From 3e98c2ad1cdacfe9525a4df9a57dbdc6ab016fc2 Mon Sep 17 00:00:00 2001 From: pinb Date: Fri, 10 May 2024 09:22:36 +0900 Subject: [PATCH] added codes --- compare.py | 54 + cuda_Test.py | 31 + images/confusionmatrix.png | Bin 0 -> 28409 bytes images/f1score.png | Bin 0 -> 18511 bytes images/loss-dice/confusion-matrix.png | Bin 0 -> 28110 bytes images/loss-dice/f1.png | Bin 0 -> 18475 bytes images/loss-dice/loss.png | Bin 0 -> 33526 bytes images/loss-dice/output-test.png | Bin 0 -> 35481 bytes images/loss-dice/pr.png | Bin 0 -> 17274 bytes images/loss-dice/result.txt | 8 + images/loss-focal/confusion-matrix.png | Bin 0 -> 28360 bytes images/loss-focal/f1.png | Bin 0 -> 17971 bytes images/loss-focal/loss.png | Bin 0 -> 40211 bytes images/loss-focal/output-test.png | Bin 0 -> 41142 bytes images/loss-focal/pr.png | Bin 0 -> 18290 bytes images/loss-focal/result.txt | 8 + images/loss-l1+l2/confusion-matrix.png | Bin 0 -> 28546 bytes images/loss-l1+l2/f1.png | Bin 0 -> 17995 bytes images/loss-l1+l2/loss.png | Bin 0 -> 24702 bytes images/loss-l1+l2/output-test.png | Bin 0 -> 36417 bytes images/loss-l1+l2/pr.png | Bin 0 -> 17921 bytes images/loss-l1+l2/result.txt | 8 + images/loss-l1/confusion-matrix.png | Bin 0 -> 28191 bytes images/loss-l1/f1.png | Bin 0 -> 18492 bytes images/loss-l1/loss.png | Bin 0 -> 28253 bytes images/loss-l1/output-test.png | Bin 0 -> 32243 bytes images/loss-l1/pr.png | Bin 0 -> 16896 bytes images/loss-l1/result.txt | 8 + images/loss-l2/confusion-matrix.png | Bin 0 -> 28383 bytes images/loss-l2/f1.png | Bin 0 -> 18448 bytes images/loss-l2/loss.png | Bin 0 -> 36309 bytes images/loss-l2/output-test.png | Bin 0 -> 31623 bytes images/loss-l2/pr.png | Bin 0 -> 16924 bytes images/loss-l2/result.txt | 8 + images/lossperecpoch.png | Bin 0 -> 30685 bytes images/model_epoch10.pth.png | Bin 0 -> 210783 bytes images/op-rms/confusion-matrix.png | Bin 0 -> 28486 bytes images/op-rms/f1.png | Bin 0 -> 18444 bytes images/op-rms/loss.png | Bin 0 -> 40242 bytes images/op-rms/output-test.png | Bin 0 -> 36334 bytes images/op-rms/pr.png | Bin 0 -> 17200 bytes images/op-rms/result.txt | 8 + images/op-sgd/confusion-matrix.png | Bin 0 -> 28635 bytes images/op-sgd/f1.png | Bin 0 -> 18394 bytes images/op-sgd/loss.png | Bin 0 -> 25309 bytes images/op-sgd/output-test.png | Bin 0 -> 33534 bytes images/op-sgd/pr.png | Bin 0 -> 18097 bytes images/op-sgd/result.txt | 8 + images/output1.png | Bin 0 -> 37189 bytes images/output2.png | Bin 0 -> 62956 bytes images/output3.png | Bin 0 -> 34752 bytes images/prcurve.png | Bin 0 -> 17674 bytes images/test/dice(mini)-pr-0.95.png | Bin 0 -> 21842 bytes images/test/dice-pr-0.95.png | Bin 0 -> 21296 bytes images/test/focal-pr-0.95.png | Bin 0 -> 21187 bytes images/test/l1+l2-pr-0.95.png | Bin 0 -> 20415 bytes images/test/l1-pr-0.95.png | Bin 0 -> 20672 bytes images/test/l2-pr-0.95.png | Bin 0 -> 20604 bytes images/test/mini-pr-0.95.png | Bin 0 -> 22534 bytes images/test/pr-0.5.png | Bin 0 -> 22689 bytes images/test/pr-0.7.png | Bin 0 -> 22586 bytes images/test/pr-0.9.png | Bin 0 -> 22467 bytes images/test/pr-0.95.png | Bin 0 -> 22450 bytes images/test/rmsprop-pr-0.95.png | Bin 0 -> 21294 bytes images/test/sgd-pr-0.95.png | Bin 0 -> 24358 bytes images/unet-mini/confusion-matrix.png | Bin 0 -> 28056 bytes images/unet-mini/f1.png | Bin 0 -> 18506 bytes images/unet-mini/loss.png | Bin 0 -> 30807 bytes images/unet-mini/output-test.png | Bin 0 -> 40410 bytes images/unet-mini/pr.png | Bin 0 -> 17857 bytes images/unet-mini/result.txt | 8 + images/unet/confusion-matrix.png | Bin 0 -> 28409 bytes images/unet/f1.png | Bin 0 -> 18511 bytes images/unet/loss.png | Bin 0 -> 30685 bytes images/unet/model_epoch10.pth.png | Bin 0 -> 210783 bytes images/unet/output-test.png | Bin 0 -> 34752 bytes images/unet/output1.png | Bin 0 -> 37189 bytes images/unet/output2.png | Bin 0 -> 62956 bytes images/unet/prcurve.png | Bin 0 -> 17674 bytes images/unet/result.txt | 4 + test copy.py | 47 + test.py | 86 + thesis_model_test.ipynb | 376 + unet_batterry.ipynb | 45772 +++++++++++++++++++++++ unet_battery_test.ipynb | 1278 + 85 files changed, 47712 insertions(+) create mode 100644 compare.py create mode 100644 cuda_Test.py create mode 100644 images/confusionmatrix.png create mode 100644 images/f1score.png create mode 100644 images/loss-dice/confusion-matrix.png create mode 100644 images/loss-dice/f1.png create mode 100644 images/loss-dice/loss.png create mode 100644 images/loss-dice/output-test.png create mode 100644 images/loss-dice/pr.png create mode 100644 images/loss-dice/result.txt create mode 100644 images/loss-focal/confusion-matrix.png create mode 100644 images/loss-focal/f1.png create mode 100644 images/loss-focal/loss.png create mode 100644 images/loss-focal/output-test.png create mode 100644 images/loss-focal/pr.png create mode 100644 images/loss-focal/result.txt create mode 100644 images/loss-l1+l2/confusion-matrix.png create mode 100644 images/loss-l1+l2/f1.png create mode 100644 images/loss-l1+l2/loss.png create mode 100644 images/loss-l1+l2/output-test.png create mode 100644 images/loss-l1+l2/pr.png create mode 100644 images/loss-l1+l2/result.txt create mode 100644 images/loss-l1/confusion-matrix.png create mode 100644 images/loss-l1/f1.png create mode 100644 images/loss-l1/loss.png create mode 100644 images/loss-l1/output-test.png create mode 100644 images/loss-l1/pr.png create mode 100644 images/loss-l1/result.txt create mode 100644 images/loss-l2/confusion-matrix.png create mode 100644 images/loss-l2/f1.png create mode 100644 images/loss-l2/loss.png create mode 100644 images/loss-l2/output-test.png create mode 100644 images/loss-l2/pr.png create mode 100644 images/loss-l2/result.txt create mode 100644 images/lossperecpoch.png create mode 100644 images/model_epoch10.pth.png create mode 100644 images/op-rms/confusion-matrix.png create mode 100644 images/op-rms/f1.png create mode 100644 images/op-rms/loss.png create mode 100644 images/op-rms/output-test.png create mode 100644 images/op-rms/pr.png create mode 100644 images/op-rms/result.txt create mode 100644 images/op-sgd/confusion-matrix.png create mode 100644 images/op-sgd/f1.png create mode 100644 images/op-sgd/loss.png create mode 100644 images/op-sgd/output-test.png create mode 100644 images/op-sgd/pr.png create mode 100644 images/op-sgd/result.txt create mode 100644 images/output1.png create mode 100644 images/output2.png create mode 100644 images/output3.png create mode 100644 images/prcurve.png create mode 100644 images/test/dice(mini)-pr-0.95.png create mode 100644 images/test/dice-pr-0.95.png create mode 100644 images/test/focal-pr-0.95.png create mode 100644 images/test/l1+l2-pr-0.95.png create mode 100644 images/test/l1-pr-0.95.png create mode 100644 images/test/l2-pr-0.95.png create mode 100644 images/test/mini-pr-0.95.png create mode 100644 images/test/pr-0.5.png create mode 100644 images/test/pr-0.7.png create mode 100644 images/test/pr-0.9.png create mode 100644 images/test/pr-0.95.png create mode 100644 images/test/rmsprop-pr-0.95.png create mode 100644 images/test/sgd-pr-0.95.png create mode 100644 images/unet-mini/confusion-matrix.png create mode 100644 images/unet-mini/f1.png create mode 100644 images/unet-mini/loss.png create mode 100644 images/unet-mini/output-test.png create mode 100644 images/unet-mini/pr.png create mode 100644 images/unet-mini/result.txt create mode 100644 images/unet/confusion-matrix.png create mode 100644 images/unet/f1.png create mode 100644 images/unet/loss.png create mode 100644 images/unet/model_epoch10.pth.png create mode 100644 images/unet/output-test.png create mode 100644 images/unet/output1.png create mode 100644 images/unet/output2.png create mode 100644 images/unet/prcurve.png create mode 100644 images/unet/result.txt create mode 100644 test copy.py create mode 100644 test.py create mode 100644 thesis_model_test.ipynb create mode 100644 unet_batterry.ipynb create mode 100644 unet_battery_test.ipynb diff --git a/compare.py b/compare.py new file mode 100644 index 0000000..42bacc0 --- /dev/null +++ b/compare.py @@ -0,0 +1,54 @@ +import os +from glob import glob + +img_dir = 'C:/Users/pinb/Desktop/imgs' +mask_dir = 'C:/Users/pinb/Desktop/masks' + +names = ['gold_ii', + 'gold_ie', + 'gold_io', + 'gold_ee', + 'gold_ei', + 'gold_eo', + 'gold_oi', + 'gold_oe', + 'gold_oo', + 'silver_ii', + 'silver_ie', + 'silver_io', + 'silver_ee', + 'silver_ei', + 'silver_eo', + 'silver_oi', + 'silver_oe', + 'silver_oo'] + + +list_imgs = glob(os.path.join(img_dir, '**', '*.png'), recursive=True) +list_masks = glob(os.path.join(mask_dir, '**', '*.png'), recursive=True) + +remove_file = [] + +# 마스크 파일 이름 목록 생성 (확장자 제거 및 '_mask' 추가) +list_imgs_basenames = set([x.replace('_mask', '').replace(mask_dir, img_dir) for x in list_masks]) + +# list_imgs에서 list_masks에 없는 파일 찾기 +imgs_to_delete = [mask for mask in list_imgs_basenames if mask not in list_imgs] + +print(len(list_imgs)) +print(len(list_masks)) +print(len(imgs_to_delete)) +print(imgs_to_delete) + +masks_to_delete = set([x.replace('.png', '_mask.png').replace(img_dir, mask_dir) for x in imgs_to_delete]) + +for mask in masks_to_delete: + os.remove(mask) + print(f'Deleted: {mask}') + + +list_imgs = glob(os.path.join(img_dir, '**', '*.png'), recursive=True) +list_masks = glob(os.path.join(mask_dir, '**', '*.png'), recursive=True) + +print(len(list_imgs)) +print(len(list_masks)) \ No newline at end of file diff --git a/cuda_Test.py b/cuda_Test.py new file mode 100644 index 0000000..4616ecf --- /dev/null +++ b/cuda_Test.py @@ -0,0 +1,31 @@ +import torch + +print("PyTorch 버전:", torch.__version__) + +# CUDA 사용 가능 여부 확인 +if torch.cuda.is_available(): + print("CUDA is available! Testing CUDA...") + + # CUDA 디바이스 설정 + device = torch.device("cuda") + + # CUDA 디바이스에 텐서를 생성하고 연산 수행 + x = torch.rand(5, 5, device=device) + y = torch.rand(5, 5, device=device) + z = x + y + + # 결과 출력 + print("Successfully performed a CUDA operation:") + print(z) +else: + print("CUDA is not available.") + + +# PyTorch 버전 확인 +print("PyTorch version:", torch.__version__) + +# CUDA 사용 가능 여부 및 버전 확인 +cuda_available = torch.cuda.is_available() +print("CUDA available:", cuda_available) +if cuda_available: + print("CUDA version:", torch.version.cuda) \ No newline at end of file diff --git a/images/confusionmatrix.png b/images/confusionmatrix.png new file mode 100644 index 0000000000000000000000000000000000000000..71aeec8c01772b0204a44703261b7c99d1999a15 GIT binary patch literal 28409 zcmcG$2RPUJ|30qMI%%DDp;8%HDTT;t@&Rg%-c#g;8e%$x{c)FjF5noM9M@vIPvzj7tLY{`^ zw>?Yh7~-Lo?HZ`}p?p za55TLT3)sgZul*_3bSlaGZIwz)$=d`Ih^t-2}rjF&D)=O*T!~;C{ z5(u}%PZ}}vJ>5%bXs)*WfBA9VUnWE(p((?-tfoeR#fK87l9bs!vt{2o?-HHr4_OwM z1P99E)iR7?l@rt?-4@Zvo~T~Q*cd46pgcc2;Nr`zC6bkuRZ>`Z+?QRc`aYY2<^0^N zj?=*N=VIH1?G?3)?o?f0x>7OmT$YZL=$;I-Hci}P$BrGcGYqmJB3wQtOg<&ym7?=P zCBs_zj;ec3-8my6acgzx(yO&E*di9woDbnMdH?uno3naiVxs+ci;YsQ?G<6ii8DDi z1IoCS)y%{dr^ycglA+e|fi{&hXS|oK-4VY-*q*7(;mg|~b$sZbmS&M!J})FABa>}2 z5L}<29_7cSuC`tM+2to6K71JY_`-F|qv@fJGCBeC@S!gyVbu{*tW&vM>Y2IkrWajZ zCt<(n{fEin&bn+X;|^T1`Kg(T7lQz2F|L+)Q2(t#;my@0V{;8jTK-ISc6Q9o4iBVR zFeuE;GnMT;dG@2JxnAz>Rb5qKzM?M9S=rg_vcW=A6YY05 zZQ7)3r5P+_SNr(r;=a~A^`wHiY`oHa%t}RwXd92-t6S?zgN{69igB5r<9R4u>ce_B zT>R3a!TGso>-L;_qr;=x*PLw?*XlTY8jsF){N^h5bI+1R<|eeu2BSttOxyA`d^uE< zr$)LvIyxeXJn4I1xo?nlEWm3=J57%b4GmGFqM`&XyB<4?_Y2Ru&bnn@YVL8{>3rtw z*$299FI<;fO^q04Tx#ZfF`@p{G)AkynO!dQPad5&jBD4ftxHf>DVQ0$ty}K3{fJ_| zqa8)wZOwMhOX~+4R1?&AH*ss8d-38$tbBwArbK`8++1S~{no8}`T3tNY1sM4ACILU z@^oX~-1C)bCY~-#Q?^wvdHKA-B6@eawipH0)%1MQx~2E4!YMwA8AeK;+m9$Gs6Un2 zKUV(mpix!m4Wqi)h!q=H_9{e58@1)S4M=`38f5>wB5fjCzCem{==h??4KCG;4 zbM3`<RR(0 zlw#zWHJ)AG^8XymO&)OR z%FWSOW`1_2t+_E6gILS%>PJF$sj(_abFU^Mr5}cxG^Voc-+v}0C50N!oj-9*J=3Hr z-LU3MZ*M@C@zSd<6{~3YHtyJA>ZfD+;n|hYBDX*Pe8Bwhh*ghHMgb;GkMgyz`KkIC z)_*f+Nv?6jzOsDdhQx;&8X6TlohP2?wqb)*P|Gn!PahrJzyDp}5u5%c2UhJA`7kr# zvWE5aBOO1Te5`$ib}yH^W(BkLsY!UouiqNe0?b--4I9VHxC|>gJu&e>+>2rIRV6m^@~`jT zzhBbusi((i2d~lng%!BroO*7oQrsivhx(Plv#+$3;*>L*p4tuTr7;b&hB#gnvFQ&K zz{>xMITsqITlBm>dgQm{m|M4gr^pxG*|ve#xxL7f8lLYot=2dHy>Klv+tC5Dl#8zw zv&?nNdNHsump{D}wCVq_vUo;zFz>l>eZ1VcbLT?eW|?<*96NTbHs8rX_ibQfYJpA( z6%XRqA-J<4!&oJ*0b8rSB7mPOX2?%atT-+fnfF1aa$LnU#Eg-+>x z%2Ts8=NGp&U{@fV$A-%U36?ZBt7FI1r|OmkKcp!xR(*E)(~@G3&0Mkc{H9&~Ejh~5 z^LAVhd334aOd3)MR`(BRpW@QUR$RGdpW@_D#|B5g!Ox#RA2O_F+QfPG45E1HBi=Y% zEmF&6R_W8HPwvi@Dw=l86#fLKxyjDbK!G%j*&(YQMcv9^;i}Hxt|oY6I@k~{Ca0!) z-lu3&1P4O+sluLNVeK2n11i35alSj@Tw~kc-;XTj?>sXoo;UpV$kb?qR$Z(T2l?~j zy-R!BIVm9(6%}6Ndg6*ZWLV6_h4a9Pn=MeJ53yzWSgO`9Qp*Mxwm=`>n*LM1&y zJVaKWLBRY(L!yQc6B61X%3lwZwQMzA7nUzAEv{zoI-9f!OWU51)r@GxOii_=fYGalZ z%LEI>#H*&UW3kWo{}vp2sX0^7{L8KW4_U*n0_HzE&CiaUh*!K$QN^zd0sEGRL}4es*fq_lS+D zMvnDqYt+luX8*po98er@Ro)0&r~SN`A$cE7>&Sl`gdh-1$T zHcf5h>45vpQkzLW4RM*vVpooj7Iqk861X6}W~a+cipb3Olg4q{%qR@cYLXezOE;Bx&Z6yov#- zWNBDR<9>mMwZm%#Anr%z6A@eR)B0}s|Ng^GA$;AHD_61|CsTR!$_;A7@BBvN-Sn_R zuO-VuJU>6*{IbNPeH(^o1!z_33=G=I} zJPGf92QY9_$*0C$=BKqPf`yxhrar&E-BX_sfZfZg`^Nhy79q**fq`=}2W-B*e}Z(; zGcnjcG(246z3VvV+Pxn9+C{58cZzC0c|u0_J_a-rTcO2#25D;wc_l-qWc|sLC)pSo z#jphLKYeQRS(Nc$^`BDy`yMhQapS*;#y%h+wplBae3$urRhe#T$CRU^V>wW+tRlmr zMT@?Y)av-{{Q(Q0=q$}V`>*G+%pdOAvxiF?0Nw~;ByF4o>c|%8Y>S!KI+P;jTzFH!CJ{OYs>%I<~&^?bgAi3T3A?^T}|X^zXQn2 z2XdZ0dr&a>m3|nzq$22u4WEOZ-9t>G(Y6{SxU`Uv5WD8gOJ9$>t$E0y9B<&?%*dws&BB;6K=Q?}SR23PN*F{}={_4}qby-~@@$@(HnRll!W zw+_qjzHy3JiCg?U={cuM2QKocLX!AyC0P(QP&0Kvft70uA#pd9ufuVvR6 zJh}{ZzO6bW^7%uWJxqov!L_LGfjs+-la>I#^_Z%Qnpxz&#}9y;cjbpvL8Nt z)^*wHR0bQQ7fj@)jT@OLv}@KVTUw^q37z!VD2LDuY)nH_9STSj*MJOcZe`{4RRCM0 zrzPhp$@5st>SIp$qsl9G~~XGc{?WR8*vs>X6*reMvkus3Sga=Up`#6tSSi9h?> z3X)I=aq#htxoab789pq0{rV(kbVbpt0@;greHxmr6-*_5zMbASdCDesMNET$#VNo~|GRhZu3m7JHCmn_5Z1jE{$B8n(blrqK#54hhO>a|8_3Fl>5-fU)XIqDHI}aT)Wn02^Q1g67o0hbA9d zz0_iRq z*B+Z{jtu06U1=|3J9J19m{xAQzlE#B8t{c=VyBTRaT0XXou;i(-b&N+nIyleerl$* zblI|41Pc4v(FR_-A)S^y2bJxDmdUSbQ?$iL`t1mMVap3T0wnm+Q~yEDG~G}Hq4 zE~RE?U8)XWKvMu~2|Hx&ZH%u8ICZvuDQDF~=CZ3B&8I((++VXu!e{sH-Cu%U58r4= z&amP{#y01wInGk7Kij!rdmWM6!+<@&vO~7WkpC47Pq@g+g ztiXR;TBD;a3jh=iO;}ay`NPg!_}kT%u!Y|r^6_k@H)&$O5Hj&6K0ZH=>H%xtGg!0m zm+Ks|w_h#(;~P!%tBRAr*w7?9D3YCd=ahr%r(eEZp_6(g!aumR^9lI|O^!Ipe$Nfo zM2ZJ+brv3682zoD^o^^ES(p6d_dsx)Z zeFGl#?-#*iE!+oLR+1Z^S9NvsGKBnr>wnt;0772A#`y5UFcdaE%eyApD!S#@Ut??* zR`Xx)rN`4~Tf)PhS9$zr_Wp5Q+ru}0eO=Ew-1=W*^UFJ>^KbPcU;E`DM0VkW_rgE6 zPFPgKWhSzTmK}U3&2w*r&I44+-@jfKR&6Zw>r+k5SNIKodbluAe+|r5;k=?B1GANq zG-yC*!oLP)KYL!$!d(9~59bx_J%1f3@6gbiME{ikfuWi0zJI>VD!pF%Mw6VGhfcp1>Q|0}9fs4!QSFg@`Hl}F1mELFDg93|CR^Tp9|515o z+rj&+vOBgqD|q>%7**SD$HL3GzE-inl*RlSS-TF&0C-Opc}@u_%cvnS0eL~K zXr#MF9LT)}xjVz6Q$_>iAVOjq!(C5LC8U5+K)1e@92HW_q4?r8dB4Bx!Ek3~95@D2 zAd$K|$HvU6r~YOF5~*t8dkhybu3d`-rQVrq2d2NS*kAIoK$l7E2> z_qRL(+2NLl#U5Gy8cq~Y5)FO-E-`pkNLbjnuf@*%GDSblu6;*q&FJJcZbwh>fGQXp z^3WtW=UMk@Wb4$me(dR)`d~p4Bq=nJ*-Eyl zdHf8*3OpuMP#y7^oy>W{_9O3*ZANQkMcMS<2Kvp4h=|xve18Ij7hj~6XRn0+_d76u z?&z+$(cvOnTiZ84`zQ&038PRfBvL$lk+O=c)2oMyO!(r&@9qHq?MrHPR5EJYxqswv zLTZ-fqw4AgdO~^V{}(7wj^i|G$yNf%O+cY;dAr4{yY3+b9_g0(WzcQdvLy;ty=oB? zi{Goq3t8tp+w5fz)TPEKaMjZEJW18k?Kuk2o0F4+WmflJrD2ycqZOq52NN~&_Q-$% zXgk`~tLso~)M86X-N*tz_ejJko0NKagx|)ib7Ztn3zp9n=|JNzL z&kl>YcO-IMe9g*mq5AHn@~4c>Me&Ol-{8}V8ZT|=lYh+{sl1TuR{2%;tu|c8pZbq9 z*Q8x`r_n@2Xaj}&{NmZxxC9n6U->6Ot=T&_CCnBC)_i0$ww$_K;D4oYMu}UAP32ur zZc=_*!rCIvl-%I&ax0ZMePxq2zj@-*nG}1mw{m^1%CK5ej7u@irgC2m{+GLX9ZFofxzO3k+o7O%*?$5K?zMiFf+M_zt1; zJJa^BcX$S8v<^+Rx^^wGsL)E2?U4GSJa|2c>9BH+`~jyUk$F>I>WMpDWuhfCcUCae zE02eT@;Y?yi%VgqyIUQUGtQNi)Z&poGaWF$ja%HUpzOETv=c_{--6Y$M&I0aqIoXW zHUc%|=`QTR5`m@t(cF3iuXl2|9;L{!2FwN{T+p&eb;NoSg>l@nM zHguG^#ORMFdU$%)>9>pU56ORD9~#wQ%anI@^`ZU?c_xznpW3>s$0|qE4v6*%IM%1m z&$+t!8TI-&9`1Lb$k$7c20s|dOqkEE@0&Pjk?%4R{br?0OYMYNW>?`@#(Ji_2D279 z+b^?AEF`Kuo9`(nOF(Y&ep>0rTj_q&3g9v;+yfPgv?8yg#8Bx~_C%jwtiYibVqYO0&s^5w|d4@1a; zZV_d?D?gX;oK$A1$n!eSZwClPM`&_+ALkX6PHmd6C>8c|5q18W zn)u!s{>nkS&Rx7=g@$z^!Ep~8o-@A9FqnoyDVWkMp z7W2l@ca6=OYfjFj#_H!ht-aDUv&3Q8LOdJr_OaU2HeW#AUvqUcs_YNx_;`Mt zm-%Ca&u39zK$R-ItYt^(CZvbcP%EMR9F=q%l}5GdIL8PDYgulBz3**~$HR)VR$Sj6 zYOmdq$4Dt1@aLio9MI{Z(@hw8Lfb$eDa0#U|D@eTg8FveYB;8oL2%4%s8e!61S_vv zeG{#5e@`C8V^Q)Jupp&ckFS>A=ZdS+E{Z)-BLC>XB@gSFbdAop!M?J}+`5-7DYE1RlbgAbE%PHY7<=m#y0R7)X#!BipjnpF8B{n(eV&2E9jG8=%Mn=9N`coJJN_ z0=pD4<&3E%SRwP0L;9;4P)oIm8b=~zLo`u-zawHEk`mxWvpMjT-68uCgS_ef9N@Au z{`)kTC?K2O#U{}dvOPDJK3Hk>zTu%EB5X5Leu~^6IF$12tqAuLA?YiB z#@ouQ1HZ>y>?5CnvaG8Jkd-y{HfLFFtM1v#9w9g%6f3$zXs|M$FmBecfn z0#*H!+&BbTl(~BE*X3)yWqu~mcZGRnr()Lz_N;+JLk$_~HY0_V#Xby+&)#1(?V2MXr%Q*}y0$NHLCyR(-=frq4j4yt4= zG`YIS)AWR*!HP!QD*%>_211Ob_^>pk8~QLW3*X_hJVP-qyJN&UgnN_S__f?Lp={$L zLPOVfoH)s0_BP%~>1iO}fJkD%1skQ%cN}!%7Y@!cII0!PXl0iBRC34hJj*FP66f|o zBSYU&990J1TumR$o4Te9RlC(ldM|q&w$z8MtqQ zFA*PgUlp>g^8ZX305tVQQAMdnh2^_Pd`*H@L2LC|UY$38l)V?S8;S;{sg|na&fL8n z3K7Bl_x6aZ6#+-HznESHQf}pD&UYxBMtkPDPomP=PI&y=o4MpY>F$~?n}V{`0a5qk z%+pqTDI(2wSV7-V3_G=Y^>#r;s$%q+T?^`ysIw#0rxn!_aU@W~agUxl6|FijJw$^( z{gCG*0#eF3vnR)Hq(g8)(b4_T;uPpbbz65!DdAp^E+(hqa+r-$t}z8>}8#Z%@_q`j$X@ z!pP*L zp^Bk8Y+PDdEH4VVXu{X91&=^&&>;L3Q%k;+IuU(ZvaPH>K3_yU9^l;TYGV|vz(vB2 z!Op^R3UJ?dTc)ROLuq7%Nr|M zAB2HYQ%;f%Jp81{Ghv`BK{1BPA{!i!`i5!NZ+_ymgMhh^+VUZ=ne6i6w`2kj-+Qc4 z*w!|mMHzt1nc%!mY{=Xtq4?n4c{|?nSi0#$i-JOgzv{i$P+A%Iz5Kw2&e>@9VQ0sF zhfB>iLs?fAkC}|AXt5g3%om9g1?+Nd}m9 z(i*2ksq^2&{h0JS3mS|(=XYM337X(08H;x9+NUOn!c!{40OZY|PVu!z*j7)=!uJF5 znG|_r{Vj0_u*SFxE*?m`nKK&FbfJ-B36+_PKSH2E>nlE%TRs z`}VD%?f1vJTDG>&oS}nu7OAEi$n`a*6&tk$3pmvg8Eq6GXwG<4hmmsh-d-Xmk%Cnz4YOk9Ln`%y73}2( zo*p8?DX3Bi|K$3yJuF4bcRD_X$)kI?Qd9+Z%CH;$+L_6RDz&yk$3DH$TtrCSL&cu| zQd2k->%Gu(V$VFezGjC|G!)11`i>d2&G{8>3Ir%_*GPLYq0B)YLO z|2S66$4Tk0E_^|eSDSH+1FC&(60WEMnJrB;7}Sk&iQ6C(Qi z)ryn&)sfp#z+noxE!=a{hqWpPIzB!cnZ6Osvacuc?P=qC?1=|5BnQWC-nahpW*yOP zh+PU_fQ=`tGjiTSm#~Jpxz&!<9K!bBUx5kx0tyDN)zcZ`qFf)Zsvrp8-T5Sw4>e_l zY{A?Wta(X!V~;?lCqg=|4!wUztXH{|6uF3gTI)i5}Pai`%_3wygaZhWS5v%D>q}*M~aoW6SQ1 zimd&wsldNkP$|D{3*_%#Y^y6M-~amuu>W^n6hp;9n^$>qfr{MUM1M!zVKH9eC!g$^ zqVsU@e;I(05xSp42_pFJ|48hvD)Kb>H=_1``gYz6+h4fyawdAn(WdML050bA!l&Y5Pkl%%j~KiRA#B z1eu!SCoJ6#mDTC`c(g*4SKR|*l|x8IsPYB|CWz_H8;Q6B1#?qzh?t!G{QMBt33^*` zQ8nK&%VQ%O6l{K9h-fh7qzjtz1rS1%m@}Xp#j2)7!s8i~zH;-z^MCs6&zaWYw-Ngb z1ZBh__z|MKu-LsI6kcrH%&lo+m5ZAb)iKkwB^FF1m?RD2C+V<-@<$k2L~jnDK)Agc zfC5K4{I%4Iz5xdUCCCw%1ojuNVf6{ZCj;tnYLfyDcQ67kN+4i$lx)(~t28KF87U3Y zvKUk`I)$gE8qkNvA8Mb|(CBDyAAY6HDiin)(ADz$$D;t_GSoxRpMl_IiT}XS$%&XN zh!eEUaoCf{PCao+>`Y82;9yB-Du$m=E=bU-77R6|8b*{1*j9+5i^9yW(S+#31aQG% zah7_>WzNyg!NHig?EnEnlO8Up6fdMpzTX{*&YqgsylK-PX(Xpv!?r-jYcvygR)KbbKRyD+_(DdW0kSvp zpaLSG)z|WE6e@&Pm^t)#S%8b4nzp2lEP@HI3#zNK_Gc|oGq?bEiVje;*WX^yZ_j6* zODwOyd&rq8IzOWT8=E5BvrH6Z655q36)s;+)-6ZffT}x+b`$&AqHj$ZQdLz|eg}vm zfWanq$g&57G0kfrO6$M?H>EUyKMB5v_#z|(1Gs?w4!AFb81JGJKxmziU6z z^#nI7YiLlR)@EK(&wBQZe6DWwZ913+I zZ}MvZsmov^rjBg`t7lOy!jgN3XsO-ZYz^y!bj>a8=2p;{^pCyhX50RoH_N{=Z-VKN zWDLdrT<5y;U`Zp^J3-;ViJO5WPj80xz9THw+YkAa=-9Cw#3#Xbf;HQj*}FY&-j1Q_;EeFKp zD_6WE;GZ|8!k>!x@?7}}enV5jQbI8^F^NBQcSi!uh9|f2=)41tXQE)T>R`gTG)x2J z@y(NM8=sIm%Ay0>MFuGJ==es_N>3!G)bD2rjr$%bv$Q%rBK;B~4XJNST@bb!}oWV7&axn{Zb3q?) zhUsz1biw?bL*7`EG2aR_E<6twcwkb1FVCFFyijn0BC1J3=xRV2 z>9gk)E|v3gL*pI)FOp^i6q>dO&cYc^IAbE4BN!SWrok4cZ2szZ{Nou8O5%v5d`GD- ziHPdO(0{%4&IIz-uVl`nT6VqL6?FK@vFb39Ho%@H&b|1?b3gJDAOMIP8UcI{H#av$ z9`1=&+xFF5s;MU+*QZM2AKylB1q23E`7dM?~w3ZeWAL@ETc`wRzg zPnvm2Dn}kX!nMRE{p|9EvV4?G##ngpA*7ym1xQF1&(zer!(0~3T|!9;32ED~^Vm9i zdctu8EP-}@zS6*Kzb3VrzUc1GB*6b3_~rbZU>}!<|7Zk{+kA*DiszfxD|J`gXY;8u z`-3Drn0vl_8R;4Ub{7y3=!P(&;KOp7%1q|O;ldALxDiVYw35KXLVQR=l?|n~K7aoF zix(b>vEuUnhhNSYikwpicGH~rw2_MbfyGEe?~Fp++=>fm$si|ZFtxq0MtL~eRke^a z0J}*Tiz6~@B}8%O!Zb|(Y**M_V#R>2DTTu1(GTw)8{QD+eNlmnQ1+8K2BrKO&GFB( z@-AQ?35A2nj6}4EHt#4U6`gtK+XNC2kg`kGvEl~bUsBI?=UMgo0oAj1%gy)0jlx7R z%b$$2?rYL*?!rI$_DA39A}RCg0C?qtL|rtgq~<4%km@knWFU@(37|3ARniC2!15h; z!AvObYV`5>HKX^*PasSqap+G5&6T9{syJ~9q z&&z$%N~qzWVBaZYZ(Ujkg-Ptu`CgH80EqtB@d&~0!QWliir9WSk7um@O`ZE-5mk5L zcZitokIHo*?ql&V)=?Cz=?l~rYdXU-_BJf^+QuP9LB5FNG}Ym?6KS1~x12rJD=_@2 zae}PM^W$@)o+kK<1l_;G(-+b#CD)kCR{eyh%Rw<`29{~&opC4xe-%GJ(!q5HxD<`Lgn4z&#n-e;mnq}0if4R{=S^-0Dyub2*@SV!otGvvg+M_fE#^-VFNQ2 z(NJ704lR?C?1Jb{*wfS3$u=@!Ltq0W04(AL^w2_)?a!@MkG%w$UepS^@8=A$`1J83 zv^CQ&Tf-0yX|^s}?l`Wb09uLg(S!$r$*pAF9)u>1D+_B}y3Ws{F%Hv;i^43q&~1bC z4?ZLo{^C*yjpnaNIGi!&p1DlBWy==m+2wvI_#}MA8v7S+%tG2INf9cM))SK;p)&TMgo#;g{e163j%xBE}~Xc4QtM>UN(NM^=6F z=8emCVnsP`%xAo4veIQP3@f@wxrRhruH_FoIS#+q*#J9*-6#6SIih2mnwn-lT7w8+ zipq(sPOQr``%8QQR$$l(Z-dyMp?V&dyqdry&<(XU-M$aZ9f?D*CSgBiR{TcdkjhWj zO&T*>w-n z;i_e#z#Erp&ydn+;#Z<0k7U*tMi$wg4{!8xPq5~JwowF3C!#mAz7Tn<3TDA>-hc{f zIJPc}`hI+5c&&SWKBdFaHj`;|q_=jU&B$Bgr zZx=Avxz0+2Rhk$LDzz1mhyx8TC7TxZu2@8at$TlWLQb!3)0qBP z;>ytE`k;}b*RPrN8SuH`G7@rzv~S^JSN%^@O?Al27U=T`H<<|R4EFq|#m80PfwXz@ z1-p7IK#pG^LQ&7^9~IvDLp5#uX^j^Z*88*~^2H!e0wejNXAP?@!7HFb4?4Fr@#;ZB zCu{}i9d*wvL`BeTtbo7}#A1NxJnq~{ryB<06pL_bZeigA^o?r8pV5!7CKC5{<1+>K z^~~v@%bAL)TNivrhUK7cm5}g3ytlg-7yozF4J>T`PYWsPMyZPr%7u)$PT#t9%NvbX ziLI;r-Q2_%?6Ye_wG{-HFrN0fb?c02NIC6V*~x+D69eso0WQ7{Q+N0R#^+j&^z1w{ zbR)4!hsO}K4{)e^xVWzp5{}cvCpWSf7a|zg|3^n`5(&ix{6Lxs2=4}&gq1>&AqF^# zAbB8Jf>KGp9o%_9$P!c%To8(SQC?BQ(J(Gl7&L5L{ z*kvyF*zw~^X?my2M1IskNAVvu{PAN(%#Z4NO$sSqfpODa=AFwPz_oK0pV9uasw!?{ zb(Wr)CT5Dyr@)56^wLns2DlnOmXn=bT35$Qv4Gb^l1l2LF$V_+buaucJ65rBaZq63 zeE|!-xC5ZlPVX0=NkO{?jFTf-1H-vz*WX?!1B1Q~5Bp%Kb?J{-n@GCdH#$Sif&0&z zbE#T)S2M>2w}va*F_$1bQ!UZ>fttH8bsj^+u92OtTMmOp{M*}T-ow`7?ELpCDP)V( z#UHl3vojkSO|mFdm@MnYc2m$2WrrF#j8r{iz}KY4`O9L$!O1C&t~kE~qz@683Vj6U zx22&Yi_p(S#CZZVpbT1#Q+tO?$i#uc0iOqW8B&Tddb;1aqX=g>+)+%z*%vrbDZzw# zAMs?MHE*v|e<_acN8^ze$Q(?Ur-{22kf&0TX3LPE z$hy_Ah9XoF`HHL`LOj5^GlF&uAkfp;k7>gtMik3?ioH7^Hydm|8u zq=^Bht2i{$0Iyt7HlEB!L!er^!M&TSwuPeQ=`4|^FiE7DwCusFS8#ycva+vPMtmka zdSTt(!<$%hM7LQkAgQJ~?v(pN`SQb3CD1hh@K@oc9~MQz-cPIK3;FCQey-gMOXGp7 z$#kdnoaMZuBZ23C+3wKir;~a?_BvN*s>-jt)5ttAb*BBwhLF1GE3kUZr z3F&+Qm-yQo>Bo8ShdK188xtPPU#YJjWD0{0)phleE2K30F-lvJ4i-GOe-EMb{QTYj z9EbnJYH_93{i z_p$syVW|!+j+k!`h3^Zexy9ypCshPECo{Nw|9H)Q{9B?*ZrWb>9WqQCiD}a5^EpC! z%n1o}^qY{f>8J`#?l}P9u%olnu_rz`mfjO^HBxa=a9g`Qox!D`%%SxD+Y%$=s_5W4 zhD&OPpenYUh5>s#g@GT{t?{+^aKcgNd%%&JK%#Xc{z8~k+Rq}#Y8 zk9|85ZdBJ+-CRM}`?S57nX=RAy*NEze9cSdvJBm38I3GQ)r27nVelASUMOejQ&CRX^x{TWJqgVIMkNWFMd#WuGwCk5Go^k1mRXp8P(u+274Qv{K9c=z~4SmNDM=58q85 z^14>n*qX$DgtFU@D(bLC8 z+}_gjan325ZmLT^_EZ8*#gtK^vf2C4bz#Lu1N|EIITWYYMMY{AypC_g@~CykC(ZR5 zLj3m`Ri!HVX+Je>t)12oG%E7fLJv;iJL6Yn%+4h|#CJq(jd})kr`2IV7}=u~mPbUV~_r+x}-}PkCnO zyr$c}MkKr?$NFr=@X-P1rfrrI91XLK%f-d5`f4@x(p0Inanmk!p-RS5D{;brYxwvI zkbY5se%(;t)N*Z8po@lq+J`snRrP)4Cmr@!K>;TXM~OX6Xip z_A?jW)Zf$XbRBuL46{MlK>$BuZ2^a^Lb}%B{^VZ0L+Cxv7)F9nJcOJl9N9s=^5jRo zA-;_u1&NKiF;&+G@TAqgmunW?mdc&+=%WWn_JO!NcNS zp!+@u)h3Lh-5ET(9pApihh&BSx4(in=I=wJ@7wuk=v{dYKihZHz2e46agx5bfp#7!4 z-_)uc$PJ*U20j<4uhNuiH0_NJ7Vk7he|}T0T^eC{VOoj-nw1Tl?|a(jhl0X+;?r_i zoqKL`=aZJDk?DZ~4j7i2k}tSE;=2@!Wo``4o_LP=Oh4?UkoJB^0ufk4(Qs^(Odn-z zT>al#N(g_Ne_VWZR~zZOfsG|l8&(o)O--aBC`{cTuO>6GASh=`N zrtWvwW(64>CFaZ&srr%9*_Zp{i|)`R=1va9Io=R2xU+emd~J{L@ioiKzI=RqF=;dZ zjQzcAfj3Oc={F}aM30JWp$v!yLTAUeLc@~N=Rq*cJz(-l%MKHSB}robVj_LEgi%Lx z{m83u8*mQj1h|S_!UA&^r5eg=BB>ZKf+{c#9MUV_O8S~n&87#cpu(caqcgSx-J|Fx zDDB)P)gy7&)ZAlgzSNZoxR~ja!qs(&S~-zk+gp{od^yl3s5rQuIm5JFuP%DB%jHNr zi!`)W*QRun#OUa~b@AIDv(@NDUaoy!#<6?%v9Oz~>pKeO6akj&k|_sQZ#$p{lYs}| zx>>Q8QOV1tv};%T$ga`KQwsAF*}+#m)Mh+x*`4m($L_?Z7vA5J$6*%25G%(aHoMHx zWZPoK(cRrn9uooUgNxhRL|^nqwHSMg@=^I;TDJpnnK4)olXkZGcI}N&x49N0@9%WLY17XPqK1Ej~qO}T`+;rWt%{X%7D2^kkgZGTo6_jc; zd}P=TUR=FX-n6o>w4WMs2E)Xt`uzl7`@Ip7qc5&6 zCEv$wWWkLpVn>tYg)&70MJmzTbid)GlW6cr-5Cv{(2boytXj+0FeH~BFsj{4o*v?Y%ahF@S+1tP z(UJMKUEOvUnK9^?b*OVTdhWsEMMGP*{lP%x<%~CkZaF&}ucv9g{colJrCnQmcZKy` zbkE)Jgf7A&g0#CmyT|pA96f^qxC$F@6sl>YC1J`9(GXVhg-9A`yQxDD&XTf6i|_!R z#edM>l{Dk&Mz5&-cz;m!1w2;mEzqXFv_QQu$t&L~loUnoTTbckpYG@3Xh z5Kx?QD6lbitmu(%f*+17v}Ta~=!MHOZWem$3RFxy8is z7h#X;=1<# zvmPYfe!>8PfIuH6l?k%-QEZL|KqqDj#4Yr?E8xry-pe1KyG*B?U1(iAe+Zp9_V*P< z^Rc;wdH)0rM?_U3Cu5siqMwW+4+%IlENp=VdXMSd3*ZVr6qSh>(@warC+a$SwKlF> z_XLIm^&%k=@tFq`0>sJs@#Fcp18|iQmPq#w*TUSrU-8dAq$}qzw})VWCtXu;`&DCW zDZz|HjshTI>Ssri05~sn&-gNtwj}1m(i)DiZf$+IW3o`Y~z(7)%_+7Px)MN;LcDA;J&+|KQ zw{o2*i}M_=-=HoKHw0YJ!lkVte`v{WN4)dT3R|L{R?CFwd&mf`ju zIvce`Vq46Wpw`D5TpAsNH0MK;!bzw#_}N7IqsOZxLuXs?FP*HejTaxLxV#0GL?Yea z#131Yj;b0?S;PAtO4TgpuOJh#F7%H#6Gc){Dr@&|J29En6P;>otfy>=)jrs_NIi-&Ln%lLmk69=)k~ zmj%_~pQCfCU54-1mhJtt|K9lfFD8sw*Z!K|A9K~ObCBVe~ zuos^uf4RbfKkgrfv45R*^1~|fFDu?dlU$vLm;6Q3WPkOc5i;zTwZzgm_Tt44;tDJ5 zr|m9Gu7{W5|JurSWoN*z9zD7U&B7m(0CoPqF!V{-*ZhtX3Mtte*4=w~kH)a!udLPo z!EU5w%e=+|x)bjwrr*~OH}0Xf9{P-gN)7+bZdU&AdKwz}B6KgnY4R}iz_Vx1-k>;J z>ho#(J$|BFg)gK*^Fet`cf$^*092KvCm2cmzI(y7TuYKIJ3FIb+{R&qdm;)KRWmp* z(=tVIf@pjX%@hm_@^jXa=uPN?jTcu!ISh%AT=Go!={?XG?vqnj)-0X}3BO$HnHcS7 z{qG&V)tg$2(ZPH#F!JjCc`G7!O6V;_$YckmyysHS>*|z{!Tsanj3wQE3#ZJi`i)z3 zLE8FBkYZQ=oRGhNh{^ZZ3qh#QJXO6?j0#XA;kby#8U(#WJ8}AvI(qlu(zyhextUk5 zUq_r_qM5@%7!rl>u#ZgjCJ~DgIlqZ%z1GK*1i9k;IBGb=&{Nf6;?EaLY@aY(QoSF= z73qkX`j%En&SQv$)J2tWycSNnKw)c%2gMbKs7o#cpb}DjVUg_}1CC8)K~phpMVvHrbQt` zgrPc<`mD$BF=U7AInl{48_0oCkiLmYSULXeE^%>j&us@!!IhQ~2ySF6WkzTb+l>$* zMo-)7omS*PwD<4Nf=MV#@z&DG(COnG8-e{9*JpS7#Pgin3_dGt<` z9(!T|0?)wJUIVNP9gZY0awen#lOAKn5$JV(+**l{Il6*uTIEp5FjEd3H~`7o2QI!a zlJEdXsiZFp=c3%paJaVdm@N1C&K+9UE)XvpBp@=9P=unPfi|JNpE%-XCWncUoLwRE z4qjppdJhvc^VC>;N>ZyAUo9YKQjr6;NY@ZvOJZuelZ%~Q5}2DDnF#+~2MlCzyTW=S zb#m*~6vTS#Z-cZ0sA@*Lqe4ncN=Qf6860Agp;ti%$I@vn$H5z^Xe+7|nU*FkMqsg` z@RJ-N3b@IX`&|38G4XN{YY}jeu~oSVAL*gS@i%^i2F}gp!@xj}g+VAG2N%T3KcAoOG+H@W_rY;;sN}_q zqcDPGz;<{a^qIin!+XK`wmFRlK^WD~qA0F6)?Ca6PxkY-T$;ILAt=DSNIa@2Jc`WY z;fYei83g&${YS|0YV0p`Rhgepb)LsS3SRmACyMb%xR{6$V+!V_x_H%t#GFdH=i!zl z&exV_SB^vXo2mXie79rRBI~aq{3ZBYk+fnFk11*rip#v6HIR!@b7lhJp&+Bi4NKTw zD{xsudhby85|)Zg9|<%fPE*lfwbWoBCMI|+J+i)uH4YxeFJHdAGFmOh4)B_+AUgBi zb*Qs43A|D_)*LxE6I-5m&A=qSHTtF>;uMJom-GEC_+wOvvpg)oqqE~}aoAu)IVLBa zkrOJRg;T>}90G9zJgp2uF--V(i5q)6Xspp^-;0w8NbN@aT!bV89|8(n5v5Yyvn$$w zm~VKLiNL&$0Fqi&LK=krBB=~*rR7iiGdEO?T0Um zArYvi>d3*smSwnFA_6$z$oGkzCekcEq$LK`969QT82+%3H~@>uY9{S~s2R}z)VhSf z{yVd0Iw#OBDgNP>t($`Yi}0x4^z2F)&fJV7s}vS3pOG%PR@jWm$&LwcKSlB~jy}m- zl)Puq*tJL<3vX^XWIh_Jo3LZ#@EhR&o(ldpVv0=%kFoL2W(lXyDtc#e4ggHfN;ruM zl~WA19dS-a$^^xte?!84WVjy3z=4A_!ro@e7Gp=6dGAh6Geoc@U3b0^w#(*Vf`~S( ziG(@M6}4y-j^ZV~OsJSX#4nq1g%SGo?JY_$vyekQ&}VW6qfHt?$Qh=DJSAHbP@CLi z3T-FE*A3U4s_^g2#Ci((cbsR%79%G+!hWiRqa*!Bx>n|r6^uBPfjw2`pW)-OmtBn;|&}jhF%vwH7u%b{EF00V|mtlZTY5u58HoX{kIvJF;w-p>fyS zhX=*cI9f%{H-N2H>a`8x6lq?>41#2pxUprz1#Th)Qoj)!hck|^tuZ%5JH|#QR&VTW zX{se^4_Li9aH05Wn%ol-_SgK&+gFg)vkB!TR$!d%;Aawy{k5E9KvEjL@!n;Rqm7i{ zkIOKslO(N`nBxuQi^5N0;*?3pQb`Za#KpoH3j3nWqZ+Tfg?wVd!2Z}$?=z{uvAIlKnbS^SMUA&B{bYu!?)P3 zfL-M{2D}C#u%oXp0U^l{xd{zh4M>;1B2M=QP%+55|w26$Y;237lSWxVSy~m_|Uf$ztPCKE=^^ zD-y``F{JNzoIw@*Gdp4_v(_Wu_2TqRB?1z#7nlsR7(bm<8=ue;AP0irjX97=NIwvW z9VJ|hA}=j{2eB(cR%G%7Hu}2&vwSuR@yL_&d~qIDG^$EA>+Lj}t4=$KvFq~%aIN@8 zj#?q`4|o%VOv;@D52e{PbDzQS9*&14fo;XtUAQf*$Glh|6a-sB@{tkE8!F`>-c|B< z%(A5Yh_@g9zYFh6PUj347j;7=c?R)s7uu*?YoMKwHtgi8M)NqO=xwVzVwq)Q2{Y|2(XLmY_b?Rd=dLL9ow>O0;rd) zUmU6hfBD5p_?FlaNeS;1QwF*=xro-=<27q;@!g#&uz4VyM1Z9&1L1&GRs}|kNCG&9 zhKvERl9Kp?ARTe}i&)Pfw2dCDvj(&_5<4gsRWF8>96N0_H)97&s@6d6uonp4{Bki0!rVQysQ!_;g9f`B9n(mn?- z$9wa|(XOtGMP;8$p}O`iof(eIARUgtI)d;QL6Fd=*jsdzMi4NB^+WpJki^N6+3@V8 zo)!5%4_zjF)i$1mBa{OKD)iC_=m6D04i0>D_(~|rmj9=+vk$7W&f@q*)?9JS9m#Qo zB-G35RS+d;k~hoRu{zD0p=XBGkFhRuAGL8y zRIxmunQ_)YIuT%=`VlfNVr(M~pXAyS_fSuarpByiQ%Y6n?{EAGRw=r(+lS zz+)Brr^dQD^uAC%%r+?1JM@{CP8+nzKCr1AS@;pp?Jr;)==HyA1g5`|Vb~*E;1n|4 zwiP0@&zGiZ2X2+zwQ~0z8cYp6Fs7~cGxlT%15i-v^&1p9#p5P!-ak#c# zF}kVv7?;a9Kx2a;xRC{H zK-&V=10`)Gj_U|4t(X2XNgCHU_(xa)_rZZ%BfH7^5<-%j<}x*`hEXQYXP&2T3g2}1 zT1f$*YNgK}U!1adCp!Zw99(nG46_Y~Z*knupso7wg^wuNuR9K@B`PSy7<0q{=N0B! z)?;!L>d{5O%UW2HQ>d`07DJlvy!>`haGWD%IB8($0-9tE;cOw6A5LxVY9?b7{eol^ zpjwqCRL~LVGpQ*HKxw0%eDXuKCiQT2k8rgMx>u)UIhT44iW{wKviB+@toG+&CZKsl??aNFD;m2AxWAxcQXV z7O+7{T+Q!sq577wjr2y+q66d-TYi=b0zL3LrA286pbJ;eZ)O2_2w}a4ymybA&lU5? z+(qsY@;d_N-a%v_t9p6@9d@A81mLYDztTTY)n&HB!ruA|F=$P^Ov_sOt*kFa(zyr&@1W>7w?PkE~P|nXd8Ft8w%=^gp)dTTIZZ*>Hcy$e5?C$V-15i<&6@tvc6~73=K{K`P`rOMwT>f`~_}y<}EJ#*|#SMlb`c zYN^aVddZ`4u;KJ;-6u?GJKX{|zON|eTeGfcwac!Nz>q-&uXPH`)T|VSeQ9GpW=-&_^+b;6Ft+(uF(fhvu_p;w^8&ur7JXG7Ik}N zGIEFqmzN~O30D4e!mho^0YwQjVjEh+^EEX!J_pKkaP1BJJbid~mRoFQJaMiz6fmhz z7@M>CR$ub47V0Hu0xZe@nc<{_iF|uQFW+ZR^HWy)>(9ZMU||<17c9->>E?6539VGO zbmP&b{|slbzN)n*S2`3~mZ7He41LUy;y{z&x|pR9$-0;u6wv?lkhw>31_5jUJ=y{~ zlr1+mvH5e%7rNHacfjdniU2(UmwAP;%W8~e)&9Ub=ke94uK8heEkc9dGx27i@g!vC z->6$J%CiJqwVqn5UX-a~hEduKj0eQ2>(~I?;O?kPT6A>p)YvaRObzZaA57|uataw? zcwcJ>jGC2g@CjLKK9O7cf@F-l*&O=a0*lqb%}-|pLBQ#rIT%8Ju}!%-vv1u ztD(N-B1c%xLA;r66gk7)9Z!6a&)hNtZ(w0fvbU^{B_>Bmo`)nJ4yvP#_caSbbL7j! zxUiq^^0HskfLtst(d6ZABavak@04;*t=%3(q>!olz>Wr`|JVeZ1;4%;$daO2g%JX<7PO%cyK(7&5 z%s$=(M^CW$Z|N=qz2#E>3fQvGY~R?%HoYk|VYz#{3<>C{Cxbb;lNzEY13G{#ZR*=l z&MTS>m|Ao@UH5w*62l_L+E?ujF{C{g-&JW+=vt(cfk8p@{>;c2XiW<5_k+tm^DmqD z1@~Qz;9)&3%{ zkC1YnaCV+BabjlaV+QvUx{CNW-WbhPc3{gF+W71X5S8^o173^&^FQ6me6X6Gdlq6v zaD>oxb>qGRU?zFSowd`UTNovVb?j3{p+oGCSo(`~PPo~8u5|AZL--(zcgn(}02$(d zKTOsB!0_Lf;R>C)v3GMJ9~ncau-f`EW4<9}*H=x44YowKimJ%P1x#r)E2lzpRLdtA zHt%}rN8l6whs)pV0-1a=x5dF=(=;JG2wqc76P&IhP>cQGuh~5(JYK%Id%9GTkS-n; zHc7(S16C`ko=(O2mBwu=FTv2s&KAk;1*^vnIpaNQcgX0Emk&gBii0Bz@0__8V=8ISzSz&iy}IF%uQwDt*+ME%2m~9>G=Y0`)XT ziG^RDX=3&O*6;7@&1~YNh+0PG+WnFGPy#A>L$Q?aF~iMZe)Xau?HwG7_cDjYrn9nz zO41HAu7p`^fo+I-m#zNn!-o!e-u7Hvbb2XSd>w?~%2*UxSFc}3sLfFySL2_#&1!xi zO;yD`IH+~tIWIeVQhaQ*m$?Q8nT)f{^Q$+M(WO45B(WBl9s zIF6o0CtdX&rbfEx2p8XTODT2*O|aw z&@z#oxTF$;QYAyvoLPI4PHa)qNzGchr^5t8bY(l5#Qhx6LZ83_7F8_ok|bP7M|sP@lxjGb z9-LzjAS~>1f2;V8x*u>jU=+QGV3;#aNPXF)$2M%}G9GjuGltfl&ANzUQ_$T7pJu>n z^38`y@PwG2DT0jiIRRnZ`H#1P28LQ+;oh>pb~2dWw2gi)KMP)i58Az|sbZH2>!vJe zKZfS-zqhveT#i5wZHd(_!k3Y81o1lYU2hI3lGc{#w`kZe?{&{!$GBo;EKZxkJfOJX zl37dfo~f9-Nr>SVK3Fa95_s^w zr?1pkvM0PViv*&)w0MUwg9bP9h?t9 z!?&XHWx!+|_(!-@FA=0JgS7Y7pOQ?1j!h3(ubz~VbaU<|a+K`5r3%H0AxhO1bYjBw z%~Gu)2H8=BAiv-Vsor&<1v;WR;em!U7Y2t#0o0Hh$Tjik#KIg#IuR6{2Lx^CtuFL# zwK6g11Th)l;7+j`@2RJ6@2C4xa}C^#m90Jf->XP$E!Faf!M;lBR86c>-GYo3ip^zc zZ2cdG&GBp zX=oN)U%nK7DXcPy!w*r1!#WP?)@L1@jO@c4}SXw(+ni+4uaK_Hw%-TwjPnd5n z@Ah*J4mS2;{QT$tIe^dF&Xk|CW3w?%vcl%5u00J6tr7WJkR+98MnfZ4Ab;qfhBKw7 z!NoyiXtcDy;`H7-K5Wv8M;9JhcbabTk|qYN5Oz+V2bx^lw?EdnNPqo?>dFNg^j_D# z+=$-(bD>nSRwezbxWH??^h;#)y&u0-V_#q{AboUiS$!jm$YqmV_wPIoaW87@%i4U^XgLN&qnfhLYZ>{4=A!@0738OTw9P{DlZBH)emq~cl7syG zeewVPvbRF;y?b0YUq8tH?)ttl=4cAV`RvF0>^EPlrJL-gzlq;9jcS*Ar^qxdrty4c zPUY6+rO(JnR!__eP*hZ`?x>8VCMa#yP16#xs{c~sSRQd8v8F~N%dGlHmN~Vm!fVPt z%ev9v&Mu{@>_*R%FPt!(HE2ZE{JUFs*Lsh+f$bq$ST*BT|AjauEk$Gp=R;G^d@&s`_5&mb!NzjWm0V%|dS)+q(1F$tI=#@t%@S zy?VP1i}ZxUm5N7R^AEmeFbp2guT49d*pTmJG1Nt66mv)_H60xt<>uur_?7cf%xkK^ zoSLF}rZ#^={A<^~!eQ5f>6SYx!I6;$#(GtB49YGpE;nx7DtOR`I}%OkS|EM<90qSG zTz4kIt>e=Ud9~VfeMNVAX6E#;u+0IP9^-#IBi(wBTUtKcxpQaDgTt$oq9hxd!*KoX zXLVNU$Bx~4@ZdpBsy4sJpE3^S(wu}Ho`aQgj8dKjU9}k*sp)y|CP&BniZgl}@>8|a zPTcVK*P5Q19BK_U94la{9k%*jpj$lp(Ry$oYFbY~K!8!e_{!9H zbae5uzH2-G)>&&iI6S?&W^0?^-9L6>5w5tNBUMwIOI%#9&~>Ql#pPuZ{<))V;bgLV z>T}g4TnAN8pN{jK9&c0(TDfv%@csKK78!+FMn*;o$BxwmbE#{ns{ZI_>g??7`kWTt zRg)Z>l*E~JuJYw1)7j?0xc!ap>P%t|s)r6;>7u44y7d)mH@Xk_RgCZE3OU^b7@*3ho+h55$D#{15^+w|2^ zxbXMORe89#p-MTHWc&7V=0;J^3Fp^u-k7(2xJM>E?q+qv5&vz;EiI>a>pYUiET718 zNX~QYPQXlsTCAykb$z2|qB7IR`$CH2!+o_?@rsUv9mj{4EC(1kvfFUF3Ik!&pD3L8$x!@hsMat;)V__A zm-pB*TIQP1X(#!4A~jRB%xaR3=XEB8@3a0c-rCaA@zpeniWjrohOMaB%r)aof@g0T zcuhL4VG`5O&vU5sW${d!njF`DTd{#=;w25u2=zUGvE|V}W86wuVtz;b7(>Px@g$Di zq~E<-{z&W*zgy$I`4!Hc@u9aU6v~Fuza5n&*Zlp3{h1}Y1bQ9B8m7h1ecE1PmA%z> zEt6e<$9PZn5v;k&Sh;`=!x+kbEReSno_~Mo#wtgMz4?-9B9R^#5pljIT|fWTh)Qlz zHdg8pBcm9%iR8q{y=+^se$zXsm`J$&-N&}&{oUOIBmM*{makYLAUQQ+63~C<{oO4=x6)2#GhQ{? zTp>PiYe$)gW0yv9=H2~~FJH>UdQOfV!HI8S7IOl|>l&xd9^HGkoYKjxsH8NMGyU)( zuWXP2)=hu~Et6Qy?bC4y33nM;Xclu59Prk8eEND-b+v>69sACmGGwj?J7NPA^1jG# zmT-N#VZ(+&obj_nLw8NG`nLj?C%whfp86g`ROZH}t{Grj-1L(KmR%DcW%~8v;sQs+2A`zb$ z>8cm7dG3^yKVE@$Yhn4|DC0zo!y zKSE^oX2jz?k~cjy?pVs?lq7#=*NH;ctVrjd*A?;&0Dz@#+WT9wY7Nxg-QBM@%gXY! zNvWL8*ho*W_279Dr&MpwWSG%r=02~nCqaDQyUIBX#4o>so9;+ z8HO2tTlbsye9Ouk`g}6v?%lTavM$XFX!H&ta0}@)mJdm;aRcP0@V>Fj#Do8yzY_U#ToU#)2H z9PgoXW%9E4_B8qLudlHNg{~pFnZ9g3SFR*!XBd!Ygt>{s(dJ`=on&0eQ5P*_11HCa zLp#3UVvUn7X6<4T%7Fg2vF}@Uo6>C8dGuxljkz~AX7HCxl{}I7E<|s;Y1^$BA+v<* zxz=|fVi$gem1d?ZU%`5AEbC{IL*6LGJd{Fth^YE8;(+#A z-`H2}iOLb&wH}2dKW{R(^Xunn96o$Fujg4E_n_F+g$jw`4lL`+KdtW--7hq~Tr#Ze z)95j*f4!nE+nQgV{n_r}cyNRi!{Q>W<2Kt~5@ZYAhVSOeMq)XaN=;RoxcC2jonTDk zEiF^Jg67gIsp(Ob!r||3L2;Lt(RSf@CzT9~+VqH}t2e85CZwFqw#w^&vlU!Qgs>qoyOwKYW&tkpRb(T08hje* zZ>D2pOkpr^KDcDb64$QeMECECU6H_eg1X`&HRm@fdMxKgL(b?q7@;9vabGrTk zLX++bm|P{#Vq(Hw$h_w0aJ_xNcvyFOzA}r~L}r3gc!JA7TUn<=3Ie_B5h;>prh3_sPELsSJdTnny;mj@SmT((U41dUM;Kx(=Ctq=>4o^_7*qy1J5OdPFXu z(~{1X$!pb$6_p6VgC7JdI;h%))B}A5vDjKdW>trP)@s{NH^TUNpXclj&y{s!WIasaGaD5#O4Z~-V1;_xrX*VG= zqM`Y*$Y&$@Ir5xwE;I0-{l7HO0skaxa@s{iBa}&028;abTuu@U@B6R!td5Xy(^|v0 zPxa`vfXJXGITnw>!2X+t6EBY*J-P=$xM0A)!e03Nx6}1DC2OuWSnaZl-BmvTNc76To!9KZDL``pis62Wa8WFSFfCV zgyq$Abi!V~e5r7&&QiE|`hh3!r=JH;{kKQ)c8g#wZOXDAyV%*eSXoOlo) zZ;(_~TIoma%g*{-`*-i&scC85jk{UrXL{yLCvYi5pVK?IFSN(B+BX7wbg-LhhaRwD%3*DU9k1QeA zh`eO(H@hWdReMsj8-7(trY`#0Xi?$C``Ghd>?hUKVp$n)9&YYkhNo7}FNNrRJsY|? zW1bC1WLyq>&1sRYClnkWo{Cl7ja5B7Zck||EY{|CcleSaKrRx}l#;jp+n+CK>~EOX z`U+cqiLSFQZs@BE3{PIuAu?L2>BvfL>Jl3R`=eHLeGYkT-0yUBxy@Ch+x&Zcu%c%s z?YH{c#2AUvijKzV!tEt{Qj`o-@z&qdW^sm2=YGq+ZYb-c+rO|eep*(xDB68?$zr)l z4S7V$_O!*x2i>4twfx+5TqIMJ?0xT*CbWeb#+&FxCpXK#elQ~>s2X|J8`*7ApTQ96 z6)~UJ`An!DsI(;_gSXn3hYas;Eu51W%CpL^C%clHQ(ZYu%akZH|Mv!4?!6P+#^TEc!OY`~P!WPfoDS-K_%MoAlWyCmcC<+TYt|;rT^jD)a2E z|1KY*(VIPu>dIOTiCJ8i=F(&0NZdhpV2zZVy1@JuPjk2nE$_aseFng?Th&N z8PK{p9@QzLd7EAFZW8k1m9(_lBs~Dr*&AS3;GB8l>A9F|*Os&I+GUPF{jQ=S z&@D=`*Y1qsbYw+I7!S#2$W8;d33ZLQbZH?NS59MlTbn`<;>WhNa!VRMw%Wg5w>)$E z?|);XDq|h3`cQd0gKLW%Q1ag92`v#4y8+TSZr&W&9B}hyb&RdIse5kXx9#2tZA}x$eNt1kRkTtyMMXuKoAK>NK)|qT`K>L2``kxtNJI{*d3OF} zgp`*7rl=a3Cfx=#yE3i+TeSF*_|j5KK4?d3ZT<2q6ajmW;`3{bvg@cZvdhk#KAlra zQBK^ucW-cTaLW({;cUa}K|h?3+=*} z54tLU{I+P?=luIrgqWj(plP|rg$vKVWm}VsDsTTS5u_h-zMZsQBbRyUZxWq}Bo9Qj zBj@Iba<4MXCTDxTYS^Cg#lOJ#7)9jxMh@k{G2OFg6H3QFeNx4K;T96gTDcQiCyh<+ zuNVf?E27RceB^D;rWt3MIA&p!t~~2a*}+*L`=0AWHA!KfJ;doh`1Vz%a~7BH0R!gY z;FrUU@*8a#DyDoDD7$$MWhuD9c@$!r2T@C{n{0D$On%uhd$O-U*12D~>gxilXYsag z_D|llzh+TRGKbmwy@muC6Q@spv&Lxxsk7saemNUYz%koEKndrxm{X(Ok`8ak?;=Pd zo%~BHl?{r>%bGB-Mf2d7ZQr+(OalK39#20ycxb^Kn)=Vd{kp%hrPqaK&{=h5 z_|VU`b#r6cbYTu`g@NBPbNJ0P_wJ^ubXPpxT)Vla>*J8Iuw{{&1i@tJYv5${WG8Xzb^r@}JFMzNIc8vBkQ*@6ts(IQkVcex21EDbz*DFmpCEk4PER&Y z@6NJ8rZh{`kt&3Qg(V@HaPQickb;$uQGn<}LuromTpoPYeUAF!nwKB9^i3VHp!G`5 z8!~nr?_pwFqE()AHa5h!ab=?GP*<6G7B>e+sfjoThg^Suzd?ok(WAFNo*f9gTZ=U3 zjHzkrqerS2@(W*yLf~7uY88)w6{5q`&9O}Bo69cx{p(7LtY7vp*gtriykT_xa#54E zG0!^xdaLYI%*?yDZ*2mQE&{eWxwy&@bMr4yQ6p$|F!&bIY&bm@3PrPkUI{CJW`g4( zBjktLc9HnFxO1a_T3uU1w4XZl8Aw2hB#`YETDYF|h_fYgKjek3{Jx^&z@=&ZpFo zF{@tJtFYxxTFS&x?NbefnwnuK1v+sIf=gF*V!(sg*sN182$47k?vhYs{qxoJ`y#dv zYAf~%3M$@WXJ_xcqarD=RT!u8=GKZ3Q%*?iQo6rS9_Oe59Wp$8=ul2+UrzJdfFT8P zJ#%60(&R^so0Jm{%*Yha&ev%f3toj{(v3*N)yhi_67p-H&T#6o5WxmpNS|2Kd;(M8 zS0^hgE9o|D!ZF@Iw8_<0C1Nd^BP8|?)89M{j;D?_ZB;z^_r|R?I7)h*eTHqy^>A5U zy&P5O2SG(oe3Iv`eopQ1Qj|I=yNOisa;=I$4hp%7H_gQ2)gxy&z}s@QRRQ zU%Y2D4t#BAn_}?DiE@lV*|DppGQ)Ey_1!g+{z(gg;-1dFniTzZ%V34wUVV{5NEjjO zXJFd=t-c8LssEk#ke`WaCa;E?$EK}YPZ}L0qfBD{6|+O_VhgA61k*b@fkM$&qXX@Z z)04wIkex}L45DyN^ua}b%n~P1FbP@DiZ^+0KQnH0`P!*Ik$Zd;Wa}vFv2jk8 zVVSu=n`_5;ziyG%)>bY)zVuhlnCRJD<@sfa8g8zUsOHmoHb7l9tc^bd0}Uq79X|c~ z`XnScSR>{IxwGX~f6c3G_eyB?pl6n}!^_m>=%f7N(2dyNn3$M2VtcM!F_SzW1DE=OaJ)D3=PFNfiZjsOk&gP3WBV z3Q2FXbo zBoRik_J;3`?_s)n4>#kVFgev%-^1Q2# zwX&8;>>T1jyk~FfR?WNrlUmwE45NVX);JT!g@d7v`s6wx@2R#yahJA#-~OQ9r#d!3 zGKEh+FL-PeC971WaN&DvPtCH-;{cKiJ>TN-#U(1L%b^mI;cVV1MwvQ%Jr5aPF(ukrueBZdZA1zuba@L7{qF)nVa))l z`mtj}-4=r#m185#0q+Zr{9Ch?hr++sw|QmXk9WDo%dhCH8+pq>RNq-)nUgl0`rxH8 zS4Onz+VR(|5*Kd^o;BulYN~mtD;ObSD+4AS%C-g!#A~9Ng^q#2RPrSYWmYv{FJeV4 zAByaNYdHXGuu74ii-#vwuQqJIbtG;|-&h>6D=;uH!6cm*1*5683l3iS7azO4S2Qh% z_ua@I^?s>|70k;;?}UbG_nN%d7nyWu_JxJu-1h>P)_|0S6e#v!x3#ElX=WG{+C>PS z|F#e0Yex0pMhJ)RMDy6OV`qF$Sm9=gMFXV9QaHT0Mz<=trU$cdk<5mG0kr#rtX zee62C_}C29l*2-LrY8Ttc)9215 z{q1Ya0Oxn5prlDKZbRdl{{!W`{5XgCQn$vn11f~O>lN3B%j)pn-OwGL?ofEA!Acva z4-O1$Vzw8H00mV=+`Qh5!fP@rNqV}vy1lhvFOKhbXLIuKC|`mOsgFC2utV>S=jgxEKih;kp8Q%=L( zv?b;x*{oD%^&v9e=uPR%epJoNxt?J_8fdj;t+BI8VKSd1<;LW{{;wAjw(fPFcqW;XN zo-fPKZzhVud%0P(Rr~Kk?4#5fIb`G%MAUh))+hJ#d}8g?E2Io>0l7}!KZ3|J7Kzfb zJ(mV_mFJT7kkn>2d7p!0>-1)yOUOH`LX8WHyUShY59pEeQ8&76wQf$>P}7y=eSCHC z@RRw6D^}}Jc&b5nRuh(vf1>NvAwoB&emI|@%~F_CiQ^xi)SVS}&)7-4zdn1Hc=o%? zn8axq$S@1+ohbjv*$4g^{Ja(r3bkdfV0UBw8Eu_aaq#$M(}Ly{>iBtC`buu?oUBjd z+)8F8@qPB`vJI#w>tNk>)#pCB@axO*uFUtL{MtZd&1@@uYT8L{l(zW>oXLQu+Q0i# z^oRH=5Q;;Bf*!!j2XI%!mpb^La-?|Y(8z}m$4L1WW|%4@S96(b7qN-_oT;<~hwcvc zucp&|dM@ydKT|5H0;4QUR0CAhNX;8su|eSpWZT+6L+ax*ifKBTGB7!z2&}nH6r=F| zlQ&3H|AUtzGwIR~jewk{32`5~4)^v94g5Db*G#fQAt*Akw{P9LL;sEtzgs_L)5~iyNlf|G z@b0nO#m}EnUpkg$lczS&UQxT%x*!J658T;J;w*?V#2MS-ijN;1Gj86vemyxwRk77Z z1ct(NNsqC&XP=B7*tS^Y&yx9yX3Oe#-GdyZgT0j=DcVv7RoM#y1=GKtYi+81nG7$+ z;}dD`%F6mTSCo|Z$X(FaKru z>@Ph9q;60c5`Qg`DG$pnGTiU`sII5$Q_SVkH*3@Vn1h0X6eRj!!K!KwkV=O_ngRl^ zxt^O$8_y}Hz7z%u?en2=jY5LIWu3p$|0(at%@&;8bDqAr{&5F6 z=krv>{H{45%YgCkz^$Mgt8WIdE~1?~&S*NOdG2(aK5l*+XM@M{1H;Lc@Ucp07`a17qNKTd8&B4CpX@$-SrN>6Bw zVzxi8APq=qalL8;dSU=l-X74wxC=QaQp3k}JyUBz_oEfQTyjof_NfjKf&T%H5bPqd z>3>~ti)Ro7DiQfaLnBy5CQMX!iatBJvb-Vyg4AnF4 zy?Y-kq<1=qAq`CW{o7{BIsG7#UzA}Sh%K}a`FV6+^MV}e>LsgF7P^4%o8LdxE7Bjj z6;I5Y+t$oa{dZbV;%qQxpAQDY-LI9^1$;J6w1UFid2P(qFXsF^n#~NEGUJ|8-i-Us zZHJ8;NIN=F{`05t$0#Yo-6x-EAh-1V`y`4OTTf&fA7*d-*gF2+aOwf@S{J#z7H%!Q zc*>P{dWfl}SQha!slT3yL)h0_3UpS5Lz(j1nULzBIABRClC=|$Ps`^PTcft++IG)$ z5FEN2o~izMv{A#EL6iniyv&!q-RS5sv*w35%gM-y77BIiK_GHyg zY#R_ohr(*8DlAVOK6lUM7U(edm0pLbensaFI-tb{|Zptiy) zzel*?Lf!cUV=%4Zeehg1cnml6W+Lx!+1BhJmSxi}=S0?d2$JPX5da3@e-1OmQ|2kP(i8vUy&YV4~ z5M)&}dX}W*F)=a3bVNml&d$b`l#`=_5~*WUJ23zDZBnK(dv$F+q`ec5PF*x`?>|iR zTErdVY3j}E=2Mq)!UE~y4m$ucBdKSzDRt-r?Sx%VMjIPXRd2B&P`^NO;tRSjaQv>!A)nBzHJqQtoi5n12WpAQC3{aO;#mqz)wV zoUn3Ky}tCy@p~zY*F#jXB>G=%gq$5UHCo~I&MG_f8nIv#FB=q(!Z*5bK&uZ=z2nK~ zc(IIySdZD|i3b@uZ;z)=CY#6a7t7wge_su&{to&3$a#p}7%TJ`Y}3`Sy3Dwpq5Knz zuA>LJ&$lyG@R91qslWS&S%#`!^HpQjx_oWSh5?dbJPMPw_>qWww1X%U`Syy zdg2Pp);_zIqw;Ft4WKyt<*Tq+gCTNi8+vHMLLI~=0c#l9IK-)zlOrOp2FdWL@#~dN z2M5QxGmu4_zrI1&>t6@o^FuMmE>1|!NSt=B@4mQbSxub$#;=yo-WN5pp!?t+@o*21 zWBsS#`MI`7IFUl>@Fa1sLz?A=r5y`pXt;QqSYv|XkiDKmW=k}z8M=O`H2K8MN4i5) zN{hm{XJU2olU!3erj0$0DUn-<{}NHH%d?MLi%%Ou?GQ8^lEQz>b4+!+d>y816&|gJ zpI~0q1O);MaFOsrVTF|D<+fq7hE#Xfz{uU;qYlADBJU{CZz0t~Ht*^8Kyw3e$JbhH zIr4hS`XRPI&8Nl8;62h&jl=e5o`7*m6 z%_yGAyGqNF-dUZ+gEV@d8VlIG=Pwu2FmN z7L{#Dlb|@GlB>jCDCY7f4rO(^_3LBc(atrw8wb=%#f!}C*v27@$N{C5Hhf@8^!}o0 zT^7V{UZ0csvZREHdRWhw%-9djXgpBLf`yl4c6HCvU=~n497upPh%epH9McQzCTZu; z7u<{)plhaTVTrj|i6Ryh3x&cre*3>CLGw()2=e}Zvydr)2y3G+O#3OIsY+pc4kG7u zVn`2=_#2jR?A`;idq|Rxs`mrp@ThvdR>|2phjd5q7mdh}oWR;^{Nx%I$$AN;if}ST zSdwF{{9efcQd2tQil~tc!4R%Y`Z@|Dt1%68vg#vp0p!WuC_y5<{{-Mj(>8E997Oz% zT~8_`t4UuEo-(J95LKghH98fDK7>LU6v;N`0Du3_tO4Q=;2Z0P##V`H##4)0zR6A% zFFQj-*60L?s%&M)x9OedC}vRpKPpYga7?2-v>=zyXkD1|&i+!CS~A11&8FXArR9tA z_ST+wV0sgG5o|Alw}<*R%L!(`f;2SIxo|Sej&D zq+WdR^3vQ=IO~(=Di*tK%i(}c!!wZ>{3P3(iR=*#70Q4dE?f71iEJciBoTRpRa{ES z5WLJuW$VM0SB*MQet`W{c<95f#l)*Tu;GOx$& zDcQ4HD9WXO{XQ0{dd+^vbW6b}JR$Jlp%mH)4<7%3*C$2K@7sRP)`0m0&XXK(k~cc) zU3vLmS9cgaYMa~ttIsm7R0oXmXLB>zx^(pP_j5ydE`aQC7cx&|pn6K`B$yUW4UN-X zdbNTX-hck71_x_bpG)PXHye;+;d)n*bz!Cwoc1@r3p%M194o!U>Hg}luq*b6Ait@! zm5F~}QK1cr<~rB`RvvPdGGFP{ijur|hxk`pB|m5QsAEB#&N>lt=T5Ug!vf9&(Q!v;O=A2-g~>zUYQ zC(*j%T8TPUqzfFO)aD_qLoT*+<}ok_x0wa zEWB=UXN7jZ#@E#)pL|v^Y+AqmMY^jH8ju_n8fr+9;G)mVP7WA_AjfMIdwLK9aB*Zw z6In9USUK7ROX_yva6e@*U+Hyli1<*=(}JWd)3j2-q&6`#&l+GBbJA0BuK#J^R&D+) zlFKZ1KRmp<{U{$IAt;r)l@*@_<;TW<`@4v{ILCaUwx8-B&iml&Y?Y}Wnww?wdq2Trkn8N-i$ zO${^GE9Jr})7EzkDK6pMv1`|xzU!BN9Q?0->>$A+F(p3BwRn`UoU6{dVc<~rq=za2 ztibahJ+NuzRHQuLpyu8y zEk>P`05J*spx)=dJc_xo^KkT@JA(gH2>W}_B+2u`l-rwDApY&w#+3-2-20^$Z+n6| z(T6Q0BqDnx$p{j!(LVJxCc>s<6QJ>h6RllP~0Ng6v7 zlwrU{8Ky9+g8m~U#DBBMfDt*BTSEB>Cxx5T)&EbT8*17!byReVUFiFs2IMtEg@zp8qz{nXW@LEoMA8x}Nhx z+cDHgkfOzsB28NM_bTwjEca16v_w6+!RlKa_VFIV3+a9$%`0G-L#SDpfvb=$X!ts? z#IQU{Dg(>N4793MYzi3@=?R%v;AtfWZzHP2qRA{eh*hXeI=&NtApkeW@Hi6GSlq)K zC_n|wUZ`AeMvu_&=58pI{m9o6)S3_d*b^=YYox~MLvnIkGYbAFobkCvV=pR-Wc;*4 zXVq(+Ok*DbQ2b^v|1)%lZb%ymn}R8u?=!1lOWAf%%zHIc6N5jrLnHL6v}9FL4i1`#FM{FrBWa6Suf4E-}GN4Ce8J`7QSt5 z`G8zCF)ogctRGujTT()3E00J;ewwm!tEYpgXf>!Hbk1sth`!%VC9rc{CWZ~}>swxM z=u9nL3l)S)MflUy(|d?)C7>VQFrbQVQ3z%R0Tt!t=}$%0i|}!ndUnCcq7KrhF!6pF zwHlZHSG8&7&O^}{vnWilBvB-dr(13P4sfefl5!UUABP4b4E$`9Fl?} zAQLrn1=1T7-?|AI1(77COEf*}gUAgyom;MovInUwM|w@UV4W$#*z=57&5(fBH^wZ` zzJjSqhCKz{j+g-PH}-aR=v(L;q97ou&rXM}ZjMb%TSZhx@$_V0-qct(kKnPz>#%vz zfKB+sqNS^6yi4+G|0zvrS$+DQ`hIlyn2gLN)WL9eH_~1RihzdZ7@`EdSv{Rcq1;0r zP7)RYlQ&0$zCAmiN+Mr}<^~k`q7drX;FSFNbmMlm2PNs^Y03erO7+`=~UbcLZTHVZXtu z-E@BQk=7+Qqv`f}EgE-oy3zFuptc7+9k+0MTL=jhfMOGiI@J*{Aw)d^B(5gd@V(91 zRt@H8mt@2&?}MM)0{yIv5RFM2?WE(XB;&L8XVI-hI)1*pcJFRR3v_QSnpNgrYfJp1 znb9T?E?DZ%B#5Zu2jzhgz0v!p{$>|%L4vj){f{f)>PiXwN|9Gm5+cV;j~7o1u4R$5 zjEj%o0>&hSB%YZZ^93jN18i+Yf2uIs7Et%S0KxOyBwTCutS$)?b4(%Q9_~jQi7;vm zelX6|d;!X3Ldq#I&tlxV-)gXSxAWm9jk2l1M5!&vVzS^o_QQQ|iE{sQef&wJgc~DJ za8P85^uJXWxY(0UW#TQ#1RLh|-#m48mnn=3r;l>?0}Ru~o;U43J1sF_0z=N7uavLP z&WBeblVJrLI|tK4KRygC58#AW*p(P5k}P<+HmM z`5Ib&ds^1r$dN9-1qH-P#O4j{kZHa{cRvC@$1NB&a^E%oeQmsX@ED1m(Yz1m+977E zegA(x?*VV0`Lu||ameqW9TT-qAp?a*ZZMtp8%511fg+7Zg2+9z*{gwt=Eolrs8c8q z90w2$c)fg=(|G%;l24#Wa#5y;G)=W56(z0m#8&FY%gwDo(xcA4-MqZP4OSVqH!q+W z5rCrW&CP(V>WPN8lOUreIPjgvFM_cM(dd0kQ4Hl{UV^9eqz2U;QV}BkJc!ur@}}jK z$}j;FSgumh;Yr*$-=3HTj2A#D>bQH->NwiS(am22yxQRNZ5fMuG;%gBi~~8$0OwzL zFbN#v(-IV5c{FbI-RpAlfEzwvw<8NlcLlscdFn9vS6zrKApa zCPtYWthXK5r97T$oN;=Z8zTBu!Fv+WT!AaXObxO2?g(G4a5GxR ziMce(bJCSeF5y3_Cz?%y(s>I|MF^;;J($IL3 z;*tgrDzjQ@YC(8M+|#G~NcWQ=@J1@b*k_>8gSXYP>nDvmQ2k2mxUk`L)XU+!nD zGb-dPVsBy>zGst*bvOjRb{G@>IcjQew^3qyZ>MC=!AKHoT$PbYslO7>K@3>(^!f(Iz zi2wde=;_^Zzl5$``)vQ7Wy>j@^RJ5E?UcCb8FXmM#cA9!D7SU)eWRspptpBgt0_-F zx&AWTf=$_;v=#W1Mvj)kjX(Ms|G)f^ZPi=DRvV|T{N%|K9zQ9yq|1LwcZs^r=SZ=7 zcD@fXuC~|KLCET1u`boktw=|-NIpWQSeFO? zGkpEWn&Kx5Rbi5}hcEwe>hx*T-#BSPH^@XW(9q1J+6<`WPIU%YSX-QdmBnt} zk~96SVAHlOTXd|oT5{}b6EB?}_?UEh+d(C-fPjGST@?vaBVFo+_jevXg*&E(V!=vv zdD!rKRL1m`%(F8g=kD*^<5{emW?mgG?J$s5|Fxqd3@Z1=j}xvqT_Qi!6I=R8HC=ImP%sR^nOeV8T^zv@^#ZVQ;S0%=iFqw z$J$MsGWwhHUGrsvgu*gf91d1a1_+o(Yv;SLt0sr?TzSv2Y15|K1a0m7`RN$Fvbs2R z#b>8hQsjyrFmRe~UQ@3ca&Ck7feWYh?Aa5o6z9*QUuH0+G2c*4w{0AD-QMz;KL}V$_n8$twGVgJRT_9=DxC z(kYU4az80)R&Tw{=Q`7N(e%>jyB zhFLQ?UYsh4Cu*Y=Q_3vc3pbEe)hqF;^kS1&NYO7ZDipw})T?-+dGh4RyZ7#SGCPkq zTxoo9EktB)RDNn|ie*Y|*=Ow|E3R)id*;kz7QX;qLu%;ovuDrrDV}FbXb@v_W^#~uUtPR6K}Hly2ET^e~#s#ry`t&;W2jT*G0 z71(N{6ycFOD|9xK>b=b?w{dSIqelcs?PU{>Pz7)_rxg3v;athIm@CZ9jebG}>?_m}M%L z=A{xj5ngU?Zp>usQD_&6m|WkzdUbN;y6vfrLw$V*xw*OLhKrb#W=3#23?7ivgmYN2 z>)Pcw^$aD1^BNqWsmaMm=>UGUWZh!Ex7y^AvmP&$Y$1wTcbNdh%E{>&b7I zu;G}egtZ-d!gQNc`7gcxMX%gn5o_kpZ|ZM>1M<~!+5bGo?Ch-7Xm_P<&_o4Y@sl@| zmBUFh<@zI*`C_N?4R5aB#bYotJ}})A5nPk!?8qSEq(Yt|NXUA#`<%dhc^dOoYiq@k z&T>BUmgAh-d9!yEwJ6hwRJ9rA+KMqs(ydM-?))YnpW$-d zd^iJm^h!pDxIV8T+X5+5Jj1-zrN7*DP2R%1V{NReytd0!SYxVTNS1Y9G!E4r5zo;1 z<^=^tY{4LcjPA$RXT*^PvPM5IgA=e2a9Ot<>krJcXf9^j=Y;= z)gw1IR~I}IB;jggGp3ttgl}A#EI)dwu7+%3cb~`qTUe^5lEkxQu-$Maq1vV_A}t+MskcfXS(P!cSfU;ASD%C#g{rd+A;$m3^!6quGu2ZA2!l#MTD(@>=iTW9xKu}$z05xuw&TQIgHJD#HZqCC`f#cn zb(DCo-MF#t>B(DG^RxESfk!VOiKpBTI&$R!fiQD36EU_!EhLbLOnzSBJke~+?_S*0 zq>k69TzG#M-^G_SZ>Z_4++ zp+OY~&NCz=B+GUvKHanl3DvaNA)zV5JO<#;p~G95*Y4ZJ(s@KeglH}Qqt~7zGU#~r zEx#Um$j{TV=oi4+Z_A%ot;3($V*l$O58vNMV&BHD@DR(3!0`;PpVi@o3|3N?$1gU0 zusK`ZJ@abYOKd*h){&VQy}&_dZaSQ!Ul5U+A0cX>wN&-txq#n*35HiNEXh@v(eB9#7$gOz2ywt=6}pK9+^mgmnGmOpTUO{ ze8zPO1_qH16N7O`y#`4BK8Nq^;8sHR;d7e2%5dE7JlXRXFFx%U?x5C0$TG!g<*MO4 z)M9n5da77RbW^P_qw4jXLDa=Hm~Cxs14J%wrMaH^-h{soyZ!sfi07@-z4bF#l?Wur zCMT^OJ9YrD3fE@>#L7RQ7fdy6;wLe&szAaV2Yj>e;Ulj+MCT)Mue|_V--m}EF_%9P zRww5-&A9&SmoLw6tXOS?vnk{-8rhM96*zGGxJF-nf-kdTv;qZh<^up1i*T7Lc19c$ zF@ns=yMO(49zS?o9L}AH7ZlqcGesJ_U#aAEK4b= z`wfVxIZjg+F^3Vf(=)HN7wV@pnBdi=s8XkpEtPb>e=XK|!fPl;O?XuFTf`PX1}d}f zmy|g*j*Ax^<4dkKer$M;WFJbSS5x@kysB@aVPIJZ`8oa&mGuyHo6fLwEN`@87IO zEA@bjIrjv+{ph`4uMbx#I0kzLNauT$hr5~5EjYzaerqe>yZq*_h$nO?bwb2Ei~!G- zX0omO^rt4MERyV3-Us67`jAA35ciSw>WW9B%V}sn-oc(_jUE+|_FxoF)i0+tZOuc% z>2T=%h`2|glJbFs#QJ)HO7?YY4zf>9Ppi!ji7KnUu;{pZ{P=ONJ*QU*3JH~v9IwL| z)Q<9n6co|pB0{Wea`^#tG&H+&4^w#jOkM~F))f>K7&*#S8S@9!hKOxKZr4yxH@T4K zH1%Yc1r8H48*Y;tdi^>LgP_G5BkwL$>N;P&1~ z3TKDkyv1afe7uIB;IU)s?t=E;L%B3wT-@ckRlxzpca`7g&lfp0UYtLu9Pfpo6DCks zT`j+hNB4u@kt?a#(YeEgbl=Cv>)Hz3YH>`-X$q6@rZSUC8=tHUtb+34=%0W7Y54Bp z9z@=B<|crNdK?oHpMfPPc#2A_GAV#1IZ#p{H$E)!u76xhSSBqd-v|1g93kr?x3N0X~*j37Qophd0RC_pW^U>qah@3e%jc&`@=~t zE-r$XIMx`Te5-wab{$gL8=kt#$_vJIv6aV$aze0ZC?zNW^t60NUV2hkRB}6GJ=J0e z;EM4YnY>rt)302$O06)}tXU1=qdM_Y!Pf2D!;$0+=BCG#1Tv(b99P}AaidY?^FJ?N zzPuH68C%Gj=)oO^p8 zxvfLA0~>C)|L1d)+giL1jg1F+^y`(~J$&@Rzx~HkR#qDy1+B5T9Jx0{TST|~{Oy*D zN7=!f{qtPG-o1dO3Rbc0X|9lf6(QOxWM0Qw$ody{ij!Xh&{J(aj*Qe@JqK4lKblC-+o-oOsDK%D&U>_Hy&Ah zR~K2yj*=TX^7ECI%nvQnan~zV@KitDhQE6gU0JHY@hyux?#IKgN*QxEN!Oe&6Z!c% zxWgZ>S<+|M1F|01t@QgpCZV>viBijZpV&q|(?$hkf>c_|p%&qlt5=r->fwkf-P_J- z)lsr7=I{igiG1Pc>H{Gmi0CU2Gd=j z!~PG5`5<46|qDrmZ{rix99A+b0rAB@hsUT zU%RP|Z8SYqadXx3$9~zZc^47JBO?NlXF}BC@8As{#?6_*Lk{N;ap)+ z(Ltm!>dnRD`bsXkif-2~!?d?=-Y~O0`RlJ=DRPMIEEJGo4&OfCFshF? z-6fxDaG|5vQw(Uyhk2kSSDi)DCzUyeO5!V`C&MwDGM>&#!OextW!C^V{`}()758gb zubu}+-2eh1F2?0N+xL%u#te zcV+?|6Le_P|M60aUDe*j@N+9np{ft>CH6@Rqp*Vksg;Ip|~CCXD?_(y>|~!K6voJ!ph32|FKw?oe~G-B*_UU zgmnH362w06J*X`6{{8z#B!0ctV$c27ZLe3Z{N)#M>hk5wtpFcm6t@GuGUK}2xV1k0 zy@qXoxVSA<_d6aQ^(Zix*6{q|u~1_d4cvS5s0s?zniB7W9fN~rJ?>+pqYAgz@A}%) z6NL>PW8Ruq;?EZYY*UkRMHZi@q9hrqo)J%KbzpL1)aqF4>W6zyqr@;VjOhkL6fPSa zzih>-NMu@4%lUAqKF8rvyWE2lar5R)g*+#F6vY?h!=)}*S*3yyGPu*Dn#8=4r~oH~ zju_W*P~=bn#g4n8>LxT4vmwB$1vUX9!`3ZZLSDW+Q64B*{r`K$7bcq^sKx50wZn~? zBB9(9z2f)!MyGA23p@KpZ#$0#^Imf|+$Ow~U=~B;PL41o^Ov6gOWamt=T`M$L|im^ zsvVKlI4td|*?jnQCQpqTZu;liWuJO5w`c!;G57vTabx|l4+qOdtAZRSINS3y(&a<0#3kkASq|Ok zXl0<6n!eO{EX!h_9N#f1FLN8&@?FhZn=ZHWI!zl<S%Wj1vtVQWQP(CP}6@zz{hZDq4hF8%arEAB?AxM=fr&qu|#ZYP2Gex+_ zDPmetTj_i?jr630Jh|_Ck&y?i*BeFnrR0Cu&*bXWJ(&PHP)P5&&7j~@r%X#VhIPFk zi+io}W~b6@E6n0FhF4IyAFirwp$Vn&C^Msms{d{qJD%YZl0$BMwU0~W1!1~_w*pc+ zRKnz@tVTy!G;^nH_huQ^U$f7;a(;Muop$<~oBpc|N?Sa$u1@(d7dI4NNZ48$$LT1m zR`|GF-?YI|Zkwd4sPdd)5>3z9p(n4RmGf_CB`6-NOahq{SItpg(@{1U^^*N3fU!5=|9#f1YKJ{6BkMfs1~ zphy6Nlaliuv5Q?H@+s=yD21q^38iI*&0d?-dOB_jD#o{EYC02hQDw5Hz>gao< zwlL*b;(IXQ{hYmU!%%hn1(rWs^I{Z5nPkQ@(;uv~tJKJ`yD&F1UggguP+VTlSvkxX zqion$$Jv;&@ImLjO#jEq5Tn}XcUEm;h;Ov+Z4}a=;eXgWumR#nbw{bM_0)Gg)0P}n z85tQQ;Y&ttV+s>Pt*+y{LnS>|=S2xb`<%a6Z#dm&G$~&+C~BcaRoHE7L#gtndsNak zV8+KPR_9hBn{Oe^Q#o}~n%%gv(b?fQx+@K~b4p&9b=tl5^@(;4kDveO{>Jh++xC|& z3_?4f$0#STKfSD~XJaX+FR*_u**QR8COEvzOr~+Rnl(t+@?2g+4o4A7lxfWNX!V%e zwHigPGt%b2)X7C~HS=~C?1{R{XZL$$%f%c8SqDu`%?_~d+S=OQZ1U%T%c@WhS`Rex zQL0|vSfTjh>LtCh#}}aA)qi+)dhGL!G0jeVyb@r;*Urvx;I$|eazoH;9JEe#Mn=Zoy0`#lLoo0TQysn?5GNsb z8hv?lM`=ip$1nBr+qE&yT3T9!mSXOiof`QeO+iMICievDsSXGz?!6y=0I4JdR9ZA{ zChJ=JIjX4k&MV(v3e--HRYgy@R*x2iU0GO&w0fjL4NdI(of?|!RuOgPq^Mp6wSgyG zspI+G7tYE>6}MG`)YCNfY%B9TZKfR&P>g@D07Tg|%-)P+ProYT)DH z+8BBHfyUK_U%L-SS@F?O_ezhAo`bj=V4imYc(-F;4+0oS%u}|zlq;Y*b z`O5WWE0`(xyCU>6!cdk6i)v$w)q`(mJht%ST01XFchgTVE)c<$d2FCb8KIyCRLIx% z_7G@=7!Hqpat?Hzu|}Hv2;?Mz_tEcW|zAn&qq4gC|+clxf3> zYYd`v;oPEYt3F2^B!Q*v)rPSK>Oj`Q?z-MNA>Iui@(Q|Q9d2)tn$f?Px3gAjPrl}d z8w;GOK8J6`bS5~x@INhgd0BrDxDPF^3$Kl|$=0iFYD!+XCXmqa-c!teL^y|S6el@a zd&0UleoN$p!-S&B#{z8`1_lOi;bX3Rua11Xy0#$9p(+~`k>2~+#AMVEae;!CM!ENHUm|74Z%WJz!HMj;7HiF zFL*Y>bk=d9KH8tzusW~>OxZ^Dr{+pSwYOF$IpoUyPVzL5-qp%rWi!LKo#&l-uH4cy zamrEUbSST?+0hn zU4qGDojPJS8lD>{$iyX0MDlH%Y6?XjOtLlczyJ2zx3W-MRJ2O@zwXx4v+L+FwwSkP z(Xh@wK0}e-!PP34@+9Sn5GzmblN{}VnVQ2XJIw3*-!?5Ma-48Txi(T4!I(eu(qzox zUE=SwJSJyKR{oM*SipAQw^uk9+_fA|x?CAJU zVOhGd4``3uK@-vihiBL62n|H>+O=y$_RPO~BokhkGX1^<@%a=cRcc_+f)*2Bn``Ru z@Nlt9zL@j3SF6EgCz_zznN=PENz>GJj=vondq$SklLGFGxKN;@u(-OqZeTpFf*hv& z?9`v55M)){xfP?mI>J-;N2w$|cbOd)bDkY8@;`Lxrk*R7x}(28c5Y@tE9CIry{Cx! ze59R2DfY3=;3va0^RD+nM8^s%2|%f;nKx@&(GevdVb%3utY9tmy9ng)w8jkZ+*h7- z_4cx(po!T)cvFe7@!O9d@01)_AUnZ%+6sn~C`ebRl!+KO+HBhz1*w+EI6mCkX4dmy zfk9t#5-kq({sn9g5Z@6X{MFnYp&F$@A19j$>6pMAkP_RrZY7SBgJ2O$9_@2O_0F|= zwcC~X!cm;P7+jlH*dbLd!z>QPqw(};kH6r^P*EjV$v%G(=PcA=TX*bOyuPBf=a<}x z7I|VVf;tQ%#2Gq%6FYrlRCnS{QcEOSb(lk#E#gCo-;oITa-u*n8!pVxsbyJ38P!BS zgTfvo8!XaW8R7=gGz2BOsu{iHdH72>HM10Al;Y&DOGc;r5{x0TcsM6O`IE-3uSF>~ z3UX9}3Q;r^JSfz!^C-WFF0K%(l2pW{G#{C)S87yDWtkq#9#VLIW(_f$Ku}B0x?_r* zS`u_D1Mw#s?iWeio;)Na&#@_mcnwu;r{O=tWrCt1r5M9yq$DtbJ@dIis?(J}DBKc? z0|aqjVlV--E0|W0yG*<^BH=0n%M~@zTA0AgYbLLER z#te%SQ`gW`F1?1QYyJn%H$`Xq`Xe~2-|&SiMzyp&Y=mVebjyC3$jfi zS+X9*y4|&~nNVei$NeR~!HOf`4@>~p}4FdG$6Xj+8ja+5!J=pLChsfd{DGxfKXY89 z==e`waq;*67Zz^kz=oeGyNe3{_1j?Xe$a>n%kJ%S-rfks;2%c!{`jhY(SSZ2N0#W{ zzsWc-kv}f+Uo_x<-@xc7?IO?m4~LAUQr_wid}on*&Z#&)^UVI^cbE1za{DVDd%?dX6{*#-% zCHPp%BJomGy^m$X!6l{!#Q3m*Id0@{di~IUt(xT_;ZKBcU!-|Y2&FjB*Z_r!BlZ3; z7S;}93#zCc+MEulUe!I*ek2?yXg@*|jB`<71d)D{X)U2{5!)Gjh2#w30Q(;BL8d1* zItxonl(Z})=ESt4GKWGc5BbR(f)N~7>Jc(Q661WHi^P3-=ov~!egk#J>TY+pfj5_? z+7bOSyDyLN(LLWgN_|XW%2O(8N;8gt5RUXGt(Kzio^IYsyc4Pq#Lk_I#$UcqOeh1k z6?!lw0Je3*X$Z{-z^yUeGzPp*AM%D#V`>x(E764QE4)u9AcIR)gAh!!9nvD=$&DK~ zAb)Em$NMerf?HwZR6SxUKuic0Duf{h76}hwo7u^0aoYJ>puCh}wP2wHyG%#5*tKsU ziaS1Bh26j2<>BkZwIa36Khze!{#8Z8zH zWkDsvSxqQq3#AIMz5^%~$d&kdD0%vel)BAc9-b*2%v=V^f`>D6oN*ECDYp_pKW6rGqC|oEvf|; z3i6b^ipt~KowBmBP=kwkSfgM~qM=!@FLA?_nGF=^_tDW*6TAiI_(^ED5vYBPQFcxb zxh}+*Hl;_o%uO#E*C3X$LAh7zIw~m0hU7w2&-+NiAbh?}tLiWc&v)B<(0M8>Qc8;= zWC^sv?~S#!W0{@ysisfiQv#{&wRY=)r-b_kI9w2VUvpxK$6q7q(_rCAh`*Qtd(ReE zV%ZoaeDOSt!ev zEdv8g_K{v0{2N=Dm=chrR0~ZYi-J8*yx)*&=y`W5+jCg3R0^RkH}vKL;*zXGk%Q#+ z6&^P}RvsQXlG5)}*q07ugGFX?mwo6p1qClyX1CGOviG!Y(1Cj@3r2_M&!5-iySffE zq=QFXXG)MaLhdG45xhK5EB zN)8aoQc!d20Dg&6N|GLaR04eYke&!DzVF=q4}bzSP+m*BYQSqak5-DI%JGJc;5n%} zv3GGo46*&6KybQl)rle(MPqn}^{KtI01Buddw?+f1DRHn+OW z#5s(1Kg0Ek;ar2|;zO!oHAj)Kuy7h`PG}u5;IW8finu7!e1>8Y@}hxZj3B8J7b`&D zo;a1HQ!El*iT8IMx_JG0NC*U20dOyUY4uvwc#e+FPM=s~e%J{ulSSEbuEO`%(bL0L zPu0}3u(BUtLt`>nH{TP*u>2txQ5lMwN0diCwDt{i-8vJyfsJc(pY4 z;w}7UpC&VJ;kRhyPEn~Xpee-^^C#e)_D8`e#}uv;>HG9-~Lcr zXg{R%N5I{`!#AJliaIb&x!;kZ@K@wE(jVeSfJvukM=B6&j{(-Jjr$_3?w1KnG`xzR z7(Z~Sm`B~rE=zZRE=nz5*l8XcxI#;3JZ^W<^C^CUMqR?DNsj?yRYzF4>L3Mm%?H$eEW-UGoXYWmU-i;9W{ z{DK{Gu>z1lE4hh|+SkJCNj!lHs*Nrkf<1*v3we7ygXYmE)h2bx9n$Gcq&#@GwlxtEaG{6$^!2$qLE zJKCr=nq4LF>FnIx*g!^WH1Isz@B8rq-#$?_dvXz);eO}txwJ5dSHMC^$Q}1bPB&}n z#*g&>2Jk3pQxyP)vZrBS1HxVnXoF~^BV$;V z@Zpb$9D}0QpemHY_WM4pkS2C}J6_U2b%aMpD{6)~fa?Ry%xB=Rg=;L#gqEDbi|ZDQ zg0v_A622(4IWOZViSICJc9VQI(SXA)6Tr_|yd`g<#j%0`Nc@Du#Xh}4mE``#?>#v# zNbv*ga*Q9d(e-FA)- zSoOajrC7$nms33)!VwYO;HHuT`@zhH;*`mCHmQ6CIhO)!1dsv>=4d1j%C`J83grhjErXY9^*Uxus7gMh1Da; zM#u)sq`JcCLK3p{KWEb%W)ld(+yl+o%BZpth^mloVt^HTf^1tTcXnc-`|lR(&XCwP zej64rHW3jm!ujCU6N@7nDM&v8!?AaK5X)Zy<-rwx6;xQ$jE-+z&oXDxZX!j^;V~Il0)R!2OYQnt~23*P6B-D zg3!`0o764;PTq~S^O$#BICg5H`bHjArK^d>tP;5u-#-Z?&k=nZ2~9ty2OrnJeQCEh z<=9)s)B^_ka%1{Jva(>xzNAPxzmOr`!;fr2;kUp(cwjd zg~)NuWNHg&9P9p%7a%e#K!=oLXC==QPPN__0AC$g<(O~ZzHMEL!1Hq6Pb#^`-DGrB zL_JyA{J@3hf4qMp9I!bFzd*yb7sp?W$vG5n$q?s1%V{bZ2{(=(-#f1Px_3kRr*Br2 z!5#*fjapn6oQa8w8j5_RF8tu52|sCJf#rYv0)oxQ-_3N7Xi+^|V9SmME+R&1c^*b` zTb#RkG>qucO{hxm#T0sD=i7y-^!`gPwi!Oxvg^NkJ708&Ok6O(w0PkzXCzK2hX>gdqZg>d}x9(zL!F`0aB zJ?tmN&v`&D&?%jHe=edv+b*ofiL8?-xu|oCO=F+WddAW{5j zLd-x7!cSf@QS`B?^aUAr?TW%*N?KdB;bfpis|Z}w&niS0KJn<|Fq3W@a+~17Np2!# z)dNOh|5z33Yu(PMEj_1nbwiH}3tM-b`vdgk5({E0%Jq+5tg9^gufJ**HcCy3%n#kx z_TJ-}UEY~X=d8YBg`{XbpT86#3ALx~H z#-7Rf!&x{3frkwn3Lh{8WbN?3y=Zwz+(L{Uy*<)q-pZsjVxf?(2h=*8GYJ}*&yn|4 z3N_Fk)SL71qe^p*eYHhiLP7%U8khN4+s0A~k2}o5sIYC(|Fq~6fi$JmG{T&V%GVP= zNxYX0JFs0)W5UaLg1Ys$-=2Q^c9pnT3PDMo#p#Mxh@$G1p?Vqn{Axw%W4zZW6s#p^ zxzH;M8S*^D+U87bE=!gIj7S_k*x4meAi-wjJ^Jl-66$Bo7gtXrd*E~GNL&I4 z>v{KRp97rxs6?))wmn0u3#{o+vTO#T;e|2;5F|_@cK$v97D|=6c`ggw)5L;_3|0N* z?L9tpTR{=3-z)|^mg+L+K>YcD$RGateV^6mm&?YwD^F9YTP5Y7Srg+p{n4w$_MMs| zBYx)A&6~WogBlxl9y&pKIUv@dBpPcpPB6qi1@(~uGzMR`ul`j8Q;U?3%QW$EM4H`J}M)d4bz zGTaZRRU&qXGZ zm~7jMJhElc(89i3nhzNbm-}J1Twl25-^3UEi2s5*w@lRSL+?(R{12Nrdl{Gb+wTYS z-gw*A8v9`PpV%)r6Mu3Vt}mqO{jlK?`mcQl!HIw0=YP|Ao;_{EmuU49O;>i30O&3M z!KgtGKK>IiS@t7K{bZB8^4BSMm%N&X z8tLwf5y#Zu4CXCD_Wg_*Dd__RVIO8p6dZ0SB)9tx7*(b|`ra`tzhsLUev>5JIuO79 zJ*%^j^+l7}R*q=pY=4)A@s!%f9DaeDO-p^a z(rHt4W|S0N({4H?>nb!*&!%2|mE)CZKqGs$YF#LmyYtxJ;M(NXRz+fm{xTm0b$?~sgDs)QFu*s!OlbN_IZXJKE8YBir> zqm*f5mgKG@dUE$z&Ed#$^f_#*#!mzgrTFI1VB3EAJJhh+aJ?;>Yu2Us8yEI-TYo7F z_K7*YcgzQjuK&CXyTMQarM!@>L4t_$Ow42{x2WZ;e{Bq*2h%q78l13td9Tl7q|2&9;;~Up ztX@MGltGJa>_!VM!qm{%mKJt}7k_Q%o;`=ib{Fl;pSVSp$NL2pI=wBFM#hG!k^>V3k&ZazJZ~!hwc`fc%K2B-k4ER$!J=A=2G{wqou99< zK3GTy3=G`*X(X4~J$PcwH(FlcJlYK;+TLB?(d2z_Q`45@u5U?=!Ta1i; z<-b8_);Q8)#;#bvn6-S?>TaHPl9CpR)%R0ZyMJ{~yZFc_K`r5&w113tFypjSomJ^@ zjB@+|N6?Q$p2A`qn;$HCALV;D4=)#o-r+;{Pf<-M&D z5y^TL@zw$9MkDFX4j~t|q&cTVz2?$RzuzZn@E7}Pg$q$U36T>sD@L_~UHtj=F0-H8 z_?aT^z|;=*nO!?ChxA@UxbA_8fZ#M_)mTu9$j3*DElEQ#+Rvq48C>$P8Js+e`&4Y3 zwfAZ$r}#AoTD5tI@*2FHVV65({(N{{r!yzIp7=~^K2Bb|vE#l+MZtWNv2udSK)%D+ zU5l@Fb|y10?|f@la~3pzMsBP}xy0y;SC2*M!;|;&f)?InmMTU@O1jQPL3pIdZDeB7 z%yy_XDocw|?ig%)2Hg7bd-AuNhr?dpj@Z}Zd>_3PfK~=rwrH)~EaEf)Q`Z*}>{6xe zIu{0;gnD5M953L86`?VYR!MRj7Ow9*HoTzfw*f>eYC+=OwYRhDM!R7>>UbmT_o(Da zi#ht7*w9#ER2S>V9EEyky4^#R^iiS8Hd9L0F`tXb9cMZoo4fiHr@D-&=$L(ezEVP3 zUSE?5zwvxd!dRVai%&|5CHvX+IY(zlIz2r+64FhZFE65%hjTLu&*bzdRYBRd%+P)7 zv^`N+-4!Sjy*9Yd&DC4khXY<~Z)U|vm4;qt=AJH2(WuLBOZYRl(@?~!W;VeoRs$k) z6mlZ#H0LMOzC@x1rr;D{zmHZ#;=e&VDzCwZ-6(A&fmI#8%$ny-g~w~^zMrs~TywS`XWI4aF)K3;|V z+qWgC?}Lv;XrDe!tg&#X^mS}ziRHg?Nt2AOVXMd0U%!8n;(ASDIhVtN` zAI#E5@5{d};b1q?_(=P-_3)RKSX1jwF0xw+onx(ymHR$c?sJGRUOm-0n!+KVlyv!e zPO@%gcC%3LyEbj>>6#(h={B0VYx9A-_jNcp zQhnm0Bz;iUZ1DV1SEYhgn`(yk%No4zN=g0V7UmEk#$6z~C6sd`Pw^|=0(Z5cBjC|Q z1BI+5Q2xTd?btsI=DP4nMlQOdOT!~y4v=-G1D@FbSa~HVivLmm?N#ESXiT| zr=E*6ZDV?`2Wf5ycoaEjkUM!*9-YsdCpRBO0J5d>t4tOHB4pVK z&WD#*f!N($UM?K6=~sz)v&&F6t(VVg;$+plEh}ZeY_Mzpy#2cEjR*F=bjeYQyKQ#1 zNM!g0I2E_kV!Z{=Wao#z9@Hx}Zir?Iw#%_;c8J!@(4t;$$eVe2q-c+Gk~I^Tb<34~ zJ#%hw_LS)I^h^%7`)D{_Lc-Tbo4AL(Auc zBWIuYFBh_vY%HD{%DuqF#T#_rhJ zih6B}`aY-%G5D^apkUO+S2vXqGaArvEa6=REhTtoFkJCpzI=IN&j1RO^zAhQJyji~ zwiG>vh2ck^6WT`maC%AmESWRmtK~q^DZHO_zZqK%q((%m>w+dU$q!(MYh&u$&Cf?_ zW~XD>Yf=s6iMxy_H}Lcj2O7iCZ{K9K3*0u`B=>vC z!D+(UVdlijRU-4NR)S|h){24zLwd{C?%;}rG}Vo6(1%C^`&ZOPUN}wqPm!h-!licQ zg0d$ENACd~CB#CAKJu5AX>btGgo?3R$_;&dZCMPX2Js|vY0B9OMlE?8dQ04YRb#lW zU@`?XUk_M|$ru>m-uMudWO8z)5MeDb{^T z-kj=6*l2|K#!Q}o13pOI2jD9vayX$5&|a`LQ-4VpWZ_WNFXhZ6&NYPhhGYzeDX@rz z1x78`APLPGvI7LRCQ;$=0Wt6}sul)>79qV7!CXz zgE!rncVoR#r6Tq))|)TP~?-Q3nMUyKfd7 zb8=^{{iCLdUQs%GCUoBR;_HcFZm|UgecPtDo2`$@DN25o_|EqL{3jWKVqjqKT!&bz zp9p7@87YuZC8#oiN1q{<8)7k|H8PWlbBZ{0kopPZ!EA{5K-zF{d{|MRlV(|B>VXo* zX_84+!v$^wy>q6eCQ>S7Jj~+crxI3T2>1URj7q^x;fF$AsJzL6;o|&RNXS`^_ z4iJ|Be5qAvR98qdQY6-2j17S&;1PJfT0zVnAzeGnAaqn&a@G`Wc_3^mg-;!9$&CS% zb&!i|FbN-=$f88d97{~jQj1Ri3xp2!`CMohgj|8bg25h}LGUa-vLW&Ue+u!Yb*I#vJ^cLQP08e_l(!SxeOTJ_eES=)QXjW}b4u?Eo92D(CZ0|{BW4)zG_$NIh@-yX ztzqIgi1qzH_RpR`Be2i^O}DOsFFLQ{d#WRhUtV8^=t(dqGln5R#7 zW9*d{sKFXkDqCS~#fxw3PobP3FZkj6Suoaw^ECVP;u!$@q96@Dk04h{6(+I}kHvOQ zwF9iI=b+h>84(>$Vq#(tK+g^3j66V|z-3uiu3SlmzxW&mbyf{C4QV!(h8+a;PZg}R zXa_UcRh?yROma0*Rbj*+HaHki_Ge|5Z&yJR?!_Rj-D63hfP|{P2<2wG&Xl4}XVq3$ zHfaqVwI$Zlz=JE^82paHr*}j+_|c|%(Sz%VK4E=+3X~jaz8sPsKd}cp@4*AL=!P=T z&ApA97uWck6e3=+pML*7OX~uA&(|Qt&QEzMB;?=LuYY=7|Dlfl(`k0DU55YX-sMAU|JCq% z5y|5CQr`G4gBS0h?!OXa$cO)x7Yj7?9O;nh5Qo^yfayIx5fN9S3qLQhIol*|4Cx>|qQw2^q~&;tCn8MS z@!@4MK?oB(GPAQw-?X04ItpiJ3G8oR6b@|K>ioTU|KgA*c#|m1c_%E$q#C&3 zDiK^s9ZxO>boHq1wSC<)!jC1fr#+i73HFIvB@ zxzo3r$>}M6xf{BK4-6(vx`4GPGT2ELM~epOp&+A?V6VXnaq$(bs^TNB{x1)Yj86~s z`2#rDBm%FI!8^qD2Lq$eFfONnESiQv6V8)uZc&?$JgggN&DSPn28uy4-U|a|#Hm~9 z=we_mF@RT@yeyz677D5B(a)%wy+fR3bac7RVCA-*tTKU-Xzn=xm_Y`wi1-C@W-;9aL`^XVvPF+)l!YvA;3wJ`Aonxs@Pr%XvHP7*~lQKV5jeQNb3&@ zK`|78xe!LM)hKp1#F%UD!eJ0QIcXOpXj$0%80;?gz_!hs_u^c_B&(`)YERorxlN+Z z*BKNLN#-+u-RB^MHIZ!FW&>tisOaI!>=?-^e13A zA06PRN>l-3J;Sxzc; z;&`f0(1s`S*L>dPhQGENTo0P+lIB6JA&>K6_5CY_0JW-C*C%AG6&ZvEk&Mg+N*D6@ zW5?u7*Tv5-Z;(C$D4EfCf6)NTy)fdCLK{38Mu(ijJFmg~Q7;r(3=rASpAcI|6S@aE z{MZ;+zvvS;mJ{$w0w_ufb{Ka^pB->iT%il149+@}BHQP~F7s1Y2t*_=ijV?iycVhk zwZw}zhMm(Y`57Bt7udu}~FYDlI!VQ6MOTqZWYi5XTkG|3PN0d2tXU zi{XgCX2S5p&*6N#-7(^=|7D14B5VkxP9&QbjV46lCxi`xTPi4VVuOY;iqHz1n^g*Y zd8<-TxeyuvtUzL;E1EFD56i;>P)+8)$cjvzAz(Aq&Eq?;X*#g#CF_j>amx%h4Q#m1 zKvALNeTDG8=o!M9A|uJXFzS^Q0>pVm-ZZvn_~q0Sjh=}-1*AJ3!u#57>;%=q8&1S+ zjIZD&qG(k?a0cE38RP)h(eBEXRTxq7QpO4WFlaEmO(b{FY--~_cujdwbZ9#fC7}SO zTqxzA_4z(CmFcHoPR~CP~VAH5c6tx$STD-uLAu~jNTfQ&?aT}pjaync1z_ZKQhSjVfW29lv zBEN*;0bCRz$MIO0K*?|qB|{pm-ORZ!*I`71EkY?edK54?LJ?XouF;35RYtkYr~B?V zGEkQtRVr!1!B&WdALmXdO;rdPvVpwjqiYS98<}N>+)0W|q-ZS=XFhKx;C@sjvoN0| zvflAo^?Bu~s&zR}S8b$^#0a$>9C9>5dm~nYV%?9)V{ng(oxZ*P0$6$sV)KGae|qDM zgPQ`-xCU_17NrolRYM=DMrbiC2cgMr)y?2 z&GFS#to*a)tiGL7>pRf}6)Ks0KjTp|U1a_Oq>0v`3Dk~4C z6|9!4MWtQ?XB6NR>E9$n1_>vYVWvqT_U5tT{lV{wiz%YB-)3%b=UNL7@|!1ksVotXSehv=@gB^u^&S~LT^mM<}~hy-}dG@jwaBP zsE5-}<}W~~LgZMf#LOwRzVJw;mQ#k2lz$O`1 ztL4zc0+*Q_`8(b*v#^u6B%Iw=Xssp#Cvg@F5O4@VK0PG(m>Qkn@iGLn~kwNXF?RY8vD8 z;riZs*tt1m_aa79Hn}DpcbZJZ?ZDP>uO@3f&BAiySQQ?DKSKOV*-BB!YmpBl~+ zX;UL44{2Bgn6bthkS<*;p*%6D30mwPn1qFK3`<8EoXKVn3<^T?gtj5PIem5|FB{FAF<4@s06|R31t`OWKy{K*vG?QvkU=}{C1aA=(N2iZ zXT3vrVwoeRJBf#o78qcTQpitmGAmr70Fj51V{ICr}pfhTmN)AhnV5_`~IHiKKHrz{<^oGLnK2#_Jm|Ig*8Ge4(tBN){7a_nH45H~-Iz9nUz;o!PPWlhLuk=b&zs1W7oNf^YTF0>9V`8q1#8 z#HG!8zP;vRI6$b3r~eHGr_=nLoBIT3Np=+gGxu?GbMqRIE2ktl&LQA67XA*YFOMP8 zI9nU8VglsQU2fM$aLzo)`YUa}6(9kpx-guur~BP?ubRuCW-i=|yTx<=_m;k%chn!*os5ey}VQZNoWvcVuHu$r*jkJ z+ow$lk;xZ2B<{|Z+!dyu(VRA4SaMsrbFxI8AMTJ#*2afEWaU%&fFq@Qp?JLQp{4Ai# zp~uz(j=4@Cu#V(4hSVNBybFL^n$S)e`zKvkS@1mKdOA^9CSW_oJUm) zZ!n|iv|VJcx8AcTd+#V+#n`QuAfMk^#M|44|Ndw(D5W2J zbuU+(J{XF#95wjhs>S&S9S!E63*tMbeFP<+gC0K$04G%g{}^p0VNsNN4IfeoXeV)M zztI8(@l2v$r_f`Z;37PCT27^V+Db@=D&}A?yuFD8Kxp^%PrI7_9qeEzh~+T$Fy&nc zIy+E<9S!dWYu-AJbAH8bhR%ex=Hnn+(akcvY%YiYjNu{_e8`M8CSU|&pjn9$A;>{2 zOxchXD+0h2N(i*}$;=c$+7sTJE4OwqqpR{(^#az-~znUE2P=f@RgLc0{es+5nC*5B?nBtA$4(9nxxfY1*qtq>Nh16=P4OPt_rzmM9(Yq{}K5bgh0W3|Q zGnakQq2>}^Ze6~si$;!IrstB26wRp@pc2r9eKE;L%@gAi;MAFKS+S+o(RhLb|qtcsDC_rxxUme@1+!WvFj`&?D_pY z{X+?@USnjk8PCq(ILGr8D6YyMD?lB+V(`01)}Q=i54H-a-@a!yiUo;pY5EdkJ`YWC zdM<-_KbRWo!fNoMo@sOq31Cb)9mO9h=LG%&5^LLvXAR~zM=a@>_6I=vDWqAuuz*G( ztIV`9!mXxqX$3>7J8sme`1p>Aw1*{v+LOJBdzM)r({TI%3rXj*Js6#DsT#-axTILvAMny{D{PhHk8KMC;kF| zy6N6i&O_3%Rpeo7oda((o2=-ofi8g#hT)Buvz`myMuC@DTdytv9y5~m50F5{y5ED!Oz<3%X# z2tEi`YQ_~TNhpQ={dYeaY%oMWO*Cv}1H6|bho0ol zC8TNU5;~`p@SHM($J{H`zTF!5>!lvPQPB(>7{!lcTbUr<3--*E_>GZpol&s7!n?*B zFfFKh)>8Y{44xCFAOyq#-yC@!(t-AQ7y!U{)*XlA(MiF^GH9Xb@n!zBWFT112b zFcL`o8It(e0)}=sNhS^HG-ToRUfO!raeDwnK{EA7WJFDfeGo)*n0V>H$98XZ{*)6Q zM{_k!O98-F^B|t0`;disYMxO)yqBFIK-?dBgT5y5iTSH)nEg1686-)Ha#QGQz+Vl) z$uwBYKUCi6m*LZy3#Mq%hg(3HNjp@wT^iKI8c{nuNbQgU`>KT|JDXmhc}ioQcnT8D z6C2x0Z7t`f7DcV*cYF@YySb+(Xd+%mX+KDBd?Ve?CZTkqT&^`LL+AdrnmWKdj+TL% zWS%^%NmO`@$teQ}nY9BpR!Nl9GoZ_snTdVS^~f0cLHo~s+N~+Sfzlo`xB+Dy5g{w( zHKY>B4IWS0`hdzZTT8g+Qm)5wXaT|hIb@8mUY}lg*}?2n`6tF2437JOSqhY1m73}o zd$!1`_i5aMW4^kN>g3<2PsRMB3{^+yRs$<5E5lnzgj_#p=J$~oXn6GmS95KmT^Osb zwlcXN0ooK=5QO?7<~#ob-Y9;vZ+76~T2HHm>Q`Cu5OkL1wjmaic0GMz=mLOjHBQ9B z?&qM>7l31#73v?++Sdch=Pp{x5n9>M*4NZPy&ZP96+Bc8+q%c%60~%mqOl*rq)cs5 z9Ok=>Ecf{-{eo${rsh5)#LkB2A?W;j^#bK)RWo!9B5|8DxAL~5!JhwDYhj4!#~&dM z4F>c9gi0U*5kdp zj$5`cK3gm-GctEy44S+tAgHMohbk)Q=!5F-Vh&0@uaon5%I2~5JXe}cIRAw@s7 z(u(ch`0BhFh40vYO7?Pgy99{wP3~q0bu@XIeY^m7uzZo}mH6?(xLINNt(_+Ybh&b5 z!$g?FNmLQz(EO<7%a-Lq*QUPkR^dz&R@ylVIAs^S?Q-X}4Vb#BO1TPEgb*-4#Lf74 zAI%^$>z*?Y$F=%rAAZ75TCwYJxb`-+!%I&eoa%;l8R@1hFS8>J>26NT$mPthMeYM49V?9$x7pleRn(-`*~5 zKRNh)ozrfF(eJA$t0+cj7kRR9{Ojh%bzg_YRluLhR z&Jg>1p&)c*V;37@f42iillLKo7XIX5E+S{!eBQc#pnY`a_~h|zG~DXMa4)8Kl<5@- z$f5+a;OW0Ve?9_4w4~93jzjE)SPG?E$d8Xj-Oc1x(ro`!h({|stD*7DX~q=R3g|db zQLFVX3;@q~uEQkq0gOYN_Czq|u)EmGI5>xcrZ=1Lw*q6scosx9$ce=5koUVwN`DAq ziqS5=3vsW}so>VO=Vuyk)^1OxZsx#pO_kFRj7KQ&v@!XHJG}>O$X-~d-G5}?-&Xto kTN?h3p8WrQ#5QcwcTKLZy3XFqM;J`6j~lsbMC3>R0fMx9Y5)KL literal 0 HcmV?d00001 diff --git a/images/loss-dice/f1.png b/images/loss-dice/f1.png new file mode 100644 index 0000000000000000000000000000000000000000..2859696e3d811334defd2f4c1f83a1077eb689f2 GIT binary patch literal 18475 zcmb7s2RzpO+qTwSDQRiQXi!!fBAZflA$ujGD2lRIgzmaaWt9@iDrCEgl$lB>8QBsc zdlRyGkFRn6@Bj0Ep67jEpZiW-*YEm`?>NunIL_m|?kFk9(9tr|($LV*QBE9Fp`lr# zKtr?W&WbxiTebL;Ek5_>A zAkX#-HZ~U4!u$4J{`&x4b1UP09PL{SaFUf4Cr(+@(9oYH|1XM?h`dNcBjZmwc0|n~ zu&3^djoR>7-azrWgAZ=9Ny?pAd~EGGhNa6IH*5H^b4c)L`z~I*Q;y-n{iqekSA?#A zal86%==PtBC89M-Hhm1gf1BrSV#P8JcOLcip_`Wc#rB|JYU)ouVI!Zsge`3ubon~ivG8k&YBH#d;qqmqqF$!~Eb z!A1CWjsE}PZMA1{aXhDZHf4^rKAB!~T&3kBpJ^ptcx1(F`cmtVX=NO3x&VzD1MMD~ z{v=;+&3uEG4pRZbwlNbaLqj&6EMnT1zrXgaFj0T7`=q>XTWzYf?8%er-(O!=kJZ>a z^~*0y&20_yp^K$#&J#Uv7_MqooW3YQ4RJkx{`{DT8ja+#mBaS9Q}@<_$6?&mj8elm zoUT`bs+XyaOPAPI=|=uR$LK$P$u0Y7u$Yrc{aa^7A**ngk@WfwTx3JO9%sjsri^Y)yOW(%*1NEum3ck4IRs_Hg~xBw^c5way9a zwxWu}^Iy&-eH+S}naCRd>Ao+2>YHg*LPdgZ`YV$PE;?r6@}|tm$*T;THtAW_8U;zX z>Lr_0#3XjA6l0?WJZSQacOD2N@E%tURKp%n(ZeJUHB>~ z@TAA5NX(}F9$WP3H)iZVR?*XI%FBD?Rljwfu&L6u=M)goShsGS$+yIa=ZYb{mIb)J z&0yhS?%lhkm6eq{@c`n}qlVswI%R7mCi|s4Stay_yQ(z9q&;ioa{N$6N@AcCfS(7dM7&dGOTenNPJ!@vl{7%ys>maAzR2iII z824qC+Op}mjErgZi?iZ}ockinqW1(l9Q9=6S8;GiaUAK5zpyIYvMb2@L+kSlYK?B zD!CSU!U?{D++7s&jDcIicHL38Z?C9`)l{^vcYgDBtaV$+$Y~{|(9aL{aAQbHN=nj( zD^Cyixz2nqc(a;jF)cHhzE+X zZZDA%cyh8S*Haa%(x(0Ej;S7V*RlTc8&i6?Foi>->?KzKKUm>1j~# zmBCg{HnwB*Vng@d&P+RrjWs`D6u9IsKGwX!yJ>nbWTw6KiFu{D%iy*;=aIU*?(PrD zI?ChU{D>)ha@e#s#nPlMEm?eK(pqe4sBF9{YdRv?v`RK@)OxIbW=dbzx{yDB&)5s| zVAJ1lDL#k5_Dr!BNd`YM2rfy zWd5!(WfZoFO0(;Up%)*OT=K{2sC#|vG@~~c(e%gq={bJB*E}412rutvJZz@ZYuen> zvK41J#J1IQ+hKv;)Har;oXz@&tgNhLnZ73(EAA2&t`T$`iponV>#&)*@-_6xtva*A zYnX+bStfpeH}}MP4KpqdX77!68tKJSzwb2J{Vhp4NZ8inrD2|<&Mpy=?@<`!I|Cus z&SrUD%$^@U932^bpeTOv#K9j|+L+6#wjvnp`0OuiYx212x6y~cRz^%`2$ zjoIam8#kupgu|#c;2==*^oqrKiS+Jzrn`&bXOZ$AWcaBx|Pb-noK6 zp)#>Y0Rf$sGwJqy0&H8G^1MeX6{|PvYTR` z9Xocc9Zyh#)yC6du;=Vhdx`9c6JPsWMnpzzsF;k4WzSEhVOQJcFlahly%l>yRYxZd zv6hbU(20{z1Z=ZH?%fN0D&=M}*jkuhSU4n-+4+X3f+>4`qg3m2j)srs&;t5RpCC%)KTPQvP7Pp|8Bsl&#g zls0C&iFvJBwW=&iIZQP7heH!xvRR#Wyms=h6z?ZyX%wH@k;YD%%)ufNE8!qNhGOFo z=jRXhD4Jl`(9+Y}vmQS4js|g3wyQFpdpJqAex`nAdW5BkUbJ8G@qtB>+YM(&q$o(l zFIDJcON?&%>)@-uC}blDW3e3M<4ZpCezDj@cM^Gv#dXqhWM82~U147v_E-c$Z1SaV zi65QfPrrGDoiWgqXN#bpp6B}Zbi~4yG2pOy?|?8Dm+Z=wD}}9^ zKe6lXIdrJpkWS~=49=a5+m%C%nX5V62=4mq^{=2s>wz^u28shw`nL;UTcz+}L z>X?=1Rz7J=ihAFVOj~5IE-#T@r4zT?W_-u*wqcX|G!M7c#;9{&{*jSd?j(l$KYH|N zdE6;JZ%gx#Wi;=ve^^Ol5{j|!`r*`9arsT%a|C6?YIR2>4(=XD#C;a3ZrwdieP{K7 zfdO_edb)Uj*Wd!ZJv=;d$Np4ScB!$P;LP4Hsy8#~#IBp+ZP!zCvGK!AJ&9ch4wTG> z_*a%q(ijYdZ336RA_Uo#ojlAbCRVrW*00d%j2BySH{^->(Qu+nt?NRI0f1xQ@xFutmc)vy1`hkuIdlj*oXX zq_sRc%{3%EU5V%G`IaP;=`_M?ZAed{UAa;j<5Q7tZ@yP2MTsQVp^ma-+?Q(olB!!f zCr0}AmAw3(<(f4yRa#^#97K|ijNj+eMKqEx&UkL1DW`Gz-Oc&ZFvP}EwgN-ZGTkD8 zI}~&JU4EB=+orqvfVZJ;(2CfK7?-K>jv)IVmWp>Cga-yP#RDhQrQ44PRqzT4ojP#f zK!AvS0@E6qJ0prg!s-bVj*T}rix%l8p1X7R?p=~oHQQ|`dlJ%nOMwHz&VPC2>(KY% z=BnNx+AO5=^?mm3Uyu06UOL??7pV}WmgVBSS2wM^sTR9Y5g}@?wVPQ0Cv$RgYTlTKOascbPmR=TVqgv#7cpI~c|}1cP{OU+V!w!u)LNUAN8QI0m~{pq z`3|-fS0R3s$7=4Q+j{V0Ci4}f;zL({HLDc&e0_R@#HhAlCk2wtNxms4kf#>kS$yrx z5kS}@25m(_0S63k<@t9Ff4aZx3s0cSRF{4il7pBuF4jgW{LGLJU zZ(9F0lfa}x{{vDO3uPCVx5!d)>Ah)RoC~n1;=RSkPaw3aYHJ4sDnydNSf%F_|B)|H zmd~bLi61}>0kw>EW>f}%CJJEzuuA5RZj0<-cTzFgvH?QY&zaV^kz1FT>QH1U`^NQC zczVWK|^R>&n87i;v?B%jnD!9*yZI~U$s_#{$><;pQc&r%XA#s=H`##Zm4XumYLiTT9K zT=BZ;8i(s_9#qDkZnI|GL$j32{XLfwjpRK`G5_H*MTz+GpcRW~EY4zA;paaXL7e4c z@;Yn#zcU0WPbV*eGjQ{<$jaVrSIJRPr&ecw{gz~05qf0F&A%Sjsm55|EW;sRvPa0< zDa;ZsIzWkBgZ_+~f&h?mX`_XA?%Wx$KID_#sO0FFHa^_7=Sg8}pT*jSPn-RZ7ro=L z`orix-+u0UR=W=$*2J;Bj8A!7_67=Et_hcz9`GjEQXx?ADH+5Yf6#Fa27;YLgon3( z*_WkeVDOB^c}Tg=x>&5`?Q>H{J$ZTgcN-Nj*mrSJr=Q#V@9*319{A^}=G6r|jn8Oo zZvejY019I;wJM5Y!w=b_vFvIxt|SqRz`kdXriMQm3zL*k?WR|kzY7d^ zl;s)nAQ+K!7u^N~LXhy3FdnxwXVcT{#;Avag%&w$SG@d>+imf9yybd~MSf9{hK^2P zo)-SFvbMHu{IKl!v11Pf_w3z!5-W!HKyYwy!lzH4WZf&`JUmvrx?S6T^zFjPlE?q^ z9^aKKS6ajcqG%)K4qUD|gaJ&^Pq!;-ucGR|yR-%a_7v3PkAk0qOL>1SBNH+|YP8{j zmW9&X-l1H9Kbx9-A3SI}@aVyVFn|9o)Vkdi1P@g$Ev-A2n9>o}a>ZrZqAM;nuOef; zNoYyZr>*`BD})SN$6e~wi{rw>+0GjoIeMHwcaDRT^RwbQ!bqc5PHGDViP$RuE>-r{ zrL*hSnq3{~tpgSC4|gx?miE}vC_epmqPGkfg#Ud0#-8tQ6pO`10!j3_@T>Xr^a@s- zMv|_v>O%)2T3K?HUaToKQ^V(>kIysm7e3>nhipNDmLGJFQA$Y&#cXlz+9ib(RjDe9 zMYMeJOJWehIj+gJRPieuuC=(aI-6s73e46~%ouRkcZ+((w-9HI<%wBU!82OtrVh$H zeX8N=_7{z&nwtFEcN^zcuzTQ;d@PW8i{ozgK) z47Njct~0UvWw- zjWcChSsm34ZgbcF9zGaG?#a zWT}8tyEnV^+52VQ_tkhnk@3UO8p*s{=D?h&@NlgOo$@F8W-ogdR;5R=8;s zNIv*ZWSi;iUqUZQBv?M1I{~%3(p~XgMANLE5z!ztr*qse^;BI1UOoG%swEa3vr$Zv z^HOimC(gN(#qJlLJyuCz#5!<3%GoFA4%52RNyw;Ja?Bp3#xZwL!;<3pc-XDs&Nlx+ zu7&sJ?&_Tzt3AeR_Hn5TVRIpjc56KEB%>(#_&**vIXC(mpaFgyMhx@r0EXcwBk|N; zAFcVPqBYbMBQJ7nTeu5{xetss{80Cv|7@Eh4e!Fpo5rxrkJQElgzI~EgKmX{MQ@o? zdAJ_#9m+cxmSz*Q@Qj*ylo)aP_Yt%AuJrVhhWkYE{E)A5&r#{ItDJi*rA8gyJ;DkM z=LUY}n3RU!`H-Dm5h1tvG7@S*)8@U};g9y7=GwXQD8hAs=#|7@gM+ag+T_Mt8f$z4 zy;PTJB^i0DsHhN#gUua-NGq$LPzf5J$&v+e<|Lq4baZr0x;<6z>cH{%Q%TaUquH!6 zf>z`t=U-0kSEpX{Dr-5NV(~QBi#b*~Ogb7wM?1|XdgrcP$p$&J)I9ULG<5=Fz^y96 zDH|YvC`#R0J@74p%!^WT%;`MNa{bM`JUr!I%p!*n^G38zoVYzc)DZ^7;)+-#WF5zz zQB6Lz+}wWr+ZSu2s8_^*!kt58*;IRHwHbk)}CP>{LqAxMX&r`jZJS-fM@Qt^LA zNLj;GsVTXf)X=ZHBo=cT7kq4Z^PvM+my4HoHfB2@W&=*Q4F`gtb>a;|{8wiyf!p?` z_q{zB*%=WLaq)NeH}>4JvNDFPTd!O>to$cbl1b*p*H?@!CP8#AO-lH=zUTV@FdKb7W=j zPS~26C9L1Dp@OO}0l`B}y*V0CD^@auCLUV4slm17#dS86=TbvJDFv!P zkGm!=Tdzp3OTaX8@$r?3wb}^#K7JgHbV6+-1Hj=GSLrUXHk;$yGzqH>ti5f5FF_;a zD3lUFMJP>s$OOA@+FJ_r#BWm0K`FhxZddt>vr-s(iq9Wwn4)g3+T2-VO0`w2cmj}# zSK4_)aW0zC5V4`3eQjPQiOi|`t0LduSl(40tx8~DVp3AYQ>o>bt6#j&Jo^#igs8AQ z@MILvCU*i!oWU%JVD#?KCBq*#D2{e*BBygW8`-4xa<@WY6a*qi=Y8DVUz%*ey;W3I zeFFltm)$3kBSo#EM@YfNnT8ktxYqgEC{xR1qsD`1$N60ySf?&nG8d%!E%xwB{^%q z-!GfL*g~l5o(u2dDJ<8%sLjQzo9Rtz=SC6C30MbQ`tVX{HcpSeYh8W7fpX}RFR~~+*qJ}z4d*k-sV=#9>|Bi0A ze+`~MS5D!M`ElUv{>M%Iotx%IFxxx5bE}J2^RM}v*x0K(eAj)7>2u3`4CN#VVE$m= zDYp;N*9v!#v3MtPIx4p5*zB{>=zaU<#YA4sH=<8I@oYX1%>Ndzo(tTem+Y#n7qaS) z)R3lQc^$v@>Sbu13^=3=L6$HVz!|?QlaKj~51sw6l%0)@gNH|culB32h-nM4Sv^Qt z;pue7C?o*_jw0mzVxVzpzq)YW=fQ(y*BKWCg{+SQ*qoi;-%ttb2PIae+a^#B+M^DZ z7emj2JC%Ig-Rt$BvF!wJ2(|=vjtSHzMt+lrY!^F9BcP%LX~bzgjaH3(BJ1DtpufjW;5l|WL<2p+_TxHvf} z8+OZo73s?eg9-!fUCmqc*KGuxDr;I=S~Vr52A7~GPq--vVEB*0LB=naL2CQQ>+fX# z5lxPqI%@N>Os#=~>pnMNu#rLk=|-FJp^FTgH*@py78#22@+wUH?iq9}0>B)8znt{~ zG;i%Jm&`RRqEV2NzBF1u%C6`Vf=(JB<^<&t!W)tFr#;o~{dZvd@PvXk+o|D`b_#c# zS1#UR3~@N$IZi*a^KpxfusQ^U%>ECnAkKAGzYHS^_tb#5D^Ico83Sa@TB^0RwJ!v7 z$QqoxcR!Cgy3ZHPNm}~W`0t*sV3!pSZ(UuWGn<5NByOA;{7Zv*T*uZ$S@BJ6DMjVX z{~n$H`fDjB!u#SCr~n#vcCUfp&%gOD7r0^5rspqSyjb5P@T9O$A}WOTmBZTVe=@ZG z-3Pl36a?>jt{+=Bhv~n2)tbGDHO%wMFDS6_779`Ty2qS-?h+zt8KJVpW;!LMTYqNU zZ~gl98JkX$X`hVDmB@>R1U@sGCowcRSWGCqPq=y3lm>`9->?uTC#Ux7OON$j#?GTo zqY2$4t0+XG@5g!bkGI#cJdvq&otYv_iWHEb0L+v^$U0=-t8>zSf1`>Si2#!9Ry{GA zN*nAeL?FJ6kMvP-kI|u_l0YHqHa4$Xi$jP`0v+d7Z3w?Z{~4&uvS0~n7!Jr#p;+)K zhdl&AK#m@DiR(eK90q(h1=mPx4KO8X1KW;5mg2YXXMTRX6Ch~$tZF1NF;Uioot?d-$y-9enVEcE{mT?nWPp~SGgRjq zl&9|SAIAks$lg2qCrJn^%zg2+U!*dyq>- zbkn&s3vAmEC=AUmmtShx^wtVRJb&K#=(Jh%r)qMor3XeBBLh-|K3-q8svJ^Z^2IXg zv9U3t@vmVL422lpF*Dsa!?jDA9DU?dW~?56yWnHqK#W4NaWM-)YUKG+t=kSc4qd=d z$wRO7UAGHIU)z2zNt;c#R=s%tYLpKpWNbR*85GvINkJzrh2U#Xj?TVC7aNyCPQEmC zf2_LCxh*R9%Pcmly#G|r2w~v)_U>ivBpb>cG|5WK(A>CQVXzwYDY(hNmW7+q?wk1X`-#2eLp)kdX;P4c^U&f%9ILdlr zqYXC}#`Zk@)KiO?i>86oDDiYcg(#;xT-(5s4gq%Kx^+(>YRN(4ivBc8?t1BgDk*bQ zojlHc`xGrLE!lIss;I?tshXwxsRrf!4AY*no2n`*J_LD$g!HkbTQpubDh`eh4-coM zTSK1AB1!Xs*Mp8|$70bz4THxZ|}cgQJv%tWaB(|Pz5_PzFmvFtj34@ zdHrfka0kBvLM`;I<97xaxHT?JPmVFH--siwbv{kA36$TgP%JT%p`C1^ZZO#yORX%8 zkmF|KAg8Ff;pC}$vPjVfOov2r6&+bvOn>3ypKtPbs!KTS;+(^Ln6O> z`?eBPMii7awhqiLR)YjDRZj$0cGM}V^j$Nbg@xIoU?~*ze#(3SUY zjjuq3Ah3TmyhQ4N5EyHcO(T&(J4Xka7+ALB=xYrvE?%l9I|NDEi8=iyVPg0e-L|1p zxqTfFLrNk;Tw+lCz5oK^yPj?K_-02h)feV6dcFJ#%hxa|A@A2x>rq;p>eS3CeQ`FM zjY5b9lw24b!UC1jjsNnThfv>6C+1cetlij*K3hbWW$Ws;K zaI#_E8cHeXz;KJ7KJLh@cO)q(Ngb8byWX=S^)(SIPc=2NlayEq0`Sv!i6-So1QHd% zg}Oe%{lMblA8wyrevxxPH&wKSH}JXq<7cP{Wui`e*W0^ln|Vg#z%=OUp>v<^EzCp= zuW4YuuHenT{<=^UC`78GRU@u?C&;-ZZNI7a`LJGFMV{7({Noao`$J%S2u$kBsu0UX~r$&f{6kzT)WXudH%jXIvhs zrml(vfg)%t;%#5-HWFe(TPbpl;6gWKXcp( zxyE*n1yrm-`69K*X==FYJd7Y0zJ|)B&2p6d^GVYwfsxWSfsRA%Pp79Q{Kj1{S48PA zTNHL+~nSp7c^{gG_M1t z3*Unb<|u73irB@Gay2yJ3xJq+Jv>MeNLDN|B}EGfr3?_F;?>16T5qDLNak4D23=2W zQbRmJy)R+I9t8rXe8LHNBPA6iPu{VgK)FO(M(wSYWfiJbA>z&uYhSArKf!V!*cX_$ zE6iJ*Ymjl-vSnNx92Qwcg@wLsLQHFfn7rh?GM}XwtoTc7?dU&25(mB0h1*4&H+5Zg zdCIg-Vx#gRf;h?G4w{t#iTgf!q%j?pA?Q5*3T1q`jrs`ABurLW3z+|i+pK?888Rqu z6@O`I=^>=q^-V})Z0PEC zgXZ4=^p#1=zTGXspEcWNI$~m*Oqa$d^Snu+OsFm zP;}28nc2dn1ZsL-OhV64gH6i|EOH-Ylai7mJcHk~vY;t&UI!TE`Jcq&hdC@JzHD1J z#fm5bM;GYSm#byMqmrllS94oi7c^m2EHY6qr>^)n`OcRAQV235;4V-zGI|c8t@U$M zBVM}$wXu;cP5@Z8zq?O~4Hodp%FFYNB$M5yM(1>)zb{6!_rt~JPxo1<*p0okE4Q<= zA4jcC4biVW)!GO@;{2&rGOQFcjtC}G)QGN1SNTO?opUfDE>7=tR2AY{LNJOhF-XiMof}jU*GcFO4)6Bv)UlD<8w@EXJ*vaqM(ei_zz(C1s*o?GT z_t6JW1`3vRm5WmH^Ygg|YoSAHT$Lmz=90IC92h@K7k%@Sg^ul~&Woc;(SI{ltok|9 z_)Y`@*E}aysg7UJ30||3*s>b2rDI+dj6w9w0g)}8k8^4Xg*%vX=8k{IE%HQ)TwC(n zrAuqbaM7H%mdLv^FGU&y@KM&xb6njm^Mw0}spsF)Fp+2HX|~tAl=&`UE?C~EtFt^f z$@Dp5o-ao)=nD%{YV};Gz4`(Q={zHk{s3uW;rT`w_sppW*X$Q04}tHB!A`+O-O{e21v$mHXU|R5v-ix_&Px|6r=)liZ!H~3 zn!k>kaFtEwnYvTnvwE#$MA9kOc0q=DeZ%2AeX{HVYfn6VYL363w-WnuM|W0~4&9ir z_cOC7&1N!m8P@jyV(}shbCW~UxA5E&;xvBzvr=^f!<+UzfLXC-6V z<9V~cudcABS{hidAgAunpJIYy>u2_#ify@}-`>;DS;QQp%<9qz0)Pgp+B!f!HCdd= zER^1<3q_!k11p|rvZ>aQ2ualD=5s-!S4z7EPMtc%c<|h9SZIjVi}Sz%Wf)(|2s_ES zPv{oMzSA7ckzW!m8jpH1i)g@trt(DK@++GT6|iIz2mpHC`pG7~x!$Z)_i1DIvY>=bZ}HEvA@pHa8`Hv(<`7n9T!&SQUuX(j$4UF3h~J@sZ8skp*IlaeCn zJ%B%;oltc`20rcbjyiJVkIu44@2Ziq{}O^(ZP@?25Ikzte%hTa){A9E+Jt3`&;vg| z&0fPPZ9&}xxVk!qtMoNBG#)`d&t&0SD7&?_wx(4bpA}!D{x9Ndi|u%mp<`RScttGh zzK-wLK5ebK^y*i?X`>qI#i!ymTAG_3JldL@ImE@^7FciQ(F!G3MZwxFA+GlibkM|20SF95@A9R?kPT~;XTDCxlpb2IpjKh zwJ=afHCB_V0Ws)dP|#iqj2J3vY7gss$#RnHAc~}2Mfy2d3@dT5L)NYGK=iRvZfj~@ zoW0?ceH-YUldU-~x7vqYPEAWIN~AX>yU7|%2CFzOX7y||6}q`>%sOyVPmodyn+m_> z&tud+I83i(h+8$EXjwihQXc)LQ*6maTlC>`AN@N5h?J&MD+L+;=wMt39t$Ds4E-;D zg?afksIFq6B=xVIoACEO?99^ztRs=~nkE2aX->4G^jd+13QXD@=k<9oSNxGpys2I5 zx+eGh-zPT}v7*rC8aJrS37s~CxJn!fx;tOjqHJ={sk0>pGWNS0w$6NG7X(>JA^BVwT)~aJAI&-0KuJm7bLvaykYA>!UzBZbPPx6Ver zctIFYDTr7+ycmN?U^D!SnIlb};SHPu6)*s_I3H8tAO&zZE>Y1y{b193aIpePF^f5t zPYvP|QN0c{X8cl%Zp26iFQT~?u-jimVX~EY(?ew^Q9T;1{H;1S;p^w~?(!$Y29eSJ zA68CVq1ye);N`_w1fSY$oHA1wVfpzzV8J=+Uubf4K~}>qik` z_wCgy?Dd5a6Hv)wwwa|I!ND5XX9x|9g^&4U>YYb|vS5Rzi5jS7-Xq|4O=7sOUVo25 zVERd1U!T$Af2!m%CpzK&k3U2M=V}M zPt$ds8g>K&8iMt+JvuVD6gKT4Q1x;4-FV_jA}X!53#|64U7o$)=Do7c#gIN5VcVxK zw4UBP&TeeFFEw?#GO$=#kh`}ztHTidoE`?NeHsXj|GW010j zKCIf;j&}g6%gkLTPM-`B*Yz2KztgldoB~PW395#}7zXWCn|akR1mW&MiBSC7;rplp z#lgfqr)EuS=XtYM-Jlnbg2D@K7$xJ);@JAwxEutC`qHfatuEocFnJN7Z^Qx7iy&tE zmu+c36h+Kn?zm>x_ah$e6iO+inNYBBu0w~^sF}Y52q_0agXC;l7{K2<2)qqN^cBgN zTMit>Dk9dXRr@kRySpzXUnn`sXH@W&*}nE{=LD1(CEaD#C>DQqTjgbt{CMoGe!^5m z;JM>9QzN^`GAGt2EOpqUE4vP0ag@QpK7@ISg*#2y^5pGUAbC|01NFC_-|H>ow3B6F z+9o1Ll^_aXhMhm)EI$u>!c-096t)gj9n)X}t)u6D6b|K9AEuMEp4Z>mC{T1}i>*Kf z{N_J&01!$snemYI;d=T~K8&3ivuh;5(I&7#(RF5`zAmd=ZgaXkOyRlgu0P<%v(00+ zN0!sW%1b8hFny>Iy+swUA`KVt6}Nvg4yiz`kDY??RfTJ6h5qt0uE@5G9&_&`ogm=jmJ{O8l`Kybn zFoT|gY$ZxC=(To1b<=eMv2Oz&%rAX`k+^4u&oUJ%_?mLJnU^E2)lzkH@*_;jo_oF> z{kf{A`lS?n$d=~&EfEYZjQwgMm2=>qaya*>ZGF(m0bxdNhe1q%0ziCx=@vu?mDzl; zI9QAX4v0u%;`<~d^wE3q%W-dZRQ1g3c2pqpy1sr@BIZ9liZ9`dSc+Y+QO*#6a*9k)|P zxji9k+Hp1kV+Z?P9=Gg9zTFg}B7$W`z*o!#`wnF1&ibq@5hDtzIN{B9OFdYTq6w}oXM103 zNqbv&c+)<;I9TpDL`8LU(`-tx7ruy2dmjFw6sr-xk%c9JSZ9G|)i-j29PjG*IUa!+ z&kbY4T@xOOieytwI5SPKO38TlW(+FW->-aravRi$j_Q|& z>;?+prB!VR%4+r~gesg;>t3Dk`a%7w$o~bQW7aF~?T{jZJiLQ)aLJX19=SoHubO4^ z`xZ3C5K~+FiBW{RWTz1`X2>b!*1aiBYi2tJ0Pbvt+LeKhF2XHuQu6F(x`i{*F5$My zL?R&8Tw&?O&e~0|=CgLzk-ek2s)|!{XS!<7BYtseM_Ki69r@@S1cMyG|!f)L<3x z2gNqAQM`UOn23yJT4?_-RuTya0%S3`d5hMwXOb@)Ar?U6en}gLgsLh|yK`xqJy|2Nk|R6I9Gvrp4D_QuLjNeX&Of1H6(k zQf=scG1p_Otel)GZmR-yAgH!QQ#^YSoC1oBrUsNn-fIY+^0=#~ZhjQdieyiCA5GA% z(K~Q|mrN&~-VsSyHqaU!34}P3?B~RTmLJkAg>)~=r2h{K4VFA{zOcKjEG{l4z^tz9 zkJ#&Hw+KU{LSQ;6mbCIciA^$IOv(lZ2C0LED7s>gBk;t(U|y=6`7b{rI^Omg>0Mn~ zC_`_jdNt_F_kwOKVzPt8MND>ICg~kN7eA2-6nEB!O_}}qW&D{MvTVru+qZ9e-o-^l zza6i_?u$}~u7RkSm@b@;EQU{?J|(FX&<}LtLaPSvcjT4WA;wv(#24=5CSXdic3)mR zC5c?$lJ+p~QDa+7(vbMEFaC)!6?BuLC9`24-T2{bTi(P~c_V*)8nQ zc$3!sv-iaL&_8w*Q1h8w*IK zXUCJEp{u7Cj10m%F?cO8Wz(+l^y73mbNzp?J>MnsP-+#bbXHI#zSC2LPHugCeWuDJby^InR;V+#gF-@^T?$wI)~ zb;oFC6B1m0k`%PpYH*s3KMNn=l^LVJPgvA|4mD)dLo*rVkr-Hqsd4UmTY+WejoI9ZSp)^js_f3w1EE%UJhr5<98*`?lwjl z=)dS-O?-JuQ~pyL8YCw%yu z%9lrb8Ble_u#xnG3cC8ny_1*!lbea|fiDjYok67ij+9ke@_l_-B2R5p@Vx*K06kvW z#3Tjx>5X)WocMOlnwb5vWllZ>m*Bs7_GspuS%H7ctl|6)@- z$9)k0WBt{^lMFIzTyc}Uh@~Y`^kU)A{nV7hS8O!0hQC7z15|+kK18DV%=8p-S|BZG z<=oHKFK8|3tcc}DBP=WfCa6q0;&RDGg^Z-7GwSE3#(n?fgUmA+Fw=L}7Nrg3ZX=*V ztpD8-;`#dlG9c?!&bGw&Ip|XEUn@7%Qr+F%Jy8VT0v4d>orQK5k3~!VaPYA0D9sr~ z8|LX~%bgbfg^xqHxwsA@A9$kPmzsF=*tOJ$ft+{=c;AFa|84CSboLFz>QBYc?mQm4 z{|O)J-3MTsF@cLnL;d!O{YKWL-7oj#;kxDnk9>R#Y>?bknvR|EIhQf@`}=toKH!Ze z@X+5|wn37=9~h`}=l)}vyl9_!8xj%z{@sR@1pB^s6FaAnP-=OTa;A=K(WDMy5BM7) z*=id8E4KRu@L{D8O_U$Sub34Z7B#C_wSwHJqq@FZ-ai!jB1!}r7z}k(d(>~zNu)gt z?5IhOwd<~K3@)-C?LQl@pQZPv)=JLzqesIAo~$Kq<098ONyhw76Db%XHP6`CSW`Q2 z1(Tl-pTx+#YRNwR>&UPTr%)2WGeK&AeD(~-ZcAEo3R&Y4&cIs)L8Hr$3So_O=D{L?OKNb#U_x; zv(8Kt0J~>@v(4X&4qjP2vSbWU8Qx~ z3tHuY9cM)g5ZGQS>?;+S?gS61-=ddDd6;Dkr_*!HU7GtP%50l2B!#=r85>lrcJJFq zJ!aX=l|h#sm2qa>tLv@yXI%Rfl!G#-$GfDpwESOMwa7NbQr{kg5!V>WEALZLkpQ|{ z@pxwPLBbWzlL(C-7$U>>*O%q~$aL~7FIUSpO4=IYI-Qzjwn)9;Qc=N^!^JPY_vAh? ze|s?y?G#g_l;&EuIL7~5;FyqIMeG$s5V)N@&@E&Lzf&&iz@Aw%Q+>0Ivd|K0_1|3M zG7>O`P)quJ;a}>T@yK?g--aTmbdph_2WiYA$JpV-hDcYr=z3pG$p!oOL>%7=n!t~H zey$K?vYJ)A)_D?!Jx{cpH#NGk3ZPZflt(Y4`h|9UF0|%J+f{nXg6fHoE{by*G%j+nYuvK^(fD10 zp2%IIqO~XFceoWHm|q-1(ETWcqTqf=lqHY~nuz)6 zSBmq?Eq{oql03+=F1;2tDmQFr6kr^Dg2kngi5?Kh-u;z-F#&sr?s>=AfoO#u$ZP_m57+?yyD_NreN#13^3~b5)F>SGY765d2 zDPyb2Z8SlP)?31paC)eh^q_IDtvJqAoquVIE0}t zZ6#EHltz+)R3DeVLg?!vQYGnJCW;6wTr7R8q7F)~@QJ}#VV+vGvF=J+knojX;pp2H zBa#fs>*Tu-Navvs;iT}Ep9paok49uC{?~k?q*Mt$Aj?&oc)nuy#h|D~SiWQXQ@7ea zLOLBgqa$A-f=!{xU(L!YakeW^(BfT}7!%MK;ef=Pj&@el0{;W}iVc%xu8}k}zIR|Z zxpwV0eC1JC$v)w@mI+dEesQtAy&u5Ja6UJc1KqMdL`gx@hAx4&2m@>vvAuyP;(q`r zK)+SM7|vRkP$H-JkmhL1lfan77>w3npKzGeO<<7e9U+w^(uJ5cR%p&fA!;Qy2N>^8 zn2=LGit(IEJchtphIT4;3i(P0@@)i#Are_1-YU{u%O~Z^wO@(sJQA{D{dzVEZpX%( z->kM;_Yl5Gp^>zIkseb928NbtA{h|76Ga6TC6LrGQULssai!PN4}0Cdq&Y32D*$+S z9A6hu5r6uyw>1fi=sR}Ibi<#-(ad59rL$!kHIhlvGqXK(%7!*5$Kbw=rRROQS<8Tg zeQzKX*oVHp>OYfozIzl0@XL_|h*J$=b~!<0p$Dg#rT4sEUuC0Pwcq1z3Ntz?Nu@VR zgGd9!V+M7Xe8WYaW~SqCZ5|N-piOC@$=w CS{)t$ literal 0 HcmV?d00001 diff --git a/images/loss-dice/loss.png b/images/loss-dice/loss.png new file mode 100644 index 0000000000000000000000000000000000000000..18798f28afaed5f0502e5cce3b59f0956c0ec03a GIT binary patch literal 33526 zcmbrmbyStn);)Y^X^=*wQ6xn~0VPCQknWTc0cj*84O&VNL8Mb!1pz4u38f`eL`p(X zItBUGKHlGbzjut^`2P7A_m1m@bDr}&d#}CLoO8`}A~dfnk&`f!U@#bR6=ivC3*Vn z23hPsZ73Ma!m&S_!Bdgge<)M_|NE7)))qj~@g| zN=l!~E!bp^4m@H;gSMBMqz_iF`rN(SIy_8gR_FPy;qFeRcG1~@ea}+Im2YpuIIe~^ zkB%~IZ*LcxH%RK2o13M%JbS_*Y;HOCF{My53wQa~FKSxa2O83Q+#REbeKJSvmoKwS zOiZ|Xddj=Ho(&~q%J%Ac|LBBPQ(!<%U0q9054o7*NL#W+V9LtUO$&|J_5+-W{00;; zF){YTFX)6!YvN}1uO$m*-Rw(W-Q0X||2`h`dHdk!m%JU!Ufua+T&T-;ur+GIC}M^0 z@9(c!?ev*5Fzj`gj$qKyq4%dE9U=+}ibDNTX4sD>Gha?zbj~y=H%AwG{FsLMqI2}o zpQfV^Zr@-@MBpKHU+5CU8&-FAly-i9bAyFv87(ud)!z92;znzzxbJ$dd7}_#c0zMJ zKPM+wb>N|&=gP#%J9q9ZjFz)C{@r&>yX1X$*P({P~>k zr8~>A#>UM1+rLOFNIJ+a`%ZX3R9Fuge!{=ecgosh7%Dx_p=3 zTpFdk{pIz$Gzmx}T3TA-?z6`fV_D5CPks+Nl1fNOIO{&Ed^zYZi$&lbkMSGlN3hJT z5I&gIm8PR?qgQskI{9R$uBRQldGn^zL_L$)+dJ)WD+8q_7fbKPFpA*jT}yrsn;4&v zplwNBR8-`%xu6xZk*At;?~(e5$-QEO@@$O^X`hvbowKf!vT)mkXg%ObR`-|6@u-e| zrCzul`RS9c|L#=S>iT*M>`8y#HHL$OjlNW4QBl!>BAwIA-<#M1{%p4|4CKToCO&|F zPPIHFg;>5f=XKF(EI2opyZ+Dbx0*$|PcL~3)p@VPKom8Pj8r$5$A&Ar9jB&d$_x6t zr-aK6>!p#vt)g8#to`|=ZQekRl4IHDx8CLWvilICRq0=|t`Zgb@2#iC2JKD}b#-^E zN_sBDjd=0vm&9R|m10;1((u@gjEq!{{{C@^N!8ZTsgk~~p^@zHsgR?}`J1uFZ&-`t zm|Gv8iWrYlFrQb(WmkW8LEXc7p+763si|pmVSuaD@z3@z{@S;1=Y1NIA(*cJ9ILcW z&xnnVPQ)m~R>zF&5!0Mf#^l10*MXb;(ird-Uslq0-6nm9S<3JA?A+X`2A?&~@2TeW zCr=9E#Ic+_nfKOv#i3V8ULM|7Y2D$_TXkzl@rBW={LO;jg3CPszx#4i+%z7o9`gn<5Ne)z_ z4v2)!&4PeQ^)RV+x-$GiPb*KA?y}#e@&bt9XsCmO|N1QP--8W}&EMZnsHmuLa2UgmE#|&fiE}Tvk|)4sq5*pPOY!2TV>)W$o1{MA2i~Hm`DW>NMX9k(XEG6&0m{ zuy1oLZwOsjuG57iRW+LxMMi>hTmevEE!Y+OYdXlXP8tFn}j&_pv!!A!_w! zae21mXqnGO&&3-qE|jtl+946R*Z)ZE&!_hSU$%r}V`HNg?$iAn zYo^2S3ryQiBNW)0z(YwsgR&B_UuT8O>(?VkI^6sH_BU^Z^zm?>BP26`^;>{S*ao$` z!fi$o(zZy){AjsFEG!Z(2I@hSOXD6P95ThxGBcF(b&IqK0Bekxmg^U5y|PmmFs(T| zI!a1L_Gw@I&#|QC{;aF03>a5CMf~`X-1_}HTXl7{;VV1x3r=I18>5B##W)z3hAnzR z3YMo!VpR^qgL{p&z7o8%+j|*7f0;UB**eOb{zgJ^x9W`JFs!h|iD8qWU|?X_-Q8tB zckcMzo!{-hzr97Z0_9XZLb7H!uaRas2ZvA3-oR~XZS`oF`w{o_YtU((C!@S++$ub# z#MD{?XH6j)W&zx2?dTx-@I>&#S}jz-8<3F> zmyMPr==gM-Kfk&;kgxs>_r9Vz3QHm)qUCRI4MbD%FpeW719eb`-8GAc!((Dbm`iK# z{7N11g7OerT+Dw?RFqUKRh!mb5Ni8ybRj02>8ii~jes~f<9bvHM{Q2r`$spO`l~oV zjCdHQ+qcQL4|xTAX$AlE!Nm|mjG);f^`2(RQ)cdT-IjXW_ z(76Wy()vQL*gc@3#WVF)b#G>nf( zT?Am#Z!GFH-G)$kCY%`zhK-G_e*b6j?%Xq%)ya4FS^7phc5*6ye{U*Z%sm!9@)yq#}vIgeT0{_0{4M-^3h z*U4s_^Nu5ADJdy6o{PsXxJ*Pt5NBVxPq;TS3=jwo3e~SKRjq)zB5G>H1x%{R;P|%H zdd#061;oxK<+s^9-5#~JyJoGyLfs^5<7>a9PN^RuCWvE2dxey*E^#F%v8E zxB2mD4U&UENF3xD0oz6~8(vEz3LP;gMG)LDtv$ZBwuWHp^)&Gi_)8WflTVj@msXA^}jSSu?l#qTUL{+?)v z0@^~qE4e2DI~{ni*1B`zS@9!!c931FH zx=^Zb!Lttno61c-@&aE?JQcZ0LP7Baj(A>kv+S+G zTovPAy?_)1A(?6T{YWz425!~W(V+xE|9BIUxqaE*-h4(LWN=k!Y3T$2_?zAQ<;p9K zf66xD!1y~RevR&Xc2UE)!ZHMV4`07t6EuDu*PAZ&Y-S$_-ZjXoaR&zn+$JU_MNodU zAp~+EI~#dC8jqA}8d<9yjvKWGNMihbDCXoPRmjOnP;&D2TpDaYJTZ0r_4!o+(3LY? z@7`SjfEfQ8Vvl7sFF#)uHhSdX;_Al6W54a?GiFVJQXM-BwmwAxGSu-RIx5FIW+TEo zS2?-3wB9(I9qi7;E_`ol8vK#?^w~uhPH}NYIBTsBh-ngq3S8-W-ud+<&-0AD z{HZWUAkfMy0I;9TjKe{?VQc&FiJ%FeCN(v6{FGY{aM;CfVf)>rIQ8owcc7@8*9h9pD#3zlL7(0DTDh*$n=l zfBjbysF~wqaHwM5S@|ATTwFY2mke)_m$xzER*}=zK8}lvd;Uc3{KF|e26)BIi;#Zd zXRyX&o}&AS;IkDmGJ{%IFE0Z2#t>&`XA*;}*mtX{sHw?AfS%%-4TE>C>&jldcrosW&m{%9xbPCV5v~Gmty{-(P89HJMO9Th;FGxY zbP6J(FwXB$!Mj zs0XmE_FR$<&f-X#hnw2~%e90DA3v&%jnN*A)WhBG3np$xa>2#-&w2~3{(dWKmp_<9 zMV%t0f~&2a=u3Nt(i*BtPwTgDC;5_8H`buYPyYNF`R%QDPT=7_5;3M)!+@H5)vvuj zvAVVOFe-|a`GQlp%-`LsOO3)Bq`F1AyHGPw`W2Uu;Na%QzvTT}U}VP|@-k8_{v%Nk zkkZ=+1VZgTMob(6vVwm=z`(1U8a?xYfA?;FDlwvgVoju8?3t-fI%+L9 zo>RDwPvJO-^*71%zswtiB}}RMq|5%bStCOAI$_%LEsydDn$uQ)5B7L18ZX0->wND? zkcx2Na7(~vuR%i10n}0Bzjw~u_eav@6;bQ=WFMbjVn7EEia~!pdKj!I(G#E91X-6ssiJAdny1mY>3;!f7tq8-_p74yN(}5aT1qZacO^RDGcgf zHso?;Rn?ZPt6}VP7vfWKAcC`}CH-{q`7z?2;pkYA{AfBl6gCe!^y=w=&nz^1TRk_E zB6`ybaNAg|$7w(-N%H}Ope?}q<6s(hr%C;{h7C|b_)_Iq;Gs^+AS4gD^{j0-Ek+i| zx$D}r!pCP9Den`Kw*V)eT3(L6{#^1MNJ>BiuYRlZ!U=cXnrMGtaEX zR6uZ?nr`%a(0rhpygcF5EVp7@qK~-5;>wbJe`d%?M^{%D!k;hnOCz=ORNu9?6M*PY z6Y%Fw<4%!Y@sl~gb4+lo!=s}3wbkKI_9G=JBej4drhX0=cYgfXwp88}hf=E%*@$Hh2|mOZ*~`%5OgbYZxdLBG`aVSz>leG!FDJDfIM)1zk;II_`J4L(_> zg7Wh8vU$gKHWGabb@%^Brdgy~h~H?zclzFV(!zg@fa0X&gU(K66hMoMi+d9tBO}{+ zE3qUFzKRdiYwPN!fk^Hy7GzAWti%@S6l6ng4UdfttEv*){`EBsMY(a6gW*dXVqg@} zK(+3FvWiA2B68-l=wutQo0B7dV5#qR$xAUfaw?LbxS*YJ{#J+Z5+warzzEk~hXQh( z?u_S>`1u0LKM+M63{=Epq@=AVJO3V+7_axG0oCF(hI%VI{1DRQ53SZ#Bas~G5<6!jtUEEf&GHSns`Qs>;mo< zN>z%A4$n7sb~<*~W(F#5T>Y3PL4!y+CJf}{zK)NC(CU*7k(5YkLJZD$lL~*c2RN+~~SnKeGc6FO@dV2GcNJe<) zJt@$`KqNj!K@ocY{{6upaZKGSH`S7zkfxZO-Q9_aIZ4wYXcAcz923)=qtu*tt$Rcf z7J?@R4r^gyZyJuaHinWi)6c89m%@JB&_71-a|C2_3drVKTDBH0z@fd!T)#nLiYKsw zGR5~|c}n$tK0RE6{sV8z@JrhdRJ64Cz^?%FPCux>sV0QjI)qUs5Kq@TcNBpr03ejH zH{(({o`3y0Nl;LbxTGYffB+c~EV0exEAmg|O9?61=sVmqaob+Yo;WeNeS305(AI$q zYM}xzYZ)A-2W~U(Z+v-uOB^66I$x`+u5In@Kl~aB3QnKWNRPJeh?#<5WW4NimXMMa z;dqC#6j0b2_kZ%27*^s!B%pio@exm#2{PBVpr=lG8+1gFE=`d3JfzO+Rqv%sH-EXc z51=v~mF-i5!XT9VMCiNwMA#z)j594QtpYHnX?YOjD=Zu@HKs#U6SO`pka$@Bes_uE zQE5Sx0Cslz(ZvbbQsXKFd1w9}{sHAoscc8>+O?}zR@o!>!+9;%6PxqZaZF5p^>q#5 zfBtk2Dr+_`bJ^g~5JEf;9zML)3;G=gEL6wr_WQj!ZekEfI)I}OtOpIbXXoTl)6nF2 zX?S~k!_v?B_JIWY?%OxBjbmhF0&@n6@^%^&*FP8FcaLE&&3T3yaVS(hclY-lp6_gJ zDX6KbrT2k|77SHyd3hP>z5+%s@qx}uV(ilkK1iKbPkr#<0e;U6VDa|7m*Jh`D%!t$ z1Z;YqMac-89e+kl1973C>2GYQ1^PQDuzir#+U7HYVqm|f0JOaO}4v8BZ>FKhMn5PY${jSK%>*AL;?(@BmX3E(UhxQ1lNxeG~d`WzLKhDG2_I<)LOJYS%!!$g;Hq`x=2~ZCC>#aT|PQ^u7ZsKjr7YAkQo@>Toy#7 z5hB(-EogNT=gS+H^3hSh&rq4P03F|NR8-MEZ~7UCJ`^v=EKPH1#-;CJa|d!&9?N}K zD%Ix_6ePz`v9OQ<>L|T?>eMNSC%J;V$EkmuY1-01ccF@%^QHaOFpBoZfIqH4%2_f% z~&^sInMXaeUhF?*}OSq!z}I+kxYz)RGtgDagvWwgvWS`Y2clO9 z*F zTZ^`A7a|jb0h%l~-}@X=I}Wr8bj!_8HXUx8#5ax;k#T^?PvjpYU@a-KzNO5FIssxy^m$sxJPz^x8ko)v$1Yvi9a-q6{T2HN@6h9)N zzaMPex6o{EV^UuA{I(*_S#rT5C0pi;XsN6Moelep( zll1y&38Du=s1-05NKFr-vVxqsyMe4*UfDE52!ZU>#M7A39kYUk9LBNPNRm4h=>UELIz=F@&F#H2%FdU zn+_El2p53_;5+itu7|nn+c&AvzQezNRuZbJsyzQ}-|ndmIyyAKWq&U2CI@eJ_wq^_ zDKmSvv;k`68TAZlslL%(p^iSo3w1Vl?Mi^))FQ_-Ih)ReynG@EVo}ZS$Z+NFX=!c8 z612F0EZdlA5`<*EIg>LG6?SC+Exa zd`VAJ3)*IahW?N^Lf2}n&Wj&}oC;WAq?AGJ#l;}zfck~fe|N1}#9cAaFF8g@sRWwQ zM57)^ZÑu7b!ZTU+T>CN7>ce7oOxAvJocj>I#@FkHrRDEGDCkVeD20b)k)If(m z7Y*P)1Z#0HsMm>7?VIm`C+7Pylz^dB*mNDgKa7hQFx^CJSaW;SwBZD=xC|XXZeSo_ zU)S~A8;$^Lay~(dGBh%RJ}~(%gn@`nCsogWF_%)zB&4xsXyHGEnv(;}q6V54Su1AH z)CG7$M9F%&KkZWBLCuJmQY@>K(9|LEl#%t-xh#2&bft(1eR)IJa1^QY~ zEnKy^yPE{WDk0CFy11rBV6gVRX7xVQAUJ|VnL1|*+jI8Lvf%;T%ECm$C8#4gd#09_ z>=Soaq!2ELhEWGpA2RLYXoMRpX30Z}4T$O+NE^-btghYRthQ6N)B@=P zfQa@IH8h*o{ij0e3E%mXsDEHQ3i1U3;MR5!#Xzz>$s*-P z3*CZ&x_sDL04XQU@BR{lPPydhoz?5tuaCX;7Die!pweupZ1zL>ED_}){xasq+;wp;>sI}sYboro=qU8c$q7Bm9RXC0J zGBPYGSCBfFm=R4j5PFi=Sd`T0@hL03sjqKBOx^^$|Jc-FqmF+FB>O5HvjW0|2~ei# z@3yJF$G&N(Amo#7b1NQbR0}(9cL;wD(=5HAIEj5|Txb-*0pc|y)Jhk>krd7=vwpsj zUNCsNcdc(C;W=7ZEdLAKtej9irNN)LqJlQyA#4Dzu!GkK?_=o}y^Xo)zH7ymO#c5gk~=zXR2{##)ndS?)~<-NFGsF$M{+<39X=HKTa^)&IsRW;&7H_;pD zQ~vV{*oZDJ18VB#jrsj18T5XnD=*l3|Hcdq1Scigx0bm;{%&mim%sn6Xuyp`BFWY- z<+6ibIqT%l7e{}Jb)CAdgLE8<AJ_tR|=DDjE;DdIg{b+sGT3pMK zR?HKMZuD&!Wk?~f+jxELlzD+7dGoiE%Br}%>0;wcRMga35y%ME{d@Js+Rd$>!EfG7 znRk4V z@Dh3-COjN-?i?m4sB-Q_uJ|Rqt)CIr*U7oz*xo|7Agf<->+^BVBGv7xS8r@i!`mLC z@WAJN1%cRfYSav#CgnVe0qmjBJY_28ci_xua;)DBQ zZ**rJ*WnXYM;K-D!4l%D<|xl}4XveKBr2iZzZs8JJk(fG{BGOPt4`Uqz>=Jbg}o7Y zW_+7vN|m)%(t}W0O}C5!Ziw$3eEdr%1|iJanpG17dQx$Y8WX#?;e!V2j>O{oa1W8F zND4fwe_v!I+WcPev#~g26o4>H3N_GWXS#Rq-sI$DFqj_F#N9ai91TDq1XDxb?LI1fF3Qefjx4+T@-5jce&ek0$&>?fETbI<9d{sVQJ|Wr~ zHnwc4jd*g;!`6`lp7MDSYGw(rpFd9v4zxC)r8pR9lmMXHoxD$Z7Ah%jMh3WIC@Cog z%<5=?OJdj+%aF+eDjMf-;?t+cK$ie>L~~D1sqzjxCynbCpJvf<%bP^p+!zXq?h!7P z;3gTW6a0$h(KpUNg5_yhOdzK{S*xm{(E(B>*d_8M5WR;I&cZ)??>88)Y_P6Houva% zWu|6k?nB#r28eJ6pp%VyC2+$Xr=h80mAAo}UG&b%>L%jHXci%49Nzih|1N%H{a%Ca zBNscnEPp1TS_;&N-d_10E8#IW2_!`hG;6T_q%27R)FpuD>ESwiwqn5ode0ORrcAAg zvP}OXQsAM9HC-Pty-ILouw3?`qWB!RG!C@4#|@f{NE||d6mSMow%x~X0!U)K=$tk; z1J+AI0nTfdYM`mO3o6CprlbT{RlVFoCqL_qr2CIwzsMaO9oyc&cX%HA=+Q%{3XOfw zWrC#b`qCf4-JS$HM)%GafZ(klkASf8VQT|K0}u{}{HWqn-g*$#_|jCo#7(`RSC=Xv z=7{_Ix2*PY*X@$QVfcu63R-dlz>9?zP15k#B;b4#h1oV>gqkSo&M1XkSfu4?Ro==}LwzajfLvsrg2ZZD3U|vQ% z@BnKs0sx2jy=;3V9fDe&qssD%os6R)?U-+R6Rz zHxFIgu{!IiFqBTN$>CBlor!sLYhyB5%vs>e%kOmrAbkUUAp6C{oR)M)A1?q}{5Z{QSX+L%4Ji9`KjFg*!cW z23UNK48>TTULuok&1+mlpskSI7)4z`;Lmx}V#ME4AJv~O-I-DXZtDW$& z3WaCSeBx=ihjT&L z93K2iRP#;Q;P8SFH~#7t-MgQ&DtX0_0<$lpUD$hEFeK(kI5x&>a!spH_unJoqT4)3 zS@+}r_ee}q=yEOzHmulM;f~+=QMZ~N7POlVib~3xVuO$|L!_^dX)ZcMmf5K{e=~F9 z_W#c*)Dl9MtM3|Gkh_XQL}crDhQiUY(vEBr`xsoP{>}BUK#89%3NiJD4zNuk_6;dI zHQf`R^8TJx$co{jYlV<#BAO;M~K-XC~+QLrfxjhMc&qE$@FDJQH~>F8SQ=1_@u3(? zpFI<@&dlS{QUrcLdBq3_@Q;rr03iLVZ(7(-eH@38SB$jwV5vE#4^RB`ugCX!|j#z)zR=0S_DnzI#^69nxe7M5slDn3Y&+s9ml`e z$U%r~?g#Y1W>wsrdbteTYfyz(g`0(2#KlI=DNfwZP7E$?@cNIWviGjtPYCYaZ~yWV zYCJXy|Gfr+FiG{ZG1(*R!Np?W6ozZ|b{y6^q;RF27W6q>TwIQkX%ZI!{#jVd|2GH` z{Ir|>AEcsF$J|OvjN>1mP?7M=2c>5#?0(p|ymPk2IjS$x{kQw_0+Zi}sEx?38N2X2 zZl%LkAS~qlc-78MzqumUl_#iFDJFac2Vq$RF+a9GB$buJot(z~RFvZ>#!~y_@AfG^r&GLwIgf%^ZOEp6RN>52{gg3f~-Kndbx0A zUm*4Q$^M)$=*U=nHV%(YhOL z#F&vvW1g9J;*!2+;zWaqz!{EgQ_}{Lw)eQ(+p?{pkTur-VO)ULACj?Yqtj}U1@%Ah zk;$wXw1QCc2EQ!m)iIv4Io6vYW0A`Vd^r>>3&4yJ?12%D&W$f124sPKb#-+$7+Q-h zEiLY*!vB{xmZ0`+)nZMYg$XkjVbem$F^bn%t4PS{I9dnCK1Y8i{T|H7843gUoD4b{l1E~%m0dc{=1L&@`=FpC~f*kTh6fBT9 zJE#~L!=cZH?7OLsbG^@_pnpOF)^8Yp!B2bs9JzaegD;t8h&(-e;>?Rpj3{uSuNZIXRMs@>HX6)-%JPdT5Mck(4pZ`uuPmj?lxPA+l z83O_uwmTMclK+zw7~DbJ!_m;tz{rAX1779VzZZZ1j_L33zr2$2_fxC1+=M3bwPV_YX+yr%vT-?jSK9>8Hdx>l>c6^I&(K{QbMk7shCQZh9p? z=zSg%N5w8}zI<0f{)kKCez5^1HVgCA*1&0P#^yqj0SVI{z(oKQ2mQxEC4??Vmec2# z;@-d0%%k{`!4QE=WDuZeH*Avzs0Kgwtlq!J2dtC!Z`cwsjyYEB_*qoyVm z#1Rz@&HdRUFJF+>V9JF|`p>fH@^~!`oUabBG*VGf1;aD`G|i}F5|MM7@%Tv_B%%JG zHLN{D%mHI=-aTSP_Mh@}(138oaqFBV8Z`NF@w-0_$hHVlL!*%rgDmzicva|ugB%X6 zVU!|XKXm~SXF_*#3?3w(qaAd_8@5SFIAHO0%q=L$0U^+MCk4_)zD5QG2K8~`5)$q~ zE0arFniY9J0lY_634Jh36e1^M#xF6%`ItfZ+9A(VL7rsVuQ<*4HRkW3fxpYgNd{FY z#QE|(Ds}2YA38gmVTLLKbYe?@{-7-iVJru-6~OD(ercuNI!^AI_J0*Y%fzMfGEgPE@dn=NU|gDpK?w!ECy|QIA0cjKIo{xNofB4yjkMIu!o9C| z2MZ>Hjmc@mqsj(Q4aa^cTa-a@F@eKhn^v3tbfY8Et_kq`E`fEhu z(kTQ?@*&bmCjE-*D|s&cCx5~qQyVn*q1c8zBxSIIc^^n0%}+(FSAkoe$X4ursG20^ zSLH7OEmbEeaj%)isti1;^R9HDQ$s^_PFx0>0H*amTEYriQ=Y#_5``%*`{I_E z6~jmJ@QR5Q8{xI;U0>hf=EPOLrh`Q)q}d)dd}ej$!G7tH22(i?Vq;^a9kS(KRujH| zMAJdafU7WO7u|VYK_0`zWL2u?S}{1xm=Q+>j0KL3?0t5=c_VM|)lbTMjOUMmn&Lc8^$jmV;NInLrMA~Zl%BjU(lyF4z+y*TE7(oM z<$!lpLKEaQ6nj|677z~5C>$K9b}BJ#X)s$*bG5D2`)2zxgQ4B8_#PJUX+`jlNE?8) z8H0glEtsf~lK_h0u!)e)WJ?&Nl%23DC_3%4k5|~XCNcS%0>1O)}gy7({tsU&4 zg6LYH5oHOpi@K$d#NHPpWJHeD-}LI3AwZ%uOI#J+Uv+j``ykw$#E;&gxqkl5Tn`Ta zUz#VU9hXXOIAOUHAGQBYt5YxZ2_(Jg9n0tiwc+h}-4h@0t#@Ea98cs_cXa17l5#WB z%l?J-XXHcUQ@UL9qL$SK$9@5=>6~;TxjO}RgpEUgPfyRvsI2K*1GvB#oE%^IOPsx( z3f{oQ&;JX@y)VCl*Zl6vK{bpOWV+j8$>ur7hZF`N@d&Om)9pOdN>t@hEZ^V6c_Ksr zjcHeKcJgsbL9s=YhIT(g_=Bwr<%3Y%phKQUZ=}D;6Y4G83UR2aYgU5MDGtXxxrK?7 z$4DTv;x-TC#OZ2YuF<3<+MJ$wGbaooI z{s@R`ev8e8+4$ss&4Jtyl8$zQLIVvJ53KHaMZ`3vh*BDcC_-ApLS{Mu;VDzjy0)JQ zshdGKHT(EGSKIu9!;m)<#}Vy#)$FS0>EwWnCY+J9NTynYsYWZ*tAg1m3>wF(frhVn zRL(S$jQK(B?GvttbwEk!KK%M>)e~1$Wq4J-?$(6qf$v(jJrBy1gjpUnlHR{rP_G2k zB1BGWKah{6Ze{$9&95!UM zdArj1Y{oz3oGp~7oaAifAoIImQe%KqvAgdGES8Tmw0Qdea0I64-l=XV-Y~2w(Q8rb zP5@rmk!xDHGJJX?3&ROKpnrFdT+Mw|BR)CE<0epklJi^F)X$Gh>}ON}o^yRL=Xgv3Usel*Vf)a_r4zu%fZkBvLwJzCAk(C-Q!Zhvv$$q z<`o#tVmiSv<%?;@3uXQ(?V1p?;ll@G{0y;6_&@hOL$ z!Qu9a{-Vclfas35CjEVFkK=zNh1DXM!eM$`Wsx&l{lDc517_{K4+GC)rE%wa@SufE z!Kz!woGquUjJbTdEf9C-Hx3Sts)5ZHsCj$_gv-C$cSa`6AtONxBwgsU?0h`*%=h_5 zH=uotriBeFIYIL!1`*H9MV)YaD$J^>xalwM^>lpZ3%Yfj*|;ncocHwFBgyplsgC3B z?uHXQJ+1Nb$}w1=bf62M3qJre3a6MD9caUtU@(%lfZrP???CCj3VvfWZG!M+gC$?x zOWTmZ!(g^RD#!8*&e)50I^LhX?yY;7FKO4@`5Ry38|)$X%k#JzCEU1+i=+@lGW z%Yg@s24$vK?Cp6Q57w`ZHwK)5_9f$`J0%=H^Q@TBsjwvlZ6Q04iY|JobTd{RdBMpP z=fw<=2M%;TE$CsEZa@?L3SeW`nfK(Vp^0W>0AFnyIYx+#iW$6Ib)DS#9x{*<(jEne zmY1@qNVZ5@R*}&4P*St8evmFDO!Q{3-xln`WEV}aP7N@@^}K5r`h91Ag6Qi5%qeCA z3>C6!Y9KhXvtv}oa|i9ao{np zKox}^mcqR2))&X}DVPOm2bJ&qd~ce>eK4M|K?9f&gKSan{6%eEx3skVDNdxFeC7gd zpO+F`bT2^CvbtVU8e-SeCSvjuj_zVo@6=B?f%n0J_;a+J5@tGpspP;xhKcYt7}qDl zxVpK4zms&+TwpN_fdDWL${MGFhWI10M}RC0D^8GQcm6Sj;U!{NeH;vOtwN)I#PNpe zxg9YBOkBFqlZx@TL?uReWX!n$+dk(OL~ZH!rQ?8jHC)VZ7Vj(JF7HVqV8$H&=tn0s zg|wtSy9meS#TlMZm0>EgR+ZQyc1q{_HV)~S;%7QSpf4jVTzUF&Qt$oc#EjSHL5e!? zT}&7=L>1HBwqN}L&Lrr($g1u9y%Fi9rG0{?H5I&XxCzMEC_bhUAN&!n@D}bbdkzQc zFt(n)P=SA`p@;MY2g^rxbEe1FitoHU|<0a;^)R)jePqbC?7d4fq&A1`w5h zWW)aZcXP#!=9Y)e2YX}&Hu5!1NmEt!94*7&gYZ`B0XL!@yE1P$SiZ8&pRuwpEIPwVyy!`JUrXM{v)#QhCfUZp&os=zjBH0o7!~T~JRsl)Eo^nI-p4WoIgfYl7~0^2z}1tA zb3wtFUiIPBG;XI(t%M(FcexC(E|BkMR*&+Rk&hoaE0A9jz6&7}=m{iIvT}2&OfN@~ z6OL0h2*e+_f#j3uhtmYK(@Qc^(G`4?Y1E#Px{ zb|H!yPZgGnE@e)FPn4Y<+z!N7n}UYm@F;sL{G_k3Y9}c%t|9@0M(PH1=UPE+A`Qp@ z0K)-e=`j0mJRcAcfUMPyM$B1RS;#I4Z0J5RErJipeju9wOlIr;z5g$DhkkFXN1-)T zwphP8ilI4y2R719gH@!+NJroxCqb|1_~Z=Nyn2VptPV}23HxHJBBfXw0RG(_x{(1&0|=(mY`IwUxE>TszeBww_Cet z47oOxDIqgK(FVJpam)sw21URJqycO$E-r>9CR{MXxa9BTBmiTAo`U=uaQ@}szwV_* zb}-@&sHc<&=cFVC4!z~pH*fR=>a4X1-zRmtu$p(dN4qM58i1Q;Ee@y zpf!AP4D#*4CtbR934H+!*wjbUbc%<;AuW@7{#Lf5k+16Y>+j*UQ!6XwZ|)kC@bg<9 z__)>kh{VNb*-O}z9X}r2sqFUAHIHTQZqRJF{Rgm8$V(2@D(%5sDX5At%6$T8VKxja zqM0oiC|rF<#J1pBjuaj6fx$!%4wRP%?NJQ>OVNQZLU;%Jgb6>z2>!)SEZ-rpK_!H` zd<9yGI2gz*vS0<)Dl?TBZwg|AM0y`G8caJCEG4UACj3aBUS_HZII+8TGx)pW;9D*w zj0!HFK0YpPV%dB5;THrowGmlAJ?4YK1%S;JvkRBq^WZCPz?6rkrx=7xo53fIX6``S z(wS#ifr(^rFJotQAjFZW4T{lubs=pcMGYLSLx30Tpod_EwUU!yUE2@i|~TMurc~zrP1GKEK3(PQDs^ea3Z} zvEq*4S=Y?LVZ&;pSHT+6IDVT{SBGJLa&-_cbAZ%?@H?84{vP;;JSFX!%QgsJ99REC zvF%QQcCmGF)Z~mXc(f>V5Oh)l7zWuKzPx}M5;S_2rY0H17?uc#F6M0MbH{;EI`=dk z5+3|19~_SR93D>fT)R6F=iYrlji4d{?9T5sDErTO0?G9A*jOg0!iJzp!*|S7!1w;3 znWXZDZDu~*LQ6mh$8-xZo-0Bz3_{SFJI94Ja6z`dujy4+gw$fFUUg*Q%i&}xu6I( zu2tdrsFbSrj}$~JH$5#EwV{qbPEHqMHo}k@yqBjiU_oP^gDJh=aDlx<0bhRy85Nd6 z5$vd2b&KU9mT#Kte~saQGUnqG-cW98nphUDHnKJ&`}kD0b$4r68oj+hLPDFx>PNM; z^$Hw%<7fd~3+s%X---7zmyNK`{)}Etm_YBx2R)$weK@EeCWvr!+1(4%~a! z{j{de?l${J?BvUHAfvO3!C31Xe5C-INq@vFCI=>zEx5L8n3d`uX&^sZ6hnwoEVduo`G8i^)C&f<08GD!$;Aq& zo#=#LdmM>MS3)q7hWdlnX0{ zGiMFvV$kyl!2w)o0~=4a#12d1^SZS6SQ+nCW?%)-EqppPhFgyrdK4<49GJ( z*;V05siOf{7l8Fy{xZ%h-eapWF8MWe%Jlt@5y7>JYQog>T6N5P;g{XL4r&L(=x+Am3IHdDTa z2j8p&5)@E%aC|I1S8m^@A`8JT7-C*K5RAV)tyua#hA!j8#TXZ|M+DD|p0Z+L4j(jC z2cK!>U@l!6sM=c?IPO1Hpb_HyP2OVnqgtkm1+<>2tM|7F%DY6u5?1&gfq+_~Pr$uCDi=O$87wYTIZ&)q(6;~FB9OYvdC%Rlm9TkOPwm$J zwn?VG;M)5}B}$=gg9NZ8zRG`kRW(0LUl8e;YWTg+p}h<_CkNc2emobe$13q^{Dy;t zxm7ro#cq?xE8&61qGtJUN1-r5;u7B1YMeY(=pQ$Su`yThb~B8cq?`g%Le|OV#VR-$ z1YkC3cwtPp@JYocLm`T6lT$^d`I!qYmlE#cV)F?Xn@5&E^5qC%?oochxK=ybPOHnh z=A79-(GXnJx!yFV!evHFsLckpejfN{Ucs}RQG|ALN%5D)ldG$pN4~$l;E3LgoQdaZ z=cP|ddw@T=Y~=RQjz0hN-40pj+tB4i7LLKUPXrbI`u=4BwM%LOwvGL~t`mi6wZQ7A zg%zvS_O0N(l=CXfK56MfBNpxNe^!cjkH&LNtNXS`2E&&W49Ar*U%-b_@F-GRIYU%b0go}?%V25SU*N3mKkxk;u_OM);fbV7ziOP|i zN|YV4a}f@##BoLXq?R;eStq;SCZ;=yW(YTEH;eINoxf3ik;yB?2RSLCA>RY>>Kmf& z$XvWA@~D4UuU_S#FDO!rg^sy3Y4P#V*ME|DI=Y6F)64BuGbDaRxjt5Z)^^ZB${?Sy z6YwWkLxzr{Sp0=94(PHhL3=!_GqLS&*?tI%=`CL(JZqYQ9W~?RqiUsN`WVNNjklk~ z4;)JJvWTGi`R5B?8I-RR8dn`3!kD}nv2Zhci~IO=)Xa_6w!^NoF>DMcB$5S5@d<#A z(dj|K5&Q%6_uJcl^aRW&otCC%Av+T^9UF6W>nazW!==2Q2s5w+trM?yu!Y{bch;J) zzp-JVexTvf>Tcy*L$x8t?-Q#8em>!Z4A-w)sV867i`(RqIw^ifjYZTn zMH+ihyBT1O#&_4I`)+>?UK+L7pZ)f>xwzbpr@Yd-{jXkmy|z2SNC~n3&U5i}QKH?w z`GmW-J-mM=+Gnf)uSIPGT~jm5`AR5YdTi`-l7D=_AG^HfEBD);De+1B?t_^vg~-Jv(^w1)(-l}d6ca}%KOgma ze#`&U+gXNHxwh+i&&mPD8!DP;3jKTXp?-TcZUFVgfhxc?s(2q;2v81;7X%ovf zh`VjSN1b!ru<425XP57zWGb+cnr8M8A`v7ze8|w#!A+5OBlHsYU>_};h&RL5f{<*a z+{OAdMR~2G8DEAlr^Q0Jg7pe;?P`r1k5wG;wLZ@B)YiT_dizkTkSYnYYp_O^uNwo| zIO!Y<=MIML)~%kbU-Jc^QOamMnWKD_kS4Nrc-kg|z z0-EdLH|Gr56pSgUPuF$7>` zr*Xi8AJnm($pzNY1jWU8?`?3P(EvLS*zgW25L7x61cg%F9Yob#x?VB2N$!8Q>sUb! zv=jXd1E*q9Jnt3UpZz3TGfa7bgiy&45Fr4P*BQNyQh9l$~*Vg;^^Dk&xe@B6A#P4jqo%O_ho?& z+qa;GvN_okcj0TMjnr%3`Mi!qs6~oAJ6wA~t@UP$?daC@X^P9x-h0^?PLHDyMrrrK zQNX)u%c-3PDt3`P?^;H@^i)Z-bNp(&{C--)g|a2pn??%hAWk9}X-Sh7qj{x`R&}>; zrwWbEekRB-&N4pjy64=}x!umE@@8NhMv`TF701@AFwza-V!d0!gnsbr;r~ z>M!NiazoYg$%!-r8~cdol98IV(xc<4uq6|JcQ^D{Diu{zU=NHOs7K2GZXg4%0Jz^} zWqp5MTS-2^=ms1_xbHc?vQlGaC(tkNwa=K-F=Kw~R(#~S%s%HpbcE=&qa~yR1K1o~ z-$Q};KBzG7uPvP7w*kMcZye1@8V))GVY~dbJnih=w|2dPkdfco7-Xs3XUG1N=Fx4u6Id#tncM~H>6 z*M+yYo?5pW$$9OD_!SV5`6he!nr0D-S&=SJCt~xI3QP`XW(#_(IY^zFx)mvK#p2@@ z5|28C@InuvXzUIgYC&vF4;G+6a4Mw%A_6(!fO3>SmQc!$9q@ zuHg!7N|)(GPwd7uH3gg2KnLAGT)v?n;FqX}Ov)%pi+pq7)gGOkd;~p*8Fw%6z6sck zNd8{@dUC_fMm2k0Dho3^iyiziQtg+{wvss4a#esqLp_k}q!-zFBl7r83vmgYuce{z z-Z-Aie!bLOPqlE*g;q!+y9jZo#FkOcpq#oAZHqb<~+N5HxRH6i-$+B zc-b`PiV{RU{|GG4Bx4zq8Kb$`V;pd>zuVHI`1q!U+E@)ZKF2r6(&qE3ZybtpXs#97 zuLBPgR9is3(wna;DBuHOi1P2GVyn)Fm6es#6tuMZ>4RcCl`c5zb2w+O1x3W0`Vd%k z6WZ92t~#bEhMo%a`E!QwqpGs2`11D5xN9Hh=$3=!yr#0JB*?MFV}95_-~OkDd93NQ zA+5jCa}H#GT?5!qcrQEGOcRN~<^J;GAVlU)sNDm{*MEznd7!@2JS#U0ra_-ewvIB0;8@;i}(NFlBY^5&ukhhC3|y2uS&wvnfg0U?Vsx< zYdmMx=kW@vIVuu;wk?CJbN94aH|R-0<3FAN~18UkNt6 z{n8n31u=CfzbnutdiOQZ9_$Yynn-{OeI zYf}3Oh2SpLJ~(O#6KpSv6JePBS-MX>}S7ILP)YRP@q>qcm49aJF?m*-kK9F ze>{D-4NMmUBeDxgiSV6w*7_^McUkmx^0+YL3-sjldazFk;)GK?6f zC+53Fv#yk6qut8O7ma=GtI;%3ru$U0C&Dn@%P*^)NbY5-YO;X{n9od&Vo`&LAC8RrSa<1WCeGuGNRcujc2zkiR;&;9h!zxe%ELsSh2>HJ7IRHpgI>R?!;a6~Onw<3GIy#qg-o}!sl zkFB5*si|2=n(QrYVWo$YqJ#MghcvY5drnCWvt`<}7SF;``yEd$p;YYcz0;$k%!Vc1 zaVhuZn;z^}4K04@*RhdRi%~lcLlE!wZ8)C7X&4j8;}jW*OG?iPJDGiYXk>w_6aO4l z|JxK=^41n|m1b3FOQgmh!9bU-uIpvnfR+*PPOLgHckhD3Xi6uaH0u1h{XGe1<--HH zGWs(?!bc}U$$-hrZKO+v>9eXTDnEBu9tC_QB^zbEXm1`bqu5V`-V?3vbmzPuYuME8MgS~IzGexKZ(Hui6Qr;sC(ODJV z4A#AJxj!_se6zIVyB$qUGkAo8N`DY~disKyGucPCf=+5>jmq>1?Bbkx_-}>xQqL+J z>W5EjQQ@Q(2Iu6^Moal1{SEB zo}E=!OR#XBgVHs$xh&^<2r}`n+veuU`$Iz={3R{pFeoFTEV-axc*-7|>WT-tL(~h3 zjt<)VK}65s2gi%reGo87(Mi+OUeI3f=r83XXUMxR9{{>}x0^`XUIdQ8*W(-a3S;i9 zU{_Xr_VMV&F;VAotPR*(zuw?g!}SG9ex7`RHaC<~dZH$0wR%QbM094eS0BvBY{i!p zQl#0*eX+E=b5pdT1635DK0pBV-o88@(P>^C;;pHZ(2Ok9ZT|3tfv2eDU@zG^+**{L zzOjObi3y4U0tuEKcFI$;Ca`XFb-|eYn0fO`;c-4unlg8!GJ@+w+7K<^v4XobN!1hj zr-+iGnZCfbi72(g36OM))cJRxF3>GF)#hBfqu`sHe^EMHi&E;u)G zR7<%B9ZL%f_+wQL3bw<|n5)Qb78lIZaKfdLLn#~5M9Fhxsho_sm@EwkS}3RC**jA1 z#=E)Wo>dRIo$|4F^r04R7Qd0PJS(Gb8mPf61mMuc_P4|)AKJJoTuenz`serat;K@} zKZ1LB&6#U8t%OLp!G25$USx2WJQuNl1s&E4bVD`9vv)|-@7)+(>uy>hV#0vz=Z3mx zl{GaPzmaDBKhGR#19dzvEKQSFLDZYH(vk4F@~I5Xe7>NdZ<18>y$ILIpe=>Rk1+fD zZT**CU$S*w{Z(5x(R?@sX@d)=B|VJxOagb3B-e%hMD}Q9US2>=l=(3I>{lsK*2W#Y z5piBQmM~kFy4h;?WE31$NZf)MYEBed;t4FE;v%)9zjj) zxn6mZb?0#m$w}@Tq4mzQxT=X9;gH)P?wmbovb*Kb6H{noz|8q((j-u+j+LiiKI70)`QTj126jnpS@H z0LzWVqvY<{jURip2R!9@DazX4E9%;!$6cpYM`KNYJDIxC>8(v;Z=TlF?8`rg>wfv+ z*Z{I$aCIom;s%l4+^_)^&V4c&FGJod!x2ksCy$9P+ zv)0JmiMHs_2i*&uyg?yt!-h6jOK&|rvfw<&iLB8PBUx;%3ujelc?AS0mX?;T0@^Dv zF|l__Lm(qF)HEtt97j$rNG2`S(d5>>V}02f3}tZd>gyApkiJqoy+Zi@j?RjFWd+Tm zNhJQ(PDn}(oXHc-Q&V@wNz7I)UfohRYo|GE3~-+SoG4SJI!3_#- zb$gk^19U}~QEsi*lk@!sHoO|O()PcSelml0!dHjF3dgj94L89bkDQ5Y=<9s7b`kSq zvQP>QQ&VUMzF&vt0r>WGR7v$>6eE2rAIJ|y;tk3iV7Ry>3eIUMJmQtG7qQm(?RUmM zB#2xMPTca98|utL| z=?|_HzXovn$!7$GplmzvDRFp%kpG8R7f3JvMyP&8T zVOgYpmX!FqHBI00SY5Ub_Q90TK0u%N{y4Qqs=`vD09TWY;h=r2CW|&6y7eah$kfr~2+n zXBD=~r%xA-Wb=2Q;cgkJ#^Q^J)0R10Ia~{g8xOCkHvOG+sQkp|66NH>0yuiZM$d1|yb(}e_@je%H zUlbHmp?C9xPFPs7zmLf_lDI20Q6fz7w&N6>^wQDL439(FAs>fnPW?YqO=I==0(ez0Q%5aT!r zNYEGw3Ug}%wjaTm6>3atY#rSn08$@j|8_X#uIJV?la?5ZJPU3?-B z`o*z_E~6E$nilB`xw(zI+7k8wfgu~q0|VvXghi-9v)-X)^GQ~<)7>p)uv-SN+C7+% z_EtCDTsy1EI;g59Si_m5aACij_ZU_wCQ`j7s9JsGGXCY^9JC6?{@O?8Rq$fESfql)JrQVgpNdFR}JRp*j? z>3B$*Cr?6=zrUY|N_`y)4j#{DoBk{D5vo|*CbgFBG$>{O30@6~IS_#}ubYfc_y{m} z=X>&vFJAFJDi^}7Mfh{zSeyvS)|z_Zx&8o>y19O6cZN*cK$%TF|K&x$*5`gZOpnLR z*Lg8@p%F~juaDB8K*}t2o>Bb4wQpteBuzCOf=-V1GWV~3xd7|t@2fz@1E|w;jMrHEriERqem)|~KeJ`^ zjaoa4Ww=c*yV2{B(o=Yxq1}@uBh6^<0Q)#-P#VSeCFB6*LD*)99AuCL7@(4ZRCgQ< zD|K+$oQ!@z5g{F5a^Txfa6;sI#F~RY1H)p})Z7e4M}~mxGXN9>kyFA`Dk>@{GPS^h z&v*W~_}&A-xo~UJACC`MK2&gpTZw+q=lxhp8*+0?cYdd?E?25*@{>+^k$$_*LUmco zDn0=Y7$QF0SC4wXJ7W{IQsl#0~aSThy$L2mkrvut=Bq4!0|I%Uc zEe6fa&xgWwgD(^p7iU!PG&mSSO<*t~0Sl0Y5F<)@dy=Ze?gt}WDu3tm)mgx+Os5{2 z1o&wv1trTy&D^(B-0$cxpKiLS+&|J*F}X64`^tISabRVA9@}=)BHgtr*XGNMl+ZL| zeA!1iOg?=}6>z$>_|Q>w!wk$nBFzvdB?mqhjg-p-i0c5*jaG+hD3k$uS*1vhW#V%d z6~9-7D?U-^I{z0}HypLZ5Ji_$r@(>O^~rg=Xz0VwCF7NryCw5eT!GQt4%=Z(&k_yk zWsaw3;<>nh+#c2?)sR4*|5c*p=oOxvoP2E%57;(SV~dMnP`sL=%MbeL^IDZ+-t5jm z-^eC6Bz3Tm>tsi*Ijvd`wzHZ*eM@q9-SKDk^?)>Et4v4BSNCrhW-Y@OC4d-o*5hMi z5za>0Cq|c!55-OWLTAAzoI5_;|CVhj!cfEs3Zy}xQNU6GT_4O0ZvhDbJS+t#5Gi?C zgJ~kEzzL)PNHGoy*d5;FmOuIiICw;Ji!KCVE|z4*{SHLf+G0ahmg;$SSqr+$%Y(Zf!OBdS?pj)hq>douLKzXCAh-sF6#zm0BS=_A zVHn`x5xxQsQJjd%LbDT4tC7733`*Y7ZA}IWEvpC!~qeaQLQ%vavXwM z4_JrWm(>o;d0begESMJC7y*NVXHwO&>-Nue^Yf!$6uk3bDd^Z2Mk&g3UrfCvy@=D( zPaHUFb5p#%f6Q`q#>i;PA4W!sYBu#n3__j&U;E16${+IHg4hG&i=ba13kAtw-t-P= zL`Q+Kf}&$6fNX~F*WJF_SKs`k^T}E-UT`=?W&b&h2aa=U7hh0|Mzu0!W}d7iygQ#7Ahj#1zj5UnX9lLH{6e~>_SH`Vl3EcOqtm{>!V@*Hs@!t6QqQ3pR z@sl74@u0_P<^v9z(k}L+;6h6^;y0qEf=}Omu2|_fZxI&}@%K*{Eb92Bf(7wKEt+%m^zInN0>J{w9?uWIW$%_}n$FY3LJUSt@qor(6wTyvDWi8?bsjEk5-Yk%0K1TJQEsk&c+J-C%*gC(BZ+->R+e-Btjcl~&lD?{zER*Tte7u0x6i=gb4QgA&YqR6 zc5=L>PByxFMWE@3jC3TEuaE?d)~L=+R}YX^u-H`p;nchKhm@8K(Ws(k)Syu0OpM#yLyyYiRe=fb?a{Tf^Ivr6M$ z`|V?|Ia4@AbZXyy84B85x3x7OJA0P-{5AaDt*wW@G%N1w4!KJ_ism`HbW4De(vc~! z#$D$R`D9Z!-==)*rAzdSEGs8hrquwoyprkZc~G;ZGQXI&$7yW1YYq;jry{2q{uvZ3 z=21yW)Fs5HI~Zlok96>eiG5dWg|F)pr5d@KbRl#8%8%kcdWLs+nwm@-8{0nW6BF-# zbX)q!DTeZDf@^xQE?No-6=!Q`ieuxCeye%8o7zr9w(6bq(s%%-t@<3G!tx}OUX5(L z(7ceswQE{(qm+2_WFFW92p+#(m{E?#ie*s#b1aavI6pa>(thO2MDuv3yXL_!vwJUL zITBNzo-?enkBUk^2z1ZSZz7Y+&;Ka2diLP5RKap|oc^+urrbTaU{>f(((z1^yLb1VP?neJkMKR5 zn2>L2VpHl! z>pUmi+8nS=q`H5poAK4;(@>#WQFwp(4#qM^lAB+;si#X>${p-mPL-{a+od1-1-^2XOH#Y#yjm3(h@3#$-kJGZ1B%8OyKAN1Kk{A-RJ}#)**d`_w_TTJ- z-`T2(ERA&Tx`~RyXS=yY8||GsmD*J`aPfONt3u|gx%qSIB*z<@+OJ77)#&itDzG;d zTUHbE^)racsdb9hXCD6Z(1Y0P$_9t6TR_1d!uuGCnzpD`ce16$bKXixdpB>zt{GiQ zZucG;(5*kE*4hf6G!?5_T~*Q$<7re=wUlN&JIlg6^=@Q#>HEXX*e}CYB7rUEWC`%? zWdxkql*VU-OUb7v@kyET?+3t;MO+y<3pzHXDyH^(d9j{G8ccXzJ?u}Y+3RLKM|6+n z>^^V`%x{mCCvOW4I|dt|uG@hoCT>J;b~i~zYU@X&d3dL2Uj5nY%sz@6Pxi0N1PjQ6 z(eQ8@m8-qIjjU2q^WwW{{4*p8O;)5fHjZTG88%uPniUU;`Oc?#?pWeW)jq1b6|2dy zEl4jI`abjW>z8;*y98%CWsaP(eE7`ZHGN+J{w3~{_&ORALs2UMFa4<(7UZNt!Z#>p zegAdI-Y|o|hZ_nC0}|WL#B0wA#QGn+ z6cybexz9%==4H~rY)uR8ulL$;xMC5c0>N0HjGkUbP7j9?wnROaUpES)_ig@juVY{x zEGcQPx}rZamomTkMV?u3H#e`-?hYsLXyA3~g);ld*4LpR4*QS11?2jDn6po}rZzd- zM9Q7{#WI-RT%Tg912nG7l6HmicT{DBm!e6drx+6h(T_(pZwh4qiJTiC&82dnhTJ#w;!^6ucT{L0g8~z5-Y^)T&JpXuz8qd3nIY;6 zDqGtoX_3TK^}J7jzYaFDvAH>7F#Oz?(3S&DI{@$-Ar)+NdiwQ!35)5iH3jxC87J*X z^h0Ny_w;|J`a!OBkl1mM5+laEpr9a1a)sk7r!if8 zImASbg9G3aoRy-^2XqX9(xfNXKxk-q7z>n0lh5H0y9)tg+u_c;R)m$q>e_u zJos0XSOeN@%?e>bD&VI>Y>X)2cw**fz@72GXWPWuX9P6pE?5jON_!rGbPp8VYyAZ> zbf%uggWE&_IJ|E?w;fR`jFIDf6hdjIRHI-!X(28mJtjFkSi#;7;cF?oQbG&MIV5o zzc>bLgBUP>YL`(8-hvO2gX0MWa17xdO}i|83r3+BfFS_4#3kU(72fIR&S+;58UVu; zij6(=f4-3Nph3r3%R}pL( zT-AT#S=$IQ2_g-^$#Vi^N&!G!eg)_octa}?SZE=~Gu%}K*@ZkTbicPCs1yFxA4YkG z3Y*Xbq~HLyUH+M-fSTJv)axFw3YsjX6FYF9;cZ}zUNU5qkN{tz;B+1z$E!(2^MCpfM1H9lKHZ+(0u+ zyFAGhGArN$Xcsj-lSiiJFCi~UA(h2APWU!uzDae+=&0F~(_+U#;H6c;E2srv5A-(Z zazc(G^6&vW3e7Yy45Q9J?SQ5!5okyXro?4X5~6V>O(Yu%dx1ZM9gfH-MF9oMCNp=i--7FF~A{`7yJO8?vc*K9m!@PL>absjLT%CzWRXYil?n41C zZ}~SoIpz?YfkG;PeD)L`-&AZB^AT22by!p7~ew`4?1sM#}!+faMDS{fa zE{KYrw~UX0aIu65lu7B84_Y~R4)HN485rh`1Tz8*tbzWpHGr!P23&gpj{zo^;|Cqe zJd^<9X<%aFY4C}K?6AXqJPIvAz(G$eEW9vJNUDJqfM)Ij1S#e{g~U{cp%V3XuiGFI3I;Df8lCOV5P-*DVW>vT%lj zLt*{}IM5+S8V7@7qXBh=vXpZnb{c?lb%)dd1obLK7(^b literal 0 HcmV?d00001 diff --git a/images/loss-dice/output-test.png b/images/loss-dice/output-test.png new file mode 100644 index 0000000000000000000000000000000000000000..b7653c4e19aa128406106a5e53e7793a263d38c8 GIT binary patch literal 35481 zcmafbcRZGT`1ajWM#>&Z$R;~UcF28`O~~e!l@Qs<-s`pr**n=QWM`BRk|ZnH*+jhO z)$@Db_w)Ysem-}e=kdgKUElBdJmm3bN`b)ae}f_x%fa z@KrQ^n+X1K+euExN#luylZ%NX7Iojm$=>#fldY90!!xYoQ>!O-f;_@J0^AIiPEPhu zMR|E2|DV6W^ThEHFZ(ZQQ}`wL_6oXBQK(BM$e&XMlKECBR45)=R$9~bVx+66s8e)^pMwA+&5f{KO*E5n1vM;jISzW;05rT^)Zl9E7?G1iM0L z<6pfipr+_#Kkdu#NvO$X)nnw~*f@PmW2D+eYiIZ9bumvt<=X}E{6DJ=hq^4f30OX& zcI4B4Ig@q?|9}3&>N?Q^|9$r^0iinbEfZ=B1rzDs|9*;y zgIj^--*=N31I}^$`>jNRId2%S|9;#gkeo6nJ8q=-!Cf4)=hlZ?cf~0JX?DmPzAH-{ znA5q<#mJ@g`QwwlaatV8itOPd(y)f>u`KlQwsfSqeD9e_f(vqRT@v5EtX*bkkYKan zGWo+;S`<@1hf}R4jN~_kmf>MS0fPkcxP#3|9G$E5=vw~PJ;nW%8YJna9$4e z>LU`gb)AoY@Wyq+R7hA@rfke?bFN3H+M2?&T&H*T*5j}KWXd9^v6OPhg4g(Kx)9iAx?&`VwyFv^;OxU%P!U7fTj7zuqu?=AlCOuQnU+&RqKOGxbT=bkH?o)QnLeO+<-d6D?)fIWFyz7oDc96Hi(q;LlaN z+AAl!Pfil-ZN0rEKZRnZI&=JF?7YP%|4M&4-igGsqsy zCmKbV4VU&CoA+Qq8lG zckuK*;DGnd_JnUegG#PzyPMmSl?k&l{u;^&7{ zwlmS*JHp)WY3$d%X2Q~o;hmMW4(#3hNTRC z8T#eZkGCt7^J80%|Jan5HZ>X4=#_4MtAC2sO_+xuxvR`#gd5A`?%RazV;o4m#k*R5 zWN^#VIPovF>DMYNWSKe+Q&MQ@o_#U-Qf)K#!i=}&$kDP|Z{rwQefjLx<+2vTgnEH~ zg)U2>&=U_a`t9xQA33qgzEkVnHIFAqBS$QS>SjW@Iy};pgW#D?8yFaTsj?zN{ph4J z>VN=Hi!za`52(3Bj*pA)6K)jsuw?PIWO7MzffaB6~+lM}C_5A}{Qhz|GryJ`8W%uJuk^E9mIYi!4T zA3kZKc+&EB_XV$NVqg64=JIk9i^|(36PZEu1gL!oMLv&R+m$cnXCBtt$=$zyzjxW$ z*_py&mq<{^$;G98eQ)+nJMon_>%ZGC-4mnlZuUA1b-#c7`ijIGhO2jT`Wh0k^#x<- z#JW~Kvs3xQA#PhgTP-T5*BaNm=6YgH_^5yPux0$nOSO{`qaX0-cNL4wjua(mIo>JL zSbJh;N54`sAJJsaj(mOjbF)_V$Kw6Sx zf}k`k-!RI}H+=EoB?(z)uH_4PCq6ci}p z}vp=>DLfr_71eps)thsgGpy1qKeEZ&3R+0^f@6rA2Pd=0SA+RTw z?Tl30Uev%s`>=|nxUo{@_{)vPpqAypOSW)}q{KlEU#;?|kG2N7cULDiKHa@!^6};E z{WX^suE_e8ioV~o*G{M*{n9H-{&hkY#1$%vnt?$Y-{|(@aHe+gMxW6!DNiDydlP+r zx;v+}jZL4|Lm~}FWs&K#nwpx%JvbI5l`*18)7^e1S7q`?L`3Y*^LmFoX+FRUqIYLM z-tU$)-TL{#b)~#pwxW|IQQw!!(Djt$@kZ3f$2;pkI>=OHxhdP>jQmSxA8t)`^d}4U zxup_mkgnA)(3j{|;ywM@->UV%;9P{f-@R*I}Mlx z$&_l(LVU^IzkhLeZ8DYbdpM2YZ-~^{bdR;xI1UX}NENtKryyLli5wCnHJH@nz4YF? zZoHUi6*>WP8tp`NTfh_li!_7~bZ6)B4)lThrfkxLK#1hVMH%J6GEZB+ms9 zQuRU=P||(&6AE1-+x-;g;t^|}u-0%<+}H$?cm~qN9}3e(IGUMdA3=82d=Be+{%8eq zi;Bcd@b$SU$zvV6$B*ML;`xa^KXN^AX*ryHVdLL!a*)_^l$ZNQ@$sp;)%OK8HU`AhVpH>=O=&n$Rfw9tYXD%M!9wKhkI_^ zxUpI0{dYMIn;|MHI@cLS)u&yog~!mmzTarK&)DM_BdC`|@?mMD*kLg@aRy@1G>j0? zh9D=T_v!Q9{~wTYmsR1K=Wl7HB)(I4ey5;Xv;|#zE~2SnLXMQe3ht*$AJ~1zXxrn? z8`@ky4~zbsD1_lJgj+BLm-dgyJ8SRQGCY0FB5&itlg#b95NVjZmhvmP{iyEZ^D|SZ zSb6jzB>-v!F)YkFiq1A{?Ay0+o7eStl8561z2a8`X{vwgnI&z$vxzXlyEjfa3nj+( zYZX4%gV*E}nw%6r2Qs1}uH4EKVj+i<1x^6~=sF{5qJUm%@;brqvWutYBH z+b!fqa{`gO4e}h-8$V~IqH@W!oEj;1HDe!$IOgN~ay4E(pUMy9?Zb1L2{_{k@-v=`DvND&m{|E-!1LQb81N=8 z9uYNvs!