZs1iv6Mkbdq0SUlJSdq8ebPOnj3r9tmpU6cUFhZ20eMvJTQ0VKdPny7XOS6mQYMGhdq6deumsLAwLV68WLfeequkPx9JtW7dWk2bNpUk7d27V4ZhaMKECZowYUKR5z527FihxBzwBSQ3QCVq27atq5ajOHa7vVDC43Q6FRERoQULFhR5THE/5CUVERGh7du3a/Xq1frkk0/0ySefaN68eRo4cKDeeeedcp0734WjB0W56aabXEmT9OdITcHi2SZNmiguLk6SdMcdd8hms2ncuHHq3Lmz6746nU7ddtttevzxx4u8Rv6Pd0ns27dPt956q5o3b67p06crKipKQUFBWrVqlV5++eVST6cvSvPmzbV9+3bl5OSUa5p9cYXZBUee8tntdvXq1UvLli3TG2+8ofT0dG3atEmTJ0929cn/bmPHjlV8fHyR527cuHGZ4wUqEskN4AcaNWqktWvXqkOHDkX+WBXsJ0nff/99qX94goKC1LNnT/Xs2VNOp1PDhw/Xm2++qQkTJhR5rquvvlqStGvXLtesr3y7du1yfV4aCxYs0B9//OF637Bhw4v2f+qppzRnzhw9/fTTSklJkfTnPThz5owrCSpOo0aNtHr1av3+++/Fjt58/PHHys7O1vLly3XVVVe52vMfA3pCz549tXnzZr3//vvFLgdQUI0aNQot6peTk6OjR4+W6rp9+vTRO++8o9TUVO3cuVOGYbgeSUnn731gYOAl7yXga6i5AfxA79695XA4NGnSpEKf5eXluX7sunbtqurVqys5OVlZWVlu/QzDKPb8v/32m9t7q9Wq66+/XpKUnZ1d5DFt2rRRRESEZs+e7dbnk08+0c6dO3X77beX6LsV1KFDB8XFxblel0puwsPDNWzYMK1evVrbt2+X9Oe92rx5s1avXl2o/8mTJ5WXlydJuueee2QYhp599tlC/fLvVf5oU8F7d+rUKc2bN6/U3604Dz30kOrWratHH31Uu3fvLvT5sWPH9M9//tP1vlGjRq66oXxvvfVWqafUx8XFqWbNmlq8eLEWL16stm3buj3CioiI0C233KI333yzyMTp+PHjpboeUJkYuQH8QKdOnTRs2DAlJydr+/bt6tq1qwIDA7Vnzx4tWbJEr7zyiu69916Fhobq5Zdf1pAhQ3TTTTepX79+qlGjhnbs2KGzZ88W+4hpyJAh+v3339WlSxddeeWV+vnnn/Xaa6+pdevWuuaaa4o8JjAwUFOnTtXgwYPVqVMn9e3b1zUVPDo6WmPGjKnIW+IyatQozZgxQ1OmTNGiRYv02GOPafny5brjjjs0aNAgxcTEKDMzU999952WLl2qgwcPqlatWurcubMGDBigV199VXv27FG3bt3kdDr1xRdfqHPnzho5cqS6du3qGtEaNmyYzpw5ozlz5igiIqLUIyXFqVGjhpYtW6YePXqodevWbisUb926Ve+++67atWvn6j9kyBA99NBDuueee3Tbbbdpx44dWr16tWrVqlWq6wYGBuqvf/2rFi1apMzMTE2bNq1Qn5kzZ+rmm29Wy5YtNXToUDVs2FDp6enavHmzfvnlF+3YsaN8Xx6oKN6cqgVcLvKn5X7zzTcX7ZeQkGBUrVq12M/feustIyYmxggJCTGqV69utGzZ0nj88ceNX3/91a3f8uXLjfbt2xshISFGaGio0bZtW+Pdd991u07BqeBLly41unbtakRERBhBQUHGVVddZQwbNsw4evSoq8+FU8HzLV682LjhhhsMu91u1KxZ0+jfv79ravulvldSUpJRkn8N5U+rfvHFF4v8fNCgQYbNZjP27t1rGIZhnD592hg/frzRuHFjIygoyKhVq5bRvn17Y9q0aUZOTo7ruLy8POPFF180mjdvbgQFBRm1a9c2unfvbmzZssXtXl5//fVGcHCwER0dbUydOtWYO3euIck4cOCAq19Zp4Ln+/XXX40xY8YYTZs2NYKDg40qVaoYMTExxvPPP2+cOnXK1c/hcBhPPPGEUatWLaNKlSpGfHy8sXfv3mKngl/s79yaNWsMSYbFYjEOHz5cZJ99+/YZAwcONOrUqWMEBgYa9evXN+644w5j6dKlJfpegDdYDOMiY9UAAAB+hpobAABgKiQ3AADAVEhuAACAqZDcAAAAUyG5AQAApkJyAwAATOWyW8TP6XTq119/VfXq1S+6SzIAAPAdhmHo9OnTqlevXqH99y502SU3v/76q6KiorwdBgAAKIPDhw/ryiuvvGifyy65qV69uqQ/b05oaKiXowEAACWRkZGhqKgo1+/4xVx2yU3+o6jQ0FCSGwAA/ExJSkooKAYAAKZCcgMAAEyF5AYAAJgKyQ0AADAVkhsAAGAqJDcAAMBUSG4AAICpkNwAAABTIbkBAACmQnIDAABMxavJzeeff66ePXuqXr16slgs+vDDDy95zIYNG3TjjTfKbrercePGmj9/foXHCQAA/IdXk5vMzEy1atVKM2fOLFH/AwcO6Pbbb1fnzp21fft2jR49WkOGDNHq1asrOFIAAOAvvLpxZvfu3dW9e/cS9589e7YaNGigl156SZJ0zTXXaOPGjXr55ZcVHx9fUWGWSFauQ8cysmUPtMoeYFVwoE1BNqus1ktv8AUAADzHr3YF37x5s+Li4tza4uPjNXr06GKPyc7OVnZ2tut9RkZGhcS2K+207pq5qVB7kO3PZOfPpMd2/n8DzidBf35eRJur/wVt585XZFuBa9hIrAAAlyG/Sm7S0tIUGRnp1hYZGamMjAz98ccfCgkJKXRMcnKynn322QqPLc9pqEqQTVm5DjmN8+05DqdyHE6dzi7+2IoSYLUUm0DZS5pAlTYhO/e/gTZq1QEA3uFXyU1ZjB8/XomJia73GRkZioqK8vh1Yq6uoR+f6yZJynM4lZ3nVFauQ9l5znMvh7Jzi2k797+utoLH5hbRludUdq5DOUVcI9dxPrPKcxrKy3EoM8fh8e97KbZziVXBBCq4QCKVnyydT4oKJlWFk7Dggm3Fne9cW6DNIouFUSsAuFz5VXJTp04dpaenu7Wlp6crNDS0yFEbSbLb7bLb7ZURnkuAzaoAm1VV7ZV/ex1Ow5U0lThZKpAgnU+Wzp/Dre3cOYpKyHLynG5xnM1x6GyOQ1Jupd4Di0WXTKCKTJZKkkC5JVxFJ2QkVgDgXX6V3LRr106rVq1ya1uzZo3atWvnpYh8j81qUZWgAFUJqvxrO52GchzFjTZdYpSqtCNXRYyE5TMMKSvXqaxc50WirThBhWqnSj96dfGErPhHiRSwA4CXk5szZ85o7969rvcHDhzQ9u3bVbNmTV111VUaP368jhw5on//+9+SpIceekivv/66Hn/8cd1///1at26d3nvvPa1cudJbXwEFWK0WBVttCg60SQqs1GsbxrnEqhTJUvYFj/mKTaAuMRKWleeQUbDO6two1umsvEq9B5IUaLMUqpMKKm/h+oV1V8XUYgVQZwXAR3g1ufn222/VuXNn1/v82piEhATNnz9fR48e1aFDh1yfN2jQQCtXrtSYMWP0yiuv6Morr9S//vUvr08Dh/dZLJZzP7Q2hQZXfmKV5zQK1UQVVSdVmgQquwR1V9l5TuUVqGDPdRjKdeR5tYD9UgmU3YOF6/ltAVbqrACcZzGMgv/NaX4ZGRkKCwvTqVOnFBoa6u1wgHLLL2C/aLJUjsL1/LacAtfIyi1cwO5NVosuOgJ1ybqromYUXupR4rm2IBt1VkBlKM3vt1/V3AAo7HwBe+Vf2+E0ziU95xOegsmSW5tHZgwWXcDuNKQ/ch36I7fyZwZKKl3h+iWSpdLUXbFQKFA0khsAZWazWhQSZFNIkK3Sr11UAbtbQlWqGYOXKFy/4HwXFqtfWNRemYIC3JOiMhWuF7nswsVrsVgoFL6M5AaAX/KVAvZSJUtFLL9QlseGzqIK2OWdAvYL66SCPFW47jaiVfh8FLDjYkhuAKCUChawK7hyr51fwO6pwvVCCZTbSNif58u6RAH7GS8UsBdcKLQ0o02e2AKHhUJ9H8kNAPgRi8WiQJtFgTarqnlhodC8c1vKFPX476JtxdZiFU6g3BcSPX++HIdvLRRa1i1riqrFspfwUSILhZYMyQ0AoMTyC9i9tVDohaulF1u47uEZg760UGjxdVIVu2CoPxWwk9wAAPyC1RcK2C8YVcoq4/pUpX1sWHDRFley5YWFQoNsVvdkqEBSVDcsWJN6tVCtal6YunkBkhsAAC7B2wXsuQ6jVKNNJXnMV5LHhoUK2M89lixqodDth6XOzSPUu43nN6cuLZIbAAB8mMViUVCARUEBVlX3wvXzHM4ik6Ws3PNt09fs1vbDJ5XnIwt7ktwAAIBiBdisqnaJAvYF//1ZkuT0kU0PWCgAAACUi/XcDC5f2dGJ5AYAAJRLfnLj9I3chuQGAACU07kZ4ozcAAAAU2DkBgAAmEr+2n4UFAMAAFM4X1Ds5UDOIbkBAADlYmHkBgAAmAk1NwAAwFSouQEAAKbCIn4AAMBULDyWAgAAZsJjKQAAYCoW1wrF3o0jH8kNAAAoF2puAACAqTAVHAAAmAqL+AEAAFNh5AYAAJiK1VVQ7BvZDckNAAAol/MjNyQ3AADABFjEDwAAmAqL+AEAAFM5v86NlwM5h+QGAACUi4WCYgAAYCbU3AAAAFOh5gYAAJgKi/gBAABTYRE/AABgKhYW8QMAAGbCYykAAGAqFBQDAABTYRE/AABgKiziBwAATIVF/AAAgKlQcwMAAEyFmhsAAGAqjNwAAABTYRE/AABgKiziBwAATIW9pQAAgKkwcgMAAEzFQkExAAAwE6aCAwAAU2HkBgAAmAojNwAAwFQYuQEAAKZiZRE/AABgJkwFBwAApsIifheYOXOmoqOjFRwcrNjYWH399dcX7T9jxgw1a9ZMISEhioqK0pgxY5SVlVVJ0QIAgAtZGLk5b/HixUpMTFRSUpK2bt2qVq1aKT4+XseOHSuy/8KFCzVu3DglJSVp586devvtt7V48WI9+eSTlRw5AADIx67gBUyfPl1Dhw7V4MGDde2112r27NmqUqWK5s6dW2T/L7/8Uh06dFC/fv0UHR2trl27qm/fvpcc7QEAABWHqeDn5OTkaMuWLYqLizsfjNWquLg4bd68uchj2rdvry1btriSmf3792vVqlXq0aNHpcQMAAAKs/hYzU2Aty584sQJORwORUZGurVHRkbqp59+KvKYfv366cSJE7r55ptlGIby8vL00EMPXfSxVHZ2trKzs13vMzIyPPMFAACAJGZLlcuGDRs0efJkvfHGG9q6das++OADrVy5UpMmTSr2mOTkZIWFhbleUVFRlRgxAADm52uL+Hlt5KZWrVqy2WxKT093a09PT1edOnWKPGbChAkaMGCAhgwZIklq2bKlMjMz9eCDD+qpp56S1Vo4Vxs/frwSExNd7zMyMkhwAADwIEZuzgkKClJMTIxSU1NdbU6nU6mpqWrXrl2Rx5w9e7ZQAmOz2SQV/5zPbrcrNDTU7QUAADznfEGxb2Q3Xhu5kaTExEQlJCSoTZs2atu2rWbMmKHMzEwNHjxYkjRw4EDVr19fycnJkqSePXtq+vTpuuGGGxQbG6u9e/dqwoQJ6tmzpyvJAQAAlcvXpoJ7Nbnp06ePjh8/rokTJyotLU2tW7dWSkqKq8j40KFDbiM1Tz/9tCwWi55++mkdOXJEtWvXVs+ePfX888976ysAAHDZ87VF/CyGr4whVZKMjAyFhYXp1KlTPKICAMAD/rv/N/V56ys1rF1V6x69pUKuUZrfb7+aLQUAAHyP1coifgAAwETYOBMAAJiMb9XckNwAAIBy8bXZUiQ3AACgXNg4EwAAmMr5FYp9I7shuQEAAOXia3tLkdwAAIByYW8pAABgKvmbCTAVHAAAmAIjNwAAwFSYCg4AAEzFwlRwAABgJucGbhi5AQAA5sAifgAAwFRYxA8AAJgKi/gBAABTsVqZCg4AAEwkfyo4i/gBAABTYBE/AABgKtTcAAAAU2EqOAAAMJX85EbyjbobkhsAAFAulgL/7At1NyQ3AACgXAqO3PhC3Q3JDQAAKBdLgWyC5AYAAPg995obLwZyDskNAAAoF2uBohtGbgAAgN9zr7nxYiDnkNwAAIBysTByAwAAzMSt5sbpxUDOIbkBAADl4pbciJEbAADg59wLir0XRz6SGwAAUC4WFvEDAABm40s7g5PcAACAcvOlncFJbgAAQLlZGbkBAABmkl93Q0ExAAAwBdfIjQ9kNyQ3AACg3Ki5AQAApmJ1PZbyfnZDcgMAAMotfyq491MbkhsAAOABjNwAAABTcY3ckNwAAAAzsDIVHAAAmAmL+AEAAFNxLeLn9HIgIrkBAAAewMgNAAAwFRbxAwAApsJUcAAAYCos4gcAAEyFkRsAAGAqVhbxAwAAZmJhET8AAGAm+TU3Th/IbkhuAABAubH9AgAAMBVqbgAAgKkwcgMAAEzFwlRwAABgJuwtVcDMmTMVHR2t4OBgxcbG6uuvv75o/5MnT2rEiBGqW7eu7Ha7mjZtqlWrVlVStAAAoCiuvaW8HIckBXjz4osXL1ZiYqJmz56t2NhYzZgxQ/Hx8dq1a5ciIiIK9c/JydFtt92miIgILV26VPXr19fPP/+s8PDwyg8eAAC4+FJBsVeTm+nTp2vo0KEaPHiwJGn27NlauXKl5s6dq3HjxhXqP3fuXP3+++/68ssvFRgYKEmKjo6uzJABAEARXDU3Ti8HIi8+lsrJydGWLVsUFxd3PhirVXFxcdq8eXORxyxfvlzt2rXTiBEjFBkZqRYtWmjy5MlyOByVFTYAACiCxYdqbrw2cnPixAk5HA5FRka6tUdGRuqnn34q8pj9+/dr3bp16t+/v1atWqW9e/dq+PDhys3NVVJSUpHHZGdnKzs72/U+IyPDc18CAABIYip4mTmdTkVEROitt95STEyM+vTpo6eeekqzZ88u9pjk5GSFhYW5XlFRUZUYMQAAlwe/r7lxOByaP3++UlNTdezYMTkveMC2bt26S56jVq1astlsSk9Pd2tPT09XnTp1ijymbt26CgwMlM1mc7Vdc801SktLU05OjoKCggodM378eCUmJrreZ2RkkOAAAOBhfr9x5qhRozRq1Cg5HA61aNFCrVq1cnuVRFBQkGJiYpSamupqczqdSk1NVbt27Yo8pkOHDtq7d69bMrV7927VrVu3yMRGkux2u0JDQ91eAADAs3xpnZsyjdwsWrRI7733nnr06FGuiycmJiohIUFt2rRR27ZtNWPGDGVmZrpmTw0cOFD169dXcnKyJOnhhx/W66+/rlGjRukf//iH9uzZo8mTJ+uRRx4pVxwAAKB8rD60QnGZkpugoCA1bty43Bfv06ePjh8/rokTJyotLU2tW7dWSkqKq8j40KFDslrPDy5FRUVp9erVGjNmjK6//nrVr19fo0aN0hNPPFHuWAAAQNm5FvHzfm4ji1GGyp+XXnpJ+/fv1+uvv+56xuYvMjIyFBYWplOnTvGICgAADxnw9n/1xZ4TerlPK919w5UeP39pfr/LNHKzceNGrV+/Xp988omuu+4614J6+T744IOynBYAAPgpqw8t4lem5CY8PFx33323p2MBAAB+yu8LiufNm+fpOAAAgB+z+FDNTblWKD5+/Lh27dolSWrWrJlq167tkaAAAIB/8aWRmzKtc5OZman7779fdevW1V/+8hf95S9/Ub169fTAAw/o7Nmzno4RAAD4OL9fxC8xMVGfffaZPv74Y508eVInT57URx99pM8++0yPPvqop2MEAAA+zpdGbsr0WOr999/X0qVLdcstt7jaevTooZCQEPXu3VuzZs3yVHwAAMAPnF/nxvvJTZlGbs6ePVtoN29JioiI4LEUAACXIb/fFbxdu3ZKSkpSVlaWq+2PP/7Qs88+W+y+UAAAwLws/r4r+CuvvKL4+HhdeeWVro0yd+zYoeDgYK1evdqjAQIAAN/nSyM3ZUpuWrRooT179mjBggX66aefJEl9+/ZV//79FRIS4tEAAQCA7/P7gmJJqlKlioYOHerJWAAAgJ/ypY0zS5zcLF++XN27d1dgYKCWL19+0b533nlnuQMDAAB+xB9Hbnr16qW0tDRFRESoV69exfazWCxyOByeiA0AAPgJv6y5cRbY5tPpC1t+AgAAn+FLNTdlmgpelJMnT3rqVAAAwM/4/SJ+U6dO1eLFi13v//a3v6lmzZqqX7++duzY4bHgAACAf/D7vaVmz56tqKgoSdKaNWu0du1apaSkqHv37nrsscc8GiAAAPB9vvRYqkxTwdPS0lzJzYoVK9S7d2917dpV0dHRio2N9WiAAADA9/nSVPAyjdzUqFFDhw8fliSlpKQoLi5O0p/P2ZgpBQDA5cfq79sv/PWvf1W/fv3UpEkT/fbbb+revbskadu2bWrcuLFHAwQAAL7Pl2puypTcvPzyy4qOjtbhw4f1wgsvqFq1apKko0ePavjw4R4NEAAA+L7z69x4P7spU3ITGBiosWPHFmofM2ZMuQMCAAD+x+IqKPZuHBLbLwAAAA/wy5obtl8AAADF8cvHUmy/AAAAiuNLBcUe234BAABcvnxpEb8yJTePPPKIXn311ULtr7/+ukaPHl3emAAAgJ/x+0X83n//fXXo0KFQe/v27bV06dJyBwUAAPyLLxUUlym5+e233xQWFlaoPTQ0VCdOnCh3UAAAwL/4fc1N48aNlZKSUqj9k08+UcOGDcsdFAAA8C9+OVuqoMTERI0cOVLHjx9Xly5dJEmpqal66aWXNGPGDE/GBwAA/IDVHxfxK+j+++9Xdna2nn/+eU2aNEmSFB0drVmzZmngwIEeDRAAAPg+iw/V3JQpuZGkhx9+WA8//LCOHz+ukJAQ1/5SAADg8mPxocdSZV7nJi8vT2vXrtUHH3zgytJ+/fVXnTlzxmPBAQAA/2D1oYLiMo3c/Pzzz+rWrZsOHTqk7Oxs3XbbbapevbqmTp2q7OxszZ4929NxAgAAH+b3i/iNGjVKbdq00f/+9z+FhIS42u+++26lpqZ6LDgAAOAffGkRvzKN3HzxxRf68ssvFRQU5NYeHR2tI0eOeCQwAADgP3ypoLhMIzdOp7PInb9/+eUXVa9evdxBAQAA/+JLNTdlSm66du3qtp6NxWLRmTNnlJSUpB49engqNgAA4Cd8qeamTI+lpk2bpm7duunaa69VVlaW+vXrpz179qhWrVp69913PR0jAADwcVarn9fcREVFaceOHVq8eLF27NihM2fO6IEHHlD//v3dCowBAMDlwZfWuSl1cpObm6vmzZtrxYoV6t+/v/r3718RcQEAAD9y7qmUTyQ3pa65CQwMVFZWVkXEAgAA/JTfFxSPGDFCU6dOVV5enqfjAQAAfsjqQ1PBy1Rz88033yg1NVWffvqpWrZsqapVq7p9/sEHH3gkOAAA4B98aeSmTMlNeHi47rnnHk/HAgAA/JTFX6eCO51Ovfjii9q9e7dycnLUpUsXPfPMM8yQAgDgMudL2y+Uqubm+eef15NPPqlq1aqpfv36evXVVzVixIiKig0AAPgJ67mMwhdGbkqV3Pz73//WG2+8odWrV+vDDz/Uxx9/rAULFsjpdFZUfAAAwA/47cjNoUOH3LZXiIuLk8Vi0a+//urxwAAAgP/wpUX8SpXc5OXlKTg42K0tMDBQubm5Hg0KAAD4F7/dW8owDA0aNEh2u93VlpWVpYceeshtOjhTwQEAuLxY5KdTwRMSEgq13XfffR4LBgAA+Ce/XcRv3rx5FRUHAADwYxYfWsSvTNsvAAAAFORLNTckNwAAoNx8afsFkhsAAFBu+Yv4+cJCNyQ3AACg3Ki5ucDMmTMVHR2t4OBgxcbG6uuvvy7RcYsWLZLFYlGvXr0qNkAAAHBRVn9dxK8iLF68WImJiUpKStLWrVvVqlUrxcfH69ixYxc97uDBgxo7dqw6duxYSZECAIDinC8o9m4ckg8kN9OnT9fQoUM1ePBgXXvttZo9e7aqVKmiuXPnFnuMw+FQ//799eyzz6phw4aVGC0AACjK+b2lvJ/deDW5ycnJ0ZYtWxQXF+dqs1qtiouL0+bNm4s97rnnnlNERIQeeOCBS14jOztbGRkZbi8AAOBZ5wZueCx14sQJORwORUZGurVHRkYqLS2tyGM2btyot99+W3PmzCnRNZKTkxUWFuZ6RUVFlTtuAADgjoLiMjp9+rQGDBigOXPmqFatWiU6Zvz48Tp16pTrdfjw4QqOEgCAy48vLeJXqu0XPK1WrVqy2WxKT093a09PT1edOnUK9d+3b58OHjyonj17utqcTqckKSAgQLt27VKjRo3cjrHb7W4bfQIAAM+zWvNrbrwciLw8chMUFKSYmBilpqa62pxOp1JTU9WuXbtC/Zs3b67vvvtO27dvd73uvPNOde7cWdu3b+eREwAAXuK3G2dWhMTERCUkJKhNmzZq27atZsyYoczMTA0ePFiSNHDgQNWvX1/JyckKDg5WixYt3I4PDw+XpELtAACg8vhSzY3Xk5s+ffro+PHjmjhxotLS0tS6dWulpKS4iowPHTokq9WvSoMAALjs+NIifhbDF8aPKlFGRobCwsJ06tQphYaGejscAABM4f9+Oak7X9+k+uEh2jSui8fPX5rfb4ZEAABAufnSyA3JDQAAKDeLD00FJ7kBAADlZpHvFBST3AAAgHLLn/vjC6W8JDcAAKDcrD40FZzkBgAAlJsvbb9AcgMAAMotfxE/H8htSG4AAED5MRUcAACYyvm9pbwbh0RyAwAAPICRGwAAYCos4gcAAEyFqeAAAMBULK6aG+9nNyQ3AACg3Bi5AQAApkLNDQAAMBUri/gBAAAzyU9uJO/X3ZDcAACAcrOez228XndDcgMAAMrNUmDkxtt1NyQ3AACg3NxHbkhuAACAn3OvufFiICK5AQAAHmDlsRQAADATCwXFAADATCzU3AAAADNxq7lxejEQkdwAAAAPoOYGAACYSsGp4N7egYHkBgAAlBuL+AEAANOx+sjO4CQ3AADAI3xlZ3CSGwAA4BH5yQ0jNwAAwBQsrsdS3o2D5AYAAHiEK7nxcnZDcgMAADyCmhsAAGAq1NwAAABTyX8sxSJ+AADAFBi5AQAAppK/iJ9BcgMAAMzg/MiNl+Pw7uUBAIBZWHgsBQAAzMS1t5TTy3F49/IAAMAsLGycCQAAzIRF/AAAgKkwFRwAAJgKj6UAAICpuB5LeTsOL18fAACYBIv4AQAAU2ERPwAAYCqumhsvZzckNwAAwCMYuQEAAKZyfp0bRm4AAIAJnJ8K7t04SG4AAIBHsHEmAAAwFSuL+AEAADNhbykAAGAqrkX8vLxGMckNAADwCFfNjdO7cZDcAAAAj6DmBgAAmAqL+BUwc+ZMRUdHKzg4WLGxsfr666+L7Ttnzhx17NhRNWrUUI0aNRQXF3fR/gAAoHKwiN85ixcvVmJiopKSkrR161a1atVK8fHxOnbsWJH9N2zYoL59+2r9+vXavHmzoqKi1LVrVx05cqSSIwcAAAWxiN8506dP19ChQzV48GBde+21mj17tqpUqaK5c+cW2X/BggUaPny4WrdurebNm+tf//qXnE6nUlNTKzlyAABQkIWaGyknJ0dbtmxRXFycq81qtSouLk6bN28u0TnOnj2r3Nxc1axZs8jPs7OzlZGR4fYCAACeZ2WFYunEiRNyOByKjIx0a4+MjFRaWlqJzvHEE0+oXr16bglSQcnJyQoLC3O9oqKiyh03AAAojEX8PGDKlClatGiRli1bpuDg4CL7jB8/XqdOnXK9Dh8+XMlRAgBwebD4yCJ+Ad68eK1atWSz2ZSenu7Wnp6erjp16lz02GnTpmnKlClau3atrr/++mL72e122e12j8QLAACKZ2URPykoKEgxMTFuxcD5xcHt2rUr9rgXXnhBkyZNUkpKitq0aVMZoQIAgEvwlUX8vDpyI0mJiYlKSEhQmzZt1LZtW82YMUOZmZkaPHiwJGngwIGqX7++kpOTJUlTp07VxIkTtXDhQkVHR7tqc6pVq6Zq1ap57XsAAHC585WaG68nN3369NHx48c1ceJEpaWlqXXr1kpJSXEVGR86dEhW6/kBplmzZiknJ0f33nuv23mSkpL0zDPPVGboAACgAIuPzJbyenIjSSNHjtTIkSOL/GzDhg1u7w8ePFjxAQEAgFKzsogfAAAwE9a5AQAApuKaCk5yAwAAzIBdwQEAgKmwtxQAADAVX5kKTnIDAAA8wlcW8SO5AQAAHsHIDQAAMBVfWcSP5AYAAHgEi/gBAABTYRE/AABgKvlbQbKIHwAAMAkW8QMAACbCVHAAAGAqbL8AAABMJX/kxtsL3ZDcAAAAj7AwcgMAAMyEqeAAAMBUWMQPAACYitWav7cUIzcAAMAELEwFBwAAZsJUcAAAYCr5M8EZuQEAAKaQP3Lj5dyG5AYAAHhG/mwpCooBAIApsIgfAAAwFRbxAwAApsIifgAAwFRYxA8AAJgKi/gBAABTYRE/AABgKlZGbgAAgJlYxCJ+AADARKi5AQAApuIr2y8EePfyvskwDOXl5cnhcHg7FJSSzWZTQECAa5VMAEDl8ZWaG5KbC+Tk5Ojo0aM6e/ast0NBGVWpUkV169ZVUFCQt0MBgMvK+XVuvBsHyU0BTqdTBw4ckM1mU7169RQUFMQIgB8xDEM5OTk6fvy4Dhw4oCZNmshq5ckrAFQWi49sv0ByU0BOTo6cTqeioqJUpUoVb4eDMggJCVFgYKB+/vln5eTkKDg42NshAcBlw1ceS/GftUXgv/b9G39+AOAdLOIHAABMJX/khr2lAACAKVgYuYEnDRo0SBaLRRaLRUFBQWrcuLGee+455eXlSZI2bNjg+txisah27drq0aOHvvvuu0ue2zAMvfXWW4qNjVW1atUUHh6uNm3aaMaMGcwqAwC45E/BoeYGHtOtWzcdPXpUe/bs0aOPPqpnnnlGL774olufXbt26ejRo1q9erWys7N1++23Kycn56LnHTBggEaPHq277rpL69ev1/bt2zVhwgR99NFH+vTTT8sc76WuCwDwL9TcwOPsdrvq1Kmjq6++Wg8//LDi4uK0fPlytz4RERGqU6eObrzxRo0ePVqHDx/WTz/9VOw533vvPS1YsEDvvvuunnzySd10002Kjo7WXXfdpXXr1qlz586SpFtuuUWjR492O7ZXr14aNGiQ6310dLQmTZqkgQMHKjQ0VA8++KDat2+vJ554wu2448ePKzAwUJ9//rkkKTs7W2PHjlX9+vVVtWpVxcbGasOGDWW/UQCACpE/n8PbNTdMBb8EwzD0R653VioOCbSVa52dkJAQ/fbbb0V+durUKS1atEiSLrrY3YIFC9SsWTPdddddhT6zWCwKCwsrVUzTpk3TxIkTlZSUJElKSUnRCy+8oClTpri+6+LFi1WvXj117NhRkjRy5Ej9+OOPWrRokerVq6dly5apW7du+u6779SkSZNSXR8AUHHYfsFP/JHr0LUTV3vl2j8+F68qQaX/IzIMQ6mpqVq9erX+8Y9/uH125ZVXSpIyMzMlSXfeeaeaN29e7Ln27NmjZs2alTqG4nTp0kWPPvqo633v3r01evRobdy40ZXMLFy4UH379pXFYtGhQ4c0b948HTp0SPXq1ZMkjR07VikpKZo3b54mT57ssdgAAOXDIn7wuBUrVqhatWrKzc2V0+lUv3799Mwzz7j1+eKLL1SlShV99dVXmjx5smbPnn3Rc3p6aLFNmzZu72vXrq2uXbtqwYIF6tixow4cOKDNmzfrzTfflCR99913cjgcatq0qdtx2dnZuuKKKzwaGwCgfHxlET+Sm0sICbTpx+fivXbt0ujcubNmzZqloKAg1atXTwEBhf94GzRooPDwcDVr1kzHjh1Tnz59XLUtRWnatOlFa3LyWa3WQolQbm5uoX5Vq1Yt1Na/f3898sgjeu2117Rw4UK1bNlSLVu2lCSdOXNGNptNW7Zskc3mfj+qVat2ybgAAJWHgmI/YbFYVCUowCuv0tbbVK1aVY0bN9ZVV11VZGJzoREjRuj777/XsmXLiu3Tr18/7d69Wx999FGhzwzD0KlTpyT9OQJz9OhR12cOh0Pff/99ieK+6667lJWVpZSUFC1cuFD9+/d3fXbDDTfI4XDo2LFjaty4sdurTp06JTo/AKBysIgfvK5KlSoaOnSokpKSiv2L2Lt3b/Xp00d9+/bV5MmT9e233+rnn3/WihUrFBcXp/Xr10v6s5Zm5cqVWrlypX766Sc9/PDDOnnyZIniqFq1qnr16qUJEyZo586d6tu3r+uzpk2bqn///ho4cKA++OADHThwQF9//bWSk5O1cuXKct8DAIDnsIgffMLIkSO1c+dOLVmypMjPLRaLFi5cqOnTp+vDDz9Up06ddP311+uZZ57RXXfdpfj4Px/Z3X///UpISNDAgQPVqVMnNWzY0DVNvCT69++vHTt2qGPHjrrqqqvcPps3b54GDhyoRx99VM2aNVOvXr30zTffFOoHAPCuAKtF9gCrAm1ln+nrCRbD22NHlSwjI0NhYWE6deqUQkND3T7LysrSgQMH1KBBA3aT9mP8OQKA+Vzs9/tCjNwAAABTIbkBAACmQnIDAABMheQGAACYCskNAAAwFZKbIlxmE8hMhz8/ALi8kdwUEBgYKEk6e/aslyNBeeT/+eX/eQIALi8+sbfUzJkz9eKLLyotLU2tWrXSa6+9prZt2xbbf8mSJZowYYIOHjyoJk2aaOrUqerRo0e547DZbAoPD9exY8ck/bmCb2m3QID3GIahs2fP6tixYwoPDy+0FxUA4PLg9eRm8eLFSkxM1OzZsxUbG6sZM2YoPj5eu3btUkRERKH+X375pfr27avk5GTdcccdWrhwoXr16qWtW7eqRYsW5Y4nf7+i/AQH/ic8PJx9pwDgMub1FYpjY2N100036fXXX5ckOZ1ORUVF6R//+IfGjRtXqH+fPn2UmZmpFStWuNr+3//7f2rdurVmz559yeuVdIVDh8NR5K7W8G2BgYGM2ACACZVmhWKvjtzk5ORoy5YtGj9+vKvNarUqLi5OmzdvLvKYzZs3KzEx0a0tPj5eH374YZH9s7OzlZ2d7XqfkZFRothsNhs/kgAA+CGvFhSfOHFCDodDkZGRbu2RkZFKS0sr8pi0tLRS9U9OTlZYWJjrFRUV5ZngAQCATzL9bKnx48fr1KlTrtfhw4e9HRIAAKhAXn0sVatWLdlsNqWnp7u1p6enF1sQWqdOnVL1t9vtstvtngkYAAD4PK8mN0FBQYqJiVFqaqp69eol6c+C4tTUVI0cObLIY9q1a6fU1FSNHj3a1bZmzRq1a9euRNfMr58uae0NAADwvvzf7RLNgzK8bNGiRYbdbjfmz59v/Pjjj8aDDz5ohIeHG2lpaYZhGMaAAQOMcePGufpv2rTJCAgIMKZNm2bs3LnTSEpKMgIDA43vvvuuRNc7fPiwIYkXL168ePHi5Yevw4cPX/K33uvr3PTp00fHjx/XxIkTlZaWptatWyslJcVVNHzo0CFZredLg9q3b6+FCxfq6aef1pNPPqkmTZroww8/LPEaN/Xq1dPhw4dVvXp1jy/Ql5GRoaioKB0+fPiS09RQdtznysF9rhzc58rDva4cFXWfDcPQ6dOnVa9evUv29fo6N2ZSmjn4KDvuc+XgPlcO7nPl4V5XDl+4z6afLQUAAC4vJDcAAMBUSG48yG63KykpiannFYz7XDm4z5WD+1x5uNeVwxfuMzU3AADAVBi5AQAApkJyAwAATIXkBgAAmArJDQAAMBWSm1KaOXOmoqOjFRwcrNjYWH399dcX7b9kyRI1b95cwcHBatmypVatWlVJkfq30tznOXPmqGPHjqpRo4Zq1KihuLi4S/654E+l/fucb9GiRbJYLK494XBxpb3PJ0+e1IgRI1S3bl3Z7XY1bdqUf3eUQGnv84wZM9SsWTOFhIQoKipKY8aMUVZWViVF658+//xz9ezZU/Xq1ZPFYtGHH354yWM2bNigG2+8UXa7XY0bN9b8+fMrPE6v7y3lTxYtWmQEBQUZc+fONX744Qdj6NChRnh4uJGenl5k/02bNhk2m8144YUXjB9//NF4+umnS7UP1uWqtPe5X79+xsyZM41t27YZO3fuNAYNGmSEhYUZv/zySyVH7l9Ke5/zHThwwKhfv77RsWNH46677qqcYP1Yae9zdna20aZNG6NHjx7Gxo0bjQMHDhgbNmwwtm/fXsmR+5fS3ucFCxYYdrvdWLBggXHgwAFj9erVRt26dY0xY8ZUcuT+ZdWqVcZTTz1lfPDBB4YkY9myZRftv3//fqNKlSpGYmKi8eOPPxqvvfaaYbPZjJSUlAqNk+SmFNq2bWuMGDHC9d7hcBj16tUzkpOTi+zfu3dv4/bbb3dri42NNYYNG1ahcfq70t7nC+Xl5RnVq1c33nnnnYoK0RTKcp/z8vKM9u3bG//617+MhIQEkpsSKO19njVrltGwYUMjJyenskI0hdLe5xEjRhhdunRxa0tMTDQ6dOhQoXGaSUmSm8cff9y47rrr3Nr69OljxMfHV2BkhsFjqRLKycnRli1bFBcX52qzWq2Ki4vT5s2bizxm8+bNbv0lKT4+vtj+KNt9vtDZs2eVm5urmjVrVlSYfq+s9/m5555TRESEHnjggcoI0++V5T4vX75c7dq104gRIxQZGakWLVpo8uTJcjgclRW23ynLfW7fvr22bNnienS1f/9+rVq1Sj169KiUmC8X3vod9Pqu4P7ixIkTcjgcrt3K80VGRuqnn34q8pi0tLQi+6elpVVYnP6uLPf5Qk888YTq1atX6P9QOK8s93njxo16++23tX379kqI0BzKcp/379+vdevWqX///lq1apX27t2r4cOHKzc3V0lJSZURtt8py33u16+fTpw4oZtvvlmGYSgvL08PPfSQnnzyycoI+bJR3O9gRkaG/vjjD4WEhFTIdRm5galMmTJFixYt0rJlyxQcHOztcEzj9OnTGjBggObMmaNatWp5OxxTczqdioiI0FtvvaWYmBj16dNHTz31lGbPnu3t0Exlw4YNmjx5st544w1t3bpVH3zwgVauXKlJkyZ5OzR4ACM3JVSrVi3ZbDalp6e7taenp6tOnTpFHlOnTp1S9UfZ7nO+adOmacqUKVq7dq2uv/76igzT75X2Pu/bt08HDx5Uz549XW1Op1OSFBAQoF27dqlRo0YVG7QfKsvf57p16yowMFA2m83Vds011ygtLU05OTkKCgqq0Jj9UVnu84QJEzRgwAANGTJEktSyZUtlZmbqwQcf1FNPPSWrlf/294TifgdDQ0MrbNRGYuSmxIKCghQTE6PU1FRXm9PpVGpqqtq1a1fkMe3atXPrL0lr1qwptj/Kdp8l6YUXXtCkSZOUkpKiNm3aVEaofq2097l58+b67rvvtH37dtfrzjvvVOfOnbV9+3ZFRUVVZvh+oyx/nzt06KC9e/e6kkdJ2r17t+rWrUtiU4yy3OezZ88WSmDyE0qDLRc9xmu/gxVarmwyixYtMux2uzF//nzjxx9/NB588EEjPDzcSEtLMwzDMAYMGGCMGzfO1X/Tpk1GQECAMW3aNGPnzp1GUlISU8FLoLT3ecqUKUZQUJCxdOlS4+jRo67X6dOnvfUV/EJp7/OFmC1VMqW9z4cOHTKqV69ujBw50ti1a5exYsUKIyIiwvjnP//pra/gF0p7n5OSkozq1asb7777rrF//37j008/NRo1amT07t3bW1/BL5w+fdrYtm2bsW3bNkOSMX36dGPbtm3Gzz//bBiGYYwbN84YMGCAq3/+VPDHHnvM2LlzpzFz5kymgvui1157zbjqqquMoKAgo23btsZXX33l+qxTp05GQkKCW//33nvPaNq0qREUFGRcd911xsqVKys5Yv9Umvt89dVXG5IKvZKSkio/cD9T2r/PBZHclFxp7/OXX35pxMbGGna73WjYsKHx/PPPG3l5eZUctf8pzX3Ozc01nnnmGaNRo0ZGcHCwERUVZQwfPtz43//+V/mB+5H169cX+e/b/HubkJBgdOrUqdAxrVu3NoKCgoyGDRsa8+bNq/A4LYbB+BsAADAPam4AAICpkNwAAABTIbkBAACmQnIDAABMheQGAACYCskNAAAwFZIbAABgKiQ3ACDJYrHoww8/lCQdPHhQFouFHdABP0VyA8DrBg0aJIvFIovFosDAQDVo0ECPP/64srKyvB0aAD/EruAAfEK3bt00b9485ebmasuWLUpISJDFYtHUqVO9HRoAP8PIDQCfYLfbVadOHUVFRalXr16Ki4vTmjVrJP25w3NycrIaNGigkJAQtWrVSkuXLnU7/ocfftAdd9yh0NBQVa9eXR07dtS+ffskSd98841uu+021apVS2FhYerUqZO2bt1a6d8RQOUguQHgc77//nt9+eWXCgoKkiQlJyfr3//+t2bPnq0ffvhBY8aM0X333afPPvtMknTkyBH95S9/kd1u17p167Rlyxbdf//9ysvLkySdPn1aCQkJ2rhxo7766is1adJEPXr00OnTp732HQFUHB5LAfAJK1asULVq1ZSXl6fs7GxZrVa9/vrrys7O1uTJk7V27Vq1a9dOktSwYUNt3LhRb775pjp16qSZM2cqLCxMixYtUmBgoCSpadOmrnN36dLF7VpvvfWWwsPD9dlnn+mOO+6ovC8JoFKQ3ADwCZ07d9asWbOUmZmpl19+WQEBAbrnnnv0ww8/6OzZs7rtttvc+ufk5OiGG26QJG3fvl0dO3Z0JTYXSk9P19NPP60NGzbo2LFjcjgcOnv2rA4dOlTh3wtA5SO5AeATqlatqsaNG0uS5s6dq1atWuntt99WixYtJEkrV65U/fr13Y6x2+2SpJCQkIueOyEhQb/99pteeeUVXX311bLb7WrXrp1ycnIq4JsA8DaSGwA+x2q16sknn1RiYqJ2794tu92uQ4cOqVOnTkX2v/766/XOO+8oNze3yNGbTZs26Y033lCPHj0kSYcPH9aJEycq9DsA8B4KigH4pL/97W+y2Wx68803NXbsWI0ZM0bvvPOO9u3bp61bt+q1117TO++8I0kaOXKkMjIy9Pe//13ffvut9uzZo//85z/atWuXJKlJkyb6z3/+o507d+q///2v+vfvf8nRHgD+i5EbAD4pICBAI0eO1AsvvKADBw6odu3aSk5O1v79+xUeHq4bb7xRTz75pCTpiiuu0Lp16/TYY4+pU6dOstlsat26tTp06CBJevvtt/Xggw/qxhtvVFRUlCZPnqyxY8d68+sBqEAWwzAMbwcBAADgKTyWAgAApkJyAwAATIXkBgAAmArJDQAAMBWSGwAAYCokNwAAwFRIbgAAgKmQ3AAAAFMhuQEAAKZCcgMAAEyF5AYAAJgKyQ0AADCV/w+iwWPH2yp6eQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAGJCAYAAAC90mOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHfUlEQVR4nO3deXRU9fnH8c9kMjNJSAK0hCRABEFWQSgg/MKqskTlh6JVKSBEZKkCLRIVoQgBVBaLCK0ICiIu8JNqLdqCmDQSkcWibHUByiJLlQSoxQAhySRzf3/gjI6ZLBeSzEzyfp2Tc5jv3Dv3uclzIA/P9/u9FsMwDAEAAAAAShTi7wAAAAAAINBROAEAAABAGSicAAAAAKAMFE4AAAAAUAYKJwAAAAAoA4UTAAAAAJSBwgkAAAAAykDhBAAAAABloHACAAAAgDJQOAEAUIkyMzNlsVj01ltv+TsUSZUTz8yZM2WxWMp1rMVi0cyZMyvs2gBQVSicAMDPVq1aJYvF4vNrypQpnuPS0tI0atQotW3bVlarVU2aNDF1nfPnzys1NVVt27ZVrVq19POf/1wdOnTQxIkT9c0331TwXVVvJf28fvqVmZnp71ABABUk1N8BAAAumT17tq6++mqvsbZt23r+vGbNGq1du1YdO3ZUgwYNTH220+lUr169tH//fiUnJ+s3v/mNzp8/ry+++EJr1qzRHXfcYfoza7LXXnvN6/Wrr76q9PT0YuOtW7fWvn37qjI0AEAloXACgABxyy23qHPnziW+P2fOHC1fvlw2m03/+7//q88//7zcn71u3Trt3r1bq1ev1tChQ73ey8vLU0FBwWXHbdaFCxdUq1atKrvelSgp1nvvvdfr9ccff6z09PRi45KuuHDKzc1VRETEFX0GAODKMVUPAIJEgwYNZLPZLuvcw4cPS5K6d+9e7L2wsDBFR0d7je3fv1/33HOPYmJiFB4erpYtW2ratGlex+zevVu33HKLoqOjFRkZqT59+ujjjz/2OsY9DfHDDz/UuHHjVL9+fTVq1Mjz/nvvvaeePXuqVq1aioqK0oABA/TFF1+UeT/uz928ebN+/etf6+c//7mio6M1YsQI/fe//y12fHmuc9999ykyMlKHDx/WrbfeqqioKA0bNqzMWMrL5XLpqaeeUqNGjRQWFqY+ffro0KFDXsfccMMNatu2rXbu3KlevXopIiJCv/vd7yRJ+fn5Sk1N1TXXXCOHw6GEhARNnjxZ+fn5Xp+Rnp6uHj16qE6dOoqMjFTLli09n2E2Hkl688031alTJ4WHh6tevXq699579fXXX5d5v/n5+Zo0aZJiYmIUFRWl2267Tf/+97/NfMsAIKDQcQKAAPHdd9/pzJkzXmP16tWrkM9u3LixpEtTyh5//PFSF/L/85//VM+ePWWz2TR27Fg1adJEhw8f1l//+lc99dRTkqQvvvhCPXv2VHR0tCZPniybzaYXXnhBN9xwgz788EN17drV6zPHjRunmJgYzZgxQxcuXJB0abpbcnKykpKSNH/+fOXm5mrp0qXq0aOHdu/eXa41XBMmTFCdOnU0c+ZMHThwQEuXLtWxY8c8GyCYvU5hYaGSkpLUo0cPLViwoEI7PfPmzVNISIgeeeQRfffdd3r66ac1bNgw/eMf//A67j//+Y9uueUW/epXv9K9996r2NhYuVwu3XbbbdqyZYvGjh2r1q1b67PPPtOzzz6rf/3rX1q3bp2kSz+X//3f/9V1112n2bNny+Fw6NChQ9q6detlxbNq1SqNHDlS119/vebOnavs7GwtXrxYW7du1e7du1WnTp0S73f06NF6/fXXNXToUHXr1k0ffPCBBgwYUCHfSwDwCwMA4Fcvv/yyIcnnV0kGDBhgNG7cuNzXyM3NNVq2bGlIMho3bmzcd999xksvvWRkZ2cXO7ZXr15GVFSUcezYMa9xl8vl+fOgQYMMu91uHD582DP2zTffGFFRUUavXr2K3VuPHj2MwsJCz/i5c+eMOnXqGGPGjPG6RlZWllG7du1i4z/l/txOnToZBQUFnvGnn37akGS88847pq+TnJxsSDKmTJlS6rV9GT9+fIk/r02bNhmSjNatWxv5+fme8cWLFxuSjM8++8wz1rt3b0OSsWzZMq/PeO2114yQkBDjo48+8hpftmyZIcnYunWrYRiG8eyzzxqSjNOnT5cYa3njKSgoMOrXr2+0bdvWuHjxoue4v/3tb4YkY8aMGZ6x1NRUr/vfs2ePIckYN26c17WHDh1qSDJSU1NLjA8AAhVT9QAgQCxZskTp6eleXxUlPDxc//jHP/Too49KutRJGDVqlOLj4/Wb3/zGM93r9OnT2rx5s+6//35dddVVXp/h7uAUFRUpLS1NgwYNUtOmTT3vx8fHa+jQodqyZYtycnK8zh0zZoysVqvndXp6us6ePashQ4bozJkzni+r1aquXbtq06ZN5bqvsWPHek1ffPDBBxUaGqoNGzZc9nUefPDBcl3brJEjR8put3te9+zZU5J05MgRr+McDodGjhzpNfbmm2+qdevWatWqldd93HTTTZLkuQ93B+idd96Ry+W6ong+/fRTnTp1SuPGjVNYWJjnuAEDBqhVq1Zav359iZ/t/v7/9re/9Rp/6KGHSo0JAAIZU/UAIEB06dKl1M0hrlTt2rX19NNP6+mnn9axY8eUkZGhBQsW6LnnnlPt2rX15JNPen5p/vFufj91+vRp5ebmqmXLlsXea926tVwul06cOKFrr73WM/7T3QIPHjwoSZ5f/H/qp2uuStK8eXOv15GRkYqPj9fRo0cv6zqhoaFea7Aq0k8L0bp160pSsTVZDRs29CpopEv3sW/fPsXExPj87FOnTkmSBg8erBUrVmj06NGaMmWK+vTpozvvvFN33XWXQkK8/6+0rHiOHTsmST5/zq1atdKWLVtKvNdjx44pJCREzZo18xr39VkAECwonACgBmrcuLHuv/9+3XHHHWratKlWr16tJ598stKuFx4e7vXa3Q157bXXFBcXV+z40NCK+efJ7HUcDkexAqOi/Ljj9mOGYXi9/un3Srp0H+3atdPChQt9fkZCQoLn3M2bN2vTpk1av369Nm7cqLVr1+qmm25SWlqaVwzljQcAcAmFEwDUYHXr1lWzZs08W5u7p96VttV5TEyMIiIidODAgWLv7d+/XyEhIZ5f5Evi7kTUr19fffv2vdzwdfDgQd14442e1+fPn9fJkyd16623Vuh1/K1Zs2bau3ev+vTpU+rGHpIUEhKiPn36qE+fPlq4cKHmzJmjadOmadOmTaa+B+4NRQ4cOFCsY3fgwAHP+yWd63K5dPjwYa8uk6+cAYBgwRonAKgB9u7dW2zHPunSlKovv/zS88ttTEyMevXqpZUrV+r48eNex7o7EVarVf3799c777zjmRInSdnZ2VqzZo169OhR5lS7pKQkRUdHa86cOXI6ncXeP336dLnu68UXX/Q6f+nSpSosLNQtt9xSodfxt3vuuUdff/21li9fXuy9ixcvenYq/Pbbb4u936FDB0kqtm15WTp37qz69etr2bJlXue+99572rdvX6k75Lm//3/4wx+8xhctWmQqBgAIJHScACBI/POf/9S7774rSTp06JC+++47z/S69u3ba+DAgSWem56ertTUVN122236n//5H0VGRurIkSNauXKl8vPzNXPmTM+xf/jDH9SjRw917NhRY8eO1dVXX62jR49q/fr12rNnjyTpySef9DwvaNy4cQoNDdULL7yg/Px8Pf3002XeS3R0tJYuXarhw4erY8eO+tWvfqWYmBgdP35c69evV/fu3fXcc8+V+TkFBQXq06eP7rnnHh04cEDPP/+8evToodtuu61Cr+Nvw4cP15/+9Cc98MAD2rRpk7p3766ioiLt379ff/rTn/T++++rc+fOmj17tjZv3qwBAwaocePGOnXqlJ5//nk1atRIPXr0MHVNm82m+fPna+TIkerdu7eGDBni2Y68SZMmmjRpUonndujQQUOGDNHzzz+v7777Tt26dVNGRobP50QBQLCgcAKAILFr1y5Nnz7da8z9Ojk5udTC6Ze//KXOnTuntLQ0ffDBB/r2229Vt25ddenSRQ8//LDXdLf27dvr448/1vTp07V06VLl5eWpcePGuueeezzHXHvttfroo480depUzZ07Vy6XS127dtXrr79e7BlOJRk6dKgaNGigefPm6fe//73y8/PVsGFD9ezZs9iuciV57rnntHr1as2YMUNOp1NDhgzRH/7wB6/pbBVxHX8LCQnRunXr9Oyzz+rVV1/VX/7yF0VERKhp06aaOHGiWrRoIUm67bbbdPToUa1cuVJnzpxRvXr11Lt3b82aNUu1a9c2fd377rtPERERmjdvnh577DHVqlVLd9xxh+bPn1/qM5wkaeXKlYqJidHq1au1bt063XTTTVq/fn2Z0zgBIFBZDFaBAgCCjPvBrJ988kml7kQIAIAba5wAAAAAoAwUTgAAAABQBgonAAAAACgDa5wAAAAAoAx0nAAAAACgDBROAAAAAFCGGvccJ5fLpW+++UZRUVFez/kAAAAAULMYhqFz586pQYMGCgkpvadU4wqnb775hofvAQAAAPA4ceKEGjVqVOoxNa5wioqKknTpmxMdHe3naCSn06m0tDT1799fNpvN3+EgwJEvMIucgVnkDMwiZ2BWIOVMTk6OEhISPDVCaWpc4eSenhcdHR0whVNERISio6P9njgIfOQLzCJnYBY5A7PIGZgViDlTniU8ft0cYvPmzRo4cKAaNGggi8WidevWlXlOZmamOnbsKIfDoWuuuUarVq2q9DgBAAAA1Gx+LZwuXLig9u3ba8mSJeU6/quvvtKAAQN04403as+ePXrooYc0evRovf/++5UcKQAAAICazK9T9W655Rbdcsst5T5+2bJluvrqq/XMM89Iklq3bq0tW7bo2WefVVJSUmWFCQAAAKCGC6o1Ttu3b1ffvn29xpKSkvTQQw+VeE5+fr7y8/M9r3NyciRdmlvpdDorJU4z3DEEQiwIfOQLzCJnYBY5A7PIGZgVSDljJoagKpyysrIUGxvrNRYbG6ucnBxdvHhR4eHhxc6ZO3euZs2aVWw8LS1NERERlRarWenp6f4OAUGEfIFZ5AzMImdgFjkDswIhZ3Jzc8t9bFAVTpdj6tSpSklJ8bx2bznYv3//gNlVLz09Xf369QuYXUUQuMgXmEXOwCxyBmaRMzArkHLGPRutPIKqcIqLi1N2drbXWHZ2tqKjo312myTJ4XDI4XAUG7fZbH7/Qf1YoMWDwEa+wCxyBmaRMzCLnIFZgZAzZq7v1131zEpMTFRGRobXWHp6uhITE/0UEQAAAICawK+F0/nz57Vnzx7t2bNH0qXtxvfs2aPjx49LujTNbsSIEZ7jH3jgAR05ckSTJ0/W/v379fzzz+tPf/qTJk2a5I/wAQAAANQQfp2q9+mnn+rGG2/0vHavRUpOTtaqVat08uRJTxElSVdffbXWr1+vSZMmafHixWrUqJFWrFgRtFuRH8g6p4NZ32nvfyyyfpGt0FCrv0NCgCssLCJfYAo5A7PIGZhFzqAk7RPqKL627+U0wchiGIbh7yCqUk5OjmrXrq3vvvvO75tDzH1vn1748IhfYwAAAAAqQ6O64dry2E3Fxp1OpzZs2KBbb73V72uczNQGQbU5RHXTqG6EOl1VR9/+97/6Wd26slgs/g4JAc4wDPIFppAzMIucgVnkDH7K6TK098RZ/fu/F2UYRrXJCwonPxr+P431q04Nvq+4u/i94kbg++F/aMgXlA85A7PIGZhFzuCnvst1qv3sNElSocuQzVo9Cqeg2lUPAAAAQGCzh/5QYhQUuvwYScWicAIAAABQYX7cYXIWUTgBAAAAQDGh1hCFfF870XECAAAAgBLYrJfKjHwKJwAAAADwzb3Oial6AAAAAFAC+/cdpwIKJwAAAADwzdNxKjT8HEnFoXACAAAAUKFsno5TkZ8jqTgUTgAAAAAqlLvjVEDHCQAAAAB8s7HGCQAAAABK98MaJwonAAAAAPDJbr30BFw6TgAAAABQAp7jBAAAAABlcK9xymeqHgAAAAD45n4ALh0nAAAAACiBzbMdOYUTAAAAAPjkoOMEAAAAAKXzPMeJjhMAAAAA+ObeVa+gyPBzJBWHwgkAAABAhaLjBAAAAABl4DlOAAAAAFAGu9UiiY4TAAAAAJSIjhMAAAAAlIE1TgAAAABQhh921aNwAgAAAACf6DgBAAAAQBlY4wQAAAAAZbBbmaoHAAAAAKXydJwKDT9HUnEonAAAAABUKPcap3w6TgAAAADg2w8dJwonAAAAAPDJZrVIYo0TAAAAAJTIwa56AAAAAFA6nuMEAAAAAGXgOU4AAAAAUAbPrnp0nAAAAADAN/cDcOk4AQAAAEAJ3FP1WOMEAAAAACVwd5xchlTkMvwcTcWgcAIAAABQoWyhP5QZ1aXrROEEAAAAoEK5O05S9XkILoUTAAAAgApls1o8f6bjBAAAAAA+WCyWarezHoUTAAAAgArn7jrRcaogS5YsUZMmTRQWFqauXbtqx44dpR6/aNEitWzZUuHh4UpISNCkSZOUl5dXRdECAAAAKA/3luR0nCrA2rVrlZKSotTUVO3atUvt27dXUlKSTp065fP4NWvWaMqUKUpNTdW+ffv00ksvae3atfrd735XxZEDAAAAKI3t+6l6+XScrtzChQs1ZswYjRw5Um3atNGyZcsUERGhlStX+jx+27Zt6t69u4YOHaomTZqof//+GjJkSJldKgAAAABVq7p1nEL9deGCggLt3LlTU6dO9YyFhISob9++2r59u89zunXrptdff107duxQly5ddOTIEW3YsEHDhw8v8Tr5+fnKz8/3vM7JyZEkOZ1OOZ3OCrqby+eOIRBiQeAjX2AWOQOzyBmYRc6gJLaQS2uccvMLvPIjkHLGTAx+K5zOnDmjoqIixcbGeo3HxsZq//79Ps8ZOnSozpw5ox49esgwDBUWFuqBBx4odare3LlzNWvWrGLjaWlpioiIuLKbqEDp6en+DgFBhHyBWeQMzCJnYBY5g5/Ku2iVZNHWbf/QmS+NYu8HQs7k5uaW+1i/FU6XIzMzU3PmzNHzzz+vrl276tChQ5o4caKeeOIJTZ8+3ec5U6dOVUpKiud1Tk6OEhIS1L9/f0VHR1dV6CVyOp1KT09Xv379ZLPZ/B0OAhz5ArPIGZhFzsAscgYlWX7sY53MzVGHTp11Y8sYz3gg5Yx7Nlp5+K1wqlevnqxWq7Kzs73Gs7OzFRcX5/Oc6dOna/jw4Ro9erQkqV27drpw4YLGjh2radOmKSSk+JIth8Mhh8NRbNxms/n9B/VjgRYPAhv5ArPIGZhFzsAscgY/5bBZJUkuhfjMjUDIGTPX99vmEHa7XZ06dVJGRoZnzOVyKSMjQ4mJiT7Pyc3NLVYcWa2XfiCGUbz9BwAAAMA/PM9xYnOIK5eSkqLk5GR17txZXbp00aJFi3ThwgWNHDlSkjRixAg1bNhQc+fOlSQNHDhQCxcu1C9+8QvPVL3p06dr4MCBngIKAAAAgP/ZQy/9fu6sJtuR+7VwGjx4sE6fPq0ZM2YoKytLHTp00MaNGz0bRhw/ftyrw/T444/LYrHo8ccf19dff62YmBgNHDhQTz31lL9uAQAAAIAPdjpOFWvChAmaMGGCz/cyMzO9XoeGhio1NVWpqalVEBkAAACAy1XdnuPk1wfgAgAAAKiebNZLpUZBNZmqR+EEAAAAoMLZ3YUTHScAAAAA8M0WSscJAAAAAErl7jixxgkAAAAASmCn4wQAAAAApfuh42T4OZKKQeEEAAAAoMK5d9XLp+MEAAAAAL7xHCcAAAAAKIPNapHEGicAAAAAKJGDjhMAAAAAlM69xomOEwAAAACUwLMdOR0nAAAAAPCNjhMAAAAAlIFd9QAAAACgDO4H4DJVDwAAAABK4Ok4FRp+jqRiUDgBAAAAqHBsDgEAAAAAZWBzCAAAAAAoA2ucAAAAAKAM9lCLJHbVAwAAAIAS2a1WSUzVAwAAAIAS2eg4AQAAAEDp3GucnEWGXK7g35KcwgkAAABAhbOF/lBqOF3B33WicAIAAABQ4dwdJ6l6rHOicAIAAABQ4X5cODmLmKoHAAAAAMWEhFgUGnJpgwg6TgAAAABQAptngwgKJwAAAADwyf79BhH5dJwAAAAAwDc6TgAAAABQBsf3HSfWOAEAAABACWzWS5tD0HECAAAAgBLY6TgBAAAAQOnca5wK6DgBAAAAgG90nAAAAACgDD/sqmf4OZIrR+EEAAAAoFJ4dtUrKvJzJFeOwgkAAABApfB0nArpOAEAAACAT/bvC6d8NocAAAAAAN9soe6OE4UTAAAAAPhkZztyAAAAACidPdQiiY4TAAAAAJSIjhMAAAAAlMFG4QQAAAAApbO7n+PEVD0AAAAA8M3zHCc6TgAAAADgGx2nCrRkyRI1adJEYWFh6tq1q3bs2FHq8WfPntX48eMVHx8vh8OhFi1aaMOGDVUULQAAAIDysns6ToafI7lyof68+Nq1a5WSkqJly5apa9euWrRokZKSknTgwAHVr1+/2PEFBQXq16+f6tevr7feeksNGzbUsWPHVKdOnaoPHgAAAECpqlPHya+F08KFCzVmzBiNHDlSkrRs2TKtX79eK1eu1JQpU4odv3LlSn377bfatm2bbDabJKlJkyZVGTIAAACAcqpOu+r5rXAqKCjQzp07NXXqVM9YSEiI+vbtq+3bt/s8591331ViYqLGjx+vd955RzExMRo6dKgee+wxWa1Wn+fk5+crPz/f8zonJ0eS5HQ65XQ6K/COLo87hkCIBYGPfIFZ5AzMImdgFjmD0lgtlwqmfGdhsVwJhJwxE4PfCqczZ86oqKhIsbGxXuOxsbHav3+/z3OOHDmiDz74QMOGDdOGDRt06NAhjRs3Tk6nU6mpqT7PmTt3rmbNmlVsPC0tTREREVd+IxUkPT3d3yEgiJAvMIucgVnkDMwiZ+DLF2cskqw6mX262L4EgZAzubm55T7Wr1P1zHK5XKpfv75efPFFWa1WderUSV9//bV+//vfl1g4TZ06VSkpKZ7XOTk5SkhIUP/+/RUdHV1VoZfI6XQqPT1d/fr180w/BEpCvsAscgZmkTMwi5xBaaxfZOvVg3sVXednuvXWLpICK2fcs9HKw2+FU7169WS1WpWdne01np2drbi4OJ/nxMfHy2azeU3La926tbKyslRQUCC73V7sHIfDIYfDUWzcZrP5/Qf1Y4EWDwIb+QKzyBmYRc7ALHIGvoQ7LuVEocsolh+BkDNmrn9Z25EXFhbq73//u1544QWdO3dOkvTNN9/o/Pnz5f4Mu92uTp06KSMjwzPmcrmUkZGhxMREn+d0795dhw4dksv1w+Kyf/3rX4qPj/dZNAEAAADwH/euevnVYFc904XTsWPH1K5dO91+++0aP368Tp8+LUmaP3++HnnkEVOflZKSouXLl+uVV17Rvn379OCDD+rChQueXfZGjBjhtXnEgw8+qG+//VYTJ07Uv/71L61fv15z5szR+PHjzd4GAAAAgEpm8zzHKfgLJ9NT9SZOnKjOnTtr7969+vnPf+4Zv+OOOzRmzBhTnzV48GCdPn1aM2bMUFZWljp06KCNGzd6Now4fvy4QkJ+qO0SEhL0/vvva9KkSbruuuvUsGFDTZw4UY899pjZ2wAAAABQyTzPcaqJhdNHH32kbdu2FZsa16RJE3399demA5gwYYImTJjg873MzMxiY4mJifr4449NXwcAAABA1bK7O06Fhp8juXKmp+q5XC4VFRUVG//3v/+tqKioCgkKAAAAQPCrTh0n04VT//79tWjRIs9ri8Wi8+fPKzU1VbfeemtFxgYAAAAgiHnWOFWDzSFMT9VbsGCBbr75ZrVp00Z5eXkaOnSoDh48qHr16un//u//KiNGAAAAAEHIs6teNeg4mS6cEhIStHfvXq1du1Z79+7V+fPnNWrUKA0bNkzh4eGVESMAAACAIGSzWiRd2lXPMAxZLBY/R3T5TBVOTqdTrVq10t/+9jcNGzZMw4YNq6y4AAAAAAQ5h9UqSTKM7x+Caw3ewsnUGiebzaa8vLzKigUAAABANWIL/aFQKgjydU6mN4cYP3685s+fr8LCwsqIBwAAAEA14d6OXAr+h+CaXuP0ySefKCMjQ2lpaWrXrp1q1arl9f7bb79dYcEBAAAACF7WEIsslktT9YK942S6cKpTp45++ctfVkYsAAAAAKoRi8UiuzVE+YWuoH+Wk+nC6eWXX66MOAAAAABUQ57CqaZ1nNxOnz6tAwcOSJJatmypmJiYCgsKAAAAQPVgDw2R8iVnkeHvUK6I6c0hLly4oPvvv1/x8fHq1auXevXqpQYNGmjUqFHKzc2tjBgBAAAABCnb9xtEBHvHyXThlJKSog8//FB//etfdfbsWZ09e1bvvPOOPvzwQz388MOVESMAAACAIGUP/b5wqmlrnP785z/rrbfe0g033OAZu/XWWxUeHq577rlHS5curcj4AAAAAAQx90Nva1zHKTc3V7GxscXG69evz1Q9AAAAAF7soVZJwf8cJ9OFU2JiolJTU5WXl+cZu3jxombNmqXExMQKDQ4AAABAcLNXk46T6al6ixcvVlJSkho1aqT27dtLkvbu3auwsDC9//77FR4gAAAAgODlXuMU7B0n04VT27ZtdfDgQa1evVr79++XJA0ZMkTDhg1TeHh4hQcIAAAAIHh5dtWraYWTJEVERGjMmDEVHQsAAACAasazq16QT9UzvcZp7ty5WrlyZbHxlStXav78+RUSFAAAAIDqobp0nEwXTi+88IJatWpVbPzaa6/VsmXLKiQoAAAAANWDZ41TTes4ZWVlKT4+vth4TEyMTp48WSFBAQAAAKge7DW145SQkKCtW7cWG9+6dasaNGhQIUEBAAAAqB7chZOzyPBzJFfG9OYQY8aM0UMPPSSn06mbbrpJkpSRkaHJkyfr4YcfrvAAAQAAAAQvW+il5zjlB/lUPdOF06OPPqr//Oc/GjdunAoKCiRJYWFheuyxxzR16tQKDxAAAABA8LJbrZJq4HOcLBaL5s+fr+nTp2vfvn0KDw9X8+bN5XA4KiM+AAAAAEHM3XGqcduRu0VGRur6669XVFSUDh8+LJcruL8RAAAAACqew7PGKbjrhXIXTitXrtTChQu9xsaOHaumTZuqXbt2atu2rU6cOFHhAQIAAAAIXp7nONWUjtOLL76ounXrel5v3LhRL7/8sl599VV98sknqlOnjmbNmlUpQQIAAAAITu7nOAX7duTlXuN08OBBde7c2fP6nXfe0e23365hw4ZJkubMmaORI0dWfIQAAAAAglaN6zhdvHhR0dHRntfbtm1Tr169PK+bNm2qrKysio0OAAAAQFBzd5xqzBqnxo0ba+fOnZKkM2fO6IsvvlD37t0972dlZal27doVHyEAAACAoGWvJh2nck/VS05O1vjx4/XFF1/ogw8+UKtWrdSpUyfP+9u2bVPbtm0rJUgAAAAAwemHjpPh50iuTLkLp8mTJys3N1dvv/224uLi9Oabb3q9v3XrVg0ZMqTCAwQAAAAQvKrLGqdyF04hISGaPXu2Zs+e7fP9nxZSAAAAAFBddtW77AfgAgAAAEBZPIVTkHecKJwAAAAAVBqb1SKpBu2qBwAAAABmOZiqBwAAAAClc28O4WSqHgAAAAD4xuYQP3HixAndf//9FfVxAAAAAKqB6rIdeYUVTt9++61eeeWVivo4AAAAANWA3Vo9Ok7lfo7Tu+++W+r7R44cueJgAAAAAFQv7ql6ziLDz5FcmXIXToMGDZLFYpFhlHzDFoulQoICAAAAUD24O05FLkNFruAtnso9VS8+Pl5vv/22XC6Xz69du3ZVZpwAAAAAgpAt9IeSI5if5VTuwqlTp07auXNnie+X1Y0CAAAAUPO4O06SlB/EG0SUu3B69NFH1a1btxLfv+aaa7Rp06bLCmLJkiVq0qSJwsLC1LVrV+3YsaNc573xxhuyWCwaNGjQZV0XAAAAQOWyWX9YzlMjOk49e/bUzTffXOL7tWrVUu/evU0HsHbtWqWkpCg1NVW7du1S+/btlZSUpFOnTpV63tGjR/XII4+oZ8+epq8JAAAAoGpYLJYfdtarCR2nI0eOVMpUvIULF2rMmDEaOXKk2rRpo2XLlikiIkIrV64s8ZyioiINGzZMs2bNUtOmTSs8JgAAAAAVx911CuaOU7l31WvevLlOnjyp+vXrS5IGDx6sP/zhD4qNjb3sixcUFGjnzp2aOnWqZywkJER9+/bV9u3bSzxv9uzZql+/vkaNGqWPPvqo1Gvk5+crPz/f8zonJ0eS5HQ65XQ6Lzv2iuKOIRBiQeAjX2AWOQOzyBmYRc6gPOyhIbpQUKQLeQVyhn9fRAVAzpiJodyF00+7TRs2bNDcuXPLH5UPZ86cUVFRUbHiKzY2Vvv37/d5zpYtW/TSSy9pz5495brG3LlzNWvWrGLjaWlpioiIMB1zZUlPT/d3CAgi5AvMImdgFjkDs8gZlKbIaZVk0aYPN6tRrUtjgZAzubm55T623IVTIDh37pyGDx+u5cuXq169euU6Z+rUqUpJSfG8zsnJUUJCgvr376/o6OjKCrXcnE6n0tPT1a9fP9lsNn+HgwBHvsAscgZmkTMwi5xBefx+32blnM1Tl//ppmvjagVMzrhno5VHuQsni8VS7AG3V/rA23r16slqtSo7O9trPDs7W3FxccWOP3z4sI4ePaqBAwd6xlyuS/MkQ0NDdeDAATVr1szrHIfDIYfDUeyzbDab339QPxZo8SCwkS8wi5yBWeQMzCJnUBp7qFWSZFisnjwJhJwxc31TU/Xuu+8+TxGSl5enBx54QLVq1fI67u233y73xe12uzp16qSMjAzPluIul0sZGRmaMGFCseNbtWqlzz77zGvs8ccf17lz57R48WIlJCSU+9oAAAAAqoY9NPh31St34ZScnOz1+t57762QAFJSUpScnKzOnTurS5cuWrRokS5cuKCRI0dKkkaMGKGGDRtq7ty5CgsLU9u2bb3Or1OnjiQVGwcAAAAQGGzfb0deI3bVe/nllyslgMGDB+v06dOaMWOGsrKy1KFDB23cuNGzYcTx48cVElLuXdMBAAAABBh3xym/JnScKtOECRN8Ts2TpMzMzFLPXbVqVcUHBAAAAKDCVIfnONHKAQAAAFCp3JtDBPMaJwonAAAAAJXKTscJAAAAAErn2VWPwgkAAAAAfHPvqsdUPQAAAAAogd1KxwkAAAAASmX7fqqes9DwcySXj8IJAAAAQKX6oeNU5OdILh+FEwAAAIBK5d4cwllExwkAAAAAfLKzOQQAAAAAlM7G5hAAAAAAUDrPc5zoOAEAAACAbzarRZLkpOMEAAAAAL456DgBAAAAQOnca5zoOAEAAABACdxrnPLpOAEAAACAb3ScAAAAAKAM7KoHAAAAAGWwezpOhp8juXwUTgAAAAAqFR0nAAAAACgDa5wAAAAAoAzsqgcAAAAAZbBZLZLoOAEAAABAiRzuNU4UTgAAAADgm2eNE1P1AAAAAMA3Ox0nAAAAACid7UfPcTKM4HyWE4UTAAAAgErl7jhJUkGQPgSXwgkAAABApbJbfyg7gnVnPQonAAAAAJXK9qPCqSBIN4igcAIAAABQqawhFllDgvtZThROAAAAACqde7pesO6sR+EEAAAAoNLZrN93nArZHAIAAAAAfLKHWiXRcQIAAACAEtmtrHECAAAAgFK5n+XErnoAAAAAUAL3luROHoALAAAAAL55Ok5M1QMAAAAA3zwdJ6bqAQAAAIBvdJwAAAAAoAw/PACXNU4AAAAA4BO76gEAAABAGWw8xwkAAAAASmcPtUpijRMAAAAAlIiOEwAAAACUweFZ48TmEAAAAADgk+c5TnScLt+SJUvUpEkThYWFqWvXrtqxY0eJxy5fvlw9e/ZU3bp1VbduXfXt27fU4wEAAAD4n2c7cnbVuzxr165VSkqKUlNTtWvXLrVv315JSUk6deqUz+MzMzM1ZMgQbdq0Sdu3b1dCQoL69++vr7/+uoojBwAAAFBetlA6Tldk4cKFGjNmjEaOHKk2bdpo2bJlioiI0MqVK30ev3r1ao0bN04dOnRQq1attGLFCrlcLmVkZFRx5AAAAADK64cH4AZn4RTqz4sXFBRo586dmjp1qmcsJCREffv21fbt28v1Gbm5uXI6nfrZz37m8/38/Hzl5+d7Xufk5EiSnE6nnE7nFURfMdwxBEIsCHzkC8wiZ2AWOQOzyBmUl9VyaVOIfGeRZA2MnDETg18LpzNnzqioqEixsbFe47Gxsdq/f3+5PuOxxx5TgwYN1LdvX5/vz507V7NmzSo2npaWpoiICPNBV5L09HR/h4AgQr7ALHIGZpEzMIucQVkOf2ORZNWxE19LzQMjZ3Jzc8t9rF8Lpys1b948vfHGG8rMzFRYWJjPY6ZOnaqUlBTP65ycHM+6qOjo6KoKtUROp1Pp6enq16+fbDabv8NBgCNfYBY5A7PIGZhFzqC8znx8XO8c26969eMkfRMQOeOejVYefi2c6tWrJ6vVquzsbK/x7OxsxcXFlXruggULNG/ePP3973/XddddV+JxDodDDoej2LjNZvP7D+rHAi0eBDbyBWaRMzCLnIFZ5AzKEm6/lB+FrktT9gIhZ8xc36+bQ9jtdnXq1MlrYwf3Rg+JiYklnvf000/riSee0MaNG9W5c+eqCBUAAADAFbB7dtULzgfg+n2qXkpKipKTk9W5c2d16dJFixYt0oULFzRy5EhJ0ogRI9SwYUPNnTtXkjR//nzNmDFDa9asUZMmTZSVlSVJioyMVGRkpN/uAwAAAEDJbFaLJHbVu2yDBw/W6dOnNWPGDGVlZalDhw7auHGjZ8OI48ePKyTkh8bY0qVLVVBQoLvuusvrc1JTUzVz5syqDB0AAABAOTmC/DlOfi+cJGnChAmaMGGCz/cyMzO9Xh89erTyAwIAAABQoWzu5zgVBmfh5PcH4AIAAACo/txrnAqCdI0ThRMAAACASkfHCQAAAADKYA/yNU4UTgAAAAAqnd3dcaJwAgAAAADf6DgBAAAAQBl+WOPE5hAAAAAA4NMPu+rRcQIAAAAAn2xWi6RLU/WMIGw6UTgBAAAAqHQOq1WSZBiSi8IJAAAAAIqzhVo8fw7GZU4UTgAAAAAqnXs7ckkKxmfgUjgBAAAAqHTWEIss3zediug4AQAAAEBxFovF03Viqh4AAAAAlMBTODFVDwAAAAB8cz/LiY4TAAAAAJTA9n3HKRifgUvhBAAAAKBK0HECAAAAgDLYrJe21aPjBAAAAAAlsIdaJUmFhqWMIwMPhRMAAACAKmH/vuPEVD0AAAAAKIFnjRNT9QAAAADAN8+uenScAAAAAMA3Ok4AAAAAUAY6TgAAAABQBjpOAAAAAFAGu5UH4AIAAABAqTyFEx0nAAAAAPDNFnrpOU5FPAAXAAAAAHyzW62S6DgBAAAAQIncHSfWOAEAAABACRzu7cjpOAEAAACAb7Yg3lUv1N8BBCLDMFRYWKiioqJKv5bT6VRoaKjy8vKq5HoIDFarVaGhobJYgm9hJAAAwOXyPMeJwin4FRQU6OTJk8rNza2S6xmGobi4OJ04cYJfomuYiIgIxcfHy263+zsUAACAKmEL4ql6FE4/4nK59NVXX8lqtapBgway2+2VXsy4XC6dP39ekZGRCglh5mRNYBiGCgoKdPr0aX311Vdq3rw5P3sAAFAj0HGqJgoKCuRyuZSQkKCIiIgquabL5VJBQYHCwsL45bkGCQ8Pl81m07Fjxzw/fwAAgOqOB+BWMxQwqArkGQAAqGmCuePEb24AAAAAqsQPa5yCb20/hRMAAACAKkHHCQAAAADKYLNe6jQVUTjBX+677z5ZLJZiX4cOHZIkbd68WQMHDlSDBg1ksVi0bt26Mj+zqKhI8+bNU6tWrRQeHq6f/exn6tq1q1asWFHJd3P5/vznP+uGG25Q7dq1FRkZqeuuu06zZ8/Wt99+6+/QAAAAajxPx4nNIeBPN998s06ePOn1dfXVV0uSLly4oPbt22vJkiXl/rxZs2bp2Wef1RNPPKEvv/xSmzZt0tixY3X27NlKuoNLOxtermnTpmnw4MG6/vrr9d577+nzzz/XM888o7179+q1117zS0wAAAD4gWdXvSDsOLEdeRkMw9BFZ1Glfb7L5dLFgiKFFhQW22Ut3GY19Rwph8OhuLg4n+/dcsstuuWWW0zF9u6772rcuHG6++67PWPt27f3OsblcmnBggV68cUXdeLECcXGxurXv/61pk2bJkn67LPPNHHiRG3fvl0RERH65S9/qYULFyoyMlLSpU7Z2bNndf3112vJkiVyOBz66quvdOLECT388MNKS0tTSEiIevbsqcWLF6tJkyY+Y92xY4fmzJmjRYsWaeLEiZ7xJk2aqF+/fp5iz329H3fcHnroIe3Zs0eZmZmSpBtuuEFt27ZVaGioXn/9dbVr107x8fEqKirS2rVrPec5nU7Fx8dr4cKFGjFihFwul+bPn68XX3xRWVlZatGihaZPn6677rrL1PcdAACgugrmjhOFUxkuOovUZsb7frn2l7OTFGH3348oLi5OH3zwgcaNG6eYmBifx0ydOlXLly/Xs88+qx49eujkyZPav3+/pEtdrqSkJCUmJuqTTz7RqVOnNHr0aE2YMEGrVq3yfEZGRoaio6OVnp4u6VJB4j7vo48+UmhoqJ588kndfPPN+uc//ym73V4sjtWrVysyMlLjxo3zGWedOnVM3fsrr7yiBx98UFu3bpUkHTp0SHfffbfnYcWS9P777ys3N1d33HGHJGnu3Ll6/fXXtWzZMjVv3lybN2/Wvffeq5iYGPXu3dvU9QEAAKojz656dJzgT3/72988v9RLl7pMb7755mV/3sKFC3XXXXcpLi5O1157rbp166bbb7/d07k6d+6cFi9erOeee07JycmSpGbNmqlHjx6SpDVr1igvL0+vvvqqatWqJUl67rnnNHDgQM2fP1+xsbGSpFq1amnFihWeguj111+Xy+XSihUrPB23l19+WXXq1FFmZqb69+9fLNaDBw+qadOmstlsl32/P9a8eXM9/fTTntfNmjVTrVq19Je//EXDhw/33N9tt92mqKgo5efna86cOfr73/+uxMRESVLTpk21ZcsWvfDCCxROAAAAouNUrYXbrPpydlKlfb7L5dK5nHOKio7yOVXPjBtvvFFLly71vHYXK5erTZs2+vzzz7Vz505t3brVs8HEfffdpxUrVmjfvn3Kz89Xnz59fJ6/b98+tW/f3iuO7t27y+Vy6cCBA57CqV27dl5dpL179+rQoUOKiory+ry8vDwdPnzY57UMo2L/26JTp05er0NDQ3XPPfdo9erVGj58uC5cuKB33nlHb7zxhqRLHanc3Fz169fP67yCggL94he/qNDYAAAAgpWdjlP1ZbFYKnW6nMvlUqHdqgh7aLHCyaxatWrpmmuuqaDILgkJCdH111+v66+/Xg899JBef/11DR8+XNOmTVN4eHiFXOOnBd758+fVqVMnrV69utixJU0ZbNGihbZs2SKn01lq1ykkJKRYkeV0OsuMSZKGDRum3r1769SpU0pPT1d4eLhuvvlmT8yStH79ejVs2NDrPIfDUWI8AAAANUkwd5wCYle9JUuWqEmTJgoLC1PXrl21Y8eOUo9/88031apVK4WFhaldu3basGFDFUWKNm3aSLq0fql58+YKDw9XRkaGz2Nbt26tvXv36sKFC56xrVu3KiQkRC1btizxGh07dtTBgwdVv359XXPNNV5ftWvX9nnO0KFDdf78eT3//PM+33dvDhETE6OTJ096vbdnz54SY/mxbt26KSEhQWvXrtXq1at19913e4q0Nm3ayOFw6Pjx48ViTkhIKNfnAwAAVHfuNU4uWVTkCq62k98Lp7Vr1yolJUWpqanatWuX2rdvr6SkJJ06dcrn8du2bdOQIUM0atQo7d69W4MGDdKgQYP0+eefV3HkweX8+fPas2ePp0j46quvtGfPHh0/frzEc+666y49++yz+sc//qFjx44pMzNT48ePV4sWLTyF62OPPabJkyfr1Vdf1eHDh/Xxxx/rpZdeknSpQxMWFqbk5GR9/vnn2rRpk37zm99o+PDhnml6vgwbNkz16tXT7bffro8++khfffWVMjMz9dvf/lb//ve/fZ7TtWtXTZ48WQ8//LAmT56s7du369ixY8rIyNDdd9+tV155RZJ000036dNPP9Wrr76qgwcPKjU11VTuDB06VMuWLVN6erqGDRvmGY+KitIjjzyiSZMm6ZVXXtHhw4e1a9cu/fGPf/RcGwAAoKZzd5wkyVkUXG0nvxdOCxcu1JgxYzRy5Ei1adNGy5YtU0REhFauXOnz+MWLF+vmm2/Wo48+qtatW+uJJ55Qx44d9dxzz1Vx5MHl008/1S9+8QvPepuUlBT94he/0IwZM0o8JykpSX/96181cOBAtWjRQsnJyWrVqpXS0tIUGnpp+uL06dP18MMPa8aMGWrdurUGDx7sKXojIiL0/vvv69tvv9X111+vu+66S3369CnzZxUREaHNmzfrqquu0p133qnWrVtr1KhRysvLU3R0dInnzZ8/X2vWrNE//vEPJSUl6dprr1VKSoquu+46z+YVSUlJmj59uiZPnqzrr79e586d04gRI8r9fRw2bJi+/PJLNWzYUN27d/d674knntD06dM1d+5ctW7dWjfffLPWr1/veZYWAABATWez/vConWArnCxGRa+qN6GgoEARERF66623NGjQIM94cnKyzp49q3feeafYOVdddZVSUlL00EMPecZSU1O1bt067d27t9jx+fn5ys/P97zOyclRQkKCzpw5U+yX8Ly8PJ04ccIzbbAqGIahc+fOKSoqytQzmxD88vLydPToUSUkJJQ735xOp9LT09WvX78K20EQ1Rs5A7PIGZhFzsAMwzDUYsalR9B89HB3xdW5ss3MrlROTo7q1aun7777rtT/oJf8vDnEmTNnVFRUVGzaVmxsrOdZQD+VlZXl8/isrCyfx8+dO1ezZs0qNp6WlqaIiAivsdDQUMXFxen8+fMqKCgwcytX7Ny5c1V6PfhfQUGBLl68qM2bN6uwsNDUue5nXgHlRc7ALHIGZpEzKK9mUVZZLNLmDz9UpJ9r7dzc3HIfW+131Zs6dapSUlI8r90dp/79+5fYcYqMjKTjhEqXl5en8PBw9erVi44TKg05A7PIGZhFzsCsfv0CJ2dycnLKfaxfC6d69erJarUqOzvbazw7O1txcXE+z4mLizN1vMPh8LkdtM1mK/aDKioqksViUUhIyBVvDV5eLteluZ3u66LmCAkJkcVi8ZmLZbmcc1CzkTMwi5yBWeQMzAqEnDFzfb/+pm6329WpUyev7axdLpcyMjKUmJjo85zExMRi21+np6eXeDwAAAAAXCm/T9VLSUlRcnKyOnfurC5dumjRokW6cOGCRo4cKUkaMWKEGjZsqLlz50qSJk6cqN69e+uZZ57RgAED9MYbb+jTTz/Viy++WGEx+XG/DNQg5BkAAEDw8HvhNHjwYJ0+fVozZsxQVlaWOnTooI0bN3o2gDh+/LjXFLZu3bppzZo1evzxx/W73/1OzZs317p169S2bdsrjsXdqsvNzVV4ePgVfx5QGvdiRH+3qAEAAFA2vxdOkjRhwgRNmDDB53uZmZnFxu6++27dfffdFR6H1WpVnTp1vJ5DVNkbNrhcLhUUFCgvL481TjWEYRjKzc3VqVOnVKdOHVmtVn+HBAAAgDIEROEUSNybTLiLp8pmGIYuXryo8PBwdtWrYerUqVPipiYAAAAILBROP2GxWBQfH6/69evL6XRW+vWcTqc2b96sXr16MWWrBrHZbHSaAAAAggiFUwmsVmuV/GJrtVpVWFiosLAwCicAAAAgQLGoBgAAAADKQOEEAAAAAGWgcAIAAACAMtS4NU7uh47m5OT4OZJLnE6ncnNzlZOTwxonlIl8gVnkDMwiZ2AWOQOzAiln3DWBu0YoTY0rnM6dOydJSkhI8HMkAAAAAALBuXPnVLt27VKPsRjlKa+qEZfLpW+++UZRUVEB8dyknJwcJSQk6MSJE4qOjvZ3OAhw5AvMImdgFjkDs8gZmBVIOWMYhs6dO6cGDRooJKT0VUw1ruMUEhKiRo0a+TuMYqKjo/2eOAge5AvMImdgFjkDs8gZmBUoOVNWp8mNzSEAAAAAoAwUTgAAAABQBgonP3M4HEpNTZXD4fB3KAgC5AvMImdgFjkDs8gZmBWsOVPjNocAAAAAALPoOAEAAABAGSicAAAAAKAMFE4AAAAAUAYKJwAAAAAoA4VTJVuyZImaNGmisLAwde3aVTt27Cj1+DfffFOtWrVSWFiY2rVrpw0bNlRRpAgUZnJm+fLl6tmzp+rWrau6deuqb9++ZeYYqh+zf8+4vfHGG7JYLBo0aFDlBoiAYzZnzp49q/Hjxys+Pl4Oh0MtWrTg36caxmzOLFq0SC1btlR4eLgSEhI0adIk5eXlVVG08LfNmzdr4MCBatCggSwWi9atW1fmOZmZmerYsaMcDoeuueYarVq1qtLjNIvCqRKtXbtWKSkpSk1N1a5du9S+fXslJSXp1KlTPo/ftm2bhgwZolGjRmn37t0aNGiQBg0apM8//7yKI4e/mM2ZzMxMDRkyRJs2bdL27duVkJCg/v376+uvv67iyOEvZnPG7ejRo3rkkUfUs2fPKooUgcJszhQUFKhfv346evSo3nrrLR04cEDLly9Xw4YNqzhy+IvZnFmzZo2mTJmi1NRU7du3Ty+99JLWrl2r3/3ud1UcOfzlwoULat++vZYsWVKu47/66isNGDBAN954o/bs2aOHHnpIo0eP1vvvv1/JkZpkoNJ06dLFGD9+vOd1UVGR0aBBA2Pu3Lk+j7/nnnuMAQMGeI117drV+PWvf12pcSJwmM2ZnyosLDSioqKMV155pbJCRIC5nJwpLCw0unXrZqxYscJITk42br/99iqIFIHCbM4sXbrUaNq0qVFQUFBVISLAmM2Z8ePHGzfddJPXWEpKitG9e/dKjROBSZLxl7/8pdRjJk+ebFx77bVeY4MHDzaSkpIqMTLz6DhVkoKCAu3cuVN9+/b1jIWEhKhv377avn27z3O2b9/udbwkJSUllXg8qpfLyZmfys3NldPp1M9+9rPKChMB5HJzZvbs2apfv75GjRpVFWEigFxOzrz77rtKTEzU+PHjFRsbq7Zt22rOnDkqKiqqqrDhR5eTM926ddPOnTs90/mOHDmiDRs26NZbb62SmBF8guV34FB/B1BdnTlzRkVFRYqNjfUaj42N1f79+32ek5WV5fP4rKysSosTgeNycuanHnvsMTVo0KDYXz6oni4nZ7Zs2aKXXnpJe/bsqYIIEWguJ2eOHDmiDz74QMOGDdOGDRt06NAhjRs3Tk6nU6mpqVURNvzocnJm6NChOnPmjHr06CHDMFRYWKgHHniAqXooUUm/A+fk5OjixYsKDw/3U2Te6DgB1cS8efP0xhtv6C9/+YvCwsL8HQ4C0Llz5zR8+HAtX75c9erV83c4CBIul0v169fXiy++qE6dOmnw4MGaNm2ali1b5u/QEKAyMzM1Z84cPf/889q1a5fefvttrV+/Xk888YS/QwOuCB2nSlKvXj1ZrVZlZ2d7jWdnZysuLs7nOXFxcaaOR/VyOTnjtmDBAs2bN09///vfdd1111VmmAggZnPm8OHDOnr0qAYOHOgZc7lckqTQ0FAdOHBAzZo1q9yg4VeX8/dMfHy8bDabrFarZ6x169bKyspSQUGB7HZ7pcYM/7qcnJk+fbqGDx+u0aNHS5LatWunCxcuaOzYsZo2bZpCQvh/e3gr6Xfg6OjogOk2SXScKo3dblenTp2UkZHhGXO5XMrIyFBiYqLPcxITE72Ol6T09PQSj0f1cjk5I0lPP/20nnjiCW3cuFGdO3euilARIMzmTKtWrfTZZ59pz549nq/bbrvNs4tRQkJCVYYPP7icv2e6d++uQ4cOeYpsSfrXv/6l+Ph4iqYa4HJyJjc3t1hx5C68DcOovGARtILmd2B/705Rnb3xxhuGw+EwVq1aZXz55ZfG2LFjjTp16hhZWVmGYRjG8OHDjSlTpniO37p1qxEaGmosWLDA2Ldvn5GammrYbDbjs88+89ctoIqZzZl58+YZdrvdeOutt4yTJ096vs6dO+evW0AVM5szP8WuejWP2Zw5fvy4ERUVZUyYMME4cOCA8be//c2oX7++8eSTT/rrFlDFzOZMamqqERUVZfzf//2fceTIESMtLc1o1qyZcc899/jrFlDFzp07Z+zevdvYvXu3IclYuHChsXv3buPYsWOGYRjGlClTjOHDh3uOP3LkiBEREWE8+uijxr59+4wlS5YYVqvV2Lhxo79uwScKp0r2xz/+0bjqqqsMu91udOnSxfj444897/Xu3dtITk72Ov5Pf/qT0aJFC8NutxvXXnutsX79+iqOGP5mJmcaN25sSCr2lZqaWvWBw2/M/j3zYxRONZPZnNm2bZvRtWtXw+FwGE2bNjWeeuopo7CwsIqjhj+ZyRmn02nMnDnTaNasmREWFmYkJCQY48aNM/773/9WfeDwi02bNvn8/cSdJ8nJyUbv3r2LndOhQwfDbrcbTZs2NV5++eUqj7ssFsOgZwoAAAAApWGNEwAAAACUgcIJAAAAAMpA4QQAAAAAZaBwAgAAAIAyUDgBAAAAQBkonAAAAACgDBROAAAAAFAGCicAAAAAKAOFEwAgIGVmZspisejs2bNVet1Vq1apTp06V/QZR48elcVi0Z49e0o8xl/3BwC4PBROAIAqZ7FYSv2aOXOmv0MEAMBLqL8DAADUPCdPnvT8ee3atZoxY4YOHDjgGYuMjNSnn35q+nMLCgpkt9srJEYAAH6MjhMAoMrFxcV5vmrXri2LxeI1FhkZ6Tl2586d6ty5syIiItStWzevAmvmzJnq0KGDVqxYoauvvlphYWGSpLNnz2r06NGKiYlRdHS0brrpJu3du9dz3t69e3XjjTcqKipK0dHR6tSpU7FC7f3331fr1q0VGRmpm2++2avYc7lcmj17tho1aiSHw6EOHTpo48aNpd7zhg0b1KJFC4WHh+vGG2/U0aNHr+RbCACoYhROAICANm3aND3zzDP69NNPFRoaqvvvv9/r/UOHDunPf/6z3n77bc+aorvvvlunTp3Se++9p507d6pjx47q06ePvv32W0nSsGHD1KhRI33yySfauXOnpkyZIpvN5vnM3NxcLViwQK+99po2b96s48eP65FHHvG8v3jxYj3zzDNasGCB/vnPfyopKUm33XabDh486PMeTpw4oTvvvFMDBw7Unj17NHr0aE2ZMqWCv1MAgMrEVD0AQEB76qmn1Lt3b0nSlClTNGDAAOXl5Xm6SwUFBXr11VcVExMjSdqyZYt27NihU6dOyeFwSJIWLFigdevW6a233tLYsWN1/PhxPfroo2rVqpUkqXnz5l7XdDqdWrZsmZo1ayZJmjBhgmbPnu15f8GCBXrsscf0q1/9SpI0f/58bdq0SYsWLdKSJUuK3cPSpUvVrFkzPfPMM5Kkli1b6rPPPtP8+fMr7PsEAKhcdJwAAAHtuuuu8/w5Pj5eknTq1CnPWOPGjT1Fk3RpGt758+f185//XJGRkZ6vr776SocPH5YkpaSkaPTo0erbt6/mzZvnGXeLiIjwFE3u67qvmZOTo2+++Ubdu3f3Oqd79+7at2+fz3vYt2+funbt6jWWmJhY7u8BAMD/6DgBAALaj6fQWSwWSZfWGLnVqlXL6/jz588rPj5emZmZxT7Lvc34zJkzNXToUK1fv17vvfeeUlNT9cYbb+iOO+4odk33dQ3DqIjbAQAEKTpOAIBqpWPHjsrKylJoaKiuueYar6969ep5jmvRooUmTZqktLQ03XnnnXr55ZfL9fnR0dFq0KCBtm7d6jW+detWtWnTxuc5rVu31o4dO7zGPv74Y5N3BgDwJwonAEC10rdvXyUmJmrQoEFKS0vT0aNHtW3bNk2bNk2ffvqpLl68qAkTJigzM1PHjh3T1q1b9cknn6h169blvsajjz6q+fPna+3atTpw4ICmTJmiPXv2aOLEiT6Pf+CBB3Tw4EE9+uijOnDggNasWaNVq1ZV0B0DAKoCU/UAANWKxWLRhg0bNG3aNI0cOVKnT59WXFycevXqpdjYWFmtVv3nP//RiBEjlJ2drXr16unOO+/UrFmzyn2N3/72t/ruu+/08MMP69SpU2rTpo3efffdYptMuF111VX685//rEmTJumPf/yjunTpojlz5hTbIRAAELgsBpO2AQAAAKBUTNUDAAAAgDJQOAEAAABAGSicAAAAAKAMFE4AAAAAUAYKJwAAAAAoA4UTAAAAAJSBwgkAAAAAykDhBAAAAABloHACAAAAgDJQOAEAAABAGSicAAAAAKAM/w+OTKh6AQfXKAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "threshold = 0.5 # 임계값 설정\n", + "\n", + "# 모델 출력을 이진 형태로 변환 (np.int 대신 np.int32 사용)\n", + "output_binary = (output > threshold).astype(np.int32)\n", + "label_flat = label.flatten().astype(np.int32)\n", + "output_flat = output_binary.flatten().astype(np.int32)\n", + "\n", + "# 데이터 유형과 형태 확인\n", + "print(\"Data types: \", label_flat.dtype, output_flat.dtype)\n", + "print(\"Shapes: \", label_flat.shape, output_flat.shape)\n", + "\n", + "# 데이터 샘플 출력\n", + "print(\"Label sample: \", label_flat[:len(test_set)])\n", + "print(\"Output sample: \", output_flat[:len(test_set)])\n", + "\n", + "# 이진화된 출력으로 지표 계산\n", + "try:\n", + " accuracy = accuracy_score(label_flat, output_flat)\n", + " precision = precision_score(label_flat, output_flat, average='binary')\n", + " recall = recall_score(label_flat, output_flat, average='binary')\n", + " f1 = f1_score(label_flat, output_flat, average='binary')\n", + "\n", + " print(f\"Accuracy: {accuracy}\")\n", + " print(f\"Precision: {precision}\")\n", + " print(f\"Recall: {recall}\")\n", + " print(f\"F1 Score: {f1}\")\n", + "except ValueError as e:\n", + " print(\"Error in metric calculation: \", e)\n", + "\n", + "# Confusion Matrix 계산 및 시각화\n", + "cm = confusion_matrix(label_flat, output_flat)\n", + "plt.figure(figsize=(8, 6))\n", + "plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)\n", + "plt.title('Confusion Matrix')\n", + "plt.colorbar()\n", + "classes = ['Background', 'Object'] # 클래스 이름\n", + "tick_marks = np.arange(len(classes))\n", + "plt.xticks(tick_marks, classes, rotation=45)\n", + "plt.yticks(tick_marks, classes)\n", + "\n", + "# 텍스트 추가\n", + "thresh = cm.max() / 2.\n", + "for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n", + " plt.text(j, i, format(cm[i, j], 'd'),\n", + " horizontalalignment=\"center\",\n", + " color=\"white\" if cm[i, j] > thresh else \"black\")\n", + "\n", + "plt.ylabel('True label')\n", + "plt.xlabel('Predicted label')\n", + "plt.tight_layout()\n", + "\n", + "# PR Curve 계산 및 시각화\n", + "precision_array, recall_array, _ = precision_recall_curve(label_flat, output_flat)\n", + "plt.figure()\n", + "plt.plot(recall_array, precision_array, label='PR Curve')\n", + "plt.xlabel('Recall')\n", + "plt.ylabel('Precision')\n", + "plt.title('Precision-Recall Curve')\n", + "plt.legend()\n", + "plt.show()\n", + "\n", + "# 여러 임계값에 대한 F1 점수 계산\n", + "thresholds = np.linspace(0, 1, num=100)\n", + "f1_scores = []\n", + "\n", + "for t in thresholds:\n", + " output_binary_t = (output > t).astype(np.int32).flatten()\n", + " f1_t = f1_score(label_flat, output_binary_t, average='binary')\n", + " f1_scores.append(f1_t)\n", + "\n", + "# F1 Score Curve 시각화\n", + "plt.figure(figsize=(10, 4))\n", + "plt.plot(thresholds, f1_scores, label='F1 Score Curve')\n", + "plt.xlabel('Threshold')\n", + "plt.ylabel('F1 Score')\n", + "plt.title('F1 Score per Threshold')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB730lEQVR4nO3deViU5f7H8fcAAoKAO7iQuO9i7ktqKYXm0bRMM8u1OpWWZnXKOm51yjY7lVoeza3FMi2trDQ1NVNz1zSXtFxwAbcERQWF5/fH/ZtRFJVl4GHg87quuXjm4ZnhO5Mpn7nv+3s7LMuyEBERERERkWzxsrsAERERERGR/EDhSkRERERExA0UrkRERERERNxA4UpERERERMQNFK5ERERERETcQOFKRERERETEDRSuRERERERE3EDhSkRERERExA0UrkRERERERNxA4UpERERyzKhRo3A4HBw/ftzuUkREcpzClYiIZMnhw4cZNWoUmzdvdvtzL1u2DIfDwZw5c9z+3PmNM7xc6xYbG2t3iSIiBYaP3QWIiIhnOnz4MKNHjyYiIoL69evbXU6B98EHH1CkSJGrzhctWjT3ixERKaAUrkRERPK4s2fPEhAQcN1runXrRsmSJXOpIhERSY+mBYqIeLC+ffsSERFx1XnnVLHLORwOBg0axLx586hTpw5+fn7Url2bBQsWXPX4Q4cO0b9/f0JDQ13XTZ061fX9ZcuW0bhxYwD69evnmoI2ffp0t76+G/nrr7+49957KV68OAEBATRr1ozvvvvuquvGjRtH7dq1CQgIoFixYjRq1IiZM2e6vn/69GmGDBlCREQEfn5+lC5dmttvv52NGzde9+c73+edO3fSvXt3goODKVGiBIMHD+b8+fNXXf/JJ5/QsGFDChcuTPHixbnvvvuIiYlJc82tt95KnTp12LBhA61btyYgIIAXXnghi+/QJc6plrNmzeKFF14gLCyMwMBAOnfufFUNALNnz3bVWrJkSR544AEOHTp01XXO116qVCkKFy5M9erVefHFF6+67tSpU/Tt25eiRYsSEhJCv379OHv2bLZfl4hIXqKRKxGRAuSXX37hq6++4vHHHycoKIj33nuPe+65hwMHDlCiRAkA4uLiaNasmSuMlSpVih9++IEBAwaQkJDAkCFDqFmzJi+99BIjRozgkUceoVWrVgC0aNEi115LXFwcLVq04OzZszz55JOUKFGCGTNm0LlzZ+bMmUPXrl0BmDx5Mk8++STdunVzhZ7ffvuNNWvWcP/99wPw6KOPMmfOHAYNGkStWrU4ceIEv/zyCzt27KBBgwY3rKV79+5EREQwZswYfv31V9577z3+/vtvPvroI9c1r7zyCsOHD6d79+489NBDHDt2jHHjxtG6dWs2bdqUZvreiRMn6NChA/fddx8PPPAAoaGhN6zh5MmTV53z8fG5alrgK6+8gsPh4LnnnuPo0aO88847REVFsXnzZgoXLgzA9OnT6devH40bN2bMmDHExcXx7rvvsnLlyjS1/vbbb7Rq1YpChQrxyCOPEBERwZ9//sm3337LK6+8ctV7VLFiRcaMGcPGjRv58MMPKV26NK+//voNX5uIiMewRETEY/Xp08eqUKHCVedHjhxpXflXPGD5+vpae/bscZ3bsmWLBVjjxo1znRswYIBVpkwZ6/jx42kef99991khISHW2bNnLcuyrHXr1lmANW3aNPe9oP+3dOlSC7Bmz559zWuGDBliAdaKFStc506fPm1VrFjRioiIsFJSUizLsqy77rrLql279nV/XkhIiDVw4MBM1+l8nzt37pzm/OOPP24B1pYtWyzLsqx9+/ZZ3t7e1iuvvJLmuq1bt1o+Pj5pzrdp08YCrIkTJ2aqhvRu1atXd13nfE/LlStnJSQkuM5/8cUXFmC9++67lmVZVnJyslW6dGmrTp061rlz51zXzZ8/3wKsESNGuM61bt3aCgoKsvbv35+mptTU1Kvq69+/f5prunbtapUoUSJDr1FExFNoWqCISAESFRVF5cqVXffr1atHcHAwf/31FwCWZfHll1/SqVMnLMvi+PHjrlt0dDTx8fE3nCqXW77//nuaNGnCLbfc4jpXpEgRHnnkEfbt28f27dsB09Dh4MGDrFu37prPVbRoUdasWcPhw4ezVMvAgQPT3H/iiSdcNQJ89dVXpKam0r179zTvaVhYGFWrVmXp0qVpHu/n50e/fv0yVcOXX37JokWL0tymTZt21XW9e/cmKCjIdb9bt26UKVPGVev69es5evQojz/+OP7+/q7rOnbsSI0aNVzTLo8dO8bPP/9M//79uemmm9L8jCunpIIZHbxcq1atOHHiBAkJCZl6nSIieZmmBYqIFCBX/hIMUKxYMf7++2/A/MJ86tQpJk2axKRJk9J9jqNHj2b65yYnJ181ba1UqVJ4e3tn+rmc9u/fT9OmTa86X7NmTdf369Spw3PPPcfixYtp0qQJVapU4Y477uD++++nZcuWrse88cYb9OnTh/DwcBo2bMidd95J7969qVSpUoZqqVq1apr7lStXxsvLi3379gGwe/duLMu66jqnQoUKpblfrlw5fH19M/SznVq3bp2hhhZX1uBwOKhSpYqr1v379wNQvXr1qx5bo0YNfvnlFwBXIK9Tp06G6rvyz16xYsUA+PvvvwkODs7Qc4iI5HUKVyIiHiy9EQKAlJSUdM9fK8xYlgVAamoqAA888AB9+vRJ99p69epltkxWrVrFbbfdlubc3r17023G4W41a9Zk165dzJ8/nwULFvDll1/y/vvvM2LECEaPHg2Y9UCtWrVi7ty5/Pjjj7z55pu8/vrrfPXVV3To0CHTP/PK/y6pqak4HA5++OGHdP8bXNlC3bn2KT+50Z89EZH8QOFKRMSDFStWjFOnTl113jn6kFmlSpUiKCiIlJQUoqKirnvttYJdeiIjI1m0aFGac2FhYVmq0alChQrs2rXrqvM7d+50fd8pMDCQHj160KNHD5KTk7n77rt55ZVXGDZsmGvqW5kyZXj88cd5/PHHOXr0KA0aNOCVV17JULjavXs3FStWdN3fs2cPqamprvBYuXJlLMuiYsWKVKtWLTsvO9t2796d5r5lWezZs8cVmp3v265du2jbtm2aa3ft2uX6vnNUb9u2bTldsoiIx9CaKxERD1a5cmXi4+P57bffXOeOHDnC3Llzs/R83t7e3HPPPXz55Zfp/tJ87Ngx13FgYCBAuuHuSsWKFSMqKirN7fL1PFlx5513snbtWlavXu06l5iYyKRJk4iIiKBWrVqA6bx3OV9fX2rVqoVlWVy4cIGUlBTi4+PTXFO6dGnKli1LUlJShmqZMGFCmvvjxo0DcAWzu+++G29vb0aPHn3VSI1lWVfVmJM++ugjTp8+7bo/Z84cjhw54qq1UaNGlC5dmokTJ6Z5/T/88AM7duygY8eOgAnirVu3ZurUqRw4cCDNz9BolIgUVBq5EhHxYPfddx/PPfccXbt25cknn+Ts2bN88MEHVKtWLcuNJ1577TWWLl1K06ZNefjhh6lVqxYnT55k48aNLF682LV2qnLlyhQtWpSJEycSFBREYGAgTZs2TTOCk11ffvmlayTqcn369OH555/ns88+o0OHDjz55JMUL16cGTNmsHfvXr788ku8vMznh3fccQdhYWG0bNmS0NBQduzYwfjx4+nYsSNBQUGcOnWK8uXL061bNyIjIylSpAiLFy9m3bp1jB07NkN17t27l86dO9O+fXtWr17NJ598wv33309kZKTrvfrPf/7DsGHD2LdvH126dCEoKIi9e/cyd+5cHnnkEZ555plsvVdz5sy5anohwO23356mlXvx4sW55ZZb6NevH3FxcbzzzjtUqVKFhx9+GDDrv15//XX69etHmzZt6Nmzp6sVe0REBE899ZTrud577z1uueUWGjRowCOPPELFihXZt28f3333HZs3b87W6xER8Ug2dSkUERE3+fHHH606depYvr6+VvXq1a1PPvnkmq3Y02s3XqFCBatPnz5pzsXFxVkDBw60wsPDrUKFCllhYWFWu3btrEmTJqW57uuvv7Zq1apl+fj4uLUtu7Nt+LVuzvbrf/75p9WtWzeraNGilr+/v9WkSRNr/vz5aZ7rf//7n9W6dWurRIkSlp+fn1W5cmXr2WefteLj4y3LsqykpCTr2WeftSIjI62goCArMDDQioyMtN5///0b1ul8n7dv325169bNCgoKsooVK2YNGjQoTRtzpy+//NK65ZZbrMDAQCswMNCqUaOGNXDgQGvXrl2ua9q0aXPD1vHp1XCt29KlS9O8p5999pk1bNgwq3Tp0lbhwoWtjh07XtVK3bIsa9asWdbNN99s+fn5WcWLF7d69eplHTx48Krrtm3bZnXt2tX136B69erW8OHDr6rv2LFjaR43bdo0C7D27t2b4dcqIpLXOSxLY/ciIiJZMWrUKEaPHs2xY8cy1KnPTsuWLeO2225j9uzZdOvWze5yRETyJa25EhERERERcQOFKxERERERETdQuBIREREREXEDrbkSERERERFxA41ciYiIiIiIuIHClYiIiIiIiBtoE+F0pKamcvjwYYKCgnA4HHaXIyIiIiIiNrEsi9OnT1O2bFnXBvXXonCVjsOHDxMeHm53GSIiIiIikkfExMRQvnz5616jcJWOoKAgwLyBwcHBNlcjIiIiIiJ2SUhIIDw83JURrkfhKh3OqYDBwcEKVyIiIiIikqHlQmpoISIiIiIi4gYKVyIiIiIiIm6gcCUiIiIiIuIGWnMlIiIiIh4hJSWFCxcu2F2G5DPe3t74+Pi4ZQsmhSsRERERyfPOnDnDwYMHsSzL7lIkHwoICKBMmTL4+vpm63kUrkREREQkT0tJSeHgwYMEBARQqlQpt4wwiIDZIDg5OZljx46xd+9eqlatesONgq9H4UpERERE8rQLFy5gWRalSpWicOHCdpcj+UzhwoUpVKgQ+/fvJzk5GX9//yw/lxpaiIiIiIhH0IiV5JTsjFaleR63PIuIiIiIiEgBp3AlIiIiIiLiBgpXIiIiIiIeIiIignfeecfuMuQaFK5ERERERNzM4XBc9zZq1KgsPe+6det45JFHslXbrbfeypAhQ7L1HJI+dQsUEREREXGzI0eOuI5nzZrFiBEj2LVrl+tckSJFXMeWZZGSkoKPz41/NS9VqpR7CxW30siV5IwlS6BdO1iwwO5KREREJJ+xLEhMtOeW0T2Mw8LCXLeQkBAcDofr/s6dOwkKCuKHH36gYcOG+Pn58csvv/Dnn39y1113ERoaSpEiRWjcuDGLFy9O87xXTgt0OBx8+OGHdO3alYCAAKpWrco333yTrff3yy+/pHbt2vj5+REREcHYsWPTfP/999+natWq+Pv7ExoaSrdu3VzfmzNnDnXr1qVw4cKUKFGCqKgoEhMTs1WPJ9HIlbhXSgq88gqMGmX+9jl/Htq3t7sqERERyUfOnoXLBn5y1ZkzEBjonud6/vnneeutt6hUqRLFihUjJiaGO++8k1deeQU/Pz8++ugjOnXqxK5du7jpppuu+TyjR4/mjTfe4M0332TcuHH06tWL/fv3U7x48UzXtGHDBrp3786oUaPo0aMHq1at4vHHH6dEiRL07duX9evX8+STT/Lxxx/TokULTp48yYoVKwAzWtezZ0/eeOMNunbtyunTp1mxYgVWRhNpPqBwJe5z9Cg88AAsWnTp3K+/wt9/Q7Fi9tUlIiIikge99NJL3H777a77xYsXJzIy0nX/5ZdfZu7cuXzzzTcMGjToms/Tt29fevbsCcCrr77Ke++9x9q1a2mfhQ+43377bdq1a8fw4cMBqFatGtu3b+fNN9+kb9++HDhwgMDAQP7xj38QFBREhQoVuPnmmwETri5evMjdd99NhQoVAKhbt26ma/BkmhYo7rFiBdx8swlWAQEwYwbUrAmpqWnDloiIiEg2BQSYESQ7bgEB7nsdjRo1SnP/zJkzPPPMM9SsWZOiRYtSpEgRduzYwYEDB677PPXq1XMdBwYGEhwczNGjR7NU044dO2jZsmWacy1btmT37t2kpKRw++23U6FCBSpVqsSDDz7Ip59+ytmzZwGIjIykXbt21K1bl3vvvZfJkyfz999/Z6kOT6VwJdmTmgpvvAG33QaHD5tAtXYt9O4NHTqYa7TuSkRERNzI4TBT8+y4ORzuex2BV8wvfOaZZ5g7dy6vvvoqK1asYPPmzdStW5fk5OTrPk+hQoWueH8cpKamuq/QywQFBbFx40Y+++wzypQpw4gRI4iMjOTUqVN4e3uzaNEifvjhB2rVqsW4ceOoXr06e/fuzZFa8iKFK8m6kyfhrrvguefMWqtevUywql3bfP/ycFWA5tqKiIiIZMXKlSvp27cvXbt2pW7duoSFhbFv375craFmzZqsXLnyqrqqVauGt7c3AD4+PkRFRfHGG2/w22+/sW/fPn766SfABLuWLVsyevRoNm3ahK+vL3Pnzs3V12AnrbmSrFm7Frp3h/37wc8P3nsPHn447cc5rVqZsfMjR+C33+CyOcQiIiIiklbVqlX56quv6NSpEw6Hg+HDh+fYCNSxY8fYvHlzmnNlypTh6aefpnHjxrz88sv06NGD1atXM378eN5//30A5s+fz19//UXr1q0pVqwY33//PampqVSvXp01a9awZMkS7rjjDkqXLs2aNWs4duwYNWvWzJHXkBdp5Eoyx7JMkLrlFhOsKleG1avhkUeuHif384O2bc3xDz/kfq0iIiIiHuTtt9+mWLFitGjRgk6dOhEdHU2DBg1y5GfNnDmTm2++Oc1t8uTJNGjQgC+++ILPP/+cOnXqMGLECF566SX69u0LQNGiRfnqq69o27YtNWvWZOLEiXz22WfUrl2b4OBgfv75Z+68806qVavGv//9b8aOHUsH52ymAsBhFaTeiBmUkJBASEgI8fHxBAcH211O3hEfDw89BHPmmPv33ANTpkBIyLUfM2ECDBoEbdrAsmW5UqaIiIjkL+fPn2fv3r1UrFgRf39/u8uRfOh6f8Yykw00ciUZs3kzNGpkglWhQvDuuzB79vWDFVxad7VyJSQk5HiZIiIiIiJ2sT1cTZgwgYiICPz9/WnatClr16697vWzZ8+mRo0a+Pv7U7duXb7//vs03z9z5gyDBg2ifPnyFC5cmFq1ajFx4sScfAn5m2XB5MnQrBns2QM33WTarj/5ZMba5VSqBFWrwsWLsGRJztcrIiIiImITW8PVrFmzGDp0KCNHjmTjxo1ERkYSHR19zb78q1atomfPngwYMIBNmzbRpUsXunTpwrZt21zXDB06lAULFvDJJ5+wY8cOhgwZwqBBg/jmm29y62XlH2fOmJbqjzwCSUnQsSNs2gRNm2bueZyjV1p3JSIiIiL5mK3h6u233+bhhx+mX79+rhGmgIAApk6dmu717777Lu3bt+fZZ5+lZs2avPzyyzRo0IDx48e7rlm1ahV9+vTh1ltvJSIigkceeYTIyMgbjojJFbZvhyZN4JNPwNsbXn8dvvkGihfP/HM5dwdXS3YRERERycdsC1fJycls2LCBqKioS8V4eREVFcXq1avTfczq1avTXA8QHR2d5voWLVrwzTffcOjQISzLYunSpfzxxx/ccccd16wlKSmJhISENLcC7eOPoXFj2LEDypaFpUvhX/8Cryz+cbn1VvD3h5gYE9pERERERPIh28LV8ePHSUlJITQ0NM350NBQYmNj031MbGzsDa8fN24ctWrVonz58vj6+tK+fXsmTJhA69atr1nLmDFjCAkJcd3Cw8Oz8co82LlzZgpg795w9ixERZlpgK1aZe95Cxc23QLBjF6JiIiIiORDtje0cLdx48bx66+/8s0337BhwwbGjh3LwIEDWbx48TUfM2zYMOLj4123mJiYXKw4j9i9G5o3N80rHA4YNcoEodKl3fP8WnclIiIiIvmcj10/uGTJknh7exMXF5fmfFxcHGFhYek+Jiws7LrXnzt3jhdeeIG5c+fSsWNHAOrVq8fmzZt56623rppS6OTn54efn192X5Lnmj0bBgyA06ehVCmYOdOMWrmTc93VihWmUUaRIu59fhERERERm9k2cuXr60vDhg1Zcll77tTUVJYsWULz5s3TfUzz5s3TXA+waNEi1/UXLlzgwoULeF2xNsjb25vU1FQ3v4J8ICnJtFTv3t0Eq1atzH5W7g5WANWqQcWKkJxs1nCJiIiIiOQztk4LHDp0KJMnT2bGjBns2LGDxx57jMTERPr16wdA7969GTZsmOv6wYMHs2DBAsaOHcvOnTsZNWoU69evZ9CgQQAEBwfTpk0bnn32WZYtW8bevXuZPn06H330EV27drXlNeZZ+/aZMDVunLn//PPw00+mgUVOcDgujV5paqCIiIhIhtx6660MGTLEdT8iIoJ33nnnuo9xOBzMmzcv2z/bXc9TkNgarnr06MFbb73FiBEjqF+/Pps3b2bBggWuphUHDhzgyJEjrutbtGjBzJkzmTRpEpGRkcyZM4d58+ZRp04d1zWff/45jRs3plevXtSqVYvXXnuNV155hUcffTTXX1+e9e23cPPNsG4dFCsG8+fDmDHgk8OzRC9fd6WW7CIiIpKPderUifbOD5avsGLFChwOB7/99lumn3fdunU88sgj2S0vjVGjRlG/fv2rzh85coQOzt/fcsj06dMpWrRojv6M3GTbmiunQYMGuUaerrRs2bKrzt17773ce++913y+sLAwpk2b5q7y8pcLF+DFF+HNN839pk1h1iyoUCF3fv5tt4Gvrxk1++MPqF49d36uiIiISC4bMGAA99xzDwcPHqR8+fJpvjdt2jQaNWpEvXr1Mv28pUqVcleJN3StPghybfmuW6Bcw6FD0LbtpWA1ZAj8/HPuBSswTSycbd3Vkl1ERESyyrIgMdGeWwZn3/zjH/+gVKlSTJ8+Pc35M2fOMHv2bAYMGMCJEyfo2bMn5cqVIyAggLp16/LZZ59d93mvnBa4e/duWrdujb+/P7Vq1WLRokVXPea5556jWrVqBAQEUKlSJYYPH86FCxcAM3I0evRotmzZgsPhwOFwuGq+clrg1q1badu2LYULF6ZEiRI88sgjnDlzxvX9vn370qVLF9566y3KlClDiRIlGDhwoOtnZcWBAwe46667KFKkCMHBwXTv3j1Ng7stW7Zw2223ERQURHBwMA0bNmT9+vUA7N+/n06dOlGsWDECAwOpXbs233//fZZryQjbR64kF/z4I/TqBcePQ3AwTJ0K99xjTy3t28OSJWZq4ODB9tQgIiIinu3sWfs6D585A4GBN7zMx8eH3r17M336dF588UUcDgcAs2fPJiUlhZ49e3LmzBkaNmzIc889R3BwMN999x0PPvgglStXpkmTJjf8Gampqdx9992EhoayZs0a4uPj06zPcgoKCmL69OmULVuWrVu38vDDDxMUFMS//vUvevTowbZt21iwYIFr66KQkJCrniMxMZHo6GiaN2/OunXrOHr0KA899BCDBg1KEyCXLl1KmTJlWLp0KXv27KFHjx7Ur1+fhx9++IavJ73X5wxWy5cv5+LFiwwcOJAePXq4Zrj16tWLm2++mQ8++ABvb282b95MoUKFABg4cCDJycn8/PPPBAYGsn37dork9J8bS64SHx9vAVZ8fLzdpWTPxYuWNWKEZTkclgWWVb++Ze3ebW9N27aZWvz9LevsWXtrEREREY9w7tw5a/v27da5c+fMiTNnzO8TdtzOnMlw3Tt27LAAa+nSpa5zrVq1sh544IFrPqZjx47W008/7brfpk0ba/Dgwa77FSpUsP773/9almVZCxcutHx8fKxDhw65vv/DDz9YgDV37txr/ow333zTatiwoev+yJEjrcjIyKuuu/x5Jk2aZBUrVsw6c9nr/+677ywvLy8rNjbWsizL6tOnj1WhQgXr4sWLrmvuvfdeq0ePHtesZdq0aVZISEi63/vxxx8tb29v68CBA65zv//+uwVYa9eutSzLsoKCgqzp06en+/i6detao0aNuubPvtxVf8Yuk5lsoJGr/CouDu6/33QABPjnP+Gdd8Df39ayqFULwsMhJgaWLbvU5EJEREQkowICzAiSXT87g2rUqEGLFi2YOnUqt956K3v27GHFihW89NJLAKSkpPDqq6/yxRdfcOjQIZKTk0lKSiIggz9jx44dhIeHU/aybs/pbWk0a9Ys3nvvPf7880/OnDnDxYsXCQ4OzvDrcP6syMhIAi8btWvZsiWpqans2rXL1ZCudu3aeHt7u64pU6YMW7duzdTPuvxnhoeHEx4e7jpXq1YtihYtyo4dO2jcuDFDhw7loYce4uOPPyYqKop7772XypUrA/Dkk0/y2GOP8eOPPxIVFcU999yTpXVumaE1V/nR8uVQv74JVoGB8MknMHGi/cEK0rZk17orERERyQqHw/yOY8ft/6f3ZdSAAQP48ssvOX36NNOmTaNy5cq0adMGgDfffJN3332X5557jqVLl7J582aio6NJTk5221u1evVqevXqxZ133sn8+fPZtGkTL774olt/xuWcU/KcHA5Hju43O2rUKH7//Xc6duzITz/9RK1atZg7dy4ADz30EH/99RcPPvggW7dupVGjRoxzbkOUQxSu8pPUVNNSvW1biI2F2rVNu/VeveyuLK3LW7KLiIiI5GPdu3fHy8uLmTNn8tFHH9G/f3/X+quVK1dy11138cADDxAZGUmlSpX4448/MvzcNWvWJCYmJs3WRb/++muaa1atWkWFChV48cUXadSoEVWrVmX//v1prvH19SUlJeWGP2vLli0kJia6zq1cuRIvLy+q51AHaOfri4mJcZ3bvn07p06dolatWq5z1apV46mnnuLHH3/k7rvvTtM5PDw8nEcffZSvvvqKp59+msmTJ+dIrU4KV/nFiRPwj3/ACy+YkNW7N6xZAzVr2l3Z1dq1M3tq7d4Nf/5pdzUiIiIiOaZIkSL06NGDYcOGceTIEfr27ev6XtWqVVm0aBGrVq1ix44d/POf/0zTCe9GoqKiqFatGn369GHLli2sWLGCF198Mc01VatW5cCBA3z++ef8+eefvPfee66RHaeIiAj27t3L5s2bOX78OElJSVf9rF69euHv70+fPn3Ytm0bS5cu5YknnuDBBx90TQnMqpSUFDZv3pzmtmPHDqKioqhbty69evVi48aNrF27lt69e9OmTRsaNWrEuXPnGDRoEMuWLWP//v2sXLmSdevWUfP/f/8dMmQICxcuZO/evWzcuJGlS5e6vpdTFK7yg19/NZsC//CDmfo3ZQpMn56hTja2CA6Gli3NsaYGioiISD43YMAA/v77b6Kjo9Osj/r3v/9NgwYNiI6O5tZbbyUsLIwuXbpk+Hm9vLyYO3cu586do0mTJjz00EO88soraa7p3LkzTz31FIMGDaJ+/fqsWrWK4cOHp7nmnnvuoX379tx2222UKlUq3XbwAQEBLFy4kJMnT9K4cWO6detGu3btGD9+fObejHScOXOGm2++Oc2tU6dOOBwOvv76a4oVK0br1q2JioqiUqVKzJo1CwBvb29OnDhB7969qVatGt27d6dDhw6MHj0aMKFt4MCB1KxZk/bt21OtWjXef//9bNd7PQ7LymCz/gIkISGBkJAQ4uPjM73YL1dZlmlS8a9/wcWLULUqzJ4NkZF2V3Zjr70Gw4aZ0bZvv7W7GhEREcnDzp8/z969e6lYsSL+eWENueQ71/szlplsoJErT3XqlNmrauhQE6y6d4f16z0jWMGldVc//QTnz9tbi4iIiIiIGyhceaKNG6FhQ5g7FwoVgvHj4fPPzXQ7T1GvHpQpYzYB/OUXu6sREREREck2hStPYlmmpXrz5vDXXxARAStXwsCBmW4LarvLW7Kra6CIiIiI5AMKV57i9GnTUv2xxyA5GTp3NiNYjRvbXVnWab8rEREREclHFK48wdatJkR99hl4e8Nbb8G8eVCsmN2VZc/tt4OXF2zfDgcO2F2NiIiI5HHqwyY5xV1/thSu8rrp06FpU9i1C8qVg+XL4emnPW8aYHqKFYNmzcyxRq9ERETkGry9vQFITk62uRLJr86ePQtAoUKFsvU8Pu4oRnLA2bPwxBMwdaq5Hx0NH38MpUrZW5e7degAq1aZdVePPGJ3NSIiIpIH+fj4EBAQwLFjxyhUqBBeXhofEPewLIuzZ89y9OhRihYt6gryWaV9rtJh+z5Xu3bBvfea6YBeXjB6NLzwgjnOb9avN1MeixSBEyfA19fuikRERCQPSk5OZu/evaSmptpdiuRDRYsWJSwsDEc6s8Mykw00cpXXzJoFDz0EZ85AaCjMnAlt29pdVc5p0MCMxh07Zkawbr3V7opEREQkD/L19aVq1aqaGihuV6hQoWyPWDkpXOUVSUlmQ+D33zf327QxDSzKlLG3rpzm5WWmPH7yiZkaqHAlIiIi1+Dl5YW/v7/dZYhcUz6cZ+aB/voLWra8FKxefBEWL87/wcqpQwfzVU0tRERERMSDKVzZ7euvzdS4DRugRAn4/nv4z3/ApwANKt5xh+l++NtvcOiQ3dWIiIiIiGSJwpVdLlwwLdW7dIH4eGjeHDZtujSKU5CULHlpM+SFC+2tRUREREQkixSu7BATY9ZUvf22uf/002b/qvBwe+uykzNU/vCDvXWIiIiIiGSRwlVuW7AAbr4ZVq+GkBCYOxfeeguyuWGZx2vf3nxdtAguXrS3FhERERGRLFC4yi0XL8K//21GaE6cgIYNYeNGMy1QzLTA4sXNFMlff7W7GhERERGRTFO4yg1HjsDtt8Mrr5j7jz8Ov/wClSrZW1de4u1tGluAugaKiIiIiEdSuMppS5eaaYDLlkGRImbvqgkTQHs0XE3rrkRERETEgylc5ZTUVNNSPSoK4uKgbl1Yvx7uu8/uyvKu6GjzdeNG856JiIiIiHgQhauccOwY3HknDB9uQlb//mYdUfXqdleWt4WGmj2/QC3ZRURERMTjKFy528qVZhrgwoVQuDBMmwZTpkBAgN2VeQZn10CtuxIRERERD6Nw5S6WBWPHmv2rDh0yo1Rr1kDfvnZX5lmc664WLoSUFHtrERERERHJBIUrd/j7b+jaFZ55xgSCnj1h3Tqzzkoyp1kzs//XyZNmjZqIiIiIiIdQuMqu9evNOqGvvwZfX/jgA/j0UwgKsrsyz+TjY9rWg7oGioiIiIhHUbjKKssyLdVbtoR9+8yeVatXw6OPgsNhd3WezbnuSuFKRERERDyIwlVWJCSYluqDBkFyspkSuGHDpU53kj3OcLVuHRw/bm8tIiIiIiIZlCfC1YQJE4iIiMDf35+mTZuydu3a614/e/ZsatSogb+/P3Xr1uX7779P832Hw5Hu7c0338x+sVu2QKNG8MUXZgrbf/8LX34JRYtm/7nFKFfOrFezLPjxR7urERERERHJENvD1axZsxg6dCgjR45k48aNREZGEh0dzdGjR9O9ftWqVfTs2ZMBAwawadMmunTpQpcuXdi2bZvrmiNHjqS5TZ06FYfDwT333JP1Qi3LtFRv1gx274bwcFixAoYM0