%&hZ6VYK58Qi~$EI|}x2mCm*1DQDEiDay;?A8rYDPvGn{-WvmzoSEjT>8y zsYiT;NJD-=V(0`EaWQ`wAB8W2!R7exVMtOi_A#zX)n%$a@@;iGIb=h<_4#CtMR@-#eKrV;6m{na}{cV^g z;eAE;$B)WK8&TdJTxD;WI@qOUgyMf;Zqeg6IV}wG2dIV{E!AI8o_8qxsKVBz#Yq7$ zjFy%bpvW7q!)LPDgVFU=HBH`Gm#Ua>w~HQkVneJ<(6H`-)Bxv zPR4(>7hNIG;GOl4x+!|+&IXj_5FIs!CRMJpxv#Vc8ubIPMZaH|HZI4O#fI$&kBBj& zeS6Gh3=FOo6&IUSjvEW7b{@mJK;C4wy%O<%!?!#7GvifmKzYv^uNG^U(o*o}#3-E2 z@Z1b}6PniKs-l8aIQ61@wpy@SJccE7b7{xj;W?mOTj7a+IVCS))qVJ*>L#`8fPp-JNWst|JSd`?@an&0kEvYl)q!v!NHT8(vKPa z$+{Xo7lPVRFTQ^_go~2rnjwjLzAE|%k?mSrcG z;iLASSPg8SW_SJmuhAnXCL9uw(jL4u<%#qIDsR5VrY2vSR*Uk z*%3mfrmM?Ql7;6d&CFM*$@$Ak6dr^TJrQrcmQc{d-CjvS(vInJb%&iD0t!beiuT&&8Q=YRh&mWTet6qe-s6+THJh{v3(91l-OpbWoqix@gO)>yRp zCk;yR&T!m*xGYn!e6~yu?)T^A9k@Y=cWH*pQm_e-YGJcs)eXxYjs07eI17ru*YKp zRN2p_DW7jL$R6#3W6#eZ7-Y zuc#)YQzlov)m$L6un->>=*_t8r{x_8LD;o6PK-k~vy_itT8e3T()*Gq`D~_k!|dDp z*VlL4r|m@`z%EC1Pw%*s5aE%8$o|+n{NGo&09W_~@#|D<$x|)1^>_!}cH@Ay^Oer& z#FDI$k&!k|Ya!YI>XAh!hzz(Gia~z|Y6EO6e68SStNV@Bm50L$(J*Lv7PbHPxxWmf z0?uE7*;j%2bhX|M>sZk=Ws``1EJI!u0Q$4J1zagl)DH9mei%=9SY%Vrs+IhzbC?Aj zMOZw-iQ!i(Dd;gLt(HF(y#L8wgu5hT`<{<>F@^3f)UZ}#)t6)u@+4uMvf+ggC}_3b z5|3w-$o4BOnn>%RI>RZhD)nQVnfPMms#IfAij*yzq4ZSiMF6%}dMQEzX#uvrBSf9D z3F2}`F1}RiZsz6B*3}B;S={c9V_aphOaZ}K-_O{qUcN$vch*lDjtV@NYm*^lI_b%4 z{|-m8iF67Z{DM^B$8CRhmd|4;K71Z2(C=IcaWaT;yvkNT^62%RZ1?hx`{$97%;si# z$ied2{F!x4aMvMd3_neTd;pgOeH39It3g;tfxsa>iYewoxcqf6rBZkQ;MoIiVhX2YKznhjjQ$49y|zw zq?PpH=cxp>T<17}MYI@>I(Lu!4(6$vo;un|!{Rw)62r0}I0fbTPTV06QNi7__KlMW zi19r@Qi}$YPV`SH{*o-_?*bu1b6&aRxrL?}!s^I8vdqG@AP9wm*RSOPgm6sc@?48axzxj- zQ7G_X%jzJRGm~S|0a~M-ogGVCTmKPj35d$^R z%xsioSK!4f1T~=+WDd#Sw(1Gq%AjvraH_pj=35ZWBZZV1*6E8+#`@~@YhuXYtg%)v zu$nYeg)4Qk8#!@1uLmt<2i%rAWKH9G#m=2RMRK=@yx2)XSK^G%i_4{$We%u0_?QE3 zPYEL#ljr|d9PbjLx~C0=7ql(qPZvJEHIo~T7s5~`E_PVwt)X*2)~M939bPMgu8QY*h z&NanlrZ&4F0*Q6y*`3BUfod|1%Qt7i zs(CdeK$-yv35jwe2eN}d6@VMrY&AesRn^rYby}$3hkxJbm98{ALIP7-An$CUfVNY2 zMH7$m@YBf9yE5hT3)JwUq%7v(+fR&d0 z0=PCyqHxmg-jgR~u0PFNbKML6B_#4d&O^o!+b?fUo&3IZ@}jFt9*Uae-$fPtL#%Gs zYVA}c1Oat~e1C@IwL8yN6h!jM$}R!f$PXme1c#80x!v#Wxk4a;_`B)+&R_H7n?F8WYrJ$x>^F+uZI0w<^@+FNxNTQk03qOt zPJZO^5jqeM^$$pJose7Xf%c$!PDKMJ_i%5$``YpE^KXy;ET17w#Jm2>aXf)rvobA~ zb5!V|h*UHCje0+lY>P^opsUZQf!*~%GEYN;9y6a>U?T((gpy$y)#+$MOkbgLJ{i6W zfDriGH*el7C@#KhW_BHE^{Vwcbw1xO%*s0bABLp7smy}*1z7FnCBC%0JoxF;i=`!N zO)V_|QX$mZ4HBKfv_yC@_HqM3Kjk(Gg;Q^|_Fe&m^sF%~-BNgHl%_pg6MCBd-%_~q z8}~WUq=wHAun6yqA`VT3r~oSZ;(ns{0Tt>6U`6Q3K>dgy$~fjN9k^?U%!6+^yN#^PQ(9c%zRso6+GxVL+!r2$$Ulh$H|=ZX}ym8)BDUA zDoMQ(b=81y>9!KsMn+H#kv{kG6MqLbjj|+DDv+ zblhDywoDQsKR7lPB*nl$FtO|;3O`0ogvU4vjltz0K&V+~$?I2q{2t5S&5VB2_U9jZ zgWndjFS~~}NQI09ABaTQ-ts3?5|HlHpwnmmVk@juIx6i&59hje^4S%A9x7Ymhi!t_ zLY?tE8~<-Vzp1Av_nmS`Y2|yW#xJU`OI|`%}ip zM+cB+_9v!}6CA$*My{Pm``zo$-DhcI)4uL~;&BAzA4d_jR#v!ozXkq%3Er!iThAJn zSxzL41PrcUol_oLMrvgTaM@6{PyKlHUUQT(_bel+pQeova3ZDJ*U1T5XE&sPfvu^b zghxl3w*VRYdVTo%`@r+puV3%d#XUZajs{9Gpa8Q&(T3H6+nYXqKv}d0c}j=7prGId zw8kGS$b83ah3}S)wcFKZLx_goJ&dnbLtnNLqJ@*iD1p@toV25IR_QTlc{0_E`}>kb zqsSR=t_4||fBeHewb&G(&rm3cQv8YKrKOJM$VlSPqob_KGTG8tY_14vGVpy=E|bm= zl%FC!4KR-7ChdV)-M`I?&KFgs5VJ1pB{SsG@fws4Yc3?5hK99V2QYNl#%y<(XcldR zeBDpLA1XI<&=k5-EUtv`5$f8}M!}z^%(oX2s zEjGHlnYba^%})xjQA3{$hGTIGHXvv`ok| zwCBt*I1V=I^8nyf3yR}zjQjj~Z0tO=U&egwT|>(|zm}IFH_4092Mt=1v*Z*=SZ+Se z;s=~>@1dosDFyu`ZA2SDLGxSyrSLPMlNuXGa7_FwNh^K>abQBivTO-_ox6ue=GgKn zIwdu?lMEtRS(VUIBf6@!~~Ok4KN#@>DW-A{UpIFd|W= zXBUsm*<)C)_Gk}!o-^T;PK+{EjCU~NR>w}o7WAZlf^98?_pSGtSwA9p5>)C|kEVq)UoPQVkV!#4Iv=QtQDl@m}hzV=mfgylL z1*8bviMMwP`xrSv0B{Nc#Rg?#+0D&{IzrIpKy8A8t`Y0rvnePJfY_+bo2!Bk^ovZgqY8PsO89qF*hD0dsT~UV_Sy*hd)vwj2 zsS~SRQ^&ivs%mOZqx2p=oOTi|w;E=3=to3GVDEG*E#{rYu_eE*JbBBgzkNW^ro^Ax zGaKK_k{&TvPo5GT_Ys%ELnrOl1RY~~I=w6tNz6?ZJ6BOdU4IGKAt>w?mB{J6eBs@^ zV7=5P@uBk>xmuxZg=RSdGzC+UXpQX*S4F1fdN=4OCvh$4CVNy6&^}P2enm{dw?!N{s$e zLt`U|aCq|#*OZsTP2>^M+QK#3Wjx<`d2~8XLz(7{7w9=UP44hhT~}Sc`E=8J5J3e; z^q0Gr#QouqCfx*NoZ_-(TJPhnj7;@H`|oZG(>~|vfrjj{BG#n$>yUb#Wz9!!>U<-Q zk4L^uy+LPet|6yT<}$R*+>~Lz-aGxu49Y4hvXtp2`` za7YKR38dNYXD-n7+p_F6feXM(1&xL>49^E#WZS$l%>jAW^oFayWnR`Fa;8t?SRq5TxQ%c4?pkl+0=c|C${eFz* zU9M#yX=pw~6H9en6!t%6Gf&GD69FARp!T_eVhxRW%$hY?kX ztB7NXegDA_`gp+Uddzf-PNF)c+EA8(TH$9MIXcVG%dXa_;BErn z1pQLo^6SRmAOv38iIZo6od=5RU~3^8II1UaH}F73<@>Bb8~;zjNbq6}Wh595sW2C) zUn8U_7{^7Z>+*$3H~1bF{$%Q_cw?bX=?$1`K0Nryj_?CtT+^L&ST#Zl!+6 zdhr~1P=?EwDV2cM?M2Hmk&v)T%|xc7xhcsuvVdBF>|p*oRuw2szSIvgL>g+I6(tRm zcEH~P=NUsjGC6s%Y>W^-P$>YusU61Q-Y7)lD5zds{t0;UdCN5jOgL9^2mMLqfU>)v zcppA|Y2SvAdZAUUJq<0hvOSj|kp>-4{T%5L2%dgmsDSTA&i5sTZTc#?aagNs)N|x1 zirsFP7~f2}ku5$}&zzCb)26u9J7$oftdxI8I5j?b=57zIg7#2Njqr30aexfu6@-C& zrT*+~1q)k5)fMexFR5# zT_6G2dYL#V;MEGid52<62Fc48kh%ow6a+04duqw&V%FByvbWe8p0SgYzShhw$iI9R z#pDxa;y4ciJQ>Y56dz=}Z_g$kvy^^&$7dD;J;XQ1z8g$cri(+lh(sRbs%@4?azi0Z z&aq8}!(d~aG+x0!uVVD4#v`GT8vTl84Qc*lO`ACXH0T;$8#MmdaQy)cuyC9fVH7gDVT=JGC`7) zQQh0!ZCia7CY%ok7DRJt505)9mDvE@0IcV?8e#^d<}g6+K_FGPcKKtWbohkYZrHxJ>MzzCpA(!px*GUqUKpK=Q62aKReV| z877@4niufhh&9YI(+rJcmZf&qSpt0MbLKoe4V;%KW4@&5iz;@`q|u+}gKKv7_QKqA zdc8EoGCDYsBLojdDIQTcXbFdjwCxP)opp7n{R@D#rP_pvedi#lM980k+yvZ^LF2Q` z;$lKbK|pW9d15k*!$>dgxWm>Dh5*)9W0X3`axVpRVQFdkqQ@L#zbvT4`gLLggb=bC z8X~-JZVPEiLRLeUKZKgdUxUSY{P;2c1glDVxW`(3{@m5QB%g3gX}u!P5>4$P(+-E9 zj)pbnMf&JREH}upZ<#xFaqqKT6)}`qR89FEtd6U(0ddwz&sbjVGm=8N8!u5TUuaIE)Nut-wMdHUg+`>)Kp)tZUAB+>S`q%huQ z>Z!kLE^V%R5Zj=@q*ihH&##&;x@TO&WAZsDlO0MODGEzjLXz zu#^_SApO&i?q8nn6|MiA_j&bM;+C12JOfno)zwvwJs_dQe!n}T16})@!>g^pqPF~9 zeZogwr)f|oGC&MuVP;9dm z4ttgYM8A_6unNCcSLNVzp7wdcJ}pc0TeI)8F&~iv(P`pQb`XGM-o{Yi1ZJ+s1S>dY zbui{C>n1DK`Hq^rxz?Et0*2M2w?ZwDMK_yMH1Yw~5eDuRc06#Ti& z^w29f=dp#Y5bB4dlPG`H2>EP$(=-!x=y&C=%z+fD`D1tDNw?a)t6E*U{QbYofm7nB zRmAy2GkNH`Tv`iOojHL4Yg>V=bBo5L5ks9ioZXtNTjWE9923qO@u|JHvL#094rFw< z3spY`%`l8u-vl%`_~i?`{w&6Zqccps{yKzJ1M9f0@Ssmf2WR~hP;qei0N3laE{=Vw zP@qcEF{c#mltLGBbRH!3vHTfZ2X$XuTpX%3^({L(Q2u0V^X)~5ARlB5AU!%KUi6n- zb#3yym{GkV5hvD4hWaL4t|)rg>(L6nOS6g*az!6mpa5l5uE*W<{W;IC?Lv6Zfeoc18wWr``xPNml1n_0|fQ z4UYdF4u1cRP}@MJ00sA|s0gDUCPTH^_o=tY1GA61X-Ih*<+!FUj}Qz^5m z3aso~!zW*7NRsCe8mUrt=MyXOByurs>02%4^t-__FU1Wx zysOn#CZKrrNGW+Ij^i2;o{2zm$G+2RV3C08gW^Z|!1|IkAN3~yolriJ6p)>L1}F*; zLXa{E1`L3X+-I4Z;`U0p->T^T?RC{5pnx_R7=X(%!jlW~4u$We!<;~%rs{t*vIoN@^M?l+9(1N9-hzGa_5;#V$p-w)igBxz$O>n~TwDGe(&Y@j5zQlp=J$&c0`}|836Lddo=W_s}MS31QrMAO{N)yY7ueB)!2iCP{CC zCo$(fGc$sGlv%m?xfO<^d(|-$Th-B=Cm)>BO!;*jiphI=o`!*%B$}4R2M9Zhj7*n^ z!{+(=_a-J?1uJx}c@79bz}`Y&WDm0IucG|5a32L}Bi>A`GKsxgeFpSAvyL#wPv~AQ zO-@dV*#AHQa79YI-8T`nSLyzC&>NdRNcNXSEA_f((?;My+R!U~_U>k3Qvs-iCImgv zKeX4jT*ZJ>7Qo#Y|70mNgV=(=McgaM7)TSq{*+<}8jLsABb+av|5?PQjC}DsXGPjc z9<*2zv3Pt{IVbfBMO=Q;eNtRpyfPCHw8TwKR~w(L`f^{hy@q*wFTPr=X9-kMvKdTI zih{OI>IYWYG_Xg&BTtaVJ7w7eOdx&*KZ9d78OlK;g2F<~{LuPd7^$YF3?^AMH=GLi zH;`??QPDPpUOSdzcmVa6t7K+orp(jUPJD+5sJ2wg z_wV?WtN`dEK3x%|JlSxJwCI>`_%W%6ZQI;CO0_{LQB#SpTuU|w`xGz)PyfusGUJ0;kMZN}g_lDr&@nO!KKdvN&6RSuq31@Y zEz1p(Z1w1$*7NI4v!LfB6@uJ zv!9{v6Y>|-4|E045b~!Fz|9B97cwp2Y9PCyhl9g}wDpkm5H1*UFHRFyqI=e7YMp9! z(Am=P^JZ*~#zl>=&eN$M@Y0moxC?}MD?SFwFmCVdfioSUQJfxOcpk_NKq3IMc>6!$ z!MyZNPdGvx*bmB4%^x-Pn+r_8Zd@}3yTDusGrDejNO8Dk<-UCJ2;$zleQjXwV*zRMx~ejDko?=mc@<$Vnz(CkhwsgY5Up$I1KU`p|qtyvcG~;<0K#rczB2y z*cRk7u?mqlV+f7l^9QcgDjvZlwIDJM48i* z!Bz`4A{`2S0!M3ghXH{O0x&3(OFUC4dr?b!Qy4O0BHPZ=|M~Hp%|;6nPGGuS<+&pBF}6N zIYm!e`cPWprFkCym?d|RxH=>_`}p0O4E<#?{TJl1;K!f_gN$tX(bYT8UO|z8`<=NR z)0mFoC@y&)XdCDvQ2wb#RtNW++2*%c2m2`1p+lT0 zDt_G-!j`V{`v8);&o8|$J|%b9rx%L6O;xX+vO%i=V;uUP5BU5ZX@nzPwCUD*X4kBzR=Q z0LfTKsB;%qEQtSA%u0;haBs>|)P%}baO3NzPbiQm36^3N4U?ypvtoW?&aI#=)%Cfx z2!V?Sa3T*D7*LFTSwu#zF_`1;9(aO81)+^3OVVOnZmH41xrLJcw~xAbDjyAWfnz`~ z+BpvRyTCz9?wJy5i)}>YIb3hK2KJS6Q4Z}FZ~Z99j^vyv=@Pzf7)_iP`ABpy`9`e7 zfqOl(K<=G`X)&MGE3q`To@1BceUi+E3!Sjm9nd23kq%V7${0pKV} z*ow$=5KdNMQGA3qS7#XVH>CV`%R8X9>FLO24;H)+Jl{<5{rb=ILsZj15N^7 z2E{jEY|$P8rV}KFi~+XLL$1s>r~fkr!S(`$UpX$D;gK7ym98?O6D;swJMMk*7f!4n zZGLq%MWVqoniG9~C0g*xf&H%L?QB&n0yw}cT{%i<;b_(&*{N<`{pe|BK4(fs5tl|D zufOd^O7Cn13z|dDiP1==P?jV@3xxTK0btVqDax zRMOmE&vL4ab1PCcN;H#E|mEKjjtJi6?kNPo)dFM%;+Exi9kZ_?jpij%+)85k)iZs zMAVX5!#bIka@Bu&03!2ftuzo=mHyH#92Cj7tfYh{OJzktm){t6{*LwVYRDt^o zs5S%P1WUuWF*t9#Uo?Vdv5+l)0LuHgxR(TMx`v8)e7UC1-MeQH@)&eBQ{`9_c`>kq z!1&Jl`WRWDv5%g6fBg&D3hB}CR>zIy>lkh%h$zG&P@HUWSX2{e8GKZ zWl=?I{)`Yv^czVa*nzE=iB(-UHg?HNz2Y){CE#Bux>N|#f}Z(u6zH_bI#Gw|Z(9VQ3lY8n8b>N~uE3C!#Y1fth2k*SF*kws4V;wFaLXO6B*lQ; zr3>8me0JaJUPeOr?`_0p9GyjI)vg^0?_4Hd2LA@dkpu_VMEzc5gSjd`s?j?#n4^e{?#njxNf{Q!39~G*x?==90;? z-^zq0-F6qZ1soEU!^}GGS->Y2!Ur5z14GQnz`|B0H0Mw~n0BG>HXD0wkkwD-Y?S4S zL{#lWgxBG&G>#eS-vvf=4?1o~rCJtk3tIHx&tZ$o5FPcD>pP`vj7ocibmS32=P~Y> zodfj=RRT5?gXja`J;9Mif|DxMUUXw-bBMW+|453cwz?}W5?uS|7Bak_D|a{lSt_mr z&<=$5Z)Dse!)sUftJzK3i^#-U#T|aax1(Le8u`lqI+R%F?c_)4t>cd}B9HP+s3J%ri>wDxe`7)Nga&3Cm`2Nt zqTsxEu6s<89h#L>Q}P;ygUGfw<$X;>@~;r0kb^oTzTQJM%#f`&y?1u>WN8zw@I$N66i;yUCgEgGi&X-gTu37^!J-pmt%+6yCB zuiqCgD+0~2RyRwG3{1}a^}8gI#J^hylTph!3!kyCUx4oN~D6m5qO@XKVvPF zcnPoyZKFvHAXb-C|zqr^(5*VIv*@HKloP~5&*dgzQZ8W=*$5q> zeSnhzVlPOvgb(T~01i?j;`SyL7KDWpZ<2lu_1SW@TY1=W-LWsCxI z<}9i63y@&J^a1;m^|45RI1WhSW_Ei%eil07c7UlMn?thjN9^NulWS)g6$hd!_CarW z1KQz#mU90Ai-Iv)4Nu^?={;8X_3c~F>Dtgh718%tt#*YmOR}@SVEStV8CAS9b)fup z>edOYkq-!c&CK3!qnunzBQAoE21K@)mtQyVPM_j7YNk_xDY&*>z&+$hHu<^*bB$ot z352m%Dzo0~NKKm?$cM&raxBS+Nv9G_{U@duV9m}8-&KnnxiPu57jVc9j+cl09cQukS773{NwGay9(Q~~2tH~6;$ zAQhXyh#qu@mmP}ZC{#Y}ET+IvQ{50mG}OeTu+8IwTn=$6hH?xlL>*+s+KC&l?+Uf zc(o0c_G|r+0f|G~ch`cWU_rV>G+0RtZL-4_hx2D)#EOfjd4J|5cQ%y$cOV3&2oU{5 z?6FYJQq|+SW*y!_XGz0l#5c}S*YXXD85D6N^A8eScrdHf5lR6wp)kj}-I*Ge)MtJ` zXZuU4#&yKj*{!*U&^;7_XT%>D&K^RKz}GnP_5ucw{O1yfmwVg)xLKW0|# zi2a8 z2IO?W8S>}P9|8Kkt}9P|KstpJzH^+hV`18lzp&zh+5+6O5Yly$+*Uq1_iX+Afl&+XQOJS<# z95*r+D>j}|q#V#IJ{IKSq13h7!8Iun< zN#&?dQPka{CIWvHMDrPe*~Q~u3&;V_AHMho7ke%VcO5D*uw(#d;R6eZFomWDu{1q4 z5x48?x}vT{og<_~M#4WT+QTgB)ss!$6I`qa4od^wC;|~SzS@*cH%|TKp@-Q!06{K% z!`C!^>s`5u4F2!Kq*$a}80Gw&4|Hg-M_74&42-vY17wCm!8AUZiWmv>T3;%#ie22E zthY8vb1JxJQ*2(hLR%RQCIFL}ju8Aqm^eIDsvQRNTr+RCKAy4vow)S9$z$;ASArkL z4;wR1juxQzC2blUE764+RN-I3hV|d?HarGvaQ#9Kd3Qi$j97v|X0ZN$_4aS}$`Qho&HT(7XZ6*bonss0Xnh~G4wATX+!(H33)=dNb`F)ReKk* zS48E;fGeXKIrmaI|4lPzM)D?2H?Qx8yND&_SC^DkqzLykL2Osz-QYZ~tMOKm^_piCA|1{(Mw1SnsQYJE)cPNl|e_I3)nKz6z3Iw zuy&8)f-m9uA;QsrCLRCIxRNZPgbLzCOFbJiWI~riBk!GE?d*BU{ZlZn2Mk@p-g+#^ z=Lq@a7N*9+E&nuV?CX13fYc)+(=cN94#Bd}JPNOKo*zMLE@7;-3oiP)S{^rjS(OE+U%dwYl6gUV{=ca?89H1Y z&=|q8OyEg?xh6`QV_?!?3gz2*d{uX~Ywp;3jtV;*_A{txq?(3hw-|-mp#@0E1M-L2 znZqU&h%1xUxOu z)y1ykGleEIFK0kNIP;$hW@e)e>y^w+aS@F(fiVJf2Uh)p6uf$2BNeO`me$s!a&v`3 zWV&`eONHu%pN5C8`(NLw1yX{^P>4PX98ECQ8ZxB%u2sqfa1MrtMbc>AsK?y-X0j55 z48=eq!Q60p?^zzwB=TEJVBf*UHOO)-*Q=B2IU}!dj0YihjGR_ z9Xpp{t~!3-RebT#5$02Po?M3LmoXGtZakeS^4Wu@>{dK8Mbt1nS#unuxfp(>H9-1^ z!GZA=xLWM7;F<-wfe{A2hA`v=QVCk2-nsP}_ccLYRA6SR*Z@9_eMfdrdF@&5&A9YS zA!^uK){1SIX`;=B*LC(m>+ujh|s~@9(gUnUdxF%7+o*|&E2!DEk}JVKL9?> zWZ+vUT}PAhz#BH86VN}R=Vb*bTsNQa5R*>9izWqD6P(hCHGzDw3LBEEBvM668|q<$ zGEoED^RhIX%6^v`P61P%2^@XC?N3_~F7!=b(M+ zfR`WmBbEi-#&Z7iG*2mqre9XY^||)w!ZR3>+l*NXoeBLE8xXV0F`+Z$K^yk%+uRWN zp{)d$pO$)HD5Wu)1VQbHp%|nEY9ds#b2pIci02!cg3mT_%;^5uC2uf;#QZQ9NR}?qQo$iaOD9-!u(mScxK1q^jb81+m@pt{;q?$k6&o4P|5&{RmWSm^ zMiRdn9;i;DAm}QkiBcf0{6uEcz^lmgifWb4pgF?2z{`T-%xzg<1QK}{zzaX`{@42T zq%dsHe&Bph)Jz$8)HlW!R|Lmw^7>w@IA0{y1r7l+v(|PPe;+bnOJh#+Z}FC*6c?;W62KC`3x(!z;ge9D0NC$gL-OPFj-5PDSC#}>ZKGz^af$YCl6Nsd*i>!uNQ?=WR-*c zW8+{Uqush1e6+>@dEq4@Bw3eV1aD}LGP9JU*U_4>gz3HF9OrJ^|1SFiX4JC{05-d4 zNyd+X%|ZkPcbJ@e|1Q5m2fSd)`5M6*j)Pn@D+5Ft&kJI8I9yk&$AFW_!-c2y!}||> zuh`X{f)HkY;kPjc^ZlfTe(<{d1==E)XCo|T+pv@*{(Q-8@s$;Wo!~H9NpL&=VQ%;7wG^QBMz5i@E^WCIX-0a zNbOP|?PDfUUeUmUzNKu#{;*O2TU z3{t{$61=1UF~&V>B-3*}eVM;1?nw53b@moeS!Qp$I2I}*DoEKVEsX&fCBxBPysM-5?l*qJl3X5+aC{!vEUL{LVT5^L=NXwazSO)|z2><9YV8 z_kCY=J7jGx1d4R?l=zO&phg;mtv>2uT6(#%){J1?%u5h1-=76 z$`_9UPAe<4{Jg`dSrkGIkIKig43aC`q!$s2Pzk-E{o7NzrY-UNE#o#+aWXO7f-3D} zO6WY8gZ>TPGqU<#gGrvhyU%-@sKoDEn^!i+PXfu75G9<8%14vKt7BcdS%Y*2QUfK8 zOEqYe7`P843^E`|IiK0aeOj)aT|bo%Qz-njL^EDXsKCpSn>p#W=4wI z#@iPEv|(o)uQVKcezuLA+$zYY zF(w$ z6~W#RAiYNGh76hSTd?&KwJ=1&<(L%w4+wT=$(u%_xhqwV%_OAV;XK1n@A2o z1iI;m-ofq&e1KL+yNaG2*KnCo>9^e@NEp%hg35#3f07J0j>6%ELQzvIyb9s3rw2&z z9E!wo18tFvmFFGn(q!I;u)ODwKV0si#6NJsQ+Z5Peg6I}&&Lrb;=WSUzaFvtp*_O; zc4NBdKA!8}VXxL4`Bc6WHOwBL9F;QR z;j^=E!rBJ{_|hd3@O6_pIwFEsG~mPZqjIQ3cZ8mNvt3mvJnE06#TD1)@k|I8;Vaui z7J_E$UXzcW(?$tc;6xe*ZIdpQ-Rdi9Tfg_CtydD1(kn@H+iSH$IrK$lv2O@j5-V=a zurTPoka>6V$c_!@4MSk_)8K544kAfPU8OEI&}4Z3or;xovI?-?=g6iFrEFYlmViOc zM&{YTcAd%Hrm+GiqUIw7!yA6Aw&`oRMOBmIq(q6r9K0DT1Q;C-18nK5(K5=Z@YLMW z^5D0B#RZAWiDm(NjV_3@;XMhbG6$T1-aY_F6p_wg^Lskqkggs@1DxJ>6*Laq7PEsr z3*y~Za)Q@=b?fL0MFJXthil1yN36+mc9gp1ReN+{#+;M@Za-d3D={V~-bNx$AD}dR zi=I)}4_F&e1^H1x)_z94TZ4a(nF@ssBmfqcCj?X{Xx-AHLL+~RI(-2o9txv!s&h7E z-UyLOD6X5=J05ZJ^TB)Ax_j-^^M6_HHrn3i!S{Io-l(VBo3}*@Mhz+LOJ_VDcT-bH zf6+JP^h2g3*$Hbd#Rvtdl(~Dv+?b(yhZgw6tDk%<0k{~V4n z%I@0u5-&ZD@7XuiX~NpKL$(1TjGrXJZ@0TB6F`|y3!|S%;-0_sclkZ&a-`oFji6$z zgF3(;hE|%@>$jjoI`i1Jf>cuo>^sU4e33U!%7y=<_o62_K8qu#qb&(GOf;kS?L_07 z47M^|-^}(cw=IS$Fl`og;W_oYV9}~ zig*lE9mg(S%$XTTb^fcpn}X%PJ)8H&4jRf5OPC#c!-w{T`m`KCOm<5?Pm|9v+ zVauzoLl3w)*PUL7*v5{72`I67dx{*XP~`l^p}bl$T*8^eXI^-V?pZIc&d*R7553eJ zY_K_#^^V8tv|so7_0QkQGoTMA$zpvQyw~VQ!(T^>65AGyPFIwM7VL;HxCTAUE#=Sr z0)SCXYACHR%4aK`Uf9CU8piM&n?h??ifXvKuf%NY)aO^={Kqxj4j6SyfMVeAN(L6S zqiDH64D&F?%iIgQ&zyBw9iF4JBH-<+zz;rqcIe&{&!xDRO@BwBIGUTEmph_a_(02( zc)vb={FqREPO3w{LO(1-<$lMF!WSd<>2NQ8n*TUWl==zI9g3u>>sT-jtTB5!`}NLG zMAZGLnoFWZz)^+{ww5nXzl2l)q7OvI6}OF6AK4-i6;*UNa_e%vu-)EG=lEkB_#eKr zzo)nMbi+G2%j?=%X4|5iI)|JARseEbE9CefR4FC$!*7U;E8u875u{^zMzb*OT1a4m7**zw`uB0_^gL>H-xpV>A;potR~3O|Pfo@Ps35S3@?0SK zi*gU&_GcHhRsvA+Yiw)`u6u|4u7SoV$(lql`bdAYALPoSI5{+2aB{ngPOH#Dd*l7F zHxz+wbekdva+%^TX=(FU#0L2{pUSt|a&jr_G_yraT~~Sk?2f35s@E>%q{GS#;Q^8$ zS(ofpoBH9^H$!+I?gakqW)GlyuN|b`SecpqhkExi{1o_uz{OYH0RlN*`-y zAD%i85|F?Zh=xdL&C1H^GYFuMFTlT9UN4+g zwTfbueV*}PO;~`=@&mfc_8En;B_UCl(QlKpCthd* z)dd1YOx1w1e`d9B`xBn=E}3ea$)H*&AdAOXxC{AI@anbu?F0XZ^$+pffFqZl+^st< z38oXKkY3DG?OgD|p2nS*JU|GLN3YeY;0H6P?1p-~&wo$IOR#n~k!JbT#TeR%g}UGx6jZ0KqSoQ#dgJKvAsaOg{(jbAaA3lASP$po4Z&wmg&dm?r!}7JR+WRzn*(P0kE8HP)tW!ka&)& zUZll&!7r3AzplA0s%a8Y4;1xqL?b0Ad1LmQ7DYgRrKy~ZKp0?b%(rga(RYRCCp*kFp>=TN zq1-^A6cWO!W4;5~dWCkhHb_1dYQU7=_t9KMYqF#?E2IPEg6M{4VZMBED^G&GOvRUN zsIF(a+q}5>^+m9_Q8)lP@FT!IT*$(1+fd&kWseaX0$=}#JZ-8P1aUXJKa9lvUe9w} z>p}mYxLn;}n+}Q1cN7;-Ll<)I-m;^~8z7;T0bh=)5YB*&xzNfvE5JIu`zXase)`8J zA{oFH58u8sw9a?`n{)d}bO8`MfHYk%u0HW+1!4)2V@kf4qhhAVqQ7ZupN~OKEwaFZ z7iW_fD+Hf>h}iGWw-tyTIor{R!NQ@LpeWYNTLIu0DX~?5r$0%5E2iBRJXHpTcCF#a z@B2(?CET4Bscb2!l=N#_7u&2`OAHpoxcmnAPY?FPb#5a{w z_s4jd(|DFC79??^iQff)hp}t5Ni=~j^e z`E;#5@GZ=z+YOoc;T?1x`w-_^{;!P;5s)l459r1F3*L_sXtuzthECH@gbAlIBED|b zeQ9v}K&m*Xgo^cEZ`%|sbv$0>UJ6IzI;rjp@rqqhviWKJ*-69hzWxsk4@q;ih4x(i zJvDVa^EDx1Xncsc16LI3Q0ZF8%Xq*JA+uZ|V^sQXO&G2~hl8iUNlUZs5d%y}aD&6A z@?)tZ*|iY~2aIOXbYBo4R64KxR^qILek(gI4FqzzrQi9p4NJr_AN$e}po_$5O3zem z$UoP(+7^0M-!lrVOuH|qg{-8_Uy^E+y;qgOZ`cL-)@yNBhFUNT|Uq>Sf zyEL>ROVMjG$o831`0M2@b1+^fS+wR=;YLfpJ@`;aH?AuG`@S5y4DL)PaBcY(4U9xt zfE-mi+{u7DcBM<=W|9>;k&vz&V}>}l_IeofHU%#CYt?c-WJqjXKHzH9cwRY%qb zwoZyJxf6eMgi&=GT!!ihbyOLXi6ur?CW zmO>D2z(RtMLp&0&dG4y_ow|>_nMy8o4jP>p9sM;X?%oK592OUTx082|WsYdo4LnR= zU>&XUobFwHqatj|O+T8D)}ITTgsKPtc{6!YPhe@EAv6!z@1SKDWd&K*oz5}v_4D&f z`BbNYT+W6V64r>{t4@$~DqJX=zVd>UJ`UZMF{bmsN7v5dVMJfZ`uSk_?E2-`Uivt3 zDOO&5((4E4gxO`GDhf&_E zWTr5t-M2j@v8{Esgl}<|V(|+-@4IlKJIdh%LUK5%Wn&}Rrsn^WXk2^LPyN_0)cBA~ zRSRjwEs{;5YvjU=waTZI+E5rwoCSzt608}eY&W)1$ptQN=-O@RhV)hu)5@FKb(eZe znWg{qZEygKSTW$3emDaS8tFQbOnj42k|=0R%Nr~zQDzzh4{h+K9@l~{bg_JKdeH*N zAB0@9xLcd&AKUfvuLwJ6_kp*mPym_P!-Y!e5r?FtszpI~=Gzu^Q#E)gllzT?V(5>Z z&eAC~$k{R8ac-ZS_xa+UWqHo;C*6mfOM~aXoyry!e?dFx0eCta5ThPYY6Nc=_S(hV ziI1lef-6bH^g4b74ago`?rsaQ2INM)8*=88J~=RW9&ZHeZ%I~`qMfZR1!5KIg9rR2 z&?7y5Kk5k7$`HCHNYhE$Eo_$)Sh0JP9UJ*3U{s=_0BL06Rtc-Sy_Ki)&6|4k>`Upr zB5W3Tlpg9l2o_e1=&;irOI>{Z+ryZ~f(8M*TU>2!n^a8>*h^4JyXvT}uCA6m2xM^p zwU{nGm!t_&_uU&Qd=t_xEp>;$5DdD@^nLIR1b*WwM&p9WuabMqiDoh@ISFLzo{ znI3)5qn;?WKhFlvaCg)m69{J)%rhufGA_OlMS|#?402rSe|YETIoqfzR*+~wHiG=2 zz#$~@>kL&ek|dKw!V2{lNj!$_33=4EB%1{_>}H5st3?Sf8l`I-0EN?%&Z^NyGhrtT zy{}sz>J+dz28Jk5TUD9OKSJpC4d~*S5mlPM7yq(&gdeG>xb?aLhJnBs4da`VO_l(oUHgUjbsD=9z>eZ z9!(auQGVqiy<+#7Lj4CCKF)p1s$6nJWp7~h;Wn*9VM0=J5ri)pbt|C8Y^L{z*DXl; zCG&={(i0C|My~8mK|C!H2y2anFMfyH=VjQ1c{82xcn}*m0D}RS9Js0x6=wc-Zpv51 zr8@G-uD|F-pi~Hi5D=<3ydpa;UljtL0cz5|0gd)h7Q{6T1pa$W+dI5^VnY6t-cqJ5 zxL0YDf$fv4Ld%^*%$!A*M;G=FEZQ_E79WQn4)QjTNdUSwCgXJBkK(U*t2UYGp2m2M zYPC8nj5A#;Ya>0aTqgH!mLLo^Fj?~nxN+r5NC&Q0e5UDC;4k!y&Wb4Wr%IbqemJ>* zg##af)#kOq>`NRc(Ib3I4fT^xZD^2F_dpo~+{;D7!KmFL zt{>as!uOT*yKLI&zEL4ymQdm{vFLoh8=EesuC&*gub$=d!{_BXlWeUvxA|bJA`8Q+ zh$N|_B-YD6yQBzs)|=#Hq{)R7po(nvzkmN`Y<8no*<7?W7mLHthxj{pL?Pn)^X;T` zEXuHY35q@5Z>B3JehbwX~H3MQ0(-BY2V=Fk%i1fR#}k&aW#I? z3y?`|Cyvm<&*u#r4S5chcH8=4{jXe(ey>tc{d!b31;WX6Am6H#Md7BS+BWJv^3mPY zHg0YIV_6E8HLcX1okKYLlG(+rJ_GKm#b!j5*HF)$EABb&$qfd9q?a25%iP`S>|9}U zam4h%9S2YbDTw2r9Be~)7WlUM60b}AC`TQ@2AEl* z6W|lgLG8GxhXUu+SrCT0$8Z9QNhUMOiMv2}2JX-$K0)AGlU9Z~yoQEZK};f#1dnO! zcNVo+Kh1`;7QN+RFq6a(E^>LykOZ%=1X;dH87N;EE+0=up>HUCa0A3McEJ0gaa)48 zNllfZmKYeo#KWKzy!@q2-U~kjp+8k9+IE#{$zcRl89Azu{R*)6@bm{K63YA0V^a11 zSwJ%`+-t!h^~Ua(p+NqSVS7oirvJL5o#tBl{DiTMh!SY3>{qC4MWY*S384GEkizD|1uAe} zRWGO%s$nnOW#aPo6gk>Rt~)t%j@o}dR>}6sWAgTMl<3{(_BBGlHL?EShg~OkhkIm* z-W}2AYdkz~hLL}EaW?v#lF$!|-POm8nl}Vx<)+bEQn3u{5#y5m0fuPUk;oAXT?eA+ z3*TOdf-}z$6@ad;ZWHc)a)1J1_FAyHumy5kL*GV=IDse$JB_cd$GT@Sy50ZtsXtHpu)Y8S)@h;42w+L3bm#uD z(Tw24S$qHO_hp`6*2OtZh~IUf{Lt>@8QsYsJ=ZW9ZpkhbW7G9ZID-iB;kq>kk_eZC zVSAkyZ~?+4&?`3oQh;){tMWpz8F(rZlhs~V_M>dx{CZdx4`H;(T5 z$)heb_Y^zPkGZnuWAcx7sapOOh@ok*3Q*>b>{2Ke)>S@VP^~iI!uzoZ!gL(x5P1J1 zB_S@s1ykVVfNB|z{L&x=2ngQhuE59>PNnnpzSOoC8%2{$DJed-D=p8Y$^YXd=oY%QW8yBK%y-dJj zM}rymY6R;VKOF*aiqZyF6#HN8C%?SWR!0a{6_OQ5Z$X|rqG7&XaaZB2mP~Jy&y7`O zkkC|2rb}8~NpAXUbx2@f&qC>G(h^0>fpkG3X1B%^eP%bDHE=RkDfOh*(UGGlni>(zn+ zCq8qMOoa~vM*W@!@4YlIq!=Ki{_P{B#WOaS;o-z$x7nr1l21AX596})hN{QUO5doc zeI>Rh5=yKk+@+zb@iB#7{GBAwcTr$WDWO~Ge8*wBDEam!L{2Y^Vwh}Cq_&aM_fl%F$0O<@H0x^~05mg#joy-y$A4tzg7JqJwS0BOyC&KcVHaPx3j9NBw;5E(&LB;Mcc1t{SoEbQ&qe_^fE zpdk|Z7F%5rmgl3wedm};@exTr-ks~t^WRHPkX;G_htS*yeFpYT5*C0;b{G1yhi|c7 zcER?Hdx|Zc(D^BoI>!9aG8R4+?ZqD>y-t~XClHn$ zSH5vRw6Jy)CSOs`l~ReDv53l zt>ZvKbn50q_)n`poP01nGxDBW!1HuG69cI3n>SSRCQJ6GxwPr4(vJ2wp6y zRkdO&Xn0@5)z7=i?(hyoL?9f)2gnd~tw@YOI2PDzd~M(1J#U{j24BIJQ>z-a@ibkd zWr2leBYiYHolDiC9IMeylE<%>S@gL8NTKFUK}#0t2e7Vq+F;{Fu! zq|_rJhR$QSRGsx|Y>1Yn5^Kacibt8_oe9sf-BPT};xBx3CLwz8m*NaxX@$oCkHpec z2BvqfsPxXTj>4e>;2qEb^OXAruA%I=CDBP{u{uO7Kmd(a=|vCQkIzf)3M(UJB(zTZ zI>FP?#`lp4VWhT2*aoYG2CUvN;Bm$Fc3JAILDUD?z0#a}t%FvnOds7Dkz?UY7vU^Z zw7F8!s8X%e2^wBtK0Z)jYl@hpw!!U9HPVPzQl7BfUCrU>;e5YXc6UFx~yZ{)sUXyHT~=p znQ0^e%i#F0*Xnr81@iaMk31bCgO)^vbCyA=YS&yT1A;% zahJ8Z%`U~OI8M%u{hfw4h=KvIKv>$1-dDKhDBKGyn^@4MZI@H*V%tkPStM5jgwVqr z6T+qi@08wwX9{f4qb3xJF{GS7u{-=;(wIL7q0m5r&E`Huz)HY3l4|>t%|cp&jZnpa@BfMAv0+Mw%?gesHzbJV1D?8<)EImAO?4Q5oQSDR zPxidd<}-KK$2e+LU2}{!QEHtKwg|2;mX4B(4H{e;24E$hz6&O*^F?C;TK;mD(@BOW z+BN7X9&|&4${Yh(j$E%NRZl%S8dIQk+vwYKm}T_^$nVid)+3zZ<&)fb=T(!+T=Wy0 z&US|gx;AMHEEXAE70LbUEVrP2TQ~TsN|{=j;)$%stTLr+Mgs>P$1hEwI0mSC6+`Km zbz73r?}@`Tj5}sS!gJPm9sRQYH1F4*w6pnk6J|Q{8c8Pg9)(fY%t$IXw|J^Sn3Yp+ zjMg#AnFI^Qgqn@@4MwSsM|iY377XhxOk0X;E@bh^&(PrGRRvqh7w=kC=F%Her01M_ z{eG-W`kNG<#H~rWi8)o9^*1UXX*0}@s!+bDW z*u)n%b~3I${X_K7VhP=g-x6Mo?_eGl|xX>uft&g z!hK|BUALT@K%ak&glohm+Wpn)J%do^I?*XlRTTdc3b!)K`b4 z-r`;}Cr#9H(I`E&lev~f5sS&AgS&bc!k;4gGOYqBn10dMS0b;q1|?`P0OoDT;5K{K zG*F4%_CITL~a%Dze*W&ZXO zh6&Gz(XX^hZ{$?LcIqIoJZCj;Q>tdglOOXHMH>XgyF$lW1m| zmjDDE-e{h@hqi57k$s;G)W^2nh3R2K)K!+fTj~8GOq3Nx#hS&}9vdj{uGY$s%-C{B z+dbW*aeKP*SOcXZIY7mC^fec&rPGf=?b2QF~H$70bSUw6GYE0Dj-x=Tus(Zvc|-_W%PsHTAbfE>09x?c50-U z=5-E}>z{ykgKnAl{pU|sVM0@1t46lC4`vy0M#lI$!xcEwpzd{jNn=_pf_T;!_`m!2 z>&0A^EE>~}`rGiN-XkNnNu_gp@aHBA)n+*#zDT!-2I@rX+kQzsEz1d3<>yv(o_E{Q zfx;|>-e8mN8vVVjE+m=+tj9fm{Fp=Eng;Wz6uE_um%?(2hO-ZD4PP_}h(Lhnnhf+j zhGBWb7gy1c8g;Tw z`lPOIj08&A{UA@_GBs!%h7=k@RBq~u#!5Ks#!pU72+Zg>BsQ>At5gR5&MeZ4t}N75 zu<|NAbzoXT7~p6Mk|>Tz-q~fmA3>Y)u~9vLkSsB;q6N%FwB0KR#s5NO#dP8d3y6(_-Ji z74sPkF#&Oj`IQiQS6-AUJc-&0#D+LlT}OL}J|y~=L4%p#r_z|LYU_fWtG?Vb)ZM{F zz8fw0TPR9C+_yGRCq1-%nbOt?)=#r%N+p@esY?z}63U(B-;=fFk0M1|Tf6drF%tIo zQ4`-#Zj+!AyaySUh|U>yVt=%23L_ZB<%YSc4wz1h>1WLU`jCL|8;xX9Z=xq9VHi;P zFHCN@nKD|N)fB9A2aHfa7uCg*n47}=aUm^ zBvOWvk)!8(Cw;{_$kurRTc?V97}b&aroiqc-#8f<#;>#sk&ktVE%RN!^#Db1_-LYp z5|>uwbW~*cF2Bh*^T&g_*%OAqt&!hU4M5WIaUk&lBR>>{Kvk{hNh~8GGy7+TU7#Ju z_5h7{e~Hcl&2Ws)FU!K0>4m>7i~cY>8ONE4zb<)MRPv_jxKJm5X9DkOXAq|nzh24S z(^~)F(9#63;I%XFCleHf&M5XU=BOY~o>->%gNBn7 zxc-P)hOml3p`31VDF_}bJLyfZFlLBl~rTLj;PST~`S z%w%EX-gIDqlax#LeU%ZHM>Xg&RJaly`PBElp>!z4tMOVtRDE#x@#Z!SY@qx1_Yr;+ zEq%4w()4HAWoHz$MUa8ooFK^rEXl56)!D}uySWBh3)Mqjs2t4fQ!35BQIXO)>;OqY z(W#|h3dG2r%}89qKvPyUuq4xO8Kq7vPVoa5>kZ-G9%41OtR6;6#oAE5|1skcXpe=G zMenIS2Xc-p3sOj}q|G_Ab^rRt?0H8$MJL76{8lpBV%;kZ%gn@LICDH2>N?_b*^iex z6rDPauS}G8K-n4x63ExhsL%J^w*qieElSy2p!`{1jt74dpdG5Vaj_$UNWW}<&xY;C#fgK9Fz&8gH{{MNhw2tG^LJH zob{YiMf!5!_HL0NQtJc<+91uPQb^R6qh*<6Z#kkwQqFpb3dEIIb#8F|pkr=rGpql7 zF69Q-o%F}A+HU3ib78zNK8c38`BSltZhPU_>*78E)}el($f8*Y(N;FGo5!oEuu82C zVP0BB_imKCI8|RLX6bb?p%abI@;i@le=2pE?~{H=rl;tw`T-an+C$FPyGuh-IIat( zxfAtYxQmIcsATL$AKTL{&Vy-pPL>wD-mc9chVAFV9wm$K`sxKKguTN^1T{l#m*^|8R3(qkLR063kae8Tm_^};WJD|wl>G_x% zZx+VCPCBN4+;>ec)%H(Ch%UWW%bvF$g zijdu4tgpJleZ`EfxJjjoC^dk-Th!~m_9U0-<;bp97BXEQH`fWuwK;zOI-W#lMhq(& z;$9kDu40_OOVEdEJS{ugNGoz|v-KVA(*EhVR>1+!uX|mcZkHhQ5Zfn~2x;m?kWByY zRW+sc7H9SEa4}KSb*1w138#Yf`~!`8gT*nrHOQG z7&?CZSnfRTbKd<*0oKb`G8RTlf}?`&Dn~^nH5MYy)t4php=kVrDL$W-55M8s`uQ^d zGgj#h8E!@`#Z6~LJa5neyL-O9*P4$EMTWN3G(OlS+#MhPJZB>v-=pMKtp|?+wP=sj z1uor|@mqgmZrn74j=}4GW<Ate*bKuc9!OP{Y|0D%6C z-;%Dz_TT!?!!N(amP2s)t!<9}^`*j>_0v>3mAO>3Ppt%6E7_2>Iqr9sz|*W+b=UWq z*Tued^DkZ1JsU8@4qF$ItU+9LS<`5`fnI(jqezN4f|bK(Ro=Z;nXJzo^vG}zQy{P% zbi|@y3e^lq&l0;y!T8fhh{iHEF8dWPW$Eo*IUUC9PDPECJJ z5YjivWD3aYH?^O8Bym~%CZ)$ES*XBY!;3ph!$88RKq6y{_-umVDn}usEUl8oq5w1a z$|Kc}vM>HpU)=ZIzi3<`$SBD`-0(QFXZ!h0^$8?zN_2&cr-=js=2Rx&2e#hD(op{1Cf zF){N)^wBZ@Zk`hj1OQuF3TB#rT8~?}b&?^%xX=smOOIY#vnV}G&OWlyy zWdA)Yb2$weU`}FMz+`P8qpzP&y*ooNkDs083(PQN#KKoZG%Z9cM5K4lQoWyloLh4* zd!C3f&%GE^*39MA?$8#Rtfv$thw7zI&wfY+3~FPumk_g>JNN#tALM}GC`M~zcP8>B z2{Ic@StdjUa+J2Z&Gg+Wz({wZS%&KbCcS@4dx=ccwTND&@d*hDxhbbSf8IoD?8US( z$hn^v?Ce^tdn^Zu1sC+B*t<>@D_*)M*6}7sDh6wAf z5+@!MpP z+*@G5Y*c8m_Q}FZGy#09D3`3xvFU8rg19rUd|^wBq2pRiL;7E%6KDu{if2m>3xeh@ z%0ubJS;EiyLV!*4GJd}ea^yrV_B=|+Q{K(ZM$ce1$7Ky>kmRcU#5|&ai?h)xTP|qT zxMlF0L2bF(bNiMjXivytfy>09*pa`O5VWe-`a$yTd!#?x(uY=MfFm>clH>+rqj3kX zHGzEQ0X$&pNl=g&8W{;*c5wm5+(h*D1E5-GF(WHl8h(tD;^I>nNzFV6-hZ}!Pbh^| zKyTM2^blScdP{|%#T_#0Sru96f$}VA{`7a=_dqKV+PS5C=9C|6-hQv24-e-dp~cc@ zg}c7OduY2rU6W`naQ~#JfRl9vQnYAj#(+})n;-{a2`N1T2n{U*km$^wPa9)ZIhINrKU4V)0t!o0B28mC zd{^-is0cH+)AD!y`*T0aCcgh}vi2Koem>kqVZ61(KLND;m~K@8Z4y%mX7v6yxJ~ST z!EOA{?K5aS!zWojQzHza1+k$P+)h^Q8#nk;9L->CQ)8Z;gO=LhXmDI{v~E$a=}Yv6 z!VqT7LcB|PV%xoY5u%I;@WCItyCvUf?`6kIq$Fb#okbZIhVD)v8FFbyW#yoesVg<2 zOG^wjhdcVt2_PE+WGebmpp?~K-=7>tKHMy3Q%8aIb14Bd`NONJDh^@|4I&Ej07KX$ zJ=>sO?do;F7yDGFfs|Vgb7;ZSR*Se!gWTZs;sgCFhX8U43&SM-JhaA)%v$$=pNOF^ zyHObpE&VZL%ySoLDjac^vV_8^94uFVEU2?a8Y+yUjd%v|*p_B%Wl;%W(Ok7bS^x~W z^Tp>51tq1L@k$dio z@9xlya~onUfX2~ct!4X2UyFP@H8)xs={qug#Y=D2SA6=gTcYQ>yy9!Y#l;!y-`7%Q zmj;#VRj#1*!K;8vxae`0ar@2Ao@2HB23s|+QzU0tUqcgr4L!i+ z`T5D?{>SR)(R?bY$ZSZ~ig@J>O~Z~@p|xUl8z zGC4b;!K^z72El`%_^TfG#NKL4bHO#4XZ@E=UAF$=N50`Q6T@jeqLwOL*2aSa+p?U zQBTBdXE-Ut-F@y0lDR3PuFsy^^-9em3%Gw^dj8+XHpSCvs)ZUjP39y+3Pv literal 0 HcmV?d00001 diff --git a/images/loss-dice/pr.png b/images/loss-dice/pr.png new file mode 100644 index 0000000000000000000000000000000000000000..d3958ee39a47d284e5d9cd3cceaef55f4a3daf68 GIT binary patch literal 17274 zcma*P1z43^w>`e?BZ?TH5~4>z5flTY1)GwP1_=cLK}5RC0!1;9P-*EFQE^KepoDZv zDkUY-A@Lh)j z3T4r!zn0@C$CVtp@td&CNevt2D@Hc<=dBDWa_4O<%&yp&ndon`Gqkccxnj=8E5Lhj z&$f#;HWt<*`}SS_uQ%{su`=Gr^<%R>zGS6^l%_R>!f>AazbH;3)`UVi)-8SFsER}I zK(n)kO6T0O$9 z6MO0{?Ik9h*n`e*_QVbC+5Wk15q?+U@MWb?&h6&FbLS~ZnNuhp(GQyNg6!W^ydH4O zY6;$avjYpFL03pmp*&~wWo=u`@9^tfenCM%Pw=Ztbwx($CIeqz`L9Bhwac7Z*? zxw8XTru$NJ8P~5@l0Fl1HrH*oI#QB>s?9r4pLRSoXF5T|{%2BZ?wnS#)~jJn?e0Fj zS?xai;nD6e_uhM=KNYpLgE@MFuH;mtmx(8qiT^$w<}!Tye&o`{D+=iqZ@#r3OnH5| zQO4JE&6b2ayl)nZat;uCV7voA~~alJF_|EOORmV$vYc$Qzb@9 z_?{kiw!7(~W;nyUXzrHD?mVxzHa**=zh*mUL_Nyhf5^1Dyi8&~iT$usoY9x3Ec?%S za1;*MUHbac3(TiBU2TtAgH%5zT0T%d%pLbJIWdwk9(`*BSn9{IsSWMaDt_M zN*BMY54L2hMxLUtNj|G?P;mEQaVPi0SYLJgBaR*{<+zAj$LDoEEQe$c95`Sl5@K2z zb$h2msCJZAr(NbD*J&H9`E#YrVK|+cE2nhM7Q6&hMY1BlY(s=HeQ!{BCF_e=iW%#x>$|#wo$G*`f*2k&xw5j-&)+|~rz-Xm-b=oG z`;Hx7(s%=9rKP1!TXV8wPCt33nyA)ubCa%Odx4K_tLub+-}FF3x}>j4qT1e(`l0qu z{tq66&;Fk13w8ck!5OIiY+uggF}%0x>XH@wm%s8`_v_d~wjZSrk z^%d{S<>xWuGcK+6SJ#clInaFf?%njS4-AJ~CM~GV=02MbJkz$^^xCFJ>E_LwJ>!j6 zBnBtAOMiX)pqgQ>Blmd!QDI@>-iGv8)9Sd0j8?a^D_5@6HQ2OQD~cyIOKI=f*M1zX z^RpAZ^=XkT0%mb(2A>j~#(JH84`kG2+F!{YDHVM?R(qC*)2J$zjl6pQhXGJ~!2kKhMof>3*uJ zs>;5%RoLodoMw7VMUJa;I}ZLZOP^il7k3<00p9FUrID#63}WYQczLldTeghT%?p`p zv+rH@yXqL$xJMB-@+?rjmxY9aUQ z*=#O2{nm z|FbFGEko;-DRc7K4Dr6l?>U&`({t*HK4oR~VybCG)E*(rG({cnt1G+Z?L92w z)|R(u2N&1pK4Y5?^n#m_`VPtm3!P`T&TKyAwPwrR7`dPT5u@;g1ACXLM11^sf}Clb z+v#qJ`FNH?ra!VLT9iL{(q|WhXclT@IizjhzTKwXN3a*W-nE05SDvJzr-v?age2v$ ziQ1hu_;hb?xJ2Jr7P9HrSC`b|CHM{SHq0@>w+F%?e?c3tmy`{lSAUY;y<5ckbI_^DtN@ltvCGV5Fl#!AuPtnP=8U0bA z^hwvZzu&ATNpmEtHI@U9^{Cl=LZmk1iryA6hw@9_mW95YR+-JcjTxyNJ;)X1y)}t7 zu?kzah}xB8-OHVy%S2LmY297Az3RS4?l~>GxMO@qC5q`rUl`fgl8|x_U1`xidbDNU zXC3~2XJ1ZzUwvtasO{*FGbc};Wcr=6f`Q%7#_4G>U$Uas2QP*?%Tt?S)h6Plf+!ahF$U($9iiJ4}spJ{ryc;<@pKsdG(HTF*?1(<@79Zb^~8I-6W;8 za^13(l$Bqd|FC?Egj-YJD=ZfG_U+%3y2E509Nr*E?Q{n%1p;;KG#?r?zqM69apJ~C z9AsAWH%BWAcgG7{{)&TT_d_i-em?+Mw&Nws+fa3%4;ynR{?or|5{L z2S#$p$EHiYZ@0^2Vq%J(8tLBTEHCZ;S(b;JTjuO*vkGq}p3$LCTl?DYOVr}bAG%n+ zEqkgfsC%r1-B^vm+j`(t-BamDHZPQv-#ETDsfv*~ecF$s*``YFMdJXAs9h4Ox|yze zMq@JTm8>%i5;GQQVc(|Obyy_kXVT5zd|OTe4Z)>)`t;pn$Bw;pnX<~B{C>wUCnQG* z@S{9n?^(aVKzrSchQR8_I&X$MzS)S-^3g<#v(s3OxV_YD*hE2bmOvG zEKbVksEzcl)OTU-b0#~Fa+)-~NmEPGh(KwN{Mh@&YpYvaQtFRI=i|yI?Fe{zDzb9q2lN>HQ9du)#XNkvHpg1mDc3v2r}*i2P#~G zd8oJV-mNADmWfC0B65PSylx_H`(nN~)5!uP@e|0;zEO?lnR1@ze-!Qt+jFqgI$5kH z=6&7I9~F^LMeWU>2s;H=_ z(vzNb6ftkwSDV~D(RsD#d-2&<9;$s2%?@CX8}^^hAB^~{o<4j*o??M^z7NQ zyEv8YzOuXrep0*H+w-n2>3WQ%p3r!C@u4M-JgajUTVC?mDw)~>15)hdzv z^DM(nYO^Tpn|@EXy}M4I*=#;DTBQK6Pyj4*7b$>Q?kWEPB$>M+w!NFTh}i50T+{F9 z?0nMA#K^cAtDA**TeX9O<6|7aZw2}x0{}DKx?vodgU5~^_o=VfFc|JAEC?312Hrqr z_+r_a&D7KmG{tx7KKo_a%Q9^K15x`^Yh2sV}i^N z2JF#PN*G)=dF{*oQl&(+hJWox4*1VKBWW@>HEnk@&p4YqJ04_Oo8(xlG?+OdeU&+uB4TX69IE@=W0N5LXy;SGE4tC2R^p0Y3Xg(`XL`y1hdH2$hC` zIx(Ac9gh0iOmzlcLQQoV%HQPg=cl51KA`BfOW+!#?xLQ*eEEc=O3!5;yLSBogUG~k zJqjiK`_k%^HdX;MMWn5|H0&!XL&8UED{E{2prA|QWu>Jle)Vo8VlgdzwVQ<5*)E7a z=@;sc^$mS=Tj3kWXJ)pj2kBXM!;ar9Pu_Q)wT`e{lbNg{8n>8oj%ks9(*+|VZV{2M zeHu14FJGjmkJah9@7}W~>9eqjiHXy2;Vz!T0)dT+V{0?5RyA>3uyzeC&WN}s7HBoB z?azMP(oDerF&C3ufQ)>e{4Tw2`D(hY3~4KN-|A(egwriku~KG7d@IYycu$Fmik=0o zWSSGU46Lo3P_TW(!Str7$eQXOG^l2N^(=K+%A@%p_u;S+I&X>4KH*TkA7Nz&cvBx+ zIxYhf^WlMfN2cxeRvo1u{=6UARXEbP&qnu(acjLhO844Yc^gGrYB4u8UOhGR#fukN z_Y4gUcZ-Q-)hGCH2#3fEhmpd|S}5>-}`L^_;>9Gb8jL6t6Z4>F9{a zG9_9pwsq2$R!yqBUu+*znxbuf{L_fG$j`|5qtY!*ao^YTNFMM{NWW_xYO7tr;ZtBo z*|a`vryyFJShwk(T_aP-39k%`H`b)+oF#Rhbeg2sYn`9V;OJ>_9;`vH^$cJ@!@k8a zRxMRGnKWXksUtP&M-HG5X0r=o8{bxAG2NwJlB65*@I(mL&O#C4ln!n+$5_Ty#iECF z98ND2r?PjOnoXpr_-iNArEPM%@5|a)mUOYAeoZ*{6h9S^;Yu~t+IWN-E4WiwSaYQ7 z3+XOjBG^a9ig`0nyq#e`?+?odcq_aZ zrYn_tCL@(cx6AZudA-{~O%cA^+&Kqk`&E;w+K=6d*T+@0HOxHEyb*mrjSyv8w=ROf zRWY%qx^EQ!n5csBENhimZ~pW!18wO+^*3qFTN%x9^G8A?^;FZ^FPg33KCU_EwnC+h z-lK9Pqrfg*#`d0D{P#~G(Mq-fOG^g4dp0RG-ElV`*G;yJPtg&LOY(qY4Jj zJqfDaK^~fsY1xzU@AYGrmIR72Gw8P(nE_q$&)lW4f3 z+T<5zuWus~FXC*FY0Ty`kOOLsve7WTfpNW=vXsRG(`hcx?<|e7=~5RpSsKg6-R9ov zJ6F)DnDD3?v)YgQH|>imutS185IqGrqv|=b?w#r- z)#u98ybc-U9by{RWx^6sJY+iJbyX*-3dXnJxe=g$phC~BtfJ0&F7f&&`N=NXkR^mw z+^ELvGr;5ixw6hVXGrU3UYPdgkdw%2@0T_zw2Y~?ji>s5K1|rjBTs~`$;U7(Qz1+x zlY?3iZ`Qqs5;U&T@cXaRved@`i}7`BnyVjpf_Oc*^4(E>Mo^fmEQ1r8-uxh(rdpc` zmys6Iuf}5fe8PH`cbWk_vPPcpq(xB{odsJr4eubAG1O0QkRM$A)64!eus=S?r@lLe zyela$tnTf?9UG-6oj!g5r0QY?vS&xsDzGTFYC}moLNs6nn;_vwOo}|5NDT_A> zX7th(6||po)c@4{c;93<9&?e=@dH($uk+{@D&G6#Hu7X*hXt3>Dl^Yt0_t3}tMAE6 zFQs3&6x(T8+$YaBH49P;Lql1)2?@NugvmReECWw?#AYm#_jTG8IE^|znaJgt9@FRd z?_GxH@Sv^m?pVRnC>l$grycRQh)~3f7w)s1c9;2&nmUwe>u%w6Q=fK;#bWgNytF^j z^~ahoGY$#TCzvlSEsc(zUKJb;(3M_@?aWJ)s_HC9YtTr$ckVoe(_DLd!>$A_Eed5D z(_5xsTk|ZmW>UL%@0O91s{ut({nqvpCnskQU|0SC8(wjCeSZD}|Ao(Mbu9Clz)=JMHN^;9cQK02p*2?oG^xpTcL&*> zaH%e(w=T6+IPowdQ-4__l_~2MnxxB3Z_eDleLMF0N;)MJUjegv#eQMHx^iUQFBgo^ z2av??1pM{AyQ8a%TU4~M59?lfUqX;^#qZwh3|qzb1Qthw7f5ZdsHm7mmwV@Mto!_& zh|A>jl+2$Z%$^a~t}Si`h&B!hkdc+GdZZw(8IiVxVi6G;@#b2RPNv$UopP0lsW}M% z{yok1tu-$Ui}@|Te_UV2ENC8lkNvQzI2uRwo9mWP&dJ@|Hh-CGT(dIYI*VOU5K}(QmG~p$v&J8O4 zS2C{C(vj85HN$19-qIvBQkOQ)TKnr0@T!pf58RnVtjazQI!wEK-r{~Z>{B> zNh=yihYQ6>i1sKvq>vq%AGr{%u_;hb#YN^N^ zT5FaA`ZthR_Qh7kLwPZo8tznO+)JVS`b8?ut6I6|`y^b@5u(+uNYYHN22D-+dr^NN%xr{ubj#6tAyFsNGq9{nW=iB3dvhCh6W5r#^{I1 z$#!;jngFqbViVhPTJZrmR#1eV`emBvtiQLnAJYH$*GWmqM8o2Mr~D?q+Pvzw!yW|% zC4y8X4Gg-mlvC10)UakTt{)#&zq?i=*k|9(ATb{aZEup(94SN(pZV#3X5G4Z9fE1hd?U zMD^5^2W_Pt3#1~N79G1x9ZO5guet8Iq3&~zgbH>pePh|~=j*FadZeB27E!{lEnU&z z$20#lfLq;aByS1BMG&k+u+VyKwmayH-Oop*im~!r8V2mpKR9kFD=Jb#Lh?Qw3x&^0 zhz%*VD-BGIHXfy@xL8?AO6s9?uzYN=yz!HEL}s_0RWhr3n;_#p?Kg^7a%W$Y%J7q6 z&B~Q$pe!Cdc(58Whx9HUK4xZS7GbLkY27xUsa9>=^Pq7+tvr6s09e;JTq=L30Mdb# zaLE_G*;p&(l+Ym16^BeJJF+CiI5|%eIuPPaJZfJLR4tNU9Ve>8k6!0DZxXVe0Tmoe zXeI`+Uml>rBCuB`;4Tr0A00m-z>7+)MIDZYtDCdC{5mQZCa#m3H7rAoi4vP0A4mkR zZ1Vob%A%4I6%amtp`qpi%!AFDbxGw?O5jfk-&heT*$28p3GDe8mhi_zN%r0L2&3?s znIZGt5TOn4b=97|QiA|g$+Wwy<07KQ3%I^;;*UNbbUgDD&*GTB~IUuA~p?jz)QcjAbFB8PD2*Vix@v6%m}PQgqR6 z+{Y$jBLy-ukb@BLAj^{s6&3ZPN%L+vBiW}jn^J9dhT>q5*CvHX6+u^+ToC7?k38=_Qj_tr#Rlrby4c9*l5E~)X#v@2L+8o#49MTYKY03h#=erQv#)$PT#16M0 z;V}tRJaqZ13K4|7D-SkViBHX-Y`Y6U(!Fwic=73>oa`=gI8Bt#X)IXC!C4& zH>RCF*7^4!UL_CLyx$_DHa9;BU-{XBw*%dy{sxjfsqKl?lcl5LB)%VgGdeD>=h9%`w=c~)z-=>CufwDl=!VWqyUbkz;8d~FuZW# z2Q=z(0DbO*;@Fr^CE3w47qt?!3%`(K2&sY~G^h&CICcvNs1el}DeRw3yfe9Mrr?RM z4TLR{c&w^m8A&6JEC1O+zDLMRL?S>TWKsazyYbaBR_jdAEpGx8HK$N{s)B zn+PF^avs6lnc+LcX^`za!7V7LF4*D_36?S*Dm)MV3UV&thY(KlR;$VL$Q9gzBy|#N z!2H}qE>1Gv{Z^;GWN0LD&)cvu?yFuGH7h}dp^{R1^TrK_Erg_>oBhqh0a~+dzQptU z5xwq$0lQ6^BNI5v2}p&Z3k#+Z6Y&PkhHhU2xY${+u;_18VL{>MM#^vN7V{7CxWW~B z(9oOQE>FsvW4q*o73b$>UqNiBiC31ql0Bw&@)J4eejgZk1aTrzEMMC8sgZW+Y=(Ia zZYw_X=UZ8v^zUk!D1tE9@kj-3(`dPMa?vlO*x$?}VN9*g|fZ353r z2{qX*ZAGQ$YZ!_?IMF1;wk8C7b5I|LcTqu=;-0CpfwoRlE_NUqqETGCcFp@9&gRkw z@BM>ZB&b`mv=0mFxzD~rnHz;f694#o{VhTC4iYMfS|xzaG6Z zFRHdi{FMEukld<@Sg!_yO(YJKxf6!@c<#kVo`+oy)r{%rBGeeM+aznG9UIJ@&k>*b zb^J@1gr2!XVKuH^Gtx9Su#Z09P{tf`eBZ0=V`%jN#ogdbpkqK`Te@69Ijva1$-Ky~ ziII_!i=V%`@9~Fkif(RhH8`Z!@NJwscbWn`aE4C6N3k0sFtIEMOYFc=Y-niEMYUA4EGeR|QmXv7 z2-3V+BzvfUl^CSr#dkoGTeogq*N&Y#yRzD`6tPbZ3#ynG{j5(jV1dMGR2G^HEyk}m z80t(97|AXofcUd}97UJ7Z2e%c{P_n?9Ro@bK^y_c_412DM53!VE$&>9F&7 z9Bf@(2PWbhORrtO{>t^Y-66<{eQdE+J+JNvQz&s7N!A1l-unLiyWhiyG;0Ntg`$g# z%flgZ*1*6f!u|62KC#pg(G9r#vDIQq-U@7BeXKvLG#Y?2@NbZu1A*QIiXee25B@&R zAr0|_KrN!R!d&;ttf8`R2G$~JZYy*;D)jD`xW*l=s)&ODsdvN9(~3q$F+@>>Se#zy z0HYQp+ql|oNSjLC8s0C9UW&%&1)R%R=vCKx#aex!b%58}l>g~DEy%%n?stwx;`uwMamCPjxN9He zX_xPNsXHHe zO`1kmZ7X-&IP@sWMM9&`lXjvuNk*9LcE7mLsCVZZr89lKc9lkfd9-bt*Nk2`cYL{$(j9lwZh!r?>$J7n z_+7L6Pv^Vvl@SXh9XK=>+BYu?HHlwL`(~yETB36_xsB%TTzsv8*1O+sP+VxD|Ily61Q0;o;$zmhGpIZJvHYwZiSip?mi0J$!GgM9R#J z3lx;h`Z{ZXnvn{bX=hI8)i?092#%PttX zP`*#7dSX}Qhhj~3hwT#dB{0#4P54E9U2Td^-$sDApU@TL4e6qZp*baTsM@j!gV!p^ zL?h!yj2K=N+9f!&_cgwwF>*J5ot9fT$bZ)>2$XS7=WB-{~xkHDUbcc z!U0~<*M#8ZSt zT(;0rv@K?$fh4+CW9vjL+B|SVe)cIU$|DYyaZs7oum9esNNKzF9WaSQ@aCIl^MRJ^ zvmjh>92BLb{$lc==x_GKfwO`8k-P*JOI2|#Un)gWmG;ds1OwoJlA{jqN6wlRoohF4 z+=>2@m|$>Kr~_lRQWT4K`w55FH2+KQ_f?;;t&~Ymq%>Mur~4;yO;*2D!E>tIfaRsw zC>^%*-5eYzV7#bMRyZ6DI$gRF4dj=)%K|~YwaJOFNdJI2UIeyRU|DHSk=*v{ilSGz>_99kG{EsHY-N`H-e`6x4RWWGJDMy2`>*Gg_Qv z?~6~<>_t#5dIQdyR}h0DgjnfH2=}RQAvlIKf@A^)t#@IEFB+j!mqIU^5kFQGvgQ*4LW@;ZJC0yxwshkIF9PXXJjiSHr z_nOVBZCJT#RTXfwZvQ0^9X0Q7uHx)Ty3!!biXN7>uz}2rI|LeQrc!F7vjZbv_g`!_`@S3aJLhZ;PBAL z4Y~&6^E1|@Tp_-rVHAvl11@CjFny%H`%z?R*j-`sB#uwAuP6m36F-~3K0kk5*LmQO zbR_^I4|F4t9gZP^pjR<$5O>UA2_-n}oCFn0L>Jq8HoMthD!ygnnS01k!xKJZZX5z~ z94#y=whj`n2|ywt!{9ho0p$JC67U@*v_I*vF#FM?M^CPgn3Jr1F;pGJsr%1ey(R7oO$RWba*Z&JzOI`Tzu8jpot+PeF|fistClOEc<2sCPV zVF=FmiQCMOB+iAa2x?ON_c-*cgxG?G{t`9`#C_P57Frzsb9odjtrR-h6uZHeWQ>x? zz#W4xXmHe9LOGHz+)OkRaZ=fcAbDrgKHhO#90812Ttvr2yhX&5pP2Gi2KDfUIUW-> z%itH8;AH%RgOfl*?uOwH%X{$3hJ8MyF9(H5tj@gDj`gW^U8Nz3cux;_M-{+z;!bsi zmGNZ3B8p4#c?KnT1B4HE@(4se6FoJn4cinkX@h&d>E-2|P5Mxhli}rM&XiuU-|Zgd z++pM2zg>6IblU$g85Fa5Q$78KfDdI16kapreQ*NOl~^2Cww0w`-QC?&j*BV0d;0gP z-fA{i2USbB`JN8C9K+_ti*gJ$dlH}p3nur$gD*bossKn_*W(a`eTpR1RFHF|<)j%P zVL<#onSW=~C6J?E(Rw}=xSRlTCK36CY5g7J-0ce2uIFuFW-iQ8rdTW*akNTD@`#R# zx>%c}NgIlg3yOg+>T+w24(3Nr7P!M%MRpH@0&K#9Chx8->ut`=fN41jtyieM7-R|% zqUtItDruQoA95jwfPb;LIx;oB3gv+|9)mHClfFb=*svjTekyFf0v+X@yMvG-t*op_ zI6e6^*E;{(9q85v2i3N;jHh_`3(*XhmW;1LY54laG7|d97XutO5R26STi%C_(aPzz zb3)jT{|Kzy_Wpa7Nj!|;i16LSh2;Pj7J~AVepz8j$sRiwBO{}?XGdnO!gz2i(c1=x9&Xxh9v>x=?3b7azT}d}d z*_a7A242;J@_i~(=c(Fx_>2Bq=fwfo+jHT#CA1b=mnaOum)L{j&P0|N@TjM#psh`7 z4{OGrWn3GDvep4!UXt+B?+r~Qw-MQ1US17H2pC(GC|a z1U804ny_qe){a5|ii4F->y1T3&Qup`HU`b2r?XH7E+TIwAaUN@R~{G=k__G#n{!_@ zjeA`k)zl&+ad{oJ*CILbl%bCChy9RJ4xpa21sk}AHjP3OhdZ?r0~>x%o)EV>*Wts> zW-Kk4_Nmvd$!9FL1qBMUTTX1%pu$velQm#K^?DDPqgSv&{HPb%55Ys)Jujr{(Wiar zO{wbjK5g4KwW^T^Q%0!V0_@_T_+&JW$Nsq!^4prax2BUHY+uh1#M1Wun3eKXtP%*8 zY?jAoh8Dhpe3REDokKI9p7OO)#N>Oj^q6eBxw-aE?z;t8w!@#6s%I)YJC6Zs!bT?d(s%w z)?efla-U83*}5I4h}c91v}%)>=YMkDe4*QoVjGV#N#qO2J#d^R!{DuQ=H=BMjKnD; zlt9uhLE6v82voP2F`A0ET~9A{z%d^sy#eJvwX)sss?u3(<+}Cj^-G@ceVUy6J?Miz zj``ukho{uk)Y97PFfLU;VAoFV4&`&3{I;SUwg^F(P=`?M)hs)%Mkm!#Q7^zh@!iE& zvLcT7mNT%Moj7q~Gwi^Zm?YUX@C=8MiZAn<)tCRkBU={l%}|khz9=cFPFPT|?qcKX zWav~3WORYJXno*CV1acz{`==8vYM$QXdmfgt4vD5BwFh+QkSNmPZx=`C;&l}C^Ve+ z0y6^bX`k5nT3jb|j{6RwhQYIfe(^4rmKot)0MGHcteN3rGQ?9^RmF2i-Z$vrMHtDU zvi&teg&7xahjUTU(M+N_@Xwz@laqZ9TiEiZJJgx`Q0Wo%+CG;UfYnIkjsn69Y5uKs z%rV6pb7#cC+^#o29r!Rf__UQWondw<*l~Ug<6MB1SXK2_fMRW*7_Jiu^SACN9P7I{ zerl${YD!N#y1sdB6-a@imui4AcnCc=_kn{S&S@q1{ri5H(YX|fDXTyhU!!!p{Y(yS z3-FZ(G%?mJC29W>UB}cBf~=uHgQwF`U1yZXQ)a9Ce+j~>H@8?6S%-+){0R496@03! zo@qBwIow%XLo9o@r;dF~%)Kt&D#WMAChnqvW~8aSY6sL|GN72&4KwOSQE@)L^vdt6 zZ91u?#!ej%C5bMuectQ634VaGScNf<2+(ONM{m?BhW2GaQBKy))&k*Oj?0Wevopbr zQBhf$x~ZwD>J8f6z!#E=EZYaM@6q|q+z<^gbCgI7L)^!5&iRen?}t0peReGH{rmUa zo!0S9c}k(K$1e9I1X-@sy_UC5n!2VSTV2czyUA9(DFi1gbyM zAbK#U6)L7BSL4L$98qftLyD;cZesNJM_IF(XtwXe11Kx5ogdI!Co?U&nVntNM3wb+ zkz71J%7qC7XxCi_FhFqk?rIDHV3fzjC9BRsnoN1o!e@^(1_^?9$_K{*?t^%E&3%mi zB0~88B0}K?SN8w5;_mQ_xINTxiP_OdPsC&@5z#8SZm#Qt*86pfY?W}!l3Ls@%|-uO zJ88f8Z&8i-fufCMaP>ov4GR#_LLLF!6u`Ko51_?|{i_Yy@~#%3Xnz^PQV62i^#QxG znIsb=WEi{{kwe0;$;6GXfjLo249bmIqKfFb-t@o;bJ_VbfI9>^5vmajh64Ff4o%Ej zbDAfiDBi_sXonO$UZeikUwArz&r@U`0WDf_{i{oXLy$l=V>bja(bb-qx^^v|$H=TD ztDzpM;opUiMQjt&97l}W1NGbvtp2bcZnjIS*@Vj32B}Ol5nk*E(V2pBJ8=E%yV(jj z4$QQz3OP@KVy-|zZO0Gz^~h8pj8@qN@Z2|^0!pRLG!*fq@&n?i<*!>2^Fq5@c3*b& z1C@@4PoHXyU0w0`#hm!2Q&!4OxM8^NZ<4V{vVa74hB|gJM}~)odq=JjGo+SIO-&VS zP!Ky0OF=!EH-O4?7o-^L{Oq86qWCY$3#2XmdDlMbYs_DsI(F>XLu)kB1~+cp*i60+ zfc0#T<=55Mr%~0OuW@-3)yiH}V&&pt%Z2bx1i7toq4YHUsg_T&wEA zxcM03E)oqM51Im?8b2E=uWlIAbnF@oN%2FTAu}|oBanNY$*dVVXmxBbG`L-40>n28 zx}Fvh5^;hfZ{7L}!_^nTbE?j5S)@XbTJF}3`L8MrH$=d@A+4mP^>hwPhxS8r8U^u? z)96Jq5Rc9yqJZ*}kVTzb{?aeb)9Q1Uh1Wz-*Cl?^z zXM0*#9jSqVxe`5k7KGY5YPPK`pfu3Gt13{``4*jy*Qk zZGP6C_*VjTo#FwrU{CT73{+p)y3`{T^xiK~vJL?1{@_5dUKr^xg&KlsP%gU}Rdt{nnq~zIym~RW58@lffZKw}J^HpF1__23n zW^NklEfLPLkzJk8W^ziCfAs*(*W6T@doN0Q1>umw=4T`qj4ALA%;S}pn1GudoS#cY zcWY5<%HWZAvU9nI9^INXWEN|z$-0bi0c18FAo(SV8`+7cmr^Ps?~8Lwzy0y-&P%5; z)5D|X$MGl+(0IY8Q=MiYDP2kGB7*L0owl_P&MRqu@lPxi1nMyy;e5gDd45s^y0M4% rdz#4dZ}BF0#Q*e(xt(7<+{#T)3H_rZQHOcyh2XyzWIhA z>V~CDPp&?F-&yX&z7fhFG&ij#QR~En+q5@28~K`CYt&qine_`_8?$ZpfBrnJK#R|} zbTMw>`_ohBR^T@sg`cL5U$w&jUw&D3wHCTZ$VYk!2@7j;`y`pRo%8+R)b~Ze=R9+% z4^KhJaQ6EMh3E+UNr?G&x`DHlEIL|gS7qqv+;l&?Nn@s|g@xyxJ9pUR!d|e-hIIBd zWE9%=@fp>34t&d{=h1oCUKS9Wpk2(|Gx@M8#Yh#GwXwDq8Zr~I845bj?2iA5%+Cx{ z%A5w9&pg_G_~gEQ`}po|rIT3^>amW_*+C`4GP==W{8HNM*I^btpV$7}f1|MShj0D;u^CqVY?so_3%Tbjj|vEM zeegS`l4YCx?1-9a@#--o-{z;MFvD9;(Y@VItMqgeJ`g~YH zC$_h1*=4h9W&ZMsI;E|+B&TZ10rAJXyfhoqEh@uhLz66f>$Q%}S4S!`QPtJe3oX~V z7g7`zYqWgl_0-hVMzBBRuvK>vrdSp#?N8*X(8#8TqO&W!YpKf3jd*9TgL92?@5XG{$eehGQ za7l5VaB`}>yMa-Q+b3$ws6L6hg$>Y64W5 z49i{)qm6?#%E|ijxT*7R-@c7dOG~H-l`@%BoBLe(IYe@2T6#M3>$x{?j%ycrP`7cZ zpC3tH{APGR*`!FtSOq-$=u}TEi@trq>)9?MN6UT>6z5?1M%Lw;67KChC;UEam?^Xu@@maD?q> zH`e^zE3rovf2`azGWOZTpyPv|lzkId&P*Wg=u(>L8Ah>(7Xw5bk_>7N%7R3xs#nbHB`)%e4|CoVK8so z(CDZnSwAzLCC+Pa-MQn-&tX!Br>Cb`?p~P~_||@B-t4Ge1tpO( zj1$7J(`rT_d%EvfakfnGIiJL9WyaZ#v+3GR{W2^_Et-1-Oj{X6UF^pDd^9yRH>ush z5wWQXllF3$9_y93ZZsGn7k<@C%O6|M=qevBlc(Qwd+p8=S_y;GO#Ebt4^R8U9X!u= z9?>1BGFVEd`l@2}n~?qc_fx2SeSP=nb8tsg8Ek3PnA60!J2a0Mmj@ZP*}V_=HWXEw9;60cdNa~>BnfWRpFfEM2&U8&ff0w;nuDw_2myZ-2BHgKBI_L zTiC)h3my-RjVZwGC7E|surR+Fys?!{?!epl{b%lX;s(+krc%QSeMZC@#U#i>(@(- z2x!=L1ydT5#wI%g*s)HlR<10s3YYa1wi`R0vyIO1R?s$QNyLlyH8qOxy3~s4IXlL> zmZO4#BBnWYhK}uK@5X)e&CJXy$9g}H7IWoq6azI z$E;!$qLc<}*CYFAOY=zQU5{4WHEM8A0PBJ}a-__(5)+VczkLVC&bLv6*YR zRy0ASYj2}dWFf8f>(>{sT7%|y_oiB0MUUu|Y&WV)IFmCs)x+5F*md~by-h10?-q4b zQ%=;8zrALMfB)h=#3%%<2VNLAq>sM$oo}ASK|>sVMuG!O`8+mX25w-ZJ@dWUWt79l zP1(_iMB%W_?k{PH`Hyyn!v3*BbZ0q`7Vy>NI5}y*cRR8Bm}OO4vG=B3q7G9@*tz{( zZv#4*n3S$u!OhWv;HT<2V(ce}ScQbt?yTFL@IAx4i-sk;!rO;yu58>n?{<6s;H#}% z*bPJnkM<9K2A-#J22aDqC#hXC4Z}T(x$cS9s|+bDDCmf9*|mH3Cb=ixoT?#CbCU)7 z8uq4hVH&^D^xrry5_FoVnZDL`w>ieQ!8B(e#Do%IypwRQh&ZW3bsny#K%2kF) z%ERYHvLy7@CriK)$$m~TVxlrhc*()3jUfKBa&VlNkB}>G%(COP>Qm#@{rEM$_=@lY zoziD|_!|A%xR)XmUzaqbnThjU`yhwNA8p)9&#Ui|V$u|YM=nB?RE$w8ha>RdxpqMw z77{<~${?yvyy@}d&M>GKNF}--aAmt8E2Jw}!W1Z$rr;yp&;S zJ3CrqF)?t3Qz`B^B1kg5HzH3#2ol zD>pIgc2|Xa#lx9?djEtm*`!Hiw7XhDHN~)8oWUU|@4>duM?yH16Lj$v&+zJ3eViKY@nn+N zx^^eu`2eT6GbrYExIAv5DcLGPY>gJLa$cI!WCnuF3Nq8Uh z!{)M!i;G)yRh)r$sev=3naAMn!(p4YZJvrGTPvPJ#ubhX>)D|zzgzY<8oBo@c7Aur z$KAAGDYDvu#eo&8@jFBO|NN^Um$l+99L}XoYiW3IK8JS)=;*@z>I{)$q_+0-u&=n| z5j)*5fQW-0Zh7EgN3W*vxP=-C|`G z6jZsN#^@brL{W8QC=g>GaZS7b`0)j~iepGdW+z%)1s!KzfBEud1kSi8u}nnv<;hzd zn&g~+)q4o9lnoQswsDx7v9ai_mxsfMBxxG5YhCQ0sp%Ad-WLRpsgbT%uf$!8%F3ip z-Ch$fbYG-#q^pwGamE_4Btol@Hr4!qYot3eR^@RM9-hH*;^kH@^{BA01Iv~#*Ux{r z1CIW}i1_IWU$J+oN1pETquSow-2Cm^lZt(GdMXk6{br`gUE}d}9!V*WkSG!RgV%h1 z_3G6lx*zveN61S!%?#e*)_Q+=M@_ga3*1uCkRY;KFDKVWkK~akx3#pq!r|zu2$s-q zNKeMEP$`kg(=_w3@5&@6M$$uKMv~32j>Y#{X+-pkmoLAd=oQkKh>OM|1jDr&47C=n zTC=7K?!rUZ&XOwA-5A1sZobnY!RG%t{%kW|?&t6)0ccP|gtMuDsWH{4V&~52uu~c$!@TNQw(@m}*NC;s zrI~6|*Ry2>pYyChnZz*Zj}xGb^Hqs+#kr*h{+c+LblcI0=YD>?m*3DuU&>H`YmCo~ z#e0Yal{h_2RJbz5G}E>tM)fZ9V)=P_h1e-!+mVk5=v(&ei9tlv`}XH8{V%WMDP0qT zEo?GDcTvlX)EmSyb<@jc`|hNp+Z%nD%I#zLT3F-gw{PEQK}cLwdo|)N-y|XRYTo^> zSFR!ze#hp=_ODpBEZlmqS%Gu;&6_vx-@W^>{FOMTrhZk}72a!DRa}@NtULanb?Z{- zTM(GAWJ>u^vYYULgM1#`#|w;5`+>HdNwnihmxJWE@=c(FNR0?C=Vbr8;m1_myc2cF^7( z_IABp!dv9Qs>#cI@Zbesev_1ksHY#|tX$)5M}|OxrS|!&7rU0x(H&CZPUfd5AYD#E zRXICSDTUaQI+AZ|Yg<%WDj6yj@afN6t4EQMu^}BJ`H<~+Uo<>>rKNzI+NjQ|*QB;s!M_ z@;LOo+C`h&N_=Dy^HQS9*{S%0YLpkG-XjiAE?h<>$1$tA)CiRy$$H7fBk#ykmi54I zM^&y468hA&Ohzn1Ej0D~dY@eZUrc;Ax7Qvxv&`uUTg>6)z)%<>ou%s-0gZC&UWa-M zw#z;t8@`>>$BQGkWzYamME8A|j_K%m!D-Dja0eGT|vqJ!Q##{J;b6j+E&gHr$hj#t)X`l0aF(Va~(?=FQdwD!;;j2sEj$BS` zv$x*AfbzV$!RY&K;tyQrulFC_k=_27T=DN4BX=RP4=>aTFWijStI(S3fN$vN#9n2+ zy>5RJ|N8p|aa#-D^QKRF!NTZ;vu?L+!ZSNJpd`ZA9I>@syAXpfAKjVCKTt3o+WgDg z^*h&y2me^OAJ283c_){$Sn#;suh(54`me{0w{`jF+WhiNW6N_FZs(sjQNTj-f{cYP zd!sutLjQQdaa?A0r!v#jPn9>~-M`+xENA=ZUw1X1Q)en7v|(ZIelE;%ER6NS!YpU( z;@z|0_tFWa;knqs|9&FW1$54Dv6a7mT8FzZ-&6gwq;~8tA9+gU>+1@x znwIa>h4=jmN5b>^Q-{MOKc(bvdZG*Rl;>);N57+XF~ z`}V6WVyr)nZQ%}oKKgh*m|d&YC^F{*l<9cDi>3M3`6XV2b6 zbO;8Fp${;@>o8oQG%9%#R(2n~ew-8#h=-_CX`MVta~XyFn)M zfrM*iF(g+qZ7V{ep$MpexN2VGFG@7?nTZ=)SY=M1IB~+ZH@RkHxJ)z>Nk_W%U|?oe z784aEcZKt!CFY~u@&d<>86d$RASmMBRRKl3w|VQ<5UjTZt;m}z7MItnPg*hm=;4D0 z?(n0wBb_gig)_5xy?e26Y~wtPO(tRo2Ch?O+Dm+xr~uU#))?u)4%ye&uK+ocz>Uy? zUcA`5g-iVlZQz^?Rs~_-e56yl`01UFy9}E|#m&u=es^(+&OdteXqea|dauLx?lB!! zBBu4`0z$h|mgS8bPaZrd-qf^d+qO_VO*pVb0@hMkj~tPMs|Q?|K;P5b8;xj#t8QwX zXc;WgDfwi+dx*MEom&^+4qg=4kGOHDXy&z?OBpId0^ ziFHxPVhm7B)dL?zLaJ$z3H#UmJt@Oj$ShQ#nEy&rKZnubit-j|iM5sbU zMbz}k50Oet93C_~dhA#vKB=JD+}unO-{Pn5-u?W>il?ahNk%x;6&ldm*Js@IXmn)6 z!`IgrAbs`AQ!7ThD#Z~`$z78T$M+QLuOx^7vI3tB@(q!QG_82wH>WiX!MVQyXp0H!M0Kylg9r3X-#puB$s z)6w4H&LXvk)<_I`~I5>0OI&sce(u7Zs=ZDIepdl2zHkE^_I*2a5;a_UDAV zG2H2_k6D@i+UWVG58W}Qc{4^c;dJ4j3tox6=kzPoXIGAjYqO5-mfy6ie=z5uSIcn6 z2kLbpN4p7QOSPEBZyhmHT766X!AGtW1r(}!pK(2RsB22^vGC;$*E+jP&$g9$O7b)IDSfc$ zj%Dwjt>gBaoqqO3ts=a@&O~?gVIP}VUR9{#)Wf1Rh z=K{T8bCa)WMd*C$io_f4ArU*2KI_|etTQ4Ejdq#wtOVD92CD<3stWS<+T*i*pRC+0 z_snG-G@O)+-8@?PVM!?GbbsT6Pi;M^dj!O5qcf&#>(&+b40{`QM{4JUTlF{v@HU3u zIO8|nk-q$b+CHk_jj;rEC#C?~q$nM#t*D`*tka#ws%ggT)Xe_a2Q|?jlC@?XBWsp0 z&xBd7)liIIoL!$jUKXS#IB?R;)ZDhYdCa)0QgrM!jvBImj@VfBtcd6wev1)ojLB*$xk?GMY%@}KKU{p#-J z&?eDd9&2|&>Cxw;o~K3L6IRlL>GJn`-Y|3|Uski5O}2^pee2qb8Mk9a$Ar3`@2Y+& zz3f&)`m0>0IrpHRrRwIP7yRV>)w0=S4#n1|=!XOBSKY0VpnKDFN=x2HChv&(fOxuD z#|KRv+E#l}De!WNxmNTnR<&_U3P-Q667p|Qw8h)e#3L)lsq`lwr`lhf?t>onk8&z@So_G5sP|3{j( zsEBEHT9d=8kWv*Td8eBNhYRz2*M2D+lVg20f?8ey%aEK2@+A><<%*l49}Fgvs%b$@QZv!s!yOkx^S4CP8jYss_`*(we(-9^yT45l zF<&lJ!NO0#LB(dcE%BLw)kU|*497xDvVBdIX6R_ld7pRc*Th5vYa`f7eWp#~^XJdy zV6`6WdhQ|Y1&I7duOetse|PD*yv?PKe@UN0OX9V$ixbfq>DxxXhP?i0utCt0xk|reF!ANkaG_Rm z|A#DHzqIR;cIyLVYo4s$vT0{1pOmf(-FH9mi9_2CgjI%02@hGPDKbQP4289rW&1_b zm?Xl@eYgwh8NaXSU7Ig47*vB)5k>gW;NSvrb^Yt{ORuk=fUSB`)^0y^eA())awN&* zH&I`^TTpJizbW;ZCLjm`K&f52(y{}>P_$_Eb~Bm^)h!OIp0-3x;}*%eiK zhlhqLki}A{;PTuHwJKai=faSnvZ5AdQ%(p1niACrsBjnZsGbwCO1Zbw9UG=XC_(Go zmuE(%HXR7B@0XIi-ctL@gTq6Xw%L|*CSLRWy7hC6?a%w(GH8#@I4a0%aBA^}Oc~rt z?)a!&-1EYXhixLDtzuPcQ4Bnt(BVBR+^Gk|o$Ge!hI&t}rAMg!`lgi8xH@ zVikZMcp_g2YI2;GT(NG~*@4C~(Rnpw(^YR>R`8m4UR<_fMI<;+{ZCOo>lj3$KttqQ>VY<{jRsul?Snm}ArwlJmh&_G8Q?{rcB0!GTld^!f7-pQYM!-HKVtMUmw;v<}?N z)f1(hD7J$~$Ad!BGGflit6IMf>}6m;ey44S@~1l0M1xa3Q)za3+?(=f2agz-#!9dO zoGs_PIDEbeEm^+iBP;=^3t!gEP%&+foDDWI5-_(4?Q4Jb^o8u~?3Io4`8!QIbJvR| zWg6Ed1V<>w#=Jar=NxU-R*o>yxrtLP1+I!ogU1)YzEZdGNS;nluw_NmF+M8B>5HwQsG7wzv2cH`CAxApD{?xY``sx;=wcTps9dl_h zjxF8>gJtWzSRXukAp7!5qiuimP*Jnz3I0F(b?3`-gA0ZD^`Q`)lWLbJZITm$wgf3s(RQ~3~sf{H(9T_HaIVTuF z_v~=mK(~=I&%F_@LJxHpEeL=fLE0l^Lm#66W(Q`@7QXghS*3qEo4n z0jx3BQ+ROKCg$@WLAED5%{#W0`qm`OBXX14OBTh1L42eluq&T!1~JSxJ} zdPS&BB>jbyK^dExo1Y)KHZUM*CtxZxkyr<3CWmql2r9>k46)qn4G)`$kKkvI4F{Vb^V|Cy zj;kDTdfQyEXLxwHGKBNSTm+K{W+Tp-_!IYDUY~PfD#>{YU1!3$+ON z*VmX82~#Wt$LF$Qy#f|Y{>AY{py@OeS|mIUTuEc?y`kW+K;So9IQS&9>51nfCgaP|*+Q#Sf z#b)e#on|rtouwQCfSe=HMDd|6Nn%5|4h#(3Oh5I)b)db}7bNww{fvyGpHxi|vCrKN8L8>0$|3pC1FGw_v!Gc%T16flVf`{6A>TnN;f0TTPD{WsOuw5HeEGJT8ED8{_`{tzBKL-pzi5>Fc`ge59*ATaR`3 zVmIb9r%%5>_8=7IA)DF2H8*|K#Fe4-D{W-@)*hCF-6=(0xELvVv>yQOc_$0So9bL4RF;;Gi7JI+>d_63E+Ujej5*?O!kBDD)O3 z>g@dRFDP=ma8~{T!2363iq8xEzy`}3FALRUxBteNAC4_=`2~+X#P;t`N8vL+KJB9g z%<{>o$l8AbnQMT5{|cXOm+;!LfQ0{rTe|?a{=dHg+kXSRSSt2aSyE>f(62-FfK=_4 z;1PbJ^)B&RKL7gu|5^Y*%0HJfiGTYK7T|B7xWYi_pTPc_{6~iWTE73cPiMXT6-zFm z>>MAdH)hND71rH#o>`zauF9Y|?faG=z_L<8iFFb`9^)@~{=ZjE;OQR2l;`WE#Qup8 zm!IeB%MGsh2{fWOQ6z>3PjC=H2B508?(PUUF9Wbh3I&j7k<$qB z>pkcwA|im^!QJvLbb2sKGeR1n5YR_n@48zy!_o+(Q(*#RlJC2%aXAYBk3^UV8mJsG zwi-IO;=#Lj|3ipoNYGZTTlWd%A@9|9|8W3b<#iakK^dfy1Q^>bWPNch{gI0<%h#H> zzTZ&%6m^~+^byFIyx(}og zU3mft;W2`=8bHg)rkWB(>4E^{qpwMJI7xVsGO2)mMUgeyo7z+aEdj}dPM$n@Q;2#K#90N1wIfgsb}Hj zOz*u3)dCyPct~sA(k*)<;AT}H!)q577Z($l7Fak@7D0HSln=R;GEi2p!$8plZ#4g5 z+?c7iL-v)}+Q{MM%a^kqIB<4>YzIB2@@Q~mL=IX~PR)%E7MPm1G=stftZ(EjDj-wD z)ggNn1qu*4dH|{O6LC<%a?1D#T5R6DnF2WnE<$cgq5p=dDFKzY(9^R~SFK$u?=NH% zm2Yilr}~(vGXX$)IjnaD+ z+4hr37Cj13Ji)qKOI>`SEVd{~#H=MH6D5Kvp?e8a}fx^6XW zstg1|6jmvJAylyO^qV$pc)744l&wEbu8gf;BhJpPKmIs?(x$>?XFg2C9DbOLC44Ya;VNFjl_&CZLmxD!eQMXXY! zLUaX0rPb*c2DoAb6vfnZods{dru{N^;oIB2YpH$)^K-LAjnZaezrP-dMd@<^SvY|T zl+i%cnKd*t$f1PxBqd@O7bH(ej}=jzx4|r}8g0ap-X`xF9~r3v%?zCfzbC7#7<3WU zNF$;?4LOkf1*8ZepNWOtT)d3P&msLS;SK>(O%#TLR((-%afcwul7{(vM@AaZV(JK0 zL$zI@eij78p_yY1&D3ndALp`jV~@ z;m!22>P$1%LUQ9D-Hg}hXp%JdM&!4|C2(bp z(1@M~_`z8kk$stDPv*BT!r8CgNs7M&3QLw|{=;(M4@Zo@92Gb=KkeoMt%n|58Q)78r0mIBW_=*II&#LeGfaQw&~n|am!1>XDa<5D=b)1RYIN(%zXr^pvy zLB=PJ?0agkfWZQ62MkvV$C3JYI~L~qDk&`H=f{m8tV@_mnZSu#;7L*UoaZDNA3b7pW8c0 zVe2x&Vwo1;TitYyK0R+5cZDH_vm-&VZ07nZD)MZ9M5O33(qo}`93OFxW||aB0i7BN zg>;d>a0X;rMDea{gg33Z-GA&Z)db5;#K+`-!+xIuOcQ&&ixmeP`^zP86_k4%`(Kun zmURV({29NAKYT+3k)6V|63;a=JDYs@?c!v^I&Ohx!qWRI!xpga7a`1N67Fouy3ul* z5)KotM+#!}irD8VBw1XARCJQqSb)5x${?9YHt&*w?&=M;_pgme}S|NK;RJw zjlyq0J)ShV}}q)*j6A?>`rqtY|?>$EF20t!*6Myx;!aF zximffdH+_d(~-BI9A0m>4LFDehXi?(@V6BV_5&qv@f1PJQq*-GG8Oxi_kbmCsBocLfe`&|6Y5>|>J^TFU#bQM8W6Nw!!t|^`DVIBTfIPnnIxjgPa zErv>vjHLRGWjQ z69P;u909r%kJg}6yxv`x7z+Qy2mqCI)u2f3MhgM*muI^U6VJBgr^)rMU9w`G9Hi3( zXhL`k1C@>BLmJ6eH3CZO-3`cgV}4k8h(1zbd78UAE()X|5^S5`_rT`%Q@`vZ0tlK7UWEdii)a|Xw|x$3W10^_5d`f zau$MEI>gmu{Y|mJ+3GnC;qz}4XwOHW;!?>%JH$nZL67KH9YBaJ*11XC4Eu^omr^g7 z6U}2JKR+K>o8>}F4IHG}Vf+CdpJ&j{I-re+SDX;5G07gqi(_S4G)WV!SE1uwv`pJm z(CwKcYiqqreE-?4SOB1Vnxnwu2o zrTk4E6jIhJxH94ixP8vwfAlEX!2{Q_{9|X`L+{QYD|AwIR|G$BM0{_3NLtk5(oVBv z=_D%CxuI?%UbGfrb}tNB zcILjj6mE;eWq}sFe3oZn8yHRzmzt?dGiM}M^$#fgA+X~9rNH}<3$-be)A);qXL}@y z!yl4GzU(KG6qKB#&^%6`=rC=W1xyFsHJ%_0z&1rcM#BoxPXoMl1GNY(=1Y*^Dv!|5 za$6p=XWjjW50mK4IzR4%o}CK8%n;zU*Ed==zDs~l-EvS(iHK;>MFkMZ zyY+8wejRt6y~KUuy!&;S2fV?CijC&A29 zw(Y_uXhwjPgcsN3wh`^{H#$8T^EFZ_OJz=;KK;i`CJ%ZF+H#h(ErVq z@9S0V-lo*-6H|^l6ru_uJPKOjDUZ10fOZ?=IVhwRp|P=%NPJMng&=Gb@gkap0*bsi z*{MY8*JwX1IXgSvge9*ANXiRYIf@iglhKZVP>NPdlR+lzP2n}FmrFHi`h@Fn3}%ki z8z8`YARqAzQ~IkGYG$}_rMOf99Ziu?ssMA!O(+A}N))^oFS=1!QAr^xdHtbC!!GVa z3qWsOVgYvuoELcwsXNJu8ZvDvx!b=DzjM7ODs}ZLmBUyIrV)qYV1q*JB{j9y=4M)u z0Q!BHsCY7k>8z|Q&I0@=ky1sr0Lv=^Os*@#IPiQMSB|&${#MTPDN$%gmNj{UK#cm_dN$9 z801{qJIvaOwnUESy?fV*^xSKFdSapz1rG!%8lpxexdj1RC9W=jJwJ-2&xw>QAe>L2 zr&&GFd0E_gHD7~~xP`;DwtN1B&9pUh2z}=7LZ*kAW=_EV?u|d*6K~5UzWKu4| zXi2e!zC@MAMC3jwvo0aa_5LY4mGl#=HvIwv0-_=Zy{=ry`5oG&&*ULUOH?Ty2Nqca z;)GZ0{cnIR&Z0}|Bm4!box?xmKv9*xVsQ|=3@L?fJG&$NhF>EWAHx$>v7IrMJ8dL{ zBeqFwsd=jMm*kQ7ALqA*v&UBwZ?zx+T+_by^IV#rXoKkP00h*(VK4%!8`ipCCJ@sv zQb?ZJd7a|P0j*yYg(YtRrLUd7ZY1EH^#j9M6cnBx_=~d8dcW_#fHf#Re@JBiLeI?H zjM!b}4hQ@cY!Y-$gZSXTB&;Qr&mzx%7woV66=VE2#P^nu{vPT-fr_#h%l_hC}9NRWF-B zaLJ~A+KK;2s<$2O)E97UnX=%u&3L@3tuWls-eL6)u~_9GKR1BnEt@WCtfuW@~F-=w0?cT-;))+FISx1;FF=CS-Z#7Socd`VdGBU zwAHl!#e;udDdcX!!m|b$XQf7|yY3Pe({K`ywHyDgQ0}ea1#ee9D9^6g>6b6*aadEV zIQyP^=s8-N(4*#Qy zwy7gSb7f`Mh)^(Gv%`r!Cv9f7I^IlC(r;waOns4a2Qmk@RVXO+yJ&d?^(e~O>h^Vl z(8P0gck7dS+!mKF;>uRku)FlxsUc97W!{6bTVy1|az(FPsY!!8N-F6z#qGXlrL$4jQ`$J}~C+aO)2d-$3 z79A*Cb8zZ~>Nd{FE4S`%=6rVf%a{Ia>2LebY#x~EVf~G1pt+~g%9%dvvz)fXR{5<~ z+vIJdAEsOOhclO|GVA&0OZs+2nsn%uPL+1!@4Pr>)cxv{&mD?!=-E0{_+0wd@MK{_ z?j?ie|BGewwbG7R+GG6eQJ5U=v*AV*?8Y2PUTEDHm-qPjx$%ny*Smw>ddlh z#$L=mZ6^{v@b@RE~j#T%X%q2n8%7 zIdFR|{fkD26=65rb!b7}54P0Y8t&k|F>_6SP~G>Mf2v{H5G{x&REpK4(cWve5fYiP zLFulyC<`r~u|NOHmUQ-;T@sRm1 zjeTD`!+@=KJR2XF=Q3z-8J^JM`!Mr$mvp(b>+U6cC#Ab)k+mA@A~ur25vXRP9#2k8 z5F$b)LF=AQ$jiI^C{Y$LfY^M8AzZ;Z~#pGD{gA>Lsqvc>XNvlV;Tg< zoG`G9pHq#hyDfHdXkG{q4Bnk%R8v&lvqzwyOEz>f*!$v_FVpS%V;tA7d_vj6szMac zVrt6=PKFKZ2un^FM$OEahF>rDwm8uGB1FnBXj~;V@gd3n=d!P>zw|zMj&@ygs)|n#{>ZxRc=UMqS=;#*;79Q3=qh{9=(-KUbAFS?Dl7~W z6*w2^L1UsqjZ=mEi5Frqapo*ECw_$R-vap|8mG_FFrdSXVmct(i0ku7$;d`5fy|&GO(0)vt;geJ_xn-6Rd!jE>E$N}3{tS|H``i7_OF^r8d%ckthc$bYyi zWWAkb4eqyyU=^0y_}g!8Uq@Svk4&SoAPNn1(JJ-kV9v;e0LSZ_PNTg*GU7GLk>qpFpG=iZ zP5FjC-Z47JLXRI;;p`j33OmJ?)^b63Dm^7*_kBc%2+8O zsWvvS@jZ{Pt=**eAHYJ4I0ew^6l-yJA*uILufIdEOSF^QhRhX#Noafj6H+LO~wxr&&J0$ z7GCqMxp_b7d_#@BH+p}U!ymwJ$!H7|m;~25sP_5={38K+(cSM&+TDw5(Upn*#v4;W zuz1lALV7mAli0Urf*nMsm^1wm-4_67;qcAKbOUlop=Oex-CoZS12jhu!z2hCOe%mf zk?9g{amb#MQE3xM4B(Q=kR$M%y~+cp`4G)TP7*HRhi*m@;|HWcEs=2!ptR~XZCglnv7j?pvV=h(79~48DCztJ33h?V)PR;Dk~rUv5)#aJ-!FIRdqE6!srTr#n!feCU7I+F{EeU1> z?s9yK#pIAS(Q&cv1_yBbnV8)v?n!j_R)HLXpJsoXpo66_;$h0YjpWt$JYjsG{|(0Y z9=g4}R|~m+?WsDX%Eg05A;b=}T>RZAbpB^f`fDn_6%9@cyjJ;pbc6kG#QKjsmcy}- zTh*9)7{wK;jmT(BH}Pr#hb4GrvC&GdRin(gSvY>;o_$k^7BhY|B zcrS2ur2ZsL$)G>t9^x$BBmEK}&U)ZDN!TDIKOCj6Mr@%WpRbV!yNn;WR2y5{?xE4^ zNK}K&kD}#x_a<-BOfB;-B*bdhr0R|aqiqtc(f^U>@Zu@2If~^Xz82l1D<4BB!j2A1 zmDkr_((@a0PzkGZe=}23>X02%6y_A!XyxBfS+(jOhjUc;XM@y_`pEekk|kzQ_d>D zVFbZU3j#=kSxIx&Gx02saEv~}lUWS6OXlV0iTw2nvFk8+@YK+!4oQ zOFBZ)R3za=^nOP7ByAZP87-zp^oVB%k}C~Vc%dO^a1+agPOSK<|NO^|f+iX=QA;6` z!w}L4Bxh_YNq?_xE^rP)lF^gqD-brS`L!F#F+EOS31ukkUJ`Q8N)#ka?vWu6&OSi1Nc(+z1u$049Ha8 z2XvR@#ehe8AjNogSo5~m!AlXy8C07)(XgLAH)T-jcT5p1g)Agr77$gznSN-mIsXHq z@W1i)7Rv|k%}(>Psi2W!KJ@ZRukbKzfSz`6Yh45hPhj$5f|rrgOcGL}amInx2NQvj0Z9*`bPJC`GY6E;q#+G3 zbOnlxO<%s~tp0C|<%Q;aExL-F_j3i4t|DC%Sm|F~MVAYcwRY_J6#@{>EO{E;p6mXL zuZ;6hPvGGE!ROE`$A0_kDnE2dUK~8Xq5_&ILx1`Fq5nHyyYQJq&mMVmy!tq8{tIgJ zFz@ev(ggL~{}ZH;Fi6wpyEIpF;lJ969mM>0Qq($^sR=l|L!`~zXr`=id#i_&oa?%8i=os-!AA~sc1_t=l;Ic*DBzJYH} zBxTfo>~0YMqt_U5Mqzc@le78pQaWdk8z`F)1VeP!kmgS`cihyP5P>r1Nn&DRX-D!l zW;6Y%Lc;s5;F%W5I)zln}c z6))|@XpZxgY@mby6N7F5a=wV-lH2Jv<2mwm!vMw~I?~@fQi7le5!k2D0LKUo$H_Ceu-ob8)s$+) zV!0eg2c$TsKy)h*kpn!P$GX*TPCb_qq@!bH)43`Fi$+c#iC{n$7ot*6=)E9~knUY3v(j83@*dqTngQK1~XhzWg1ATcL5x{<$yZhrK7Gf}8S!r^0YNMmcV{iG>k zpFY@P$XMLlgdweY@~&)?o6JPvl8U?Hv(lkwpX>*lSq;{La~dMtAn>}XWHcJ){T;C# z(PhkCs{WtBdp%^Z5>)$<=z%abwY~0p-it#yNxzy6-01~I@yAu@ydY`WBTSHj5}$Pk zpIZprh2C+H-EFszB-R;Hox%736m=xx8OWs*A4*{~6QKnWCc%N7VBN^$Ru5cE3RGPs zQUEL+`<4S2!L)4J^a{lw`hpz^6h#INQY%msw{>>Dug^NZ>SgG*IJ5P!Zw^5MjrKSt zEa(*Q4S7iajT+MBac&e*3lZpsOhzOt06r4JLss-QDR(V;ljAtm#o{pVc7@>eug>WD z-`~{~kP4Fp4sZY!9*p2u8-45$^cG1IBO5_H5K(FM4|T6*{5Kkq1R;f+{AH zzaYg!-rw5Rrmej4)*su>3e1cwvgF9_KZFR5rY%C_k-;g{?%McQpi#q7Ly-L@P4%Qn z9%(qn4){iF9)M`1{-ixGaF0yW>(@W>H`y~nHb`3E*R5N3|K7cF(kcbXx{C2e&v(yi zj<13@j58x}AJ!j(9QToNUfA7~T|M|J>~DgoK6hPNVP)K$z*7;2bRuxV_J=_L z6rq|L<2c>Rj~w|dOi~dVdZLaeLl=n>0!M8!c*EH<6JkrgmpGZw^Z-j?>SQ2E_)wwH z=4OY#f3Hid4m`6O&21M+$=Z)~nwu5ajtM(tyc+PVNTkPP>Ixa{f|bxmX9Fe;)WG<7 zQE`*%YI?li+ueOrBrjd~f6z>PfwVYaXg~l#%)pqD8JI*&3!RocM!H1C2RKfJLo6>L zzsmX#^l8Ww>I_W-FOU^4XkbCFr^Vf z(Q{auY9xjh?Ik>9rBn2v$5y>I@+ef_iR7TF#$ahh%z-?Vio<}c6I>0#6S%JK=8#C7Ak+w1k zTYHRyKR2J9vWOhNUP|tq?TOxl+ehL@?8THARwX(BVsEuNcG|iXPiLDf8Uhqzi}d~j-dk>N~H+>HJL+& zlIa{#ctZS%0Rk}~Kzm@apWsSHVe36;MnF4xg6(f>oU87b2)(&rjS+QFxI7cIh=6}) z?RvY-np_ETG>jN+8q)4Exf{qU|ym`Dnc0I}}z zDz1TfVqCCp>Qt)mf$XapdX>x;eP5Iz&?OTM?r-H}qk_qKh+!F?A`Z3+dUWc0DOqn; zw}1P?3Y-B(UR{K~g^;MkA!|5{dZMBV#P@YJST)H*UPiiK2y0A!4y|z8x-bpooJSlb z5(luVuOS1YC?d&JI>0Po(%+Le;RS=oQNp>7q{yB}s&ex7ttj=^MgZkjZ?1-!Y zMkV9KdSJQ)859Ax*8PaT@#D1s2Qo-7Xh5FsEE~z12AVAYK&WJw4LMKRWr9{XUB%d^ zFqKr}Xq42Q$YmryW*`6aK~mqh98O=!otD;oF7+7fu1>Q zx-WysA4s1$={LqclS#rPyc6jjV!78KQbICa6&-<0!V`Hzn4Lxv51br#8Sh131>*8o zx!uoW$wVlT2hObX;W?S70^z>|G<7I{6A9-4)dtWpRieYhAQF-m1Yd7G-aQB_?{b=- z4j{9QAueDC8a9P##k{Z(96kleg=OIyNLoiYA~=m2TnUZ1uN0zHl-pV1TJQ~;qXXOM zxYpU?;f?X1T8Quwkfk<)?Dhk-vItQWEt{eAJ{r_}! zu2EH&Sr|WwLTL`=lF<=N)T81BNX%OzIq8%~DqDaOj3T3G2$ce&+|28&qGduyC6%Q$ ziN+BXFG->YynrQmVE|D{G)DymNx6=M0rPukE+6L0tXa!1vbg-u|9#)RpZ)CpJTH)7 ze%VLygfiE;$NdO=nqtQVXM!fAkdv(w2`3X9*-kr7>F?y!65AzcDZ#?8>g4$Ss21O1 zdlf?o9*uwefp%pyW>78DnMcD7+n#|msMlo*#8YLr9-us9v{^KtQL93j(f+qX~c#8u750^Z69KE0M=r5I)8Gqy+2d zm2eCNM%}f?^+S6863%Sf_K8t@G`lk-VQap6OVW-@*7!r#`xzMR@BqbTC*K?0YV9Z? zEctok)1+pRu^JXiis~}|0pDB(1vizy`$eZJ?odZt&X)CkTKt)6QOik7WA0@<1UTP9 z6S}gB0rr`|*Ae5!rL6CBaEvi$%80tU!yy7!Ixj3uI8jejjCc;oYdAidlKd`dK&G;} z&l&d!Lx+ScmGu>94Zp2Tnzyr-l`PyoHUmfy+U)gVY}Z()m6V9X6#3Azw#-n1anWJ^4U7$gl zg*M%iYf)hMJVpG$%}sh2GT|o9@}h}Xn96aTmpg|RUre&WiHOo%We{( zJviV^8CsLlu@2mgA%+e?io?wNAKBG9Y9PY1A}`!y+g+$P5XKEOrzPv$!%W*f7Jee@ zbheUSl!A8m-Y&t_le*T0NIeO#15@mR6?#AhkfD!kT}g2|KVZaxf9qE3#INt>nc&|7 zY`{u-i29^UPPS#CJNb)Vu@pFkzMs3z?d{|=idj{V!CoYZ6#>7w_OwHg^ZQsb^}WwW zLV&#-jTA!Q49uX<6%?2-FVoxO;Uw`uSoqF}Y_;jOj$W{t*hLScz{75JTCCrWj{w4s zpq_PdLL#pPfO)e5bgyM_=dm;xoWce}c^{YfMB>^gcM5lwkMs4c@QA zayvLU#k8XjC?cXgi~G6q^PZnL84ORzZ^k1n>&M?@6;$>hhYeujF7Ws=i;ym(4YH$$ zDt?&@1avciVgyvMzF|?(&ix!1wPuE|7|n3!mjv&Srln_KHUlL-k=r9?1I&``Mvz@d z5h*z(1NsBhcwid<;;vAy&d)ww#YU$>A^&^N2%^v8j*qhQHcxBXHI;v~q%^KsgIzkj zf(F;9aMQ8f6hfh?w54lQetteHTX6rcPZ6u?zRdC4inS zVxUzu;C5fRa$jB#!|I<7#@Qrqpvkd|?q6vB$It8BTCG-N+lkqsZ2x9@lHvFPD}4)p|f)8wc8or z+OK$4_Si7sYR*Lq?ABA0`U1tpq>BWGNk|!X5IW>K6vlhbZf=)KHa zzvXtc$7{&YtlA6zhidX4B=a{L?nR`-x7afSxwACyyjczfk2J zVtc33Oopc4i0h{>fnQc^b#0L00mps2`A++zd=5DiIi>6uYA*WWBX2 zS_XuL#gxE+GB=@jOa+Zr2E3g| zikW3ivYW}2ctguj+g_F_Yr3eYq0uivXiujJZ|lkon3&tER*b@D7h+<5vsbSm9u-2~ zIZ?*$H2(@tpZ@)Tl}(@V>WwBDWeae@)@-`p#gJSG`Y&?MEgR@nzk|CXkiLIK-S5Iy z{pKb9aADp4XFb=o%(f!~jK3K(m1Q_;wEpXpcz|v0EhTJT+&X$H^~Pqp?JDK&<~LmB zgN~#8`!u1M<^SS;tr5hIOtP}Zs4Jt1o-jl1d3Ubi5e-P@Ex$17 zyI%#ri94edRA%kH9Ceo3O1HfrQS`j(X-Muxa!Cv0w=lhK<{yNu5H5La_|Tz4%Zu7L zXJL5gB=$?)I?ch592t|)d$nICm1*n46OVd3IP4}xTR7p`VE8la>biiQO=WHEdz%^o zvgJb?e|^^m%TCM@D4cYy3fp-v+gYb6ZPg!pfr|$-11=qwc^RNiM}{PzF%v>=ChgjQ zsttHcW9JAxw41UdeN{($>m!>H9oKI@$0Jahox^0AG$CD*O!LJ`@kTavGKQpEeLy2* z=VF|+3pWi*V%*5@aEM97)a-i!-+r(INaRBAjvDadh)emhHWqJ!k$`T!>G$%obgI-Z zf-69O!(ptIKQw6&6LYMrUWX4ZQMa*BU@>{I!T5a_gXMXX`|3U$iEl`>Tr)}U`&j=_ z&X8O%RP%C+NcM>n52$2HY4dMk-mvVz-0Kawa(M@93xpp?~5#=}V^B zOhE4=u^$V#i_w_sO*6fUDQ<|_6~^yv43>?*Gx!|BJ!mUGwFLc06^7D{Orl(1rK*4t zfg9uF<5PEi_0_0H+sG-|%#7<>&ga5G9^uW!!mBTWLA`{cHl zU&dtOlWbHW`W7!_(A-?Y>rL9w$o$4wZ;v0D%RelNsfuMxUGdWo3&&=W#jAKNx>Dq4 zJhVOfxCUOXX#xE9y3jn&d_nKIwjMZ?dLD1)*vZ&w9AP{E3`otYeL@5NA{1g3j5Ja4 z$i#WM2~~2{xj2SmD+;(&&P)L5nA=gjV(M-!DC%LbI84ql_~bCA?!vy1p9{3-Wtcv! zuFphT<=nl}dJ@J`vuF$tWyAu6zJ>%Fi4Fp2=_Bd(_p1vy@c7_{r8VX06(^!dsvja^KD2ZOLTdBQ8KPii7=pMRW!#txgC@=AL&k2c^ z$@h*45wAjI=zFC8=UD>26QC(A9aB(mm=ZR%q=$1ERpfR~^l+N;NQet@{d;9D4cUWn z{Rx(!%}_SOGgXA<>toK|s;Wx4`*_-Gugx%DIWRYT%X>5ITQ|Qy1dPcjkZNm(zI|ON zab#n}SpM|LeE{m{wZ;n4{Gvl$rpy>v-7UFBG8Pcy%%&D`l9T`_8spc7y=%p4AXKmi z1eIpzaFG!O`0duu?#L#bkE2a4E_SJBZi$nlV|ckgx-n3X+UrUCpJOO4KhihI3O)Wx z+n@o5Nj~TTm7P*nu4-%cUmGEB7Aob+2M@w0CV^Z47{(<_mhiD_pkl?nnlITK+`9mB zf>(%(1~l(Q&)rHwlFPlwccrfO_9shBK0IkN6n+@=jYc}!AD`@)9P#N5$bt-126E_x zl3%1ek0SpaNj_u| zBP~kPmqp7t4uRQ`y9Ff`*$6nMlIGn1_MIVOhpvra^Z4_aO|+~4j)78ymYGAq*p~ro z%`g_S&fiNE0h}*LbT9;k3~jvg@COpGp|9P-8g@6xsZ{9I0l&7ABllb#7K S)hLX?^oO^m9e6c(?LPn}_71oJ literal 0 HcmV?d00001 diff --git a/images/loss-focal/f1.png b/images/loss-focal/f1.png new file mode 100644 index 0000000000000000000000000000000000000000..71db9da9621972ac55739bc9dece406067b31826 GIT binary patch literal 17971 zcmbt+2|U$n+wN+&+ZCzZAf;$hga|G3)IcGUdA1EvW|nzwKoLqLEJKFO3n5d6GG&e| z%PjLeh0L7$VYT0PpYwj-`F`j4?b5c^dj8LN-`9Oz*W;P2%uOl^S_%vXLnU$Rh8za7 zQwD?C@odi@@RPzOy;%6hXDy~;EpKjMZKq>(4_`xae}KV=MM>Pas$h?w z>~c~GwAt94C0(wy_*2&Is_1#?xi{~^-iZh*(I;rswO1?3a~@D1BZxUvAIUysT4z#| z#VRnylk*{)yY6&A?RDdje7Zovfwza6ZK$Yq{utU=*Wu#kxcvOL(vmq#O^x8WkkyD) zm(o?a?jn)M22;*`rGG+~Fi{FuH}<1{V3GtV7}58cN1yki?;oQqena2cnegaa3FZIb zW#+p|O0REUc-8GVe#y=2Y@$_Ph>+8V+ZW{X{IDUnLxr4dJv2{Xk|;b5W0u-#*o#?T zRSnD<+q(k zka%@rwDOc&%J+h#Hpx|o^%WKtmYSZozhRhfr5EqSVDLP4QyQAC%Y$ZmlkM5Kbq8XS zqFSM2Hlb+62y4>%HNN3P$K)6>Ir!&9TglrP9~DMc0%j#DG+AhM<& zsZ4*IlgS}Px~?R0a&k&Om&zabd{IP1ySKMDc>XxXU8+(+2(#x;Xd|#(H!lIVINif8 zG1gt^^lb6k_3PBs)Pvj~3>)aXEGy}}pFO*)qVh&9+bHfhmq9LFre5X#F8h98Z*On8 z8#kV;%#X(05m|4ZJT`o#%wJ?frN7c&`SBlA&AFC(q}A!-%_7I26Nxa}Oq`r@JO9}C zm89)9x!{VAEU@esUmv~W)@1IssxBrb_F&-4%M}=^a^KPqjbTE;6l(qFbWd8CS-!-} zmoI6BopVVl)iu2qBN>(S^8FRQ)U>oo!Y(WKdx~7lDm9!YvyDiE@DJua1g%2Hi-Lk0 z2ZZKdFeIj@%O)l!=J$EC9659-`pJ{ur9(KyJUl$iBB9Z@^g@ma@OJN~Pi2#pQZ*ub zjRgbdhr-O0&hr&IIrbrQ&xWd{Ah-G8__7(fxpq^?=_ky2W3FX? zbJhd-$(~~E%@tDde5;nvyGK= z8cvG1euNHOF>YZE7jjZ+S{^m4s;ZKdlx%vmi!v}WGA&LjIO(Q8eS3!9&Ab*1X*}=U zg)!o{iMGt3@bFZ4aqR2c>jbJloeO2|-hCMm5YQZR^S~vI-1KV#LUY3n%CfRA=$&V- zuFrqF`uyVHI3fe?FKSs-vN9fHRwN zH%5Fk)R=HrO)b<4hg)ctzk^y$ zT?K^!S`n9(th;GiLV6Re8D^v}RaG2gEvf3dYb1PRN1{AqsX=C5#VNNn%j*HN^#apN z&fyRVt_N_Kwr6psO;$bGdsuSa!L&8~(+mBq2j41~SXr%oMPRU=4E-<(*1ii8n~Cfs3- zQCD}yXcpL3K-|!%EL`k%@?_9!Nl_(aG&d{ctoG#L;?GnagI&{+?L~D0T9T8Om-0P; zNn&|7wnG$~p;$;}KgoA^F*)YT^C4#IPXD!Q*RB{fGv#FP^f=4IqwbEkq;^g9uZ*V!Gmu<( z1w{ruJ=FF3ilvMqYA3C-1VZN20&f0x8w zSKL`QP4YV>LRedK&Nd<@l{rD5UY7QLeR=Mt^4euZ11`ge$}=c^WcHq+J}>l7cT zW!>-n$$$3jHJD$1`t)^5;Vk-yee>p+ zf27MqD~CkWi!;~fKU1>buYJQ2%555oLa@4dp<+&#ZP=qnottUR>VjVT=>i!1MTTLA z8h?8y9oIen_PW=RBS&I~>cR?qomN;edyX8D!N^i#A2i)SOKO%kcob{ga+^h&&@XsGuSLAxJ|yoTxYwkJEm$CszK~8guL9P%VaKyai2pe?`X1iaZxCb z`BZy*C*J}gCAD4;qANW;VPaz9(DYM6hcQ~>rA%Yw3en_ zmkoggDZQ~V=BCXzX&%K9o3&JjxgmI9FwBYkPz8Me8ZzXFggcSKFy}8}^zo3z?w5K} z3A-G?pYYZnpa)RwQ;p`6PrwvECbx*FLV4aX~i>KRO&qJ%SXDYXUKgu;~Ma~Y-7VE!6c+34<%UG9hyV?9qOkydp3UZvz2sqBL>S~i2oorVZ%%Kni-_I0 zF;enyr&@-t2c$o&(@zsphTCdK4;qT5%L0*>#|+O_ykvy ziZZ{2MLJ4Z)JKnw%~qaTbYzEArj~D=DE|D|+vKz&HMh0?Q`CnK$CP>+X)WcCmS1!#pBR;BjkbRLMJVgnEV3CD+%&=aWhT;z#yEHu{OgL9?>pj2^sR8!&LgUR-qp(^@u%+{@N27Ps+n1Q;tHW8G zAB~SR8mbLJQ$ayN(Htvr7>$&mNBH}A#Fv39`9oQ7rO#Pe=to4ZO`lPuVF05YZAZa!y zD(ZBqYNq%d;pJE@mj%Ujh~o0<9C2d67SW#4v0k<=KH6|XuW0dyl+QF?n53@ z#|_oq?aH@tDVl;q7B@3vQ5Pwq4TuNMDu8?d&lU9bV>@ud=;dZMPo0tZ(Qihr>2DuBs-C(?%>RrK{6Mc0dRfEoBwuue z?}=cC+o>%0v**s858oWRAttuWM++yAMMy{!PI+*-?yMbe!q69*C2#!0v@gfEz9q@m z4-5`oJagug;<>=M7HXOLQ3u$<#CH}H2M#DJCmQO>M{z z)?OXl9`x-0pK1p_eYUk{N3%g2Uwk&tFyrJ(n#52Vj{2m@PrF+QLx8xeXqKM*>g?4A z{0zq1MME~#TA6mR5UTRJN3h*Te`!V=em-^cM@Y}r=qL#P;Ma=wQPbwtwa>_v9+2FnRiQJU4+@1ghreWInYunxb-sa(Vcxz%Y_WB%Q4CHetN&T7Nh(0UJ z{cCtLC%4P?&)LcJP}IQJOzkoTW`X*CRls?p_N+vJQm7U&?f8&d+fT!;m7ffa3*R>$NrN@s9as7up4zD0}qT(O-{ zfj}q;T_C={SA*~ZHH(tHpli+RODLzHQsJF+Sd!c31}(pJ0*Q?p8gft4+gl`S&>TpR zPcLRO$!yDVS+$jp6z;+v1(Z%e{SlZBF?6`Vu3AoCG7d05qc)gdFEz=p18aW^NK%?35o; zD9p;bQWwG%UuN&Fs%Lb{dH=-y ze6J!SwWsvfm3TFur=+mfh4I{J5ME8mx1CHv#aC0TgyX==n<$g{58sXy*1UM}B7p>u zUGml~+0Bi0U;q>q-v(Dhv;^e7zOwKNqNVF^M%aHJploPW0@IvhO#ZU7xZm#z_;y_;Bz3 z*ne__ISRG66gfD2sfw~qak`1>IOmN@|5GGL#(}S1#X#v}1QSP~I=BCn@I;G_BX9r^ zOy>dJjeDJPmA!rYIW&_{N$*svor9Vx*$GF?q_6B*D6eI7<>LGI?>n`2@7~P<2LlKU z#Xpb3d)$2no%fhYJNUiQKIKjcKZr8O|7w|Z-02`WqFK~qWj^%jLJZ&_#{gc#$||KB zm0MX?@ckR<00wocwv*eOoTx|UACYbvFT(52Z1sSPW&6N0sY^SNqlG(#VK3iy0OTg^ zv=}8v+}D4Rqv8d_%4b+|fc*984iCRqy~DSd{~!nQ;ZDW07vvaMfg>k)pEibHA58j_ z+!*&TE#t3fOR^mxV*xI51lv_GhT?%cP5tigQ4Cb$CsRzh!rw5DI-znofyACdC zk`n@TeVb)~Q3e06|D6i6+{diBDIDd7egX$LF~8T<)i2&eK0d#Qe{@x5%py zLk{3i);cY9$yo;yS~1`6q^-(z8->I$Ic7WROKLzwV;rwxX4_{ys7S=j*=8RF>`#2~f zmA3;r6T5M`gk0SS@2=IkzGUSzB}qx|*O%1a5i|>o;QRm!C1-2K$7fcX6l6^y#& z6hPUgmd&y#rF^Y=#h87s=BO&`Q3*LHW|KMf(Gm~pzqQD><_?qY$T24Y7}V5*N^z_s zC+&k-*Vrr`idyAo&z^-|)_H`=vhuRB`>p9Zp}>&V8e~@Dpt@01Q5kUz4-RIOc;7Jz z|54lDq^Uf9-R9}8e zs+U(*IIZU+iJwwlJL z7~_rlhyJ9bVQZ%1>5Ted+L06$B?|1!Hz?1k>F827SBp23pC3c<;`h@ef+IGne*o8u zwl*-H4K0g0bVCXFw7fe##bc$Kw?o0YG>Q zKr}vpw}PNxf3F;^+vyUIHwYxW@IL98{DR_!aH{2d6;@^@ri2s~)LQdtNCX}Mmr6){ z%OCm5fXdDK>(g%tBZ&*5*NyfJ+YZQm7x|qujFpLW`56L4A)-ZpPIe^Ag!7wC7q9>9 zpgwvM-s)a*Z$D?1KEH?}`&R)OVHz34&7azs@v44`dLl}t%Ne4N-JO{J<={+%)sH+2 z$I-Z8=5zbeW3VrhEs{*>7~_FxVG$5e4`@zOWP!M*pdyQ2Hu}TZ;)McJn-7(nmz9Kb z_sKpu1^KH}1=OcbrGdtgsGO#S3TAPC`qZ_xwd$t_;X|VC@7F$Fy%A-HcV@#w zSFoe3E9va+k2b|oA3p`}cE=1kkC>*8^9~LVvv6~ND6eqrvJR6rUL$0NsOBB_$Dm8n5rV3l>(g#n*ERb#6K)B)`}Y&x$%H43ev4QBHAh5~*9w%8 z{ra3CXeZa<`Q)MYQbICc*8R5t!KUdsv&9>A*$&7YJa{mFDAX9KUO=7H^zNB3 zM_a+&o2E~#|48e?wLHprD8TMFMvIy0fix$dX;9Z(JyIZAg+vnLf10WTY6psX6_pR2WH`G&>hT<K_td&l5 z$drqtD*1F2pMXrZfv-I1LZ|?gXnJ;-5h=CFkZ=f#I4diK9J4NOf23xMmb`Cy;U}LL zKX#sx(fIR|y(=IxAeJxDX1oQZ-tl$x5C}yHaCs=qY}&m0qw009{i);$A%woKNbK~G2hnY)K0Fx|97pF(lE)Ef3)38^ zxxluvBNzSqyKk}u#mp~AE~y6vJTY2xD|wVCpCNM}@A-JV(z(dQgdXmxHlNkN)2X7> zDesl7lz|nMZu9&2nIayN;TUAg!~}nIx@32%)L~=#6{d!H3n5zED{=#7*k`{kV8ay% z1xa}PNmQ@{ADRWEX5Yd`Agiy#7>IQ|Jt-g=Xv{C5#ZuTmtRUo+0l1${8g>InLN)rF zRhK1;bszxaF#j!B9CO%xfWGI z4!|ElR~L}-XsAp6OCli9QO43T!}Gu?0>qI7P^M^XG*O#D4TqfH4(u5)nw6 zum&w{nTAp>o8ByhufSJSyXZ*pTlPHxsfGH)iE(cF6DN{EE4CLj1jy?M1J1?`*IQ|x zyL3q!PRK=$2uLu%%)(P|A3uJ4WB-mFPyT`FhMdg@o!e$z9X-!p8m>&fUOzBA9K6~J zkM3?cL`;;w389f~(SyAL;sRE;Y|ka_B8|qz#zB5V&`u!8TB5O`5Vf*6otBW0P)(8D zIbmA>c7kTW7l6gxydE3*{o|390}Y(|?A*=c?c>yRW(01&e!Q;|{U9420b>w3*P^-I znWRBd2LujEZ&w8lhXWQL6n_XR<3K~x@>)b0*UsX`*?Db-uTqdl1xm3w1yac?2rX- zU`R+}Sy|bkN;vLn+OErSwo{#>E3nKjzG8(pZ zEp%L9NGwCA(S7Wb+)jFE@N?q(eg6$}kP;PT#Z!ScuL4(g5{lT8DdtHD3o=lFG?zU) zEL0R66r?zm2eWJCQHI_ZWyO2ykum%J&fVWvt|(5!V605DfRc-Hn##KgNZV3i3Z!{L z>z=I;o25pyl$4RNb#fUFw^Op;LU=~>KFR$Gloat0niDzuQKPcgA!>T;fO?gL5*Q|^ z8tPS^Yp3n-WSW85I9*lluQbc(Et8LIV#;>$9%TZl^cNjFOmO@~)AF7I56TuNA*r+M zkQ7mfcv_lmhEp^SI1T2X|Mve@X8U#6-)&dT^r~$q5yZq)8;~h?rm%57nO|H1&r{ruyN!jpgV2|qp$n137FG~7JZVPV)UzwQtd;Mo1O(%W* zDr+;@uGsOxlx3k6inL^){E#{}MoLQq!u7R-AnL{D7EAuETopW3fI(4_z+SX;4d?<{ zIk^BJ(uQW2fW)Mt<5xg}GSCr0+qEqs(h|rlaj>y~l`XM=*XQV^CXoEG;1I|*?N9

ENi zF1?Dq`R~nFkBVxUaMW)5I=zu66U$w#Q*$&rvrW4;gN6tVo&^)(g#`y8&95^Hj0SszTgGUd8 z$^E_MugutzF2#mv`31Cp@c0w}fyq+AY^e6Ej}Ssm3W)%q0}_GVy$BgJU<>w!Vx_<$ zgeavTATcD62@E`EJyQr3iH@eAB4BPut}8p$#anbnZuwVLNn+sYKVz(DtDUGpM2xum5^A z-taKD_V0(A-DHz^xU^4WTNDebKdB!uI{Z$agG^Rd>2v1g|E<5}QZRz82*%`YSZ~Pp zOU+Voo#Nfq$7OL5zct*wWJcGc+}TxK=ojM)86-eK|INpfs_SGn_fSiuz`t7lS8&Bm zCf)qsSkbTBA)ozM=u+Z3P=Yd*J7*pRnN$8Aa(-zIhxc~Cu%TYq8(_oE|LP!Qx0LO; zCijFl=Un`D*o;v9&0e|iFSp&YbjLm4Mn|7TXk{fE&i|vwkCDuEo^*ZTFYYkvlP6hU zU7R^84%<++{;#DDSTtedy*eF^!)7Evqz4U)mF8aT;2yo9i51) zMvu#4I6$0F4fIeeP*~%Q_5ckB1R7WzJ-ob>tFUzYy}%v@g1bRO z#0{n;)Nl9qmdi&jCr}K4u#jN-TV8*exfz<5q%sez%)^`yk=vUuh)ic|sniY&NS7ax znF$6roz#U_iDe`R;S3Tdc+8qXA|a;hTo1W@0UQSvdi~5Avq~##5BAvv4&m^}&L) zgmf8_2F|zJZPNuDEXt03<0eNo<8cTDU$#7=$Jlx>n+MxZ|ah&N0vWHXoMBIhefq zHg9SZ7Uql^wKwGx-*B;DdpbfxGdx>(!u;c1D1u_{WT1ixnaj+I*KJ8EVD#wpg9TH| zwRjuhw&6g>XLSR};gxTZ8?oRzx)o5g_CpGMDH7^AW{MEZf%XwWB{Kw`7uH4cwqwl~ zHF0%VHAtTDtobgxp3yHa&pCd7xH}NQKG->sH}sCsLLj8pF^(1xC?9lxbU-l(d2aR=Z6E zP-D){AHltaU~6@+1#);eZY&Q&V2lA45P4VfCqHyJuM|N{YgTyJ2|({hAHGn<)X?R7 zu(2B#k3_H1=K50*`sSfNegIh(jKj0`wLr{gJ1<+IbwU;#KYF1gsA_KU_Y5MjKvy>! zmHl)AwzokQYy>>J@S}#kK=>RN7c#+CfB6CvbJ{Xuv5GO032Fl5G&0NW{bLIINF3Ao2qYZr7#zHDjWOW&Zm;gvWo{+@e|-~nS_nL{(x zVOAgwr#k;fH48CSou|uru8vSogmMa5SVuz)BaphtkO;mnG;)RqUWj zcLTsM#DzSX4MK}25!7`b;U(VJIht7%5~lDVa@vB|ntwX$Y|L398RA^I4M{T|Y-;&h z0zN@L#1E$G=n$bg8Mv#7_P_d|z-WSl9RC%1hLMup}2>1FmFh)jEotKZ2R?&WiCe zbefjs)YM1X96%vLJeGAGmNbHn2h20!;5qU870-_Yai09bcrCv~0KzSjlL0Kg=KYX$ z@i9<5U~CQpwZCS9e-|j#Oz$BBklrvL7J00zAO{fYI{;;X1W~-QC}))bYn);JP+7ZlUmFh z*l)hz*<-;!r`8RU5if0v3ar({Bo~pYuJI{kcL7R-DglDXe0t# z)ukAVkTaCsAShTodvo~Eq3VTYh?CfG&`7UepceQod2(R!Gos)BD_2L3Nn14J8l(A< zMr7pv1E3BtLgQ%f_kGz}15!X1ZdgY75p+or1vn4AzV0#@a(Pdq)D`S?_|T^544Ox+oH9@jW<|>e$Y{3$TxwuYP+alaAp6S3>aXPhk-1;ndDbJsb>#sm8$gkffMKOXz(n~&qU{f--YhT`_<}(iHi{fnNZBTBoRGMU z%e|@T{oTeAw4%F5*>SV65BvxHh6vz#^ImCiHCJH%3QCDfSDCxL86UM+pU8AIN_2P5ip&K1=FC z03<8lA0M#(F(82w5Q_B3jF~2q3=9)8eFtmWhL{yDD4~zU-1Jw1QyU!}Eh%IUX##GB z1Z@D{%yRLf1WZ;OAaHAsK+OQ;Q~E_r_J)`>6iPCN@-W=W$Tss2N0N6=4&tfUIdqGkk1uP$6!5AK^Fnmd10KC_SyE&8+GEp z3cC^-Po0FplsW&X<$;G&-pO_k!a_8Yptcgbd2>8I(v^8mWaPYv`F_joVlVj32So2V z9{rj&I51!@D9p%M*+2W>!GlmPLz!o@^YhlQ2MT;4PqVPG$$-20Wu3v?pb}dfj~P%)jvHOCaYMK$?}7o9-@LC_8-Teu?`I z$9`X)d30>xPg?q$wOs8#j1K&h}BG7GKElsb;Q^=gh5qeSLf@Gut)sNhrc!Tb;LU-QTCj(e7D;`4Ss0An%T z%Y_yJv9QmKz}7?GQ&U~d%wY>8_BhDUX*0Y)gTk~A|2!F8-JK5L|BFFpVpNnn2uDwJ zjv?s){L3iuhtwIkc_F=pJxQ!rA)J>d#Nz0kpt{TZAcV`n+D#-W*MK8Etyvl|=dy*e zyzAao`f>p1fXzHz(4{p>%IuhI&$WzkTo@}4OjRq>&G`BNYLz{wkI2MmL?it#XBNei=ybNE$3IWje#mTs{5l zamm$xc1hE!LOs6f8QJdiuN#O}4FI?i?*tA8H?Kz+(SLl5I)P7qoZAac2S)psF_TPc z{;Q2&zUCx-sn@J`fmA^E(~vO+V*5S%O?0UYaxKdH0KOq6=QDdBA$qX$Wdb}#z#c*i z62*u)=Gtj|o}rbbVnckleLocxRaEqXxmG)GWcM4_7Af_tZ&6>&aJ;7rHk`B^-;VLDB!~O+45D+Mx0I%Lit*r4j zSlczPsehi@L;gGh0{;~W2T15X5>bU5vur0?-$F(=p85U>-Azp5wOaB?<9h{}6{UTs z#M<+1lHndmbFrHny3qg(+gdpZZwa?uqR{;^7;&ceSuvYl_M)L$xJq%wwEarlyLU#5Q(aqHh~t8h(EQiysMSGe2@>|>*Q}~?g#O~y zDFI~vCu!P+1EHS?1=<}{TA;jK^>XElXdFn>J{&rqemX0^dW!wD{OUzFY6U%P?Daq!72DCk>{x767KUVjcbwjY+4 z@aWcE&81K-;GM7l&kb5lJ|s~bBtB2$^&y_(#FWc-eKkz#Yr_SUp#b!S4~G%XGZRoUXtq zgO>$$O;=B^t3pptFB|TO`VYfhh^<@}-_&M#Qk>s274rM)WcLYE2 zlRy9LKNwsO13U0-HbIr`f+7AWn?}O&-0*nm0g+}!WlhBpooL!wtRcG4`gr#NbRLo0 z>5K&2cvAw)94v!Y-qq4HwxQ{er6qfi*C6PVRQ}ta+2}SarnHUJ;zz0Vo;njRA$+~wm=eYtq&s*{~}=!7p%_hpD)&mruz zEy2lo4i|KeLp8w##;bj$m!HG%j=_Gx(G@$)8JvTgaVo&5WH>FFodevRuEJUY9~@0n z7p0!V8V)r?nyaKL^{3`^a{{|Cwt`@0vDpsAS`vO4YfDUafe}Cva02S!3LqGKA-?p3 zC5#Jl<6nX+BQfCJQsB_WU4W+1rO=J(&5Z_Li|_6)BO=VMn0I&PLMggtLz$o(e1oKtt<$Zc^>Ad3U!E+jwr+6(&_8d6CbKy>e$wYTyhYHX+ zI^1Et5aU+Ij|xUxBrn6he1MgK89i!npuOo(Bu9> zKi|O3RfY1qrIF56#|yg5Y9oX??t`X!ke1enfq~%|aN0a@t7=ox<@<~eXb$#k>t!K~ zfUU#uIPps7E7umU`u^ATga3zX{p4#hvX_9;0Qz_o zq5_Ul(v0$OI0x4kYNh)RIv69Ruk10w8?|Wkvu+=Oxhf)i)e^M}Qv!cL}oM zAoJ1qN0{-^{BeRj+)e_h0wak(!l``rX!xp?(K(N4?b*eyJjRYt- zW7;0!Tze24(sU~lY043~1$IbP{Y>3?`uaA9;_m_zfyeNVEPQZz#fcgJ6^2x&0WBm*j zjmQwVDDFW?GX}qr;2YeOvRRtZ5nB5Gn6Mb>ICfEJw(KzCFgGAQF+o)aN4^O-F`@2K zbfp!{yeNFN!@XjlO=5t{P@J)&z{rLmAu*wa-f4mZ-60D=DH~;CU`z;80g%d2?F{UL zL=%uHS*9J_i1mZX2#AG_pqt{zCVa)Llb24|Sq1D7N|5BvO8~iLQSc5fD}jv>I4qn* z6P#fzOeJX*xdvgr7b-aJ%}d4-I=uz7;<7;HABu2hH!1Y0R^C_a{3#<#t5+=&P31>>o9jeI0;(PbxO0quUZJ#Y9ytl ziNHL+RX59vE5nA9u=`@pn(YQV9+Eta0%3O5`1ttH4QfDiy+6S{Imu6eAcC&sAU7hq zBFtVmFPA4Q!pw|*eMB?dhV820G4DerZ3RUY^fA|i}8j^ryW9BD2 zkdvAg?#RO>N1K`NS54dAi*Xs$qBBN7#VAxaATKrn^2>sN?eeqD5I76zyfhAnANrS6 z(nXQ^2a+7D`#Z?j$cRhtUpyS)lm$o#+10@6fmj4B_!S!z`Fa>p#lMp1F;U_iA-54O zK!*T`f>AK%0#cC&FXNFDCs@Fg48Iqn7~RwWFA4IBq5&dn%p!Kr13AK>fn q!e?8Pa;Mo=?f;Lu=zsX~<|)ef>MMGeM#WL%5@Iqp2-p64^uGXYGcmIO literal 0 HcmV?d00001 diff --git a/images/loss-focal/loss.png b/images/loss-focal/loss.png new file mode 100644 index 0000000000000000000000000000000000000000..c082a8d03f25508c5b1589ae28a120f5e64d036b GIT binary patch literal 40211 zcmcG$1ytAT*FE^9B}5RULpr5II+ex(5lK-(P*S=<5GABRK#>MP5kv_=N~J|gQo1Ci z8-Y0w{@(Y$Cf->yv(~uoUEa%=??Ic|xvVRXs^WM})y(PO7UZX=5-rRu~Lc z?+JYP3AXwha`;QqSy|8dhW$Nfx4VuOm@9Xk9c=8KZSI?%b+vGGx^HiHUO-Ghg#WCS zv$KPfl%SyPfB%Ajy`!Zd_biPmT!hd;P2UNFIdvEPiUdOOT_Bkv>D2bkU#PvZeZP`dJ%*i(9Q}!& zXpJNF4?g~b%W0)_{KqqZknZ27DR%-?j(?QJm6&$?Bl0=I|2My8PHAdtnx>t%(sRp% zhmnX}D@0h4ja7tv)bB`Ehxd%Pw|5+=^75z8pEKQ-M>L+MZ%^UorVTC*e2gcJ4sIIL z=Vru^lgEeOe5?Cqc$l#Jp1zI=3627TO^!?kB@k6Zti_i5zo&B?bWQTtTgZ4wIHUS zA1pL0w|-e$P{N4ZzZ=3v9!;oM^56`wZhr9XD$jJkqeJ-L_`RZ;_S8)6Yz_DIAL8pW zf|8Q7Vq#*6qW5DwO$-d^?zJX9s&HBO`s){+ot@pz%C}R|&!6Y48pUe_J)CT~+wFuQ&85z;5@%2erc%73oG3+*~Jlztnm3|R# zS!jqIeu|v%I$oNDK`P-QC^C-j$7XNpOmaQo>zxucu=#{`u2c zeE){`{-3g-+wwDi-`H30;+H(=33&JJ99-_P(@fj6AAzd>+Ld)vR+#x=Plcm4)!+hnwjC;x^=5^Z~pBk*FOd+ zW(fkuZw_yl*bUP)Ml$!c^eHQ4Su>!eg!NYU-PgB;)kJ)Jd?ZXVH1dB}a3YxHBYNK% ze(UNwU0AtBBxW}h%Y5w)Hkf!XWw+TBVFywR`TciZp4rPy|mihz`%!`+CAnK`o5cJNK?R~W!Mu##zn zO>tvlV^>GKmgDy>Fi1MG>lPS=93JdX9&C>`c4n#yTlexSDJ$RonR5l>@3pi%It=PEZZ0`3OYKJq|9>92q`!#g(6IRckv>b z#(X^E-bU7zVJFqYOSyv-QPbxmb=ZMp~s8y64n?zbl= z-KXPkiMH*cDTSFzl=G3&*4DmF^X=#BYpY{l0%i6Y85!^1jXvm|Xo=@LK}y=-ceu_> z!Ys$Yr<-5vkA?FdR=M-?2&4bb$nNg$_}tIe?%Ts|<5N?QQIWTmqv+opYG9qpNU_5Yiny34B!KXGV|usg#OMuD|a{LFfmC1X8V(iL~4bN!jeb`iNwl{^bs zlXxlC@W3%uRaJ4((OOoQ%av7CH8Je4Z|7h^&mX8pGR0%mD7dcbEHCuFd)W=Uc5dLK z<-Cu+zJ5$}K^DK3z3T))s^g9wx~r0d^3%=gq8p-oO}$+4QH4B*ewBmseD1 zoHHoCzU;MJwat#9lfMBg<++TE3_GlGp7ZB#z#tk_dza%X?CmWSuGhuK$7hqL#>U3R zMMb6g{*9DBY}%fA8LY-!R0ol|>779dQCnNvY*#ihM$40if#F$4$9402_pmV)u75&d zg_!+#abbQ&)^pR@FDHCw8TFW944;8betU8>h8?Zd*`KdZv8#6l^9c!& zsjI8g&72GQGgyX$xp?uS=vK|q;XWo!pwY?M85d(SSbDNORla@OC?X<4O2`_M=@oMn>t&G$XWBNKJ-k_(Nae`4n|8uT`6l>Z$eGU zyiVl&d2%|sPyyqLvrHjU!cFTMn=ZjyDLP)Z*;eKB3?o(bv5R6vpsZGv`h-jOU-f9#7C2lw5pOmDZ z;xx4+=W%rC!_LWRI@gu0SK)j=dV*I#^7&Ao>%)hSGBerihCX2_uxCM>{`NZ6Hxy-y zSJG}O*RPX3A)&>#wzkHwjvJu}=sCxMf(sTF78*#;jajWMJ=o0&mL~9B6l*ZGkk47v zPv=~D`2=>sv{wWKg8S?qcs{8_VP8f^kAfO|-WiHtThoE$h%vqTDlCi`?jF6|bt;_h z0`}S4`-)m#GlQ>mVDN7W=6%`wp%THe00v9h` zf?<3yvkHg;#Z!zB?9;!HCm}=<1Ox=Uhi4MC=_mW~Qv4QkYJ7YUJlMoSVNKh%C**Xx zqc%xxPHFd*vwK^A!Xg-@C-#?Xp1ys{$A9izk!d|q{_U!YeiJiYT`J62N#E^nE92kR zWpngD-m90h_jTl=-<7TQJ@EVs@x8yog%5&KP}ztlF`7rfLnmQr=)5yH6CEAhUt&$| zy4e4SQQGwmEC(7f8yd(B`tvl?eP&%*>L*A@TDKF2LhkvFa$VBxuu5ZBw_qS7*IGTs zR;G{;F9O&oa$lX0iL?a_^is_BYYd0x9cyd!%wKzY&RF;6EADUoDT46hz1GY{*PeId zHR<8*472k>@1LM%4MhkO7|7X+ze+S^-{4{(q<2UZ=)N;(YH7LX>|ETC+X?e_A>yre zHW9B*u0KRk*6{hb#|+;gws*5h`&&6gCng3Plsvf4Fj{JBh|=KE!LnbG=jH#XH zUtHWhu%M;0W_7zQHU4{oAdbJ(2;5}6D_hee#cOp!d2`Z#XF%F>gF8juuT6zn$-G;F zAUwE9EjuR%fsfhY&*FRA%c(N}2_zuT=nZ=gx3-cT>~A+hcwL2wW@Tf$lvzoR!6#)1 z9xSsr8~9+cd%F-|=#L*i(zWxt*GDm0OV2;!WXbHU!#r9qntXD&o3g$MyN_PXrm1ZB zFI>!o=4V(_n24a>dj+!^nHX-j=iadNQ?%#=1qCtJ6CCBdcdk!9Jb(WD<_VLf=Lfq3 zl^!1(7(SRaMvTvPX1dR1CtxtJK$U0OUad|>%1;1@@<=HR@5{_x8Y<6Rav%)0p!eOK zrgr!6_)=ew=kIPC$te9KIQYcoLmnO;*swf9!^1u6zxFm4o-eASWkBbKwCcg#GBKDE}L;uikA> zkyTSub01%D*_^-Wy;@K0u~lZ(iCyKn`4x6nk@K83gs2SoO$paUv_V4B($2czJclKS z_GKeqVPycI*Rj>fM!ixSS^&8{>LX3jZ0Pck$TL*J={`N2#HSK4Iw2@nC{yU>JKy^* z46^3rpR!RDN2&PrFkD<*-aF$@=gp`DZ$E?2G9gN#$AtA5zO&;F#nBk7oE^Zxx7}ZT zO_p*YsyWy)OgV6w?|xKRShzO|E2A-(oXz3y&O-?PW`MDRBP080&H;)L@jW_ltK8_) zM8HTZPn#p(sQh$iXD6f%oYvMl%VtOp-vn#^21G@XF-W_@#&K5A&>-4c90)`^1wL`i ztL9{7txCT`pw7zLl`iMArv?>?wuXkrqsB^rCNbIB*%h)rfQ6=h|K`Mss@|Ch^G=OT zNfG#wbYAtr(5E7ETibIt^YygWwzi(j9c%IF#w6UGsI|xtrVCt`ZRu#Xxpq$BMewp7QRYjkkBDsOzF$ z^N$}_J`@+n85tR6*$r2yYbFTzj9YV*J#JqXGp#!T;Aaj{Xcydw*Tdai?fLWPF)v@f z6t!rf4ArAE)5$>J)C&Fmk1-P37JJ3VjTy7|GaxY zUUVf2n`M1=Tc)DR9J=T`Qt8q4cXypbTwJ{Q*Dr(lj`YBdcKM?z$wOGpUGMLHW2dI3 zZtm*Regkp4`?H(aGOLFb60Oi1vCpPXVYSbecI-=hiNNa)VjKfk%{Ib7kg z+wiN#&#$?&Q|m)fQS`6k`)q*z&$U0imMRx7w>w3#xm{aduRK3mQ{xQ9gG`~8T~moD z4taF7w)*J>?BL)g2PGAi4COGY9aw5Y&a>CEzww+0Ot7-DQd{YLEKoP3`W;H9$an<2xL|GiyEVz<*AWFd zIW6(=WzYpFk^}$G#ebXP&-DC!{-JUwf-}529eUT}kGX@(VeIPee|LnT)W$#mF`%(I zF>S5`FhRe?v*XXZ?M5m?0PIojNKl9}zJZz(vwG!yS=lWKI`r_Y+8U0IB11z%-I5m- z;j2+by;k=2?YQB`U%oA|8FJ;~@qY$y;8KVle}h%_%YQyryXHW8%vU6lsK-P_M?Zp+ zBKr~xo0***DKT-FwqRlXzu&xk(bH3EX{0Lb^|e%9Mk3lg$LW?YkPV?O$YOKZ_fq%;^xixlO8N zU|OF*(J=0a63V7AWs=;5ukl%bjK(EQfI( zxJ}{%W(EQP+p>+D@gz*%{ehpa{a+amjHbx-EcFR{teLl_$kJy2~l7Z-V5SgH+#;tXk>sm@(?IRpv0H(>ZUQ|Gc z)D_?Vxw76akAu0IEb+)~)Q39NXNwks?PJ(s8Gsrvb-CkElCSm}+OzQT676p4obwp4jRz|9(t&dzZYlauSRhmc5P%FD||A!^Kh4I=L9&bz^( zsi`>!Q;4c)Q`3y8Nl`X5y)+*dPzA7d%G|5F9BMX$uQNG92=-#=bz`W+pVIj@W< z=0Sk(g6HUolqg`&>&gKgtvQJ{Zfzu}_B*kfek}?hzvslK@n+ z_9K74A~2_C@W~;4ZxlGInCji%^qVzUYJdxVtp1XT#;8fVE^@CVzmjr^;k=v}wQP3j z2}yK?+j2qCa^NYsC;%KB>M>c6-qg0XwzM4`9aCmt;-JK@udAzES?ChqJxFd2eL>GH z7qA6T$gDe83lV_hb8{gan$Odqdef`+_NZ?3L-a~#CV||}7>?+J?h`1!8kE|EK$yqE zFfcHXQBgesk}N|p5Fc?~z*#;9*5!@-h2YT8udo5e5ua^i?}N=gi}kNjYp#D>HLl{yLBX zV4S_W49n>b)C^YLx#SE$*jQRV&CSiFj!3&;-Fvyp7#_TTaBvdJNRCh*SUQlce)dBh zE{*D3AVFqFs-&T&4TAJHiC`c+&C14TdOb{gCe-g%zlwPf_hs?@`8dEnj?iypJTKC+ zU%#FNl4@mp`_?jm+`yU|d5B7DK3A2L9yhFF$Y^Nv##S*=adEiu8hEhlHYMT7F8C%M z930%eckc;sac?5$`it1|^YcXuoS+27_EYHU>WWHE&VR^;6CaJWIQ;Tp8Hb=w4lXM~ z$9v{_wfDfN4(}gdMi{2Po$W03*!TB;a(eGhCrCiC2ACejkgV6QsXduAHNP7bMiRk} z_;qs21aep{)IKW^dcHv>0B%cl{r3;3T~0VTIXw;vx{E^H#zq}%jm|Vh93@rN1$HW* zOsjycu`f74Z+smX&^N1r$Om;kydXr&q6ojOMOwMNSvJH*!it)Af~xN3qy*IHI&XB; zeNqAn*yNw5LRI+X%NIo-xX<@(2@yBZC+73jO237 zk(@!9T{z$^26#_cowa~>R-k0U!2t8{1lYSwh+MgPMXaUvqY(fpM6Eh7KyTImqcr?s zrA@$Y`s8;c2e=_Cwoq}DTPi@e+|eTOx!Y!b-rh1W;A=h+VPTrl5ecy$>Ba5N z^7CJo_2f)tbCb1IQNcfb`gHdU&#cs%*=|v3=@a198p289lGE_;v5h~6+O}N+$i#}X z0!us7v_5oYef<)YqOd@NpPw_FpE5v%N*L8SQM>QY&s~Cl5oPiC$&(EASWZNU%Iz`=RVu1)?$CvOOi&q((01>Z?!yyp!1px4WAA z((H9&vTSNJn3fBszAlN7BLMR|J<6{;_s_21ht9@r!cKw~fg})$1>`cX8BV%SR zENDbg7!gE9mF`7qCWe5#AUeTztTX=+#m){KGe%#(_Q%VN?jm)H+FmO6jT7%nb)_!C zNb%;tYp_U3(J?VGfr_Ff#UP>`bdY@Jg822yFf%o^6EJK~;GtL{l-SoCh(U;7`Tf!! z8w2V73D1q3+{jd+yV$NvLm_Akpg2sFbmBxw4MH0hS+oAp;laa+I>LM)6CwBnhlO1- zGD`L|HHR_nfU5Et-320~0l}6Kh60|1PV@wTe;f>|Heq2SMjbL-B!srHLHn8>?z`-4 zC6;XLWHA%%>+7pm<#_?k8*rX9z!H9g;MbX@PJyWfjGA!>lVBkZ|h#aK<3MeVvwwf*SP z#O>_U77^*`8Lg|M%9J6nXM&5bte#diYdEcn!>+FI;|0v8DU*SMe}9b)t&pcE0F;$J zla>ZGc$s?mC0=3`tqHZPTNxQjj`z&iVuX{1xTltD9>q~wn4*Qwn%RgO&dpWs1v@W; zCph2Lw)V$K_d|xJk{klGucJ$a6xmvMEWHkrr#!4MgMXkPAdhZ?AI4Unbp5Vr2(x^A8}9_V#HRe}Yl zCMJLYT@WdME)3c!t~r<0u8VzZ-h-QI_iq$c`PE##gdUeMmi;V8_M&}^&J-CCp5Y(~ zjRA$w+kZ6GOp$L`MhaR&?YF0=ghAm%1S(wo5(L>*NK@3FBSRb!w+f6DVJ9G&?Aoapmgw&mD{8Q$&DL;>?;`2GzSA5j1vw|Z}$?^8tu!rZV{ZkoJhH#IX`UHdNht*wm|k{Uv;03drJ zj{uh<(jQnrjF*>}yO-A_#2}16gyJ-)hEaTPNf3;LI>-zNM~;YTWqxPZd#snDlL(t? z9^Z~j!-Cbms4slVwiYwofYwdL`UcM(%UfH0K5MuD*VUdH=;_@7N@NG-YPFdwRbkVf z?W4;=FU$G!6rkKR0EQa-^Cvt~Ztny<*bY3;Dv(f_S6@k4{ml76To?_+B518=0FO!l zF$maG^!M9l#99JCqlNhK4G1XV2i@E{x!19neRo&_0s|i|4M{Ezl~Z_aEn;CLBqXLJ zRe^ZH#=#k1SO^2+3;`xYV8Uy?j(+^)=~DzAfExScxycJ(2gNf8vh$fam+uFg&CLUV z`cPd8o1axef@c5dpwRjkA6i~meKEElNt>hB!t?lPvym- z0KEDNn@J9L@edYrDmC+H3E#?}G8@W^FkTiDAm@Gs*1%z`7R&k2tpb)NUq_*dJUn;p zmoHeLTWK@P`~GzYGM5-?wR745rIzhX5d6szbqA0cg8`w?BE`cDAoERowEGareDY-d zQ)b^2P{{TV41D?e6+0;8%V50X56H(M;*5t?1nL6tbY?``^kmQ;|Q4G+YMts z=XCg@8`8>3@%f1YcMI*I!>{be``f#0c4s$ROo+XErku zz(Pb*lNv5QKCCihYr&gJO1Mu*8ADM43M>;UQW1Ui?lv1&dFAyS?L1)RvtzBXGH|Am zR{Zvs;NoD}sg#ryz>pLe^!%Sd%tt~uDpf%P{0czXg^HL$RK&KqSwZP>zrce4dPn_!a`oBnT##U`Vw-yV@Fo?$|VA2PF%ljUZmX z***Z|NY@A|IW8>NuUx6#0iZ^tgE<2z+$Rmfko}ulTfN6iP?!T>NA5PGoHxzAd-p&W zQj9heAl+T~?6IEXIT}Pv9R=tfg63v51WPkOO#M|};uj+^(UEL_NPqjL&T_ZQPbbDiF`f^8TX9&vCx$MAtkb&R{_+|{4diTk2 z@$N{FM@}IT+i~gyOt{d!R+@0qAi)WkX>`|}m2pHFJ3!HVtiLqEia%9URD?DiXwxfT z0LfELGzSj{P*E!8=Il%|?*7Ha#WH<#QqJ5!N(ce)PnLEgg_uJl?<<35z{SH%-QwOo zR?zb%sm`3igT*6i`-}3@Q_^~`IBc3#K-Rx(`0zWu#h<~j-3LWQwVMmSB2ixCP9SGf8H3^v zRH^PnK{1zkono7T(~llKngwDC@HrVJrOwp)i=-rEWKg?uMH%EMA;&4Tzd#K2NaTPK zAW`BWD@0NPP)E=NqiRAT$E3y=71I^Ya{-VYrv~S1Ag>`|3?Mz)KR^#L1IqdaRYmBw z>C|L%EEfdSpoVvlb*|^>0K}C?vB-I`pBz{tln{IK^>Hvl;^K`cvD)+tbr+g2!;-Ai z6s&rDP5yw=U+r&01Y;P;0_jkPAh2Ey%CUB%Az3{8>ZG5s`qisX0LDQA36*^m)8fyL zGdfw{0Q;yk{~Xo7LWK348GN8AU=O^Nd60@n^TN{fRdD z*b-af{(j8rs)A13)&#;5tg%3EUcTY!xkY!6<4Q;VyZTxBT9IQOu#1S(%KSwH16GO* z)*D?sjgO~gX3_zE(NbCudMz3=#Qz*r#w1Y;Y_~0za6&O4G*s-sBd6^ zjY*O7dE>xt-a3^kxI6QXoxk`DNwgx*+@585$pbvd`7)lkf7efSe6W}^LkRQTd2#Wl z5aeJV5Gdp~W^3nBMua{K0&;k7g9rT(3MJTL2|GrYJDN6zJ`*I%oh!w`)^HObCQdU` z9c!0YPGUP|VymVBNnz&M!_@|X9q5s_w85$}8Oap=Vb9NwGQ+S>jUT*XdT(eR3>!=n}_OR`Zt7cgP6>bojEBYOV( z((fkMeYlE}4iWmeDbv!p0;8+@OIon+xTa)12k4iz)t*lDl7(QK+h09p}|3M@Oa1c0jU z0B~wk7^EdcZ2`3!yDSM@zXNd8;e(+35P|ZIWH7qM0tmsApFqZY=krIW!EOj6V2s`R z<0A!+?fMGYbSy3HfYUH~Y_l3T2SESCn$P(=CB%RlfdUp~JE-@F!ZU%Pvl{ro;k!4-wJ8U+1GqKfd3iMd zd%xeYw>OzskD}r?CVEDTQ*3{VK_>U}!ZR8yeiPEmFK}C5zW%&`{FJaW9@wSzpD+MG zaWzGT(9iE^@lI>&7)1SG?20jEB_%6{Qy2)1cuXdgK+GvYWLJ4c6FpM|xGw{w13;`N z5n!R7{s0~|wX0WqKSifR&7|Vt&TdKlgL_KZX?p*6?2}+9pnXChc>}->)Nt4?w@(6~ zPgzfo1{I@7Hv~}0zhML{0wC4EJpgLD6Q9(=L`3|nyy{B}ey281sj$4hh7-v&w`FiV z=gyS&r!%s;yLG_dAT`?g5qR`;0AvWiBAyHBqlw!AF(r@y&m#E{W!i#^uO}otDb+Nv zVLMe;xp=*M(BuE)B$hfhxZ(bkpgC-s<$j)av%rWJ9sy~h{lJ2pqNYypPMw^X(9WMU zF$Xyg#SI`2w!WIdR68v6p3BP4KI8rjqz52YF4$!eOf7{Ee-7hhsc85Y^LSb6Pm6*a z2$hIgp^+zkC%ZY&?<<>|Kei>StE=f6aTLJv^Qf_=31a?Zu<>PpyG>9=3=lZjrXH7+ zxP%la6Sb5d>g&TcMDNdGo<3E7>EcC{bCK)O_E#}fr^Hb)F#+PE-V_)i$R(&qgAv8X zTuv0if*ku5bVmf2fGk3s3`p{Md&z`^gu&tA^*|F~FyLpzKC3e77*T9o<#`71{;d?3 zZpxMPN3$4ha06{r!q8$p>-el>PkU&V zrV{?4JSUc7Y#L8V1$%tFwnjb>J)n|c#;lZ8L&QSb9F~XihbXc;hkrkOwo^N?@?jvDQTCUeyDN<7Q<|+ z#JV<|-onfF_{(|_Tiu(7>7`w9ZEU}9{o2}6c&lqF4KzU^iup?TVT5$Fg&*t+Q|Z4W z1Rb24n3xv*P~!?7DFfM{2A9?NxTzciY-RFJV!(Wp&a-4Ii?r9Pq{im*E|d8B`p3s7 z61Z)?5fT2k-@$L(z=J4`?8_w6Em+mnrY|ib(2aC(;YlQ#2@T|kqZ4@krS}X|SWyi# zTef3ElERL^mkVw9C1=ttEO_XN(H-Yx;SIf~>hlcC@RO6{!n3c?Yt6eK$vGTWekeM= z-3Y*g2GzN(JxP6iEC6D*|B}MLM~z7$d>j;F>!a3z`OocG(XUT;^PFYDdS6BWR_h3r zD2n2P{YTG8lrOQM@j7V04SyD9G}8Z${?6TW8~zVe=P(2WXC-MReEw-M!D^9^a3(XZ zt+$&~Q7OE>`rq$&0v=W-CdNPbMA5rzgmh^GcByDn=VH(dJbns0a&rM^X-PvhQ~hcO zDHCqj&-m~l^cx#g06LiV^hUU?hiG!O@!a<)C0s8bD?h<%*U;V0st*tX$@QUVs_>{H}xEe#g<(Ui9ZW^ZoMJ$q)(!#}EHCOP%X(AC;8T z+80u%b>C85e;uKBeSb_bJM(zRWkED1G4z&k*emYuZQN{M`}Uu>g@IwQ@!AUBr#e^1 zAbROPG#e58O=8%#Yx(42%2O&@LK*K|D{i#FvP|HO$6H!No^7@}I=SN0iBk>kZ}ZU+ z9WNznc)m|<$>dHQEeQm_N^VHKn7Et7hCZ4Ogh3Q2uPoA}u5Hm6&Lqk9)DS?M6Gu7L!BS)!OlVLanz7D~dHj^`KMVIH+%0iynV{<@ zmYZ7|nDaAvX#ay(1VXv2!l(tGeEuwrwA9JTK;VV>We8>B{m-_qr(;%JnSNnW! zm;}y9NkIXVoSY0D17x(cNi&F21#fxRr-K>!qfQAq|q0A0=68xXn$*>A2h3XxZ+2GEVaG9rkA#NW54$dJUB1R`886*S1bZS-? zOpb5>fE1`xkkLIa5)7os94BnqmVB{L7KovtDz95UFQwfI_KJ{OdAAAbb5`1bv~=426Y8So#(#8muE z;ssz3Oao8nC#MTq2uBL>I|2}j(WIWA}lh>HLZS#Yp(R&MztQ#LE~k{)a9e-92m1`7WVDqfI2 zYLmEC@CqS^+Mf1?cq~IhVf_)*OcR-S+wu)ECXn z*OagSacpcXtr`UEGkgNPtmT!$XB7q{idifJa)$1R9q$A};%uDjU!j!j83b4t1ZGWG zdQSinr9*McA-5dIbA#;k>5M}+kU?TaZNE2RwwBHeK9M=P{Cj~|&k)CL89PA$>m)rd zBf1blCqBVxf*73LWj~x#{!j zqh8LiQ5R8J4C2qDSw6xdZeMq6I2W z*2Kr3LC!gUe+)ACB7G78V%U&x+V9%gMSy|p3(P4%ME5@>eF)QeZw**ltbVwzc>1*e zWMjSS_EJkj#+7%5IMd(53YS}H{}a&hcq&L=6irH58I-!7BV!;DwIi9*OCI9hSR`ER z$7)SIHDx7w97P)xm;1nLBW4CM_Tj&b1_}u+k-A7Y?w`V%I&EweEzDyeuHOv~#kL!z zvYnH5zAi=g$9jYzSC8ENFO7tU_J0y33#3^gs5%*?u}e$gxrl%NR+wq~uk6f;U=F^S zz<=E+x*4Frp5TQu5)KMBFE0kT&XPqv&#~b@4o{HFvW_4_r^w>GxkVr&8y}(K2HxuA zSM_~++oS(U0Ym^@_Us{rGSi&M)qxvo@}Bv(gD*2sh<5qq2pwJS%?|ryd5oElU&8mZ z550uj)n@`O3pviB6N2M6L&F&Y1EtMeP)(>L}z{ePhy{_cX4-T6FJZ{?iT{=H=G zGe83e_cW%%F~_t8c@m`GtQwK?kKPLv+42(7MZHQ3f+TdTUByeH&wwRAeHw&_+D6qm ztCk3mzoyjB3Tt&#7EZ1Sb5jfU;hyGy?n#1v$Kt_y zyW<4fM+fmQh-?Nq>7>Bw13XOEH4y26*1U&ab8jl}l)s#hf4Nh9#N*&+Wa#7lt&sml zJ~y_c+^DuK+p)Kocu-!Rj(U!tZ@^Is86%2a`5O!CBw&G!*vi8so`@7Ig?L`T7^YrF zz6hLUFqGQ2+l@I-hgw-duaolS4z(jS?JY#rSeR+W4E=~kICJk3lk9nM>g~6;_^64= zX*pmB{0eU4Wn^M$eqYp-l2RMT;~$9QurKDYlGYVX9!(B7YOgVFaA9U@ z_Jq4v*q;@LV<2gsAWq6i1i`Yfnim?FmRstn?m&L=hkRQ%+Vi~ zhMEN=nPv3WeTSu1x5I+fh|w|t)=y0xD5@VzrdBPEZI{gWELmBnA3q5l{RWu(>C^tc z?64iL_$bWdARc;Va#{c!Stba6O-6G4DxvtHZEE&tp)VftSCjKJY%hI13=Tmkg2&O% zR~UunsN3X!>Qu{gl)me~Cl1t@g;6DUuk`n%sOBdmS_? zxJlxSw4z~+uPj7DQVi-WK>d&4&c2*1L7wWp7SfBuP7xiCw>WaHRPyL@Y)Od~7500; zxVibw)8U1ctTDxZMQwSh3a?(H4%4R~kH1(%Q4F?mu(0A`-uvvklF$fYkd4{UzA6Z% z9$5tua?7@0NvrAamRxLc;p+gwTSnGrYF}J1m9AM+Nz#ZP=6?+9Q%9rzY6k$5hvQ%I zz${}5es*Li!i+&P7!a|2p8n>nQ)>+Z#uz?63$spD$AD5l`KY8kgm5|8_(|MX6k5Z! zwgvy{c`*H|_E9iOUILae^X4M%pC96*$R&q#c#t%Aj`oQcAjgB`l#br^%UZ)%4=y=apEPM+y7FH3wYbn7cKm5Obr+12Z8HC1EBVEaM z3*c8|2n82%m}C6w>XcAd9CB+HwU@ZBnnJhhw}u9MaC(7nT`#?{5cFOoRsnSfz$p|= z1=cdvV9&tC#jSzH< zSLAHp+qe%cgDl+KCt!YWFvkKf0!Dc=FgAjN98d#7r$|pmdWHPa-}A`+0h+;-q$?s7W@iD%+no1m5 zF?AfT{9q40USTuB)f9N^D4gANFcKbVZrF8jN)y8B!c z|Njx-e%m1dUw;aa^CZxh?{~@?jKGrs3PrX?3p8*3FL0f(BcoENh%>fk(fML0{uY$l zeijxXA@ir0v7es8@%7bEh18zBG)iD(tb8L!Gr@mvGwg5(41Y8iG>S(Ae-rd6nGb=< zkkSkHoPYo+h>#f6QF<391?bvZP-25YprPKC`G?B0DwQAZ&l2Ne5oOfDZBxh|& zP14`u`iQV-*Q*k1Wyjt(H&-J#21g|cx z=LXrJ4b?>@j_VKsprgDVs)LRyFE<(Q9WueHjnkMhFxBK*-#N(ybA#wN)N>4LnJyAW z;3Rk(FM*kB1+2j1-%iQbfn-i3I|}$8tWR0h%_00}F2edFOS55ka`9>hs3zJs5M|Ls zV_YNf!W+y$g|@mzlAk51>^V`h6-6=XdjmQ>@bzmhc&9s-mIN5oV>aS3^NKa~HPE>b z<5Zy!qTvuaMLvD{G_}tF^rk7JNg{~ekTIB0?=`@3T<|1bjNAqfGoaC^=g)P=gaIUj zJHGFe7GPh*%Zd#yP+vLNGrg^3@WLHOQAz1niD${DDq>d-$Csm&z>p4cI{cHj;3OeC1U5misuapN}Q|LIaVg- zLfP-T+VkhFO=Ee?u|VF{64tNWiK+yP$rI@JISaZvME$uCq%Fe!6zKJU*3ADu2vw-U zx|_k1eQg!0#`~h{xzM2of_#z7f^J=7Vt^L6#QSC$0|ibkh%F{o`?m1;l2IT**p$r=x;uy7hp*T&SovH7O5rt7cmD0$ zw~@gTGX_>_WEF*Y(Fv9Z)>J+T37YNY(MDL4TPs~B+@5lpf~7?0nr%Brf!`u;x=vO2;h=Xm3W&OV+FuV;%) zW0WVA@g>p8O|y|vQfj!!B)jmFfcuYVP_06z5W4`WgoFR9(2(4w&?-^`*dWOM2*RcH zVk)#KA=4VzLhfHsxYXd%K@=T@(aB@&-Ky}Q$knXS{25@2 z`PdMilpK$Xfd2iy!vj{yw|ZJ$%-+qz4B|FqKVE_4lh#jY5YKxP5kr=KpqxNA(3|kY zCd#JucD)fj5!5764B9D!5a#`dt~N<&m(#D#Qc!$6S^^iXLeWebBsL=0bqxSz#%E>- z6j~Kup0^~0by&=FmX<}`G(gwDxFUG}=WFG1D+uom02-Q7WGOO@6y_?#f8Vns#U;QY zrV4(-;J4N(?){-g^vm7~FEx$k%;Ghs@ug0Vr}Q(($$_^3?_rXB2lf zsIXI)mTIV)CxQntm;2773b=U@+tTFl&O}h9ZD`0pk)}wkq?AD#e`hDyrE_BPkzZdV z2kXzwkCIjZ0MPzLu^}$*F>pCU6)wc!i2Mp#o5mT@q!S(+`DUt|mf2qrllUjuU)6)AT&{V{AbKaEnOnh=IMMq_MKk2DkVpOcG zmr(TTtDjA3{YhcfOX7Yg^O+W6Dpq2e)2B*J%qu+(ZEu8248VJXzl;al6) z|E;DZcpdt)3~vh+U67Kh=>8H#*k5Hh1PEKY!WFOj@C6$bJRIPYGo4EyW%Pe>0fZ;T zK!2VabpicuOPHQFb6cKD=I=wn0gQ)NwL)`7RVi1f%pPZ^EhPG*-Edq)gM{-eyji*H z$xjb)a&KzRLET95bf`)zVLDvI&8@bNIye~9n~%kLwfo>gNYmLf<#ob*d<#KkzziBU zXgs;fBx^lv(3+aj^|6e)kgHY;@YjTdAJfhZb8VM){v%zgse3GtYBMfE(^5QRX2?#msyHpx;Py}m{NDF22}JG)rAx~37M@q7pf zXB|Z_kgvP)>0m%v8?^pD%y6sl_tOVTae|yyI${8lkKI+1V79N?co#eAUnl>Nx zPmoV%DiIo(nzEu+pu0d4LZ1s9b_1=FsFD7GgE@OljFRD9f5I09&U36w-@erk5wWti zj20MYOpVlY?0Dn zFM_%KUW#GmLeU4L;(oS|50}{D25gl|0(majr)k#>JohTur@{3)T@ci!VIg9 zAOY4Ss$R87p`!cUo*D`2H9F}9`FWs#MOq-TPof@g7jiaQkEFKxGUNV=J`Yy= z`Ku)3`@6_f*UJjJI!`zz0cfiIXo=RaXJ$VizO;k{*!D@Dk}`e;lkN&wV3C6eTssxP zktF(HZ1Lviw6e&wzBLvpuN1J=sd~JQ_0nnKwP!sZP(U|L8_ z?MR2JPfAGhF=~~n$NKNCKRP^k>FXYcK|I=o1_fQF}8XjEy9 zH!ys>q1v_-ez~nhWwHUN9Pka-c4iK|+YSl7JTTugF*0gW6LVf6PO>fa6!1yE$zDzn zR20Y-J8`UPE_*F+JG4KrQ&`S!=E!ag@K9r<2k8 z@CTjN?bMRjZz%wP}{aaJGQ zQ^9}lTh-M`7X20WwaZ)=9y$bSj)8a_%uIC1TUl|q-+TZN2ZlAhio5wev|Mmm@!Ruz zt;vX<^-98l^}jKvnY0^U~v<4>ds+EYh?jgdI& z>ZndyB_oe7d426sIDLJoT!MJZ(2&y1a3Fy)*NA#-Ttsj%rS?R99@v0_k=Fs-c680O zaZh$NJExf@5nFv4-9i?Jd z|NoJ{h>rGXLnja+{vYh-?>~OLRO5Sqx=|ipwz1(yE@3E_(jlPij0K)rvyHe|{vU%B zr&Wt7MAjq`U;&!QgvI;FHkMB%z69eDR)PQzv|#dN0fzx~3~J9pZ7zxOesW*GeM84_ z@I$lbsCljsI_&~_Q_%Tb0A~~ zFEK8T63*vgf;7XkQh^W{Ap0WlNHIt_VBD65zQCe?<0}I$bRL4&@sFh8bRGb|FF)YVkEcSZ8T!dj^R9-jU62=$pWa0C$O{_J3$0-i||46@pg zqV^KO_pbP%tSkZ9p#N@iK>H>JT(nuN@{MER%!2Cv?9=PA=^|9rT-DV6?87yMNZGWQ zdCFY3EGHZ3cG zd(-ZJsf#`P(8qr4kqQp>P6Y>C`a>BESd^*Uy?wz&6#`8R*2%A-V;4xToIM$!J5bvp z(25rdVw01f0rsYLUn(vZ1+~$7=rZX{>f9+y%QSTg)NYZH4!eV=ys|S&rQKXn(Lem8 z!>&k_nK~RC#t4}VdF(efoH70&3qq-yq!U7M1>EiI`TUCN^JRi6Sg9;1ntJ_yMH+v+QFhHyj z$;ipWL3QZx7m4<4%>*)f`nPhCg@ve{;BDs>5r7WR_yMIi|60jq4Hf*eH95(CIr6|4 z8I)2Ej*p}0nq_U-hM8#tAe>=QmHwd!>$Zoo&Bxa0rYTB3MewYug71Jy)-x+U>?s%q z;LsPnaz_p@Zm(<&+9O>as2)xX>Ox5ru?XGUf#cQg0D?fVMgV%^0kt5P7qslbR(kvx z7Y=ur03$p`Y3&U3L#9ao1`Qq<&$I08xR7#?s6OJoer0EG?~SG?4mLI-MxaHI@d%u> z=ujZAYny_BGe`EKZephDqb&9`ZI0SO!#OK%E~IGWfz8Ep6Wj5}1#yYB6Jr%Frn_{k zBDD1>fxWEV=bQp1FdU=-yy82$e*1XR4|{Q4Pkkn^h*!A;i*^c^x*gACmN>0##HL+Cz52Wx?m z4~%y8)`eBa4fY?~<$kvG*~UT6TN+l5CF?>588lHswv7~{HQjC)f|Bix?iuTfKLeQ% zP;{OkpG3U}>V-yF-W$C9(9DRArMtjX25i^^|0n$ajq5}X`|2ABBwR`Ksu_0NaN{=W zV!1N9h1qaE`7*AoT$h3<_ea`6K@|U?17>1EDJd--+Vb=&Y1|K7#u7{rqSMIxhv+=F z7DN0FcM0IAKV{$ukZW8AXihjE4B(h)UH~T!2u}?10;Qkbpm=Th-gcE8I#oM^!Du!e zey~TY>WFU+a!fIy`<~8#UT|(J<>xRn3Hp=Q?Yy=yF}R=ycju-%i^ioE7(e>&+ z&;w0ByECkcvFx3msliQppf0m>hGr{0oAU`xN}^GId0w@(5OiMi)1k%_CorJk)WJ;P z!x@u9)jsr?71;f6sNZu^{BNbb1yogQxc9pVMM_F3DQS?95?pczkc ztje#lG9li1EA#J%iHFSSY3Y_gK~xu2wIkU?RM6KYs3eX7iUw>?rhtxuqw_k*I1u0V zD`;k@ub@Sx)j6TnJk$Sv{A4M^jb9TUOo(>MdXVi&8KhxF`mI$wv4WkTsiqVlwn$07 zg&f$i&moR7_TEC4)C(|>0b(KI`c3AINiUkqM_i>+7k7>VQL?>nhH%fjH!o%8{nrW~GdF;~y1rjQgLy&3FscW=;>6?&3&UY^FGqbQT2)N)?p<_vz+MBA;Tlq%glMHW zr1foRyfmXtAGsoNI(t|M8AMD#mou4`$jKULNU^Q=4`2t;*Rm!A>Qg?) z_+Ym12Vn(hPzK)Jy9P$FW%^r#R{s=KRChi;))1y-FIeb#9(?sVi>hBV3(}&^o0|&{ zKtq$5?}YGQ8*+-TjIh{~!2|+9P4IQ8025GOft%;Mj6wFs+(7wI5gH4N#lyFme0&(- zP#8lR6;ezJ@3baaSB6!)S;Smr-%BY<%jUyU0C5QL-Ebh&1dVh_YB5F56E0Ub%d5FBV= zP>>`Dc9DF?utok4^MBN0@FGNBxF41-eO8b*w}wxeK^K{w7?mllr8x0yN=GpK`@xe_E zM{+A1WQYfAb*hOLfL^VzKEgqO{hMBvJ!i^?B-H~8ADx%C!s%|WIG;C&ENP1EsHCM^ zK~-@PD|!9(E2)6MV*%Ti3JiK)c8IW$+B=x$K|)6crR5h05)1IRy^jQL4_X#WD*RAI?Q#~OP@tuVIzA{rznJI(nXao!jhMx0V*p}Z)y+&>s zX!O5;C=wRNXNb7nD6TEbS35M583(SFJ#0lOMmn7(ZXvQ&iWe)xGFYa3d_4I{uWs4< zjaEL-RaF{63k}>=h$N{1Z-*I#Y)J17q@FK2LWdRPH~?h&px5 zv*ml=7d_W8QWK^;{gxe6BkFtEZafc;v+N6c9=Y})eFMKucp60pDW@OU%g4UGL-X3d z;zYNYPQmR#lVtE&Q94_7Zh`LEAJpZ`aPXBt0sEvh#NNn{pLWT%*3hbPZ0Rm zUjA1)V{qPmSgLl3Xt}Vvdo}yz#5G*zJ}F!RvTuZeUo${o1^J-A8UNZR43lQm0Esjw zhw^x}b)=|qP^cV8`t9~QuTC%AL&}hy?$aoz#mm!6m+E(;1_ze72?#Rm^?8gP*Yx1W znd)XQWKk%6eUnqqEx}Cy9VkS*h}1y%0QE3u7blcnCGp?W;u$?WmE?2_8ET&{5|AFa zv@6l`f>S`g$lZQ=*tm87v%dsLPA0NaGRo=)o+9$^-JWu**=Q-h`7jwCr;NM+h%;;4 z?}0=t?+QqS0wx=tM~IV-G0340-%9viZ%($Np5iJt@B84b7xQdn?y z`f_oNG<8WyAsuB!e{9NmD9cJzJ4h(vlpd}5)(N^Vqw79kyGFjOQs-`lpPDRq)NzAo z84Ic&nY6Tz40S@p6#NZ`Vb%Xb4G9-uRaMh3gDVc9XMs=vpaE*)jlSnTd71^@ zj?ja~LbbHC%pD&BeYEJ5OrkF#IfNKsch5-=WL_{|fTvIGhR)^9y{msOVh%KiWcyKZ zf}{YK3MSC#OULR>(*kJ{IBrNPAiqP>8^ksO=}SMP6v&|mb(td?UqG=VEF6Ss0Qm?J z=&WJIff_{RSvPRxw!rLa+7ZQsnDdc*93!)p98bJfBd2!3VM=@iXv3cQ`pY zNvNw6gKJ62?Xt}25leraVCGEtpM~MFbHCtk{h=eqzTg}}(<%t`c+DO=2yU|c--8!^ zHqj;s;C@|fKwUNKp)BJ{s=MQKD(o9ivK*PYa4|Uie*jy`6B7esi?g#cWjlfdXm8JL zc6Au}Z~-X>LqeChScX&vq4tKj^Q!Dd)R%^%FJrqKQax8V|-ZDR2$e^W}x(HZ3%qr3gCX$qzuugn;qsV~VVUX6LkTVss>5oWm{6j>?+9+A5vuIDxkzZ?9Obh| zqN(#s78=y@LgYh~Ug*FjCPo8!@{w43YimybuleK5G*=K(AWAD}&KQ%IL_`oEa`EY3 z|DpMyc<(FMH@$*;`*wyJ!*p(XOYungb23e@sJBsn-8c~GBQYL3#f=*ozP@FgP4A@5Z(iYc#se|g2aB#!mw83t z+Rq@ARYk?%kEZQ_;=Bn7|K1joJ|WpZ)X)upPl3qtKu32ISU)H~7%>2{$=BSChtSWq z`vkWPF>xa&y`;;%{U(r{y#}^KD3uVessS{&TR`C*4$hNVD5f6*U!ctU$OXxlo^S^= ze*KD?!xX$<-f%Wv>z7XZCI)kN1uOd+$E&P*BQrX!9pSxzzVJCH(gYM z4w!?3F|d0Fx87YwA&d|}WGknOQNx3^xxI}PEq>e+14@diWn8MO9QFmoo%zIx2-OzMLvfn z#GKwiPp4u`MYZ+yg8N|X)NM>L^bS)TE(S|Fz2xyU26BXIIL`$poZDHk2otFd(lD+phw5(`HvPDEM9)V%h(3o8IY@x%bf8y7Beu7>nX~`3FCXEF$QbxOB~X4C-V3-TYEn%uIq;CZKA6I4JfkGPegA!gtaLDM;NyOIRY)gY zVg(nzL(O99Jb2Cd7bJgObX@G$?j@mOZ(y*oHE;bwGShdEYpSK8m3n2}>aYmcuSSoc zMO;N!5v?_l=1*INg*|^N)&SUZ7`TjFI%t_Oi76t9FNcH;-d=^n!@@rQ3I` zoqEVg$mYrg$n%=r!5MU3NmhdRDJz_gjA-cqXc1{x~G36Ds3b@ zg~9BNJS^R}97$<0e-vU>*yOnJx8 zhM`ARwH{AVO{dINWSr>QB|~@ZvP1PMr9*nVm8btP!##{Cua9)I{YvQE2Vdjwi(g`a zPu}nM4>Z+2_0$3#?&)aNmi;_67*wGb7!iZ$TLz)S(sHSxR)~=5JzO!zX4IBmx(J(* z7yY0<+_0}B4Qja26+m-X8o~!>;nHx#RTsqcNwgenU^cVCO`69%QJ^kUKZI29cEP$p ztk`eVbaP>0_P{rcvN=ZyiD!3H@s#7aX2p1;Ru%~(_vMMZuEo+laW!a2@{I}FC5IOk z?e(RTF<4D}e6&^pytI`ew79t0voXg?cN_K_TwG@O)C!$xS@P1FdMqk|ym$2V=~%(k zpxl0=1T{1?8~qK4dG{qpbd`e|MEmQi5v@VwB*eaY+>YJ$tGa4hk&$S4RIG6g*D*drN4SCw3KaMd zwLwSICGnwkp6;w);O=D-evSCV#0L4iaAN*g9Nmwanw=93H-@^pzxH?J$dd^_CZ1}^ zW2NI#fwlLwe{GD#CtkB4yS(X+CiEv-^X7Y!n5-Qa5xraw zt+4FIS=SFXun-Vnj{I0k3W}S%jGCqx!fJC&NFFe-(6zNY+suOP>{|`^{XiS;8H}Bj zAHA6V81Z5(?W*HnLl-|~1TxXZvqP!ecm{id8p2a_aYUtVMAl*DydfUBJa7*L~wyLw(#;R5MvGa{-ot|))cL6EGb_kH|fQ3bE)PLFI-81sX zkx0H}mW=FBj9?%FdBQDNMJ(|`4x@~UszLIOHzoNjEDRXHekp-0+J$Me={(ls zlBNNo4;s|1R_T6XGf8DVuDfjgwU5Bbm4qpGtojC&KIWS-do;ly{Q}gg@|OTSaei9z zlSc3|wCf{p=HZ7fq4AW z)*^PKwZExpaNs_oqk*#6MjGPYMKN2yTi!IKW0Kje zbsPdy^7qN77@*MJO(z%8Ro0*r{q|Adeq+7v`0lt6a=1#-MWpThW>RF9Z~9({1&$bt zCqqTB=IGH$_`g*^B1&+nzs~<|)3Hjoj?W<>?7=au(KKZrh(ok7kV+(XTx_hNaQn9G zDYBC{WEyYu=G!d|oRp8-+4=3QAZ62s?S2PSI>PjwFIV0|J&alybG#n==U504n2kPt zf@;Rh7Y^g=gBY-=?|Ii-7vi#3osEP%g{}9Dy^4%`VVlEK4h+~-C|+J9df80|w|7bU zA!hilMi`|;d$`#hexz#=h@I3CS?5?`eSINgIp3%OaSQ#k^MVjk=&47L2V+Nv*^DrK z=1F$0Ro^2skF2wYi3}8lHMesZSZ~2~lZ^luM6wXc<^fik*af3!T5}lLSlvC(funZ| ziYa+?cid4CG-$=eBTanrzIz)4y1J;yNWj>@GZ~x47^Hf9O#mIqD3i=gUsx(az$(|j zTT#!$;_9k4shf2XV(^=0uMV4JJ^kRJT9SdT(x;cL+-`%8Dk>uz__u>)1GpG4$oVcF zZumZLk$$P)6pNk227?Cx7W0?evTPlkt$0=K`ol+TNv}C{Gu)&xQQ$5grxk9|PL__* zap5g}T=>({BWnf`GM=B^5hr5$vbUOOeWB4VaY?(;jcs$iPEk&a!!t62)2N;t=u8l_ zJ%{)mrfO&}ZGp~43W)s(xB=LEW>CbYj8KYtg|y(H5Dlgc0OGd8@x>qR44@Xo)!dUN zs{bniqFh9YiTo~rPXWHQFqK=E&BX&|US%47d~Q8Pdbn_{?DP{>^QV_^Gf?349&xo{ zciPQ^D;L=~QlnO{VDs~Sw+Hi=&FwCvSiHxM@M8xEuNs?WCbX4%@R`_iicQc8C@$v( z-vd_6e{by2X|~yy3#a-71ZN&#i6OLD&_Z0o!TDTE6#^gY4%yVR18Sse11j1~7@UTv zD8LWI-@AuM%z*Cmdkn;HKO&e|SQzN&Pzb0Cs7yS-AL~vLA_42@j~-k#Qao$$Rc+KW z6qxh!$q1TYq-;Dg&@5QxmBYAkjV_b-Z>NUc$M}tDX*tH9-M{62Dc1w8{(KT(U79_L zFs$=Kidh9wkynPG=YUKq`0Zh;d>J$TY@tm^0_I5c+KFd(hJH*7s zGC{LP9?HWS;%Ny9tjJ6QgiGyd3=*DfXz;#kt^weaS3ZDX)%Em}Jg2}(%_smh)vw0- z(1gc?*$ay7+pca4TMrdJRKze!L~$8w3nvkKoajc0h_=S}=SMS&`WCxMGq1PPwhCq; zP4MgV&s-M6850wOrU-_Mp=^D1_}#r(FP)+!MhkPm52y_oG;%1=(9Bv5k35J{N!J$6 z^hRi^ZkU{a0R)lVtEQ$V&vc-sfejm!50M+L(AeY$sXmlR_O@VH1VB>1-EITUAE-Y( zdWE2t3=`$vg6cm((2<7M<^3`+yPqRtU)bf?OkfNgf(-}j!TdFSm~a8*O92PZUw=D3 z%@fpl`Z~+jiY>jDf0jy))82kF5s-d`J|aU#IuITZX+K>#XwYx&U9cI}hPF;|yb(G` z2Jbw%o$H79C0`@6`mP)Q{oKn=bAh_VU;Tgs{r{){pxgWe9R-f4QKRpG5G*D`z@yNE zvm4Q8#T)ws5y0>^|KSdgu<`$t_m?zugQ<^y+9f&w|M`4Z>wbz*W=p~q_1w$T3(Uml zUtS|!rCpicZCPHCp&>K-YY<;#pF_dF>*;tC_d*?wnB5gxJT@_`du)*IBUmzUoCKVo zEQ%uyd<3;!q3)KQ%xi%IY_IRt&2 zs}Kw7@bHk1fdK>NKlmH5EDE@k|4S;q$KBEr=-&bWq^bMYYJ^-{tleFB`%7qVtX=`* zXrN1!Tpv1yOs)>EGU(O?KVoB#tmG0eN7MQc(xT_&hRDEhJF+mz&{vt*NzkLKZ)hlk z3cy|?*q}geK?Y7|C`t?u>marvTwD#>jhPuV5TJ!UgjL}TELHSAY}lY9Z}Ra;!K3wK z_y`)vnvlwsykT|KoB#Too&Sn7^5 zy1b$~BJGP~gxad^92J^HBEvF?0=i}Im9+*Yg?cnluH@9VWrrrkU18q+UI1eo!-~p^IPlI2%o}ewQAJP`T8RQrpYK!ih0+xZ2`C- z7I@#>(A`jg;g4}JIZ-vNz5K(6Y`|zB%>Ag!%F6H1Dh6!2((iVV0kHv*KpwQPQDI?W zfUaj)22E%TbPnG+r-AB0&IZPk{T%{RVq};k>g8V6$km|GA3DA|GJBpM8_P&7UhD=l zw7SW+@SkpoB0CyW*fka(GCb-6H^yw}vP8|Tb2a9^eG3uWyLGrSzo(2(L<%&cc25r! zr}f3_PP$Nk!aK$s?GhFJJcEu-gsSudI^03GP(BHGGv%rf z1`2{$oWmolfxXiF*lLM);w``3!y8z^WcZ4QDDqVw|`Iu}1a(GjK`jDs-ZG@M$( zEHm@%o1owbvJJk^U!LP!ZRyK=&TQ2RPKHpBeCf7~w#lAMfxtO7{OhaRcQEcH1+HOW zAu(0VbwMob%cO=WUvKl<c#coF#I3^n(oJqe@#0`!P@!JQ~Z8oD~zH3JlS>MaqkR ze1HL-)%5Cx9vK&HkYKCDvH`Hgt?^Xb`|I}RTUHGfB@JPE5;$Q^EH4^-#2jx#y3m?& z5Mf=HYRNX?5wuSqc+ju0t+5(M9t+l}N;0KG5^!Hd7f~GhxUsjaM zL7+M@A|ldc+Ni^`<5hyE3a^ohh9~qTIrsIeFez_o!tIKEjv*707=88vVUc1)7TC(`X;|WpzlafOVCFwTRv)zy^tG1pW z0$vKS{r91k$`BoUq5jxm|5{bP#`7E{G+bPZU+R$M^V;xP1~Pd-H2Y_dgsCT+0gy|^ zd1Yl1ZWT!6RV*WiAr~I#VdcVr&1(cXo4t}M8SOfU9-~i$_W?C%byB(z0OMSDkBpUx zpdffd0kU$tCW{Yz(@&frdXC(R9xHybhND>sEQV|^NI?bGds81O;KWY;YL_T6GLs&H zF0B}axY2Un?nU@Op0PJV)Gd{i$`bYjr&y^YiB=$f<&$LKb%<)&metTGqu(430}`gIn-I5=5g*9k~%FB_J6D#R9gmG zfjO@x`v7^K^TWuL3s@oR{n;|NZp}vXAoYPZc0RtkmazG-cR7D`8b}h6fBP~uF|O)V z11|p~bSg1Ce(MZ3O;4!qB*tvdw~FxJxiekT7hcL z7!Hg1bhMKG0gGoOr@l1BL$l1K!;@iSiM`*j_=cfU*zu?z1q4F7zEoVh(QG>rS;(9| ze`)>0ENyN8oVnBE5Fu-GJ#=*GFK=pYo1FW=CiSe^%s(Ob&uSuTVn?y05oi**nkw1F2a}S(i%|qJDU-4cjM*R$s)A=v$=F9WjC$;3OLT;C=N3R?n zJMtVPR+u#VtqMBVYQ4XN@HFxn*5~z8g(bo$&B|=)2UP*=uvZE!d_XI99}1Ny;1H1c zN>Ed`%2Udzv*o_$m_9vtegU_oN&L^H1c4CT`&mo1Xj9mc9Um$%!Sn=r$}oSJ@@g`# zcy`twY|$mn_66{3dn>c)Lv$J~npg zWV8U0{~^wouIrqfGd&E}G3#a6u(!XyJ6~ido3l<^IUDVl0^u`Fjtn5Xn6>ay~I4?}D z>u)y~$9@K?RlSg%`uR9md17tMFFE=SOmvftUm%-Go7nz{zv}|s-8bYRDq+K*U zP+g$);I~ZMMq!B`ff!*(H;o9KgxTC&282u{q@#2*mTS^=#7n++V{Vi zT(xk3<$EYgf~W>{bI$wYS~L=vTY7- zD;~MX&?)XFb8d;#K_xh3B#yQf16D@()H+gB2y_f=FhYogIMX_^pr1mmoe-{AS%pu1ey2` zboSW8{sK?LzhfBHm5K(V7iFI4AZ`&}x_|F8DG7t{rKu+4L+AOf#q^r_@x@iVgyeXI zpV{1u3LN-vjAz|XKPKEaOu)Gc045%n>r;Xb96lKdHEItc8Mi)3Du?Q>u;12QhRMB^ zwpdg`pJjr=5*dT`0vCEn&VA0GmB|v-q=UU&~0mGyKVPM8|Cr5xk(Q>{)-g1 zIF5TL)Eu_9W}n>Cjyn|9DoGoJu@)lFaG*Y(^a2D9QEf9{V#7O4{#ntN2wkmz{lca3 zk3PuFzOv>GRs0PTQwC=UJ98Soe$CEZyf@yPPIio=$KE`k#^)RzEvTcz?4Vh**w@t#={MMQ~R7+A_sDrCA&aT}p?(FJ3LvR6mtSU&* z3N%E<5~QT?$o*MeOn)vob!EjgRlIMCAz*!oGtv$GxMEAkJF3lns>^wJG=FbjSOur3 zVT^KP-g{ooBJ0KS%BxxS{;^sgYf2@fKPf8Rxb1u+Z@tP)rYHMeqqC&LH$L-AFbJu+ zZUcSFrx2Fp2KX}N-dFIKSsLvuz#B6?-pVBBY4XshSNK_pYdt8voEHj(PFN^mF?8G$ zT0iB-*Tyn!@>w<6w*(Jl@Kp{O93+4$#bwx;HpUFQck$Jf8X=*1YUgMYL0&Onr<@;x zJ6SFwIIc>Xd;51`^SgUMx(MDI___&uX-$Gd7?0=pk~= z7geCQ=}s0TfJU$NWW5klFSzCJ4a1Elgp~m+0cm@lP6-Vd^pQDk1+?*u*oX=S8r`5p z4g@{_48S`i8hq<;V4fKCSjF2xZUN4=*PytVK|}`tvquLk!yXSXi9Lz|Gxr<>ZKTU9 z(BKK+x}o$QLkBJ_*ecEpOf}idV$^%rH`CJ0L@l{EO;G9@G960m#ZgdyNU71vkMf;u z6Wp3ooX z?k+BaYq)o_Mq(%B%O-H;y69&Q~5b} zuoFhPweiBJtnvaJ3DqfSVm-+8P4PZ{G#1w}|8kev9za0iU9G?I7zAyF&tRyt#b$>Wud*Ttv4H>`Q{tj@P-dhy5m ze4$b1sYBxqRCe}UdQEG~l@ltfMF@bvEzV*0XZW*!CXf8e5TsoYz6V&gU(T>n;$Wm4=*rE&js5!>xWJ$^4S*Wy#=fAy zKnZ#Iz_v!HFWODkQ=kZ`sl#e&ZXX^W7t%g)a`J<6H&h@2dJeU+`)uig=wO>@g(~p< zCZA`BvSA4@F!wsKhodZIA9;;_V5S0 zbKd|TJ0P}s=zY$`ptZ*u&u|(Yi3Wgf4r8vf)A{)3xsDXa0u}(4BhwSWhXnI?ZC9VT zySKsM$eq8#+8WzIm6J~!e{j`J*#S{IgKI~i^V-@!Hcn)+2V5I){a}C^sT6#J=+PB` zOPm4e66f3v=FF4=O*CkmR;SR2efOs2o?0I#a-DRTAYOU9pjni(AfJ3fAhHODtxwg4{iZb`)RqpL&VEHeuB#{~Bb0DbvjZ+Z@EZ^yief-QsBe@Q)P87_ zH-uhM)*@uiTfYG|^FIafhRa7L7_h;k2Wy#Gx^Imu9(65%>c3-?) zY8A2Inv%K`UR9>!pO$}L(hU#z0Kc~$_C($~O7_`#r%SlGK2bllS)e6zka!WFe`8_- z&2@+OI0|p*ACGgW5pitG^e1}Bu?mIpv7fBeL>L5(~}NmX80*B^-5O_D-1r z%p#Zn!pFI?`5J~<|CLA`0xsv{M;oeWFRl?F!1m`TksX4d21;7op~D~;Hr;Mn_Ws9z z`^SIrdS+CDVdc7ND7sjut<`tKhk9eV4S;Uw2CD42OLJdy($GtKD`r^&JVz{k{>CyST+ zv#^}@Ii{!SWc!8PHQ_6~{!dj^%+ursD+>!#*crhEX7Ja(hD@^CN*lMo2*7c20PLWl zV1q~e)`%br`vE|9faVfhJ>{c+ngS0^7Bol@xfY18OtfENLvb>aQh^pUpjcR-d3Eku z-g-DtNPiHRJZ`?(jON^xubu-B2sDFUVk?jDzG`^(X=<}8zE$vaR;KLTSZj!xv7Vkg zeSC7E?IaR(mL;UK-HQ|VP_Nf^VG+xW;^iY@ax;F$)Jc_?!M3q&q2@qI!r-$A6TbLu z-??dOqFR-x{?DN2zlm;w4+A0oAZ{Np+2lHuL$5{PG4a#meS5d{aSEhEgox^oh4eZ) z7@R=0^$H5rdM9Jro^Tu>$SMRG5&J_)N;*gL?cFntv^nONwQ}Rd##o>|m~a2|GO5qm zt=qSy$n!C?gJ;%V|C8isC{E0L9}hyVz*8-*_-@f|8(ZA(CFz3Bg~n62$u^_q`u^-+ zEn!l7gh#_cTwy=fk|!uv5bHYoYU#bld1D?U#5P~8ii`(o0bL9rQe*-l=xD=X69g8i zDI8wEnQ6f}Pno6v-vfMp*k+*p1$M#75DGxKpr9Z`&||ftj4z)*JHb421Hit6 z_OU;ZWw8JQgrq_a<26uu!bRYu$UzJ&z{f`}glZJ5c^xJ;1y489yjs?NYpGTF&IQ)Y zn>(iax)KWt!ngi1ZctCLwMmG3b1^1?wQ*S}x(dvhppqeI5kC*q2a;HlLUO%*9)*|X zyMz$*()!4XEE(J_)3*68=(9JMngW+52?|9Fvk;JpdyZ9y==luV2A90F?5+V2yYo{B z^4q^QPyrcZ_L;rU>T1i2vDz*s+aJ6|1wt=lBd^<-LS_!ABm$Z%Cn9(1R@JIgg7h0a z&7@U~{rzD;cV-(5df-x58s%|ihP=^iQe#~}L;e8j2}ZuuFnw-m=pMiQ%u-Dz6u}`4 z02sG)8w9S5k80yFYP=tuh<2;iy3jj!8M1dUzq~j%^94>m+hLsEpIYpZsf)we(zMLC z8@DbZ`ib;&l=w*ooa`c8hQ#8F3k&pHCF(NEfy(WfGG?DV6wohT#`HOoakFQX`6vDl zRQ|TJn90F=5IB~jM4#Uk5f&yt4raBD;nb8C6WQM6`o3P3ql2B82q;!W@*Id%hmgsz zSxBy~?ex0Z_M`IjtL-N5=e!HvW2F%%o#4LX)_*F{;r7%EF{n@Z0{eAHR+wI)Ih3M# zF+IdLf*RNRm{T0>JIO!cEPW>%gH*k5pXe;}FW z-IyTJdlMi2XO++7x8~XGFvGv^#~$3Ryw!O4*?*Ny1sgjvitGCI0+FR9xz@gb%m6IO)(=$pvzYXjox1OgLJpJEzFsb zV^|9cAu;4VKaz8^KKVtEp+uIGh3K}BatNrTa&qR=zXC$SYdhO*_^}(uSzu~I!{O#n z^IUy%3$$v-#VOP6p`y>}cdRaN&b+oDVM$EGB0%Zr@DLr$%4}Uni=C{rHS-7sdrMY2 z^&M$qWvFH%wF*E5u!|bHwiIW);yP%Yn;SG7?pEfo0PRUlpU1Z$F?AT#n! ze7wB(5n6~OtBr$+S^y7pq_1`ksw>B`uX|QeP?-JEQVfObK45yg zX=Ym>M6a*Y4|IVv`jJEXO>}bh{(bBwA_oobvFDeiH-x?7X@U?c+l>@dr^ie4d8=~sc) ztoTg|>c3onnfs&)CYJBkqnoYzK9s~K>3w7(#|u)-NuDb!^anla z0j-AC>7nz<J&r&2vR*V;}jd-6C8*-x9DB1c_9S_uuA#s4I9Hl&NMFPiCWk~wb(8Kp(6g?jZJ zPj;;sMSL5cT&&+9>T@rzt8Y0f=cuYwxa0oRXG8p)t;n#;rCKud#YL2#%&P!TX3EUW zlY=|LcSLi#^?yRCwy!aSOmxg2H{QXx@#tYUZOIr(_1MlKF4@V!h~9Hk-CPd$Yq-y( z70&UR8?GziPWv|EF;8%;_v@_GI?^ig zYVi!N%@uwW>Q7|<{YTRheWan|4t=96XI!Da&${Q2>t#v>9|~@hZ%}f_H=XY+avSnJ z;ta@sU2>a}bfH$(1zyqD<#?W2X4J>=aUwog*O>IvWPPvr+027lBFPB&MyMA7rcV{E zeQzIk&2JlHuND$}95wDNik4SR`n!*garbz7>NxMU7rdX8dE!vNL=hZXaq3up9DZty z(lL-}x+{r+Le*gVzk1r3A}TVz%IMp7v=iT%R9$1}bFNrjBCv4E%eJu>m#cbU@BU@! zctmXDwDFJY<63wa_7~2kJc>sS&QBd5jaD=siC{cOJ`n2LQzc6~n9fx^Hu0=#-7{pO zvh(eeGV1EF@{$HaVUG`vJ7ac@^PC*-pDxyxtmnD0&!MBTrLkX{T!Z@j& zEjWnj>*|8A=9#fkjZbe9t2O+@Pv&qXMs-}|{mJ71_$#WvR z39}>1ru(ZKZ!?b6^!1Y&9|61n-=AEtx3>=t3aXv0nQ7Gamnx|>;1UoJfO+GJ0j3Gm zSPlK7qXppmh1QxHC|WGrCB>V0UQ5hAmCA7LzW(ODdwuPM1GKf-fLwb0x=!O@Cz6pu3bOUU>8-@mtk|Ad3i zg9nML?sX$-{i;sz7Plt}t*KluWhd`FeHclIyrA@w<^S)6T>1pDI=|1!QyCc6oQmtYW4Od^|iG%MI|K-50Bb7F2e$^^;$VZeKk@>_$oLgq!RpT&p@yN z*G+sAMpkw%yV-!M&hXg9#bwUvc7?}|B}w#ka=0c11?(19R!ZC5X&^XT@h3CthwPn6 z0VY((ep~(y61kOrcGz#W_y29FE4y3VD#t)+FS^ufYHDVOhT;KHq7(VjFxlf9ov=#V04;<-e|fy+TG-SXrqB<3Otc?fhe8Bp+A_ zY~0*^tJX_cNy*7f3M#qZteU7)F9A%-ocGdrpA)|4c;*|C8ZER2AP+Sz<(961d+vXEBRh( zYO1B2^cw|5#X&$7JlhW==egT-vK^ujMA&WQy(M#%jO>P>pbqjNz)}=IkXgEApOJ5d zsBaWN_qIFYyFJ%Y%v1O_15MPaZi1bILsLsD7O@}aWM?N(V@ujWRimJ!M90w3a2U#2 z#r5?fKYsjRl-*Fsd6 zqrYAM2@a;mb&WhQZ4<_T7#v(`0xel1OvcIszM3uAkcHir-mu@eq4nUwBX@qxw;;L# ztco(|Jhg0W3IHN^rwB}6eIh%dBLjqtqhn)xP*i$6A?`f;>i6&8aPxD)BVCY}Cy&S` z!5;jfygGRYxPSB)SPobPWJ#D zo;qN#A_c80+_#}s-Ai|2BWCC1)PgIir>7T_lJXvk&+1UxRDb%kW@L*H6R{lKOB1Ob zJA-8iZh8fWYJEWT6uf``9o9%O%)QUAuQzxy@i-p)QAyapXUHc372K2X-6&YehCi7v9Pr4oN-zLhR-l4AidL!jg3pNXua>lRtq-`)J|1! z;h)j$tk-QI%ig`t5cXDBX}c8S&;C@MBw|XXoY!T-jIB5*_T%I=Z~kB zj?PN&osHciYN&k|0F&%3Tv#J02A6JcZ|?#rRlA(ej!;I%*sfiAZ+oczHjJvAurQI^$$8{0rz#-s{%_uE%%HN614I zGEE7=lIIM3nu+xY*fXN|L5K{Ke0AX*GyDaRL>;J22N2K}14ekleayZfKOfuL66LoC zdpt^l01?9p2nrsrmXFv`@>{=Qd;}tFMOD>dfMHjFW1m{sP5#;~yElyU^Yi)d-z&p3 zJiYp-Wia?A2b}db(86&MPL0Zj@~|yn6cpvU!L?ZH_~%a^WQ!ok70d|v^jj)QYH8-CuqcmckP zCTKxX&Nw(k#>jtXK1k(0#ld;QbRQ-C$RmBF&OQCn;PL6{ zYe_LXZ(|+Gr1$Q!?KhQK-k2~(u(TAjT;oJtmW%3bCVeLtbzcc>Vlwc9%v2E_eqJ^k zbzYkIJ@<9D=aZwNrTt6C$BnD{J?RqeZd4VUev)*XDXHE)61x*(-fo7Q_VT&x5oZG# zE+SvQZ){0O;QaTGxgRfZIi!hk;j8yuECb8G2QYY%lV&5ok|svQ+zU+j-_z6-VoCq| zt;8jK_5YramcJqW;NR1wx7e8#@c;cbj4lNCsnpN+$%cU{xlN5hc-~&@xV@`)ruKy_ zyJ=t22p4Iz3YdK()_3l@oiWA+@1i9WnDG0V+w#bBJUWknW`5-36pC+l3VJNQPpkRV5n-K57`3>+-w&et5K9?4L+i>9(Rf z;V~cet*a}fSS(M{`sScNybiE2hhylBq}?yO^1oy(uUl zgq_jP7m8EB-JSNAdU2WN0z6zg=)!E#=fC%uNf-Zg+z7M(*}>b;T)mJ;rR4isMOI7+ADZ}>vj!s?iw2#KcG1%T9Rc)HT=L*89l;b z$GbxNkX%;n0ufyS&cmT1gZzq*`S}`Ll#$O`ue+Ct+Hd@5dvNR8<4UQMz4=QxKVcI! zE6+Uq+i-fKxj-lG@#)$2pjQ6sw8#AA^8py^!911El7YXK!#2682`j9f=c9yg3Z*II zhc^AG7%jEr#7QtZJsAE|p}>q*dVT9Y2Rr-2g_-G-9bwtxVb0UT=~MLspTE@$*U10?B?BGLBb@5gL8#WJZ!N)*R&^7Vx-!c zZDVuu{X%|z{!()<8LH=@kx|SOzOXnZ`HC@N2q@zB& zH0LfzrxSXJ({*M_(C{P^5J_wiw|8_vA}I0Pw3zVSom60rzy4P+RmtRNZ{6e1$K32g zyvx^I&`qpil0llbmhS$$-`x!sATP#ZEPLqEJ%6SC@ot!odHwoYy8D#ppNi#WTMzNf zgn4u?yS25odW9=9Upm8qXuejloT(|(38Wh1p#q&hJLmAOD2&rfc#%K9%Yc1Q1EG)8 zit#w}rnZ*W$akBfTk_EMwJNHCMM{cZDDCoRw-xL1Vho1VtBx+{!sUBzZbAX3QYUbP z2ZTbeT(@@B*V_z1jz77~0|ie=aU_x0f!!X-L$0}Xk#0ygu6mxHcOd%5|A?$>F&&~Q z*ltO0$)~Ud?uw({sUgX>Z)e?uwj+sK@#$yVQGp*2PjE7D0u*`c$mOGH8<8}i*&2H9 z2JYGC-L<%Zzexx$ocq<47Fs#&Cx$iu>-KrQowN8!%gd{d)%xtbym$c#t66s$0+NmV zsvl>$eU?~pC-NQMru%m9fkL?4JCVcXQYXkICP?=Am1@an+Cu2FAU3Twel&w8^+j2D zGFUc}a#nBpfU^GJ52w#sBi^@;4#h>AzU=#a)P#G3#eV0DhY28YmUfF0oIihl(pLw! z_h-7_!Q!{>?v_C_y^?hact|cvQI1#n4S!6BHEx%-$?sS1P9QP(C=la1?@jTR-FHdtbhBA`x6B~SOB9eMZ z!KsN{Yt_#ry(hP>mB5Oj7)it-dT|0gH-Eh?D+4!Ke~Ya#;=9?<|jUu<(yK zAt~OzYW4z)n3$fE2yHusmj2sYLP9yTX$s55OiHcsTpbK72n zZjW}te=pfi)#{{5`Pa`mijb#u9PG`pLNIMdr0jjZR&+hwrM9M|@nA|E|vz_V@WO-RbAB z=JXPb3P#>5x48^z$dPI+R_=(@Cvz^&nnXzw@Ga>Q(MF=nHxX+oDZ za+DfjVeoKTldv?mtcd;gn&{`)r1tN-6NNGyaR2|FP)XGiBlm6uia(@$I@dJA;?{|3 z=Mwu#(M5i!{&5N@-z+88-hqMOi3xq(yvX0e(5GefgwD;G{N85!TZ_EyGpiyJ)b97V z>YN&SO=U6XbpT1mB;&LSqvG?VJvjx%{g@JMF7?@u<#oBlvdJpB zik^IDSR-UBjKnpUld1e(dWc`iP|1xDu2Ai`)t#k59xJfkzOy-}HWWSGa_~#`l8j-{=K9!?su5!OZmL+{2}~zg{opO!MvL zszy9UJ@@%r=AD}7*U2ijGGA^D!dW*9qhbZp}Fo-7U4yZf6FNssFcd0iVK=ZR&@I%_zhbta0~ zFA-jl(G`}!fppR33!B_#wvkvBSHvCWf zn7NGVYaieBFp{?5wpBf{5~aH1&3);C+P56CusOGS-`QruY((X0zca9^GG{w4A%I^k|Oc zJk^pO0rwfUzNFjb+-CD8#iO^|^tVjBr}8*V_^1a?JlyM2lvoVeJ}>wro_RJ;hG3oP zVBAIgFStobiE6BQV@%BBrMw2DvCAIZB_BcxDn9HLm@nF?uBbb`6yVHN`Vwh;1?N$v zlu^^agcMeP4!>_cSZ61of;-43>ido^*QgUlHgy!P?a_QxJZc{*|04tg;+Nn%HfZR zo;-}YJ1HWh$v+Y(-crR-$)>S)qnt)bL`j2gMmQ9TJX|;AFC$GJag8kbh&g;qVbmUa z=3BRnIT}H#X!m=8W#`uZx}>h%w=_0eNl}Q$K5Cg?Pw-1|oFnr^DYD1jWG~m0df=|i zMjA7wd6tYR)Q}Yu_5kvj;A#t^`r-_nhV@)W2_Vkks`)HZ}u))`=x2o?v zd()nbii%j~?4EaTX6yy-{Er^f@omh|eZN`b;Wqt)l{@rO-7dE!pKqbX zCWY3IFhAH&w5MurDyGjJnhkR~&vxh^>u#&+gtJHRBE&)1Ux58I-%M`Fa%QkAl}9v3 zo(-4ih>jbaA}8tTik_cWlsz+=x$)>|Z*RBLcWO#1Xl%Uqi!xjLNbjhK6>U z6WfFNynk``JYtPNXong+((I=*h3_!9)V=C#5yLL7a^(}P7{99~Id#7=RJ{)CI^TkEk%f!^Y-3cOMkw zXJ@^=&YwtFpOeFtif3gsN9-)$F|nb$o-GjhVQ3$<#9+gANz|#Kvu}KgnN#QJgC;G< zI9p3bgem2r`8;K@ET!m;mgI!>LDtOBA!YULeWCB{BXz{a83__&^a12>AKEsJTA|BLW$NS!64y3L}RpAzN==Zerxo@r-}^h`U}#DP{r1_%>69ONu3vGfv@yz0d!)tUCzzBQC2@ z8EGVH_Uq32dMu{qoo?zB#&7KA(`;ATXzz!X9qm*nY-^ag)s`{4o$A&Csq8da$kvITA2_GR$EZ@Cw$1TjAL8&=yjs<>P*!o5GSf7567x?VTK74<5Ol-5(}!j% zuki7;2eieS9%qTja#-W>S>wYe_K@u0MEg*kOuojot2~(GjX`N?p=rO)S_>+^X1!nNBrI#E})3` za_|zx2<`hP-NGL&Y{)5fyBD~18j6kDK)>UjWsWFu`D>6WlAt5#xs+jh^`YVK2u*En zVNdU1-k{2y_MJ$l51r~9&ea_g`zs}M?L{(#$+0W(*!_(nuhfSNtK}oPRqf={c%^;q z_vl`=G2eSj{8Ekyn~V^JC^3d)iRf?w&0qH|&cy2oV?7>J6f^zRExeX}Q5i60qcWa5}jw${5)^^od?_v*G#46c$ z%oj-JLp&ofBU-S8?Bw@uU1JfJM2brG+onL5m9g@@oyvwNq=9x3MYtr6Lkii(9{&?( zpc-(lUcH(k=FS7SD!wo0<41fgeW&yKJXC<99VcCf8&`L;zK5h=>=ey2R~x|CZ|F>- z8AuJreT){HQ^HbE%u6yaPtDf8#^B4Vp(@-%ScXEWIbSQW>V>NVfSxBcSUD>7m^|V~ z-?c5?Tj*&$NId>Bv)kquYxS6MMr)IFx6~#K#dz^TP+04{U379U{lZo0EjgsUUwzXQ zc#HVrley;by?Odm_Q}(|`Iz~|+^iPo9*NK%sZ(0F&(}8>dgMiDHOKXxuoNTpzG9jM z+Rvdw!?PJK!d?c(=Sa)x>{^i)cL`&})k3$U2hz17iPh1vXWF7k3X?F2&&`s={XVBW z<%xI{=b{*5oe>|UOq`0!k-Ry3fZ3

z*Pr<1si&(Oo0=LfwpvR@8Tr#Aln93}RjCm5LbLDEX=g0HPKAM@$9tQm3c+6Vpdstu zvfwm85+u^P3rdzZh60T=A1A%cW|=D2pPh3u;mS>N)#%tLV43hFu+{6xwAL||B`D*X z($dUR%2gm$<|k8CT%2B6+Z)vLUKpqGj0j~o&X1Exwqv1p)ZE++gCHL$#~6t zIWsUcWb${S`cFk?r;-wY!KIy&AtkM4ZmMbD{AC7UcNC6~HnL|%oKeI(B2 zFi1YHy1y3S@>R!z<5!%HPX9`L$m6wLMeOOkSvLSk0+6brt!bnj+#U&}M!AN-THnk+>>O;q}0Jy21T z^a1CO=MEji3qM*}B7{eee-&2g4&SI(p(<@>iaf9EE`CTm_D6Wq?^lZh5we}#S+JeS z|JzPog^u?2hmRfw1Fp>**VWZs+h53fhen^pd8np#CZ;t=IZf!J9gwJ|K!HMd77B*G z!;hpH)Qu*yx_+*mAlzk0Tu1pqy??JsJAHn+b!?}}2lK9s(RCl~01?T0qV*cH;jc_nHtT+CriqD7ufk1wH`-d`Bc#0c zHlMP5FRu*nGfK6@?H&H_^M-O~`!&#e@BV!}O)uhzqgP=ot)g<}fuf?*;Y#KFY$$yT z5W#AinlG}Bmo3?Ocr;5XoHL2;+qgr7?XgFAiv*L^%A%7gLu_CW&6 zy?xhqPtIam+=>R$;0bDe!hkQ(28$y34_I_=Y$44)*hp{tQLd z`aPQ;TETOx*Bzezl42W8(UB5pt<$Mz_+ELUVoG+XW+31uXU z><24zRAia3X1raz&YW41yI&fYz1p(YPN!icCwp59Q}m4tR}FEh&qlRX@j8y?yJ{|$ zn}>URc%yDQVujw!x-8fw1*$#mm`Sk z@llDcQ#d;0aar~{qk`g>u%R{=JM9Ma_Xm~+iQ&>iFRJUYHfF`1PVICiqaR%EsZ(D0 za^S$pp&aRQ_Ljl8%aE4N??9`zBy7C(aTwBLhsB4)-;0fqT`OajRqI*B+N^+8h z-_7m6!OKeoa$i!?jb75x#Ug1X+qu@B)|3dlkrE7wcgo~ubollS=iSJxcS;X8R+@XX z6yI2HzjLK^xXeoM^i(#te|A7a6^l^H?yH8-naqKxAqzSW2y`KE0_kqwzAYi46!@Ep zkVc5`6m(ipZU^kPx3{gHK5Zo6tqowy@*yqJF2Ivlu0piztXp#Do_}Vp`!#9TzyJdX zXYC0b9Q;*t+Nd*m<|~5{O=dkNwYeiwpOZ0ei+{_PH|JWL=<``@%cIT5$82UvxiKpo z{IXlVtSaeY4X4Me)OVgS1C|JEWGK+&1UO;Q^*RLl%DIgWUU?8JRf!TA4#bs}m94C- z6iBl7_xHc`^t6I-7y39~)A;ycTSDaCy-2^b`w$8PiSA}4NxExuD2x38(qib$b~#I5VfaUFg@B*F!Nw+UV8@)QlxJ$pUujW#$6UPNa!14h z_I5)|3_ry#|2pSR({Ah7X6q)APQ%=teW$kW#!9l?_1!rC>oKi*zLblSZ0jeRS=YmR z;_;>qJ`OLHDr(UT z6$&@o2FN%aKOZbAk~^dCnjNBy+X(6*n%&aa`N+a?=hmxoX3V}Fyqff`r=L1#cbJ!9 z*mDlE8R|Gt-K`E^le!yrqG(`n{ba9I3b=;{yFl1Kdi>aR^TS27|0^Zd^^?QZ%5i7e zExLor%C{g26cW|uXWSsWg-%qn@Ejne6>#SjQ(+Z1KP)c_qF2=WD&KMYI`qFIBOi37 zQZEWzi~82yeh(zwXV0EJvf)-N%$kO?JIw46Bdovgn`K{Yt?51T^(NUs!vC+st#gi|*6Goi(ilG(>c~f-&&M5S!uSh_vam{Zzwn@5W7e$E3dhk*-Vn2edG7HGTu+jaC>(} zR?7N6d2L(kJ2sy0J4VDP5htIz;@+A=HpmXqi#S&|!bFaU8 zT^9A6QMU%gKauGtE1hqisKh4cNkV-Q*KzB&8b}DH09`&57ppp{E^T{>WT?QU8H46$ zO-k;}%?bj#rY5?+-q70j$MoiWKSncRo{T#gM?JWZop$t&8UOp*$V@3J-jluK+OR>= zoH-|f=NcXDsf8q(w8JBhT@aVqc`ZG~- z?_L8sd5#W<@68M*GxTXcP@*!u868QLq%`o2t5E5#^)@G&2DF}ZF?fJJFJHclXmDqr z-+drfI!Xv`n!v!baN5s^Sm-D-lk%l?0gHDL_iSNNYUSS&J2Xo?mDlnCs`qBix@_Y& zJ<|P6{xQ$`ks}YfBh<#)DOwy#9Wp?I;s5?hf|YKPME$ zjZgSKT&;spw6CNA+r~Yhm8#u7PhQC%jCl2m6!!H-oB{)7Bs}bknLy*hW;yA)3E{^f z5mX7cVI=#WS&>(Xuc#A;F685G6fgbe%~vWT?WFz9zH@%uYRX#%f0mYJcMs#@;+}W# zd?ti#Y|6eLuX{YLQ}1)9{%Aw-DLvqO#Fgbvn9Oj%1)5Km-@(TNDd&kQr#*oDY}-n; zrzeMS+zTsc2rs<0sf+bvQcz}%&sj4&`@E+rndL^w4*ECQyqr0u<`e~wz2$MlxOtNH zR7Mdn{zfznG5)`|y~xSQpKSf^W#{4w9<`Mdp>65T5JQe9>RoSwb{~k^j}yjhg}}_v zJnsZ%nmwQTglzWp*JeC!I(Jw{OW6s{|2lK?b44gu@EYjnX_9IRq(0(qLgyP^n6BKb zY>Kq4Fj$T`eJfLRP#-hAgatFnz^Ax=-B!jz061#40@T*`m<`!#s7&tVmAp(T z+-}9GbDy(X0oBpfP2b9t&vetdyrUUk%CB%l#z|k-De|ZuusQ^2a@saxFV2(? z8^-Uf7drS7jE;^@3K*h&xAqD;^6yuJ;3=Vd0D1}1CGfc5uK6^+axt_CXx$HadG{EIt)R=g#4*#udr4T$ zY-6~Mo-G2!Z~ut0^kz$B`%VW}*_@=#?=$}Pqn6`zW0)aQ-(>JgfhUg)T3L>9XJ_Ys zXnd<*HPo%G1QG|-(BO~zmtE2!1cK5xBJ-x zTn&6rzTn_|fura&^X0i_>ynEoz;)DXV%aT1U)@*?iZxZyfD-Sf^I)mpSg9@eP|Xgp z^`q7OI*+iM;j?%G>zul3<;~gxslnjafQko2<4K7&(x;|qffEAwjJNgmbej2(T_?dW zhMWmAfg9wPfUA86Zm4h+Ix$gO(I=8p_C=L}OH?F}3-_>Jjg5mtug|DuW0qb4)y)^z z!?L7Boo@bRqVheRhY)Ro3oO>mas?07$-!{LT&G}9FgP>7tMbDCXr8{WAsI>4;V#Eo1$G&yvCJrAD z&>}i^a96_Td=N9Z=u)*aX2b7)a`g8aPuvShUIp{f4c(z{F85XDytylHiSbTXc3$p@ zQSAJS7tL}hJgLWpQjoi(E11`t(v;LwEh#ZE1diIfPoIdPtE6}z6%{p7YDqLys2BQ> zJ^1LzXT(+r(m9ZoPrd}40p}}}kv$+^zE4b~Ka&tp{Fp?M(qN&sW`i%zJzUNHw`{0n zA*9-ab}1`d<)kq=h*WU5{NA~}6Z2v2DI)Z#nubQuxc%qLG2$Bv`GnKZ2pnzYN@33t zi3gwL>oPv(G|jBEYUe`Rg%Ex66-wiN@4qf$_$d6F3HAQq zN0fAn-aMpnXanMslXH2P-wZF2M9Dertr;V!4!Ra7sBqTd#6!7jej^=fYCy(61ns44QIU?`8eX-soDkNs}{ zV*`c*N$3p_f77p?teEYk;oN2CYW=E(Oz$;N8s6pPT#(vtQ`P0>um%Gt(zE5|7rkP& zBgKttm#6m)ey^C!NP8vMRyeK8?&K4VustoE&zkgzZAB3+WA6nx=k1tTSrR6)0$rn{ zMg1ZZ%FiBCJ6jzD{JoQ1^u-iekOIw%_W1eDh9rkt>?=*7FM#WMH19Zyc?%d7G4xK@ z3r9pmJlgfMuwVsA2J#;S1>}@7%%u3PJ|NM_zQkB^=NBdYjHPc#`Vh}@^?hk(#d%(n z@|M=WH;nQhQ3^1S_0KJ^eeQNCX+uo|hBHAL&P7%KycacmE~3|qYBwGriVz4eP)ben z=esNf{q{SIOlH4^kUJ<5+abjO5QBng)p(P8!=b^1+qfOM>R6D=?}mwYF_IC`1VA-L zzj=d0K*ggJK8_RMDDn~;NyQ{AOm!vn9OMY=?VhTC)5vCS5%vbkUFo!8htb=_j=#(Gh-KI!KjH}+=pEtk%Xc1+v7g%1|b$f0PsEy08CheLR+^~Ncp!eW)83~TJ)kFT!A|qx;N3b>CpeA(ttzBmr11&2JTsEWH zn2d`;Y!QTRBo%MV!S+HB0{=*~1@Rqjt$aHI};W7eimPpBMf*DrwkH3&$LIdmkC z`YszOK9}|?#t_9ng%8b62KkQpB&iu9B&T;>J03%2!i5* zES*r=EcjHxm;QBixAH-!$yZIqm!)n;>czSst@zEAcc4CYKDbF%iPk1xO;m!2n+oA2 z%k}BZ;|hMmOj@`|CbISNTZ@ z^pF~=5+R5S6+EZQ-%C{;dI@n}bd@%aGUM4I={_|{0g+6(!B35Mi+Y3Grs%5VoZ?=Bpvhn#Eoiwg%;q)VB z);JK74H`=7c%?&V(2TSQ?TelT84V4xE7wJXJ;bAL$h<(*N_dXl zrQ(W$A&lirnznInf4HMaK~koPU30Jio#Cg*aoMt*Ky;a5d!oO^*>obknbvM2&QqOD z|4=BTfD_<^1`RLSB^pomJ4cB)!6~)qP7g;|Aa)Lp#qTBHSV26@f8iQ6T~)&8Lx1U> zT1?e?dMp)I#>U0ARfJFiM4;FFaBGNr<_y-B>V?grLXe*&+7z zzCLwCro;IJ?#q|-Qid62IDFuj1*_W=Xs-JczbJ$3|YVUD?2Xo-_Zy9%J zi0W4nD~yy=z_~SiKt}JoMe?_5{>tJ5bl7Q^4U{-?Zt!w;#M;?S%1#khK!XbzK1nPt` z@;sC{XexqQ=cVQ3Ebh97D_Qx{b%X6N!G;cCIQOHviCETWz|q}ZSq-mqVS zft2g%pelK6b_t7Z$v%aT1r)>)G=D0GyQ;KOuv}E|0TE=oJ!}+H=e_Ipd*q`=?i~C} z-q6sHDk_@zj=gk^$GVB_c*W)7`U7jrX!&-SuQ~^2O3A$Z{6XK9a=tT#lZ`$T^bHxS zTAYVE;>9Dmod!f@-4};39uf1TJxs57?u4xdxgSTK<%D2?9N03`7-Y;xO&rq-_!>Ij z8K6`NFCb*@?YA6Y{FjxL<+~OI3i|yXY4&VBM?UkPucb&xe}@df+h6H z8Dj2ppgD&^i2yoy(0|59;p}vBr)a7@{dBSiz3lUL%hAXro%)=QL(?o-8Ph}4_717A zII&7}9rXleyB^?a_t^iL3@aIsGeN5}% z*8|<-wX<4o(NnjE!@5~$ugoK}U48Er-(%Oy!Ty{gIbf5VkEC^j?-WUg2sKq zNj?lDlw5=> z$jiHV+olk-T)j$r#U%pay?c_Y!7Owk+`sUZUI}o#hj^CX0@61*dYS~4X9el zqcs_rAb2O!3S27EQES5x8h$ES@UO8pX&4KG_>G|laB=nQ%k}n9a z_PL&87ELnu2hcH-sAbrQq&k4ddEIat*VylwES zoXga3$)mUC=8|BBxhAX0XsMFYdXZu8WT)X~k(rKBErn(+9czoPBt0-=y(1%Gz}>=% zZfp61x(%jmXwL>*SC9RqAX@?4f>X`^?1#c&U{e7a*hpZJVDMuv|2;pHi zMb#I+@Cy%Icb|BUfM&>1$eGB5p%3y(EDWAFLaH_0{xb+%#lH!}5!0CR!q8eLq_hsalF8dLvPHzG=2;IhV#wMlB_) zIav;|tb%lPfm9T5f3W)xA3uIy^TSm%!x`uV?q4f9fDjo_%-eb#!fhijJae8E!>E)bAXM7%J{eF#6YN zekJ9-i9IpnG4>O$Eq_!NxY4?f)}rP8?2mpAj{JOI$bum0%zlewf)olF74`-T@N zsk_V1svX-oa=%!V8e=0U$|8uzc3DOZzUwdD0oDxWD8pLm{cF3_Rl%+XzBzGlH}#f< zTLC=|HICrEUa)w=!l zzK47^LtL~HUXLa%N=H9g^)mh&rAy$@K*+l`mgFaJ9u0iX*U^Jv53yAI9I~C(6>I=FygoM zd3Ek5J_T7y)a?hx_l14LbY9+QP#$Vve}*#7r)cG+B51nn*+VTH}MHfUIW!A`A`RQ&x_;=@`_=aD`s-B>;7# z+QYg5k}mYa`4*hx(c?(~o?1)Jpp2kn5#lEKk=th;a-Ju~WulBU9?W~J4Ph5x+IAZm zn?eRCy991Q*+vfW`ga*3fWVAwYf8i6(XnP*iU@p8xx!aOLxOd(p&h*`@)Fb z6)YBu6dT80St{W36+#xF+g?kXKDq$xOHoYlB*=&XPyFc)e z#b|u^Bf8#l-WHsQ)Nb7&b;E(R^MlU^MieiszW!-?ci;Ib{`DzY-e~C|BL6}GD#_`X zk;;o=D*AT#0oHMyZEeyrGUs3lb!OdTz>KBBD;|Usu+94VN&uM%ezt2gG=mrws6(KS zBK-p3W z)#2aI{7!SIrysr{ZPTw`7Pau3y_4OB7=)$+LKJX`2ec^bFz5aJWauK}WguIzuEPeQ zK-S?RM-3raKDs&}<5$QiI+c+R3DR5l`0WS+(4zy`fv7eSxq((`k}H@75Q~jVN3%7# zuIiR#W3=z3u92U=E|zR%U_-zyT+c4LKfJS@U+*zI0muMq<`L9J;+jYZ`84P>@k4Q)_NlV76bQgL6AZ)wuEYJd{D_uOy1P>eX zHys}O{ypIMaQ7V$M6gt?KyS@%?n6!H^H_TVX@OSM<%0~rv+iFn!*tAU?Vtvs>yurT zWkpJ@Yrxn7BM?gyXB7|cgWLrnMbfwCnrT;)_yx#paG*fyL{ithPa@SQ=%a<2+cc`)h7-#Mu3$TV7!C-*Q>C+1}?Bh^Ep z;#ga*SnG(5N|reE*7fM|nYSqus_|{yS4AsOVy*Q4deNo6zm;)2Nm(+e5l2=Hp!oCW z=kSmdA(^FW@I2UE881lsHXXT$rnVGi_E$Cb)2Rp{jy>)oD@sYtL2mItWY% zs||KvXwne2Au%!WLqP$kPv^j<9R#n6hFR4p4vJ#6TFG^1i}5}0=4nC6?B}QY=EtAv zJt8^jTcn9s-onH>LhD1JM`qM#r@U9OFzY(VW&Ex;Wuxa5hVrR2i}dfCBru4Eq1i_u z0)=cxaG)E8>GCHq>?v}3w8`&#;F8kyD`E8`z;*GR5mRQln4oz>(K6v!9#GIkP#xLq z8)djx8?vZEbr*iM<~-&zD6@)alk<7@%656qqrBO&W(DZ?lgu^Kq)Dn#>Z`CdfOqfQ zxdU{Dw2sbIs0wfT7eUy9ZUmMBjv(z7`3Dlc$cKPdE9KTxQV?&)0-n)9_XepDK|k@V z%3ss(IP-b$*uJFZKMUMEH~^4-8CF$;t7h5DY{+umS;al3{DcRkDBO@CRZ&QP1^2D& zt!vngpB?Kkl1PKhXhY8Awc7>mOFi{kpolc|_6SFYP}oT4M(4LTn{XU~o;f{PJ^cip za=L5A(>bbo3g(&$epy!B=HJ?d){oZ@QR}(4ubiaHv%c8(EAQqVpPKR&m}R$*2TZpc zX7nT=rkH&Gfw|^ghzn4lW$$R(+=5g|O_+CEJ~A>AvIj_d{BZXVAGjBS)Q#jsmE53? zpMh;=f$+W83I%EhplKlK;E`$%AHJd7vh-&{Q|OglvI%hx^OrIqO&G!R7dP5VkI`ZY zn{S+7pNa85VnWmcBB>)j78)tQYEV=qL_`CB`v*78CeY&HKs+_e5J{jeyqM2cB~UNP zj?vVtRU*fkCeKq{z*x@7yu6-(&u56U!6?USg`(nZFmf3#^{pjVvMm2GZKE@9rl=F) z8)iBi0^m-=RAYZn{X~5E05%We_*I)}N5~&AQ2Z08z(0id^XE_PDo5koX4OR(Q4lYn zggqH6dkRz;GBo=@6?#+<^VU4XtxZCQESXurG@UA@^mg-P2rvz-PCKAh%2eY#8@sF@<4$z zOfaax_Mo3ci+nutB4r5YMK5VNGcc+$Ah65pfaKVe$nw$J-%qKfuy&O z>*UjSOwPt`pn=$T-4yHX>8Ul`K!sL>Ku<_c&R?aWp;=#RBFg6<$CY-W^PxP3#D_G= zJ2O@Xk{}(NwWBJb>e%=eJs*e9Szi!u#bHMd_x=_^ZfrL4}zVXmt*Ja_Aeu z(FPz2ur#%#kBHn$>gTXdxtCLa6GFcHPyO5SlE_g?Mc@Pi+2KwfQqb}O&dG7rwwN6t z%{aPq6+^0q4l&%Bf6gG<4l@>f)&uM~t?iO_aDx?OOxt{j3`GUm#|db*b2tFjuGX%7 zC6EwD*Q;hxW`8N+^^ufDm8EQClfAR8elWxqTVrb>swK3PM&%(uP+)bOfOU_s!)|_? zyN6vdq0zY*Sf%PF2{yWm^OZp4L(^8yN<)(cq#gq?Orkait zj<1z~Jg!9ne}mB7kPbhAg9DU;E_!nG8}jimmMpUyjN)^aszqMtQn+o4!TJ(-t{dlL zq@rQ#wzfW9L>oPW+eMf_wb!omx=rW3TykZwn)Sz)r}QNsCRSPgyq`&yhi9r8o}5jn zP8*NlPqeeiPmi%GkJaHY|N8$F_8#zD@BRNUMW@iPwKVM&MaxLhKxA*qUL_UDEDa%} zY=uI}&dzFCSxIF_MmE_iqx<>RxqjDuKkomy9v;_qu5&tkeLnB;dOg=mC&|!2yi)G? zc!S2WW8K~8PwNF3=c@B*k7YlY(4K`KU;juJ0yu~-h!iL_&o>q@pgB%X<|mZ|s(FaL zaHbo&&2ymj*S)Lo%6!?ACMluPRz8%ekzQHumvfg4z!&_AO-0TJqg*D=FvL>T$>J_1 zq~VxT(OiX+n@3AaOBB1x+o#yRl6jo^4w(w4y;ua?My{k}oLd}s`4OY8#<}l{wpMG# zxynZuONO1_6!i~=<_*m+%g|oV&(InU_x19swK$NNKa`@8)FQZT!=6oRcOE^umBd!C z@N0eEV-!?wBJvF6F1dTq)PekXWmdBVT?evqa^)NX@1D5N5#?CL?OeNQ;j51DgXHHx z^MS15lM+1(`odoWottFdnj%yt?1()t&@OK@RE6=LUu{vE2E|K!U<%NUHQB8QgI7pl zalv4z!bQpVo}R2J12nIy_~UdM6a@|zB}=@O+OBiSX4w^eyEwb1{4rp9_ELO>Y1}kq zk(2O_8#iuP);32%T?Z_E4}9mi;t+WuZEDJ~>J|mXh&Sz`dAY8_jadnIarXyJ8~?=K zHahLqU5aWR7x&!TKMPWYpr9orwt4h75;jTb?V?CKlANO0<=)2N8P_G2vtIf~hgM3U zN=?^wvNcQYRKs;Y zmWtVhC8+x-5FjFq{iG0iBwJIPa{ZdsD3yUIkS&Sz!NkI1gq#Z?1U!vGI-c_)26W-| zOcvXJ?_9Rn9V%fL10EA(8=oUmZcz6*IUS;^OPj|zh=7VUI_z1219+&rXee`h-xti3 z8n;*nKMD@*nyvU$<+DjZxMGx1f3)j{NqC1&h%&pIz>SojJmW5lq7`!6#*MT&KQ%i| zV`V}M8-{QZe9)eQxt?`H)98&#=El2$6hmcpTR=C5WIdr0vpOoETzQA*ZDMf$o6vQ3 z24ORt&lIO50E-y7POJY`KC!9oU4*E$lhfLzM}*K%bue)87Ts@JZnbXBnjPj5pL_-K zhf7^!xJ^fazeEHJGRD{xgg8g*)7sJp=Pi5n0(jdGpd|pD02Bfc6Q1xfIc2-%z7Mo=%|Grm__KQSE1Z770PoAdq=%Y} zyi11bJ7LX~Y9pR}jb?}C@Llo`R{czmUld*(RLN+PR;H_*sqpTp>Qc;RNH8h)?hA0u z^WrleuaI1{LkED{0p>r_J#s39-CSH;)L5E6iQ|W~oEaG+kUu8t7qFoAw77JsA-Rvc zDoZK%MbWV1O)6?)0G;>}Po2OmE?f07dHqd|q1ROzO}83YYI9@~Ui*(Kadyp(kC#s- ziCNxd9y8KmIuK)R$nuugAgP)m(KLZMEs*u6_Z9w3Nj5qo2rSt^pOe5Rv-VkszgU!r zh{(RHy$Ynd13X=VVrCpLP;vKoT=r`pL6l!EC0y`1%Ni^!Nq@O*aDLi_Q zRsV~KG^b8+mfX@uBN@teVn0!E4`7k=#fAfB`4y0J@Xm?wkccqVptbxs|aa0!B z2Naq zuqK7*z7-hS`$NhwUNvjX+eqhH>EyFDI?p5KnzXcEO6zL>HgdMJF^Yzjdky5{ zsISjyX*CVLnG(I0Z!GW60-ceK*dEC90V+Z_`FtjE&iMEPdX_39%cZmQE5H27Xx6w4 zHu-k-MD@_1bsD|98?QL~WbgSJ?9NdBu9)g2w~p3@c{CDGdmEv!!maSdDc+?p;r;p3 z=~~_zr&E6J4SyZ9%Uf%Cd5i^qh8H^4%@JedjqJOy3Sn_m2GQC-=uu_jYYiP6DX0C* z3E$Mdx+9Fc=Y-TvwF{NYVx_e{{LkAEc=rylkuZ8mEMyIRs#`nne=3J|5Q2rAoDid* zUSeb$4f*Tk=!d-es`2Gf*sIu{4SllD!ag(kmlL4{B*Ekt1~!fJ7bq5PI~YE(cYqJz zFUUo*BE8h;me>AM*yL4eWMN|?14l=_tIGS6H3_;6SIK9zEW>UltvM>Io88Yv%y+~?(!4d1elJBnY7MnhbDZ~bkQ zACTv@*eGq{T8%)QL){Pdg9s!&Uv%w1`1#)6Gz!s@E2dh4gt;%;@$2T$K@m4H*l3nX ze4*Xr*G8x}6``rNlB_SM)YX}B z1yek(xrb)``;ERxuEpBO+Zakeaf1eo)XS8??xQ-*jYD^9`_N?_2h>ee1TcC&U)uJ23*M`} zy*>1V9|08Mmp~s5|Lp@vhH(!U4_t$~4XWXUXLK&ZDULhl-_nndrsaOhe)En*BNFMd zR<;#$yX≤aryw(eM!YhMv>F^FjYy0uF=4cPGJEq}4m+;E;3RUaO5*_eS@*)kFe< z0Id!*3ENSPH^dvqdf7hBb6EWDwlLy|yuERf&NbOv(*&jo%-%hBC{kCDBE;RGQR&ot z`kYzw&T@SS~z~a2AvN-M`1CIfEK$d$|`5%-ks0T&H+s>P%=*P)B+>J3*Gw zb+3Fz;7)U}lL$KuYc2MllKKF7fe*lt)quGOCncEQzuN^)Jqo|lt%9g0K*P@A-Z}^A zSW;>}4Z0wx$3EKW-|WxmD-8=NJrm-x_l<4Ul|=PG74ftfZm8-#e~dy(c?w|LUIuA6 z{Xr<8dLJ60f|fXK-8p2d{tnPcnLf)kY4O$pur+#FJFfV-1? zMB;8h5vSvIwOypVOvvCZKYK{-MEVG-QL{{KW_5IxXoBzyASJE%rE=`=;3Rem$Vq_R zLQHvnMOCTh^9mZ%;?83l8Z4lu2y=CgJLr)kXa1n+E{???YPL_TUCB@O5zJqU>+<8r zj}}+$U!l6ua~{cF$vFZ8cOGR960erAkvu^q0@p^9`(TSG4Ymda(FLA=??Js1ghVi= znwpw6J4+c>a2#`3YGDU$qkc;w$1F1iU_VNGul=76t%gIil)M8_LsCt-wmY_L+49Xn zp->V2Y6=26-(bb3`46~wiD3xpIKY9Gg*V9m?uj8;<+ zauP9sMDIc1cPKOc0c!66aHt-rPh6!W=#RXmW}8cmhyS&kBP5X(0*;%7RBF1-KMU*S zs`Q1b{6eM$e7a4R5Cpj?+I{&j5n#KZj!iL#P7|zl=jE5eVJN*&U%V5h^#z*Ib_u>e zkN4+~LD+!u6_Ib>On7={gaif4{=%oar4J@Fj*REa&bpu`-p8h9eLutcC*xIAUr<+i z0IDWv5X3dFyZw&-R@k*TgM-UqwA~lXR$@af8c+NYNF&d2$Gw?ZSOSoMn&l+U;p5NF z$purH-3nAcgZ^r+Ki0ov+DU!9_-o+Rlr$W~;{e4vA$Ar2C5Z>T$*1&{>w*J%FG7nG zkO>{WY6}O$I-90flvvz!Cx|+{=N8NA<-Q0fEVJ9Eo&}%=$`5eL{uH1Me zwCXN|&$(6w=;X*cA^HuThBy8(qK%Gztt?UCyUMoO?%cHYDY)&w_Jm@hQ4m9@?Qu)X zgd=v1KySvo%i~Q9YSAi^w9p*eAAY#@Wt~#tB}J6xo4)RICZe-n~!&wSDj9e>{ zV`3Jf+-s6O^YZe-4%zJ{Shg5(*&Wz&x6VRs0e%iV1;oVyn#Rq6*M$tT@L?=#tHqdR z8x3Q&zq~jw9N4;HV6He`^=trU~kf(lOq5FwDE=3ri=(|HH0>nAmKFt zqRktI3%hXvu=}544qS6vdi^u>e4y3P!-L(#&LJo7Um^lfCLw}-PpWrTBv%<(+-=zS zvR$O{_bUAB1hXX77UXx^HFpe;UPq-saTBsG%@!1K`? zaF9_0_rqcH?B_f>q|Y=cla(>Z>da%noICfKH#JCmK;~J^k3Au3r6T>EAa zKjnQ1>;p0ef-sX_5!-oGGu<9<6PIDQ!Ur3%Bo>v9$F-F(w%`k&1~)gp%rbYOkwncx zIDbMGLoki=>dBLBIIQZ8DkV1x_a@^qYo}R|o&gv{jDu|&t8w*rlKfH#FD|`Zau{yS z9li5=KN}tH7_BS|dN3omapaLo0Y}zI96jUi1C2+@aNLfSFe+tPjt?r}vy#8=c=7ns z2f%iA(99>?VC3>>wkbpS@IKsM6z|}=^Z-K zCxpD;WH#fD$6I+^vj)mtnh!X`(Wkl936EFaNd|?9Cx$}|3%6>ENJuGr73>ix7}e)y{=sRZKD5vFLc`EB zkEm9&So`tX4+5w?~fv(77dq&hgTMR&<~nn{;UXe%C~^J3e)pvR+?Pj! zyUy7B6Gx+JkmbEj8kIIl;YP800Sa0?Lddp&Gw{eOWjOaw&VNQ5lH0mIx78Om^6YzE zs1B8tm2V;Ndb@GCpDf-Wb~3n{Z^^FcLctT^ZJ{JbwJuY$AuTDX7tZ{Ol{u7=OS^NOaAn~$#;O@Jqg6fIx<5h0_XQooG7g2M7qd41tk z?YNY>o|KMc?BMl|0r^VcFLFgazk`njZ&RW=+m|}cUL7U)KE|P;v7e(&+@IcTLu!Mu zP^5Zym-$*Z>amHKtR-OMcf0cKDJ9&OtL6ScMC)&KrU3G^i&xPmkeiucEdEb^;Ec^_?>RzjoMF~_L}*!i*^8NzuUNuSh4ZP=3PjMMVzQB zal8PR2n|cj0iZol{Yfo$ZmeIGN3qYgU7Q3{YZ~0(Ae|L)roUPEMYd?c&(N6Uy-c>u zrmYlNS9E>GQg66zeY)Mc@{=hZ|vnve>0nWfdb352x zML!#4C9<%v!~hw^<|;!FFy!gubIv@p}o+5 z;4(vS6M=Q{rU7xt9cB3dqDu9brr~4jqPytyiIe1R>qr^gxq%MmhpuztO}<{7s3Kxh za%Zf>zUK$i5#>BmLk_lG3w+_Y!skG~>Ch9PWMz@MUFtvdHhFp}qOX&1n7%8TZTFd< z?CT~b)5>7JubkqL&=JKzgjX)fH@=KhB6W*k-J0zTap>s?i9@;-l2L@Vb%)Cs<(ugg zTS^MI$;UsA{f#2|uVQQSv?CPCr1vDH7xot(i5=bn*`Y^L-&=F+eeSb5m_xKeM7vZ( zv9QX(%#xWpsp%xX59k&=7UF%jI^6B^GSfjpCWBwW%-7n|l1LAT1OlG{QbVkeQ?5is z1^*aPw_(Rvn?PiQ?gp}7Jo!EFbV22TiUM^7Hbo!!GH@e_^}%^D;pa4&sKKKadu}Yp zp-vtrp_ZOeCck#XPXPrIajm{_@X_xjHyjJkUk{nOD=qd_8J*GIEEw`V3kE_QX{YT6 zGLP4~@Nl#6zVE+?qmIPxaz#0kR4a7xmo!;yHHn#R5j{xxT~>qpxO+Ds51ASc*Q%f$ zMYv`FR7V(n8*%7HJ9#uUOfAM0Ww9^`TR>L-HV8Wp0Sx}Ka^?}q9oo>h&tR=V^mkc? zX%$H#)(~!l_9dk&?0R;N+ccX?azW>gseNX$D=Jq!X#_cau*xR3G}zvO zMPtFDEFH|Bt#+#HQq9cBfIJ_3B6!9fYea8TsKS`AQgo`=XcpG^VDfK`+zmd{4aEO2WIyTNlnz!rQb_n zI||Iwt>((IULjkLzqwr)UiYD%AXOr&B0`GQYv_)_oCL@p;lSSae};yb^!XysjcOI? zzYv{(D?cW+wXLZsEF*()#|v_?rfY55;7PxhDj+&~BlZ|{q9Dmo0oy02EE}Xx?yrjo z4fP~f6zD9TKgYBcILHM+DiW-gR~SeEI~ZpvO_T0As#SPdiDUn~nJ>KI!~N&{Z1~bs zA}YW|MWXSsH0&>$%`{Iu+frTngYj3-@&n)y;JrzZI)QS@GzTceoPN@t!odmXmq-E# zV)Fgk*RyEM!ACCZ|6u0MQcQ&Bj;hedd&K9H*mEh8i0RG=3aVo#uhdS+#a#y?VX zlH^!`<2+RB$f{eVgdM1e1+d=sFPhZp~B#K`J%^UcpBx0XMbjZK>Yu{GNlb>( zbM&V+J-{ZZd3>-NGI~jr?7g2NeF(+^%c&TOvV4gF`)@Cm=Q?h0B-MV+=o7q7VpVH9 zA{ZlDq(pyhlcX7wMFCTg#d>CcW=+#B{l(!Te)-7j-BnbtZ1@)?QRu)a36JDXCYoIg zUQc0}#VG+-5Doz7=1F;ghYe}6DitSVJpZq+fG#W!>}K$Kxw+$AdbM3IXT!iXtO9gv ziEBSqR;uVPB?m~2owc#XHp3^}hv6&^ZpX_Z8YK)8YyF$ZekbhR z;O{AHuyNLN&xO}It;(mI;xiCV6{$L zSlH{wC$86HAp-3aJXQIu3&9-H>5aI%|GKTw8-ce)34xOoa6%&WS7_q!IQ=zCZi&AaMh-^bf6FLJYkG>lA47#y^6nW{U5 z;t*%jjNNQw_`V_T+i7)`$GMv-)sH1+x1mKFxMl>sBPv$X7{PS~Y~q=Q(0TOE^}fvh zmyC&=*p4f_?w?#cDurkjpzH`(;iJ3(;x&7xW*L zp5g@71pXT6fWMODJQWej0+$rFA5wax4nn#Fx-f(Kz(*xKhR90wph_q=N zBIf`LVi-=^;PO9y+U)`?@|992%^nIuAu?E>R50S?WsA2B#5DJ432`)CX+<3kzEqNcaW=Our5YS1OJ8S)-glz)(szVAZi z9bf1(0mS27;F3nK1zq2Lc zjjQ#-!OLNcAOGX)65=#pyP!q)1Bn^jv7h1?0L{;{s zVPu4xOb{9yFW+%p&alMmYdkg2O%0C>0cBp@=U(o$GJK34I;%oPeOOCe=x-p>FjK)~ zB79n>L0voNAfrlkn;sG_kOZAtY?H3_O()KU^186eO%7?{U1j`EU^Q?NhV3_33|-5G zT7`hnDDO#d4mqQV{^e?K^~18IYhoHnq8uy-foy!|G6)mtjEao(#pU}__#VK1;@v0e zY@~~AA_S1?_i02BKUASH#WzD2uC`d{|88*P4UT+ASVV{{;7lNA0^i(|kBiugb3X%> zoZ{3rAQ%@J|AZ%kZixv59ubccc|W?K*sQFn*Gbtx4M@W|<(|u0M>uhQZs(MqsK!dG zp4NRsyM<2Pvb~cQW-3q?=Qs6pJ?MtuAP5A8fZL4IN}vYfd8Wf$&#EdPoNKpvihx zRV4$xA8B>q?ITP>%Ex0?ZOWL0lImAl7Ib>=EB8Nc@be}nsc#o|JjWc@^CTmWu8}f;c?CE7ZV`sy8gaxxxge&AuSMbNhIGVlkmIR%`Wp|_hl@Aq6~Jv zIy*pH^1*3qiS>7nJI-}_f@S`!e*!a`d|<=& zX6B=yKvl+q6Oq&-#p@4tzz+HzRpD3mKX{3&(KELRtHnf44FpFx%FxE2b}rpvyRL^( zb51?nq)+a;V#;#qNQ~Bnjp-?DyWi~)a=uSJgW?7UwX%we2QFP8@OV&(Jx>XjfRf** zl+2_e?*r4C^r0Xz}y#5;D-!6&acPW@EMDd8H2V#L##AImK>QZ!YFt+vV z$15gxQ_iI}Z_J0G+jeLZD*F{Q6n+oO?pK&ULKIS$wr#It|9uyhnD9dG)oCt6qx}E!nh!n-Cxg8EL@mH(jk$1LAiY*Neo>mB!Lb5-_LH6Sx87o zcuy7q5kBPqfxnCk-=hUFa4j*lv?|Kqy%w_kI@{uP&d5{fcu8`~-3WctlopmQq;tgd zl6{J!mSne~{I!XtiCUcoE#boVD2*@WlDiaF0Ei z*Q;wj!(mMhburYX&kef(Q9#dxE9Mw}J-~-5lDA=%hok2LZVS?^A(~NgX-ZX8HTut! z`Py5iy^LHN5f6z!X+_-z3l($*%?@{&=&9<&2nvKLh0Rt4<=yXrN&=i^{nB^4ajyOv zo6fr9y9-SNSzQWGo3{F%G?wGpDeT1^c~_NFa^A)zoH^8gD|4=;mr6=@ooP=}3Dv9f z`_^JE4)6g~>7uHCaQF0Q1n>6?1%ggyZoP+J?-foR!k3c7D;#kx5*jQERs2CZb_rOZ z#O4)ezLdG3sju&gPLKqR{TcnUBt@XQL|v2+T?np_$at~8?&zlC16l$lpf_f!Z?27r z7D0M|M(f8TEzSe1EGl(9DW-W$vy&b-wIw!-gdV!umYIV%X8X>``yq1L_itJV*XN7T z+v$nBR3}*^)O(+x_RI5^my-)XNQ{ZdI$TTG2;@#gNMzhK8wp<|7NOuv&FkIr#Az_W z5r@zin0n+GWYqMqFw07lwj5yz@Cw1jmT>uJZ7D->(>P8w*j8XbM@zs8xg5EL{3U;{ zMS-fbKZN<45M&^A%nA3Spn@<$d&|>GkOgn^J@*yMpgIIM%hQU^H3}aj>(8iHR4jDz z^T&Jmmjm;@lzPlB?%xwBZ%7-WUt9d!)Z@1A-J-tokF&L*p~6NBeV(`F1S*#-%Z@Wqy_po@H(sU_HrP8KpUx>Gl3dHfr!PF^ex_im6Eu;v-_ zeb=2iR_a-8R5>He$M;rA{2zCANqTuRP%}p(O`d4w(~r)I~QbKx5w+lm^Z(SX)`)fT2YG z;to=c0;1O~_45{vLpOnbJLu!JM~^@Y0!roUIc2c>;nNS_sp_Z+(9P2+jIRC9toxr+ z4Rr^!Nwl za{S$EJh#KV1CtlIVDEs;CumdN&qtEx6<>#@v6bHwA2Av(b}~*5`_v2N0M=B}2zpVn zn!tz?kOd4c`W`r#2)kC>7r5-`C9@mVBmTbg%_*QDImCFqlMZW_d zV|pn1SuxXA3di8HM;i&#)j=P(GXSEsx15D*WI?f=pamYjMgA%B5A$Xv|{*uYxEA#r66nO z0hum}ALRD<*HF7Rq+|py0WgQIeKi>`Kt2Njk+Qxj-Y)LEiMus~f2X1bQmGF$sGU=^6nv#3k$2x=U&#Wmoz9W-NLPx<5(kH0-xH{Ye6S z0(11v``w%nbHdRZu#HsDgQ{TB`}oAoiX2|SZa(r39jdk6_)E9L}LKb>EFv8LBxMc60u)TVr*WikGa*n0o##7p zYGMQ=I&u(G9f0VI@pr!M*xU7kRsP-JpsA);JNk@bVD^b_XD)qzO;5^IwCcU=>{7Cyj za=t=@4E;#D8MGI~bc25L!i8Pfb~q#>R9Z2EVkf&le9+z4Yl(NKP{-ZE^#f^Ivd*dI zjSNw^Lhv)L&zdq8t;L|Wd+%_eh+~NCmsRsr(oYWA$QD7HLbe6KGzp2lG25psr7PXX zt4bmi94oud-bmsVYM&d)$nFY%^^JER?(2XW;^w6k>v${u>KKZ3LUfy7XO~sAAS9BA zVF9}Va3bygtIM4q+;ks(v=K7~2Tytd66qoSyFZrv^_!&;TaqaS`2}$?LPq+{QMsc@ z?kKc?WT!!0gfk7I4bOFqoE?$Z+rdqo@U~ZbKnWyZv@SUHew1hMy48Lu1w~hSD%siT zrKb$xnj~8cVi#J35V$FA^t9k2Zj~Qe+isK`I-`6iM}3VPQ+$k%9@A5uyQ9qxy`RiI z_OtuPo3vJi?CdFBZ>!!T5W71@*HBE1MdO|KqNch!(c=SDCVc2`z1^y(04M==wd(rH z6aU2HKZd+dhq~$X?CaIpjymuYa~Nk9-V+2ZjY))clx5YwgPx@e8}WvgBI!p5F6Wiq|7ur+d>vRi#TIz=6o@ctm*@W^P^=Q?~R(~YyrKK=$C z^)`P^L0E9p4uU>l1`C!DR5Vyc@T1^Ikg!u**CAcN;$;w`+!wWOAi(Tv^t=T5haU>j z*N~6IK+{R?8$`|dLMllXFT(V!BvhZ;f4q;CiHkk>#%>Ab1|I*czh}cE9H<1>?rmeCE^Qu)UbyaS3z7KUbiV4a#<#-105nuSVP?G2CYe>q` zQJ-I!GiMjR6taWshY~-_ZES7RQ2mC{@0I9^5c>m81mqvO$(x`6XGU7?2LL1%=jX;cL8c*_Y>!cTSUw$3!0+4Vfj2~k zeEg={yTxvCxUGPd44|%;9xnYXzUO{a_iKSTA{Ym`wC}=)J3%8WIa?%L05P6~s|exO zUeWTAA9vIE*AO1WQ#kWU)E3q^sbC?R>3n#K{qQf^PR9Flua)c~olYK+=WP}8S>MyS zzh_?M?4n~+nB#1bqoTo~jEIDc`p1seg3;NvWxM2~kog|6bTM6vumQ2j$qH9A7sRk< z3AXpr7E1#yAXFmIG=Pe|i;57u9(nE1aX^?uN-v_TB{v_*w1N)w9*J0o$_icfOVspH z63*!2o^EbMs3d^3r;0q2-&+3;Wr?Dfsf|%>;eE$LO!OoK9fi|vqIx17A=JjY5X1t$ z>n3R-c<^*99zfh`WcDV}{gPmjPf~we;Ff2C@`>UmVf(;e90V*{KmFk=UY-XIJE9Kt zsJFV<6JZu27tW!|BE>5&bD`DL<6PD&@9~I5Z{^`|DZiyFy~c;<9jd!Hf3g19uUx6y zKQ|eto9(S{j)I@WH$cSlv}U0_6!7t2MpW|eTQS>oIYrt1W6?k023oPI4}!l!O^N;y z^D>Fz7ey3+P_)xAXmrtwV3m>7bIcUhpBx^ousCo${wt9-4F0(8jH<%1%ZrPMIC?>@F8+oNKkf&Gc$i8e5SBfS3|=q?G|qi zV_>{v?$N6Q@IVOD?)Y>5m)o+I-MmWkM7+yZ6a|nN#Q)$B!ITOlAAkXy-tSv#WOdmY zsh{QDw{W-_%Xg0-!hNkL82Vegucrr+`wqz2$(W;md&4~tBSU2XJaCtl ziuE+r)aM7upwqOKO%Y!#xPW?^`SC$pBJ0r|Ny5Htwo%lUVmTCIsi&)(ltV9YYFNU0 z57I+b8k{d#T2fNft8nWopVl}RbxMQ5i#16{d)VkZPc*$yS@^`dQ!Yo%QWzP7=A2@U zF1U)Bxos=-iFSXr#NVyU)VwH>05%&sHgplH8ae${Sa*bj4yrZs5Z~g91Z{Ry5a68ZZXjtOMUn&?8BlAW)>#ar-g|oXL-jg*mdjZS+zOnGp z!n=X*xsH0JUQHLc+B(@4qFvZzO>a=`y-tR%Ie)4vVtO%u!bl~M|FCy%oVS-UXCO~$ z2Cs8XJ1Y~@Q`pssegKNhb|JYslDPZr+sk0urbp2Vh0fyaWCJ1i0wtk+4TeLb7{Zr5 z52)dn?AE!hSdK`yN(c0X;H9pN@R}g zJxvxS5CHpi;?U{i^5{U?o<>`AokdoCOZBB(U3*$qX6Ee5b0(wNdgUaZq0k`hHw=FiegK{HeH~Q|8$?#`jnz31VqHWQep!UPmBtpSJK?uPUGvQkky)2GQr~Rm&uzaCw7g!g8 z%t=T}To+~#$ZMeA%Q)Bj1~4FY^8qn2Obj3}AVliQK0nQo*?|FuFc|?K1f7jv9!z9Y zzC9ln(T32fdP|Lvb~18SN(4<1d$>6TR>7u$bDtr%DnU4gN>1~L1J1p~)-(tJ$zWz& z7x)F|Iybui$G7o+(ir(WSIBYZI9fkvbFV1BKVcVA*w550CacUHqSV#u)jZpkZbKLI zs>k?j=~bV`lHV+}{XTX{i=q>awdQ{^yJ5=*k-rL78|dsp&KRvb>PihgWwN8gj%gn6;}xTN#pU zg1HP#(DF5l`kc|paNa9lM&wNMF0gF~;mW|_vk%R`WcJVJa4jGYTJDP$+8em_?7#(K zg=5o;3I@Gz!99%Q4GvL)cG`%M+Y2IJ@XLr)rJ#UJ4*L~)Z3Msp)df%kB&K_ zecf4Fy|T|V=gm#NqT*jZr0n9g?tGUPd=z+O_t8gPKrfJzA@95g;5iUBRe`5?a4>8k zAAzLDk~*7Do){Z z90D7T6x>C(xB23{CzP2)tM_0F^-VrQnT%f$6#%9(=&#mB?F?t&cUuQ`m_;CmLr?SB zX?n#Rxa!Ggof%h3Hvz|;^&i4NWeYKej7WO-*N`F^wLOM*-@$$&4b!05|JhJ@f)zyNwtaqBoWJ z9LOmu3OR0I0zHzp3-{;|mL$qC*YOI4YWpXtG&gOY80}`sd||~QezCo9GmecF1rG9I zNQNXNA4O$4El_U0{gKwdCV>Y=WVXk4K25Er%36L#NrBA>4hmH?q3(}FzG}9C2#VO$ zfG@%Gpc3L_iseh94uB&U^%{`*Mlyyyahu}k$U*3rE4J!1y_?aKgpl(;^(Qm-a^~o3 z*cev-?yIe7ndoMn%^aV6Mq!k}^46cV)8$9uF|*muziOybbSJ36sR&JmlU{?-&50;R z!F>V+gDzqv)eTu&umYiN+x^hOl)6{e9V)o}laY#CXqvF9@$wnG?&!oaofa4=<^K#C zerU$1g}m6h9fuRBFhROjl(XBY;%$_@-Mg@OB;cv zX7^Xf2)Y+_y_Ti_R92h({BMQ19=RIAm%bk&P91O(gY?QTxM@&dJmW5>S!@LJGTL5* zeN6QF(JB01e5g*L8Gx$aDn$c=MQC6D=744IXqT=1bpfV1lspAX`72|qrLL&ZsNAde ztxdMFF=aniV8STW&z5m<(N1KDCxG|9Y52@yx)I{ZG_o7glr%YZM*0|TGY0e{`DgK} z=xtZzZL{q+qXSA=P_MIPE!AHJ1>Pv=8h0Tt3&C0H0Y0>x`<|sBd@FmXc}e7P4O(a5 zPybK=V@(4>jpxG_O6WUx)o>; zAkuQBJ5#K%N>9T&NJ_)3Ucp>C*lUOOdzUx-WL$$kYk5?vH-(T~b{V*9NXK3wew-9p zgdNPX{0b$G78;xDdDEZK(n4bdrzUC^guSS1S{gMLmse*jF!_`c87~$ePHtGp*nG=h zU~eKE^bW8D^r&P&NF#84oZf6mo8S;3j#e42;~r`^*YSYTJt+CvX`OPNMByA{*IBC0)KAAh|Z z;0bvw|VQM0++PO!eWlp64Y$Io>F>O9))8kFVPvK;kW2&v2`pN$YkzZx@LNhl`u^t0!X<*)Rtt zacz%vhKRK};z2Pgrn1N`PY-t+KqY(;*>BglW0Er&z6fyldP_DrJE-jFFrj)=N}vnN zk=9yTRROyM)4M@=6Z1Jn9)aBK^K8oPF;xZQvV1#+bXoRS`t@|5D(yBYA6r7YGD(1g zmK12&%6q-oasX^s)Mb|h=vq*30vkZHfEnPx364Jt;FT#I>XF)y5s%o3qMw5DhI~%~ zCtyQnuuiC&US}1cF>Is6=fNwJ;V{|R^5|zdmoFJC6CciIsd%%THh4M_^GNETGs~<` zi2OZ%lbai!LQp}R8G{`+@ZD4Jq)04oa6B9K0_|unsJoDd2hj|=4q_ySv_r_$ONqt0 z@;IwFyMO*7k0EcBS!P1x&v8c#rfRCxAH95NA6#s_lQQIO>Qk-zvf+cSJmn2vm2^5L zMkzY&JdWn{MF)eO-kX7qzLNbYeD3Ot%tR5* z1#C-#d0@B!Xn~d92fhD898L^0W6D`Ar>)JGiS7wqcYMc&mz`QPD4pjqw#?m|64Zo_% z-}L4?DIE6hD?@JKxgP2l3J&I9En7uEBGnjM*B^YFzk^UN)Zp zo=TFfL*eW8BZi!Ey{W9-N1DY_u4b2KB&v%grWntqqsBoK7y}m|8am~`0OX#d%b~?n zf^P$tA{Z6*Ad#wpHt3KH)L2knQ>S2|aNa>FJ*z?!@j zT|msg4}ud9Vs%Cwmq2Jye=n>2KCkSvt$`*%sl!ax#c69fzOeHp9NHj2$$xMESZmW9 zSX-1Z^*z#Xmg3YV@gl*&)CdB=Q>a&|q(bz=G4yo6hM~Mn6HKYplsvDY(b1GYQ+>R$ z44KFK5WoX?JnKfy%8IzQ0S{rFw%8kmAYn(l@>$BK!TWlA8sn2#6N5JeD?XTTy&n_E zrLXK3zP86$HCs*-Lkxkwp#DHq@ZTXhd+_^UBPDX1HYkONxhenmN@(agduQSKH98#K84J;-`WGE|VqZPHhf7vf*_djAS zuSyOY&d<)6n@54n0aGV54q$y?nE?ZZN)7YI-owUWBL*G`zz99)7laur9!@)CASQ;E z1*$#7#Ik&k-gn{n%{pu8WSy&aN(K4WM+sj{+cMK9g(G)kw__?gwiQGgfZvHco>mHw8vv{K=U=Hucjeuv;?FGE z;(HRk!+(BB_M23e8)Hlbm|HEFi~2f^cg~CP-`2Oz=ByLpWemu$^XdM=8zaOr(s-rL zM?)iJd<&{4x-~FK1DYcl75Jej8W38$eXG!AZ7=SIgF}pSoV)lz6QSIA@$a&sY)Rc; zGX8G$#yG8F&=VLx@SM0TwLrmuAI3yT63$9=uadBfk!V%au+UR=fRI-UR8rIkyUCCe zXtav4m8;6Jk2*#xG*DY`zSdVt@q3y1?@1Q*aIHXJ-_a8`RfcIcJKPPH7mbdh^~Ngu z7oHP-!Os~ap=G*S_{N!J#-j)@ZW@`OkxLYeQxnbU=!#Ap)hcub?eb(WT>upfVHB4Ij zwqd->!OfHt@CpDl+)apQRH5w8iHj64{Q`bqdSkMXaLJoTWFN#MB=505q-x6n@0U+!;g4HPD8GwP#FK7_nA zP~Q1iffHpnxq1LFV8vnGVJ)EB5?B`uGZ=pzpa=X7h|q3Um{?6_4qW>0vyR%3H%xgR zw-^!1qF+R6ttP=$DPCEA<;2>mjy$S)@hGyTPyiYsW}4!r{ZPXNRC6eB)LKb=8g33U z0-*Qso`-9}7^$!?ZD--DF!%Bq4>NjEz-C=pFkmX^(jfI?&D_avFESM;LQdAT1%J}7 zjozaly<4Q}g`*@mF=Va~ivX}W7!C2Y#Wyk4rQJ1Jfs^EZ0I;cZ z5{2^^Mw(ripXhN!&M?V|A^y(4q6Uz&WL(5yqQry7fx=Iq@1v4VPV~sv|G}Tx4p^K! zb+66*Lc`hEx~9tM8rEuCB^MsXScU!x4^0+6UZ3sEhCVUsIfjUl8~a%*^452Ie0Gj_ z0T#x6Xh_JwFQ~B)Lz1+=wA)TS3>XM*6Uf60HB&W}{%4UK?GLD0hA>dwPzi=Ni2aKp zLKsI9!S#VkF@g~zzbx^Mt)=DR1kN<1G=OsmrDT>DO&6n3={k|!GJeVW-s?h)Q;Y~L zO`mY}4j(rvD{7dzMm<}qa?XW=Qk#3VKe98LZSDaQ!Bj3_!idd=LbzMrbN$vekow!V zIx~^wD)Cuw&;533PyHEj;1z_Pp83`011}1$Co-#83<$Pw4FtVb!I2-^tGceU0Us3% zSJaMo<=kVf&MA7>H`6N-DcLoDsj3Y8<;wb#Dt=0&EqZBvc zg?EShV)_IKK5qO1a-@=a7;zBv$$(B6Ozk z#nDhWeU3FGQ#&kE>u$5RjbXKKbh=iHjG_FR!=GV#CD13tw&eCgDMb{&4QaTrbLalo z;A}bc3WbxOj=rAneGC&Z5v5}i=$4HVQ&{`AkU2n6?oDrQX6De}6iCV9qo%Ka_R`K< z?Jl-VvbWIeApp82Tk@FgvhLvesosSXS5s{39{&k(ifDJUoy%)rIU+mY?B)Tofw=pI zre`WQK8=625WBwZv7hv;{MP(~1J4$|3irENo|rxPc=?*GB6orp>9Pp=#>5b}Qc7%+ z@&Cd_olt7@9%|8z7~k>r#6a-prMi2+&Xzx2c#iKi^?7N4?b_R{XU?%_-SZE+irfqO z`%U_#rq0mvkO~z*l>1I;xs|_?p5oqndgbokd7u3*)qnnZ?9>_Q-#`-SK?U4`P!i_{ z@jW8#FmwWeBxE);@kDcT6B|G}v_3&%;28e@DM~M}CZQJl|Bli6RTw1L2k#}J-Z76O z^-`?!)y2aa$0FgkPtJ{2^M>V+?7E+r0TgZP0ML$ zgmgI+I6GPBmjPT4Mq0FTbI!%b;Lurm@Df!ag<}T1n3Ff~;&Bj4bRI|))ZWZ>(VG6A z8mI&nmHNwkNT3!+_B{M3!AO%fza!NOLqUvm?86U6Z|pI_#O!YhXf z728RcC3Z66dshhDlNuTta;^Ad1Z}%$GV41sR8{zUFo{fC!Vst?s~;6^wtlP;)(09* z@UZnPqPE}e)v;DA%WH_I;;|cM{R$?T4Ah*OI_E@<=JEANPAgHpYNa$pv2UpJf0`FU zQzIIag#WFqIMVn#s7eye`kLF%)H%a}nPFpZ^i5nK`A~$2N!H1xfhv7)=D#QV%%Urf z^+)XobJEf>aI@nzlKJdNqq&1LGUO?aVa6r`Q^4ns#T6aoT1DOm2@r`6bR|5!$&;+B zDe|} zI;zbt3F_u30J4%hwC&e#pZ?t_6N11ez7SVDI&z@r&(hmJ@o+;<$Gthog}yYwucp+l`vTrvJza~x5(Bm3h+{9W^WN4VOehah$XG6`Irt+PClD{} z%o=EHzoCs%YbEYcIjn~XcvAS_mcFZ^to)2nlndJH2t~uAn`5I4(OD{rr`bV`eP zd?`na!pod>caK*JI@!33t*am~S4040h<|WAllRJ6x-XnzckURuAewLx$ zqyeWAFZtQtxo3GNuL^9(L-!24xbnOET@k4k#eR~TrC$5@WZNXe>&p9|BedT=U?<1l z!_?{jb(kLa_|NI6d^&)HA>vDdW}V8)sk=7j)UN-_G5LS{rprgJ*f&ZM5 MRg_6Re%|B%0ZXVUApigX literal 0 HcmV?d00001 diff --git a/images/loss-focal/pr.png b/images/loss-focal/pr.png new file mode 100644 index 0000000000000000000000000000000000000000..84b3960c98416646d5c7b40cd5d3e4966c654d84 GIT binary patch literal 18290 zcmb`v2{@JS+CIEAr_vx5g~||1NT$ftghhtT8I#N`^E{@c6tYa2m3byf=AsCp%rj-S zGLxC_x|jCe?|$F?|9|iC9p7>M`gQ1eJnMe$;k>TvJkM)Alb4k^L{3AF!C(&IByTEU zFgy4$7_#bpd*EMgC^%u^F9F+IYPO0N2DT2m*7_J3U0X{t3tKbe`)BR-t!<1g@Z21H z9G5SiHL|s}v=QXwH2>!f92VAwoGfFf?!!a&TT0%w!C(&SqCaFQqRGY>jCeop<~1e9 zsL5U@#~}T#rCA*UpRqLm5%m-4`bY0vlRrXt^Jb2Mn3ZMJL$c$awZsDb1>+>OQm;I{ z;uZJ8YyJ!ii*Mz=3L`422ihT%R@Zi2yB4?G)=2ubOr+*CeaE}k?6z{&^BZR*{JB)K zt_s*xzG|NDGOIep0K<8nvsV!Q@+`V(y%U4E=sg7Qt43aP2!qKvPB@Lh++$^gdHARx ziHDmKU-rPg(&q}vFqqKm);pt~;ETqYnJ!#VB}VX?wtY3oGp>)|T|B0kQvA!8&GrkG z>T=B1@?gN*PBZlnmbxGB?~qkx3T1 zA5t9N$Ey2~0&^u==ud~9NpDd;IXU?|`$_fs=&P!1s#z`VIv$xRDJgrN>us*D%sH2~ z7LCl+akl5`RS($;5?Rv}Pm8#I*mH=6F`znrx_nEUvt-6=_0MEFXW8=gXhA!2HO>6R zFDG@3zQtkj|L}8<-DHl=@)wSF@HWBX{)E7DxCj4QGu zGUJLC+cfN|s11!qzJ;%jif*O;tn^WJlyP@2qv17CO166JN^yyPUzxX1K zvgP}|mX(LfMoV3m+CDzq$?GtsSvpg3fb2!a2nD@J1~IExmcr*oB%is04+ZVIw#Qt} z1zwNMb-|U4)#c({yBMA%dSWKpvtt>JVU7s?jo#1v{o4+UuE$+_w1<_MS)4(_KbX;} zR2!B``lP1i!}I6Q2fuoia&_v%jjfGokGj%nm+8`E5w}$qxH&gBw`hnUz0hTvy`r6M z)KLHH%k$QJQ`LT6n3pD-M&VJH(zgQq7G*0*MfQ_vU%yK7ns+Jj_gFsqGu2CMPabla z>@8Nk@#NqgTibWANs`v4isk46lB<@o9j5yT3H0vEpRzY#5sQ}kTtb3_8N=!l?I*j8 zR~N>I)0DNdRU3tuq6F%<2@e$Cwu_`7l$8?+V3D13H7+!@9OH7Ky&k1uB`t_Kmx-r72O`ZIbHC{k+bF#de*wuCleMs~bNLd&mbd%N&R8itjBlUYQ%t zUuzN*jqOTH#xj@mHlrzsl;hl+_w8b|T(%k{6gD)}|-s%agJepYzXa2vdsDjcPo z?8=wUGi+>2l8JnW?-kVHHGqpnDPwA1$ey_^X~UWuz^f$x7^ofC2$IZReo;f5&?9|u_A8o z9HzBW}iGcNd2au&sn-%%R#I3^TCz~GWqEf7uD`Dh94GL{&+^n@%!)2yy}bE zB^^;#Rn*LvFE_2P&o@?`(i0D$GiMCP1u?H^ZH*_#(%=k!yt(B*36GyM6?I+CdG_oX zm$37~rD}iLc_MMq*=eo|x zFS;lBU^gbgklkY!r;4ZHxf3m^?y(nY5G=V*JN>wIGCWJGSYtYJ3mWGG zef@Ab(Tx^O>l!9;g429GzndGq$GTN>${mLJjivsz(&_|U(2L5Smx>*x`KnIM|Ma1! z!HvYYOtCIG=}))*h?l43U~8*xr^bN8g+*7i-PMsg^U4(4T2FSe0Zm+Hhe~ zF_bYVCPq7J<9A*oU%W)XA7Rdws}7y|VIgZav;cuPNy!=0epvI|?n!qKakTNqTT+8q zSy*QBVJ&UO6T>2G8U&JSxpp4%(`Ah#OH4>extnJoB_-7qySZ@TmV|_9=UaV~*0d0v za!NL81Pd@xwynylj*bQRhdhKO4K7s;3=AyuXsD_A@%n~O3(VhSPobiKfPk`p>E*)0Lf>c4QWw{hM&5VhgDQW{ zn4ab{dqr{P$^if854Ph9Ff)fv^W7#a5VOlCDi4dcz^jIYg^d;ml&{Y{S5Q>UcU${o zT^S&jb5D)jNX%yB+nu#PlT;^8Bz^vTGumaU@NM_T)@cSfH-<4zNjlvS5<`N5;vYYL zOy0i)5r81&Qz-R>D$V3~N3QdrA3u-ffLOjstJKEYQagMU@4b(nQrRo8kr{CS1Ng#r zLEEvoeAD*T{E%PnXiZlomM--*qcFAmzzL(4lsnFgt*WMreN3_$bV?AeIA)n-nr5YBI&1Pq zqip;Y6ciY7?V2`zXDEDNza^Bpt*uU_w-aGoY9;QabBwEKWLcTb@`Z`GhW0#~zi@6t zEGsKcHdzrR5P6Lv8k55dRIrO5!4NJMbZe#S{|S-##-ZVa{b^mu^Wf_dc8&M9QR476 zFE1YeUM7;S9^zkduS36^l#EQ~Oldd7%|XY9tB`6v_Iz*NJ@M$UhzADE zE~>wiL_j5M(VSF|TN7RQej`HEqb%um_#5SP6`Y{^VgEA%zofme&F{@MGPO(9%Qsg| z6I&xaHi$Za)h%g{&n6zgJ!b0z{qp#Hf97zQ@+4 ziQ80;Zsh`iHI|!OQKJAK!d1o3$Q07IHZwD$*e89q6)fRL74mFLGBYt!|>j(QgBp&jHR7d4iIfn%Ym^-Xc3iSmlxW z$kFyuw8jwb>|kwG$BRQ?**O7kmg$nE@V^EJN%3`YqP45UDKBAg$z)@7QN7gJu5i=m zFujVERW9TBDlt2ZOB}GqsL-8hDJ`K(=}#Z*TBA>1yIVK$A%*h|S6koQIYV}G7kg|P z#~~0ty053V2uM5uSk%fCrupV5gLn#@)~>hu&;99y)yI!CXBPCO>3D1?!^<^?8^)x@ zy079IMYl?dY{%cg@UtsSD=I5_-BxY=sJX@6Ru_IiCgmpmDJUq2*Xq~j)e`Gz<4b16 zHzqASngNdhV=w@7ZmZ+T=u%YxefH+Y+8S2fp~uPx_Sc)0`BAoW=U#V(5NdhwJ!*BK z?9GsGwj@fQET{G5$M>W_3a%yW@@HYO93{k~(GC-^JniTJ!nrYmbwsf%UxZ&sNV6Q$ z(0s?)`!Ft3NM43lA(N8`)3Ogod0;obSjN2T-5q=T_ifoa*|8p*cQxLdrS^vHosd2o zWKPt{{7p@veDmm9u~R>Z#LR) z0r}iWlQbtU!~kYKzBb$GzTOfzi|(b=DKfBoWnfoY2}X}(2wEc0bYS=m)z~xmSgT!j+``8JW#N_12v~|;z2X_~BAR!{xDTnz+G5o6i z?@Lvug2KWKndM^4y7Em8qhynfyWXW1E;LEkzo6!ZOyZB0s-~vdCgf2OQ1qNiZZ?MG z*jVMDk^=*&rM=n=Wwt&28pAyj^A`P=T0`iGgd?wAxhQz(_Y1Dk-NVww}Bd{Ebsx8 zXq|b6a^7z4%Rl#Wo3yYrmpIu_($V47^G)=#3P))2Y{#3hZk%V2m{mn3s6fqlw+*7H3qZmu-*#@A}w$A>#RqoqsQJ!<6-Q{2?+^eK2UC& z+-r;x7M%aaE!Q;)mtYYYY0CwmIwA9iidE?r9-l=Z5M0X#FW7W3@iX1H1D8rhEl`R&4tHgOnAuJY4ZhI<)Il0-XR=-dA8q~o#2lZaOef!pSdFH2>j~7i& z_av$*qht*;`+T54zDLdU4DE+EZ{Bod@IDSUdt2XL@5(@}G<8`{PoFof0(D-_#LzO(#U;T%8-@9Xc$ z%)hd-GSO3*2NkDc;wD^eYE{+AgrH{v2@`Unh zabM#zqIU3Fd$V>?B|WvgI#`DB#8O|n=LxBNTt&t8OwB@6rYJf(et_fho0w9#1(gmTa5&+kr?wv6!iW}Rnke98-jE;=7Nt^W>j*fSA5?vc2>J+ z^k{GETYYJL1A_@jqg8cvU(-2{oht=Y6NLIk(EfMIcylt*mn|zL{;F#3ODQ~TcPNy{ z+C!mQ?&;BlEbTVH;c!+BM6mb(5%uZZ!sn$XL$)maZmug4)uzE3@)FR8F>=El*;@RwngQeXUitF0`GB|Mu-RO1~f-Ea*2ynSR3HyfV``Fe}PHgRhW^;X1bS>sEt)LPd+3dC~Euyr6w#y_hq6GLNWuOvl^V)sjoy!s) zrRfCQezzs#)-+}HoO=&}1yC`}jb=$8M8c+HyLz=doBirl4ZuVy74w9_M3Jz%)+0Z0 zgx~g&7Ozs@zu>}N{G;+}K`HoD2%}6$e%N}ubYS(^%#ZW5BI^7;wY=7XwT##GDHASF zhA_!+Y+-}BU-a(BM7j65Eoni`m!6U$2~-V(_>1oh0YbmpM}ZkoR#FPyoR8fyg0LRJ zZ_$VAZ$71%%w2r8Vkvf!Q*chW;Xq~9jy*6E*9V6_rhvm&GpyBbOQ}Q=I+%UY^zPaHmtUX-3K^a#| zNLsJBKO8MDBgkdEnwes|F5F8;`;|?|38Or4FfU9cC`$iHnwv6}4MJ1^8a|+1Xjar5+npnxd*N79wim zbZ42H3lNkJ$?Imtz1kc{)5dNtiu=)on4T7}PC)FBFc4JEz>c(}DqgUgXu%O|hrS*a zI74CHk#mj0XKUlBf7T=V{GfeC);4fqvLm;0$rXxal-x$}7{AGD5R?wOAlKGc>arN% zv3`SK3us{i80S3jaIY=oltff_p0+4?O~t0NYl7`@@FgEDt3dlNx7yZA{Et$-R>dc$czWL1;!Yp!B|5!X_5VNY9@#6SrdmV*g z`B#t9jvX;Esl`Ym_5;o|4| zFNSy(`YfneT0fmHd}`@3UJ`G;pHLYl8S+gcEkig0*NZV>1-`kU*FLhTxtaID*O%m5 zZkKJxrKR88MSOZi^u?Zh!9f!akt6{NO22*U9hR@novyUI*3L_oe|Kyrym1Usfvae7zXm-Ue3AsQY@SjoZ$LE^>ob`;nz#5i6D?l3kVNJqpN zZ_SHt#hYdoCfVz39yd$MGCZ@pkZ@U3R@NViq@A=B*Tr;mt2w#mVgrUmKdXpbn~QC> zZP5~yR*0`Xm>%*?K+q~6v1wQ8I-PW)8?CjsvPBl=$VH?An6`63HLea)!$XR_yq0f8 zD<{_7_il+X9=Vs5Gbp+&L(^K8HZ)5^Yo}_V;TdFpa$v<=W$8|Vgalwl#v@!Wlg92~ zxtHrp@^j_~2yyESfAMT%@Fi>#No!uW)big-cI_sW> zCuLXN`w$^c7D18JVvYjxoE2uftFn@hWjpjzHC;M~(s+!?4Hfu3v1bd(t}AtB?uZa? zcUN$zQ6ZzkACRBv7LA>8_O4O7mg~RHm)d=5CGECCFRYi%b>7ssSj8_Ak-_h+Hc#Kv zf+Ux*bwh=$+E)mBHL#fH8kYN@s(ez!kjS}k>oAH>g>`0BGt#*lEHtkkiDx47nKHA*!r7TOHM zRA=N8Ca!nR_siO=;cvl(ppTu{ID6SVyUU>psvh<*5U&{SZybiN6#apVqt)e2K{Kccc)xb%VbJI?NID(uZ?wnpUT(3D$-uD6lJ}>McH;!qcC1dHn&=# zv)y&H+^NKxesQAQE=O4mrV*QdJlZTEk-#7iZ)cF#*#cAqs1Qny%M4zT&Evtn+G`VM zL5Ne6cZ=GxfA>9}0l$Uo84lo?Rcg{^evRfraDY57EM{dyXmO%IoTGX+UN&kt{Wk29 zE+p3_AD_x$Fp*ZYxdD{-YZayh&=-7u8e;3v7lr5TaDdOYOI0^YDxg5oijaw6;1Q~LfY{? zUiXLFW>v__ZdgU@V{b9}{1U7)J8;CRqR^7*hQm?as4bPJ@wYYkzlj zP!i=@l-jde&J3e;&!VeanT+GCGLO%=QzcM#*D)z(UApCc^4e*K3)sqD zDwyw|>!r)=o_%hAM(7Piy&iEOaxWcv@VU6M29IL*DZ{RLVy@s-U&d2v@teCan6!+c z^@7K*_VGRw6j5a@@VEa=u?N+XQC0Un(svD?AgQ1So^F`W*-mjiNd#eZ_h)gsSogY| z<4|Vq(iwiD3w71K-Ap!k>lCDzvOV=J{f}2_u4x*nA#F6CJ zFZ`n;YJo4f$o!M==u<3d*iw5OJ+7YXAxA5E#qZYRZmOvq+}j3@FWV!68hv=AmvnCg zTeO3oAC)5M!ibauYZB?1A5Dsn2cc(0%-0vbM*o!Yu|V32%myjCyX8q*ZbcMH>P<{f zJQcbFgE=8KOp<}G9*4W7XEQ_ZtAQ}CMi#Ptm!ULO%_+(OBa;9)Jf6*(xZx_(1lNKK zAAhuv<~12&X>kQDAFi$A>-H^C^#*w@C8v>~EN{>!GnW18Jo;RH`+tm4YI}?r>F9&9 zXoxU+j(gklg(d0F+q^=eZT|5}(B?nxAkC|^E^Ia)!-g}U=&_wYe;qWN@1wCE?oFGJ zU^W$w#-xKD$;8BD{Oj{GEDMWKoDmr&hq>Q`^+}?MA(RkO($b2~&P9AcPc=keW#i>l z-b-;NC1(pIB%ls~IG_ckZEGE8c?Oeo=-8*d^kxHJ;SndW{B{qZx-Oc0-_2w2?NqeK z<_hGvF+d0`)UstOb!-7&tO(35&;8H)U~K8YozjT7F0-Z!V=x0lQjMWl0v9t(m+VKv z>4NS|$Rk;pm=bwT6>G7wvZ|N6yLq>3I*%uI<>)@*4DT$oNmj|yOa=K?c~!vM+q<^D ze$fTCl?PME>FmI{-WZI8;#J*;s{=s1)(p823WVtCT*%J%yf}sN{C+R5^CI^&^F8CcAVm&aUIA@# zvONX_N~l9r9qS=W&44WR4#;-tj8NOj);2b_PZsoN`OrB_+Pkc1)(>0P3|qHuoPVWtLssXJSN zTfg>rrx~A2_~lz5K9jUfV1$KNhJqfhqQmn1ygb>p@e<}yuWuFQ9dTyhTSKf#T^+r(p(5XXL2iQ z2GB2ktp5KAQ2u_Z623&d*1=`R8JT+0d&mC8lh?(8^xGfYX?9NZ?-*I59VjE%k`O+6 z#x`mBrXs{Wuy0Yz7f1Rhc~R;p(#yLFL|r`sj(RdO9>9qMlCKrys^FI| z<+IAWC)*I;|M>APcC8|%O!fRG(7Y3tmzSR$rUNI^^Zh@9KJAR?`4%Ohh$=3i{uyux zR#h_8UZaWwEEw4Ktq@i1AKB%bX^kRlw}1Yuws5qzwgzes^U;_=$$^!kBPSR>=gFbd z!32T=&5Pcw;Nat#I^|^*rlFiVSwI|^^n9?Ax_w&-I728rc$|bn8h>$Iyr={WazCtm zl)Bkd75t9So-=~BlE6cN7r=cI{#RRDn>G^>ebvEayeSdbT0})8eD zMii)9U%q@Xi%>ew1W*3} z>K+&beM7^wd_zOSba)h%b~9v=AT`zfv|R22qF6{@U%zJ3zHZz$v={^mfL7&UQ!XQVN>{_+Rs0RF1Dj{-8y~Xo6KLe{}{5U{GPyk*o)z8I;KvLDX4Okpl;p6l?$m zaq%aN<5|U1P4MQtFcMTeca^yn1A&zU!g#WZ6>QGA>vs7{euUG>&8c9UXkD%JIdnP+ za(EMPSHQ9;gmGvgda$2yu(#Nu4$sNXfnq-J+Ywi+-f)0Wg2Zy9gMr`?rd|z4WPJt8 ze=fAAdaSx#B;IPYmXoX{Fp&>!OWl^Ie%Y z3pG34cG5@#K$|KR-YvGz6j>c(0I|{qSzugGPlPzGO%|BWy$3jc`g!BMI(F1njhzYz zU~t}KW$8iUb1mUPzLNH}z!GhSVqqR}QS%Uyw*OIo6>(u=(Hy_9T@*R** z&r1aL9(i|gga+XyO_;_ESuc2vhoj_qb>lg8le5@@v$ljtnn|0W*w}0++3y0i_8myp zEXZ9n5h==E(DMciA8mFoU{n}5?UGXpn(;%-?CdgNG|Amu%=Q=u?GUlUo1lkIKzwfl zDrdCF|0rlPPc6cJ9g)JD@LUA(&cYZ@KoQUouI7*S98!4jAmIrGZCattXq&PtJlymC z`5V(S-)NNaNDr9evA{`5N`mnLKp7DD%=M5+8YX^F0+k^1f&$&u91dbLqL{}E<>A*C z9{=L_!b=nC46GS)FoAB+>>xi9%C3RzSD*p68+*cSmQtfVj~jAeTSP*@HUW7>{hd)D za%$0U*DHVLeF$lgYa(J+AWkLD~R>;`^42OVH%IN@* z=W&;-aum?g{0&_vuMd-!&K>(r2a|j8L2&RI>Xh(Av-tJ6feNxBQ zOSFQ&RHkyz=ldSs4B7|#SO`fwva)S}vc?K{iT_2O$!$=8LaOg!2V3_X<;dZq~B$spnM}!a}6NHZn|`-jgJ|Y>m~r+ z30ZufGm#yDAzgDVF-$uxQ97(mkOi&^T{mx#f$`|LuiS#%Y`9BLPY>KiuhsX$r+G<0 zhH#*<5bTuEDw*oaSsQTH6~TXLLJQg1KDyT`g{eQ7-BG#;N(4Ho?i;H(0wk!5V7Wt4 z(2klOZoJeVb(#&bzkb&|pvM-6g5)Mf-#gQIOPy=xrG&#O-1 znt;3phB;9100r!2?V2c3q3}tkH1*E#NOG)ulPB3uq#S_QHIbH{rEvT93$#r^{;H4U z&(0czbt3!qFK~%d<0@CS_EPr4@&k^_0}Z|aniI)1^#}P;!^6YvPMm>v6pE}@DU!C@ zXEvk?u>d}Z6sBd9o3n*sXF_6}8T1iWdFH9#zV_D)Q!gd)CQ5~~&ZSf_>l^cpqHN5} zNp064J`Efj>?SfVkD?_V?=LU!cjp62SHl0y9Y75*>ME(`!d++Yz-P^lK|{q<{rQwB!bmA4)hiQL36Q>(yIXUawkBC^*# zyL{tMx7{%`cNBmqUgbG=0F^~Vw81aoriEgaSFk=CKd39nud@i&xVlOEbe(c{=b=Ce zwR5{Mo?li*dLD~eD`pDtBTAOeb>`rIL#;4@n zLp#UUZ{HFV|ECP~ntD*bCfHzq9~qKbD%wA#n@U5116k3sA?B}a{Gtpl>VBFJIdPQxKm*|Uy9 zG$0Dmxh>qu2d52LJj$SN4JVQJ;0wUp5eNCIPGm1$6($=DE;{3O0m6S?A+HfQaHHn9 z0Xjk=BZ*6Zd#%+`k=QG?V=o~^JVr^m(M3r~84?nr{FB$TJ&VLzfGbCJoEwB1SesE7 z*!Qi1P!q{YWQ3;eb#ihlnyoqw)^S(JgWpNDBYhMsk7d;W-4g;*fUBvtl;s1m__X{R zR$8XuPXYTJnARxC1Q^B!ubF^ zsPx~f^LL=q+XH32dFdYm&4hu@$ow7XiEsZHDBFJ+=szzW82QIQchCPFXxIP8fzo)8 zV5Lh6%MY4J@uPHS5+Reue!l0NVaF`b`3{OkMl^}M3WC$jADF2S_3BB(8txE8x-r9( zw1mM;rTA@16S!C|5>>PNQ_(i9k`j0iUIwjci)0PxkBAI7_IJ1>WFZMscAdU=~6~P)N zO#mVeY*)4r9!;APaLJ%N&LRh6gs{tdIEi+(oBviynbN{glGArO?Vi|tkYvU;?sH*p z4ZfhY+faFQ>1tfazqrsZ?FI$i;MaZwc4O6XVW=e1-n=;vT|o(D6_A@yv848#VxYC! z+gK8rBL?>68$OVjlME~|U|>NBvDEZzSo!)bsC^csU)F-rRS8Tm(@uCizJ4c6t;oO5 zv`fas8LS84eINx=h} zC3N9*c6Pc?!v9SAN>*^$(Oh~@Vw@*fH`e;M+PqI{s~MNq1YKaeaG`ps1B`UhpCMRz z*@XQ9ix&8bA(K`%Fi1kUiF95li82<7AZ1by5Z(L$7?udVCeaJrnjB#ufo=dp5{KV4 z=$q=<0F}&ttgB7Gz2YJyKvt0o!5^%rFB!oMqy>CsDzpA4hl-9}gCM+MH=J zh*&AM*^vX(q2!MLS9(*!-o^N#G4etb_pVmbZw@SpjE|3_420&gEyNQS5;)9qyRSQf zY+P2+4mt1O(t0($N5+;X!k=A(z%7-kL!q(jM0z3|h{PQ9gPPQ(tWc5?z+1JgKv)HS zBZ1*B4RTqM2Jz5B&6l+4$)%W&k5ZkeBl42@k05OdBd^C*en^@cZG-B++JYXeYGH+c zGUcbsJhu?8nK1EvRk=-~xYYN*-)1u7RJ_c;97oJp3Kh_AyZ@^IrwohB4ZNnkb z(Im?agiqok(S?6S5YjM1D@;&6&ib2VdQ5!KAfv6DTcQmVAqmaczpV3J)PG_7nReM} zI~!3sUjgDYtsJYDu8}Y4gsWf5+}1+!Pu$)nF~u@>H~$R|rZBJE7ZLDpqsG4hfABrQ zZDO-U-E7FBQh_ugmA}djN!eLKZ~=5>kgD26KwF*@r0FyL=k(e49U@If{!>dI zP2K8dU$Mh7q&X8jdhzd|qW6XVojuuIb$^F<0f=@364{K|CY%3lQa)Kb`tS1Y#)yrvtn_BpQt*-Wk0!m|fKITCSD+T%ob1e#05{$UZY|2b z#t&L9pmaV?Nyz|}Z1Qw8)+}XW*_o3tFMytSW@SuJO@Fhao4yNA*)@*R$`l04l zcvI+2k_9hU#?lpid3|tz@&Q3mGFQts0?Z{BqW+%+1n@&trTU{&fRDDia%KdYoA~-+9Me3&21R?0gi=+x6(VkKUj(giJ651ddBz)xj@T9PSGo-}mdTp8WtFZ51n zNhGWz-!u%oks;%~#RV&1J!`-8=}8W}8t@&>nHv1uM&Hlofh{=?%tD|X)8qk_{`Xfo z)!%*npvjSE^y56~DwNEKV&{hL3Uo(?W?_>Mbli-9hRH|x2G&#AE)Phon6cQ}gv7*f zi}H;&AxO+Xo_qyCxz#j^k-zmjbUAV3d#?1`1XSy(zc(|60uB3H6l`TS;8|VE2hpXn z2f9ZVX$(`+r`$yDfN>nPBtnT~;^u9%pSQ3PbOut(0_r)ghjuI+p0pwmq5-}5swVCE zm7a#m_pS-S$24c_h?c*HjG;MQHQU**St^atBQ*1I=ZMz zy4n5ixC5$iQ1zg3O3n>gnW=e1!h!g`{3OeMswXvsP1OWsgG0yW$Ir``KT7WX6wV7^ z{$G)9qIkM2eI_C!BZGX+P+z}QBkFY)^U}&qkCi$dQtQB$&-K)Zo>ACg6F`5r0jGNU z>~+(W8n-@B(M8s0ZUBX&fI7N>HAWq(R8&-`2k=}4g#b(|aGMO);`-%}Ae{yC^sDm>48&oZ)SizDDBVM_1$>g?&6_vlDsx|ylnC`Y4*H=c ztO!1Hnla0ZD8oBn4*4^-Mtf4CbqqcipBWM! zo(eHS#Zd+tI5t+L5xcEp?9uXDM7jxV!kLgHY68)%0GuMt`IeU|y=y(MZ|p_pZRCBO zwgS&=nniyZ`T;5pn#=1i?*x@MLN{;|te|U6JmX&_YWFi4CKKye2+-;r4_R?6ha@=K z!aX-A+K9IL&+h`cV^ye$I<7~+b;=7YX)(eWAormi7&SU^LtnAZ7BC9oIXRcOflSP^ zBdS2JY=goKHf74q9cn#Xy-i_g2ZG`%DYttvYfsjgqQo1TBB#;(i@vyEDFp`FD5 zzRkd(`@Q)Ha6`P%4?F@5W&2uG_w9#UAZuo3X0AfrMFxNpBS4}S7(=TWwVR$ru_||MGY6Rv6qNIEiwM!d=#}u_N!Lh#t77n9o$beFZW)bKnt^+47rYv1CuaftG zG`;Q9cKZK66TN?a*TlblIfW$H(onwyBTjU4Io^!#^o6*c=OCdL``BySECUzeKk~ze zRiPt(@#D_JDRFUUzrQBicP)yX;w;NSpo!tr+^^$bbOk+L036g%n1pg z9&ZfNZ+(YTy#P*HBk(L0{d{tI0W<<>0uUlC{u-xnY+#@RX|1_zR9~6{v%M+ZP)&#$-bHL*5>G*O`aTe}1## zOq!GYz>J@czCi&s69U5k#9=ZN#B9Ln5|HTM@3KT}Z=B9UIySWa5Rpy@@7`>wb4=_J zda2{+dow@`#EOdQzy``d7Gbb`6VW8WRNFz%?aHDcLy%}*p@~MD-#_d`CGhh~Z z!9$Y?Xb3K>m(V~8w}aJt%6Us0Lj%S#&$#bkokqC>0lBPFprhS+WjL%gS5E@h1b~TT zwQ^IKB1YEBm**0ufv7OrfbJKhB-+9(*9}{zf=>x**u@zc%q|-AM7@IUMfh$6EXbh! z9$TgG%RqH!!gpVQhpXZMXA87N0`c&MJe?nXxdK9HaADyHkp9PmEYM1Hz#O>(-CRe4 zQ7?7vPfOGc+5!bZGW6a}K-X0(NcAL8Um1;UhlgQF-73~LHjBxk8#t8fzPISl+JcsA zWRrmYZRl3sT=LjbMZUAGHIFShP$z`+^Y@C4y+Ioj>HuTF7iZ|hgo)rlzH@47YUqMb zMjf%UUrrLiq!!E=4c~XL3c!t|!*sb=5$h{wCYlnTJ1=;+o`rA{i* z(Jd{)zw&=9$8YlYlvv`2kj*I#8)eH2Hg;#N4C&;~+FUZXv@th1xBH5rm9>eb#i0WN z2Y5Mm8{61ivKHp%zWDDC9I&)9;@;Q0{Twc`@{*LMH67jhv*h0;apJKibaWPj)RV_l z?C*bVwX@%1*jP5y{^*3%Uvw*ru5rlS+HjAxXrF5I&4=RqcAwhd*G3;Lt-O(a)zTU- zn|1HUdUj;izH%)8(8LF)3lW0f%FBbDWG`ek zbK(J>+!2bl!B4uQR(t!F(b2iL{=fO5ANcmZP}KWuvx9t>2 zSgYX5SEUlyS({HUR=SMUtCtVA*$uYUw-q_@U;22|cCbxUvu&?JxJbU!M9TfJFkizt zqsvxSHDO2WvMy9IWE)pM>u;K9cjFcm6l}#4=k*jjPi9d7MW#aX(^unZ-&0Ea$g^pl1!tj1kB~|_;^5IVBq`5mZ?YVzKKkFxSSklNFJ+I z5NGG(tIHVt_|!w#y5}|qC`^B*GE}hsv8A5>zSGBXpS!WKvHkUlv3hQ^^}H9R$G>vu z6&F(CU8cta1U!EXB&j8b+}g&S^5DU4)p(^-eYLTVoe%hok1k)n{B>m|*VD1acxA~Q zhc480R|IZ$Nv8X*cW-oQS{}by!#=mU8Aq&$&HTm6vGNSO=Wo9DV~?Wxvc{X%Comkj zlBAVm9;}aPGpa9iu*S-k*~}`dSbBR$eTvSJu)~*+)9SKJl;uMBsI0>tTl`wwx_e#f+O2KTWiEpvtj}0rf*5ipV2eoNupV!4IFn?{% zl=SCNtzmYXxu@^!wUx_ediXzm=Z&KXMCa*%)`j;ji)nu)Dn)_BREtS0zx9?JH`)W?D-pcvz>ax`; zG1BxEB7znl6pI|kRPt?1l4-8%$=1V$(|12)ZDUtdt6hK2DK(o&oy2yRG`m` zyI67jOY_3`MFcN-a{bw}XK!e4yczhV>wbLvsGmu(j+GBf8lU*u(#Tm}c(FyGqFBUX zIEW<}YuBXN?(2L0%*4dR$>;0Ev%VBu>bR;&bC~%tq-Kp-3K_vl*?s-ti5nrzb5$MD zR9{@VF;&m)+=rpTp|6kIwZ{Dq=)AwrZ>BbaMbA0yIyEYoq*=pA=_uX}uuuWP> zCZ_EIGjjx6@#p7_9pAoL2!vMlV7-Q#)y179|BctljEIPE`0>5NXLilE)&iqD-rjPT zcBQ1G^k9-S#&?O>AAFkqGEpl#0T0)Zr0FB7mTjt<=(1DLf=`Cmhk^gK^W2Ps_4PG7 z-rzA@d-#{SC!g+Hrmx)5(LtlEU+;6$Td%~mh!U?5A*MDhKJ)zqRr=kuc9I5TLM=Rfd>a};m0$CA3`)ED6b#!#)PrbjJC+P^MdnQd}vD#5TKKr7>Xx$@?ZKMt?ncHsU;jq1o#V^!kw`*?Y4Oy{E- zY4|Qxx+c3WRZowJiAk%_KD~H;&dHx!Pwc7D4(+8iE7COP*$v1Q6G2u1om>BWy$QL>L^JwMAxaw&k@W=?40k% zDn!U%`hpREeP1XO@pistnaD8&Q(N4>6?2^~IRA2bsEk>)$kEmXamTbdBL*QqIfUPg z^@r@H>D5x_PD)55AbxVFB?aZ%^hI9oEbT)876@gg+vF9!&ArlPv|7^2&Q2YB+Gec3 z{`az~up_bT%8#TRzkhb1u2jnVFdh zKm4}3n&%k31Ey$ddaxvU{3Y9GpXp_P#!pQQrh0ATCNmO(Ta!fgB54l5|1D`uGacSqM%+Jl%M^iVue1Ezk-}>{N3vchoAHTLrv-K7Kxfg$Y z{g9`;mVr+ZS<(jatTKq_gphSlompzp_>0LhALdlYv3~a5yN~WVa-|MPVeI8Ly;nd= zNCcV9wjyLdc`RS+*po{#FxiCd#YMUD$Pi9v~$Dej~ zcB*lT$0monWt7ff4bgokB$0h$#2VheZ=S9{k?KCpKZTNMH6<286u&u{r3lW>X?fyIencz z;tlJ?XY^}>oSmJs&b?d}qY$CX>@s=}Q8YH)pse3puuW=%6Cwb=(OX8_fd;wSSOs=)2L}hy%X3&^rg+`qp`q%#f1Vh{f=xX4^49wzCp+5a(ys5o3cW}Gb%;;(nMMk` z#GEy-Y?ZNQl1hb+93iX2%Em?onGu0;|JSDUz0^Tlq(a-?cgMI(W-^wqV>E8o%d;{Z z`_in8RQwK$-P}rt?(TM0Yo%{N1mNl(RdHNGN2fo5i1vT-qb3M1li)l#JpBE;A_lrX z_j2d&>l@<%BY<-18?w#R6M43A>#AV3{KQ-w4J$)bfr*rXtLlTkwmeQmga*R&FDWSj z=ndT+4#ctFvaQg{+FJSADteobPnINhPJC-ser(a&)!7-fW(RK^B9xELiaC>or>Y6U zl*eg5wg4E45U^}Znw}U;yz=$^t=qS=7#j1ejdb#?US^0E7GE(pPh#LR*4OlKA?yB# zT?%r~xgFL3nEb}?jv`~LBWaNNlMfR%=`8gQ;K3eIix6`mYlI9hBC}GMuq~$#cVILC zuUTaXzgE6Y{FN_F4=Vz>6HRI#QS&bZaLVlc^y!n$J5h} znnBN-V1x0|QNGa13)U(se$Ca@)rHtNi9CbF(?}rJ zcy8Y8;w^Ihu=n@x-|tfLwygFmuV%RxwWQ{eSBtnp-v)QSzAN^*Gb7y@&f6YE_x2jI z_uM(-wM;r^M(mEa+AGVEQ6$t?wY9YwEkO7HFbbmlNSpw3s2}`Q3hggf%;Bc{QPjK+ z7cIEMB$_ZcJ3TPkSF2U*oJV1&P+ll?cyF5*rck=#4W2!JZaeW!2MJv!Jw4rLmvw&~ zdj;cx0|yX?w2~|L*8g_O1@@J#?iqs$X5?Ed*x81VWjzE{aTP z3<1BHHl>|a5PgiLE$ljzizRKCU4kVM;KqGA@^6v@82C+l0cbf8tS>GV+(6|k*ccHPVkGtSY0V3*TXd%|v0>&M~J&ySvk2RlhOyzlKtz0*K<}E&9yc&H1*8 z^&+8ymTE_jx<{`NZ1?BVZZMTSbLM`IMXTu!?9nEh=_0&rR(bIN@K6!Rb$DDcAcFfK@%yozQE3slrbza0e%$J8QQqBG9HoN z;=|!%oQ)ybb?XJR-v<7U8Sop` z*UY%#GX3>2;6vD%GiR~@nPirRU{|7gl0|&XxNU1=QwP{O*5))wa^JUa-&U9I%?@u;>#cnxn^^}LBk+DSyL3g7{*$w4qk`SZl}eH6;c7@5EZq{So)i%>oj z8Y3fPU6SUZQ>RYFFp}9<@rszwee?wSIkI zs!t#wqSDNDrHYB6iouGmAET}<(Fe;U*!y4IR=MmQPcI5`hc3-2OAtS{b6soMS+hs% zPyBb2D6%FUorIU3>6?I&j`+CIrC?0H0ol{h9lY=D_4m@}>}wXTxacV& zHsB*)m=+!;s=C(fFvtlyx~S?l{lkmin>^O9q`C0w+r7hepAW4>`uz7>iWXg8AdD~^ zEjxd7&K_F)=dWw8N7bzU$9u8*dIxew)l73PzU~d>|9D*u-1>jUX3;xIIC*p|nh6Fx zMCWEqjeG0D&Gh*k9oI^d+v*?mEvIazram+#jNQNfe2}B4bn#O?nr}B3Vh+DWChA`U z^D!hcFFSbzk6$;6{O1ts=M>+o%&CZI zW?OU}@`OJJ)S#UAd377!=5Fb2FbUv30&m>7LDDtQ7fA(b2B?8!5tz!$$|MP!lX;;M zSYP%3Blh`=QZ~%F@CeJjEG^Tz1GXHw@|$G?=EPvT`q%f_h({(nY7y*` zH8UlUBkJ$$IzkW#|Hb!pRw4odY6NN9*kl2JL?Pds0Cp0B#_$coW!-~gzp19`>O6h= z6!k-(ux)=d$}z1{PTfKcm#NX}cMnh4{`h_t&{W#Czpfeuz@}X?kz&@!-SRa%?Ek!W z;|8HHQ&@y6x_W6f9dsr&{~b!Y`uc)DrQ16=uv@p}SzV%9W;%364)#VY`x-vYkc!X+ zh;CYTXBRlTTZlYIIyySC#>YO!n}FF(zVhuuJm8zw`1Ir?@TnG%q#Aug zqI&9UpgrE6YSpcu)K%>5-$W&Ho+)xv1^Z0$F5|9U-Mzg(n()d)Nf=17;oSL3%>@$4 zWz)}HLpFVc5k=4h z_~yCw3m?yj=PzHL!bD~>Y~Hpl7AaY)l)@VD;=w|+%G%<3_!QX?mpYDvbdUxM640i> z&CQJ@C=Xolzb0sR!|cD2W)n5i&zZL5Bx4W9-o3j4dqfJjEi+3M1*s}n=vql;m*{o7 zgpGk1z{7ZASs8hvjuS&tR>`yK9(}z()p)q89HoW|I3z9}(ft80c9TpeWq@Lror=OZ zq<#+BSq*#CmqNJBb?eq)2?a++Mv}#Xs`oi>1K<`xYEFYiv4Bc>1qJ&L9#jO)n0C87 zkUN4bW>Rf{oqQd9DE2~Ccrx~=Mrq;fcuPKt22?STczTd}S~~^I)AIAal4US3`ea9(OPPkV(eqy&cEsR?tc4!GRT*^+$kP@|S^d!AkU@Zh?2 ztXvUO;VEr@sE=LQ+!gpzCQ~w}el|#BZCH*3tFznhUwQu3?bOnQK&*tzD< z;cr#TT<5h%)W6n$^3-A4IY^`G*od>LS&mI9b=;d6eR?F-Y&MB$<)>v|>anIr9qXkN zw6gQnQYNXI8Rx5k?fd}MDz?vGy~bzqnhz;Qj|eT>lv(?{r?PEl>NE|@hd&0sKz!l9 zI3B>EvgTc(WeGLD;_2#};kun*y*694t;DpI#I%Zu2k52>cKsUO0Cpsp7d2dxv}4GIt5s_#i=Rn z5Un+N+Fuml5_)C+kz9eB)48O%yv&5-<<1?wZr^_oUth}Ez^q*wcd95Oq~P4( z=Bj01Uj984!EW^S%v6793TT&bN$J^ws1j*c$h-F;sWT#aLVCFeWPUM%;-g zN-`6im%Al6D8$a~W5c1gyTzcLE$y;<&R6kdFLetRVFC5P6(s|0UU$;J915+xb>~iX zV$5oaBh$xIITl|{{n@qUleLRuJ~U@0oXZR3HyUqLU}WC4E7|gb8w&!7|31yvPo&PK ze%fD@^WnSAm55PLIO;^2=sRd`icCr>yS{_pe~0+gIW5o_zW4KJOWyu~SuZ!?=ykt+ zPP7P&pK^Z7nr)$|+kR(N7URU&P+hiU!jnde>*9w4ggR<%GYp56!lYmF*}V*>ytJG0 z*`QNsrM%avkloV9#_Eby-HorN9I<*5lZNBcHD{i9^*@^&nVPBy9-iQis~-?Z7@2RY zy-_6o&Tizhrnh#9MKZ6G(OtXcf-XFUw1&AX&EP{u@(<(AD#&JBuBiw!ukwqeT0+K4 znp-h4G;|sv&vvx8+HcM39}28)AC7ZR8r2s3R-FA_+-TC`VzZMH+gn{wS-X_Vp02Ko zlQ8M7m~_^AaIr1!!Mhf_?5WSuvxP5Syom3Jm&C>=dQ{92}>DJq_2b(nY-1sX@&(xdNXU{99xwhp=0$tP}N!IQ~ zbY|be?>@ih<^Cd6J@x+k)or?8(_d`OSCyBSCzY}EjWLz#>JPmhWubNRT=l7E&e#eo z)VDVtj}RXJm@ZDCF0&HN{j;av`;y_#YJvSKJozTn|f#D zRk=(;)3EZS+P6gK>=g;8Cw2@ESv6iOv7k5{_;{)-kSp}oR;~-#sZ#eM3AtM@1{RV2 z`-J+nTlD+`1D0J~T`$&}rLBCw^LF4TYARG2l-6CJKgSY+_KEuve1}GO8Y;mhtLQnR z0T%Z|DPs_^Py5zhV#!|ynop(J*kKMZGjcHAE`Q~;@05w8fBKEUT32_uEaIx## zw-oc{43nDZg}efy%20?6Oc{faRdk!ngpPxwV}eZJ3cD9bva;MoqqH+RI{t!|x^h7W zv1>ubsimAT$*zLh2>#rkG7C-{k}%;g64X;u@K}i|@k;Lt8mA;8^Q=E}KxvYW5GxAd zGl|?OC?%^DMV)Q02~7=DYMqy>j|hyIEjb*Qr=*G{h0ewQv4|Ccj;`TR|VE$fxkRJo<-A^D^UP(?4hxgq39MzW9fIHqCW@ zHmkn)kddqUw+{~Cj=JCgkRWM?_~^-IU zPeIDeW|a#$FJy$Zi~;oQZ%j?yD|yEltQb*dnU2hZmE_ZZLU-|f7M0&rBzGhSSsYC2 zW3^P>WPr>8D09^v&u?tLKTT*>41};%*UjbYnUbJ`LbN^(I=c=;C!cxK!L>{xO|*Bc zFQ5GN8#bQjuV?%dC2RwGx4|l&wS`s$U-yNCfcSM_&KThj7$uZo=jBIA!7*cBj zir8$2oo^QJppV;h%_Kibo_js>TeCBq<7FVHHZUgdd3(iX z0-18mo3pNb)e<@^@~UjbT88sGzy;}!eQi;P*ykZO)w`Ek(_0-?pJ6DomRalrZ;DF% z-*ye-AUlchiUMb}MuwZ}sMsAQXc-Q%!kBusWOiKJuqs^i>11ljT)r4I!-@fci|^y0 zpOgJYiN{1uL1W`{ov}xxIY5m#)?VyVj{=BV13GdH7hE97pam001-O2#l*jna`%EJr z0rRHsbwW{*kx2;~J33a*i>zyz)brw?MOS7zX?`6PIsaF&cBbCMU|H|js%!N{wzhe( z*429ImL}Z|`YyswQHJJc?rT;$zOD09&@!F=u%6z5Te>|}=)uNAjhdBx!B6G9&HU8b zhs4DM0(f5z8`pjb4`}S167Z#PX%s0ShqFX zZw!cVJDom1zwTc2z310^3zp5d&8Vf%RM4WmwO!Tx6YAF#vC=6Zq*+3-;c#Bf}*K^2dtWAk(k49G}z4Z*{R@MLqr@h&KVe>qzLM* zdT_qnEh5ODtHmQG9@WdEJ*RHz@7rA?u5bJ8G6P$)7FUVrhBF&Mpw4XJ&R*6@j`kTvYqsy?awr z1F6||gSyb(B;Y`4M8+bL;abMS@A@S&z@mzdh;pc>Bta?X(#+@*e;KR-fB?qZv^{F} z6|L*b%%E2C(7eLVZ4>R^BIkc}`p|FPdZ8IS`)EYZZ*+7y&%Mn{Wrm_BPUCB+8i=8W zl<)8X7=L{77cPB&)mF~91tHnFoW{Z>7$aJ~KeaG2!gY#jPs1Q{9r35!G*(D`Z)k6+_dZR6C;=zZ<)=5(M6wxlC=Nz7_@gC?5i zUuCwzg)s4E1la`iut_$UtY}sCwzdthW8A&F!tPN!sBRQX$|q0$-Dcmpmeju_7m)~1nFq%_Mxk9w(OBj0$DzC-!M1?YsK*JFwM;KEw501w9Vn8AvOaav;5XA zk@AIZ(LK-^la`jY#d5-HUhHjqr=(CW>#XZTHczixb(7p7vA4`*la&gK{*2irWOWi+ zb`4o=AV|Eo^BkvbN_vBPyKhquQE-e|u|E7TSbK2X2=bb*pfdjA4-VMj z@XO4Y$><3+xOSREI9DBIOHs<=ZS3KvgmU_%mI(_fLL?kx|y_ zQksrKgZcBkFZBN;hnIsKUd$+x@Bbn-fzKqJu&w@ws%+E$zu_Zq*W)|CC{gndZM!qt zj2;$|NBPB0KLvsPlMwzF#|fISbAjppH*M7lv0Tfb)7Ll|e7^+hbCxRDr&Nbk0 z7uV$n12_*YzW;v@z|TsM4CVOp&IJbZUv#;?3LcFR=l^~kFya3(eE%2UCJZf^kbjRS z2-8JRr2*$(-}jGtJOOlu!`i-?L6yBu-?$DTdUOy58OQiZ@x zpf$KY20@E6S2Y3-=p-PCKy;M@YxizyY#{j#bVah|$j%2|SAhX0OvswGyis;x_W67_ zQT*o(W%_H`_w3yZ%L=<(gxIX70dAcL*QQ1e$Vtszuq}Ga-#`2iXwnR9&-*;1FcaBJuDT_9Eny zBtcnln?Z6P1G3$ZJ5J3_57MK&h1=p4h&56v!1>94`O`@mD-pxjTfj!B6W1bzgjYba zhAfj>KC=eS;K~cc*#@0TDN4edLLK>B6$mvNRYg4FIqOtN{7+I7vQi=!2Sb3)C6s4qY)^A5y4kyP`Ue@%Vd*g!ibvFu`V}!R1b12a+DL=^c z0B@Kf2v2>7vXo@O-EnSx7GJOU9qE7L$;7tqb zbvvhPIj^<_4V1S@wy0&zbQ~;&`%&5nJB=q%%B!jrV9Cg2*t~gj6h>ET${m)lpHjh4 zY6O2zN9X#8iCiAfQ)KPA$0DJW*mRbz1^+2W+p=N916Z60pImC*k|THd^5q1mx`uC{ zd=gw$5roy3c&X#r>mZ&e!#5bip!?P( zYYRetRs&Pg0Iy9_!!X&P+2E83DIDQE>`AZ|NQeacp-%xk#K(hBP#+_+?b`M0{n?GW zwNMyf01k*Y6Tm*Prirr`ULq;AyPKtPQ<$NZjl=j#I`eN0Pfgf&ExpT1G?T_M82~ah zL5CO>P7u`z;$ucau@(B64ukF9@21u#EacmtE9%YD^E8jO5%Om%kn(;huM0ZZnt&Rg zKjpm^h1{kQ&O_r#lizJTr5zzBg!Qg$cOI$yypD)*QtR-`%>_SFVM#VO|KjGkg6NV^ z?Fvt_6k#=$@4_#RhCHPimQE`OW}t?xQoD@r(Ur57Q!N3fh!+~5V&94DYlLCrpqPCB z_>_32&6##%wHEQPJii_*V^wp+an!gn?1(y|nXgwxiBBe%ZecE%>x;D?$#N)E2_2%H>AQ%94Qovliv3rutvYze>T+MUZ1~oRgG%V!@3`%pFGbyv zB_37F`$C7zWCPqy>d?No3j`LFk+(41i zz}o?jA3vtRrmd1%JeA=3qhm$)o8a089wG?Q11_W~kD3SO zR*X*=ZLb8b`ca%}6=Mg*jMS#6q|BSub1$8B8G5-b0frhm4?vwX$sFAafI#6~m^;{P zn5H+}LN$T{x%Jm55z?w_{5p(7iSTWbr#Ebe@uUuRGSV6#uy!38=xZlc9S>c2V?4I= zdU((SOB57^# z7k1sjL+!4-bTGI}|GC&1?YD-h;nN*kXmF~Co|2T*{yH)`I-{_JAgr8#uAR+fhar{_ z><=RZ32F62Sc*LqY+lmQN4r1j3SZ^>oQt7EYf)EMCxsboy6UKs_`$Gs-Q0-9o$`WP z^Fqa11@fNQ^~RWZqRJ5GJaBbId%GU#EI>y>Du@D#sac~}%oYe* zw)s(t#^0Nfq<%4q4DAWvA8rgQE@uk^8CB`to>RmyLS4`C1g!}F8ac{iK`6DlC391W z#3V_KgYf;mLq@ehxR$$rm}g;CrS0d`yikbsT;w#7GvfrA5GjuxVZI#Chdh&IatY7n z&NUNj>&U`Rj7Yw0K3wO>+S_d2dPC;nL^B!jFk$}c&8~1;R_$7YZLFm~U|6b=@nzv} zA$;toePMWCQ0JqC5e7Qd&7OD-ej2ZGP~p3K{M)IrM>c;P4e?`e8)qD4lra`H5EI!I zfgz;((&kotZ!P|Vdg4D3YEU^vDD8ak!=G8WN53<=F~GVx@w2Jr4`BPzw?_u|!N%e? zKl_+s0v9rHP~gJSq%;4soH_^(6A{6PQYU$b@iaVN6n0KdSro774(_<$IP08*fVPEw zK1K$Rg9yE&V~u(h&CSgjB_IlfoqweL`*Na1Kn-dr@iu)yP$#xju5;K^X=bCN4BX}Z zy5i#EVWLg~Pv;4 ziy!3X9wwe*(n*3lcER9`{Fs0}RK9U9CQ9e>!Wx&YCxd~9M+FbcWTBN{{EH^o%s42I zuaRi1ULfAm%@|e9URnhwAH2SA0@CrD=#}dn-`-#mF%(;ffXIg8wp_XJmCnYJfuYkz zjMYY~L1H5@0DxvB+U}DlN3~y~#L|Ck?lQ82tEeiVE7}fhu}`Zw5GU?B^ZDnOGc{Mg zIx<)o1q9e+DvZk&bno^xT(%&fW+ zd=tz=Iy6T|IlkNY)W>Ch(YB7O={ZKm-S-g4bQgEGF`Fb2EP9UUz^> zwX6u>@<$lzx`nscE%%@XiFabOriwtlZK^bNV!3(ZW&n4cmSXhbNpnwm$IefmXonDo z-T9!acd|_Kyda&l2@u zNMCzsvw1qZCv_0;ajbNwvW*M_^a> zDkvy8I5{N(YJ=oWW3UGBLSKd^x~~Xb0YyD8$8HrE)~eZ|Lr5PBX?Y6LzR*mna93JOsAM8Q3vS&CRGfexT|7}{*G#l$wQlW&vG zxPJY5;(YN(3jhM83EE#s4_on6|Ne>~kTY?riE0FO-eDAq#M30AoPvweo_3D9#y40p zIcDWgE~KV@=UH^c$@X1>O;p#$T>1uGG!=h(?aSp01Kiw^gLBjNGo?||pTC_2GLvXi zD-mXi7+{ctoRXyR5LcFQRMbS~DIm*?kk_;=Teq^pmqOqVQ4N3~RME6Ts3a7wzLblg zmOi!h?xlUgMe@a$(fIS=$aYR%C zLh-!ClD>fXnmm71TO8%qXL2tcLmiW#nfb^t0`w{p^#kM+Y1;oq#YL(xQe9ydpt5mQ z1l?$7bCsQ$CjN?l6$jG}%&zZF0Y7wgcN;dB-q{t})r6;|P)WTs?c(CXRfhlThkl~O zPH1zaiK;%Rta9kPlZXi_sR(+RbLo!AnG4p`pN15(RT94WiVJjr#th9c=K}@iNjOQv zqZ?5k(H5$qSzy;}#*vYcS}^rVcK|nfu>{l%m;}q74-Q51tY>yp8Jf*%V@UB z^oPfU)K_rKW`9`?e+)1b{e}&@se}teLb!VMDyISQq9A-Pl#drazYQa%9>X`dv?}nE z;hUgpcx)y-nK#did3v(^EH7(QThOHnS{4t+X>TtS#hl9>>oq51F> zO@AvOb%)`#8rmgwepvOq%Pg>tlXb~ch zw6Do9V)fRcoZtg_POMKTk!lGj0~Df4tKgMM_2d4Osd(~@+6c=_{7D6^DHQ`hPV&Jv z0xrIu*j8S>k|I57D1;opW;bS?eZCwli00c#6#oQNk?i%$iUJ1TROnlGcMLky;xTj_ z@aXUwy(PO}Be{DTO&+F*=y1;86`SnZOwXyI2+~6Z;dsHy6e+g1p-*n7M(j2z2jVxm zU6(6A=$Bk(UMz1}#lWKUlK+v~&r+plcguK(Fl9{Wg~^8hs9{8lOg1jKF`qJ?ZxMey z5<6|wc?hxj-!vL5iN0%{HkpG(T5R0=8*lGM~A$%F!{xlh~YgFT4AQ;b$fP zFP^T`(|oa;QD5Z#v&G!kn`1f2B1$iv1%BEY;qw%6p`U=WN;wl=EL@HQD!Goa_buizT|L6zbrKbvas03pnrzvoAKRDyb9!VGWT zK+JIme#1}piJhyry-}91V@s^$_H`OQ!{;80*r(L=&|}3|WusogNl%*E^pR{g^^$p4 zEt$a7hKGC0>f)%%MYRdnuKF zp*>t@B3EyF%bq5;x?%`Hp5G}m97ShTgx#)pH>)H1GI{p$*}ZL48|?1ri&y?Umtiic z5UvpJRl1sGfqt?Ve!tUw%a)BBACCWZkgXM^@{Z~ndsXoRI!P#rInbmbvvvLf!fL#9y(ujkP1!;Pxf+{vsRXf5 zOt4(8zgS;*b8e>dYKrdK)7ky}oYRGcg(^8S`-OAe+6}7mY)2lso+(sJRatX4Gc%LY z_i@g}F_^-I@yqY!x-z9hSlXTrW+qk6A7>|69Vp!g9mMw0krl(V|^<1`P z?}H_;@4Zx>v^K2Q3p`-j@rgdbpfTk-C1~%Q?TpipZ5+`ihm6cRK6S%vSeqM*cpB&dSWG1Mq+FvfY0jk<tg0M8tP^!l} zfH?XaV`GcM=8Mqd%5>zyk9SXrqjt($JIks4PnUOzK5ZuT$IE7q`|eEkxTca06;Zc85gKpzLDAC!zw zWhV|-1XO0sqiclYbYxb&M#P)oZeO9ynbljB9_~4%TBxYIOC(JpRpk#wH9c{ik}LJ5 z&NBl)ChYyN%%lT2l1DzjZT^1i`ySr%oQm70dtC%xAM>dO35k_w3^5f>zyzz$ZEN4;V^tTo~hAT*RhO6_M>g*VUuuWIcIP@u5WFpXAq zgeyp=4~FSE#D)rgL=^SL?V~D9uA7TM1moD329^_bvqpGY;Wfq zv@OYuPxZw{Y}v9U8j>pUedMEFp_u${zM%QRHa(c1NFxn8)}ejx&$qf(T)E93&VF4E z-4CYL7-Uvv<|38C+*RAyBbVYxh`G6Wo9|DSgo)e9`?ATsYv2kUlZYw}aJV2J@o4Xj z^#gAPOUxQ>_w~1C7D(J?fX*?vr9fae|IM2>-=*t$*nVl$r>?iqJu+^Vh8?)iw>&zf zRqWm8&Qjyqe174}GeKd%tr%FsZaCmhZMekD3%L*pMAP` zW|>Oyad%3*gO{4sigpTTe*mkUR z(ep>42J;%yqN1YEt`)Aya`Vf!r(}*c#mWTgnyDwhi;cQ5Ab&pEc{U?n zB3Zb**WBIRe@~6DiE4)NC;_i9`QwMi*AiGZ-p;zY5rRh8 z?%Pamt?zj>v#WU?QYw+teym+I&aI&+&Z#;6U(^~)~#4olDz34P3m8%Q7yg6dm!5YQ|p?UfbH#aww zC1D~CH8nERX)vjBfK98i_0R%@A}xdHxMe%Mb^dd&q&7!*BLtl!F_$R~T`YNk`ZEH- zXz!bmJYRGjtjk6*F)_462Y{t{2-;d}*J_-RK!{Q_g|}F3ZZ39dSRFjr@_5iQc_TEm z(-7wF-@o5AIB1z|`1ZagO(o+z6@JYz&mjag(xMRD*wNq50pcJL&~!;p*qeEQF(B538|x?Lp4HzOm66%h4}<6)PEMu3|GLiu&9Arj?TucwqU_LE8rR?EL0zR1bG~jV+~E z^<2jMaWqRjlw=l-1`x;57ayH(`fj7*=u5?!3U#oy_^m_z9xVZq`tag<;upcZNPqg@ zibSww<0SFkuW1J9s)Y0zUjl+2`BfW@PklFaq%xEiP8_2ca1NGbCX&3pZS|7@aCxBMGS z$f20$OKPH>s?-0a74BEakzKV~W^(Y!kHJp8JM%GXm~y;WK3&P>*j5$XYsLuTi-g~g zA3y$H_Wxh^RF4JNisL6vWP?1QDgk*BKNq$dbZEG_(Yq86!W(?m6SrB7q@Qd~5c`gt zXmaupNRAZ9-ii1)a#tjUecwJQLRBwxKzVIpk3`?H8HSn`4T=gC)~0~J)oFzD!*T|& zdj=9l=u_E?s*Nxzz=E5|1F~X)*}Bbjc`t&Ldo|6ZJOdw2Y(>X54iJz#ScqA|hu?27CRW6sG1<|pj?=xEmaO`)R_a7AMnUk7l7;@|y7Mn(v?^;R>m za+5KKKaxUSvSf+yl`lc{9IH_=1>l;nja}G*zV0D|PoFOV`a`BnE=A{=2?~$^o}7~l zt+e`81#g;adt`2bUMB}tEF98-cEYv0gjLWOPQ1>jqX>CL);7uQxU%DD??d?8Kz5#{ zses6bm>~qR7$UDS>U~ z5$Zv**C1V{-5-Pr7Cd4Y6!ZV z284jsL0=&dFUfDj_y=nZB{#2ft46G#w|T`ng`q|}t zZ)|ZF?ehP&Y>^)2%)VixD~lU~$x|$PQHB`Z=l^5wTl`kAkg-&l3;MS%=J-C8U06(G zl^Wdq<*GZ(z<66?(Z~>@Zc&bsko*r<-FDHUU){k$ee?6_aDIX+`N!yZA8B6P|NV3y zdYKoGEr`3Hl4mKL5>fv&1y<+!RxWM;zkU2aAAmUE78)=w<>+MGUVg)9(G~t_D_j`< zCedF%7Fzb!NI+To<$5A?UXIS(8?nXCzW>FW*Ro=TGOEmfj?8U|_+P#B3)8vy5=ixn zhq2VN^)tm&P1evGC5x$-(~u#o!*Sy zSHI;1;d;soyI72vr2yExqjZK?D3m9B*>g zbvnx%`$*5}uKE9*wDRgj`%&G)M7lw=Ms-C|P^j`-w?fML#}4OokX5b4F51MBaRb?#Woelz0fHg#!rd*+^=9to?E zrAl*+yRcez2QRGRC*Sacn-1;+5*v|<*mteE%Q|%EkHR0h3!3>)uP7*AvXdA6pvDgj z!EVsRfWJ^_<>&VdEu(AVqUrAThT|y;eK&hNUu^r4$}~IaiBruUO3{hjiryym9E~xg z@01`Jf-)$Z^gcR}zDU3(S~L`094hsPJze~7;@(FYdLT^WcrA5U!sB6Sj)XB%8n>aL z>GdLUap6pn7@*ojPzU+&I>Dg(@lSI2qr2b6ojdm<^$=+uG7ph0Aa$`pbAtu2nf9Yp zJ%vt06S)J2C`PI!YmtM_;BHjH$sfQ5lG)p&Sbk7{ui1x7P?boFMXH`S*rgLlnsspL zP!oTnt8o1U6_4QmKUu||mST%AC) z?7D3A);Q#04vn-26n41o$>EKt>j;HLj!LB2%ud+?Vq{$5zI(j4Z`qd*&-Wjc#S_C@ zL_Gb(g$KW^F)}PM&=LDS@_#%IJRxU{0;0si7Weu*ucn$K-S+_`g{^k?Zx5$K!JZ|pC`=+p)A7@(OhT72%u2|x$( zh=i$fnd}ZEhq=T?xF(?Z)Pv=s8pRUfPB0#ubU*$%lpTpfq4t3dhMJctd_f?T`1Xi- z2FLjTc?I|@O486&cd*V^vQ9*ldTpsJp~n&yWLT zP)dweaF@iPI3}BvLp329eSgHp`wsPL6yUI{$?r-Vi>v95jP%O!qO1HgIpuO{)Px8T zH6?E0FuLTBMUAF7W561<&-cDBou6YIMeh_wS_QpL_;&~CQUm(N_RS_IyIs3>%>uz`){LbvVP5=ah~cjEwGW@ctM%KSqc+*J@y(|%h&|FrZxFELudiCu%~ z=Yz)-#j-qXtK@_sVp4$d#S}#2N{gfp83q$gMa8?MyVczoU;gCIi`2CYmXPxuKZn_kj<;Bn7SY#e@{f#)B4@#} z!)}3_s;-h)9W6Gr|4_oC|krsq!Ul2pY@(BZ*4C%TfrUk4Z82`%qj~%2_VlEz{JJJEmJ#aU1 ztK&`q(JS;m;!5wxIk|W&jpC#*&_W+SKIv3k!eYLjSl5Vk0_%&IHi*ZOv<-RhI3)2u zf;0yl;y7`wDMR|VmE3ppfs1vIDrlXsBN4hL#tSPX8gzvwM=?3K4zqKfHyHL3M~=cL z^99iJK`FA#wlHncOK*iqleF!kFdrLy{Qq;W?-!ei^GH=lwUKmj~=n5coiKLw)R3gri+s32J?UcENYJh2Oe;J8+NJ4}sMB5$dIg}3IWT%qQOLi-gG})Fye%$R37G~6JZ0C zqj$>X#d*V*#=f;`yUk6;5<@yji{vwTHKxrxAgOT5jHm#Tdj<~T=}&&#_J1^Xu2EIi zX%s)isG+8_Tsq!RF%OxBNID}PQ^8w-Hv~mc6Py&(EHNns#emAl3qeQ05iwMb2^{kR zW>x~;N>Nck4wt4BO%&Af1|b)9e%n=_=1Xh!iCl2b`@a9@+0TCV-tV6@i?9%~+Kb8; z#*U&eWDvr^^$F|NZNPLvfp)4nIxram#-HVuOd@`p>?%Fx#CLM)w9Y5O2dzCW%tD|n zzgUW6T@uNwxUIx~ezW*;-j`6EFR=ju0nKgwT02WmWnf;4ezHn%W!&11p8-b@C#55x zzX{$-@rcetY-^R`jtv!Sua8j7S|HwteJvg2LsgMJ%Nmz&hFp@qfRzKq@g zIK@&Ly_EwAe0!JRU$rXsHc1t4m4aZZZr?uJ|G5|owWXS?P|Qc#-MA#|r$gI8j2WZ@ z3VMJ*ce!7R7(;DSnxxpMRrd?}CU^Jj;pq4<@|hs!uGneUi?)$f#@L(#{4TtHeHyS7zc=Xls=(K^0uahze;P9mzC_xF0t}o$rB`h6l zk-}t=lBnb)<6=XL+YU)VPD#=P!z>!5FC8A~hx_2^W)Ailvae>%jeE||H7gu6#T5R9 zWK+&j|2YBmyk}F;3UA8kSFEgdVWJB;m3Y+bIQ8ciw_73X%RF)1-J*OaHZ3+%O636Q z#BPQ|R{|!lt(c#t?~%Me;qj&M$J#Vo`B=5b}*Miy`3SkXX%4o;4Oreow|3Q zaI8&vS3Qyu5i_#U%=F0cQw=IQ@ zI5?rw2gq^43CwZ4MNYd)>61ryqF3C>t=FOx`_`*G-n+WBFpi!$aXrbRR)&Cn%8d5U z+DM|3S{`NKzu8wE9^H*u1@U1?j9VFjtWO>?U?}=2@Ai2a&I>63Ai=$g-N7Al6XI7$ zdgqiSoTSMe8 zy~*M^H8qvC_fM|gY?Ob>+XYhXG_OR*rx^v@h4y!YOSr)+<)keV2z(&c(%H?6^T#99 zxyR5Yp2Z(p>gW@?%7h5Pd|ElK%z7c(OGs`Avu*`?YO({f;I$d?bMDFj(3{T{t6k8< z=Im!JvyHhiqY#9qQ}-9q&lMqREFhhiiAvyp=rT(N-pM0wF| z*E;gD0?*<$#+-*AxnH6@mC$+>`Uv({YSW7P-@e2_2>UyW`CR0*dN~{YAk>oj2fDR9 zELJ?*{g$KgI=szmMeMxVCC9#ll9Vfm1+?z5svn0&IgiTEef+p7OrgGL9*LAGpo zFK;Fsfm=uc@h&)HXQ*6FzcX%#+tjfMgST3eK)2j=TefULMrhkHu8oiv<*XRUj~$*z zhR3RF4`kWP;+XeC(^mby`3K^Vd90MMuYTm85T@CJ{hH!jDKq<1PYyc_mC%mxuYziB zsf70Q@^m>8f{6(viUkaFfc~$*Z6>a6aZKWU>Vt&25e5zAdc5FWAZUZ=L#)9I@ zw;)ToVlUEhS$}Bng*Ng^$Mv{bnvlEg`|RP(Uyt_~!_}1gjPQ=-%=X9MY^IPaaFbIx zK|qUrZXw=U;EACh7Me@EVXOSpjMR!h&XVIyX?;A>Mp7T&lG)U1%< z31eCqoFbR>>3+A@h{G-wY^lG(X=fTbG=p>w9TDR~V2oV&{;cdoRKOj`B#+9IvzIz& zKroEwEFRDJwq4vj!O2tO+Vv16fR!#2kexDk{-?%;AZz*ZI9};=3+-+gE#8+6TMX==k(Wwuc5 z$)%kNBAd>DSCStc&0sejG5SSrOI^`xy=oA@OuABSXYkqr$?AQV!kY!I7Q~j_gduzp z!+_a>F1ChEfl8;|v2e!3m~I0$vtg~?*t$E~@`Uf^$Ba#3Y!r*Ho{L`EY~gbBCp=K= z2!W3I=UiAa$YZ2BTf(i@^A8D=STJu#TxUZ}$I&b86Q702E5o(82M$BGDESdLCz(DE z645i8tK2d`I$zTWpVH9KPy;0-v~f0caKb-Y8k|;NxMVPnW&>QSk%-L^H_mM2B2EMV zN-RwQ-NEyso5D{^=s9(?tp#+%rOTF0pE$9t17usjPsR^S^a4v3wdxh+#9umd+*y4B zrPg?}U^|CHUShE{18&@_bTAnFdR{)^`Me~q+#Y}YC|Vw2+If+f9jU3B?|h2aH;HUx zTcnW#XMrR2?4V(hXMO`~hmnsT&Xo+_Tq`*})=BDxa}f`6Qtz4;pO1;Mj)}VZ%EDr! zMtw5QH|69E9>6l(GAQaL`}4i?Y)9t}dWx8tC0rcB{`ex9ZIgm3J%+w_bE8)A{4c?5 z!ZvtL8y4}QyPJcKyy_LfQ;_?V7oJnUU^px7zxrC5m?xaMS8!IA-~X0l!C~BV<(;=K z=gkHkbEJG6u_GMdT8%w#;vg`JH+p4?PO)4gKgWo>`^*8pH?ur)3)h zH4z3=7}B%z>j|&@*V1dJ#>P*YxTCef%QSpsYtO6ze4~oPUAuN|F`b6(o4cYaNKT*Z zHiYm&2Jj(~ml@_O=Jhmqo~B1T*}{nmC$Si%T{_+zAKiUEFvFhN4LS~M+ic-oqrf}R zBN5=MHybcMNFT88Y*%_5f(P{iMlNxLwbl0hd%YbdNeZJc-PskgO57Tz$@s?)e`!zG zn{8GU8{dnQIQi-FlPDl$RZ*I(#18;nif*nd-5b1@9b`ZLcvevExBjVXY#dpth8Hte zfRGLm*gxk-dmKF^{6&DEAJM^T0Z=b9dZcmsU=aIbyV0P@+RAIGiy^Ta1arg{3-yiF zb8?wb8@~?CQ>Z|bm=rcuq}y)~e!pRy;yh^Ofb7|4A~hRx>Xk1~_nv@@t%QN;^Ts^o zY4au%3*be*!bb8Ll6sG6$yt~HRA)dQxoRdHX%UKaqc;u@8(@wr?IOh;)K96rLttXB z6^W_tZ~r(g?C`yh)ysHk#dBTUoC?y`z#0g0F;Glmnl55rCxT!`yopMyv&%1A0RC3S zk_L`5_vq_EvRfh?5)&pe0CZ5wQ8hcZH&}*+8oa)L#@@aV5(uqQXgE$zhKIsXc=vE- z?g1yUAr$)h`X+~i^5;-Q_nBN>&t(tn-~V)~>+E3<7##{BPE!$7JYaT4T0r#HInorX za+wUjfmgYXb_B0aP6I<8VdlVik0IyKHC4D2M9CSU#P-b~*|1A&|83>4TPd@?dNV}t zLgC3Oe;td5^_NFY^*(N8>Bh|gy93eZ5JBp`iBRkNE0}gesXz|^{2>+fRPD`-EN8jK zFYDVN{5VUkKaet?mp5DoE+GmS5`1XMQT{eR>6 z-*qFg4-X^sgFpW6Z$FuYb0~}l*RO%jXOUz6#V)4gW0i>j#sUqd9B+9gQd4(7xmd+3 zX6lAfFX_!TXx_9rd&r|19?({6_4_7@MLsxJ;lK#i~b zecZ@-Tt>CtmU^*5J-zmYF3TA+H0i?OeSJ8A27x$1p|vVhH_oR80OQQHj}3R9uY7fg zVc9NtXoRmh8YXm_(Un|au~K)mRj+EkmD#8_HE5Ufhe4$a{HYpJ|i|Zwh$n?<;csw z!`g{G%(cu1TFr4X%aFtFWhbE*!4M?2(O7lrvoSb-%VO;8uid(3<(Et_i?#%iE<$jJ zwlPC#5IjNssM_Y9wH2<6VzRL?@haPbg7boRS=0Y#{0N9S{Ls+Uq=2EU;QTx>IO6*T zc$ZS|WH}aXGJfNW+aaEm2ALdaS2-?pkVnlP88nVeekzRltG)OycI_sQbl)zE3zJ;; Q@F(EZCXd}Sdd>&`13WNZX8-^I literal 0 HcmV?d00001 diff --git a/images/loss-l1+l2/f1.png b/images/loss-l1+l2/f1.png new file mode 100644 index 0000000000000000000000000000000000000000..bb60eae42ab8238da7e8843fac7345429d4aa579 GIT binary patch literal 17995 zcmbV!2Rzm7|MzK^hPxuA(4edc**hci*drMc$;jR^8Yn^?BwHaI<77oGf$#`V3f>w8_F&*wcZPZhD(50g-mU@(}&(o*8e7|bp# z2D9Vo{=M)@QPb^sc;K~@(6m#rykqC6Z)1d!*SE7Wx3n`iF*xgBWMgY$X~Dt5#lp^f z_O6|sl`S7D>%G4}z+!1*%t}9e(f}GcU?p|K7K0(xNB{3g5>7P1U?lRS#YI(}BFDR2 zHG}Qf)~DO9)Eqh+JK^go6F$f$&n@ralq#V3Av`A}<*gz0`xYI)DzWr8>eN~s-)pm( z`A4~P-{)}Ep2gLO-H3kwDBMRt^;eCOop z?$FyBj?UDgNKz zR(!zD!C}N6Hai$$xtEVjn*4ZuO&EHi$}Y9iunC@5k9S}cZ_r0#&VJN&8KDc4yGYPe zc`Ij46Z-PyTctS3SdEvJ#tn(+$zQ0dfu4mFnZ^5gj z*v%0&QbZr^b$5GT+N)R}Etq3mPfd5}(pbI6T2@`OU<#plNd|rPa&G6(dE-_?_#Iy{ zrlIRBF)}hzR(>!8m=(1z{@mS3*eJe`g|$dt+idf1>^GQCtgg+M zw1w)q-x#ddEpo|m_|^WJoJsxeaKmfr$$_DvYKvSwyUw+$+FG?VtsKU2m(Vxynv;by z*ub`!`@f$yH8=bD%jWlgW?*GiIC}JG=OxEp+BVA5?{=NYL>V}5# zF7p#<3POut`cAf8{Sqj&B-K~$ud=!{M@&+>Fuy!mG#~9UJN#NJ$CQDQQD${{zD+~V zZD7V-JElOtbnohjf=833$MQ{y>(|Y`JUO~FT|whVrT22I)4ol|_t~?S2fOy!HOq6O z@0NNWo;f9ZgEtB*_^180X-m=z=xIxVqvd!{Nl)J^GeVI%+-kVB-&?Yb6(q#PhkJc! zUec12kV_U6r-t5!cm+~&I+*X~zi zVr5?Uq1&e*yc!>LNx|hAF-3!*EmUCLSB|SwU|1g0Th|)Bwzdv;aq<) zMfvdIj}LY&!E%YKpmvqR%@Q^AlCK9+!`!yUO9vTdXwLr1svqqzBM`6CxW%*Rk>2ggrz6_|Z`xM!eaB#hfK`r5T?vp*h@ zjwZ&qH}wSyr|Xw`k2EU?&+$xntS`q{6i!R7P6v9lpjl~e*M!?~_zaKYX>N;__Ke%a ze0wvu=`sqJ-<6lJ@V$K^GHJI zRhxb(9ot&YaDK=1%&e@r78M0pX!6j1pV5|Nm7l8t)Ph=sqCer@N2u`WIt8Ppq{6D} zYpc}*t_LtXAolGXEu+x8O6$DJC=Ds#{^UtjhkG(x}FChYjSJgBeUeXgIQ<-cp+k-Q4`h2DJ^7#XXEVb^E4 zj&&CmC~0aAQw!S;K2u7>Qr)h3#YWxswW^BUv@Ko7e5Fl0<~z)FsYPx<1&zmwwHR*t z&v(mZx2XPpLopniQB|-qVZ3%>x=(h+IZdym`?+DZMOOzsJ-t<+Fbvk4w$G2X*eVdF zs`|Mhvrc|XABV2noZ1Ci+Aj+WeSw1Ip)5M4QtVv!It)*G>kBOQ2fDIqJe#|k0k@njIjMFKW&+0Kh|nW#D`S4 zX?v{B;rfe7HTDgU=k~m89x04>5?Wuer4n}6MlnfK^VM?R+UjzOT8g?>)*bn$G2=^X z>jSJF(*fi>rlHMnnHDh6CXrZ^_ z0)B3FPPa1pd?d_8KiBX}1MSQF^jY+z!)sWM?y&*34MO{w? z>`?OK$NT280%?RW)RUq0kR{)tsoqjt z|J+a~UX2NEM#dLc!TSsEU~9Le-rxwdwv5?>`SkGf0gP!Z?3S^Kg2`4$QE%SLN0^rR zlDo_{UT6B{(%aihP0;Cj4gp)u+SC`_{PCZOuA9G#1YQ5o!#-H`yDzOB^<-&oEJYzk zh~jkdpYiXBW9bETt4k13_#A${vdABKYg2@ca)FN$2}PmHyXcNMg)x=Ro7MPaFUtUkt7_g^-~oYj0+4m0El z!y^Blp};4cFgivkaagxG4beAR(A9MD_W++w|C5T0bnIhT&n51wv#{|C62C|*J2<>o zPuEU{`?efu8VWIXc=&E@7{~P^K5^~Km#~ra&2ED8own3NtPqdAyu9+K%THI&@jY;; zpmH2uo-Aq0G^+M3a-8VooyU45Vxt)UxWh7`O>TcbP;58aB0V?O*4C6DD_G|S88#cD zy|Uw1Teo$TUtFKDYGr>VoW#U3qMRi9vt)gh(Cs`#CEWz8e-1+Vhs3rV%O2fbdk@i1 zch1h*CA@uW`s3q+C6D#Vbq2_U`$(xaTwsl@^_f%WROM+rmOxSCB&F(Vq$ZUvhcC7B7wqddG)SOA(i3iWUt;|u+njx zBQEvPtS7yCb&`tLMjTd#Qm#eU>}<2b^2(WluJrCA*RcTpi3WI_tKq0eS&Wj$>edI{ zOAX$nH0d5|Gcox?(XJ3RTwsgIOGrp`WElspE!KOCuFm&pz&u@b{bP=T6cid7u<7kr z7OVwlYB*4}0I7bWjq~yezrp$#6jksV1YJsY!zZr%zfm5Byv{n^d4!7Z?$_t%Tn598 zp;yAmW^L(JU%yT*MbcyTpMWyYmaHtF}DnzG3Avf~!rbQ#v z8nSNQLA00kinZC;*t9YXywnN0X|O@ihM(s3KMwgN=o6zNM&!A*;H$Z;dZCntsQo)I zR{HSPe?kGN);rPbG{gUn3dH}IT3~8plalBIhwh_KCEYkwiYC1!R&=jk*szsi z*$dVw3f^5FFE}@_s*fe@OLMG$&y|%^9r0;R*GY-6$d^9hM~8W#^F!gDNCkr@CDC88 zqIz_=B~W;j+kULdkbMsyt*W)R{&Uu;gWD7JNY9q%@Hn4~R?n&v)>~gSqA=EqB(`^* zkg?XD@u{BNamZ7nGiixsh4k>^!_0Hrb2ViqJiy!H?hsC!++gz6Af4Llc!U`07d>}t z!$CUlqJ~o+rK%`4fTE|(O!bkVxF?XN;GgdSP9OUIp^m2k8_Os7qk)j#9kMM5>6mVh zl_Tzgk9i)`^qAoJ#t@0V^O4`NBDrC|743k}Mk690GV}Pc5<3FoS2n*$uaO=Q6t&r+ zlkwKd44(K*d5Po_YGA6$RA_y-Hs1z*Rood3@f7|E<+bvVUr{4P&kJn@F`?UC`q>>2 zx!K#o%*Ku7?Ai1orcb7hhYUwXT@Hz19UbKXLzExIAw2HIb*= z?``i3mS6bmo4{FjvuzBG=2m|+Yqtik{DB|qCFyyAL3k5#SB04QtL&iK9LvPDil^JX zdnJ$C`Z8T+MhZ0=NpQf>*3R4RjnyRn`gYgqI2ss@%a3FtuZ8;<+Mo+pCjdrSxXl+BO{Gxfk)zyIuv0lvppo4L^H&CSB z>nYY5|DLO%tc(kw5uTV^2w~DNtqNw4k(Vbz-kJM+ko7L$b(e)+A0}QK)LFWW$GY?! zc-b}vXy~)oLC!lhC;iXxDg&x$guIBN+(31xtDrj+S^#S!5OjbjpQKmfj$(d23pq66 zS=BenBTXDSm-qTX{<|)VHo%To?MGGTHKnAUEX|I@0VH%1OoSZZGM>|xZ9k@NKhb#u zWk=Xxoc9-|juBKKM?QSGbABu`@{BZumgl9t^oa!@oYGI?uQ4YreWh6Ni+oV>^%Q#0 zDEAt1c3#}$yC6YS3b84VIk{7vCrZFs8RC<#zyI9HK!1NC)D?x%98f}|H-H-m)j!F| z%-jOSg373B5fr9SE8Qq7Z*FRWaAa-5trP(Geizlwhx-?IZilcJ91EOTm8s`T zRNK^7R`Jg{01p`naozH2F8f+jgX*AJlwoB<*v2@=-?w(Ovrm+Qh7=e&HQQ_L5Sk9>0XW3s|hGs!ACO zH~@Zp^WI0V2b`H6zOp(;@CX4COK*Ki!)<+a9*CAk&mFsF+iwT%89f0lVVrt9aE18- z6%0Qj#N+_SAHOI!wWNFJ&fAKyh6Y6_+ZZ`HbB>)yanCA)#V!(GfeZH(!cf5PB6Iy( zeTJ-zBoO=_Z3RDD`^aBjcAJrr$?qGjbf!j7?Kz;%;9oGm+3=zcfr@BoyMHtG4b;hO zZhje!uIN7TjnEU@c?18=Hgfwb^Si7@He-h4OU11q$*58BlyfUyGHpg4`Yx}4prb#e zs`hQg^`QHXXO}4;*YtmEVSK6E+6zdhNgYvc4O|}+A2S89p;oa&=5rL(Z3*?zx)D( z*v50Ot!Q4CQ(mcL_;uva+U3g4bP~)jJM5)g+Iwg%{rL7sPyo3dwf*aS_2){Z?UpXm zeu-~*K66^UVKWsR)9gGgzLl^vT4T7M(8q4Z@9yn*ZZ7N?xgD0@y{fl7BD!@4ZY6Af zGQl>@IuYJ2wO+-*)s||p≤D)NK`dL5)N1)_zL*Cw9UWTYtp zfelooGN`;I<9A2U%YHPN%d(r{%sgmdxtPYMn;wt8~bsU@6x5~ zxPB`h_^)a@fF*#*8~@kAe=q(NDYHgaW+F(=c$L{CF!nzaX4{==#pnDx9+(lb)2GMS zs863x0Tk;bIP~Mwqot`*QW)@+G@SzV<@w1rpz@&Y;PCL#xyb)LwvTWtWB*fZpBnr= zDUYk+n;JiwrsMjxujudK9;-69GGNE227C|#mk{Vi+cV;d*VkMDIe0K-ScUW1c)71Gs@Itrf&YN1^jkuD)YB-hZ||F z21D)UT;I&!8}vc7`9nBK4{tghYkEO%yNZT-w)^qT`XTYxDrLXp&{VdOwmbBzr>If! zJD?cuS~FtDc;SNB)2B~$>qj7||C#JzO`Q4sGt;toQ4%hy>vs{Yp9d;Y4#b1QwvlKN z0)t+(^1HgD$TfGOXkK?;HNbsO}`#Zm=8?Ka4Paf^4X|_(sruDCa-HgTxQmd`$q?lYju6UqE6-Mh*|O z=^0*Il%mT?AGtEY!?AhF#CoA+xl^Z30q>;(#FT1^`sKj+9+$B+n}bK7 zDUm65pI3(LQ89RmUsRV$4kkia8z%Kw5R>?VqIoPOTbNvCxR|Qq@S!DRUYNn6g`a-p zM^Uo#H2tc>L(C2cs)hxe4cxx8G7#Rt6RKEfAN13+@1&}tn|8H*(%Grq z1&W1lV4wzwRYZ_UIPW%y#7X)q>+0%CeAy3;o|U@c-hK9bJ3rQ)0?WX_urwSOI2*IR zavia^5dG(X;Ti+tvuPKpfZ|a$)W`kGtqm~;6T{z^k3cCCih{b1>v+yY211rVBIfr6 z@MjxV;(i0?3yj|0?a;j^AU2D;S< zZ^^MZg!S2Omj^p;-tSYe(nN*S>L)p|wnKG9AjkatS%LYO8LDRujfHPwR7r^mXeA=O z27rxvSvdiy-^)7r+1d{`(z0M)8@gF4>gq3l_VxMsSA6+03|!j4F*0=F(N9_`{8+$D z9oZ%-8PoC+T*<(x|NW*K53lbt%yk&o<^y33iNkJnu1yxl&d!cBEkrhL55wqy z;QE=whi7B(L(ruLG13vF-2mxysi2ER8Ww7Ee`OFSl({yfh_eux$_%f?nf|bil)D&& z=rOp_X7dwWB&4Jo0H8pzVLUH{Mk!iDw8mS1e^DSVDLEQ$mae3#8hiw#!$gj}lB4JY zRWY?iQL4;fM$Z_sH6wZ2@gBe6y#GR=S=L_SUI{ALp;RbfM(lz!9?JQ z^YsWfbFr+&3vYCt2guzZ(&1GS1AvQCJ14sFc`W4iJ%#M zE;g;9OoZtHb@v_)33$MC7Apfc**R%!WR&bM-Z4OP4%+jKHA=fkmB_9@l*M9OLDB&M zSZ@UBQ4mL3Km?j!Mi+rrm}sR?2R@BltEdD5BJ^#IS2HMjNF&JYc98`>-KEc;TcEoq z+a$>Q&?)8Z2_YK!tArg)eE$5e+GxR>5Z?bRtq~3~pth1&3PyEicUhqw@R7o?m#m*^ zi>4qihxCFME!fBzo+aj6Y(UcoE+4CHp5nIc6Fpu~BqoZNCw?!X=#C+Z*nbNs>?BE4 zNyLr}gzB*n0uhu@JgiwujO$Y!9O5aOspC&5_L%zdN%jbe^&)dW!|_89P@vpou8S-1Q&ih0ztJxLT3Z?lw|=e!259V2G)or5^iw^$Dll?$n7JjjX6 zo0*{%6B9!cH%LG=ePJELYyac2{l_2=OACs#OF~g}ivtOKr;+1v-GDfq_9r-_0D;1c*`BV4m$fkoeuE z;}``xNb=*yk7a#PW)@k@Qhns}4wRV64wgCiqTq0UT()S;Dq_l1qEEhk9c(oIi} zUTArzFIF4HuK_s=g~p0S2x%|k4f@am#P0{cRmBa~Pa9mfdgjs=XAo6pj-%z>g3OLw+ns2m-1>mx&Nj-# zo&O!dkW$cR_|JZ91NLnK_T46hx^Rmvf_C#g&tu=9bl)T)KJw2~UfLX>r{mw_uV#(z zGd%fek$F3aR}rmow64#Ec86~AHC~zFtie>D^0R;>-<;Y-iC#m}ro-nqn^mQ^eIh;h z{D=F?E&73EC_J4am49q&s;y4U)I(vuMSu`eU*D15B!6PX)j7;I06?s2x-suI|NAkA z?!%*fKTx9ebesq{uCmFl0EhlG*#%AP-^5Gr=UrAeHW>-st#2>f>gC;JefZ3hZXDZc zUVMvf+85#K4@AFqHYA7?>7a{Hfv6z)A5^?!fjSUUkVgnsG9JWW2%`$g6(|wy7nrw= z9Olu9gnEjBj!q&uIk}_QtpLesQ1gMV-#Io7MlD3>wi5IRz}C_O5`)0oJm2G?SNQ_9 zLC-Yr&<|vs^?w`xp%Eta)CPd!Eno%9F(t~>3$GVOViTdRV%%h#jf@T)o(NF6dzRHA z_j}I0?_Baxd_=($$Bw-ba$C9!MYqw?v%*3FP~cVvxl5*(+(ktnkdTmU;A~pyBR*nB zeEN>PVWs&Gtgz?}ukbp;y(&jCnV0w%9BW_xYWO??#Tg?bqq4bqYK0U00K1CH+xk}m z&Y6@~@5aIP&QW?WbEcUqiX%n=3`R>?(xNQUN2FSGcSyvOcCD<MbvznPbnU;gic^!)=_k*tEg?%n={n~cEl;9r}Jz-)W_r<_JH zh{#We1lJb&T>4*JNAxNL&}8;&2*p_)Kui8pL5l9j#8E&A^t`+`0O%@1L6UQ~@jOrg zrceyv;*VaCOoG}G*^g*V)>an7*=~Cy@gDR76l8H^r%ok*{rc6jYXfxQZgdrl?it!; zwM&=hFtvati1`iAPH_Z>gd`yG7?j_M!xsWJ!tp`>4De!owa6Ufx)KrY0MQ?Gc|#ficfWV2MT5M8t>0~1gLzZ@!TNTma<;e zhf;saFW=9Fb+*Eu$bn9;zvD?;7HsOxXwM9U=fmk!d0V++&sJ|f83>i6 zZFP zlA%Xim#aJGvc`**5ZEBjF@;%xg|<5QRGaEj>sDXQ)5pL5&32#dR%5-|utQbCTR-XD zJ4GNm$lWjdl)eU99?=9RItcEdlH{;))=G+znJ3 z3F{q*Pl)CC`c=y7@fF+5i&qYbK{<*RV{VUo3KUW^S+L4DcTy#qezwT12IdSxBk1@c zHu8zh4B)kR_wI_jbGqo~(o&-gO}m9D{rP$t;2ZM$cH|Kc?K#A_%NYuO)9_mpJkt@U zq5qyT*82V`Q)%Ogn=~`S_ROA`S;VRw^*X+D0Llzpr6J>=9I*FEH-T7k_0~rWVi+z4 zNrMmJ&te$N6EYG&1(E<%6AG3}kOpQ~X6iMjy0i;DR>$=6|8$tC0jVqj2y@FZh_mg5QnuK}Ts0HQlAB?lwU`v~OMUk;J& z0iF9wuh`Wosp`i}+VR=f>BcL%>SyS*e!hICB>DoNV=@Ygp}8WkjVf_>JH_c`AlQV= zFcu}N4)dDJf5rs^tofp}-raf-?K;7Wya`aWFEz)k#Y0D=am5Qi4afq$<9EP>#wrju^dbxrGde=h}=Z4t~n z_!*;M1*)m4#zV^eP;bj~2Dl;w;yDez><4Q~ZH%y9z2JN#!gp^Z4$6amm)qqKq1WRG z3uKgWqv{iiv?WWfeKx<#W}IMriQzM49*q(#av|_n`=92}g2Fbs%j(23t(in)(O z&bEx(71>}nmL4k5mX?+V?x)2##_eriMWEU2aAWut{fEffJ#TDiXh_e;rv=_=Tpa~% z`i#)p!fn`Nqm9>Th=;j5W0AonQ!B0PrzY4@&R@8|Y0=3;ux?FOsUWy|fN9Ad%u)dU z>t1=75))6r5 zsN2|N(k8Vu>>qV9-WR<2=0r-w;0{5VdYF!LXKqTj}WUzV#D=LDNjVFad6F3ZP%` z+5K@@12G>#_&^?5rD!DZYW~4Qz+29CFW_ea+!iJ<-uBG^?`Qwx;|@X_`?KGxmVV&I zb}2jp-cTyX&JFK7AW=Z$#P60RX>EEQI!%iKs=B(-NWQR+1|fgaeZIiP|1i**nm0yx z)buU}C0|Rdh6PNnRqOlC`vg(#wbmdT>P7|3 ze>~7fIp*IoznE!*l}1bV(QZIODMOHN70!57bQZhKUQ=wo5iAERZ---fx){s+vwu*_cVWsa6QkVt1 zh!kJX>jMBXV5>p%vdD*u+=Cm-|Ei!RJhce@VOjVB7p+GpQINrnF_AXHiw*X zwpxTlI#0VOr3_0_@=B9UW850|o{} zAEU|_X?C9;?JMx>270Ur96U&8P5&@R+2!#4-e^}rZhZ{u5SMv-Y&A=P9FUnQ=qn(% zFbE6l0nbVo&F!&vKTZ3CGP+?n9L^3bj*QS94ITRs*BM`cZYXa+vTEXN(~d*D5}f=n zS`#_~RJ@+YY7XcyNq_^L3+KOH2)qkf8&&4$8mBGtL}3eA3(G<|9Q!uw6{~>hrFN1_ zK}y{zqpP=aza!fZch7y5M|%(31cEzrY<8sCWqCZ;FUt0tQ7D3ta9ktCl^ND1@iwx#Sa7aDsw+j4-vUB?s`}AUZzL-C;7nn4+lP0T<#oysORopjA$nyd)S8} z{+3N|TJZ0G<8oo!=k|lN^h%3C`Qr74`zs>cWyBBJwKXhiSZn|U25{yrCAX}{hVCrn z{Q?>xq+3<<4t0q2%Qr+yUWSAW%q@UwN~oxZT$FXEmXRwOtfg=_0y7{_mz9-`faf{$ z`}kUC6&=6rpj?73=>t?%f>{_@UjfXyM~%4*k}InJP4ZRYZv@}C7?j-`7f5#MhZg?^ z3RGX#ncF7u%rq*JA&JmAL_*pe;d%WTs#qp)ae;Cj-}jhAY=bJ?fR%2`>QTrc$uN_# z<8mYn=Tg?U)L*~M1E=8!bk14u5{STrzI$8|ZR4>3>@sLnm6Tq9umB1?i?i8OrVU?x z{kWYD1?P3JS;6aV+Oq=&b)vPB|GJ3UIpdWN?jjy4xmsyR!>({>1zi!TXmWD1E?7jv zjT4%in`H$y^fnf?{|AHz&Q}zjqn&;pn49d;g9pfdz(S02-Sq@QlarkOSVv9@f{G<;a|Gm0BZ5Ghrdy;1v~y9v zrgmCBumTYO^?ncSNU**vdC1O>5(>-WJ%v`dcu;`vetvvFx2L+MhMCI&mMN-8Sm$|a z?qos1+c$mYjc@n6Pa}3!7P(Bq!ZDm!&d2&EtE#J;r~4{U;t#7G6!Af5hXya+s~VEW z6=p@QKwf+05E48fHGpEouByw4+WDhY?S66QLhonjez zV5gx|HKS}7hlTVG25_a=Qu>R0e0)EiKKdd0?_E-}Dc4A>^r}6FhW2samiP0) zXNHeZa6?pw5`QNZ$wSP)@$?$+2Ic%WO=OrAi7f+X>;^c(&}q5jUYlAi5U~9=Vl7%(M1o#hVu@b1Pm>9Hn zcl=j)=8Oer8A>OR<56Yg0%x-r1+X4UJZiB}E&X>490*?MSkF}uJI32H#31%I#fmoXBI}mQ=jTpW;hIdK&;2Rr*i`Aq1e6Z)XxKCPp3-7M2Y2G8|?c z-3Vj@$dr~Qpco?FaVHg}l{A2*=l_-U)UAK&=QlIvq{<58XE}I+xuMW`1|hCtAUE(| zuPAxJO4xVg42;MJ(Iv>R8cYkI))Y=KZFqh6`g`WTDltaPP=+R0XuEEM6;BSkW$&pzhAiVPES%SUHqplFfBK^RE{uZKSszdE2@6{-E}mZS=Ft4GdIQRx`v%O9gk zB)OfVMFhRt$j}hPvkk5r>=navkzc-u2lml12nrT`=~F6#`ysV)2o#xv0c3zs9L0D+ zRrToFpd50}z`4u2K&MU+ps3AvWRsDSN~)PUilLa9mjm$}9rJX2aap?O{)|6#pCR1T z6BcD*VWC0UiV+&y|iv2vw0Oz*ZvQFuj9BrlxZI!aD%1kTz|?FEj6Y48D2f zl4LwU5bY-8GkkVZz$7Ahd-|0~7Y*jePjnT=DBv9D%)t2Z;0Sn7NMAnySBK)v8GeVF z)gj1RCSbqrfZOZJ3`g5yJk~z+#F*uN2bQ&(P7;H0N9Rdmo1k$0Py&U=<)F%bwiBmL zjR-kF#Dg*{==}Nf2n+}AL{}Jvv7?ihI_`@DpkW2kMhUrT!C5SIbRs-1&K?popmd#y z8AN8l`9v&$KXgtWWMn^bQ{)juI0i`DF00bR)Me3dt_k8XIw}uK!G5?w6dnDXi-smr zPF&WahXNdF%a8=^7<#T@MCg#kR~52|d^2JzL8sDw{rYu2ocI;&?g1M=RG}UtX}R4t z1crRDwW8B+MPPD7tPINQ=ny1qU>q$nJwXC!LL?jH5)(LT0fxviPYrvPih z0@}SaVoTA9GL-#qR|F8j)Psyn$#6$;@xaWvYB%><-36eH4v*5BKqVb6==y$n6@tRu z-~E;7oFTn5vgILZ5KPD>u;I!k^eb_6=nH5t8+N%l6v9CC8TjJ{Q_BnjuqWdYr>c!PGW5xdU@{3i0XqY(4C2 zjxae~9f8dThWfH%+PFSi4N7*{6Mk+l%_63ONHhgMB(g&Tb1evm07g-21JkDRukiFS zN^d3V++E?g4a%;lId@C3B2ErXW zlBgS4g3fn>wF~)e(3=Qdh3dK_M^2o?D4s$>Pm(%dMpT3#5+4LSKI@;4fByW5{^&zl zd3lvN*BJ7;q2n3=NFlW=Ac_Kc$Og?;;Iwxm`V$TNsGUSA0%JY Z)^~J^R-53bL^gzZX$h=&`n6jR{}(VOS#fdbOqA_CGebX#B{N((~?2n;19C1oKkInp2{ zjf6CO*FEF2-~I0Qe~?M=p_d`olk>PSV;=YIbH$uEvh07zJY|duuxjYjqM{_=oU-Y-(A_wem=wLCJgU0B;9jQ_&78s1tr0liJ>TbB{ zURO7D)2*%Fo@XRpK8)SH|6!l!FAgph<=rZWoOC#ug)+X`J<{lU!+i7(!GEQId?#7a zS?+g_!yrJ#f+=*aQo>BsFpG*9r0#|lK!Q~_6CzkW?dMa4^4mae&T=T53>vfLxX z)*O@Tn@icgJSk5x@js36Oc?DuTN|r*-2(jD@@)3$tNwT4&n&Etjt*WkGfF0iDQ3*w z!omVB)ba4Z5&i1MI4N`oyu;8}GBPsNn>U|t{VA*%-&kF+Z7S%r_87Rg?}G1^SAk`_ z+~v!cbqg%RSjQjH87c=cNvM~3I6r#$FjXx@acww6Y5v1@XP)`e_p1lfWC9t;$jMtP z@9lE__5F0GwU9!zP{VZB)c~sT#*4G+ckU$Jzkk0Cufbim`KLQ#!3G-=6O(yNz${fI zQ3kcb+B#!vYq?@xbUK5eB?l|(HA;pH-(y_+#$6gdJ|b^VQ)7Sh=n<#5 zxV}wSezVl}YSWc|spYkp2tyCqrAdO;jT?_WmS-~KeAYOdmP%cwTV9^Ns-CGUxM$x! zZeCu+x(Ghk($QYm{xBG0f{}0L`fP;}Jg91Ki8J5ti^Gkgo4(<3Hejc-E4J`@c4Zpvcn!6?cT-E8C*N*EbKSEpy3XL8$3nqdfU0)l_ARE%Iw45k`ySDRCubvvfvY316PkP2Stbq#Vc~NOSx+x9r-O)OOmv zUHdFo<_2r)>)W6^ohLI3Ex$aao#?Nqm|RVi32gcK<(YH!3D;D;Lff^q$?V?7i^)kz z=&!7Int5glnfk@5CSRYc=;}r>xevdp+hXc-CK!0kmMven^X-ttpC2Y&`4%B&jkvVW zpRe)gy}udkwD?QKz_r&Iuao!oj3O?TO9Rir$yvj5HbW;*rm)|qbZv1wQ76w#Hu&(7 zBLzO29ugaKpQJl}Z>`UAOGp?DeGP0a#*QsE`EIEZ^s#|1Q$G^EeY+vs(j>K=5i8+| zSBw#h5^;C~mra5Pw)!4_SvU926Wj7tvqHj$?X7hUXtly?e(7V!j!AdekJcYMA>||9 z^c&9q*1!GHXxa16RP#IIPfqX%mc!p(d5p!lI-y>HfiC&eWySW|*G0l(@%w85^F=hx zJ(ebjPisGL$$P$rJxdqs=;$;QC~P_1RZuehzI$=*(?Qg3tB#CjC8^CMSQf>7u2uK< z$SEliB$j(vq8r|h#d<0h_BcNC*<8}vvwJtq>MEwvaW5vm$9sEo*`L* z;JJy8Oe=Bdk1Q+AY(twH{96lg+eH$~{>N?4F$h`z^4O@_caq+vw0GrCw_R^m^hMXK z(>2-^K4p`UteC)#g_1b zL9q7aotrUY?atQqk>_QcobnwuRvZeg>`JGFSeTiao7N37d^Xo)wzoFP#p7PSymf3T^Se5*M2uCR^ z155KaEVt4Zc3t^3aQC%eiCHGzYm4V$%9!9Tx;8r358Bg1XP=9@VDVGz4}=Z+;OB;A z9<=F9=9GJEjtkp58R%8`c*AY()Ep+{w6&?Th>3Om`kwG$@&`+h`0X2x>#w1og&8i~ zz4iI)R|Zj0QRv985O|^Q%$j0jQg{PC4Qd)KO|%C}ZLNHA-s<1paxItY#|)%J;`d>W zMndFfW?^w&YS)tIPx(%HT<9h_9k05g;tSUCD61?LSW5YKo0$ms@Of4no! zGCAqHk)xY`H(|6PdUECWP}Ve@`ij+ibtJ-ewzt&P4x$LZlEUfJr)_6LqN4EJSw&a6 z-`ikMxGGMT!VK+=T_1RGutY+L;;MZ3*=D~TyYA5Y>lt{j|Ix6t#CJ~`K5dd*zZrbN zXTz;EQg^U&u^NO-I&sHSp>xGBW-h89G?m0t$u;H=HNh93*C1 zlAo2hOi$o{2T5&xM=>GcY5UpiZ^ z2h+DE&tStGGM-IgbLQNfeIWh$E8T^5T8@sntP7sq$?|m2i*?QhBeh}9%e}7LoSd={ z3PV|WbaJl=TDE;#7~^{_)mn_YP$ON_S)%;sQ*PGRYCCsS9zUmX5L2rIoqCj4KQ%qO zTz7qW*7d|}S3$a=*Kg@egHla`fosgh=BA+A+$|pMcbCSR;Fm(%?#~?lvoeB0|yS+T0L~!-n9Y|CZyN4X@P;x zb(gryR3wCpWcP(pi@p!;U-0QkxB~r+J{1)eylV1O2*kp&X3C7>ZtvbI#bu$4qGjM5 zwwID2sbXV<50X^yoxN2kszPAYiV<^m>UAbqK<`ZuvW;>qEn1RfV@)9IwL=VLll5Gl z2{WdT5_iu%qZEsqwPKX;XyfssT^v)_ru_Z;x3nRl$YDr4;jKmM+u(XZJ!r$)bYcIz z&8z-5(&VzE%jFQ@Aq&Mt30jQ`(Y`wcy^ZypqEKO1iak4Dj2Sopz(l#ReB~$k2~o#u zFiTN9U%motkl2DD5bLkA!JW6c7y6AQbG}xpNT~;$4VfY+KI(kpwRiDz-FO zuD_^Xj(Ts?9lqkcfOXjaZFYk_&g;!=`MM&cWZ!&`CCgs-u^5lvU+9(~+om~=)Z#VL z!w(-mjJ`ry1U2j8?1w~Z7MWjV%YCI&3^Dyd2acRch0M8Xh;_i!&oM5z!fUi@v{YPvIzy(!1YXZ1_FTcYtN z|KKD)KR^C;ADRg4BKLArEnme3vuu{fBq2K+g2?`aO|k7Q$@0!94}E)i+Wq}LCbvuDwbjo4ndzUQ6!Hpa-~K3zcQc~P-3U*~RU zH#blPc~!RDra0)tMa?@3(hhx7&X8Gbt7BN~8WnwETGk8To6EgDWgQh{#UZ+MyO;LP zFi@8k6}bCIZZ4`73d%(b+jRg=ass#`9}F2bIX$aH&hEo+{}+s+!DFk*zc)FupaVD2} zSD(@Gb-+YShkjRusEC5T%XC*V0u?Y(o<4iVou37X%<9inCoK55t@((GU%#3YJs?-K z7de=0t_%fbO^P{BBtes`pl8IO57JK*V?Q%5b9~Kfk|bUj;%WPj9Fz83Q~Ax`)hD~& z+eAx3l187UeJcLU^rl1j;%fR$bwVuFcYBLL)G-M?E5PkE*V(?V5AJz=p0g4FiNCeG z4MA&Lt+LDBM%$I^z!X>Y@F?l?T2Oct5K#IN=3j3zKHi#gJS{CP zYm)UCpv<~u!9I^kohoI~@|5h=^Qh!5B8X9umwnrop${`uZd4ZQ7 z>^)ZMIxEC_46<`ZcL66S=U0g6=*}#sPE|gB`jj7#tx0{faQ3&^usmlMpYF)>CQ!6K zhZJT4U&%b!OZnW-55sci%-6^Z7QuRTvo_uDk0D5`l5Hr#!ol$^6(XGjENTW+5=}-a zNv?h_0_gP|+HmaNy?Zhc<(_-a6jzHl4&O)+6w|W-z_;-A8DII`&!0cjL+$pJR!iR) z@Z&-EtbQ2x^S3|mXW`e@V%6&1XU-1x%m0_6|mf##iLPL`v!Twqu ziz7g7n!%fLBPS=v5`ZeCa$_jK2b{Hsc4IhR<(W5)iVB%GGImb87`Tsw9aZ0rxzuSA zcmxxFE!J~J6cDY3mXUV>paz3!Krrhw;+ai5Fmtp}Vqbc)_^bIULgden2{^4STEKHD zK@hELJ#zv`i;oaP;eQ-Et^PYdaOIKS(6GIT)5@GNl$^!Asnl@Rr7ySX{aadFH2@e9 z8p_C32k*BIehL_0LtI4V$UxNtJY<9ff_l*a&C#Q0YBok61_bEoQ=&VhCnYCy!f1z4 zlc^2f55amEy19uEIf_d;;d9>^i7dwdU@K^C;UO^?@gQS*h~AnImfDjmt9S3-{jI5K zHrFTs(jo>UZ)#>X@$D6h7>oscy$|Z|_DnskFmA2#48m!V9ndy@NI?L!BI4rWED2ee zm6esZokey%{dA7v#6_2z728{-0J|M^Sd@tDiS`)*0X6u=`Sa(=C@Bj{7+2x}iEshR z16m=17I&8lu8FDZoZiTzF-^>uIk$RX4;=UplBIGNz;H_lhME!gb`t3qzr*i3tsmJ! z@0TVKdUH*m&A?FA;ivKGSuFtJ9d)wrZ8U2%9ijKX)~x^+%(fr?MorjyBmL}xX)Vok zUs<>F+2zgq6rYr#BQ`dlZJE15WS1{g4&{=;Wi0-DrrP?p<+z=;0Z>1F*UwRKvV4ka zIQLY`1hRHg{I9V2v9EG+qf2O-rqHRlLU%h&T*DuZ$ zbDhb6BC}`OnJ*S^p4YkPyS?m-N^@EU2K*U?sJpB4BN0oR22gFndQ67M^5yH-i7#|U zP8YYktg_P}kO1SN3B-p##j&4a%QftAseldvsHi|bp*?vr8{$?SzB>Bc&pXNa7c82X zEPBPp`#dwVfU2u>G;h37yw|$6eY_P&pX3GIBkYQ8KuX2?Qy#}d1QTP@W2*6P^Od>x+^RQ(8H0vS?pn2_&0sY!W4 zOdZCd6{_ES;Ga;4#T%BDK*gF2QP}XH#NtcIm4RJLuy$bi2b6FA(UTqJ=!R=#p$b;G z-zyIm!V>&l%VFEKxMMdv_tJ!^k3mIWml%wkGJflKknb<(3TKHd;Gwz-tj0XVO}-%MW}Kw=1^4+ovM{a+ z1=uk~2?%k(424oLio`=G8vlCSPF-6&5>j$DB+VQA57b;--rE+B9Bt1wG71Ki8-18C z(6C=obD~2bw>vqBb^QD3G{qC?+_2i-sozZ%oi}Osj0i6(5-F@sQHtxxw`g62s*pf? zr7>0_eb+uJnl&*L1E;m{>av4_gJK?wzu4MCBO_B`uGCCxH^oW_LRbQjh#pk~8s7fS z_$pvSCHRO{IATr6ia`_yq*4TJOCWwDszf7GcPZHNw@ijZuBvwA@J7%*6%>U!tw)_i zx!<=;wQG#O5%q-%`+Kfw-D15!(=W)S8W2FCSWc|3ufJl%e(Kb~o7o@*s({2rvIe%Z zXKzAL*?Rq?cM@P=#CQPGZv~ofcx)^Mm8y`mEP;hW&5L|2@;s>bprVHXB7 z=MG4d0BoGoLW6KROw^}OpF+-8E$;XZ1xaSbuYMeypar8a0#H$QetB8T%j*LQy$Jcp z$;lzSeY%Fi2C!4x;&^L;_qxlTy?f!7rXy>|GCr$Iq%Tczmd!uyJcZ(%Bw8Q3B~EF3 zDdc595Nv0t*SR2Y2 zb>77PO=99wknhG-V9kPAQ8^AoVLRO1X{JY1(4ytqN$BgURbF}Qmy?s1SG#uYp{kl1EfbTiv*_EkrQ}`vk_4@iR@~Cl zp_LrMV~sJbfIr*gFYkilMbCiBOW9b;gso<8hQs{s3@qwYafYgzBa2fOK5QuBW0;-{ z3?IN%Sq#Z=UhMADg(H~Z%l7lTGxg*L2STUoYL2i0PB*0i4FA5iI6( zZuxcAJ~+*d=6(o!jfBBL_$>KPfdA>i2<*8ic9dp~5r!Qovc=r~(tN`dX1L>F;vL;S zKp;yss_iWFL0I?3vW3Qr0P59X(a3LwPBg=v#lu&{sz)>%gcnv)GUk8F%wVNV7Ip%^pc?$7oq(u&f_h~-0d8^3Y9_b$k_VePy14)<4d{j50K-e!(-pFuc5qOBkQb zuF!;R0;N(46zJnXRRyzBo|M!F{pLG-$15cz#m36Yaq85i;0sV2APfezm`bu-SUzMb z4c?)+FWAAHy0Paa#{D?t$U3z7gJCz9kxaBBKyPqQ;4|nK)7@A^Q#7{7g%bP z!EBsgSWsISZD_CX^@Z5^C-{CV+^PU{h3WnZBfx;cN$3jDy)7_j+d$AbA!2`Ndv<$M z3UNxoZAr362nz=xB}4Ixl1Fe7;FRzp|KRz@X&$JW1U(GRc;GNB;XYqH`hX;Xm3`sv z_xN0%cjBT1QJXGSgRkEqmiTFrQ3_u7$@n4nt~?dEx{2n*fIgpf8`%~ZCImMufu;^l z!r>SjBF|ri#iauC6FqgNVVUl}r|uPv5OTkK{#O@c%syUYvR_*w(jg1Zcpv1&PXDAyEmubx`KL>{F(HU8k zKJn^lZ{YH>EkHUTl7~}L(hwDZ03OFm{v-r2wWujcB!e(v2?bU}+w;Vvvj-L7{^)!` z=LvOy5($Z&+j*1Xi072aBljpyj z^nhH4MS=>PER%kNHgRkC4iAJ~tlQ56U%q@nSOQ_&o~#2D6hPc4zM5Tv(8j^S^2ym6 zE}Ppu4P2g1jur2Lv9XJQoF{+4q5$a62~XMLoB@&7W3l=AQpNVB5)x+m+{aE3ilLJ4 z1&RWJ6eiE9^JM`2O;yuFlB+nOG=d^e1MtseWUnp4K|;1Y+5-y+@TO{J>SiT;|A>?F zH3ZSsHoAI9rU()TQ#J%&6sMqcNP?tw7sf9Os}Oae8R{y8zk$%60666^Nv{>Uvf?Ia z)1?llwISZpu3}RY#_VCYAUYp{dA|MN6`;nHw$}(1`Yim4P&0Q`_*MYD>IBkFjFhir zlP3yPRaI4pLPDVtO$-lU0MRfObqE{aVf{exDzbU<ZAT3~SE_kijqxp$wItbrw zAYDM`j!$*wAxU_#UCU@3kb3Ld(j*cq3+^^w310lh5_A{J8FY7GgWm$f)Z(0#q0NAM zaZ)M^hr@~co`QNxPEoOOS#+`^vlVHmQ`aE>-z4lTd;EBRp?fG3_i~{9v(BTa${n$T zwJqj8p9I>(dkS&3NQA9aN zaxIm~ZD0qA<;R7rzYo`h^ky9cP9K_`g2V<$_4S2p9w6ePh>9q(n2W9*AQQKxD4j&H zkZs*;cnA>e1n5fLLcrfbF}=CozpV+`5K-e?u;fA3XoH%RRo2JH2N8WT&*>AO)UX6K z03ka;D86LPPJv>DL&6ZKXK84T0inuU+V>Hx3njj?GYz7)K(`p_2#_oU<+zk>GC%(U1UL>sK@F%#lD8A&J{4nCuRRQX z%{kr4B4}&vEDe2W`m?7Piv|WjK|F}r>2>!Ga!r|^<>67Frl$TN3_JjdgjLqO5tmbRcm)q+qpaDpg*xL^bqSg`=1Sw4h1z4l(0GLd z?}CyCfDk$US&kHH_|81PV^zdQ3QvK*}WY$oL&xSXd~Xa^|?ClOXyqg%qItM&LYNS9`p6%n+&` zf}m7zI&o31s%lih-gWjpu~dk^!YtxmQh6y&p6;Jgfo;EHpWpF8RDXoSm%B(+1N!)2 zrnjME*z?Z~PEJiNfQdla?q;`BF2J|p!-^}69~2b8F%0dYsv13!lu6Qz;BbXgE{nv_;z#B`FwAq?B)O{~dCJ7mWu-`{BT_ z0@N#a522?B<-Q*x426Krk5i(I9UZ8Z>ZjnkEm<+@X~CgUT$>wtL|~7h-CI=?y|OOf zTk?9HR8G}WR@HRdv*^Qb;(MrZA1H-CB95!}1RQpnJkvR?su~Oh(BGf$grg51y;fjm zm5G6~{2Z^?&&%}er-RQNT5!i}#D|L4hYP*RyL|1+{m@ujVqtPg`VyS!JSn#{Axjki z_6gDjC4&ZrGf9sW3NW(p&1FRNDceGK*NXnkcSsD4v9aMncM4(=aR+icY0iFp(ZZsd ziqt7yPz>s=uFCe7Mz80yp@OWI2A=S5H`76j!q;Vr{EbQ1I0)Cs<27LQ^#y)pymH6i zYaE4NXy93$f8Cl9AQo~Q0`S8z{jtAKQ-28e;l$r=VT2A4ebD;iL`#}lcsT0m6)tG^ zv;U}|Fp^M~k~o1{FkU$Ok}>@j@`$8ju*(L%s6l7?#K)cp{?yM6k2O$9Me&93s^ z2}`&vChn^J{2rImw#0zqCMO9v5Z^|P^V&nn3?KdY;Y-@$;kQn7BMKq5No{ zr83|U&Pz6sVYI=X&EnHuD=ReDy!Kbs5Z*N+(;0{JZg!(jf%b6NPxZR}ykO&A>V99o z7%98ILv~7JHR@|%a+F}h_k8E{zaxHcVA#r9s4Ez)mE`9G!_WTCVRV1T7b2NPe8>KI zC_ngC%<1L*2My5!GkrGBg76bR0*lD%o4ez3?`d6v&lvrq_d~M(<_b zcD$!+p5SV%gsR+A()|qs2Zqz}nqj&H{L8}De;>3CdiEG;gyr^B)kNfwo{yG^8V4e* z25_Fp_JnjT5UR*OxIq1e%IYvK4RusGLKZ&hHFsH5b5a_Zh)K=y`eUTd`Vcu%WdWQF zgOtw)&{*&QJksDQ6WxW`FPJ2vW|xpcbVNx!0r2ZY^-140(Aoq&7ViScFTrsy@65?j zo$gX~d7p3k>~HJq<_9i#{;>`OeG-DKCV*E#*BSjs{{9mH4I7u&kl2VwOO%m; z3#edhvPf~gefte$+}C#Y__>YEWZPay>kZC|L|q{M^Vt|Y9X)+201^v8=~*UFIav|1 zG=O-1wkZaGKv(iTJM8@cTf#Jn1QkE|+pFqjzlW-=z+Q!>Mg*_H1z=1~@7%cyRYPzR zH~`SqqC~N8S@Sxt>g(fxgi8XTGYO<#>%Nm-@j&$T)&>oB;wYJaWuQo=f4J@e;;o&g zew;^CXH89wWq)}YK<^PtdWV6^9i7v3d%yDY^E&~ZF$twB@&!f-+hq}@Cx6Pk2^P0< z+g{dE18{p%od}+2%PB#@qcR=YN;7!hh$n+o!_0gI^g$p@K&hH<%}LDnF3rFD>Vi`$ zX~Knb%L={Q*jvQGPKxqHcXp>dy-&)75zhzIRYb1i4j)chbdr}xUH^fyD(y|Go)%t9 z$x$RpAvy!`{Fpf|_|Zcm=~l^hT112O!ecm!;XP25#*ETd4~MC_o*p?I8j#+vNGqGJ zsp?kbw3eT567YB0KNwJdwX!NJ;Su>a%s&krP;dSlhR)wtlOCc_oa~VOC(uWn64AI| zP;z5yt0m!T%e`Hs%{+t9Xaq_)Wo=RQz_>JC*K z^TRbQsryE%j^SLUUMj}q=F>n+E02eYh)96B%ma*ctgjQ0bUpDSC-L^}+o*^LbMfXN zS5Z+-lrhsPn=Q{H0*lI_FcA^tr~_>(hIJf_ok3v5$cBh84%}Hg1OkI+i>*v4)h&HHF&D1LlZ!lAXDvuRFyn-cI zhtlXC^S68`R?m!b`jY|Ef;1FN4HZdBkwP|6peALadbLB(P6HMsYfV#=66iN)mv*Yi zOu3|8KWOoV3|nFt!KR91T53a?*|UKRO0Tq8!MP6W8Dq744+OAuAO)L?%im zv(x|sgN;lV27qGEzUV~>uTrgUK6L@oae@910xk9nf zvcJh^IQ?_gc(|Tzv(eT(oq^|c0jip^Dz-diTYx%gkEAA_9r{2$Q{vpwffkF~yTeND zp5w_8;9N~dU0FO9s|E@No9y)$jLn%f`i@hc%<5!gLL)tosD z2?&yD{2V~OCB%t9ag4G?`+FNbpq^ww%xZ%IzV?kws32*wJ>vSUUWWV|z&v{V=``3&%6Bd8hj@K6)Qx8y;{{0ze!(qU^mb-hS@5= z<~X-I@VLC7mE2g9yk4O$X_Oq~7;(s)^zh+B@#-Uo532+EYe_vY(qLv%f_g#u@!>+2 zlNVhw5I4LD?D)iQbM8sdq(B4LfrRS?^VhK@FD2jl7-@BT!GZ-_l8&*lF|urde8DOU z>9qhzhzrP%izdqxSRtDpHRtM8IN%nTVBQ5uMWCXBlOP?Tg#@0vEENtVY3$>jcg*Cd zsauM%fR3Vt3yG06{$|*!Hx37?E0V=!yTD16RrK>|ox7+u=Q-txuJ#`D7(@UJjON}y z;zdCM9P`rlANLT`&MBka?E2r!N;_$8H!*RteIbFkAeE^s50Dc17B@f{;VY%r&al)- z)8GaVbQ0z9q-eYMq^Qn9b5R65GpXOKtn=Uf@hS6oT?Ja}eRRLMl-o+}SP@2PTQG~7 z>TuWYA|)+xupPKI9v`&r<%$tCA%V7lQzBIcn`{4pJDBbb>~vz~GDYy8v}|woZzI#-8mJqrvPisx^(I#!qMc-L5ug*NpvKy& zIcct*g>ZyK5Ih7Rm~G*R;s*nwTyQ?v#DNn^%b$EeOH9@EB%&F^c2E(J2h#J9SrP=J z(ii>qpD5SB@P%&imC&N}Ny0S<8nSkwg{gM(~FG z+CyN9GQls77$mT=rXm3Whn?+MCt!-5ettd>BjRuc1PSEU#e-KbPRxG54{+Jy zuf(8m=`s$xznQoEYZ`2qKn8cPam~7TfzO5ks4Zk9xB2nzG6c$wS1i}%@;X$j7*YZ<33W`QWFyF`(z&{3amlu!Pd$@sZ)SjXrO+i9bFxr412u%JW{-N{6MiP@my*IIlA$1ji z0JH<+uhRnU^#F(mn(f=dJ`ed|MBF1mG}-X%*^gpC|6|nc*$m$u2Cg2d)`Tnrw5@?v z7BZL`sJr?EeXxEeYn{#@q(`he_lnh=gW1;Q0l)KebgALqg!r5Vl}Lmc&z!nJNux}IK;Rg4k|4$g zuE@jtQh?F29H_j9EO5vU*paD+tj_+%sWAUcRanF?|IN~Cbw(sa$Dze$OLZP1s6ynq z%b-&!gIOy4tj-%496SJ_lBEtkzO=`{g=qk5iyR{Gh_F>?bZ0h_iJd_TNCnv%?dJJ8 zG(=v;l>BfnG9IN?!eWFi5`y62k_F|p0@)LgnsIV_B>;@j8b5a)<Dz>L;wSrRFG$;y|R(_c&1|82NivY`9lG&X3+jFBoa0s zyU3(JIyGiXXaChxREpruY%P(pd+70rQutR+HB&3>b;(338GOOrYz3N{C9HZ_ z=@rT^d$WKT2NP(HcD4iTiPn@L)IZ2IN@@QLc}78vQ~`HR_ixxw0!x5yQVNNgfzy6y|*hQ@pC<)Zg@lJuq8k+;kD8Gpuz-5X&ZO~7sylsuI7OSWZ6K% z8DIuji27-5_iw-JPDX3??Ia3MJ2@e|O{AqDEizL(=L!I>;;FCXD4T$|nYP^LsRWV% z@{NYRdX)g?d--6*euD&4oD~Q80qpJ>AQR}p>;~Fj6ZQ)z#z`9dT>i=yPm0j-hcg|5 z>lHnMFTf@m;MNHapUwdt8X6L!_J#nIeI(%bx14HkIYdQupc*AWsL-cm0Rs6{>E@Mk zPcRRIvXurl!=kdrwlp=sDEYxYjG^i?d#U|TgVzKW3&ty~;T%OGtI`U9A99I)koM}h zQZxRmsLOCIp&4tGrKVOjdz)__)K-*3s*fX*SUclCvna+gJy-sE|3Pw*2odZ)86f7Z z_|H~2R-#MZXnRcy8KVLqy09W+b=L8rkJTh@g!U$+!(cY~HV`dfuiRb8>|!uMSwY6u zXcAw5gs}hMXCgJET&1t7RR-IeCK`nM)h}fokB2FX90}a*KL-+UJT*s-Bp+cX;dzdI zfal>kP;z=b<_3B()XW+Tf>o{Usiy_)Y-j9#+#nq>7~4Q~(&mz` zB0ooD@Mv#9^I!=tfi2Vu>Y3b5Yca2tcWB!o*zbRV9gq7N!{8Gl^@P^Z^f$0Ga0Glx z0QdZ_`qu(P^8yV`5;_^SADu-f18b-EK62TGjOsmUYEy)*>@8A+-HTnNuGujDnSe6z zAb=$s=)E4;Ta^6yTv95>_%9V~Tg|Z~G+=xxC@-aXfY%`b{DO(FGY-WUgA%9TQQse` z-pTvhw=&Rp@DW3Jv>fO2U416GJ|zI&t59i!xxGZBsD23g2^9%{1!kvT$|!{O6ghNV z(wlf%-FfQvrU!Nc!Q_ENUiZKdVigEvQ7f2z7Qu&_ZrfV|+11FRLu*2NNc}0lK=R}L zd7{^D|9s?m5v5SW_?rZgk)z-OM9~%P1qnH$5E>flB+9qX?g%}H^R(qmYd9mEDLDl~ zI_w-nyD57CeIY4hwElG>GHj#0Sr&wSO4X#ChhZxZYDHT%z}SR5Bgmi+(p5X)qTE!< zzXW^yP8eE{>RVxl36jKs#VL+i2ejJ;MW8A-m0>)Q((5Y&N{{B41yKdMl*avAU1E$z z!u&4Ug7(3E0f{V-)w0^i9|okWN?W$q_N3$?_QR`OtWxVs+uA|K#li1k6d;*wGGpUNRspR3`)RLjdfChoKJF2%K}0@RY-jwUFFi z=|5N$k)Z@KIKr{W5{f1rn9)XZGbsB$0-^1k?lk(GMA@3g|ERKnYL7v{>^U;P0JtBs zptwht;p3g=V#9e+uPc{S0r;tEO%3GR_KGE^q##EL3irq(27CNIoP`Fz>m;$eahg*D zZJBz)NW&F#9DY1gJjTSMU!)A(5dLZKJHXn|*jU4G=Z~!pM7n?F9H7Xr$&&8CY9SJ1 z5hnUCh&5@fGpu>!1I-5@H^AEo72x7R6N!ci#j74WItK#`8+OEf@(-APgF?5X zp~sxm@e~Vb${r+6_@uP`m2nc}^`fadkes3?oX2_X-}H!N|AB`sM~<2aJ$Xs*46xNt z>9k0K6H$Q2NIr(|q=|Y2FziR+zT*aRVhkqTH5QVjy^?}6kX zV%;!zem8rlB(dDBtcH`aj2g{QE7=r4ETViZZG z@rz&)NthzhU6S|VH&@YaZ@-{ZaP+@}8ht9bo8o_h5Mb@tLo-RR0mBEq+IgE;h`zGjD+g^lX!{V+eta_a zS61WmP`vs;Uv*$4@%q69tJ`m!em*3v6}D^eeX7b;%f6nT{&!WR+Z=|5Zji#g;nRVK z^H+&u?Zycm5Ckx!?&x@rD2Y;*^MkKji*nS{!$Cc^>9r(2(xn_~oU)I#5NU|H;g51q zLtw`l6wJ)fw(K4j#lM8&rSs_9|CAyw<-oKkho{UkXdu-BmGW?8i!^!pOx*3!z8P8| zcR<#4p6=2B*v>oG1>P+kz{#3GI9UrtL#R~qdGuzHB*D2IlYh{PeBiJT67AiAG^qv~ zyit}tA>nbMf3gYE2CBONh-s*+tBY!Z7aSOaD6d(=e;5NlW*vtA#j=97rLP+HgS81c zjL}wJ8X6k)jAfC3u%&i}9BrDj71sCDUJ{}E^i%FYC?FBw2Z1`;x^mv76cBp>?5bDw zjDx7p#mxM%0A%{mE~_Da5rQab?HN|)4j_{TBrOhp{+4MsfS{mO%TIeFya-!b2`;eL zO4ZXwe=kuJUNUNw0gXr&k0$2~E9{?(})zIPK6FN?W z&I5vHr}4tj$0$~!t=X!|Tm!8e+22l|z6^;THg>#3+xq}xrc3VR z-AANR2H4IT3|#1*X=xeA4En!<4+J$Y%5YOr->_KNWdU*9x6VQkzuDi!B$?Pk}0My#vmcK-K|>Hir> zSD8hsbd8NwOI=1K6NxK88Gg}J+(-n4n1j;x_m}=96_Wm{BHD{d(e#uQoSkiJkmloE zGx$=-CYLxErw-mfBEE~%;Z^$;=O{=L0@L$>-Ax0G4r?B;uW-gS%b-$FS=(;78)C zd3UqBz4)%2W^x@HM~XY3jJq8rE&5&5xB;DiEqdY?V~_t`+!aA5Fta3o4Q$Br==U}! z1`a<~xYH|a+Y?gX9)jyJk*4t{cno(CaD;4vb8|_M_7Jo(RYxFASMc8~Zy4x}OD-2% zkz_fb0)N~javy&CPK#6tjFeMn8EX^e5H4}J6Qq3ATk)a6%+uYZ`=<_|UsP48>f?%= zh{#GCb?FE$i-fa?e@UAo&Dag7IdQEZrcuJ@YvZ2}5X0f6M>5cf`2QYFl@q9OXG6o- zL>V=;1_%EN*JrQT=YGF_QWiA(gA%OX3xS~_CeG4KkBRb6<*q}xv-!6l!ID^-C-V`3aBx73C~nbIDno9bYarpdDq{qC<~9Dko#M2AB}yX3dbc&{tUDD7MpQ`&j#AD9&&>?zuJUe{tsJ)}|fwaC$ng`QJr;OZ0w7zFJ31q!vIv8a>)vv5^<;gbk39Ytj=xQ^*;t8 zbo6(#0vY(PF^DMRH5*FA$(pfMoY9!(Bhy>P7zcdfS&t@SdPOr=wg8xjt zdT$pI>(x?E{rYu_?>2WJ6OXivVdNjz#ng66CrZ-5vb)3DbgN=pcDctS>s85`<#?D@(x-sTtTld;kbCqtKK5W&-q=T{^4SVk zDMDg^Xv}Q5Ueel9X4-6UhQ7sndh4Da8-B!xx*e!?n(K;vEf1%xZb_RpZ;nIadU0b+ z!`H(P_C>pYP6Yaqw}+pCQ?wHoglsPQd+);!bnR=Wzn>Pk#-qdRy`I^b)0Ad#QQ#8g zG3J81#s-0pEW0(kaz1Sw67IJquCqDE3jvqPC)!>yc`2_=aAV6_dy382C8eas15PG! zswIWbDzt?w_}}*g^Dxw<7SKCfk25TA@DDSSapp zmwJ>)vp%<}`{SQP$Kt#FYD)v7ZJbD~66?on0HIIU*q&`C6h_bg`NPS~vJWP%s=;mX z_W+_Lzm-c!7(q@MjMo7x9NA@iu5yT0O_Bmv+h9OU@92wYmA*grX79o9tfG&&8Ld%@ zt9U&E&U~d^3)aWT+*|nNoJNMjm9$iS9R@LV*uyR6a#Q#HO$JGQvV+2Tb==vJ%a8E} z>mTzgGBWtjelsgQXFx)u9M^ZV)5za=4A%F>!2no0qfX_`i49bP;Ivv8mGxeavPzK& z61tw+7{~YEN)a_L-0Ezlx`cjs##wAfPcWNV#GFYrFOK|R1Z*fxSy-Ah_s^~a0sfl^@>p}jw#E=few#4!f2@dyjfs{HcPSL>e~ z0z}zX3A~FWSyvcSS(lV7Tk7(9x#h;q(3aK)Pm6qOi@xSE#S_@TvzTGfeW5X{0um4+HrYEsNu-V~wNt@p~zgerV?zd8F0v+YOsD zKAod$6Z@nxGyOf`W8CqhE~l@JY%v_KbF#ziPWgBUmtjf|$em8+jmyjj`^KiGsTSco zk2@bT^XK}}t*%*()nS}4^V|i2{#?bGYAX$rtgctatig#u+HHl4VZ#EPeNbX4;D3; z^_{f*c4)yz#d%`bBiQ)HNv~T}CTwi4ySFw+7oWemcHL;dD&4;HNP13=)I~`~%qid3 zugy}6MHr|1Kud_;###$4Y_~W1g?gr|CjVOQEME9X=q)9;-JF=^6SVlrl&bswLdy2} z^c{1eyHlv75UkFg9#VKWfK<-N!jrzThx(ab>jH zOu$Y~L;Ky&!j~9jukrDj$sk;Jx%Zx+-Fx;%ogVpVuO3y!#$LVQdD=D7(TC^PELpUI z<&Sf-p%q7Y>c{;s9}ZWgK}wvR>$Wp{teeX^%M&f;%)bj9uA_X%(lrGOxirXX1pQCP zh`bWMIpX6rdUH^^b9(f<*5xX^t-*qD7)JROy}vu((~Y-;%`MNWCUWvR-^J9+yC%1c zEa}Y}F1nTkq{Un$kK@uVwB4FaeOh2o=NGnL@exGXxK9DerginNQtismr&Q7NPccq_WK#KB#T!=ATOm^sF=A=fy~RPM5{h#aUnZx(NAw z2cs%5;?A{GGM>ddcaa~^q4u9xNlCSJ31)6$OY_hTW>%chN=}p|6AxxxzsK6iFF@|Q z%hwlMVsyERODyWvo=T6`uSa{vH#$zzUf{ROd%ew9$9D=g(PfQ9l!mbLc?CHJ;Cq$_ zi?pv@+fv(_Af&XORBj|b`Rdy#YfizXD=)!T{4spp!Dmb{hRY4_?XcR(XnFKiMtE3o z+l6zofm5>h*&o@z>RH=sZ>Y8}_76vdXskTjy*n~yn~Y3TMP=g=S^VOiJHrOP`Ph`= zEl^Lk$Kd5XAGSCy1l>)gjfg?Qz<`rDLbjEPwdy zn18WPvB+ueit0UrX0;7x0^T@Zqs%wTk#n?ZtX^`uw1aElB$sdP?}Kffx=UdO?3yyx zyH*8XXxQgz?-2?V{G_2yqb7wJ9?|!8a=0O8A3rdro`u`~rSi#tW7n2rj1=GIynG)u z-pJ?t_4WCXi||`!)pOkl(7iFoVx?TV|h30uN4qsZy zvo4KCGeQT}#0*6>Q}CZBoC5cXojj3_i`3>6(mcInm1Zdz&7~!@-8(d9?o;Mg5s!7b zSWGde?Qh&@RPI)*efv!(eafi<%aM~WC)x(3R_4QFcsAG4*Vj15;*2k=u}-@P)EkPA zWJ{9^Z0zJ9Ed;mVj0|!$3UYFTH1^z)2(KH))yv#J?*!vhqOCGH?``tr=W&*d$%IiXNjEInH{->5S` zna_*v;@jfYgB&ZOtL3q*v_l2S_pR(jSfeQ(C7)1j7sa`c|t4 zc4|v5v;A6HGmjHj$s<*(!tZHaJYj~VuNkWnMrQ@K7)5!<33cvSwAq6_8yj9Lu7~`M zT^8%ITj4c4d!+dI`L{d9U%istXt+{N@kxI;CQM^4{I$-?YF*iAyB1HyK?dSPRKEeM z+3xJ}tg!FZ@wJGko^3Yng_Dji7_Y(`n;5BTUfIkX7xj0{Z7|8Ih6AF(EYi-W zN5jdnF|llYLP>d7{lNio7vugJkEyPy;;aVevW=-MD{DFftA*t{=f;^o9*x-IAS18( zr5_c3CcaFCqV;pebwa|PFIL-~&vLgq^Da9#dYir`a9ossuU}ou_Dy^G8#OlY{Uab0 z#cw|vgYpK5ko-z{tJ#!_8aq zonfFLGxHV5&aY!1)U3)E%Xj8tlNO{6B3`qw2*}Hrg)@#dRJ7rO0_(|xu)Ymt#aqD* zOA)p{(F=T7&&IfQQ62bY|I7+jYMJm%$oG2q#&fCVz>UH;Z=b(eX?bAv>&7+m6IN=8MiL&%~Mlgy16E8fK6k3QRi8{oW`3*i0j@H z7M3;Il^oucc2v&E+a}eB){WOdEW%c{V2+WhGn5Vc_Q8VH`<1n-3)>YAl zm0V;n_O(^mlkzOZbCfO%w=OD5$28VQCT93U)W|&(hdU?A7~}l4Sx1kt<*iiEx@nBs zQfoy`|0~XDmg_>FPQ(AZuvB|Z^;G;SazA@rDB!Bg(9a?Fpb<%U^(JH9Sc%ZGS%`ZN z-?GCz`beCVn&Of-HKi%k)6i{fo8e_$43ktZMzIv`ThYfu5FD>YEU3Td0 zXXr%>upcsS-UQu!&iH@d#eyO2V&S6z*IV;dv~>>cM~5A2vuKs07c9*TB8x+Oy|&NE zl=-jT$a{;q!B)3dvY$AP7+$*nxA&oH`|RqOAN^pX0mkSrVd!e_f(4GyjCH)H3zx@Zv?Bw(!|BPdW>j39~^gjHcsLF*847H{AP_W7Q*o%WArXW}myI4|#c-{<)~ z?|FWo@24ZIV<69%bpF!)-A&o6FJkn-UqmVUOZ9$R#4Oi@gNG6-)r&(N67EbWelTTu z(bEG-#-t029_U`beR9s^(7`;PB?X7pUwlv}7xo7`v|(_8$J)i-Z2|5BZzMX_@URiK z%WM0;J36-E;b$z5TRLv|MV zohu(4LavxtH}4E}&kR;!GBK~>UlBZwk4G;*A2qvrQ;ogyQ+2?xAdvC~erSagDtThh zXr3wDUrZUQP$ZeI+-!ipIgydMGQPo6N5{H*r$QutpEkK8jQ#P_@eaXOx`@_)?f#sU zl6)tiCmVkk!>4f6t`%z@>PtZSWuV^7uve5q!RS=iEDw~lnWnGN8R za#hLBr>6c#0V_(lEDO&cTyI8LDY?kbnNuBPJMt!&Y}tP`x2Fwu%$17;wB7toL+3_X z0`wMlU|u2_|Dk}T`f;mf;mFAFD%`O{FH@s30d1w@&L+=CX4}lvfvf^f=Y@IqCbwf} zI!V6y+xq&L*pbO?{oReOqegwMK%xY&bn<0GGsn6mMWSqk&WUCv zlR!`NRMZRE6#ALVr{zWOd+RF!01l3BIHw{B5H};^$%i1i?00w9n&OqVDNcd5R58I| zfZ?bKWd!9#AB+Qs(-On1(F*J*uvy0RGU=?aX(Tzy&e=YgtQ z*KZAP*SkE!CZqfa9&eugRE`9{MMui3CeAhBL(D3WI_v^st+Ex{u>b7>>{GH+{uoI| zW%*1DvAu>u^ccv9ydkH_5Gut=TLL@MQLFPg|0EiS?aE@S#>mSH9OAwhw@+p-i9qZzP&5Sb!|?zZ7L}xwH$=_#N0u*H6we7gyee!G#uXG>N61_4ddW+*_0JU$M(6i@tw^=0w@rm z7JsFQHkW?*DG3@>dnQb1W+>iS!}ek<$X!zU=CJ|x33lIsW??s$jzA%(GA(Li1K*p& zmL2=0exCZxdisCL?SFqAb_bOek8^R$0-|eUSi3s?DVvXe*p#~n6V3LP!V!k#j|jw2 z`ke`Rp8y)W@P;oHKcA48s{7_!<2B=*2H)xQ zod{`m4Bg z5*Je4tM}J)3jWY5((5R^ufxd`*nI<&M0exD(Q98$1PpYkhw)|K(~}rhTkinsqBnM z2ipdXK(7#%6MZuAnHVDZLih5g%gIZ@dwCFiX3joQzLp2>s%t)&oAJvs{H}yQ<7}vN zlqYO{A!J0-jw4%gGcqz>i5-R5?^@f!-Oz+NCLYwBzQ);>8ajwzq(3m>SpIun#iosJ zy67-z=cd%6k;W4z%@K?ChP1R6=1F74LPP4MxPy$N2pP~-!{dgBhrb{K?ezmtN+ejS zq=$&M<9Q~thgU-6^VDdEh+#E_weF87Yk_B5&`YX~vT{#)6!m)`jqin^*N literal 0 HcmV?d00001 diff --git a/images/loss-l1+l2/output-test.png b/images/loss-l1+l2/output-test.png new file mode 100644 index 0000000000000000000000000000000000000000..498b2738fb6f0048d7239fd8a4f975466cb9f79e GIT binary patch literal 36417 zcmbq*byQW|7Vkk(DUk*d0g>(o5$O_o4j&63=rqs{OU0kgl9eCLJ*|}M%t=!z4T!lC|?Em)y zc1IUW4#wYPrtl`1PI5Y~DAWxTB@%9fz2B;u89WgCC{|#e#Y(jq*+o~TMqQ4++4A0dNFwF6D5U*j)pFdhkQjd zd^p}f{r5B1r#s^E|9&gJNKEkIzgI{Z{(t{cNN)V2$z@ssOvMzz=*<$m_V*0K+f~Lb zmlRTk_zJ!AOG-NVM)hMxTnW&{7s&}eNDYivJ5p^lo;nb8!H1A)+F6WIGHrW#{oIA^ zq-gaPt=u&xErX}T^@bcWuPKr?ON?h4y=#`!JgwfqJK&wm`(mq}6!lVgG~O3myqcr{ zU-6p`|6SM~mNfk9vU~O;BO^6it=MJey(B45f9NO|j*vZg!F#cj(A555VNXqex+**F+1=u|YhFq)!bNGddch@?1TfdQR0k=QMe6|JhpexMlkFNSQ#DESb5L-1Lp1 z&dtMxlDdu7u`;s^)qG_gov`%tHOsBj^V-JS0l&2x&vqWA_+A`yl1F}B-Pf*n=Mp*J zQ)~RYQMdV0ie|-Gzkaac=TBX`>G~w!16J*i)CFwbKZtRO?%bB3xaWeNVDRi_NyCAz zzW4r!`$p}uQ$OFR@vpw5L~e6=^@(JM&zKe!H=oaV3*b@;hvufez+zBJYnP?+COW(! zPV=ijIV9P!@n+P61G0M(3njv}AC3+DZQb!xQrlzMC;X3$$R3-~w^mKgiy)xrgAJ3q1 zOTd+}dJi6p!L-z!T1xLdm9yWnq5<%MIDEFTQGO#fkv5X)Pp<@t;mD`?UU;DSIh`Fj z!%jC@{1SZ$H3#?jm;KM5Khfjl>5BBKOS+tSEC+}#`J-koW&>|vp@K$@d{Z4SQ%^n} zHF!|+z-3Wx?oVOquT24mNk$Z&$k|p~(G-<95kc8P|HAg3mFxNbD7J2~=GL*7*TmWJ z?iEz4~*q|3orXotan^Bwk?Zy zIqVU8t&}ozT~U324tn5_+BCLUs?~Cc*VTfc5!k)`g2|?u@*}W&Mp-Aw>}X z_U+qel~zMEsOAtVpRpUyrSWR%C~y~M{$2>M*DeygqI~eqk&54rtnqx^(X2O~%}J0# zr-2^XkjMwkD=7F=)^A$2_ay<%&v~I!x?yy6pA25Eaf3h#>-&!%^RMr3G+(3g`nquW zyF;~XLup=~pJHyrPkx^>cT{s2Ap@u700o7J7uo6IrmVHK_2g=0Wurwt}-TC4b$}f z?vN~1Mnwf-Y2yhq9IUQtDp4O{hf}!IHB%dTj4K(EA*hss`73^0W}U`|8&k+pk7O|Y zs;aAtRje5ic*A)-bwSoK)>X^ z)6K9@bt729{a2D@=1-B`J|0FkwvN6e9yC;;R;i4c+1)hngK^3(&jv&Iz;@G@#22q5 zDZDiAjh{oxgbh*X33#UemrrE)?GW@xrsZ?PbxwwO#j~3K@JGq&z8N zpPho%Tnx7Jel= zLWyj_=BR(e$(NIvdFh7m77F^1|Mo)H0+jF05`(%eq|%V;=|3IOa9@hka%#ISFxz%R zwEf<4N}!YAtIOALXXCUCTcGks=u}wjFWVDHDISfK`UF2t<~P}xtUa2$;fqnL|JpLm z+)eVs&YLxMKxjAh0*2+=C2tCIJV(uiI!3T#F@{b;=Xlao?ZA{{^oX^iqYc2KJ zXL)t|K8d-xc|954`@zovG=mx!Qm;cTPd}Mh@IBtjaR zKr6A9{vEex&tz`j!VL+A4f~jpi3$IcZt+L2W0$!v(RZEgE#Y42nC$%?3Q(ZGtA}Iy z761NpmBSP>+)mlAR=g6@(!pC5>E{aW(3(8YHU`s0ji4ihfAl_mmXVVq10Asy-Y1wL z%{{Y=?~=dYR`cZ>|0<6fD@xkhe_J|wWCYA)(|V3*?Y zE6II6i~*IROHx{1P9S9U=jItaVM^fpE@45;rw6%xyXxYhw7|?0<7vu7i@KA4NA{=q2l6VcQ`C_PJ%mA zaj{VOoD=S^Mg5(=A|CqrwK{Xh@1d+R_ifWeg`5;4QL3YJA7KDGoMbp2tCE>zGEhMN zUGfL+A14NH;$vgQ=wmV}EBS0ZZEab4dV3crvsClvu?D3ku&-B7L>|ugiY}Y-5@(RH z?7dA5sf=V$aAlJ>8|1*a^qTSkR_<^Zl#`6lpM`Qq2N}j+RE<;EqH~dDz~4ESWHu|F zDO`hwZ84A%25*$^7$HUD{`dS)MNMsZW~%#Mi!t72(_ayCa&ng!x9Q0}3soLze4@Xv zB(j?ft!xV#_&k&+Si=E5(W{pv?ThfG8sEcPdoysT9oUYRbc|>jMZzJUE27rCZsq7r*WEePc@b1SiJITfOBI_}}Ir{7-TRA#*r9Phyi;pLP`gnP>epfLnXv=>9 zI`&78-CsTti)D<~^(!0d9cBgiKfJX3U$&We!4CcX`**X)a%xCQ@KAnT|CgbVp*<>gX&A7gL&#c=rh?gX$J1F~6 zg6Y}OwoaK-Hz`uDpdzk4yZ=hYtg-I$?CSq>L$7Y+K1W+PJlzIlw^v7YCG&2I_qows z6>-7|Eyl6+XZ72iw~hvVF9OA=-)wID$0+D&xRZ=;gY zpFhK!{+@3h?eucs<6Ny6WBK>@Tw46J^R208p(jB%ZduqCD;zNeNcd5k_2ammm4kzf zr6t29f3YU1^>Q{!Y$l`FJM7cphYAgb97zB9^y!oFTx&2CP>1$_mTD&h{|E3}wdI-Q)MF`R_Fgj|*#SZ^Dg^ zmJ6bq8C~rn%=E_3Hl1S-@%0UzRF}@J@olIqEG%pTxCSS79?kK(^uOAPPw>I}Lt`W5 zM73jxOjgUp!u?%Ige02%-1j%ew@vI?Oj?9b{JHZlV2 zPKop?CAXQdH0jLM+>^7Mr$ht{AyCeP%4R{K4HYq5r%q%QiCavhd-Gop^ z*fja-;c$m*^>OpndyKGxFJT4K*kComDg*OrDDj|D`p^;H?>_WHp)KCRsFhvMSv>An~DpkMe~59hQz;TA8}l!VQ| zF1jz+G2Dq0CUptObEWQWVlMMb8o9&piVV0qfVt2j@-bL~tdHziACqqi&wCBIubZCB z5@w_JNFHDDQ)UcWpQz5t%DN2jUlK5S`bOBl3*3X{yb4@HugXpwE^I(>0VlEF!thi3 zj43Td2gRvw3gu_g z_7eD?Sh3~;^k2A#V$^uEMyHPw=?eokZKtgYCSp<dk+PJK{2J-Iyd#@&W?-7(ty-sJA6V(ireNIhjUJ3ZWij#$UxSD77wZZ@F3|Pw#M#KQO0}i+NmkC@U|< ze5x%9CHP=-CTe5Dfz{wMk%orGy;Z7zb&*!ivtwaPWk$R(DcEID zZI5=cbc;!#27x#Nv@Wl(aAD-AHm!5ef>w?7gg|4oYvU0~T%@IAoFb8cW>KfeqlDhz z=hGh708J$dI8sL0AhaDl`hnaVdNG=4G4_P4`g#g!X=xz%UOlPOQaZs6<907)vQ|_y z2B)tDisy~k5D^nQH>pBhG3E?~+ZiNr2Y%UTP&h(^hp|PWF{>`**ER=ictP#r`t|Ep zwzh#Yn}g%LjYl4fZ`GxqloRKx9yeCohXp;TcxeMLV`r(in>-vjdgVBn-_YHKDG{y# z^?2(=gNpRS0BWaAWqLfbyPgVf0Ax_!99i9m8jTUs1}X+LL-_i-;-)fk$Q*}75Qd(i z92%hnMIl=?OqsF$T%l5ztGko@o~)b!GsYj>rAHgM$PeDReTQmI2wBAzXX-| zx6X6Jj}l=EnJ#ojB80XxipmJj@FTJ~Tx8VZMuG*V-7oX;@d*O)T@YgVS1O|^Y30mdxddGnF<>Xnxzrl-l4ocZ;$xs6^~l5C zkk2j;@%ZfiIc;1lEkIj>7lw^=x$U z+4U(0fvDJm5t}bdE}yEacX?4i7-VuJScfhYva-8(_!m-3tIxLwl8TzPUq9YUnfKn@ zJqCzq0k1V1%9I8M7H=iu?{y~_)q@mDt?$0bxd~+TB8)r+@tVtmbxqA zVvIxqin)P9R*NiBu)c6ip*(}Ki4uGMT;R+{R8;Ydk8nP0P+>4Zj>w{%LuEp0BIfZv z1HqT=#waP8yy9YMS=npA4PQfZH9VF1*Id2i-ds=xP|pI(gfqd&!Lh8i4b1_N&(%PG z(%WI!@ndBucONUzP&71%LF&Z>{k5u!pO>G%b^Y003fwk3e#!savJ&nRVTrRR+{MFi za>nwLeV7!dzQ(Lnv=v@VMwifg?A9osEdifEU^1#<)cu3)X6*I*dG5;!OYg?N%qYnI z?hLHuJZt)U`1d0sOQ(yZ##7M2sR_lAJ00Fd)L?Tr-}ss0|xe)kc_b6QS) zjBpXfp)`%+Qv21q8Cn%J8A`fCvZmqW-5LtIIex3V<$Yf?b^g zeV}Uo;>eL*fnnBAvoYs;*l~1pba_QZ?KRE|oB)Sjk#SwpE#}X#w5-2GT_!13q~~`; zQPyRC+4;l0gHx&VfvaVQl#WK+`s}0#qOCui_Jj?tvodUa+Y(*H3L%ZH)b`?kp4B=3 zw9W-_<4AJy98onWJ=eH|&-aFp)+z?!XdzO=k(bEyuW*(UF?)M9e*2$60yAEO2>b&z z`*YuBW>n3T!}pO9=h7kfOey*pKoHW$k>&ZGzwZ3me*x!`^TnQ(94!H$djcq%C=_7j zig6qe&$5Ov;OCfb^i)OCr)kQJ-xnqoK9#S+L4k@0Uxq7#1Ep}ZD|NX*7gTu1iwR)K zuf;f&K(D)Ci14vWM29uI9IcS+QrWu!?>&pVS5kB*XMy`Q+m<%GJUBQIIdtTF%@e>V zWd$72gc|>3D~uyrZtJIQ>D=2#>}XE%!f?Bdr#?SDT2b=FLc#I)s9Owo`|`zV(*-tY zk6nx1G20!aM#evibWnas;V0F1LIdWhtfDfs`t&yLHJ~L9b?f|TJV{J&Gd&MCq^+%) zKmn?qHJcwa=4`g9bZN;|%?A(*CvMhB5IL`a_1%QfP-?k~(g2V^)eD2_=s?_&nGBtZ zlpfCBm>oaVar8@Qu=MbSv<&B-oNb^dQSZyCl7?3nFS1~RIaJ?zRtF5LdGoMsVf#H` zv8PX;3OdcApsCiViShSuR6KONSKwWl{HLFt*>GF!b3RB*R{*fJfeSJGrxXzOXLA3U1{4)I7zi#Rra@(KC0YuB zCzy*16F^8ocgLB|DK2LFQv)Ohj-HPfE9(rm9!3BPn0#Q19{|OWHneQj?guiD4r(l?^<($Y=x!7#>Gz-y;qrUZevZU;(raGexIL@i8u=+?E0ZhYB^FKy%rKBoj2c{ zgQRo$CZf^#KH-xPviZ&!n~<<@emJu{0h>+abdBfx_wOi_jg1Y+GKk$X{VVW>h!`AF z&>F=fsTTfcJv3}<9jfhmX?-Oh}RX~f7WNO(PxJPn^9EsN~!n} zEdeE(d6kMCR@%~QtbpcSmCODpqsN$Hv0Y3~1B?9h_CHK_Tuj(*Jx8D$-llpDlb|EeY(mXq&8cMZ`g%sk>$u2h~k;Imr&K z^Boa);^fP0Mwo>U#>{kTQrkabFHB>oV*eKiV*j>8RDaZwFWY!6b-(iTnEm9o~|xn;bYz=C}hJ& zVR+arQWrVfKXZ0mO}j#87;I-onNHPnW;*Omn=H>C^YP6=$wn-pk59Va2K`XJ{4@nh zVjz@6qO0CJclt?JPTp{59RpDp&ro){)75?x1$}t~vtV=;K_v)RDb{pF`x5?U>}@)3 zNT5Ctm?)1i%FX{f4(q#duAK zwVE2CuCDH^OYPBl$K53A)kh*$1zog+e&^9@Jtdc)7{19KvT`~Yw=@F~qs&Nz=`FX5 z>2a4J@L#nM1x5d5yY7K%J`vbcD)VvDWOM|W>HHv)0A3H3q7n2u;`9=sqE|}my8;_u znv?8RxgLS6U{bR=zMLi}F>VMzyqYFPLJz3<@D?EC0LK6+V|HW@=n-&Bh&X_(4#qzC zVUWLrmi;_4(6^VrRVos1Onf!Ed#&|RT8M-Or2)ol1Lu35RlveG=iMy zB$PVILVTpVX3l){f-oXqhLSL8)KZe@P-czi%XcYQ<#{Lp5}uy-Nm#YTuHXXoY=2|^ z6aT5ak&Y1pHnGro$0uAN$Ikf@w z4$^e^9J$z>6{qlfz^IWjmrF;nVZ(aM0}O)~IQA-R>7d6?U5l6%qQC{71dbT67GUvC z_})8<53P8~L42aLuN=1nWfT@uKjo#w9Ypcc(rUBfMH(fz^$yj^rSx<%tS4`myy$Hc zUOl;&9ae&0_kgrLxjbq;M4Os{Fb^t*k@r3^G#{`)Gbf+EL&!c>qBxrz+$s>o73kHz zGt06H^)y=6ra(J|n+#ComqZbC9g*}KnuWyB`T}LL#6esNmWGbJoWyO?RdPLrpg}V&l=snEcD~QT&OQ2z+*AZ)PY{L;Y!lUu>iT*{)H3a-3~>*RRbTPIf_BuLNBZt?Wh1re&5C(g!I-7b9s+z?xA+&nyhY{WwmY;+ zkggEtA5bD=G6TI0npBu-+3a=nOJ0}{!Jh_zfgnHFLa@h_Qct}^;C}cN4X*^j`^aRW zp$zee|I>W-yl4sLFb@n241|~CG}bB(V9!CDfXkte3Da7v;O~1EzLX1$o&DP?D6msg zkx-`vN_o=^2q)4aTeIBT(|D#XW!W9ljaRwnqnCBT_Mtd<^Y5l4h_lFxh=gnp67@clq(-$CC%4OIGD{5=tq8XaH~^{jp0!uW7&mph}(DGqJB?HMq?LiXQY= z*dqWh3?m28OTaypPyq_K{w%AuHi<(V?m{M3nf5d@3SI$qi1Kk5i)X2z4P>uAR!g3Gy|6zHLE1w6KC4sZU z2K;XGG!|2Yr`|F%R!4+uyBqy(#S>GSq{kB#!s-^WgY}C3rNK9nFDyHh6?1tCdeU{| zJQ@s9xj~g6oU|DGfojrkaT#U!r6XtlCae~;#|gEv0`KaH+jK9@TqVt@e? z^_+4fij-fcmTzvxUV>c{KqiM1TDdk15=S#g+ohwj#aB26R*2Bi;BBB7fyOHMVviAU zH<(|f7Iw_(sgk9mW|K9}2&{n4re)+E3}m5Y&dDjGSJUck?~>O^nn6VI*Y?a(JE2tK zTU_ZX^t$IhqKBOOr{^lQrG45n>(3;!hMXoCi#4%lZ8NNS$&Wn%_UP*A9iPKxL6ZU? z33Vc?rSC=fQU#Q5H#axq&FKd41eM5&75L3L=!e1|txy{t=POGaW}4=z|3o5f?aF4# zn5yxk*3ct8=^1YpNf=}(g94VBolRFj7N+qtf@L|dg}PdgT*ONdknS}Iix4s>{(EOz z+XZ|T&DeIV;KUlUku}zU0(E9UCP$xyRyhbm?FtNFeb%3~SyXKQrX_5Koes1SRtQcC zHeXD4yM4O$B0oV`Gx%h9=su2c9^i1G6s04)MW{%t`>G1Si3`EKJ)d*3omP8PIA%^g z?dHX-wvkV8i|w&=%0aH*<9*#==7O*b*$m|^UslY3FSkv*ZfA0msf%8()gNH_L)b!- z&bsquEd@jq*f0eJ1)LDJ0wB2^%1~(cylx7_3D8&&0uvR#FV0Eic^ zjmH9joRxmq7myFe6(~qTskqP{KsrG+-_3)*J40HScC9(9iM1(KqaQ#ar86S7+f+{4 zgdfL-H^}R#!~$*hUfbA^0gZ^6nfd5=9-l*q*=LEM?C5bNd6Ou0^urGk;DjS77s!F! zlF#OznYt4y{zzK-N}A`!y|Z;k-!_oxcc*U8|0UzS_dzv3Hn}T8I^6xbJHPi}JNE7o zq$WV$pCtUg;zk4O`Gk8rDxu!D7->eGJA{PweFA*oHY}w=SxQu(7o@-il>|%% z*lmE?0Z@FZs&aAlepU}v9;#d6Lr^#~K&OH;0G=lt119N*9ec6^mNcjNUici`3YX%3 zM;`AkFCb|?h|_IM)ooWdowLmt(1ePIXcl%nIGhZ$EvdbV+UjOVpWW`F8g$IXKn2oD z^yK^*FMn@$D^R1RB1JBKxqB`8lP()jEC6G800ycjpibXO=&hA|Qk&Q}5xW$o2^tFk zd0_UEV6Wj)2>QK#jVn?-P?9xbQ+u@gq5;5yA2kLPSp+qBoA-v5`>gE008UJ~{^am3 zXvCoNj;_|0G7-)IwS;?3$`>qg2i5?f5~72FK&x38cNkHOM}!;VVdFpLAPdF<(ClZM z)BRcw;nKo7LM&QFBgg(MyQ6&OlJ{g3IVTYR3qSF-u>_5AxXsHd;G|2 z({pBF0{GI-*j$fj17YXqg8Qqe7Hi!MxRrn58&y+{L?Ip27mDD;$hhJC=60fXj#U$Vdr zkizdSy(VG2e3IK59Hx7KfEh$}wOz3UiYx$d1HE*Vv)jP-Q{oHcUTyx?FjhnLemN=nFw-Usj|GkyvriCayw06hVR zsa=Lf)#M1dVPKTNXc{+RJrSHrd}4aaOu`hYH8nkYgU@2L!^K@^TZ1O++b6)%g zX<2L)DZ*Myh%Fo~arlPK&(G(r2T&W2mKdB-_3As#1(VK$b14g68IXl7(CRYbFIbM= z4fW!NN?gCw!;;8ns~P3pw|rkK1pOzXChK{H=l8v1mc?;M;P=g>D3U>KR@6&^fjEpwgw2yl&dmEBEBkHu(8QzAjWwp~zs7uTMH zF>4GP2~h)3DJQ8c?ChQW0yBNyZ!t|jLiQ|D%h2NrXeAbt=YLN|n_QmRLp*Ti?3aKb zB(=~|-bJ%9F|{Bm=@bK3YM%F3^2c~$!c-0#;3UI&KOH~WVr~6G69eF0F*l}k8x%%R z6tdQ06BEtjR_6=cDs``eEep5}S_RyywCC2KzIyCDfqjN#|DddZ9k7@QDk-Q1+l}0w z3{`6kge^s50Bx|KzhApSiH=IcZ4T0dG#PALFchS9KqSSsJTTG$M+X`XtQ%yZUxPFP zVT4bWmD_x4NlMIwo2*!qT8Vg(T1QVR#@$WcxgU>s73rjR*YZS8lYH(LjW&p9)d?Uq zbiY$Vb_F?{km&uj_!HQALBxx(b zg+*=2gD}Df61MR09^epXkeBX4vfuH{IdjI(|Ij|(a2Jrs@b_UrWTsBm5)98wu*GK3nfO_GTTW$d$(SWv)Rt0`B$ey5E zdz8frzGaD)bDv479G+_nDYG4AhZI)J>V75&OMpk9(49tyrxz!>k1VV-zcv#UeWtiA zif1}FBGt7VV3&ShQ+fDprsNIKh#(g|ci8mT86u;;VR&oLZer1OYj`(stAo zGKBC6@73~)?~$&h7g?rz^E=+lLJIjd#3pgcBk65CA-~`Qimn-gFRiS;Jet9ZLt~Rm zVkA0^ERR#vR?Go^PwfXPGv|E=z8d(t08Dqq0Kr$gn_h}ZTD(tz3rYgyZTGZ?!XA5E z2b~FIFz70Cox66-J}`5EK(cCgv}P@PW+o>8(bXk<{W3Lx>>m*l5L<;0!zO6%})Zf1kMy*=nF*T6u|%IUr$?gwwcB6H=Ef6buiFotRULc6ru z+C84Ezhj}y;yAo;ihZ^tjAmQ0Iog9T3Ex(k|D|0H$XCnViCZ((`DBH^(e&46(&u#j z%<&q${2OsrZ9z>s#Ku}z(;@7HWKNwsh_x1ZwY=VQy)RtTX^+vNFSB+cF@c=`Un(Tb zcJk>S5!{b*AU6(53NUmKQ$RgRtApbO3C+Is=rLz-RG?~s`Mi0!D{&`Z9Sd~f^g#&a zaW|e2p4xCHIc?2~QwTcwm8zA3ne(g;5i?MenmzD(IcpF)0RoJaL9JKH28k3%ouSHL z_}ejN6}veUiTFC$1PMkyn92P}SOa>^1uICjQE#|?NA)!p$}tL$&J_GQOJs<9#Ypnk z8n5j~8Yb%TD97FVcMTyJ%WY2KoR-_DgyXFm4u|9>->X#frNEyuYMNfy25JB%(=H8Tl`zBoYN#f|D^k#)5z_N>UjYyB z3cye#&U9DiRWr0K70Bj7tP<32ARW$J_SF;MrO)oaKotJ!iT;H1CnM*q%zYbyOBv-% zzQ1C6TyzZBNkL~Kbq8SMd9Wr9P!XnWpr#+oE3+>1Qs5qj=5gOiD~VGpxAy*p$zu3` zrHVQA@eIR`*lnvf7`Js<^{Q~HXM8++di^1vY7EM5&EnffPNFrx~;3MBU<-WF8;Mmb{r)`&A~jHWAxcXOfwFpxf)5|iVF_X6Miv$z zY5?FqrStx=SA9UbM>e;lSG-y01{)d94uxi53#wwg?;H`MppqlKZ)_|S$~ff3chs+G zZh;X55VA(lqBpU86++2mI4>EsF3qkMxN|i~qmug7fYqS3(g}AXH3~;mtg+V;TcnI! zox)my!p)w}{Pp?iVFw+$6Qb2o35G8)A+*1~`)U4rzS{Qhtf(Dd-55~6oxvO(-lXH2 ztvUE<8$-g`0apEj|24{HBu5Voph&4z9o+ODmeTf<{Z%z`QRqLK;RIao%{u1mRT>O$ zfCZd8+2avS;>Srj=U^XbS-ng1j{*^D^h9S5EEK0lw8{OQ4Pr_8B7}wW zrZoKLeVNH?pFwm4Wf5)$XpLTxp2eEIEWbfThI#{O2zQ@C!KMh0pmMnqK+X_ss4aJ? zO(7Kn$?yNV(NOq>1F*ds-o?UQdH4`hQS{smvhzrItp!FETGOvY9D$3?u5MPiIeyMS zptqJD3Q7~e6;N#=HP5TtUF0Nruhph`r|^Xd1sgiLIZnj6Xwru-Y!&Tf1pA)8wtq@UT z7!88Fs^T#PTqd%4w_$LJzHj(-SCLKyfi49u-_=jlaotZQ1*bO;0scE*_Nd|p83RG7 z((*;kA;i>W8fl5MCK{ViC`clLWtBiQES0b{9fYO@0wH*GAapLDRCW5LZ_Cx>)XT1_TxmO{G?Ul1{8%(HjDE(0!^?OamAomjPOZ9Y0vV zP&q+|F+(DK$^FohLU(TSlHq`mj0A6OZQFpYpi+9e@zK#>0u6BxNps-tfitFC5grpstbkhVOfqS_qYcv76h_8kW&RkG(FAo5`mxwCda|ap1Ux( zwv*&x#J4;erWqrcnr3d4j`r?y=_oSt{IsMQGc7|(A~(s=jBiKc@$NlWyWD(dP% z;1U`iZOx6rxaGU#WDi5;UA7Sr<=urrn%5T$cXb%&u{bWXyQu|g{1tagOUv&rIct`B zUuf9$BG6H>dO~C-*sf0kL9jFf85y*FLFai`E>N8bm7bdf#EuW|)7@@gar?DMB?e80 z$D&Wn!^1;!fG%3j35MSmvJ(vdXt0(Ko+#)*FpToW?>pp&S`5>UDLSZ zq}9g(_B_ZI*bY@cHP)J0-BjLTIH$)fed~O5i}6#L%!eqDqJl{c$J#j9&* z#CK(1FZ!y1$o}&Btac)(4X0mJ(;Ri$p~wwpJ1qL19cp9nH&9Y-*g z^$`Et-@C;aEAWZREc(fj;THJdN1J~y9Fewpdaw=#%w^QsB7Pv!gyESkRKp0qvQ4$dcfu(UbbrW*svlpkEN`oD>AW&xYSLZk*YwQ^#<2gIbR)#$il=4#7V$n`)iCH(gs$&7ax7oOjKv5 z47<7xZQOM-I8ojY4>xBZdHL@x@7tS9nX6I9txyu9c7YZgX~I$=|U z0xbdc57j)ZBpQiKGJ>1Mq>}}b7+lN0!JQ-p(4(N%mlx>OwiPR3 zanX%1savPV*V|ieO)R?~wrm*G+mPO!F^iOo`t!#InNb0C%cimJEjQ4nwm&0aRS z@&33f0#wg^v*A#6=ZKBg(D(dlk$$bq7b)3=$V%;#SV^1e3A7YlENs-XwK0FNrz;hA zAQ=sUS;w^vSaeSNpS&VgXvW7oOEvH(RA5ROmb{_s>6wqO`d;*sseHC7pz47-T#tXH0 zQV}>uR%2t@p;}5K%8Tv$IFBj*Bl^jtbz+uxaQl(O=Zgj_8=HB1u%(bX3Zo|%I6B#) zg^P|bF##TV33@m4R7}{gzl0r~x3K8Q^acyEs<(lyJ9@9`Ap_*ds)8v1 zrLRYH0St78A<4b9v%i=WRm?G63;ycNOTj#-8tq}A-+$hPagm%8F8h5H{whb?dN&yW z2V!SJ6Vy0>I|*71LQXaI`i3C|24sFKlv-~av_@HvFz!Il+1MHj7AdBG`XxwC&iG%@ zjX~-Fk>fe3alm(kp0OpDTaH|SO^6g}fFFZ%L=m(HIKVth-(PEdJ;sGb45=Ox9Ag!| zU%@@?9|xBg4!Z~1R4+sG%&OP#$T=z!o%bbrJ3ff>!OFVcTy4RdYSRbHqzFIX6=`=M zvQa6Eq``9WC$r5=eYp>NkOZoB`(uGA-uIp4P6c8@2H4dZVx0kQh)h}coCAjA-}Ya$ zFG2bW8MHqJ70e$FgTvK9f~X~zd+F~i)kYLj(2O{4F&kE-E~#9awe11R8QS5-<~T4< z7{i2{1)*68;}CB^DVV$(7N%D*PGP<=5Oj;B@!N{q&=my8x$xcKl#DibM_!bh~i+tF^u)c10q8vQd=5Gn-Ka&8CUsBAznc7p{;!L!h6jyj^m~ z^ySc>3?fE$`y94ZEU{);VP%txeZb8cmLC){lPVddrvtKbtI=k-q=D>3Stk6O2m$=KN2gUB=gZrpRAhqMBcG$b229oz{H^U}EBR(YVYZO_Tubb{lc7#R@X^RpZdxT3{m9$$i&zA`hWYf_S3KWSa803MS1#1AfgB zrJ<%4h)ll}7e`i)f3hY7j}GDXs zZG{$Z3eaQ@Dkg+HAQKs`yPgjv3=S=-+5Ww@^nDgq(`Y@CGV|4TfZqh*A-1*zUV~`R z;JHB3Z?p5TR3Xb?N$?{PE5pt%sNW)jyYs+Z7%@z2Y;D2r&&+&Vb}xC}wq0?l>*DMt z>n5KeovZAS|EXuTx{QlIP8y(Rz#d%P#ePv>e-qG8x)s zWX==v-LGL4pX_<6f^-Wy!7Uhe??fiSCLEh?LvD9H!77^?19>2YKO*YNVX4B_jDRG& zNZ1g>1d)G%z#$(PSvP|KEu34&?>MIH<1k7LE<;3$ktOw8%^>7Ry8|iShBDA*%(*p5 z_Fr@aa1CUVNkAW!2F?Tv?6a3e1ryj;U4QkVp%4rP!xNnvS_Z-JR0KSLuQdy=?|+2h zx=(-g)}U38NcN%6fSye!(P0`wJivlU6AQ?$C6}zCaJJRcZx@}8O7j4=uH;VW&$wd!qsHRdYf-Nf=wUqem@7v zQvTW8mrkk#eVP1u>B5`A{69h$&w#!z4n816hOwaO68M5nIRpWwYn1LNj;1qi_WCV} z$!8PxD)@DF!@xD~Z`53de1PRB;}ZZ*tPtb*n)~H9GGW?Hmmqa-6A&;cUM7$>u30PZ zg(pO$bGSe8VURsdGtqT!{K!Dv*qy}kLLW98~hqKq)4MbT3hko z9#q&Gj}?jdQD*HkYfI=&@{|bOpY#vsT$dDaM00suCX%?$gPx3P9Eh>Aw)O`G4!yOI zxXd<8nule;RBdx@dd#!xF$~<>@h`v-8^TUWEA1+ooL{rnad2(B@S5c=nuVoGkc!$m zUoa;3M6o%T9@1|lNM!hdhC5wehCeZ8yL?xPS4XOXV>v=LBa)8>#B|C3k2H z3EUbQDpF(;jOt?R8WPiv65hc857TAm&iJ=)Z-2a-3cQYNYh>7Kc^7ikmTtm&lP_CD zCTwkO5pV;fmIUFr4z)`pAm_c*6STMt$|rKWY?p7@?RAIn8gVvNLB&=`U{DoPE;1aKQWa+| zLc&Pa5b2ac=<`5u+YPW)lek~?yAtP;w`2VnJ5wq9VirO6@rzTzy^LVZ_E@a#9hvc6 zxsKA}CThp_??C*K4HE_O)GJS_+%`xsJFR3VKpsnE!>4crnK7G1oHCF;a}-nG9lRS4 zL*jv3sheJwawU37X7;ndthc{P-k1v!Ju~@EhK!WvJWfW&3Nm2&tHPpR0+b|}Uhh_0 z2QIk{MV#y}JXL36^{MvM7syf~6b$Uw(!rKcL|KE!9F4r`qk3#!blplEf*S|{0PlGB zsol7$p{e*67r}lD9w6M+53#NW3g^a#>BP$tgh?Io)>EhG=K6p<1L3ksCnI1|nzt*}-7i9K@P zcAj6QW5JS7up?qe28F+^NV*uCa*`oW>_GBE5L0R2TN!qSXY;_HF@q<4Ae=_23(XIl zzWV(idPsO19yAjQ3Elk{@YJNskisTr(KKG_i9_79;frI806$=%NRkzzTF7&ZkmpSO zn!?3}QlS7U512;6z=#l6+p+1KA3^i*Opm=p51!&Dfq4b)c@&s)I?F@cP-AdJHxj5RAB><$nRm8dE- z658W_H|L9fwJS(@@EQ_=5K;-2gxd~T<~ta{?Xs3>LROGgm) z&0XT)s8P>RS&x51z%*jyOs%I+7yje98A> zH+>tP53tiDxss{Q>^$wUJU20O!Hj!y%L)Xr0fK@})qvf-a z*>?8NziE*A`5=5|z9oL@qJzW7A087D(D~CCvJj3#V2(n#0pi?OA+`cfVyW>E?yUo) zDeTgHffteGqOeyslB)e$o|CK{6gtR=f^i4=kXq6_!%`Se7l&~OP<%Utnn$n5&3ma- zb$UTE29Apddmc>q6wF%Q`v8yCfcPTl1F|yzsoWrHIUjAAulXbYez4EAy_cdkgR==a*=WP&EFL%ngAA%=h49PvFhJE%vXoOifxQ*dLv=Q z)`Oa|rukQ4><8jeEr2)O6K@?-u$}%YfF)qZuQz#PS>Z(R zjmtwO2_Yv4p(10?=H_$<8&i5;kBy)KBA=VBdNKf>p#pOjH@&V@!EY9xH=W+T081M; z(fO^dRS_{Ib6j|703EvsGcTkypwzuYeb;nJo-rx+#kS6@CQMxC>?VIfIX0Uzt-;w(^XRjzp;5bIJIE>{?kH(5#0^C9R#d% z=}<#ynXCkDne72iJ+Y$Es8?kl0G|A#Q~;YFjZ%5hs?mWcAl3)bUaWT zVc2W=|J3%~;aLBD-zq9vMkpGxM-fU(WQIs)NR*jTh>%&z&dSP&%qS(Ks3;;Kqm*nS ziHz*c^ZMwzpZh+Z=bz`F=Qur%Z9_V1a1&=wwc8AV=zuSy06rT{BuclzWkN!*!e?Hv`t)t$PsI&8Vnb)J7 zsvgzqvOlludk?gB6fq}BDJi#9U*~+hoE5b7^}48Pme-dkI9}Y~J(qkS;gYgLhwNqg z#emHwQY=D}QIr-xgyGCsK*-I{StH02NOeTwg{)hiXFlLKEIWcvzJq-7>p$s8a#NpZ zBvQF%CbK<*Aft>_S6+KK^G^QYjL%luL78^+Opvpe0z(1KMF}JhU-0FKGOb~JNquK? z^-sMR3r8brHVz>PK7em8k;$CE-#Eb z|4#DFHM5uBD%k9#D@f6_?hT$W*na?-4K2mrxX33qg3rj?E_{t~=sx0LKT{E6NO@nat69V=LWMka`2z8VMUC z9}8s=!*#Y-Y(8oG{1)YP?ILDo%UHUnqubR6C-3nFnb#)19ai{A}yK{DNOH8+n zRJGSqed>Yr1o*1>Yl1W3JGNQrH{%ezE+))>I?uB-+^6SS($ntWoY70*vJLYS+vwy~HO?oPsX&u2%yD#tyP< z!oI}COA;IYL3nCvHy7upiLDi+9I>unzD#9nX)7$LuI+aa0*qn@-aHcoA%J&4j+GRS zJ#tHfvIPE6oXS^kPkkom_gw`}HKPLw**qNIjShVCN^zFfeRDj_Hkjv9cs}2Owdzuh z7b-0CyOHXm!YdD7_T6+k>f|kDfp@qqD^`n_b(x;opgy%~x4 lc=1f{_A31`iWS zKzKxX!__f&J;%9Pby~_R9(4in|74e-Qo!P07mSfkdI#dA9+;iII3o=es;)zI=7rFg zt^q&L!(I)S<>SYJtZjLgOGU2J#IVsFrf;{DIU})s@3iKdjXWG@%aulxLqWnc_{EH1K)7Z%fUzIRf6_T}QbR*Saw33j?e44_nTLdF;^+Eo zkSd0NDs#!n;E(HW>4l0k`9e}iPW!H_h5JpbwnD7|W$7N6AWhCm(Iz*BuRHx@qHIC2 z{PFI57|hvu(Q<+ZmFprDl1&ENdg8%w77tZQ!?!N}T?1U|vbtG8XGce^%4o>WV?MZS z-oZ)aZve{}d+K1L=K;lK+qDoT0 z&m{C-C0jiHt|3~KtZg*_`fAI``F{`^u?@}MG`DJ|p(abEa z9UV`@{GEqv6z(u>w*Ho4h#*k$eLRuIxY44%+y!6~&(0v+0yh__oQ@1{53}*P!$wui zM1jK)JQUzo0AT-kCH;vQW$py0%+HsSqXxI0+;#2fPWU_%jm(F%_!&V>;D6vEqm;T) zW7gxS@kw6k@i%F-elW*ESb`<_!9#9}$ialxaf~shN%Oeq2z;=1XK!3cNb`Rq zZ`{96`p{Mm=h^rV4|jZ7AeoD8b`?7<{MA6s7%mQ+B?(gDcxz={dm1d}pw|)~En}E? zX}5m=Ps&VZy(25~^S_t)#>YUCB9YL$*;*d&h&VTjCwKxS9H9`rjB-#cZWFEx)*aEn z=+MwytaekpEXFFN47do@JM*;CamT@JILlZ*9tv^7&(6B#HG& zLdOEZB+4zkeIirX=klW42MYrSncjM@chN{sbi=YD#%*Xbq53@ofGit15YFEutBJSO z?YK)$7Zx{l&H7y+=G5GNps#Svt5SjffO)35d3(5 zvsC%hge1sqFs_@oB};p;B`Y2jL1DMVs46kbxrE%MWE_lOBb*@*{rgaI(SJ#7Go8;H zG(Xg+$d8>f_3w=kxmcB)hRsTzdRHD-Ep7)Knz$ekItoS4DhgOb(10$y57hcATK5^u zlyztEPG}kvZ^^0Z!XlW46hbOoYhd2$OijxkXE28=^G?Yh?MPaTG;V1b-9w4NLj zcAhn3NsuCdd7sK5B^FoZSMEXicd9szPHh#0p0RYNQ(IURq>(johkB5kz&4`hrEn7p z0z#|8^*@w9L_*}SlcZ@W-yooPvHn;x?e<)+2s!