TTAnODsGqiW7CIiIiLiIRyWZVl2FtC0aVMaN27M+PHjAUhNTSU8PJwnnniC559//qrre/ToQWJiIvPnz3eda9asGfXr12fixInp/owuXbpw+vRplixZkqGaEhISCAkJIT4+nuDgYEhMhIEDYcYMc0GHDvDxx1CiRCZfrWTY0qXQti2UKgWxseBl++cAIiIiIlIAXZUNrsPW31iTk5PZsGEDUVFRrnNeXl5ERUWxevXqdB+zevXqNNcDREdHX/P6uLg4vvvuOwYMGHDNOpKSkkhISEhzc9mxA5o2NcHKywtefRXmz1ewymktW0KRInDsGGzaZHc1IiIiIiI3ZGu4On78OCkpKYSGhqY5HxoaSmxsbLqPiY2NzdT1M2bMICgoiLvvvvuadYwZM4aQkBDXLTw83Hzjiy+gcWP4/XcIC4OffoJhwzSKkht8faFdO3OsroEiIiIi4gHyfUqYOnUqvXr1wt/f/5rXDBs2jPj4eNctJibGfOPhh82UwLZtYfNmaNMmd4oWQ+uuRERERMSD+Nj5w0uWLIm3tzdxcXFpzsfFxREWFpbuY8LCwjJ8/YoVK9i1axezZs26bh1+fn74+fml/80RI8zN2/u6zyE5wNmSffVq+PtvKFbM3npERERERK7D1pErX19fGjZsmKbRRGpqKkuWLKF58+bpPqZ58+ZXNaZYtGhRutdPmTKFhg0bEhkZmbUCv/oKRo9WsLJLhQpQsyakpsLixXZXIyIiIiJyXbZPCxw6dCiTJ09mxowZ7Nixg8cee4zExET69esHQO/evRk2bJjr+sGDB7NgwQLGjh3Lzp07GTVqFOvXr2fQoEFpnjchIYHZs2fz0EMPZb0455ofsY9zaqDWXYmIiIhIHmfrtEAwrdWPHTvGiBEjiI2NpX79+ixYsMDVtOLAgQN4XdZAokWLFsycOZN///vfvPDCC1StWpV58+ZRp06dNM/7+eefY1kWPXv2zNXXI27Wvj28/bZZd2VZ2lNMRERERPIs2/e5yosy08tectj586bt/dmzpqlIVqd4ioiIiIhkgcfscyVyQ/7+cNtt5lhdA0VEREQkD1O4krxP665ERERExAMoXEne52zJvnIlJCTYW4uIiIiIyDUoXEneV7kyVK0KFy/CFW34RURERETyCoUr8QzO0SutuxIRERGRPErhSjzD5euu1OBSRERERPIghSvxDG3agJ8fxMTA9u12VyMiIiIichWFK/EMAQFw663mWFMDRURERCQPUrgSz+Fcd6WW7CIiIiKSBylciedwrrtasQLOnLG3FhERERGRKyhcieeoVg0iIiA5GZYutbsaEREREZE0FK7Eczgcl0avtO5KRERERPIYhSvxLJevu1JLdhERERHJQxSuxLO0bQu+vrB3L+zebXc1IiIiIiIuClfiWYoUgVatzLG6BoqIiIhIHqJwJZ7HOTVQ665EREREJA9RuBLP42xqsWwZnDtnaykiIiIiIk4KV+J5atWC8uXh/HlYvtzuakREREREAIUr8USXt2TXuisRERERySMUrsQzad2ViIiIiOQxClfimdq1Ax8f+OMP+Osvu6sREREREVG4Eg8VEgItWphjjV6JiIiISB6gcCWeS+uuRERERCQPUbgSz+Vcd/XTT5CUZG8tIiIiIlLgKVyJ54qMhLAwOHsWVqywuxoRERERKeAUrsRzORyXRq80NVBEREREbKZwJZ7Nue5KTS1ERERExGYKV+LZoqLAywu2b4cDB+yuRkREREQKMIUr8WzFi0OzZuZYo1ciIiIiYiOFK/F8WnclIiIiInmAwpV4Pue6qyVLIDnZ3lpEREREpMBSuBLP16ABlCoFp0/DqlV2VyMiIiIiBZTClXg+Ly+IjjbHWnclIiIiIjZRuJL8wTk1UOuuRERERMQmtoerCRMmEBERgb+/P02bNmXt2rXXvX727NnUqFEDf39/6taty/fff3/VNTt27KBz586EhIQQGBhI48aNOaA23fnbHXeYTYV/+w0OH7a7GhEREREpgGwNV7NmzWLo0KGMHDmSjRs3EhkZSXR0NEePHk33+lWrVtGzZ08GDBjApk2b6NKlC126dGHbtm2ua/78809uueUWatSowbJly/jtt98YPnw4/v7+ma7v4sUsvzTJbSVLQuPG5lhTA0VERETEBg7Lsiy7fnjTpk1p3Lgx48ePByA1NZXw8HCeeOIJnn/++auu79GjB4mJicyfP991rlmzZtSvX5+JEycCcN9991GoUCE+/vjjLNeVkJBASEgIn38eT48ewVl+HsllI0fCSy/BvffCF1/YXY2IiIiI5APObBAfH09w8PWzgW0jV8nJyWzYsIGoqKhLxXh5ERUVxerVq9N9zOrVq9NcDxAdHe26PjU1le+++45q1aoRHR1N6dKladq0KfPmzbtuLUlJSSQkJKS5AcyYkY0XKLnPue5q0SINO4qIiIhIrrMtXB0/fpyUlBRCQ0PTnA8NDSU2Njbdx8TGxl73+qNHj3LmzBlee+012rdvz48//kjXrl25++67Wb58+TVrGTNmDCEhIa5beHg4AAsXwpEj2XmVkqsaN4bixeHUKVizxu5qRERERKSAsb2hhTulpqYCcNddd/HUU09Rv359nn/+ef7xj3+4pg2mZ9iwYcTHx7tuMTEx//988NFHuVK6uIO3t2lsAeoaKCIiIiK5zrZwVbJkSby9vYmLi0tzPi4ujrCwsHQfExYWdt3rS5YsiY+PD7Vq1UpzTc2aNa/bLdDPz4/g4OA0N6cpU8C+VWmSae3bm69qaiEiIiIiucy2cOXr60vDhg1ZsmSJ61xqaipLliyhefPm6T6mefPmaa4HWLRoket6X19fGjduzK5du9Jc88cff1ChQoVM1xgYCLt3w4oVmX6o2MW5mfCGDXBFEBcRERERyUm2TgscOnQokydPZsaMGezYsYPHHnuMxMRE+vXrB0Dv3r0ZNmyY6/rBgwezYMECxo4dy86dOxk1ahTr169n0KBBrmueffZZZs2axeTJk9mzZw/jx4/n22+/5fHHH890fffcY75OmZK91ym5KCwMbr7ZHC9caG8tIiIiIlKg2BquevTowVtvvcWIESOoX78+mzdvZsGCBa6mFQcOHODIZR0lWrRowcyZM5k0aRKRkZHMmTOHefPmUadOHdc1Xbt2ZeLEibzxxhvUrVuXDz/8kC+//JJbbrkl0/X17m2+zp4N8fHZe62Si5xdAzU1UERERERyka37XOVVzl72p07F06JFMNu3w8SJ8M9/2l2ZZMiKFdC6tekcePSoaXQhIiIiIpIFHrHPlSdwOGDAAHP84Yf21iKZ0Lw5hITAyZOwfr3d1YiIiIhIAaFwdQMPPgiFCpnf0X/7ze5qJEN8fMC52bRasouIiIhILlG4uoFSpeCuu8yxGlt4EK27EhEREZFcpnCVAc6pgZ98AufP21uLZJCzJfvatXD8uL21iIiIiEiBoHCVAbffDuHhZgnPvHl2VyMZUr481K1rdoBetMjuakRERESkAFC4ygBvb/j/rbc0NdCTOKcGat2ViIiIiOQChasM6tfPdA9cvBj27bO7GsmQ9u3N14ULITXV3lpEREREJN9TuMqgiAho184cT5tmaymSUS1bQpEiZq+rTZvsrkZERERE8jmFq0xwNraYOhVSUuytRTLA1/dSIlbXQBERERHJYQpXmdClCxQvDgcPqkeCx9C6KxERERHJJQpXmeDvDw88YI7V2MJDONddrV4Nf/9tby0iIiIikq8pXGWSc2rg11/DsWP21iIZUKEC1KxpGlosXmx3NSIiIiKSjylcZVK9etCoEVy4AB9/bHc1kiHO0SutuxIRERGRHKRwlQUPPWS+Tpli9qiVPM657mrBAv0HExEREZEco3CVBffdB4ULw/btsGaN3dXIDbVqBQEBcPgwbN1qdzUiIiIikk8pXGVBSAjce685VmMLD+DvD7fdZo7VNVBEREREcojCVRY5G1t8/jmcOWNvLZIBznVXClciIiIikkMUrrKoVSuoWtUEqy++sLsauSHnuquVKyEhwd5aRERERCRfUrjKIofj0uiVpgZ6gMqVoUoVuHgRliyxuxoRERERyYcUrrKhTx/w9oZVq2DHDrurkRu6vGugiIiIiIibKVxlQ1gYdOxojjV65QEuX3elluwiIiIi4mYKV9nk3PPqo48gOdneWuQGbr0V/PwgJkZDjSIiIiLidgpX2dShA5QpA8eOwfz5dlcj1xUQAG3amGN1DRQRERERN1O4yiYfH7P2CjQ10CNo3ZWIiIiI5BCFKzfo3998XbAADh60txa5AWe4+vlnbVAmIiIiIm6lcOUGVaua2WapqTB9ut3VyHVVqwYREWaB3LJldlcjIiIiIvmIwpWbOPe8mjrVhCzJoxyOS6NXWnclIiIiIm6kcOUm99wDwcGwd68GRPI8tWQXERERkRygcOUmAQFw//3m+MMP7a1FbqBtWyhUyCTh3bvtrkZERERE8gmFKzdy7nn11Vfw99/21iLXUaQItGpljtU1UERERETcROHKjRo0gMhISEqCTz+1uxq5Lq27EhERERE3U7hyI4fjUmOLDz/Ucp48zbnuatkyOHfO1lJEREREJH9QuHKzXr3Azw+2bIGNG+2uRq6pdm0oXx7On4fly+2uRkRERETyAYUrNyteHO6+2xxPmWJvLXIdDkfaroEiIiIiItmUJ8LVhAkTiIiIwN/fn6ZNm7J27drrXj979mxq1KiBv78/devW5fvvv0/z/b59++JwONLc2jt/kc4FzqmBM2dqxlme5lx3paYWIiIiIuIGtoerWbNmMXToUEaOHMnGjRuJjIwkOjqao0ePpnv9qlWr6NmzJwMGDGDTpk106dKFLl26sG3btjTXtW/fniNHjrhun332WW68HABuuw0qVoT4ePjyy1z7sZJZ7dqBjw/88Qf89Zfd1YiIiIiIh7M9XL399ts8/PDD9OvXj1q1ajFx4kQCAgKYOnVqute/++67tG/fnmeffZaaNWvy8ssv06BBA8aPH5/mOj8/P8LCwly3YsWK5cbLAcDLC/r3N8fa8yoPCwmBFi3MsUavRERERCSbbA1XycnJbNiwgaioKNc5Ly8voqKiWL16dbqPWb16dZrrAaKjo6+6ftmyZZQuXZrq1avz2GOPceLEiWvWkZSUREJCQppbdvXta0LW8uWwZ0+2n05yitZdiYiIiIib2Bqujh8/TkpKCqGhoWnOh4aGEhsbm+5jYmNjb3h9+/bt+eijj1iyZAmvv/46y5cvp0OHDqSkpKT7nGPGjCEkJMR1Cw8Pz+YrM43ooqPN8TUG4SQvcK67+ukns0GZiIiIiEgW2T4tMCfcd999dO7cmbp169KlSxfmz5/PunXrWLZsWbrXDxs2jPj4eNctJibGLXU4G1tMnw4XL7rlKcXdIiMhLAzOnoUVK+yuRkREREQ8mK3hqmTJknh7exMXF5fmfFxcHGFhYek+JiwsLFPXA1SqVImSJUuy5xrz8/z8/AgODk5zc4dOnaBUKThyRLPO8qzLW7Jr3ZWIiIiIZIOt4crX15eGDRuyZMkS17nU1FSWLFlC8+bN031M8+bN01wPsGjRomteD3Dw4EFOnDhBmTJl3FN4Bvn6Qu/e5lh7XuVhWnclIiIiIm5g+7TAoUOHMnnyZGbMmMGOHTt47LHHSExMpF+/fgD07t2bYcOGua4fPHgwCxYsYOzYsezcuZNRo0axfv16Bg0aBMCZM2d49tln+fXXX9m3bx9LlizhrrvuokqVKkQ7F0HlIufUwPnz4RrLyMRut99uuo9s3w4HDthdjYiIiIh4KNvDVY8ePXjrrbcYMWIE9evXZ/PmzSxYsMDVtOLAgQMcOXLEdX2LFi2YOXMmkyZNIjIykjlz5jBv3jzq1KkDgLe3N7/99hudO3emWrVqDBgwgIYNG7JixQr8/Pxy/fXVrAnNm0NKCnz0Ua7/eMmI4sWhWTNzrKmBIiIiIpJFDsuyLLuLyGsSEhIICQkhPj7eLeuvpk41I1jVqsHOnWaZj+QxL78MI0ZA167w1Vd2VyMiIiIieURmsoHtI1cFQffuUKQI/PEH/PKL3dVIupwt2RcvhuRke2sREREREY+kcJULihSBHj3MsRpb5FENGpjWjqdPwzU2sBYRERERuR6Fq1zibGwxezbEx9tbi6TDy+vSrs/qGigiIiIiWaBwlUuaNYNatcxetZ9/bnc1ki7tdyUiIiIi2aBwlUscjkujV5oamEfdcYf5D7VlCxw+bHc1IiIiIuJhFK5y0YMPQqFCsG4dbN1qdzVylVKloFEjc7xwob21iIiIiIjHUbjKRaVKQefO5lijV3mUs2ug1l2JiIiISCYpXOWyhx4yXz/+GJKS7K1F0uFcd7VoEVy8aG8tIiIiIuJRshSuYmJiOHjwoOv+2rVrGTJkCJMmTXJbYfnV7bdDeDicPAnz5tldjVylSRMoVgxOnYI1a+yuRkREREQ8SJbC1f3338/SpUsBiI2N5fbbb2ft2rW8+OKLvPTSS24tML/x9oa+fc2xpgbmQd7eprEFaGqgiIiIiGRKlsLVtm3baNKkCQBffPEFderUYdWqVXz66adMnz7dnfXlS/36ma+LFsG+fbaWIulxrrtSS3YRERERyYQshasLFy7g5+cHwOLFi+n8/10aatSowZEjR9xXXT5VsSJERZnjadPsrUXS4dxMeMMGiIuztxYRERER8RhZCle1a9dm4sSJrFixgkWLFtH+/5sAHD58mBIlSri1wPzKuefVtGmQkmJvLXKFsDC4+WZz/OOP9tYiIiIiIh4jS+Hq9ddf53//+x+33norPXv2JDIyEoBvvvnGNV1Qrq9LF9M3ISYGFi+2uxq5irNroNZdiYiIiEgGOSzLsrLywJSUFBISEihWrJjr3L59+wgICKB06dJuK9AOCQkJhISEEB8fT3BwcI79nCefhHHjoFs3mD07x36MZMWKFdC6NZQoYaYGenvbXZGIiIiI2CAz2SBLI1fnzp0jKSnJFaz279/PO++8w65duzw+WOUm555XX38Nx47ZW4tcoVkzCA6GEydg/Xq7qxERERERD5ClcHXXXXfx0UcfAXDq1CmaNm3K2LFj6dKlCx988IFbC8zP6tWDRo3gwgX45BO7q5E0ChUym5KBugaKiIiISIZkKVxt3LiRVq1aATBnzhxCQ0PZv38/H330Ee+9955bC8zvnI0tpkyBrE3QlBzjbMmudVciIiIikgFZCldnz54lKCgIgB9//JG7774bLy8vmjVrxv79+91aYH7XsycULgy//w5r1thdjaThbMm+dq2ZHigiIiIich1ZCldVqlRh3rx5xMTEsHDhQu644w4Ajh49mqMNIPKjkBC4915zPGWKvbXIFcqXh7p1zZCiWrKLiIiIyA1kKVyNGDGCZ555hoiICJo0aULz5s0BM4p1s3N/IMkw59TAzz+HM2fsrUWu4GzJrnVXIiIiInIDWW7FHhsby5EjR4iMjMTLy2S0tWvXEhwcTI0aNdxaZG7LrVbsTpYF1avD7t0wdSr065fjP1IyaulSaNsWSpeGI0fAK0ufR4iIiIiIh8rxVuwAYWFh3HzzzRw+fJiDBw8C0KRJE48PVnZwOKB/f3P84Yf21iJXaNkSihSBo0dh82a7qxERERGRPCxL4So1NZWXXnqJkJAQKlSoQIUKFShatCgvv/wyqamp7q6xQOjTx+xTu2oV7NhhdzXi4usL7dqZY3UNFBEREZHryFK4evHFFxk/fjyvvfYamzZtYtOmTbz66quMGzeO4cOHu7vGAqFMGejY0RxPnWpvLXIFrbsSERERkQzI0pqrsmXLMnHiRDp37pzm/Ndff83jjz/OoUOH3FagHXJ7zZXTN9/AXXeZ5T0xMWbQRPKAffugYkUztHj8OBQtandFIiIiIpJLcnzN1cmTJ9NdW1WjRg1OnjyZlacU4M47ISzMLO+ZP9/uasQlIgJq1ICUFFi0yO5qRERERCSPylK4ioyMZPz48VedHz9+PPXq1ct2UQWVjw/07WuOtedVHtOhg/mqqYEiIiIicg1Zmha4fPlyOnbsyE033eTa42r16tXExMTw/fff06pVK7cXmpvsmhYIph17tWqm4/eBA1CuXK7+eLmWH3+E6GgoWxYOHjQtHkVEREQk38vxaYFt2rThjz/+oGvXrpw6dYpTp05x99138/vvv/Pxxx9nqWgxqlaF1q0hNRWmT7e7GnFp3RoKF4bDh2HrVrurEREREZE8KMubCKdny5YtNGjQgJSUFHc9pS3sHLkC+Ogj05q9YkXYs0f71uYZHTvC99/Da6/Bc8/ZXY2IiIiI5IJc2URYck63bhAcDHv3wrJldlcjLlp3JSIiIiLXoXCVBwUEwP33m2M1tshDnPtd/fILJCTYW4uIiIiI5DkKV3nUgAHm65dfwt9/21uL/L8qVczt4kX46Se7qxERERGRPCZT4eruu+++7u2pp57KUhETJkwgIiICf39/mjZtytq1a697/ezZs6lRowb+/v7UrVuX77///prXPvroozgcDt55550s1WaXhg2hXj1ISoJPP7W7GnFxjl798IO9dYiIiIhInpOpcBUSEnLdW4UKFejdu3emCpg1axZDhw5l5MiRbNy4kcjISKKjozl69Gi6169atYqePXsyYMAANm3aRJcuXejSpQvbtm276tq5c+fy66+/UrZs2UzVlBc4HPDQQ+ZYUwPzkMvXXbmvF4yIiIiI5ANu7RaYFU2bNqVx48auTYlTU1MJDw/niSee4Pnnn7/q+h49epCYmMj8+fNd55o1a0b9+vWZOHGi69yhQ4do2rQpCxcupGPHjgwZMoQhQ4ZkqCa7uwU6nTxptlVKSoING6BBA9tKEaezZ6F4cfMf5fffoVYtuysSERERkRzkMd0Ck5OT2bBhA1FRUa5zXl5eREVFsXr16nQfs3r16jTXA0RHR6e5PjU1lQcffJBnn32W2rVr37COpKQkEhIS0tzyguLFoWtXc6zRqzwiIADatDHH6hooIiIiIpexNVwdP36clJQUQkND05wPDQ0lNjY23cfExsbe8PrXX38dHx8fnnzyyQzVMWbMmDTTG8PDwzP5SnKOs7HFp5/CuXP21iL/zzk1UOuuREREROQy+a5b4IYNG3j33XeZPn06DocjQ48ZNmwY8fHxrltMTEwOV5lxbdtCRATEx5vOgZIHOJta/PwzJCbaW4uIiIiI5Bm2hquSJUvi7e1NXFxcmvNxcXGEhYWl+5iwsLDrXr9ixQqOHj3KTTfdhI+PDz4+Puzfv5+nn36aiIiIdJ/Tz8+P4ODgNLe8wssL+vc3x5oamEdUr24Sb3IyLF1qdzUiIiIikkfYGq58fX1p2LAhS5YscZ1LTU1lyZIlNG/ePN3HNG/ePM31AIsWLXJd/+CDD/Lbb7+xefNm161s2bI8++yzLFy4MOdeTA7q29d0D1y2DPbssbsaweG4NHqldVciIiIi8v9snxY4dOhQJk+ezIwZM9ixYwePPfYYiYmJ9OvXD4DevXszbNgw1/WDBw9mwYIFjB07lp07dzJq1CjWr1/PoEGDAChRogR16tRJcytUqBBhYWFUr17dlteYXeHhl36XnzrV3lrk/12+7kot2UVERESEPBCuevTowVtvvcWIESOoX78+mzdvZsGCBa6mFQcOHODIkSOu61u0aMHMmTOZNGkSkZGRzJkzh3nz5lGnTh27XkKucDa2mD4dLl60tRQBuO02KFQI/voLdu+2uxoRERERyQNs3+cqL8or+1xdLjkZypeHY8fg22/hH/+wuyKhXTv46Sd4913IYGdKEREREfEsHrPPlWScry88+KA5VmOLPMI5V1Mt2UVEREQEhSuP4pwa+O23cI1twCQ3OdddLVumTchEREREROHKk9SqBc2bQ0oKfPSR3dUItWtDuXJw/jwsX253NSIiIiJiM4UrD+McvZoyRU3qbOdwXBq9Ukt2ERERkQJP4crDdO8OgYHwxx+wcqXd1YjWXYmIiIiIk8KVhwkKgvvuM8cffmhvLQJERYG3t0m7f/1ldzUiIiIiYiOFKw/knBo4ezYkJNhbS4EXEgItWphjTQ0UERERKdAUrjxQs2ZQsyacPQuff253NaJ1VyIiIiICClceyeFI29hCbOZcd/XTT5CUZG8tIiIiImIbhSsP9eCDUKgQrF0LW7faXU0BV78+hIVBYiL88ovd1YiIiIiITRSuPFTp0tC5sznW6JXNHA51DRQRERERhStP5pwa+PHHmo1mO2e40rorERERkQJL4cqD3XEHlC8PJ0/C11/bXU0Bd/vt4OUFv/8OMTF2VyMiIiIiNlC48mDe3tCvnznWnlc2K14cmjY1xxq9EhERESmQFK48nDNcLV4M+/fbW0uB52zJrnVXIiIiIgWSwpWHq1gR2rUDy4Jp0+yupoBzrrtavBguXLC3FhERERHJdQpX+YCzscW0aZCSYm8tBVrDhlCyJJw+DatW2V2NiIiIiOQyhat8oGtXKFYMDhwwgyZiEy8viI42x5oaKCIiIlLgKFzlA/7+8MAD5lh7XtnMue5KTS1EREREChyFq3zCOTVw3jw4ftzWUgq2O+4wmwpv2QKHD9tdjYiIiIjkIoWrfCIy0iz5uXABPvnE7moKsFKloFEjc7xwob21iIiIiEiuUrjKRx56yHz98EPTPVBs4uwaqHVXIiIiIgWKwlU+0rMnFC4Mv/8Oa9faXU0B5lx3tWgRXLxoby0iIiIikmsUrvKRkBDo1s0cq7GFjZo0Me0bT52CNWvsrkZEREREconCVT7jbGzx2Wdw5oy9tRRY3t6msQWoa6CIiIhIAaJwlc+0bg1VqphgNXu23dUUYFp3JSIiIlLgKFzlMw7HpdErTQ20kXMz4Q0b4OhRe2sRERERkVyhcJUP9eljZqatXAk7d9pdTQFVpgzUr2+O1ZJdREREpEBQuMqHypSBO+80x1On2ltLgebsGqh1VyIiIiIFgsJVPuXc82rGDLOxsNjAGa4WLoSUFHtrEREREZEcp3CVT915J4SFmeU+8+fbXU0B1awZBAfDiRNm7ZWIiIiI5GsKV/mUj49ZewVqbGGbQoXg9tvNsboGioiIiOR7Clf5WP/+5usPP8ChQ/bWUmA5W7Jr3ZWIiIhIvqdwlY9Vq2b2vUpNhenT7a6mgHKGqzVrzPRAEREREcm38kS4mjBhAhEREfj7+9O0aVPWrl173etnz55NjRo18Pf3p27dunz//fdpvj9q1Chq1KhBYGAgxYoVIyoqijVr1uTkS8iznHteTZ1qQpbksvLloU4dsCxYtMjuakREREQkB9kermbNmsXQoUMZOXIkGzduJDIykujoaI5eY+PVVatW0bNnTwYMGMCmTZvo0qULXbp0Ydu2ba5rqlWrxvjx49m6dSu//PILERER3HHHHRw7diy3Xlae0a2b6anw11+wfLnd1RRQzq6BWnclIiIikq85LMuy7CygadOmNG7cmPHjxwOQmppKeHg4TzzxBM8///xV1/fo0YPExETmX9YCr1mzZtSvX5+JEyem+zMSEhIICQlh8eLFtGvX7oY1Oa+Pj48nODg4i68s73j0Ufjf/6BXL/jkE7urKYB++gnatYPSpeHIEfCy/TMNEREREcmgzGQDW3/LS05OZsOGDURFRbnOeXl5ERUVxerVq9N9zOrVq9NcDxAdHX3N65OTk5k0aRIhISFERkame01SUhIJCQlpbvmJc8+rOXPg77/traVAuuUWCAw0ffE3b7a7GhERERHJIbaGq+PHj5OSkkJoaGia86GhocTGxqb7mNjY2AxdP3/+fIoUKYK/vz///e9/WbRoESVLlkz3OceMGUNISIjrFh4eno1Xlfc0bAj16kFSEsycaXc1BZCvrxm5Ak0NFBEREcnH8u38pNtuu43NmzezatUq2rdvT/fu3a+5jmvYsGHEx8e7bjExMblcbc5yOC41ttCeVzZxrrtSS3YRERGRfMvWcFWyZEm8vb2Ji4tLcz4uLo6wsLB0HxMWFpah6wMDA6lSpQrNmjVjypQp+Pj4MOUaycLPz4/g4OA0t/ymVy8zgLJpE2zcaHc1BZCzJfvq1XDqlK2liIiIiEjOsDVc+fr60rBhQ5YsWeI6l5qaypIlS2jevHm6j2nevHma6wEWLVp0zesvf96kpKTsF+2hSpSAu+82xxq9skFEBNSoASkpsHix3dWIiIiISA6wfVrg0KFDmTx5MjNmzGDHjh089thjJCYm0q9fPwB69+7NsGHDXNcPHjyYBQsWMHbsWHbu3MmoUaNYv349gwYNAiAxMZEXXniBX3/9lf3797Nhwwb69+/PoUOHuPfee215jXmFc2rgp5/CuXP21lIgOUevtO5KREREJF+yPVz16NGDt956ixEjRlC/fn02b97MggULXE0rDhw4wJEjR1zXt2jRgpkzZzJp0iQiIyOZM2cO8+bNo06dOgB4e3uzc+dO7rnnHqpVq0anTp04ceIEK1asoHbt2ra8xryibVszgBIfD199ZXc1BdDl667s3QFBRERERHKA7ftc5UX5bZ+ry730EowcCbfdZrZfklx0/jwUL26GDbdsMS0cRURERCRP85h9riT39etnugcuXQp//ml3NQWMv79JtaCugSIiIiL5kMJVARMeDtHR5njqVHtrKZC07kpEREQk31K4KoCcjS2mT4eLF20tpeBxrrv65Rc4fdreWkRERETErRSuCqDOnaFkSTh8GBYutLuaAqZKFXO7eBGu2FJARERERDybwlUB5OsLvXub4w8/tLeWAsk5NVDrrkRERETyFYWrAso5NXD+fIiLs7eWAsc5NfCHH9SSXURERCQfUbgqoGrVgmbNzOy0jz6yu5oC5tZbwc8PDhyAnTvtrkZERERE3EThqgB76CHzdcoUDaDkqoAAaNPGHKtroIiIiEi+oXBVgHXvDoGBsGsXrFxpdzUFjFqyi4iIiOQ7ClcFWFAQ9OhhjqdMsbeWAse57urnnyEx0d5aRERERMQtFK4KOGdjiy++gIQEe2spUKpXhwoVIDkZli61uxoRERERcQOFqwKueXOoWRPOnoVZs+yupgBxOC6NXqklu4iIiEi+oHBVwDkcl0avtOdVLrt83ZU6ioiIiIh4PIUr4cEHwccH1q6FbdvsrqYAadsWChWCv/6CPXvsrkZEREREsknhSihdGjp3NsdqbJGLgoLgllvMsboGioiIiHg8hSsBLu159fHHkJRkby0FitZdiYiIiOQbClcCwB13QPnycOIEfP213dUUIM51V0uXwrlz9tYiIiIiItmicCUAeHtD377mWFMDc1GdOlCuHJw/b/a8EhERERGPpXAlLv36ma+LFsH+/fbWUmA4HGm7BoqIiIiIx1K4EpdKlaBdO9MVfNo0u6spQLTuSkRERCRfULiSNJx7Xk2bBikp9tZSYLRrZ+Zl7toFe/faXY2IiIiIZJHClaTRtSsUKwYHDsCSJXZXU0AULQotWphjjV6JiIiIeCyFK0nD3x969TLHamyRi5xTA7XuSkRERMRjKVzJVZx7Xs2dC8eP21tLgeFsavHTT9poTERERMRDKVzJVSIjoWFDuHABPvnE7moKiPr1ISwMEhPhl1/srkZEREREskDhStLlbGwxZYrpHig5zOGA6GhzrHVXIiIiIh5J4UrS1bOnWX+1bRusW2d3NQWE1l2JiIiIeDSFK0lX0aJw773m+MMPbS2l4Lj9dvDygt9/h5gYu6sRERERkUxSuJJrck4N/PxzsxRIcljx4tC0qTnW1EARERERj6NwJdfUujVUqQKnT8Ps2XZXU0A4uwZqaqCIiIiIx1G4kmtyOKB/f3OsPa9yiXPd1eLFpl2jiIiIiHgMhSu5rj59wNvbdAffudPuagqAhg2hZEkzXLhqld3ViIiIiEgmKFzJdZUtC3feaY6nTrW3lgLBy0st2UVEREQ8lMKV3JCzscWMGZqpliu07kpERETEI+WJcDVhwgQiIiLw9/enadOmrF279rrXz549mxo1auDv70/dunX5/vvvXd+7cOECzz33HHXr1iUwMJCyZcvSu3dvDh8+nNMvI9+6804IDYWjR+G77+yupgCIjjYL3rZsAf25FREREfEYtoerWbNmMXToUEaOHMnGjRuJjIwkOjqao0ePpnv9qlWr6NmzJwMGDGDTpk106dKFLl26sG3bNgDOnj3Lxo0bGT58OBs3buSrr75i165ddO7cOTdfVr5SqBD07WuOtedVLihVyqy9Ali40N5aRERERCTDHJZlWXYW0LRpUxo3bsz48eMBSE1NJTw8nCeeeILnn3/+qut79OhBYmIi8+fPd51r1qwZ9evXZ+LEien+jHXr1tGkSRP279/PTTfddMOaEhISCAkJIT4+nuDg4Cy+svzljz+genWzJOjAAShXzu6K8rkRI+Dll6F7d5g1y+5qRERERAqszGQDW0eukpOT2bBhA1FRUa5zXl5eREVFsXr16nQfs3r16jTXA0RHR1/zeoD4+HgcDgdFixZN9/tJSUkkJCSkuUla1apBq1aQmmrWXkkOc667+vFHuHjR3lpEREREJENsDVfHjx8nJSWF0NDQNOdDQ0OJjY1N9zGxsbGZuv78+fM899xz9OzZ85pJc8yYMYSEhLhu4eHhWXg1+Z+zscXUqSZkSQ5q0gSKFYNTp+AGaxBFREREJG+wfc1VTrpw4QLdu3fHsiw++OCDa143bNgw4uPjXbeYmJhcrNJzdOsGwcHw55+wfLnd1eRzPj5w++3mWF0DRURERDyCreGqZMmSeHt7ExcXl+Z8XFwcYWFh6T4mLCwsQ9c7g9X+/ftZtGjRdedH+vn5ERwcnOYmVwsMhJ49zfGUKfbWUiB06GC+ar8rEREREY9ga7jy9fWlYcOGLFmyxHUuNTWVJUuW0Lx583Qf07x58zTXAyxatCjN9c5gtXv3bhYvXkyJEiVy5gUUQM6pgV9+aWasSQ5ybia8fj2sWGFvLSIiIiJyQ7ZPCxw6dCiTJ09mxowZ7Nixg8cee4zExET69esHQO/evRk2bJjr+sGDB7NgwQLGjh3Lzp07GTVqFOvXr2fQoEGACVbdunVj/fr1fPrpp6SkpBAbG0tsbCzJycm2vMb8pFEjqFsXzp+HmTPtriafK1MGbrvNHLdpA4MGgZqtiIiIiORZtoerHj168NZbbzFixAjq16/P5s2bWbBggatpxYEDBzhy5Ijr+hYtWjBz5kwmTZpEZGQkc+bMYd68edSpUweAQ4cO8c0333Dw4EHq169PmTJlXLdVq1bZ8hrzE4cDHnrIHGvPq1zw5ZfQvz9YFkyYALVrw2XbEIiIiIhI3mH7Pld5kfa5ur4TJ6BsWUhOho0b4eab7a6oAFiyBP75T9NNBKBHD3j3Xbiic6aIiIiIuJfH7HMlnqlECeja1RyrsUUuadcOfvsN/vUv8PY2GwvXrAnTp5tRLRGRgiA+HiZPNlMovvpK+4KISJ6jcCVZ4mxs8emncO6cvbUUGAEB8PrrZt+rm2+Gv/+Gfv3gjjvgr7/srk5EJGekpprR+wceMGtRH3nEfLJ3zz3QsCF8/bU+ZBKRPEPhSrKkXTuoUMF0DPzqK7urKWAaNDAB6/XXwd8fFi+GOnVg7Fi4eNHu6kRE3OPPP2H4cKhYEaKiLn2aV7OmCVhBQbB5M3TpAo0bm/WoClkiYjOFK8kSLy/TZwE0NdAWPj5miuDWraaj4Llz8Mwz0KyZ+WVDRMQTnT4N06ZB69ZQpQr85z9w4AAULQqPPQZr1sDvv8P//gd798KwYWYTxg0boFMnaNrUbLyukCUiNlFDi3SooUXGHDgAERHm37A9e6ByZbsrKqAsy/wy8vTTZijR2xuefRZGjIDChe2uTkTk+lJT4eefzRrSOXMgMdGc9/Iy05779oW77jIj9ek5dgzeegvGj4ezZ825Zs3gpZfMiJfDkRuvQkTyMTW0kFxx003m3z0wv9uLTRwOM4y4fTt06wYpKfDaaxAZCcuX212diEj69u2D0aPNCNVtt8GMGSZYVasGY8aYT/B++MF0R71WsAIoVcpMk96713zI5O8Pv/5q/oFq1Qp++kkjWSKSazRylQ6NXGXcnDlw772mNfv+/Wa2mths3jwYOBAOHzb3H34Y3njDTKsREbFTYqLZv2/6dFi69NL5oCC47z7TpKdZs+yNNsXGmrD1wQeQlGTOtWljglybNtkqX0QKpsxkA4WrdChcZVxyMpQrB8ePm7XEHTvaXZEApl3x88/DxInmfpkyZhNiZw99EZHcYlmwcqWZ4vDFF3DmjDnvcJjuSH37mr+bAgLc+3MPHzYjYJMmmX+sANq2NSHrllvc+7NEJF/TtEDJNb6+8OCD5liNLfKQkBDzqe3PP5spNkeOwN13m9bFzhEtEZGcdOAAvPKK+TuoVSuYOtUEq8qV4eWXzbTARYugVy/3ByswUyrGjTOLgh97DAoVMlMEW7UyUwZXr3b/zxSRAk8jV+nQyFXm/P676QTu4wMHD0JoqN0VSRrnz5uOW6+/blq1h4TAm2+azcq89PmKiLjRuXMwd64ZpVqy5NJapyJFoHt3M0p1yy32NJnYvx9efdWEPOe2Fe3bm5GsJk1yvx4R8RgauZJcVbu2mSJ/8SJ89JHd1chV/P1NuNqwwewFEx9v9ohp2xb++MPu6kTE01mWGQX65z8hLMyMRC1ebM7feqtpVHHkiJne0KqVfd37KlQwLdz/+MN8uOTtDQsWmPbtnTqZvyNFRLJJ4UrcYsAA83XKFDVlyrPq1TO/AL39tpmCs3y5OTdmDFy4YHd1IuJpDh0ynUlr1oQWLczapoQEs0fHyJHw11+maUXv3mbkKq+oWBE+/BB27YI+fcwI/vz50KiR2ZBYewWKSDZoWmA6NC0w806fNj0TEhPhl1+gZUu7K5Lr2rsXHn0UfvzR3I+MNL9sNGpkb10ikredPw/ffGOm/f34o9mjCswHNt26mWl/bdp41pTjP/4wa8Bmzrz0eu6+G0aNgrp1bS1NRPIGTQuUXBcUZKbTgxpbeISKFc10mI8+guLFYcsWMzXmmWcubeApIgJmOsK6dWaLh7Jlzb5TCxaYINKqlflLPzbWTP+77TbPClZgGm58/LFZQNyzp5m2+NVXZmS/e3dzXkQkgzRylQ6NXGXNqlVmxCogwEyv11vnIY4ehaeeMp/agglekyZBVJS9dYmIvWJj4ZNPzJ5UlweM8HAzna5PH7MBcH7z++/w0kumbTyYsHXffTBiBNSoYW9tImILjVyJLZo3N//unD0Ls2bZXY1kWOnS8Omn8N135pemvXvh9tvNZp4nT9pdnYjkpuRks8lvp05Qvjw8+6wJG/7+cP/9pnX63r1mGl1+DFZgujTNmgW//Wa2r7As+Owzc/7BB2H3brsrFJE8TOFK3MbhSNvYQjzMnXeaX6KeeML8x5w+3SxUnzVLXUpE8jPLgk2b4MknzbS/bt1Mg4eUFPOp2f/+Z0axPv3UjGh7e9tdce6oWxfmzDHvzV13mWmQn3xiPkXs2xf+/NPuCkUkD9K0wHRoWmDWHT0K5cqZtuxbt5r9r8QDrV4NDz0E27eb+//4B7z/vhnZEpH84ehRMx142jQzSuNUtqzp8Ne3L1Svblt5ec6GDabJxfz55r63t5ka+e9/m+nUIpJvaVqg2KZ0aejc2Rxr9MqDNW8OGzeazTULFTK/TNSubQKWs5uWiHieCxfg669Ny/Fy5cx6y99+Az8/06jihx/gwAGzRYOCVVoNG8K338KaNdChgxnZmzrVNMR45BGzSbGIFHgauUqHRq6y5/vvoWNHKFHCbIPi52d3RZIt27fDww+bjiVg9rP58EMzZVBEPMNvv5mpvp98AseOXTrfpIkZobrvPihWzK7qPNOvv5r9vJxbWhQqZEb8X3jBrFcTkXwjM9lA4SodClfZk5ICFSqYYPWvf5mRrNq1oWhRuyuTLEtNhQ8+gOefhzNnwNcXXnzR3Pf1tbs6EUnPiRNm2t/06WYk2ik01DRm6NvX/OUs2bNypQlZS5aY+76+ZiRr2DAzxVJEPJ7CVTYpXGXf8OHwn/+kPVe+vFmDVbu2+Vqnjhn8CAy0p0bJgpgYeOwx01kQzH/MDz+EZs3srUtEjIsXzR5U06ebzX4vXDDnCxUyn3T16wfR0eDjY2uZ+dLPP5t27cuXm/t+fmaz9uefh7Awe2sTkWxRuMomhavsS0iAN94wH5Zu22Z+J0+PwwGVKqUNXHXqmKn+GhDJoyzLdBB88kkzvcjhMB0G//Mfs5u0iOS+7dtNY4qPP4a4uEvnGzQwI1T332/makvOW7rUhKxffjH3Cxc2H0o995xZmCwiHkfhKpsUrtwvPt50+d627dLXbdtMs6r0+PhA1appA1edOlC5csHpApznnTgBTz8NM2aY+zfdBBMnmoXeIpLz/v4bPv/chKp16y6dL1UKHnjAhKp69Wwrr0CzLFi82EwXXL3anAsIgEGDzN5hJUvaW5+IZIrCVTYpXOWeo0dN2Lo8cG3bZsJYevz8zFTCywNX7drm93ov9b60x6JFZn3Bvn3m/v33wzvvmF/wRMS9UlLM/3PTp8O8eZCUZM77+JgtE/r2NXvWFSpkY5HiYlmwcKEJWWvXmnOBgWbk/+mnNZoo4iEUrrJJ4cpelmWaYVwZuH7/Hc6dS/8xRYqknVroPA4LM7PWJIclJppfHv77X9P8okQJE7B69dJ/ABF32LXLBKqPPoLDhy+dr1fPrKO6/35NOcvLLMu00h0x4lJzkaAgGDwYhg5Vp0aRPE7hKpsUrvKm1FQzOHJ54Nq2DXbuvLRm+0rFi18duOrUMeclB6xfDwMGXNqQNDraTBWMiLC1LBGPFB9v1jdOn35pahmYv8B69TKhqn59fYDhSSzL7JU1ciRs3mzOBQeb/caGDFFbXZE8SuEqmxSuPMuFC7Bnz9WjXLt3X3u/2zJlrg5ctWqpH4NbXLgAb71lNiBOSjLrDF55xTS90II5ketLTYWffjLrqL76Cs6fN+e9vc16xr59zfQ/bSDo2VJTzWbOI0fC1q3mXNGiZqrgk0+awCUieYbCVTYpXOUP58+bUa0rm2g4lwalJyLi6s6FNWqAv39uVZ2P/PGH2Xz455/N/SZNTNv2unXtrUskL9qzxzSHmTEjbXvVWrXMCNUDD6idd36UmgpffgmjRpmOj2BGJp95xjS/0Cd+InmCwlU2KVzlb6dPm3/DrlzTdeRI+td7eUGVKld3LqxSRWvGbyg11QSqZ581/fl9fEw74n//W4lV5PRpmD3bjFI523aDGcG4/34zStWokab9FQQpKebPwujR5lNBMGtX//UvGDhQG0KK2EzhKpsUrgqmkyevDlzbtpnz6SlUyIxqXdm5sGJFdS68yuHD5heEefPM/erVYfJkaNXK1rJEcl1qqtlkdvp0mDMHzp4157284I47zChV58768KGgSkkx7fVHjzZz28F0Xn3uObNXVkCAvfWJFFAKV9mkcCVOlmX247wycP3+O5w5k/5jAgLMTJ4r13SVK6cPoPnqKxOyYmPN/Ucfhddeg5AQe+sScYekJPNn+/Bhczty5NKx8/7Bg3Dq1KXHVK9+adpfuXK2lS55zMWLMHMmvPQS/PmnORcaCs8/D//8p9mYWERyjcJVNilcyY1YFhw4cHXg2r790rYzVwoJuTpw1alTALeDOnXKTHWZPNncL1cO3n/ffFovkhclJ6cNTVcGJ+fxiRMZe77gYLjvPhOqmjbVpy5ybRcuwCefmJDlXDBcpgy88AI89JBGOEVyicJVNilcSValpJgPGa9sorFrl/leekqXvjpw1a5dAAZzli41mw/v2WPu33svvPeeFu1L7rlwIWOh6fjxjD+nry+ULWtuZcqkf1y5sn4plsy5cME0O3n5ZfPJHkD58iZk9e+v7pEiOcyjwtWECRN48803iY2NJTIyknHjxtGkSZNrXj979myGDx/Ovn37qFq1Kq+//jp33nmn6/tfffUVEydOZMOGDZw8eZJNmzZRv379TNWkcCXulpRkmudduabrr7/MKFh6ype/1K2wXDnzO5nza9my+WR987lz5hPZN9806bNoURg71nyir0/zJasuXDDzeW8Umo4dy/hzFiqUflC68n6xYvqzKzknORmmTjXbWxw8aM7ddBO8+KJpgOLra2t5IvmVx4SrWbNm0bt3byZOnEjTpk155513mD17Nrt27aJ0OjvNr1q1itatWzNmzBj+8Y9/MHPmTF5//XU2btxInTp1APj444/Zu3cvZcuW5eGHH1a4kjzt7FnYsePqNV3OfzOvJyTk0u9zl4euy++HhXnIv7WbN5vNhzduNPfbtoX//c+0ZBRxcoam9ILSlaEpo/+0FSp0KRxdLzQVL67QJHlHUpLpxPrqq+bPPJi9RIYPhwcfVCtbETfzmHDVtGlTGjduzPjx4wFITU0lPDycJ554gueff/6q63v06EFiYiLz5893nWvWrBn169dn4sSJaa7dt28fFStWVLgSj3TqlFm/tW2bmTXn/N3x0CFzS0zM+HOVLp1+8Lr8uFSpPNDh8OJFeOcdGDHCjGj5+5tRraeeMi3cJf+6eDFjoeno0YyHJh+fa0/LuzI02f6HXySLzp+HSZNgzJhLjYIqVTJ/j/bqpb87RdzEI8JVcnIyAQEBzJkzhy5durjO9+nTh1OnTvH1119f9ZibbrqJoUOHMmTIENe5kSNHMm/ePLZs2ZLm2syEq6SkJJIu60KQkJBAeHi4wpXkWadPXwpblwevy2dBHT5sZpBkhI+PGeVKL3hdfj8kJBc+vP/zT9MNa8kSc//mm2HKFPNVPMvFiyYQ3Sg0xcVlLjSFhd04NJUoodAkBcfZszBxIrz+uvl/DqBqVROyevYEb2976xPxcJkJV7Z9pHH8+HFSUlIIDQ1Ncz40NJSdzg30rhAbG5vu9bHOT2uyaMyYMYwePTpbzyGSm4KCTAfn6tWvfY1lmeZl6QWvy+/HxZnfgQ8evPF0xMKFrz8N0XnL1lYslSvDokVm8fbQobBpEzRuDE8/DaNGqQVxXpCSkvHQlJqasef09s5YaCpZUqFJ5EoBAebvy3/+03RffeMNs0/Wgw/Cf/4DI0dC9+4KWSK5QOPFwLBhwxg6dKjrvnPkSsSTORzm99CSJaFevWtf55yRlV7wuvz45EkzW+/PPy9tu3ItRYtefxqicz3YNZcFOBxmcXaHDjB4MMyaZX5Z+PJL08L9ttuy+K7IDV24YP6Dx8RcfXP+gYiNzVxoCg3NWGjSL34i2RMYCM8+azYcHj/eNAvatQvuv/9SyOrWTR9QiOQg28JVyZIl8fb2Ji4uLs35uLg4wq7RijksLCxT12eUn58ffmpjKgWUj48JPTfav/T8+WuPfl2+HuzsWbNmzLlu7FocjrTrwdIPYaGUnPk5XvffD48/blJd27am+cWbb5rObJJxKSkmGB08mH54iokxo04ZmaLn5XXt0HT5/VKlFJpEcluRImbD4ccfh3Hj4K23zF/IPXqYNrSjR0OXLgpZIjnA9oYWTZo0Ydy4cYBpaHHTTTcxaNCgaza0OHv2LN9++63rXIsWLahXr54aWojkAZZl1oNdbxrioUPm9/cLFzL2nM5mblVKJ/DMyWF0+Ot9AM6FhLJn8Hh8etxD2XIOgoMLeDM3yzJd8q4VmmJizH+Aixdv/Fy+vmYvgPDwSzfnfWd4Kl1aoUnEU8THw7vvwttvm2OAyEiz12BIiNkny3nz97/xsRplSAHjEQ0twLRi79OnD//73/9o0qQJ77zzDl988QU7d+4kNDSU3r17U65cOcaMGQOYVuxt2rThtddeo2PHjnz++ee8+uqraVqxnzx5kgMHDnD48GHXNdWrVycsLCzDI1wKVyI5KzU1/fVgV4ay9PoctOQXJvMwNTFrM+dxFwOZwKmActddC1a8OAQHm1uRIh6WCyzLDAVeLzgdPGjaM9+It7d5Qy4PTlfe8kT7SBFxu7//hv/+13RmPX0668/j7Z35QJZT1ynoSS7wmHAFMH78eNcmwvXr1+e9996jadOmANx6661EREQwffp01/WzZ8/m3//+t2sT4TfeeCPNJsLTp0+nX79+V/2ckSNHMmrUqAzVpHAlkjdcvhfs5cHr6IHztFn5Kj32jqEQF4knmH/xBpN5GIuMhYLAQBO0goIuha6sHAcGumHE7PTpGwenjPTfdzjMYrb0RpyctzJlPCxZiojbnTwJ770HGzaYD2XOnzdfr3V8/nzG11nmNi8ve0Ld5cdBQR6yqaRklUeFq7xI4UrEQ2zdCg8/DGvWABBfrxUr+05mp1X9qtGwU6cgISHj7ekzysvL/LvqDF1Xhq8SAecox0HKXIihdFIMJc7GUPR0DEVOxRBwIgbfuBi8T8dn7IeVLHn9EaeyZfUPvIjkjIsXL4WujASyK4/d+ZiUFLvfjasVLmy6OYWEZO1rkSIFfG573qZwlU0KVyIeJCUFJkyAF14wozt+fjB8OPzrX+m2I0xKMgNFCQmXvmb12CslmXIcIpyYdG/lOUgpjmfoZfxNUQ4SzpFC4RzzC+dkYHnig8NJLBbO2RLhXAgtT+HihTM8onbNTowiIp7uekEvt4Ofu4Kel5cJWjcKYdf6XkiIPlzLQQpX2aRwJeKB9u+HRx+FBQvM/bp14cMPoUmTrD1fSorpvHGNqXpWTAzExeHIwF+hSYUCOREQzlG/cI54h3PQEc7+1HD+TA5n9/lwdp4NJ5EiWavzGvz9szft0fnV49aniYjkposXzadtzja58fGZ/5rRDk83otGzHKNwlU0KVyIeyrJg5kyzN9aJE+aTwMGD4eWXzeIop9RUswnutdY3OTvrZeQTST+/q6fnXbnOqWjR6/6DlZoKZ864ZzTt3Lnsv41Xunx9WlCQ+fc3MNB8vdEtvesCAxXYREQA8+/WuXNZC2XOr9lpTnK5jI6eXWs0LR+PnilcZZPClYiHO3YMhg6FTz4x9yMioGXLtJvhZmTxlXMTsOutcypZMk990nfhgvl3NrshLT4+Y13bs6pw4YwFsYwGtiJFTM7NQ/8pRERyR0qK+cs7q+Hs1Km8MXpWurT5izwPUrjKJoUrkXxiwQL45z/hwIGrv+flZTrnXWu0KTzcbJJbQIdYLMssKbgyeCUmmlG2y2/pnbvWLScbjnl7uz+waZRNRPI9yzLrx64XvnJj9Ozrr6Fz5+w/Tw7ITDbQ5gAikn+1bw+//w5Tp5qkcGVLcnV9uCaHw6zb8vc3Hya6gzOw3SiAZTSsOa9zToVMSTH/xjv3SHWXK0fZshvY/P3NH71ChbSdmIjkAQ6H+YuucGHzb2NWuGP0LCTEPa/HZhq5SodGrkREPEdKyvUDWWbD2pkz5kPY3NjWx+G4FLSud/Pxydh1mbnW3dc5w6KmZopIpjnjSB79C0QjVyIiUmB4e1/qdugu1xtly0pYc96ubDhiWWb5n7v3X7NTboXFy/d09fVNez8z3/PRb0Ii9sujoSor9FeKiIjIFS6fFlmypPueNyXFhLYLF9LeLl68+lx6t4xelxPPmd516bne9/IiL6+sB7OsfC8jjy1UKF/9rilSoChciYiI5BJvbwgIsLsK97AsExbtCHbO0b7L93O98v71vnf5gojUVDOimBPbGGSVw5F+AMtuaLvR+Rsdq7mLyI0pXImIiEimORxmSp2Pj1kH7yksy4S1rAazzHw/M9+7fFs957TUpCT73qf0eHtnLoxlJcBl5djHRyN9kncoXImIiEiBcXkTkSJF7K7mEueUUXeHtht9//L76R1fWWNeG+WDtCN9OR3k0jt2rg10rg9M79h5UwjM/xSuRERERGzmnDKal6aNWtalaZhZDWc5dXx5N8+8OtKXHm/vjAWx6933lGu9vQtmmFS4EhEREZGrOEeEfH3z1igfpB3psyvgOY+dawIvXkx7u1bdztoLAm/vjIe2CRPgllvsrjj7FK5ERERExKPkxZG+yzkbvqQXvK53PzPXZuex7r728jWDl3OGyYw4e9Z977+dFK5ERERERNzo8oYv/v52V5PzLu8emtXQdvPNdr8K91C4EhERERGRLLs8TBZ0XnYXICIiIiIikh8oXImIiIiIiLiBwpWIiIiIiIgbKFyJiIiIiIi4gcKViIiIiIiIGyhciYiIiIiIuIHClYiIiIiIiBsoXImIiIiIiLiBwpWIiIiIiIgbKFyJiIiIiIi4gcKViIiIiIiIGyhciYiIiIiIuIHClYiIiIiIiBsoXImIiIiIiLiBj90F5EWWZQGQkJBgcyUiIiIiImInZyZwZoTrUbhKx4kTJwAIDw+3uRIREREREckLTp8+TUhIyHWvUbhKR/HixQE4cODADd9AubaEhATCw8OJiYkhODjY7nI8kt5D99D7mH16D91D76N76H3MPr2H7qH3Mfs84T20LIvTp09TtmzZG16rcJUOLy+zFC0kJCTP/kf2JMHBwXofs0nvoXvofcw+vYfuoffRPfQ+Zp/eQ/fQ+5h9ef09zOiAixpaiIiIiIiIuIHClYiIiIiIiBsoXKXDz8+PkSNH4ufnZ3cpHk3vY/bpPXQPvY/Zp/fQPfQ+uofex+zTe+geeh+zL7+9hw4rIz0FRURERERE5Lo0ciUiIiIiIuIGClciIiIiIiJuoHAlIiIiIiLiBgpXIiIiIiIibqBwdZmff/6ZTp06UbZsWRwOB/PmzbO7JI8zZswYGjduTFBQEKVLl6ZLly7s2rXL7rI8zgcffEC9evVcG+o1b96cH374we6yPNprr72Gw+FgyJAhdpfiUUaNGoXD4Uhzq1Gjht1leZxDhw7xwAMPUKJECQoXLkzdunVZv3693WV5lIiIiKv+LDocDgYOHGh3aR4lJSWF4cOHU7FiRQoXLkzlypV5+eWXUX+zzDl9+jRDhgyhQoUKFC5cmBYtWrBu3Tq7y8rTbvR7tmVZjBgxgjJlylC4cGGioqLYvXu3PcVmg8LVZRITE4mMjGTChAl2l+Kxli9fzsCBA/n1119ZtGgRFy5c4I477iAxMdHu0jxK+fLlee2119iwYQPr16+nbdu23HXXXfz+++92l+aR1q1bx//+9z/q1atndykeqXbt2hw5csR1++WXX+wuyaP8/ffftGzZkkKFCvHDDz+wfft2xo4dS7FixewuzaOsW7cuzZ/DRYsWAXDvvffaXJlnef311/nggw8YP348O3bs4PXXX+eNN95g3LhxdpfmUR566CEWLVrExx9/zNatW7njjjuIiori0KFDdpeWZ93o9+w33niD9957j4kTJ7JmzRoCAwOJjo7m/PnzuVxpNlmSLsCaO3eu3WV4vKNHj1qAtXz5crtL8XjFihWzPvzwQ7vL8DinT5+2qlatai1atMhq06aNNXjwYLtL8igjR460IiMj7S7Doz333HPWLbfcYncZ+c7gwYOtypUrW6mpqXaX4lE6duxo9e/fP825u+++2+rVq5dNFXmes2fPWt7e3tb8+fPTnG/QoIH14osv2lSVZ7ny9+zU1FQrLCzMevPNN13nTp06Zfn5+VmfffaZDRVmnUauJEfFx8cDULx4cZsr8VwpKSl8/vnnJCYm0rx5c7vL8TgDBw6kY8eOREVF2V2Kx9q9ezdly5alUqVK9OrViwMHDthdkkf55ptvaNSoEffeey+lS5fm5ptvZvLkyXaX5dGSk5P55JNP6N+/Pw6Hw+5yPEqLFi1YsmQJf/zxBwBbtmzhl19+oUOHDjZX5jkuXrxISkoK/v7+ac4XLlxYI/tZtHfvXmJjY9P8Wx0SEkLTpk1ZvXq1jZVlno/dBUj+lZqaypAhQ2jZsiV16tSxuxyPs3XrVpo3b8758+cpUqQIc+fOpVatWnaX5VE+//xzNm7cqHnw2dC0aVOmT59O9erVOXLkCKNHj6ZVq1Zs27aNoKAgu8vzCH/99RcffPABQ4cO5YUXXmDdunU8+eST+Pr60qdPH7vL80jz5s3j1KlT9O3b1+5SPM7zzz9PQkICNWrUwNvbm5SUFF555RV69epld2keIygoiObNm/Pyyy9Ts2ZNQkND+eyzz1i9ejVVqlSxuzyPFBsbC0BoaGia86Ghoa7veQqFK8kxAwcOZNu2bfoUJ4uqV6/O5s2biY+PZ86cOfTp04fly5crYGVQTEwMgwcPZtGiRVd9uigZd/mn2fXq1aNp06ZUqFCBL774ggEDBthYmedITU2lUaNGvPrqqwDcfPPNbNu2jYkTJypcZdGUKVPo0KEDZcuWtbsUj/PFF1/w6aefMnPmTGrXrs3mzZsZMmQIZcuW1Z/HTPj444/p378/5cqVw9vbmwYNGtCzZ082bNhgd2liM00LlBwxaNAg5s+fz9KlSylfvrzd5XgkX19fqlSpQsOGDRkzZgyRkZG8++67dpflMTZs2MDRo0dp0KABPj4++Pj4sHz5ct577z18fHxISUmxu0SPVLRoUapVq8aePXvsLsVjlClT5qoPRWrWrKnplVm0f/9+Fi9ezEMPPWR3KR7p2Wef5fnnn+e+++6jbt26PPjggzz11FOMGTPG7tI8SuXKlVm+fDlnzpwhJiaGtWvXcuHCBSpVqmR3aR4pLCwMgLi4uDTn4+LiXN/zFApX4laWZTFo0CDmzp3LTz/9RMWKFe0uKd9ITU0lKSnJ7jI8Rrt27di6dSubN2923Ro1akSvXr3YvHkz3t7edpfokc6cOcOff/5JmTJl7C7FY7Rs2fKqLSn++OMPKlSoYFNFnm3atGmULl2ajh072l2KRzp79ixeXml//fP29iY1NdWmijxbYGAgZcqU4e+//2bhwoXcdddddpfkkSpWrEhYWBhLlixxnUtISGDNmjUet95c0wIvc+bMmTSfxu7du5fNmzdTvHhxbrrpJhsr8xwDBw5k5syZfP311wQFBbnmyYaEhFC4cGGbq/Mcw4YNo0OHDtx0002cPn2amTNnsmzZMhYuXGh3aR4jKCjoqrV+gYGBlChRQmsAM+GZZ56hU6dOVKhQgcOHDzNy5Ei8vb3p2bOn3aV5jKeeeooWLVrw6quv0r17d9auXcukSZOYNGmS3aV5nNTUVKZNm0afPn3w8dGvMFnRqVMnXnnlFW666SZq167Npk2bePvtt+nfv7/dpXmUhQsXYlkW1atXZ8+ePTz77LPUqFGDfv362V1annWj37OHDBnCf/7zH6pWrUrFihUZPnw4ZcuWpUuXLvYVnRV2tyvMS5YuXWoBV9369Oljd2keI733D7CmTZtmd2kepX///laFChUsX19fq1SpUla7du2sH3/80e6yPJ5asWdejx49rDJlyli+vr5WuXLlrB49elh79uyxuyyP8+2331p16tSx/Pz8rBo1aliTJk2yuySPtHDhQguwdu3aZXcpHishIcEaPHiwddNNN1n+/v5WpUqVrBdffNFKSkqyuzSPMmvWLKtSpUqWr6+vFRYWZg0cONA6deqU3WXlaTf6PTs1NdUaPny4FRoaavn5+Vnt2rXzyP/XHZalLblFRERERESyS2uuRERERERE3EDhSkRERERExA0UrkRERERERNxA4UpERERERMQNFK5ERERERETcQOFKRERERETEDRSuRERERERE3EDhSkRERERExA0UrkRERNzM4XAwb948u8sQEZFcpnAlIiL5St++fXE4HFfd2rdvb3dpIiKSz/nYXYCIiIi7tW/fnmnTpqU55+fnZ1M1IiJSUGjkSkRE8h0/Pz/CwsLS3IoVKwaYKXsffPABHTp0oHDhwlSqVIk5c+akefzWrVtp27YthQsXpkSJEjzyyCOcOXMmzTVTp06ldu3a+Pn5UaZMGQYNGpTm+8ePH6dr164EBARQtWpVvvnmm5x90SIiYjuFKxERKXCGDx/OPffcw5YtW+jVqxf33XcfO3bsACAxMZHo6GiKFSvGunXrmD17NosXL04Tnj744AMGDhzII488wtatW/nmm2+oUqVKmp8xevRounfvzm+//cadd95Jr169OHnyZK6+ThERyV0Oy7Isu4sQERFxl759+/LJJ5/g7++f5vwLL7zACy+8gMPh4NFHH+WDDz5wfa9Zs2Y0aNCA999/n8mTJ/Pcc88RExNDYGAgAN9//z2dOnXi8OHDhIaGUq5cOfr168d//vOfdGtwOBz8+9//5uWXXwZMYCtSpAg//PCD1n6JiORjWnMlIiL5zm233ZYmPAEUL17cddy8efM032vevDmbN28GYMeOHURGRrqCFUDLli1JTU1l165dOBwODh8+TLt27a5bQ7169VzHgYGBBAcHc/To0ay+JBER8QAKVyIiku8EBgZeNU3PXQoXLpyh6woVKpTmvsPhIDU1NSdKEhGRPEJrrkREpMD59ddfr7pfs2ZNAGrWrMmWLVtITEx0fX/lypV4eXlRvXp1goKCiIiIYMmSJblas4iI5H0auRIRkXwnKSmJ2NjYNOd8fHwoWbIkALNnz6ZRo0bccsstfPrpp6xdu5YpU6YA0KtXL0aOHEmfPn0YNWoUx44d44knnuDBBx8kNDQUgFGjRvHoo49SunRpOnTowOnTp1m5ciVPPPFE7r5QERHJUxSuREQk31mwYAFlypRJc6569ers3LkTMJ38Pv/8cx5//HHKlCnDZ599Rq1atQAICAhg4cKFDB48mMaNGxMQEMA999zD22+/7XquPn36cP78ef773//yzDPPULJkSbp165Z7L1BERPIkdQsUEZECxeFwMHfuXLp06WJ3KSIiks9ozZWIiIiIiIgbKFyJiIiIiIi4gdZciYhIgaLZ8CIiklM0ciUiIiIiIuIGClciIiIiIiJuoHAlIiIiIiLiBgpXIiIiIiIibqBwJSIiIiIi4gYKVyIiIiIiIm6gcCUiIiIiIuIGClciIiIiIiJu8H+oOceJ+I/glAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvKklEQVR4nO3dd3iUVfrG8XuSQAohoScBQu8QgrRIkxYIiCgiyiIrRSzrDxRFXUSliYpdVFTUVVFXFEFBRAUC0nsXFFCUXkInIZRAZn5/nJ2EISF1kjeTfD/X9V7MvPPOzDMD7ubOOec5NofD4RAAAAAAIFe8rC4AAAAAAAoDwhUAAAAAuAHhCgAAAADcgHAFAAAAAG5AuAIAAAAANyBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBoQrAAAAAHADwhUAFHF79+6VzWbT1KlTc/R8m82mcePGubUmFA5LliyRzWbTzJkzrS4FAPIF4QoAUODYbDYNGzbM6jIKPGd4ud7x9ddfW10iABQpPlYXAACwVtWqVXXhwgUVK1YsR8+/cOGCfHz4vxMrPfLII2rRokWa861atbKgGgAouvh/QwAo4mw2m/z8/HL8/Nw8F5lLTExUiRIlMrymXbt26tOnTz5VBAC4HqYFAoCHGzdunGw2m/744w/985//VHBwsMqXL6/Ro0fL4XDowIEDuu222xQUFKTQ0FC9/vrrLs9Pb83VoEGDFBgYqEOHDqlXr14KDAxU+fLl9cQTTyg5Odnl+VatuUpMTNTjjz+u8PBw+fr6qm7dunrttdfkcDhcrouNjVXbtm1VqlQpBQYGqm7dunr66addrnnnnXfUsGFDBQQEqHTp0mrevLmmTZuW4fs7p+RNnz5dTz/9tEJDQ1WiRAndeuutOnDgQJrr165dq27duik4OFgBAQFq3769Vq5c6XKN8+/y999/1913363SpUurbdu2OfyGXDmnWn755ZeqW7eu/Pz81KxZMy1btizNtZs3b1b37t0VFBSkwMBAde7cWWvWrElz3ZkzZ/TYY4+pWrVq8vX1VeXKlTVgwACdOHHC5Tq73a4XXnhBlStXlp+fnzp37qzdu3e75XMBQEHCyBUAFBJ9+/ZV/fr19dJLL+nHH3/U888/rzJlyuiDDz5Qp06d9PLLL+vLL7/UE088oRYtWuimm27K8PWSk5MVExOjqKgovfbaa1q4cKFef/111axZUw899FA+far0ORwO3XrrrVq8eLGGDBmiJk2aaP78+XryySd16NAhvfnmm5Kk3377TbfccosaN26s5557Tr6+vtq9e7dLqPnoo4/0yCOPqE+fPho+fLguXryoX3/9VWvXrtXdd9+daS0vvPCCbDabRo4cqWPHjmnSpEmKjo7Wli1b5O/vL0n65Zdf1L17dzVr1kxjx46Vl5eXPv30U3Xq1EnLly9Xy5YtXV7zzjvvVO3atfXiiy+mCYvpSUhISBNoJKls2bKy2Wwp95cuXarp06frkUceka+vr9577z1169ZN69atU6NGjVK+s3bt2ikoKEj//ve/VaxYMX3wwQfq0KGDli5dqqioKEnSuXPn1K5dO+3YsUP33nuvmjZtqhMnTmjOnDk6ePCgypUrl/K+L730kry8vPTEE0/o7NmzeuWVV9S/f3+tXbs2088GAB7FAQDwaGPHjnVIcjzwwAMp565cueKoXLmyw2azOV566aWU86dPn3b4+/s7Bg4cmHJuz549DkmOTz/9NOXcwIEDHZIczz33nMt73XDDDY5mzZq5nJPkGDt2rFs/kyTH0KFDr/v47NmzHZIczz//vMv5Pn36OGw2m2P37t0Oh8PhePPNNx2SHMePH7/ua912222Ohg0bZrvGxYsXOyQ5KlWq5IiPj085/8033zgkOd566y2Hw+Fw2O12R+3atR0xMTEOu92ect358+cd1atXd3Tp0iXlnPPvsl+/ftmq4XrHkSNHUq51ntuwYUPKuX379jn8/Pwct99+e8q5Xr16OYoXL+7466+/Us4dPnzYUbJkScdNN92Ucm7MmDEOSY7vvvsuTV3Oz+msr379+o5Lly6lPP7WW285JDm2bduWpc8JAJ6CaYEAUEjcd999Kbe9vb3VvHlzORwODRkyJOV8qVKlVLduXf39999Zes1//etfLvfbtWuX5efmpZ9++kne3t565JFHXM4//vjjcjgc+vnnnyWZzytJ33//vex2e7qvVapUKR08eFDr16/PUS0DBgxQyZIlU+736dNHYWFh+umnnyRJW7Zs0Z9//qm7775bJ0+e1IkTJ3TixAklJiaqc+fOWrZsWZrarv3eMzNmzBjFxsamOcqUKeNyXatWrdSsWbOU+1WqVNFtt92m+fPnKzk5WcnJyVqwYIF69eqlGjVqpFwXFhamu+++WytWrFB8fLwk6dtvv1VkZKRuv/32NPVcPVomSYMHD1bx4sVT7rdr106SCsS/JQBwJ6YFAkAhUaVKFZf7wcHB8vPzc5me5Tx/8uTJTF/Pz89P5cuXdzlXunRpnT59Otu1HT16NE0NzilzObFv3z5VrFjRJdRIUv369VMel8xUyf/85z+677779NRTT6lz587q3bu3+vTpIy8v8/vFkSNHauHChWrZsqVq1aqlrl276u6771abNm2yVEvt2rVd7ttsNtWqVUt79+6VJP3555+SpIEDB173Nc6ePavSpUun3K9evXqW3tspIiJC0dHR2a5VkurUqaPz58/r+PHjkqTz58+rbt26aa6rX7++7Ha7Dhw4oIYNG+qvv/7SHXfckaX6rv236fysOfm3BAAFGeEKAAoJb2/vLJ2TlKV1PNd7bk6EhYW53P/00081aNAgt73+9fj7+2vZsmVavHixfvzxR82bN0/Tp09Xp06dtGDBAnl7e6t+/fratWuX5s6dq3nz5unbb7/Ve++9pzFjxmj8+PG5rsE5KvXqq6+qSZMm6V4TGBiYpu7CJDf/DgHAkxCuAAB5LjY21uV+w4YNc/V6VatW1cKFC5WQkOAyerVz586Ux528vLzUuXNnde7cWW+88YZefPFFPfPMM1q8eHHKaE+JEiXUt29f9e3bV0lJSerdu7deeOEFjRo1KtNW886RKSeHw6Hdu3ercePGkqSaNWtKkoKCgrI0upSXrq1Vkv744w8FBASkjFIGBARo165daa7buXOnvLy8FB4eLsl8ru3bt+dtwQDgYVhzBQDIc9HR0S7HtSNZ2XXzzTcrOTlZkydPdjn/5ptvymazqXv37pKkU6dOpXmuc/To0qVLkpRmimTx4sXVoEEDORwOXb58OdNaPv/8cyUkJKTcnzlzpo4cOZJSQ7NmzVSzZk299tprOnfuXJrnO6fj5YfVq1dr06ZNKfcPHDig77//Xl27dpW3t7e8vb3VtWtXff/99ynTGiUpLi5O06ZNU9u2bRUUFCRJuuOOO7R161bNmjUrzfswIgWgqGLkCgBQIG3YsEHPP/98mvMdOnRQz5491bFjRz3zzDPau3evIiMjtWDBAn3//fd69NFHU0aLnnvuOS1btkw9evRQ1apVdezYMb333nuqXLlyyv5RXbt2VWhoqNq0aaOQkBDt2LFDkydPVo8ePdKs6UpPmTJl1LZtWw0ePFhxcXGaNGmSatWqpfvvv1+SGTn7z3/+o+7du6thw4YaPHiwKlWqpEOHDmnx4sUKCgrSDz/8kKvvavny5bp48WKa840bN04ZQZOkRo0aKSYmxqUVuySX6Y/PP/98yt5g//d//ycfHx998MEHunTpkl555ZWU65588knNnDlTd955p+699141a9ZMp06d0pw5czRlyhRFRkbm6jMBgCciXAEACqS1a9emuw/ShAkT1LZtW82ZM0djxozR9OnT9emnn6patWp69dVX9fjjj6dce+utt2rv3r365JNPdOLECZUrV07t27fX+PHjFRwcLEl68MEH9eWXX+qNN97QuXPnVLlyZT3yyCN69tlns1Tn008/rV9//VUTJ05UQkKCOnfurPfee08BAQEp13To0EGrV6/WhAkTNHnyZJ07d06hoaGKiorSgw8+mMtvSnr77bfTPT927FiXcNW+fXu1atVK48eP1/79+9WgQQNNnTrV5ZqGDRtq+fLlGjVqlCZOnCi73a6oqCj997//TdnjSjLrxJYvX66xY8dq1qxZ+uyzz1ShQgV17txZlStXzvVnAgBPZHMwdg8AQLYtWbJEHTt21IwZM9SnTx+ry8mUzWbT0KFD00ylBAC4D2uuAAAAAMANCFcAAAAA4AaEKwAAAABwA9ZcAQAAAIAbMHIFAAAAAG5AuAIAAAAAN2Cfq3TY7XYdPnxYJUuWlM1ms7ocAAAAABZxOBxKSEhQxYoV5eWV8dgU4Sodhw8fVnh4uNVlAAAAACggDhw4kOkm6YSrdJQsWVKS+QKDgoIsrgYAAACAVeLj4xUeHp6SETJCuEqHcypgUFAQ4QoAAABAlpYL0dACAAAAANyAcAUAAAAAbkC4AgAAAAA3YM0VAAAAPEJycrIuX75sdRkoZLy9veXj4+OWLZgIVwAAACjwzp07p4MHD8rhcFhdCgqhgIAAhYWFqXjx4rl6HcIVAAAACrTk5GQdPHhQAQEBKl++vFtGGADJbBCclJSk48ePa8+ePapdu3amGwVnhHAFAACAAu3y5ctyOBwqX768/P39rS4HhYy/v7+KFSumffv2KSkpSX5+fjl+LRpaAAAAwCMwYoW8kpvRKpfXccurAAAAAEARR7gCAAAAADcgXAEAAAAeolq1apo0aZLVZeA6CFcAAACAm9lstgyPcePG5eh1169frwceeCBXtXXo0EGPPvporl4D6aNbIAAAAOBmR44cSbk9ffp0jRkzRrt27Uo5FxgYmHLb4XAoOTlZPj6Z/2hevnx59xYKt2LkKgPsUQcAAFDwOBxSYqI1R1Z/PgwNDU05goODZbPZUu7v3LlTJUuW1M8//6xmzZrJ19dXK1as0F9//aXbbrtNISEhCgwMVIsWLbRw4UKX1712WqDNZtN//vMf3X777QoICFDt2rU1Z86cXH2/3377rRo2bChfX19Vq1ZNr7/+usvj7733nmrXri0/Pz+FhISoT58+KY/NnDlTERER8vf3V9myZRUdHa3ExMRc1eNJGLnKwPbtUps2VlcBAACAq50/L1018JOvzp2TSpRwz2s99dRTeu2111SjRg2VLl1aBw4c0M0336wXXnhBvr6++vzzz9WzZ0/t2rVLVapUue7rjB8/Xq+88opeffVVvfPOO+rfv7/27dunMmXKZLumjRs36q677tK4cePUt29frVq1Sv/3f/+nsmXLatCgQdqwYYMeeeQRffHFF2rdurVOnTql5cuXSzKjdf369dMrr7yi22+/XQkJCVq+fLkcRWjEgnCVgUWLCFcAAADIG88995y6dOmScr9MmTKKjIxMuT9hwgTNmjVLc+bM0bBhw677OoMGDVK/fv0kSS+++KLefvttrVu3Tt26dct2TW+88YY6d+6s0aNHS5Lq1Kmj33//Xa+++qoGDRqk/fv3q0SJErrllltUsmRJVa1aVTfccIMkE66uXLmi3r17q2rVqpKkiIiIbNfgyZgWmIFffrG6AgAAAFwrIMCMIFlxBAS473M0b97c5f65c+f0xBNPqH79+ipVqpQCAwO1Y8cO7d+/P8PXady4ccrtEiVKKCgoSMeOHctRTTt27FCba0YX2rRpoz///FPJycnq0qWLqlatqho1auiee+7Rl19+qfPnz0uSIiMj1blzZ0VEROjOO+/URx99pNOnT+eoDk9FuMrAqlVmbi0AAAAKDpvNTM2z4rDZ3Pc5Slwzv/CJJ57QrFmz9OKLL2r58uXasmWLIiIilJSUlOHrFCtW7Jrvxya73e6+Qq9SsmRJbdq0SV999ZXCwsI0ZswYRUZG6syZM/L29lZsbKx+/vlnNWjQQO+8847q1q2rPXv25EktBRHhKgOXL0tLl1pdBQAAAIqClStXatCgQbr99tsVERGh0NBQ7d27N19rqF+/vlauXJmmrjp16sjb21uS5OPjo+joaL3yyiv69ddftXfvXv3yvylfNptNbdq00fjx47V582YVL15cs2bNytfPYCXWXGViwQLp5putrgIAAACFXe3atfXdd9+pZ8+estlsGj16dJ6NQB0/flxbtmxxORcWFqbHH39cLVq00IQJE9S3b1+tXr1akydP1nvvvSdJmjt3rv7++2/ddNNNKl26tH766SfZ7XbVrVtXa9eu1aJFi9S1a1dVqFBBa9eu1fHjx1W/fv08+QwFEeEqE/PnW10BAAAAioI33nhD9957r1q3bq1y5cpp5MiRio+Pz5P3mjZtmqZNm+ZybsKECXr22Wf1zTffaMyYMZowYYLCwsL03HPPadCgQZKkUqVK6bvvvtO4ceN08eJF1a5dW1999ZUaNmyoHTt2aNmyZZo0aZLi4+NVtWpVvf766+revXuefIaCyOYoSr0Rsyg+Pl7BwcHy8joruz1I+/ZJGXS/BAAAQB66ePGi9uzZo+rVq8vPz8/qclAIZfRvzJkNzp49q6CgoAxfhzVXGXA2cGH0CgAAAEBmCFcZ6NTJ/LlggbV1AAAAACj4CFcZiI42fy5cKF25Ym0tAAAAAAo2wlUGmjaVSpeWzpyR1q+3uhoAAAAABRnhKgPe3qmjV0wNBAAAAJARwlUmunY1f9LUAgAAAEBGCFeZiIkxf65dK50+bW0tAAAAAAouwlUmwsOl+vUlu1365RerqwEAAABQUBGusoCpgQAAAAAyQ7jKAufUwPnzJYfD2loAAABQdHTo0EGPPvpoyv1q1app0qRJGT7HZrNp9uzZuX5vd71OUUK4yoL27aXixaX9+6U//rC6GgAAABR0PXv2VLdu3dJ9bPny5bLZbPr111+z/brr16/XAw88kNvyXIwbN05NmjRJc/7IkSPq3r27W9/rWlOnTlWpUqXy9D3yE+EqCwICpHbtzG2mBgIAACAzQ4YMUWxsrA4ePJjmsU8//VTNmzdX48aNs/265cuXV0BAgDtKzFRoaKh8fX3z5b0KC8JVFl09NRAAAAAWcjikxERrjiyuEbnllltUvnx5TZ061eX8uXPnNGPGDA0ZMkQnT55Uv379VKlSJQUEBCgiIkJfffVVhq977bTAP//8UzfddJP8/PzUoEEDxcbGpnnOyJEjVadOHQUEBKhGjRoaPXq0Ll++LMmMHI0fP15bt26VzWaTzWZLqfnaaYHbtm1Tp06d5O/vr7Jly+qBBx7QuXPnUh4fNGiQevXqpddee01hYWEqW7ashg4dmvJeObF//37ddtttCgwMVFBQkO666y7FxcWlPL5161Z17NhRJUuWVFBQkJo1a6YNGzZIkvbt26eePXuqdOnSKlGihBo2bKiffvopx7VkhU+evnohEhMj/fvf0pIl0qVLEiEeAADAIufPS4GB1rz3uXNSiRKZXubj46MBAwZo6tSpeuaZZ2Sz2SRJM2bMUHJysvr166dz586pWbNmGjlypIKCgvTjjz/qnnvuUc2aNdWyZctM38Nut6t3794KCQnR2rVrdfbsWZf1WU4lS5bU1KlTVbFiRW3btk3333+/SpYsqX//+9/q27evtm/frnnz5mnhwoWSpODg4DSvkZiYqJiYGLVq1Urr16/XsWPHdN9992nYsGEuAXLx4sUKCwvT4sWLtXv3bvXt21dNmjTR/fffn+nnSe/zOYPV0qVLdeXKFQ0dOlR9+/bVkiVLJEn9+/fXDTfcoPfff1/e3t7asmWLihUrJkkaOnSokpKStGzZMpUoUUK///67AvP43w3hKosiIqTQUOnoUWnlSqlTJ6srAgAAQEF277336tVXX9XSpUvVoUMHSWZK4B133KHg4GAFBwfriSeeSLn+4Ycf1vz58/XNN99kKVwtXLhQO3fu1Pz581WxYkVJ0osvvphmndSzzz6bcrtatWp64okn9PXXX+vf//63/P39FRgYKB8fH4WGhl73vaZNm6aLFy/q888/V4n/hcvJkyerZ8+eevnllxUSEiJJKl26tCZPnixvb2/Vq1dPPXr00KJFi3IUrhYtWqRt27Zpz549Cg8PlyR9/vnnatiwodavX68WLVpo//79evLJJ1WvXj1JUu3atVOev3//ft1xxx2KiIiQJNWoUSPbNWQX0wKzyGajJTsAAECBEBBgRpCsOLKx3qlevXpq3bq1PvnkE0nS7t27tXz5cg0ZMkSSlJycrAkTJigiIkJlypRRYGCg5s+fr/3792fp9Xfs2KHw8PCUYCVJrVq1SnPd9OnT1aZNG4WGhiowMFDPPvtslt/j6veKjIxMCVaS1KZNG9ntdu3atSvlXMOGDeXt7Z1yPywsTMeOHcvWe139nuHh4SnBSpIaNGigUqVKaceOHZKkESNG6L777lN0dLReeukl/fXXXynXPvLII3r++efVpk0bjR07NkcNRLKLcJUNrLsCAAAoAGw2MzXPiuN/0/uyasiQIfr222+VkJCgTz/9VDVr1lT79u0lSa+++qreeustjRw5UosXL9aWLVsUExOjpKQkt31Vq1evVv/+/XXzzTdr7ty52rx5s5555hm3vsfVnFPynGw2m+x2e568l2Q6Hf7222/q0aOHfvnlFzVo0ECzZs2SJN133336+++/dc8992jbtm1q3ry53nnnnTyrRSJcZUt0tPlz61YzPRAAAADIyF133SUvLy9NmzZNn3/+ue69996U9VcrV67Ubbfdpn/+85+KjIxUjRo19Ec29v2pX7++Dhw4oCNHjqScW7Nmjcs1q1atUtWqVfXMM8+oefPmql27tvbt2+dyTfHixZWcnJzpe23dulWJiYkp51auXCkvLy/VrVs3yzVnh/PzHThwIOXc77//rjNnzqhBgwYp5+rUqaPHHntMCxYsUO/evfXpp5+mPBYeHq5//etf+u677/T444/ro48+ypNanQhX2VChgtS0qbmdTiMWAAAAwEVgYKD69u2rUaNG6ciRIxo0aFDKY7Vr11ZsbKxWrVqlHTt26MEHH3TphJeZ6Oho1alTRwMHDtTWrVu1fPlyPfPMMy7X1K5dW/v379fXX3+tv/76S2+//XbKyI5TtWrVtGfPHm3ZskUnTpzQpUuX0rxX//795efnp4EDB2r79u1avHixHn74Yd1zzz0p661yKjk5WVu2bHE5duzYoejoaEVERKh///7atGmT1q1bpwEDBqh9+/Zq3ry5Lly4oGHDhmnJkiXat2+fVq5cqfXr16t+/fqSpEcffVTz58/Xnj17tGnTJi1evDjlsbxCuMompgYCAAAgO4YMGaLTp08rJibGZX3Us88+q6ZNmyomJkYdOnRQaGioevXqleXX9fLy0qxZs3ThwgW1bNlS9913n1544QWXa2699VY99thjGjZsmJo0aaJVq1Zp9OjRLtfccccd6tatmzp27Kjy5cun2w4+ICBA8+fP16lTp9SiRQv16dNHnTt31uTJk7P3ZaTj3LlzuuGGG1yOnj17ymaz6fvvv1fp0qV10003KTo6WjVq1ND06dMlSd7e3jp58qQGDBigOnXq6K677lL37t01fvx4SSa0DR06VPXr11e3bt1Up04dvffee7muNyM2hyOLzfqLkPj4eAUHB+vs2bMKCgpyeWzpUqlDBzOKdeSI5EU8BQAAyFMXL17Unj17VL16dfn5+VldDgqhjP6NZZQNrkU0yKZWrcy2CseOmbVXAAAAACARrrKteHGpY0dzm6mBAAAAAJwIVzngXHe1YIG1dQAAAAAoOAhXOeDcTHjFCrOXHAAAAAAQrnKgVi2penXp8mVpyRKrqwEAACga6MOGvOKuf1sFIly9++67qlatmvz8/BQVFaV169ZleP2MGTNUr149+fn5KSIiQj/99JPL44MGDZLNZnM5unXr5rZ6bTamBgIAAOQXb29vSVJSUpLFlaCwOn/+vCSpWLFiuXodH3cUkxvTp0/XiBEjNGXKFEVFRWnSpEmKiYnRrl27VKFChTTXr1q1Sv369dPEiRN1yy23aNq0aerVq5c2bdqkRo0apVzXrVs3l92ZfX193Vp3167SlCk0tQAAAMhrPj4+CggI0PHjx1WsWDF5sRcO3MThcOj8+fM6duyYSpUqlRLkc8ryfa6ioqLUokWLlA3I7Ha7wsPD9fDDD+upp55Kc33fvn2VmJiouXPnppy78cYb1aRJE02ZMkWSGbk6c+aMZs+enaOastLL/uxZqWxZKTlZ2rNHqlYtR28FAACALEhKStKePXtkt9utLgWFUKlSpRQaGiqbzZbmsezsc2XpyFVSUpI2btyoUaNGpZzz8vJSdHS0Vq9ene5zVq9erREjRrici4mJSROklixZogoVKqh06dLq1KmTnn/+eZUtWzbd17x06ZIuXbqUcj8+Pj7T2oODzZ5XK1aY0asHH8z0KQAAAMih4sWLq3bt2kwNhNsVK1Ys1yNWTpaGqxMnTig5OVkhISEu50NCQrRz5850n3P06NF0rz969GjK/W7duql3796qXr26/vrrLz399NPq3r27Vq9ene4XN3HiRI0fPz7b9XftasLVggWEKwAAgLzm5eUlPz8/q8sArqtQTlj9xz/+oVtvvVURERHq1auX5s6dq/Xr12vJdVr7jRo1SmfPnk05Dhw4kKX3cTa1WLRIunLFTcUDAAAA8EiWhqty5crJ29tbcXFxLufj4uIUGhqa7nNCQ0Ozdb0k1ahRQ+XKldPu3bvTfdzX11dBQUEuR1Y0ayaVKWPWX61dm6WnAAAAACikLA1XxYsXV7NmzbRo0aKUc3a7XYsWLVKrVq3SfU6rVq1crpek2NjY614vSQcPHtTJkycVFhbmnsL/x9tbio42t2nJDgAAABRtlk8LHDFihD766CN99tln2rFjhx566CElJiZq8ODBkqQBAwa4NLwYPny45s2bp9dff107d+7UuHHjtGHDBg0bNkySdO7cOT355JNas2aN9u7dq0WLFum2225TrVq1FOOcx+dGzpekJTsAAABQtFm+z1Xfvn11/PhxjRkzRkePHlWTJk00b968lKYV+/fvd9nLoHXr1po2bZqeffZZPf3006pdu7Zmz56dsseVt7e3fv31V3322Wc6c+aMKlasqK5du2rChAlu3+tKMk0tJGn9eunUKTNNEAAAAEDRY/k+VwVRdnrZS1KjRtJvv0nffCPdeWc+FAgAAAAgX2QnG1g+LbAwcI5eMTUQAAAAKLoIV25w9borxgEBAACAoolw5QY33ST5+koHD0rX2fsYAAAAQCFHuHIDf38TsCSmBgIAAABFFeHKTWjJDgAAABRthCs3cYarpUulixetrQUAAABA/iNcuUnDhlLFitKFC9KKFVZXAwAAACC/Ea7cxGajJTsAAABQlBGu3Ih1VwAAAEDRRbhyo+hoM4K1bZt05IjV1QAAAADIT4QrNypXTmrWzNxesMDaWgAAAADkL8KVmzE1EAAAACiaCFdu5mxqERsr2e3W1gIAAAAg/xCu3KxVK6lkSenECWnzZqurAQAAAJBfCFduVqyY1KmTuc3UQAAAAKDoIFzlAee6K5paAAAAAEUH4SoPONddrVwpJSRYWwsAAACA/EG4ygM1a5rjyhVp8WKrqwEAAACQHwhXeYSW7AAAAEDRQrjKI86pgay7AgAAAIoGwlUe6dhR8vGRdu+W/v7b6moAAAAA5DXCVR4JCpJatza3mRoIAAAAFH6EqzzE1EAAAACg6CBc5SFnU4tFi6TLl62tBQAAAEDeIlzloaZNpbJlzV5Xa9ZYXQ0AAACAvES4ykNeXlKXLuY2UwMBAACAwo1wlcfY7woAAAAoGghXeczZ1GLDBunECWtrAQAAAJB3CFd5rGJFqVEjyeEwjS0AAAAAFE6Eq3zA1EAAAACg8CNc5YOrw5XDYW0tAAAAAPIG4SoftGsn+flJhw9Lv/9udTUAAAAA8gLhKh/4+Unt25vbTA0EAAAACifCVT5h3RUAAABQuBGu8okzXC1bJl24YG0tAAAAANyPcJVP6teXKlWSLl6Uli+3uhoAAAAA7ka4yic2G1MDAQAAgMKMcJWPCFcAAABA4UW4ykedO5sRrN9+kw4dsroaAAAAAO5EuMpHZctKLVqY2wsWWFsLAAAAAPciXOUzpgYCAAAAhRPhKp917Wr+jI2VkpOtrQUAAACA+xCu8llUlBQUJJ06JW3aZHU1AAAAANyFcJXPihUzjS0kpgYCAAAAhQnhygLOqYE0tQAAAAAKD8KVBZxNLVavluLjra0FAAAAgHsQrixQvbpUu7Z05Yr0yy9WVwMAAADAHQhXFqElOwAAAFC4EK4swrorAAAAoHAhXFmkY0fTOfDvv6Xdu62uBgAAAEBuEa4sEhgotWljbjM1EAAAAPB8hCsLMTUQAAAAKDwIVxZyNrX45RcpKcnaWgAAAADkDuHKQk2aSOXLS+fOmT2vAAAAAHguwpWFvLykLl3MbaYGAgAAAJ6NcGUx9rsCAAAACgfClcWcI1ebNknHj1tbCwAAAICcI1xZLCxMatxYcjikhQutrgYAAABAThGuCgCmBgIAAACer0CEq3fffVfVqlWTn5+foqKitG7dugyvnzFjhurVqyc/Pz9FRETop59+uu61//rXv2Sz2TRp0iQ3V+0+znC1YIEZwQIAAADgeSwPV9OnT9eIESM0duxYbdq0SZGRkYqJidGxY8fSvX7VqlXq16+fhgwZos2bN6tXr17q1auXtm/fnubaWbNmac2aNapYsWJef4xcadtW8veXjhyRtm2zuhoAAAAAOWF5uHrjjTd0//33a/DgwWrQoIGmTJmigIAAffLJJ+le/9Zbb6lbt2568sknVb9+fU2YMEFNmzbV5MmTXa47dOiQHn74YX355ZcqVqxYfnyUHPP1lTp0MLdpyQ4AAAB4JkvDVVJSkjZu3Kjo6OiUc15eXoqOjtbq6+yqu3r1apfrJSkmJsblervdrnvuuUdPPvmkGjZsmGkdly5dUnx8vMuR31h3BQAAAHg2S8PViRMnlJycrJCQEJfzISEhOnr0aLrPOXr0aKbXv/zyy/Lx8dEjjzySpTomTpyo4ODglCM8PDybnyT3nOFq+XLp/Pl8f3sAAAAAuWT5tEB327hxo9566y1NnTpVNpstS88ZNWqUzp49m3IcOHAgj6tMq25dKTxcunRJWrYs398eAAAAQC5ZGq7KlSsnb29vxcXFuZyPi4tTaGhous8JDQ3N8Prly5fr2LFjqlKlinx8fOTj46N9+/bp8ccfV7Vq1dJ9TV9fXwUFBbkc+c1mY2ogAAAA4MksDVfFixdXs2bNtGjRopRzdrtdixYtUqtWrdJ9TqtWrVyul6TY2NiU6++55x79+uuv2rJlS8pRsWJFPfnkk5pfwFML4QoAAADwXD5WFzBixAgNHDhQzZs3V8uWLTVp0iQlJiZq8ODBkqQBAwaoUqVKmjhxoiRp+PDhat++vV5//XX16NFDX3/9tTZs2KAPP/xQklS2bFmVLVvW5T2KFSum0NBQ1a1bN38/XDZ17ix5eUk7dkgHDphpggAAAAA8g+Vrrvr27avXXntNY8aMUZMmTbRlyxbNmzcvpWnF/v37deTIkZTrW7durWnTpunDDz9UZGSkZs6cqdmzZ6tRo0ZWfQS3KV1aatnS3KYlOwAAAOBZbA6Hw2F1EQVNfHy8goODdfbs2XxffzVunDR+vHTnndI33+TrWwMAAAC4RnaygeUjV3DVtav5c+FCKTnZ2loAAAAAZB3hqoBp2VIKDpZOn5Y2bLC6GgAAAABZRbgqYHx8pOhoc5uugQAAAIDnIFwVQM6pgTS1AAAAADwH4aoAcu53tWaNdPastbUAAAAAyBrCVQFUtapUt65paHHNfskAAAAACijCVQHlHL1i3RUAAADgGQhXBZRz3dX8+RI7kQEAAAAFH+GqgOrQQSpeXNq3T/rzT6urAQAAAJAZwlUBVaKE1Latuc3UQAAAAKDgI1wVYLRkBwAAADwH4aoAcza1WLxYSkqythYAAAAAGSNcFWCNG0shIVJiorRypdXVAAAAAMgI4aoA8/KSunQxt5kaCAAAABRshKsCjv2uAAAAAM9AuCrgnCNXmzdLcXHW1gIAAADg+ghXBVxIiNSkibm9cKGlpQAAAADIAOHKAzA1EAAAACj4CFcewBmuFiyQ7HZrawEAAACQPsKVB2jdWgoIMGuufv3V6moAAAAApIdw5QF8faWOHc1tWrIDAAAABRPhykOw7goAAAAo2AhXHsIZrlaskBITra0FAAAAQFqEKw9Ru7ZUtaqUlCQtXWp1NQAAAACuRbjyEDYbUwMBAACAgoxw5UEIVwAAAEDBRbjyIJ06Sd7e0q5d0r59VlcDAAAA4GqEKw9SqpQUFWVu05IdAAAAKFgIVx6GqYEAAABAwUS48jBdu5o/Fy2SrlyxthYAAAAAqQhXHqZFC6l0aenMGWn9equrAQAAAOBEuPIw3t5SdLS5zdRAAAAAoOAgXHkg59RAmloAAAAABQfhygM5m1qsXSudPm1tLQAAAAAMwpUHCg+X6teX7HbT2AIAAACA9QhXHso5NZB1VwAAAEDBQLjyUM6pgQsWSA6HtbUAAAAAIFx5rPbtJV9faf9+adcuq6sBAAAAQLjyUAEBUrt25jZTAwEAAADrEa48GC3ZAQAAgIKDcOXBnOuuliyRLl2ytBQAAACgyCNcebCICCk0VDp/XlqxwupqAAAAgKKNcOXBbDamBgIAAAAFBeHKwzmnBtLUAgAAALAW4crDdeli/ty6VTp61NpaAAAAgKKMcOXhypeXmjY1t2Njra0FAAAAKMoIV4UAUwMBAAAA6xGuCgFnuFqwQLLbra0FAAAAKKoIV4VAq1ZSYKB0/Li0ZYvV1QAAAABFU47C1YEDB3Tw4MGU++vWrdOjjz6qDz/80G2FIeuKF5c6djS3ackOAAAAWCNH4eruu+/W4sWLJUlHjx5Vly5dtG7dOj3zzDN67rnn3FogsoZ1VwAAAIC1chSutm/frpYtW0qSvvnmGzVq1EirVq3Sl19+qalTp7qzPmSRczPhlSulc+esrQUAAAAoinIUri5fvixfX19J0sKFC3XrrbdKkurVq6cjR464rzpkWa1aUvXq0uXL0pIlVlcDAAAAFD05ClcNGzbUlClTtHz5csXGxqpbt26SpMOHD6ts2bJuLRBZY7MxNRAAAACwUo7C1csvv6wPPvhAHTp0UL9+/RQZGSlJmjNnTsp0QeQ/whUAAABgHZvD4XDk5InJycmKj49X6dKlU87t3btXAQEBqlChgtsKtEJ8fLyCg4N19uxZBQUFWV1Olp09K5UtKyUnS3//baYJAgAAAMi57GSDHI1cXbhwQZcuXUoJVvv27dOkSZO0a9cujw9Wniw42Ox5JdGSHQAAAMhvOQpXt912mz7//HNJ0pkzZxQVFaXXX39dvXr10vvvv+/WApE9TA0EAAAArJGjcLVp0ya1a9dOkjRz5kyFhIRo3759+vzzz/X222+7tUBkj7Ml+6JF0pUr1tYCAAAAFCU5Clfnz59XyZIlJUkLFixQ79695eXlpRtvvFH79u3L9uu9++67qlatmvz8/BQVFaV169ZleP2MGTNUr149+fn5KSIiQj/99JPL4+PGjVO9evVUokQJlS5dWtHR0Vq7dm226/JEzZpJZcpI8fFSEfnIAAAAQIGQo3BVq1YtzZ49WwcOHND8+fPV9X/DJceOHct2A4jp06drxIgRGjt2rDZt2qTIyEjFxMTo2LFj6V6/atUq9evXT0OGDNHmzZvVq1cv9erVS9u3b0+5pk6dOpo8ebK2bdumFStWqFq1auratauOHz+ek4/rUby9pS5dzG2mBgIAAAD5J0fdAmfOnKm7775bycnJ6tSpk2JjYyVJEydO1LJly/Tzzz9n+bWioqLUokULTZ48WZJkt9sVHh6uhx9+WE899VSa6/v27avExETNnTs35dyNN96oJk2aaMqUKem+h7PDx8KFC9W5c+dMa/LUboFOn3wiDRkitWzJ6BUAAACQG3neLbBPnz7av3+/NmzYoPlXDY907txZb775ZpZfJykpSRs3blR0dHRqQV5eio6O1urVq9N9zurVq12ul6SYmJjrXp+UlKQPP/xQwcHBKftxXevSpUuKj493OTyZc93V+vXSqVPW1gIAAAAUFTkKV5IUGhqqG264QYcPH9bBgwclSS1btlS9evWy/BonTpxQcnKyQkJCXM6HhITo6NGj6T7n6NGjWbp+7ty5CgwMlJ+fn958803FxsaqXLly6b7mxIkTFRwcnHKEh4dn+TMURJUrSw0bSg6HtHCh1dUAAAAARUOOwpXdbtdzzz2n4OBgVa1aVVWrVlWpUqU0YcIE2e12d9eYIx07dtSWLVu0atUqdevWTXfdddd113GNGjVKZ8+eTTkOHDiQz9W6n3P0inVXAAAAQP7IUbh65plnNHnyZL300kvavHmzNm/erBdffFHvvPOORo8eneXXKVeunLy9vRUXF+dyPi4uTqGhoek+JzQ0NEvXlyhRQrVq1dKNN96ojz/+WD4+Pvr444/TfU1fX18FBQW5HJ7Oud/VggVmBAsAAABA3spRuPrss8/0n//8Rw899JAaN26sxo0b6//+7//00UcfaerUqVl+neLFi6tZs2ZatGhRyjm73a5FixapVatW6T6nVatWLtdLUmxs7HWvv/p1L126lOXaPN1NN0m+vtLBg9KOHVZXAwAAABR+OQpXp06dSndtVb169XQqmx0URowYoY8++kifffaZduzYoYceekiJiYkaPHiwJGnAgAEaNWpUyvXDhw/XvHnz9Prrr2vnzp0aN26cNmzYoGHDhkmSEhMT9fTTT2vNmjXat2+fNm7cqHvvvVeHDh3SnXfemZOP65H8/U3AkpgaCAAAAOSHHIWryMjIlNbpV5s8ebIaN26crdfq27evXnvtNY0ZM0ZNmjTRli1bNG/evJSmFfv379eRI0dSrm/durWmTZumDz/8UJGRkZo5c6Zmz56tRo0aSZK8vb21c+dO3XHHHapTp4569uypkydPavny5WrYsGFOPq7HunpqIAAAAIC8laN9rpYuXaoePXqoSpUqKdPxVq9erQMHDuinn35Su3bt3F5ofvL0fa6ctm+XIiLMKNapU5Kfn9UVAQAAAJ4lz/e5at++vf744w/dfvvtOnPmjM6cOaPevXvrt99+0xdffJGjouF+DRtKFStKFy5Iy5dbXQ0AAABQuOVo5Op6tm7dqqZNmyo5OdldL2mJwjJyJUmDB0tTp0pPPCG9+qrV1QAAAACeJc9HruA5nOuuaGoBAAAA5C3CVSEXHS3ZbNK2bdLhw1ZXAwAAABRehKtCrlw5qVkzczs21tpaAAAAgMLMJzsX9+7dO8PHz5w5k5takEdiYqQNG8zUwIEDra4GAAAAKJyyFa6Cg4MzfXzAgAG5KgjuFxMjvfCCGbmy2yUvxisBAAAAt3Nrt8DCojB1C5Sky5elsmWlhARp/XqpeXOrKwIAAAA8A90C4aJYMalTJ3N7wQJrawEAAAAKK8JVEUFLdgAAACBvEa6KiK5dzZ+rVknx8dbWAgAAABRGhKsiomZNc1y5Ii1ZYnU1AAAAQOFDuCpCmBoIAAAA5B3CVRHinBpIuAIAAADcj3BVhHTsKPn4SH/9ZQ4AAAAA7kO4KkKCgqTWrc1tWrIDAAAA7kW4KmJYdwUAAADkDcJVEeNcd/XLL9Lly9bWAgAAABQmhKsipmlTqVw5KSFBWrPG6moAAACAwoNwVcR4eUldupjbTA0EAAAA3IdwVQTRkh0AAABwP8JVEeQMVxs3SidOWFsLAAAAUFgQroqgihWliAjJ4ZAWLrS6GgAAAKBwIFwVUUwNBAAAANyLcFVEOfe7WrDAjGABAAAAyB3CVRHVrp3k5ycdPiz99pvV1QAAAACej3BVRPn5Se3bm9tMDQQAAAByj3BVhF09NRAAAABA7hCuijBnuFq2TLpwwdpaAAAAAE9HuCrC6teXKleWLl40AQsAAABAzhGuijCbLbUlO1MDAQAAgNwhXBVxzqmBNLUAAAAAcodwVcRFR5sRrN9+kw4etLoaAAAAwHMRroq4MmWkFi3MbaYGAgAAADlHuAIt2QEAAAA3IFwhJVzFxkrJydbWAgAAAHgqwhXUsqUUFCSdOiVt3Gh1NQAAAIBnIlxBxYpJnTub20wNBAAAAHKGcAVJtGQHAAAAcotwBUmpmwmvXi2dPWttLQAAAIAnIlxBklS9ulS7tmlosXix1dUAAAAAnodwhRRMDQQAAAByjnCFFM6pgfPnSw6HtbUAAAAAnoZwhRQdO5rOgXv2SH/9ZXU1AAAAgGchXCFFYKDUpo25zdRAAAAAIHsIV3DBuisAAAAgZwhXcOFcd7V4sZSUZG0t+B8WwAEAAHgEwhVcNGkilS8vnTtn9ryChX7/XWrbVqpUSVq3zupqAAAAkAnCFVx4ebl2DYQFrlyRJk6UbrhBWrlSOnLE/KVs3Gh1ZQAAAMgA4QppEK4stH271KqV9PTTZl5mjx6my8jZs1KXLtKWLVZXCAAAgOsgXCENZ7jatEk6ftzaWoqMy5elF16QmjaVNmyQSpWSPv9c+uEH6eefpRtvlE6flqKjpW3brK4WAAAA6SBcIY3QUCky0tyOjbW2liLh11+lqCjp2WdNyLr1VrPe6p57JJtNKllSmjdPatFCOnlS6tzZPA4AAIAChXCFdDE1MB9cviw995zUvLm0ebNUpoz05ZfS7NlSWJjrtcHB5i+jaVMznNipk7RrlyVlAwAAIH2EK6TLud/VggV0As8TW7ZILVtKY8eakNWrl/Tbb9Ldd5vRqvSULm3+QiIjpbg4E7B2787PqgEAAJABwhXS1bat5O8vHT3KEh+3SkoygapFCxOwypaVvvpK+u47Mx8zM2XLmrmaDRtKhw+bgLVnT56XDQAAgMwRrpAuX1+pQwdzm6mBbrJpkwlVzz1n2q3fcYcZrfrHP64/WpWe8uWlRYukevWkAwekjh2lffvyrm4AAABkCeEK13X11EDkwqVL0ujRZhrgr79K5cpJ33wjzZwphYTk7DVDQqRffpHq1DHBqlMn6eBB99YNAACAbCFc4bqc4Wr5cun8eWtr8VgbNpiGFc8/LyUnS3fdZTr93Xln7l87LMwErJo1pb//NiNYhw/n/nUBAACQI4QrXFfdulJ4uBl4WbrU6mo8zMWLZiPgG280GwNXqGBGqqZPN9P63KVSJROwqlUzzS06dTIL5QAAAJDvCFe4LpuNqYE5snataZk+caIZrerXz6ytuuOOvHm/KlWkxYtNEt61y+yDdexY3rwXAAAArqtAhKt3331X1apVk5+fn6KiorRu3boMr58xY4bq1asnPz8/RURE6Keffkp57PLlyxo5cqQiIiJUokQJVaxYUQMGDNBhpkvliDNc0dQiCy5elEaOlFq3lnbsMOuivvtOmjbNrLPKS9WqmYBVqZKZdhgdLZ04kbfvCQAAABeWh6vp06drxIgRGjt2rDZt2qTIyEjFxMTo2HV+875q1Sr169dPQ4YM0ebNm9WrVy/16tVL27dvlySdP39emzZt0ujRo7Vp0yZ999132rVrl2699db8/FiFRufOkpeXyQoHDlhdTQG2erV0ww3SK69Idrv0z3+a0arbb8+/GmrWNFMEw8JM//wuXaRTp/Lv/QEAAIo4m8Nh7RaxUVFRatGihSZPnixJstvtCg8P18MPP6ynnnoqzfV9+/ZVYmKi5s6dm3LuxhtvVJMmTTRlypR032P9+vVq2bKl9u3bpypVqqR5/NKlS7p06VLK/fj4eIWHh+vs2bMKCgrK7Uf0eK1aSWvWSB99JN13n9XVFDAXLphOgG+8YXZbDg2VPvhAsjLM79wptW9vpgY2ayYtXCiVKmVdPQAAAB4sPj5ewcHBWcoGlo5cJSUlaePGjYqOjk455+XlpejoaK1evTrd56xevdrlekmKiYm57vWSdPbsWdlsNpW6zg+YEydOVHBwcMoRHh6e/Q9TiLHu6jpWrpSaNJFef90EqwEDzGiV1aOk9eqZEaxy5aSNG6Vu3aT4eGtrAgAAKAIsDVcnTpxQcnKyQq7Z6yckJERHr9Px7OjRo9m6/uLFixo5cqT69et33aQ5atQonT17NuU4wPw3F85wtXCh6c9Q5J0/Lz32mNSunfTHH1LFitLcudJnn0llylhdndGwofkLK1PGNNjo3l1KSLC6KgAAgELN8jVXeeny5cu666675HA49P7771/3Ol9fXwUFBbkcSNWihRQcLJ0+La1fb3U1Flu+XIqMlCZNMqNVgweb0aoePayuLK3ISCk21kwJXLVKuuUWKTHR6qoAAAAKLUvDVbly5eTt7a24uDiX83FxcQoNDU33OaGhoVm63hms9u3bp9jYWAJTLvj4mOZzUhGeGpiYKA0fbtYy7d5tuvL99JP0yScFez1T06bmLy0oSFq2zExZZEdoAACAPGFpuCpevLiaNWumRYsWpZyz2+1atGiRWrVqle5zWrVq5XK9JMXGxrpc7wxWf/75pxYuXKiyZcvmzQcoQop0S/alS6XGjaW33zajVffdZ0arune3urKsadHC/MWVLGnWYvXqZdrGAwAAwK0snxY4YsQIffTRR/rss8+0Y8cOPfTQQ0pMTNTgwYMlSQMGDNCoUaNSrh8+fLjmzZun119/XTt37tS4ceO0YcMGDRs2TJIJVn369NGGDRv05ZdfKjk5WUePHtXRo0eVlJRkyWcsDLp2NX+uXSudOWNpKfnn3Dlp2DCpQwfp77/NJr3z5pm2icHBVleXPTfeKP38s1SihJkq2Lu3dFWHTAAAAOSe5eGqb9++eu211zRmzBg1adJEW7Zs0bx581KaVuzfv19HjhxJub5169aaNm2aPvzwQ0VGRmrmzJmaPXu2GjVqJEk6dOiQ5syZo4MHD6pJkyYKCwtLOVatWmXJZywMqlaV6tY1DS1++cXqavLBL79IERHSu++a+w88IG3fnjqE54natJF+/FHy9zdB6847JX7hAAAA4DaW73NVEGWnl31RMny4mRn3wANmK6dCKSFBGjlScjZAqVpV+s9/UhedFQaLFpnmFhcvmk2Op0+XihWzuioAAIACyWP2uYJncU4NnD/fLD0qdBYuNKNVzmD10EPStm2FK1hJUufO0uzZUvHi0qxZUv/+0pUrVlcFAADg8QhXyLIOHczP4/v2SX/+aXU1bhQfLz34oNSli/lw1aqZ0Z333jNNIAqjmBgTrIoVk2bMkAYOZBMzAACAXCJcIctKlJDatjW3C03XwAULpEaNpA8/NPeHDjWjVZ06WVtXfrj5ZmnmTNNrf9o06d57CVgAAAC5QLhCtlw9NdCjnT1rWqrHxEgHDkg1akiLF0uTJ0uBgVZXl39uvVX6+mvJ21v6/HOzoM5ut7oqAAAAj0S4QrY4m+UtXuzBnbx//tmMVn38sbn/yCPSr7+aeY9F0R13SF9+KXl5mU2R/+//CumiOgAAgLxFuEK2NG4shYRI589LHtfZ/swZM/Xt5pulgwelWrWkZcukt94ycx6Lsr59zciVzWZaQT78MAELAAAgmwhXyBYvLw+dGvjjj1LDhtKnn5oA8dhj0tatUrt2VldWcPTvn/r9vPuuNGIEAQsAACAbCFfINo8KV6dPm054t9wiHT4s1a4tLV8uvfGGFBBgdXUFz8CB0kcfmduTJpk9vwhYAAAAWUK4QrY5w9WWLVJcnKWlZGzOHDNa5Zzu9vjjZrSqTRurKyvYhgxJ3evr1VelZ58lYAEAAGQB4QrZVqGCdMMN5nZsrLW1pOvkSemf/5Ruu006ckSqW1dauVJ67TXJ39/q6jzDv/4lvfOOuf3ii9Jzz1lbDwAAgAcgXCFHCuzUwNmzzWiVs/vdv/8tbd4stWpldWWeZ9gwM31SksaNMyELAAAA10W4Qo44W7LHxhaQbZFOnJDuvlu6/XYzV7F+fdPO8OWXGa3Kjccek156ydx+5hkzTRAAAADpIlwhR1q3Nt3L4+LMFlGW+vZbM1r11VdmtGrUKGnTJikqyuLCComRI6UJE8ztf/9bevNNa+sBAAAooAhXyBFf39Q9dy2bGnj8uNmfqU8f6dgxE7DWrDHT1/z8LCqqkHr2WWnMGHN7xAhp8mRr6wEAACiACFfIMefUwAULLHjzGTOkBg2kb76RvL3NlLWNG6UWLSwopogYN86MCkpmk+EPPrC0HAAAgILGx+oC4Lmc4WrFCikx0UwTzHNxcdLQoWYqoCRFRJiNb5s1y4c3L+JsNumFF6TLl03nxX/9S/LxMa3bAQAAwMgVcq52balqVSkpSVqyJI/fzOGQvv7aTP379lvzQ/2YMdKGDQSr/GSzSa+8Ig0fbu7ff7/02WfW1gQAAFBAEK6QYzZbPk0NPHpUuuMOqV8/s4dVZKS0bp00frxUvHgevjHSZbOZphZDh5rQO3iwNG2a1VUBAABYjnCVkcuXra6gwHOGqzxpauFwmP2qGjaUZs0yo1Xjx5tg5dzFGNaw2aS335YeeMD8Pd1zj1n/BgAAUISx5iojFSqYeW+1akk1a5rDebtGjXxaZFSwdepk+kns2iXt22e+Lrc4csSs6Zkzx9y/4Qaztioy0k1vgFzz8pLef1+6ckX65BOzz5iPj9S7t9WVAQAAWMLmcDgcVhdR0MTHxys4OFhnJQVldGFYWNrQ5bxdpkw+VWu9Nm3Mfr0ffGAGMnLF4ZD++1/pkUekM2ekYsXM2qqRI81tFDzJyWZq4BdfmHD17bfSrbdaXRUAAIBbpGSDs2cVFJRhOmDkKkM7d5r9k3bvlv76K/XYvVs6fdqMrhw5YtrlXatUqesHr7Aw81v/QiImxoSrBQtyGa4OHZIefFD68Udzv1kzM1oVEeGWOpFHvL3N39OVK2Yj5z59pNmzpZtvtroyAACAfMXIVTqylE5Pn04NWleHrr/+kg4fzvgN/PzMtML0phtWrepxIzRr10o33igFB0snTpjBi2xxOEzHuUcflc6eNU0qxo2TnnwyBy8Gy1y5YpqOzJxpdpmeM0fq2tXqqgAAAHIlOyNXhKt0ZOcLTNf589Lff6cNXX/9Je3da6ZRXY+3twlY6Y16FdB1XsnJUvnyJm+uXCm1bp2NJx88aIa7fv7Z3G/RwoyCNGyYJ7Uij12+LN11lxm58vMzo5CdOlldFQAAQI4RrnIp1+EqI5cvS/v3pw1dzuPChYyfX0DXed11lzRjhjR2rBl0ypTDYZogjBghxcebkY7nnjP3Ga3ybElJpnX+3LlSQIAJzjfdZHVVAAAAOUK4yqU8DVcZcTjMGq7rTTc8fTrj5zvXeaU33TCP13l9/LF0331meuDq1ZlcvH+/2XzWuTlWVJQZrapfP8/qQz67dEnq1UuaN8+Mts6fbzqfAAAAeBjCVS5ZFq4yc+pU2sYaztsWr/M6cECqUsXktxMnpNKl07nI4ZD+8x/p8celhART04QJ0mOPmemQKFwuXDBdAxculEqWNGH6xhutrgoAACBbCFe5VGDDVUYKwDqvBg2kHTvM9MA+fa55cN8+M7S1cKG537q1mRZYt26OPi48xPnz0i23SIsXS0FB0qJFUvPmVlcFAACQZYSrXPLIcJWR663z2r3bBDI3rfN67DFp0iSToT766H8n7Xbpww9N579z5yR/f+nFF6WHH2a0qqhITJS6d5eWLzdTV3/5xWwKDQAA4AEIV7lU6MJVRpzrvNLbyyub67x2q6ZenF5T8eVracammrIlXTJrq375xVzbtq0ZrapdO88/FgqYhASpWzezIVqZMmYkq3Fjq6sCAADIFOEql4pUuMpMbtZ5OQUESBMnSsOGFarNk5FN8fFSly7SunVSuXLSkiW03AcAAAUe4SqXCFdZdPU6r/+Frg3T/1LpU7tV3WufvOzJpgX3J5+Y0S3gzBkpOlrauFEKCTEBq149q6sCAAC4ruxkAzYUQs4FBEiNGpnjfxZXl/79b+mWLpf1w+enze7CNpuFRaJAKVXKdA3s3FnassVsMLx0KVNFCzKHQ1q7Vpo506zdfOABE5ABAEAajFylg5GrnPv1Vyky0vStOHXKdFsH0jhxwgSrbdukSpVMwGJ0s+Cw26U1a0ygmjnT7LVwtdtvl15/Xape3Zr6AADIR9nJBiyAgVtFREihoaYB4cqVVleDAqtcOdOWv3596dAhE7T27rW6qqLNbpdWrJCGDzeb1rVpI735pglWgYFSv37Sgw+aLp+zZpm/u2efNd0gAQCAJMIV3Mxmk7p2Nbfnz7e2FhRwFSqYfa/q1DHTzTp1SjtCgryVnCwtW2a2RqhcWWrXTnr7bRN4S5aU+veXZs+Wjh2Tpk2Tpkwx0zk7d5YuXZJeeMHsVffVV2b6IAAARRzhCm4XE2P+JFwhU2FhplV/zZrSnj1Sx47mB3vkneRk0wp/6FATqNq3lyZPNlsyBAVJ99wjzZljAtV//yvddpuZ5+vUqJEUGyt9951UrZr5+7r7bhPMNm2y7GMBAFAQsOYqHay5yp3jx00jOIfDdGsPC7O6IhR4Bw6YH/L37DEjWUuW8A/Hna5cMevaZs40oejYsdTHSpUyAerOO02jCl/frL/uxYtm7dWLL5ruoTab2UX8hRdMMxsAAAoB1lzBUuXLS02bmtvTpkmXL1tbDzxAeLgZwapSRfrjDzPtLC7O6qo825UrZoTpgQdMUI2ONtP6jh2TSpeW7r1X+ukn8z1PnSr16JG9YCWZjjXPPCPt2mXWZDkc0kcfme6PkybxHz8AoMhh5CodjFzl3tNPm32DJfPzV4sWUqtWUuvW5s8KFaytDwXU33+bEayDB830s8WLTfMLZM3lyyakzphh1kqdPJn6WNmypsvfnXea6ZfFirn//VeskB55RNq82dyvX9+ELOdCTAAAPBCbCOcS4Sr3Dh2Shg0zM5FOn077eM2aqUGrdWvzc7S3d/7XiQLozz9NwDpyxPT1/+UXqUwZq6squJKSTGMQZ6C6+j+4cuWk3r1NoGrfPm8C1bWSk83G4U8/bVruS9Ktt0pvvEG7fQCARyJc5RLhyn3sdjPLa9UqafVq8+fvv6e9LjBQiopKDVs33mhmLqGI2rXLhIG4ODPHdOFC/kFc7dIlM+Vv5kzp+++lM2dSH6tQITVQ3XST5GPRXvFnzkjjx0vvvGMCV/Hi0uOPm9AVGGhNTQAA5ADhKpcIV3nr9Glp7drUsLV2rZSQkPa6+vVdR7fq1pW8WCVYdPz+u9Shg+mQ0qKFCRPBwVZXZZ2LF6UFC0ygmjNHOns29bHQUOmOO6Q+fUzXvoI0DPz779Kjj5q/P0mqWFF6+WXT5t1ms7Q0AACygnCVS4Sr/JWcLP32m+vo1u7daa8rXdqMaDkDV8uWZiseFGLbtpn1QSdPmr/0+fOL1l/6hQvmM8+YIf3wg+tvISpWTA1UbdoUrEB1LYfDBMIRI8y6Osn8fb79ttS8ubW1AQCQCcJVLhGurHfsmLRmTWrgWrfO/OL+al5eUkSECVvOwFWjBr8ML3S2bDEbDJ8+LbVtK/38c+GeVnb+vDRvnglUc+dK586lPlapkglTd95p/sF72lDuxYvSm2+aVu2JieY/1sGDTSv3kBCrqwMAIF2Eq1wiXBU8ly9LW7e6jm7t35/2ugoVXLsSNm/uuv8pPNTGjaY9+9mzZqrgjz9KAQFWV+U+iYmmLfrMmeazJSamPhYenhqooqI8L1Cl59Ah6amnzCbFktm8eMwY6eGHzdosAAAKEMJVLhGuPMOhQ6lBa/Vq8/P3tdvq+PiYfghXB67wcGvqRS6tXSt16WKmxnXubKbJeXJyPnfOBKmZM02wOn8+9bGqVVMDVcuWhXc4dvVqE6g2bjT369Y1I1vdu1tbFwAAVyFc5RLhyjNdvCht2mTClvNIbx/aypVdG2U0acIvyz3GypVSTIwZ2YmJMa3H/fysrirrEhLMVL8ZM8z0xqvnulavbsJUnz5myLWwBqpr2e1mE+NRo8x8YEm65RbTur12bUtLAwBAIlzlGuGqcHA4pL17U0e3Vq2Sfv3VNNC4mp+f+Vn26tEtln8UYMuWmZGN8+elHj2k774r2Ok4Pt6Mss2YYdZSXbqU+ljNmqmBqmnTohOo0nP2rDRhgvTWW9KVK2ZPrscek559tmg1MQEAFDiEq1wiXBVe585J69e7Tic8dSrtdTVqpN3k2KrtgpCOX34xweriRalXL+mbb/Jng9ysOnMmNVDNn282+nWqXdsEqjvvNJskF+VAlZ6dO02omjfP3A8NlV56SbrnnsKx3gwA4HEIV7lEuCo6HA6zyfHVo1u//27OX61ECdNLwBm4brxRKlPGmprxP7GxUs+eZiSoTx/pq6+sTcCnT5sNfWfONPtRXb0AsG7d1EAVEUGgyozDYdajPfZY6r4MUVGmdXvLltbWBgAocghXuUS4KtrOnHHd5HjNmvQ3Oa5Xz7UNfL16/GI93/38sxm5SkqS/vEP6Ysv8jdgnTpl1n3NnCktXOgaqBo0SG1K0bAhgSonLl0y0wQnTEhtST9okDRxohnRAgAgHxCucolwhaslJ5vRrKvbwP/5Z9rrSpVy3eQ4KoqlIvnihx/MZrqXL0v//KdpjpCXG+qeOJEaqBYtMuuDnBo1Sl1D1aBB3tVQ1Bw5YhpefPaZuV+ypDR6tDR8eMFebwcAKBQIV7lEuEJmjh83I1rOsLVunXThgus1zk2Or26UUbMmAxh5YtYsE2qSk83Ixscfu3cY8fhx8x4zZkiLF7t2RWncODVQ1avnvvdEWmvXSo88Yv6Dk8z6tTffNOvvAADII4SrXCJcIbsuXzadCK8e3dq3L+115cunhq3Wrdnk2K1mzJD69TPB5/77pSlTchew4uJSA9WSJaZluFOTJqmBqk6d3FaO7LDbzfTPkSNT91ro3t2ErLp1ra0NAFAoEa5yiXAFdzh8OO0mx1c3jZPM8qAbbnANXGxynAtffWWmBtrt0kMPSe++m72hwqNHTWv3GTNMy/erA1WzZiZM9ekj1arl/tqRPfHx0vPPS5Mmmd9u+PiYaYJjxkj87zYAwI0IV7lEuEJeuHQpdZPj1avNfrhHj6a9rlIl1zbwN9zAspJs+eILaeBA03HukUfMD98ZBazDh6VvvzVrqJYvd20V2aJFaqCqUSPPS0cO/PGHNGKE6S4oSRUqmIYXgwbRYQYA4BaEq1wiXCE/OBxm6uDVo1tbtqTd5Njb2/xcX7eumYHmPOrWlcLCWMOVrk8+kYYMMbcff1x69VXXL+rgQROoZswwX/7V/zMYFWWm/N1xh1StWr6WjVz4+Wfp0UdN2JJMMH77bdNlBgCAXCBc5RLhClZJTEy7yfHJk9e/vkQJ17B1dfgKDs6/ugukDz+UHnzQ3H7qKTNN0BmoVq92vbZVq9RAVaVK/tcK90hKkt55Rxo/PnX/hHvuMZsQV6xobW0AAI/lUeHq3Xff1auvvqqjR48qMjJS77zzjlpmsEnkjBkzNHr0aO3du1e1a9fWyy+/rJtvvjnl8e+++05TpkzRxo0bderUKW3evFlNmjTJVk2EKxQUDod06JD5Zfwff0i7dqXe3rMn7SjX1UJC0o501aljRsF8ffPvM1jq3XelYcPSf6xNm9RAVbly/taFvBUXJz39tBnBlMxvIZ591mxKXGT+8RdCR4+a5jKLF0u//WY6At1yi3TTTcydBpCnPCZcTZ8+XQMGDNCUKVMUFRWlSZMmacaMGdq1a5cqVKiQ5vpVq1bppptu0sSJE3XLLbdo2rRpevnll7Vp0yY1atRIkvTFF19oz549qlixou6//37CFQqtpCTp779Tw9bV4Su9tVxOXl5mttu1o11165r1XoVumcqkSeaHaptNatfOrJ/q3dt8WBRu69ebdXdr1pj7NWtKb7wh9ezJfFpPEBcnLV1qwtSSJdLOnelfV7KkFBNjgtbNN5u2rADgRh4TrqKiotSiRQtNnjxZkmS32xUeHq6HH35YTz31VJrr+/btq8TERM2dOzfl3I033qgmTZpoypQpLtfu3btX1atXJ1yhSIqPNxsdXz3S5Qxf585d/3n+/mbroPSmGZYpk3/1u91vv5kPEBZmdSXIb3a79OWXpnX7kSPmXNeuJnTXr29pabjG8eOuYer3310ft9nMNggdOphNBFesMI1MnC35ndfceKMJ0LfcYjb2JkgDyCWPCFdJSUkKCAjQzJkz1atXr5TzAwcO1JkzZ/T999+neU6VKlU0YsQIPfrooynnxo4dq9mzZ2vr1q0u12YnXF26dEmXLl1KuR8fH6/w8HDCFQodh8OMaqU3zfCvv6QrV67/3HLl0p9mWLMme3XBAyQkSC++aEaukpJM6/aHHzat20uVsrq6ounkSdcwtX172msiI02Y6tjRjDxf+1seu13asEGaO9ccmze7Pl61qglZt9xiXsfPL48+DIDCLDvhyiefakrjxIkTSk5OVkhIiMv5kJAQ7bzO0P/Ro0fTvf5oRnOgsmDixIkaP358rl4D8AQ2mxm8CQuT2rd3fezKFbOO6+qRLmcAO3RIOnHCHKtWpX3NKlXS72YYHm66HQKWK1nStGgfMsR0kJwzx2w8/N//mtA1eDD/WPPaqVNm/zjnuqlff017TUREapi66SapbNmMX9PLS2rZ0hzPPWc6gf74o/TDD9KiRaYl67vvmqNECalLFxO0evSQQkPz4lMCKOIsC1cFyahRozRixIiU+86RK6Ao8fExUwJr1zY/d1zt3Dlp9+60o127dklnz5qfX/btkxYscH2er6/Zbze9aYblyjFbBxaoVUv6/ntp/nzTun3nTun++6X33zet29u0sbrCwuPMGdcwtXWr67YHktSwoWuYyu16qcqVTZfQBx+Uzp83Acs5qnX4sDR7tjkk067fOX2wSRP+BwmAW1gWrsqVKydvb2/FXT1XWlJcXJxCr/PbpNDQ0Gxdn1W+vr7ypYMUcF2BgeZnj2tn2DocZplEek01du82Gyf/9ps5rlWqVPqjXbVqmV8wA3kqJsaMnLz7rjR2rNnhu21b6e67pVdeoeFJTpw9azbidoapzZvThql69UyQ6tDBHOk0r3KbgAATnnr2NHVs3mxC1g8/mKmE69ebY8wY8/ftnD7YuTNznQHkmOUNLVq2bKl33nlHkmloUaVKFQ0bNuy6DS3Onz+vH374IeVc69at1bhxYxpaAAVMcrK0f3/6TTX278/4uZUrpz/aVa2aGWED3OrYMemZZ6SPPzY/hAcEmFbujz/OGp2MJCS4hqlNm8waqKvVqeMapgrKVLwjR6SffjJBKzbWjHI5+fubgOUMWwRtoMjziIYWkmnFPnDgQH3wwQdq2bKlJk2apG+++UY7d+5USEiIBgwYoEqVKmnixImSTCv29u3b66WXXlKPHj309ddf68UXX3RpxX7q1Cnt379fhw8fTrmmbt26Cg0NzfIIF+EKyFsXLqQ/zfCPPzLeNLlYMdNAI72Nk0NCmNWDXNq40bRudy4srF7dNMC47Tb+cUlmfvCKFalhauPGtJvt1arlGqY8YfPmixfNZ/rhB3McOOD6+A03pE4fbNasEO5XASAzHhOuJGny5Mkpmwg3adJEb7/9tqKioiRJHTp0ULVq1TR16tSU62fMmKFnn302ZRPhV155xWUT4alTp2rw4MFp3mfs2LEaN25clmoiXAHWOXky/WmGf/5pfga6nqAg11EuZ/iqXdv0MgCyxOGQvvpK+ve/TScXSYqOlt56S2rQwNra8ltiorRyZWqY2rAhbUvRGjVcw5Snb8jtcEjbtqWu01qzxnVqY2ioWZR6yy2mOQZzmIEiwaPCVUFEuAIKHrvdNAJLb7Rr7960s5GuFhZmphRWrpz+ERZmRsWAFOfOSS+9JL32mlk86O0tDR0qjRsnlS5tdXV54/x5afVqE6QWL5bWrUsbpqpVcw1TVapYUGg+OnZM+vlnM6I1f77rRoG+vua7cE4frFrVujoB5CnCVS4RrgDPcumS2acrvf27jh3L/Pk2m/mF9PXCV+XKZtkFfW+KoL//NmuvnB3mypWTnn9euu8+z2/dfuGCGZlx7jO1dq3ZA+xq4eEmQDgDVbVqFhRaQCQlme6HzumDe/a4Ph4RkTp9sGVLz//3ASAF4SqXCFdA4XHmjJlSuH+/Gfm69jh0SLp8OWuvVb58xgGscmXTCwGF0MKFpnW7s/VlkyamdXu7dlZWlT0XL5oA5QxTa9aY30xcrVIl1zBVvTrrzdLjcJg2/j/8YKYPrlzpOnxevrx0880maHXtauYtA/BYhKtcIlwBRYfdbtrJpxe8rj4yWu91tdKlMw9g/M+Kh7pyxeyHNWaMSe2S9I9/mNbtBXFvxEuXzNQ+Z5havTrtP+SwMNcwVbMmYSonTp6U5s0zYWvePNOW3qlYMbNr+y23mJGtGjWsqxNAjhCucolwBeBqDod06lTG4evAAbP+PytKlsw8gJUuzc+4Bdbx49Lo0dKHH5p/HP7+0qhR0hNPWLs/UlKS2bfJGaZWrTJT/64WGpq6aW+HDqbjC//Q3OvyZTOS5RzV+uMP18fr108NWq1asb8E4AEIV7lEuAKQXQ6HFB+f+QiYc8AjM/7+mQewcuXoCm2pLVtM6/bly839atVMA4zevfMnsFy+bDr4Obv5rVzpul+TZDbpvTpM1a1LmMpvf/yR2n1w2TLX9vVlykjdu5uw1a2b2V0dQIFDuMolwhWAvHLunFnnlVEAO3Eia69VvLhZIpNRAAsJYV19nnI4pG++kZ58MnV/pI4dTev2iAj3vteVK2ZvKWeYWrEi7XBpuXKpnfw6djSjJISpguPMGdN1cO5cs4nxqVOpj3l7mzV8zlGtOnUsKxOAK8JVLhGuAFjp4kXp8OGMA9jRo67b71yPt7fZxzWjAEYrejc4f156+WWz/uriRTOk+NBD0nPPmdGJnLhyRdq8OTVMLV/u2gpcMq99dZhq0IDhTE9x5YppKuKcPvj7766P166dGrTatuU/UsBChKtcIlwBKOguX5aOHMk4gB0+7DoD6Xqy0oq+YkXJzy/vP5fH27vXrL369ltzv0wZ07r9gQcyH0JMTjZTDa8OU/HxrteULm2aIzjDVKNGHhWmLl+WEhLSP+Ljr//YtceFC+arrVDBjM46j6vvO2+XLOkhg3d//506fXDJEtc2psHBZtrgLbeYaYRly1pWJlAUEa5yiXAFoDBITpbi4jJfB5bVVvSlS0uBgabdvPPw93e9n5vH/Pw85IfgrFi82KzH2r7d3G/c2LRub98+9Rq7Xdq6NTVMLVvm2mVOMj9UXx2mIiLydZ6n3W4Gy7IaejI7ru38nh/8/K4fvK69XaZMAcmq8fFSbKwJWj/+aJqoOHl5Sa1bp45qMfUTyHOEq1wiXAEoKux2s8YrswB2bdO5vOLuwJbe+XwLcVeuSB98YDoLnj5tzt15p/nBeMkSE6ac552CgqSbbkoNU5GR2QpTDof5u3JXGMpqB8zs8vMzI0o5Pfz8zHKluDizUXhcXOpx9f3s1u/tbbaoyiyEhYSY6/Jlpl5ysukCOXeumUL466+uj1evnhq0brqJ3c6BPEC4yiXCFQCkcjhMBjh61CwtOn/e/ADvvH3tkd3HkpLy/zPlxcjbtedTQtzJk2ZvrClTXDealaTAQNnbtNOFGzvqbNOOOhneRAkXfHIchs6dy9pU0Ozy8cldGLr6CAzMv+VDiYmpYSujEHbsmGtviawqUybzEOa877YNxvfvT50++MsvrsOBgYFSTIwJWzffbN4cQK4RrnKJcAUA+Sc52b1hrSCGuIAAKdL2qx4+O0H+V85pRbEO+iW5g1ZcaKYLl/Nmn6PAwKwHnqCgjB/39S38M8+Skszsu2tDV3qB7Pjx7IfYwMCshbCQEDMbNEvfd2KitHBhatg6ejT1MZtNiopKHdWKiCj8f4lAHiFc5RLhCgAKnytXTOjK6yCX0xCX26lyVx8lShSQtUOFlN2eOi0xs1GxuLjsrzUrXjxra8QqVDDd9729/1fUpk2p0wc3bXJ90fDw1KDVsSMdaoBsIFzlEuEKAJBTzhCXXvBKTEx/il1+TpVD/nI4zJTN9KYiphfIrm0QmRkvLxOwrg1eNXwP6YbDP6rWzrkqt3WhvC9dtXAyIEDq0sWs/wsOznjoMiCAES8UeYSrXCJcAQAAK1y4YKYdZmVU7OTJrO1356cL6qRfdIvm6lbbXFVyHMx6QV5eOZ9Tmt5jPnkzDRbIS4SrXCJcAQCAgu7KFdPtMysNO44dc2674FCktuoWzVVd7VJJJaikEhSk+JTbJZWgQJ2Tl/LgR0Tn/NfshrL0HvP3Z1QN+SI72YBfHwAAAHggHx+zAXhoaObXOrt+HjtmU1xcE8XFNdGxY9If14Qx55/nE+0K0Pl0g9e1R5DiFWRLULniCSpTPEGlvP8X0BwJ8r8cL9+kBHlf+d9ixIsXzXH13l05de2oWmadWTJ7nFE1uAH/igAAAAo5m820ji9TRqpXL/PrExO9dOxYoOLiAnXsWFiaEbFdV4WxkyclOSRd+t+RjmJKcglkFQMTFF4qXhUDExRaIkHl/RJUzjdBpXwSFGxLUElHvPyTE+R3OUHe5xNku3bPAYfDNPE4ezbt5ts55e+fs1BWrJgJel5epruI8/bVx/XO5+Q56Z232RjFKyCYFpgOpgUCAABkzeXLrm3s02vccfWfV65k7/X9/VObdVSoIIVWsKtSqURVDk5QWGCCKvgnqJxfgsr4mODmdS7++pvBxafzmBX7NOQFmy1/wl1ePefhh6WGDa3+FtPFtEAAAADki2LFpIoVzZEZu106cybzEOa8nZhomnzs22cOw0tSyf8drry9U7snXt1BsUKdtOfKlzd7uCkpKePwldljycnmsNvTHtc7n9FjV5/PzhiIw5H95FqQ3H57gQ1X2UG4AgAAQL7w8kqdnli/fubXJyZmLYTFxZm9x5KTU89nRalSUkhIcVWoUFYhIWVdRshCQqSQeqm3AwMtmHnncKROgcxqIMtJiCsIz6lVK5+/3LxBuAIAAECBVKKEVL26OTLjnJ54vemI13ZPvHLFjKKdOSPt2pX56187PdH5p7+/2fi5WLHU4+r7GT2W+bU2eXvb2BXcgxCuAAAA4PFyOj0xsxGx609PzB82W05CWc6uzavXKUq9NghXAAAAKFJyMj3xeiNiFy+aUTPnkZSU/u3M7jtvX7vMyuEwj3ly3w0fn8xD2bvvSm3bWl1p7hGuAAAAgAyUKCHVqGGOvJacnPUg5q5A585r0+upceWKOS5cuP7nPn8+777T/ES4AgAAAAoIb29z+PlZXUnOOByuoSuroa1pU6srdw/CFQAAAAC3sNnMVL/ixa2uxBq0HgEAAAAANyBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBoQrAAAAAHADwhUAAAAAuAHhCgAAAADcgHAFAAAAAG5AuAIAAAAANyBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBoQrAAAAAHADwhUAAAAAuIGP1QUURA6HQ5IUHx9vcSUAAAAArOTMBM6MkBHCVTpOnjwpSQoPD7e4EgAAAAAFQUJCgoKDgzO8hnCVjjJlykiS9u/fn+kXiOuLj49XeHi4Dhw4oKCgIKvL8Uh8h+7B95h7fIfuwffoHnyPucd36B58j7nnCd+hw+FQQkKCKlasmOm1hKt0eHmZpWjBwcEF9i/ZkwQFBfE95hLfoXvwPeYe36F78D26B99j7vEdugffY+4V9O8wqwMuNLQAAAAAADcgXAEAAACAGxCu0uHr66uxY8fK19fX6lI8Gt9j7vEdugffY+7xHboH36N78D3mHt+he/A95l5h+w5tjqz0FAQAAAAAZIiRKwAAAABwA8IVAAAAALgB4QoAAAAA3IBwBQAAAABuQLi6yrJly9SzZ09VrFhRNptNs2fPtrokjzNx4kS1aNFCJUuWVIUKFdSrVy/t2rXL6rI8zvvvv6/GjRunbKjXqlUr/fzzz1aX5dFeeukl2Ww2Pfroo1aX4lHGjRsnm83mctSrV8/qsjzOoUOH9M9//lNly5aVv7+/IiIitGHDBqvL8ijVqlVL82/RZrNp6NChVpfmUZKTkzV69GhVr15d/v7+qlmzpiZMmCD6m2VPQkKCHn30UVWtWlX+/v5q3bq11q9fb3VZBVpmP2c7HA6NGTNGYWFh8vf3V3R0tP78809ris0FwtVVEhMTFRkZqXfffdfqUjzW0qVLNXToUK1Zs0axsbG6fPmyunbtqsTERKtL8yiVK1fWSy+9pI0bN2rDhg3q1KmTbrvtNv32229Wl+aR1q9frw8++ECNGze2uhSP1LBhQx05ciTlWLFihdUleZTTp0+rTZs2KlasmH7++Wf9/vvvev3111W6dGmrS/Mo69evd/l3GBsbK0m68847La7Ms7z88st6//33NXnyZO3YsUMvv/yyXnnlFb3zzjtWl+ZR7rvvPsXGxuqLL77Qtm3b1LVrV0VHR+vQoUNWl1ZgZfZz9iuvvKK3335bU6ZM0dq1a1WiRAnFxMTo4sWL+VxpLjmQLkmOWbNmWV2Gxzt27JhDkmPp0qVWl+LxSpcu7fjPf/5jdRkeJyEhwVG7dm1HbGyso3379o7hw4dbXZJHGTt2rCMyMtLqMjzayJEjHW3btrW6jEJn+PDhjpo1azrsdrvVpXiUHj16OO69916Xc71793b079/fooo8z/nz5x3e3t6OuXPnupxv2rSp45lnnrGoKs9y7c/ZdrvdERoa6nj11VdTzp05c8bh6+vr+OqrryyoMOcYuUKeOnv2rCSpTJkyFlfiuZKTk/X1118rMTFRrVq1srocjzN06FD16NFD0dHRVpfisf78809VrFhRNWrUUP/+/bV//36rS/Ioc+bMUfPmzXXnnXeqQoUKuuGGG/TRRx9ZXZZHS0pK0n//+1/de++9stlsVpfjUVq3bq1Fixbpjz/+kCRt3bpVK1asUPfu3S2uzHNcuXJFycnJ8vPzcznv7+/PyH4O7dmzR0ePHnX5/+rg4GBFRUVp9erVFlaWfT5WF4DCy26369FHH1WbNm3UqFEjq8vxONu2bVOrVq108eJFBQYGatasWWrQoIHVZXmUr7/+Wps2bWIefC5ERUVp6tSpqlu3ro4cOaLx48erXbt22r59u0qWLGl1eR7h77//1vvvv68RI0bo6aef1vr16/XII4+oePHiGjhwoNXleaTZs2frzJkzGjRokNWleJynnnpK8fHxqlevnry9vZWcnKwXXnhB/fv3t7o0j1GyZEm1atVKEyZMUP369RUSEqKvvvpKq1evVq1atawuzyMdPXpUkhQSEuJyPiQkJOUxT0G4Qp4ZOnSotm/fzm9xcqhu3brasmWLzp49q5kzZ2rgwIFaunQpASuLDhw4oOHDhys2NjbNbxeRdVf/Nrtx48aKiopS1apV9c0332jIkCEWVuY57Ha7mjdvrhdffFGSdMMNN2j79u2aMmUK4SqHPv74Y3Xv3l0VK1a0uhSP88033+jLL7/UtGnT1LBhQ23ZskWPPvqoKlasyL/HbPjiiy907733qlKlSvL29lbTpk3Vr18/bdy40erSYDGmBSJPDBs2THPnztXixYtVuXJlq8vxSMWLF1etWrXUrFkzTZw4UZGRkXrrrbesLstjbNy4UceOHVPTpk3l4+MjHx8fLV26VG+//bZ8fHyUnJxsdYkeqVSpUqpTp452795tdSkeIywsLM0vRerXr8/0yhzat2+fFi5cqPvuu8/qUjzSk08+qaeeekr/+Mc/FBERoXvuuUePPfaYJk6caHVpHqVmzZpaunSpzp07pwMHDmjdunW6fPmyatSoYXVpHik0NFSSFBcX53I+Li4u5TFPQbiCWzkcDg0bNkyzZs3SL7/8ourVq1tdUqFht9t16dIlq8vwGJ07d9a2bdu0ZcuWlKN58+bq37+/tmzZIm9vb6tL9Ejnzp3TX3/9pbCwMKtL8Rht2rRJsyXFH3/8oapVq1pUkWf79NNPVaFCBfXo0cPqUjzS+fPn5eXl+uOft7e37Ha7RRV5thIlSigsLEynT5/W/Pnzddttt1ldkkeqXr26QkNDtWjRopRz8fHxWrt2rcetN2da4FXOnTvn8tvYPXv2aMuWLSpTpoyqVKliYWWeY+jQoZo2bZq+//57lSxZMmWebHBwsPz9/S2uznOMGjVK3bt3V5UqVZSQkKBp06ZpyZIlmj9/vtWleYySJUumWetXokQJlS1bljWA2fDEE0+oZ8+eqlq1qg4fPqyxY8fK29tb/fr1s7o0j/HYY4+pdevWevHFF3XXXXdp3bp1+vDDD/Xhhx9aXZrHsdvt+vTTTzVw4ED5+PAjTE707NlTL7zwgqpUqaKGDRtq8+bNeuONN3TvvfdaXZpHmT9/vhwOh+rWravdu3frySefVL169TR48GCrSyuwMvs5+9FHH9Xzzz+v2rVrq3r16ho9erQqVqyoXr16WVd0TljdrrAgWbx4sUNSmmPgwIFWl+Yx0vv+JDk+/fRTq0vzKPfee6+jatWqjuLFizvKly/v6Ny5s2PBggVWl+XxaMWefX379nWEhYU5ihcv7qhUqZKjb9++jt27d1tdlsf54YcfHI0aNXL4+vo66tWr5/jwww+tLskjzZ8/3yHJsWvXLqtL8Vjx8fGO4cOHO6pUqeLw8/Nz1KhRw/HMM884Ll26ZHVpHmX69OmOGjVqOIoXL+4IDQ11DB061HHmzBmryyrQMvs52263O0aPHu0ICQlx+Pr6Ojp37uyR/63bHA625AYAAACA3GLNFQAAAAC4AeEKAAAAANyAcAUAAAAAbkC4AgAAAAA3IFwBAAAAgBsQrgAAAADADQhXAAAAAOAGhCsAAAAAcAPCFQAAbmaz2TR79myrywAA5DPCFQCgUBk0aJBsNluao1u3blaXBgAo5HysLgAAAHfr1q2bPv30U5dzvr6+FlUDACgqGLkCABQ6vr6+Cg0NdTlKly4tyUzZe//999W9e3f5+/urRo0amjlzpsvzt23bpk6dOsnf319ly5bVAw88oHPnzrlc88knn6hhw4by9fVVWFiYhg0b5vL4iRMndPvttysgIEC1a9fWnDlz8vZDAwAsR7gCABQ5o0eP1h133KGtW7eqf//++sc//qEdO3ZIkhITExUTE6PSpUtr/fr1mjFjhhYuXOgSnt5//30NHTpUDzzwgLZt26Y5c+aoVq1aLu8xfvx43XXXXfr111918803q3///jp16lS+fk4AQP6yORwOh9VFAADgLoMGDdJ///tf+fn5uZx/+umn9fTTT8tms+lf//qX3n///ZTHbrzxRjVt2lTvvfeePvroI40cOVIHDhxQiRIlJEk//fSTevbsqcOHDyskJESVKlXS4MGD9fzzz6dbg81m07PPPqsJEyZIMoEtMDBQP//8M2u/AKAQY80VAKDQ6dixo0t4kqQyZcqk3G7VqpXLY61atdKWLVskSTt27FBkZGRKsJKkNm3ayG63a9euXbLZbDp8+LA6d+6cYQ2NGzdOuV2iRAkFBQXp2LFjOf1IAAAPQLgCABQ6JUqUSDNNz138/f2zdF2xYsVc7ttsNtnt9rwoCQBQQLDmCgBQ5KxZsybN/fr160uS6tevr61btyoxMTHl8ZUrV8rLy0t169ZVyZIlVa1aNS1atChfawYAFHyMXAEACp1Lly7p6NGjLud8fHxUrlw5SdKMGTPUvHlztW3bVl9++aXWrVunjz/+WJLUv39/jR07VgMHDtS4ceN0/PhxPfzww7rnnnsUEhIiSRo3bpz+9a9/qUKFCurevbsSEhK0cuVKPfzww/n7QQEABQrhCgBQ6MybN09hYWEu5+rWraudO3dKMp38vv76a/3f//2fwsLC9NVXX6lBgwaSpICAAM2fP1/Dhw9XixYtFBAQoDvuuENvvPFGymsNHDhQFy9e1JtvvqknnnhC5cqVU58+ffLvAwIACiS6BQIAihSbzaZZs2apV69eVpcCAChkWHMFAAAAAG5AuAIAAAAAN2DNFQCgSGE2PAAgrzByBQAAAABuQLgCAAAAADcgXAEAAACAGxCuAAAAAMANCFcAAAAA4AaEKwAAAABwA8IVAAAAALgB4QoAAAAA3OD/AQFKuhNsrzBGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2Q0lEQVR4nO3dd3hU1dbH8d8kkEoSQksRSADpQuiIiKBGiopiAxGl2QUUsWKhXFSqyBW8oNyrYAe9olwLCIgIioBAEBUpivRQTUICJJCc94/9TkggCSmTnJnJ9/M855mTM2fOrBkCzJq919oOy7IsAQAAAABKxMfuAAAAAADAG5BcAQAAAIALkFwBAAAAgAuQXAEAAACAC5BcAQAAAIALkFwBAAAAgAuQXAEAAACAC5BcAQAAAIALkFwBAAAAgAuQXAGAlxozZowcDkeuY7GxsRo4cKA9AaFc6dKliy655BK7wwCAMkVyBQBwG86E8MiRI3aH4va6dOkih8OR59aoUSO7wwOAcqmC3QEAAMrO1q1b5ePD92reombNmho/fvx5x8PCwmyIBgBAcgUA5Yi/v7/dIaCQsrKylJGRoYCAgHzPCQsL05133lmGUQEACsLXlwDgBVatWqW2bdsqICBA9erV0+uvv57neXnVXCUlJenRRx9VbGys/P39VbNmTfXv3z/X1Lz09HSNHj1aF198sfz9/VWrVi09+eSTSk9PL82Xla9vvvlGnTp1UnBwsCpXrqwbb7xRW7ZsyXXO8ePHNXz48OzXVaNGDV1zzTXasGFD9jnbt2/XLbfcosjISAUEBKhmzZq6/fbblZycXODzO+uJ1q9fr8suu0yBgYGqU6eOZs2add65hX3vHA6Hhg4dqvfee09NmzaVv7+/Fi1aVIJ3yXBOtfz999/Vu3dvhYaGqmrVqnrkkUd06tSpXOeeOXNG48aNU7169eTv76/Y2Fg988wzef45f/XVV+rcubNCQkIUGhqqtm3b6v333z/vvN9++01XXnmlgoKCdNFFF2nSpEklfk0A4K4YuQIAD7d582Z17dpV1atX15gxY3TmzBmNHj1aERERF3xsamqqOnXqpC1btmjw4MFq1aqVjhw5ooULF2rv3r2qVq2asrKydMMNN2jVqlW677771LhxY23evFmvvPKKtm3bpk8//bT0X2QOS5cuVY8ePVS3bl2NGTNGJ0+e1PTp09WxY0dt2LBBsbGxkqQHHnhAH3/8sYYOHaomTZro6NGjWrVqlbZs2aJWrVopIyND3bp1U3p6uoYNG6bIyEjt27dPn3/+uZKSki44te7vv//Wtddeq969e6tv376aP3++HnzwQfn5+Wnw4MGSVOT37ptvvtH8+fM1dOhQVatWLfu15CczMzPP+rTAwEAFBwfnOta7d2/FxsZq/Pjx+vHHH/Xqq6/q77//1ttvv519zj333KO5c+fq1ltv1WOPPaY1a9Zo/Pjx2rJlixYsWJB93pw5czR48GA1bdpUI0eOVOXKlbVx40YtWrRId9xxR673qHv37rr55pvVu3dvffzxx3rqqafUrFkz9ejRo8DXBgAeyQIAeLRevXpZAQEB1q5du7KP/fbbb5avr6917j/zMTEx1oABA7J/HjVqlCXJ+uSTT867blZWlmVZlvXOO+9YPj4+1sqVK3PdP2vWLEuS9f3337vstYwePdqSZB0+fDjfc1q0aGHVqFHDOnr0aPaxTZs2WT4+Plb//v2zj4WFhVlDhgzJ9zobN260JFkfffRRkePs3LmzJcl6+eWXs4+lp6dnx5aRkWFZVtHeO0mWj4+P9euvvxYphry2+++/P/s853t6ww035Hr8Qw89ZEmyNm3aZFmWZSUkJFiSrHvuuSfXeY8//rglyfrmm28sy7KspKQkKyQkxGrfvr118uTJXOc6f2dyxvf222/neo8iIyOtW265pVCvEQA8DdMCAcCDZWZmavHixerVq5dq166dfbxx48bq1q3bBR//3//+V3FxcbrpppvOu8/Zxv2jjz5S48aN1ahRIx05ciR7u+qqqyRJy5cvd9GrubADBw4oISFBAwcOVJUqVbKPN2/eXNdcc42+/PLL7GOVK1fWmjVrtH///jyv5RyZWrx4sU6cOFHkWCpUqKD7778/+2c/Pz/df//9OnTokNavXy+p6O9d586d1aRJk0LHEBsbqyVLlpy3DR8+/LxzhwwZkuvnYcOGSVL2e+a8HTFiRK7zHnvsMUnSF198IUlasmSJjh8/rqeffvq8erBzW/9XqlQpV02Yn5+f2rVrpz///LPQrxEAPAnTAgHAgx0+fFgnT55U/fr1z7uvYcOGuZKNvPzxxx+65ZZbCjxn+/bt2rJli6pXr57n/YcOHcr3sampqUpNTc3+2dfXN9/rFMauXbskmdd2rsaNG2vx4sVKS0tTcHCwJk2apAEDBqhWrVpq3bq1rr32WvXv319169aVJNWpU0cjRozQ1KlT9d5776lTp0664YYbdOeddxaq2150dPR5U+8aNGggSfrrr7906aWXFvm9q1OnzoXfhByCg4MVHx9fqHPP/R2pV6+efHx89Ndff0ky762Pj48uvvjiXOdFRkaqcuXK2e/9H3/8IUmFWsOqZs2a5yVc4eHh+vnnnwsVMwB4GpIrAECBsrKy1KxZM02dOjXP+2vVqpXvY6dMmaKxY8dm/xwTE5P9Yb609e7dW506ddKCBQv09ddfa/LkyZo4caI++eST7Hqfl19+WQMHDtRnn32mr7/+Wg8//HB2TVLNmjVLHENR37vAwMASP2dhnZv0XOh4cfj6+uZ53LIslz0HALgTkisA8GDVq1dXYGCgtm/fft59W7duveDj69Wrp19++eWC52zatElXX311kT949+/fX5dffnn2zyVNHmJiYiTl/dp+//13VatWLddoUlRUlB566CE99NBDOnTokFq1aqUXX3wxVzOFZs2aqVmzZnruuef0ww8/qGPHjpo1a5ZeeOGFAmPZv39/9iiZ07Zt2yQpuxFFSd47V9u+fXuukbEdO3YoKysrO9aYmBhlZWVp+/btaty4cfZ5Bw8eVFJSUvZ7X69ePUnSL7/8ct4oFwCUd9RcAYAH8/X1Vbdu3fTpp59q9+7d2ce3bNmixYsXX/Dxt9xyizZt2pSrE5yTc3Shd+/e2rdvn2bPnn3eOSdPnlRaWlq+169bt67i4+Ozt44dOxbmZeUrKipKLVq00Ny5c5WUlJR9/JdfftHXX3+ta6+9VpKpRTu3nXqNGjUUHR2d3VY8JSVFZ86cyXVOs2bN5OPjU6gW82fOnMnV8j4jI0Ovv/66qlevrtatW0sq2Xvnaq+99lqun6dPny5J2Ymm872bNm1arvOco27XXXedJKlr164KCQnR+PHjz2vlzogUgPKOkSsA8HBjx47VokWL1KlTJz300EM6c+aMpk+frqZNm16wtuWJJ57Qxx9/rNtuu02DBw9W69atdezYMS1cuFCzZs1SXFyc7rrrLs2fP18PPPCAli9fro4dOyozM1O///675s+fr8WLF6tNmzYufU1Tp05VUFBQrmM+Pj565plnNHnyZPXo0UMdOnTQ3Xffnd2KPSwsTGPGjJFk1riqWbOmbr31VsXFxalSpUpaunSp1q1bp5dfflmSaXs+dOhQ3XbbbWrQoIHOnDmjd955R76+vhesQ5NMzdXEiRP1119/qUGDBpo3b54SEhL0xhtvqGLFipJU6u9dcnKy3n333TzvO3dx4Z07d+qGG25Q9+7dtXr1ar377ru64447FBcXJ0mKi4vTgAED9MYbbygpKUmdO3fW2rVrNXfuXPXq1UtXXnmlJCk0NFSvvPKK7rnnHrVt21Z33HGHwsPDtWnTJp04cUJz584t9usBAI9nc7dCAIALrFixwmrdurXl5+dn1a1b15o1a1Z2C+6czm3FblmWdfToUWvo0KHWRRddZPn5+Vk1a9a0BgwYYB05ciT7nIyMDGvixIlW06ZNLX9/fys8PNxq3bq1NXbsWCs5Odllr8MZc16br69v9nlLly61OnbsaAUGBlqhoaFWz549rd9++y37/vT0dOuJJ56w4uLirJCQECs4ONiKi4uz/vWvf2Wf8+eff1qDBw+26tWrZwUEBFhVqlSxrrzySmvp0qUXjLNz585W06ZNrZ9++snq0KGDFRAQYMXExFgzZsw479zCvneSCmwdn1cM+b1XOf/cne/pb7/9Zt16661WSEiIFR4ebg0dOvS8VuqnT5+2xo4da9WpU8eqWLGiVatWLWvkyJHWqVOnznv+hQsXWpdddln2n0G7du2sDz744Lz36FwDBgywYmJiCv06AcCTOCyLMXwAAIqiS5cuOnLkyAXr1dzBmDFjNHbsWB0+fFjVqlWzOxwA8GrUXAEAAACAC5BcAQAAAIALkFwBAAAAgAtQcwUAAAAALsDIFQAAAAC4AMkVAAAAALgAiwjnISsrS/v371dISIgcDofd4QAAAACwiWVZOn78uKKjo+XjU/DYFMlVHvbv369atWrZHQYAAAAAN7Fnzx7VrFmzwHNIrvIQEhIiybyBoaGhNkcDAAAAwC4pKSmqVatWdo5QEJKrPDinAoaGhpJcAQAAAChUuRANLQAAAADABUiuAAAAAMAFSK4AAAAAwAWouQIAAIBHyMzM1OnTp+0OA17G19dXFSpUcMkSTCRXAAAAcHupqanau3evLMuyOxR4oaCgIEVFRcnPz69E1yG5AgAAgFvLzMzU3r17FRQUpOrVq7tkhAGQzALBGRkZOnz4sHbu3Kn69etfcKHggpBcAQAAwK2dPn1almWpevXqCgwMtDsceJnAwEBVrFhRu3btUkZGhgICAop9LRpaAAAAwCMwYoXSUpLRqlzXcclVAAAAAKCcI7kCAAAAABcguQIAAAA8RGxsrKZNm2Z3GMgHyRUAAADgYg6Ho8BtzJgxxbruunXrdN9995Uoti5dumj48OElugbyRrdAAAAAwMUOHDiQvT9v3jyNGjVKW7duzT5WqVKl7H3LspSZmakKFS780bx69equDRQuxcgVAO+Wmir16SO9847dkQAAXMSypLQ0e7bCrmEcGRmZvYWFhcnhcGT//PvvvyskJERfffWVWrduLX9/f61atUp//PGHbrzxRkVERKhSpUpq27atli5dmuu6504LdDgc+ve//62bbrpJQUFBql+/vhYuXFii9/e///2vmjZtKn9/f8XGxurll1/Odf+//vUv1a9fXwEBAYqIiNCtt96afd/HH3+sZs2aKTAwUFWrVlV8fLzS0tJKFI8nYeQKgHebP99sK1ZId94p0cYXADzeiRNSjoGfMpWaKgUHu+ZaTz/9tKZMmaK6desqPDxce/bs0bXXXqsXX3xR/v7+evvtt9WzZ09t3bpVtWvXzvc6Y8eO1aRJkzR58mRNnz5d/fr1065du1SlSpUix7R+/Xr17t1bY8aMUZ8+ffTDDz/ooYceUtWqVTVw4ED99NNPevjhh/XOO+/osssu07Fjx7Ry5UpJZrSub9++mjRpkm666SYdP35cK1eulFXYjNQLkFwB8G7ffmtuDx6Utm6VGjWyNRwAAJz+8Y9/6Jprrsn+uUqVKoqLi8v+edy4cVqwYIEWLlyooUOH5nudgQMHqm/fvpKkl156Sa+++qrWrl2r7t27FzmmqVOn6uqrr9bzzz8vSWrQoIF+++03TZ48WQMHDtTu3bsVHBys66+/XiEhIYqJiVHLli0lmeTqzJkzuvnmmxUTEyNJatasWZFj8GQkVwC8l2VJy5ef/fnbb0muAMALBAWZESS7nttV2rRpk+vn1NRUjRkzRl988UV2onLy5Ent3r27wOs0b948ez84OFihoaE6dOhQsWLasmWLbrzxxlzHOnbsqGnTpikzM1PXXHONYmJiVLduXXXv3l3du3fPnpIYFxenq6++Ws2aNVO3bt3UtWtX3XrrrQoPDy9WLJ6ImisA3uvPP6W9e8/+7BzFAgB4NIfDTM2zY3Pl7PLgc+YXPv7441qwYIFeeuklrVy5UgkJCWrWrJkyMjIKvE7FihXPeX8cysrKcl2gOYSEhGjDhg364IMPFBUVpVGjRikuLk5JSUny9fXVkiVL9NVXX6lJkyaaPn26GjZsqJ07d5ZKLO6I5AqA93KOWoWGmttvvy18JTIAAGXs+++/18CBA3XTTTepWbNmioyM1F9//VWmMTRu3Fjff//9eXE1aNBAvr6+kqQKFSooPj5ekyZN0s8//6y//vpL33zzjSST2HXs2FFjx47Vxo0b5efnpwULFpTpa7AT0wIBeC/nSNX990vTp1N3BQBwa/Xr19cnn3yinj17yuFw6Pnnny+1EajDhw8rISEh17GoqCg99thjatu2rcaNG6c+ffpo9erVmjFjhv71r39Jkj7//HP9+eefuuKKKxQeHq4vv/xSWVlZatiwodasWaNly5apa9euqlGjhtasWaPDhw+rcePGpfIa3BEjVwC8k2WdTa66d5c6dDD7TA0EALipqVOnKjw8XJdddpl69uypbt26qVWrVqXyXO+//75atmyZa5s9e7ZatWql+fPn68MPP9Qll1yiUaNG6R//+IcGDhwoSapcubI++eQTXXXVVWrcuLFmzZqlDz74QE2bNlVoaKi+++47XXvttWrQoIGee+45vfzyy+rRo0epvAZ35LDKU2/EQkpJSVFYWJiSk5MV6pxOBMCzbN8uNWgg+flJSUnS5MnS6NFmzasPP7Q7OgBAEZw6dUo7d+5UnTp1FBAQYHc48EIF/Y4VJTdg5AqAd3KOUF16qRQYKHXpcvY43ykBAIBSQHIFwDs5m1k4k6p27aSAgLN1VwAAAC5GcgXA++Sst3ImVwEB1F0BAIBSRXIFwPts3y4dOCD5+59NqKTcUwMBAABczC2Sq9dee02xsbEKCAhQ+/bttXbt2nzP/eSTT9SmTRtVrlxZwcHBatGihd55551c51iWpVGjRikqKkqBgYGKj4/X9u3bS/tlAHAXzimBl15qRqycqLsCAAClyPbkat68eRoxYoRGjx6tDRs2KC4uTt26ddOhQ4fyPL9KlSp69tlntXr1av38888aNGiQBg0apMWLF2efM2nSJL366quaNWuW1qxZo+DgYHXr1k2nTp0qq5cFwE7Okakrr8x9nLorAABQimxPrqZOnap7771XgwYNUpMmTTRr1iwFBQXpzTffzPP8Ll266KabblLjxo1Vr149PfLII2revLlWrVolyYxaTZs2Tc8995xuvPFGNW/eXG+//bb279+vTz/9NM9rpqenKyUlJdcGwENZ1vnNLJyouwIAAKXI1uQqIyND69evV3x8fPYxHx8fxcfHa/Xq1Rd8vGVZWrZsmbZu3aorrrhCkrRz504lJibmumZYWJjat2+f7zXHjx+vsLCw7K1WrVolfGUAbLN1qxmZCgiQ2rc//37qrgAAQCmxNbk6cuSIMjMzFRERket4RESEEhMT831ccnKyKlWqJD8/P1133XWaPn26rrnmGknKflxRrjly5EglJydnb3v27CnJywJgJ2fS1KFD7norJ+quAABAKbF9WmBxhISEKCEhQevWrdOLL76oESNG6NsSfAvt7++v0NDQXBsAD5XflEAn6q4AAB6kS5cuGj58ePbPsbGxmjZtWoGPcTgc+ZbDFIWrrlOe2JpcVatWTb6+vjp48GCu4wcPHlRkZGS+j/Px8dHFF1+sFi1a6LHHHtOtt96q8ePHS1L244p6TQBeIOf6Vuc2s3Ci7goAUAZ69uyp7t2753nfypUr5XA49PPPPxf5uuvWrdN9991X0vByGTNmjFq0aHHe8QMHDqhHjx4ufa5zzZkzR5UrVy7V5yhLtiZXfn5+at26tZYtW5Z9LCsrS8uWLVOHnGvTXEBWVpbS09MlSXXq1FFkZGSua6akpGjNmjVFuiYAD7Rli3TokEmg2rXL/zzqrgAApezuu+/WkiVLtHfv3vPue+utt9SmTRs1b968yNetXr26goKCXBHiBUVGRsrf379Mnstb2D4tcMSIEZo9e7bmzp2rLVu26MEHH1RaWpoGDRokSerfv79GjhyZff748eO1ZMkS/fnnn9qyZYtefvllvfPOO7rzzjslmeHL4cOH64UXXtDChQu1efNm9e/fX9HR0erVq5cdLxFAWXEmSx07mgWE80PdFQB4NsuS0tLs2Qr5/8b111+v6tWra86cObmOp6am6qOPPtLdd9+to0ePqm/fvrrooosUFBSkZs2a6YMPPijwuudOC9y+fbuuuOIKBQQEqEmTJlqyZMl5j3nqqafUoEEDBQUFqW7dunr++ed1+vRpSWbkaOzYsdq0aZMcDoccDkd2zOdOC9y8ebOuuuoqBQYGqmrVqrrvvvuUmpqaff/AgQPVq1cvTZkyRVFRUapataqGDBmS/VzFsXv3bt14442qVKmSQkND1bt371wz1DZt2qQrr7xSISEhCg0NVevWrfXTTz9Jknbt2qWePXsqPDxcwcHBatq0qb788stix1IYFUr16oXQp08fHT58WKNGjVJiYqJatGihRYsWZTek2L17t3x8zuaAaWlpeuihh7R3714FBgaqUaNGevfdd9WnT5/sc5588kmlpaXpvvvuU1JSki6//HItWrRIAXkVtwPwHs7kKr96K6f27XPXXTVqVNqRAQBc6cQJqVIle547NVUKDr7gaRUqVFD//v01Z84cPfvss3I4HJKkjz76SJmZmerbt69SU1PVunVrPfXUUwoNDdUXX3yhu+66S/Xq1VO7gmZg/L+srCzdfPPNioiI0Jo1a5ScnJyrPsspJCREc+bMUXR0tDZv3qx7771XISEhevLJJ9WnTx/98ssvWrRokZYuXSrJdNo+V1pamrp166YOHTpo3bp1OnTokO655x4NHTo0VwK5fPlyRUVFafny5dqxY4f69OmjFi1a6N57773g68nr9TkTqxUrVujMmTMaMmSI+vTpk91voV+/fmrZsqVmzpwpX19fJSQkqGLFipKkIUOGKCMjQ999952Cg4P122+/qVJp/95YOE9ycrIlyUpOTrY7FACFlZVlWdWrW5ZkWStXXvj8q64y586cWfqxAQBK5OTJk9Zvv/1mnTx50hxITTX/htuxpaYWOu4tW7ZYkqzly5dnH+vUqZN155135vuY6667znrssceyf+7cubP1yCOPZP8cExNjvfLKK5ZlWdbixYutChUqWPv27cu+/6uvvrIkWQsWLMj3OSZPnmy1bt06++fRo0dbcXFx552X8zpvvPGGFR4ebqXmeP1ffPGF5ePjYyUmJlqWZVkDBgywYmJirDNnzmSfc9ttt1l9+vTJN5a33nrLCgsLy/O+r7/+2vL19bV2796dfezXX3+1JFlr1661LMuyQkJCrDlz5uT5+GbNmlljxozJ97lzOu93LIei5Aa2TwsEAJf47Tfp8GEpMLDgeisn6q4AwHMFBZkRJDu2ItQ7NWrUSJdddpnefPNNSdKOHTu0cuVK3X333ZKkzMxMjRs3Ts2aNVOVKlVUqVIlLV68WLt37y7U9bds2aJatWopOjo6+1hePQbmzZunjh07KjIyUpUqVdJzzz1X6OfI+VxxcXEKzjFq17FjR2VlZWlrju67TZs2la+vb/bPUVFROnToUJGeK+dz1qpVK9catE2aNFHlypW1ZcsWSabE6J577lF8fLwmTJigP/74I/vchx9+WC+88II6duyo0aNHF6uBSFGRXAHwDs4W7B07Sn5+Fz6fuisA8FwOh5maZ8f2/9P7Cuvuu+/Wf//7Xx0/flxvvfWW6tWrp86dO0uSJk+erH/+85966qmntHz5ciUkJKhbt27KyMhw2Vu1evVq9evXT9dee60+//xzbdy4Uc8++6xLnyMn55Q8J4fDoaysrFJ5Lsl0Ovz111913XXX6ZtvvlGTJk20YMECSdI999yjP//8U3fddZc2b96sNm3aaPr06aUWi0RyBcBbXKgF+7lY7woAUAZ69+4tHx8fvf/++3r77bc1ePDg7Pqr77//XjfeeKPuvPNOxcXFqW7dutq2bVuhr924cWPt2bNHBw4cyD72448/5jrnhx9+UExMjJ599lm1adNG9evX165du3Kd4+fnp8zMzAs+16ZNm5SWlpZ97Pvvv5ePj48aNmxY6JiLwvn69uzZk33st99+U1JSkpo0aZJ9rEGDBnr00Uf19ddf6+abb9Zbb72VfV+tWrX0wAMP6JNPPtFjjz2m2bNnl0qsTiRXADxfVlbhm1k4+ftLl11m9pkaCAAoJZUqVVKfPn00cuRIHThwQAMHDsy+r379+lqyZIl++OEHbdmyRffff/95a7UWJD4+Xg0aNNCAAQO0adMmrVy5Us8++2yuc+rXr6/du3frww8/1B9//KFXX301e2THKTY2Vjt37lRCQoKOHDmSvcRRTv369VNAQIAGDBigX375RcuXL9ewYcN01113ZTeiK67MzEwlJCTk2rZs2aL4+Hg1a9ZM/fr104YNG7R27Vr1799fnTt3Vps2bXTy5EkNHTpU3377rXbt2qXvv/9e69atU+PGjSVJw4cP1+LFi7Vz505t2LBBy5cvz76vtJBcAfB8v/4qHT1q5sG3aVP4x1F3BQAoA3fffbf+/vtvdevWLVd91HPPPadWrVqpW7du6tKliyIjI4u0dJCPj48WLFigkydPql27drrnnnv04osv5jrnhhtu0KOPPqqhQ4eqRYsW+uGHH/T888/nOueWW25R9+7ddeWVV6p69ep5toMPCgrS4sWLdezYMbVt21a33nqrrr76as2YMaNob0YeUlNT1bJly1xbz5495XA49Nlnnyk8PFxXXHGF4uPjVbduXc2bN0+S5Ovrq6NHj6p///5q0KCBevfurR49emjs2LGSTNI2ZMgQNW7cWN27d1eDBg30r3/9q8TxFsRhWRQbnCslJUVhYWFKTk5WaGio3eEAuJDp06WHH5a6dpUWLy7841aulK64QoqIkA4cKPI8egBA2Th16pR27typOnXqsLQOSkVBv2NFyQ0YuQLg+ZzNLAo7JdCJuisAAOBCJFcAPFtWlrRihdkvbDMLJ+quAACAC5FcAfBsmzdLx46Z9ritWxf98dRdAQAAFyG5AuDZnEnR5ZdL56ytUSisdwUAAFyE5AqAZyvq+lbnou4KADwGfdhQWlz1u0VyBcBz5ay3KmozCyfqrgDA7fn6+kqSMjIybI4E3urEiROSpIrFmQWTQwVXBAMAtvj5Z+nvv6VKlYpXb+XUpYv0zTcmuXrgAVdFBwBwkQoVKigoKEiHDx9WxYoV5ePD+ABcw7IsnThxQocOHVLlypWzE/niIrkC4LmcLdg7dZIqlOCfs3PrrljvCgDcisPhUFRUlHbu3Kldu3bZHQ68UOXKlRUZGVni65BcAfBczml8xZ0S6HRu3VWjRiWNDADgYn5+fqpfvz5TA+FyFStWLPGIlRPJFQDPlJkpffed2S9uMwsnZ92Vc2ogyRUAuCUfHx8FBATYHQaQLyasAvBMmzZJSUlSSIjUsmXJr8d6VwAAoIRIrgB4JmcSdMUVJau3cmK9KwAAUEIkVwA8k7OZRUnrrZxY7woAAJQQyRUAz+PKeisn1rsCAAAlRHIFwPMkJEgpKVJoqNSiheuuS90VAAAoAZIrAJ7HOSXwiiskF7VOlUTdFQAAKBGSKwCexzmy5KopgU7UXQEAgBIguQLgWc6cOVtv5apmFk7UXQEAgBIguQLgWTZulI4flypXluLiXH996q4AAEAxkVwB8CylVW/lRN0VAAAoJpIrAJ7FOaLk6imBTtRdAQCAYiK5AuA5zpyRVq40+65uZuFE3RUAACgmkisAnmP9eik1VQoPl5o3L73noe4KAAAUA8kVAM/hTHY6d5Z8SvGfL+quAABAMZBcAfAczmYWpVVv5UTdFQAAKAaSKwCe4fRpadUqs1/ayRV1VwAAoBhIrgB4hvXrpbQ0qUoVqVmz0n8+6q4AAEARkVwB8AzOKYGlXW/lRN0VAAAoIpIrAJ7BOYJUWi3Yz0XdFQAAKCKSKwDuLyOj7OqtnKi7AgAARURyBcD9/fSTdOKEVLWq1LRp2T0vdVcAAKAISK4AuD9nctOlS9nUWzlRdwUAAIqA5AqA+yur9a3OlbPu6vffy/a5AQCAxyG5AuDeMjKk7783+2XVzMKJuisAAFAEJFcA3NvatdLJk1K1alKTJmX//NRdAQCAQiK5AuDectZbORxl//zUXQEAgEIiuQLg3sp6fatzOeuuDh2i7goAABSI5AqA+0pPP1tvVdbNLJyouwIAAIVEcgXAfa1dK506JdWoITVubF8c1F0BAIBCILkC4L5ytmC3o97KiborAABQCCRXANyX3fVWTtRdAQCAQiC5AuCeTp2SVq82+3bVWzlRdwUAAAqB5AqAe1qzxiRYkZFSw4Z2R0PdFQAAuCCSKwDuye71rc5F3RUAALgAt0iuXnvtNcXGxiogIEDt27fX2rVr8z139uzZ6tSpk8LDwxUeHq74+Pjzzh84cKAcDkeurXv37qX9MgC4Us5mFu6AuisAAHABtidX8+bN04gRIzR69Ght2LBBcXFx6tatmw4dOpTn+d9++6369u2r5cuXa/Xq1apVq5a6du2qffv25Tqve/fuOnDgQPb2wQcflMXLAeAKp05JP/5o9u1uZuFE3RUAALgA25OrqVOn6t5779WgQYPUpEkTzZo1S0FBQXrzzTfzPP+9997TQw89pBYtWqhRo0b697//raysLC1btizXef7+/oqMjMzewsPDy+LlAHCF1avNAsJRUVL9+nZHcxZ1VwAAoAC2JlcZGRlav3694uPjs4/5+PgoPj5eq51dwi7gxIkTOn36tKpUqZLr+LfffqsaNWqoYcOGevDBB3X06NF8r5Genq6UlJRcGwAbuVu9lRN1VwAAoAC2JldHjhxRZmamIiIich2PiIhQYmJioa7x1FNPKTo6OleC1r17d7399ttatmyZJk6cqBUrVqhHjx7KzMzM8xrjx49XWFhY9larVq3ivygAJecu61udi7orAABQgAp2B1ASEyZM0Icffqhvv/1WAQEB2cdvv/327P1mzZqpefPmqlevnr799ltdffXV511n5MiRGjFiRPbPKSkpJFiAXU6ePFtv5S7NLJycdVfffGMSwMaN7Y4IAAC4EVtHrqpVqyZfX18dPHgw1/GDBw8qMjKywMdOmTJFEyZM0Ndff63mzZsXeG7dunVVrVo17dixI8/7/f39FRoammsDYJPVq6WMDOmii6SLL7Y7mvNRdwUAAPJha3Ll5+en1q1b52pG4WxO0aFDh3wfN2nSJI0bN06LFi1SmzZtLvg8e/fu1dGjRxUVFeWSuAGUopwt2N2p3sqJuisAAJAP27sFjhgxQrNnz9bcuXO1ZcsWPfjgg0pLS9OgQYMkSf3799fIkSOzz584caKef/55vfnmm4qNjVViYqISExOVmpoqSUpNTdUTTzyhH3/8UX/99ZeWLVumG2+8URdffLG6detmy2sEUAQ5m1m4I+quAABAPmyvuerTp48OHz6sUaNGKTExUS1atNCiRYuym1zs3r1bPj5nc8CZM2cqIyNDt956a67rjB49WmPGjJGvr69+/vlnzZ07V0lJSYqOjlbXrl01btw4+fv7l+lrA1BEJ05Ia9aYfXdrZuFE3RUAAMiHw7KY13KulJQUhYWFKTk5mforoCwtXSpdc41Us6a0e7d7TguUpHHjpFGjpN69pXnz7I4GAACUoqLkBrZPCwSAbDlbsLtrYiVRdwUAAPJEcgXAfeRsZuHOqLsCAAB5ILkC4B7S0qS1a82+uydXzroriZbsAAAgG8kVAPfwww/SmTNS7dpSnTp2R3NhrHcFAADOQXIFwD24+/pW56LuCgAAnIPkCoB7yNnMwhNQdwUAAM5BcgXAfqmp0rp1Zt/d662c/P2ljh3NPlMDAQCASK4AuIPvvzf1VjExUmys3dEUHnVXAAAgB5IrAPbztCmBTtRdAQCAHEiuANjPU9a3OlfbtlJgIHVXAABAEskVALsdPy799JPZ97TkivWuAABADiRXAOy1apWUmWnWtoqJsTuaoqPuCgAA/D+SKwD28tR6KyfqrgAAwP8juQJgL0+tt3Ki7goAAPw/kisA9klJkdavN/uemlxRdwUAAP4fyRUA+6xaJWVlSfXqSbVq2R1N8VF3BQAARHIFwE6ePiXQiborAAAgkisAdvL0ZhZO1F0BAACRXAGwS3KytGGD2e/c2d5YSoq6KwAAIJIrAHZZudLUW118sVSzpt3RlBx1VwAAlHskVwDs4S1TAp2ouwIAoNwjuQJgD29pZuFE3RUAAOUeyRWAspeUJG3caPa9Jbmi7goAgHKP5ApA2fvuOzN1rkEDKTra7mhch7orAADKNZIrAGXPmXx4y6iVE3VXAACUayRXAMqetzWzcKLuCgCAco3kCkDZOnZMSkgw+56+vtW5qLsCAKBcI7kCULZWrjRT5ho1kqKi7I7G9ai7AgCg3CK5AlC2vK0F+7mouwIAoNwiuQJQtry1mYUTdVcAAJRbJFcAys6xY9LPP5t9b02uqLsCAKDcIrkCUHZWrDBT5Ro3liIi7I6m9FB3BQBAuURyBaDseGsL9nNRdwUAQLlEcgWg7Hh7Mwsn6q4AACiXSK4AlI0jR6TNm82+t61vdS7qrgAAKJdIrgCUje++M7dNm0o1atgbS1mg7goAgHKH5ApA2SgvUwKdqLsCAKDcIbkCUDbKSzMLJ+quAAAod0iuAJS+w4elX34x+95eb+VE3RUAAOUOyRWA0rdihblt1kyqVs3eWMqSc2qgc0okAADwaiRXAEpfeau3cqLuCgCAcoXkCkDpc06LK2/JlbPu6vBhacsWu6MBAACljOQKQOk6dEj67TezX17qrZyouwIAoFwhuQJQupxJRfPmUtWqtoZiC9a7AgCg3CC5AlC6ylsL9nNRdwUAQLlBcgWgdJXXZhZO1F0BAFBukFwBKD2JiWYBXYdDuuIKu6OxB3VXAACUGyRXBTh61O4IAA/nXN8qLk6qUsXeWOxE3RUAAOUCyVUBZs2yOwLAw5X3KYFO1F0BAFAukFwV4PXXpePH7Y4C8GDlvZmFE3VXAACUC26RXL322muKjY1VQECA2rdvr7Vr1+Z77uzZs9WpUyeFh4crPDxc8fHx551vWZZGjRqlqKgoBQYGKj4+Xtu3by9yXMnJJsECUAz790tbt5p6q06d7I7GXtRdAQBQLtieXM2bN08jRozQ6NGjtWHDBsXFxalbt246dOhQnud/++236tu3r5YvX67Vq1erVq1a6tq1q/bt25d9zqRJk/Tqq69q1qxZWrNmjYKDg9WtWzedOnWqyPFNnSqlpxf75QHll7PeqkULKTzc1lDcAnVXAAB4PYdl2VsA0L59e7Vt21YzZsyQJGVlZalWrVoaNmyYnn766Qs+PjMzU+Hh4ZoxY4b69+8vy7IUHR2txx57TI8//rgkKTk5WREREZozZ45uv/32C14zJSVFYWFhio5O1v79oXrjDenee0v2OoFy5/77pTfekEaMkF5+2e5o7LdqlRnBq15dOnjQjOgBAAC358wNkpOTFRoaWuC5to5cZWRkaP369YqPj88+5uPjo/j4eK1evbpQ1zhx4oROnz6tKv/fiWznzp1KTEzMdc2wsDC1b98+32ump6crJSUl1yZJw4aZ+ydNkjIzi/MKgXKMZha5UXcFAIDXszW5OnLkiDIzMxUREZHreEREhBITEwt1jaeeekrR0dHZyZTzcUW55vjx4xUWFpa91apVS5I0YIBUtaq0Y4f08cdFemlA+bZvn7R9u+TjQ72VE3VXAAB4PdtrrkpiwoQJ+vDDD7VgwQIFBAQU+zojR45UcnJy9rZnzx5JUnCw9PDD5pzx4+mgDBSaM3lo2VKqXNnOSNwLdVcAAHg1W5OratWqydfXVwcPHsx1/ODBg4qMjCzwsVOmTNGECRP09ddfq3nz5tnHnY8ryjX9/f0VGhqaa3MaOlSqVEnatElatKhILw8ov5zJA1MCc2O9KwAAvJqtyZWfn59at26tZcuWZR/LysrSsmXL1KFDh3wfN2nSJI0bN06LFi1SmzZtct1Xp04dRUZG5rpmSkqK1qxZU+A181OliqnLl8zoFYBCYH2rvFF3BQCAV7N9WuCIESM0e/ZszZ07V1u2bNGDDz6otLQ0DRo0SJLUv39/jRw5Mvv8iRMn6vnnn9ebb76p2NhYJSYmKjExUampqZIkh8Oh4cOH64UXXtDChQu1efNm9e/fX9HR0erVq1cxY5T8/KSVK6Xvvy/xSwa82969plDRx0e6/HK7o3Ev1F0BAODVbE+u+vTpoylTpmjUqFFq0aKFEhIStGjRouyGFLt379aBAweyz585c6YyMjJ06623KioqKnubMmVK9jlPPvmkhg0bpvvuu09t27ZVamqqFi1aVOy6rOho09xCYvQKuCBn0tC6tRQWZmsobom6KwAAvJbt61y5o7x62e/YITVsKGVlmfqrHGVeAHK6+27pzTelJ54w6xggN9a7AgDAo3jMOlee5OKLpVtvNfsTJtgbC+DWqLcqGHVXAAB4LZKrInj6aXM7b570xx/2xgK4pd27pT//lHx9pY4d7Y7GPVF3BQCA1yK5KoKWLaXu3c3UwMmT7Y4GcEM5660uMGxerlF3BQCAVyK5KiJn48K33pJy9NkAIDElsLBY7woAAK9EclVEnTqZGT0ZGdK0aXZHA7iZ5cvNLYsHF4y6KwAAvBLJVRE5HGdHr2bOlJKSbA0HcB9//WU2X1/Wt7oQ6q4AAPBKJFfFcN11UrNm0vHj0muv2R0N4CacSULbtlKlSraG4hGouwIAwOuQXBWDw3G2c+C0adKJE7aGA7gHZ5LAlMDCoe4KAACvQ3JVTL17S3XrSkeOSP/5j93RAG6AZhZFQ90VAABeh+SqmCpUkJ54wuxPmSKdPm1vPICtdu6Udu0yfzGctUQoGHVXAAB4HZKrEhg4UIqMNOumvv++3dEANnImB+3aUW9VFNRdAQDgVUiuSiAgQHr0UbM/caJZXBgol2jBXjzUXQEA4FVIrkrogQekypVNycRnn9kdDWADy6KZRXFRdwUAgFchuSqh0FBpyBCzP348Xz6jHNq5U9qzR6pYkXqrovL3lzp2NPtMDQQAwOORXLnAww+bKYLr1knffGN3NEAZc04JbNdOCg62NxZPRN0VAABeg+TKBWrUkO65x+yPH29vLECZowV7yVB3BQCA1yC5cpHHHzddqJctMyNYQLlgWTSzKCnqrgAA8BokVy4SEyPdcYfZZ/QK5cYff0j79pl6qw4d7I7GM/n5UXcFAICXILlyoaeeMrcLFvAFNMoJZzJw6aVSUJCtoXg06q4AAPAKxUqu9uzZo71792b/vHbtWg0fPlxvvPGGywLzRE2aSL16mf1Jk2wNBSgbTAl0DequAADwCsVKru644w4t//8PVYmJibrmmmu0du1aPfvss/rHP/7h0gA9zciR5vbdd6Xdu+2NBShVOde3oplFyVB3BQCAVyhWcvXLL7+oXbt2kqT58+frkksu0Q8//KD33ntPc+bMcWV8HqddO+mqq6QzZ6SXX7Y7GqAUbd8u7d9vaoYuvdTuaDwbdVcAAHiFYiVXp0+flr+/vyRp6dKluuGGGyRJjRo10oEDB1wXnYdyjl7Nnm2+iAa8Us56q8BAW0PxCtRdAQDg8YqVXDVt2lSzZs3SypUrtWTJEnXv3l2StH//flWtWtWlAXqiq6+W2rSRTp6UXn3V7miAUsKUQNei7goAAI9XrORq4sSJev3119WlSxf17dtXcXFxkqSFCxdmTxcszxyOs6NXM2ZIKSn2xgO4HOtbuR51VwAAeLwKxXlQly5ddOTIEaWkpCg8PDz7+H333acg2jFLMl0DGzWSfv9dev116Ykn7I4IcKFt26TERMnfn3orV3HWXS1dakavmjSxOyIAAFBExRq5OnnypNLT07MTq127dmnatGnaunWratSo4dIAPZWPz9l1r6ZOlU6dsjcewKWco1YdOkgBAfbG4k2ouwIAwKMVK7m68cYb9fbbb0uSkpKS1L59e7388svq1auXZs6c6dIAPdkdd0g1a5ov+OfOtTsawIWotyod1F0BAODRipVcbdiwQZ06dZIkffzxx4qIiNCuXbv09ttv61U6OGTz85Mef9zsT5pk2rMDHi/n+lbUW7kWdVcAAHi0YiVXJ06cUEhIiCTp66+/1s033ywfHx9deuml2rVrl0sD9HT33CNVrSr9+af00Ud2RwO4wO+/SwcPmumA7dvbHY13Yb0rAAA8WrGSq4svvliffvqp9uzZo8WLF6tr166SpEOHDik0NNSlAXq64GDpkUfM/oQJzPSBF3B+6L/sMtPQAq5F3RUAAB6rWMnVqFGj9Pjjjys2Nlbt2rVThw4dJJlRrJYtW7o0QG8wdKhUqZL088/SV1/ZHQ1QQrRgL13UXQEA4LEcllW8/70TExN14MABxcXFycfH5Ghr165VaGioGjVq5NIgy1pKSorCwsKUnJzsspG4J56QpkyRLr9cWrnSJZcEyp5lSRERpiZo5UrzCw3XysiQKlc2q5D/+ist2QEAsFlRcoNijVxJUmRkpFq2bKn9+/dr7969kqR27dp5fGJVWh591JRTrFplNsAj/fabSawCA03zBbgedVcAAHisYiVXWVlZ+sc//qGwsDDFxMQoJiZGlStX1rhx45SVleXqGL1CdLQ0cKDZHz/e1lCA4qPeqmxQdwUAgEcqVnL17LPPasaMGZowYYI2btyojRs36qWXXtL06dP1/PPPuzpGr/Hkk2Zx4S+/lDZtsjsaoBhY36psUHcFAIBHKlbNVXR0tGbNmqUbbrgh1/HPPvtMDz30kPbt2+eyAO1QGjVXTn37Sh9+KN1+u/TBBy69NFC6srJMvdWRI2Zuq3PqGlyPuisAANxGqddcHTt2LM/aqkaNGunYsWPFuWS58fTT5nb+fGnHDntjAYrkt99MYhUURL1VaaPuCgAAj1Ss5CouLk4zZsw47/iMGTPUvHnzEgflzeLipGuvNYMAkyfbHQ1QBM4W7B07mg//KF3UXQEA4HEqFOdBkyZN0nXXXaelS5dmr3G1evVq7dmzR19++aVLA/RGI0eauqs5c6TRo02zC8DtOT/ks75V2Ti37srhsDMaAABQCMUauercubO2bdumm266SUlJSUpKStLNN9+sX3/9Ve+8846rY/Q6l19utowM6ZVX7I4GKISsLGnFCrNPM4uy0bataXl/+LCZkgkAANxesRcRzsumTZvUqlUrZWZmuuqStijNhhZOX3whXX+9VKmStHu3FB5eKk8DuMbPP5s5rcHB0t9/SxUr2h1R+XDNNdLSpdKMGdKQIXZHAwBAuVQmiwijZK69VmreXEpNNZ+bALfmnBJ4+eUkVmWJuisAADwKyZVNHI6znQP/+U8pLc3eeIACOZtZUG9VtljvCgAAj0JyZaPbbpPq1pWOHpX+/W+7owHykbPeiuSqbDnrro4coe4KAAAPUKRugTfffHOB9yclJZUklnKnQgXpySelBx6QXn5ZevBBOlzDDW3ebOqsKlWSWre2O5ryxbne1dKlZvSqaVO7IwIAAAUo0shVWFhYgVtMTIz69+9fWrF6pQEDpMhIac8e6f337Y4GyINzSiD1Vvag7goAAI9RpJGrt956q7TiKLcCAqQRI8wI1sSJUv/+kg+TNeFOnB/qacFuD9a7AgDAY/Ax3g088IBUubL0++/Sp5/aHQ2QQ2Ym9VZ2o+4KAACPQXLlBkJCpKFDzf748TQFgxv5+WcpKcn8krZqZXc05ZOz7kpiaiAAAG6O5MpNPPyw+XL6p5+kZcvsjgb4f84P8506mQ4ssAd1VwAAeATbk6vXXntNsbGxCggIUPv27bV27dp8z/311191yy23KDY2Vg6HQ9OmTTvvnDFjxsjhcOTaGjVqVIqvwDWqV5fuvdfsjx9vbyxANta3cg+sdwUAgEewNbmaN2+eRowYodGjR2vDhg2Ki4tTt27ddOjQoTzPP3HihOrWrasJEyYoMjIy3+s2bdpUBw4cyN5WrVpVWi/BpR57zAwOfPONVECOCZSNzEzpu+/MPs0s7EXdFQAAHsHW5Grq1Km69957NWjQIDVp0kSzZs1SUFCQ3nzzzTzPb9u2rSZPnqzbb79d/v7++V63QoUKioyMzN6qVatWWi/BpWrXlu680+wzegXbJSRIyclSaKjUooXd0ZRv1F0BAOARbEuuMjIytH79esXHx58NxsdH8fHxWr16dYmuvX37dkVHR6tu3brq16+fdu/eXeD56enpSklJybXZ5cknTaflTz/lC2rYzPkh/oorqLdyB9RdAQDg9mxLro4cOaLMzExFRETkOh4REaHExMRiX7d9+/aaM2eOFi1apJkzZ2rnzp3q1KmTjh8/nu9jxo8fn2sx5Fq1ahX7+UuqcWOpVy+zP3GibWEA1Fu5G+quAABwe7Y3tHC1Hj166LbbblPz5s3VrVs3ffnll0pKStL8+fPzfczIkSOVnJycve3Zs6cMI84rHnP7/vvSrl22hoLy6swZaeVKs09y5R6ouwIAwO3ZllxVq1ZNvr6+OnjwYK7jBw8eLLBZRVFVrlxZDRo00I4dO/I9x9/fX6Ghobk2O7VtK119tfl8O2WKraGgvEpIkFJSpLAw6q3cBXVXAAC4PduSKz8/P7Vu3VrLcizqlJWVpWXLlqlDhw4ue57U1FT98ccfioqKctk1y4Jz9Orf/5byaZ4IlB7nlMArrpB8fe2NBWdRdwUAgFuzdVrgiBEjNHv2bM2dO1dbtmzRgw8+qLS0NA0aNEiS1L9/f410ZhkyTTASEhKUkJCgjIwM7du3TwkJCblGpR5//HGtWLFCf/31l3744QfddNNN8vX1Vd++fcv89ZXEVVeZEaxTp6RXX7U7GpQ7zg/vtGB3L9RdAQDg1mxtAdanTx8dPnxYo0aNUmJiolq0aKFFixZlN7nYvXu3fHzO5n/79+9Xy5Yts3+eMmWKpkyZos6dO+vb//8wuHfvXvXt21dHjx5V9erVdfnll+vHH39U9erVy/S1lZTDYUavbr5ZmjHDdBG0ebYiygvqrdzXuXVXTZvaHREAAMjBYVl8/XmulJQUhYWFKTk52db6q6ws6ZJLpC1bTOfAJ5+0LRSUJ2vXSu3bS5Urmw/xTAt0L9dcIy1dar51GTLE7mgAAPB6RckNvK5boDfx8ZGeesrsv/KKmSIIlDrnlMDOnUms3BF1VwAAuC2SKzd3xx1S7dpSYqI0Z47d0aBcYH0r90bdFQAAbovkys1VrCg9/rjZnzTJlMMApeb0aWnVKrNPMwv3xHpXAAC4LZIrD3D33VL16tLOnVIBayEDJbd+vZSaKoWHS82a2R0N8sJ6VwAAuC2SKw8QFCQ98ojZnzCBmUAoRTnrrXz458FtUXcFAIBb4tOThxgyRAoJkTZvlr74wu5o4LVY38ozUHcFAIBbIrnyEJUrSw88YPbHj+fzFEpBznormlm4N+quAABwSyRXHuTRRyV/f+mHH86u8Qq4zE8/SWlpUtWqZoE1uC/qrgAAcEskVx4kKkoaONDsjx9vayjwRs4W7NRbeQbqrgAAcDt8gvIwTzxhPvcuWiRt3Gh3NPAqzg/pTAn0DNRdAQDgdkiuPEy9elKfPmZ/4kR7Y4EXyciQvv/e7NPMwjNQdwUAgNshufJATz9tbj/6SNqxw95Y4CXWrZNOnJCqVZOaNLE7GhQGdVcAALgdkisP1Ly5dN11UlaWNGmS3dHAK+ScEki9leeg7goAALfCpygPNXKkuZ07V9q/395Y4AWczSyot/Is1F0BAOBWSK48VMeOUqdOplRm6lS7o4FHS083/f0lkitPQ90VAABuheTKgzlHr2bNko4dszcWeLC1a6WTJ6Xq1am38jTUXQEA4FZIrjxY9+5SixZm3dcZM+yOBh4rZ72Vw2FnJCgO6q4AAHAbJFcezOE42znw1VdNkuU2LEvats103YB7c34opwW7Z6LuCgAAt0Fy5eFuvdWsfXX0qDR7tt3R/L+jR6WbbpIaNpR69ZIyM+2OCPmh3srztW0rBQVRdwUAgBsgufJwvr7Sk0+a/ZdfNg0ubLVihZmr+Nln5uf//U965hlbQ0IB1qyRTp2SIiKkRo3sjgbFQd0VAABug+TKCwwYIEVFSXv3Su++a1MQZ85Io0dLV11lAqlfXxo3ztw3aZL09ts2BYYC5WzBTr2V56LuCgAAt0By5QX8/aURI8z+xIk2zMLbvdvU6/zjH6bGauBAacMG6bnnpGefNefce6/0449lHBguKGczC3gu6q4AAHALJFde4v77pfBw00NiwYIyfOJPPpHi4qRVq6SQEOm996S33pIqVTL3/+Mfpu4qI8Pc7tlThsGhQKdOSatXm32aWXi2Nm2ouwIAwA2QXHmJkBBp6FCzP2FCGXx5ffKk9OCD0i23SElJpqh+40bpjjtyn+fjI73zjtS8uXTwoHTjjW7W1rAc+/FH09AiMlJq0MDuaFAS1F0BAOAWSK68yMMPmy+v16+Xli4txSf65ReTTM2aZX5+8kkzclWvXt7nV6okLVxoFqnduNFMG6RFu/1ytmCn3srzUXcFAIDtSK68SLVqprRJksaPL4UnsCyTULVtK/36q+kwt3ixKfTy8yv4sTExZgphxYrSxx+fbXYB++RsZgHPR90VAAC2I7nyMo89ZvKX5ctNl22XOXbMLKr14IOmVqdbN2nTJqlr18Jf4/LLz452jRkjffSRCwNEkZw8ebbBCMmVd6DuCgAA25FceZlataQ77zT7Lhu9WrnSrF3lHHmaMkX68kszclVUgwdLjz5q9gcMMNMEUfZ+/NE0GYmONm3z4fmouwIAwHYkV17oqadMCc1nn5nZe8WWmWm6/XXpYrr8XXyx9MMPZnjMpwS/OpMmSd27m9GTG26QEhNLECSKhfWtvBN1VwAA2Irkygs1bCjdfLPZnzixmBfZu9csCDx6tGk+cdddZu2qNm1KHmCFCtKHH0qNGpnnuekmM9UQZSdnMwt4D+quAACwFcmVlxo50ty+/770119FfPBnn5m1q777znT6e/tts4WEuC7AsDDTQTA83ExRu/9+PgyWlRMnqLfyVtRdAQBgK5IrL9W6tXTNNWZm35QphXzQyZNmsaxevUwDi9atzWjVXXeVTpD160vz50u+viZ5K3SgKJHVq6XTp6WLLsq/fT48E3VXAADYiuTKizlHr/7zH7N+b4F++01q31567TXz82OPmfqq0m52EB8vTZtm9p96Svr889J9PrC+lbej7goAANuQXHmxLl2kdu1MOdM//5nPSZYlzZ5tphNt3izVqCF99ZUZRbrQ2lWuMmTI2WmBd9xRwi4cuCDWt/Ju1F0BAGAbkisv5nCcHb167TUpOfmcE5KSpD59pPvuM1MCr7nGrF3VvXvZBzp9uvlQePy46SB49GjZxlBepKVJa9eafZpZeCfqrgAAsA3JlZe74QapSRMpJUWaOTPHHT/8YNau+ugj071v0iRp0SIpMtKeQCtWNLHUqSP9+adZsPj0aXti8WY//GDe11q1zHsN70PdFQAAtiG58nI+PqaUSZJeeUU6mZopvfiidMUV0q5dUt260vffS088UbK1q1yhWjXpf/8zHQq//VYaNoxpTa7m/LDN+lbejborAABsQXJVDvTtK8XESBUO7dOx1tdIzz1n2gj27Stt3GgKs9xF06bSBx+YD/6vvy796192R+RdWN+qfKDuCgAAW5BclQMVK0ozun+uTYrTRduWywoOlubMkd57TwoNtTu8811/vTRhgtl/5BFp2TJ74/EWqaln661oZuHdqLsCAMAWJFfe7tQp6ZFHdP3rPVVNR7VBLfW/0eulAQPce1rYE0+Y9bUyM6XbbpO2b7c7Is/3ww/SmTNmGJN6K+9G3RUAALYgufJmv/8udeggvfqqJGntZcPVQav17NsNlZVlc2wX4nBIb7whXXqp9PffpjPHee0OUSS0YC9fnH/Ozj93AABQ6kiuvJFlSW++KbVuLSUkmEYRn3+uBl+8Iv8Qf/3yi/TFF3YHWQgBAdKCBVLNmiZRvP12M5KF4snZzALez/nnvGKF3P/bFAAAvAPJlbdJTjYL8d59t3TihHTVVWbtquuuU+XK0kMPmdPGj/eQOvfISOmzz6TAQNMq/skn7Y7IMx0/Lq1bZ/ZJrsoH6q4AAChzJFfeZM0aqWVL6cMPJV9fk0F9/bUUHZ19yvDhkr+/tHq19N139oVaJK1aSXPnmv2pU82oHIrm++/NqF9srNng/ai7AgCgzJFceYOsLNNd7/LLpZ07zYfnVaukp582SVYOkZHS4MFmf/z4sg+12G67TRo92uw/8IBJFlB4tGAvn1jvCgCAMkVy5ekOHJC6dpVGjjSd4Pr0MXVWl16a70OeeMLkXIsXSxs2lF2oJTZqlHTrrdLp09JNN5lFkFE4NLMon6i7AgCgTJFcebIvv5SaNzfrQAUFSf/5j1mANyyswIfVqWNyMOnsclIewcfHrM/VooV0+LB0441m7SYULCVFWr/e7JNclS/UXQEAUKZIrjxRero0YoR03XXmQ1NcnPTTT2a+XyHXrnr6aXP78cfStm2lGKurBQebBhcREaZRR//+fCN/IatWmXqrunWl2rXtjgZliborAADKFMmVp9m2TbrsMumVV8zPw4ZJP/4oNW5cpMs0ayZdf73pGDhpUinEWZpq1zYt2v38zK2zFgt5owV7+UbdFQAAZYbkylNYlumY16qVKZSqWlVauNAsEBwQUKxLjhxpbt9+W9q714WxloUOHaTZs83+Cy9I8+bZG487o5lF+UbdFQAAZcb25Oq1115TbGysAgIC1L59e61duzbfc3/99Vfdcsstio2NlcPh0LRp00p8TY+QkiLddZc0cKCUlmY+LG3aJPXsWaLLXnaZdMUVpj+EcyDMo/Tvb7pzSOa9+eknW8NxS8nJ1FuVd9RdAQBQZmxNrubNm6cRI0Zo9OjR2rBhg+Li4tStWzcdOnQoz/NPnDihunXrasKECYqMjHTJNd3eunVm7ar33jMt/l54QVq6VLroIpdc3jl69frr0tGjLrlk2Ro/3tSenTplGlzs3293RO5l1SozWnHxxVLNmnZHAztQdwUAQJmxNbmaOnWq7r33Xg0aNEhNmjTRrFmzFBQUpDfzWSS2bdu2mjx5sm6//Xb5+/u75JpuKytLmjzZDC/9+aepM/ruO+nZZ89bu6okunUzuVtamjRjhssuW3Z8faX335eaNDGJVa9e0smTdkflPmjBDom6KwAAyohtyVVGRobWr1+v+Pj4s8H4+Cg+Pl6rV68u02ump6crJSUl12arxESpRw/pySfN2lW33mrWrrrsMpc/lcNxtnPgq696aGfz0FBTf1alihnpu+ceU6MGmlnAoO4KAIAyYVtydeTIEWVmZioiIiLX8YiICCUmJpbpNcePH6+wsLDsrVatWsV6fpdYvNi0Vv/6aykwUHrjDWn+fCk8vNSe8pZbpPr1pWPHzvaI8Dj16pm+8hUqmJEsj1rAq5QkJUkbN5p9kqvyjborAADKhO0NLdzByJEjlZycnL3t2bOn7IPIyDDNGbp3lw4dMr3Sf/pJuvfeQq9dVVy+vmaQTJJeftkso+WRrrxSmj7d7D/7rFkPqzxbudKMUtSv77IaPXgo6q4AACgTtiVX1apVk6+vrw4ePJjr+MGDB/NtVlFa1/T391doaGiurUzt2GE++EyZYn5+6CFpzRpTR1RG7rpLio6W9u2T3n23zJ7W9R54QBoyxEwL7NdP2rzZ7ojsQwt25ETdFQAApc625MrPz0+tW7fWsmXLso9lZWVp2bJl6tChg9tcs9S9+67pKPHTT2bq34IF0muvmSmBZcjfX3rsMbM/caKUmVmmT+9ar7wiXXWV6dJxww3S4cN2R2QPmlkgJ+quAAAodbZOCxwxYoRmz56tuXPnasuWLXrwwQeVlpamQYMGSZL69++vkc5e4TINKxISEpSQkKCMjAzt27dPCQkJ2rFjR6Gv6TaOH5cGDDBDRqmpZsGpTZtMtzub3Hef6Qmxfbv0ySe2hVFyFStKH31k6rD++ssUlWVk2B1V2fr7b9MERSK5gkHdFQAApc7W5KpPnz6aMmWKRo0apRYtWighIUGLFi3Kbkixe/duHThwIPv8/fv3q2XLlmrZsqUOHDigKVOmqGXLlrrnnnsKfU23sH691KqV9Pbbko+PNHas9M03kp2NNCRVqiQNG2b2x4/38IZ7VapI//uf6SS4cuXZqYLlxcqV5vU2bChFRdkdDdwBdVcAAJQ6h2WVp0+chZOSkqKwsDAlJye7tv4qK0uaNs30Pj992iRT770nderkuucooaNHzZJaJ05IixaZdbA82ldfSddfb977f/5TevhhuyMqG48+an7X7r9fmjXL7mjgLl56yTR7ueUW010TAABcUFFyA7oFlpVDh6TrrjOFTadPSzfdZKZtuVFiJUlVq5rpgZIZvfJ4PXqYxZglk3B8/bW98ZQVmlkgL9RdAQBQqkiuysKSJVLz5mYoKCBAmjlT+u9/zdQ1N/TYY6ZsacUKqZjrObuXRx+VBg0yHyZ795a2brU7otJ17Jip35Okzp3tjQXuhborAABKFclVaTp9WnrqKalrV+ngQalpU2ndOtMuvJTXriqJmjVNnw3JS0avHA6T0F52mZScbDoI/v233VGVnu++M/VWjRpJxVzWAF6KuisAAEoVyVVp+fNP6fLLpUmTzM/33y+tXStdcom9cRXSk0+anOR//5N++cXuaFzA39+0QKxdW9q2TerTRzpzxu6oSoezBTtTApEX1rsCAKDUkFyVhg8+kFq0MMlU5cqmcHzWLDMdx0M0bGhq3iWz7pVXiIiQFi40fw5Llpxd2MvbOD8004IdeaHuCgCAUkNy5UqpqdLgwdIdd5h1rDp2NLUvzizFwziXGPvgA2nnTntjcZm4OLNwsyS9+qo0e7a98bja0aPSzz+bfZIr5IW6KwAASg3Jlats3Ci1bi299ZZZu2rUKDOCULu23ZEVW6tWplwsM1OaMsXuaFzoppukcePM/kMPmW/wvYXztTRpItWoYW8scE/UXQEAUGpIrkrKssz6SZdeamp5LrrILAg8dqxUoYLd0ZWYc/TqzTdNTw6v8eyzZ+uubrnFe4bmmBKIwqDuCgCAUkFyVRKHD0s9e0rDh0sZGdKNN5ppgF7U/rpzZ5M3njpl1qT1Gg6HyRhbtzZT6W64wUzl9HQ0s0BhUHcFAECpILkqrm++MfU7X3xhOtHNmCEtWGBW4fUiDsfZ0at//ct0MvcaQUHSZ59JUVGmJeKdd3r2B83Dh8+2dvSiBB+lgLorAABKBclVUZ0+LT3zjBQfLx04IDVubLoCDhni1mtXlcT115slulJSTILlVS66SPr0U5MgL1woPfec3REV33ffmdtLLpGqV7c3Frg36q4AACgVJFdFsXOndMUVZmVdy5LuvdcsCty8ud2RlSofH+npp83+tGnSyZO2huN67dpJ//mP2R8/XnrvPXvjKS7nlEDqrVAY1F0BAOByJFeFNX++Wbvqxx+lsDBp3jzpjTek4GC7IysTffpIMTHSoUOmVMnr9Ot3dv7j3XdLa9bYG09xOD8kU2+FwqDuCgAAlyO5upC0NDNC1aePmRfXoYOUkCD17m13ZGWqYkXpiSfM/uTJZnak13nhBdPYIj1d6tVL2rvX7ogK79Ah6ddfzf4VV9gbCzwDdVcAALgcyVVBNm82H0D+/W9TT/Xss+Zb3thYuyOzxeDBZumkXbukDz+0O5pS4ONjFhi+5BIpMdEkWCdO2B1V4TjXt2rWTKpWzd5Y4BmouwIAwOVIrgpy1VXS77+bbnJLl5qRjYoV7Y7KNoGBpuu8JE2Y4KUziUJCTGOLatWk9etNRmlZdkd1YUwJRHFQdwUAgEuRXBUkI8O0yvv5Z5NoQQ89JIWGmllE//uf3dGUkjp1pP/+1ywCPW+e9OKLdkd0YTSzQHFQdwUAgEuRXBVk4sSzoxiQZHp5PPSQ2Xc2TfRKV1whzZxp9p9/XvrkE3vjKcjBg9KWLWbqKutboSiouwIAwKVIrgrywANeu3ZVSQwfLgUEmIZ6zlIfr3TPPdLDD5v9u+4yjUzckXNKV/PmUpUqtoYCD0PdFQAALkVyhSKLiDClSJIZvfJqL78sXXONaWxxww1mlMjdOD8UMyUQxUHdFQAALkNyhWJ54gnJ11f6+mvT98FrOeuuGjSQ9uyRbr7ZtGp3JzSzQElQdwUAgMuQXKFYYmOlvn3N/oQJtoZS+sLDTe1dWJj0ww/Sgw+6T7HZgQOmo6XDwfpWKB7qrgAAcBmSKxTb00+b2//+V9q61d5YSl3DhtL8+WYtrLfekl55xe6IDGfRW4sWJgkEioq6KwAAXIbkCsXWtKkpQ7IsadIku6MpA127nk2qnnhC+uore+ORaMEO16DuCgAAlyC5QomMHGlu33lH2rvX3ljKxLBhpotgVpZ0++2mBbqdaGYBV6DuCgAAlyC5Qolceqn5XHb6tGms5/UcDum116ROnaSUFKlnT+noUXti2b9f2raNeiuUXNu21F0BAOACJFcoMWft1RtvmM9mXs/PzxSaxcZKf/wh9e5tssuy5hy1atlSqly57J8f3qNiRenyy80+UwMBACg2kiuUWNeu5vP9iRPS9Ol2R1NGqlc3HQQrVZK++UZ69NGyj4EW7HAl6q4AACgxkiuUmMNxtvZq+nTp+HF74ykzzZpJ7713dqrgzJll+/w0s4ArUXcFAECJkVzBJW6+2ayz+/ffZnpguXHDDdJLL5n9YcPOJjylbe9eaccO0xq+U6eyeU54N9a7AgCgxEiu4BK+vtKTT5r9qVOl9HR74ylTTz0l9esnZWZKt95q6rBKm3PqVqtWZnFjoKSouwIAoMRIruAyd90lXXSRaWL3zjt2R1OGHA5p9mypXTvp2DHTQTAlpXSfkxbsKA3UXQEAUCIkV3AZPz/pscfM/qRJZiCn3AgMlD79VIqONmtf3XFH6b4BNLNAaaDuCgCAEiG5gkvde69UpYq0fbvpVl6uREVJn30mBQRIX3xxtsuHq+3ZY6Ye+vicncYFuAJ1VwAAlAjJFVyqUiXp4YfN/vjxkmXZG0+Za9NGmjPH7E+eLM2d6/rncI5atW4thYa6/voov6i7AgCgREiu4HLDhknBwVJCgjRhgvTLL+VsimCfPtJzz5n9++6TVq927fWdHQmZEojSQN0VAADFRnIFl6tSRbr/frP/zDNmOajQUPOF+KOPmqWhtm718pKOsWOlm26SMjKkXr2k3btdd22aWaA0UXcFAECxOSyr3E3cuqCUlBSFhYUpOTlZoUy7KpZTp8y0wBUrpPXrpdTU888JCTEz29q2NbPp2rSR6tQxzfe8QmqqySg3bZJatJBWrTJDeiWxa5cUG2t63//9t3kTAVc6fVqqXFk6cULavFm65BK7IwIAwFZFyQ0qlFFMKGcCAszgjWS+/N66Vfrpp7Pbxo3S8eNmECbn7KMqVc4mWs6tZk0PTbgqVTINLtq2NXMkBwyQ5s83jSiKy/lmtWlDYoXS4ay7+vpr8/tGcgUAQKGRXKHU+fhIjRub7a67zLEzZ0wzspwJ16ZNZpmor782m1NExPkJV2SkPa+lyGJipAULTH3Uf/8r/eMf0pgxxb8eLdhRFrp0OZtcDR1qdzQAAHgMpgXmgWmB9khPN80vciZcmzfn3QyjZs3zE66qVcs+5kKbM0caNMjsz58v3XZb8a4TG2umBi5aJHXr5qrogNxWr5Yuu0yqVk06eLBko60AAHi4ouQGJFd5ILlyHydPmhEtZ7K1bp1Zozev39o6dXInW61bS2FhZR9zvh57TJo61Sw4vGqV1KpV0R7/11/mRVaoYOqtKlUqlTCBXHVXP/9sutIAAFBOUXMFrxEYKF16qdmcUlNNzVbOhGv7dmnnTrN99NHZcxs0yJ1wtWxpY04yaZKZC7lokXTjjdLatWbh4cJyTgls25bECqXr3LorkisAAAqF5Aoep1IlqVMnszklJUkbNuROuP76S9q2zWzvv2/Oc9Z/OZOttm2luDjTgKPU+fpKH35oMsXffzet2r/9tvBP7lzfihbsKAs5666GDbM7GgAAPALTAvPAtEDvcOSIaQOfM+Hat+/88ypUMA3RciZcl1wi+fmVUmDbt0vt25upfXfdJc2de+F2iJZl6q127zYfeK+5ppSCA/6fs+6qalXp0CHqrgAA5RY1VyVEcuW9Dhw4m3CtW2e2w4fPP8/Pz4xo5Uy4Gjc2iZhLLFtmGlJkZkoTJ0pPPlnw+X/+KdWrZwJISir5elnAhVB3BQCAJGqugHxFRUnXX282yQwI7d2be3Trp5/MoJIz+XIKDDQ1W85kq00bU9NVrC/0r75a+uc/TZvrp5+WmjQ5G1RenPVW7dqRWKFsUHcFAECRkVyhXHM4pFq1zHbTTeaYZZnGGDmTrfXrzaLHP/xgNqeQENP0L2fCVbduIRc9fugh03t+1iypb18zDSu/BVtZ3wp2oO4KAIAiYVpgHpgWiHNlZZlSqZwJ14YNplX8ucLDTRt4Z7LVpo1J3vJMuE6flrp2NR9e69QxHQSrVct9jmVJtWubIbYlS6T4+NJ4icD5qLsCAICaq5IiuUJhnDljmv45k62ffpISEqSMjPPPrV499+hWmzY5urAfPWqm+/35p9S5sxkpyNlN448/pIsvNtO0kpKkoKAyeHWAqLsCAEAkVyVGcoXiysiQfv01d8K1ebNJxM4VHX022epS/Vdd9ngH+aQel+67z0wVdA51/fvf0r33mvqXlSvL9gUB3bqZhP/VV5kaCAAol4qSG7jFHI/XXntNsbGxCggIUPv27bV27doCz//oo4/UqFEjBQQEqFmzZvryyy9z3T9w4EA5HI5cW/fu3UvzJQCSzIBTy5YmP3rjDTN18Phxac0aacYMaeBAU1bl4yPt3y999pn0/PNSpweaqmfqB8qSQ3rjDS3p9ZqWLTMDVdn1VqxvBTs4f++cv4cAACBftje0mDdvnkaMGKFZs2apffv2mjZtmrp166atW7eqRo0a553/ww8/qG/fvho/fryuv/56vf/+++rVq5c2bNigS3I0A+jevbveeuut7J/9/f3L5PUA5woIMLP+2rU7eywtzUwhzDnC9eXW6/SUJmqyntSVC4er+8JGWqartd/3W0VJmvHrlXK8JtWvb7oU1qpl1iUGSpUzuVqxwhQfUncFAEC+bJ8W2L59e7Vt21YzZsyQJGVlZalWrVoaNmyYnn766fPO79Onj9LS0vT5559nH7v00kvVokULzZo1S5IZuUpKStKnn35aqBjS09OVnp6e/XNKSopq1arFtECUqeRkaeMGS9WeGKhL1r+tZJ/K6pv1nr7UdUqXnyorSacUmH2+v78pxWrQ4GzC5dxq1Chkx0LgQqi7AgCUcx6zzlVGRobWr1+vkSNHZh/z8fFRfHy8Vq9enedjVq9erREjRuQ61q1bt/MSqW+//VY1atRQeHi4rrrqKr3wwguqWrVqntccP368xo4dW7IXA5RQWJjU5UqHtOp16cptCvvxR33hd5OUIR1rcKmG3RiobdukbdtMj4v0dFPf9euv518rJCR3suVMvurXN5+TgUJjvSsAAArN1uTqyJEjyszMVERERK7jERER+v333/N8TGJiYp7nJyYmZv/cvXt33XzzzapTp47++OMPPfPMM+rRo4dWr14t3zzmUY0cOTJXwuYcuQJsERAgLVggtW0rx969kqSo27toUo78PzNT2r1b2cnW9u1n9//6y9R5rV9vtnPVqHH+SFeDBlK9emahZOA8rHcFAECh2F5zVRpuv/327P1mzZqpefPmqlevnr799ltdffXV553v7+9PTRbcS2SktHChGTE4ceK8ta18fc2yWHXqmGZuOZ06Zbq650y4nAnYgQNmuaJDh6Tvv8/9OOeCyueOdjVoIMXGShW88l8LFAp1VwAAFIqtH5eqVasmX19fHTx4MNfxgwcPKjIyMs/HREZGFul8Sapbt66qVaumHTt25JlcAW6pZUvzYfbXX02SVUgBAVKTJmY71/HjZ5Ouc5OvpCQzGrZ7t7R0ae7HVagg1a2b91TD6Gg+a3u9Nm3M+mpHj0rDh5ssPCzMzDHN6zYggKI/AEC5ZGty5efnp9atW2vZsmXq1auXJNPQYtmyZRo6dGiej+nQoYOWLVum4cOHZx9bsmSJOnTokO/z7N27V0ePHlVU9qqtgIdwrjjsIiEhUqtWZsvJsszn5pzJljMB275dOnny7LFzBQWZRCuvqYb5lDnC01SsaEavvvxSmj79wuf7+RWcfF3oNjSUVpgAAI9ke7fAefPmacCAAXr99dfVrl07TZs2TfPnz9fvv/+uiIgI9e/fXxdddJHGjx8vybRi79y5syZMmKDrrrtOH374oV566aXsVuypqakaO3asbrnlFkVGRuqPP/7Qk08+qePHj2vz5s2Fmv7HIsLAWVlZ0r59eY927dyZ9wLJTuHh+TfWqFSp7F4DXGDnTmnuXJOFJyeboc5zb1NSTKbuCiEhxU/OKldm9AwA4DJFyQ1sT64kacaMGZo8ebISExPVokULvfrqq2rfvr0kqUuXLoqNjdWcOXOyz//oo4/03HPP6a+//lL9+vU1adIkXXvttZKkkydPqlevXtq4caOSkpIUHR2trl27aty4cec1wsgPyRVQOKdPmwYa5452bdsm7dlT8GOjo88f7apf30w/pATSQ2Vlmbmn+SVfed2ee+zUKdfEUrFiyZIzRs8AAP/P45Ird0NyBZTciRPSjh3nj3Zt2yYdOZL/43x8TAONvNbvYuHkciA9Pe+kqyi3rhw9K8n0xsBARs8AwAuQXJUQyRVQuv7+O3fSlXM/NTX/x/n5nV04+dyphhERfI6FzOhZamrJkrOTJ10TS8WKuZMt536lSmbaYkCAGaZ17hdmy+98vnUAgFJDclVCJFeAPSxLSkzMe7Trjz+kjIz8H+tcODmvqYYsnIwiycgoWXKWnGySvLJUoULREzJXnR8QYJ6fbzcAeCmSqxIiuQLcz4UWTi7oX7Lq1U2NV5Uqhd+Y0YVis6yCR89OnDC1ZUXd0tNz/1xQN5my5nCUfgKX8zHBweYvNSN2AMoAyVUJkVwBnuVCCycXh7//2USratXCJ2WVKpGUlXdZWVJammmeePz42VvnflCQFBNjturVS/D7cubM+QnXhRKy4iRx+W0FDSWXhYoVpXr18h6yjoriLyIAlyG5KiGSK8B7HD9uGmscOiQdO1a4rSQDAhUq5J10XShBCw1lMWY7OUu18kuI8rrN776C6gbPFRAg1a59Ntlybs5jF11kcgi3lJVlErHSTODye0xqqmlXmp/g4NxrP+RMvKpUKbv3CIBXILkqIZIroPxyzuhyJlpHjxYuITt6tGRf5Pv4mHXBCjM6ljNRq1y5/M6Mysx0XUKUlub6+CpUMLWAoaFnbytVMs+5a5cZVb3Q/8A+PibByplwnZuEBQe7Pna3l5Vl1ns4d47w9u1mTbbMzPwfW6XK+R1xGjQw3XJYgA95sSzzD/2uXWZ++u7dZ/f37TPfklStKlWrlvv23P2wMEZUPRTJVQmRXAEoKssyTeYKm4jl/PnEiZI9d+XKRasnq1LFJHJ+fi556UWSmVm0pKeg+0r6vuWlQgWTBOVMiEJCzk+SCnOfv3/Bn6MyMqS9e81ntJxbzs9thUnYq1bNf+QrJsbcX64+z2VkmAQrr8Rr796CHxsdnXfiVbeuPX9hUDZOnzZJUs6/fDkTqd27XfMNjHNqQ37JV17JWXh4+f0GzY2QXJUQyRWAsnTqlGlPX9hpi84tJaVkzxsSUrSELDg4dy1RcRIiV3U5z6lixdwJUXESIed9F0qIylJWlnTwYO7PeuduhfkdcNZ45TfyFR1tPvOVC2lpeS/At3174RfgOzfxYgE+95eSkveok/N2//7CdfiMjDR/aZx/mWrXlmrWNP+IHz1qtiNHct8694v7bZDDYRKswoyM5dx32/nEnonkqoRIrgB4gtOnTfO5okxfPHbMPMbuf/n9/Us2MpRz39/f3tdip+Tk/Ee+du0ySxtciK+v+XyY38hX7dqme6bXO3bMJFl5JV5FWYAvZ+LFAnylLyvLzLE9d7Qp51+G5OQLX8fPL3fS5Lx17tesaab/FZczAcsv+corOSvJN2ihoUVPyMrFX/TiIbkqIZIrAN4sM9N81ijqFMa0NFOSUpKRIec+M6zKxqlTpjQpr5Gv3bvNfQX1hXCqUaPgxhvh4V6cQzgX4Dt3mmFhF+DLmWzl3GcBvsI5cSL39LxzR5327i3cL3GVKucnTjkTqBo13K+r0OnT5h/f/JKvvI79/Xfxvz0LCircVMWc++WkRS7JVQmRXAEAyoPMTJM35DfytWtX4bofVqqU96iXc4uKcr/PrS6RcwG+c+u7/vqr4Klm1aqdv+K5s7FGUFCZvQRbWZZ0+HDBo04FTdd0cg6/5pU4xcSYqZvlpVlJZqaZnlDYhMy5X1ATmIL4+RVuZOzcxh4e9g8CyVUJkVwBAGA++/79d/4jX7t2mWUOLqRixfOnHp77Gdjrpnemp5sF+PJKvPbvL/ixNWvmnXjVqeNZtTQ5u7bk1yzi1KkLXyck5PxpejlvWVC6ZCzLTEEszFTFnMfS04v3fL6+Z1vf5ky+hg6VWrRw6UtzFZKrEiK5AgCgcE6ezJ18nZuI7d1buC/FIyPzH/mKiTFfdnsN5wJ8eU01/Pvv/B/n62sSrLymGdasWbajAZZlRkgKGnVKTLzwFDWHwwxt5lXn5Lylhbn7sSwzZbOodWQFdV1ctEjq1q3sXkMRkFyVEMkVAACuceaM6TdQUOONwjRSCw09m2jVqmVmzvn7m1lJ/v659/O7Lcx9ts9WOno09yhXzv2C3qiAgPwba1SvXvTkJOcfXH6jTsePX/g6OVfKzuu2Zk2KMMuT9PT8E7K77jK/E26I5KqESK4AACgblmU+V+U38rVrl7m/rFSoULLkrKTJXb63fpZ8EvfnPdr1558FN3UIC8u7sUZQUN6J065dZt2nwgw5Vq+e/3S9mBgz3YtRJ3g4kqsSIrkCAMB9pKXlTrr27TOlOunpZsvIyPu2oPuct4VpNOcu8kv8gvzOKNaxS3XPbFOdM9sVk7FNtU9u00Untqnaid3yUfE+6mX5VtCp6rWUERmj01G1dSa6tjJrxsiqVVuO2Bj5xNRSxbAg+fmZUjA/PzNzkVwK3obkqoRIrgAAKB+yskyCVdIkrTQe74rEz1+nVE9/qIG2qb62q4G2ZW/+Stdu1dZu1dYuxZy3n6hIZalojSIcDpNk5Uy4zt2Kcry0znUeJxlEYRQlNygva7IDAACcx8fn7LQ8d2NZJtEqWZIWoIyMpkpPb6qMDGlburT5nATO+RwZGeZn/wwpJkOKOud4zvOc25kz58fsjMMT5EwGS5oQXmi/KOcWdA0aI7o3kisAAAA35HCcTfxCQuyOJm+WlXfilV8yZvdxT08GJfOFQGkkbqWZIJanEUKSKwAAABRLzpEfT+CcBuqq5M05+uc8nt+1L7RfUEznFvBkZZmaw8IsEeYuHI4LJ2CvvSZdfrndkZYcyRUAAADKBXeeBpqfzMzCJWLFTeBKem5ej8trhNB5bn4KsySDJyC5AgAAANyUr68UGGg2T5GVZRKsoiRwLVvaHbVrkFwBAAAAcJmcdWHljd3rkAMAAACAVyC5AgAAAAAXILkCAAAAABcguQIAAAAAFyC5AgAAAAAXILkCAAAAABcguQIAAAAAFyC5AgAAAAAXILkCAAAAABcguQIAAAAAFyC5AgAAAAAXILkCAAAAABcguQIAAAAAFyC5AgAAAAAXqGB3AO7IsixJUkpKis2RAAAAALCTMydw5ggFIbnKw9GjRyVJtWrVsjkSAAAAAO7g+PHjCgsLK/Ackqs8VKlSRZK0e/fuC76ByF9KSopq1aqlPXv2KDQ01O5wPBLvoWvwPpYc76Fr8D66Bu9jyfEeugbvY8l5wntoWZaOHz+u6OjoC55LcpUHHx9TihYWFua2f8ieJDQ0lPexhHgPXYP3seR4D12D99E1eB9LjvfQNXgfS87d38PCDrjQ0AIAAAAAXIDkCgAAAABcgOQqD/7+/ho9erT8/f3tDsWj8T6WHO+ha/A+lhzvoWvwProG72PJ8R66Bu9jyXnbe+iwCtNTEAAAAABQIEauAAAAAMAFSK4AAAAAwAVIrgAAAADABUiuAAAAAMAFSK5y+O6779SzZ09FR0fL4XDo008/tTskjzN+/Hi1bdtWISEhqlGjhnr16qWtW7faHZbHmTlzppo3b569oF6HDh301Vdf2R2WR5swYYIcDoeGDx9udygeZcyYMXI4HLm2Ro0a2R2Wx9m3b5/uvPNOVa1aVYGBgWrWrJl++uknu8PyKLGxsef9LjocDg0ZMsTu0DxKZmamnn/+edWpU0eBgYGqV6+exo0bJ/qbFc3x48c1fPhwxcTEKDAwUJdddpnWrVtnd1hu7UKfsy3L0qhRoxQVFaXAwEDFx8dr+/bt9gRbAiRXOaSlpSkuLk6vvfaa3aF4rBUrVmjIkCH68ccftWTJEp0+fVpdu3ZVWlqa3aF5lJo1a2rChAlav369fvrpJ1111VW68cYb9euvv9odmkdat26dXn/9dTVv3tzuUDxS06ZNdeDAgext1apVdofkUf7++2917NhRFStW1FdffaXffvtNL7/8ssLDw+0OzaOsW7cu1+/hkiVLJEm33XabzZF5lokTJ2rmzJmaMWOGtmzZookTJ2rSpEmaPn263aF5lHvuuUdLlizRO++8o82bN6tr166Kj4/Xvn377A7NbV3oc/akSZP06quvatasWVqzZo2Cg4PVrVs3nTp1qowjLSELeZJkLViwwO4wPN6hQ4csSdaKFSvsDsXjhYeHW//+97/tDsPjHD9+3Kpfv761ZMkSq3PnztYjjzxid0geZfTo0VZcXJzdYXi0p556yrr88svtDsPrPPLII1a9evWsrKwsu0PxKNddd501ePDgXMduvvlmq1+/fjZF5HlOnDhh+fr6Wp9//nmu461atbKeffZZm6LyLOd+zs7KyrIiIyOtyZMnZx9LSkqy/P39rQ8++MCGCIuPkSuUquTkZElSlSpVbI7Ec2VmZurDDz9UWlqaOnToYHc4HmfIkCG67rrrFB8fb3coHmv79u2Kjo5W3bp11a9fP+3evdvukDzKwoUL1aZNG912222qUaOGWrZsqdmzZ9sdlkfLyMjQu+++q8GDB8vhcNgdjke57LLLtGzZMm3btk2StGnTJq1atUo9evSwOTLPcebMGWVmZiogICDX8cDAQEb2i2nnzp1KTEzM9X91WFiY2rdvr9WrV9sYWdFVsDsAeK+srCwNHz5cHTt21CWXXGJ3OB5n8+bN6tChg06dOqVKlSppwYIFatKkid1heZQPP/xQGzZsYB58CbRv315z5sxRw4YNdeDAAY0dO1adOnXSL7/8opCQELvD8wh//vmnZs6cqREjRuiZZ57RunXr9PDDD8vPz08DBgywOzyP9OmnnyopKUkDBw60OxSP8/TTTyslJUWNGjWSr6+vMjMz9eKLL6pfv352h+YxQkJC1KFDB40bN06NGzdWRESEPvjgA61evVoXX3yx3eF5pMTERElSREREruMRERHZ93kKkiuUmiFDhuiXX37hW5xiatiwoRISEpScnKyPP/5YAwYM0IoVK0iwCmnPnj165JFHtGTJkvO+XUTh5fw2u3nz5mrfvr1iYmI0f/583X333TZG5jmysrLUpk0bvfTSS5Kkli1b6pdfftGsWbNIrorpP//5j3r06KHo6Gi7Q/E48+fP13vvvaf3339fTZs2VUJCgoYPH67o6Gh+H4vgnXfe0eDBg3XRRRfJ19dXrVq1Ut++fbV+/Xq7Q4PNmBaIUjF06FB9/vnnWr58uWrWrGl3OB7Jz89PF198sVq3bq3x48crLi5O//znP+0Oy2OsX79ehw4dUqtWrVShQgVVqFBBK1as0KuvvqoKFSooMzPT7hA9UuXKldWgQQPt2LHD7lA8RlRU1HlfijRu3JjplcW0a9cuLV26VPfcc4/doXikJ554Qk8//bRuv/12NWvWTHfddZceffRRjR8/3u7QPEq9evW0YsUKpaamas+ePVq7dq1Onz6tunXr2h2aR4qMjJQkHTx4MNfxgwcPZt/nKUiu4FKWZWno0KFasGCBvvnmG9WpU8fukLxGVlaW0tPT7Q7DY1x99dXavHmzEhISsrc2bdqoX79+SkhIkK+vr90heqTU1FT98ccfioqKsjsUj9GxY8fzlqTYtm2bYmJibIrIs7311luqUaOGrrvuOrtD8UgnTpyQj0/uj3++vr7KysqyKSLPFhwcrKioKP39999avHixbrzxRrtD8kh16tRRZGSkli1bln0sJSVFa9as8bh6c6YF5pCamprr29idO3cqISFBVapUUe3atW2MzHMMGTJE77//vj777DOFhIRkz5MNCwtTYGCgzdF5jpEjR6pHjx6qXbu2jh8/rvfff1/ffvutFi9ebHdoHiMkJOS8Wr/g4GBVrVqVGsAiePzxx9WzZ0/FxMRo//79Gj16tHx9fdW3b1+7Q/MYjz76qC677DK99NJL6t27t9auXas33nhDb7zxht2heZysrCy99dZbGjBggCpU4CNMcfTs2VMvvviiateuraZNm2rjxo2aOnWqBg8ebHdoHmXx4sWyLEsNGzbUjh079MQTT6hRo0YaNGiQ3aG5rQt9zh4+fLheeOEF1a9fX3Xq1NHzzz+v6Oho9erVy76gi8PudoXuZPny5Zak87YBAwbYHZrHyOv9k2S99dZbdofmUQYPHmzFxMRYfn5+VvXq1a2rr77a+vrrr+0Oy+PRir3o+vTpY0VFRVl+fn7WRRddZPXp08fasWOH3WF5nP/973/WJZdcYvn7+1uNGjWy3njjDbtD8kiLFy+2JFlbt261OxSPlZKSYj3yyCNW7dq1rYCAAKtu3brWs88+a6Wnp9sdmkeZN2+eVbduXcvPz8+KjIy0hgwZYiUlJdkdllu70OfsrKws6/nnn7ciIiIsf39/6+qrr/bIv+sOy2JJbgAAAAAoKWquAAAAAMAFSK4AAAAAwAVIrgAAAADABUiuAAAAAMAFSK4AAAAAwAVIrgAAAADABUiuAAAAAMAFSK4AAAAAwAVIrgAAcDGHw6FPP/3U7jAAAGWM5AoA4FUGDhwoh8Nx3ta9e3e7QwMAeLkKdgcAAICrde/eXW+99VauY/7+/jZFAwAoLxi5AgB4HX9/f0VGRubawsPDJZkpezNnzlSPHj0UGBiounXr6uOPP871+M2bN+uqq65SYGCgqlatqvvuu0+pqam5znnzzTfVtGlT+fv7KyoqSkOHDs11/5EjR3TTTTcpKChI9evX18KFC0v3RQMAbEdyBQAod55//nndcsst2rRpk/r166fbb79dW7ZskSSlpaWpW7duCg8P17p16/TRRx9p6dKluZKnmTNnasiQIbrvvvu0efNmLVy4UBdffHGu5xg7dqx69+6tn3/+Wddee6369eunY8eOlenrBACULYdlWZbdQQAA4CoDBw7Uu+++q4CAgFzHn3nmGT3zzDNyOBx64IEHNHPmzOz7Lr30UrVq1Ur/+te/NHv2bD311FPas2ePgoODJUlffvmlevbsqf379ysiIkIXXXSRBg0apBdeeCHPGBwOh5577jmNGzdOkknYKlWqpK+++oraLwDwYtRcAQC8zpVXXpkreZKkKlWqZO936NAh130dOnRQQkKCJGnLli2Ki4vLTqwkqWPHjsrKytLWrVvlcDi0f/9+XX311QXG0Lx58+z94OBghYaG6tChQ8V9SQAAD0ByBQDwOsHBwedN03OVwMDAQp1XsWLFXD87HA5lZWWVRkgAADdBzRUAoNz58ccfz/u5cePGkqTGjRtr06ZNSktLy77/+++/l4+Pjxo2bKiQkBDFxsZq2bJlZRozAMD9MXIFAPA66enpSkxMzHWsQoUKqlatmiTpo48+Ups2bXT55Zfrvffe09q1a/Wf//xHktSvXz+NHj1aAwYM0JgxY3T48GENGzZMd911lyIiIiRJY8aM0QMPPKAaNWqoR48eOn78uL7//nsNGzasbF8oAMCtkFwBALzOokWLFBUVletYw4YN9fvvv0synfw+/PBDPfTQQ4qKitIHH3ygJk2aSJKCgoK0ePFiPfLII2rbtq2CgoJ0yy23aOrUqdnXGjBggE6dOqVXXnlFjz/+uKpVq6Zbb7217F4gAMAt0S0QAFCuOBwOLViwQL169bI7FACAl6HmCgAAAABcgOQKAAAAAFyAmisAQLnCbHgAQGlh5AoAAAAAXIDkCgAAAABcgOQKAAAAAFyA5AoAAAAAXIDkCgAAAABcgOQKAAAAAFyA5AoAAAAAXIDkCgAAAABc4P8ASYnChj3vECUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAHWCAYAAAACSaoRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWfElEQVR4nOzdd3hTZfsH8G/a0kEnUOiAAgXKHkWgpawyKmWIVlGGQBFRfBUQxYGDJbw/kPWKgoITVDYIqCijlClURqECMgQsFIGW2ZYWOnN+fzyetOmiI8mTpN/PdZ0rp8nJyZ0Q2tx57ud+NIqiKCAiIiIiIiLpbGQHQERERERERAITNCIiIiIiIjPBBI2IiIiIiMhMMEEjIiIiIiIyE0zQiIiIiIiIzAQTNCIiIiIiIjPBBI2IiIiIiMhMMEEjIiIiIiIyE0zQiIiIiIiIzAQTNCKiSu7IkSPo1KkTnJ2dodFoEBcXJyWOS5cuQaPRYPny5VIen8zb8uXLodFocPToUdmhEBEZFRM0IqJKLDs7G8888wzu3LmDjz76CN9//z3q1asnOyyDUZO++fPnyw7F7KkJUHHb77//LjtEIqJKwU52AEREJM/Fixdx+fJlfPnll3jhhRdkh0NmYMaMGfD39y90faNGjSREQ0RU+TBBIyKqxG7cuAEA8PDwkBsImUR6ejqcnZ1LPKZv375o3769iSIiIqKCWOJIRFRJPffccwgNDQUAPPPMM9BoNOjevbvu9l27dqFr165wdnaGh4cHnnjiCZw5c6bQea5evYrRo0fD19cXDg4O8Pf3x8svv4ysrCwAwJ07d/Dmm2+iVatWcHFxgZubG/r27Ys//vjDJM+zNG7cuIHRo0fDy8sLjo6OaNOmDb799ttCx61Zswbt2rWDq6sr3Nzc0KpVK3z88ce627Ozs/HBBx8gICAAjo6OqFGjBrp06YKoqKgSH18tL9y3bx9eeukl1KhRA25uboiMjMTdu3cLHb9161bdv42rqyv69++PP//8U++Y5557Di4uLrh48SL69esHV1dXDBs2rJyvUJ78ZaMfffQR6tWrBycnJ4SGhuLUqVOFjjfU+0iVmZmJiRMnombNmnB2dsaTTz6JmzdvVvh5ERGZC46gERFVUi+99BJq166NWbNm4dVXX0WHDh3g5eUFANi5cyf69u2LBg0aYPr06Xjw4AEWLVqEzp0749ixY6hfvz4A4Nq1awgKCkJycjLGjBmDpk2b4urVq9iwYQPu378Pe3t7/P3339i8eTOeeeYZ+Pv7IykpCZ9//jlCQ0Nx+vRp+Pr6SnwVgAcPHqB79+64cOECxo0bB39/f6xfvx7PPfcckpOTMWHCBABAVFQUhg4dil69emHOnDkAgDNnzuDAgQO6Y6ZPn47Zs2fjhRdeQFBQEFJTU3H06FEcO3YMjz766ENjGTduHDw8PDB9+nScO3cOS5YsweXLl7Fnzx5oNBoAwPfff4+RI0ciPDwcc+bMwf3797FkyRJ06dIFx48f1/3bAEBOTg7Cw8PRpUsXzJ8/H1WrVn1oDCkpKbh165bedRqNBjVq1NC77rvvvsO9e/cwduxYZGRk4OOPP0bPnj1x8uRJo7yPVOPHj0e1atUwbdo0XLp0CQsXLsS4ceOwdu3ahz43IiKLoBARUaW1e/duBYCyfv16vesDAwOVWrVqKbdv39Zd98cffyg2NjZKZGSk7rrIyEjFxsZGOXLkSKFza7VaRVEUJSMjQ8nNzdW7LT4+XnFwcFBmzJihdx0AZdmyZYZ4anrnnDdvXrHHLFy4UAGgrFixQnddVlaWEhISori4uCipqamKoijKhAkTFDc3NyUnJ6fYc7Vp00bp379/meNctmyZAkBp166dkpWVpbt+7ty5CgDlxx9/VBRFUe7du6d4eHgoL774ot79ExMTFXd3d73rR44cqQBQ3nnnnTLFUNTm4OCgO059TZ2cnJR//vlHd/2hQ4cUAMrrr7+uu86Q7yM1vrCwMN11iqIor7/+umJra6skJyeX6nkSEZk7ljgSEZGe69evIy4uDs899xyqV6+uu75169Z49NFH8euvvwIAtFotNm/ejAEDBhQ5Z0kd8XFwcICNjfhzk5ubi9u3b8PFxQVNmjTBsWPHTPCMSvbrr7/C29sbQ4cO1V1XpUoVvPrqq0hLS8PevXsBiHl66enpJZYrenh44M8//8T58+fLFcuYMWNQpUoV3c8vv/wy7OzsdK95VFQUkpOTMXToUNy6dUu32draIjg4GLt37y50zpdffrlMMXz66aeIiorS27Zu3VrouIiICNSuXVv3c1BQEIKDg3WxGvp9pBozZozedV27dkVubi4uX75cpudJRGSuWOJIRER61A+6TZo0KXRbs2bNsH37dqSnpyMtLQ2pqalo2bJliefTarX4+OOP8dlnnyE+Ph65ubm62wqWzT1Mbm5uoflG1atX1yuBK6vLly8jICBAl0SqmjVrprsdAF555RWsW7cOffv2Re3atdG7d28MGjQIffr00d1nxowZeOKJJ9C4cWO0bNkSffr0wYgRI9C6detSxRIQEKD3s4uLC3x8fHDp0iUA0CV+PXv2LPL+bm5uej/b2dmhTp06pXpsVVBQUKmahBSMFQAaN26MdevWATD8+0hVt25dvZ+rVasGAEXO1SMiskRM0IiIyKhmzZqFKVOm4Pnnn8fMmTNRvXp12NjY4LXXXoNWqy3Tua5cuVKoBfzu3bv1mpsYS61atRAXF4ft27dj69at2Lp1K5YtW4bIyEhdQ5Fu3brh4sWL+PHHH7Fjxw589dVX+Oijj7B06VKDLGOgvl7ff/89vL29C91uZ6f/Zz3/6KW1sLW1LfJ6RVFMHAkRkXEwQSMiIj3qQtXnzp0rdNvZs2fh6ekJZ2dnODk5wc3NrcjOfflt2LABPXr0wNdff613fXJyMjw9PcsUm7e3d6ESwzZt2pTpHAXVq1cPJ06cgFar1Utmzp49q7tdZW9vjwEDBmDAgAHQarV45ZVX8Pnnn2PKlCm6dcKqV6+OUaNGYdSoUUhLS0O3bt0wffr0UiVo58+fR48ePXQ/p6Wl4fr16+jXrx8AoGHDhgBEshgWFlah511RRZVx/vXXX7rGH4Z+HxERVRbW9bUaERFVmI+PDwIDA/Htt98iOTlZd/2pU6ewY8cOXbJgY2ODiIgI/Pzzzzh69Gih86gjGra2toVGN9avX4+rV6+WOTZHR0eEhYXpbWqJW3n169cPiYmJel0Ac3JysGjRIri4uOiWIrh9+7be/WxsbHSli5mZmUUe4+LigkaNGuluf5gvvvgC2dnZup+XLFmCnJwc9O3bFwAQHh4ONzc3zJo1S+84lSnbzW/evFnv3/Dw4cM4dOiQLlZDv4+IiCoLjqAREVEh8+bNQ9++fRESEoLRo0fr2qO7u7tj+vTpuuNmzZqFHTt2IDQ0FGPGjEGzZs1w/fp1rF+/Hr/99hs8PDzw2GOPYcaMGRg1ahQ6deqEkydPYuXKlWjQoIHJnk90dDQyMjIKXR8REYExY8bg888/x3PPPYfY2FjUr18fGzZswIEDB7Bw4UK4uroCAF544QXcuXMHPXv2RJ06dXD58mUsWrQIgYGBuvlqzZs3R/fu3dGuXTtUr14dR48exYYNGzBu3LhSxZmVlYVevXph0KBBOHfuHD777DN06dIFjz/+OAAxx2zJkiUYMWIEHnnkEQwZMgQ1a9ZEQkICfvnlF3Tu3BmLFy+u0Gu1detW3ehhfp06ddL7N2vUqBG6dOmCl19+GZmZmVi4cCFq1KiBt99+W3eMId9HRESVhtwmkkREJFNxbfYVRVF27typdO7cWXFyclLc3NyUAQMGKKdPny503OXLl5XIyEilZs2aioODg9KgQQNl7NixSmZmpqIoos3+G2+8ofj4+ChOTk5K586dlZiYGCU0NFQJDQ3VnceYbfaL277//ntFURQlKSlJGTVqlOLp6anY29srrVq1KhTHhg0blN69eyu1atVS7O3tlbp16yovvfSScv36dd0x//3vf5WgoCDFw8NDcXJyUpo2bar83//9n17r/KKoLeT37t2rjBkzRqlWrZri4uKiDBs2TK9FvWr37t1KeHi44u7urjg6OioNGzZUnnvuOeXo0aO6Y0aOHKk4OzuX+rUqqc1+/n+X/EsXLFiwQPHz81McHByUrl27Kn/88Ueh8xrqfaTGV7AVv/oe3r17d6mfKxGROdMoCmsHiIiIZFq+fDlGjRqFI0eOlKqDokyXLl2Cv78/5s2bhzfffFN2OEREVodz0IiIiIiIiMwEEzQiIiIiIiIzwQSNiIiIiIjITHAOGhERERERkZngCBoREREREZGZYIJGRERERERkJrhQtRFptVpcu3YNrq6u0Gg0ssMhIiIiIiJJFEXBvXv34OvrCxub4sfJmKAZ0bVr1+Dn5yc7DCIiIiIiMhNXrlxBnTp1ir2dCZoRubq6AhD/CG5ubpKjISIiIiIiWVJTU+Hn56fLEYrDBM2I1LJGNzc3JmhERERERPTQqU9sEkJERERERGQmmKARERERERGZCSZoREREREREZoJz0IiIiIio0lAUBTk5OcjNzZUdClkZW1tb2NnZVXh5LSZoRERERFQpZGVl4fr167h//77sUMhKVa1aFT4+PrC3ty/3OZigEREREZHV02q1iI+Ph62tLXx9fWFvb1/hkQ4ilaIoyMrKws2bNxEfH4+AgIASF6MuCRM0IiIiIrJ6WVlZ0Gq18PPzQ9WqVWWHQ1bIyckJVapUweXLl5GVlQVHR8dynYdNQoiIiIio0ijvqAZRaRji/cV3KBERERERkZlggkZERERERGQmmKAREREREVUy9evXx8KFC2WHQUVggkZEREREZKY0Gk2J2/Tp08t13iNHjmDMmDEViq179+547bXXKnQOKoxdHImIiIiIzNT169d1+2vXrsXUqVNx7tw53XUuLi66fUVRkJubCzu7h3/Er1mzpmEDJYPhCBqZtzlzgDFjgJwc2ZEQERGRlVEUID3d9JuilD5Gb29v3ebu7g6NRqP7+ezZs3B1dcXWrVvRrl07ODg44LfffsPFixfxxBNPwMvLCy4uLujQoQN27typd96CJY4ajQZfffUVnnzySVStWhUBAQH46aefKvT6/vDDD2jRogUcHBxQv359LFiwQO/2zz77DAEBAXB0dISXlxeefvpp3W0bNmxAq1at4OTkhBo1aiAsLAzp6ekVisdSmEWC9umnn6J+/fpwdHREcHAwDh8+XOLx69evR9OmTeHo6IhWrVrh119/1d2WnZ2NSZMmoVWrVnB2doavry8iIyNx7do1vXPcuXMHw4YNg5ubGzw8PDB69GikpaXpHXPixAl07doVjo6O8PPzw9y5cw33pOnhbt8G3nsP+PJLYN8+2dEQERGRlbl/H3BxMf12/75hn8c777yDDz/8EGfOnEHr1q2RlpaGfv36ITo6GsePH0efPn0wYMAAJCQklHieDz74AIMGDcKJEyfQr18/DBs2DHfu3ClXTLGxsRg0aBCGDBmCkydPYvr06ZgyZQqWL18OADh69CheffVVzJgxA+fOncO2bdvQrVs3AGLUcOjQoXj++edx5swZ7NmzB0899RSUsmS2lkyRbM2aNYq9vb3yzTffKH/++afy4osvKh4eHkpSUlKRxx84cECxtbVV5s6dq5w+fVqZPHmyUqVKFeXkyZOKoihKcnKyEhYWpqxdu1Y5e/asEhMTowQFBSnt2rXTO0+fPn2UNm3aKL///ruyf/9+pVGjRsrQoUN1t6ekpCheXl7KsGHDlFOnTimrV69WnJyclM8//7zUzy0lJUUBoKSkpJTjlSFl1SpFEV8yKco778iOhoiIiCzYgwcPlNOnTysPHjzQXZeWlvdRw5RbWlr5nsOyZcsUd3d33c+7d+9WACibN29+6H1btGihLFq0SPdzvXr1lI8++kj3MwBl8uTJ+V6bNAWAsnXr1mLPGRoaqkyYMKHI25599lnl0Ucf1bvurbfeUpo3b64oiqL88MMPipubm5KamlrovrGxsQoA5dKlSw99XuamqPeZqrS5gfQRtP/973948cUXMWrUKDRv3hxLly5F1apV8c033xR5/Mcff4w+ffrgrbfeQrNmzTBz5kw88sgjWLx4MQDA3d0dUVFRGDRoEJo0aYKOHTti8eLFiI2N1X1rcObMGWzbtg1fffUVgoOD0aVLFyxatAhr1qzRjbStXLkSWVlZ+Oabb9CiRQsMGTIEr776Kv73v/+Z5oUhIN/IKKKi5MVBREREVqlqVSAtzfRb1aqGfR7t27fX+zktLQ1vvvkmmjVrBg8PD7i4uODMmTMPHUFr3bq1bt/Z2Rlubm64ceNGuWI6c+YMOnfurHdd586dcf78eeTm5uLRRx9FvXr10KBBA4wYMQIrV67E/X+HFtu0aYNevXqhVatWeOaZZ/Dll1/i7t275YrDEklN0LKyshAbG4uwsDDddTY2NggLC0NMTEyR94mJidE7HgDCw8OLPR4AUlJSoNFo4OHhoTuHh4eH3ps5LCwMNjY2OHTokO6Ybt26wd7eXu9xzp07V+wbJDMzE6mpqXoblVNuLrBtW97Px46JkkciIiIiA9FoAGdn028ajWGfh7Ozs97Pb775JjZt2oRZs2Zh//79iIuLQ6tWrZCVlVXieapUqVLg9dFAq9UaNth/ubq64tixY1i9ejV8fHwwdepUtGnTBsnJybC1tUVUVBS2bt2K5s2bY9GiRWjSpAni4+ONEou5kZqg3bp1C7m5ufDy8tK73svLC4mJiUXeJzExsUzHZ2RkYNKkSRg6dCjc3Nx056hVq5becXZ2dqhevbruPMU9jnpbUWbPng13d3fd5ufnV+RxVApHjwK3bgFubkDTpqIiYNcu2VERERERmb0DBw7gueeew5NPPolWrVrB29sbly5dMmkMzZo1w4EDBwrF1bhxY9ja2gIQn7/DwsIwd+5cnDhxApcuXcKufz/vaTQadO7cGR988AGOHz8Oe3t7bNq0yaTPQRarbrOfnZ2NQYMGQVEULFmyxOiP9+6772LixIm6n1NTU5mkldfWreKyd2+gTh3g7FlR5vjMM3LjIiIiIjJzAQEB2LhxIwYMGACNRoMpU6YYbSTs5s2biIuL07vOx8cHb7zxBjp06ICZM2di8ODBiImJweLFi/HZZ58BALZs2YK///4b3bp1Q7Vq1fDrr79Cq9WiSZMmOHToEKKjo9G7d2/UqlULhw4dws2bN9GsWTOjPAdzIzVB8/T0hK2tLZKSkvSuT0pKgre3d5H38fb2LtXxanJ2+fJl7Nq1Szd6pp6jYD1tTk4O7ty5oztPcY+j3lYUBwcHODg4FPd0qSzU+Wf9+gG1agELFwIF2sMSERERUWH/+9//8Pzzz6NTp07w9PTEpEmTjDb1ZtWqVVi1apXedTNnzsTkyZOxbt06TJ06FTNnzoSPjw9mzJiB5557DgDg4eGBjRs3Yvr06cjIyEBAQABWr16NFi1a4MyZM9i3bx8WLlyI1NRU1KtXDwsWLEDfvn2N8hzMjUZR5ParDA4ORlBQEBYtWgQA0Gq1qFu3LsaNG4d33nmn0PGDBw/G/fv38fPPP+uu69SpE1q3bo2lS5cCyEvOzp8/j927dxdaiO/MmTNo3rw5jh49inbt2gEAduzYgT59+uCff/6Br68vlixZgvfffx9JSUm6etz33nsPGzduxNmzZ0v13FJTU+Hu7o6UlBS9BJEeIikJUJPga9cAV1egenUgOxu4cAFo2FBufERERGRxMjIyEB8fD39/fzg6OsoOh6xUSe+z0uYG0rs4Tpw4EV9++SW+/fZbnDlzBi+//DLS09MxatQoAEBkZCTeffdd3fETJkzAtm3bsGDBApw9exbTp0/H0aNHMW7cOAAiOXv66adx9OhRrFy5Erm5uUhMTERiYqJuYmSzZs3Qp08fvPjiizh8+DAOHDiAcePGYciQIfD19QUAPPvss7C3t8fo0aPx559/Yu3atfj444/1ShjJSLZvF5dt2wI+PmLBkJAQcR27ORIRERGRFZM+B23w4MG4efMmpk6disTERAQGBmLbtm26hhwJCQmwscnLIzt16oRVq1Zh8uTJeO+99xAQEIDNmzejZcuWAICrV6/qVj0PDAzUe6zdu3eje/fuAEQb/XHjxqFXr16wsbHBwIED8cknn+iOdXd3x44dOzB27Fi0a9cOnp6emDp1KsaMGWPEV4MA6Jc3qsLCxGLVUVHAf/4jJy4iIiIiIiOTXuJozVjiWA45OWLO2d27wIEDQKdO4vrffxejaB4eorvjv91/iIiIiEqDJY5kClZR4kik59AhkZxVrw4EB+dd37494O4OJCcDsbHSwiMiIiIiMiYmaGRe1PLG8HD9UTI7O6BHD7HPeWhEREREZKWYoJF5URO0otqoPvqouGS7fSIiIiKyUkzQyHxcuwbExQEajRhBK0hN0A4cANLTTRoaEREREZEpMEEj87Ftm7js0EE0CimoUSOgbl2xHtq+faaNjYiIiIjIBJigkfkoqr1+fhoNyxyJiIiIyKoxQSPzkJ0N7Ngh9otL0IC8BI2NQoiIiIhKrXv37njttdd0P9evXx8LFy4s8T4ajQabN2+u8GMb6jyVBRM0Mg8HDgD37gE1awLt2hV/XK9e4vLkSSAx0TSxEREREUkyYMAA9OnTp8jb9u/fD41GgxMnTpT5vEeOHMGYMWMqGp6e6dOnIzAwsND1169fR9+iGsAZ0PLly+Hh4WHUxzAVJmhkHrZuFZd9+gA2JbwtPT2Btm3FfnS08eMiIiIikmj06NGIiorCP//8U+i2ZcuWoX379mjdunWZz1uzZk1UrVrVECE+lLe3NxwcHEzyWNaACRqZh4fNP8uPZY5ERERkCIoiOkObelOUUof42GOPoWbNmli+fLne9WlpaVi/fj1Gjx6N27dvY+jQoahduzaqVq2KVq1aYfXq1SWet2CJ4/nz59GtWzc4OjqiefPmiCric9akSZPQuHFjVK1aFQ0aNMCUKVOQnZ0NQIxgffDBB/jjjz+g0Wig0Wh0MRcscTx58iR69uwJJycn1KhRA2PGjEFaWpru9ueeew4RERGYP38+fHx8UKNGDYwdO1b3WOWRkJCAJ554Ai4uLnBzc8OgQYOQlJSku/2PP/5Ajx494OrqCjc3N7Rr1w5Hjx4FAFy+fBkDBgxAtWrV4OzsjBYtWuBX9bOrEdgZ7cxEpZWQAJw6JUbOevd++PGPPgrMnSsSNEURzUOIiIiIyur+fcDFxfSPm5YGODuX6lA7OztERkZi+fLleP/996H593PP+vXrkZubi6FDhyItLQ3t2rXDpEmT4Obmhl9++QUjRoxAw4YNERQU9NDH0Gq1eOqpp+Dl5YVDhw4hJSVFb76aytXVFcuXL4evry9OnjyJF198Ea6urnj77bcxePBgnDp1Ctu2bcPOf5u5ubu7FzpHeno6wsPDERISgiNHjuDGjRt44YUXMG7cOL0kdPfu3fDx8cHu3btx4cIFDB48GIGBgXjxxRdL9boVfH5qcrZ3717k5ORg7NixGDx4MPbs2QMAGDZsGNq2bYslS5bA1tYWcXFxqFKlCgBg7NixyMrKwr59++Ds7IzTp0/DxYjvGyZoJJ9a3tixI1C9+sOP79wZcHAQ66adPQs0a2bc+IiIiIgkev755zFv3jzs3bsX3bt3ByDKGwcOHAh3d3e4u7vjzTff1B0/fvx4bN++HevWrStVgrZz506cPXsW27dvh6+vLwBg1qxZheaNTZ48Wbdfv359vPnmm1izZg3efvttODk5wcXFBXZ2dvD29i72sVatWoWMjAx89913cP43SV28eDEGDBiAOXPmwMvLCwBQrVo1LF68GLa2tmjatCn69++P6OjociVo0dHROHnyJOLj4+Hn5wcA+O6779CiRQscOXIEHTp0QEJCAt566y00bdoUABAQEKC7f0JCAgYOHIhWrVoBABo0aFDmGMqCCRrJV5byRgBwcgK6dhWt9qOimKARERFR+VStKkazZDxuGTRt2hSdOnXCN998g+7du+PChQvYv38/ZsyYAQDIzc3FrFmzsG7dOly9ehVZWVnIzMws9RyzM2fOwM/PT5ecAUBISEih49auXYtPPvkEFy9eRFpaGnJycuDm5lam53LmzBm0adNGl5wBQOfOnaHVanHu3DldgtaiRQvY2trqjvHx8cHJkyfL9Fj5H9PPz0+XnAFA8+bN4eHhgTNnzqBDhw6YOHEiXnjhBXz//fcICwvDM888g4YNGwIAXn31Vbz88svYsWMHwsLCMHDgwHLN+ystzkEjuTIz85p9lDZBAzgPjYiIiCpOoxGlhqbeyjE9Y/To0fjhhx9w7949LFu2DA0bNkRoaCgAYN68efj4448xadIk7N69G3FxcQgPD0dWVpbBXqqYmBgMGzYM/fr1w5YtW3D8+HG8//77Bn2M/NTyQpVGo4FWqzXKYwGiA+Wff/6J/v37Y9euXWjevDk2bdoEAHjhhRfw999/Y8SIETh58iTat2+PRYsWGS0WJmgk1/79YrKsjw9QRFvWYoWFics9e8QaakRERERWbNCgQbCxscGqVavw3Xff4fnnn9fNRztw4ACeeOIJDB8+HG3atEGDBg3w119/lfrczZo1w5UrV3D9+nXddb///rveMQcPHkS9evXw/vvvo3379ggICMDly5f1jrG3t0dubu5DH+uPP/5Aenq67roDBw7AxsYGTZo0KXXMZaE+vytXruiuO336NJKTk9G8eXPddY0bN8brr7+OHTt24KmnnsKyZct0t/n5+eE///kPNm7ciDfeeANffvmlUWIFmKCRbGp5Y9++Zfs2KTBQtNxPSwMOHTJKaERERETmwsXFBYMHD8a7776L69ev47nnntPdFhAQgKioKBw8eBBnzpzBSy+9pNeh8GHCwsLQuHFjjBw5En/88Qf279+P999/X++YgIAAJCQkYM2aNbh48SI++eQT3QiTqn79+oiPj0dcXBxu3bqFzMzMQo81bNgwODo6YuTIkTh16hR2796N8ePHY8SIEbryxvLKzc1FXFyc3nbmzBmEhYWhVatWGDZsGI4dO4bDhw8jMjISoaGhaN++PR48eIBx48Zhz549uHz5Mg4cOIAjR46g2b/TaF577TVs374d8fHxOHbsGHbv3q27zRiYoJFc+RO0srCxyVu0mmWOREREVAmMHj0ad+/eRXh4uN58scmTJ+ORRx5BeHg4unfvDm9vb0RERJT6vDY2Nti0aRMePHiAoKAgvPDCC/i///s/vWMef/xxvP766xg3bhwCAwNx8OBBTJkyRe+YgQMHok+fPujRowdq1qxZZKv/qlWrYvv27bhz5w46dOiAp59+Gr169cLixYvL9mIUIS0tDW3bttXbBgwYAI1Ggx9//BHVqlVDt27dEBYWhgYNGmDt2rUAAFtbW9y+fRuRkZFo3LgxBg0ahL59++KDDz4AIBK/sWPHolmzZujTpw8aN26Mzz77rMLxFkejKGVYiIHKJDU1Fe7u7khJSSnzBMpK4e+/gYYNAVtb4PZtoIhWrCX66ivgxReBTp2AAweMEyMRERFZhYyMDMTHx8Pf3x+Ojo6ywyErVdL7rLS5AUfQSB61vX6XLmVPzoC8RiGHDgEpKYaLi4iIiIhIEiZoJE9Z2+sXVK8eEBAA5OaKZiFERERERBaOCRrJ8eABsGuX2C9vggbkdXPkPDQiIiIisgJM0EiOPXuAjAygTh2gRYvyn0ctc9y50yBhERERERHJxASN5FDnn/XrV67FGnV69BAdHc+dA/KtbUFERERUFPbHI2MyxPuLCRqZnqIAv/wi9itS3ggAHh5Ahw5in2WOREREVIwqVaoAAO7fvy85ErJm6vtLfb+Vh52hgiEqtfPnRYv9KlXy1jKriEcfFZ0cd+4Enn++4ucjIiIiq2NrawsPDw/cuHEDgFiPS1ORKh6ifBRFwf3793Hjxg14eHjA1ta23Odigkamp3ZvDA0FXFwqfr5HHwX++1+RoGm1ouSRiIiIqABvb28A0CVpRIbm4eGhe5+VFxM0Mj01Qevb1zDn69gRcHYGbt4ETpwAAgMNc14iIiKyKhqNBj4+PqhVqxays7Nlh0NWpkqVKhUaOVMxQSPTSk8H9u4V+xWdf6aytxejcb/+KkbRmKARERFRCWxtbQ3yQZrIGFgLRqa1axeQlQX4+wNNmhjuvGq7fTYKISIiIiILxgSNTEstb6xoe/2C1ARt3z6xvhoRERERkQVigkamoyj6CZohNW8O+PiI5OzgQcOem4iIiIjIRJigkemcPg0kJAAODkD37oY9t0YDhIWJfZY5EhEREZGFYoJGprN1q7js0QOoWtXw5+c8NCIiIiKycEzQyHSMVd6oUhe9PnYMuH3bOI9BRERERGRETNDINFJTgf37xb6h1j8ryNcXaNFCzHXbtcs4j0FEREREZETSE7RPP/0U9evXh6OjI4KDg3H48OESj1+/fj2aNm0KR0dHtGrVCr+qozL/2rhxI3r37o0aNWpAo9EgLi5O7/ZLly5Bo9EUua1fv153XFG3r1mzxmDPu9LZuRPIyQEaNwYaNTLe47DMkYiIiIgsmNQEbe3atZg4cSKmTZuGY8eOoU2bNggPD8eNGzeKPP7gwYMYOnQoRo8ejePHjyMiIgIRERE4deqU7pj09HR06dIFc+bMKfIcfn5+uH79ut72wQcfwMXFBX0LjOwsW7ZM77iIiAiDPfdKR02kjTV6plIbhezcadzHISIiIiIyAo2iKIqsBw8ODkaHDh2wePFiAIBWq4Wfnx/Gjx+Pd955p9DxgwcPRnp6OrZs2aK7rmPHjggMDMTSpUv1jr106RL8/f1x/PhxBAYGlhhH27Zt8cgjj+Drr7/WXafRaLBp06YKJWWpqalwd3dHSkoK3Nzcyn0ei6coQJ06wLVrwPbtQO/exnustDSgenUgOxu4cAFo2NB4j0VEREREVEqlzQ2kjaBlZWUhNjYWYeqIBwAbGxuEhYUhJiamyPvExMToHQ8A4eHhxR5fGrGxsYiLi8Po0aML3TZ27Fh4enoiKCgI33zzDR6Wy2ZmZiI1NVVvIwAnTojkrGpVoFs34z6WiwsQEiL2WeZIRERERBZGWoJ269Yt5ObmwsvLS+96Ly8vJCYmFnmfxMTEMh1fGl9//TWaNWuGTp066V0/Y8YMrFu3DlFRURg4cCBeeeUVLFq0qMRzzZ49G+7u7rrNz8+v3HFZFbW8sVcvwNHR+I/HMkciIiIislDSm4TI9ODBA6xatarI0bMpU6agc+fOaNu2LSZNmoS3334b8+bNK/F87777LlJSUnTblStXjBW6ZTHV/DOV2ihk1y4gN9c0j0lEREREZADSEjRPT0/Y2toiKSlJ7/qkpCR4e3sXeR9vb+8yHf8wGzZswP379xEZGfnQY4ODg/HPP/8gMzOz2GMcHBzg5uamt1V6d+8CagmqqRK09u0Bd3fx2LGxpnlMIiIiIiIDkJag2dvbo127doiOjtZdp9VqER0djRB1DlEBISEhescDQFRUVLHHP8zXX3+Nxx9/HDVr1nzosXFxcahWrRocHBzK9ViVVlSUGMVq3hyoX980j2lnB/Tokff4REREREQWwk7mg0+cOBEjR45E+/btERQUhIULFyI9PR2jRo0CAERGRqJ27dqYPXs2AGDChAkIDQ3FggUL0L9/f6xZswZHjx7FF198oTvnnTt3kJCQgGvXrgEAzp07B0CMvuUfabtw4QL27dtXaB01APj555+RlJSEjh07wtHREVFRUZg1axbefPNNo70WVkt9ffv1M+3jPvoosHmzmIf2/vumfWwiIiIionKSmqANHjwYN2/exNSpU5GYmIjAwEBs27ZN1wgkISEBNjZ5g3ydOnXCqlWrMHnyZLz33nsICAjA5s2b0bJlS90xP/30ky7BA4AhQ4YAAKZNm4bp06frrv/mm29Qp04d9C6i5XuVKlXw6aef4vXXX4eiKGjUqBH+97//4cUXXzT0S2DdtFpg61axLyNBA4ADB4D0dMDZ2bSPT0RERERUDlLXQbN2lX4dtKNHgQ4dROv727cBe3vTPbaiiJLKhAQximeq+W9EREREREUw+3XQqBJQR88efdS0yRkAaDR5o2hst09EREREFoIJGhmPrPlnKjVBY6MQIiIiIrIQTNDIOG7dAg4dEvuyygt79hSXJ08CFVjMnIiIiIjIVJigkXFs3y7mgbVpA9SuLSeGmjWBtm3FfoHlGYiIiIiIzBETNDIOtbxRdnMOljkSERERkQVhgkaGl5srRtAAefPPVPkTNDYsJSIiIiIzxwSNDO/IEdFW390dCAmRG0vnzoCDA3DtGnD2rNxYiIiIiIgeggkaGZ5a3hgeDthJXQsdcHICunYV+yxzJCIiIiIzxwSNDE92e/2COA+NiIiIiCwEEzQyrMREIDZW7PfpIzcWVViYuNyzB8jOlhoKEREREVFJmKCRYanNQdq1A7y85MaiCgwEPD2BtLS8tdmIiIiIiMwQEzQyLHMrbwQAGxugVy+xzzJHIiIiIjJjTNDIcHJyzKe9fkFqmePOnXLjICIiIiIqARM0MpyYGCAlBahRA+jQQXY0+tRGIYcOiRiJiIiIiMwQEzQynK1bxWV4OGBrKzeWgurVAwICxCLae/bIjoaIiIiIqEhM0MhwzHH+WX5qmSPnoRERERGRmWKCRoZx9Srwxx+ARiNG0MyRWubIeWhEREREZKaYoJFhqOWNwcGipb056tFDdHQ8dw64ckV2NEREREREhTBBI8NQyxv79pUbR0k8PPKal7DMkYiIiIjMEBM0qrisrLyyQXOdf6ZimSMRERERmTEmaFRxBw4A9+4BtWoBjzwiO5qS5U/QtFq5sRARERERFcAEjSouf3mjjZm/pTp2BJydgZs3gRMnZEdDRERERKTHzD9Nk0Uw9/b6+dnbA6GhYp9ljkRERERkZpigUcVcvgycPi1GztTyQXOnxslGIURERERkZpigUcWo7fU7dQKqVZMbS2mpCdq+fUBGhtxYiIiIiIjyYYJGFWNJ5Y2q5s0BHx+RnB08KDsaIiIiIiIdJmhUfhkZQHS02LekBE2jAcLCxD7LHImIiIjIjDBBo/Lbtw+4fx/w9QVat5YdTdlwHhoRERERmSEmaFR++dvrazRyYymrXr3E5bFjwO3bcmMhIiIiIvoXEzQqP7VBiCWVN6p8fYEWLQBFAXbtkh0NEREREREAJmhUXhcuAH/9BdjZ5c3nsjQscyQiIiIiM8MEjcpHHT3r2hVwc5MbS3mpiSUXrCYiIiIiM8EEjcrHEtvrFxQaClSpAsTHAxcvyo6GiIiIiIgJGpXD/fvA7t1iv29fubFUhIsLEBIi9lnmSERERERmgAkald2ePUBmJlC3rlj02ZKxzJGIiIiIzIj0BO3TTz9F/fr14ejoiODgYBw+fLjE49evX4+mTZvC0dERrVq1wq9qqd2/Nm7ciN69e6NGjRrQaDSIi4srdI7u3btDo9Hobf/5z3/0jklISED//v1RtWpV1KpVC2+99RZycnIq/HytQv7yRktrr1+Q2ihk1y4gN1duLERERERU6UlN0NauXYuJEydi2rRpOHbsGNq0aYPw8HDcuHGjyOMPHjyIoUOHYvTo0Th+/DgiIiIQERGBU6dO6Y5JT09Hly5dMGfOnBIf+8UXX8T169d129y5c3W35ebmon///sjKysLBgwfx7bffYvny5Zg6daphnrglUxTgl1/EviXPP1O1bw+4uwN37wKxsbKjISIiIqJKTqMoiiLrwYODg9GhQwcsXrwYAKDVauHn54fx48fjnXfeKXT84MGDkZ6eji1btuiu69ixIwIDA7F06VK9Yy9dugR/f38cP34cgYGBerd1794dgYGBWLhwYZFxbd26FY899hiuXbsGLy8vAMDSpUsxadIk3Lx5E/b29qV6fqmpqXB3d0dKSgrcLLXTYUFnzwLNmgH29sCdO4Czs+yIKu7JJ4HNm4H//hd4/33Z0RARERGRFSptbiBtBC0rKwuxsbEIy7eGlo2NDcLCwhATE1PkfWJiYvSOB4Dw8PBijy/JypUr4enpiZYtW+Ldd9/F/fv39R6nVatWuuRMfZzU1FT8+eefxZ4zMzMTqampepvVUdvrh4ZaR3IG5JU5ch4aEREREUlmJ+uBb926hdzcXL0kCAC8vLxw9uzZIu+TmJhY5PGJiYlleuxnn30W9erVg6+vL06cOIFJkybh3Llz2LhxY4mPo95WnNmzZ+ODDz4oUywWxxra6xekJmgHDgDp6daTeBIRERGRxZGWoMk0ZswY3X6rVq3g4+ODXr164eLFi2jYsGG5z/vuu+9i4sSJup9TU1Ph5+dXoVjNSloasHev2LemBK1RI9GRMiEB2LfPspcOICIiIiKLJq3E0dPTE7a2tkhKStK7PikpCd7e3kXex9vbu0zHl1ZwcDAA4MKFCyU+jnpbcRwcHODm5qa3WZXoaCA7G2jYEAgIkB2N4Wg0LHMkIiIiIrMgLUGzt7dHu3btEB0drbtOq9UiOjoaIeriwQWEhIToHQ8AUVFRxR5fWmorfh8fH93jnDx5Uq+bZFRUFNzc3NDc0tf9qgi1vLFvX8tvr1+QmqBxwWoiIiIikkhqiePEiRMxcuRItG/fHkFBQVi4cCHS09MxatQoAEBkZCRq166N2bNnAwAmTJiA0NBQLFiwAP3798eaNWtw9OhRfPHFF7pz3rlzBwkJCbh27RoA4Ny5cwDEyJe3tzcuXryIVatWoV+/fqhRowZOnDiB119/Hd26dUPr1q0BAL1790bz5s0xYsQIzJ07F4mJiZg8eTLGjh0LBwcHU75E5kNR8hqEWFN5o6pnT3F58iSQmAhUcFSWiIiIiKg8pK6DNnjwYMyfPx9Tp05FYGAg4uLisG3bNl1DjoSEBFy/fl13fKdOnbBq1Sp88cUXaNOmDTZs2IDNmzejZcuWumN++ukntG3bFv379wcADBkyBG3bttW14be3t8fOnTvRu3dvNG3aFG+88QYGDhyIn3/+WXcOW1tbbNmyBba2tggJCcHw4cMRGRmJGTNmmOJlMU9//glcuQI4OgLdu8uOxvBq1gTathX7BUZpiYiIiIhMReo6aNbOqtZBmzsXmDRJjJ6pC1Vbm0mTxPMcORJYvlx2NERERERkRcx+HTSyMNbYXr+g/PPQ+L0FEREREUnABI0eLiUF+O03sW/NLeg7dwYcHIBr14Bi1uIjIiIiIjImJmj0cDt3Arm5QJMmQIMGsqMxHicnoGtXsc9ujkREREQkARM0erjKUN6oYrt9IiIiIpKICRqVTFEqV4IWFiYu9+wRi3ITEREREZkQEzQqWVycWBfM2Tmv/M+aBQYCnp5AWhpw6JDsaIiIiIiokmGCRiVTR8969RINNKydjY14rgDLHImIiIjI5JigUcm2bhWXlaG8UaWWOe7cKTcOIiIiIqp0mKBR8e7cAWJixL41t9cvSG0UcuiQWGKAiIiIiMhEmKBR8XbsALRaoGVLoG5d2dGYTr16QECAWFpgzx7Z0RARERFRJcIEjYpXmbo3FsQyRyIiIiKSgAkaFU2rBbZtE/uVqbxRxfXQiIiIiEgCJmhUtNhY4OZNwNUV6NxZdjSm16OH6Oh47hxw5YrsaIiIiIiokmCCRkVTyxt79waqVJEbiwweHkCHDmKfo2hEREREZCJM0KholXn+mUotc+Q8NCIiIiIyESZoVNjNm8CRI2K/Tx+5sciUP0HTauXGQkREhnXqlNiIiMwMEzQqbPt2QFGAwEDA11d2NPJ07Ag4O4uE9cQJ2dEQEZGh3Lwpfsd37AjcuiU7GiIiPUzQqDCWNwr29kBoqNhnmSMRkfVYvRpITxfb2rWyoyEi0sMEjfTl5ua116/sCRrAdvtERNbou+/y9r//Xl4cRERFYIJG+g4dAu7eBapVA4KDZUcjn7pg9b59QEaG3FiIiKji/vxTLCVjZwfY2oq/e3/9JTsqIiIdJmikTy1vDA8Xf7wquxYtAB8fkZwdPCg7GiIiqqhvvxWX/fvnVUmsWCEvHiKiApigkb6tW8Vl375y4zAXGk3eKBrLHImILFtOTl4yNnIkMGKE2F+xQjTHIiIyA0zQKM/168CxY2K/MrfXL4jz0IiIrEN0tPhbV726mGcdEQG4uADx8cCBA7KjIyICwASN8lObg3ToANSqJTcWc9Krl7g8dgy4fVtuLEREVH5qeePQoYCDA1C1KjBwoLiOZY5EZCaYoFEettcvmq+vmIumKMCuXbKjISKi8khJATZtEvsjR+Zdr5Y5rlsHZGaaPi4iogKYoJGQnQ3s2CH2Of+sMJY5EhFZtvXrRcOnZs2A9u3zru/eHahdW3Qw/uUXaeEREamYoJEQEwOkpgKenvp/uEhQG4VwwWoiIsukljdGRooGUCpbW2DYMLHPNdGIyAwwQSNBLW/s00f8sSJ9oaFAlSpiIvnFi7KjISKisrh4EfjtN5GYDR9e+Ha1zPGXXzjXmIikY4JGAueflczFBQgJEfsscyQisizqyFhYGFCnTuHbW7YEAgNFuf+6dSYNjYioICZoBFy5Apw8CdjYAL17y47GfLHMkYjI8mi1wHffif38zUEKUkfRWOZIRJIxQaO89vrBwUCNGnJjMWdqo5Bdu4DcXLmxEBFR6fz2myhPd3EBnnyy+OOGDhVfVMbEABcumC4+IqICmKARyxtLq317wN1ddPqKjZUdDRERlYY6evbMM2Lds+L4+OR9Ecc10YhIIiZolV1mZl7JHhO0ktnZAT16iH2WORIRmb/79/PmlJVU3qhSyxxXrBBrXxIRScAErbL77TcgLQ3w9hYTpKlkXA+NiMhybN4M3LsH1K8PdO368OMjIgBnZ9H1MSbGyMERERWNCVplp5Y39u0rau+pZGqCduAAkJ4uNxYiIipZ/rXPSvM3ztkZGDhQ7LNZCBFJIv0T+aeffor69evD0dERwcHBOHz4cInHr1+/Hk2bNoWjoyNatWqFX9UE418bN25E7969UaNGDWg0GsTFxendfufOHYwfPx5NmjSBk5MT6tati1dffRUpKSl6x2k0mkLbmjVrDPKczcrWreKyb1+5cViKRo2AunVFK+Z9+2RHQ0RExbl6Na8cXS1dLA11nbS1a8U0ACIiE5OaoK1duxYTJ07EtGnTcOzYMbRp0wbh4eG4ceNGkccfPHgQQ4cOxejRo3H8+HFEREQgIiICp06d0h2Tnp6OLl26YM6cOUWe49q1a7h27Rrmz5+PU6dOYfny5di2bRtGjx5d6Nhly5bh+vXrui0iIsIgz9tsxMcDZ86IhanVkSEqmUaT91pxHhoRkflauVK02O/cWXy5Vlo9ewK+vqIhVIEvgYmITEGjKPJmwQYHB6NDhw5YvHgxAECr1cLPzw/jx4/HO++8U+j4wYMHIz09HVu2bNFd17FjRwQGBmLp0qV6x166dAn+/v44fvw4Ah8yt2r9+vUYPnw40tPTYWdnB0CMoG3atKlCSVlqairc3d2RkpICNze3cp/HaD77DBg7FujWDdi7V3Y0lmPtWmDIEKBVK+DECdnREBFRQYoiFp8+fRr44gvgxRfLdv+33gLmzxdt+TduNE6MRFTplDY3kDaClpWVhdjYWISpi/8CsLGxQVhYGGKKmZgbExOjdzwAhIeHF3t8aakvkpqcqcaOHQtPT08EBQXhm2++wcNy2czMTKSmpuptZo3t9cunZ09xefIkkJgoNxYiIiosNlYkZ46OwKBBZb+/WhK5ZQtw545hYyMieghpCdqtW7eQm5sLLy8vveu9vLyQWMyH3sTExDIdX9o4Zs6ciTFjxuhdP2PGDKxbtw5RUVEYOHAgXnnlFSxatKjEc82ePRvu7u66zc/Pr9xxGV1GhlhwGWCCVlY1awJt24r96Gi5sRARUWFqc5CICLF+ZVm1bi227Oy8Nv1ERCYivUmITKmpqejfvz+aN2+O6dOn6902ZcoUdO7cGW3btsWkSZPw9ttvY968eSWe791330VKSopuu3LlihGjr6C9e4EHD4DatUUZCJUN2+0TEZmnrCxg9WqxHxlZ/vOoo2js5khEJiYtQfP09IStrS2SkpL0rk9KSoK3t3eR9/H29i7T8SW5d+8e+vTpA1dXV2zatAlVqlQp8fjg4GD8888/yCyho5ODgwPc3Nz0NrOVv7xRo5EbiyVSS22joriYKRGROfn1V+D2bbG+Z0UaYD37rGjNf/CgWBeNiMhEpCVo9vb2aNeuHaLzlYhptVpER0cjJCSkyPuEhIToHQ8AUVFRxR5fnNTUVPTu3Rv29vb46aef4Ojo+ND7xMXFoVq1anBwcCjTY5ktzj+rmC5dAAcH4No14OxZ2dEQEZFKLW8cPhwoMLe8THx9gV69xP7KlRWPi4iolCrwm6viJk6ciJEjR6J9+/YICgrCwoULkZ6ejlGjRgEAIiMjUbt2bcyePRsAMGHCBISGhmLBggXo378/1qxZg6NHj+KLL77QnfPOnTtISEjAtWvXAADnzp0DIEbfvL29dcnZ/fv3sWLFCr1mHjVr1oStrS1+/vlnJCUloWPHjnB0dERUVBRmzZqFN99805Qvj/GcPw9cuABUqZL3x4fKxskJ6NpVtNqPigKaNZMdERER3boF/PKL2B85suLnGzFC/I7//ntgyhRWnBCRSUhN0AYPHoybN29i6tSpSExMRGBgILZt26ZrBJKQkAAbm7xBvk6dOmHVqlWYPHky3nvvPQQEBGDz5s1omW8O1U8//aRL8ABgyJAhAIBp06Zh+vTpOHbsGA4dOgQAaFRgXZT4+HjUr18fVapUwaefforXX38diqKgUaNG+N///ocXy9qm11ypo2fdugGurnJjsWSPPpqXoL36quxoiIhozRrR2KNtW8PMr37ySaBqVfGl5qFDQMeOFT8nEdFDSF0HzdqZ7TpoffoA27eLNV7eeEN2NJbr2DGgXTvAxUW0YX7IPEYiIjKyDh2Ao0eBhQuBCRMMc84RI4AVK4BXXgE+/dQw5ySiSsns10EjSdLTgT17xD7nn1VMYCDg6QmkpYlvVomISJ7Tp0VyZmcnGnwYitrNcc0a0SGSiMjImKBVNrt3A5mZQP36QNOmsqOxbDY2eXP42G6fiEgutTlIv35ivUpD6dUL8PERlRJbtxruvERExWCCVtmwvb5hqe32d+6UGwcRUWWWmyvKEIGKrX1WFFvbvBE5rolGRCbABK0yUZS8b//69pUbi7VQ19g5dAhISZEbCxFRZRUdLZY9qVYNeOwxw59fLXP8+Wfg7l3Dn5+IKB8maJXJ2bPApUti/a4ePWRHYx3q1QMCAsS3t+rcPiIiMi21vHHoUPE3ztDatAFatRJz0NavN/z5iYjyYYJWmajljd27A87OUkOxKixzJCKSJzUV2LRJ7Bti7bPiqKNoLHMkIiNjglaZ5J9/RoajljmyUQgRkemtXw88eCAaX3XoYLzHefZZMXf7t9+A+HjjPQ4RVXpM0CqLe/eA/fvFPhM0w+rRQ3R0PHcOuHJFdjRERJXLd9+Jy8hI4za/ql07r3Ov2pCEiMgImKBVFtHRQHY20KiR2MhwPDzyvrVlmSMRkenExwP79onETC1BNKb8ZY6KYvzHI6JKiQlaZcHyRuNimSMRkempo2e9egF16hj/8Z58EnByAs6fBw4fNv7jEVGlxAStMlAUJmjGpiZoO3cCWq3cWIiIKgNFyUvQjNkcJD9XV5GkAWwWQkRGwwStMjh5Erh6VXzrFxoqOxrr1LGj6Ix58yZw4oTsaIiIrN+BA8DffwMuLnlJkymoZY5r1oi2+0REBsYErTJQR8969QIcHeXGYq3s7fOSX85DIyIyPnXts6efNu3SMWFhgJcXcPs2sG2b6R6XiCoNJmiVwdat4rJvX7lxWDvOQyMiMo0HD4B168S+qcobVXZ2ouU+wDJHIjIKJmjWLjlZlIEATNCMTV2wet8+ICNDbixERNZs82axQHW9ekC3bqZ/fLXM8eefxd9ZIiIDKleCduXKFfzzzz+6nw8fPozXXnsNX3zxhcECIwOJigJyc4FmzQB/f9nRWLcWLQAfH5GcHTwoOxoiIuulljeOGCHWoTS1wEDxOz8zE9iwwfSPT0RWrVy/1Z599lns3r0bAJCYmIhHH30Uhw8fxvvvv48ZM2YYNECqIHZvNB2NJm8UjWWORETGce1a3u/YyEg5MeRfd41ljkRkYOVK0E6dOoWgoCAAwLp169CyZUscPHgQK1euxPLlyw0ZH1WEVps3/4wJmmkwQSMiMq6VK8Xft06dgIAAeXEMGyYStX37gEuX5MVBRFanXAladnY2HBwcAAA7d+7E448/DgBo2rQprl+/brjoqGLi4oCkJNGCuEsX2dFUDmqCduyY6PBFRESGoyh55Y2mbg5SUJ06QI8eYn/lSrmxEJFVKVeC1qJFCyxduhT79+9HVFQU+vTpAwC4du0aatSoYdAAqQLU8sawMNEGnozP11fMS1AUYNcu2dEQEVmXY8eAP/8EHByAQYNkR6Nf5qgocmMhIqtRrgRtzpw5+Pzzz9G9e3cMHToUbdq0AQD89NNPutJHMgOcfyYH2+0TERnHd9+JyyeeADw8pIYCABg4EHByAs6dA44elR0NEVkJjaKU7yuf3NxcpKamolq1arrrLl26hKpVq6JWrVoGC9CSpaamwt3dHSkpKXBzczPtg9++DdSsKb7Ru3JFlGKQafzyC/DYY6Jr5t9/y46GiMg6ZGUBtWsDt26J37Pm8uXjs88Cq1cD48cDn3wiOxoiMmOlzQ3KNYL24MEDZGZm6pKzy5cvY+HChTh37hyTM3OxY4dIzlq3ZnJmaqGhQJUqQHw8cPGi7GiIiKzD1q0iOfP2Bnr3lh1NHrXMcc0aIDtbbixEZBXKlaA98cQT+O7fMoPk5GQEBwdjwYIFiIiIwJIlSwwaIJWTWt7IxalNz8UFCAkR+yxzJCIyDLU5yLBhgJ2d3Fjye/RRwMsLuHkT2L5ddjREZAXKlaAdO3YMXbt2BQBs2LABXl5euHz5Mr777jt8wuF9+XJzgW3bxL65lIBUNmo3x5075cZBRGQNbt8GtmwR+7LWPiuOnR0wdKjY55poRGQA5UrQ7t+/D1dXVwDAjh078NRTT8HGxgYdO3bE5cuXDRoglcPRo6IMxN09bySHTEttFLJrl0iYiYio/NTywcBAUbpvbtQyxx9/BFJS5MZCRBavXAlao0aNsHnzZly5cgXbt29H739rwW/cuGH6ZhhUmFre2Lu3mAtFpte+vUiQ794FYmNlR0NEZNnMZe2z4rRtCzRvDmRmAhs2yI6GiCxcuRK0qVOn4s0330T9+vURFBSEkH9HaXbs2IG2bdsaNEAqh61bxSXLG+Wxs8tbwJRljkRE5XfmDHDkiPi9+uyzsqMpmkajvyYaEVEFlCtBe/rpp5GQkICjR49ie74Jsb169cJHH31ksOCoHJKSxB8yAPh3AXGShOuhERFVnDp61rcvYM6dotXkce9egNM9iKgCypWgAYC3tzfatm2La9eu4Z9//gEABAUFoWnTpgYLjspBTZgfeUS0IiZ51ATtwAEgPV1uLERElig3F1ixQuybW3OQgurWBbp3F/srV0oNhYgsW7kSNK1WixkzZsDd3R316tVDvXr14OHhgZkzZ0Kr1Ro6RioLdf4Zyxvla9RI/MHOzgb275cdDRGR5dm1C7h6FahWDRgwQHY0D5e/zFFR5MZCRBarXAna+++/j8WLF+PDDz/E8ePHcfz4ccyaNQuLFi3ClClTDB0jlVZOTt4IGhM0+TQaljkSEVWEWt44ZAjg4CA3ltJ4+mnA0RE4e5YNooio3MqVoH377bf46quv8PLLL6N169Zo3bo1XnnlFXz55ZdYvny5gUOkUjt0CEhOBqpXB4KCZEdDABM0IqLySk0FNm4U++bavbEgNzfgiSfEPpuFEFE5lStBu3PnTpFzzZo2bYo7d+5UOCgqJ7W8MTwcsLWVGwsJPXuKy5MngcREubEQEVmSH34AHjwAGje2rC8d1TLH1atFiTsRURmVK0Fr06YNFi9eXOj6xYsXo7U5LiBZWXD+mfmpWVOsjwMA0dFyYyEisiT51z7TaOTGUha9e4vf/TdvsnqCiMqlXAna3Llz8c0336B58+YYPXo0Ro8ejebNm2P58uWYP39+mc716aefon79+nB0dERwcDAOHz5c4vHr169H06ZN4ejoiFatWuFXNSn518aNG9G7d2/UqFEDGo0GcXFxhc6RkZGBsWPHokaNGnBxccHAgQORlJSkd0xCQgL69++PqlWrolatWnjrrbeQk5NTpudmUlevAnFx4o9YeLjsaCg/ljkSEZVNfLxoV59/fTFLUaUKMHSo2GeZIxGVQ7kStNDQUPz111948sknkZycjOTkZDz11FP4888/8X0ZfhmtXbsWEydOxLRp03Ds2DG0adMG4eHhuHHjRpHHHzx4EEOHDsXo0aNx/PhxREREICIiAqdOndIdk56eji5dumDOnDnFPu7rr7+On3/+GevXr8fevXtx7do1PPXUU7rbc3Nz0b9/f2RlZeHgwYP49ttvsXz5ckydOrXUz83ktm0Tl0FB4ps7Mh9hYeIyKopdvYiISkP9LNGzJ+DnJzeW8lCTys2bxVw6IqKyUAwoLi5OsbGxKfXxQUFBytixY3U/5+bmKr6+vsrs2bOLPH7QoEFK//799a4LDg5WXnrppULHxsfHKwCU48eP612fnJysVKlSRVm/fr3uujNnzigAlJiYGEVRFOXXX39VbGxslMTERN0xS5YsUdzc3JTMzMxSP7+UlBQFgJKSklLq+5TbwIGKAijK9OnGfywqm/v3FcXBQfz7nD4tOxoiIvOm1SpKw4bid+a338qOpny0WkVp2lQ8h2++kR0NEZmJ0uYG5V6ouqKysrIQGxuLMHV0AYCNjQ3CwsIQExNT5H1iYmL0jgeA8PDwYo8vSmxsLLKzs/XO07RpU9StW1d3npiYGLRq1QpeXl56j5Oamoo///yz2HNnZmYiNTVVbzOJ7Gxgxw6xz/ln5sfJCejaVeyzzJGIqGQHDwIXLwLOzkC+6haLkr80k2WORFRG0hK0W7duITc3Vy8JAgAvLy8kFtPtLjExsUzHF3cOe3t7eHh4FHue4h5Hva04s2fPhru7u27zM1VZxoEDwL17orSxXTvTPCaVTf4yRyIiKp7aHOTppwEXF7mxVMSwYeJyzx7gyhWpoRCRZZGWoFmjd999FykpKbrtiql+IauNUvr2BWz4T2qW1EYhe/aw7TIRUXEePADWrhX7lrL2WXHq1QNCQ8Xc45UrZUdDRBbEriwHP/WQUoPk5ORSn8vT0xO2traFuicmJSXB29u7yPt4e3uX6fjizpGVlYXk5GS9UbT85/H29i7UTVJ93JIey8HBAQ4ODqWOxWDYXt/8BQYCnp7ArVtiQfEuXWRHRERkfn78UTTVqFtXJDeWbsQI0Y3y+++BSZMsa7kAIpKmTMMt+cv3itrq1auHyMjIUp3L3t4e7dq1Q3S+taG0Wi2io6MREhJS5H1CQkL0jgeAqKioYo8vSrt27VClShW985w7dw4JCQm684SEhODkyZN63SSjoqLg5uaG5s2bl/qxTCIhAfjzTzFypo7SkPmxsQF69RL7LHMkIirad9+JyxEjrKMi5OmnAUdH4PRp4Phx2dEQkYUo0wjasmXLDPrgEydOxMiRI9G+fXsEBQVh4cKFSE9Px6hRowAAkZGRqF27NmbPng0AmDBhAkJDQ7FgwQL0798fa9aswdGjR/HFF1/oznnnzh0kJCTg2rVrAETyBYiRL29vb7i7u2P06NGYOHEiqlevDjc3N4wfPx4hISHo2LEjAKB3795o3rw5RowYgblz5yIxMRGTJ0/G2LFj5YyQlWTrVnEZEgJUry43FipZWJgo3dm5E/jgA9nREBGZl+vXge3bxX4pv+w1e+7uwOOPA+vWiVG0Rx6RHRERWQCpX08NHjwY8+fPx9SpUxEYGIi4uDhs27ZN15AjISEB169f1x3fqVMnrFq1Cl988QXatGmDDRs2YPPmzWjZsqXumJ9++glt27ZF//79AQBDhgxB27ZtsXTpUt0xH330ER577DEMHDgQ3bp1g7e3NzZu3Ki73dbWFlu2bIGtrS1CQkIwfPhwREZGYsaMGcZ+ScqO5Y2WQx3hPHQISEmRGwsRkblZuRLQasUXjo0by47GcNRujqtXAzk5cmMhIougURSunGssqampcHd3R0pKCtzc3Az/AJmZQI0aQHq6KJ0IDDT8Y5BhNW4MnD8vFi994gnZ0RARmQdFAVq3Bk6dApYuBV56SXZEhpOdDdSuDdy8Kb5U7dtXdkREJElpcwMrKPCuxPbvF8mZjw/Qpo3saKg01Hb7O3fKjYOIyJzExYnkzMEBGDRIdjSGVaUKMGSI2OeaaERUCkzQLFn+9vrsDGUZ1DJHNgohIsqjrn32+ONAtWpyYzEGtcxx82axbikRUQmYoFkyzj+zPD16iM5k585x4VIiIkCUAK5aJfYtfe2z4rRvL0rcHzwAfvhBdjREZOaYoFmqixfFh3w7u7yyOTJ/Hh5Ahw5in2WORESiG/HNm0CtWkB4uOxojEOjyRtFY5kjET0EEzRLpbbX79JFtPEly8EyRyKiPOraZ8OGiS8drdXw4eJy927gn3/kxkJEZo0JmqVSEzSWN1oeNUHbuVO0lCYiqqzu3AF+/lnsW2t5o6p+faBrV9GxUi3pJCIqAhM0S/TgAbBrl9hnu17L07Ej4OwsSnpOnpQdDRGRPGvWAFlZohNxZehGnL/MkascEVExmKBZoj17gIwMwM8PaNFCdjRUVvb2QGio2GeZIxFVZmr3RmsfPVM984xYSuDUKeCPP2RHQ0RmigmaJcrfvZHt9S0T56ERUWV39ixw+DBgaws8+6zsaEzDwwMYMEDss1kIERWDCZqlURS217cGaufNffvEaCgRUWWjNgfp0wfw8pIbiympZY6rVgE5OXJjISKzxATN0pw/D/z9tyiT69lTdjRUXi1aAD4+Ijk7eFB2NEREppWbmzeCVFnKG1V9+gA1agCJiUB0tOxoiMgMMUGzNOroWbdugIuL3Fio/DSavFE0ljkSUWWjtprPX/JXWdjbA0OGiH2WORJREZigWRqWN1oPJmhEVFmpzUGGDAEcHeXGIoNa5rhpE5CWJjcWIjI7TNAsSVoasHev2GeCZvnUBO3YMeD2bbmxEBGZyr17wMaNYj8yUm4ssgQFAQEBwP37ea8FEdG/mKBZkl27xHoxDRoAjRvLjoYqytdXzEVTlLx17YiIrN0PP4jEJCBArAtZGWk0+muiERHlwwTNkmzdKi779mV7fWvBMkciqmzyr31Wmf+WDR8uLqOjgatX5cZCRGaFCZqlYHt966Suh7Zzp9w4iIhM4dIlYM8esa+OIFVW/v5Aly7i7/uqVbKjISIzwgTNUpw+DSQkiMnU3bvLjoYMJTQUqFIFiI8HLl6UHQ0RkXGtWCEue/QA6taVG4s5YJkjERWBCZoJ/PCDAU6ijp716AFUrWqAE5JZcHEBQkLEPssciciaKUre4tSVbe2z4jzzjGi7f/Ik8McfsqMhIjPBBM0EXnnFAL931flnLG+0Puo8NJY5EpE1i4kBzp8HnJ2BgQNlR2MeqlXLWweOo2hE9C8maCaQkQFERAC3bpXzBKmpwP79Yr9vX0OFReZCnYe2axeQmys3FiIiY1GbgwwcKKoHSFDLHFet4t8AIgLABM0k/P3FvOjBg4GcnHKcYOdOccfGjYGGDQ0dHsnWvj3g7g7cvQvExsqOhojI8B48ANauFfssb9TXty9QvTpw/bro6EhElR4TNBNYvVpUdOzaBbz1VjlOwO6N1s3OTswtBFjmSETW6eefgZQUwM+Pja4KsrcX3+ACLHMkIgBM0EyiWbO8edELF+btl4qicP5ZZaCWObJRCBFZI7W8ccQIwIYfPQpRyxw3bgTS0uTGQkTS8bekiTz1FDBlitgfMwY4erSUdzxxArh2TXRu7NbNaPGRZGqCduAAkJ4uNxYiIkNKTAS2bxf7kZFyYzFXHTsCjRoB9+8DmzfLjoaIJGOCZkLTp4tmTZmZwJNPAklJpbiTWt7Yqxfg4GDM8EimRo3EmkDZ2XkNYYiIrMHKlaL5RceOQJMmsqMxTxoNMHy42GeZI1GlxwTNhGxsxBqdTZsC//wDPP00kJX1kDtx/lnloNGwzJGIrJNa18/Rs5KpCdrOnaJhCBFVWkzQTMzNTVQvuLkBv/0GvPZaCQffvQscPCj22V7f+jFBIyJrExcnSvXzN8KgojVsCHTqBGi1ouU+EVVaTNAkaNJE/O7VaIAlS4AvvyzmwB07xC/qFi2AevVMGiNJ0LOnuDx5UszZICKydGpzkMcfF63kqWRqsxCWORJVakzQJOnfH5g5U+yPHZs3UKaH3Rsrl5o1gbZtxT7XwiEiS5edLeafAVz7rLQGDRKjjX/8Ib6sI6JKiQmaRO+9BwwcKP6GDRwomjXqaLV5CRrLGysPljkSkbXYvh24eROoVQsID5cdjWWoXl18gwtwFI2oEmOCJpFGAyxfDrRsKSrannpKdHgEABw7Bty4Abi6Ap07ywyTTCksTFxGRYk18IiILJVa3vjss0CVKnJjsSRqmaPa/ZKIKh0maJK5uIimIdWqAYcOAa+88u/ncrV746OPinIHqhy6dBHLKVy7Bpw9KzsaIqLyuXMH+Oknsc/yxrLp1098KLh2Ddi9W3Y0RCQBEzQz0LAhsGaNaMP/zTfAZ5+B7fUrKycnoGtXsc8yRyKyVGvXinVkWrcGAgNlR2NZHBzyOl6yzJGoUmKCZiZ69wbmzBH7MyfcgnL4sPiB888qn/xljkRElkgtb+ToWfmoZY4//ACkp8uNhYhMziwStE8//RT169eHo6MjgoODcVhNToqxfv16NG3aFI6OjmjVqhV+VUeb/qUoCqZOnQofHx84OTkhLCwM58+f192+Z88eaDSaIrcjR44AAC5dulTk7b///rvhX4B/vfEGMHQo0Ct3OzSKgqzmbQBfX6M9HpkptVHInj2igwwRkSU5d07U7NvaivlnVHYhIaK8Jj1dzIMgokpFeoK2du1aTJw4EdOmTcOxY8fQpk0bhIeH48aNG0Uef/DgQQwdOhSjR4/G8ePHERERgYiICJw6dUp3zNy5c/HJJ59g6dKlOHToEJydnREeHo6MjAwAQKdOnXD9+nW97YUXXoC/vz/at2+v93g7d+7UO65du3ZGey00GuCrr4Bh1UTCueJ2Pzx4YLSHI3MVGAjUqAGkpYkPOUREluS778RleDjg7S03Fkul0QDDh4t9ljkSVToaRZHbKi44OBgdOnTA4sWLAQBarRZ+fn4YP3483nnnnULHDx48GOnp6diyZYvuuo4dOyIwMBBLly6Foijw9fXFG2+8gTfffBMAkJKSAi8vLyxfvhxDhgwpdM7s7GzUrl0b48ePx5QpUwCIETR/f38cP34cgeWsn09NTYW7uztSUlLg5uZWujvl5iLXsxZsk++gC/bDf3gXfPed+F1NlcjgwcC6dcDUqcAHH8iOhoiodLRaoH594MoVMQ9t0CDZEVmuCxeAgAAxQf2ffwAfH9kREVEFlTY3kDqClpWVhdjYWISpc24A2NjYICwsDDExMUXeJyYmRu94AAgPD9cdHx8fj8TERL1j3N3dERwcXOw5f/rpJ9y+fRujRo0qdNvjjz+OWrVqoUuXLvhJ7UhVjMzMTKSmpuptZXbkCGyT7yDbxQNHbDpixQrgo4/KfhqycGqZ486dcuMgIiqL3btFcubuDjz+uOxoLFujRqLUUasFVq+WHQ0RmZDUBO3WrVvIzc2Fl5eX3vVeXl5ITEws8j6JiYklHq9eluWcX3/9NcLDw1GnTh3ddS4uLliwYAHWr1+PX375BV26dEFERESJSdrs2bPh7u6u2/z8/Io9tlj/zqer0q835i+0AwC89RY/p1c6aoJ26BCQkiI3FiKi0lLLGwcPBhwd5cZiDdRmISxzJKpUpM9Bk+2ff/7B9u3bMXr0aL3rPT09MXHiRF0J5ocffojhw4dj3rx5xZ7r3XffRUpKim67cuVK2QPK115/3DjguefEl2eDBwN//13205GFqldPlLbk5opmIURE5i4tTXQdBNi90VAGDRKLfMfFAfnm2hORdZOaoHl6esLW1hZJSUl61yclJcG7mInF3t7eJR6vXpb2nMuWLUONGjXweClKMYKDg3HhwoVib3dwcICbm5veViaJiUBsrNjv0wcaDbBkCRAUJNb8jIhgt91KRS3T5fApEVkCtSV8QIAozaOKq1Ejbz1UjqIRVRpSEzR7e3u0a9cO0dHRuuu0Wi2io6MRUswv95CQEL3jASAqKkp3vL+/P7y9vfWOSU1NxaFDhwqdU1EULFu2DJGRkahSpcpD442Li4OPMSfpbtsmLtu3B/4t0XR0BDZuFD+ePAmMGgXIbetCJqOWOXI9NCKyBOraZ5GR7GxlSGqZ48qVoqSGiKyenewAJk6ciJEjR6J9+/YICgrCwoULkZ6ermvYERkZidq1a2P27NkAgAkTJiA0NBQLFixA//79sWbNGhw9ehRffPEFAECj0eC1117Df//7XwQEBMDf3x9TpkyBr68vIiIi9B57165diI+PxwsvvFAorm+//Rb29vZo27YtAGDjxo345ptv8NVXXxnvxdi6VVyq35b9q3Zt8cVkjx7A+vXAI48ARTS4JGvTo4fo3nXunJh0X545jUREpnD5smgQAuQlFGQYjz0GeHgAV6+KkveePWVHRERGJn0O2uDBgzF//nxMnToVgYGBiIuLw7Zt23RNPhISEnD9+nXd8Z06dcKqVavwxRdfoE2bNtiwYQM2b96Mli1b6o55++23MX78eIwZMwYdOnRAWloatm3bBscCE5a//vprdOrUCU2bNi0ytpkzZ6Jdu3YIDg7Gjz/+iLVr1xbZ6dEgcnKA7dvFft++hW7u3Bn4dyUCvPde3lQ1smIeHkCHDmKfZY5EZM5WrBCX3buLObRkOA4OecsVsMyRqFKQvg6aNSvTOmj79wPduol686QkwNa2yMP+8x/g889FB+PDh4HGjY0QOJmPKVOA//4XGDoUWLVKdjRERIUpCtCkCXD+PLBsmehuRYb1229A166Ai4v4jFC1quyIiKgcLGIdNMpHHRLr06fY5AwAPvlEjKalpIimIeVZao0sSP710Dj3gIjM0e+/i+SsalVg4EDZ0Vinzp0Bf3/RKfPHH2VHQ0RGxgTNXORrr18Se3tgwwYxL+3MGTEXm5/brVjHjoCzM3DzpugSQ0RkbtTmIAMHAq6ucmOxVhoNMHy42GeZI5HVY4JmDq5eBU6cEL+Aw8Mferi3N7BpkyhL//FHYOZME8RIctjbA6GhYp/dHInI3GRkAGvXiv3ISLmxWDu1+cqOHaLMkYisFhM0c6B2bwwOFnPQSqFDB2DpUrE/fTqwebNRIiNzwHb7RGSufv4ZSE4G6tQRnWfJeAICxOeE3Fxg9WrZ0RCRETFBMwelLG8s6LnngFdfFfsjRgCnTxs2LDIT6oLV+/eLb6uJiMyFWt44YkSJ86fJQNRRNJY5Elk1JmiyZWXljYyUMUEDgPnzxZeWaWnAE0+ILzLJyrRoAfj4AA8eAAcPyo6GiEhISgK2bRP7LG80jcGDATs74NgxfitLZMWYoMn2228iu/LyAv5dFLssqlQR5f/16gEXLgDPPiuqH8iKaDR5o2gscyQic7FqlfiDExQEFLOeKBmYp2fel7kcRSOyWkzQZFPnn/XtC9iU75+jZk3RNMTJSZxuyhQDxkfmgQkaEZkbtbxx5Ei5cVQ2apnjypVs40xkpZigyabOP+vbt0KnadsW+PprsT97NrBuXQXjIvOiJmjHjgG3b8uNhYjojz/EZm8PDBkiO5rK5bHHAHd34MoVYO9e2dEQkREwQZPp0iVRQ25rm9eprwKGDgXeekvsjxol/naSlfD1FXPRFAXYtUt2NERU2amjZwMGANWry42lsnF0BAYNEvsscySySkzQZFLLGzt1AqpVM8gpZ88GevcG7t8HIiI42GJVWOZIROYgJ0eU1wEsb5RFLXPcsEH8wSciq8IETSY1QStH98bi2NqK5VEaNBADdIMHi7+lZAXUUdadO+XGQUSV2/btwI0bYgJ0nz6yo6mcOncG6tcH7t0DfvpJdjREZGBM0GTJyACio8W+ARM0QFSb/Pgj4OwsHmLSJIOenmQJDRXtlePjgYsXZUdDRJWVWt747LOilTCZno0NMHy42GeZI5HVYYImy759oiyhdm2gVSuDn75lS+C778T+//4HrFhh8IcgU3NxAUJCxD7LHIlIhrt3xTeAAMsbZVMTtO3bxZp0RGQ1mKDJkr97o0ZjlId46ilg8mSx/+KLQGysUR6GTIlljkQk09q1QFaW+GIxMFB2NJVbkyZAhw5iLbo1a2RHQ0QGxARNFjVBM3B5Y0EffCA68mZkiKYh/JLNwqkJ2q5dXJGciExPLc2IjDTal4tUBmqzEJbJEFkVJmgyXLgAnD8vavd79TLqQ9nYiN/bTZoA//wDPPMMkJ1t1IckY2rfXqx/c/cuh0SJyLT++guIiRF/WIYNkx0NAWINOjs74OhR4OxZ2dEQkYEwQZNB7d7YpQvg5mb0h3N3F1MG3NyA/fuB1183+kOSsdjZAT16iH2WORKRKamjZ+HhgI+P3FhIyN9Jk81CiKwGEzQZTFTemF+TJmLZGo0G+PRT4OuvTfbQZGhqmSMbhRCRqWi1eQkAm4OYl/xljlqt3FiIyCCYoJna/fvA7t1i34QJGiDmos2YIfZfeQX4/XeTPjwZipqgHTgApKfLjYWIKoe9e4GEBFGS8fjjsqOh/AYMECUyCQmiTIaILB4TNFPbvRvIzATq1QOaNTP5w7/3nujumJUlLq9dM3kIVFGNGgF164rJhPxjTESmoK59NmgQ4OQkNxbS5+QkJpgDLHMkshJM0ExNnX/Wr5+UDlg2NsDy5UCLFsD168DAgSJfJAui0bDMkYhMJy0N2LBB7LO80TypZY7r1wMPHsiNhYgqjAmaKSkK8MsvYr9vX2lhuLqKpiEeHqLMcexYERpZECZoRGQqGzeKcupGjYBOnWRHQ0Xp2lVUVqSmAj//LDsaIqogJmimdO4ccOkSYG8P9OwpNZSGDcW6ljY2omHI0qVSw6GyUt8/J08CiYlyYyEi68a1z8yfjQ0wfLjYZ5kjkcVjgmZKavfG7t0BZ2epoQCiU/KHH4r9V1/ldCaLUrMm0Lat2I+OlhsLEVmvK1eAXbvEvlpGR+ZJ/ffZtg24eVNuLERUIUzQTElCe/2HefNNsc5lTg7w9NPibzFZCJY5EpGxff+9qIEPDQXq15cdDZWkaVOgfXvxB33NGtnREFEFMEEzlbQ0YN8+sW9GCZpGI0ocAwOBGzeAJ5/k/GKLERYmLnfu5CRCIjI8Rcnr3sjmIJZBHUVjmSORRWOCZirR0aItesOGQECA7Gj0VK0KbNoEeHoCsbHAmDH8vG8RunQBHByAq1eBs2dlR0NE1ubQIeCvv0Qb96eflh0NlcaQIYCtLXDkiJj3TkQWiQmaqZhheWN+9esD69aJ3+srVgAffyw7InooJyfRuQtgmSMRGZ7aHOSpp0T7XzJ/tWoBffqIfY6iEVksJmimoChmn6ABQI8ewP/+J/bffJO9JyyCWubIBI2IDCkzM28eE8sbLYta5rhiBaDVyo2FiMqFCZopnDkD/POPGPEIDZUdTYnGjxd/i3NzgUGDgPh42RFRidRGIXv2iBJaIiJD+Pln4O5doHZt6cvCUBk9/jjg5gZcvgz89pvsaIioHJigmcKOHeKyZ0+RpJkxjUasidahA3DnDhARIdYnJTMVGAjUqCGa0Bw6JDsaIrIWanOQESNE7TtZjvxzBlnmSJVJUpLVjBozQTMFNUHr21duHKXk6Ahs3Ah4eQEnTgDPP8+mIWbLxgbo1Uvss8yRiAzhxg1g61axHxkpNxYqH7XMcf16ICNDbixEpnD8uFgf9p13ZEdiEEzQTCEmRlxaSIIGAHXqAD/8AFSpIpqHzJ0rOyIqllrmuHOn3DiIyDqsWiXq3Dt0AJo1kx0NlUe3boCfH5CSAmzZIjsaIuPaulU0Tbt+XeynpcmOqMKYoJmCVisWkGzQQHYkZdK5M7Bokdh/911g2za58VAx1ATt0CHxx5iIqCK49pnls7EBhg0T+yxzJGv2xRfAgAFiPk6vXmLepYuL7KgqzCwStE8//RT169eHo6MjgoODcfjw4RKPX79+PZo2bQpHR0e0atUKv6odEv+lKAqmTp0KHx8fODk5ISwsDOfPn9c7pn79+tBoNHrbhx9+qHfMiRMn0LVrVzg6OsLPzw9zKzKMZMbdG0vy0kt566INHQoUeBnJHNSrJ9bWy80VzUKIiMrrxAkgLk6UTwwZIjsaqgi1zPHXX4Fbt+TGQmRoigK8/774oJqbK75Q+vVXwN1ddmQGIT1BW7t2LSZOnIhp06bh2LFjaNOmDcLDw3Hjxo0ijz948CCGDh2K0aNH4/jx44iIiEBERAROnTqlO2bu3Ln45JNPsHTpUhw6dAjOzs4IDw9HRoE67BkzZuD69eu6bfz48brbUlNT0bt3b9SrVw+xsbGYN28epk+fji+++KJ8T9RCEzQA+OQToFMnIDlZNA25d092RFSI2m6fZY5EVBHq6NmAAaIBEVmu5s2BRx4BcnKAtWtlR0NkOJmZwPDhwKxZ4udp04BlywB7e7lxGZIiWVBQkDJ27Fjdz7m5uYqvr68ye/bsIo8fNGiQ0r9/f73rgoODlZdeeklRFEXRarWKt7e3Mm/ePN3tycnJioODg7J69WrddfXq1VM++uijYuP67LPPlGrVqimZmZm66yZNmqQ0adKk1M8tJSVFAaCkVK2qKBkZpb6fObp2TVF8fRUFUJSICEXJzZUdEenZuFH845Th/UlEpCc7W1G8vMTvks2bZUdDhvDRR+LfMzhYdiREhnHnjqKEhor3tZ2donzzjeyIykSXG6SklHic1BG0rKwsxMbGIkz99h+AjY0NwsLCEKM21iggJiZG73gACA8P1x0fHx+PxMREvWPc3d0RHBxc6JwffvghatSogbZt22LevHnIycnRe5xu3brBPl82Hh4ejnPnzuHu3btFxpaZmYnU1FS9DQDQvTvg4PDwF8SM+fgAmzaJLyc2bwb++1/ZEZGeHj3EnINz54ArV2RHQ0SWaMcO0aba09OimlpRCYYOFcskHDoE/PWX7GiIKubSJdEgYe9ewNVVlDSOGiU7KqOQmqDdunULubm58PLy0rvey8sLiYmJRd4nMTGxxOPVy4ed89VXX8WaNWuwe/duvPTSS5g1axbefvvthz5O/scoaPbs2XB3d9dtfn5+4obevYs83tIEBYk10gAxmvzTT3LjoXw8PETHNYBljkRUPmp547PPWlepUGXm5ZX3GWTFCrmxEFVEbCzQsSNw5gxQu7ZoBqI2SbNC0uegyTJx4kR0794drVu3xn/+8x8sWLAAixYtQmZmZrnP+e677yIlJUW3XVFHMqzoDTRqFKBO1Rs+XPw/ITOhvs+4HhoRldXdu8CPP4p9dm+0LmqzkBUruKgpWaZffhFLRyQlAa1aAb//DrRuLTsqo5KaoHl6esLW1hZJSUl61yclJcHb27vI+3h7e5d4vHpZlnMCQHBwMHJycnDp0qUSHyf/YxTk4OAANzc3vQ2AWFTMiixYAISGimYhTzwhmoeQGci/HppWKzcWIrIs69eLifctWojFXsl6PPGEKAeLjwcOHJAdDVHZfP458PjjwP37oiHa/v1W97m6KFITNHt7e7Rr1w7R0dG667RaLaKjoxESElLkfUJCQvSOB4CoqCjd8f7+/vD29tY7JjU1FYcOHSr2nAAQFxcHGxsb1KpVS/c4+/btQ3Z2tt7jNGnSBNWqVSv7k7UiVaqIv+V164q2+88+KzqckmQdOwLOzsDNm8DJk7KjISJLkn/tM41GbixkWFWrAgMHin2uiUaWQqsVi/D+5z9i/7nnrKqN/kOZqGlJsdasWaM4ODgoy5cvV06fPq2MGTNG8fDwUBITExVFUZQRI0Yo77zzju74AwcOKHZ2dsr8+fOVM2fOKNOmTVOqVKminDx5UnfMhx9+qHh4eCg//vijcuLECeWJJ55Q/P39lQcPHiiKoigHDx5UPvroIyUuLk65ePGismLFCqVmzZpKZGSk7hzJycmKl5eXMmLECOXUqVPKmjVrlKpVqyqff/55qZ9baTu1WKrYWEVxchKNdN57T3Y0pCiKovTrJ/5B8nUxJSIq0V9/id8bNjaiZS9Zn+ho8W/s4aEo/34WIjJbGRmKMmSIeM8CivLBB4qi1cqOyiBKmxtIT9AURVEWLVqk1K1bV7G3t1eCgoKU33//XXdbaGioMnLkSL3j161bpzRu3Fixt7dXWrRoofzyyy96t2u1WmXKlCmKl5eX4uDgoPTq1Us5d+6c7vbY2FglODhYcXd3VxwdHZVmzZops2bNUjIKtML/448/lC5duigODg5K7dq1lQ8//LBMz8vaEzRFUZSVK/P+/6xbJzsa0rVU7t1bdiREZCkmTxa/N/r0kR0JGUturqLUqSP+nTdskB0NUfFu31aUbt3y2ugvXy47IoMqbW6gURTOGDWW1NRUuLu7IyUlJW8+mhV66y1g/nxRRRETY/XzNs3bqVNiAq2TE3DnDuDoKDsiIjJnWi3QoAFw+TKwejUwZIjsiMhY3nkHmDNHzEnbvFl2NESFxccD/foBZ88Cbm7ADz+IeWdWpLS5QaXt4kiGM3u26E9x/z4QESHyApKkRQuxaN2DB8DBg7KjISJzt2+fSM7c3MQHd7JeajfHX38Fbt+WGwtRQUePirn0Z8+KJiC//WZ1yVlZMEGjCrOzA9asEV/CxscDgwcD+db8JlPSaPJ+obHdPhE9jNocZNAgMfJO1kvt0JmdDaxdKzsaojw//yzag9+4AbRpI9rot2olOyqpmKCRQVSvLiomnJ1Fl/d33pEdUSWmJmhcsJqISpKeDmzYIPa59lnloI6isZsjmYvPPhPlV/fvA+HhYlS/dm3ZUUnHBI0MplWrvC9jFywAVq6UG0+lpSZosbEsYyGi4m3cCKSlifKHzp1lR0OmMHQoYGMjRijOn5cdDVVmWi3w9tvA2LFif/RoMZJmxT0byoIJGhnUwIHA+++L/RdeAI4dkxtPpeTrK0pZFAXYtUt2NERkrr77TlxGRnLts8rC2xvo3Vvsr1ghNxaqvDIyxJcF8+aJn2fOBL78Uiy0SwCYoJERfPAB0L+/+P8XESFKisnEOA+NiEpy5QoQHS32IyPlxkKmpZY5rlghvsgjMqXbt0VnuXXrREL23XfA5Mn8kqgAJmhkcLa24vd+48biM8Azz4g5yWRCjz4qLjkPjYiKon4479YN8PeXHQ2ZUkQE4OIC/P23WBuHyFT+/hvo1El0aHR3B7Zty/vCgPQwQSOj8PAQTUNcXcV8z4kTZUdUyYSGivaa8fHAxYuyoyEic6IoeROG2Ryk8qlaFXjqKbHPZiFkKocPizb6f/0F+PkBBw4APXvKjspsMUEjo2nWLK9RyOLFwDffyI2nUnFxAUJCxD7LHIkovyNHgHPnRFv9p5+WHQ3JoI5arF0LZGbKjYWs348/At27AzdviqUefv9dzJWnYjFBI6MaMACYMUPsv/wycOiQ3HgqFZY5ElFR1NGzJ59kx7TKqkcP0VDq7l2xcDWRsSxeLH7XPHgA9OkD7N0r3ntUIiZoZHTvvy/+b2ZliaqK69dlR1RJqAnarl1Abq7cWIjIPGRmAqtXi32WN1ZetrbAsGFin2WOZAxaLfDmm8D48aKs+sUXRRt9V1fZkVkEJmhkdDY24gvb5s2Ba9dEK35WVJhA+/ZiEu7du2JNNCKiLVvE74TatYFevWRHQzKpZY5btgB37siNhazLgwfA4MFiUVwAmDUL+PxzMTeeSoUJGpmEq6soQfbwEE2j1C9UyIjs7EQZC8AyRyIS1LXPhg8XoyhUebVqBbRpI9osr1snOxqyFrduiaV+NmwQbfRXrgTefZdt9MuICRqZTKNGorLGxkasR/j557IjqgTUMkc2CiGimzfz5htx7TMC8kbRWOZIhnDxomijf/Cg+EZ+xw7g2WdlR2WRmKCRSfXpA8yeLfbHjwf275cbj9VTE7QDB4D0dLmxEJFcq1YBOTmi/Ll5c9nRkDl49lnxrenBg1yShSrm999FG/3z54F69cTnju7dZUdlsZigkcm99ZYoTc7JER2e//lHdkRWrFEjoG5dUcLCbJiocuPaZ1SQj48oRwPE4uVE5bFpk5hScesW8MgjIlnjl0AVwgSNTE6jAb7+WpS+37ghOjxmZMiOykppNHmjaJMnA++9J+pLo6KACxdEa00isn4nTwLHj4s5IUOGyI6GzEn+MkdODqey+vhj0f0tIwPo31+00ff2lh2VxWM7FZLC2RnYvFlU2hw9Crz0ErB8OeeQGsWAASIjjo0t3M3RxkZ0c/P3L3rz9RXHEJFlU5uD9O8PeHrKjYXMy5NPij/KFy+KkY+QENkRkSXIzRVt9BcuFD//5z/AokXs1GggGkXh1yXGkpqaCnd3d6SkpMCNi4EWadcuoHdv8f984UJgwgTZEVkhRREjZidPAvHxedulS6IVbkns7UUteVHJW/364oMes2oi85aTA/j5AYmJohQpIkJ2RGRuIiPFCNrLLwOffSY7GjJ3Dx6ITrAbN4qf58wR81f4eeChSpsbMEEzIiZopfPxx8Brr4mOzzt2AD17yo6oklAUIClJP2nLvyUkPHyBaxcXkagVNwLHBSmJ5Nu6FejXD6hRQyxGaW8vOyIyN1FR4tvS6tWB69f5HqHi3bwJPP64GG21txdzW1k2XWpM0MwAE7TSURTguedEBU6NGqLksX592VERcnKAq1eLT+CuXXv4OWrUKD55q1cPcHAw/vMgquyGDAHWrhWtcz/5RHY0ZI5yc0VDqWvXOMpKxTt/HujbV5TDVqsm5qp06yY7KovCBM0MMEErvQcPxP/xo0dF85CDB4GqVWVHRSXKyAAuXy4+gbtz5+Hn8PUtPoGrU4cL6RJVVHKymLCfmSl+wbZrJzsiMldvvQXMnw889RTwww+yoyFzc/CgGDm7fVt8i751K9C0qeyoLA4TNDPABK1srlwRTUNu3BBf+K5axXJmi5aaqj/frWAC97B12ezsxDe6xSVwtWrxDUL0MF9+CYwZI1penzrF/zNUvBMnxDek9vZivmK1arIjInPxww/AsGHii5727YEtWwAvL9lRWaTS5gZstUJmw88P2LBBzEFbswZo2xZ4+23ZUVG5ubmJP/Zt2hS+TVHEeinFjb5dvizWbvv7b7EVpWpV8S1ecXPgPDyM+OSILET+tc+YnFFJWrcW24kTwLp1or0yVW6KIjq4vfGG2B8wAFi9WnT9JKPiCJoRcQStfJYuFY2kNBrg11+BPn1kR0Qml5sr5kIU7Dqp7v/zz8PX6/HwKH70rX59wMnJBE+ESKILF4CAALFUxpUroqSYqCTz54tSxy5dgP37ZUdDMuXmAq+/LlrnA8Arr4g5rJx6UCEscTQDTNDKR1HEF3dffik+Yx85AjRqJDsqMitZWaLLZHEjcDdvPvwc3t76CVv+BM7PTyzoS2TJpk0DZswAwsOBbdtkR0OW4No1Mf9XUUT1gr+/7IhIhvv3gWefBX78Ufw8b54YReMofIUxQTMDTNDKLzMT6NEDiIkRn6PbtRNf/ha11azJL3SogLS0oue9qdelppZ8f1tb8SGl4Mhbw4ZiUjTnZpC502rF+/XSJWDlSvFhi6g0Hn0U2LlTJPdTpsiOhkztxg1Rynj4sOi0/N13wKBBsqOyGkzQzAATtIq5fh0IChLVbCWxtRVJnK8vULt28Ylc9er88ocgvhm+e7f40bdLl8Q3BCXx8gKaNdPfmjcHfHz4JiPzsHcv0L27WIswMZFtcan0vvtOzFkMCADOnePvtMrkr79EG/2//xYfmn78UZS7ksEwQTMDTNAqLjUV+O03UXVR1JaUJL4oLg17++KTN3WrXVt8nuHfo0pMqxUfaItK3i5cKPkbAze3wolbs2Zi9I3DvGRKzz8PLFsGjB4NfPWV7GjIkqSliS+h7t8XixEHB8uOiEzhwAHRRv/OHfE3a+tWoEkT2VFZHSZoZoAJmvHl5IjR+IKJ29Wr+j/fulX6czo7PzyR8/XlF9KV1r17wNmzwJkzedvp02LhzuK+LXBwABo3FqNs+RO3xo25WDcZXnq6KCtISwP27QO6dpUdEVma4cNFaezYscDixbKjIWNbvx4YMUJUjwQFAT//LJayIYNjgmYGmKCZj8xMMShS3EicuiUnl/6c7u6FR98KJnHe3vz8XWlkZgLnz+snbmfOiBKhjIyi72NjAzRooF8m2ayZmOfG3xlUXitXig/Y/v5i1NfGRnZEZGm2bxctlGvUEH8c7e1lR0TGoCjA//4HvPmm+PmJJ8QitPwG2miYoJkBJmiWJz1dzH0rKYm7elVUfpSWp+fDR+O8vMS6zGSFcnPFum6nTxdO3lJSir9f7dpFz3OrWZM1uFSy3r2BqCjRxXH6dNnRkCXKyRHdbBMTxTykxx+XHREZWm4u8NpreSOk48cDH33EcnwjY4JmBpigWSdFEVVuDyurvHZNdIMvDRsbkaQ9LJHz9OSX4VZDUcSHn/xlkup+YmLx96teveh5bnXr8s1BYo5k3bri/XXxohihJSqPN94QoytPPy1K4Mh6pKeLzq4//SS+8FuwQCRr/PLP6JigmQEmaJWbooi5tg8rq7x+XXyRVRp2dqJRYElllb6+Yv04/p61YMnJhUfbzpwRjUqK+5VdtaqY0F1wnlujRlzTrTL58EPg3XfFvLN9+2RHQ5YsLg5o21bU6Scmij8sZPmSkkQb/SNHxL/tihUiCSeTYIJmBpigUWnk5op1lR+WyN24Ufxn84IcHQsnbY0aialNzZqxG7zFevBAzGkrmLj99ReQnV30fezsxD9+wXluTZqIjjhkPRQFaNFCvCe++kp0cCQqL0UBWrcGTp0CvvgCePFF2RFRRZ07J9rox8eL+YU//gh07iw7qkrFohK0Tz/9FPPmzUNiYiLatGmDRYsWISgoqNjj169fjylTpuDSpUsICAjAnDlz0K9fP93tiqJg2rRp+PLLL5GcnIzOnTtjyZIlCAgIAABcunQJM2fOxK5du5CYmAhfX18MHz4c77//Puz/nQh76dIl+Pv7F3rsmJgYdOzYsVTPiwkaGVJ2tvji62FllXfuPPxcbm55yVr+y4YNORfOIuXkiHVrCs5zO3tWdPIrTr16RZdL1qhhutjJcI4cER3YHB3FiIe7u+yIyNLNnQtMmsQRWWuwf79oAnL3rih93rpVdBImkyptbiD9o9jatWsxceJELF26FMHBwVi4cCHCw8Nx7tw51CqixefBgwcxdOhQzJ49G4899hhWrVqFiIgIHDt2DC1btgQAzJ07F5988gm+/fZb+Pv7Y8qUKQgPD8fp06fh6OiIs2fPQqvV4vPPP0ejRo1w6tQpvPjii0hPT8f8+fP1Hm/nzp1o0aKF7uca/OBCklSpAtSpI7aSZGQUbnTyzz9ikOXMGTEtJTUVOHxYbAUfI/9gi5q8NWkCuLgY77lRBdnZiT+0jRsDERF51yuK+Mcvap7brVuiecnly8C2bfrnq1Wr6MStdm0OvZqzb78Vl08+yeSMDOPZZ4F33hEf7i9dAurXlx0RlcfatUBkpJgYHxws2ujXrCk7KiqB9BG04OBgdOjQAYv/7SKj1Wrh5+eH8ePH45133il0/ODBg5Geno4tW7boruvYsSMCAwOxdOlSKIoCX19fvPHGG3jz37ahKSkp8PLywvLlyzFkyJAi45g3bx6WLFmCv//+G0DeCNrx48cRGBhYrufGETQyR5mZovO2OsCiXp49W3J3Sj+/wqNuzZqJz/L8zG6Bbt0qep5bQkLx93F1Ff/4Bee5+ftz6FW2zExRy3znjki4w8NlR0TWIiwMiI4GZs4EJk+WHQ2VhaIA8+aJUVBAfHmzYgXb6EtkESNoWVlZiI2Nxbvvvqu7zsbGBmFhYYiJiSnyPjExMZg4caLedeHh4di8eTMAID4+HomJiQgLC9Pd7u7ujuDgYMTExBSboKWkpKB69eqFrn/88ceRkZGBxo0b4+2338bjJbSazczMRGZmpu7n1NTUYo8lksXBQUxTyTcwDECssZx/sCV/8nbjBnDlitiiovTv5+FRuFRS/czObr1mzNNTlC0VXMQ4La3wQtxnzois/t49UUZ35Ij+feztxehdwXlujRuLcjsyvl9/FcmZj4/4QE1kKCNGiATt+++B99/nN3KWIicHePVVYMkS8fOECaJbI/8wWwSpCdqtW7eQm5sLLy8vveu9vLxw9uzZIu+TmJhY5PGJ/7alVi9LOqagCxcuYNGiRXrljS4uLliwYAE6d+4MGxsb/PDDD4iIiMDmzZuLTdJmz56NDz74oIRnTGS+bGxEd+66dQt/+X7njv5ndnU/Pl40HIyJEVt++T+z50/emjThl3dmzcUFaN9ebPllZRW/EPeDB6KRwKlT+vexsRGZesFSyaZN2RHO0NTyxuHD+QGMDOupp4CXXxZ18uo8RzJv6enAkCHAli0iof7f/0QbfbIYlb4m5erVq+jTpw+eeeYZvJivQ5Gnp6feSF2HDh1w7do1zJs3r9gE7d1339W7T2pqKvz8/IwXPJGJVK8OdOoktvwyMsTf7Pyjbepn9oyMoj+zA3m9KfKXSjZtypJ4s2ZvX/zQ6+XLRc9zS04Wkx4vXhQfFPKrVStv3lz+rWFDjrqV1c2bwC+/iP2RI+XGQtbH1VWUxq1aJUbRmKCZt8RE4LHHgNhY8bt05UqRZJNFkZqgeXp6wtbWFklJSXrXJyUlwdvbu8j7eHt7l3i8epmUlAQfHx+9YwrOJbt27Rp69OiBTp064YsvvnhovMHBwYgqWN+Vj4ODAxwcHB56HiJr4egoujC3bq1/fW6umMpUsFTyzBng9u3ie1PUqFH0PLd69bgGs9lSR8n8/YF83XShKKLtaFHz3NR1I27cAH77Tf98Go34By8qeatbl6NDRVm9WpQztWtXOIEmMoQRI0SCtmaNGI3h2orm6cwZ0Ub/8mVRxv7TT0BIiOyoqBykJmj29vZo164doqOjEfFv5zGtVovo6GiMGzeuyPuEhIQgOjoar+Ubqo2KikLIv29Af39/eHt7Izo6WpeQpaam4tChQ3j55Zd197l69Sp69OiBdu3aYdmyZbApxae/uLg4vaSPiIpma1v0Z3ZAfNlfMGk7e1Y0CLt9GzhwQGz5OTqK0siCyVtAAODkZLKnRWWh0QDe3mLr0UP/tnv3RLnkX3/pb+fOiRajly6JbccO/fvZ24s2o0Ulb5W5W41a3sjRMzKWsDDAy0t86bJtm1jomMzL3r2ii29ysvg9uXWruCSLJL3EceLEiRg5ciTat2+PoKAgLFy4EOnp6Rg1ahQAIDIyErVr18bs2bMBABMmTEBoaCgWLFiA/v37Y82aNTh69KhuBEyj0eC1117Df//7XwQEBOja7Pv6+uqSwKtXr6J79+6oV68e5s+fj5s3b+riUUfgvv32W9jb26Nt27YAgI0bN+Kbb77BV199ZaqXhsgq1awptoK9Ke7fz1sKIH/y9tdfolzyjz/Elp9GkzfFqWDyVkTPHzIXrq7AI4+ILT9FERl8wcTtr79EQpeVJUooT58ufE43t6ITt4AAcZu1OnUKOHZMdNEcOlR2NGSt7OxEy/2PPhJdAJmgmZdVq4BRo8TvyJAQMXLm6Sk7KqoA6Qna4MGDcfPmTUydOhWJiYkIDAzEtm3bdE0+EhIS9Ea3OnXqhFWrVmHy5Ml47733EBAQgM2bN+vWQAOAt99+G+np6RgzZgySk5PRpUsXbNu2DY7/zmuIiorChQsXcOHCBdQpsKhU/lUHZs6cicuXL8POzg5NmzbF2rVr8fTTTxvz5SCqtKpWBQIDxZZfbq5oRlJUk5LkZLE+899/503BUdWsWfQ8Nz8/lkuaLY1GjITVqgV06aJ/W26uaCNa1Kjb5cti5O3oUbEV5O0thmALJm8NGohROUv23Xfisn9/fiAj4xoxQiRoP/4IpKRwrT1zoCjAnDmA2g194EAxT5ClJRZP+jpo1ozroBEZj6KIKUxFzXO7cqX4+1WtKj6rFxx1CwgQSxCQBcrIEI1Iihp5u3Gj+Pup8+eKGnmrU8f8M/mcHDEv7/p1YONG0ciByFgUBWjZUoxgf/UVMHq07Igqt5wcYOxYQO2hMHGiWPPM3H9vVXKlzQ2YoBkREzQiOdLSxMBKweTt/HkgO7vo+9jaigGVgqWS7Ahv4ZKTi57v9tdf4o1SHEdHkbUXlbzVqGEe8922bRMNAWrUEI1XLH00kMzfhx+K0ZrQUGDPHtnRVF5pacDgwWL9Q40GWLhQrHlGZo8JmhlggkZkXrKzRTlkwRG3M2dE34rieHvnjbLVqAFUqybmuOW/VPddXMzjszs9hKKIdtRFJW4XLxafyQPiH7u4+W7OzqZ7Ds8+Kzo4jhsHLFpkuselyuvKFdFlVVFEI5969WRHVPlcvy7a6B87JkoZV60SzUHIIjBBMwNM0Igsg6KIv3lFlUteu1a2c9nZ6SdsRSVxxd3G5b/MRE6O+PBZVPJWUv0sIEoji0re6tc3bGvylBTxzUFGBnD4MNChg+HOTVSSnj2B3buB//s/4L33ZEdTufz5p2iNnJAgJlr//DMQHCw7KioDJmhmgAkakeVLTRXJ2tmzolnJ3bt52507eZd37ogGWhXh5FRyEldcoufhweXBTOb+feDChaKTt9u3i7+fnZ2ooS0qefP1Lfuw61dfAS++KOpw//yTw7ZkOsuWAc8/L8oKTp/me89Udu8W80xTUsRo/datQMOGsqOiMmKCZgaYoBFVHooCPHign7gVTOKKu+3uXUCrrdjju7uXfrQu/zGurvx8ZTC3bxc/3+3Bg+Lv5+xc/Hy3atWKvk/XrmKR7w8/BCZNMs7zISpKaqpYEy0jAzhyBGjfXnZE1m/FCpEUZ2cDnTuLTpo1asiOisqBCZoZYIJGRKWh1Yo5cCUlccVdljR3rjRsbcs2Wpf/kiWZpaTVilrZc+cKJ27x8WIJgeJ4ehZO2lxdgfBwkVlfuQLUrm2650IEiDX31qwRjSk+/lh2NNZLUYBZs4DJk8XPzzwjltbgL1+LxQTNDDBBIyJjy84WjQofNkpX1GVmZsUeWy3JLGuC5+oqGg5y5A6iLjY+vuhRt4dNgHz0UWDHDtPESZTfr7+Ktfdq1gSuXjXs/EoSsrOBV14R5cwA8OabYs0zttG3aEzQzAATNCIyZwVLMktTjqleVrQk08ZGrElXtapI9NT9slxXmmMcHCw4Ebx3r+j5bufOAenpwJYtYiSNyNRycsTI7Y0b4n3Yv7/siKzLvXtitGz7dvHL8pNPxJpnZPFKmxvYmTAmIiIyI05OYvP1Ldv91JLM8sy3S03NO0daWslLkRmCRlO+xK6sSaOjoxG+2HZ1Bdq2FVt+iiLKIu34J5wksbMTZY4ffwx8/z0TNEO6dk28nnFx4hfMmjXA44/LjopMjCNoRsQRNCIifTk5YvDnwQPREDH/VvC60hxT3HUlLWNmLGrCa6zRQPU6VjiRWYiNFQ1CHB3FmoLu7rIjsnynTok2+leuALVqidFJLqFhVTiCRkREZsfOTnyOM/ZnuZychyd8FUkA1evyz+N78EBsd+4Y97k5OIhErUoV8Xqqm62t/s/G2GQ+hsWWqlqrRx4RyzycOSOSCi8v/X/Ailwa4hzlfSwbGzlvtuho4KmnRJlBkyaijb6/v+njILPABI2IiKyOnZ2oEHR1Ne7j5ObmJWvGSADVLSMj7zEzMyve4MUS2dgYJwlUE938CW9J15nqPma/tqFGI1q/v/UWcPCg7GgMy1BJYmmPzc0FVq0S3yx17Qps3iy6KlGlxQSNiIionGxtARcXsRmTViuStPwJXE5O+bfc3Ird31BbUXEU14BGqxVNLyu6ILyl0GgMk+gZM8msEjABtd+vh6pZyXCokgsHmxw42OXC3iYH9ra5sEO+f+TSXJbl2Iret6QZPur5TP1mGzJELATONvqVHhM0IiIiM5e/66W102pNk0BmZ+c9Tna2/vXFXWes24tKShVFHJOdXfI653JVAfBMsbfa2Yn3rLNz4U3verdiri/u+H9/rtAoo/pGk5UgFrz09xcJGieZEpigERERkRmxsRFbZVpaS6s1fVJoqNuzskQCmZ6et+XkiOeVkyOmVKndWw3NwaF0yVzR19v8u1UpfLyrGMTivEeShQkaERERkUQ2NmLxdnt72ZEYRlaWKMXNn7SpW0Wvv38/rzpRnY9pjMY8Gk3RiV5pR/hKur5qVcP9WyuK/mBg/i3/4J4l3l6ec7RuLVZ+sHRM0IiIiIjIYNRk08PD8OdWlLwmOsZIANUGPIqSd50x2NnpJ2329uVLToqbs1lZOTnJjsAwmKARERERkUVQR7aqVgU8PQ1//pycvGY8xkgAc3PzHiclRWzGpNEUbihZ3FbS7ZZyX2N8KSADEzQiIiIiIogP/G5uYjM0RRHln0UlbllZxklYOI/OMjFBIyIiIiIyMo1GNDZxcOAyZ1Qy9vIkIiIiIiIyE0zQiIiIiIiIzAQTNCIiIiIiIjPBBI2IiIiIiMhMMEEjIiIiIiIyE0zQiIiIiIiIzAQTNCIiIiIiIjPBBI2IiIiIiMhMMEEjIiIiIiIyE0zQiIiIiIiIzAQTNCIiIiIiIjPBBI2IiIiIiMhMMEEjIiIiIiIyE0zQiIiIiIiIzISd7ACsmaIoAIDU1FTJkRARERERkUxqTqDmCMVhgmZEt2/fBgD4+flJjoSIiIiIiMzBvXv34O7uXuztTNCMqHr16gCAhISEEv8RqHipqanw8/PDlStX4ObmJjsci8XXseL4GhoGX8eK42toGHwdDYOvY8XxNTQMS3gdFUXBvXv34OvrW+JxTNCMyMZGTPFzd3c32zeKpXBzc+NraAB8HSuOr6Fh8HWsOL6GhsHX0TD4OlYcX0PDMPfXsTSDNmwSQkREREREZCaYoBEREREREZkJJmhG5ODggGnTpsHBwUF2KBaLr6Fh8HWsOL6GhsHXseL4GhoGX0fD4OtYcXwNDcOaXkeN8rA+j0RERERERGQSHEEjIiIiIiIyE0zQiIiIiIiIzAQTNCIiIiIiIjPBBI2IiIiIiMhMMEEzgn379mHAgAHw9fWFRqPB5s2bZYdkcWbPno0OHTrA1dUVtWrVQkREBM6dOyc7LIuyZMkStG7dWrdgY0hICLZu3So7LIv34YcfQqPR4LXXXpMdikWZPn06NBqN3ta0aVPZYVmcq1evYvjw4ahRowacnJzQqlUrHD16VHZYFqV+/fqF3osajQZjx46VHZrFyM3NxZQpU+Dv7w8nJyc0bNgQM2fOBPvOld29e/fw2muvoV69enByckKnTp1w5MgR2WGZrYd9xlYUBVOnToWPjw+cnJwQFhaG8+fPywm2ApigGUF6ejratGmDTz/9VHYoFmvv3r0YO3Ysfv/9d0RFRSE7Oxu9e/dGenq67NAsRp06dfDhhx8iNjYWR48eRc+ePfHEE0/gzz//lB2axTpy5Ag+//xztG7dWnYoFqlFixa4fv26bvvtt99kh2RR7t69i86dO6NKlSrYunUrTp8+jQULFqBatWqyQ7MoR44c0XsfRkVFAQCeeeYZyZFZjjlz5mDJkiVYvHgxzpw5gzlz5mDu3LlYtGiR7NAszgsvvICoqCh8//33OHnyJHr37o2wsDBcvXpVdmhm6WGfsefOnYtPPvkES5cuxaFDh+Ds7Izw8HBkZGSYONIKUsioACibNm2SHYbFu3HjhgJA2bt3r+xQLFq1atWUr776SnYYFunevXtKQECAEhUVpYSGhioTJkyQHZJFmTZtmtKmTRvZYVi0SZMmKV26dJEdhtWZMGGC0rBhQ0Wr1coOxWL0799fef755/Wue+qpp5Rhw4ZJisgy3b9/X7G1tVW2bNmid/0jjzyivP/++5KishwFP2NrtVrF29tbmTdvnu665ORkxcHBQVm9erWECMuPI2hkEVJSUgAA1atXlxyJZcrNzcWaNWuQnp6OkJAQ2eFYpLFjx6J///4ICwuTHYrFOn/+PHx9fdGgQQMMGzYMCQkJskOyKD/99BPat2+PZ555BrVq1ULbtm3x5Zdfyg7LomVlZWHFihV4/vnnodFoZIdjMTp16oTo6Gj89ddfAIA//vgDv/32G/r27Ss5MsuSk5OD3NxcODo66l3v5OTECoNyiI+PR2Jiot7faXd3dwQHByMmJkZiZGVnJzsAoofRarV47bXX0LlzZ7Rs2VJ2OBbl5MmTCAkJQUZGBlxcXLBp0yY0b95cdlgWZ82aNTh27BjnBVRAcHAwli9fjiZNmuD69ev44IMP0LVrV5w6dQqurq6yw7MIf//9N5YsWYKJEyfivffew5EjR/Dqq6/C3t4eI0eOlB2eRdq8eTOSk5Px3HPPyQ7ForzzzjtITU1F06ZNYWtri9zcXPzf//0fhg0bJjs0i+Lq6oqQkBDMnDkTzZo1g5eXF1avXo2YmBg0atRIdngWJzExEQDg5eWld72Xl5fuNkvBBI3M3tixY3Hq1Cl+m1QOTZo0QVxcHFJSUrBhwwaMHDkSe/fuZZJWBleuXMGECRMQFRVV6FtOKr3836y3bt0awcHBqFevHtatW4fRo0dLjMxyaLVatG/fHrNmzQIAtG3bFqdOncLSpUuZoJXT119/jb59+8LX11d2KBZl3bp1WLlyJVatWoUWLVogLi4Or732Gnx9ffleLKPvv/8ezz//PGrXrg1bW1s88sgjGDp0KGJjY2WHRhKxxJHM2rhx47Blyxbs3r0bderUkR2OxbG3t0ejRo3Qrl07zJ49G23atMHHH38sOyyLEhsbixs3buCRRx6BnZ0d7OzssHfvXnzyySews7NDbm6u7BAtkoeHBxo3bowLFy7IDsVi+Pj4FPpypVmzZiwVLafLly9j586deOGFF2SHYnHeeustvPPOOxgyZAhatWqFESNG4PXXX8fs2bNlh2ZxGjZsiL179yItLQ1XrlzB4cOHkZ2djQYNGsgOzeJ4e3sDAJKSkvSuT0pK0t1mKZigkVlSFAXjxo3Dpk2bsGvXLvj7+8sOySpotVpkZmbKDsOi9OrVCydPnkRcXJxua9++PYYNG4a4uDjY2trKDtEipaWl4eLFi/Dx8ZEdisXo3LlzoeVG/vrrL9SrV09SRJZt2bJlqFWrFvr37y87FItz//592Njof4S0tbWF9v/bu5+QqN4FjOPPKXMcJwv/1MwkjDkkakZBFGS1KRdpIBmGFhKjLkQyscCILNHIWtouwajZlBUGlUE1kdRGKFukuTBBaBFIVFT4B3Iz710Ewlzl/q5x85zxfj9wYOY9o/O8gnCeOec9E43alCj+eTwe+f1+/fjxQ5FIRIcOHbI7UtzJzs6Wz+dTf3//3Njk5KTevHkTd+vvucTxL5ieno75VPjjx48aGhpSWlqaAoGAjcniR0NDg3p6evTo0SOlpKTMXTu8du1aud1um9PFh3PnzqmkpESBQEBTU1Pq6enRq1evFIlE7I4WV1JSUuatffR4PEpPT2dN5CI0NzertLRUWVlZmpiYUFtbm1auXKljx47ZHS1unD59Wrt379aVK1dUUVGhwcFBdXd3q7u72+5ocScajSocDisUCikhgUOhxSotLdXly5cVCARUUFCgd+/eqbOzU7W1tXZHizuRSETGGOXm5mp8fFxnzpxRXl6eampq7I7mSP90jH3q1Cl1dHQoJydH2dnZam1t1YYNG1RWVmZf6D9h920kl6OXL18aSfO2UChkd7S4sdDfT5IJh8N2R4sbtbW1JisryyQmJpp169aZoqIi8/z5c7tjLQvcZn/xKisrjd/vN4mJiSYzM9NUVlaa8fFxu2PFncePH5stW7YYl8tl8vLyTHd3t92R4lIkEjGSzNjYmN1R4tLk5KRpamoygUDAJCUlmWAwaM6fP29mZ2ftjhZ37t27Z4LBoElMTDQ+n880NDSYnz9/2h3Lsf7pGDsajZrW1lbj9XqNy+UyRUVFcfl/bhnD174DAAAAgBOwBg0AAAAAHIKCBgAAAAAOQUEDAAAAAIegoAEAAACAQ1DQAAAAAMAhKGgAAAAA4BAUNAAAAABwCAoaAAAAADgEBQ0AAAeyLEsPHz60OwYAYIlR0AAA+DfV1dWyLGveVlxcbHc0AMAyl2B3AAAAnKi4uFjhcDhmzOVy2ZQGAPD/gjNoAAAswOVyyefzxWypqamSfl9+2NXVpZKSErndbgWDQd2/fz/m50dGRrR//3653W6lp6errq5O09PTMa+5efOmCgoK5HK55Pf7dfLkyZj937590+HDh5WcnKycnBz19fX93UkDAGxHQQMA4A+0traqvLxcw8PDqqqq0tGjRzU6OipJmpmZ0YEDB5Samqq3b9+qt7dXL168iClgXV1damhoUF1dnUZGRtTX16dNmzbFvMfFixdVUVGh9+/f6+DBg6qqqtL379+XdJ4AgKVlGWOM3SEAAHCS6upq3bp1S0lJSTHjLS0tamlpkWVZqq+vV1dX19y+Xbt2afv27bp27ZquX7+us2fP6tOnT/J4PJKkJ0+eqLS0VBMTE/J6vcrMzFRNTY06OjoWzGBZli5cuKBLly5J+l36Vq9eradPn7IWDgCWMdagAQCwgH379sUUMElKS0ube1xYWBizr7CwUENDQ5Kk0dFRbdu2ba6cSdKePXsUjUY1NjYmy7I0MTGhoqKi/5hh69atc489Ho/WrFmjL1++/OmUAABxgIIGAMACPB7PvEsO/1fcbvd/9bpVq1bFPLcsS9Fo9G9EAgA4BGvQAAD4A69fv573PD8/X5KUn5+v4eFhzczMzO0fGBjQihUrlJubq5SUFG3cuFH9/f1LmhkA4HycQQMAYAGzs7P6/PlzzFhCQoIyMjIkSb29vdqxY4f27t2r27dva3BwUDdu3JAkVVVVqa2tTaFQSO3t7fr69asaGxt1/Phxeb1eSVJ7e7vq6+u1fv16lZSUaGpqSgMDA2psbFzaiQIAHIWCBgDAAp49eya/3x8zlpubqw8fPkj6fYfFu3fv6sSJE/L7/bpz5442b94sSUpOTlYkElFTU5N27typ5ORklZeXq7Ozc+53hUIh/fr1S1evXlVzc7MyMjJ05MiRpZsgAMCRuIsjAACLZFmWHjx4oLKyMrujAACWGdagAQAAAIBDUNAAAAAAwCFYgwYAwCKxOgAA8LdwBg0AAAAAHIKCBgAAAAAOQUEDAAAAAIegoAEAAACAQ1DQAAAAAMAhKGgAAAAA4BAUNAAAAABwCAoaAAAAADjEvwA7oNKk/KLjYwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHWCAYAAABACtmGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcKklEQVR4nO3dd3hUdd7+8Xsy6SEJIUASICQ06YQSSgAR1yggi4Ii6LJSLDy7YkF+uopKUR/EvqyisLIKixXFxfVxFRZZdGlSDYIiClKFBBCSkEDqnN8fhxkZEkib5GQy79d1nWvOnDnlM0fA3PmWYzMMwxAAAAAA4KL8rC4AAAAAAGo7ghMAAAAAlIHgBAAAAABlIDgBAAAAQBkITgAAAABQBoITAAAAAJSB4AQAAAAAZSA4AQAAAEAZCE4AAAAAUAaCEwDA5YsvvpDNZtMXX3xhdSmohWbOnCmbzaYTJ05YXQoA1DiCEwCgWjnD2NKlS60updZzBpOLLenp6VaXCAA+y9/qAgAAgLt58+apXr16JbbXr1+/5osBAEgiOAEAUKPOnDmj0NDQS+4zcuRINWzYsIYqAgCUB131AMBLnD59WpMnT1ZiYqKCgoLUuHFjXX311dq2bZvbfq+88opatmypkJAQ9erVS2vWrNHAgQM1cOBAt/0OHz6s4cOHKywsTI0bN9b999+v/Pz8GvxG7n766SfddNNNatCggUJDQ9WnTx/961//KrHfyy+/rI4dOyo0NFRRUVFKTk7WO++84/q8vPfpQs5uct9//71GjRqliIgIRUdH67777lNeXl6J/d966y316NFDISEhatCggW6++WYdOnTIbZ+BAweqU6dO2rp1qwYMGKDQ0FA98sgjlbxDv3J2f1yyZIkeeeQRxcbGKiwsTNddd12JGiTpgw8+cNXasGFD/f73v9fPP/9cYj/nd2/UqJFCQkLUtm1bPfrooyX2y8zM1Pjx41W/fn1FRkZqwoQJOnPmTJW/FwDUZrQ4AYCX+MMf/qClS5fq7rvvVocOHfTLL79o7dq12rVrl7p37y7J7OJ199136/LLL9f999+v/fv3a/jw4YqKilKzZs1c5zp79qyuuuoqHTx4UPfee6+aNGmiN998U//5z38s+W4ZGRnq27evzpw5o3vvvVfR0dH6+9//ruuuu05Lly7ViBEjJEkLFizQvffeq5EjR7oCzTfffKONGzfqd7/7naTy3adLGTVqlBITEzV79mx99dVXeumll3Tq1CktXrzYtc+sWbM0bdo0jRo1SnfccYeOHz+ul19+WQMGDNDXX3/t1qXul19+0ZAhQ3TzzTfr97//vWJiYsqs4eTJkyW2+fv7l+iqN2vWLNlsNj300EM6duyY5syZo9TUVKWlpSkkJESStGjRIk2YMEE9e/bU7NmzlZGRob/85S9at26dW63ffPONLr/8cgUEBGjixIlKTEzU3r179X//93+aNWtWiXvUokULzZ49W9u2bdPf/vY3NW7cWM8880yZ3w0AvJYBAPAKkZGRxqRJky76eX5+vhEdHW307NnTKCwsdG1ftGiRIcm44oorXNvmzJljSDLef/9917bc3FyjdevWhiRj9erVHqt79erVhiTjgw8+uOg+kydPNiQZa9ascW07ffq00aJFCyMxMdEoLi42DMMwrr/+eqNjx46XvF5Z9+liZsyYYUgyrrvuOrftd911lyHJ2L59u2EYhrF//37Dbrcbs2bNcttvx44dhr+/v9v2K664wpBkzJ8/v0I1lLa0bdvWtZ/znjZt2tTIzs52bX///fcNScZf/vIXwzAMo6CgwGjcuLHRqVMn4+zZs679PvnkE0OSMX36dNe2AQMGGOHh4caBAwfcanI4HCXqu+2229z2GTFihBEdHV2u7wgA3oquegDgJerXr6+NGzfqyJEjpX6+ZcsW/fLLL7rzzjvl7/9rh4IxY8YoKirKbd9PP/1UcXFxGjlypGtbaGioJk6cWD3Fl+HTTz9Vr1691L9/f9e2evXqaeLEidq/f7++++47SeY9OHz4sDZv3nzRc5V1n8oyadIkt/f33HOPq0ZJ+sc//iGHw6FRo0bpxIkTriU2NlZt2rTR6tWr3Y4PCgrShAkTKlTDhx9+qJUrV7otCxcuLLHf2LFjFR4e7no/cuRIxcXFuWrdsmWLjh07prvuukvBwcGu/YYOHap27dq5ukIeP35c//3vf3XbbbepefPmbtew2WwlrvuHP/zB7f3ll1+uX375RdnZ2RX6ngDgTeiqBwBe4tlnn9W4ceMUHx+vHj166Nprr9XYsWPVsmVLSdKBAwckSa1bt3Y7zt/fX4mJiW7bDhw4oNatW5f4obht27Zl1lFQUFCiK1mjRo1kt9sr+pXc6undu3eJ7e3bt3d93qlTJz300EP6/PPP1atXL7Vu3VrXXHONfve736lfv36uY8q6T2Vp06aN2/tWrVrJz89P+/fvlyT9+OOPMgyjxH5OAQEBbu+bNm2qwMDAcl3bacCAAeWaHOLCGmw2m1q3bu2q1flnorT/ru3atdPatWslmePLJKlTp07lqu/CcOUM5qdOnVJERES5zgEA3oYWJwDwEqNGjdJPP/2kl19+WU2aNNFzzz2njh076rPPPqvROtavX6+4uDi3pbQJCapD+/bttXv3br333nvq37+/PvzwQ/Xv318zZsxw7ePp+3RhuHQ4HLLZbFq+fHmJVqGVK1fqr3/9q9v+zrFGdcnFQrJhGDVcCQDUHIITAHiRuLg43XXXXfroo4+0b98+RUdHuwbuJyQkSJL27NnjdkxRUZGrBcIpISFBe/fuLfGD7u7du8usISkpqURYiI2NrcK3Musp7drff/+963OnsLAwjR49WgsXLtTBgwc1dOhQzZo1y23mu0vdp7L8+OOPbu/37Nkjh8PharVr1aqVDMNQixYtlJqaWmLp06dPRb9+pV1Yq2EY2rNnj6tW530r7d7u3r3b9bmzNW7nzp3VWC0AeDeCEwB4geLiYmVlZblta9y4sZo0aeKaQjw5OVnR0dFasGCBioqKXPu9/fbbOnXqlNux1157rY4cOaKlS5e6tp05c0avvfZambVERUWVCAvnj5+pjGuvvVabNm3Shg0bXNtyc3P12muvKTExUR06dJBkzlB3vsDAQHXo0EGGYaiwsLBc96ksr7zyitv7l19+WZI0ZMgQSdINN9wgu92uxx9/vETwNAyjRI3VafHixTp9+rTr/dKlS3X06FFXrcnJyWrcuLHmz5/v9v0/++wz7dq1S0OHDpVkdrUcMGCA3njjDR08eNDtGrQiAYCJMU4A4AVOnz6tZs2aaeTIkUpKSlK9evX0+eefa/PmzXrhhRckmSFi5syZuueee/Sb3/xGo0aN0v79+7Vo0SK1atXKrcvZnXfeqblz52rs2LHaunWr4uLi9Oabb5b5YNaq+PDDD10tSOcbN26cHn74Yb377rsaMmSI7r33XjVo0EB///vftW/fPn344Yfy8zN/z3fNNdcoNjZW/fr1U0xMjHbt2qW5c+dq6NChCg8PV2ZmZpn3qSz79u3Tddddp8GDB2vDhg1666239Lvf/U5JSUmSzBan//3f/9XUqVNd072Hh4dr3759WrZsmSZOnKgHHnigSvdq6dKlqlevXontV199tdt05g0aNFD//v01YcIEZWRkaM6cOWrdurXuvPNOSeZ4q2eeeUYTJkzQFVdcoVtuucU1HXliYqLuv/9+17leeukl9e/fX927d9fEiRPVokUL7d+/X//617+UlpZWpe8DAHWCZfP5AQDKLT8/33jwwQeNpKQkIzw83AgLCzOSkpKMV199tcS+L730kpGQkGAEBQUZvXr1MtatW2f06NHDGDx4sNt+Bw4cMK677jojNDTUaNiwoXHfffcZy5cvr7bpyC+2OKcg37t3rzFy5Eijfv36RnBwsNGrVy/jk08+cTvXX//6V2PAgAFGdHS0ERQUZLRq1cp48MEHjaysrArfpws5p9r+7rvvjJEjRxrh4eFGVFSUcffdd7tN5e304YcfGv379zfCwsKMsLAwo127dsakSZOM3bt3u/a54oorypw+vbQaLrY4/7s47+m7775rTJ061WjcuLEREhJiDB06tMR04oZhGEuWLDG6detmBAUFGQ0aNDDGjBljHD58uMR+O3fuNEaMGOH6b9C2bVtj2rRpJeo7fvy423ELFy40JBn79u0r93cFAG9jMwza4AGgLnM4HGrUqJFuuOEGLViwwOpyaq2ZM2fq8ccf1/Hjx8s1o52VvvjiC1155ZX64IMP3KaUBwBUH8Y4AUAdkpeXV2JMyuLFi3Xy5EkNHDjQmqIAAKgDGOMEAHXIV199pfvvv1833XSToqOjtW3bNr3++uvq1KmTbrrpJqvLAwDAaxGcAKAOSUxMVHx8vF566SWdPHlSDRo00NixY/X0009X+CGsAADgV4xxAgAAAIAy1IoxTq+88ooSExMVHBys3r17a9OmTRfdd9GiRbLZbG5LVZ8fAgAAAACXYnlwWrJkiaZMmaIZM2Zo27ZtSkpK0qBBg3Ts2LGLHhMREaGjR4+6lgMHDtRgxQAAAAB8jeVd9Xr37q2ePXtq7ty5ksxpc+Pj43XPPffo4YcfLrH/okWLNHnyZGVmZlbqeg6HQ0eOHFF4eLjbwyABAAAA+BbDMHT69Gk1adLE9bD1i7F0coiCggJt3bpVU6dOdW3z8/NTamqqNmzYcNHjcnJylJCQIIfDoe7du+upp55Sx44dS903Pz9f+fn5rvc///yzOnTo4LkvAQAAAMCrHTp0SM2aNbvkPpYGpxMnTqi4uFgxMTFu22NiYvT999+Xekzbtm31xhtvqEuXLsrKytLzzz+vvn376ttvvy31y86ePVuPP/54ie2HDh1SRESEZ74IAAAAAK+TnZ2t+Ph4hYeHl7mv101HnpKSopSUFNf7vn37qn379vrrX/+qJ598ssT+U6dO1ZQpU1zvnTcnIiKC4AQAAACgXEN4LA1ODRs2lN1uV0ZGhtv2jIwMxcbGluscAQEB6tatm/bs2VPq50FBQQoKCqpyrQAAAAB8l6Wz6gUGBqpHjx5atWqVa5vD4dCqVavcWpUupbi4WDt27FBcXFx1lQkAAADAx1neVW/KlCkaN26ckpOT1atXL82ZM0e5ubmaMGGCJGns2LFq2rSpZs+eLUl64okn1KdPH7Vu3VqZmZl67rnndODAAd1xxx1Wfg0AAAAAdZjlwWn06NE6fvy4pk+frvT0dHXt2lXLly93TRhx8OBBt6kBT506pTvvvFPp6emKiopSjx49tH79embKAwAA8GKGYaioqEjFxcVWl4I6JiAgQHa7vcrnsfw5TjUtOztbkZGRysrKYnIIAACAWqCgoEBHjx7VmTNnrC4FdZDNZlOzZs1Ur169Ep9VJBtY3uIEAAAA3+VwOLRv3z7Z7XY1adJEgYGB5ZrhDCgPwzB0/PhxHT58WG3atKlSyxPBCQAAAJYpKCiQw+FQfHy8QkNDrS4HdVCjRo20f/9+FRYWVik4WTqrHgAAACDJbUw74EmeasHkTygAAAAAlIHgBAAAAABlIDgBAAAAtUBiYqLmzJljdRm4CIITAAAAUAE2m+2Sy8yZMyt13s2bN2vixIlVqm3gwIGaPHlylc6B0vnurHq+9fgqAAAAeMjRo0dd60uWLNH06dO1e/du17bznxdkGIaKi4vl71/2j92NGjXybKHwKN9tcfruO6srAAAAwAUMQ8rNtWYp7+/VY2NjXUtkZKRsNpvr/ffff6/w8HB99tln6tGjh4KCgrR27Vrt3btX119/vWJiYlSvXj317NlTn3/+udt5L+yqZ7PZ9Le//U0jRoxQaGio2rRpo48//rhK9/fDDz9Ux44dFRQUpMTERL3wwgtun7/66qtq06aNgoODFRMTo5EjR7o+W7p0qTp37qyQkBBFR0crNTVVubm5VarHm/hui9P69VJKitVVAAAA4DxnzkjnNdjUqJwcKSzMM+d6+OGH9fzzz6tly5aKiorSoUOHdO2112rWrFkKCgrS4sWLNWzYMO3evVvNmze/6Hkef/xxPfvss3ruuef08ssva8yYMTpw4IAaNGhQ4Zq2bt2qUaNGaebMmRo9erTWr1+vu+66S9HR0Ro/fry2bNmie++9V2+++ab69u2rkydPas2aNZLMVrZbbrlFzz77rEaMGKHTp09rzZo1MnyoF5fvBqcNG6yuAAAAAHXUE088oauvvtr1vkGDBkpKSnK9f/LJJ7Vs2TJ9/PHHuvvuuy96nvHjx+uWW26RJD311FN66aWXtGnTJg0ePLjCNb344ou66qqrNG3aNEnSZZddpu+++07PPfecxo8fr4MHDyosLEy//e1vFR4eroSEBHXr1k2SGZyKiop0ww03KCEhQZLUuXPnCtfgzXw3OK1fb7bHeuiBWAAAAKi60FCz5ceqa3tKcnKy2/ucnBzNnDlT//rXv1wh5OzZszp48OAlz9OlSxfXelhYmCIiInTs2LFK1bRr1y5df/31btv69eunOXPmqLi4WFdffbUSEhLUsmVLDR48WIMHD3Z1E0xKStJVV12lzp07a9CgQbrmmms0cuRIRUVFVaoWb+S7Y5yOHpUOHLC6CgAAAJzHZjO7y1mxePL36WEX9Pl74IEHtGzZMj311FNas2aN0tLS1LlzZxUUFFzyPAEBARfcH5scDofnCj1PeHi4tm3bpnfffVdxcXGaPn26kpKSlJmZKbvdrpUrV+qzzz5Thw4d9PLLL6tt27bat29ftdRSG/lucJKkc302AQAAgOq0bt06jR8/XiNGjFDnzp0VGxur/fv312gN7du317p160rUddlll8lut0uS/P39lZqaqmeffVbffPON9u/fr//85z+SzNDWr18/Pf744/r6668VGBioZcuW1eh3sJLvdtWTpLVrpVtvtboKAAAA1HFt2rTRP/7xDw0bNkw2m03Tpk2rtpaj48ePKy0tzW1bXFyc/t//+3/q2bOnnnzySY0ePVobNmzQ3Llz9eqrr0qSPvnkE/30008aMGCAoqKi9Omnn8rhcKht27bauHGjVq1apWuuuUaNGzfWxo0bdfz4cbVv375avkNt5NvBiRYnAAAA1IAXX3xRt912m/r27auGDRvqoYceUnZ2drVc65133tE777zjtu3JJ5/UY489pvfff1/Tp0/Xk08+qbi4OD3xxBMaP368JKl+/fr6xz/+oZkzZyovL09t2rTRu+++q44dO2rXrl3673//qzlz5ig7O1sJCQl64YUXNGTIkGr5DrWRzfClOQQlZWdnKzIyUlmSIiTp+HGpYUOLqwIAAPBNeXl52rdvn1q0aKHg4GCry0EddKk/Y65skJWliIiIS57Hd8c4tW1rvq5da20dAAAAAGo93w1OffuarwQnAAAAAGXw3eCUkmK+Ms4JAAAAQBkITtu2Sbm51tYCAAAAoFbz3eDUvLkUHy8VFUlffWV1NQAAAABqMd8NTpJ0+eXmK+OcAAAAAFyCbwen/v3NV8Y5AQAAALgE3w5OzhanDRukwkJrawEAAABQa/l2cOrQQYqKks6ckdLSrK4GAAAAQC3l28HJz4/uegAAALDEwIEDNXnyZNf7xMREzZkz55LH2Gw2ffTRR1W+tqfO40t8OzhJBCcAAABUyLBhwzR48OBSP1uzZo1sNpu++eabCp938+bNmjhxYlXLczNz5kx17dq1xPajR49qyJAhHr3WhRYtWqT69etX6zVqEsHp/Jn1DMPaWgAAAFDr3X777Vq5cqUOHz5c4rOFCxcqOTlZXbp0qfB5GzVqpNDQUE+UWKbY2FgFBQXVyLXqCoJTjx5ScLB04oS0e7fV1QAAAPg2w5Byc61ZyvlL9N/+9rdq1KiRFi1a5LY9JydHH3zwgW6//Xb98ssvuuWWW9S0aVOFhoaqc+fOevfddy953gu76v34448aMGCAgoOD1aFDB61cubLEMQ899JAuu+wyhYaGqmXLlpo2bZoKz016tmjRIj3++OPavn27bDabbDabq+YLu+rt2LFDv/nNbxQSEqLo6GhNnDhROTk5rs/Hjx+v4cOH6/nnn1dcXJyio6M1adIk17Uq4+DBg7r++utVr149RUREaNSoUcrIyHB9vn37dl155ZUKDw9XRESEevTooS1btkiSDhw4oGHDhikqKkphYWHq2LGjPv3000rXUh7+1Xp2bxAYKPXuLX35pdldr107qysCAADwXWfOSPXqWXPtnBwpLKzM3fz9/TV27FgtWrRIjz76qGw2myTpgw8+UHFxsW655Rbl5OSoR48eeuihhxQREaF//etfuvXWW9WqVSv16tWrzGs4HA7dcMMNiomJ0caNG5WVleU2HsopPDxcixYtUpMmTbRjxw7deeedCg8P15/+9CeNHj1aO3fu1PLly/X5559LkiIjI0ucIzc3V4MGDVJKSoo2b96sY8eO6Y477tDdd9/tFg5Xr16tuLg4rV69Wnv27NHo0aPVtWtX3XnnnWV+n9K+nzM0ffnllyoqKtKkSZM0evRoffHFF5KkMWPGqFu3bpo3b57sdrvS0tIUEBAgSZo0aZIKCgr03//+V2FhYfruu+9Ur5r/3BCcJLO7njM4VeI/PAAAAHzLbbfdpueee05ffvmlBg4cKMnspnfjjTcqMjJSkZGReuCBB1z733PPPVqxYoXef//9cgWnzz//XN9//71WrFihJk2aSJKeeuqpEuOSHnvsMdd6YmKiHnjgAb333nv605/+pJCQENWrV0/+/v6KjY296LXeeecd5eXlafHixQo7Fxznzp2rYcOG6ZlnnlFMTIwkKSoqSnPnzpXdble7du00dOhQrVq1qlLBadWqVdqxY4f27dun+Ph4SdLixYvVsWNHbd68WT179tTBgwf14IMPqt25ho02bdq4jj948KBuvPFGde7cWZLUsmXLCtdQUQQn6ddxTkwQAQAAYK3QULPlx6prl1O7du3Ut29fvfHGGxo4cKD27NmjNWvW6IknnpAkFRcX66mnntL777+vn3/+WQUFBcrPzy/3GKZdu3YpPj7eFZokKSUlpcR+S5Ys0UsvvaS9e/cqJydHRUVFioiIKPf3cF4rKSnJFZokqV+/fnI4HNq9e7crOHXs2FF2u921T1xcnHbs2FGha51/zfj4eFdokqQOHTqofv362rVrl3r27KkpU6bojjvu0JtvvqnU1FTddNNNatWqlSTp3nvv1R//+Ef9+9//Vmpqqm688cZKjSurCMY4SVJKijk1+f79UimD/AAAAFBDbDazu5wVy7kud+V1++2368MPP9Tp06e1cOFCtWrVSldccYUk6bnnntNf/vIXPfTQQ1q9erXS0tI0aNAgFRQUeOxWbdiwQWPGjNG1116rTz75RF9//bUeffRRj17jfM5uck42m00Oh6NariWZMwJ+++23Gjp0qP7zn/+oQ4cOWrZsmSTpjjvu0E8//aRbb71VO3bsUHJysl5++eVqq0UiOJnCwyXnNI1r11paCgAAALzDqFGj5Ofnp3feeUeLFy/Wbbfd5hrvtG7dOl1//fX6/e9/r6SkJLVs2VI//PBDuc/dvn17HTp0SEePHnVt++qrr9z2Wb9+vRISEvToo48qOTlZbdq00YEDB9z2CQwMVHFxcZnX2r59u3Jzc13b1q1bJz8/P7Vt27bcNVeE8/sdOnTIte27775TZmamOnTo4Np22WWX6f7779e///1v3XDDDVq4cKHrs/j4eP3hD3/QP/7xD/2///f/tGDBgmqp1Yng5ER3PQAAAFRAvXr1NHr0aE2dOlVHjx7V+PHjXZ+1adNGK1eu1Pr167Vr1y79z//8j9uMcWVJTU3VZZddpnHjxmn79u1as2aNHn30Ubd92rRpo4MHD+q9997T3r179dJLL7laZJwSExO1b98+paWl6cSJE8rPzy9xrTFjxig4OFjjxo3Tzp07tXr1at1zzz269dZbXd30Kqu4uFhpaWluy65du5SamqrOnTtrzJgx2rZtmzZt2qSxY8fqiiuuUHJyss6ePau7775bX3zxhQ4cOKB169Zp8+bNat++vSRp8uTJWrFihfbt26dt27Zp9erVrs+qC8HJ6fznOQEAAADlcPvtt+vUqVMaNGiQ23ikxx57TN27d9egQYM0cOBAxcbGavjw4eU+r5+fn5YtW6azZ8+qV69euuOOOzRr1iy3fa677jrdf//9uvvuu9W1a1etX79e06ZNc9vnxhtv1ODBg3XllVeqUaNGpU6JHhoaqhUrVujkyZPq2bOnRo4cqauuukpz586t2M0oRU5Ojrp16+a2DBs2TDabTf/85z8VFRWlAQMGKDU1VS1bttSSJUskSXa7Xb/88ovGjh2ryy67TKNGjdKQIUP0+OOPSzID2aRJk9S+fXsNHjxYl112mV599dUq13spNsPwrae+ZmdnKzIyUllZWe4D5zIypNhYs2/ryZNSHXrKMQAAQG2Vl5enffv2qUWLFgoODra6HNRBl/ozdtFsUApanJxiYqQ2bcwHn61bZ3U1AAAAAGoRgtP5GOcEAAAAoBQEp/MxzgkAAABAKQhO5+vf33zdvFnKy7O2FgAAAAC1BsHpfK1amRNEFBRImzZZXQ0AAIDP8LH5ylCDPPVni+B0PpuNcU4AAAA1KCAgQJJ05swZiytBXVVQUCDJnOK8Kvw9UUydcvnl0gcfMM4JAACgBtjtdtWvX1/Hjh2TZD5TyGazWVwV6gqHw6Hjx48rNDRU/v5Viz4Epws5xzmtXy8VF0tVTKYAAAC4tNjYWElyhSfAk/z8/NS8efMqB3KC04W6dJEiIqTsbOmbb6Ru3ayuCAAAoE6z2WyKi4tT48aNVVhYaHU5qGMCAwPl51f1EUoEpwvZ7VLfvtLy5WZ3PYITAABAjbDb7VUehwJUFyaHKA0TRAAAAAA4D8GpNM5xTmvWSEyNCQAAAPg8glNpevWSAgOl9HRp716rqwEAAABgMYJTaYKDpZ49zXWmJQcAAAB8HsHpYs7vrgcAAADApxGcLoYJIgAAAACcQ3C6mH79JJtN+vFHc6wTAAAAAJ9FcLqY+vWlzp3N9XXrLC0FAAAAgLUITpfCOCcAAAAAIjhdGuOcAAAAAIjgdGnO4JSWJp0+bWkpAAAAAKxDcLqUpk2lFi0kh0PasMHqagAAAABYhOBUFsY5AQAAAD6P4FQWxjkBAAAAPo/gVBZncNq4USoosLYWAAAAAJYgOJWlbVupYUMpL0/autXqagAAAABYoFYEp1deeUWJiYkKDg5W7969tWnTpnId995778lms2n48OHVV5zNxjgnAAAAwMdZHpyWLFmiKVOmaMaMGdq2bZuSkpI0aNAgHTt27JLH7d+/Xw888IAud3alq06McwIAAAB8muXB6cUXX9Sdd96pCRMmqEOHDpo/f75CQ0P1xhtvXPSY4uJijRkzRo8//rhatmxZ/UU6g9O6debU5AAAAAB8iqXBqaCgQFu3blVqaqprm5+fn1JTU7XhEs9NeuKJJ9S4cWPdfvvtZV4jPz9f2dnZbkuFde0qhYZKp05J331X8eMBAAAAeDVLg9OJEydUXFysmJgYt+0xMTFKT08v9Zi1a9fq9ddf14IFC8p1jdmzZysyMtK1xMfHV7zQgAApJcVcp7seAAAA4HMs76pXEadPn9att96qBQsWqGHDhuU6ZurUqcrKynIthw4dqtzFnd311q6t3PEAAAAAvJa/lRdv2LCh7Ha7MjIy3LZnZGQoNja2xP579+7V/v37NWzYMNc2x7kxR/7+/tq9e7datWrldkxQUJCCgoKqXiwz6wEAAAA+y9IWp8DAQPXo0UOrVq1ybXM4HFq1apVSnF3jztOuXTvt2LFDaWlpruW6667TlVdeqbS0tMp1wyuvPn0kf3/p0CHpwIHquw4AAACAWsfSFidJmjJlisaNG6fk5GT16tVLc+bMUW5uriZMmCBJGjt2rJo2barZs2crODhYnTp1cju+fv36klRiu8eFhUndu0ubNpmtTgkJ1Xs9AAAAALWG5cFp9OjROn78uKZPn6709HR17dpVy5cvd00YcfDgQfn51ZKhWJdfbgantWul3//e6moAAAAA1BCbYRiG1UXUpOzsbEVGRiorK0sREREVO/ijj6QRI6QOHaRvv62W+gAAAADUjIpkg1rSlOMlnBNEfPed9Msv1tYCAAAAoMYQnCqiYUOpfXtznWnJAQAAAJ9BcKoonucEAAAA+ByCU0XxPCcAAADA5xCcKsrZ4rR1q5Sba20tAAAAAGoEwamiEhKkZs2koiJzanIAAAAAdR7BqaJsNrrrAQAAAD6G4FQZzu56BCcAAADAJxCcKsMZnDZsMLvsAQAAAKjTCE6V0bGjVL++OTlEWprV1QAAAACoZgSnyvDzk/r1M9fprgcAAADUeQSnymKcEwAAAOAzCE6V5QxOa9dKhmFtLQAAAACqFcGpsnr0kIKDpePHpR9+sLoaAAAAANWI4FRZQUFSr17mOt31AAAAgDqN4FQVjHMCAAAAfALBqSrOH+cEAAAAoM4iOFVFSoo5NflPP0lHjlhdDQAAAIBqQnCqiogIKSnJXKe7HgAAAFBnEZyqinFOAAAAQJ1HcKoqxjkBAAAAdR7Bqar69zdfv/lGysy0tBQAAAAA1YPgVFWxsVLr1pJhSOvXW10NAAAAgGpAcPIExjkBAAAAdRrByRMY5wQAAADUaQQnT3COc9q0ScrLs7YWAAAAAB5HcPKE1q2lmBipoEDavNnqagAAAAB4GMHJE2w2xjkBAAAAdRjByVOc3fUY5wQAAADUOQQnT3G2OK1bJxUXW1sLAAAAAI8iOHlKUpIUHi5lZ0s7dlhdDQAAAAAPIjh5it0u9e1rrtNdDwAAAKhTCE6e5BznxAQRAAAAQJ1CcPKk82fWMwxrawEAAADgMQQnT+rVSwoIkI4elX76yepqAAAAAHgIwcmTQkKknj3NdcY5AQAAAHUGwcnTGOcEAAAA1DkEJ087f5wTAAAAgDqB4ORp/fqZrz/8IGVkWFsLAAAAAI8gOHlaVJTUqZO5vm6dtbUAAAAA8AiCU3Wgux4AAABQpxCcqgPBCQAAAKhTCE7VwRmcvv5aOn3a2loAAAAAVBnBqTo0ayYlJEgOh/TVV1ZXAwAAAKCKCE7Vhe56AAAAQJ1BcKouBCcAAACgziA4VRdncNq4USoosLYWAAAAAFVCcKou7dpJ0dHS2bPStm1WVwMAAACgCghO1cVmk/r3N9fprgcAAAB4NYJTdWKcEwAAAFAnEJyqk7PFad06c2pyAAAAAF6J4FSduneXQkOlkyelXbusrgYAAABAJRGcqlNAgNSnj7lOdz0AAADAaxGcqptznNPatdbWAQAAAKDSCE7VjZn1AAAAAK9HcKpuffpIdrt08KC5AAAAAPA6BKfqVq+eOUmERKsTAAAA4KUITjWBcU4AAACAVyM41QTGOQEAAABejeBUE5zB6dtvpV9+sbYWAAAAABVGcKoJjRpJ7dqZ6+vWWVsLAAAAgAojONUUZ6sT45wAAAAAr0NwqinOCSIY5wQAAAB4nVoRnF555RUlJiYqODhYvXv31qZNmy667z/+8Q8lJyerfv36CgsLU9euXfXmm2/WYLWV5AxOW7ZIZ85YWwsAAACACrE8OC1ZskRTpkzRjBkztG3bNiUlJWnQoEE6duxYqfs3aNBAjz76qDZs2KBvvvlGEyZM0IQJE7RixYoarryCEhOlpk2loiLpEsEQAAAAQO1jeXB68cUXdeedd2rChAnq0KGD5s+fr9DQUL3xxhul7j9w4ECNGDFC7du3V6tWrXTfffepS5cuWlvbxw7ZbExLDgAAAHgpS4NTQUGBtm7dqtTUVNc2Pz8/paamasOGDWUebxiGVq1apd27d2vAgAGl7pOfn6/s7Gy3xTKMcwIAAAC8kqXB6cSJEyouLlZMTIzb9piYGKWnp1/0uKysLNWrV0+BgYEaOnSoXn75ZV199dWl7jt79mxFRka6lvj4eI9+hwpxBqcNG8wuewAAAAC8guVd9SojPDxcaWlp2rx5s2bNmqUpU6boiy++KHXfqVOnKisry7UcOnSoZos9X6dOUmSklJMjbd9uXR0AAAAAKsTfyos3bNhQdrtdGRkZbtszMjIUGxt70eP8/PzUunVrSVLXrl21a9cuzZ49WwMHDiyxb1BQkIKCgjxad6X5+Un9+kmffmp21+vRw+qKAAAAAJSDpS1OgYGB6tGjh1atWuXa5nA4tGrVKqWkpJT7PA6HQ/n5+dVRoucxzgkAAADwOpa2OEnSlClTNG7cOCUnJ6tXr16aM2eOcnNzNWHCBEnS2LFj1bRpU82ePVuSOWYpOTlZrVq1Un5+vj799FO9+eabmjdvnpVfo/zOD06GYc62BwAAAKBWszw4jR49WsePH9f06dOVnp6url27avny5a4JIw4ePCg/v18bxnJzc3XXXXfp8OHDCgkJUbt27fTWW29p9OjRVn2FiklOloKCpOPHpR9/lC67zOqKAAAAAJTBZhiGYXURNSk7O1uRkZHKyspSRESENUUMGGC2OP3tb9Ltt1tTAwAAAODjKpINvHJWPa/HOCcAAADAqxCcrOAMTmvXWlsHAAAAgHIhOFkhJcWcFGLvXunoUaurAQAAAFAGgpMVIiOlpCRzne56AAAAQK1HcLIK45wAAAAAr0FwsgrjnAAAAACvQXCySv/+5uv27VJWlrW1AAAAALgkgpNV4uKkVq0kw5DWr7e6GgAAAACXQHCyEuOcAAAAAK9AcLKSs7se45wAAACAWo3gZCVni9OmTVJ+vrW1AAAAALgogpOV2rSRGjc2Q9PmzVZXAwAAAOAiCE5WstmYlhwAAADwAgQnqznHOTFBBAAAAFBrEZys5mxxWrdOKi62thYAAAAApSI4WS0pSapXz3wI7s6dVlcDAAAAoBQEJ6v5+0t9+5rrjHMCAAAAaiWCU23AOCcAAACgViM41QbOcU5r1kiGYW0tAAAAAEogONUGvXpJAQHSkSPSvn1WVwMAAADgAgSn2iA0VOrRw1xnnBMAAABQ6xCcaovzu+sBAAAAqFUITrUFwQkAAACotQhOtUW/fubr7t3S8ePW1gIAAADATaWC06FDh3T48GHX+02bNmny5Ml67bXXPFaYz2nQQOrY0VxnnBMAAABQq1QqOP3ud7/T6tWrJUnp6em6+uqrtWnTJj366KN64oknPFqgT6G7HgAAAFArVSo47dy5U7169ZIkvf/+++rUqZPWr1+vt99+W4sWLfJkfb6F4AQAAADUSpUKToWFhQoKCpIkff7557ruuuskSe3atdPRo0c9V52vcQanr7+WcnKsrQUAAACAS6WCU8eOHTV//nytWbNGK1eu1ODBgyVJR44cUXR0tEcL9Cnx8VLz5lJxsfTVV1ZXAwAAAOCcSgWnZ555Rn/96181cOBA3XLLLUpKSpIkffzxx64ufKgkuusBAAAAtY5/ZQ4aOHCgTpw4oezsbEVFRbm2T5w4UaGhoR4rziddfrn09tsEJwAAAKAWqVSL09mzZ5Wfn+8KTQcOHNCcOXO0e/duNW7c2KMF+pz+/c3Xr76SCgutrQUAAACApEoGp+uvv16LFy+WJGVmZqp379564YUXNHz4cM2bN8+jBfqc9u3NZzqdPStt22Z1NQAAAABUyeC0bds2XX5uLM7SpUsVExOjAwcOaPHixXrppZc8WqDP8fP7tdWJ7noAAABArVCp4HTmzBmFh4dLkv7973/rhhtukJ+fn/r06aMDBw54tECf5JwgYu1aa+sAAAAAIKmSwal169b66KOPdOjQIa1YsULXXHONJOnYsWOKiIjwaIE+ydnitHat5HBYWwsAAACAygWn6dOn64EHHlBiYqJ69eqllJQUSWbrU7du3TxaoE/q3l0KCZF++UX6/nurqwEAAAB8XqWC08iRI3Xw4EFt2bJFK1ascG2/6qqr9Oc//9ljxfmswECpTx9znXFOAAAAgOUqFZwkKTY2Vt26ddORI0d0+PBhSVKvXr3Url07jxXn0xjnBAAAANQalQpODodDTzzxhCIjI5WQkKCEhATVr19fTz75pByMyfEMZtYDAAAAag3/yhz06KOP6vXXX9fTTz+tfv36SZLWrl2rmTNnKi8vT7NmzfJokT4pJUWy26UDB6RDh6T4eKsrAgAAAHyWzTAMo6IHNWnSRPPnz9d1113ntv2f//yn7rrrLv38888eK9DTsrOzFRkZqaysrNo/A2DPntKWLdLbb0u/+53V1QAAAAB1SkWyQaW66p08ebLUsUzt2rXTyZMnK3NKlOb8ackBAAAAWKZSwSkpKUlz584tsX3u3Lnq0qVLlYvCOc4JIhjnBAAAAFiqUmOcnn32WQ0dOlSff/656xlOGzZs0KFDh/Tpp596tECf5mxx2rlTOnlSatDA2noAAAAAH1WpFqcrrrhCP/zwg0aMGKHMzExlZmbqhhtu0Lfffqs333zT0zX6rsaNpbZtzfX1662tBQAAAPBhlZoc4mK2b9+u7t27q7i42FOn9DivmhxCku64Q3r9delPf5KeecbqagAAAIA6o9onh0ANYpwTAAAAYDmCU23nDE5btkhnz1pbCwAAAOCjCE61XYsWUpMmUmGhtGmT1dUAAAAAPqlCs+rdcMMNl/w8MzOzKrWgNDabObve+++b3fWuuMLqigAAAACfU6HgFBkZWebnY8eOrVJBKMXll/8anAAAAADUuAoFp4ULF1ZXHbgU5zin9euloiLJv1KP3wIAAABQSYxx8gadOkkREVJOjvTNN1ZXAwAAAPgcgpM3sNulfv3MdbrrAQAAADWO4OQteJ4TAAAAYBmCk7dwBqe1ayXDsLYWAAAAwMcQnLxFcrIUGChlZEh79lhdDQAAAOBTCE7eIjhY6tXLXKe7HgAAAFCjCE7ehHFOAAAAgCUITt7k/HFOAAAAAGoMwcmbpKRINps5xik93epqAAAAAJ9BcPIm9etLXbqY63TXAwAAAGpMrQhOr7zyihITExUcHKzevXtr06ZNF913wYIFuvzyyxUVFaWoqCilpqZecv86h3FOAAAAQI2zPDgtWbJEU6ZM0YwZM7Rt2zYlJSVp0KBBOnbsWKn7f/HFF7rlllu0evVqbdiwQfHx8brmmmv0888/13DlFunf33xlnBMAAABQY2yGYe3TVHv37q2ePXtq7ty5kiSHw6H4+Hjdc889evjhh8s8vri4WFFRUZo7d67Gjh1b5v7Z2dmKjIxUVlaWIiIiqlx/jTtyRGraVPLzk06dkrzxOwAAAAC1QEWygaUtTgUFBdq6datSU1Nd2/z8/JSamqoNGzaU6xxnzpxRYWGhGjRoUOrn+fn5ys7Odlu8WpMmUsuWksMhrV9vdTUAAACAT7A0OJ04cULFxcWKiYlx2x4TE6P0cs4a99BDD6lJkyZu4et8s2fPVmRkpGuJj4+vct2WY1pyAAAAoEZZPsapKp5++mm99957WrZsmYKDg0vdZ+rUqcrKynIthw4dquEqq4FznBMTRAAAAAA1wt/Kizds2FB2u10ZGRlu2zMyMhQbG3vJY59//nk9/fTT+vzzz9XFOUV3KYKCghQUFOSRemsNZ4vTxo1Sfr5U174fAAAAUMtY2uIUGBioHj16aNWqVa5tDodDq1atUkpKykWPe/bZZ/Xkk09q+fLlSk5OrolSa5fLLpMaNzZD05YtVlcDAAAA1HmWd9WbMmWKFixYoL///e/atWuX/vjHPyo3N1cTJkyQJI0dO1ZTp0517f/MM89o2rRpeuONN5SYmKj09HSlp6crJyfHqq9Q82w2piUHAAAAapDlwWn06NF6/vnnNX36dHXt2lVpaWlavny5a8KIgwcP6ujRo679582bp4KCAo0cOVJxcXGu5fnnn7fqK1iDcU4AAABAjbH8OU41zeuf4+S0ZYvUs6dUv770yy/mc50AAAAAlJvXPMcJVdC1qxQWJmVmSjt3Wl0NAAAAUKcRnLyVv7/knECDcU4AAABAtSI4eTPntOSMcwIAAACqFcHJm50fnHxrqBoAAABQowhO3qx3b7PL3s8/SwcOWF0NAAAAUGcRnLxZaKjUo4e5Tnc9AAAAoNoQnLwd45wAAACAakdw8nYEJwAAAKDaEZy8Xb9+5uv330vHj1tbCwAAAFBHEZy8XXS01KGDub5unbW1AAAAAHUUwakuoLseAAAAUK0ITnUBwQkAAACoVgSnuqB/f/N12zYpN9faWgAAAIA6iOBUFyQkSPHxUnGx9NVXVlcDAAAA1DkEp7qC7noAAABAtSE41RXO4LR2rbV1AAAAAHUQwamucI5z2rBBKiy0thYAAACgjiE41RUdOkhRUdKZM9LXX1tdDQAAAFCnEJzqCj+/X1udGOcEAAAAeBTBqS5hnBMAAABQLQhOdYmzxWntWskwrK0FAAAAqEMITnVJjx5SSIh04oT0/fdWVwMAAADUGQSnuiQwUOrd21xnnBMAAADgMQSnuub87noAAAAAPILgVNc4J4igxQkAAADwGIJTXZOSYk5Nvn+/dPiw1dUAAAAAdQLBqa4JD5e6dTPX6a4HAAAAeATBqS7iQbgAAACARxGc6iLGOQEAAAAeRXCqi5wtTjt3SqdOWVsLAAAAUAcQnOqimBjpssskw5DWr7e6GgAAAMDrEZzqKsY5AQAAAB5DcKqrGOcEAAAAeAzBqa5yBqfNm6WzZ62tBQAAAPByBKe6qmVLKTZWKiw0wxMAAACASiM41VU2G931AAAAAA8hONVlBCcAAADAIwhOdZkzOK1fLxUXW1sLAAAA4MUITnVZ585SRIR0+rT0zTdWVwMAAAB4LYJTXWa3S337mut01wMAAAAqjeBU1zHOCQAAAKgyglNd5wxOa9dKhmFtLQAAAICXIjjVdT17SoGBUnq6tHev1dUAAAAAXongVNcFB5vhSaK7HgAAAFBJBCdfwDgnAAAAoEoITr6gf3/zde1aa+sAAAAAvBTByRf06yfZbNKPP5pjnQAAAABUCMHJF9Svbz4MV6LVCQAAAKgEgpOvOH9acgAAAAAVQnDyFc5xTkwQAQAAAFQYwclXOFuc0tKk7GxLSwEAAAC8DcHJVzRtKrVoITkc0oYNVlcDAAAAeBWCky9hnBMAAABQKQQnX8I4JwAAAKBSCE6+xNnitHGjlJ9vbS0AAACAFyE4+ZK2baWGDaW8PGnrVqurAQAAALwGwcmX2Gy/dtdjnBMAAABQbgQnX+Psrsc4JwAAAKDcCE6+xhmc1q0zpyYHAAAAUCaCk6/p1k0KC5NOnZK++87qagAAAACvQHDyNf7+Up8+5jrd9QAAAIByITj5IsY5AQAAABVCcPJF5wcnw7C2FgAAAMALEJx8Ue/eZpe9w4elgwetrgYAAACo9SwPTq+88ooSExMVHBys3r17a9OmTRfd99tvv9WNN96oxMRE2Ww2zZkzp+YKrUvCwqTu3c11uusBAAAAZbI0OC1ZskRTpkzRjBkztG3bNiUlJWnQoEE6duxYqfufOXNGLVu21NNPP63Y2NgarraOYZwTAAAAUG6WBqcXX3xRd955pyZMmKAOHTpo/vz5Cg0N1RtvvFHq/j179tRzzz2nm2++WUFBQTVcbR1DcAIAAADKzbLgVFBQoK1btyo1NfXXYvz8lJqaqg0bNnjsOvn5+crOznZbIKlfP/N11y7pxAlrawEAAABqOcuC04kTJ1RcXKyYmBi37TExMUpPT/fYdWbPnq3IyEjXEh8f77Fze7WGDaX27c31deusrQUAAACo5SyfHKK6TZ06VVlZWa7l0KFDVpdUe9BdDwAAACgXy4JTw4YNZbfblZGR4bY9IyPDoxM/BAUFKSIiwm3BOc7gtHattXUAAAAAtZxlwSkwMFA9evTQqlWrXNscDodWrVqllJQUq8ryLf37m69bt0q5udbWAgAAANRilnbVmzJlihYsWKC///3v2rVrl/74xz8qNzdXEyZMkCSNHTtWU6dOde1fUFCgtLQ0paWlqaCgQD///LPS0tK0Z88eq76Cd0tIkJo1k4qKpI0bra4GAAAAqLUsDU6jR4/W888/r+nTp6tr165KS0vT8uXLXRNGHDx4UEePHnXtf+TIEXXr1k3dunXT0aNH9fzzz6tbt2664447Knztf/7TY1/De9lsjHMCAAAAysFmGIZhdRE1KTs7W5GRkZKyNGZMhF5+WYqKsroqC736qjRpkpSaKq1caXU1AAAAQI1xZoOsrKwy50Ko87PqXYzNJr39ttS5s/Tvf1tdjYWcLU4bNphd9gAAAACU4LPB6d//ltq0kX7+WRo0yGx08cn5ETp2NJvccnOlr7+2uhoAAACgVvLZ4NSrl5kTJk0y37/6qtS1q9nw4lP8/KR+/cx1xjkBAAAApfLZ4CRJYWHS3Llm61PTptKePeYM3Y88IhUUWF1dDXJOS87znAAAAIBS+XRwcrr6amnnTunWWyWHQ5o922yR+uYbqyurIec/CNe35goBAAAAyoXgdE79+tLixdLSpVJ0tLR9u5ScLD3zjFRcbHV11Sw5WQoOlo4fl3bvtroaAAAAoNYhOF3gxhulb7+Vhg2TCgulhx+WBgwwu/HVWYGBUu/e5jrd9QAAAIASCE6liIkxH5D7xhtSeLi0fr2UlCTNn1+He7I5xzkxQQQAAABQAsHpImw2acIEaccOaeBA6cwZ6Y9/lIYMMacwr3Oc45wITgAAAEAJBKcyJCRIq1ZJf/6zOQxoxQqpUyfpnXfqWOtTSoo5Nfm+fXU0GQIAAACVR3AqBz8/afJkads2cx6FzExpzBhp9GjpxAmrq/OQiAizP6LEOCcAAADgAgSnCmjf3hzvNHOm5O8vffCB1Lmz9K9/WV2Zh9BdDwAAACgVwamCAgKkGTOkr74yg1R6uvTb30p33imdPm11dVVEcAIAAABKRXCqpB49pK1bpSlTzIkk/vY3qUsX6b//tbqyKnDOrLdjh9kfEQAAAIAkglOVhIRIL7wgrV5tTiKxf785A98DD0h5eVZXVwmxsVLr1uasF+vXW10NAAAAUGsQnDzgiiukb76Rbr/dzBwvvPBri5TXobseAAAAUALByUMiIszueh9/bD5A97vvpD59pCeekAoLra6uAghOAAAAQAkEJw8bNkzauVMaOVIqKjInkujXT/r+e6srKydncNq82Uv7GwIAAACeR3CqBg0bSu+/L739tlS/vplBunWTXnpJcjisrq4MrVqZTWYFBWbhAAAAAAhO1cVmk373O3OCuquvNhtv7rtPSk2VDh60urpLsNnorgcAAABcgOBUzZo1k1askF59VQoNNWfg69xZWrTInEiiViI4AQAAAG4ITjXAZpP++EcpLU1KSZGys6UJE6QRI6Rjx6yurhTO5zmtXy8VF1tbCwAAAFALEJxqUJs2ZiPO7NlSQID0z39KHTtKy5ZZXdkFkpKk8HAz4e3YYXU1AAAAgOUITjXMbpcefticd6FLF+nECemGG6Rx46TMTKurO8dul/r2NdfprgcAAAAQnKySlCRt2mSGKD8/afFic+zT559bXdk5jHMCAAAAXAhOFgoKMrvtrVljzgJ++LA5A98990hnzlhcnHOc09q1tXgWCwAAAKBmEJxqgb59pe3bpbvuMt/PnWs+92njRguL6tXLHIh19Kj0008WFgIAAABYj+BUS4SFSa+8Ii1fLjVpIv3wgxmoHnvMfBZtjQsJkXr2NNfprgcAAAAfR3CqZQYNknbulMaMkRwOadYsqXdvc1uNc45zWrvWgosDAAAAtQfBqRaKipLeekt6/30pOtp8/lOPHtJzz9XwY5Wc45xocQIAAICPIzjVYjfdZLY0/fa3Zne9P/1JGjiwBocc9etnPr33hx+kjIwauigAAABQ+xCcarnYWOnjj6XXX5fq1TN7zXXpIr32Wg1MdhcVJXXqZK7TXQ8AAAA+jODkBWw26bbbpG++kQYMkHJzpf/5H2noUOnIkWq++PnTkgMAAAA+iuDkRVq0kFavll54wXwG1GefmQ1CS5ZU40V5EC4AAABAcPI2fn7SlCnStm1S9+7SqVPSzTdLt9winTxZDRd0Bqevv5ZOn66GCwAAAAC1H8HJS3XoIH31lTRjhmS3S++9Z7Y+ffaZhy/UrJmUmGjOjb5hg4dPDgAAAHgHgpMXCwiQZs4080y7dtLRo9K115rjn3JyPHghxjkBAADAxxGc6oCePc2ue5Mnm+9fe01KSvJgzmGcEwAAAHwcwamOCAmR/vxn6T//kZo3N5/1NGCA+eynvLwqntwZnL76ynygFAAAAOBjCE51zJVXmtOWT5hgPufpuefMFqm0tCqctF07KTraTGDbtnmqVAAAAMBrEJzqoMhI6Y03pH/+U2rcWNq50wxPs2ZJRUWVOKHN9us4J7rrAQAAwAcRnOqw664zQ9MNN5iB6bHHzPzzww+VOBnjnAAAAODDCE51XKNG0tKl0ptvmi1RGzdKXbtKc+eaM4yXmzM4rV1bwQMBAAAA70dw8gE2m/T730s7dkipqdLZs9I990jXXCMdOlTOk3TrJoWGmk/c3bWrWusFAAAAahuCkw+Jj5dWrDBbm0JCpFWrpM6dzdYowyjj4IAAqU8fc53uegAAAPAxBCcf4+cnTZpkzrLXp4+UlSWNHSvdeKN0/HgZBzPOCQAAAD6K4OSjLrvMzD+zZpmNScuWSZ06mTPxXRTBCQAAAD6K4OTD/P2lRx6RNm0yQ9OxY9Lw4eYzoLKySjmgd2/JbjcHRh08WNPlAkDtVlAg5eSUo+8zAMAb2QzDt/6Fz87OVmRkpLKyshQREWF1ObVGfr40fbr5wFzDkJo3lxYtMh+o66ZXL2nzZumtt6QxY6woFQBqTn6+lJFx8SU9/df1U6fMY4KCzClNy7vUr2/O4gOgdnA4pJ9/lvbtM7vltG4tNWzI39M6qiLZwL+GakItFxQkPfOMNGyYNG6c9NNP0m9+I913nzR7tjmZhCSzu97mzWZ3PYITAG909mzJ0HOxpdTm9zLk50uHD5tLefj7mz+UlTdoNWhgtv4DqLy8PDMY/fSTtHev+7Jvn/n3+Hzh4WaAat1aatXK/bVJE3MQOeo8WpxQQk6O9OCD0vz55vt27aTFi6WePSV99JE0YoTUsaP5dF0AqA1ycsoOQc7l9OmKnTsgQGrcWIqJKXsJDpZOnDBn2ynPkpNT8e/q52eGp8aNyxe0GjY0wxnga06eLD0Y7d1rtihd6kdgf38pIcHsgnv48KX3DQ6WWrYsGahatza78AQEeP67wWMqkg0ITriozz6Tbr9dOnrU/OXmo49Kj/3PcQU0bWzucOKEFB1tbZEA6ibDMAPOpbrGnb+cOVOx8wcGSrGx5QtDUVHV10UnL6/8Iev4cSkzs3LXiYqqWPfBoCCPfk2gWji71JUWjPbuLfvvS3i4GXKcizP8tGplPsPF+QsHZ+vUnj3mec9/3b9fKiq6+DXsdikxsWSocl7P1aUHViE4XQLBqWJOnpTuvlt6913zfffu0vpT7RW073tzCr7rrrO2QADewzDMH2TK2zKUl1ex84eElC8IxcRIkZHeOV6hsLBiLVq//FK5ySrCwysWtMLCPP9dAenX0FJaMNq3z2wRupS4uJKhyLl4YtxSUZE5YZYzSF0Yrsr6d6xZs9JDVatW5r9TqHYEp0sgOFXO++9Lf/yjGaT+5jdRtzsWyDHlAfm98JzVpQGwkmGY/zCUFYLS082pO8v6IedCYWFm0ClP61C9et4ZhqpTcbH536e8QevEiUv/9vxiQkIqFrQiIvhvhV+dPFkyFDm72JWnS52zRefCpWVLKTS0xr5GCQ6H2W3nwlYq53pZYygbNizZ9c+5zmQVHkNwugSCU+UdPSrdcYcU/eliLdY4nVWw0v2aqMAvWEX2IBXag1VkD1ZRQLCK/YPlCAiSIzBYjqBgGUHBUlCwFBwsW0iQ/EKCZQsNlj00WPawYPmHBcm/XrD86wUrIDxYgRHBCooIUmBEsILrm4t/vWCz+wiDooHq5XCYLRXlmUDh2LGK/6AdEVH+liFaMmqWs1WwIt0HLxxEXx6BgZeeEKNBA7N7Yf365hIVZf72nbFa3snhMMcJlRaMKtOl7vylWTPv/HNhGOa/sxeGKufrsWOXPt45WUVp46qYrKJCCE6XQHCqGsOQ3n4hXcMfbK16yrWkhkL5K98WrAI/czEDW5CK/M3AVhwQrOLAYBkBQTKcoS3YGdqC5RcSJL9zgc0eFix7vWAFhAUpIPzX0BYYEazAcHM/57GuJTCQf5BQdYZhtgYUFpqtMIWFJZfStpd3W0WPz883WxsyMswfhouLK/Z96td3DzwXayFq3Jg+/XWJYZgTXFQkaOVW4f8d9eq5BypnqCrPer16/Ntdnc6ede9Sd34wqkiXutJajXyxdeX06YuHqrImqwgK+vX+XRiuEhKYrOICBKdLIDh5xtmfT+rU9oPKz85TYXaeCnPyVZSTZy65eXLk5slxJk+Os/kyzubJOJsn5efJlpcnW0Ge/Ary5VeQJ3thnuxFefIvylNAUZ78i/MV4MhTkCNPgUaegmUu/qrgD3HVrMAWqEJ7sGsp9g8yQ1tgsBwBZiubAoNkBJstbbaQc0uoGdzsoWYLmn9YkPzsNtnsNtntNtnsfrL72+Rnd19sfjbzfxrOxc/P/f3FlvLs58lzWXVNw6jZkOGp42u76OjytQo1bsxkAii/s2fLDlenTpmtEM7Xysw+eCE/P7PV6mLhqqzgFRzsez+8n8/ZLbe0YOTsUncpAQElu9Q5xx1Z3aXO2zBZhUcRnC6B4ORdHA7zF+FnTxcpLytfeZl5ys/KU0G2uRTm5KvwdJ4rtBXn5qn4TL4cZ/Okc4HNyDMDm/Lzz4W2PNndQlu+AorzFFCcp0BHnoLOhbUg5buCW7Dy5Cef+qsCK9hs5g8XgYHm6/lLdW9zdp1yhqFGjfitJGqPwkJzPEhmpnugutS68/2pUxUfW1eawMCKh63z9/OGv0/FxWZrxsWm8C5rTE5EROkz1DlnqaOrffW7cLKK88dV/fST+YuLS2natPTnVdXhySoITpdAcEJZiorMf1fcljOG8k4XmqHtdL4Kss2gVpiTp2JnaDuTb7ayncn7tZXNGdjyzcDmV5Anv8I8+RfmyV6UL//iPMlhnGtyN2STIT85ZDu3fqmlPPt58ly1pbaLBdgi2VWogPOWQBXaAlRkM98X2QJUaAtU0bltRbYAFdsCVOQXoKJz24v9zPfFtgAV2QNVfG7dYXd+Fuhad9jPbT+3n+H/6zaHf6Br3bXd3wwqzm0KMLc51w3/APkF2OXnZ/5i3G5Xja87G/Ck0ter+t6qY2uyDmdDqd3u240TtU5eXvnCVmnBKzPT/C1eVYWFlR2uLvZZRITnuhle2KXu/GX//rJDZpMmF5+lLjqaP/i12cUmq3C+VnSyivPHVXlxd0qC0yUQnFBbGYb5b1pRkflLP0++Vsc5rbim+88uv4YpZ6QCapvyBFYrQnJF12v6mhf+/HX++8p+VunzGIb883Lkf/qU7DmZCsjJlP/pU/LPyTSXc+v2nEwFnNvHud1+OlP+Zyr4wOVSGDabiutFqji8vorDo1QUXt+1Xuxar6/iiF/fG3Z/BR3Zp+Cf9yrw8F4FHTJfA44dufS1AgJU1CxRRc1bqSixlYoTWqk48dzSvIX86oVWuGf1xT5zbkctUF2TVbRqZbZi1eLxhQSnSyA4Ad7LOZ9CacHK4fj1tSrrNX1cbTlHcfGvY40No+R6RT6z4jyVuSZQE+wqUoSyFaVTqq9M1Vdmudad70NUweeZlUOWIrRXrUpdDquZHKr5LnWeDGKePKYsZf1bUt2f19Q1QotPq3nhXjUv3KuEwj1qXrjHtR5bdPiSwxnybUH6euAU9fnPU2VfyAIVyQZeOH8jAF9ls5mzzvr7MxcBPMPToc8ZSK0OwrXlHJU57sIJHS/8oe7895f6rCr7evY6/pIaSGqgTEmnDGlfBa4TZOQp3JGlSMcphRdnKsKRqUjHKUU4zls33LdHOjIVqHwdsidqv72V9vu10r5zy36/lvpF0TJkk8Ph/mfYMKTgc70fLtxunLe9Opz/9wi1Ubi2q6ukriU+CVKeWmifWmmvWmuPWmuPaz1R+xVk5CurqG48WoLgBADwWeePUwJqp+BzS0yFj2wqqY+nyzmntEB1saBVXdur+xoOR9n/Nlzqc985NlhSe0nt3T4/IelEUZGCMg6qQyLByWNeeeUVPffcc0pPT1dSUpJefvll9erV66L7f/DBB5o2bZr279+vNm3a6JlnntG1115bgxUDAAD4rvMnSGGyPFycv6SWVhfhMZaP1FqyZImmTJmiGTNmaNu2bUpKStKgQYN07CKD0NavX69bbrlFt99+u77++msNHz5cw4cP186dO2u4cgAAAAC+wvLJIXr37q2ePXtq7ty5kiSHw6H4+Hjdc889evjhh0vsP3r0aOXm5uqTTz5xbevTp4+6du2q+fPnl3k9JocAAAAAIFUsG1ja4lRQUKCtW7cqNTXVtc3Pz0+pqanasGFDqcds2LDBbX9JGjRo0EX3z8/PV3Z2ttsCAAAAABVhaXA6ceKEiouLFRPjPuAxJiZG6enppR6Tnp5eof1nz56tyMhI1xIfH++Z4gEAAAD4DMvHOFW3qVOnKisry7UcOnTI6pIAAAAAeBlLZ9Vr2LCh7Ha7MjIy3LZnZGQoNja21GNiY2MrtH9QUJCCeOALAAAAgCqwtMUpMDBQPXr00KpVq1zbHA6HVq1apZSUlFKPSUlJcdtfklauXHnR/QEAAACgqix/jtOUKVM0btw4JScnq1evXpozZ45yc3M1YcIESdLYsWPVtGlTzZ49W5J033336YorrtALL7ygoUOH6r333tOWLVv02muvWfk1AAAAANRhlgen0aNH6/jx45o+fbrS09PVtWtXLV++3DUBxMGDB+Xn92vDWN++ffXOO+/oscce0yOPPKI2bdroo48+UqdOnaz6CgAAAADqOMuf41TTeI4TAAAAAMmLnuMEAAAAAN6A4AQAAAAAZSA4AQAAAEAZCE4AAAAAUAbLZ9Wrac65MLKzsy2uBAAAAICVnJmgPPPl+Vxw+uWXXyRJ8fHxFlcCAAAAoDY4ffq0IiMjL7mPzwWnBg0aSDKfD1XWzcHFZWdnKz4+XocOHWJa90riHnoG99EzuI9Vxz30DO5j1XEPPYP7WHXecA8Nw9Dp06fVpEmTMvf1ueDkfJhuZGRkrf0P6E0iIiK4j1XEPfQM7qNncB+rjnvoGdzHquMeegb3sepq+z0sb2MKk0MAAAAAQBkITgAAAABQBp8LTkFBQZoxY4aCgoKsLsWrcR+rjnvoGdxHz+A+Vh330DO4j1XHPfQM7mPV1bV7aDPKM/ceAAAAAPgwn2txAgAAAICKIjgBAAAAQBkITgAAAABQBoITAAAAAJTBZ4LTf//7Xw0bNkxNmjSRzWbTRx99ZHVJXmf27Nnq2bOnwsPD1bhxYw0fPly7d++2uiyvM2/ePHXp0sX1MLiUlBR99tlnVpfl1Z5++mnZbDZNnjzZ6lK8ysyZM2Wz2dyWdu3aWV2WV/r555/1+9//XtHR0QoJCVHnzp21ZcsWq8vyKomJiSX+PNpsNk2aNMnq0rxGcXGxpk2bphYtWigkJEStWrXSk08+KeYBq5jTp09r8uTJSkhIUEhIiPr27avNmzdbXVatVtbP2YZhaPr06YqLi1NISIhSU1P1448/WlNsFfhMcMrNzVVSUpJeeeUVq0vxWl9++aUmTZqkr776SitXrlRhYaGuueYa5ebmWl2aV2nWrJmefvppbd26VVu2bNFvfvMbXX/99fr222+tLs0rbd68WX/961/VpUsXq0vxSh07dtTRo0ddy9q1a60uyeucOnVK/fr1U0BAgD777DN99913euGFFxQVFWV1aV5l8+bNbn8WV65cKUm66aabLK7MezzzzDOaN2+e5s6dq127dumZZ57Rs88+q5dfftnq0rzKHXfcoZUrV+rNN9/Ujh07dM011yg1NVU///yz1aXVWmX9nP3ss8/qpZde0vz587Vx40aFhYVp0KBBysvLq+FKq8jwQZKMZcuWWV2G1zt27Jghyfjyyy+tLsXrRUVFGX/729+sLsPrnD592mjTpo2xcuVK44orrjDuu+8+q0vyKjNmzDCSkpKsLsPrPfTQQ0b//v2tLqPOue+++4xWrVoZDofD6lK8xtChQ43bbrvNbdsNN9xgjBkzxqKKvM+ZM2cMu91ufPLJJ27bu3fvbjz66KMWVeVdLvw52+FwGLGxscZzzz3n2paZmWkEBQUZ7777rgUVVp7PtDjB87KysiRJDRo0sLgS71VcXKz33ntPubm5SklJsbocrzNp0iQNHTpUqampVpfitX788Uc1adJELVu21JgxY3Tw4EGrS/I6H3/8sZKTk3XTTTepcePG6tatmxYsWGB1WV6toKBAb731lm677TbZbDary/Eaffv21apVq/TDDz9IkrZv3661a9dqyJAhFlfmPYqKilRcXKzg4GC37SEhIbTIV9K+ffuUnp7u9v/qyMhI9e7dWxs2bLCwsorzt7oAeCeHw6HJkyerX79+6tSpk9XleJ0dO3YoJSVFeXl5qlevnpYtW6YOHTpYXZZXee+997Rt2zb6nVdB7969tWjRIrVt21ZHjx7V448/rssvv1w7d+5UeHi41eV5jZ9++knz5s3TlClT9Mgjj2jz5s269957FRgYqHHjxlldnlf66KOPlJmZqfHjx1tdild5+OGHlZ2drXbt2slut6u4uFizZs3SmDFjrC7Na4SHhyslJUVPPvmk2rdvr5iYGL377rvasGGDWrdubXV5Xik9PV2SFBMT47Y9JibG9Zm3IDihUiZNmqSdO3fy25dKatu2rdLS0pSVlaWlS5dq3Lhx+vLLLwlP5XTo0CHdd999WrlyZYnfCqL8zv8tdJcuXdS7d28lJCTo/fff1+23325hZd7F4XAoOTlZTz31lCSpW7du2rlzp+bPn09wqqTXX39dQ4YMUZMmTawuxau8//77evvtt/XOO++oY8eOSktL0+TJk9WkSRP+LFbAm2++qdtuu01NmzaV3W5X9+7ddcstt2jr1q1WlwaL0VUPFXb33Xfrk08+0erVq9WsWTOry/FKgYGBat26tXr06KHZs2crKSlJf/nLX6wuy2ts3bpVx44dU/fu3eXv7y9/f399+eWXeumll+Tv76/i4mKrS/RK9evX12WXXaY9e/ZYXYpXiYuLK/FLj/bt29PtsZIOHDigzz//XHfccYfVpXidBx98UA8//LBuvvlmde7cWbfeeqvuv/9+zZ492+rSvEqrVq305ZdfKicnR4cOHdKmTZtUWFioli1bWl2aV4qNjZUkZWRkuG3PyMhwfeYtCE4oN8MwdPfdd2vZsmX6z3/+oxYtWlhdUp3hcDiUn59vdRle46qrrtKOHTuUlpbmWpKTkzVmzBilpaXJbrdbXaJXysnJ0d69exUXF2d1KV6lX79+JR7N8MMPPyghIcGiirzbwoUL1bhxYw0dOtTqUrzOmTNn5Ofn/qOd3W6Xw+GwqCLvFhYWpri4OJ06dUorVqzQ9ddfb3VJXqlFixaKjY3VqlWrXNuys7O1ceNGrxvf7TNd9XJyctx+i7pv3z6lpaWpQYMGat68uYWVeY9JkybpnXfe0T//+U+Fh4e7+qVGRkYqJCTE4uq8x9SpUzVkyBA1b95cp0+f1jvvvKMvvvhCK1assLo0rxEeHl5ibF1YWJiio6MZc1cBDzzwgIYNG6aEhAQdOXJEM2bMkN1u1y233GJ1aV7l/vvvV9++ffXUU09p1KhR2rRpk1577TW99tprVpfmdRwOhxYuXKhx48bJ399nfkTxmGHDhmnWrFlq3ry5OnbsqK+//lovvviibrvtNqtL8yorVqyQYRhq27at9uzZowcffFDt2rXThAkTrC6t1irr5+zJkyfrf//3f9WmTRu1aNFC06ZNU5MmTTR8+HDriq4Mq6f1qymrV682JJVYxo0bZ3VpXqO0+yfJWLhwodWleZXbbrvNSEhIMAIDA41GjRoZV111lfHvf//b6rK8HtORV9zo0aONuLg4IzAw0GjatKkxevRoY8+ePVaX5ZX+7//+z+jUqZMRFBRktGvXznjttdesLskrrVixwpBk7N692+pSvFJ2drZx3333Gc2bNzeCg4ONli1bGo8++qiRn59vdWleZcmSJUbLli2NwMBAIzY21pg0aZKRmZlpdVm1Wlk/ZzscDmPatGlGTEyMERQUZFx11VVe+ffcZhg8ThoAAAAALoUxTgAAAABQBoITAAAAAJSB4AQAAAAAZSA4AQAAAEAZCE4AAAAAUAaCEwAAAACUgeAEAAAAAGUgOAEAAABAGQhOAABUgM1m00cffWR1GQCAGkZwAgB4jfHjx8tms5VYBg8ebHVpAIA6zt/qAgAAqIjBgwdr4cKFbtuCgoIsqgYA4CtocQIAeJWgoCDFxsa6LVFRUZLMbnTz5s3TkCFDFBISopYtW2rp0qVux+/YsUO/+c1vFBISoujoaE2cOFE5OTlu+7zxxhvq2LGjgoKCFBcXp7vvvtvt8xMnTmjEiBEKDQ1VmzZt9PHHH1fvlwYAWI7gBACoU6ZNm6Ybb7xR27dv15gxY3TzzTdr165dkqTc3FwNGjRIUVFR2rx5sz744AN9/vnnbsFo3rx5mjRpkiZOnKgdO3bo448/VuvWrd2u8fjjj2vUqFH65ptvdO2112rMmDE6efJkjX5PAEDNshmGYVhdBAAA5TF+/Hi99dZbCg4Odtv+yCOP6JFHHpHNZtMf/vAHzZs3z/VZnz591L17d7366qtasGCBHnroIR06dEhhYWGSpE8//VTDhg3TkSNHFBMTo6ZNm2rChAn63//931JrsNlseuyxx/Tkk09KMsNYvXr19NlnnzHWCgDqMMY4AQC8ypVXXukWjCSpQYMGrvWUlBS3z1JSUpSWliZJ2rVrl5KSklyhSZL69esnh8Oh3bt3y2az6ciRI7rqqqsuWUOXLl1c62FhYYqIiNCxY8cq+5UAAF6A4AQA8CphYWElus55SkhISLn2CwgIcHtvs9nkcDiqoyQAQC3BGCcAQJ3y1VdflXjfvn17SVL79u21fft25ebmuj5ft26d/Pz81LZtW4WHhysxMVGrVq2q0ZoBALUfLU4AAK+Sn5+v9PR0t23+/v5q2LChJOmDDz5QcnKy+vfvr7ffflubNm3S66+/LkkaM2aMZsyYoXHjxmnmzJk6fvy47rnnHt16662KiYmRJM2cOVN/+MMf1LhxYw0ZMkSnT5/WunXrdM8999TsFwUA1CoEJwCAV1m+fLni4uLctrVt21bff/+9JHPGu/fee0933XWX4uLi9O6776pDhw6SpNDQUK1YsUL33XefevbsqdDQUN1444168cUXXecaN26c8vLy9Oc//1kPPPCAGjZsqJEjR9bcFwQA1ErMqgcAqDNsNpuWLVum4cOHW10KAKCOYYwTAAAAAJSB4AQAAAAAZWCMEwCgzqD3OQCgutDiBAAAAABlIDgBAAAAQBkITgAAAABQBoITAAAAAJSB4AQAAAAAZSA4AQAAAEAZCE4AAAAAUAaCEwAAAACU4f8DfVH/W3j9M3IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYnUlEQVR4nOzdeViU5foH8O+wDijgzuIC7ogiuCLuJgZmJmqKZGpmdU5p5bE8J1vU6pRt9muxMjtp5r6bmWlI7uAKuO+puAGiAooKwry/P57eGUZZBmZ5Z/l+rmuueR3embkHFeae577vRyVJkgQiIiIiIiIyipPSARAREREREdkDJldEREREREQmwOSKiIiIiIjIBJhcERERERERmQCTKyIiIiIiIhNgckVERERERGQCTK6IiIiIiIhMgMkVERERERGRCTC5IiIiIiIiMgEmV0RERGS1VCoVJkyYoHQYREQGYXJFRER2p3fv3mjTpo3SYdgElUpV5uWf//yn0uEREdkUF6UDICIiImX169cPo0ePfuj2Fi1aKBANEZHtYnJFRGRl8vPzUa1aNaXDqJCtxOno7t27Bzc3Nzg5lV2s0qJFCzz99NMWjIqIyD6xLJCISEHTp0+HSqXCsWPH8NRTT6FmzZro3r07ACAoKAiPP/44tm7dio4dO8LDwwOhoaHYunUrAGD16tUIDQ2FWq1Ghw4dkJqaqvfYGRkZGDt2LBo0aAB3d3f4+/tj0KBBOH/+vPYc+Tn++OMPhIeHQ61WIyQkBKtXr9Z7rJ9++gkqlQrbtm3DSy+9hHr16qFBgwbar3/77bdo3bo13N3dERAQgPHjxyMnJ0fvMeRSvQMHDqBr167w8PBA48aNMXv2bNN9QyvJkLhPnz6NoUOHws/PD2q1Gg0aNMCIESOQm5urPSchIQHdu3dHjRo1UL16dbRs2RJvvvlmhc8v9xMtWrQILVu21P5dbt++/aFzL1++jGeffRa+vr5wd3dH69atMXfuXL1ztm7dCpVKhaVLl+Ltt99G/fr14enpiby8vKp9g0qozN9fVlYWxo0bB19fX6jVaoSFhWH+/PkPnafRaPDll19q/x3XrVsXMTEx2L9//0Pnrl27Fm3atNG+9o0bNxr9moiITI0rV0REVmDYsGFo3rw5PvzwQ0iSpL39zJkzeOqpp/CPf/wDTz/9ND777DMMHDgQs2fPxptvvomXXnoJADBjxgwMHz4cJ0+e1K5QDB06FEePHsXLL7+MoKAgZGVlISEhAenp6QgKCtI+x+nTpxEXF4d//vOfGDNmDObNm4dhw4Zh48aN6Nevn16cL730EurWrYupU6ciPz8fgEgQ3333XURFReHFF1/EyZMn8d1332Hfvn3YtWsXXF1dtfe/efMmHnvsMQwfPhzx8fFYvnw5XnzxRbi5ueHZZ58117e3VIbEXVhYiOjoaBQUFODll1+Gn58fLl++jPXr1yMnJwc+Pj44evQoHn/8cbRt2xbvvfce3N3dcebMGezatcugOLZt24Zly5bhlVdegbu7O7799lvExMRg79692r6xzMxMdOnSRZuM1a1bF7///jvGjRuHvLw8TJw4Ue8x33//fbi5ueH1119HQUEB3Nzcyo3h3r17yM7Ofuh2b29vvfsa8vd39+5d9O7dG2fOnMGECRPQuHFjrFixAs888wxycnLw6quvah9v3Lhx+Omnn9C/f38899xzKCoqwo4dO7B792507NhRe97OnTuxevVqvPTSS/Dy8sJXX32FoUOHIj09HbVr1zbo+0xEZBESEREpZtq0aRIAKT4+/qGvBQYGSgCkpKQk7W2bNm2SAEgeHh7ShQsXtLd///33EgBpy5YtkiRJ0s2bNyUA0qefflru88vPsWrVKu1tubm5kr+/v9SuXTvtbfPmzZMASN27d5eKioq0t2dlZUlubm7So48+KhUXF2tvnzVrlgRAmjt3rva2Xr16SQCkmTNnam8rKCiQwsPDpXr16kmFhYXlxloZvXr1klq3bl3m1w2NOzU1VQIgrVixoszH+r//+z8JgHTt2rVKxwlAAiDt379fe9uFCxcktVotDR48WHvbuHHjJH9/fyk7O1vv/iNGjJB8fHykO3fuSJIkSVu2bJEASE2aNNHeZmgMpV2WLFmiPc/Qv78vvvhCAiAtXLhQe15hYaEUGRkpVa9eXcrLy5MkSZL+/PNPCYD0yiuvPBSTRqPRi8/NzU06c+aM9raDBw9KAKSvv/7aoNdIRGQpLAskIrICZU1lCwkJQWRkpPbPERERAIBHHnkEjRo1euj2v/76CwDg4eEBNzc3bN26FTdv3iz3uQMCAjB48GDtn729vTF69GikpqYiIyND79znn38ezs7O2j9v3rwZhYWFmDhxol5Pz/PPPw9vb2/89ttvevd3cXHBP/7xD+2f3dzc8I9//ANZWVk4cOBAuXGakqFx+/j4AAA2bdqEO3fulPpYNWrUAAD88ssv0Gg0lY4lMjISHTp00P65UaNGGDRoEDZt2oTi4mJIkoRVq1Zh4MCBkCQJ2dnZ2kt0dDRyc3ORkpKi95hjxoyBh4eHwTEMGjQICQkJD1369Omjd54hf38bNmyAn58f4uPjtee5urrilVdewe3bt7Ft2zYAwKpVq6BSqTBt2rSH4lGpVHp/joqKQtOmTbV/btu2Lby9vbX/3omIrAWTKyIiK9C4ceNSby+ZQAG6N/sNGzYs9XY5kXJ3d8fHH3+M33//Hb6+vujZsyc++eSTh5IlAGjWrNlDb2blKXEl+7NKi/PChQsAgJYtW+rd7ubmhiZNmmi/LgsICHhoCEZZz1XSjRs3kJGRob2U7HeqCkPjbty4MSZNmoT//e9/qFOnDqKjo/HNN9/oPX9cXBy6deuG5557Dr6+vhgxYgSWL19ucKLVvHnzh25r0aIF7ty5g2vXruHatWvIycnBnDlzULduXb3L2LFjAYgep5LK+vdUlgYNGiAqKuqhi6+vr955hvz9XbhwAc2bN39ogEarVq20XweAs2fPIiAgALVq1aowvgf/HwBAzZo1K/zggIjI0phcERFZgbJWGUquEhlyu1SiX2vixIk4deoUZsyYAbVajXfeeQetWrV6aPCFKeI0tyFDhsDf3197Kdm3Y24zZ87EoUOH8Oabb+Lu3bt45ZVX0Lp1a1y6dAmA+J5s374dmzdvxqhRo3Do0CHExcWhX79+KC4uNvr55STt6aefLnV1KSEhAd26ddO7j1J/T+ZiyL93IiJrwOSKiMiONW3aFK+99hr++OMPHDlyBIWFhZg5c6beOWfOnHnoTeqpU6cAQG/wRWkCAwMBACdPntS7vbCwEOfOndN+XXblyhXtIIzKPNfMmTP1kol///vf5cZVkcrGHRoairfffhvbt2/Hjh07cPnyZb0peU5OTujbty8+//xzHDt2DB988AH+/PNPbNmypcJYTp8+/dBtp06dgqenp3aFysvLC8XFxaWuLkVFRaFevXpV+TZUmiF/f4GBgTh9+vRDK3cnTpzQfh0Q/zavXLmCGzdumDlqIiLLYXJFRGSH7ty5g3v37und1rRpU3h5eaGgoEDv9itXrmDNmjXaP+fl5eHnn39GeHg4/Pz8yn2eqKgouLm54auvvtJL0H788Ufk5uZiwIABeucXFRXh+++/1/65sLAQ33//PerWravXd/SgDh066CUTISEh5cZVEUPjzsvLQ1FRkd59Q0ND4eTkpP0+lpYchIeHA8BD3+vSJCcn6/VMXbx4Eb/88gseffRRODs7w9nZGUOHDsWqVatw5MiRh+5/7dq1il+wiRjy9/fYY48hIyMDy5Yt07vf119/jerVq6NXr14AxDRLSZLw7rvvPvQ8XJEiIlvFUexERHbo1KlT6Nu3L4YPH46QkBC4uLhgzZo1yMzMxIgRI/TObdGiBcaNG4d9+/bB19cXc+fORWZmJubNm1fh89StWxdTpkzBu+++i5iYGDzxxBM4efIkvv32W3Tq1OmhjWkDAgLw8ccf4/z582jRogWWLVuGtLQ0zJkzR29kuylcu3YN//3vfx+6vXHjxhg5cqRBcf/555+YMGEChg0bhhYtWqCoqAgLFizQJjwA8N5772H79u0YMGAAAgMDkZWVhW+//RYNGjTQ7llWnjZt2iA6OlpvFDsAvaTjo48+wpYtWxAREYHnn38eISEhuHHjBlJSUrB582ajV39OnTqFhQsXPnS7r6+v3jh+Q/7+XnjhBXz//fd45plncODAAQQFBWHlypXYtWsXvvjiC3h5eQEA+vTpg1GjRuGrr77C6dOnERMTA41Ggx07dqBPnz6YMGGCUa+JiEgRis0pJCIi7Sj20sZ4BwYGSgMGDHjodgDS+PHj9W47d+6c3uj17Oxsafz48VJwcLBUrVo1ycfHR4qIiJCWL19e6nNs2rRJatu2reTu7i4FBwc/NHpcHsW+b9++Ul/HrFmzpODgYMnV1VXy9fWVXnzxRenmzZt658jj0ffv3y9FRkZKarVaCgwMlGbNmlXh96my5LHhpV369u1rcNx//fWX9Oyzz0pNmzaV1Gq1VKtWLalPnz7S5s2bteckJiZKgwYNkgICAiQ3NzcpICBAio+Pl06dOlVhnPLf5cKFC6XmzZtL7u7uUrt27bQj9UvKzMyUxo8fLzVs2FBydXWV/Pz8pL59+0pz5szRniOPYi9vdHxpMZR16dWrl9731NC/v8zMTGns2LFSnTp1JDc3Nyk0NFSaN2/eQ+cVFRVJn376qRQcHCy5ublJdevWlfr37y8dOHDgoe/RgwIDA6UxY8YY/DqJiCxBJUlceyciclRBQUFo06YN1q9fb/bn6t27N7Kzs0stbXNUKpUK48ePx6xZs5QOpUL8+yMiqhh7roiIiIiIiEyAyRUREREREZEJMLkiIiIiIiIyAfZcERERERERmQBXroiIiIiIiEyAyRUREREREZEJcBPhUmg0Gly5cgVeXl5QqVRKh0NERERERAqRJAm3bt1CQEAAnJzKX5ticlWKK1euoGHDhkqHQUREREREVuLixYto0KBBuecwuSqFl5cXAPEN9Pb2VjgaIiIiIiJSSl5eHho2bKjNEcrD5KoUcimgt7c3kysiIiIiIjKoXYgDLYiIiIiIiEyAyRUREREREZEJMLkiIiIiIiIyAfZcEREREZFNKC4uxv3795UOg+yMs7MzXFxcTLIFE5MrIiIiIrJ6t2/fxqVLlyBJktKhkB3y9PSEv78/3NzcjHocJldEREREZNWKi4tx6dIleHp6om7duiZZYSACxAbBhYWFuHbtGs6dO4fmzZtXuFFweZhcEREREZFVu3//PiRJQt26deHh4aF0OGRnPDw84OrqigsXLqCwsBBqtbrKj8WBFkRERERkE7hiReZizGqV3uOY5FGIiIiIiIgcHJMrIiIiIiIiE2ByRURERERkI4KCgvDFF18oHQaVgckVEREREZGJqVSqci/Tp0+v0uPu27cPL7zwglGx9e7dGxMnTjTqMah0nBZIRERERGRiV69e1R4vW7YMU6dOxcmTJ7W3Va9eXXssSRKKi4vh4lLxW/O6deuaNlAyKa5cEVmz778Hnn4auHdP6UiIiIishiQB+fnKXAzdw9jPz0978fHxgUql0v75xIkT8PLywu+//44OHTrA3d0dO3fuxNmzZzFo0CD4+vqievXq6NSpEzZv3qz3uA+WBapUKvzvf//D4MGD4enpiebNm2PdunVGfX9XrVqF1q1bw93dHUFBQZg5c6be17/99ls0b94carUavr6+ePLJJ7VfW7lyJUJDQ+Hh4YHatWsjKioK+fn5RsVjS7hyRWSt7t8HXn8duH0bGDwYGDpU6YiIiIiswp07QImFH4u6fRuoVs00j/XGG2/gs88+Q5MmTVCzZk1cvHgRjz32GD744AO4u7vj559/xsCBA3Hy5Ek0atSozMd599138cknn+DTTz/F119/jZEjR+LChQuoVatWpWM6cOAAhg8fjunTpyMuLg5JSUl46aWXULt2bTzzzDPYv38/XnnlFSxYsABdu3bFjRs3sGPHDgBitS4+Ph6ffPIJBg8ejFu3bmHHjh2QDM1I7QCTKyJrtX+/+AkOAFu3MrkiIiKyM++99x769eun/XOtWrUQFham/fP777+PNWvWYN26dZgwYUKZj/PMM88gPj4eAPDhhx/iq6++wt69exETE1PpmD7//HP07dsX77zzDgCgRYsWOHbsGD799FM888wzSE9PR7Vq1fD444/Dy8sLgYGBaNeuHQCRXBUVFWHIkCEIDAwEAISGhlY6BlvG5IrIWv35p+542zbl4iAiIrIynp66zx+VeG5T6dixo96fb9++jenTp+O3337TJip3795Fenp6uY/Ttm1b7XG1atXg7e2NrKysKsV0/PhxDBo0SO+2bt264YsvvkBxcTH69euHwMBANGnSBDExMYiJidGWJIaFhaFv374IDQ1FdHQ0Hn30UTz55JOoWbNmlWKxRey5IrJWJZOrw4eB7GzlYiEiIrIiKpUozVPiolKZ7nVUe6C+8PXXX8eaNWvw4YcfYseOHUhLS0NoaCgKCwvLfRxXV9cHvj8qaDQa0wVagpeXF1JSUrBkyRL4+/tj6tSpCAsLQ05ODpydnZGQkIDff/8dISEh+Prrr9GyZUucO3fOLLFYIyZXRNbo3j0gKUkc16ghrv+uZyYiIiL7tGvXLjzzzDMYPHgwQkND4efnh/Pnz1s0hlatWmHXrl0PxdWiRQs4OzsDAFxcXBAVFYVPPvkEhw4dwvnz5/Hn3x8Kq1QqdOvWDe+++y5SU1Ph5uaGNWvWWPQ1KIllgUTWaPdukWD5+QFDhgDffiv6rgYPVjoyIiIiMpPmzZtj9erVGDhwIFQqFd555x2zrUBdu3YNaWlperf5+/vjtddeQ6dOnfD+++8jLi4OycnJmDVrFr799lsAwPr16/HXX3+hZ8+eqFmzJjZs2ACNRoOWLVtiz549SExMxKOPPop69ephz549uHbtGlq1amWW12CNuHJFZI3kksBHHgF69xbH7LsiIiKya59//jlq1qyJrl27YuDAgYiOjkb79u3N8lyLFy9Gu3bt9C4//PAD2rdvj+XLl2Pp0qVo06YNpk6divfeew/PPPMMAKBGjRpYvXo1HnnkEbRq1QqzZ8/GkiVL0Lp1a3h7e2P79u147LHH0KJFC7z99tuYOXMm+vfvb5bXYI1UkiPNRjRQXl4efHx8kJubC29vb6XDIUfUvTuwaxfwv/8BAwcCvr6iyDs7G6jCWFUiIiJbdu/ePZw7dw6NGzeGWq1WOhyyQ+X9G6tMbsCVKyJrc/s2sGePOH7kEaBePaBVK7FrIfuuiIiIiKwWkysia7NzJ1BUBAQGAo0bi9vk0sCtW5WKioiIiIgqwOSKyNqU7LeS9eolrtl3RURERGS1FE+uvvnmGwQFBUGtViMiIgJ79+4t9/wVK1YgODgYarUaoaGh2LBhg97Xb9++jQkTJqBBgwbw8PBASEgIZs+ebc6XQGRaW7aI69KSq7Q04OZNi4dERERERBVTNLlatmwZJk2ahGnTpiElJQVhYWGIjo4uc0fppKQkxMfHY9y4cUhNTUVsbCxiY2Nx5MgR7TmTJk3Cxo0bsXDhQhw/fhwTJ07EhAkTsG7dOku9LKKqu3kTSEkRx3366G738wNatmTfFREREZEVUzS5+vzzz/H8889j7Nix2hUmT09PzJ07t9Tzv/zyS8TExGDy5Mlo1aoV3n//fbRv3x6zZs3SnpOUlIQxY8agd+/eCAoKwgsvvICwsLByV8QKCgqQl5endyFSxPbtgEYjEqn69fW/xpHsRERERFZNseSqsLAQBw4cQFRUlC4YJydERUUhOTm51PskJyfrnQ8A0dHReud37doV69atw+XLlyFJErZs2YJTp07h0UcfLTOWGTNmwMfHR3tp2LChka+OqIpK67eSyaWBHGpBREREZJUUS66ys7NRXFwMX19fvdt9fX2RkZFR6n0yMjIqPP/rr79GSEgIGjRoADc3N8TExOCbb75Bz549y4xlypQpyM3N1V4uXrxoxCsjMoIhyVVaGpCTY6mIiIiIiMhALkoHYGpff/01du/ejXXr1iEwMBDbt2/H+PHjERAQ8NCql8zd3R3u7u4PfyEvD+AmwmQpWVmA3D8olwCWFBAANG8OnD4txrU//rhFwyMiIiKi8im2clWnTh04OzsjMzNT7/bMzEz4+fmVeh8/P79yz7979y7efPNNfP755xg4cCDatm2LCRMmIC4uDp999lnlg+TgALIkudyvbVugTp3Sz2HfFRERkUPp3bs3Jk6cqP1zUFAQvvjii3Lvo1KpsHbtWqOf21SP40gUS67c3NzQoUMHJCYmam/TaDRITExEZGRkqfeJjIzUOx8AEhIStOffv38f9+/fh5OT/stydnaGRqOpfJDySGwiSyivJFDGvisiIiKbMHDgQMTExJT6tR07dkClUuHQoUOVftx9+/bhhRdeMDY8PdOnT0d4ePhDt1+9ehX9+/c36XM96KeffkKNGjXM+hyWpGhZ4KRJkzBmzBh07NgRnTt3xhdffIH8/HyMHTsWADB69GjUr18fM2bMAAC8+uqr6NWrF2bOnIkBAwZg6dKl2L9/P+bMmQMA8Pb2Rq9evTB58mR4eHggMDAQ27Ztw88//4zPP/+88gHKb3aJLKEyyVVKCstWiYiIrNi4ceMwdOhQXLp0CQ0aNND72rx589CxY0e0bdu20o9bt25dU4VYobKqyahsio5il8v1pk6divDwcKSlpWHjxo3aoRXp6em4evWq9vyuXbti8eLFmDNnDsLCwrBy5UqsXbsWbdq00Z6zdOlSdOrUCSNHjkRISAg++ugjfPDBB/jnP/9Z+QDPngUuXDD6dRJV6OJF0Uvl5ASUM3wFDRoATZuKce07d1ouPiIiImsiSUB+vjIXSTIoxMcffxx169bFTz/9pHf77du3sWLFCowbNw7Xr19HfHw86tevD09PT4SGhmLJkiXlPu6DZYGnT59Gz549oVarERISgoSEhIfu85///ActWrSAp6cnmjRpgnfeeQf3798HIFaO3n33XRw8eBAqlQoqlUob84NlgYcPH8YjjzwCDw8P1K5dGy+88AJu376t/fozzzyD2NhYfPbZZ/D390ft2rUxfvx47XNVRXp6OgYNGoTq1avD29sbw4cP12sTOnjwIPr06QMvLy94e3ujQ4cO2L9/PwDgwoULGDhwIGrWrIlq1aqhdevW2LBhQ5VjMYTiAy0mTJiACRMmlPq1raWUPg0bNgzDhg0r8/H8/Pwwb948U4UHJCQAzz1nuscjKo1cgtqxI+DjU/65vXuLxH/bNuCxx8weGhERkdW5cweoXl2Z5759G6hWrcLTXFxcMHr0aPz000946623oFKpAAArVqxAcXEx4uPjcfv2bXTo0AH/+c9/4O3tjd9++w2jRo1C06ZN0blz5wqfQ6PRYMiQIfD19cWePXuQm5ur158l8/Lywk8//YSAgAAcPnwYzz//PLy8vPDvf/8bcXFxOHLkCDZu3IjNmzcDAHxKeS+Sn5+P6OhoREZGYt++fcjKysJzzz2HCRMm6CWQW7Zsgb+/P7Zs2YIzZ84gLi4O4eHheP755yt8PaW9Pjmx2rZtG4qKijB+/HjExcVp84SRI0eiXbt2+O677+Ds7Iy0tDS4uroCAMaPH4/CwkJs374d1apVw7Fjx1DdzP9uFE+urN4ffzC5IvOTSwL79Kn43F69gB9/ZN8VERGRlXv22Wfx6aefYtu2bej991CqefPmYejQodr9VV9//XXt+S+//DI2bdqE5cuXG5Rcbd68GSdOnMCmTZsQEBAAAPjwww8f6pN6++23tcdBQUF4/fXXsXTpUvz73/+Gh4cHqlevDhcXl3LLABcvXox79+7h559/RrW/k8tZs2Zh4MCB+Pjjj7WVZzVr1sSsWbPg7OyM4OBgDBgwAImJiVVKrhITE3H48GGcO3dOuw/tzz//jNatW2Pfvn3o1KkT0tPTMXnyZAQHBwMAmjdvrr1/eno6hg4ditDQUABAkyZNKh1DZTG5qkhiIlBcDDg7Kx0J2StJMqzfSib3XR04ANy6BXh5mS82IiIia+TpKVaQlHpuAwUHB6Nr166YO3cuevfujTNnzmDHjh147733AADFxcX48MMPsXz5cly+fBmFhYUoKCiAp4HPcfz4cTRs2FCbWAEodTDcsmXL8NVXX+Hs2bO4ffs2ioqK4F3Jvu3jx48jLCxMm1gBQLdu3aDRaHDy5EltctW6dWs4l3jf7O/vj8OHD1fquUo+Z8OGDbWJFQCEhISgRo0aOH78ODp16oRJkybhueeew4IFCxAVFYVhw4ahadOmAIBXXnkFL774Iv744w9ERUVh6NChVepzqwxFe66snpcXcOOGGB5AZC5//SV6rlxdgW7dKj6/USOgcWOR9O/aZf74iIiIrI1KJUrzlLj8Xd5nqHHjxmHVqlW4desW5s2bh6ZNm6LX3x+Ufvrpp/jyyy/xn//8B1u2bEFaWhqio6NRWFhosm9VcnIyRo4cicceewzr169Hamoq3nrrLZM+R0lySZ5MpVJVbWq3gaZPn46jR49iwIAB+PPPPxESEoI1a9YAAJ577jn89ddfGDVqFA4fPoyOHTvi66+/NlssAJOr8smDBUppDCQyGXnVqksXg2q4AXC/KyIiIhsxfPhwODk5YfHixfj555/x7LPPavuvdu3ahUGDBuHpp59GWFgYmjRpglOnThn82K1atcLFixf1BsDt3r1b75ykpCQEBgbirbfeQseOHdG8eXNceGBgm5ubG4qLiyt8roMHDyI/P197265du+Dk5ISWLVsaHHNlyK/v4sWL2tuOHTuGnJwchISEaG9r0aIF/vWvf+GPP/7AkCFD9OYvNGzYEP/85z+xevVqvPbaa/jhhx/MEquMyVV55P6XP/5QNg6yb5UpCZRxvysiIiKbUL16dcTFxWHKlCm4evUqnnnmGe3XmjdvjoSEBCQlJeH48eP4xz/+oTcJryJRUVFo0aIFxowZg4MHD2LHjh1466239M5p3rw50tPTsXTpUpw9exZfffWVdmVHFhQUhHPnziEtLQ3Z2dkoKCh46LlGjhwJtVqNMWPG4MiRI9iyZQtefvlljBo1SlsSWFXFxcVIS0vTuxw/fhxRUVEIDQ3FyJEjkZKSgr1792L06NHo1asXOnbsiLt372LChAnYunUrLly4gF27dmHfvn1o1aoVAGDixInYtGkTzp07h5SUFGzZskX7NXNhclUe+c1uUpJydb1k3yrbbyWTk6v9+/lvk4iIyMqNGzcON2/eRHR0tF5/1Ntvv4327dsjOjoavXv3hp+fH2JjYw1+XCcnJ6xZswZ3795F586d8dxzz+GDDz7QO+eJJ57Av/71L0yYMAHh4eFISkrCO++8o3fO0KFDERMTgz59+qBu3bqljoP39PTEpk2bcOPGDXTq1AlPPvkk+vbti1mzZlXum1GK27dvo127dnqXgQMHQqVS4ZdffkHNmjXRs2dPREVFoUmTJli2bBkAwNnZGdevX8fo0aPRokULDB8+HP3798e7774LQCRt48ePR6tWrRATE4MWLVrg22+/NTre8qgkycBh/Q4kLy8PPj4+yM3JgXd4OHD+PLB+PTBggNKhkb05ehRo0wZQq4GcHMDd3fD7Nm4s/m1u2gQ8+qi5IiQiIlLcvXv3cO7cOTRu3BhqtVrpcMgOlfdvTJsb5OZWOAiEK1flUal0b1rZd0XmIK9ade9eucQK0K1ese+KiIiIyCowuapIv37imn1XZA7y5sGVKQmUyUMt2HdFREREZBWYXFXkkUcAJyfg+HHg0iWloyF7UlysS4yqklzJK1d79wIlJvcQERERkTKYXFWkVi2gY0dxzNJAMqWDB4GbN8V+ah06VP7+QUFiz6uiIiA52eThEREREVHlMLkyBPuuyBzkfqtevQAXl8rfX6XiSHYiInIonMNG5mKqf1tMrgwh911t3gyYcYdpcjBVGcH+IG4mTEREDsDZ2RkAUFhYqHAkZK/u3LkDAHB1dTXqcarwcbkD6tIFqF4duHZNlHK1a6d0RGTr7t8Htm8Xx/Jm1VUhr1zt2QPcuQN4ehofGxERkZVxcXGBp6cnrl27BldXVzg5cX2ATEOSJNy5cwdZWVmoUaOGNpGvKiZXhnBzEysE69eL0kAmV2SsffvEEIpatYC2bav+OE2aAA0aiGEru3cbtwpGRERkpVQqFfz9/XHu3DlcuHBB6XDIDtWoUQN+fn5GPw6TK0P16yeSqz/+AP79b6WjIVsnj2Dv00dMo6wque9q0SLRd8XkioiI7JSbmxuaN2/O0kAyOVdXV6NXrGRMrgwlD7XYuZPlV2Q8U/RbyXr3FskV+66IiMjOOTk5Qa1WKx0GUZlYsGqoli1F+VVBAbBjh9LRkC27dw/YtUscmyK5kvuudu8G7t41/vGIiIiIqEqYXBlKpeJIdjKN5GSRpPv7i6TdWM2aAQEBQGGhGGxBRERERIpgclUZ8kj2P/5QNg6ybXJJYJ8+Imk3Fve7IiIiIrIKTK4qIypKvJE9fBi4elXpaMhWmbLfSsb9roiIiIgUx+SqMurU0Y1h37xZ2VjINt2+DezdK45NmVzJK1fJyaKni4iIiIgsjslVZbHvioyxcydQVAQEBQGNG5vucVu0APz8RC+XnLwRERERkUUxuaosue8qIQGQJGVjIdtjjpJAgH1XRERERFaAyVVldesGeHgAGRnAkSNKR0O2xlzJFcC+KyIiIiKFMbmqLHd33QoBpwZSZdy8CaSkiOM+fUz/+PK/y6QkUR5IRERERBbF5Koq2HdFVbFtmyglbdlS7EtlasHBQL16YqDFvn2mf3wiIiIiKheTq6qQ+662b+dkNjLcli3i2hwlgYDou5JLA9l3RURERGRxTK6qonVrwN8fuHsX2LVL6WjIVpiz30rGoRZEREREimFyVRUqlf7UQKKKZGbqBqDIq0vmID92UhJQWGi+5yEiIiKihzC5qio5ueJQCzKEvJIUFiY2ozaXVq2AunXFqir7roiIiIgsislVVUVFievUVODaNWVjIetniZJAQH+/K45kJyIiIrIoJldV5ecHtG0rjjdvVjYWsn5ycmWOEewPYt8VERERkSKsIrn65ptvEBQUBLVajYiICOzdu7fc81esWIHg4GCo1WqEhoZiw4YNel9XqVSlXj799FPTBs6R7GSIixeBM2cAJyegZ0/zP5/cd7VrF3D/vvmfj4iIiIgAWEFytWzZMkyaNAnTpk1DSkoKwsLCEB0djaysrFLPT0pKQnx8PMaNG4fU1FTExsYiNjYWR+RhAQCuXr2qd5k7dy5UKhWGDh1q2uBL9l1Jkmkfm+yHPIK9Y0fAx8f8zxcSAtSuDdy5A+zfb/7nIyIiIiIAVpBcff7553j++ecxduxYhISEYPbs2fD09MTcuXNLPf/LL79ETEwMJk+ejFatWuH9999H+/btMWvWLO05fn5+epdffvkFffr0QZMmTUwbfI8egLs7cPkycOKEaR+b7Iel+q1kTk7suyIiIiJSgKLJVWFhIQ4cOIAoeTgEACcnJ0RFRSE5ObnU+yQnJ+udDwDR0dFlnp+ZmYnffvsN48aNKzOOgoIC5OXl6V0M4uEhEiyAUwOpdJJk+eQKYN8VERERkQIUTa6ys7NRXFwMX19fvdt9fX2RkZFR6n0yMjIqdf78+fPh5eWFIUOGlBnHjBkz4OPjo700bNjQ8BfBvisqz9mzoufK1RXo1s1yz8u+KyIiIiKLU7ws0Nzmzp2LkSNHQq1Wl3nOlClTkJubq71cvHjR8CeQ+662buWmrfQwedWqSxfA09Nyz9umDVCrFnD7NpCSYrnnJSIiInJgiiZXderUgbOzMzIzM/Vuz8zMhJ+fX6n38fPzM/j8HTt24OTJk3juuefKjcPd3R3e3t56F4O1bQvUqwfk5wNllCaSA1OiJBDQn0zIvisiIiIii1A0uXJzc0OHDh2QmJiovU2j0SAxMRGRkZGl3icyMlLvfABISEgo9fwff/wRHTp0QFhYmGkDL8nJSbehMEsDqSRJ0k0KtHRyBbDvioiIiMjCFC8LnDRpEn744QfMnz8fx48fx4svvoj8/HyMHTsWADB69GhMmTJFe/6rr76KjRs3YubMmThx4gSmT5+O/fv3Y8KECXqPm5eXhxUrVlS4amUSct8Vh1pQSceOAVlZYvBJRITln1/uu9q5EygqsvzzExERETkYF6UDiIuLw7Vr1zB16lRkZGQgPDwcGzdu1A6tSE9Ph5OTLgfs2rUrFi9ejLfffhtvvvkmmjdvjrVr16JNmzZ6j7t06VJIkoT4+Hjzvwh55Wr/fuDGDdHrQiSXBHbvLkb2W1poKFCjBpCTA6SmAp06WT4GIiIiIgeikiTufvugvLw8+Pj4IDc31/D+qzZtgKNHgeXLgWHDzBsg2YbBg4G1a4EZM4A33lAmhkGDgHXrgE8/BV5/XZkYiIiIiGxYZXIDxcsC7YY8NZB9VwQAxcW6Xicl+q1k7LsiIiIishgmV6ZSsu+Ki4GUlibK8by8gPbtlYtD7rvasUMkfERERERkNkyuTKVnT8DNDbhwAThzRuloSGlyv1WvXoCLgq2NYWGAjw+QlycSPiIiIiIyGyZXplKtGtC1qzjm1EBScgR7Sc7OQI8e4pilgURERERmxeTKlOTSQPZdObb794Ht28Wx0skVoOu74mbCRERERGbF5MqU5KEWf/4p3mCTY9q3D8jPB2rXFuPQlSb3XW3fzr4rIiIiIjNicmVK7dqJN9S3bgF79yodDSlF7rfq0wdwsoL/YuHhgLc3kJsLHDqkdDREREREdssK3vnZEWdnoG9fccy+K8dVMrmyBi4uYiNjgH1XRERERGbE5MrU2Hfl2O7dA5KSxLE19FvJ5NJA9l0RERERmQ2TK1OT+6727BH7HJFjSU4GCgoAf3+gZUulo9GRh1ps3w5oNMrGQkRERGSnmFyZWqNG4k21RqMbx02OQy4JfOQRQKVSNpaS2rcHqlcHbt4EDh9WOhoiIiIiu8Tkyhzk1SuWBjqeksmVNWHfFREREZHZMbkyB7nvikMtHEvJKZHWllwB7LsiIiIiMjMmV+bQu7dYKTh7FvjrL6WjIUvZuRMoKgIaNwaCgpSO5mElNxNm3xURERGRyTG5MgcvLyAyUhyzNNBxWNsI9gd16ABUqwbcuAEcPap0NERERER2h8mVubDvyvFYa7+VzNUV6NZNHLPvioiIiMjkmFyZi9x3lZgIFBcrGwuZ382bQGqqOLbWlSuAfVdEREREZsTkylw6dgRq1BB7Xe3fr3Q0ZG7btgGSBAQHAwEBSkdTtpJ9V5KkbCxEREREdobJlbk4O+vKwzg10P5Ze0mgrGNHwNMTyM4Gjh1TOhoiIiIiu8Lkypzk0kD2Xdk/W0mu3NyArl3FMfuuiIiIiEyKyZU5yUMtkpPFHkhknzIzddP35LI7a8a+KyIiIiKzYHJlTk2aAE2bir2PuEpgv7ZsEddhYUCdOsrGYgg5Ady6lX1XRERERCbE5Mrc5NUr9l3ZLzm5svaSQFmnToCHB3DtGnD8uNLREBEREdkNJlfmxr4r+2cr/VYyd3fdJtcsDSQiIiIyGSZX5tanD+DkBJw8CaSnKx0NmVp6OnDmjJgO2bOn0tEYTu67YrkqERERkckwuTK3GjWAiAhxzNUr+yOXBHbsCHh7KxtLZXC/KyIiIiKTY3JlCXLfFZMr+yOXBPbpo2wcldW5M6BWi0mHJ08qHQ0RERGRXWByZQly39XmzYBGo2wsZDqSZHv9VjK1mn1XRERERCbG5MoSOncGvLyA69eB1FSloyFTOXMGuHQJcHUFunVTOprKKzmSnYiIiIiMxuTKElxddSsbHMluP+R+q8hIwNNT2ViqouRmwuy7IiIiIjIakytLYd+V/bHVkkBZRIQYy371KnD6tNLREDmGv/4S/+eIiMguMbmyFLnvaudOID9f2VjIeLbcbyVTq4EuXcQx+66IzO/KFaBtW/H/rrBQ6WiIiMgMmFyVw6SzJ5o1AwIDgfv3ge3bTfjApIijR4Fr1wAPD92ofVvEvisiy1m2THy4lp4ObNqkdDRERGQGiidX33zzDYKCgqBWqxEREYG9e/eWe/6KFSsQHBwMtVqN0NBQbNiw4aFzjh8/jieeeAI+Pj6oVq0aOnXqhPQqbOC7Y0el71I2lUq3esW+K9snr1p17w64uSkbizHYd0VkOUuX6o4XLVIuDiIiMhtFk6tly5Zh0qRJmDZtGlJSUhAWFobo6GhkZWWVen5SUhLi4+Mxbtw4pKamIjY2FrGxsThy5Ij2nLNnz6J79+4IDg7G1q1bcejQIbzzzjtQq9WVjm/Jkiq/tNKx78p+2HpJoKxLF5EcXr4MnD2rdDRE9uvcOaDkh4e//ALk5SkXDxERmYVKkpT7uDoiIgKdOnXCrFmzAAAajQYNGzbEyy+/jDfeeOOh8+Pi4pCfn4/169drb+vSpQvCw8Mxe/ZsAMCIESPg6uqKBQsWVDmuvLw8+Pj4wNMzF1lZ3qhWrcoPpe/6daBuXbFCcOkSUL++iR6YLKq4GKhTB8jJAfbsEaP2bVnPnmKZ9n//A8aNUzoaIvv00UfAlCniA5krV4ATJ4B584BnnlE6MiIiqoCcG+Tm5sLb27vccxVbuSosLMSBAwcQFRWlC8bJCVFRUUhOTi71PsnJyXrnA0B0dLT2fI1Gg99++w0tWrRAdHQ06tWrh4iICKxdu7bcWAoKCpCXl6d3AYA7d4A1a4x4kQ+qXRvo2FEcb95swgcmi0pLE4mVtzfQvr3S0RiPfVdE5ieXBMbHA08/LY5ZGkhEZHcUS66ys7NRXFwMX19fvdt9fX2RkZFR6n0yMjLKPT8rKwu3b9/GRx99hJiYGPzxxx8YPHgwhgwZgm3lTEObMWMGfHx8tJeGDRtqv/bzz1V9hWWQSwPZd2W75JLAXr0AFxdlYzEF9l0RmdeJE8DBg+LnxZAhwFNPidsTE8UqFhER2Q3FB1qYkubv8X6DBg3Cv/71L4SHh+ONN97A448/ri0bLM2UKVOQm5urvVy8eFH7tc2bRTuKychDLTZvNvE4QrIYe+m3kkVGio2uL14UfSFEZFrLlonrRx8FatUCGjcGunUTH2aUHHJBREQ2T7Hkqk6dOnB2dkZmZqbe7ZmZmfDz8yv1Pn5+fuWeX6dOHbi4uCAkJETvnFatWpU7LdDd3R3e3t56F0C855QkE1duREYC1aoBWVnAoUMmfGCyiMJC3RjJPn2UjcVUPD11fWPc74rItEomUCNG6G6XSwMXLrR8TEREZDaKJVdubm7o0KEDEhMTtbdpNBokJiYiMjKy1PtERkbqnQ8ACQkJ2vPd3NzQqVMnnDx5Uu+cU6dOITAwsNIxxseL6/nzTVgt5eamK8Pi1EDbs2+f2Kemdm0gNFTpaEyHfVdE5nHokCgLdHcHBg3S3T5smCgTTE0Fjh1TLj4iIjIpRcsCJ02ahB9++AHz58/H8ePH8eKLLyI/Px9jx44FAIwePRpTpkzRnv/qq69i48aNmDlzJk6cOIHp06dj//79mDBhgvacyZMnY9myZfjhhx9w5swZzJo1C7/++iteeumlSscXGwuo1eL3Xmqq0S9XhyPZbZdcEtinD+BkR1W1csLP5IrItOSSwMceE0NwZLVri9sADrYgIrIjir47jIuLw2effYapU6ciPDwcaWlp2Lhxo3ZoRXp6Oq5evao9v2vXrli8eDHmzJmDsLAwrFy5EmvXrkWbNm205wwePBizZ8/GJ598gtDQUPzvf//DqlWr0L1790rH5+MjEizAxIMt5L6r7duBu3dN+MBkdlu2iGt76beSde0qPkVPTwfOn1c6GiL7UFZJoKzk1ED24BIR2QVF97myViVn2e/a5Y3HHhPbU12+LPr+jSZJQMOG4gH/+EO3kkXW7e5doGZNoKBAlPm0bKl0RKbVtSuQnMy9d4hMZe9eICJC9DVmZeGhTRPv3gV8fYFbt8SHbT16KBMnERGVyyb2ubIV/fqJ333XrgGbNpnoQVUq3eoVR7LbjuRkkVgFBAAtWigdjenJfVccakFkGnJJ4BNPPJxYAYCHB/Dkk+KYpYFERHaByVUFXFyAkSPFsUlLA9l3ZXtKjmBXqZSNxRzYd0VkOhqNLrkqrSRQJv+CWb5cTCMlIiKbxuTKAKNHi+tffgFu3jTRg0ZFieuDB4EHxsuTlSo5zMIede0KODuLnqsLF5SOhsi27dolSr99fICYmLLP691brIbfvAn8/rvFwiMiIvNgcmWAsDCgbVvxoeLy5SZ60Lp1gXbtxPHmzSZ6UDKbW7dE/wRgf8MsZF5eQMeO4pilgUTGkQdZxMaKMexlcXYGnnpKHHPPKyIim8fkykDy6pVZpgay78r67dwJFBcDjRsDQUFKR2M+7LsiMl5REbBypTguryRQJpcG/vorkJtrvriIiMjsmFwZ6KmnxLZGSUnAmTMmetCSfVcc2mjdSvZb2TP2XREZb+tWMR2wdm2gb9+Kzw8LA1q3FgNzVq0ye3hERGQ+TK4M5O+vW2hasMBED9qtm5gWdfUqcPSoiR6UzMJRkqtu3USZ0l9/ARcvKh0NkW2SSwKHDjVs/w6VSrfnFUsDiYhsGpOrSihZGmiS/R7VaqBnT3HMqYHW68YNIDVVHNvrMAuZtzfQvr04ZmkgUeUVFgKrV4tjQ0oCZfHx4nrrVuDSJZOHRURElsHkqhIGDRI9/+fPi0FQJiGXBrLvynpt2ybKNoODxRKmvZNLA5lcEVVeQoKY/Ofnp/vwzBCBgeJ8SQKWLDFffEREZFZMrirB0xMYNkwcm2ywhVxruG2bqLcn6+MoJYEyeagF+66IKk8uCRw+XJTYVoY82IKlgURENovJVSXJpYHLlwN375rgAdu0EZ9w3r1rwuUwMilHS666dxfTW86cEfv0EJFh7t4VGyICQFxc5e8/bBjg5gYcOgQcPmza2IiIyCKYXFVSjx6ieiMvD1i3zgQPqFLpTw0k65KZCRw7Jo7lcjl75+Oj24ONpYFEhvv9d7EnXqNGQJculb9/zZrAgAHieNEi08ZGREQWweSqkpycgFGjxLHJSgOZXFmvLVvEdXi4GKvsKNh3RVR5cklgXJz4ZVEVcmng4sUmmpxERESWxOSqCuTkatMmICPDBA8YFSWuU1KA7GwTPCCZjKOVBMrYd0VUObdvA+vXi+OqlATKBgwQq8cXLwI7dpgmNiIishgmV1XQooWo+CguNtFQJ39/IDRUTIlKTDTBA5LJOGpy1aOHKFk9dUrsw0ZE5fv1V9Fz1ayZbjuDqlCrdZOTONiCiMjmMLmqojFjxLXJpwZyJLv1uHABOHtWTPzq0UPpaCyrRg1RCgmwNJDIEHJJ4IgR4oMJY8ilgStWAPfuGfdYRERkUUyuqmj4cDHUKS1NDHYyWsm+K0kywQOS0eR+q44dxea6jkbuu2JpIFH5cnLEMAvAuJJAWc+eQIMGQG4usGGD8Y9HREQWw+SqimrVAgYOFMcLFpjgAXv0ANzdRZ39yZMmeEAympxcOVpJoEzuu+LKFVH51q4F7t8HWrcW22sYy8kJeOopcczSQCIim8LkygjynlcLFwJFRUY+mKen2F8I4NRAayBJjttvJZP7rk6cMNHkFiI7VbIk0FSeflpc//YbcPOm6R6XiIjMismVEWJigDp1xPvOzZtN8IDsu7IeZ84Aly6J2s+uXZWORhm1agFt24rj7duVjYXIWl27pvsFYIqSQFloqPj/V1gIrFxpusclIiKzYnJlBDc3ID5eHJtksIXcd7V1q/iFSsqRV60iI8WqoqNi3xVR+VatEqNj27cHmjc37WPLgy1YGkhEZDOYXBlJLg1cswbIyzPywcLCgLp1xX4pu3cbHRsZQU6u+vRRNg6lse+KqHzLlolrU5YEyuLjRWnu9u1AerrpH5+IiEyOyZWROnQAWrUS03KNrtxwctJtKMy+K+VoNBxmIevZU1wfOwZkZSkbC5G1uXJF98HD8OGmf/yGDXWrx4sXm/7xiYjI5JhcGUml0q1embQ0kH1Xyjl6VPRReHgAERFKR6Os2rVF7wfAviuiB61YIYbfREYCgYHmeY6SpYHcpoOIyOoxuTKBkSNFkrVtG3D+vJEPJidX+/cDN24YGxpVhbxq1aOHaKxzdOy7IiqdOUsCZUOHim06jh410aaKRERkTkyuTKBhQ131mNF9xw0aiDpDjUbX90OW5egj2B/Eviuih50/DyQni0/Whg0z3/PUqAE8/rg45mALIiKrx+TKREqWBhpduSGPZGffleUVF+tWaJhcCXLf1ZEjQHa2srEQWYvly8V1796Av795n0ve82rJEvEzioiIrBaTKxMZMkRM7D59Gtizx8gHK9l3xRp7y0pNBXJzAW9voF07paOxDnXrAm3aiGP2XREJckmgKfe2Kkv//kDNmsDly1xBJiKyckyuTKR6dVEaD5hgsEWvXoCrqyg7OXvW2NCoMuSSwF69ABcXZWOxJnJpIPuuiIBTp4CUFMDZWfeD35zc3XWlhywNJCKyakyuTEguDVy6FCgoMOKBqlcHunYVxywNtCz2W5VOHmrBT82JdKtW/foBdepY5jnl0sBVq4C7dy3znEREVGlMrkyoTx+gfn3g5k3gt9+MfDC574oj2S2nsBDYuVMcM7nSJ/ddHToEXL+ubCxESlu6VFxboiRQ1q2bGPeelwesX2+55yUiokphcmVCzs66DxeNLg2U+67+/BMoKjLywcgg+/YB+fnik2i5x4iEevWAkBBxvGOHsrEQKenIEbGptpsbEBtrued1cgKeekocszSQiMhqMbkyMbk08LffjBys1r49UKuW+JRy716TxEYVkEsC+/QRb2RIH/uuiHSrVv37izHpliR/evf771xBJiKyUlbxDvKbb75BUFAQ1Go1IiIisLeCZGLFihUIDg6GWq1GaGgoNmzYoPf1Z555BiqVSu8SExNjzpegFRICdOwoFpvk38FV4uwM9O0rjtl3ZRnstyof+67I0UmS7ge7OTcOLktICBAeDty/D6xYYfnnJyKiCimeXC1btgyTJk3CtGnTkJKSgrCwMERHRyMrK6vU85OSkhAfH49x48YhNTUVsbGxiI2NxZEjR/TOi4mJwdWrV7WXJUuWWOLlANDf88oo7LuynLt3gaQkcdynj7KxWCu57+rgQeDGDWVjIVJCSoqY4OrhodvY19Lk1atFi5R5fiIiKpfiydXnn3+O559/HmPHjkVISAhmz54NT09PzJ07t9Tzv/zyS8TExGDy5Mlo1aoV3n//fbRv3x6zZs3SO8/d3R1+fn7aS82aNS3xcgCIDzRdXEQLz/HjRjyQ3He1Z4/Ye4nMJylJDLQICABatFA6Guvk5wcEB4tP79l3RY5IXrUaOFBMdVVCfDygUonhO+fOKRMDERGVSdHkqrCwEAcOHEBUVJT2NicnJ0RFRSE5ObnU+yQnJ+udDwDR0dEPnb9161bUq1cPLVu2xIsvvojr5dSnFxQUIC8vT+9ijLp1gcceE8dGrV4FBoo3+sXFwJYtRsVEFZC/v488It64UOnkviuWBpKj0Wh0I9iVKAmUBQToSpcXL1YuDiIiKpWiyVV2djaKi4vh6+urd7uvry8yMjJKvU9GRkaF58fExODnn39GYmIiPv74Y2zbtg39+/dHcXFxqY85Y8YM+Pj4aC8NGzY08pXpSgMXLhS5UZXJq1fsuzIv9lsZRu674lALcjTJycDFi4CXlxhmoSS5NHDhQrGSTEREVkPxskBzGDFiBJ544gmEhoYiNjYW69evx759+7C1jDeEU6ZMQW5urvZy8eJFo2N4/HExSOrSJSPfh7Lvyvxu3dJNZGRyVT555SotDcjJUTISIsuSV61iYwG1WtFQMGSIiOHECSA1VdlYiIhIj6LJVZ06deDs7IzMzEy92zMzM+Hn51fqffz8/Cp1PgA0adIEderUwZkzZ0r9uru7O7y9vfUuxnJ311WOGFUa2Lu3mBx45gzr681lxw6xvNikiSjFpLL5+4tSVfZdkSMpLgaWLxfHSpYEyry9gSeeEMfc84qIyKoomly5ubmhQ4cOSExM1N6m0WiQmJiIyMjIUu8TGRmpdz4AJCQklHk+AFy6dAnXr1+Hv7+/aQI3kFwauGoVcPt2FR/E2xvo0kUcszTQPErub0UVY98VOZpt24DMTKBmTeCBnl/FyKWBS5YYWXtORESmpHhZ4KRJk/DDDz9g/vz5OH78OF588UXk5+dj7NixAIDRo0djypQp2vNfffVVbNy4ETNnzsSJEycwffp07N+/HxMmTAAA3L59G5MnT8bu3btx/vx5JCYmYtCgQWjWrBmio6Mt+tq6dAGaNQPy84E1a4x4ILk0kMmVebDfqnLYd0WORi4JHDoUcHNTNhZZdLTYaD4jQ/czjIiIFKd4chUXF4fPPvsMU6dORXh4ONLS0rBx40bt0Ir09HRcvXpVe37Xrl2xePFizJkzB2FhYVi5ciXWrl2LNm3aAACcnZ1x6NAhPPHEE2jRogXGjRuHDh06YMeOHXB3d7foa1OpTLTnlTzUIjGRn1Ca2o0bon8I4MqVoeSVq9RUbhFA9u/+fWDlSnFsDSWBMjc3IC5OHHPPKyIiq6GSJI4aelBeXh58fHyQm5trdP/VuXOilUelAtLTgQYNqvAgRUVAnTrijeyePUDnzkbFRCWsWSOaw1u1Ao4dUzoa29G8uegDXL8eGDBA6WiIzOf338XeGr6+wOXLogfWWiQlAd26iT23MjMBT0+lIyIiskuVyQ0UX7myd40bAz17iv7/Kn+46OKiK1ljaaBpsSSwath3RY5CLgl88knrSqwAIDJS/JK5fRtYt07paIiICEyuLKJkaWCV1wk5kt08mFxVDfuuyBHcu6drmLWmkkCZSgWMHCmOWRpIRGQVmFxZwJNPii1Jjh0DUlKq+CBy31VystiXiYyXkSH+UlQq3UoMGUb+fqWkAHl5ysZCZC4bN4p/3w0aAF27Kh1N6eTkauNG4No1ZWMhIiImV5bg4yP2nQSMGGzRtKlo3rp/n6VYprJli7gOCwNq11Y2FlvTsKH491hcDOzapXQ0ROaxdKm4Hj4ccLLSX5fBwUCHDqI3V96Li4iIFGOlvy3sj1wauHixyI+qRF69Yt+VabAk0DjsuyJ7lp8P/PqrOLbGksCS5D2vWBpIRKQ4JlcW0q8f4OcHZGeL6o0qYd+VackrV0yuqoZ9V2TP1q8H7twRK7QdOyodTflGjBAra8nJwNmzSkdDROTQmFxZiIuLrjS+yqWBjzwifoGeOAFcvGiy2BzShQviTYizM9Cjh9LR2CZ55Wr/fjGtjMieyCWBI0aIvkxr5ucHREWJY65eEREpismVBcmlgevWATdvVuEBatTQ7XHF0kDjyKtWnToBRu5l5rACA4GgIPZdkf3JzRX7WwG6jXqtXcnSQG5fSUSkGCZXFtS2rZidUFio2zql0th3ZRrstzINuTSQfVdkT375BSgoEJuLh4YqHY1hYmMBDw/g1CmxmkxERIpgcmVhJfe8qhK572rzZkCjMUlMDkeSdMlVnz7KxmLr5NJA9l2RPbGlkkCZl5duLC1LA4mIFFOl5OrixYu4dOmS9s979+7FxIkTMWfOHJMFZq+eekrXd3z6dBUeICJC/BLNzgbS0kwdnmM4fRq4fBlwc7PevWtshbxytW+fmK5GZOuuX9dVBthKSaBMLg1cskSMZiciIourUnL11FNPYcvfPSsZGRno168f9u7di7feegvvvfeeSQO0N35+QHS0OF6woAoP4OqqW23h1MCqkVetIiMBT09lY7F1QUFAo0bijVxSktLREBlv9Wrx7zk8HGjZUuloKqdfP6BOHSArS1Q3EBGRxVUpuTpy5Ag6/z1YYfny5WjTpg2SkpKwaNEi/PTTT6aMzy7JpYELFlSxso99V8bhCHbT4kh2siclSwJtjaurLm6WBhIRKaJKydX9+/fh7u4OANi8eTOeeOIJAEBwcDCuXr1quujs1KBBYkDd+fPAzp1VeAA5udq5U+zDQobTaJhcmRo3EyZ7kZGh+5Bg+HBFQ6kyec+P1au5RQIRkQKqlFy1bt0as2fPxo4dO5CQkICYmBgAwJUrV1C7dm2TBmiPPDyAYcPEcZUGW7RoIUqxCguB7dtNGpvdO3oUuHZNlAPKY+3JOPLK1d69TPbJtq1cKT6AiYgAGjdWOpqqiYgAmjYV/xd/+UXpaIiIHE6VkquPP/4Y33//PXr37o34+HiEhYUBANatW6ctF6TyyaWBy5cDd+9W8s4qFUsDq0rut+reXQy0IOM1bgw0aADcvy8mtRDZKlsuCZSpVPp7XhERkUVVKbnq3bs3srOzkZ2djblz52pvf+GFFzB79myTBWfPuncXswBu3arih4vySHYOtagc7m9leioV+67I9qWni82wVSpdaYGtkksD//hDDLcgIiKLqVJydffuXRQUFKBmzZoAgAsXLuCLL77AyZMnUa9ePZMGaK+cnIBRo8RxlUoD+/YVbwKOHAHY52aY4mJdXxCTK9Ni3xXZuuXLxXWPHkD9+srGYqzmzUXZc3GxETvWExFRVVQpuRo0aBB+/jsjyMnJQUREBGbOnInY2Fh89913Jg3QnsnJ1aZNoo+6UmrXBjp0EMcsDTRMaiqQmwv4+ADt2ikdjX2RV6727KlCnSuRFZCTEFsuCSxJLg1cuFDZOIiIHEyVkquUlBT06NEDALBy5Ur4+vriwoUL+Pnnn/HVV1+ZNEB71ry52GpJowEWL67CA7DvqnLkksBevQAXF2VjsTdNmwIBAWLIyu7dSkdDVDlnzgD79wPOzsDQoUpHYxpxceL17N1bxR3riYioKqqUXN25cwdeXl4AgD/++ANDhgyBk5MTunTpggsXLpg0QHsnD7aoUmmg3HeVkABIkslislvstzIf9l2RLZNXrR55BLCX0vZ69XS/IzjYgojIYqqUXDVr1gxr167FxYsXsWnTJjz69w/wrKwseHt7mzRAezd8uBhad/CguFRKZKQYKZ6ZCRw+bJb47EZhIbBjhzhmcmUe7LsiW2VvJYEyebDFwoX8AI6IyEKqlFxNnToVr7/+OoKCgtC5c2dERkYCEKtY7djLUim1agF/78GMBQsqeWd3d91qAacGlk/eg6lOHaB1a6WjsU/yv8Xdu4F79xQNhchgR4+KD6dcXYHBg5WOxrRiY4Fq1YCzZ0U/JBERmV2Vkqsnn3wS6enp2L9/PzZt2qS9vW/fvvi///s/kwXnKOTSwEWLgKKiSt6ZfVeGkUsC+/QRoxrJ9Jo3B/z8gIICvpEj2yGvWsXEAH9PwLUb1arpEkaWBhIRWUSV32X6+fmhXbt2uHLlCi5dugQA6Ny5M4KDg00WnKOIiRELKhkZwObNlbyzXFO/fTtXC8rDfivzY98V2RpJ0iVXcXHKxmIucmng0qVio28iIjKrKiVXGo0G7733Hnx8fBAYGIjAwEDUqFED77//PjQajaljtHuursBTT4nj+fMreedWrcSUtnv3gJ07TR6bXbh7F0hOFsdMrsyLfVdkS9LSgFOnALVaV59tb6KixHCL7GxWOBARWUCVkqu33noLs2bNwkcffYTU1FSkpqbiww8/xNdff4133nnH1DE6BLk0cO1asRWTwVQq3eoV+65Kl5QkBlrUry9K18h85JWr5GRRHkhkzZYuFdePPw78PQHX7ri4APHx4ph7XhERmV2Vkqv58+fjf//7H1588UW0bdsWbdu2xUsvvYQffvgBP/30k4lDdAzt2wMhIWIBauXKSt6ZfVflK1kSqFIpG4u9a9kS8PUV/5D37lU6GqKyOUJJoEwuDVy7Frh1S9FQiIjsXZWSqxs3bpTaWxUcHIwbN24YHZQjUqmM2PMqKkpcp6UBWVmmDMs+lBxmQealUulKA9l3RdZszx7gwgWgenXgsceUjsa8OnYEWrQQJdJr1yodDRGRXatSchUWFoZZs2Y9dPusWbPQtm1bo4NyVCNHivem27cD585V4o716gHh4eK40hMx7FxeHrBvnzhmv5VlyKWB7LsiayaXBA4aJPYLtGcqlf6eV0REZDZVSq4++eQTzJ07FyEhIRg3bhzGjRuHkJAQ/PTTT/jss89MHaPDaNAA6NtXHFf69x9LA0u3YwdQXAw0aQIEBiodjWOQV66Skth3RdapuBhYvlwc29vGwWWRk6vNm8VoWiIiMosqJVe9evXCqVOnMHjwYOTk5CAnJwdDhgzB0aNHsaDSO+FSSSVLAyWpEncsOdSiUne0c1u2iGuuWllOq1ZA3bqiBEleNSSyJjt3AlevAjVq6H522rumTYHISECj0a3aERGRyVV5n6uAgAB88MEHWLVqFVatWoX//ve/uHnzJn788UdTxudwBg8W+z6eOQPs3l2JO3bvLsYJX7kCHD9utvhsDve3srySfVcsDSRrJCcXQ4YAbm7KxmJJLA0kIjK7KidXpvTNN98gKCgIarUaERER2FvBlLEVK1YgODgYarUaoaGh2LBhQ5nn/vOf/4RKpcIXX3xh4qjNo3p1YOhQcVypwRZqNdCzpzjmSHbh+nUx5APgMAtL42bCZK3u39eNZHWUkkDZ8OFiNPuBA8CJE0pHQ0RklxRPrpYtW4ZJkyZh2rRpSElJQVhYGKKjo5FVxtS7pKQkxMfHY9y4cUhNTUVsbCxiY2Nx5MiRh85ds2YNdu/ejYCAAHO/DJOSSwOXLq1kywr7rvRt2yZKJENCAD8/paNxLCX7rgoLlY2FqKQ//xQb6tat63gfutStC8TEiONFi5SNhYjITimeXH3++ed4/vnnMXbsWISEhGD27Nnw9PTE3LlzSz3/yy+/RExMDCZPnoxWrVrh/fffR/v27R+aXnj58mW8/PLLWLRoEVxdXS3xUkymd28x3CInB1i/vhJ3lHsHtm7lIAGAI9iVFBIC1KkD3LkD7N+vdDREOvLeVk8+KVZxHI1cGrhoEftziYjMoFK/WYYMGVLu13Nycir15IWFhThw4ACmTJmivc3JyQlRUVFITk4u9T7JycmYNGmS3m3R0dFYW2LvDo1Gg1GjRmHy5Mlo3bp1hXEUFBSgoEQykpeXV6nXYWrOzsDTTwMffSRKA+UywQqFhooNXDMzgeRkXWmWo2K/lXKcnESZ6urVYgWxa1elIyISHzqtXi2OHa0kUPbEE6L+/Nw58XuC/zeJiEyqUitXPj4+5V4CAwMxWq5pM0B2djaKi4vh6+urd7uvry8yyhgVm5GRUeH5H3/8MVxcXPDKK68YFMeMGTP0XkfDhg0Nfg3mMmqUuN6wAbh2zcA7qVS60kBH77u6elUM9ig5XIEsi31XZG02bQJyc4GAADEEyBF5euo+seNgCyIik6vUytW8efPMFYfJHDhwAF9++SVSUlKgUqkMus+UKVP0VsPy8vIUT7BCQoCOHUVF1dKlwMsvG3jHfv3EL8yEBODDD80ao1WT39CHhwO1aysZieOSk9pdu8QQARsrzyU7JJcEDh8uVlcd1ciRwPz54vvxxReONTGRiMjMFP3tUqdOHTg7OyMzM1Pv9szMTPiVMYDAz8+v3PN37NiBrKwsNGrUCC4uLnBxccGFCxfw2muvISgoqNTHdHd3h7e3t97FGowZI64rNTVQXrk6cEBMy3NULAlUXps2QK1aQH6++PdIpKQ7d4BffhHHjloSKHvkETHk58YNsZpHREQmo2hy5ebmhg4dOiAxMVF7m0ajQWJiIiIjI0u9T2RkpN75AJCQkKA9f9SoUTh06BDS0tK0l4CAAEyePBmbbOyXyIgRot96/37g2DED7+TvL97UShLwwPfJoTC5Up7cdwVwvytS3m+/iUQ/KAjo3FnpaJTl7AzEx4tjlgYSEZmU4nURkyZNwg8//ID58+fj+PHjePHFF5Gfn4+xY8cCAEaPHq038OLVV1/Fxo0bMXPmTJw4cQLTp0/H/v37MWHCBABA7dq10aZNG72Lq6sr/Pz80LJlS0VeY1XVqQMMGCCOK7V6JU8NdNS+q/Pngb/+Em8gevRQOhrHxr4rshZySWBcnOjFdHRPPy2u160DFB7iRERkTxRPruLi4vDZZ59h6tSpCA8PR1paGjZu3KgdWpGeno6rV69qz+/atSsWL16MOXPmICwsDCtXrsTatWvRpk0bpV6CWcnzQRYuBIqLDbxTyf2uHHHU7pYt4rpTJ8DLS9lYHJ3cd7VzJ1BUpGws5Ljy8sTKFcCSQFm7dkCrVsC9e7oJikREZDSVJDniu+/y5eXlwcfHB7m5uYr3XxUUiEq/mzdFrhQVZcCd7twBatYUm7eePAm0aGH2OK3KqFEiG33zTeCDD5SOxrFpNGIJ9uZNYM8elmORMhYuFD8XWrbUTREl8fPx7beBvn2BzZuVjoaIyGpVJjdQfOWKyufurvug1eDSQE9P3ZhhRysNlCTdyhX7rZTn5KQrzWTfFSll6VJxzZJAfU89Ja7//BO4ckXZWIiI7ASTKxsglwauWgXcvm3gnUqWBjqS06eBy5fFaGFujmkd2HdFSrpxQ/chU1ycsrFYm8aNxQdxkgQsWaJ0NEREdoHJlQ2IiACaNxfVfgaXxstDLbZsEXsMOQp5SmDXroCHh7KxkMC+K1LSmjXiZ2DbtmIDQdI3cqS45tRAIiKTYHJlA1Qq3eqVwaWB4eGi1+XWLdHr4ijk5KpPH2XjIJ2wMMDHRwwVSEtTOhpyNHJJIAdZlG7YMLHBd1oacPSo0tEQEdk8Jlc2Qp6a++efwMWLBtzByUk3/cJR+q40GvZbWaOSI/HZd0WWlJWl+8CFJYGlq10b6N9fHC9apGwsRER2gMmVjQgKEtVVklSJ33+O1nd15AiQnS0GenAqnXVh3xUpYeVK8aFLp05AkyZKR2O95E/vFi8W3y8iIqoyJlc2pGRpoEED9OXkau9eMQrb3smfUPfoIQZakPWQk6vt2yuxYRuRkVgSaJjHHwe8vYELF4Bdu5SOhojIpjG5siFPPgmo1WKblgMHDLhDw4ZAcLB+uZw9Y0mg9QoPF2/e8vKAgweVjoYcwaVLwI4d4njYMGVjsXYeHsDQoeKYgy2IiIzC5MqGeHsDgweLY4MHW8hTA+2976qoSFdyxuTK+pTsu2JpIFnCihXiunt38UETlU8uDVyxQuxeT0REVcLkysbIpYFLlgCFhQbcwVH6rlJTxaqIjw/Qrp3S0VBp5JHsHGpBlsCSwMrp1QuoX1+UkP/+u9LREBHZLCZXNiYqCvDzE3MbNm404A69e4sxu3/9BZw9a+7wlCP3W/XqJVZJyPqw74os5a+/RK+pk5Oop6aKOTsD8fHimKWBRERVxuTKxri46PZ8NKg0sHp1IDJSHNvz6pWcXLEk0Hq1awd4eQE5OcDhw0pHQ/Zs+XJx3acP4OurbCy2RC4NXL9e/D8lIqJKY3Jlg+TSwF9/BW7cMOAOct+VvSZXhYXAzp3imMmV9XJxEf0vAPuuyLxYElg1bdsCrVuLnqtVq5SOhojIJjG5skFt24rha4WFug9oyyX3XSUmisEP9mbvXuDOHaBuXfHGgKwX+67I3E6cEBMpXVyAIUOUjsa2qFS61StuKExEVCVMrmyUvHo1f74BJ3foANSsCeTmAvv3mzUuRcglgX36iB4Lsl4l+664WSmZw7Jl4vrRR4FatZSNxRY99ZS43roVuHhR0VCIiGwR34naqPh40X+8ezdw6lQFJzs7A337imN7HMnOfivb0b49UK2aqGc9ckTpaMjeSBJLAo3VqBHQs6f4Xi5ZonQ0REQ2h8mVjfLzA6KjxfGCBQbcwV77ru7cAZKTxXGfPsrGQhVzdWXfFZnPoUOiLNDdHRg0SOlobBdLA4mIqozJlQ2TSwMXLDCgwkruu0pOFvtB2YukJNF8Vr8+0Ly50tGQIdh3ReYir1o99pjYdZ2q5sknATc3kaweOqR0NERENoXJlQ174gnx/uHCBWDHjgpODgoCmjUT+wvZ04pByZJAlUrZWMgwct/Vtm3suyLTkSRdvxVLAo1TsyYwYIA45uoVEVGlMLmyYR4ewPDh4tigPa/k0kB76rtiv5Xt6dgR8PQErl8Hjh1TOhqyF/v2AefOiZ4+OTGgqpNLAxcv5ocgRESVwOTKxsmlgStWiPajcsmlgfbSd5WXp5t+yH4r2+HqCnTrJo7taRWVlCWXBD7xhEiwyDiPPQb4+ACXLonpnkREZBAmVzauWzegcWPg1i3gl18qOLlPHzE58NQpUUto63bsEGWOTZsCgYFKR0OVwb4rMiWNRrfpX1ycsrHYC7UaGDZMHLM0kIjIYEyubJyTEzBqlDiusDTQxweIiBDH9rB6xZJA21Wy70qSFA2F7MCuXcDly+JnXEyM0tHYD7k0cMUK4N49ZWMhIrIRTK7sgJxc/fEHcPVqBSfbU99Vyc2DybZ06iSaBq9dA44fVzoasnVySeDgwWIMO5lGjx5Aw4ZiA/rfflM6GiIim8Dkyg40awZ07SoqYxYvruBkue8qMVGU1Nmq69eBtDRxzOTK9ri5iX+0APuuyDhFRWJlBWBJoKk5OQFPPSWOWRpIRGQQJld2Qh5sUWFpYOfOYn77jRtASorZ4zIb+Q15SIjYUZlsj9x3xeSKjLF1q1gBrV0b6NtX6Wjsj1wa+Ntv4vcGERGVi8mVnRg+XLfn48GD5Zzo4qLrUbLlvqstW8Q1+61sF/uuyBTkksAnnxSTKMm02rQB2rYVm7WvXKl0NEREVo/JlZ2oWVNMIAYMWL2S+65sObniMAvb17mzmEiWlQWcOKF0NGSLCguBVavEMTcONh959YqlgUREFWJyZUfk0sBFi0QbQpnkvqtdu4Dbt80el8ldvSqGIKhUutIysj3u7kBkpDjmSHaqioQEICdHlAb36KF0NPYrPl78vN2+3T628SAiMiMmV3YkJgaoWxfIzKxgUappU7E51v37trk5pFwSGB4O1KqlaChkJLk0kH1XVBVySeDw4WIPPzKPBg10/1eXLFE0FCIia8fkyo64uuoGO5VbGqhS6VavbHEkO0sC7UfJzYTZd0WVcfcusHatOGZJoPnJpYELFvD/KhFROZhc2Rm5NHDtWrE1SZlsue+KyZX9iIgQ5YEZGcCpU0pHQ7ZkwwZR1tyoEdCli9LR2L+hQ8X/1WPHKpiaRETk2Jhc2Zl27YDWrYF793Rbv5TqkUfEHibHjgGXLlksPqOdPw+cOydKgNhjYfvUat0bY/ZdUWUsWyau4+LEajyZl48PMHCgOOZgCyKiMllFcvXNN98gKCgIarUaERER2Lt3b7nnr1ixAsHBwVCr1QgNDcWGDRv0vj59+nQEBwejWrVqqFmzJqKiorBnzx5zvgSroVIZuOdVzZpAx47iePNms8dlMnK/VefOgJeXsrGQabDviirr1i1g/XpxzJJAy5FLAxcvtu1N6ImIzEjx5GrZsmWYNGkSpk2bhpSUFISFhSE6OhpZWVmlnp+UlIT4+HiMGzcOqampiI2NRWxsLI4cOaI9p0WLFpg1axYOHz6MnTt3IigoCI8++iiuXbtmqZelqJEjRZK1Ywfw11/lnCiXBtpS3xVLAu0P+66osn79VfRcNWsmluvJMvr3Fx/MXbnCD0OIiMqgeHL1+eef4/nnn8fYsWMREhKC2bNnw9PTE3Pnzi31/C+//BIxMTGYPHkyWrVqhffffx/t27fHrFmztOc89dRTiIqKQpMmTdC6dWt8/vnnyMvLw6FDhyz1shRVvz4QFSWOFy4s50R5qMXmzYBGY/a4jCZJuuSqTx9lYyHT6dJF7IB95Qpw5ozS0ZAtkEsCR4xgSaAlubmJyYwASwOJiMqgaHJVWFiIAwcOIErOBAA4OTkhKioKycnJpd4nOTlZ73wAiI6OLvP8wsJCzJkzBz4+PggLCyv1nIKCAuTl5eldbF3J0sAyFwO6dAGqVweuXbONBuVTp8QbcDc3oGtXpaMhU/HwEIMtAPZdUcVu3gR+/10csyTQ8kaOFNcrV4rVQyIi0qNocpWdnY3i4mL4+vrq3e7r64uMjIxS75ORkWHQ+evXr0f16tWhVqvxf//3f0hISECdOnVKfcwZM2bAx8dHe2nYsKERr8o6DB4MVKsGnD0LlJF3iiRF7nexhamB8qpV167iDTnZD/ZdkaHWrhV79LVpI6b3kGV16wYEBur3vRERkZbiZYHm0qdPH6SlpSEpKQkxMTEYPnx4mX1cU6ZMQW5urvZy8eJFC0dretWqAU8+KY7LHWxhS31X7LeyX+y7IkOVnBJIlufkpFu9KrfunIjIMSmaXNWpUwfOzs7IzMzUuz0zMxN+fn6l3sfPz8+g86tVq4ZmzZqhS5cu+PHHH+Hi4oIff/yx1Md0d3eHt7e33sUeyKWBy5aJ0eylkvuudu4E7tyxSFxVotHoVjWYXNmfyEixC/alSxVMYSGHdu2abropkyvlyMnVhg3A9evKxkJEZGUUTa7c3NzQoUMHJCYmam/TaDRITExEZGRkqfeJjIzUOx8AEhISyjy/5OMWFBQYH7QN6d0baNgQyMkpp3qjZUtxUkGBGC9orY4cAbKzxZJcp05KR0Om5ukpxusD7Luisq1aJUaAd+gANG+udDSOKyRETGksKqpgQ0UiIsejeFngpEmT8MMPP2D+/Pk4fvw4XnzxReTn52Ps2LEAgNGjR2PKlCna81999VVs3LgRM2fOxIkTJzB9+nTs378fEyZMAADk5+fjzTffxO7du3HhwgUcOHAAzz77LC5fvoxhw4Yp8hqV4uSk25akzNJAlUq3emXNfVdySWCPHqJXjOwP+66oIkuXimuuWilP/uXC0kAiIj2KJ1dxcXH47LPPMHXqVISHhyMtLQ0bN27UDq1IT0/H1atXted37doVixcvxpw5cxAWFoaVK1di7dq1aNOmDQDA2dkZJ06cwNChQ9GiRQsMHDgQ169fx44dO9DaAZufR40S17//DpTRcqbru7KF5Ioj2O0X+66oPFeuANu3i2N5HDgpRx6Dv2sXcO6c0tEQEVkNlSTxXcyD8vLy4OPjg9zcXLvov+rcGdi3D/jyS+CVV0o5ITsbqFdPvKG9ehUoo99NMUVFQO3aQF6eeCEdOyodEZlDfj5Qo4b4+/7rL6BxY6UjImvy5ZfAxIliWuiuXUpHQ4Coeti8Gfjvf4G33lI6GiIis6lMbqD4yhWZX8k9r0pVpw7Qvr04lpvFrUlKikisfHxEnT/Zp5L9dCwNpAfJJYHc28p6lJwayM9piYgAMLlyCCNGAC4uwIEDwNGjZZwk911Z40j2LVvEde/egLOzoqGQmcl9VxxqQSWdPw/s3i3K0OQ9Jkh5Q4YAajVw4gSQmqp0NEREVoHJlQOoUwcYMEAcL1hQxkkl+66s7RNI7m/lOOS+K65cUUnLl4vr3r0Bf39FQ6ESvL2BQYPEMQdbEBEBYHLlMMaMEdcLF4pJxg/p2lWMw87IEGPPrUVhoW5EPJMr+9etm1idvHBBrFYQASwJtGZyaeCSJWX8ciEicixMrhzEY48BtWoBly/rFoL0uLvrVg2saWrgnj3A3btA3bqAA057dDjVq+sGlrA0kADg1ClRcubsLMrQyLpER4uBQxkZZfxyISJyLEyuHIS7u+5D3zIHW1hj31XJEewqlbKxkGWw74pKWrZMXPfrJ2qcybq4uen2HWNpIBERkytHIk8NXL0auHWrlBPk5Gr7duDePYvFVS72WzkebiZMMkkS5WYASwKtmVwauHo1cOeOsrEQESmMyZUD6dwZaNFC/O5bvbqUE1q3Fs3id+9axz4yd+4AycnimMmV45D7rs6dA9LTlY6GlHTkCHD8uFgdiY1VOhoqS2Sk2Jfu9m1g3TqloyEiUhSTKweiUlWw55VKpVu9soa+q6Qk4P59oEEDoFkzpaMhS/HyAjp0EMcsDXRscklg//5inzuyTiqV/p5XREQOjMmVg3n6aXG9ZUsZiwLySHZr6LsqWRLIfivHIg9XYXLluCSJUwJtiZxcbdoEXLumbCxERApicuVgAgNFS4skAYsWlXJCVJS4Tk1V/hck+60cF/uu6MAB4OxZsUXEwIFKR0MVCQ4Wkz6LinT7khEROSAmVw6oZGngQ/sF+/oCYWHiePNmi8alJzcX2LdPHPfpo1wcpIzu3QEnJ/Hm+tIlpaMhJcglgY8/DlSrpmwsZBiWBhIRMblyREOHAh4ewIkTwP79pZxgDX1XO3YAGg3QtCnQqJFycZAyvL2B9u3FMUsDHY9Go0uuWBJoO0aMEB+K7N4tPhghInJATK4ckLc3MHiwOC51sIXcd5WQUMrSloWwJJDYd+W4kpOBixfFcJP+/ZWOhgzl56f7cK7UunMiIvvH5MpByaWBS5YAhYUPfLF7d7Hr8KVLYnlLCVu2iGsmV46LfVeOSx5kERsLqNWKhkKVVLI0UKkP54iIFMTkykH17Su2tLp+Hfj99we+6OEB9OwpjpUoDbx+HUhLE8fst3Jc3buLKZGnTwNXrigdDVlKcTGwYoU4Zkmg7Rk8WAwhOX26jLpzIiL7xuTKQbm46D5gLLU0UC7tUGIku7xS0bq1GLBBjqlGDaBdO3HM0kDHsW0bkJkJ1Kqlm15KtqN6dWDQIHHMwRZE5ICYXDkwuTTw11+BGzce+KLcd7V1ayl1g2Ym91tx1YrYd+V45JLAoUMBNzdlY6GqkTdUXLpUjGYnInIgTK4cWGgoEB4O3L+vG8yl98V69YD8fNFcbkkcZkEy9l05lvv3gVWrxHFcnLKxUNX16wfUrQtkZSm7pQcRkQKYXDm4knte6XFyUmYk+5UrYoiGSqVbtSDH1aOH+Ldw8iRw9arS0ZC5bd4sltF9fXWJNdkeV1ddcszSQCJyMEyuHNxTTwHOzmJbklOnHviiEn1X8pTAdu1EzwU5tpo1dZtab9+ubCxkfnJJ4LBh4gcT2S65NHDNGuD2bWVjISKyICZXDs7XF4iJEccPrV7JzeT795fSlGUmHMFOD5JXMFkaaN/u3RNvxAGWBNqDzp2BZs2AO3eAX35ROhoiIothckXa0sAFCwCNpsQX6tcXE/skCUhMtEww7LeiB8nlYRxqYd82bgRu3QIaNAC6dlU6GjKWSqW/5xURkYNgckUYOBDw8QHS00upvLJk39W5c+Li4iL2OCICRN8VABw/LkZ0k32SSwLj4kTPJ9k+OblKSOD/XSJyGPwNRvDwAIYPF8cPlQbKI9n/+EOsYJmTXBLYqRPg5WXe5yLbUbs20LatOGbflX3Kzxd7QgDcONieNG8uygOLi0sZSUtEZJ+YXBEAXWngihWiRF6rZ0+x18yFC8CZM+YNgiWBVBb2Xdm39evFD54mTYAOHZSOhkxJHmyxaJGycRARWQiTKwIAdOsGNG4shjqtXVviC9WqiS8C5p0aKElMrqhs7Luyb3JJ4IgRoleH7EdcnJj8uHdvKSNpiYjsD5MrAiDez5S555Ul+q5OnRL7GLm7A5GR5nsesk09e4rro0eBa9eUjYVMKzcX2LBBHLMk0P7Uq6crL+fqFRE5ACZXpDVqlLhOSBB7+WrJvxi3bAHu3zfPk8urVl27iiYwopLq1AHatBHH7LuyL7/8AhQWAq1a6f6Oyb6ULA00d+8uEZHCmFyRVtOmogJQowEWLy7xhXbtxFCBvDxR2mEOLAmkisilgey7si8sCbR/gwaJEvOzZ4E9e5SOhojIrJhckR65NHD+/BIfMDo56TYUNkdpoEajmxTYp4/pH5/sgzzUgn1X9iM7W/czhRsH269q1YDBg8Ux97wiIjvH5Ir0DBsm2p6OHAEOHizxBbnvyhxDLQ4fBq5fF7+AO3Uy/eOTfZD7rg4fFm/KyfatXg0UFYnV8ZYtlY6GzEkuDVy2zHzl5UREVoDJFempWRN44glxrDfYQk6u9u4FcnJM+6RySWCPHmLsO1Fp6tUDQkLE8Y4dysZCpiHvfcRVK/vXt6/4P5ydbd7Js0RECrOK5Oqbb75BUFAQ1Go1IiIisLeCvp4VK1YgODgYarUaoaGh2CBPmgJw//59/Oc//0FoaCiqVauGgIAAjB49Glf0JjRQeeTSwEWLxIfKAIBGjcQny8XFuhI+U2G/FRmKfVf24+pV3c8SJlf2z8UFiI8Xx5waSEQPsqNhN4onV8uWLcOkSZMwbdo0pKSkICwsDNHR0cjKyir1/KSkJMTHx2PcuHFITU1FbGwsYmNjceTIEQDAnTt3kJKSgnfeeQcpKSlYvXo1Tp48iSfk5RiqUHQ0ULcukJX1wAeM8tRAU/ZdFRXppr8xuaKKsO/KfqxcKX6ZdukCBAUpHQ1ZglwauHYtcOuWoqEQkRVZsgTo3l1sJm8HVJKkbKoYERGBTp06YdasWQAAjUaDhg0b4uWXX8Ybb7zx0PlxcXHIz8/H+vXrtbd16dIF4eHhmD17dqnPsW/fPnTu3BkXLlxAo0aNKowpLy8PPj4+yM3Nhbe3dxVfmW2bOBH48kvxgbI8zAu//ipqBps2Bc6cMc0T7d0LREQANWqIchFnZ9M8LtmnzEzAz09MlcvOBmrVUjoiqqru3YFdu4D/+z/xA4fsnyQBwcFiX8P583VlEkTkmPLzgZdfBubNE3/+5BNg8mRlYypDZXIDRVeuCgsLceDAAUTJk+gAODk5ISoqCsnJyaXeJzk5We98AIiOji7zfADIzc2FSqVCjRo1Sv16QUEB8vLy9C6OTv6dt3ZtiRar3r1FacfZs8Bff5nmieSSwF69mFhRxXx9xZszSWLflS1LTxeJlUolpuiQY1Cp9Pe8IiLHlZYGdOggEiuVCnjnHeBf/1I6KpNQNLnKzs5GcXExfH199W739fVFRkZGqffJyMio1Pn37t3Df/7zH8THx5eZac6YMQM+Pj7aS8OGDavwauxLu3ZiP8+CAmDFir9v9PICIiPFsalKA9lvRZXFvivbt3y5uO7ZE6hfX9lYyLJGjhTXmzeLvjsiciySBHz9tahaOnkSCAgQ7wXfe098gG8HFO+5Mqf79+9j+PDhkCQJ3333XZnnTZkyBbm5udrLxYsXLRildVKpdKtXpU4NNEVyVVAA7NwpjplckaHkvismV7ZLrjXmIAvH06SJ+JBOoylRc05EDuH6dSA2FnjlFaCwEBg4UOz7I39oaicUTa7q1KkDZ2dnZGZm6t2emZkJPz+/Uu/j5+dn0PlyYnXhwgUkJCSUWx/p7u4Ob29vvQuJDxidnET+c/bs3zfKQy0SE8XkQGPs2QPcvSumZ7RubdxjkeOQk6uDB4GbN5WNhSrvzBngwAFRBjx0qNLRkBJYGkjkeLZuBcLCgHXrxLY7X34J/PILUKeO0pGZnKLJlZubGzp06IDExETtbRqNBomJiYiUy88eEBkZqXc+ACQkJOidLydWp0+fxubNm1G7dm3zvAA7FxAAyO1tCxf+fWPHjmL4RE4OsH+/cU8gj2F+5BGxVEZkCH9/oEUL9l3ZKnlvK3nfI3I8w4eL8p8DB4Djx5WOhojMqagImDpVvNe7fFn8/t69W6xe2el7P8XLAidNmoQffvgB8+fPx/Hjx/Hiiy8iPz8fY8eOBQCMHj0aU6ZM0Z7/6quvYuPGjZg5cyZOnDiB6dOnY//+/ZgwYQIAkVg9+eST2L9/PxYtWoTi4mJkZGQgIyMDhYWFirxGW1ayNFCSID5t7ttX3GjsRpDst6KqkksIOJLd9silYCNGKBsHKadOHSAmRhxz9YrIfqWnA336AO+/L95Ejh0rPlRp107pyMxK8eQqLi4On332GaZOnYrw8HCkpaVh48aN2qEV6enpuFqi6bVr165YvHgx5syZg7CwMKxcuRJr165FmzZtAACXL1/GunXrcOnSJYSHh8Pf3197SUpKUuQ12rLYWKB6dTEcUPvtM0Xf1Z07gDzhkckVVRb7rmzT0aPAkSOAq6v44UKOq2RpoB1tHkpEf1uzBggPF70lXl7A4sXA3LniTaWdU3yfK2vEfa70jR0L/PQT8MILwPffAzh3TjQlu7gAN26I/zSVlZAg+rcaNBCfbNjp0jCZyeXL4t+Ok5NokC1jmwWyMlOnik8wBw4UdffkuO7cEVsr3L4t3nx166Z0RERkCnfvAq+9BsiD5Dp1EpsEN22qbFxGspl9rsg2yKWBy5YB9+4BaNxY/CcpKqr6ykHJkkAmVlRZ9esDzZqJiWPyxEmybpLEkkDS8fTUDTRhaSCRfTh2TIxYlxOryZPF72gbT6wqi8kVVahXL6BhQyA3F/j1179vlKcGVrU0kP1WZCz2XdmW1FTg9GlArRYrV0RyaeCyZWIsMxHZJkkCfvhBDD07fFgMK9q4EfjkEzEZ0MEwuaIKOTkBo0aJY+2eV3LfVVWGWuTm6iYN9uljdHzkoNh3ZVvkKYGPP161UmKyP336iOmfN26IN2JEZHtycsSehS+8IEoC+/UTW6VERysdmWKYXJFB5OTq99+BrCyIX4rOzmJ37fT0yj3Yjh2inKtZM6BRI5PHSg5CTq5SUoC8PGVjofKxJJBK4+wMxMeLY5YGEtme5GQxtGLFCtGH//HH4oOSMvaqdRRMrsggwcFA585i3+AlSyAGCHTuLL5Y2dJAlgSSKTRsKAarsO/K+u3eLT6EqV4deOwxpaMhayKXBq5bJ6oaiMj6FRcDH34I9OgBXLggevF37gT+/W9R7uTg+B0gg5Xc8wpA1fuu5OSKJYFkLPZd2Qa5JHDQIMDDQ9lYyLqEhwOtWolpSatXKx0NEVXkyhVR8vfWWyLJio8XPbUREUpHZjWYXJHB4uLE9jQpKWKrGm3f1ebNYvXAENnZohYXYHJFxpOTK/ZdWa/iYmD5cnHMkkB6kEqlv+cVEVmvDRuAsDAgMVFM/Jw7V/y/9fFROjKrwuSKDFanDjBggDhesACiLNDbW+wzlJpq2IPIb4JbtxZ7nBAZQ+67OnAAuHVL2ViodDt2AFevilJiebWbqKSnnhLXf/4p9rAjIutSUABMmiTeBGZniwTrwAGxESq303kIkyuqFLk0cOFCoNjJVbf6ZOjUQPZbkSk1aiRqvYuLgV27lI6GSiOXBA4Z4pAjeckAQUFA9+76g0+IyDqcPg107Qr83/+JP7/8suijDQ5WNi4rxuSKKuWxx4BatUTJ7Z9/ovJ9V1u2iGsmV2Qq8uoV+66sz/37wMqV4pglgVQeuTRw4UJl4yAinQULgPbtRT9IrVrAL78AX30l9iukMjG5okpxd9dNzp0/H7q+q507gfz88u985Qpw4oRYQpbfEBMZi31X1uvPP0UJSd267LGk8g0bJpp609KAo0eVjobIsd26JUqVRo8Gbt8W79kOHgSeeELpyGwCkyuqNLk0cPVq4JZvMyAwUHxCvX17+XeUV63atwdq1jRvkOQ45ER9/37xS4Csh1zi9eSTYg8UorLUqqUb08/BFkTKOXBAvE9bsECMVX/3XTHAokEDpSOzGUyuqNI6dQJathQbca9ardKVBlbUd8UR7GQOQUEiwS8qApKSlI6GZAUFwJo14pglgWSIklMDDZ1AS0SmodEAn38OREYCZ86IvSS3bgWmThUbfpPBmFxRpalUD+x5JZcGVtR3xWEWZC7y6hVLA63Hpk1iU9iAADGsgKgijz8uJtCmp3NjcCJLysoCBg4EXntNVCLFxooS3R49lI7MJjG5oiqRP2DcsgW42KKvyLiOHhV9VaU5dw44f16UBvGNFpkaNxO2PnJJYFycKC0hqohaLUpIAZYGEllKYqIYrb5hg2is/+Yb0fdRq5bSkdks/sajKmnUSFfdt+C3WkDHjuIPZa1eyatWnTsDXl7mD5Aci7xytXdvxYNVyPzu3AHWrRPHcXHKxkK2ZeRIcb18uSgtJSLzuH8fePNNUX2UkQG0agXs2we89BL3rjISkyuqspKlgVK/CkaycwQ7mVPjxqI+vKgISE5WOhr67TeR5AYFiQ9UiAzVqxdQvz6QkwP8/rvS0RDZp/PngZ49gRkzxP5yzz8vhkKFhiodmV1gckVVNnQo4OEBnDwJnGhYou/qwUZkSWK/FZlXyfH+7LtSnlwSOGIEPwGlynF2Bp56Shxzzysi01uxAggPFxsB+/iIjd7nzAE8PZWOzG4wuaIq8/IChgwRx7MPRgLVqommyMOH9U88eRK4elXU8kZGWj5Qcgzsu7IOeXli5QpgSSBVjVwa+OuvYgWLiIx35w7wwgvA8OFi2FCXLmJoxfDhSkdmd5hckVHk0sCFy92g6dlb/OHBkezyqlXXrtzVm8xHXrnas0f8EiFlrFsnemVathRN0kSV1bYt0KYNUFgIrFqldDREtu/wYdEb/8MPoppgyhSxN2lQkNKR2SUmV2SUvn0Bf3/gxg3gSEAZfVcsCSRLaNpU9Grcvy/KHUgZLAkkY6lUupG0LA0kqjpJAr77TmxQevw44Ocn3qN9+CHg6qp0dHaLyRUZxdlZ9zvwh/N/911t3y52GAZE/xWHWZAlsO9KeTduiP2tAJYEknHi48X11q3AxYuKhkJkk27cEM3xL70kqgn69wcOHhSfipNZMbkio8mlgd9vC0ZxQAPxn1jeAPLwYfEfvFo18ckJkTmx70pZa9aIiY1t24qxvkRV1aiR7sOSJUuUjYXI1uzYIYZWrFkjVqhmzgTWrwfq1VM6MofA5IqM1qYN0K4dcL9IhVON/l69kvuu5JLAnj25BE3mJ78Z271bt3pKllOyJJDIWPJgC5YGEhmmuBh47z3xQePFi0CzZmJ7kkmTuJm7BfE7TSYhr14tyn6g70pOruQdh4nMqXlz0QRYWCgGW5DlZGbq/r+zJJBM4cknATc3UQFx6JDS0RBZt0uXRMnftGmiJWPUKCAlBejQQenIHA6TKzKJ+HjRf/X9mb9reQ8eBC5f1pVnsd+KLIF9V8pZtUr8Qu/UCWjSROloyB7UrAk8/rg4XrRI2ViIrNm6dWI667Ztog3j55/FxctL6cgcEpMrMglfXyAmBshGXVzxbSdu/Phj4NYtoEYNUftLZAnsu1IGSwLJHOTSwMWLH96gnsjR3bsHvPIKMGiQ6G9v3x5ITRWrVqQYJldkMnJp4Nq7f5cGzp4trnv3FstaRJYgJ1fJyeIXD5nfpUuigRrghpRkWo89Jj6gu3RJTKIlIuHECbER8Ndfiz//619AUpIojydFMbkik3niCcDHB1iV9/dQi/v3xTVLAsmSWrQQS6kFBcDevUpH4xiWLxfXPXoADRooGwvZF7UaGDZMHHOwBZHYu2rePNFLdfAgUKcO8NtvwOefA+7uSkdHYHJFJqRWiz72XeiGAmcP3ReYXJElqVS61Sv2XVnGsmXimoMsyBzk0sAVK7gaTY4tN1f8f3j2WeDOHfH+6uBBscJLVoPJFZnU6NFAAdTYjp7ihnr1gJAQZYMixyMPtWDflfn99ZdYIXRyEtPdiEytRw+gYUMgL098Qk/kiPbuFfveLFkiWi0++EBsexMQoHRk9AAmV2RSXbuKQWFrip8QNzz2mFhJILIkeeUqKUmUB5L5yKtWjzwiyjGJTM3JCXjqKXHM0kByNBoN8MknQLduwLlzQGCg6HF98032s1spJldkUiqVWL36Hv/Ae2GrRA0wkaUFB4tV03v3gH37lI7GvrEkkCzh6afF9YYNYioakSPIyAD69wf+8x+gqEj0H6alAZGRSkdG5WByRSY3ahSggTPePTwEl+/UVDocckTc78oyjh8X9f4uLsCQIUpHQ/asTRuxj09hIbBypdLREJnfH3+If/N//AF4eABz5ogPs2rUUDoyqoDiydU333yDoKAgqNVqREREYG8F071WrFiB4OBgqNVqhIaGYsOGDXpfX716NR599FHUrl0bKpUKaWlpZoyeStOkCdC9u1jJHjRIbMHwzTfA5s3AxYvcqoQshMmV+cmrVtHRQK1aysZC9k8ebMHSQH337wPXr4uSsUOHgJ07xQrf0qXiDflnnwFTpwITJ4pBCMOGif+zkZGinHfSJGDBAuDIEbE6QsoqLAT+/W/xd5SVJT5Y2L8feP55tlnYCBcln3zZsmWYNGkSZs+ejYiICHzxxReIjo7GyZMnUa9evYfOT0pKQnx8PGbMmIHHH38cixcvRmxsLFJSUtCmTRsAQH5+Prp3747hw4fj+eeft/RLor/94x/i5/uBA+JSkqenmJbdogXQsqX+hZuJk8mU7LsqLATc3BQNx+5Ikm7jYJYEkiXEx4vyqB07gAsXRO+JrZIkMe3t1i0xqKOiS3nnGTtBccsW3bFaDbRtKzajbddOXEJDxe1kfmfPin/ncjn7iy8CM2eKlSuyGSpJkiSlnjwiIgKdOnXCrFmzAAAajQYNGzbEyy+/jDfeeOOh8+Pi4pCfn4/169drb+vSpQvCw8MxW96w9m/nz59H48aNkZqaivDw8HLjKCgoQEGJpve8vDw0bNgQubm58Pb2NuIVOi5JEh+0HDoEnDypu5w9W/4HY/7+DydcLVoAQUGi8ojIYJIk+q6ys0Wm362b0hHZl4MHgfBwsa9KVhbAn5VkCX37An/+CXz4ITBliuWfv7jYsITIkHNMXcbh6Sn+H3p5ievyLvI5N24AqanikpYG3L798OM6O4upvyUTrvBw/p83tSVLxCfTt26J0r8ff2S5tRXJy8uDj4+PQbmBYm9XCwsLceDAAUwp8cPRyckJUVFRSE5OLvU+ycnJmDRpkt5t0dHRWLt2rVGxzJgxA++++65Rj0H6VCqgUydxKen+feD8ef2ES75kZgJXr4rLg5Vcbm5A06YPJ14tWwK1a1vqVZFNkfuuVq0SI9mZXJmWvGo1YADfZJHljBwpkquFC4E33jCsTEqSxNRQUyREd+6Y9vU4ORmWDFWUNHl5Vf0TyLFjxbVGA5w5IxKtlBRd0pWdDRw+LC7z5+vu16yZfsLVrp34QIsq5/Zt0T8xb574c7duwOLFQKNGysZFVaZYcpWdnY3i4mL4PjC619fXFydOnCj1PhkZGaWen5GRYVQsU6ZM0Uva5JUrMj1XV6B5c3F5/HH9r+XkAKdO6Sdcp06Jy717onf++PGHH7N2bf1VLvm4aVNuVu7w5ORq61YxtpZMo2RJ4IgRysZCjmXoUOCll4Bjx4Dp00VCYUjSdP++aeNwdzcuGZIvnp7W00fj5KSr2ZdLfSUJuHTp4YTr4kWRiJ05AyxfrnuM+vX1E6727cUeZdbyGq1NWpr4GXrypPgevf226I9jqY5N498eAHd3d7jzXbjiatQAOncWl5I0GvFzvLTVrosXRR9vUpK4lOTkBDRuXHqZob8/f9Y7BLnvatcu8ebK1VXRcOzGvn1iCbpaNbFyRWQpPj7AwIFiYuB771X+/hUlPIaW1DlKD6dKJZKjhg2BJ57Q3Z6drUu05KTr1Cng8mVx+fVX3bm1aukSLfm6eXPxS9pRSRLw9dfA5MmiJzggAFi0SPc7i2yaYslVnTp14OzsjMzMTL3bMzMz4efnV+p9/Pz8KnU+2QcnJ9G3HBgIPPqo/tfy84HTpx9e8Tp5UnxYefasuDwwVBJeXqUP1GjRQnyQSHaidWvxi/3GDdEEyL1BTENetXriCf6HIcv7739FH1BlS+qqV3fsN/SmVKcO0K+fuMhu3RK9mCUTrqNHxc/fxERxkVWrJsaMl0y4QkIcI2nNzhZTG+UEdOBAYO5c8T0lu6BYcuXm5oYOHTogMTERsbGxAMRAi8TEREyYMKHU+0RGRiIxMRETJ07U3paQkIBIvmFyWNWqib7aB2eWSJLYe6+01a5z58TvgNImGQLiA7rSygwbNeLvZZvj5CRKA9esEX1X/FlhPI1GVwbEkkBSQsuWugSfrIeXl9iHpXt33W0FBWLEe8mE6+BB8cnogyUnrq5i7HjJssKwMPGL3l5s3Sr6Bq9cEYnkZ58BEyawlMbOKDotcNmyZRgzZgy+//57dO7cGV988QWWL1+OEydOwNfXF6NHj0b9+vUxY8YMAGIUe69evfDRRx9hwIABWLp0KT788EO9Uew3btxAeno6rly5oj2nZcuW8PPzM3iFqzITQcj2FBQAf/1VeuJ1/XrZ91OrRSVDaUM1fHwsFz9V0pdfiv1dVCrxyWDduqLpWr4ueVzyumZNZtOl2bED6NlT/KPPzGRjIxFVTnGx+IX7YB9XTs7D56pU4pfsg4MzbG1fvaIiUcb63/+KT3/lDwgqmGZN1qMyuYGiyRUAzJo1C59++ikyMjIQHh6Or776ChEREQCA3r17IygoCD/99JP2/BUrVuDtt9/G+fPn0bx5c3zyySd47LHHtF//6aefMFaefFPCtGnTMH36dINiYnLluK5ff3igxsmTome3sLDs+/n6ll5m2Lgx23wUl54OdOggSjEqw9lZJGPlJWAlr318HOPTx/HjgW+/BZ55RjfdiojIGJIk+jgfTLiuXi39/MDAhwdnWGszdXo68NRTovcXENMZv/pKlKmSzbCp5MoaMbmiBxUViT0rS1vtKutnPyAG/pQcIV8yAatb1zp/D9iloiKRXGVlicu1a+Vf5+ZW/jlcXStOwEoeV69ue/8AiopE4/W1a8DGjUB0tNIREZE9y8h4OOH666/Sz61X7+GEq0kTZX/Orl4NjBsnVuW8vIDvvxebBJPNYXJlJCZXVBl5eWKoxoNJ16lT5W+JUqNG6SWGzZqJEkRSUEGBLhmrKBHLyip9482KuLtXnICVvLaGvoOEBDFVpk4d0TPAZVkisrScHDHCvGTCdfx46Zsye3uL0ruSgzOCg80/6vzuXeC114DvvhN/7tRJbBLctKl5n5fMhsmVkZhckSloNGIibWmrXenpogqiNCoVEBSkW+Vq3PjhKcElr43ZO5JM5O5dkWyVl4CVPL57t/LP4elZcQJW8tocGfpzzwE//gj84x/A7Nmmf3wioqq4c0dsclwy4Tp0qPR6frUaCA3VT7hCQ033M/PoUTHs58gR8efJk0WvlSNMQrRjTK6MxOSKzO3uXdHHVVriVZWKNA+P0pOushKy8s5lomYB+fnlJ2APXhcUVP45vLwMK0+sW1dcKvrFX1gomgtzcoAtW7gfCxFZt/v3xYrWg2WFpVUaODsDrVrplxWGh1duWpUkAT/8IAYo3b0rfr7+/DPLp+0EkysjMbkipUiSeC9dsrTw4kUxOj4vT//61q2qveeuiIeH4YlYRddM1ExAksSbAUMTsWvXxJuKyvLxKT8Ru3QJ+Pe/RdP4xYvizQgRkS3RaMTmlyUTrpSUsgceNW36cB9XvXoPn5eTA7zwArBihfhzv34iseI+rHaDyZWRmFyRrSgsLD3xKpmAlfW1B88xR6KmVhueiJWXvHl5sb3HYJIklj8NTcSuXROjkQ31yitivD0RkT2QJFHD/2DCdfFi6ecHBOgnXGo18OKLYuqViwvw4Yei34pbedgVJldGYnJFjkhO1KqapJU8994908dXWqJW2aTNy0sM6ePWTCVoNOJTV0MSMScnMf2qWTOloyYiMq/s7IcHZ5w6VXbDdJMmYmhF584WDZMsg8mVkZhcERnn/n3TraiZI1FzddVPth5Mvir7Z3d325uqTkRElXT7NnDwoH7CdfYsEBsLfP115Xq0yKYwuTISkysi6yEnasYmabduVW1InyFcXEybrKnVTNaIiIisRWVyA7abE5FVc3UFatUSF2MVFYlBfXLSJV9u367an+V9zIqKgJs3xcUUnJ1Nm6x5eDBZIyIisgQmV0TkMFxcRNWGqSo3iotFolVRMmZowpafr3vcnBxxMQVnZ13SZUyyVr262G7L05OTIImIiErDX49ERFXk7Gz6ZE1eWavsalppt5VM1nJzq7aHWllcXHSJloeH/nVZx1X5ulrNoVtERGQ7mFwREVkJZ2cx3dBUrZ4ajX4ZZFXLH0v+WVZUJHrZ8vJME2t51GrTJmxlfd3VleWTRERkHCZXRER2yslJV9JnCpIk9kO7c0dc7t7Vvy7r2NDbSh4XFuqe994980yNfJCTk2VW49zdxcofEzkiIvvD5IqIiAyiUolVJLXaNANGylNcbFxyVpn7aDTiOTUaXQ+dJbi66l/c3Mr+c3lfU+pcZ2fLfJ+IiGwJkysiIrI68hCO6tXN+zySJMb9VzVhq0xC9+Dq2/374mKrnJwsn+CV/LOLi+66rEtlv+7kxBVFIjIOkysiInJYKpV4s+7mBtSoYd7n0mhEglVQIJKqwkJdgvXgn8v7minvW5lzH9wVU6MRr6WgwLzfN0szNkEzRZJnyedwdhYXDo4hMg0mV0RERBZQsqfL1kiSKNW0poSvqKjsiyFffzBZlMnnOBqVSpdolUy6eFz2MVc5qTRMroiIiKhcKpVupcPDQ+loTEOjMT5BM+brSj2G3GP4IEnSnWNvq5HmIv+/kBOukseG3mbs1631MR058WRyRURERA7HyUlXEupINBqxCiknXsXFuktREY8fPC4rGQV0PZu23DtpLk5OlU/Ivv0W6N5d6ciNx+SKiIiIyEE4OemGkdjLKqQ5ySWxZSVgD95W8vYHzzHkNmO/bunHLItGo7+lhiHu3DHu78paMLkiIiIiIipFyZJYd3elo7EukqS/EmpsEteundKvyDSYXBERERERUaWUHILiaOW15eHgTSIiIiIiIhNgckVERERERGQCTK6IiIiIiIhMgMkVERERERGRCTC5IiIiIiIiMgEmV0RERERERCbA5IqIiIiIiMgEmFwRERERERGZAJMrIiIiIiIiE2ByRUREREREZAJMroiIiIiIiEzAKpKrb775BkFBQVCr1YiIiMDevXvLPX/FihUIDg6GWq1GaGgoNmzYoPd1SZIwdepU+Pv7w8PDA1FRUTh9+rQ5XwIRERERETk4xZOrZcuWYdKkSZg2bRpSUlIQFhaG6OhoZGVllXp+UlIS4uPjMW7cOKSmpiI2NhaxsbE4cuSI9pxPPvkEX331FWbPno09e/agWrVqiI6Oxr179yz1soiIiIiIyMGoJEmSlAwgIiICnTp1wqxZswAAGo0GDRs2xMsvv4w33njjofPj4uKQn5+P9evXa2/r0qULwsPDMXv2bEiShICAALz22mt4/fXXAQC5ubnw9fXFTz/9hBEjRlQYU15eHnx8fJCbmwtvb28TvVIiIiIiIrI1lckNXCwUU6kKCwtx4MABTJkyRXubk5MToqKikJycXOp9kpOTMWnSJL3boqOjsXbtWgDAuXPnkJGRgaioKO3XfXx8EBERgeTk5FKTq4KCAhQUFGj/nJubC0B8I4mIiIiIyHHJOYEha1KKJlfZ2dkoLi6Gr6+v3u2+vr44ceJEqffJyMgo9fyMjAzt1+XbyjrnQTNmzMC777770O0NGzY07IUQEREREZFdu3XrFnx8fMo9R9HkylpMmTJFbzUsJycHgYGBSE9Pr/AbSGXLy8tDw4YNcfHiRZZXVhG/h6bB76Px+D00DX4fTYPfR+Pxe2ga/D4azxa+h5Ik4datWwgICKjwXEWTqzp16sDZ2RmZmZl6t2dmZsLPz6/U+/j5+ZV7vnydmZkJf39/vXPCw8NLfUx3d3e4u7s/dLuPj4/V/iXbEm9vb34fjcTvoWnw+2g8fg9Ng99H0+D30Xj8HpoGv4/Gs/bvoaELLopOC3Rzc0OHDh2QmJiovU2j0SAxMRGRkZGl3icyMlLvfABISEjQnt+4cWP4+fnpnZOXl4c9e/aU+ZhERERERETGUrwscNKkSRgzZgw6duyIzp0744svvkB+fj7Gjh0LABg9ejTq16+PGTNmAABeffVV9OrVCzNnzsSAAQOwdOlS7N+/H3PmzAEAqFQqTJw4Ef/973/RvHlzNG7cGO+88w4CAgIQGxur1MskIiIiIiI7p3hyFRcXh2vXrmHq1KnIyMhAeHg4Nm7cqB1IkZ6eDicn3QJb165dsXjxYrz99tt488030bx5c6xduxZt2rTRnvPvf/8b+fn5eOGFF5CTk4Pu3btj48aNUKvVBsXk7u6OadOmlVoqSIbj99F4/B6aBr+PxuP30DT4fTQNfh+Nx++hafD7aDx7+x4qvs8VERERERGRPVC054qIiIiIiMheMLkiIiIiIiIyASZXREREREREJsDkioiIiIiIyASYXJWwfft2DBw4EAEBAVCpVFi7dq3SIdmcGTNmoFOnTvDy8kK9evUQGxuLkydPKh2Wzfnuu+/Qtm1b7YZ6kZGR+P3335UOy6Z99NFH2q0ayHDTp0+HSqXSuwQHBysdls25fPkynn76adSuXRseHh4IDQ3F/v37lQ7LpgQFBT30b1GlUmH8+PFKh2ZTiouL8c4776Bx48bw8PBA06ZN8f7774PzzSrn1q1bmDhxIgIDA+Hh4YGuXbti3759Sodl1Sp6ny1JEqZOnQp/f394eHggKioKp0+fViZYIzC5KiE/Px9hYWH45ptvlA7FZm3btg3jx4/H7t27kZCQgPv37+PRRx9Ffn6+0qHZlAYNGuCjjz7CgQMHsH//fjzyyCMYNGgQjh49qnRoNmnfvn34/vvv0bZtW6VDsUmtW7fG1atXtZedO3cqHZJNuXnzJrp16wZXV1f8/vvvOHbsGGbOnImaNWsqHZpN2bdvn96/w4SEBADAsGHDFI7Mtnz88cf47rvvMGvWLBw/fhwff/wxPvnkE3z99ddKh2ZTnnvuOSQkJGDBggU4fPgwHn30UURFReHy5ctKh2a1Knqf/cknn+Crr77C7NmzsWfPHlSrVg3R0dG4d++ehSM1kkSlAiCtWbNG6TBsXlZWlgRA2rZtm9Kh2LyaNWtK//vf/5QOw+bcunVLat68uZSQkCD16tVLevXVV5UOyaZMmzZNCgsLUzoMm/af//xH6t69u9Jh2J1XX31Vatq0qaTRaJQOxaYMGDBAevbZZ/VuGzJkiDRy5EiFIrI9d+7ckZydnaX169fr3d6+fXvprbfeUigq2/Lg+2yNRiP5+flJn376qfa2nJwcyd3dXVqyZIkCEVYdV67IrHJzcwEAtWrVUjgS21VcXIylS5ciPz8fkZGRSodjc8aPH48BAwYgKipK6VBs1unTpxEQEIAmTZpg5MiRSE9PVzokm7Ju3Tp07NgRw4YNQ7169dCuXTv88MMPSodl0woLC7Fw4UI8++yzUKlUSodjU7p27YrExEScOnUKAHDw4EHs3LkT/fv3Vzgy21FUVITi4mKo1Wq92z08PLiyX0Xnzp1DRkaG3u9qHx8fREREIDk5WcHIKs9F6QDIfmk0GkycOBHdunVDmzZtlA7H5hw+fBiRkZG4d+8eqlevjjVr1iAkJETpsGzK0qVLkZKSwjp4I0REROCnn35Cy5YtcfXqVbz77rvo0aMHjhw5Ai8vL6XDswl//fUXvvvuO0yaNAlvvvkm9u3bh1deeQVubm4YM2aM0uHZpLVr1yInJwfPPPOM0qHYnDfeeAN5eXkIDg6Gs7MziouL8cEHH2DkyJFKh2YzvLy8EBkZiffffx+tWrWCr68vlixZguTkZDRr1kzp8GxSRkYGAMDX11fvdl9fX+3XbAWTKzKb8ePH48iRI/wUp4patmyJtLQ05ObmYuXKlRgzZgy2bdvGBMtAFy9exKuvvoqEhISHPl0kw5X8NLtt27aIiIhAYGAgli9fjnHjxikYme3QaDTo2LEjPvzwQwBAu3btcOTIEcyePZvJVRX9+OOP6N+/PwICApQOxeYsX74cixYtwuLFi9G6dWukpaVh4sSJCAgI4L/HSliwYAGeffZZ1K9fH87Ozmjfvj3i4+Nx4MABpUMjhbEskMxiwoQJWL9+PbZs2YIGDRooHY5NcnNzQ7NmzdChQwfMmDEDYWFh+PLLL5UOy2YcOHAAWVlZaN++PVxcXODi4oJt27bhq6++gouLC4qLi5UO0SbVqFEDLVq0wJkzZ5QOxWb4+/s/9KFIq1atWF5ZRRcuXMDmzZvx3HPPKR2KTZo8eTLeeOMNjBgxAqGhoRg1ahT+9a9/YcaMGUqHZlOaNm2Kbdu24fbt27h48SL27t2L+/fvo0mTJkqHZpP8/PwAAJmZmXq3Z2Zmar9mK5hckUlJkoQJEyZgzZo1+PPPP9G4cWOlQ7IbGo0GBQUFSodhM/r27YvDhw8jLS1Ne+nYsSNGjhyJtLQ0ODs7Kx2iTbp9+zbOnj0Lf39/pUOxGd26dXtoS4pTp04hMDBQoYhs27x581CvXj0MGDBA6VBs0p07d+DkpP/2z9nZGRqNRqGIbFu1atXg7++PmzdvYtOmTRg0aJDSIdmkxo0bw8/PD4mJidrb8vLysGfPHpvrN2dZYAm3b9/W+zT23LlzSEtLQ61atdCoUSMFI7Md48ePx+LFi/HLL7/Ay8tLWyfr4+MDDw8PhaOzHVOmTEH//v3RqFEj3Lp1C4sXL8bWrVuxadMmpUOzGV5eXg/1+lWrVg21a9dmD2AlvP766xg4cCACAwNx5coVTJs2Dc7OzoiPj1c6NJvxr3/9C127dsWHH36I4cOHY+/evZgzZw7mzJmjdGg2R6PRYN68eRgzZgxcXPgWpioGDhyIDz74AI0aNULr1q2RmpqKzz//HM8++6zSodmUTZs2QZIktGzZEmfOnMHkyZMRHByMsWPHKh2a1aroffbEiRPx3//+F82bN0fjxo3xzjvvICAgALGxscoFXRVKjyu0Jlu2bJEAPHQZM2aM0qHZjNK+fwCkefPmKR2aTXn22WelwMBAyc3NTapbt67Ut29f6Y8//lA6LJvHUeyVFxcXJ/n7+0tubm5S/fr1pbi4OOnMmTNKh2Vzfv31V6lNmzaSu7u7FBwcLM2ZM0fpkGzSpk2bJADSyZMnlQ7FZuXl5Umvvvqq1KhRI0mtVktNmjSR3nrrLamgoEDp0GzKsmXLpCZNmkhubm6Sn5+fNH78eCknJ0fpsKxaRe+zNRqN9M4770i+vr6Su7u71LdvX5v8v66SJG7JTUREREREZCz2XBEREREREZkAkysiIiIiIiITYHJFRERERERkAkyuiIiIiIiITIDJFRERERERkQkwuSIiIiIiIjIBJldEREREREQmwOSKiIiIiIjIBJhcERERmZhKpcLatWuVDoOIiCyMyRUREdmVZ555BiqV6qFLTEyM0qEREZGdc1E6ACIiIlOLiYnBvHnz9G5zd3dXKBoiInIUXLkiIiK74+7uDj8/P71LzZo1AYiSve+++w79+/eHh4cHmjRpgpUrV+rd//Dhw3jkkUfg4eGB2rVr44UXXsDt27f1zpk7dy5at24Nd3d3+Pv7Y8KECXpfz87OxuDBg+Hp6YnmzZtj3bp15n3RRESkOCZXRETkcN555x0MHToUBw8exMiRI/+/nfsJhS2Mwzj+vKKYg6LJNNlYqGksKFEmNrIQpRRJTRo2mmiyUWpSRqzZmYXsiJqFsvCnWE6JjT+LYa0mUTaaYjNzF2rq5Ha73Y4xd3w/q/e87+mc37t8es/vaHx8XKlUSpKUyWTU39+vuro6XV5eKpFI6PT01Bae4vG4ZmdnNT09rdvbWx0cHKi5udn2juXlZY2Njenm5kaDg4MKBoN6eXkp6D4BAIVlcrlc7ruLAADAKZOTk9re3lZlZaVtPhqNKhqNyhijcDiseDyeX+vq6lJ7e7s2Nja0ubmphYUFPTw8yLIsSdLh4aGGhoaUTqfl8XjU2Nioqakpra6u/rYGY4wWFxe1srIi6SOwVVdX6+joiN4vAChh9FwBAEpOb2+vLTxJUn19fX4cCARsa4FAQFdXV5KkVCqltra2fLCSpO7ubmWzWd3f38sYo3Q6rb6+vj/W0Nramh9blqXa2lo9PT3965YAAP8BwhUAoORYlvXpMz2nVFVV/dV9FRUVtmtjjLLZ7FeUBAAoEvRcAQB+nPPz80/Xfr9fkuT3+3V9fa1MJpNfTyaTKisrk8/nU01NjZqamnR2dlbQmgEAxY+TKwBAyXl/f9fj46Ntrry8XG63W5KUSCTU0dGhnp4e7ezs6OLiQltbW5KkYDCopaUlhUIhxWIxPT8/KxKJaGJiQh6PR5IUi8UUDofV0NCggYEBvb6+KplMKhKJFHajAICiQrgCAJSc4+Njeb1e25zP59Pd3Z2kjz/57e3taWZmRl6vV7u7u2ppaZEkuVwunZycaG5uTp2dnXK5XBoZGdHa2lr+WaFQSG9vb1pfX9f8/LzcbrdGR0cLt0EAQFHib4EAgB/FGKP9/X0NDw9/dykAgBJDzxUAAAAAOIBwBQAAAAAOoOcKAPCj8DU8AOCrcHIFAAAAAA4gXAEAAACAAwhXAAAAAOAAwhUAAAAAOIBwBQAAAAAOIFwBAAAAgAMIVwAAAADgAMIVAAAAADjgF5EWpeMGE/6WAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkZElEQVR4nO3de1iUdf7/8ddwRgQ8gyiClmfxkAdESzQpLNeyrMifecpqa9V0rba0zA5btrW2rlmZtWlnzVrbvm5piMfU8hQeytRK0TRAU0FQQZn798e9MzqCyGHgZuD5uK77mnvu+cw973u03Xn5Odw2wzAMAQAAAADKxcvqAgAAAACgOiBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBoQrAAAAAHADwhUAAAAAuAHhCgAAAADcgHAFAAAAAG5AuAIAAAAANyBcAUANMX/+fNlsNu3fv9/qUuDhbDabxo0bZ3UZAFDlEK4AoAbbuHGj/vSnP6lr167y9fWVzWarsM/q27evOnToUGHnr05sNtslt/vvv9/q8gAAl+BjdQEAAOt88cUXeuutt9SxY0e1aNFCe/bssbok/M91112nESNGFDreqlUrC6oBAJQE4QoAarAHHnhAjz76qAIDAzVu3DjCVSU5c+aM/Pz85OV16QEkrVq10l133VWJVQEAyothgQBQg4WFhSkwMNDqMly89tprat++vfz9/RUREaGxY8fqxIkTLm327t2rIUOGKDw8XAEBAWratKnuvPNOZWVlOdskJyfr6quvVp06dVS7dm21bt1aU6ZMueznO+YTffDBB2rdurUCAgLUtWtXrVmzplDbQ4cO6e6771ZYWJj8/f3Vvn17vf322y5tVq1aJZvNpgULFuiJJ55QkyZNVKtWLWVnZ5ftC7qAY6jlli1b1KtXLwUGBqp58+aaM2dOobaZmZkaM2aMwsLCFBAQoE6dOumdd94p1M5ut+uf//ynYmJiFBAQoIYNG2rAgAHavHlzobafffaZOnTo4Lz2pUuXlvuaAMCT0XMFAKgynnrqKT399NNKSEjQAw88oN27d+v111/Xpk2btG7dOvn6+io/P1+JiYnKy8vT+PHjFR4erkOHDmnJkiU6ceKEQkND9f333+sPf/iDOnbsqGeeeUb+/v766aeftG7duhLVsXr1ai1cuFAPPvig/P399dprr2nAgAHauHGjc95YRkaGevbs6QxjDRs21JdffqkxY8YoOztbEydOdDnns88+Kz8/Pz388MPKy8uTn59fsTWcOXNGR48eLXQ8JCTE5b3Hjx/XjTfeqDvuuENDhw7Vxx9/rAceeEB+fn66++67JUmnT59W37599dNPP2ncuHFq3ry5Fi1apFGjRunEiROaMGGC83xjxozR/PnzdcMNN+iee+7RuXPntHbtWn3zzTfq1q2bs93XX3+tf//73/rTn/6k4OBgzZo1S0OGDNGBAwdUv379En3PAFDtGACAGmHevHmGJGPfvn1Fvj527FijIv9vIT4+3mjfvv0lX8/MzDT8/PyM66+/3igoKHAenz17tiHJePvttw3DMIzvvvvOkGQsWrTokuf6xz/+YUgyjhw5Uuo6JRmSjM2bNzuPpaWlGQEBAcYtt9ziPDZmzBijcePGxtGjR13ef+eddxqhoaHGqVOnDMMwjJUrVxqSjBYtWjiPlbSGoraPPvrI2S4+Pt6QZMyYMcN5LC8vz+jcubPRqFEjIz8/3zAMw5g5c6YhyXj//fed7fLz8424uDijdu3aRnZ2tmEYhrFixQpDkvHggw8Wqslut7vU5+fnZ/z000/OY9u2bTMkGa+88kqJrhEAqiOGBQIAqoTly5crPz9fEydOdJmLdO+99yokJET//e9/JUmhoaGSpGXLlunUqVNFnqtOnTqSpP/85z+y2+2lriUuLk5du3Z1Pm/WrJluvvlmLVu2TAUFBTIMQ59++qkGDRokwzB09OhR55aYmKisrCxt3brV5ZwjR44s1RDMm2++WcnJyYW2fv36ubTz8fHRH//4R+dzPz8//fGPf1RmZqa2bNkiyVy4JDw8XEOHDnW28/X11YMPPqicnBytXr1akvTpp5/KZrNp2rRpheq5eCXJhIQEXXHFFc7nHTt2VEhIiH755ZcSXyMAVDcMCwQAlMmxY8eUn5/vfB4YGOgMPmWRlpYmSWrdurXLcT8/P7Vo0cL5evPmzTVp0iS9/PLL+uCDD3TNNdfopptu0l133eX8/KSkJL311lu655579Nhjj6l///669dZbddtttxW7iIRDy5YtCx1r1aqVTp06pSNHjsjLy0snTpzQ3LlzNXfu3CLPkZmZ6fK8efPml/8SLtC0aVMlJCRctl1ERISCgoIK1SpJ+/fvV8+ePZWWlqaWLVsWuva2bdtKOv/d//zzz4qIiFC9evUu+7nNmjUrdKxu3bo6fvz4Zd8LANUVPVcAgDK59dZb1bhxY+d24bydijZjxgxt375dU6ZM0enTp/Xggw+qffv2+vXXXyWZQW/NmjVavny5hg8fru3btyspKUnXXXedCgoKyv35jt6wu+66q8jepeTkZPXu3dvlPVVt4ZDy8vb2LvK4YRiVXAkAVB30XAEAymTGjBkuvRQRERHlOl9UVJQkaffu3WrRooXzeH5+vvbt21eoFycmJkYxMTF64okntH79evXu3Vtz5szRX//6V0mSl5eX+vfvr/79++vll1/W888/r8cff1wrV668bI/Q3r17Cx3bs2ePatWqpYYNG0qSgoODVVBQUKLepYp0+PBh5ebmuvReOZbUj46OlmR+t9u3b5fdbnfpvfrxxx+dr0vSFVdcoWXLlunYsWMl6r0CALii5woAUCZdu3ZVQkKCc2vXrl25zpeQkCA/Pz/NmjXLpffjX//6l7KysjRw4EBJUnZ2ts6dO+fy3piYGHl5eSkvL0+SOWTxYp07d5YkZ5vibNiwwWXO1MGDB/Wf//xH119/vby9veXt7a0hQ4bo008/1c6dOwu9/8iRI5e/YDc5d+6c3njjDefz/Px8vfHGG2rYsKFz3tiNN96o9PR0LVy40OV9r7zyimrXrq34+HhJ0pAhQ2QYhp5++ulCn0OPFABcHj1XAFCDpaWl6b333pMk532MHD0/UVFRGj58uFs/78iRI87zX6h58+YaNmyYJk+erKeffloDBgzQTTfdpN27d+u1115T9+7dnTfUXbFihcaNG6fbb79drVq10rlz5/Tee+85A48kPfPMM1qzZo0GDhyoqKgoZWZm6rXXXlPTpk119dVXX7bODh06KDEx0WUpdkkuoeOFF17QypUrFRsbq3vvvVft2rXTsWPHtHXrVi1fvrzIgFcae/bs0fvvv1/oeFhYmK677jrn84iICP3tb3/T/v371apVKy1cuFCpqamaO3eufH19JUn33Xef3njjDY0aNUpbtmxRdHS0PvnkE61bt04zZ85UcHCwJKlfv34aPny4Zs2apb1792rAgAGy2+1au3at+vXrp3HjxpXrmgCg2rNyqUIAQOUpail2xzLhRW3x8fFu/XzHsuFFbf3793e2mz17ttGmTRvD19fXCAsLMx544AHj+PHjztd/+eUX4+677zauuOIKIyAgwKhXr57Rr18/Y/ny5c42KSkpxs0332xEREQYfn5+RkREhDF06FBjz549l61TkjF27Fjj/fffN1q2bGn4+/sbXbp0MVauXFmobUZGhjF27FgjMjLS8PX1NcLDw43+/fsbc+fOdbZxfMfFLR1fVA0l+XNxLG+/efNmIy4uzggICDCioqKM2bNnF1nr6NGjjQYNGhh+fn5GTEyMMW/evELtzp07Z7z00ktGmzZtDD8/P6Nhw4bGDTfcYGzZsqXQd3SxqKgoY+TIkSW+TgCobmyGQT8/AAAONptNY8eO1ezZs60u5bL69u2ro0ePFjk0EQBQ+ZhzBQAAAABuQLgCAAAAADcgXAEAAACAGzDnCgAAAADcgJ4rAAAAAHADwhUAAAAAuAE3ES6C3W7X4cOHFRwcLJvNZnU5AAAAACxiGIZOnjypiIgIeXkV3zdFuCrC4cOHFRkZaXUZAAAAAKqIgwcPqmnTpsW2IVwVITg4WJL5BYaEhFhcDQAAAACrZGdnKzIy0pkRikO4KoJjKGBISAjhCgAAAECJpguxoAUAAAAAuAHhCgAAAADcgHAFAAAAAG7AnCsAAAB4hIKCAp09e9bqMlDNeHt7y8fHxy23YCJcAQAAoMrLycnRr7/+KsMwrC4F1VCtWrXUuHFj+fn5les8hCsAAABUaQUFBfr1119Vq1YtNWzY0C09DIBk3iA4Pz9fR44c0b59+9SyZcvL3ii4OIQrAAAAVGlnz56VYRhq2LChAgMDrS4H1UxgYKB8fX2Vlpam/Px8BQQElPlcLGgBAAAAj0CPFSpKeXqrXM7jlrMAAAAAQA1HuAIAAAAANyBcAQAAAB4iOjpaM2fOtLoMXALhCgAAAHAzm81W7PbUU0+V6bybNm3SfffdV67a+vbtq4kTJ5brHCgaqwUCAAAAbvbbb7859xcuXKgnn3xSu3fvdh6rXbu2c98wDBUUFMjH5/I/zRs2bOjeQuFW9FwVx263ugIAAABcxDCk3FxrtpLewzg8PNy5hYaGymazOZ//+OOPCg4O1pdffqmuXbvK399fX3/9tX7++WfdfPPNCgsLU+3atdW9e3ctX77c5bwXDwu02Wx66623dMstt6hWrVpq2bKlPv/883J9v59++qnat28vf39/RUdHa8aMGS6vv/baa2rZsqUCAgIUFham2267zfnaJ598opiYGAUGBqp+/fpKSEhQbm5uuerxJPRcFeeHH6RevayuAgAAABc4dUq6oOOnUuXkSEFB7jnXY489pr///e9q0aKF6tatq4MHD+rGG2/Uc889J39/f7377rsaNGiQdu/erWbNml3yPE8//bRefPFFvfTSS3rllVc0bNgwpaWlqV69eqWuacuWLbrjjjv01FNPKSkpSevXr9ef/vQn1a9fX6NGjdLmzZv14IMP6r333lOvXr107NgxrV27VpLZWzd06FC9+OKLuuWWW3Ty5EmtXbtWRkkTaTVAuCrOqlWEKwAAAFSIZ555Rtddd53zeb169dSpUyfn82effVaLFy/W559/rnHjxl3yPKNGjdLQoUMlSc8//7xmzZqljRs3asCAAaWu6eWXX1b//v01depUSVKrVq30ww8/6KWXXtKoUaN04MABBQUF6Q9/+IOCg4MVFRWlLl26SDLD1blz53TrrbcqKipKkhQTE1PqGjwZwwKLs3Kl1RUAAADgIrVqmT1IVmy1arnvOrp16+byPCcnRw8//LDatm2rOnXqqHbt2tq1a5cOHDhQ7Hk6duzo3A8KClJISIgyMzPLVNOuXbvUu3dvl2O9e/fW3r17VVBQoOuuu05RUVFq0aKFhg8frg8++ECnTp2SJHXq1En9+/dXTEyMbr/9dr355ps6fvx4merwVISr4qxbJ+XlWV0FAAAALmCzmUPzrNhsNvddR9BF4wsffvhhLV68WM8//7zWrl2r1NRUxcTEKD8/v9jz+Pr6XvT92GSvoLUDgoODtXXrVn300Udq3LixnnzySXXq1EknTpyQt7e3kpOT9eWXX6pdu3Z65ZVX1Lp1a+3bt69CaqmKCFfFOX1a2rDB6ioAAABQA6xbt06jRo3SLbfcopiYGIWHh2v//v2VWkPbtm21bt26QnW1atVK3t7ekiQfHx8lJCToxRdf1Pbt27V//36tWLFCkhnsevfuraefflrfffed/Pz8tHjx4kq9Bisx5+pyli+X+va1ugoAAABUcy1bttS///1vDRo0SDabTVOnTq2wHqgjR44oNTXV5Vjjxo310EMPqXv37nr22WeVlJSkDRs2aPbs2XrttdckSUuWLNEvv/yiPn36qG7duvriiy9kt9vVunVrffvtt0pJSdH111+vRo0a6dtvv9WRI0fUtm3bCrmGqoieq8tJTra6AgAAANQAL7/8surWratevXpp0KBBSkxM1FVXXVUhn/Xhhx+qS5cuLtubb76pq666Sh9//LEWLFigDh066Mknn9QzzzyjUaNGSZLq1Kmjf//737r22mvVtm1bzZkzRx999JHat2+vkJAQrVmzRjfeeKNatWqlJ554QjNmzNANN9xQIddQFdmMmrQ2YgllZ2crNDRUWZJCvLyko0elunWtLgsAAKBGOnPmjPbt26fmzZsrICDA6nJQDRX3d8yZDbKyFBISUux56LkqTsuW5o2EV62yuhIAAAAAVRzhqjj9+pmPDA0EAAAAcBmEq+I4wtXy5dbWAQAAAKDKI1wVp3dvydtb2rtXSkuzuhoAAAAAVRjhqjihoVKPHuY+vVcAAAAAimF5uHr11VcVHR2tgIAAxcbGauPGjZds+/3332vIkCGKjo6WzWbTzJkziz33Cy+8IJvNpokTJ5a9wOuuMx8JVwAAAACKYWm4WrhwoSZNmqRp06Zp69at6tSpkxITE5WZmVlk+1OnTqlFixZ64YUXFB4eXuy5N23apDfeeEMdO3YsX5EJCebj8uXmyoEAAAAAUARLw9XLL7+se++9V6NHj1a7du00Z84c1apVS2+//XaR7bt3766XXnpJd955p/z9/S953pycHA0bNkxvvvmm6pb3/lQ9e0q1a5v3utq+vXznAgAAAFBtWRau8vPztWXLFiU4eoYkeXl5KSEhQRs2bCjXuceOHauBAwe6nLs4eXl5ys7OdtmcfH2l+HhznyXZAQAAAFyCZeHq6NGjKigoUFhYmMvxsLAwpaenl/m8CxYs0NatWzV9+vQSv2f69OkKDQ11bpGRka4NLhwaCAAAAFSSvn37uqwfEB0dfdl1B2w2mz777LNyf7a7zlOTWL6ghTsdPHhQEyZM0AcffKCAgIASv2/y5MnKyspybgcPHnRt4FjUYu1a6cwZN1YMAACA6mjQoEEaMGBAka+tXbtWNptN28sw5WTTpk267777yluei6eeekqdO3cudPy3337TDTfc4NbPutj8+fNVp06dCv2MymRZuGrQoIG8vb2VkZHhcjwjI+Oyi1VcypYtW5SZmamrrrpKPj4+8vHx0erVqzVr1iz5+PiooKCgyPf5+/srJCTEZXPRrp3UuLF0+rS0fn2ZagMAAEDNMWbMGCUnJ+vXX38t9Nq8efPUrVu3Mi281rBhQ9WqVcsdJV5WeHh4sescoDDLwpWfn5+6du2qlJQU5zG73a6UlBTFxcWV6Zz9+/fXjh07lJqa6ty6deumYcOGKTU1Vd7e3mUr1mZjaCAAAEBVYRhSbq41m2GUqMQ//OEPatiwoebPn+9yPCcnR4sWLdKYMWP0+++/a+jQoWrSpIlq1aqlmJgYffTRR8We9+JhgXv37lWfPn0UEBCgdu3aKbmINQIeffRRtWrVSrVq1VKLFi00depUnT17VpLZc/T0009r27ZtstlsstlszpovHha4Y8cOXXvttQoMDFT9+vV13333KScnx/n6qFGjNHjwYP39739X48aNVb9+fY0dO9b5WWVx4MAB3Xzzzapdu7ZCQkJ0xx13uHTObNu2Tf369VNwcLBCQkLUtWtXbd68WZKUlpamQYMGqW7dugoKClL79u31xRdflLmWkvCp0LNfxqRJkzRy5Eh169ZNPXr00MyZM5Wbm6vRo0dLkkaMGKEmTZo450/l5+frhx9+cO4fOnRIqampql27tq688koFBwerQ4cOLp8RFBSk+vXrFzpeagkJ0nvvmYtaPP98+c4FAACAsjt1ylzN2Qo5OVJQ0GWb+fj4aMSIEZo/f74ef/xx2Ww2SdKiRYtUUFCgoUOHKicnR127dtWjjz6qkJAQ/fe//9Xw4cN1xRVXqEePHpf9DLvdrltvvVVhYWH69ttvlZWVVeT9XYODgzV//nxFRERox44duvfeexUcHKy//OUvSkpK0s6dO7V06VIt/18nQmhoaKFz5ObmKjExUXFxcdq0aZMyMzN1zz33aNy4cS4BcuXKlWrcuLFWrlypn376SUlJSercubPuvffey15PUdfnCFarV6/WuXPnNHbsWCUlJWnVqlWSpGHDhqlLly56/fXX5e3trdTUVPn6+koyF7nLz8/XmjVrFBQUpB9++EG1K/rvjWGxV155xWjWrJnh5+dn9OjRw/jmm2+cr8XHxxsjR450Pt+3b58hqdAWHx9/yfPHx8cbEyZMKFVNWVlZhiQjKyvr/MFffzUMyTBsNsP4/fdSnQ8AAABld/r0aeOHH34wTp8+bR7IyTF/l1mx5eSUuO5du3YZkoyVK1c6j11zzTXGXXfddcn3DBw40HjooYeczy/+LRsVFWX84x//MAzDMJYtW2b4+PgYhw4dcr7+5ZdfGpKMxYsXX/IzXnrpJaNr167O59OmTTM6depUqN2F55k7d65Rt25dI+eC6//vf/9reHl5Genp6YZhGMbIkSONqKgo49y5c842t99+u5GUlHTJWubNm2eEhoYW+dpXX31leHt7GwcOHHAe+/777w1JxsaNGw3DMIzg4GBj/vz5Rb4/JibGeOqppy752Rcq9HfsAkVmg0uwtOdKksaNG6dx48YV+ZojkTpER0fLKGFX7KXOUWZNmphzr374QVq5UhoyxD3nBQAAQOnUqmX2IFn12SXUpk0b9erVS2+//bb69u2rn376SWvXrtUzzzwjSSooKNDzzz+vjz/+WIcOHVJ+fr7y8vJKPKdq165dioyMVEREhPNYUdNrFi5cqFmzZunnn39WTk6Ozp07V3iNgRJ8VqdOnRR0Qa9d7969ZbfbtXv3bucK4O3bt3eZitO4cWPt2LGjVJ914WdGRka6rOTdrl071alTR7t27VL37t01adIk3XPPPXrvvfeUkJCg22+/XVdccYUk6cEHH9QDDzygr776SgkJCRoyZEiZ5rmVRrVaLbDCOeZdcb8rAAAA69hs5tA8K7b/De8rqTFjxujTTz/VyZMnNW/ePF1xxRWK/989VF966SX985//1KOPPqqVK1cqNTVViYmJys/Pd9tXtWHDBg0bNkw33nijlixZou+++06PP/64Wz/jQo4heQ42m012u71CPksyVzr8/vvvNXDgQK1YsULt2rXT4sWLJUn33HOPfvnlFw0fPlw7duxQt27d9Morr1RYLRLhqnQcS7KzqAUAAABK4I477pCXl5c+/PBDvfvuu7r77rud86/WrVunm2++WXfddZc6deqkFi1aaM+ePSU+d9u2bXXw4EH99ttvzmPffPONS5v169crKipKjz/+uLp166aWLVsqLS3NpY2fn98lV9W+8LO2bdum3Nxc57F169bJy8tLrVu3LnHNpeG4vgtvk/TDDz/oxIkTateunfNYq1at9Oc//1lfffWVbr31Vs2bN8/5WmRkpO6//379+9//1kMPPaQ333yzQmp1IFyVRny85O0t/fyztG+f1dUAAACgiqtdu7aSkpI0efJk/fbbbxo1apTztZYtWyo5OVnr16/Xrl279Mc//rHQbYqKk5CQoFatWmnkyJHatm2b1q5dq8cff9ylTcuWLXXgwAEtWLBAP//8s2bNmuXs2XGIjo7Wvn37lJqaqqNHjyovL6/QZw0bNkwBAQEaOXKkdu7cqZUrV2r8+PEaPny4c0hgWRUUFLis9p2amqpdu3YpISFBMTExGjZsmLZu3aqNGzdqxIgRio+PV7du3XT69GmNGzdOq1atUlpamtatW6dNmzapbdu2kqSJEydq2bJl2rdvn7Zu3aqVK1c6X6sohKvSCA6WevY09+m9AgAAQAmMGTNGx48fV2Jiosv8qCeeeEJXXXWVEhMT1bdvX4WHh2vw4MElPq+Xl5cWL16s06dPq0ePHrrnnnv03HPPubS56aab9Oc//1njxo1T586dtX79ek2dOtWlzZAhQzRgwAD169dPDRs2LHI5+Fq1amnZsmU6duyYunfvrttuu039+/fX7NmzS/dlFCEnJ0ddunRx2QYNGiSbzab//Oc/qlu3rvr06aOEhAS1aNFCCxculCR5e3vr999/14gRI9SqVSvdcccduuGGG/T0009LMkPb2LFj1bZtWw0YMECtWrXSa6+9Vu56i2MzSrtCRA2QnZ2t0NBQZWVlFZ7s9/TT0lNPSbffLn38sSX1AQAA1CRnzpzRvn371Lx5cwUEBFhdDqqh4v6OFZsNLkLPVWk5FrVISZEqcHIeAAAAAM9CuCqtHj3M4YHHjkmpqVZXAwAAAKCKIFyVlq+v1Levuc+S7AAAAAD+h3BVFizJDgAAAOAihKuycMy7WrtWOn3a2loAAABqCNZhQ0Vx198twlVZtGkjRURIeXnSunVWVwMAAFCteXt7S5Ly8/MtrgTV1alTpyRJvr6+5TqPjzuKqXFsNnNo4DvvmEMDHT1ZAAAAcDsfHx/VqlVLR44cka+vr7y86B+AexiGoVOnTikzM1N16tRxBvmyIlyVVUKCGa6Sk6UXXrC6GgAAgGrLZrOpcePG2rdvn9LS0qwuB9VQnTp1FB4eXu7zEK7KytFb9d130tGjUoMG1tYDAABQjfn5+ally5YMDYTb+fr6lrvHyoFwVVbh4VKHDtLOndKKFdIdd1hdEQAAQLXm5eWlgIAAq8sALokBq+Xh6L1iSXYAAACgxiNclQf3uwIAAADwP4Sr8ujTR/L1lfbtk37+2epqAAAAAFiIcFUetWtLcXHmPr1XAAAAQI1GuCovx7yr5GRr6wAAAABgKcJVeTnC1YoVUkGBtbUAAAAAsAzhqry6d5dCQqTjx817XgEAAACokQhX5eXjI/XrZ+4zNBAAAACosQhX7sCS7AAAAECNR7hyB8e8q6+/lk6dsrYWAAAAAJYgXLlDq1ZS06ZSfr4ZsAAAAADUOIQrd7DZzg8NZN4VAAAAUCMRrtzFMTSQeVcAAABAjUS4cpf+/c3H1FTpyBFLSwEAAABQ+QhX7hIWJnXsaO6npFhbCwAAAIBKR7hyJ5ZkBwAAAGoswpU7OeZdJSdLhmFtLQAAAAAqFeHKna65RvLzkw4ckH76yepqAAAAAFQiwpU7BQVJvXqZ+wwNBAAAAGoUwpW7XTg0EAAAAECNQbhyN8eiFitWSAUF1tYCAAAAoNIQrtyta1cpNFTKypI2b7a6GgAAAACVxPJw9eqrryo6OloBAQGKjY3Vxo0bL9n2+++/15AhQxQdHS2bzaaZM2cWajN9+nR1795dwcHBatSokQYPHqzdu3dX4BVcxNtbuvZac595VwAAAECNYWm4WrhwoSZNmqRp06Zp69at6tSpkxITE5WZmVlk+1OnTqlFixZ64YUXFB4eXmSb1atXa+zYsfrmm2+UnJyss2fP6vrrr1dubm5FXoor7ncFAAAA1Dg2w7DuhkyxsbHq3r27Zs+eLUmy2+2KjIzU+PHj9dhjjxX73ujoaE2cOFETJ04stt2RI0fUqFEjrV69Wn369ClRXdnZ2QoNDVVWVpZCQkJK9B4Xe/dKrVpJvr7S8ePmKoIAAAAAPE5psoFlPVf5+fnasmWLEhyr60ny8vJSQkKCNmzY4LbPycrKkiTVq1fvkm3y8vKUnZ3tspXLlVdKUVHS2bPS2rXlOxcAAAAAj2BZuDp69KgKCgoUFhbmcjwsLEzp6elu+Qy73a6JEyeqd+/e6tChwyXbTZ8+XaGhoc4tMjKyfB9ss7EkOwAAAFDDWL6gRUUaO3asdu7cqQULFhTbbvLkycrKynJuBw8eLP+HO8IV864AAACAGsHHqg9u0KCBvL29lZGR4XI8IyPjkotVlMa4ceO0ZMkSrVmzRk2bNi22rb+/v/z9/cv9mS769zcft2+XMjKki3roAAAAAFQvlvVc+fn5qWvXrkpJSXEes9vtSklJUVxcXJnPaxiGxo0bp8WLF2vFihVq3ry5O8otvYYNpc6dzf0LrhEAAABA9WTpsMBJkybpzTff1DvvvKNdu3bpgQceUG5urkaPHi1JGjFihCZPnuxsn5+fr9TUVKWmpio/P1+HDh1SamqqfvrpJ2ebsWPH6v3339eHH36o4OBgpaenKz09XadPn67062NJdgAAAKDmsHQpdkmaPXu2XnrpJaWnp6tz586aNWuWYmNjJUl9+/ZVdHS05s+fL0nav39/kT1R8fHxWrVqlSTJZrMV+Tnz5s3TqFGjSlRTuZdid/jqKykxUWraVDpwwFzoAgAAAIDHKE02sDxcVUVuC1enTkl160r5+dKPP0qtW7uvSAAAAAAVziPuc1Uj1KolXX21uc/QQAAAAKBaI1xVNO53BQAAANQIhKuK5ljUYuVK6dw5a2sBAAAAUGEIVxWtSxdz3lV2trRpk9XVAAAAAKgghKuK5u0tXXutuc+8KwAAAKDaIlxVBsfQQOZdAQAAANUW4aoyOBa12LBBysmxthYAAAAAFYJwVRmuuEJq3txc0GLNGqurAQAAAFABCFeVhSXZAQAAgGqNcFVZHPOuWNQCAAAAqJYIV5WlXz/JZpN27pR++83qagAAAAC4GeGqsjRoYN7zSpJSUqytBQAAAIDbEa4qE0MDAQAAgGqLcFWZLlzUwjCsrQUAAACAWxGuKtPVV0sBAdLhw9KPP1pdDQAAAAA3IlxVpoAAM2BJLMkOAAAAVDOEq8rmGBrIvCsAAACgWiFcVTbHoharVklnz1paCgAAAAD3IVxVts6dpfr1pZMnpY0bra4GAAAAgJsQriqbl5fUv7+5z9BAAAAAoNogXFnhwiXZAQAAAFQLhCsrOMLVN99I2dnW1gIAAADALQhXVmjeXLriCqmgQFqzxupqAAAAALgB4coqDA0EAAAAqhXClVUcS7KzqAUAAABQLRCurNKvn2SzST/8IB06ZHU1AAAAAMqJcGWVevWkrl3N/ZQUa2sBAAAAUG6EKys5hgYy7woAAADweIQrKzkWtVi+XDIMa2sBAAAAUC6EKyv16iUFBkrp6ebcKwAAAAAei3BlpYAA6ZprzH2GBgIAAAAejXBlNZZkBwAAAKoFwpXVHPOuVq2S8vMtLQUAAABA2RGurNaxo9SwoZSbK337rdXVAAAAACgjwpXVvLyk/v3NfYYGAgAAAB6LcFUVOIYGsqgFAAAA4LEIV1WBY1GLjRulrCxrawEAAABQJoSrqqBZM6llS6mgwFzYAgAAAIDHsTxcvfrqq4qOjlZAQIBiY2O1cePGS7b9/vvvNWTIEEVHR8tms2nmzJnlPmeV4RgayLwrAAAAwCNZGq4WLlyoSZMmadq0adq6das6deqkxMREZWZmFtn+1KlTatGihV544QWFh4e75ZxVBve7AgAAADyazTAMw6oPj42NVffu3TV79mxJkt1uV2RkpMaPH6/HHnus2PdGR0dr4sSJmjhxotvO6ZCdna3Q0FBlZWUpJCSk9BdWFidOSPXrS3a7dPCg1LRp5XwuAAAAgEsqTTawrOcqPz9fW7ZsUYJjOJwkLy8vJSQkaMOGDZV6zry8PGVnZ7tsla5OHal7d3Of3isAAADA41gWro4ePaqCggKFhYW5HA8LC1N6enqlnnP69OkKDQ11bpGRkWX6/HJjSXYAAADAY1m+oEVVMHnyZGVlZTm3gwcPWlPIhYtaWDdaEwAAAEAZ+Fj1wQ0aNJC3t7cyMjJcjmdkZFxysYqKOqe/v7/8/f3L9JluFRcn1aolZWZKO3dKMTFWVwQAAACghCzrufLz81PXrl2VkpLiPGa325WSkqK4uLgqc85K5e8v9elj7jM0EAAAAPAolg4LnDRpkt58802988472rVrlx544AHl5uZq9OjRkqQRI0Zo8uTJzvb5+flKTU1Vamqq8vPzdejQIaWmpuqnn34q8TmrPJZkBwAAADySZcMCJSkpKUlHjhzRk08+qfT0dHXu3FlLly51Lkhx4MABeXmdz3+HDx9Wly5dnM///ve/6+9//7vi4+O1atWqEp2zynPMu1q9WsrLM3uzAAAAAFR5lt7nqqqy5D5XDna71LixOe9q1SopPr5yPx8AAACAk0fc5wqX4OXFkuwAAACAByJcVUUXLskOAAAAwCMQrqoiR7jatEk6ccLSUgAAAACUDOGqKoqMlFq3NudfrVxpdTUAAAAASoBwVVWxJDsAAADgUQhXVRWLWgAAAAAehXBVVfXtK3l7S3v3SmlpVlcDAAAA4DIIV1VVaKjUo4e5n5JibS0AAAAALotwVZUxNBAAAADwGISrqsyxqEVKirlyIAAAAIAqi3BVlcXGSkFB0pEj0vbtVlcDAAAAoBiEq6rMz0+Kjzf3WZIdAAAAqNIIV1Ud97sCAAAAPALhqqpzLGqxZo105oy1tQAAAAC4JMJVVde+vRQeLp0+LW3YYHU1AAAAAC6BcFXV2WwsyQ4AAAB4AMKVJ3CEK+ZdAQAAAFUW4coTOMLV5s3S8ePW1gIAAACgSIQrT9CkidS2rWQY0ooVVlcDAAAAoAiEK0/BkuwAAABAlUa48hQsagEAAABUaYQrTxEfL3l7Sz//LO3bZ3U1AAAAAC5CuPIUISFSz57mPkMDAQAAgCqHcOVJWJIdAAAAqLIIV57EsahFSopkt1tbCwAAAAAXhCtP0qOHFBws/f67lJpqdTUAAAAALkC48iS+vlLfvuY+QwMBAACAKoVw5WlYkh0AAACokghXnsYRrtaulU6ftrYWAAAAAE6EK0/Ttq0UESHl5Unr11tdDQAAAID/IVx5GpuNoYEAAABAFUS48kSOJdlZ1AIAAACoMghXnqh/f/Nx61ZzWXYAAAAAliNceaLGjaX27SXDkFassLoaAAAAACJceS6GBgIAAABVCuHKU7GoBQAAAFClEK48VXy85OMj7dsn/fKL1dUAAAAANR7hylPVri3FxZn79F4BAAAAlrM8XL366quKjo5WQECAYmNjtXHjxmLbL1q0SG3atFFAQIBiYmL0xRdfuLyek5OjcePGqWnTpgoMDFS7du00Z86cirwE6ziGBjLvCgAAALCcpeFq4cKFmjRpkqZNm6atW7eqU6dOSkxMVGZmZpHt169fr6FDh2rMmDH67rvvNHjwYA0ePFg7d+50tpk0aZKWLl2q999/X7t27dLEiRM1btw4ff7555V1WZXHsajFihVSQYG1tQAAAAA1nM0wDMOqD4+NjVX37t01e/ZsSZLdbldkZKTGjx+vxx57rFD7pKQk5ebmasmSJc5jPXv2VOfOnZ29Ux06dFBSUpKmTp3qbNO1a1fdcMMN+utf/1qiurKzsxUaGqqsrCyFhISU5xIr1rlzUv36Una2tGmT1K2b1RUBAAAA1UppsoFlPVf5+fnasmWLEhxD2yR5eXkpISFBGzZsKPI9GzZscGkvSYmJiS7te/Xqpc8//1yHDh2SYRhauXKl9uzZo+uvv/6SteTl5Sk7O9tl8wg+PlK/fuY+QwMBAAAAS1kWro4ePaqCggKFhYW5HA8LC1N6enqR70lPT79s+1deeUXt2rVT06ZN5efnpwEDBujVV19Vnz59LlnL9OnTFRoa6twiIyPLcWWVjCXZAQAAgCqhTOHq4MGD+vXXX53PN27cqIkTJ2ru3LluK6ysXnnlFX3zzTf6/PPPtWXLFs2YMUNjx47V8mJ6diZPnqysrCzndvDgwUqsuJwc4errr6VTp6ytBQAAAKjByhSu/t//+39auXKlJLM36brrrtPGjRv1+OOP65lnninRORo0aCBvb29lZGS4HM/IyFB4eHiR7wkPDy+2/enTpzVlyhS9/PLLGjRokDp27Khx48YpKSlJf//73y9Zi7+/v0JCQlw2j9G6tdS0qZSfbwYsAAAAAJYoU7jauXOnevToIUn6+OOP1aFDB61fv14ffPCB5s+fX6Jz+Pn5qWvXrkpJSXEes9vtSklJUZzj/k0XiYuLc2kvScnJyc72Z8+e1dmzZ+Xl5XpZ3t7estvtJb08z2KzsSQ7AAAAUAX4lOVNZ8+elb+/vyRp+fLluummmyRJbdq00W+//Vbi80yaNEkjR45Ut27d1KNHD82cOVO5ubkaPXq0JGnEiBFq0qSJpk+fLkmaMGGC4uPjNWPGDA0cOFALFizQ5s2bncMRQ0JCFB8fr0ceeUSBgYGKiorS6tWr9e677+rll18uy6V6huuuk+bPJ1wBAAAAFipTuGrfvr3mzJmjgQMHKjk5Wc8++6wk6fDhw6pfv36Jz5OUlKQjR47oySefVHp6ujp37qylS5c6F604cOCASy9Ur1699OGHH+qJJ57QlClT1LJlS3322Wfq0KGDs82CBQs0efJkDRs2TMeOHVNUVJSee+453X///WW5VM/Qv7/5+N130pEjUsOG1tYDAAAA1EBlus/VqlWrdMsttyg7O1sjR47U22+/LUmaMmWKfvzxR/373/92e6GVyWPuc3Whjh2lHTukBQukpCSrqwEAAACqhdJkgzL1XPXt21dHjx5Vdna26tat6zx+3333qVatWmU5JcrruuvMcJWcTLgCAAAALFCmBS1Onz6tvLw8Z7BKS0vTzJkztXv3bjVq1MitBaKELrzfVek7IwEAAACUU5nC1c0336x3331XknTixAnFxsZqxowZGjx4sF5//XW3FogS6tNH8vWVDhyQfv7Z6moAAACAGqdM4Wrr1q265pprJEmffPKJwsLClJaWpnfffVezZs1ya4EooaAgqVcvcz852dpaAAAAgBqoTOHq1KlTCg4OliR99dVXuvXWW+Xl5aWePXsqLS3NrQWiFK67znxkSXYAAACg0pUpXF155ZX67LPPdPDgQS1btkzXX3+9JCkzM9NzVterjhzzrlaskAoKrK0FAAAAqGHKFK6efPJJPfzww4qOjlaPHj0UFxcnyezF6tKli1sLRCl07SqFhkonTkhbtlhdDQAAAFCjlClc3XbbbTpw4IA2b96sZcuWOY/3799f//jHP9xWHErJx0e69lpzn6GBAAAAQKUqU7iSpPDwcHXp0kWHDx/Wr7/+Kknq0aOH2rRp47biUAYXLskOAAAAoNKUKVzZ7XY988wzCg0NVVRUlKKiolSnTh09++yzstvt7q4RpeFY1GL9eik319paAAAAgBrEpyxvevzxx/Wvf/1LL7zwgnr37i1J+vrrr/XUU0/pzJkzeu6559xaJErhyiulZs3M+12tXSsNGGB1RQAAAECNUKZw9c477+itt97STTfd5DzWsWNHNWnSRH/6058IV1ay2cyhgW+/bc67IlwBAAAAlaJMwwKPHTtW5NyqNm3a6NixY+UuCuXE/a4AAACASlemcNWpUyfNnj270PHZs2erY8eO5S4K5eRYMXDbNikjw9paAAAAgBqiTMMCX3zxRQ0cOFDLly933uNqw4YNOnjwoL744gu3FogyaNRI6txZSk01byg8dKjVFQEAAADVXpl6ruLj47Vnzx7dcsstOnHihE6cOKFbb71V33//vd577z1314iyYEl2AAAAoFLZDMMw3HWybdu26aqrrlJBQYG7TmmJ7OxshYaGKisrSyEhIVaXUzbLlpmLWURGSmlp5kIXAAAAAEqlNNmgzDcRRhV3zTWSn5908KC0Z4/V1QAAAADVHuGquqpVS/rfPchYNRAAAACoeISr6owl2QEAAIBKU6rVAm+99dZiXz9x4kR5aoG7JSRIU6aYKwaeOyf5lGlxSAAAAAAlUKpf26GhoZd9fcSIEeUqCG501VVS3brS8ePS5s1Sz55WVwQAAABUW6UKV/PmzauoOlARvL3NGwp/+qm5JDvhCgAAAKgwzLmq7hz3u2LeFQAAAFChCFfVnWNRiw0bpJwca2sBAAAAqjHCVXXXooUUHS2dPSutWWN1NQAAAEC1Rbiq7mw2lmQHAAAAKgHhqiZwzLtKTra2DgAAAKAaI1zVBNdea/Zg7dwppadbXQ0AAABQLRGuaoIGDaQuXcz9lBRrawEAAACqKcJVTcHQQAAAAKBCEa5qigsXtTAMa2sBAAAAqiHCVU3Ru7fk7y8dOiT9+KPV1QAAAADVDuGqpggMlK6+2txnSXYAAADA7QhXNQn3uwIAAAAqDOGqJnEsarFypXT2rLW1AAAAANUM4aom6dJFqldPOnlS2rTJ6moAAACAasXycPXqq68qOjpaAQEBio2N1caNG4ttv2jRIrVp00YBAQGKiYnRF198UajNrl27dNNNNyk0NFRBQUHq3r27Dhw4UFGX4Dm8vKT+/c19lmQHAAAA3MrScLVw4UJNmjRJ06ZN09atW9WpUyclJiYqMzOzyPbr16/X0KFDNWbMGH333XcaPHiwBg8erJ07dzrb/Pzzz7r66qvVpk0brVq1Stu3b9fUqVMVEBBQWZdVtTmGBjLvCgAAAHArm2FYd9Oj2NhYde/eXbNnz5Yk2e12RUZGavz48XrssccKtU9KSlJubq6WLFniPNazZ0917txZc+bMkSTdeeed8vX11XvvvVfmurKzsxUaGqqsrCyFhISU+TxV0r59UosWko+PdOyYFBxsdUUAAABAlVWabGBZz1V+fr62bNmiBEdPiiQvLy8lJCRow4YNRb5nw4YNLu0lKTEx0dnebrfrv//9r1q1aqXExEQ1atRIsbGx+uyzz4qtJS8vT9nZ2S5btdW8uRmuzp2TVq+2uhoAAACg2rAsXB09elQFBQUKCwtzOR4WFqb09PQi35Oenl5s+8zMTOXk5OiFF17QgAED9NVXX+mWW27RrbfeqtXFBInp06crNDTUuUVGRpbz6qo4lmQHAAAA3M7yBS3cyW63S5Juvvlm/fnPf1bnzp312GOP6Q9/+INz2GBRJk+erKysLOd28ODByirZGo7ePxa1AAAAANzGx6oPbtCggby9vZWRkeFyPCMjQ+Hh4UW+Jzw8vNj2DRo0kI+Pj9q1a+fSpm3btvr6668vWYu/v7/8/f3LchmeqV8/yWaTfvhBOnxYioiwuiIAAADA41nWc+Xn56euXbsqJSXFecxutyslJUVxcXFFvicuLs6lvSQlJyc72/v5+al79+7avXu3S5s9e/YoKirKzVfgwerXl7p2NfcZGggAAAC4hWU9V5I0adIkjRw5Ut26dVOPHj00c+ZM5ebmavTo0ZKkESNGqEmTJpo+fbokacKECYqPj9eMGTM0cOBALViwQJs3b9bcuXOd53zkkUeUlJSkPn36qF+/flq6dKn+7//+T6tWrbLiEquuhARp82YzXI0YYXU1AAAAgMezNFwlJSXpyJEjevLJJ5Wenq7OnTtr6dKlzkUrDhw4IC+v851rvXr10ocffqgnnnhCU6ZMUcuWLfXZZ5+pQ4cOzja33HKL5syZo+nTp+vBBx9U69at9emnn+rqq6+u9Our0q67TnrhBTNcGYY5TBAAAABAmVl6n6uqqlrf58rhzBmpbl3zcedOqX17qysCAAAAqhyPuM8VLBYQIPXpY+4z7woAAAAoN8JVTcaS7AAAAIDbEK5qMke4WrVKOnvW0lIAAAAAT0e4qsk6dZIaNJByc6Vvv7W6GgAAAMCjEa5qMi8vqX9/c5+hgQAAAEC5EK5quuuuMx9Z1AIAAAAoF8JVTeeYd/Xtt1JWlrW1AAAAAB6McFXTRUVJV14pFRRIq1dbXQ0AAADgsQhXYGggAAAA4AaEK3C/KwAAAMANCFeQ+vUzVw788Ufp11+trgYAAADwSIQrSHXrSt26mfsMDQQAAADKhHAFk2NoIOEKAAAAKBPCFUwXLmphGNbWAgAAAHggwhVMcXFSrVpSRoa0c6fV1QAAAAAeh3AFk7+/1KePuc/QQAAAAKDUCFc4jyXZAQAAgDIjXOE8R7havVrKz7e2FgAAAMDDEK5wXkyM1KiRdOqUtGGD1dUAAAAAHoVwhfO8vKT+/c195l0BAAAApUK4gqsLl2QHAAAAUGKEK7hy9Fxt3CidOGFpKQAAAIAnIVzBVbNmUqtWkt0urVpldTUAAACAxyBcoTDH0ECWZAcAAABKjHCFwhxLsjPvCgAAACgxwhUK69fPXDlwzx7pwAGrqwEAAAA8AuEKhYWGSj16mPv0XgEAAAAlQrhC0ViSHQAAACgVwhWKduG8K7vd2loAAAAAD0C4QtF69pSCgqQjR6QdO6yuBgAAAKjyCFcomp+fFB9v7jM0EAAAALgswhUuzTE0kPtdAQAAAJdFuMKlORa1WLNGysuzthYAAACgiiNc4dLat5fCwqTTp6X1662uBgAAAKjSCFe4NJvNddVAAAAAAJdEuELxHEMDmXcFAAAAFItwheI5eq42b5aOH7e2FgAAAKAKI1yheE2aSG3bSoYhrVxpdTUAAABAlVUlwtWrr76q6OhoBQQEKDY2Vhs3biy2/aJFi9SmTRsFBAQoJiZGX3zxxSXb3n///bLZbJo5c6abq65BWJIdAAAAuCzLw9XChQs1adIkTZs2TVu3blWnTp2UmJiozMzMItuvX79eQ4cO1ZgxY/Tdd99p8ODBGjx4sHbu3Fmo7eLFi/XNN98oIiKioi+jemNRCwAAAOCybIZhGFYWEBsbq+7du2v27NmSJLvdrsjISI0fP16PPfZYofZJSUnKzc3VkiVLnMd69uypzp07a86cOc5jhw4dUmxsrJYtW6aBAwdq4sSJmjhxYolqys7OVmhoqLKyshQSElK+C6wOsrOlevWkggJp3z4pOtrqigAAAIBKUZpsYGnPVX5+vrZs2aIER8+IJC8vLyUkJGjDhg1FvmfDhg0u7SUpMTHRpb3dbtfw4cP1yCOPqH379petIy8vT9nZ2S4bLhASIsXGmvv0XgEAAABFsjRcHT16VAUFBQoLC3M5HhYWpvT09CLfk56eftn2f/vb3+Tj46MHH3ywRHVMnz5doaGhzi0yMrKUV1IDOJZkJ1wBAAAARbJ8zpW7bdmyRf/85z81f/582Wy2Er1n8uTJysrKcm4HDx6s4Co9kKO3MCVFstutrQUAAACogiwNVw0aNJC3t7cyMjJcjmdkZCg8PLzI94SHhxfbfu3atcrMzFSzZs3k4+MjHx8fpaWl6aGHHlL0JeYK+fv7KyQkxGXDRWJjpdq1paNHpW3brK4GAAAAqHIsDVd+fn7q2rWrUlJSnMfsdrtSUlIUFxdX5Hvi4uJc2ktScnKys/3w4cO1fft2paamOreIiAg98sgjWrZsWcVdTHXn6yv17WvusyQ7AAAAUIiP1QVMmjRJI0eOVLdu3dSjRw/NnDlTubm5Gj16tCRpxIgRatKkiaZPny5JmjBhguLj4zVjxgwNHDhQCxYs0ObNmzV37lxJUv369VW/fn2Xz/D19VV4eLhat25duRdX3SQkSEuWmPOu/vIXq6sBAAAAqhTLw1VSUpKOHDmiJ598Uunp6ercubOWLl3qXLTiwIED8vI638HWq1cvffjhh3riiSc0ZcoUtWzZUp999pk6dOhg1SXUHI5FLdaulc6ckQICrK0HAAAAqEIsv89VVcR9ri7BMKSmTaXDh83eq/79ra4IAAAAqFAec58reBib7fyqgSzJDgAAALggXKF0HOGKRS0AAAAAF4QrlI5jKODWrdLvv1tbCwAAAFCFEK5QOhERUvv25vyrlSutrgYAAACoMghXKD2GBgIAAACFEK5Qeo4l2VnUAgAAAHAiXKH0+vSRfHykX34xNwAAAACEK5RBcLDUs6e5T+8VAAAAIIlwVSxur1wMx9BA5l0BAAAAkghXxXrgAenUKaurqKIci1qsWCEVFFhbCwAAAFAFEK6K8dFHUlyctHev1ZVUQT16mMMDjx2TUlOtrgYAAACwHOGqGA0aSNu3S926SYsXW11NFePjI/XrZ+4zNBAAAAAgXBXn66+l3r2l7Gzp1lulRx6Rzp2zuqoqxDE0kEUtAAAAAMJVcRo3llaulCZNMp///e/StddKv/1mbV1VhmNRi6+/lk6ftrYWAAAAwGKEq8vw9ZVmzJAWLTKnGK1dK3XpIq1ebXVlVUDr1lKTJlJenhmwAAAAgBqMcFVCt90mbd4sdeggZWRI/ftLL75Yw5drt9nO914xNBAAAAA1HOGqFFq1kr75Rho+3Fx9/NFHpVtukU6csLoyCznmXbGoBQAAAGo4wlUpBQVJ77wjzZkj+flJ//mPuZrgtm1WV2aR/v3Nx+++k44etbYWAAAAwEKEqzKw2aQ//lFat06KipJ+/lnq2VOaP9/qyiwQHi7FxJj7KSnW1gIAAABYiHBVDt26SVu2SDfcIJ05I40eLd17r7lfo7AkOwAAAEC4Kq/69aUlS6RnnjF7tN56S+rVS/rlF6srq0SORS2Sk2v4Ch8AAACoyQhXbuDlJU2dKi1bZoat776TunaV/u//rK6skvTpY65Zn5ZmjpEEAAAAaiDClRtdd50ZrGJjzRUEb7pJmjJFOnfO6soqWFCQ2V0nMTQQAAAANRbhys0iI6U1a6Tx483n06dL119v3hurWmNJdgAAANRwhKsK4OcnzZolffSR2amzcqV01VXm6oLVliNcrVhh3gQMAAAAqGEIVxXozjuljRultm2lw4elvn2lf/yjmq750K2bFBpqjofcutXqagAAAIBKR7iqYO3amQHrzjvNuVeTJkl33CFlZ1tdmZv5+Ej9+pn7DA0EAABADUS4qgS1a0sffmgOFfT1lT75ROreXdq50+rK3MyxJDuLWgAAAKAGIlxVEpvNXORizRqpaVNpzx5zVcEPPrC6MjdyzLtat046dcraWgAAAIBKRriqZD17mlOSEhLM/HHXXdKf/iTl5VldmRu0bGkul5ifL61da3U1AAAAQKUiXFmgYUNp6VLzxsOS9Prr0jXXmPfg9Wg2G0MDAQAAUGMRrizi7S0984z03/9KdetKmzaZy7UvXWp1ZeXE/a4AAABQQxGuLHbjjeYwwa5dpWPHzOfTpnnwraL69zcft22TMjOtrQUAAACoRISrKiA6Wvr6a+n++817YD3zjBmyjh61urIyaNRI6tTJ3E9JsbYWAAAAoBIRrqqIgABz7tW770qBgdJXX5nDBL/91urKysAxNJB5VwAAAKhBCFdVzPDhZqBq2VI6eNBc6OLVV80eLY/hWNQiOdnDCgcAAADKjnBVBcXESJs3S7feKp09K40bJw0bJuXkWF1ZCV1zjeTnZ6bDvXutrgYAAACoFISrKiokRPrkE2nGDHNlwY8+Mm86vGuX1ZWVQK1aUu/e5v6LL5o9WPv3e/AqHQAAAMDlVYlw9eqrryo6OloBAQGKjY3Vxo0bi22/aNEitWnTRgEBAYqJidEXX3zhfO3s2bN69NFHFRMTo6CgIEVERGjEiBE6fPhwRV+G29ls0qRJ0sqVUuPG0g8/SN27SwsXWl1ZCVx/vfn4r3+Z+82bS0FBUvv20uDB0l/+Ir35prR6tXT4MMMHAQAA4PFshmHtr9qFCxdqxIgRmjNnjmJjYzVz5kwtWrRIu3fvVqNGjQq1X79+vfr06aPp06frD3/4gz788EP97W9/09atW9WhQwdlZWXptttu07333qtOnTrp+PHjmjBhggoKCrR58+YS1ZSdna3Q0FBlZWUpJCTE3ZdcJunp0tCh0qpV5vMHH5ReeskcfVclZWebvVbbt5tDA3/+2RzjeClBQeZEM8fWqtX5/QYNzKQJAAAAVLLSZAPLw1VsbKy6d++u2bNnS5LsdrsiIyM1fvx4PfbYY4XaJyUlKTc3V0uWLHEe69mzpzp37qw5c+YU+RmbNm1Sjx49lJaWpmbNml22pqoYriTp3DnpiSekv/3NfB4XJ338sdS0qbV1lci5c9KBA2bQ2rPHfHTs798v2e2Xfm+dOoUDl2M/NLSyrgAAAAA1UGmygU8l1VSk/Px8bdmyRZMnT3Ye8/LyUkJCgjZs2FDkezZs2KBJkya5HEtMTNRnn312yc/JysqSzWZTnTp1inw9Ly9PeXl5zufZ2dklv4hK5OMjvfCC1KuXNGKEtGGD1KWLOR/Lsfp5leXjI7VoYW6Jia6v5edLv/ziGrgc+wcPSidOSJs2mdvFGjYsOnRdeaXZGwYAAABUEkvD1dGjR1VQUKCwsDCX42FhYfrxxx+LfE96enqR7dPT04tsf+bMGT366KMaOnToJZPm9OnT9fTTT5fhCqxx003Sli3SbbdJqanmlKZnn5UmT5a8qsQsulLy85PatDG3i506ZQ4pvDB0OR4zMqQjR8xt3brC723SxDVwOR5btJD8/Sv+ugAAAFCjWBquKtrZs2d1xx13yDAMvf7665dsN3nyZJfesOzsbEVGRlZGiWV2xRXS+vXS+PHmmhFPPGH2ZL37rlSvntXVuVGtWuba9DExhV/Lzj7fw3Vx+Dp+XDp0yNwcE9UcvLykqKii53dFR5u9bAAAAEApWforskGDBvL29lZGRobL8YyMDIWHhxf5nvDw8BK1dwSrtLQ0rVixotjxkf7+/vL3wJ6MwEDprbfMYYJjx0r//a/Utau5hHvXrlZXVwlCQswLLepif/+96GGGe/aYNwzbt8/cvvrK9X2O4YtFDTVs2tRDuwYBAABQGSwNV35+furatatSUlI0ePBgSeaCFikpKRo3blyR74mLi1NKSoomTpzoPJacnKy4uDjnc0ew2rt3r1auXKn69etX5GVY7u67zblXt91mTl3q1Ut65RXp3ntr8CJ79eubW8+erscNwxxOeHHg2rtX+ukn6cwZ8/mePYXPGRBgzuW6OHS1aiWFhdXgLxsAAABSFVgtcOHChRo5cqTeeOMN9ejRQzNnztTHH3+sH3/8UWFhYRoxYoSaNGmi6dOnSzKXYo+Pj9cLL7yggQMHasGCBXr++eedS7GfPXtWt912m7Zu3aolS5a4zM+qV6+e/EqwdnlVXS3wck6ckEaOlD7/3Hw+YoT0+uvmyDqUgN0u/fpr0cMMf/nFXPHwUmrXvvSKhtU83AMAAFRnHrUUuyTNnj1bL730ktLT09W5c2fNmjVLsbGxkqS+ffsqOjpa8+fPd7ZftGiRnnjiCe3fv18tW7bUiy++qBtvvFGStH//fjVv3rzIz1m5cqX69u172Xo8NVxJZj546SVpyhRzPyZG+vRT8zc+yuHcOSktreger7S04peSr1u38KIajs3D/n4BAADUNB4XrqoaTw5XDitXSnfeKWVmmr/f582Tbr3V6qqqqby880vJXxy+Dh0q/r1hYZdeSj4wsHLqBwAAwCURrsqpOoQrSTp8WEpKkr7+2nz+0EPS9OmSr6+1ddUoubnmUvJF9XhlZhb/3shIM2i1by/16WNujRpVTt0AAACQRLgqt+oSriTp7Fnz/lczZpjPr7lGWrhQatzY2rogKSvr0isanjhR9Hvat5f69jU3whYAAECFI1yVU3UKVw6ffiqNHi2dPGmORFu4UIqPt7oqFMkwzi8lv2ePecfoVaukHTsKt23X7nzYio8nbAEAALgZ4aqcqmO4kszf6UOGSDt3St7e0vPPS488wgriHuPoUWnNGjNoEbYAAAAqBeGqnKpruJLMKUAPPCC99575/OabpfnzpTp1rKwKZXL0qLR27fmwtX174TaELQAAgHIhXJVTdQ5XkjnqbO5c6cEHpfx86YorpE8+kTp3troylAthCwAAwO0IV+VU3cOVw+bN0m23mbdpCgiQXnvNnJeFaoKwBQAAUG6Eq3KqKeFKMtdNGD5c+vJL8/mYMdIrr3CLpWrp999d52wRtgAAAC6LcFVONSlcSZLdLj33nDRtmjlksEsXc5hgixZWV4YKRdgCAAC4LMJVOdW0cOWQnCz9v/9njiarU0d6911p0CCrq0KlIWwBAAAUQrgqp5oariTp4EHpjjukb74xn0+eLD3zjOTjY21dsABhCwAAgHBVXjU5XEnmCoIPP2zOvZKkfv2kjz4ybz6MGuz3310XyNi2rXCbtm1dwxZ/aQAAgIcjXJVTTQ9XDgsWSPfcY94bKyJC+vhjqXdvq6tClUHYAgAANQDhqpwIV+ft2iUNGWI++vhIL74oTZwo2WxWV4Yqh7AFAACqIcJVORGuXOXkSPfea/ZkSea9sf71L4mvBsUibAEAgGqAcFVOhKvCDEOaPVt66CHp7FmpVSvp00+lDh2srgweg7AFAAA8EOGqnAhXl/bNN9Ltt0u//irVqiW98YZ0111WVwWPRNgCAAAegHBVToSr4h05Ig0bZt4XS5IeeED6xz8kf39r64KHuzhsbd9udpleiLAFAAAqGeGqnAhXl1dQYN7/6plnzOfdu0uLFklRUdbWhWrk2LHC99kibAEAgEpGuConwlXJffmlOSzw2DGpXj3pgw+kAQOsrgrV0rFjhYcRErYAAEAFI1yVE+GqdPbvN+dhbd5sLtE+dar05JOSt7fVlaFaK0nYatPmfNjq1Elq1sycLAgAAFBChKtyIlyVXl6eef+rOXPM59dfb/ZiNWhgaVmoSUoStiSpUSNz/Gp09PlHx35UlBQcXKllAwCAqo1wVU6Eq7J77z3pj3+UTp+WmjaVbrpJCgg4v/n7l/25v7/k5WX1FcJjXBi21qyR9u6VTp68/Pvq1XMNXBc/1qlTkVUDAIAqhnBVToSr8tmxQxoyxPwt626+vsWHL3cFuUs99/dnuKPHMgzpxAkpLc0cy+p4vHD/+PHLnyc0tOjg5divV88cHwsAAKoFwlU5Ea7KLztbeucdc9n2M2fMYYNnzhTeL8nzqvY31BHwLtfL5s4eOz+/85uvr/no48NveLfLzi4cvi58PHLk8ueoXbtw4LrwsWFD/uAAAPAghKtyIlxVHYYhnTtX9mBW3PPStLXbrf4minZx4CoqhF3uWGW9v1qEwdxcM2RdqvcrPf3y5wgMLHq4oSOMhYUx/hUAgCqEcFVOhCtcyBHwytP7Vt73nj0r5edb/U2UX2UFvssdK+l+qTPOmTPSgQOFhxs6Hg8fvnxXrJ/f+cU1iur9iohgbCpqJsMw/4Hj5Enz0cvL/FcbHx/zv4lL7Xv8v+oAsBrhqpwIV6iKHCEvP//85ghdlztW2uPuauvpvL3LHsyK2g/wylfDMwfVMHe/6p1MU/2T+1UnK02hx/cr5Nh+1Tr+q7yM4rtJDR8fnW3cTPamUbI3i5YRFSWv5tHybhEl7yui5R3V1PxRCVjNMMx/cDh5suxbTo7rfll+spQ0hDn23d2uIs9dlnbe3vSOo+rJyzv/d7QKIlyVE+EKKL+iwmBFh7lLHb+w9+/Cdhe/x2o+OqsmOqQopSla+xWt/c79KKWpmQ7IV+eKPcc5eeuwmuiAd7QOeUfpsF+0DvtFKyMgShmB0fq9VqS8AvzKHBK9vV1/ozkeS7JfEa/zG9HN8vPLF4Au3goK3F+jl5cUFHT+f2QcG0rOZjP/I/L3N28/camtdu3iX79wCwykl7AmKSgo+r/97Oyy/UPK2bPSihVSv35WX1mRSpMNqmY8BODxbDbzB7mvr/k7qKozDPP/Ky4Vvsq6X7r3+ers2Wjl50drV368tl/U5lxegeqe+U0R+fsVcXa/mp5LUzPDNYD5K1/NdEDNCg5IBZIuCo122XRYEdqvaKUpyuVxv6J1QM2UpwBL/gzKqqoEvdKGQsexcj1XgfzyTsrn9En5njEfHZv3qfOPXrkn5XU6R9655r4t56Rsjscc88eN7eTJivtXhot/pJfmR3tJf8Tb7eeDVkHB5ffd0a6qnKOodsUNHzAM8/WzZ80fyL/9Vv4/Yy+v8v3ZXvw+f3/CmjsZhnmfnJIEnZIEpFOn3F9jSW6X4gHouSoCPVcAPIXjN9TZs1L+GbvOHcqQsW+/lJYmW9p+ef+6Xz6H0uR3eL/809PknXf6sufMCQ7XidAoHQuJ1u+1o3Q0KFqZtaJ11C9C5wxv83dcgU12u1Rgt5m/5ezm83MFNhUUuB6/sP3Zc67tztltKrigXaHXC2wqsEuGzv/Icux76mOAzihYJ4vcaivnkq8VtdXS5f88y+K0ApSjYOXY/rd5BSvXK1in/veY6x2sU97BOu149Pnf5ms+5vkG64xvsPL8gpXnEyQvH6/yB8mLnle1UXdeXlUwC9jtxQe0ooZtFtcTeamey4rg41P6QFbc5utbMXVWpLNnyz6k9uKAlJNTMT3Jvr6X/+5DQkr+51RFhyMwLLCcCFcAqiXDMJeTL2qxDcd+Rf1QQoXKl68zCJ1UsHIUrGwF66RhPs82/ve8BFuOaquAgS1lcnGPZWnCmhXB8MKw6uV1frv4ebHHZJdP/ilnj6mjB/XCnlPH5pV7Ul7Oxxx5XdSDass5KVtF9IhI54dAuqtnzdu78GdcuOiKO4bKnTlTMd9FWXuNiwpJ/v4VU2MVQ7gqJ8IVgBrJMKRjx4pfat4wzi8qYNVjWd9TlTiGUJV1K2oI1WU4hr46OjMcW0U+r+jPquiRdZfaR8XxUkGhHtxQ20mF2E4q2JajUC/zWIjt4l7fkwo2Tqq2cVJB/3usbZyUv5FXIXXmeQeavbQ+teVrP6PAcyflfzZHXnL//+ac8/HX2YBgnQsI1tnAYJ1zbiEqqBV8fgsKlr1WsOxB5zej9vlNwcFSUJC8fb1ceoQvDM8lOXbx61Wux7YCMOcKAFB6NptUv765XXWV1dVUDKuDoWGYQciCyf+ONQxQPobhudO7impnt7tu7jxWXJtL/buHXd7KVqiyFXrBl/6/TTLnkpaCj86Werhtce39ZM5l8y84Lf+C01JeZqHPLJBXKT4tWNkKKfb1c+d8pRyZWxVks5UtpF187LXXpKuvtvpqyo//mQUA1ByOQFMT/qkVFcLxQ9Lbu8aMiKoQjk5wdwe6wsd8VVBQV3Z73VK977hd+r2IdsrLcw5z9Dl9Ul6nc3XO29/sxfIL1imfEOV7BzrnkV543ot7YB2PvgVSHbsUfJl2ZTlW3vOUpPPfsXBneeXmlv8cVQHhCgAAAJXKZjM3x23IPIf//7YGVhdSKRwB2N2hr6hjXbpYfbXu4VF/nQEAAABUjgt7aj1xwUUrVIn1Dl999VVFR0crICBAsbGx2rhxY7HtFy1apDZt2iggIEAxMTH64osvXF43DENPPvmkGjdurMDAQCUkJGjv3r0VeQkAAAAAajjLw9XChQs1adIkTZs2TVu3blWnTp2UmJiozMzCEwQlaf369Ro6dKjGjBmj7777ToMHD9bgwYO1c+dOZ5sXX3xRs2bN0pw5c/Ttt98qKChIiYmJOlNRS1oCAAAAqPEsX4o9NjZW3bt31+zZsyVJdrtdkZGRGj9+vB577LFC7ZOSkpSbm6slS5Y4j/Xs2VOdO3fWnDlzZBiGIiIi9NBDD+nhhx+WJGVlZSksLEzz58/XnXfeedmaWIodAAAAgFS6bGBpz1V+fr62bNmihIQE5zEvLy8lJCRow4YNRb5nw4YNLu0lKTEx0dl+3759Sk9Pd2kTGhqq2NjYS54zLy9P2dnZLhsAAAAAlIal4ero0aMqKChQWFiYy/GwsDClp6cX+Z709PRi2zseS3PO6dOnKzQ01LlFRkaW6XoAAAAA1FyWz7mqCiZPnqysrCzndvDgQatLAgAAAOBhLA1XDRo0kLe3tzIyMlyOZ2RkKDw8vMj3hIeHF9ve8Viac/r7+yskJMRlAwAAAIDSsDRc+fn5qWvXrkpJSXEes9vtSklJUVxcXJHviYuLc2kvScnJyc72zZs3V3h4uEub7Oxsffvtt5c8JwAAAACUl+U3EZ40aZJGjhypbt26qUePHpo5c6Zyc3M1evRoSdKIESPUpEkTTZ8+XZI0YcIExcfHa8aMGRo4cKAWLFigzZs3a+7cuZIkm82miRMn6q9//atatmyp5s2ba+rUqYqIiNDgwYOtukwAAAAA1Zzl4SopKUlHjhzRk08+qfT0dHXu3FlLly51Lkhx4MABeXmd72Dr1auXPvzwQz3xxBOaMmWKWrZsqc8++0wdOnRwtvnLX/6i3Nxc3XfffTpx4oSuvvpqLV26VAEBAZV+fQAAAABqBsvvc1UVcZ8rAAAAAJIH3ecKAAAAAKoLwhUAAAAAuAHhCgAAAADcwPIFLaoixzS07OxsiysBAAAAYCVHJijJUhWEqyL8/vvvkqTIyEiLKwEAAABQFZw8eVKhoaHFtiFcFaFevXqSzGXgL/cF4tKys7MVGRmpgwcPsupiGfEdugffY/nxHboH36N78D2WH9+he/A9lp8nfIeGYejkyZOKiIi4bFvCVREc99UKDQ2tsn/IniQkJITvsZz4Dt2D77H8+A7dg+/RPfgey4/v0D34Hsuvqn+HJe1wYUELAAAAAHADwhUAAAAAuAHhqgj+/v6aNm2a/P39rS7Fo/E9lh/foXvwPZYf36F78D26B99j+fEdugffY/lVt+/QZpRkTUEAAAAAQLHouQIAAAAANyBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBoSrC6xZs0aDBg1SRESEbDabPvvsM6tL8jjTp09X9+7dFRwcrEaNGmnw4MHavXu31WV5nNdff10dO3Z03lAvLi5OX375pdVlebQXXnhBNptNEydOtLoUj/LUU0/JZrO5bG3atLG6LI9z6NAh3XXXXapfv74CAwMVExOjzZs3W12WR4mOji70d9Fms2ns2LFWl+ZRCgoKNHXqVDVv3lyBgYG64oor9Oyzz4r1zUrn5MmTmjhxoqKiohQYGKhevXpp06ZNVpdVpV3ud7ZhGHryySfVuHFjBQYGKiEhQXv37rWm2HIgXF0gNzdXnTp10quvvmp1KR5r9erVGjt2rL755hslJyfr7Nmzuv7665Wbm2t1aR6ladOmeuGFF7RlyxZt3rxZ1157rW6++WZ9//33VpfmkTZt2qQ33nhDHTt2tLoUj9S+fXv99ttvzu3rr7+2uiSPcvz4cfXu3Vu+vr768ssv9cMPP2jGjBmqW7eu1aV5lE2bNrn8PUxOTpYk3X777RZX5ln+9re/6fXXX9fs2bO1a9cu/e1vf9OLL76oV155xerSPMo999yj5ORkvffee9qxY4euv/56JSQk6NChQ1aXVmVd7nf2iy++qFmzZmnOnDn69ttvFRQUpMTERJ05c6aSKy0nA0WSZCxevNjqMjxeZmamIclYvXq11aV4vLp16xpvvfWW1WV4nJMnTxotW7Y0kpOTjfj4eGPChAlWl+RRpk2bZnTq1MnqMjzao48+alx99dVWl1HtTJgwwbjiiisMu91udSkeZeDAgcbdd9/tcuzWW281hg0bZlFFnufUqVOGt7e3sWTJEpfjV111lfH4449bVJVnufh3tt1uN8LDw42XXnrJeezEiROGv7+/8dFHH1lQYdnRc4UKlZWVJUmqV6+exZV4roKCAi1YsEC5ubmKi4uzuhyPM3bsWA0cOFAJCQlWl+Kx9u7dq4iICLVo0ULDhg3TgQMHrC7Jo3z++efq1q2bbr/9djVq1EhdunTRm2++aXVZHi0/P1/vv/++7r77btlsNqvL8Si9evVSSkqK9uzZI0natm2bvv76a91www0WV+Y5zp07p4KCAgUEBLgcDwwMpGe/jPbt26f09HSX/68ODQ1VbGysNmzYYGFlpedjdQGovux2uyZOnKjevXurQ4cOVpfjcXbs2KG4uDidOXNGtWvX1uLFi9WuXTury/IoCxYs0NatWxkHXw6xsbGaP3++Wrdurd9++01PP/20rrnmGu3cuVPBwcFWl+cRfvnlF73++uuaNGmSpkyZok2bNunBBx+Un5+fRo4caXV5Humzzz7TiRMnNGrUKKtL8TiPPfaYsrOz1aZNG3l7e6ugoEDPPfechg0bZnVpHiM4OFhxcXF69tln1bZtW4WFhemjjz7Shg0bdOWVV1pdnkdKT0+XJIWFhbkcDwsLc77mKQhXqDBjx47Vzp07+VecMmrdurVSU1OVlZWlTz75RCNHjtTq1asJWCV08OBBTZgwQcnJyYX+dREld+G/Znfs2FGxsbGKiorSxx9/rDFjxlhYmeew2+3q1q2bnn/+eUlSly5dtHPnTs2ZM4dwVUb/+te/dMMNNygiIsLqUjzOxx9/rA8++EAffvih2rdvr9TUVE2cOFERERH8fSyF9957T3fffbeaNGkib29vXXXVVRo6dKi2bNlidWmwGMMCUSHGjRunJUuWaOXKlWratKnV5XgkPz8/XXnllerataumT5+uTp066Z///KfVZXmMLVu2KDMzU1dddZV8fHzk4+Oj1atXa9asWfLx8VFBQYHVJXqkOnXqqFWrVvrpp5+sLsVjNG7cuNA/irRt25bhlWWUlpam5cuX65577rG6FI/0yCOP6LHHHtOdd96pmJgYDR8+XH/+8581ffp0q0vzKFdccYVWr16tnJwcHTx4UBs3btTZs2fVokULq0vzSOHh4ZKkjIwMl+MZGRnO1zwF4QpuZRiGxo0bp8WLF2vFihVq3ry51SVVG3a7XXl5eVaX4TH69++vHTt2KDU11bl169ZNw4YNU2pqqry9va0u0SPl5OTo559/VuPGja0uxWP07t270C0p9uzZo6ioKIsq8mzz5s1To0aNNHDgQKtL8UinTp2Sl5frzz9vb2/Z7XaLKvJsQUFBaty4sY4fP65ly5bp5ptvtrokj9S8eXOFh4crJSXFeSw7O1vffvutx803Z1jgBXJyclz+NXbfvn1KTU1VvXr11KxZMwsr8xxjx47Vhx9+qP/85z8KDg52jpMNDQ1VYGCgxdV5jsmTJ+uGG25Qs2bNdPLkSX344YdatWqVli1bZnVpHiM4OLjQXL+goCDVr1+fOYCl8PDDD2vQoEGKiorS4cOHNW3aNHl7e2vo0KFWl+Yx/vznP6tXr156/vnndccdd2jjxo2aO3eu5s6da3VpHsdut2vevHkaOXKkfHz4CVMWgwYN0nPPPadmzZqpffv2+u677/Tyyy/r7rvvtro0j7Js2TIZhqHWrVvrp59+0iOPPKI2bdpo9OjRVpdWZV3ud/bEiRP117/+VS1btlTz5s01depURUREaPDgwdYVXRZWL1dYlaxcudKQVGgbOXKk1aV5jKK+P0nGvHnzrC7No9x9991GVFSU4efnZzRs2NDo37+/8dVXX1ldlsdjKfbSS0pKMho3bmz4+fkZTZo0MZKSkoyffvrJ6rI8zv/93/8ZHTp0MPz9/Y02bdoYc+fOtbokj7Rs2TJDkrF7926rS/FY2dnZxoQJE4xmzZoZAQEBRosWLYzHH3/cyMvLs7o0j7Jw4UKjRYsWhp+fnxEeHm6MHTvWOHHihNVlVWmX+51tt9uNqVOnGmFhYYa/v7/Rv39/j/xv3WYY3JIbAAAAAMqLOVcAAAAA4AaEKwAAAABwA8IVAAAAALgB4QoAAAAA3IBwBQAAAABuQLgCAAAAADcgXAEAAACAGxCuAAAAAMANCFcAALiZzWbTZ599ZnUZAIBKRrgCAFQro0aNks1mK7QNGDDA6tIAANWcj9UFAADgbgMGDNC8efNcjvn7+1tUDQCgpqDnCgBQ7fj7+ys8PNxlq1u3riRzyN7rr7+uG264QYGBgWrRooU++eQTl/fv2LFD1157rQIDA1W/fn3dd999ysnJcWnz9ttvq3379vL391fjxo01btw4l9ePHj2qW265RbVq1VLLli31+eefV+xFAwAsR7gCANQ4U6dO1ZAhQ7Rt2zYNGzZMd955p3bt2iVJys3NVWJiourWratNmzZp0aJFWr58uUt4ev311zV27Fjdd9992rFjhz7//HNdeeWVLp/x9NNP64477tD27dt14403atiwYTp27FilXicAoHLZDMMwrC4CAAB3GTVqlN5//30FBAS4HJ8yZYqmTJkim82m+++/X6+//rrztZ49e+qqq67Sa6+9pjfffFOPPvqoDh48qKCgIEnSF198oUGDBunw4cMKCwtTkyZNNHr0aP31r38tsgabzaYnnnhCzz77rCQzsNWuXVtffvklc78AoBpjzhUAoNrp16+fS3iSpHr16jn34+LiXF6Li4tTamqqJGnXrl3q1KmTM1hJUu/evWW327V7927ZbDYdPnxY/fv3L7aGjh07OveDgoIUEhKizMzMsl4SAMADEK4AANVOUFBQoWF67hIYGFiidr6+vi7PbTab7HZ7RZQEAKgimHMFAKhxvvnmm0LP27ZtK0lq27attm3bptzcXOfr69atk5eXl1q3bq3g4GBFR0crJSWlUmsGAFR99FwBAKqdvLw8paenuxzz8fFRgwYNJEmLFi1St27ddPXVV+uDDz7Qxo0b9a9//UuSNGzYME2bNk0jR47UU089pSNHjmj8+PEaPny4wsLCJElPPfWU7r//fjVq1Eg33HCDTp48qXXr1mn8+PGVe6EAgCqFcAUAqHaWLl2qxo0buxxr3bq1fvzxR0nmSn4LFizQn/70JzVu3FgfffSR2rVrJ0mqVauWli1bpgkTJqh79+6qVauWhgwZopdfftl5rpEjR+rMmTP6xz/+oYcfflgNGjTQbbfdVnkXCACoklgtEABQo9hsNi1evFiDBw+2uhQAQDXDnCsAAAAAcAPCFQAAAAC4AXOuAAA1CqPhAQAVhZ4rAAAAAHADwhUAAAAAuAHhCgAAAADcgHAFAAAAAG5AuAIAAAAANyBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBv8fOsWv3EhqNrwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAHWCAYAAACIZjNQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJM0lEQVR4nO3deVhU1f8H8PewLwLuLIqAhqKI4AbiblK4ZJKWa+7Z5prZryy3lm+2We6SLVoarqmZlYZLrriBuJSiJoqKgBsgqCDM/f1xugMjiywzc2eG9+t55uFy587MZyYq3pxzPkclSZIEIiIiIiIi0isLpQsgIiIiIiKqChi+iIiIiIiIDIDhi4iIiIiIyAAYvoiIiIiIiAyA4YuIiIiIiMgAGL6IiIiIiIgMgOGLiIiIiIjIABi+iIiIiIiIDIDhi4iIiIiIyAAYvoiISGPFihVQqVS4dOmS0qWQiVOpVBg/frzSZRARGRWGLyIiKpFarcaKFSvw7LPPwtPTE46OjmjevDk++ugjPHjwQOev17VrVzRv3lznz2uOVCpVibdXX31V6fKIiKgYVkoXQERExuvevXsYNWoU2rVrh1dffRV169ZFTEwMZs2ahZ07d2LXrl1QqVRKl1llPfXUUxg+fHiR840bN1agGiIiehyGLyIiKpGNjQ0OHDiA9u3ba86NHTsW3t7emgAWFhamYIXm68GDB7CxsYGFRcmTVBo3bowXX3zRgFUREVFlcNohERGVyMbGRit4yZ577jkAwJkzZwxdEgBgyZIl8Pf3h62tLTw8PDBu3Dikp6drXXP+/Hn0798fbm5usLOzQ/369TFo0CBkZGRoromOjkbHjh1RvXp1VKtWDU2aNMG777772NeX1zP99NNPaNKkCezs7NC6dWvs3bu3yLXXrl3D6NGj4erqCltbW/j7++P777/Xuuavv/6CSqXCmjVrMH36dNSrVw8ODg7IzMys2AdUiDyVMzY2Fu3bt4e9vT18fHwQGRlZ5Nq0tDSMGTMGrq6usLOzQ2BgIH744Yci16nVasyfPx8BAQGws7NDnTp10KNHDxw7dqzItZs3b0bz5s01733btm2Vfk9ERKaKI19ERFRuKSkpAIDatWsb/LVnz56N999/H2FhYXjttdeQkJCApUuX4ujRozhw4ACsra2Rm5uL8PBw5OTkYMKECXBzc8O1a9ewdetWpKenw8XFBX///TeeeeYZtGjRAh988AFsbW1x4cIFHDhwoEx17NmzB2vXrsXEiRNha2uLJUuWoEePHjhy5Ihm3VpqairatWunCWt16tTBH3/8gTFjxiAzMxOTJ0/Wes4PP/wQNjY2mDp1KnJycmBjY1NqDQ8ePMDNmzeLnHd2dtZ67J07d9CrVy8MGDAAgwcPxrp16/Daa6/BxsYGo0ePBgDcv38fXbt2xYULFzB+/Hj4+Phg/fr1GDlyJNLT0zFp0iTN840ZMwYrVqxAz5498dJLLyEvLw/79u3DoUOH0KZNG811+/fvx8aNG/H666/DyckJCxYsQP/+/ZGUlIRatWqV6XMmIjIrEhER0X+WL18uAZASExNLvS4sLExydnaW7ty5o9PX79Kli+Tv71/i/WlpaZKNjY309NNPS/n5+ZrzixYtkgBI33//vSRJknT8+HEJgLR+/foSn+urr76SAEg3btwod50AJADSsWPHNOcuX74s2dnZSc8995zm3JgxYyR3d3fp5s2bWo8fNGiQ5OLiIt27d0+SJEnavXu3BEBq2LCh5lxZayjutnr1as11Xbp0kQBIc+fO1ZzLycmRgoKCpLp160q5ubmSJEnSvHnzJADSqlWrNNfl5uZKoaGhUrVq1aTMzExJkiRp165dEgBp4sSJRWpSq9Va9dnY2EgXLlzQnDtx4oQEQFq4cGGZ3iMRkbnhtEMiIiqXjz/+GDt27MAnn3yC6tWrG/S1d+zYgdzcXEyePFlrLdTYsWPh7OyM3377DQDg4uICANi+fTvu3btX7HPJtf/yyy9Qq9XlriU0NBStW7fWfN+gQQP07dsX27dvR35+PiRJws8//4w+ffpAkiTcvHlTcwsPD0dGRgbi4uK0nnPEiBGwt7cvcw19+/ZFdHR0kVu3bt20rrOyssIrr7yi+d7GxgavvPIK0tLSEBsbCwD4/fff4ebmhsGDB2uus7a2xsSJE5GVlYU9e/YAAH7++WeoVCrMmjWrSD2PNl8JCwtDo0aNNN+3aNECzs7OuHjxYpnfIxGROeG0QyIiKrO1a9di+vTpGDNmDF577bXHXn/79m3k5uZqvre3t9cEo4q4fPkyAKBJkyZa521sbNCwYUPN/T4+PpgyZQq+/PJL/PTTT+jUqROeffZZvPjii5rXHzhwIL799lu89NJLeOedd9C9e3f069cPzz//fKlNLmS+vr5FzjVu3Bj37t3DjRs3YGFhgfT0dCxbtgzLli0r9jnS0tK0vvfx8Xn8h1BI/fr1y9TwxMPDA46OjkVqBYBLly6hXbt2uHz5Mnx9fYu896ZNmwIo+Oz//fdfeHh4oGbNmo993QYNGhQ5V6NGDdy5c+exjyUiMkcc+SIiojKJjo7G8OHD0bt372KbNRSnX79+cHd319wKrxvSt7lz5+LkyZN49913cf/+fUycOBH+/v64evUqABEE9+7dix07dmDYsGE4efIkBg4ciKeeegr5+fmVfn15NO3FF18sdnQqOjoaHTp00HpMeUa9TIGlpWWx5yVJMnAlRETGgSNfRET0WIcPH8Zzzz2HNm3aYN26dbCyKtv/PubOnas1yuHh4VGpOry8vAAACQkJaNiwoeZ8bm4uEhMTi4wCBQQEICAgANOnT8fBgwfRoUMHREZG4qOPPgIAWFhYoHv37ujevTu+/PJLfPzxx3jvvfewe/fux44onT9/vsi5c+fOwcHBAXXq1AEAODk5IT8/X/F2/MnJycjOztYa/Tp37hwAwNvbG4D4bE+ePAm1Wq01+nX27FnN/QDQqFEjbN++Hbdv3y7T6BcRERXgyBcREZXqzJkz6N27N7y9vbF169Zyjc60bt0aYWFhmluzZs0qVUtYWBhsbGywYMECrdGT7777DhkZGejduzcAIDMzE3l5eVqPDQgIgIWFBXJycgCIKZGPCgoKAgDNNaWJiYnRWrN15coV/PLLL3j66adhaWkJS0tL9O/fHz///DNOnz5d5PE3btx4/BvWkby8PHz99dea73Nzc/H111+jTp06mnVrvXr1QkpKCtauXav1uIULF6JatWro0qULAKB///6QJAnvv/9+kdfhiBYRUek48kVERCW6e/cuwsPDcefOHbz11luahhayRo0aITQ0VKeveePGDc3IVGE+Pj4YOnQopk2bhvfffx89evTAs88+i4SEBCxZsgRt27bVbDi8a9cujB8/Hi+88AIaN26MvLw8rFy5UhOIAOCDDz7A3r170bt3b3h5eSEtLQ1LlixB/fr10bFjx8fW2bx5c4SHh2u1mgegFUo++eQT7N69GyEhIRg7diyaNWuG27dvIy4uDjt27Cg2AJbHuXPnsGrVqiLnXV1d8dRTT2m+9/DwwKeffopLly6hcePGWLt2LeLj47Fs2TJYW1sDAF5++WV8/fXXGDlyJGJjY+Ht7Y0NGzbgwIEDmDdvHpycnAAA3bp1w7Bhw7BgwQKcP38ePXr0gFqtxr59+9CtWzeMHz++Uu+JiMisKdlqkYiIjMujreYTExNLbWk+YsQInb6+3Ba9uFv37t011y1atEjy8/OTrK2tJVdXV+m1117Tant/8eJFafTo0VKjRo0kOzs7qWbNmlK3bt2kHTt2aK7ZuXOn1LdvX8nDw0OysbGRPDw8pMGDB0vnzp17bJ0ApHHjxkmrVq2SfH19JVtbW6lly5bS7t27i1ybmpoqjRs3TvL09JSsra0lNzc3qXv37tKyZcs018it5ktrjV9cDSXdunTpovWZ+vv7S8eOHZNCQ0MlOzs7ycvLS1q0aFGxtY4aNUqqXbu2ZGNjIwUEBEjLly8vcl1eXp70+eefS35+fpKNjY1Up04dqWfPnlJsbGyRz+hRXl5eOv+5ISIyFSpJ4hwBIiKi8lCpVBg3bhwWLVqkdCmP1bVrV9y8ebPYqY9ERGRYXPNFRERERERkAAxfREREREREBsDwRUREREREZABc80VERERERGQAHPkiIiIiIiIyAIYvIiIiIiIiA+AmyxWkVquRnJwMJycnqFQqpcshIiIiIiKFSJKEu3fvwsPDAxYWJY9vMXxVUHJyMjw9PZUug4iIiIiIjMSVK1dQv379Eu9n+KogJycnAOIDdnZ2VrgaIiIiIiJSSmZmJjw9PTUZoSQMXxUkTzV0dnZm+CIiIiIioscuR2LDDSIiIiIiIgNg+CIiIiIiIjIAhi8iIiIiIiID4JovIiIiIjILkiQhLy8P+fn5SpdCZsbS0hJWVlaV3mJK8fC1ePFifP7550hJSUFgYCAWLlyI4ODgEq9fv349ZsyYgUuXLsHX1xeffvopevXqpbl/48aNiIyMRGxsLG7fvo3jx48jKCioyPPExMTgvffew+HDh2FpaYmgoCBs374d9vb2+nibRERERKRHubm5uH79Ou7du6d0KWSmHBwc4O7uDhsbmwo/h6Lha+3atZgyZQoiIyMREhKCefPmITw8HAkJCahbt26R6w8ePIjBgwdjzpw5eOaZZxAVFYWIiAjExcWhefPmAIDs7Gx07NgRAwYMwNixY4t93ZiYGPTo0QPTpk3DwoULYWVlhRMnTpS6IRoRERERGSe1Wo3ExERYWlrCw8MDNjY2lR6hIJJJkoTc3FzcuHEDiYmJ8PX1rXBuUEmSJOm4vjILCQlB27ZtsWjRIgDiXxxPT09MmDAB77zzTpHrBw4ciOzsbGzdulVzrl27dggKCkJkZKTWtZcuXYKPj0+xI1/t2rXDU089hQ8//LDCtWdmZsLFxQUZGRlsNU9ERESkoAcPHiAxMRFeXl5wcHBQuhwyU/fu3cPly5fh4+MDOzs7rfvKmg0UG+rJzc1FbGwswsLCCoqxsEBYWBhiYmKKfUxMTIzW9QAQHh5e4vXFSUtLw+HDh1G3bl20b98erq6u6NKlC/bv31/q43JycpCZmal1IyIiIiLjwVlMpE+6+PlS7Cf05s2byM/Ph6urq9Z5V1dXpKSkFPuYlJSUcl1fnIsXLwIAZs+ejbFjx2Lbtm1o1aoVunfvjvPnz5f4uDlz5sDFxUVz8/T0LPNrEhERERERVbk/D6jVagDAK6+8glGjRqFly5b46quv0KRJE3z//fclPm7atGnIyMjQ3K5cuWKokomIiIiIyAwoFr5q164NS0tLpKamap1PTU2Fm5tbsY9xc3Mr1/XFcXd3BwA0a9ZM63zTpk2RlJRU4uNsbW3h7OysdSMiIiIiMjbe3t6YN2+e0mVQMRQLXzY2NmjdujV27typOadWq7Fz506EhoYW+5jQ0FCt6wEgOjq6xOuL4+3tDQ8PDyQkJGidP3fuHLy8vMrxDoiIiIiIKk6lUpV6mz17doWe9+jRo3j55ZcrVVvXrl0xefLkSj0HFaVoq/kpU6ZgxIgRaNOmDYKDgzFv3jxkZ2dj1KhRAIDhw4ejXr16mDNnDgBg0qRJ6NKlC+bOnYvevXtjzZo1OHbsGJYtW6Z5ztu3byMpKQnJyckAoAlZbm5ucHNzg0qlwltvvYVZs2YhMDAQQUFB+OGHH3D27Fls2LDBwJ8AEREREVVV169f1xyvXbsWM2fO1BogqFatmuZYkiTk5+fDyurxv77XqVNHt4WSzii65mvgwIH44osvMHPmTAQFBSE+Ph7btm3TNNVISkrS+qFs3749oqKisGzZMgQGBmLDhg3YvHmzZo8vANiyZQtatmyJ3r17AwAGDRqEli1barWinzx5MqZNm4Y33ngDgYGB2LlzJ6Kjo9GoUSMDvXMiHfrgA2DCBOC/9YxEREQESBKQna3MrawbOcmDA25ubnBxcYFKpdJ8f/bsWTg5OeGPP/5A69atYWtri/379+Pff/9F37594erqimrVqqFt27bYsWOH1vM+Ou1QpVLh22+/xXPPPQcHBwf4+vpiy5Ytlfp8f/75Z/j7+8PW1hbe3t6YO3eu1v1LliyBr68v7Ozs4Orqiueff15z34YNGxAQEAB7e3vUqlULYWFhyM7OrlQ9JkOiCsnIyJAASBkZGUqXQlVZcrIkif/GS9LRo0pXQ0REpIj79+9L//zzj3T//n3Nuaysgv9FGvqWlVX+97B8+XLJxcVF8/3u3bslAFKLFi2kP//8U7pw4YJ069YtKT4+XoqMjJROnTolnTt3Tpo+fbpkZ2cnXb58WfNYLy8v6auvvtJ8D0CqX7++FBUVJZ0/f16aOHGiVK1aNenWrVsl1tOlSxdp0qRJxd537NgxycLCQvrggw+khIQEafny5ZK9vb20fPlySZIk6ejRo5KlpaUUFRUlXbp0SYqLi5Pmz58vSZIkJScnS1ZWVtKXX34pJSYmSidPnpQWL14s3b17t/wfmoEV93MmK2s2UHTaIRFV0u7dBcd79gBt2ihXCxEREencBx98gKeeekrzfc2aNREYGKj5/sMPP8SmTZuwZcsWjB8/vsTnGTlyJAYPHgwA+Pjjj7FgwQIcOXIEPXr0KHdNX375Jbp3744ZM2YAABo3box//vkHn3/+OUaOHImkpCQ4OjrimWeegZOTE7y8vNCyZUsAYqplXl4e+vXrp+m3EBAQUO4aTFWVazVPZFYKN6DZs0e5OoiIiIyMgwOQlaXMzcFBd++jzSN/WM3KysLUqVPRtGlTVK9eHdWqVcOZM2dK7doNAC1atNAcOzo6wtnZGWlpaRWq6cyZM+jQoYPWuQ4dOuD8+fPIz8/HU089BS8vLzRs2BDDhg3DTz/9hHv37gEAAgMD0b17dwQEBOCFF17AN998gzt37lSoDlPE8EVkynbtKjjet4/rvoiIiP6jUgGOjsrcVCrdvQ9HR0et76dOnYpNmzbh448/xr59+xAfH4+AgADk5uaW+jzW1taPfD4qzf63uubk5IS4uDisXr0a7u7umDlzJgIDA5Geng5LS0tER0fjjz/+QLNmzbBw4UI0adIEiYmJeqnF2DB8EZmqixeBS5cAKyvxX/r0dODUKaWrIiIiIj06cOAARo4cieeeew4BAQFwc3PDpUuXDFpD06ZNceDAgSJ1NW7cGJaWlgAAKysrhIWF4bPPPsPJkydx6dIl7Prvj8YqlQodOnTA+++/j+PHj8PGxgabNm0y6HtQCtd8EZkqecphu3YifG3fLqYeFpoHTkRERObF19cXGzduRJ8+faBSqTBjxgy9jWDduHED8fHxWufc3d3x5ptvom3btvjwww8xcOBAxMTEYNGiRViyZAkAYOvWrbh48SI6d+6MGjVq4Pfff4darUaTJk1w+PBh7Ny5E08//TTq1q2Lw4cP48aNG2jatKle3oOx4cgXkamSpxw++STQubM45rovIiIis/bll1+iRo0aaN++Pfr06YPw8HC0atVKL68VFRWFli1bat2++eYbtGrVCuvWrcOaNWvQvHlzzJw5Ex988AFGjhwJAKhevTo2btyIJ598Ek2bNkVkZCRWr14Nf39/ODs7Y+/evejVqxcaN26M6dOnY+7cuejZs6de3oOxUUlSWXcioMIyMzPh4uKCjIwMODs7K10OVTWSBLi5AWlpInBZWgIdOwK1a4tzupxsTkREZOQePHiAxMRE+Pj4wM7OTulyyEyV9nNW1mzAaYdEpujvv0XIsrcHQkJE2LK3B27eBP75B/D3V7pCIiIiInoEpx0SmSJ5vVenToCtLWBjA4SGinN79ypXFxERERGViOGLyBTJ6726dy8416WL+Mp1X0RERERGieGLyNTk5QF//SWOn3yy4Hzh8MWlnERERERGh+GLyNTExgKZmUD16kDLlgXng4PF9MOUFOD8ecXKIyIiIqLiMXwRmRp5ymHXrqLLoUxuvgFw6iERERGREWL4IjI1crONwuu9ZPLUQzbdICIiIjI6DF9EpuTBA+DAAXFceL2XjOu+iIiIiIwWwxeRKYmJEQHM3R1o2rTo/aGhgJUVcOUKcOmSwcsjIiIiopIxfBGZEnm915NPio2VH+XoCLRpI4657ouIiKhK6Nq1KyZPnqz53tvbG/PmzSv1MSqVCps3b670a+vqeaoKhi8iUyKv9ypuyqGM+30RERGZhD59+qBHjx7F3rdv3z6oVCqcPHmy3M979OhRvPzyy5UtT8vs2bMRFBRU5Pz169fRs2dPnb7Wo1asWIHq1avr9TUMheGLyFRkZgJHjojj4pptyNh0g4iIyCSMGTMG0dHRuHr1apH7li9fjjZt2qBFixblft46derAwcFBFyU+lpubG2xtbQ3yWuaA4YvIVOzbB+TnAw0bAl5eJV/XoQNgYQFcvAgU8x9zIiKiKkGSgOxsZW5lbHr1zDPPoE6dOlixYoXW+aysLKxfvx5jxozBrVu3MHjwYNSrVw8ODg4ICAjA6tWrS33eR6cdnj9/Hp07d4adnR2aNWuG6OjoIo95++230bhxYzg4OKBhw4aYMWMGHj58CECMPL3//vs4ceIEVCoVVCqVpuZHpx2eOnUKTz75JOzt7VGrVi28/PLLyMrK0tw/cuRIRERE4IsvvoC7uztq1aqFcePGaV6rIpKSktC3b19Uq1YNzs7OGDBgAFJTUzX3nzhxAt26dYOTkxOcnZ3RunVrHDt2DABw+fJl9OnTBzVq1ICjoyP8/f3x+++/V7iWx7HS2zMTkW6V1mK+MGdnoFUr4NgxMfVw6FD910ZERGRs7t0DqlVT5rWzssQ67MewsrLC8OHDsWLFCrz33ntQ/beee/369cjPz8fgwYORlZWF1q1b4+2334azszN+++03DBs2DI0aNUJwcPBjX0OtVqNfv35wdXXF4cOHkZGRobU+TObk5IQVK1bAw8MDp06dwtixY+Hk5IT/+7//w8CBA3H69Gls27YNO3bsAAC4uLgUeY7s7GyEh4cjNDQUR48eRVpaGl566SWMHz9eK2Du3r0b7u7u2L17Ny5cuICBAwciKCgIY8eOfez7Ke79ycFrz549yMvLw7hx4zBw4ED89ddfAIChQ4eiZcuWWLp0KSwtLREfHw9ra2sAwLhx45Cbm4u9e/fC0dER//zzD6rp8eeG4YvIVBRutvE4nTszfBEREZmA0aNH4/PPP8eePXvQtWtXAGLKYf/+/eHi4gIXFxdMnTpVc/2ECROwfft2rFu3rkzha8eOHTh79iy2b98ODw8PAMDHH39cZJ3W9OnTNcfe3t6YOnUq1qxZg//7v/+Dvb09qlWrBisrK7i5uZX4WlFRUXjw4AF+/PFHOP4XPhctWoQ+ffrg008/haurKwCgRo0aWLRoESwtLeHn54fevXtj586dFQpfO3fuxKlTp5CYmAhPT08AwI8//gh/f38cPXoUbdu2RVJSEt566y34+fkBAHx9fTWPT0pKQv/+/REQEAAAaNiwYblrKA+GLyJTcOMGcOKEOC5L+OrSBfjySzbdICKiqsvBQYxAKfXaZeTn54f27dvj+++/R9euXXHhwgXs27cPH3zwAQAgPz8fH3/8MdatW4dr164hNzcXOTk5ZV7TdebMGXh6emqCFwCEhoYWuW7t2rVYsGAB/v33X2RlZSEvLw/Ozs5lfh/yawUGBmqCFwB06NABarUaCQkJmvDl7+8PS0tLzTXu7u44depUuV6r8Gt6enpqghcANGvWDNWrV8eZM2fQtm1bTJkyBS+99BJWrlyJsLAwvPDCC2jUqBEAYOLEiXjttdfw559/IiwsDP3796/QOruy4povIlOwe7f4GhAA1K37+Os7dRKt6M+dA65f129tRERExkilElP/lLgVtx1MKcaMGYOff/4Zd+/exfLly9GoUSN0+a+B1ueff4758+fj7bffxu7duxEfH4/w8HDk5ubq7KOKiYnB0KFD0atXL2zduhXHjx/He++9p9PXKEye8idTqVRQq9V6eS1AdGr8+++/0bt3b+zatQvNmjXDpk2bAAAvvfQSLl68iGHDhuHUqVNo06YNFi5cqLdaGL6ITEF5phwCQI0agPxXm3379FMTERER6cSAAQNgYWGBqKgo/Pjjjxg9erRm/deBAwfQt29fvPjiiwgMDETDhg1x7ty5Mj9306ZNceXKFVwv9MfYQ4cOaV1z8OBBeHl54b333kObNm3g6+uLy5cva11jY2OD/Pz8x77WiRMnkJ2drTl34MABWFhYoEmTJmWuuTzk93flyhXNuX/++Qfp6elo1qyZ5lzjxo3xxhtv4M8//0S/fv2wfPlyzX2enp549dVXsXHjRrz55pv45ptv9FIrwPBFZBrK2myjMO73RUREZBKqVauGgQMHYtq0abh+/TpGjhypuc/X1xfR0dE4ePAgzpw5g1deeUWrk9/jhIWFoXHjxhgxYgROnDiBffv24b333tO6xtfXF0lJSVizZg3+/fdfLFiwQDMyJPP29kZiYiLi4+Nx8+ZN5OTkFHmtoUOHws7ODiNGjMDp06exe/duTJgwAcOGDdNMOayo/Px8xMfHa93OnDmDsLAwBAQEYOjQoYiLi8ORI0cwfPhwdOnSBW3atMH9+/cxfvx4/PXXX7h8+TIOHDiAo0ePomnTpgCAyZMnY/v27UhMTERcXBx2796tuU8fGL6IjF1SEnDhgmgf37lz2R/H8EVERGQyxowZgzt37iA8PFxrfdb06dPRqlUrhIeHo2vXrnBzc0NERESZn9fCwgKbNm3C/fv3ERwcjJdeegn/+9//tK559tln8cYbb2D8+PEICgrCwYMHMWPGDK1r+vfvjx49eqBbt26oU6dOse3uHRwcsH37dty+fRtt27bF888/j+7du2PRokXl+zCKkZWVhZYtW2rd+vTpA5VKhV9++QU1atRA586dERYWhoYNG2Lt2rUAAEtLS9y6dQvDhw9H48aNMWDAAPTs2RPvv/8+ABHqxo0bh6ZNm6JHjx5o3LgxlixZUul6S6KSpDJuREBaMjMz4eLigoyMjHIvRiQqlxUrgFGjgJAQ4JFpAqW6caNgfdiNG0Dt2nopj4iISGkPHjxAYmIifHx8YGdnp3Q5ZKZK+zkrazbgyBeRsSvvei9ZnTqAPNd5717d1kRERERE5cbwRWTMJKli671k8tRDhi8iIiIixTF8ERmzhAQgORmwtQXaty//47nui4iIiMhoMHwRGTN5ymH79oC9ffkfLzfoOHECuHNHd3URERERUbkxfBEZs8pMOQQAd3fA11dMX9y/X3d1ERERGSH2kSN90sXPF8MXkbFSq4Hdu8VxeZttFMaph0REZOasra0BAPfu3VO4EjJn8s+X/PNWEVa6KoaIdCw+XkwVdHIC2rat+PN06QJ8+y2bbhARkdmytLRE9erVkZaWBkDsN6VSqRSuisyFJEm4d+8e0tLSUL16dVhaWlb4uRi+iIyVvN6rSxfAqhL/qsojX3FxwN27IswRERGZGTc3NwDQBDAiXatevbrm56yijCJ8LV68GJ9//jlSUlIQGBiIhQsXIjg4uMTr169fjxkzZuDSpUvw9fXFp59+il69emnu37hxIyIjIxEbG4vbt2/j+PHjCAoKKva5JElCr169sG3bNmzatKlcO4YT6ZW83qsyUw4BwNMT8PEBEhOBAweAHj0qXxsREZGRUalUcHd3R926dfHw4UOlyyEzY21tXakRL5ni4Wvt2rWYMmUKIiMjERISgnnz5iE8PBwJCQmoW7dukesPHjyIwYMHY86cOXjmmWcQFRWFiIgIxMXFoXnz5gCA7OxsdOzYEQMGDMDYsWNLff158+ZxWJqMT25uwTTBijbbKKxLFxG+9uxh+CIiIrNmaWmpk1+SifRBJSncFiYkJARt27bFokWLAABqtRqenp6YMGEC3nnnnSLXDxw4ENnZ2di6davmXLt27RAUFITIyEitay9dugQfH58SR77i4+PxzDPP4NixY3B3dy915CsnJwc5OTma7zMzM+Hp6YmMjAw4OztX4J0TlWL/fqBTJ6B2bSA1FbCoZG+c5cuB0aOB0FDg4EHd1EhEREREAEQ2cHFxeWw2ULTbYW5uLmJjYxEWFqY5Z2FhgbCwMMTExBT7mJiYGK3rASA8PLzE60ty7949DBkyBIsXLy7T3M05c+bAxcVFc/P09CzX6xGVS+Eph5UNXkDBuq+jRwF2giIiIiJShKLh6+bNm8jPz4erq6vWeVdXV6SkpBT7mJSUlHJdX5I33ngD7du3R9++fct0/bRp05CRkaG5XblypVyvR1QucrONyq73kvn4APXrA3l5QDn/UEFEREREuqH4mi8lbNmyBbt27cLx48fL/BhbW1vY2trqsSqi/2RnFwQkXaz3AgCVSox+/fSTWPelq+clIiIiojJTdOSrdu3asLS0RGpqqtb51NTUEqcCurm5lev64uzatQv//vsvqlevDisrK1j918a7f//+6Nq1a/neBJGuHTgAPHwINGgANGqku+flZstEREREilI0fNnY2KB169bYKa9vgWi4sXPnToSGhhb7mNDQUK3rASA6OrrE64vzzjvv4OTJk4iPj9fcAOCrr77C8uXLy/9GiHSp8HovXXbi7NxZfD18GHjwQHfPS0RERERlovi0wylTpmDEiBFo06YNgoODMW/ePGRnZ2PUqFEAgOHDh6NevXqYM2cOAGDSpEno0qUL5s6di969e2PNmjU4duwYli1bpnnO27dvIykpCcnJyQCAhIQEAGLUrPDtUQ0aNICPj4++3zJR6eTwpeupgY0bA66uonvi4cMFI2FEREREZBCKjnwBonX8F198gZkzZyIoKAjx8fHYtm2bpqlGUlISrl+/rrm+ffv2iIqKwrJlyxAYGIgNGzZg8+bNmj2+ALGmq2XLlujduzcAYNCgQWjZsmWRVvRERufOHSAuThzrqtmGTF73BRTsIUZEREREBqP4Pl+mqqy9/InKZdMmoF8/wM8POHNG98+/ZAkwbpwYVduxQ/fPT0RERFQFmcQ+X0T0CF23mH+UPPJ18CCQm6uf1yAiIiKiYjF8ERkTfa33kjVtCtSqBdy/Dxw7pp/XICIiIqJiMXwRGYvkZDHVUKUC9LXlgYVFQddDtpwnIiIiMiiGLyJjsXu3+NqyJVCzpv5eh003iIiIiBTB8EVkLPQ95VAmh6/9+4G8PP2+FhERERFpMHwRGQNJ0t5cWZ8CAoDq1YGsLOD4cf2+FhERERFpMHwRGYOLF4GkJMDaGujUSb+vZWlZ8Bpc90VERERkMAxfRMZAbjHfrh3g6Kj/12PTDSIiIiKDY/giMgaGmnIok9d97dsH5Ocb5jWJiIiIqjiGLyKlqdUFI1/6brYha9kScHICMjKAU6cM85pEREREVRzDF5HS/v4buHEDcHAAQkIM85pWVkCHDuKYUw+JiIiIDILhi0hp8pTDTp0AGxvDva489ZDhi4iIiMggGL6IlCZPOTTUei+Z3HRj714x9ZGIiIiI9Irhi0hJeXkFI0+GWu8la9MGsLcHbt0C/vnHsK9NREREVAUxfBEpKTYWyMwEatQAgoIM+9o2NkD79uJ4717DvjYRERFRFcTwRaQkeb1X165i82ND47ovIiIiIoNh+CJSkhy+DD3lUFY4fEmSMjUQERERVREMX0RKefAAOHBAHBu62YYsOBiwtQVSU4Fz55SpgYiIiKiKYPgiUsrBg0BODuDuDvj5KVODnV3B3mKcekhERESkVwxfREop3GJepVKuDnnqIZtuEBEREekVwxeRUpRe7yXjui8iIiIig2D4IlJCZiZw9Kg4Vmq9lyw0FLC2Bq5eBRITla2FiIiIyIwxfBEpYe9eID8faNQI8PJSthYHB6BtW3HMdV9EREREesPwRaQEY5lyKOvcWXxl+CIiIiLSG4YvIiUUbrZhDNh0g4iIiEjvGL6IDC0tDTh5UhwbS/jq0AGwtBRrvq5cUboaIiIiIrPE8EVkaH/9Jb62aAHUqaNoKRpOTkCrVuKYUw+JiIiI9ILhi8jQ5PVexjLqJSvccp6IiIiIdI7hi8jQjK3ZhoxNN4iIiIj0iuGLyJAuXwb+/Vesr5LDjrHo1AlQqYDz54Hr15WuhoiIiMjsMHwRGZLc5bBtW8DZWdlaHlW9OhAYKI7Z9ZCIiIhI5xi+iAzJ2FrMP4rrvoiIiIj0huGLyFAkyXjXe8kYvoiIiIj0huGLyFASEsRaKltboH17paspXqdO4us//wA3bihbCxEREZGZYfgiMhR51KtDB8DOTtlaSlK7NuDvL4657ouIiIhIp4wifC1evBje3t6ws7NDSEgIjhw5Uur169evh5+fH+zs7BAQEIDff/9d6/6NGzfi6aefRq1ataBSqRAfH691/+3btzFhwgQ0adIE9vb2aNCgASZOnIiMjAxdvzWiAsY+5VAmTz1k+CIiIiLSKcXD19q1azFlyhTMmjULcXFxCAwMRHh4ONLS0oq9/uDBgxg8eDDGjBmD48ePIyIiAhERETh9+rTmmuzsbHTs2BGffvppsc+RnJyM5ORkfPHFFzh9+jRWrFiBbdu2YcyYMXp5j0TIzwf++kscG2uzDRnXfRERERHphUqSJEnJAkJCQtC2bVssWrQIAKBWq+Hp6YkJEybgnXfeKXL9wIEDkZ2dja1bt2rOtWvXDkFBQYiMjNS69tKlS/Dx8cHx48cRFBRUah3r16/Hiy++iOzsbFhZWT227szMTLi4uCAjIwPOxtYynIxPbCzQpg3g5ATcvg2U4WdMMSkpgLu72PPr1i2gRg2lKyIiIiIyamXNBoqOfOXm5iI2NhZhYWGacxYWFggLC0NMTEyxj4mJidG6HgDCw8NLvL6s5A+qpOCVk5ODzMxMrRtRmckt5rt0Me7gBQBubkCTJqI74759SldDREREZDYUDV83b95Efn4+XF1dtc67uroiJSWl2MekpKSU6/qy1vHhhx/i5ZdfLvGaOXPmwMXFRXPz9PSs8OtRFWQq671knTuLr5x6SERERKQziq/5UlpmZiZ69+6NZs2aYfbs2SVeN23aNGRkZGhuV65cMVyRZNpycwtGkEwlfLHpBhEREZHOKTr/qXbt2rC0tERqaqrW+dTUVLi5uRX7GDc3t3JdX5q7d++iR48ecHJywqZNm2BtbV3itba2trC1tS33axDh8GHg3j2gTp2CNu7GTg5fcXFAZibAdY1ERERElaboyJeNjQ1at26NnfKULIiGGzt37kRoaGixjwkNDdW6HgCio6NLvL4kmZmZePrpp2FjY4MtW7bAzlj3XSLTJ/+8PvkkYGEig8316wMNGwJqNXDggNLVEBEREZkFxVf+T5kyBSNGjECbNm0QHByMefPmITs7G6NGjQIADB8+HPXq1cOcOXMAAJMmTUKXLl0wd+5c9O7dG2vWrMGxY8ewbNkyzXPevn0bSUlJSE5OBgAkJCQAEKNmbm5umuB17949rFq1SquBRp06dWBpaWnIj4DMndxsw9hbzD+qSxfg4kWx7qtnT6WrISIiIjJ5ioevgQMH4saNG5g5cyZSUlIQFBSEbdu2aZpqJCUlwaLQaEH79u0RFRWF6dOn491334Wvry82b96M5s2ba67ZsmWLJrwBwKBBgwAAs2bNwuzZsxEXF4fDhw8DAJ544gmtehITE+Ht7a2vt0tVTXY2cOiQODaV9V6yLl2A5cvZdIOIiIhIRxTf58tUcZ8vKpPt24EePQAvLyAxUeydZSoSE8XUQysrID0dcHRUuiIiIiIio2QS+3wRmb3C671MKXgBgLc34OkJ5OUBldxHj4iIiIgYvoj0S17vZWpTDgERFuWuh5x6SERERFRpDF9E+nL7tmjVDgDduilbS0UxfBERERHpDMMXkb789RcgSUDTpoCHh9LVVIwcvg4fBu7fV7YWIiIiIhPH8EWkL6baYr6wJ54A3NyA3FwRwIiIiIiowhi+iPRFbrZhiuu9ZIXXfe3dq2wtRERERCaO4YtIH5KTgbNnRXjp2lXpaiqH676IiIiIdILhi0gf5CmHrVoBNWooW0tlyeErJkZMPyQiIiKiCmH4ItIHc5hyKGvaFKhdWzTcOHpU6WqIiIiITBbDF5GuSZJ5NNuQqVRA587imFMPiYiIiCqM4YtI1/79F0hKAqytgY4dla5GN9h0g4iIiKjSGL6IdE0e9WrXDnB0VLYWXZHD14EDQF6esrUQERERmSiGLyJdM6f1XrKAANE4JCsLiItTuhoiIiIik8TwRaRLajWwe7c4NqfwZWEBdOokjrnui4iIiKhCGL6IdOn0aeDGDcDBAQgOVroa3eJ+X0RERESVwvBFpEvylMPOnQEbG2Vr0TW54+G+fUB+vrK1EBEREZkghq9KOnNG6QrIqJhTi/lHBQUBTk5AZiZw8qTS1RARERGZHIavSoqMVLoCMhp5eQVT8sxpvZfMyqqgdT6nHhIRERGVG8NXJa1eDdy6pXQVZBSOHQPu3hVdAQMDla5GP7jui4iIiKjCGL4qKScH+OYbpasgoyCv9+rWDbC0VLYWfSm82bJarWwtRERERCaG4UsHFi8GHj5UugpSnLzeyxynHMpatxadHG/fBv7+W+lqiIiIiEwKw1cl1akDXL0KbNyodCWkqPv3gQMHxLE5NtuQWVsD7duL4717la2FiIiIyMQwfFXSmDHi6/z5ytZBCjt4UMxB9fAAmjRRuhr94rovIiIiogph+Kqk0aPFdk4xMcCRI0pXQ4op3GJepVK2Fn0rHL4kSdlaiIiIiEwIw1cluboCgwaJY45+VWFysw1zXu8lCw4G7OyAtDQgIUHpaoiIiIhMBsOXDkyaJL6uWwckJytbCykgIwM4elQcm/N6L5mtLdCunTjm1EMiIiKiMmP40oFWrYBOncQeu0uWKF0NGZzcdv2JJ4AGDZSuxjA6dxZf2XSDiIiIqMwYvnREHv36+mvR+I6qkKrQYv5RXPdFREREVG4MXzrSty/g5QXcvAlERSldDRmUvN6rKkw5lLVrJ9rOX7sGXLyodDVEREREJoHhS0esrIDx48Xx/PkcDKgy0tKAU6fEcbduytZiSA4OovEGwHVfRERERGXE8KVDY8YAjo7id/Hdu5WuhgxC/gfdooXYcbsq4X5fREREROXC8KVDNWoAI0aIY7adryKqUov5R7HpBhEREVG5MHzp2MSJ4uuvvwL//qtsLWQAVbHZhqx9e8DSErh0CUhKUroaIiIiIqPH8KVjTZoAPXuKNV8LFypdDenV5csiYVtair0GqhonJ6B1a3HMqYdEREREj8XwpQdy2/nvvwcyM5WthfRIHvUKDgacnZWtRSlc90VERERUZgxfevD000DTpsDdu8Dy5UpXQ3pTFVvMP4rhi4iIiKjMjCJ8LV68GN7e3rCzs0NISAiOHDlS6vXr16+Hn58f7OzsEBAQgN9//13r/o0bN+Lpp59GrVq1oFKpEB8fX+Q5Hjx4gHHjxqFWrVqoVq0a+vfvj9TUVJ28H5WqYO3XwoVAfr5OnpaMiSRV7WYbsg4dxA/8hQtAcrLS1RAREREZNcXD19q1azFlyhTMmjULcXFxCAwMRHh4ONLS0oq9/uDBgxg8eDDGjBmD48ePIyIiAhERETh9+rTmmuzsbHTs2BGffvppia/7xhtv4Ndff8X69euxZ88eJCcno1+/fjp7X8OGie6H//4LPJINyRycPQukpAB2dkBoqNLVKKd6dSAoSByz6yERERFRqVSSpOx2wCEhIWjbti0WLVoEAFCr1fD09MSECRPwzjvvFLl+4MCByM7OxtatWzXn2rVrh6CgIERGRmpde+nSJfj4+OD48eMIkn9BBJCRkYE6deogKioKzz//PADg7NmzaNq0KWJiYtCuXbvH1p2ZmQkXFxdkZGTAuYT1Pm+/DXz2mZiVJg+SkJlYtAiYMEGMeu3YoXQ1ynrjDWDePODVV4GlS5WuhoiIiMjgypINAIVHvnJzcxEbG4uwsDDNOQsLC4SFhSEmJqbYx8TExGhdDwDh4eElXl+c2NhYPHz4UOt5/Pz80KBBgxKfJycnB5mZmVq3xxk3TjTC27VLbLxMZqQqt5h/FNd9EREREZWJouHr5s2byM/Ph6urq9Z5V1dXpKSkFPuYlJSUcl1f0nPY2NigevXqZX6eOXPmwMXFRXPz9PR87Os0aADIMxm56bIZyc8Hdu8Wx1W52YZMbrN/5gxQwnRhIiIiIjKCNV+mYtq0acjIyNDcrly5UqbHyW3nf/oJuHlTjwWS4Rw/DqSni/by8j5XVVmtWkBAgDjmui8iIiKiEikavmrXrg1LS8siXQZTU1Ph5uZW7GPc3NzKdX1Jz5Gbm4v09PQyP4+trS2cnZ21bmXRvj3Qpg3w4AGwbFmZSyRjJk857NIFsLJSthZj0bmz+MrwRURERFQiRcOXjY0NWrdujZ2FulGo1Wrs3LkToSV0kAsNDdW6HgCio6NLvL44rVu3hrW1tdbzJCQkICkpqVzPUxYqVcHo1+LFwMOHOn16UgJbzBfFdV9EREREj6X4n+2nTJmCESNGoE2bNggODsa8efOQnZ2NUaNGAQCGDx+OevXqYc6cOQCASZMmoUuXLpg7dy569+6NNWvW4NixY1hWaFjp9u3bSEpKQvJ/+w4lJCQAECNebm5ucHFxwZgxYzBlyhTUrFkTzs7OmDBhAkJDQ8vU6bC8BgwA3npLbIO0YQMweLDOX4IMJTcX2LdPHDN8FZBHvk6dAm7fBmrWVLYeIiIiIiOk+JqvgQMH4osvvsDMmTMRFBSE+Ph4bNu2TdNUIykpCdevX9dc3759e0RFRWHZsmUIDAzEhg0bsHnzZjRv3lxzzZYtW9CyZUv07t0bADBo0CC0bNlSqxX9V199hWeeeQb9+/dH586d4ebmho0bN+rlPdrYAK+/Lo7nzdPLS5ChHDoE3L8P1K0L+PsrXY3xcHUF/PzE5tNyOCUiIiIiLYrv82WqytrLX5aWBnh6ioGTmBhADwNsZAizZwPvvw8MGgSsXq10Ncbl1VeBr78W+359+aXS1RAREREZjEns81WV1K0LDB0qjjn6ZcLk9V5sMV8Um24QERERlYrhy4DkxhsbNgBXrypbC1VAVpaYdghwvVdx5KYbx48DGRnK1kJERERkhBi+DCgwUPx+mp8PLFmidDVUbvv3A3l5gJcX4OOjdDXGp149oFEjQK0GDhxQuhoiIiIio8PwZWCTJ4uvX38N3LunaClUXoVbzKtUytZirNhynoiIiKhEDF8G1qePGDS5fRv46Selq6FykTdX5pTDkjF8EREREZWI4cvALC2BCRPE8fz5ojM3mYDbt8VaJgDo1k3ZWoyZHL6OHRNr5IiIiIhIg+FLAaNHA9WqAX//XTCTjYzcX3+JpNysGeDurnQ1xsvLC2jQQCxsjIlRuhoiIiIio8LwpQAXF2DUKHE8f76ytVAZscV82XHqIREREVGxGL4UMmGC6NmwdStw/rzS1dBjFW62QaVj+CIiIiIqFsOXQnx9gV69xPHChcrWQo9x7RqQkABYWBQECyqZ/BkdOQLcv69sLURERERGhOFLQXLb+eXLuSetUZO7HLZqBdSooWwtpqBRI8DDA8jNLdiUmoiIiIgYvpTUvTvg7y+awn3/vdLVUInYYr58VCqgc2dxvHevsrUQERERGRGGLwWpVMCkSeJ44ULRII6MjCSx2UZFcN0XERERUREMXwobOhSoWRNITAR+/VXpaqiIf/8FrlwBrK2Bjh2VrsZ0yOErJgbIyVG2FiIiIiIjwfClMAcH4OWXxTHbzhshedQrNFT8w6Ky8fMD6tYFHjwAjh5VuhoiIiIio8DwZQTGjQMsLcU+vvHxSldDWthivmIKr/vi1EMiIiIiAAxfRqF+feD558XxggXK1kKFqNXA7t3imOGr/OSph2y6QURERASA4ctoyG3nf/oJSEtTtBSSnToF3LwJODoCbdsqXY3pkUe+DhwAHj5UthYiIiIiI8DwZSTatQOCg8XWSF9/rXQ1BKCgxXznzoCNjbK1mKLmzUU3mexsIC5O6WqIiIiIFMfwZUTktvNLlogQRgpji/nKsbAAOnUSx1z3RURERMTwZUyefx7w8ABSUoB165Supop7+LAgMHC9V8Vxvy8iIiIiDYYvI2JjA7z+ujieP1/s70sKOXYMyMoS0+YCA5WuxnTJ4Wv/fu4iTkRERFUew5eRefllwM5O/O5/8KDS1VRh8pTDbt3E9DmqmMBAwNkZyMwETpxQuhoiIiIiRVXot8orV67g6tWrmu+PHDmCyZMnY9myZTorrKqqUwcYOlQcc9NlBcnNNjjlsHIsLYGOHcUxpx4SERFRFVeh8DVkyBDs/m//o5SUFDz11FM4cuQI3nvvPXzwwQc6LbAqkhtvbNwIJCUpW0uVdP9+wbAjm21UHtd9EREREQGoYPg6ffo0goODAQDr1q1D8+bNcfDgQfz0009YsWKFLuurkgICxO/8+fnA4sVKV1MFHTwI5OQA9eoBjRsrXY3pk8PXvn1i42oiIiKiKqpC4evhw4ewtbUFAOzYsQPPPvssAMDPzw/Xr1/XXXVVmDz69c03YpskMqDCLeZVKmVrMQetWomNqm/fBk6fVroaIiIiIsVUKHz5+/sjMjIS+/btQ3R0NHr06AEASE5ORq1atXRaYFXVuzfQqBFw5w6wcqXS1VQxcvjiei/dsLYG2rcXx3v3KlsLERERkYIqFL4+/fRTfP311+jatSsGDx6MwP9acW/ZskUzHZEqx9ISmDBBHC9YwLbzBpORIVpNAlzvpUtc90VEREQElSRV7Nf6/Px8ZGZmokaNGppzly5dgoODA+rWrauzAo1VZmYmXFxckJGRAWdnZz29BlC/PnD3LrB9O/D003p5GSpsyxagb1/A1xc4d07paszH/v1Ap05A3bpiF3FO5yQiIiIzUtZsUKGRr/v37yMnJ0cTvC5fvox58+YhISGhSgQvQ3F2BkaPFsfz5ilaStXBFvP60bat2MAuLQ04e1bpaoiIiIgUUaHw1bdvX/z4448AgPT0dISEhGDu3LmIiIjA0qVLdVpgVTdhghgk+OMPICFB6WqqgMLNNkh3bG2B0FBxzKmHREREVEVVKHzFxcWhU6dOAIANGzbA1dUVly9fxo8//ogFCxbotMCqrlEjoE8fccyPVs9SUwu68XXrpmwt5khe98WmG0RERFRFVSh83bt3D05OTgCAP//8E/369YOFhQXatWuHy5cv67RAKmg7v2KF6H5IevLfxuEIDARq11a2FnPUubP4umcPO8gQERFRlVSh8PXEE09g8+bNuHLlCrZv346n/+sEkZaWprfmE1VZt25i4+V794DvvlO6GjPGFvP61a4dYGMDJCcD//6rdDVEREREBleh8DVz5kxMnToV3t7eCA4ORuh/azn+/PNPtGzZUqcFkljzJY9+LVoE5OUpW4/ZYrMN/bK3B+StKLjui4iIiKqgCoWv559/HklJSTh27Bi2b9+uOd+9e3d89dVX5X6+xYsXw9vbG3Z2dggJCcGRI0dKvX79+vXw8/ODnZ0dAgIC8Pvvv2vdL0kSZs6cCXd3d9jb2yMsLAznz5/XuubcuXPo27cvateuDWdnZ3Ts2BG75WlnRmjIEKBWLeDyZdENnXTs0iXg4kXAykq0RCf94H5fREREVIVVKHwBgJubG1q2bInk5GRcvXoVABAcHAw/P79yPc/atWsxZcoUzJo1C3FxcQgMDER4eDjS0tKKvf7gwYMYPHgwxowZg+PHjyMiIgIRERE4LTdKAPDZZ59hwYIFiIyMxOHDh+Ho6Ijw8HA8ePBAc80zzzyDvLw87Nq1C7GxsQgMDMQzzzyDlJSUCnwa+mdvD7z6qjhm23k9kEe9goOB/9Yzkh4wfBEREVFVJlVAfn6+9P7770vOzs6ShYWFZGFhIbm4uEgffPCBlJ+fX67nCg4OlsaNG6f13B4eHtKcOXOKvX7AgAFS7969tc6FhIRIr7zyiiRJkqRWqyU3Nzfp888/19yfnp4u2draSqtXr5YkSZJu3LghAZD27t2ruSYzM1MCIEVHR5ep7oyMDAmAlJGRUbY3qgPXrkmSlZUkAZIUG2uwl60ahgwRH+z06UpXYt7u3pUkS0vxWV+6pHQ1RERERDpR1mxQoZGv9957D4sWLcInn3yC48eP4/jx4/j444+xcOFCzJgxo8zPk5ubi9jYWISFhWnOWVhYICwsDDExMcU+JiYmRut6AAgPD9dcn5iYiJSUFK1rXFxcEBISormmVq1aaNKkCX788UdkZ2cjLy8PX3/9NerWrYvWrVsX+7o5OTnIzMzUuhmahwcwYIA4nj/f4C9vviSJ670MpVo1oE0bcczRLyIiIqpiKhS+fvjhB3z77bd47bXX0KJFC7Ro0QKvv/46vvnmG6xYsaLMz3Pz5k3k5+fD1dVV67yrq2uJ0/9SUlJKvV7+Wto1KpUKO3bswPHjx+Hk5AQ7Ozt8+eWX2LZtG2rUqFHs686ZMwcuLi6am6enZ5nfpy7JjTfWrBHbUpEOnDkDpKQAdnaiIx/pF6ceEhERURVVofB1+/btYtd2+fn54fbt25UuSt8kScK4ceNQt25d7Nu3D0eOHEFERAT69OmD69evF/uYadOmISMjQ3O7cuWKgasWgoOB0FAgNxeIjFSkBPMjt5jv2FEEMNIvhi8iIiKqoioUvgIDA7Fo0aIi5xctWoQWLVqU+Xlq164NS0tLpD4yhJOamgo3N7diH+Pm5lbq9fLX0q7ZtWsXtm7dijVr1qBDhw5o1aoVlixZAnt7e/zwww/Fvq6trS2cnZ21bkqRR7+WLAFychQrw3xwyqFhdewIWFiIvb6uXVO6GiIiIiKDqVD4+uyzz/D999+jWbNmGDNmDMaMGYNmzZphxYoV+OKLL8r8PDY2NmjdujV2yiMPANRqNXbu3KnZO+xRoaGhWtcDQHR0tOZ6Hx8fuLm5aV2TmZmJw4cPa665d+8eALG+rDALCwuo1eoy16+Ufv2AevWAtDRg7VqlqzFx+fnAX3+J4yefVLSUKsPZGZD3A9y7V9laiIiIiAyoQuGrS5cuOHfuHJ577jmkp6cjPT0d/fr1w99//42VK1eW67mmTJmCb775Bj/88APOnDmD1157DdnZ2Rg1ahQAYPjw4Zg2bZrm+kmTJmHbtm2YO3cuzp49i9mzZ+PYsWMYP348ALGea/Lkyfjoo4+wZcsWnDp1CsOHD4eHhwciIiIAiABXo0YNjBgxAidOnMC5c+fw1ltvITExEb17967IR2JQ1tbAf28X8+aJfhFUQcePA+npgIsL0KqV0tVUHZ07i6+cekhERERViS5bLMbHx0sWFhblftzChQulBg0aSDY2NlJwcLB06NAhzX1dunSRRowYoXX9unXrpMaNG0s2NjaSv7+/9Ntvv2ndr1arpRkzZkiurq6Sra2t1L17dykhIUHrmqNHj0pPP/20VLNmTcnJyUlq166d9Pvvv5e5ZiVazRd286Yk2duLjt2FOuZTeX3yifgQn31W6Uqqls2bxefu56d0JURERESVVtZsoJIk3Y2bnDhxAq1atUJ+fr6untJoZWZmwsXFBRkZGYqt/3rlFWDZMqB/f2DDBkVKMH1PPw1ER4ve/RMnKl1N1XH7NlC7thi2TUkBHulOSkRERGRKypoNKjTtkIyDnBU2bQIuXVK0FNOUkwPs3y+Oud7LsGrWBAICxDHXfREREVEVwfBlwvz9gbAwQK0GFi9WuhoTdOgQcP++GHXx91e6mqpHbjnP8EVERERVhFV5Lu7Xr1+p96enp1emFqqAyZOBHTuAb74BZs0CqlVTuiITIreYf/JJQKVStpaqqHNnYOFCNt0gIiKiKqNc4cvFxeWx9w8fPrxSBVH59OwJ+PoC588DP/4IvP660hWZEHk7Ak45VIbc8fDUKeDWLaBWLWXrISIiItIznTbcqEqMoeGGbNEiYMIEoHFj4MwZsX8tPUZWFlCjBpCXB1y8CPj4KF1R1dSsmfih3bQJ+G8rCCIiIiJTw4YbVciIEWLf2nPngO3bla7GROzbJ4KXtzeDl5LkdV+cekhERERVAMOXGXByAsaMEcfz5ytbi8mQpxx2765sHVUdwxcRERFVIQxfZmLCBDHdcPt2MYuLHqNwsw1SjrzuKz4eyMhQtBQiIiIifWP4MhM+PsCzz4rjBQuUrcXo3bolftkHGL6U5uEBPPGE2GxZ3nONiIiIyEwxfJmRyZPF1x9+AG7fVrQU4/bXX+KXfX9/wM1N6WqIUw+JiIioimD4MiOdOwOBgWLf4G+/VboaI8YW88aF4YuIiIiqCIYvM6JSAZMmieNFi0QzPyqGvN6LzTaMgxy+YmOBu3eVrYWIiIhIjxi+zMzgwUCdOsCVK2LrJHrEtWtAQoLoTiL/0k/KatBAtPzPzwdiYpSuhoiIiEhvGL7MjJ0d8Oqr4pht54shTzls3RqoXl3RUqgQueshpx4SERGRGWP4MkOvvQZYWwMHDgDHjildjZHhlEPjxHVfREREVAUwfJkhd3dg4EBxzNGvQiSJzTaMlRy+jhwB7t1TthYiIiIiPWH4MlNy2/m1a4Hr1xUtxXhcuABcvQrY2AAdOihdDRXWsCFQrx7w8CFw6JDS1RARERHpBcOXmWrdWuSLhw+BpUuVrsZIyKNeoaGAg4OytZA2lapg9GvvXmVrISIiItIThi8zJredj4wEHjxQthajwPVexo1NN4iIiMjMMXyZseeeAzw9gRs3gNWrla5GYWp1Qfjiei/jJI98HToE