~VJYMl#TTt8(hAB0IT2qP^v{Z7i zvDP%vuI$W-M|KPiGMhpwZb5np%ohw9aThwizP}si>}-|L;A8j(!9SC{&EetUjQD&V z;i?zq9cKrNrmnfX&Yn8mPt&5AK5tCrBo+{El&F#Gu-@pxez=;&mu7m3vI%gwwe=^d z?Da-}0csGe<#3v%3*ZCaT`ucMx-E28b4gCJNg_X~_&5v>+)+t8bnqY&;r@QitTgGC zJBjKLTmbMvVpjY!sWzKDD3Es>!8*Q(^1uSa!bOQwpoO!ruTce+4Yo2&(XU@0tE$R8 zG#Y*-_!7SWZ<=d|^Y_Y#j;oqIPpY=MTEB8vh&UR`+j~>i;vxcvNCxLdL`O);S3K6_ zC(1G+$AHs2%Jn4etw55!48sOrK7>3gZ56sEMA`13Pc3?v{^i)wqoAarobv`LL=>+U zZjenyDp5fMA~1s6l!tqx2AT+61?~E_g(W z_VcIMgB!5XdJ@euuL2V523VSsIlt!;K%h+4BT>g?WDp$$h+ec& zY>>@H5_1I888knr@P&j2Mx9Y=5$5X3P}!pesvlqVCb|_KmmB@CGCOwv^sp3*fKmgW z&Vb6tG=80)UhYK?k@W4S^t^VEv$+ zx*<$>xaG8$A2MT%5%PheQ*pkDG-pAFI^N;#RrXZ%<&E*)u$I?-wA-ZOBs(2W0a!S@ zLAuWX3??d1A`Adsgfp`3Xuy-)uRv}9+h7NVRIC9_M@pxDhp|U)Q$Id@8rL;_`~8nM zpkMR{s7ln-)k~w%1HkxjXzz%VCr^ z$}#EH2fjoiJBe?>>+e%8Kk07d8df~gdMt8OTQIr@Hk=CV%G-!I*#@UP9`8qI?OWTN zH)gK45cv`_Ms-@NU8KSFmm-*0Bp3l4rG$zc?-X~@S-Y!+`k;de?yN6(Ho_EXT+!)J z9-s&V8wyMTMJ{|*D5_j>;Yp_^uNhf`r*#UnH$;(1MY|SkZ zBBsoNzF_cL1h3AQx$iwBBp3J~P7wSc=JOWVmbj7WSvQ?LvrSN#&luM|x-O7t0XjCVuSotoJn{vC{RIXk%Gh^yYJUR&S$mJ z#i?(;qH&x8$^p}&{nfKQi*EClYZyo79p(}S78wV0SQT*SElhhZBQi`UOx+biU)SNn zbp$#>q+j@p`+(OF>t38CXW+jeW&C6W?I_a8HzS)|IdhTdd5~z_jWj>9zFa6Z;im-> zg6BY#ZAOr+75)}eyO7GIa1yD0#Bo3r)-Pb>mkVV20V$9?fB}jw9?4ni4v>iC(t)}} z9-32Vc`8GoiqXk2f&`laxxEYvC<6Wq!kFskRuB5g#h}|wGvyF?3)c{2WdT5h@Z6H1 z=fLA?Gygi|IGzoH3i_coJteo}W=|2(gU}M<>X3Ls;>K~lC)TY49e{)uP}7gUv7C*_ zEiQkZsF{3kG{MmG?xyNY>+nZSDvfV7sqB)1^KX(+qrbr9CDXbC0OgRvv0$Wl{uz>N z32~I@Hl|pb7_FXJMq-KxD0$$T1MV>Pk zA~BMPcH#O!=0nPq&%85>OA*-?FI%Z7ii$bu{c)hVyis*>O?K>###i+7Y9aLFdq2e= z(SU^T=}Ja3b}#dl;#o67Eir+6^ar3O2Vy30#nFyyE_cX-+)RG$kw z23@DrdAA-nfO*j>TegqECgi)XrorgkZdcF#H|p+Dqs6Kdca_psQ(%Q}Dag^jB!q-F zlJ|r>#C|(fWRAX#KmG7;^xFkF%sjaGRc9R=V0CQPO^S)%(SzPb>i5*)D1$XUa>o0P zWdjA-fa2N?heAFozaI!BPXWK+x+5EKXCm}uunD+=YQivt^5f)hMPADCuRQDvHG(k| z+NgRV*DFD}4x%#0q>{eF40t;XECe?q8Sn(vgN&VErk6>w7|FOtmqZZx9)rMU0bwZT zmnC#hKcM9~%G(iTJ*Pt}$E@*041@5y0zC*i;gciEZz74@Gsq}I~L)X(!**GdSbGB-$ zUr0^XZmTxLZ-h^~-CJwY3`_2!8O z6-OZZvBOPdg#Smu^3puyXs*w+RKVsJUl~(~3&8fKfPN<`L#lcz&)r`KF-Lgygo63*MWcXn zuh7y1mT&CM*n^w$@5L0uUav3Mr!@`jT=vJZ^yZk7;+Yxe-ND_iNPWPag5?2293C^y zP&wqy;ASoeRWYqMyXzTOIXbE^8KRWyc{Eq;NMiqJcj8H#ctp%C}-B(K&61GcK4Lc${O?S*$-1WIsRj^8J;U<7aKC)^&g6c1`0@p6AcKy*$1b zhIYuUNXngnFf6Jl&WZU$ZX2u0DaYZa5j3h0rsJ@L{16;e%9x_YkUh7F-hpqdnKbiEKtv2nN#OG9*I81SC z2;2WsCfVW-?>n*(WrO`^)4b;7mX|MHB!f?)Kt@+b%F(bQ^UK{O{KI8J@**QjqXKb` zl11RSw4F#n0Z}(}8vwFU@0Tm%zQl9yRr=(doc!z00X|ClFp3p;wM|ER3TgBw2?@ehq#rSK$K;u&1WhK9i~N8IeUEQoiF~%HD!T_Dstvf-nc&_NbVIOvDLP+! zUC1IK&;=Mk!qDxS>{l1#-t$ zrUgKcoPAm~t?F3hz?i;P3(v8$gT=D$3J<%Bv$JLE1a#Bfk7`YMi#PhrS%I!DMg7W4 zd8?$L4hbdaQH;oS%qwPh7#?V(nLY@}`67g)(ua2h&%Z&tXc52Z!C8K-DGTZ^1Q;OW z3aEghg9f1qWET2$OPiJwH64xQ!jCOff#vKF#r**G!AR74wP+Ek$xIC911v#j)YaK> zE(reEJtgb6?#d&t{r6ui@||JuuQi$Pp~hEQDc286#cgu4!u7zU%pDHd3}=SsBLgap zSJDTf(eYBKIO@M*I^)imTuEtuwDF8TrNy4$gD&oiUr<%nc}$5Sw5ie+zZdUS@ue%?RN9F6QXU z|ID67F}<-ts_kKuec62Tl;h4H%USOS9bHR)hL;B)?6x9H3DH(v{yYhOR>hso&Hki> zcSeCz5WZGT2MiCwQK$vqE?iw04e=Ztbpr^4JbTtQQ0_l%)w+-twAM7a;l!6F|1!Nt z6#;L}sWgE9kfs7x9OwWb=6DUTMA+z>!Dcpf{ET}d6_<_cwhPD`w{p@acZ>fpNj}tZ zq^C&rWoKnexz({V%h%am=r{Z3STt~xm2BtPh-!#jI=egw^&(v)BLlMkaG&*-r`6t&ao+;6Rp}y~}h2_$sYOU5wx7dfzC11M2 zUwUub4gxZfNk&BPS|E82I6e_{WxpAtfzm_Q)-w*df$wDdK^bDW##DwoOk<~_1 z5MXUZO24?~@QLkzHKx}5*y3iRR^KtaCrn4hVMibn+^+})l0kZKO3Ip*Uc|>W6{$P2 z>|xIZdc)7ZeCfd*+j835Sz{sdc};J&vsktaeoZt4ZC#|OHT!fg?3s#;%o-v-hv09Y z>FY!6FY9$!oyja8QvB=c>b5Py4vrd^Y;)3Jm<{?WnMCh7X1Y7XZ2*G^l=#CmM~{RT zF;lJr-irC0e@(VDQAKTa@b zk>$qncRJmlXnu8GJMIH;LjPjBun{GR&me<0s5rck^kav^cLB7aN`WDJ*oCp5l{1~o zi-!8RzzzgS-q?-Id{LrgHxWc@_)iYyRH;~CFf3yikZ?qU%)`mCgDvjv zKHc`50+g%Onca%g=q9+>9c32)dTvaB_LhX~Mk-y;FG4EL{%s)eLtbeQ z=9ho(-{61SDXZXg`8Bo%=|>I?40C#vavOKT?UR6J1#Iyli(|mqk*t=CQ4WbN7@!e| zQ>D9je)!MiNDcxvR6XZ3F6Fm)3~c|*tPsjX8xv3~+jpVjS=tCbCtzc62LKX~j$@F$ z?#AuUpG~v|+!@V_(spvDyqxeUmfx@8|7wcMQkkx?q>`j}z!fujR19Ra4_@@k$SNrl zWNHvx7q?r2L2E5MWypXV@im}x_olSi{82L_)lwxQz?Lyl0MI)cJoLj@vuFUA>u~NA z2WhoegI?Z`Dy*ZeP;no%@+P`=~413_Y%oAQ|i|I1PXm1w3 zih6C+2aZZepqUomDV$laA2ze?Aukme=66BRhlnq|Zy&>$~tSz#RCH&@%*P+8*AB zHWimyj4~7Bo}lA4$pO={6Zy3KpY2s3WHKoaXw~m^# z!s)jWg^%*A{TSg@VK=aE<46_?Wm5?^VUjVTiw@HN;1DuYv#Sy}gHaA*V5Je}w_`Jj zd)rEbz|pJk-3s+PWbUO~nk4?7i;<-d*ZNuUT02)_!gS7X!CkEEvN(EvrhR%5ljHP@ z@B*n+&;KPtRx(BJ^=6n&ka;yf{CW$H%GqI>up3f53VG*a?hj1j33vCJqm)Ns2PB7E2*;+Mj+OeaUrp>ud zCR5W0QcH*;w%-ru-3w)o-S7IOh}Kh>Zv*Na{iSaayI%>G7`rwSJ#khTNo-1qFH ztl>5XuLG@x(MH|W5_Xg#?ff&!RF=7m-PuM>N2h_L5krZ$G^}>`Cwc_5x=_mlXMt(F zFV;*ci?`;Qhsg_Vld4D?i{x>eGd!&^lZ#Aa0R8WQqJXX@#FDZ{vN zRAv`VvEX+Uzm_(+xo4U0p8q}n=yNgsv$>4Tr+Vi=rTyly-6>uiC)_0znedwd6$ z`A3x=1Y|Rg%*D_P8HUpdd5Rivd8V_Ah|%oG-U6pp*ahgDh^}q%;*OuB_=ZdQ_qA`_ z6u9MNAb$Nv!V~E%*kEf^=Z-cs*NEwl3bk*ZH z`&;N4k+w|%nMBcxb^ruWYYiX6ITo=zo49=Q`=6ow`yd?h8DuXCXHZ#i8*wL`SIfwe{S6PX1yvnGI$xxihIamF2=T1eIQhr{Ehkb*?M6nf84E^i9k)R?^NKOVQ_$FL@ zCMBD@qg-~iK(pg$PEMz}(knicO&L4^3;y#pV<%%yfP#Uv4Aqrd^{(`>ERmvU>-!v9 z-HQxizg?P#Zz-jfq9%gHGwRzoy|)VQ)>0viZv6WFyYb|}H^@NML+pMc!WAh~KQnzP zg%3l2J_D`cDrBEv_*m(M{S%jZ;G4tn9`T7_1@Bcm_o#5zx{S{#Ye#H-eO&iIuH^V; z!)*uTTs6J*luYz8n~3U(QNEByf3U`kPB~rfNK871-w2m> z1m-^FB7RA1x5Y-IFEz``6}@b&?AHJ`kYk2Xc+*8x+<<`XhVs8lXMaZkzA=VT5kw3m z5j8sh5kdO02W$rGie@#=~ z(6F+BFkuzN642Sc!b4CFQTvj7r>0!f4aByDc~E@y5BcT^3XN4ja&>3Kpv*gH)krey z!Dm2rKXB1p{p?v^2ztrfAy5ve+^yu7^HF9HMhUtrK8P}17{f*tc&;*y%)5nGes%Ud zye73l;{4tFl96upOLMcxSjMElaB+1!k9k@8R`f+V6sUwFLE`xpmXCRfHIqU&I?Hp~Ix>xx;!$ zuwOHGX5M-BR!+m1e{IRrIDy=YDO*S4i^4V;e%8-db#Qy*uzJcpH~ED=vdM%YbifFk zsabs(cn~}+({qPy?3BFMSJ+}e{l3eqlh^=}@5|O9#|4DUmtyAN9l-P#Q7t(y&GwOX z-vvh@gi^7VSY9&-=MErWC%V=OP_0my|JVZe<@QbmfG1@1CMq5t(~t_;$O*IpT#ITz z(sio)zPfTV&gYDb)73;Na3ZyW1>^0WOBlYTtzePbD0V5HPIjqMA@r$k-deCHzjL?; z|3R)PFAzsb2Wu_CC~s)2t^Xfb>t@hf(4{KBdJq3CnSV>L^=&~PA}AG;{Vo;XR`&dI z_D9^Ql4#3e^ISjY;xY$>L1JrA#3(oR*@Fh*@GGGV67~8hX~BH32ni%)>K?Jm?3#zl zf#7vNKj}WvCP_PD-8Tu)I0_SyTJ^}09l^I3!=XYJF{MGK(g-Y)x6XiZu99~1R|MyzR zDIm*pMT(C^rcTs9_TL`vBG4C{32)Uat1;(xoAwhug1=ArX_f~_2Y#NK^Gl!HTCq+njH8*5Jc-l8J4kcq&v7U=tEnN`TDG08-N}=nfE=nf?zlCix4=37CT; zqoT5jf_O?u77J{WHhDPZVBJGN_>tjj5IJF#+*biD=rF3=bzC~OFm#j0?CDVOmG0TCiBQBZUDHth^~>qzJHO10e>l#Q=8p7e3UhjN|9-; z0X|5%M_xBGIkm`OCFs=DE_drnl*bjTikZf5Dv41299iX1aQLL?edC5ggWMr+zi*c1 zU(!zHS$asGA$x`sKn5(*yYhoRY?u1!o0a`_0yB#-&dBK7BQ2~`onp5mq}3}nE0(9n_&~P*NSCiMs_+jq?^kJ%@{r) z83||7>xP2+-$+2$66MYutl-HMQffF_pX=encW}J;8{cD{KGQ5>>eqg+DTh_f!GF7SUjJd)F^)5~I zc`9c88#psff67Gr+g8a(N`xA0HhX0vD$;iD>w(5!if-*oRY@usDsrc{I@-K^A%R5k zuBT6>D1PCiS9p~R`hzd@7n|>B2BdhOu#Egu`RJ=?|G783rjLyFw`b1D(ltoSKhY+( z6i^g3PG`yAHmX12HL*-?28;~W&Nc`F()?jET$wXDw>?BTdgzXmGJjv7lk%HCKfPqv z&J=po60**&QPoMu!>*AhxJ#)rdhBNVw_-Yak%zhGs z|GY6#NZ(_&7r)Ept?ojZfZ2eGEm!rHAjZf{y_4kv&#Jt4Khim1-rC5ow)yg-MQz@# zI?pbw0!7S&9VF=HMx9o z6H&?a-^bJbJRpneBJ8gbhgK%nAGu9w5rEnO=Rp@?yOCDhwt9zf%+{V%b?2?GB@?=o z94>QPYv|tO|JDyU`n|d6vX)z|L+v@(Gmv>2K6{+ZQ~J4$KGgyo?*1!nhuy~GI?HfS z0PA6(d8f>7Svkhnyd*0vtoHPhxN3uD`qQ56Un>F)xE}@AtzGQDKpR+YRD#_ks<-#w zRKE!}%n%yEx4;xq13UWzP6<;V1iwJ2mHGm3HF@ z1xBolA`5TkvuY??4J|4;U^m^k`h80-P|)s_`^5Pwx=MI7z0Y`>i{WmO))-H&l@gZ= ztLuGzm)H;0`6}KWEr@m^tT5&%xOE;?Sedz0MMgA2Zb(=ia;E{q7$0iZ^E|HmRoFmw zf6R#>r{a!Bzg+XI0vHo2`FmX%s{8L|B#tJRWn#L)evAMo0U?@YvgEfduBZO8m!#~Y z``iJ^nvXJfAiZgG0R0E;)`v$U6VQRFJuejOMMXnOD9S70=S2Q{B6oQ*d%W=wV9AMDw;D)v(@f5&W3+S=6Er=ev0 z*~3JSqa@$w^C}oHzIh-*bWhNp&Nah}9+NWeC`2S|EyHjVoaasaKxsNSE_KG@#41)wi zP8MWiV`GLr=(mgI0gO;>As6lalb0O~N=y<+VO(rQk9X^jt zDICzq>pF78Q*32Y@EVN8<=yyYiX#?pYeZdj6eVZwee@O6>zc`SLFt&~22F~kUNS-aliXsJB zSLgE5A&`B(C=5sghg6Xl zKy%LyE9tEad;ZUB+be8=9vdez8IwZ>lEEZIK?YHufaeY=oX)Ly`pF0bg`{N-#s8tC z_)m3z`}@Q^X?4}IOK!skLslAuRtVDH+u6={NkmuP;cJE(Fq@7WqHiCfOjslj9Th$G z7h)NMD#RI*q?KqhVrd4x0Z$APPcS}^8fJoPcfMJYrj&vRcrEL57p)E18?z0!AadMr zjYZ4BoyY;VZ8nXT)0Lq+?tlJ1pKctIpGccm_3Z-N$_y7WlpBLe4w`!6!WbWUsG1l| zUKwxzG38!;)l!2iY1kvum$&u!T8z>mNql1t?DeAEWgEG&~3rnx2I{R89OFvu_j=^YP1heHF6 zNRLM<01WDC_=JQ;)b4-msHpC|h#MMxQO5TRKm|$oNeNogwjN1);pQxP)#v=`>`9d` zrq8a@&T6_dWHacB3LPREBUI=|M$UQu?@t-FdyZ29A&5kC1-%XF5V0^Gn6!mOrY+PH4;wZS+s0}Nm(NybiXn=#$od>;u=p2~#)Vua>(Krbe-{qb z-fRI*t9bH>4bhWAltZG~Bo-$$Ry=S7hX?;ob}On`a2plq>?=c}D@~loYYq`ipT{&$jW+_0=ntICPE%p^`V;Wa@Z?C#=8RN;qruyP4BB zLDi*xTxsL+xU!Au<}w}9D{T<&&Udw6-B{d+3qWf4`%w>*5J{1@g#ot(2^xR$uvV>)EqI*+{X7 zpD~*M{=S4H;-;hO-2mY;I0`4@uLDgbQvoIJhNkk*&~$mQU^S|6}x; z9PieFx^tCBh?)e|6AAqJdwIfI#PMFgNw+kE=9f1Muc*L(Sa`u zfB3N8hVJ=orH(cN?}Bb>}}%ULrW`?(^^G1WoWk?J-+k z4@K&$zYv7qvw3J9zWqSsr7SM54|-GE0(z8bFJ+}wok0@9>Cl90jk=|=2d!r2Z4d9o z_rLzn_v||3?73*Dl2_dzlQ>ZbfY+y{@s=i6icOy9vIqVJ#^2#z{J_0M4{I-RjI|P0 z5zXpWDEF5;PHaX>d?|#Dw^icAsL}2At%*)h`BkrzlEbux#j4r+Lo?r{tVxrMp!`(_ zO)*J~4CO+VaN7pZ2SFL3fQza~m=wazLIEWLB?VD=f)M;_A9L7_9Vh3EeKSxS906+| zf2(RGNCDJV5XUVx&9@;sgatPp`@nVzd^g@7TF7hN#;1Q^H+Aqpql?Jb53%B%I~9Ca zECfF?)@`J~r3B%^M-6;*c%9E(DWvL)x8IBi1R4q?&fEkO+-x0eiQyt7(W?9&H1Of_eATCK6HDn=TrNKDpAE?u0tpkl|rK3?h}v!{TC`Xfe~ z7E;Qt*6QkN04lJ}B)0@6osz`i&YNRtb~j^S+m{3CKY8MH1IL#BpbKn0uWt-gn-oREO2pOA~7va4|F17cvd_;>qs7JsLYA*t?a& z&Jg=l+y;2OHv&d{y~>T~p6fj!=@~RcO5JzFuKPA=>^86j$wO;FhwK&}=zKhihS rMSIn3}XLYZYpR`yQFrV@%|udHMfclPGH zez(5oeUI;ZzxVjQ<2#P$A-DVf|9}7AxUTa$&-3zJUhWPFAr&D8gCUW;drJ|6ImnN} z9B4Rp1YWtR=*$A&1neZ#?UbyH?Hu)Oj4-nLcGebFb{3`v|2P=g*qT~lx!L*HuU`4* zp`D$ztsn=7<-c!Wx3V$eV46B-02euKefPdC26I9m{eK`sEZr1?k-$pcx~}Z>dT!9w zDQsnDZ$T}TPf|LT{Ar|8@%dZICyS2VyhWNF{^Z)gd1CpKEeB&2PaKk%dFg-i^KtL1 z1SLd=B_7GVmC4Fr+RA$ELHpuKB4-MLT~TUk`q=J{!s%z0Nt5)B2_dsH1ZB3vUxoPZ z>Uac`*K!gcz+j@E^0pGds5%)wkzg>KWdAQ;TaOLeb;wG|$mDeMQuA57s55BuC83^4 zO_T4b@$_854G*uaZ{cd9;Pp@j>4U0gTGdZsy^g$n@b&clE9Ao=9n;F`a&bJ)iw}%U zOpcaUCQgzN4$)u#O>Qzl3|QeQc~?_ z?g=LuHUtxt3;&byl%O1w$mRUIprJEQTZoLD+-$TyNaL;EmQ?#@?bLKg!*{|hH z;<^>IqqH4fVM|Aj43Ad3Z<)bW&?D$Ljrd?xRc#xBX*%qCv@gdtr{!vvWZ6!B_h=E@ z7z@)VdZ-Xrsph_|ebD>VprSa25yj;?+J-XFXVx=qD?l|l|>9`F8DxZvZ4S(_CAHUk9U>YH_ z?wtGM8rj0MA@Q#B0`_n#xpXD;@t+@`tiX`hzu&KPDmX%VKBKhsn!tHdZM!xJn5OGN z=DVpBx^4<^^Ul`-wv7bTlKvqfJmzbQN#4 zii;$VA3639E@}~$c2r1JLnA9Z{H(U~ctnhd>-+qQnP8#$R@m@7`kxN(OyBcthsETv z8WOe~ELTZzTYR3+Yy35op?qT^)_$Rm!W?$Fe^5|Ycdll{%a=)9hV{zo4X(JV^tR+X zvpqGt#c&uHB!3hb`iX9gof(8ljOfPYPA)casJXb5zbhS6J+^<07*3jeDjw>B)TgY#!BM4X$QSC$tj|*KmQi_d&GUXwqmL z2a;@CMAQ;IHZ#*?W7BT>k($mAlvUeWm5r0L-G6uMrY~_@Zplzqd%L3h_CmvEi|6jB zxxOZBQTFO}18vv2VnQOKj+)&S4%ye&6kwBuG0J8s45n*VxfEZ#c+qZWrKe}JnC0rD zU$=@Mw%y=1{wD9?Q4J9zEhB@eYIk#XrYApPxQtabrxn&Yhh4k;ZfN!HruoWr#~sTb zMQxp#N?j?EXV5#TxD1{Sxh=_RI}X~fD00i2AMtW2aau6A8Cn33JNo72rTWK*js}i5 zMNv<_whcaY>XiQWTFo9WaV=+k2%Xj4t7&p^GmbkAbeuST+K&o~NSx>So>FEDHf zoSJ%=td_4+|NPA5?e8m2!qvkebYer-aFt7LArOVIwc|FFsi~gzav+pMnFI?9)C|#lIur_70xk7x5ndkjmJ)7SEbX!FK&PN)S4A< z?ojS*_SEo|JItA#B`4nub{3``^=HlF{4Tb)&C)~6!&9E>btL@t>l|`64Wrwr z9EYaYO09;ge^fYHMGSMZvB^S|kZ+1)>w@qy*IRJ2MR+MtH@kt_sxk?tJIk~q&0~#4 zK;S-vc{=yym-N%k{KMgO1_~M)8f9w&J311#ZmoMHgoPz1-wDZr8H5Yx+t}D-X}Lmn zw-6WRRQ|?@A053Ug_ia8vPnV5`J5nX{!N;tU{e9@jx^bwdSV*bYF5N@%F5x872HA~ zz&Y&fuGOgN>n9C)?z!)*SJLJx$%D zK7QlkVLHw3AwYHPki1M)$A5Ounmu6wa+ z{@hAa_Y;3DkB#x_R{DtI&ex(&tJ_O0YBo0S=%-`M^IkR^cR(cJ)%$=Mc8B9#zB!Y< z^5M`4<#pO24qVpyd%k9mk}R|@VL0#d!ie+xJ|w<$Bph-tPMIQC@LzlxXnR| z>n_zv6a^%7vNh@E(Olgc9rw-U%s)*t%S-grfL5|rDMALZJ+SJ$FfVZCP&fs!@rD*s z7NPEJ<s`niF!4*uCD^U3dV)sxwVFhPQkem%uK+FG4!aoW9kLL@~ZfZTL*dAjk- zmlw(oCjhz36J3v(hAaSiB0a%#x2(N8))SV7g@vVkrYqZizHD+c*tO!o>?gQ0>@CJB z$WRgNN3F|Yxg#|@^Gi$B{YYuDy0?Oiv>3M-J& zvMl@GZ^9{Gh8>;lx;9__=MxcYC8MygR-tio`_toRI^mu{5XSk*gt@pBl+t7}TQq;! z!tOJNRPHj9nO@|!VKeBtx1#|`Ij?Mj3Xk9czCk9g-d>aj6r?!pxmSgt9Kyi$)K;Ck zdz)%=Lsgnjj-H5Y7;S^RlmowdxH$Heis#{re2H0vcNRt)AgN!3WmBn0O}Pr|04E`v z$8JjA9yc^-<@1Y8^ZitDkB$;kj zqwv_AutUa#CZm)-R;lKw>ub48r~1~8Z~|mB4uo^gU%X?Hz{agLKn1QGPR}TZ z=SDyq6hP=5kmopki75>%hAR7TIyyFA8GJjYc}|}>6Li1Om@>a|(f`8N-V&<>TxEfaQrbC4I9FfGrJtgtG^J-?poH+0@-i%JRH$Xnf!cF-DIsX0IhGm(R0eDzF)E zWN~Nz=j0XNN51dPFc`0swb9fVj2_F=|MqJT_LNviLo%J`wgMC#CIbwV7|h`lwVdHm zQRxt>qWV2?QB>Nc8}JwrFJ7FSx{ASwLy2Q84rf7RR3M0b;MScx(kvAM>`|;Ay5P21 zUz(d$Zrt$3xo*qA2NxV9%Cy)~U3(#o<)+j*d14Gk#>e{5zh6_^g31nHq7(Y(Q~{kO zHi`50&8-&7E#(oyhd%HS*UGD^Mnc#opHh@Rq?)ZV_oFy$5S!mMdlHMmq>Yg9!KUyJ z417?~ee##~gEa{1f@=e|<|`(5O5w8J{d21Xv9{j@F1L;+9)V&l2|XzQNWv2*@)u?~ z6VGAv2#2`%VB!zt9p)XM3%02kEOwzm_g0?rC)BpzzYr$vbgT7J+Z{U7^*vE`n5;29r}!HuAQIhEl7^Ma$gZ=e-Pu7yye`{R-~d8mvE`EF0TS?^LxnbtkVB_oh)5c2KS`rKC7k<^ zK|uy&6;udAtY|8%ey@KHc6?N4wi*WnZe~6{RS}ov)`2ox6?u92VLCRwgMyl~iYQIYPl+Gi3G8mg#kq$;WZT(hst$G^xg^LZ_!Nwlmg z>rOSstB_jQ=`A^jPR^S*7jv~MRH3R+baE<%7&#$i0_hLRRJ6tI_jcCId*A8`ztFekGZ~%jn(8Ro@@NxQM@F&Ao5;4<%@OfMH+oGgOZIKA;bBrg(7rm zcm0~z%pa7>>ht+Z9`NeBcAgaKX2npu9&JZch=eHI>Xtqa2vD-H$kBLjkqNiB)1%{> zTfMWYsSPKXta@TLza}qLI%;OFWVqYPV~Kir;q&KPsI02S)k2Cv@jgb#F%S0|)zo}^ z-Tcd!AjX#r*aSG>hH^`WJv3`}=Bxmzu&>PZt3g6o)OH;Ea;g|RsPXF6tMZwwYHkCnjb-KR@ID>=~1z zEYzAPg}UVDex6e}Qz5%iXVlR{e6x|mfwiVL_mcg(XfS7X%(YKvO-nZX=qlzq7YO66 zeyvMH3$iKq)gF_rxPYLef`=7p`KwnF!!=_ z6nhr|h1O3Bi%Qtw04}psI-rW>g-Qy}jAZE5t5=r+QO{FtO!7?0AOfpnSQy`^^Nu1{mgo%wZGva@m9E6bzf@f<4G3p6(*(mk3v9Gd310H>tVl0}fu zPHvZHiwqcN8b~X4X~w)BQB5;Ec&zjc16G?Sd8EO}V@cir;#}9BKQHl3SONrEch?)l zHbnprXi6H5sxVCdFwa+kP0Z?^J6Pd3>rKR-;Xo2WdCfX;9x9;W(U+I*%%Ecm_|{$D zxbK}2m556bOw1~7I3ECv`QGjhiUsu3)m!sQw{QERbMlJYr2D>Q%~{2fG^3`-#_!)@ zQ^&=zMK!7DX9p>FcTQSgqk1DO8QP^meztK}v8Q>9$~VcNkD5;FDI-W zc~j_<`Aac`KJ&9B)8wt^HgcVVjJD(fjU`NRNvYGy)-0aEYh_=o>$wharaKNf-%(Id zU}0u{2>>CQ%W(P2rI7WwB{-I>SFbAWZM1mu*iOi>X_fv7%r`xEJFdGIAYM%aqICci z7THZJqAd%M2bC7fzXCXGeN))~CK^o{XOw5)7w=O8BUG(3xmrDPU8y^2lc&mwHus6?uujxx(QSzKypR=}~6 z4Gn)55;-ygrW$s^y~s555NTwmupRs%yxUL1o>^-af2ZTr^CG{Zj<7!@A=WE7+dZ~G z4xR|#KpfMfgx_Kud4(}^eA&AHWM#~< z%|vNilaXwSvdIX1nuW+=gj*dQuSRSYt7DXlUi|xv81nOBdl`trZ_UNWoUj@j;|9{rv0{*=|cG6xYRO zT`Yj9H9FGo^}ufJd?P{RzA+w!GS^Cj*sj8*+kveg9v_N`iOJ$M@6G_;EQZ@87~-pH zs$dL{=^F^wQ-ImK;T0ZWnul%Cb^+d#7dvnbF>~cmUf4sRHZnGz36*AVd#hhNGvg3` zrq#Nm#&eH*^|)%$rZpV&Vu*AuIfNhU4GO+cV#Bxx(#n6QvazpBJ>~!Xn)pV<`)hIM zo0R)(hemxEj2?fT;|f<(&#L^?E|{Zk#3oHfyclfYd?2yym9X=>iEpox`G=ftLXmc5 ztrGb8cScPx3XbUrHJvu#5;K8_i1XatKx>n){}ZBWH{feDU>_eJ)5dUS6|>?6Dj|m) zUnmH(^U9@w!p$4D4WQuYMzlOYMm3-mm6s-(SF&|?qyQeu&WUc{R}UwrqpRnt3+|XuEo_v3jIX~tWu_|d}^Yc|xSI=lqx^1$Z3o9`ve;nh- z%*aGHvqUwssL?nysW`$D1ZfMpCrRTL5Bf0Bl0}}KO&9zfnccW}Fv8N$#-(Rq`mz5w zfmhb00n9P86}bQSphZLp4~>cQ{=^PxbIiwZiFxC&RG-4`y zT>0HCrp5`(I@|4RV#CGRI8M^)bQ`Dxj?Rfk(rr55F*>x8KQge#Go4vduIJb5?PVD;)ns*f*(| z3Z2!x#xl&X))bi*!_M)OxG*ELBa54q`Q6=@BSz*-61}x&PhnMVIrX_ezt(3-Y09zH z<$C4f0AqTUg}qhHtlaJlF-+W#xBYYPG|Y!{B>{MMK7WT5s4%!RJI`xg2s0NiR;NAf z+SADqMUhcSo#*YtdS53|4ng?q+0~I0OjqoCE}mBzXdlyFi5(|67y<))sGOr3aPi*z z*LQ;jotuAL;jm8QRMFD#Y$8&>m$y0i{(cJiuw9u(eYA-fzP>0{)`cl874eWhq)Zk3 zozrmMiJ^(eiI_P*Ls^J)+-x*Hxm+~UGOml}Au5Tyl}nqmqK{=8T%3WyA60YDToEE= zUAr|{e2f5?FbpQ>%XAab=ZePiH#Rcl*mE8v81YNvf_)cn!Q)}le$LG|ve6HKc6a8F zTmgT7G&TM+;rZhew+69asPOlo$~;$(-opJzB3w4c_#4vr2sGfKy)vDSo~1Zjq4I0> zaA{2WO}J#@OMi!Wjiw$M?ljoX7#>A^zU(*WjSe)(Xe*)dQWYo>ZM-rOyf$(K<8}L6 zpe84py@#K*E;kGUb>G!2Qhkb#xbO{ zt=5GGb%d#DX)Hi{YreNoD8UYfL*W8kxth~11aqL&l~EQ0(a;5QRWZCk z4JwDakwFqcH6XUJwf<+e;sfcBaWvr>3V%hx(qN%R{;`q-B+SovI>Wi$u2n)KZDMm2!;1{+SWt z)nr*t_dd!q5D0|qo#69rfW*QhB2qy-Ume{Rn6zJml)@!1 z&>cS<{`(4zEjsiN1r6d5yToWG4L>O@ydO9l;Q}}S!UXUB08$>_iM|r~ZrE>;r4B{0 zeMw+AVm}?+m;k+4 z9*z__yHr;fv%XZ>h8;E;p$Imd{4MkT2Fh7OxFsMaMaeIxd`BRe#p55sQ9$A0>yo-&G zj_!TIa0t`N1c`K#ETVCa>%kKC4DG>#-E1maS~(D6SOo+&l(|&1L&L&=rcNWwzYi=B z)U3JSU||*&)zL1uYlG-D?oh$%o&f9?5H6cLu;ScHdA64%oiFeivgnOWOtmEgBM4rG zH6dC$y8N7+9K!rQkS100w3ti!bCEKIstfKG;pEHlPH)=RB=6l*1Hlz{`ND-HIWdU0 z#t#4h0$O5TK0?-$q1ia+U=9X^#&6#`M{4~*x!jHiL11k*rBrv(Nf=EO6l3&YGf7FI z$CsSIT8BqQs*dnNb*=w%sGt``yoH_v@1G6i6DFec|W5}K8{o;nTvm)-OO2uO;1ZRYkMQ%0_ABj zNLhnmuxV^*S!<3*l@Fd`+{>$&$E&&(xN5vT2*`azW*|+WyBH3yXHvPdagYWU5jG-F zsRP@n6I7m3c{_+I73!;pkU<-PRRh@v{2e3I4=O$PJambI=o#qgAA(dBbJfV7y=?3> zQggu)Q?k1~Db`a8I6=NZ-m_o9P^T=k=IJL4uiV*gxI$H9#{$N;5-AZEVBm>xdOX(X2=zn zJ4?40oh#@RwInwa=2O>uo!5H*&PRAV0t_S{SOK?##YZY3MfG7IQN@^ z;4$n+#GS&LYLwe$A`Vxw9nL8)5G3Ft=rnx{d4>~cI<4=VJNb#X%6u5iC`XCyBvlkg z?XedxU9#`DEa@_0gLi%TeCz3~Cjr9+UYg3r5o2%|0a^YGbd_S4l^O1MV1IkM%Q+zv zJLR2x&80GK&28}cn30hYGdsH+5Dyv4!U1&`!Bs_3jHZXE&SyL8JXVe7!VF%m4Q3nExlpA^bMW>m?flTRyWk_?chM-=SEwwzr-rP@E5GMo{vF^ za?q#dPd-GzlKvy<0)$%;m}?Mg1C)OG-tN|HkvI(OTHdoTp(lQ=yNbLqgz*s(<3#-6 zl?lEbd_EHtGiHFcfNQhxbNQ1eCNdUI)eO)jp(%lZ#0-}&O9MvIOFIkM=(PVKfAdb8 zrT*bvRm1wgHqh_#!HgsczN44)$UFr*CujdUPYvLyJ~boV6u>DBh(Y(nc8Y){q?ZK3 zsU2ABzhfKfQ*`!8;?~T%J%UtH5JGj!Mv*LPe;ua6DY|^zca8#T1h>kO2`7b2sXl`gfbM1XG;+rBF)T*!Z`EF0Tasp48oQ;eR_m(y+0CW zOnk%P$cdLe+pq_Bm(#_j^F4RW%SM3%>431H)E@(HIeEPJdL1tzexrjhp)|ivrlyq? z!K&6>&ID5_EXOuRLDlim{45rj@yme4!iDB-$^Z%#Bgw^S0PFH<01NQ2EP3SAJi(cxVL z!?bQ#n*5>4w^ai38yLs{cMpZ?p9@Vv+7?il`&;NIuYY7LoyYohP>#FdOsjzW0R9FI zkoh2xMS{LkWIgh!Jnsy|o-dga+cLsr+n_G0hR}*E!=Ahcr@wj>IL0`5gxMS@woW= z7+xJwNS--;`gD=|mP4+3!3{WFJs?QiH?fsG{M}pNaVQWX%oG%^{*XxTZPcLS znvgKX^O%N$Pa(Cv{pUR^*u<+^-&66 z@#A-r+n?*81tR;`CfI0@S+`5g5`~>;zJcu>oM#WR*8-C{jbyGGFblG2mn+kTq*u>C z3cCJbd>I>0xgGXAiwp}I2d<>*1{ilBl6rvSP>=(p+ruI9KPW3TM$(Fkl;zSpaOyAx zQc~V~PeAdES(+opzCTdst3L%AJ0QkCG^|&ybRw%5Kh0|dIisbSg32;gODV-X+{z63 z2dr<#L1BpT?#SfgXC&eW0y8gP5FON|_XA@Th#g@XP)(L4rMmS;745CtMN7)AcXjlw zTcQzi_bMbTyiYdHM0D+==zg7(MX!7WkK4r~Zux!LNAB_rMFYyU+Z#&}(a}s`B?Xu| zjY3zueNz+%s>}ex%#@&5dR6GjQQ?6c*eP&|k<%)YO|vsslRq^jWeQw5CYAHxr|tm{ zXgWCB_~b#e<-x+W+rX$~2Pwt$)6?VSQ*Q#`Sls}p^bDZa%w;M7iAaY)QUxe1)Nf%` zsq*Ffgt-$((!kRb%WtI$bBv4bGE;%?Am=Mj+lPp(MuRcd4mRrR6%jb8KjQb6L(9z?Oh@Z6~;)p@Ef^HT#n}A9f%E3@rBp$l0>mT~pH2Ss5AY*TO(yn=L

BqzSO@isLSTq;%w9g&KB^X30r7GzG|NutO=)2-^KY_;G#CfE0r<^TlSe z03nFH$;QTMxafva1^AAT!2C8kS4|u>;QQ@&6GI31uO!|!ei$PzvRFKD*tzuh!=@m5 zpjga6en4(+@cU$z*-j$p1B}TFdT`gtfh|=5lu>Y1l-o`Ja&!lLMIRvqcb`$sC>l5{ z{NGmQ?=)_jJv<2&LoNm4W1po_+lA=AWm$y!74kBM)9>`Vx!gt z&WvbOZD;-N+*QPvln0ak*0%5xIq}De{en^X{{JN9@U^X!%(34b5~#jZnIPi#+5cb; zzH;-ymvR4z4ExKg@qZUq_@(+N^YVu-g*c-FQ+= zIlxi=(c55r5$sbNjXt=~+qo%yq(lyoZ$Fnaf6|5k!`KKEJjTmx0jx6T6g?jO zAz?urpqJSr-~I56H4IP?jV0 zAfo(`RuKM58Snqn8Atp7#uiJ}Y>Bqup9A|-VMfn*_1fPZ5OjEUzg*9Fsi*w~5!x6t zdUeMmhebb{>`R7!wKd=N(#DO&)5t~@zV7oiSjIS||=i8R8xR->mC3I z%(P+Zna%`ud^{vNk;WJAGQ-TKTdf72h0u=aoIkIDE?~ZVxna!~JXc5ZPGc}j{>MK} z|I~l%1~Kt}t*D*r&4EbFO^JX9$Ui7 z%q$5;gla>mj^Xs>^N(iVAoSsP{@Hzh zSe?*BT4`tUr_+vJ+01yRk(b=)L|B*N>XzOsE_^WLH7?dTJ4c-7vyDGSs@|6S{C=m@ z+qr!@uK2V?$45lGC8`>DTP(?-P>?}}+f@`G*bkz_OmM=|e!ao7g_8e%?3YbsbEE-Y zT_D&G9Qybl$o@tVfF@*-z&9P#+JCfA$5UdGf;#8c|3*#LRnF{-pDaVYlg<6{r@pzu z*_e}fKdxyIrTwMo%&YhRp?9P@4nNEf#NMX+0V|_ePvdXI2trqoVTg9vj~g0>`$M7F zmu>dL!Z=K2AYy76e+pXq7@%WHgbyAuCF5zma|-&;FDDiw(L+3!7hg@&6L`pT?Z2bW zU?JE3%+%kZU)H+*Za;W-KG%Ciif1+LFRK5&x!{ORyhRx^^jJY;zgA3eQ;%X1AH4-f z{Po^L4as@x$XOV!(n4_A{*?XIx=Js8B6F}I@)ai}vV&oMIKSy&kvDjc^kv=YUN8Le z+JB-toXd9_pClgavzGt;SMQ4h-~J26at|D{8PHvYXv`nQ+0cL1FCGEVRFC4%f2-Lb zS`l^pL~3GDBM&cB`9bHnZs@wNs2oxQK;iwe4y>Xt2$pBMq>)V+qQGTIpzDx4M7Oto zM>bBdcwi&>b`Wy%qVAL70^OY%HRQPmF4L)dtqDw#zzPD?8nY>znSTN~z(pwzhw}o; zoPxp}!V0p#(G+U@hm>OskSS`i>r>LkT~=r_@7;Z*_o#v-0!F z3FK$%>9?xM1rkbmdIuT^e}JKkBcZNo+-8AJ?$A$Be&TuCTKIN;-o7>?WXtV6Id#5Q zzO5l+PEyC;v7m2$u7jN3Bcib$=v7gxmaQDfXK2^T^sN)9kF1rASm#sU z<{U67hmh)(`4X?9I=uiXhq`3YA@&qCwfO@R6VOvHC%75( zTJVidrzh}LZ%j}d0(Em6%FYF_7V=q-C#9CJIRhb34;5Yzv}S@Y<~Jv{e46nR6hP}x zYxjSM@Qa)oGRX%g3njoDuFcgs^X&=#8q;Wlo9gyBTLp!eaGXvULX&1aIQ@dq`#{>{ zgz}_&|Fe@|45cFVt5pZOu>e{-4S}n?4QL?{JWxC^1S6=+>!Iu8K_!TnzVwD*IW-aX z1OfK;g9j-uV`9wQfbFS=j#evpkV}^?CF{)64=CSki5Cfi3VnmNVi21QGj-d=#l>eb zJXk&~B56=Kbb4A7YOZK$82ebmitDU$$OfZn zjDT(00M_wl1dRl8v^^x$Hfl0ujGq6#*VKJ!^Z`fvh zbsqxt208YEz#;}s2wmX!iChg#ZIMrrW=dnK*~ozLvdmgS5Rf8FjBO^{QMHAD%vR< znP$+bfjZ`>T838MP}H-A)NPGYYyCuN?g)@>9)c|ZbubkfHIY}rW&%rL5YU4Q;!(bW z;!Uz-0Ijw7Vr8Kx+oPedu&@iv288*h;NvU)ey4f9um{Y#D`+4)n=7cLXQuGm3$?+m zZRkOsM%)Fk814*?YQU>E1>Tm0YcESuK zeS~&GBgpvVDi6Gf(!+fe@z`_<}0gZq#Z^dklVZ+j$9 za9Md$G%7s&T!`@Evo>g}tDUx^f@-oJq<|ohH#|vnosMll>SWno>vpvQirQ)!YNY{Q zsDSv<7^~e~4HtgZt>~oJaX$0}3_0=f|E75bkK<8;%L^cHmSHPOhgR?Hy276~a1cLw zjW7mHZlK#U)49${2Jwp4*b7ZLjhPcU~ z06Fs?vy+HFOBz2SE^mG9yjkD7R45&J02+dBG7FnGO!M2k6H@GtgkKaZs8DqL>=ua z8X7E;fNeU~7ev zhz>-(h@gn0p7oXaLCw%kSQg8HQhfL0=E`h3@=C$D0UW47{-w_ZAW+>y3taTDD?(zZ zj~;eshIw9D+K4E<*AcKRo;-`VJpv+fCLrzrkmP*&^l2HjouNk}BqX#0>31tm7ZiJB zK@Kgl?B|2|>Y=dk0MS|#d43USSpTCBk)Q1B*@tkjR(8uUJi?zyyb@cXAKf10n9yag z2OwqxnXS4~r70xafi6H+o*Hw2u=LCqFa8S57xCD3f?E5Y3wR*y0HY%q0`Umy+&sT~ z2mfh>g2Oww%d886d`4%dGNRg{iieU|4Ui{`@E$S;qyA6`+=QA|=+6OELH{3W$DyAF z^eG7D;wq0Ln8&r?P`N%0O>tGAuv)M>;d4Z51Go9e=zt3P2~c3VL5dQ@(~> zX65Hs!&|tajS;Duo8W6sf(}@zP-yjb+Zm3GzI#f?x3Fad59C}4-P;Efs>~Ov6EgB z0_;0vvqC*gsGNZffc^{x!Q$wFj61;j1d3BY%_gt5Z@;;LxBdM8d|li-&{36eLT`_0 R73xTgq=ek9yc>Gn{{vKt>rDUv literal 0 HcmV?d00001 diff --git a/images/loss-l1+l2/result.txt b/images/loss-l1+l2/result.txt new file mode 100644 index 0000000..efb99dd --- /dev/null +++ b/images/loss-l1+l2/result.txt @@ -0,0 +1,8 @@ +Data types: int32 int32 +Shapes: (262144,) (262144,) +Label sample: [0 0 0 ... 0 0 0] +Output sample: [0 0 0 ... 0 0 0] +Accuracy: 0.9957275390625 +Precision: 0.9423006583760059 +Recall: 0.9546970539188439 +F1 Score: 0.9484583525080534 \ No newline at end of file diff --git a/images/loss-l1/confusion-matrix.png b/images/loss-l1/confusion-matrix.png new file mode 100644 index 0000000000000000000000000000000000000000..7a8a26a475122702d7598c8ffe9d990a583ef228 GIT binary patch literal 28191 zcmce;2UL{Vwl#{{N*mDbHiLq;h)Prx5F{9Z0u;$PC_$1SIfJ%25G<02fJ)91B^973 z2#87!5>#>qNs|A$(LVRs=iPhXd*h9F$92$$qN=`ce|xVr*PL^$+h@;6Fsx!+MMp=+ zK#@EtPe-?uhJR;%U4h?Z|Cw)rAA&ZgRBaS23~lVsSsBosK4){u%)-XZ`1}q#11oD| z3-g2A{M@{pJB(~>E?Eol@Lc@YA8=b(UEtZ-3Q*?MV&}{Fp!Jw{qq?K*wb?UW;zpZ>CU@U)4GT>;m{K-4HTe6pX|9QG+$I~53 z5AR6b=f1NcLV6w7Z_9rPU$tuGudF+Lt6dj9m6S?J>mFPgG}M*VnOz^~JS3P}w|=s{ z{jCUFYJ=G(T!C)!wn`!Vq}!2xe{3loUBTf0n;*}l_sE7Q&P|VZeEz)CrzG5uL#5GX z-n#2ui9WCKU{e-<@T8h@j@`wYM6DwUg>;wc|Lj@rZE_}5G(n)%MdA9YjnuffxTfZ2 zr37`p)4@VY&n;Td)L7FmU*0qPxsdUQUHm3a)yGnP>=C_F_o|ciBm!mFvT}07hOLDi zzlO`O`QZOW=f`?yp!}03PxxK=Y9KfS5a_s;N$a++qT8;JaHrX!uyaItF>ZcV$FH3 z8iBk9Qhrk`#U&+_=jP3oy)|()*|w%}daE~c`{L4Zi=!v4b#fi#!o)q~uPj}znCCL3 zpKnokgF)6tly3i03J+b-5$B2c#*B*`_{fV5DW@DqJJYxIRfOF<6D$;wZdw=FIF+QC z^(W=)*qBVZ^#j~tc6MartXJEYFHcQsVvR?>yq?@mySs@?zOBe3{ru}yC(dWt_WAQ( zc*l9+!i5v>=;>ttnpi={FW@%oa7sd=FD@xBMascv!#??wH0Q~TTu(2rx(5gJ6f-ZK z!!kr4y|Q%r)75nw*00wa&s(~DRW!wituf0wO50`R6uvq3?33dU#oY4@-oClNtD~!H z4~22R?q#g=sttR0^q6ZLt;`?dvuc;blZbO=5-?XB@2%4}L~OO16H`9eOLvzVo} zD#xH~Q%$to3AGgc`%zI*5BW?Z^@=@3hFzl01j`qDZpVA}ty{OwwzrxrtkXC88J48{ z`E0lOsSBr0o>ZL}XwBEb-m30P%6Du1W?GjR+-rku7qEa`LD7Jt9 z*@n~$b+7Mk_Hj+18%~pST2kMHXR8!_b|-DDQo4k(HQiK&fkjkvBfH{<_7WeZIAtym zCV?{-KW5M@`ePKLs$-QnYT{I6*Y7!_IMLrwgT1+3#7U7_onjz;Iz(8FT8$mgrTXls zLZl2uZdSsJS;>d(G!{LqB22>c%d6W?9eyflxGjl1i>k=etJbWk?kEc&3p?IdC!1qG zq?~S2V}tEAQ-tMF7cg)7kZIXgjlEYMd_)DCP0H>OmqvzfiGJl|tGh+RbEAqs{r1Wo z$Mt4f%myC3kY?2(#b;c365m>RdC4-HZ^P$mVwK9Mm;E`_>TC`Sg;{5Q} z^3{r|hNsJfRg$!ouyK|0TpUja@}9z@anyBDh&rQ$%hLfsP?nE1O> z-;4TqdC8_EZKMl%xRuUqFE4K;XGs&bfxgE&1_nN9Ui*Q@8WTLUxpL}TjSREo{?XCV zgVMYft$EEULti_}3^#AyJnB3|yU<`i(XW=uI(lv8`uNT@t5)&OOieX!F1+>ouD6r( zU6;PLml#qyIaCsb4-JM}yNs3#_`71Q1iDImie1KgmCEvT+~;cgKYh}5Yx58oJfhR} zE;ymntm5f)!3*ymtrO{@)!pAMy$NxT|G7y`spfNYE%M)cSXm#?XtZ*yrPHSim%83< zw?2OSrEA^iFJI0xi#Vkjw9e1X4CQ37;z96A^S%!enYmJo^JtK6fp~{2S|>L9!KL%< zR_oe$wes>H0r!5srI!=rdY0=d$jQl3!_68}cAL)1ip{Z7dh3!xYvw0goMowleREt& zvA!nN(dQfyhRiqeXlvp!9ltzS;E37$t(e7K@%;JoDJ|ALmAkLsxDks(Q+j{bO#}Ca z6a%FsZILqDmcE4NEh$b~Vd4y0G^d)cTiJ?nND>n?p0jgu%3!7CR8{MjX)uN7xE8Ek zYrl{h>h1kFP9;fQU0^M<@PmHqY(xP())GdId^cCxRA&$)ZdX0SY@dpXitGGTSBdCm zy82Zla#`8i2e3A0TJBP7TbLb{6+C=6TJrv%$}?Cua^}SrW~)rx=Vzyef_6Di^k=)x zO|KVs$>+b=7_FXe(%YCGmz$egopDhEJGKA*%1iQ(aN_cZR7EX&K zYt2Q$cay`72Q4c$J6w1oE|)r1A;A)(lkY~NOy1mtMuJYhHbP?c=zFoy{yP~qlcSW| zCvL9o!Dgq17v5YK)lH+*|5e2K(A z<@3+3_cx?!B-nVj=hx^{tS((T+njBS6U{m|KQly9V}@D7QysUdjw{xCUOOV9%y@1W zbJNVS>X63~4;fs_{AIjOr|!v#n>NTB^ewXi?Kwkv3c*6QV>K!|F^FWbI{A4^mo6Qg zk)h74mb7ZhbtJFK$H+%i)12)+Sj4nvCWoFk%+h&ll4~~qRB)w~y8CXn-9YT{@bHXh zsHm$t_K}~>c##LwN6y5T*H?4!^2(E^WY8KR9WYk7PE6G!$8Mm} zb?CH{WTAV2oHSLyLfel=M|-rhJXPvXuWf=)5m;0c5As#VC`jlP-K!Yusp=RQnEPOf zhc&5mKY&LkF@ItHqlu2Z)%;_f-{eg`JU%AmKA($y6omziL26sIYL!!W*ROOj*KaD& zJT5@DeR3FU3|0$osNAgM^5oX7UlAXrXC?-! zavevj@$V-0&2d)b?YLuCSHzsUyUA&?+1|FVmaF_BpY-cH8&k9In~rr?H0HVHFbbG+ zBDrhjxu_ky@Qy$LMViz2&39twUj9Pz)cpK>Z)Lz<>iEa7Y zwrx9P)BT~?)3h@DwzwB_0x&^OM1XeX=fa!mmp+ql{>DV}^ULexxZ#*^;CPc~5UUvT z6mdIpZz7JCQRmx0#slZC8LUjV$eR)eq^Ny%uJDlC?6(c&00&p4crGiBlyW3>KW}wY zh*M4&Yx5F|MMh#2c6jzK_(;_4^?OVj(~SL-tvlaVM9YPxxi7el_f$#XyDDae@{@K; z`_~_ed?aYydy~cOEWV8I(x;>39AIB5AbAbl6+sY~p6*Mk36oe?{@}m~KGWK2e=d#o z&!0y=Of6fwG|jwOsN-#*0?t5PRH$2QtWumwU82^$Gg}l2=~-MJlgQXtm!vY(LbDzI zbSyzDM>#JqPq~fPpfntCsidMp&Vn}X-(s{Q8mK!1to)8rkwYnrZwRe5M~nOfoZnMwsfJ2t&wAtB?Aa6L zuJ9It94FI_fKwM&S3aBWvt`TfP~T!%*R#o-RaJdZ>crSKLtqqVnNvew zKfJ@i#U(e(rl+#=@@2YFM47i@b7MY&Dv6q%ScO(zY?FiJU(n2W--Y?P$=32v*NMP} zii(O{Y=*K2*i;X&cIC+3=~LYmVV&m9*?}S=BITbyfA&8>o_0fBT^)|0;pmlR^lt&c z`0|0w_D%OY9zM0=_pMv^$;!$K2CSl%R0t*%F5wLy)et+~_uJ()J>rVKcQ%YEojmz! zS7@x!wdm-*jt&lQA{4##%ZA#nslJ{SmA!xeK2n?P$VUM0rzjE zwh;m}HJn{3HrlGA^r5J0c6g3^@Wl8y(l+go!?5ltadCG0!6x-Iqx(pYyD36$vzdrW zF+eV){!y!wbUv}-es!g;l?_|Z^2#?pF265%7Hm_~($#KKHKdo?WByTGQPH=?4ZsOV zUU*^-_dyNcCTOKPpp$v&2}wbCo^i%ik&OIi4@iMPS+#bpGHRH3^)-0D;}ah(`mokc zpRaG;fNBR%E>3XSvSl?P$B&O8yJ&bGIed8UjvYr|ym&zk_xAqn_3PJa ziSs4XEP&L)WC(;WdizC1d45}pb25qDU7 zka(!978VxQZ{F1Kpg0X6`Mf!R_gGn5DyLu?st@sw{G3K=}B2j)ka(i z3*2UwA91fUH>sV?5UAgr5&71b3 zi1A}rD&;jq{!<<`Ys!>Eo}dnLrz$6(KNWWXF{m-uG1Wi@xyEmw0$bdHJ!c+$z=7n_ zqh3Y5N4{2u-`qm7K~uzO?8DPjcS&4lN6_|fQAK5ym6g?l1WI-rBcDk)3Ew3Cx8}Jj z0qy&7X(&?_f&Xv`QUvjQ8)@6PX;UN)GD!{ot41{}Xc0YCQKrcHy-iuE1Z^0U`5O;3 zru(Z-kM~7Ae!N2|R*^!2P^3)Y(;xwhSbzcl2iZ0~PXPq?NqBC<8ADA$Yabd4?GLJF zC2Mtg%>}?^+@-W#5=mCukJ$O9rltaG=~Irny1I_{#wD3_e|X}bjGV8YYUt78Hgj=m zW`;xBpOd6&>|QRtRhu}Yk>z3$xE>1G#^S_A30imV-M{|>Z{+D9{%os`J2%#`BtCn# zpTLX0+Jw~Xtc!q<08t-M9h;0_y5p-G+_L6n3b$^cIj7o+@cVr;QBk(P9=)+)jSLTaOJ5J+6%?IkOKs=f^J;JBr!gB#kDiSppoQq3Ij0HW#}+ORXQzXI zvVZ@TBH62J0=^m)F&|-JzD*8Gfl->k7Ehhk_*>n{XhODZ8CV(ebfSK0SkmSA;s-6h z>z=r5(&xq33kFd}(9!K@6rtVN_5HsF7;d!H;jMJ_B8%T79!7g{>8E!a@-}2vO3Mzl zoh9$M+#FVkZ`3_RU)5ahKl=Ip_d`_VVRoZ!JwE4OuQQ)Hclh70eeo*3UHi9-^$5`} zTqK9KcucG)99fAQ{MQBIvKGIGE=Pi-*aD-mF-A|>U-51`FDV{;O+|MP-!{||beBJy zHMJD546)q(>188}{oDM=A^Q8i4hEX#>TmUHDSkq(|6iXg{OIM+w_DW9@b7E$(>*mZ zty#RBpDrTwH+)<_^Wv9Qg;9 zXcYqi zKXSVphW`9HxWXTgd3V_wi685+_~>3x8=1_qB3^-lPz2S2IB?qWYr7l*m+hBVE8`9z ztI2sWi})VAaK@ngp;A)bbnMH*!i1tnV(!|YO_Tuy{PxH)Gi=#^bYx^iSuex9Id;`X z_BXFzpE`ACLq$`T_0Zi5MfbL{pM88;Q%g%JLTV!jIiA z-Hr`gwnUc&@a#F_-@YF>aMZ^|)gj~LsZ%9|g(tWTvP;^#AJu-Q+gdq3S5+nS%Z?Lw z?%biOoLPr-U)tO(Qcl9i*+GHMk{5!h<(;SR(IPlTuZDbM{0H_xG3y6DfJ;41GC@6^ z%1VkkfF#9Bm!8EcC&Y%j&#Rq&c&GvubVoA}=X<>&urf8-Dvuck7Rgud@gPfKrf#im1a<^1zr+pFXu2>y|5f;M^t2=yOQo zJ9vmMI=l!R3V7KB@!4^U;gK`lpY!gWJ1LDrU%vdgd2@h7p1^?va<0>3a$r^zvu%tC zAb9WyIJ&3Dn6I|1O#0lpbN&Y=*>WkxKAs{bGQd2fbV7l^v2*9=D|((RVj=yiRMa)N z^cV7d;`}-~I>30U8J2BDBK-bfZ@K|u)l>8-COUQxpDxD1J=~g^x;0fZnd}xw(&>if zj2Bz;v``7A_D@bsDC7G7{PWLv_ISY0uM-m)_ojx}S5r9Hn~rqm$8lb}d9$p!Sj}43b~H)| zLWh7{CyyH`R6|)Bzsw_S`r7S6Mzh~WR;^xL_2J10Qng8^%++dG7*CJ&Fdn}2Sjc`b zo)nhgoCt%y+n*%#y?Z4A7Ao)ZB>OIli+N`(>gyH)xDyZ1zVC-;X^CToC%<3!E=2pqz4~`r zYZNKF*I*_p{0D_+*mv4KF{zU$Kp}alcJ}u5QMCM!3hx-P-uBRiM2*b(vX)r2nCP0B zyjk<8mhCe`RTgY(%_3quR`pE%>1aD^mKmEdS8p=wEx=^lt>H0vWTE`yfzt6xXa728 zwdO-97ZmuMvmRMF=+{n3*YSO-8cK8P8uC9Nnk6!JZpbiJXTZ_Gt~|VI^L$0nuKb!8 zt?$LgyOs!Zh;9>+*DJo4(x?*eU^(a1J{TtJoHrKfEzKOfR;a*lh>@7uFS!lSoA(bRCf zdNr3=b;6Nke@mT&`iKLmwW`{!+3W3FHAmf>!b%Nh6|=joC$|Ujy8CpxJTEk9l?~00 z^A2-Y*S=t7Ro&PiVmsBykj^sfH=nod$*id02FJDxgL@bF1uh1Dl>ImnsyG^Q(6+-V z?N0mqgg&|FA-&dgA*Uij+_g>XE~ez#SxrxxjzAr%nHZn=I$oZHjbPmW;J!&^be?CZ zFb68qvP=OXyV`kIXWRB+iyK9r7nnq7MSw~n@~I)UeZSbTj3jWIO{wzueyvHo8pSnZ z(Ry3yTMg5?;4a!oD}`!hU@=w@KG`{-+MGLQ@rPDqy*0bi;UuN>!_is!DLEIE2Rzqr zWC`6%5pwT&IPNG^Q>AmRZoKo21=q}ct^*(H&id_pB%*GL7Nto)AM|&h*|_)d?_r|V zcQ=;xytnRBjJ|Y^QW?Ilij}f3YkfU@vt(E1eTHWTCgT&S;eGdO{i^sq*n3|3d)ewv z(K9ypZOqCtbc!9dF&UxGAKsj(b#wl7JX0Ne7%e}z#`ncV8}lj&p=Yzp7`ioe)~-b* zK<_S=biM6J-}~~m4Y>~9Lg@}YG3S?rC_w>Hd@(D^t`_etWM`B#+QriJ#d@^!bb08c z$EppS(Jpy;DQwKHK&Mx)Mf)+3YO zhyU8P{j^DislVvFRj`wNbleLqrlx~z0ogR=6H)JUDmaGTeh4VDH~CVaY|@%my1sas z@Ll$N)l)hyd@6CZ@l|O(sn9*tmRH9-VG@|1yZg2))sQ{lf^x^#x3LU;?zN4f0;LUs z^s}FO0`=R%1CBH>bDaLjBxKhg4W>v}ctQlg7=PhhlZ}G=*mB#P*5GrUsPl(=b$V&2dVqaigcF*UGXx zAyUMteEzB0O;0UvS!UUB$FM}v=`URi9tV0p4R!IIpEjXXCheK896j|lRwJ%g{aff1 zo%5#p$4^Kt>aWzXIWF4aoLGWtp3L?m_V-!SU1_x571au=^}A08j>XI;X_;PZ$dgV? zOf=ree|e8@r(X-QdN)7_>L@Dm1?QeUdkE{BQ0Nq1UteFm?)Z&^jvq`-6vNV%=A5o- z4cNsjXt(g$ni~ExFDtZLb9+#Jc&PohiVo9Sk(cKdPWHA>l}X9WPWF5$et%=1h50%I zE34Vo2Ya_4S#LO=*LI<>y)Ss~_W33K*P+tg*}xT96(y@SfovKrS@AShJ1lY&*W8&s zXSUUOakxts?mfo?z^?sp4~?6f8+p?I`Sa(c0X#`BuG05`YbBKzE2;I_mE#Hj5P$so zD&zWR=kDB1&Fe#LR}-t5l>&f=2gIFjRPp6WSJ1%=p28v`B)d^6kpippT%8R{s6-^K zA-Wr+JW!FvUqhf&8i50Ig2dB4IG8xtJk-+k3}UDVgb6E4OF3w-hd}66&D_#4@xoWdiE9na%C#%d+lb2X|TeNH7(J@{>4~te(BJK;dpa z+E*({6!TRaD#D@RITRDAsi}6wgwj)dlVS-B)D7F5#IL(rYs?iV8O;l4+w7LN z99ijq;PvcRRT}xtWb^O}{X?L;gq%Cma%rQY!G9$5^fdH@Hl8!Q)JiauVp-Zj$iZLg|v}|$rXxwF!ms26J`K{?Q8mX zVo-g7soTH+ZZ6gQxL|ziI?d=BD zAu}TA?G%~Ys(z74Mfn50^+wlG&s-}*AC-4zR<>ErVd^hjvJPcxETf&RRGAv>Jlm#j zaOi>z{lKq+F}wEgsCVvb50W;xE3zj^6D&(fc*^S#g@*I*)!5T0e?3%Dsuz<}&+qGY zO?Jt0xrw-3`|3)9BC9(yU-W$L3Y(au2I=P-MJ^Kqn`o+$k5||vCLPbqs*XIi+tw}p zp=kbvHQv9kVXoIXl3`I5+VyUq!=!n-am{fs3ntAO!S6x@!&Zjgt9s%68-Zgla_r+= zKi0K(c19N5SV#f5)b$@u^sH?<+!xUQI+nN$G}y_*8=wh}5-5*V47lehmMED0D(-K-Y8 z#~9U+Iz;7NUH8BjzZI#u6&)SD;q|q4=TzI%l*%GO*Z2v0ro5xAi7j!NnGQ6~h)kzE zZ3(reN8>8rY!jNc#d>wcKW7v(b#RWOSMArD&SQ;n2>a~M9$%s_e=|}kUAIO%Zqp4` z_v;efe#{5?=4t+o`Tee1x!ay>y_;e3rOCtpz|QTd0%?yG|gwu3`)jQh`B z_n&nsU<;)mj{k-OFjlmXUX>oF;>TfcPE$zOOT~5mxGW(#8vYyt3%m&a ztUah79|~F%rZgHAWC=7l=>YDUG~+6p=`myYC^$q#wL$&)Pu_$ItMT02OSt&e?e(_E zrrQr+Itp--(l2J+c@MQxJbNJ|9d_;9Z?4vgv5FJmGh7LbPq<8E`!pYG6OuflG3W>9{Moh%c zlOgDNb1f7ym=wVhQJsLilkN69z%LcN;KnqR7&CQLGSN|56@^H|Wz2Mo? z7$oiVyM-kVe{6lF=F%I+LA4aj{$mO zO5=0WI_`}e%5UX6V2yartu<|*Q0uctwzoFHSEM&xzl7SDQ|GibM#OnSc)}HF3#{bx zMwBbOv4<=yZs7>1);D+fBf|+sDzsHU8oq5z6hC5iXgXdFPvf?{Ju*( z8cGGbX67?eWq+Ka4BBs9cx1!y}f)@*qUntrcrh%gcA zuoTQQOjYncL_y0jMOq^QC7uMI>$FYzqp6`?#&|Rar$a@xP$Wu8N+P3PjgQSP85ztO ziiLJCjqj|%27}-{pPaw|KHl|U;GlWNqjg^XKoC$V_gS>$655#vg@_77@{HBW$7$Q3Z>kh+m~UPnwr`=usfXC7{AG#damtls3K`{L9dlu2^kaHjz27EqaOLgB276 z1=nN(xf0UxBHhoa_BDC6mrC^6W1wBCsJo>}O;2hwxJ)v#Z(oEo4Y5GUgOP6x5@8%1 zAxO8@cSJ*>0``{i9)$_k>y%B!H2?I{&9|)=e2r#`pjDHefc`w=l;+$ z?|pkAq4G6fqzX9>wJ3nYA=LG~-mIetF$>Bo7iBWxEx!Bm1(h4JP7yilLJmW(04t#c zHh!Q!`2;Y7RNpiF0WHN+mSaDN$J~Ra#PVFV@ z2aZ&_lWGmA zxxydJ?*2xmdq1(9FQWhB-A-43yxWlK@sa6d?abjt%KGm*cgp}n(NFZPE~lEI@PEf~ z{_ht6uJ>o!G}TfzY44cmrtd5wpd<4Db}N|k?=*Q4)!-lB{~rqgqV~s9{s&9?pB$?| z%GRHk?|*vt#EPE@*+q8MG$*Ei)4%i4E3Eeiw(AzkCvkP9sC=gj^h$W!Dq3(G|9Wiy zv1*;V**OhXqQZ z!Gy+p29+C<0|*f97ZenPgK7iy!&mFs_nj1wrXR@l+&9y4G?GZkTMrrv+sJ@GgqXX# zEW=^sd|Vq&e;sI;bjvpJ1hrK0kIyYsfEu`p!=64RqS4gU)IL_$lhC6-05^`~6sZ>V zBd|jpQV8JIf}>$4pGAu%JOXvF+;Hj@d9frxl{AL--I!yal%ikqw4mT2ZBGBLwqJ?6IKEnIADowxOxvTftAieXTL`v#u3)`C^zDn`sE ztR=-^_ddv_YuBzNw`U*&X|bcf-)!r8FvoBRb^~kpA6T+viE*mEn5I?p57q)#@qzsL@FJ z>$kVGbbLBBc#&x@9F?X1TyexG1ECB+XHenwL*+$bpnfGJ%D4fFPs;+kVzf8%U<8(x zLd~VoY=K|m4uH#t8R%iey84eFH9(vy>ru7E%-_IzFy8VsTg z+l3TaT!ydQ*~Ar#59&#M+v zvIbd@J}j!vp+w4Q{rdF^N7mvOYYJcJQ?D`{RML27kQCA@o^ix}u$~>S(Cw%RKiqQ~ zFbaWStjYTQJ|JBoV0Tu+O-w^^He=pF68iyC*hyPfqGnblHd`QsfYi}^*$H;7>@;Xt zdR3qBX>=Nr_!9&T*OAwoO`OwdfUx=pUfE4}ZGlQgJ!2;fc67vRjRTFsNI>+=||^#@)pnP6h(dM&HZBwtz)1JSfc_l%E^yM8*c_m4mRXm4xN`@Tq9fnB66oeN3z3xNaYt{`Oy zg?4Xq&U5qxCb#{=K~l=i{_7qEIGdpPo;6jjQ1?-OXclx&S9 z6Juj(i_3qRD?F3-1o3_vP99=^CnOUfOAS0FM1FEYOelVPQ=;wQqRGLzm#G2Y<<0vaz%o#Vx=h-C>zzf1hVEMaGfs=o z^y$P69Les5`Jn~)R+7l+rKah=SUS*@RTcSS@j!Tg3AcwS2P&2?&=n~q9z57Wkw+aN zI^Df1h#u|-T??wYekwS2M3b4%H(7}5kC1u9$Wt~C7kSU87gzZiNN{>~eZ%A!ijCs{ zBe@p&Nc}imX1}i|C!2&g926&K=ROoklLM{j)4+4pUpxVH8d8>(AK}RxA8gieo*eW; zF96hGVjCsA6L>{ClUL+gRAksbS~#R_crLI8&k(*MWcfs7y9f{=rI6qWYm}r-liwwd z%gOno%Ukl|Mqn(#yVxYB*?exS+4^+JvK8I9ggc&|%J2vK5`*Whb@+1!6WQ5ItI&r+ ztW5sN_>KOrYn@)++%0@wbTRyaCKR^f%EU$&RyvB8FDKwUbD_wr>C4PK42OF!5G0&E zDN34n)vl~oAhe=#hHOuCf6Nxl!C6~ej|f9o|FB&BD4xu`ECGE9kvLG#G}iK} zDPMY4!X`!Y8hs^@GN%H3h4giikL>m4AA23PDC6-)GyXm>>q3`4T}GZXOfA4i(rHjE zEBiiwJ~!U@;>9tnUmYw)O2D{5%i*!oP1+`7FR&OCYEH|Xc!%QI0wFRGjuV5^HffOa`cbuF~A0p}C(^lW7 zwoZ39a!k~}nnawI-3X7&W!mDllX8;qV6<&rPma&!G44|o3xH#|I6|uLz+SZD#N$fS zT>Z(h%J<|{UQoKDLTb~3ssk{kaqX3Vyk;{bXe%36NT_l;KE&ZmC(cE2NXRm83DPAS9bNke`OGpTcxIdJX6 z@2?1FE^nZWdX`m0jb&;>JZv5upg@Rm@95FXXF`OH`8sifBwa%hCvIwJpL8cp63 zuRk1eZ)$3kU^-?5q3)W@sgtJ(q0}2KUZ9@BLfxkKy@sLTyBUQjYJg8?4jR67_%s6C zXA1W;@ncL3Hpe0J!iaVjj+o?ofRi*&W|3H=TH-b&R`G26A#*|IjT<9S5|n{+M32(L z{pbD?_uLi(C*4b4LzG!yV}gl`4y^+*DB(<6a9D#cz)&fA_l=N0bd5O*rpFn7kBH9m=Mea@(7M8MA>xkh9Wpg#M3Mc?sKt6fM zJvHz*1D8lrwcY1z1z}17Q%>yZ{@hxz=!GM0b^pUolY?20yBAB)3m-2sAUY^)NofUT)PM5- z+lr^;_HMP%-}}Z4*AR<{NG-h9;!c`T_Pw2j{5nz3?VEXfzA#pCe1Fc?-WO*sZI_?k z_GQhj#asB{2wWlE7t(U?)(`ZMG7$Q4s%oxnWGfKD-|X50u;nE;L{?@zD*K0z?+4KQ znR;8x#w7OWFQg3g$O3mR3y&#!N@}IQO^h!b{tWtur*K`={-5}^6}VasFU12a-~E8P z@SS?;pji5sE%7buN6|-r2@U;&`Eqjd_?bymO?m6^o$P|m)M55KKH|S8y9{}oo6Q7S zm_108{ugs8_=c69$?nTy6klXT7x~JcT$X|JlVT*d{=5$ViPVT8RD|Xw@!x#RKh2se z+CFdi2d%jFN22+D?(Tv5`(Fq=LnK``5@X6<_I%G;bEb{UP0F^h ztZ|X;b5jq?YUQqYIIgk5uIH&xnyGtX!4Yg4E2!FQyB5BGhoMApY)G$*tp4Dx*q~nvONA z&7#-c@Th#mW4Mo>pT9hjg^t4GJvi1=bAo}9zqZVF8MEM^uH-GZIX=Z>!P#3jY#r{0 z+^qu93m`IKA}2e`M0S{)BJamOKkYccs5Lud0a|3Be&X(#(CHJlOM59)H<1lb0cL9w z73#jupMNdAH`Kyypw(HRr#au=OG-pX+%Y$oQ?Iu+E{RD_PH29nqB>7T_ypk>g&8SB z3VY#tg@yiWwccgcGJkHl?k86n585^96~CM5@ECUOl<*Lq-Y8*abCa6*WHy<387#0bD>@noiNzce zqHK-ES&7e|?YlC!F((RZJH~rpG#CdFdFcTYr#G#GQ#s zvxVl|2dnMAhZo=vAc4C4%b&M1bdVoETy~?4m(O0GR0^B#L#3&nt^d1{_KxME3nn3N z4O68ymhkYre>;7?^MX^ltp-%`IriD}wKm)9pR3&UUwEuzH&FG!a{Zyl7CaZ5Q}%i6 zqSsx`sWw4}&e;3;`T2J?azp}}$01RYyhG$P;)ew_C`XVHp9(sZ6$I7m@1CGPVFPM% zDqr+j=e|?XHj;Ef|eUIw?MnE{CVm7M}J*kWjb&}#|DtD z`PLn(eM@d{)05!YRU4|2|M(1Fo#j&f8oZQ=-=EcwTR~aEZAPgoN=AMlU|BnGQhmMZ zDe;r4O3r8@;pE}5pvW`x@LX?7{qq{DR+fvs?alB5mkASeaS`IWUWR3pcy)oEs4N&7^@{F+MzF zpwV>b%30}`92D#PDJhSjyq7#m1?%6SxiELMQ|Z-sUt_NERYpF?QXOGgeV^~%#*i?O%<=4v;CaQt`fseA-mH}%t=*+TL%_egHbjEYkQRu zYQ&mMA-Z)ZDrZ>G^;ZSxJO1v-(3|q|^4fA%l3}T0ysBlodsrAs2&Dw^(+n)Usz;t%)WBO}Qt_9gdbZIO zMuCgml&>IS7na-BdLNrh*Zat`N@UAZW(zyH4t6D_sny8gLFd; zC-WfyyBED6##q~j!j368p!TiK*eEd|g-GwQ|H3!Y98Iu!-pt?;()a&gUX;CMGx(%E z6yg;Ikx8t?j?QA!@Acu+ML%J3uIHUQQZJ$|kD0YJC5>z5xvYv-5lc9+BxE0&+!;k& zZgJ1g1*BYf|0J?p!=(Go0ix8i_QW~fJ>>N5H`}4H8xYpnT4&uDg{I3<%GZ~mF!bKr?7v2_m=3)1HOakxNEsIi( z3p*1g2bktQOEBVJ5&bgZHuc=;hxpfc!pqsw*|cc0j)>J-()=#eaS;DfZ+e!5w#t^N zBszXMeE+})qCmDR?3E9{1+5OOreRM6tqv9sU+{Z-dL!5@OWU@{DaY(IfiolfPcReA(XK9{%U4JE|8!>r+`t`xdsjn~@885g`US^xI};X1*a7 zbZ{bXq9vVJbm8Ux(GZ$p(VB>cdeWa5tCAEF;yftmvHeIbuN`&_>fK!UDHhvy(d0l{ za9Ivppk{_ZQ?wNe7T;h;hWXZh={i4EzA4 zqzTbL9m`k5ua;gASd&{s{TMgB}Twelf1VU>VqLH0r%y&=0 z-dPjYgtbQ*v(`_3t7WCj*o;;%v7v2u?#avy6@(A9l|Sk7;|m%%e>?B@i0qEhMNK2~ zK9?VaL1|JbIXGm7xX(|etp(w+<3t#3rymS@n;|JC;7M4wrWoSadW+t%u*x7Q{4Nao zP`E9qnH?hMOLz-^CP5&EKppq`8J7QF^Cg=gt1oJY6>ppv{_fjZ6rQgV`@o`>r@tRW z8tgkMjUao^3Azyoihdfj%_#yrlCC>;Vc{kdPsn9)=%Ro_BbA7qp#AoWinf?64q16} zd^s5)g9#81A+5M3la}P=t2PjlgxE|FZ6Zqfd=_ObPU8|@4fB0OlO>Fs|3z#ee?9y~ z&Ho>rI${m?-Gz>W59@0iGw5#{vy(2 z3+K!@40my$#YyKl=3cN;z^&K9xInjcQrEd6z+>%0p$?oZNfdg>K)WemkdU4U%Vl78`;XlORV=5c zm!?9RR*IC_N)r5)D_78yR0;KxOK&iE7g&OA$;rv!=#v@SK&o86Ojou=ys<*I+ zN~!^tML9R;|NOr;UKG;BU(WXBG|tJ_eMekX8FF5|$SGbYuc^da^^v~?p3=$VeeL2dy70YM?5(u#_aD|*zUG6*|p`B^9h6SiR~9 z>CI#Wkf2q&H!cav-EMp(`oop}r*_?wGnffe32BCmX0U~Qp3H8*_<}UM0d?tZNJGSh zM*Madbs>k5L={BwjZxSWFhBFic4r$g>Jk5$QuicG4pF8c%*V1$H|Bt5>gT zyN)Zpe)Wp*o0xNvmfMPyO-zGm@aDor65sZ*W5>ue83UOYe=SePmlLxY@nT>m#v!;4 zm#-E*j+Y!Y4Nc9-Gs@R5Wrb>>*prNyZ>sI)TiAD z`-xv6q{mP1zXxUO=K!pl`{Fwa0i;k+F?n)+Qgld3RQuCkl%b?!DpQ)p^1FuK}4Z4oEF|0** z@xL=q#JKgt$@HBS3k$3J`3mlZ{M|hI_J_*A`0uN8uPE5;=SE@O4gWpo^dAN*qoxwW zpPH1{h(Gz~1(0X8NDv+V$gL)RweTMd523<-@KYpLf~NZMW3iQc1(7_y2bqHn4kf&c z-LZcg7XFKN`bmwDNg23$^*cp`&-<|r#lx!qZY(Cb_verB=ltiIi}L@>#2u3QyWtz^ z=T@)9HvhjjI9ZkZV}`#Orm9hGcCoX2>{`N`c*Jt0@%E(<05UBnb9j1k_KVy~8JSE@ z=t`AfrEPtM+KH8NYSnb4B`Z7>_+RF43JZ6g*1Ke9M_M=TM82F%#!rN-i=s)i{ee|g zNg|Sb|26)EZN2+4$4=7gT34rnG9MwyS^efR{ll|sL_eagH*d-$%(39%@VNmQlpJ#C zqb%>T#is)lly{|XR&+Y}D;jBFF6BumEKor0+O>MKelb1B5Bs3*(H_aBl{I$mAB z&=u6;6-lZL+xpu)bOq*M{kCeN0IYs`YBhy5ub^sr=)EkaY%!i%`YB)1>B<^THa2lG z$NDMl9|hmgU1 z#7~7d-wW&!RkK7ApeG(<+DQ8j^7N{8>r~JevjN-zjLMkaHGJ@w@b$tsw!A4ICJ{7E z62~v`_>v3_SYwQVMkclKff$Oon(|bAxo`nZY%}R$!H^|55J_?&?bHx`FnZ}q$L6>6 zv~`y)zr`%$eFjMY9k5z3V*9ef?4U)4`4QU*5T+4EEmAYL(tk^GUS9|4=`4Djy`e&p zPE!2+8)OmGqcupSTtizi*oxIHb1M+JQ z+nGnv@I!6c$~G(`DW!?0%q~fWxDO%?HisMBu>mlS(WG@m7#|cw~kST3^&} zFz6ex(vGh1e(=C3YiGF`zs4WB(1eIf9vHX|au`<|k{p?lLdFrnHg)Xbt2N>F7>QMf zjFk>cfNl4OV^}mlRwz!jIt6;uLJ;BARv{@e!?`O zX&`eytdQ&MNU>8_u)PfiTe)Ju71SZ@HP+9|2k$F#ls@E(gKfta4H0pA2s>m3CECM@ zK@+A&wUyVeZI(PTJGR7*GiGQ%z#lAtWMl^_$K4cS0>UsYvQFsqIu5*yi9FYU#TC&P z6Dwb^Fl(QFJ>10n$?@w%*u%&Gsg{I&B4pplVrt!^_3n8an~_bDa*58XNI{dz@fVC9g(AQCy) z8^|mG;^PL1igAbK#Jb*59;8C15@F^Y3l7?_^e%7DVUHE{feS6HRfrYon7l}au7G;n zJvYIEIn{D0Y33Go0=&b~8nmW08#u@A>VwqQr zxJ>^I>OO&obl=tozUz1H=tF;4Dy^@w%mzJEa6K2OkJ3ClDD+ z6TfmjTQ?f7t!!;;Ku;uLAICw&C4LBlcvfQYfhP*&w`|#mD~AM}#*BgwTfQ_Qv##1< zH-_=V2v#j(9x;6T;0Yc>AC4@@yHF$otIoGE7^HNmiqZQF!mZt>7O{GaG9||e?HXZj z-#*imfpS3B{?LluW=AB5f{tfV4Ps#^C;0}CvA#Y^8B$AO+*!f|G({~!7NP|t9CK?l za0HTDFbjra&(Z=kKBTM;e>OS>Jb@x>3U1dA@rwJyYfMIpn@$eb8d1q8~H zenJH72RAB~_Q+P2t|1qN*+gWT1rTjCP6To8VtPy@oE=ixGo!T_@QE-=7MC^qs1Tq< z{cSJNX-PO`YP@%zAhQz6=D|M3A_5RjVtR5Y3C%3*FqXjv+!ViJ_9lGBsL)6e#%JE7 z3R#tq6PS6xP6pMIPCs%y>vY_W@g2x9`NTGjy`d)Z>x!e(g#ygFd(at)_CI~x&gr@& zodBE3)ww9n$&6KENh%9Shi;AI;;@bV@yy4os3*vny>6J`h^K(~?{GuCVP2xtAK;yQ z5CnB0hvCNtek=aa-r)-AP53Hv#*IOQ6*BdYSVS?JAz9G{8$TNJ_}=LA!cy+`^yTVV zS(y4Tk&U&db>eaOodG<2Vj6`~ZHj?C*oeNYJ=k1dzkZd6S5hrviNg)_m%o4DyuJkv z0uDG6P}7hJyu<`Wypv8CWJz4uw24MjcDbk5;GzhFEs6M>C(D=UpCscquuNPfz2Ov} zvDl|?$yMw(V~UH8Q_pS`OYeJEno^C7=|Xn0(h3fesetOq=dUA?vtgDK znL9_ia*!n>NixEktg>8 zPCw1M>rAkqwK#GrkxwFqK2%g3NGPPQtj2L5<0V1!lIo8{S~x+74~bF7!Q2_V^2;6#om1_7{fSX zoWm)WEGwfMz6RiC)8A4G)<3NJxrNT$R97gOXh{qdXw```D892{-&6QY=-FsT#WP@k zCi{#SK-pCi<4HR)z?b?n-7Bz`kkbULP|7O`ldZP4Hc5QpIr*ydXt==TkfBizl>?T1 z+V`wzmAB{a-MM6*FK!WhWCT3wWmQ!Qq|Fnae!@sAC#d(}aF8j=Bm&{LQI_pTr$@>K zTDyboTPm;?q+^3n3&h4oct}u1CUAX{olOD>&RsNIW{uCzUBz>#d2)ijOc-&d28O+O z=J}l>_1y;+VuU=gyCR=dO zQwm=@I~kb{$$<1H3t_S~;i@T4z)VTYS8wV@Dr=-UKZiTNCY-V!JWGnI=&%?nhqFk2 zWbjy7`6FBs;T;LW#YK{iGUBbrI*!9q90Nj)5w2%ebGqgID~b9}Y*S!-$yp}p9M5TS zw~$UeWXpA~EIO41`3MUUNM(eAs+?Qr^9?YEbkz1iC{siq$wssdLVQ-I>c!?m?UV6cM3sNz)-uajJMK*9xtG# z9WW#<6txhQQR*xnL`5+30=lMwTto#AUfIt>yF0VfzdO^6lhKcJe&6r+eV_Mv-{<*W z9_j14`Fs1)d3>dXzSFg#_wJR@IO)c@m_(4hoFcGU}#*;CJsPHvCI(%uC zG5V6FWQ?+RO=8>n!AllH0+!rPYUDje-tFrdJpb{-WH`ZgqtTQXjtuK~H;oa1E{&7S zv4l4n_(`@RJ^Ko0ud^J`W`IQd(+iXGs4TMSMr6fT_}@pD_ad`rfy#}DYQO!oOOMe7 z85LEK)jD8BF+cw zJXP7x^*Oev&w|GH#3wU3CUHIRFo$mVwT$9$Nz85RG>f(iCF!{*$2O^KufOPpK zuUSTklhrs-aAuQ8QG!5WR_#!SrWu;i#zt6!b)2m5maLF|r(j5f3aU2V~1*lP-z*_!(K+5p$TJ6xIQJ{92Y!H1g}Fj?Z;k z7gglXY~$L*1A8#=*%w#sr+LbRgai|X3Ogr}5j9EW!B^(djf7|)Gy)1klC#jIPEhLi4#-gWREsAr1r1&8`zDcer(lJ;eV46z*f>@mCD{xdz7-9(-o zL>(&5+Nbc&A6b0l_HQTKie~j>RCh2;XD7Ge6I%fYVjDHt$SKlXuhxJH>+wJAZCG_m zU?t!VNj-*bRruzbPKL=Zu(LzWYn$B3D_;yrtof2{eVo9D=u@VG>^D!O0h%Y)jOgrd z4@q3+!FiM_RKxA;S2bfB26kp%)QKUC<&9&KfOxrl{o@xdXoNWo<-A1QOx4x>-8t%% z+Txr|Wj+XN@Im^u&KabcQSRwRwo8!B*1>Rj<2&WuET)C)ofh)h_aR?HD*6t3AN3_L zgO*=Eh+`zvl$A&<=2SnAY>9>S9+C(PgumG8<4U1pHvHvHQp|Yj5n;Prmul4+S&le^qVS!WjjkclZr|m)duO2JEfFmV*JIQ@QeT(kx&-^_9j*rsELWtOs*yfna> zMpN0A;U37`uzZUK(zN$$ZdCMFEsl{~1t+Bi=(QuhnZfp;(3FpzTFEMvKg^wu1Tu%; z!SP)yzuk6Cn(npG?j*A07w+J{Y9svgdGCzyDV+?fuf*G*Tpc76E7ER$>@VJuNSd5n zTA}8eVGg2r2L77?*87fmkQd!pQbG3 zXm^)2jUulyZ5ak+uFM|Oix4uC7M={tVEE?OpW6naD2esGGh@nso-)jSajw`O_>e^E zQe!zdXD8hb5j^<8Z)6Npr`FNIVFqns<*oTQt9J32{(gR2K65rK8HBHLK(@s8tl2tk z#w$;Ignu&*(#g#z$jcrT7!zk>w%@vp8FRTyb+Ny9PtS>=K)vxnK`ZHpZO5P_7bhZ^ zhtTqypNsLKKfbGK)X{FRW|SzFQ%Lh=QwE1sLx75)qINS<&4fXvV3HHGogW-Bf?DQd zOL&^4cmZEr4JtjGk9(S(<3Hrs0q-UU)5P8&e+k_2!m2Pe{baSKbF5dFQH*anDh(fD zMUdq8N_c(xGqz~fu1fp#Eq$E(L>nl`gQKp#$RGb@k^h%d{=>gL38Z$aO{ivs9CaOc^zICurYKVQ+FmCTs`>&0Y5X6-49NZ ze~?_LxJD!pP93{*>jRRz$`+H4@9WD37+f2gTKgGlqo_KYN!$Hki&O-qG}mYw)bb9G z#Kl6^iup~b!kge+jLYxu+Vv6y=Nh(*%1Q9A2f|hw>!#+oz@wt382kpR1)2olVGxCV zRo6kONL*>l?Ao=ft~;P~6~EN|`N8AbQvI(jzR(N8br1&1_wL_Ul92Bsc5qp0&l4O> z7GSb1#yba|#AGQhej8{u7C}97Ku)$f&?T4@q{+l`PBQ}-9p3LW_H_{}hBpmp5L8a)T?d)zKNN z1EHV)KK?5L;#bV|(X^7S?)kjGr4iGzKm$9We9ZPS(0P3PN=o=$a3lbg+4s@{)mwB`VqVL zvK0jWHGyJw{kc4i^-HKkkr7154vZgWSlzgxgKO_@T)pwy?6ak@z8NQI0bFMZHqiwx zrOZ9>y#4lVZ)p$JDWx{v zn`z^5(9Bcec@7{%$Oz6HJjEQtoZHn-S0BP?m6}T7HV)Jug#99?mtM!AKXO$An)e^z z5P4=S-_m|UzKBEoW}N!+!S(xI#_NoST-j#r8?<5a?g@F@ueIp15E909x|p^-H!0bD zv9R9YHK`zmFT-GMw+v@Yb$m{8LQ3(k&}02b1Miyd@rrs3_cB-_5ab5fwd5@D0H`#+ zU&^DFpC#(G-GcX+&~ocBwX?W1D&%QCCt34$ub7b|QRoLMPhZ;rAp;;tj9xLqgoiry z58j;4dO7{Vz3)-@gvG zPvC15K05>{iQ3sZQm6=4dq-EvLw-q@^?UpC18(LJ|Of0 z!q7c7=FWF7VbDhC9k4jMAoBE+=mHu4aT$D=C`7pDa*zv7PdzoK`j%xh*ROmsH5zpp zV+Y&80&nEM^&S?UwlT>@YRo&WD+;abA&sGGQu40qefz4RbS4Hy750;SAz8?!Fex4} ze+kO%>1COJg@GQQxX6(7EFi~l@C-&bDyn!lXJE&K=|3Qmst#ghy^JAbIi>sA{E##Z zRms0?9<@79PEL-Fjyarl&CpFPqhvOk2#+z|8}spek|jKZjv6^C-VdifK(dpp>pjHR zBWf*8n0rpO2Z^%%+9^f}uz0diEM?cEP;g45KAZYd{|oi^-J*=!#3)_4LwO%22QT!& zxeB(xWRp4>ijL&ZGq9rDxKyDoBku5NNU{*89tI1IKSTXkD7bw{qcCib7URv+E1`~| zXRIOjQW>77K4Nu`LwCxCijZT+W&;OCo7yMFAh9VP&G1^t zFA>C~vQc4OOLZ$17fHWx52q5?w# z{^tUGzxTWMyZ3*d|L0NS#NKPKz1Em>j5+4bC!C;PJZ{Lu^VD?C3FuObt z?uSPT8+2me2fy`A6>E7jeQUe>mUoGVEe(2mCj z(DD1V=UBX_a-P1LW!QL2KSR~$9Ph%Yz))R;ypd7T&rHMjYFS1jNy%w)s|yp{u50$| z(_fDhJ1Z0J8j9kzT=jHymjo0rSN0uRuz`_#>DS>Bjni_=^-`q5dFn**>bY{sN~sM# zyj=+^^J7l)Z9L&p!j5y_i(FO%ak!N3&5cC?yGdNp@~?BL@LIbrhxnE#)qukJ=DV!; zZs%F4*x1;hvu1>(poPiKyFqVvVVDlVtSou9o90VV3fi*Fud8P08&>(#epF#u>E2w| za#^2m8Qd5rBr6*)PIjuLYd?E_gsktkrmJfa(c!~vf~IB>qHda5Muen~V;Y_f+J#d^ ztLmC=3vCAC5)#bptRpWE#}^a`J@fF;`eA^GPo6wE zN=Ob7SsmvL(V=KOA-X(p+J}tu*8C_z{_FFj5mRn+Kg3463iDxHv6Yp#=cl^0;PQPc zRxO+-f7OQ1=XbA5D{I&Uy?ghL%X!IseX)4+l7+KFn$_m|BJ+g{*F26SKDylU4C}%l; z1sR#>rX~dqr->}0Lx*IqU3*L?jZ1j^cy~zsZ3zkaY|~DKcxlR;H*O@{^dhONpXQ;$ zIxcqF5#C-u@a)+$Mgaje_$#VtbHmAR@h%+e&}ljbn3317U+4Av3eHWrZMKJ-kztmI z1*9=O^mUQK$*?N(y>E(%DOVcs8a3T+C}Y&SBRsDVdU&~b?YD%@RF?*c*Uk50eoFo2 zJ~qSO&#zCIxix0gi!ftXeubMg6*}47ym`~GuhbLnz2jhzvh{2&?^wVc5m{Kh8X{KT z-mt&)^!$-&*l4}6=71%Q&!?rQXJ%x?S`F1HYHCK3TvCfM?aVWTWiqJtmD{v~kB}%Y z27_wZSYOS0@Z$oduwzs1uE*Iea0lh&kt$6A=+L==cf8Wf;_t z<_<+Ret&y?zTR!4aWH3dZAdh4;#2!vd-sMCniOpv9k?4d6_j=lYJxA33p-}Qri#TE zt%$P~Oh4Y3$GaKALhxtZP~TW|+f;7Raw|j|>D8+fltT70ce70kQ|yD;w9-yqyfqvb zZrU*3mJt*YkxHuNEDKK(V4W$(OGn5}*$q^_c3hpv=GLt|VKdTjliF=9ePwY<>wLEa zX8O<`OpiRicq8w8)r7JkJZ#2g)RfTCQdv{Osh0WR{%sC&ZX?|ex6So(V|<~$u7N=a z-zPCYs$06cF&1;fvLP1vos(;`pC9cxnoKaF5U{S~U-)`l^eo)qTd8wR=mR0Y+FYCo#Y_Ul|hJOst@GQ*S7fE_rfXBw=aEetl!H*iL#;z-Ba%$E+*m z0G0g}Wi6Mi8UsE7zOu5ipMbRck5MGhNrmxs`}z5`ygGk9Q?G_(a9|(@Cur2f5L&B0 zG?tmk6~S+H>&b!R%_EKR5n6!B5rTHjaZ=&cHd?S7Y(tBd0E3zN_*BN4Q}f5igx03N z4(5HzzU6)Pd@^Cwxf3=9wxRc{hlcOrLx+C6IC)XMyvt=#129kg(%nzixqf%e3Kjiv zi@n2`RMm`Iw)yKX`*sOmKU=b+2efzeq9~KBc_|jdYiJw`quAll>H$6nxzUZyJ z7NcV1q{B=bND}s7M1Lg8$8+#{vW ziTL#C{)LP?kwT1Ea;^ujf>||^USAY5YKXxi2%gLvW9@WV>?9(xTrZZpGeaTlsNmnR zfxG+3BoSsO&=HTuFC+6RjOXDf$K+%N<}VqD%U6!VV!kLm{drH`Y@Hw>275YHCH-2x z(5z&v1{({@x52FU=YBWeHDhFDO)H)G@`ZS|J|Mg0(4j+&viB4MqwG3d>neV`}0g3+M8%@c|cM6>r zi#n!ldOq*!w5+*Q*8-^6=y{sn8UR9h*v2{4urcmuhJhb!3dLXLRQ_kqoQcsabWBvn zYof8~*M`M1%Evu`6Kc8~r#Sa=yt}ygMuq9-#(LeNgkXzl_81@@s|KAN{~pYv$K28w znLU6@@uj{l0OX3@uB)lDA?vFWKiv4mhKbz`&S<1cur$ZV8_7)Y4TzHKrDq!j;iv)*&{v%-ewX2w0is1d41S z;*PFP6}R})N{AQO^_J`#l71$-v83a<*q&|1hNb;)vN~xq2xGf{+qT=JX$1uisqryKv!x_0sfxSTmCQ_U#K3amkx)6GuoUQZdx#N z%ZEx>twr6+$CrZt9qa)nPEL9Mxo@2Hd{Lxa`rpp(J8)nuNLf?%>eWY)PLuq8i>HW* zV3L@MOp^NBjLmoBc#L5@6s-^6}D+ko{=H<-;^dN4YG7#z{vc!BjAcifZ|gb2k(& zc8v-B${R~-jE{0nstTYtUKno!*ck1|&FFGnoj6r*&QuFns!;6eQX9%C=C;;P4Ldk` z|55S;r^QKH+aTsz3AVx*VrHcWFe4w^Ovr`oKWxm!i{?riB)=G2QiJWTgx5?Z)wI8A zRr6B+WSsg5wi7=!wH7y4 zr@LS-xUFLr zZ~oh@ATaqkM=;`?W3cqB?5cR0!`-$S= zZCKJ`epy*r5#L)dO$dQtuQGd;^^KYL3{{fad*L2sSCVc0SYtG>w6qL-^{OZ3WOZL- ziQ(+8+LeCl%>;;6qotmwS9+ct=Q8j4%u!!eSt%nf{t_kmv@|rsiSdyQ>xXTtjspXj8&-LA$ z%%5t4rHhcQ`rEgri+)1y5Xi&g529d%3v&wA^3h!kcTe z{xM3aYKDMGj=j%F0|NsG7I2W}5}!H4r!_P%a63`lfg?hPA7wzs#Jn6gh#LPBEJ=HS7<1`Ze8 ztowX-;Kh(a@QsO{UW}AgT}DMk#nX!JPGm}8;F%%g zirpW8W31GY$3t>3KhjuX_RGG+?KRt~W2{V@9wS{Y2&;7FdHp5k}z z*pb0C$ZKoA^Sgjnp3Lc`OmoEAI5;_jLPHrx`fU3{Lqicz#dwVcJU>o7DYWs{g9@b} z+!lQ|5b_|9+V~w({GjCNp`wG-aFi=YdmBqeyx5AqALZ?cK4+S9)j!bR{~h`TLQVip z1fNBT>J4lIcZ>Ra1fQ2KNkJ;oh_*+pL`ZNRF+Uom!d|!p3&{IxE_=&$YXPxsx3UG| z;3=yZv96jc@XAKXX+y_Pje3H>97VBUcm$1E?|}-hu1uJ+j|mZfaBW)%~*s zIyMHJ^Mlq+t_Cx~rp?5@$${CI=QgGqHow1OW1zO&-*v&D=aS|AVr!oII9pC$asQX& z&slzr%JS`NvK>Ivuolj}BNk@RqdF-6n{N5r`ExIsl?<+KG2vB%C4Kk^Ammx=hs z^lb|j2{OLE^5-e((Lv1XO908>i=jQ1TY5*p2qrks9LllYI$HD@q3v@EnWtDV-Amen zpPV6k4D0p*7@n2oQu1#r9y!Fz^qeG^S5WN&Hm3}t+r=x&rq7<_NBuF?=c_QLhCDxpeLyG zZ^=Ee=GM6J=L#mg&JspQ0IwvS zd{(<^{m`?mLrWbfe6kg{wh zy7ua?KWyIhE9?Rsj0J>=jf+DJ4gN>?`}-prkX?bKn*cf~IY@axdP#24bdo|!4$y1W zve!trV(`+DuoRFczPGWq49qbQ=*QdU)VszrePu+)kGFi(tLdOBe%Q`qGx1aL`tu{Q zK;jA6W?Dz7gj#h%kmh%V@Ntbx5g#39jeG23(_2zY3*S;FU~35R2-ns$SEyneeokd?LyVuNivr zgEZ+5m%Z2AV5;?%XPZzWupEDKdC2*2ezM_lcSQJp3d42-+pGBMYUUj zVDt_>0eKL|k?Rnl9Eaa}RO6C(ofb@L->|dt)sG*_3nR55;gZ~U$ zOR*)+88iVrW}R`=@5GCyj`IhEgeXtyxG3>y_*dr=d^mjZN zI3hm#yZ50$sGBsU>1axt6yDNzbvq<@z;zA}KLB#M1@i^~^Q^3O6a0{O5kB1i%4Iol z8!OlT>7fm%Bq(W>kCT*@k*T7+3n2uQAVzl6bQR}~CoBAJUI#XOoc~S$D#_OTxm#JV zA8Q79c-PJw6yz4w^LTtvOCA0G_6a0|5jwW{8Y3ek;*yfqPSTp1nx1`?CPhno*pIyb z{dgZNfF9zCG{ zknrDsR=id?vW-{7 zbpU+3c0kZ?Xea3-$-ti4d85Mlor9V9a!daK+q#L$ZNzbR+5w?Gw!qlo>o~>n&w4w6 zSMmq&cHpPCm0~Nm6uM`15WRNV9e5pl^*rKkrSa65N54laC}pUg0#$VDcaoh!^Hh-2 z-%UTCFFc)16TgjJy?|xnN5h4u^LK!g3HQFAM$yma&z~Ljhw1OK?;PoA^j`swpRk&q zxcVnVS-|hx(aTiT?dM2Y1Fo#Jm$y!gYN9j!%9& z@QeZh%&t2B_Us0gOwTg<6?URX$Hxr?KH?AjTX3CYaLCpgw-Yii zF}H7l;FY$NFLcDkk#37|2mWt(ac-#m<_xFAWsg0VG(R4dCU2vo>S`x$MU$qv=S zBrGzZNiIxv91AngGln+rs^Qx$B$aezv{|Mak(&a3PK)(Cch;&YS% zMZ+~Hy8n+*EwVO!otBQyXuLIDEkoZ2_zo8cX~Hw5r#ZrFP3svM7-WF&&e}kZMN_4p z0sj3c`WQ+DrwxfOP_dpLm3)p!@=R5tov(ajFAy%B@rGeX9Q)uc?B){Zdf(?S0t) zl#)ld&`bG$TM=Q-FD=^pCp~YDm!B^H?H1&7VI)JqWgv7zD);(~pBqb-d6BqSq41E4i9H$EGbTzbSE8duAE32r;zZ8ac`jWJdo3FgA?CTA< z>|rEa0I8%I@t}774h*+o1qW%wCDo5N%nD|nqkI9LP#LO^vYY(K3+0NC+KW`KOZV58 z`uz~0-cr0Fn-AkQ4u*B_#Gj3l&*)S9wglz`&-_sk-WAqY=8C?RrTR&VqO(*$%zC{ZU zV!#6wXZt+q3kr{-OA1O6u)!6u;>!J~@xGLTM)i@xd80|mxPDZHy5&PYXoG>Ar7_2% zzoRJR^=nye7It=7Bu})opyA47;p#1tJfCfe5+LXWsmM1$4(0*{8Df&N@B;VG`Zm_M zmq)0@EC&lT`*mRzsjI7NuR+l(`@+SG%rp#W6p!%Rqd=P2zQZJZTH%s(z@ViezT~Yh zv@>(?pjYksmRp`kXL^j?tV?KqtmO_QKuS>2LYc~*1IHMk__B#A2W0FBz7Jlh)0j`X zT2VDt!g&7tRi}mVA4!VInFjS#=)lKCmZF~@qfGkn;Y0O{lkoB@n2&Fy{8=ZH49-4> zvY_9^JZDW}X(-fz)X@ZkwS$6^!gY^hsVO;VD0_2GWT^Vds4|&b8p<@w z%gaH;2(R3YN>4c_$}k<7wvpB}JH~E1u2LHzs0>+D(8=Rl&zGcA=AKzP{$<|Lr*SCC zEp2Yj`XSI|m_o%=wJh~6s6Z?-v+$vFJ*uJ5^{=wFNYae9L$?ah?0xszFW#V&JEzj+ zs4_YxclEV!Pt@RmP4C>w7+(1n1$t}Jd4pbsMgi$#kTNzvL5CKLl3__n$!Gge?h)tq}b2Q%#8kc@8LK%{1#T!*p~y;3Xr?#m7;+7*A-RQ zpMPEWE-0-@Dh)~6%0R%Kx$NR~DJTg22<0@$)UPFX`CUbi^epC!x6n9tRg z)}hWrfck8FxLHvfzb!CFW)>F7#V#j2XyFR4XV9WLc+c0Pt2xJ49_mw2HInddNmlkt zbVLVIS9wzFzk8D(of`3SDJex*0aoLX`-idXJU?~%G&9%sq}8fP2}o<+Avn#Hkp_XH ziZne?PW)qpofa6lxD?Lum?TVN(CPNFR*=VEnc{QM;6o+B1IH-7za(bPH0u_@Hh{Xv zZ9OalYNMjPI~u_55G&=vFeN^$9LQX-KNNqYqlXjparvYBmK22XEqt|+!goPeVP-Ef zY2$#~o_+1{7LgKG2=NVQdDh5`FL(z>mxd}#RTSi)ceuRQdL!b>F3AB zP6gT6X?kge+cM}3Ne7IjCip-)dH{MqZ8?;glHkrL|9MiZSC^Rw#kCnns~58GZ;e2W z;x*9o)a))MEXWrvAV$p(zxPx6a~ZTteO5T4-OfpoFeFeS(@?>VoKxQ$YDBbHsD2=j z;BxpqKy>^Boc>DB$FN#|qaG_9?2cb`5y_BM8clT-!mH(>I&tRIDLJw~H_unzr`@;X zJQQSkJFNp?m!rC6+r*=FA9NuyGuLp&xZU}h40gSlXojLhyY)=whJQeD!t>{+hsit- ze-1Cr^b=G41+RAhJm~BzFEzr40uP9?X|wZi+4Hc($7*@Io6y#QO4EaKZ?d3MG+VD9 zu=kaZHWSmF%?#0t2qWFjdKcpYKcRY@rr zQOB8+Tfn2zY}8=Ew5U)B6+ItHK_yhe76DB@%cMoFoQBHN@4XX_f z;iF!)2A>p;PZlIGM}(iGr15s$E-i!WfOAIEJzxGzh@wU_Ur@d|D!qOS<>a>dC7C_7 z`SBGxxBKYFHWI-amtIJ}CL>sc`2gHzPCT~d&_RLSW_md0{uP`~p=d#r6 zp;zR#G~LU540%?r%=f)XGT2^>jCQ@CeqI5JL3V3|*MuXKX&dhePvE^Kyb31AJNgnk z6pz+e;w?#~Vd}ouMF>i`bj$N@?U&mA zVc3ROF=i)ZCrd_VDyWr1ST)35Hh&u92~a3xWq$GB(@e{V#X7;MN?i`ap3jd$Y&763 zn4lW%qD)-;Eo)q!-BgD`0R_hQS^D9+mBcGcYU+p+_S87YCse>QrwZ=G$g*r&n0cz)H zs4i(CV25f;CzYVfiuE@6uMT2HmZ0^35sI<-|7J+YO zmgVf{QiWh=EkEh#P(ON(M^Yk~Mb_HdI=2q$lCn^G^t1qFf0nwbe)+D@wAnue>Sz{U zkDi~z1K&=&Rg#&dX-$??>2d_AbX&)cMZA0eUXLdn3Ene$;mlYK`mf?8>+KE z+;{E4>DaE8?bHAA<;%}vw_>QGI^JYQu_i&qxAweA*`w8^3;4LvPKfe#lTr}Ds2qpS z6Ot5b26Gm>-HJO%v;QR^7~{rm^Fc`fZw8zr8$d+MWj?5;RsN1}EL>6{m;yi{VOY#U z$5%KCKy_<8DFlZb|GiSQI+^?m1Bp4Z89{c3s!VDh?mdDiKh>dU23ywXd-Nmy`pDGp z-(>)i$_Li~OmEA1TEL+&8(;dy`3UYMBPeqW#6a#C1MfG4;t>ENazbUft~(ArKM4pc zFC&vn&5Kfs&-Hu)()+mI_A7*fJ~U)&6iEa2s6dCw--9*GB7dRd5|?Wil`0Kvk z)+HyOeczHP+&}U+?pM19)n)S+Bm=T^OJAtEq6dXk%E#Q%XH+s zM~~dryd)?n&BlJbC}Y>WEw;!cvWPO{i1t`NIk+>7YRDb=89qb}?o4h2f85x<(K^Q+ zo*z-RCSQ^GqV_zRjL(;hKd7GCkqv?f-*(j9fPPi!ovVyBH^G|r@7hX%dm=OXOBICC z8_nz6{vP}vVIpS^qu#uI^X~pVM?3OxU@f^x@E_HJc>9FYf0gEzd;S^7woXv=-vM0C zPvfJmCjx3zHHCutXlK4%Xaz!{Y2hK;f$=0ehyO*;HPF?40HG9>gg=>er)>j^a<|*2 z3$fTSI7V~PGChpVcoVO~rZxr9q=!tqvI)OJZu01M&HPgXfl! zdSAoZA1*J`Na;ro6jyGueZ&92_JbTI3mj&-4C*M>p`41ytJbK+|5b~%Kc!#zhWh4$ zm;A!E7JG;Hj}}`~e$3a03J8LP@Dy^YHQo_T1rnJI+LPi*Cb)0z%=c_2lStnj|2)5} zPzX#OjB@B%pj!bXEGp4ZdNnS6ane5qDtgHvEQJX>eWEc0cL1P!7;h${YHm{RoV8xVd1Ul8Rf>8GCZca8RYS)=BP^C#2kau= zKTJ-)0|ub8!owK*dq=1Ll&6>?2tRgG#D8I0NHbshj^1YjO5wJm*b@vDA7G)8C*7s~ z9FVotB$$Tmx$d^u>F&?+g>EQnk45O|9WWkh^;P%ZJwulB2X6Q)X&UcH#cS_~l>Sw^ zmbMXp13QT{GE~9WA_YL+PJ!sdT9XA)slgw_JM~9j^jhxwv{PG(J_8YiCb9Ce17E}D zPFe0$bCkf&;Q+W>_}CQ@@dlioOxl5{jvc6{+JW@Hy#z{}+w0p+hmm=8cRf^3I*T@4fk zND8X!>+$|$Uqs*3>VpNQMwh7I*=sm#NX;?@JyHB;WmpBk{218S@ZxD8Nc8pfS+6Zw zxO%4Dhm4JwnwkwPZexfRCOxHfkB1<+?hU2~U<>r1nE^klG0IYMWY+<^BU(D=DdyY58r46lvv!d&sWQjr+Oz`_#PX{ro{S2#oRKp0dlfb@bu zI~X!VP6HGjy-#$O&!S3b#_}H)3SkLcQQCmUcPv-rE5XvItn(#IhzMC25uCX zew~<(g;ah7l3!LWW$h9@?d-n;i&o!)mX96h}G+A))2F(hE*T#Wp z4?JG$tH<#WSco0DR`a9DcqTx@+Hl?$SaCMs0Ct*p0Ypql+no!U-oTfAchlAGwD$xU zy9sh)dzHG^U%)b-0~%+%?OC>P`UV^zOSkG&A(&W^p-dXb_ZEU1Hm`LMNSGXWF+?`k ztRjRQAY+?WDpY{4;Bt_LqkJ)KJS3RYeGk#zB4two@gozgi?E?wz-TQC`e|XF2q3o2K!+lfTbxIb!*({raYQ?01YT4) zULOv|!pWjlQ<%RI@N>xnYn>a@+Wgs;TU}dA05eDea*Tpq%s&QbEHa|`#{@AeGl3Bd z`Le(qPm6UNi46fq9tNq3K%o3%;7%AqCQ|o!7!2^ia1R<{B_b%Z!9}fMGukA3>(+D7 zR_|VD2B9P$tq|zX!rmX4k45hADtZ_-O##OuPB$G1hv)d=CYpWD>6=K>G9lLS{gYRa7 zhkVFbEZs5}$~mcEy;cLyeG@Rjh;x$2XRVfJortt@I1kvrYbKV#tfmNlL-oGlpIOO3 zeW18A#exH2XsqET+Ir}&AZu5BO?`dK+v^@3nl+c17K$$kSP%F7763yq5)+kDRNjK4 z3+;JSgXwY@qQsI4%0bpO+8FOw;{e!}*Zce&6Bh`}?pO3;`xRUOl*A)g4M3pQz8xqMZ>xrxuB^g~(sIkNLGHsCJ?Titla=2kuy#5I^#W=8s0(PccOPi_LJp~IN zRYu_KvVE-$aYw)atqz`A5aO6K#=u*u@U9ZFJ}Mpm7#MhxL4Blv!|xa)@vw2rC+;#oser~FwvU+{#$=H@-zb{ zgq+N%{ZlH;tMbj)@4zJM&zh!X)SMDpQc@Ba89BMoitJvnI#E5@$^I}oEc3ju4#bC zz&yVrSse_0TQGJZ6;2KH@*hyO5HH2OdL@%qk2d`zm`KJs5?iTM9@0mVN<;ld4$N?n zo>1UmWzf4)diu@-=#X#(979s13-q}- z!fmC|82|qC`Ew?IepNVp7U+&Ks27Kv$K;JwSfn7R{fc04bcJ{`2H7G3c6dDa7S?-@ zyL~U-TsMPK5rid((@pRFM3TT%Yy_Mbl^cPq+tdp$4#T{@qCqC+6@cA2=++p8z5$S| z=b7wK&7#bUloCM$@CLXAu#WEuXt z%*Rqb1=Jsohtj_>Sh0~W740f?Bq1Sn5S^`@))0W8$cF?mnCCfY3K)Y!Hi7w5q3rd6 zV78*AYrGxiPpk^1;1-zX^zMhfpW0*vrk5=hABAIZF$RHTfUNH*cpNL@bFqLt7%BSP zU?o5%dTSR7N9kKa|CPRoq!5vxuk=q=-1r=R>&(0DP z6Dy87Kp~3&A`db8@O5HJAXx zp)E2B_)z0?M|3?Cy%cn%WH8c$#WM<7N}YpA(AF_v*K%xyRM7SP4=9(>q=d_xejlwe9w=o?Z2%MWtHLbV`}uP8eD3he(sZj|rPk|42m zDl#ex56)4+_@heuzFtPAUVtThWZTovA@B@@B!=_n-*znPXS4+d2ggDEPNDVKXl+BeGV=xfnhSc0ygwrPW^8T>_ry+x4^BN?+uX-oGsG8I^{v&~N0o;JA|3Vxl5Sf}N%)`qHX=6+uA+IkF>w0kQciQ-7WE^zDi?y- z$xKUIw*2#l#VEMS6Di|?-3Ul0SVOrB$^X#zGR*h3;cqwLv{IDFMgS)`cLqh8*o?3gMSx62?(82LA*LoF*GTPK>i(A8L^_EF;sF{KiPV0xTJ~K^mU3IZJy3 ztk^;pC;0x0-I>-v$R>>9k1=T5D1~- zJ+>U`GBUr|A@kru4PzncfIwsrLxawSf-J4*zvE0o%HO}6NP#*|S{BgI($WSw3MGZq zRE26)*VF_+nHWfRay8Lu*8xi_eQ4f5^&)78{*rVMJ!JU{D3JotEo9GXZB;>4a-cnO z78VwY&yG^(;c&n_yr3>Rf~&LJF{T1NatbQ-{(PFDc+Y`V0r%0-xsgTyc@)EH?BN^8 zpb!VPf|!Axo}wCVni}S(cn)$kl)lhz{JuJG&Cj0!t$~G*ltO<)%HxB*W~}rE$EZb8 zplwD45+?$3pF=}0YS;s11=$f#@;DD$TIyH6IxhgaC_GR1^|FG3LW~EMnys=V!jLpftJXSOi)W? z|C$ZQMmZ8JW<%(X^^XAtKMK?cHQ_>+_Pgl6HoB?O#8)Z#p!LBlPwEt9ytq!58tQ6} zjgJ>Zr-Ym~=*^qq1sr&!Li%YLw*sqdp}KV4?FQ8I2v?~#)`C}tbUgWj!qOqwpP=7> zj)4yh4INoSjYGKnvjEKsdP~!fYL=biz-%XAKOLP>861No9k4vaKSugO38*kD2!d)FO4cv+luQy!7ED6_u&b#!`Pdz?BcwKFA?=Q~|#(-t@~Qhz|?UZQGUubBcP8tw)=x zmY}sAH-%b(Z%a$t@^7%YEqna{%JbDIi@Zg{E&_>4OulD}eo56qn{(wWg+4ItW{vLg zsJCBT{8lf^N05Zeg~i|vwCWtF>$kw{?rjj|(#!zvy}pEAiLL?fT7AyAJ5i=!A#OT& z^e8vj=)Ku>%Fk}DPq`(Fm@kz=9@DYm+E*C>c8B*sX=&>WyNe3%XQ}x>i|<(gdB>oN z3D2s_!=cEba7A^;`2YX$IS1$0)If2!mk#<9~a6C7!2!U7m(DWfAL%NJ)NxwhSUJf@tJO$u0tv}Zagho z>N|`V&4$>bl$>=N@010cn5p=tM;RnS|TzyqUPxVf=f$9)qelhTnwiGCt0 zw~-=)L;%S7MnFalq(NpkNQk!VHDH%RQ4|!Ty83TW*N3vq99#zKbVJ=vR8HgUL#se4 z-$lA@I6$U&N6U3N7IjcSr~fbzUel>w$i_hE%143~#8xAKpfD~&xqWW&V7~A~MwH?O z^dSwfc>G~M&?Q1IFDT@8wjpqV^T3fcTfC6r`>|jg!G@;~xX6ry)ePy2T;DSk#+X44S zVpRw{4JoP_;^QX{Vy3m|o?zQiA}>R?W2X9l`1~4p`~QTB)0^>?Rr^j*sJuZZ!QPa< Kk#_Cg6Bq?Z5zo5CfDDP*IV#5m35QMd^|dX$(M7L6Js4q@)(o9fFF2h$0~k zB3&va{f%qk^PcCN=RJRX-}n3Nz1`qicU|+EbIdWuyzk3Oi?3h9u!e?)X1&DuGx9Vv z%T#D+mej3Uf!~CrSViFv0qe7>)(Yl&*0z@|uhCq*Y;9p;Zf#VI|1RYx;jaz+-Ny&&%Gs{R$4U+Ty&L6%7sTW%BQmmtwJoG&H8=5@${- z-h4LHVtZ3jX};`NRn*G!r)1b~{j;uG=IyqoB%*Qtw=FlT_ z`LpBko-kd$b)_3|AvDir^AmZ<|Ii38=^!^wqv>j~oczgiB6}(MbK5S>CHTX2?M4du zv3U6^JQEt4_N8~Z$e$KVO6bX-*)-(qs{QS+@1!=E*pF87C-E$&S>uL-nGLttw)s`+ zDOg*l*G6ZD-n+M|<$4*jazMvKYN?cVQ$li~kU z!(@Ll6u6Y(SZ zpO`KN9*j^me$_No{_&&Yi4!MM3VGM;2FAjogV9p#E-|lv~sN_=(&_@?$C+`cIN;1adr7W{}_A>JmlrHW5#tbXkaf_;6jUmFcmNa}T#ikORs^p8GvHS)Y2Xf>px2a4JU7 zy7#%HA1BAbgR)8L8Px$g&Ox1Xyqek1_lMm)<;SI>EGzqXICp@DS?I=vV<8u}?3cDS zav1z}NM!8u={4)u`xO-xF&s6D@)n(bc~I=w{s3N`x(B?4FLP}M%G=s>Hf`EuKhdCX zC*E(d-sliK20l-5yWpErk-IG{rvf^_aKWTD zIn=dsU%9*+Lu26!v-`#K9&F<^`u^sAyh?J|(xpoklhlv4SXGHMW|`}FWv1y>TF$Cv z7=Asck!f=ML(fvz?4hGQmy3`Y!}hYH#DCuOx(n-|T+ zynV1us9>brk1ONS>!pvjAEGV`Vv)5Ekyoc>+Y-HG*$Q?(K84Zl%C7~JtqIXm0rC1( zVP2yvX?G?rU%R#U*2my zW{%JCPlw0&hyCF%Wx_@6`{QEM4ZrTY7<@!x_3G8?=>|_&`+j_Qnmb;np%g7i|A<*g zxvL_e{`H-ep-bQX?y9IQa&fU4Y1K+Dm zSkDmUEjF);#Yn~mixHdalkxc|mbZafkX=MXOGfzDT^ub+Ms(_oZHrAn;p}fI@gy}h zwcJiGq4Xj$;->9J5E^+HD*ZJ4Aj}=k2L34`T6*~5Z`Hc2Ad+eXg+s1 zr)TF-Taiv-VPXB8Bh4j&Wi;*nnPx3U=MVey>X>bJzx-|JMxxVn(-L$jYVO&qKG2*xCzHr(n#jHiJOjN=>ARyq^Xq8yc zOAZl{mOdLjy_hfA*L5Q`vdp}knlerKSa(F8dt_-Obo1w>(>{kTm;6&!xcjvG_S$$Q zKIw4Lp_+-pnPI+Dr%qYsx3Sbxw3>Pw()7d1Iy*bpOS~(k6&p-L;Iayhbw;6-hQbQ>sz1L=e>dH_@(oQmo8iOC{o;8aKgMX{lnv{!c#w< zdO5Y^+42V;F}$LgfAdR9m01=ev!M0C7cX8g&4|wb(LL?+B~BsMvG%FfY3(NW^^8oW zxKGpbhqv-*_I?ZS^}VW?pj>J2<%OGW8$xlNgmhaR0%q^w!`1ih-8-0?n!2v^;6tqI z`^Q%=1RZ7**Se9{5?6@qwFA*^!?aLeH19Vs$w<>oU%GTj@x{s@KJkc%i2lZm1XinT z?IP#7Bj&Bb*REZY@IiWt!G zEi<1er37Vx0$U^@vOgnZii=OgPD)5hR&!@HzZh!D5}MGb-R(G-QugeV)9kOZP;Ex{ z2okiPghqTXZkF^$wmIGk9LYQ8ZIcvh_Fd`?KZ)=16aAWauox3 zw93cT@grh87*XSVI%BNAR_drxjYYm$Q)beO$Vld+VImI7Tq+dBwn8U_;P*dj&jhT_ zUB7<4F-_mwi&?1Kx-#OlM|o3|P}|XUjK?li1n^d+%>Am$#YU1Yxcd6_Ylh<%&z)y~ ziL>q7CwbT<)3hm5DONg^X$a3F7Rj*>#d5kUK!;Ug?KU1oM1$4rlvKCvw9(x3xPsdn zdZuLaoUW}B-9Jy$u&>^}brp>nI~SJ}QjbDCMa!nWcuCoOZ?D0{Fkv+=<;2g(VVo>1 zEaSs18dg1@l+K-VpPidSQPkY ztEG53L`7Ts!lDygBt)%yALr-iTWWTCr!j>I+DP_Ph1Vylr5!P@OLVMNl5NPC{Z&v} zQlePsXosLX@3Ui{!{l(%Htm}y%?rl;bFKScXcyS`@w!Ysz!k6sUB3SM_VV1J%qGRi zbL(5|2a@`mvXbq`dY>e#BVH{B6OjD39#GvS(U@nOysq@~pI@CvooD}OCSU*kLn7AI zzdrnHhS9x8j|$B4Ld}R)skXnV3^|dNt!wGW!^0H`F5j-(tM_}o{vG18s-H`KBPqS z%}ut|^S3!h;vNif;qf{}g~3OSyA8~WG(B0gkc9f9Oe-?>c%MvI;v+`>c+DJ394!8OXXiMIPk)Gc;TLjQB*`vYxuIr% zxTAb8Lz>G@-FFY=G&MCTrt{l3Tg_N;e)!$*#MAW zVh3;J5rk2&Fh9c}<~(at&(f5pFXQD@G&d2VoBCMLrvJQ;qm$Ev!Ja2N4Fv`&E-KD5 zL;Mn!H5xe0-1I=Qz^9f1hpf)*tIm_hOdF%50(cH_ET{1<6H%dQ*W&^5N-mt1v~9lb z0nqnUm+{b*yC^?QU#%SM?BY<8smoF&I&%R~>juMSb_u7MiCPrQvDYhEeoQ-01sQ&7 zYSK6sQhB{7;Od4=Go2UiG!*cR6wXk-&SROovb9HA3oacm2A5kQ z1@xzj<*np(SW$|{-_^@(*qWciD&Q^_CSdihFB|12Qh&(%Yi^I;ukUZACoh<`=BokR zRGVhC?2{ldLAKarn~M&jxaxW#m-Ei4@tKh#Aw7BDk8yKib7Kle&094uU%u?~F?A1)CrIJVFl(6(wizF6P*8}uAm_bPWGtX)_UwL{u$qTE_^iKPRL8S`5%j6jn0MZnRs#xiu%JFD9fWPGSGtc(Mygurbo1 z@u-P?3-cojOs0At10%49;()9f1g&58*Th8v!yA;kuNSl*dx_0-y=5}TpIke@MO8`> zAem8HVL_)&f&KWAtM50OHl&_K5uNUh^tS%~W_7G~Iby9JI62lVZ|IoFuQyxbRa0Jw zPW{-zeB9y$N``Mhz|=?cE(`}pfK_4FZxQ8Wc2Rg$&e0mK2TX*-Q8#b)l8es<8Emc{I@hX*47 z-8og&z%K<3wz_qRYV~t!*JK#OnvUVwlpb8yi9+>mEpPs%Gw04RkdNNHnSIEt`FL#K zr!4a}v#}9eqf&x@$H<5|`iRb+52+^Uujielyfv-7+s`fyR-htg7uO5hRzD!BJ1=IVV-m93S~XYKv~aE-g)L6BjPY|gam#h!p2K%fVc3^o_h6}u|8d2 zUY*uet5zLs%rrGVpp|<>Ja25wx-+LI%xZSWT{pKKPSazDCWe{+uK{W z|2IHMSKtIQ4UNo6RE}&-j}6QOjTij+{y_5LMHG>YBiFybVN!Sl$SslG^OrDi_#ezb zvz6c4ycSBE%YxR)lP9GgXb~cTU29#bEcO~&y6{A3fw&BE`&V1z5c)gu2em8*4cH8=Ut ze=-x~3DBIl|JctDZ5of7)(YW=Sy@?*j*gnC|7@YM9cH{ok1C0K@ASL8T{&PWtzyiD z9l)O#ot>TCayKk~f*X(vpHK=qd`%H;Sismp8lRjK7HA5v*Q2rd*f}}-bJs4{S-bf8 zAuPb*b*GUx<$unq0@Ob1%(=Y1yu94UyK3C! zXfn#S@me>jFIHWj)}3ZJF1u#!(~04XTn0SXtV`SF)q{^}IM*NCuy(DL$?n~|(f)hY z=h==B#-ebln-M8ma(;e(y2FDd-Mme7ZmP;f*}&i>fw`!=y~ws!xx*|T%NtFO&2_RY zd`7dEbog31o}45K4o6LuE#L*N{t56R{iaP3AD-?PVs@Eqv8AV{k9KvXadUT%M?Ln^ z)p4GRM$_{GT>&1jL`q7Eq?8nwq6ph+5tZSOdQUg7_)CZSC@1;6c#%k1g_yAH>#J5` z7JJKiREblg?r1%O(2c}a$I*+maSGz}oQj{H>=m~L3o-y8<_~^F6t%O(t|xSQyj}-^ zkR+TuTC$e67eCcAn&(GgPa77yE&-AAm{U1XwLKV+KBmxVhEN#&^~vFN$vVkpI~^_n zV^<@wX4niUle9fOm{wI2ae8Ga`U$jQepe^z#z)$8sJ(3Aj9GM4lmQ^o;ol+WMQA$8 zTWp3nlhpPmX>!n8I+Dn4E^Awuw?#kgVwq1t9wlh>=G^xOyhdMMoK;V~dLM+-lOCHD zU?Aq_W~6+y?Yig-Mn4HP=G&zKX3Mn)$6N?{0U&2Q`{$QW6v|*9xTi1VhCn6^{Ol;@ z)W}RENp1P^<%9*oaot$?G_?vH)h3&*yp8H9+!99BQ4+U|**|RG+B=+U!^fhMRPG{n z1o5?!OX1z%$Cp-69+3W{WW|(sxiYj0ej58{nknXVWVSXrF?Mj zF}M@LUgd&n7zYyT1w+8EC@yg}+tT*S7x_!it$#<2Rq!gSAo?!}gj6yG>%Z+TpL$z9 zf7!7k@Q`l0!IwP+zstGQ^KK*oToX)xO;1mIR1h`A<U{{kTe7o{hYH&ruAk`Z>x&2T zMPL`gPiwT16c4lw$%x;rXZz~jZ%`Sili0DNu8x%J;``AZM&-U71j+7n{CV=I$v0U( z{ZEQ0gJXdEU5$m<$@ZO(_({+Fp{-4|5K+=hfa97yK^2o^vgY22yBySTcOs|eHY6o z1@K?_^XKpBqDe36nB=u=IK52m!gkzKr%hk=Tf=!*6xD%GLYLAS(r^CyeyS)dfuazs zDjMO&#VlZXX0Nzc4LTmWjT;}2jJ|us7#kJET6W{d`zL!6Qy-@~P>z}TR)0-OBI})# zi!@scYEIKTNh?noOG28jTgiFXDz;)XCBEts2s(cKMKG9m-35S6nxXsTiB3ts~^ot=A;6_V7_&W+@c zdI7+Y{(8U;B^Pmgqp?{zR8T%iz57(jK%E-(FLzj8}TN+<$VODu5(;K}1q@6=PSxao$snALmIbJd`(G3M%_m&>r~ktR7K zvo1-)7z^y_?HvFdl~A7LRr$_$5F(N_-#QNN%HYa_zm>i-+crnwB;*#QXHW^o-)_?( zthb<5_d~+g13{AuKs~uX51gPqn(M-}H5*K_&2Y0C(HW3YLCA%5KGP4gJ2&26t3Z%f ztTgi@7BOw09G|NbOa(tn);6Z-dYBvw!9S7RVjI??2*eVq@h>t!)1_c!6yNy=Sr(a< zw_vI}gzy}MgYGEx5NaJb$0X{g>M}nXj;Aj`1QGMLLg`RGp&Ns;VAtsB=%T>G5@3T? z(2teyT!fO~RDAgyf=)cNooNsZ=Gp$UKRK!sbjo_aM55m9LcgmHNL`D4>W3z5C5xl1 z&k>9E6SXhpO0O>{0{=Nrb!{sfMRNhdO&fFzdf=8QXfj95n!ojll>2ihprh>irt<~j?<&yJ3S26OsxJGAJDii#3yQLid2sVB@q8gb_{hR00UL8xRZxN#!% zkmm=SJYD57AGvbp%@d^A1$~`7v-3ut7Afr5LrDMo*x1;*atn=t<;Vg1YZHvYWs!Z4 z5;*1pX^TJ`z=CMVXMMnOPg&jW-u;n%4$SHI@81z84y1D>Jw553H|;%leEE9>Qyi`V z|M*P|wvXSDbqx44zv-cN=+MM=@nESYBTp|YHA0b`q5)%&ArFBZrP%{ zj^W7rU(?06mbphUXhYNM50`%`NepyuzrK?Wt3@cYjdDE$Oy_jlR?-0hB)wn_XcUpx5PequTOc z_DIy{h|ZOsH!X-i4Sm`#b47704W zuI~4*G8RSv@|>MB&^L^4Iyf+T(6ZbZoPlZsu>loiJ$QUXmoBzrPFNeDhc2+HUEyS{ zrDGXI{;|m=!zw>kqIB&&_wfC=>Ww{>TQ_amy*FGd#ZIeq?_CcmIl1aEk?O{bYGzwi ztxf2sesNF%Uw^@99G12JbHp9d>E6A_tY^Uj*8;SSgU!_PL5hl2(Y8CgcI$!9;4yrI zg5n-NeCXJw;0G-D^QVPUvUW=fZ&s5rsae=s;vjCxmgPa#Y8P0sdGqF)L^VFYg7|t0 z9$;$I5W(cke6IXPHShbBpP`2*de(CL9u~HHFfX+hv!u({B=c7kTAnD9|MYC@IeA%#6ioPz7>^R8P8!FST z%(VS1oMkwC^&WJSmk>yZ`1}=q}lIt(ByVFuMN_0UtWtg>j+yAAM-rX;~+gNQ#9jn69m@# zL=iT0W^$ySaBQHj<8kev-_)Pf?g7B!pbf z4HqpqLz=w+(Dw!Gvj2!NKOnid7tWkOFCAju1uinKQhjACL% z!uqv^(*=YD26tFih{JxUsE`5)ZB=N@b8oQ9cKonJ(d_RBglEHb3r-LW3xzLgex_}q zA4mKG7JTsd)}1>k;w(;zM3g0v)9L5ym1pIRkCiA%)J8v;+RnloDxiCf4fXW>Y4i#; z$Oa%XqzOfj?9E&Tk${j8NjgQ^5Jri{Z+Sq$nj5fz$i_r?MEgKGC@OQ^c;@WcJ|q=V zbit>@BDBiBq&?*Zt^z=pb#%;!Mwf(8WEvr43K8`|7b0u}l#|q>alx9j!arSg&$mB9 zcWfCvB!o1L(~>{|t{@qT0F4lS^E#v#`Yl@`Q56SD+}1LHJyuTEP6EI+Y{|80OuhDi zs1g#WcfN!WBAi`QmU%r8EmN5%!GCMk`!O6n9PaSl=^E~R=M_>UZHJ#Br#>6@o^EQJ zkAWsglzcc5Q1g6P&CSh2p@@M4Q3Qoq1JSwRZk10>O+eVd+pr>AFpwcRVO%J3!AWWQl`!D z`CJXNC;0`@PBT$r2Ue}b*;k|Vut}ieY*kq*;};gjBLP8&yT-;*Q*PY>P*WL(drg}S zCbYFO4uUCj-T(8~FF9ZoYqVBV)6?Y@59XI-L)VprUJfEd2`ZWR<084cTr!`N7zsyo z^FT;t4DweW0!Z-9d1ks>P}*t|cyxh7^h@>xE@UkW0bX8S1hlHwipTp`B--CDJ`v~S zFe;F?f*^YTU7B`lsCk3tz}f8IbSlZVZy8AIaUx}}rk!W6fz{3S4^OLki&Uu)Qnr61 zMc6Goye97H)U$|N|N5NIV8ksd^Y;APCW^4cjcoO_bLHi!)He6IFRtImpF8^buD)gg z!?Fzt)aFl;zQk|;uU}8DT>03ONL>^wc zZxo+y8d6(})6+z+=qUes(@v|e;0m=JkTqGQ5_XSDm(dB~6y;$xS6T!)_Ler10CAPS zZP5i*CZMDw>cO_?M~u|+PQy-*FTK~(T|B}^{J`m8uS41iq$&U54SduIPJJ0PTK+QP}k zw%9+mcN|!+GTKvBPar1D1|mv7c}yZVr0U3Bv5SE(9+hU zWKmGLwMU!5K|W$QDv5qGS1(T?R+?Ne@&Ax?m7MGI^eO%3%`ea<0Y>)>FlCLu-&>ui zR{c~)QX%GVFukB-WmK)R@&gJ0P~$juY(nyowlf3%A~T`miT?aqHg*mYiR6U~)*l?;@*r1*LKi@65X47oA#z#_o3^` zkR)4 zvA3fof=)Fj1rFY8CJTNPy6xKyUdLK5J9NmWavvM(`7&>*+ITer>S)@p9|-l-^1<>` z_*-wDzJLF|5j4qGyB=mpZ&KhX`d%OiD#JuHe5}D^X*#?B1WKQFncUJ~lBwC&gIK9U zu^v@=Dt_^8SdtQ#;mi%gVa+%fm%lmS?(M6~DoXu?e!sUks`v1SUFz7+((08gf5T&s z?>!re?8nso8SPXuiCID#<)u15Fr$;O7UR= z{b)2%F&Zt}h^tYSb(Ko=MeB3{;h#SwK$`x&itRYWyDFLfnh%bjKA*tnim%~wn+CK< zyz+==b3RHftqndZuk4?Zf#1;VyltVxkYU2He7Qu=Ckde&i#OfA3152R?M=5uS5$wI z-`I=;_xE!&P~)DVBR;)c`@)}@5vUi7+2|(?J`iuHKuD{jN{zX-{YE&v>t=5YC3U-h zON<8i7?Q{#Dk&vP{mDW8fz3eF!*#~SV4+gA@19Wph@V z99w*xJg2fbhg3(1#$&M>9}j4;%D5is>#s*;zD}&hXNUT0o*300-nLmg>(k#$d4Px4 zV6txgKlmE4lJ28E0sNmESBKGnGORg^*?F_4#c~c|O;1ms!5fA{>VKnzwS@k{;&+L2 zRAC}&E49|NyKkgi>c@6&PB|@T^{yJuTpCv&q<#g1mrxC+9LJ5Mq^S3`r-Ytzsetfd z?e3c>7Rwj00{=st9*{lcqU8CXTZ`|MGAxeG?Cm9&x>#v0Vkd?|=*Hv9jDXG_uM+q?JlhYug5HR9+AnnCzU5}>iG z?f*)zrKlzg{8wiE$!PE5{hE5`&x;R)e=cEu2&@i9)oTb6o^rs|q=ao-GRYPCx4GV_1X!h!0)eaLu29K zKmNb4QVv-;dU15y*{?0+Z)YH=@5h7a(xm{nNwlJWP7t9Vz2g`RYD$KNhW6++*d&NV zj!e%q#K*@6QXv_M5|lsabX{;+^}xrYP8WZCtv$Vr#E@pdwbG?*apNP!r9NlFCNb=2B2Rg;l$7tk2y7TcuElN+f|re zP!o0!!egN`usSPZA>Qy*JyB!-wX3RB=DR&+4HE_Ad^D}ttgO$DL_D9G)N4|19v;Tv z^(YkD;pfgy90xAs-jr+1{z6S4G+B!67UN)FAO`FCM7b=?vIM@zG_%pdQI_Lr34(%Z{502f)H{xppN3<+_LYD@JI)58L({?{}YiTkEtl}M|^Py z=aD0dq-TZ2G2Nu$Fj3WfSRpM{G&MDKEibuvbyCx`ku^H{FZOcB9T56^e5gqUO{qUz z>?S6OtPlb(5@Q&yCFG@oc)U`D=J}f~f{R(KSsE9GKp*#ZnLQ06@+)}BA0s2Y62B)V z>JW2U+Pj+XR^GT~uxqhm2>fY&F9G@gy1moQh6JXGD>#2Mn~t8XVF=XD-_`b8O1luo%iEZQ{RC2YNy^cjOm5|TYp($ zie*>1gpU`C7zHxxN32)nU3bYx3{cvVGt=qtrQ*v~J@>HUQrSJ(Kg$D?JFAf`bAcfWm8CEDBl{b8S>eVM;h^*wQ5-#Q%khb+PpHoSN^ zB#5pGDkdJf3DLg1F5hNf{y&RLF*n^!)k_#upaUZWxu(`|0V_WaAy)+?fUV&z_%;Z`P7v|>(MaN1w3HzapdP0kl#k8s5_Q}dh zcPRqdqnMXjOHWdtKc_`D;S50h9)TN%urNMo?QJeTJ1z%V#2O2waPp*l$g%2okGek> zzrK@1M0T22inplRz6gxT#Oefw6`&fuskaeKTk1v5PI5J?Y~L%pAE>ptkE=(!pV#UYcLR}D_KHZKTab$c0R%wG<#-~Nkh=-IelL_^4o>wz!{zerPX{3HQs6KBo zD;oCq^HX}xA1>xncn;NS^_G1Gh&!XY#2`>U*3iN=o07qCkvW&gyHAtd0e(xHG=}I` zx(xWRa@-o37tl-Qpu)lJ!4BT`d#;Fi_DN^w?%O4ssYzNkUd_I$7INzm>t0!rKkawO z*3tX)EDnYXILk!KGv>%Vz)lhSUU=`6p+Ap7c#Q|QA1vyW8(9eHlzZbSOHd7g$|AeOQS)-IZT2zG@ zc<2m1_^=7y7z~8D7xdQ{&fkZ9U76;Okr`;RLZh`6wqxUll7DjAa0;3kB-sYlp2=!l^YS{){hn>TOn7FFY@NsR_&6Dr0# z^zHIu$IB*c#yLTp9B3MedxCg4z|$CmubPH|_qVWqbM|#0EK3tGr5x`(MO^AMryQukmrXDT+r~7;U#VDPb?^F8aMJp+A=y;T$M3O zxshbu=d;+9Y-P8oswD;kNkUB2m1G5MDD;!Y$)~#EFZ-&1wl2F#L zg>v+YpFMfRlv62@Jye7X%tzOz$0QrcC_!;2YBm~9V!4NNifINs_6?_nxyj|Z%9t`3 z>kcvRCle|#J`!MuC>Ge4blmaJE7XW#gEp9Mh`#_kTOR+85xX@kwMLG$B^kse|*#JVx5uD)z~XxitDQFnZ*!{de!)C7YFS|45GMx@8*(mFbnm4a(S`6I>cp>4HItO7!gwf=J^e8LH&nvIsTEa>LvUDJiHs(&d*KDs|H&C zdXauTa*-l?3xs2YOhU|haOB!_lq`Sy=1nh(tUTmB++Wv=mz&t!DsOZZa#5R*6C4Wd z4NFg-Iz3T&D6&6{c57H^9Qx(iVu%cZKrOLmMXklWICqf1i2;I(|!@qBLbi?6h z&_3AE{rLpd87Fyvsf@v|a<1f;;Iv7=5TpUmLNBOpGJ8n08fJ*TFh<+|{;>bS3vJ(j zsMXz7{$=r`W^Iy&3Yo(|V1!OAz+%&nj&EY5Eg7Cx;=mAukB-Zj`&hG;(s^;Oz|+eL z@}tu9qaSaia<4RI=b!NGah&~g9kwZfvUv=Ha2+}%M=hT)c+rhj|D@~akXQ7*nkCid zV*dA0vRh;mT7IY9k4?nXqy-*C;7LAU)b25Ym_H2=!zzJ} zC5>2l0=DY04d+lwi{j)#;b}xkye6W z=$!l$zL)4Z&vUB>R`nI2lDT?ds}ToWr)UC_t0AU+yma9*xuJFK=Q=7S=PLiAxC2S+ z1~E9YN+6u_h>le-`@4el88s9wp@41oHdCbq8d*uYo2MRdD8#VCTIw?f`ylxrJzBhuN04+H`Fzq>xG1xsE>vmG7=Ve6_g8 z&b~NNy0oC6z-AyRs~2F?`OsUw*Hb#=*r^ zVN?5>@1GTtLrqe~b%6yca&pQlB)Mg4qU+$S<0^U7TUWVGB|%xjTlfk!&|NDU*4+uY zG!J6;zvv4j$eZpN#?hZbqdAqL5P=EyB4hz=l^&bOwmVQ*4I$~}V)mmJS)9zo`iwQ` zhYM`ow!-qB*D;TkVS;RPvuTTYk4L550)rN($n+P+YXPxUV9#g8B$z~U{%=pTX&ygE z`L@ydf25MLt{yoN4NLU_iU?%@-=EhUPEZ56P)nUj_yP=Ed#SBi@iO}3nq-iKJY=sq zFfYXZ$7OUowp@F}Xx!+&8XK;-{W6+FFz@O70U4goe>zs8G?cNOeSP{bnh28!ga0p+xRi8s_t8m{Dkq&G>amv8^ z!@#Ha5Jb^0Y@D#D|A8c2E1G`_szAdc!x8cd3bim;VHbR=%}{feBil$x`Pw9i`4T4b%Fxc(E!Q= zajlNShuAa2@SpCxL-kghw`@snn8&O#U`H+H%i>9M0oP{oFx<^#o*P=x#juPEm~6%t z^5Pa27H$h)#$T-0NhSMlK0{H%DP+*b)?zv*j+6%wMAW$+$6sf$OhxQQANliIcqFFb zi%BF*5E_ztbksIw%(lnf*LUmvJ7%Z&NF|%Kd=#gm0^u{awr!dK^KyInS~TPPAzH`k zV){&;Xht@n@Te1vj4>38Mi)%oz#7?QFRiNj?P!w3T(C`_933T)bPR*5f*Dg-07YDl=NA# zf$8P-&UXTh-jKXtF8qph%W#-9BRxJqM=gXcCetwIX~W8JF&%Og;@<+rHURD-3*&ex zjB_v9*BoP{mYa6DHAfB{1kOR9QisR$5}r*$mEjEu>iIXXdqv!w`T{#gD27O@#1`@q zDCFG$=wd$}GJFd(+tp>mwqVoy`6R$$ZQJ|=zsSsB8VU99Zy$uZ?`d_KYzY>yiov{D z6zQ@FY#~k@xWehPMd?x~TG0(@YE+40=kB%vO{#St3AGlUto7Ruo)Ic1=K zVqBv#?1|*};mKY=Mqb{&K{XE6H;X;`{jYIzguCO4eNX;87^ZMbJp}0 z{(TR=j94`E6=qq+Q@^_;B_ue?1v}ybsSWkcJ#CYkUELVas3lL5%pH=!+wl3Z{oHD) zZ~Vs9ZaYvszueywN~1>Ho4lvu*5HGkk}tc*)-0L}?eLY*2Ck+X5{iKmR8(*@*Ls|2Goo@+uVz-hVr> zPeCi1pTEC=jx@QM*>nS~u#F_Z>mo(_`w@Qoy+@yi{lKD#&$b5F(bK;u-L5{FeS78u z+yvuB99$KPYSZi<&DV43(C}7D_54>sf6RNAD;w6_I4k{8fk~qOJ-@q4^R-AyE0GT+ zx8qWYh-F+a`7by4V_JM8Hs)e9gr^!s!vW>R3!*&01^wu_2C`rLdM zf9EF>_cqt2`t5^7d$#6ETyFwl&p)nH{+GGh;v$aC8}exJ2#0V4^S?*9jU)IoQ;wPX zRR1+LWUs)rX{Pk$(JfA0O2FYiwX!igWP(OGa!C)VTYf26g0pyn_Ul zWSqcr?9*N(uTN=1AeuPga=|=jZnhC!$l#7;aMAksEQaCxJCND_KhLjK56g2N^bKysvcQf39CMFp(Q3Bz-W`;5bgT) zN)SgVJ*@loX=lwDCl~BPP!XfzRJ<+*Z-9}mn{;$^ET3g%xBSbL$I57^6K(b}V}-}^ zTv)-H#sJri7hldYCHUV+tnZw1myil>@csxsx)?t{N~$fCaxAaeIXDbJs*s+M!JA4z zUujmYUb{9=Z-z{@qcEV^_D2u(qq8#-kFyUpSNSt%&QOSYr($98>gx*rH&j+P`;b(r zA6~~oY{zIsk54oV-AGbRIfd$0HU12^S_sGl-c_MSv7g1u2**Ij!ZPv=_=G|@p*D2p zU!1nniBKzcbD($aa#F+o|FTZR>`riJfKMLXEb6ixu97K>Vprm@P%6 zOJU$QGpQ9naXn7zvcuBzGLtKCp@s=huTVTuDtx_Nu8XK*l_<=M+Jt%XQs=< z7L}BplwA$Qzr(nmpHL-(3N&V(7H&Qmx z%Ty&6k5y@P?W+iZFK>skq%hnv*~a^5$6l>M6Ps&qVY_fz5aEv?iz9zGVRNFRo#BVg zeK|cJ>!0qI60wKErK+y{%c%Mc<`*TUo@SaYPFeb1!G}LJY1sF%^;Pgjr(VN8`Z)9I z#^9^m)GOb+*lhZ){B?;OIFtQ*V}XMdBflhGfB@N_S@8VYt*Tl|hyGsPk`lj_hRv#t zsc)aX0GP*WF$iVS9a!S$)K;5o)4kpROX&(<+s>FPXZr?{F(+_Hr)VO$CM^~`UWN^Q z9MBrq5&4Yh|m4A1O(W5=w+!YyA&hVq#-TI_7s(r)v)ZGO6k}`4o(Tjbf zRne|AePRnw8Z-SiZ%(9qJp0$gLY6>Yub3uHH&&V3uxclVpgPF4L`wNt>RZfSZS07r z!{ApwZGzM`jDg_|Fu}*=Qk%GW5?`h2uWQb{C@Hz9koyYaK=G3FeMJj?=e&;S6#cwy zJ=r2}nTqEnSs4soFKBboLMs(4$(F;sbVx_XuwT(|!sJ7nj(X}FrhR_~l9g4IS2Yx< zP%+nuLwhw(-dQ1GTp!FVmS-EXMGKfsS;gi~>PX&|LznS1==e&&fSNW2PF`-Yd;r!`*oqw)VbIb{jli4Lll@j!% z^Z88zcf`MY^c4M_q*PjNsxgKMNs63rG}haudF9IL^KRrGJ~Z$7Pv@j#B~^#R{7EvV zfR7qhpCMz2o!>xSjS(Ik4md*Gkun0huOF|(;O+PBNSU3Bo@@)y`*fuKo%*Zd!OF&> zw*GR;?qhY1jx(lKD_$GbM*Z%pwCiTMS^R9x_18%LZ;V_EkrxVB&Q6%ur0GW&=FY6-j4w)M?s) zys`rF9(n5#28}r}o`VjnQsv_RDF;Lt(VBZAl@4!~sMANU=Rk#1qsc$EXIW0Ck4+C$ zQ?$C{->;*zV;*AuDW^7(!!GA-(MdeC;-$+!tiaeH^m#JIiT8N~u%ht7Uon8W z5Yir7rH^2C2fZKhDwY*OM*z;EYi~7i1+8hG9P_fn@_fe*BnqxhMbf z-1^aDF&(AR-l9HX&g#>@#QW~hMjgJENa3MfvZQ-jrNQ{pHNJIe0bE(1Gt9%SJ8lbD zTamDZAPCh~rq-F0zKM^h>S z@Dcz^TJ8PPfx3IQY_Z}|9vt9mu~rx^(DLKj)}{|K{Y1*|UKi~mlrB(MT%`xcS{+8Z z8qDyRqzf*SSfHil_1Y|TB&2e%z^M97J}sB1woyytv;8lORT2`cmawpJaF#a@XO~WW zn;OM?>bllxIZOne-neD+$02V{<&Onf31;AIh?m<})!#kgf8#V%3mf%UCXfLISX%3u zSo(;1;G9x$IaElhDO19>%~W*0Po_G=Tyn2??v#_N+Y^z|OHG-dW`=I`y?@f|kmtqp zrI$+ZOz97mMAYf`-sHR=81j$xYa7z7kX>4Qws?NLf(dhlaskS^6I{!)&dRq zg#VjUHuef;z`hWAio7DGHQ&y@%TI+#Aw>sLDcm<-fKoHCOJZlzpnKYs{QxoEuvZu#TsPX9)O@P`*0TDrQ=-DcldY7W7BP>JKrL=I+>l+yO5-tBgsBNnp(gCXg%_t12q0xL|R}a zli{9tHP^TknMmQ$%GJ!;S)$aDq|VmjkZj%kP(bBPfKG7fO1Tp|cG$`6c9}3~?OFa$ z;G`#>(y3FP$8?UlZG_5&>7G;sR9+3y_*t&| zVW~tn-EW(L;FAe9#&Hg|aTghvZbJ&MU8Ul7Cfky`^l{9ECwL>y$0iTd2&Jl*R9{S~)?_=GyzLG3!1LmXFUfETb{VFy#?csrOVpGru~a zHts1jQ=4(@oo1R6rQMq-o>i&WpFQh$noMX)bYCeoFF0G~UUqODBrvX%#$A$q zV}?D)U#q^TTX-*LhV?ooi7jtuy(I@XDQr5if zE?LfZ=^E|c=G@xBA-w7!Xwu-CM-pVVa=$c+Hrkey#lWQf@BweEIxpoPm>hod6mX+e zwSe#8o~n=s+x2Pp&Q9s~bc%|~TaWq8WHe^zcHrd}?J#5`s&Z)awCsPKHT-^N)FyzZ z`+KQUys8@g0o(6)M}KTzx#2hq?K<2=>PUmpms7tdGO2g^f_kT2&hz8Eee*Mw0<=c8 zK3lmD*T*hr4eH<&GDuS09V*=CnD1!E7o* zU3gK(+SX>Af2v21=uTuO~Q!V!0Jlej;OtKFP;2o9lv|EMjyGZ$X=37qM8y93e z_Kd~7vtujIkyw2hsi%APM7@1b*^qNoJmn=?I~uV2ewc(@}S@5LNx ziHK8VJ z!V)SaNs`D)gA|sq6saku10kn0gr?exahQrI$~Z(hM$VEVDTgFNMa9yPL&#yh-=Dqr z%)I;B?|Z%1+dt}BE6;k?b3ga}-1qPE{oHr1XSx)ZE(pl*914q}Z@98ThADEz&UD!_ z=T@Y$-<3?kY#Ticj@*7(%f{owQh815#GPAn$6cLS4Kmq9Ma@Gt4*h*;Uuug#?z87= zO`Kpmjt~5jQ}k&NsXO$sXH??-hx$2vHB%UyCMMgnX&U;amOz)@7>87Wz;gJMYwXhM z*61Dk*?Jzi>Y=?wKQ(7Jd*r6V)c#6fn!nx-(|#n5s9A=20S<~jsett4lRWR( zrjAN8pAgR2xOKx!w|v3y$fYZoth_HM7--44KhpnXub@r)eS@Tu)u@+^O}d+)t0g6= z)I3Z<_87XbGn0*H-#xFKqp!Q)==QsHe4|+V%*K@22mKrSJfpsDx`RgO z=rHL(pJ}rHX3qGrA76!( zR3@D$;qx2%2CG_g3JRFr``{i5lB(43LIreizPrDuyGZJp8P9ut-(x)9#$DNvRavo0 zDE^>)`Ou2d1^Gn`v=!A7@jVq4t9)c0&9?MuUbU)kqicRu*!$et-YVY;qa%AxmhO%* z4@iuYF{#g(ni%P{N&J`DziqD3_K(zzXj$ypVh2)9== zMz-iyXnY&FCf_(OZR!qJIfch>%g!-RkMCNW=sEQC zQB&S&PRzbLO{r3UJI9&3e_wm@+pY%4GbSP{JyF(tg&U_P)opY;d^TyQSs08S7<7Wy)9J^VKBI zq%2=jG*)A8e<_n+;5e~$ntOWV8@Jd0v|` zKbrfRpPpS|bE#p>OOh4iclPN0%%o@;Uh3~1+%(@+2qfO~dRN(tNXJsW{c1JvTf>_6Lr+$4A#>d1~tLU+>Nq=qszkf=A7$OE4^5C-dbMNB*Zt&cAESn zmAAY;;b)tkPibDaCf2b7?llL6McXz0R9`8ma2*unUDfdYy+droNz4$tf z6&5X><{sPfYfRe1!WDZ|)7|PgD|Gqt`;`+`ur0Q6!*AX7+pQg_^G>2JElpJBblQ-3 z8L!`|!)eYs<}6+N%G_s#i&%W^G;JmCx9ATprl#(S56bEIPIJ8CGT+CliQ^ew+U+CY zJdWk01V?Xm3-OlOzBjOv$&@duHkuNWX!Z7E+SaEXSvj?L1X9_y(`@)@4ryNs9=~}l zEWG7(Eww#fES~>jE}L_oqg$NC@_!K`?zsAbz1H+`1euSz^cO+`piuQyoEE^{Wgu`W1>QJW5sUQp&V0z-i5}GPb^)}IdH?n?LD zy*Jb@Msz&zW;18o`<&osryzH2F)sfB61$ia`{sCl zig~Rpx86LpIB;zB`8P9MCeoV5?X%6F3=M{)$MxrQo9jIg2CTbWDxI%D?nnXIH(*DYlY8=?)JH4C5tho5CI$9`(0W%prDKcgq&JB}+CT zJqjwme@&Cmr!q+jMgaP&gKWYZiB`k%S*1@w52WIWh2R{jnV>$q<0LUdj2n^v-&znj z4%C`bkni6L$PZE4E4yF^K?SDMc1Q96B?uT!evN;Njg2L?eg#Nl?B?pB+&tJ}xkO&v31Ac69j2`D*bohd;3)ZcB zaqy4h{|^!%t7^;#@^Ky%B#HHgbrPkN$d|}hIAAXC&Yw>oMYOWdzL2PPtZ61d6mbX+ zZCW*hID#1TkT|T*B_aw0{3k^AAY@8}@S(s&m3p8YMnoQ){>ijrl-r?Xn z1aTP>JtWn(uP>)IgFy5gbF9GCqPj?0HsUM^2LVI4c)kf~eE{&Te?i+V012N|iV=^k ztE+pE;9o$8u~owHRw3~@6wiT|7{u0cV(TFrD4Q6e6AGOjp6c8Y#G70ZHcF$SU>1^jjc>NmTX^ys^V<(3ik6rv0TGbpqHYI~0A47Pii?Yrla+11 z{Nt}HR3stcDHKlJ15S)gVX~5l8qslh^LnTD8R;9ZKm6pabL_1~;G6qHv&yQX3Y-J> z%CXtHXqRrgzg18}ms5fQB(ldDxng(qQH<;Gk>BCb``7SyS4*3#gx0%dk*xbW|>OTKLtvOk!o80t6+8zy) zqT@Ib0*wIf7|=Rtz5TV&6VUfUAVE=uB!izssJ2Q@5>ht;11AL(Y5QF)dX3TUDR_d- zD#RBope-%B;4@PE@G@iaw*|xT1Rm@l=)D|iA9Qwu@X-H& z9t5xdLM|t)cfwS6=T}aZ%uUZ!H;F;vO>S6m1a1b20@{&|4g2De2FB5U6CvXr9nDrK?v-SO>aoV-9j5m zs6xZYMJo)!e_P}E*%1fvmN2`b;gQnz44s-RZE%ut_v;gB_`(R<$BHeEbmA`CApAGn z#iUp?#Wf`-6QMx$_Qifg>k!8a5dS+aNw|o3BtlKXJfNlxN(&0-e-S!Bz()C5sHbOg zDzBiT%g`+Y_JS-cX$+}e>Z0Cj4A{Ds7T$1Gs2$$+5uOCt>q(2nbkCAlinfjz8yiza zC?%=VPlQlN7zaQld!u;G!J0bhPo|44!1a=2qKjp7vGQj)s-vSLRo*=7wWu^DJBa(E z4~k|Oh#Tw-R8R@1M+5nT;LlhTDgk1si4~PifNGcCj?4`A?&e?~OxC!dvFJ+3`bB|J z?3h5Qr~>CrO0e=@P_?~3gZ2~vk8J|#>z0y;G`hbZ*Sq({0V|M4C4Xdi_y@e=0Tm;a z(oyzLGB_QWfaZ%B%ZCgy!xKEMD_&fyiAW!vB4L75@E{q@Rj)oSDh-diYK%pp3g(9V zk);i?`#s<&^MdVy0J6T|gVV|`)($grWl!Ax9mY=p^!UVXj%Y^DPfeMMs=G4A1Uh;r z$^$_iY%-?P9u?QmwsqFj)^>Dsj0vuTnF4L9D}GJ&=kw=xK|M1WIEjF>1!R2!@`n;; z;c5ZQl31vntq9!$xvC72h5CcH0T|v?RGz-+YCDJy!Ku009D_1$_@76|jAiLWsQu9Q zjHU1-^xD`{zydj*@cJ9YI&_nQlG&asjDf z5PKsCo|MGsUh)TO48V<yjdjU?SoU9E+Mlm*5hX<;qBp$JE)2PCn0 zR0ONfcrd6`5yP%S+MxZgem6Our3VHZ{Hzoh4J(MsT|KGM?I=T{E z4HT7@*3%g=zhZjFkhaH(fzVdZ0(Z%?Uc@LW9pPD{+fI2NyLApJs|-gW)?JY}ongHD zsWX$&yN=9(aQVJOH@D=`;xycGJ)K!ihj+qQOxkkXQ8k@oWSzpeOnU+$ZmR0|LgmKI zn*bA$BEwz03|k*1VUeFa7PX&HdlI0@n!$s^!df=^57x)P=?os(jOASDk|1U60HZd^ z{;6$)OVkI9R73elQE`PIKq7uY4s8HEl)8UBK9CV|)(vnQQ;HY-+ZM7~)OzN@{72hI zocz+c{1w_R{W=)oEt8|?GmP^bq1`c)oWeMjBqqIqM?pC}hem$Z0#rzQBazDpAHEAc zjPqiGa*6suk7!PP8yQJS|A+`tm@GZFlG~BA`Wz&N(Hfr;OBBKPkZ)LoVQAuWc3~%m zsL*}Wvye&cg#Yz*i!!5kPxIvWi>!c)s8PtSJGQ#z{e-_rIp7%zf-p80qX^Xmm+`nJ z_&TtC!XTbvv1-|g5{5ZyQ>hj@R3fRy7m@@6A!09mdRkvIVy4kPTpJ95qd1GzI)@b% z6?tX$4-UF`{FvT|=h}1EWf`Zgw9zaiAsu|@;?!@*K1Bwme+j%k{VDKD$GyoyvKMy{ z%b|+F7}`og@VDe%S-JAr!D!gP>G6?Em!vM&#R0(^E=oalJCVc>BLxXs20r_(wln&qb zq+JazPtDIS?C1qDL{f}31l7Na56BG?IZu!CVe&imAk=w|oa5pK5~YwaD!awQfOf+` zA6Sp7-<#1>SlYbr_!C?}Wq%Hj^*7+76&w1uUCl^lZk(vHNSa~1i>6%o^T#vZ|7GX1 ezudLG!kjI|{TNU!PPa~lCpV^?|%W3DDK<< literal 0 HcmV?d00001 diff --git a/images/loss-l1/output-test.png b/images/loss-l1/output-test.png new file mode 100644 index 0000000000000000000000000000000000000000..04111457ca4ebe1f99a02ddb0110c87f47965dcc GIT binary patch literal 32243 zcmbsRWmuK#7d;AtqJkjZ-Q7}>f`Ei{x6&*+L>fgvQW_)#3F(k-P*OlZKw3abS~?`; z%(Z{-`M>AG`F5^rZCw`|*Lt4&p7)$%jxpvFuCDs{-d*y$C@3iR6cuDOQBZE=!TU4x z+wiAo(h(N?^}s_;-$TpU+T+DDH!BpCXC5vN&K?eS=CqzxZtix@PWQQmxcND0Z9P0( z+(mhK9RJTRa67x%@UX6vn!|@+xF{I7qoCkCL;ipD`V%qx1aX- z+_h9SPpU&~GzzM;tdO)cE$32@x?EYrb2j$6I`$=}aRis4(Z{KRnR8ZKf5XbioF6&k zImzsiU+FJY)e}{!J~5^~iJ#ux#R*tD8R~1C{l=KEdJ)k2J1Nz7SmN}jm^**gU#DJr z#dx$JT6E;=EAGS-oR|N5zdjR7%kgYLR3EO^R*O!NU9_!z0-hOmmXlqzaHX5B_k;av^e-xBx``mMPKAI)VFTRUU8W(LO z|67(64JHYF`!tME1iuSW^9@}_)G-+H%B_mAD z^KxZs-~2ldYp{jV?+K-IjdlL-CclSp=DjDB%r8TJ>vq+^C!b?P6tx7oQ$5Ai`Eh5~ z^`*_CYl&`I$4>pi+dp&73@j{ngctnoBkb)7W(+xr#s97(a1E73Ju_->p=&#B-9<&= zZuoUWpOY9~rTUfhb16@7cS29+eR0O}RUX;du^DrdoS*K-nEg9Q3F|iRI7t_B>}YUZ z{4H^xvbviR>O<;{O&OiigX{SFkhwY8sq z3A!cXwMVO4s!wgA{RhMS!qWbAv1s_@ROvW_WFf- z<|pZQzESY*z76(efKKVJ<(ycI!o^@)z_xkp|j<-}|dzXj977K0uUZ-;}?z<$R#RYio%!Gs!u+YO+ z;7DEaQexjR^ka~ztN4UCyLCXp~A_q@|_B&}huP@#PMUgX_<)aSR__L^z!T zPo`~{P)2=sTUnfM(n{=i5pWI76{ykJ{r;AEu+<$&qKuNaI*?MZbB>-P@nyI^KR=(? z(W(8)vv2EI>C02~c_F(|MvRw7vkU)p=ZWuzCT1kM+j7XL7@x+8A^ht(@Mu3UFe%PySmo@ zcP_@74a3TNHd865a62Yc;>$knS>FFTOhHcWa(U(o{|rw>MP;h_g|m!N^W586=XR5T z9S>30i=F!1{QTPxvNupTO(8NS>bGZ2Hx(}Iig$?xxhPy>6At%-Rh>A$Pp zz~z393fcC6tCbxIpQF#G?brULrmf@w?NViHdAm&~HygK`ajmSZxawBd*6PDjP+y|n zyv^8h^4D*DB=?RL4t_8ya=UwJ0x7cs&g~+3zMr3;2Ty+d`0;ChztWUv519=L3O1$4 z%Swyhr2(Gyu1pDEb$xwSaWl99^2chpsf$yU7PbgP$LCi!jkYNSY;l+NMX+fkGbY?e zUzl9HLbD^0;o35d&#TFN%;ox;w&}+6=g;2>*x|dmx$XVXQp*m!{^!y>H`U^OpW1r` zuWQ+L%)e*Z6^lX$3sPu?OW^K&s}_}zvUx58y*Hw zp`)oA7=$bHv}(^MXJy4SH8lkcY5Orn&wM2aLt} z`ggi>@JsfSCxqIV&dNYcJgTwE~#vcockT(cuK>ML@0YM{~m_y&w|IU;g7Jw1J7YU9_ek=!v0;(dP_p z^*vpJ!q5ZZ8KsdcU%P6BFI%!#Vs>>GGIVD!27$}k`xhNf^~*_mrqZm09dODqQQq-e z-RY&$0X+bToG{0kr8md!OG4apMZ)A zE2C#AGLU7@xE1u0CCH>D8c-qd)Bi(~LpV`6E zjmFYFVoVuef`hEg@c3?&X*ZZA zh~X&YIKvoCc3<92^u4BmLF&;@_hF0yNgW*>MW~nwRn^r@CiQv^*Qt&#n&YnTr_D9rS<0WD`~zwsQ2)am8X+dLcT$hwj{*=KR@hyN9(`w zG39%`vsuHOQxw_#+h%_Ia`~Y$tVqB?tBBwI!-L+o98Y%kp?lf#!-eNNF;VEF_47WM zIO2OKnO;j64)ZN!oo{e@e-vri{S^yRxGyk?p5yqTQ69G_E{^kp&!XoSTz+>XPaFEL zA5~ruA3bv~7NTK)3mhdVgVt-l8#9E}z4}cqohP48(u4D+bE?LUfZG2^!#jN((Y?}_ zQ0cj2xX72Sj-IWq5I_~v>w2)F=&?KhK6#T~^jd0;E*NU5bQGvL~D^(su+P9M2P)7E6e zbvwR}Yn-4<#`ZrNdA$GmCeGK2t*tE$UER=LYF{j;da>6G%2M#5X8y-S?Ck8g(ekLY zi<4CcB)4a|72`K~5dTQR4aKa?40nE<-%`Em(3>p~kD2iDW>i#KPm$33qgVHA2X-kG zqJ>oSu`eAd))Ev9X-`kjo}Ldvuz2@n;7Vq0Gq{%x-m;UHMum7RE-4|X)6>(-&C8SZ ziW*oA8dybC&h2=)5L(|alNm@!@IHe=mi5NDMPRT@A1;?(ME(w zQ|%oyt#&;`ky*{}ppWIC&P)8Qn&e-!)zwu;i44z2w78$okGHJ&ie(w)$DcYH_%e@9 z*{`-)j#LHDI0)&Kl?rZLwwy(aC_}DU=@O>7|Yd4Ay)YKnrq*de-ks&u*@7xPW$topKFX;c= zpdi2I8vz}_es1pW`%p%o>ksI05_duwL++m}eH?MPvV1TDO+nGPkV&QHlWn{3r>%#n z;d(lCHdh?O&WxFaD7WvC2j3qSuQo~1!npk!d9|BcTX6{q2^)(jXS;BahR_EEgKR0H zzSUyKSuISXhsaE|`HNvwi-&oMm#53|$ncc^P`Dkyzi0k^-Am3kS|t&yyKaANZQ1fw zGVzayh`U~`^VligYRF7sf{LH#_~g-}n{^J;L9i;pJ1w6HF$7!PlzfKAqDKw;jrioq zF8jSStti^c4tN&cP$S5$;9!Wo_!B(2CHL%E_O$YU-BJ!w-&eyElO(`I7RQ_8#pa1I zBszE1=kZgqQHz;fj&-$glYDP<(Q9%!C6Q#y(?5=?(P$3*%$9QYdoaD(%~KpcMy$f>lFB3ey`!Sq;tH5Kp;NZjpY;X=OA=7B#AXS6xj^y zGg;>~ozq!Ebt-PN#u&Q#m06sfAeM9uZYw$0vi_UVFB^57t)t`Mz`S+qR+9xCvenIb z4m}cic<=HV;IB`RiVdRJm*r}|D>*6Mo+lrORIXjStaM0KkJCx4T|K2}#TG27NNy0c zVEY}2!dlkoV8l!6u)q8Y*;|Iyg`nA`J?&FY7j|}v`%;#an5R3$Hr^m_${4ZqFljdW z0~Xt_$kA%|2wrmY54C?<$$iZAy#s1p!p_fq9Ojym_;)ejis&E3(yH7X92}hb^z7!z z_H;sQV_7{~p+X^Zy5ewe*1;NXd@*e1RmBWs~$li zf-nEF@dyz`ZfA3JS*oVdQZ(}qGUClU*t8rRk^j56oM<}fv>QoDNe~ewyxxix83ZxO zD4OmiTL$8Cy`)8a{YDRKhZx-E4tooab2$(5bXm=~D*IUt{{(tcTTyNUSdUFg3aP5% z?_B$@AEy^oh-F5t&fl4;eDqdKyM&@RxITltjIAG2RD-ysDtbgGNp?TW&|GaGx zIJDflmX9;|+42^ma*lE`+L&$clWkSH>HBDUBTY3XBtMw;YI~QurQ`7x6V;bEbWXC} zyZw5q!Ik00tC!Z-|HWP29sE3I*j?Y#KS>E@QOVDhm|PX1F!29I^^g3R`R;zg^DOQ& zuc0SedU|gL(}fxE!!3PSk^gjLgH9R|3!7YOP<{Ii4oz}B+p=5|y_S79Q|@{=KLf_& zet!hnQBjyw>o)Qj|MH+ud85W54X?(>@z`8DfoQnM^4so0JI%$( zj{VrGAu`T#N~9H4$Uh~ecy3R1;^WDWDGPhGb%g)(q{kfTGldDs{!n>KxL`*xt3 z?A2B`dLZ=EQ?>RaR`baGDoYMwnt{)57I-CC=e+P%fpOG4iMIB}7N_ahw@u}iUyJoc zbcW_yTa-Qqe~T-NMPl>3)S!j53Z^ggox--o8H9|Q^D zhd=FoOLca>RY4GMP_raJmJ`fy-+sy-gEO~7O}1(^>CAOs#;Bsz;B1RzPKsekKqv9k z(8Jk_k3$h384np5lthb}3iIIwdZDS5tCpY6yYK+ikmW>IhJb=d~H4 zJX#;QNgZ=1fkmwcdf?RWzX8?09dAvR zOysL14G9bb>w?6yGk5ZJlr1b6LUCx`rkMIDHe65JWOV~A@e;0sY-_UOv92z0zUupk zr@XB7sc=O|W&yag#n(8JpON=7>sZeeNTlcjkQ+z}Q95r71;TXsk*Wyx?rhWTyb3&l-GunfQDJ0v@emmo zZ)@(378kRlJalz+?KoLlGWRyq(IJY6h`>LY-SPC;nox1-y#L~l@yhSt{V|rwE?59@ zfbRiXA=FkN?UNc8b0SGHeToo{nW2KVwZbr0*|>b9rCi}OBXjMt+=Ulvksd;^af&8d9@%d;-isMnl~Gky?dW9fjiKq? z94~PN?h)mDYxpqF&_;8mP0vvOFQ-2j9iy9Bwfo*|6g~b2L&wCzZUpUJM4Je-~=|X*ul2=Dsz`jA(&g^Ir$A|%yQ`f}1&-MVnvrsOP zd-nMy zst8>0-eJ}?CA8vh6H6bYU+=x&^}8eWZ$D=LV1Nf|{VyQVJB}yKoJA-!kW3LW$RRO@ z$>(w{-Kzch6)SzvT9i6A+&Hd5AdNPcuqdZW9xHcx1+li0@b;T|k7yCI(pdC_V0ds# zCa>zr{Er_$p3XHrXS14r5$p|Ngo+F!NnS1mVW*#A|Iv(B(7dCdSPx}{Bl8DRE`U_% z)Vw3~V|@HsM=-|OdTtDU|NW~S=fF;r7jq#<)j+p|Xskf37gA(w=)i+jAuA4^eQwu> zfe+M~T8OlUpO>-J{5V(0&m(ZgQ<48gM&v}V$;Oqm?P_?crrfd>EnW6AVP5~`b=&DB z-yIxkSyff+A<2vFy!rGKNl41o{~f+NY~yr;gox(~H(#MZ8K>>N2&?)%?YU~UDp`AF z$l9HHKqsoW((~S6P!YDUViI_aj_)u;22as>%47gW0SD; zAA%HE$F<6;iG`rUrs{xpOx?^3=iwZG+LHwzTdRcXO50;5M2TJ~yFra?VSF8Kt|8OM zn)sHQnXtNaw&W~q8`SH}5E(io@y()^`J~Yq*_W-Cde};nM|OX*pXB!2?)-aKReYA#7roB z+u8J37i)UHr3)!jc_@#>fXG{~)wZ2gOft3OwBO?I8a?0F`VoR``N)M51MJ!%lE`lS zb78S*eKU}0{-dYRC9`lyj9pNS<)G2eGdbt!OD@!}*XnMw zcCIUFa2`tHhm(?%NUtLm8PEit0{5q1ZG8`^_N-+Ew#{|P;>+4B&HL_l1Ix173yp6$ zP`Q>q`tKvKuiVdpzW+4saA2SNF-g|eYJ@|hsXB>lw?CNKinA~+{inkQQ=4Ucrjbda zw^Nsub5Gj3XY;d4eO&A}R@tPH-N0MXDdIy96bcO3a%uIDjH4qL$Og1#Vp7;#aYHeY z6)(~_eI|5Umw(`=k@gQi6sPV5sy*)g`)K!}2X6vQ2txaYhM>KW<0XA^7UjR|yU+$=gi$kB z%a5Zt$;CWbjiEO(`3})>(Iv-B?{|U*!==X+j7gcd)VIhJm-#t?Z2dCmB2RopZjb!^G`rLAr)djB8n?@fh3g&yHE}u;!+L#AQUP1_Aktf^<7#b( zLt^_W?U%PCd{4f0eZt6jG@APu=W^ltiss+H)Ar?)S?9+A0g^AZLQ};4G%!d<@iVJt zgaL|6DrU$F$9AN<)wL8^ufK^QZYo|Ju2|-iC4W+6a68)4fuq-cyE?RIu8IP+0ofe75JpmTmD|{qVI*dLc+k_MyhKU{aG!14qER5V zE|=j8+Ge;14hQek z&nQt8!m3^w-R56lyKkbLE#d@*J*53^ZSf}x&Tp~J;1ecAMdd{HEc>#PPUG5sA;V|4 zHj+U~kac&z53&@9 zLK&(oO3KP0p|Cce$}Owt<+sOm@iX|_b|)jgw6g#Wa0V>BE2N8o(`Z_+yLayzcD=?X zNagAJokQ_tMR~&jS{5xyB%b>PF?oGLc5TTU!_m{YhMf&o~ z>pLuzxh+}pUTa#F%{+Ickkc?}$r1ELz-A*< zZwyWwM$`IwV-UyoN0gVXTA}>5$3@U6w)sQogL?WhD@Qy{8%Yc%^7o7uOyu}k6H1K42`M=R#h8F- z&^jfUCB#8iZ&(ba7#&>z9EGE;tDFC^qFkxKb^5;S^vc75D7X3d!_5tYpD~GB$Ac2f z&F8HgwDq^L>mI(GASI*6v#OtkWP*D)1Rv3^6#s*MR?pj{pI>b|Gu>ddLjkM6(3tf) zlVi7bMBms-3b8gGiK#0_vL#F&y#%UUZlE<93N17)NR$UmrP38ZO+S$R8Rao#UNR~o z!P986xV>eqf=s$9ox{QM==UAC6sn4ym>i+zt=K_rdnqC ztbTTJ-wVJ0A=~U;hkCp!*ZqDF?^!uH6S;om#NISrDKd~9yzBGvC1H0)akz;FjrDh* zEISEb8Ch0BrN$WG6f8i=+`G84BgK=(MK~<9Q9)BipR}udlj@)>On zcdPX9Rsr8Z1TRS=AWxuKaz<=}Ry8-0ZFZ6-zw``F^5~epHqD70u^%yXRc2&94lbN- z(5yY&b3AiTAY~#&7Pj{5i}t*fBnil&O2mMolv>V~A{AK@d(8RnMk+E;nZ`2Pj}T%Q zm>#huxYm@uEDFP5Seh(czx|Ep0m9Q;qhc~0_a?g{J|q>R!~jj}apicl^ugp`Gs13M zK9gS}4Iun{3R~}dD=yYkH>)sZ4_A|k0ox9XBa_v~Y4o7)1$A}A5U47fQvjOAV%h~p z7jG5ebGfodWUov%lNd}Mq0x((s(dCTt7g5e%a$iw?!)z>E!DwYg08z4sR1@R5Qqtp zVlkt6a3s8ahh97Fz?F=n!(i}2Byd;uYBTQJ1?zdsdI(|cQ(9;y6xTI)WuTHI`O>4m z1`S?;dG|Q%-1zht96tQ!Qs(-bxmBL_TqP4 zq3Fx8jVGTx<#RRAZlM0H)m*RU(c$8_ztB#7DPcV;d#W>FUV1!#XfcZ4cj>EQo}fVV zrt{U$pFi{7u9iH-Ma#Z7m~tXrfSYGMcVf76yqSui%C)Z5jrf;!^;pwmro-iIpP-caliU7}(v0IkFB<`<`SJCZ{ia zeRtGlTbxZLJDCG)Y~cA=R(w@khUbhOMkEMs*@MWa(w=6npH*4C7!4~DdjJGX1{ljA zTIDq~@XA{bl)%-(Sc8=QBz%RMUhHCn*9|NmxlK)?*@M}S-taok2te&6BqCY_AB9p; zXv%zwgjs!jeb8p(`d{}AN3CS8(M@5USM;J4#6G~z^(?!H0EB*8YiK1bjsjY14p3!v z!BrP!#-7@P(SQ-1oiUg+9%KQXc&?m*363P`RE>S6Km)2kVDY zhvBEwg+QtKz-xb`g$fD3fW3DGVS3;KC~y#ELV?``V)+-)2fZC3n0z)v8Am2WZxpom zCX}lygRJqW28i{;U3NoayW)_razA~-b#B?eUEcVc9OW|*hkUl* zX`!4ETlBu|enS%wHo)DC^*Dw)X#wenA_Ff9Iy7Oo3&x6kO+o+r`O`Rx@&P}cyhfyD z#Au|spd4R*>HC9l(38+md19#`G?pUO2tH%8UL>`?DA51WAfmslj+S2mZJbZB;ZEcI4c?(;Zf~8oTn>uFT20w9R-|*nu z?m{^ooZLRs9jkIYM`ixqSKa2)&z?Qwh%P*QOj|cCE~rK5l%a#x z30rYh??%B}NiuHZAI__l{V-T}{k1K|q$OAGhRZkw2HA$Kd$a=0y?ghjT7By`mVHjP z70WLeKQvA}M_R@ph@Q|0BYqU-Dc9hIGhWfygEWd%oQSy$6NmQEy@4v%Ff-$k0;eD6 zu5v!FBmvW9giK$C>DW8c5$iX2s7 zyaDv|Ctb1T$v6dB({aU$&n=lB)?y}=ek_?B$m`jRMj8puy!mP}TtCt@f5JZ*R>uOI z-?*MxH!PqEm9XoQEFmFb&1j)0kHBOTH=M~~sq2;vqEY!M(pSLi*Nql75i4ShHvehD zr19HBP3AFsYuf75Hw(lpa27y%rhIQ}Y9a?>){R0^EUwks(F=^jAfez>D@CER3EC%D zdBhnye8iJ=4a+$U=k)Nqu;la-M@*QM?cE%qN4<0popVZ&WAhD!6wRn81I7k$`Z)-t zJK$Lnj{)ZVd;Wu%L;da86Oq@Z{O|BvoAP{mH@iy?_9lyo(o6GN2L*F>{(@aI8cy-l z4-zYA!dxc|Y-*PZMQI@C)!I)k^|53L=umyx@W_D^UM5mp{+dl1>Msxs+?)ngXyDgm zQx)5(3BCe17+}KB;NYfrE&<8{a<{svDK-j{)qtH;2h(l6L7f8`+#U!Xzw)^0r&k}L z`d8Y>Cm#5-mwjqUPh(mv4A=eV&F=IpK#n~?>~&1|xY6JK9na2HH>OheVOiGd_$tYF z%7A@sBiu%&$b58l{x!xOs2GMBU-wxaP~d%{e>FqBMm}-^!2S}+fr1}1FYRG(LV9{6 z4VcMXL@3L|o8IC84U8Ar%?tUE)2Qy-9v>LN37DVQc56JRdSW%b02RP%Ia+uRcq*nJ zjRS*&A-&6}C`cPKIBB~fTZ2F4b@Of;1JxBhh_;^rTqy z@B&x(+5R%r5iog!i|NkZ!b)~ekNlK_(9!M!4R;FWOIPKOx?&@>WPh`tdHC}CZ$!&k z_JK|43|JdD4lzg{+76-|FO>ygDbhRrr+HTryxMao;Klz8)yqi#PuMj$vT!xPG~E90 zxB@CxMD|IEUPTXB-k>o2=x5k!AnmIXW>OdrUH~h1sF73St~lm|i3 zfA*k^k*3)%x{yMMb`8B3n|*3Yl~98@dLkprnTKU6zG)zuG@ImaY3Q{%GUMzH^dFGw zK-0XXk$MY<2x6(hm>ax=@CN(^aO>dW%mLdP@f-OrYko)BopDo+3*Pep#IcXwZveL`KdNjylj-X3V%HFAWi8jLSZ|pS3LWt>DU;=B_0p-$_1eg7mC% zwR}md*)_rPzJ#SM4R}_AC3C_I#5Nj1ghp%g8y@t+!g|DMu*}dM4b`PEVgSm;P*js= zuG0Lr!E~2w@SP25Z5aCnzkTXtgrEwuXX<(rr%4kba0Kt1eqRCi3zdGMj*L*+Lk5{D zNld+@xeW??bo5L@z%O1i0ziz)FqYh8wTBgvljuB_c0<46aov_imTkyri;>_^%ih0mP!C-N3kF<-lKO!r;@#PlJ@Hth!(B#}!$eise_!$3|l< zbNkG(Purcgi5vPmWDB+rB#Ldo9~g81&S@-^0kosuioh%TZ|TBn)%|h-0RbHd(_nAW z8d||f4R;?S>n@79%u+9H<$rwlsjUL#hc*DHd58jBi%UsKdCF#WtY{GDH!_-s;1I0z zFTGv-pPP&h%6-rm+MJQXYx2!dE z?PE#--lu+l9X;m|H(Zw2d0rgE0K@7z7%9Lm7@L;Q-Sh*#5;4(l^W%Be+m0gybR5%~ zg~o`)X99IvgZ)L!ACAr^W}WNeQ6pIf0fRd^l^f&m;fK>wVnYA|SVl6Ixabe#8NF9o zY7c$IsX;F7SUc>~)vpt$A;{bJ`swn!mDne%L|cl0Q6}6&9h5r&`6S57N10OA1;RHd zH>7;#va>jEX+`mX;1!a68F!W^B*spZW3R#u|Rl6cKg<+N!q z^$yd7O(wc4CSN&2;!XPAQmBA z2T;?S*Wf)scyOe|*b3Zjp5w;Uv~trF?J6|Pu;C}xV_L~!8T|r4eE)1YW*I!~1Oe35 z)zwH?j=9z{gYz(m*3b=fcO=nQobzMVZLzqdJm-2x(Y*Abp;$p{?*d!znrE|MNWP)T z6NWW~+Iu_=QS(}DbsV!j{JW{EW4ouFkj8M)X<==P5SE=N@vf=sa})vX)1&H!e1-D84{;F!!otgyz0{Au z5$8H>l~Ow;<#S}~B~FcOiUr<2VfRQJ?URy5v29ghTO3zq- zhHlfwxb8!xWXtZ-8CS%zh7q>TJ?nd5l!D{|DoG+&cdO5FdR2kBT%Y0Jo@`I zIB&l-cnrQHu&BI-R;fRE4F&@Q1Oz@qcKB!fE__)Kac?{VRW}r|=Lqc(3`rCT(Z>l~ zU7YsDGb!^T0rZZbpy1htT3`eS5I5m}JOUUXMeBAYy>S1}f!?LIIe$QBWnQE6&O90N-+{u5%H9Z8gm1YG_X%1?QxCOQXM z0g!2vig|KE0SU~8B$u`Wp$>-osK+$^gkXe1qAzgv&)6pJyyn&*ZI@WLlYF4acDJ@P zxqrE4Nk(q}V@@z@omyg7o-VzzBbJ{c3sXP7O3vY4Z#DTxhzLMI1_lNPjqlRm8$2<< zCv=~*v9amgItFtx^_Qo(aFpRzz5td3p>5HvQC(XbDmbt&%tl%US@cnfU7F@U@Ev|% z{hGy@Od)0 z7UXoXY1{~z-3bL3`S99nm^(-aniBl$C%Lk=hCGj;0uWObjA6i#9Uul zcB`a85EjSL&`G3{diW4s$G7Kurz+mNX8|>(!I#C#mj@+Kgdl83Y_&~Q6KjVdO@rp1 zp<2-LM*?L!%?D<;Wa;r9+!vvaS%wA_=v%PASKUf3ySuvYW%;UqNl|V|n+$toM#}Qr zLDDFY8rMRy%U_~qrA6!P$`U$;tw zz9MMOM@ZF)$z%HUfW9N_`+YH?k1iIeFO=#<2=e7kdg-I)Nop@XP?k*mOfSwc} zTwi4lB)Y~JbutUXOYG+@c(Ua1%MBp$ z@dDNh-hs$;|NZUD^}pR~YrswkstgKA?}*IkW%obyxBK*ln;zyoEr|GDDyS)yyUk}Cp=D@Jrlc45-A3UkI6Rq^C5@MzI6?u!5&NR<;#)7=eOIt@MM=sDm^e3@_gYaN= zz;(Cv)O>B|JsCBXvTvw%e5H9c3}q6&TiBYDWA#@s2! z=rkfs)K>xRoRX=rmO*3Ym0xGiVng*gnIoTCVX;+b@C&z9p?g&kYcL_kaef4Rvz-IN zsSJ%SM=eXz>rdm_9`GR~U>X^*B}B45)IRHU&=Oesc%hBhkxKXoAV-D(5Tg{dq{Dqt zQ~T{nQ;N9IR=?i*;K454-~223E`RO>S8c!#^$2;vEt}#Jnf(dPf30zhFe-$(cy=GC@<&cQtl{jJd@M4%e|q+HSvx%%Dhsa*YC`w1*~@mqai>oyc2e& z4!FKpsQ=o)f==&!aB#3Us?5{(aU2p^=woVcG~`XnWUGfho^;*V3({tkiDr%=Rq(nt^s^Otv^q|MR0SFnbvd z5Et@~ISgOv!^Gadllu0N2wt=}c?hOGuqv6ae2ok1UDj{)`R@qZmAk5u<^n_iP;6_? z0o5Z8Q@6~SVM61dw|zFTdvT~{X&RAEzXhZ}%|+2_8E-I_AHbU|S~)O3WrE zNkh=cpCj&#q&`_iVKU6o=2F$YCyDj)c=+eG-vVG>APZm$=OIuL8k(A531G%lYs0Z( zZqxi;<(RY2VX|DR!b$uZ*e*aH)mzj4PmfhzB|9BkMov)lRjCQByrzwE`JHNm^fMwc zSHRx^vnA)i3yLHU`Y_!OAc%T_zJYYQA^UmITlfZR1xAa|*g6$%5G)8yI~;lBq{Lcj z%kJm7Ip$chg^s%Q^}0?>OwdzeGe}9%K;4IJ0Hua`#1+p&Y9^y9*Ts~ zree-0=jv%dbRo~Ml`%Cf!*R($)QXPPygcV7tG+VOd#F%$_fm{c8W zmq@L8mXSWIPF8C@Vbl({L=Jt!l*hY`XSlKjHUQa>^VIhxqEwYZg`+=)b9)HPkiiL{f6|(FUAj-pYdgaO9nVR z9EdyM)xNB{eF1+03`Ifmif05u;VZYVu9mieed4kG?^X?8=Tw~ur}|D9pNg7XbgB8& zbD;aYT1MMZ+)!7i^)%`~2l-u4po+N)*xZ(@gb>{Nt%rLzenf?6Te@nAwP!w8RnCJT ztWvm?WZ({5eMibkoPcp?D-Zzy8jeej&2T1|UxDcb6*#_=oikZ0Wam+~dXQXV_~Q{@ zbD=zGZxshKz=Dj5;JbATd&!ESXepuBtYW_Y$FTUpM6@wyM4VER{c9#6&7;YxQekEW zbNxum07AU;PfFO|*qv$(kpmWxa)BWR;R)ao%1h&bDB7^2rSJdW@%25|C( zK9=(!e1b803zHc69D#!>{YRl#UosxJyFkN=B4QQov-jmrrR@m)|DQE_42bz>FH+tC zV-=@a8ztDxkk2Xj+35bPzCexQP}%)pc3hpHR6gYdO_eLl0K9mS-Snp{iUs|&l~yuk zx*Tcg>8m`Ch%M}D4HrF|0gpbdpS5~XJ<(XJYlR;!ESdPKKJVc4ZEa-lGNfh{RsW62 z$;q1{NsAPBL%u`50B#4kEdxKpGTmwN{@?-_uJ9X5`BN*o5w;w z*tM2VFP~H))^9w3^ufcdV8c=b2hu^Fn3xE?GN=hTAS;4(GhrbCY!^tsHmE94e89W) z@_(dg5KN+#8r5S1DT2(GSjXHj*XG}1$^%fz$aom}zy)dvpI@CgQe8m*L63?9o+NBQ zSzYA%UT&FPcOY3yU_p^wG#n44>FTAHA}=(74;2+Lkk4-TP*sJGeCS00&>zbH z7x~0(|0mvL_@7K;@Wo*XO0&=Om~vb*D+5CYf;G@%+(xUUN_wBtwkDC~JO;!=Af|ek zUkzG=w+DnoZK8=B2cP-z@}EPPWk98QJ9^(XOAdEDyto1YhkTYtK!7Ba3i>$cjb9qG znlXwdft=&pnOV|3yvc;crg7KVbFP%Q2tEzK{h;+DMtr-GdflYk_c2_2_$n^{f$J8U zEfA?JR{N8H^{f?^kD-o!G4K7@w28+6J{ss)5R>-dAsgo7#X3lbJLoo`(h#uoyu?@rcNKc9n*U= zW#CrDBxe0A*X6At&h(tNq#T__3FuiSo)9mDQ-|;wFm1e8@F#&bhZ`n@VZ1Z5rc7hUt&tZ7#*yLw;RDiXF5AN=|b&M3~1P*)hO%1jo}B%i$Y&5?3$OAF=yi~P0{-V6d9Jh6fE%Q)Zj zO>Ja#ho5x7bO@KY9vDB)_@DAcZa?BM6iUdh@hLWVs8t)q-mNY`p41(~Z}6B$GVV<{ z>&K_&IdKM>64W?I;t5P9oCSXJt+rSW&5Vjj_ZnFFfgex&WGyZR(f$xT5P&CFf(}dD zY%DBtTasJH5lJkP)rIVOPnEiyI)3}tIrd7;v_8-Q59ID5=D1M4P;8C%=7I$ zgN23$0S?`3Xz@F8ve^5FJ3$YQ*#+lm)v?D&j@*B72r_Hl#2YDanDTlbSQ@*0xrKz` zaDn*vH{nqXmEbLI0VdfCrrvFDy~BdBcBaegK97@h@U{N`jDP@HL_D`ik<#aXkDq|1 zL<7d~6Ok+4a57`>3R5x90AX?k5CXggw=gCW6`R7~e470Z+E`WZrdCeo z`~o)EN-!4x-|`_3H@7^DTcCUZN%7fe)s;gQ`TsqXPCOf}|2V3YEvxurA_iW;Sorp~ zgTW_0=^_uU605}O$!~6b!L$T*rPc)pXCQO{T>b()(vByCn3x#d3AB&3F3X2>nDDHF z&yW^Z+y3r<$~ksW9D>q>5akPo>yKiP>yk^>OFj%5S%BDUp4?l7SO z1QwliV*PE%v>>fFoNt!6t|sX%L1IVZccjG@nXZr&n!9_olN4lcq_C3dv&jaH)wm}N z0(ICGyblfhcbGK=&(IL%2~ofw3-b8&`4w_17lLpfL^~>E!Gw!6vT)!>j+r1I$@8~% z;s0vw%cHr@|9@3lOiCe1MY3dm>&o zDH_qoqdu3~74z_0sX`%7gPzlby@lk!J+YS3p0u2tzko;9z@5Mq#Bp{Lf_)%x{f3S+>q@5C8A2z1uGM;5;yn|Sl&WcM5IF-_}z>r9i(^((!L1%`(39<^swF^6P#|7@3#^M?}z5k*o44^h!6EiGbA09xvVA+&n;&*;RA`Z|*p9E5ga5QB;jaZG-u+v$w%aG7DRv!jsXa((UoYkU?jueCM0H^s);%V1b{Z1httPf*?M z={Oggos)rYbgj4Po3d3m92S=9&MSh_bcTiI)s|Puqm;`WjDMM-0m7@V0bd;qcT4Hm zFBDBUt@fMMPzSNevJws66evRrs9J~?kHPpF3GV?kbRH1M_}r7Lf4pU8+mA6G?{8=~ z?i@|JG$e<ufzi@W@(z_Bs+NI3%E{BAEe@ zCW;nMHnL+bj0ot3kui;gM#V~sjH3qf>1gDdrqg|n?~n8{CpsH5dy zB6zIzCJ)m)o#Zy={iZ3cb&KJ_`qQBi+r#W-_bR06w@o*PDvnENUXF8!Z+L(1UE=wd z1gV05{~Gu{1}H!3K{JX;a-%T;TDY62U_r{tntdHCM~4)D>{)kIzUMM1ro`yxz zfE{Txb%^(dEgG#}tX zL)i5zUPqVeM6b?5z2=&|$J<}aI)8Ry2^ktt77(K>xF}dyKh6Z!Sps7QS&o_qRt=uU zg4JPyfsV$DhqaHjy57H#hzJVLBc)ywRoa1gUT#Pj7(jS>dXoD8Y*g?L2Wva5A&E!a|vLVQ@ z!jJWL5m^v1?u9cuWn~!O7H4?i=~R1bQzU~A^nX+H4sZuFOX#knX@6;d(xI?7g{g^+8t(xs4~jkZizoXG zW(R30vW`^Gtu%wW931%jPdU{AY@s96>7pmDJHuj28q=#w7f7-pir1RHx)|hX1mMBEO&GlpYdI342tsB5oQU z+>U;OK*}mklBa4q?y7SZFGpKwHP2a(1Q^n0fV)Q7lE~W@YE&LlS#KWRNU(d-3<1y= zioIms$m5&Uk;W5nM}2M8ewv}x*}n0#i!e0d)0HRlvwe2%x*+`J?dPYPe-1p*FpJ(( z^Zvnv(8SwnS%M`Ky9y4lt!Q<73Z8bA-p|Xc+j+K9&OFLCc9*QT@mv$E3dY{QM&Lsh z#kUH?P5$?Y>xH;-rVZ5RV78BBcKYPzzA?Ka?RjI!XBy30+VgoEtTh6a($QSGnq3*? zJL~N1%s%wfg(os0s@XWF)NCPsA(?Ai(PL$9Wh44X7Az8`jJzRpaxVvY8hn2W1?j~; zehcepiQ~~$_oFN%H~!&}FG+fv)g8Ol(6|7&8*Xs}0|WVNp@%)MERP(YID*ie#5_qB zz}dzZ`>cqg8(m2klTpi92*+7L^0^7InQM@r#mMd&Q?S z_cQs6j$E`_&G@iHRJ*o-m)@V#@IZG#=ZI@6qAZH1TXk%oU*I9)qmL-Ag`nHHY5+Q&w&`Sk#sl`C)BtEkIb1erY zl0+v#RDO^4?L{iU8Q^q?NR;eye4TjK5Z<^uPt($T>TGX~=?Gmux}>JaX*p|LUD>Ut zX*flrh^VVe--d7;p~|hEXt43Sx$U8Qv6b{HaCWGbcvJTrxyH0w*ND~MNGHBKv|dHD zD5qpmlmi@IEY1^oU{ ze}m^3#bdJs=zeHc0h@g+R#)fbi|w%N(YRg99;k=|q<6m+(O*7puYLa@QM}&f>%(e+ zd-`sIs%2LZ&xyMc!iHd5alY++Hs*SEtMmi6kF3q=UlJL2?X|b*qR(d9n0K*K^jDzQ zt*8_+36~dvrlxLzdG8pHC9r^OC*>?OU7N0E7qy)S`$sY~VPaeiU5vj9svI`Wb|6it zUk)-Kxgtd}yx_TA157!5d%p5I)NM`!k}b)HcOu^AL=K(Lb4H{U5v2ewQv002NHoR3 zk4-O6N)RCrAgA!{XL)&fpZ$ww9eVp~GfH2QwTF8cZC#eQDSi6xNZ4H1q}^=g?Krn8 z4W3h?URV2^Pg6bU_2fk&P5=WC>6?yY7D-{CxFPb8c}l>e7ur=%S3R$v?3+$%$>|*& z6bLkZw8+yO_9?#ztL^hp6+{(mkkkN5N|bB+ZK0yu)Suqu!gG3tZs>wAeTH>j7j3CU zkRf;Q1|0*Rz|!}!7D~g)-7h(cw}_>>f&X*mNVtpOG|JU%77Kw* zEIsr{0CbjykLl@i>8H_IT8wpM5)2G#vmvi}6DS6DNCOxZ@tpq}Jkuu2h6BAQv9rDK zv~2A*Tk-*r>Y7lwWisdl+c9a&=V8=kB^$iocpfoQ=JZr3xT>9ZpUE-4?aY2Z04>ld zU|Esk0873epV;bs!@SMxuFCFUF7YD$gloEezJMZ&OCx`LoB0Jem#(mv|1|%CtF@0f z5T&$Or%w8ere6E03{M}ej~{yN3wv+(drKI;roQ}=i5EIbUM`0n2d@e+amXc5AG^J| zp4hoakRkljq*I3$@H_13kQ15xnjQgkVky7tQZY{zGwE%?hPk}=-ENNjiJX{p0tG>$ zSBGLZF~%y;e^%~%>n_wpxb_ZtFATh`0k*wm!x?ZBhNbq=iC$Ns(CMDOVclj`1bfe6 zB)J)1=+-C2Lb}m{_?8Xtkm}R`CR^u-Y`AGf(4Msv%Da*+{u)(IO4Z6y=Fk6O?2s&= z1SGz9eA{0FVqOkTpN0(`92}sZObH9JEHVUxL;4H|pvynfGCXU_Sta1CZzrK2aAwF$ zxHzJ?{ibDIqIT~6;$YV&({Yv-21Xu2kL+V88?Lc>TC6|H)WJx~XrbywSKy14f0h?s zL&bhaz{R%6kfdUg?E=8ow&*IHeIz$U(s}Up7Yp{5W9M6C@ZEv+Y{s(kK`4S5{tI-X z`QE1JCSXV~M_B_epy1s4)vJhN&=7&VzOtpqq`h=>0qL*JPS~$~D8yeQQ&F>-&z{

Z*HO*8Cejf@Iq=`b%g0mP)@)p8ldn->i zq)a<|j(C(B4_!GmvXF7HZMLBI^RJ(id2|n%3?zlDRx@v`eK(L398VwLAA)coo4Vc3 zMTXxyQ#jNwRI1D`A4N0ZJ9e88#yvB*o1_47WBW%6QPr{(7OQ z9CYy<^mJ?K6_cLxS$~wuyr9KNt0=GCHr=rCxHsFk{vP^t3WNGb7JvBNawUsyX5-~R z0R>S`)7n|1xxE37;^{Es0WU8<)|M#co3+Yt9o|v zMc&H~9&4KhP1EIzJXm;kx=hsjq?^~+Z=1AF0q(#Gkw4IB#C=t!c)kO;u26v2uqeEpt z&&QbyCvMQq-ZU=3RZiQ_^X;@efw z%EZDCRnPT09=VKguyAHbfSGn+lKg&yZIKFbJZa~l1>RTC7 z4>Xo(GQA32#bF`I=NE0p1l|6lsGM#F30Doz9=9~FnRK=#yYM^h#5Yz-K3Vw zxJ`~zUteFaKsHtAm)$?7-bS|`_C9>;SOyqZXyB0S3f}u2AUc}8VgBp6pDL_=mS@;a z|Cq9uGg`nCd|&2c^VOY@xk7AgT6ofQb(B>QfBm-RyW0gFntFw{1vmQneK47||GHqg zHoo8Gg`a%YBZ0i@KS0@9Wt`4;$du{`S;If!RAi{7ukTBOH?J;@pB~_Rn6jsW1-6rz zDn}pyd<4bwklUCx)1GQFM@8s*m*EB&3IM#rxe5$4uw`wd%igC{`avXk?itot z@sALHZEF#$T)Ltb7swClc-X%D9qay~(YB|%!0pY9S3;3a&W~2v106P^6711wQG$i` zvqwJH4@LNv41+ZTFn@`}*pRN5Nyu2)JZcXmob+8-a-2$sM0WSfH=$o_ysw>3lGBaC zL=-abxUYJ#aqZJVt>RMd$kL!3BO^tTti{(z4_?u2W(g=oi#V$~-0x5<+$H?2xOZn^ zk9WAD*2kv@TvJN(I+Yq5`ZM+}M!f+dQk~XON-0L5B(*JqRHvTo74x>7Go`Stf0rNd@tW;Y(szm*+-B(n5D@go2U zkgGGPO5V{B8m75&N-bGRE6fq~=7eT>lnGT5c=wyD^JJt7MqFiAhn5oIepaDV7y{uOC z1Mz1*n9O+k=(ep*R;}E3gDzJ~NVq9PbJR=C=5o3hA43hc(5}tL?}XkUY__y$l4{s$ zFlRO8pOOQK)V`-@wJoo+f_Z3JLcsoFpGcN5diE=_xB!q6j{6{D_U(mXqeoRdW-48= zeNyUMDSgA9209PZx>}e!NA8`x@#gegEtQnMxQX~?5^u7H(((S`gd)rZ1W`oCDL*moEwz}tde$HoveIHkjXu`Tq*)q-9FIu4_mMf;OiCOh@aWlx<7 z%K6czz?(9g0i#mw1G8GfRcBoGTM49N|6Jn3NJZkCVGeKZYfJmMo8#**%li90PxZ`| z`feD>?cRLbk=-g+XsRfk($nf@awC4&<0ng|=UyYaDmJ$KwTI4%v*>TjY#Ki=ox}{R zPY4;x`2Lc+`B#EJw@aJQX4C(3pA&T@)NNFC^7YEAgSCIYRvt0b84LVIC&gusKqW*Y zhXYB45)FYAH68ZiM!Y89KWS5rDt_{0^QU<-EF08aRE>?n8v1UxP6oP5X;m{gfGu)cTl9v>1-2 z4MU7bv|t?_I&Q$i6%DGi=gWG2+^@fTkN<=&ullcv%N*tvr2^@d7f!033+xxwZYusJ z$g~l*Cvo!3pxhM|zZF7quF~bnr&iPPK^aPP@a|BSn3o zf_Ed~IOt2)Q~e|^ER;~ga2fCu|CpLkId%2oi0~9T3HDu^vp(felWhh~04^UUTF)9i zjrJY>RgC^T+z(3LEo=|gSAgXK6dc$T`hc#7>rdbA^1I(fU!pp7e>9|*-evDk&VA{P zEOr(RsyUMD(wQjBjS4cX$M-W+QxS&$@#1td1Og7W0=r!hj(z;b=ngr{a6&`a6|`rNt6}nh?8JpU@iI+%oi^2EcN6Y@H5z_dXYxUbj!4XPU&#R zDp~7%HmK($IU%SmRnqt$+Hz ze2tF(5R=h^N(Wu~ydP;&2i98rT=ITc8#4wgD7td|Pop=j*slL6V9v1G`q9_Vp!h_N z@5~S5AB!ZQrnIz_ba^HwNxNz@c0IAJ95d848F#n(W4~A5&c$k2Z%&Z1BT%+5TvRvB z#eUmc&D-x zzhPiB^u4Qi0`$8X(qx*L)l8W|HDNEdyC08s_)pRB>L4m{e?c&$8Cu)i%RV} zvE|fWb{n{--a5}7+2Q|Q?@%aD&q@9{F(dv5F?WXi41c)GJO`6N3Gayc197rfpH{vFWllmjaUjD88UnhW3}ir# zrC!Btb3cfk&P=>6BB38RQS|DybLzW;0}fZo|5|i7Jk?}CV_uZ0`ab$)cXrnnF5aR^ z%A}%KuD^~%?~_-Y`y|GTlC?(K`fza(boEx?n=IAicW@qTO~rZObVE_~IE%~9;rRt3 zdCE%m)7>x)yWt;>Gz6tlKE2!?_+1P^`=Cwtk0M{y7{|0g-~?18U`{%h8~ zZlTp##(%MmE3m2MsP)@%EynTc zr3l#1tF+cMMI@FC&Nn?uo3X2kr8E*-6c$MUnlG;1!Yi{6Om@>}{9%Js9sLW`k1INw z`^W8-813u#U3_o)lVywo><=KAF=^zcFIAU)WI#b<-hTb&69+sKKPUWT z`|FBv-t!J#`tC~RZS{WkCRxCH0Zd@FN0g-Sj$`o1LdC1O={lbpky(>BX*Cd0>JkB{u+Wo8?-rSB+};W3ynPZ zp?`Yvrr?Quc#nr-W@MN7S;aQRfr#=GRS_C{MVeAhtF;6WRvIkS9arv^l=UrHd*t|t zITxfLL%^o+{SxM5di?ha5fRfopYHp-)iU@+4rvt?pJItuQ#0xxah-hLK`xUKkgQfA0a|hE(=Qkk7eg?6$e`1?Y(5q+Ism zY^1Gs5725Z`BZP2qoQu_R1y&jF$XRs`ns6#aj{cwL(k*7zh3W?&PzMeI&=zG5aj(t zS0RNWNF|6&?NZ>E_vxYn@g#7Ag(+6EtF4TYiX(Uwf5h@_y2 zVa3XxV`@@&sv7i=$xWD1ct&|W{8t(gJi~QkeGm7c>RJQiUr9uczfSlCsQIHmbUvR> zrF@cviW%-nLaIvMLCJn%IibYh3VpBq5Z}NcjNiEHoIB62q&1)PT?|`S zgj6yZ97wSM$^aI}n;)jHRlH;H=X=yof4N{W_jdea?d8(XhLT6%{c@K{eh`6_*aRuP zQ$4!h7Ozyls7pxL_L5>g0I2|kTD3^0)_kFcuTTBzR@feiRn3+23roNUQ?!nXhG#4A zUW?$}#6=%YsR_C2#JOsN6c?vagf1Aj)FR%tXR)UAM&X^oeKo)B)5I|+>V#==pQ9Zc z#;D;3e!-9PN4rNxjm+5%$SI0lr6x%UtKhT{VI5?{0%bTl>`5KfB>JpbKd8VE_ z?$zewjI?YZOg`q<_(QIc^g(eYlYWgBtsOo1EA<3%m6w&82Rv!Clx`-Qp2|OuwTgc) zmGttaAxY;Ackj2<;_tKM7MIUGi`Psf4@60dsHvm>Y-~|#nhwq}0Q6vYd0HxaYn27MysxyzTwDzlW#b4z&I2Soju=UVu1BTM2Q1M*j-D8(AN@NW1xbKc})T zLFl1XaFicCd^g#oZ9lyOFMXDh$=8YUzO?U6hB_+JrK457<4#4RhpUwi?{vWORuyN- zx6A1sQn#W4(nGv~CrvJFgD7C?I$4F(ulVp){{m1;;`F?$Pn*t|^7|j>jO+R!rr2mJ zxRI|WC~TXN9+!#_Jl2tk@aujt)G0ExxB5O4r(ym9nUM`#vBo~&2JS?}V&`p0OFHT! zu1LPX!B4wzK)feox!5C0ZpLUIsN~^&5mefxd?0qj4wM#4=r=4R^mrwi#zgD&L%)RE}Q zi}s9B;xO-qE)ITtlp?ol-|vsEwCrMuSC@}sg;tH&=r^msf+a(a5$ZZ z&8l1fq*+IXN(t@CS1UQsb4$FHyvW_sdZsf&e(pL9*V4K}gJvznjsLc-rVXrL4dQK| zq)J4&jwYojhw`Dv(OeI*u6vp(A$YE;rhCcBxtR*nH1I**17IgoXBdiw&wlFlvf-(Z z(cWs`Gb!{%Hr`!>TeWX0T)EE8Cp_U?Pp)vzCDwmhdWgddj>^ehe=o9?yuffH_40`n zjGJLnQ-LWaetH=k4JxQ~aIrx0T&|q-JDLJM`qqfsQ6Z7Sy~lGc96vj}zwnlU&zGF(58PQb3F-kPmS8*;NHs$~{l7H?#e#}h#%p~7aX8JjY zJ4XA!`Jh{!c2Nn0no#9;d6H@d{(pK-uW2W*Vuo!>xRd=-LSI{qx;|6u_VU-dGz{$y zDJU1AHrxfQ+PAyE+;#RpbE1Oxh=z`x{f^-T^zi?D?k!{^sw4bYtEe!_;3lLE(16cX35S~JKd|W0m10*X0(V);H>m0V>VMK7Irn?&_!O@{;t+g*@3AwG8 zX293fGG)Is_9L@2v_4Wg=>+Idqb)f`Qmruw9S(0{Ss26sOypx4W-+9LZTGR|Cm(NA zlS7K%-bZo2_^x10!RgL)kOd9CQVWZ&Z*;3;Ez;P5V+Gs#!T8Qbj2OI zBm_y=2+@qT(jFQnTL)DLq)=zg^b8@QQFChj@bZOW@6w@S#7l0X=!6%7k)z$HYii%3$gu)z!vAPzO9t8X< z?rsX8ipk12IAi)Tp{F>3<;BxpPp4UCj*)1Efr*Qkb1D4Lfs?s;#-3xDNtB=fG6HO6 zA3di<-ZgYHkS)j(sT@&`Zoa(+dz>63o2f`-@Bf~EgBvjzHU$rpDNG_@hf)d@vE&s~ z?zkuw`Q2+l_CWD8j9%#|B4VkQtR#N5oX@vp&v#1eWrE06=dP#xYx~j~=Q0kK;CpYR zzx?oo|NZ0{YzE@|-S$ZA*^#!i%dunlc>fN%`h7)>+Z~%S6Y3acgq#P@qUunCPbmiY zPzF8=Mq-YI9Qqmtlruw9c1f@Qu}iw1si{zOY;1EQ@?Px_5Y-XItDBL3s!SE@DqIf( z7Z3mboNj%KoeZj6eU#4At%=0i+ZDXJ!RquK4~NdPq?I5573cqs@}0#14ifcAMjkRU zF_|NsoNV2{Hf~%+1<8{PZbx$H!jYY=n`OSd_-lF!cMHi$vTjZAot}1u6VVJ2T<%}8 zvs!4^5b*9?4zmm7gxMBPRtqqV;TL^e_rbPp9ywlcC!xfT8l|kid-!Th|C-5P%k9SF zh9#fcbne-Gn^!v6JNrOcr*Vb>*bi_PV6IP1p00|&^)*!5?QDzOyxQ)H1O4qwBJ1A> zU-&$9zcc=;#wY$EWl~eYkHw=Lwo)g^ZP}4|>@OYMVVKIfS}2yk^O#+1`;zwUufYdD zduJb;SK3)2J9>8^bMu>>7oU7!q@z}2~56>GTwLJa){S7BgJ-DFzr0<9LhsZR@Z4KxbktNzdtlCF` zc*IFMu|RrEa&X#@(Xq1xKN`s_k%nlj5YX$nw_fuv20jmQA`vOU!M@#Cjm^Y~U=l6u zR-*~o^%nW?~ODaJ7VrPj`o7lT?Wr-awF|Z)x1`!d&Jvmse+h1`Z*A0yg zgiBUBd$xoPkWq>{I9oDF>OWax;=mH@(56g#KNX9;1m7=jM)eFl8lYc>u zlYt3hs?bTsxWQoDG%z;AiL{)5Kc7po3Vo|Yx?5&>&wJ`I%s$J+RoYx=Q52^~q42fB zv2r8b{uE|KVfHK3@m!dp3NGu#`*X^H+l6BW0B4dpun1#~;8dYhxMd?)B@=jId8^Ob zjTxwhcp3jHom^Y88l70jwN+~}uwwz$XhiH2dUNL^Mtq#tpl&Ulm7kel6z`>UbdOSQ zyY}6#HFE@bMz&WO)M>y$~UuF}TO5h|>1o%s7?D!v6`3`?yg2k7I=l^K-p} zT~PCF-lDg_#7XLRj~SpGygEwFVJf_yjjg4+?Zyr?_{DNF6V>=fm6LZI=G5u_rp4%n z<49+G{EQ604TAE++E&j=?f)M12B!u9QMb3RpN6#j7u>YK`)q{oC`+rvR`K4Bjja#K zFI732=&)Ngj6Ta-1h1F@`2WjUt^T#pPc*c z#X&{HNdO@67Xkc9Rs`-v#_iiL^<9oc#FK5o6qc>5i5FS63T}PnF=KlS9%8yPrDD9` z$wz2D)xQw+@@A+thdc20GXaF!K~o_(_mJvSHPVizAK|I}wI(q-{tjlI21G?ha;&}a ztf$(~0PjN$P7q~xOz%^zfCwxTHW;_D%aMHK_wuHe_ei_ddvL3W_m+IlIiFuk(}9Q) z6(qq@9-m7sxjgSYhC#fM=#=S2Ur6snL{py6*oteqR@;9pwxZ-Kib1vLvu0Jn_|&3Z&XN{YMjwDr$_!&-v)# zT)+Bf{%R(w*%xDOs)Shv!w@^hUdl&xGql(AvW9afv{P@O(OMZL`ol95Vd$zkd3oxe zKcS)SKr6G?Lxwf`?%kurxS5F&MGYrAe}89){i-qDZk%3zZ!Okgd-rHO=PP3|wUcoU z@VsX{+PH-rZsdGZkk->-Sm`vVU;Wzi-_7X!ZwGh&fBTnFf7VNE3aXB9I<1HS>{Kd> LClm_g&-nZg5hR`A literal 0 HcmV?d00001 diff --git a/images/loss-l1/pr.png b/images/loss-l1/pr.png new file mode 100644 index 0000000000000000000000000000000000000000..29be1459aa378c5f1e0788d3eaea61d122549615 GIT binary patch literal 16896 zcmbt+30RKX-uHuT%FsqhA_qkSl|+Lk8_}Fb&6K1;^E}!pn^e1$(oC9DqG*niQWA}t zHEEtF&EIc5Iq!Sk?>+DLUElSc>)N{LdG7mO>t5^s|4r-MQ;<8qg=RMmg+kdPdEu-g zg|eETLRnR^VIBVEjG`k4ehAu}yJVwee$B@Iij@IH_KJ;#skx1*k={S-46Lk;%*~E- zo#f&@@{j8_HWt=G+}t<*;{#mgR)*Ycy}R^qk&PA?)U7EL+AHM0Rqc#>eLy6psS!G2jj#(=7n3Wj5J?1MZB@xf)E75uk8 z9sJVDur20}#Ac3={J`orx5Liy-fp}We5}NFdFk@eSD!Xp>zK4e_zq~)o3#w&*E^+# zwm3~?waxVCAKP5?JB4yn@{+bTo=M!`Kr?nusK9jHsZ80~3X zmz?m|UmF%DBA06tl;X6snZIAm#ULzL9mk3pYM)8&FfcSUnfOr=a@^3TE?GS~(rr%i zgmF#$YoQ+%p@%~&RAcqca)wTZi#V(1=jW>^*LF{hwCUzKO(~u}{pa*xL-d?U={M4g0I*#Z;D;7QI9c9Y3yg!lW*_M##m* zrOf3)t#M#MfqP8dMOFSbmsiX#qo+$IxU{q54J#wa5L(^lZ!oB;y2Z(bSGmr#9OlNl zYRlJtuKC8!X)z{9rz+QRf}{IYV#mn#?>?DF)@CZaF>7IwTu;j!V3WcStNL7{vB15+ zX{tY_F~h{<``bVLSwbsf)n8rf^JFsnyP%-pk27aZ=)K>tI8(5EbUZ)OeJSf{bhJv2 z-Ho;D*7ZNqH2d07?6o(Qq2Bt{)sNfHojohyW7PEexsLmyZOH)ZRPzzd*D~9-ZKK(+ zK>>3(`TaI+fA805x%qDe^wy*5ss~aFQZWBzZEd>vx|%Pu$Yc?%n8399 zi_3pz+YZG3{rB&)v$K731F7|4g4Si)6UD8LJ$v_xI4K`D{Cs4)DGNIvpK_(hOju`D zvEJ8-N-^E51*4-DTNruYk2SloPnL5R)Rg)iq~E^%X;NywMtKmoy(xDJmgZ9|nU85h z^}6o0YiNa|a4+%$U7 zVRK1$;{@ zBC079_Pt;BODcv7+3sn2`SK;*-o4MG&-)s`|7%BFw&^2)bC}3 z>FyK8%31wfrrl+MSQ=k2j|%NG9G@}YDg|z?vJt}Sj~_qI9!SYiPEtMU`m_D+eIFmY zM*F_1nCx~>rkYq;CdsNwvE}5?;ir-;J3oZ*T)9PdKCRe-g6rJm*Yo>apUn^Fq)HjD z2T=-zqc(&Y=h7_51ifMub8Ro7o>SgoCjNh!RmSFe81=Dys*v$^OmFR$Y)j5`j= zSO_g)b)95k^xApUsxcxUpeub5)kI>bF~hsG^g`!g!z;P@M$?leVkO1JjP*Ls&pT&> zkLf>n`&Rs*m{`I4kr$So5@-C=@MjUv=7aqF^&2*BJl2?Q)H$i1r23qfh4JBGdAm7b z$q!!K`Mr}7{4F*Qu}Lm=7&c-teEIuo?r7nr5BGK)eo#}R+({nAEUSAbE@;}oTavF7 zD{~BkHNsPr^obmj3BK&$=*W1NcHha(MLZ`>zhR_UR$~Vu)qZLj7#Pqyikv)IcfBz^ zq55@i@AZR1LfIE8Htjr;*=3)k6zB6bMLS1&SSgt0;QswjN~cXy^Xf1U*1~U=!*j4? zy%w^jN7~x({FaSwgWrx78D|JBGPYQj?3HMGeZzZj(6r=aXvH;~{+f^1zdk*eV6rZe zDJbTqG2MC>mPCqAFD9q*DX zIe6f}9~s8ARUf>WSi_nA6m*?S$H)|(iG9#Z3%I0aVex|Z`0)(0mTX1$pnYyXPnY=a ztH){y7sVPGRvf5%o`D*6phS4CH(IVT$ENS;n)O=)=8o^!zFip$>csUg;@a6ZWUQ0@ zNvT5KPUQahmy1~FVV_lGWFFAa&`j2<=}P*G&h;KtKeCgRg@tZ5tgwgUAOCneR@v9r zC*(N(45iQZ``cA9adAP})BablUX91jqj!t+-@H#$OGigXt_fp~>n!m-rLCux?~-MD zG8F%CSQ1;JApJ_wx~ZWiwK(}myRZ_mpWK(kXaftBiR5=%{8{ zQLzbw>m^$sQlcT=RD=UJmY>&v^-@r3k}n+ z9~bMe4|s;c!?u6_X?Aw@va&KOr=ubw+IX`;!b?`G*Q~Lfo9v^>D~aJVs(M!Xnpwn& zjg9SsbP!i9YS;e0X4Zu1p{68*@<;y9T<51h@@$q3;gfuLNS0$d&v&1g4omQw;hPp~ zl%sw2o)U5rl^A|Jl2S&Me}_*QXwOdU`C9_HC|ja&vR}t`z=eJJeWf zsdM9G=y2|YoXAv-Qn8!oVo44kc0lT>;mkAWs&$_pAE)2B^N_Bt?sN555~+F98jsE6 zxaG(S)GyiE{o{vf@5y=p-LE$J3OAq{CdfyMYNY9TkUk9@V}w#1B4nGWzi-~2Nz5%* zPha25bp*&GC`TuXW1AU;_Diz*@#ne)I^n16xu#1JN8S7bj7J%@e|Bq?k5hJCso`i_T{P5B*oJ7 zjqbYS&E(EfQunbrqPNGbVM~?^7dm%ns=T72Hch{zY%*(cZmN2Iq#(7c>nbiK?RiCj zOHz{IbDpnnr9ma@ceCECRl?$J`L1a3QS3^wbdG3?ZDacNdCvB=DcYL%?%gZ<{MoLt zlIOwpwq;ay8z-|24cks{ekp$|E35k=v1jgXrP;XgYjc)$`1I_;L}i9aJy(luy>`r; znTPFgv-+`P$9zh<3uRF$Bp&Q~f?peBN%(&bPYMX2d#;`Hx^xK`Nzu(MpQR6QE$GTF zr*;p9`-6sJYSUk13wyY*Y*7{2ChR#sM*E5;dTwFrzjrv|ON5B?{aiQfH3BJZgw5-c zA4i*)4!7919i2Ejg}WwdzDaq+rJWcf9h3;HA{X@Hk3asfnIC#H5N_Yfeo`P@!1Ad~ zaPW}irPsAR|9?l-PFY=+J z4CbK5zckFDM7K(dTI!Oi#Mvsrwr< zk|cbYpAWa>oRUZ<^AC)5y*1YnuZ(@-f}~`BO+qw1r)s=fs*Z76eqQzFVsww{_4{0+ z;^Wy$mIx9ila3XnYv1Y^XE)rOfH#<^ljmeGr?qe2zQrMP_iBGu>43+N6Bv(QqiZk( z6ep0X_Vo?TEhxUSp(j-|G(r>=6(?~Klb+Av^z-B5Dwf^PHQojmx@iuh5V(I_?C9ut z5OTug(a*V@k$jW0XV30hwQ3c$uLDZ%mKT`{7%SQ5E->`Qs#_{rDNas8T>R#?UAwN^ z41W9i6W}#WG;Z|ycVIz&lvuMnckb*0N%(N0UQ7SMu49D)fJOR|Ugm4xXlC0aSXRsO zGrGCCNr13;|G8$pklBrb<{7CA7kH#5Quoi_s7=ismr6^e1>hVVALm6OG~DHRB}~+{ zF&IncE5L41eSJNqEaGc|(qa7%4;UrP%u+ft7ZzMP1J!hnX}mGJ@pEo&H_$J?)AXQ` zX-jr(pH{0wr?)3?`!;4~Gnq)ymS8dW{QVyV97dz`3&vY%%w{mYU7a7ik88X(HTpR} z&jj+r1H$qkNXO~p1$lYg4*=A5p-+84H<8MvUr==KLDe_BzdPCnw+)kz##n|Z64hwGT?77FG26%+vq zCH9ZZ|I?pV#j+iSuNo%tn54M|X|Xa=D4DcHJT`NaMue!9&N(yWbQD(Xb6v|~9<@^cE&t{^6 zzr3 zIuym?z||Cre0!D0ap&p51Qeo2PRm)=J&9et`CUGm<0>h*hl6jl`aPKO9T zzl*FHLz1VSJGVA=q*s)bA8_BtT`RE9VZk+*?z{8XiHX#C2AXpxT(}2K+ID`|{A9hF zjzT%-pqwcwE30z-dVKZkFJBZ4u3qg0CIy~nvyuV(&~a$@;7C21`c^?!m)oG5zLbZ{ zw4AfFzHe}WW4?KO9ou<@1LCVFG9RJ~WgTV01TKz^jrsI2GBVO^+LSa|c`x&|kDFWC z-OWV`a{00ij%$TN)uNJ{SBF;|wQ!0Ew>N8Qm}vU^W9NkMNTH>APh^v?br7YSugvD2 zg-rsbdt@MH_itPIW796e^*b>VPN%sHhKT6XZj4 z7QVl`-I%6-7w{>`Bqd8?$6>h|P~oW&_hn80$=+z+{^xI6tCZwLVh9CfI%)dl?moA8 z$O}3BoWVO+CA!e8kKfK+9=Kn8EnVX^_u(^mBxx(7%vs>SnhX=Q5^HC387-|aLL$+R z`bOJ}eCk8_jGp2WCe4|aq|4Z1`3&eT&jpp6uQ@-ftah{P=nMKSQml*S8&@S>80D}@ zsBBpiaFB0Sh(CBo6eT#Ym}hWVBcB(Dm*6*`VH)f$TS1;b$!jcfWM5s=kh{7eacnuE zRaN?9w2TK=Q6Q_hwo5(pDjIS1fbN;5XeTp@{nfNfT|GmrVk7*Jcy)lR zq4h-gYUTWjFMWfFd;jE+zxh($`unad4xWwVK?l4jO!`3MO?ULAayli{a;GzukwkR$d;h2pIF(GFk zQq~4+YF{UwkuXfL<@&vwfkx)FS47YO@ow!6c!(Q4w=d;e-z@uB-?yiJeY{?r;6KFM zY0hS@y38@WD=KWYziU9km(svfYvT*81p=KGbEIXH)q4e3(bRfatf3fm-KQAPUTpBO zQ2v=UySk=3mV8}t13%@vr!cFy0mJSrp-{t9{PM~=`I^7QTcx_IvGEAb#n6b%OdS%> zI#sxZqV=SiRXlu?)GWj5fW<7y)yiq*Z+?$Tq(fy=Fi7MS@21~Xd}M2w?h}ei=DX(F zRf$>yZQ6యruZe@FGPmQC-@l?XyW|}mpL(6GebeerZ1bjp-tbKqQ)m@*RK1Lq zdBo|NvuJ2WFTR>P(Q<$XkduMx?_*;}InbbO`uGiNBr`@{Gp;*7& zqHJ=LgG&JSqF2w4`67I=MBZ?qK;5x1+$mP7pNkXEPEp$sN1<16T-D!_I&IP)qH9np zQr8i?mx)4A{%gu5(z~6x!4uO&;rP&c*3|l;%^A`K==DV0ZwFL}yxc;nukwS%ALh6H z@RiH!R5?YUuf9FI(lV@`^iaPn^Y#FjG`_c^-HaWd;$S#5X6^gWOFii!75v_!8T-s% zC$SPJ3a2Njg5}CD?&tMnrUfzuAx5chF{lEv7r7YC&rYEt4o-CHU9UNhnM-)?<&dV z=)DFH^8e>2uCd`^WA!q4t;pr?PzTN1bKXo#%VY1#| zH;g`bM<}_F|S-?f;s_d)IogeT6nufgx~I! zVWp~rL*~NbB0VEx!btx7u>X8z$O&n%KSjWu!oos6vt|Lvq-shT=vaD_&2%qq`V@;x zN;pCDfZLRE?1t!=n3BMA8FH4P|D6DL0$;vfpQ7zFk~fo%Pm4@^I$o8OHP62Y)OOp7{}s0|Qc9g|AKLP$I1;C_H#R-R|A}=^{}73YO+f(n>b(;t@YAA5nv{%TdG= z5E+>Y`DoHVDCS@Lqo6JX@C$mL9W)K;Mh|1uT+>nLv*ns2CB1bH{tB&o?mAdr%lwr-4oWW8?7ZaU{r&mH+BEfL!wN<3}HGRayMJ zfB!zmbZ~NV@_|(!%FCq{KN@`n@c8r3Kjmn#4em9Y-eAWwTu^jz$pr$gd2(jG?cleI zAOMQjuElz8-OC}lTiD^nZho`m_wUb2DuQC3u>K*_VpA=9|G|SAU_a1zmZ{;ErfpVu z9aC0sBFOu6Tb%2Icn~7&_)<|xsW#u$nU$4QFysO4KG8uw#ffI?%8zV z!xc2S^Ctb1@&Rnrgq<_}K6|%bq7kuQ>($Psf1#G;;K4JH4j^&#Y^SGC0>2kL&dN3_ z6M`C?kk@7Ke8EELQJcAMwkB+t%t$Zn7VniktH>ssd8Tcph+Js*W3s=bdw=CO8ACSL(aElh4cx)z)G zy=c96`#Of$m47_)>mR>bcmBr*xh9)`Csk*ofRmY4o4lfc`e=m!13%*UAvxC zp>Aq5Jwz=vGSmUctc;1HZsOi8G9a0E2dJ}gPv9Dx-R-rzR)(-A=~mM}FS(s(rOa(I zAqDz)ns4)8)M;7w;9qJm%}PD`^~}jMTXE&$!otTGkIbO`t(?=ps#)hsd0!b+8uiV6 zdf%!rICq`eHUe+1lw;MpN796UG$UaoDm4CZE36Mxb8+lwc}H+X3v zjgk->l8CoZoHoxBKV);S3YXsYV>y}fHeVj=n~UR`c()@pI= z2`93{cz1a%h|S`3lR3@Sttm?#t0*^b7kdvs0`Ph)XdUZGyD#O*nY&W{KOi`eYOu60 z3sL$Hzr~))$W+uB={A=MZ#X(ElI`v7wd%YS3Y%vjU0sM{|f@U~3 zRj=zM^5gBFYZ_l%xxH@do_Kgk*P*-Y7PNXcK0Y4s_umSG#{>lh%RYXz6s{~SjnC!A z>tdnTaeFt__n~`BvB8yB4Rr84Ad9I%2I#L(jf`-eR!6aZ^Im`Zjve%LbX^X2JUmqN zizyT>#%3eW4lD0wIyyRHX-LV*)xnH|J{6|Z_ToyBL0dE^JnpLqZeBf|p3Vm)HtL%` z7!Dg)y`!U};A?HLA1TlXa9bBwSFb(CEj!Ml*PMzlyn6L_^w#*R%mo}jA+PgY`?L#p zkH>6);DuL5^WpRK+qOM{=0rs3So}P9?i{_d4Ejihd7Ee)PljP7^9j>$FTPzqCUHPd_*$jd_0&Aj2xdsoke$P%Z>ARGQmt^iChJ2o;~(~iL5hk$TRX{i#8r6 zcsboYaw7aYqxamXfR&iIb&o*Qn^vcCOYaJ$|AgaOPghf-{ACt?o_8H>xgug|D81O} zvommM$zXPotG=`X3S$P`2%?M<17**S{sz~Dv65~_O?3DtMaYQaq^uRgC&vfJYy!Q2p0po`l1v&DzU>OvK;04yF+@2c}XiW z`8VEge3My@?3)(5P$&q`Fwd9N)zt&F4}x?5&V1^gE;>>E!nm~Sbc3OgZGQmTcMJxs ztm`%#6XDQtuPkL7O1z+bHhr#EPz;gekLu=Yq2=c2Yo_Yt(f$5=6uOe}=Pg694cj%l>@eK-yRSiKJ?9QdQd$N_6lpt zCQ_5jMPpJ2qGbiSrSq2N2FUg&O8X@?YpkL1nVEXHqMRAxn4~2XyPS8n305Aku^X?W zMQWs9_j6mEQj=7KaeKnzyZGAQep5F76SZtHOQ}*et0yY~hBPXJ&ST&x3a#yx*|qg? zp^A4yA*~Xnetc}~D=b6qtPzo!W~KH*%yiF-?5}?`#%$$>i*?c1I1y4}4Ge?rGp{Zk z;b3Enf6#~z-L;r(cBm@#uDHfI9f`M zX+v(e6<(fiTTTI4O@v+6m}PAkLyyugeA~6_!nD$`kO6 zPU9aB|C#{mR&Sw+2np%mz>fu>h_X@({T6VIlb83U;-=pyl;O&7v$fpyrLxc~ZMsUg zNkWkGCo+4uv`I7jTFTqNl2-J)hFF(_{OaB;|hT zik(EywE-)W*}gvuvyPH^Wt#E6_P!fb{H(m%cktIgZ%<-+epJP%oEy{18B~1iOxj(~ zP#`)j^V~5Bzae7Fe(>3=`89-0JHgwcO#$4^E^rw8p+x%)VVG6u4V+qNr=v$mp@Ku6 z5ET`5plJ=vkMXXLGz_@Ca5=g+1H)4*&rs|{PImT$(rJj?M74ZwaS`w9RoK2vORtDf zE7=Z)efv^@mj-~WAQ6PJunP*RlZ_9RUghx=UN`M!+h}~!Bb4X^DCJIlF+qF=Wpt8? zK=s6OeRq4k+R8d~?Alz+;5?XCGWkv4mtZxBGZx9*c%l?x<~Hktl5i+A3f%HUmwxJ( zOl62I{XAp%IV>T)1H(16_+;JL$jcIF-Sq<-PYDLQ&Ck&*-CbS1pHGb_L*+l=I%k8w zULS7G3e-M~7ok6#&f$Pv2&pm}m9)2Dc`+6K>Yk>NoDosh!-v&0EHT#O4lb1yaL=Ec z=g&%@Ov*JC6&2Y|_I{OO2i0-ddcM+|>4=zmiXRiw7=vYC0ZTb3_}cAH$x~&0vF@Dn zBf}?RbA_RP+9exEE1(}lTnpR%1do~A;*<+{o!E{DZG)SRV6yeYWKwz#Iq!f4TM0gEW5+s9Ch6dguOWp#8S zAiF+SNm4aJRsz4gtWrbX?_a09n**|_OR%A#LFM8mJcYt=jkQvWX9sjaBe-B?m6fT3 zr2DLY86i(M%wwgL5)nF5u&e|8KG)&JP4IthvU+vj6lC{I#rr^A5$`%aitzi>ktuS(a z^3Ym{>#kA@d?@@LEV16VIe@)+0d=7c4&igOp#F#QqF)UoU1QIA?fm#->oEZ2%m<4v z15U9iWeU3dd{I441EfMk&Q4!3jyxWsXEqzDjPiPfLX@7JpFeeDVr=XpcuvetGAmxE zDy)@aJ@txs_^y_cG=|`7(8>YW^S0T0!!+NmqGZ0zM5%mSD66HV<#z+wnaeTs7`X65 z;Mb{!Skv}v?{2MCQ9-F1y{sxfMD$}epJHz(Dh7@!98`{=1 zGS6i`7IA)ESX9(KGLj0{9_bkS7$LKd{;U{4Kg^NZohT7peT6J;1WVnvc=bP#T;1_Z zxKBn4Kgas3Vx&)~pyx?-q#dVI^Z1_`t+a4#RFpVO=$cL3xlvGqRrS#Xq6B=(6}eK* zSXurHk?s6;E#sfiZ@aHEVoD@)f|mL7WuzaBxCak5$6*5EwI-Xx?BSII1F`Y()fhQL zcm?nB61fIPm+)>r^VVENR|!CsTeoiQ@qO{)1x-C(VVHVf7JDQHZ1N@QG-_)^KLBc? zJ_(jgPTG`oLONH`Vg(^%cCPe3^`JSxXx5`lHC0Ch@QnTF(F!AHfVbUz*A=cVBXmN{ zp#GMeH~Mh>AF?<)JDb470(5>{eGCXoZj)3d@JMb3P?# ze9aU3JL&ev`(?v#r69(GS(vop? ztatU;yLa#Wm9L({6p8wrd#4?FLu;QI@!_GYUPlEc;BtO?C=fA@>%5{^#>uL_##;am z?sv-BORI0TkAJ!w+Vy`CHbJ2Z{R&>zba#8xjE+^Mu#0dkE|!naSNx4N6VH=W>-x_n z*qpE;O>qnsj&A}AqEfCaD^#kuLt=tT=)^s=FS)(T_$MJ7#HJqT$)+kdG_Q0@PjZdq z{Q3*s?kr2&UrhGW6VuM|{1xiS!%5YHWRj_L>Ui2;RK@53kYNhv8KV19lvl3^RsvJa z-?Y^3Lbn8izUfF6u`czIU2?6EN_qFr_fna1@GaL#PpYoO{_Xqzdxal`eXjhQY~NkG;y3xR_@;mC&t^GmW(0Y~&JE$Z6ZDoUl1%E5OXGt8Z`g4Z4N~-ClIp zr1#5{Y(Q2*UTfnoo|)*W6~ zXV?y?7QcTl@LK&j`N_u08lybo7Z@0mn=4$4pu@L%YuH16e(jUMu7Q>Py=-=tds7xh zkz7hdWdqlgYdUl0OkhZeM&gXaTwfd>;$YlOetbDH|Z(+PVgxBD{zrQ~uue<$h z(3G@1Yh~*mS@o5Avk*a(i%Sl{Jq45>@Z=+q-;6P>{?CA*NUTgsMkas-i9>A+x~`+x zi=LTzxVIufCFv2eIo&TuRsqirlm6k&&qd2mA`l=*e2(K+V`5{87cV6xWyQz1Pt@g- z>VU_pSV8L_Z2bIcw8En|tLIr*SbArBB2zzCk@qr6q#F46ob-V5m6%wNdq< zxE>@$6X$M0zh#Jc z=3J3vERWF0k)m+z*OpsZ$Nxp&P9{2)OmRo=uU&ET92S3l-DzqqDeUjfvcwu#bijRf zs&XdXLZ{xbBCgX=WwDjI5L>vi9ap4lnc_dFPqB@N>6Qwx!+&V=)M~(ii!jhOmo^ngjy!^A zh@c1b5-n|-vQj9bt*xy-_nyHCEz!QlcBom41@8ebT}f5-QIhm&L9&4$!Um+KrY1?R zy2*Jz=aYg=Cj0wqulnHD5&a@s!W#>$e8bK4$2OnI%E}^)ek-$Z{LZ5qrN-T5oD^jS z`@XFG&2;{up`6enfF^O#qT24LJwU)+2zj)*&CBA8AeHvEk`#+#i=YUmrB|wJs{%!XZuY zJOX_~EjeoP!ee(L+?O2l#>+V6<_BBzG%+{TpuT~CA34L>(s=G5mo_;3MzE)|XIh;} znHu_*b_P+cs<=qEMDF~bPn)N7hOJjoB8pqbOK}75$jC^bhA1QoReeRKgHZ|7k*bJu zC7c$9Y>Uf8#qLvf$v%4opX$0VX1t#P+@=K?Jm5O|ZoSiw$A&iLN8cbou7&%hk|Y{{ zf|S2m!J-}P>$<*gqONn-OaI>Q(*s3~Y;yt)kiZlfFFlC3$-@Y@Iit8vxiEqKP?`{u zQS*Nm7PiM5#g^zf2)q*a0|YE^`Rpo6;vERKwFmi|Y1|k+uk@Nmm|Wx7Iy#p4Mfel~ zB6COwd%2Qe8)}%}Gif=yH+W3UtrQ;3+^-&Q28gRnxtdfdY=4lE3n)7Ngs++)_USW{ z4QvUo;{qawek|V1A{qq?<6e)Bs6UnP-c53m{a>T+x-E>I$M6vrqNT(OO-CLnD(1hv z!;GubROio>$lN;C$i;H6w8VDJX|V(FDZ;{%31lZaRJ92*2pKHwP+$CQ5NVD_7@jr1 zo@8_qRg!q?75ovL>_eK#LU^RzK_zRVJug*wGKlUK`hPkjysFAqn#GT)s(`PMm8#%oMVZu+E*ZkniUPO&Rat|VaM<%qj_1v-pakr6?CNBiJP&Eisd-9GJ8#TP_ zW_7k2Ojb4V`$s@fklNJ(=z2RFPC}{?S^C-OgnUMZ!pZ>;^0t! zrVxSe1zWGidnXZGEOjZNdg)hAQ^wDA@-!esCoww@9)oO=sB8;htwhq&aG}zXro%ah zwlNKI<^mH$bWbE~(nyViMJR`Wo<^RNtw-f5O4PW3>RQ9Dbt!x}n?b^U_zLH=ErRjI zUJNF9HzWc>g5yl)xfh{w;eUhq2nDojCBiav<2PwgoF>VFi2<8(jmg?{RyFX=*rMzG& zmANY>24=d=j0TAmKNe)}vNE?T-&w4zT>yIZiA@KXh;--kzyJRGz`Q%wExgeJi1D`Iv?gO6#h|mk2(ZOMnN-eX zo_9JoeREAE6x~nRN)(H=*0Y<7k@wH;exx~Br)e(fk61EX-br8gg)>OIv%Pf3jv)*S zvWDR6#e(ITWq5whko;#}MyfS3Zrwyfb6>l5_i#l?$=z*C6rLw9u_>$kLSc~HfO`Qf zXJh(G!35f*biShA{^V^|h zbyazG{2M?ycq}0y!JttLBoB6=&-qK2E_KtP?>GDRjXVm0Ct6iqz1R2Pd7sQ|7GPr! zEhlvn75o>UA$>d3A55UEv5Sif3yAut39bcLdDBy6(YXQ>p++Skn(P1h1l{4ohpB*z zc?Ugx3_JwVUD7ZvTjHwL8aB?yNjEv;+gg=NIogTyQJWbwUtYb}-qT}n(5mZY!4y|yPwc<<3}R88iD&R-H@5oWqdK{l$oZ8B#~+MjsYSYs zOD6PW!uawdJr(U+ZSFVMl{{57ZpGysy1UGGLQ6!TviA0bma9O0ZFJ)2S66lkA#4w6 z$fm(nTeQ;qaX>e-OTfOKEGLVIr1d>na~3H{cTa^GR<{vwm~w;=+{+wyLZvXRabPlL zBB^>|J^k+-Q<(9iC@Y0|*dl_;%VJmf=D*!&j7Yy}qHzNbsa?JL3?T%ZLMXub24ws- z2(!l_BKUDivVl&oUxxJ{xJ@b|wQ<%H}%)3OuGSV`7l_uia_T_;5fS~Mdy>pU|2EvKR_T?%W4@K)h={W z9vGo34~+7%1qAFMRBEXKmga!d0E6BTF$E(S=;(HN?>@nc%H!2iVBVJh0p?wI`cYoq zs$IwQ&IZ=?^0QeMmP9V_{0ZgjTe}4-$@LKc=R+?haTW+z)e!0e zgMzT?4M*eF}a;9t5m~IG#x_Wqj4@ zCUV`E-9W}KAPsM4`l`XypT*qVdfm5LjF0KCkBK@3tP^Op z6XC$eag56w*?lH#UTa~wNYSCh)bHEK?)=cA7^74-;Q}uw8UgDMIF9KJsfmdkOanE0 z;J!2wnKDPi`~)=z?J6EeC&u8G?81WN$^Y50DH?@T0@k1Q6uodEP9IW>S<@SHeilZA z{`qi<(QE-R3C}CLKHS;3gY-hd={IdOO8|wtNzKC{r;6v_p`-A(@ug(_*iAz2z2DNJ z$Hvx3!K=O`RZDJ96noRM|lKu63Q} z&>Mw+>4`)f`M-qPN#vcJfJTeH$I=G{9Tr6L&8-e>K%zlR|4Hv%TxxJanVdW#r(tZ3 zD8j!(WwF>qOsrdLH-W^&L7L+LgvP}HE$zuiaKMn#eCrq6hVC%cSA8Bf4fMb8XV#p; zhYuYhiE+~RF#YK+vsQ7Puv-mVV2B_PL5#dwoVXooE70{PD0_god$7n5>3D|og4p8E z8w(EJ?1u>S-Og>U@31Qx#Q4-yAPeiEL;Y>bOK*sE4BJy3lUIG4Rx}=~R?**PviD+( zUDJ*6iHT}##&pPyB9mXvP-Tm7lpIS-%f?*CSNV(6ngqPyhE-Th+S7YiDepzb(_#~G zm;wGt9uK@7DrFvydmy$#Dsl!4YD7IG{qa^3L1oENn~Pu+QWwn=;nv1N-*=(x&g z)~u3{XVozMldaApM0D_fh8jsEM!Axov$K-^(1^HZTQMg@YM8>=o`FV_)Ihvbq<{iK zLp9g7{dO}6IkwEbNwtZF5sngICXKHQeF0C1DSPhxc_cA$E+-zxTy)XpihWv58(y9> zFIaqybCIl)LOAk@&ZHjGw(91<7lqAlkCG#Ppd>-$P&5%m$jgJtmxBdlq#2 z?~icmmz>}ywUaP@q={0IFx)F(Ar8|fd-g}@)TiT>7yMJQ`#ElWdvO}ri=46S?(U8u z=K@hV{hy&N%KHkB|7Dgxd(Fec!wC3qH%`uR7BJuBxQhRu0t;J2MJRzDGK{67J zL=j1nK?#yUa)viITGdT;f8YP!8*jWGUBfEj-gC}Ad#^RuoO3O=v(nNXpLkTEAt_fLQs-WO* zxwrJB-?ifg*Y|ASu6XwM?GJ98T}T<3cH!S=yl0sy+l9et+oIvLgZjOh`i;AL^YeWj zr1TQ1IdB87?+FAC|Av3LRxVb$0)M89|G)U-HP_R_SB_hCmOu3N_LgGvREk#BE$c51 z5Z>pRA1q+;y~?sqU&VugS0PBuBQanJozQv;_caBJ&hov}ea^G;GgITO-@miT$jB(h zsH@0_N|p4~rpOOxo;ZHoviC+SBlNf-d<$LLg-4< z4O|faXOr@I(A3YZp89OfF0nmALUl_L7GE2Bvp0G--D{C(wG`>t%n?6z4UOUN{$`On z`P4Lr(HN(hasA=GMlJDsTT9vkodekW94ALE-Mn?n=*QPLoh3oyks0Dgk6trv%;MD7 zZ&TPZOL_9-iDlOp&S;ecF;2DQM8V|qZx+6K^{V63(<3sxBR5xUI%M8*y0yq(S+~&Z z%!nN$zv(jeh@;y~kOf@1i zXCLoVW}!4RG(?Orv3XKVO-&>CW;|2V(jv`U3se&gWU0Y6-`?Id`uyy=7q^yap1Ns$ zT8NY{PyUAwA0CV@x)yfKVG*4_F8bu+#fw9&-dd`x8E(rra)fJU+N)^he)wQG)Lz1V z_SrS8!()Ck&CJ=ENp}yABtdSoh76;sm(R(9WR5l6F}JWFZ-v*aK}hoB?KQjB|MACm zN@rtsHWqr|d(plQC$*zZ*`fyTZ?EC;l~S7IyHpd*t{9nDTdSrLuOs_#=c%EY$v(Av zqLE=XU0vR$V2` z-PwtkYLyzDXES&1+Qm6J(o-9@Znt#!rP^dlQ>;dMsMGXBghGT|0hRTRkg%{~tfuhv zKq0r64}Kxy;sKEdEFKA`Kd`M`1P#EKY= zbcI*ux=)22_$XHky*RC!b5@bdW9yYa5wO5s%hM@Nz$4%#sK#BqsoVJW<_bmZ6YL`{ z%2Y>LSdvi%JFiLASx>eza(lfCI)j{2XT9FXL>&n((t^zp%iKP-+OJxUc=$t+Sg_0@UxZkYfR zFP$tLgk5b<$C$L7r;~KGs^fKwUYWP@Xl2@0#P@k?IUP81_^?mo)xjc`zREalaoPcY zzDq`*0)!`bH4eV%%6lS^P;J8Jua;<+zpwKlRx4YRTApI2MVs!+nv7v#?U?4&%t(z? ziZ-%)dQe|_!(O?QVKRYEodUCJ7rB4fG&+XexN$@0sYQR&shh5@H0*`~FHV15=Z?}4 z#dPaSg;pZ%(J2k__8Lh>iW+$Ofh}y}waJ%~F4gj#I(gCnhtB=>ZCe9l7t3t=syE+e zoJa7WR>Pf&l3h917cHeu2gJn0bbfw*BK~4mc|_1G0x<)x(IY=zV>W(%e)4+row(^< zZlG$?@wIkz?4_h#X%>rbnjLGV7dU)4{QR3gl_nh>9b0>PqD5!M-WfRu2-#8ZKExT& z$ab3EtN%oSrW8#!uT^iI3KrC;J}t?MOJkzyx5HNgPPwnAm`9z9yErk~mu)rp{S0k- zHp?qYB|$>YJthPPeBj5A&s0{)L_}A`sB;JM^?mp3*l`R8O6mFWn=PH4ky{1K_h7qB z3|DGx*s$So_vqE$S8Z~ZWi>aJt$W0&#)maC?ktZez(I&FUQDO9gS?J_fPjI)!Lo1f zT;(krvdvf=){Behy7uz>7s*UBxlM<<)z#N0Y3HuK)R3WKmeGI9X?j>02S@@3Tzc)K z)|9s~gO)*YctfV4BP0`aMmF#XpSI1uRnbsM+`c!^4LGO$Qldx)8=o!!0*uGuO zTeofVRCwsksTPXwD>Tx&Xg>2&>km1judlBQ+Vnp8{^===;>orbnQZy8Wp*uXztctB zbd{%j`3iSoK(b~<C&-}cmo0Dz(=0`f>3$!QOb%fn@B;@#^0!^)N+o-*BG>ae$K#es_ve%=-TX`5&&E!;j+7?C%R&dN?zQ|n(RGd z)z_eb7gbuFpwD}y>ExNGf)#6zIEZ^s19|6q_|+M19qk?lV(LjZf6p3I(zm3 zpGnoT?&<{Ns+Sl1_Fwo@)4qeXr|#9k56iTTY-guOhkMieI$fEa&cBi-e{+0oPGXwzF)g6muoiMeyOa5hBK|A8F<7-8i=RtzUWLihf4e&pc3uedyhTKME8Ej znI*|$8{h)gfPqKncI$#uZlN-PG1yJ}cJ4e5FjEp1=oGn0>uQPl6b_^PXuVC6ZU4m& zIXUcrHQ0g=?%$Ug5Z!)|=LXWdKWp6F|8%Q*kmwDktxRyLlU1aBy)C9EhKuY5S`OsCe}C>`q;jljZ)wP#@um-Vyg1p}3(SSMxIU@J z>rgE4ddCrCz7Ka*`dhT*U2y8l9OXEGgvO^2)K!N^88pkD)|(kBlPS7)@7{M{pmP^D za%-AcU%7I?dALIP`!4Z&KIxVn7e_`$__We2^VbgIW&2J~PZy~rn;htC%x;`2mE`u- zavE=4?>Hj#WT(q*cXukVqq@6mUQ0XmOW6XRV2fI|;NkVxR(6P4CNBRzsH~&Yq8%7% zaHGB5z|PJtKgssCPGMj3Si1Z4rI;5lUbJ*{_%@Zrs=s=n{>t1CJD!B_;K|1g@w$bb zo-!hK?E(abGVqy%uh_(Ojy(p4uk`ixMOLi^8(yWR8X)o@G(26+EMg)M3t*3sU4Cm7 zBMap*yQ16&_YJ(4Y7S9GX9auu`eFlw9RS;pxx2f|eR?90botwH0v)NA-BkxR0E!_6 z*ms0@Q>{D_`E~wq<6OlizKN>2-9xBo(;B*3igJ&mv?<@T2%rCqTCJFZ!XuWwSQe$p zO&sT*nPrWO0l?T}6?rY&&thj#sOuRRBIQCPRFXFTwsa{?EyYyOyyZ4ID5!1N_w30t z`uO$h`QhGrHLB%kug1-rH#>016Smr1zI+z1^7x4ptdt8EF5n~wR2)8aXQLvL`)PZe zBAypmN?IkLgSnNJW4FMvWy?D2(^J@$W1^6*RYy{Q+!riZK(cIX_Dm##X6IOcGl8Zo zdw1^KNs+nK)OGvz?cAJ`;^JLE_GwPjX-&<|%nTM-hr-QVTwDVqBhqU<$3*gvkvjDJ zAx{=HrGQ!IJnvNZ!~UGIGWp)#UUN&!M?pc&C$yQiHluJODLQgQWV7d1 z!)()~baY3>w9Q{mhfa>J7D^Rn@8I<>LJjGv6r&!2V8)J6E%U_O);5)e+$J^n_3NYC z1T9Z{b898PH>pXa0G+S{60+(6=qojozqx+>I<=QOK`HC19nI&)jo&U+$A4HWkN*-l zazyRJR#7K)VC#hUEK472BESXtO7WSRovuEIm{f^6V7T6_^sP(MZ>Cz+tLEbKlOEEJhsk_x;OgrnW%!Qb#X^-A;lHEW(DErlZ+dg)98Y?dY( zmK{3(n$D`bN)}tH0v}2;trsj*pBU+(0k12DpFPH%HTFVeyk%W|hMhc~?&Ze_`7r6u z+LTxvDN^7McUQ~fvGTLr&dj};yvur@p6u$**|2r1iJKvE zehkhx5-axKaTMhhIG|Ccrv5^9@msfUEzhvCpt;Hi|JF66_lK9&0!gb2`8?Y_)EoIZ zqr>QQP6NOXU>fhKq~ZKwCrBL_N@eXL% z{rnf96S9fi-RjUuf6m-@+H+ZOvj=1K%G}+A|4A4B`E#KsZ!gb%mCS zpFueD)-LjR`x$yx-D+NkZ2I?u;I`(zhtB%G1ULS^q`iZ8Yv3RF{%)q9o3y0N`0(5^ zysJ*lye`@xx@P{5u{P}B+WvknJ)UaYd>-~pnd9XC{{CLu!#C$Yu15tf{c|GbOg)fRKcLEzExQ%$&J*{nt95SFrb(zf$Ch=3?whyvl!k z+LOW;GgM=`$Klk!FTxwC_$xBpAq~4<{QDa|AJuSP=;ua@laBp1?=}uGrtte1n%VCB z_lH@j*TqB)Tn5bS!W zTaiJYfRs{vdHz_D@4?;qR|(e1up2BWDmsGzUD}Z8ATQ*-8)Y0FUEcX*v&I<2Ut?qe zQfc8|!vw85+rJn2d-;esP8byV@v0`9_>x~kzzYZ5@@nqy?@ZUP?3fFc*SqBzdF2n@fX1OvNzA4!U$LSLE3$t5dL6gDs)^wPE%`y8KcA(@ z;YLt_=u&K1_X2PtQWA{8`u)v;wc2ZQQ^Br+cZ<4+AUpR_$|rTIO9dk~(Mm5>Nv~7l z;%YrMR#uN`v@Y%9GpA3VMX{j>y5KQ~iX0WGXUC>Zo9rAM)ILm%jqTaF^X=Nf^Kboa zh5Dpx2x(PT~NjOs`a$uyrMwV<9Q^-0%R7)4Vr75u_b(lbOPRWc78>pn zjw$P^?Pv6lEo1Dj=;~-GxU1&Rjpi-B2U;&k>F-!L)R?j-i|be!Lk^ zZ#k(5C{!Nb-SK`jh_|<1&)n*p&3PU5=3GY>8-34-;T}#(nstxg#878M zDXaS)nrr&<*5aV7%tl$%2o-jSV)A8Ts~!~{^c)y#Ep=E#0xs987`oSUv=I8E3^=THBYe!oLo-znqM7It{9~q_I+T9%`%Y4;G$=gN$x1Y&*CMZWZs&ZMk;1uK2#)*fTdwOG^ zE|pdpY0R=v_Ks<=Z8_X`FMalu-!9{6SGLSn_sPPNH^+8`#ws>RxCDNzeWB}_UXY)E z?8=p8kqUx=GpUyq4{p5V%`$!ETV$4cmV93_ef-@)Ip3?xSBXZmGLA@6KWSuyhA@uM zF6L**j4q%ne(B@0+3I)0uq_E$pT(J-&R1)_(4lZ@rqvAyI$vMNaKPxU;H`|9)YQXx zA%=sY9)k8m{Lzya60TmosvxGzYx3S;m7VjmTPqn6AiZ3FD_vK^NXIz%v5Ae6#$;7! z5`VCmE)UX$JJ=+Rkyy4Up6UWU=vW^IqpOMmwF(4xAyPy$ry%9G#RsYz=~ZE9M} zLUC{s4r+5uU{5WW&K3P$@cnt{G2NtZZH*kw-7~Fs$r3GRUC2VQ3oMNJTELq4t!VBJZ7W=8FW%cgzlp;TAD|9Ly zi{-2Neu6Gwjifh+(%73t6LzCnyK`oyM;jR?zZqC{*Fj*AJ9)!g_`wf}_>3&ey>F8} zZ`L2k&*@oJmp^jSP_^R{=)?-MJz&$6!Rrin#b$@LCSD60$#>vXd~x11Q=r|LHmwz1 z6;bqD+^VHzG3Sg^w&1F#u{lWv?2Us0RN-V9Yx<(iHA*YKbjv=j%-t7WrcG0v$kx*gCqVTj$cDxMYgVpaLzqH%#eQa`Xx~%T2>%U z^YL1S@{nHVS-NZb@5cw*DzeSE9fi%VgQj9)WW-Ae^~??B^dB1bU2Zz3)xU+_3>K=?Y{5}s|B zO1`bzlqfJ1Zhv3n#mE^=FSC1-_d~YMSTEvKO;NT`y49JNze07oIhKL%lE;Ki_`AT| z2N$*q{SjK|&Aso(2lIla@4+0V(i4Wc)RdV0=r>yRf; zXALC>`iCo8CB36^&Rp$jZZ@v_@YVMu&~>R$hZV2~%6o8MgneGcaOgBBg33Albnn(Wr{)Ar-J>xGjFs)Y{zzJCsrTMAS>DgyQ zD)2q1uLO9>Yd4@nvR>r2o!IaU!uE*`R|n5PwvIHeoOEtb&AR#u62T5-Wo4olL*h)d z=Z0LaNK;bj85|k;0)dZ(qF)^FIA5m}F;4+}IN^5ik1U{91y0RJS@1HCaGM~S6d>E3 z8EIRgEyXnE$B-!}W;M&N=&Wu#FzZ~f-cFOczTc*N-OkyE`9-IeEz_ep_AeWCu-mq^ zcQ%*HbMoEA-fZb9`WKTYawuc7SH{fPc-;MB%S&fmTod)3Q+4+#XZ@*~Vi+bo`3_ho z92^jDl(INd$%J)lC(DL!65NYBe|$TUc6B^nx6!M}AH*7@*gK4l6uN-zMV<{yKfHh6 z?r)YQ`{vKZgnFP53j6y<-=IdP$umUn2aWkW-*dOxClwU(etefACx*MaKq%J4>)z44 z+W*1zo~UWvVe*!sEJDmpVxbUy6uf7W{jkv`a3!MCL!PU*9)8eLw`?6-I5>Sl+aJ$v zt=<;-^5y;{lWI9IFkhaZa6NSK{qL)`36@hohrY-6SHx++`N7FP7#al_~Xq|nayj&CR#GRjOw4gINlH#N^EkH77-9??d^;zy%{Lq@wPa> zI$xGLG%X{pkadzNvoa}Wc}spo{Hef7{au=s%$s7^r>X*}!B(~O5&ipgD_WD-3ntaA z7klN$5@gZ%JR!}t)#=Ynr`!uxcG2#dE4X6mvb*g={oXyLlP7P0nd4CW`mDxEA?n-}E2CKmU#*)i z)r`4_t!92PYt_Z2tXz30>v*t3s6y3`bB0d4YHN~=AG1nsq?7{m5g$XeM!M4K)uV&` zAdJpkM8QXch-cW}^nn3#5sTqRp94hy6T7$7&}|>yH+6Ii>XYxqfw3?E&`!ForS>Wl zutI~RqDuV=>QL3m$%*pGx%IK~5Oe`m%@mv~NO7eQELkb|tuLUHLy5A2ZLoJ@CALf0 zl2r_+sklVMT2_g6X!YzURzjtGUw|@FjY+{9#!Y)eg!oZ)KwDdT10$oc-L`Gpp1u&+ zF+Nin@5f?T*4+RuaixE(*_ZB;OouC2%QeFWYVyAI8bfU%U8+f}>dZwmZ`hr_zqF22 zdj6nwIDoZ}LUk`^4z<`6YdD$JSTQsGs&n1i;H(`$%bzrQ#)t1RSOq>m5;r0vOASh@wZev_Q6X&l8X9$PfN2_Pt!N7M> zK~-wY>vh3)r4WnG6g{z0O(B`bSh4j_>k|s{kMdVK3 zWV$ar(-v~NqC=?Ft@$?_JM)k6%x@FBU0>$rd{ocSIJn8oxut(>>^H};@zIGNgMEQx zPDjP!uN3kXW-HS)Po(q-k8?AFc~(u*b7cRte8k;VelvGbEhE|XkkBHbS4WRV?aZgPW2^UM~nM|y9`KG5&u4@c}n1lzZM4>lZCL~{=!=u8q z^Fe##bRIRz^zP{?=1Ujvx0cyM=UBgCgKqVwK+)O29Fz>n?>tO$BnN{>8-Zg`{1Uwn zUoVM!V-T`^$*vIo?D);)9T0t9x^ru!CANkpire*n*fb2F(FMk#90E4SBorHNeSQ6& z+R@aZHpZt$XVtK=G0G-OV?wY^G9D<~@~Gs3;)g_mYz?%?B7TC-+!Q-2n?cjT~80Mg8fP8wpt7x+*T zp&>zXmqnRZ2K7Ap6SK(GRICNz(}{V>{mz{-EEzAT23jf+DY3PbVHY820VGW!;thyd zVif{=5K43vFem1hFWWYmNfGA*yHZp*j8!zGx#g=?RS-&9J4f_>up^H8A?PKGmn>ly z5z#~rPK@ki%RSPU5ro??etTn?QC(`B)7UrH-N}3))`q}u_P7hIw-4kf+Ly`5XL1%P zmxLn4NCgU{oHASq}IuCV(1xira&iIj{oS0}JlSit*ibpaYdH3%|oxUZ7|nYFQVshH%gW161P(E*^oj;9*P1TN7D^hQf=tpTIlw zlCkCnSrcNHuGKVpWhS7p;0Ga%>4mk?}7?d z8ZJBP?KeJJuo9QIwbmUAR!*D!>eiflzwpC{Q=lg*WkjcgVY3JxPQ-F&5~`6t%r<^y z;850&w=0&faF|L9BOgu1N9UMjFvqq(=|Sy$p5~BosxE$f)aWP0y?^OaoCXu+0N&cm z9RHv(!4dx?hyS8m$>)Fa(|1RfG?z5sd;aE4!R5|T%YT*TF0%je>ER{6KK+peeCO?` zQOZ0Lbbk%w-FejOn{)9WZRc^`cLOy4@819z?SGKN%>kOS?T$O=NLUxJ{X(eG{zdEG zWi9;2_5Wi5Ku7;t%Am|Qwu$`s^k3}z=Es`N^F)FDraA}bFW>+6>7G^p;Gx;7Q^P8) zPgHZxqlCYo=gEI_D@0T6o^I?bH{6)e4=c;{tW9gjGYHRz~YRqj0v4hiP zmBx2CLuA6L;F8dE99AR(x(*Md8AYYs+7z?E7U9k>(U9DFYIq5JCN7;2I5u>}Lo?ODVTVFM*sv7&i**>ossz1#u1w zxX#Vp#w|(p_>W#{5_Qm}h<1)-#=J%TXTehv4}vwX(-tzKWlP=~f+l~_f#pfY%7y)a zyTl}e2u`?A=$X6#k&ZLtZC*ZLl8GS!%9-bCCZTY|ig3b$!^Og?SC@LlPtb~3Z9)Jl z_W-UFnhQjqoMq7v@gV5zhmA}gv6G3hxwDg9ORLe9>4^PMI5A29)B93Cw>L_1H%qMzicp2SV(;K_=Lr72ZaRbc_m@F6^c zm5{j8h*hD2rp%cObr`O%ON95`v*+~c)vId~^zXBV!tP;yk=5wdKY8k{`=<_PcaoV{e6^D^!DnR`w>K1M! z?g_X((qZce8ymBw$N{ZFI?%Pc=jrK563p$}zf0b|fB(LsR8!aP4??z6Zw8q*daBPI znavzYUK~f9XEIE7g*C~S{IRu$1Hbzz%}F^`%b-!x zdJH`qoC^a*vq_l;)0qSnWg_uq(tLoE@Xm`$mv(n`(ImaOR6ej|Imvx=$z>MmyKo@? z)KC6UjZ0atOPoRUBLwCMnsO}rUxM!`F)?-yj*n{-K&G;?u!Ljtdij9aZ%69%^1;iB zIQ?*EfgdmJrwZIhULi7~1Qq77-C9~&G#_lnp6Z0$wVvv8`+AF%l+;}mDjS%XxH@K5 zX@C3njhLZe|1HNh00K}$1zCY=zC87c_6Ck~XWzVeLk$Lwh=6st6J`zq2eBt3A&V1; zJ~cJPLV=U^F)S^FHHIz2AfL+W$D`{GmDku;9PXUN3-6Ykd2(15q;MJ3_(UK?!f%&O zYpn*Q6AeG)Q9LuLwua!fE+{URfh&?y!dq5G6#bWBDr%#Y=8*T0e@J;%*!BM8A$VWF z5|tmnyj8-~%L=Km`B-%f*l1EC#q$^`3*Bogo}*ognxN zyt!kMtqkBUQZgRTni?onO}+g5*2*m}MjM^A08~q%b1T5BBKZ-{B}?R4VsCr+@F9E> z?l^JV`T0{GIf}s+|0MqYvSQ+Mn6r#1Z1UZz5pZ=Ooqzg&>N!gMb|Dq&*v{oY$}X8( z7hg=c(pP`4q$Ys3^aF3G@~^->m%z@yOf)siyFE`Z^ojP~BH6=Q*nKRX+JLjQ+u=1# zLc+s3i1*jZA4CQ7zv_Aht9#)=U+AwtE)NYcaH~+vjvqg6R17$`{oUpLzAfk9NmY1h zSJP%Kch%xWn()%&)7vY84|jL~z9I|^*I5+rmGt5ebeu?JF@!0MIR7q*9K)|UXiMB& zb>F)w*aj6Ek;4#OcW?4`4(L|IN)-hN*M@o$8r)>Z2TC7~S4{Lhe{kC!3qcV{}!jE6y748ocgz;{Pozhz4V z!Mk@haesli&#X%TA-rmXy}gHbQ$Pc;L*fjhya|VCI~4h&14}OfU5jw=|GJSrs2@mj zB%;2LkHul1fF(*19$tUx)woxtYJ1-UUK|ebxB(cy=pBDQ1!fzE(u8L(Zp?v5!*X>E z`<+f5rXA`tNM^E+lbu3Wid zZf-7zV@sTk3ch;?uG>F7t5?|n!!}>SUUa<0Qvux>(EseIkB4sExDh-eg#Y4Mxzv-g zny>p^QtP>q&Io4d9TdbfVttDqLD4u9M%)2($zDy2)#P$a!uETVW7G@awT{;-GD^Y^ zzxGS9)tcF6;HjV{k>&?pi|A)c-N1iYET4+wBe6Go*@&4lk|H)1{ePtf!*K$06_@5(&?FcyZ{O{QX%36f@_tv zHGakVHn3#K;f^B2bvUq4OoJbQBbmL!X>nC;?Z0+<5BMR=&)nHlFOYSN;n|vVR-rV( z1Ir-ON_hNy^H9Y#v7@0kpPLazCd9hRpF8J6+AWY?YJa_osW2;h*1g-e9|e3!_CWwV zdh2|bi2CwO8Ly~d8vuuVrXNpj8tgjragRE`C2Q&d9|mx!Q2Ib&c=Gz>>&*FNj;47c z99&6SA~gBwlK<#a*{n8NFpGPIgoohP|Oz2ppff=eU9(x zR(#$06?=O-gy9z;hAo|JsFY~;xO8AQev~dI6WcGR-Z4BpTme?lvwIeC=P_Kc{!)J* zPmMH7S(1zNi9 zSHLP6ATz07?{jXGe^j_6;FT$HrPP?m_mJ(6^Q1cnod*iYvhJI>W8l*a&Y8k3UYqU4 zLHGs;hKN>c&V|3)@~2C{z=dV^x6qS_ngZN+Ut@(S(ABKraq@|1Y(6w@L{)U5(%cKw z=1R}3bo%t|=meH{DXpmh;1w{FHgY_0qolJL0_FR#_IMC$N2TJ4QG)>o{BgM@_xsrqziV( z`DecR<2tE`5d=GNOQ>LzYw)ulwr({3D(FM3>0vf-R1-U^Vz!ebMGj3WQB2}!)X?Se z1#a=(cA{%9hr` zCXWW7eM#go9_%>V!K)eXVBgV(_x3u0{R55EXJ4}qz<(XCQ!0#z@Cj0@wsH_X|k{;r5o)BZFW z`E>;PSDVD`y-DdKeg)J41Yn_A3{XB^(3H=gB*E5CPt|ZlmoHyliWZ}&izFpk_tX$O z0h-H5wE}<`b&>Qpki3XysDaVZN_hULA9cZskjRLQq!6jFH(D!OeP2S-(`)r z9RKOEvFtE<1WaFMFL?Bp8FLhxan))KsD7u{+>m8=V%kMg zw1U@9ijBC}fkq!%X2*A;oI;#Lve zuL)c&x^sxtRyPoV4-$9qUzVDT%uLQ@u`G)hFV27S=9t4sciek)(iBmDNXTJv?=g$U zfN)d0$aFREz0dnm;{UkASdF~}-wS=%ZE~9WP)mZaU++O~k228TA6L`Y+^j9I5q?ha zaVpzv00Q71iMoiQ!dvI=du{lm6i=Rfzpk;3VnN~hX^(jeTM!H+UYEM7;tYjDEPwi1 z-pCo}$Ag?y8y*TxEZ9ekG1Op`LB!GOH4WmJJS^t{;%OD+=HimBjL}GV()W*2DG>gU zIjhv_= z8h*2s*#Lz&0^9>4(1D#$QL^2m6y*a}g2tthW`JKphhCWdQ2TQrmqNUMYI*V{HTYDC zQbb%TmmX*gUlUUoyB6_VI5pV1OX_%_nZ2b`u10+MB~3f6ay44Shku~z=02Ez6$ z`Jbv2{z3tg;RugOQ{p5&Sg7F%!O)tDEd(kt94kS?3Kl%vf>Pux8h#;<+;spj^cIBD(&e5K8Tnexe7X(0uC3Vt@76xAj9qB5MddIm)p84DZHY&cmMsMb5hFe~@SJP4>^P zs$5Le?1J6Lb$*hOgh89Sh!gTRg~(Pt@@;*&UEp0}ocfzb{3ngKk}zJs?3`fDnm3U` z=O7MxVO{_6OeVFilFvu;vAiAcmj;RD)mQ5z zJ>ILLK(z$a9`2}+50P9it3+?Jp&(G)(IGo1JUl${>7gGhUqOm*=xS6Bac@!XHBnIr z)7!AED!bTR$e1n6)l`1B%**#rg!M30G<2MES>z2W`ZfjLjE+n)jd6rExm)zOJ)eiR$!({(&(ByHRr=JJZ zHQ(J(`SKX*1uM`xpRS9$(A zKfytZ#~g~P)I(Q?TqgzweepyWXoJ~PSG``m*vb1fb4N|a6_;bm%f4O#%U${qbk!a$ zCeaQ1o@n(n8ic`eE6l?u$Swg^l_ldS&-)J__Cj7k##frGud7cyVyRCZEA-|vY`!&Y zFB}}CtCiectr&iJ4X4Tv4^qv6@G2S~uxS1GSW;JOkD1#M>mhy*=E>`Np8|F*U7DrW ze>qfPZ0Y@6nP%q)=qM-p->krr2f^;#N~LXDpGrED7!O(1NTG#U>=-Yt69fb0BD&7a zJf<%v3R?I2EjhS2K$wY%De_zgtH-RtT`tYkXJGm`RT7U*j&y$sxqX|Z|IWsb@*C;t zGiy>KbOYgrC`b}*uhe?m8d#{7rE<_Xr(9;JC(>%*lb<4WJtHISQ;$|<9=)hnwlmYa z82aLXU(Cd5d**NOe3F(il$(S-g$#S`m<5@pLP~Qs z$>2@K?EUJ{KBcR)txPcm-@ZlW40oNTE+3mT=x$$gOMQ31D&iA>fI$xx-G;Pt04YXl zW~LGAFqjHM_yf@Ekxl9=$!Pq@aPjjOHgVb zcEz;26*B-D6gg_aOH@Z|*TN<@xRJ9$#$mNVZtwn{s%@bW2SvPDq8l^LJe?i2Hquyo zO=o+@v^ODs(8Tx|>=q|lZfM#-NJap|KnOcAaf3o2FY%D0A(*s-k#-~E;4?uvNF#V81iA1mS#gL6V|LYdM$Xugf-WpIkJQ zTYWH6J|zp%K}!>>glh7&3_Df|JOc8c)L-3Al@i*uRfp=5e~U4xVRutPeLI*J_1EM64r6giY;NfvF=X99#&h$v*L#ov{NhrEsduR95_%AAe>$?13e7w`0~_XbYGID ziPm*9-cUtUSwEeg{my-EDo?v2vhs6}L;hqV%QaWynkio1OEWdv+BG(vFGij+O*eks zRG|EMprUd2q%ci^_Pi^liMs9n-FIIcQwib;9@PRrwFfpcke;gchRl|zbnqyO2qaSd zRpd6F9!Y`f>uCyOOd=Zen*tiAVa6 z>$4ndJI_I)*@(78a4jmPJ8Lr?QWQS|nKD;1$YM`pHbGu~J_Y1mVhz-l9TawWAW)19 zC_tCXOa9u+%PI{63szvVG51Ffk^Xw82r>a0nMF(V<NfkAvqM@oN~~pmgv7NtODDrgwmWSXcX}6RO0V3EDNPjkuzKV z)%QF*tQ|Mk!T0(+z=2#RieoehlNm!8a&rW`PMW%Y?mw!-w~fk7`TS7vc|#e_AVTn9IuUvaPLU}G&=V>!4&)b+L;8)LVoXX9GUJ@otoXmR92LZfZkh8& zbl-q4p`r`lV~lx7lqMu~{qa#EF@rEA!=CW3t-ZYgHDyxke%7Rt(X54VjG0xGO}=FB zduQw5Kpdz9;Q=c|r`z;F0WFQJaXZrWC8^SPMGA}}W_FI=>Uj0B=7ZUhP;Gz?g; zy0wE}H@h8h(@q7!0X{+L0LV=8QPv!lk@P?3F`T$1cN^ z7zxr3h9x-|ILHhGG6)L+y|X$Y3|AXQ6F=pD>oh+3zjYc5{V$!y)%u>df3iK}kmo7@ zDKQp@7YdI+ZMU)%}6fFdY0y^lT@1R8-80NoT*OzS~75ijLFNYbF5 zpP$VZ$9K&F(!GJXh@D-v5c07nf*x={UVO|Jh( z*Ae4HtrnkF82`&Li+^<;iAjdA7XC1p+p&N16A?)|TbMlNkrN@qRNXCW=2OD`f7zTo zqAD-X_XtUPZJBS9`a6F9Z6msa^8crAODFTz|H0T(lq2Z{Lle4ivA=#b9Iwo2TJ?(_ zVNm%;o9TY&OY^yhgQSVqpUYVQ>O3HwN>*WAlIbpDc$M=G}n{;emdVEWW=~gL$h{lImGBzd`!$ z@qbb;Wch!REF3C&^UYr#N2*uO=lu8l^9IPf`sumSuVpPXxNOTa-#!LC;a7^CW2dgw z|N0{+jM(tb!zA$Q;%toEDtfi8#og=XQD{U%p7$1fD9MhO_up*TJ+DLA;L%^r=5w!e z-dD_-!HCu6?>$?WtM`}fYmT?ND;DurM>XM<=6m?as!$tNzBS>Kq?(=-59^n@cDL(O z=2&9DLgcj6E3@g`{ptIKZzuPU#zp5Qh_hsFd5MEaNaLv^Z*`<)vPZU8u&}VS!zYVzQV-m+uM1fqd9)%afx#{;D?1n+ zwn*pj)Jl|!DklliRF{}^%%880ByW%yMTjg&1b zHl03!&!?BBy`6-Cgr8b==)p*KFV=-F;x5?%Fv|sRvR#5%Vx)l>b<3Hq2)Zq6MO|Je z+@GWEe=({5Wh%{sM_Ek8%OD$qVtT*=jdQIQR6U5nJgF%0BamaMr>|b0?Q9ekMSM0q zw2p2T6C8EUqs*~~pE${;Pm_$^TIslo{nVj_TYQij z3FqxNR3cu3@pF)7Slr%kI!)$PM8YRFfrqUKlVK)bglSupF2e=3*W^`Y=#JLho-=s| zVPaM*5+-=4xx=) z58Sc+>DL4Ak1k2J8`L8$9xxp#A=X|b{L9(IwVE2c%C2w@(d*q!0;16v=#sh`7VRvtXVZJKDDjCH8B-6Px6(CPC3Hsy z`}}oCOBGCjWEfA{iM|EE%swMVAtAkEMQ$8G1lAh%{Dm zKt2kvUXijIUJqi|K`TiRtPlp6C<#Z=#iS+Mw_(aiRRk#@}Es3s;%d7&MTn8e@)B_WG=99We=t~0Rg-n|>UIi$7x z`XPR!@;%!`o$8DlQEHH~1SV2LkgCLcLQWdQ@eWYaHR(37$OZBG#TXi6ex;1zfi$A8 z_18C|RX$Q|#6C&7>&ZYLT&V**4We5KnbpXnTM&*{fw!qlWi%e6iivGRHG{%s!=AIR zjb;hG1;qqnx+byFiZeR~qu8dT&F<;Lr#etDD79V2)n-07&{aKrpLA>;X{dq+Ck?LJ z5RA+qagz+JC5|TYp40oXB;Qpp?2u_HSV?XPgtkK5#Zwsm6$u9+G316yKaGSF>vY=e z;FlMtRv?O!rDaJwDu|&TRc`d6Q)j_@SAYv4uexvsrdyIzFcH#)*fZcg-V6N}?%ukn zB~y2>>Ij>}5CC@WC~1&{&P!VFh`I@ajdVB8ObyDA6GDu0FhlRb^3#^Sp*!t7mb0k) z2G}I@{70c6>BRR_d!4WIAlQ;1M?8I) zF&8N^_2b0937?S4tuQFAkbM=-?gSVH+a%!dVa&4(R*!8j^81d+~!cD5lPuBpS*SUY)!@i11If#6Zt+OrAj4j4GuQI&s?m zy8cI(Wqp{UupS-;ApHo;5XN_WA#(#$8tf%c+*(;;9Ge;X;?y1NDkb8rCG4)w%I&+z z;1CIKu1gf9-DoC(jcgwz7*cvNnq@pk;8I)LNSuZ6d?(qz^cV4x!IZxZ$fRIjRVP-194xb+IO>;X-s(=Kh$4HFxhV(*WNqO&*+oHd zyc#(u=h*UK3)rI~L z$U)NILnYR71avicIhD{#P}VI-C$!CP;+o|r6F#-IRV0iN2nfsxzQoiG&K}a?gPx&a zSW&y+^`zwN_;yOn29|I_NFv4&+K^wd*a&bTGJ})a zJG=Euq@pAu>la)kz{`8V*S$nSta5oA0V`7^^oxn+`=S^WxeeLHn6yX~-Xn1bsE+=O z{q?&hSWo+&q)OtSCv95r093%YbI5t-Dl8-9h?ABkRuK#@1ffV~BnMAsp9B7jMKhZ+ zgqN~T9=fTeQE>}{wcVEW;hK2D7+7~A;YCH;#TR(8h@l70vv5#Dq^BB>5(XqhP=TS4 z#rEkjeA)0wt(kGtdpF_~dh+xsM$c)H(bB}>Pkx=C3D{-I5K_^Owf9n8sw~W>_RSvr z9L?+56;5MAC)tm!xTe2UIP<6=Kd$G9ub>9Qk5UNV3Dpw(1flg1-oJoYcm!b)s0P?T z2KyK1@iZ|XYCSbY@>;G*2YUePHWn_OX+(l2 zeXlsXMdk;?s!f#OU!9{G;6DV*OgN83Fv^**pMwbVfenMrjq&IL2T)(9!w98}Vx$m9 z8FaJaosFDBgu+H)fHOF-tGHQ`VJtWA;V$Bh1)XqOVq(7=lDP(}#G}uoK^iG?AEv2d zq*5G9u7b^i$u}M*M+N)8t}+DNELAhh4B2u}uN^^$TzVsydN|6QF6<`2m~@V~*_q78 z|5t108Wwe#hVfa*+>)RGm!(wda;Wv3WVR|Dp_Q6_w7`$MT$JccbTib3Z63ZV%okwWZAi*V=I{SZX$&h ziuJaUudXFG?k3^QNBAblswBndpik1>=^@o4-Zb>&OxyK#o4q_<*25}X@{<#hg=S~^HljafkS59 z%3t}z2rRj`jaj@;H5q=SQ+vDiv&BA_TMV7EKB1|<%5^fIb=-7A?t7W$NBcjSQ6Y0- zc_lMPnMe#g+V2MOSn*V5$DB%sil4wDx9_k$$(DDJHZuH?b(OFpWJ0NAElztj*<)t7 z|1O^a1&g2}jJiGB?O>V3o}Ha7J9vVPsq<8hua&vpStbYS5;#yqy%?$<+uoZGp1wxJ z%LS5FV#bm+pD9myUEM5UtfV;Elu+%un@?A2U!GpIbj^rYPDZiGW7@8II(m884JTHc!T#lq1sqPpK4dA|O%Ed+Ocn;xk8Cj~nkaE1e!Sh-m$HX0Qik)#F&O1cZ7GRx_Rr{=^U&Wv z0@YY`m|-5as^_Uh9iku=$S?&N$4Ad{d5*#MsqT&pUj8opBtM`?8jG8;(MqRsHtmV3 z33)SMT4E~K%f;3;zoGk1XCCD%RIp8J-Fyx}eOSOdfNWU$YE_R0%zrv_k17(DJ7S%? zugkVE21Cb6_TQX!_buAZmXOuqG(;ue;9^a(Q1}%;n8KnFpJ%p4^M_xULkS-mmrCo& zaYuZTsTGTZ5On&f^?ceyx5rNiA>{EJp}LX6nq{HLieQ|b>t&9AA*s843nxYu>6PMT z5y%yeT%P?sJH6cEHwccOHGyyDUqq1+cKd64wEDl_42#TCpP$t8lg#*GuhFXI0w`NW z=HlGg-+jo-iw}HaPqr(-0M2M3b&SCCfp=qQ4$ne!C#BD=x%MTUOZxDaBh@zWtV5d$ zUEw_)`Q-Wo&kxqqYNnwwuJ7P58~Z&g>GS*dbBNWlC`deaw{2C;G2;oyPp(PN^a{B^ z1ufRKT0HyE?qbHN`V`Xc41y{CqRJ%J--j~1c_iI@`bGD=qi%67aQ$USsu7(`$n&}+ zaMN-l6N6Z-zPa3^7LMs_q{GoRn{Bpr66dj~wTcqQoY2@;?-5`3jS%vTCahvEL64Ut zOS-YE3H=6xxU71lF1e@q<2hwmO6JnCi$E!@AM8w{i6yzHAWC6dhCC2Kv=Vv>*PluZ9zHbxE)c^wZM0>I48NNAn8 z;9+zDp2C7_<0A^`j0`1X5Tk$5U)XH~)0R1C>D#LCmwOwW#V6)m5*1?vb^<+B%@{$4m&RcCzvI zs#@f$6m3VLxI`P_)slBjc~)nGt>Mj17h6!#ysB_?<{!qkgovkWk7ZZ^8X;3~IH%Kf zrip8kFVgY|J(p1l1x?`NY3l|ssHpz+cMm-8xA4m&!3R&=UN0IjCY`f7@b?a%TO_n; zI#&1m{~?^ysT}RiKt;&#+G%mih@EqbwodB9mw6G^lfB_sQ)Vd8k48uYg+RL$Vw^Hv z;}Lm0HWy`quCh>t#8;M=H4UFHXbQz)YMYb6wicA3EEWZQ@%NSEq;B$$ism>goEuw^ zEPTL$pcdXsikVe;?PCwf?9ZNDx6+~juTHDBcBVRWy7CYZmvnH3PrvHF0klWe{feuG!{!)Jme;o`wqCd5_mHhG`mD6x2Tg5!jN{_y6l-14#^>oCE&8O~# z%}$tDxO%l0`uPpN;FBd2fGKOAbwJ+#^G8<_MOXxt&d`JKPIl2oJu*H;M~yh<=XX1G zd~KXCMxb z_U>)4b?`a^IvM&Y9>enDw}asVs5H(>igagb27>iU)oPFZ>289+!}|JqMRjFoc6MY5 zqS6Smj_x<$9meSVbUF|2xl;ci3^RO<&r+v?S)p_LtKc4S3#gkn8P%+?2rSbUBa)N( z(5H2xXwhcu3-T7)5q`7it?tCW!=t34;dYIEHU4Qa6hk5dkR-C;sKubtBm0`|A61RN z6NC_qw3ep$pOf>uylXmnRB_)Rex})6z|#!M>|@9RCO2e`;WGskG`152Vlfu{kD6H) zj{W)##owbF;7ELCC31pKWMu|s12W@bA5NCshn&BU4rP4D3Ic90+UNiog<#syUN>*2 zl!Ous5Q2P7>U3aSaq)fgw z?<%b<6S`(NJQoQM4sQfVV&Nl^+*~4%d^oq_;n!*lUg+&M;1Yn|Yhz9#1f^;UA{JfH z7XlDmz*^xC|N8nSXG6<--iGQzT^<z}UQQJBg$oZg^cyP0eMdmE~{J%`S#c(zu<% zH)Dh6py(+90R^oaHg0?xFUO3eu7=*aA%uYYr9bU+`7I{WTT$^QlrN(LSqxpUg3cPR zmbu@PXe;dJD7_P#{gdwAn#7$Zr2JubB!H;oeI-EA3oisf^E+z2Sb~71LV5jI{H?3u zrBtu)Tk@0AEM{FIk)kV4qL3e!YlxgdCtV>BWzJVr2#ez0c;m@ePQ+i(2Y{_T$qh&6 z7i{O@Gn}2B^^D8EJ?G8eMl<2_<4J?feBolBN3XnuSF&EP2I};J9MKx2xI1O9bpU;7^QV#@FU$seJP6mU&mw2dY1y|k>&I6%j z9r;HR`LP%;2)lz!R58I0fRe^V8X&E^h4X-qt%rCI{E1j&f3(+K-b=Q}GI!o{ijmYRd zgj_N8>E271c6#pg@bDODk{R@jLxZl|3_X$#1Sk5K5OZd|D0Ss;f_Qo4XN$WruCyB) zc(&0QLkwBE>7>QXIlzPVV@v54z)!Y1oTX#-uyGzz)KI8Rr+_kEIXHjqnl-r~gl-#0 zPkwQui9c-hW0S()Ars6!HfV%e%$>_q-D)u+a&mGK z|FQfeb^SmST~bqQ!u7I!npV zO%gj}*#NxYV4>;);Y=Y2#oaaCzL0pi___+pM9G3_k4K~m6h6d zZnc@IU*X02B!*@J&LUU-LHiBaZ?)`P2ux>bf$h2}OSeZTxB!M6fDhF|(f&DHsgO}V zhJX~>h1wmof>vrVs{a%^oqbZS^9#qhrf2VME)BYQT_rp!I`*D`F`2T(T^61JdXY%9 z)on;>05KihWR$gv3LT-t1Oj0N_E9(zq4*4ARVZLT3&RtF0m2lre_HIRsyKdXu?WC> z1l8iu6Lg_{^naPk1oG{J-6OCsCJO|q8RFoF9gnr<`IaHb&j+x(!NY}9!G}>#;c;B* z7h#Csy!Bkl@fb0k3Os({`#VOzvpfGkKYnr>wXLvu{PKB9@&?nyDStfhhuLrc3`zf$ A_y7O^ literal 0 HcmV?d00001 diff --git a/images/loss-l2/f1.png b/images/loss-l2/f1.png new file mode 100644 index 0000000000000000000000000000000000000000..cbc35a72f3d39727a9f546304cae2a821012f1e3 GIT binary patch literal 18448 zcmaic2Rzn&+rGx#(9ocwluBi#A!Tb9O7A9p`zR$8nt3eJRN^t7w^MX=rFxiJd(uLqoGjl7?o% z{bft=N@nSmF#O^-JEdeMYp88zsbQi;b6&&D$iUFdKv$E+Ld(Qd*YE}p_hIgXTrAhj z%#2J0_U*g=_W|67COZ4rIyPzIB+HG?Dx1>K&}ooA3!+3Lb!lkM*omDyCU-NSx6aB; zjyje%SaS6skJ#CTukW%RU3^U87#qvvhnQC0?3*|8F@A{I$r{slv z^SB(%Z}>ZB&kq_Yd0gUMi9-CvU2Zu)hxGFwu?IDmmX;pUD`!i-UZbE8D}Vmkp#$cD zL+vG;yu9+)Yu?DmUrZhz3Z7A67BKtz>Hd0Z(UAtZ0aba!T~itMl&qNH;bG0@_)963S#}dK2M^I4 z-4$xI(2>TtU~fv4X?yXmEK!}}Eqm3oR1W)}pP9&>i7gSG$*2v^yiq66Tc3F;R*_Qq zHS|PgeL+Ei?6G6-weqf4I<43!7poA@kzVi1#$IXDpIOyS&D-V>H+w0cgttcdMMd%_ zPkv&sTSC*Ae?Xp&=JrY4{MDpt?(W);E_4z;X_ozJJ((|G?mu-zt*Mu$ zrY8N?tqG6!Uef#VT30Qv2iH%jHF10X;spaEW3-6fct^9B=x>2s;Z=hl=|s!l8aK;j z+uQN#m46VzSucR)+D#?DTTfMtobS4!iSLm!*j8;m99O86U(jmO866oU^WwAz{e}$@ z*BiTi^1vD%nUyU(=gLRe-omiD>SEyYTu@6da)V@s& zlaS5d>M%Jdv+>sqR-9Z(kg!%#^&yKMC0^aqljI52XT}wUspYahVPwS!+x(U@Gkd-J zLJ*gKQN%{Io5zmS8r>0@95`X#`=g?pC(mPZfZK0ZE& z9Hwns+uHOxOT)Xqy>PMUuUAdrRaw9LoK&EI`61J`bIg23Mkuv;=b-?UiOt}#lCL!uK zGu1FtVP2&gS)HU)&}2mB>_?h;w^mM)UImB87Jiv3b%)Hh;=tIR9)rDV8A_K@ZdCNu zrOQW32CnP39PapLJw>hJHS3Tv@2)(*&353{l9ijJwl_%746Im0)2O&Fd-B!xFYStA zc=_@njCyU==b|Fsi*F2c&mLqta>Jn3vcWD_VqfOft2#Ox1>Y!A)K1IEJu>e3et=@^ zSI{~(6msm&%JjM$TSRQX^ZZ6I*d#42eHwe(weFJFR$=!KAC8xdrkb|93z&Cpx{~WY zn08u0;jwhOMXzSFXzO$>))3=gfBh9S7#VE;$Kt^;n?jb zoI9{Vg7(E$#3ZPu>)}JKX%wtT>+|Zi1MinIFfqkotE>Dr-->^lsMf@J?>v)#BgIB- zq^DZe$E@Y^T1xYl)h?$!w{-IUZu2*c!HUqUi1Dqmt2HY-@6(b>XSuW^(6ZjUpf&CJ zO_8Z#S*(8X=3Eb1C8a0rZx<|D5+xt2a1kNuesJ&f^vv&+Y$}sON2rUq$8ws5jI$$R zhAmWHv^_zt_eU~yxa>lAXJl|C?(vbgcj#X$Hgu%62g#DRS{`1ow%45=ykReDK0d6A z%@?Cp@HnSlzb-9Vh1*XufG<>^l3B?!T~@b{ZmSTRSdjXpLsz7Jf_Q0$l_{ml+uPgK z%d6_!i!=MW1wunZ)%0I-lwMfz4Ld_zCXrVe12N2TElgr0(Xc@z=hLUr$sXBANim-# zbX(&XI2Ep8UpzaguNnH5i`Q+Q?-&dS9Ze~t*j)WoqmuQjx+45<$XvYmOmSta$5I-jwVu;Se-lPzGKG@v&MI~H2X;w+P-~zka~;6&%Tr86m@mGiQk#E1Lgyb$Lel2djwUr zmjqXRdAP^CJ3d9B!+bJcIZ69Rx+Mi;BHNX_)rWrFy5~p|Q5S+mF1|GiZ7Y2GLboge z|DBJ>TH3ej)aosKQgK%-8{aJ`nb;NBZIWs>I-o(}en<&e;CT5x(;k|r1;6|1E*a#B zbe2AfL7XWaD!7h2w5E22`*JFFjSe=e<)sO(1;&_~7^%WEG(TOpN36QK`eKr{hxKrW zbemjySQsmEs(x_*zllI#PQ9qzxLImnH!|U{fCH8q2NzfQ-jrII(5k@{o4(XD>JC%M zkN2q~8M|%VXKleT`Mbu@Ewdr?#8NSiH`lF{1uXmG#;M)<)vvVF+Ov?Jexw+xM+>&3 zX3sc`e%zLkyK(Qus~k&cma&=z(6F4HMAj)!@6X~C6EN#|kTuaKSTdaUySGLkBfKlf zA6XD#f&}sL;F+;)r%s>l`s}^)Vya2_uc0Acq>Yk9a#oTh%zM5|V;NOcD5}T5IOC-^ zHBSA3;KJJZWl!+1(7tQ6Z;feJt*ThDFC%1f(pGqCxJ;{F0=eulw`xq&N0(T9cD#aO zACC0JENZXPT}4qG>8qpGnwI#E@gsb8l|_2>rM7P+iHaZ|3|}a+Z2WObvmqc#Rq*ui z9^rv^ivUC(0<9!Gf4+k(5Qp)y;Nj_s{#Zb#XMk#l4eR5`J~wX8MYw(x#-BgE58kuh*J8qCM4_9 z%w>5&<;XtW&17wKW>|mew9*Bb29N)0;ewczejaORgwT zP?6hDLN(o@qMMSf*25^di&4NVis{g`5UZiKPN1Vq%t^&djT6+K>ZI=pCcCUKT(7OE zdISwfM#_>~-!?t4l+tOyV9e~WV)=3sONNm$x-e%I>eIhAo;rCl3d{c)pYijHudi(v zOY418V}@lKuaYXGQyd_jX-zFhCPJ8yz>Ym^S2xj@eqrs}wa<r{&29II_i@3tzr@1( zPA;Qy+^qk<6a;@>$EwB8-vxs+)5w-Reg)x%S!1V>mDNhd$lFp$o18;2;nBzLETLV_ zo*60EOdE+qoL%}!*)hOp{PQjouby1j0p0{7fKMN@PXG1H%)RZ`SR>1#F;~?72KB@K zMGZ|X@4WZzcMG_s+_JK8ht6dMmezBUlAi0k z06+B;QcnY<#|+PwM&$etH3mh1A>yxnmvx_0VrA{FCDTTzLq&N zJ>k2B9na=ihF7vC#Za*!%Pun)h;R7o2|C}KlJ@plSWdzeQxg+b)n}JF%>+1iN%GVlSbUu8 zKOgWc|CQa&Ashj(UcI8|6xMxEc{u& zG#PzvGNRv{Qf**Ab8Jc}BFTa@f>WO28!R)~}zU zUpqUn?ZZ8T0orLs#x*!{H1I$|-S4$;ue{ShHU(Vi(r# z5>r&SORl7-QxJ1>2Y=@1l}C9i#3`+PeaU;rH>_q4%FPH#s-;v&6_?z3NpZ#3N!A_xqnHv@;A=8y&c( zeg*eK!*Sw8TGNkT-_Pgd21-UAHuxTL$uP5`Uq7I*e95t7{*&fqQ8(@isLG#dKrJ(_ zT$lDriEDcG@&(2FSN{4d;sMY6*09g-JotL#lk(I=_C~Eur<1>|pxqlJ!^O&igLt-+a1rLfY3e!f0{6OsqUf^<)%e0gx zJ$>5bCb697vqis@hJCGu$%c92;6P~Q8Yf$I!EeU1guuG*aen#kwsY*kKv8D#{b+0Q zd{PT1MwlZP{&~I3nB&mo7O@-@)a1=jgCI{?@8F%$d~@^z$D{OSxubcrl!I+jV(#o; z#790d?U_Hpmm8VGi&X^XxQc~A&2yxL5yd!PCuS?T-e{XW4L9=~hjFVYiJ5hkJopV=RUMowTzwj<2%K#N;xt4>I zTh8aqQ8gIjP|-(>72(|{XDOVJ>*OolcFHclR12A_O)+2k`1b55MRX4p8Xmo_VAIPpW>-+WLnwi zMjp4A1#rCkk*x3QCDzQ%&$BftY z+biaHFCr)L=$(kR9y1F_s0C`})h^sb3eoF7UVnR~RY1RXZ7A^FxR8C#o9kWmnd#1} znPafaqa0?YnGRk(`&5;KjJ|wqnt8zSDf6b=w-@%-rpf}IQ{A2J-i|l@u`7zrQ>NIJ0k105xEKNy$h?@s}^&to(tJ{DH-^Y5oQ6p4-=G z9&6mG{wKkZZU5$hgnod@(29&-I}r)bt+eM10HAyU43v|bYweMjo2xf7Jta~?5CeGw z)W+xiD;YLy=(@FZE1P*teQl~K#w1R&Syxxr_1?X=ul%Eq{+AeiCpbU-n(x(bmDgv! zKHcY`*}wF7aZ6j<;|Zl~gzTL>JhG;3g|h$&Q`Ln+oTYxRqSa`;QH&xb2u0+pq@>K;q@*Na^PLXV@L8F{Kk zYTDLVq^qJ_ltFgTDQq=i-?{U|{rmStO1=~o?N!*K9Pek(;w+spMK<0$QK1rJP1Adv zepr7kEmzI^YL!*f%)UK8<3qr$Yqk- z2LKORNSI>Bnd%e!rtJITcGq}MBpWda-Fzt-EE3Piqs_+2DM2{OT#wDdn@?{MwXco+ zI6T_yRiK&JF_^cl3QH>HXQGOrSWAh(OwX7(Ze=lor%Uq5qp3FQ=i*u3w|2fE_S z+&{7J9Rlh6#XSCmK~*X_JY;3x(#C_cIfF*Lv6GL1$=)+eld!|MYa@fz>YH+2@Yys^b;J&i(oOd?f9x)ei_b<*bs>*x(Z|ADok%rls`wRNpt4 z&*!72TIM~`)^VnP{%Nnm$M5!JF7W2uy{kmeWTJa#*`H+LuXAVFpDZ#xwPYk-2G6!O8K< zlvUAl?zY1RkOAgS;CSJ8|B6W4!!G2yGz|u!eV*&*)6-QQK@;*KTcB|H|HwG+PtQ&r zO?XmzaPucQVRGO=(a@GX^Lb=5b0qESt6$a;#!^E=qw7alpKxqF6)jqF5mc^@Qt8pqOls{sZ zb!E;rX%)Ad=uP?Y=DNSZVSmF=c}>mdxnA2Smi1O=4jeeZgiuOq9_4t2;P#gGc1}^zh9QAHd(QZ@mbuMX1Z6uFQaa2^)*~G*|wPyV9 zN47(DiK*un{^xWeqen4lWzMTMn{|BM?y>oZBq}*;mS8!j76U`A_!U$?KK+BbqH8t>3` zVJ!x!{yy!#sVUj&(;YgID8uY2h4p(R%d@Ac`^ds1nG)NhsGf*_j^f&YhU}v&_LRv| zcS{CDVHxW8*JqB8l{oY>E(U+5 zsxYzjb|BFs7Ck{u*nRFv<4|T{VWH*~B)D-Tl=JE&s~xR)l`bghG`njfBD=uuGvH_Q z45){AEMMB?BwHOFh?QjCQ|2U#^^y#fR-%tmcV1h==G8xyOCFcyo>e8E{GFoh=Pp!S zdU^TQjjS>4WZkmUR#sMIU#;FM6a^Bkb7s1KhGXYxe1PWI=cHIQ-VVN}+yQvP*N~%# z%4RdtSAnt&3=YwN&H)bkuHA{F9a*j>U1U}LAz!k8r83tB(KBXa=NQP=A(Uss^zS3& zXl$(5xVPlwi}_tDIK&RR_iwwczpDPjmvW{(pn@_oGV)#j!rMoAHCIf9N^vavWiAI$d1$eqNjb<5e2&UAEG1718Pb7U$k^JO8Pej(NCT{pVt!WU|{?RExBYB)3x#_Y3P0N?wiQ{EM~76*?e-bP2Lx?rbk%DV5OwUJ~02? zqZ}w~qtKr*ng^BCo$);H*el_T1pTB%S|hbidbEzhpZsJt`$Bxz`(qM zoI@`cYwf{>3ZBed-M-pX(4AU|g8=+`)01Ni>*&cLU7=}a0p~VK?#mdseKA>2-eB^F zKBWS+0S7A^-lwU!qvIiazMD@=ON(7ZBj>=7B^kr=?qi%O4$hbt&FQuhBGsYl9nE z$pmkL|DmO$Qv^rVYQ)E}Q-nOlvBEmz7~>l6bVB@&cT*Ihi>=-!!sW;LHkFiqV3}oVLG64Mk37rV_GLw(_OVto ztbHp@^f@&bny_fWoSI=K0i&yj#-ZPQ>rH7$(D>*q z=0iAph(HRqcggMCR`BTNBfQhMZ{LEdF#obp>4Yf$hp)%P#l^XL%q}J=Q_BFoLZ(Qd zX8rc!K%X#V-wxc76zFE*ejP2XXp7z-4BNKje2yVnl-4%TGE6fi|%>>y(ha$372sCQ^8cms?fh|{VT73n>52>htBkdy2K%YgYZp2@#r zNA!~3IjpJ8KMy*?O$}E!U7aT)a@*F38vp#Xyv|`}ih*iOP8f5m>lL$=6N6-f{Y1Q) zRjaS-_-tIMaICv1EFjrx?^y;V;8NGb8P6@LKQEJy$nEQkwl3cBvBX>DDQ*)=o==XZ zx5gvej~m>=kKZPfBqjV-Q1TS_iBk!UdxP?Y<@bq*sF6p8##KVW5|G!P1-iE%>>YOT z+4&^6Rj%(tGz!5Vsir#j`~50BW=}GNllVN^_G$CUN9jh^!{5$SU}vmr$ZmV4{~ASG z0j(xDP`%Qy`v|(_$@+@D-xFV`v}X?HZU!TTz4KK|bt7)(XzMFw2c=@!odS}O%FB`d zRenw+>s81gm7ZVv(xUfbcvu)4DjkTkG84aheIGpv!@c-g*F$Hce%|R71<)EnnPo=x zz(#DdsEl3C9J%w1r(C{V25c01h!RZvCSgz+UI4BVD*@I$*I)ojZIV+URuQd}Q)o9C zK8CzHbJ{jfSrk3`^%Vc*)qM+gu0-?K}vMPwLzAb|0MpUm~5iteXc6S1ql(* zZfYkhOYKYV7rC(3$ImZv>DHS^vB-W2^dT;BkL2`Pq(fT@b9Y}^^7tn-8%9P()Y``r zn=d8ng%dqrzlW6PunfGuIjFgdmG#lY53*choP`gKT2^pcHa!Xm=%J3++w{jjpaEBp zf5rh2#v-ed;)vvR1U+#dpvzE{26{+Rv@2GSIFwmTK?r4K*i3NAnoR}`hG*1vT2$DK zwfb@Ha(sVhDG}|3^` z{V{oSDWC0D-5<6$iMRJ~>awzDnYs z)G&*kk2IUjCCzR)} z!x3ncruMQgZob$rt&VH344|#vLLw-Q?JJjyyZ+GO)$wt2?14;baO8`r1LzIT+-Kxlqqb?B1C|FFe>XzBM& z%FUnVrls*=JHMn^0C$7WE{Sp!7EVr1q^kdsc;(FfJZ|{bh=~c>DbYcxsIJSK$+bs= z!9gJ53E@z}5dsWCV&qOXY)}&u6C+Y>Niz=*5AW5_Yrw*a5yfgga8RNpzvlaL+HK8-9!jcc&}Jluzt+s5MIEDc^{Sk4 z3(i23-|e!rafwb7eOJl<7MBaCj3}W&SdLeh*tZQ$LCtP$Z?{ovZ)rK}gYXp~+0JlM z{lI^b${zVunCQyhv(@pwy2_oD{^~3KOX=^BD$<;ow^bI&wjA1haDNGuU*r{z!$FT9 zN8G!&Z0MMx&+xFBgNq}}zt!H#s~xU*U#&=7uP#xvXy=@i7Kcl4@*36)kyM#qSSSah zOUac8Fei^5(U){XrYlK{Lg)ByZzUSL%8bHRKG(NtX+yfjaR#zSncxS z``aSzp$WRKyoGzWEu#i(KR_&j`wcXf!&?zUlX zDH8V~la{k$rT5nEBn2_i(q}DkL>dR}P4tCFzP`J}T;cV*dNr(}k8p!WzZfVGo-p0u z&QiKcU}WAaxhnzaqffZ3{_)oMh0e!&(Em7DTU>I#mxfEoOG$;K_oWqdn_}(48&Mdu zl9`-^pa1qGzoh*>$l?D^x^4qI{cF)I{0TJx(q+K9YZ;lRT&D@!ciYV4Pw+T1xB2of z)BXArb~pm->Wt^uN1BHDsKjWm^!Gk2qf76a3kWp9coKLGsqQQW0&@yll-cT7WVB5_ zZgVl(HOUD=%<5dNf5jR>6EWIcokp2CHr0&Otqn&4UFWZ4yumG}%v^I0Za#V^%SUXZ z_^~w=E%=+b{cV@WzA5;Y#2oo6K2K>Lgj)Be;>BFB-t`i3OU%hR+M$%A04*`c?kss#)9b5N_*R8GP}D&UE->2V8f{n4U*6=5V$KXsGCOL8qF#Ll zzo-o&-p;SaF}v|b3pg#5llSi3<4BDtXq7p3>=uynXlv?{<#cp@McRbG5)yU5Rl7Ww zHY)JY?~kHw0n;C)dpouHli>|AFfpI#^aE}iUKgF8g=2q~T#{PXAqHu__v!@lD04m5 zR40@f>-G8!WzZ1B=6p3#>Gh4ew1c8apfQP26tR^!gM+7fbO<2~5nK9;rRmr#Vc@*^ zh7{B`;t=jmNS92~DXC0pu^attDvxB8;8s0knzux*Bi1_;eZ%#-RBUEpu_>Y^ zJbn7qCv5YLx5tR59Sc{@VagmiRT6X%2M0$fNO$3O=!#g9`Xpl>(7cP9jnDxb)orDf zm6i3rJ$H(@5S&1QTKNcKSx6d+ne|SxjNAfl<=VLu_Nl-9k{;4)j5K($adS%&>n*}E zF(3!$odbPb;J2@en0=u(k}W}K?Jx<|1UTMy?cUw>@Pf!U6oSOUa{kHwV^}f2Y)?a6 zgK5JzD2TgL=Gae>evlb5xb+|ygz9XEipF6GX9qvbeB~GkKtc1}ahGEFZ2ay<6{Erw`62CI;n%Y-a zQ%(gMiP9wYjU*H)h}lo)LL_FbT4jmLlu+$ClWU)CX`#-l~SqUvD8e8NB= z>E^gH1l{f+R&uOAR|ZZY<`h45du60QX>IKY6iDh^l}JM|Sl6$r4gBn~MJr(wB{sUC zD)_Mou{jL0*(qqpBef0JQ|cn%iw72s$U0pqY@ynOEZ#K-3M!`YNu-M4y7YlFlI1DYxrtOl~>(VNc-hYA# zJdzkqK^#G+Rty%gvkl6I7Zs4Lp3@TsZDPlNcWV(yOV9vns$pd7K@x`F>eo29RUu~h zsoRrRzR;Yhd5$7njY3MY65)|+@W(TW*uEuuo`@}m8H3JY63o%HwJOx^s*>&u=;>2G zH)cnD{f<3++c(ftmWs9y4)e4CM843vm}NHC5W;cv2g*fNv zgohuHt*~mFhziDImJU>Dj{K`0L^84VgD*_`p1A8gqXE|c8-wZ{k!8wyRj|i~DS1QJ zDR39_LCqCWpJ~$#3W%uIH*dZr1onkOpV#(N)(~~Sb_+pW))d0+@rv!Y3|OeCn7K>h zaTK;Msne3A}J zL{&%xHNpX&0A?<(K_)bsl%uYb&$hQyH7(**Q^ywnZB>kcHlLof5}uhH5^1nBT)lSv z`WG-JS!bqz;aGQNED_g%IKge<=k!8e1^GeGnCB*@NvTNOKM8ML}jLg?WB> ztUXxKxaEB-q!{7}jXXPw5ce8hDmXneKAA$M;1-_fNgB@+oessou){|HWTgn`Cgjw8 z#Y;GX5T3-O2%{(!rE_<{tC4(UQx~Jln)Gx zM>@+ch*prs9Be;`W9y&Q&B zHY09EfO2I0qD-%HeNXmANh0(=IdFv_Qlfc~Gr>Hlkf72zG>RbK4Wh7;khr8@0#H{9 zju&Esl_w)e?q${_VC@e8PjK>t$^g9c zr|h;IHh7XX`AdTM9_rF9N38n^l*hgCTK1{HA$pNyefZz{tsZXxaz3w+~r~%#qNLkfX?+){q>)__37SL~je}8$ghV{LZhaYVHfJg!mV&a!L6}8lqt1{XX~) zCk;K(oM@n16ughyPjgqRU*_?wW*rmZ=)regCS z_u9LaANQAQ=7yj7YCCLXnNyMas;DqQ4#pPjrbw9W63S;n{3bK_KRxBqk;9L{4+R5* zxOU~EqQ1Vqupq_7aRul7XK6=C{Q6Z26;vm73dHFBrksjBAmHS!g-6u^>A2N0qA)Fx zJieBv_UWiCX#Lv)$wtwZR#4_DZKD&F3k%lot*xy!*>E?FQICv_^t(xdD2)nxHaK`OF=@;=akz7< zrd@-ZhS+*g<+FM*vs&moNui-Bz3x7z@T<>dBdP28wM(q!1`QlTf0c$pD&LauuA zVIY0f3_u88ypp_kH8!Dgz=%Y`-oOl1-oXW=m*c_3C!6Tc*7~1&>lT@>y~&v@1k4@O zD-BSovOgmT-MowowS-2Z68*Mq6wu5Con{K-R4iX&c?a!!Kr41hVzq(UGaPz*nUn1D zI0b#*NlpFai}I*&prXyPP%K9iqliNLKYK3A-||ZKxp=m-+E_+>wv& z|HI$_8!x*~E$^-L(`@HGU_%QO+#?460BAmP)`jmeMRJ6F_e$K<%1(({`!DnMg2CD_ z5E9sS9q77r_4NF0$+yhtpCt1W26&A(Ipds>5Hi_V!-nP0@g_8rJ`Ql?V}kCQ^A_x_ z|Nbd9ep!XcFCInP$u0ct9Y?dNs43qTm;imTlr7noE&TUS#qrBF&%0%k{*>2q0?a>8 zK~9N&RoPvaUR}M9MuF!TNi^fh!_&t`9YsJR&`buj3zB6dBmz0|B^MNT9@2&ymDBFL^*J@oX}RlqwKx-y0IaWDc7Kw z>*DLPfB|wqAW+2*>6Wshe?VUP^*{<~uz`h4?`y~{h@wO+Qx+2 ziYaYA}*I-$HEfvYJgh?jS$bJU!2y3KnAJh0fs(|bYQsd zbjf~F^t7<>98p$D4F=W17gZ?2Og935!q3l5`?O7Sdpo|pux{}_Q;tfH!a`Yh$Q z@K3e^2kA9rWj^LomPu&N9`E8@wQ2v+BlS05pagv3veo)5T2Ly9_Wi~C+0~FzG;QS& z*}mOeTH5_qR;xOD!90v{#b@0ji%zH(l0sV(p^o?Od zpLqr=CdT)sP>f%}m#4vq6uxDh)ci@>sW{LFC! zFdmV;T90j6@hQV7^uwa%&X+JpDbh1HfiLDK3QuG@dIcIB|0n!ydR-HKXh2-bw69%Wp!X`X-%h zqQn#(4Vj*PVd(o_=QVrNJH;-DPQ4}$T_{1)Fij=6O08unY&(Z?d>9mqE=0f}3i_;y zlH7ouj>|jKiM|cU)*&5Mph2x%4aCO5a)ghL-gJ#%YBVv~edI`rl5q=n#;T7|8JE|- zzTIYd*`Z%jI*CV-$jDQdE?e%mRRjxzB0^N8jo zSo3;S2k;|*uVrA+I)@C*XVmC8n36qJgrJi(h|bLM?hR5ocuGCJ7;?;H!^~8$G2GWX z_wFsaRvGuy7-i@vIR+=zL05at_e`6V?O&A8C75V4a-$jdPVO1LLU(|D8&6S_mU}>^ z8bavS%7p{W9o60@h1iPkpoz0@yx&6`DgGP9&9}E*F|nkTn8c$|7^{T)3Fm-d@>^h< zw2A=JtoV2%Wiz1`678qPIXpK_Ywy+}UCL)Ue)~Rqc9DAPqhaB+@X!@{N#2Lm0o4f4 z-%!YWY%87tgNh?z?kq%gAh=# zYaDRHN5&?nJ_YVUy>J>Dxm#cvL_u-~0BE=hUgH75ly(pe3QWc^}P%L zR{z)6IeSGNy~-yTnHMTv;vJt#7s15HZr=oyO*QGT5sHR1ugB>lp0P} z7{~10VHgg{2c)*jf*orwz5{}H10!Q6zXht2uG-Wjbd#3HUphirs1HgF^u!%dm7%Ei zF2XhA6NZeXhelfTut}p;@kUzbZd4RiruBfA=4iu06cvZngg~&w=ms_|$EK#VTv|pGrAeOG5jFTB z;h{pFaY!Ac;~813p?eCOt+T{oI*A0Pl4s9}Q3D&ilzfQ-c5Mu*X3`*;HTC|p z8lVuXGzs{2t-;Yfk61%o<8H%-z`S0>ckvlaLm;N?VbCJENuBy?X=n=likbqQvd(} literal 0 HcmV?d00001 diff --git a/images/loss-l2/loss.png b/images/loss-l2/loss.png new file mode 100644 index 0000000000000000000000000000000000000000..7ca2c7e085d8da59c756ef4d74fb64830764e0d9 GIT binary patch literal 36309 zcmb@u2~>}5`!@Qk6e@+#JZM5vN(o7!(uAaxq&cP1O!I_Dk=|)_Cr1;UEy?(K1BOhPI0d4-Nuuo=#_3NaY@BD~P`Kg>(S)!chc9FF&JMvy+4@#!fH*;J}=)vSsDQvYDwpZg(cs2*Kxfcj6HcNCFhgp zUJ#cO5c#esCkdhz$7-VdI(zA;bHNEQi_TX18^VV;p#_@RK_0+%(8g9p>VX4 zQ!nStsx$B7Qd`(=stJvajTu{7K5A)6ep>VXz4Es=QR-YD({#2LPPN*2T)%p?y3pbC zMqJ|*ekn~S{mRhSmx)L3@541h=8CIAc@sS*``Pw+xrJ9*oH_IQ{d=b44>gV%y?ytt zqBeF%{e%59pITdAfBeWYT>M+i$=O+&Cmj!eVNfsQWDecCJ2HWfA8)%b+`ftuBkL;m z`t@tgMCDbVzI+kjPYj-Gbk{K&zO z?3O2|%dV~w=~G0r#*fHy{rxli_j=)Q z;-OG}Ny)YE-@nhw&kxMcmr)L8id4q zxay02$tqS>*2X8NU&eK8Je-ysSMv9d?EL&Z7Ci9GyW1vjZ*5bmG%WUF_x?SlG}+&D zELBVB^5x5&`5iu6C5P%056z5}G1sRY6ZrJ`^Q*64xibsL=*3RI&^EVqad|dZC$f3- zibFTJQp2W|6q9V?5NMK4Hq9BYwq_Pmb8>Pra_w5J9xYZ8E^uh|x^>HJY-|eW$KHN= zYQa#vFm>wFr%x%o`RBgu?Ct9_E%l?Kln?4;8WuT>bnXx4k>fagXJ0KL6 zluh&XrK_&I&!;RC{Evo?nI||bZ1rGAiBXSF)Wn1fo->7|__nl-DPAGlZYM#>9XljU zUSIzHho|_@+<;!L_4>JqpOr1|LB@^3r z1t%vbkui^>>8J9aG!}VIn+_jUQ;VRekS$g@x#jpn6-p8|fhz9xRK8slMFnxaW$Jll zD6jbLJ$uxS-rKuH;^8BqO`Fsyf}Wn9KRbN?>KKKFhDPJNHyzP78fZ+7?Ct3hkn@;O z@jjfYt!83kqE&WfRa47}484t1VXb-RPNlhNORRG(uc%0^YJPl5mzwWfd*Mm%Z2|%Z zom^d`=NA^5T7)%X_^3Y2#CnW$`uG0&wawk#U3GSL7I)RaEI-dj71mdG-$+m_Su1so zQ3!{0(o5IjwBf(sqK%&Y@nTuS&Mzh_$S-M%J?NjFzIBhw4~l~5a)i7*zAtco-ixAu z<-*Pho*ZaN=XD)!m&2=l;QRMazYV91ogzY@K1r3Ot=RjNx69zCHIxyox^>|Nq#W#% z6N18c@{pFA>S~3T7k-6>g*_;KqMtA`^~K(1?}fGkM-C(Ph|Aa;iI#QuP|pOOR9CB* zo10thwRazEd(J}Hezrj{WFT_WQ98=x+ULmS)RYT@pZt--ZM>i0Klx>4IVB_{zFij* z5uwkuZqo8aMzmSBe0jQAq35(1vRk0f!d%y@OUwI*EAGm=u4ZSy#=t7p*_vy^QMcQ= zakHMj{;fS%5WoV$!VjxQC+_D41_oA&-bqXpxWdSOvAkR{DLI*Hb;lPhN8-6JdHs$$ zY1*$4r`Wz1KR!B2L)mHH&S+`*o!|G5-%PAn2398J#N*p@0~da^QmuZ=dF?7AcQiNZ zU@8_f<5WHq_Z}BS*3&r;2Z!x_@9qR5vJ#xXzt4L5^uTa?QTByj`p9mto0~VB%Cmjd zQxz&5kxA|tl?mJUVROq%_wk37E$!{?`c=P>vF`iKZHb78kg|SA?|Ze_=^MSMsOa^* zRUc1t*nfQyfRrwMCb-odw59^&=BoLM|a zFJ3r8osf_)(x0A5zTZzpSO(byl^_8d{zu#M9dnZdfym`IMQ&YL#kt{mGqSwxrz|Rp z!)UjXO2p-#A0L?^|LNcF!E&V;|jkN6K7}VvZ$@P z&+L3ZJUe@w((T!St!ePWWn~DbOtW6IUfiDZ{Z?L&)yh$~r)#U$uBi!Ggaobm_Plm& z1^(v;noaPUm4=K^-}krW&%gB2~o#aGp_y+|s;C*CS z*71}JpDJ~N8l>MW?JXi){w zh93cFh>3~m6}mZw|IV}heDU$AeACZQEl4r{J@u<=Xy^vEBZ39beR(L2qu5!j-{0TeI`%2YvMz0Sd3l|om)Bk%d7s*c?26_M zdgDrp=9hW)d0pLhD(}IeP@W&ycHw5I)^5mnFBS>{0%%FqHS%3pkAfg@Z?AhocJFEm z309kyCnmFF-}H?#rS6W2Zrc{Gxw&!jjGx}cDVIlzO&RYZgw&;;h#M4SRgX^&edW9( zW8d8Bw169`3;uaho0DE#FH524g*BaKlmBRYk*CrbT_7QfLQ&z^`@6Cn)2Hi4c(|Ze1303)E?^{T|c_8`SCzYX1eTt zYSV#>P3gL2b#=_xkCgK1DZt{ZK|#ku-vZFOxJVTi7B-$YC%Y5nDBG$&fj_g1eH*`| z&?00yfC651X*u(UbY1bs(}9;SKL9i%@ODp4KT`JwF@vi>9CrP9ZpE73a>* zcQPI2_kI6d+j*{)PhOrEDYpXqm_+I_I=WkIy3<2nC4B#Qx%_OPMLH0%YcITp7)jiJ ziEfu;_hk{>+(u2Go%^z3-@bjwMC)qhmO|7e|3#87ha`b3R z%r~Sd5uZP^mgH>@7mhQf>1N&_&#-$pI|AuSK)?+5NZ7`MSpabwx20AFGV>~v8hH0^ z2*Q+xY!yR~pUK}njw&kB9jrVOq^PKUM9y>SCQw=u{xPj$RK%l4 zkCrLSO?*6>yH8kL{OD~t&%DM$cjubs<`ZcsIO|rg=JTGYKcuCse8q!{a<(=`0*M%T zDw<=b?dH#|t!jsFONA3;@h)!nagVu@xWPeN@+mEV_+$~CG!-PyhUd=T1t|@zMqcp} zJLTj~bL==1-23zAmXoJWsUuFckXw>|{PP1|$ll2KAsk>bQ9|1>14H(+fA zWn^S(T3hvj1a36~gq|gcR3h!fxKM6o%Z7uFRUhIHN*6x@s*j!;{49`b`&nzjvdFPV z`EmBt&yR=F^mEh9EiE_Y+I`h;%{Ds}?znsR?gp$`=ARu7&d!lYD*~rqxTIE3|2XSr z?Mcnge=s>r@cnm|HQ^>IYHAk|%06>HH!*TZsSG(x2nz|(qAbshy%m?Rc(d+#nLFN- z_%o||YS{~eVY2J^`4eB?2LFzzC<|l`GB}lGOodwgq1fA#ozU%uZOx$R;i7%Dv6lc- zu|JrA3AFOh@XC3(gy&5GAU|BB=r#PJqKp7NGrf^V!=j=BP%S&lnB_$qsPBXNYG?KR zhxU`qN&fs#jxTNWElFF%abfN}n5mU5o!a6j`jjFB3DMx;;pt!1n`<(rbEGBH$WlgZ zQ3ud^=`kr{4G=%Lpi%s$=G7}IzZp8&J$v48ty&ZeYJ_&|V7YhiUO!j-E_^^WxA8-L zefU2$K`w{u+A5jg6Cu=buDCvd^>juMClqNnm0fn3Y*?!#kZ zR>;ej@Yk`hvIb6f`0|d9j%MNd_wVx}DrkUEPZu6udg?KE+fH5S>@+6XB|JQQm+KIhfq}vGV0o7xtBIU(GUrS@ z>XhEg3)=vv0DAp4Y}2Pup62A#1JX|nv@jfZirkB&2I^@|O%1uxz`*6Gv-do&TvWk}>izbu3y-gIYOcnYEmN4U7@e3XFL3PHe!jnvzXv!l6#E@T^Pu-OLBVB6mwI`&v6Y{0-dyMA z>1lI!mVV{RS3%;%SC8(SO=`=wgf3E3vyz>i-Bud;Nl_5=lZRwBAPA*owWwaEKn?99 zN08!^5X3Kd4_%$bLk`$=G4xs)EG5-rmGT|Mvq2h=

-W;VyDdn^;^zSMQEbHjtHS(TZ&mm(Mj0?qos)C%b z3JcKRgGw<+AG;XB8h*Al(K$IgfF;83-FxCFCnv{^#Hi2P)7N+6;b?2Y%a=415TA#R zMaV@ehYxR?a?H!ib8vBK+_iWC#*pY})(xV1e6DOs0k~F3$SP`T>MYk`!%696t!pUw z{8Ccd17-&f9+a-6QP9xP$nMD<9UHrd7(mf|abDF&-&=_%(9j8a6hvbIe{{q^*Acz7m*&igNG@ zM{J(QG4QDokN z=g;@YYj(>2on?kJw-RW3W_H#D#e0|Mlqf((()VEsxyRUaWb~9eWRy_$9cQdGR%@qf zDS3;jt{od6H?f!;3>}sR{rsem`npy9(Ee%PP{N_$S*oj)GZ*r*-C z`z9-EJHenJG$WIf71%mikb@?9j3`;&zc0-E{+)>1rub3O(3N&{7$vS>xV(~O`?*#r zjksNFii?Xsy>t~fH8s^N@$r@`a^@Gf@SSO7>}_e@Ij2JhP<};Ksh{S2+pYF8Jkr{! z^xeBvM~)nU!r7k*n9s0$`Emm2si>&3a&s%dC>?(`2o+8=s5_iLuM{Ps1HI}p3j4tx z_xpwyQZzS@e0A;U0?k&&b|Klxwxf9Ad2tD#fij@EiH!{dszWWRThAXbkOwAZR{+;9 zfrF#!Bo^DFl8uax`WF?+SvRKmU%k2lg-Tv`ukyhJC$Q--iV8v#IV#D>`McU$KGk=( zYq(b;jUp9HjC39RIq~yj1IkQO%hRXjzPe6aCr?`VGH*SR5f&F0*J$*2_WS*{lvIni zw;F~^{)(M0bUXIK`TLEVH*X38WNYkkA4_uiGw=TM67#+=0!Oy$K1tz4(4GF7o>{Er zyGkML^vk?wpsGJ#2QV~1>J-qyE5#*_WRD_Sse`t*cyxeO3o$S-{Ok#pzlGS{^jI(Z zz|;KvXaYi@nsD!SQhfUC*-bF6t;tDADl1p6Y=APi4L>?v;&b}x)29)TF2sp|vgt@% z*amS!Q8~Af2ZJ3_av!IhA8H}pG+P9M8~pig11RPV5IHWc66H+w#8q zP*w?}rJ-<0TVDp{=y@w%Ql4c}7Iypg^*2#lNkVjRa8N+O=^7qpRuIkg8tYwY=>Bc} z`4U=Q-useO#u>Fwn)a@d3!L}r%q*cV-shrHtcSZ((@b3(79~^%<+P$Gw6s(qBs1sf z)9ru^Qs-LNA#sstasUii`|<*f0;p%xcd+FvP$YoJPd~*gM;6)~W5KYo>uCn*bzyZ4Xsd zg)?VfwJc|<-awCBqPmX$fs=(hQ$Rv@`yr_6(#7{AE$H*?zFx1B|I4+UiAzCCYps`; zS6FnkZuhv}sZ;Wk3&&EXOCDQ+LaG2c<714juC73pG}vtgzJK>2QLbTOxpeyFg?N-j zy#j}gB*FIfn%^xqwL)Lw*w55kT&$R=WVtl8+a(+srtWe&u$XXWQkZ*j|7DsjWti zCs#skj0a1*8XT;ce&Vsqm_GPyKuJkSC3%t0tefbGuuar!=qF^&d41<4!06~GMBpK^ z!3}QN1k@pvdUnE8NUPz-jTC+Q#V+-16=e8D~`AWJ>$5PQ_N@)08V$@bVa1$S9EM zn$R^;^R@XAniIAG14Y_3x^Hixw_zpc+kewGo|F=HhQ%LNh0?IIC$ztgY}xDA z<-4bUldA3^y!hjzEuN`aLj(q=G$O|8b5bKRM;zV_r1cJzQu&1(zeaXpIg}Q)hmYIU zlh50fwsI8saI2`+yPA_*P$n&?C=H$AZ=IBx-!|>KscXTm-anrRBbQV}$1KIXqUpci zp-tkrM!TlvqdJq$Vy~^HKY-P+6t$<($kW~31m#v}pK`pW@t3@FbqlTQC-?SU#5b%L zmoIq`;^kPQduM0&)Wq4&_uNI70ol#z5r)?wv{@AmL#ILo0{>Qwy+2(YF2Dx*G=Ak# z7Xbg|`_?aG4-i2NFYm+;8@Y4XvUu}pM~n^{ky{!)5=R;8XfYg4?jB^6Iw$hp%xrQ4 z2Z}^CC-^Mt;0TichUfMW{LuoM`epL9g<-5f2*V_9HV!Cbr7x(>Cy!p$E`Ke0_aO?xFs z_Y8`Tx>x(7Xl}y-2P()Kfp_n6<5#c5#KiE2x(^pke}JG!K8&1Qh5|M^GipXL?faP+ zy6-jUIm8<@AsZ#+iv~w}Ya)Mq$`%;>^$YBL6>0vQJbAMJci<|{E9ia@`~W4Nv??lt z*%N&pj{%8QsEZd}2G1?6uU`Wkf6&9@#oQkhszeYiByz;L0Fao&#E)Z?Qsi5rYH6pR zScQKj^*S3w)v0PsRLJW#KYz}2hKG36gU0Ym8Kp3JvZm6-$V*|zfdF``EhA< zI7uBTc=3WCZ6wrrj!6>{WLUlDPC|S4?sXXJRSo8lrpMp7O@DQ*2VjB}K@VNO5(xlm zENNSCeg6EJilSf82kI(bJ(w-du1ydVTbp54(A znm7GOt#E3%BXrZzd&bBrKOiXm`CU>c0o{)<-dkd)>DATM1%-rOwYG9lwx6kGBa8%H zkpqYU$GM5K+Vx#^tI%m~crxTfKfE>lU?@a<`x22+r6hxqZ^xu7zTg7c<0Wk?95z1mAxJlE7El{mB0NJx*xP* z+W}xY3C}58tTHu)G>MghHoR(RSPPY8KZLMsbUK`bjDRLdOEEkyj`8Txqm)wA*LsL9 zT)Ul??ccwjM3wKKabBsj4a+D5<4yJ)KYqOarK|nS%nXHs59{`^y&+ru?4z{lG%Z@I zrnKH{Lqos7z)!ZbBVCr8Y>;hUoJfs`@sAkDRZmro6kfr=fW1BMN2Eg{n)%Z#AHkE; zPym)kv4hOO`A9bzJ@7C*TmS7RJ1pOqe*Ad+t{attm6cVvBNWCewDK;YkGgT|RtAu2 z|HMSI)Q-UZTrY3$rfaN}XJ*$-ku~AHpZ7y$+-+klnHeS)k=(m|-XFc_7qLGml3%#DM?UKS(#s4Jo9z24!9(nl+|h!y(>@v`6MLPAcy$`6f2vg3Hgek ziLI8bwJDSK>X8uA93?^{T66?@e0p(yE2Wd{0dPeLP|di#?rZ)1{Q*hh-Y`eWW6nEZn)r4?VmW@;<(BMPtYPo4;`gIv|d8yGMM+x zP(XVRn41e4x^>Zl%R+okYpk;|G4V&Yr5lof)z=r&L~iz)`fSNz2G2;qHI_}LKzk$O z<7Lq2wtLUHgh+t0D@Ti+2D@I4?*4I`m%p*hCde*OzQrzHy!Ziz3zz=JmB=|FUt|sj zWn_qgr`mAg&M%`GjxPO0>!!4LgelfRp~z!0%V)uZ;s=B~)b{++#)DTLpv3)X$>e=; z;n#HnYyDLEQPnQtEhb=#TOllNiJly58{KedqiS;7RX-{7|B5#jV#J}k z2No?t*DHXSq_#v^WKL^sX&ViT?8hci|BZ zBR{XaPST&&w%xX0rau4nlzZ3Cvx0HmcLNU<{4mL%{7}Rm-yw5Kn4dp3E0pV}meRbJ z1n>rR-SOe%*Tlp$QA;Wfj0*zJg640u<&Dzr=Z|gfK_!+vOFq=_Fr+}vnXbT_)8WFC zf*GviGstF&P$C@1`wmk~OSS|Y*yyZnE+VLU0HPIXY#^(>ZfJPgR!1I+ey~H_?n~bK zkR5M;CLWyJ(K&IJZ|4TLpUKyQLV@_$NRQ^hk3`HS`yIW_g9QY&03nvXl&V9MwJJ7iwh*mL)6`2hc+riP1w1mGweGAUbopgTZ zmRfz!>#o>P!uj)*a@dW5ZdG>=-vnw|G7xZuxs1lWmi4Kn`(8H1dZzJGYGgY%6axIBaFF5 z@x_BMb2|nWeA9yme1rs19%zd|T3g)Su%RebqN&3R`~k2LIH!-!A)b>wc}Vt_En7yW zro=AvZQZhEC6H_>cmtZ5hTXNgc6P*S)nr7JMy?dx*Il$ZlK7!>LkDfUr4CHVxmb1F`*LHDnW+=Z06%{Yf-9}Qyy|0G& zI4ObJ!O=s7wR!q!v;yhs6~v6|=x{|_|LTLa3%Da`-(ESnw-X+UbeVuIb&)8kUtcIZ z)-Ua;D(xz(;|6$M6TT%(diI6)@0}>fUH$!Oj$a{PLWb1mjl6XW8em22E=PX2!bY^V z3>+h=HaM7Z(h-nWvWO=f-Z-PKuDZVl^t7kmv*2oSN>jJRcS9TE275dROrFYX25AW9 zFK%Te!Nlts(^_Z0Y|tyYhmEpkP5s~MJ>%bCV*&t6di2P~0H8$t!j=a}xUrQsIrbg< zNK%G`5D*o$J|jbssTEkHQ1ck?-fO`%HIb&inQx-}{rs-GzrXOS{8#)z1s|V^y_?8G zt%;PLeTuS#9v>KMdhtVT5kMfr%U7;gduv!(rBu36u3o#gDUJ>G6#%ZrM zj{?J21henx{Qf-*fWaeo#dihPY(@GO6h!MjpkX4x5#cbreyx)&+PI7=R^6pxi;HH zJ-miB{By&hqUh@)vwJQuR@c=3vcW^FVc$%iLM68E8F0Jph@eFgbF<8*FVSezyihimNsZ+mKgL6O5;O9-g=;5QL9>EubU_Hz*5zbj?vYzzjS$4msZI7PjQ4f#-Fc#Tv2QT3cr%(!o}a(a?B73D z`8qj}ys9hYS`53Vr#2fZ?}P{dws80_ZMkv?=V`qQsF{gVKxcWpDW27 z@u^;k@@h(@X?(J3uRAr@K2cZLZWR?hNVIUVX%(?jHm_Su`TRMHYmLA9&uT3`;_|fK zt$Picw@am*Demt6_gYxsT&Zqk*T=n&_xVM#ghkQD?b^6>P8N!YdRlCo=Ko0^(RIsS-=FdF#Kv?oppM6|^2D1ChDitcc-sip4fe;eXj zq};52iI1G{;oFyCwcy{lkqRIHjJq6sD)+{JT7lp={NN~PtzW%<{dMZ`M~!Cx+JIoHS@&Vlal3#9J@RXvR(%^s*Y{Y$I}rd z5_poDf)19OhleS8mN9$ITZfN=P9H)+hes~Hc*EMY)bjH3XoPB**{Z407Zw%$>x8cD z`Gl1*^!z1_rb5}9H~q1W|Eu9g%5H_MP{jTcpVG>Z(oOd%yk2~+Qmwx}QB4f4l(J)t zliRxVS}jfx2|hOSe|7x&Z8mJ!KwzwaL0oectQBX2m-|6PG_8uh)z7J8&>eN>PEc*F zM#!b=2kW0qOD4UGy8qBx#&;-Ak6#r}Xr5qxxY(|vI0Q-wh`F_aD|##X`nQ{_;KGYK z>vgt=G`+V&b266Ic=GTl33F`#ARh4oVR(NxWy3LCul==+|s_hTw^#c zl#j0^IUHQ7ERfenZ?FKu=tdYRy$y;ybbR-(jSAd2jFk5;0#W0gE?l?*6yEUhqx2J) zFUsD%J3L_4*4Fk$s#p+~6a|3(&dyFhfVS7ItuH=h|F_S_cza`hj4uba8WJtdQ(>c> zJ9iSn2ei1U1>z2ogg<=Hd>p!R)v6{oW(s=w6*t6>0K*V78(h!?4#1yn;Y*`<<;{nG zyL;zGs_OT*WH#WU{M_yrPRVoMK`R>mwCiXgJhS`C!LUJ;fVnHoyi61}N%Iw86#*c= zR1`Q;Lq|p&&}(8wq*sBF5|vBw(4qAE;~+#t#ekcPih}(?!*}K#9XIO!IPbRhs(eKQjaemnOOG3khZ(W{|5KB8+hwiQ(j}G|4$7(#OXn~ zeXuVO5DJ$Q^oVS@Ky1I{t=gtd`Iaj<%tW1@m)P$8qOJbs`v{@Z7>Uv#acVTWmf|+~ z%(~woElg~uP`T2Ewu&*ijVZR1*34Cx#grtG2YIjW9o42yd|MfI`4|jYk)Mfh;f)^0 zmZV=Lea}Ojl9fe42LHa4DOn&VS2w2Y)ZO_|C{V=q1!-Rklcc>xq8S@l=WB~UO?MH= z!Lh56oFDeK?dFsFI)e;NO+&@WIm#n;IzpBMuQq`mjHLP|*!$C*Na>qS**P=-3A_J2 zCP|EH!R{n6E>-|V;mah4ZlA(;?EFe{KMVPFZ8lG2Nxhf?IbXv;U1hSf_(`dtZ_3bB zx$1}trJYXq%xWVP;cp@6x?D}6Cbeh%!>nG-fb)yc;v)GxwW{P0wrJ&x#ZcZ4%%JgV zc3eT9!`Oyl+48sC@5X^=|3`h%!Ltc>cO85#z;}}UH^jg6#V8pY_n&clp12XWm$q7? zIJoWWONGCG{GwUIA_ZKf1UZkV{kQP52^%TDuTj-tY%5%uacUEO%5eO1$H3Wtt6bLm zw)&(#wSAG$dsguc_seQ(V^DDbKduMS+}j(zxH}T)OMBlg3+CFg&vla^C6M_o_o|46E3>M$drD z)!c_Gw#Ip7KM2Pf2P1x1;x*UR`fNKToOg(S#{-1YN{PpawFi9RdJiAbu!_I=cVi}F z76<4UDQUXPpBPa2{60Knr6R83UbB&JZRP_$$M;Lszc~B!2 z^|LUi$p1w_PGSL?(m3aAajsyoVWL67bDNuNv@W64yIuMs5X+}i1mDA1;JRlvo9vjm z!ep38;D5(!Q(VO>_Qo$F!mnW0^Tc@ieBY9SRV&w=6FYp@x^Jt*n(8+ZORw0;bj%{b zx^eYyA1Yf}`-s})cJ+#nEGfqi4f62t;te3;6~DdieR~;qZ`)Qa>?mAeK(fUW=Bt*N zl{E49R~Tp}#Ll$?;h+-}#OgoL^6n8@97`L3tnRL+!Iq~MrIDMkK239z0o$vD0x1C1pT@V!a{f1eys71j$OPRi zgIGqUZBpVkoQ-Rzi#yDD=I@cvwi>i5D0@IAGPQ0m*PFg4=cojK+?Xy7bVN#A=aml<&&^av9air98gxK!{F50iF@BZq(|#r*k#8x@=nI-(7|t0 zUtLR6jwQ^N8~N67hy1CiyuPfqf>uSHr9_8h*@%;8oi9n&d7T4I1n#5w5%)191=64( zA}w5IB^q^6(b0jh@*(df@bNJ)ASU^q#N74o>F$<-w+HwV-k#kT2H9Ys%oyEEIuD?; z*S+t-xe5)>nyXT=$<3@uWayYpW9@n5d}BW3-L}FlXQ+tk5v&p$nF&)AfXOOK7Q7b| zzrL^{I9_A63_YS6NqJo#pM4k#5S<)gzsPE|j6;edxx-)DruW8`Hx+S6Dz@h;{;Z@dm7w}9&ST&D`>(?hLEKmb zt-?08f&#mNe{!-#z;dh2|3mc9d45oYg@K{-SAGRDY`61X_E`03Kbw}?eC)G3+rYEJ z!$q9Oq#*?mU)(nRXBZID6#p6&8hQwl)|&|fGV%88nP`K>cKA`{UQS8L$mC0gh!5>X z1H|F)p9L-XP>kc@B}y}y?XZpcw4uLO)yGa+E$w7xr||N^23ukRK)mIO?2-+IA;Be0b}pd+_00>(cbh>&|(1 zWe)Te_iBP{OSPiKx&76zjd)MhE+?bD?@wd$7lAHD9I0>Dm;V1Nh$sl2@QWEG?b^sl z7P7C?3B%sK7AL3N%5> ztp6bg@rOC~T=DSI(_@3JCkVzdI8aRCWx_BXr~Wgmc%Gd9d!LrBkvAD1eE^xqs-svA z7!;GAw)N^`vE=2MuBA2ZS(RAo zk(prKLf79+3xHJe_tp~r)4~RuB;#=yW2_*KOj*~V2f)h|KMW(m-~Qk=jo??eo>ke? zExvyl;`VKGmC{al8}0A=cm2S@!v&m{vDr(xUjw&5#(I!}l(5TJ!-fOJlmZ-3;GeJa zawg&x(AkeB^*Hg9{Pv;~jBOq2vP%+$`I|O}OUumc3gXAAcnNf7VoC_Vcj;2wn(z~s zmea^DEQ4!gq-K-TA+uf3gskch2qsMr=QtD7XN|JuDj7;AY*cJAc3gN(z`Xvh?e5Fr zkP&mu5)3_Z*RL|fe>t-sukTG+j)v=#h7~rg+Jjv8B5D2$%yvZWo^8#sWG4MbxY!aA z3Ra(=3U&ANG`(G26l@J#2R2~1rmdc^fT$FF5ey38vR1^m409DU`sE`P ztVU!^vUGFP`yz8~{k(PQ`3R05RzT0Wz2=?$I?bL@<;@$czUu$yaSLzKB2va9wyH2YL%Nd z_r=%4Ah~Pa-m)FjY7g%A%X~0*v9MrCbwd-_D$30g0&a(CN|jQGXH0?A2jN~2X&y5{`erzUvP z(4uS!Qb5L3xs*0q87fcB&OTOY+Kl&O`|nkjrahy{x9>3QUO-{4<7TWG4q){=^Um+% zBmbs!f5)EQ8`X^XvO(C4O!?7-9x2h+M!fPLOu!_f$U6mwAj_i>Th`HI-^#mcR`UIC zmMHC%iXi`NGk@X3ifbQgR&$5Psve>1Z=%V_@cTXed@$=-VWHnvUB4JMKK=uX1hP8# z=1!T-lTQyOYt7b{8LSmQF5|XcGnw9DN;J#M&n`CEC^ODOci0DSgjWaGqh8ui+9im%6!o7CPTr z7)7oi`byuwKjK{kyDBldiAe2=xc^cX1IOKQIYxW(2&14kEz))W+dbpy(=&!v&6V4lmJ1;9dTpTwY8UlL?k68JAeGx?7GXtv5)aX z2D`BdBy`5c$6H+$h0EWni^{g;1je3I(ktO%+fK1+qTh7^;Ykuhc@#Fvcx?+@EQymZ z4#fMxD2DSQ{4ma2hNf-C(Zh64&K`eYcF4G6A0phpPCiR(L>J7h!1+59>>#0F zFkTCjEs)j%?%d%7Bhc&rZcykZfw4YvkOF=Tn?phQC~O#tz`6LlvT;hi?dbSg?LaSfx1 zbq(g|)GE?#hWqGMvG;F>!A}yzi;TZ-+dRjfkwIzV`4YtXmNTfvIA_&YtCk~ePD{7D z+QP1YoGCF6s}5X=jRig!Y9K{z)28KUA7c`d7O{D6*6Y=)SHzQ)pcF)*z{~{45&;|! zkKENa_W~~n$DAD;LMfR6moJxM%o6U#OM3ZsXS9Z27h>y6(y9WbqZyANy zkT5k?=k;VsM%NJdoSl`W0DBdv>a%^qVq#BJoYt|kr}Es7iwl1COe#bIsyD=g6QQZ_ zHxf5Ba*6;LI$3I*!oh%{nq|wDS$Ti`4~^`5)0F$bQ^vC79?L+H%Oh2m2Oj4;yAD41 zP@+rj(TM;~Sd_@ADC95^&?yYtkx>yC*vJIoata1EXkpdz>~sEF?9B;50W%Lx1w;M) z`h#O7NR?}=((Tka5;61uYZx(Q!J9~ikKtp^Ces@%;g7JiOLBeNoom7D0(LD=XouR7 ze-bN&0$-S!9MhbxSW>kpZ{ob3!;J$t|LExbN}@7AAc@=O%~A6A&&xesKR?9N?BN_S z#3Ymn?1{t@0pR2?Gh(8sq(tn}gn=|yk?4krU~ziK<3?-NlPI6Qe-~KcC4Yq@GbG572Z^E>_*%VswI5WQw9GA0YUFs0 z`1p9tQDG((b5w8&H1-q~6?OIXJ(LgzG=aIiUjlP$6h-foCg{RwN(ODt)it7xi}M5H zmhVuj_9+`s3`_jIRkZ*a&B4Fv_I2du3BH~MR*Z)nzhf;8&&x9EqDO7a7=sM)H^ z)msi6R0@nixR}0(CGGT|2Z7IU0uI-F$Jkw*C1e6sX=X5|Zo6su3Rv~D-TcgFJSHgp zjZ{NzRLz;uxT#kg#^-u^1*eoKOX9D&PG7GL=ob`qeWA zdZrjUbFIcnoM^?*Kd#ef5eWII6z-2=2A1J?ufDUgeBM`}eo6 z6ZnjdW2DSkHG;IC@836atY_ce>~(g!jJdQrJR#|4x6-j@#ek%T)aM6a++eD&$Alt< zdk^LJ)W1gyYv`jpVd32k7x(ycYJrbCjVaqL=))qY2U~?&KOEl(<;#yEY&h5aoGD#iqCFd zw@4cPoJAR2y$!%_y7bdDhhHk!Ax8CDoE~I#X&j!f)cSz^t6bp6rG^- z`U0<$jh?9ylm_voW)^!?`j;-)+Ojb3f^nnt%zQYP;q_e4!No4F^JSLThvMYa8&YA6 zcA0792KSWyVkVw-CESZ9h(r)$v@{RGSQTX8>g4nq&GD`L!je>{UtYfvI6ZXDyJUrd zlhq3STVD)LObzz;O#tbnnwYM*A}TyJ-(^8xAy@|p=8+b=9c5z;ZHbSuA=T<6%f$ z&wXeA)?Z@HeM8l2&?C=o9q897txy`eYCbkMP&(Z~gCWlCmN&p!@@qBF<3X(BUGLr7 zyV%$bHXw4hxa|DTNB3dFq(P5b%BGnSt?!*L%Y)R!H>+^DyYo+PKb0{pi3uYNtr6?W zVoS9;gOD@G3K)?lC(D@PmEg3I79|7o1MNPi+Qd%L#e55W+mvpaf0iNWqL96y_)-g= z#19M{G?>D=bRb@##AgAW-y0HUm7S1KUtA5sJ ztfLAuzJ2`(;80l46QI6X5#O_xmdIvNNoo5c+Rf`qhf8R_*WpdVwIjJV*P5!mJ>jRa zLENIe6CS%+cPt7AZ6N|4fQY8(q;DW)6B7^Y*tJKMstyUi{=)gA`EZ>0X%Tx-kICT@ zES+}R3-KjwQx2d+8fG)lJLB&1Ys6*#=Xb~7Zg@_K1L6bV3Zg;Sw3f~Br710Dad3?? z5Am{!MOmaF2N8Vh)-7@l4pI9s+OQE*#oiq-pnwlcZVL~`DgdTtU3lD9|6^q|7l)Y6 z*m_>^sRN5UCmX+>_U#I;K=DKT^WmHhyy`2Nnf3w5qh+rTH2P4X7|-TS@09%K1yTtT zKJ3RK?H9=Ge|gzIV4*p5h0}Lok`*2WdNLJ=sT|bDav0c8hi8Ycq;qefR>pQCuDn?cI<(`xL508Hp0g=Ayk*K4$b72v-?C(fK7 zJyJt&owz$*U)*(ybkk4xMMf58hh0Fg8m}=_?XK4(&ZdDUw-SA;EaO+yq+bQL)@WgC zo}e8fv-2Ev!^dwSN{{r0EoSI98J)>yx`p5D)$Z@bYhOI&ZQtAv0a!;)pB`7z#z{z2 z8#n%^Z5YCYm+$ph|Jv!&;WnzprWdKZj>$)mhxT42YlnUTn2O#rt2L;*kKcZ(zFf4B zS8zIyanW<&(%mZE?8%M|#kWiEpQ86uFLkl%iW(Jjp{y(pr~^yADl4M_&w*KloO>hI zBgpbGU%Ycr)I)2r>-YnDT=2h2bM#HyuPoGkax@XS4?rPPQo6f?#5-{+4L}~$JjwkR zE|d;r202IC7QPY+to$EJh56WZ`2VjmI%cNsl}!$PDn*QPXp z0g=Ap#tlE~OEaJJ+|5Y!jXbfjre$3J|2siG5dMAkSAGZV&y2v}WNr%tb^UB!$~x_H z-*q2TKYiL8lKdLfcz)sJu!ZQ7mgd2Sqa|RrC#SPuh(-}53WgLyUjZ7exqW|p*ht2; zaLS3IsVP5>a#)R?D3s;YDhw?w$LPZ+e?~Nb3rL6^TasQdKdG$g~(zYd&CfE8}a)RryQ)LA9#havO z&;2uY7~zz;UFclm-8Hu06cea<{uqgU9C|G%=p!smSdIQsG7+M#{*kQ*Ux){rjKOq= z!OIJ)z)nV{rvou>gpr0c804S*hpB2~e3b^sRpyzq5tp=5mr)8Kg_HR-a##b7(%QU^-WF#% z4VeAUUZ?jJ+c9L6JX%8|Avz6ZwYIFDL@7;?HDd}1d){Z4%9{`;Kc z?_c@Id1IAYVhD)ubvf;C^`z|>VR{JVp<1~T4RdUNVU;P1Kr)Abvzq>|*3LYf>ZtAa z8=(wkmMFzeWym~a%$RM=JP&O$XO7HN#z>URl#qEQWGX{MM3Kr&%8;QlBysLV@Aba# zb0zixi-h!%T+vB@`S&>Hy^be0=9-Ze$P*`+I z(6~X~EToG75#1Hw(VqATb`XSd0Wwzyw5_PYA^}JC7`Am=em}Ec3^5!PCfi&T?7#6u zleLbWll}Y!p}=dO2|w3F<}&a8j@@56M8^G-vUyI!60KX+b6fg4ncbM_QpD>=ZdT=s zu7A89*=j;7^hZQ2shk{|bW=s!X|!P|X4&#Z1vEuu%+4KZ_!YnZ&V8+*x14jC&hriX z^z`zP;m<_gOPEjxxkwnxoZyub5G$zpS!h6{RGBEeu^~VyB7&bKx7-t9>xpq#Si6dQ z9Y_%(sHoU$*QIE~Qgd#?rhD&guh!H#ah8tw+E+$ilISeXxKysx!+QXuLdZ0g>JqeaZ33IS9g3zAoku&atoqcDBWu~##;mP_)FlXZ6|Bss#cw+ZYPEFbHx z5)+SV{DkQZgpGt&DCo9HR6z-`pih(;3>xUr@a|(IdMEc+O2@(MMpCFq{wTojqzr4s z-G>q>G-V&d=8&TgG{XQvrbsDRRr=TbGKOC+1a9!@S0T|9|K=X(mr#7_<|T4=zG$3c z7-;9JyJj93c(K}{B213HbM$zgg+lmu?Ck;a zZi0mFmZ-0grTrlmF{taE^A^&CIkFyvbZ{2Lpr9uy)#oYSrs6C6SXw1CyMVsxNy=a2Cez&SiSWuaA6`XHdrnZ+35fGH9=LG> zBkDq!D%wreVi6Q+0>3}}9#zXrLS-Dm&R>K54S59mC05rc8&<=_5_48b5?N9hNlDA& zL{8Qt2Lp8iItY~~N(B1)Esy0dYR6|-q;)0!-uD~mq09PUWE7mM?RDn1%>(a31a09! zoc9+B^q>l5D(1Ip`wqRJMn7L)t-&309uv4|X;t>@&YEc$0fGG&a5Mvai!qF8X=$)K zw-o5XXW{l}E-k@=I~W^TU4pLI7f`y<`TrGOnR|NCJYyv8TY{Vx-=Avh$l*V#UqN=p zJ1C&D_jG3=o!cU8#Bw!=b2Ui`i9*;f&D>QkC7~o_IUYjJ7%a2%cJ&S@sU616U-2rD zgzqgTex)V(Gf5mdG7-*-v9+C;!Ihr@Mk|;AM&jmxEz(kUWyT;87IgSGrr)Te&* zUhVeWl!GTARqn;!OZk^6oO4QvSqKGw9PUe}04d~^r>s+|sj z+fY_hMX3-R*M1Yh4Q{Z8jO&k+`ilJCWy z?H+JBh{po+YbZ?31XPvgpn-28W%UnEH1|COB%?OyU?A2V2+Y-|>i{1Zirmvs6C7Oo zEW~YY-cn+gB^(fQtYvljqATA@<}L=nZW!v)W7Q59!2J>t@ooHo`Z;Hu7?lt zI(3BxU+#vXp%PKlWngZ80)&Y0*Mn=qKsthEe+~^czcE z$Ia>*wm2_W7u?|TTbKNLf3)Gy_Rm-`+eXHJXqDHpu-tP;w$~GqH-e#CpRmObLN9sX zPj1yZICRIBD4X>%LTLSr7^Ua?2(LT8Hq z1qli0?$XT7%^mvy*9dhs*7%_gclxfu=tChJ;1>ZP6@Vl>MMXtGZYRQAgi1Tq77Es` zU%Pe<(LvpkST0?%>}Om3ybaZeDxpW3tP=?a!3!V0+$~WX^Hm*L8aaeLBlC(Dm_uRV zGA_#2D#(L%Mw4)3x%(J`2{9cpy3Y&MEoh)wf^ciz5q8|bfKarv%Nu%y%#h$`0k{0x z4RA}NmQZw8PmhAXe}iuiA}+wfnH`L+FgEA)K{;3Y$~H4V|M7DF*=l?Cb>cr0MCE=! zyTvm&{dT_?KXbQ4_m~JB*00i19w{qL+Tyu_gQf(ik^ z|3NVMl_3+CQ_$;c-F@cl)OqjJv2G&RWX3}G0huOI>jo(tS)_dFK=nloJ}xq~Bt8Pf zhz4uLT~r5ve*{g?i!iRi(VQ+0{nXGcKQ=i))rhO^$DIX~7vPpyN95M=eM2Z}bb;-TcaU$Ifat+d>1^)SauDbhEqhr&6Il0zOKW2ZJi7Si z(zOLRBJcpQvbKDzle1!{eN^xV|Be#YY@DY1_%BP-uAa#cPf|E8ccf`{J!YWuVvoe z?)P3hLp&4j&$;#b@(w6H-d~(2fRm4t)xbbYd99llcp`Q$`ybyjd}wD`{7lazvDk!k zq{-|xY5CY4m0NoDIM^l+z1wf{bTM92YTC2Yc80=8>q>JGGLDnhTi9Em=9 zsyFlF4SBugLD1U_%j(kXzemo&DsXh=ClQ#Ec$?{x`^FmCl9NR>Yu+S}`|EJajx?J5 zB0a|d-^RVaD&PBjc?Dsv8i7W}0dX%nzYz6gwukn|WlA<&=Rc6vds2T@O?=3AuZuB3 zQ8~iU#_tQ6>srD7PK^MT^z{bK($Mq<6G7xG%cWStkdT%?%djh+6Q+X>(q4a}ilR0k zbHLwcw=bPmPz?&v);9CoUwC-hRZ&4Ujw9OCUHJ=aXwb|6 z%kr-2FNy85Jx`P(OA~o$Qw4Xo3VSVl+Ya_W;OE!+b)X-1N3Wsomo9lOR}al5Rq!1@ zpdJ!&mt_4r5$M2S>FK)$;Si()@2;;`2s=asGzUNZ)H~k9BP~e;!@t7qIx)P&bn?Rw z?>A47^%vWG_;@f7A-u=w7YIe2s46WB_2-;CY~X@WG6&Dh?3%#>K-dKyXHJRzb3?Z~ z?8VrLBq?Swe?y_kT0h34B5IzUmu)Z6pW&mj8$H(9P5b8P=Ne*~=B?7&`>KcYCHHP1 z8bKhtDo9XnY1)*dv-!L8{F~(FpaB@$Lz~`1TjRwGygQEwLz(2J1*Rn^(2pR~pAhD; zUXHO&x@zP;VI^_**!MtD#LLBRu2x7wsKO6QY~epzUp>s#^XjRb z#q4-c$f(R{$HKcdZF$D*X$DhFgg}OYIrSy5rY31-CtwMjok1*zUoTW=t^?u`8=KU* zYtAjnyaJ|_%uzNh{rv!(O40(=Qxg9ZIa>zM0h_yUuOIUp$iC3DIYunyixClF+f9`+ z>A441-Dqag?cYy_bEB1S{aZ96Oq%sDH+S12=v86e+vzL)Tj70Zdx!qW!ggtUgWgj{ zKK$)(H-Z)z%AAkCEoHr&6P0wzr0U?eVJ$V+XqH3U>&z?PwAw>ul{6Ck=iH`U(eCyH z>~6(w+=z%t7Imh(*4URpFDzp9iV*CMyFVR2j(7KKc{W-!n`80KJ7ln~hY>tdN3^{{ z1SMX(Xfey+Z)t|qkMB|I3lsmhA6nNyf z@k44nT_U)$QcP2m)YMdkWoITbX?VDTc(`8ANi!GkNbb4By?$?LP<8Q~lFdvPZF!KH zSIw|si6Z&GYijw1F}Y-ZP_gi(%ntCDXcq|leql%`X>@e2>fHz`wZ)oaEU%uf;V`MC zQdTF1?yZy7(4&yEihtG&z&6D%`yv1SaA%$CO(l+=*JK9|{d4nWJ%y)gdNBWfl39|Z z(fhDsGjiBrZ~xNy=-XC^mJW#*4v>@gM_a8sfsBH>_Yx~;OR@xangZ}wt-pVo68xQZ zAuEzJnQw4Fe($~1uT#5NmR7s?wgn*K4LjnlQ@1zkRT<0afTLq8GxWhg(z%u7k;^z4 z`P`4I<=k%F3=?lpz4>EYb=L06c*SXx;nW9>ejyPD`%nCQO~1d{k~#~I(@Y`S>OFcD z3vasv(mRGlyM?CEUiGl-IodLy{m1GxNIA_#oiWYZY&7LhO$I*{o{29@v|y;TVn~Y> zaW*o_TH=ziz*=0N?>r9k5%t_r$EMD0LldIijUZSPXMOSZ65$JM5ZnFA`aM>QhthFK z%@+7kwatv$X*N%=T_Ac3ylgG#BuqDoig!~$J{?Z53l ziq7GnXi`v$?P5&M0QL9ZKOv`8F{GsZ)UD&Jn=7qZse+F7{H2bAg+%gUn9nr?&s>OL zt|)EdH2yqZOTcYL*07mnH_Y#um&EV4dD&%BOL2c1L}FL9`=P|JE^3*3cd;)6e++PO z!TQAt0=aDRKlBX0yuP?R)&kph5U!S(;Wg({ghTu`f(HxR#|CNg_oTTmzCU6>y|~|D0iwC!bln#+Wv|cZE(hJ z`E9^QO zokzd)iT!tVve6@kE^b>nYea{v0iFxoJfVaK4`M(yT9hRjV4OyJ z0OWMT?7lA#^y|s+T^70_>8HPxhcnyLXN8@H8e1d*6zc@vw}wTkGo8k52LTa3>*NOT z3mZ2SUS-1>xHM6(wFU-4&eEL(ItaCBOD=Vv>Pd|2eobi8Lp91BxWfbjb|`29(5b)H zs+*zz^W&BA*`WSYlhc$L8-$dXLB%+rq_}nfp(-_i8KwcvI82ev|m~{NP1A{sqWFLqdoY z2k7Z^x5hO_8@V!EzNk!m>%X~h{yduxvos4Vo#n;}shOY-fzSjLMoJ_rpIz`uP9M&n zJo9t{a-tMT+d(le?qy9`*Q*?FSn?p_yiJqtajHn=XD6iTnj?)HjkyK;`WQdx3F^Uf zKUy!fD-(D|GYY%-G*d`|orEOnV;LMm{3Qh&a9N^Lv07buJUrsl&9Le-v-9`nAC}|o zwsG(suudsn&L>=(BXSy}=t&_~O9w@TLau5)-C6=vcbP>Alaq-zLT^XhF0_!*`eV|6 zLWZIFi*X&z=9)pd8Z}kds48#d$1*T~6%}#rR7ZAN9@T4&`M)$PCSngES~K)>fX4`L z5hzTZ&s)~S;a&j8VDkHSN@&TU90$~6%Wya@8h5Dt8RPD5sqyK+3xEDB2{u$9m~#eutPFAwQ2V8RB#c##bR zC>7Xi8ozqg(V+sZ?g8jmWP_1H6_BVQD8?XN(nnir792Q;nVb!Eew00s2qMYTK7M|x zknx7H51^)S8YFFM;8ux+;EdCA(Bh8+sY5o<*b>E;pwD(F_(5FUs{c5KEqUgvs9Jm6l#3X(RI`LP*1n4dM@Big z9p3#yHeTuOgY3V5D5sZAvY{bKAuXZ!2x-Ns=0QwLQ#lV2evV9-`)&6zBb>*__QB_?DCB1J9`<% zEm@)0!6u;L zY9TcBl4BEaP%2;iKl7ZlrKEuY2MnfTR&cAJ32eIPLC7XsXfAif3Aj?Qpc6jKrt|o6 zgq{Fv0M?RaS-M!6RwfQf{LzmNM9G9M6%vFyMZVdje{paku8RBmI{!Q@nE7)bY0;NeP z_<8`H=yXjner=(YZ472+s7~&>mYBh6h61*Uto|6Zm#$LCwyMw%8vE~p+NjF*qB|PU zH5Hcz!)8G9ys?{Ah8I9OQOF4tu6RU-pe8m6NL0?>l+?))VU!`T%zo9p8`aoW<4nB1 zOnR4<@zuMuG=<~Ig@v^|OC#;=JvFWNpY?z3$lSR6KK*h?gXBqJJ*-|=*F_bT7e4M4 zHl!Emy}eIz7fq~eFtR##d1mKE9li;JFog&H_x|3170c;#MK2H9=B^Y;qpAXnI&G|_ zK`CKo0LR^$Yl`N%K@bR zbcX|?dF^;5^rTf*ZnE(C-*_R6qroL|QbW6XM^ehn|3tILC6?W7ogWKEh7o=JeJSc5 z9zYwr;vKKz)td=Z5j3V1k+T_EVQ0SO5YWgGP6~M(1 zQ^fG$>N9(%T3KB$mD8>p&RvI6=C_B6D-t#gO&GCOeJVpNEWgt7s+}oev0P+C)UZ`> z!lIUNq`5R;Naecu4N{kDfHq70{_>FCWNUlQcF@sytZ@vZMu$e`d2wJz^hD&xmxK3L zCE-UShg37|83nm=o0v`V(t+$q`i@@d%32m|)171Ir!x6#2kkzU-`LVqIIwkNZ z6~Im8kg8wG(3KcfDahygNV%SnaMSjYy2jlkCew1l;b)~2&$JI8#!r8P>XgW}%|`b4 zs^rAqXLm@3lde`P*pg;uhDLgv>-D*p%N|Cib!<(UTn2=p z&pPbiUc_FJ4~uBNuaLVmDZjdFkI&lF+{{S?k#%i6uN6YQh+Vb4gDrxiyL#=hMRCgd zf#QJ&$L#mjOt>&U-`4RSgQD4Xcqd5P0EN-?%et^4sqpfN`s7!hsl^jNFNNH!c- zPp?L0+$F=Lq@2g`=MqqB^T3sN9B;U7u{5Uyjz-;IzvKWk!*^dC~QQET!<+!_1(*wwmnp-Pw)6=j~w zeCIy)gunNRgqLOPRqxu`h~AGUPE6ITJg%ReCo?qpTbdtQV^sKnZZ&mfK&bj`$?WUy zJFK@o+!ff5=m~gzyLVQ@-}s3Vain3YNS0D$jO1;PuL@5hScBfD8U0#kD4rxe!cZxw zyIN79koDX>XZVOhdlzmoNW{N3PvT33f&huAvmJ*~WMoQZL+AwwA`r}}zaIC~Y<6>a zF{29m9_qL#?Q<$IDk^Ws!~|$~$Nv&kuAa!9B9D0`F)7^;N8y5PB|kUsG58@t%Uy@O z>opmfo(}mn+|W;O?-*0 z0seHky8ddppk3$@9TV9+QSarboTvh8Zt12+!u3%(S7q5_fh|+~^r>us*bV2px)zt_ zNTw3#izi*LuA);7g5A}csp%32Z;tk2B5ZGlWz^Ry9j=_3Uj%iO@0!4(ue!kTSXLt2 zJ_f8|WF(&Hij7TwIXE__J5q2DGc$)zzHj0GkHcoSYt!vDt&FA&4^9~Pw@bSqx(%N6XdG&5+^N^oJpw-V!e%I|Avgp*Z_h&}Ht6 z3!2Plo0*AFI$D6`;@9#|Pc`u@ilLmCev)ig?POooeA@a)jul8X^Ln6qv0bw~_a&sS z|Giv%o9*ONT7hf0Pn9(@oJHC>wtZPXH;%5%4!PI*>IpKbs&St^XaKv2Zd$!AL%Y1m z9VO8VOq+9O_`9!9%Dq@Ku5L3oy+wNGaE7&HZzf~q3an;qBsry}iMwf%6?E)JpBq$3 zFDx2;SI=N!Y2(e*#pxI7<1ZAI{}m{Jnl&0g)J(K`L~#RH`%n5e>0S-#dwTlo|D>|D z6&C+F*9&tU{*YE}|e2kd1lMdU0hki@C?hIO>adsO_r^Z+0^rjjCnPHnrh% z{mNEIDrB2HCUh{*?9XrW@aS%tT}+{VWagc!s+$YYixF{}xVYqPt8zkyL?d%(QRK#U z?d*;}Cj$fCFXkmY;H=L$&)weN53_Nmzlv?=RnJVw&Uwnn6X$zkXsA!)ZN}PlBi5fI zU&wuYQeq_WR>F=Rx(*+P)H?hFR5zwzr|38oVN{~?l&s`K(YX{}iW5Dvvz>_YO+=pCzXy$OXGj@)8F}b zBn5`Qf8!r6&K*z}_FMlJ_bsVdyego$`0+z&Bjbm>U0fn_mG>_TFL0WkXOXKG44-fn zVDS2SSANy=p>clvu(HA4iuKE#;LW$y*9(*0KzH~i{)UOks;qA()k%SYY_jou!qFzm z?d?kCHX2%TV7f$E2W-0Xo2Z0M_oioclk}y(YdY|vzx>;dk$TF?_$_yE)1a{xK@qE+ zpZp+!Eu$LnH^ti| zyNdPZ^YpDO_u>NB$<4QdnDe1yyd-Qds;_{AHC_Nwt8P;sZMkZD`%GeSf))BL0HiM*7QHhk6U{m-Dg6S*3l5SY?}^ zzC_WXd4n=htGR7sdIA%3TkZ4YjPCaJ5(PmbAD@=qbT;Zg-$hZaqB0*|@Uz@rUQ=b& zJYqpx3qR66e@d~fc%&P}!X}EP61%Bcg zKEBIblh}K*y^^Qb;E1A9E_8sO46{o-$KwmNbNnMy=cP-$1O!A~qQqa)bG6yjZ#`0Z z>6tK*Fl(Bq)8^xo^&2;dXqZt3qES#vy>Zj z)iuZ}D`{i+$h=vc`sL^%;}^lPcoczbvIxQGY4Ibs`1y4o2+L?{Q@_sVBX}_$8-M>L z&Peg}^&F|7UwMy=Vx)D8jjO1YraMeOIJQ7hU_}#&sxnd&=)vYA_IkRD_M~9t%uI3i zf%AeolA0QK#Y!xAEm+pq*^J<;x$4PS85k5x>AfFZEh>4nuu#Xt{dz+xh$A%1GXHT} z^Ge_k1@A){Sb{gHj96oH^I4P59?&CH4p>Il<7_7oFQuy5|D~ZJz4zzO_JK=! z0uNKUN~8kLCVVPogo9~#Ea~lLrCK?^v})y+XT!FZ@5=O0I==BGDRcW}d#I7YPo=HB z(d7-rPq_H?wxX5lmpMiS8fgX7bET?&#o7F!f3zii*p4;p>i$fuD68_{QRw|-%pxL^ z^6XPdg6H_V51utF4_>1T82FL8FQ;{R{OZ{sKi5(hrAC*ZxI(lB{j;m`iWOyV)wQ1% zT9>Z~!+xDB0J?!t<5p1W8qoHvEz-s9mKN(etoPm+v(~J(7Ub3ZSyS{OW67!{s?xQ> zPAwzhef2eRITf<Bsi z0Pl5Z>!IU{i!7@W>d7t>dhj|c@?#~9lvUw7>-{58sHiMEJ3R14w|o~O!O&+;KsMVY*G`HR+q=JFWIVDpw|&?H1hX?Q;Nl@_fC#klEibb+ zU!U*wPq+^-aEP(w@jj|c03Q0QyX2~~q3};!wv*WdruvxYQXg;kBnVCCyo5se-p_x# zNO2!4z>5XiW1vQHd7riB*c809)scB&;LJ`#TocoD9}Dvy4H{iY+dX1Fkn8snJO4Mg zpr;qm5ma<^u!SN8v(HIzPJlt`z67@bEy~peBN@tfhi`j{>MAI70#aHaMnwu@xDds& zu9b}zWhub6vi0+4W`wV`XqJ}#Jwsdelv(d~^UfAI3L1dI9{eh>vgZD;rDYkGs_25n|TJArX7HIY+`xOC<3gD5Rqqtr~_bFZwDMyY10r8(IFmY8U*I?`~m{Pprr$Y79!$f_!quR zPKKZu4KVFtf}wVc_WH1&g?RDc=zfP+(7p8o{~{(BWM$nfhmtG6jfVF8@I*tttAHDL zUQo^l>^h16Z2h|?>3g-y zXz)=mv2$f4j1W+D;qrCyFK-{RgQPd`WS>H(ji~4-CIiy*mM(WvKslBPVj$Xq+^`Y^ zZ96f9F#&q<@bIwZx3`bo!!L2z0hAw*9DAS%dwT@kLx~m;qjGQLaa<&zrrk`LIOPsA%bud5`BGrkhdjDCnZR#U@-q7DjVEjItG1nFD&jQxDCp|;eayZfWP1#uE0?Q z-X1ZZA6Uqoe2?xU3M2uh6BwFaA7@KWg3LX-kJ8h?G=OSNi5hiWem5}hLPKXSslYV^ z5_2*en+IxlKx7@*^$h}e_HFqGDJc{9E2i9_VxA5U42qN41fu}3S{|9xF3!vxfc8l8 z6Ly{HiHXbE8OXPVf~yuNaAy!n5CSj#cYc3G0U#(O8;EM)P47N_EIAL7-KQ%1q~)O& z_ZBjV0L+00qcwQGZo_Q_Ec)x0(7ze90KpRyrNN5m5~|u=d3nHpYwjuXGXgt}A0kZP z6`3c&cI;S9%9%<)I8>Qil;eq^*p)kO*~#4q#VIFYP4Q~5(IBJ(<9X9yFpnVYH9&j1 zjx!|Zfy>Pj@-9%o4kT+F0#`qBO`(oZOiawkWL(^z<)Ga=P!pxAlLnJNVq62d0i>ru z2Iznn4q}<0K@9%c_*0*3|4pMX^%VVopS0pbL(E4w~Vn014pdJX$@5j9@?-2uIK*cDlTEc7Y2IRN7uFdNq zFWf$j5^R@%HV0KI7a~!Ens@r0rp(|mF!Sz7bRlT?K(O++0^R(ZkPcbC9v#uC0Msk! z!fHceiBLQjCeOUFeoGRJtJ6(@%Ld9I0S2-!iD1^aK1GZH^k#^5ej6l~gOT19M7~he z%x^ntT;r54U20k<05d!&n&13r0xP?KE7}Kja_d1}ai>5_6yC+fqQDJt94)x$$YAK2 z-G=#|Bv=?pvy8U^hN9Sn@|-Y_K-Y?{Iv9QiH=t1ncnCs}Ylq#sMFc1x6x-X_0ciHH z7(w`#)(^p+ieib~-hc@R03sMb@`$qW@lhd@P>S&Gc< zQ{=(B17F;6dV0+b{NUHkC$ol!PnaH@{P1n!b68U&!oBR^tfrJBQhp zZ}?4!!JNJ5Pk_PDO}t^m_)jWHV}fqp=fz-x3ELPkn2Q8cF5~&K18` literal 0 HcmV?d00001 diff --git a/images/loss-l2/output-test.png b/images/loss-l2/output-test.png new file mode 100644 index 0000000000000000000000000000000000000000..a579afebb4ab16503e787949e472e0e0bb137d39 GIT binary patch literal 31623 zcmbsRcQ}{-`v#87swg5^SsB@6mQC4v?@@&8k-aI|M7AP(@4XWuM0Usu*_&*>*Zq3` zexKv}|MxhauU8Jo)AM=XkH_`6uJbz2^SVQn6{T)tkz%2spxl;`7FR_NqYIbH$t}h%-Q50S{*<0H=Sz8!WxtKb>wy?A1V&i4wWTATH_*Ag+7H>9{DZ?{l(bQT&1GMn>xcG1&uwG@nz(cvd~h zKZ#T~0=gNPHH*IV#4&RX5nhZP-p0>z@5xRu3{6d?2q)&Co-%05P4fvA*s6PjiCllQ z3MZ@dYAu`d#>5uNpvW(4-e1-=)~;{hlc;VyC8~J;m(enVCyVc&?QB#II1Wsey+A9e|4SO1kkGz<_@|ir>ag^XMkyM{Gp}ZYI_ab z)A@>&2r9})#~#KqZ5DWG*V-C1uqRPr-txUVo8_1)}GcKiJwk7>woj*gb@ zh)bTVWJW!D{a4+BzdhKBC^o3b-m9m>9ej#_thdG?{FrnYvWk87XmjIH4Yd(#f;-~Lb7 zxx*pMC3UDM@1<$&|4o=Lh+LiEmb9E&A|E_eW7GZ&SLp44@YyZjv#Hq%`#AJypBlT_ z$h%5{c!s4!k7vEO$Z)Px_?|m_^xFHb-RdKhBcEhkS2BCCMksam%;HpJ!RuoVS&#nIo0ZTzn1 z$}fU9@r>)!*a>`6MDFR8t?jqJKT@utu(upje~Tm!<1qR5IXhdz=aa`;K8hc*4rp2u zcP``vDZ2FRngd@C2oVL5IR-cRcE5jc{9VZ>;Ocx?1j53?<^ya84!5aDFtMBVK%=H#R<0U_bTO@WQF zb`%sN-wU1`#ZRFFB3EPrE*qkzrgXKtagcr(7<`N?%AL?u(QZPUf1 zH=ea_DP9l4RDL{3n)cC)ujqnsVt+5Rzq`F|ReO`#{LYDs*=cQ%&-xJdP1S(jo(XSiL1?5}csyb$FuX^}hVM!gr`(0%l1T@ zjB*+kW&pT|GXV zy-MXaof#QQQcETNb(EVF z8jg>sL|dKFLRq9v?p~m?Zw|xfd&H&i+UTmv-g23Nbe|0wO_zz4H4YMRRv3GWwxx}Y z0{>%*D7o6-j$!I5Di7QRDJ;H)lMHQ5H`ZI2r@H;Qx%&PYPP8@e{p?PvJ)A=~&!cJA z?0mIcS*S>=Ha5jh5Iu5sEhlEB+m}@q!&$ovU2>E@$LZ=?TJ-hPwiX@1ctey|$6bat z;?#JnGoIUVP)6A6_1W^Ps??JO-7B2B$X%sVxe|Nk## z$Iw@4q67n==zoQS-4n~`c6D)7IePDD8>C1anV9a}hf$x)CGRBpf79JUmOQHH#t(*(Cf$1$8Ss^!cjnnbq2x=5j1 zkMD$2MO@N)>G9iRy*OzLM{JSx|MmXej^k))bh!I(F?4c^-kOE?hI5s=auibPmfyC& zfS0>KwDjlV;@eA0OI7Mb(T}BL-uCw^B3Qz5^K20#f+t|^nMni{=bNPRcn7h`p`ic> z%C)t%tc%gn(O>ni>5o1x^(Fww*ylatS@b(eBgmeefxQYiA6-+{~TmU>l$CvNtLbBvQsnwg2|dF8~P_||{H^&yV&ED)Q>xc?*H z698rofEWI_ww{s0ZS6vm;-=X=yYPYP_9NdTRhpZLHcnIe-+1^P)29kAoi)ZwOTr#k zm;BBxlA4Imv$Kr;Q4^ODdsE_{;U?DeMITQ55OnJ38}OQ(nu1HiEgZ#aoR0kZ^(ky0 zvPjGO--j;<(7(`6!NOo-L-1tSy_9%=dE6!P4JvH8)2b>rFRw9R8@Gjs#~yrdkBG?0 z$(uX!UWK-lj>%OAbH6UpG^)zkIqXQwOQXgsq|??BiEXLt@%+B8axcW77`gJdPanXm zs-_0@$(-4o{S#%tZxBTA{hzb4&;tVl?fE~^szzVH>3o9$p*#4vA||M+6dm;%Y~^p4 zDVrQ`>ANB5mw?qWo0~r|e@3zCP1h0E>}xSrU&$$CO?B3&x5>hxlgynt49FfiWRNHr zqL0&2z0R4ge8Y9t`!N)ZCPTZLMzpy`_>PksNPOOs{HCiYK9T!Dnl|A1qhD4c1IZTZ z8;rR{?gv4y`mzp{>`o0Mbi4P_i%%c;DeM<+XO1~DO=D`4@4At}3qF~Zl@$diSUsUP z5Y|&C>lDs}AjOkUiqq@#NT$m0C2% zfYKr{B;P|%mtRM@k{zy!tv=|?99Y~Sobux#w&7Aed`sK&JMcO?+D_=@jPA)fO`;pM ztsQm}L3+5C@5Sh)(fmbY66Y1hndf!(+`3{>W3&`$ADvN4j+#oGja-ac87VOR(T<4! zvVak{drH0c%=DFa$=bdI_2|4k9FVWe`{`9x1f89ow5m6eOHPAJRwwzHMQdREMnT9* zhxxE0=0^0ddvR)trD1PV^VnIWWw<-pDhSpMf(#E@HRs~vMK#8YU0CN7whKeL7J@sC zS5{Y}_is*ay42~jP0&}v#{;CNh?43zk^8S5oh4Qe;D+Q^Sy?&m6HPpd?+Mp)^5k&O zc`c4-=(=e#9i63EE}_MmNz-e$O_KVDnPcjy!6TtH%LYM%tKOB%D55Nc&sYdQ+&w|N zE?zLa`gVL>!onhdBab}z(>OoH!;1gc_hL7s$> zCM~B2+cy6%&n2H?jTE;rt)=Ei{7WT4dA>c~lBFs1_U=A~J;I@mZK&79nXn^Gs7EcU zzb@?3W~c3)crh?A_)QDvy(2+(Akj?uLe<6D`8zXr{@uASFDZ$qaS0oS29Y8639Z{J zmG}OIu%vpZO?kL0N!VCnkXhX15^7bB=F#l+C`drljE#|7<@`)kJkXKnA!{`Kc*eQH z#of3OBF0}7W!C4cc%w!|TRRwvYHWObk8u9~_J}%3?67d<=!~cMli&eM-kM|25w$~R z!ZUT7`g?Kr$nR$B4^^yLzTn38Pt6;ZODqja#n59Uh+~%A?O_zRUJ=|eX`Njo&;?iR`4D84T!j-u|(i|^(lMalknsfn$d z`eYH~55rN|@9W|h1cy9vR)g(%hgu2^s!F@)tqgPt6@u)!1*(Gg@p770V0$AWAfWv) zH>dx%HH{tCNgXx<_mi2Rgv5e-=V!dE9>0f!v2~7Vuj=JlMdS}B57%BxY>#Tn4-z!J z8l^6lb~a4$pjJ_mCdEr$b2-$%q54Dc%Q~)-b@ELw)kf5;KW7C?vjsk1g2k!fwHK2I zpNr1%ina1MY zHp@J8Z`1Uv;n7^@;<98N#oFVnK#kLU^xrlwa=np!kNHMSJadrtN?xeSOFk~+86$Bu zb$j*XoX+vVXFPJI zP%?KY&YO4GH8p!IT>DRTp^qKyjoy{!!Tn)^n<`5jl_y4{hiixabI*g^2Bj<=uM4X-q!6*Q}mNHz}US8m((Xe9vahXXQ|$H$iQLXsO=A z`%nG-9r1k4=fne}VtmtVxJctC)(Xblm%nl^<(Z$ zEhH97>|IRIRgXzjFAd2XNS^i;D%oftAT_v6aVFPWmKJ|yZ4LE#pYKSpZx+eOAxU*n zNX+E@&6F7e!RijzL4tFxvwxrh^LRUVQ`SUlh{=HN~)9l1fB zrl=xhrYe|JEq|07hD4#*EvG%h_b#rkG=yQRSdmUSKE|&k@>3$-YDs>wI`P^I$mFzG1@qHYxgZrFzV6*xDU2wIle1j^_`zG4f}(AIDC1Lz*_s(9g&Ig7&%vpR|s>eNdTQ)Z`~a(3A+ckxbQlWoHO7c)&nS^lD; zKBWYrvQ|WL;~!+i-iQ7g4tu9{oo}}zcc!Xt5?6IPKH4*jzACOw-h=t^?wX?3qxbR7 z+N`n>q5Al7$nCsHZ6eItb z%~tX8AB~D!ZFl%bz~ zQ#v(u8#hfw$n7gfv~=QLy?nJov$wa9QtWBSWAaqXk(Sh-YRh--d4H4iwu)Qo^D=T% zJF*=4s_AXyXz>wGoDFFNFfns5ECB093hqe@?se1rUVxU4lEUZsh2XzmCdb>pS787` z`Vu+N(v_vzUhj4inVkLG)UGtUZRoyq4*{XTJvgsvJ@{N$7KYZ1%ch1jQDH17u>H!4olL8 zSUXENaS>UP)A80nzh4hv*o!hi_hLMlAyK!QlY&BagQ=jT!f+y zBqCDnvd3a;b&rWJp7ddE=Uwnr>tn>?T}ZAIj%JV7tkiXr_7sYcqpBZ}ga{M4TpdpS zH3(wpvH-rS#%2m|`TU{B(!~U+`4?AM%{{#T8l(}E2r1o96D_A}%m~OmJy_inP8$e< zPVYHTMJRp>DZJ^xwNTWdJn}wu(k|9KKWe>N8oQ4Zgm(iy#!ynZ*tX5jo_j>{6A1iW^qAhXKjs+f^_1Wr6nctQ9Qi783hGQtFSCmIyy=El0WvAdgu2~ z7RP}?b~?ik>s<89xx~@MPp1>D&e%9a$G#gcUsO;_Vu_tPX|7_2l{PL?&7=KN;hxR? z6PBvTFw`VfvBjD%ldEBQ1Se5BnO7G){eC0gNW~VJkq-9tqIlglbgi&vOXI0Ro=yWd zgW7-JOZM9q_ltiu^fm8TRS)k+sB!gSlsV%l|HBFjrfKvl)ZmeeB^}1YoSN!2jyE&r zCT0qrG(M%P^0Qe>Tpw+G&3N*m#bX`qRJCg;YX7_^GI=y@CF(=M2>!iA|r9EXPR`__JR4PiI#p2 zyn@Ag*z7hDR&0ynK54mA@=Zn679xe#6bWt(b|w=7A(foR8UtQB5t2XlCkHDC?gt*d ze}JFl!FJP3BKvf{+nTh(pSvGYaXM^zQoHTHx6pHL%rxuGT&@+CmN~C$#>U0H0IsBN z_uKv5b)zfNOsS}EZPzKojV{)-@`{V&G6~@{g>m&iK@&Nf7}x=E;Q?ucF);jfJ72MH zOVN;u0f3iez9VUerTcc!!eWrX%a?kOS>vcv-Y?S7>>8$0-|C5Z@@+THFkSV1FOwfN zX=cxMKe1|x(X~Wu`ZrJzQ9-jrKLpq?lIiK`y3@77!NEcQ zyNXY)*){D-s(R!A!9S2F;w!8uu*nSvr7u7PBwcqRfAWUpCnkewjCnf{rBq= znqV(Kh|gQMPGf_(^;VW1Y_6?+1!fE{tTVa)31H%)iM5rUowKC zv!6)tNk;_x&Ui0nJN-Es$-$<%X01EsSp0>n`QOMmQ_r(x1%}7e(F4dm_r2d0%t8wk zrSj8eiLV+6)(9sODiM6hA0)-k>gVAvH6h9VQ^w9CHRMT6LHuMwd~^x=vDp^69S2$s zr8MEDWG4eV9YL`jf@*J>?d@rmWoFV?=qZs|hA0?%&^mY2Go)qfe$HazuNuNUd@LAE zCtGKy{-p3t@<^99R<2VpH;oQKRX^97Ub3w3DDb3EfQXA0v#CsP?hXe=A4q#V!qzRI zmg}v^H9wRaO)iLAR}YC6zsz_Y@e=J(X!NQp%@RuaY}wv?$I1nVD*Jzx-Aw*E&uynz zW^Rl0137uRxp&Lv1?PpfQdKrNx1IGo&eRk{?G^Y>m`X->d71 zR>z#A;3b)DKNu(upr`$D`rh)UQzb5O)9H_~X9(Osk({}yYAE`F(DF*k^iEi6u!>}8 zSWlwFVpM@fE8cwmKljb3=PcEF0h6Vw+|IL<@yautxt0g2+KjE&dj^t1)SX+aOWLKe z9{vB8XFAqfO6t1n+GS*;_m^i@LXidTJ7g9+mvGpqhE z^fl7b8|rcI5n%HuJ#3!GC{J?en)8GGKtNz=gwIk$geD-I$S;$? zTM*BZcN%xQvpr9Fa8G9`gqLefaquKb+&k@nCAG&fgaSPt2e-6Bq8a) z&${c*V_JIal`7k29*#1n@!=nGwbD&n%uL3VgPy$CPN8qh_nxrZ%Qe4i%46R!v{W$3 zZ68qIZjg|3E9hld=i@zui`APhjq@&zcp>5**$wzhm>M;`Jv*nL=_bR`pY8UmnSA3fa^8;6 z7XI=4Ut4?L`w>TspV-MX6=74G-%Jw>-kGO)6F#1Hx+^OyTQN-+&@ES_$&Bbqy=;xQ zXe7hCU0j22#XKe)0wJWNq{Q&-jBD*vx;d-5?oqh73o~Bvb9Ftvu;gS?>*A!q6)U0Vs_tEGrlbCdet0~$`z8Exst#zs7>K$HW*2eQ7RG}oS)-N6{%L3MK5mU!A}T>iPN z><;K8LPA1FKkV+(NS^!2h4kO{Y}B`Jk^plufOYn175T1OKxZ$JA!osH&!BY0mBJLg->6d?DOsSahY;p zkrDeMi);2HS;CeO{Y6arv!FjvEW46-nXZd6B8D{u0v9Lp438x|4H}jum4G2h-6ddbKxN!LyN5dge~y2KT;l> zjF%Vytq_~LVNy;EQgM?ZyC0gS32RvXUNgf*oQkj7p)2#3#-$B8qj@PQTXH~$m5(AOfz60kP#)H?PU)E&Ly?h@hF_n))qTl$WD%#eJv=#PrDUa%ySL{^<~*VTB>3K5 z3Mh9W;!g>45Pt-}fB;^Eq-k5SH0{rciJMVfXeh9$`eHrL)@L|;)uOdW8?Q^EHMnKr z`*k#8rXCYy@8S=R-^=z}^laN=juwJg@;NLtLd*#=XY`66g9}RGP|W&tQ+{?**n_JG``mleRji)p2Gqm;(Prv z5Y=~UXFR~Mq3sXgrK+mxWk#>~yYI|m1>f>~Gb#kztz(=FQ+i^>1ZNeBofHVeFknG> zQ&<_F`Bf;U4J1_E@uQWgxJv0Xj_xc-@}#OjFQ_Eg*$RuN({_qjpNDNg*AJ5;2|12ZG}u{{56w0R#*2MKxp zJ1}yn5^0os>EC4U2bKVt zYYKh1suBFrP2H|4v_(~KKcpIE4>}Lf$$T9*@{Q0kbjL{Z{->j=_dfy{_9=$8ZQlNK zMFqY~qk(Y3blCGp!KtaKu`Il1cQ4j;INXo;@3jq}XRR1ovf6&><$rIp{<3C@-Vad+ ztE;Pjo47Pim!(L;^0T#`JG!&rqeu6x=BAY}J~_Na50QpQ{D&iI4u6x(a~eH6P^j3^ zEgliaq9vnrNB{Aw`7)TCF)nA4MO2olSinBn1ugtMNVwkwwwvCJjg1+$vCFm@Xlp0N z20R41H8=MSVmP_}!xZN-_5?a?nA}i+PudC+_p2T>CAqk6HQDrgqtL|BYnHMO^n? zIbbH$@D0p{(DUECcheNh3{Z=L7!l7@adLK^2mC0erIo<4m>9@S5!I_kCY;9pU6vFl zXb^Y|JymxAY+qBDmJQNUcZgW8zW1vs*6wdT5U{PCGHul^UU4;~Q2QFTy( zbth>a%ru>EZ{8i!G;(m@_}iC+7StYH!+(>S5~T7@#@vrFHK&n$e~J5&d6;bu@zCBh z-N~{Je3&V+Cp*|KcdPW?wOOL@5qcT?jKRDnFVjcF9iVwEdCQ9RpvMCrO0#~AiZr6f zm>WNYiuhIz!F)0O(+K^rz0wLBuC%xY?`R3;DYZF|)jaXSIQ__J$d8uYTq~R8P~G2GlM` zlP`zw3xeLAS5oqB)KUTed)sqmMXNYzT2Pl3)s-OhKua_=HI<2fW=3)w^9^WKij2Aj z=|qs)%4f9}!Ti@u#cMj0=+RJ~vHRs3)Hg!M(t)X(MpK_*4?bfi^RIJ;^L2neVe zlX{u<@k-*>f8AZ|O2{qew>8mUNK{ZFNbs_^wA|hK9x5bvD3p#&OoZ4!VF^=sD6J#% z+t#&|@+pu_Sb=rMBf%0n1jMurlFc{Vd7A!JvJR>K==nU8&~uS(aoz_~;d{+>hG#Lf zSk}}x?rk^iD^6-`T6Gh3XF@^~fC?0$p$ERolS z6g2C1P;qm!4Qr<&CMwN8#Bm29w+$M0kzq3_;)HP7`kfTd4@nu`8z0{Q4Wz`{8_tPV zUlG_bJNb*MP5-+M}bD6{pHCr8VdYTNV!RuF%T_@{LV~eAX zrL3v>E+!@>i&EC~EPv*%v#JN{h)<0fC2F|#19zF_YGER0_u|D%NzH8hL%E4~>F{q0 z4&Y0phg*^nvlRW;rQ7lv?#X1dK*J*By`7a+JFd?T8iLqv3(=h3CACU2-}+sDyg+%C zNJ!H`pXL?tL6QIF=H{lw3dvyF&bQ=bVQ(6cDE-jXI#J5p_st+%%BKk%uyL975#OQ| zCIdGJDvI@F)y=yP<=>}~lbd(Bu^6>LMNslV;L{iXd&vj!xOcN%hAI>b@IoF83a2t~?5BqCM0LFZjA;zU zGX@rx*r+aJ4sf-hNaJVqS?H5{cgN%1%YGo6+nJ~%cXoPUHHJDt^n&$N@ZgTn%f#k1 zj|<8hCakj-78Y$_?+J!{G7m;7dEJ?y(gKK^dSw|Q@ReAAOqoyDH zTfM0wG@t&>wl)(qZm?!Z$jF4SxFE(sO`*HfeX<3&f>kM&6%>ww&H@Hsp6b3@+To@a z{Xy|~|53)wSmhT|33V5$@ai^XwJyOhG!Ln}lePAD%pUjWPUG~IS+c-yx@OW~;%M;} zK+H(Lea<#5l9H$#(_+zA&rkMudzee-0Jh7>y66GDB~3fjOE3#=E$C$G!}c@7`54%B#4_oRH2QJTMiM{Y8J+gE$2-H zbn6Dr#hv}MD}4$RGwEf{5OGML@$Sau#9OUbJ}i1QEOaWC)w&M99l8#m4Fp?1mwhiA z^Y&zac>#P^%rib`He_BqZ8BZ-N~ut^5Whyxnak#6;OVKy$mr-b6tKsX*-Y_rKYrY6 zI##5ERyrOACZwdbCjJL46dBL)g$6ST$(qnldXAbt=4AZN){S1a+;9v5jYp3vVg6cE4$r(S3f8PTWh%y#ms!^^-%Cbno5&mfBT)kuP;QE9ybU=taCu#3*Z1*=H5E6{NaLdx&KqxxS{85W~~yCwmT2Ujc`#MI}j#2 zOXhVno*h5^#{NY?}|quJMdvG6#{n5CfbhA0`~g$$9t@41Hio zb`?1cm%h$DhKU1)B{y)_*^j75CGihzA1%}^M7D!dZc<5zW=L!@bA!_RK;`(t2l4uX zJ2d#*1Cr?yC$7-Joqqmx7KBPf49b?4mOFdB?7dw!y!R1J18j(}>+>;kY;8!B52$x| zaY@V&{{#Jxj77Az>YCOOr0aPg%M!diR3qTI+f=Gi5G6-x$Xjs^Aj1|Xp@NY^t zO^ar)99g;QJ#Xr0Q7tVZXbb0e-ITSpZ{!YJ=w=n}m+bA8k)9almFieLAZNII`DWS@ z4W*01lVz;LV9F{TixsvjQsmO@MNgVn7c{GgyWFOB8WS37A|o%nqgmf8zg}Tc6PxE8 z#vM1Hat$7YcaWHW^auB4Wts<1*{+*lBJ_c5jT@YB$$~py&=4bhP2(swjR|XR!rd2_ zG1R^ye%q9Mu)N-?0`irRFk$hI%z=!nn zTd_A!M>W@hc2Q<{J2s|yaB$G=t^-D&Cc{#epYBiN={2i6UKN~ZsPQFq--2ciT*|z3 z(kaQwWv<&ZJ{zN7vH%Ez*$~SXNN6&L4!k`f0mN^AvYcj4>+z}EU~PRJSaiF&Q09_H zUj2aWJy{R=i2(&59qv}cIvZ5dXP4wD;FAY8=}1*^aGcDZ@t|q6U7AjziElbi-XPWt zM=0!zn3z9HT`aX6d0ofYc>gi1(|2behe zS}$HafROk)UnXc^SFQ~tI_Cq+a_yHdl4YvAoT~|Go-cD!s#gZEli`5jiX4odgz2(J zIETwQJevaosW{h?-pp{m!Iz2I@x40o1?S$o4EKfICo{fR-VN52 zqQ&vdQ44(^3%Cp&`uUdU0K(;nue^Oo>3hxr<#3+m9@ud|5QTm>7o@-i{=^T-_+PQv z<#jPXYVi_%w-D=5R-7*Eyboct8_lLtP~B3m>Xf9zug)wjr-Q4f8LKc=_@+eL{U0gA z@S*NC`Fu=P32HpPVhwPeP)7#~3Jp9z`eIw#J4>|WBy@MZ@6Siup%*0d6|i>q%S^g( z+#&4Qyo3A2H~WTl1z^KhPLY!4XUDf6mrSpes52s?(UG zsmI*RK>!uciEWhhR7``f@F`QiO=_T%K*CJ$YofUAKTkKt#0g?!K+G zMS7Hc43TiwtzrVDo+YkBmJgO9N`u0g7s{u%_i~mcx(@dYC#`v*#{swND{dwun!7KH za2|dWSG(FMjV4f#%~HLdytRLbAKW=>8{RCjJr5r%yyRQ%iD#*!gBj#D_w zv}_I5yH1BL@*uF*}CYdcY;JZ?rG`!!|cO>NmPjb5?FnM9*jpK99K<^ z*=MPw?2HUl#Aa^~;(H2yCJNHrZ2T%mL$OB$_xZ1Zi0r@HYjo-Oz*DSI}m^w>FHuMEV&iopSnk%5{yVL z5<(@9OCPWW4B>w7=S#RTn@Mg2!6piM)~r%?gV%96)e{FAT8N5;uBhwwRCm^DTQ7?3 zEfkD*_5cbK_oyNkR%B)YO{j+qDc;bR+jrj6N;LGBjiE)_-3mGn!i0 zn4&aLyw4|MTAG@ysq{KbJW<+@ab4xobUCkgO+f%{g~yw|$D%;%u^s8ms#DMKfqY^G z@2{BjrUr>A-6J}3W)+Ki_MJ7&Mmd!0Tjo@EMD_IUXAHhl-3jLGR?rEm@Ojt|0>F7K z7~>2K41&8B%5;mN&t3aan!9%N$D^yVl`HD z4JDk6Pt|aeP;{toRg^B5HA^;Dtw~pmvxsH;x4P!V{3!FDFTqk3_hidt)IGlq-0!H# zEQDc#-UA(kDHTNEtdhzWRT#%ovRwa+XO*sd2U^Ff>gsebK|_4X4D(ZS6x{k}YOelfJuaDc6)rfdkCb4*)}v3T|GT;@eYZ_RRleHM=SHrj09X5Z?3Ud zgmc3E0;$aee~03G(rdH>+Yg4|`TX2eS<+f1;S*X!3eU+bypUAHRuw8w>fz4kU(RY! zthQGVlVNqpr!$r~-0jIL?V7h2jlrSqG$(wf`A$bUZg_m7bTaBg^RmLkehIxAW7e-~ zXlWsXWfm6~C&&d1iKuV-q^I)M>K20&9a+-#wpN-TevW>&ClapJ&qW>-4}9t^}_s>d0JchrZU zN04qA{u`H7L@kq{GeZ+c`Q0AZt-z-MStQ{kgI%>$#)5~JU!mWz28QM`A-rG~1BeOG zc#`X<`>3(TRELR-bg3(?Cn_)oU#YK5Rhth`Krdrnr?uK{T>c!~DRn1*Q#|Qvl>)U{ zFu|t+%RvFmbo04yCd5;rR%w6XswQAw&ORnAD}};3o?^p1(vz({`r^~((NvWb)Yzq^^u<_L^<;hx86=iTE)Oxw%9~< z1;gt(f%$AgyCNLZPdyiF-m4XF_s}!riA_xd+NgAOb$^bIV#vfmkq6$7Y8hWcH*R7m zzsV);EF~pnaCDR|*B2VCrwjzLJ$hChLF$kT@^BeL27mi`&$M-*&NEIJ zhku0%;hzxTkPv?gJ;{#9)xOAkT1Lh}cbEc`j3ABM4+vNh0rybh$<7hf*9UiQAa|Mx zWIRY3U;cE44IAGe5%S<3E7l8w!5PCY)tf^kH0{_O=bkwbkA$42A`L;q@&1}QRxnI>4)*h@nej{w|b1LKw(qN zt<>^nN%2$ltMsYV5~PrVqYJS71x!f56cQedB)F@4T58vX_i`4i^-)K*)pk`LVm=gb z-9obZkv2pe$S2X2xI~$f5no{}=GBu2^(y*oTBRDU0Phfzeat2JJR>vn8L$j)Y->%#xcf0x+?c63=^@@{ur0v|^5cTDikM3 zAD~_(#|g52U@9iSmLM1TRZCB7I55x1(rtWzxgBUeNbfSbot;p0Y;U402D<@u1THyn zQ-h-l3rZWz#QFoj0h#v+nItWKG;2{&F|;FK1Mxol_kaLv{_`80HM$M=3+@UxKfDp= z4;apKccZ!jg){2;16TG>%B&|i5pt8{^$QS?e%09MNlsEbCICt1aMTKII^W4omzN|I zTyH#i&NtoQZ1s;n z4i&~wkr`&QzQn<8IjoBE?_OW+8dh^Y_DhPse24U5hVx-yCvr5y(*2HbXHZqBi<9)- zKzF|S2NOcrxPm*Ptu+aXj=JwHLnNzFhVb2~IjHucxtT=|ifo%24o>?~-4ZdPi!BD; zG8KLx3eWn7rxB{^eATCGTV0fu(d~no^3=}GF2Va5olL+Fvkz!AiT49e_n$wl0;)bT zUd!lyWkq~^yfF;Q9)lC?dAatTuuhno@+b}|y7VFb{=f>o+BvqH6;UBz0bqEh`wTJ; zaR2=q&ONkngLV7;0vxVeziD55QUnPFk^Etd(YQ189^xW^Ij^7K*{Z3j@v->O%?_CwF6 zDDT6dAz8&z*WX1y?<^e?7(jn~O;%2>-1o|7;!oFGQoTKpspPIUTt5^w_aVa!+O0o>v>PCO+Y|!z?la_nee^zazdO^zKX+gF>ehTU0xu| z)#T3Aa=s@A)pxlnnr0azzuQPX_6;}rQ;m@*r%`77+@8^R?SNxw41l+STFN(`2!Z9tlt7(>!DGTQ}pf)W{ujvshQ9jWsW zt`q16vcOV#tt>(*OBGV^t>!zZY$?wOEeR2n9Z@F|Yn+BNt=CL#BDDS#WN)|{7$y>9 zAb3iPFD6J4)IN_`6|k_ep<#m&vX^VZxoFW#+D@~MCo(RN5aft~O*jY2&hp%`(k|dD5*Qs7H!(5k$52S7%f(=Pw2=} z7eb#HC!Euhf3D0xD^(rlrS0Ca-~g|7G5j8eW0-wdpFzeg%_<*&7>yr-==t;Z#Pjyr zY}=0Y${HGUM(pcphMMR?BGc;1KIT<9%QE3O)=bRIyD(R70@C=q^A@P!Y%RyeAeSJI zb(r+>+X`k zN%K8!r!0fReh#A6m$lKt@)zyzu9-%c=I6J;z_@=!MMdm7Y#;JLKxj>TEW45W2Ed8s z0ZX{VWGN1K8L_{zz86f-!Eu5|CDfDwo6ruqwDJK(6#e1%CC9^pG#%p!9v3I4gNn!s z&*7OFwxg5~Fm^pOCjdo#s~SIig-gY#lEmL~1Vg;gfED{v6psykk^4Ew$=|>x5+?KE z;XE<~{Hxpq@dRgNWEfs)LDE4U71Ec)bsYl#7@*iLjEOG*(f<{mv@phw`v4wn09Zl{ zG;_25k0Aic$${N+D0PI%I>ao?VL6f)J2eR>qNHJssp)V`&)qKn0cTLBv48vg7eoh$ zxc~SM*iw)N)gF`s<3AlCdqoM!FgcDq)C19%%V3xkc{Ty8&9hb^hKWrVq&4*sovt*; zg;7z@xJun(9M524r7+q-1p zq$x}qK@GGbbS&T`Zr+L>UX5ifW*M+#Ac#RrfHSB91MLYix!CVkDphAFg+}5Xg-BLR$jXMYkp4nI27_QSIlh=jY|!xK8eL2S^E;uo2|Z6%7rfu=KyT z4d4+CKJX}kg-#-)4mhz%@hx%j@qd6_?1=I?pb4iCA{9=72A`8wlM7L2_SBDvq<7=?>j8~Vt zEKzVUt;S0_k%yds3Hp)E;1aBxTCQSe00y@G>1uAT+72`VfN=%=ktYUx58!k7BMvhf z50(ZT!P{Lo7l2&`0JMoym6*hek6k*>ot8whLpmo$lzIQt-t%4~O?CC|c=07mF#w2z zuLxik6}Swryaa-2_kvz$CkD(bZ@hmw31d4Mt87^F8!*OC+t!l#m-OlM1bn5H2>?(( zz8*JaIwq4{cMJ2)FVN~ChL(I;WNWVj)dyjxuBq8G{z;k^#sCI?|NeL|ARU8~<)Qjl z?KX^R2R^NkHq(5NZ9m=CuZfh;mqag?Vx{E1@DFdjQM1%k~ZY2 z8;GwECi%aC<10=zrL_4UDItrtAHwJ@`QWO*`hRNs?r^IA|L;S|$B0l?iI6Q>DKj%$ zIM&IQO-d9;%1E*j*;(1g%s7%&qHrji5K75PB2q;6^X1e1{oUjD&;7@JU9Rght~%#9 z@7H)fAM05qb`R z^eY-h3xeSEZiP*J2eK|W;13}J2Caj1h&(A6kLRWGYFcMz7RB9O8h^4unA#IpL(`A) zHDVPv1)6s@-7(L9u6#r;>246kJr8cY8pSO70uDsLa9|zMmYP?RL!aTzvA({ZB6s}+ zqREg_10;0j%{QJBep|XJlXM>NQcLuQBx9@+2CemqP51Dzcaca?`hn2&^0yYsR^X5; zD;WSg@#docp6qk_NR@A##fe10EP&5{D>6p#mMQeywuP1wc!*Cy{H8MBtxPIze!A9x z?4xhqyvef_`h2vvzdwFWwd5cXeD&5*&Cn>rLjV8*(0dmTkAw<6{}VbJ$F$--4mqj} zfiD=2KATm3w?MPCkR&yG)?S<1Bn4i?h`}a=M5QdsL35tyR<)cVx3Hes){ZzHC@0}P z`U_|1CN9Zbs-NfU&QemEzskG~D6FBSEhIfTL7-(4l+nnnSVk8j?A2#0N7 z=qI6mlai7Gl)7X3p2Zn>ZoS|GgAjtz7bKBr5+T+_iW*$6V#i42DJdr5iPfVXASQsT z5x#a*-^|V3FDrxw56((JF?Cmc9d&L%iOxr1E?z<~s;kdeF*X-OcUDEH0 zRD-vH#1K^4+53$JLdFN$5yoy6APA0?U;PIVu())~L+!Lu!>fC=;_;%F;)RgW4Gt|@ zN(?iA{75`TD1)jOl@Fi*b)Sqh%w6**HJ6ss0*9!CGN|C(um>T`X*frLQm15`wI5>iU zNz5h^O{|aSW@lsIbcE8uoAa%Y+!opJ_Y%iIhpebEXU){XtY0Zr-_ezW!;!Y{rC8yO zYc7^{ke{F?A2=+F3pAp9eVmaBA_$NJ=qGRL>q?D_$)KJ95dtNvtdGmHC+lcwLk7ol zSZNQ;c5>vwQv^J<+hfNrW?D9hys2?&NXmi&013V5#wrVV9S5v|$cF=>5Bk{pdRcgB zHaNi{9VEF6f=BkXhSQ^%5DW%1KQBPp7+)X@J!|k;uIzb9I8%0|K0&pZ{_pDpQ8@;b zqPrv4F~XA4fSHA$`zM{qfdI5_GfPUHfmNZw(5H zMp$gynR~Zj^F0SvDGK2E&)f98^z80x@YY8IzKGv|6szqty^x4L7HdDd^Y^5W77QqQ z!qp3iFI+hQ`Me);`codJb` z9PNhT8P5_r4~G0tT7^ScgBwB{I`MnMTaV4suj8BG$O9nmLAtD#0>>Msft*3*YYhsW zg)vlS%!D@uKNA<9N$Q9+-110kE-Dh}Os;NhJOWY)fMJk;N}KQ0>o*NMe)1=_3RVk7 zMw?;3YsT-5ZRauQ+b~;eoUE$AcfDdCrOzI5F49oA=51HXkP3CX?aK5^KTz{to=G&b zho=iHa)NwG{JkqHo%~tv3zfEA^~;ztPrxFIzI-~m;cGn&Dj$%56`3Xx&wKL9berPL zHB853Gob%@C+DjAE&!%FNt?^V>KXkxCETZ<7I%EwNx*--}5v#p8c%Wv(%KSWEu zd46U#JrvS^;t%_J)qH&!#qtr3dA+L@S2+hl1_Aw}vH{IdG$aaP00mfHfu@BOx>;EG zS_Th*R4D>8;^pTuAGbHA42omVbXQ9tihU%`#`Dl8s)J?E4_R|XZZ=Jdm&p=I;wc!K zFcqLJK$EKC?k@b|!{vUT#DlDxcsIWh#^==7I&;d>Z!W%ffAk&VQQr2}sXGX!XUGf+%=B{BJ#lsIi zvJXtt?6>xj%z5@P17(C7Vz`_p12?SDhC-oX;!w~W!OuNH$!hN|J+TX3@R3~sVe|(` zrb7qQz~ZsfQ{Xmq0g-iRtkMoEBHnLqG)&n6)Pxq*w@}XC7=WQc+;tuz8bVOC9vlsz zUM-x*Qv~Y2>NKT>&?gBfcR^1g%sEbUX94)g(9DbyQ&dvY3I^Nw9Q~31D6aAcn;G2m zI|>cXY?twC5(_@CX&-|wc<@|)&oQP<5mBaqNZ>&ga zkH-EaQ0ZCgo8=Re^j4~iZkS#N$$PT2<0v_-lk?D$!2-5}9ti!m&{05zBXDk~WSPH# z9t8QYe34AV%gdmigW3l2gzTNP{7KoDsZNNO;8O)uSob=2OKI&;hP5U<;%7C zffaxZ*xm%-z%PnWfoCAs14+kZkHQ-cUG-5hi>kc8PKC}IdPfBe@>*c%bg2x|q^Q6tfWpOk-@d)8Bi3}#%*r>Bu*NFFz5>{E z{L2Rte~OrMj^t__&>J~CQE~5gtVS+W)>V$(^FF|Yk-9=6OLIw^;0;<@d1JCO(_|Lu zG)(!~7`pA$#N-)OM>3pKS4<8@3VK)IB*ln@EA}=*iKt|ad z3-Nu=_shHs0%UxKNKAOe9(MxL$=uxCuZ%h-gSO?(3x;z?9xYx4qYF|Ne1sOez1*rn zVsPNg{U7pquV25e`%=}_+uMtQx-Ei?zaFYikkAofO4JP+U%CcuFgKtt2yYM0?^Y`QZ3$QE zC;3v6Nq$1$p?nuctLs8E0&|bnquZ~hVtN+^{kdYLxnU(7 zT6%XLXBD^K3l&I!!g~u5W^}Wm1Wjc4Y6Py&qCTV>4n9pvsF#t!1-|kaO3oVx9NO=_ zgks?&Y<#qY0k#Dn#k@=x^f?QI1lSyV0MwHf*h8K8X{{d;2#NK~{mpl2t=FF5@>YLT zdp7YdEy!m>N&%c+QPr*x?Z|2I(Q|$zL4tetl zXtMU*P|Wf;mOn!qu@j=eYHDKg;c+WnYg+`<6%Yh=&PM||_ep#Q`Hg|R)lgMcO$wM$ zg3Y#h7&anU0H6j>2jS>x@DD)1A4;!U4qOhX+8TqS+zX5yI{FPMUU?HLX*5L?sy3xI z`1zY^%fx$xC&jjP&v+DfLtlij)kY9_b>>?>1%$p+^Ye3a?w>Aaf+r9Gl0wblg`>w!!WMm)n; z6bgNxj881$Ak|irxA}tX&n~fNZJ?APgL4#66aS3Md`6&TJP#TpK`#nH4-Or&BR>P#WqkxtvcoRWJDYy>GDu)&wxe$|`ybO(Hx({h+R;d$)?AY7$ms}e z$@X9yVvHuJt(0uDsSj)rs6`w%1&BXQMhFMTO2s_fGAZl?x8B??fgT^ik=j2h1B_PI zE-y@w?QB|2srM|SWX>c$m_1xvsuOr`vg*+nIlzjIt*@tYZAS8HK^KD3dYXSu(=syv-E)^gU|}3r~_TGEfiT*mpMv5HFC{R?ah2yu5^QfcruODGUE+~A(Ak^ zV42Rp~N~erSy{ht4v23{qMIK2saEYx+U?gmA$_4zBHErkk$_RkJFn3*Fte4bz#Nd8J^9Ucd^X|OP_hGT=uNCzZFTs zV<97>LOwPE%SUZ-)X0=xF1GA_TU)VF0y*X0#}d;v^qFT5J^h}dj_P(ke+9_GUCwi{l zF7kG>)|o4bjrf{X{|vSdJR^urgj;^3dm=6J?2_<;yCJnXwF@`;E#wd61+C0oE!*ZU z$%_l(=P}iatFsqot9&LRRv0H6&82-V&)16E&~;z6{drLd@Y7X>>LSkQWVxh|ad zXTDl?YKtk3l|mqU_d^FAVae0xRF5+#>R2r-RqZ*4jWE3pR-H1}fcFh+`rY9*Vv8D4 zZBLlwvsYVM1 z5${Lue?_~kt6OAJZ33NkX5zuvGh?=s`9t(&9yA)uY|Gzgf2GQ1ydkUhIEG&Q;sc;) zgU)m%b-YN8^wrhTT)9V>LSCrI)NKvFav{A;V<<- z<7dvkk6i<5z2jt88mzMtx21%O)pO#V!*tcZ2|po4?nCqHiNpbYW+lCVbEQ{0A5mr5~npHo4Zzwi7|Ppkcz`-;Mh z5v+{wwUhsuOxwVj>R8+O`F=Z3GY0_BL^Dd3YP02n4P>Zhe~0C5&T$Rmg2Y%kuCCIv zR^`F4Pg9@Z)v}vWA^tU+gm8=C@)ITer-|=4Sw&)nD=yUg$Rc)w1RKl{lqGql&IgAaxkU{~#?jo1Y`@wG^@+FIo(p z^vBIao2wA-i7N{+{&r$0dvS4i)_CpL)(u76zguwU)+%?73NJ=9X>ze(F{4MWz;Pa% z)R*SOGW4jXZl0>oNB2X?xaqT5V(!7pg(KM-TW)!!nd%mxhz)-2G_YhQ`!#DaZ9V7O zkmmrk9{O}E9A`X_9kP&A4;H}tx~k6zi(b;W!5f3q8ZutfP;)Jg7+>G)gtsx2HsW8F z?60q&vip#iw0A*28*b} zJ=}zYIU@9g)XjcD{h0U#Y+c;D972s3LXQU zo9M?(u2%*^s}G#O3p^YsDE{Jm$lyQnc4NtSHF7NPbWK6QajkfsFUIq^F4VFa!^V=# z&P}y3)(?y5GW}{sJuGkO`rcC8h!oY#9yzCQd@qdwERjo9`MD<$_1+yMKg>RqAfM*Gk#2`9n$W5BpsNaMyqlgETM?`5x zpI0S^PoJc?#A|OgC|0%{QLk6#>aRc}#Psy<_tm+kb$=3|Q$U1K^2|&iz-He+zg7iG z3o5je5Xp?vdNRyF8~VSQFabZ;dCI9#@Y>&zNMdu<#ANrgy@_1z_ztR#rWWd*#En6a?>RH$?>QsHche4zxo-|x%(asv6SsdJQ|sp z$oO=wSVQ4uy4%BrT4KS_me4!@IlW+atI#>i&#G=x0;Lu7TsUsi9u*NSMi8OtR`g2s zqMRfi6yVd4$E(>;Uyqc(A0zlP&q4%c;}p1C0Lp0tJ=a|bem;cyqyYn^7{u;1ZA|XL zAnNbu+JM2zGsuWdk#c23bRhzI5C98Wb;8YWrSVSU4yjBTg_DKHeTD*S%|*NunluxN z!yJSHKd$%PJ&XN8tXMicpFGAcTy^UEW`3>t>ev9|`^Ky4immt&zOf(prUFwJb^(-g z#l{Y)K7mGzdGIJ(0X2aftF^ps$fMPeV%Hl}`fvP&K(P}ooq$P$W*Ce<4fD+|dJ0jc z+1hG^Oe136yag`t@p}Kq6+cpmlq(P*V2&AOG%PNv-M4O5-H z-wXQGr)YSFeR(#N2U)5I*1;ylpw_JNF`BC?c3xl$ML>X{95_vSJcql7$L)c6H7zZz z{+<8W0{0{%TOf4Z@Z&Fc;2&NNvq&xl<-CLPBu@EsayJ*r37U z8ceCW{}mFHW!_!hvje`|hiTWo2!om=9GFcT6a{bcs(Y{@>FmJw{hutxqiZ@te<{EX zd-KAG<*3263GKyPw!Wf+Hy1kaj%<$OPQAF4v)IfsyDYlo{nhQSZ_Ms8ZZeH3180vy zFtgZ~i3SG3epu=-*rBPdXQfmAfp+R@K=1UFEHH(tcqn=ICKuozwxzbcynwpUEA zPC^<(14&>D+m<>>Onq4@tX4dXg)=nU3vkn^3hvf{vGmzUEa zGVSWsYD?6Le#1AR__rrk$z2o`BM;ZeYt;F<2{3=E1^YyF3g-aU(kS%X*uOk3! zkYG%27{TTBuMPD!+KWZZ8s8ft#|GqHRY$H)KBRIXg~9WFst>gj=v%Y% z0?{ENmlrtS3wrc_z|~*v+@o>&2<$vbl*|9C?zK}ZBt?Wgy*i81$iORrQnFcFG>#+YM|&x8 z2o7^_y+S)@3?WeNh7%g%JlUWC0@qTR>v3R^>p&d&VPlK3dyV5T?1D<{XF7+im!H?nmE^&I>#+~nbg?f$$nX$;7 zs6WxyBr)ctuqYbfMZ`%f-4Y#~wlcsLcdeEi>qL{!5#wog%ZaJDfe>s@eJ9iYM(>=} zoR4nG+{I?tt}>_zE%uS-)-bHo_-+*|j+S8m4$r30GJqVIxfz)y#M zcMK5JaiW@Jfeb=IUNzBuo5b6(_{}lhlg77>F}4wOO{zW1qW2MggolH2Q4;fQGw+(- z$?qI}`1j|Z@W>Y2grNa{%k}-`4pMh`l_vdV63Oear6HJ1t!3(;l@9E!k-eh_4Qf@3zE zd74v2+K%USoRBRJ-&DL?o_Ia;sGBlBiAT8VnuPKgOE)gen4yw%(+rC}|8H02a-Ssx zD~iKx9|}-=VJytn9H+=CD086T3mZ3sSKG8lo<0=JT083trsXyj>%DeTQ9*Ndt(q?a zc-lb$2hypq*?*rre+ZV!K-VRLDNcH@v{xK=tGI7{4@YjWibl?yy6@vTe96#QNqR?> zP)-H?9t}&fpgm-IK&}V6{hMu?0l$ofT47cCa6;p-R8vQlo0=bi!n^p_xvj&)g;+C( z=^^L6xjPR@^LVFYCSvmU-IR!?w*8xp#L|*4O#tA4Bt|=s2NioQD*7}=4EUYg#z2id zd1~t}iH5Z;!)2WRgd|+ga0=vzsnZbXa{cAN4#70fK^MgwmAb%R5v%d?aUUTd^YjT} z;n0EkFFIx@?3;VJQ%9M4Zi}IywSCaz*7VBHpcP0W&e83r1ZHEw_ z>|ghbMQiaJ{Y53Wa$f_BtV5x=OOF5g1(lGfzYbTd`MWpJ-%1KFL zxv%xDx&wJ*GCb?WT0{=fEW4)pfF?!2mq4w8TJTK`v<^Ze;5jn!>#HHDzpN|}@}Yk6 zZ$t~F6}p5A)q0MfUB0o8DR%+?daz~jfwzs&3z5X2qrOT;gc03`+BQaIM+%%4hsG;d zUiJjsJ)dc8WTZm2+dv-{$ha z8SGnkDl8`UE(#mG&*y1+kQ7_ix8*F=pOqY%u-?+4s#l8C)I(FZkW1?cQ=6W!h@XYW^ z{wz-kbCy#e{}z)117QZN8;&nrIHQxq-5iOyvV(TJIo|u=8zun&e>?*F{&~Wg>b%;T z8i?~`1F;-bky_l+9Lln8DSupqeAzlR*mkjJ_b7}kj-$1BV!1LQq2vD1@r{oy^BWT_xyYckWT}#Pw-^;PYjI_0+i>$sQ@ zdS`JLH)`pIEOL1uC7|0u^9ew1M1GpfD71wOagG4qfEYLzhWP;h+f=X>6UpLxmWhil zyI;6)mYpjtQbsr=rjD*?@hc6t40-+m6P)JyX7+57?I1tar`bC7UmW|=Hd>I%yplx} zg7hG>g5?F?Ne2MzF_1gS7c~fQ4tg43xrMiZx-TsW>j-&?^C_2x87&9}Iuh|x))xuV zADOeSZ|mMKUL2}FA!)p-5qKvi()jQB`|&=PbkMH6D-6N|fO8@{a)1CzyDCjj@N0nB z8%Tb*z>%G>GVfsNHisIoc50r9hMH`k#1_6BkO~Gew*paXwp>%&f9*VmhIU0_yC3{M zmmXWg1YK4SC9p8yalv46`UH^s=fZ`VgILfffoK<)jYj0~irXmZ%rQeXox>-)Xb=^b++E8THw!X2V4*C!fI&scsTtA9fSqx=J z0F=C8C@=6`9mD?p`w?>mLodEPochhTKUwk{1k!*zTGhgW4T%Ral*2WUZv#%1mgc}M zV7R!>ZG^YlVYcOnUVN?!2A>G(1U4E%ssnB&K^fP0GYyUti9nt$FjMt2_NqbiBC!X3 zQpExa0vvlle^zXRLdyW$dnm#Ub)lGV&~Z9|Pt|X^X#Yxr%eHXpoA&_$7&(YRkX0T`JG_j+Q_JUIj2JsRJ8+Q#QP`&Ef>5&r<98A?MDhX; zy*>3X=CD+vcDZrWb`C~VA(`xlq7~H&YWbW{r!(3d9o`W1U%oEgCkcO0JrU**# z_q+1vFi85?9hzrwbCn5AG^<-EF4-Mo1&+QKpmx85wqV8^YaN#~&x#6Y^GmvZ9O_$V z&-ft|Xb2fRB3dF`@M$c72u z0^~15pyZ&d@Cnff8VtxvblGdZoR;IW|0_f3_K}{gG#7!)0r&w8@+;5_9@An(BpQ&x zu;Ec?0Hk?%Qx}_yICaFQ>0b}pSqnC)-v=WN^Ny6#mX(s{9MqTZ5)wPFv$x`i+!R!} zH8q28Dcn%!y8G~1SyLGE(73NDgY?r3#s#`9cNuuV+$@%zoz1nB;Q(&2y&zRjc(Nxr zD4oaWBz$Y1jvJPgl!(K;GmAXX1;eQWb6`Mg2I2G|>|Hdwg>6dD_P8Y!X#1kijmT%A z>Hi{OgtII#N1{~EFl)VFdw}@A?vUQX8Ux@HchedJHZGy*UFV=h0;gC1z(vs6e0gXL z)IHLO5$Kr9I=)ZYfy1-Tvb@N(5xi=&V}(-&s!Zu)-C$y+n#)CHK`KvGC_b+qk%q~If-`1&;Xskx#F~e&yF*R;A%8+PcCJw zffPjx2>fy>$Pg#wuLHl&7MBFviXZ4Ksw;?<~%!mwC{(s>p)$ zF~97>6K%*?zJs-}5EQkjYSWd;1J+B0{Hz#$X2uJ_w&E~R}@)~WtWqt)lG z(;_%yqJf3Q%7+2YWa&q6qlgf6t#6re4Yh zec$uoi*3+q4?Ybg`y5pR)>OZyNssH!XT|R?gQpL%hLDjTLp);3bt`!v`JP`pkb5J# zZ}qz1IPF?M?h$vqIj`WxXDZ0ohJ2IXH~$3v##HT};1u`q>Q>&+p`AGFIk%G%`Zbxg zUdDcPeljn!J08KC@Y9d^uX$ge^0<7TTGnm<7#DQBgQ-`tpPT&qm&SUx#VIGm;Pu)* z4K#IXaqfmFLzR20LyKm2j0CiBO8+%4?7tr(rcd2}?x_D>2t2(F;jsyV#z>9e+@P~f zg3$HdpamEy1-H-XjdxcoLF1i=CJg=GFli#n_yD*KM08-y2m?V9gflv>8f|6-e0@p@ zHWYA`Iw-8#sT_MH9@=yGH14az!pUVL6Fi9F4ugJ`WUk--l&6Aoa4z)VUAutNM*F(Lnea1 zOVt&W0sY`_;pcQ-6g7Z!F&H%!n+G{Vdc{RWCz~c$&wd8^Q!)gB3hJewHmv_}=kTX( zA1|ZOSL`v;3{u1W?Y2jpnW$6?+=G59i)#B4HOT017e zkwz6%1HlL|&5{82RUq*DVP^^?k5)Q_?>!6SEFZw?UmJ6;&@wGCaRcdb7n+F|4|;Ua zQaOobbHZXu(1<-MT4qtLk#@>6P5v^h2f7$(c6ZQM=CiOnQ$pg{!M&*wNV0%{6AW6pe{q> z5DOYDhZxEj;+o3GFBqv|yd-NoPM^wX`Z?183XMa7fumnZLAJ2z!G&}f3E?2%(Bpb| z2aikXaY)vm6N7(Bn#14H8-+F)8o>2PUU$%`K~<21PdxLvCo2}kn1Ymo?hYM?&@w=Z z%KskIM*cH_5SjX6Qs$b7*(jJH;Dkg14M6chevVvpesDw~d$X05g3Gd=4IIA?di&wS zO1^DJ7;1Yqhx_O?d+9F7gAjh5rDQXCul-}cG9^dC2;F-y@}|jnWrC(x7~DY4P4^@z zXF;Q=HTeXR3(G^RCA_}_#GeegKL@G9Hve#MMnGUAC_hE#5zeTSZ0Q|Q1OKTU=(S0W z)`7N5={kMrm2@q}7-`Xci{@Qtl9Zr}jYg4C=8#qBlYdGJssfn+S6yK^-LFf?rl zmP5z!AXHe-0BN-R3@b1Zl88?Y-J`EL9GKeXKP!xcXqvK4F zK3SX)$wf^oC*XmQ)UZqGJgkLf+E-Wjw4{c+C0JkK-cT87#pfyg{y^UkRrm420YMI! zIouD9k>sTl>%y423h;X1PJoP?$LjiouMxm&pH}?xICs8<8-eP@NCC#35~V;EM99uQ z3w!cDxDI$BqLS7|?@#X0I@pTgXe)}sQVef7^@ca%Rhq@VR`Y62z(n3C2mL)P<2wo2 zyF?nCe1Eu}IqouB|R<2?j G@;?C5m67-W literal 0 HcmV?d00001 diff --git a/images/loss-l2/pr.png b/images/loss-l2/pr.png new file mode 100644 index 0000000000000000000000000000000000000000..91b3117792b2a6f1b4f6b31bc11faba2fa4f87ad GIT binary patch literal 16924 zcmbV!1z40@+x4J_;{k(LC6qi0D2+j)5GVnc6wtvAKs)ykqz1p_Sc3GvmJgq&&E9P1 z?S2G4SCitTrkc>eml#y%-gHp)y_c(fIc9*VE6c>O%fBn?ZBW&YLu8Lx|I)6TMCQh$ z2<^FssT~i!BV`x zM_?u1kk=f=U@lPM=->xASOmY^d(aqr)$ip?p0%5 zUe68x-SuG#Qc_Y)6^-!rJS(G>UrpDJ`Ccn@oNK4EDvJ9NB{~&pRiaw=n!A`<+u41o zUU0H0-WT2>ervW+`QpWkxCE=x9WC`Fg{JWsPrS0^PHUa&f!(Jgf2LgTD|FP36tHBG zz2&t_cw7< z_(G+xU%&bV1hjsCFI74IjhCr2-4Ef2%UB)q!q+|NL5d!rpF?HDI?&4|whsr_UtEcr+KU^`}ShTfps?d`79L6d=f$KnY}S&6OH;7&t~%1~FyM&p)#4`K-v!&OX_ZX%uYz;a0W`EKgfTUVj>_ zhaApfwl@`i)T}i{wW2bHsX zS}jS6E#0{mE6wt}sjBfZF6%#i>+JT9F^aLtrm4pJq|Z!uWly%IhQQ-`50^ZVmX2=@ zH}Xhb7_OT7)f69b(ZnZx?jVI&?8ee~y6f63?WMcV7Z(?oD`<>ocS5Rf z-@Yx_S?$rx(B+3!c10JWH&EeEGgUB!SBIU(A}hH)|5U{8SM27>ltpj8b((H&TEFX@ z_{wCP{9Nf?$!y8iEcuJmY=Q@`ct;9aMW3nBDRjuN-d?vJhL5RyFYO<|iO>J`7a7?_ zkBw29vI|F;&z$-C>TUp?;E$Pg-jeliukLc`eEgCj&dOSmu`^N=A_H$7*x9KAx3T+Z zYRXQ;VDH_lSGV=uSK9Dv@iKvzq^?~HEGjB8E-iy=Ix1Ue zm8~{yBTE(*mi+$ly{JOivWIsFt1~?v&!0bkWFhIYoN^~uw{JH9TfCwbf3NPf3_xjm z{e&IuOi!L*1fQAO(3{7#l_u=5Cn_o`QlTpS{QQ~+_I4fNLlglj)ps^m`Zf)Oa9MY2 zPI!BJPkipdw!AobUO)5An^WjDQyrP%%j1822SDV<_U22iT%`6-?9BgGRu=a5Z7KkN z=z5{s)=Zv=!}J>;3Z_|yj2^2}gZfCpj@mHJ!wgG}*C+_ZbDdf7t8)WJLl);)S6nTYk!GZFjAgq^LmDfp80WwFrd)2Gu6i(Lo}>hI#N`PQ0d6LME3T5eRm zWUzHD&$pXU6OK|se}P+uVz%fju%GNJ%u|Yym?;P<-C2zs8XnHQ-w-Vo#6)8B6|GtQ zJ7IOGV$Ca8yv{N+w|%&E`Buj4Uf}V6{3Dh#v#2@4vLRX=E+O>n*|UCPb6F-;EK#1{ z!}fII5@0FtP$bHzvA`0yer_e#M)WZWty?4 z$OO`2`L9(4F*&AxP1VYXfK4^#vN!mYV$#ZUEArE)PdV5=k>btCbZ>Kq)#D^smKb7?H;{|TRBAvW`m-GZlCfQtUpDx^V7|Tpwp|;PR2j8BNMO?Te6+ABC zFs&0;PCrk|B6x+>yytU9`s;Whhr(i&Z^L#XRL76UkshX|bXKsI9AQOY!49;5`rI4| zQC_Y&AM>EU$eC8?QEb2Sc$7_)=zw?pA!))yQl!3Y$nyA2#jitM=M*E@czBd>c2x|H z)zCBnLMD3&*;6GVQA&LdJ(e!p3swF_GP^;JveP|z%IJC##ekj3$-yCa_3BmKT=OtP zfDSd~WL~+YvHD#1Er-#Okx+{WcWdu1(i_o>T{8{{jbP)qAkMJ7Y=;&r5tZeY|xVVt*SO6y(hY~}k--3Uz zJ4edcR<}`c^th(CrA=j)8sb8uq6|hZ!osOSCpK+}o@pNsQI==|0%i|D5dN!>sx|J~ zA;24gVYnO?kb?hV=Yq~Bn2*8r5|S>AwRTW;{&ZCNRSPKhswbF%^j zOigaB0+<65rd#BcMa^sY0a|#0_%~o4jof*??*#|kva8D{0LK#x7**b$LQ9aW6vYSE z$9n#}#n$S~WOr`*frAGD1{k?-eY&1mwCFcmyk_X_<1;xLZq)wj%r(0fMZr{~QV-OT z9i}_uvhO!gZ#_4wesyMZXKkP@QJ%)Yc{FTuV?1W1+afd7eyY7-EW*N1?A(P5D(cBf zZG&H*wxz0{UjYo~rxFtp(KV?INUhczx@6wUR{!SWHN;P$6)tz01et9tjus5R6y0r$12*E|MkPY+R~X=Ui5`uOw6saS0zcTLyTY1KSz--w;a3N)w`+wmWW zsl)S}q-~-Vc=!e}VPV@bwzFs7w=%O<0K@PBTA0Kr?ver*iRGlU>MPKkE7`&W1sR`| zyj%Sb@#V&A=+W5qSmv1li0T%*05eR}Oq=@i&p#(KJ$KTnxpfo1e^&sw$WV!Sd-?w4 zSfrH}R2RS9FBN#|Dxd_=(?;!l26}*-5n~El|GP9&eV)bSQ4gT#G&AAQur)Gtb2}Rb zT&B30&z-A81OTWnHs@hivlHz7KqJqcwu}MT{(;c>=+2xuBLhUY>9eKYaG&FVJ#gaG zL7QC@r-x z-%2deR#U^N;yjOzDyMruYxm!F1C``cZ+dxkw$I{}&z*M??%k&(J&Kz0txcHO*s4=B z(_c50xVxHk=a|VTDZQM^FDeonh9&0%G{XKtN_ra5LZHBL4*Rg{Q^ky-q36zu%%evi zk25e>DnyC2y%BZ9pQ#agH0YIXbSwGE_|{5?QQ$?B%2Tk4{7;@f4Ft_}3gk-VQiG(` zI}!WZwuYaNPAQ8mJX1~A;*OUKo-n*Vl+M13w-y8tWSmU#bZno`gdc1 zhn_xo=olXmG?PF6{F8QNszY!#fB2ZmL~|nRrlFUh&XM7>CT$=YJ$xd5OT&MqB}YH$ zl{ZY-O?DW0Y65uj7RX=1VCETo?)+MwXo2Ts7`L;=W7owhSh~BJ{{H>@A_mZ&Y)=6X zr)r@~K8UH~A*31>7bHkpDZz6Kj|Z8`8XO!Pmy*KPF}Gf!?@*(-8=unHsDgy*wt}pj z92*5}lMP%TU4%g;<83nKNcVJw0!-0ae*t~S>;mQa}PY>@Z zGWbMa?T|>=#IUvHF5mybrMd^J_iMGsN_+fA6lx)XjN-aT7a~{`0p16?*o!>O2~{D<~ky~h@vH$Px7;b%(au+7cQ zl&4Qmv{Roxof;5uWM`p@iJXj#-A=*A<`Y6$@*wU8vlO{kinj>IgaemmgpVcL&?`m# z;Mwi;J8?UgGV)57e8iP7fit3OrH=*7+ek3|KecNVZv`+(8oqe(0>1`K3z+2My1g+T zAIB6kbxyX{RwyiLTmx>l%lU^bukR;Ye>3=L{O2cCW7JKr$2A=A*Mz0@nLDf{vTJQ= zYwN7pE?50rm~&mMBXSI&mTa78Kmk)PA_4*59v#Iho4PG2v!{;a>ZDkmmi ze?!v-0F(hVRADas#>vN*Q>{uT`>AIJeuW*6miMYp!$fLo&V+foGANaW@r4Q9;&}CU zl=ABzF=ZJuy~2KS)i#Uou-5PDt$#gyc})$Q*niMpI$R;vPvNy3?h1ibU;6xA7A?%6 zfk#*`G;gJJtqdCry=>D!1c`~y-Gb`PRl{O2nq+C)7NSu;HuM#N0tUvRX*tZ=(gDv# zFCSs&>`48fKQ8?~L+Glvd9s|Oi~Yj059>ExP<}k<6&?}^`|APpT>RRhWAu#xW}4Zi ziU!csX#ro5s`K328o(v^GP>ME`jgRf+q%zlZ$}q21QJpi`h;dZBN9@b3~Ew6OY&nm zvg99HE$Au<ha$P+LpaI@*_3G^SH90ZUiy50e{wy5q!{ig;N{f z`sSj^GSu=f__wumcZD}o`JnIGEw0zLk~sq2e`^`6?WB+;7ufO&WSV!)HVdNU8$N92bOw;+Z}OFKF9 z$jhdV_jc)nPZ}@3t!#gOcc7!XmRtYJtfH1bkH`W0nu7HArj&-0szZd&f797(UAf0r zKbL3J){9}Ab|Y~eHR}1v_k&e@{ABc#8k}C_4bvmk2480R5+rRHHktDl@Bb;sVeoU4 z6_?oDYLKPErosn^bI&wem-572^_#CUnllYFNDB3&G}BH$4QJCY9dx6iPB+qNHGKQz zKyS$VOH_Co!t}Qai!2>B%94PQKfR0=!w#&fvC2zxm8!h1^7-+eymK__!0O?tgePK} z`LhD=HP_uJKMos%O&1$VPW_QH-zGE4=*w*Cw-qU}(4L!}G2?Xw*GaZc^HP4K(Pzuy zi&u>9JmBjs<<11w-THC=iuYF{r5_8Vr#at=Yb>(WtEF67pL=gv(QZto6x&O4Lfo^2 z-q(toQn#Jk!Y{4jQ~12<*~8wikHAmImMo2JS%UDr|K%fgqK1&My_A3Eg}|M5!U z(jS502Zeo!*Xi&51PtZd=UR!^8aGDtXMexraY^DQQ!l_}|J!x!-@~2#Z*dKQ>8s!^ zy^Y*n6cBH^R0_@8jdC=;=Rzwc@_B(m^vLX;OIvw7vpxFJvG99)yO4Y05Soz<3?L zb&4QtwJ=m6r=Xw#RO&Of4>41A2?;}>jGUkLzIh)8=Rk;+mDLOystZVjT&D$N@r{v? zFnVDOrn(A0NU9JcVF3CHkz@Or+zxXPw`ppLeq%qP^zQEQmTs#th}fx=dhAd#Fl68j z3e&6xO2X-9;QFb2QwPUKMn)b0>GbpW7i9`)O9S)363o_WlkPmLOm4l;`M9^>5m*3m z1yl7#V)+pahCF*+r(V%3kH>AOoD7@>X&IS<+#517li(q8EWYvB*_4cI*Bn5{F2b&R`R&9b^HXh=s0PAD(G&dS1) z0^}1(dSo*L7dpx)ri0^qG}1Xw zcn)E89Z64I`3WG#gI+R8;=w}V;O17$(96@3lk-cjUT=)MhGpgl(>(_a+h~tXGvqY` zQPu(-yRyC1;5x;L!940(%9Y;c^2rQ1qlp9Ff($9JcEsKvzA-78n)n=^z{ OsQlcS z3-?iB$ih`VnE0|gR>bPxh$P!D_5=Gh@`n5v6kf$Q4Or^i=f?lU5{qW+%RX}aQ?+O5 zz9qhx#gjv5zpiiZ7w>+>-{BB~It<$$ky#8ZphLK*!t?sT-t=L6B6P&+lfUd;m+IRG z6dL)*51$~|SQlT5pyU11=GZco2)B-sZd>p#HkeVI+FHRmg6_Tq3gZPp|yXB#`~ytZi8P?iK!ZkMqO73Sv!E$ z7pQ*Y@;=1(@u3_whmV3PU2>5fPK-wjxn-ii$9;nDG-!f@acP=$NT@Dc5xk+XgUHT`q%z#}5O6K11mG z*=}Z0k(UB{xpZ@G&K0jkgX~hp`=38|j^oUktH|1di5)*Qy?dsn1*XbJ>4j9_k!yo` zVww2q%hV1#3lF~21k>KSFEV1m$eIei!N{&n54+0kgG7#$^;=wIZ0z62Gw-FD`xmJA zNw8=YxUGM;#Pb!P4&g#Iv?;=nyEO}s={Z)NxW026?TAS;D ziJfTvfa^8y~bn8;NJ-+NKR4W25+JEQT+ts2F* z&=jM^^&SXX$%6Gam_5fD*7SyW>fqEC$BqnFa63VRdsJ#EHAEKKS~CbaNs(hD8=E7tOuh z9T=PqHDO3FUUN%ZPmE;|gYh}WFj)gn&?{y!G4QhdyIxesXee;|cI<0jBafyM$A0Jg zgoA*m9_36our4c;i8(oZPOK>u^DhM?VM1Tqi62K(MCn9BY|4tmgrj6Z2D^ zU+`W8xnU?koXeyJ+(pCs&RGxSG7eSv8_eyk=9MBdG|i~A1gy%RSx`$}p7UG9i3sJu zevxek?)2#^u zS--%*l?Pt%X=@wJ8uL&@Fyy@EOTqM-1>OcZ_{}j5U2oV)F<(ZjCg*y1w^uSfHG#af zCdi(I0iqR}ld}*<;=TD41HVz*x3lJ z7?1t~)}Ul*s@F-fkX_y86(jg$afth(gv8*N$NOs`;ZM=l8_EtG&X>tUheC4u zBVt}q6CJzArCKyuh^tb&XE=Ti=G_(@__jk#ZiBVW9y=@AQNp&BCSPF{_HM7lJsE;W zxD6Bx4eXCGh$Ku;KSbjeFwY8-l%mq$%lc^Xo)&9ZVy3Y*|8~xfrBkhcE?aVh`IU~Lbu@$+lOcxf_v;}h zCzjufG?JuHqv+(6KT8;ARIVbvVTDoh6VWK8;`Jf_?qb(G8ylNe7$=A?eZTzu)d9@l zrE&Ql-q5tMF_4C$&T?6mgra($+{9-N-u&)U!Z{X<~6p#~-wzQF$9n@^P9hW8j59c72G zO9nTLF9-wz<5B1^>olc(dbJmhKy>G(Lt$Ur>#(py@T{sWMTFF0SLGM!j3ldnJ$d2; zc`g|A?u>^KlRaN*P;Lb?Kq@NOU`nZ*kPs?r>M<9f2w|eY zfd^kg!HT$V=AgL`%yZC|XB9EsUSB|y=qY=EO7fQ{FkW>*ywJ|mW@yAR{yYC7Um3`= zih*QF3h26mZpat0u>bw{72r;4z&mD*ycHe~BASzwFkpBIVQoTQ{ofK&if zI`Jof=e21~;EPl1C^ zuQ#9dpf01S4B}9gk@5NV?VBBp5MgxZA_}xj;pd)*aH^=$K*HwFGu?c6|EdNf(2qXX zk*wHguHIK(g8meWr00=N88r=_qomx|NOdt=!-o@#_V?%q2|lWKL{BG@*Ru4=Zz*(K zlBwE~s8Kd95~UAubI|!-N8cCo+E+HeWlriK^a%|vd<5Ox{ogx$-;9x}hYG$x#Yt36 zmur-J;pycmjDq6sAj)3g5m$B&73L`VGOmaNU{AA>|ki`nho{YR)G z2aj*m93_fkN-lhrT7Mwq<}etiXPkrun|(bf_GI6Z+Sj`^o?I0~l}x#RYq-+qF;~%A zd>`Dd4h$cjpB)9FbW6vH3p(oe^4z@8mO5*vwMDpCF0O~~U@r6h*}mWP+kFd41XN1R zXOwpqJ;rOq1S0>BeR28Q{DRfw-CxZw%=;f{;}Ny5mdW15kk9rB5yO%J z_v59vi;83}B9%S=mv((%OQAI}R2j6tMqvF>U9cTfkiKz)6Ov_FSy`K#QZQMRE$;fV1$*JA#h= z{P`PtpC78~>%U8{hr}ZAGALA@CShR4>Ak)BkY>rQZphBg4hs(cxeBEoegB@fF|xgY za6-h;&LSuvKtoqo_r;He@{`IbFiOLcsa*x61H<077_PaN0els<0O@V9+qI$WK#GIW zJb7?%@az_v6Tx8JrWlPRYg7+l9yxzpuRiNR(qH5R%I$7;S7>zfYgrO+5;>$+GR}jLStNApBPFKNWQv-tu zMzQLr;{eX(=fmJpir6sAq6TpDrV6AwTVYa+^gIOE_JuhxC`5??Sy^QfS%!Pgee_cb zo^GMJEp+N6XspgNuFy~jOJNaondb#jm;zFE{MJL)6B85BP#+Q-)>NmNMC@*AO>K}Q z0Wm`h4w0YC9%p#u%ik|IXqf(jy@2r#`u=*+1+EAPP-}HCv;X!(V1(E?3h>w#NT3MR zvOhhC{e0nMJJFFHiXc}a7K)bvG*hqCk9nw&sf^z4|FzgRZR!PPqLcD<-$^mLRUSkv z#(yq|4ZW-T?@LDXQ_lUiT8Kngfz=ZLXh&M zcKiO)5N8kXAAkZSH5ZOR9;N2zBPUVHP+YyKIz+H6!W1x9Mi=0T;35x$=lcsXkC3PP zkaz9sY0XqMX?QA{;0NSgBk`)M-LS_N(H*K$BmqMdhHbClEkJ=%Qc{-x<;8UI$TeYM zVG$6qknW3x+)=gpXbmSugW5mnAt1W?6>uV;o?wq_B+5})`98e_nFLjkY#zHC_aRZl z28^iZ49S;!W!jAL3o*IUgQcrGbehyn+%W(Qb>feGrsETF$_+ zFA<(hD&$dc33^z9H0U`8(a)f6_k+E5b~*3>5*{Bs!~rsjLSj7@+4kq7oxaWF4_5_o z0`G*p9D#)$$P)@^0cOIYXoA0I4rO$&R2Abz9xNGC*26ETKwA1o*@fjBct(j;Elr?+NK)h=5$~v+pqQmH>$jh{ma@fa13R1!19~EV5AE zO^11lV%gP`@=K;bO@l-cM^KOBvl+R$vpyVz@D36I$q>3s)yu%sr{?I@&EML6gaGHF1ym(vfSR_Rw?LT?q2bcXxoqv>XmRepXqq0g@p< zVmM7eeiDfGFcF_2P@K}p2AOh)p)o`Q9$5C~H-&xY($7}`%OMQ-I*@lht9~&UkK6?R zD1-$?wjq@a?-YGbIeI#)6NpUNS­o!mVr@`|JYnjjhHI5J}e`RCHpBL?M5Ww0I zV$Pqy7;ta0b#Zx+1p@)>9LPpAZ!w2{GYR<}R4ow6ngVeX%Hj?>3tEMFcTQ@Lbyrtc z!H^%P7%d(6Uv7ZcxJdcG$Z{sC#)pa>W}1INP6&HAK0lpn-@?jw1`@~rCPL_@aE87>&%;xqU$QWq`(h0UhGD!2T zv2EOOW|?1LQgwW~SLZj=l4&G4(_gH|_r5lJEmU@F2xT!&V~E(KbG z-;RGLm?$WJilX8WUtR$NVG^P$?clEfcSr_{QGPS~wdrVW7&4AMHYd)DZ_k&Bz-;No z5Ins!r+Mz}qFg1KI-%e?gr#z!v*p^1*4hjl#CVMZAiI5o zzLRS^t^}F3gz5%vYJX}T{S+{(kt)=HMr{XEzNxqOqnl8*uCGfnb)nn=^v}jGj}M}_ z8ictT`4x*;Kow^)h&rS|B^FGkrT0ppAorig=u=QK57Oo8pv9J9dr(du!p!3_>C&s1 z^aGanVkV}@sLOgxZiI0$Ghe%N=MK^;$cvSztF3K@+HZ}$de9+c)nr@vfY*lp^xBrx z{y^b>KhzR=R^RkwwSuptBnZynUdn$UM;*0;aOSJdBYPX8d(H` z97yTrHd|yCCqXWdy2rBy#|qKbCrAeY20Z}4LlZ*6@W-x)DRsYhR)_bh$C{l}r*^I~G}+>=4$kF8MonV6W^L&|Uhf??q- z$cC4eCOXZPfppp_o=_;EV6Z|#=XdW8>}`3P_Z8%#x~-WCv-7^@Tc$dKZ=bh>qbdQN z7%#FgQ*YzUm%YDdq$p_epXuP@8>nZ_ix-=b;OSmrrF z=#_A8NY&gN?R(aVh9^UiWd-Z(6HInm8zQ>mSd&py4$va#|P~_05EEo6%xk|I}13WZ-Uq zmDhn9$LrTg;5Tr>=>$zaw_lBCZe@(iKSkZl`!LNU7{%?#w1JKG3#yK5fmRR@y9HJT zvfK7Syp7@ekvIkkw{=`gtBOPKc@QNssRFk2h4UN2o^I(o z=XZpa(ac`n4@CTypNMw;m$PG$@FD*_4^RrH1yFPyP9vcyH5d$pV z#3`nfImbP!3^TI3D2@rtgWqHQ=OGhta%I4A3yzL9yt@be?X*B-z0*%`ngB>;H#vco zFP}@%KAM)ZMu2>8C7?zi9P&9W>Nv~y=TX|b&%C`)mu@f0v)-6Bl5>q&0G~p>YZg=6c)qr75@K$(p|2TMXr@%PV z`FQ)W_23s06SyH6n9rdUsD{nR?me)qD%F+6@43x?J>E>{0T-kdY+H?$4GM0jDm0Tj__qD7@umXaoM!1JHAZfdV;N_y-2^ zLsUU4&U&*DF5)l{(9_V31yLg3kGzSp)+T0YaWMd8Z1*-hN&_GbhKoGGHsc=6Z}Gb6 znil=;s0UI(O_qN%7~0T|+K*xv*@YIOW742psx`m!^M{VR;ijxI45j zbn$()OA!9}o%;YNJG+&fn5e1qZWqtBwjqU5w?Oi=f9Y_Gb|A?$ zwSR4VQth3)4R#ee-3VJ=quTy7;c=?M+e^?NxSN5UP}0*+&pc8X2BbmJ5I8*;51-^L zO0NzRPn2xevnoymUk(uqW$~3zXazGfjSBaG9V159?=*bW5|Z6aZu5_|@cOB;A?KV$ z`J6D!f~*?<48(}JNHc;U1}whOHEUb)Uqrdz5m@_Gi8(lXafpIZ1A-gGxCxFDj>CZD zKu6Z7=yI4i>ITN)SP2IZcc`y62S~)SK@l-Ts0(div6J z96B=ybJj_4$6I07v!;jbt*$*A@;G$u+BMFHtun?VN#!sXMrRfQ^R**^zd}!d7N9+H z5u5$%mhvIPWK{RQ|q%2hsdpSD{N-*ho|JpaO(R}uQTmih z7ys}QJe^A*k}i7gx(&mw=VNr6zsf8o)_YT4{xTfa1$Xu~I=I&639>>4)GHjA;4^_w zl~GeWq5f4qHfPNl3=bI)tXXg{X&Cexz60RBc!g?P3P8~N4Y%ecKuO?j7~T8;yF^Ax>WSVSI35iTKmr`6q`a%|*k@k}$G$j)jrTMn zw%kBd(Ba67f%|euK9W@LE^QzU?hVz4yMt4UX62QYv;cw+IzPrO!1RgE+1WXaK6j73 z-u*{?J%6CWM$_-=%^CMuP$XI$)V)wh%5rF>+9>$SZ^c4fdkD(Bc{y9DCy+ z91nfp0GM|x_=YU918z%!*uohBXcY3mreOs_AZwvJF>w6K=-&jALEDnOT~~L=phL;w zSm12S6f9jHn)(98y9zC}3DjFMnzG~UMyija0evtW&4sefxmQPxxPNV3T?k8*gu5;o z8CiF}b$rR@BqzUF^L4;c#6pT!8Avqf8Rbdl$vCw>sK6D6hKDD^sPI;XR`KrU6gsa2 z3MUt4%fQW)aByJx8i-d_tCEc*;Qk3P*5lyfQh*{-16ze96`%%h>p0O|F{29yd0xYz zp_Q)tF%vIEXH$xJ$zs*u>CKbDX~A}IEfM>L4Rniygan;VS%!y&QUwJwpL=>YAq@D- zhYtIS#d4qot(P6E01ag9I-n#nj?xJrnFgX2=>!;cYWy5Hd}S2Ow84{*Sxkd&EssNS z9pEz)pv}-Qf<+br&>CPm^r4{$F5%UySN_qW5E4OWq70o!sSH3mL;f5>5K%C&;~0#@ z%nN{FE>UHkI|;|$G@xBO%=L2@_TeFu0>ZV9wA`@_sTqTH6 zoJAHHDkwa+EQ*p>$`)3W98@4bKf`~BXxRy@yrU-vbf=W!m#ao%^%Dx6|i$Fh!&j*fvM zdt8~0ZiNON-Li%?tMHTHSGE!OOWf{+rk#qFk)7iO8$-G?7woLft?bNAE^;~;+Sr;{ zSsvgQ`(QEgc=>1@ix8G1Ac{baak# zl;cNLuY?S?IccieFTDHdLf5p(dbMinr0aVsPdeA-03nf7YD>LvYR!kV?)M48yu7v1 z<#M)-b<`bl+QN?1(7IL;CdVe#vj+>ME4@GdrRsBSMe&TiPVblUz~PXo^5a62R|E79 z&=>!S5zukUwm*N17vf>PlKic3Bx^bOdp9R_8UFJ4`_Clu&(~|$U^3|F zKL2r(m;7zLyoibXeQ@#Xn*E>O+(>CMpZdEW6b>%yn0AMbxe{L7F;p zNh$?bo$SAV`q(dIlVA74=EY!}V@G<>G$|cTqX2Rs5*rn>%*G=hOk7G!j%!jN$do(1Rd$Dr;=5Mjlp*8on9uRgO z`^K8Motygvg+dvbn5g{Nd!mPni!0{*o9kj0wJ$HoNKJoxA+GutU6(Zd`ae9V=I`!r z;a?lmmQ8%BZf@-v{dJ&$K^+}K7G=3a&a;H^`mn_|IVE|EK<&C zJQ_)S0s;cJZr=PB8KA3t@#6DheGAdxRSYZ<pwMIrpYVI=ea#1+0{}GuN0PZXac{F8U z8HcI8r*W%Aoepfd>ctwlA$_(lI!v|D%@uPMZ&VSa_454Dpp2QxVU0}7Hr2FCN>kI* zaVE7<(?3f%YSVJ<`e>N>7jbIwA6ia#BETYP%? zW^eL(I-BKE8gxGQDxL_+FdqK(Oj1g!KGj&!b$+V1`Q?QhEMk@k%U7=Zc5O9#_4SqO z$KEpQmDbkQ&Szo#dj$oR7^P=la-~kj+V)mXfAy9g>w2shck%&CbAfB_;n^QDbE8$# zT4|Ra6_3u3lnDeKFn&mu@ypwL@z{y92=BwwvQG~=sweB_`}+DuoJ%!|)y}lk%CU>Z zmO1Z!wWGjQ#JG}GYT}c=X>(dEJ~wFX9{2Zdg%~{S#1W0>$Jg%DE1<4eMSs@ZJi&7V zTTu7p56nU1SYPdUwG3n5EoR;79Qy%bhwqw$t=TH;nfZOWo=Q3?TQsLB-Py=3eDR+( zO#D>M)r{S-K1Rq!BLiNIVNxKGUY7H&u|AW43aI6NBNfB8>;f^;#*I&)^nph6{(Fu zAt4D5*$(jt2`Q7c@uc7SJS*$qiQ~sFl{{pNQ;ns~IT=@m#NuaC<8>+sD$c|ClVb=h zrVI0PJZGQ1-lxYwr&&oy*CmH7FU++Sv*LMS%Sk!8yGl`~x9XSrY@ZP2)kwl`}X1MTBTCk*3%J%oau>ON3Tw5(IE#EE7PZkP`=ww;H z>2y$5rYYq*SbQy*8A|17Ni%u8{rwgRyBL|40@oQ9+I^hQ7H@_v`(Llwut5~lGgv)= zvn0BF`SKdcj&VdTW4mwFot~4YPMp|EyI;cL-r9)>Qp`YkCr~(haf{~#K5ACAkAeB8 zmz|!yEJ6miJBNp@a1y(tM0AE<+;mtZTJ%G&&TdiUPF13aoR=Y0kA+GQ0KMCpt77fko_%FqNa6x|fI zkBo>oSf`PoDfsn!Q|iQw`>#$fJNLq6oS7FjIqABT5iif4KmTkfe^QsyW1Y_~<$MVt zSx!O0p9=$V<-^UHNg|tHtxerTN*Z z{<_%5^u^XOynKA81qB5+^yaf6l0D{P*d|)u`D?vE9w%jDyZNp4%>G>abaGS!1oRXp zsraY*v18YF?AT!$@Bib6wI9Duv)fGNp<&g>yUu(U!Twe+oE^EB<2amzZ8+m{xu<;V zty{NDszRkCoX28{#lxt!=PkyJ0u{`z_M{(aS8 zQH!q5&hR9iT+^QNK)KVWeFFjlHuGsdD+>@fbTeMcW#SU@3y;$C<2hB1BV81)7A785 z+03?@Ncr)J7AsyJo(~r)YtlJrjBFBIVq%%Xy;*L4#VXMXeX~=eK|+Ri5$0*(IYPYY z{sUo$_Uw_x{56EjcyR?@NHJ?na{l^2Y%!Cl#jCGlWNh5&Ex7~fkz%A7f^gcLZWfIj z#h(cl?QhS|ZO*U=4%Z^byhpP>PK^XlN=8L?