5OQoWwsRERGRHjB8mTErK2D8eHE8f77oN1FlnTwJ3LoFVKsGBAcrXQ0Vp0kTwNVVDNMeOaJ0NUREREQ6x/Bl5l56SSxvOnGiis/mkke9OncWffjJ+KhUnHpIREREZo3hy8zVrAkMHy6Oq3TbebaYNw1sukFERERmjOGrCpg4UXz95Rfg4kVla1HEw4cFv8yz2YZxk8PXwYPinxsRERGRGWH4qgKaNgXCw8War0WLlK5GAUePAllZQK1aQIsWSldDpWnWTAzXZmcDsbFKV0NERESkUwxfVYTcdv6774C7d5WtxeDkKYfdugEW/JE3ahYWXPdFREREZou/iVYR4eGimVxmJrBihdLVGBhbzJsWeeohwxcRERGZGYavKsLComDt18KFYturKuHePbF+COB6L1Mhh6/9+4G8PGVrISIiItIhhq8qZPhwwMUFOH8e+OMPpasxkIMHgdxcoH59wNdX6WqoLFq0ED+od++KPRKIiIiIzATDVxVSrRowdqw4njdP0VIMp3CLeZVK2VqobCwtgY4dxTGnHhIREZEZYfiqYsaPF1MQd+wA/v5b6WoMQF7vxSmHpoXrvoiIiMgMMXxVMV5ewHPPiWOz33Q5PR04dkwcs9mGaZHD1759VWiBIhEREZk7hq8qSG47v3IlcOuWsrXo1Z494hf3xo3Fmi8yHa1aiXmyd+4Ap04pXQ0RERGRTjB8VUEdO4rfbR88AJYtU7oaPeKUQ9NlZQV06CCO9+5VthYiIiIiHWH4qoJUqoLRr8WLgYcPla1Hbwo32yDTw82WiYiIyMwwfFVRAwcCrq7AtWvAxo1KV6MHqakFHUW6dVO2FqoYed3X3r2AJClbCxEREZEOGEX4Wrx4Mby9vWFnZ4eQkBAcOXKk1OvXr18PPz8/2NnZISAgAL///rvW/ZIkYebMmXB3d4e9vT3CwsJw/vz5Is/z22+/ISQkBPb29qhRowYiIiJ0+baMmq0t8Npr4tgs287LUw6DgoBatRQthSqobVvA3h64cQM4c0bpaoiIiIgqTfHwtXbtWkyZMgWzZs1CXFwcAgMDER4ejrS0tGKvP3jwIAYPHowxY8bg+PHjiIiIQEREBE6fPq255rPPPsOCBQsQGRmJw4cPw9HREeHh4Xjw4IHmmp9//hnDhg3DqFGjcOLECRw4cABDhgzR+/s1Jq++CtjYAIcOAYcPK12NjnG9l+mzsQFCQ8Uxpx4SERGRGVBJkrLzeUJCQtC2bVssWrQIAKBWq+Hp6YkJEybgnXfeKXL9wIEDkZ2dja1bt2rOtWvXDkFBQYiMjIQkSfDw8MCbb76JqVOnAgAyMjLg6uqKFStWYNCgQcjLy4O3tzfef/99jBkzpkJ1Z2ZmwsXFBRkZGXB2dq7QcxiDkSOBH34ABg8GoqKUrkaHGjYEEhOB334DevVSuhqqqA8+AGbNAgYNAlavVroaIiIiomKVNRsoOvKVm5uL2NhYhIWFac5ZWFggLCwMMTExxT4mJiZG63oACA8P11yfmJiIlJQUrWtcXFwQEhKiuSYuLg7Xrl2DhYUFWrZsCXd3d/Ts2VNr9OxROTk5yMzM1LqZA7nxxvr1Yv2XWUhMFDcrq4KmDWSaCm+2zHVfREREZOIUDV83b95Efn4+XF1dtc67uroiJSWl2MekpKSUer38tbRrLl68CACYPXs2pk+fjq1bt6JGjRro2rUrbt++XezrzpkzBy4uLpqbp6dnOd+tcWrZEujUCcjLA5YuVboaHZGnHIaEiL2iyHQFB4vph9evAxcuKF0NERERUaUovuZLCWq1GgDw3nvvoX///mjdujWWL18OlUqF9evXF/uYadOmISMjQ3O7cuWKIUvWq8mTxdfISOD+fUVL0Q22mDcf9vYiRANc90VEREQmT9HwVbt2bVhaWiI1NVXrfGpqKtzc3Ip9jJubW6nXy19Lu8bd3R0A0KxZM839tra2aNiwIZKSkop9XVtbWzg7O2vdzEXfvoCXF3Drlhms+5IkNtswN4WnHhIRERGZMEXDl42NDVq3bo2d8kgFxKjUzp07ESp3OXtEaGio1vUAEB0drbnex8cHbm5uWtdkZmbi8OHDmmtat24NW1tbJCQkaK55+PAhLl26BC8vL529P1NhaQlMmCCO580z8aU1//wj9viytwfatVO6GtIFrvsiIiIiM6H4tMMpU6bgm2++wQ8//IAzZ87gtddeQ3Z2NkaNGgUAGD58OKZNm6a5ftKkSdi2bRvmzp2Ls2fPYvbs2Th27BjGjx8PAFCpVJg8eTI++ugjbNmyBadOncLw4cPh4eGh2cfL2dkZr776KmbNmoU///wTCQkJeO2/Ta9eeOEFw34ARmLMGMDRETh9Gti9W+lqKkEe9erYUWxmRqYvNFQ0T7lyBbh8WelqiIiIiCrMSukCBg4ciBs3bmDmzJlISUlBUFAQtm3bpmmYkZSUBAuLgozYvn17REVFYfr06Xj33Xfh6+uLzZs3o3nz5ppr/u///g/Z2dl4+eWXkZ6ejo4dO2Lbtm2ws7PTXPP555/DysoKw4YNw/379xESEoJdu3ahRo0ahnvzRqR6dWDECGDJEmD+fBNeLsX1XubH0RFo00ZsSLdnD+DtrXRFRERERBWi+D5fpspc9vkqLCEB8PMDVCrg/HmgUSOlKyqnvDygdm0gIwM4cgRo21bpikhX3nkH+PRTYNQo4Pvvla6GiIiISItJ7PNFxqVJE6BnT7GsZuFCpaupgOPHRfBycQFatVK6GtIlNt0gIiIiM8DwRVrktvPffw+Y3D7S8pTDrl1FFxEyHx06ABYWwMWLwNWrSldDREREVCEMX6TlqaeApk2Bu3eB5cuVrqac2GLefDk7F4xm7t2rbC1EREREFcTwRVpUKmDSJHG8YAGQn69sPWWWkwPs3y+O2WzDPHHqIREREZk4hi8qYtgwoEYNMcPrt9+UrqaMYmKA+/cBNzeg0ObZZEY6dxZfGb6IiIjIRDF8UREODsDYseJ4/nxlaykzecrhk0+K4TsyP506iX+2CQlASorS1RARERGVG8MXFWvcONGzYtcu4ORJpaspA+7vZf5q1ABatBDHXPdFREREJojhi4rVoAHQr584XrBA2Voe6+5dsa8XwGYb5k5e98XwRURERCaI4YtKJLedX7UKuHFD0VJKt2+f2GDZxwfw9la6GtInNt0gIiIiE8bwRSUKDQXatBGNBJctU7qaUrDFfNXRqZP4evo0cPOmsrUQERERlRPDF5WocNv5JUuA3Fxl6ykR13tVHXXqFHSz3LdP2VqIiIiIyonhi0o1YIDo3p6cDGzYoHQ1xbh5E4iPF8cMX1UDpx4SERGRiWL4olLZ2ACvvy6O580DJEnRcor66y/xtXlzwNVV0VLIQBi+iIiIyEQxfNFjvfIKYGsLHD0KHDqkdDWP4JTDqkfebPnECSA9XdFSiIiIiMqD4Yseq25dYMgQcWx0my6z2UbV4+4O+PqKYdj9+5WuhoiIiKjMGL6oTOTGGxs2AFevKluLxtWrwLlzgIVFwWgIVQ2cekhEREQmiOGLyiQwEOjaFcjPBxYvVrqa/8ijXm3aANWrK1oKGRjDFxEREZkghi8qM3n0a9ky4N49ZWsBwPVeVZkcvuLigLt3la2FiIiIqIwYvqjM+vQBfHyA27eBVasULkaSCsIX13tVPZ6e4ocxPx84eFDpaoiIiIjKhOGLyszSEpgwQRzPn69w2/nz54Fr10Qv/A4dFCyEFMOph0RERGRiGL6oXEaPBqpVA/75B9ixQ8FC5FGv9u0Be3sFCyHFyE1WGL6IiIjIRDB8Ubm4uACjRoljRdvOs8U8ySNfR48aySJEIiIiotIxfFG5TZgAqFTAb7+J2X8Gp1YDu3eLYzbbqLp8fID69YGHD4GYGKWrISIiInoshi8qN19foHdvcbxggQIFnDwJ3Lol5j+2batAAWQUVKqC0a+9e5WthYiIiKgMGL6oQuS288uXA+npBn5xeb1Xly6AtbWBX5yMCptuEBERkQlh+KIK6d4d8PcHsrOB77838Itzfy+SyU03Dh0CHjxQthYiIiKix2D4ogpRqQpGvxYuFNstGcTDhwVTzNhsgxo3BlxdgZwc4MgRpashIiIiKhXDV2UputmVsoYOBWrWBC5dAn791UAveuSIGG6rXRsICDDQi5LRKrzui1MPiYiIyMgxfFVWv37AhQtKV6EIBwfglVfE8bx5BnpRucV8t26ABX98CQxfREREZDL422tl7doFNG8OfPihmPpUxbz+OmBpKX7vjY83wAtyvRc9Sg5fBw8CubnK1kJERERUCoavyurWTYSumTOBwMCCkZkqon594IUXxLHeN12+d69gPyeu9yJZs2ZiGur9+0BsrNLVEBEREZWI4auyNm0CVq8Wi/4TEkQoGDYMSEtTujKDkRtvREXp+W0fOCBGNjw9gSee0OMLkUlRqYBOncQxpx4SERGREWP4qiyVChg0CDh7VszBU6mAVauAJk2AZcsAtVrpCvWuXTsgOFjkoq+/1uMLFZ5yqFLp8YXI5HDdFxEREZkAhi9dqV4dWLxY7DfUsqXYefiVV4AOHYATJ5SuTu8mTxZflyzR47IbeUonpxzSo+TwtX8/kJenbC1EREREJWD40rXgYNEOfd48oFo1EcZatwamTgWyspSuTm+efx7w8ABSUoB16/TwAunpBet52GyDHhUQIP4AkpVloM4vREREROXH8KUPVlZiIdTZsyKV5OcDc+eKxgC//KJ0dXphbQ2MGyeO583Tw/Zne/aIKZxNmgD16un4ycnkWVpy3RcREREZPaMIX4sXL4a3tzfs7OwQEhKCI0eOlHr9+vXr4efnBzs7OwQEBOD333/Xul+SJMycORPu7u6wt7dHWFgYzp8/X+xz5eTkICgoCCqVCvG6/ot5vXrA+vXAb78B3t7AlStARATQty9w+bJuX8sIvPwyYGcnBqgOHtTxk7PFPD1O587iK8MXERERGSnFw9fatWsxZcoUzJo1C3FxcQgMDER4eDjSSmibd/DgQQwePBhjxozB8ePHERERgYiICJw+fVpzzWeffYYFCxYgMjIShw8fhqOjI8LDw/HgwYMiz/d///d/8PDw0Nv7AwD06gX8/Tfw7rtiiGjLFjEK9vnnwMOH+n1tA6pdG3jxRXGs802X5fDF9V5UEnnd1759YrSZiIiIyMioJEnnE8TKJSQkBG3btsWiRYsAAGq1Gp6enpgwYQLeeeedItcPHDgQ2dnZ2Lp1q+Zcu3btEBQUhMjISEiSBA8PD7z55puYOnUqACAjIwOurq5YsWIFBg0apHncH3/8gSlTpuDnn3+Gv78/jh8/jqCgoDLVnZmZCRcXF2RkZMDZ2bnsb/iff4BXXxW/IAJig+bISNGYwwycOgW0aCFmgV28CDRooIMnTUkB3N1Fh8MbN4BatXTwpGR28vKAmjWBu3eB48eBMv67TERERFRZZc0Gio585ebmIjY2FmFhYZpzFhYWCAsLQ4y8me4jYmJitK4HgPDwcM31iYmJSElJ0brGxcUFISEhWs+ZmpqKsWPHYuXKlXBwcHhsrTk5OcjMzNS6VUizZmJa1PLlIkScPg107AiMHQvculWx5zQiAQFiZmB+vmj+qBNyl8OgIAYvKpmVVcEfMfbuVbYWIiIiomIoGr5u3ryJ/Px8uLq6ap13dXVFSkpKsY9JSUkp9Xr5a2nXSJKEkSNH4tVXX0WbNm3KVOucOXPg4uKiuXl6epbpccVSqYCRI8WmzGPGiHPffgv4+QE//KCHbhWGJbedX7YMyM7WwROyxTyVFff7IiIiIiOm+JovJSxcuBB3797FtGnTyvyYadOmISMjQ3O7cuVK5QupVUuErn37AH9/4OZNEcq6dQPOnKn88yukd2+gUSPRHX7lSh08IZttUFnJTTf27jX5P2IQERGR+VE0fNWuXRuWlpZITU3VOp+amgo3N7diH+Pm5lbq9fLX0q7ZtWsXYmJiYGtrCysrKzzxxBMAgDZt2mDEiBHFvq6trS2cnZ21bjrTsSMQFwd88glgby/+ah8YCEyfDty/r7vXMRALC2DiRHE8f77oEF9hiYnApUtiSpncSpyoJG3aiH+Hbt4U6yuJiIiIjIii4cvGxgatW7fGTnlkA6Lhxs6dOxEaGlrsY0JDQ7WuB4Do6GjN9T4+PnBzc9O6JjMzE4cPH9Zcs2DBApw4cQLx8fGIj4/XtKpfu3Yt/ve//+n0PZaZjQ3w9tviF8bevUUXxP/9TzTk2LZNmZoqYeRIwMlJbHUWHV2JJ5L/OYaEiE2riUpjYwO0by+OOfWQiIiIjIzi0w6nTJmCb775Bj/88APOnDmD1157DdnZ2Rg1ahQAYPjw4VrTAydNmoRt27Zh7ty5OHv2LGbPno1jx45h/PjxAACVSoXJkyfjo48+wpYtW3Dq1CkMHz4cHh4eiIiIAAA0aNAAzZs319waN24MAGjUqBHq169v2A/gUd7ewK+/Ahs3AvXri5aBPXsCAwYAycnK1lYOzs7A6NHieP78SjwRW8xTeXHdFxERERkpxcPXwIED8cUXX2DmzJkICgpCfHw8tm3bpmmYkZSUhOvXr2uub9++PaKiorBs2TIEBgZiw4YN2Lx5M5o3b6655v/+7/8wYcIEvPzyy2jbti2ysrKwbds22NnZGfz9VYhKBTz3nBgFmzJF9G1fv1405Fi40GT2MJowQbyVP/4QI2DlJklstkHlJ4cvrvsiIiIiI6P4Pl+mqsL7fFVEfLzYG+zwYfF969Zib7AydmpUUt++Yk/p11+vQOv506dF73p7e+DOHcDWVi81kpl58ACoXh3IyREdRf8b2SYiIiLSF5PY54vKKCgIOHgQWLoUcHEBYmOB4GAxtJSRoXR1pZLbzq9YIfJTucijXp06MXhR2dnZiTWCAKceEhERkVFh+DIVFhZi9CshARg6VEynWrRITEVcu9Zop1d17Qq0aAHcuwd89105H8wW81RRXPdFRERERojhy9S4ugKrVgE7dgC+vkBKCjBoENCjB3DhgtLVFaFSFbSdX7QIyMsr4wPz8oC//hLHXO9F5VU4fBnpHyaIiIio6mH4MlXduwMnTwLvvy+m5P35p2hL/+GHYq2LERkyBKhdG7h8GfjllzI+KC4OyMwUa3dattRneWSOQkMBa2vg6lWxTxwRERGREWD4MmV2dsDMmcCpU0BYmAhdM2eKDZp371a6Og17e+CVV8RxmdvOy1MOu3YV3R6JysPBAWjbVhxz6iEREREZCYYvc+DrK0a+oqLEtMSEBLFOavhwIC1N6eoAiG6HVlbAvn1iUOux2GKeKqtzZ/GV4YuIiIiMBMOXuVCpgMGDxYZar78uvl+5EmjSBFi2DFCrFS3Pw0PsEw2UYfTrwQNg/35xzGYbVFFsukFERERGhuHL3FSvLjbUOnRItKhPTxdz/jp2BE6cULS0SZPE19WrRZ+QEh06JAKYmxvQtKlBaiMz1KGDmLKamAhcuaJ0NUREREQMX2YrOBg4ehSYNw+oVg2IiRGbM0+dCmRlKVZSaCjw8KHYI7pEhVvMq1QGqY3MkJMT0KqVON67V9laiIiIiMDwZd6srMRw09mzQP/+QH4+MHcu0KxZOdoO6pY8+rV0aSlNGeXwxfVeVFmcekhERERGhOGrKqhXD9iwAfjtN8DbW0zBiogA+vYV/d8NqF8/oH590QdkzZpiLrh7FzhyRBwzfFFlMXwRERGREWH4qkp69QL+/huYNk2Mim3ZIkbBPv9czAU0AGtrYNw4cTx/fjH73+7dK0boGjYEvLwMUhOZsY4dxdTVc+eA69eVroaIiIiqOIavqsbBAfj4YyA+HujUCbh3D/i//xNrYw4cMEgJY8eKvb+OHxet57WwxTzpUvXqYt87gOu+iIiISHEMX1WVv7+YirV8OVCrFnD6tBglGDsWuH1bry9dqxYwbJg4LtJ2vnCzDSJdkKceMnwRERGRwhi+qjKVChg5UmzKPHq0OPftt2JvsB9/LGZOoO5MnCi+bt4MnDr138mbNwva4XfrprfXpiqG676IiIjISDB8kRiK+u47MTLg7y9C0IgRIgCdOaOXl/T3B556Suz93KIF0LIlsPa13QAAqXlzwNVVL69LVVCnTuLr33+Ln20iIiIihTB8UYFOnYC4OOCTT8SirD17xHqZ6dOB+/d1/nJLlgBduwIWFmIJ2p0NYsrhd5e6Y9w4YPv2UtrRE5VV7doi7QOcekhERESKYvgibTY2wNtvA//8A/TuLbog/u9/QPPmwLZtOn2pJ54Adu8GUlOBH34Anq0mmm38ktUdS5YAPXoAdeoAAwYAP/2k96VoZM449ZCIiIiMAMMXFc/bG/j1V2DjRrFP2MWLQM+eIgklJ+v0pWrXBoZ3uwKPrPOQLCwwYV1nvPIK4O4utv1avx548UWgbl0xE3LePFEOUZkxfBEREZERUEmSHrsqmLHMzEy4uLggIyMDzs7OSpejX3fvArNni9aE+fmAk5MYDXv9dcDSUjev8cMPovlHSAhw6BAAsR4sNhb45RexJZmmMcd/mjcHnn1W7BXdpo2YvkhUrJQUkeZVKuDWLaBGDaUrIiIiIjNS1mzAX1fp8ZycgLlzgWPHgOBgEcYmThRB6dgx3bxGMS3mLSyAtm2Bjz4CTp4E/v1XjHp16yYy3+nTYsuykBCgfn3glVeA334DHjzQTUlkRtzcRBdPSQL271e6GiIiIqqiGL6o7IKCgIMHgaVLARcXMSwVHAxMmABkZFT8eSWpTJsrN2wITJokLr1xQ6wDGzBAZMPr14Fly4BnnhHNG/v1E4NpbG5HGp07i6+cekhEREQK4bTDCqpS0w6Lk5ICTJ0qEhAgRhbmzRNpSKUq33MlJAB+foCtLXDnjui0WA65ucBff4mpib/8Aly9WnCfhQXQvr2Ymvjss0DjxuUrjczITz+JxYNt2gBHjypdDREREZmRsmYDhq8KqvLhS7ZzJ/Daa8D58+L78HBg8WKgUaOyP8eSJcC4cWI+oTwCVkGSJNrWy+vEjh/Xvt/Pr2CdWEiI7paskQm4ehXw9BSJ/M4doCr/e0tEREQ6xTVfZBjdu4sFWbNnizb127eLPZU++qjsm3SVYcphWalUYsPm2bPFlmWXLwOLFokNna2tgbNngc8+Azp0ADw8gDFjRFC7d6/SL03Grn59MXdVrRbTZ4mIiIgMjOGLKs/ODpg1S3TACAsToWvGDLFB8+7dpT9WrS64plCzDV1p0EAMqv35p1gntmYNMGSIWLKWlgZ8/z0QESHWiT37LPDdd2LfMTJTbDlPRERECmL4It3x9RUpJyoKcHUVa7mefBIYPlwkneKcOCF2T3ZyEq0N9cjFBRg4UCz9uXFDzJicOFFsafbggdjW7KWXREfy9u2BTz4Re01zYq4ZYfgiIiIiBTF8kW6pVMDgwWJ+3+uvi+9XrhSLrZYtEyNdhckt5jt3BqysDFamtbXIhfPniw2bT54EPvxQ5D9JAmJigGnTxAzKxo2BN98E9u4F8vIMViLpg9zx8OhRIDtb2VqIiIioymH4Iv2oXl003jh0SLSov3NHbMTVsaNIOjIdrveqKJUKCAgApk8HjhwRfRkiI4GePcUytgsXgC+/FIMmbm7AiBHAzz8DWVmKlUwV5e0tmm7k5YmETUTm6e5d8f8a/sWMiIwMwxfpV3CwGGX46iugWjXxC2+rVsBbb4lAtnevuE7B8PWoevVETvz9d7FP2IYNYuZkzZrArVvAjz8Czz8v1on16gV8/TWQnKx01VQmKlXB1EP5Z4+IzENOjuigNHAgULeuWHfs6QlMmSJa33IOOREZAbaaryC2mq+Aq1eByZPFsBEA1KghAljt2qLLhYVx/y0gL080yfvlF3H791/t+9u2FU07nn1WjKSVd7szMpBvvwXGjhVTELn2i8i05eeLP6RERYm/lKWnF9xnYyM2gpT5+4u9/oYOFaGMiEiHuM+XnjF8VcJvvwHjxwOXLonvBwwA1q5VtKTykiTgzJmCjZ0PH9b+o6q3d8F+Yp06iTVmZCTOnxcL+WxtxS9qdnZKV0RE5SFJYi+RqCjRwrbw1AMPD2DQINHWNiAA2LYNWLVK/Mda3v5EHgEfNkxMY+D/w4lIBxi+9Izhq5Lu3RMdLtasESMRRjTtsCJSUoCtW8X/36OjRfdEWfXqYnris8+KdWT8cVGYJIlf0FJSgL/+KpiGSETG7fx5EbiiooBz5wrOV68uQtSQIWJE29Ky6GPT08XI2KpV2iPednbir2QvvgiEh/MvZURUYQxfesbwRSXJzgZ27BAjYlu3irb2MmtroGtX8f/6Pn3EPmSkgEGDxGjr++8DM2cqXQ0RlSQ5Wfy7GhUFHDtWcN7OTvxFa8gQoEcPMZJdVpcviz1HVq4UnXlldeqI/za8+KKYR86540RUDgxfesbwRWWRny8aPsrTExMStO9v2bJgemJQEP9fbzBLl4qtEJ58smC7AyIyDunpYm1wVBSwe3fBnG5LS+Cpp0TgiogQ+0NWhjx9cdUq8VqF96Ns3FiEsBdfBHx8Kvc6RFQlMHzpGcMXVURCgghiW7aI5h2Ftz2rX78giHXtKtaKk578849YfG9vL37R44dNpKz798VUgago0Wq2cKOM9u1F4HrhBdHFUB/y8sSc8VWrgE2bRD2yjh1FCBswQDSKIiIqRlmzgVG0l1u8eDG8vb1hZ2eHkJAQHDlypNTr169fDz8/P9jZ2SEgIAC///671v2SJGHmzJlwd3eHvb09wsLCcP78ec39ly5dwpgxY+Dj4wN7e3s0atQIs2bNQm7h/9gT6UGTJqLL/r59YsnR8uXAc88BDg6iGeSSJWLZQe3aolvyTz+JhpCkY02biilG9+9rT2UiIsPJywP+/FNsnujqKsLN5s0iePn7Ax9/DFy8CBw4AIwbp7/gBQBWVmJR7k8/ie67K1YAYWFiOsL+/cCrr4qNHvv3F+FMbt5BRFROioevtWvXYsqUKZg1axbi4uIQGBiI8PBwpBUe/i/k4MGDGDx4MMaMGYPjx48jIiICEREROH36tOaazz77DAsWLEBkZCQOHz4MR0dHhIeH48F/XRDOnj0LtVqNr7/+Gn///Te++uorREZG4t133zXIeyYCxO/+I0cCGzeK/cS2bhUd0N3cxP6g69aJP7bWqSNmx82fDyQmKl21mVCpxMJ8gO3miQxJksRc7IkTxaaK4eFi88S7d8Ui2HfeEZsjnz4NTJumzJQ/JycRCKOjgStXgM8+A1q0EKFw40agXz/A3R147TURDDmBiIjKQfFphyEhIWjbti0WLVoEAFCr1fD09MSECRPwzjvvFLl+4MCByM7OxtatWzXn2rVrh6CgIERGRkKSJHh4eODNN9/E1KlTAQAZGRlwdXXFihUrMGjQoGLr+Pzzz7F06VJcvHixTHVz2iHpi1ot9qWW14n9/bf2/QEBBdMTW7c2+u3RjNeCBcCkSeKXv23blK6GyLz9/beYUrh6tfZfkWrXFiNeQ4YAoaHG/R+0kydFk46oKO329g0bFqwP8/VVrj4iUpRJTDvMzc1FbGwswsLCNOcsLCwQFhaGmJiYYh8TExOjdT0AhIeHa65PTExESkqK1jUuLi4ICQkp8TkBEdBq1qxZ4v05OTnIzMzUuhHpg4UFEBIC/O9/4o+/Fy4AX34p1oFZWgKnTon7goPFPqGvvip+n9m9WyxlunVLey0ZlUBuMX/ggJj+RBWXmSl+Mf31V9HO+9IljgaQ6Cr46adAYCDQvLmYRpiYCDg6iqDy++8ixCxeDHToYNzBCxCjX59/DiQliVGx4cPFe7l4EfjgA9Gko1078X5u3lS6WiIyUlZKvvjNmzeRn58PV1dXrfOurq44W7j9ayEpKSnFXp+SkqK5Xz5X0jWPunDhAhYuXIgvvviixFrnzJmD999/v/Q3RKQHjRoBb7whbrdvi99XfvlFDNYkJwNffy1uhVlZiemKrq7iVrduycd16lTRrW0CAsTi+Tt3gOPHRWtpKkqSxGd06ZL4Zbq4r+npRR/n6ip+EQ0JEV/btgWqVTNo6aSAmzeB9evF6ND+/QXnra3FmqohQ8Q+Gw4OytVYWZaWYj1YWJhYqPvLL6JRx59/AocPi9vkyeL9DhsGPPOMaO5DRASFw5cxuHbtGnr06IEXXngBY8eOLfG6adOmYcqUKZrvMzMz4enpaYgSiTRq1iyY3ZKTI/YI3rJFzOhJTRWdkm/fFgM516+LW1nUqlV6SCv8vdn8DmFhAXTqJD7APXuqbviSJLEZXWnhKivr8c9Tqxbg5SXW0504IX4gf/lF3ADxeTdvLoKYfGvSxPhHO+jxsrLEP+eoKBFA5JFklUqMMA8ZIhpVlDK7xGQ5Oor3N2SI+JlfvVoEsdhYMRL866+As7Po1DhsmPhvDn/miao0RcNX7dq1YWlpidTUVK3zqampcHNzK/Yxbm5upV4vf01NTYW7u7vWNUFBQVqPS05ORrdu3dC+fXssW7as1FptbW1hW55NHIn0zNZWLFcKD9c+n5srfpeWw1hqatFj+fsbN8ReZLduids//zz+dZ2cSg5mjx47Oxv53mVduhSEr//WiJodtVq01iwpXF2+rN1WuySuriJceXsX/7XwqNb9+2I08dChgtuVK2Jq4smTgPzfWxcXMX9WDmMhISLEkfHLzRVBKypKBK979wrua9VKhJGBA8UeGlWFq6sY8Zo8WfzHdNUq0T0xKQn47jtxa9AAGDpUBLGmTZWumIgUYBQNN4KDg7Fw4UIAouFGgwYNMH78+BIbbty7dw+//vqr5lz79u3RokULrYYbU6dOxZtvvglAjFLVrVtXq+HGtWvX0K1bN7Ru3RqrVq2CpaVluepmww0yB2q1CF3FBbPijsvbXdnWtvQpj4UDXM2aYjaPQR07Jka8XFzEB2HwAnQgLw+4dq1ooJKPk5K090wqjkoFeHiUHK4aNKj8kGdyspiOJYexo0eLD32+vtqjYwEBVXRerBFSq8VUwqgoMbXw9u2C+554QgSuwYMBPz/lajQ2arXYW2TlSvGZFV4v3qqVCGGDBok2t0Rk0kxmk+W1a9dixIgR+PrrrxEcHIx58+Zh3bp1OHv2LFxdXTF8+HDUq1cPc+bMASBazXfp0gWffPIJevfujTVr1uDjjz9GXFwcmjdvDgD49NNP8cknn+CHH36Aj48PZsyYgZMnT+Kff/6BnZ0drl27hq5du8LLyws//PCDVvAqacTtUQxfVNVIkvi94XGjafLx3bvle34Li4J1ao+b/li3ro72Rc7LE6nv7l0gLg5o2VIHT6pjubli1KikKYFXr4rhy9JYWooRiJLClaen4TeafvhQdJSRw9jhw2IX8kfZ24u2noUDWb16hq21KpMkMY1U7lR49WrBfW5uIjgMGQK0aWPkw9xG4MEDMQ1x5Urgjz8KpmdaWgJPPSWCWN++YiojEZkckwlfALBo0SJ8/vnnSElJQVBQEBYsWICQkBAAQNeuXeHt7Y0VK1Zorl+/fj2mT5+OS5cuwdfXF5999hl69eqluV+SJMyaNQvLli1Deno6OnbsiCVLlqBx48YAgBUrVmDUqFHF1lLWj4Phi6h09++XHNQeDW23bpX/+WvUKPv0x1J/l+nVS/wiNG+eaD1vaPfvi9GpksJVcvLjOwdaW4vRqZLCVb16oguLsbt9GzhyRDuQFdfMo3597TDWqpUZLUY0Ev/+K8JWVBRw5kzBeRcXsX5ryJCCFqxUfjdvAmvXiiB2+HDB+WrVxD5iw4YB3brx8yVSq0WX1Ph40e55xgyj/ffCpMKXKWL4ItKdvLzi16mV9P3jBnoe5eBQckjrHPMpWkS9g7thzyF//Ua4uOj4D/hZWUWnAhb++sga1mLZ2YkgVVK4cnMz2v8ZVYpaDZw7px3GTp4supeClZVoZ144kDVqxJGY8kpJEbu7R0VpBwJbW9GhcMgQ0cHPzk65Gs3R+fNifdiqVaJtvczDQ3zmw4aJNvdE5i47WwSsEycKbidPajd9SkgQ2zoYIYYvPWP4IlKGWi06nz8uqMnHj+slEYJDOIRQ3EQt1EUabGwt4OYGuLuLTFP4Vvicq6v4nRQZGaV3CizLsJ6jY8mNLLy9RVpkkBCyskQnOTmQxcQUH2Br1dIOY/LaPtKWkQFs2iQC186dBcHWwkK0Uh8yBIiI4GdnCJIkfp5XrhSjYnfuFNwXECBC2JAhnHZLpk+SxBTmwiHrxAnxh4jiYomtLeDvL/7INm2a0W5mzvClZwxfRMZPksTv6qVNe7yV8hC/HawOB+kemuMU/kbzws+AmrgNb1yCFy4X+eqjugQXKePxdbi4QFVauKpZk+GqoiRJTNssPDoWG1u0yYhKJbrLFQ5kzZqZ54jh4zx4IDYMjIoCtm7V7qTTrp34BX/AAPEXBlJGTo6YDr1ypfhnJP88q1TAk0+KINavn2g/S2TMcnJE989Hg1bhhj2FubqKkCXfgoLESJcJNF5i+NIzhi8iM/LUU8COHciP6I/saq7Iv3gJllcuwz7tEqxzsh/78JuohUvwxmV4Ffl6GV7ItqoOV9fHj6a5uZn23rNGIydH/M+9cKv7xMSi11WrVrTVfd26hq/XEPLzgd27ReD6+WftrntNm4r254MGiemaZFzu3BGdEleu1N642t5ejEoOGyb+G2YK6zrJvKWlFQ1ZZ84UNJcpzNJSdEYtHLICA036jz4MX3rG8EVkRj76SCziLYmrq9ZIldTAC1m1vZFm74Wrll64llEN16+LJTOFb9evl7+ZiJNT8SHt0aBWp07VHLSpsNRUMSomt7s/cqT4zaN9fLRHx4KCDN8JUlckSbT0j4oS09hSUgru8/QUbeGHDBHriTjyahoSE8XeYStXivWQsrp1xT/PYcNEAxr+8yR9yssTP3+PBq3r14u/vnr1oqNZzZqZ3fpRhi89Y/giMiM3bgATJog08+i0wErucZWbK/4YWDiQPRrS5PNl2etYJrfmL8tompMTfxcrIj9fTIUpPDpW3C7jtrbil9nCgczT07g/0DNnCjoV/vtvwfmaNcV0wiFDgA4dxA8RmSZJEvsUrlwp/lnfvFlwX9OmwIsvitFMLy/laiTzkJFRNGSdPi2mLxfniSeKjmYZ+38zdYThS88YvohIlyRJbDf2aCArLqSlpT2++3xhDg6PH0mTm4iYwLR6/UlPFyNFhTeDLm7o0s1NO4y1aaP83kxXrwJr1ojAdfx4wXkHBzE1bcgQMTXNVEfxqGQPHwJ//imC2C+/aP9S3KWLCGLPPy9GH4hKIrd0fzRoXbpU/PWOjqIRTOGQFRAgpnNXUQxfesbwRURKycsTf+guS1Ar72bXtWs/PqS5uYl91sz+D5mSJEaOCo+OnThRdP2CpaX4paNwIPP11f/I0u3bwIYNInDt3VuQyK2sgB49ROB69lnlgyEZTkYGsHGjCGJ//VXwMyFvFzBsmPjZYAiv2u7dK76le0n/w/D0LDqa1agRR88fwfClZwxfRGQKsrPFcqfHTXtMSSl+TXRJbGyKH02rU0fM0rSzEzf5uLRzNjYmFOTu3wfi4rQD2dWrRa+rXl008JDDWHCwmPZXWdnZwK+/isC1bZsY9ZB17iwC1/PPi1b7VLVduSJ+TlauBP7+u+B8rVrAwIEiiIWEmNC/fFRukgRcu1Z0NOvcueKnT9jYFLR0l0NWixa6+W9XFcDwpWcMX0RkTtRqMZBSltG0wtsP6YJKVRDMyhrYdHVOJ01Lrl7Vnqp47Fjx6yGaNNHurBgQULYOdQ8fAtHR4hfpzZtFAJMFBYnANXCgWJ9I9ChJEr9wr1wpfoYKN1554gkxLfHFF9np0tTl5hZt6R4fX3JL97p1i45mNWlSxeeeVw7Dl54xfBFRVZWToz2aVjio3bolcseDB2KQqPDXR88Zw/99rK11H/DsrR6iVvIp1L5wCNXPHkK104dgc/l80Rd3cBDrxQpPV3R3F/ep1cDBg+KX5XXrtNeeNWwoAtfgwaJjGFFZ5eUBu3aJILZxo5h+JmvfXoSwAQM4cmrsbtwoGrJKa+nepElBwJJvbm6GrtrsMXzpGcMXEVHFSZIY0CkpmOnjnPy18Ew9Q6mFmwjGEbTDIbTDIQTjCKqj6Abd120a4Hy1VmhyLw6uD5I057Md6+LftoOQ3HUI8loFo3oNFVxcABcXMcOxWjUuv6ByysoSI6krVwI7dojAD4i/SPTuLYLYM8+I9WKkjPz8oi3d4+NLbunu4qI9khUYKKYRmllLd2PF8KVnDF9ERKYpP79oQNNX0Hv0nEwFNZogQRPG2uEQmuM0LKHWXJMJJ/yM/ojCEOxGN+Sj5CmKKhXg7FwQxgoHs+KOi7vP3p7Lf6qs69dFy/qVK8Uv9zJ57aKdnQhhj34t6fhx9z96rbU1f/gyMkTTi8Ihq7SW7o0aFR3NatCAn6OCGL70jOGLiIjKQ5LEsoySQlrurbuwPXUMDmfjcMvJG6cb9MLt+/bIyBBd8DMyCm7y9+npuhvJs7J6fGh7XJhjEz0zcPo0sGqV2My5uGYy+qKrIFfZUGhlpd8AI0lFW7rHx5fc0t3BQawPLRy0AgLEBo5kVBi+9Izhi4iIlCZJIrg9GsqK+760+9Tq0l+nrOzsyjbKVlKAc3HRURMUqrz8fODAAREUcnLED1rhr2U5Lu1+Jeb/loWFhe5DnySJNVnx8aW3dK9fv+hoVqNG/JfCRDB86RnDFxERmQNJEst/yhvgCh+Xdz+50lSrVv4pk4+uf+PMKxOgVheEscoGufJe++i5/HzDvncbG9Esp3DQatGCjU5MXFmzQRl63BIREZG5UqnEDCYnJ/GH94rIzwcyMysX4OQ1cVlZ4nbtWsVqsbAQ69+cnMQMMkvLgpuFhfb3xZ0ryzXGdE6fz6/XEGth8V97UHs9vkgZ5efrN/Tl5YmN1+Wg5efHlu5VGMMXERERVYqlJVCjhrhVVG5uyYGtrAHu4UMxoJKeLm5UOSqVGKSRZ9CVdnvcNRW9vyxb4VWapaVYW+XgYIAXo6qO4YuIiIgUZ2MD1KkjbhUhr3+Tw9jdu2JAo/BNrS79e2M6Z4jXLMtnKg/eZGZW7J9LZVla6i7gVeQ5bG05jZV0i+GLiIiITJ5KVTCLTd6rmkonSY8PaQ8fFnTklG/yrLqSbo+7/3HXFO7FkZ8PZGeLm1KKC2TlDXjW1gU3Gxvt70s6V9Zr2Y/DtDB8EREREVVBKpWY1meQqX3lIC/B0nfIK+3+wu3o5Foyiu6LbhTk6aEVCW7lvVbX5+Tzel9jaESM7F83IiIiIqrKlF6CJUnaI366CIEPHxbccnO1vy/vueLqlQOiKStLeNu4EWjYUOlKK4fhi4iIiIjoP/JIko2N6JxpTOSpopUJbxU9p8vnLG5vQfm+0uTl6edzNSSGLyIiIiIiE1B4qqgxdOmvKLW6YiGvotthGBOGLyIiIiIiMhgLC9GYxNZW6UoMz0LpAoiIiIiIiKoChi8iIiIiIiIDYPgiIiIiIiIyAIYvIiIiIiIiA2D4IiIiIiIiMgCGLyIiIiIiIgNg+CIiIiIiIjIAhi8iIiIiIiIDYPgiIiIiIiIyAIYvIiIiIiIiA2D4IiIiIiIiMgCGLyIiIiIiIgNg+CIiIiIiIjIAhi8iIiIiIiIDsFK6AFMlSRIAIDMzU+FKiIiIiIhISXImkDNCSRi+KujWrVsAAE9PT4UrISIiIiIiY3D37l24uLiUeD/DVwXVrFkTAJCUlFTqB0wly8zMhKenJ65cuQJnZ2elyzFZ/Bx1g59j5fEz1A1+jpXHz1A3+DnqBj/HyjOFz1CSJNy9exceHh6lXsfwVUEWFmK5nIuLi9H+EJgKZ2dnfoY6wM9RN/g5Vh4/Q93g51h5/Ax1g5+jbvBzrDxj/wzLMiDDhhtEREREREQGwPBFRERERERkAAxfFWRra4tZs2bB1tZW6VJMFj9D3eDnqBv8HCuPn6Fu8HOsPH6GusHPUTf4OVaeOX2GKulx/RCJiIiIiIio0jjyRUREREREZAAMX0RERERERAbA8EVERERERGQADF9EREREREQGwPBVTnv37kWfPn3g4eEBlUqFzZs3K12SyZkzZw7atm0LJycn1K1bFxEREUhISFC6LJOzdOlStGjRQrPhYGhoKP744w+lyzJpn3zyCVQqFSZPnqx0KSZl9uzZUKlUWjc/Pz+lyzI5165dw4svvohatWrB3t4eAQEBOHbsmNJlmRRvb+8iP4sqlQrjxo1TujSTkp+fjxkzZsDHxwf29vZo1KgRPvzwQ7BHW/ncvXsXkydPhpeXF+zt7dG+fXscPXpU6bKM2uN+z5YkCTNnzoS7uzvs7e0RFhaG8+fPK1NsBTF8lVN2djYCAwOxePFipUsxWXv27MG4ceNw6NAhREdH4+HDh3j66aeRnZ2tdGkmpX79+vjkk08QGxuLY8eO4cknn0Tfvn3x999/K12aSTp69Ci+/vprtGjRQulSTJK/vz+uX7+uue3fv1/pkkzKnTt30KFDB1hbW+OPP/7AP//8g7lz56JGjRpKl2ZSjh49qvVzGB0dDQB44YUXFK7MtHz66adYunQpFi1ahDNnzuDTTz/FZ599hoULFypdmkl56aWXEB0djZUrV+LUqVN4+umnERYWhmvXrildmtF63O/Zn332GRYsWIDIyEgcPnwYjo6OCA8Px4MHDwxcaSVIVGEApE2bNildhslLS0uTAEh79uxRuhSTV6NGDenbb79VugyTc/fuXcnX11eKjo6WunTpIk2aNEnpkkzKrFmzpMDAQKXLMGlvv/221LFjR6XLMDuTJk2SGjVqJKnVaqVLMSm9e/eWRo8erXWuX79+0tChQxWqyPTcu3dPsrS0lLZu3ap1vlWrVtJ7772nUFWm5dHfs9VqteTm5iZ9/vnnmnPp6emSra2ttHr1agUqrBiOfJHiMjIyAAA1a9ZUuBLTlZ+fjzVr1iA7OxuhoaFKl2Nyxo0bh969eyMsLEzpUkzW+fPn4eHhgYYNG2Lo0KFISkpSuiSTsmXLFrRp0wYvvPAC6tati5YtW+Kbb75RuiyTlpubi1WrVmH06NFQqVRKl2NS2rdvj507d+LcuXMAgBMnTmD//v3o2bOnwpWZjry8POTn58POzk7rvL29PWcGVFBiYiJSUlK0/l/t4uKCkJAQxMTEKFhZ+VgpXQBVbWq1GpMnT0aHDh3QvHlzpcsxOadOnUJoaCgePHiAatWqYdOmTWjWrJnSZZmUNWvWIC4ujvPwKyEkJAQrVqxAkyZNcP36dbz//vvo1KkTTp8+DScnJ6XLMwkXL17E0qVLMWXKFLz77rs4evQoJk6cCBsbG4wYMULp8kzS5s2bkZ6ejpEjRypdisl55513kJmZCT8/P1haWiI/Px//+9//MHToUKVLMxlOTk4IDQ3Fhx9+iKZNm8LV1RWrV69GTEwMnnjiCaXLM0kpKSkAAFdXV63zrq6umvtMAcMXKWrcuHE4ffo0/wpUQU2aNEF8fDwyMjKwYcMGjBgxAnv27GEAK6MrV65g0qRJiI6OLvLXSSq7wn8Nb9GiBUJCQuDl5YV169ZhzJgxClZmOtRqNdq0aYOPP/4YANCyZUucPn0akZGRDF8V9N1336Fnz57w8PBQuhSTs27dOvz000+IioqCv78/4uPjMXnyZHh4ePDnsRxWrlyJ0aNHo169erC0tESrVq0wePBgxMbGKl0aKYjTDkkx48ePx9atW7F7927Ur19f6XJMko2NDZ544gm0bt0ac+bMQWBgIObPn690WSYjNjYWaWlpaNWqFaysrGBlZYU9e/ZgwYIFsLKyQn5+vtIlmqTq1aujcePGuHDhgtKlmAx3d/cifzRp2rQpp29W0OXLl7Fjxw689NJLSpdikt566y288847GDRoEAICAjBs2DC88cYbmDNnjtKlmZRGjRphz549yMrKwpUrV3DkyBE8fPgQDRs2VLo0k+Tm5gYASE1N1Tqfmpqquc8UMHyRwUmShPHjx2PTpk3YtWsXfHx8lC7JbKjVauTk5Chdhsno3r07Tp06hfj4eM2tTZs2GDp0KOLj42Fpaal0iSYpKysL//77L9zd3ZUuxWR06NChyJYb586dg5eXl0IVmbbly5ejbt266N27t9KlmKR79+7BwkL7V0RLS0uo1WqFKjJtjo6OcHd3x507d7B9+3b07dtX6ZJMko+PD9zc3LBz507NuczMTBw+fNik1rtz2mE5ZWVlaf01NzExEfHx8ahZsyYaNGigYGWmY9y4cYiKisIvv/wCJycnzTxdFxcX2NvbK1yd6Zg2bRp69uyJBg0a4O7du4iKisJff/2F7du3K12ayXByciqy1tDR0RG1atXiGsRymDp1Kvr06QMvLy8kJydj1qxZsLS0xODBg5UuzWS88cYbaN++PT7++GMMGDAAR44cwbJly7Bs2TKlSzM5arUay5cvx4gRI2BlxV9zKqJPnz743//+hwYNGsDf3x/Hjx/Hl19+idGjRytdmknZvn07JElCkyZNcOHCBbz11lvw8/PDqFGjlC7NaD3u9+zJkyfjo48+gq+vL3x8fDBjxgx4eHggIiJCuaLLS+l2i6Zm9+7dEoAitxEjRihdmsko7vMDIC1fvlzp0kzK6NGjJS8vL8nGxkaqU6eO1L17d+nPP/9UuiyTx1bz5Tdw4EDJ3d1dsrGxkerVqycNHDhQunDhgtJlmZxff/1Vat68uWRrayv5+flJy5YtU7okk7R9+3YJgJSQkKB0KSYrMzNTmjRpktSgQQPJzs5OatiwofTee+9JOTk5SpdmUtauXSs1bNhQsrGxkdzc3KRx48ZJ6enpSpdl1B73e7ZarZZmzJghubq6Sra2tlL37t1N7t91lSRxu3IiIiIiIiJ945ovIiIiIiIiA2D4IiIiIiIiMgCGLyIiIiIiIgNg+CIiIiIiIjIAhi8iIiIiIiIDYPgiIiIiIiIyAIYvIiIiIiIiA2D4IiIiIiIiMgCGLyIiIgWoVCps3rxZ6TKIiMiAGL6IiKjKGTlyJFQqVZFbjx49lC6NiIjMmJXSBRARESmhR48eWL58udY5W1tbhaohIqKqgCNfRERUJdna2sLNzU3rVqNGDQBiSuDSpUvRs2dP2Nvbo2HDhtiwYYPW40+dOoUnn3wS9vb2qFWrFl5++WVkZWVpXfP999/D398ftra2cHd3x/jx47Xuv3nzJp577jk4ODjA19cXW7Zs0e+bJiIiRTF8ERERFWPGjBno378/Tpw4gaFDh2LQoEE4c+YMACA7Oxvh4eGoUaMGjh49ivXr12PHjh1a4Wrp0qUYN24cXn75ZZw6dQpbtmzBE088ofUa77//PgYMGICTJ0+iV69eGDp0KG7fvm3Q90lERIajkiRJUroIIiIiQxo5ciRWrVoFOzs7rfPvvvsu3n33XahUKrz66qtYunSp5r527dqhVatWWLJkCb755hu8/fbbuHLlChwdHQEAv//+O/r06YPk5GS4urqiXr16GDVqFD766KNia1CpVJg+fTo+/PBDACLQVatWDX/88QfXnhERmSmu+SIioiqpW7duWuEKAGrWrKk5Dg0N1bovNDQU8fHxAIAzZ84gMDBQE7wAoEOHDlCr1UhISIBKpUJycjK6d+9eag0tWrTQHDs6OsLZ2RlpaWkVfUtERGTkGL6IiKhKcnR0LDINUFfs7e3LdJ21tbXW9yqVCmq1Wh8lERGREeCaLyIiomIcOnSoyPdNmzYFADRt2hQnTpxAdna25v4DBw7AwsICTZo0gZOTE7y9vbFz506D1kxERMaNI19ERFQl5eTkICUlReuclZUVateuDQBYv3492rRpg44dO+Knn37CkSNH8N133wEAhg4dilmzZmHEiBGYPXs2bty4gQkTJmDYsGFwdXUFAMyePRuvvvoq6tati549e+Lu3bs4cOAAJkyYYNg3SkRERoPhi4iIqqRt27bB3d1d61yTJk1w9uxZAKIT4Zo1a/D666/D3d0dq1evRrNmzQAADg4O2L59OyZNmoS2bdvCwcEB/fv3x5dffql5rhEjRuDBgwf46quvMHXqVNSuXRvPP/+84d4gEREZHXY7JCIieoRKpcKmTZsQERGhdClERGRGuOaLiIiIiIjIABi+iIiIiIiIDIBrvoiIiB7BGflERKQPHPkiIiIiIiIyAIYvIiIiIiIiA2D4IiIiIiIiMgCGLyIiIiIiIgNg+CIiIiIiIjIAhi8iIiIiIiIDYPgiIiIiIiIyAIYvIiIiIiIiA/h/KZRYA25wiKAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHWCAYAAABACtmGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYbElEQVR4nO3dd3xUdb7/8fdMekISAoEUDAk19FBCF8E1AoooqCvLZaW63v2JrgiuDSmKil12xXLXVVx1sa6wrqsgIiJNQDCIUpQWaigCCYSSZOb8/jjMkCG9nkzm9Xw8zmPOnHPmnM8M0eQ933JshmEYAgAAAAAUy251AQAAAABQ2xGcAAAAAKAUBCcAAAAAKAXBCQAAAABKQXACAAAAgFIQnAAAAACgFAQnAAAAACgFwQkAAAAASkFwAgAAAIBSEJwAoBZ58803ZbPZtGfPnhq75tdffy2bzaavv/66xq6JuikpKUnXXXed1WUAQLUgOAFALbdu3Trdcccd6tatmwICAmSz2ar9mh9//LFGjBih5s2bKzQ0VMnJyZoyZYpOnjxZ5dcaO3as6tWrV+XnrYuSkpJks9mKXAYPHmx1eQBQp/lbXQAAoGSfffaZ/v73v6tTp05q3ry5fv7552q/5u233674+Hj9/ve/V9OmTbV582bNnTtXn332mTZu3KiQkJBqrwFF69y5s6ZMmVJoe3x8vAXVAIDvIDgBQC33//7f/9P999+vkJAQ3XnnneUKTjNnztSbb75Z7q5/H330kQYMGOCxrVu3bhozZoz++c9/6rbbbivX+VA2+fn5cjqdCgwMLPaYJk2a6Pe//30NVgUAkOiqBwC1XkxMTI238FwamiRp+PDhkqStW7fWaC0uH374obp166aQkBBFR0fr97//vQ4cOOBxTGZmpsaNG6fLLrtMQUFBiouL0w033OARHL/77jsNGjRI0dHRCgkJUbNmzTR+/PhSr+8av/PFF1+oc+fOCg4OVrt27fTxxx8XOvbkyZOaNGmSEhISFBQUpJYtW+qpp56S0+l0H7Nnzx7ZbDY9++yzmjNnjlq0aKGgoCBt2bKl4h/SBa7uj7t27dKgQYMUFham+Ph4PfroozIMw+PYnJwcTZkyxV1rcnKynn322ULHSdI777yjHj16KDQ0VFFRUbriiiv0xRdfFDpu5cqV6tGjh4KDg9W8eXO99dZblX5PAGA1WpwAAGWSmZkpSYqOjq7xa7/55psaN26cunfvrtmzZ+vw4cP6y1/+olWrVun7779X/fr1JUk33XSTfvrpJ911111KSkrSkSNHtGTJEu3du9f9fODAgWrUqJEeeOAB1a9fX3v27Cky/BTll19+0YgRI/THP/5RY8aM0bx58/Tb3/5WixYt0tVXXy1JOnPmjPr3768DBw7of//3f9W0aVOtXr1aDz74oA4dOqQ5c+Z4nHPevHk6d+6cbr/9dgUFBalBgwYl1pCXl6djx44V2h4WFuYRsB0OhwYPHqxevXrp6aef1qJFizRjxgzl5+fr0UcflSQZhqHrr79ey5Yt04QJE9S5c2ctXrxYf/7zn3XgwAG98MIL7vM98sgjmjlzpvr06aNHH31UgYGBWrt2rb766isNHDjQfdyOHTt08803a8KECRozZozeeOMNjR07Vt26dVP79u3L9DkDQK1kAABqjXnz5hmSjN27dxe5f+LEiUZ5/tc9Y8YMIzExscRjli1bZkgyli1bVuJxEyZMMPz8/Iyff/65zNcvizFjxhhhYWHF7s/NzTUaN25sdOjQwTh79qx7+6effmpIMqZPn24YhmGcOHHCkGQ888wzxZ5rwYIFhiRj/fr15a4zMTHRkGT861//cm/Lysoy4uLijC5duri3zZo1ywgLCyv0OT3wwAOGn5+fsXfvXsMwDGP37t2GJCMiIsI4cuRIuWooapk9e7b7uDFjxhiSjLvuusu9zel0GkOGDDECAwONo0ePGoZhGAsXLjQkGY899pjHdW6++WbDZrMZO3bsMAzDMH755RfDbrcbw4cPNxwOh8exTqezUH3ffPONe9uRI0eMoKAgY8qUKWV6jwBQW9FVDwDqkGPHjnksZ86ckdPpLLT9/Pnz5Trv/Pnz9frrr2vKlClq1apVNVVftO+++05HjhzRHXfcoeDgYPf2IUOGqE2bNvrvf/8rSQoJCVFgYKC+/vprnThxoshzuVqmPv30U+Xl5ZW7lvj4eHeXRUmKiIjQ6NGj9f3337tb5D788EP169dPUVFRHp95WlqaHA6HvvnmG49z3nTTTWrUqFGZa+jZs6eWLFlSaBk5cmShY++88073us1m05133qnc3Fx9+eWXksyJR/z8/PSnP/3J43VTpkyRYRj6/PPPJUkLFy6U0+nU9OnTZbd7/ulw6SyP7dq1U79+/dzPGzVqpOTkZO3atavM7xEAaiO66gFAHVLcH+CXbp83b57Gjh1bpnOuWLFCEyZM0KBBg/T444+XenxWVpbOnj3rfh4YGFhq97OSZGRkSJKSk5ML7WvTpo1WrlwpSQoKCtJTTz2lKVOmKCYmRr169dJ1112n0aNHKzY2VpLUv39/3XTTTXrkkUf0wgsvaMCAARo2bJj+53/+R0FBQaXW0rJly0JBoXXr1pLMMUuxsbH65Zdf9MMPPxT7b3HkyBGP582aNSv1ugVFR0crLS2t1OPsdruaN29ebK2S+dnGx8crPDzc47i2bdu690vSzp07Zbfb1a5du1Kv27Rp00LboqKiig2zAOAtCE4AUIcsWbLE4/lbb72lL774Qu+8847H9rKONdm0aZOuv/56dejQQR999JH8/Uv/tXH33XfrH//4h/t5//79a+zmupMmTdLQoUO1cOFCLV68WNOmTdPs2bP11VdfqUuXLrLZbProo4/07bff6j//+Y8WL16s8ePH67nnntO3335bJfeTcjqduvrqq3XfffcVud8VXlzq2tTufn5+RW43iphsAgC8CcEJAOqQS1siVq5cqeDg4DK1UFxq586dGjx4sBo3bqzPPvuszKHivvvu85guOyoqqtzXLigxMVGStH37dv3mN7/x2Ld9+3b3fpcWLVpoypQpmjJlin755Rd17txZzz33nEd47NWrl3r16qXHH39c8+fP16hRo/Tee++VOs36jh07ZBiGR6uTa3r4pKQk9/VPnz5doc+8KjmdTu3atcsjqF1aa2Jior788kudOnXKo9Vp27Zt7v2S+Z6cTqe2bNmizp0718wbAIBahjFOAIBCMjMzNXDgQNntdi1evLhcY3DatWuntLQ099KtW7dK1ZKamqrGjRvr1Vdf9Rib9fnnn2vr1q0aMmSIJHM2u3Pnznm8tkWLFgoPD3e/7sSJE4VaPlxBoCzjvg4ePKgFCxa4n2dnZ+utt95S586d3d0Bb7nlFq1Zs0aLFy8u9PqTJ08qPz+/DO+6asydO9e9bhiG5s6dq4CAAF111VWSpGuvvVYOh8PjOEl64YUXZLPZdM0110iShg0bJrvdrkcffdRjSnXXeQHAF9DiBAC1XEZGht5++21J5kQJkvTYY49JMlsEbr311iq/5uDBg7Vr1y7dd999WrlypXsckWTeV8o19XZVycvLc7+ngho0aKA77rhDTz31lMaNG6f+/ftr5MiR7unIk5KSdM8990gyW1Ouuuoq3XLLLWrXrp38/f21YMECHT58WL/73e8kSf/4xz/08ssva/jw4WrRooVOnTql1157TREREbr22mtLrbN169aaMGGC1q9fr5iYGL3xxhs6fPiw5s2b5z7mz3/+sz755BNdd9117mm4c3JytHnzZn300Ufas2dPpaZ0P3DgQKGul5JUr149DRs2zP08ODhYixYt0pgxY9SzZ099/vnn+u9//6uHHnrIHYSHDh2qK6+8UlOnTtWePXuUkpKiL774Qv/+9781adIktWjRQpI5tmvq1KmaNWuW+vXrpxtvvFFBQUFav3694uPjNXv27Aq/HwDwGlZO6QcA8FTUdOSu6cKLWvr371/i+So6HXlx1yvLNcvLNXV2UUuLFi3cx73//vtGly5djKCgIKNBgwbGqFGjjP3797v3Hzt2zJg4caLRpk0bIywszIiMjDR69uxpfPDBB+5jNm7caIwcOdJo2rSpERQUZDRu3Ni47rrrjO+++67UOhMTE40hQ4YYixcvNjp16mQEBQUZbdq0MT788MNCx546dcp48MEHjZYtWxqBgYFGdHS00adPH+PZZ581cnNzDcO4OB15SdOnF1VDcZ9VwX9n1xTvO3fuNAYOHGiEhoYaMTExxowZMwpNJ37q1CnjnnvuMeLj442AgACjVatWxjPPPOMxzbjLG2+84f43iIqKMvr3728sWbKk0Gd0qf79+1f5zw0A1DSbYdDGDgBAaZKSktShQwd9+umnVpdSqrFjx+qjjz7S6dOnrS4FAOoMxjgBAAAAQCkITgAAAABQCoITAAAAAJSCMU4AAAAAUApanAAAAACgFAQnAAAAACiFz90A1+l06uDBgwoPD5fNZrO6HAAAAAAWMQxDp06dUnx8vOz2ktuUfC44HTx4UAkJCVaXAQAAAKCW2Ldvny677LISj/G54BQeHi7J/HAiIiIsrgYAAACAVbKzs5WQkODOCCXxueDk6p4XERFBcAIAAABQpiE8TA4BAAAAAKUgOAEAAABAKQhOAAAAAFAKnxvjBAAAgNrHMAzl5+fL4XBYXQrqmICAAPn5+VX6PAQnAAAAWCo3N1eHDh3SmTNnrC4FdZDNZtNll12mevXqVeo8BCcAAABYxul0avfu3fLz81N8fLwCAwPLNMMZUBaGYejo0aPav3+/WrVqVamWJ4ITAAAALJObmyun06mEhASFhoZaXQ7qoEaNGmnPnj3Ky8urVHBicggAAABYzm7nz1JUj6pqweQnFAAAAABKQXACAAAAgFIQnAAAAIBaICkpSXPmzLG6DBSD4AQAAACUg81mK3GZOXNmhc67fv163X777ZWqbcCAAZo0aVKlzoGi+e6seoZhdQUAAADwQocOHXKvv//++5o+fbq2b9/u3lbwfkGGYcjhcMjfv/Q/uxs1alS1haJK+W6L05YtVlcAAACASxiGlJNjzVLW79VjY2PdS2RkpGw2m/v5tm3bFB4ers8//1zdunVTUFCQVq5cqZ07d+qGG25QTEyM6tWrp+7du+vLL7/0OO+lXfVsNpv+/ve/a/jw4QoNDVWrVq30ySefVOrz/de//qX27dsrKChISUlJeu655zz2v/zyy2rVqpWCg4MVExOjm2++2b3vo48+UseOHRUSEqKGDRsqLS1NOTk5larHm/hui9OqVVLv3lZXAQAAgALOnJEKNNjUqNOnpbCwqjnXAw88oGeffVbNmzdXVFSU9u3bp2uvvVaPP/64goKC9NZbb2no0KHavn27mjZtWux5HnnkET399NN65pln9OKLL2rUqFHKyMhQgwYNyl3Thg0bdMstt2jmzJkaMWKEVq9erTvuuEMNGzbU2LFj9d133+lPf/qT3n77bfXp00fHjx/XihUrJJmtbCNHjtTTTz+t4cOH69SpU1qxYoUMH+rF5bvBafVqqysAAABAHfXoo4/q6quvdj9v0KCBUlJS3M9nzZqlBQsW6JNPPtGdd95Z7HnGjh2rkSNHSpKeeOIJ/fWvf9W6des0ePDgctf0/PPP66qrrtK0adMkSa1bt9aWLVv0zDPPaOzYsdq7d6/CwsJ03XXXKTw8XImJierSpYskMzjl5+frxhtvVGJioiSpY8eO5a7Bm/l2cDIMqYpuiAUAAIDKCw01W36sunZVSU1N9Xh++vRpzZw5U//973/dIeTs2bPau3dviefp1KmTez0sLEwRERE6cuRIhWraunWrbrjhBo9tffv21Zw5c+RwOHT11VcrMTFRzZs31+DBgzV48GB3N8GUlBRdddVV6tixowYNGqSBAwfq5ptvVlRUVIVq8Ua+O8bp8GFp506rqwAAAEABNpvZXc6KpSq/Tw+7pM/fvffeqwULFuiJJ57QihUrlJ6ero4dOyo3N7fE8wQEBFzy+djkdDqrrtACwsPDtXHjRr377ruKi4vT9OnTlZKSopMnT8rPz09LlizR559/rnbt2unFF19UcnKydu/eXS211Ea+G5wk6ZtvrK4AAAAAPmDVqlUaO3ashg8fro4dOyo2NlZ79uyp0Rratm2rVatWFaqrdevW8vPzkyT5+/srLS1NTz/9tH744Qft2bNHX331lSQztPXt21ePPPKIvv/+ewUGBmrBggU1+h6s5Ltd9SQzOI0fb3UVAAAAqONatWqljz/+WEOHDpXNZtO0adOqreXo6NGjSk9P99gWFxenKVOmqHv37po1a5ZGjBihNWvWaO7cuXr55ZclSZ9++ql27dqlK664QlFRUfrss8/kdDqVnJystWvXaunSpRo4cKAaN26stWvX6ujRo2rbtm21vIfaiOAEAAAAVLPnn39e48ePV58+fRQdHa37779f2dnZ1XKt+fPna/78+R7bZs2apYcfflgffPCBpk+frlmzZikuLk6PPvqoxo4dK0mqX7++Pv74Y82cOVPnzp1Tq1at9O6776p9+/baunWrvvnmG82ZM0fZ2dlKTEzUc889p2uuuaZa3kNtZDN8aQ5BSdnZ2YqMjFSWzaYIw5D27pUSEqwuCwAAwCedO3dOu3fvVrNmzRQcHGx1OaiDSvoZc2eDrCxFRESUeB7fHePUubP5eGFuegAAAAAoju8Gpz59zEe66wEAAAAohe8Gp759zUeCEwAAAIBS+G5w6t3bfNy6VargTcQAAAAA+AbfDU4NGkgdOpjrK1daWwsAAACAWs13g5MkXXGF+Uh3PQAAAAAl8O3g1K+f+UhwAgAAAFACgpMkpadLWVmWlgIAAACg9vLt4NSkidSihWQY0qpVVlcDAAAAoJby7eAkXRznxI1wAQAAUIMGDBigSZMmuZ8nJSVpzpw5Jb7GZrNp4cKFlb52VZ3HlxCcmCACAAAA5TB06FANHjy4yH0rVqyQzWbTDz/8UO7zrl+/Xrfffntly/Mwc+ZMde7cudD2Q4cO6ZprrqnSa13qzTffVP369av1GjWJ4OQKTuvXS2fOWFsLAAAAar0JEyZoyZIl2r9/f6F98+bNU2pqqjp16lTu8zZq1EihoaFVUWKpYmNjFRQUVCPXqisITs2amWOd8vKktWutrgYAAMC3GYaUk2PNYhhlKvG6665To0aN9Oabb3psP336tD788ENNmDBBv/76q0aOHKkmTZooNDRUHTt21LvvvlvieS/tqvfLL7/oiiuuUHBwsNq1a6clS5YUes3999+v1q1bKzQ0VM2bN9e0adOUl5cnyWzxeeSRR7Rp0ybZbDbZbDZ3zZd21du8ebN+85vfKCQkRA0bNtTtt9+u06dPu/ePHTtWw4YN07PPPqu4uDg1bNhQEydOdF+rIvbu3asbbrhB9erVU0REhG655RYdPnzYvX/Tpk268sorFR4eroiICHXr1k3fffedJCkjI0NDhw5VVFSUwsLC1L59e3322WcVrqUs/Kv17N7AZjNbnd591+yud+WVVlcEAADgu86ckerVs+bap09LYWGlHubv76/Ro0frzTff1NSpU2Wz2SRJH374oRwOh0aOHKnTp0+rW7duuv/++xUREaH//ve/uvXWW9WiRQv16NGj1Gs4nU7deOONiomJ0dq1a5WVleUxHsolPDxcb775puLj47V582b94Q9/UHh4uO677z6NGDFCP/74oxYtWqQvv/xSkhQZGVnoHDk5ORo0aJB69+6t9evX68iRI7rtttt05513eoTDZcuWKS4uTsuWLdOOHTs0YsQIde7cWX/4wx9KfT9FvT9XaFq+fLny8/M1ceJEjRgxQl9//bUkadSoUerSpYteeeUV+fn5KT09XQEBAZKkiRMnKjc3V998843CwsK0ZcsW1avmnxuCk+QZnAAAAIBSjB8/Xs8884yWL1+uAQMGSDK76d10002KjIxUZGSk7r33Xvfxd911lxYvXqwPPvigTMHpyy+/1LZt27R48WLFx8dLkp544olC45Iefvhh93pSUpLuvfdevffee7rvvvsUEhKievXqyd/fX7GxscVea/78+Tp37pzeeusthV0IjnPnztXQoUP11FNPKSYmRpIUFRWluXPnys/PT23atNGQIUO0dOnSCgWnpUuXavPmzdq9e7cSEhIkSW+99Zbat2+v9evXq3v37tq7d6/+/Oc/q02bNpKkVq1auV+/d+9e3XTTTerYsaMkqXnz5uWuobxqRVe9l156SUlJSQoODlbPnj21bt26Mr3uvffek81m07BhwypXgGuc05o1Um5u5c4FAACAigsNNVt+rFjKMb6oTZs26tOnj9544w1J0o4dO7RixQpNmDBBkuRwODRr1ix17NhRDRo0UL169bR48WLt3bu3TOffunWrEhIS3KFJknr37l3ouPfff199+/ZVbGys6tWrp4cffrjM1yh4rZSUFHdokqS+ffvK6XRq+/bt7m3t27eXn5+f+3lcXJyOHDlSrmsVvGZCQoI7NElSu3btVL9+fW3dulWSNHnyZN12221KS0vTk08+qZ07d7qP/dOf/qTHHntMffv21YwZMyo0GUd5WR6c3n//fU2ePFkzZszQxo0blZKSokGDBpX6j7Bnzx7de++96ue6iW1ltG0rRUdLZ89KGzZU/nwAAACoGJvN7C5nxXKhy11ZTZgwQf/617906tQpzZs3Ty1atFD//v0lSc8884z+8pe/6P7779eyZcuUnp6uQYMGKbcKv6Rfs2aNRo0apWuvvVaffvqpvv/+e02dOrVKr1GQq5uci81mk9PprJZrSeaMgD/99JOGDBmir776Su3atdOCBQskSbfddpt27dqlW2+9VZs3b1ZqaqpefPHFaqtFqgXB6fnnn9cf/vAHjRs3Tu3atdOrr76q0NBQd3ovisPh0KhRo/TII49UTbOczSa5Ahjd9QAAAFAGt9xyi+x2u+bPn6+33npL48ePd493WrVqlW644Qb9/ve/V0pKipo3b66ff/65zOdu27at9u3bp0OHDrm3ffvttx7HrF69WomJiZo6dapSU1PVqlUrZWRkeBwTGBgoh8NR6rU2bdqknJwc97ZVq1bJbrcrOTm5zDWXh+v97du3z71ty5YtOnnypNq1a+fe1rp1a91zzz364osvdOONN2revHnufQkJCfrjH/+ojz/+WFOmTNFrr71WLbW6WBqccnNztWHDBqWlpbm32e12paWlac2aNcW+7tFHH1Xjxo3dTaElOX/+vLKzsz2WInE/JwAAAJRDvXr1NGLECD344IM6dOiQxo4d697XqlUrLVmyRKtXr9bWrVv1v//7vx4zxpUmLS1NrVu31pgxY7Rp0yatWLFCU6dO9TimVatW2rt3r9577z3t3LlTf/3rX90tMi5JSUnavXu30tPTdezYMZ0/f77QtUaNGqXg4GCNGTNGP/74o5YtW6a77rpLt956q3t8U0U5HA6lp6d7LFu3blVaWpo6duyoUaNGaePGjVq3bp1Gjx6t/v37KzU1VWfPntWdd96pr7/+WhkZGVq1apXWr1+vtm3bSpImTZqkxYsXa/fu3dq4caOWLVvm3lddLA1Ox44dk8PhKPQPEhMTo8zMzCJfs3LlSr3++utlTpSzZ892D9CLjIz06EfpwRWcVq6USknlAAAAgGR21ztx4oQGDRrkMR7p4YcfVteuXTVo0CANGDBAsbGx5RqXb7fbtWDBAp09e1Y9evTQbbfdpscff9zjmOuvv1733HOP7rzzTnXu3FmrV6/WtGnTPI656aabNHjwYF155ZVq1KhRkVOih4aGavHixTp+/Li6d++um2++WVdddZXmzp1bvg+jCKdPn1aXLl08lqFDh8pms+nf//63oqKidMUVVygtLU3NmzfX+++/L0ny8/PTr7/+qtGjR6t169a65ZZbdM011+iRRx6RZAayiRMnqm3btho8eLBat26tl19+udL1lsRmGGWcsL4aHDx4UE2aNNHq1as9Brvdd999Wr58udZecl+lU6dOqVOnTnr55ZfdM4qMHTtWJ0+e9JiHvqDz5897JOvs7GwlJCQoKytLERERFw90OKSoKOnUKWnjRqlLl6p7owAAACjSuXPntHv3bjVr1kzBwcFWl4M6qKSfsezsbEVGRhbOBkWwdDry6Oho+fn5FWq2PHz4cJFTJu7cuVN79uzR0KFD3dtcA9L8/f21fft2tWjRwuM1QUFBZbsrsp+f1LevtGiR2V2P4AQAAADgAku76gUGBqpbt25aunSpe5vT6dTSpUuLnG6xTZs22rx5s0cfyeuvv15XXnml0tPTi++GV1aMcwIAAABQBMtvgDt58mSNGTNGqamp6tGjh+bMmaOcnByNGzdOkjR69Gg1adJEs2fPVnBwsDp06ODx+vr160tSoe0V4gpOK1ZIhlHuKSkBAAAA1E2WB6cRI0bo6NGjmj59ujIzM9W5c2ctWrTIPWHE3r17ZbfXUMNYaqoUHCwdPSpt3y5duEsxAAAAAN9m6eQQVih1ANiVV0pffy393/9Jt99e4/UBAAD4EtfA/aSkJIWEhFhdDuqgs2fPas+ePZWeHMLyG+DWOoxzAgAAqDEBAQGSpDNnzlhcCeqq3NxcSeYU55VheVe9WscVnJYvZ5wTAABANfPz81P9+vV15MgRSeY9hWz8/YUq4nQ6dfToUYWGhsrfv3LRh+B0qV69JH9/af9+KSNDSkqyuiIAAIA6zXUbGld4AqqS3W5X06ZNKx3ICU6XCgszJ4n49luzux7BCQAAoFrZbDbFxcWpcePGysvLs7oc1DGBgYFVMtkcwakoV1xxMTiNHm11NQAAAD7Bz8+v0uNQgOrC5BBFYYIIAAAAAAUQnIrSt685KcQvv0iHDlldDQAAAACLEZyKUr++lJJirq9YYWkpAAAAAKxHcCoO3fUAAAAAXEBwKg7BCQAAAMAFBKfiXH65+bh5s3T8uLW1AAAAALAUwak4MTFScrK5vnKltbUAAAAAsBTBqSSu7npMEAEAAAD4NIJTSRjnBAAAAEAEp5K5gtOGDdLp09bWAgAAAMAyBKeSNG0qJSZKDoe0Zo3V1QAAAACwCMGpNHTXAwAAAHwewak0BCcAAADA5xGcSuMKTmvXSufOWVsLAAAAAEsQnErTqpV5T6fz56X1662uBgAAAIAFCE6lsdnorgcAAAD4OIJTWRCcAAAAAJ9GcCoLV3BatUrKz7e2FgAAAAA1juBUFh06SPXrSzk50vffW10NAAAAgBpGcCoLu13q189cp7seAAAA4HMITmVFcAIAAAB8FsGprFzjnFaskJxOa2sBAAAAUKMITmXVtasUGiqdOCFt2WJ1NQAAAABqEMGprAICpD59zHW66wEAAAA+heBUHtzPCQAAAPBJBKfyKBicDMPaWgAAAADUGIJTefToIQUGSocOSTt3Wl0NAAAAgBpCcCqPkBAzPEl01wMAAAB8CMGpvBjnBAAAAPgcglN5EZwAAAAAn0NwKq8+fSS7Xdq9W9q3z+pqAAAAANQAglN5hYebN8OVpBUrrK0FAAAAQI0gOFUE3fUAAAAAn0JwqgiCEwAAAOBTCE4Vcfnl5uPWrdKRI9bWAgAAAKDaEZwqomFDqX17c33lSmtrAQAAAFDtCE4VRXc9AAAAwGcQnCrKFZyYWQ8AAACo8whOFdWvn/mYni5lZVlaCgAAAIDqRXCqqCZNpBYtJKdTWr3a6moAAAAAVCOCU2UwzgkAAADwCQSnyiA4AQAAAD6B4FQZruC0fr105oy1tQAAAACoNgSnymjWzBzrlJcnrV1rdTUAAAAAqgnBqTJsNrrrAQAAAD6A4FRZBCcAAACgziM4VZYrOK1ZI+XmWlsLAAAAgGpBcKqstm2l6Gjp7FlpwwarqwEAAABQDQhOlWWzSf36met01wMAAADqJIJTVWCcEwAAAFCnEZyqgqvFaeVKyeGwthYAAAAAVY7gVBVSUqTwcCk7W9q82epqAAAAAFQxglNV8PeX+vY11+muBwAAANQ5BKeqwjgnAAAAoM4iOFWVgsHJMKytBQAAAECVIjhVldRUKThYOnpU2r7d6moAAAAAVCGCU1UJCpJ69TLX6a4HAAAA1CkEp6rEOCcAAACgTiI4VSVXcFq+nHFOAAAAQB1CcKpKvXqZU5Pv3y9lZFhdDQAAAIAqQnCqSmFh5iQREt31AAAAgDqE4FTVGOcEAAAA1DkEp6pGcAIAAADqHIJTVevbV7LZpF9+kQ4dsroaAAAAAFWA4FTV6teXUlLM9RUrLC0FAAAAQNUgOFWHfv3MR7rrAQAAAHVCrQhOL730kpKSkhQcHKyePXtq3bp1xR778ccfKzU1VfXr11dYWJg6d+6st99+uwarLQPXOCdanAAAAIA6wfLg9P7772vy5MmaMWOGNm7cqJSUFA0aNEhHjhwp8vgGDRpo6tSpWrNmjX744QeNGzdO48aN0+LFi2u48hK4Wpw2b5aOH7e2FgAAAACVZjMMw7CygJ49e6p79+6aO3euJMnpdCohIUF33XWXHnjggTKdo2vXrhoyZIhmzZpVaN/58+d1/vx59/Ps7GwlJCQoKytLERERVfMmitKmjbR9u/TJJ9LQodV3HQAAAAAVkp2drcjIyDJlA0tbnHJzc7VhwwalpaW5t9ntdqWlpWnNmjWlvt4wDC1dulTbt2/XFa7ucZeYPXu2IiMj3UtCQkKV1V8ipiUHAAAA6gxLg9OxY8fkcDgUExPjsT0mJkaZmZnFvi4rK0v16tVTYGCghgwZohdffFFXX311kcc++OCDysrKci/79u2r0vdQLIITAAAAUGf4W11ARYSHhys9PV2nT5/W0qVLNXnyZDVv3lwDBgwodGxQUJCCgoJqvkhXcNqwQTp9WqpXr+ZrAAAAAFAlLA1O0dHR8vPz0+HDhz22Hz58WLGxscW+zm63q2XLlpKkzp07a+vWrZo9e3aRwckyTZtKiYlSRoa0Zo1UTIsYAAAAgNrP0q56gYGB6tatm5YuXere5nQ6tXTpUvXu3bvM53E6nR4TQNQadNcDAAAA6gTLu+pNnjxZY8aMUWpqqnr06KE5c+YoJydH48aNkySNHj1aTZo00ezZsyWZkz2kpqaqRYsWOn/+vD777DO9/fbbeuWVV6x8G0W74grp7bcJTgAAAICXszw4jRgxQkePHtX06dOVmZmpzp07a9GiRe4JI/bu3Su7/WLDWE5Oju644w7t379fISEhatOmjd555x2NGDHCqrdQPFeL09q10rlzUnCwtfUAAAAAqBDL7+NU08ozV3ulGYYUFycdPmy2OrlujAsAAADAcl5zH6c6z2ZjnBMAAABQBxCcqhvBCQAAAPB6BKfq5gpOq1ZJ+fnW1gIAAACgQghO1a1DB6l+fSknR/r+e6urAQAAAFABBKfqZrdLl19urq9YYW0tAAAAACqE4FQTGOcEAAAAeDWCU01wBacVKySn09paAAAAAJQbwakmdO0qhYZKx49LW7ZYXQ0AAACAciI41YSAAKlPH3Od7noAAACA1yE41RTGOQEAAABei+BUUwoGJ8OwthYAAAAA5UJwqik9ekiBgdKhQ9LOnVZXAwAAAKAcCE41JSTEDE8S3fUAAAAAL0NwqkmMcwIAAAC8EsGpJhGcAAAAAK9EcKpJffpIdru0e7e0b5/V1QAAAAAoI4JTTQoPN2+GK0krVlhbCwAAAIAyIzjVNLrrAQAAAF6H4FTT+vUzH2lxAgAAALwGwammXX65+bhli3T0qLW1AAAAACgTglNNi46W2rc311eutLYWAAAAAGVCcLIC45wAAAAAr0JwsgLBCQAAAPAqBCcruCaISE+XsrIsLQUAAABA6QhOVmjSRGrRQnI6pdWrra4GAAAAQCkITlahux4AAADgNQhOViE4AQAAAF6D4GQVV3Bav146c8baWgAAAACUiOBklWbNzLFOeXnS2rVWVwMAAACgBAQnq9hsdNcDAAAAvATByUoEJwAAAMArEJys5ApOa9ZIubnW1gIAAACgWAQnK7VtKzVsKJ09K23YYHU1AAAAAIpBcLKSzSb162eur1hhbS0AAAAAikVwshrjnAAAAIBaj+BkNVdwWrlScjisrQUAAABAkQhOVktJkcLDpawsafNmq6sBAAAAUASCk9X8/aW+fc11uusBAAAAtRLBqTZgnBMAAABQqxGcaoOCwckwrK0FAAAAQCEEp9ogNVUKDpaOHpW2b7e6GgAAAACXIDjVBkFBUq9e5jrd9QAAAIBah+BUWzDOCQAAAKi1CE61hSs4LV/OOCcAAACgliE41Ra9eplTk+/fL2VkWF0NAAAAgAIITrVFWJg5SYREdz0AAACgliE41SaMcwIAAABqJYJTbdKvn/lIcAIAAABqlQoFp3379mn//v3u5+vWrdOkSZP0t7/9rcoK80l9+0o2m/TLL1JmptXVAAAAALigQsHpf/7nf7Rs2TJJUmZmpq6++mqtW7dOU6dO1aOPPlqlBfqUqCipUydzfcUKa2sBAAAA4Fah4PTjjz+qR48ekqQPPvhAHTp00OrVq/XPf/5Tb775ZlXW53sY5wQAAADUOhUKTnl5eQoKCpIkffnll7r++uslSW3atNGhQ4eqrjpfRHACAAAAap0KBaf27dvr1Vdf1YoVK7RkyRINHjxYknTw4EE1bNiwSgv0Oa4JIjZvlo4ft7YWAAAAAJIqGJyeeuop/d///Z8GDBigkSNHKiUlRZL0ySefuLvwoYJiYqTkZMkwpFWrrK4GAAAAgCT/irxowIABOnbsmLKzsxUVFeXefvvttys0NLTKivNZV1whbd9udtcbOtTqagAAAACfV6EWp7Nnz+r8+fPu0JSRkaE5c+Zo+/btaty4cZUW6JMY5wQAAADUKhUKTjfccIPeeustSdLJkyfVs2dPPffccxo2bJheeeWVKi3QJ7mC04YN0unT1tYCAAAAoGLBaePGjep3YRKDjz76SDExMcrIyNBbb72lv/71r1VaoE9q2lRKTJQcDmnNGqurAQAAAHxehYLTmTNnFB4eLkn64osvdOONN8put6tXr17KyMio0gJ9Ft31AAAAgFqjQsGpZcuWWrhwofbt26fFixdr4MCBkqQjR44oIiKiSgv0WQQnAAAAoNaoUHCaPn267r33XiUlJalHjx7q3bu3JLP1qUuXLlVaoM9yBae1a6Vz56ytBQAAAPBxNsMwjIq8MDMzU4cOHVJKSorsdjN/rVu3ThEREWrTpk2VFlmVsrOzFRkZqaysrNrdOmYYUlycdPiw2erkujEuAAAAgCpRnmxQoRYnSYqNjVWXLl108OBB7d+/X5LUo0ePWh2avIrNdjEsrVhhbS0AAACAj6tQcHI6nXr00UcVGRmpxMREJSYmqn79+po1a5acTmdV1+i7GOcEAAAA1Ar+FXnR1KlT9frrr+vJJ59U3759JUkrV67UzJkzde7cOT3++ONVWqTPcgWnVauk/HzJv0L/XAAAAAAqqUJjnOLj4/Xqq6/q+uuv99j+73//W3fccYcOHDhQZQVWNa8Z4ySZ93GKjpZOnpTWr5dSU62uCAAAAKgzqn2M0/Hjx4scy9SmTRsdP368IqdEUfz8pMsvN9fprgcAAABYpkLBKSUlRXPnzi20fe7cuerUqVOli0IBjHMCAAAALFehQTNPP/20hgwZoi+//NJ9D6c1a9Zo3759+uyzz6q0QJ/nCk4rVkhOp2Sv8ESIAAAAACqoQn+F9+/fXz///LOGDx+ukydP6uTJk7rxxhv1008/6e23367qGn1b165SaKh0/Li0ZYvV1QAAAAA+qcLNF/Hx8Xr88cf1r3/9S//617/02GOP6cSJE3r99dfLfa6XXnpJSUlJCg4OVs+ePbVu3bpij33ttdfUr18/RUVFKSoqSmlpaSUe7/UCAqQ+fcx1uusBAAAAlrC839f777+vyZMna8aMGdq4caNSUlI0aNAgHTlypMjjv/76a40cOVLLli3TmjVrlJCQoIEDB9bqmfwqjXFOAAAAgKUqNB15cTZt2qSuXbvK4XCU+TU9e/ZU9+7d3ZNNOJ1OJSQk6K677tIDDzxQ6usdDoeioqI0d+5cjR49utTjvWo6cpfly6UBA6S4OOnAAclms7oiAAAAwOtV+3TkVSU3N1cbNmxQWlqae5vdbldaWprWrFlTpnOcOXNGeXl5atCgQZH7z58/r+zsbI/F6/ToIQUGSocOSTt3Wl0NAAAA4HPKNavejTfeWOL+kydPluvix44dk8PhUExMjMf2mJgYbdu2rUznuP/++xUfH+8RvgqaPXu2HnnkkXLVVeuEhJjhaeVKs7tey5ZWVwQAAAD4lHK1OEVGRpa4JCYmlqm7XFV58skn9d5772nBggUKDg4u8pgHH3xQWVlZ7mXfvn01Vl+VYpwTAAAAYJlytTjNmzevSi8eHR0tPz8/HT582GP74cOHFRsbW+Jrn332WT355JP68ssvS7zpblBQkIKCgqqkXktdcYX0xBMEJwAAAMAClo5xCgwMVLdu3bR06VL3NqfTqaVLl7pvrFuUp59+WrNmzdKiRYuUmppaE6Var3dv8+a3u3dL+/dbXQ0AAADgUyyfjnzy5Ml67bXX9I9//ENbt27V//t//085OTkaN26cJGn06NF68MEH3cc/9dRTmjZtmt544w0lJSUpMzNTmZmZOn36tFVvoWZEREhdupjrK1ZYWwsAAADgYywPTiNGjNCzzz6r6dOnq3PnzkpPT9eiRYvcE0bs3btXhw4dch//yiuvKDc3VzfffLPi4uLcy7PPPmvVW6g5jHMCAAAALFGl93HyBl55HyeXhQul4cOldu2kn36yuhoAAADAq3nNfZxQTpdfbj5u2SIdPWptLQAAAIAPITh5k+hoqX17c33lSmtrAQAAAHwIwcnbMM4JAAAAqHEEJ29DcAIAAABqHMHJ2/TrZz6mp0tZWZaWAgAAAPgKgpO3adJEatFCcjql1autrgYAAADwCQQnb0R3PQAAAKBGEZy8EcEJAAAAqFEEJ2/kCk7r10tnzlhbCwAAAOADCE7eqFkzc6xTXp60dq3V1QAAAAB1HsHJG9lsdNcDAAAAahDByVu5piVfscLaOgAAAAAfQHDyVq4Wp9Wrpdxca2sBAAAA6jiCk7dq21Zq2FA6e1bauNHqagAAAIA6jeDkrez2i931GOcEAAAAVCuCkzdjgggAAACgRhCcvJkrOK1cKTkc1tYCAAAA1GEEJ2+WkiKFh0tZWdLmzVZXAwAAANRZBCdv5u8v9e1rrtNdDwAAAKg2BCdvxzgnAAAAoNoRnLxdweBkGNbWAgAAANRRBCdvl5oqBQdLR49K27dbXQ0AAABQJxGcvF1QkNSrl7lOdz0AAACgWhCc6gLGOQEAAADViuBUF7iC0/LljHMCAAAAqgHBqS7o1cucmnz/fikjw+pqAAAAgDqH4FQXhIVJ3bqZ6ytWWFsLAAAAUAcRnOoKxjkBAAAA1YbgVFcQnAAAAIBqQ3CqK/r2lWw26eefpcxMq6sBAAAA6hSCU10RFSV16mSuM84JAAAAqFIEp7qE7noAAABAtSA41SUEJwAAAKBaEJzqkn79zMfNm6Xjx62tBQAAAKhDCE51SUyMlJwsGYa0apXV1QAAAAB1BsGprqG7HgAAAFDlCE51DcEJAAAAqHIEp7rGFZw2bJBOn7a2FgAAAKCOIDjVNU2bSomJksMhrVljdTUAAABAnUBwqovorgcAAABUKYJTXeQKTitWWFsHAAAAUEcQnOoi1/2cvv1WOn/e2loAAACAOoDgVBe1bi01bmyGpvXrra4GAAAA8HoEp7rIZmOcEwAAAFCFCE51FcEJAAAAqDIEp7rKFZxWrZLy862tBQAAAPByBKe6qkMHqX598ya46elWVwMAAAB4NYJTXeXnJ11+ublOdz0AAACgUghOdRnjnAAAAIAqQXCqywreCNfptLYWAAAAwIsRnOqyrl2l0FDp+HFpyxarqwEAAAC8FsGpLgsIkPr0MdfprgcAAABUGMGprmOcEwAAAFBpBKe6rmBwMgxrawEAAAC8FMGpruvRQwoMlA4dknbutLoaAAAAwCsRnOq6kBAzPEnm7HoAAAAAyo3g5Av69TMfGecEAAAAVAjByRcwQQQAAABQKQQnX9Cnj2S3S7t2Sfv3W10NAAAA4HUITr4gIkLq0sVcZ5wTAAAAUG4EJ19Bdz0AAACgwghOvoLgBAAAAFQYwclXXH65+bhli3T0qLW1AAAAAF6G4OQroqOl9u3N9ZUrra0FAAAA8DIEJ19Cdz0AAACgQghOvoTgBAAAAFQIwcmX9OtnPqanS1lZlpYCAAAAeBOCky9p0kRq0UJyOqXVq62uBgAAAPAaBCdfQ3c9AAAAoNwITr6G4AQAAACUG8HJ17iC0/r10tmz1tYCAAAAeAnLg9NLL72kpKQkBQcHq2fPnlq3bl2xx/7000+66aablJSUJJvNpjlz5tRcoXVFs2ZSfLyUlyetXWt1NQAAAIBXsDQ4vf/++5o8ebJmzJihjRs3KiUlRYMGDdKRI0eKPP7MmTNq3ry5nnzyScXGxtZwtXWEzUZ3PQAAAKCcLA1Ozz//vP7whz9o3LhxateunV599VWFhobqjTfeKPL47t2765lnntHvfvc7BQUFleka58+fV3Z2tsfi8whOAAAAQLlYFpxyc3O1YcMGpaWlXSzGbldaWprWrFlTZdeZPXu2IiMj3UtCQkKVndtruYLT6tVSbq61tQAAAABewLLgdOzYMTkcDsXExHhsj4mJUWZmZpVd58EHH1RWVpZ72bdvX5Wd22u1bSs1bGhODrFxo9XVAAAAALWe5ZNDVLegoCBFRER4LD7Pbpf69TPX6a4HAAAAlMqy4BQdHS0/Pz8dPnzYY/vhw4eZ+KEmMM4JAAAAKDPLglNgYKC6deumpUuXurc5nU4tXbpUvXv3tqos3+EKTitXSg6HtbUAAAAAtZy/lRefPHmyxowZo9TUVPXo0UNz5sxRTk6Oxo0bJ0kaPXq0mjRpotmzZ0syJ5TYsmWLe/3AgQNKT09XvXr11LJlS8veh1dKSZHCw6WsLGnzZqlzZ6srAgAAAGotS4PTiBEjdPToUU2fPl2ZmZnq3LmzFi1a5J4wYu/evbLbLzaKHTx4UF26dHE/f/bZZ/Xss8+qf//++vrrr2u6fO/m7y/17SstWmR21yM4AQAAAMWyGYZhWF1ETcrOzlZkZKSysrKYKGL2bOmhh6SbbpI++sjqagAAAIAaVZ5sUOdn1UMJCk4Q4Vv5GQAAACgXgpMvS02VgoOlo0el7dutrgYAAACotQhOviwoSOrVy1xfscLaWgAAAIBajODk67ifEwAAAFAqgpOv69fPfCQ4AQAAAMUiOPm63r3Nqcn37pUyMqyuBgAAAKiVCE6+LixM6tbNXKfVCQAAACgSwQmMcwIAAABKQXACwQkAAAAoBcEJUt++ks0m/fyzlJlpdTUAAABArUNwghQVJXXqZK5zPycAAACgEIITTHTXAwAAAIpFcIKJ4AQAAAAUi+AEk+tGuJs3S8ePW1sLAAAAUMsQnGCKiZGSkyXDkFatsroaAAAAoFYhOOEiuusBAAAARSI44SKCEwAAAFAkghMucgWnjRul06etrQUAAACoRQhOuKhpUykxUcrPl7791upqAAAAgFqD4ARPrtn16K4HAAAAuBGc4IlxTgAAAEAhBCd4cgWnb7+Vzp+3thYAAACgliA4wVPr1lLjxmZoWr/e6moAAACAWoHgBE82G931AAAAgEsQnFAYwQkAAADwQHBCYa7gtGqVOTU5AAAA4OMITiisQwepfn3zJrjp6VZXAwAAAFiO4ITC/Pykyy831+muBwAAABCcUAzGOQEAAABuBCcUzRWcVqyQnE5rawEAAAAsRnBC0bp2lUJDpePHpS1brK4GAAAAsBTBCUULCJD69DHX6a4HAAAAH0dwQvEKdtcDAAAAfBjBCcXr1898/OYbyTCsrQUAAACwEMEJxevZ0+yyd/CgtGuX1dUAAAAAliE4oXghIVKPHuY645wAAADgw3w2OD3+uLRxIz3QSsX9nAAAAADfDU5PPy116yYlJkp/+pP01VdSXp7VVdVCBCcAAADAd4PT0KHmbYr27ZNefFG66iopJkYaPVr6+GMpJ8fqCmuJPn0ku90c47R/v9XVAAAAAJbw2eD0zjvSsWPSJ59I48dL0dHSiRPS229LN91kPr/hBmnePOnoUaurtVBEhNSli7nOtOQAAADwUT4bnCRz7oOhQ6XXX5cyM83eaJMnS82aSefOXQxVsbFS//7SCy/46ORydNcDAACAj7MZhm9Nj5Cdna3IyEhlZWUpIiKiyGMMQ/rxR2nhQnPZuNFzf6dO0rBh5tK5s2SzVW/Nllu4UBo+XGrXTvrpJ6urAQAAAKpEWbKBC8GpDDIypH//28wP33wjORwX9zVtagao4cOlyy+X/P2rpWxrHTsmNWpkrh85cnEdAAAA8GIEpxJUJDgV9Ouv0n//a4aoRYuks2cv7mvQwOz6N2yYNHCgOflEndGhg9na9PHHZkoEAAAAvFx5soFPj3GqiIYNL868d+yY2RI1bpy5/fhx6R//MHNFdLQZoN580zzO6zHOCQAAAD6M4FQJoaHS9ddLb7xhTi6xfLk0aZKUlGS2RLlCVUyMNGCANGeOtGePpSVXHMEJAAAAPoyuetXAMKQffrg4uUR6uuf+zp0vTi7RqZOXTC5x4IB02WXmPZ1OnDCnKQcAAAC8GGOcSlATwelSe/Z4Ti7hdF7cl5R0MUT17VvLJ5do2VLauVP6/HNp8GCrqwEAAAAqhTFOtUxSknT33dKyZdLhw+a4p2HDzPtI7dljduEbMMC8X9S4cWbIOnPGyoqL0a+f+Uh3PQAAAPgYglMNi46WxoyRFiwwJ41YuFAaO9acke/XXy+Gquhoc5KJt94yt9cKjHMCAACAj6KrXi2Rny+tXHlxXFRGxsV9fn5mZhk2TLrhBikx0aIid+40u+sFBEhZWWaTGQAAAOClGONUgtoanAoyDGnTposhatMmz/1dulwcF9WxYw1OLmEY5gQRBw+a/Q4HDKihCwMAAABVjzFOXs5mM2femznTnJFv1y7phRek/v3NSe2+/16aMUNKSZFatJAmTzZ7zzkcNVAY3fUAAADggwhOXqBZM/P+UF9/bU4uMW+e2WUvOFjavftiqIqNlSZMkP7zH/M+UtWC4AQAAAAfRFc9L5aTI33xhdmd7z//MW+v5BIaas4YPmyYNGSIOflElfjpJ6lDB3N808mTUmBgFZ0YAAAAqFmMcSpBXQpOBeXnSytWXBwXtXfvxX1+fmaLlGtyiaZNK3Ehp1Nq3Nic6m/NGqlXr8oVDgAAAFiE4FSCuhqcCjIMc2yUK0T98IPn/q5dL04u0aFDBSaXGD7cPPFTT0n33VcFFQMAfFZ+vnlTw+3bpW3bpB07pKgoqU0bc0lOliIjra4SQB1FcCqBLwSnS+3aZd5Ud8ECadUqs9HIpUWLiyGqd2+zdapUL7xgzkjRoYN0++3m/OiupX796nkTAADvduKEGY5cAcm1/ssvUl5eya+NizMDlCtMuZaEBHPWJACoIIJTCXwxOBV05Ij06admg9EXX0jnz1/c16iRdP31ZohKSzMnnyjSpk3mtH9FiYi4GKKaNvUMVYmJUkwMv+QAoK7KzzdnLSoqIB05UvzrgoPNYJScLLVqZYasbdvM5eDB4l8XEnIxUBUMVq1bm4N9AaAUBKcS+HpwKuj06YuTS3z6qefkEmFhnpNLREVd8uIPPzTHOGVkXFyOHSv9okFB5jeElwYq13LZZeYNdgEAtZer9cgVjFyPO3aU3HrUpMnFkFMw8JTUcpSdffEaBZfSWqoSEz1bp1zXi42twRsgAqjtCE4lIDgVLS/Pc3KJffsu7vP3N+91O2yY2SKVkFDMSXJyzFkp9u71DFSu5cABz36CRbHbpfj4klutwsKq5D0DAEpQsPWoYMvRtm3S0aPFvy4kxGzxuTQgtW4t1atXtfXt2VM4UG3dKh0/XvzrIiIKd/lLTpZatmSmWMAHEZxKQHAqnWGYN9l1hajNmz33p6aaIapbN3NIU8Gl2O59kpnODhwoOlRlZJiBq2DfweI0bFh8i1Viojn3Ot8mAkDZHD9edNe60lqPLruscMtRaa1HNeXYMc/WMNeya1fxX+D5+UnNmxcOVW3aVOE9PQDUNgSnEhCcym/HDnNyiYULzcklSvqJCQoqHKaKWqKiitge4VRQ1pHiW6wyMqSsrNILDgsrvrUqMdEcZFymWTAAoI7IzzdDQ1EBqbTWI1cgKhiQqrr1qKacP2/+UisqVJ06VfzrGjUqenKKpCR+nwBejuBUAoJT5Rw5Yt5s9z//MfPNyZMXl6r4SQoOLjlwNQ7O0mX5GYo9n6HonAxFZmWo3q8ZCjmcIf+DGbIdPlz6RQICzG9Ki2uxSkgwEyAAeBtX69GlXet27ixb61HBsUDJyeZ2q1uPaoJhSIcOFe72t327540RLxUYaIbIS0NVcrIUHl5z9QOoMIJTCQhO1cPpNCebKBikLl1OnCh+X1ZW1QSv+sHn1C58n9qEZKiFf4aSbBm6zJGh2NwLQevUfvk580s/UVxcyeOs+NkBYJW8vOLHHpU0SU9oqOcf+a5WJG9tPaopOTnSzz8XDlU//yydO1f861wTYVw6499ll9GdHKhFCE4lIDjVTk6n2UuipOBVUgArSw8+SbLLoXgdVKIyil1CdbbU8+SG1df5mETlX5YoW2Ki/FskKjjZfFRiotmtg1+MACrj11+LH3uUX8IXQAkJRY898pXWo5ridJqtUZcGqm3bpJJ6P4SFFd1C1aqV2TUSQI0iOJWA4FQ3ORxlD15FhbDsbNeZDEXrmJpqb7HBqqFKmK3pgrO2EB0JbqpjYYnKqp+onIZNzaDVxAxWAUlNFNnQXxERZs9Bf3+zm3xJj5dus9vJZoDXc7UeXdpytH172VqPipq5jplHrXfpzX5dS0mh12Yzx0wVNTkFX8YB1YbgVAKCE4ricJjhqSxh6/yxUwo6vFf1fs1Q/SyzC2Bs7sVgFadDsqvk/6zy5acDaqL9ukz58pch8xeiIVuh9ZL2STbZ7DJ/odps5u9Vm022gs/t5rr9wj7ZbRcOd61fPM61brPbinlurttc++y68HjJPvuFfRfW7Zfss9vN69ldr/NzbTf32ew22fwKvM7Pc5/dz3yd/cLrbP522QMDZLuw2IMCZAv0ly3AfK6AAou/v+fz4raVdKyfH3/EoHxcrUdFjT0qS+vRpQGpSRNaj7xRXp45SUfBMVSuKdRPniz+dfXrFx2omjfn3odAJRGcSkBwQnVwOMzugidPSllHc3X2l/3K32nOBOh/IEPBhzMUdiFoNTi9VwFGCYO04RXybAHKtwXIYQ+QwxYgh93fXC+wOC9sc/oFyGkPkOPCo+Hnb27zC5DT33w0/Pxl+AXI8De3Gf4BMvzMoGb4B8gICJD8zfBm+BUd9GwB5nZbgRApf/9LAuWFxwB/97o9KEB+gX5mIDdUeHEaRa+XsE9GGY9Txc5R5n2XXKvIfZJUhnNceHmJdQSfPaHoX7er4bFtij62XQ2ObVeDI9sUeubX4n+WAkN1MiZZWbHJyopJVnZ8G2XFJutUXGs5Q8LMLwns7u9H3OuXPlZmW1WcoyrPe+lS57+nMAxzdsOiuv3t2VP8IGB/f/P+U0V1/St053r4LIfDDO1FLfn5xe+ryuOGDJF++1urP4kiEZxKQHCC5ZxOKTPTnF790CHzf2iS51+qBZ47nZLTYcjpNOTMN587HBfXnQ7j4nLhuSPfkOE05HCYf+QV3HfpsU6HeazHdQq8zr3PachweK679hV1rArucxY41mHIuPC+dGF7wfMYxoVzGxefu/a5jy+wT5L85FCA8jwWf+VX0bYyTCYClMFeJWib2mi7krVdye71A2oiQ7QelcYVolxdlcu7eOvrAh1n1fDEDkX/uk3RR7ep4bFtanh0mxoc2aaA3DPFfl7nQ+vL6R8ow+4nw2Y3H+1+kt1Phr3Ac5tdhl8R6xeOk/t1F17jd/E4uZ67jruwT36e24t67n6zl66XtO+S42x+9tLX/c3X2fw99xXa7u+5z+Zn7rMZTikvT7b8C4sj/+L6hcVjf4Hnys/32Kb8PNnyCjyvrvBy6bG14U/9+++XnnzS6iqKVJ5s4F9DNZXopZde0jPPPKPMzEylpKToxRdfVI8ePYo9/sMPP9S0adO0Z88etWrVSk899ZSuvfbaGqwYqAS7XYqPN5eyHH5hQdHMIFn0Uty+gtvPOqTTJb0m35AzN19GXr6M3DwZuXly5uZJuXly5l78xWTkXnjMu+QXW36elJdf9C/XAr9UbY482S/8UrY7Ljx3bXPmy8+RJ7szz/1od+TLz5nnsdgNc5u/M09+husx31wvsASKFs/qcs4/TIcjW+tQZBtlRiTrYHiyDka00aF6rXTOL0yGYf6MGYYU5ZR6XviuxLXN9ejt24rbX5m/38wvZUru2Vg3hUjqeGG5yCanmuiAkrVdbbTNY7lMBxR05qQVxcJLmF8R+ivfFmB+VXihF0WezMeC2x02f49t7vVLFo/jLvTIcK0n5PTSzVa/6SpgeXB6//33NXnyZL366qvq2bOn5syZo0GDBmn79u1q3LhxoeNXr16tkSNHavbs2bruuus0f/58DRs2TBs3blSHDh0seAcArOT6Vrb6uvnbJAVcWOrQjFeXdt0o6q/Rgv2jLu0rVd37rL5+BWsLlpR4YUHRSgtYBR8vXVxfbpR3qZuvs8vpTJDTmaBMR5oOOqUvL+wLyj2lBmf2y+7Ml83pkM1wyuZ0yG44Cj2X02luNxyyX9hX8Lii9pnbCq/bLjy3X7pPDvdzj31yys9wFH6uAse51uXw3HfhuU1O+RXcV/AcRe2TQ34lrJvPCyf8XI9+CP6X9FMoeqmtx+XLX7owZtr9Vqu5UeqBeqoTwcnyrno9e/ZU9+7dNXfuXEmS0+lUQkKC7rrrLj3wwAOFjh8xYoRycnL06aefurf16tVLnTt31quvvlrq9eiqBwAAgIIKjZl0OGXkOy52UbwwBvTSY3letueJieZwvNrIa7rq5ebmasOGDXrwwQfd2+x2u9LS0rRmzZoiX7NmzRpNnjzZY9ugQYO0cOHCIo8/f/68zp8/736efXHeaQAAAMA9OYkkyc8mBfhJ8rOyJNRClg6dOHbsmBwOh2JiYjy2x8TEKDMzs8jXZGZmluv42bNnKzIy0r0kJCRUTfEAAAAAfEadH3P+4IMPKisry73s27fP6pIAAAAAeBlLu+pFR0fLz89Phw8f9th++PBhxcbGFvma2NjYch0fFBSkoKCgqikYAAAAgE+ytMUpMDBQ3bp109KlS93bnE6nli5dqt69exf5mt69e3scL0lLliwp9ngAAAAAqCzLpyOfPHmyxowZo9TUVPXo0UNz5sxRTk6Oxo0bJ0kaPXq0mjRpotmzZ0uS7r77bvXv31/PPfechgwZovfee0/fffed/va3v1n5NgAAAADUYZYHpxEjRujo0aOaPn26MjMz1blzZy1atMg9AcTevXtlt19sGOvTp4/mz5+vhx9+WA899JBatWqlhQsXcg8nAAAAANXG8vs41TTu4wQAAABAKl82qPOz6gEAAABAZRGcAAAAAKAUBCcAAAAAKAXBCQAAAABKQXACAAAAgFIQnAAAAACgFAQnAAAAACiF5TfArWmu21ZlZ2dbXAkAAAAAK7kyQVlubetzwenXX3+VJCUkJFhcCQAAAIDa4NSpU4qMjCzxGJ8LTg0aNJAk7d27t9QPB8XLzs5WQkKC9u3bV+pdllE0PsOqwedYNfgcK4/PsGrwOVYen2HV4HOsPG/4DA3D0KlTpxQfH1/qsT4XnOx2c1hXZGRkrf0H9CYRERF8jpXEZ1g1+ByrBp9j5fEZVg0+x8rjM6wafI6VV9s/w7I2pjA5BAAAAACUguAEAAAAAKXwueAUFBSkGTNmKCgoyOpSvBqfY+XxGVYNPseqwedYeXyGVYPPsfL4DKsGn2Pl1bXP0GaUZe49AAAAAPBhPtfiBAAAAADlRXACAAAAgFIQnAAAAACgFAQnAAAAACiFzwSnb775RkOHDlV8fLxsNpsWLlxodUleZ/bs2erevbvCw8PVuHFjDRs2TNu3b7e6LK/zyiuvqFOnTu6bwfXu3Vuff/651WV5tSeffFI2m02TJk2yuhSvMnPmTNlsNo+lTZs2VpfllQ4cOKDf//73atiwoUJCQtSxY0d99913VpflVZKSkgr9PNpsNk2cONHq0ryGw+HQtGnT1KxZM4WEhKhFixaaNWuWmAesfE6dOqVJkyYpMTFRISEh6tOnj9avX291WbVaaX9nG4ah6dOnKy4uTiEhIUpLS9Mvv/xiTbGV4DPBKScnRykpKXrppZesLsVrLV++XBMnTtS3336rJUuWKC8vTwMHDlROTo7VpXmVyy67TE8++aQ2bNig7777Tr/5zW90ww036KeffrK6NK+0fv16/d///Z86depkdSleqX379jp06JB7WblypdUleZ0TJ06ob9++CggI0Oeff64tW7boueeeU1RUlNWleZX169d7/CwuWbJEkvTb3/7W4sq8x1NPPaVXXnlFc+fO1datW/XUU0/p6aef1osvvmh1aV7ltttu05IlS/T2229r8+bNGjhwoNLS0nTgwAGrS6u1Svs7++mnn9Zf//pXvfrqq1q7dq3CwsI0aNAgnTt3roYrrSTDB0kyFixYYHUZXu/IkSOGJGP58uVWl+L1oqKijL///e9Wl+F1Tp06ZbRq1cpYsmSJ0b9/f+Puu++2uiSvMmPGDCMlJcXqMrze/fffb1x++eVWl1Hn3H333UaLFi0Mp9NpdSleY8iQIcb48eM9tt14443GqFGjLKrI+5w5c8bw8/MzPv30U4/tXbt2NaZOnWpRVd7l0r+znU6nERsbazzzzDPubSdPnjSCgoKMd99914IKK85nWpxQ9bKysiRJDRo0sLgS7+VwOPTee+8pJydHvXv3trocrzNx4kQNGTJEaWlpVpfitX755RfFx8erefPmGjVqlPbu3Wt1SV7nk08+UWpqqn7729+qcePG6tKli1577TWry/Jqubm5eueddzR+/HjZbDary/Eaffr00dKlS/Xzzz9LkjZt2qSVK1fqmmuusbgy75Gfny+Hw6Hg4GCP7SEhIbTIV9Du3buVmZnp8bs6MjJSPXv21Jo1ayysrPz8rS4A3snpdGrSpEnq27evOnToYHU5Xmfz5s3q3bu3zp07p3r16mnBggVq166d1WV5lffee08bN26k33kl9OzZU2+++aaSk5N16NAhPfLII+rXr59+/PFHhYeHW12e19i1a5deeeUVTZ48WQ899JDWr1+vP/3pTwoMDNSYMWOsLs8rLVy4UCdPntTYsWOtLsWrPPDAA8rOzlabNm3k5+cnh8Ohxx9/XKNGjbK6NK8RHh6u3r17a9asWWrbtq1iYmL07rvvas2aNWrZsqXV5XmlzMxMSVJMTIzH9piYGPc+b0FwQoVMnDhRP/74I9++VFBycrLS09OVlZWljz76SGPGjNHy5csJT2W0b98+3X333VqyZEmhbwVRdgW/he7UqZN69uypxMREffDBB5owYYKFlXkXp9Op1NRUPfHEE5KkLl266Mcff9Srr75KcKqg119/Xddcc43i4+OtLsWrfPDBB/rnP/+p+fPnq3379kpPT9ekSZMUHx/Pz2I5vP322xo/fryaNGkiPz8/de3aVSNHjtSGDRusLg0Wo6seyu3OO+/Up59+qmXLlumyyy6zuhyvFBgYqJYtW6pbt26aPXu2UlJS9Je//MXqsrzGhg0bdOTIEXXt2lX+/v7y9/fX8uXL9de//lX+/v5yOBxWl+iV6tevr9atW2vHjh1Wl+JV4uLiCn3p0bZtW7o9VlBGRoa+/PJL3XbbbVaX4nX+/Oc/64EHHtDvfvc7dezYUbfeeqvuuecezZ492+rSvEqLFi20fPlynT59Wvv27dO6deuUl5en5s2bW12aV4qNjZUkHT582GP74cOH3fu8BcEJZWYYhu68804tWLBAX331lZo1a2Z1SXWG0+nU+fPnrS7Da1x11VXavHmz0tPT3UtqaqpGjRql9PR0+fn5WV2iVzp9+rR27typuLg4q0vxKn379i10a4aff/5ZiYmJFlXk3ebNm6fGjRtryJAhVpfidc6cOSO73fNPOz8/PzmdTosq8m5hYWGKi4vTiRMntHjxYt1www1Wl+SVmjVrptjYWC1dutS9LTs7W2vXrvW68d0+01Xv9OnTHt+i7t69W+np6WrQoIGaNm1qYWXeY+LEiZo/f77+/e9/Kzw83N0vNTIyUiEhIRZX5z0efPBBXXPNNWratKlOnTql+fPn6+uvv9bixYutLs1rhIeHFxpbFxYWpoYNGzLmrhzuvfdeDR06VImJiTp48KBmzJghPz8/jRw50urSvMo999yjPn366IknntAtt9yidevW6W9/+5v+9re/WV2a13E6nZo3b57GjBkjf3+f+ROlygwdOlSPP/64mjZtqvbt2+v777/X888/r/Hjx1tdmldZvHixDMNQcnKyduzYoT//+c9q06aNxo0bZ3VptVZpf2dPmjRJjz32mFq1aqVmzZpp2rRpio+P17Bhw6wruiKsntavpixbtsyQVGgZM2aM1aV5jaI+P0nGvHnzrC7Nq4wfP95ITEw0AgMDjUaNGhlXXXWV8cUXX1hdltdjOvLyGzFihBEXF2cEBgYaTZo0MUaMGGHs2LHD6rK80n/+8x+jQ4cORlBQkNGmTRvjb3/7m9UleaXFixcbkozt27dbXYpXys7ONu6++26jadOmRnBwsNG8eXNj6tSpxvnz560uzau8//77RvPmzY3AwEAjNjbWmDhxonHy5Emry6rVSvs72+l0GtOmTTNiYmKMoKAg46qrrvLK/85thsHtpAEAAACgJIxxAgAAAIBSEJwAAAAAoBQEJwAAAAAoBcEJAAAAAEpBcAIAAACAUhCcAAAAAKAUBCcAAAAAKAXBCQAAAABKQXACAKAcbDabFi5caHUZAIAaRnACAHiNsWPHymazFVoGDx5sdWkAgDrO3+oCAAAoj8GDB2vevHke24KCgiyqBgDgK2hxAgB4laCgIMXGxnosUVFRksxudK+88oquueYahYSEqHnz5vroo488Xr9582b95je/UUhIiBo2bKjbb79dp0+f9jjmjTfeUPv27RUUFKS4uDjdeeedHvuPHTum4cOHKzQ0VK1atdInn3xSvW8aAGA5ghMAoE6ZNm2abrrpJm3atEmjRo3S7373O23dulWSlJOTo0GDBikqKkrr16/Xhx9+qC+//NIjGL3yyiuaOHGibr/9dm3evFmffPKJWrZs6XGNRx55RLfccot++OEHXXvttRo1apSOHz9eo+8TAFCzbIZhGFYXAQBAWYwdO1bvvPOOgoODPbY/9NBDeuihh2Sz2fTHP/5Rr7zyintfr1691LVrV7388st67bXXdP/992vfvn0KCwuTJH322WcaOnSoDh48qJiYGDVp0kTjxo3TY489VmQNNptNDz/8sGbNmiXJDGP16tXT559/zlgrAKjDGOMEAPAqV155pUcwkqQGDRq413v37u2xr3fv3kpPT5ckbd26VSkpKe7QJEl9+/aV0+nU9u3bZbPZdPDgQV111VUl1tCpUyf3elhYmCIiInTkyJGKviUAgBcgOAEAvEpYWFihrnNVJSQkpEzHBQQEeDy32WxyOp3VURIAoJZgjBMAoE759ttvCz1v27atJKlt27batGmTcnJy3PtXrVolu92u5ORkhYeHKykpSUuXLq3RmgEAtR8tTgAAr3L+/HllZmZ6bPP391d0dLQk6cMPP1Rqaqouv/xy/fOf/9S6dev0+uuvS5JGjRqlGTNmaMyYMZo5c6aOHj2qu+66S7feeqtiYmIkSTNnztQf//hHNW7cWNdcc41OnTqlVatW6a677qrZNwoAqFUITgAAr7Jo0SLFxcV5bEtOTta2bdskmTPevffee7rjjjsUFxend999V+3atZMkhYaGavHixbr77rvVvXt3hYaG6qabbtLzzz/vPteYMWN07tw5vfDCC7r33nsVHR2tm2++uebeIACgVmJWPQBAnWGz2bRgwQINGzbM6lIAAHUMY5wAAAAAoBQEJwAAAAAoBWOcAAB1Br3PAQDVhRYnAAAAACgFwQkAAAAASkFwAgAAAIBSEJwAAAAAoBQEJwAAAAAoBcEJAAAAAEpBcAIAAACAUhCcAAAAAKAU/x9iRA1bMDwMlgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from collections import defaultdict\n", + "\n", + "log_dir = './loss-log/'\n", + "log_files = ['unet',\n", + "'mini',\n", + "'dice',\n", + "'focal',\n", + "'sgd',\n", + "'rmsprop',\n", + "'l1',\n", + "'l2',\n", + "'l1+l2',\n", + "]\n", + "log_ext = '.log'\n", + "\n", + "for log_file in log_files:\n", + " with open(log_dir + log_file + log_ext, 'r') as log_data:\n", + " train_loss_per_epoch = defaultdict(list)\n", + " val_loss_per_epoch = defaultdict(list)\n", + "\n", + " for line in log_data:\n", + " if \"TRAIN\" in line:\n", + " epoch = int(line.split('|')[0].split()[2])\n", + " loss = float(line.split('|')[2].split()[1])\n", + " train_loss_per_epoch[epoch].append(loss)\n", + "\n", + " elif \"VALID\" in line:\n", + " epoch = int(line.split('|')[0].split()[2])\n", + " loss = float(line.split('|')[2].split()[1])\n", + " val_loss_per_epoch[epoch].append(loss)\n", + "\n", + " train_loss_avg = [np.mean(train_loss_per_epoch[e]) for e in sorted(train_loss_per_epoch)]\n", + " val_loss_avg = [np.mean(val_loss_per_epoch[e]) for e in sorted(val_loss_per_epoch)]\n", + " # train_loss_avg = [np.mean(train_loss_per_epoch[e]) for e in train_loss_per_epoch]\n", + " # val_loss_avg = [np.mean(val_loss_per_epoch[e]) for e in val_loss_per_epoch]\n", + " epochs = range(1, len(train_loss_avg) + 1)\n", + "\n", + " max_y = np.maximum(train_loss_avg, val_loss_avg)\n", + "\n", + " plt.figure(figsize=(10, 5))\n", + " plt.plot(epochs, train_loss_avg, label='Train Loss', color='blue')\n", + " plt.plot(epochs, val_loss_avg, label='Validation Loss', color='red')\n", + "\n", + " plt.xlabel('Epoch')\n", + " plt.ylabel('Loss')\n", + " plt.title(log_file + ' - Loss per Epoch')\n", + " plt.legend()\n", + " plt.xticks(epochs)\n", + " plt.xlim([1.0, 10.5])\n", + " plt.show()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/unet_battery_test.ipynb b/unet_battery_test.ipynb new file mode 100644 index 0000000..399daa2 --- /dev/null +++ b/unet_battery_test.ipynb @@ -0,0 +1,1278 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\pinb\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "from glob import glob\n", + "import numpy as np\n", + "import torch\n", + "from torch.utils.data import Dataset\n", + "from PIL import Image\n", + "import matplotlib.pyplot as plt\n", + "from torchvision import transforms, datasets\n", + "import random\n", + "import cv2\n", + "\n", + "class CustomDataset(Dataset):\n", + " def __init__(self, list_imgs, list_masks, transform=None):\n", + " self.list_imgs = list_imgs\n", + " self.list_masks = list_masks\n", + " self.transform = transform\n", + "\n", + " def __len__(self):\n", + " return len(self.list_imgs)\n", + "\n", + " def __getitem__(self, index):\n", + " img_path = self.list_imgs[index]\n", + " mask_path = self.list_masks[index]\n", + "\n", + " img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)\n", + " mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)\n", + "\n", + " # 이미지 크기를 512x512로 변경\n", + " img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)\n", + " mask = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_NEAREST)\n", + "\n", + " img = img.astype(np.float32) / 255.0\n", + " mask = mask.astype(np.float32) / 255.0\n", + "\n", + " if img.ndim == 2:\n", + " img = img[:, :, np.newaxis]\n", + " if mask.ndim == 2:\n", + " mask = mask[:, :, np.newaxis]\n", + "\n", + " data = {'input': img, 'label': mask}\n", + "\n", + " if self.transform:\n", + " data = self.transform(data)\n", + " \n", + " return data\n", + "\n", + "def create_datasets(img_dir, mask_dir, train_ratio=0.7, val_ratio=0.2, transform=None):\n", + " list_imgs = sorted(glob(os.path.join(img_dir, '**', '*.bmp'), recursive=True))\n", + " list_masks = sorted(glob(os.path.join(mask_dir, '**', '*.bmp'), recursive=True))\n", + "\n", + " # combined = list(zip(list_imgs, list_masks))\n", + " # random.shuffle(combined)\n", + " # list_imgs, list_masks = zip(*combined)\n", + "\n", + " num_imgs = len(list_imgs)\n", + " num_train = int(num_imgs * train_ratio)\n", + " num_val = int(num_imgs * val_ratio)\n", + "\n", + " # train_set = CustomDataset(list_imgs[:num_train], list_masks[:num_train], transform)\n", + " # val_set = CustomDataset(list_imgs[num_train:num_train + num_val], list_masks[num_train:num_train + num_val], transform)\n", + " test_set = CustomDataset(list_imgs[num_train + num_val:], list_masks[num_train + num_val:], transform)\n", + "\n", + " # return train_set, val_set, test_set\n", + " return test_set\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Argument" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# 트렌스폼 구현하기\n", + "class ToTensor(object):\n", + " # def __call__(self, data):\n", + " # label, input = data['label'], data['input']\n", + "\n", + " # label = label.transpose((2, 0, 1)).astype(np.float32)\n", + " # input = input.transpose((2, 0, 1)).astype(np.float32)\n", + "\n", + " # data = {'label': torch.from_numpy(label), 'input': torch.from_numpy(input)}\n", + "\n", + " # return data\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " # 이미지가 이미 그레이스케일이면 채널 차원 추가\n", + " if label.ndim == 2:\n", + " label = label[:, :, np.newaxis]\n", + " if input.ndim == 2:\n", + " input = input[:, :, np.newaxis]\n", + "\n", + " # 채널을 첫 번째 차원으로 이동\n", + " label = label.transpose((2, 0, 1)).astype(np.float32)\n", + " input = input.transpose((2, 0, 1)).astype(np.float32)\n", + "\n", + " data = {'label': torch.from_numpy(label), 'input': torch.from_numpy(input)}\n", + "\n", + " return data\n", + "\n", + "class Normalization(object):\n", + " def __init__(self, mean=0.5, std=0.5):\n", + " self.mean = mean\n", + " self.std = std\n", + "\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " input = (input - self.mean) / self.std\n", + "\n", + " data = {'label': label, 'input': input}\n", + "\n", + " return data\n", + "\n", + "class RandomFlip(object):\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " if np.random.rand() > 0.5:\n", + " label = np.fliplr(label)\n", + " input = np.fliplr(input)\n", + "\n", + " if np.random.rand() > 0.5:\n", + " label = np.flipud(label)\n", + " input = np.flipud(input)\n", + "\n", + " data = {'label': label, 'input': input}\n", + "\n", + " return data\n", + " \n", + "# class Resize(object):\n", + "# def __init__(self, output_size):\n", + "# assert isinstance(output_size, (int, tuple))\n", + "# self.output_size = output_size\n", + "\n", + "# def __call__(self, data):\n", + "# label, input = data['label'], data['input']\n", + "\n", + "# h, w = input.shape[:2]\n", + "# if isinstance(self.output_size, int):\n", + "# if h > w:\n", + "# new_h, new_w = self.output_size * h / w, self.output_size\n", + "# else:\n", + "# new_h, new_w = self.output_size, self.output_size * w / h\n", + "# else:\n", + "# new_h, new_w = self.output_size\n", + "\n", + "# new_h, new_w = int(new_h), int(new_w)\n", + "\n", + "# input = cv2.resize(input, (new_w, new_h))\n", + "# label = cv2.resize(label, (new_w, new_h))\n", + "\n", + "# return {'label': label, 'input': input}\n", + "\n", + "class Rotate(object):\n", + " def __init__(self, angle_range):\n", + " assert isinstance(angle_range, (tuple, list)) and len(angle_range) == 2\n", + " self.angle_min, self.angle_max = angle_range\n", + "\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " # NumPy 배열로 변환 (필요한 경우)\n", + " if not isinstance(input, np.ndarray):\n", + " input = np.array(input)\n", + " if not isinstance(label, np.ndarray):\n", + " label = np.array(label)\n", + "\n", + " # (H, W, C) 형태를 (H, W)로 변경 (필요한 경우)\n", + " if input.ndim == 3 and input.shape[2] == 1:\n", + " input = input.squeeze(2)\n", + " if label.ndim == 3 and label.shape[2] == 1:\n", + " label = label.squeeze(2)\n", + "\n", + " # 랜덤 각도 선택 및 회전 적용\n", + " angle = np.random.uniform(self.angle_min, self.angle_max)\n", + " h, w = input.shape[:2]\n", + " center = (w / 2, h / 2)\n", + " rot_matrix = cv2.getRotationMatrix2D(center, angle, 1.0)\n", + " input = cv2.warpAffine(input, rot_matrix, (w, h))\n", + " label = cv2.warpAffine(label, rot_matrix, (w, h))\n", + "\n", + " return {'label': label, 'input': input}\n", + " \n", + "# class Crop(object):\n", + "# def __init__(self, output_size):\n", + "# assert isinstance(output_size, (int, tuple))\n", + "# if isinstance(output_size, int):\n", + "# self.output_size = (output_size, output_size)\n", + "# else:\n", + "# assert len(output_size) == 2\n", + "# self.output_size = output_size\n", + "\n", + "# def __call__(self, data):\n", + "# label, input = data['label'], data['input']\n", + "\n", + "# h, w = input.shape[:2]\n", + "# new_h, new_w = self.output_size\n", + "\n", + "# top = np.random.randint(0, h - new_h)\n", + "# left = np.random.randint(0, w - new_w)\n", + "\n", + "# input = input[top: top + new_h, left: left + new_w]\n", + "# label = label[top: top + new_h, left: left + new_w]\n", + "\n", + "# return {'label': label, 'input': input}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# UNet Model (Origin)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "## 라이브러리 불러오기\n", + "import os\n", + "import numpy as np\n", + "\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch.utils.data import DataLoader\n", + "from torch.utils.tensorboard import SummaryWriter\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "## 네트워크 구축하기\n", + "class UNet(nn.Module):\n", + " def __init__(self):\n", + " super(UNet, self).