`Mo&(p}a>a zhGi113Jh9!>fCPqWt?KbGDrBw$^;6({rdSeNW{z^Dax;Bo@8r`ix%O<;ijo~_2(^r z0lg&bhl;=hr;z3}@}0-O52`3Dt41rZoq4i#sv&E(( zSd_HC*b#V7Fhts27hku%)RAVQB4W|3x-eDcju|?Q(=VTDR8fPR%ug8^8^atwt&3IJ zjfnFN^I6ZVcQqWlp>1SZ-(})E#rAuc`}`|`&C0JXo}egSTfQ=7aIQ3_PB+cWT?0sf zgObvyokSHMY|lSbp$`aSScn5PiEtT>Ly)>>C0#&C2rpf!A-`^33=&@qppNsmaIYG3 zL_=jNHN@4)QcO%tYOGp@EK0%Lgtkt$&D#sI&$#S|+jUNPv)5yAwXOyC6NGz*hWLXk zjKYSw17-e6(lgng-q?+_X?t+~{qC>`alOVQ9TE5WS-Su(X@u&1W;uR!>w6SJ4u0&s zV#=u7zs?ieQoi<(GSCtwh0$How&#BF9P-aZX!<~ay<*k#6ZcqqPABRW>JBs{s^mHh za#6VD{Z-@D6A8E>JJ^JM`2OV17s#SUdK4w0fQf~kU@L;YR<2x05$b3eA80fiY)+qW zSi5#DIlmtQ1gyeJ>eJ0Mo*s79LX49el^l~@W-T&C&PD2#pBLZ0eM=BhUprYQzdcIF z2om;+LA?Hkc=hqy#}{fi175l;6zA`+N`wjI!N!`#9=31Paoj5|eh%ZT0h&m&>6UA| zT*4-n7%$_sA!z@F>p1c8r`Vm2?^X=0iw<*(Lvl20$*`Dk02o##b9MR4@u%Xp?+P}# zm{ygf=Wib_m`NhpK*XfxxT56Go5%;T*s7*L57Seo3sn`TqcL=TdWF!OR$1< z;WDeo`)W_AM4kSKTvwlBC{O0EHd;~R%9SkFS3Z5U(F0hc+7*nF&*c1g_VV*9Aint( z78Xi9lbZkaRl;Q=fq*5yy(%ZYHn7zotUsR~ABc7;tX0XjF(lF3xhK%r_sNr(JAdzv z(|mQ&xi2!{y9JJy3i)N6O7z1}Bn7nuO{LumA=QX_;|TDkSi#Jzp}|dgPN_f=xxyv9 zIAI7rO;#F-T55oW)t(I7Hf`AwgYzecFIs<#WEH%4vtVJ~CEcu1p-O5phF$<6(C&DynsTwARQ=NxjpDROc`?;dP3u8UJE z`!O;iba&I~96#pMv?9fnaWRT7}*W}+Ia{FZzwP9xd!bg*c}7L-Pp z=fWP}y!nUz=hxRxetdr7!LeKGwsv-Qz8h-G1@_4uE*Pku_~*{whM8}#=9yVZneUU{5!Qs?HR;558L(67QYrhTB z($bWkZQp=`FN+XfAz|aTZSmM4E+@0L7O6=ndo7=ynfZH>iZHm8^XGak@}d7PIZ>Vs z^5RIS4{8j=eQljp)cd))xssBSAvSAwEix81`M-W$nL`C2L|@#m{Q3G-S63!hRz5|= zD!!*)gaYxP?n5|3A(M<>siA<29@|exbGr69B7zImvm6rNSw9{%OQ-P9!Q07naBAdU zol2oEK8t#->+4s2dvR;Q!-o%}RPorrCV^SuLJsYi$kwbT#ER2$DfLqRbA5?62fbA) z7payh*8iYjy8c4OZ^S7{P0{Z9`DDczE;cdDv3Qi3q*48Er; z`t;LZ=W&XkvvJJKAuD50{qt+d;0(#|02N7XxsEN~0DYweR$Dx2j~}Cs8}RPomh-i? z47cWSPO?e$-4tu37khkd-{+(8@p!0GCVCk;*_TFT-$d@;xPJY+_K_nV=AyxK6F`|= zy}i*GVm#6_Av!qRXTuRwV&wz)*U{6fh9A3Chw6Q9cC-p;+)eXYg;A~h!i=8OkJl?k z#>dq#cWGcf`0@)!d#exy)4RI6$xbE+Xv3sC5Plr$nY{dbCWJ*05v6V&piBq^oBH)D z29b9i1A`h)t$+V}`868Zfx*FcpFQk`LedQG)Ys$DyKwGgZ>>9*s+09OuTc;MbUq?) zbGB`Ce?wwC79Tu=?xRPKno|t#k=&&4RH6^1nV3}7HmkgF1S*o9Ogjny{`w;^f$i!D zBo@k(Lv7RQolam5E2TK)uAh1Zkt>AG_u3(vD>esERvu4O)>7zT!`pVLxl@& zGlPHtak}}=0OvS`oB63Rs1eMnpB)vGR0QKd=nqQGq2at2-qQ1$1C7ZV81Vs}+M8?t zu0tS2UX`P%rkkqG%}sWYa8aLWrN?&oswQxcD$ZXwmJc8<_UMgOv~p|v?hj04WFWOd zxMDFGfl1p1Ui9*04zxDSW;>_b&F4i%l4)I4P@sG@Pb4@wc~rNA&9Sx9`q1ISy2W0M z8n~fqmh}ZvR2*^~$}_A|Ys;}8oWbpUkzf@Nsw7iP~ako=T_@D4!@X!c(MXsS$Zs^@XQh z_uaIMw-#4iv(o7Cy3J`usZAl166-eeeY18!v8|P59p3KL%QlBdfA{WPWn2stj$Q32 z63OSB$&x4l^j;=s21Fi<_Plez^ZD0r+!zN4kH^$YxX4l(ECG>8N;(PWzwG;sa;b-Vpu%py1?p7S^h!uD#& z_(KbY&gouWUdLo)#z`o~!bx2D@yu03mr%k264w>oT5mfhqIpLg zw+i5|$+}#VVp!8%R%73xfED2!j>kbEbskpjy-})3U5rvw!wO)|y(dnb5NBP#VM7B7 z;AhC_1BsdK%HHf!Y2XCT1PN2ZTqgp#O!{gfn+x3wL4SqsIC1wZ0?j4c)&OgJ8eS?@N+#FSW;U7_bUURlDQtJ5bIFIp5~^Iq7nq29oPVJ zry$TX1O}lRs82LL<;37b3zuSpOJvaA``%PSRjjX#@-aXz(GD;RF?to}8_RrsnF?xk=6YRV6^z>ZE>oxi^7QVgk zuFJ5{&j0o0UL5vjyYs+4jN~k;f|N|~n-8YP`d)y-js^co(u^9YPwk1@-D~;YZ@{Iy zwES3hn7|bZAPpg6sE%xWN?>ErRwk%%N_et>g*K)dTMOA%nkueZ=c4sLQ(#A1X`= ze*E|`(|iGFB?gC)Mt1fCfJk|C0V)31K<&~&Ka|9Bl8Q>}@Ev$Y$d9?Es&#qnX3fRPL zxK{I4a(S*I6Piu)Qd6YnUAYX>X8@UbLy2O@!SH9#p4oByy=jwO?F6%cZXIuO-g9i? zIMh9~2ynVQJUnvX|BnW3zZDCFiZtg}AK-f+$L^7?(}}zHeZPE-Ja#J~X$`LL!S_9z z)W9!JKG?K%s|jKDo|l%&ih#RsD-kwpC=bu)0z>+#MX%uMIdEA1!NFh4Y#bdmKzcsb zyLQ5~&WA^hw(;-CFt?N(7V@kMRW%o`k@5h?P6YHTiN95nqxUy%+*p^aCrwcvZqFC7 z>5_Gs*)HRG3Dhl%v|AnyRHUH(yGvi+Js=y4>piHfecBmy_XG-JK<@MbwNK;Bj^oS{ zzWrsFh{V&1chyJm09T*m11w-j=NuqOpr-pL`0zW#BoqPX+$@cs?v{QfOdbFBQHCfY zy6$uK^~rjAgyeX2@s{hyyGSDgC~PMt!1Ohi2ObbH{IH2+0n~i8NQSDQVqJm>`wrfl z0Af-T;uvTUHeqb6R(IVP57V!vP6GCBUJ95;kO-+BkzpR0Hj8?)osqpeZC?6$NI>q@<1& zLXpWsP$OrM-f}yq5aER_nuU%10uCXusYcwk>$#uikZ4yWrLOS@ro@bX%l;!exeoP( z3-j?ph93^Lis9p=IF5sc5LKlOY-#LwMP5v6^)j&@oA{MI>)F|B76d-MAv5YTyv5Vk z=X{0HmaROmz*d01yIC+lZRYhAp(f~%W6~=6Ezb@ZSH>7uh4Sd+q!F+RjO2=ZFD5lS zUc7wrdlMmgN+GadAE_QcemtloZ+4_CPAff*d>BLuK?-Cy8BDO||9rQtImbR87!Uu; z?-}q~X$j!~^+(v%t5;RQ0834EJ-+Mho!QZWEO*PxYv2as;j`A(FF~zGU0bobIc&gz z6(9rBgAyQM*YI#Mu+$+w>rDFr^){E`eAESx0S8z_Od}p_6O*G6Y>e<3EBj~%kLJr~ z;O-((%e6V|+j_yNipdg^SdC*xU}yi_WMUE&Sk7J)Pi=SK|NN=^=6a@i4+u{bX#+sF z4e`kZJi!&aC}dUuZV5bkTT(*csq<8KKsQDLh^pi*HSvV-Tfj}D{#B1~!d7!!J&W)H zIpyiaix*jYj3Y6|TF6|95Z6oq^qjxk*-gN1fUYw|%6Y6BgiG4Rx9esi?-8OuWG71Q z3l}aBzFO4$(=!D8ej@EWJ9>k4c^AN8+~?2d=dhWYL6Sk43`eCtaA$XDR`&p9csz1d zJWvgwLU0~3Q|efayZ{k0 zL1fdsyh_e^EvpO>R|(+PsS)eA`r`Tm2mkIfL1bA?TC*-si2Mx(;W_2;uJ>(iIv9%v zs1?LFC+$w6{6}akJ!Oj&Qdgumti6j)W1K1wQ zsFczihjj@SBtV^;0&fl>DF8V*);v@ zt2b(f!`M?~xuBv}{TPsSO+tOpbiNR%(Vbtprj9sQyUK( z%gWxC(xfO?1c@N7Tp*#CJR|VY7%n{k7E28&6d5B5)D(pVCPG|lwEO__TG%EQmN-;g z?G2Kd<>xEabl=gw<0wd{G?j-tshclI=Lx(ZaR8hbFDNY(_9~Hbes!R~C^cmLiF^sc zDTSn8V8Xo+N${i!F7e3J1m(t}ZX@hLhI!L-2+Z}dRhJX%wmZd|i)v@+S~(y(PIoNK zN8_k|1LLEF2S~T>JVqg;Z4&m_z^fAWT0Esa>H)$NzR%F&DpG6rXGv;Ec%%@TwwQJ! zKIXePW@l%cK${@TTnAlyW;UMamWUM}2}6#VjD zo3ZUqVqex`9perSWyz?;seXj|z}kGp*_lUNe9FHn9U+FBi|dp39Fn+=t*r_$tPs`K zD59WX=c$MIF$y69=y6g_q}5RwNiEEdlIbO~qC^5K`^JsWK}~9{-^^D{5Ob_bw2^#b zED-*=Kq2K~&z?9D>G@0cgqX-uAoVR|ng^`n$|Pw3yADpO#VVhG3Zw=2L^RpxQ0EU9 zxbw8vqEbcDsE=0UuxQIsLmtT0bsbmp5+#p-El%?LU`wVV!qcmK z#)dpSN(C~c0euow1`zlS(WxF@i}6qT-c4SAv?q0S84$21b7n+VwZ1=iIBd6U>E zoWT=9hw6WLXs8+`Bw`CE3T`>Va3aRULL`d;)TTvXI!!Uf60lT=TD2$WxzE+R={ant zcH7f4AeEKYlT8MG7#pbkf?J(ga()zeOCD?|TuvDT9$@N$tGZy&_ffOX5-^1L5ewOq zN)j|{vmL}=gqS>{ts@GWVIyIcePx2Nx8snN2^|Hh<&Iszjmh!xdYm$_yyrwLTQwP_ z#(aq0jUZw;R3Urn>eW0zlg}?vc+J=B@S{DF%qgd3!I$*Ms%{t1=?Tc|5}B&rxT_M~~DsR$$9?Y2S>` zt2ENT#EF0Stp78Kdek&aE9Llycai+0&}iM#`GG0T)KFLTpoCWQ%QuUqipSME*4^tQ zr6L^$%Uu^iDDzth^HToG>9!rz>~%dl_$G5Vln8LPaw%CGv*Mud$kM>;`b3UiIrw5r z*Yd#@`JthjhioT85}sUq z3UzMsYA8kAu6urKY#`ZaxV}34_qQ?QP>{(sK}awF(RGwasb|lg^{ z@&w8vk8ELC6U}?}*%5!21mz}rqg7Fl0^|4h^2|)i`|$)8uTTv2y}LO*X9uQ$Q?cx{ z==s-iys?@}aXQ*^3jY2AnTtS{Q*S#pn?;@MLOQ;qSvDfEou*SZcLd+#-$x$ecR}wS zL_Xu(%deo7{^9q`-LUR9ZEZys`aN@W;-1#scaxqvzP;$P_%%*y_Vb2BZauxe(!cid z{OfDi@S&?$BSbC!{k7}X-Eo>UHhia42~$!Ze#0P@5-b*6yn?Ko0dJ9CJkL30)ArU@ zy_A2N2_@-q)x)~`10Edz-L<92k5`^Sqi}Y|+jm;p>+z${U)E?OB{ zHh7{OkYyw<0;-pHx&>GG4^1G?8TXczJ`EBJxXbjo^6BIGU&V{FLl}bHmi7|UPBLL zLo9?}@$nQJMn}h3{ZqDK;ny(uBN?x@dS1{xcLc>G;Q$HMK=TFC0+GwWE~&Zm`( zD~9odG$N##Sc3ldPb6BrwA#LXd*D^>Y-;#1<$;Et!!l%xc$i<93W@(trYu$?Sr?A9 zf(ya_Sz(rMU#hDOc;$=Letvn2Bb@~M&_Pz|%U^Dy!l-dQjpOCn0zP`UIo~Cd-F^0F za6@NzH@CaHyH`cGUBAIRHB%wyr~n5h#G}R7B1x4RBvn1=yT=Bh<6XTi+z&L(UXJbVXJwV&-&BL3qcb0anPKTz&7*; z8iy*uG=bIHO(9w|bQlvWX@k-~3FC?S3E(VO*rBe8Z z^?QH(e3|1xL`77k&M3l}*w_-u@&nIJoZ#KSahOjmGk)t!kVrw|wo$q+gChAOA9x8L zi~t`2QSDHOBU}(d^fK6@kuzTRtFMMq{2tbR zdVajS>*Jw>%l->>90@&@^`UAhtQ=(MIn;6Jw*R(wi;gi}2kBC(D)|1hcN zSqdv7!Wdppk3;%ozZXYBBDs6%R}8Z)eKd)_cqv{<-p50=xg@K;d}jCkNt#pY(zu;A zW0a#4{>>R8lUo;~S*vIf(^4!X*3XEE!HT#0GA#Wzuq_b|oQgZBM|pIqIRpH*VeMo_ zK4<)ybiTjl?JQ-{P-?lpb6r%OlSaHcMNrV+pRg)jCvNgSiBo+PrxB1ueWaf7aw+0h zZKrm|)rDXCeK1%$*J(sHzM3T6TSe?Kprsi(rj0jbEQ(D(ZN)m5GA9J{=G&+ zme-y#@%CO~BFW*UGWbEf{;APkPllRT`V9?><43HHVA^EBU&c?74_J!uKBxXn@+rXR z%X7&`g#H<^9tY5j1Dl59ua3Z&<~BDSoDqgv6>*o}%E}7K_!J0V`C22C9{sJ^si@IZ z;h!Y%2USmHQo!dROwk1`VR^poD?1#FhOU3Jo9ggag`1mOO{>izYg{he&cihZET;88dMCG zjDEq+WS0KTBxlu>?(TXgO`s%EJpI#v*%mXAShLSMn*;u%(dZXz~5NrXg!15 zYj$pqO?0-fj=PCjAR~hiwVVN|d{ifAXK=hHVG>K@kpF)rgB~!oaKL>Zlmd^6WDV;~ zOLzs!vKJ7C#HX0L{=RU*h_OL>LAEhJnLJriik;?Xvg7RgRnLSS)6xAfN5R*3+%mgC6Gh{#8 z+41Z@+}%;mSGYQpJ9=zO`Txxsu4cb-1jI}O2&iZY`~Gi*3v;GaGD@+;LW-`Xc7*>>Gl%}4;$+pQqWEvKpT7sleVbL1cUBp)Y+)KdEgNitJ->gY_Wc2a#7m*LPEfQgLrE0j% zK>>kS3vFBXpBK%{2pF~5TErye#oa_uhuvREKH`JTD1w&I|L-z{nrr>TpzJ7)kVb^9nFmuWqX_BgV;?Dq(m)@Wo& zEyY;YKa;Fo5T4+2Mj^8FEoM$?=Y+5&-^x{TmoL}!*Dnn~^P%;vmajd#!1)ge=q@GN zBm76QiU#G`Sbh~V(k?8G>AYYOlcnB31IjJCuG?w$@kr6bv=z2Z^D_QT`nYp^OFMQ_}NVowk`A5s5>=y2E^@;6wGdE#n2nFV)p zD3H%?3bA@^U_JN@o3sziK_eK3{;}nc%Iv@IX)>?rsi-Mj(9&VRx6TLR@^BOJ!u&`} zGj9?iEHJ{S8Z61_t}_nN%(tmY29(%y2W;KnZ(LdtKHolTB4MNI*9O}}4g}FVDK#jW zx=^3uMyvNPVg9RG{f)_C#BK_RQ)ZO97o{wXh;R^J+WJ=RV3gIN%?0R1eA4`V=`W9( zR-@nHBs@Y5z>`EIb#ii|&_EiBK=8(JB%f)C#L6+5RIwxbM0l~MEY(>hP4qhlG~A^? zhCn9&e$&Rr3k?nkXnS_;ItiIgJ>anzJqP~-4gs*GV-;dcD|hgOQOeOMuaytCi76oM zWONL{$w_!$u-cc9K?0LECvCUC^x0clP9y2}B3{Fcp`zsF;yO+v*5BK=*AOQ>iv4=1 z?N4<%M{XNcL|l9uk!l<%y^yw)`b!KYs3%UHYALQqbx;r9C>`irAb*Soe)TgZ3>AVb zo5Yiud(7I4+xI-V3uH&a7ttb6{eRL}FHA3k>8?!N;8d0_pJMFFLx8bQw1IQ_YeM*X zOOD)z{q#AZ&av*a2vkimh%x(J^`6J*s^=Db#HxwiTw$D^T@;Zc2)H-h{iz0 zjD_?B1br495EljPPa`~K0~nXrCLXSION-yIaO!kau^OC1glKg|w}ol-vukt2Xr7F0 zHJfqw7X%A6G{X=9ktD1_x4APdRd7XvA|*;AA#p&3i?OiWmJbZe8 zD$#&IGHG3bl21rhuteny1G2vbNl(7> zOW`CO`-(`cs1;2fP7ZhIxkEvUsw94OII(&6@2~E>0^|Gh7cXjEPutmz?Q6-jXi+B} z7&~_E1aLc;sGF|^i95Gb`6t91!o0i6=Rah&1Xtcub$d-;(aPU(TNZl-#-UA2OnyCA z5ZmPZ`TFh$rF=&_fjaOYsp|=LBU(LlE6~e+mNWkka!I zp8pCgsI326Q8Jvk(@7H!ihOR0`}|Ziya3Udb;Eut=)eG2qZFu_Ki&XnY}&NRcSs)v zr%=5vjYmBp1}!jV&TRR#rxhPtH>0%oF@6o)!>+vUFQUKm?{) z1Kl4=*4EZh{W6;)R>g74M{J`nAyp~$PQ`xuuMQln%*?wfM5#d_#k3g?SA2+RN;QsG z3_CmxbYTZt-}K8rcStV}5j3G9j}NtJgR*OYJB>R~{#B-VlQJ=xlCCdkibU)92%$g? zA|v7WVK_XCVwP#srU=mEuzBhdgK&mbM`$>E+@BWu1flCHj)quOh5(`IvZ+1Boyp#Fn3)1rl-Jj_K0btLXb!qD~l{CxjgQbDOc5}!_*iD zvd2h*+I@12D*k@5LmmeG`h>k`2U-g623jP%_fnT_ZAg0B)wz9cE;G$Bc`55Q-L<~; zT_x*fT}otj)yi8~@Xud_BzsMN?mNuN0Vhn^+t({mgP%AV)XDQ$ew@@wP882xs!ndq zKMaaSse--h9&TXwOIn0a(g>~!K9T+BtHvan<2Y4~{1fPw6|E_{|0nikld=P=E_t%xaM!ny=e=~k8 zEhYx>_ctwN4f3w*zFDu1q4_mAT#HjNJJH&He%5JjvT&guse_Qs6y*D0(t{Vhc{Q_5 zhbvUZnvXB=!`~@TC#o23gBIeef_S4qWbDc?X#om4-L4T!>i6l-JbC$%FZciJrbh!e zXh48hfk2RMT*Z!H-{PGK>sjI4M6k-e8}}|y959xwmxwgr;YkaloNXR#qHsGn$SGMX zAY=DX2mUASSVe z*|Iw*~Xjreu$1n1V|_y=);=&9>bjUx=pA5)5lih`XhL@tTn;tKr>=L8>`Gs zT6$0qIUXzkeQH10tcC#G2=c8C_IoyIx7NV)o+tkiMbrbn25sI)L!lCP_GojaVoKA} z5s}?_poz0qN`v4Gxa4YB3vIgZBI9sVpz$FjQH>NI%yyyS4)&tg%S=i(EU`W*e6^kZ z@RrrX?;MHM{N!!XlyZW2KZa%&vJXIY)qr{%qQOm7d~;p7e`IcHE3C)zOrr%7(ME~% zi(;n{b0>^`;V@t<;%YA9@B`E5=={oBFqV1KF5-TDz0$zBQZ0@^Xza;HTtLNVP>|c2 zUQoYSskTAfjf$?QR%z$4{==9kA9;ga+gc}1+>8hR01VzSRJ?5OK~2+|<64;tS~;rD zBb0bvLY!E(Slo&y*?@S6AeH&~`gU1&z|$0>yk+DLYAoyYD}swy$Vm$s6fCEN<4^)H zDRdqkj3#3PyX2nY{ltX!J?5{Z1Y6_2dX301cmItW%Wv`H1|E`oYS(Mshl)p}ZHSoN zgM*2r4-)af6kTYLWBu7giu~&1xYZK&aPN|no-a68H<=eD?+8TVO-19JAN>gG%5H&!^f#It%o4qTA(Go(A zXawak7iI6>y`;W_8VY21TX@g~77K6@X!EOcOMuB8#-4&*ilOGx4v6ZcnFLLts*pZm znLf+FCLt^%V%Wn|ZcY278GGe2kz*S9W3@zgZ#0K#|G|<6+jfKYAx7h^asQz?II~%AT+|0S8Oz2@uc0Og;3B=YqQMnzt^4Uw zK5%R2`A$F{A${LO7~U}6R*p?h?1wXhh(yc%nI!CKs~BiRw0}yI^L@EgD;5i}E%xC= zOF8{_!bJ6%MPWk1X(Yn+Bg1>@?XRSt83sA~AD`a{_l`kW2?)^GtjCa&V15oVs!7@A zz7mee0@uVv+gm9~et?S-gYO9m6{EBhu2UYABs6h7;t+w1AU7$9QbGmiyZ8&~e^F&C3~=4t!njrFII&uy972uFj}C~FXf{ssLNoK-SnP@o+Nke< znIlXSjs(m^R_1DDE9cm~Un-MMBb1U>9cXIk2O!O>yil8HoBsa$1#-;p+LdGfKYVb5 zr=`Vg!dEdw2pLAKXO1Y9U5ffbe6@|)q|hXN!UXT4-=Fxo2$UxkF5$8wggv-EA1Os{+ zJq*<#0LYvhoO)1dm6wOIu)>vp4+K3A$sM)wue`yP;%u9?<)ouw<{9y@;T;GhO5>=f zzBt)+>ggeQ+uoqg{=v*8$d?s)THw+n9+ZC=ml`Yr*d?*(l@ZSsEqnRw1i$q}f@(^H zZwTLDhk#nl`Nf=H>Xl-D^d8Cp1!&(s(b3W5JMf0pMqX#Kx%2!)WbUx&lJwyr$%!Wc zKcs=WalCY=_o7o;L80A<6su0ce6;_ZT9^_XpZyR^Ix z&2`+guT^|$DlL&3J`@+rU{dP9-F}d=4=4*(mgN`4>yw;{N$LFa}IT@WF6c0 zg3JRSS~$1smZ#PdC7N`4k_tnt87yEDkcOcRbp4s&@cmO~-50v-Y{DMQNY9>MWIHAO@694VnC0A&Q1jI0*c?eHHjve}Q ziSa5m{$!V9K|#&jWU!Qm^epE`8B`S>)IG&gLD;Al4WgTfA1gc1^i9s%M_Yy`&*U>@4miFUBBz_(KlqBv^;!h&>+f_aMSK zSTkJ5(D*6cqM+;(-$eg)qA>%`$IOD+5qVeS5K;*eVsW3tHO7K}dsps55lG};9qTaU zYuexoA4zRAx3u(PazkBsS~P1g@)LI~lGNhc70{~K57MXVL#&5(ysl0h^_-j>&29Sq zk{-VL+&Ya|;zwj>AKI9&Ui#KNBVJ~O`>!`k;cnm{H+7kKl&$e-?|&fxtr?1#M*Mp! zB5{;J@rjrv5Em!i%bnEiRzH92Pj=#7GCX8MwR5V1B5CRVN**704ck?zOLLlFfPP1& zVsm=g(ikWx;ZC@@)woXn7WaX(2H`p-4UzBRh~aSi z6%H*+HSfw#yDIVjD$(WfbnQ`8jMX{xyDWd{Q}!^N*v*K!mdK>QuXr!P3`6f_;^>1o zIWY)uBu?Fz!u4PD->IO;|6Z2cBQpr+U<_Pq@i@sO{-Cuo9KK7THd|*WC%EW4F37Og zz^VHm+zMwHxNKLhokW4hC%MVJ9d2W988w7fJ z*jF7cL)LJ5aya?LDQ{v__s=`oMYkxPc)XQN;C}}D4hjZe;^7BXACKGo4-bFYU{H5D z`dLWV5AhDylAZ_{iZ7uJfD~n1#0X3}#bIwGTq+p*(*(~W{v;t5of~0!v_its-*bcC z{4W^^+mk%%<%{HjPnD+I)A-ig1JrIM`vJL@O!*EsUa9Gr#pwTfWmn(;b(zB3MG;Q( zw)M)!M>$+GcbPWc3&8H=^!h95vjmF>?fQ+#UswKRjyQ5yChPiuwe4dGd!gTHp7mtb zbu$X&;w!KI(IPI8(xW$dv;1d<9;3PD#VOR%OCfA(P3O9#w=LT1)*qN8YAfk2>Egvl z*_UQ%vvM$q%-mDx#bzOWUDwLx`X;={C8@k!(1e*>>ll%9L$w_idGn9OQ0*bVgSy>4Mok_Zh}>!49Xpohn*X-- zt=Tt5xd`)%+NKW!E+ef>^dV)Nl;6*R$nV~2>#dsg(yreZyLgGQW0t{Pl%9Fi7361E zEpCm2TRYcHt(Q*$Nl83EK80x(W)tTJ+bt|Ha~_Y$PyYBrHc@MlO4A~&BNe8VDaNI5 zZ0oxFe`@7OU3`aFK54cH-#9G8< z!W=x{X`H$SLPi4^!M4_iH+J-8=)qU)Jn=nt*@{)9H4raZA+I$6(%MeR!RwibWfw?e z(ew*8(qXtgu`-q;<{FaE^mwH2CX`%DIGMl52(KP8Tn1mB5_)`46LV3NVO0P(CX9FL zz@)I_%nT@M@-6|G7t%TK-jP^HlgSYBqGwpQiJDgvUoRS*V$o2anXp$>RDId9Wq0q~ zc~n@qU{N5{W%}Zjyj8(osb9~8-3yksYru!oqA$~W2|6czv=FQ2p5P@+$P(!&r0h6S z(Ua&kL0fEp!(V^@y%R4P1DO}?;*K|~Asw-aW@XidmizI7!e2tG{BLTk|2rwhE~;4% zZ@(h0cTAa6am0U32Q61bN>x}yedPkc14Zb$y;_tVv*^ltsfOf5A@QgmU@k-Qn__7B zk9?rX&37U7l_@7SMaYL5YqkHb7tA+&BKA!`q9|m-tiE5eP`1#Gc*wkTbrOTd-o1+l z#6z;G#=5(&kF+`N6%wj(=md}^7`-Ye*{J#zHqdkk{6hx--+#)zCQR94)-obMk8P#{TpD?jHMO(6aFM z=FP+RUh_my`H08cw?GG+0Lj7fx(mE@n(KutJSOIhVyqLGjtg_ttNgP zKALfo?aD5e?lSrHn`PmdQ;R2MjO(=QWb00gri=FWbf2{@UW_oQjaas#Ts)b+W%cJB zYcyV`7Zm|(MPB|IaeXClLIh+6<1oL<(DWP$y3$;JUEiKcKlZEDtZdbVg=cph z`4va%^K->#B?Oh?&eeu|)r#}A8;cn$TCbdKQ!|h(AFXgsN1U#8a}PE0hPa0HOXqaq zOV#y$e{2(>?K(pX5>3zGrz?G+tQ;Y|;9IcJ{ykR0b-LfR`$M3f*7*0m^|AW8)lz~= z(?f@B|9KrMWps#xqwi-)@+yA1muHPqmf?jAu&`b3zKd5F)x;<%nvs?RL@k88ovz4wOJ01q zD@KhsS8pX<#64?2xcgeG@BCeJ`>&ctz2M9h%Ok`(gnJE~G~EnW(3PHZnRs#yMMtDg zZW8!elqPQo16w&3`3X%bPU@ z$*dH!618f?;~j`Mls6k#?(yAWEJoNRV{444Wu9|ui#Eu4dR6$UGE+^9SJ`HLzP{4v z8!ckUyj85TX)`uPN#FW92^7>kho_kGsQx zoaE*XJc^mDIB(xsR6o<-D7K=$m{H!aOiTSamu=c><1h+`tDU__5skY-AU)LSBoFn| zhkm-OElbncg3V)9D58-e;Z!3z@%cv2TfuV*TaH-5GPhxTX5Pi5T@vpBi=R|Wx@zAy z#v;PU`_q%3x?kYj!;W9mf($WXcGqCZjT&=CePS<#3ajYqPyH2tkc=tV9PC?Ww z?mnx@2A#|AxUA?(*A?$)zV~b1#rE>uuO-Rt8gX^?k+s8FJFWOwE>ERQNwm9apyjAs zKQy%G>>Fl1VVNCtt-BTn`dRpp!;|=RNxBy8Nt#MQ2bKEk-q)nib*Z>7xMEx_fY`Zw%@Z-S!R$a<5j+XrZQx&MT^6DR&p|o!&_sDil|o0LZ#>TyQH|y z{_IEVa5>W|?eq`Zq-^MHRxYjjKD6{^c8K=s=@gi|`8fSNVVec+UtMGMYrhc5y%kT* zR>jq^vr>4@zRo+WS{2%J!fCX)P^u*ZV}xw`y@?jF>kRg1c4|}VN;BkzKk(XcL<3-K8 zR4F)(WrsE)__N>j!M5OQaiUR|}rRqpL z6@Mzmyvbf*@1r@n7EQK4o){AGo|=|Zl-v#l zd~W6AWiX+Uz@%ve#N5j>&N$oVDF1jDWxW5KHnT^F@s^&8^aqTC?g^rmb-Z9BcLdJn zk@|$K_k<40*rcSLzm|P}#(!UrAS2_bd{Th!#Zplp@4u2#_K4krcqz*48mCko;;5bP zJg?chS5N-5uvcu}T!y%Lb;TLyiF17wVijf|>8vegCIW3^j4FK{h7hW%6rDdW!=AOY zaQopky47=Rw5rE?P|q#fIZvM1_ST!IGl}sG9^6s+FCwFE`dM!7 zTng8Vqtp+NcGmpp>=8-fvYlPX9hRG${<%-&v*|;&0}Fa#;wsHAJNqvS2#n@j!3?Ea z2~7Rc)X;ZJbIZrm6x||m(SKis57Xv%96Fp~n06)0bsAyr{3lKX>gf(OcONXDcRq2K z%Ano2DtV-v+i@}^Zi~WXnLy7U1BDBsR$`XsNjCLauMmq$gFy96jaKNwbeH6I#nDmB zB?_}!vzPDRrUlHr=Pm-!|r@r_xS6#zvplOqN~Uyote?k zZ{pnpl6$-1(+SFmj@J??_@m+gzn*BX?gMs@Wp^V;J)3S;8IAtKywyF*A3yf26eyf}m#35UQe12xHu_i3 zrqV~S1!`+Jq6;Cb@&^G+7dI(i41dl4;Uwmzhs&QVgGM82`?yM7;Gs)t<3Ug9{ zUVh=)a;ZKy3)N!xKCQ~epl5yEwp=@lReTMeymGwEPfI*&NnxTh%Iu@tMyQ;r<@g&{ zZnoT3D;Z9w4?oN5(C@lP=-u2UQdPXc025ZA+J=MfyJ?cQm2Y*wwzwlW)O%XufLvfc zaE>@+6*msq8}3e(UAdCs{%YuAlj_nwtu^_e6@Ut~{4JmR`{pW9-*Osb#hvM@t*cAC z4c*#uL!Ujr^o|mJ&BxEd!ION{D221r_rr1TWeSUN^s;(jBUqUjdzPs9X(is3DPxm1%$zKZ*Bi!eY^IM(ydMvfg;n~QfD#qL-3Ob^1g`gTa# zXI2jkd|+g_wu3Q2m*eQ1x}zw(ya=c+=KHsmm(Raz%X-vMkahBLBz4dB>0htNggb+l zy103FJnwb^>4Sp}zy4ZtKwx=AjbZ*#5x;F{wll})S@XJB0UsYv-`PpAjfT%^S7>hX z9!Z2M>w`93l~G#Cc=wXmvh%jrR@qaw$w#i%9N<}NQ%jAmu?$D`b4e5)sw+HM*_u5p zn1-ypKm}<$9q8O3RmK_6vo`D;Yr)3lwXu10{4{e^)Bg}>cemSoerM+d?S`bmm9-lN zS_&JBDPyB$xAVk|Vj+w;^SPs?kdg{<^PPP*-bKfbDUDbKeC^k*eDnKtJ_`%Q5-+Er z!DAgfTU-{E=9?YteQ7l}*#Kr$Ud&fWV?B_5kgRhtRL*j9>!B8BYVzX#p!wGkOr}Qg z!1pUWGcr11HbFxwf!`bDGxT>leL2iry~4Z#6r4A=oLKez?~6_zayfc3)&9p6Jf1wO z;@Wpe^O~Grrl0PYbvtWpE3U*_U0%(1*i9r7Qs>Oe?lDStRKer+J^!sGZ*)*#@$coUsPD9&&0CG-(f*Ex17|@5k zIx5bwwySW;)Zz)V7!9(q?zhp>7Y!Rz7|&ld)agFC_e4F`>wU~EpAk8l)6$Fs)4RZf zA^)hWD=_46trTZgpGZlF*FwgvozH4L-~P?Vr!q3y(pp`4WVCK{zej|aQ4;2Fo*(s% zeiKKT64a$38ULAU#q+~=R}#mGA;E?~*Gbyxu&FgbYeS${AePFUSazMDf5-<63pP3) zV-FCPk#j9zA1*)W&7z}2?9EWLVL=}Ip=%dB3DQPl#f#hD6nV$rYjUlipV+0l-KAgM ztxV_s{;5rLsU$Xzq`rH!8~oA{IZivy&u270WpBGN)F<7ZMuQ}>=1!6C*fqA_PgNM7 zU+s6><~XXPur!0z8r!|MXV^aB$>T(6$d8fAM(6Lz$wVmY=(I+{m99=ej=O%NH3R*We|y zHPsxPaz!_p3q5K*8o>*~04}B*$3wD1kEAXw_tL6N-kPiqWWBXkXJ16#keZvo zhwCdo#LLDj`5a|PCksrEy}8@Oo}U14aYwM#>_|~+leE*j7n~5474~oR-a1{SnVEPsS*>cBquD`!uypecl2yethk=^`icx7W6JSHG*lnG;LivG^4+UONN z^wS);^m|&ZZJ~+eI%XWDFV#dpVebk5?$w?*zDA4Iqg)ea!OUzKs5{u+I`6?6lI-z; zB3!*J{Rvy0^;v7UV1>*Boo!4vv);GzZnVV2v5x2Y`#k^XSX?mTjVQd?(DB@CGL((o z;Wzj_kBQ1Pe9iIi+cJ>%xyJ1nJD1$jV_u2G<~;V=pLiWC-9)KM-Zke`Cwco41io_? zcnf@>ufWF&X}f>cMAjVSstIgrb@6j=|Ahl)Zn7TJ{LFVk+d`?&h?xA zF5yc)U;bFh*8W@3RuK^q{b5;>0{~4H&Y8Q|6RSn5rkRBF@847JtbTG|tYoYAmrz@` zPq{Ags?Q?ouCsn>wCz~MKbEjxAfTrBaqs*L;~;OAeZ1{bz%=7xZkBn$sl{+jNjZxE zaaqrJ8JP%Ckt)re8rv1)xRa8kZEJ>j(I>9|KE_z3C0TYhNP6mP7DFWT+WbqF&Xci{ zj^`k;9R%;;rk#YNE&!3M`Q-Y;I84paat3leL(sXSxB#%d>I)mHXnFzVGBV=QviIs- za#Qc{ZP~v=&Ue&v7mqDhld?tf6RuJzwVy428t(^jyuHo~X`aP#k$9|?u}(HVk7NjmcyXk*y& zd!us#-BbrrQTdV8McGSn0`o({?ZF;lLIc;X3>qvP)1M60iyr%khoz@| zRXXh#P#y^epP#j&znm?vng&n-v&tu$IwW+rM?5+~DY#*CJk>}8SlIOM@o|np($R6g zRE<$@y{N_*2hCqrd}LSF*7jt%dGJzAtGkomE{Kss#X2_x&7A=MQ00wS=^0j+uX9fp zxg29hcKv$p93wWKZBVAXdWgZ2cG>O0h3mGf)KyZr)s7iV)a&wS?fbbb|KYf@&&dvl z8!0cI*m`IbM`!F5*XewHXd=CRdXj#Zmy^=`QVK=<(G|@(d2W5un-q=>jx!5l9z9zB zlQq|eZ`0brONP^PbFypp^6prE)T|1@Jek~L6+ln45>h)q8)v)tA^xz-M#kr=hTnJu z?@cZw2_34SnkG|ElD}RxrNP67=9|h4KREGxkdFDdGNN8_*ubo+<{GA8MnE)+ts;i_~UZix`40l-R1u}!#4A@`^M_iK9YBsdssiH;lLyI zuQSSx)Q1k}ISrQ>o3e9Xj1lRx+WDGJ_dB$egGZ+CsdODbMcljhio$(`pI;Z(TA%&e zxG-^}y?^mq?R)y;gO@TtUfuB13&Dh;nt*R=zV))BzE(NdQ^`*#L2Uic9=-1sE7~t%(_UoUu@S{ZNbK&=*FD- zowl0d(a>AX5WIfvhm70p_nMuzbX>zreko{okM*xeZzV0Ff$|JJLucVmuTm+7-hru_(-vY&}O$BAV1 z_@(@Dr?y(Dn)gvyC__Wj+-m1vF|i8C3cl3~KiIJ=Uz!e#Zk1G$22EzeAFeztiDNF- zmsWwUVWO&yJwMczZ2QzsMuS7DAT-+YZvFb6q{$Cm;zsFl<%{~|hJnSN2h9#%*z`Bg z3wb_M6ZwAr31#VQt0E^^wjSavpMMzjULb2TTh7~le_F1=DV_U8MQ^;MH=AiK z@_2g6;*tMT;rqI4*#&oUo6iUNFHw4Sh20b@ZA6QuGu0OS1$B$v89Lkg?kQ0p+j+C) z4H=ngsTCBi$`Z?L_E72f^S3Nf8KO_QQG*9#IaI<~+++8DSCxZ)Dbk_&EF)0N%Bru< zPpjnaV2l{!lx5SB=4hO33!`D?L($;~8*^nV%NV{-GV9*D%Gb2lb{n_zxw{bYcD+qj zyx`@M;M2_VJv@sP!^I^vv`VQ5iVPf!+H*JgwM~|Uym`amKkQ&7|1n;M?+;h6{Y5SH zte1f1$iA+dWAyer zmM`a*-xPTQ%?K{ZNoH1I!h}UZ)ZWl`k;Kz-*$Q*~u&(S?Xg06;`H{qAr})T-{2HtH zmCl=1dld`>y1J$dO06X6M>EEQ>;NgIiWOuy2T-1J`VCwvb^UuVk#Mkz+;q%Fs{##XTwh@KQzhp1{Kck!ekGK08 zTO4q;+ZZNtoiD+{M?v;gJj3&uN8B* zOMHW~j9mSLSC{L+bb~&TuzcR_x|9cfySBj6MX-;Jr}urEp3a-+t&SO6wEydE3%(Iq zyrXVYfBjCeyyCLF!3_0^3(Mfge+sQKkmv($7~qp?{2A0U=l;i=BBu8R{Np#4j1SJC zfFWP4^9OM9@$bLmrvE1k%Rpih7%#NnvC|6iia6xcD8ZP7>QtfP*Hf2dO{NpyEUhz$U~! zRIZ?n^NRGB6nGwS2OT4RBUm@mB*e<0?w|~496zoD<`kiH5yA<~2_8r_dio11dkWZ# zg|Hx4`t|YD-ipi z7p|wR{nPIMy+3<~W*kMUxXg#^G1LO7BajA33N0UeN~*1mdcUJhpgG2%ep^!F`_Ue5*HpkzZ4 z`v^dV)>nfvVK%>nB!PFUW)Eb`UkNcl>*zp0m?lw~%*nq`2XE6s%N-vj5y+IsAh9F7 z-~mxyK~QUE5mjvr3@XX^B93MfGXc#tG5DuedqB>mhKIaSG88Vv+(OcjIhxc2(k7$^ zUC^>o0Udl3^LXcc3=4u4A08fdZ^NL1%sTvt!D+5;{>V`TdN_hqyPQ0QN+PxT+$Q2d z!DocoNtjqlK(0CoiRM#@>eDp|do-XQs@3m)$Gif)TR&U@0Jb%H&3`{f9vKV!?gnJr zR&rrhF|n|`n-{zkM1sKhAb}#olHdc0NRyyp0bNV2_7ugns3(ySu+pY#oZAEh5lP}A z=nWqqAL3_FU7Cr&`8bW6<|RT*@IgM9xs@ctf+2#-f`L*(V0jRCnORtdK_fD{8mAQl zu}b#y9$g^;M_LB?>I9q8J2&CQ*3~O{UmZq zKtT?-d8!o&i6=qYVJGN@5CL)%BQCamH1j<&p(RCxDwZu%xzB45fVfqJfoL*3S%MA zNX1P|(3Timp`D$ba#ooT3?IT4Mc(7>O~BG`BM5l1kA)XRBhEz^=l)&!8dY&Tx<9%> z@SotCa;GQ4zo%|m;-3RF?Rw~T0nH?wSj=(R`0O^dJmbRUQfPW_C1^Pk%S6H;FttiT zG=Y35Ls}O%0mMNVNrH?@311b{B@GD*e>2qDfEyJ?8l>}lBJ-(*PkRibo|o9Va6uh( zkEA<6?M4{aJY8aRvw{Z!89l-V z&MvH=u%RPuBbCIaq-uDsglgZ3!49T3(bd~_{I-r$P{o`Glo5bLR#U=@#ts2-a5p9w zgyLSbBojEc5+4%9Hk{XgMP4|oIUEqM7K?p{*l~Q_@o0Rc~RFOcQmm` z(CGhMR;G(lU5?;A5pZfroJTi+WtoNIw2yeYCYfyHIuXk05A5ulVFo^m-8+04|BX=G zJVm1i_%tRM(ZIT9JNbAwVNq0If14)w$Ra9ap>X3~HOCx&@<*lu)NCS8< z27fu<@;G3~kgTzjX~yrrO-#ta%6tu1g0HXcUS44uXSX6L;INc0Cq(>*@s|HmBfWU@ z-wXUEN(fYgD=7KV2n~5_pOxH zqavUGPs_W)*&|ohBj~Gn4)+Q?zDgwH03H*v>sQ_lyJ$K#CbUVKgkf47pv7ur)Md}$ zI}=(em=7d(3RAX6{t_gW{+++D_dvW)6qm5 z41PN=VkkaH|ne?swqd+H#`|6fYt%MKMEY%|rO* zd7qo0J0|3D0;4DTRbo#inIKS73#&oqhGOat8S@CiOuNo_Fcv&@Gd%?T_Ww#RD3V-BiDV}^s1lFR&vyzNP`DZqp&i!3gGidL zT)I7QKkDAmKTxWK<2>0YRX&R_v&rSbKe0`XAl8Wk8^*M`1>(SmF#06e16aTaVI5?i zn)eATlmbCyTvBMakS~P!BHR|3MiQPUfDv0__Fuy=z?!w3-s~=QpqH2U0i5YVbRy2a8!oKuiOHL{%4A!bfm|nZ?_h7Zp!rGDyZQ>xfW7vPG5=S&|ABl6~J2p+z*4vTs>h$P!Y@zLvcbl0DhC zvSe4*?7#CGb${>Q@A*8x=l{>^x&Lr`)iiU>^*+zzJdWc$&nxiU8FgA}c4{&*GFnXy zRb4W&!;mk z%g1|SCK(~3@r&YMqt-El}$M_GB#gD5Vw2g9M!!AX5|=(ME$4Q~p_6!s@Ex#nI< zNa6M{loO;?;rt+wyRRK%f6OMpXM1Yl>2|{4k=wQv>+{odKFb4hRVQj^aKF{!7aR88HZo1%aF#ohRJV*Y~u)UPl7$cIcd*UeuRZJ!dplBZ|yBLb8y>`eaoi znK$;%nZEmEC=8B3hWbVIGoC(CZjOD56?#E7C_UOPAcn?XRVFBg(q!WIVRMA>cWSZ((|O^2;mz@K=-)+} z>c@3Xq3>dTIy0&Ud(q=@G^j<}yq2JLa-uiIc=Jy+NA!wz`*yUq=7lU2hVn z%ZJA1@Zl?K!}!v1Ly=^g+>b8#=HUngE!3jdWe3{&y96%sH3d&jO$u^!8z26TfP(W$ zO?u3Je4;=A%gTNNo&`Pr#p)Sz`YzNubxY#6P&^s2jH)H^lTonVU>T<6#V0K-y|ZZS zPk7l+QCx%q`IEzeZjApoz4E>Nks(l4ji?dP|9;RD?6Zl;%6Sr5OQ zRWh#l{ZTCT%)0%H_=k-_y25Zgp?Gg^1@DOV0v3vsxH3W~W$PV>ZC^!=8(ImfJ26Yl zqF|dEfotMHm3yr`4ELV49P2$%E4P$*Shr5SS5FJwCOWiq;nJl`BR`b3Z}z-aS*6D( zF_O=`=JaUSNxPHm9i!~K+x+jbW2{b9trwY>+o#3G)Z=mz@rjDwBXxY?BfWmtcafuy z9;_;J6NrmB#ha5zwoqTjL^>f1F2aMjJSZ(z_VeyW^Y+Hsj@PF*v31WO6y7>{9ty>0 zq1_cSvtC8a>Zj_4tZn&y!1V zR-LGfFQf47lu$F4{fyfOm1fRp)8oxd$-hr6sNo{$$eVtDQa=vga{ds0&y%tu`K6{f zGI6WWP#M@LyWMZYCkkhmxmAX&On2*Ty^r8SVX6{qz5GnUdbujr(1ZzMww!FCIo;*N zAp*gLXpy^nH!VAVih8)sR(J7!nf-qdpofC(i?$byt`B;H=1AJqV9;?ufH+ijNwZBU z1bz^e`}E5B3l}~Oz4LwYdCWtZjM#_4nkva?YoDaY!qGDTid>{{ryVR`84xa+E7|<$ zGnG+vY^lDK?3eh$*6wq60P(8&&U^MgjOA_7A-p{}K!wKEy+RJZC$F7`_#IWfI@$=C zpFy4Da_F^)RynrIl;Evb#tgxHfxN~pkMy#(&3)x6&5yobvylxBl-W&=zRYaq9r9X4 zrR2$qr z@*4LjS3!MrB$L@`8BOnbcmsY4xn-{ak3=iS2pQBUqY%qf!tb-A3xa|Wk!J|M*FJSe zNuV^TuGXB@ogWD%L%C96RRly0+fG&)lUvli>6MNKLG>O0gSjd61y-Y!?3$jvi*kK9 z8H$U-XKNwx^Wwyp#_a}0tpPd!sB=ysYRyOAjwc6q***!^CtTVeAxpljZJni=jzt}y z=#se*8Nh+XB*WHl%`JFjhu86~y?YgFn8ABCBlvRO=AgEqnj+=g$xH zGN*ZB0ICU|UEvDL2I(0YOz~Y$Wv``;f4hGfDYs7%AZb6~jBev?sh~?fkoEd?3SDGa zT1xZ|dLI+Mx;F75F3}xgIp8k&E+Z70KoH=o!S!r-O-rPj?n;#rK1CyDFtn%$VwVk&j7e=jVrvSqI za<;r5t%}unPN<=1`AwGbMB92n#}19f(p%8}WQR|vUH#G1b7^nyXyG5>NIXq_BrWcf z&2wE0ngzn-$UZuF*(nNx7jbQVDP0%?CcDZr`oqGf^$voBxi3Tzi?0$P@1Q9C z${oF%$d3-VA9GLc=6(Xflsr2-*|lza{!yidmR9hf`dd0Ezx!K!yiY?(wpv@9nC@@V z=+&h~UuH2Ys~+um=7fn>Px9tTy*@W^)UsyJ8gBHNAS>E}5s_l|yL1K3ptJ!or8eNO9Zho+Klhp?<_)PjDKnh{v0~ z>w3chM^RvkH#9O5UPB1aPSm9;CwZU4Z#FxfI;-+pM-Ba*vBf2>`OemYfN#3qi+YHY z@1H}W>ESekQ4PXI)%*w1x}q&Uo3EP0vW-inN2QW~|0N%S({R~Jm)T4i0QjN=sl)%?GHC4 zLm4tauxMp!8e;ip<8B~kL65XhB&JaFX*LfpYiOavl19_t!U3`&%u~H$tO?N8bE5uj%0klXnX+klL#F`~q zGfa*I5=v1s!yA)^j7jwas5l%Z5Z@}cP%d>{Wt=d| zF#{NK#K@L6y_KX&r?lQOTs`tkTiSn!~-T2CR&p~)p%4niWYT{@%OZ?(&uOQ z4?0Q&1><|rJ(Pmq3GWIDxkpdp6ak)obw?iEIntZhmX8r7Lb_sHD7hK4`47d3 zWWZfjL!cMFs|h~mtoNkeQQIa?>9~^K^9b~ku)T-s#-Q|Z&*>v^?-37=_<>I8au|YX zuU=@DEw63_Md;hWH9z7y`5 z(>;Zb*DiX!f}(HF_|t;6pr|NT@5mL-PHhLiX4lH@L@^;g&? zFL@*J0@CzH;++af85u1kce--xaK?LI?1ED23Z*&j6A{JM*L=y-*?m!f3t#FqHt& zbEc+ZYabLpk3UQ$;5*QY>)p*kH8mWPb`huJ<)j?HrYJ()5l5;>hI0B|)I)U7TwL2V znqx{G42M5K+#E)Id2v?8OMYKU;QdFc^ctCDxjDMM?o6D-2C5rVmhRi0T3T9Tlj`^3 zYds|tD~<*5g++Ad+vZ z)#-ms7Xg%DYN_fdIrh4!sAGeq8>E2D9Ugg>}D#JQl#{Bqq)JMEqf!oZ+^s|u#TFMiOVuBeK@plR%YLU9hr;k1cPCu zWHntLWlVj8yh(w-Ns6(P&^r0_rjgIE9p zC61I@)xuB@$|_RB$WWuqX7N{UmVcrp7C=3aaTZa#38g=p?ApNdd%qP>tIR_oi5o=< zQtCKoIC)K@U>y^5z2MNthzXEvPF*?AZtsg?gbT!;gR(#{>kETmeH>SB=&NUp);)Z6 zYxRfLwQKp3($YZ*ZxITCxq%vB)7I7w9p5K_a5}Ix>ur9RX%38eVB zOG9M~O;Izw#h=r(VPnwDNpuY7L)MXk4fhRCF*!BW7{0sP&fcCJj2LW}I)Q?!3=7d)Kw#Yy5}Kx2 zj9%p%N+WwG(dWc^>Mt!=r+Ml%`*yy=$c0|j{}I&4AnKpaAA*sD!J2J4uwM#1x4PJa+ zhf6VJNE(cK-jOPb>0(V9v>c3P0`{VC(La zSxUaOvpE!qw}Zld;>#}_B#+_H;+L~BveJ^0(XzIADr7`S%xw@Fto<%;J!dYZr>ASG zJU9q;!N@t#rLs=$uR`D=m$fOXzF!1RbDkg`tGfD$ll%omnSsHD3m5WSht*zuKJ^U} zI}Vi*{)r@{ov3mYYaa4X05Yf}Qi2hKYl#7)4@69x7)h2+Wbc;3<4pgM)|RsX4;6>b zIzu$4l2L9%^M3~e7;~@+Z?18STLmYGI-F6jsiLR7bH@(TW@Shi(O7V1)9s#-IlT*k#Lg=Xns0J?NmAyg2Ap;J6nf9JQMle zp3vml{2i#l4aLGaW))&am4RE=xc4Kz3>m5wj*p`;`~`SG1XkONmcrwg=}BbE223Q) zYg0O&=xKlTG>E1?L zAkLDFS)@7{NEKRITDQ>{{Zo#PuOW3WX-28SVHkna(0I{Hmjj)5C~0%wOsCx)wRI_y zF!O@r{H2IgdxZD?9LWPuf0?Pp{+ujU$E+nuxeZK=WtK^9 z6{I>RmBV3|(ZTf|An%y4Nta5eLH)u!_3W`1_{M5-gEwK11~Zb|Q2@@?cLg{AU#p&8 z58?<<=8Iqi=|7VCEL{La568_&9!Ny;TE%sYCDVfiNo*_(1s+tgWpa;c`s>%bK*#Ky)m2?k z)@P(??w_bS_zxT3x5GxhrswIf!Rx9Rab0`oP=II*W+`3=d40e$!HAop{Qu4ZAWpt0 zCda1Z{>7v{m^UI|6c+dTxA77PbzrKT{E-BQZ&e${6@k2Pooc)G ziv{O*x=jSXg?S@}-?ML}H-G^YHs+dM83h#0Q&58czV2mqHtVMSl`9Y7ztmurEr|Cd zyoX02h+GY4=gd`-TYH(wY%n@F^TZSERV{$#D}|I`#}PLv0`7k_g6i-blKH}^fI&XQ zdC3S5)O%EbRMaWUJgBHB@=o-)@0*VO(UjyX$Zv>hB;rVA7CS;d3+j1<0^=FI!ys94 zT@R*2R9CSYFW_9=i#VREB_VE3eY&>EPDX&Pq)qR(Q+FW3hdF74A|HlN5+*`(p;f%K zqvIk(78;4euCqybdAjbW&#w!6czA#r35SH-?=#d_*0 z_`dQdTfrcyasNUxNUYFc_}0Wq9_dF!Fyavg;B5t-5Ez*2ajEOBk^R%_ze zn2o)?y=E3}1R4rW)aUi}wSY0TcXY(^kYpcXzP#-^6ir25jP8;dz36q09qx-M!N34< zeIX7E40h6~`e4=C<6|D097HE1RXJufM6g%2K_WSdoVba-dKP~3ay}7=#q1}QP-X5R z6Uc89f|>fKV)6r^FUjw6y&X6aO-FR6ZlTn)E!A;A*B`|5q(1E#*?~>GG`cGyHq5`n9NjdHu~}Wr9?`XaUL^U*$~R(NNN_7!3ka z^;q@&VmR1SR96GE{v<9E6QE5_%aF8*2DD`Qt@=Izf=<)qoawAMcyND&6oRvvC)4SG z=R&>o=}m~`8`1}v>+}2#h*?njey0(o55g{hH;N?eMhqdzflb} zsUDHIs29oQx_>`1`rbSROc^V3&B;=b-bkAn@YXsj3UlusVQ(4}+qa|K(vjnpj3t&1|YPm(|WgJd7C7 zB&)hE4gXZ!D(|3LCbljS>3?^QwX+c=siFT}b1|g>6Ri*UJAW&R1BF4e{u_0NsD7fM z32Bm4QgR90)zp8i98v1(LYMlFCAtEj{{*2ye)Wnx)UHv+0AZGks}6W@NwLLXD|}}W z@Ft0dC2>SFKowmQ|KE|)#st#DjaBv~n4EBe?=d}IGL;qe_S%p7notgFXqsA|Ec^MM z#(J#b$^1&?wsFPcb1}nD#~or7ZY@UeYz$GlHA;2XZLSQ84cCSj>xwccLx&W7{E+|A zo45!i;^AfGij7gR&l{@?jW+RGqHk3p5>7}>!&`a3{Z+#;`g=J1(QJR|=L7|>k)=*k z8SmH6wI1z06{V1Ed z<#t8c@9)7#(?w!{eJMz;qZ`bHC(_QbtFx^~KRPoMR>+6ry~w3g=Mk}|i;}ze(lQyW z@wTomyF#{RrR}oCnO=RhFwTSEX%)wM)>fZUT(x>~)H>+twIW3 zQK@zCr{xd;o1rb!NT$2c5izlpZ5m?_#L2kqwMv%hO?X|@DoA~qiW^@Q2_!^BIdae6 zt2h*KUn>72f&2DP<<;5imBPrF$R4&MxX5Rr-X8F&4k+$32Eb3KWXQUKG;0#y>~)o0 z>APmVIzO7{G1XDG85kKOny7!N>eCEd4W?v{SrEeNYai8dN!HJ32xEtRzI;gG-xh8-ROEA81Sso=tpSv&I z(l_-k?6!3O`Hph#dT&$walTrQ9C5nFH!iY+nE5=BDmmlcx1N9`kGyZoMMV= zYLooJX~TRQ?UxdM?sp1io!jnAmaVGuc=OMdErewlZ*rhtZ9|?m(<>O~Tuon~*q~3XkUB=3+qNzQKc)hPhw3&UT27nW5z zEBEC1^(-nmNhk<;=M5I#e)HoP36W@u*tPdqRlWIroiFWsw^k}v6k74oaDxlZpFdv* znQp!D`>ZJGJ%)zLvA9Xggh7wEZ9;O>%f=<*Hy5<+2A z8Cr5r{8a%p8ulKye}fbDsKR^w64hgqS7yx$D^DSRs?d_XMb2^VQytoCOH+dWT%M1| z=S0gFb?qG-4#hMmRu;#kHM;iTnTKr9hpEPSPs<6s+KeeFk<&{5CpU3s`be#-Uvf^_ z%)IdW;uCy^QIV7Q)X}{Pi|4+u_U7A$&w1?oXyqL8Y~I;&CH_F+JYwCgHhzM;ahImL zu(kZ@LjA&6V-$x=S!>AG3P4$#jEl8_OWXb*!oK#zl2Bpbl{}GPOfFs0yTmW`N09`m z<7gahj@OU>9-klmJo+*vEQpD(s-{A&!uk767tO*lRK^pLY?-&tNVwb&+K;{Ce_+- z5zBAWk6C>0=1d9f5j^$bxaz)qF_?W??tRR@Kf?1LZOo`A8mbQfBJclllb&PBqpeFI zTGj|@gbRcf%^G+75y`|i%i1xov!pHMZ&(*Sv1wP-dCU2U63p)|nU9G1odtE9=JnI1 zA`fn-+M~S&yFRdK%MPOFgS0?DyMBrkMPYu^Ypk!aWrsj)1((82uGCkYJyetb@fYS$+wFrTfS)6KW2(0w}a=<@!xgNtoiVw#mco2QeipQ-qt zQc+PE^4!>3sT8w~_juS4e_UVMWuR|)<1Ph_74-h*CtqjRe`Ga140$pk>AZ#`cHgYh zf$I;G-t!UZdV?WmPJAPsst6cy^y*O6Im$rF(UR4%I3&i8Qg)VYF87YP()yLSPw4KG zzmX&VtD12>)a5pxT^@r+#djPX*phPM7Ls+YjIz8#0zZwoF7bcf>@zoR#vw`s2T!>eQM$H4qP2Yg9n96X&;QZWqWSW!%g) zJs<`7QfiEaXQTaA{Ev}2v%Ja6>P{J*n%2JO z#v7>qS2OJoP83tNlK6wQh9Y7D51!xgk~IGyMV>1l#eB~nq(IFF=^;ol87Yle z#t2emCeA1lGnd4t%?~Xt|5`6VOg9mcld|+0h@Jg?#+rl_#&>9@I^!9_v}7^!YE zrZ^Rj-$MU?Bqh<8_P+i7?X9_OY5!HbbA;yGV-f;$k4$}J+rFIu8le(~@GVAnuXlGT zjyiT6M$)h$QOUF>oQEeZR^AuCA4J8ed-12~>&oyK*KooYGa{h+#+rRWNS*A^&;IL! zF@P1ZzERG`f(bX0GYs?9pe1d5^e4SH)@U*{ssOG#)rhdMBU?2R|0N~NUiwx$AM{y> z8S3JrTU_zg&pGS`K^?#-UZJ!MCx4?`=obNVt%OzjmoN~>#rSnA zhL=C;^LviC5CVJFSIiRX{1O`Eh_@-mxl5kS^y|KnPL79H{sIP4E(qqr| ztt_?P=!>KVdowNhi4Z>&GHifwMMZdq<=d0BJ|IdhEheW79?nSkJrp%Q1o8AXTajfw z)6(98K^qU5NtG0J09Y|YfP~-aq`L+stH2Va*I$Rr&ucJNmcDv*$o+QH%i$x^V^xQ9 zBlf@qEcBcL!~MaqKaDbc9Ct{KSxUgfc0;+wE*aSPB6S2U%o)L-YgW@jdn@PP6rcYx zdug|NXdo+z;)fa2>#E?M{s-$cz;W<=n+GlX@Vm1&ebe?8o*j8{y3ZFc3)TF>Uh8?N zBtj_HkMDzY1&o?^%hDBDCP;Tw9Z|D1@8YH`yFNtE zRc0Rkny@5p=%77$mv9{TaZvGngymze4_rIN08Y6EGB$^^Cyl~ulwe1oCG-x-QYQ5( z`%0;Wd7stMN10rrR(#qDH|%~6y{kYSSj`k(;XSt(tn(O^C-Pup;91sj1LXd573*1h zxa8W=rUf?@wl@~qid_b)h~Y43;zZGQ23d1w z8Qf?NuuH?uV58kDxaQ~s$X zlFZR&M|fA0s^Gxo*O^=QObM+i>YqW;h*qwB&2HdxomQbfo_)oV=Yc8ZtV&fHng1Ko z%+4R%;}VX>vSgt6V||RUb^A-5+=!!T95AVzrV5>aXi27zs$|4SlxyY}ktewyIouUy z-?$E2K^;E|gdq6fc4caE6GD@<@+0h?K*QZgz%CD*ur7-4LD@WB?}Dwa&VLg8Jo)wY zXp-;VNS^KAwQdWIGN1q0KOI5CGdE+E?o@>EC=FaMnJ!+|{usKK8f!ZEPVJcn3^|7* zHdka)g1DvMgzaIIG6Rs`4d;HWF$ouky0URxGt+z=DTvHkaY1BDVyw)syn38J^Z14d zw|T9d(_&!TPeq*?C&U(O^n891W2Ko?QDL(9;_X{QSdhs(FO|EGv03d7|KzRs(^7k5 zG-LjAMn%(j&~gkvd!6U6{Y5RYjzX_K;wEPL6xpuW{uc&i*L?dFo*QHVfY^>sa>xVrfZsghyc&`{s2*}->w*tl5qn@ds zZF1DQo@t-7(_`5E&@8^vuUe~?cynyuYVn##NjEz` zpsQ_dnISQm?5ArzvVy5T0Nu1VR+_9xS4&b-G9WClsHo_arKM$h@5*|4XE>YU?KhmR z)%3|)67Ci5Jq7k@Jgvnpru$^wQZq~|D`vVanqh|Oc%H>a>Mw$@rLm&8I{xnHT4mxN zC+-VR+q}czSfrNdL|((Ka}9JpKX(~c+c#Wz8}Y&hx~@g!9MvHqZX}-`e!B* z6MYspX@1_k!kOe$0&y65ZMyktJT_3lYq@SJyHfPpk0vS0G%hh0?@93M9QHPCKowD~ zybtAvkA_urnrSNUv#5l>?!-#(%^&f_gED&OMqeWC9h&)vk3P~1jCq*EiOl)nqeEv! zn}r>_J2DJOA|QlA<_t1|DJ*s(`t9UPsMyRndh`kC^(vs*!;#J(peVkZBCo(^c`VN5 zA>8Dz)q8II{^sAf76oWiPaxm5zqF@IzqVL=#0E#a2hHF(tb8{#(_M%!{ogRfY56R7 z+m2SO&qf`eE6caLvp?&G`Yo2ZpOt@S0a~h?eU>FA`bLk)2IdO@GL-+zSTMO~rJgc*;L z_>XRFH!p|g9&uJQGdgk71*6E)@rh`#t0O zJUWfnFGy${P6rpFj#>Y*`SO)HnD*bu@7kxLbGR`4x%WpHsr=lYuIDZI(FZDU-*^() zuO%)grXW}%T*p+?tE3rZXt~V9*<^W#0Xhe79p8#d+(?!E@w0Mks?rKXYaWz|%}aH2 zPws>JP}J?8lq(@t@!NtiJk8*C(~)e#4&0g7H%VYrnW5o&UO55wO5AoJFX~^ASN}^f zf)e!+nJ_K~`>GQe%sY7}HZJZt%obmD-K?2j+Val2hG$PaGkkpfrV}OijU+J9?})D- z_27Onyn4XA`BFaDUs$XP{jdvTfNXv|go&MNS;>EgeYyr@Vyf4^S!C&0$h&u((P=Aa z6?FTx`Rw#676buln=itKc+A3_`MCbUX*TT$k9SO8lcI7LA`(umX$x)(A)^(fk*}5~gemWcBf|$= z7nPIKG?545P^!kMPlE>bL4vLH?3z4>Z`pKZxSI-sjp@dFM`R zpmzV`O7jo9_Z_v;;HdA)wX}w`aRWOzZr#*->4NN1yWVJO)S08?L6UX^?zWUiqTGo6 zRxUfEiDY1qW+YYE*-j$ zq0WMbze!m(TP*oquGAZk+QwVPg`(cr;sNhd!=})MxFbCKcfE6)5mU;0p_W&wWgM2_ zM(6HqmzIHJA%HJU)4y=RdMjUat%Gb9fWe8QG~@N_DDw|~pI~}6_1Uv`i(e|23$vf> zs$0S?BHX0Nxwl~xF#|S61eG2zo;mg|#CNi5e0io<8-Ihg=^44MRA^Jy@!2;jSs+Gk zLfTtb2hcx=?W-}cZ9hr-;84{Ej4Br72wI*S=2SFLYjZb2Sm1uhWwVd8`P8Y->CHTI2XQDD`4*3`&ouvSyhV1{O8$JbTfbAW_FA)o?QE;x*1K#v1};1y)D zvESI7EuCYbrA~WSFG)AUI&nMu;cDXcYT|K`yr%xFONFQ0TRUlG`poVooGedHMbNhW z)-M39a%ZCW&#VeXGN&5zSnt?f8qtW8!7NY2J4K9&9=pUao|SLCeFwTAogv*t zN>+NcIIgx(=DU9k5-eXoCfcCsw*p;ql(MB&IzW#n5eO@6hJm#dTek~N*&a6x^Ban)H5 zI9CyLNSsL)Itg^Ec_U(^^4ApdZ?C%LpBV)|Dn`+J?eTVn$JE9ArUR4KB#NhFMEnuO zVAklgv%uy9-|lC1RMT zn)T*8b^ed>w74q_Gro56gyr>!jS_cH(`bWT(#!NGMUv{vO;0PI8h1X%NPG~o$LTt(Yh1XIBk- z|I3Azko9^0M>dE8d%Glb92wURU@%px+bEO~Sb#!#s$xDS`?0Ls%+z?d;@ZN1*IZ!2 zzEp4KIcf&2Q^S`AAgt!W9gORGa!a)3PlI{=sW{W~rNYXzU+M02?W2!OMPW_u@!Uuk z;BOEI7Za|cV#mxi;~~Bjx7w&FSzJR=a$Y5DEM?z`IeTaAOR^>3tqFD|fUtCFL0uC5QTR#+!hqxWklgQ zxG?LVmT%;%XA2DlUv+?LUO6cR=3$Vz+@TUe!qhXR5;5Io43!&2VE5GK`UV({lEVVq z>y_J%HFlCF*;{v>*Zhi?unp_GHI?an5_7HN(q(7~EvhGHbyBrS_XQKQiIbBK`7R~@ zYUHYR%Z%3lAE8+Ydb!*wRC%IrEICv`2^x6qI5x4{y7R`K7UrX*Hk2mKJ!77f(J(K% zsKN4HF52NqMpZ+e58P>~gYNU;`(bWM=$1Tqckxtj`Y5T6n=q*J@H@mVD*xs)bjSd2IIX z{qtEAG%SyawWeG1kCM4AmD@BtMo8;X;)BJZgck|7>RGRF(j+^j+FM$*vy#d1ni;|{ z)f2OR@RhqiAHA^!M*J{xF7jteuSsnNo*qipJdQ zk9g&Oe~R}ev{!mvINLai+kLHjc=%^SSrx&oJ!;dy288wKsgh$G&-}TM`X_;TcXF&b z(dF)oY@^~PwDe|ovyV-M|6R_y7sP==PB{vRTZ?v4YSEu}fK;cxIUl1+4?xPKkN`j` zgbWU+(Y5sS910B$B}QH(k93s0#e#Y{!amo4JblitQ3(qQ&e<`Qk2gD}n zve!(Z^Sf@3uoWUDH#WZZ>%9EN&kt^Y1Xd%_8x*GaLcR}O>zAW;S94!ymDER{rF-70 zcp+NYA=WkYi&{Ek^M2^X{T&QsKjM#!3X*2wuj=6H&Ce@WI+s;R_o&AnF@LW}X+QZc z7WQo<2lY#Iv@2EIrx%xdT^_9r-Z9Op+`82|_pC|OMP$mgmdo}^>#spt4(YlA`!6HK zm7AH&Yb1(lV85F|6OS~Q@q${=U_OlXOeu9-s2?DXa91JpN@=Y%yrC~IQ+V>SN4w&K z%v%wAQOXou*yEuU{oO#r&icnWTGL{(M z?$f~W!mOJB`fL$oml1B7S5)p1?08+87_8j(nKCK&$h(y^OCwg+(vcV-G4LQPg#;gn zzYnff!`A*8-#whit|oeGRG0_#u}O6hLcLWU3bh7KoBi=A9F} z14mO=$K|t@bKTGCtRGvEJCl){2%{K17D^MF%FA3Lm*1R2<{%2C>|k4w^IC)Wd~UdR zLv;_2ltc8~jXm+@%sM~7yBeJnX@rL*Xp?9U)=ms7UE$NR>gci^F`HO1Q`9^1(CCWz z$Cjn*pC5@mLcaC%gXN|bD!|Pj!;)E}I_g~3-;E}^RZNsrn(5hr1dXW8!LmwVO3J1x z*ZMv=ce^CXZWpeA;5aTufXtmi2{R?4khs;|>JlfO;ZX#veo2;hiI$9A`StyyP2b1h z&~yq~H=A#bGJ}WVF$7ZH$q)F{V_ji&yw&60+F)n4DNp*6bI6CT$Gd{hQ*o=|Qek%G z1ZinJ`T~vy)}jIeSv^8()DmB2i0yvD+j0gr`Ay)72v?2&E!=Oj%GfoS%nklPxGU0_ zNnFrcbh3&U26?Av6f&4(oB8oCgXJ0w{Sb;VU}?G5;GuB&Uo*X!QkVMYOCPw5Q)+Gq z0fGJU9|^+Y%k4wN@+zqPR+glf-i;pl+ZXhWt?wSb_0Df`AFXQUyRgOX<<2Lz2?xQl#?tz^ zx1MDE1Qkj@|Cy=G%HY)xv^K6~gTi4HI?`>!wDp)+*5Cl zeGXdPSTdlH+veqFauTa|M3P0{ToAPH^)KCZ+YyQp+{7FX-Nf7Tnynw~(oR3wzwo1Z z@Wp#}f=cbd^`)ueX65f|4Vr@S{D@B~zuaZHE-wMylGfao#I3~_V@KwJlE&dDdy8Ej zz4N8~3|6dn%A`zHX7Ruwr1(lF~T0j+-(;4RB8J`g69i9O?H;Gb+Ava-CZ){I&fiOuaD8 z6yNZEgw$DEV1dCt+i2R59;1v-<}`Iz6#;Gs*# z)fZMK57Hrn^rXBe1f$I9Qm7Z4Qz*|($oO;LleMT0NFFXy=f0V`8Xwj=d8xw%jF>T_ z7sG4qVGl1Qz?ev&V)mo3T~pUPVZfx3_d+m>NKgZh2jaEYY2#5;RM1;L@zVIa7@gtJT4XBhsfQS%TXX?d^zjh4^xe{s@SpNdHN;CHtu?Rmh0N?vF2P|%7F7Vihz5a)@Eix1q5<{?MR z6NRSSH*4J5%G|kE61OH2gJ$_ImAIz|QWaW#Vvz8Btsmj7{_&FDir56_3RK}sl4=)P zWN;)&ul(`tAhHWm(#{?YMLij#8kjw|QpO#>k|5)f(C7X|dmc8g=2$uEhlFw&rkQQgBLS!^~PpMD2Gf@yf{;bCLP6BgnCKsO4psG8sKVuexCY$>Ktdw8Kpur=#t#XI2hrr~x-YS9d*k0DJm}h33vxYGd zf!!g45;TaAmryTs>=e!a(Gz?>-BRq<*tfa|eA<_EL^(+Pf#i0gEj>mU9%-{vW=5Hi z>7PEJdLgY{W76rsm-2*hq)0L=7e5qrLS+ zvv`W=ho4y<@76$U&X3SD994mZhn=0PSc>GD_w!y^x-H`DkD4BTT`tVs?I#{9x&3^k zbh`R|{q=P{FW9^Qk5fQnPty^v$H~+EMg4*~xrpbfSvfJna}qpHoy8k09!;)R09SdE7$}IzM5uWe$gTUVx= zZ7Rg_nQFS*f)`9K!5ZDp2qNS%3yk=!p#zI386yCju4f~{(G!3+0W)~GdKQsvM4Sj-8 zxlMCVq563{cf18?TRmS; zumSsFL~tkANc{FPqsIEuRacDcuKbZdQXP<@a?ec3{3)sS-f#j51q?R!*=r*FSKoYZR-+z3&hdgrR>aGX{6vluN)U0Xqz{KQy(^Tu@3&xEPSbKw~WgbS?6d_M+ z*#P$;N=vN#d~9s&=?6goJG-5Ss)(eq3-MY`KEx`SC@zP9B1TzMdYB#MzN!Iz$GuX! zPePL=8Kq-c_dC?X(7`Efcq1Z_P3jV_vC$$j>B3s^lj1FmV4UW3nVV!wl&BXr+mWf! zaz78F%qc*oUJUyIq4E@E7$29%%-GyPlBlwSH1j85!ww`WY}gHz{JRDDTl7lA<8qi- zb&1=x*68BH2lFx=imNwt$oprrGEY{7pHnlSlC23Sc?|;3}Uw$p- zeMswXW7a;!?PE=km)eT|GwkFms(t3<-)-BXa5~l}T7u7cnaU|M+?-CY%|&iio!-p* z^p5yyLSLSSXM-GQxDlwY9tYif`!>pNE=L-nsoBaP{b$|qDiPdaeKoSncclT%rO|zd!$5P8W(acg_U4qS%pg2#CkJfj$mZ4ZcOX?cX%1{W zOk78D$FF@y*6W}P!k<|t%c=Ktb&VfSho*eV$PPMHP9d`lq6@c%h?J)jQ`*a1YTxhW zkZwRbbq=*5U7vA*9w>tK7J|3j5vPzO;gI$hTD2!0oMvI z#m77@$Eq5|mNQezl)C-pG~hA^$W7mJ1knBFhnFK0HPFq_U%H(PS{qfb+A3*MrUK$P$=u zKe=+=aibBCx}iF8KFh*(55>t+WJDKs^`*iaAB(F%2@FfpEa-3cnQC#DA15F!4?A=a z5ENtTd!f9Hk{!>(?qpvotdD+fFg+KxpyFfE4%162$S?)c*MsRvbubdvyeE6UcImWq zzOOkJ5-OXMG&+Xd7j{gi%&5G+8?oyN^ zp@WOl-Fkn4<|^L4z8pxi5&SFWhJqni(14sJtwuc}Ls5?Gyav0(%P zNos-JJn$G4^e@pD!`OaJGd3nxb<67T>Sdgkz$WV7($A4M9jLHyMoTZOSLOcFt*(*{ z*l@Wm>+6&z**JBLva96}w1!{FSGkT#O&a~vy*M?A9gBt?agEIs@nC`>80cO!x8!9p z{+xSBc`T*%NPuojJev@VCET1~-NwU!zl<`#CW`4~$z6Ix;1ITo<2~htRS@4ryJfv= z-;N(lHc%9>-0n>qVK_J!di?61ZTP#Rh=dkl-gU&N?pB2Ar5!cp1o8Cz+64>q-*Ae> z45+uBTz|3=l`-nT%yKFF6r`7&tgKV#&kvMm zo@icyWB$kaRQ;8z?1CGfBWF|1dfKMetvRq zpG=(KJOe%i@)Z}7uYeiLes4UOxA1cVKD1rX-S#NXdP*^BQqDC zMM=E7YYc{IiJ!#AjqE1sGmuU;cmk^bFp7K*?ON#Ln&O~cOIfbTh8TmqEbF6U?$r9$ z<39$XItGhli*K}?S;=l(cXyt=`B+JNMqTZ8>qZB=?Ii6?!_VjUO<~I0(M_QP##)y4 zy=)nzIUZ8J1})p)YnJyANBB6PHb{V6Ai!@E>Oi2 zhOM}HNrpasV`E3J)<#bXX?9)E>)ZM9qO|W7tM_#vf034J|B$B_$<|&YyP#g37!|2BUw!PW~?N#rrfb{R?JE=k@+Cu=5zEik7_}@aLz^C{b9=1ihd>U)H|8s%1 zM!mU}@Mn_-R3gp6sTUf9p9g-Ho4mQ99Qn*%q)@-&A1#2C%MgCVacMzzCQiJ|>H}2q zf@UpI?7>6-PZgUOe_@o^+YCva>P88#Sxr!B_{~0!RMfOlLB^L9HFqf#U>u-7_0mOC z0hHM4t;g4i%v4?Xm1RdPCuD44l4%q*Jt2-*9O?pnFVPfWk~a8u@|l0t2_JhP{<9|< z9C|pbRzup8c#x^H=3Zv07TK9|{Ioi@S_ea^5g~RevTgRx z{37CpHSnQZ`ZkA%%wgglQF7Pp+g!`(X*wAE$+YH=7_qf}Uo?b2w-0sVj z`mt#4)-Mz<;TqScQO=0;_2!0XiRh#hNw_oeZD;aN!)#s24_8kh|96tmZI9D`j3vRLgF!iZMgWJB`uW@;y$Jm)y}V!an_mI3vxtGxuWCyM$S$%@ zxov(Qo*=Yo5b$gX$<`NCutvIo}H zfz+zJv*j;(5#ip)_Sk^*k7wV@Bh%Awcz|+iycN2aeEBisQpAmskM{G~N0{posg&6ar_PT`_r1KO?Ps#_1XVjp33<`6HGvw?e;^ zf5mgvbxCfmB^S6X;a8DV*Zb#4g!+x^=&DTU5jn``n+HG#ksJ7IH4_G- zYRg|!cnz4@N5s?7ABz{ufJ*MagQc$9k^h=1vz<(#T#TBDUd5fvi0i4_+%V>C1hc9& zq1QnmVof3RpF0=aeP+Kn0+t>Yu(Tp6>Lp15l61ARUAhFO%kJ)9L!dJ)7K*rUlyqUn zD>Ri+^PpgqvLB055I^pei;qW8Q|#KUHJ4rxf@sz6Yhw>}*qusBl z$qKbx`=?2R3r_0n+{c9V6siPCh7G3Wtm`WHQUoPgc(wC@u>v2A6yMZM7gYv%)P&Ss z&zY7O{aeA)^tp)$S?x;s#`nb&MejC_sPxIjsXKnq*4O#{Yx2)HCagc;yBUx@ClU?A zjQ=b){x01r%>6Hdz3}%KI6?z<8fM^8z~Bs#5mlE19SU2s$zCAuV$MAzboQLT>0H>k zi`+Lc(1_$F>fhSkZ}-gcU6H5DD<4};-A}uaBves%*Ok?1Z-NN)0)6hh0y@tYCNe5L zKB(mTw6giNNe-HG0S5bY8`_~IdMk^Tf9ki!p#`p&c-jJ2Oy2W-aq#UuKcG8T{H*E~ z%U+DG<5{U9WuYqY2lv-Yj>A3C6FV-s@jl1!6=6Bomk^8$$sGU0R_T} z+~ig~!sjD>(7r$KbfoVqz&z8Z#7PTaa=eFfqaBhJ&IE8kIzm?~j{Jrsb@B2GdnKPPwEi&b)9XGLP)V}ZT zFyvCxI9+}ln~ni!`?ult2&oOVDH*9x`F%&PvGlI_saC_S+L*g< ztF*usUTGC@4VTkza?xm)Q`vG1)=JTK|8M0?jU{9+faqvG= zvIB6@2;22<$Y_Yfc6G}?d(`ufhOTNCl>Of{bO`VM;#Fx$Nmu>gdABF`g$*p&17L{f zdVJc#h{Xe?Qy{0ipj=IZ%oPP~aBM}yz#t2BC4)QP24RN|PT?4L8#$y1(xSW^pBzuK z_|b2&2d2?3S*y-B+}~LAc^-5UN_y#?TN2%>DMBRf{nU4VDM#Smc@f?C9&{}R0c^4% zY_p;s*?d1(bV|g@ALQQIseay&VkyqXo+0mFdE&9=jLmS}kh`nuO$jg$X$bz8z@<5n zf^M<*ItUJ!WqpcFM+bikN+})O=u$a0UeOZ&bNkAV;ls#897FXONV=&2l?@qkQ-L$k z`M={X*DoQ>L;hvI(C@T!x`+)p{H=!tVer$!-&t8;vEHRWw|Il{cU%WsR9E5n$*O_r z=opg&FGxb*fBJ=g6>r7m<&sKB3kd1{{Lp(+87vcjn8x$o|EVbSv+!X3Ka_+I7cWgu zyqfh}xh&RL6m(5y04C-H=B2ZL<|A`3u}9v5Ba}V5Vng|7d|Go4dCdP4J#JP3Q^zjf zC!hK~K&;bhU4}Uev%F$q{~P$+NhV8QKJ4Ov48C0cat1X;f%MY{(J@G|A?)aI?EF1=4dU3)Y+TM{W5xoK>Tb? zveQEb>DuZELsZ2VCbz@s^%Jw@{4(}B`^X!$@+fUQN@!>Q{gu4$PmYY|-J|Ap9*vJW ze@p}zT(~;V;}0ng5$Ywq4O;eI0~u?FI-`ZnZ@=f?4Zpv>&Ul^dV*eiecHr|VMinp0E}a-WCg$^cTp`bFIe30T?jp)^z#Fa-Y`&1JQ*gB zgchvdJhc6M0&^Fp2qa7JZ=s?(hoZ`=AWik##Y?pLzSzgumc*mem9>BDhCw%jt(%6M{gc6N5pj=;)g0|NtU zg?HQ-{2mmRum_FPG{C=sQKSK>tL1C)e$TkfN|9kj?ce98g=}tcJ7boFQhj^hn^=|? z=w~y(K97uMCRiVn8ga;XaOHC5UR_-XlQSthcL!*sl8LK}!Zkq9pR7%9et7}T_MQ>G zrT1M?f?^y>n=fek0lD6VF6B@)?x=HSHS^R~B^DCB>Fhis8uB*Y@$OUMosQ!J&S7Y*~p;FAu%_n6~%yPUS^&^hm9~4UK zp0w+AOWVCa>Vz(gDH|-*nxUR|+^y9T4mF z(#`sl9wBiL#)WgL-oWJCKx?U{?t|vJiiYh4?Ez(@W6Dkv_nv&6FSyfMRYBiWxL8jH zBht8cn535Zfq^^H#UHu-<>=(jpTDHsndcql_I&*;Pn2tiZHC{yA7%IT8~R5=mTCsi zeqz(2PU?T71QefzZSZ8jU|uL41+MTsXJCEg9?Wr`#Da$4tY6Nqqgf%px112o zdCR+_jKlYCofbbl(p{ugeFg!3wzsLGzVP* zJ<6$V^PXM{8WloO*C3sGQtz3JB6G2rn-P7&bAgb_J2;J&iPKm!yEvRjW)sZuru=N% zV)x21%@WdoGjTS6FcMO=T)!9}{aWmVv)=5Rdfp3MWLY%~_I4f*+%dC9?}9%}QDn_e z4`qnfhc^km&jeVeqaJ|d$ro_NNy*@kx_eJd=JoLS3L~O^mJbQ%rC)v@LkCJ|Y(8l> zLeJ`%mK<)rwg+>TPScoD$esO$mbu5+H>>259Qm*JX0LRUqx)a3DPNC6p_l12nc2Cx zy2Yc~CH$V!ZrS+{6qt2zDMpHO>CJoR-oQjBJUS)RhC%(H7;*~3n$m}89g)%;lk%nV zT`L+7VLz;V2|a}G0+&6#ynM6rv*Sn5VCpQ7c8q0<5nq8kYKUm-n86hx$)E{fS3c-M zV~d8S0Vkfxw^l`l0Fh$sJ!plBXFc!~6;}bJ_J{oW5mK6ylS3O(bblPif6pLn?+rFN zDOm?dww4Lh^s-CUef`M5WxSEu5!9)J9J!&K9rt+H zF0)2$Vsw;+t?lR!OTTg71%(y=1cU=f!30Rwo9(mzc<1~`IN>bjp>idsmK+X(8^0&i z1Iw+ac}NBNDXumqouMDR^5Qm+vR|1Bom-)n`|>c7JjQtvY0EumiDSx_m6c67sKuE1 z3kb^7pn_vUg``sJQtEafk+)FCGE+lzwLCvOBZ521HE) zW1sr5v2l{JE(Tv%hV6fSFH|ZYFtyK4t!+hY?dL?(z{1=;oD~W-gZ>Hl(s=`B&cZz8 z3&NHS@@vW+IS)lVMzpUCw`N1dl>thHp2IV>T3_$co^|s|A(qiL^9gRmHtUh1kn~JY zEEM-n#A&xA+qmWr3W9F?QuUFm5Rvae6;~R(`HEd5cnBOYFY*Y+I3D^_xalJeIg@s^ z*l5pOB#T?LO*-gElU_Z#cdl|{Q4!jNrvhNQ;XLnL-;tv^Qe-^I%I{#75r+)0y}N=z zyC8=kK?DLQD)&4<752N@7*xSiL*BJ@8m#NRyXXvvjfEBnW&DG!z#b zVLL1&s#2eVWj1-`*2{o8elt4&pGc0P8~>K4ow>WVD6EZM(|Wq;iMiUI`-6NsX(Bh) zKKEWYs9>Oz_}PM&&{ftsqIww{u8e=fA)=z`#Hf|^g*VfMZfU0h+7b)oN}HkEptvl6 zoagkuEvN12#La=MA$(HqLB4{sId68e=F9Z^ag{DGBx+PkHU}ASH>!?O)Gha=UO7~p zjQ2g{qj%0ibps&1p~(e*Ti&{_^LE#6YOwMU4F*rW=8(eRMPmsWGUGBeS=<^mr*7<{ z)f^NpdeCE&@jhN5I_|U4!Wbl}5k> z@8@-g(N90Wy)^;baOOMVXP>k!IcZ7u71W9|XN&c_kvUB2m+myb^?9dEuD&i^%=12; zztJyy&-%K>Abw4?DFp54+?GC2-|y+E;se(}XfJpTTzIn)m6T;#H0t_MF1FOP`)Hg_ z+)fZDfr=@&y8Rq}>KJP9N5NWA3}frbZ*a}bN&mx~tn>C6wcz8_gYaL9D_jpH>aPI}JvoKvb8_1lczf ztc3s_SF~Mlx2xKbxBz(=Tc?HBn>anZ`pQ6lHM|~-4Bp#ix(?7aWa&AZ(FnPXM?*(r zI^WZKfy?&*<*X1~1r7^t&FFQt0_KAqdEc-vy;z%aXNnw4vMIf4;Q*^i~Mrg7? zJ5FD+=`WC!NuCwGJ?kdTnY(c`Uw-Ua^EQs}FJievubG_4EGySS6KaS}Ok|ENVB*7k;lfAsz2=jZkhmw9 z8XJV>q{ZM3Wkb8W^?4LeJu)f@)sET{&^scDq}h5sMRFyml**7X6V9Z&z#n`#UxK8@|L1T-t_$2RXcr zEC{VUEyCJpc2O0PAdCvE?;^(%^4Q?T5_UBJOK3WTZl15dD=-^Q@W({=2`4BhKx7Wn zvM=(XO5NAfh_h2e{nVs5#Q0f74pI zcPM2a=frMmSV1+R9ZW_>);~3s=l<%FJUmh|46klFw9@KNLyUcYwGX~jlLoBxaM2-~ zYeWl7TV|yWyXIaLHjbAdeAI3q2LCR8PtC&-+UXzgzjNT6Yflz&Rc)d{H@9xyIjMm{ zjbg3Bh6-qBLy19fGJNTypi{@qZNlkwlT4T%iCHsp*9#zAA^<~h5tkj|E)b@Rb2k`;^)8o%$Jr%!Xh#!kq*s4kDbRcF0e(& z_b~-9L!L{DJn|Nv3Mqc9SRe#8eOxn>+b*%g%Z+(V44kPp7?qelxIijvZWshflj^M3}%6I~r5ZE>PGde*_I_=7cB@#WQ=QYSek5hzOhhZI=@W1VKqC6l5%Q{5|WFt*qX08Q?-?=3HKrA*e-tRDLcmtRD)w zF(d9?75qtvo(@_OJypCFz$~uR1S-0(olWmD>6*wcdLe;>Y*x^>@KY4O1htLZDG)uo z#uPn%Y@(MTAt0i$97P;NK!w@!1JvlV^mB`g#?$m{%*;lq+OM5Vt8mKzU`$4&oChXA z23rCi{rrkCPf{eA~XJc zV?@W|9}pG04Vcgb`dVj!Ul-D0`%Z}xf;z$Zz8P*mRC@&cz3uJU^L*(5OHudlni&}x zYddK60~P7d5&vsl2JF5qo>ciBd?P<<=1YW@PxhYI@h*e7HRUEfSZKEes$vd9Zj?(Rr(+-E-@QbG=DxR$ z98mCKiHRA=hwZ_b(f<3^-ggdp@*1>rU%s4%A|l{^VIjE+X)zGOph+7R&6cz|&eBea z3YPYVio$cFM|0PUOTtFJ3>Q~OVaDUf3Q?$~2DA z4n;aeqw1+M_t`Ro5p385l0C@*yqI*Bg-C8yr(s33zjK z{~!%%B@3Vich`>Hflsf*8mbl?U4uRB2d`S#EI0%(DhLW_8?pa_6Gax1iEkOgvxDp3 zx8g&2fWNUEIU#d;Eg7R{Gw?kB5`Y1ve^jO&<3!VUJXFkgPH%NDgUE+b6q7!Tkay_69qU8{yjUIl_ahvS*?qY1eapC;E}lMHvhNPw>JV~(YqMbi z)ktsvdNbaOM$m%Vk6pBYEcPC>6b^4UKqidei}`|7HsjmMvRDE^fZFpS1N`k0=)ZJ! ze?78U_n^|SQ+>Xq6zB!7grnr1!ahwpugxvlm)d=qr~CWZO>`QC3*7yZS!@~ zhvz_ka;Eryb@PRW57GRi1^CZK{Le=G&qnhZLIUw`Ifu;Zy=XawC=06?9);EPse&H?e2;Qq7ZrGxk`# zq=ItZQTS03{fPq3pWYqAjBx-}ia%qE`G9uqe zVc?LPNFg0^4jN750g-@{+#%A~P=9ff)iGGOL(`YOWLs*Iq0VD*?3b?dChkSM1MP89 z3YM4yR+~b(Gp>ghZ92+`K&1>HA|1B&%Ifso>cqr_^`^Zv+^(^o@rL{;inbI&A)DWr z*#55m7Y8Et-@Gdx%XXjGnvcVV6H8ymJGov*YGx&K+}9Xltz0t$?ap47X1=B43~&r$ z>zu-(za)(bF-l>*Pn<@xxYgY;^L>AYYe(%T&zk)}d|TyEWjFtI`CkmmgvLUV#;4r( z7{rX{_M+YBJtR2}u{1CFM|~g0CHlghdG4&`!Zz7rwjC)h%pygHR%zQBzU;#3ee2rN zfFpG$|oB9^GZ#R z2Fr=3wI4(Uy)C@?Fe*G#YZp(C6mSf1^$&N}=}|;KxSV?Ctm$pl8Eaka>&v<|Z-Q{x zG-7GY@}|Sf?5a3vb7hUN?E__uxhY5`Khs*$;JJudQi{<8;TH_GebV!=dDugNlu-zvz44!C^b^_o< zIAKq&8>!DB%4L`trkPd2B#vOSF-}11=eJeB;#P|=s?b09Hu*SG8`#o$)HEn=Y1wu& zZ(qJaTnre7ddszi;}|BEk3e;M`gR`|2E6$uPBZn-(*v4F0^U@9eZq@3gGq%hy5ow-lY>4Keu|d(228z z2;W|}dJv<+3G`f2EmJ8KrgGx?e9_s`_uPB?LLaQZrKX|bbBwpg8y*go95{FBv}MIU zyWo#PmNC?P<);PV`obd7%RYeM>QtLvTc2FBNM2#7jgb3xKx+m{gP7LqPXYQ!Q$Q$c zP8D%)3|!ch9?J^T%+4Y_FXz;9%l-AmK3m78oR3H&zLhnlC5`QGd`g%25c&wev z9!2Z2N=c$F9Mqa#ho5%AeL9Z$t)6$Y+zW2YE*3B@kO|dXIo}ps_NCJc!J$Qb?}mqq z5qe+Sz#u`K$UH2#shWL?{Tc)0P=yJNw&=I~S2%mJzhRimUBPF7ohSNH0P>sLkGEvnWE3qR7%ji$(@&5d6`uWxk0{K$K-Aj%#w;q4ip*ov^hJ&Yh;k6FI@ z{Ons?X3H(p2-aF!kMWaz(R|JTrnHmq+)>^c7zeOxvUq3NZIOMP5?nduWohB?6I5O$HGgriMiBxoc zq|b}g-I681jd*&%CG8fO*+3lsDx#Y|0)f&AeFqp$oWo`mI+(Vul1^BHQnip-uUL!1N2cI%F3Ka3uSI;3{52 z5T!=iw9K>~0vt6HWTxQ9yA30hp%0Ra*^Z(fof$Cq*5e83$SEt6p7px#5KrxKOX0fq zeY&zEOfpbqW)TAi{|VUjqS>dso?`V)cZNh>y?UkX!hjSMCqgwm?L?MV2NL2o57@~8 zhhAhc+O~7-Pa}|{#c)lr+)dV&i>Ft8yXkS*8$@TgI*#{#XT~Qm5oji78M$Zs>=DK0 z!w0&LvWJ{Lqp+BhP50IOHd4bfa}LOGp>G6Ah%nIh%T&MB_?=s$r;!|P_l)nIi!0Yo zO;To|_qq$2a#z`#5oIatkaE+&hm%(URYIW}SJ8wk}@%;jSjba;xDwpBo z)7@Wk-88YGM%cQ`(K@d3Y>F911qZUP>gL@vFtI+p0WQjX)5{BI!VCsy+B@EPaZRZ{ z+pjo2RzOar+Qfq1^m%@YXKyIM3H`$1^K-i1>nnUdLtnaV?5q$M{(=`f- zk_T^@l=caQEyeoP zmOQiz`%pTSNt+o``B5IIxbMd*AH~{eHmwKl%}(Hc^1gl|B=U*_kZWIw#4q_eN1h1T zi{F&~_~PCrYy>^ty~JbI2MgPgKzvqAm)FMw@%^stq&Vn*B*Cx&399E-Z%cD;EYDvhE|ho}1w(hG_DndSfKwl=x+kZi?+ zz>h*D4;~mOfVI{F=zt!b(S-|~G1}Y@!7aPguW@I*q_D8{wtL1D=beIPE!DvY`l1@; zd){diCN7CD3n|%DV0#SVyNmWKbG*An+|+8eXl2WwcFPe;k*1UDx)wG((7C+zukUU@0Z>s%M+9t)wF^r#vqBB`d)J5 z_Q~>dk2pKte};!WP46K#k)1xgdG!+oHe91A71=8hQsPYR7cdKhQX;I{#WbEbpW6?I zeS&|DH#8t@|DExd9y0y>Q#)e2ep8(AmIu^9zOz*5tINW!+OB5NPkj(WE`6} zxd7fu9Aq9tWo$NK1VzkHW=E7zInwl@vvMy%x?!PrDeBVQ^A=m=!6R0Cmul*#Py9wX z+Zr+E>2y&ngd>p(&`9M6O(DR3|LQ=6KBF)MO~%V==$oY|L;Tws78+n@A^y_?>v{#@ zCySs=W-eU_TveBpkvS(Ke>IArjB#>J1YuS&C@7M*#r8caWC8wC2`w^=ufJTE^(~qz zX)-JC<22TW_Sh&wO%-r1rbX|i(~I%U6~Z`K@(O&fyRvFss{TOXz$+(ZT57;n*#tQI z-^auCEFxsvFp^j?YaoIRSIZk9n_pNkf=q6*R#?s`6r%NyIyWZOEMw#Q7m^cyzP=gcW*?toz`d0f6!*)Iv3V6MgJc`P?<|?k6 z6J3K!sbzdS4~>X5H*W-tIGk+S*VqomTII+*wtAO|oaO5$3 zKLE+x!-KAI&OG7$sR$s=IiUu{xDGQE?Ezr@B8h>Wvzc~_l0fAue!KlvZMr=qImNBC zAhGihdVRGNY%eO!eEk1>97jSBI)B8#x8~8Ue6{7-yju#GE^Hf$8WH8CvQ~ndoO!AD z-1lgwA9r|K&NPt2u|@DgSJn=LjYDc6jmr<$HvX8~dKJz&;RFZJR#EBA#7X<0=|VVv z$AP z>M;3DV2Z*Lr7w;Eg6QA`JVPQt1CS=h12-^kMw$aMo_!>ClzTPG-`Je4iT=m}&t33{x{0y1zHuO?s5nxT5GQStSf%6cU zBzAvGu9_qJihc&; zY6S-)jeJT$z~@4N=}YUKY`^I|ig62YF$SxEH5i@z77V`$F<6WR>wfvG6Q9ESNA7k{ z|3D4}Gx~S?UL;{;4z{0Nx%BVQ8Nc&rntt4|F#B$h>G@-9msF|Vzna)N0-emWqdpphw-nay>c@Jr??9N2FhRA5kwUP@y<{te1xwc0n(Bww25WXELTr;MJ- ziB;+A3WSFfiZSNVx9@Kl78{3mEAZygc-;)LUv(e4IqKJO;%WSl@5$Wi7~Y zuMp$pjpMnX7VPpoy07Mpc-uZy0C3382_lIYbS={UCnXpHUIfLsun79QinCAH(RP^c zs5}_OJO#7Xha_#f9(uxAXvKjVbZRqX?|Z2guGtNFxWn{42LcX>P$ue9V#9TsQURbi z|LXQ@Fn+#hv9jOf;x1<~g}7K=g;>h3Q_j3Z-kxbqr-}~%P;UD+g#jXc4FTmx0v`WOraOKbq9TLdWB%tkugACBVeRD56|Y;ZN~`<$8-Lse zu<~}q)&+-!E`jD1S^MV8bngPhJl~psK?=pos&@}71I<3ch_)^QKf{e44-jbd>&q?K ze0=AVSMcVz83pwnJPwCqY@o+vlS^NJYOP_kQx#)sZrjg@obizGgR(wfpXW zS67Jf5mP^L*f8nCM=P82$IyJP?+Q`dth9SZDSz7@JP(QG6xg!l*}E#cj7I zlxR=vT-f|H!$@@BNroTwILfrwGLF#O(9~~=Siv}F&TfCy!d7!mb-eIFLRCjeE#|ODPGxJ}2QshkL6wDzaU%gl0iXsSyn&no^E)AQ#YTjo_B@REDKMnc5f%PA| zX|F~R1g%=V^SG8l7ccm$b9MvWoc7PYV_ z&WFcI0YnHd57D4OSz_x9RW&*_shBM7*k&HaKuAhC?lpx~lK}9bt(ssDX*3kz(sS)@ z^QtG26&37#nC^cwYWa^ z3Rrd=rb+Ece8xM~!L%U~c>Y-qKj;Cdk@vl0%et$Ipf*%j!#49JRxA1;o#om^eZCbf z6t6%t;OSh7wu=!){Ue|9+!$liH|0+rX2F=_VF6Xh9pNI6C&Ytr^2?#vjyCk^%L$yY zdDYSx;eP$b7)*X~(87m=QqlFs0kK8*E@s=hF#5UmOau+g8{&}I7o17ZA)r}nC$2j4gov0`w{@sS+5S-pWRu!)neqA@3_txm z^3#2eA0=P0Ee(K{FYlB})@_Ww4z9+$*)C7w?ISs(rb4Qah36Qe#k(!*{cN0GqomClcVX{ctn zIIh(jwy+-by=y?Sf<^^U%#BbQ7wDcc+UbP{T|X@4rOFG?4cQz46C7_eTg)UvM_#># z?SFlFqDYC+N%b&QcqWA67#0!;kQ#0ag%`1E5SP}R5bTOLNTuY$$H}nVe0f0*C6f=*WxaI!WGAav~CE9Uc5)K25KtioZ4;_-IUdjf3iUGk0_mAC!qnMfA;|{~X zKalSI{H97pE4L?PV z#9ckMt*ME~%*yIRel$s?30n7zZ{I1um0PM#UYMVML_CZ+H9)qm2BHXxB3ZmFhPFW6J&6acfQH%ppwR{h6 z-IYO@9}V2YUve)Rj?*&$z)1|Uc;ccUYHrgfCR*7F`wnYkKujP0a=Vuk$^v=R=q0=M zQGsCncbCp#e9A+Sf&gsu#yeg-^^gfmodUHBiWc6ESjNx*3E!HB>5q{+ z<^7Gf*6#blI~<1iI`r!H1-z9I%7W4vFxx`B-10*s-BIVUa}-o?WFAI#@umYhGv$D^ zILNPTB9kH^)L~M9-58k^AgDkjQM_1%VgwrIE;y3h!O(Nj+Yb<^lbjo}kw6s2y;8IH z^~!TdY6S&L>blR;u?NuTczR@YE`EtO5N&=NL8Od2F!I~AU0qCKKOA73Ry%%Z7VcZJ zPnghL*t&W=zy?p8%aF^*D@FVFRWvHl~@7K2#tZU3d=& zt3({Q0q_I611F(c-&nuFD_k_ZQEO*LMEibdf4S7p7dVAcNf~;7>N-W|?mGJMC5L#e znCcOva3-CE@9cPHgfoa2M%(UCd0h#+k+wupCUqRi1{z2fQp|W~$2}t)MqDC~TnxIu zTc>pp01|x7fiBcUX*x;;j|KGJwNPUc64JtelvT7S&id{ zAFHyG@Zj7d6|l5Eunwm!4;|=qkS9#!!F-)JyNhiGQr-wD$oI3;sNxT!W%W&*grePF zwsdZ6%CX#r8xvKy;BBtSj3eKwCUuYf&!G|~1Z+>^KoH7mHb#k3q8Pfs-WM@~3+_Ik zu@5vLq=XeG_l-hpoEw;^%&V$SAdcV$5;mO{(#6si+4j-?6fLs`z(oCI>e~wfE~}>rEgQ_zg)0XC(gM^jGH&5P%}X3~+sZuUB#za+bcN%n@Yngai2vV@taIx?DN5Q&}h99_;YIrtlfHALR5-C?ImSXI>`2N{VK1~=Y%`NYJ6k}Xg0jmcr)a(nhFB?HW zX&I$q4Tp;#vgJS;n=&Lw;zkc4M-)40@6oY$0R#hajEQ3QJ%`lIxPxD>97IPVH#p!9 zK86(?fQ>FH7&~`P&KK9kg+4gCs(JgsJ~Rrd*PiU4k3>E`)njo)A;kk^cH!KI;)-|KM;z? z;Yn+pNa100eAWmljd%I?;}BY>BSjteqvPowDopO`i|e00&1Z+Fw+FqB98**I7rRyP zA&`&$3Lbw_Bub|$UAhWE2)~=M_Ib;VrEPUZXo|ts3*X>q_pgGy!ci11rh+#{5>sq) z3zC?i-D!;WsSgLqvWwEIi4AuhGQm6qkMNMbT!L1y)e*mV!q_f}?<%S73Gprw-QsYH)*@feVG9rm7?gHg{#s3jilP9pUnZ{x>4g*0pDqTw zsn@j8BuK6CBjC4K{Vc}Z-_KRSgYSfY4x+N=B&ax@<#r@TZ~VJvtW_4Zv%Sq}8CAY! z`d?4aOp!!T?uJ#xmsPsln+d-i5200{N1jd&TXGQzC{iR>f+#6Kiq#R&6n_HDtbKe` zXpbFI!Mk|{^>`WMtD$SdD2PPQd-<72q7slP>nGFVFmU57lKFa$e1`^5e~N%{l2r1j zH-u8+Xp`e%&;r6S>!;HB_%Ar0@$}>(Da-=vhsE!!W9u{_ysn$6+QF8&h4d?dRR)QY zjD@k$7^JcxHqgKF!PCPLS zluSugGg{b9HR5vt(trbw7ZT9Re!2WeP`#V1Q9-Pv?v85}@#Q(|4R8O=L9cPZh9BOGDz=Kuw|i9|#eterSaVp+Qpn%oiLaJi)hc_3=h1`(Nh>}0-g_D!CeEu{i7Puj$?`!Wil}iES)rp3k17>5fy5r)m>B$PKsibu`dmdLq-zBXA-IgoiGO4^XWG`UKue2~n0WVktNbG4SfI zq}Tw!^S66CqsT;oXMON|at{Ho1~59Z$hYMHDA3J|pW|yPs@(;LHT{teMk+{0gWeyV zxkfwz#aw#Tv_7CueWVp)d`xp6u)L5Z;A_Dr|JN|WGE~Qtc~767Z>Rao(bo^8luuFs z>ub+pcmP=6*blnLV0nXqLhDEn7FLBpi2j!({V!)aP}25lxk~tX=rFlfBz2Np}=!sj^m+o zcL3iD0&PPG&H4OMgO`pdk<_DWjhwm9rIru}l z$rA0Eym+1W1&4?_ePN>^^nO`NJ~2sSesX|FQK{aB8VDmHahx08~r~U{r`g#-9XK1ZMNNMdF+YP)1_Kt6 zv3a`eaLD9fRD>`4bcwa9Nr5lV*d1hyhtGN>k{|*HzSj%weE2t^@baPZ{wz12Gia1a z(#ZDqwszi(8*-OMTfakz!jACKcikgQq5ZoPT@4DIi5UC-Y18I1Yx zOzH|TkfyE+n+4bVoXT2+d*&b5y~(iM!1?Xd0R(yNjKbb1qBKTDF)p^|hIC(gs0{%G z?f;x`@Kwf#O+{C-fZio-GU zkxG*RfCxJA#m`-Kr#%s|JE_dX4r${1Rn5V;;g~OYtrfuyed zi+Nd?NzszW{GyO0rJm_1<{6wajJXwQ^qI;ZRiGbd{;-!Hj$M4H;fxQZnyv}%YvjKG zrT^aCP{3igaoC!MVBW6|7<3K}P8z;go5Mi05ZWYd&}ZdTqnh~Pco7qTBWVzD#z&G@ z!aPM?lKZ=V=Y}nuI|fMHNEMDh61b7q9tDhWG%2C)eA4@PGUXP>)DeVyD-`F3`c#7s zTf@NcZ4dem4zI|2P!9;;O&uVBLwq~ie)7Ut!sB2jHjD}$#B2!4)WJ-*bY4cNkWv)& zfdl;hJyB6nXF@_kTo|DLR$32_=skE3zrU2AP;epSmoJDTO#}pbU+zPlN2VRlzQH4% z8Et(3f6cPh&&131!$mB*p0-|-iaTHO;m%Cm^%3U>#c+3F*!|ika5+ecc(;tI9{7Vk z|CYTH_oZ$UZl6Ks*^R(t#FDqNM^h03cI|_9Da5WPyd0}mo`9>egdXL?9J?r@i!6SB z_Pp@gq&!T8-_+x%O>K{$vQ}wd3NY7lT3lT8X7PE^I~nrlm(z9OT0>}ZCz@5-XuX>7 z8@6Ti{k`?M6d0(Q$>1G%zF-cL3ig3Hazg~nVZfmt2ea|eE!E7U>&?` zO89aEjVwG~>|1~j*Hut%y}?qbuk`D?gOZ800yw?f_ZMtN8OVIV_%_p?fK(2Z!1iYW$LkIlG zFtyf(d(}v(o#lzwoijc82qHWp`@e2zla>ckYws1mb%|@sbYA6e|9$E>g@1<>Z0iwZ zIv3a@7*Lk_lRm5=i>R9VQRJ+7+=Umxd)o88)O7HYx57eE{@oGnnw>XG%yzDQ@rH*R zKjYFwzjyI-Oo@jY(s&NTz32U4XO<6+E*T>^n#Ywk#=H&I;WkF4*ebn@C~mPw$fesO zf#2Tb|70sZ^S$5LK;1VB8UN>cR3vE?9+UYSsYQbIBkUB%pAA|E_a3-(8aVuS;`!mk zw~$Ugt@Nd?$8UN-v-j62V=bq9JQjQBTfWY3|BM`wl$!Qg>LmvYW@zq&GlRPO^cr8h z{8}4->m1w4mDVB+a2dLP%a>E{D$hz=INc8$<$vMX%EQvG@c(|3(#&n)bxOK!TNzA3K|>l01Vt~-i|V#bbEQ9wDxMDl55u!?E3T5!j;Gq) zd%n+NK6Gm2DptdgK8=~p0US0Hu<+KRQbNWR(@lq>n6$=ai}@GOXEmj4`|rgMyVJ#w zr|2JCNYDzB=)WT)T z3V@>dVCnQd|ABQQI(Fl-370QaEX~kYqKBc_D5!y0&E{9$bdVLNa_eQzo+=!491tcI zQynog!WE}(#vU@uY%7P_Jv-{gS~z#4ujI&iUb zcsC#U+M!SLD;S__B&jP>M}!7b$KXp76kw#ddW`M;?8>aeKO?r+z`prspW5Tv`L zrKB5Hx(1}BRaCl$Zei$@ZcrIodgxLZq`UjQzwYkyyWYPxFQvTCIiFN7kXE2ifz>2U zfl{C+RLelTaEj`tXYi?G6o)p6Xbyu70zq_pjpBy!uG<7l2CT_;DH_R9z744%M~8;g z>hk?hdreTj$FoHAxp71Ozi#EW4P*TGrpjE$TY6USF`7>f+!F(NSCKMDLKfRDr+Z67 z>BV%PdtUiCWAuT7o-9ZVyXa79s}a)C`|a(5s_(&&9O6o*6ezc)d_ioi8pxL}E?1ga z;rl;0gZm~Bv8F={82n@$wCc!UTO3|Ki+S5GfHb3#*U{$2|Geo1_ zwE1ng9fMDF}?*8IPnpfIDdTZ%nY3Sc#p4EpQY(X2y%zsc7Gw#|eP z@!J0V867@c{j=+CRlf?ZEhL&`>m8sEGZ`9)>dV-!;2;}R4HFBi5F|tEmsIqysLdo5 zhsJEpTb6@VDd*wZj@D&ppHluBC}kL8$#A)P7<=IXyC^JPrc2QAna8`uaV}dCuLs8e zWFE7W8sVYBk7Ajgu9vYDi!XJj&GVI#Z507mHE9dtpkaa*o&o4SL&%^FqTN)qo=Ajv z_^v9NgqSKYsH76NmyB-l*Ty7OD+@pWb&)P*c!6?DufD4ktQPYXfCD-7IBPWQpleRY zTmveigRJaNJ0=DOGQ`D&ZWxVmR9bb`79c;>g9!0hpEC1#-J`0dx5Sep@uJo-&1SZk zNNs~1?4KitE)RJ2SH~jximDSc9=DMah#83=hO3UNHggqrfJeE*#2=Za=+#WW9(P8r z5d1Apqy_rJ;FO|u;%fF}@m(xnT$S$+4tMrOjPSNU_k#ofv7HPxN??}O>SJjU$Dzsf z#j<$hivC_3$g*{H0~uXN!r&&vMAsXDE-yFu9Q8EvamwVcQ5yILz1!eP;c@RctiPihaU6Znpp|d*L7H7E{#Qf z4*^CgBL?Udr*&hn!k2G;Dp)JAmx-QvUs5ym0t_Rs;DM(&r`@+W)I+z9WPHLJ8|>&k z(|0*H@J|J;3@HhAIoqu{l+)dsKY%A4!9DH$?QXe|R5!Zqt^&xSm;rWL^{}~$D#W_tA7>gv~RDV5!9QHLLpWCqQ{2Szmx4O$7*;EKm{ku zq%_=d7Hot`Hq$(J-_bz_SN21WIS`Uw9*Rl->jLDD>TiM^wdk~it|yWC$F0|w(ao{H zUuRaqpfU~}^*5_vXVeHJcMkFb(Z#X19gTbsM{UmQX|jjo{ZC^*i4rqL4TP zA@?$psi2@w=b!gp&YuAe-uoBdFj7jNL1<=S!_Sl! z*JF9Rfs%VPQ0yRch58%VRruDPzb8kk;8JaX*x5obGwbTwmi$5?98&h)Olb2T95Q&8 zwFPS$eGb0Rg)JxT9I{teZP?<5&>mbqI4Z`m4WD2E`sJ`u*`kysiN-SDO}jNvIbdIv z%d`mp*{7i*NPngsOD{#Tm^-j=f8s1{kgm$dS;FY@RkMu^?>=KTtoF)Np+*2G!$(2j zDv|H;0eyQN`kb+xN{-6cwaS6Jxx#uMs>}u%357+ah31!Uz;u0N`cM3(44f=7xrYA81xPJpqFRCCl1HtTG9ae zlbdKKvzs(jvRbGq*$YK*Vn_HSJHIY%q1!UNs03nl&BybnARvWgUD+Y_Fld5x+iScL zHKHnB0*nn$d4WyLtaT6MspPUZtk52UoTnlVpI;BvB&q7r=N_PYMAm=c>NQ)OfG>CO zRyT@huchKXXLIe-v~DQN$l6h2cnc`|_kidU)Vg05=lPy^y}nzMZ% zCyLlxTQIaaE}Ybfkea^sUWBFv^1o@(wu5f98)t;-G_x*APBl!Rt_2kERumh9hn%T) z%S!xQkA!x_svEF8%DFdE#`*Y=nO|xY_{!d}kN^(Ist6Rp&<7;!Fb7`?{Cs;WYhfAB zE+$*{Eizi(zBiH63N|0u-n3taEVjVQ>-H*>x<}Vm}!VMZ+ zZL-KI1#e5P(Ra_O4U1%H!IoHLfp`;%C%|D-*Ps8cCD*#!pneG|cepZ-sCL|J@ zWn&taH3XDI2mMjmIjqKeuk<=LOm{J_OSK1XSqJ+_nrD#R(Ry`QCdb*JZpB>W^#V;n zP#}3W{D-_)f3%rWA?eLGK3>}nrb;d*H}4~o=Otw(@$POLGvMj?#dQ3vTTn<3^*%FR zQ;+*=zh41Oj1mVb%4PtQO4(a>CK|-9*mappJ@aE#ZTH)*Z@p-d z^zf*KQyH*N@3X=3_Z8D~o>q?f3xWYN-GZOogkAjwWOy<941*Jb?ALW8g~taF!UcW$ zBWKooBI5D-y4|il8e8Dbt5`YWqyy#h5# zUsuLf5!APWofQR~9Q75`Mjo?TM&M`df9ZZ%m5~dE=y#o&1V_!tPP!5QE}`RBD_G&p^LecBtLE|ReAI`4elENQ3PROOoDhn(w?$_Zikjr zOJ3MiRowB*E~fZ~dO@q3nS{bZzZ1=}+MJ-y8{BOx<2q;=mJK|WSG%G2S#cf|b;%dD zeH^Z0PANR2{tcWx`Jf%iV`&f+!VcuWemmi+o@mgbXLtl0hYGp)DKH$*aU^&!vO-CP z_G~R2t)yNB(4|m`Xt4o_j0Y@AmV0TD>iUgq;vT46D$G^Qprq)TS^0jK`AC$tk{ zMg7Q#vSEagHlD2&je@3`V%u>On{$4c25=Q`CW-rluvDE^p)7;l0?OB4{~FphrwZ!z zzX{m%9uEm%Ik3F#x{L3=QhhbDT^GMc4g^3+4Kx^y+=1# ztt6*2_@FC8)R_v)i8(pxfbslr&o{bAOQi9_c#NwR40hBx@Dy2>>H6>+{=x;gPD?+` zc)BV?inF`hu4Z7Q`0h=+l#~5H#tKHj6DB!wv+k+0N}CcTJT=IznX+X)MB=N`72;Bt z7gz8#fYbZW2z)i;09|e0nyhNO!;{CsEp6&pM*_?Z<6Plu_B}lD@)J!^ zEb2t>?U#Gr&cNjW!r+Gd4nW?e0L#7lBTrk*#6fhr7a*lCQ}G$ZW{by6{qP<+0(59` zeMTk&)W$r{g!8E+yooz;31$4_XKGdDk36e5agFKoNPhttKTa;}YrM^Q7y>iZo$P*x8aA}}U$zKT6D*12T$xBwJ^a@>NAHoL*7KTU zkKk2SF20wR?y57Q+uFQ&N}H5xW(-M2BKQds`G<##&OK{>yO;7HFj?bBp|Yv-!obsX zd0AkwHJ=$4i>qNUuDntP7!p#kNU}BEgMMD3zb_h$mXv+Al+jb(S;mk`{?Sr~XP)sj zKXhA{2CH-J&sD6~#KynBFu>;skNnht>(@H2AS*Yg>0=8(t34rczRe{2T=&SAMb*Bf zX|taq8Lnm)fWT$p;q(ZJ1kxQa^wv!L5 zb8Aianw_^PcwqTO;;^CF^Gko)c1mPj01uA}KQMm!82q;pD!#5V6sT9uVXymn^Uu;B z(4~RX6$EfBS!x5Gm_ST;4U{W6?mbNTKg_-#l6p0*0I64DYpZyTAs=}Nsev^mMmnH} z;L3lcVbr!08c5%>-vH-FIq3_yJmbS#%`q+@AqR{tF*L2*-yb zBV`lBln%j!(FR9Lqz|Xz7S2CnhUy1}Sn~2-IG*qis4U+!ucxC-lbSUV>`go0&dUOG#HL|33% zTyxD(OFsmLZMI%ty)c~{G325Q#{D-U*tj=$>afJOihtHMCYjSrmbCoM7%o7d7&T(; z&U^M8<^iP1>RT{nbsnthV~YHhbjYX7EtFgSh5SpBz2B~;2y|vle<>@zgxb5Qs%yzq zLmlT~4G;#U{@qWE2oeH45TjavGb)a3zl)a~lUb;BtO|_DORa)ogEJv!HEX3>*>^+k zNr6Fo=E@tcV6te%&bBckmNJuD<=~tUe^aOnsDYYem}L%b@U?E!n{qF3ftUU6Pa`7` zF#-1h1Mf|ABahn}D(+6$bT=RoC^EnJ4S*x!z{vZp0zzM6Q@^Bdk-zT=+(Ty}!(dd$ zRtpS;TpN0`Mxk4|N6`n8M%nI_@8bWJ?bg-)ZRojf34JXwUKG@P_ zgWq!)8Jvvz*m@F)jrzf1lu|Uh^4ZargDxdde};myfJ)V4;6^k*b1MH7X4CSHAac+oM z;3Vp9Fn*(1g^sL}O2uir#x4+V5=81~d(;*wCR9=3Qz@mEgLVGd9j7^i(@kl=)N_es#;pB;aRQL&rjmKtSPEhb+@P3Qw zBTolCe0=hhng+E=AaXbljE2y0&s54qh|bMflMS`|`)_KN$GratN5d_KRO-&|T>+w} z5M&_~wY0RX=mh?kz7Ej_XzC+CG-!x|Jcu=bvNXU=qYZJG0>B*U`FwTs?%l9AA}g?3 zeUy+kk;euOm)Hi0$`N>mH?ts?gFetv{=36wPMY7IG6a(keV)DpSL^D+c*0L0@%7kL z&KY9@TDRS2oI1Pw-T)^aL;#jT1zIc$D95Ty-RmEq|GbnEbk4^ej~CIGhU4+e&zO@U zVf%pGs1X9&_9#FT$bHY(ILZe;w1KEwvPu0v=M1wPqZ9m88HST~0)|{;0chZJM17_E zyavVLJ|tq-1hy`f>33!URWeA-cz~Xf80`$okV&iN0UL2XIB)btfrER9rYBPLNVhHN z6Q*hRL*2K;Kp|<Vq+6%xL}>Pl%2pnr7EC2r6sSK85dbmEW?R<~z)|0yk3F z7!#3^YqUP-yq62oNeQEAjiT*6yti}-HEN_sdl;A;2JUvxho-p!mLOt+%E2|mK?!Q&yE}T!3WyqmQHBU<9uUfuGhV!dYtH4rB*_hu3fx zkW10ZpoF+A45YxvN4G))X%rj+WRp^~WfOdxV>Eld@WdK6>?Lj+jWKzlTxENA%<59LGpe8s>agnQqE$`s{FMkswK7 zIF6R?Fy+Oqa8sdl-y^-l*=;`^(0t;EI%e47X1H&3$fq$jPp4tzWO53W(S_s`=<1r& zZ`gh~?REa^2J`CBq7d|Lv@{Y;R6%4&b^L8AH}zDaY!&0g4^%=`_dyjR&;?Ts()^1& zTK3aekFA%%G;3EwnF#TjgTWJo)$aqu1F^*)A#-&XpN%_2B?e*Tz_3u|`pQ!rvy zAovxOB!no3C>3Ay6DpF?+L}>wIegQ_uskwqOXWm&qxk_-QcQ(GWIc%bl_Q z-{Qj5k~2xbNEm;MuQ$nz=5Wm=tFiCAhjtpeDkmTQK{Zpl7r162Hvi$&RTVB6VThZ*jpj;N7A=RwVBQkpd(oML=aSq&cvX^?O(z2751ic0SQ5mRs6Kz___ULX{;g2lwwnGCoDDGHtyhr7V4 zunjrl#NOnni4?btXOF#|nf^fupC8={U3Vv=$hNbkQXoUguvkTWL=|lZ*6~a!wtxl) zTK~|EBAyDyy+U5$q%fGwumOMx1iMneOp3Q`TfCBd67=H zkDcLwXA90dpn`S^ws7$$Z|vkzEzr7T)W|43NnF2d+k2V}7W5v{M+>#_KHXEgSMJpZ z%4^SGdefxT6PU7Qwy*LPEj_Ni%1&ox@RSQT{i`zF4ov~M{XmKjI4n^O!!68IJT|8H zR-7zf9m^Yp+b4U)Gw|juOo^g84_Bt7W+3D>MSw)TGkUM_jFp{&xdE} zN99W|%<@l42>pa=&tOxREGEBYEWevI(3@54xCyCa6~B)HhZiM6ejM-@`nZEgCNr^h{}N{1G-a_LUUmYh+rw+ zFzX&ztgV%m%sbh%D_()GfE4%(w> zkz(i)Favde673=EDqkY{F=o_fSUuevk>EdDjP!uhwEgl+wk+z}?z*}>L7?n#wv-#= zlWz={YSt6 zf25nHzhDGP`DwFYzjHwPsKQ2!00xNpa{Gw)08eiD1r~M0V+1*trRq z#BCO17RkMvc#1d^x7EfY{LIR&WAQNC$= z{P10xf^bD|Em-oj!OGYeV+@Q;3mvwY=bj~q(C)l_N$?j(kVdJq54{3P?c2A0rd1}=TAmh2`a`^c#p<%_({2bw5C_P82lEb91k zQhGn07d)_K7lQduK05tk=k^d`%pe22+Qc${yfLZ^)#fI={q*i#AfBFT5`SSIBuuE_qH*XRKr&0ib&R2Dx-SNcH3vctUVM-x33Q@7Y)$@CgVIAJVu- zZybmG01b43DIvuVjpWboQTcp%%A^qIY03Z--d$l$VPmwt&A%VNh6jvy%1YX%$H`kFV@mY=;-cw&k? zroA^>)c|4vx#dO6XK<1D)TlxkmHtOH<)Ut=l5Wh^Xn?y9`- z()_j_sDHzwF{Yop___7wA4TNosi;18g-5f`=^m4;&RTB^kYDV^j{S7-X(+%Qe)|`Q zjK`#2daVc+7dq8~G{;e7-Zc25h?Y=(ir9b!XA~X{x1OUJ#Ysj{@jf3dudHl2(9b4s zS`RP(=}cM}%ZM#_1$yORc%o@^feQTx(W&;kx2$jxigRi=IEwB_xq>C8>3oXc;;$MM zZ6YdgIL-XkapIOIV~OBs&sMb4ODgWe*vxl?w|z>>sFs`3>kiFs+oXa53IB75gMm0V zO<|4xOL%1)pyjX-F2YI->U(-dsrD_5&H7~&zd z7$)V)y-J@Fo1QdSvVLdm3(|d2t^Fk3E{=unrD!dD)w5@ZLoe|M5^DJyo&J-ZcP6kp zq~`=*;*VQeSE-uY7NI(5Ym4yNgzShOqC<^Im7quYTq5Q-u$hF z&ru4&?@LXNe8(@qM=}+RFP;05rywRUVVHK%A}m0R5wGs>tXmTRnf#Nunj^*J?hEW}g%5 zo+PWxgEg0@#ZA6EP7CkXmq&n39Z^RbY$O1_8?h%@!+`zG%UnLLM0Um^Okyr+o+c^y zycRb2T4fo&rD4xp(8nnF0H~=m;WHSg+h;{afJ?|32Vu>i5zp&~@SjFJKb7|G$_Q?% z;K*R9-b?Rt$(|t^uolg%j;aD*t$4)a6uQVM1~R$`BPq)2*==XYwOjb+(!fxi$;8-I zkf|A<@<%Hv1oh$|pAR(-Nd5e0t!z!(;MAOe?E~i;?N2k1VtDHWKrqIuKW(cxb;)jM z88m_DpBEF`AWO{l*Y}Sv?&yhZi0VwE-_K5tGwVSe?NiXA_@-F8vh zE%*v6tULGl45o5SeKx-YXd(LB4K#Z3x;=hj@R*B>rbpBhZ>M@9`u0b~U2EnA+IgH) z*;PfV3vSS=>;|5$(u@94LJS;s^&oi@A`>4c^qbhW`1YHl_(57 zMAu>3wh!Zjjw>+R@~%KtHtU&&$%1NJ4bUo$=07bL2hXwkPbC*9R}2xrvcMIQgX2&{ z-Z}W67N9>B!ePj5?YwL?6aP$}>>H=1FoC%RTXKFyG|s z-ODu3pDz8KG+8M}rQ$Pg4(gsI{iGQy3r+y%4q zus9}tM}w}`dEhCCY5)`l?R9=tB`|puaro_qvR-e&71`B*;_0Agp=XM{@VIPjEpN=9 z%)_KgOWpdC+}d>~eM0Z>NU@Pm`6vRG;@`ChofEpnU&5#=9>kMdhh|nZ7kY~e>#zJXjo;a27+lB zJNjT6Zc%B+nL4MTRx-Q+hI!FlEpUuiP5v;+wirAg0l>u;hM0{7+SB`fT}3DB{9mV( ziN*jjljUoy!Tn=a0j;?CAd(2SR4esBJIL1+NC?Wp2ILp`N9~w{?c#jrr--A#FqXTg zJ$h~xBZBBur{d5V;OIYYixoYtm;2h;mfvGMjcWDYbLf3FwYNEB_cV!FuN1a$Cb{^S z#S*qS=S`7}6r++Q@PHv6P6vg13@b3o1p2M7pDae|faojBsuuWRP}4M?suNK8GMD>D z0FaS>J<~G5nAN^!(sJnO!ZpG4%E5>#RXI_r~g$8bEb(jYEs1JnRy4Y$~WI=uE8bT6YFk}F*N}8 zjt{u&WZk=Q&C5{I!@pt@ozdSX!Q#4pWgNj~(T9mA_7;7aE=OjZ#?UsOXd* zT!>HIMQ6dD?&`~s%;rY{M~-9Ln=KuyYr4WQ`YPXP9WJ{CJmo+$R;aDo8VJz2?wp&v zaVk1{er+!*T|FID-xc**K}pnA#Bi~~;gfK!j%XDL9R_`!S0f^yc2C0k(fhjKte~Sg zTZ|m}=%gU^lEUBWjZbSREk#iwU4)jK0ZjKdSyyvCDqJ`C|`;ktxyn zebHq%$|D!C<^3;l;IXGLFIGUp#es4)e36r`&+v@GNqJoIYr@3CAiXSC4L!re#XQ*U zED?`6z1>WuB}%RSF%A*C)KhP~m$#pXmpOX-!^p%t7~&sqAaKZBz`HP9`&WHng-<%n zDqoo`k?mZv174A{?eEzUh3gEXWj9oxapdjE-Q_e2r!iY_#7P_C+ooH6rzY6|pv;<}6l|{a+@AfvQiRdBhFp9mI(A!tygXZ#exZY!5=0hTp5B@GkyK3l zcBsL+%}T14#KMz*G`X>W%Z2)P9Kl{kRQb^CN>LD>VBds>{*dCFa>;<3_R_2-1?R54 zE05k;W^o-^Nn+lGW%X^JU4BqJ@%Y4QuWEPzZ29Htz0 zZ{*ZcgVBvAS2IN;qWsGhPd4j)K|*a;S)%I5Z|6liWrU#578fBG89!=unyeu=lIokY zmHvtR;lo`X<$adPHEa8g_Xx8Gm;HdsrupJXdv6P12aGPl1fKS8EU2N!nVaK{G*g{} zfi~ILG2!;_Ns4w_F!NwG6^qU>pMBqsjA@8W2brF<8WdI(KiyQ zQR%T^a%D^^@{uXnYX&EXJGTy35ViEZCkp(ZpNq;5=2MFPe0P@QCm3wrs~7UTDWP*` zHplI2&51HK>TfxLnSnH6oeR*}OYy?8IP!7oWqBt}SC;zYpA@&VWSz~Mio|0Wl<|N| zHV-%)vC%Cz>HUpK+Q$GX_Gxm=hLrpUQ5#0Y*G|!!v66nY4EJ@w~mGW5RNBxmjlqy0aG8EQ7>;S(#j}>9hkZfhFLF zl)u?I7E2#jgfz+B-(Ql|`w5OLHfi1(#Bfss{w*n3~9b3QcZL0V+SZR+Faj1N5T?2lI8vwFB9WIvsU#x`OYvbaTW zLT!@^7mRgynP8J85-X-L?#ps|2P;8uPj1E|CUMa~AdhYqx2VPkbh_^;eQ3y2PO;?q z!1s-N;r-{rD>K8_9Om#;Y|P#fZ3I^NOT>NjEaTey+^O;Tc@7X49xmPp&>(q=TVaD= zu)kkD_eW8zgL{D;#`wCmaPAb9Cq}^P{daQ~`(dp?H@m9XX|}+|m$tB&Wyx!&HcWnu z+l_DimOvLbQ|jx98WoL2g^fOI6HNzhN({n-Pj5LqnkMdjp-L3fqw|IDldIh6HRW+ou&!Nd$c*p2aNz=0=E#-)i_`t~jmgS($eiQ^j*a^Q z`O_@{FSJaC&Do|e!4B1XDo2ep*ChU^od!dB#8^I0rL0|wGry_3gxyS0l$ixCb7?DCa#=C4wThnsoS5T%EpMF7!Vi0zt$zU%V9e z82Y%@F%@}}B=RG+N@rO!oH|GrfM76IV{;_qs_JXn5hx92@B`S&LxH|lu#?Q8>YQpjoRjZ#j0&-5LV zo9shZZ^|pa$m^6Hgn4R`y{U1sx~!mIzdvYMq3L79q+OW1GR3pnJZEpVv^FOfxR zR~6&>v~8)I9gyltm%nJ@xvk-1v@i12mTiVCjp+CB5YQ#LNsV$zgXhoL^))+p{JUBYt zT2X0hxw0dnmGK?ZyQszWl;7*$nrmSf#3Q=uJIWF>Ti^oeZCnAzz5$kG{6J-&Qg!&9 zHeGc-*A%sQPV=7d$W_}%Bo<}~OJIdL)H@?<_DQ{VuM%6cPA)G)&GrtObtQH*X!-?D z+gB>vr<*Qc3RiH0#P2W;?OYa2wN8r;3n^^rbvjoTE1O(kM)lshR!Y}C)ysnA3ME&iIuu6kR7!6o7n3u1 zE?g{-IUP$gcxW_~V442PuOoEgWXM{S5m$^M`N36lTeFxs#rOLWnM}`e_(uz}%JDI) z9$C47D;)~_0d2XM94gb&YTC-N0gqMw(MPS!zV7j_sBTSSmLE}j6igWJ3}{~~Q-o)n zzbh-jnsn@uIe#@xjLop$Q=_tGt(4DK^vLYhfcDcr_)ut4@&$?0m5hov~!2ZcI zg5B8~u-YW4g4HJTu`x*xwRkjFYenZ*A^8fLA+vVm5*%fbk)4D`{CU}PVNW9S z9r)O5&AE^O$Qf!dZjrdDg@?g85xs>`mfD!^e|7pQ*je*E6}^3t^D~@}w95QhW8vka zRNn+>jQE9AU!d_BvperZA`^=$y!^8iJinOyGQCN*0BUKZ4GgA(R`JID9;^Ef#(f;R z5tS<$wny5kBUr2F;ezpjbOXcr4jPZ{8K~Y~!MDoKX1_ZkdksjsfJZe#p#P)XbyYoD zPPUvEk3T8A#x1K1z$kSyw_2ePh!g1T`;E;$meAoc_%5=K&D`I7sy zNv%PT-Y31!Hk3bW0Uf-Ywy6AxZUp+t>@VYPB8U%pB=SCxOWxNm(u4*272>3VC46Hg zaRzbEiQ$~kj@szK+_hCT{{O#xRH@w;jbb=sP?O4H- z?LO98xAWgJBwEK))pi!=_9W9`_j==1za~^qkB(Z*c+NhfUM(iW{5!LU*;9mBP5D5y zIW@dgLp+9Q(geFHb6tNOk<(LE|=mXk(+TiSsvWi3>Fxouy+6kjl}=B+>0>}W_2=_XIMJX%@ZCtlsF zcYMyV59C{9$3?|LS|(1NK47T`hTNRGqc0rVunXjvc|_)#HhL*Ij{e%Xm#Z58h$>G< zNjMO>N(?*9wH7`gPH|``koa4YE-_S0j@;>klJOznvh;eCAc54OaD!T1>EckUR(ra+ z5Fgtz<-3r;;i#WDS4iuUl;!r(0nj zOf2f4Q}g5 z2=vu8veu?J+lG<1#j+iN1>kIryl^>SikpfkYd)ej9eVM{GOyZ_PHnBjG|Yp zeg3+sGVImj+K&{0-pEm;c1;Mh)s)V$uA7B@tpIkL0D*%+sXIpxR;2euJhuxy%Tfc~ z>$WF^#>bUu9q|&_&ie$;@6&HzgW92J50W#)QT)@IiRbAskPblOAAVQ`Zq88f^Q=1a zW-t5<_v6ZZESO$79^5ImqdWXqQc{QytM={uJ$J{;po-#~;_{EAC);r+ zJdrnGma4drq4woYN)umYqF@i7Osz+FrIeb2s;0yMn?Zct*L>UD-{n%@8i(lE6u3=x z2hA{c>_?h>zaLVLSh`2lfdwn4kMf|*0%&J|u4mYv=;$2SYZhL<-LE*z^n9N_VmWp= zs%LWkTxlWe%J|7&_NhAbiqgzH(nX;*kR06k(F}l(B7GMdYabk4v zdIz`jal~5e8)&HDSCs{Ux>KTFDw;Xdi@zzX}@qi?>C zode}4j`v1+U>(p+n>Vo>CZf-ur4d0J%HbfS0Cwrw{j;GkIDPHyX)~0*8(cXX+#wz~ zpFcce4=hXtrBdN_f{pouSwjoHP<5^8T&fUEgYhwJeeuCefwE${)>-+F3No?o@ z`;BV5+t=%|?*ra+jWU<1ddNq%-wXX>42Zq$7dfE0xqL(l0)j zJ8{V#BVSje=KMn+e@JW}*~4B2OO6Ho$up&-HEZ~pv9^+kR%=PbC(hlFA3e|JbLKVo zFLHY-B8T>8R=EtPUSviv{P4{lZGHe&65jJ)BAk>Jzva?}3J~2{Q%&>SgxcI@ui{=& zA=YibI4kwXpoVxHBMT6nnVsKXnC0)WEDa4MPTg6bp9cZ~i+=pnk5t|poZx5yDXKW} zyMx$Gk3wFJ;b!?h@=g3Spd~7s&#uZOOmwNjv^HLX#%#4J6nOC%ePhc0tmA`Q}%_=ZHo_hnBg(fOSda~~47RhxQ09wjl9?a~lIoA16 zWnGOiwqulyKmbeKdV;8dDganGzgv+=_nG|zuax;2cu&?yzRAfI0d{leOzcOGFmB%{ z_g#2DlL6v^zykVl0jP0f?n|FUy|ugj{E_?Z4mGPX;q4}k2lMjD2*#`Wi@n|@f2sVj z0Dgw>m=_KB1jFSmajzQjPUIpfpB4qsf^851*j^uyH1Y56*6~kGX)frb202F-~HC&0&evn5I!?F^)i$z=-UEDb`Zc| zUQSGl*mQhQQ0N|c|Gq%62eNfqt9CsIE4-PKIonC@5(eq9>wxC99kiUBOJCX?H2v-D z7sP6Y_fyG9x6!@CKI5rb%I@Ejd-qQ&+ySp2CS10DH!}t4^$rVr+52{N17IVw`}f~J zWRE&iSa}dVNaox?8T4c;KrPMMu)-DJ$SPF@e_lftvq4hYs6mCGON;-lwD2o|JBWw3 z?}d6>V2WTNh6dEsb?3!08a?cgkROjZtITDFG9Ihz=8A7bhg2*90{l;H75`v z@Nng(T5Ste4yIZ(_q*=Flr9!8(N>@gY!|;;6lYj_pUHalov4Kx623YCDid84J+}O<1bO?d8!%g;LHBxnox>Q zu0C6?8@oXXACv8qhZ|$CfZ(D_#<^kfm8N4Y`*!x7TW!abz`u8@d|N$Tz{&LYv*g@ZoykB=>o|YmIQdd26*21@}%&{;ZqN$@iGP-sP49oJ5ennK(){fU<;Ww7% zi%DLV0GHCSMyng}M<|GzgY~AWd^y!6;^e5d^{KxP7$aTgZ88~6ZVQwTD#*`B8GD)a zwt) zG0P-U%Heq&`9r8f~kPP9{Du~Hx)*bTU)qmD;0SV9N3K;Mn=yuMD><-i8Ex5RPRt zc(b&RA7^r)t1y%(?c`praQs7|LNV1bDmj{={O*Ef+3@t*Zuo)o5cR5)+eDXK*#G0~ zz2mX&qyO<-UCC8sRmkQ-nW5~Ny$K@5-5dqk0t?Ce#fkWu!QJwmpO`klAx zzVFZH_x9rzRkROx#>ZHD~74zL)2_Br6)j=<5?+-J&TU>Um?3s5cZZaHrMR(Klv#xyi z{O!*(E3I^ZO$hA59v45}QCA4F-VU}CYxH`&#iZ~uSoC;d(S)%m6Vv`R*CmTjZ0@|S z$Mb4~YlszUB544gn3(au3ME={uv&S+J;AriqVmmK=26y3CO{?c) z5zTW2%2YUp##~0gnnX9t^L$X_dyy+_6BVy{$4;%}7y?b0*(1UvvQ{^(mh){5EdiEb zW4l3-&SCF)tIoTPXjDV(+CD|p=TDR;0}3;g=a4x6V>B6U*GqDqyRmYP9G?eLGwL*^ zEf31F)9>{DysBd(1-T%~MV?kJZddVWGseKxJ+K;VMr`~pYo@kPhwvD97`Og{+dnJ@ zUl={h{i_A|b{QzmwYhLsk-`6RiXO15m~*ubkf;}CT5e;8R;D;o`On6xe7f1VRJxhK z^ZB#sW`%{aNR6jHHNm8;=@Zp;Pqn)2nI9@=-h>4eAH8OG>KjF*r60VMQFtj~QX5Hj zZJy=wA&)X#)H8rGS-5WS)BRClK_bP;S6LqT8ye8|Yy0BZh3+8dceX#ZbcrE_R?M~2 z`$gU4miFs(?!uG3v+tndo6TOY;U|g9SiM15u(rb}K$P=u?~f4z@<^AV%_OkDHm`^j z>D+Q*=n*AWL~7A%y>G<2QmMVr^s#A#Uhl?aD6{bU+s6%E&jPOL*O_l90WrXt7K%GC z=bbOif_Ac%^;Kp{v?M1PQiQl6-aYBX^7&eY{PQigz$EYfGFQ*LQ>Qwo>G!?N>aM?h z!f6(MxA)XN$45X3oHQGT1mayCQzDPE1BWDv`N8`)jlDNZt?u8yfAO^vfEUzBYMgU! zuCBRmv}9910~tfZRUN(dCuz+X==Te!q)?p1c$fPlIML8N132C3I!KNO!bFp1dhc{L z{0!n;VzYvIDUH~(QyLUOaz}AWuFA_9-t_!oW($00i>b^-bWdu@_~YGaED5U|7i;n9 zhyB;yu7g07?BrQ?qIB6Oc6VHhISA;9?iQpY5>1|ji;*Y2pe-2%H`JIV3p?fM*1G=) zX8_IXO59o#LcmwMtY0;kApV^jVjb+I=<_-dE-x7Yh;nS^_!hs|GGu$MhT=bOq5y@dI-v?d2*@LCQcM9&7O#x=D^y96AOA8A{3k8Zl2@+_7>^i{3-<10x#4k;HO`?q5g`$gI{q|BrEBPx50iY{VIiSRzt zYah$snS*ZmR4m`O1$L$Vl#S}7#zT-Q^$Ey%5Fsi(R>3(n`k{vNN`j6|HR>D6Mm#|X zNAeK*T5zuDKM(!hzgU=W19A-1+BvF;A3F+ZH8lnjNUBHS<_)*|rQUfBr5>(CY6i@b zN7zJk~OnE48I z$<0d{+2f>0Y3Y`ZeOaW+YnIUO5=qEhfa7tKtbPUmP zW}DsGwgnyhW5~PdKV5~4&7HxRMmw2>?maIkZaIlw?xQWSMG!e?*tK(MvhGjn`Pie~ zD<Z-i8J;@( zC^3Y!V?cIZ+oopo8jg$jl7`UGrGZA%n{O+qW}idP3Oa7@hYF(SH8V}f2QRs8S!S2D ze&J3k4VxZjCdxqoh8%Ek=I?DHeYfAY^=8pN3F5H4bWtraENqC)|Mfa_sXxr^u(Tb; zjyE1`A=Qb>I;K1}k4LrFZw~m|*|!{0B+Q2tiOS9(wez@-F(f-CfYpi_DN>nw-cH)- z#PTEg>nOR?(D%59hN;a4gze|QoA_CcfuB!aOv!BodRVKp1R0}Stv}l(f`Vkqhudct zbp{Gd2cC^XlpmBL6r~b>Q4%S(a&T}6%rJG_wS=67#^$(4QpU?C`ZyX@dQYtq%hbw8 zO$I;Z#ofs%Na)!v&UHC57Qj&CZ`Eo4)T&4}L$8kTa!@emQ6td_Np`wMf!(i!UguW? zw5YIWqAw+~^IJ2Y7d-mlUgiGtQF zA6qlh4vdEJ-#b%OCWG-$Y&^EwKYsK+bX&n2UX@KPZ?rV~Abi!8WX`zwDIy+>uRZ@t zWTQGWbdNS=>8dj#tcOEoSEh=RawMezkxYm24I@vI zG}SUep^-WKw#T#A8&&ytIR;7uP?j?ov-bYjU#0?2x$O zh}kRhn|+a++2MYM&7hrF=y_#gwOeGY`l4C%b3U(F=74j7mKfAZ_mx%D;R+7za5Mir zrg+?hhbPeLj5%%8hIItOewgtvw6Qjj^Gv`0uyG+EByn2Lwo-feSU-sjtv*6~B)%!@ z9vD(L`FOrgvP(Bk&ok)r9(|O+XiJ}cD@WNUsxMG`rMq`yF=nu7HIu+_Cj3&~k(JEr z_WarpPDw{qUC^hH<_O4IQjMgFez0x&rM8Jf>_Pb@RCUtzu%a_gnli={XFh+XTloe7 z1m`Hgd|iFIrbad^7Z=S4uAjKyO&Z0!URsN{W`$)w-D7Njxdv3-lQ(S&YsH^hZW%9p zu&`IlDDGX!glvF|%PBuk;T%KN$_5^*)cKtvD$E>`jv4ZJ&iUBIVqU^t} zUb{irLihFCF|lo|^d5PLT#T4uUE12%(1k$Kfl&Bc!L7GTNa%1OkkOgSmzyq|oR;K%kVMwo zPzRG01TR48i!#DrHJ~oFC-JKdLrT;bW;R}x@ADIpjoOg@zgf#P zm8>JZ&@LhF`04!!W!H)Lc&wtso!VlKThK16KSJ^QItbWCGoIf9lrhh~Ff}Q>&CH7PVN6@2JZxwJoR}Faqzhkc9LZB!95eYWS1EYa6OE z6Cv8Z%Pc{WK}8|0!;^@mVAt0Oyc2ahB*nDxbx0FbpR#e*?c24`UCtNx%%g(z6dzh> zLjkt}3K}ysc|-IO2yk5uw}r0vW3|Uyzz#!bUd0MRsb|pk?m_>K1ph^_?5kB{2iCeg zc1dZ}S?bMO`PFNWcUp96c^D#I?zS_Ai7+5cCdKf%B_B^_1+T{v=MWO|QmM3Er^rg0 z)g2Fwi(26&Z|?P-Rh^hzLVYj)TAOQtO)PPVrXqY4jPyILucut3P^)DB9m&Q+RduORgoWQcUUx>eq7JkS=pB`HwTFS`~VXBL&|Kr>I; zyjs+nUfsrVY6I#1Xs7voPoJaso=%X?NN|5@M#c1($?(N;<%tUDOVD(5i7}m&5YILx z8LnYXK*@&RA8o416^b%FHgeT{!t`7+)Awzfu%{uMs(A{Pzf>Y)ln2ci`LV}3)U6&G zC|<%zU2sd3lDisdjN5+S%Ism!Q-(chYOEFlCuD4F@>f~3dB#-uN3@cG!uN58UGSO8&jm2eFN66D*A*+vwO#y0*T zZy@*P<3@ep(~cXGw&Fu@D)l>N$L>S0$B{js`E&xRC+=vuM5Pvb*40)&|Or$=La5hr!WMQ}#g zELD(BFt?n$ouCMxZN-NunXr<0=RC{E=6TUINM+Jl+1q}In*D<_W-E~rkS{cGYU@Bv zlu{+>eZyovI3KQOX?Z&;vS+^da_cFXfg!+l6B9Ha)jP-No)Q_Ke5Mk(Zn1Wr7Tb8+m+<*=gUOnh2|>KNal(0=1&6*= zukZf3T@RP649vOnc*HU4FNg3`tcSmSQry>SRMq)K<5=mr42qOQp^*iLO1*W76cZxS z6FhPekAy}THg@tZ;0(@Nhr3No&`RVJd$8{bOp{DEz2 z5TJfQGxBC$#Jr*a^H&XGN$OR^UdQ;t3n}fEZEP+{aoi9tVrp7*!9!36w`R0;OGfIa zRo>6&sEx22HLi}i9akgkh*?#m+@9067ja#>d;VmE#0j5Hkc3Pv;?N*Sqc9_{eB#7v z$FKd4!VTguBBzOdse)NV#(~=2U{<3jG$L1O@prIqxfr1Aa+q^TzwI39<+EG!_&81# z-9h2zSY~LZpqnC_>p53^ivI$S<5c&(%XcP%kD11mA2&BHS%EIKH6>rA2DD#Yn@+?n zwXMF>5O>nPlk0cVMSDs@xkbenW69>%*vuvH>nqI(t5m=&f$`%CPB%-MF|H?VpW6c* z5yyXBp437~nxBQ_L6UV{RWH9I^E$f2J&`)ES(eJwE~FrqXe$;2EVH$xbtx7EA5_eG zww_kYLC=#nt1k3xnS=_;rj6}JWpq7DeKG&ZtU}~B{9x!PTdR)x&1;mjf*wR#E~;mY zfqV729rQMQ_&>6BdElwv2 zKNmKsm>3MSi|+aik=#@Lp}u4?*HH5I(FGO5=M!J(Y&a%DCp<;xgPIs+1V>3Po9ExJ zcnMlp?=ls9)#$R-Tdq)WaB@1NWVJXnNw_4;)vA z!``j)t?T&s(AN=KZONTlR|+k5%sx!Gcq|4P-X*|kpM0oz_PLt*`ZLm<`_` z`VZ+w7-^NCuf}XbOHNJ%b0C?m$gkl>O@n}pG8Uism^Fl16h`NKXn!4y{WAE;1yBTt z-?yRlIuzF%yiGv3!sBxu|7dpy(tPi+9F2?goWj0?k5J+;p=!S2-e6ybuQ;o7I%mxI z@v&=f2_2>E4rW~*Zj_+K6>ZDF=pvNaDW!56m;$2Wth3I`apXbb9qZuN}30=+Rb#~C+TdAM&4R*D#d<0p)O64@zn8S{%J;_Jj5x` zKIf3~I*Oe+Xst=wUu8+#LRZ?j&#@A$NlD^4D5AIw&i)rWsTG681)3W(V~BvQ@V<^t zpE`-gemk?p@s?LMmes3GJbK*8ceSsm&8gbb4BUP7I$&PCYvU!-cB~vKgBuYk0JOlt zA}Nwj>&jn*0l-ip8IRU+$$NcyXYN;)nOXAEuX(%PX z>bX<(cTC{hMlb59wU9Vnt9N=vwhxo;8KLI~)j){FgxyFyPF=?rN9JQwflAl&j^k(R z_a!_y^-MCOEyQ$y72`h_e&S}!+X--K#L$6eq0=Dy%k)>zt;sNP8fIFfRNr<&H=0qG zZ-pNMI%y#&UULF==*7N%4Y*Yd_W6LzY|0Dk??~%1mGd{766#I&fkWwhfutBvyG782 zTAlrRiM%JScpc1tX{2%cMnB*V4R9|15NQ=qJYud9!aa57MY>aVwysjAV5iX?5$Ki1>GA z-5Al6mg)r^R9^e56OeTbH@re?s}_7fE&lSlX?@+8Gt8b!tuyXSREWzvz^kOE*&Tt%*_FK_`ySwYyDk z{*;Cm`^C3iHmn7kGcPZn5@LHM-CG8=9T(|=*QtW;FX2%}ntpqFbKX5iQ>lj6sUgAJ zu(MD6N$3kLzc)lk^Z!8>cL{ z@3p%6-2;2k`!%cO>V2JH-YbI!VS|(f{F65^D-+G@sy8N#l2adyc{m}!9fLll8TN%( zDxV;UWM}RB9U7d$Pq8MvufFLke^Z~BI9XptsFvK8OJhQJj!rqXP~pLOX4@l?w>^ie zM20Teq~5RjP?9k6oxl1-(m=+lju`LVF*YGJOTVYX-Uu6x74a;JVVO3 zYd`m@M>LmHSo)~XE4MQrX>1EomcZ1E@Uk!s_AK^##6B5W)Vmqp_ zcGlCJjh379s;*l=a193dpc6Ew#EtrEZaRFHk=nT>>aikv%#%p=PieswEX^ zESmT!3X#Ga!|1Tc?OvpgpqZ_q)!@SD&jKl-TrngNxQX31NCfhesEaHFUV?NL9;Gh zicnOmDZn=@%=+c4{ZKwA$e-6FaI0n@JP3WiD!w@em_K2CI*E3 zr|ny=E#Goi?xJY5bAe$whGSbl2l+fh?yzTP*eXrlrxV zT`hrO^P2b+pX^BWMa~>2w4K@b(BzebXg)8zp0oPMZE9(3(DZ|8VUoCpmgmW23STDk z4>9Fge=91R!S4x?R;q%KwVAQb$)O7DeAGC7t29FLd9nE2s;G>ipx|t|q~w`zOs~IP zSjp_2HF&jPo%1-}+3Zk(67#CP#%6EArgLE6!uO7u?4gdUaT-Mv`wZ=wEiupIRMv_w zwcUz5J=?eSRDPCs>F(1pEsec+tOw!begIO|)SwRJOW|+wWi(m?YJ2kXKK7Ob7Z&se zGB>?rHKvWqSa}wjdHG(v;h8VTDM~MW?@NG|h4%7Vd*Li|TwXtdZTE6|5$OqIfZ#;z zuid`7v&iTI+dZq3UkHa|b?sXo-KF&-&LHfTTq@1l= zJewn-lwSJcix$)Xd_1&!y2M)O!agP|wB$EoJ(X{8l1@cxRb+A7vDTJZr$7HyZB1#= zLbsXA;`!n-urBUuzGa)~)-Uj{2HcPmU+B%{kIEk$Y%PTuCZ{sBhe7dL(0LpeR~jU* z3X}mc3McHsl+s~#fE1m&cw|xfGALg)zE!Wc8v_E1liZ6Kk0!*F_)2^P62?bZL88|y z^jAL1Xi(^*r{CrB^)XYG<0+S7ZOwXUuT_)k6chU>~|ovO=&6L zk6)9~zB^}q<+JPYY^_wUo~{Mm%Au~b_;wo!6ztr6-#yK*U=)ZztWHU6t>hZG*PqVv zp8b$Oeu0l8#e$B%Sz$L_fW5&gx&BgY^TOw$AvTzyb%z_|v3KeV0RsJ_%8NAoQ}I)o z*%Nf~COTpmYUt3X$aHSlKFlQv8V63EIbjaZ!vI7c-`HB{>84?h57+&KPajkeO6L6L z;}$xN7e>Q@Y%UG58WxOxY3x+Hwh;~P?DR{dG#wa1^$rXrM7 z4W+?F`%u@xAht7pG-2cPEcIq%ih0o}k~e~(%kDnw@&8e;6f#@Vycp6{ct74Z_Q2s}9= zz9UG3m3bt2*4MZWR%vY(uXp_+m%F5d&WVAe&D~b*XqOMdDt$rzf{@A!w-Saj$7AiZ z&fOihH{Xi#>{bIRQXH8DHi)g2b>M0lWd5_GSPFKhC1!5KRf|N#&CopD@3j9#0Ywf9f=olhQCh&-9B#!x5 zhrFG{lP#uYF&$gY?RMu!Z&eKRHExx@{3xbzoVceJ1_ry>SgdCW%MJ6^LY3~90aBlq zLKfrKUQncslD!Lke8`|BSGcxRC^DZ9-7Xw%L+6%zv*tPgLK?d|IX87#(Sm%5E4Suk ze$IORl-mcz0w=kD6i+{%PR8`rf!FM_bkaaJw6gDMf#2 z3PL==l&!cijqP56)aM@I`9yR0gbsXAj{HW$P4}Z0s&;tQn6}=v&?Wlydn91!JJL?8 zsCL5bYBI})M}2R&P}t~cx6e>R&wv1=J6%YNpXNP+Xk_CHhAvuN=rmQ1Is2=^<*hJFLua7htSl# z^+_?Otn0Ja)Tadi1?5PN*M2~O9!Cdj-GT61MvA{$fF+w_KgE~t*vk4QAKAl**xEIL z^2)6cN?V$X3EJg5S6K&8vxx{+m8kU%#Vx{G-Xb}G|Fc4{h5Xx$rclOMcys# z-jBh)T0RHE*UK&GmA6RsbsaxEabq7oK3`hmnR}}A3mNK}P-T@}eu&F`puSo?a9o)` zp6Cp^LK|Yg3i1ZFl^$eT*yIJ1dvz^tW+o+1I4lsQO%^C^I#mx;kL{}O`@P27#TUh0 zHg?z}8ItDQ!EGlMI7ydT57~RRjw|IWZ}p(`UVt|l`XDy6J%w{dwfm;b2!TyeGc%*{<>{1r-Saa{AGR&=I#r#@hfPQp#V#=Wwyvfs zJ5-)e-%WEEwpFNzntGP&5*Iz5R7h6zadle{edSHpn1HbVERBS96CUOlz*lmOA;(DlZAQAyYe6ZGVp+G)0*O>ro*V%)wcmN{=} zR>6S25}I#gkCb5Jeo`@3V0xl5=%Lr^JlN!Wi#?nD`M&6(@`kjyxrdyG?gyh+?Y z2!*^?;C$AEP~w-op$?vNkGS$uSlhXb73s%_w`fI=KVE*7y{9)gbulP-{hq6usVn~( zbN-_qr`qjYsZQ@-D3K+?Eb3EO^daljWhDEXK@v>b&EnVUqnRR;@LKIVbeWmVKZ9i0lyhn(W zWneRGA=S_Oz-1K2cCH5Sn0LIGGNpTbw*i@5(}lg5^6IV6+1U=P{VW^%%F&Wk*BdP# z4@eY{18 z-QoO=r+GSk{m7{w_OtCVm`0@C z=f=Gxp>8GH$5*g2(pP$6u9dOwf!QayUP+V-?8|R>z8g^5lu>xh6cfmkU-z?8YlpFa z0;bAb0P%#Nas*)j!h&}N$;T5$(+hA6trHm4tbMn&+fv}Ls+t{b(_^YZ< z$B#H8JpxG)Jr8j3sJNv5#c}83AB?c!Gn1S^8HD(;;o z)$w3W{p%O=Ga?3&v__APAqPXqSx&9K>DfB;bTS;&~wndA1@! zfsS!XXtlS5ceJs*7&90!l?k~q67c`zpP7c7lu^mqHO5PWZzkeRLL*eS-1q;Ab^>x* zyIt!~7&P@Ay^%$TJ=Uu3s(7%i(Qri5z&tWfE5+uykZzK_Y(k}K32FN#e)28RgPki+ z&{rJgkG%u;sB*)unP~#3NmBXqM^mP4y!P~e6hraw;@YhJjHUe4Bd6}MUBF4I`y*oq zDHiwckscfzp!O`1-H#Z2HH$M~b_`frTDqG0xNbh25gC(^aFH4ZrP6_Rc_gM5PT+oW zPr&pgB!dksOFqk9t-}~x+|5~ZST7A;c@ukN2J7%VTqo_N(~{5dNdvjjt$EkB3}J19 z0F8sNleIAp`IIq^&nvt2ZECbfdq#n3Tzh)jYdtD*dw%=x%w%ZNL)fr26ZggY~DMILo+BP!a`e#o25`~a-Q)xq)k z5IE(Jo?d!aCBTmiev#s%>kwHFQEsU)ZH^=!De+**<0{>IL~t*5GfCoObJj&3$5gB5 zl~=!A){QE_borf2w_>%8nNMh*vGmJ`MTU{;!ZYfe_~g=yF%??}o3$Fd#C5Tmigsq!F6Lh$rB`$%2d3H}*5)hpGYiknb^A-uwyk zAsuxsQRw3jKdl0SNn8Fpy-mdckcDwt6w|)5aKV`Op7Eo|(`e;BF1e1=8bk2{dlWrC zv#1r54W5V{>!DT~ra0f8saw-p{6y+x#aESQZI*BNiWPj?dwyUSgrl8=GLMPQ4lr}| z%v6)vk;G+`%WAmD5dO@T6?5$iPF?gGiZVVH-*isC=$VRQ$*WeOonLo^y32Ks+VZF* zD*M}H@x7~)Abf1iif~KzTM^f`FHK=Nje`4SI-}~v$+v60fcQ2ONkx(Z!!VPA(LJI^ zSi4F1%XW)^ct)<^vkfl!^2n`v8w{UN$mMXE=sJETiInAlb+tL6kqkkNExk_;%Z17M zpgtxrd`T%PZkF=QA%$Z(>$#APrm(@_tMWI!Qq}|@KwfaTmG3Kn34E0{(ff+Ls9>FI z(K=peBwQz3*dskB~Ixd`&v0J>98)*HX1h;nfO*YO-Q{ zd;iI05Py_mO@$4TbX7}NS-5AIJ>|+7lVRXe$uTWYIaWhL<4;{HA7^{Is!R7ENmrN$ zNjit<_(^lA&{QbcR^WaKeP@{Q`BSplb)qFcu5P||~6@nLWw2 zVkd8kY++~_;|=(9-^=7O<66@PhsyyWuj_m!ysKD60)r@fj(+__zI}d3V!@)ku3Ls~ zgPbR`kaKdMWRqLIlD6gXWXe>OccsdjM|}Iy8TLy|@9h-O&W9akSncU#?W45LNHIfA zo0VPpO1F%+ljfp=jw8RejIszNbsGZV4=#3|>c?YfdguzZPI=lhKb@e~seZp_wg5A5 zZAUM0!D7^7+khL!T-+-3BCcX+>)=uH>`aiJ+)o@O9T--Tna;2X!2s&{bT#&ZA9R+9 zF;6`|xu@rN8mh0)74wI6oF07oB0Zad`6d55V)NjtNU5+W}}#F&zYV*b-Au@H5oBAgraA!^#~=hSB+<>nGWkVh@Y@shtA%E!hX2R+VLHv+(Vy@3X7v)-m|TY<-f; zCf|&nF&dcw6J>a*|2oM>1-dCCIl+kNpNS+pT`0QP1C8_Rknkt5-5M}&ooY4{yKgG# z8v%^cM^i?3`LrJN6~YJIcWd{>Fj_J|uV|a{cPC|N<*v2fpF`f}d!5>~GljrQ#O+>a zp?fi5YQ_YZ;3`V`nk4EJ>G${9udAwt1Ru+w(uMjc_&y4w5E)F#<|YQXi1m~0FF~HS z?kL~CT#x7fE&N=+dZ94ZNCgqN{%rH9{;NOf`+9dz*?C@)`FVRh^U5rTpSKZ`5kd0B z@1eVLa#`Z=3X+0BNHp*usY)R^_h+8~Hc7qPdA_5GvSUb@gE@6#&CR{m-+d!s} zCW%Jux2)!+Af=uq4qiR$9xJm0Y`Cm9UvW=+Smxlf@0OZN)y7K=&>16^*B32M2gWWh z#M+_|SGj_R+2_KAST;qv4J@b3kMABNbUp-NwmA4G;YU-LO_dbHYj;2R3W3$q5^m5H z##4XU>LP){8YzNqF*9Q=?%wm1ybBz=ED4du6_-#YUDNw?I3yRD#+AMuYplFld7-Pe z;%Z*D9pR)&CC||Yo8yyEdBLXTaD&<94L&MbiD}OT4%bW2W3_d6DF7|7DPD96gN+{fxPRg zL^Gf3#@w1%OCo$Bv>$Z^FUIJ6F`{-x28b1EK&e=S^X~l1_d_;yOR5b6k+I0Wr+GmB z5E%?V0Ye_BB6&U6qEZ8)b977Cx2l!etFjd0p6)KRW-3?-pg^e-kHU|0A>N4-fRtfE zrG0nZ=4%^;3RB3T8Mj1VXnzw%a3aZ@>t5NbSFJyM((<}~&>J5;$|Uhf%L(_amnP_Q zk_OWd)dTqYiY|-N#ycoLpeP}YPaIem+oiVysBMnCQm&ShP6edQ%H%@!`_P@36j2qH zgWkdP^Q*i{#ZSqCU6(&u5@MWH>Nh>E{7pW(whd;iBBG3b@U5D`c|f(5X9@Gn)3%l? z)yE0n{C2dT@P=y^zvG=t{jm(__>dgDnuwLBkjeQ{nvT?@T_rpb_$%P`@s;Z>X6=LW z-pyIV2}c3GzUjZ0UxW0JjqJ~ITl zX_R`UQG93%-g{E728%?7v|8idu#g&&#I4;vZbA_K=ibb=h0nCD^qS6P#d6)_QiU^Q zjGz7Qfm&yO2 zYmR2~PFmFZy*Ft7p(|qg_U!IGAJ*hl>y<@iqT?q&L~CtMlPl#QdsGCcDg1)dZP3b8 zi0Dyb;)#s#DM%Her!Rq_X!4I3XEOwj0wKIY3jefP~zgSq%l1y5{%^AhKSi~ezcR}B{d3v5-`_Fyme&472 zv(|^$%jTqT+$?1?naEGJLe+PKLKnVZ6B4M&gbkz&HVvGqoB%K!&G7WI)cbvnta zRL?lQH&?I0zhfC+Pf7m@MTW@!#oR<8#~caN(>XuvqEZ~^8HjDCJ;ErdrF&zK{!R{gP(|vI}L)ZbX>}lkymmc_U8e+GEj@-l5CW1kewm)ucI5zCHks zmX(FJe(ZKj&zjj%^Pxk!J?~0FHe6iahg(|@@pTp@VVxZ61#w!N<(>1#megDR{H4|H z!@o37y8EMO%M_(Nadq^YQLfLQMX$$l@|EOpwCWy3Zu}mywfZ6Sj+O6sR;`@C6X}oY z!jC_DFRSYfa^^s559c|UG%dy2HXsLga6b0WnS>-PvbhdIb4*$jTN(d4sO&XYLu-|2 zx0dPVLHYXVBli38kvX+gCJNde@rHpc^&oU_$A{At$8wJmhZH=N$(8Jsn+ zQ3HTF-G;wl@%QVjWLjEi>%=-~_7s}64gBk^cBQDFEHXB3J(LHY?YFPGmSFG8*JSp^ z)Swg%=SGRWLgXOx?|lw_-$y8Mp}%Ox5*6|=rtM=18f03L#)2g0CJ)(OII3(n< z-fu$%=;iCx5ZMuB8MYw@+Rdu4->fdLCM;xzebhpid=%SBhqRh;baE2rXJxhMZ;4@h z52bF&_h>0k^MTsOT1O{t{ivkD%XO(nTwF!(Q`tVJ*sEkvR|2=T9^j;$pE~nDd<`3? zbCW-YwDHReB^f!nNB5iuXh`sUy%+cV|2A78@D&u6L~;HfKo|~lI_njisVZBaP{<4z z7J^Ua_T1mG6K?_sg2uwHC!_%&909iw$4}^-f8(!3o3oY*HdCNeMwPa2I%?h*4La$o zHSX!MyD@JJ5*o+JuiNrzfO`@+2wtR7E5gWEQcOR{PIC!3Vwrp{VlD(x`iIu$M;P+u;ao&H^=b%c7OhBbVpSNkk7)4@&+0?B_##*>xNfWx~+$Qe=QLP zdO+kYljePRcfwY+K&=f6^zT|zil^q^uj8qCc>j0UdR^V=Cv31S|C}~x(}_IjI4usC zcmCTYVHf^dbM<`=P_5+zhy~`i4^N~${ZDP=`_?QEAUTMeWn}B65 zMf`WeSxpcXc3{;{;utPF7ZMtY-=BXr+Wq3Qk^W;MBc2?P+H!)UISCl1<)MZVrF_~Z zdTwrXm)qzhY`Vw9Y3XjFSh`XOW8e{bN zf(W25Mdt>h<Jb zd^zZGNIuE|5OE*gISXF`a7L2A!Z%)wzYGBRTTfWrq@Y*UKdsziM0EM#$-U6zhGTWy zCcz46V1(#3`80avP*`<-fEU?G0$|XsNybN_lP2F?19uot3fF>cu~;8<%+4S6M;IX{ z{0K(+-+eR@!r-G0ZCY8QBTU8R(<;F9^$Zu9cPK~@8?m#u9|OxVhPik)c7^fdR+NMg z?4J7paEBdLzzVftbVFlWU~m$J*1qv${H0*g1x%Ws`b*aTQ_8w{Sjy^QWF)b%vEeTn zR72;34_l`3!W9&<_i=^SJkSF_GfC3$zjQ~K*D25;MI7%al(ziQ6L>ol-Mu3tZ8%sQ z66l71*fT=F8nzUcNC|9HGC7ur)8~I#rpi+~L$l|&N*|%Y5&j3{^4SLVo0DWc{M%*n zJG}q%sYjwTVmhKPM;^g+D*m~P9D@O}k*VtL_XfdPC{CR|%9KAx7RyK!i6q5xS| z2CciPFadp*87i`;g8B;9#S;12;Sx8&Uq;4JjWObYxb;X>c{vY><#7xQtrjxa{t(E4 z^$|jxum+2KVdEggdj@`9~1?)rCgBH@(iY11>Bz_>FhRa<`!m1PZb3f ziIIGV8~rgPJFs%$645}iOfQJN)zwWd#;Ownm(tUaUdC;xO}EMy zrocN;0GJqT?}vWJEU_0~@FA{-(TABR%|n?~Ho*fw0?L_* z;2wdNuO~(#CJH=0KQt=?l38$aa*{#oa$t58e)lh%W-%&Fguk{!Imo}J;ue=caWMYx zIu?XSxH0*DD_nx~zsPKq`4sVw=Tqe06 z12D>fnxZrq9w{2GAvs8e@mH$vt*Eso0bs;$>zSX89R9x>w|6>GdpRRGhBdTLA)_P_!wt7Y^^-A&n)dF}6f)U_0e;)}SYE1(1 z1^_4D6nopfOu@J!zKFB7PO>WJ4H^|PBf|{ z?9RLM#bNYtm`NtGiqx>3?1*u=Jo@eR-oIX?^1ogrY!BUkh2*@?5kKmfBN5v0K1!nD z`ps!^aaB|WAo}Jfplrun|UR8B4>_3v^J# zN*(=!09Ke4@fb`7y(*|%#DJT1C!0r+eGEZpPPEr`seq4|oGCBRMqI?GN{>o1Vw%n;0eREH+_EcQFOI6+p>%lg;Kcr< z6be>b<9ApIz}B`sQbH7*fi|JJC%CgTA%wz#V3Zlh5D(k|7vuW}uq@a^CqY1hmjv9* zI~qf9+ldn38C1y4wz#EX@vl&6Zv~+fW#DiZHzn0Lrh31wu^bv7A2+&Qc382vTVL-z zH$QKidPH9y#YALOkWNBZbOPQ%ED2o4PRxE#036UlSMhmO26n0(9>jO1bp7}wS%Kca zL%cJ@MsKj=EPvo@s`tQM`0Ex-C;c0{#(mgNA^$6k!!daDYRUcy*^m@U1v|bg_UvzW z<0JuT@W0(x{&F6OwTxB+x6oqVat^q}1*Upat6exl~i~86{Yyas_X0(_t#I(#Plp#4R8W3>MoA z@PXEVv>q*HN3NdC%MUuk`FOd*UF7K$e@8_K0?;GLdIWA^;p?Y-#9GOD1BC~%6n6Y1 zPSd+Jvy6UKc->fV7w;=1QMX9JFZ55gjz&n3B0&%){gYULJS=`-dW%?uL@})1onGhS zvSreLsk&?bB@C8HjZP}0p#dRi9rDW9&Z}_UeRY3d05b)JpjdvPS~!y9c(5fx@zF_= zs54;75azjx0hJqz-pBs#>aa$7QC|h#pddiVYoYP9u%C#3cb&X)Q!lnUn0>C}{i!Cz0SoD~hPZ_v%6g1oMr#lX?B?kHIZU}C z1m1a}_(O06fq)HN&dksaMZaT0&?7&F*%rZMeOeHVSS@@k9>Wry0!4QKZ|pY=W{L?y zX_w|zQP@B_cpwB}V|@D{+HkkrC$?AgH3V^OU1Mg!2>Fh65nwx-jr-x9ZHsth> z0ty>04K6}}U!Kkqd;!MIeL$GR0tJxq(yi!$4@6+iF}7L*EF>0ZVfEV1*=+TCp#F(> zM;87Y?|Pst=`qm~5Y#Gqe`JMsa9t6uuRl(uW$_sXVdxYR7I>qn=%I2Z!pDeLK8@i| zWUC|X-4p4ZigwqlGB7akMBRP`|BjVK;!$@C@j67nJpZqu#5h<;bulDvO}%grfLB%= zpvRupBtu3V9Zcuvk)DWKRq&w7$n_z;R({C4Fu%oeBA6^u5fT6@)Gk{|=y&u09`83r ziqiX3qvIQypzQ#l`0*298f?w5{ijIor^4bdhY^EGbR>c<2B%u~abZFE7yw9Me~lehX`C65 zg020HepZq!#1$Y;3(Qe8f*#FC%{-7G5&8nb6rW>1R{<8%`JBf&bFZbx!xt9UTp^7H zaRtD(0D@Pi2K1;6+#&?4fD&8dB8-LMbw`4WI6I4r@mB#~a4U?G1mUKPY%hKiL<;Qph*Gay^a~)FZYW0?v;jgFBbK%zojXhyM z$^QRatMqJDGzBlw`!JLIH=DMS{V@})(l8c~f_3OgeHoM^;tIfN zfjROiLJ*_n^V~4>KI1>cGXj&bL`+Z%P*JIdEG|2yTMAsk=KUERc;*~NK#V|*-6r|| z5Rl;yo~uAtg-eitibF!I3ve~1zd8<$Z+sTULD|NPG zuRWoxQ$k@2e7w0%Wk*X2+*7E3dSuz;8L7+>g5lQ6Ee9tj7`gDjprqLFhl!i95L`=K zMuadgJY+9Vc3f9Df-W7lQvzbknH#!#af8%kHm&@rX_KIlB@yOQ_#tyK2E&gVkrqq1 zp+r^6U}gKEVbXiZnlQw28FH3_TFF)H?&_I7YF&=Xch6xR&iqbv`gw8gJN!7rC`Le) z6YtErlEfj+a1JrO&s~I~IG2|j0~THkT+r*V%XQKKVCzSCm(y&wLxe5*X!@df%m2IM z8<5{2w=4;TE%w@^gDc8g32{k~`8f+)Lj5CrH1kZP!cjW`Jos7F`ncec{>X1!Vxnf@efa4Gvko-OL+6(nIFZJ z%lvDEPJ$6yD|mZIBJ>zt$ve*7EUY88|6R%!$jabD=@bPov(4qg71&KCNNER|*RO3a z!@D)P{~ujn8CK=Gbq$MJbV*39g@J+yf`ov;A|#ZS4iOOPE~P=bl?G`peftb+*S1Ydz0>k2&U;W6l|ZseSv3Rj#rKgVa$I%4_RDgJ&jS z44UKMr27cgZ_(r4g@NcK*QC(PBF7UJdIKE?URCd?W1%~n21eVAVV-h1Y$y+mj>c3b zkna9C-v^^H0@>ZxpXm>0D}EaJ9wgOh2;yC4O?QOFP4qEb&Q_}>gO(#5dCo{G>h8H%P^w84Fpbu^+sE@(GJLmM;!0fU zhk{ee04to#tg*z8b+XsA@NX)UoqfOP!Ukb+>RecGnV$t-G}=zG4bJxDqO+~v*RQ!D z+%G4Y+MaL%@?A)N1=)5W_XxdHf6q(q|IZLe1lYzhb%7b&q@x!*Sj|KxY|_?1OK zf~}$;TUa(?8*XB?p7IKaJetzr4+}E;tRew_&^%e-M66pEO03kYuS4#HIPw!H_mzee>DJ<~Rxeb4<)(Hp(h(Hc@H_Rj&h=E`gm}OD07~=PQ{18gKZ$ zF}%QdApOb0e+`sl$(T&zhbEjtV^o8E@u_Ut??toTvx`Q}x}_IhW*=IVv{LFv%JSrF zmYoyfJ_5si14yDoKBi=uBXKieO*$GPoR6Igl%JUSS(ve-sr|^pMJJg7XCHXVS9aNhY}k7 zx(jB!MMepNR%T`!&@~@)`&mrDK!)TU$6eaFW4|geuPmf1=G)qGtS%*JrYQW%o6KdR zbX`Sr%!{W{gjlW(tQh~|p28mCc@J}chuooDx19K>q$+k9BAmbvzw^cXIay)5p!x0&+&a8s3u^6ZY6QAN-iEwp*@qnQ)rQvUmwfTEU*| zVLLzjd{fx|ra$Lk(QDBgFjh86exVfV4TDGAq_rqM(pV_}3u zq#L7`E2cGwGi&`Hs_r&0C{+Jbu_8zJr8H}_XL`W)0jMW-NuKP|+R)!KhB!t6G|Fpp z{MYwe^JF0T^@TGNd9P2WUyUh0K>-~VArWYC3!NA6-^zH~@b#?>59p_u-3COc;)76w zEX*C!%e*a!(wSC|IpV#*B74z5Ly)8#pZ-l!Mu5-dIwQ51-yTPvmR^1}5u~GENwPqm ztj&2nE2}8EcscnBzXys)Py!9IslS`jqHHW>5VXSIvo?&^j7<0w)q5Ra(DHYz%L(w> z4xW{VmlSW@=-uUt1_^UQPDa|C@^dxUxQnbg<+#PJ7m&#Tn9l%zN6XAu!B@95W`w*FfP98CN3-$x|8O6DAF z8@iPxm&5`c-3h<{+>S6(3nlDd(EMq2u!Egi*!^7Lx+{i5cZ#rX2n~1c;AOEbnK8GQ z!cmE;-SUxiswph3P$%*GQ(Z%nZo(1A4kXw|okpN^;H`HdM+SF5*pczjK7rjw&Idn~ zQd3jIU;7z(Yo5)EWUP>Z%K!}Yq))>M2?Oh__Xur3A3-O==(Z3${|9T#Bte%7YF^8a z0F3;A3!7H;6R3sjW|j*}k4YO1rDwDpx!ojL5L%g{F0Q+!K;d;2{+fi&wr*PQu1`i* zx}DBIYbuyyST$})gfq}j3D%iU(i>}-zs&#dn}5GTv*RA`?3;|Qm7x_=$}xd4!I9sL zUuleHmnN%{b=1lakGvk6Qlr9g_s7fy3d;Lj+%k8Nr9nrRNj{l%r6TbX<%--uzLs=Xc%pQsNp3Ru9(hCcwAFliR$H?A9zXxNSOaK6(T_VO2iccb#2f9E{SAMK& zIP9Anlq;)`>%kaz42TwA4@osj!|HDdU$H`2M51^tTMJD<7ej7}h7hWFKoGD7$riD$ z4~EJYA;GWsGt_$xVQD)CY!8j5q#D&gI6dXJHRr{RdWIC&2?&*=;?fCtM^YZElJRkc zR%2K$mVd@}jLgi8-izd@WOQIDRvJhHjFXiocaPS}2)5-1*VDC!Re5(9rnnBhFLge# zhfkh!9*T~;px|}*HVAw@?QtA3>-VVa5-Qi=qLkI%TH|hJU~#p1QYs5tCThZ$^}abt zrRIRGjCJz{1lMUjFt~O1dI9Nq%&Hb~DL|1zCv4!_omII1^NfB&i1MQ+>{%qL3RARBtzu8lmhp9Hf?ie)MU)zU7C4n+jUFx_ zjERv)gR%EuuOO{7_*X&?E zaF9~PmtQq2A5>nYR5yP-BoqDxvRo24w^TrAMB%;F1sGEdA2G=TQn}NA&g?>Qu8P0| zriVto-RJo=RiV#dKHHWcpqGaIZ9uN*K2-fXJ7BB)J#`Z%+DU?m-Ui?WyVQsYim;W^8vHF zEDY4Ez`8?hMo%x;MXfP9@D%p;D6nR7%lT|$p%LUaBS0Th;?^6L2RS$#3_9qUkQke2 z!|JCaX_UPVl#XO-RW0b%u(9}7Z3OyE^}$kM{oiW?qDguY5l@B7fY);+ zyM%2FdLPxjN!x&|!+q9}8;f!o!76I##-S45ip)*6&aO6|XD6pwp?eyEFSA z`Rt(C#Y-)yLz)Y`tnYqCp;JND5b^ z($5=mU?dV9wt8UZ`n`Cll^5iPH+tsIP~a1H7Sjmx*n1uOVYt)tEKaEjj#t?k%r)M}_4p8YYR`A^M0m<$YFDoIO$pHoKciYWPXMmBX;~2o z(H+bsOIqOK-1?H4@<~1~+CugQn7E%EoV~f77mU#W>ht9Afw@LW`cRrxt}{KYYRTo7 z&w@{$HRR-~QEwK3H*=;=KYa|UBVgttnC@WD#n#fKWS7f&Mm;UdXjL2(NwLc7Yo#Pf zK4@xbsVh3uo*1M{fO}3ripWizKk>)<2dq z-ns^?06sLgS|p^3%v2jqwn5`EsV*3^(3&Y7>F1`Z^P0h~n?oOX&EjP_ImFMvJjYhR z6S1xZ0x$RX{75V)1^`5?55t*~1+{Wfo!YeTNb0$KAth`M9W2&W0r0Lk=GuL??|7BM z`>$uRe#rL+brh0?N$vrR(PwWj#@r9`bORCR^EeA&!y}~uSe7t~xh(GeiW4x1PV;1G z#JYJx;Cn0>BRH~@9sR|$w-n;gyq}1~dLr?yW$d>*r-Twcw;c{oB!y4k6ZAWP)|z0& z3<<)sFFSO>x^!TQ)xTF#Y&qFwhwtPM$P13rQd&D7!7(eG4>t66GcLhRCge-W#amlb zTqT&V%!M{9WT)S^aR8^i=Fv}qTMFFhv!TkeaR-q=q6aha7ZxV4E2to#0q(<+!<3qB z?AN{jQ1Qp+WP)HJl0N8fqjj7OWTI)ue>_#ya5&zy551FU$pG&6sD}^=nA)yR1`Wv8 zs`;^TJEzdyiH&2*2y)@g=>wA*s;U6VZUr-az~0VEZ}J9dSOs)o&94_f#^p-7QWU>x zTj|a`26otNu#u_abz!o_hb@IvEq5>os|5@X5a#NZ-h-v%zFl1Lwa74AaqLUQz8Z3=TxLA5YX-qw#MIhm!kz6iugnLn#qkP;0J)eU7P*)#*>d4f>>y5k0 zPoN{m@*+PLGeM@&At`5b+iZVYZ?5?UNjh7LN|L22oljXW|1)i1r5}{wU1uJWQ*(RA zKT|wvPwqm#AT-)y^9qz$iT;WGaU1rZ0qaaZ{gEwOXtIUn=5Dy&b=@T`Y^1|#2@0Jt zu~<;0QtA$g>6UN)_^*OEDzLOH_PX6uj+d_8s@>S`WirsgGvw6QxkbY7rC`8*49Zvu;_OH%k55r zzQqAK+y;@Ca-%^Cs72N@$--7=rRI{F9Hu5V?y}nkQ9I1v5f9l8t&~#MjV6L78m(fa zp)uL7X$LoK>)ae{<^c&Yy@l-&&>BZaSXjs_gVtaVs z$MU-kAcB;Dq%{Z{h`lGMoe9~#7l0><0?Zic%8vyIAPKz)p)jl|8Q{bIivSOjy|psEa zCrf0Da*dE9@E{LfegRhZpXQ5~H3s}$|3tR z)#F#Y@a6wvWlbr^TY6x5_;kBB4bssM)AY(=CI&#Z>ELjr=N<5r<-&c8%~lpBn7$L; z=C8NmS34-fAbNxXru~ODPsiJ6P)~rny}U`?iXQqg8}n^e5kPwtm35!j1WVSYM!0I# z-0IhtfBw3qr9plo#oio;$yl(la&Q~m+_yJ786ts|?{5I#kPOfTP8YaOHolGG=R^ve zZ_314F-ey8j*6eP`kWWlav`);C1f6b3Pk^Ox5RMU@IX0UX`ZG&hq;U@jijhyT0@E= zNRM3b7d}sWv=V2azuQ&zdrVsv($N9J6zF&Een72V@p3I!w;_RDFxUFYYI#AZ-rA=3 z#jjvg_F0^6M&sxQl-b`v58Bc$v1`~5AY(X`l0pXOU)Y9%HkVTy^c%*dYkNm*fbSyg z;`yc|z+r$Ze%@T1QJ$X8e&|Qwz{OT5SJ4>-LT;SNoCYutz7#|s+dlaPOoCv{f~)< zZst5*3S(e-#KErw;Gr0EdhU$a5E_lzGZ1dR`O>U?ga`h;@1Nc;tJ>`feW1ktATcwA(n#760gT$1KDzQvfX@O;^Ojf%(yKq#M*wny-CRX_|+XG}D&rXqK#RCMyOI^7j zHz$ZOMCtW2_wMx6f9=dJ1#?b!O#_Dhr*)Ti^9qxO9o)j z0zp<>>mm3(ALyUP^ORLM-laAhDFnOAiCS+yC@&}0kfRi40G}NX%g+16<<`CZ3tDE+X#iW{<9BJPU(yHm#QzXS~BzO6#eIqC!T(pW~PAw%ckV zy0PHaqR6pHe4V_a-NlB{gXq@QCmfF-Yu6NX{braL;AQ_fB!ta=A%Rrm8{JiD-SPq- zuzK``aj9R(Gq-LQop0Q8jjs~<-tI5WyS0>#@Ge_5ODsCQ=ufx*P_I&#xteO&+gO6s!VYbet zQe9J%Y;ke%iQc-~*&&6lF6i~YYi*1_n9k!*j9_CRRetyFw_v6aQaL&`i)CHB{gC86 zotT51>h1IILPt9@uNAqP3 zu*3^e-cC6+RhbYQ!Rc!_-+yMaG0ZIDAz(f4Y4c+Q*)HI;6R?tyzl&~e5si0wRLwW!Oaf+iVw z|+1ss8WFL zU|BVl$#0mNNCO>a({2<3zT}503`ayQ|Low7;trHK2e)Yl82m-K=(4AjRXz0M>=o$aJg6aoC5s`vY+T5+-YuZPT%H- zf7w?F*Gq7eoOz^^#AIHx{ZS-D69N5hH)Rw$91Zjx@wHX9_Pc1C&P+`nk9rJ_wZ0xI zU*}^Zc26{A@2}cW2k)QN^m2Eup&`5V>=iCArfrnL^aE^R6p{+lwxF*6)9LA# zSW(wm2Q#^K7wQ8JJHC;NM9D(ie2;s9*D<`Tul|xU;q}v|bmYAM z|Gr8VC1Jh@cH2*8BGZ_xAR@3906yTz|cFcYo2{+Z%*K%y7+Z z#7V`xwxuQveMilcz%&;=GB*C1$%mOu zeZ%}RM{ivI;n1shCGJJY0N zMY`;V-s=~)PHPjIWxvkVIG8C2&r|@Q`eOU_fw9;XP`Avd8_oy(Y0h4L|uu=y$n^Bgbwq z=6)!|*3R>YC0>jBn2=S6q>tnLdHxTayxG!r3-MnYFfuiLdVaC%K_z_BDc=GWI5>ED z@A&!o@w`{Xm>cnQ=*&A+k04-)CB9cfgZKXTT>H>W3g0SA`)QeXoQW<3rz^Sd)PTv$&w%sw4P zS3I|^QXnNb%|7e^s)rhw4NdD!_862$9_~TA6p348WMrr-J!w311{tSVu%tJh@bo4L z@WQ?A%NYbPMzZE z_Q32U0z8i#-+FsiWjE0cp+WgPCd~-BU%|TPqUXo$!j!*L_dw&K!maoh^{yHrVPX6t zTc=eaOM#;b9<1{6D8-999;PeD05pQ`D;T7rTGwR)GseWE5eEm3tM!J{WkM7BBAVAQ zypi_>NBFQmT~NP*<5myqPEpjL}^laAH{*evF}n>IJLh1%ngq>0XES z^{KF^L;V?qES8J%h0F$TWMt%%J%b^faK(ew=~bQ~011|6J}1zJI%XRCydwFzFR3AG zukj5ENdYh-;bhtZjN4nh=1)fRke19pUAReK%cXM&ED(7dkav*7ojTMy!!*K-F*AI1 zI}ET-QAmIjZs({1z09`nxgN0<-L+1;lYTI8wkd7FH!L!vrR~D}L4RS`9w~-OC=nWQ@O8vaX~v zTCs_YQ&pR-9M&v#uBEoAVUZoTA4+!=N-S#Sd!g^2C7->iO zp=j*JX5wK)aG!ug53`&3aQoJ2;Le>t)m}ehj4DxQR$Bt2_Z z@i1G0O*~A9NKP-Fh@JfEEOR~mom29nC@eGCNcto(XX8AkPBwkta9>v1BQZgjWt$J| z=`CKdAk$gWI88!)Spk{XN8=!uopWwqj5c&w4rvF+9MU(G=?i7d_p_2yn%YsHyF)Ja z4O$wP(R7Hn&vWEy*FK9vfe-IqKNhU|MuZvRbp)-f@qJb*+8$6JcG`{7?7;6FJ0Qf5;K3?pxd*+edX z<8lu0w4xj9=YN8XavdEV4SIS0{yk|)Y3ZPt6vwg<_yX@q68Gc@U)a8#msCkzzKkGh z0>70A*0(N@xEMjU6Hdo>0}SorwwZ7AlAY?NyvBynoQ)y44^1e)77KIs2?(+sYHw8t z@cAQ@yyf1*2k3K=N{jg!V4z04lJq`@tAGNG*SpnLIc{r~=zI#x+_-%zc`%4bJ9~e zmp_l|T#oS0Zc&H>S$5`&;*yS@t*x!KN2&7~{>-{6ACwg#|GuIkNR`gnzf7B4SL z6*lZPboGkoQD|^iUo?vTTUt%y<8kWh>MwDg-SuFa%Ns`6*S+dX7W7TBdHYsl&6yDW zMkJ52^(#iaXi7J$dkP{?#H{A(?-y!UFJ#`UddzmSohQ^}P&YTI!UL$$3&T0jv9Ouu zIBI*){X850FhcYl7V#hYK2Iwh`d|$M{Sv-(8W7w!)22!wS(vkQ|E>QpA*GLkR14j^_&R+^0 zP5b_L${qP+0tUlWkIg5}0q}LcSCN$itzydm(ETU_nKVH6J?}%LO;+9qe7Z%iJx>%1 zrfmrKuj(l}e*0`LqT3SP`SNr@bbXW_dAk^VYVk#@nr5i*&D%Bq2R)0kbu-?UsR;w^ z-M_q-_&15CI~$(YzQZAw$Z>i#^<2dPQ=6ga*Fd-eAZH-%od7BW#XV*cVi6*rX`?@v7v8@` zhH%QMPVci<^$JPywNaS;#KNozLlu@&)hGiq{i;soN|X@WhJoV+*HP>rfUh2E*B;`) zz-!ZVNeiUm{QWu{m9>mCQE8)j?I0nZ z_Pw4NK`*{js?PoDWyX4MHP&ZZC>PWV1%dXbn5WBQkGmd1Z(~5$uiF{svew1{P1io_ zNCG+80kwns_XPu)yu4L|uFHxyCgkDbRBvP4jc^K1u5!Z!^#4T4r8p~+A&DW0*{El- z0i1R1QC2D{i?N5-_p_8zc>3j`Y?_rqH5DJz_6c%~hEs?qpeFa9+qjNVvpkI<@tq1f z190u$F{Eu$W$`Cx9Wfq6`x7lVQugQ8LJX{?_QpINyoxbmbHYLtC#^Eukd+_}TwF_o z(AwOZxBVj1hb)@tpz9i<>W@g)fHBubTMV?rZyHAGXlaq#_e)Ahv~+bnRkJ~#Lp9=i zX$Sip-(7dwou$8K7Dap>=UsNIIG5AX)JSPm_~Q3-8&Ho0dx<$XO7udzg6=&Pn_pN+ zf8?+c6+uk?6sF?W)Zc{pA`u?yh58PCJWW4}W(=<-_>!}u-H^y#y=~y`SQstPYQ2f9 zb=+n-lo%27=@A7;ap*j8ymSuE!b@&8!Ic9ko$;d+WE;f^SLsk@VNMR((m8Di*6vb zDlO^Hds-HMH2VjO<7<^XIH}uu#>g1Urb8CaAV{{_mqMjgVa}Z7JhI5CB+N;1Sh_A~ zSg)&lnLA22hvCIU3Xdk2-Rl7S#k%nk3ds%o8Ja0U{o4!80}zsy)>TWfqw97390ec0 z?ncd6$OLWpq87P{>?ecqb(O@VwiKgM%OF0*E2s!C zAQYz!1C~S5!7gL(AHhk_O^q=Fcdb%t+vZ4pCWYMyzlI2m#RICehQVI zAA`2TQ)rw)FA3#bbT-)XC{Lg+2)Qd9ky4F#SZFqs)=1SKgqfdZuu{gHDhs|?%|N6v zp|3v2o6Uu8s!9*-90o|5!qJ=(nVl}rNhOJqjpRVdVHD!gDRoIOEo=R8oxjOK7Iv3+HTJ)PDu=fSeG=i_;gbz34jWbetpMhzE}78qnC8Z z2#~J-BGex@p6pJ{&BayBIvW2?8Q6KaJr#Vk^qUyMAg+G-KnR0wzepv-v;}Dugh4c= z%@Lt~LW743n)u&GBo-Hk-W&M0wU3)~WzpTO{;ZeLxo3Z5BnQ69Wj^vX9%dJ5$4Jpu zWV3k1i!Ot#aM#_E>#aNiNP6r@v_|-i)J?s@BI940=qmRAT6opB6jD88rN(R>j#< zJm3CV3PI1Q8#c$;DfBlsZerk}Qt2^W7pwe6na|3X$|@?D)>6YmLIR?rqa9!SDte)S z@}+sJB`Y&euA|wXmSnyt_p{MYdVd+rN;PtOf7!LV=%ow_Ov5;_7GS7Z&1`-VO;34fOTJ zV$v2gxEa+@>bQ3VStYKN|uP-?m2@9^ZvQLXVn;WD3j>j4o-2bPyMLbzCPL4W^QUj6I%+KiRo zaSS6PcCH)40;SuZN~e(<&kx@ug}eJCU{-%zx$M0O-t!zqYquAQAG2yorutW`r6KA% zoC~B_6(oqno#EkOKN@U{VUgm3Hxus&hd;}GEaV5;Q%^Eq2<4Ub@b1ZPs{R}{b+=54E%)dI%ls)@+T+VAZL-Ua=Div_%CK<9B%gggW0wR0ss1=lm{(u>d7IGA-bN({|_ znSTvXUgTGf1w%CwqwnmUgQ&HnA>?*y|2#>T=ID5D5i5@EZH&X_xoT^BR6%ZXxJlkG zv$Az$-{5X{Dz`AE=(70phd=%ooNP=QC%6l%>KbUB7YENik1_MrRL_woU#q-&IrmvP z*dWGGJsPoBGSHIkyR4s4?X>$sZ@1d@q?DSTzT7gtW{;y{oOax}#`)z%eL%=8`E*%scjHPABgy>l<*}$42>#H=reO2 z-^2@{(ce0H?sxJDsuRS}@B(Eb=daHFS-0~;-{hnwX^1c<=M7a=Ri!<`8k8sarIfge z(Z8W=#ko8D!{%}`?-w{{sIMCuSgN2et0n+Yn3^in`Rj1_`^AY7g!y|OS?u`80(0!s06ZoCN9TG2?uq_O4`|yV=h9NDAX!G;{_)AIw(lD&K!gkV0*u_evqg>e{f6 zu5%q>7UUo8{z^-?>s~@!T!89s$Co>~3&s}VV<#Ju+0u>c;@+_&kiN>Oo=Oau%QD;= zIP6!6&+y?(-hVNQZ5eAL{LvRhoNr%J%(;nPP4U~*e84uZss6a+-gi?Hl*lMRi45SI zZHQG~-cdxI+RBaSk($qs)71}BhA9rq*Ede2RCo-gELrk+eJAnPdy#j?BmqLGA}AEl z07ifa2(m3zUE!8hozE*^eeMAVBb6=Ci}_-jCtnhwQkkzLadE=yxw{Kmh@o;nf&vc} zdaIL*&d57BCFs_Lkp>Z_#be}J*3lEjoo4ZQZnMJN&2d>Qu6Y*cQ_d%CxoHlY4oW_G@Ao<6EH}E+6=k#A_Iga2#+kKMm<2^7)!Ge23t7A_{!dQA|r} z4EPfGqF0r;wDMw6bFNp!8X6j;YDF*Tzs_aueunVr+-BU^mcKeKI0)QNf;<9D&qg)) z(uUe$r{191=$H4k7S6<_EGx02Mfrt<=i-l+-5?cnH1?qR@mVkgO}O+vjy-3)4eV?$ zzN(ueM|Lwu>0)c2wKWTYk=+Yx0~xeD^!5>#$s*lfg&+t#?eK(=7~@=t-Ur}6oT_7^ zqj(ve9UW3X>>F|5ztN#IEBk4U3B94`$Uhc?N#shXK0-YNBoa0~9(;um6XeLwVfmEWSFo1sAPe(~f8B~%DuUt2H zcE2U6yAbw@io~zAb|u4k=K_CbDjy`l9V|S!l96GUrB@o&o2)Jl5^DBq29V zAa-jWgoErPxV5#F5I3hn($C=r6TSbXBS1t#p%)9j-jAf^pC2$;o}rzid2wEay=>dn zB4#>3HKan(TyN%(V!I(55rA~q>{U<2;nB~53hBNj0H<972E>?}W~k9fLxzt{jR2^w zx0xciXY|Zl9b{?={%?)Q!Z-AQUW&h`$o=5n9`JY&)pJg~Tz@85DbZFvsH1v1v`3;M z-1`RcIzEGLv$;ku425KZF{R6WNhx7j@t{LK%HY>mY>cdgx$X~7LNXY8Jsf;(leb$Y4ZbEAlZrg{&fHwj^D)`~o-tB{l z!UP-i9WL>jMIx)8EI+cD*Q9;Mz5v=p2Hm0`$1ysr8W~~Ws-;s0SfZd@`A(-L%cjKo z*|*Be$jJs)OSL{`PQk8iO&5{Xi9`4uQ}!j>$zMs5AfcHXY3lYw0lfo=LtREa+o35W zDV05y+qp-nLa%F$h%?&%Bio(aj4<2wWisuEAR<#j3@MAXanGS<-d7}W7M@IrvQ~MhpSU3^`BFR3Om7eu;8-zipVQ0 z>v_GHdla|vqO@&TSN7+{k{qzf#eX>|Lm6hs(eAPtmSA{?&s)&^W*Z zdU%^}z{i#{J6{GB$b&sc$M3G#%CA0QM0D&G!kv!fskK78AiiPvn5Nx?4J{212jeTG z^10omb^{rmzKKcBaiz3$CB>U4e93Q$z{yH>jldB|;oqD$z8UW8i97pr9CBR8d;b%0 z5a6kf1MvU{v{T6Z{MBJI<{0d&x(9@x7<*O{c1bk;4)4^K`(yID_9Q3NjO$X*pFhWX z+%KZ-ggd$HjboXR2f8 z^-r;QGbnfEhMdB&ey1fIl>@3l;g!|Z)~zk`A5(&^$JUC<-<6AJo;0Ll_R;cM1_0wG zjYD8*yP=dCr<*;!G%>@-NxGoJQU~eYq*;;0Pr|Y(%$IPu@|EZbi-8n%5>BG6+l<+J zyBLU~l-iAxtr--l| zw3j0oTKo04+nZ;y3WkDg60dAOTw!$WH~&n5*~N@Zckb|&;v~aJq}J7X|7uz@{smT~ zIXC0&6F8@e3x~3KOdpF=Sd$F+-iJa*#Y^4}YI80^@0oc8Fhp9BWAZzD1D%8N+|p_G zI{}i#-jwERnr7a$vS$5vXdf-lFtw{c1l7#@M7IsQ^BMe=RIO!3Z%`u;bJyCR(aKd0 zbjhl#m;puVRXc@`))k$Ag>3nW)8WxB6FT+}o1w<52Elm0Tm%pv6w*-{{W6|7RgSd~ zkE3UsA%9lGD6a%AM)A7si=+p$FNb;>h`f_OXHVK%)Mm*+u&HN6TKDD#S|VGYL(X>! z^BM=zEz3Vq&hnssC{%AgNs)Cb&j#T0j%@kvhn_IHo>wB;>Gv*kC967Mb8pVi?jxO^)*6dl{x^gsT(Ir>r5t=s*3)W_H1r>A@c zD`nNF-A+3lMX?p#;F__*6o8^WqwQQH5gg0fQ~QLsu&**#x~~-CbJZ)5JF6zKKTH6Y z&DiYb+jJr(BlpNr+og%OT=i?HoKsMr7=N=- zkUdbq<6|rp4^3|#d7IW#T3G6{r|)a{y;|4{4qrU8IaDoqNMB3u#(zn_X1 z&2xob|8kkA-a`>r8EQ*rXAvBm@PXUsiTxtRAAxq29#eIilY3(E3pl%^ZER6x!~g_3 z?V{7(W$KP8*Hd3vCQ8Gip{gP#z5UbCv`l(A#PyFq^dCLgv*7e;NkEW=7%*zcNqQ`? zjb`5^Bg2;#=C`+WKOIU5LR_p#LW}v1Hnj&%!Hkdi;}zZp6Z<#`dU%T`8aXDiy@^s3 z+rH}B5N{|D#c>y38?a-3XhU%@5UwHJv8WaqQ~b#6Be<%(O@&E4iO4E;fWs?+6fexD zz)Y)7ru9gF&-+!xgIjvd1kD9jb=Hm-4Evi+m#Hp`yY5E<5CsY zOM07y7F-T~ewt7=I68VS_^P;C^u7FW^CUg9$=5}>ODzhss%mOj6J%{|Z7oerqIct8 zT~z&2Gg^Q;(OW@k$TsV|S-}6w`;3i^EeP7N{ZIajH6$X5?B{_^FJr1*4*UGh#knD4 zmQTg36xpG_h1=rVih6&C@c7N!lQ(>464pjP-uf9>M{iiZlhoGF4-+QTln=tcm_4e$ zQxAs7pO6RiV>l(kk=~g2&@+nhI-9|M!qYSw?NSuwZg?x8qU<#1ysNMb?17YTIY0mU z$mK8}R6i5Vc)wu4SV=wU@U{=;8_jEkLF-Bf!f8@`UySHFvKhlggE2Cg-x?fhxbrD{@UxyEKWy!NZ7EN^UNgAGIR zdODHlRuW;NrMb9Bku2uRAwn?(&&-4A{(FKj<^zV7%1^q&LvV}s^_pIq6X`;!G@V2^ zD$F;nPh(ev&0#!YWf?F8GuB~8qK!>c2k7l)Q`pY^&0yjTezz3{EHt&;YM*sOAag@3OX zJoC!{at>*&XzFM-CGqZSP6B?wPCg0r?1_58^Jv1;8e;qX)G$MYFy2wMVY}*O0=GHW zcD|rQXgJ!EI(62x1y{B&MMa^-;nV15%m!P5yoA9+7=30EcWd@GBN`v2pP+4All7(n z`x-J}z+vVHP>A=Uwb~@mMflJ!(q#QTM~y`{(vcqLma$so~d;T{`BcK zhmg=t>udv9&le0@K&aeA88p8TN_;E3BlnR6co44H+1cqE8yi1={#59(?NR`=HlyyO zA~cUiKd0wj(O0EzutHv^ZO`cS>lX0u7g&64Ja1@gX@)pe^gXo}kT}9|4N^F3Ud_Ax zocDTUw-Pd5YWOUQL-E!vybvS|(-Rd8y-Y9mcVDuPz>tU*;D7!Km%c6h#be^7A(5;K z`wbeEn)kzA`s>0L>&Ojfm31K@{Pm|){2g(``NsI*2gqN2=YDYcZNuKbus_*11b4W` z#QSvjbvzM;77pXLS`m6!*tF_#0EF>8DcBaHYa@%gju3>M2l+E78QTVslHQ*B^StEt@ zi<|?uIFV>spy8%W+B*^tLwD)eIs5dqO(nyckWIWzgZ5If+QCmtE&n>5^!4?dqPGVf z^YZe%&2bG34D|K%81Z`I#H)T$*%boe&J#ub4_3@2lW2W3y@|iBTQTWiP(L|LVf=#a z@Y;}-@ImbcN2Ho=KC!In=2I%67eE>7ttXB3v0L!4wN;Xlm9>~GEUYI#a8+r2 zdz_5h>qM*emV(oWDn5Dv0vAzLd^b-tl6fC+!+%&VJ(^BIE+xZ?(!7!Cw#ZG z4xO=1`&4ODJ(anC@1_XXtJZ!Tph?StcXm=Fp?1;5cJznG0V}djsZdUXNS?qYvX4#S zSBmzr-KXuRyifKR=9Zkt_*zZdqlFJ-d|P<3OK(Z!e+jDGwp=8e%dLEGZ&80+4H4ew zZe8ua#wj~k*}7EQ|N93=>(@_iV1lgXW7p&2m+d|-0ABQaTpiISfwQrZ6upDvkIE0% zO6FiOn-d)?Ew%o)_SFLOmWvJk2Mlk{Q-%Ce(ZDmTg-+Iwz6l9~Jnnuh9TA<-+=TF& z9mCSqn(@yE^dx!p-g(<2PB=A#zOqLV>|Z)3?P91v!ESfPuhHz(^2esu2S)|1o)I34 zBF4l%U)^zgMI6RgR%yggF%9_Bi)^WY(|dqocm%2Q2axMFP1zdZnUzha5`)d7LiO?; zoduH%rxYzBeU>_$JqyNrenLR?vld0O?e^e)v?<7ySW`V*6ZR@d*go)J=zTQL_lQb# zWzBjHpJ85A3$2uy!K~SvN9eQ1dm0>HfTj*gSrDkPI2HKGsM-6H2y4ab+y&BE`AzLj zb=84^2B%NKG@PH^(w?{=(J-Ao(EvBPZ%bv?VK1VVI$}K_;(B4j#^vTHn#e%F%plZo2;PHv7~W-mPd9dz`u*<(3;ZVw9oHq~djk8y%+`6vx4g}MUt|D{XY%ac%JRa(6!NLDgl z<6Te2v0z|-CNnc`h|mh!?KK^ect^uopXYlBJsB}HTUPTYkEV>x%ZrEOZAU0>g$udg zIN=!t(1JD63?x^z@pR{}zcvIs&8B68jtqXN9qQcwf&)VVPeO!&-o3$cIwrnnh$*~- zK$T`P{tlNLjttzrmg5so*ufJyMgrWdpoG9NQ!()B87+GKcL2;t1ZAEr2%R`{TjOmy$&J5nv1ny}-wxrC#e|yiYiu+&NWHusMVz$wmM;!%qapzfoOMkH zygD0y20w4Pc$5|#1I%p!nbYH+_uHL4+x^*Q$eD9CKv$%`y*-z?9ZOvYk6Z<2Q_zmy zw9xd)q8}B|ZQR5?Yd_9+rJP%6zj#5J<-eYL_~HMt_2uzUzJ1$mBC?gGNJu4n#0c55 zRE8`=Vp3!`ghBRf*%BowvNN_2S;y95mwg!wrtJH^jIq7vMcvPPKks}0@%!WcWIoq* zo#**IzRPhO=K!IH>5uVj2J321aju-(uifoU@(mS<$;QS;YI|GB1k>l+0~T4mt@X?X zO80h$0|h-QJUl84J-HC4CJ}oy)65*wu`;kqJr84X59jE%p{oH#=T9ZeWCs*OyZkn^ z%Mmdfd}pHtomFDP>elxNm|TuY)qNq% z#lt^)%qU|QCfLT#gc>pBB`2`IUir~ea@jSU-hI?jH#5h&O5rY+X9Q6?z;gNZ;MOYA z4m!FVGKWxyHS3!9%}rde4bJ0n(H_>`SR@#A=N4@xBj@{OO7pE`i8WoMPgd+$z)!6y z+4{`%4-4|YAS@p)athAYOgHK4_QTRDgJu@BbMzueY);q52?vJb_ zfOB-@M;9D?`MgnM`n`>@4q<=+tQS$vVkaA2%@g-S`KMUC(ZZ>Po!U1IiBKNJcA~WT zRPK%#Dkal^Dw_)Hiw$pH!FbHU8N}7{jo%rK`zAH(H+4YqR*)|o2JJ*;XeT-ieCa6d z<`c>exMJRmaE4feD_835|}^OXDKr5 z&PP3j&4wN^`CYx5eet1A*e8tdD~II$#r<7bc_lYNqbh#TH!FU!mu0MOGzWw@+M3C9 z-`0M>5u)8S_28Ow)BCrpvl8ardD_P|bHmkj!zLA@DL*DiI^Avept*4Kz7lrDo#9lb zKLs_&avr}1S&kG{>Yg)#Q5wA~jd?uAzE7+lA?(c)YHDiyHA^DMl8|QeDf>Dd)&}Gq zTdU*gR$eRHB3O`GYu=UuFGhkIbk4ex0W_D`PqVVKiw}S0Nt^+*C}VqjO~7)}Q@@3w z88J3Wf`zloGC_A~c zh_ci!exh{0&T&!*U7gx4Z#*DrGRq<8bq7a4N6MU4OuwF!wm9_5N%mbwrORS`=^+_* zeqk`0lAemozT)D%2%keH^-4cDw~&o^{d&H4~gP!6}L7CCbpsmp?b zlG#_#GG~vD>N)p#H`$2hZtfR5k#)*XX*2n;bPY2AC24Kzd+^=m+QrLcPTIL44M{#iFPk&Wyb8#)=z?jQej?KntKs6c`;|M@m0YuLS< zqYGGHYq&4axdj8XC`CO zHzEmxJ+B3D?P7x0&@I|q8}#YhHcF-Sgn$J$=n*+CLV?(2PeJd8%A)-}u4GWQ ztl%W+L%xZ_0ci&J`ttV-@UJrt_aoI19KMagCi0b%Dh%i0nI7__7%l?G8bj%3GmvJo z9W6Wo(qu{~Zc2G0hyzudEnh!dr%Z?B(%q0bX(ziquMSu#0D2TzbD%))bHqjBdt7z9 z7(^avfMW9Rx8mbgb|STjsn1O~K!FcZ=>J+k|Gcoev`4N8fzRM^tGq4|o?j;PY>d}O zc||VPJ8a?|Cfl6g9W($D(0?Bpd0uayuES+lTCjPjxDtu1s}A?fpd=>{Ja7_vVbx3#Rs+8iNxmuYKD==#yKv_y?_6{=AKaH<%8S9E5Nm$ z#-MWlek)_N>tu!Ze$@j*Lk7?%|1O%DB80@MR_<=#58NEjo;_PsH}S|H1gN5KD(2vP zCUZb(1PD0v#(dL=+8v7uK;@Fye;=s@uZ{%cj1ed|22Lid7rU0@T=0@Xt$EfW@r$>z zrxeJSl^CD`qT&3}h3e(OEvg~bd?z{)#y7cg31wvx!lI&uK1Eps-V)m5-3!RT#{F(L@N(L{Ey&XP-Q*gO zs4xO{sH5+zr7gn#E+KgyoVDb>D?L7n$3zX!`o^D7I!DZbxGWjNLjyL1b z1CX$d{7`|tI13i#2ZYc+b8Ll}*_7CRD(z>k2u}cY!XPSZfy@baf8L0(oL*A5=R#KR zpt<3~sSn@`d}ldGcKrUH0mSk$U-^_Q0>*MSA<4Nti_m{x&2T(IC%`_t?F`Qt2gxx0^7CCVop$`*2Xy*<>7V4FnYg`Kioo`IuBIU;~?0g5$Ae4{Cw zH9=iY`5k>;vdB3GQ@6mK1w3J|n7E$jEnt&xmiqt-o_%lNCfJ$#xjRkH2vV?+v>rC2 zk}iaw1pO4(vB6m!1mqf}#MI04=iD^(&}7WAtbepjnG144Lyc}dg=>#n>U1bke~jo+ zU2egC8TW<8ge6`&MWp2(+D`+X)m%6h^1*M+MKUIq(0MO>WMc|lUb z`xl>FBJZ8fOPxQ%Zn!@D+PZ~B!fcM^eY<>>0+XcbRIog>vm9=}*tWX`Lc->40y^UU zzBWY_aMOF2E($6_Tg;r4zN1Lv zMqGMgKR-}3l3?0YG1_-4ne_rzJc9vwn>gB;$BVwM6 z9?;?p0#-EC*Tr{-#O2lD4(`OIq*ABZ-p8I}a%W^8mViq8JF&PrJ2rXlM?^@j-+c z`)_G=?0%>9;sD$ovL`8fy)OFXNn7}}Y)MJg^T;U<6G1!;luJ#WKgL2k<2B0nMZg8iMrmRmdJ6G0$e zT|V_E56)K8(|f)voCV)|9%SR2p&Bnz@915Zt~2j+92@eh)0^)uu8!Ss>NoMtpUxUB z|D4$@kt)SB)Kgyv&1QV>MJwZl zOj3H_X(O8Hk)Ju0W$l0SM)|YFSi2g%>UB>GxoWO={TD0|Phauxy2O2L?;fh-?yV`F zRa@b$i_4r@<|h=DEQhNYCh~)$*zN=|c0DWb#F-K#j?vIq&v2k&)d062%X_tE+>43t zs=xcOt1f%kJ%b~AK5{frpyJ#?^cx{qZRd6d`@F^8b!^Q&&<(nRwui0tyS7pO-VoZcu z%&ajv0>|^RVyS4F)c2&veGqhk#Cu@BAG_zUlAC;G%y!Hs(H1`{@!wA1u*IOi< zx8iVHtJ5a2_mBzVGqdT@uQ{DEyBq`Pp<2ctU^D#>cB_Wdr~zY{>g|HB8VL`uzIh2@ z&)26TvwH90W=$p@xcfwYB7;69km>{aHH*kZ$#YMy&GFXN>Bzef9Bg*f|BgLViyvJ( zDN!k{ZWrOW{cJLv_0ey@^P>lNaLHemh=JiP)ZELdunNpG24HOF)_DG{T|_+JD^Sk^ zhUvlai4Zp}?kKIPFYOcaaDaKPVstJdpTC)3-dH_uKk@5)zG?IO$IEBVw6WiMAP2G_ zGPP4k@D@R@4&K5j78WDe{R8CK_i>Y^O(`Pd;XNJYQ#U6br!?ljRC}s<$^pE>b?6m( zF<~#Q1^7K#9l9AkY-B|fV2&l)StW_gVhskAlmU%WPOrklBjd8xAJ-H|2H4ReQw0 zq8zhdRzm_`VmG_}JGD$^N&`++t8Bh*7@0wWP0!B_5Li40%Uv`EOYId6E1qlG;EP)< zrPq`>m2Uc;q@1gXtNv!0#0tV1{o#vi$HlCOKM<(gyy zLwhwF4K$gS5@{D#et-8H$)6B;ly%YOKDE&R5!3%{3>e&ihUhpevPVAa z;&%%0Uy!p0Un`ZP1P6kjj$$j!&S8XeXB|#%U#8t$UcL7rsk=jKhJ)mlS&)}8kD|4j zA`57myW(bGAbja;0&F*Q0F%tO#j#3&T-d!^TUvsXI7=>3lWr-z6^OYtdVml10UnFz z0Y0n@i^$3fnVFlD4aH4y%@=}d*=iXebH}HSeR}}5 z3;O5*U`#UpFfxz~3eWl4G&wV)l2#OintheyH?^JCM93t#Ho(dY3oqBz*N5h%!tH_k zieb4kDuNCR3h)uajEXmZU=iwoMd;;n8ijKWZhP*RvDp&o1 z08rw&qT}jDS`)f1w^M)*k_ttLq@Bi_f?^x0J=CdfjzFS)oc(hl^-Qf$H(5lLVNZSb z@YZ-~vC@s&SN#K>4*++zfE08^h_l*U26iVBnZyGMbm9JcYHsm0iX+n|DM>PixUyYW zd-c&3RRs@Pgs6!ZJHTHLE`$q{r?gG@vzXqNjRuA|rB0u5Wb!YX^KMKr6`*Ai)3;IF zQe^<#R3iN(X*sLOB*QMS+XwRm%29z9HIS_W6%@K;Yu0F=7x3s&%cR-7(BR-x>2RDA z^82{$=vl%gr$D;>Jb{Z!g10lO2gJO@bk$Tcyx(9>iGVNOEq4&=g}AF% zzzErTvYpt+2&R&2x41_PS}b8LTrVqwr+V`{-qjM)lCyzV!HYxyLDX-~c8mGTMrs6{ zj4oSWBXp{y3^7?kC3@)*4{qcgZ9fOrrIibm75+=O z-XRPx&HH=voCAdyoC08rup}7=%Sq3bv0&koC9h@loXtZ#OB$D#{aUHa)xaR;sL+9g zrr$!Xx}IeG!PpT+HDQ%vADlgxoclO*zlhP*B_BV4_U{vmSF@&!&5gF8v>J4YU5J-< z=QUYI+F)~??>oIQY)!DS3++On>KX2N0+uq|i@`~aneevi%}m{}s#}u%l`qpL*-(q> zoW*pD^6kK0#z+0|fyqJhT%cbG`5lepX%79|iE3IC#0}6UxoIG7p?I+l+#Kp9UB)cG zK-Z6s-Y4Q_U(ipzx0HYK1S+|ecGDT`u`t#!tNm0LpKgtwl$hcjR)j`>nWH(qBdG89 zeqd6(JRDvljVac{#MV=8op>p4;YrGeV5$9~ z^2~oJkVPbRQvnnTbh4~1g?G8T*2T3e;=+g1QVewQAbX1<2Mmfx&nakZ{fGiU$L6dF zCZzFCBA@C-G-zJ1Pa3e_h@$0TMDhgxj%~Vk)dXrj`vX(r?NjV6)#eo5OYpKkgE|89 z?F4j8K%>T(v7J>x71;{);D$k*E+?R+)+ri+Fpmv91QG++_nq<2c1cdN$`N)SN_&5V zM2VXk2bJg2amgs-(v~*9B9#MbR>gUifn&{OrgPB#zj2sDqxvndT2$G5ScM_txk?&@ z{%O0c7zBv7=@QCugbUUUauZNb_1{LgiTly%BBp};j??INUU1fP_@J;;48JQ6L}kHb zb;p2&;Sk%{9X`Nvi+-iJuJ`DL3cY5Rm9gL;glM|gZ*gdEHDHE&Uz&{dA?3Lve z0=7Aig!6z)caQ*(_FCbKX_9Z~jCY)~(eYG%_+LCwjQKR!plA=?}OgK;0?o%ma^@}>|9Wv|R`e>4Q9;>B2!G2P`{vXGf zfG|V$7kL8>w+&uP0B*rf34c(IpzrjXJEZvQpzHG*^6ctPka2sHUce#HAHS5U!ot(n zik@y4zl}KB^bUPRNcd9>K&?--D*i8lSJic;h$EmuclB^FtU4}imG1%%37hA?9?0H2YP7tnhO|jwJi8{Yv%z?&1iy z?AD#-2mizdgn;XDNAz`^vfmfH1+$=HENAGTuA_UF&hvd#|G7{xuZMQ|<_C@6yuJx0k{a5A^FB%H}ojP%eMY_F#c6n9v^?au+uOUgV?!Mwy2B<1C z+==T>SJP{cG)AcxjVFCPFr zwn!D6CI7;X1pHVS$k$XupkvmQz+!H?^6_r<#Zkwg6IoXvtq{w<;^&1amxzbUzJ+t5@c- z#H`dpDS`5*kNRpGjp8E?<{g>^(myN}w1qyWCuo0U&}Cfx?Z$*AWl{HRq@0@tM3F_S zk)*qifVGao*yC3a>9zDSB314JIMurUQ0=!LZHWK%kS(D2a~d#$(pocwN+=}j=!7)P5B&hAZ%&jZD` zaXpjs*#Ok|^5uZU;tDeqq+fvRG1g~eKi#A7&fwIpR4{ZRi*uX~<#(5Df66SvN%yrk z^x>#zAn5}T-)G32vN#GJSPxb!j{?d_2)j|J>%^IFO_*dR^ z6wAA!!Rio%A@blK%BDhV}CFZ|WCbHE{_ z=9mfSGCo#5NZ)8B)L3y3bLg`ME~eV1O^~N$Jo%_~2vmG}SCub1HS}9((ExGC9scV~ zV5haq|CM=BaXekf-eG&cSgCos1vs+=%={GIeVJWMzr~tcr`|wtGYEUug|7$R6pWye zV(jW#_FJ#R~14vW@gbAd`1q7%clEtkm@aEl0y9DcZNRB42ah zT<2sSH&6G0=F+;DbWjHGPt4dR7#1+nDBx6nBVi)TTI)v=cf5dCiK4uR^paXJ*Tr-U zhVoTbh>{j7k4;kueTMbeLqjRXp>s6w7!6f=n#rH^Nt`Zwm(=JlgCmp?d>9ya=E2od z;&#LQ@9an@j0*1<0SqS%b_{UmZNAJjRq9}Z<4jQ9E+A=Wf2zklDK3?#Wr4)4@P| z+&MaJ*yX7frD&=&H_q?b`e7_Bi!LiqZ7C`AD=P;@JG8g?>7fepOwa**QJiHrFjtec z;x{noJ;2qy)&elJ&ecMk0Ir62-R=4xIlInXXGD(h)%|n_RLKBpH&D6(Pu{t^ zf4v{Ch6*;1rPW*caA_hNj+E~aLylIWcWZl;Q}Vvr-TII%1Y<-JpEoN#O*kmS*m&?< zpRA<%mFsG=_87`Gdv4N1EBIBJCxw-Vg@!AQjB(|Gfrbp)WC#VERIX%RA{zlg;EMvJ zY$_?I?w_^&>mS9y91)qzLHo|D#6H+gb6xaKeSMyqr&g_h>F`J6t*A2Yw~mwHQIE-Q z$R(y9#)a_-z1&#E6k8NwTXr3FPcJbazQGYGFb(WK{05C;;Z0BNI`O1Fi>F4Gv}m4W zo8}uL!R*XfhH_w3ka>yw*E`v9-d>N$S>$w`6?0QUA=O>kW z-A*dg*F%7W6|!UhanmeDQU6hufLYC0s4K8m6TVpcKGLp?)g> z#7UT#78~P-J4c_ymg0#u#iYTH9#eH#ynl^Dt>mO28jQ?E$P15xCXB$}Tzn9P)pF0^ z!}<=c!wD!4&#{{HX12>caXh_1yHiiwc~|2;MD05ZMK%md6hjIT5g%e;whm3AKEST) z^Acc?o->g$f0V`G)8mhx1OD=_STvG~^%mSTGFl3GJ~B5Mb*=c$_@)(3>(-8J_kpe` zUpCc!arKhdaJ_l!CVHLfJXZIV)sIaZF(E+J0>8uc3glTwTuvz1VBoDh{<3}OA>E*_ zxpFtI4>>hi{lTMSMWmc9a@^T>{U=6PG-5++`760Ed;LO**I9zW*3GXc7(t~n1IuJ^Z{AKp9A|Y3|K2=1O27Mi5GDnb&Qdy@M68#fWS;dCxViam zFE%B~m;o_$md4Qo@T7v&v)!2cyUs_Ba2&aFTV5x^9-jn&4|q_uivACfIpAl3G3^Vv zJqmxKSIq4zP$O`TuN%zR>NReEMWs{)+?EKu)!hDk5A*b&%@hC;m49%yA+`wmdEy7N z^*dDn%&O^UiY8i(D*Kbf0c;5WO;CO+cSSvX&>1g$IF}B{be1jR>2i}$cVok9B zRfsi#LM%R~q%aE9-HQA`gYoCjpOJggMuB^<8#lPRH*>OAKBWqn17dOCFzwwOztm1f zt&XrL6*f0m%-ev$Eo(}0X#HQXK~2$jvQr!$Xgbf$vYM>YDHsMhRR6p`=|C*aSpu2E z{2L$%xn5&uN)4oLe4_eVQOnH8ZTgCQoi6W%+o)lW)s~SCv_o-+3X^sLwKFtL0@$T6 zjRab)i&?2vC`qkgy@cceK~{a<-(wbO`!Jpv(~v5))9?DSnNN)1#>RAn^&)rjjH(|! zz9lAxz>*t=Sf?kmlIVOb6_S*0R?w)1)d8N4uoxN;ggMSYC+nK`%yH(max@Sdk9Y(A zJ~WRfa|3d7fe@y*ujL?v${X$HZI+shUoy}Mv0G!RQcZ{qu7%Ryp17^0WHoRtlYp6e z2uNO;Zo$>mY#vvCE=?w}dP9;yc{uRT5}e^Uq24p9%qbZ}1*S!BPB1q>2^-n5Brq(3 z%ez}==bKF7&n0^vDyZ?a4Po%?z)s9Cj5jWR_x`X{u^ZoD}<@^sV< z+;{cz_i{m{A>smnUy-=Z&AEWf2E^Bz=^(NG@tK${x-Yy=>Akr>9>E8HOh6MuHI36cD&pe$isb;S(6iMgfyq4EyN%d~d<8jbA zBfb3H4jyu&?+GuqhL%yh^4TBX(nF&WY8l(qgbt+VAw-?%y3_MU$~$uc*nb?MC_U)! ztfZ5Kd-`$#`}Ej_5YFU20a6L+*&y@)-qD^mG7p9{_(mhUN0vL&@2#zW5awNYY;~`Z z3C5n=Wd7?z9$?uAA8mmPxM>z;JMHI(hA9^{)9vb1^?`hJG-rUZtygCuU8dfA%A)_` zpLg?PAKifYRv5N&{#DfUCZ~B4AbsBZ99+|&0u@pqFjwG#{ouW#R5>c>kR7-Q0BA}h z)4VVbR=#Fyb+Q&%^WH775XAaQ-r0rt`pJ{^M51?3zILs@PHk=78eibm$FM6@pq+7G z3w#7zl6J8DB(|bvC))k{7)z%pYgF`soZ3CoGTv08u{ctPNov+)yJI@KW4*_udF=5N z7Z1F#_x@h@htn%vU4bjVu6ZwjV%6!5o{-~QL!ct6;bmT(=ZA@FqcSr4JF7n4_1$`5 zDWY4(@iLxPuT=7D-+mZT*V!}Nyp4EOYT1e%UU-|3$FzAVM#em;Nq5eTNgDu*v4Q7; z8bIS=l!8fF%v-Ymea@>fi!fw{G>CfggdF$~O2K37EiRV;uzTl70kGxr*#jP(7pw=A zyC%2<3k|ZZsQa8n&5_@ABfr&eXfY<3bt)QnKX)kN5_`huTtp~St-K$bNi}~CrLblF z@X^%9?>^vM_+Y19S`$;^xE!k!N07`H$CNY8aCn>>ol;Jxx1tJerJw*K!Ea25fu|3h zU2*|b6Ard+HeEQCM`rcKwI#Ye*v(~$?CkrD5bUTKIa};JShs!E1?UI%W~X?;KI@i0 zh|77Fm4Uq+h~4xD_E?7mV53!RI3=?C!uX=8M>3WcUYNDw2s(l5(nd<@!AboBpKE>?vUC%62Na3jE^OOF0WL%6LXGo@WQ_gcjByLTo}=pHT)|CGKfg z;M5|bD05~CiOdWC2sG`OF@`#T@QI#~L>tsvj}(;`ZoS4TAO_>+yK6GSKQ;xv3$YEl zX#G>D+ic(+!{}eDpCc#c4twd}#fw~901E@1R2A^r7Prc;IJy=4Hs^n@nCuw*BT5u` z03UrT!pj?9^)LF@t%_eU`hPYf9B+ZWPjzp>H+PB>Q^6w<$m<>{P@To^+>n0K(iRqD z2zq`SP|puozDJor|5}$SGzIX$Mx_s@5w(DYBVKc~yykdW?`KU7Z$z#pGw1{E7Q^pA zeZT|LSh+;+W#NV=Zp9O(8z|V@J zNe*mC{s(5F^|lf+Dno5eq@+DVquCy&-)+B=P*fx)Pi}cw8a=;SrDJ{9HfVx1*=EO~cP<-H+lgy%tJ_V0@fv-(1% zaq7I<%c};Wpv%1FN4=`=o82t!x1jnIFR<-Dz=9%E=}F#z?m*D_P&JproZ}*G;;_f= zy_5giVE-i3cxy3p7$v`&zr^~Xn`dKTh_7mIJ&)N--<7sx z>+U+)_1c%3e?(jfdh@QB;+0LU&94K-t%k&v<*k03KtN|Or9Gj?b_|*REWab7&A>}* z%UHW(U4M~xZfg5J!S67P&8FDZIGg7;<^u{H*P#D;9Z0_-*9KGBM5A&O6RzXx zGq4P2wJ@@E8;5W*{m*6o|ArIz);Azq9w^K(g|QH}tM698kx6snaaCXY0{{)wAzsEU zdRnyK=4a;A8CuXIk1zGyE-rN#zx#$-`lvAb zb5L~VQbwEpvwTK8vD;)l+jx^FPbVQnV(~U>*xXJ30kzn-0U(`XCG##L!m}%7zolY~}RmD2hJ9#H#P_J?`?<4Q(ve9YmAGX+*Z+C%D9WVzUZNvfYxYxhfa@ zv%N;F6VxGH$5|HH-gg!MTps@utHp9Q>3(F+$kqmRAzWSnnnRbL8dh2Vb3#)dYBF;@ zCnHRwH9y!){})G5o;F^WEibo?b$z|-?r8e}m1Ws6Cy;mCJeV-8fC*FEFfo6=1jJ}l zFIY@$qu^yHwk+lN9;Ey2dF-c2|R~tNVa1V&BEOg=d%WH4x$6H zO3MpQ_2eAli=c;g6rL5L`~&_{QdI)xG37XIRc0702K+oS!|utzc7wPoA3bQ#bvlsE zfF(MluR!fNNbH&thOx#f#1YR`?9K_9DvWOJs!+}Xmhcz-BuEP(d@yt00_nidN~ZT% zb8IqScW`)qznYD`xQv*pV`0bGL&d9@&nE=H3qFU8JE6>>=;4D4PGr%NQ;?(luzr7f z=HR?enPxsAoO&G(y8;O1|0{_CXu`yK~-c@vlZ{I*-m$b4vFfOv@_D}~cu$_nQOZE#$Sp-`xm>|YBi-HIkyK~?Y-dOQIh z5RgU5M%PlHKq{1(iMj8N{0@V+>Kc}R_C{iFOHKStyDd~m5r{jQ+3`WjTMY9u7cA3l zh-H-VGhrtVBbO&sMNE$9PvvWBxTtFsCe(xrD3`uN2x_;;u-6_fAyEJD6GVR(s z8wkn>q5J!`?k|3(I%d#3th||AMLp&6dhJWLULI5 zc6%nI@DZ>;VFom5*56ON#0=39kQSuw(j9(qS&AG7_lX%WjPX%q+XL<%fUc4Eg>7dg zx|*R)c7Nw_unpPKY)XcH($)a5TQ&Zgrz1_|wCoEJi=9YjCfBkA-kVI=OVjU)!&`JC zLu?y<+94*di}ojn*nVDwV8}6r`o>y3{ZCNoaGRcDMNIZjzAAgA?X&?O-D9D_?9oGy^2ae^jD23O^LLo&yshJ)1psphZpy+*vc8@7%E7F1OT( zeSTLdx-J|!_-;W9t;c>S|A4a@OxlAM%`JLSh$nL%f_S#QRL`()DSd*xua!20&c|Na zSKoUWLI#8{%voM3+p@vKkSvgh?r|158M;$0a!M<#S<9qhj9_UaZT4!;;VO1*JB#$p z$tWKyF;nMJ1UOtaaf0M>xJWUqjaviR)ksqmpE2-87Nm0Elhx>FK~< zX(=Ob--)N~BRwBHYVqs}ReLk^M&_NiSyO=azV3Jl=%88JZzf*Svodh<=#fn!d97V= zW^}|4)rlz&7J6MZdTs4h)pp*oh%xrL=sMh~#C{od=i)*6q7CL>CS}G6uB_7kNjtwm z1apx8bh)s$76pPxMC_9XWe(unU17hPP!TR;E|ml`@;-oJ_Wz{0@1ZnT&FLJXGQ>IR zbDKqIQjT>>ehrr*kvj!uatnVmd5m=)w-F}1B$IE-ymq4xGi{qf zFvwafDsZ&?nnIf5zDk0{Yjwc?G}DB!Ti=Cd4F~pTM~*o|(>Q2DyKD7&htQ{IFB}11 z|Dre(%d8%vJovexq2Yz@sXT-9J8@t0*!t1NGo%WXn+7jdl)Pg3_%smZ9HHwAl8a*z zfIrp`lI4{JC4AoER1NZRcR<`?p`f(0~n8I+m zR)^DKPdB1$uQRi2bYT@N2HD_+>i?Piuvi*B_dO0Gdmks=%(kV~rKBBDvn;bs069pK zjL<+Ryr<;L{C4i7esA!kodOe}pq@H?{UnIez+f@@tP@djxcdexoY^S=*#14=?$;m% z)U9rZof(di^8Rx}Q3L$4@gXSU3d3GH0uo#vT1hWsbhTjm8Rp!?!R#k({kFj82WRNe z;6)qAj&}bbDb!@?4W~VP02+Ka$tlv7wWLe=JqfiWFFfYyg}?6bf7^B$KcODk`1Oxo zKtAea((?uIqz>9(X=l$#g=1U$EflVTwfOIc_M`csLaynO)UtmYrM0C7EnDa^bg|a~ zV{QUs8_;w%Gz2}+*I#}cY_)u8CPT(8gN0(fp04K-k@R9kUXiqYcnefnq1` z8F8egq%qW?!xki)rmBpPUDssS)TvLtz5ah&B?RgBD{mar4?1f1*YTSVi+|gzGXPUe zS|m!gfdA9(+JsJE{G2u4K->r&eT$^hP2*oBAtzn-vWWGYU|Cb4h9y7_(ss_?%j|HY zsp@$Q!M=syc-pq=Z4g7;{w z@3nW;Ff<*Q$3($zbRSTz?~!Y6hR)0UA;sDjblkm#NGNQ(cqMM?pED}Cli|V>gbA@7 zt~rPXGQy?ix4A0LC|mZ09s8eDz|>F%(i(UF(b&w387Z=887Bk=R#S?0&u7e3l|K8U z@WfBs5VJ)eiK{{T0R1F&~%V#QPq3N zU9r;txmZlNL)E^daSPlb=CdNuYm3N57_ilGI&O4lW` zn2{Dl^_!+xKX8sv2$A zEMvd11#$!pA63`TpnAwxr2Mu`Vk5s2lN_r6LCyL{a|^sARMBV+pgoP3;lO(TJ9a>R z{9#X67qz~l9^viXa@)Bup@iIGoDTX)mlE3vLM5<{NED)g%Ap_J@4&o9yw`XJ=*Sm& zViyu|+}C?PIux12ZrHyXpv_$_teR|yvgNJh7WMk||9{gdX;9I0SmA=ZdR*@559VHU zvByZjKy@G%OE?no9UPOC9@Gy>=XckpI+}N z=OXd6EIS_-5qR95`Dk~exJA6d0q=tKKcMqfvN~7z3TlRuw3o-qZsNvAZ6}LQQ?t0` zt?d8|k`FGI1P_vM!TP82&mtyWpgoGy&>nslUU?@^h;!EhBbk^hatRkhCxMHwM;ZVt zDY-;Elxf8jcRb4t=mApG=cm`tjz^TkS2f=JWSA*I-7T>HZ%~)q;S98d{Gb^_?XqSS zh+vj$;}(8!wo#E)FUT0Daa|^{Ggvqi5DH%kq3%1pZ~=lINsTH@=gz2Q7L`N*y0n>OLyR zPjT3qnOV%wI-XG-P+b2CepGM9qy;u4=aTxCW+{B17+(9ce~rhz=3`Y!hX9pi7jt~b zAJDzZYBvSi_3Olez?X9j&G%K;20G={TFsbu(`V$$Is<45IO^)|KLdUUf803}{nqT5 zyTMHTSPn>-5#;%d$Zn?#2=0O$Q#H2RJ=SV36^6cKucXd~U}Z){qO*3bco`m0z*_@enYillBrsN81V~#;djZ5|RP)4<*|1?w`$ZfAQ z3vHe^c6Q8z0P!gR#FsQ9Rd;y%8QA3sJ2#=3wO3T>XuQ=os zhSwI0#XcmOHukC>{qoQ0V~f(KO=erogZL-Vmy)~r+v3%H&hy*bg#AYz+js&KKvzqL zsYkDC0r-q-?1p{W(t*Q-BCA^_aEM)ZthDdkbJ2w|$H^15ijBpE{h+Fb)%s*Q%M95~ znOIYVZ8=o#pWV*~hDKr9((h&@r#%KdX0OWhc+xpcAwBb}3X#)4>Sq^6=d+=H*cJ_Wr^-w@yP7poK3V1}Rq5?B&O#R4Je2ka1#1w>I*ACJ30T*AFr%KJGL^$cB(SKT>y198@ZQ zSP`BQfQHYyvb=sHF}@?KGM#`jG^v5l+Xyppmf4%mE?V)y8jA`BOM!a`JK=qsmrGjg zjIB2J`)2d_B-A00+zXUz`k=3u3pDgfyy{X1ElYqXH+wGvEy#=V7QOsCD<+)=+JG$K zwZri`^+c55B{};dBah{P51&5S1bB{7icz@(oTg?C+ly5z_RGxVS@vV!Nqq3YvMs;1 zJ!@AHkOLkb2d%ZWI3vVr{x7p}lLT0pl(aPRGh+_2p}uEh<{lo3`{}P+x?OTP=V!q# ztauhyOPfDUsu`IDf_tfJIfyQ=vn*ZpCBWPNRUd0Y<+PRidXi;K`2f2U-EGa1NSV~G zk>e+T!x|h%mR2!vkj?wSH}wTDAonLVib($w!0YtjTmamtJN|{6PT()bYvde96eg6t zECl`v4WHV%1&&=9K_ktA2B-wDl@L6fCco&@R^DH!lkVkt z_EYa4TCu0`mCIcR=%eg@)%EhNBS#Lo0D$(EHM*KRfD?4$&$jqb<&p$^qxN~#6J*$q z36a26nB5W6xa5?Vujl{)5Ie_yeDq< zSwxuY7u~h5&KunhZVvwVkZtdGEU8Jk3-AbfCdWf z_Mk{=)1lz7<7F)Hn0A0FDhROh4*{#~+_ErsPg|F~d;A@CK+Dh~6Y!-l1s!9CK!PgJ zF2jCeptyrWu(ZGO-PeCW2Mik;O@b1x1%ig0gqjoJcdK%N0^8?k-I5}QsmEzFU3HN~ zmY9o#CV0B*(#=njcgG_41vV3EzNk~*o8mZ_l!pLE51^(9wooZ=?GLKEeTwrxKaob` z`+)I(eqxHF0!@d=6YgNp4nK|=NxWixTbWT-s`d{xZw^WG z3+1BX2QpoMY$N8~`u0r1z2C-)b9)a~YuT=&68G8u8=^s~Mw$t9SU|7mUK+j zT>?_5cGs-$A{d3{By@*HkdBX>Oy6D4VA3y0YLvv8uwXF@vG%^l$ugJr9BI93%4A$+ zsGIJN`aL?I8_w+Vej!dg_d+@rKeiV{gbS)F zi;Kkzu>bP;T#Kxs2;+$8%roRZ`Zc%_WCje!iBXDgvKOL7yo%h`@*Ymn9>;DdmR|=A z4PX&cmPo@IMs?R>)b|?@>=K)e_Rb7NkAoW^epvqk(>2GBd=AIb?uP{q0JN* zSmXm2KV6c$IdX7eau4Yz#vp*MDm+Z?Ze^hR4&ah1;8^UjNezh2QMz=4mNdGI%HO_k z4OkDi*flP79NCq^;NT-xLg}ltd<|q-XhE${THDjsur9xca{yFweuK3vT4&8P5(gB1f z*mW_@iG^)oM9^&YUHR{C{k7{Ayzi7uZ6iAUK3FmS%FGVN!04>$g6kddo%IF!EDY}} zuri;}8n7s>Uv->pGu>T-HN;ZNx8#6Zss^7mm9)n)ZA3FTN54`o z4_p$wdGWpE6&e^z4Ou$$s}1>U&r_Im-CjAK<3!M$b*UDBbmvSXCJF~zLFS~Ss@NW? z@IXvISzs0vZZFS6fVIohrNk~Syq5a~7+c zaYFs(4(V48t%0+Kj3DURukf_`gpvC5x5X#5B#sv^CbMt2>GVQ(LhJJKGNWfs7F{!Q zZ0x|+yPC{d47=vj>KCVbqpdA1m?JOI0R0P`V21AGTyk>%v^3iq>L*@I&;z+d( zxSQ`pb(V$EC;9-zA~|Yw%F*IQN7CAJn&H>-wL&58V!KOVAqQ+XnaU<&Icj(EHz69tdfC@SP+xnPu@|dvC{@ow#sh&K4`Lfg zO^)c_19$P|QW!r!BVb`X8<_0C%w5$>Ltli;K5onZ#25p%fXqU>$KsgG@3(*e))=I= ze|&f0Ujk;eBf#`hNQkA>WKU!8pvp33gizv54_x75yQ1XPzI_HG7q2WyiIdfDOijp} zFwm+3T6G%3^~~P<^VM!NG|}0CUe=;5J;+BLP%_qm(cd1xS8TIa-ShaQ^{t#za2?q> zM`{r*t;9pgV3Z@&v@Q7v$9sWrXae>P>p9ydyn5yTCewIQG&XjK^Yy*0cbdH z`7;4~g7M`e2`E*YIPwc;v_NDM-@^nV&6H>9B0j$myp6Z-8nR;6wmSluxTyhQ;PqF@ zdNg|9Y=*^N7tGm$!3FJ)ey9ecXDgTMh!ib zZVB2yxf@j4*TGe^LN!_E)J{%0qb_i@PSSGZhcu}pJ2jYOAq@P21;KdjjJ)V~r!v{J zWVF;H8AAl<6YxCncuF;?UZHApw?9ped;;r83a|oNN5+&=YA!aGc%&n@BOy`QZ1pql z#|{_oqa@JAi5Xr>`$^0@46r7vVSFrOA)j)(OIZ6ZDRGsfS9^0j!l;tRl8*a^nLBq~m zhlZkm?kIoo&eW`f09Ru3>ZIFp`&G0dLkn|0RVhaNjcQ;vd32?PYOl_HuLx9#yYddk z^tWr&q!@cBQVJv^T3adjOlN1WTJ`*%Cea)f|H_UPdO;Vfj>EPM%>`R}#&&p*aplDp z#iCRSGr*>R1J~~~uvD3=;9oF1E}Yu9y(!(|hBXzkCcp2`(KR8~y4Y;OdGGsqYh1b2 z^}%8S+~G3iixMCOi;9!NaQs+LQI|!s4&}Io!|D zoui=T;?4Ay?Dr`O37o;8JQ}>S)E5dh>(R6Ck^VIZy*4g4IS(neWzFT%b7WDw)w{0aDLG%E zPIBfPi6vRPK-z9WYdsnNiv@}(D`BRty4T9AS#qrj3tb5;?ZKy1@d@4J@j`N@JLoT3 z?%b(=K5q5&Qw0_^;%8|}Hor?vv@2}|7U*+UifgT)=d4O<#1y(gW z%gv6=j{Dx#hgt(Pe|hNic;OBZ&SLF9$||a1n^UbBO&*u03T;YBNggoc3}pY5pyuD1A6!>z?HFK=eziRYfLET?!<)?sK}LI)8E0jUy-4g+++G zyohGJ`9Y03w8rKd6$6P7wQ$F|`6gU)N4WRwCy{7IYU^BlwhrA;R%l$*E9UT5&mUyQ zy$TO^;O8t=@G~-b+g5EVU?^y(M=27yuKtwWnn+t(b(W&}$K$x`u}an_*EJ>NEgm^s z^|ERGKJdyF`M{@C@4Qazz+&-RyO4RW%i_s~((G|sq_y`wCuH&}aTDwCrcn}6-OkmG zU5P6!PN?srukRPofH~{B-*BN0+{Ra>AQu8XP)TAdj8d#In;)k6pJO_zeEFOTdrmp7 z_9{mrHl$>8y4i;qXP4Q1d;VdwMJ6tzrE}hMMj1LU73HS_wiATVJYUdG<$@nPZ7uy$ zBz;CXJu=F+0gKO;Enwpk`o!iHSCp{5^y6~r4%(6*dE-Izy-c-(ST}R3vx9xvBwu>G zzwC+{g1;pAkR=uT^dsSnw?OUS(q$fs;fPD5{%*(XHLWV%+r->_e0+D)4GY==$>XoB z`sNMMe9nV0=UIPERk6>%wi)JZPI}M(_C+XG0^{bU1EJU#tb#f$SCo|@Ea2Mx8K`^q z#rf$0OlyI8CqLfU zMZTDU$D&?8X(}R|*#H)1O-1`?b8%7`9p?Mlk+AF2ryH)VV0N0%^_1Q{5W_(6r)nA+ z0?RJN(L+ntZo~7Hh}TLQt!;h;aR|2t?aNs#7S*;}EQE((rVm?3;MNK7kp`O0C-SrX zpi*eRC^F!71nlPpj=I!28IT%mOyvt2lJ8VQQpwOg-wD5k%jhe*X4dO+Ux&=NT~k?H zQ5l0uu8+7i8nNw1`Rwz{rY1ixH(?*nO9*x0>SdnNekZsu5A(^I*f@(LDBI^My2( zFf%$%CWvG&_W+05I{ezfc5|i%rC@~(x)ffoU40c+D=RenqehmcJ2q1%y%er6u-`kx zPI`Hnabz#mk$vHox|W7bvJkZup8Lp}bbwXKooxCL9(>)gW5~zwQ+rV>xx<^`+2H;G zPzX2gN^No$@lOgNET9hz+wF8X+Mw-?nb!Ti$*J(0@8O34`ItHt6r9P<+Wm{Kqd63f%eH}+rM-hq8>qPBaS5kLB7>RiQT!POE@}g zQL^LQb^gnCI}XPnxR`Cb|32@p;HTh72j8>He=8LaSL7~^l6a9S`+FnU(mzib9qUb{ z*l_g|@v2LYtbWH;g(q42N!z~ zFlLGwjQzS!u(A8|1z+S#1fui4!11zwY zkAzVZwtX|@1hV_Uw9?$HG(*MF{v#v~V^{|R40`>eZFj+toW?Al1TLc+^CX32T=^3E zJHkwoeqDqYZ=^l;;0Z0QDh4_<^DFz(5fW^9HhL0LOx1jE$s=-AdSpw)g+#o_ug`Fey zvSHm<#0&Wx=N_6bits*B0_uHh2a-_ksG9rECFi5cFI-hqA1=WjaW#QIUU~U9K3I3d zmK5{5eTFNaYkV=LIsPy--LyY$JyJ{I1(W~cxjo;RRsvjcSeHsHY~U9=g90I_h=<84 zP0L%`^rf&dU{*POlpZ+3R08o!ll}zK`tuEQ72~kYqRwczKIx`PfSE=I zj=mti5beyi!5&M7f?&bA=dr4|##6Fj>#&dUU(<5*F%EU)E4j%CEd?Z%B(;zu|A3bN3B;!%Cr&?##|xnkeDga-S4plQ-m*EsLM zyz4nrOMA{o;|Ll+W|wNo2x7mSALeCOJBagJ($Q<`FfE5G=SA9O(lz1h09-|V<%K;nUl6( zBA!6bm4{}~Gl6#jQ^$j2fdl!-hxA?hc^;MQLeOpq9UD~W>lt8Cr5_t>2m&ft|;}N zFWp|=Xa5a5WT7G`G~Wv7XSjEf_0j{{(Pzpl%V22d^dJK1&RFV_8UQ)>83`3Nd3@<(*>&rmbVN>L4CR~yi|ZAtDQG5vXncAS*V8&aSoatc(0@v zy`cY5$&OW&=YyAC@a$Q$8VIOra4ON!duTy`H2#51QBg4n$n~EEF(>l9flXF3!Q&aY z-io-EG7*2DHqi3^ejKI01=Jg7(-yHk>Zd7G#wzS039l7voQn3%UEng5dJLftg`fcw zjm=~AC6B1I8RMhiA!{X8&GZP4PGL@jbHTfr*cQzJb9stq@@YR~<-XO?zhXBE0VOMvsf$B zmVEpVBApx-L~w#1UbVFDDj^w2@0B7wiqLmVtV}B2U4ebrwprPZ-$3YT0|PKI3yWKX zB`i6Sos1<@W2%&H1_xrJ4o(XubsJLhlT0r(QN+?C+T<_-) zE3=e~D?CX~6B`A~BbTOfN_Tx6e^762()uenj@%)i>&}ftTx{O(ORneT0wcL}tZ&W-QlkUB=QBKD zv&lUa`TOYxvF-cdgbFmlu0v6P|oQRRA_7q{zzm6GbR&bq*4ld_hdVA zt4hhg#i)xaMjJf zC9f;qXh1Fy<~4w%S=3hiksu%je=u!>mT(1{s4!7E1E{wV;ze0m+1BlCN7twpd6Do- z2Mo8$cauUozdwjo-vEh3qp{2Ow8#D$^0c}0y9K2zHN`N|cn!y%Rw!{YiGQ9{VXxUe z!lKimS($37QnIT9h-ku7$VFkc&*yCClS*Qp_@)!>8-?$Je9y{ z^Fy+C!m2R$-GYQL{}I}~pLvb=__Qn@=KVhR(7{f-69Jw-`0^q;dL}lI^Y1%f{Tt59$|(Eeq6xICBI}pcMoCSs;XhQhV(XCQ;Yd{)PV)vPgJ;c3f?qo; zV9$xVnO3qb>`ni1Q2raqtxaui9z=N)dCc;E~*n_lcnAn)uUfP zwB?CwBeh3|TM!S@I0mqwi=J574pCilV25A|7$Fg*4HR-*FcDhA9|6wKATqghF97x< ze*LP$?uUhnIma5d<<<~GRul;!XLM^1~f;i6s)l! zl223%!pr(Ns;XMYyX!nn;Z}(Kn(%J(k!riw)1X5Q^N3RI9m5pAi$fysT-&c;UU0m= zq&CIrJmI8OB}1>fA^!d}l`-iRtO;BNKAR?U+WH`!J}&9i(kexx@z?};QfoVnkLdjv zRxZ-;%mIDbrrYT)^Nc9x=_kZfrIJn+k%bmzmZB{z5a!6i5xNdDjo`Xrzjp$lSC zOi0Jg7D~fgzGJ195`IU*8Vd7V-?2;=yVn#4NesDNKG9m4OXK#;f`Rk=?az~a=LOMi zyYX_d{07~*lD0m z1Grtt^hmoDh>`_$OFiGgTJG`?b`bybet`3V`=LpsgKkc;I%(SEP+DI8-)Q`@LEMMk zOUB_1m=VxO@mOo=C_KC~PB<{?j8l&&l`LJf873TEG|S#SVjAmu-ylKdZ7y;n@x;W_ zMkBKdF;thCT^JgA^}p=+e_Rb6KL;04<*3ubFX91fYMNhF7qR!tg@~xQn|fWQ&-L5D zb;UB;`;Wb_7*!}QOPnQe)e_OFuLBdNpqY$)+zxvns{w9^>Knw4Pr(|4WFKbA%|kc? z=0!BX!8>p(0@*t8Xqge2`^JMLZS~VBf#)fXy2sVIsR=^u!#WhxXE3KaW9NCKQ|FaJ zlSIjRF(a>lI3)|8!e`85L`ah^z3eu7J1`JtZL&cdO4L=?s@6gF?PhobAf6g{!vB34 z%&=&hHSu@R{?f8cD{I>h){Jwyh^q5NuwSD<8AfCO-K&e?I-$J6!mMu+5*qv%9*tXK z)-wGJ%2gp9aLG;T%#aKGwA+YERa`y<;b$7UrJ0%8{jp`lBbT!Z790bo!d6E`e?m*K zqOHE?9WFANYuOQ8mO0$>^-BI8HkX5JoC{<^^sQCPwMad+OZACBC-QVF_^x=jpP$ZiH23Wv&c@RV0Wl11*=l0KK#}M`b@s-cTc`Y~d zW(Cy6Yk>!GQ#M1t`p|TqwO061lX7$(tVlWb%xE^hI)1vaUY*qZ=oxF46qQO-mE!L5 zkB(}fUGZt@^WMJ)DeFM7K{+ThGgE0)B3DJJmkz11_ul<|QHg3e?4csz!!eK0Ge7JW zD6Vt-6W6_lib3OpcRB}*r{tqfyoNpGf63LT6okm`h!)i60mCEI$K(?WgHtVWqJ(RK-Pi88rt1zi z_J_Xzv2g=}_tcg4@SnuP8c%7W|9ywltG39fyrhoVWM*KzlT%V06w1Nh5f|AJ&sMO! z_QPg`)$6*rR@1#Zk=o54TBiysHKR9|V^v_tqr#Zp=boMu$H{WdKeFDc4h6t?Xky^@ zRk@wh&k-8RMRtO&eeUp&?GwAp4e5OAiJRj|LQK2C?N)L)47dMDiu954d z6FUU5+OYb`tO;EAO#9>mAjS1>`dG<0Z-~7F{)hCQZw{#e^c&rDNB7;Q`wRV%6yntg z=7m{EE(_5BF?M^AX&4`tpM71N6rBbUb|Lf9-@QWYtM9~R-xnEti-$7*abIK-eIQl{U>d$39$VvTd%a9F{1k zpbfw7HmX=%7&Q(@rTRzYadI+Bv!@qCW_^aX3=Y;e49peaUMKE@=LLfLC|v7Y*OS`C zqrF0!;_39F6BETcKE*S^m6M>9qR14GdZ7x&M0x(EO9mhblFDPHQVN=4$l-8&di5zt zNrv`vMToMq!DRuGf!|R7@9TUWbesN31(4=Nh$O}76f4&8l@G_&S}ww+qO*B*)ppZU zp_zH(D=QR=6*0vR8cIfT3#UX}h^cW@D9uJK_fP3J}W5p7kyL0!y?{3ZIdHu z)~?@QWRU7Fb9Cc>5X2Ky4CMpBRrrE9DvIL7o#_ZCVELsXivZ&)LI5up0_?}JQ?gXG zN|C&(G==X6V|5VARaA~zY6THyj$!%S&bb*yqLn?Fb7ib_W;7ZDa`DuZsYX7hRe~-n zakL9as3`mW`*%hjizYxg!R2jo$T){$@1j_7qT|ZlZczNUTTJ%~pkE^IcH%TaA^zm4 zY0v*hyw||MaBi2?G9p_c(arIxL~?08R=nI5+H^bcfrgJ`K%BpsrdU>CNjJ+t?qDS; zv%uxT7ykJJ@aqB0Bni`i{<1b>dWP%d!R+>g>)U_y+CRDa3|tm+hHG?%Sv zwxp)=alsoij5qh(`=b857I<#Z>b^o30xspL`91lG@8d!h{Zo{xAE&=AlwN|I_<)6a z3oyz`b7zhQ%zsoo!15l+irB6$zx<69nV``O$2M`-F7g+0nbsnn`lS%Qq*0ny zx6M6Tza;`%7ybSP`k#Ni&AK=JyrBXBe!X`g?wjWhWa8f!$i|FRXc-(T@7$1-q$V5q zFSNjY3wy5>EpU(jC(yrMCK%2-DBARY*eB;v*nTkRn)enh?~KO#@Tr+MGu#JJ>-lUL z7#Uc4_$?pc*`?GAs#HNiy%h^Hb@;zg-;u*R<1BS#&ylVvg^rtr4sIZ$KlFpzYXY=_ zXIFU2!eEuG-Z8dF++wngd#M^!=d3$a{hp?yAQvmG1p`2$`ijz~U#^ZUTa^exmw zAGDZ4O})xOZe#zI*(a0`MX(}+pN-*b3z#3MDrK8S@lIG4vv!rjc-c?cRVHzER&l9D zLD<0MwDcC1nF*oGyPsw1TnAx40hhrmDEt?R0C96b6Pj7ZT4(O)IFNYl&A#I3B>j2p z5yNQeIm?hrLIE$*IduM(-sepK_<4s638hIEQXBq)5#(Q)W}k(ug5qPX7O*0)V1mf{ zmVv+%l%HFkP5uX5K5s?qgo^UyC3QHHgAgF=`JfV<=L?8jtwR4BQ3(@u@ExEZoFsP8 zIo*c_Ec;X{!F)@95F}-b@&<;z9m=s*+e}vS$*#%tZ#HOK&%birk@For6@IFd*d_~7BxGeN zVA;arq~eU5`=YeRNl?vg3sM}zp}WF_7N97yUR}OR+IqM1W3;<|Ir2E_R(ca0?l9GK zx-jj8DodXJP*9zvVRD}OIFXHb9(*Fg!kt4Uos@@d&y9mR^s3PV_?;7NwQER)~yl3god&rBky$!BYl2Y}u2>J>Rf4^x@`XqtT?xq;{+Q&u5>1tTYGGvAwk0*impB=td)LaD{v88{6;LUWC~ z4P|#DrD+3Hq?JjB0Y<2WN;1(#Vf#XZ+U#6#P)0gBa=gXoykJR@eUfY5U^xu)gNHZVfd0@&p&R-m1`?w>v!ltFa#QF z4#-w^)hNl)KiE5sT7jDkBI`q3K$+6e_6-|NF&SSN0p|9<$n{a9u#i}TF;c19b|t$^ zs&jez0^^!t^5a=rNktvr>#>9#GFaYR55SA(v;ZFB|4ynX1#Q@aGD(}U1LI>0uDwHV z)CM#mq&M}mYjC0Xk?W&{K;s=Xz9Z5U=a~twXA6zdm4nSlc=mC~j}0;?08g{J2*A}< zMJfKm8wj)>pM2VPO}5_+M>0+KL?y;WRl~Vv=@-!X_B)?HcvvO^T%*7k>5ixWUs82$F>B5((?J z%iYz!F5jmW2X~F4$+90DN61uBfKU2L^r?$TEXNx(5OgnG1l_Iw5p*|Y33k_SpCs>c zR@yN>_WTdj&#*Vh%)i8@$K}tQ74q@vS3>8a*@)kNlHxJ+k@ZG zb)}x96%N>WGAsnSz#Ekzh2aknxc+BcE@?wc=M!qF5{+y9%XC!h4>;R6;&v9qrQ3i3 z=~2^lD2WNpNqxm2a+sR9R^K!5Y2?}Of|hw)kcM<<=4M~*v?Cp;wyt~c>B7sX8)-Zi zdXfeHcAFr6D>AsSl|*wN|SeoR#yOK63=HNKeJCI<(p%jN^x1z$p|)Q){=!?_at4lXtH={C`#* z(0~i5>+LtNUWcJ53I1uRB$1CwJlG}ZO{}6Xte^^u7})cmTv_k;TlLkrf^#uJq`>Jb>#xl4D|mPj)IWmUBLKoecSs z^?JPM7o2rbBk$9-l453wte$dt#`iEVkD&JXdUDkvVK`STSpk8LTvtb+3q+@|{oPXE zFIW-e9J}9-c~YaBS9m%$lpgxg`Z=f6KwGZ>RG==Px&_dJKY$LYyf&MLkQtEa4MbAu z-9q2zPYU+c_8vD?h~tdo30tfzskf>LI~H{+cVXt-5W3Rg1q2v~ysUYis5xLK-I#NS zjg4(&l_BvC$Eia+8nRmp9Xhp*yr7M@;rdGZS4hbaC=Gyko^$uNhwPSxN^U+jsPe;g+7WnQ>6 zdH^Sm2~ryl%yUPOkkZuLS@H#XvA68nut(yKiD=mK{+A9eeFJqaZQDHZ_~b*TDuX&X z+o+|VANpYT80k6d`|I&c6fA5MGH%gZFSP0olrjRC&58Q|2(yGT`Y%x52Ec@mSO9Ns z8j9(whCktRl0og8P__)Ed>54j7rH3xEx#;!PJSa*ji&4$&Ssuj)|eEJ!cS~<=c8!V@BFd#Oa7vaf{>B$+ z+R+Kzi5(OAz;7|Cd!{_%&*W~&*$~`xOAp!ptV*e;ocR54osdc+72rbozi?p%%qr^T z1qF({D5(dHY?(Yk#w;J0zWV-rzLR0sgJY^Gq`(&i2Fr*z~wpkYcFG#ve z#i`qqo2|B~a`QYf@v&luzZThnJ3kcade7g*Ahf{xSE!q`U0%CFA%7e^7&sgi8=cC31T&4r+VvdSHArnsy;NhF>cWyMn*bqjus;J#XRBTS$J}Fu>YMZi zm%T%-Ke^3vo2&XJATmk-W?mFX?#n`fYi{HRJmXkxV^i`D+CF7o)2NN@8VHiO|3cD# zqpY2TuV@68!PqSJ{K2lu&j#}=&?J)BRZR^)hsm$KofybIU`eOIYFx1mw zUcj$nma0!v?zrY=xk|X~Pgu zLm)6*Q7cn4Vb{P6*(hr;{~a*OISsEH;+o-eiA|ASDRMMDQFT!7N2yWsln8y^*~&qw zQw#C}$(5WHtrfSbud=|Dc|UUvyP%4W!~mG%3zJ{Qb_Tjsv_$UR&!rzTY3>;0L#5s^ zp|N=QS#dSGI;=*2^z*nW1>%-m$DE(z5&!=J0!Z}heh2KsaI8fPbcn%BU<+s}g1GUo zgz4Jj-8?e-1&6qM`6{~Naey-CPuES^4C+h$f@s6aT|_|T0Zs79|0KfqOIxpn#OTy- zuMv(6X?PMnr&Xpw{79mwEFG+pH-U}rVR&jbPY=A z)XtV9_nw>X3=VH5KFn8uEArckjlQzmxIEZcJvIceU6c&McJnJtGznZY2;QOU@WVK7} znmc*`-&4IgzD5Z~{kX-m4Xd-dF|Y|aCxwQFVz_-asOH*hq7PI|omd_F0peob<)=WQ z0@8DrJh0gO{1>2D;;M0b-7(=`mDsm3-Iy zkrJtS;Yi@UezpTTfZ?Ut<*mAJwj#MZx#+485EZp4(Sn0<{!0<`J3;cJ z;79!o4gCbtA6~?{4^NfG`G?*nSm9OJt?{?k9aaN*U%udrUm1{{<9!Z>>9anugSUeA zGcSQeFte)JF8q!yw<6tknsES#9}wPcvDwHT!>_{0_igYYi8jYEoPj(FOn;s6&YD8adug1N$;FDPsM?A1McHOuz@qO=OK=KhB_hJ=LK|JKIQDOJuq)c1g%&WWu z^Fldm#Ng`9n2c4^om!@wUJ8Qu%~J$TWko)`Mw!g;PR^G8xSF*+$s#x!fB4H?M@2^q zNH!+uyd0$!@Sc>o`f|p~Zt_~)b^{V=$t^BEy-L5ph*Qz{Vr%wgcp^f~T0{&AwCewv z$Uz!vm(6Q!Sm-Q-9aTZ0tMIvjr)`Jg0UwpRZe*iCRqyySvf7D$FZo|!tm3S=3c#2f zX?G`JKqbk-*QjW9UhBXE#1+D??_MWdzJfl1aTnyS20{khtjf>L>dP6=wPK8rxAzLF zQ%?VddR_7ZZ6)0S)#zHLJE}|fCDWXts$ovH^6sn?i*f?=7c$5UsYn(o9lGO$$bxdG zmFQg>kUK)!YwlgGz3Qv|Q~`${2Mph^%x3kPiI6pUGuIt|1MGXE{Z|C2Drub80>t+& zO6vi<%s)gSzc^-%ziN#WNg1n4j)NbTJaQ}Q;v-y7?oNY1d$enTEnR!s3ws3 zhKX74_Xnz-)ZY(G{Do=*x{N`uH(0)&a!se}b_XF6-`h!W3#NA}xPy490cJZum>nTZ z_g^4;*L6VPfNfj6ha%Fk>qJHRB}d;o`L{iG+IUIj37rfx+8& zyD}U8R)SCdL%9m4`UOTjt6r1h?-F7xfHR;iR0yPfhK>$? z=f9}r?2)JY@e-b1u2E6}G@GFynAHY!;osE({Te1nwvZ1D?5iCYWU@X)XMEUm9S+U* zhPiobwCY|L3eXAWP&aM0+R&C?9)LbZ3CSt%PGP44uGi_cJo)fU#* zjeghygtzbtp+Nj~>ufl)id~2@Z4G%Ip<7=ir`{U> zQxBl}^8OYBs*13*mS>QJ&@s2`nkk{TCfmc0_M{#Ph#OC0)OiZNv|R+73wRZ-c};-i8MsNQ)R@#A$seDctn@8`iku| zC1f59bDjQC8IYx+>z@_Xrk&b3bTsr@ffbh1@fLKGLVX^ZC;3I_;yjl0{r0mh8QE{r z2*1SRb>%Qit3OB+<%Hf1-xX!-kb%X(93yDE5KHP_p)<)2 zh8f)qKuKNUW^xa}`|@UZNL~jdS@Fzf_K;-o(oKdNLc6#!mp;>G25AkRLF$T}_MDkL zAoj4jLMlnPdAOV%*#b%V0fo#)Nrtf{Mcdx6iX+F@xtw#5H9G>yeYlmQ3vtK4Q#iMG z0Eupfd2KV8g89oOr1Bi)g7$}2GkK8Igv_6f>>+Qh2; zB9iZqTTUE_orPzwgjgyY5zq~0$ zv(`0P#g=lS9eSO(up($md9=UC^L~P*^AXWiw*ki<0F^P4V9kyDDB5Uw)+wblleOFWi81cJiL}UXRfclPU=zG^` zF5TFv&ZRQ_6Fz82op77R`l~JPdf=-XB}(Oo!W2#%-ZS#XNWjWmMD=6zoX(QYUQZR9 zvQ=ruvu+VErWO=^RgB&Yvd=WO|I^I5a#WdYNf zef0f^WFQuQ@$1R`&8&3FR5rQEVNkkig{(}VSv5d_rgkm!*?tlzncS=%`0Dhl(>Ee- zm;V_bxN0pyTY?f@AfAD`Zs3?epkmM_fn&!nV?RK21b7JD^&hG|V2UiLDO@Hw-^jIJLQDjK)0t(W!}~jYjD> zykjTjjS+OmXo5TD1{Q%ZMT>6RhGE*NW0*hz5E&X{Ts_iLWD2%|6;}-|HvkoeEimNM z!*zVxL(Y{`;{DD>e?&Z>t-m~fGis?u_bd_Ywi{~AV<{v3v}A9lVJ^8^r9!6AeKlW$ z^H;7I`%cy+-}5AEK6TiI7iGXXM{|2mvJ_%=;@|jzn)N^yIZSWR`?EB+Gw;vikv8g! zQf8fT;%+lv5&U*FtO2fk>Y?|x#?D6<*YM!@5KK~auPzpGJvlY0ZN2N?;gNUzh@_ze z5wGuN&A@-WzfOGb9%Vgs2d!wG{=ZgIHGktWkK9^mWibtO{iG{g+3KO9rYAeB_Q$Ib z>Q!jtb4q{`huG$eS_lZ)*$JW~jHA1ojV>Cd9Y+7Bal+29i4benuIq@ zsbYl(Pg8=j&4L=Derg9tPY4LqX^%qLe$oom7v}`xaWo&cafxPoMbXskd@&(cIp*&3Swix<+S2 zz`aUG>vx#;#&g_ZiMSkece_1e=S?3BiEp8eGPx^PK%hY}ppGP8aqit>!69-|{vJq! zE;MD}&77af%+NuHFVpi)^5fQ$_<7wSQpJbW&~vL*J~+de_xxl@{P=1oE7dJOncGpf zY5edU>s+Z#x0{#0`bLzzIyG)iSn#`o>|j2(voZq;;HHokQSF6CpxQ*IQg{tk( z!@Q@}fFd6sjAx_4bwd;gBQ)K^Qv~cn{#*|Hi$38sO5+V}Ui=qr)^nB3bSII-lUjr7 zfF2}U5)ggska)^r_GP2Q#q)5)xSztq((>C9WVAhInc@xA|$-v9Y^U!7D- zR!kEl?oYDsNJFb{=8VHaUqo#&9f$mDwNuS;mz^^Qdv;74wBx}7DUUX8en-}GONRDf zw;V?1wp=I;?RzeZPvXB8JVe&-hj`0wT&9UT83+A*+`Il=Vg_Nk`yy15w6IR-n}+tl zqj0DoYVflw^^cEk9b)g@j?;cv{oYyr^Qy~P5DH$rO^o%1zy3axGZozlm-8Bbl`KIL z|N0}h$AHkLs~;;x&EJ>RI6Ir?l??0U{nO_%s!w;)$M-13X9;xZyfqsqZb?-EvU5b- zF`k6%Tw8$xhw)5Bi(Cdp<(7eg7+@N?o5og2C&YG3%v}?Bs&qdlNhHYx&P}VN zK{PjS-b{QI(q8uNT@YYOg2C{I@5uh9%h)Z9Kjo@;p~sL&58PM>Ggv)*KF!OX`T>2L zt%N+ssj`3!*WzV#7y3`&3lEUd=M=-iR3LV6g|EKWkMgt!bbZ>|dzaM_-#Sg*KyT(4 z*Brb(FcO?vg_4qTHS+S!oDmLF?iXv5ax$V2%v`#e!;-^oNBJ9-{P57lmo__K?Y{N*8luI=)3Ymi*WzDyN$QwJ*bn$6KnghWRZ-9jQGvSs3ahAnVP z2-ZPKzRg4|?&PkxBRzktb<|I_=3q%?$W98p6Ps%XC{uD5LK*CQfzYAsD4%6uLCSxW z8E|M=8(QGgu++ac#Qg)pM9-KxOtzs*pe-Y{(naao&W^j*`=x zx#_vtX$iebMyF3NALA7NdULZ@3DknogL4;3z`Uh0FPo zoGsg`D;AX!aZPEXQ`?H7Mu{N!V&0!yjqc3DZ*S$pfXz{gaiG2(%^1xI{qVy@ag~UA z!n1;ed_v*LZF1w+o`fCIkyUE>lq-RfOz+>Nb2`@_P0VSs1#i(P$WZotg^po?(`S_$ zmU(V2pjX=oCPzumQ;)~;x2h92)`yu^m>eIXkV|S2#gTy%xVP+V@A0-S^2^C^K)W=f z4mG*@ z5Ku`K5ouIXK@mZ^q$MOor6d$2rKLqcN=iUtOLqvO(q+)nA+ZUiyE}h#Z8-Pb=YHS! zzkBZC>{xrP@tJeXF~@j`6DOk~PY&DNHRqBGs642*A8LY3;0pP;*HWmnF}3!_&29^c z0kyJ4i-@jC(ErN4y%Th@>Pb);c1#SU@d{r^O8)zYB4@Gcx)D*qYQDmK0XuC0`#Dm1 zd3ltHI%AQ7Dlg|?`AvJYZ5M+*`ps?qBGowYrWzU#=;37u&!zX8>kgidWzRH#0L%P@ zm$Ui#`3F{>gg^EtBGNf~$~0*yhc1ia{jCs5;JA(rddhlw-Wu54hOID!)KqlNxS`2< zq~L`l?0{!lnwqm$!>Nwg)1m5`ODYbFL)R}*P=K|F@1_<5QA5dISEi~yRAETcGfE>gh+Mzdp;P5^?~}E!A6FTi@E=5kFpqxCWcY&x>!9KY2qq;+3~f zq`xSY<&9Z60jaY1rPaa{$bxSqbv^XuP()C98c^i(y*NCKG|@f-Dd&+vV^BT-hd ztSsmBlI!gGX#ujS``x+AG|Y8nzbNKsSiX=qB~co-y}ur!t)eH#@{q>+;wdn4pqCcD zU?OdvO{kJG>qYo(f!HeU`TwbnF2mB80`>z#%Lp!+(E0bqo35?gC5lZ%xLU`z=@m2P zw^x)h(8EbNtrQhsXa!%kZOVtam_YO^veZ_jS+po8IJFqjAH+}J_R~(jblEv)o`IY{ zf6cpBs<`|SfvTg=^x-9a z3>$)nGFPT5tKVa(kTv+W)SqBcSQZ$A&elw!VKr-@1~QApsUdm{B*Fe*Vm#Wm68kji zq$P^Y0mmSdVC)io%r3{z+z-3N2CfVQWA%0Y#u`j~Z-iAM+18~>Ndh=Jdp92Ii&jz8 zP=~#hY+wLUUm0r}^B8rac^Mf2QLa)&Kj86MFYA}+5RUO97ndyDdzf$rF=KXT> zZWl=W4~Pl7u`ES@B({88jd^^g&}q*_!j;QD@8ErokM0IlIn_dIt;i$axmw+<#X7`gk%p zC9NBzC^)jay6$(W>ZDL5+1FRJ(Znf#?dToA%WMOm8#d}SM;G&UV%dZRHr`BLRI@nJhp^L`8W2Zkxmc&r#vIK055Eaw3U=12 zVYBXQlyRzSQ2#$XfPu)*~fw{#gr0DR+@*U@SC2auE4qWJ^ z%d8K|3PY)0n-oS1o5b=|-?013{Ui|PX(1PxIAA#B_`_cAsk17rUOoNx@VwTd#ex7n z<&{mE+8uF3Q6h%-hysBd8t>zBB*eg@kcjbU9r>)$_oEpQ-7$*EpShjlM56WiuciC0 zWtjo(j4v{L2C=j1IJ}SVcro-kuHx3Zma4W91 z; zOWl(!v#aav(sX{{_gtoLXqY0xT~X1c@3MxoTnya3Z%s{&o8}5@^0(Xj3U5S%nG~_B z_zcWRG9R3kr;|p@w4)@I9-4F{E2AJOD?mfnwSc6mA@663XN2Vku-jTc!(T791b7v* z-GbCymA)Dh(bwDaFNNzg--EIFk~AENwaexbl@t)PJk#fN?LcG_6P5pPjDrwH*}i=()RN{D*klfdX|lbeYv0o(VJPDA~DS zb+gafY}TvFIqTdv=Qt?1US8HAvV(#PPx|dUe0aKU=2}vr==}4vqZL2Itqs_omariL zgRVMljxYXN0d(QtQ;1wc7c+>;a4)Gcz+*d_k-XgCV7s$6{o~FU+y25BrDqURx4G$| zU_O7R8hdbR@a3u(+u2*?=3Pax1D+83MzRzYvUxu61V9z{Y8(Ppmetvb#QcNDPypl% zN-2RUz8R!x1U9!>B$l8rnjdsiP?|>L$D*?QI|2fBQR90qo%jIk$LMP z+a~x>olE!V`2cL$A8+gRF8Js5DE;aU#(#lnihHNlQdM)xxZl}5J4H}B)*@o-1IB@o4PZHVM?(e=5a?J4etY&T%cM zh=n8un5=pOBYzE0*mKNr{hkVdJ0K?z%y&MJR$2$M7NxUlWC&jNMXgj^-!A-h+vi@T zKw&=D*2&4rpAU5jkP0Y>KZddDN&JV~U-N_uSv4(`P&B7Y%*8G4?eab<(rxRsIZ1Cg3{q#R6-7(^lirwhMyudob5!19jUiICot`?PyHv-Ay_n0be*HA@QB44J7L z7&oRvu$l6EsHJrtY?4qHMmu8D9tl0m#POhBw4k}8cMm3>TZ{lLqsG!7ALA`|+rbin z^QMY&A;78361-mmL5rf849(8f)Gp*5#&}21AI3H1>XvE z+{BReKhMe272zfdTT;;ie`z42$FaV-y zo}5EKBFGY@yqnvQJI9{wHE}6H!lOu`C|UyKIHeWY4~0mlE+BWL1^=bU#jM~3Z^dU3 zZVofDK0#@ko5J=501Um`;=45+b%DCYwxyMpRNWS(LXM>&glN3u*FTwYrol4u6C?as{>LrZ?5L0U?!$=qTsNkK&Xe&=V)W97Jn?qPM6gq}jhq#u zESqX%^5$ReqxI9fRZZAu6wIf1v+5*v5`IN;25b&Fw`NdTPv@DM*!w|M(wZbTNSRJzAhVnlmVCr@%DlRqn}qT|6Ujm77gMb+;bpehu=(8@)#VZ)zX@fx}|7aJV(TxtqW$(7>VMm zS0IRng1@q`Mj_gspybmF8&$>-gK{ysJrHkWVK*a;rfG5z6A!bO>_TEMTSaaK`zGf| zT1-`df=Y-faWvD-ngJw@O%ge06r@L2RQ;MC8LR{|^i6&9z(I|~sKt+f1Bi#`n*pBZ zi`tES)?eAvt4VB5KvEg(w83w6^ImT6JR{!^TRE8vnvWl!1qX2dt^GxJPK)8n>$SDD zJh#0GJN9U@171VfqWw}&3wd;q1HhB;v(;~U&!sXO4u6c<7Hg;N|E*MVw|A>%-*lCf z@L7QiwT_tb&K#JmBZ~+sm3?n>RU9{${{HlEWR(ql?9$eyNE6RrhU@66SNYm?s(1)1 zNiP{gAxUy0MGJUXVUd2ijA4q>&rAdIBW3}MCt&$5DDIs(*kWv2hMiDT;7CYvfB_*0 zGeodh_#_+h$4OF(!z8)2YWOpPEv-#WvM-6sZj{)~zE{70@iO{P^x zLW;#jU>I_!0g2ZSAVP1H-J#82+3;h%^UAL2a`Ef{0+ zryifqUgaUtC(l=#B-|qFb2P|XiZ&2t!*c5D|m0- zYq(|Ry*t*g#UD$o6RdbWx{T;H5FCeuVMAZ#4&Sy3OlU^=6K9PX03yxq21dPZakc&O z5^Xy(LvoD=cGd?6@8?hx*peVcZ9Tg7L2=`zxq(S~UAb4|X@-Mz_{+ti-}xh2ICp2i zoi>0>yKm9>U3)SvDg9W`$0>+3t{ zGRZ;Bn;ZCtcJ6CD|HePW!);+k7D=j|S4!c#OTrhu4JUNZwJPl&{_vZ!h$F4(N+B!C zxt`gAS?a-!z6e*d`ma3v?3<=Ggz60i*yj#Ui)Ks=1!vN^u~On<$8VzkqQH-Eijf7n0RM| zc?G8Dukt8!wcB-v&Y~9j0^XWCQ|XM{9Mqd^bcjz#NGq}4RrqAZNKcU3#4s90*Ljt_ zYd-Aqy1L{#QDU;y;QMm-*8AzG%^*EH_`@ko7h{1^vAa=9I5O&UE==Ohgl&U%vCuXn z>1=EKX|iJhEhecFAt>_9tyI%!p!gUV2qzf3Xc=-=1nj+DiLN5Al-1UrlB1Uw|C%)Z zQrLh&Bgx#Qb5^R&!!=B-^-y_)Md@3>!{33_M!-+MsP|4?aFS`cG?V^|lZWm}WW{L^ zV+>WOeHk~_Q1qq&7b4MD_<%9c1f``J6iMv6sy~_l|6M%Z1lc*RJaocLWD4y1E1Zkqke}Ok zS^6VpHQ7RwctK1pB6R2C=Wk^n1F4-24eu6ng!)y6+{J+y@qhHqSOlVY?PRYAUu(9L<64v8Sxw)NZ8f%*S!&noA7aenSOay$ z1w_R#Ee#*g@`|+GjbewzxMH_`r@YukA4BQE7fwW}(@67I>!nSZ*it)FzNU5shTJ+f)=%_VtVU-vh%mX9Oc-vke-iMZx^ z@tQbmo=_Yisg`a~G6c^<)hDIX)uZN}+QOhUj$Bw^c|eR?>T}G{P~;|Er08gdAXzhW z!}2q+85ebxG=5O6r;M0)Ryb?c`P&eYe#BvadkXgzmJ(9Zn}1z%*%q^32f()mZuFCUV>Be>ZR2?u8a=ev!pV) zJi57ld#l&JvC`aF@i9(KcSDrO_TW&3Grmm6V$n4@-lI)9rUwrmIL&wOohWqmbM%QA zG+3MT5Dlt)CKz&(963&pG3ox($hH9qVJm@~B|g4Puqc?~`QZ73VUfIwjmL`wCDue4 zldwOnRunWW2o^|xe7IS#A;XX3n2&~S6UJznMpCe<&!4dpU!mEa(OJ8t>^&SS%mn(W z!LNd~f!)z*k6n)`ot{baWCL0i>c)xmGyhHJh%rDZppI0l&>!{mkVp=1es(L}dD%Ao z!12opHM{g-p`gR*YS?9u0AtKlU?r8^a9MYDs}CzZS}{_i2*Q&`N}Nz6cT!NNig7rG=FKRWOQ z6HRbL?iKYZW0l{ZdX&Uu6bZrxE}K78yA^JYyW9Uk-z63$@;xB|d>KJJc9Q2J4n%s} zBQ(=7V#QsE-(u<;V#*F_z0oZaS<>RV_xkxgy7+ke4`#}&WcBU2ZwF7p+h`Ju!JJb+ zN`Ll=26@@XMy7u%4jOUQ{VO{KTW8!oXi5(%x;Nsx|J zo@YNp90$Hq%rCRWc?)*C^W3fux$VyDFl;LcZ{G#uOGPAQ5DFCMj|^AZv9K4)>CM%X zd#_MuUI6po|9kFaikCiidAP50fs=>wwt{cy>mb8Zte*8LzG`z?*S+qIw)>pDdH|z! zGLhZB)@qwpA;_G%!|>+K8y=#MOnAxxyz-B`^~FAa<8tMN#26QHZ}`5W*wB-apZ%|@ zseWWcUuhVNaxAAP?&KyD32rGVkj+0+ie5D^hz)Cp5r>5reqJixx$tsx(4htdaHB&4 ze~uk_-bY18BaBn6L^3~5#%NpF8|w2ZI9Kd`ucNvqz??;V4T6pd>7kK=f>{ELTv7&IK{Uby}e2=0)U(AQzC2|j2a0oQ>gY$4HvfFpWx z`czvgvG~5u&hv`34tX76-7H0k8QqlFLe_Xrp#(LdpH46QOco1b*AXgZ`&(q%`%$>F3+|bKWA_I|k(valQ>4wEulfMUbI0Xf#&RXI3 z{?op*+#s212I$QC{|TLV4csZ&@AJ6|J1?)_C{?1a*~wUm?iz$(*v)rzC}9?iHPs*^-vHI3SMYdxmG2id|p033mAZFuud=-U*KBZAes zUU@HB$*n00ToiW3WN5;b_IPZ$2gh)}&QRNx4h||HW%^O=ZLZ3|B@@ACn20jV#L+rw8Fd)~D}x;5dU82kLhk{uqAK-dW}vUgo=@1Ig&Y zu7L}MVSdG#_5*$V8BI{&(LBTuBQO6c@P2uZqrO03hKg%)H-E7tGg*oG%b`v#HK^}6 zJn?t1p@$U4oOL(v<=cJA_8)v;+A~}54#vkltv40Z0}MYwjMkbdC)s?F#h~?X{nvyY zm1WaOcY4ZZAM?85V~f&5*$dafFa!=HJ{uo*xYtHL77fje+eOF3aM4l&TRxD^_TVhW zmh*iXqG)=|nPGfn&*0pdaY?9K-$Ui%gL4a2+Y>0nn;16j1uA~{IC-e3d$69maaBKQ z*sNCW^h(u{DM?musa>`WO{E_msoA90=LjMUD}L>N&mJSygUlBB&jdE1_f^RguKIU~ zf;04n8`-m+=4W@VQ2v=}Pu2(VgFXmPQ9M5%&_8OF>C&^Zy65x ziV`uYGp|bGzkL9`XMJ@;h*(pj+(4)cS-sH3>eQcCuDXUwh=&r}Jbjv~`zl<~*QMy~ z+qZ<&QOFkE5MKCOGZz<^PQ7=Q(Z~A+huWM|(qCcVMSO=v`9~0t*lR-!JLT5&F^9E* zR3ja!@;dxoE=tZi?7x;5CJH1TBHRenBrsC9@8W5oPkVh!xKy#8K36kjaWQ=Fy=~Bu z$)?Akcu8j+@eNX3T>hi^aJ=jytKF$m3qy$i@)p+R^2l%!OtFmQzpx+II4K`d)Afo( zHd)p!(eC_J^TVClyc)#h$IX%nZH1pFo&NqGki_Hr_)hqp@J>b650Rg#yxk-pl+My* zw%(pLQIO|-r(PhtY#pTYt?Ao@Fn5(D)w^-lO7FQ+rtNPVg^5^Jl=zpG zf~I4|EZ=~7m0X}L8|SoM)vQZaiOllqDRr|xkhfe*g*bt$CW;3@m; z(~510+a=Y&<-8U1%j-?TvW?Gm1{d#c^b9{bd#-agpjHfKfSt{zh>+nW z1EC3^N(N^5SC3A+x4jKZ*l? z1nLHbboTu2VIKYo;hIG8AyuT`z1`{v3aq8OmoQihB3Brp&DwUm+K)eCn@!J-XPvU0 zEd@|TCA(`1mw842ul2|CsDiW_cW3iYJpkDsTZ35UVweH~hW@tvJh~!barLRDO#GqF z-zOi8qnUV$#MtisZwFNwLd~Vnvz0#|Bu~5yMElv%SJYgCe&tgNimx!c~~ACnLueB?@5;YV^arQiSbw1?x&m>PGS*CY~;#fGgkzlQDe zwFx0Uk%~Wng3}+wSw9N4u3YjZI=zNRMnr`XHn9Cmt^Y$vk}?d2&()88xO!jB+e%d+ z?9)LFg|06W$=cWV2nn|N#Gt}Z3^r?S`Nn;sY}gc_sDP*6>)O4HLkrdO;&=_48+Aj0 zYQF!hBx0SYr$@|^J)X#E;ZoxAUNOQYCFHslBJ+04ZUkSL|DH8gf*~bPdUSUfK@WLh zjYBygn1WoIQ!b7z%nC7jPv`6&X3P~AkX%H4XtksG{eEJ}BOUYFH8a2>A$*Q^x%rgPWzVt{qDaLPecFoy zB?f||EA#qn{2as79aUZj3a3nhXocA9=lichAl9OwVIlTN7XoT7#-ttysF5iroIyYh z!zu%)3G%B5JHe63yIo68!>PTg-`ReCyRGE)vZhnHSRpf_yo&qz;P{q#Y z;~4EqAbNRy^#v^arfazVl6jQF((|gp9fTGZt8bv5vvt@aDWsc9AUIMXmF@_afQiC#XZIweiMjm1_kh8m%kMxQxBg2h1`o~sFXde0ni6V`z%s*R8|EJMy$+JY$L^h+< zjc#121s9mo=BvQVwf)!6nA*rNilVy(u3m!PPhG6VM~V`Yr+-)Qe&msk<*+A*2igK@ zMNG5J+3w=qS9(s4so8#4^k`5agxu}_hmiYdrOIH>Sd#t!53dkTjxIa?f`+0mV@chF z^W~d;h2|)*gB`XNCFAXm6VSv@EdkHnf2kCV7|x>PlNO(;77PUU?&xs|2(Z70x!Ty+ z*f)>67F2PYUruMiBtYX|WW+SPja}b!8STqho;}{#JC1-jrR^}%XbL{MLJl{>J75IB zLTpR|=ae%dNlSev=3?VBT<)kkP~ohhRpF!#zU6j*zJV@aaX-^@1rxR7e~Eo7=i|py zrBg@IU45ttMu{x9@AeA=eViMLHGeYy5W5=wy}KRzSX5?T@oegub*IFiq>23z##rC& zholoDhzt^2Wl zmLyhFX`z2K2_q42=|{QJJTUg$Yz_t;gYrMSu2|S1Vu&OO=L8plg+veO)Z-hz)BB0; z()^9eG-h~lYRG%h(u!J2fp}M-HU|}P(kuSM}9)-EQb!F(^6O<*!=vgE|pqhX?LaXi)Mb5u?jUX!q1ar{ts0r6)Iw^en81kc~(-^R?813z(vSx z6iTZGD6OWTw0dF$Bf=?S3?Ez6jQEt<>rOLgT^LvcDf(*r^v#+wuk+HMDnQOK-7TGlTKC@ox>;)vfrk*zNhb6 zn?R5zttc?YSAHibOL(bNqhiV4`fsGPC}Byx*sG!_^lwM(XQ>J5`&Wxe7VJ_+qW_>1t$qH*pY=r=zV z%-$ma#2vr}p*f=TSCQ{WN)u>e`o5GxU3j^@Jshc=7L&FNXH;t!6=Tow$At6d4%*Zp zx=?;h}@Xtz=5o5e`f8qFKy07B3nSF!`vdgS9d%lQg@E|wvAg24h* zrT*0Ojfoc%gy5sjOCh4svp>}&Y38`{(UKVFlj-Sco&Ct9;DuqTvz$WFYtHjD{fZWUglatF_ks7u zqCuWd1QwIq8sFs0-ch;!{(rk}RqwUIGKWo?ur4e&R+}lV?^KrM?VOF*A}q7Y8OP6x zufwy3bY((^eb%Udv;eOHKKxWGc{P>-1}{W+4n+de67E_|owpkbP(v-|lS_`1o|pLI8KA`yis$IIXSZX3&h*~Q zs(Sc0ZCYK;6++a)_`&|JP*owjMy~Jj@-p!d_O)oR8IuT1<*XKw=s{)4+Gee_vUH%b z(%awPO=l4c>L0Gs+%mk}u( zhgNahCQU@;l^K+bkiuFJeaY*QC$KOiIV%=+V!AY*b%R5T18NOquhCXT+cbRd5D7+Ca&EBbbQe?LA7R{jCD{POAVj}}e8wDwMjHfa;|ZxTbgRxP1X7IN!G2I=^Jb!ts{}!nYM~5lWtVFDqI%j4ywC8>}EdWm1udqn| ziwt`^$kXj+O>T|=@HL8`_pTw% z1Ty*R#&hM}dnt5Yih-`#<@^@hEjYCc*OLc~fHeRnG25M^lde zP2c#;Ql6Ptenss{s6Xoro#u&`CY#W?t(`7D)-zD`7|L^t29lXgx)MG{-#}#TCou|i zh!XoxDV!Bz@pvCeF@vnRi8)l~#(!1hDIJXuoDMCmlag-3=H2-V&k9*jGkA`<&l)UBu^Ik{FTgS+rGd_{m|R;d z;mmjXw2E;4dpjTN8NPRE%-qPlu`@T9vz!qU`UHg8D7WN4XXLc(r`i&A7*w`z^3jEO zz;LnCJ49?Kwq> zOQFdq%5`m;8Z7mkoNO%UAg}S~nKdjAj{oQ|c;`QM8AVakYCL$bWB*uH_qokgZArFx zPED*VKjE-A?@H)Xhh7Cn?zPtYh1m*cEu;lFB+i;n{EKJ{10`R04hd01YC=ARSNJ7` z6P?^ws2Jwzt0IIyf17|7x>_j2=68&1^2=g=i8Jn`cLlr+XW zuGx5E-?}l%q&XrvvSo{v=);B-&r~`)=PzCD8BSE^lT0RBtUla^slfUr{b|+F(R8q+gTB{v!xJO{_w{XTT<+WVXB3YM{;IYuKKS{A&BnYVU*tEej{!vx2=--LiJ z3{YL#@t(r9?t*D5qSH56kzn}XYE4p8Js)LF;@uk|vcIOvFit1Ci^O5;JG&qnQ`Nda zlgTI;pc+qFyfT5OO&`-QPZ{5n)Y3Y5nUc()+m(fxo^}aw%sNOLh)JKbF)c+iKQM|p zosVfD@nbm#UE_-a{mYu&Yc?@z`13^uanyDU^P;qBKvXM}BkWh79{GHd}3`ot@s|PQ9RB+yv{>eb` z-f6^)&lJ|OuLNh7G>k{VdR+Ojyt0B7VqFi*;*z!b4z+)thAXLzG>6{RH>`XI-+!(K znaoZ>wu0UKdS~|T_xfQ323nz>+g_x8K!E$|)m=E{-izZg5K7qipyx!O0)YhfqrF6P z%wFQ`RsUoEqam4D@7Hc?$#i~~rGwUXRg)57pKqv2LDCz}Wv_d3Yal4o5#SOXDsxcM zs&dn=XAGEZjbGf?+&@q5u5ohySU2qlju#e>Bd@n(y`C=*7R{!rMOGD!k=~qP(y?-H zMSdCCG@exE;^tPHRsr`g5q|`c%eO`XB7y?GzhpSlp`D(FDZsg^?PkmB#zr|3m;J@6 zhKx*R3VKH`;qWdipz?(9Sx_Ol{NmB}s1M04ANV@M?gP0qY?&kwndzNmo?e^6;zjsl zHmF-tVQw%ZfYud>?L$5Uz2{hY+4JAE$Yvxy<=9Ilog{JJEn6y&0Z%cR2b>*x9SgI> zr^00hrG1{Wyau+M$U zQbDy)m2FQk9>D~2uTQJoHi*h8(+R(WuY9GE{q<{;ap?k7ze}YW4H&f^Tje_y4uaR+ z8O0rGDraiCBi&rC)lCi2`Pen$$5ESn z4}_t`G=n5HJ-KF1IMWBrD=&(z5m=qRZL5m_AtnS)F9uEPsovPCm6%A(L~im}YQ~BU zU&M#a%ESGSCMRL+ka3#st*Qt%HKICEJrwTYlYmxQk~q3|FDeZ)e%(UaXw}JPli^;z z8C!JGnZdN;=QKnk*U;_<7yH5iYXU7cRCU)4-S{rrX z#iq99u3w!UVs5#PSwT78LdsVF8OtPWkQ7pn5^W_C`umdt(6&fFLJk~|vczQQac*|J zKlejpA<@d#QEHP)YCx?I6{c|r=FMXT@{W0F(^?O`IBdD+g$*$L29b}}!x`4k&{h{H zv_EvRP}(8hZbZ9k7-Y7#=TZlp+_~*38hdaPwhH??yS{*F1t?jHt1V^^I3?G^#`qZe zSsggXPt(8_wQJy>Q>NwpTdS}FfD$|RrIsFSeeiCt-N*2IAz}n|Q3HRkTn>rzpJ@pU z4&E%n;UZXIVmMk&`d$8i8}2XS+YVK`v0E@Us@Alu7_Z3H-5a48f#~eC-YWMh2Rd#u zI&7qi{s?C3`FCWbPsU5z&QY6BX*fK|(^30K6!oh11#Is?0JZn!%689%MaW9DS?-KK zP(z?M|K~+m2*^CISm+#!khpJoVzejj`#tXJQa}FN=Yiyx4yX>@J(p(s9Y$Dt0jcjlstCV=1r2HhiL!_lOesApjyFr9pfD zg^Z%H4fgCz+*k8KOw4uToWt8zjp*&QN}#evz!EC`&d~@n%i8#DxA?L5PuaL##Uq#L zV+V;}1-@rC2UX9>D&I)E=JqRgfq!ar3GtDj5kOhoTgtb6n0@O$_O+EW``=02=yhDz zyQO@;q0`8E`xK$UWzqb0$f@^<-4g45(P36AAAP0EL=&Z$tQy&^DbI^lJbw(D=VUwi zW8gT~Lgprj=PVqKJUH0To_Zo?5+*-Nz|jRCz*K)h-+{B$ZRxgrRo;?>;~PF7Lywo} zlqwwcRs!J%x0BpPZzDE7fk(C~H6+E0bk;;>bEG~=D!$|+ZkhvY9>FCyvyvraOYmH# zy@P5gSigorre8EL@f%mbSto#cr`sFLmcfp}l#YU5d&;&mzO>v3m(KK=dt#?Ko;e~ zcaHzOUjX2O@0YiO6@t4AL-hNVj21JL6W}Lvus43^^47y!W&K}+@Jc?#^f}~y0W;29 z0ytHFhz9t^elYSUBtM^^RlCi;^-x{rOb zHp>5xAZ?uI3DzYKQB24kJV{M>dy9t$dA*QT4%#cSfA{mao@G4PWPlxu|1nZn&uH0R z!y%Wif-G%l%+Oygrnff0v_Zj~WgAP+^=J)cz@$mEoDx_9(8=D>5KUl(zz!lXFj_#V zomV-8Ee)lnrlxA*?tZrrvBzb0a|B>=0Zh4tgcvDl8>#3Gf*@QZtfjbYdXuQMg{Udp z#YpBJ68$FTMLqPyu1~j8XM7x z#&gSjzFFDW_pL7L?m2@K9vh6Wu-ez0@yk~5CO{<6T@~3Mvz84e2@5HiAN~0XIt?OO zrdvS;SCc5=Qw^S%I}#q0@(ftQ4^9i);$c6c$C&H31Fd^(u8XDnr8J}<_zdFpVkUc6 zdy&*H=inf8Se4iV_NEBUUYXu2H}4qsWP^t*`>ev-leqnUSpIa}Uo7iyfASFMb6Nb? z^}K&qF;ZxZxMYQf2CP4*`K%397g!>%NsNXKUCbA69`I&+c9Jd|Tk`D*+)~JL#8~E9 z$$e_%pvTgd+0lNZSoAQRYQ%@pAtJ<1rdn_-yo_~NxVC!+j9;3x zx8pO2#y=HJ+fF-ZOL6t(yV`JOFpF)p*FjLv+GdTB)Y475@HRXkDa2nnTj0Qt7RT6I zK5rcyw=1iUjCwpiyl30!nnc3f(IrietnQncd;1zFF75*{U+rT}4!lR1- zRuN6Ac_%z|m+*+w!0|9Bd_6dES#AHV&KJ=Zu(!D7km&#DdtH_&nE}>`N`h~>AKWbe z(0%bJVYf%urCo6d)-MO2Ulv*sw`(jzPG)8~Rrw)e9r4RuaQ#!Is395Lg!J3sN4&a_ z`}CfW*TBbVJS&Ce(iBMc7z?(7F#(u)d3h9M#s4K&9S=ACt|gjq6Sw%#>ep>qUv85N zSC^j8DPM_->RtXX_b?z}mcHeL=QzQwB$OJjmZ3B_t$HJ@93P zyxUkM;OxeA^f>4f7{S0LdX@h0S^o!@m_)Y09QeF?gWl1_hk@WfLeWC-yB91{@I7Bd zruJ9tCR8>PGvpZ-;7ABu?bTm3fgMOh)_gPC7PTYH|o zA^J!fzlZfUMFx)wC=}_avwU}n(ODL{F3a9`z>hO3HkKSXR;m6}L8BkOhGF=JJ{7BH zmS>BJ53im75NSdsbbdQn&UZjX<+TDudp*Iv$ zKAWVgUCgr&n6J^4yOfv^^+ZlG?o#1-M|ts#_$1QDWf#5{-?iijUkqODwycbajdeC! z7!bL&S`p8AtN$!x*tbyObLB)LkYG`&OB71Q@C6X(yu|K2Q6SXikEDt4UW=T74){HPWG z%iLT-%Ov+!4X4I}6XRwUr?S5B?s8|y_g z!Si_^FP%Z_YN{)mU6Z}B2}WSqyNgvK_QsAJCp-q$afM@W!(KBW9yQc{VC9qs?5*n3}kJ!$xik!;hkI&uHo=XM|O)JND z+wnS*=87jl!H#-SvsxERC_2h-*?pX_&>&4m4Sx_zT0SePn?kvpzv$RA-b3L$*%WRa;{)_3xZxx+6uY@ok4PMu+Xvi#Ri{L`|?uCUxqyD|?qO`!vn( zCuQwLB~B7~Rkbdjb#l|3`5}EyAh}aGvMi3CiFtl6VSSnOi6vX}!!Nwhz;NHP6xOWi z5sV*|%cF1e5?z=inpk%^D;#4&r!XaaKdgc^pYCbwwftM4Cv>P}9NRWe;#*-umBoFN z4(o9di`l*!QWlI{=x2D7X)~<~&(pN4>!yTQUGY)RIL%?pBLi0C`$(-V*q-rBF5iP& z#(_?SHre+)sWIGXbjaP+LFcUX=|y&6aEvmb7zkHF?s4)@snMP0euf)AOFoQ5vo#v!~2L$|ufrgi9to zfAO=e;<8^$TeZ(~r45;?#xkBS^5?<9-tB-1o- z&i&dNJ8?>-!f|zicvq6x8JK)~`z+N#+Ha&6~I&??%&r`E;jPkIat-x|54 z(sa6?8ZJl=&($rzIv%6aDa%|_su7j4i-Uh>;R^0ex*w#!^EBNYunBgWjCFW}e>Z^i z;t7wlF4QG-PiVe#Pp1ah?KY0c7qqq%yX20b2K)Q17cQG7uE(tcW6}kVJ4KxDa+V;( zLk$*28*{%14f(K!yoKv0zQ_*FS*tVPxu8(%_lDs{E3S19PLBD6<3@Xt7QxuUD5+w} zBKtVk`_zVI2lq{f&VUger|GM9J=zY<)sY4DK6Gvwl}p~7b6bOueGpM09J(IlGIx|@#p?fU*Gk;~{gAcmJ~K9@9YCPUi?(FJ=F;lT-m#&e{` za#-;es`}xJ{-O~|8Z#t*67Az-Zxar_@_A;=((9yVlhGE^x|IH0NxMxDE|-Aoes{t2 zt4f`4!GN7rX`--p-*DmnPkTX2$|E6Mow2>d4vpfiD^2*6uX(s;{?Gyqc{lv(`C4SM8(MTHTlM-EU;4Ef6zol&iM* zZxz}EhyGmfqtlG@5@qoiFwm9jH8}HBp+o@Jh0jpDg(}K{d?rTQEwXJDt%5HcgZZMb zqds7c2gz3znV)M-<5I5rGzkVi+o}A-8{tM6f`y%VDgj?5_}d+H-fFwo!nuZ_`}ITN zvpQjHGh^G=ZG;UJnjF2mfa4j|VCS|8US&0{UJWf=7*LB`zRBU7#u4R> zlhm8lpMmcdT@a2L7O>Q8>5LW%yDm=1(z&k1>hXj3dg+V5;^sq&*CU^!sRdsu%ML8UAlbn;kf@`M zWkS^mImPyKU8K&+)=I(I_k5xBso833_JO{qt>il=Ktv~ODlbQV9&Cl-25-L)J8Lf1 z4sUnHCKpMK#S^^fufL{>d23Ah)b*6Nc$ntwkeqT4oJ>xCJn*|@zXY~h`g?noff*>fVb%L} zEn4-uJMz&Dkuz*IUUb2VVD9Of2>u%jhAXV4(Vv8_IF^-&ut$>qqW!3)lT2cdgr0-l zTubTWNSU{uv=Xhp8}ktf%+{NIg>)xPUWq=&zPhC&*QWklI`lU~TbyX;xA~3hJlTo3 z+TA(Q;VrI6S>R~%6<6qce_FYtclA>;7BP}B3!8}BBaSk&XbpSWX}O2gBXtq0w}Dj8 z6Vw=h}>5!54Tfe zv_6a#t=byv0^+NWoI88fH3a<*1|>*@QeY#GO)S4Kx|Ppxlg$A>!!zpD5S=tQooHFU zPsje}qrG^aGAOg1 z7_pV7Dfv9UQ8WE!%Qkx>V|??O&Pj^QQZDPiMPoli?B}AK*1I*>IVaY(^M27LuB0$4 z7M0(W&?iWtSAISCldtCdt>j@IS9>Mnfmlb1keu|Q!a_D1ofx6B=m}_nXTV{sWlJPp zBukgSi&lc(K}d`^I_my7B?0&4klmehTvRrtmE5j%y;mG>n|(ux&1BbiPyBQq|GlcM zCoXh7+vfX(!k6eO_6~Gj$JGx`G+L^K5@0tIgeTxz7nQ`2rGF(|+BVh-uV?rb!%xbAPp34l$NJAgQM_k}xFhcFRX$U7j z3c6Cc6~!;`qg%dDqkmvPjYM$il@n}-u`jCrz+*KE;*Q{kJApDS?XukVP10|8ls{P} zd!)@m_G(jX{XU7w(TR=4^I|J(>R(_wJ3qBO71#w64K*P+ekw=yXs{*EvFKIS(Poev zgHmVu-86%Ib)*fklgEzS>Xm)R?5m)bsmyy$_0pGKS| z;X|x&Nb~pszJzXtlbutBc7H$62}`R^9n;Ms(~&M9*5$W*-+&kF(o|W(l(k*X>N6M# z3ojW!4k+>Bd&h2vR!yJ5nRgRfu0A)DnI6~QE*<|R_jy8b$qBa4+LbOP8zXkZ*ojjV zPSro^X8aOEqERtPA`2yxafvZ$Gz5n7P=QQtt|{~Q{?Z{6VCj1E9j|0nPS4XYTL+Jv zkjn7?WA7^;qWreD0Y?R;1Qn1RX;C_)OQi(~5n(`DP(WfpV1|$qMYTdtJLh@M^9Q`2&R62T_ulu)Yh7z?jY+{v-m*kX`}zo<8RpI{c^SFj^mnQ` zL?9#)o*E?2l1iCS;i(tg)g4DEi`Kn7lN#KsoTvjARqQy}43Je97pKh?d3B6bgKVbek_lQs?-iv?cxfAxe1@4&yT`MTWAA-UUQU7Z$;VD#{)X$8VM-TAs*ex!z7i z^DPg!Z`Q|{kC=d~qQ2Ug+1%bM$XD+y4}4r@a*FD5%e1vIEx<3ELTB8Y(7kgO4fhY; ziu6oa4NMybcXy)13MzfeN$hj?>>j&KpMJHhL+o|^mozzl&k@K+^^4GXF zB@(oR>>MU_3rg$PFnmyt$xwdh1ily*rxROEBLM08#?6=P_|m(eMWyQt!dHrQ1-vr$m;Qr3LYbLIC@M5{!ZOrh-F6nn2tcr3qs+=}e$ zUDQKhgV&HI7(J{f2Fqp+b0vwF;IXOfa+wobO?MO-tLUyo?S9n@Di%%1>n4qJ|7~$> z^PX`~VkCWjt6o+u*?vsH`9y8M6}i2&??KeG66ldRu2)-8Jv=--*x%nDsy1*F!u02i z=+}Vx9T_|VIlPpO?!>Ro3=l+(u4VP@nsy)ZnSoDRKZISI;g|Xb38AZkf{KQaKg$b3 z42l=L4TvIN>^C)`;pH*+JQTL2rz%KlOWflZxV~&J*Eq1Yx<7>*S7J$r$0Wx++>Wl52W|%I{Fif-Auk1I<)j?WLR0|Lz?5|*#eGZ=R&Is%;<2= z4_0V2;C@wY0`NW@OT{@>r(YF&u55@jDQHDMy$fZCqvJR4;>@@gg6FQa%O|>~24{?* ze8pAuIyCftVkrM!f{N;6*P5XEob6`fKxi*3e*GC2d?9{Ock`oA*C#!f?rl)s9=QLZ z0COxX%D%kaC+KR}+!@3f?kUoRnb;Loap&o(Q~xOua;r3DcAWjnSc0{~X+NS;&LpiC zL6wt7@BK`&uVBbReG$booG%jTFXI9HV_#EZz|tL$SVyg?qnGjHS8QfY4N&wcNj@QL z(y;jmjz{VTD{I@EbKh6O+2FD-M1Zg)n>tQ9&8J(T+8ylzX4Gp5= zMh{|hsb8QCwY6%mo`grsWTG#VD;?9TW3=B(1)^)a`P*lXyq6W$kGOzdByLnCn*?jKQm$$ixcMGwnqSv$1OW_%$m#W=S% z&(YLW{vJ2?9V3M5z+0n%=&+M-HTMmTy-4`U;$OKi0u9s@;rAvvN4OV_Q*vp9r0}x=RHr&w`2G2&wCir))O93lP=J4QXB~3&9#>C% z3}p?SUxAW&MP>wzvQe&-MUjgR&B#LTt84Zrhr7!cr3-q%T;41tpEa4cu&3hpJdY|p z^(8?@Hh_n1VQ}x%i&;L%b0~`^i%*C^T{t@wReA=R9PM&-4P76ugXzJo`&4Nz6gacy zFv$M_2Hm^JNEj4{C)_%={O5?9hPa%|jG4P4KRT@qGs;wnHhdk*_o`SN$@A?}AFaSB zQ>PxGFJKDd_RQLCbXLIb<(p9pOuU5Nn%p}|aj2KvNHqhvCZpS0%Z3xAO>?JB5N!`39GR#*qR(lIssJ zHTf1hIqJw8=z}2J=EUbrziw-MKe~~ylx=H+8Prl&Glj&niS2zAiO;t| z#5{rbMH{LQcAXZC;EXf$Gp-09t+LE0*x zqFqo+AnDlJ@OHtlX{t~`Om-ent@{r{QO^U7Zq%#1*5?pvmt{)y8pf|~Fv@J&@r%f2 zfowxHlDvnN=MT3E{6^#`ohS^ zt(FSP+xwv^&ah56EnK(Sb6Cd8l3 zOWoz=Oxb1cW5UR7B;9P@*4Rv%EBT-0>DYykFzPVwZ6@CXC;1r-13RsW`>@)_GdkM? zdT@%LOMy^#MF!tjhqY`VC`88owK@1;6fM~ z?hX~UbMAII9<4rTD{R1YIekjnJg$-`1r@qlyPORe)zPEwJ2tkqPd7qJ7h%yAK|o{o zN_^?4{ze5#slNMM!XghguzYP$Eu_(lR@Vzhl7w66B};?F%B?=996kR+uBYn6oH=pw z{>QQM;n`pL0RFcUUg8+MR7Hu|M~TafCak#FDNjFiXbqBOE?;GK*IGZ=5`-wTry>PK z7eo7sd)3VI#VuVA{`?+`lf@h-uLc*7PSzJxKY_DpZDtFK4$$0=u}gVmwzi#^IXI$_ zY;-TXUj2HBNan2N+;L{p+R~A++_p8iM1zim3io}W)kXdpYWk+kjn$kDAt3Glk&;k? z{!y{TH@+7kUNm>CyOd11nAP6@J~83WtGdve1TYF}NA7$!sdzSz2sZOJzunKkVb<1Z z)qFglHok|QcA|TuXi!AxAJQx?F?OAa>Z!22Hxv0%WTQk&%fX&d0jxG_Zn}bd)^yEL zsoiyc&FU6iYA>|CIe2n9m@PG5U)frwwsT(z zw)brLuuEX_`zD~MPS<7@$%^T)>S;ehsNVeHMNUr0rqM3C@@y&`BWg{}+%sB7==F~$3~o_gM}wHx@10{4SdeqHc-lA%bz3Q4*;I?BS9 z6=o~mWkCBu=dnO(zVlnq5A|wAkaAIPD6O`p#Nv-`RM^I=4pm{;{1*)DJ~wg?BqOkV zQ!&asQp)k3(-qwYO{0?)-64Rmg?}<1X^Cu!G&i;H~1O?Cx-Jv_EpF-nKa z2{_hpUmC^lnSMB#pd)(WlbA&MaWnjz)N68a?{co+w}o3j(VO~^gs0zZQ^?YMOq!hTQK*6p8%C%oOY^`(-Cz) zotwh}@NY|*E}}6ysHYe_rG!+)(&RgyIm;3G+vVd*QZ;+<@c^AX?%ZN@LFmUFfzx9SB-R(H;7Cf_H^K&?vE+bMs%UNb0 zat@u!>gZX%vs&Vbu!(biXJ@2K>OP2ESu4$zr_@a8Napigbla;%pA;PKd!D)MZg=op zrWYLAOF!17Fd9UzUC6Z1i-@thJUp}yShIPSDadm_ALZVfh6!^x!THJ)n9jkkHU@mravfCe%ldYLdK10|k8~=9 z9lm~jjdoQ0Y+CPJM7FYem{4G|GK0wc8a^!Clo_4=5Cjpul7np?@rTy_(Gh!08Wi5) zdr_vOMJ0v#+Brw<1^bG}Z8IU1wCdgM+Q>4r-o(4CPgdhD;~Tl+rcHjoS*-*!O?Gh4 zaNAFI--v52`~drLnSlJIx=c%9OvzKG<%dUn*_Q}MA<9a>SRGoLzQfBaih1mbKKb0J zUTu%xx~F5gx|-|>sJ@m|tL2~Mw^)rf`7QR0PUnpV0YGzqcWfH`QkEwRNu)9)@7C#g zib?5lAS|jNl9QnF!@ZiGeZRN2$;$37L|Jd5$*^04YIckT9ky!l32CU{xhTT9TFP9O zq&f6d7aMG_)wE5zl#v6c>bIuJH7oBiJi$=~4i`ikayC#$w!57IJzxC%{8C5MS}r2M zt8~G&4ed9$?wZfthE;3mI*4i`<<^;9lS}1fe?&Y?dnU=3@nHX&a*~f z;IRG7tY`jCifvRO!gSGk$l_|KLr;hjY22UV*aFO@JxJ*ZFPxHh=U7-OzT0qi zn(M<5W&KqPAr0k?g0$*h2FN%CZ~*b6?LcjV%)#t8enU+P15I}Q8Tp&XLe)jK zJ$nT+rmEBMeU-RPYN>c`p~nsIu&a4Ss6kS1ZOD#C$>i=9h`F;UeoWY|pNZ z^X^s-&b3N<1KG13%(e@6N6^IpFG>*urP~^hlfz(Y#+a|#F6?1D)g1z=S^1ikNW1w$ zk6o@^FhB|J=DY+FsP1BsdA<`Vev6R;Si(GYOh9G>fHPC3>RC)Zu-oRFFx63}>5+me zTol(D96g6&2)}CcDWWmfCX}uEM^_0PYg!~Ld|kNpK3s{kzWGv{@%2!A0+*SJ`045@ z-Z0pHV~BHTdu9$x8nN%A;@gC=F{*;dKusrJ;lMyEg9*~SXUtPh2GuKsU-!YJnPgb1 z);vf4E0yHFU^($XcoeaYsU=&}Ap8W7j+2LZ7{wJkoF1)+!Dx$gXal6NZR%O1O}Q#p z%hUg~hB4z18MX=}UkDeG>HGB13um0uGp7?E!Z=Z>D7`4a*})tl!C$`=Kn7`kfJZy$ z?0_n@Okg)yYrhoMxGF46EZn;CI$}r_@`;3>O|7D|aFl75-rY?q1){3|kRX?(DAzY6 z&X<_cf{58a2u8`VKJ`iTrN!Z6wGP%`I2iL@CMa1EdPi9C%1W8uZG7ZbW^3}%Pxt4;Sw}5!bX)=C89*0H zKI$kN0cMhDev&9i2Ax&R#un!CU!jL){0yCC)441WsNOd z)eqOet4x|I@i%S#c60^HO$kO9u^zs`Dj|uq9(Lo(f`RqBqoyIQ<{1Du2cqyYXZ?g@ zYfEvBijh!;DOkqJy{;yv$+GE_h`Ma*2QQCoVSJC&GnUe-3-6+yj|I$Jz$a{??A?qUWQy^NDLOM|n+A1v={*S| ze6>b{iO4^Xf1Z1k9OVO=TbK23VD6Y2r)ZGF=WF-!~3ZH`tBJGf5VB^_}>B2 z$7ycsw{K~$waZ6k@+?b zr~h&)BQirC1)HA@Ft3C2@;51BY8D%IGI`+9n~KfTdtDxXzFl4cL$_AINSoU5goM42 zWRb(fD62D_d2xz{)d6+suPAUineYca_`C@J;@4x?-kiCeAw^S-l-e3|_m%nl8_pd! zLD;sDx!3nzIuM~CKagF|N6Cw8NsNMhDlEy@D`Vb9@$bY%Q>57H&H9y*Q-|Z(*Zc-9qU}0J zB#J(kyCbkEYc6T++4|;-+OPvyjQh9g3sf`+lm#c?FhPZMk@`)`3j#M43A`r>BQ5ru z7P`8z!HnChy67#fT~yV!LA<$n9Vi)CI~uNt{%&_Puk1*6v5n6&Oa`veiKh)J0Q^mY z3xR15lrlc=VfT!1o8DN)T~V{|7}NHnrS0tDXz0uAnE(}DAUim_s|9#D~XvlXK|Jf%Zb$h5H-f$eC0eL3RM?Y1%q~dr5Zu>fe(%le;DiE%V46n+m|~sHlhtk~$DLnf z@C*l2ZHd%8ZlmE5m4PuL1oiU#VBdcN9Nk@sJ3lROz%U2WOwPz`s^#L})~%L~k*M)N zv$R;g)WdYUVy0Vq7c)J>TMVQYl0R`-R-@EQtWohjO9=D=>e-M~kY37$PxLBi?yTJ? z9h^sQ@wpXl0(&dIMmT|bll1kb2e__b+CC&}%IIPX*J@*ibpl~7uK$l?fT8YPYU8w z4r!9sjsWWZG=>|dx$w~2qTX3@{7DtKp{m{MEher;=4;K|2eEJE1~bet*rks|@F^(; z<4Q7PK2t#{sfTc~a$kV&2t$pBb_iy(jc}LP8^*A=h ztw?skoMrhkB$9vKX)9*VgQi5(;(#~qn<<;dOf9WrZzmPqsDg$Wa0sj)JJ_GivpY%h z$Oa%UKJ-`=M?X=Q*zye*c52Mz^jSTzhs{|YDy>_NABq9m)z2LDT~HTOChcAd*(_eJ#Z-+%g*?UGO+rBFA>JiZ5^C z?rg5YgrLr4$1ck`yr2J=l%gM5@ED?3)qK3O%|j;28`=Xjf498v+_H?eF9-dmpehZa$mZfJr>K0zW+T!uy6N8?p>2LPHgDQJGx+nn^2y9Z6rE!D zRVDTskqH|U#-FVsA%~wcq=3?1M+%Na&FF{MIkNt|koDqG0{MGZFLe=IQuYEx_-mkE zGWi_zF^pZHS>h*?`=UPLfk9vmCK6@KCT<&MO4J9a|1HH5%QgmI<%GKE_Iyt$!JQ;=XU!d`8NG(lx-n5;sG~kg4>rdy9v|v#X7rF=bJo|_kFty_3+X{k zP7X1+PtRL5Ka&jmoISa9Zc=IS-Fc1x7bdAWWbQbyizLk5LlqQw7h47~rQGV344aON zheN!*|Kb94a~4y^T#Y+u^#NoAKXA2W{ z4U+Ynzd^@Fseo+OYiCKZhU|0mEuLK7G4iuzFiEGMuOU1^%fV?JMQLP63kX@eTC~e1 zyAKkCO_POsY&$S&`)#J6O?!_;~vZsb8e*&bn!NlMAanSD@JaU1S zh05khG+nXV?T0+&c9#L|13A9tBSVF)redR@@BPL6>2yg!T9ab*Hlw|iGXJUc@ek?5 z)3YfT^i-~`7cu>eT`Fg`0E>yj-&!!pyE>SAm2iY8KZH({-!bxO*Kfcd z+azqXzD4)+d#!hn3n8ezX%nw|>An7_%`97sq-?xYZL0oqSjYLNhOnY75mmA5p~uyn z20K7*LsDjW5bmhRAUw9i&OVT7NM+hC%>Gz&DbR2?geZHun3Be0-(7&ohAjw)-G4)@ z^uw%T1s-#7mo@AQ-Rsa0smT`%)4fs;2F{iblV~)o8m`$OlTuFBEG_w;*4tPVeTgJe zTMHYR_$Zi$1F>ID!D4<~T8`(~?Ye+(lecv6E_|3qY_xP)%0czJ^8nA621_tpS7_?2 zl#Hcn#ZJGX4Z|Njp3KXmle6kFWiVWku%mxm9wL2O#lLT)##mB;uWESclGfH5Z?LTi zk9(s?Fj#XTQ)kzo#VF}=J+C?vKtDOuqZJ>PL;`njFK`XL@3rNG>@XBAi`ZB*&JF6$ z2sqp#G2`^}3KqKI+BIsWgz`wXtI*jYy6fL*0 zO7S6bP3ZC!KU59jO0(A?m}jea`d%WE#vi0T)Q?K0z7`cGevnv?ek^nJa;~8yI4mTe zNO`Mo^tj8c%gu&)5n~SfA$rnp$+f+&yA~+-#W&5`V2R`=k1Zh^Yf+xn^z` zc09O1{CSLF>keuxd=b61ydcW0c+vYh#K68LMCx!!uprY{UG+ol#mN#ty%1Z!$P zTjt(~v@HlWqholAI%<{XbgZp?Vhb5X&G?@_lKjv-tsU|v=N3U6ImbzzclYL$V2IIQ zV5a7ndttxy*mDZTm}V*F=Qk%`1x&Q6+7kWkg`Ks(Cc1$XUR^L;4>>N3bP%4=0^q<6%|?4Upwow$ZNB? z_xvRqFqwp+B0@&9N_Mz%SJc(KNQs7GQQMmBKHoz%z{YZ3>x$hku3dREKYPVyRmJEq z9J8TMbJklMdibYr2Ou>zfXBB+A{CGAj{(N;#zhC?%-ia<)f5~jr=vL2y}8yaF{d_T z%F&dmt?-8u}SDSHX>f>f=`O*i_+T&7{P1O<0A{% zF3)w?ek^E+sxULsuL8<@9mLz>0YCk!SDD<L5A&p_(i z9qF`H*RfV<9D&k))}Nn8pYLeC#y8WtARZaxp;$sL;F@1BGB<;vnrO2O_yd1RKm5`G zuOefgMsJh+eII2G*4QV50e`$F%8TU^V7iRnWkr}Z$RX%&?}IVCMXfqYW0?e)+J<(v zK6EK=z%Rp!(-6Aib;M#aT-{?kVp(bhclCB&4`M+e%2Xd%Zy13KOiyP!C|A-jOzCiYYSTk^3gFh?FrVI8 z;rJwFnw!L_s`sw0%clwwn6yZ2w=yg5xvHF!r##tSg1VDJ;tQ^6cF?)EsZNbI-{7hS zci_dHfKm(WQLnSjzykjrrBHT|F9EKXm_z}!24){>Iyy9-r9_cJhYQ91JEM==!D}KV zi^;xZ&Hj!Zfjt$Q}$C`UF7G@gW6R+UDa1Qv<5e)302*6B~{(V%H5x}wu{4?S9V8?(DuI* zSLyR=cy(ix?jK3R1>|aCf@B0zQxh@9`(c*>=&|ZXC1>(%JW+PghN6%^l5GV=kEodv$b3ZD zdBK}vJvsKEwqUQM?QAe*N-Jh{8Zi=o=(KKd6$)bTP3Ng(F<{9D{DCEh^Ne;pmLw>X zzDbaY^)SU)EFxOSu)9%L%H4O|^vBSC5&}`*Oxz4exwbA6n0Ysc%-$%8F(VP>q}QAH+qd z^*Iwea;6TW3Aa4#a&t&bP-LKUJe|JXBN}j}TgaB70q66$C-NUIOC18 z0f*?ext*wGT)31?4>%d5Am1Xi<^$uxq_(G2e6ORHNqSRri}skn95(5)O+_ggI1{0Z zGXYwEKYvakGu-np{RT=kT&zd@aqc?37}e7Wz`A*Bf)LC>uh~ujOEab1moJPE1eVfG z0;0TA-?ZUAl4QKXES0rl5Z=kH9}Q^s&j7NgjKd{cV2V2Y6AcYV8?{k$pCc#ZbzBA$ z8uq*14CrQJoZAHw5)uaJVlAXJMy8`|Rg%LJXG{iSv3;<0@JNTG%Dtb**4+RQNnW6h za+m2MJ9>c9)7V3s?mlQY1Q&QHrBrAE@@BPKz0$@Xjaq<1w@2O+R{S86Agod@+tgE9 zU*Cl%m-?2#21n$KXk&?fN4*2c-(lfrr>hO8t2+(bc2eZ6NnR`$$XmjXbv=}iK)jse zcs<^GQAc8DURdA<{S63|A76f{b42lF7mT6LWluq9 z;+g`UcFteFzL-WWz|EfOQDl7~;=&nJAQeoXbGsd2_)!w-NIP*mpijoX08~^bt9dm_ zcaho3)lxR06}X7m+4cb-mVXs$&m*JFI4A$cLKs}0-?C9G0G$wM8H2MlWL~_aPLmj zNS|O|-KO}!v`<-!l4lQ?Iov@*yp-Eug9F9u4)GL+=&lyuSV1(6v)?rb2L#h{X&hnA zrppce!2s^jHOVCTU87pHf|r{|GU8EiyaDK00`A%Xbm#F%L!Isx=9OCZY>YB@|E7QB z?*<_8+m{PQ@8DJtDVMqoZ0C`*wE_hLdQ#AJxg=*V%Dm_7pEj$32huu>#outZDC~Z}%G3Fw3Q?p( zrTz8m*Y!U`4tiB~(Q_v_V=5ogl>AL0;)f!WJQ1WUxejQ}%NsJKx*m za3JLlefH<0KcK9$(F$!G&wBMK+!6^sRX{R%K==<1CV5Usr-1_Ng7}B}MCcBn=GYIq z7m6Crl$4arNX9Uq@b8BpF+);|rpZu;F>wpzVW)P~iSAH^R0^}F=R%z2;P>y}%a&GF za@|0*V~Ki>v{(h8u;lO& zKBDHb%RCWDmk;37n2T*4w)_0rUiNQJ8?}2dA@IH_uW2=wF1aZ?0W9?bWSdDQ(Y9`i z+5YpK=St5;4k(eLMB(oM5j7idd{~M0y;G~uO^3vG7$w7&zMiPTEnD;UDqtQ=BkrxqE?3qEVF|@< zpT&u0UYYcWC)2A3fAorz&uWr529;6J(t^M;9ChO&^NGzgE@_J;*9#c6g6%QiWOQ`R zpT5XETHKB$7YyWZJI*BMm{Opebp)setGm`o^IR1`kA)Rqu8}U@Rq4}Sp9|`vTz|f{ zU56x|907}-1X;Vy1*kC&OGMR04%8RTIQ(!S_-ufv$WUQO zGu*b_qi`Is<1x;Ujp`R)E)4&g)aJa^b&nm8WEi9~0%QpB9gM4yH`1hTIT)|&$}fKB zUxZH_P@mK-hx9enf|~45bF=?*1A|22z!0_v>2rGi2G7nD7^cWZ>RD4?wJ91lv|&)U z{20r*jaR{0__xj}^>K^>JBd|g^QGmTZt@Es=r7nT@VQKJS`Ft+grn)fj5)U!q$0yk zu7GMyJ-B|DqwUEZP*vLFmhJ-mye{(`-!Box;hV=mrLxwx_7LIGB!+80 zy=XmlHHW+1pNMYageuH`i#*_VWR@fKltL z-2lLqOJOJ}0l60*1kmuLh??jGF{~txV@p|^+-w{rcUl|&fvfXZKhjfU_a^MrPf~OX z4U@2p;65%!L5YQ$&b0=Q(c{_!J|4rmFJOd|0EyRi#ypn1KddQmqW;W6t+$hPu8u8f z#7Z+;KNwFn>i5Q9;i{OjcR92f014)aArEM)0QXlm?(J1j7zIGQlnH!$)mvS%u#$G3 z`+G@6C&OR$Ye~hbJlF%6@(xWH@opT+?M3&bNHZe5zRy`<$S1nW96KAXGGh0&)Fm@< z=(UQ(g35P`kQCIxLyxn6cor~u1DCj>QKf>AiX;Q)=;Q9`*(j#&>=cjZ$gPh?+98sA z&z1z!4cH(ckz$)+z64GLpAdWEGkOqlX#g``mvy zkl7W`sIyDcl|GwtqJNGzQ<+Arf}-VM$qnWFWRBVqMKXNC$VW`)wt0So>xcqsCEgX4 zpSqIx$);g^(Y@+!o#59Z{b_I(9)-*J|9Wrcwg0iM6pa0FI_2D0J*Dk`kzCDh4Op`a z3N7Z*bgVwVFt){hs5dN}S-;yg|EZ6%OaC_!ZtYtTz+3ca<4`S ziuZvHtL+_e6=2b%f7>v8yo5lH6o!* zXWw2Y375qqFl8f85Seh<6LIPh-*M<-i}8*yI_nN{p06*%xYlgH8Q=5`8UW<^;KUfs ztc`vrOd^H*wE3&JXOd5x3&R))$T+5M!OBX{jVtqk!Cfw#Fjdjv)tZP&i9)74&Tke}RIDx!E1A4lkk#gN0WFI)ZQyTA3$pA0o8+rds`5keosM6_UnSkh?h-Y0#PD#1 zsX3H)1Ry`#zl;LaSW>Ya3Ib50AkWiB2rITb4vsRpSX>ZRTub=o$OdTk_zwX|fQ;ZO zW#F4RPR`N>PC?UkapIBu3S;HPq6#RRS#0q}-i@6HMrJuw1msKMc$c63 zuqr8}>u$e`Jw4jY0~b={f}zYxfXyyaK#{Dhj3*g(UHX&!Kgvh0==H2hMngG=Vpb!= z1$}n9KLpylGEj#@h5jxTKf?2E#C+qv+}U|>`;XvNd_oB2F9-h@+5_)c7j7LK%!UjZ z9se}?B7KID)=j~7TE@exeEJh_tl*i<-07tZyzI5`uca?V;-TW-Bpx{Z(2HZ;T5h)Q zSmxY$@HpN3F1eQsEkP67Z-Du+NTQCak^@hZ2JHgPP7`mU)kUzQ6g=0`1U_#2p4!5? zn6$Z33@K}ro#@U3l&OyyIAa@vIscc!l%Ucc6vO=~ge_Q~TRn~4fre-fsMQMLFGtc8 z#x*s+QhpVR2+Edw+1b66qMt660OP|=@IL_wVuk2edSC){4*O{~x|3P~JrA`aPR^|B>mq?}QDy*v$W0qID_QzY}oBUlQ=Q@jp{ z^|vTxDqr{rCJRdNih&>Yk%-d!<9snbVHsPatbmBz)+>hlZ)Ct_o3Ee$8fiE!7lW@v z*0}Ai?4YT*4K%p8xV~bw@FB`fUdbHBk)hWJFiN=kcwnKam6Z|*?Yk`5ncdIRJ1|i+ z57)EziuVHhJi5d(Z#}k^?JY6ELvk7Q>wKz&MCZiL{%HowwJ^N+Ak}&e2*ChGI78n_&hoQDQV)aU1is2~-`ZGn|xY#+ZEg}&3d?60c z%_LbN1||DKitv9d`JZYvJVp`$KwJZRi6sG&P6WA6_M3s#!8nT7Je93M8P1)e;T4yVm#O!AaK9+o`^GgH`RaFbmCJ+P*95_H^v;RVWkj`*@rjfZ%W-zI@7 zYF-ET^<|RR@pqa)rx=dGEAMq7-_~u7t1?bU zLfj5_hQgnBz%OudDQ^noy`N*qD@D31e5Dxds+~#}aaNbcgg?jJ_DXJjB@udwfP7R9CsKN{q%_kv z2`8am$uES#>9YQnCnC&sngI$K^^AG-RdO${l*Yrun(&nQ`T1qClnIC&QZTX9tU1UV z2pn;`DkD@w3cp*vswLFm*?fHeO3Xb|4zuE`}( z(*#qjH2}u7(wipV*8I^Q8u|`+-iz>YUp$EK->AK%zd!uBzW#*|vW-y^v*4n+6)@7l z8r=U@^sezG(4a>GgHG4~K2}2zXJE*TbUx4iGtc953*B#MZzP`EXHLF$pq-qAZ@h-o zl92P)OT&a6!J=B>W}#Ql{~J$}kn>+$0PuYy@QUATU}fm8Y!X2>z^CP<1%`i;=#8k4 zyKgSHJrw<9L*N$n5O+{Mci?jWIL^=yc&J;5nw$lO^=NsZHs_3ECJlA3191_?87Egq zrZ)k2Ztuo`5$?Q-zim;vD9Pg(=dq)JC)vlSZw>5o4OGUKP(%S_$N~*t%%#8v7fk7v zFG3cQ@T4sFvKElR0}XrNQ>@cyUVt$5@_6s=!daz3KkWdcR3&g%#%wabNbz?drT8E^ z^~PI-PNqNL&Zn^8;U@)3$9LUo9JmG(qR`o9wP1s1#R4A|7s9{?V^D~ak_8jG*4%4b zK9o+(cN(*-r+{PgYzD&v_$Y9mB*=bxV9^4+8X%ju2&%80OTnbC90MV4vW${yEEEW4 z2%g(_FcJnFH6Nt+9^c^GO9Zn(#HmN#4(R_AGEqV9zZ|~!aK)<;0kooX|DYdC-B$e% z*D`0u;-upo5 zf3;eX{}l#2Z$g5m?+;~WuMq|XfgPG%cK_z=gem8rT^GiCOMOxGbgiOBDo^?Y+=EY_rPwAA+03Wngcb- zsRh6)Vii(Q^58TN5<6(PSp2{(T}y%5b5mC!6bh#TTZ*qP-+5s+^*CTL5IaXZ@)G({^bf~YacwwAx=$EL|W32c6OkNp2Q#* zbYStaZL`-7B_ePIMr{t);rrK51F^Z>rA*Cg<_q|@OMzv_R`eiK`j4QsIp`eR034O2q!h1!{t}Oea6a29$1M(335a%^G0)U3i z2i*vlW4ZzU`p$M4h$MX}KqRT58R^sb7MP}H@x7gYECz1~l@bjnTd{@h=N6FfXK=(+P>b@7}wYQ(j)qm!1kXFLM!C0j&%FQU8=rAXfcaR@M+FG#_j zswtU32OhI8f?N^Ad|~JFaLE5qHZHFHAF=oR-+?*qt)t*zIsp`s3IXBx-w4$ToL@gq zHNfWup_9j>NUz3GoFGYESdxbHQ-J6jr&l20>ZLpv)Km$ArRejXZ(c#5x1j%qj9`l5 z+_Kr`We9_Z+YzwvEhq5q%BLd0rng%{8Dy9gz(3I`T#RE1r2;!Mob?twk0#E=q&NRR z#e~;_U}9oI89@)OXR)@ivFYSk0-M*61zJCd3qim}a62&I*E-ka{(t*;8ESmeB7ghO z*CEZSz;G}0W#c3o{DZdxA^BC^bI+m)6gLA@{=wJg0EUf_^`R(XPzl?5b|8)f|G1$4V@ts2Wor5K ze{`=5GP?g5r&k&T;7rd2l_LbNCiA?`Lkx^0AFksEYyp=LWlY@3ApyY*E+aZ*Q#~Q) z!1=0UzKqKN?8B>J1w$p+z`QUZPa|)cNdA4ubb?&xiOj#nBq;7bVhmb=D>&<|CI^cAo1fD8h0i86x zlsT;f+~BX3y*g;lL)TegJ*YQF2OR&}OaNas>I#IUE2jW^4Ypk=f!mg%g4aQ<)0!0x zK_k`odkb_Whd2X_M!eG|?ay(>}@{y%{$^D!@ZvdcQHg!^4)_VMi!NZe@L< z!pun2?0S3*jZgB+$9^Ci{Ts{xWS83Hw?p9B3!8LpG#D|faoERe3ZUT7^rwU}FE|KH zs}s{UC3||eR*sG&w1c(h{fm}cT?S8pEIF#e8DYQ+w1$?~}Zgd`k#qj`9@LDz@)Y`)YD6uitNCH1ss1RwuFm4RD`X{HA1| zq^LE(`}|pWFQqtgOT`<^Q9F2y+3ea36pIY?ECtJ|@5l$^aMiT`g`#(^vQsgtaXVz( zT74J{k z^~*o@`*+_@71$BGeP(nRyn+u7GQLRP2xffTjaTFcukpPMCR^S*M`1YCUe5V} zOcZDU(IYph(mFe4n48#KR@QwF9$1aw1;n3Uvhex#8|8p6tGq-(?Rk7)5C8rBVmV+Z z-DM~3!7&LWcL%j_FllYOA|s&Ji67OMxvq^C!{$}7q;&UFg+)Y?cCi+%)H}W*_?{p! zuVLrCGzEGHPwE1{UZZ`$Dai;(z=q|Zpm>vt$^}$31Cxv;F8`G!FB$ItQIL#8cO>Hr z8h#GVO8D-|5KTXrto5{j-YJdTC_BFecWKq`_^U$E5hzqjRT5ob)F5Re_MjrSn(vZi z*mixY4G`k^bB#$^`U~AA=xZZArTyR0erKe$N%A_d0Q-%2!raxb4Ao1$`8Nbj4ROTht$u|JeWfCl?0bj@pa6 zF`Y#fZI%ps^%XSyeZ_m(@lLD5T$+!MY^A~7tmC7DiNnG`!LW6#iUgn!o1FRw{;Q>90!%)7ANMHz`~7+U9>0Gx&AeXMb)Dxq=Xss;JVNDZ?jO81p7VKp zY4fA-q(>Mb$O%OD&WndD;SRrU@f2lZu)a5&^M4G4p`@h2)xG?uvsC8q8arDizC8%% zpM~17Bik+kExxzYKI=z{sY=cQZ$oETHvghI-2t-i8Ah(ggA()j&Ixi!17_eE!8M{n zl-_d!hLiCi7!eej+2wLAWhk7E62pHi^X31w%q|V`_b$Q}6sI$v$F(6T1q#I=PTl&$ zxyM5D7PAC8LBg?elVYF+9>AR>pF*JJwDgt`FU(e?AcQ zx3b8lL}w|WL03;wes`P!RAGs;DZRWhNtXUAJlcX(H4g;wUfJK7IhO&Bkf||k=*>1L zp_DakBYhP>hJz6E4P>tyoPSEaL#n%AKGc4FEh@s6zF*(uefPN;t0n@i9#A@6{O5lI3t*e}8?X z0M`3D)md=w+W#2#1dyWV{_=gH?D)w%Y#BE$;th-v$HeStaT+7Ldxt0ey@8py4H1L zwtHkIa(!%cG_hQRuy@rz<+l*!WXo?;w|+7ty<%z|y;$0dkXzq3FZj z*&P`iesg%U)8t^CuS)dB&s5_>AU$0o%r915*$p7x`|8zTK!Wj5-~To7b~w3Ah|rn4 zm#!-lI)B$p z@wT-qaQ4BO1Vex;+|HJ*c#(x@BEjQ53Y)PifMeU;MUYY z3*4H1i)zw$QgYcJXD2tXk&QUZd1Fj+9Z=zH!qv_$L9L{Ku0pUi440z;^SyqP;)^*6 z<6w1>-@aQ~wrr+BJ(r;4wfVaXL-~2Vp7B89QcB02QUewC-^<9}dT%EnoOVwcwWj)0 z;3_a!FsC4A_2vy8UYCQ=2byo!Kd}Moiq}sFC|{E5q==pp#9EA{#u-j10RmfD``N59 z3pJ7@GfCm!TTabSg{5iGME@b^J1%jya|>!vnX8z+`LL3L->}Z8gKPwPl`nsKRR^bi zFXz3tvxy}tNQ(HX9eDru8d@|z>m@&4Ljh}+6UK-Daq2gBMZ=@A6!X4&lz|FL4Xd)O z%@rcRlJovVq04U-!9RyxTt2c2!0!oC`w6kBEPEthFf;-0-|f%z_XQ+b55Kd4{;{O? z`|;eO=pj!TZjoUZmP0?#GE#jiZ}AYE6Xq#R_9Fbnb0k=XY^tZ1-5~ceE~fT1r8Km-7*qp!t*zrf z){TIRfGDqp?bG=q=J`Cjtu$iSSYw8>aN)T+=cM(xd!8-6Keo+Ery_>1UEiDX(ld}} zh+@2N9qe}hVOEb(?J}|`@fl&g+i_y5lok2xZiLSWS6V9sT42BvFWY7v9h_4~k?-Q_ zihe3ktV4FSFqNHqK0t>E4zX4DnzLJQqKo$&K-)_ZpL%m%6k$zdzU^Wh_V3aB6I@#` zHf7_z_RN-daC3=jEX2RCi(ew2l8xPFIEvqBiob}}0{8X4@;?7-!wDDu*M=*?2I#it z180qC*n5HDYh8{8S5_T7^4|M3Yax|a%u++5$_{cdNP(hZa+POBxAt~@doiJnFIxln zKR)W#kF1};Ti{k_08+(AYbTYng``+-$gc4L z^Gu;Mnnx%c8D96zbDq}%BC;G%J=Lp>4|y=ry(yDpPo%*B1aL^Tluh|Sz<*d+H6SFZky@IA|C+8O7h1R%tFdJ8BQh#VE#Nmea?O0!l4yZzo!qB#Zw8 zP`|>PSX|UN$^1vQi4dQ3d#U=f?(b8(en4bu$Atk*m;VGZEXxx>DR2QSsO*H$!dnoz z9(ArTKaT`=T{PF_%hClkTyyo!rHHlnZ!e}MDuYlv$w{Z&ULhwr-e;ZH=QB_uzlQ+Q z!t4*xwZ0#`!N4*~8`fiXNf&EKea?R^}{EY-}8!4SjUVjq@)BGVHfqN-DjAuWi$);=)tQHStrj1K=E z;W~OpVCy*&ic&hC@4&4#MAo3o4lnFdy{!@nTGw8(#^H`Lv= z7sVbqY=W~tiBk7M8~XE@EvI*T{OXMCw6%zo8L2Nz#=Xk6vG$%Os$rlC88wGrx*OD7 z9GDa~Z*Jla7C2-r8$iaN7`gxA|5|?}u>R)OXD%%@_C>o#_WzP82i&N$TtCk57|gnL zWc~k~IBq*ME=d+9NZcys$NKIrQMCQr)q0bqs;?6vqLvU*0d4Elw$HqZ?i5G)=a#Ju zsAR)sy=A4U^IHF)K(jQ-#W`H>?`&3x!0n@`T$2)&FMgePS9*mMnchA2Ze9sRoE|Bf zI%DVVR7FuGQk-;A@x*q+ItASf|F|sN#tMGr0|yXe z8jl(O$}Wejzc&c3eWo=``D(fUYhdot9mRvyP%sTm_tMoxW?()4J~eRfEM7fGFSj-? zfo%{`7+j*DQK|UW;(W?u!nRgPtI_0;o9j_gD^rz)wgVf#v#9Y|mt#<<&t!Ys9 zDM-;YOk89<+X(8+{{L~<$9te+oN-53bOeZh9Ci=IVV^<8MT5#mE(WFliv|3acF5kY z{D`c<8dIm|yOw;EoU~OH#OpO5A}W#p93ZB$O*rSwlIN9$C09z&_s|AD%hYu z+gol>iX_R~tEmTdcWCrej(Txl{rs{?#W)a&aa|rQpa@1&taEFM^YFFD&)@?U)^($A zZ3SeYd$q7MQeNJcu^$r?!#?zG?PaXQs~^6UF$rdSDn9BGc_h17p;YWc5>T~~U2gn# zoimQ@*~%ieSZbt00B#^w4CXeeiY7ML8=iT2WfhDv8EFyrVADvIEqtoC%61>S{>_=> zU}-+e?F#bikz#~I+=rrs(Xz95Wr{PdVdL@050V_Oe;nUhsasu%58~d)2oXkvFf`mE z^|)cuQ(jNfQqT+Ltl6oh8zBg$m&|S^3%23BQaQYLe$M+fAjw2%TlZe`sTm*&z#p#- z3Lgajc>a&wOFu$JrWb6G>K6L4UpQKO>*~3isp!Z>XUi6=OYOfZzJ((9ir5e?vk~-v&u2oP2U-W!RHi5Z@ z?#l2Ta-w++s^bdD&wc3ep4I#YO2qudrF-3~9nyes(RsX?;xg`C**;NaV?^%vXzZJ| z=-@EReuQ#0IbuSF4IPG7+#!j-=+0tKwvDcahCg~G_A{?7+#;t;;YOgs*`wun%Iq|3Yx8VHl}$SD)gS4%z<&BYr8c8SM<7fjrq4m!$sNK8n-gwJSFRFc zdZpkoRaRgq=Us4Yo^}KW{Ywz~$}3TomcD`&!%3k^x$7U!+>x?R&xkjOD=3maL5z;i zjvpDD)LJmJL^Y=|h~Tw8JO)KOEHZvLHKV+qRlHDf+HUv@E>ee>=`eimiqo<=wk2XX zc>v2CH{22vIO=!J`I`hw-95d65}9@+vZPIcG8ZGohJ#%s;zNiD%&zpVLP6}&EHSSn zOpV#R-lN@cFtt2KHN$XAb_7gts8>nb{qoish-EgsIr-0_Jw|14k)kN)#wQC~=c;gj zyf$Bz)>cjdcM>lHs}J+S*QDw_&E|OyJ&e(InpLr#N$tGy`8Cf@@W8vNqtj?gPp(w& zAyYmt32Rz$bh&@U&uD#d?jxZ8U>)poAkiW{{a_+TDTx7pc2WBTwWo3VHg+Wh%{Hj5 zdMFdbCVZ{8p3)87l`LW1x{OHXEDuZh_0;?^D`h8MQk7Cl`c?!hd#NIoX63Tnt-ECS z;-GC4Pvj_g9neaFOqKs~D!iMF9z7qW8>@py-NNR{RbFmSvVl@4F)7oQ(1Rc($f%+`Dat`alqP?HKHWEG5b)Acn@yQ3n(Il_A=`?dPb65+ z(IaN)>1!D$!dqx-HOp7_YP&{cSM{Be*S@dg%E-iiBl1%);JBVN((9e|Pt*QspOcGT z0`OJ+k3Davrv}{$&@4|1*}XoQZM`ivrWBuqqT~wzn_4U4plI&mT&l3(6hv?%APeD< z=&_$TE<@Eek&*3MRALVFfWVb zL0%se>U=`eNbV-xO2C$%V{{ zr4P}AR-G27u2^5+PYdEm>}DSiLcdT)>;p~Gv?WS_7#aoERVW!s@=Ob(``ow)sOOA| z73|id-(_B#+p&w}E37XLMQcv6P74fyGHxrs)ybqn(m5OdU$q6xZ}OnZsfAh=WHbLz z9iIW)f7qKI>QOe8%4LbTeS+vM?T;E6n~3*^>U-6rjXBHJnVFdhKDi5@Z5p1Ufy+HF zSFp2#*_#p2%=XjBvLNZfIkTe6_g@!@85x>ncUlf%1lKma$#_D_?#Il1$_0@Fa?wx~ zzrvqdo^pcXwbnio_BXTTl1c9H!@Rwo*-MjiLj_Pm@fDh%8#-wI@lt}$K=IY}^R~4X zcFQ4OP$Ws1x3y=XS;vcEfkyHDc1sDp25w}?5F9`r#2q$ujUg-g#>K}%is9 z*vka&t$)Lq4Y9n%+3pQ3os+i|mR_G3b1C3N7gwn?m*xlm=q3Pl2h zq75xkIRf*3%o)^I31u`%@9dq~PzY@O_O{sw$SXZ5>>VwF8+q$42SMmtD`6DJ;sIqU z<1eM(!aLuZj%?glhn)+m&B`%6F;hcvC|;{PNB+0(k{`~0rKtRj`H0>y=E<_NXxrx% zvQftjrg)5aF041p++_Fjdl{uDCliUMnl72ylqmfu#s>AC4DZ4M7CqntR&4KyYG>$| zH)0OmTGXR2irigK1>&d5U(`h)VlS4|!V}=ELBcLw1qr62M@(Jh74<8WGw4QB(a`*$ zXK66miniM=V?Px+eYFokv8Rqu=EC>>bYYxef@0##=J&slj+tq$roh)Q8#iP$Fdd#+d@Hy#hqU8lHQGBgzBb^}TNg&j9%^k2 zrU8u?$koRqPA&0bWvn5)t;22Nem0wM<{ZTzrLo`nQlVMb6EX5o^ITe+HKk6}m*L%( zM7j7@%sjQ3!@{(vRXwKjW^>lY_*b^cR5OQ{bNhW+$c_mnG&?2B`fuTRYM;iEd zOgPo;z}WIlhoht2z41xqgRX(A7>U|yXwPn?gq6fYPH3KUEKo0al6sV8$%9I8@s`@# z1HBnj;x%$lm+xybuNT>{b|SD>=du)Ow2w?w+7HJje$<;iJ`qRhzRz~+3|biqSgNb& z4$x)xyox$&tHK$EWG<|Lf?maqd(&e~wI!2VJeq*W{d)0TSOjetY-XuSo0uHzWZzmJ z)wh+*>cs1X7f~--Eyt|tpOL6zFN*`JLjDgWn z1*_UCK%QBOpP`Hlt8~01DYp>n;>nh`P+{?^9WHBIwnvfYjvGKR|5ZC1*{&h-0nAqn zqf9SZVlZK!(&B-3CWH(D>5Ck2$2>n<31$GW2XqlYl0*?$=itgU(_vP5irv8^E$~#DKB>-(vE%(2leY-z=)6T8b zX~@Qz<_a^Mlj85uZq^a-oaCo5EcqRJoL_Eag<@*tQwq@)t(N0&qwbcrgApoj%lnDW zQ$Vm*bq8%m=Y`Q{_J?>}3%uR?FOz!=h~LBc6KD(nKrx%dmu=Qk;CNJc)|~=HK;@4ft%r07eQsiaLt`Ag2y-`=?uw7ciAlW0 zxh&l+?wUM1T_1vJ?({ZUw6nz4reT1<($-%&9G?L-|A+r%`1MBK4p6PODA_3x*fS~; zXPiS5Vs_Le42uO`ha{Z6+153CG3X+oPZ@(0yX?9`X8{<43ja~#Nwd_EQu9+v8|*fR z+0DNb)_h?gRL?U6TvYYT;JXv$R+>V);csEA8nYI6F(Ix9qiS63y3mx<3?Z#_n)n)|DLfk=%Kklv zl$wVf7q_{ml_OIFh~9_mTw^_sd>F*;lNp7kY^i8SIy+^3ys1jp+|p#b+`A4lknL3t zVfV*PH1|s_d%QhQ1x};s*F1YY53(Wdmh_ymM(#ZKrn{olY=Jy%#ev^_hHVB_q&!k1}lU{LPDIDb+2;@;mI5yWjkfl zDBJ1BPxHzi%#S2Cn3!3;^0C9=TWWI!HI4|IKJouRYs;>+;^Z6r?3X+|w#50PZnu(Q zU>aq}0Qz&YriFKxgc5%NMvQk0(9KH!fmCA8_jAEf=NlL?%U5`?8%RPa6POUtZTw7U z7mu;!#>AyfnZGd6@9872mt{8;P(O^Cz)5+4k(X7C_;uq ze`co>e?^DgqmP8NWBGwopPXtU-E`uqZnqiV0WsSEkJ%zPeF0M*)_I0Dg-Ee<# z6M`+R@;04^wx5kpq~k0Ao3fOxCFc}VpXIQOA+Mldu8XR9^Q>Jw8#Q_U+j|O;(u; zoge4^T`gaE9V)m$`bT0H?%ZzmUDy6_1(y*|s2RPY-7knOO41~KaIvgWX=w<=y((Rq z-yHXL)@;N9m!ey?gBvb{dwE;S$Zg`9i{KcbgD+w3lxb{oEj4RZC2F0&vBuVThXs|i zgv(~KML|41)5>*#xB|45auGjy#>hFIBX{T$#4)QI7l|=QOpl~o6`O3_jds_9(oRsg zwOeyW!gd374++mnhuw#+#fm2FjwA!Jp$$-%rSS`H0c z!=hREa1)x~yTsk=%WMYFn&#MLVXSccSLs&a%F-;cHzRen~mO4V-GPRqQu`HOb9Y*s3b?M*sC_pN~d2= z|3tUfwSTx=qGE`@U>(JJ?S`D?kc=x361`tHpizwPF7HqR5^`oriN)&YDTBSroe#e4 z#1n0>yF&P1w1f93pqNHeBEIE64{M!msP$OQU9i7M%+k1xmFeP^cu}$H*N{6a@gi?F zd2gaZa|Cr&)w3ToV@ERn!Q+oX^4^MaX^z)*$x7y1-`}?0qWhU{^D+Nx5;I~Ao3{24 z-fOTxHZ+<$IVaKU@c$R^=0+N^dlWg^=aCA5Rx|U}U`fhJZocp@6*Ju9NW1p^8>7?Gn!A!8@}YQu3&hYGch{IGuabO3$*jsvFA+5+xE=d1T1}ET zsqp>;_Hu&eVQ zZ~XvFdrz)$WGR9r&5NJr(u~{KR8hTXRPP#1mI{z#I3{2suvC$5{xwwD5(K?## zgC!?LDS$nW!nV`PtByp5#FF}t6{*E9`6t5J1F{AlZ+}fnA5|exCa^-gai8|UyD(cV zfDCHZAMhWv2&P#E{h=F_5nVp_{m~T-+_dLQ6!Hj2{HfeBaWCS_fluOgk-L3uo1lG( z65+0co<62L)K;;92chc0=pFLY z&I2$6tM_6-fU%JSQE4NFkg#8Zbd{BJh)L!UK99sSa;q!O7I)Iau;R`#0{i*v669fV zT{{rgrWWL~0{3_tgthRS|GB)+8Q?yBA>)fqwnpwDc4EJN;qf@#u~agBeBt9dp*qF1 z&EbH|x=H>I434=p{dj$?TcT;M=|C(m?Z;;adsXhpOq!4ADEnnaoihO|MnhMz`=@7T zq@PcY)rxE+?QV4?CG?(%`_-_~m9!zTku=w}yC#E}QW}yhSL4(gzi(qWiMsrHcxa#8 z%JJ3A4}`uMx2rg7ufEDpssp2XF##u=Z?}sxPG+Bn&Xx*mPDD&G0Z?3eTIRW_<> z1I|A%R;ViX@R`ksH9Lw#e|>4HP!^k{kCtS8+8*CVGo$99tba>aFs#44JJRFxiDV^O z1};IBPpeeJ@yFbLN{LsRN(oJM9Iq!K83*WNztlM4S@tmAOIfmC*6Cgv?UKXN!2p7p zHro$*oRetcY|>N*axqvTCQ6)L}|FbjI`y>~g%yr89i2)&Am7j3CH(Fnwv#&HW6gdn%v%#Om0<9s}8-R*mD zzjh@9NMXdCepvWfU8u4n;qB`O(D|?gy*)61>Bc1cR+w1d=I+a@hQ-7w$ashlJQwYm z?I3f(nNu?GpOt@QeH@9l5}zH;CT|aiJ@+0H)5F<&L)M z{H*4)YqXY{m6Ba2FpS(?MYuVAU#%zZXu@V)quY)tHj+Vtq#SWLSPf`zR*6LL3j=5Q zZek9!CyiUf-SJax9CCB7UNGOQUdqQ$=)A18hX*W&%Gz0zM$2Y3TZypO#Ch?qw_uhA%2!T zbh&ulc|XnUd1Ybk?TGA{0o>)Yi;+lCv*+WU(mr>iBlPu=w(_gjDd_-a!`y7PD3B$N zs4wZs+}ss)enY(q?OKPXx7-qW(oFIK)91=pF=YNa&uu%DfMrU5bZX~If*Q=Q!6vjK zsfgRQ8c$qZk{TYaPKoayt)*p9G5O>${+X^H8E#)=7&~~%2BoxF2ZsE)!aA4n)#d9c zcV{Hhf%;D)>s$g;YBbW>rBZ?8k&S-+bmluwg=hR_SlwK8&n&`r;V)M6 zsK2XzwEwKrWt}D;Z!ALLZTyppMLKw%f7g!>9VX`Cm(cUh>2zfclFz~cJjnaX=TYeh zsNAcb>fCo2!j#|KL_pxJFgRW;6Jf#$TlyTA1+m1-41?p#-vB%HB|nO6)(_h(4x}xo z)Knz2({cO2d*9CNwVi^FV8z)Wx(*%zvQuUoBwVkXySC+PZzLGxYHHt9$ZJXU}8a8?arNXmp5b%v$S5a(*m(q;Gd|^c;LS%}hZR z!PdamK>G2c(7B z`Ju|wi=zY~_&UxCh1{=2%n-Ilvf#3RGn;rhT5?z~l|$9hZLh0F#C>?BMTWYk`06eh zLsK*J^@>waXIVFD@5*ronaaTxPJP);oUP;s5rc}%1@l=JuqdJ2eQs%^!+f-KU=-45}Y_x4dq@+a6%PwwBtosQ@E8pt2z^j(Q{qrlY_J;xQge?gc<5#q=^C@NKKX4(pw$I{qFU8>}l z?c&AN92U+4isX{pSY^#N9wYKqXsCN(0a8_H=-D5;@`c+tCRn#^7G5iJTYD1pPe75grOuY-<`iymXN0aR@cT z>7RSNmC|}(uoAbeF!mZa)JgJ$T{j_Q{Oo+ny%QTQjShNZE$E0~=!GZSE$y$@+j)C8 zVR~|OK`fmd7Y}Vzl18jj+*_r`YZiJRQ`6XKnciO8ieuRB=aB1mV3-6 znA04=ve?7FUiB$7_$A&&iE;}&+8yG!F>WK)3`{T^# z3w*ky=i?jR=VdB@^!mJBtQq>39Exk})E7(@u<8*3eFb|>3- z)hc#_zhM`H>SI6wNs-Rob3JU=aNpO~)@qx4W?I#MQzp!nz4UD|Q*^7H$|(}b z&lM>&IxoZ?0G-F_r3gi3bj-1gst9x}&1a|fe6fTG>oM(md3!Z~WEwe!eU3{N$zG zJCbJ>A?HWu#9ImGl6O%3#vq70nN!>6tsIs`HDo=e1c5tXG-*B-v%(`6BHD@o;LW!NQVr_&dyFQF>7W1df(8nFJS$( z5&laX@Xhw(D|(@LM4_`%1LwLPTtK&1XIn;#-SeDHj+$+ko1LAUUe}I2?0E~H*R2Wh zhfTzV*9diVr%eItYWOY(y}Pxcx`DkM0-dXT|9&gi>_OPRSHKOuUaX5iYer$Xsfvsc zRj$qvoPp)}OdV(^%s42%bOD_c8`{C!_%)x#R{g-#ATUeUe7&mrb zdJJ=tDOfCYtxyLT^(Wnb;_2tyaKp&hCv7n&tjD*zF{`;utud&6mVpQupNn|Wp7yY% zV8*f(w#JFzp}3`X6h6~1+|Q6F)V?y8!>dcsXZ~V6?`;2NtY=bpc_0tP8QGsSk|k_| zPSs8ksT*{^RoZ(GAtaJFb#_R02b0W= zxS8^+s9UW)y%+;R%PPz<{2tl1P`b$srS zR=zaO(B*aw>=XD?bnt9L$kG*aGab>e`9MPP%>$jKtCgR_^NJE!r4Dp}&74K#NMGcN zjBV1MTogzfXH@OskUJcygqcAmE82Q@dp+#xpkDhG3y*Sd%A4*|V(RAR8ta$WL1g_s zp=NeSC=7{IgtcZQhC?M}vsi?e*UZf4NG-!!N(;d_+atJCI!Pi*u%bN7l^yIBG7H|} zIT)2%aZfH+28ER7rir1p0T_w-Nx7}O_&GN{{bCzL)G(`&&4QXC*+iV{4{nn6=qy4H z|FTp_jF{L`-RFSP=`9URoU$A;FhqV!=H|G zHO20JZxO3vI@^f`KEk}nb}m%Lr{=%@`rUW1tapi&Ply|xQY)Sy$kyOaJw&rjG-hAGU7DUhC30B&AMNo@=7y7|W ziv^ijVs`|s&A2$vrSM0!t2eV8?h!Y1qv4gsHzCHm7*g7fCwOk+Uifu+Q`8@@(q?^8 zdxX1jnDA$;(@#N-LuH$I9ON5h(V>=y;qI&GId=}vk|`Pn{lKQdzrz7y3ts6E01dOuUd~V?CAX zy*I_V`sR4E3zKoptLNAYm*1QR6V4aActR+!LL@B~TXDa7z1wImh3nvlvli&F&LdE= zf%Rh;q*R^9)=Sszm2tj|I(r3$--n>NrcBLY>u1sZ17$hV_bKNm{?D(JXtLZs4iC;9t;2i^LYJpVv-n+g}(`9ucJpiHhYq0>olU1}@aJx@oTtxR) z%V$mDJvUh2CK`iBd)L1@kULn57;*64K*1U(`!GFdOmP+wexJCxxoPAca4_ZMV+Z4e z-=Cw<_v6klwlKHXYggGU+FqFq88A1JHwQG!0h^R+@I$aAd%n7Hf4N9H1oLf@G;`2` zUTobQ5=UYdioQPy2a=nrmq{0Z2=p2*U*BtdDBVHk`<7%lFNmmgxk5Pu&`UczueW6e zXT)B3mD)(J7FJJmfMH5@f*V3_jxiB}X4bx2t(^yjJZ9;9bhhj|J_ZlQq#%CtNB_KwN``d(GP;%rC zs}rhUSV=`Yi`}EX$BEzE%`;BFC$Dd(lGm6YP{VIp*a0E)@mllK0?`IE@vsTNY z$q3lt0ZVFB)?C!@F)*5K@8?=-$YNaTz`_Kp^WmSETqvfIl9YeC17dP=Y+FpoK{J>Y zw$mjUh9u1WM5=M>*5}37v|g3z_=5`d$M4voYV9M>|o3^-b7i+Z83_QOHZ%Baa}pEgfw->ege|wQt+A z#BHkp!dz22Dx|p8yYXfViXW&_d)KXF%&IL;4{<%PwksKWwd_<+K^pb?^mX^Ih{XOu zm(;46G!?hC30&0#rnUvV^v>a{WI;=O1%?-_{zS^l`t(U}yO5agRot40&^j9q1$Ff| zILQJK0C;*+V%j4=cK-G!&Fu|mTk_Xuon}!@nXL*qk5u~(M~2OLj*7n#2vjQM9MGa>L?XiFdJ{%^voVx2@duV678|GTMEFDO8)Z`fbLKW zE^d5V6W5}jA>(b_v9wlx$ao8L;C)>g>@oQB9|A@DX&AiRp<#`}oN!Q>6C%rasq?5IU^)Wx8YRmm+jadp}XBB)L zHpfb5U{y`1Rg8*B&oF~ zco_uRwzZ`t+N+d^I|^o!tgo+w{n(@F+cZW&@^cAw&#J2l7l#E~!V{RxU%4>SM;TDsy z@sQh92lIxS%_#&&kl^V2%ZjY@k8&XhFeN+}*(}J`{~Uf!Xi!_oS+_!=${@8<%#X(} zUAos$%Z|nH-X^BZY?5J?FZf_%Br;EOnV@#oL*& zJ{#TQZj9A(`h=kqK~+&Ho0ov_siClYy>5oy!_h_q#z%|b&nsWXe1sD)9k2My2m zz3oRsKS|bLpPG$wZAp%DeU+U<;<;KHCaT&$LB5rgt=a#9AX7jSF=xb*%ihbTm89)} zuGz?dCRX5?I#YZOcH8#ToVO8A@!?RU)r@!J`lPFCCJt%X?lcP{jXD<-3W&3U7h!*Eq8K zB5C~#;sDeRE|Wf_dabuR@3))#j4pI!dk74|M0i+Kbp&J4Ug9yHLxMbT=tB_Qm3Ajb zfLEn`+x=8A)f)F=dvmjbQ9f?1WdUa}{@PfFQwv70>dGpd>0;XQW?}XMQ))R6bBk8O z***E@a`)JuvHSB^3!pczuiAz*d&RBZ?L!lv4!FHodX1>D#5&G@rhCF4fn2V5m7Iq# zB-^AuNNv<>YsrVVXF0cyH9}L1v#NX$Npfs@Vg*%OW*gEODeoErK`8MDWt2{W(0*WM zBx~%H-NM~`TOIK&y`gR;c=@k&J4QSfw`n&pe0pSN#FCKIDU)>>NBhLz+vQ^*@XS#sH0WTA!sj5 zbs)^k9`vEIRyRN-ujJma*}qHob&+(CINZmgchETep2yOt7Jl%u@*d)y;|yl&?bW#d z&=LQKS8-gaCU{GcfB4gvUDHs2p#)*LyOdt5S9>R_J2T}!l{Is zO|l0}EwtiW--&6-ZkPAU)){&}sV5fRwRs<+RjnacU~#6n$~{wQ)bHom%;wW#Mk%7f zbi-|W=u}E6yrHVL1+hOgGgVjQs46t^*io*k<*M}pR-l6)l=C7cluKueY{!QHNA1Dh z_HRUgo*Te;R2%B<$yJ=|!59U;QzCj%s%+FqbWqNSkw197EdWFWy7{k0N_)H;E}Si& z^Fj~=#Ii1|fE0PUl55(LB1X`@Ia?*VXeElz6sw;?2HEkM@?? z$fyEV1&Qd0^e`jT?k7`N4%*FSX9#2~6;=>aVp)zh2GHMVMG0M=E)SMcm~mcS-nvwr9(Koma!+`>0g%3^{M@!y9ArH5 zKXJV6|2K~BK<7HiMeUnU$?2LsZ!whk2%bjg>}HtbKqe(7&mS4Db1Of~%JSA9NO>v z>ZU3dK82C_nQsn(dM=BOw*yfBTB@^B$|NOcNzi|$l3j_fc6)%YaFucu$cj%a`ZqZ* zfgKSiD%%ohHCz7-O2GaX>x(+E>LkWrJd{9vV)7YE&;Wa=p5Le5?6q z0W7#FmU{4>;T^d9%|1v3(oEXs+By5~&1&s;b-a;f0Ir$&ODHS)c0%}8!^w9CbK@IpeV z4R;y276nw$pp<$&AE!BP%Q)BS1^#?^7;8NhYkUf!A;!V@=$w5ZL#uL-2P4!f*4Rc#= z2yo_dc(rfcw7C(P;)}l7ARJ{z6?9oklkM5q7ES0;>Lj~zJ2{LJ4p0jvJj3nMW(a&r zQE5CkA`A-V+GCzm^iPy9lO4`-WWZnp)p1q`{*|oU3Kuyz3tKW2WZu%CLA$TOa+RYh? zX#qEX-IU)*(&A<&_3TCP(VMGi@X<54B<`mjj?`6m!Cu;rbV^V@$)KO^i%ArV&6B>s zq6e0^D7*XukQ?{ib=w%J69(FlgN#S(&sCx+KemKaJkao^tRslg`%gAE7<$k?;`G}+ z*&LbBcrF7h@;((QY5RW{a{c7WSZ!25YE)Fzcmy-}%{;0F+HGozG3(QRP`v%y37hiMurLuT+k`{yHls5Z{9Y^PueL$n!OU|G|mGd{?BP%Xr6cBsFn zWqT$s<7n-Oy)IbP^f+a1wQZK$aR(*Rd6s8bZEr!*Zb@`} zJZDvwGpYZ;OtfF`aj39@sUwwbyx>|ZtHTS*U3_K3KS}7)mw>Y&<*9cRM!9s_?YHYk zx$yTqB|s7dmKb?*6G4mt_oWBm(&-4bh#=U(@~lT`%C;B5>Z-=hsfyv00Sonct>&?zL`6+U3-B$(kLFP%Kns+~Gx;-T)b>Tu=2L^8zcv`5nsttQOELf1$M1>ya;6q&KC*% z?946TJKj)FU_s!P(^w?_nGA{$kT6?0d)TF2ZkZIA>&0kb=D<%i>B6ub`K9Emt zeqR!I0>^BCHl9-?dD+McVr9+0yJd{si{FYZOu7)SBhUImW8bEzkWM&kF}634t_*<5 zw%8H%T+DraUEWlU%9dqtOxwNvuAc<8X#bp+8oo$e)P}Vo{O%sSMPytQ8RNk3d z&j1i{9Pfo})YRQMPBl(Fs5@TI1~s*%YK^IWI=TLba_qk(XazX}$smT`cFr^wSb&l_ z;7E+Jzx=UJO;d3;1LK~#{%>X)eR6Xi%}K*x&DfW{cmO^MrJC$2$`zdnXxgD_4Qdrf zJfxzYW$ar?=$(k6&A7%jYjo%4&18TKV5eL=jeBUD&%EnoxH|*x@@AR(ltr>Jwv751 za1SyQ_kjuUc@`w=v6Iv^ON=EwPDempLJhK{SgkYt@}{*^!_a%xb{V0^{8mqH^475) zd5;Loqt6Lu`tAzpEJ%v`ZJrF3$TkUdk~hr->!^0`%KWtww&ROAaXOc^6+cB#%-KCv z9CS=kZP2m|CLKK}m+8l+M*!H*)OYGp`B+9`QyMk6O1QZ!d3111VN^Uf3i73A0-JDD z3-3xFP$J_Zsy9|Hmz<^j;IuS2OyPR0;h$Y7^R+@nt7(qXsta(v>)C8A0+{ydxcS4c zbjf~Ai6^^EV9xU$tbZ^v4ty37lRd`3V%Q`d{pWjcQ&Y>NC=N-`7O2T<^&kC}0@Qwm zXMYWhli0Zq!95Gu1|^g?DZf?sb-FlgEx-T7LAG!V}&)r;;Jf(1^b**T{96wbxC9e?A>Uq9XsG`%rBZfJnLAyV zcoz7F_ww#q8=y^Y1PmJ!>u^tgd(00(!xUBVg}PAiac2my2yi=9c)VWR0m zDdtw1%;QhWH|Muipi zTwELq7AoSZY?Q?LEdWQB;A>$nkh7)}o2Ip1*gt7z;3gy=hhUpap#H?-SL?w*e^e$R zh$T(C%jIQauszVf|CKU@YQo^e zCT#ghhIB%I9E>zXZC{vS)@Mj5T=TI%`nN*`Z4djWM|c@LrJv=9H8me~Ol>Rft<;#p zaIS<%SzEW*d;hS& zsnz$kyyE&C*!|lYz72_F)a7zLWVf0jKJoU6ftKp*?mDP*RB}91wbAm`QYoka=@DIQ z_+g+v=QOw26V7RG?@dn}kA?Cyf)rF3wH#0wTluERQeSUm&5vx{+nwn?RaQ~I`9p)p ze@3nL3A0~Z;w)LqSC_K8N5x^P>%v^OO0{doe-$1`XMt7mScO$NDRMHR?QB~4@lu>u`Tm7-~s_UX%=={UDMtyyF zTc)K;KN_}zdf=`gBLZfy@-XI^gqd`4$|(koeU-b_I*q;V*)A@Y!@Z&NNtT3IBaOwc zR3U9O?fPw5*#kTa8&{|@PHujmNfnJuSaDQXRGQu_1m9V{)BU9#DLk zL=>+zSX#V9S2{bx~nqGEvlr zM#3dU9sLSoN#CL8>}jJWxAl~O-B`@rFT7hZO2b-e^{_MKUK+eqfXh}Cr{T+}Y-oSH z{OKByTpwr#Mpd?t2Pgp!!k*_w%^ue&g}R)r`R#JI(&QWLW%nn=wKI|{a%aV++QrHot;^f?DP;wsMe~{Q& zQ*|yAhY+*qPLksby>i>(lJ+ZDtNZ?!^GvyQZ&1QF<%eDEL6maT(BzK z)79&NsRDNzn78WN8Y|v2Czp`(ELCtDg@=#v--vz1mDNB(# za>Br5sCYfppcUFka(u+5lP=~ke1-Dzg5j}`yK$PV1yYY<97j?xb&n`)Bf^sBy(>#k z&I{XTVM;<25Ru8vp^;i^Gyrh6FEH)yE25X2nRU}X6s1XBo8LzxdL3YtoFx+zO}paJ z79C(L*|XQJxk4&bRI|xDX~J6aWQUXlq>|&0rK-0LEek4rD@wuYup8rQU-xGph@e3C zL17!G*!!~>V3P8z%&zVi6l%H+rdvJ|kduMM6P1>Ik~pQ%OT{-@>NtTw}$U_!1`Xn_cO3@b!EFJrQ*$-Hy#EC`cly2Virha zq{BKrf4ad%EXq{N{oX6Fe|Aoa3_e0mVA%SOwvg?W46bJrCXl+tZY?!8kSOh0iQeDG zN5=`nWt-ZJh6(~cZA%J8bmSes_yrBr*B$L8g7Q0j;->ZED(mpu4$~nPl7Ohzf<{52 zExea)aSrx{G9!z(kAH?4*X+|5OA`+LQ1DQ6nH!!M4HPF(9zb(!A}t!w<%8@e5(z1l zcYNdXvP^eMDJ2%^lfAa#AiPAkviEj70YRmxN|ptY`odd?SIlhPr~Y1#hy9wJu3KQJ zs}pq`-7uM`Z6Y`;@nU4$T$-cZs>VLAkqxT>avGv4qGY6UYam%dt_Pw zK>uST{$6;vhyP*i_Rmj(cC^A6>C!wkXHAR~f>U1)4?Z|6!1fNVy%XSM!W76;)$A18 z7Y18Wdvc+MPdB+shxZ_>?>`)C+xA6QzHQ~8@~rXHvF|I%?iYln$YAJd&%pt^rEzKJ zJH))xWzYq!w+k$b3%BsAP)R%Xj>^7`bvWs4FL8$ljk-O5hp8z^tuEBITN2_rdGAb2 zWHsx?rlJg(rP|QF>8l&L1kF3C`mEtIGhPN4LHFqCnPIMo!}e)n=ZlQhJ9`Z!5`_$$ ziL7Q4f(<*D%e>jlpy>cvNymn7Qtq+LdK*{fd!_bUt106l<^Ry=-#7EMH(*PO63<2& ze)$#LZGH72{d?5{p?dqLXi7x(2<7qoqwP1vDok z!vX>xJJ+(g8Mci)Jh*nUn~2nHq~O?Y=i-oEoKa-fuR3^hFF+9Uj${=h^aM?%Jsu6+VC zG{83hx`NUWKPNXgXsOvHO1a%@?KW}D>Cac_NEYqqg=o(z?qXUGAM5FPHz8_%0rOyI zln>^};5FoHr&2?U9vp*8vsdlbb_lE+5&IamnzVLqDi$`qbIYdar&Y5-1Fx zAU742>?c}wXJO%!;H{uENzyglR_LDi`GZG>P>F2Xt6Q+F5GNMO5*UdE!>h>8mO*MC zu3;I@r?&p<7mYbPI07U$u-a`p#D)`yH0E_XU7aw?&*HKd5H06?-00`q8qaOyEg&S0 zk?9mMH1PJy(4kblEzE-cXe@W|%u`rLc15OVSY>w#Q-$ep^f!mj8kCyuhQ+khSPG{o zEkw&7Gkx8PEBq&rqQ)tZWppTz!lkzgp#m9^Ms@pEldJVOIil+31LKr(7Bu{s77m_h z7_EJ8XKQl@xWF0Cg*5MJLRamCBXyp~DH&WH=`v905PKs2^25;*T8+JjUZpfGf08z= zpRe$2;OQ2M?tY0wO3x<)7}d(hHO`(|w6yXh%q6(Y{C0Nf>hSI7fzI(Gaq8mNzcyTO znKAwffkFUxV3OqWSM9-6-~NxTc`)&d(Sw_3>TM#(_%V4R(b9ID$QfPlTeF65gnO@Y zayt}AXAn{9SN2cFeEJy5M^?KK9VB$Y@ioN_cfGvQ3H7T>gZlFCgNGDaT`e59p_}B> z@4g?O7x=n#^DDwzix@u;O6b{N2_>`@@m468(8SNb`yS=KQkK92SC|UU2?DwA#8G56 zOsW%L`-P?+pUAN2m0lvqsZ4c1$eFSUQGzXKfEgz6RTb%`k*n8n79TC6>kqimw7nn2 z#hksNyWwDU_@c-9aAPW2t`VP`zQZfI+g5%8s6M(}yD|IwZ87Pm^Qf!aKw_Dq@ZNm& ztO+@E;%~e)2-!%F)8gORpf6UX@q>=|$gUTVjkGwP9~pfld!VPPrXzFlc zt*$g^b&!vP7Snm5H49?J9PmzqT|(z$V0GE$@tTS%`y_6AC}t{4qjtWO%`3*zJC_Fk zyuqZV{&RkqsxFzT3C;!q;4g5w|F^AiMG55XHO(W2=cJY5FML;u5-mgV5i{;D6HfoT u(f^w^f6f8`9{X?F{CSJS|F^XH_-#?1V^nxTfU^wzuy)(*y1tY1)4u^YmvBG; literal 0 HcmV?d00001 diff --git a/images/op-rms/confusion-matrix.png b/images/op-rms/confusion-matrix.png new file mode 100644 index 0000000000000000000000000000000000000000..74668285774284d11d3515a05cd40e95d70fdb9e GIT binary patch literal 28486 zcmbTe1z478*ENhf>ZqfPtq5WON{N!vHr%ArjY>%fNQZ#!7=YeL3n<+kiiC=Sh=_D3 zAX3sG-QPOVnQwTW_x+FW_@CqO(YfQguj@Sbxnr%h_np&n5^Gn}t)`)&Sxb>Tp+G~k zG#7v5eqVuCviIa$;4eX&lWI1K7KS$V=d289WY5`HnpxPG8K2)}XJBP*Y+=rGfd2qD z$F2)DHkQ^xTwE9b`M?1SDdggzlbi9?Xw*8~XaIdJd+!tZ{e#b(6{=m|u zxP@N7<0dQdH%&M%RR@37iT?lj%dTsrt1?zMKTkwNM4#I~-LRA{@S|JH>*fA3ETtjh z&5^@-?@X#=BQ!EhBJ8%&45~5Z(kOhWPcs?~nV*qZzGlm#z`(#Sjg86)8ho-LV%p>V zjnd`g{Z%nu9y>*2FSQmLmxrE=Rf$iAP$tC-2&e!R%lBT7ERr&ym_tY2Xi z;^Nag$)%eYexF(J- zquKjlWNGsA;m)$Si=Q)p3=db1^?mkcS3OXY^77@8AVKR>xIf91@qE|WY^LJMN}jh( z1^V2@rKOy2JKVP5o|WTNWSd>awL`=0i>b^eU!J9?Bx)H;a@Y?vDHq<~-u~^|`FGPx zUJgIWU2>&V_VM8}4YNSigkzvPsj*wassS=rhu&&^DZ zmP;_Qval3(=gdqF$5Fgk8giYpu*`b|1Ozs7sGVN3^+5Xl?R+MWun0_)Wh>V`D%MxP z_n1Y^)<{l_OSseVNwIhpn>71yYL0ZrCB3h#RP^UDQb{@gb_ADJ_YjYXvY#I7i`B`^ z<~DfGBrh+|XIdk(Pwufp?=*SrAYpr-sHiAdO;v>S*2Y}t@nXha@pOx39r3w|u-C6& zb4;(>DH2^7B_HQ9J$9$CIonox*@{0-cU44q3tAgKfAJ#jT*0lW(OO+jJ-gnzr|-Sl zrK#CAUFVIxB%ghRwZ*_@R60 z>ct|vY2(JQLwbc5ezX-k&5qV)7?lM_1!vjzs4V~Ox9<%ZrgT{Isquj%EJ!S#BHOa% zSm;oKW>yUrjQ8B@-!jY_HDFD(-^;_i=#5HzI1O;iif~ z8Ng>+6;9bG>(6}>8(38yCZU{WC@Z~GBlN^7_w78Vs8wl3^5h2ZZQ)eFGI0!l$#GO% zyMtfpxm7#w#RlH$MD6L6A#y4Ot=djU$pvlNx^*9A>f1f8bjM*sm$}K#AETqPKQflS z%r{&?vtuO&rA{#uZF)g2J}l`eVbx(whq2J=|OBIoD~~T@_FB9V5` zV|=0`(1K$c8*cQ`pC@XvqcqURC4X)zuKv}lS2JUuE%rI(Cu+aYD6J1YxhBomw{~Om zaCy(WN334;X8eK8*fr}QA=?jzY4!A5w;GKN4IT2_DLR!Ba@58qUGTtx1Ld~QvaO`&26T{K~{Qh(6PO&ky(g41MvDuMIdA#B&K38|S|BIk?#|Qt?(m(;X z4!)&V63%ojKdZQY{d#IRhk7cL@l2un4ra>i^mtaoJf2ljA+)KP$}Ao0G}`S`OBNPq z#-{(v^G=V+kPS{(-6mRAzAY-+*Y%iPHE}-^(+O<6N~T#o$8^af)-ZfYJ#qLqeNZey+AzS#_S$V&GV zwiMj{`KpV*EiQ__Kgn>J;d>yn;Djmo1Og8F3l@}GhmC~?!13Eh5uqhG>o^q zDfdNAZfMvQdh&eNMU4 zu}b@JXk?oCZ{gC3#}@CK;@J46sK^u+z@`xXmzK7+x2UsS`@4t7^Jm8bUl$bMX|OMH zHL|85E@S?w1|^XX9{gGAcj!1aMdruze?3NCUY?L$uUhKI=}vcj`ETF9Pt?sCrcFL? z-utwf_vo!Zwx^rc9=O<;t;`^7S7nhu8%dr*C)ept;oOe-4vh`4idcgZAC2U*S5=a9 zX5X+SF}X8}>tJJ5ad<}hvYNZ2LR>3|L#&YIVtyXVDLQkR+6o)ahN&}k;lvgTZKW~0 z8NT&ODW7r02^@Xp)2Bc26irP|vWki6AfRP7xQ%uz-@JKKUFCf8&3N@RjRczqUqh<( zDOQ%2r(w3d2Jbh`&P@-{379|5v}jHYahsb=vEKK_5esypNG@0;rnf$gT`^K-zJF=( z6L?M`tG2&jT*GyN^BXSD&yL4xzsQ`MZk~@tI3i)YyCxycl9X;Cb4kE5@zq-`*BrIBPK?or^vr(Fi`A5n0sYvK4dGKf2m#Yf7A9O!BZ>11Zs zICt*-BUWlS%>6S*;<1~nSw%#&$SxT)BjBYwjhe(=f`^r|F@JrWZtnSgjcZ!Ztzz(p ztf=w^$KJX_7n^eGt%6ve+VwTi3ERaRetgWz$QZKE!`jA1M(LzZ%K4jfbJG@aE~|G#7+#VHa$h;Vb zpNTtpZ;KO_&vv|DyVRdY0{@wj{m}G--y!&HU+e~lxVX6X3p?2~qcW9X5l0de#V*Yu zu*M)v{TLrt#iNsKV!>+;4t|P06J}<|FyDp)g%5~YYaup}Q)t^&aT4+8F3En7VZ@z% zbxoyp^=38_K}&;#Rn=4V&)`{=GE9^=??1gu{nEweJZ=1F4eX3lI@)EpR3KJ4&gT{_ zW8$5S`&dlHXeI=rN0v&iPs*RmcAf4M$Q>%&G1YRLanrVK(Yue|`i|oqAmW&6_`&bo zc43Pq5%-;<8Y^jcDmCZ1WVlS*xlFX&*2uPrk=6V0<3~kzb(}YX=~_Bo$u(OzKHXTg zu`1oT@RB_DMh?#Q6)?Cp(5j`*&;oVYv% z#Ef+7&X4-Jwb;I@3{zEaE?pfYY#F^t$TN`YgcW=3GsT_rKR-Ytx!Oxm&|ZdQxLmu~ zkjB#_JHw^@fB)6>0ndc^XJAlFJqZ`0G~7|TQS?lzN`eNrzl@3|ekZlh^VoIthtJxI2nlIi zy?PZ3s(`>zjr}SToB3|+aQLLqdPc^i5??NMctL)bH~VR5jDzaUNbGOx>0w`ayDDk? zq=ZDz-0U=eNbTFVCvjB@-3$1?+W7H!RQh`HQLiN-t3m;r0;~_M(nDj z=l*scjXBW+2jp<;KAxVQWBrYB2r=K`xO~#m(h5BpxhO(zb2%{Pc(^^|p>JtYX-aoc>z5lGrn6{Gkbk(en)H{Z1(`P_Atc(vWMw6vrB zjhdXAnN`7}&eXXj{tpjmW!n^U+;J!W<7_ndJ)kYsm!vn0Oy`5ud%r!kovp2UdC0n~ z-`e&y@F8XR7$nR&ZBi3&++P`0wy~`K*`+WNOzH)UKGLVXc=19INi4#8>Gc(B zx%1(8RXQ__D+}rW{PV1%c7)Vs>$7K{wA*TFJ+7~?-le z_XRI~yP-}M+`oT+ajj&8K+roX^F5~G2>pHj^x6u7bh})#pS7k{ty?1L+kfIjwB^+t zpMlp^HuG~XtYe8<(sop{Nf&y1-KY6npRlfN{r%?kecjz`s;ad{!8>>EJV1Hx!x>mT zhoju{*&^Q?>mI;=F&1H1GdB0=(W7kI+35(8oUO~2E*<$OJn(&DsFh7OFX!5|Yf4$> z+Hrz-y(-H>mqIJ<`St5ravFVF*R5L@i$jIaFj24`PJ>^sR*T>lRP!!RZrZdd9PUhz zHRR8}wOuEVNnbB6N5qk2_H17JN9F|H0bVGDQP*OdF& z#H}n?lyhDu+s2p_PPW}uCYUsi?rzEO^ej^>diLT4`|(?Uybl(ALC?Uz zDBMvlNXozDAq5t2Ls=wZzo9BSC@Ql^&fwvEBQH(c1NHRGx_x7 zXm>+K9C;uVr=|tB*7~TC!U82wj6#G|tU|=yNZG*1=;-|jId3;8B0g2+ySX95k?rsA zcN)kYZyOj0X$!1lT7U&wnbVo;tn&2zc#J&4Z__?;s1j(t9EKBG0ym_YWuC$G1Rfj4 zlfY|Mcd$fFLP8=zH(zHUXV_zAcGjC!kp){@Y@*$a)xCh5>8?!*LGF-<-Mi3~apK+QlH)BcEirj_@3v1rn|Z-4C^pTK z7S3Jtc7MmaUfxUY#+$tf`Vkgk<$T=f&A#98?-vpg#9S}Le5nlFiEJJ=(im2;hKAO>cA=2Tczt>r>2JQbGv%JT9typ`jrUK3%~QSf8o&&(uwBYYTbw*{^u#3oYqSGT8=D%!J=uSZ;Re;*zw200{-({IJ;cx zr*Q5UUzaxOKOQ&5>H5FdX3;Z^tteQu6TG;IqD8wkGD7FE;AYOUcu}xJ$IF}WSbuNk zStTd;|G2C9{CX=fk)PZDYhhMkVH_3~X2sqvzMXw*|L?;5aVnzLVbMO^mr5G??NcA?&3mkozJocNsGSXN8#`9il~~FS$yT{9ru5(FmFv4AN{{?T>erN%g{!o?7{ynuJQYQKWft+Ig4Nkw2u^HAq~VJH4R7ZCXZ^`c#9>fByNzv^J4h(1*#T z0|>z5c%H#ycmMk9!R_0(wWP-%6qhq+6fCKT_`K36((d;o*_+m{-)+G~d-L|~lEy~S zYQ3Ss!P8?N!|h+G<%YwB&G~UV?g@#H^XcTfYLm5rJ5&xkwH6;|m++w1NY%eXKq5*7 zvQlM$F3XoM?`rqetpRKh%_1A{{YQJrkFhZyCX&~a@H*O43p_6rwd8 zc{5PJw-AL(eh(xDCPcSC)=7;>}(=J9U*ZXTDeZjh;#2B z?7oh?pq-!rhde(H#j8=TEjZ&K%Y{_q(MUk4AxUK8RFi4|VJSa3vLvo`GrP(oq|Au& zhV}N{Rjk@52#_UEncUpm7(|__OuTQxaNhwtL6lCv?`Y$3XDodR?FQv{AqR@kbSap^*Yw@%_mEeVWveL>s(&a1?nYDbq>xHmgr9 z#$^$mgArCa2gr=*93YKv<11uCToHT7nsHsm@y zNbC)W-rXK zf5a!f!ka@yQcuFO3OlLTYDFWm%vidfbC@y|=_SSKbztgNi6zBkEcxXM|0TTG_( zpPC<7GnmglexdjAs86kZ7^B);~gk zDQ7aaFsD}Os$PEO(^j`wtC*PpzMP=fd-_dU6ZNR!nl1Kxmzr3DvMrUz8Q;X58C96F zs?yAMWmnL=E+W{~{dhf_N=t0AK%*yXlT z;$=rzm%`A{P=Mg{n$2uVYQWbO&nE4>d-ra|zK!D2eI>`~B;=EZ)S?7}&Iak|8I%R6 z`)0a@W;aHfl(nQ$cd9tK36J`&aLxRY(piuNscE#0mfl&Bc8t*nXpdWP}%A$R}WmXxA2eXGih z#*mm6H^U1>SH**eV~056D+9+SJ3d4Xg~%v$CN@55 zKx4M}*bJ-JzOFc~j_+?6JMXXFPI<7UwyU&pSU51La(djiZ^7Kt1!!1bilzlJb=gg5 z$IV`(Q?7{U3;F)(t|xCtZmsvL(t4|S6aS?`b{(nAE#Bdr&hqc}5=(g`O>O(u8~%No zHohZg>+BJ4smbEvt|9S{8L^v`%Vz{LgeQ9SJcWe?V>L@mR===Tm6)Fpp4_^o?&`B= zhdFgKmCl?w6FZff&(viwuR1b&*C5-r$A`GF%k>HXB;rn$YREs{w?{;)KGl$Cze&!! z4Q#oYUj}XLnwuVoySa|`eO3h)Dcg72%n<28_vfr6Fgyyvn?!Dbz6)Psabe(L+SF|C z=8`!B@tqZK*|Tigot{Z;9jY#J35bc-mCIl_C{JzcYfm&47*H#VIL_h80zA)KWMylopoKUkqZZjW zEw549nC!&LITL=5J6n)_;KPtYs%2)vOQ+r0|I zlBy2R0$4%-%63~sV}dLZl8$)Cx9_fW3iK7!IK@~VsO~!7Xg)X^E9&DW?%I)>_~oxp zkzCEHS4HY==aP0%0-Rr~29n1QTC?JvJ~gp1JM3-GSkLtXqnjA#^W`Fh&m4+vu)D@> zWU1U2`*x&jB`3ZXIK@1XZt&sbb+>4f&#T_|`>Shfcou9xtV)X-Ulx7 zl{LG~C)5V=o-R?bh&3JG8Dqmo6UU@EvLiSy^T&G(tWOdWEt;4BwasiQRdts(DrL*4mrh;I{um@0 z_dLz0`(9F>N?&bvv`l>}ozUfQHl_G*u8t3>0j-FcCa04!0a|V@4VX4y(_W>+n=Y`8 ztJ+Hk1TEl(cStt?UQ|BVecYz2f>|5cAeGl)@a$$z4JBBK(yMFB`7TdbiaMNatb7KJ zk>qed?ubv*NWU=jW*lU3u!yKANeUCOraGAz%tMP_M**RgnM1@+~%u5yT-m~eRe=FRv1#@n+K>(1V%I({?$AFYk0kG=h>+8!zc%lGtw>;PR zS$o1z>bi`2N6O7Mhqw!v)jiq5sR4lf6d^y5q(y@C7qOcI9&YmP!S03}$26ocdnw(` z`T1kL^$}gWhb+Y6$`@Njp)OV$$E$$}Ef9Tgf*tu3I?}Sc!iMOn~sZUK#3d5-M zpfQ86i+V+YYa)1-y~_f>-)nziGyke!UVPI>U&V_%lvSQy7F6nD z7AL+71119->vE(C$`LlM z_*Lb0>9*=G4;k75D;481ndauj&L-WWojv`+tv*7WOY0L{Bj4rkw;M97Z#QHPJURdN z9`S$Ov;A&1gD;l^2|KG)M#|M>CTLcrt6Nj%r5%8uN39BRjYMk5&daOx^yyQ1H@zcM z%>}Gx&s$;?a^urnXPpc_&LpR92K@w}*?4wp)Ti0!_SzkW+XE3h$ofkA9;kkD^g0s- zRiGlafk-V%o}s*BaS9>T5+ouG&#j|$oVu7Pv~fA4Ktv+VK^X)_wO3cS`9x>_ScB=* z*Xy(#Ny0YYp9tA@U%*aN!$VKr>jq9FxGcq#w+ig#rIFWk(*pHbgThx0#jxGsfw+EP)hqlXNYq&c zvJ{XL85(W}KxvCQiOfb`MODns#wK-p9fJZqB|TRq^UPaV`LPE3xcEh9DtP#N@WZvnkz|y|y4C2H;6rH?;y)ti zckosB)+OQbf3!P`k51^S7AWOUj~IQl9(sQ+eULXlihb&8_V4vCv1*8s6`A>2XQ5)J|_ z&a&lotk&~XND-m{sJe_+tFB(XS^-a16@6we!9f8Blz)19Ji(l)#xP)#d;>BU3~f>b8-Eon`s8iOvqSya7yP8cse!_kuRy*D9m(Aq1H0Hy`%oV zZ#QK?9QrE3!-u~&6coxDI=J`#1n)yK<#Q$8P!gZIiB?2fD)t z{{7^sQ?bUCkpNge0Y%EN=~5t}k0`QGlP7#6+ygvu7`WmX(9wjv0(s1b$QgHuaG?C= zU!q}6?~!aFdsOz}P)9J_N9Z;{If@@23-VdDNn#O1h6N&N#U_pbF|Mgg(W{P>-2te@ z7*-h|>YQot!89p15|H@&=4M^+6LcaD$;!$CtW9q7E`;nLge0Ugks+>AUH%E=K`!$6 z6MUXl-nZMk3H2$fYN8er8sAuzgjnD-CeSbtj#bBP))tVBJkSRfMCx=f%O&o5tBBeS z0KtX6h77=Lk9C~;_!tgbeoYw|1t)9*V26(1%uj57#+p*`h*c3FdlImqX!FKwTs}bR z(f-{60$EXo+E0%yhiF0zt`GHj1TVlYXm$#_Su)A70YXBQRoH~2CCgUq*DGujHJT>S zlB%vtL|0{09B={>=c-FxfY&(idrcbObB;WYEdG6va2B$Jc>G?3-C_QX0JwlMJoo9} z?G+|%a(h|0bQbMLnZ7@-*s$)|bF4{cCsaN1qjvc>23oHTxNxnkZENNlVH!GgMreF; zhw(SM%2*`}3(1Sbz6r_&$_?lj;l-(sE*KE9Bj;I#O9i{=<-s>#kJP6Kyt3(0zt;l9J!HAM_2B~ceV@4m<}dAo zw`o}27m%7)^z<@TmdV_IQHFHO5rn~a_kQ1u@emcYIXIM&~IvR*NF>muCxpc8QDp9sbO!wsN-T?7{g zxH~(Yd^+y`6Hz_oe0}JG1%Cc-Wd0!dhsD27@a)A45Ulg}QjV=yjF9{nME>g8!_xov zZzCmM;4%JLPk;T^V1jsOEqVmM>%~kfclbD66!gvAL%5ZL+oXNAdoB=T|NE+~tSl(? z8E)xXxKua~ga8VFtlB|}Bd>+zK#gGl*i^*wz2{6nJ-J%#2SzFe!T>9KdtbtsJd~VoXn;Y7^D(#(dW;f#~^)g0Lxr`31Gzfy{Gn*gAard z=vy3=i2J4kC=1k$p+ac*k7l!C7on2?%}6e-o@OX|Nd_deP5b-JC1Z{D&FTyTpPpX# zU=&XT6nFti4H1esjrAG}?p(kADbUK2vNCzFw*kDyR1mNcT=_E<+=fUjOllK@$PMq6 z@Q4OVM(}wL24TbPJYf2WunF~KH4;ohseydoFC-+SUMoWk`N}H==i*d2%vdN&F~p8z)MnT(Ib?SFI|C zbK)o-g1Q%}*D~UCsl1R+U93+%iIk}7%X4c3{y?Gt0I(+mQJfbOr`EI6O-)T2X@>5k z_G>eZT(I+fK#Suu{rvnogH6F15TyWCJkq|&Q36PBI{li}tEt!{f>+?N-ve$Y@#TKZ znXp@0T3Q@>OP4OS0mce;`7?JU+?L9~4xsobUMLkPZZ<;ar-Ss|^K`oSlV3AC~1#j?PWIYneUM8!sAu++BJ)-W&<>h91*pk~P8 zaCs>vCYJ3q8v7r=y>M1uDnc`=o9#Fp39$z=h3JYl^ z*#K1t(NYlGajg$io=5_p`A0*OilC;Mv%B-(}Dbolv?e! z$M!TJParZaa^AOas67FLGC4IB>pD9{bY;pf-XK@3#+9pM6eXahK*;tc0w}@$mX@c` zak3vgcp4#G2_cHGOmP{PbsgI`6CoMGcO?^XV&0*s!h$qhcBG}(mW1z8gt2Zu~j z-c&5nJ0XngYo`@MoZ>Z0X}P&5(w3yj)10;b??{`KUCf?wp0G?|+r>)+j~fP-PJh)2 z=g-p>metbJIQf&{K^;wRHes_`^P@r1_kYvV$yKg@Tp}3vzd};5k$;L&>Fp?Kg$j7h z1}6E5sh%Wp`-Aw%5h+Q9iomM3Zn7+1-@bjDlNDL`9wG!YYnQvHr+n98yil0P=m@Pyh6juQctnK!721$h=U_whyE4P{KrhjD5@63=fgBOD825i%lSpLQ@xsq zj32mPz~M`wT3U1Chd;v&8DsDG*RI3Wl5gto%Z1>)ipcQRF$h8JRi2uU3`WTDN4V^D zc(!DTRnk87Rt1&J!d$SB@_h}MAQP6HL`Ru=JTNcli5WO_KFin_#s#) zbYx9}CULezyaxUHCpal3$iN=`wH`k^p-R>6@(xEjYYJn|^uVp`YJ76oG`>^HiMb0F zDFo*me%mDv=9I2}8sE6WNgkpnDWAy0$@vHl4yJ~~Ky!b*XD3QKup@ds+sOK@7R@b` zwv)F&PXu|;pu?ArL8VavFJbfT%_@k5<4DiK`n|a7U=q`d3L*p}1S#^Zdk`45EeGcEJVckceSYQtngs}NnYzkiKQ?IX`wj}w0Q~zy6Nd@Sz zA+&B#JwNjgebuzEM9#A3uboo`U+zxkOLr5 z0Wrzdo)SHB~qGaHO^0ijuZ-F2F{TjYm-_jr!^gctS#CPfkt}>037* zTeFCqp*Y0?c8BY@jL>eo#o zU^o=ZIZcoD7)_4jHoM!3y+|(u!k2QS%=TX!@j724N|j0^TAiIn_tfwU70WfpTNJ*# zWHK@5@)&-Q{BdI-e}2w-C63U8opnzBhkQ7k$$JpV%2w#Jc-Ec9`~BR@V>nl8?l4Y?`n zIMfaIFX&RP3)UU(%4pXb>wey_!*#NKYwl=`CIVJ1pkq!7aL@s_kP&%z+6f^th za`FQ>)=G#WC#C@=Y}&HL@SY!Tz87K^9I1#}AhysxP}1FSw%AY&%U%PINMptdzlP9N z6(!Hu*PO2lAk~*kw+6w24^0fY!ykngPTLjjL;hy@EnU>cri1$L{v-zx3W{v!@kEoV z=-t4C31$U~R_E7t(xX(bJE%w&gRP#D1j+-(#b^0-q5lWK2%CCpI5%!*!w`-s&3uEk z_~X}5RT1vk00k0F*R|`x!{=7X`=cW54bOrXm)Bln4ojbB+l9AZ*1+_9*i}Dvk0Qm} zgpjRQdhT zk1JXqSZW9;*-VK%(T^7OXSnhHbHhjjRoT=v&KmIY}%<}I->2C?wubRt<_}EaAltUG@keespsNP}r zoVf^Y8$xbH*MVpV-*_D@d+neXkdL!+ zb61#rAPp0Uf}|r3{=XVH+{U-5=ija-o)BCI8+5LKbNqUtuUHUiU5K1-{9t%bwphj~ zEHqRp(@Y(|+LKa*2pbK~sZ4VVnzeK|DkRX*G+0ad>>!h#mc5NQ<-$~o@g zsyjBjfpb7%k?q8zg`_@)VI6dX&7RVKLm;ltQ_;vUn!jvgo~QV1m#V?LM{f;>o9<_kudWRIg5DbNY9Ix5a)GN_sgLPGt^NnKlRJa{tVevNDo{o>?>i^+dYXyZC;TUJq4s)X zJ&unA;Btu1;Cc6SwXD?x<&*6&6pCX@R8bInsiDBD#?c=|b6N>>=&7%dqZy?NW%cOy z^5dlA1f>HhbU*;AAYGw`Luo{GwZv?PT8q$`#Z5RaY+2Tua>OR021DCn4G=d-g!dy; zlSGx}6VCLOssxDud2NACl?E(WwH<-i%%m)a-1|W4&~T&flok$RqG9@Yqlw4P9ZL zVhRuUoFuKk-fYV6xmjR2|E=7ypUMn_awkhZsDi+TYz@Q|5-e1IBMFcmFHh_)Pv{<_FC(_!R%ko?Pr}7Ip1t1$QZmx z3wvGA&uqqWwUblGLh`d~^MgpbdyBxQ);nf}3u@ngq@yB_UoVEiJ{-+V5K(x0ng3^| zLx4lqLwKBja5yisY0K5!Ic297m0}12i_tlP4*tS50mcp8Bk}leG%`ise=+vwSNv1< zE3^os?AV1`u7;wR|$ z6F2|g0M7q@CQ4>sLBywNGbN|1N~zPn+9uUGF{|5#l~)*f)yyRqc25LU$5n-&b7>zN zQ^0GkYgak;icDX-R`sOG^v92P;Y2r;Ww#cBLauf$8p(pO-lm953tq)L#~i)+yuA41 zr(bnHLkG=7%3kH1vpd^=ypQj2?}1vQ(x>%>ec$OC89C3!bt@SkF_FHS#$fGHsdlUP z{r$1)E^4sc-Fsoce0fz&;x$KWHeXdkW!8DBp_>@z$s~rCWZz<#Pyj`gJgQFLp0?9@ z#$4%m}WSG=Qq6nsjvvK8zdKt~9HZ=8rk#(J16Mgw6 z@H=R7o*TS-GN1EVGsC3Tv3FYky&pw%Ze#RX@!9y<+n!z5k1`s6@mn7-KdQ=V-QsYL z30Zl`T6w_T52TjT@hTm;eoJ1YX)eKo8V*v|;hW#lWm8>^O#`N1pX~N=IeBk$n)>~h z_hNO99IsyEFjMA>1^lAU!+Z9Vgh^GKEv4ddQb(NH65WexratRkFlYY$HOR6 zFKXqhh&Hc!)HOe_4efwlkuq)*(miuea={}=kLVb@_g3|{YUfNEo@}q3%81*XZj>ct z-*+yqWch>N9$mk(62 zZRo@TZaiJ9cct^v+!sMg#j}*Kstirq*<@F*_uffQPA##u=@{uUdb~DVS2gLD6xFJ2 zB(oueCn_sZdyPx4;Jq!E6KcC_RQta;2KR{SvVGe(5Wijdg_E-Fe3`J*3+t@TfR$r= z&lPiPnmY(loAy0}MiuR!Y=BvbBo>e_fw=%NdGVDYz*NH*2fjVI!TmQV*{I>>qH|$c z!uDsL|7hnk{-Ff@h|HP}x1jgsOU7DJ$yJOc1cHIA?F`my^L81GAJyAD2q#jRV>_essH+aQ$X6a631P!sX4D0A{(na!7CFR8MA^D5K70mU=t?L#uP)0>=-b&xHt^@z`;w zd*AzVg@6N#29D8a3Q#Hk1PJ`9BoD_U0xMP*o;nzwO2#Je8A2oZFnPx=A6y$G2$ zi-bv~GhQ=G4t$>vrbnb2l_f&(AxS078}fBUB!gbX`l(-Ju8tIQxw*Fg7_DY>dz{+f zhKB7&Wo2C6p-U^oaN})#ePKbunVMth6WKrUb%}D~RBE*vp#Qh`wnSf?&T8xJHS-!r z%a$rAe%X$t4{Vrn=PgnGllE_?@kV>^-N#qN=>e}L88H@>g_H*b&?l4t@cRqM;Rt#H z<=2lllg*chWsz9Ok^u*RY?Z?Jfao(Ouv6rn;>rhj?N(IJB= zHI;B%TaKv=7%fo6KIr1Ye<_C_=c~2IqdRD4P`g)&s(T{@_Xi}u+O`Xql{qjuCsO)h~Jx^4|g;%u!f-ZM8vMz=w_?eh3bX!T{t4%m}e_Z;=mMRR`l7Y#|pK7f3V^vy;ykU z+8zxZS_bYTm<3VrIbgQEw!6~pNq>{OLVi;&RCkfSvvFP1d^<=E##a`)ygB-P2@Y=j zgkE!$ZAoOd&5(Ra4_%UoR>8QPQan>JJ!8_Ly|=o)g><%mZwp5!m2q3$s_u$XyKyHP zNjkV2$>=t*d-?fpp|$ea<-H(uh>{~GCntWa8IpUfi8s^D8#kgQJl*o`T0x7%Z!iiM z@@3s> zpk~Ny03hsY=6gP8l{xJmhB!bpg)bB`0#ZDAd3ixjY?fhA7OYKG0$hf})OTkH?sxxz z1O5KBE&rA*?CEm35B!adh2_+eB})iJhY}>5RAy*_C5{M!1f%UQjLLQr*{0jf&}}#{ zLhnb*hlqIw;p}D;5(X-#42;Cker91z${D^gAh)=cSY0Ku9Jf&_>otLokBK^Vs|&0MFJhB-`WaC8>G%zYZ} zBppRLG&?Fput2Cg=hVj=cnt z(>qXYsus5@yJ-kYSY|G}^sF-oq#qEhq04Tb!EewdhqEn|+bBhw5!U{t9OcD$jJu?k3U? z1T973Kk)Jvq>zi-)BF;Ax9b(B8ZA!Q|3?^P+dWX!KhX#M+@I}G|1kFia$TrBD*REC z7wdDYUj*BgMeph1p@JS_oS{e10+Yf>HAyEUpcR-P8OFnH_#yhSptT7`2@!b{T^fdP zpn3Huie)xT-+{U^WWNvaB38G#87pgRMS#t=`0S?VhCfROW|En4J}1gG`1ZG{q$SoW z9(@uTS>{3LqkalCXg3j{)~80aI{>aH-PtH#O@V|HRWXrof~Zz2d@Sy!LweFt^AXZ6 z&t*CmmN?ZF6~dv1$P@|2*pyh|<%whxoPeny6!lGt)kPij2h>w)bTZ%Z<0VeEMl=|FpUTKJSFr$Lg@jQfj9w zYiMazA)ZV}3o98nKn+K+8jG19fFdeNxbou}-Db`JrzwZp0{{spB|z9daRu$pcsP7g z_5vZP0gY{g7U7aFIK9e5i3~=KLOSS4>l#k16cxp~w}6FCE*hYKq`%9bRf|8ppeOKS zU7pz{`@%Wqg%Oj9x*Lnxv~dI7s0X&%uw-qbLol!7@<%}w>27&rC+mC z;01_W2~{_GmV)-8-lr#>M3$Dx)!R@RgQBhFF7$c!5YXJq3#{q->I7#r2j=@cJDY`0 z2j~Gh;dBY;iR^?IAR_n|ZQxCWQU>$c1~$Of<7ZP8GX>Cz$|{T3LpSu~cVP9OV#m5r z`ro~G&$-tRYsNA#<#lDjVCC9M18ciS;ZIQTN1td#{&Zn-9OxK9c!<;vHiB&A)}wVi z%9uEXE>VsMAC4D4JEU4;b39uC))BSi2Y((2AcBAPKp%`V8Neiu_SV+D6tqZD(%&C@ z-M!A!W3uxuEzH~-85dS|7kYUGg@nZHuojso)C15Rduq{^@GAH3+{CaZR9L#@mO#(*tJeu)K8X3|1?lkW6_2P3&_hbAi8n zdA97uhq}rRX%9eY(GZc5hlIT>NWO%G2={^>vD5!!*K!iDKXocWoV_{J705Ujz>yFN z5M2c8!GoWu7si3?5)}iOTQWw1%+LT`QwyWxxHN(R2c)+I5VI2GOo#=t&`n`p&b?Bx zz~2^{L%TizERR6C+68a~dGu`^mr-TX(MZx%CNli#7pV*uV-v&*Xy?}aXm4Xv1=+_a zy8Pb(cY<6%0W8?UYzDvoxhWcqdh&fdx_hE-ej<^hK&C+4Hc*=ljb9AcptVFUS&r+$ zlv>nQNe1IfK}}DZ=QAgTa_5+>qwbi>#Qp4*KLEA(AGiqzaFL%q$|RUC0$Kh`7sX3jgrAPr zFVYJAKRN8b+nzt@w=$QQWzYBr{S9&dM1ja%{QE)gpNjd_{JetP#p0)8sdp&m{x8ka zw(*qhi;<3@ZRdX>Hy$fihAqCve+i+=%l`vvK@<4TzT7_y|Hfwiy*j5_<@gtOJ0Dz~ z`=4uz<^LH%2&l411;*R2&qKdRg%2R)!qeX`S_wQN7$>D`bAe*(8m3Ot`;al zyM?fcU`eDFG}j4s^z+C4&2sep7aETjaL2z1hi!dp|KomH>c?Ka+T;|npxOJ|48zWJ z^U?o=n@Id!d`OAUX${70k}6ChL%OiM(zvsYOU zKI$Q=z`Nlu$5Ze(+_;%oQtm+u?0!ee$eYs>{5Y0 zD+<%^YHTqYd~3)bXxsUbflw^3c8^*Z-SzOO0ib(PED2~oA=hxpCl!HmhYug#FONA+ z3@hfCp{&ibysGr3?CU-D4E7vPWDt7=WtYdy_YmF0gVzf(z_a6$PFJ^HK?QWmgC1iJ zYpd2Rm-L<3{+rI_FYmyB{em&Ed5gCaW2nN@M;+uqd%EM_Ovrg2PAsMA-9q7d@DUxq zvZzNNocOk8Mst2<@($D>5t1}B8}X(GIya)BDHgK)dIfpmfje)uI_S8~&t?JfX6gc) z;WIM0evqbOg)7}vn-3U<18yi&Y_e@58LkCL+Y1+Eszsc`yd@qaJesK26~V*WA}Ov~ zx8~*E#|pwUG%#lM1S{dh!{!1G5@F>5^#4)7=?lV zA$SM2M9KLo@3oKfJz^q+ESZ4^1cDIgE<dR4M%wti!7JS z+~9?1foSbE2(;47k6idhblYV16owCxi5+P7VMR1Xq9=z~n(~;({L5j=jL4Fhn;{~* zf*igu+Co756!;)+v?P@a1PmE6=neKlHdsU*v@jpH%-5R_9z1i!AQ_a(K25IE7X<}H zb7TukN~A$kc%!ZPl;_R_)XZcmB*8ME3{v1R+ocVEQE?Rtvy!#O=$xn0I6FHN-8-}u zPcf=~e~`4l-pBaaak34HE_A4anX&+`>w-Sx9=k znMltRHaos?P51^UrzOJU-&g-Z7!KSAQJj$?2a8$@Atd2R(C;aUR9u0KX2c4R9%(%4 zLtsAfBQ#&#$dz;F=cY-ri^QF2cA%3J1s-zpyLaxCgDGiiY1s|kD0W%; z<*Nsv9VZ%jK|#STi29vSlZ>JlI~uc}$WXkt_Vx&QvB?tydDDsgO}TM^u1Kd9Y>g@B z<=zb@Cy|w^pcVdOu&Al+2Qz+C%t!~hz z8u_ld3po;MTUAgt=@-iPWLzjeMkqdXNMiiJQ*?bPdM}-87FX4jjP4)`6XX^|WW^5d z3ki`t{*x%@A&HB_p;R~D;Qc0`_6QrMJtSLWa%d0=MfB<1C88EGuc2KHM~yH_F6bj8 zC5-a5l2oZHqh+sPhNNi6KFN^&a#CsNx=x;id{qfXu7m-tNIs;|TJYTb%d@9AYOcn= zRs5M(P9r>A7N`$J$5R{;fJ%zQ9fr@(I@&?vMHGMJEz)c@Ea`A{ewO}^og!*5MPHeYq)-e_b-KYXN@o#61@dssQgVU!YM@92KP+n9wDQb14~^ASt5rXGa+cvW36Cj zW@d70U3fO8dXh<4D$}HI6om;X1IhZ64hK|#M2?(o-RXe|V7m~MFb%E!gTGf`%@y9e z;aiiJdCt8m)aNETN-~^{Ov@wQjvzJ&55%C!tU7E(6&gM^HmVi)@>Zl_3sAnqVBn|9 zG`cYW6_^{Ncgd+U$bO`FU&!|$`=*B@gJ+tEVi=w;;bTiA->yC=)|2fyw|tW%))&w#cibFFfxy5mSbPh5o3{VkHt8&nMOPe#H~<8^kNB%D3cH9@67h zQ4o?P(ByC&EIPJ&{hb333K5p=&d*E?5vl5}bqujk^Qn(n`~o?FvG78vv6)rj1bhJ| z`+POz`^t!AKcJHnjk%O$pa<#Fz^_FCB|*V+hKxrdYD3KVl*ay5ko+3}>pR#+_tAqi z6+82WXoOo(<3RUfg1KzKAv42o>wbl&tRZ?$n2UN|e9+^^7`XSc_4E>Eb6QeR;0O|+ zhG+&LJUETadcgr4J{%2QTfiZ`TR6G47)V#bww5X9NCW6Rhb5xMYa1bPh#?3gIynGY zn8r+irB_E6Ck7H%z;0p&m(CBs^+B8DGm<~{ptbc&&g!mufVA0d|s#UmQyP6>yDxQ;ULNb~N&d9s(p@nNMDp@k*Wr`#EY zRWPH2jN-LzEnJIn$)-3YL=r%v=1x&3G76OL;Mpt0s2Y4}z6z2DeS#xl{N}Iq1T#Q* zhhmzQTnLIU;=U99VGNkM!u!#TUvonp!9T$75qAK*ghLMt4A&h2 zyjGhCBW-MKLLDU?9ySrS0Ea~Z=mVK-iUZDO-~R>Oi;u|CBFs~087nHFBLH@E5-m75 z?VZVB`$;De8csc{a{izx1J5m4uroo140eQ{t%L(7i^UET!*i!-*u}%?ATTgf}jImm_>3!6wzURZ4GPHbYLH>C!n z*dwwP9i41AH~@NdVJ<|ODwU>p46)rC+i-Gh0YtW6|FxPEJ7Z(Z zfrZS*bkbr7VPVU2q03$ZU@3xnp?HUEWGn~Z(Z!IUba@Y<{0nTX=w8rf8@ZTj%!K9F zz)mE^Vu4jmHmZ38v|1_dm1mfJF{`q%F=heb0lK`8@#me2ijyBcJ^WI5jgnrcelg*5 z%6zw+kwqjh-NL8!(`DlbL4&m>bUIIl6bSj%f28|BF2lu;}kUF7KPP$sazqg4+ClpTf8`z4-jkq zBK>~z$E#gR5`1r6a495HZBP>qtd*tv=&vdsegen^psh79+7i*k%_cii_YAe2%jVLZW-Y?Vn7O4n~)x><%cQDwLLjQR$_sfE7z#x!0Bs zrDec=&k|O1Twc6=yO2bR_1uU#m7HQ}yEPh>1O$hDD&jDX$k}a!o{h#Z z%KGrH=@g5*BotJwP92!;(j%e6&=B6?%QG{s=gxbV2s;MCC}yhBe#LAL?JyZC%geC` zbQ!^rt^Vv8+^<#eCj<&%gX}v&Mxe00@pRQrO=&hEsFD(aeH_Nd(iDN? z)BCNrtUUAuVp-HyOuUIh!&pA~Myj5lUo=+hwN|`%I+GDec&`u=jRFoa2~Xth1lsvC z{i3>$UA*eyDhjY|=%66FmB@dA{tp?eJG?KM{j;m!K92{(>)5W{l=M3{u!AIKj$!l2 zKfS=!U@4y$*V$=O*X3O+TeNn9Qv~fvQejKyH?#0xw8M?;e&QM~PDA;Smr$BKtS>NS z0?B8D@7b=YDX3n**ejzcVlR>?L!ZVZIJZCK*}T%(Y>G-mJs?*twJmmcOwOZR7U*_jFc)d8 z(}4@4ahPR9ba~7<=?fl}%uJc}AIkI9Z@g+a97t~K>Dle($lY^G1M#?gpT;tgQJ2*; zc^B%F%KO(3V2Zhco&Yvw7V`8l6qR9M!}@JLz)I#FuTLh}1wyyOeoyw!iswM1@5NKPIfGYPQ3@VKDyge73aA_!Jot0s)>`1Yqe3_ zGY&P3&61r<4)-5K zx|qHaBjtxzXJ=~_8{y`~;k|7RW!UiDsIM|;hEKsz^!fV4H_Z)+J|O-L$(<)!V>x?Q z_e@>u>gp=eYMa0K47Ny|D=NAi$|;njHsVuD+{ZB-m1E`W?dF1k!|&-p@$Axg?folX z=Be&X(s2JkjW1+Br9aYa5vwjQ&r{fL z(LoX6GdnMvG+~0P7n6zC6Aq;|KX;Q7U2AYRj;O9dIKLCavdi2Xx8H0Pir@r9j;5*Q z-EOup9DbbuF)i|^`HT)Cw#!+MwBIQ(KG#@D0@HTmsTS>zo85*Ej?el&<3yz<*+Hko z*PD9{ZEG0V2z(#>cT--&AP&#Ql#~=|rgYl)*(48(X4VzV3uOL|%lj<9RN|F{%0%Vl z$SDqn#QXD}v`!q%JoVzTnx9kYZ!Om6x`f9eJb5o{%CE z3}E|OXG6l+L2#X3@&EYVdCfT4fvPpF&uL(}1)vy~tY9EDKJDn-W>p@NPoM5A( zy(G5m!Vxe)r>iar#*>VJ1@LQp#AMfEV|OYn6CjERHo}W=CCQ*X5@Q*kx(u?$FC`@r zG&jbByviGt15RHBE{~*g&U1Bh^J<$M&O@#*KZoNo)h;SBX;>?$p!aP(vDyR2+vV}? z9n52G!R@5@?9-=@9PqSzSO@8r91ru1b)+i1*#NI`dSLSr^^#Kl6!zMYQl^Qm=pio~)d$u3+E zT5-)%o1dR=(VOHmUwiQ>uuKeViCpC~?0q`8xb*h$upVk@=$h57vPJBgH9Y+s4jRDY z$N$WKmmmM@#WD>mRe`YdUfHu@@-V{e)S1bdKiA42;COtj&u_jq=K8I$WI|EgzZf^c z*?R(EE;Km!^8&L_qC_|Ml_w{O=l;WkaU{dKg)F#b(Sf zBwRXrdxyccg#CM7Znk(Ad~_{Wg&}*Om_Yeu^gW`H?pR5Bat0sgk!8&cwm^mng#o`i z|3K)H#jOOwB!*#)lZPM4op)QUGLVbeA~FG>NCCH_sGS2wS;*Bm1zWKpsKR}Q?(#0E zl5oP5wrS61E_)ZEkp`inNB{03zVc<$Wbq1kd8-i}=Qy4M&&g^;b~5|O8pmFvwG(hIWJQA<$ebj7hpjoKiRBd+-SiFsyvRu;- zJ*!{G{@B5!F_Uj*eIUC5PMp1lC;t(xyl9vj(`%ZDxzz`1@-AXcF62qD>@QpWevqvt zX>pi^`1UPjfby=z=GgvC>37vUNL8(DnzipnAq|B4J0s2lho&xH`rvG+1oOqS=H zaA_W*%ThRZyHtiF+LE7ARzCg6dm8vr`2Z%r>E<`z4(r`*kkm(33jnOr`q93~xydVh zch{0S!@$i`TPFDKj&O%eIhesAlc1L+}MMmc^PlB$$is4 zsAE?KaLdC?4ADtwUV@j-ppfvbxqjesOe_P?(**IpyyydVY_vDXLQx&qgU9CT6yqiW z=JR8>sRVt-?+m|CzZ43<3;^T@w6@brp1=p(?B?ovnu4Q`J{3fh(=>p4HqXRoY6dQj za!XIKU(FKFUwY)33^rLV20u`l%mQnij&0L;v`7>>Jqqe*2|jpKM@^Zn(j6S(!+s&a zbYP;H_>8DcC3o$0T>x&zeAQ|10OKDV9oO&Ju|u8po!oQaZm>k~wpbe0RD(}9@pZTb z3el8~YmHzh9#7wK^8Db(5s=g6ku7MLs#?nG&ri`=%`ZRu(W5{RS+&RlF}N6kY5$z6 z3p>_MA3@4T4sLO4Yq0fWGZ!ADmYYpFCrYf(&d%Ptb?3{A5_)D{hNz@+6Q0r5=v}UU z^8?1WX5$Ax_TxV+HU#hC?pq3v22TIL@i&(j&H2%;i5o*>r@l4Gtr{R;V-H8BzBv&) z4T+KDaN80Mec8iF0eLWObj^v>KWSGtb!7#VJb=2oRZbbw7sn|;&c*i{c%F*)jH1Sp zx!b#ir1_pWemvr_2HW7-%-C-ys;nduDGZ4??ynIB7E#mIU}`>RnnTngA;uhgnHtzlv1q!bYFGAR zWld&X(;$FR3TRc(HbwBrtjS?!oS9!Mhe zaejtVNRJ_w$peSK*R5XGUuvY}ApvD@6vgu5!(4(xk$To2TT~HS!~qpTAsGi80gDa1 z$_`$m?9|MPQH8lsQw3rON|(Q}PNVUN$iabClMl9#?gES9F{&jkJNs28yc52wfT#a* zmLX;bT*#Hz5Wo}LWIYDz*#i8$%*8)1TSVO(0>AY0VaeWEJo^~tSk~}nzYdw<6I8iN qGP1*??Btk)>-Mql|LaFnP~n3=1&!{%JBYV1n1_rSylYU@C;tZB4ro~b literal 0 HcmV?d00001 diff --git a/images/op-rms/f1.png b/images/op-rms/f1.png new file mode 100644 index 0000000000000000000000000000000000000000..4328514ef40902b89c0eb3d122aba78d57ae70a8 GIT binary patch literal 18444 zcma*P2VBkl|2}@Kn>(8lX^@hJLfXp;iAq}<6iwPg+l@jI8j?;Wm3B#`EvusBXvru^ zduZ?ZyIzg^dw<6N`~P};K92iz&inm(zsB{vp4anwc2h~=$VxgUItqodQts#>WeR1H z0)?{R=CVKVPF}e|Bwoa9Wi@S8EDUWO&RUVM_+pXBw}{`$q_ zHR_S&LcCm7RuWx+*L~bOsO0TO^z@i63Pp*Ie4R(>@L^BB4c zQ1~RtrmIFQDl#(WM6ht&$p}xk(GtBl*YTl;yUt#DG2WG9{USatF*B^1mcM7uo(UEn z$|LHvF$oIgrEIEUX?c}~-fyALPfl#6g=r+~CJLE-jyZUJRh(Y_i&&bycu4!#)aaq# z-=iZVIVOiP@~g6JS_beHlfm|??Ea4uC)^F~hQ>OQo%7s&r&s&mzps8SS1n%sTaJUp zdCxy6F^X|(*#%u;dpsa(^_n3E>eIqM1voa$VM9rLCJDij0At+dM-7!}0C z#Jq0Y$b3wrP_)IKv@h6qHwJ^hApHG&h;!?wt#Zm4=CxkAj2kvQX>B!5PQk>q{c!G9 ztIf7!U}a6(uv5zzBhxMF{FW}C@xv+paYO{ercJRw@|-&=6lDg*3#C@}Hr$c<{3XRe zEm>De=)#vz{ZmWXTpqDXImH~l&E)0fr93?~IfzLKaFXew)ux&Fx%CIvwFc%-MB!pW zE+dwc!}-%YtzAwf*-TFk^X}QBe0>#5`NfRdCowTQRgojEw^RTlY$e*6<=9F`EbUY>}S0+@gz3uv&@R5;A zCm!x4Z|a8KyMO;lS8YzbdZL!sty`+z8+J;DofT%4bLvRUs7x_9;&J_Yyh4b0cK3_% zf!`T*_nq?bwTGfskJ~>d#$!aaZsWhlFyf2Nr~jZV@bFnrS$u=dZDfD6V%QKlOVo?@otJPeeNnv~CS9eX`r2Fb2C)+_v@Z)L3Uw?Yi&p zANls}q0(RxMXa*cvvW7I9lDdSQvys@R*&>HV5jXYeX#rB_;7c%FQ>fiKoZPspNcqb zk*AhFHJEINEylfl`(ge-`HVWZ9AS$e3FMJ*tFd3+0s}QRv^KrzvB1wsI=pSaXia1n z+tu1tn|w|i^?X!^)ML_8h`fRbhCMQYbcqiR&Vz4!(mlb|FTpg8vF3)JZFc9M~_|#x(#)niok9uY%Pn(OS%^nWKx-M zD)rq6ElVcDpvdR2o7)Sci6EoU-5i^`^M*s)Iyg8vH~HRr@5dE*>7riY?admUG_!`n z+nyW|n5M(Jx}iocWshY&IU2kLUi91oRFvF3$ETBB*&(RwK54g&gX8T;qn~1KVIaSb z>CruyFTm_s$>ACse5Ep0rJzvj^QFH2{@YH2?VB!sOWVz_o%vI&%ffv;c!u-V%iYoC4p9a=5rG;o)LMcU;{ zhbT_++HHp~-Od~QeA=`sEEWEt0aArnABpmpyY;N$Xr5c`) z>i;0<)Es0)PEAyFwAs|esMFMF%gm1kD^)`E9=c}-*U>`6?T+E_nPNfj4Qr*Fat4+} zH5A?H_-2+ocx&1vvX>``_PuRnMJJzxv0@Tso$kSWY z>ZkdA?GR=5VPA6Canz*fcl3%kJx-JT-2t|}(%+t6j9;>R!^p%f;4CdGSomT&c73{e zt@y<+PxqUBPADrCsY|G=R88Jk%(R;FlN~WWrqHxHDe=jPV5jH84vKlaCh`5*b{z!2 zfmQ;2KVGzLI zs1DB;C*?d8gI&*Q-nmt7>(;I9wK*A1!(E9OoAFTR*N5VEal+;`#_i5Oe<+AqAc5xV72hF=^0w6l&pQHAHPEE7^XrhzlQ7{+@sQqf!DV4 z%kE@@+K^@ORdH^UV{LiEKl+c~^ovYL;7ioa)2hvJ5U`8W(bs=WFx`3Rf>_8$_Ulo-2b-G=3i{CgP|Q5LTg2e06m z8l}0nPY%}waVp-JIg$TJrb#%ATHmQyG46=_I0^I#`7rCNA-Gh64Us(NB}nYj0_6X^F?G zWe@*wPIsSn%j5V5|mX`2Fs4HwT*Y@YyAF}4iac2)%R|jZbj|4bhBthnMu`( zCnqWpf&GJnoT-K~UX zHh&C>mzk(vU0hP40$iw!IC6(QrQF5>An5|fd0vWpdL<3vilhlAByNR6~ z9EZ%Rld5cJQqk4A&L`Z#dFj`#4c~s^q4Dc$f13Wt&EjYq`fgE87E`}~E=1Z@3k>vR zvToj9o95$H38yLs?7H)(-DD3PGVZF$a+>HZQj0jevevOBD?s&xyQtOk9-3Jl?N(lqmb|TFE>ZOr=T3e+pT)fMRKI`@iP|XXf7r znZlpHbB2?@LmPnS1GNry+&nzR9b#>sC7Pd?JyBSn79 zT6Bj^13Xb)^2s*_g_9>w`trNk;1o_W-)^)O4|w>HoL4aHQ3>Y7qJ2vY?+Nbmrv7!R zam5F^Nb38KAJtu4a-$FLkW1&K)>QQ4i;JFEfuZX@= ztqC+@#opGZy~kd{Ic>4Cw|^e#ZNnR)VC3=E#8bj^-;E{z{(#&@AKtD}^-wW1e4?+f zpIeB({6j(#fiycLC3D|_yL~A85G3e*EBeV3!1v?V`a--rcb3*|-E!lu!2HZ&w$!&Y z9#>FM2)eT}?sc2>@t{4j@87=E)xP^j zB7j>yJF|8K83I8nImYO(E7_!LY$mR*mX3LIeYIJ6q};a*i!j|w^-E^p=k3k)lWV2P zqME)=RvDC@p0KI4tvG=vOFt?nC#RKV9i>1Ot>=Es(MHe{L2j?ruR}Yv(vAYyD*KvB zuG;hVO$Hg+ZRub7d-RU%=j3PfOs0blN0(VHS>n;S{P@<{o%U`MeYB3t&Vs6eJnHt1 zr&he#HNkS|d@=TG=|iExH>+hvTy1WMv2|8?v#|}Ct-yfx$r@`)Xa}?9XT8g;Xsa9> z?6CWOF=N#AwqMY&s1^`(M1I$HdPZ zjaM`=9nT?VnFw(CD=Xf_>~Y**-+1KBRP;T!+LWm~3=T&58a2yY0;jHfy6pdYcm6cF zbzNtU{#JS{fP*1(#n%M22ur#+ok0wXvRK%;HEP|q{FhBdM~fL}WP;1q{S~YHQt!@c z1zyY2J$Ez~eY-ge2lQ_Y^E3?`PtFJimo2*N6pmLdA``Cv#l2IsNoDT+P#=}Q>RXN$ zub#W&`F>j}-6XTzX!wlcpp;a@677Pxh(AArZwt-J4bSAwsIv;hORk*3U+XQ~W@U-p zm*$}8bzUL&omi*YZ;da=w4IeJHVV`18)qeppMF>8KKr4cnQQ(A&Kh|W2j0-``LoUH zAx&QM*w!*9d~~XNbIg8PiEr+e?(^Kw_*$ zi85?-^NF08l~Q(SbO|Xq&W`V8hCB<`?2UWg8>S!Cp9NU@l2=JHkD|0Ev|(0``6)K1 zyU>!H=DsU3yy)*~s8Jczoc&~hr2|#lQ?+%^1oMf}SrJDm=|Xs5@vXRWyT^Y|F;{H6 zrn=^|Z-o^P7fDAD-bs4Tuaj*& zKJ=TDHQ%!SK)P|+f%^J-uRC|Dan=HYgHOwqktx}+{QDi1!M;{eoh+y_JH*6JadUHj z%d&|kK^N(5h@@kAOK-eJ@@G(i0AJt7dCtS_5L7-t6fzqaubY11yKN~hqXe$hWc=#N z5+*69w8OVHhJ)mpwUtK!@;`y+xv=Kjb*O`bpE&5b;v~k0s3U`Dn_0=vfNx(eZu-Ie zI4;48Zm`;;zrR1-plH>JpgjeG8<0**yN($He5Gk^-_qkrB73p!g${Cz&-HJvr@Ku$ z0RR%dbTl?KaSI60`o$$APWvK4HQ9=nw3+jV{U;h<{go+lJ@an&q_e}8rdvT9C)7nr z;6^Iub@OH~)18|)%Rrl5LIuygTSI;TEDJolk!Qz_PXI5?U#fWkYvbk*L9&G^Dk=JVTp;%m7OE9G43W}8UHaspu$8umsXRG;(%SmjOmz9x&_E_k_Q(+p_0|Gw@sMLc z-ntjA=TpBzhv9{z)x8)BB5Of#0K!E*eQF1U(*J-V!rO zXa$G^(zGDqiw`|lZhmqy;;@`ANkX7zkd%@T{R0QQ_`gDN!2e_mLH+97m1G!jZEA1gLKLN?NhbYl2;6%wU~c;_egBV3L$5;j>>y0tI?X5wB;P6vf8 z?wbvD;)U2-2th(_6PLoe&!0PYDR0%vm1-5j{3FwbG=IpEbioQD2>H;cTNE#}^$?~Eg}Oo_6Tp#;tXu+j>}qS%)`HXKb? z=Wb_Uvy6OZ$CBWKPb06Slma(VKgXz;#0_Lms&yL0GZ1gO|a@r(Y70>JYEZS( z0PCFFx0@mdk3%kYuK~zem0_V*6|bR)9QZjoFUWJ^Ai4#xN#bIc*QrJM_~|W=CaL^D zYZ=pS{c9X1KxwTE^APm}&2WfqjACvDUJPSXOWoY z9~PF(B4KY_?9UyVa`*03<`fFg7>7b(m z_;O!gpJZ}sYAUCkLbQrPbSiUqYhR|pvTK@aM*c}ScigP9PB~L-vw{A7z`l2z1b2@l zT8cyaLek2xetm-w>-zN(kl9BiTYBo>jI~DG*=yUXl&F`lyL2@x5v&jZ5UzgpQ~w>V zn?#fq{u^AsaIyQw{yuK~sc5fG`8CVL{QUe>nhhq!)o6TxFsOuWQGvR?Rigm_jM(n9w|$A3;%B3!N>j7x=?C!A|IkrRjkSp^>{UCt-1~P%j@=SOq{kh^@4D4 zby_Y~lUqhw&&;mEbYJzfs-A2 z)5;hS?J)th%hQ<-RVDEYbJ~OWsXnYyanCP)Z}*Yt`jlzaVB22FEmxlF*gt>;dN`KQ z*m!Q|>F39jUyQ{Kb=Ag0q&(U}3mfiyCV~P+a_Kf!Xqc{$Ye*=BOzv(1edD2&^K%Fc zMnl463##r4#*uoZCmIwQCvx`nV&vO$&O@DL0`8;ow2=^pAF*W-M}o%^_Fw&@4Jz+L z2)TO%1*@P-Kt+3%diHIKK@t5r>)7YsU_wOnxVfIIJ-Z``r~-R&J*laY215%%jQ1_+ zmn@1E-=GlY(s%Q@d9BttQ*9gtvh)vEotYTvWs-5rr46Ip<#h|utrdkFA=jDmT|h}! z*9@s_EXF8Xtg}=#H8syo)J;!iJbwJRm~#htkXOk(cGTmH3dnRTUVAK;O5VA_8%q%F z?@wQA|NUaqrp@@!!FIKQE)M6fr%X zKOKK#BLS?%TR}n99yOfHwj^8+)tofLQYJ|DM_N9HRJ^;lO$f&X#Tku5x5y~2+$}Y| zXKSS)^=8+(6wL|dvL-<_Q79ql7rrXHkAJTthl&)B9{(b7ZA~MydOXMbU2ZPRl7ucT z=Tb2vo6_3GhL>jpxtiJyfPc6@TVn_HxW%g7<~5?Es8WR?W`XSMbh<;C{QoU}h z#h3QoeKwi7|IkwhvS!G+$3`0N3|8k)sTqBwmIVnK4M2@*BPG0TcO;e9?k2OfOnK-N z+w$o4=Y?(9mu25A@)I{(er5xHz7H*k-*YzLjIX)^13O-N= zylz#;Ys{rgxnB+@`d*n9Q+TpG8sLg5><$r;YC-$@*Go#NVk$_-o0yn!iOW9?lR-Kv zR0dJHAvG=35tSgN`Eii-KYRA)@< z&vO+^Tu)Dr_3AbF?7p5pgv(kwE;&NyQNJmXm|gB$MjClr!s3jaZdU+iA%S_ZH}I+_ ze8PdB+vREp)!IaX3%V}7ve;A4-i@SJ>&8dP2i})gBEyLLgT@ry{@IGKGi`0{d%ei) z+mWC&t)s_JFUP&o)sax>?d|>c?7aNFUSLNIWT(G>s3R)2d?kY8d9vG_28^X9dftE? zXOA`qbIJj_9_}^qWp!-4H~$#VJak=rRCMnuRtf5ek}}O0Darv6cw}VseCd%h6|uQ% zgL!igQ)Uj6Ku#4;ER%H6d;JvSAGwZD#~%{h>glmWC_cXGdIbBgna%nZS+QvbOV(-B zB+N7G|B#iHZTl2{&^qhN_-1mUM-yU_X4ES=x;t#@iBh;z^XW^o3n1C1<&ifD=O$|a zirK`vg*^7pCPyC?yEf6hfpYmcot)<_gCOVw#k|R_n7s<4FxMwoEED7)4C^>%KHuo( zqw>_^h;Flx0;GMVXoV2THhq)3{^wafB3?>r*rR; zdtZ)w7XRbC426*l`d9-u^-6BTp_#P*(d#b>8|12tHD(meT_vwjp2D9ULC!YIxKw6T zl$RpH*GGa#sp+q!tUHqLkkwRLq8jk~T}h%PVL^kCo9nkL?nR zUe)GUC)E1LBR5%Rxw!qV$x3CPp|5MMK@B+ObH?qyO3?CX9~KEy(2ar@dRijH6ti!z zp-WUwS$B=anv>11+fs^HRbXrIcAb7`mQ;oyDZqQ9z?(51Y!Wm{g>Xbrq&*?S&A}GM z*upTjN(}STsL@)sR8-W%Pn%~&eHk{Zj0xAxa|&8@23puLsKj9Ud*VxGh*ZZQxj*qx1SGtuhuf%7H4K)w)pt0 z_8YXE%ez3iaY2U0*vs$#DF(>;$iPwI!z}iA!J2AW_j4RPc#zbSP_wD*V7~rl z>-9G$8&eVW|EmKproYl(zcLe8 zL>@Yy*9ZM02@S4dm$NRPO?2!2n}+ZY`4br{xsVc_{j5@~{6&g|3u>&k^sFe#@V6Q} zrvv}b2Z6hD3WVmW;rVCoDNQZ>J29S@K0XZjwTNyyY$;tbClGj8J5V{eWsb64k)K8J z178yZi+#@2&a0jt&n6=+i&vM=3k9k>%x=hjzWdYd{`$FOz9lq?F+rkZR_l(j6z;gg z61`CPI(ZmMSZBEU-($1qHJeqU4|N%d%_|*m@;I~nW`&%~7NI`t=OcyU-&y_Uxs<;k zYU$5svx>5d{%n-l;cY@Z`^&rm(<2dd6|$o=)T^}`KDDo$<@R)A<>;1ffI{zPVT#2l(hpcM0VV$pXA=_cdj}tA6kE<|cBYZYu3Dl^{~gea2Q~o{!Q;jX1l;QTC;vTxcl=A^ za$4G6_v@Fp9QY^bnXGa(x_7RstfB5$>B4PBurL+7BtY$e*DL<%Q>ERzck4FbFVvm% zf}|TDNoXMVs)|-*3+q;#FQk3_`Zcu875RH0n~Rv$|0=Yew;QW4aO!TAu8L*kZOgg* zZqx9Ev}Zlzs(HM-9lEshKthXAxzyBrKr>)ob)9+Dk$YCbrOm@^m5NKWB$r+Im#DD4 z#%;F@oi<~1=aK^-A7s72u>TXDIYTAfr(8;rr@K#&*AYXQ+PMci-j1HX0*L||w8ubclVyOO#;HlG=+Rz$->TFohU@7_Jw{|3Ihl40x!-S#f5 zp>g=N$)`vAaU1_9ieX6~J{*V1KzFn7g`Nu=txyc~xTbA-Yv-wFhah2O!#SEK&Be(n zD`@y3=EEnlt^MznPBKR?q>C;QhTwXeP3A|7^QKLkbd&Eeiz)XmARn12(u~fYElS;$ zyubP0*Q+kK=Rv^8!C}5AH4kK7s8h|KzU;Jk*4bk`Q`^ZFRiiC?{bc^jEl-I?y)|pj zSG(hMOhJFk8SUnIVwsh(Eim$o%OCu6h-0)eFyi@_6HIQ6V1eY{zzF{tAXCdY@B;0V5ri~$Hw46{peVf zT&Jv|Tb1ai(2o*(CI?cT6Qq_v#_V12INhxJ{#X!j{h@?I5)5~-xbfsK#(X8h(OpLS z=w1Yu41bj9ZY|twp$hs<+`%15ISRx)4fkbt_a}@YP6{EYbn8#Wj2dfiQVt)qgXLA; zm+%~rbQ6fn=cjTZMzm+OgjT>56PuhrrL|eayz;?r16!nvblF$EB{u6O;h>x1h-TM& zZXS5Gl&!TyAit9MOW?|C9jw+HmOqZWWxh>~*Ii>z{o<2L?|HWMO6t?s(seKpA8-pl z(7)WP^VtUT)Q3(!{%`7)E?h{U4HN%$E$qKf^qnyiLNGJc!Z;I}f{{70G+1Zt1$L2y zR@`kO69UITaNWdV08RjhYi|J~5&XdApWL{yjHo>22u4_4?l%4CPS_&IK+`Vu>cgbq z3Wo=|0@C`mQSeG24?uAI^jOxr5`i-;#T>;!QdfhdCImT;c8L@lf%u9kEiZm3N|+NT z2yrOfy0t>C{IQhQToH%&UcncG}oP{mrEn z@&b90z%(I?AKJu^1SWg2eS8&IlG+lRqMNT{=^3dWrc#p!^R>r2PTll+I^KPR9$D=j z>9M0gX5t8UWfeSMOiy%Bn$$3rn2pzSDHx-i2h(WQy7lV=?%sVwlO8`#oR`F-2oy}z z&MNQU1VzKk$A`F0BfXd09M46rb0|DK+^Ib_+O}k8Mk_H$ciKDO6NN?`_3qu#+bj~F zji~9SReS8ZiR4Pu)r()B$@&r{cV=;}Gsu?{5tK@0CZ;6cNW|J!%*v{q)RV#70?ASlABhrW$fn zyCN2cOX3=k)T*#X0~7r;UT$tV-^w%-72=%sO>-JFg__w8VM7JhV-7iZPIF0t&#}Lm zIHY}5VVK&f_o7B+O&*-w)>+zGFI=*s8-}2U#Nateh|PDK^m^;`^W_5Az7Gip|9;jz z9F6ky6QfYa!v1WWMAEP@)fbp={N?G{(D9tfq3;X~3{knclBJ0s0@nBc=lVvBRquYb5Do%))y!YjVK}EmG8YWFG zJ-5*);-AO5UJ`zgIXyL=?lNi(YoP{667f*d`jIHclhaU8mUvnO;rVx6ew~VF`o-^` z5-aqT#?S2|A$+8YRI9$8(hINU<6uvCtdm1E~BTS+G zwkg{J{QM$Nwsr~$L~W)cIsb*W0fdQV>h|IaYJmm%v7g$kv4NM^$Fp~a%hGYBLe&X3 zOUimeWzX4xGbB=Dd6fuPL_u?ExGl2x!k1kqLd4Zz8ECS;9maSG>ahxvZ)~PG_M#0U z=bvJIzU4ZmQWcDD>O|kYdzW4IenlIf&~`bZHz9kE^5atE*}3xsu0T|4$=&kh(Do`H z?O&AK4=$9_3y4wWdR1dZcSC1zgMe-V?W zCg}!WAJJBcOaYc|0yTyRMK31$N{;zRW>O^_6mlH8hv@$#;f`Pw@PfhlBM>IBCDd7g zv=I;+H44ziHJMh#eHd-&3QHkrcE}t0W=6Upq$dYd@^C>wi7|?d$d4lh@+Xu@48UnU z4X?xp!4tH=@PpUmNOwkqkHo-xuCP|P4o{+4$Za^Mu8ou_Xg1llZI2-bw%t3zS{5ni zmv-?xiIS?A?`#Za0IJwAU-K8EhOTgPJHdl#i{l4j`ay9B>V3wjDZ-*q0SQ#90Xy1h zpzMec{91Wq?eS!kL{*ZRY*P$1!yZ+2=<Cqt-rBWmiCjJi=WmDSX7f*E8PG5jIF?F8a9FNw ztJE~wl5)C;X>hM~<58d(kGOdD7X*pmXw+ak*rrFW1J3O*J3R2!RO>i|81;KWmWRRP z1jMg$(zStDWjfMRe|}1O6=X3z_sMipwuKSF5hi>;MN^FJp`eiuc3~7$I$3O?eo6V| z;3L_orv#)-xxUbGd7u0d-+tm9jizzv&^6NRwUSx%lVB*89x7Wa9MQbiAJsH;qCoP= z@eWNvi78PhM;&D|Zflo+RAd?0*piVfF^+Odiil{y06KhpbHWP5{?4zd=s?;t_+k6v z{F)kV7BTBXWdDB@iLQu6CN}u{dq$1@nnP8GXPt)7px*3SAr$7;yLNAwWci7d^rQ=d zsk{LwkRmH+MZnq7E7Qs;W3kF=Y`_HPdqdE3Qqy(Z@QHTb&~QvrT2Qc}rT5=Fk+048 z5T{{TAtpmKZj{y(Gf2P_9;Lf_ihv%xl*Wk2FzW2GOBxT-*mr713nM<$;y4q3wGG~B zD9|vpwP;DehVr3EeN<=g$?>4am=>BDq;9=@w*q@A{M&7!;jhVJ0$xCfA{(yJ9sK*b z;w|c4z7Oi`?A*iFQT>{zbkDRBXS|d&cqs`Fve7p%IKk3wDe7Xr^kV8)uZc&HoRAK{ zhi_eQ`f6Z6iJg^s^mulR^nn8hP;+x>);HmAVOF((b#|^iJZqy#&X4^*W1}fElQ8?I zi3S(5El zlQqCrVcFG!&fn~1V3pC16r7%w)vX|GssG!&jb(K^O#%A;AG)jfRp z@Vyl0uB;<4-701kolVyw9aqUMYt#ljS0ZL1O)M@gJ%3w8=;qB|Ye#JiCN{c)Hi&mmKx(jw7S(x#5EK}l(BU#da z_FYz)-}W01kAQrD5&%1{3r2O`$SAe&&nWhPsLd}E_7!h(IPo)S?J?!wbkR8c$9$p6 zOft_D()U>sKQ`(cZw>ekpDK>$c?-Io)BQq4RaJGLqzE^xZ8&y>{SqVgzZ<`Z!FQu) zIIc;o*>rz$J2I%GcZhmiyB2fyjpx*=h#P24%;#ElW$8cdVunkOef0lqVm+@F{!hc{ zdm2;=IGo_So?xN7LiyKknSE5vDcy>>puGIscR8yH{+FIr)mQ)b0Kd>9h4@h4kc3=|eT%?MgM8{_U{mzMt|CyUPDIokIG;Kk16ll?5UX7%L9?{armT~(~ zkswAq%tV?^ivkikg_}2TiaYj2(i&ijh$H$MT97c*K#VEouSHASkxnHvzN;57wAl`q z-_@n7KZDzV<_UvR!~QS6%BsHXvX6EJ3u42!f6quJ zGCZ0CPm{jGXXi`6oUR`8VV=?#Hd03mE%ZIYF`S3Hs>tn7j%-CYr7P!=RqkRi%@Ow| zDnWs5BbcwlljFnHX!nVPm9eA#I@@Pt6$5xxw~XArDP|W`LtzZC#ZgC7)3`EOukHZ? z4y^(H9bLGUr*sWK$##=&Q&nT?GG;@Y<`z0Sx?AYsY(P6|V$7PgXZX2{$XiJ|IZTiU zMSOjIZ%K4zMy#8C9<;CQMkQ7s9V!~?H7Yd zKX+siki)_hu-=JlvbJt+0aCyQI_Rx8@%ZuULzJuh-)1bH2e4S?>wA_i^I;0 zvWQmJEl^dPtqg_F*!m6h_0!N%6V`HWE{vtV{&nbQCY3sxMJmhi1_|^9u8ww(1&@fL2;5phSl9JGlTTS+7Z67Z94S%2mAn>Um6K@h$6G0ZEGVMJh$4>w~ld zfm^GFOcW4K580tQk=l z+PXho<~>jpdj(#b|1>Qj9>zADOxITUm{}SoqldCg71*VN4%+P)Hf>*c<11C{U+PW# zfgIe3@!0ViIHJ75#v@ft6H@CL8M%T>x1$eolNp#kbjN_OFd_tn?|zeytp_gl1PEt> zWZ5?o`=K3n4kkgvTjUAuu9>Q1{oysvA}TH}ekS|GI+kcUgN*N0=un0@>RgDd9#$u$ ze?R-FuvR2DaB}b5nfPUP&_~M!X_66KVJ^y0FG*3IXPfHcWvOBnFe4Dr;#;0`MoR|{ z^Khp=JsX=|Q2m?L{4L!|7|e$B;+ zk49O()a9tCo+qGIZz*~!fLDWwaKPP$A2yO^*~6%^BkJu&HfGS*_&&5D18uC=JUy9^ z>WILJV1^c|jcD0GpR>S(-SU`oI9q5m@~kx%Aw;kNPKwZEM1--94NC7nG=HF_#On?k z2pb`O8y=FC-Gm4%GSppXG4b2NT@Yu(ND@t%Q`t*Y_oRyX`TFXU&!G2s+K3sQqeoAi z5P}23w8ptRk9_7CF3f}kXAdCy{Lwud_%zR;zr94%X&{D-8LgEDB;RgW%_e=}(4j*c z????jNO9=aHGod#S!F6DeBsN_lV*wYFj6__QQ&Pejz=9wS#K8Q3Z`+B(``A~KH*|Ry-oi;)5p)z<**a)UA zQ`@%k0!vZm!{FPuqQl(2?bxv+rZJ{o(a^fE%@(`l!!Ghj*E~EnA+#34H+Xv*OeTO$ zbV47>k+i#vRf`-v$z^cBv$x=E|G)@lE~cUD7**cDf4g8;YY-9B_sPw>X8$k0n*kd3 z|3q36{AYi)!?L4Ly5UF`NBdZmt^-<~(46*}!L<;W1+JI|xYxhaTRpje!cQ7B9+jWs zyT2~q@WX@p?llW2J?q-LaiuC6JZ+Nhx~K~g0UqG*TnJh_h+engshWuim#@EvtZ%NR zTn>8-eK^JzlsYsSdI=l?mu|}*KJ4UEn__SsOg$2696I=_;$Mbb{ji^k-x`^LPK-5c( z6xia3je}T};Ce*{QH|2~vD_A5WIVJ5Iy6(0kOjYi_WO)A6s7k>ieGRMb~nOZ$;0ph zDppJOT&^A`mQPZb0x(slK4}eg?kYok90W2NL$e?$B57a+*z5WdLmRngnCnmwk!$d| z62nwSX+bWoBREvmkWP{i2HLO_NY*OVEr1>)sBsC+w6J8-KuL;gumC2ZBY7nEI&qF5 z2Q0t5U=bF_917Mk4AlWb}2&%*LD6aM1C28 zFX=fWT@9o?`Az*@4g!{>@sL=?NW&-@49R(cJ95e(*||w=w&Lli(V;4@>PrMd2o)v$ zFbMV!!k5+oUs^hc2@FeU5RV|$98dwqtm~Ze_hX=jk@@44L+{ilC|%*0>wxdWe^QiE zNL^y#H@j+`mQfoh@f@W2Gc*Oq%h79l+poR3fbTZ)`zElLr1XeJfsBPZ+34*W^XDM`_W;@~_O~dIA8-9wv(W6;l#)nMiL){`cNJ%YX zaax!{c&a9!FMrZ*>v$-3)xAV?!bph4(&fH$aPKBTLu1$;iCtM5eY-gFtzZ$AaMzt` zeAv~&VojS&t>zXa)9)5)~lk8Pm=LP^}P&;whE)e$N|vCHiuR_EhHMaFSUgR26+ZRHd+ zpU>C+T<^j?DT$3y{`620m1`p+nmiU9B`Uj~c#nGdbfCFNNQ$WnyNI#>#e9?q? zO9h2ZWTG>EHuS~tqPYW)TZTv*1%7;gl!eE@*q;m3I|!{w8zB{ zp!i^n9^SEvu&J5u3kYhm_RAJi7V~?*io8e=YRB5yO8CG2mYM$#B*W+bPrsxFUoV(m YGei-uPSEv}^_0lUG!rC9ur+335 zlhP-x8jEj@e}MU7=XhqRi@Us?`&-i7aZPc}yu*A~k{7Y@`p#I-NiL&YjD+O*&jm*n zVHExOk6zPkND%VVe(|+F$@$M!v{<%({>bpiN$UI!W|)e_=dTJ1^Y0)#e^oRIcg;Vq z;zeiH`sZ_{|M{@XPnY_ca@ASAw^}LWU)_^5BSv08zW&C(AwWLoo~&$8|66TpadC0{ zE8G%G-0W#7b#bn5_-zvUualCDV9MlR(9vg>a~OQO?Ca|*J@KuUOSqEvCC$8$3)d+PrQo6$5Foc1DsBzsY6!|vNHqEN!O9~1ZD}d7 zhlhv5)2I9^D>1(16&0#^YB{`-R-=_1r+-TPl5WCn95V3WKi<7{ocZeD=onB^!Zq%( zaBX&eepys2N6mP;C0P5D%T3*n)>sr26t=%Vk)bwQDU9gY+41?U2mIf>q5AdF=GD&v zEefxbloaZ^yUq!ZKEE(^^k+pSPyO{BpHJOoLnTIS&OKt-TwGk$)zujq z1)2w2ZL|c3l}qjio7XM6UI$2rQ+{r3#exNMKRekEt>0*VMZ`c)kIrv1_yWF(QouH7 zADNpJZ#JRc$W`s9Yir4;Rwks^yh>?c3G;-TszqP%8j0(fYg* z#aT139Vvb)p`t>pZ(z_@Zmv*hP+K`%M!~7y6hy+HQt$b+y0$jUv@PP`WPc*`+WzEc z48`<2*B-nP2rMXI^Y-@Uc3D*U3x8{kFsO4co1b7661uXrwI%IgBq=%H6b;dNzEk+u zgfDk@cVFSRzT9xKr`OWf#sDu=Qc}9YYj$z4*dTPH;g}F!ki1Z2)JRiPQ{%pz_Z}70 z_a2tlc%s3_eJYTmH&Y5PMaU7|$oG(`J54O~&&tqB-Fn0|ky58QdBqeV5@Z3>(`iwY z1tkq%GVVU-_T06cotram4I#V2V}dF00 z3ywP0)~v#=tGRNE)<5$DIrJ(Y{XN)fZ*Ol}DQUFZ+~0&nY>Q!1;PyUns5_j0BjmnG zXVIM!oSn^Bs8>aZib_a$IbQFTrCFrwzEQug^3hsD|C5Ux%iEyf;Lo|LS-k~XT;6*l zk5T^cj@5}q+F0fXp0?DDf4A{?Z{6DJWGk8c{2cpWxuB%C;;}MvpN58pDF4ROBfM1M zr}ut;db&04weeOhM_#+eiHV+pq0HhtCH_@j$%PcI#=pGCHAmh#x;Qd25*a=Pw^{vk zMYHS#!Y?o@Ymeb`jq?IA8Cl@japPI@aGB}W4`p%VmLQVhPfyv>ytn00(-WK!?E4!N zZ8jzKFDd!0A9chqUE#AN)+{kB3jUapfx@_e-?XEQc)3KDNQsO z0@}*ZZKT{Be%AsA`eM9%;7G+|)5YGm)eckWDJdy5$EQI-msv(2aEI+#Ju(fRz;jGw{56u6>+s+}w#x2z|LwiJ_h~VrVq&57<5`q^mUMqMCK?CYE?v3=uiohq zFR3^ysv3_$$%?qHM#0s>hqItXP0!3Ihz(`S#WE5R5iLzMzcT;2n+q9D9>pjqD7XZP zBKZWHh$aptYhSnZ(!!|3us+-0AGHL#o9q)97^tSL{dyoS9) z?L2X=p`oEas7EvIV!$fE=6-M3-F4|`Ym@Pu4rbvyHuO7risRqiqi$jGZlKioen(G_ zGV6^S$c6d--IBra=W|;hGjSv%Ctq&S%918n>P{6&Zu2`{t0MJl2o7Q=`-TqxKhU3} zFf}(9NF(NnBA)Y9RaMn4Gr_{eg^~*ECiy*?pXA!LB9HOkwQeMrEP)M=qgCofni+ht>y+sB|lBb=aBV-cyI|~J$7Znbb5j7ub-5TNq<+aND-Yeam$DtNyNcrW*fvW&v2QqJMp?=a z=W7<>qJ}?MUE1E+Q4rPonXeI@ni~H4^=sT#(yLd4KRsQsZdmVqi*fJXJwBfC8fR?S zpr-a{hUlcEyhFpW1|KT;cpSCkDV&`t0OUx2Qnu#JWDGc4wczAeP?IKV0hVmZD zJdW#XZpJYE8uqy_OC~xd23^A2Uc_b5A6CvLqCmff*U)_m3r;c4d!#8tK7Ydrdg;R082bM-5Q#Fa{c=C*S8)M zR@zTQKomFk^^r8cBxo)-{}%P;4Ib1R$hqWDxr94@!YPf4i+cfeDE`3H%F0UENYHk; zv}FcKUCMV3F@uAHg`E>Zd}SNF4|%DnsY6m{`Z!+++K;!?d+nFHZ<(+g)>Z2}E-6IJ z^$qRq?McJZIUa7Cqv(^U1#GX}IXy7-KAcNj9IqFF46?QRL%A6$k-sdtRfk#*M{#Tk%ny<;j}CpXdRVAmLyB@Z{p%qc^CIuzdz0mXJf<`T4vq&b zciGk^@(QnfX>O+V(x3Sn9?EnF>H`+te3XZm*Ua|ZHzrOZBzL2xy(T_AwLz+d6OEyqh)UcmlyJtZX1U9lzbPV zkhTg=cw^Ag(hA+aJ@r1__Y3U6u5Tn9NtD0e$%@ex5m(#bHpmjv8#@WJeUfjp+q6my z!!fW4AHiJ>S3aRi^IE^%m2?Xmn~+)p>W6Br>k~$1W|Ps%C&T6Dc$Kyz&)`VoAn^o+ z0zX3a)VJ=>pdO&H8(XhsVq0QPQww#hvK(R*YeUT6NsHR@pLeY#78O>YJo6;lO%C-uH7xjzatGWLw0wE%*=<$mv(aJo%7lUP$+&K~1i%h6P|?n@lzZ z++b&K0T2>~6z+%bm3&r@Oc%OS*(x_yM=FvnuAiQsqEIX>EU`Y~oeDHkY)2JNd#gIA z-WDXkrQCLYH|(sOey7NTnpoTmvZbW2@0~Yl#L?epQV_@x8yoxlqs@>>lRw&(JKpYP zqb{KqcI4pCkkQuW)cw>L3DlL_PKnN%-kqRwNdj7Kb@?$J8@o6Fue z26rdy=32K6a;j@MxVY%32Zu9&q@L2aIXLu&6^i{DtY=&qDj7<;^>nfKI<=@fvCr`y z7HXi_fC_SEo7;rXtJ&FElODmZ`&o5%W7Th$vM&Y=o+5Sr*|TSpYik6MWQeW_zo@Pj z`tAtjTD#7j=kMRYd^^&tt{a{2P*$=#(N2y&== zGWrtAc;Z#9v(pnEw{?B^J+`v=315GIf2qUNJwCg!D{YaqL)1gX1|s-W0{A=g-8CWOc|{3Y_lH&xt^CLLf!