__init__()\n", + "\n", + " # Convolution + BatchNormalization + Relu 정의하기\n", + " def CBR2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True): \n", + " layers = []\n", + " layers += [nn.Conv2d(in_channels=in_channels, out_channels=out_channels,\n", + " kernel_size=kernel_size, stride=stride, padding=padding,\n", + " bias=bias)]\n", + " layers += [nn.BatchNorm2d(num_features=out_channels)]\n", + " layers += [nn.ReLU()]\n", + "\n", + " cbr = nn.Sequential(*layers)\n", + "\n", + " return cbr\n", + "\n", + " # 수축 경로(Contracting path)\n", + " self.enc1_1 = CBR2d(in_channels=1, out_channels=64)\n", + " self.enc1_2 = CBR2d(in_channels=64, out_channels=64)\n", + "\n", + " self.pool1 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc2_1 = CBR2d(in_channels=64, out_channels=128)\n", + " self.enc2_2 = CBR2d(in_channels=128, out_channels=128)\n", + "\n", + " self.pool2 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc3_1 = CBR2d(in_channels=128, out_channels=256)\n", + " self.enc3_2 = CBR2d(in_channels=256, out_channels=256)\n", + "\n", + " self.pool3 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc4_1 = CBR2d(in_channels=256, out_channels=512)\n", + " self.enc4_2 = CBR2d(in_channels=512, out_channels=512)\n", + "\n", + " self.pool4 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc5_1 = CBR2d(in_channels=512, out_channels=1024)\n", + "\n", + " # 확장 경로(Expansive path)\n", + " self.dec5_1 = CBR2d(in_channels=1024, out_channels=512)\n", + "\n", + " self.unpool4 = nn.ConvTranspose2d(in_channels=512, out_channels=512,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec4_2 = CBR2d(in_channels=2 * 512, out_channels=512)\n", + " self.dec4_1 = CBR2d(in_channels=512, out_channels=256)\n", + "\n", + " self.unpool3 = nn.ConvTranspose2d(in_channels=256, out_channels=256,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec3_2 = CBR2d(in_channels=2 * 256, out_channels=256)\n", + " self.dec3_1 = CBR2d(in_channels=256, out_channels=128)\n", + "\n", + " self.unpool2 = nn.ConvTranspose2d(in_channels=128, out_channels=128,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec2_2 = CBR2d(in_channels=2 * 128, out_channels=128)\n", + " self.dec2_1 = CBR2d(in_channels=128, out_channels=64)\n", + "\n", + " self.unpool1 = nn.ConvTranspose2d(in_channels=64, out_channels=64,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec1_2 = CBR2d(in_channels=2 * 64, out_channels=64)\n", + " self.dec1_1 = CBR2d(in_channels=64, out_channels=64)\n", + "\n", + " self.fc = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0, bias=True)\n", + " \n", + " # forward 함수 정의하기\n", + " def forward(self, x):\n", + " enc1_1 = self.enc1_1(x)\n", + " enc1_2 = self.enc1_2(enc1_1)\n", + " pool1 = self.pool1(enc1_2)\n", + "\n", + " enc2_1 = self.enc2_1(pool1)\n", + " enc2_2 = self.enc2_2(enc2_1)\n", + " pool2 = self.pool2(enc2_2)\n", + "\n", + " enc3_1 = self.enc3_1(pool2)\n", + " enc3_2 = self.enc3_2(enc3_1)\n", + " pool3 = self.pool3(enc3_2)\n", + "\n", + " enc4_1 = self.enc4_1(pool3)\n", + " enc4_2 = self.enc4_2(enc4_1)\n", + " pool4 = self.pool4(enc4_2)\n", + "\n", + " enc5_1 = self.enc5_1(pool4)\n", + "\n", + " dec5_1 = self.dec5_1(enc5_1)\n", + "\n", + " unpool4 = self.unpool4(dec5_1)\n", + " cat4 = torch.cat((unpool4, enc4_2), dim=1)\n", + " dec4_2 = self.dec4_2(cat4)\n", + " dec4_1 = self.dec4_1(dec4_2)\n", + "\n", + " unpool3 = self.unpool3(dec4_1)\n", + " cat3 = torch.cat((unpool3, enc3_2), dim=1)\n", + " dec3_2 = self.dec3_2(cat3)\n", + " dec3_1 = self.dec3_1(dec3_2)\n", + "\n", + " unpool2 = self.unpool2(dec3_1)\n", + " cat2 = torch.cat((unpool2, enc2_2), dim=1)\n", + " dec2_2 = self.dec2_2(cat2)\n", + " dec2_1 = self.dec2_1(dec2_2)\n", + "\n", + " unpool1 = self.unpool1(dec2_1)\n", + " cat1 = torch.cat((unpool1, enc1_2), dim=1)\n", + " dec1_2 = self.dec1_2(cat1)\n", + " dec1_1 = self.dec1_1(dec1_2)\n", + "\n", + " x = self.fc(dec1_1)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# UNet Model (Mini)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "## 라이브러리 불러오기\n", + "import os\n", + "import numpy as np\n", + "\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch.utils.data import DataLoader\n", + "from torch.utils.tensorboard import SummaryWriter\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "## 네트워크 구축하기\n", + "class UNet(nn.Module):\n", + " def __init__(self):\n", + " super(UNet, self).__init__()\n", + "\n", + " # Convolution + BatchNormalization + Relu 정의하기\n", + " def CBR2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True): \n", + " layers = []\n", + " layers += [nn.Conv2d(in_channels=in_channels, out_channels=out_channels,\n", + " kernel_size=kernel_size, stride=stride, padding=padding,\n", + " bias=bias)]\n", + " layers += [nn.BatchNorm2d(num_features=out_channels)]\n", + " layers += [nn.ReLU()]\n", + "\n", + " cbr = nn.Sequential(*layers)\n", + "\n", + " return cbr\n", + "\n", + " # 수축 경로(Contracting path)\n", + " self.enc1_1 = CBR2d(in_channels=1, out_channels=64)\n", + " self.pool1 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc2_1 = CBR2d(in_channels=64, out_channels=128)\n", + " self.pool2 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc3_1 = CBR2d(in_channels=128, out_channels=256)\n", + " self.pool3 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc4_1 = CBR2d(in_channels=256, out_channels=512)\n", + " self.pool4 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc5_1 = CBR2d(in_channels=512, out_channels=1024)\n", + "\n", + " # 확장 경로(Expansive path)의 깊이 감소\n", + " self.dec5_1 = CBR2d(in_channels=1024, out_channels=512)\n", + " self.unpool4 = nn.ConvTranspose2d(in_channels=512, out_channels=512, kernel_size=2, stride=2)\n", + "\n", + " self.dec4_1 = CBR2d(in_channels=512 + 512, out_channels=256)\n", + " self.unpool3 = nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=2, stride=2)\n", + "\n", + " self.dec3_1 = CBR2d(in_channels=256 + 256, out_channels=128)\n", + " self.unpool2 = nn.ConvTranspose2d(in_channels=128, out_channels=128, kernel_size=2, stride=2)\n", + "\n", + " self.dec2_1 = CBR2d(in_channels=128 + 128, out_channels=64)\n", + " self.unpool1 = nn.ConvTranspose2d(in_channels=64, out_channels=64, kernel_size=2, stride=2)\n", + "\n", + " self.dec1_1 = CBR2d(in_channels=64 + 64, out_channels=64)\n", + " self.fc = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0, bias=True)\n", + " \n", + " # forward 함수 정의하기\n", + " def forward(self, x):\n", + " enc1_1 = self.enc1_1(x)\n", + " pool1 = self.pool1(enc1_1)\n", + "\n", + " enc2_1 = self.enc2_1(pool1)\n", + " pool2 = self.pool2(enc2_1)\n", + "\n", + " enc3_1 = self.enc3_1(pool2)\n", + " pool3 = self.pool3(enc3_1)\n", + "\n", + " enc4_1 = self.enc4_1(pool3)\n", + " pool4 = self.pool4(enc4_1)\n", + "\n", + " enc5_1 = self.enc5_1(pool4)\n", + "\n", + " dec5_1 = self.dec5_1(enc5_1)\n", + "\n", + " unpool4 = self.unpool4(dec5_1)\n", + " cat4 = torch.cat((unpool4, enc4_1), dim=1)\n", + " dec4_1 = self.dec4_1(cat4)\n", + "\n", + " unpool3 = self.unpool3(dec4_1)\n", + " cat3 = torch.cat((unpool3, enc3_1), dim=1)\n", + " dec3_1 = self.dec3_1(cat3)\n", + "\n", + " unpool2 = self.unpool2(dec3_1)\n", + " cat2 = torch.cat((unpool2, enc2_1), dim=1)\n", + " dec2_1 = self.dec2_1(cat2)\n", + "\n", + " unpool1 = self.unpool1(dec2_1)\n", + " cat1 = torch.cat((unpool1, enc1_1), dim=1)\n", + " dec1_1 = self.dec1_1(cat1)\n", + "\n", + " x = self.fc(dec1_1)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model - Load, Save" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "## 네트워크 저장하기\n", + "def save(ckpt_dir, net, optim, epoch):\n", + " if not os.path.exists(ckpt_dir):\n", + " os.makedirs(ckpt_dir)\n", + "\n", + " torch.save({'net': net.state_dict(), 'optim': optim.state_dict()},\n", + " \"%s/model_epoch%d.pth\" % (ckpt_dir, epoch))\n", + "\n", + "## 네트워크 불러오기\n", + "def load(ckpt_dir, net, optim):\n", + " if not os.path.exists(ckpt_dir):\n", + " epoch = 0\n", + " return net, optim, epoch\n", + "\n", + " ckpt_lst = os.listdir(ckpt_dir)\n", + " ckpt_lst.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))\n", + "\n", + " dict_model = torch.load('%s/%s' % (ckpt_dir, ckpt_lst[-1]))\n", + "\n", + " net.load_state_dict(dict_model['net'])\n", + " optim.load_state_dict(dict_model['optim'])\n", + " epoch = int(ckpt_lst[-1].split('epoch')[1].split('.pth')[0])\n", + "\n", + " return net, optim, epoch" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Hyper Parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# 훈련 파라미터 설정하기\n", + "lr = 1e-3\n", + "batch_size = 4\n", + "num_epoch = 10\n", + "\n", + "# base_dir = './2nd_Battery/unet'\n", + "# base_dir = './2nd_Battery/unet-mini'\n", + "base_dir = './2nd_Battery/unet-dice-loss'\n", + "# base_dir = './2nd_Battery/unet-focal-loss'\n", + "# base_dir = './2nd_Battery/unet-sgd'\n", + "# base_dir = './2nd_Battery/unet-rmsprop'\n", + "# base_dir = './2nd_Battery/unet-l1'\n", + "# base_dir = './2nd_Battery/unet-l2'\n", + "ckpt_dir = os.path.join(base_dir, \"checkpoint\")\n", + "log_dir = os.path.join(base_dir, \"log\")\n", + "\n", + "# 네트워크 생성하기\n", + "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", + "net = UNet().to(device)\n", + "\n", + "# 손실함수 정의하기\n", + "fn_loss = nn.BCEWithLogitsLoss().to(device)\n", + "\n", + "# Optimizer 설정하기\n", + "optim = torch.optim.Adam(net.parameters(), lr=lr)\n", + "\n", + "# 그 밖에 부수적인 functions 설정하기\n", + "fn_tonumpy = lambda x: x.to('cpu').detach().numpy().transpose(0, 2, 3, 1)\n", + "fn_denorm = lambda x, mean, std: (x * std) + mean\n", + "fn_class = lambda x: 1.0 * (x > 0.95)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - Dice Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "class DiceLoss(nn.Module):\n", + " def __init__(self, smooth=1e-6):\n", + " super(DiceLoss, self).__init__()\n", + " self.smooth = smooth\n", + "\n", + " def forward(self, preds, targets):\n", + " preds = torch.sigmoid(preds)\n", + " intersection = (preds * targets).sum()\n", + " dice = (2. * intersection + self.smooth) / (preds.sum() + targets.sum() + self.smooth)\n", + " return 1 - dice\n", + "\n", + "fn_loss = DiceLoss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - Focal Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "class FocalLoss(nn.Module):\n", + " def __init__(self, alpha=0.8, gamma=2.0):\n", + " super(FocalLoss, self).__init__()\n", + " self.alpha = alpha\n", + " self.gamma = gamma\n", + "\n", + " def forward(self, preds, targets):\n", + " BCE = nn.functional.binary_cross_entropy_with_logits(preds, targets, reduction='none')\n", + " BCE_exp = torch.exp(-BCE)\n", + " focal_loss = self.alpha * (1 - BCE_exp) ** self.gamma * BCE\n", + " return focal_loss.mean()\n", + "\n", + "fn_loss = FocalLoss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - SGD" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "optim = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - RMSProp" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "optim = torch.optim.RMSprop(net.parameters(), lr=lr, alpha=0.9)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - L1" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "class L1Loss(nn.Module):\n", + " def __init__(self):\n", + " super(L1Loss, self).__init__()\n", + "\n", + " def forward(self, preds, targets):\n", + " return torch.mean(torch.abs(preds - targets))\n", + " \n", + "fn_loss = L1Loss().to(device)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - L2" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "class L2Loss(nn.Module):\n", + " def __init__(self):\n", + " super(L2Loss, self).__init__()\n", + "\n", + " def forward(self, preds, targets):\n", + " return torch.mean((preds - targets) ** 2)\n", + " \n", + "fn_loss = L2Loss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "dir_testset = 'C:/Users/pinb/Desktop/testimages/testset'\n", + "dir_groundtruth = 'C:/Users/pinb/Desktop/testimages/maskset'\n", + "# transform = transforms.Compose([Normalization(mean=0.5, std=0.5), RandomFlip(), Rotate(angle_range=(-90, 90)), ToTensor()])\n", + "transform = transforms.Compose([Normalization(mean=0.5, std=0.5), ToTensor()])\n", + "test_set = create_datasets(dir_testset, dir_groundtruth, 0, 0, transform=transform)\n", + "\n", + "# data = test_set.__getitem__(0) # 이미지 불러오기\n", + "\n", + "# input_img = data['input']\n", + "# label = data['label']\n", + "\n", + "# # 이미지 시각화\n", + "# plt.subplot(121)\n", + "# plt.imshow(input_img.reshape(input_img.shape[0], input_img.shape[1]), cmap='gray')\n", + "# plt.title('Input Image')\n", + "\n", + "# plt.subplot(122)\n", + "# plt.imshow(label.reshape(label.shape[0], label.shape[1]), cmap='gray')\n", + "# plt.title('Label')\n", + "\n", + "# plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "loader_test = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0)\n", + "\n", + "# 그밖에 부수적인 variables 설정하기\n", + "num_data_test = len(test_set)\n", + "num_batch_test = np.ceil(num_data_test / batch_size)\n", + "\n", + "# 결과 디렉토리 생성하기\n", + "result_dir = os.path.join(base_dir, 'result')\n", + "if not os.path.exists(result_dir):\n", + " os.makedirs(os.path.join(result_dir, 'gt'))\n", + " os.makedirs(os.path.join(result_dir, 'img'))\n", + " os.makedirs(os.path.join(result_dir, 'pr'))\n", + " os.makedirs(os.path.join(result_dir, 'numpy'))\n", + "\n", + "net, optim, st_epoch = load(ckpt_dir=ckpt_dir, net=net, optim=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TEST: BATCH 0001 / 0250 | LOSS 0.3965\n", + "TEST: BATCH 0002 / 0250 | LOSS 0.3255\n", + "TEST: BATCH 0003 / 0250 | LOSS 0.3926\n", + "TEST: BATCH 0004 / 0250 | LOSS 0.3913\n", + "TEST: BATCH 0005 / 0250 | LOSS 0.3963\n", + "TEST: BATCH 0006 / 0250 | LOSS 0.3929\n", + "TEST: BATCH 0007 / 0250 | LOSS 0.4026\n", + "TEST: BATCH 0008 / 0250 | LOSS 0.3988\n", + "TEST: BATCH 0009 / 0250 | LOSS 0.4022\n", + "TEST: BATCH 0010 / 0250 | LOSS 0.3956\n", + "TEST: BATCH 0011 / 0250 | LOSS 0.3933\n", + "TEST: BATCH 0012 / 0250 | LOSS 0.3834\n", + "TEST: BATCH 0013 / 0250 | LOSS 0.3889\n", + "TEST: BATCH 0014 / 0250 | LOSS 0.3885\n", + "TEST: BATCH 0015 / 0250 | LOSS 0.3923\n", + "TEST: BATCH 0016 / 0250 | LOSS 0.3851\n", + "TEST: BATCH 0017 / 0250 | LOSS 0.3819\n", + "TEST: BATCH 0018 / 0250 | LOSS 0.3872\n", + "TEST: BATCH 0019 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0020 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0021 / 0250 | LOSS 0.3858\n", + "TEST: BATCH 0022 / 0250 | LOSS 0.3819\n", + "TEST: BATCH 0023 / 0250 | LOSS 0.3796\n", + "TEST: BATCH 0024 / 0250 | LOSS 0.3749\n", + "TEST: BATCH 0025 / 0250 | LOSS 0.3713\n", + "TEST: BATCH 0026 / 0250 | LOSS 0.3668\n", + "TEST: BATCH 0027 / 0250 | LOSS 0.3637\n", + "TEST: BATCH 0028 / 0250 | LOSS 0.3670\n", + "TEST: BATCH 0029 / 0250 | LOSS 0.3629\n", + "TEST: BATCH 0030 / 0250 | LOSS 0.3630\n", + "TEST: BATCH 0031 / 0250 | LOSS 0.3604\n", + "TEST: BATCH 0032 / 0250 | LOSS 0.3624\n", + "TEST: BATCH 0033 / 0250 | LOSS 0.3675\n", + "TEST: BATCH 0034 / 0250 | LOSS 0.3665\n", + "TEST: BATCH 0035 / 0250 | LOSS 0.3683\n", + "TEST: BATCH 0036 / 0250 | LOSS 0.3713\n", + "TEST: BATCH 0037 / 0250 | LOSS 0.3750\n", + "TEST: BATCH 0038 / 0250 | LOSS 0.3744\n", + "TEST: BATCH 0039 / 0250 | LOSS 0.3734\n", + "TEST: BATCH 0040 / 0250 | LOSS 0.3742\n", + "TEST: BATCH 0041 / 0250 | LOSS 0.3724\n", + "TEST: BATCH 0042 / 0250 | LOSS 0.3735\n", + "TEST: BATCH 0043 / 0250 | LOSS 0.3712\n", + "TEST: BATCH 0044 / 0250 | LOSS 0.3719\n", + "TEST: BATCH 0045 / 0250 | LOSS 0.3730\n", + "TEST: BATCH 0046 / 0250 | LOSS 0.3756\n", + "TEST: BATCH 0047 / 0250 | LOSS 0.3745\n", + "TEST: BATCH 0048 / 0250 | LOSS 0.3750\n", + "TEST: BATCH 0049 / 0250 | LOSS 0.3743\n", + "TEST: BATCH 0050 / 0250 | LOSS 0.3746\n", + "TEST: BATCH 0051 / 0250 | LOSS 0.3741\n", + "TEST: BATCH 0052 / 0250 | LOSS 0.3739\n", + "TEST: BATCH 0053 / 0250 | LOSS 0.3728\n", + "TEST: BATCH 0054 / 0250 | LOSS 0.3740\n", + "TEST: BATCH 0055 / 0250 | LOSS 0.3737\n", + "TEST: BATCH 0056 / 0250 | LOSS 0.3734\n", + "TEST: BATCH 0057 / 0250 | LOSS 0.3737\n", + "TEST: BATCH 0058 / 0250 | LOSS 0.3753\n", + "TEST: BATCH 0059 / 0250 | LOSS 0.3751\n", + "TEST: BATCH 0060 / 0250 | LOSS 0.3742\n", + "TEST: BATCH 0061 / 0250 | LOSS 0.3749\n", + "TEST: BATCH 0062 / 0250 | LOSS 0.3773\n", + "TEST: BATCH 0063 / 0250 | LOSS 0.3777\n", + "TEST: BATCH 0064 / 0250 | LOSS 0.3785\n", + "TEST: BATCH 0065 / 0250 | LOSS 0.3801\n", + "TEST: BATCH 0066 / 0250 | LOSS 0.3787\n", + "TEST: BATCH 0067 / 0250 | LOSS 0.3781\n", + "TEST: BATCH 0068 / 0250 | LOSS 0.3788\n", + "TEST: BATCH 0069 / 0250 | LOSS 0.3800\n", + "TEST: BATCH 0070 / 0250 | LOSS 0.3795\n", + "TEST: BATCH 0071 / 0250 | LOSS 0.3797\n", + "TEST: BATCH 0072 / 0250 | LOSS 0.3793\n", + "TEST: BATCH 0073 / 0250 | LOSS 0.3797\n", + "TEST: BATCH 0074 / 0250 | LOSS 0.3800\n", + "TEST: BATCH 0075 / 0250 | LOSS 0.3795\n", + "TEST: BATCH 0076 / 0250 | LOSS 0.3802\n", + "TEST: BATCH 0077 / 0250 | LOSS 0.3791\n", + "TEST: BATCH 0078 / 0250 | LOSS 0.3789\n", + "TEST: BATCH 0079 / 0250 | LOSS 0.3807\n", + "TEST: BATCH 0080 / 0250 | LOSS 0.3817\n", + "TEST: BATCH 0081 / 0250 | LOSS 0.3813\n", + "TEST: BATCH 0082 / 0250 | LOSS 0.3818\n", + "TEST: BATCH 0083 / 0250 | LOSS 0.3824\n", + "TEST: BATCH 0084 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0085 / 0250 | LOSS 0.3825\n", + "TEST: BATCH 0086 / 0250 | LOSS 0.3827\n", + "TEST: BATCH 0087 / 0250 | LOSS 0.3823\n", + "TEST: BATCH 0088 / 0250 | LOSS 0.3820\n", + "TEST: BATCH 0089 / 0250 | LOSS 0.3821\n", + "TEST: BATCH 0090 / 0250 | LOSS 0.3822\n", + "TEST: BATCH 0091 / 0250 | LOSS 0.3821\n", + "TEST: BATCH 0092 / 0250 | LOSS 0.3827\n", + "TEST: BATCH 0093 / 0250 | LOSS 0.3826\n", + "TEST: BATCH 0094 / 0250 | LOSS 0.3826\n", + "TEST: BATCH 0095 / 0250 | LOSS 0.3841\n", + "TEST: BATCH 0096 / 0250 | LOSS 0.3844\n", + "TEST: BATCH 0097 / 0250 | LOSS 0.3822\n", + "TEST: BATCH 0098 / 0250 | LOSS 0.3822\n", + "TEST: BATCH 0099 / 0250 | LOSS 0.3838\n", + "TEST: BATCH 0100 / 0250 | LOSS 0.3844\n", + "TEST: BATCH 0101 / 0250 | LOSS 0.3837\n", + "TEST: BATCH 0102 / 0250 | LOSS 0.3838\n", + "TEST: BATCH 0103 / 0250 | LOSS 0.3841\n", + "TEST: BATCH 0104 / 0250 | LOSS 0.3848\n", + "TEST: BATCH 0105 / 0250 | LOSS 0.3858\n", + "TEST: BATCH 0106 / 0250 | LOSS 0.3860\n", + "TEST: BATCH 0107 / 0250 | LOSS 0.3857\n", + "TEST: BATCH 0108 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0109 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0110 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0111 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0112 / 0250 | LOSS 0.3877\n", + "TEST: BATCH 0113 / 0250 | LOSS 0.3886\n", + "TEST: BATCH 0114 / 0250 | LOSS 0.3885\n", + "TEST: BATCH 0115 / 0250 | LOSS 0.3892\n", + "TEST: BATCH 0116 / 0250 | LOSS 0.3893\n", + "TEST: BATCH 0117 / 0250 | LOSS 0.3906\n", + "TEST: BATCH 0118 / 0250 | LOSS 0.3905\n", + "TEST: BATCH 0119 / 0250 | LOSS 0.3903\n", + "TEST: BATCH 0120 / 0250 | LOSS 0.3891\n", + "TEST: BATCH 0121 / 0250 | LOSS 0.3886\n", + "TEST: BATCH 0122 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0123 / 0250 | LOSS 0.3876\n", + "TEST: BATCH 0124 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0125 / 0250 | LOSS 0.3861\n", + "TEST: BATCH 0126 / 0250 | LOSS 0.3864\n", + "TEST: BATCH 0127 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0128 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0129 / 0250 | LOSS 0.3869\n", + "TEST: BATCH 0130 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0131 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0132 / 0250 | LOSS 0.3872\n", + "TEST: BATCH 0133 / 0250 | LOSS 0.3864\n", + "TEST: BATCH 0134 / 0250 | LOSS 0.3869\n", + "TEST: BATCH 0135 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0136 / 0250 | LOSS 0.3864\n", + "TEST: BATCH 0137 / 0250 | LOSS 0.3864\n", + "TEST: BATCH 0138 / 0250 | LOSS 0.3862\n", + "TEST: BATCH 0139 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0140 / 0250 | LOSS 0.3863\n", + "TEST: BATCH 0141 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0142 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0143 / 0250 | LOSS 0.3868\n", + "TEST: BATCH 0144 / 0250 | LOSS 0.3866\n", + "TEST: BATCH 0145 / 0250 | LOSS 0.3860\n", + "TEST: BATCH 0146 / 0250 | LOSS 0.3858\n", + "TEST: BATCH 0147 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0148 / 0250 | LOSS 0.3861\n", + "TEST: BATCH 0149 / 0250 | LOSS 0.3863\n", + "TEST: BATCH 0150 / 0250 | LOSS 0.3861\n", + "TEST: BATCH 0151 / 0250 | LOSS 0.3863\n", + "TEST: BATCH 0152 / 0250 | LOSS 0.3864\n", + "TEST: BATCH 0153 / 0250 | LOSS 0.3853\n", + "TEST: BATCH 0154 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0155 / 0250 | LOSS 0.3852\n", + "TEST: BATCH 0156 / 0250 | LOSS 0.3852\n", + "TEST: BATCH 0157 / 0250 | LOSS 0.3855\n", + "TEST: BATCH 0158 / 0250 | LOSS 0.3847\n", + "TEST: BATCH 0159 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0160 / 0250 | LOSS 0.3835\n", + "TEST: BATCH 0161 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0162 / 0250 | LOSS 0.3844\n", + "TEST: BATCH 0163 / 0250 | LOSS 0.3842\n", + "TEST: BATCH 0164 / 0250 | LOSS 0.3830\n", + "TEST: BATCH 0165 / 0250 | LOSS 0.3832\n", + "TEST: BATCH 0166 / 0250 | LOSS 0.3833\n", + "TEST: BATCH 0167 / 0250 | LOSS 0.3833\n", + "TEST: BATCH 0168 / 0250 | LOSS 0.3838\n", + "TEST: BATCH 0169 / 0250 | LOSS 0.3848\n", + "TEST: BATCH 0170 / 0250 | LOSS 0.3849\n", + "TEST: BATCH 0171 / 0250 | LOSS 0.3848\n", + "TEST: BATCH 0172 / 0250 | LOSS 0.3847\n", + "TEST: BATCH 0173 / 0250 | LOSS 0.3845\n", + "TEST: BATCH 0174 / 0250 | LOSS 0.3841\n", + "TEST: BATCH 0175 / 0250 | LOSS 0.3843\n", + "TEST: BATCH 0176 / 0250 | LOSS 0.3841\n", + "TEST: BATCH 0177 / 0250 | LOSS 0.3842\n", + "TEST: BATCH 0178 / 0250 | LOSS 0.3844\n", + "TEST: BATCH 0179 / 0250 | LOSS 0.3841\n", + "TEST: BATCH 0180 / 0250 | LOSS 0.3836\n", + "TEST: BATCH 0181 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0182 / 0250 | LOSS 0.3843\n", + "TEST: BATCH 0183 / 0250 | LOSS 0.3849\n", + "TEST: BATCH 0184 / 0250 | LOSS 0.3855\n", + "TEST: BATCH 0185 / 0250 | LOSS 0.3857\n", + "TEST: BATCH 0186 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0187 / 0250 | LOSS 0.3862\n", + "TEST: BATCH 0188 / 0250 | LOSS 0.3857\n", + "TEST: BATCH 0189 / 0250 | LOSS 0.3854\n", + "TEST: BATCH 0190 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0191 / 0250 | LOSS 0.3862\n", + "TEST: BATCH 0192 / 0250 | LOSS 0.3868\n", + "TEST: BATCH 0193 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0194 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0195 / 0250 | LOSS 0.3863\n", + "TEST: BATCH 0196 / 0250 | LOSS 0.3869\n", + "TEST: BATCH 0197 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0198 / 0250 | LOSS 0.3877\n", + "TEST: BATCH 0199 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0200 / 0250 | LOSS 0.3869\n", + "TEST: BATCH 0201 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0202 / 0250 | LOSS 0.3869\n", + "TEST: BATCH 0203 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0204 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0205 / 0250 | LOSS 0.3862\n", + "TEST: BATCH 0206 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0207 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0208 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0209 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0210 / 0250 | LOSS 0.3872\n", + "TEST: BATCH 0211 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0212 / 0250 | LOSS 0.3878\n", + "TEST: BATCH 0213 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0214 / 0250 | LOSS 0.3873\n", + "TEST: BATCH 0215 / 0250 | LOSS 0.3877\n", + "TEST: BATCH 0216 / 0250 | LOSS 0.3881\n", + "TEST: BATCH 0217 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0218 / 0250 | LOSS 0.3879\n", + "TEST: BATCH 0219 / 0250 | LOSS 0.3872\n", + "TEST: BATCH 0220 / 0250 | LOSS 0.3865\n", + "TEST: BATCH 0221 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0222 / 0250 | LOSS 0.3873\n", + "TEST: BATCH 0223 / 0250 | LOSS 0.3876\n", + "TEST: BATCH 0224 / 0250 | LOSS 0.3872\n", + "TEST: BATCH 0225 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0226 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0227 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0228 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0229 / 0250 | LOSS 0.3878\n", + "TEST: BATCH 0230 / 0250 | LOSS 0.3881\n", + "TEST: BATCH 0231 / 0250 | LOSS 0.3879\n", + "TEST: BATCH 0232 / 0250 | LOSS 0.3878\n", + "TEST: BATCH 0233 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0234 / 0250 | LOSS 0.3877\n", + "TEST: BATCH 0235 / 0250 | LOSS 0.3876\n", + "TEST: BATCH 0236 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0237 / 0250 | LOSS 0.3876\n", + "TEST: BATCH 0238 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0239 / 0250 | LOSS 0.3877\n", + "TEST: BATCH 0240 / 0250 | LOSS 0.3883\n", + "TEST: BATCH 0241 / 0250 | LOSS 0.3881\n", + "TEST: BATCH 0242 / 0250 | LOSS 0.3882\n", + "TEST: BATCH 0243 / 0250 | LOSS 0.3882\n", + "TEST: BATCH 0244 / 0250 | LOSS 0.3878\n", + "TEST: BATCH 0245 / 0250 | LOSS 0.3884\n", + "TEST: BATCH 0246 / 0250 | LOSS 0.3887\n", + "TEST: BATCH 0247 / 0250 | LOSS 0.3890\n", + "TEST: BATCH 0248 / 0250 | LOSS 0.3886\n", + "TEST: BATCH 0249 / 0250 | LOSS 0.3883\n", + "TEST: BATCH 0250 / 0250 | LOSS 0.3879\n", + "AVERAGE TEST: BATCH 0250 / 0250 | LOSS 0.3879\n" + ] + } + ], + "source": [ + "with torch.no_grad():\n", + " net.eval()\n", + " loss_arr = []\n", + "\n", + " for batch, data in enumerate(loader_test, 1):\n", + " # forward pass\n", + " label = data['label'].to(device)\n", + " input = data['input'].to(device)\n", + "\n", + " output = net(input)\n", + "\n", + " # 손실함수 계산하기\n", + " loss = fn_loss(output, label)\n", + "\n", + " loss_arr += [loss.item()]\n", + "\n", + " print(\"TEST: BATCH %04d / %04d | LOSS %.4f\" %\n", + " (batch, num_batch_test, np.mean(loss_arr)))\n", + "\n", + " # Tensorboard 저장하기\n", + " label = fn_tonumpy(label)\n", + " input = fn_tonumpy(fn_denorm(input, mean=0.5, std=0.5))\n", + " output = fn_tonumpy(fn_class(output))\n", + "\n", + " # 테스트 결과 저장하기\n", + " for j in range(label.shape[0]):\n", + " id = num_batch_test * (batch - 1) + j\n", + "\n", + " gt = label[j].squeeze()\n", + " img = input[j].squeeze()\n", + " pr = output[j].squeeze()\n", + "\n", + " plt.imsave(os.path.join(result_dir, 'gt', 'gt_%04d.png' % id), gt, cmap='gray')\n", + " plt.imsave(os.path.join(result_dir, 'img', 'img_%04d.png' % id), img, cmap='gray')\n", + " plt.imsave(os.path.join(result_dir, 'pr', 'pr_%04d.png' % id), pr, cmap='gray')\n", + " np.save(os.path.join(result_dir, 'numpy', 'gt_%04d.npy' % id), gt)\n", + " np.save(os.path.join(result_dir, 'numpy', 'img_%04d.npy' % id), img)\n", + " np.save(os.path.join(result_dir, 'numpy', 'pr_%04d.npy' % id), pr)\n", + "\n", + "print(\"AVERAGE TEST: BATCH %04d / %04d | LOSS %.4f\" %\n", + " (batch, num_batch_test, np.mean(loss_arr)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualize" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\pinb\\AppData\\Local\\Temp\\ipykernel_19912\\3510449017.py:45: RuntimeWarning: invalid value encountered in divide\n", + " precision = tp / (tp + fp) # precision = TP / (TP + FP)\n", + "C:\\Users\\pinb\\AppData\\Local\\Temp\\ipykernel_19912\\3510449017.py:46: RuntimeWarning: invalid value encountered in divide\n", + " recall = tp / (tp + fn) # recall = TP / (TP + FN)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "precision: 0.7764027600652067\n", + "recall: 0.7843549615385272\n", + "accuracy: 0.9770164763057941\n", + "f1: 0.7741721124958945\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAACaCAYAAACHSaGqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP6UlEQVR4nO2deXgUVdbG396XdKcT0iELJAHCEjEsAqIBFNSwiaDsuLHIiEJQtmEchm9YRIn7KMigoyOgMoAsMi4IssoAQZA9YQtICBCykaSz9n6/P5iq6e50J91JdzqdnN/z1JP0rVtVp+7pqnr71rnnChhjDARBEARBEAQRAAj9bQBBEARBEARBuAuJV4IgCIIgCCJgIPFKEARBEARBBAwkXgmCIAiCIIiAgcQrQRAEQRAEETCQeCUIgiAIgiACBhKvBEEQBEEQRMBA4pUgCIIgCIIIGEi8EgRBEARBEAEDiVcPWbt2LQQCAbKysvxtCkEQRKNHIBBgyZIlHm0zefJktGnTxif2EN7F2TNxwIABGDBggN9sIpo+JF4JogaWL1+O7du3+9sMgiAIgiD+i9jfBgQazz//PCZMmACZTOZvU4gGYPny5RgzZgyeeuopf5tCEAFJVVUVxGLPHjWfffYZrFarjywiCCLQoZ5XDxGJRJDL5RAIBP42hSAIF1itVuj1en+bEVD4qs3kcrnH4lUikVAHgYdUVFT42wSiEdBcvgckXj3EMb6nTZs2eOKJJ3DgwAH06tULCoUCXbp0wYEDBwAA27ZtQ5cuXSCXy9GzZ0+cOnWq2j43b96Mzp07Qy6XIzExEd9++y3FfDUAnM/kcjni4+Px6aefYsmSJfwPE4FAgIqKCqxbtw4CgQACgQCTJ0/2r9HNDM4fFy9exLhx4xAcHIywsDDMmjXLTmgJBALMnDkT69evx7333guZTIadO3f60XL/4Y02u3XrFl544QVERERAJpPh3nvvxRdffFHtWHq9HkuWLEHHjh0hl8sRFRWFUaNG4erVq3bHsY15LSsrw+zZs9GmTRvIZDK0bNkSAwcOxMmTJ/k6zu5/FRUVmDdvHmJiYiCTydCpUye89957YIzZ1ePOa/v27UhMTOTtb0rfB87H58+fxzPPPIPQ0FD069cPAPD111+jZ8+eUCgUaNGiBSZMmIAbN25U28evv/6Kxx9/HKGhoQgKCkLXrl3x0Ucf8evPnj2LyZMno127dpDL5YiMjMQLL7yAO3fuNNh5NgauX7+OGTNmoFOnTlAoFAgLC8PYsWOdjnspKSnBnDlz+O9269atMXHiRBQWFvJ1artmDhw4AIFAwGsIjqysLAgEAqxdu5Yvmzx5MlQqFa5evYrHH38carUazz77LADgP//5D8aOHYvY2FjIZDLExMRgzpw5qKqqqmY3d68IDw+HQqFAp06dsHDhQgDA/v37IRAI8O2331bb7l//+hcEAgHS0tI8bdZ6Q2EDXuDKlSt45pln8NJLL+G5557De++9h+HDh+OTTz7BX/7yF8yYMQMAkJqainHjxuHSpUsQCu/+bvjxxx8xfvx4dOnSBampqSguLsbUqVPRqlUrf55Sk+fUqVMYMmQIoqKisHTpUlgsFrz++usIDw/n63z11Vf4wx/+gN69e2PatGkAgPj4eH+Z3KwZN24c2rRpg9TUVBw9ehQrVqxAcXExvvzyS77Ovn378M0332DmzJnQarXN/sdfXdssLy8PDz74IC8Cw8PD8dNPP2Hq1KkoLS3F7NmzAQAWiwVPPPEE9u7diwkTJmDWrFkoKyvD7t27kZ6e7vJaefnll7FlyxbMnDkTnTt3xp07d3Do0CFcuHABPXr0cLoNYwwjRozA/v37MXXqVHTv3h27du3C/PnzcevWLfztb3+zq3/o0CFs27YNM2bMgFqtxooVKzB69GhkZ2cjLCzMOw3cCBg7diw6dOiA5cuXgzGGN998E3/9618xbtw4/OEPf0BBQQFWrlyJhx9+GKdOnUJISAgAYPfu3XjiiScQFRWFWbNmITIyEhcuXMAPP/yAWbNm8XV+//13TJkyBZGRkcjIyMA//vEPZGRk4OjRo83m7ePx48dx5MgRTJgwAa1bt0ZWVhZWr16NAQMG4Pz581AqlQCA8vJyPPTQQ7hw4QJeeOEF9OjRA4WFhfjuu+9w8+ZNaLXaOl8zNWE2mzF48GD069cP7733Hm/P5s2bUVlZienTpyMsLAzHjh3DypUrcfPmTWzevJnf/uzZs3jooYcgkUgwbdo0tGnTBlevXsX333+PN998EwMGDEBMTAzWr1+PkSNH2h17/fr1iI+PR1JSUj1auI4wwiPWrFnDALBr164xxhiLi4tjANiRI0f4Ort27WIAmEKhYNevX+fLP/30UwaA7d+/ny/r0qULa926NSsrK+PLDhw4wACwuLg4X59Os2X48OFMqVSyW7du8WWZmZlMLBYz28siKCiITZo0yQ8WEowxtnjxYgaAjRgxwq58xowZDAA7c+YMY4wxAEwoFLKMjAx/mNmoqG+bTZ06lUVFRbHCwkK78gkTJjCNRsMqKysZY4x98cUXDAD74IMPqtlgtVr5/wGwxYsX8581Gg1LSUmp8RwmTZpkd//bvn07A8DeeOMNu3pjxoxhAoGAXblyxe54UqnUruzMmTMMAFu5cmWNxw0UOB8//fTTfFlWVhYTiUTszTfftKt77tw5JhaL+XKz2czatm3L4uLiWHFxsV1dW79xfrZlw4YNDAA7ePAgX+b4TGSMsf79+7P+/fvX4wwbD87aIS0tjQFgX375JV+2aNEiBoBt27atWn2uXd25Zvbv319NJzDG2LVr1xgAtmbNGr5s0qRJDAD785//7JbdqampTCAQ2OmShx9+mKnVarsyW3sYY2zBggVMJpOxkpISviw/P5+JxWK7a7shobABL9C5c2e7Xx4PPPAAAODRRx9FbGxstfLff/8dAJCTk4Nz585h4sSJUKlUfL3+/fujS5cuDWF6s8RisWDPnj146qmnEB0dzZe3b98eQ4cO9aNlhCtSUlLsPr/yyisAgB07dvBl/fv3R+fOnRvUrsZMXdqMMYatW7di+PDhYIyhsLCQXwYPHgydTse/3t+6dSu0Wi2/X1tq6pULCQnBr7/+ipycHLfPZceOHRCJRHj11VftyufNmwfGGH766Se78uTkZLterK5duyI4OJi/9zYVXn75Zf7/bdu2wWq1Yty4cXZ+i4yMRIcOHbB//34Ad986Xbt2DbNnz+Z7Yjls/aZQKPj/9Xo9CgsL8eCDDwKAXYhHU8e2HUwmE+7cuYP27dsjJCTErh22bt2Kbt26VeudBP7XrnW9Zmpj+vTpNdpdUVGBwsJC9OnTB4wxPnyxoKAABw8exAsvvGCnVRztmThxIgwGA7Zs2cKXbdq0CWazGc8991yd7a4PJF69gKPTNRoNACAmJsZpeXFxMYC7sTTAXdHkiLMywjvk5+ejqqqK2j2A6NChg93n+Ph4CIVCu7iztm3bNrBVjZu6tFlBQQFKSkrwj3/8A+Hh4XbLlClTANy9fgDg6tWr6NSpk8eDsd555x2kp6cjJiYGvXv3xpIlS2oVldevX0d0dDTUarVd+T333MOvt8XxngwAoaGh/L23qWDrv8zMTDDG0KFDh2q+u3Dhgp3fACAxMbHGfRcVFWHWrFmIiIiAQqFAeHg4fzydTuejM2p8VFVVYdGiRXystVarRXh4OEpKSuza4erVq7W2aV2vmZoQi8Vo3bp1tfLs7GxMnjwZLVq0gEqlQnh4OPr37w/gf/7jrrva7E5ISMD999+P9evX82Xr16/Hgw8+6LdnJsW8egGRSORROXMYYEAQhGc466Ww7WkgquNOm3HpqZ577jlMmjTJ6X66du1aLzvGjRuHhx56CN9++y1+/vlnvPvuu3j77bexbds2r735aC73Xlv/Wa1WCAQC/PTTT07P3/btnjuMGzcOR44cwfz589G9e3eoVCpYrVYMGTKkWaUxe+WVV7BmzRrMnj0bSUlJ0Gg0EAgEmDBhgk/awVUPrMVicVouk8n4MTS2dQcOHIiioiK89tprSEhIQFBQEG7duoXJkyfXye6JEydi1qxZuHnzJgwGA44ePYqPP/7Y4/14CxKvfiQuLg7A3QFfjjgrI7xDy5YtIZfL3Wr35jIoobGTmZlp18t05coVWK3WZj8oqybq0mbh4eFQq9WwWCxITk6ucf/x8fH49ddfYTKZIJFIPLItKioKM2bMwIwZM5Cfn48ePXrgzTffdCle4+LisGfPHpSVldn1vl68eJFf39yJj48HYwxt27ZFx44da6wHAOnp6S59XFxcjL1792Lp0qVYtGgRX56ZmeldowOALVu2YNKkSXj//ff5Mr1ej5KSErt68fHxSE9Pr3Ff7lwzoaGhAFBt/45vF2ri3LlzuHz5MtatW4eJEyfy5bt377ar165dOwCo1W4AmDBhAubOnYsNGzagqqoKEokE48ePd9smb0NhA34kOjoaiYmJ+PLLL1FeXs6X//LLLzh37pwfLWvaiEQiJCcnY/v27XZxd1euXKkWOxcUFFTtJkI0PKtWrbL7vHLlSgCgGOUaqEubiUQijB49Glu3bnX6QCsoKOD/Hz16NAoLC532vrjq4bRYLNVeObds2RLR0dEwGAwu7Xr88cdhsViqHetvf/sbBAIBfQ8AjBo1CiKRCEuXLq3W/owxPsVVjx490LZtW3z44YfV7m3cdlzPreN+PvzwQ98Y34gRiUTV2mHlypXVekJHjx6NM2fOOE0pxW3vzjUTFxcHkUiEgwcP2q3/+9//7pHNtvvk/rdNhQbc/bH68MMP44svvkB2drZTezi0Wi2GDh2Kr7/+GuvXr8eQIUOg1WrdtsnbUM+rn1m+fDmefPJJ9O3bF1OmTEFxcTE+/vhjJCYm2glawrssWbIEP//8M/r27Yvp06fzD8bExEScPn2ar9ezZ0/s2bMHH3zwAaKjo9G2bVt+4B3RcFy7dg0jRozAkCFDkJaWhq+//hrPPPMMunXr5m/TGi11bbO33noL+/fvxwMPPIAXX3wRnTt3RlFREU6ePIk9e/agqKgIwN3XiF9++SXmzp2LY8eO4aGHHkJFRQX27NmDGTNm4Mknn6y277KyMrRu3RpjxoxBt27doFKpsGfPHhw/ftyuZ8uR4cOH45FHHsHChQuRlZWFbt264eeff8a///1vzJ49m1LY4W6v3htvvIEFCxYgKysLTz31FNRqNa5du4Zvv/0W06ZNwx//+EcIhUKsXr0aw4cPR/fu3TFlyhRERUXh4sWLyMjIwK5duxAcHIyHH34Y77zzDkwmE1q1aoWff/4Z165d8/dpNjhPPPEEvvrqK2g0GnTu3BlpaWnYs2dPtZRr8+fPx5YtWzB27Fi88MIL6NmzJ4qKivDdd9/hk08+Qbdu3dy6ZjQaDcaOHYuVK1dCIBAgPj4eP/zwAx+z7A4JCQmIj4/HH//4R9y6dQvBwcHYunWr05jvFStWoF+/fujRowemTZuGtm3bIisrCz/++KPdsxC4e82PGTMGALBs2TLPG9ObNHB2g4DHWaqsYcOGVasHoFo6GC7VxbvvvmtXvnHjRpaQkMBkMhlLTExk3333HRs9ejRLSEjw2XkQjO3du5fdd999TCqVsvj4ePb555+zefPmMblczte5ePEie/jhh5lCoWAAKG1WA8OlBDp//jwbM2YMU6vVLDQ0lM2cOZNVVVXx9Zxdb80Vb7RZXl4eS0lJYTExMUwikbDIyEj22GOPsX/84x929SorK9nChQtZ27Zt+XpjxoxhV69etTsOl07HYDCw+fPns27dujG1Ws2CgoJYt27d2N///ne7/TqmymKMsbKyMjZnzhwWHR3NJBIJ69ChA3v33XftUvrUdF5xcXFN5vrlfFxQUFBt3datW1m/fv1YUFAQCwoKYgkJCSwlJYVdunTJrt6hQ4fYwIEDeT907drVLpXYzZs32ciRI1lISAjTaDRs7NixLCcnp1rqs6aeKqu4uJhNmTKFabVaplKp2ODBg9nFixedfp/u3LnDZs6cyVq1asWkUilr3bo1mzRpkl3aOXeumYKCAjZ69GimVCpZaGgoe+mll1h6errTVFlBQUFO7T5//jxLTk5mKpWKabVa9uKLL/Ip42z3wRhj6enpvK/lcjnr1KkT++tf/1ptnwaDgYWGhjKNRmN3L/EHAsaaWAR7E6F79+4IDw+vFqNC+JannnoKGRkZzTK2qzGyZMkSLF26FAUFBX59RRVIUJsRBOELzGYzoqOjMXz4cPzzn//0qy0U8+pnTCYTzGazXdmBAwdw5swZDBgwwD9GNRMcp8nLzMzEjh07qN0JgiAIwoHt27ejoKDAbhCYv6CYVz9z69YtJCcn47nnnkN0dDQuXryITz75BJGRkXYJqAnv065dO37u7uvXr2P16tWQSqX405/+5G/TCIIgCKJR8Ouvv+Ls2bNYtmwZ7rvvPj5frD8h8epnQkND0bNnT3z++ecoKChAUFAQhg0bhrfeeqtJzcHdGBkyZAg2bNiA3NxcyGQyJCUlYfny5dWSuxMEQRBEc2X16tX4+uuv0b17d6xdu9bf5tzFX8G2H3/8MYuLi2MymYz17t2b/frrr/4yhagF8lVgQH4KDMhPgQP5KjAgPzU//BLzumnTJsydOxeLFy/GyZMn0a1bNwwePNijVBBEw0C+CgzIT4EB+SlwIF8FBuSnZoo/FHPv3r3tUplYLBYWHR3NUlNT/WEOUQPkq8CA/BQYkJ8CB/JVYEB+ap40eMyr0WjEiRMnsGDBAr5MKBQiOTkZaWlpTrcxGAx2s69YrVYUFRUhLCyMpu/0Eey/M7J44ivyU8NTFz8B5KuGhvwUGDDGUFZWBq1WS/e+Rg49owID7pqKjo6GUOi9l/0NLl4LCwthsVgQERFhVx4REcHPU+1Iamoqli5d2hDmEU5w11fkJ/9C11RgQH5q/Bw/ftyj5xT5yb+Qnxo/N27cQOvWrb22v4DINrBgwQLMnTuX/6zT6RAbG1vrdhEREQgNDUVubm61nJ4cAoGAn8PX9pcX979AIIBKpUL79u2hVCoBAHK5HEFBQZBKpZBIJAgODobZbIbZbIbJZILRaITBYIDZbAZjzG6xWq0wm80QCoUQCoU4e/asy9gczjbHX4TcZ71eD6vVWms7NBR19RPR8JCvAgNXfrpx4waCg4P9aFnTpLS0FDExMVCpVB5tR35qeDhfeQL5qeHh/KRWq7263wYXr1qtFiKRCHl5eXbleXl5iIyMdLqNTCaDTCZz+xhSqRTR0dGQyWS4desWjEYjADh9LSAQCJyKRIFAAKFQCK1Wi/j4eAQHB0MoFKKyshIymQxCoRAymQwKhQLBwcGwWq0wmUwwGAxgjMFoNKKsrAwmkwlWq5UXr1KpFGKxmK/bsWNHlJSUwGQyOT0Xzj5nZRKJxO4ViC/wxFee+onwHr6+pgjv4C0/BQcH08PWh3j6nCI/+Q/yU2Dg7bCMBs82IJVK0bNnT+zdu5cvs1qt2Lt3L5KSkrxyjNjYWEilUty6datGceeqpxUAxGIx2rRpg4SEBKjVaohEIohEIshkMlitVgiFQohEIgQFBfHnpVKpoFarERISgvDwcKjVaojFYggEAojFYgQHB0OtVkMmk0EikUAsFkOtViM6OrrG82EOM/hyQlgkEvk8Tqd79+4+9RXhHchPgQH5KTBoiOcU4R3ommqe+CVsYO7cuZg0aRJ69eqF3r1748MPP0RFRQWmTJnilf0XFhbyvZ/OXrsD1YWrrUBUKpXo0KEDWrZsyYtW7jW/TCaDwWCAVCqFTCaDVCrlg5BFIhEUCgW/L41Gw4cOiMViiEQiAHfnBxaLxZBKpbBarYiPj0dubm6NQtsxtIE7L64X11ekpKRg+vTpPvMV4R3IT4EB+Slw8PVzivAOdE01T/wiXsePH4+CggIsWrQIubm56N69O3bu3Fkt6Lqu6HQ6SCQS/rMrAWsLt16j0aBjx44IDQ21E63ceqFQCKlUCrlcDrlcDqvVCqvVCrFYzItUs9kMgUAAkUgElUrFx09xMapczCsAfvvY2FhcuXKlWi+rI7brGWNeHb3njNGjR6OiosJnviK8A/kpMCA/BQ6+fk4R3oGuqeaJgNWmlhohpaWl0Gg0Ndbhekw5bGNHnQlZoVCI8PBwtG/fHiqVin8lz4UHOKJWq6HRaHhxq1QqebHLGENVVRVMJhPEYjE/gEsqlfLruMFdBoMBFRUVMBqNSEtLQ1VVFS+2a3ON1WqFxWKBxWJxp9nqhE6nq3MskDt+IrxDffwEkK8aCm/5qb77IZzjrfYlP/keb7Qx+cn3+KqN/TLDVkNQ0yh8R1EokUjQtm1b3HPPPXx8q+NAKbFYzAtViUQCi8UCs9lcbd8WiwXl5eWwWq0QiUQoLy9HVVUVZDIZBAJBtVAGgUAAqVQKqVSKdu3aubSR+2ybscBkMvlUuBIEQRAEQTQ2AiJVVl3gRJ5IJKqxB9NZfKuzgVyccAUAhULBD9wym82QSCRgjMFisaCyshKMMVRUVAAA39tqNBphNBphsVh4e6xWK9+7CwBt2rTBzZs3UVJSUu1cuPqMMT6OliAIgiAIornRZMUrAF68ukKj0aBTp04ICQnhe1adva4XCoUQi8UQi+82l1wu5wdKcSmySktLUVFRwff4SiQSCAQCVFZW8qKTE8K2vcJc3KpEIoHVakWnTp1w7NixanU4MU49rQRBEARBNGeapHi1HZHPpbWyhcvf2rZtWz5/KxcmYLut4zZisRgWiwVWqxUKhQIGg4HvTQX+l21ApVJBIBCgvLycF6fcwCxuXxaLhRfD3D4tFgtiY2Nx4cIF6HQ6u8kNbHtsXZ0z9cYSBEEQBNHUaXIxr46DsZz1ckZGRiI+Ph5KpdLl7FW2YpYTwEqlEmKxmE9ybDAYUFJSAolEAo1Gg5CQEH4mCcYY5HI51Go1QkNDoVKp+AwF3AQDYrHY7rNcLodWq0Xv3r15e7nYWlfC1FF0EwRBEARBNGWaVM+rMwFn+8peJBIhKioKMTExkMvlAOx7WJ1lI+C2FQqFfLiAUChEVVUVH5JgtVpRVVUFlUqFyspKfkYvDovFAqlUCqVSCcYYTCYTP40scDculkuvZbVa0a5dO4hEIn5wV23nahuX25imiyUIgiAIgvA2Tarn1ZXQ417RR0dHIyoqChKJxG4Ali22PZm2PZq2KbMqKipQUVEBk8kEkUgEvV4Pk8kEvV7PTwnLTTig1+uh1+v5zAScELZYLPxfznahUAiDwYCQkBC0b9++VuHqaKdtPlqCIAiCIIimSJMRr65iVYG7PaPh4eHQarWQSCS8COV6OrneWcd9Oe6jsrKSF6oWiwUCgQBBQUHQ6/UwGo187y4385XRaITZbIZIJOLTa1ksFj5O1jZcgNtGIBBAqVTapc1ydp7ORLZt5gKCIAiCIIimSEArHdvZr2x7HZ0JWG6SAC5DgO0MV9yAKUc4QSiRSPh0WHq9nj+W7aQEZrOZF6eO08Bys2/Z9rIajUY+w4Btii6hUIgjR47g+PHjTm2pbakpuwJBEARBEESgE9DilRN7jrGeznpOi4qK+BhTTsDa9lTaZgOwRSwWIygoCGFhYXxvKrcdN4NWUFAQP4sWJ1K5qWC5VFoGgwFmsxlGo5E/flVVFeRyORhj/CQGZrMZx48fR05OTo29q67CG0jA+h6BQMAP2iMIgiCIxgRjjA9dbKoEtHjlsBWhrmI+TSYTcnNzIRKJ+MkFGGN8j6ejeOV6XFUqFcLDwyGTyVBQUACpVAqr1Qq9Xg+RSASxWAylUgmz2czHtnJTw9r2xnJpuziBKhQKERQUBKVSCblcjtLSUpw6dQoXLlxAeXl5tfNzdwFAoQM+QiQSoWvXrvjb3/6G1atXUzs3csLDw/H0009j2LBh/jaFIAjC51gsFty+fRvHjx/Hjz/+2KQHcAd0tgHHaVa5V/jOwgYYY8jPz0fr1q0BgB8wxQ3E4kIHrFYrHyagUqn4CQxycnJgNBqhVCr5HlyJRAKpVAqJRAKlUony8nIolUr+mNyALG7CAi73q9Vq5dNnXb9+HWfOnMGNGzdQWVkJkUiEioqKapkPHGNdbcsc4epQ3lfvERERgTfeeAOjRo1CixYtsH//fn+bRLhAJpNh3Lhx+NOf/oR7770Xn376KX788Ud/m0UQBOEzdDodzpw5g44dO+L++++HRqPxt0k+JaDFqzOB5izulRO5er0ehYWFiIqK4gdScb2hnICVSCSQyWQQi8WQSqVQKBSoqqriJw2wWCx8lgFu6lehUIgWLVqguLgYFRUVaNGiBR8uwL3C57azWCwIDg6GQqFAeno6Dhw4gPLycigUCojFYuj1ertz8US02mKbyYCoOwKBAH379sWKFStw33338eX79+9v0r9qA5VWrVrhww8/xFNPPcXHmqenp/vbLIIgCJ/AGMO1a9cAAH369OHve+Hh4U367WBAi1dHOMFqK2C5Mk7A5uTkICoqih+oxcWPisViBAcH8/lfubyuXDiAwWCAQqHgRaRarYZEIuF7YbkJCMrKyhAUFGSXH5Y7ltFoRHBwMKRSKfbt24eMjAxYrVZ+IFlQUBBKS0vrJVq5c6aUWfVHLpfj5ZdfxqJFixAaGsqXZ2VlYcOGDX60jHBEKBRi4MCBWLFiBTp27MiX5+bmYuvWrX60jCAIwjcYjUZcvXqVz6bEUVhY2OQ1QEDL8tp6XZ2ljiovL0dxcTFEIhHMZjPfexYUFMRnFOD2I5PJwBiDTqeDQCCAVCqFxWKBQqHgMwVwabYqKiqgVqtRVlaGyspKuyljuR7b0NBQCIVCfP/990hPT+fTZCkUCj7sgOsJdjYwizsnxzLb9rBdmvqX15fI5XJ89NFHePfdd+2Eq8lkwvLly3HlyhU/WkfYIhKJMHfuXHzzzTd2whUAQkND0aZNG/8YRriFyWTytwkEEXCYTCZkZ2cjLi7OTriaTCYsW7YMmZmZfrTO9wS0eHUH24wE3Odbt25BLP5fp3NQUBAEAoFd3KtGo+FDDbj0WFyIgFQqhUgkgslkglAohEQigVqt5gWwTqfjB3Nx+1QqlbBarThy5AgMBgPCwsL4eFm5XA6DwcDHutqKVmcClsMxNMLZuROeI5PJ8Pbbb+OFF16w+54AwI4dO7Bu3To/WUY4IhQKMXHiRLz++usIDg6utl4mk6Fly5Z+sIxwlx07dvjbBIIIKEwmE86fP4+4uDi7cTbA3evps88+Q0FBgZ+saxialHh11RPrOKhLp9OhsrKS7/HkYme5rAMc3Kt+27hYLlygsrISFRUVfLYCvV4Pi8UCpVKJsrIymM1mGAwGvrykpAT79+9Hfn4+NBoNFAoFZDIZpFIpIiMjERYWxueNdSVWaztv215Xom60aNECn3/+OWbMmFFNuALgvy+E/5FKpZgzZw5WrFgBhULhtI5AIMDYsWMhlUob2DrCXRwfvgRBuKa8vBzp6elISEiARCKptp6bhn7z5s3VpqpvSjQZ8VqbYOMEB9ezevv2bahUKr7MNkaVS29lsVj4lFoCgQByuRwmkwkVFRXQ6XSQyWR8DyxjjO9pFYlEKCkpgcFggNVqRUFBAU6fPg2RSIS4uDjI5XKoVCr06tULbdq0gV6vR1hYGFq3bo2QkBC3RKytYHV2/o7xv0TtREVFYdWqVXj22WedClcAGDBgAFatWoX27dtT2/oRtVqNt956C6mpqfx17AqVSuX0Jk80DgYMGIB//vOf/jaDIBo95eXlKC8vR9euXV3mGueeUVFRUU160HZAi9ea4j8B54KWS41VXFzMD9LiRCoHN6GAXq/nB3BxkxEIhUJUVVXxvaZcvBY3yxYnPLlcrRUVFSguLkZsbCzi4uJgNpuRm5sLs9mMkpISlJSUoLCwEDk5OejVqxfuv/9+JCYmuuyNcByE5uyvYxsRtdOmTRv88MMPmDBhQo1tJpFIMHXqVBw5cgSLFy9GbGxsA1pJAIBWq8Unn3yC2bNnuyVKk5OT8c477yAyMrIBrCM8hbumCIJwTXl5OW7duoWIiIgaJyLirqelS5eirKysyfa+BrR4tcU2PtTVOtseTYPBgKKiIvTo0QMA+NhUo9HIC1SpVAqj0QiLxQKVSgXGGD8Yi5sZi0uBxeWGDQoKglqtRmhoKNq1a4fMzExcvnwZFy5cwH/+8x+cPHkSOTk5CAkJQVZWFoxGI7RaLcRiMX777TeUlpZCIpEgIiICarUagHOR6ipEgARs3Zg+fTr/XbDF1S/X8PBwLF68GPv27UP//v2pjRuQJ598Es888wwf5sP9GHSFSqXCjBkzsHfvXvTr168BLSWc0ZR7gwIdi8WCmzdv+tsMwgm3b99Gp06d7O57XPpNZygUCrRs2dJuavqmRJMQr7a9ryKRqNprd8fPwF2Rd+nSJVy7do3/AhiNRhiNRj7nq1qthtFohEwmQ1BQED/Nq1Qq5adzFQgECAkJgdFoxJ07dyAUCqHVahEfHw+pVMrnf7158yYfC2s2m3HmzBkUFxejvLwcer0eKpUKVVVVOH/+PIqLi6FWq9GhQwdotVo+JtdZrytHTWETJKxqx3FWM4vFgg0bNmDw4ME4cuSIy+3i4+OxefNmDBs2jNq5gbDtddi8eTPuu+8+bNu2rdbtOnfujA0bNmDcuHEURuBHRCJRjdcU4T82b97MT+RDNC5sB6Ru3rwZvXr1wv/93//V+oySyWSwWCzIy8ur8Ud+oBHw4tVVPlSup5UbUOUYWsAYQ2lpKX7//Xd+NHJVVRW/XiwWo6qqCpWVlVCr1TAYDCgpKYFEIuFnrhCJRAgNDUVRUREyMzNx/fp15OTkoKqqiu/Jzc/Pt0upxS3FxcX8cQoLC1FSUoKQkBBERkaisLCQ//Xbrl07REREQCqV2olY2/OoKWyAcA43KxqHY9tt27YNU6dOxd69e5GamlrjPNHh4eFYt24dJk+ejKCgIJ/ZTNzFto3PnDmD3NxcrF+/HkVFRQCAkpIS3Lhxw+m2rVu3xpdffonVq1fj3nvvrfH1G+E7UlNT/W0C4YQJEyY4Lb9+/XoDW0KYTCZUVlbyn23F65kzZ9CnTx/06NEDp06dQmpqKnJzc13e96RSKdRqNY4ePYqsrKwm0RMb8OLVFe6kl9Lr9cjJyUFsbCw/KwX3y4Qxhjt37vCDtUpLSyESiaDVamGxWCAQCKBQKHD9+nUUFhYiKCgIQUFBuHnzJjQaDVq3bg2r1QqhUAilUonw8HCo1Wq7h2VlZSUfgF1UVISysjKYTCYolUrIZDL+dWhcXBzatWuHe+65ByEhIU6nwaW0We7Tvn17bN26FU8++SRfFh0dDcYYysvL8f7772PWrFn8j5m9e/fi+++/r3GfLVq04KchHTduHFq0aOHTc2guaDQaLFiwAO3bt+fLWrRogStXruDjjz/GN998AwD4/vvvsXz5cpjNZlRWVtYY5yWTyTB16lSkpaVh9erVSExMdDlAj/ANtV1PROMiLi7O3yY0KwoKCnDixAmcOHGCL9Pr9bh69SrWrFmDmJgYfPTRRxg3bhz+8pe/4ODBg9i0aVON9z2lUokHH3wQRUVF2L9/P3JycgK6J7bJildXvZG2Is5qteL69es4f/48oqKi7EIKDAYD/yqZCyUQCoUoKyvjJyvgfsFoNBqYzWZcvHgROp0OVVVVCAkJgVwuh0QiQc+ePaFQKFBeXs5nJgDA53bl9qfT6VBaWgrGGF+Wm5sLrVaL6OhomM1mdO3aFW3btuVn+3I8R+p9rZkePXrghx9+wBNPPGFXvmrVKsyePRujRo3Ca6+9htu3b/PrqqqqsHDhwlonJpBIJOjfvz82bNiAX375hZ+ilKgbISEheOutt/Dmm2/azXL29ttvo3fv3njllVdw9epVAHe/9x9//DHefPNNREZGIj4+vtb9q9VqvPjiizhy5Ag2bdqErl27Uk8sQRB+5ffff0dGRgZ69+6NyspK/i1taWkpjhw5gpiYGEybNo3XLDNnzsScOXPwySef1Pr8F4vF6NGjBx599FGYTCZs3LgR58+fD8ieWI/Ea2pqKu6//36o1Wq0bNkSTz31FC5dumRXR6/XIyUlBWFhYVCpVBg9ejTy8vLs6mRnZ2PYsGFQKpVo2bIl5s+fX6dfALU5qqb1XM9lWVkZMjMzERkZyc8FbDAYUFVVxQc6CwQCfkYtlUoFi8WCO3fuQKFQQK1WIy8vD7/99hufeUCn0+H999/Hrl278MADD0Cn0+HGjRtOvyCVlZWorKyESqWCXC6H0Wjk42i59SdOnOCzI+h0OnTv3h2hoaF2gtv2fBljfKiCbchCXXpfx44dW28/NQaEQiEGDRqEjRs3olOnTgDsYyczMjKwYsUK7N6926mfLl++jLFjx7o1mEEoFCIxMREbNmzA9OnTG0TA3rhxwyvXVGNBq9Xi888/x0svvQSBQIBnn30WBw8eRN++fflZ8hwxGAx477338MUXX/A+NBgMtc7gpFarMWrUKKxfvx5///vffeqvpuYnW+r6w9mbA4S89Yxqyn6qL94Yve4tPwFN5xlltVpx8uRJVFRU8IOAN2zYgIcffhiHDh1CXFwcnn/+eSQnJ9s9u2QyGf74xz+iX79+ePrpp3Hz5s1a73tCoRBxcXEYM2YMDh06hFmzZgVcu3kkXn/55RekpKTg6NGj2L17N0wmEwYNGoSKigq+zpw5c/D9999j8+bN+OWXX5CTk4NRo0bx6y0WC4YNGwaj0YgjR45g3bp1WLt2LRYtWuSx8bYTCtREba/Yr127hvPnz6N169YQiUSwWq38tK5CoZB/mAUHB/ODtlq2bAmRSITDhw/j0KFDkMlksFqtsFgsMBgMCA4OhtlsxpYtW5Cenu7UVs4ui8WC0tJSftIDTriKxWK0aNECUqkUBQUFvBA9fPgwn4/WWQ8zJ1RrCplwF2/4yd+IRCLMnz8fW7duRYcOHQDc/e6YzWaPhMrp06fx/PPPu4wrckQul+Ptt9/G888/Xye7PWHcuHFNwlcA0Lt3b+zduxejRo3iv8NlZWX46quv8Ouvv9a4bXl5OV599VW8/vrr+OabbzBv3rxat+FITEyEwWDwaS9EU/KTI3UNTfLmACFvPKOApu2n+uKNCT+8pSWApvGMslgs+OWXXxASEoLExEQ+o4DRaMTTTz+NBx98sMbtVSoVVqxYgeHDh2Pr1q344IMP3LrvyeVyPP/88xgxYkTgvXVi9SA/P58BYL/88gtjjLGSkhImkUjY5s2b+ToXLlxgAFhaWhpjjLEdO3YwoVDIcnNz+TqrV69mwcHBzGAwOD2OXq9nOp2OX27cuMEAMABMLBYziUTCpFIpv8hkMrv/uc/c/46LXC5n3bp1Y8uWLWNz5sxhEyZMYM899xybOHEimzJlCktJSWFLlixhS5cuZQsXLmSLFi1iU6dOZfHx8UypVLIWLVqwuLg4FhoayiIjI9mQIUPYkCFDWFhYGFMoFHaLXC7nj8nZJZFImEQiYTKZjMXGxrJOnTqxVq1asfj4eNaxY0fWrVs31r17d9ajRw82YsQI1rdvX9a+fXsWFxfHRCIRE4lETCgUVlsEAgETCAR8W9VlyczM9Iqf/LUEBQWxxYsXs6qqqmr2FhQUsMcee8zjfT744IPs3Llzbl8n06ZN8/l5evOa8tciEonYhAkT2I0bN+xsPXz4MOvTp4/H32WhUMhEIhGbPn06KywsdMtXr732WkD4SafTuXU+zR1Pn1E6nY785AfqoiW2bNnCAO88o/zpJ71ezy5evMju3LljV3748GHWr18/9vPPP3u0P4vFwo4fP85WrVrl9n3v6tWrHh3DE7hrytttXK+YV51OBwD84JQTJ07AZDIhOTmZr5OQkIDY2FikpaUBANLS0tClSxdERETwdQYPHozS0lJkZGQ4PU5qaio0Gg2/xMTE8OtsezSZTS+kbTwocxH/arvdtWvXcOLECYjFYsjlclgsFkgkEsjlcmi1WkRGRvKzX2VlZWHnzp3IycmBWCyGUqnkswtERkaipKQEaWlpdiMFbXH2qp87l7y8PFRUVEAikcBkMkGv1/OJho1GI7Kzs6FWq9G2bVt+ZiFn5+XqXD3Fdl74+vjJH7Rp0wYbNmzAokWL+MkmOG7evIk///nPOHjwoMf7PXr0KJ599lmcPHnSrd7/hpj+8t577/XaNeUPRCIRXn31VaxZs4bviSsrK8N3332Hl156CUeOHPH4O829Cfnkk08wbNgwbNq0CZcvX7bLKgLcvVbS09Oh0+kgFPp2GECg+ynQqMszCmiafuLawts4phlkjOH06dMe7aMufjp27BiAwH5G3bx5E2lpaWjXrh1/7tx974033sDkyZMxYMAAj/YpFArRq1cvPPTQQ/jrX/+KLVu21HrfC0TqHNxltVoxe/Zs9O3bF4mJiQCA3NxcSKVS/rU3R0REBHJzc/k6tjcFbj23zhkLFizA3Llz+c+lpaX8l457xQ+4FoW2cMLWcT0nFIVCIcLCwqDX62GxWBAeHg6tVgvGGAoLC3H27FmkpaWhrKwMEokEYrEYJpMJJpMJVquVzxvrzoPWWR1OwHJpvoKCgmAwGBAUFASlUgmVSsVPO3v79m2P4n6dDfDyhPr4qaFp164dPv/8czzyyCPV1un1evzhD3/Arl276rz/s2fP4rHHHsPQoUORlJSEhx56CO3bt682VanFYmmQNDPh4eF2nwPJV3K5HK+88gpef/11/keGTqdDSkoKNmzY4HZ4kCsYY/j111/x9NNPIygoCJ06dcJjjz2Gzp07IywsDJGRkZgyZQrkcrnL9vIWgeynQKOuzyig6fmpuLgYM2bMwIYNG7y+b8d73tGjRzFt2jScO3fOre3r6idn8a+B5Kfbt28jPT0djzzyCJ93mrvvbd++HVu3bsXgwYPrvP8uXbpg+fLl2LVrF9auXYv8/Hy0adMGsbGx0Gq1aNmyJaZMmcKHHLRr185bp9Yg1Fm8pqSkID09HYcOHfKmPU6RyWQu5/EF7AWsOzjrieV6TjnhqlAo+DRXJSUlKC0tRVpaGs6cOcPHSnILN7iLMVbvYHbOJrPZzAtq4O40swKBgJ+m1mq11viLyZlA9zW1+akhEIlEGDp0KFasWIG2bds6rfPdd99h37599T5WSUkJNmzYgA0bNkCpVCI2Nhb33XcfOnbsiJEjRyI+Ph5r1qzBzp07630sb9MYfAXc7R1///33MWLECD7+mDGG999/H//617+8+h1m/02FZpuCRiAQICgoCBaLpVrPRGOgsfgpEGlMzyh/whjDu+++6xPh6oykpCS3hSvQ/PxksVhw4cIFmM1mDBw4kNcutve9sWPH4tFHH633sUJCQjB+/HiMHz8elZWVyM7OxunTp3HixAns2rUL+fn5eOSRR/gfDYFEncTrzJkz8cMPP+DgwYN2wfaRkZEwGo18wn2OvLw8fl7xyMhIvrvfdj23ri5w+VS5QUo1PfAc19mGFYSHh/OhATdu3EDLli2Rk5ODU6dOIT09Hfn5+byAFIlEfAYCZjO6312449qGONRW33ZAmLvH4PBGntf6+snXJCQkYNmyZRgyZEi13gCOwsJCpKam1joC3VMqKytx8eJFXLx4EQDw/vvvIy4uDpcuXWqQUZwFBQV2nxu7r5RKJUaOHIlly5ZV+5Fx69YtfP755w3y44sTtA1FoPkpUKnPMwpoWn66efMm1qxZg+XLl/vblGrUx0+Ob3C59dz2jZHs7GycOnUKffr0qda7z933wsLCsGDBAq/PAqhUKpGQkICEhAQAdwfEZWVlISEhISBTOnoU4MUYw8yZM/Htt99i37591R46PXv2hEQiwd69e/myS5cuITs7G0lJSQD+96ssPz+fr7N7924EBwejc+fOdToJd+NabddxnzlBaLVakZOTg7y8PJw+fRpXr15FZmYmDhw4gN9++w15eXm8aJVKpfzChQh4GivnaLOjffWBOy+O+ghX25t4ff3kSwYNGoSff/4ZY8aMcSlcLRYLPvzwQ5w5c8bn9pSXlyMjI6PB0o9kZGR49ZryJW3atMGmTZuwdu1ap73jV65csTuXpkQg+SkQ8cYzCmhafrpy5Ypd3urGgDf81Lt3bwCB84y6fPkydDodhg0bVk24Anf9dOfOHcyaNQvdunXzuT0qlSqwJ2jxZHTX9OnTmUajYQcOHGC3b9/ml8rKSr7Oyy+/zGJjY9m+ffvYb7/9xpKSklhSUhK/3mw2s8TERDZo0CB2+vRptnPnThYeHs4WLFjgth3c6DXbRSAQVMs6wI3i5xaxWMwvIpGo2uhlsVjMVCoVCw0NZX379mXdu3dncXFxrGXLlkylUjGVSsXCw8NZTEwMe+CBB5hWq2UhISEsKCioWlYBVwuXZYCzQSQS2dnlaKPt4iyjgLPFsW0c26mm9Y7Lo48+6lU/+WLp1q0by87OrtWer776iimVygaxqaGXzp07e/2a8sXStWtXdunSpRptOXz4MJPJZH5v08bsJxrF7pz6PqO49iU/+RZvaImioiIGeOcZ5Ws/lZaW2p2bM44cOcKmTp3KKioqfGpLQ+OrNvZIvLq6Ia9Zs4avU1VVxWbMmMFCQ0OZUqlkI0eOZLdv37bbT1ZWFhs6dChTKBRMq9WyefPmMZPJ5LYdrh60tmmzXAlXTgS6OhcuvZRIJGJqtZp16tSJhYeHsxYtWrDIyEgWFxfHunfvztq3b88eeeQRFhERwZRKJS9Ma1tkMhlvjz/Eq6fLwIEDve4nby+zZ8+u1Zbdu3ez8PBwv4sXXy3nzp3zyTXl7WX48OHMarW6tKOqqoq99tprXv8eN5bFW34iUeQcV+3u7jOKa1/yk2+pr58Y+18be+MZ5Ws/ZWZm1nrf2717d7V0WU0BX7WxgLHAm0+0tLQUGo2mWrlQKKw2cIs5eTXv6pS51+vcjFrBwcFgjEEikcBsNvMxNqWlpVCr1ejbty82bNgAk8nk9lStXIys7Tpnr/Wdbeuuq1zVq4urdTodgoODPd4OcO0nb6LRaPDvf/8b/fv3d1nn/PnzGD58OH7//Xef2uJP6uMnoGF8JZfLsWnTJowYMcLpesYYVq9ejVdffTUgpyt0B2/5qb77IZzjrfYlP/keb7RxQ/jJaDSiqqrK5f2VMYZffvkF7dq1Q2xsrE9s8Ce+amPfJjVsYBwHTDkKVk44OsNWuAqFQoSEhMBsNvP7lMvlqKys5DMRmM1mbN26lR/4YytIHUWy4/FrE5GeiFTHugH4W6RevPjii3j44YerlVssFpSXl8NkMuG1115r0sI1UGjTpo1d3kZbiouLsWTJEixcuLDJCtdAh/xCEJ7z888/O81wYLFYkJ2djTfeeANisbhJCldf0qTEK/A/AWsr7GrLBGArXDnxyglVuVwOtVqNqqoqlJSUIC8vDzdu3EB+fj4/SMtZr25tPb6uRKxjj6w7KcCam2C1hZtKz5EPP/wQ999/Pz799FOUlZX5wTLCkdu3b1fLecsYw9mzZ1FUVISNGzeipKTEP8YRtRJw00c2A9LT0/1tAlELe/bswbVr1+zKGGPYtWsXRo4ciSNHjtAPwzoQoMPMXGO1Wvl0WVxvZ004ClduW247bsYtlUrF9+RxGQq4OZ7decXvKGod1zlL8cUYc/tL7a3e3EAjKyurWpnBYMDGjRtx8eJFzJ07N3BHUzYxTCYT8vLycM899/Bl2dnZGDRoENRqdaMbEU0QjZ2ioiJ/m0DUQnR0dLX7Xn5+Pu655x5s2rQJWq3W77lnA5Em91T35PW8rWC1/SwSiRAVFcWnOcrLy+MnIODEJGMMer2+xlm9PBWwtZ0XYY9UKsVDDz1UrTw/P5//pcvNfkb4nyeffLKav86dO4eCggKns+UQBFEzffv29bcJRA0YjUaEhYVVu+/l5eUhNja22gxihPs0ubABADXGtgL2otU2VID7XyKR8EK1RYsWkEqlEIvFTntBXcW3eiJca8IdEe7L7Rszffr0QZ8+faqVnzt3DsXFxX6wiHBFaGgo/vSnP9m9erZYLPj666/rPf0rQTRXHK8nonFx4cIF9OvXr5qfTp8+TQP56kmTFK814SxMwHERiUQoLy+HQqFAZWWl3WQGroSpO+Xu9K66kxXB2bnUVqepIRQKMWnSJMjlcrtyxhh++OEHEkSNjEGDBqFr1652ZQcPHsSOHTv8ZBFBNC0oJrlxYbVakZubiw4dOtiVHzp0CEKh0OOJjQh7mlXruRKrtusVCgUYY/wsTVyMa6tWrdzqwayt59Xd+u7g2NvbnHjiiScwatSoauU3btzA9u3bG94gwiVisRhTpkypdrO+fPkyDaYjCKJJsnPnTgQHB1e771VWVrrMukK4T7MRr85iWx0FrEgk4kMOrFYrjEYjzGYzlEolSkpK7F7LOOtN9WZ+1ZpwJlZtB6l50nsbiISEhOD99993+tpl48aNNPCnkTFkyJBqsXmlpaX47LPP/GQRQRCE7ygpKcGePXvQpUsXu/LS0lKUl5cjMjLST5Y1HZqFeK2tx5VDLpeDMQapVAqDwQChUAiJRAKVSoWcnByn6a6c/W9b5k3x2FTFqKfExsaiVatW1cpLSkrwzTff+MEiwhVarRazZs2CUqm0K9+7dy9Onz7tH6MIIsChsKjGTXl5OUaNGlXtvnfixAl07NjRT1Y1LZq8eHWVUaAmAWuxWCAQCGA0GiEWi5GTkwOj0ehWz6qvejxrCztoTkgkkmqvYnQ6HZYuXYpTp075ySrCGXFxcejXr59dTuTt27dj7ty5NMCEIOoIxUs2bkwmE3r06GF33ztw4AB0Ol213liibjS5VFmOOBOvrqioqOCncFMqlbBYLLh+/TqMRqPLbeqaRcBdPJltq7nQoUMHPscucDfX4cSJE7Fjx45m1Q6BQEVFhV0v0caNG/Hyyy+jtLTUj1YRBEH4Dp1OZxcasHv3biiVSjz55JNNdhB1Q9Pkf75xEwAA1UfnOwpPuVwOq9UKlUoFqVQKnU7HC1dnIQKeCFdPekg9yU7Q3BAKhXj88cd5HxqNRvzf//0fCddGiEAgwKRJk/hXZydPnsTs2bNJuBIE0WRhjEGr1UKhUAC4OwtaeXk5+vbtS8LVizQL8QrY97g6S18lFoshk8mgUCgglUqRn5+PiooKuzq2/zv7W59X+J724DZXoRYZGYmBAwfynzdu3Ih//vOfzbY9GjOxsbGYOHEigLs/MhYsWID8/Hw/W0UQBOE7DAYDtFotgLv3vbNnz2L48OEkXL1MkxevQO1CTyQSQSaTQalUQiaToby8nBeurvbnTAA7+3LWpcfVHZubIzKZDEuXLkVERASAuwmgFyxYUGNYB+EfQkND8cEHHyA6Ohp6vR7r1q3DwYMH/W0WQRCEz6iqqkJlZSXkcjn0ej2OHTuGoUOHQiKR+Nu0JkezEK/ORmZyolIoFCIsLAwajQYajQZ37tzBnTt3+G1qEpSusg805TRV/kIoFGLu3LmYPHkyiouL8e2332LEiBHIycnxt2mEE5YuXYoRI0Zg//79eOaZZzBjxgzo9Xp/m0UQBOETrFYrLl++DJVKhTNnzmDLli1o3bo1QkND/W1ak6TJD9gCwOdtFQqFdoKSmwpWLBajoqICOTk5/AjomqZ35XKq1tUWx5jbuuyjOSEQCPD0009jwYIFuHz5Mp599llkZGTAZDL52zTCCWKxGFFRUXj11Vexbt06VFZW+tskgiAIn8EYw5YtW6DRaHD48GEkJydj/Pjx1OPqQ5qFeAXu/iqyFY0SiQRhYWGQSCQwGo0oLi52mTvP3dmy3KW+29dHPAciw4cPx0cffYSbN29i9OjRuHjxor9NIpwQHByMlJQUREZGYt++ffj0008pHyVBEE2a0tJS7N+/H0ajEZmZmRg0aBDlcm0AmkXYAOA8TlWtVqOqqgoFBQVuC1d/09zCEWQyGWbNmoUrV65g6NChJFwbMTKZDD179sTu3bvx2WefkXAlCKLJYzKZEBISgqysLIwaNYqEawPRbHpeAftX9iaTCVevXuWngyUaJwaDARMnToTJZKKR6o2cgoICjB8/niYfIAii2RAWFoaEhAR07twZ4eHh/jan2dCsxCsX98ph+5B1V8C6yijgS+obZxvo3Lp1y98mEG5CwpUgiOYGlwGHaDiaTdgAR20ZA2rC1dSyvs7f5ji1LUEQBEEQRHOlWfW8AnXvJRUIBHbzFDcGmnNvLEEQBEEQzZNm1/PqDs56N2sr83WvqLPcsSRcCYIgCIJobtRLvL711lsQCASYPXs2X6bX65GSkoKwsDCoVCqMHj0aeXl5dttlZ2dj2LBhUCqVaNmyJebPnw+z2VwfUzzCmehzDAew/SwUCt3OzeorAduQ4QK2xxo7dqzf/ES4D/kpMLhx44Zf733Njbo+o8hPDUtd/QTQva+5UuewgePHj+PTTz9F165d7crnzJmDH3/8EZs3b4ZGo8HMmTMxatQoHD58GMDdAR3Dhg1DZGQkjhw5gtu3b2PixImQSCRYvnx5/c6mjtgKVmflHM2hp5MT69zEDkajsdH4iXAN+SkwGDduHKKjo8lXDUBdn1EA+akhqY+WAOje12xhdaCsrIx16NCB7d69m/Xv35/NmjWLMcZYSUkJk0gkbPPmzXzdCxcuMAAsLS2NMcbYjh07mFAoZLm5uXyd1atXs+DgYGYwGNw6vk6nYwDqtQgEAiYQCJhQKGRCoZCJRCImEomYWCx2unDruYXbztnC7bs+i6OdjuXeXGz3KxQKmUQiYWKxmAFgmZmZfvUTLe4t9fET+arhFm/d+3Q6ndu+bY7U9RnFtS/5qWGoj5bYsmVLve995Cff46s2rlPYQEpKCoYNG4bk5GS78hMnTsBkMtmVJyQkIDY2FmlpaQCAtLQ0dOnSxS61xODBg1FaWoqMjAynxzMYDCgtLbVb6guzyfnqque1pm1rwhuv+J3F0NZ23PocRyQS8Z9FIhGfYL5ly5Z8XX/4iXAPT/wEkK/8xb333uv3e19zoD7PKID81FDUx0/Hjh0DQM+o5orH4nXjxo04efIkUlNTq63Lzc2FVCpFSEiIXXlERARyc3P5Oo450bjPXB1HUlNTodFo+CUmJsZTs92CORkUxZV7up+6Hr8h4UIEuJheZ2nAbGksfiJqpjY/AeQrf+GYxJyuKe9T32cUQH5qCOrrJ2fxr+Sn5oNH4vXGjRuYNWsW1q9fD7lc7iubqrFgwQLodDp+uXHjhlf2W5NYdCVkfYE7x/GWHbbCVCQS8WJVLBbXu8fYV34ivA/5KjAgP3lGU3tGNVXIT0R98WjA1okTJ5Cfn48ePXrwZRaLBQcPHsTHH3+MXbt2wWg0oqSkxO4XU15eHiIjIwEAkZGRfHe/7XpunTNkMhlkMpknprqFbeiAJ9vUZV1N1GaDNwU0YwxCoZCfFlckEvEi1rY9IiIicPv2bbtt/eUnwjNq8xNAvvIXBQUFdp/pmvIu3nhGAeQnX+MNPzmb1Yr81HzwqOf1sccew7lz53D69Gl+6dWrF5599ln+f4lEgr179/LbXLp0CdnZ2UhKSgIAJCUl4dy5c3bz1O/evRvBwcHo3Lmzl07LfdwRhrX1wta3h7ahwgW4eFZOoAqFQr7HlTsHqVSKCRMmYNGiRQDsb+L+9BNRM+SnwCAjI6PR3PuaIt54RgHkJ1/jDT/17t0bAN37mi31HfFlO0KQMcZefvllFhsby/bt28d+++03lpSUxJKSkvj1ZrOZJSYmskGDBrHTp0+znTt3svDwcLZgwQK3j+ntkdG22QbcySbg7cwC7mQeqEumAW57kUjEfxaLxUwqlTKRSMQEAgGTyWRMLpczoVDIpFIpW7VqFauoqGBFRUUMAHv00UcbjZ9ocb3Ux0/kq4ZbOnfu7JV7H42Odh9PnlFc+5KfGh5PtYQ3n1HkJ9/hqzb2unitqqpiM2bMYKGhoUypVLKRI0ey27dv222TlZXFhg4dyhQKBdNqtWzevHnMZDK5fUxfiFfblFm+EK7cseqTNsuThROtXKov7jxlMhlTKpVMoVDw5QBYaGgo27ZtG7NYLHZtPHDgwEbjJ1pcL/XxE/mq4ZZz58555d5HD1v38eQZxbUv+anh8VRLePMZRX7yHb5qYwFjgZd5v7S0FBqNxqv7FAo9zxrmTtOx/8aR2tZ1J87W2b5t41JdHds2JMD2OFzIgONsYRKJBE8++SSWLVuG2NhYvj7XxjqdDsHBwbXa6wxf+IlwTn38BJCvGgpv+am++yGc4632JT/5Hm8+o8hPvsNXbVznGbaaO55ofk/r1mUAl22uWlshzn22jXXl9tGiRQvMnTsXL730EpRKJb/OYDBg3bp1bttMEARBEATRUJB4/S81iUZOLNbU4+lqG0dqEqa1CVdXdtTW2+ooXK1WKzp37ozU1FQ8+uijdmI3NzcXr7/+OjZu3FjLGRIEQRAEQTQ8JF7/izsC1d0wgfra4U7Pq20IgWNvKwC+t9V2AgKr1QqRSIRhw4Zh+fLlaNeund02J0+exLx583Ds2DHo9fp6nQdBEARBEIQvIPHqgL9DgG3Fc20xrq6Eq0gkskuBBdztbVWr1UhJScGsWbOgVqv5+iaTCVu2bMGSJUtw/fp1mEwmfnpYgiAIgiCIxgSJVxvc6fWsaVtP6zlODOBOXe5/4H9hArY9sFyYgC1WqxXt27fHm2++iaFDh9qtLy4uxrvvvovPP/8cJSUlMJvNfhfwBEEQBEEQriDx6oDjoKbaqI/Q47Z13IejDY4i1nbhhKurQVlCoRCPPPII3nrrLdxzzz12x7lw4QL+/Oc/Y//+/aiqqoLZbK7zuRAEQRAEQTQEJF4dsO0J9VTI1hXb1FWu1tl+dmdQFmMMKpUKU6dOxfz58xEaGsqvs1gs+Omnn7Bw4UJkZmbCYDBQmABBEARBEAEBiVcHPAkdaMjX685Eq2PuVm691WpFbGwsXn/9dTz11FOQSCT8duXl5Vi1ahVWrlyJgoICmEwmChMgCIIgCCJgIPHqBGcC1nHQVH0FX029rc7qOgsT4AZl2e5PIBCgb9++ePfdd9GtWze7/Vy7dg0LFy7Ejh07UFFRQWECBEEQBEEEHCReneAoXh0FpjeEq+0gK9tyx3q1hQnYimC5XI7nn38ef/nLXxAeHs5vY7VacfDgQbz22mtIT0+HXq+nMAGCIAiCIAISEq8ucJWiqq7C1bGntbZMA66Eq1gsrjYZAWMMERER+Otf/4qnn34aMpmMX6fX67FmzRq88847yMnJoTABgiAIgiACmoAUrw0hvhxH+Xtjf7X9D1Sf3pVbz4UJOK5jjOGee+7B22+/jV69esFgMMBgMAAAioqKsGzZMnz77bcoLS2FxWKpl90NuS3hGd6YHIPwPd7yU2lpqTfMIRzg2pX81Pjxhq/IT77HW9eUIwEpXu/cueNvE3wGY8ypyLRYLDCZTE63OXHiBJKTk31iT1lZGTQaTZ22bcp+amzUx08A+aqh8JafYmJivGUS4QTyU+DgjWcU+cn31PeaciQgxWuLFi0AANnZ2V5tDOLur6SYmBhkZ2dDIBAgOjq6zvsiP/kOb/oJIF/5CvJTYEB+ChzoGRUYePuaciQgxSv36lyj0SA4ONjP1jRNvNG25Cff4622JV/5FvJTYEB+ChzoGRUY+KpthbVXIQiCIAiCIIjGAYlXgiAIgiAIImAISPEqk8mwePFiu5RQhHfwZtuSn3yHt9uWfOUbyE+BAfkpcKBnVGDg67YVMMqRQxAEQRAEQQQIAdnzShAEQRAEQTRPSLwSBEEQBEEQAQOJV4IgCIIgCCJgIPFKEARBEARBBAwkXgmCIAiCIIiAISDF66pVq9CmTRvI5XI88MADOHbsmL9NarQsWbIEAoHAbklISODX6/V6pKSkICwsDCqVCqNHj0ZeXp7dPrKzszFs2DAolUq0bNkS8+fPh9lsrvXY5CfP8JevyE+eQX4KDOjeFzjQNRUY+POaqgYLMDZu3MikUin74osvWEZGBnvxxRdZSEgIy8vL87dpjZLFixeze++9l92+fZtfCgoK+PUvv/wyi4mJYXv37mW//fYbe/DBB1mfPn349WazmSUmJrLk5GR26tQptmPHDqbVatmCBQtqPC75yXP84Svyk+eQnwIDuvcFDnRNBQb+uqacEXDitXfv3iwlJYX/bLFYWHR0NEtNTfWjVY2XxYsXs27dujldV1JSwiQSCdu8eTNfduHCBQaApaWlMcYY27FjBxMKhSw3N5evs3r1ahYcHMwMBoPL45KfPMcfviI/eQ75KTCge1/gQNdUYOCva8oZARU2YDQaceLECSQnJ/NlQqEQycnJSEtL86NljZvMzExER0ejXbt2ePbZZ5GdnQ0AOHHiBEwmk117JiQkIDY2lm/PtLQ0dOnSBREREXydwYMHo7S0FBkZGU6PR36qOw3pK/JT3SE/BQZ07wsc6JoKDBr6mnJFQInXwsJCWCwWuxMHgIiICOTm5vrJqsbNAw88gLVr12Lnzp1YvXo1rl27hoceeghlZWXIzc2FVCpFSEiI3Ta27Zmbm+u0vbl1ziA/1Y2G9hX5qW6QnwIDuvcFDnRNBQb+uKZcIa77aRCBwNChQ/n/u3btigceeABxcXH45ptvoFAo/GgZ4Qj5KjAgPwUG5KfAgXwVGDQmPwVUz6tWq4VIJKo2ei0vLw+RkZF+siqwCAkJQceOHXHlyhVERkbCaDSipKTEro5te0ZGRjptb26dM8hP3sHXviI/eQfyU2BA977Aga6pwKAhrilXBJR4lUql6NmzJ/bu3cuXWa1W7N27F0lJSX60LHAoLy/H1atXERUVhZ49e0Iikdi156VLl5Cdnc23Z1JSEs6dO4f8/Hy+zu7duxEcHIzOnTs7PQb5yTv42lfkJ+9AfgoM6N4XONA1FRg0xDXlEs/Hm/mXjRs3MplMxtauXcvOnz/Ppk2bxkJCQuxGrxH/Y968eezAgQPs2rVr7PDhwyw5OZlptVqWn5/PGLub2iI2Npbt27eP/fbbbywpKYklJSXx23OpLQYNGsROnz7Ndu7cycLDw91KF0N+8gx/+Ir85Dnkp8CA7n2BA11TgYG/rilnBJx4ZYyxlStXstjYWCaVSlnv3r3Z0aNH/W1So2X8+PEsKiqKSaVS1qpVKzZ+/Hh25coVfn1VVRWbMWMGCw0NZUqlko0cOZLdvn3bbh9ZWVls6NChTKFQMK1Wy+bNm8dMJlOtxyY/eYa/fEV+8gzyU2BA977Aga6pwMCf15QjAsYY80r/MUEQBEEQBEH4mICKeSUIgiAIgiCaNyReCYIgCIIgiICBxCtBEARBEAQRMJB4JQiCIAiCIAIGEq8EQRAEQRBEwEDilSAIgiAIgggYSLwSBEEQBEEQAQOJV4IgCIIgCCJgIPFKEARBEARBBAwkXgmCIAiCIIiAgcQrQRAEQRAEETD8P+i82/JsqzLfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# base_dir = './2nd_Battery/unet'\n", + "# base_dir = './2nd_Battery/unet-mini'\n", + "base_dir = './2nd_Battery/unet-dice-loss'\n", + "# base_dir = './2nd_Battery/unet-focal-loss'\n", + "# base_dir = './2nd_Battery/unet-sgd'\n", + "# base_dir = './2nd_Battery/unet-rmsprop'\n", + "# base_dir = './2nd_Battery/unet-l1'\n", + "# base_dir = './2nd_Battery/unet-l2'\n", + "result_dir = os.path.join(base_dir, 'result')\n", + "\n", + "##\n", + "lst_data = os.listdir(os.path.join(result_dir, 'numpy'))\n", + "\n", + "lst_img = [f for f in lst_data if f.startswith('img')]\n", + "lst_gt = [f for f in lst_data if f.startswith('gt')]\n", + "lst_pr = [f for f in lst_data if f.startswith('pr')]\n", + "\n", + "lst_img.sort()\n", + "lst_gt.sort()\n", + "lst_pr.sort()\n", + "\n", + "avg_precision = 0\n", + "avg_recall = 0\n", + "avg_accuracy = 0\n", + "avg_f1 = 0\n", + "\n", + "##\n", + "id = 0\n", + "length = len(lst_img)\n", + "\n", + "for id in range(0, length):\n", + " img = np.load(os.path.join(result_dir,\"numpy\", lst_img[id]))\n", + " gt = np.load(os.path.join(result_dir,\"numpy\", lst_gt[id]))\n", + " pr = np.load(os.path.join(result_dir,\"numpy\", lst_pr[id]))\n", + "\n", + " img = np.uint8(img * 255)\n", + " gt = np.uint8(gt * 255)\n", + " pr = np.uint8(pr * 255)\n", + "\n", + " tp = gt & pr # True Positive: gt와 pr이 모두 1인 경우\n", + " fp = pr & ~gt # False Positive: pr은 1이지만 gt은 0인 경우\n", + " tn = ~gt & ~pr # True Negative: gt와 pr이 모두 0인 경우\n", + " fn = ~pr & gt # False Negative: pr은 0이지만 gt은 1인 경우\n", + "\n", + " precision = tp / (tp + fp) # precision = TP / (TP + FP)\n", + " recall = tp / (tp + fn) # recall = TP / (TP + FN)\n", + " accuracy = (tp + tn) / (tp + tn + fp + fn)\n", + " f1 = 2 * precision * recall / (precision + recall)\n", + "\n", + " min_value = np.min(gt)\n", + " max_value = np.max(gt)\n", + " normalized_f1 = ((f1 - min_value) / (max_value - min_value))\n", + "\n", + " s_tp = np.sum(tp) / len(tp.flatten())\n", + " s_fp = np.sum(fp) / len(fp.flatten())\n", + " s_tn = np.sum(tn) / len(tn.flatten())\n", + " s_fn = np.sum(fn) / len(fn.flatten())\n", + " s_precision = s_tp / (s_tp + s_fp)\n", + " s_recall = s_tp / (s_tp + s_fn)\n", + " s_accuracy = (s_tp + s_tn) / (s_tp + s_tn + s_fp + s_fn)\n", + " s_f1 = 2 * s_precision * s_recall / (s_precision + s_recall)\n", + "\n", + " avg_precision += s_precision\n", + " avg_recall += s_recall\n", + " avg_accuracy += s_accuracy\n", + " avg_f1 += s_f1\n", + "\n", + "\n", + "print(f\"precision: {avg_precision / length}\")\n", + "print(f\"recall: {avg_recall / length}\")\n", + "print(f\"accuracy: {avg_accuracy / length}\")\n", + "print(f\"f1: {avg_f1 / length}\")\n", + "\n", + "## 플롯 그리기\n", + "plt.figure(figsize=(8,6))\n", + "plt.subplot(161)\n", + "plt.imshow(img, cmap='gray')\n", + "plt.title('img')\n", + "\n", + "plt.subplot(162)\n", + "plt.imshow(gt, cmap='gray')\n", + "plt.title('gt')\n", + "\n", + "plt.subplot(163)\n", + "plt.imshow(pr, cmap='gray')\n", + "plt.title('pr')\n", + "\n", + "plt.subplot(164)\n", + "plt.imshow(precision, cmap='gray')\n", + "plt.title('precision')\n", + "\n", + "plt.subplot(165)\n", + "plt.imshow(recall, cmap='gray')\n", + "plt.title('recall')\n", + "\n", + "plt.subplot(166)\n", + "plt.imshow(accuracy, cmap='gray')\n", + "plt.title('accuracy')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# UNet\n", + "LOSS 0.2072\n", + "\n", + "# UNet - Mini\n", + "LOSS 0.1324\n", + "\n", + "# UNet - Dice Loss\n", + "LOSS 0.3879\n", + "\n", + "# UNet - Focal Loss\n", + "LOSS 0.0112\n", + "\n", + "# UNet - SGD Opt\n", + "LOSS 0.1787\n", + "\n", + "# UNEt - RMSProp Opt\n", + "LOSS 0.1666\n", + "\n", + "# UNet - L1 Loss\n", + "LOSS 0.0357\n", + "\n", + "# UNet - L2 Loss\n", + "LOSS 0.0241\n", + "\n", + "\n", + "# UNet - L1 + L2 Loss\n", + "LOSS 0.0550\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}