*@?2~ z7Ut3ZMr4_3o5|L6Yqi@34W#dv_g@hj1HgbIJiv#iQ*MUSa5zr|Xa+N!lK-BC1#`pM zsh7LEyCvxdB<`TF-R(&eQ!OzR({J#;3O6jHqM}l^;U-5ZXcq=wIg^uUc+bv`bN>6A zS8z5aQ{Bec9jPS4M;@i=a~et*0fvRPl1z0o-V0HTq= zuJa5^zX_C02M6LI`?j#F&jFrd#j+@WeS7~^Z;k?m+2hAEJ>qBQX9XYt)oxl)5PQh8 zRNUa8TujI6c;x-I+%&ffsmC46dzMkQo?86c{$Z}0S5=C zAK-2_a3TfdQrCWc%t6DrAp44lc96Ql^N)3&+r~KZTc*d4ALsd=9Q6ZYyaD%}cr|Ox z;xE9iL}0=UkiX@Tw*#8UhD=8$atcQ~;cM7c1}G{D@Re$Sh|fQ`K&xbsnxV>stKg}( z9H1yF5!b@*{SSU;r~MG?*-$zyPm8pQbTv#0foLTHwqULK^hy4juuByDO?|cccz;6y zNvrb{O{1fFly|(VclRg!D2{2wa3eo#u+W#AvC2)q79}A`GBh!vPjjEf`McqF*1Xu4 z6;Ie^%W3fG1+2m}TzDHoHC==v=N1-TK@vCp@$SJnr+zB50K`3vlZEB|aD&Ir{O8Y~ z(IB&H&>^J!$9cx%{RDt{1|ST4DmL}CYy3sujDYi)Jedd%3bMsQSU&Hk(o*i0mX=4b z2<@Gn_fC%f@c10kApdbEV`%XzFn zQbt5XNb5Wc{ztjcsVgjGM@}n5+%?=0IyX1BgM))6NSYZt|4JI6nkp*(AS8VL{rei6 z3f|6(7$kJ$7rVcGYySR55Gj6qR{gVOcvy*n|9<9&zkj^}!$1m!3j1Kmq5W%hP0i5>bNMatMZ?Tixl=%7xVD@?Y%&&X-X-Atj}7 z1aADR46V02&Lg*Gmtm$(4MI*4Hj)41G&FJ!HDOYE z`b;%B(x}v;uA(}dD_&k+Hg;)gX&^=_5jFO=qXr zg+@f8XQC<*Y?g5I^R8!iRLmyZ3d_s=<>SMgi}%O9h>X0qupn8h0=U+%_auWjZw9o6 z3qTp@1lJWI2fFT*+s`4tBzmTScyXoTanDz%5)n|@O?MajssS43Yn2qcDau4pe}*Fk zr^H24O6oc&PUlQ{AUEJ~x(_)dq^}6qHS#+lGd4CxirC)zZ#;>xL8w8v$cIK~yHO4_laL@pR1t$>X5Q5E?OUfwXj-QatctCyOv+PBokmB!#KNtov zZngF+=l6JRA`PYXy8LJ`CcMw`XQ{cDH?BCJ@Tu43@5BJgWvUOaHlViOp?o z*t9;oB%}s}{G%+fG zMQ!k^Qqwj<6n)vsK;9*UP*IC{BGQ(2m0haN#Pb+!a#_h|q7&A;mXDUy=r{<3+z2gy zsgG1cCR~*SoukxsO&6b9h!_qVz-IoDivy6SqF=wxt>}T9LKyI~=g)aezv3ey%gITI zN6y}a@RoBv%&A}PUu;mD3CU}?&f^xq`@TY*TL=gpt+JQd7_Ubt3G$yn2_@lH6t`*E zNo0zHWTRpW#_IzJueAs$U_iO(vH;N`SF?!n%a7(kobIgv)0Le)k=!)mwYA`v6?xVg;DeVUD+i+=E zAdCPDz=o51A8O#%)GJyOII@eQRV8xc&zaQZ_6DfRQh0fJCzqCjLE`|RcjFpi^wRHo zyn)>7ohbV;)O-)NMK|Wx2rS=Ioux&Pyt~ERH&GN^hLS*?r z4l%!=#s38N-~eUtDd+^rk@WPef{>-NIdE17AB?>U40e^J;0%gpNB-i;4u4S>t=Zni zoRz}A?TP5->YO1gT6h$kh<*qK00FlEQR6-S=4%x60>K1!MGu+njiCLYhbS8x-X#_# zNjS2I{F=a_X9D;B&Kpm1kb?n3R+f0w$qB2JFA8>CRyl-OtFN!`wWtU0y9aMxzIcHN z=>e`GbAT+z)YO#6df-MFtvHQLB#o4r86$9V$L(3U?>q>8ghR2_cy>Z0Cnx6)G8T{H zv?OQ&pY`oS+dr*N5M3rmKRuPG_xyG8PsQEMv~=PJIIsAc8x6?Ok1+0<+S-{mT0i!! z1CWhz0V;eRwQmeZwh9mgvbE&w+8MW*AuR&HlGH5C*Z%C>de z(a}-34Fdw}MfVnDS12SHz|RQfVi4UZMa+vFvMMKkLej0rUw-^}=)Cji5C7(G5}jz7 z1-*{C`hc(DQWT$MG_6^XwVJ-HPz=IE;In7w?j9aXtNYvA_aH$9_rTJ4tZpH60FFMw z4unKRvY_s1S36w)1n10}{oy;syPlq(=3W0RYha8gMH|%64_@u;P!%REmx3%l)ogOy zH;enoiVnFS8tQn$reP#~AeT!a+)JuS)6+8XYsUw6ix5a8TQ(CNqvJ2dw$wW#NAbyCi9f zJZF6_U6r!>&TbY?8C;`vc-Ul`ActV1A`k*HVX>L+AQB7okf_Cd^*46DwzbU!QW$dc ziC+8hUiqA-opf|`ActSoXhl{0?C&jr;MV;^+$>VHSRfx?o$xyoLx>dU;&r?I3hmw9 zU#lHwP$)!4iM#obuT43b4+nU0E64^8N4r)?0|F`Dpb4O%0C6sY2089~{ABglM?A<7 zEr4gj5E6F(CBEvc80GnDVfX)t4-d5cc5*zufP2GdRz7FC4)A9t?iF!gQ4DOmBll431Jdw%+Tt4dc>!2dND(hrT z{Te4MxX0v~<}Y7LZAW-Pg}VZWNW0#XA9f-VPO?pe4#=!XW`~}{2ip-+ghd0Y2|-x; zt>fccxJE`9a+k^o`_jbZW$srpaw>(%{w%=ev(-LwL=Jd+zw9~8dl1t}Htmmwp#oCQ zUtmkZ#}(z}rBH5>G*V?h@f9$JN|l`f05}ASeM{ux+Nq07z)BNwBSh3B=-Pl@8w^^i zNsq_=Z?`^>_TaV66BD#hj-((8P&`h%(6O3z7Z zB}0U$P_T6fFeNFQKg!<+jXnK>Vl}ZFf6%*AFXcc)vR)$?3CY|kQqS*?Tp80DYx{~$M2j8~ za`p>i*2@jxW=%P7NoqWndj9TkGcYY4i>@okLLN*$C(1ZluwR2~0CB+|nwQrh(IW?^ zcB26g?%*#R)AN>5t}27eV((O0iK@1C5YYTD-@f4?8Wtp)?!W9h08=)B4Q45&3Jbxi zF)P0I2ON%Q5_i?rFCz^Th?;4LQcRS)rzg3HjH{~voF`&R$`IfQ**Q5=NUI5=`zdLA zs)*YcfCVCM>n#9pNuYz1kwFJ3eyVKaefB;JizWzFUjcC;{UbV7R{2<#Fd8vRM07#g zY=DbEpZo&c2DOR2fQyUBYj5>#j(ofWWHWVvtsVk#CY|SLVgXX2LK`7rD~@o?pZtPD zB_VymVf9LHaq5yOv?j~Zdc^jr@0|U0hE^HX@3W+dzexWGl6vwVjS0^cj_+GgVptJr z3E*l1Tg?&Nzatz~+tEq_NStUW0C#6M1(cVYiNptNj}H&0pt15Lgp6&oTV$gNgid(d z%d9NZya#irM<6=7Z%(559?nsyAFkVqgbC_-@{6y2c_f=I@YyJ&jItxQN~cof&Ad zH8zg(EGqPsOR&DD5owoB5jhmI82FM2lvy%1ri#X2%QRxDUeMD zsgHlzluX4c-?M*{D=7)44f})I97{X_uxJLe0*j-??L=G%@2a zj<5&Pc=@>bn~rP+aSfOtiM1v3+aQDp5xEhauF8+o))&4CX zdwV--}h8=!QIJM{J%tYpm;9+8rNZAjDj|8xyo3 zZAw5TFSGkCjB0`qiUdS9ne;gAGi+>cgO68Ny7+`y8A`FZ@YNW9R8D{y{#>d(Q*3O3 z&vB<%bRqyQf50MNKwg1QX$G?Q3~8j_I6aqmi^f{oJI|W&S4c5w_rTkilEK>h~h9gp?*fa~9 zpx%a;G@k0-DreZ)*=YuK59mh_6xi#6f>pyd;gCRzi;JNf!j9xB$UxISwTxPC^@wIA z*=wkRTmySNP{YK;bX`=G8pspUAprT;0p#$otG6zIE_eTUZ!H=meAqS%B8c$2>ANqpow_bd^q)Q$RHO7iWxMd1eRpz}qH@jn z+Yw*DMyFh8j-a$?L+Ic}Le_(fdGE3B034VgI9l*u=petpf|>xJ^_!0&Ha0fWmIsOp zU1*Fnzf%uykV1vqkX8`%WiK!*r367LZTb2Y>14t0LFopFd^eIt3`%Pe>FDR$+S>Dr z1YH2B+tBvkUH*v&bgXydjp{QHrbNNjB3uP=b1z42s%pabKCs^2k2YE_UcExfDZqXd z>Z5KrBqr0Y*F2WLKHNmwYS3ky22J?_T}&kcD>-yONTlEK>4i=6hJd)xrbiynSoU>6 z72GSEySq?Rgu(j}M<`S9kfo0hzyj83(nY!KDxYJ?a>H7Is2H`=Ut9YV|FR_-or>px z72;?_-TgtA&NOa*2^JU)Ve0a`<|koGu~ZJToykB=!tNT17uW3+nb}(3Mc5BBv(})b zopqTh_8VN4)+Hna$(duy@F@JL1jA@45O5rC>SX@l-hDJdLDkNu%W?gEQT&}f6gfHm zrycR{S%|OPsQi~n;X^P_Poul6vsda+%91%Aa63TN&AOnH9cWckc20|O)!_&e4As)# zZ)XZHs6{6vJJ{$!%uSbD?%0~Kemxp7aWa20`;NTU6^)3Nl@eFyZAf=jOh?Dh;7d*Q zUeY)~VHX_%rlO#vDNo6^YyNKZ1K-E&tXZ!IbvOxrlIm!s$-084u)}Vy_E>zbD9xSA zPlnMly!Jy28XP9aC^D>P--*Vn5(c9_AgFsTx~jF(9YDj{gY z(BmY4%=?pZo2+%V^H=WA>E~PajlumA%v$P(I5-lTR9kSI{&xgnO5b=~HABBtw-TG^pyIj4bt zy6-tMM~UGXBl?5@yDWKnjCr)L6EsLMoA z@U>TkgoHqn(^%pTl5c&cVKa~!`1*Kz5{;PRJsccf6sAtdcMG}!;L4ZgyJ#sQHn(de1WLBJ0b!mv_u?|6Q zlZ1q<8IElSgVrlTw4|iYulEvqv>~jVoXDuY{TYOW9CZ2_UT}Dbc6vJfeC-_ECKQ(T zy2Fdm&@x-N+3sVn{+ z@lQ=3;;|CdFqS@KY3d6q;DSI~|L0oJ;39v|&Mpu0OwK<5vh?kvO=9)N`0wfkj$Z@! zV#2)a;9Ka~THp-)EasSRK>Z@>m6ReQw_cdNYSR$UE_B7gl|1;Q#`&w5AQJLq5QS^n zl(OcxpW;^gP&v3^|EdyPuQ4$AZy_ZJ_C%~E4+MJFV9^Oyc6Ux0lc zDtfax=6WjXFc$(xCWmM5NHfyp+^Uxi3-imv-SS)ga7=1Q4C50g^HmG-@=|Vz9CS{7 zl-(HjcN>Ie>)|RhLHJWvhBAf|CDGvUK|Dl@v+)33&$;hl>TP0lhCFp#fB{jT7qhd|dhRzQacSs^u z@-JA3AXsd$1%4bbeW#f83}ma-PSBGJD87gR}`= zy?WLCowefu$KE>D_I6x&U>rlFE*3V%`ue=bgZPm1l{DLj4^2r;?Sn?MEf;S;7^8xq z(ai86j&1$z+qZ~(q^PJE+;+CvOoR|c5PQR^s&lM=Q|4;mRr}EjxvMN$%HDLk6}tZW z`|+o98LYkgrXjfyn2EeWzSM@ka!gFjX1@a0brBINP{lA%2tol-sE=CQs-F=tdOFW{ zeFjM!X%bN1@xB7W-oR~pY3U04r);0?ykpS7ZfDI;Ol~ngM0k<-8e2uV zziC_7@vrkZmtc~M$#x-5U}j*zfG!XCr>YtbwLsULM~{erx+sw&FE1lGzx$1=X}HW} zY7zsx>+I;{2u-gNW#o%fclznjC>=6#d;4w&!DZSSdIpB_U`kZvI3 zPOj>hn;^=N+QnEly@9M()#9F)tDR*=wA;OBW11?TNSWd=RaXaL;-U7|9x@{`D19LE znRo60>d$1iSx|y%=&b755FfUKc$nLjcxuWu*a<#}|08i;hWe}N$YXpQlfphPl&Ah{ zR{Ex~F@3~2Oo13f-Vz4ap1=NE%JliI$Nnor@ewZ-AJBXRA4k5X1}|yTk4qQvFOO2! zBi}6oh*MLe2={{x3zQejWA+?afqn`2OZk1pVq2(0YuNvEP+Q?T%%vzU%|9!yWaA)^ zl_wpQ?}5_mm?DHWR{P%a2C_Z#@No%GmobGzLR-yy(zS#sdE>>rT6`o>Dp@bf%i8}@ zHPyho*x!dF!z3sgdh_dqFJ6W`fwK#;eoK8$9A+mJ9QZWXmmTp%Y`T=Pm2zqJKkI8V zjW0K!+rL)avaCMIq#>XshQ5^&d~v zJJ*&SSsCW9vz;^_tS|-&amcb7BcjY&d-pgA%pT&68WVJoHT@H@g0Sm&HF;9{)DCA2 z!^WpI-TNwIIbHxYlR|j3j*> zaU1z!RCg`%p4z6_&a`$0EgT$^aK>__q@<>329r_Un1b%qRc%y zmwRjN*gEOM+TgF<+`(8L(h^SI#=*OklSjdc612Nb49_njbz|fPtjNoq;=+kygXsn@H>Rv!+64pTZQ+0l>_53t%;~&WLhI;&8$Rmn zzA!xl%Mz}S21hDvZJ1|EBmn#MA&`;39Bj=v?k=iIN=wu8@{+PBrwvf=K+`k}{Bo9Hg9YzRAmA5M zppM9}!q6yh{`++DeT76y9wN~G9h}fPjRdx%t|X}|5jt#U3|CfKkn=)2;N@tYj{eiw zBJH>Oa5A#*Gs$%l7`%A#f)32^z${THFll@l8lphdG;n*@o3zP57Z7UK8-XYNt1H80 z44^xgTK3VSnjR{PVS!obFK}tH2)6%J1Sq^Rfjy@9OH2NV6j5*3<~ggZOtUY!t+C#j zxM3gNlZ736QR6Ec+!H_u)-%-t+_HOpj&=&?xXXZuaN5 zkxaVp#H&(}&>s!K#^~dO(JEaG@{Yr7I|(pdo9B)W67KFo)6>)P-b(uVDcxHrNIh?F zH^3}MRhtD6VMiix}=J;K7s9fW?-wFgbsO{d9he0%T^zDOXBnFGU)0zZrt!sOib+d z1y_Ia9>lC9K@MGu(3`8`e}k@J~FGYnjro<;SpFEAeIKkynTEK zyxqPsC0^h(BD_paxs;7$`8u|hM{7GpsOZb(d{Md6m9``}3F)-Gl^mM`4^6}oRL%Zu znt&rLZ!^8ibaV2v`%JhX@#V`e5c2}K*A-M@||Q77swt&3^Z8c~$wrgTSgPx8R;FKw&!vAk2LM1`8_S!0mV79W{5wbNMe6 z7E}Exq~8;zUD+ke^3-+Ex82+-V@||HR`JpPHhMDuLt)D1c5%0|GL!F|^sMPA)DmgV zqTbcjB}TLt@h*{FEYQ430d{IM748}*S6As;*R|66cI;yiC2c1ft^rO1dm0~~`hq(O z1|9mSH^3n}Ir#_?EEisbi6Rpm3(~&W^RUFl`Zt9)D5d)PCCY7UU4y-B((IY=E)w4_ z)6vOPz$1z8q4f(o6KrUZct!Z@1d&?HuY@H0|8|J@+v-mCMuUKj!10ZQR-q}lD~GEc z84P_7%_|zkO_%%bRCtUB^wgTaH!pVB!irAyP)wKf1{DuF zSo{?D9Xtr=>7}3%Bqb#^1+rTcV%h;E350f&mBFIqcVytDz6(TV{s8=1?0S{>AjC*N zdPE0<6yY$kk_CC+ierLxzbnGIg>h$dIajUYEZyft;~sEg~oDz&$xl|4AcFtiXj&GC`RWhgzV}9mMMUuK=%_ z(9A6Tm=6yR3gQC}O%g9ZI{XFh7^v6reyEbVna8XJxzk7_hl69EQu|}rg^}&;4_X5> z95``5bJ2F!InE`4>?_P#n$k+el}|2FoDhJk{Kl=0?^x5*VGj3r^Z$CUOqLz^FPA{%3*A%}r=_NC68 z0L5bVNYROWg~XTz9qo!z?ya1W z4;HkUnJxZ5PEVS06r_dTrs%h}VJt043thh&&QWCl=LQi`-w6KXBAKccH01H92lI2T zt#RNX`3OPAxIc^7$jL5*xj2^l`t-eo^gCS9c9DfK%l$y*jmxl!6BcUw$QjDMJaZx@ z;Z^!iXm^y(PJuH_caFZj&rAS25dw%ICv2QQYNwc8*@QkS3CG>jTE^X$002e&`c(6F zB4+2<@76IkkRv1|0Ro!myd=a*Ne#Hf((?V0lha4jS0qZ((jX9N=)?{eC8g-63SIy7 zmLz&`ygrk|Hk|T^qm?f4g0xKNx(x6P0a$l+i0?*UlhGSlTHCbi;4b*U$B+_*Z}AOI z;P`kZqejdJj)h>^C} z#f?C}rvD-ZORXyz?JSo*cR#wWy73!N&noPVoSM+1EIbI7hf5P;DXPG$0T zjU~PCz+<+*>7z}+nEp(Qw4|gt2wQX1*8*~Hlzs1)pxPQTYDyI`x!&u#78mhV6r>@m z4yJ(T7lP+6ll`o@rShIIDvi)~)FK5!Jy#K^k-t7=wXaxI>XXTi5P^?Tj2Oz&Wb}!c zF9Vl`d`FTyIy7txwT0r_4dr44YVwg=_ezf3bX^IVe ziC$bRA&(msXBKxLtL$_O&+7(G92RB}X>K9=L#T&w4GziUiEp(>AF%BO-8lMP)Vu2oy20qcy1EXXaEKi5rDl zRQUGU^MIEGtv{gwLQJ9_{gud(6#R?^yJWfiqU|>*Q=c0DleoXf?Eu_XsGyd7=;t6FA3!)|3TZ*gA@0jJRnf}bxIlkT|RUSq| z7jFdaqn_DsiB#_8nH(b>qTOj^29yT+{!zp^S*jNn45I6WUGatd3|(y2hI$Sbz&-T( z3WH)76MbesTrBj7@IXC6`2*NDg;7MLL4pj}qzE~FSwxHR4b!B&!Npu>pMHbs`VUYw zgei{7qaU?CaQX1c+B!?dQ__%};Au+|{4+pvUd-|j| z@bE6-r5jeGV0;5g*Zg(4rhE;P(P5?lsg7`t%&Z6dl)%uHHfF8IsvVKh6WuC1m^KLn zpCGCUO#VopISX6%D9_M9Pt`=lDgy~o6RV7+kz;SRq*vIR$|Jy#I_&=bNxXsQ>PWJp zmlOg=%9$l9#rD(Cb^3BsPZlk3&$J=905J{^gIy5}yeOpY4a22reHe@(Vonqi@e3DY-{?{cW13k|GVrm6k6BgR$DXNt zR4J`k+&=y~U*VBlbp|&u)1_2>WV$klQ>{eIX;v1ofBaeg*$h4Ka7t>8uv!srv!G#t z+_J!Q+Q|(rW{I8W#Yk>(!t?eTtf{CL|1UqqTiZyAXM1qw3EL>WG0V!tBo(U+UkvKt9%39nRmw_W>;Eul18)gwo{aV;Pw~j!4i(_L@^5 zHJq1~u<;HJXaYKb*$jom9sh51Cb@fe?*=$#W#Kxz3<$jB&E+eVA#(Ivy+V=3N9Hk* z@8gxB#$;|G@VkQxX4mb<9>d%cMHfg(C4rlo@j*C%^4kigi*S~7Z&L92 zNW)Mx8Vd0Zf~?7Qx#deB9@zJ=L9hopISJNcbDBnQ1@YOBQ$sTs!I)qUdrIR6n+2ob zE_TrC%u}%)ROBSkuOh7WYkbDCwT-S@MLsIxM#;qKiK&1d3Vrnh_p(9CXb#;9>9PG~ zrole$#AJS{tMpC$B{0vRxG}p76JRaiR6!=k!GW8xEzZ^fq;zI3(P&V_e{s=L5&T_X z0lk0k9y(+aP$dFBeE2{b85tgqn4!6S|GFdgS&+sN4^fAVX4e`xi(_JA`K#tGa2%PX z-n-}jk|1E!_R)+qhEhwv#E%#etn#El%`9n?bq(K!MNK)g&^V|UP!u2!Ra;;~M=B?V z(cG^9yq5n9tF{hau>j!yzfx+G*=6XLYd8A(1e$chWW)RSEd4)zOc{6b%XCdP69p)X zlRd~4u+5#66R^X)K!BdiXN(hEW>AkiP{Jke0u8HtbyZ>dZ#+(nrPgHJrY{ffGM6)f zIvaY?nm;OrUOKkxrr5Py1FH6KmvVy9(B^%7pc$2^Y^U<}Y4Pdlv3=dqa=}F+A{k)Q zhF)v@`qd71H+EoteF{A6$sT&BNw6D0hG~f}mw5OeqOH1m0Jg5TAV|PWUnc* zGDJ75+X$b}yrqAwAJ0jLg2rcgxnz|*y`JM?x#i&WWQM_(0S*Rsh{gh!J}QD*m6MR3 zo+{JLDIVr@AYo{c&8AhpIbwE*-6FzCoWc<^&1JvkZI-hP8LeP(T~XlM%st))m{ z>C=A?cbM+1Lw_6$WvOpCqPdjT$Dc@O81=Qj@Cf`NWH&~flfX*WTT{{Br%m&ba&bV; zwt_FpHdtS}_hZ3gdw!gJyyUZUcX7Myu2L~F_74Zo_Z$##hz4V?Xtj#} zouuFV+xF1 zksd_{K0N!z69GbMA%BHLPGfMFAZ{LH_79Y$`k4x{?PM)7P68L_9})DWe7!>2qzCSR zy&_)6a8$bz1chE=7(@c;XqRNJYN$B)FdTB~6**;?{OupBan6B(M0wVDd9^(C^Pw_O z9GARU!@+N-0DL_WI#f9j|FSUj+bar5UC;{VaE04S^lQ|te|^ZCU0r2|oG*U_Rv!LH z@F5s2|E{fqCzEi1BUH{BMr!$tzhK^k<1w}cv8RB_-re2BZDdh!UP)ktAv;n!IlmK) z&#~Uy!9t&V-%5vnx8t|xY)D@jV!IYR=ea2nqp#nxzqD%wK$v%|&SQE3CV_Jp`Y1&- zTVUo75n#=tp`nAXyTE$u)+Llmjy%~IxFG;lf;H`y+OPN2db$hwxp$wp#AwiZqhN>w zOUYppMNEmSUT|To?&f@pN^ADJ5Gf}O*2zJR49}-I4CVR;wIR_38;#g$euhhyLHIv% z@Jj7zx$SAVtz!E7F6vc z>}q|*0c7%dqg50(JiqI|tv`ABt3qZB8gh7_#mr* zA-|LlLmG3YDo#>^=Dl=%)XURSlarruQ=0lzMZ|+v46aI_qJGrZ#;9sz->&(G+2en- zORX*^qr@F30H=ellG3kv%2nv3AP=;0ZTW2=;^(>4kDDfGxB(poG{?2P$@c}ISovf6?mD)BwiFwg{QnF`{5R#w0(A~pwf_@3HCKYzC6L5|6i#+J%4 zhIILbDKw-956JnW{DYqf7NlKZbSz&L`YAiTz4+*<0tUp@X|KAZ)JY| z9JLhq3WMJ!#P{-O6^5tVd;6cbxf%*7;4^&EK^~v}7p*{pZ7cF_7Gow zT-Gq-B+E6&iO0^)?!8)+k1M*&pp#oZq~BinIAEupgin437zo8z{T~ie1hiZmy>lfRX&HKHatR8fE=nN$Q*=u z>P@+-CSD`u5DybZ`oFt+9w#LEi~%z~Ak17ixj_SdIi41^15+KZh1oqixI+XQI|;B``hx1-a(-Q+KR zvGmm$j1RUq=ZQKDN^@$f7XDV7 zGM6?1lQN=%OeZ#+O6pmEe!QiL=>w!ksD2$_Dl)kOpArg%8M-Q;6s(p|r6d#fhD+8@=_ ze4oAFb@esy<#R<%8Y>04Du*;$xU z^A9VSiAkTNxG=L&d|KGxb*&6}0ni`1;i%j-j zO2pkJYY(dc9?~zcY4)=V3m7Pv$0*jXc?M4gplB{MCLm&!Hr%lu;pI7#=VB*dr>$9% z*RiK5p7oMSy__f1|N_;&Nqn+E*6>=&kGCLkxmL?YlNu>qyi$= za^MAke9TOqUqD-52Y;tlM)Oku6o0zARxd8-T~+Rz4H0)X3x**}4!xF2ekg^@gFjFG z^lH?QPG;eYaj@{cX8~qa3J>4$hG8S5>Os3&sN91w|_ssxi^=s@bm8&uhF_ z@~^0<&i6R2E4yDoFfxLS(Y%4({2xXDIQ^`4I~MS`s0>F_I&Ls(;5Q?}Nxix|$rLiM z4-Da}$VT0B0JNrGC2>Jt%gXv=`{h6V@C3zmTdl@BlM9f|2YXtj6hB}?j3soC%cGkE zd;co+iYRm&ECj5vSq;hu0RI%mO4RZumzP7p0+a;4M*BN)mc%Yy&>AB#v(hicsOhzj4v+f*ny9k%ttdWHSj?fO;wl_R9q870u{Jhlf_RdAhal(?~mh zhL9n42b%jE%Ab*0QKZ`mr)dh%bhXd10P^Iks3>A@c&H8xZ{mWX5EL2v*Yt+G*FEk| zfyS3YEtWR?7DJ_m*Wp;e;cvB^Nd?@MP3?=)hZ$Qh0)rV(r=^O^q!Y}4vO3!1F$I)g zzu!Vu4a#fdDdZq}`p|c7PJci|nnoTm2E9C?-KrAKaOTzB*d6yGNiOc#q6>JQ>z`k{}+`V-EWR1_Dh9 zf*u|o5bIAtu3-ZDJP;_|1P!*J*d#x3QU}8 zfJhi2zzE5h?m$G(c#20ab$1ig+EZ`HFZ4`sq%hR{LlGofc&S-LJF zl18|5a#E8n=h{@D;QOCoqgzqqG0rP)l$)yg+*U0NTNg+VJ1fApHf%bfBq=3QnHWZNvz- z1E#*(fOP>#AMSxIDV0N24=I1C7z{X+kdhvDm#?1> z_RlDQ-RdYo#ebDe{7$97f@U4UpFXh0Mu4RSm|Aro><*R>_9?(;4FA1I$8F=8qo(2# zHfQ8}Ql`b&j_oVx!S0k=N`LN7G!V%4c0$>=-uasfye*JnIy87m8qo7s%P0lVO!-P(Jz|SCOc55qg60-{nm$ZHTPwv((+m2EY z<|Bj>Jm0@#B7HRQdYT;b8dHD8ac)eqng1g^)iRI zeR~a#x!FL-5Yb_;Stb`?=K&&xQIm?kZKDF-;OyvV0yYH*H7n10rL>+V}wAKb+bmEc!93$#zI}be@visWE*QcVYdhcy?TYB7WqDV+ZethYq zVwW}V)!^%Rcbt(A6*MSGOpePIfb>h7O`)m`Zmbzur*|qdvBsErkAHuxbxw)KBt9s$pF6KRV5!`I9 z?#<230ZkO@KsfDH;itwF&zc@7f7;_g%6`DvER+b zp8!b)rM8!RqE`P|UjddL4mjK)?!FJ77@kQ4RYMd=5KarOWCExL$O-**aZ?M$CHs87 zE;j2wT4}VyuG|nL3*6G#!TJ2D)L!tZvzOu0lAtmnA0KA8lx}>(fSS+SvtP0rN!#M? zed-#5+U~8IPXQ#TW(5j@bKXh+lE>;P82v4em5``v`v(5qA1o9YfZ3&g&4MKX-dh&P z_|whdnfkRc?tz>u0nO&PAp^PXd+DbG41z~5yG#w_+Ae7iJ+l>|OjA2-&Z}1)YTYV{ zK>lIh>}t5UEPI19h0uM1@8&XOmA~Dud;sqjrWIhCKHW=P*jvDa4Sgh7tqo;eWEzJ` z%)nzMqTY-%6#rh)DKxJUL8U%Ss)P$Q+8(97=dyzj_7Q53{J26C^pfx}uE5~{R@3*! zdkG0N5XK;qLC|NBa~GXf)(J|j2tf7I(1uL|YiIM;t9{i{kdTU4x&@2rY9M#XcXriM z$oW_W!!Kf&sHObMk4@L8T^YxXW{ym*WIltNtIE#`U9oA{xvnSQnAY3|oWd6B_7SL7N)h9Z!P9M?>jcnOS=0azZnZ&b|4$)`Q$7RGWU z$}PGKQ$%uvSMoJl?~;IZ@agL+(oB#1OcBefuA#Mef?z3?EvZ6Xbpu)oEDO24T}Zifw2t7PUSVh{uxjEb;;aWH@sEpohisZ##R$1v^;FYgyU^>WEg zCBD}dQZE!gGoVW2OEWe}J?7ZtN452BlR6IDX^BfjR=M1Elrs1jv3;neF72&%$GD z?+Tka4j$&r8PubRX2x6m81DbXE0+SgQu$C=SzL?;O%cO*3!rtj#x>NWWMSh=zH#mn zYvyZMc5Z1Bl;}Lsnz~+Cn4 z+`;Y|ij!Bs$eGTeTFDNzJ#7X4>Ymd9bhKP%YmW99wU|_K35Ugx+)E9<#^OhDA?7Op zN&ot?D7DbwGiz%L3vjT^b5X^y4$6W6!2tD$J-@wW1z!g>ob|BNpFvO){Wdjv=ikm( zTii^g(=pG6KHhn4q=CncwJ0HgNRk?$PWm?3sjr8L^uf#z=zktZZCmg{A=5lCyAXF# zlZx52@a64xxuxe$DoMR|V}BZp^q+*7*R-9vOF|^5t@W293gHs2?n-&?%T4__`uis& zlF2Sxo)yCrFK^p6Ny81ygG2{%r)(&f`$6nb;lJhxpuAKLkxCoGXJIc+g?g3xgPBh?TPvBBR zBdfx;{U}($!2M3GprGJ4n`BJM%zQawtMh!9C7y9H<)m-VhvKxYav*_@PQN1_si_n~ z>Z7jOh_{@!Ser4p&WD}mZjkpO0x$F)@ z3Wj|R33NC>$qkQ*&rnh1GEFO_`;{7W>ZNf1Vu6~I1BD=TE+9nT38i~bMBNv^9%%m( zgegNsJz`1fR?7kkR#gr)bgSi-9Wfj)IeI85*%k1e9Kr>^E8nw8QQV^yCJS`aFy-JF zhyKetaEMXc3w47~a|OC!U!b{?3g9JhF1be>>pFjJ9`{2LQQi|g^J=-dsXyyL6=}yW z=@_Omqk3CYc@bpg-b8TrGV=VZ_bk8~eeIaU1q(MBZ&e>tP#|)`rGcJ1sEw7qyu<;R z5(3POK06QuOSpR4kFl@-C!np`GMP}FIzdna{1f)1mxsf4c(d@qZy-Ti^ySM5dNab& z(OY2)F;Hc(ATKm3!oj4ar6KC044`HqWCo=`vZe^xL~RAj&`mFw>=KC=TRR?*V~OFE zptS6<8tk1W>B@BNBB6Asic+ah=k8qL^o|X6?qOAJO-G6%Xf%tIXKQLj9NiI8e9)#? z4v&-u^}byF!^^7`#zQ%*wM2c4nuDH_r-zzFsJ>yck>9A1XK-Zfc}{WPfNt?4tyzep zb)Hgt&Qp(MaB?){7<(nbK?xr6$IzQW0Bt!rIUv>|?zSE90*{cBOB!a{KSrg_Av+Dc z%R|&-$1n>ME`znbx41)-``T5;U&euNjSBXtGOHXCwxq0v2FVl1#yb`VZ73= zy9cjfUhVc0!qpW3R^&o}kuGhlyuWYTt$XPNK*8enJJrSvTsXaVf(6vCA zIWa9YBLQ)0&uauw&W&Lc{@NPD+8)Z!uc#Ma_v#cINF^*~b?4wo(JDpu&`Es>+DdBp z^cL{xf!(633~gD*#F>aAl<&<6$!W(OO8sYl97QhV5;#qSM@u4882aYZ zU(R*CjfUf9CHem&E;KD=K2w#S`}!U~b7YCjXRBhV-~)wUJIjafUL4;2_nFerBI6V> zU(=G|YO$JvLB(WzGhPs(cc>LV_x}C>c~Q-3w0iqU$OwK6!O9=c(Q{EN8$JCX%%{(JoZ}z50#4TDROS`9@reriPDwggg7#6bfgZH5U`Ja82qEyZUcOYkO$g=ujKf1#ab-r}|9?3HU|opV zhxQ1l3N4J+P{3RVgwS^X)aU|U(#=PHxXzzgAhiv2K23PVVaKXTFF$Fv2T!8s??fk(Q zt0Xwn(Vd-%SSu+`FcTgYK`~vu`y}r5CE9T)iWQljy1KsjMQJhJ7JOOC12Y1Ej{&6O zIX}Nz$E@3bl_(e(jHkW9`{5Hq1pL1+z1Vla0|U?d7YMLhTU)7PyZ)(Ake+c(tc?w) zde5lN#rv0C+%df9JlL(Y9#W5IdN?%AyZ~3SuI|r~$n}kn)pQTJyQLG9_l0GyTI7u)QL+gz4nODWuZPnisnp|dS6L;# z?~-%yX1PYT|JHW+i#9G|lNajHVGoN^ADDUew|*oj&r#^~zd^z*I*gwg5JOs^in!c> z&}oHW@a*m{rSNb6xIChx>}D>szC0&^*Xa2;@%GG2cRT})<0+DH2>I^m?i+b_PfDz}lSI zYcqApH{<3RvPm)lLtydLzF5_}q+8>G2SLVSsU;NiNjug{3;B}q1?<|63~cjB($@x> z9)3dAmCDxtYbgkLq2T0HKvEE3TOndDD*1Wt{kaweD(SdQ=VjRWG*Xhq``UXndL3}9 zSQ~`GcTY5`kYr!K0vW+;IFH7fZUB=d4EnEgvtM&d@cFLkiBQF@>w;@NBH|V5f1*hm z=gyr2&`BGT@o5U82Hp$@jn#hud>sTz85a#nq4_Jo6oO8wEfCUCw*~=$pis}h%C{(k@6|;KsV8 zt^b#LL6m*l5#6A*jq%onF>V&1>YemE3CG&(X(s1!dZ_?flV*#ZOCiO~2b#o`E#8uD zm;z0_0&Os(?ttFp*vo(|N-6Jq-k-ucZGi^Dr{JZsaSkMa%@$RTq6Ow>#L_*NSZuJ9 zOv|6>ykBBsEXJtoBs`&Y^Ob$p-X1ev9exFFY_6l`R2Of%B(phXTr~JV9S3Ser{;+* z8jQLP7__wqc$mwJ2U~-7+LS8_G~4NnD#@S<*K$A(bfLcV@JdBJRfEJ@>*mbM@2KK5 z(eHox@vKS8!gZwek$ig-cZqNNwox?}o%58MWS#r8i`0dBaL~y|M&X0kAdhQm28+}M z;^?4ahW9rlz%E*L2M+)UZv4h4(=5h#L`B6~wBtkecEJDJD=bJd+Gy(boJ+?PjFVtC z$N+g;Cn4mT&*z6V4Tb?b={9Nh3J2~+$y79R^1ugun;%uWz7W zF*u+Dl9ptzOArd(g2Za9aOh*pWA0?a`nqs@lJY3@v6VN;f`hZI5Zc2IbmA?rvzro< zV!($3M&;M{;Vp%Avcnl&j3NwXNyrAcS#+u-bX>f!*^T|&WAxAmi6!##0!MT2xBZ}j zUR>CY@(T@!Au~Z@u&`nfB#0M*pZaT4CJXdM)TI=m%C#hv@6^C}wK?g^+9t!bX8`JZ ztOW7ET;;W*3+21JZK7P2q+X^WDpN*iB83(5t&H)AX!(2|8mK=F zj>c4NRZ#M*6`#ivt@^bk3ueSbpa)#i?L|h@_Dg#gw1v7)XH!caV9TC4)2FP{j zc9?%mWe4em54P4y4V){rlFz=RwAP}K#_-K@?EcvUT9Vr%Pw{*f3VkFDm|%VOG0h4v zgdJXTTFx^67e4&#*jPC}USoBM7ko0GBl4B1%b+&AKosY8&w^UYEwwg8Dfy|lQyk`V z1MgfXsCyXq@1AHUWffpjekeo0a(2J-wwHb+9#P1G+Zy2;NBWKYpc^Z<{r+|cJm8<1 z#eq{4U3^JU3W0g#aMe&I2UxZw zOZF9Lghk!)yK(v3XxwbP243)vW^X7A=-{|mdO_D~1fIb6dH6V60*thm3r-L zg*{raKQ6W0T@B$r*rej9D&0<;n4UH>qA&LcIU^<2JRrFFpZ)EGq#JEHh$EUERP^RC zhSNU_9NeYwW+r7S`r;LTW}|2no&HAm;CH%*40}b1)J@jZ+3I8vQ=mf*2NrtJQ4$(W zauF+hFiC>jzF@MUeL2?bMHN=UR6)A#&z|qVY#gw;;X!W)eQ=SH{Gk6x2NAU5d^}He z+={QO%OR5mxArGLKTK$-ZAPwfwF-FD#PL0Spp7HY(yEwkdI}T_i+}7v4+ic`{!%px zv3I*~A5zOKr$3iCsbIBxqRf)n`P0PjGPUHp`JvTMz-`oE1Y1piJrpa@`3kBfdGrRJ zqJ5&hp0K+sNt&J}S*-)gT?$?BFAe(fE{kKFW(y;QI6lkZ(9bI?1UJf+jBWMT@R&kg zAau)uX=~gg=Uk#{jk~Q#@BI6MERxsTMjMBz5apGIu0L?aN(RUQ<;OG%d4UaaAu0Lfp~6~Ssv>42mxincdMgS64rqfzxaC6C(7IDY67 zHv5VV_&+L962Vbu(E5GA);w+yij69c#<_(3mHG2l_l1~YoyUxtuyYd>ni-D!Cl<$o zd%=$ALHaY4%gn;oA_N@D>6_z{Vw&f3zuUfww@+tC(ZB__lS7z2y4B=$T%NydTE|Ss zObVwV6pK8{K<|2>3C`MMXI0|corg)CN3;yqip>mXLcutHKexy@bnTnw+O$fB>4Uv^ zq)cb$1+qlp^ih(~)0crngIjVOoN%2HaIqsf&Q$mFllk}(omXnF=2yo%uJGY)#U(Yd zow;SvVdI{6M2B*#XN7n~%6Kdk6mXcqrc8R;_D&(|=NfGbdrpo@8~FS=a_fm(%=N)% zJ?Hh}h#Cbz8xfoDI&s^ zV7CBYz|_W-3i3Fyt3iSS>RP3?b}C(brYT!~x-v#};{6RZki=DxGV>T^o(&xJ@%9Km zocL#&dFi$CK|}&?hM41WHencMBy%!@6c>Hz`g;X^Z8r_!1Nn;mKwld08YXrohMqXh_C{+ zoRjP0?3_={=)QlpcKaz&{otUS=~SKiMSOAbwzkb|_OB09ic|hUJ2_jz895G*yS+76 zmygD;)CbdDhCV(LJlc<}WmII!?4WI+&0?qB&VK3fZ<lCO_}KZvpBci47>n7z3i zFlYtf-9GMlLTApPx>gB1Yo7hp)Do&LHkVF(GuQ3OP_)pFwK#`39@jet$j7&tp zd-#BB3Mh8q<_b5wO*p;w=v8=9GcXzc6X1E^=N9xura;_}93$#|5>9`62>M1wYH*j~ zKB0DkmqVODE11y8u1({6ZkE;x3|5z*%kyO#_s*R#=!=`(|Ju=h+|JlI+xjd7X8Md$ zIu=2|#FYv#faIjpr1E)agZOQM(jg&1G zFcWyOit-wvDHVW4N?VWnSJ!#>Dn_a4FsO-qT0QYVs|Ebb8h&)eydasp~Tg9 zGu^9L>T=hlQAcd{A}B3$bE8`d<*3p|R%aDG%boSUe&rNM_!MM(k)T2^LUrk1E`se- zu(n4*T?4~$Gy=7poeL4+frcj6yD`%Q{OaVueByOAF)iV7fsV#V83X4Vou^UyOeQ9L z_2jsj9xB{mrfZoH{ri*_=&=sQae5o(^%e&Ygv}RAJgl?T>89Xfw&K8j$%z2WyWh6M z$~jS4a|0e$`Dd2zKSc09qW`}IMTfPyZvFZq6}WX0&D#Q!I9OHKxw#3zC>YVG_N(w8Lg=c(x8Tv@V*k=DyddFCqN*>zkb{pcZcweKtGKK?@ zp=mA&LtA2$M++T8-xDo@{Vk30d zVrhlHd(KcWp*nUf4CG^WAj5E;tUrx`cE!&_Xu4&?J=i+{CFtx9We4~FU!an70aapR@8kO zxAUQFYgRDOrm5%*bubsRM3~4X>$$0m@8DlK#l-vu-r;$0$HvSH8Yy19MS7H4_V<-8 z5nf}rms+#H{qyR|HEIelU9?TG2SjLZ76Cf@u!Dmk3PB;UXX%rU!w^k~&Nkj%hp^L> ztnRW+#h_wPd=Y@Hp+x52+4Ya=JTH@G=8n{o*u z2Pd3?iGvlKIxPyo0dO13fsX%%MtsP-vkdPg!KO6X3E0WtJ&pO!UL*#Ob{z`2x!1N) z>41^(rS}#Vv7|m;)vd(#;>ReJr}rt9RQt;aq-4fXr(v_XbWr?G@p{+Ga}9IQ>kLo4 z3Ojb^`deAs(joA1+S>OdtE&|pf$qB@1YKY%iR2>Y3wB}Gzof1$JokOK*Eh|6Pfo3{zUcx6Djy%X6IC)&s^ps)b7hDrf< z_tyT$U_B6bhQfY@(yp3lPkW^830Yp=fqM@N8_jA6<>cE9SL`}qX9KxPsilgbd!>g! z()Hhncvp~;#;+a@%vUe~a)+wLgi#4WN;#~C3UP$1<9nxk1%%1AewI~c)dIJYf}Eb! zEv#Fkgx>fYKnu)plko?0A#mxT7dyBecJb>Bc17B?{ixV-&|8*@lb%D*)YTltpdv9e z4>lT0^J47gH#Vm$UBh41@nCmYn$%=EKF0U9p^_8~Q0X>F5!|79LzUdnVyzD-J(P1) zyL3@Qg>;e-d!t|`W!*3D^V9NzZRa`%5vaBIqC?BzKnPzBr(PDkRrIVK6pQ$HRHOuG?)QJCxp5S zX4Gk~@(`6dG1*9*i9jJ6u%Zo^Py^61F@h!z#Nsq-AA+~eMd|GAdCz|<6Bpz@B zY&z37zxc&v6|AE(pHA5$2%x#+na!2e1euBAPWSZS@o3_Larq%mgAbKM$f^XX01aF_ zGpGjd2%Co##~ke57ri2OsZO6AsyFxvf({j257?Y$E?jMKqVU{9ofOktLE|=Y2J2wq z=9`-U-pfu7nebQWP7Z^+v#}+R+3A? zV3)|1EcDQReX+f>J#|j3`=WBbh87Hp3QarJK0?DA(c*FQX2d;*K6H22*6H$JV#+&K zvIbk#GRz>avjeZ{TEjJx(K>ywdE|6}V>w`dZ8HSQdFnOZPx$aAn#_IltSWF*&szI* zYdv>4CeQ60E2z|I@nh!=A&Ab+~5SrLt{bFga6YPmy&or5{UGyQgx~vC9 z#&~!JE@0#F1J{$b#;>hED{KagW|Udn0Nk{Ulb-A#0H6$det#4O7eM0k(TnnJ4ToKP z@S{V32IHH#WP`>(t z$7A}^k*#kGZ+_2DE3hkmAg5-GY-uqu7Cw7i3dv{Oj00qTLBTJhi*CM1ovy;2qV)~E zeHJxM=*A+->{(#&fl8Xt$gTuGe5zAW-Dh4t&}ZVaUU9^-Gnx-9CBS8R2v#KAajK&Z*k|}YN(B@Op~hy9ER)yj`Fb)k867hbZmND#Iz{y5Voy?* z@Fp7ssVT;!c#I2bT$5_Q719|RK%sc=kw%JC_r;A9vdqV1>0z)=XCGZ|4KSbYlfxwk z=wMtQpx#tt@HcWujvBZw;;jn2R(=ERt%{1An1@kBH1JF3}}Y%3MnIeK`egcb{FC7-zq zLkW#7GfvYugeub+R!Nj+Bf0EFhixx*DHDmc)fJrU3z$zq44zYJLEc||Gu_mk`KG=R z?HWlbE<9jp$YqKSZJlu`(n`N5nVO33kTrG1CUjX;3XCgC;^` zHE5?~3nKxWY59-Yd>{Mku!oIhKFK0n{SrkH8{PVFLS6m7QgyMjSG$(|o97OZwM^r+ zVwA_ATxw5pCqE-wOdS9}*g3#z zp>aLr4n7j5V2LQudKdu)VWd~tf^nJspk3|z3hsk;Xq+Nm9kf%45HdkW=KG4SpWb;!ni4znW*DL;!&i7_Y(;&$g zj47rBNHWMPtK275b!d>sOlA4! z$hSuA!Gy@j@4Zz{vB#RA+ys*@RZfwFz)>c5sKaP|bvH+%-z=eMH*nJaNgjTo+~&Qg zPjnA!=H>|HR_;iSxsGV?evZS4eQ5Fj6-GRTy`un{&sq*iLGjd&pK_ivZ0!L#b~@2+~&WJQ}-^=mdl z2O;Zmxccue_hE;|1)GFMG9PR7x_N_9Z|uq%%^ER`&3#h|&txZ_4Xv=?cGLqM#FJ0`5xWUD!)J^Ec zZ*6XEJ3#{@Kev+kFDAc`u{#>+1fwEjSfp=3J-~TGT1pCp`z$c@3TSvRv<*BF!($9U zy8x{eGi?vtS)@>6_8~{=K1zBXcNGVR@E;{P#3S?XZLPJ)p*Z8NA}s}@^|)iN8x}d1 z`YO{$Y6?e1TH?Di;4t{DaO!>Sn)u{oPYPwyy2)%e zo#4nZKw&Y^GJ>Eq%HZufi@Uy^F%ufFwX#?=4Q)^kGItkLiA+p$C)_6O8F$g z$nC5v<3E;yw{jUm&J0De)n2Ad$$q6@Z3fQ%9J_FTQqB~Gw z>r$PpS68!dVw1y2y3>ve5p&sjds1>6de32CicqGEVY9#L8w;+90bQ;$f1>E+1FZ8S z91=sNrNXG5I`&l&8=niUHRIHOe&3l|PQe|@gS>fVdXimuOU z7eAHUXa>ka&iZ#}q2nw?upWXojPg+>RYZfaU z0^suWM(-(G>vN%7xu#WlC&hGkFHJU?Z${+bzki`NBAHgw)xM#HlM5SFtd+*mtSxL7 z<~5%zoD>t)ja|7%4@z7l*24+AM-NLJ4J*>P;(YaBKgcbyM-_AD?%l_riXl8*<(H_C zFdPQTKZ@PG8h4k+nRgruK_DT2AEJ(p9ThFJ3N#)VMYspp?VGI#r~Gy z;9`>sT;#a)F{}6tCk1dEUxMgDqC?{HFzF}YoU?s_e64^TYwL3`u=*;Gi(R_z_cz0* zdS0iZRilM+7ap;@D$RZtee{R}`)gHTr}_GotHm#ZkDW~Z985$=N@+|}YBkG;Lls_> zgvHi#T6DyOM~cP5R0zLUL*XTFUCFnu@q!qn>2aj` zlAX-D1xMmz_!&^;{S@NZh2c4NV0~)0a)McAsR}^> zb++){=aL_ln%na6S_Q*timT4?j^>8MitF%2E_-{&+k`F|Vu>lwy|-y9%wD+NsCawz ztMcV9#@2Ml1;WDA$1`8Y&cad zc&2?naj2LYdO3tcP?HZa6Y+3vuH_T$NPo-xr^aP710o(CJ%2K6^|`Q#K6&}!am6{C z+>3%ms#OxFUF8(05|#xG#rJPWBsI!WZ33;aRAr_UjOR+KuLL?$i3L#fdgOWP36A0 z4xBg88ePo}Q>hO=UhDtdZ_rTh{Pneh{mV184Jl`-imWWh#2c@SLn%giBY2UCftj1* z_3SJTulA2*+DB3+RGZlV#JUm>r}=vx3tsJrx_T&Qo^8zv;!!R0Bly4}RwoXf)=Ed1 zAg^5?AKxZ^@$OyjvmIlmHEsPJYBd?Za?g}n*f_$rusA-e(Wa-b@d#r@|H3ShHMvH4 zVDv2J-C2s=UwFS(d*FOVlPKbZ&KPr7cvRg0G z9PYb-Me(}NFIqP3T?^C7ZbI;u!#q`C$HBO>We4tpt&SdO?V@X)6HiAQhF_G|rt#U_ zg*$@IFhAmIyhL@4=xzRt>oBP9*Q9Sj-aRc?&^MJd~#@eHBTg9l-+IE-K3Vq5DK~2M+!0h^=g%Db#<}Yt=$QQ z^RmkeFuLYS4tMOcq$htBp?xWw6F~?6sMH4w3^0cECn& z@Se3ca62ZGo}82)Jo0RtWo8w~W zA78#I2ik|X83~;3E-v>vzR%eEjoBp$}}iygNn}cUSLe8(%_3hVw~> z!bZ8TQ3Vc;5d+eSiTa=FINgD3n5S8#UJvt%H@?o+)zw#y9Rctq6kEY`@nwM&hP=Ap z3)s?0g?DJb zvLCePF*Y`PR#H@ZCw)~xKVX6{Q_NjNBf!`k3P{0*TwSkzMstak!fKY66QvR-cuzB6u4BG3T!+1G8N9$Nn-~_gzDd! z6%G|>lWH{h`h55lanthS##c7GoD0er^cx(xVk3MO=R%L&?dhSZ*$w;{zw zH-Nk!WgE_jd1t+b@TL7CPq;c1gWRhv{W2*u}61$%}Cbq265C)J&MZ7)B`MA7a z3Y%F}G`OrBjEDyC)#=Q_($?37oxji<8!Z7tCEzOxO5ETz1hXF1Ump=Tg}CTGqAyj@ z5*+^2|2RV)O52A&Wsm>&>;KO$7I~qRUc}-E7;VuQUoI|uhzbPOwqU5!V~`UAz+FXA z5d*l3;D* zs(RvI)?;LudrdRT%km8w{k1`Fi}v z7#U&g8yEOFeE^KFSFUY5^vE3-n>H2>e$UD0O zJy+1veD6#jhYL|sv6 zRYHqvNFomb8(3JX@Z2t4x@1!A#;5?2wmdmX2El`*5Ceqy6O33{`p6v|BqcDPBTr~8x2X< z1=1OU;lRg%;X_e_m*O6#g7Vu@`Ur=99k}?>v`65nF?o7>E5QQ}#^Yii6Z>44<9HG- zgoN8DrMtVk^M^tz$KF(&4JA%Hh@B}2VbUlJ-GoJT2^PFetVaADBnAeT6?z#!GeYU* z$;EP{adPWknruLWS3&EGhm1QgJQsP^7Z%*|l{lFhjvtR*Zr&k>Pp>OOTY1TM`I8Ea zhlC+@cRu zNw;GY6BEAxXQchIvy&dCcA~+GaM3Ysg@(v(4(_6980U(M0leL7s2HFT&#>+A6XXhy z9n|Iv3JSB_IJ2<&n$S{o2LoS-$LRdPPZ5uK!>i>=lflf7*v z^|-3hIgV5)j=r1zf>|DuetGnrTPGu(pIAwKVtCoAb8tg6W#Fs)&9k01Z`XRiFNb8G zeY?g|=S`rov%CGAi(gW5c!sN7yk@)vT;`YecefqYLfcPENOaEoxNfh`GD&;ofq2D0 zU*GP!kjW^FsUQ0AA@AF}ERA?GbMtH9ScSRg>6xUr&pA0gsjsicz1gCwrgj-%F7?1@ z4)5Ae>s!DmTCZ#e3J41u8W|;nM#=3ui;2OND<$9#$V*P9f1YbY>9_tPNscYH8v3S{ zmEtd|s+4#U*DPnDE(yg@nrNB0KM}kNbM`f+YJ*6c!e? z0iS|lnRSaKKUJ|iAP3OLGAgxrii%>u0saUQF-XAeuS<}^ytDB5Ja`5OqFQcjzCC-U zU#HZDzp1H7fS+GCD5%MOqV~l7*O#tynV4v4#eDquab`VW@BaJw#GcuBc*_?qgpE;M z5;HY54c@&G4!7$vY>zzLw}$q%R+Ng-u-i3KvL2O=9%llr3dRm_RNgEGz&Q(KLq*tyAG6JhTc=F zc&$hJdh6#F`1K4-Oh#KSo#g9FJ9S^JB3B#kjw@`d0V~sYS;+6BH3bJi8Y>C?`ua~} zc#)#!W~<4`Np*GgLD){JZfv?kZMAp7uN*AV?k;dl21hZ_(td}N{Kw+r&?EU929}m3 zz(3)al{GgsG)$MennUbzaH^XQ17G+!H%ifW_9J}8=sP8Tq9FQy1oxl+KYJAY`>hZd zC;(sQ6zg!|TL^o$1rB^yq|||5KO+A6q|cXE1kdd-m_Lm03pV_qA`&P48fypB1|8M# zFeaJs9Kl~32XOJV>9+8Y3NY3t3}P^ZBunr@LTIK4+(aC;ix;EvK5J~i!vtkwIySaa zfUf>TrKc>9%a`9b`mfQ#e}mfvH*+4ADbBL=&D~nKA9PGi0u7U;u+T%cVLdy~59Y&J zqXSqCCMKpo8#y?bf?W7Rgb!C&y=K3CD|+$5P$WeIjJ^hHYWKP3K}cu@RTp5QeHa|f zsjru@Y`H0)E$1)CRyXMmf9q*Ui6$8tS^CLK=UX>NYdo^h`T$$7Gt{@e>MZ`iYG|?I z#bgIF!WwUKybl-Dj-Dd}l(@x^uEDA!wJqM|;)wDk{@lY1>z)R?IQ47!=pu=@uKy(dWq z#p1z_AV5=-Nu428QphS3<$z0i1pR5khX7dEyZR_ST>z`DscCrma#3^e!BUooyZbQA z;z^8;&w+3j>T6n>nwop*jF^+Zu6{$W-EwnJ4=~oPseO+6fq{)&PfJU+w4Ue#UqmM8 zPZdnI&4$_@HXim$I3IIC$+bAyV7&afWdtIss(^J@ZZ571@!-2Dnx3|ehN1Iyb#;IK ztQVzcWV`?h)qax>rZwa|tXUH%ni$*HjN`r0)6@I?dtM*gk~L#&Ze9ch%^vrfpKvs& zYiJ~JLG1e-1|>orEdc_B$3UD#%cZh%@Bqfj9sRxbO`BCA&;*_|LwL6^dvZ9K;Rxo~ z13xo%jE#;MsnYuTx>==t_?RvRL;w2Ge|whDvv&Jv(H9&{&|TU8^XCmcuKNVK>G5P* TyAvMpTw$;(TFRy8ZEpQ9o8q>T literal 0 HcmV?d00001 diff --git a/images/op-rms/output-test.png b/images/op-rms/output-test.png new file mode 100644 index 0000000000000000000000000000000000000000..82af719cc94773f8fa74ee8e7523a6ba9e5f1375 GIT binary patch literal 36334 zcmZs@by$?^7d4D6q9P$JD5-Qvh=eE(DV+m?3^L%*2#83SAYIZW-QWmANGT~L5(Cl# zA|=vY?|wYL_r1P9zH>cij&g>XXYPC7d#}CL+T*98rf}{I!x<71l5(P$N7LcY zTc=OLqh#dTS@_Ql=eq{Z+V)uICuU9-B=^jm9c=8KZ60ARyIMFseq?Va!Y{@z%zN3& z+1cT-q=10!|9b+zy_2QD)fqYrya=g-qTyo_5^^)--y_+wS&v9af{c{p<#gN<780M9 zGwCL7)>bbLjXaJRe$DZM{kh`Nan>uBV@}KY2$i>AMxDAVSUw(bUZm!zKWd3y6Z?=} z;Y)0noMsn=#%ZGqil>jKU17g+=;-EO_rtHdH+A|8atr7FRvyZ9_H-^3O1jMH zxFipa9oROrDuo~SF{4AS*vt7;(j@==1&ghJ`R;!|)-VVaK3gvc7u6Xut^fW1+h%gD z$dAs}t6t?*r2qHR7}7T?!WDh+OoLaA)yVSO~y}InD?va|}32z!G%BvVFG`-$$+RRrrTsIK| zw?wc1w`SK)YU%T_Nhkh;!aQ=C^qzNlg`dvEs-9f^-4Q>N@)LP}LD^_)1o9E+^_z@B zSDxHo_`&5)(*EN?@c>+$?sWg%ldc)r?Df0!J!0Mm9>(so8EyyL(~fpp2haY#2izIKKjf;<`ID2w=ImDZZjg9T1Egub;UBy(C=5$o^2Whyat?#}v z$4Sb6z9f5qH-KyDPjRQ%PB=Zbd#Q44|GafyzMQ2cmoY!Bn#A~VkJb1w`5YZB+gjTp zv4qFpZY;S;N&GFJbXct348}#YO*yP~h)*_9slRTUsvE9&yc}8NaiYT5E?>actSM6V zaJ#d7Ya#&dXMA(lar_M}rY(vOa|jD{G@wyMCJ6}YG;vE+n7tl zsnXDImp2xMe0d7XkLsIxiuM&4`6loE;@WE9l6jG#5{+pI=eTHFRD0n5y54Nqsg3VP zu_gK6ifLvh2?vr+nce(3*`s{lZZ1lB9IPfc-+wal#(O8ryDs%^0LiUAiG~7iwSm#T>c!Z>Mj4eu@7$=IV3`yHa;Jhe~=Rk3Oz+YVlLcvC2P|7XoMnn*1;FG|cz)=_NRKE4j@V zl%WXKzvHZbI!H9k&lgsncdfh>BE9jWJTTHMQ{gXB{p;3!p(@O8MhG{MflYDsa z<)wc=1X3}!W8x2Fz|Y?jZ!QyxJkLR7tz`>*H{jJ<{#0B{C6io)8LE3jc7$YibFq2A zGC8RF*(RpH@V=F;t**4Gx3~8(g-$`L`p=(9x@WJeNzSHg?jkqrR1tW`_q^y@!rp!H zrw`;LUwv==6wRKKGTo&-{2(Uw)^&!))<_=Y)Cbvn9OFuGI67=6ZsNJF>#?3^dbh$@ zY{U}6H76^{f6;UCS?=!iw?w1G5A@j9_ZNq5jE+g~-S0Pm44V6Aq>`4_*x`j+qAF)s zPtPkA{t9`U0D0E8sI-gC5Ls($YdSU}RCM12wG%CqJ!$UTxwF+_@AYc++f8*F@7;wm z-60lfcj_FS+&bl*CPsS_iKs?066AgkR-$Wv){zPP+HO!aLK_*4ue;+dJCihbT^C2s zIUZ?bt!9)sAyW!O4=dVL$M> zSn`FB$2<)0DFKPualj(lPb_(-H_Ksx(2rRdB)E<3j{4T_O$oT|EjM>{cWZU^&t@f` zkMHmqvah{_H#o~5O@{1MS6`plXmq2X`L`R>39l5{U%JfqjjtvjO7YT=9n9ArsEAz8 zgup5r^SZgQI2Q7TjCO*ycI!l`{a7#(xU?-a`uANfdTqCvP7GQXHHvgfz1pmrmcAOP z{GebXRFa}=;zvfC}{-vMqbBZ!jCJppx_?+v7->T zIWa$Zy|IBBJi8^>jyTN)y+UI{P0ClnLnV(QoI6DO6~h$eS9bTiBlS(LojZ3I2UuAb=L7VU9Y8uPFqU6EWBu9KllZ8;sBVVVQ>ZLleZa7hV zPo(TJ>vKrQtbgGP^wbh3}$x4Oy#KT6wgdJSqF-TAA^5^|#XDhW(+~9MiUk z$*28|p$ra{C`JBg6@Piw?(Phg3?ut$UH?W*>ZNE;Or~T}%}#EK`#P>=aZ|;lNdFU* z&vaT-4}59|q?YulwrCZ#EbY0ux$v6J>cyNW&$)$#$i93-HpqUY&$ntOA#eEJ4QEK` zs#AT$?Dq4B$4W$ULz_TtI}I%W6D%5ubaIIF|35(T|4*k1gPq%OSJQ9@Zr^9;utY{Kk7rJ7&(H1Sx45h)(d$-K{n1hXB6`ah8$H}`)2g@vn zj#a+(f;}`z)@MazmW<6~cIYq&maQ>RX8az}n29W}vM zS65%Ee6pw~jji`NSH9k7)NJl{R%Dz>()sk`-|ab-Ebwb-Q2$&)|G0V683LoJ@e+MQw0+|u59mR`+AtBXxzdZ zZxE?dfABSGJg3XY2M1Yw)J2tJ5gnEcx9fm?L`mj1zE3JUu-x4(;yjeDCT? zaSv>p(z=+09tyghs=gh49K#P|#?`tE*^V%{;hw|k|1Kv~v-lN&nm&4g( zX=I$fC|++(WTSNpn$v&k*(wuRr&W-s$AU92aFyjsn-4&e;_Lcxx^;TH-WbLku&0uB z{{n&SvF-4QoSxYRi0S2CZS`@eZl@en>15V>waX87=I^cRUZrkWWmg0R-FIzMXY$hHLVKxn+=u4mt__y#=u_d%&F&K!%tfuUm~p#=zt!|Yx#ETH zi+%&U%C=;0j|0*|6w=G7wOiGMw_EUccB_zCayCa9vti z8Esaw7i5fP+2Av$i%{z7A!cUj9I3teey!%c!Mb+ZRH4MCOrm#zooCvR^@4WW%HY-Z zhBtacrs_5}d^GB87`*}e3S*Q^vbd;N@pW9G(0`$q6GEDE2Q9Gd#+0G~m80Xs<$^vn z6}P!drnd2#a@^j0ENyNn*ds*qe9FAQzv50_#r-;M<+vLrH663g6RkW&@^BEIn=9Qz zk}C#J_wvhw`_p#R*Z;rU7u5gp@bK!$PxLOM3-h+MMPRO`iWy&&&eV1;2VG9JUCER# z{qG0tGGz=j0U3oKUZM^!Ys}kA@&4;*L@qv%%Y7er(_r33^oUNtOz(VK;16N$j|BOr zgxCBcR)*q1Z?(3i3-uis=(AQ*#0qhqSCiXz8A9m(by2Zr+UewQoTN?dj;%HxQ!;FZ zlZ5w{UAjY-*H=ffT}n+DEM8n^Rb@FN4OFVE3B6rw$ z-Lc0DW5X5KOLE@eHg8|sYWJ7ni>~d)47~L}O_aAJ)C}DI*Qtrz3XN+yZU362htd~o zE@Ry>C_ZOr|Bj=C`GsAny6B56PHqA>*Nm=?pfEolZB^focawTU$sJhH&gOsb`sR^< zA}Je2Tm3_z{>Z(8ReFjvRJNYdE%h~e`YZ}uQ1kWOSGW0^^sjv-9?uxC7S=YDt4RK@ zA8aR)L-Rc|2~Jx7z&xL6Qi+;3r|?9yErFZyK<0gXitz&iQU9AU@^*!VN#j> zT$TeO@LAi>UPyNeY`P~l$Z9ZOfunyFR<4rf+0T76&!U}Y_d1oHCONiEIhLR`Z>UTt z42XzBQasj&wA=kV)x99zfQQE`Dh=n2(d&2DDWCnKQRVBePWq}-{Ji_ltdsuDWIb>6 zbkA-6)~RVhZF9X2v|ZoPTyZZ3#{b&f*!LNCn&X!P5A#J2zFQp)i*nHZt1Z({)!`m> zOXQ`#H7~Kr?7IBzd%fI43>2+cje`q0SpqkD_3;Ms6~;cq*4lH>7stf5mF&{=ek6&z zp?0o1x>?m0{hgt&er{ znBKddpAs^^SczVcT-laV&ghOwh)25l%riZ=L%I2!P;JLzFBYKkvr)SuAFE9qaT`BS zL~7k)hJJVZz^Xo{DeJ`keBDZlY)_wG{LlWqdyDEUomR$&?8Z8Sg5#kB4;hMg+tD0B zQANUNE#<{M)PzKkR=|>WO&MyCAxN`8tkk{jweEcKRq8V~{|YZws;BO@@{FI1=s0eT zF74~x2L$;fKRk=w%fQEY(Jftn)rG4>DnmqUhorD?*9Rrx`x+B$!9aa;^oZnRlQwtqD=w z%~oqMP8IEq%gA2Pcb0q%6{ED^yT{=kg&G{Q>M|@)FOW<|?T9*!;v7?OQ8TFgy>zb3 z4kpWu1ni<2-*lSl|2}{FX*rx&lX_7mSGC^b&DM~jQhQ!O^KD!CIvs+>k+l7pOIe(^ zIzD~POYFBXO4}UxdV^gFLx%7nB9pPM{JZFh?OtVp*-J+DA498HrnVVhXf@1|R-+@{ z1qL6>E)mmz=3T;@N31*9&Ur=Gx@a>g#$~)m2;KRVz=_0krpOduI=1nrt*D5a$YeInOS9ie*`8wmO90x&p*W7| z-ict*_~+(g6{zjuuiNeAUO7d$sA?QOk%-ahXwuV4#=eO+T+1IuFRXnZEUG$ix9)U0 z`;XO8b(G8H%$;+|5^vQqEa=2>q^^}}Co7ZX#Vz#=W{Qf5b`74Me@|bMU+g}qF-l&r zEGpcmGcSb=F^iT)R-q@hTPPiM{4E19Kc4u_^7=t&ux4>95hK(~Wq|9~x%YNXm;Afa zd>%oZVbPEWdq*fxV?Knw08ek5=X&!GD>Lw($F zO{^-_ae`u#!F~Rg1yjSQU46zh&4Bzcp=)D2)ipuyf^wtLlMmq_ipAS*x&6y6+-B%d z8E8AUKA)0#{_UHZ0WZzoMpa)eF_PJb9&gGcau{O{2X6sWe5Q@1Qn`lo>kZ5z~i^ffBFc$TBRp|D=CDAu2 zqi=h}R*2V}s`<6>^>*%`XSwYnkP8rm*z)3$T%2;oQsI+oGTFUxa^1}_$L34r(8?nW z(nLnI$;-~^dcdMQ`M2~M3@5e7ic4VtqUtMH}W*zb6jA&@;Q*Xi1Yng zQ#P@7aNb?xQ_gJH>F7^UTlsoay0$j03oFwrLX5Nhs*EDd@!L$x?sd=voFJFo6XdVmb0TSetpN462HLR6!@cCgV@kF z1Z!Fv0h7RJQ!jcTu8xuH0jt))5pDdk-j_VBxVU)k>EyD+?UV~Z>g4O?NtAgQV+-Zl zMuy)0;$m}r?X)($ObAqXbWf*p)P3?QL7BfrWP{Lz6|4BF`eg@A72U-BRQX1fQ^i@5 z7*T7Q!m1VJcgh^Yut0Dhr%%4RxWI);Ic-9j!Y79;d(c-R)*1k?W^ew z3j|53S7!dxeiCAhTJVW~M{b$Bf|=giTI*%FB|pv|}XS`}_6r)kQ_> zf97XqZUI-*cmUkO__$dY%CBwewjf=;8_Dl{T^v5J)lFgBR1zy}#<`sx_gO4Xs8Gt3 zaOMO-NAUe)x|Z^yzD~FIB{codOp5t;@o|>VH(+mLPa~a-ECaV<$j!eJ&d$z1fv%w( znpl=Fai8UIe)8lP$*0OniXapoh}f>*Ko+2Y(t(Xu$w;pK^$a_?LIU|(*43()@ zc>#fg_uNHxE+sFI%ye&p)^W(T%nqy0#EN3{@L+SYC;8y| z-|9^hU}lWH_t&>(6l8G{jCh*0@W9>)T1FQ&k*@`>apNb5;Ta_pnnWmJ0=?ggToa_? zO>U^At>0yITnu`9h|Vv6^V=gFm(NNQFhi!MhhkH=XT$^rdVF`X13d$1hhP&qOYlf3`O5@~G^!nqDdK=>9U z<1jefn42MGlb#Q3Lle_Pt$aN;S|F^T`y^5$K>vRfJrS8UG(S6saHgFhyTT?!M zvx3!Z(n)+_?W6SS?rwDFjY!X49>op=sUTJ*N*ggo{>neX?eXI3g!8lVbp(po*|W&j zvouwopM7|z?Pv~GS_i!z*utjA`|eP8#c37;52({M8AD^9;DwJ)4WcVW+6 z&s@4)$4PKV_I}248*9uzGz@jn^(FOpwbR1x?FN?a`t^#L z&qU2KrgO!6LgKz^Gn8hcXQq)t|8*S^f{DG?2fq79 z=oG&blT>;nmECM%ThjY3Ze3@gVzd-z3(Zv=DUXJaA>F0qK04wzvrP4EA?Jj!A7=l- zD3RD}_E!q@PAb)SOEqN2O=-+x^&fNfhu^nr3O87AtJpQM{e#-=Wr)|*uZ}ej+%Q^j zBlxatp&CDO*R#yH$RyiaY0)D(k19uI$>jph30%zpru3$Jhf2lAcGmC3X?f=UEM>x8o- z4a_-5KQN#(f^$h-ELaEzT!bb}pS$uMR_VTWuDMF77p)hO&leW7-Q89YO4Z2i0K@Pql zv?yhnSzB?cA(h>{eFx1mI@L?ZpYGmH`TS37i^Z#2%c1RQKB2wQsTNY-RcgAZ^ojXd z1cQj6U_AQ7agn+YQSJM3N>6zfwzdxPg8l_KN@85SL8C<$|d1X}S{% zMYZmf;U(WJ`#xEw-zVVXE z3OPEr@dmxs2;lUIEmY-^%e5R&onEOW1{b)T#SS;17L^;!=kf=91T68ytfr6J9Eb=mmpk-bAalyc>0i8=@Zdf#A6l~)5 zx_c*w>s`?4KGc5s&-Fk5nz`1J3+X81O6HAg!lTLY#2Y zPmTPe6Jl**ZG+`|>%M>^DCezPIC})8qWfeBU7viz*_Z!iq4q!vG^v)fTw0WTdVk2E z5Uz8*l>W<%qdNxOX=|KUUPv=`?McP_$P;Oy{3m=^-d=Z_aWwBYf{$%4j~DP@_y0R_ zI>@Ws8oQK7Q)DH-mF*{zHn2dH57Nu5GV#dXBgDDs1?SKlDfrzg_G)w)&Hr@Dvw-tz zq^#4p*Q@(@d!8eno+1OqJB|v;qnXcjVJ=`7PMgrFNHj-uH)UC4inxz)y~CvX4wOG`Zd; zp&*LGWPT@bt@*$6l!G+P@+$4Ic#~N})u5(Fxui1EJV~+3t6lObJDOaoq}}Hj#eRY! zCV%yy+ToVJHQG z2Ug#AzocGNz^x^<-rtCD1X$<%8UUv1dAOZ>@nUBCJL^9_T9Ap^4Zppe@?1Ah?@FYy zpP1=Rcl6Tk*da3_>xtP8zD`pJnRvyr_x^_|cjO1Ssb8y4t3Z6-0;$sf6tf$N>ETZQ zJ#v$K4v#n*bW{wqHu9!r3W-`*#|pXPh{KD-LfyqG9L>Xwx80O!sKz+Go5dLQwmKt~ zk6MJ)S+if#ee?ZRbiP%I!?z^|0D!9MBLMW*XIA2h?fxM>9UZb>$bEnsMh*&2K|#UR zcBgkRB4U$#c(!TBi!M1GFK*w2=zd5qRKC`&;#MP!r z$Je*7l#l%NKTb=Kr)6sqP%b(Ch>uhrJIUI?zG)S7Pvt8;eL&xKRa=IlSX$7PG&~%Mf!`(3)yI8j8*`wT)+sAcZp+HH#)f}f})lJ#sF8jJ ziVE4MPoF+GjNeXh9egA)pI;1$)8Kc(OIW8bk8Lpy5=;hFZbE7|rl=F#Cj34O*hqC^ z={C^hywPo2Ac(z1G%ty%ciJQ*(69h&f7-YHqV3SoP}k59&)`=szJ)ALoXw99N6JRs z=d%~wZ{Kdi7znJRr*P7=a?2`+ys@+-2%0KTv_Mt?PyJ@7AA|pFS5|LV7NGmQSN>g6 zq`H9ftp(<6KOvDQ?WbetO@mIS0uJZMh4rRK*9Vlh(JH^J@4s>~tuWS;?td6#EfTh| z;VQND^OeMGdc;rH$~OwX5l_gaC&Mow=C34on!CBtfpT!(_n2B1RfTb|{zzQvl5sp8 zw3}W#J;@kQ;yw&5e0?a4m>=N2`H&vJF^bRVLJ$i21TOdNb~>%%%lB)&q)nbJh)Nyq ztp+iLaEp&PQ`wb|pInw?4l(~bToJc0e=)`VFNSZ~y0>8Hw4|h@Aoxr`>Af7?M(Q}_ zAn~AV$P8})3OoskWuglWNGGLsBWD5{k0y8ex=9trcJa~Th)wxityalI9I-k?nIfB0 zEXby3&eVFibqizh)t5rf+SQb>kACSa+)0>iSCCnu$Tz^J*6oszATq1t;r?b?Q4u+q zW9+NfX*^_Dq?pO8Oa#s|OCjwQ(+#KNjAAwyXvDEA^|09z`)fVRARw@SMEY6C8Zk2X zfv!oVZ|rzNIQA^^TOgJPNs2*tpdhgoYe?xjYM9Js*>+MRN2j z?_JMD*cNuM=j+X16;duAv4ie`{Ik$z0n^9)$TkbamV@YH%aFEX4g%G#!~J}Da6u-S z9AamGe;-1GN;+TY)%0M4V-vll)hJnf$4N-yjRCag%M*>cwm=8H@?~~E4bjg7wj1%N zJD0ToxZZ?a2ygin^Xvf^TP8-4L#YnpGsKt0iw^P2fW@TTe_th<|4se)XKi(9j?#sJ z;!~%{ndP565hrPE7!b&Fuo9cZ9WoZt%j^du-y z)BY@o{n;0?mCfQ>9)2Gi3jqxsv0KbKGk_xO@xus>mOq<2Xb|MD%ocM)Z?td9DFu{4 z&|6^t!RldG#t0v_qoYG&I^pq!)5pI`i+gaD9{6{c|!nA74^hiUI3O`Jaz%4n$pjr1F%{X2v^A zCqBW<_Z7GSHMR^krAfr21IJ{~kJ+w%yh3cbm!}2{Q!*R)ka2u7GnMRVE;iT%u-w!? z8(n3F1YbY7{9xdth1=ooSV-mHPh^PnzuaGYaPbgi)hk|0-`G_R75j@!Ly`~orng2G zy?k$7zKk)4vktoekA*cmxM7F-b5=MUFbxgUGMhJm6A1ABig*-hleHV&^$q=LB>VW-yDZW{OllfQGLQaY?mxE9V@;eRG6^^Et=31ZT0T!M_Yyl_o*;7ou3{V{wfw6?qVyjOco8zRSBfcTogGt$MS5;Gj=WBZT23?^wbB*H;4`90x zFtS{9xKm_MW|tTv>z?chUKCO5zPDRzvqw7#ewGg(rkjmlW&uu_8`q$AeRaCC*`@!! zFT%BKMSE}4Lh3{;lTcCq6*Q*`o#_$qf}JlLl0L$gBr%tJM^aOxTFjy%4gXnj#Xm{+ zLl>-_JSzpS;m6|wwR;~wyp2-M@OP9*R6|~Be!b4FjEx~E6__Z9QwR(?28P>`i9QgO z{Ly!y1uSvJ-8W+Ud&HA83A}Xw3^lexrDhKvkdV>vBIf|qesC8Befc8yu-Fg~DnzJa z`0+d<)UKE09zT!$D0gJ@@%7D1Qn%aJ2{=KlL{(ddZrUH`lZ$VgI!m->6u>&!HXxQ7 zpyG1ha^?GiCFEk+u#?K2o!pDCJocXRM&*b*ZF5)DI}``*GdsjxH0$hsR^f&h)M_R; z7dFG?6o`|Dv3snZTsDy0d#j$RMyn68^B@r>x=%h(X3wH_a{QGhAu+Hf>JhD*5;Ufdygs{-d)9pE` zQ`FdVm7P~V-{1ulhEv|F;@+=LkkR~HC>v`6ugX%liog}-kbvDJ+xr-mc@I2-juO#tQqo~CaK0`5E0k7J)In)$bQtf z-fYJ^duX9>sGwC)85TSVjDkM<0#cKKBAjnr93hvU+m*XX71RB)g!!Fgz{&ykaEBnKRqsY@JOCjyV_43jE+nIy|A50 zK~YgO2pRyO0EYoQSdhBFeFEVDMF7ej)B*T2l#>fbD@T{-IKIX%^r%jqpvj0piVBjm zLHSp|v$MLpPsOaRcu0=R$jN!6#T6u|9lg6)%L3IaVa80A0sLu}#+V+Yjc(LQGtNVM z&Lt}Fi0O9jWD`PO(;Ldeq5T>Yy=jd%5EK@E=`6|D8VNx7U7LkwxsiZbnqHU=UzC;% z3ReaZQMKH}_@mZacGPRv_AEI$8`F8VG&v=Ez5VrND+^-$#Ux&3E*5X_a4jt!9xR^oa3orQn2Lz2eBayzL>e+Ad-(leBUhO9|Z~0|7(ac~gWH z?V);yG9Jd+c}t7qJ(Ag#;0A7!4A_VrKl)>B6oitN(1hdJfW z`+l|H4(uImZ7L8xkhTn2J!oy5*r}Jelt4X4U@2>uVuvTRAK>DB{~`?&^Th2BzL}xB6Kqma zDfnn8_G3UgJ8n-!_YXIJ{dyYURd>1Ey(5`#F6(xG)ly%nZCyYG_fra%sGobf%~tT5 zv8X@bN%j1FXb9>gm1|F5D}C2jwKy~Lyng&b%PnxYrPMr9M=Vtw6#eFaHJidjK2k)}=T=q<1>rD$ZA7wO#pY%^?GUAT(QrOJ*h z@16^YWlHav^)cYK()9O3aD+jrjp2RR6E!e)H3cpVm6=;vW&ibpv`w1a+5en^*aW@x zvN#-3mwnT$skfGtJzAl;q*NlTcRO5+1l;XBq-pU<` ze*6|^gdAMp07%ieU{M6Sm2wI@CQ`sIn#Ov66!@Cft%nw}e=?Kz*dvrWGF&?x1|MaO z`|}i9eSV8G2j{hmK8K?O(~^7jIR=V)o$l-vb5><^5;-$JxwIqBo!K@JA{mOOc?)1+fM?2?Ux!%C-0o z)`%7zgUCcRuA?tV;7U--GWd6}2SO=#);@|zW zi#On9y3-m+--w|A-@MD_9hD$8>Sz=9MbgII@mP7rrkt+CchoIz!pRR19S?ddSdH)N zj?xQAb?Z}PXKj`202~D!9^hTD5kWeDT$Z7w^zI`!^_i=izof+v$Dk#hKVDJNx_jvx%8aw# zo%eh3-k)o;V#r+$O8}&VCxH2&iJ{y4Hp!zD@x&SzodPC1?KWr^fl|S*2UQ2 z@H~#wB@-@F%`KBJ*Lm^o(;7{uc$&Ye^263H@%NHlOtXLYS+w<(%+e8OSJya6&iIbh zTCnfSY_tEf;4z1=0q}b8;6Wg&MNoTeh}utHwVyG#dD3mIOJRAbo_rGNut%$(HF5`v z_+8^u%)3H+63r^dfBoIii@`T9!_3?DPHB{OVv8@5O0SJ){MmtBG%UtmVF)@ymJ6V` zdGba7{9Rs}SL{j`N#$^p`keZ)6e;fgYEi@B07Wu7(!lO{$wHG15eZcb+E}QHRVGDm z@85J^yDA*pp8b)Tm|um;alJ&WyPX?UZ={1b(jf5+QTd{4Opf_8r()qCa4s>{0mr}$K2;s|OTS{#dawufg7=CLgril;-RpgDkmH7`-idIV9q1c%@cke^;V4aa?ojq>iI_vMLRim z^f85ypTKqPvql8-u!BV4=;)}=n&t7Vo*ctxYd^od+FHw!4Wc!1OEK&JDoB`EcVGVd zq_*;kC*b2@$qp0`EnB6;g4dPEj|flm@5(*UKmF2J|t+& z1_eyWP3hhKWKuSC4w`X|tFIxw%d@_4s^HaojHDO|CLo0%(ID;B{MFYvphB}#%2`|U3=R#wS=Uj??s__RajCZ%=5p}hysX;(9S>fo zuh?P;x3u9`xC#8AXW?%eeQX<}2`MNGiF_>cj4yk$|j{3p8{4AZp}9=Mp-n~ z0+U)kmzxLnY#7BQD`3P zuSzDD%O%NZyMKKm{9h+KY`2-cr4H%-f#6$+6S!=|$RMs9B+ddY5dijFPjL{S)6(uV zSkCdW4StCG3lTUneVBO@*a zcIgd^oAciYs0pWvC18I)r7F6~BsZ7U?%N_cZ&LWAk5DVvVY?vYJ{(xJ{8>gMV%Qa> z#?mq9?vMeiW)~*yNDy;^yjt|F^*gFT4HpoG@2JX1aB|F{HyyDwt*O=P3~x!y!_3-<*Mla;o?Lf8XK(Ar zBG&~RjZGeryYS28^81PkLxabWeu}8qafAEajA`h)_)%$nlghaD$k?Q<{R5whc|Yhr zMIT<%Vl(zwZnUzt&ikUvSndOS` z9lv&^(@7tzY@HJIHI1Vt@V!)1_EuP#_)8-0E`M~ML@>?~i%e=IKF@W&Cmi$in%$AO+m-|E`xM(n3E1MKcZKSS-~ja zgpT^pxi`@t$`d^#n9d_NzD^s`3{c(vdcLeQU+*AG z2F3Dgp_u?IC!Sx6%SRJ(F^=Hi2}I_-r216_`HVNvE#l9&<3d|y0{tmOXru{~y`}Sh zw9#!Db0?EUEQ1a5lA6>`EUiLSM5B?x302Nl5EEdBhH3-Z;C_F}o)ob#Yp_}%x(!b1 z>ElNco_ER#T=Zf#=X8@4YN`hviKVjyp~=7fAAjiaL^i7OBkd6^YTrl*yV8$OE<7?Y zq4*OBCYNIjKLlPe*R`20p8`oy?HDl{t>TQNY+KQQB&{`Fst@k_@t2bIOnEw9_g7a54n(v5_*&8N`az7}RIk$^<264H@3D6@2H2I!)opIxK*D7u$|TPXL*vIC zq6oNoh0;p|9SCeHd6*#xSchLHWZ}|k(`GnS0#+10Py8iV*t897H_>0ac z{aIUI2RfeYNqHj%%KybEO~_VI-h`JQNxKzT=W?zQczbZ67ZE`KPDnw)Ip&a4fFR=< z|K=sC57fqP5E4`lo(f^)3ZoJ`>ztj6-Igal8E*hh)*O5ZnI`mgyqE?}U_a3G*$?wm zQc_6s&ejRK12H0>-=xn218;Od)(911s7d%Meo^A{MVEoV##fHAYoozzdhJ(WxmzU7 z2OR$)nkuf>_#1Xo;hK=5OcG4wumbc1m15TUb~yXiz89n^qz6sztOwQy;0jQ1qISK3 zJi}*!I_Omol4k|m83H+v9~EsR=8m+Xd8eEc`kt9n7dRZ9l9?(+H?;+lU%GV3rCJ?90zJTXMPLrV1`S*d*Ely(j^oWwt_mDy=AitHe3 zC^XvODnOtg`R2Y$ynN(7cO>MoaiXSg&S6#I?|O!%TK@rvvYQ<3_? z)|6C8h6FmW7GornJpE^fA*PQ;tIjIQv)YrwJxV=INzR?sH$QHr6vzn61jmyAa)FYe z2xx?|{HCo2^fVwOptA=+o~sfZSApVNYq;ts4E-greDw>icf#4BInxx?=ym(c&;m!AK(N|ULq&bMR*<;t!*tFI4H)p9E!7* zVh(X=rt+#a-K%S#UWNPujeRJ)QVFCS7?&){-c*_nm+ft0_3oYPE;Zm~wHm<@QjPh6 zZ@rw{sb3<}Qx-Qh(C!xa+G3`?S=p!o)G)6SEg!IHn5gc}|rlx_bDGeur-EG`eto7}W$( zw+z#*FxKMF>mD%mqx(G!9I~2^F1XfDuU?@E_%h`LG$;JQ?BTS{y;ln02&;OWy1_K-gN;D`9yck5pE5T)k!$_ zwzjtAPzo^)vR4krV%hM1h*EG-yQ_Yf0=YOqkpW)$Ze0%=fIll%D z*o3g_4+-c-88)GipwgMJ3p_LdtUbvSM%ILKbU|M($I~^8%2b~T8;xCBpMgl!vw|AV zA>(*IWc_#f354hTM`!$~c+5reQ^j&t1AVn8SKl${-t&qb|U^jm`NTh?frub)wU>$w@)*y_=!6fwB5AzTu$hj~kc+nP_ zT)#$lR=L9X+tLkle9ZA%pfHEGO@$BJmCfC$>6~0vgodlEK+kk#0k`mLXr`iPmb!D+ zrJ5Y{NkVCM+?FMMYz?ptT@oEedYU%kspF$<+764(NcMEJ6UZhFgvD*)x6c4x_~Uu&6M zrmImn@0)gIQ)~O+>X>-JrpZEFWPjoM4Q($}@3(WeU|ur9uCSw_8JXg|7;v|KQ#qXd zT9~3D3)~Q=O?$CrXVk$?e{C>>zGPw)%*t1h)@DU4fQIiRRkM~MKwqN{tW?bRioSt? zYcOEzt#xS#M(^AHJu5}D|5tB9uMSLU|9nNx8mXKDDkJRC9XRiIY45WSCU~s0z}z3@ zfIVWfK*pUxV(-GP&k^4?Pfqk_GyKm7eI&3{o*utJFE^^DWzZYQoE2zpOAQ)WF9rJ( zxyu)xLmwr@OuGv`C1i5VtJDC8eUp-y@6l3@a8-_+_pQI;-ydNS!3=~XXpnG%;R1YG zSEtCM*kx)_ccC$)2_pn>6zI2}7h_o7Sk$gYje2<91W!wTj{83DQjx0{;o(g_&U!eJ zS9xUV#*vO5R8&zETel_X$K^0r@3_*!6*8!B$VKPrR(S7{iP!cNX>qWttLwyFnG|ec;KvM0pkdlQd4+hpogZYu;$%s4}iOXQOUTtIK&MAtkV5fkY z>X(RxA1K&ZT+9pTYcA>=zu4d1GzYk%nAMXY&jo^bFR+ah5Qg&Hkqi+B*E9_l4)@_8 ze=w^*2@ZwZt6L!VA-EBGlv72050Cb|TuYBos{@f7%KTEE>HZl|h3g@;HDPRC#@l@& z6(4qZ<#s8gS?I~%VSn!`wCNhEG>7!Ub`AQ_Q5+o@Zovl(&w^_jlv1Yi2uCL2@bkF= z)#&^>RM!B}KT6b+i7>Cx9JQDpnE)C*7#bkqA=~h5!v+Wwm=C}+y!%g?9RijK2zJPc zzuRM9K@S283p)h_`V|e846QdrXDh4I2ss8;8Nf+*Nx4D$DjVYCEChPUG=})sj4izA zU7dD;y|i2ohaiD6I?#)svj;*FUP5~T1b>8M;$8!eAEu{YlJS?5h>yClK~h?J`2CQC z&9M;l7v%FJ--F?~y8&)%lh5--wZY9S-b}vdFX4W;WpPXOXVQQmrW$q1MKaL;2M9QnehAWs&;d$qLM4zlUU`$#PorYjbmve>5pE6Ecff`QNL`?F z;qk>Sk}$>NkS!3%+}NGj8;xG}kc=Lz*1FT#nuC=q>{DAH=ygX7u!#SQb69XNB-m&- zLtBpIv=|Y~^FU*tj>ZqzU?|=i@M5<_09*b0>Xo^?BGgrCtpYzB=WHtmkGQxHmkyHY z6~kX6MvAfhzfYDyQ&v~(=xsry+^&|nqZiPHT+asSGFR1ID3opn`6Mt zAQCtP@-hCZr8=J~0YI_HE`$6hR0VVLG^9pzO zdXuD|A+QUXSdfTPDl=~m_9tM)K_ddb2OKByELE6GPedG_n!lmQOQN5Vys9!X?r@nV zz%S-IWNSoj?6QJnoKn~E*Qo-M$YrJQ54oYl>(Olh^im9X&svH?ypj{kd+ZzJXld|k=X z*x~-z)%pfNK8dOhmrIBSiK98DRRq{t`@VYp3Vm$1{Kb(nR?{hiwK1A%ymG0Eq#L2d(Mu zVE+fN{hc_OskdQ~aIXfB0{4lCYAgvSihg=m{pAjsJ%DWWt;06BgE`0xT^(4@S- z#s3;G{u~*%yR}nbMUbsxb+{4>J>(=@&A7P0@+*q6XVz5f4B$_c5MP)WAN8bT>`ETthcWF10M z)-2U2ZT2Lxr5Iytk$qQ@sZ`VvSxffPYD=_;lG1kHkN&^AyzafPdw(ylbABynjPE?p z=lOiz+tcI0BeL#G=E7h;vNdd)D_JLM?4l3|5j{+zO1h!K!IQD2NfkMB9mX5YL#QZw z12=AO!$u$?Gc23&uFD~!e;@rIk*NK+Q2=|&wXY`PE0L>oIA)J&Pza7}ZJqe|Xgfop zFK*on^$P8}-TL3{pB;I+*Y%fEgn>-Z@ZT^0)&JR{-$zb!{1xEQ8hOL#y;G?<7#P12 zt2%lPNI;3=k)(u-BUxf0g-DV9%hN)(T~&Y*36=!t9NJb7YP_(+xaV)P! z9!%#NzsP&D?%wuWqiog^MO|V4*aKw*_CJ?)%V!>I&ly5cubCF!F%sV8U3%s8bdVk@ zAEdLu{6SnM1kp8iAGuYP_4EAtgV3xbG!LQj;3I=x1p^;cfgiiK|I-I;!6og5KR0I_ z`>V~96=jLz7*H9&2LYei6p|`~q6mosN+8%Rlt#!o-i(ZF0;j5Xaq-W5D?^#nJTH=-3mxd*ve%pE!TL~w%&J0+N-cI05{c8E)^)M#YE;Lca zFn}dIdbT>}Edd?=1vz?}oF!io@e`?VF{s@8!b`XSx#J2#e6JQ={5nSu(NwV((MIi< z@yGCC-1srkTzoR?_V1r#QrD#x;ADf?h6Fp+^r@5BA`rE^9Utn7UNN>-&j1IrLPP-Q zlS%DpLGbuW-s8zOou;>URlPsua`g$8HB=Rl$jUINzyu5(-BDtolEZEc#Stwye?Ht0 z|L(h<4UGH7P$QLL_-SaTIvOS52!M`AQUL(`HZ+}3Ye6{Zry~jNAPjByf%N_nhwcXNZMefy(s z*i)Z?TT~IuIP!96toX%u7rM%5u+b?#vlacR8B@tVQFC)*{D)kv5(I?I!sHGUW3wyXSWowG0IDjPMpt#bDFT zZ{O5!<_@m$?J}R!s{dPuRI8=VN?Mvdd7mA=ObFg^pr3H?jd8kPB^g(K8juViSxcuz zAP(@|ffU7ofFO|)>#;){>cl7OTr6u(qrdjkNsk$n$(@Y9Z^Cl`6pQS`gZuXj;W2`Z zMj@2VTfIaOTyT^dW+D&_vh+P@?NNIXTO;#u>m9S9DR#-#2!mO8Ahj9njk#~JCjf-h z6q#fSV3m#>ayY-)tIjg{aQn?xqem;X+^_vp_3?OF`D4v#$Nm5E&LrgoeVfpT?qK!r z*T$|m^b|YCO*2hHDpm|i(2+w#0?^?UuQ{*b=>3sxJ8G^vsu4=FC_r-h_M?TG{yRKMrG}BtvcDUJQyMavanrG37wQSuU}KWXzu=$sjOH>(H;XyYO=~-B_5L#CGzLTW#}n=RB^Y z`P;7nI+FPDaN<}#4gvj#HIJfzQvlTg?*tg{lBG*GsV@NmeiHQ)L%En?`L&bxoIwQ< zAske~|>9k+bf=c-`W4Ey@mRDWoABfIRO$QB|VP zMXAPKf#f@S{ZhU;>gwti+&e&QfB%b=w)h7g38wNO8ljWmfrt*W5b`7RMM~WVtPe>% z;T~{&qCbKh+X;#nn8WaWH4ZNR@v6eL2~ta7msx&Sw&mbpV|0 zx{~|epjj~eMi9jWQRQKYCi{$@ zgXOu$Zzo-_dH%}<02Qn@#-KgD75w3=Ut4Lf*%` z{$vjl)j(q!>|ZRvTRU(7iwy6W2x^IR5wa?122dZs57Dcv{L6v@-cNnk(9t%<2pCm$ZsgzR1@lIT%VkmC;tQZ%6;hbUdI2TF=l@J9|-cg2Qk=j z&o#aAA&t!&V_ESjVc|JC5=Qgyyj&$#k)b!(r_rL}cPUPFI6Y7eKgxJf#9$ocfkZ9X zhdEc7xR5*MZF{q+%ZoFRGuY>i{-DqPJpXtGSN*-KagtcOk+;u^Ml%npEvLbCeWBhP zWQtvZN92z#*wQeRz6&@WKnR>!Sh<)Y3x*jxcVSPV*sioKxeFDu^Yy0?BfdJcp$`Rh z>U+eST)#&sj^I~uBAoYsokl)3`lg_!wMT9}uNh?~TR7N4wj*Hj8lL$`6eF}6+c$@{Y>Uu?a>7q>gu80-QAY&aU79|HlPb+MIp#?Lspw2GnX1N z9=nsUc3kJhx0ZThP6q)1{5bEmLiR(*5xr}!^eztK+O2e-Fz1GxGSEoSyJ*hY&U1R} zBS5iyCN2os`Vn%+Zm4eL5CLk$<6J=Up!flx!g&_8i6ZN92%rNBQ&u?De%H?seS8`? zN^lH>&%5Aa%h(@K<&-dDX0g|bQqvBx5IzNL{MyUSfDoaAde_S};atzOvjp%sn%=Z1 zd*a*e8wzQrMmMzKrZL>xiH{1$5!!StbO=Y@y{Nk7ys~8p_w=@T@E@I>j89XGGOoRGZqWZFZLpZXPproMNeW*SS?$5t(c z5by93AoUXl6;sbJsnykBIGE9^y%{ndt22}A-+1q>=pD(F-$)>l)ep62qgo@TO@kUe z2V(^<^ngfti}Kwfa*NTp^}>Ya>ndoYj=6a~aMOeU0V`k@`ZP$&3hM0 z>FM0hc1|6cFV|csv-1hF5#}QZmFvCjT4?S~^V*Fv<@C7f%F3PL|6of=3klV|0GlkP zVkcexrZLWpfAe7Vg1=7SEkZZ<=FJ-+TV{Fx*C0LO8o^pX9mNSuCX|B*uL`Ac+-6DK zIyS*J`FvJ|W0rq4>jjA)>)HI|6U_qzoWz1i;~J2HsrtwCYWl839fd&?qY4_VH*eoA zvb9&%?RxRzG`1d%%8yODX5G5jT19FA={V+Do0cZrJ-niz^0AN7(!6dd;xSb3h0~Vl z(#Yq%^vgs~r%`LKyL`8~(w;Y~>N3Ff;8oDeSbk2Y3M<}AZ(1cPzzaZC43n9oT$ ziT zva%_)>=7}83w~Mv;sZD!1Bc zrN^UFCOh@6p?c$>!8uxH_P2Y@(>-fts9yXQ8?IGWE(N`YXNvt@v(-E|1+8=YNX7n( z){TO%?2LXuMJ$^TrC734Ev2r=tRne#^AL5Vw&f{BinA)OH1+fw47~Ia`SL6=bl8)V zo7l86H`(RpVJWs(GrQ6aGUFAakUxe=nEtzv#Vql~N1*K8<|TK%i(QZtbn!vO>Oe^@ z+kz~b)g7r~VHGb{9b8fG6K%ykQenO_QHlaCtNe)y#DeIRSJKZz>4ISq+7+xhh%7H1 zEw^(hwFTNC{PGD9ZLD2rhu~!(J{!!@XhhK!uRXVw#{cB~5rWQT*~;)+`3}q$GMpN! zdFpXBdTy6Y?hJgDCdLbZBVdt%Se==Vip#Ij8Gx zutmFodCo}G=^`U3_3`4uev>gQu9Pe{{Y;(W%+He69>%Fn5Q{6<8Q~XFO(=3t%ifD~ zfV1Cw?_SaVGZ}W4F>-R_Tk1entwFnjP)*A+o_WzMNKu0H7M`hJL6@lW{W3L0vNTIid#k3sx~@;iQoIXG6;9WwM?E7^0hwcBzgDWE@$qmmQuBodF2PmcR2VZi4x-Qx%CzoTGc&jQDVK3`T3h`OpdiD+&d&YYvDJVtlnq=OMs$z;)Eqg?kdCMVJVx#Bq z*q8_v@W%y2oJh`vwND1X1D7j`!KKvrlI*-f;BA=YJ_I-vdcnts(jlC@1vo!;Bcdd2 z)5Zg;Fb&nrHy^(SSCfIFhyfX=Oj$=c)NIc}D~f@%^|cTP!H4DMDU|XUidkVNwuSij z1^Zr3VajRPGVf*y1~LO;jIyB{%+e&v`SA)`LyFpt7=?5{gM*Xjy=|!8hUTY6>m-`b zI5(5kaZiGTWn`3VSEn0W6bnD$``4?MT5O{pylYoR4X;^N#Iv^*4vR|7&4)73>EmRp z6JW5Ut1+E+%H={A6TRdCG*MXSa0fZ}RXCIa{=>wW3LzW}P83jZC=MlQm?5A74GW{M3g~QbDJMx+H7_e++gMtI28Mw3fS=LK0kV&}BOxg%rll7d8Ht0dt+R6uMb!Qs zOm}EKKtjnjzkn_r*!Q?dtRbL2=S^E_R3wTTd3jkdJ-tENVRf6EFZ?rOsjB1-zPSGM zeO4IdLhJA+{yrw}bmN6pmya>WG?J>@x0f|X+1!@wobD+PwOy%ypB%QUlThtvohnMS zk8_w4?X*VZ&={Ym<34!TR6@atc!sk*;H`HGUUUKY)cQ`)f^NBcG-6PPv$V zt8-`1KI-V`P(P6G-e&tWKS#_*g{-cYLx^@Y`6#Kv97QK-Nu$eiWS=P1FAKbT9A^Xi={C^r&rajuiL*Cr(~P z*k~XT@e)f;TJDC+z(J$Iba}&g5r3g*v$7OHw@JnqaVTrOg1Z6pA!ZYb^tlHyho3VJ z0jj_P!eLC$ZWAbbedJah`$D4|6|MrnVFoNUVB!Q=sC2}#%i5)9zf0+LVo5Qo8=eKQ z3>=cOmpJzq@y!XpRW;L=$F{RXWQn~gGgF2l^kf2C#$|rsO$EFtcrv?qC6P_+)1o~o zs}x2j18@L7YHyb!}YgZtrbQOVs_4KqSHjwTyS~!Wx8r6! zy1@@WF-`#)nhl%pjb_FbgvR415EK-QqMFib3Og6ciOv!l$}m0;9RU!3prBUQyh?YE_7N&7-jy3prk@bDmr*EiNrR(m*EMAX8xc&7los?1Iu2 zM_-fWgA0Ez#!ro5oKuulwp=gBuG1p7x^eHAZ)L4jL4t8kmhxS{>d3e^=OX?bbY*6r zDWkb(rIWT-d@gbFFg$*nZq5BQ`H;ao5qa{Y^0Ri9WHj{xr`s~@*(>z>@OGt{3iMRd z7%*=@5Lt)b9pE$$c+Ip^LdPczzKYDo-Xb&ZxLYvJjqrv@~m0@%IVC&jY<5JD7Tg0bQ4~>W{(+`F4491vP`O9 zel_qS3B?&9nrj<#kpfd4tEZPE90IG_Ex9pgG3jD$VnNFM7%VGwn@sGPD;HaE`=lq5 zJ@6of%3-J@A9C~~NU<;XY%i14rSwhbbKfaRCQ)-5yw9}`V-%#Xmlt1LmuRJHC7$v_ z&r;$YL`*`_^je>C0fdVQufjjjGQ~F!Dbuw#CCzyw*_Jxed+L4^LTe*~5&s~#`gx!Kef33K9%$si{i->0Cj^)t(WiHygXwGAB2~9}p>8Cd<5s*OVV9pIDfLyE$)PKhp0Jq2q$=F0wW3c3@`~asY z^>g;Z#~)>VSX;tH$*O2B^CvNbB&DNqw)5t&vkLZzM$qDU(KC|91e*&q4?YfzHmDUq z9)Obq?lQQ`md;H|L(RguXdKTYEhYrRg^P`HfH_CZ)ZI&sJJqviPeJd&(Vcq(xgi|W zWaK$_EKT1nxVo&Rbrlc8W;O{Kf)b#^PF#{$Jn6W;A80 z+pke5>3;qE1o-<3)8s#dv?Vu@jN`h3MP&G1SsQM7il)`5VWs`jSSs#HNkYUK&A!6U z_E)bmu53WhjicgOJJwUy2L*evgEM*IP-5UD#y>F#D|XPukeV1ZdJdHreG1AG29ShM z+8JS9Y1?D$ZEN4Wdl!yw6^Iu=A=%MX9-;0Xf07^&mGdv^6=o9@UtAkO=DA^PPaL9{ zV=OI0RkHtx2+(#SLts&|g}-SjGQ(BlFYi9ShHC9-5>%FOaAkeQWZHRCr1<5n)Ip$M zKLRc;?YtuiZQZ|+L$S(&p^X9vAo>(UjoYEahn?|Slu&Ti1Bd}P3=F*Gc@@HKe8TUZ zRd#%~t8g*q7RXatK0Di%cvgBg8t#R<1{@GbC;(glGUrraIsw9jj}TY|$`Zy}piPRc z9A+-Th#TDq5e4DaH0Z|~Qc;n`a0s%3G|a$1*@2ua|fI9_s^y#U@)#NgcexX_SLu_eWU7GFImg=2%JxzA2Mw@aq)BZ&Bq-(U)y7s#NhEl8_mlf0z52-iFr^M1@SUK(f)|FV_l!`TSuV& zV*NDJm|)fvi%k<2vluhr4;Z^J@e>NGsvhyTZs$n!d|H(MUkEB(BA2IY?yXl`Q4~Wk&sIf>qc;(cEK* zaQFy;Nk61o1`-(7=JgpTTccXw;AScFLdXn#<)+S&9Gkd;mPDNcjhGq}jQQRwmtF%m zg{8qKL%1G~t3V56LlTpPpf8toB+{9}LI!Oc&UNSaDk1{?s}mo17{0d>sLU`8QQj`M zQ>zGD10C`ehf*@n^!-H>Y`kg8n8QsDw7MF)wubFApR3MBhQtz&n?MBn_|tZifLBWw zX8gXV*X9E$AyNvuZUcgJ`Yzr20AK7DEO)#0#%BMK3vC~@Ov^OBTo}hD6la;8sg7c? zL}-IiO7^K)tbN6i4t1v`D!)n}#pYgIqk6$?p3E?ulYauIOP3yZp*|$$0r|s5!h_u*!d%%Ypyk2@2#eoAs0kkPHq%($VC6?UvK?LqG z!ypFDbtgI6cv)Q%SOdlKEDFQ}MC>;G{k!2g1o6r)5p*FLF~hm;YlapY?33aBd^P<+ z#_O}&#P0QM*rGM>oMR|FMW|?~{WdfnToQw2i<$!I5(##|p$nZ>)@%9wCF%rhfrRh0 z{x3fQ6NW1a6e!3rc{FA`n-m~HHJZ!#=FnC0K!b&~_w6Tp!UmSA#lX%Kmx`XLZ^Laz zmlQBA<(e^ADACww&T$WhKZ!P9{*8ctZ>z;*z zRRQW8^x@#e%}BQ)+APZ5BAa4JgHa=y2o8yvEfeS~L#(GZ_M^ht_H4XCW$@CkA;sB&QQm9^zO`wgitjTg-@ z$RsivYO|;rP>siJ&Rt$MTtj49Zcl&lJo zE{*w-_W*AgBEeSd({n{!`jKfEc*oJFb z{CsGTDb21m*0I`&7sH0L+pY9A-KisxoGJivf%n4K5;L8PS3om^UIX(UpF6daLhrZz z0}pMu0GBABv_%XHPO!O_-SP#I1y$ZGouaBcP3kcYkEmC;^7b~axA72K=zcgdzV1r6 z-+#{cRCN6SIFhfpLk9Ux(Q~DOgm7WgH2jDEsyB$|2*oENb4sAYTq`Da^PCH`33caRUzA8=8M#G+=L z)%UPA9%>H=B7`Wbs%poN(R{(91G-jErGq9zm7!+TR^-emOW@4kiAu$_ z0{mQ%-d&!r!RBg8ESUE;2MalETx5)Km=4qr;AqhjUTGJGm%e?vl1xl5^jil?pjzR# zMFVHI8)c9bG^nZj4U}dzy`7A49T8VD4R!o7F@ZPDk5637GOp$?PiIQ$_w7DZNJfg2 zbk^}68`B`@*bU@l7D5Z6dU~g7nsMpY?Apy*KIeS(-R~t%BK=3;xHm$}Fa}f4vT6J> z3au&-Dq{Ku6fAo(v7``>4o@=V&Yk|-tTh*#R2vZ+Yj?4AE+y;X%A}LBpbz0YQru(i zdbH9J>gme`%bBjZOIXxq-xPgSeP$1H>90dCJsm}=H;UQ#Yj0lhVpTxvV3_UFKnI^Y zWV*S>(nO9YCE+WN=k_8_n1%h4YT>$vT#KuZ8tWPEDT>0;wW%})XcQNzy`U4Z`TN)N zbI}1}WkXpSqxF`d$R1)Xczyy917VTlXr|CI+Vv-nW_xI+39Q6xkDF)C0(pwv1T+I~ zV-g~c?zDa6P+fcW#0~SxbLk)AKuaMOf;XqoPhWKrb3j!@08b}dZ|s$_JoN%~^#ccFj2d|uX``Rd&nc)M5FW@C z&k=ED9A-AU7&qeDrWJRbl%rNHe$6s#oN>WLIplLTqAgUOPFiu@iEWWfwQO{=y79G9 z*@P##NwR@Ngi1)Ua<@T=| z+S~bMW$E64tPan28NHPt$I0S(k=G3#Xrd(aLR)i{|ASNKoQ(x5`TtBm^ z$>XX)IQmo>_K3Kbj>vAGYrSFVqFoJV#0j9`EPfAnG}vxld5QIFTlMpjx=z7~GN?qL z?BXBimsr_DGyfo?VO002aCv3N>a zY>LJQKddZh8o%)plP5DTOi&N*x#@}*E zyJA>izj~RB+7srVXXfm{XBDHsQFywBXT`o>MxVDf`>+k;OE@gb#gdaC38HFels$_5 z8-{A4T+9l`;Jk)5@XpJfWfBFq7shPDZnbNi@C2JtPL1xsOt?$EK#6BW0tNc`#*N{# zCoDk9QprnZhJCiK7`!JH|uZG-6a+|zZ*R$dC?i*@r4 zSgcp3WF?Q_t?-#=#Pd|~Qd@3s2{5pHaCYC?0jKIcijfooineIvMMQAsB%O_@5W8M< zRC>6I@2rKs&84>NnZW867UFE=+Fa!~@fN7@jS8>v*l{b@s!;Yc zMyy>l_!=*-D^I~IM)|FsrF1CGxK4pCNiQ37A2IIQvFCs-7vpPo( zosMnjh%vnMCB(=63Be?BuLZ2l3nE=PU5wTtvrc7J+^)3`E!Z@8T!4EB$N*=HFwUl> zqlDS1{6(qRvGw~7wZ(rTFwnpW{WH;Z(Nl+`%>fDcL)pDCF*R4O(SYgmV78F$b9i1Y zc|SE4oi(O~|D9g`iQ$Ka4tOe`hVrUCtL}J=#y*=8@s&3JlJ(ujhizZ_K1p;5pSxwS z|MpVBUyW{U3G)H~vOdBZf%`08E96###M&xtzE5?QQ#w2iPNN0^7Qrp%n|H~va*J8bz)vGV(ihVO-w_KyO` zI$ao({mdl&5Sj$s4`;a7y6MrXBxe6j#kI+{CwN{QXibc;mDFbr=%HY`@a^>_*IL|~a^=7vALNKJ3BS+z4RCRvJCdX!_85Clzltx8fJyGJ%xXzoyZ zp2v&L>x~l6aQdxFrE-VT$@5G-nz}Zu^PRG;!y7rHE{9|71&=Wj5J8-nnxi7!1!9J* zSQkYvuSbBro_$Bx1YCjdpzl3v6?uF4!b6Lq4VZgmo0qE&fG;rQ3k76T=_n>^vyV&b zx!F2=0{%mYq+w)7>f9eR7RU#Y*D7;9Y{B1*W{9j*KC>{lR?(j-T32Z$e5^d{CTPEi zS>9Z|waOuOCY&Ziwe4HTCVIUDpS{&z{#A16-i$qM%JXySmycC`KLR%ujz^Igg<|=- zI0u#bm^bw<8VLu?)F#jZ&yjF1Ywk%>h;>1A;vH?=YnJvMB1rVam=r4V5BD>k!H$X* zIxhhqJ*+RU0KBxf^T5dujRQt88Og-PoQ6yJ2cYdv7^G*VvXdLK=535JFFMZb?}f@1 zs2#Xu3}B+k6XO+rZ|#keT%EU(3vuq9^1zuwm7TP^-swV#>@j3&^@hzt;}FI zR4k0VSL47aE8+B+|D09t`0ZOz2x}rOh~L`ba1lDUZMSI*B-*S6BTnLx0XDKaZA#~I zAMadIFVr-^;o+$MxnT^WXMBRQWE=3VH% zI0kE`m{s}L_R68DQ{`WjF0s_?8q39_>Cjrs(bq&MSiIyWhqMQnd+X*otkok=OT8Wx zzeuR!V%iq3q#|D3>p|QJU9R1~nD`(-0xJmXfMNIFb&>3@#FA8IijKWyV=w>h#P#O; zrrk7^`Wb~gmCMbWPw~_@tx2F#pC6{YsoX>i3?tG#zSv{ z|LyT+l-7-UUDH+NXZD{dA7KO~ERza-Z1&_0Z9?%y;v6YTLLpQUs5{}tf|2(SJ|U*X z9I<02XMME-xs0p|&ovIh3pQSwe*OA&Os+|l(<=OcAaf0Oc1pd6|I9^H3C`JF>U^<7 zc4gn8CRVw@(Ux0v*l<8v*sR;-+wk2}kCw%{t<4^~V0Y@j-r5S|9cn$PLEp|Cjh1Av zp%;P8PF-7Du_O$gx&hw?WOvr);z`v?Al>4^bh>Y*$Pl5Sb^HTw-BYV9 zk)(#AEpL>r_WNXZf1E!p7sq9mDF2rZzPjM@ zal$k}{IajEpMRC*hSPLOeim}BF-4%_v9p0RHhhMnC+oDL`;A1oBu#?H6Ajgg+)vG} zhC{_`DxdE&X46Wz6gpMx0?5XVY#Kmh43T|b^8M_n7isZBnaf-)ryJi5*S}d}S26RH z(x84BVwq@au28G!Jsn}3v^Z9wPtlx{S@UtCheE%GL@tp_`^%NBq)_WHFrq&J^M|G% z^s0;QcRw99&Cyv=;ukSCV9U#{31w=*_DjHPUVU|S=~{Ju!)X)O74uXpdxo+&)N5G0 zFj>ETcp(;&BZ&1V+VXY-<2SC1vi;D2LWYxL2?rgg*5XPDb zpX*QS*m7bLnuAWovv29_*Y zLZOsRbMPAQ2t~!&yjZu|d9lOL?ZKy`5vp0_%^eiiC_#U~3?he%idzk>wc z`d+5G$&{uvTC8TzDSY;P>wu*LGpRLc?2Kbn(-|lS@QxPyv}344?*_pgzARrT;Zeoz zh1>uhIV4Mb#9iaAxR{z;!F>fc853y{0W1Jn((M(fHx2~>N+&lCLtH^vC;)GyLJZ^P zReWeJ@25%T$H%^Vu$tl5kP6;|dH|{98rs@3VOqc^$w!=P1>%#wMqF!$#7pC#GKX_U z$Mgn+&0iCAj-Ol$yIy^-%noQKVLE9%x*LjtQY!T0PurmF{6Xg|!S zl>I7s`ym7euymJ13#6w@2K^Y2iiGzD*-!6ps)e%;iyu!GePI08ou!r~T~1E-jVnC@ z(INa^)A)SrzTnDbJ3|(Ht87^Aq?WSMI~M0yfjW}l)p3yGL4oFRF3hPOwB5Sl zw889x5T!{*Jg;3y+{AZ53do}VkViMLU(mxD|HyJvE|-VC+fvGg!Hu6^HPz_3{puV3 zXN?;OZcT3Km6z-YgUSGsao5f-;8+NiH)G73g4K%>NBsu7W&LYWJ2e4E+9XlmFOQgGs8HJJd8q8x!^^LB^Ls@Ya)wT|shWHsY3&!ns zA7u-Dkov&dpi*$zP)KLt0!L|~yP&Db@Z9KD>utKm$e)Kp_5U}-U$EF=Pu>rQf>PTb zc@q9LDLR$Ky}|3kUM!4vxH_ejWAMwdx?m%2Q}xuhp8*odjR>`_4)Gsg`2v8ClNV0H z`>>i5e-doHnHGw#vSQV!d;cd&O8fh}t3=sAt``8(vUsoUWv4jeV}rl0mIO_A9enLu zDX`K}M^dWmB=x{(rm#k~cUh#jtvc6jnZKrx+|q=Noa@&6R%`-wVe1JYiGd)G&~KsH z$3q)7DkNa0AR^vc`RFzrS`eQB-NkfNl7RUdj}gK^(f)1z3qLoxw;jCs*AO>;C~3~J z$t@cBZu4zSzP3{<)+`v>U2A;%%CjT|bHx=hO2;g0W;={Cf1U5&Rj8_)|MeLjCXx)S z&mS$H0pH0zQPK4r=^fQU>&aEmttLfWcr-AnXod7Qd zbhNFhL$CSwipN)+XYZ?;w0#bv-rA0`6HM{G(>C{gY!@|7{G4!wXz5CPQPL&ZSOtCq zWg&eX9hEr>lUv^2@0iG7{fZVCOaQ;2KPo!R?&10|4H#N};Bt3ppS`}miu&I?@M~G0ceFNXB^PuRb{<^sQ&+$< zCX%?#L1?IFqek|`<7S{+d)EHlq-oM0S8|@kWT;IW4_cbaZ%SrDh*sK$4i;R&He`+k zvmfWE1XEkP<|t9xQhX&QMrZrJ)!-gPXy3klBz;32Sgef14z-kmz)`^J0_KBi`4POG zDg}$`+(;?8K<>CsJaN-B2L24h0oB5e^O1Ne0R{fYOMWrx!3c^6JnAc_GxivAzb+3e zVFg$`k=9zbKI4P(I%U06Hz$VP7uD%|^V{~CP3jFTbl>hUs}KV@+%pNrtQ*OV8Rl{RVo+KEEo(0VimcGJ-oShW?=hcSHLpj z?#Vi$1A*}o7QMsqL+oE<%g!rkmsMW;*fp(AFDaw-YOikU8&cSX$)};WWID)1{wr3F ziY^L3JB)&=Gk3U?BoA&yg)!z#HjUAa&9d_F;lm8vIZ*K#NlnHesK_1e+SPU{Ot3XE z72aLSUbq*&9o2J7AxNm32<&eW+#CSJTaNPMReePej9yX0;`(1T7A#En!S8(4S+INq z>+piq@_0$Tpe2ZFJQfL+6L9x_grATrG>E;8aswB+zyVAmd!Q6AajFtW`uuh67f^DM z>nTb4ITAMj{F9)umtXI%YZ06cj+=5?bj5-QgS^uh_$^f0GdD-VF-JUoF^xh0{P)Yx zTe(Vi-F~TT{Y(DSPeko-Q(G?PMthXMT=vbe_@p5_Fa4tQjK>t7s;y1yc4hT_&z}Es z*};!L+fR;8Y`FF}>S@pVJ)BM1WROSTf8SrJjLWSH&gpH8&uaO=GuzhPeG>Le;X0QCI;-4UzCAozJsaH* z68K_Wmc2aJi+j}%Zk?Cz6X%-uV0Gy5*`*#Wj;pzkKhR#mM9o3J{W4fs<(XuE|jPZaroyOPAoR@8=4@AEw!_~-6f!EsIdh_BKO;;VG~3?o&6lKDrnQ5 z;XvzUIz4`uy#75{dZ4A&U!I}Ub4oK2Ov<7hgfb*og!~K`2YAQ8(b$edQGP#bzy#77 zqyklVB_b6_B+f_Os{#E7LvuSI4@;J?U5OsrT zA~(O*uElglZV5$JPWs)1xK$96Qy>VPLm^QE0ucsv!Rx;bCbnVN{m_heabUDCpU_ej z_VAoT&IY^T`qSA`%ZObb_XMz>%?=&gTKduP@4s5PZ66(dBy?I|93SrW^yqcGYW|th zf-x=%;m8M0%*ue90rrIS49mDxKru)P{&@P-?YY>^0wke^Fk5~5Z)ENLk4S_2-ROIs z=0d%%(oVsXHn*{yvcEj|9B93gJnTX|?6QwKGvBtQwsLLm9HoQr7I*kut~!b2fsm|7 zO(jC5SAUFHwQJyh99HTgT?r3y{8!X;pB6j(o1M0SJez7@wYWo2DPd&! z^_IDAsdI(Bv7LlWok4BY()Ad1Jm(wsnQR(IwUp0y zXD>8{2kqve2Ud+>qEYUfK^*P~-&eyN+3}iCJ_eC=P!G_vov$W_r)cr!)GORdT@ZA`|sb^9$W4Hs*RzfP~uBD&5AK| zdnTxX&nNy*rA|a_25`ckhu6&9+lK!v&En6Me<+)a1pZvc4wT%$dD9FRgNr8>{~z`9 ee|pi0-;_~trOa53q8}9ek6~y=zhtm0?7so}isQHd literal 0 HcmV?d00001 diff --git a/images/op-rms/pr.png b/images/op-rms/pr.png new file mode 100644 index 0000000000000000000000000000000000000000..eaa9673b44981306a50d838da377a1ace1410b56 GIT binary patch literal 17200 zcmbt+1z43^*X=eiu#O5+3I-~nprW8iScrtEq$nXMAR!%slzPAbzG^Un-~l5 z3GyAyi&+~tS#5ew)q+CVphf;$5-uL5PobRhmpXG& z@%HQfCMWxnv4w@9nW;Gc63<(oyJ`$NR3xfC@DFPk_;PS(^_HwW_?V$tDru&jl96UJ(C#_Ti1wS+`^bk5k9yc2R5NJZ>fXTWA>96nCoemG)+8 zP(@1JY^d{&+3aQ1Vr^#E9T?KH57X)R<~)2RbqR$Mdg}k>E8ofcE7r-&%F0GOQB5)S z-?zo>NAy*d9Y^TW*-SDo2{qq-N1e)cn7I*m`LNTxePH!+wa8UMCw9LScgn`K)Qy`q zy$wC@XVCHGY0`DiEibK{a33pZ7pJJ0v*OxOZ<{$a7a^M)qN%JW{qS$8I+r=yrc zuOu1NXWdD`>&5g`M@2a;%zJVA6o;?~=>B?T7<1{|xrcAxzCCPIdth!NXJP+ncA)+6 zqo3{VN?CSRE-o$+w;GbKq?!g%$KKi*Z`pq(xVH9k*}?r+ldHb@3W&xs)mV%SWc=n4 z6jTlh3L-BxkUe9(P2_gDA;-jo@a@4jc4IvuSg{D}{(7>AujTZ7%QW$JoKhJ!zsKtx z`)Ut*u!~;#{{6f8(X9rJsd1rl{#R}$7Im8IcYX6UsEZFdb?TI2hV?D0{(7Yr$C+ro zK--b7?odBt`5QNax2}H>lRa&KY0CI^B(OKBMx*lM{gp=?rbkbGJnMxQ8~wcb!tH>o z`?iQqbv$z!cYE~c`s{;bnb+`q+5qQz+; zORoVd8k{kZE_1~2hazUFK2iT&h>VX$qt6N+=3PS08`7M-`7`H&BnQI;NZjd z+PLeicf`QG7kuiG<>eQftZLMm<}@T&#OzZIYGR@vZQjeXcdw+V-RQ+6gX+=Jp zOX|%P&h$bi%_670;_Su@+P^&ARd9FNN_PpjEi69j*1j8ASq)~Vdt+U-n9s_~d+qqj zEM)w;W=PY1$YsaZ%O9@Ytr<^DJRI9!_+*}0_vI*U$q}W|M~fmM&RDB zw*g66%_Hf(F#_7xue;63rXVa?z1+hB?23+>cRa+$wCpjTXB(1lt&=JMvh>#3R0K<% zt&UXk02J9}6{ecCuk|a@?Q6+tIj}bGa)PeMj<2_|tJXMZe6+9{?)Z8tcJH1&tRAdK zhU>R*aF~29EM$tbZO*i%&KVyus5*f7w`z8v_qq`r9L!Mfn9r!fEF~osKpk+h5Nb3% z9h6f8jAq3^G#WN+6TWddS~)i7ou5f|-A%-vSx*&rnV?Uxj^(fNk2f)}M}{kS*nC2q zrM>_8=S_W*A+NCTm4y-Ug?EVY?)w|WF3wGlWsM)V;cRcRX;Hd;JJmR?bIUeSyQ-0g z9v(_q>_qGSD^gA#xm(2@)!GX@c&j+B$6bCL&AW5wsbj~EVX#V%a*9)09Ha6cY%rW0 zY|{v=ekZx%h)J_ru@67L<+r(smfvHU3Sn~f33?YEi3{xBEshZnxExsUy_!V4l3im9dqjRX;G)r zqN0lL?<5&HIATTbjC1kwMtx3V+I#%?)#@mfoL>{%rR71VbrR|_lgGL%B_C|y7*GG4 zdgJS+G&Mf*3$M{a4yT(Xua5LIWu!de5Fa?^nX@pTv1#*Wj4kGr562Rxk2>6MHsJ~x zW#vzINoLxa0-HmzMz#ShNHEid;`2e6LwyX$t~Old_7rBrQ1Zgq!C4;K~mF(!J*eijGpZ|k4?H=Dt+w7RV>|M zG$Q?w{I)@C@&w7!hXe$YwDMM*4-lzK@SMr; z*mhj`(W6Ha**4hd#cKQ)pMw5SQjrOgfK*m}wQ*lKqVCN|RZO%vY4≫E`i}bqd&j z-o>32SpKnk!&v=Kf3KFvu3=PB+aXmScm09h51)o7+m4IG`V`!wTQdskVHY4|Q1vTw zMtpv<{nc@sn1I_qS0j^1P4{knebnsJ=6jDVI-jc;bQV3IZub;_ye(^LvfcB!pI;QR zSr71j!pKH*#l8)AY*m2=+gS6R-;5bsPn-mHa3zLoYG?$k-zKaWS=L_}=Gko5yFVl> z%n&)`(Aqo;DQV$51NZOU90M~wxjo?&d3vX{4?-_?$Tx9SrwVV#ln+mp)33imgpL`izG z@18cM!(?4ry?S*(q06W9XU_ah5-j$DLGO=fuX$k=HX-AxqUXG8`klZgI;m6{uYt@F zITqI-z-(l>_HQ+_C^s4I0G z1b2KTY!$g;1N(bC5^SMHfKg=6p0n2r+#|jy{5*)|D|vbFG~uUjCEP{_^EMcESA>vY z0M=~JFDM`xxW!?@AH?Ua!_0Vua`crROvQ?|%x`=&?4%Ho^1zo)^R&@?Ce3gQYANe6 z^I*KsPnPejf<`Y16Hc?B@*Fx8U$tv@egwcqY_fHk)$e9?408NR(Cv|~61$oHl^5bGJK{2LS*H07$7@-YtRr?uFRl-N$lNJ}3gckKh2 zo=@M%#%B1pt1ByDTeY?uz_}?(TQH(&IK0p3sH{qQ&cy5hw?WkT}yNY@RMHNfwk?EL+u6l&jZoM_VMG# zv(Zt$Nj}JvEMrd<_K!`8QTEr=QESoSf2KjL1%+rozUb%iNmw8}Qh7H@Y zmFo}VS=X1-(Xov6)(9DAjVWLM>a~0Kw1zYP<+bf1*Q-%RE^!TDqfoB#{QZCY>eIN> zkA0juCLKSfqLkuX{$5q z;hUz-4)~J-suL+E|JNTr9N-gj`Bd>V*GIQGsiZeyQ>%}J4 z$4e;A5q}xuKL5{OCl5E;V;Otu62eeF?RCq4y8+DfUg7(zDRMQMPFctStU|``!S_{e z`%@^}P4R(_j*f7pC}kvgOu?|?i_fq54G*gq*|2EDb{MipbMJhF!1LFy`)mXJ{iA>V`enZGx|Y}A zS7BI&w3iy+Xf)Qaod+NQI;p7ImQt6|KQ!BqLB|*_S47JGiJoH-yqa>0k>(%m~IIC|rWjr#iRFSL0JkOGP@0QClMYFrTjWr^>u2I*i(LE6j z^Kr|i+x{1}5z_Z5gk=JCsyXXUl2xyA^?OwXWP!8-Pmb98D>wACEX=2HcF)iJuHlW% zd@IRrduF21!V|dp&ZgN`5`=l8S|wLvuqM|^aO<%w$#}lMQX8F0_cMp$ACI?or=Mso z5*=Z2WJ)bfGrFwEuky5HDEaN#_)?BkzN!U@)}?&6#MTLsqFdNzpwD(-z(Yz}x?*-} z#0n_bkAh^xF3)vclKqsq2aCX20liX12tuQ=PIJZ7%3LjWymQb;L6;Q`oODy^Tcspc z#*B=q`SY9lA1ALrRx?y8kfnAu?rv}DhBAed`E)UF?b7%dQl$?+i+h-BHDD;XlW~%wJ@)NV6^(2eKJf*9RjFkv zADX&WOP(Bf`hLyw810tcrFV;s+t-V%+8Q!7w>}&wHUE)AGIh9YRMEdwNSXn+n46u` zq>k$!6K%LaW!p`!Hh=V!PEz>f0Y%wXo@7tlptrHW-iDv)?i$9srps~}`UW@(u6=D; zT9bCZj|`&GiLa{A>Ta%5#~sFvscNp4J&7`5avAnEUZri@QjMtlDz9;0YUQbvEwIqA zsWl2H+ht0}{%IXW@h_X!$W48{(xp6nrv52$b0T+(n{GNK`xJBG@}tta3~Z^x4%Pwm z!kVo-W*jwiti5ipzg|AmYQ9jX8{*V!zeE>%qDnsGC_ zYpwCB`vdaN^5Ye^Met0?7A!5?BCxdULmk5wgNY1XTZ|xA4{}_epj!)FjJ?mLqiWAB zpH?gtSR=D3^|9aA+u6CDmMqhiomGKhyERwF@To|4kKMgxe+o_kvl zm?L4xer!_w_GKM~a)55)i-(&je)TQaSf_)G;NhJe;(HZ7B4w~FUYl<*BD%E z8Ek-Q#v>TChJNNt%gHHAOFtGgX?_m^$9?eNB~l`qFSx8>f--0(EhY7RyuV?rfX(D4 zuD0uoE96Nt$E=E0UhE4Fntb0~8D{vaJcw1~_6M3O=qn(p6sh=~RCXQnnvPQ;L{4&? zo8|^hR!_IQ)ROJMf3zM`Qxxd$s%>IxYYUO@*``gKO1E53B9Z|Li+#f{!Od=hN(CH% z+{I3cLJ%VUaSNo?=l=fvW0)PLvaT?<$vTIzkEmCkLxDratQijv=b9U>ydc3|8LKG{ z4MY)o%l)-^7abk52T%ZwXuOa(5M&>aL?s~L0 z;GcZ$@0%}(1R)njLSQBwEdYwRrUSx{Pjx>1VPJmh=NRe@Jw09#5j9X>`Za4ttniHG z@B1IbSKsPlic~5IG6_7FI=F->=x|QUk|S3U(vzMEyM*SGO4pG+?)|9x0>8{ggx?9@ zNyD-~zw@|53sx;!*z?dy8qewvA6dLSgL>9$R)5fyU`o;FE880}%?u);P8jV7)7;u?g{PVSuyqQ0PsGA#{m!|=n zuAtwY4p&;dFYgN|mKWm-rqCWF5S8zsTI5u*I9Ok7ZURRG0clC84XG8Xc+aO zl>G1D`6z#bRe4bg?pFU~Pg}gr(*JK ztc=Mji75=_D*zGRdPQQ#(bb8p%b!mu^=R_p$cA2ka4;-=eeAKDTctaTfHx@lw&T`ZsF%y< z0X6BJFRn5`N7ya%f?(2gr;jGX#*LSz@&N^yJGljxv?2XeUonSt*Y(>Xq0!5DK^l42 zS?tq`zEl-tVfy}sE}WGOs2l}+gO*pY(^ECwGNL}kBooGO6?DiTq35xNVzyObgyg z##fy0r%GtCJapI*YMF|iUHWH0eU^ZIAql73=H~HTrT$SV&2};kDJC_`Hi*1={d#LzUj!i1 zV0LmSV2yo*lLJn569ISCOEV&_ce%6E9pCxLRqS!6tP~qaM{8DmygJ`g?fL_mY z6%Fpn-P|c+4%5G&MZG#|_V&=BLsjWkhR^|RU%5~GZu!j;^fVZGH(D)C9tzQSbjqSg zW2GwmlHKTc$znA`D%Wv8J%6?Z)z4+x%pn|->FrOB6SbZc9W`ne9(pA#DNrhN8tM0$ z)Ya9|Z`h!sto-8Br%(3k>w#PSJ}nju3$wyX>yo=4gk>n#QoXw-GGuoNZQQt#+^R@% zE8>2GA4l`mNZB@BG$=aNS5hdePK*om?^@Dg(Qe)GWn+JB+-a|>_o@Qbkiyj-<7MxD zJe&|>Zfo$4O3r;enG=A8-erOHmOf%!+wX#`h-CC6y2{He}=TJ z^{!3~G%OWC=q3enN(pi zWM^EIS$h6CkJ4fEYlhzgla_DKsE!l~;~mtM*{`0iNMweK7ym(9&aT`rHAqxIhJ_BJ)aQt1s9acrhyixTlH38k2_GJ_R5Qk#o6M)A^8Uh{ zi2C(^+s{19+32m$bNdn|Sy{sbPhI-3MEjnpfK`toG}GFVS&oIt2L?ahN01!{-L6v^ zTVc>iuuO-0AvInh)D%;(RYFoy#*3(dkm`8%?>~>BR_1LGS6h6=u7R{6pQnC@&eN5B z`7-#oAKLN}Hou#DDni_}wY34yD*x^}*Pn+x8nLraL%;fm6EOhjJLz?Ud4&KHMC#|- zXs7(uK7oJx;i_4vjw(5hb5+4oo99qSlRhV>e({U_gm9*9Sw*4D`pv9gJAcR=!yNhP z#?J%ph})K1l!=C+pCaW2b{LHIjE~`6vb<@M#!J(wd$_pHpYqIc;dg#pE9y2mRj6ocoP%V>_qarWv9ZwQ^~ZiD+(F`4MyZEW$9?mRIV^4JVb%Tf z)fVL0t@k(dg!pLiB+en+zyJFFjz1YZ{;v~#x~XPeXw!ya_P5kG2c2GtZQSwJjl@o# zwJy)?Yys!IlHWNCF@uAHryBA;eX<<=_1%pRJZJfOr;HRu1Pf%N=PzC;-<%<`I~r!{ zmY0Z%yc_j>J}!AV#6IQjHvcTvQ7+ z#k@>#2??o`iOsyV;lwy%+L~*=A2Ts2G@<^{-!Z-%QR=}-n$mWycUM{> z_+4CG?FRUIZ5s zfe5LdpPM0ljjP6K64*pFXb6%Yk6Cni+d!Giy-+vzJ}4E4^zN*Oyr1B$QOGAMP=5pZ zZ5quUR8&?LFW$DXxAExQ4S%vdNN<+(#2L44?Mo6ROTU4ApU)=%`?U}LEIg}!1+e)P zD|Ptipjn`THpkqbc^_a;Tisz=iQY%-m=UT@B9;RbAdY8cE(TMVUP4HbrK$lcj-L9Y zC{nKw-wHYbm4H6QDCPZGbK?!2>bnT?=$YjFmD}5RMpBZ559zKEu-Lp;?iXN-U_lnE zJL;$@e}DRc_EV)?R;kAvrW1)_hQx`}!hBClj*~NG;%q`DTDWR#HW&+g*g*a5?x6%4-uOkJWX)@ z3cB}dj)%t9P$-Jogt0$eDa~j+j$~(b$K~(8m#gmEf+;lV)Btl_wRT?cYNTS@9&vHa z9XobtG~By)&vJUS+kF3G9Q3AfE1izhVg?%j14UP_0n=a!UKKnq?6!vzIx&U9a7v;pQbX_ z$E!gzTi@0i&0EdT5t5$DwMcB^Y;|SmTIur{b)efJScoGB?v2s08cm;HsjxA8)s71X zE;C-;juibOXa7&?h-tziz2rsr+fT?uIZ8R2&`Y$;11D0E9`w;$gj%n#TM2LX_@@cr zMx;?TP)z;wgZ0&|AMaa@RjUwc3R~3UW^_%oJ33Iv63=WyZox65f!H%IZDDdy<;m*BpOkS%tKVcW; zK{pU}aBTmjOP7#YxQ1V%d(i74)Lh<}W+5}m0x20pVnXEYyLbHQC?8B;%#5!YZS?+# zO83aMTnfxhDkyDvz8`Ea^dx+PYKEpSeat2hO1GS`M(>_x`Oavhjrckv;v%aL@bx8) zMuvJP6g~Ya{Jq_;YxUqZp zZesd^zr|no+sh!3x^?U#m%R?7RIiTJ)Ff}ZdNr}OWIpkH`0$_LQw>WfCprfkk5+DP zJm-bI_zviL6UGsefzc=cB6sN@YR+-WdH=)NVBJzmtC#jfLPYD9yuoKLm8AZ&Ad1*- zZfgmO~W-B;0E#m+d)0p)yX|zjQ@68>jBWUXr~_tG9Rr%f76mNo%W9Q8RCEAhJ6E!Jx=`&DQiwZ0DyKcNv(Jb-l!$Sg{}h0WYLt;I zi8|eXlgD^zHKXpo)r?3!a*H1_^=v%qAZ|)4yP1CXWrZvb;smXjWi0#R!J+o&g$hV& zMrEl=D?%SpEuO15eqQ*5%_J*Ba@C-dmih zyLG_6T*ddaiu8|cS5#LgPaF0gQ|pd`LYId$_290D#4H}{yQl#&veE7&+czLVlMZs% zHtrJQBUo}^*>T#d%NhyNYVb$3`)J^@IWB=#jBlpButFT|`QJVl2n#jC+!2BXB5;z6 zk53K_Rjarebf{F2gyhj_ReX1L-EL0K*EUWNS%(_e<-0eYBYDT`*|XqCD7yc;E_x!1f(gD=$&#TDvYxyohIZZL8z~v{fbFx=Q?T zG#?^rlDUz<1yaxQ-Ohw`hKG+9@y6anm@_qsqpb%&Nl{Ue{N>BF5;Yqrlwg0~!s^ca zGNlBA4}up`LmFFhAlx7bzaqQ9PYTaRYn^V=mFF-hVJI(ti9)rCfZh~^SC+^Q03+z@ zGm6Cy;nMu}Lbx4F%3Rq0@#DwC_3Vs{A@1((o3aYud5T4X0o&3A-;-BRK;vP+7RguB zvIz_4=WnVY7AotD@^A~y@^tRpxu-Mk9O4?Jw_1oYjwekT62fnzGLPR(LkTm(d4|=I zyZuT+q07bg!?PEu5LRmI=`VQe6}b(lN-tWv;5-lVc09@d8{SRQozjO59^jD+&;!G_hXRsL>HX^YRh3z*mkI z=}S;F!DCExwNhccbgrzC#J*}Wupce@dpnW=5_EsodPe{Z1J-)GaqG$_RRPl@}$8%yiw zm}?z>#>1R;GL0Fm3@jS|gIH6YYIa=|!g^6znGYwdCZ!|kaPz@oQ=N6k#sTs+lf6ma zfl+uqd4X(XSHm$x+`F(mABb8@X>DV{?cZct!mIXR{k96w?a}hn8@jPqt47MiembX=y}Qf-R$TCVSb6wdH^dE0|gg@jT-1AqqQ9S8$xx_wCIpr!J)|b@OlF zf0KD^>w1Xrk}7IuF6^%GS$r5>A z*z(sKNe+jq-c&FOF4Uql-y=7wG8CmsC@~0yM`uPKsI4P@iQ-J(rux~_%6QgKi+Oq^ z(L|YN{knMdD&gZOj;3MSakJmg%PRxs;uSo?XPt8G<5G-A7PZ)&pc<^nr@TBFrAkWNS)FRlc0H;T2D=E zV1WIwRIEexi?3sb%kWi1@s>gyscU8Bp)9JiI9(=%j^Y&Bsji!gX&jdPH>sx|(q6MXF zYWjgVQ8KayHBHceXGGP7)Yc8dU=KWcVJRV8prN8B7oLEu?`Qa14!r+n4*Z{6>VLqa zBs$r8-)^eYC&{$!RFYAhJdESsoc?ecKywAl_bTaf5W~gRAJZ3cBSrH~(Bx7qbL8>{ zhheT;Ip+~lBnF9JTw;Zvg$MJ&Q^YY3_t$;xiEhjZ5iJoE;pK)vBNw?7~^_7EQPHm2epnEH`exE!UdbM#L*C{RsFmn zTN#K#d|=$%-1!=gJy=n~nPFZwz)DS{&>MqE3#MfqIAF@L3wF;{%Ot>?K)Pp$uxBI+ zq13)VW2G2<1;-o4D*j%*IniOpnt10%u7EpKV|vzYJ$eyhNjB_MQBeG^fVN-Bwx5y+ zTm~gP&TNKm@;(6201ikygqoXulXl$AwofjvpwpAOG{3NrB=c&xR3pecK6>P&9-o1P z?d|PN3sEsK4KSQx+0Fcq@Y1B5N1^tNFK5;~wx+AZFAQPagDoqM-a}QC3O_k_;xfLB zGO7Ge$=hog)tk-j^R>Ng3c~}7OG}j@u*1~Iuw_fvSUvJN4VH~+|H+VAd0?J>Nv?hA z#Eb*qBBB4E%}WFQs>LTMj0(p?Y zRe?JTVVr+pm^-kt{2wu^QyeEv68aGbH23?(X}BV}1;p zz%uDxOFEs@6wQZjZVH(EF;LBO@EehoHCE;{uRuKMiB5rH4#bBD^~5%LE@xq4fr#lP zz5>*Hfhw;${h+ltt$NwO59dFuisy;t$|&JVG}(9vYc~;H+(lzXMjpf}Zid>`#dG|4 z1JP5y6^FHT{a3=d)AK7zwExKp>&Ejt{`XT|H0pHRX*oHfewEMB8oYgBhC)&gf5Qry|MY+>{c! z769Je-LbAe(bokY$A7s_G;8t$yJ&sFAJ>w@Be4;5T)Ymg(0nSp|6Y{>w6;#h3Rtz~F45Ii+FokW*(##49^cy3RGvH*E_2oTg~34bZ>F0VvrR># z-}A}VV{gehl3lw_g9Io8NW%1QLkf$(QkJ{|2Bnj0nE0wlbGVTGjx5<}4>%kz|2$&+ zUO5VR^Wu({{Qdj(xi7RSF8xnWJ6guX8fP{#B`l=-iB)JFV zx@w%LAc-2HKZoOF8=WUP)fba9Z-=)8AYVq;E_P5@=gns%?;Fcku4FUGo(dg;M$ZgN zc?4&e+`oPMwsWEd=LNJ9>f8Z(rITo5dF&0i{b?0F{UIc}4Cxq=58mS<6TLNMF98v8 zIQ4WLSXzKXS?+^_rtN6{MRyb}lhH3rXh8SH104f45Qjs?aElgk3pzg^7ePF+!eVd` zC)$kPYvwf9f~UqAHwj-Snu(h2HST^}4Jd76v1}= z{8BiHkU!uV?@zTr$4ox#LZC8i?YxoSoK=2|%)+L^d+3n-MDraJ9dDMwBJ%*Sl}L20 z46%(+8_R?I5m(AF|I#9!qwnm)Qb7-S_%sWF^}Gaznv2*$(>3AFiI z6B4xbfVsk{|JIj7wAskHOUWaBf;gmi9s|J){6J6k>QkK+nFwGwj0_<^5<`ogUvZ}w zXI;NF>5Zyr*y`kO+2&j{{5uVqjh>z!rk@d`jGo9S@25|LGBZV>W2)RNxf{NZYKxO2 ztOu?+!)&}$iX5aQT~rwUyAhK<)kO;v{2TJ;*1Nj6DAk60eExF&(SI+2J}pc%X=yfe zk|Jlb;%43%QB}PH?hG8mOG@eM>mv)C*YRd8m%bD5KS`xZmX?+}FE|d6K?9k{IUv!t zOJ0N}qEEib=<%f&Ble`Dx};zm*E-|0%f|NO$1ex<7wt*7`F&?zn<+DpN62w@NU|Le zB0zw~-F+>b^w)EpmlQxa5}7fn{qXTaLw^B^5O**OHgH5)I{v$uNp6KuW@NqsuiY~4 z2s~SMtT9}%t5zZGsM^VjUx7x%P!z6_m448?gS73o6~yZlyQ8(+?yDCt^ygaKaWR%# z92;t}DL2V9@_#sqP)0OJO;9J;ZCnu z3Ud8fdwct!>sL~YZxP%FfjtD0rP5|~W$pbTh!EG<7u_}gF~9xSjQ8g^&YX)b`ioxJ zT4E@}2AtO~=YqTu$o9Vr{d@O_4W1m*BIkx;WtRQroXUHYl2e{!r~>)%0uby6k^8*8 z$=$$yr_&EpmJnNyF3@_ ztj0-#&~P#+;#dKx&u}#P1t+22#H2%daV`%Y@PfIM9X|Sd)f;oL=}CW-2^z#zh*jGy zg*#8<0ChAfzh7V)qX#4VNRp zWOBwAd)|i=q~IJm_l`4Fq1Zd*upv2%2Wo(37pD}eyRpm(^xrzhRLRj8#L*~vZ{0tx znnY*vuYMy>Udn}>Qh?>5=4BXrm|hThfvj9 zi8WFc*w9Ki*BE;pbcK`q@Zr(S-~K3=P*$qL8&E|~zdgtcLOz1L7`rrkHAQn*BW3V7 zCIS%u5~6gH1yv3-h1ByyLqie+PW?$WJ<%!66`+c4TeIrGNi-bBl*s8MFH5jY*fA4N zt+`#yEY7~{V0$;(R6u47n7LqkJLkvy$HL$fjy z|78EM2Ct;;&9=agqt<8CtQ9Q`t?e#a8qmmGw7z0yVQpso`)*qUODkiG%ZGUcdHA?? zU$VBoVkOMWYyPhf@K{(H@gC^IJi?i!MN$SApd|B$-w*w{Se7?no zEASMyMSGH0;U|p(1BDkq`k4MFKhmvxD%q>zb#$1RnE1S<)ssy;Wje)O7c!*TJUWVf zjVkPQ^aV_-m5O}?6pwA7xyD7+reW_W@;*FM;<^xgWA*xisw(Ayfq^K6(EDLBzG3Nh zgJE5cYuBvl`TS%bgV1HaZ9JM0_vtyqx@LDoDu&DA9+q}?u6>=?a9?j}HvDy-=?>2i zSS$~fVh}KSdh*mM^M7*FgwV=H?xLZYeSNu6ICHwg*YfJsvIdLnScTAY>}+gjkJ$}W zzWZa9O<(OH=iyJ=*+-h}2Ah(&z16V=o}ACx)#T+L%LaBD)=5k|{NmUfP zVwm*E*qBm9n2gQb)No!_b9Y5}Rixs6dk2StoSaj*b2a`2%)J*2a-N;QVg_3GR&y6- z&CgEuRz@nCG-o*n4GUfVT6%rODy1}QV}mb#7qDYYYG1u{nIBgzd~V*55{Y%ChJ5iq zrcuwbIWEbt*oQ+o>gmaoCzUcCYz&H?myM)~)K~2M?Y9G}sx_x;nE(0D7cm!-da!Ji zEESrmH%qJJBVelZO7}$OM7=46p*dDV$nCd7C)*33)jVZaR0=*z>&7gujeE)PPmFa} zU}T;>Rng%T4>oqw>X@F&NRLOmjALr|r(}~aN*1f^@py$=r#PiDWFZ9(Vk)udf zHs52v>9==(2wS%OiK}0v9G7}};N>B`TuG|KSl7$j>$jVQ;t}Jz4I7j+HT_t+M@z(Oa8k$Wi~{p(YJ~D@*3m5b?4U6_ zAR_XWEC1_j;|dlxI$Bx*DL%X2>SB{ctXdJZNaM}rKbG!C6A@Y{r!$wF*(Lyt3-oB!#bTX=^a(kswI~GbiH*+;Z?oZfZa3WyU7o z--AEJWqxMK3}ZJ$oO!U#(#EE$Gtf1lZE_`z#-8rgx{5ev)R2ZZ7W<9om|f@gtX;d7 zo=3CRB-`EH9VdP~kJ(kNzvLOOPSDXr!{R7kAqz31kN1*|E6yrMDV@i*ZR_ukO)+mU zsY^7Flexa-JC{m~T96*=xu>Pgu8Xk|5eK5@-L<7)Q(4(B)Rae@-)E3dJtOsurz+^o z10|g4(}4yzrlzjRc=Me(bARg-*uzAlk~qermR&dn{Y~eaV|;Nwl5;*E?qPXc$8|qc2L4%Zg#5IFFZUv-o z%e)U8ZDnMfD@uTcz3=XhO&K0Dp_6KP2Gf=p^HF#Gg(Smd_3qv8gRAr@mRGLG`wQFf z+mGnaPc&E%znB8+x;Q`R>h6DR&livVa%{r3-#`9pP!gc!&1W!Uw|(fB{)RU-FHhaI zo}K8=YnprZ4JS<%`+uxTRVNa=B}ykdtEW2Fx9c#ahj%w+6Fq$>rZQSTpW0Ive3!Tq z7~lpo7aB{DsbxP%H!u+TDH=d#mT=ssh)8yq5idT@MhL?YNAifCkGnUvz$_e zZF*QJ92zMx_`>+7?K)lX=uzi`?@aVJkmrfU)XQmZ?6rSw-k@@GEu9LS+<24YU^nK+ zN7OOp{x)tCn|(E~`1>2~H2gQOgj6Uz07erq3eQs>In4 zxcK3ge(_qG#WgTT?BCslno3)8?p8%9bIwn-y02Tet{h>F^}?Jzwj!k>T<*<7xZt?6 z?o6>*^k|Fbtok&YXtAkpt6-}>h8?oEw>O5xEqHz?cnvK>2$^!Ya)op>d- zWxU%?p(sQu!q_^qz3Lo#eiQ~pAAt5o|SEtxtpIm|U@fg>JD^!7n9~&v; zHSH>W={1jGDF%u;6Q|l=mz2j=vzmr-k#B$JqhAr$ep`JybUS|9x`+ICKX&`?5O>Ld zyA9#Gkaz&roXly^-QLQW3yN$W`6f&D_WAnlJP}u0bIBZ7b`(V-CgKnjtTriveN)PE zvPW1rYH{qp4tIm~3`5!a}HF>OeR#l{Jx z-6<$ZC7b=6CxX3$i;D+h&}coQe?mJIB41^%pkq(icOJ zWT4~5AW&47WF+KhZ||++(9JrEvr=^a{CTfdI0m6-+#1y;0ZB$BKCIq!Od^*MNp#@A zd(Vz_>j`wgMhT{;rz6KoIw~w&-`CZ32?<)=gezGvXXQ*wOeDZ7(ol1|^NCxtl&GILoqA3q;*tCg5b9a1u`aywD zA3sVa*tIF}$tSi?Ue$c~!NoT|dvQSn?%Jyno(jp1eNW`@@NiGVn|P8zAUeJG$)6%i!4@3Mkt zDP+VlA&!^kXKQh$-Ut!$m%LTFmSOGlU-#wBZHw*&)^kOmBM9r`5(19dwU&yqRh87d%IWD(7f8R zomX30soU8HnV2ySetm-8T};tvWdcr<7mL4`vpPOcb$6EwQr@;%MQLbwIAN|?LiNI1 z%l7+U8ynj@I@n+~umEDVMLAX($h7} z<<2=^T^z=HLU9KZ^^Q7Mu7AK0Y-)oj6LbLmDY& z2|h+Ru_Kd{&&IxWq$9^tbGrwB?!~RarN^NZ@nXXcJ~g+a_9G#1R=PVpwkkOw`!4r> z@nSc(c7~ex!c=gge*W*>ZsS8kk9~c8zxW*u{`6pb^!ebkFcsy*YRBt{E5~bV!TUa8 zA*nX2l$TQ8qg}A^zudlk+qm}CMcCd%mIfG)%7;4+^TSiybeEq&C`haf$$+J}VAfT2 zbzg9(#6+lS+n+%ut*oT97>|P|SG08dbSvEvU;{%Nv3kwSrozxRcwkh}UQIT4+ zqdI&=0iqh^Hx2TcCW?icBX9*IpVcMei)NJLn1E;u81C+(SHh!5kJQs`W1H+dcTLaE zaw7dh?obJD$)&e$>wy)1eXyp%NR2sm?|#Pz?=P5U+wXJs;cqWry*h|x zkliV0_9`va94?QC>lg!J)P(q#YAVToKvUv9Kd@ z*UHB{XHK8~+)#L`rKKg({Pp*fu)l}wz=i=)*yQ4ODaBZb6?*N(1z))6|LWi z9}m3>`f0m21^yGi_c6g~($EC6atRm~P7f(9t(fj)#Mnw2n%}uopI!VP)*f59v162$MkyEHb&@aWtRfaS+!%PLHdAfmzz%9?bKxNzgQ z>y5$XxQZ@+{m#FAo6W!t%9{IUaUgx`=w=KJFZVvn3h8u%h|JU3s z8&h!R`zy;@Xnb@@|O zELx=a(aD|p86Yf8%zI4C5)yX(y`+Pigd>5-er|}H=keCRufv+)a#NB27?H%%QXZ_| z`EdESy`>YchSu0B)^Yy(S2h?@-5ed*$HlfRyRzQ+n${mP>}KOYyX->2b#F7@OFQNq zUN)G68qJ>#8`?|ymS2ZF;g1PT(D!b+WP#C08s)k($HS+xlX%kma5!RsFk}$wZmD*I z0XJ^kXlri|MI;w(Q0SEggIe|fGxVYEDojEehO@)0PEk+-B-cT?40U%Ggd2{|m%2TnkDKnSZ5TM1Y+i2$GZ zz}EqE&E)Ib1d=zDmdcO!H>i>v1)t{D^WxEpT9}_T1(HBwOC*TVupe5P4g&cJEZv8N z;JWqw|JbhZFEf%Z{pd^Nu8og*8o!F~TXMU9{`n7kM|*%9n((fXOb_nfy_;y~w|{Nt zLqT65v5rRz+O^%O@xwrJ$W*3SG{+$y+s7%sLID`nmK^&Uw{ zNq`7qa~&KVIT2m(b+p_PYPt3yA>8fWpMRDjrnMREkoolKlc;SGCWp!>r69j_bk)u& zJHVZA($Ucs3cAcq8Rc$9T#UHTB%jL4?pzmn|Hm;^F!66fbf-Q(CKg@L5Ut7^tCg;D z%(hQHK*XMF*4fEv>y|CSn70ecYVn$>dja$mK1YNgsdm1l<&b+^;+6ISdbshz;$j&% zEK6%^r@rTRJFltyHHors|GT*0detzz`~ggPeWJkwgJuA1HZ31k!`Desk?h&DeclwU zybU{>3*OX|>q0rkesps#OHm7!c6oe2-Tc?E)j7od_99BckgDCq7b1{}s5$6~!nYxo z!Cct%*DDhro?=$lHZTy^l<8R5+}xa~eiA{va-u#3NcQ-YR~V`?hHe8A(hye zWF%Mo{LrbJYiJb^+`qQzRpHi1kw$cr^syX>)ao^BqJIB$-=W=8mEWdE>CBlkkyf2w zyq*WpODQZJ*pR~rbG=xqVlGseEDAL{1tUtPPzkyTBq-UePNA%Y1Zojv*LQ#izFZ_FDv?CAHkG2jq|Au8P?%^Ze%Z{O$Q361b7_@#EJGqn2Plwk6yo(jhB07VV)&xQCnjX zde2lky6dNx$s}$-mp$2GRlvg~pQy`{nHx-A{g=a2u+L8%`|}*H?y6O3l{H^1*7o## zksHtR8deufO}{_Y{+c0axKJ$3@zR|tLFY>v(TD7v6MODdz+_WQYwkNCUkU z4>RAXQrQ%G${MfxH}cC`owb!0beHyOm6hE%^Fm_PE)7uyp-Jg7d_-w5d9#X@pPG>H zc`iG;;?k#kV$J9BX^d+m^v>pU-^@4R)QEap^<4D*dlUKilnfC*b|XQ%s#s+$oUhIAGlk0YCkmis>*3=+}D@vRbw~M_+~Es=1q#Yw5x<_oJ535IAtWiD@Ove)}FHOG`^cxY-5oTi){qk^HlDjZIZgv7is1`5l-T z{-OD-o~C4vERC7WmYN&e*NbN6!oi!pFy`%Do#^;*PG$QWm!M}-9aV8Rjksn9n;w*T z_P$|0CZV;snd5w^gqx#FShUdP-l0KPvBb6{o4`EL^Sf?BaSBifi-hxYM*< zn&*soG%I-bgfGnBU6FCzkI}!awRN;s@8+7ZiuBB;igzbYan0V}#%VY`8CV^wd}qTB z{_!MluhUaW-d0MHPCNXMk`!jUY~8mNEbIGekFUE@(#Jtb+u@RD;_7>r-sWoWe&JVh zr`)>d?|juftoBHmNAb9XoKAVw&PA3_zIM#dB(@28ay^xzzMdR9+CH2gbv=qMz&PNr z#x{X?4cVOw;_p3KIycCsZ6B3eeZk?eS@wkG%e-8l_xb0|cPf|9G2dMLM8AqR49HL9 zaWNgw1L}YmZA(E0uuuScRxLO?dhU~ut%{lOnX`0^*6wGhPqqqg|B7tZ;EHVuO9qvg zB}#p!Y54VUO2k;bWllw%bGfg$tBZ`kut0Lot4Jj3`4tt1lXKo}c`nT+!&rJQozB0^ z!iYy>f_J|AdfEo97i&brdMo0EBAr{$&2$7GFT85OYp3NLvd(Gz?8lpWb<84K`=@G> zdgfZ3xaUG1?46LQVAjax6d4JaaY?MS{8I8hZ@ft(S^0p@MzDZnm1InxdB{!ViNEZ0 zQ#WYy{v^{JS7(}3LUV1Cl0#@>)|5$rN_^vs?!$(?bJJE)8qq$No3moAj7rW?bKQ1@ z@@S>^<|Xe`8fYIe*(xs)E+;zmK(bgp*@l%%+GD?r60nZTO&O6FPcbXq&iTM2KJ2`L z!k3>*;k8Q?Rg7ZG1VEcO!(3EYC`HS_PvADi!(88Vyk}0BW-1+d*2Fa8R<#iCS{oX8 z)4jL0TS|STVuj7FEP0vUr;2}w)Om>54c`!(v6km_Tl~I1v$`eQVZPCOq|j3)P}KU= z*X#G1dy8&I&y3$~xnC=!tav9Qa&`3N0kMT)IYv6O2_M0M8JTDCx5b-Rui}lkzJ|6c zvC5Z2E9_xU6Yt!S|SMd5NEk>G^zW9SjCo87#8LufaG8|w9 z4>lQvV=>|P@7=SX*c~FJxF$RDY}GmT7qiy$HsjTbc?05>+Ek?j78@z$p1qq2x;;Oc zNPjV-i%L>maFHM0Rhyc1<5bC|f*ahz4n0(tjbd?Gtiyaeh)~Y0?*zPQs?h& zW{u6=%6b0e_QmYgC#m%*rtzb$ce;z1UAyBsYXrUCTB`E4_oYx~i1a#|(WRofd;A2bJ z-dc@Gl`mijr$^cq@mf`ey_HsWz!CcsJ-&QXGMVSoV;JU)(iYy1^)0#;Y%APHSvNa- z;7!#9fYOy1gV`Gb?Lme$qolPj+!3 zeFVIoa1C}8*pKSTLN7x8+w@c)<}jn7Jnf+j=Iq_KZ@m9aa}>k`kzXN(l+bp{^1cmw7(2yj9q!WC)= ziT`WjwA3>ll1a9q<1&3_Egh4z^+0%_OB67Vp3;}67{r|3f-J5CyP6ElAE;tk#Q9); zr>QGaCw&>Qc2!_8w=yt9ftQNHuDS2#=E>6En68T70nKERw}3%*2fK@%n{eE1AT$3W zxn3|X^4)hL_K0=@u3*Hcsp_QBU_v%f6sIZRMDs zZFWM2q4M0UyWgAF`;|D_!^4sbIb1LED%+<%Rw?-h6<*(?bKZjPdn~2beYBH4!|_f1YZD%TX33WuWU<%gXXq+pc2tb#+#j^*7&CTb zI;y!}Es3+>*1Dn7?A#@hWa>{}wG;%$;H3Z9MH!z8) z0dTJbEIwW?#Y=IJZ}%5>&DzGRZAQ6~J>9VrC^VaJwrzjC!{YoTclY!(Detd- zdCB1fklm%cI;%fP$?8k66nuKsTUk{KGXQ1I!Iua-*7^>@VP}zpR$*9Tu)ut z9kK43lPyo|lFgebw7wI;1`i)dt#R9660|ZkiE~8uwcvnoSX|Eb10o}F%4W%&+ZD4k z>-b%(0=7<_zW#a;Oju=uMRJ8(Z;hv@#KugO(5RHbufdE*nO-xF4^*g51`QgQUUx~e zZ@qKw8GCfHxVg&vlZ!F8EOi$_lo*EKoGHhsT`hh-o?4$>btswV*LR8`4&@pk5Q+iw zQLT}j!LCUGg0BR7(bm}+4#3uAW~^Hnv>(1rzjG(2-K6WlNl^XDn7F_hCgKNxDQ;vu z^5Vwo#qK0w$BCGM=4=b)9TP)C@(FjVFG|ZN{C+07CeNK&6>5;!3FSzIB_tBM0>)jt zJmz-bXy=X${_3ocAVhii`zIn8Io;0yII=|A0bjEie?X())lirj;4oLh`9>+b;kD5h ztCkTNfkDyPNIgT|y0|*26!GDyFOMrYnk~N`ZZ<6p*i!Ov=PRT2+qvyKp8s+4j#_NR zY(#tq_bUTQNr`JmZVxMDX6^w<$)Wl7)w=CGOJu{q*Hpj}<aA_bcG*Xb@EksWP8tcEZ&v#fswA=Y9z^a=!Zw@qNMk6gQEGd!0=~Di5pI$jc za?|{99X;)H}^Z>vXT5Imy2a51KeD5n}z_2ysQ2+1gE%B=1UAE+Dc6PFM2fHV^EZR$ry#L|!{v{!lMDDAmGW_M~v)i z*WNW+$Q@gl9V9phQ7sYr7K=a<*(AgH(IfR(22*%8l4N4ztf6BvQ?8P^KiT9chsP-+ zRvlQf366V-nK|-5W8eHS-K2J>YiUaHW0z}Rok+E8S0Kzos-;1HbG8m58C7icad0yc zz@>rSEb-D<3XRK*Qu0ZLGTb^@n$YH`;EPJ>w&vi~2NMRBlTDOCzsdrZsW1w3W~2Cs z*e4RMH-xgKDpo_4C?F7lK*}{!`4;zx2byLK2!rU72*ynkeB%pk62u#kc4a3y$yeMS5ZVGP0j(n*5LN7TOqc;;j5A-y2X|d9tOJb zgFg{gwZx)pky-jX@b=^KANYFF`}Zts*EV<>6$|~=K!>j_ zM|=BebC*Hjx=R1?ZG7j)w-4v%_S5d|b>6nb1^k6_Kb%;z956oU#dY{^0C0HC|M>%e z30MN(|H6|2ddpCDS(pD6wsy?nmE-Tyx(;J?6X#IH>KwD|T<(0;?& z(3)$@@bZT{>mDwjzW?2~9d8aVEy!Q!`E!ckKzDMZlI;V6zx_3Yn@68ZTfVv&S>t6@ z$GLl11evhT1)V{iV8&%bm{AdR6Qp;9av!KmXw<^?1|>#bOIL+EBLc#5HbSWj2-W- z(bxr?m*LRww}>(mN*{7M!)5)?O$dOy1S(w|a+=bfT}Pd@zK>u9@rTM`qc2Y1pCdNu z0#xeNpFWtCB;17i?>c5H4brw67AP6dJPsn$QUnJJH+dEq7>Edx|LXVCa24ltoQ7{3 z6hS^(6{mHKV0U*n?oxm(5t4$#yF?u-`3yhY`qf9wISo>P;7rF!4#JWFNyD$;- zZ(PaGxJ)4+VGuN%syy@~F|qGUXw7psh0&?ccFhKxcYrd}msA3hbsrH|5N;RNog7H`g#6x$=U=7->g+hJ6yT>=2iHHWM_3^~TMfBP!yc zsK3(vBO@~tsRai@V!`|x=_PDg79o+EIdH!c(HbZpo*p)mB?`8|jL}DNI@yxeaK1FESt^AJlD}#qgEAOQ z8;QNqzMJC8k4iPw$= zsosT*&nrGY9z2v+jA>XnXw%*PN3VRl4ob(s-v9BRYu2nWndqw%cA9!c1b9I8p*&T^ zyw%hu=*8BvZsS%DfmDFxdq0_Cq5&+t3SVem|C$1>DN6q34I&-fwC}81Z2N4zX}mGQ zOS0L;=7vtuvn!lNa;*TxA(tKzIKd9!aG!z{PXV4e8RJMzOJnQxkuglF^Xrpa$LmLE zp=;MZhg#ctGx`TQucYx!Pjx+Oa+fAV3SM|*VniPNOO=dvBt2n_7-SX$`Q93&)MZQ# zo;8_wOfLT@5T?9joi}vo^5wt3BNzUvU320uN_vSPTqD(=_s?*NWj4Ie-fM?rHDVbS z)=Y#XvLm-FGKO=l))JO7Q2JOYg4IBQ&Uq@;u;TBUo-63)RIncF z-i34x(*E#Yx3GP#n-0vY^WsoGhr^p}e1%+%o8?%y7K}&M)c5ryat6ENHILw@3N()y z10y~mdJcZuYi9sY9c2*8-B9S%_t)d(#DfWJU^#$`yz`>^k0C%*$etUK3Yv#lG*cU~ zgzqmPcXdk`rBj-Rtn*#=HvGA1ABiEe7iOfOcA06p%WOT;M&VX_bsQ0q%)Q@$|M#tv z(?6`8$e9U1pb9%|4EklFNgxj45wmz41alGCJM5eG;l4xhEa~N(6s&m#MrghZoc!^$ z6IZL%N<7ETl_ONOo}0Q#p__5yREp3|dVz1yXq>YxpM`3czyk0K&p>*yQm}E#P2)4e zpwu`Z7a)@IXcNX1S6X43p+7lh+gmL&IoMnSLuS*OOWXMN>M4>DIXPvd+4OpCJ_Mgc zvv>|q3>j4oRtbsPp~5T>HQh-iVu~=xKW8y%e6mz zZFpX8E{W5%(yY(pO$8QteAMyc%wnyPv!3%0cfo z-5fDZjV}iA0kbVzsn&x{qR=a;^;_B5Evl{{j7*AG-_E+AprA^yc0?`)!KwmC-&jGs zC*q&4KT9k3tS`i_^u-CHLNqK1;D%7V*#DR+vUg%9wsEOFUYe#_&n07wCu(eZWmwEW z7M>KFKn|xIt1bYoGEruNKzpYuw3SExSeSd?>G&b0T>8C0on1=v3 zC#8(c+@7VG3weW2Kp^AC5(%V0J;lsBWG%fee4Fo@wYX00$;5`8csm9=SXscNvJ@h* zv6U2 zJ70fEJayd1BP2xVV)B}dDM-hjN}O30*`_V6xn!A)hmA^3lqB4$KHQO0F}wq}eK#=Q zyR!}#d@Sa8XZ>(mDD*v zKw8gF?8&=rIJ|Lc2`5*qSYc^pRe@|`>#kkg6p~6nF>W?WgB$nBd~h>M`HEvK>mWYU zwU031xNIn&{%74fozQdiyF{*){+yY|eF05KH=-cVx;No??HUntrThtT=esy)X)^Rx z9YFV51DiNKi$a1(ga!5gWkpa)q2)X?RtClt>A7`xIV-9rBmoGO9vjT?__;zJ`4hw( z_0xjXJ&%J((pXg3MBt93a0uXEC1eLr|6Dr8N0vg~Fq6X6KIKFYZD6n%A@QQZ&NHtG zumU<3H7ZA0zr)_rEF^cj9JviP{G1n;aUn7!n)20aMLTmg2keY{ zV?M=(6a~cV3S1cJ^|5zji;K0EVj^0J4h}N>5AmsQtDnZ$IACsOiat(4QnJXg8?QP_ z$i)v+J;xp~i3*o(A;;(XYn}@fi-r_)Pvj0y@54>))_PHHn!z$TR$c-xa(%mUqAC&J zyvx?(^EOkL4>>YzMv--ZghP=JcKEvWO(dJFvxh#C&pcqe0681(-h9}b$&5&pmgjAZ z(ria-Ux}Dv2h#tCYUqa+%BMTfx6Ukq-J3FqvLs@d3K25>BoTx!3;GH`k4=Et%a<=l zX}pPpK{pWSzz6|{-y{-B&jR2FJ7HEP$NX* z3}mnxNRP*^f5`?QmL>9f$e^cdTOms*h51663?qTeiM0pwPr{EKunqtBk}CcS2`sns zi-N1mZ~utSx(ddxAY}}*x5KZ#@);!5W!ME@ zHq|}u-I;b4CmL~g6t*yxNlC@o*?Amr6hW-1Awxq~>>V9Vk!_klq)g%m6#1AeF3d-% zB?Pe$jSd8_PZs7z_2wn8 z2id7HtOn&iYvfYmT??JeKccyXg@x;^{EpelLLEUC${_GZdKB}Qf(HQy_pk9RB&*%H zabtbDUA%!b!ff&ygx>#3wu*8FJq{A-E+i*Egk?ou^BHvFU3;;lBSS;4%#c{h*_z=t zRHD$1o^NVu^3ub92{c!Ab^reT2;z!Oids9aO^F8ZceJ#Y;8E3m`k|a*AkR@++Q0>E(I?#Sre|jols#5s;Zu9<&(jR77Sbtt$(uiQ$ z$d92MqtIRcZ9Oe*6|hZxKJUsm7CO#jWfFupdc=4%2!w)0R#ui5J<~ae%#kESI8F{A z0SY7tD@i^8c@hAFB^fenB;Gys$mxDenM>FsD9fYD`W<-*jc+%q zPzmJ7!piOy5=2s;ce-@VPKMFb)K&qwwwQ| zoAD3hbMxru6z8`a^PM+d6+SKZ@8D3Vt(=9!=^t{)wRICE{d3(5byLKy{splW>GS35 z=LGyh!o}rqQ}?2f#+SR{%OSjtY&*sMZop|QZ4SxRA(6R3|1R=*e{HYta@guO0yZwQ zkyek*Io*{G1-kvv2@%vyhd`VEdL)(xF~1wagGv9Nu*bRIaf!dwwz^yw443IbHyHB$ z5bQ2f0%PJ>*6y_ZUT?|cc;>$ojV>%Q|K~jXXRKzHp}#{kv*hf5bD8shSFS=K{5N=X zW7t|>?#`TwAI5=TpJh$|`!P|?XRol2iS6{%-tFmh$S8#)Q}gW6q*P8KVv6WNQIAU^ zf>VEFcECnQka2@NP}RBWYQ=hv(Gvdg3)D)QXc zg6J4;zt@+G-Bt1+$`@lgrtoQf$9bOkB9rR3Szr9b3u3h3%YO4^o>CjD5ZutNrG@VbTQ|hAKifutX~N z3JTi|CswJ%yIhY_j(>?VmavY{6_Eq7N>9&u@&w;g6m#qwHul)xGg^0;-+qS6yeUOv z$6*77!Z0_I3Kc##sWR>Hz1?iA(`Dh4ea#ys5y9^^#%?LLSzK_o=^gXZc8)a((nH4f zL}y_o!_f{sd&k+@ftAA_q<&=0U-VIN61nRa1??ZIRqJ+#w{X~s#~4Nau=rv&Gv#rw zr!v$uNKaxTb2TS@K~L?y3J$dh`Jh%1LW+B`zxs@RQZ-prk=Xa)3}54eds6-XEDyzm zkM&dOP39aFDRfa8tn1p9OC9Gc(+6jld>%dLw`lJ`*H|x$6#G7r-kR7l4RiIbg5qPS zj=yQJ`1#_gt+vyNCY3R zV(5?U<(`}usUeIphaWcUg%+BZDV5{Hg4(r zbz}9t);#*!qgOS4x!yUc-MpecYxcT}+PnuNiOl%2_8@yX_Lv4lR6IRaCN&n%)3Mbo;^9^HnBQ$=A9kh3!Xfxo9Tym5GdI1w?~D zjdZ%b?(7}9jK`ZVA4s0d)A-h3qQ%g(1z(9~ir>kDkr*F3n&iz3vCs9888!$jpt^#I| zRPsY!E=Q@<<?%!n6+;VPvPfJ=5j2)5Z4ye`@yBthZIe61er2>u>& zXLNt~u=4)kv-9n%sh@dWSKxqOnoWuIat3m^t}a{7lOucP<0!tynm=;*t#Pkx|35Y+ zm@#i)4uvZClEjrieKN|p&cv@cJ~DjezQk7m7{D_s-(GFqJbrd&YAOPwQBSjugvN-K z;&bF`5P>+|m_*g_DJ8(NO0O@ShtVBO7=@6+mt^RWqq6`jbzYe6B;kY0;=CPVJsBd| z1+pYy-6crpQib{P&Ojgj;Vr4Dsq8N?upt`Y=aC4KJfd4zZ@{_r@*#2$gWT6`14p@89=QWiI`s%4YW)%i&4 zpz-uNZ|bTUDVOV3?H_T#ezr})-(dyA!KqV)uGt=Y`$kxmU1NjV#~&Jd2jNA?IJ=CDn7~>q)E1JOKPreR6Az97^tFiH zY!o7Dl{MFMFVD%@IoYImhNU>E|5;X2&bhj; zVIQiPmEyHUi7ti+w1u~A+ZINmZXnBEzMm)h60|=%l>~^&nYkU%$;u#EUt3!Uz-na^2&Dw2gZ=MLNDsX7O2ypJ&j6mA;GWmV?uSesB2*lf9%x?kWN zs1igLW`~IDT<3=GW@Ivp>>wgYQjJeoASAz$NTf(UW$*~n2-5fj=}M_pGC|BjB-pGJ z25Uc9p?nl z9#k&rYy^FlsemB>DGqE!bTlDgGxU|u9-;3QQU0Te=ILm($Z2u<^&O&=vV1eH!+l13ikK~gT?5R#}P=yj10ql!Uml}vT z%eK!iNl`5dRH{JerSLpo<~+#1f=qhQ;+n8wHeyNl|ayyr~QVnlR`9(23Xz-7vWHm;&|z zxnRU>6Rd-w_1m`>cr5kY+RaN);cwixy|^Cy`RA*8(Aay?$L4enP?i|1NF*RzvYMp1 z0|?b_bV2#I`m8U*6B8;Z8d@p==V*~R5^$x@_f-b@NhHQ0+a^pCOY8axWmS zo|iO%XmBrTqd$#uoaO~WxPUA9`t_@VaFNo9ADsD9^~64ag({+%?$IM+kHW*l(L*DO zh%kYiKsa88NsWohRE^Ul%4?SVyuAHo9P59LJ|-g4QAW>9z z#{-rI)EF_UPlJPlVMX@CG5;@1v~=RLW};Xk!ToTc>knxz1KRWe8ueh(6oJXGmJL8T zMGQZ58Ig$m3FU=S>M*D$E`0BTD?*PFWymIp7|Tc4CW`Q8z}S7A1%E};DpE;~t~E>D zF^G-;4TT6OF(2$5ja|H50iLcO?hJeGkiuPU_@ zxkQl-{yU`7r2Dgw^~pHHqyHD3)PLx-^oIXcP8(BmWw}rc9M|7uS=aLU)&WadE;Y;e zDHc1suUCL^nbInkYVbEKg>5JA1;Yvy<8ECBJ&~taHcopF+1WtaR3F z+03{p#J4ORs0~ZYxeQe#GQ(vbemGmZTuN7V0Gsj$ph&R4rtkA z5+0!Hhr%hKzJ;cHqxel;!KAtvcydArZQK~?daMGfGf2ktM(zFm{SgyMTbF=G;GgB|GiVTQ z@FT!RN1PDb1IN=omh2w--g=g>`#+V9|60TUT2YqJ*gUJ1G`gmEi3OcG?tR=&ql>nD ze^|%C5u2cw8_Q;$Z_N&4o%_)q&2#UHp#xOy-Mb#3B9k*dgES6|ge-_E>GVe@p``Qm z`6$$^g&9){9n%WB-R9rIH%aE=R)NBa1 zcT);{1foedIk4rX$YYm;f|qkwFpXdNK2s*aOe&8MjgpGt*S~*ShXyOCyuV6RgzbK4 zOGNqJ`Ku)NT-%E7kF5(4ipZ5g#2O=&@p1;4R<+Y2<0VRk(FTY@gxyaruH?OS>*M%M zIUOgaa#$@)dSefzd@!%oQ>vM+Xvi8WcC z@~JaRVR;9tifGm#3?WU+G;)m)2*ZJ*TVn4RL_uNaijJ$lab0vFF)YeTNcR*XuBVX6 zC7tWg%I!P~!Ae0&vQkKH9~`{TbaG|ntpM$JUqmxj=7dl@tWnnuxm*uwd=wC`5m6*) zHYu#S0+KFew19$2RTgwA6sex*ergbk_FL$8$-LA$?A!aBq@Zc6q(lRiCD@6OM8rZ< zKssOoC;|ZDb^joZ9=t-5%oEU`@t){-G?UUmAS#cvA@bac#lf&9wIC-1ni10Ble#cH+J`0)RawrCsLsVw0d9I9#Ga&o9O3q% zs(OhUiT!B_cX*9MjL<0p2^GNyVkVjakdc0^&;*QsIX2iu>@CDL`?}u;XP{?iFlk2V zpCe;>y#AEqDqV@q)oWy4k)4{Fu}=s$sc4LL>X7#<_+_t(ekJznwU zpgY0=9UUElyh4Ud09VLeqtR0qaIrR(X)Xg;+c`K(%HP&IcQljj@KhPy|zNsn6?oOl%k*zB3jm&iGI__DOpHv!T3@krN;_HVxtct(IiYw zh->}L%^WF&5eI`zT3VsoYa|+3QA5z^p#ZK8Ailomns2L5!jJ1R$zFp_F&;7mf(ApQ zqkyFuL%+lbG%O|eYjPTuAw6dyvOSL)FbJ@7PFvA*mytemNC%}7u?h9jl1~Dj4Zx%i z(w_soyu4E1i2yg!b#XyOPR--A)T*JC=r*b?Pf~5PdbWlb00!kV3aPPER3QW9hc^aX z4`AK^qoVry?sUHUZgD516}n5bV2= z!IH*^*m)#f8*g4*P{qlMbfTxBJ|GVvQvawlRBAiHCs9gA9s4F1LsZqIYc-!iK^O8) z*~+ZrA0CViv}9Y(%}+Lym<3Io>Cw3pMl=f3Lk+2|Rg2Y3RUqnWVni{Zb5vNjAb^OZ z`p5)#kJ4Iuz4MeJ^W$9aVneBwvw;7*;qTKxe?S$^tq0$QE-s-$P1jDLS~IB2)348R-vPy0b;8MZv-mdQ^35D;$=lqv64_hQBwr(nC$1FcJ|+$*_mdV z8a?NCe&6r+eV_MvpZEEmSo7ANVOjk*uT6X*^kR1EZ^;H;h;Go4sQLcPB&Om+iPs`5 zH^+7`WVJDQr+hkK{MU}yWwSjulGX-uGRMH$p^cfk>rOavr>S3Ju@5?<#D($5DD*gC zY`~R+Fc?_7N@}aJeUtFcJ)KBD3EPi%n6u)4+w{JdSKMH)Hh|q1kPn7_<7dS(_@=&UQ@UKPnmBOh zF@|kndAq~-KSNIC%T`13IILxRj}a`BFIqKe%~=RFnTW(ve?(Mw8)^CMLf(Yw4{PlW z-mT-}7W>R3km>_mO*navKuP3kf)E-37jQajKn@H*H+;4+Y1e=U5a^(Lt0W6FZVjeu z=Ov#kTN;n&F+!MkkTr%N#}^;0@tMne|F&M4lEtgRSaau3hFib+K&-YSb8L1 z*%=011zG(rZ0xzL0r4KDS%nLq?&Kv-IItiDFp>uOf;OcqIJJF=&5H`^28qF$aQ=Bt zuZ`t1(pIfnr4AVnISubNNnDgwWSH$9vTg}uZCyU^=w}u0pKTwsUZgU!C?|@G10`=p zU%&FLn3>Bu^&80%jJ+DW(A2EaflYwEHy6V<)922w-G@rPoxLiuY48$7S~qNzm=xb_ zEDnvaYWRNH3_r*FwXLQpe!;V&^z{&mmYpyQGw=S@Ax)zofH==7&c79;F0p?S$OxV? zotDOI=ek{(g&$c}JsiRY`0DQEwS0;FwqC{pKgZhI{3tf^J{=dLaWv{JO(akyY@j_U z`ymND1w-Y#Yqm@LyxEgL#xy;XZxoU(rY0V$i_%K+_r!JQ)IX_uW!s?te6oTY)9c^z z1e@6C&wxWdbF1I^jdQGYs`n@pPUJj6Rht&?+=}=(9j{sTPLA!sCw`2quYBOLxd01# zoM;D7j^#j~Z|?YdQrp1c-YM1;m-;9yi?hCqxt9k?T(VtiBc89x;yLC@Y#{JKHpB8b z-xA_ycjVYHQeZ6Jfg|CHLNNx#u|V~LBEi(7ZJt$HHIQY3Tx}oMLgn+7B}l@N_L0p( zf=e;_)^U_Bo8)l;@EZ!G4zB2uv~e!35R@)EW9~&V5E2S0DhHJFOh$I@JKK+ORZyZw z3-5_HpawSoQn~-o7#t6%Wz=GgySA*4G61i*aRt?GcHMbwi~v?YMD?8ZLrNE1n48C> zHS6vFiG7eWf8ScLRC0!6K=K%z7OSIG~l(>#2|)pMXzkT&!#{5MFduaX(O*!GiF zF0oEyZgi<^UTR~GJm^A;SnWA#H@BLy`abalCCL>03Oygs41~LwIITG@7p)rd>z`B=PD^LFVA-< zEGjC(vAmBWkFqP1HX6G$m6EQZgA0qpa*%_qfaY{?sXTiKRqhD7jIzMjDcU%E?FH5V z3*zM)vl_{GH3af9mTy-=!+cTr)_&L^%PY=deYBD&k1qQ>90>Nt}8rRG;R zYIO1}ux%*dL#}9)$a^x2-#h^E&^o7&q1#QheCTOFTW13_PB2SYI%xVQ_-%w#ENaN@ z{o!Q`+c;uP@S&E>XV=Dza%m349S(>dO*U{nURrVc=FLsIdV$gCRQJ&`P~&sbzW55} zqJquX+dQHmVeb@N(T0$*E@1ecC$PJ$f>^F(N95W9+`?^aXaB_vYhL0dOl-#JO4|G- zWbTp|rM$SQInEo!LWzQgoZnHx)!fay?TiB(>M*)hc*UbWE7pEs_WN}JfKZC zJTz``)Dz%J8Sskfip{LQ;75}{0;AU?GV=N&{Bx-SO%KFrn)2@F(m zuFa-9Pp}noeSS9_!iU!6*foKiAHQ3m4&yo5+_!DZM7NDv>nZ|_H4t=T0Mg`H|8@L9 z$HAp7`!8J*wsgsn7(8<1dWf)o3qSf_>>NMG!+UzxcCw4;3@+tPja=g0Si38n7VVEx z2ls-5MYD;T9ME8JyBL$nQ>Ij1KT>y*rS~-!BrQwPFP`5-Q6Ic}c7a?_MO6MT|7zTd z&n>LW*H!cQ0y@9%9lmyH_lFrg3!C)eksiM*>W9{4au7yh5b$F3c$~RcQ9egU-z-YE zF^p_x@=o%}HjkSkusV8TckG*^rU~r09#l{7~6I?w>0?LFMi^I>|bM7&$#SXn5QYoK<5!pqvHn? ztke&s>34#-MyvS(bX0czjWa;H2(tx7kIP}e6~oLH_JJ-*fl8B=F#$P;5P0QQf~+5e z1u&6_kj=VM0D&Usn#=-!_fpsb z(Brn1vB#G;H z(C#%sZJi^`<#O_FQRGLkcB3jDGl_aZxkz<8GKpsd4IyAzG=SDqjB?C|FID0-nqa6d za?E@fY|v!5(&@Na1=(PP;JB2`JyeCN;wd=j8TV<`p{KEYtx44^&ZWA=LFO}s%r|n_ zkA85HZ^TitXYSY?Z-W8xBw8wVFJiej(@H8$k#}kMP+?MTMYP-3-dSL9In|??pJRIm zhv=CUgXJ{OnJ6I@&+3hv$7-9G9VYg>`|GbC5=(Yx?f~e|MG1dW`6dDGw>VH0DBy&t&$P z@^(EzCifW8t?VbJ-godciJbXrCL|&{JNI8Od)+=K*W(AEz1*DEB1_wcQApZFdZ<2c zz4>N(BXmkhA+2%8*6Qt3KHQ zhL~#s!tja>nP3v;orC+9pR8H#1CYr7*FT6D8E2 zNgw9+ZQ#!B#*at~$8XIeUP`_X*XWuq*ZVW={+^LBF8>T_xs^r|;A!{rl}-=3{Wugz z0;4G691)J6crZ#_YS)!_!WpJ52{7#?KcAZ1Jn1|fkIN~XWmce(%DjFbP2@!Ymj;*u z%1*z;c_@Vy&~*+bTlaMMJxIjoQ;KuRq7O_G~~OnH+Go_$Z<<%F8_3`aUIwf28{lW> zP)=-NagWC(;@k(!G3?izkghgSuu?)KAWTEs62~~?1K{OQGsA!D#kUfYms$PGytd^Za*o#sfW4kh(FNPakB?ILmFBZ#(yN9BJ_ z%QzhO=#GNhG!6K{sfv-H3*ve^?#s5_)5)Xl)rNMxQgmYw^}38+|Dzf7Z|-*T2cL1YtS1RDq^;?s5GjHXRM#oA> z;r)C(zhAPmv$7T9ic>K`B1{T|itbwxI${lICJ%AG9SbgC3edSEFhQ~F^YGO zjhJndZN82 z-%Nfx9{vA+TS8D)K_TeF#fqGPyq*C?)<6Z3gGOZmA1-oLr?TCX!E>H8)8!J953QEb zh@VM4e_f94UQr6CN=&A2U8eP8DPN}eFUe<0%nm0iJ(d#F?Ray2t*pGfde4_+wZ~HH zXNQCGRdXEr4xM|m!fk$b+`v^s?Toc}N~Fh=*w|@dRT_!ytAAX^$V&{%Ba(Yk@*B;Q z?0ddY#8b4>WfL`0)Te*+sio+NMvB#0WF$)av3$+2jQnl$=CPcnS$T&2I-jWe9?5En z>RtUg13xAYCZ-)}a;@we+hO_gVO3St?v{OLUQ{*ax^VLyqLC29C0vpHUM4)CTI9>@ z?dDMyCa9fl7tcfQ?LL;M-<6n>$2De@qLn6YRo{bzRW!dm z(#v&zrpcpW-~aIV4OSW59EW|wdM8ib+`VT{L*b9Uy4dM~e0?P)r8Vo zlySjfpfOo^;HAplyLZ>n(P^aU<&M@GMP@O#gn3SUV2`}iTa%h_CWFFw=+Zam`L}f9 zs^k3)WVR(woQTuUcb}T-Ny%;W8?ilN*_hNc_akGfjn^ao{ri*acZ%uEPdCkbG3kf& zh>U(Zj-yjCE<393WzOBZj~&0UVT|#Vu^`h1(UFe_O+H2adFs@pn6W3Tdd3hB+eE5*v?78D&TJ07FhFF<R`6-{B-o;!-okfvA!&>gGa*!tl#v^wzstz ze}8w&%gamo#EHLFuGUfn{IkB8`Z$16@ zD{xM??3~y9er(PI7uemHn}fSrczgR}DIdnJPY;hz;i@S{5l&M6qhnP4M3?b?uiLk) zqGj$~Ow}A6F5&I@a>lZnJ<|0Nt}Vx{y(aa-)~#EgY(Hq&iF=O2Up^%#r+Vzz)%McR z*sw6BeR?l78?x;y`x|mjrF)vrObjKcCEhnI3yYtf9ycBOULfQ=8fUtEg?@^PqGHrv zf33ipK0VS=&RZ#8UY}*Vb<37$_6Wyg;xmKSBHVsxt!EZeou8uS*ZWQnc+4k~TTdr4 zc!kW0q_lKNv(=?nSAO~W%wXY)?(aL(UBa7RHBv5~VwpdyZu%wZuH9tEaH9UK?2!h$ zd)P?(LQ7+=t)er*Ce+wk?zNTs(D`@2HrSNxla-NCQdhsP=h#eZ-jJ<^b*`SQo$i&} zgjL;@oY7cuXV>wnC#M+PW`>HosVVxwuDrjz;$25`ML+k)S5r?`KmCF(YD(nir{~@( z>+fM_FS>*~y6eNGnx_wkJ{_mqo{~3}a5peet+j?l)Op*cO`8foKbCGNWZrP2r+oRU z4TqA{6RkTx?V{FjSbXq#fBafI=Cm7sj5&hc77#tid zRT{$YeS1D^#8%j@^K5HJM^0fRChWL>szaZ4WXin<4=$bLi;)Xf{+=$n{fLE5s(8xj z(8JsPZ)27iot&H~LkxP3ukT!RoooxDq(+FkF#6x#d+L6sTVbeWp79D=+U=3=iM^?pKJR`K6O-*0 z82IUv;%txpe8oKlG0rX<_H(W8?|S+8R1dh13sdb^Nfb?bV+q^_i(Xvo$rE>$mfrIP=0x$-&`8UDji1zx%aj4!QEDPgiHzb{ujX zJR2@(TR3KLI28XjGXMHKUUi(`@Z+|OE^j}vskp1xuBE%rP9^4*J@ymRPB5J|d3STu zGwoywwISzn5G%8oYfYa3R?wzBQkg!vBW1!Swa=btKfl!Murs5{J%=@`|84Cr+Bpu% zOdE>$3q}eU^gFBKRTy#gh!#3UV?9)becI1IW!v|7&6;(L&yVNN=hjVJ@Do)(FGr&o zd_WEJa!Wp3C@@p-U3!96S`66&qSL);WYbhsR2=e{bIqOj?!EAq`;;-2w^Y2Lbf7~% zQY;yJkKeNK<$D(d_JFs|pN3kB>|1<}WEXnmo%#0X@>Q%K#=PgtXI)FxtV0f)cmEI) z5z$FaO%<|feXpj=E+9~2zFu8x%4rvdZ!W|2j4crpVL|I-H!1d`zacR$j>9j~t-Fd- zrXuR-wdZEFd_Ii)vMMohN(jMr<)Y)AjV=Rfig%{x1D(A)IzK=5ZyoBWeSMd8#Y6q|X`Q z&mtwf;SREv%7Ft1Bz@^N><{&baLx5CHRM)48xR=jQ14#+$GQxv_`IG>(7FsSBp5ruPh}$cJeO`%^Ja-;5X>gzJ`-;4LX5AB?RWw%H0R&Vpq?=OJ@3EcM zITI=z+Zgz~+DTP4;LV#i&pqbnb`SK`WhfjydX%Ey>fO?NqAK}}My|_v-q%6Q)F!IAA=toSH|GK z(_(IPVLQBfoAUEd7Fo>C%~Hm_g{jR}oe0Plx@-!9%P~Xz@-&L;du!8T-}|~%v~j96 zxsLes1l8eIjCFoKUJ}GhO}$W5?`!X{`=epn)Q`SITugS%I~irfF$AwC77f`>;U+t?rpjUU7SBpWTMlyKIqwJ+*JeVK(5aA56c7jM;N?R1}bh}CiC`v#}7f%(Y!8KaD$ z>uVXNwk)SnWwQ&T`CVcL+2zZsovy#j2ssW$xlc5&qK;<2Ft1C%1Q$evhJ+-vwq9Jn z?GK6hf%#eS>o;!n3^u>j&U4Kg9v(hq+b%~<^_UxpB#AQJvPthk;qA{zQYm|+eJ>$0 z7QcUghgEcTw35<6>%%Op{`&Q6XGF8WprBZzNVhLNxhJHgOptOI51TyzI!al^;wS+? zA>`2e0P!rAqMOr=Ejl_SI5|1lU7Z-zpFi*3*Oaf%n>*@{JsR`N@|6L&tL8ON&rKmR zB}lV4od`W_u1uxqsv-2aP5=UW>o$KS+F`qU!32pMln`Cyy6sZ zZuH9ajB#f&EW~sx&!-|OI58eL|CjTR-uTzoR^`0dV_6kjvDv-##R$M6;2DgG^@c*Ys0}gO_*M=E=*+@uXT!m0G$#M)EXmDfF3| zXz{cE(W_NW(LEC`WM9$ZC*FU!A=$j{#Z+%v`60I{JCd5Sva(E&lE{@(4;*Q9d@MFQ zs&YD9NR5+|(?)=)yFM$e(YYsicexc;88V(K0A^{pu!hG}Wn=)Rb!x1KAOuN=K<+Yc z-n_U#ZVeM)iDz|vj3SOt=YU6YP8)H1_e`8oRJ`*gN$W8ZhMwiiA=j=o!AET+K|LRX4-&LP=0z*bFy62K~io5nwzGcOg;^K=>*KDELcs7jA zaCT;-yu_aU7!6IBCSVdC|HcVS!^q38)(S0hgzNfiV@pGiBw~#wXrx2{*5guI#==HN z?Z_%T9D4dlz121KBu%A$YeGBX8fT`MV!au76ENEg843Z>QFIQxK_%aPcJ%!oze|X0 zvZqc}#wk7CvSUZ$Uw{3jtXqlw4veb-G*@RUMn<5@>v^toW^#m__3BmGeonOzetA%h zf&BTrl^d8edk@@WSNMX99Ie*S&njeb{Ps(@@MZZOhs_2Z<@NL;uxWHs6v6}^V*3Yb z)ssUmt3x8FM$G=rZ^*RhgGOD3rN%&GZbRX3zx_5^bHQ(`i@dC?7v@{-qHFClgEec{ za`$W`jA_M9WE2wQfmQVU*2lf!Ja|y$^XJbN7x1IFtn3RC{uV|??ba}WO)gH(4`V{Y z!e^|ltr-QZqJZH`L=7!_9dZcFjaAsG#Y69Lz^s_w@-M5E&NL0Ym-Bs#(h;w z*emjjnt<;5&{DS0QuT}V=Tj$USBU1L7vkgNz5M*fRZftpNLZdvPneM+FbN+Y zAFFPog~*;g$H92+**UpYAn@oGi4VWuBjh^qlaAt|nulcP8oVAhH7N(kY1vNEJa>n8aP`7jaq?@CX~OIJ z1l{H5C!6+e_f#?%zWU~apXY48r*qWt+@0M0^6n{_N|U;iI~j**pB(>rYrl24zfVo< z>-F)EUUp-bcb3T(d9w}VmPUQlyp|HMZIX6_xRmk>L_$0Qf+HOs^j=>i^@=B+3Z6VF z{zV=shkSk;{YV?%9zP%qJVb0Mw&xRA$kQ!vr!Ew6M*e)=K5Wf8acO0Tr6Y2BC$^|| zcAPBUupkj!;cM#^XscY<;56ktNefS|`0Hx5oLH0&ShPxmBCnh(S~!c>Yulw5(!m%j z0%(iVT`?+K^{ry@d*?NE>h7v6-c;$si*ZJgk7^s%x%iqmA-ouK%t{Mr1^>(glokX{_V zNKS?IBghzd`0?O8i(i&VHR}aa$764c;F5gub2K_R-Jh4{CXDXYlf}SVU?pFD!Dm5W z+48p5+Gd;b!?%OBhYYSQOu0nxvlaTB2NPte9|o>hK9cmVic{Ki{ja~`Y&*)nre2V~ zRm7{4sffU`ynZ zQ(wJ$wUB*xKv9bZfDa@X4naXJB&upC7YWsg8a-g+$7!WE;5bnN^l2Z)jD+M3&c41% z%P8vnTM;FlSc7J=f;Dxw#sZqmw^uKZ2tjybOM1B>dJ~&;>8(?EIVvwQF zDa@r(Hu2lFrZur(`f*R6Dw2@gf*(ZwDYErkxBU@$1Av2X-Em+$=hnN@vSA59{{D}U zShsF(0s;oWrS!2CE1H-j$OMv-!M z&L#*pNY7aYS?3Gz3qQ0g(XlF(5D>y5+Zg%qgy?8iYEN&kSwTTTyk%1!q=clnPu>O@ zb%B6-Vs2CK5!i*9RBiql)1w5+UB_%M$cmlw6VecdjsehigGNL+wQu)m zSlGdIJY~Kr=N?Ax;oRZg#B?4K45PUF%cAj$%E|`4RjXEUV{hQLZr!*Yr@oR%!W@ID zkMBMGombY9i!*ul;Ix1A4A(G?&Kh>SKx0tG=;}nb%w=mW6QOO`0KsWXam`=1R_$k? zeWse)A+Q*RIBY3DLmy)2>!rASqRe;mV#JEtroI%)o^dm?zb(HTu>R+%vJ&-Jm={hv zc)MdUrZLc`$^5qTMa{p1X9pwu(lORi9a@*d-oc-dF=sIZGav->fmY+;)!Z$xb(_0y zwAo@(<*;2$FEn~j1s7nU<7>vn^S)s;^M6NiCSOwINv!3$6~FX+?c%^Vf^B{7<$k*J zcGJWe|HYurVSE1@_Y=>CO%uB8Kd+?L+CQOC=;uHCW3S)Ky|Z+r6N-0aULOrQax-cv za6ZjEd^2h(04IrCY`pt3Fh5>`tTpbv0;z?Ix#rvf{YIv%zDsddb}@v@wj-P?EQRx* z-_og7D<8CFrTQ-3wk)f@1Px8(I12M(j$>ccmjHIWSZxz6c;P0ufW_|3k*UTZDGexf1%7-&iXx}_HsLsWH}8dU&?;Ml?up~T7)dK|#1 z;>DEjI%yLw>Y`rv!u(#r`MazbZ`|(Vq#U9sOX(2!Y@O{4`u8=2A{wejToZuU7#-QgJ!Yp{hwrN*cevvnxcz=@}SzkuBghNKuD#czF0e8E_!{XW%HU zQMCQI!A;u0os-Le!hV7=nWtUD*DP&E)_S+f8ob}Ge}3>xvt9eg?OW;TxrBtinu`bt zX+zN;aV$g77#k|uX$mbsJKsHb1B*x;cz&@(2KH@jiy(*^*pvF*At+y5P}IL#M&FK( ziJ1~!v0~#e?NZJlzdpPkIPL#Y$fh^*ONw~+4?TnT!C_%x$~$|g@y>bRdPFDJb86cf zTxv-4W_J0oPmyz@vFF#u{tKY*uFFUPpy%cqJzv}BKme^mq!^{^hJ^KdhM!R0E9|Ju z+;r`MWYKH|rO&C^J(L&zTpDEpMvntMk*koK-=>( z{UsoRXFJsH5Od9}Yu`ka!LkU^#MPVGI_oU+tFb~48I>_%{>$_;a3lga5ukFqb<>Vs zTiG?*RT*;Nf+yd>gP`KV5D#9bpL>TpxMhpolNa9J-j&ij-J)-8X77#(wNS>^AW8Ie zgh=hrW4++2vL2pp-`G;*N1YgI5zPyVh|s&p14={mT|sGDobj8s+LI0e-D=g`t5=uJ zjzrE^LHACA5^%~tZ+^~2H`D5&+%>XKHfDyIh7BV*bwQKMZt)ei>#aG^*47q}Tj+K3 z=BJlVBZSvO_zjR=0I+e{M@+sbx+Ui!hyVLiwx#ra@oI=UUS{(RfO5!2k3KG2IBQK3QV;=~l<;z9_8V^>0&?tbnV&58*s^Jp z65COd^nP_!i*ISQZ6?@ipHAkdv9A~Tx)y6>Uvw`wsNGLp_|#bnzkIc|?aj%Njvim( ze#J!frXsu*q_bzx;Utd4$Mec~i*7K|LlsVc~O$f0^9=WmYh(#Ew zh(PolzDXdo#Mb6|U!65GH@;21EbKysLPJ|S9X0=(2#eqV>C%<&xVK5D*ZpAU1h|RFe?81&IJ*N~J86 zh>CW4yj;2wQAw|nPO8m)Dp6)Tk_+7?8*Eqi!sQ10pkv36+e2z3)gXiIJ8}FgH0`dP z=IK2PRYD=5?Dvic{J{&<J1JDAZK+?nALlh2PN?+&5*s&wi;59hro^1kYNvbK|3 z0)m6%YieqCw-9mCY4~FB3UZsHOrEM!eaSL@VbP#{(G^lQbRoT;Z(7mI|2PKZq_cx8 zH_#Xsm)--2&qU_-kAD9A(CLsvGJfK7j=`&b#nFDZ(z?nkUc|}!Dz+O#5}j_o}_^5D1oI11VF$f})~eyp@qLA?9>wv0+-E zv@1SGv+O}yi)!DCJ(o$zbYDjOqnkH>WfrnKxk37@#~$*50MSrWACAKP zhYEL0LCix@dmm(sM4hV(pMMZmZoOu-@BOLV!Y)LF?wZucJ!40imdUy)=&wa&Kd@<&e7P028?i$O&$Q}2jHy(Y?P20NJXnJZV?dj-@&`Q^bf zs!;gcD`Qj^_L)@FAsS~lmIIe#1SMj}$o2hFqAe*T|0E(I=)r?H2%KFg)_=iPNTT1T z9ftu>#>q*bI0v1&Lq5N(GSK%PiH)b@*Dln9+1aHBa>pY;ZAMXo&&ZaXt!Ejly!)?mz%W4pTB$aofs#@3FSg4zApU14XzF z%h-2SJgFJC%xqqXy3vOY8hRehD3oYTLF52C1Ml-_J$m}|kA3=iFKcWe6Y$%0Dq;zo z!W#ZD8A7g+%d^1MKv3cL%VDy)g&)os#UiSAqk5yjP+ne6#UkRj?^dO1LKt@*?@vZ; ziNU22#T7LaP<@yLl~HXqzD0dsQlbJOx5pm3DC-A{j1r5C=`EH{R)vb&&mV1*&ih*i zZCxk(_WWVQaSrw)`sa=s$^`B)a=rDi>Ut&cqy6j{HK=RlMl4#TbLSpDdi=Pd@bTlv z5U<7jI-o*Il4>+0P+5DQfPgJzFTI~Y`3+dK-S%VKUVi@Srd_{Zfu^^pBoa-}f5mn~ z8MY@eZb?GBf{M6~m$f20Ox0jnqVQIY$U&}Sp*T3&AwHjV^0P`rS)_OhEC|M!SfpwB z__AOj`vib~ofN1ZTj7PsbDQSk<9qh<*gk#;j#X8vV_lWf^xg$c%~AgULjrknz_y&N zt*vHjQ}PYQ>KAGu3+jLmPA=XwaSj*?44czUl?6JBv|*YS9u_V5;dSd4r_Bs;akReQ zMA$ZeyOmA^`*tR#B$yErQLMA*s4+WSYxZJyq(Q3Y%-pr9_+olGt|R}%(Tcy7`0Y5c zE#`NPh()ydq><^7h-R`n0nHGZDF*;=5N->KiWmg*B)#dUV44WLd$)Ot)Hf`0`VJdh zyvVVCKV|n@vXKB&zG{%-{G=a|HD-5DXz}@6f-Dx}(!ClpPG~$%C)yhF<30cq zDOQ2&SPA!Iqm6K0`7hAa0rB#}nl;0w7sy_I#UH269Q*Fwi3}>8*u>dj+5_%0jy^lZ z8(Unuy1Mp8Q%Jr#Y7u)JT*Mv$X)OT^ubA1}Uy(q|p#dE>chj=0 zCB-yKN9$Ut|1uY!%}eCdU`aOIYulHwWY>xiyj*?Zr&>Enqw|yDm-wlS_0oDq?#Xgq z3UAeczADf-{{DBMt?jQayOxxL_r>iSF#;MzzO|vp$rFhW$SRK(xpaiqM>ZM%@J0UY zXt>0c_u5i^exSgLVqLuSa>SC#$y>9iBD{Q>EhPWXaco^WB`Me9@s0MU@<2Gj5?8)o znpJq~r|g_;y(C9F8veZgw3${xdCyG`%54@!SVc-0GrLSN-KQJhlouor4h{8@z-N0D zFMoNwAQC82c*HrwhL_u2`*l%mXe(yA=r73eG_q|`osOy(jP0TAF8euK;RQ1nisG-7 z?jmD+wa4_S*56~R{?yqwQJW=)LMrfT_I4eq+>}! zKr#lE_VV^tY07i6hi7Vy@4{9w&U&%ONFz5f?dJ7cVDo@3EBO)VHkbO*$VJN9lQNNF& z5RU2^Z?zFZ<9myY9)|ph>qX-u|1J_xH@emS$B52dW9MY9LdlhQrs^9uw0C7bz5Kt2 z@H}O=!qyM>i1!bttZSM67e(OXcvOkZf0A|^ndbat{I#TgXQhWub4f2oa7~46l!g4EyZ35Zo92pO;Z2&<-C9|ACje?_fKSadHDv~ zJyLGHZF^YTcp}}3a5U&8&z?Q2FT~F+n>VX`&jMGa!tXU!?lGqVZ!)E4abnq`4wa5b3tkGYq_0iu7Yu*9IgRLl7QO1>C) zX&nFFyUz-5Ero=~C?PF{I#L0OE>Rh~O=BjsBi#oO>OY-uxm((o{?aFygWRU1(Z(G~m7vEUaG_OCMtN9s}w!BR*ToP-) z1)FM!E{Vb0e}?F#kbiV3bUh7mqS;S|5%69OLLgZuM6C{rY*Br`+=`^IR|kpwyEMR( zTI=&ai(BpWzF|v8GhF>mckJpcvxLFLZJzMzscLF!_EVt+uGz3b-NM4+x(;37HB>OH zte(onygIWD8m?73$wpRdT%kOI@I~9$*l@Kvd!FN9W0NZK+u0G+X~G7w340dIXLB3C z2BVH?E^|y^xn8Ltz_h__yx}rmXen_CB&nNbF&x}*<2b2nV_{ys`an>Nd7J0MnHkq` zF*ofdxAAb;y^70G099RU7nX1nZ=kw?`V8o7(lJVxl|TR%C3d~L6GaNF7eL5vv{Q*% z4q_ga(DF;B+B({GT+5uGm?nfu^a~7y5+HtMjkSS~%D3dc*u~|x>*sPq%9mH!b$#

24Ne{5Vg)~5ui8nB$=OiRbS}UmVlP|>{+_?ph4=6JS{CX8_^0n|W+Li3fxP+^F zR%P{ktNTI}T9^oK4jMwlHHh(6A1p%i{qoOoZYW|et$`}v49RAbhO%oMN%P0nYSEXCGZuv*UZ$fIe{?QOOIFB6BAf74Qz+E!VaGH>fLlhWPdHtgq z`Asgts6)9*ip%~mdOkBK(P7S@>babTOsEVD1S{Yf)-MpXh!{Z}_HOy&)z6Jph>?^+ zg)F25ThHj+^nfXhZItO9peeg|?v9Pv7p&iGY9v`^8RUYiyx@UJ^ZJP8dIu=#pjp~5l z*9~JNONzlZgXt!Eh)Y&3%ph^3L4aF>QiYPb-OzW*WZfKf*uGyxmoUe}y96>>)b|qM zuEBMr)PNCDOCsu7g>^!<9Ggm(e2}dG6W7y_t%mFOD+^2}5N{bw`o$d2O0b2<2J5_k z#^N)qxiJVqr`~$5uY7J?N&HT1)Cs3QFE_uTCHxO(=dm%fR#_R!ZyJLO1ndi{u}2c% zQoaZ+F6Dqs1qNQ7W~2a1o-Eu*XlAHpzFgnzrR7g7h=3Y7;YO%b!;wl8CA7NLSLI2K zn&rPE<997h=nF`{^!XTSZ6=j5K3`Jw^^e|tgyrJDKSiG`PQ>m&;uoyJO*0{ix8u+w zQ!~szhNBGYw0Eu)P%-hY!cM6{9Bg$Op#Gu}2hq%diosE0dn_6c4?TWDQnCvO(_#S3 zb<2(t1xO>3Fm`F9W=G6+&~nSwqOsUyQK>;un)^3f9UYx`v4w;I7G?83`k3_D^za!y zfn>d0ZQw|>y?lXiR`tUC3^p|JM6>ucy)X|YX#MUUX%jSQ5Z4$iZgE7JxVndqXUV6P zcya;}F5vFnhp4Y_btxm;iFgW0PXI|%=#??8&$LF02u`#LM`4Z_x8Q4p?8aOH6KD+9 zp;|@ThSO*)AwnCTtlb{xKp)5y5XT)<92bo2kRl)vAOdmy4$tiz}{8UOqzK}fPaLzGL&pB(u;Jn!dT(#g@s5q77vkYmd#I%< zln?lDs{3+dBb;R+L2JORNX{YLpLrZ>+g9`xJPT3TX%A9FOxQoIVZW#JC9&J>4j>JN zOv(;qVVQ~?IG{x8(vXF{!)(z%0L~=iC;H=oDG$sLKqH^g0O7?Hi5U3urN~bQOBYy`v=+v;MZ6_0Y#8Um}(LWVBgd&}21L*&@=T(^ecJBTMR`a>m&DW>1zLYIE zeAL`Ea(~u+zt&o#=4+YC91GYbB+qdfu3^%J<;No0De$oVZ-?QaTBKMYyV0|>v{Psr{%?hzq%>BD^KBz{@<&*(xQ&qBhA|&5$FT&H`HY=ihhBPG_v3ciC{fpB*=xICe zM+CMjrfuW#&LrqyVIw+WYqO)gs7UHuH#hBJmB9kjfMgix@4s7yKqBHf?uc-a$7_`+ z?Ao&{{Ohr|5IX2uJ<%Ep{VZw02XY#)K21QeXm4{9&`2Z(nJ?LqfAq zsXy?nXscb(gv1N8hj^2-qy zc$xoav9~vGy1x=AU!&dnL8&234<&tqC)#q)UBh*w=LUUuS}m%lf%1{&NMb=O_OCVj zarq>UH~2_-i+tcM+k2~xhEyBZz5TT4(=DbrSId!(riLm~H3?jMy|Vm)92%8a2up0w=p~e^O_1WDUmMPb`J_44thz3(R%cg!O-QLB8nhro{Y zYN(b>Khx6c+Ib0U917h>;6{`+JtwCU<=XeMTg#PMyH|+t)y4+8*12x@^XzxF*ouKiRfSRJ@ScR z1K>%+s&$Y--c_508v+bDdD-!y#ZXx{c`5V9o<8eJAo16ystU{~^HiAjgjY9k-D=KbxC@r%GXc z2uigJ3(2>!F1k-u;aK_?_bDbfhnZIf$-aQaFQLuEro98K=3++On797SqnB?^?6pZ3 zJm~VnjDSJ((9T)Vp0+SECj+FKq8S)QqolZ}&C(k84kELB#`Wt~PHxyK zmbBy&Pq_17ljE|s%iqp=tWs1%kDU~_y_c`A!wx@R-!I^DA`$nNa@j{4@6CZl)vX`P zVS3Smn#(;LM3)eg_#qe|rW5!~O-f3N_QcKNc8nQ3bAc%WqG31afe}<8))G5uSeVYH zb8r19Y)1dl^7#!R4A%b9*lMIz zm+_$CZRiUzQNPbMvGjXQGYg>fR$&(kPkCG6e{oL@4Gmcool-^Vqtx9A3z8~YD|$@Pl1tIO4F@+DpX9Y3AXFUewl>$lS*R#~{AX+2NfxaCn zgk*DDJKbbE5-*zl3vst@FLc^BW!ooiVq!A;7%ARVlXE%cZdjO^CJ%iJ1~W?C7j<En)P+J!y^qIC%T6iW zQlHpJ_peJIW@TsJK{|KmXPf4?-=N!h82+70hm0%UWzNq{&)TnzJ4?EB(V}kN+n8H- z=OT~h(^oaQE*aJ!DsTT-ccD0dlMGy^XeSy;e_gxwAgMcFz}_uHHb9CsGlN-7KjYh` z>neiNCHiycb>NoqtTy4tQo88+qt=Kr4zOa(%Ep$>JWtJ^s|F$rK9{cTLqdZl>aVoY z>pVvG8lm6q(n+pivPXvgd~4}C>(U;}5thJ?KnWM56w(9wYzz-s)Ymw+2OHf6;a%g) zIM;frtftT50xaHASZcSS2=3Xxzl^l*4navt`M&&yz8NaxEd%UjA~FbQ7>ZVF80sY3 z)f1~Pq5pR1t7(dwV}0X;b=M*|Ndgb}>t{`Dq2Tv_^hX!)wSS_CE3%xTqPj?L7^x@h<5!*|&P=9BOUD>9VI5|_hsO8n%M%SSmL_(ty|V^)k#_^P_4~* zL`3TCdlB(Sah9~OoeJ7-LHh;NfY|#Gv*ch4$wf$JC1YG@@Irq)IxZLbO<_Iic}aA{ z7j+gY5HkQdszC&IU;j#6fMDuekoAauc_y_3f*Rs6|D{h7;MJrX5RI#{FFO!o2~Q)+ zfq6zl3}UrTNybJR#n+^7B@jWWaU_iJH!p9x4CuV6YtY zodY)b;~JiILqrrYGfRSz-`n-RZRijPqX`VjAQ<6dGlRz=IrPBeO1i0aTSLlv7(JEf zGnUi*sz~stnk>|xKse378yl?NuD8&K)4-aUnxu6Q&236Mj#yNY`vx5`Sv7JebX9<6 zV=!!s7U+_oHOV3ol`!hUnDf>g4W(iuLuE8HbEMiFr%Vhj6BCZ>nFJKcalrqdqkjhS z@o9b6q3a|8gFka)BZFF015%7ZkWVxyx&I`u5Z(UqP9yEc*qa2`;SUx(x_x^c45+VL zhWtc^Z*E``h$6Qd8IX#Wtt}e+ByFWB<2rPt0e(IBp%% SVZPuql#!G_K{i+_d^ayFm_{Mj~?+$REv-e(WuDRxX<};tgYk90B2@wSm27@7ymb$Ho!5qM1F#9@> z9)>GoL_IIy2fy7Nbvq?XLp#R@HU^k`5A3YWEbYvUA6{}Wu(36^w79{}!+!nhrN?%5 zR<;5h9OnQ10=uP+5eL)cg@^EvV^&fcwiwLG2k8I%l0*}YF_?!k(zkCaJK^T~owb!$ zcWW2dKR?|+d^m||e#@WLK$SjRBQ(Letmsj`vB7xR)Le01c!=TFFkA0zO8nZ4i|maY zi_7fENg+j<%+yL=Q3fWgQg{r~YX6Zh8ITu_r?n=eQCV|!+d z)g8F`ehlw`lQ_?ZdpgB-S;glH&QejOf3Pg?nZDkqYr$F6x726bqM<{JaXLtodK}~B zV>VFg?Bnm>S!_R(Yud%mZPNaII#3=fil-T zmsJxs-BR`Se#hwXrVokCN(sTnBn~AyJv}`{M~^bK&3xe|Cnrx)PF8%fWjFcbrsvL# zUPBTsCdp|sb;0~;)sQC2h)5?0qo{olw2DbK>8IK?N4GDOFQbQ=)*up}l zK|`o?psw5E9s7j=osJY0rTh0k3OLLrwTNt8ZCP!J5>9s-|XT_1U6m?EKE| z)K)*%Ywx&UhB2&n(r@Jp51B| zT;TIijTEqN-CUiK9d+L)rtz`n80PAA%K@Q&kFB|-<>j`as;8^tA1qB^n$zvcL2mBu z_Pyo>#*4!>E?aX2V-ph-eDljKqH3zDq4TB7SZTx5pKJwvpJ+U{71jq_Gb4B{Gt#vR zrsKnOTm7j7S2iZ11$EYYEh{>{JU`BD*myxDQ&;Eb&!2&DVR{}K1${QYFNn!M&CZ%N zMT_b=_F2CSW!Fg&ao^tF zGIwD`Yri~?Y_kGp$f?(-kO$d7w~--`!kfnBOOiK{INF4|AGU!!&&JzXo(5XQkv zPrkR&;)(Mwn@afb<}e8bUzF#{PstZyVPT8aCq?<@);qN<$pha!dv>svM;d>*fumwH zd8#q|2DT+9C&y1UU6Z^^$1zgB7luVF{jEDoKXQ!$M`QP0V#Fr#cuQ`(TM82rL`cYCA0 zuI?SZj$^+)n4$RmRrMjh`SxTb&8&ydVG%~V*QOGqQ=FH_O*+%Uu{gfp>KP^T0@AH1 zDyg^(cL+sEcYMz~n?NA5E5^#m_+*rCnwa+${>&0C&>DPtQe@I@R{W&!=t>_aF`H(t zl>63N$b$=5dx(Fm3=B0>r8SFVVR|xw-~294GZAuLiYwn)(;}hdlL!0ww+sh}?#jElp$w5c z=(*QFg^QK&3oIybd}mq+F(vO|jgL@6yy%Q(o(X@R#q(#+9#8&=`IT!N6c`l55FTwl z(Hv>tp`ymWma1KpJzuu23;9g0Vs|r@-WXN}c}rAu#UqbI4xYz9EOcnN*z1c!*ysu$1E;)o%4Z^tY(&D1R-tNvS+BvMO zvb(#xnx#%z&5?o==WuA$=DqpJ5`GjLx(ndM*p`{D%;*IV*)aBwHaXGsxH$U6Yq!Yu z_Lq9@c{n>ekMY;W=j@{v_0Ud~i|!O$D2;U-a88u6FJdVOmCd9&eL4mV_!wRn*!Z!# z!qfBK2cCNzWh;R$YqQB7JDXD+o*TZ~J39>FH?4kuc|P4=Qee`Rkq)yo9;$p&y!h>+ zud?jOH@{^w)7H4x5J8!wA$x=oSO18U4&pLyjdN?Up6$Mt_{Y8|TInYD*P0sAVm&bU z(zA#w_adaO*P7kAeH*=g1N&~U)Y(>g+-NXGg>`PAObbS0KTYJsZ$Hy%?-F(K6E;#n zWikshbOJz${5Q0wRQxu#A(3`%Z!9mDia=Ufo$ingw3~=@oSrKf>{QcpkB2E3!?=-u zLWrH|9<(S(g$G7(o2r&~`TF?SxOiAMC}z-j{Jn|NgUiY!9`3w*_ikx*wF9;xT7|-G z>N$rJ`l(FMom7Y(p$j7BzjCcNN;itQ4vwyG8b!M&aGQ2citcR$gmUO*lq{5M-7soy zhnFZ9*%)-BX(&lcOKX<96_syJv!W~#A?TR#;sjO7Ns+%pKBkR3Lf-;tGXMVl>$YCR zg&AMBWocpWaxuIhL9VtRQzLG*-|IRL%nm&$vtrjJs_Q(5ZW@DZ=wy1qfFd9gG-?Q4 zZ0euI)O74akZFV$zn;a`a+!6@f8e$3Tp2fLB^(j_qnsE)Z`q*`Hmk!z^{ z9A+I#*5>=`4f`XmX=z*_8nM>-rJU> zabI}{;dr6_o?PJJ6O>7??R9L&8|&6x?u5T<>h0Cy`OtK&T;_U-xsCvxo`q@MMa$CP zxjP+ddQGbA7X1PYSFQ-GHGKd61MOgl@3n==Ft8a& zRxWdST}#?8L+LS5FU~V!n8fwm7N57aw%RqY6^w4Vz%n5i(DZ?~<@8&yb{y;q6{Uo` z2th__s?kqD#BK$&WDjuA6c8@L6%d~wMf0+07s`XHsNKDL_lf=LRGVauVNxr{eJH+R8TWKtojD>B^J_-Vi>y) zmq|MlLY0hiQSA`aSDSbTCr9goo_pw)ILx&|_=+@gg%YF#A^D3ucNa>R{jt#^>82S) zC{MN>p>g{N8=C*hz+Z5wm2Vd+#lR1-;nxP2q zgQ+obKmH*m89=S_@Zl%O-*I3@GM7kiv%W$Fn4@*n91K&rz@neBJ-hq6xj9$=K4$2e9yB5hJ|f7cEyOloCX}z zUT8g%3#+XIL82ZOn|IJH7A7rUFyJynTE>X6Vm;qHc?3g>g^lG0fSZnvZX|n)m`0@U z&+4lE-4XMGUcaOyCIA>KZE_Q?cO4w^ujzjyj)gMj1r$4{&!0E6o9+Jjp2s}mU0~pF zw_M;gh#hV%i}NK56n+gqzbT*2ZdxyIJP9sH`E9=Qnngd2?lf+qz`KW7oVf`4seHmBtc zBpq^yvs~NT+i#${q(G3;di49d{icnPCR@+RbU7i38sENiha6JoH&}6Vs73i(c1s)= zcp%!E+`fJLLV0<)1Z+b;RKfm*hf;2hVkLEdtW0fmSQQy`e|~_CHU_ZwW~?FXA`0@` zX`(wTZEmJifbbRKWk~5RU8isZNb<~018ky7+2%v!(FYu`6i`?yJj zwK6DmAMg^)AwO(Bh4Eqy3J#8gU^X)nAlmu%vUnPMV&g2phSiy_uHzh~9~VbzwREsC zpJHRd$gFHS#qHCIn2&uA-kil$GC-_p$}wM??O9q{QUqgPO*)G4YOTG%i1Cs|aN4~4 z^UW?@*K{{GH_A50LGV211d$_{N~Kdc42FGbpsYkSO+6+t%0*^sYAQvmAR_@A8DSJ* zhrtLP(}%BMFdt7@T>CZ!NkYxeE*A>r_IOz`D68hPx61c+x1gNG%8H4Jk*gj@-~E&& z#D_8sB>lEvW~E%~5s5tWUe(3LMFX)WcSWZ|A=`S z<-VqoXV!Cl&^;$RJ2)g{%n3@Jid0C04C`0Wqk~P4oTOHU8kMN8wspvE`0Fu9dQ3t> zea5bUg&_zQxCI#h%1s_{T@cPQZj%7m?Xp-y)=}o_h>Ea{@}8--L{mVA&iOP#PV$#8 zUuIawk2zQ{IXT(K$4Al1$|`0nv}EdgiTzB1MSn4Wlp|0H5J$Qot);`Nu(a%+WyGSL zPuXHCihKL^6rQQ^q9ysA#l?pT*nxoo0hg7ewlxSSEVQ(rq$Xgut3aI0gVNMZZ+(3| ztfFF%vOVsenu6_^ib7sG<_Dn zhLUO6_gDy_Nv80A!LY_d@ngXqJ57&y{FxJt5&(!{f)EDdWz)z>94YFl%g@iR8n*xB$jl6@rR4&vNWj>-HH#_OlZb>w zMMj1wNF3f(_yo#$1OR~*16s=I(ubx50sHABo3VOlU0a5W>I1{TgL(NhSQMBp43sUc ztw9BtH##w)7DwLf^@)>Myf%Oa#a(21RugAhM3+@w2g(V22Q8eu{M(MP$^)o$2UE8d z*-m6I@o5O8Qp3wH)fwLvln<0iITU2cgl7J~ST~DH0s@+l2=j}HwGUSvgD+S;X)3NN)R}*RGa29U&%?I&=13ABJ-!@A6D1ylwE~*WU@ZrU%c9>MM_Pb0pUFr;LIja zGPq_}V>MwgDk9s8=kj~cojVr?L3#$b!NN~1jsS^Fda~o;A*4VEhTkv}DBFdEoMb)n z4Y5tIdkzy{7;>7+X%SI^TuOT30%DJt+1atcMyM&vIp2bTD=NiP3C4A##&0bY6jQ+1 z8zTAXblUGLCA7B1%Y?{`YeRte0dGtKRs5a?e}>5$r?DeN@8_N^+5Uo(`3ykYb*DBE#cb2fq2GBL$ognNQH~NT~_RF*n z4Dl-Ixkvfi>h^PiXU?7-SrHNz)`2DO@Z8(dlRV1rx|Rknksoq~m^PxGshk{m>((v6 z3|S95a?N{r`dwzyvAqxV^|@Ww%pg=wzPM;1U*@vf{_*C4ey0&XR1i}2AMDLHPo2rE z(1mHKLa7a0W;`&Fuz+dmdBKuztg{s#C$*=96h*y%Y|aK_vZyq?QPQB16+Eh~6T&{V z%nM8{n@09+WFC*dzmG65FeJnJ);Bk^{}F-|9_A*((=)dg$htxceCV%2>)2gDZ>-m^ zE26LiZ@1rEF?M!!HLdX>-JDL%Z2xrUcp3a+0-+oV9W9o;LOSoDj$%h%nyHK<7|c)> zaBp00f2|OAX3}4rM@vf!L|ysy^cWyFWC}+en}J#4Hg3HQu{e;PhK2?b&J?hXU7>7R zh|zNg+XpuOIDheCs&QKa{C5wrn?MWIuL!HZ&Tvun_2V|`&?@_d-=Xp{6ucH`HNIr2 z@D9Wla~Ufp=TV}t356oImzIuhwOc;`NLj4QbaEmJseu2d^SX4~pfb5EtyyfB40s@x zTG$0`3O$dFc&Okac+68ESepPF2aXX2C2unPbNcV%hzU^g$)!geZ(C(+TKKlTAW<|- zICtv4xiFZX$r_>he#gOdKrV=NcG+I64T*@*Wa&a>-3pYyeCDn&ij@}6T_vCy+X1kz zwkydogSAmgcyW@3T{=ZE-Uk(>Fl3e+Hj2(Atlrg1k|&n7=`s^DH@8YmOpJ`Qw1Sk>tB$evyu`0wz4fQMQ8F`jm>J?Y(It2+ zkR>XBK1nNS-YO6gZTc4ll3W;h#Qnj~8ud85KG5+MJ?-1#zt)V8xUvTs9pCm2=ep$e z*q=n7Yh8xVPf*c|irV7ZqJ&k|4#3r+Gw`)jr!I{R=tK}6(+gko^(~n}?Gr0j`1GdL ze)zTTd{v#!=;6d@&roc1e(pKAglRsCou?JjHtGI>Q?Z=WOijh#bJ{ydFs20ZgxK?+ zIYx4RRDzw0LWG3C{^tUOR3JyUeKK_vCz7S$0ndgY;t#EDuFa*w>Rub{LLLtUy?IY| z&De5=UWG2uQVSuW6OW*n0rEvBYEIIhQUQ{h?22ZX3)F2Y5GxhSBs6IGih}xvat;0L zc1!c}V0@SK=p_ByeMniMYZ4=r*%T?LcJ10VlePrEhKY2A*caa3-ZG!Q-U15d``}>3 z-Hb727*CvmEHnLW8983Y*YJp>$He0G-#;5(dqW%I1Y~b2q<{3z$o#~_#2EnR9YCC} z*3x)B{xejSqEnI&&ulNYH{ID9+++V!8s^Z^3*-S}D4Rxz5XmU;y|}vI#w)*gh5UiiZv#hT_Sj7|an86*ceV{`b%C zX&}E)e+DoO`iw%@C3i%##(Jo79|~0|K+!?`;<6eNqY`#$U)+TDl0DSREPQ0n zC-hz%!D>?AMmZ3G5-iI%Bm&P-P((~nLUQ#92vCEPG#5|?m7v32M96%5Lq2lugj%|0 zJkUe{gJe*-{qg40_6!|CXoRKwSPvT9Y9P4>#7G$sC7C~CB~5>PytxTwA-%Nt3t|O8 zK&Ves4_paED4@nd=uvY5(9$LhCK2T%NLngmin{}+aDDgI=gGX=o}SdyL9lSi8Va=; zD9?UCQza8xNkFtrA*KK}JRrIb2vAg8qANed5km$HqI%rW3L*vy20hxA#u}jQz$V=a zFye!eb}LY9a=Uxf4y;Oi_+xYvJiI#Ra8y~lV!^4wLif+q?>=OHD zmaRpg-9>)G5TLzw;JNeX6QE$a2eBOSf}1N-vB12ZXXQ)RE>hGgu;_r;1O*C%G#*}L z8_1@^9z=btCkKwK6jbcogB%@1&u!7yZM_Yb+JQCAv*_0hL`g8r)QYsKuK(+|2q=U) zJ0Tw2fBx}O&RA`VDVYL9+IFZM%D{mU{o^qAD;@y}6h-No85t!}xqz`L7(F_zuu4S~{-_IQ#u-w6H zADU*_jcS&R!b(1&cG-D0%{XXgq2L2-NjrC!Hk~vo9#)`$ngO<~3%UitP#^#O>ttYL z6xJ;n^8S6&W$_o22_Gz4TjOP+?z)1u6oZSO@0deSgF#Nuqk>-9G0i}Jx*?8=?N89a zn}lLY1=tiq*A2}<*mZ3ZQCon8NY9>)1=cIC-Q*pFH%9u~n>lp~uU~g|LRj}|K!C8c zv=k+}NkqXwDxABp5d8M-M=i@T6@-3~RS^#a#3a*F5%8%QPmi3OhOp;vZrYh<{mTe& zBuZ;hPQ%A)zJ5gz_*aEzMVp9+hX?dem{&C69#sj67y4SaZh6DI+9Af#cFp?qtvmi1 zx>=hKW>o=pUKJ)l*^7Fqz*s6HTcd~ocI#TyR8|h2uh{cIZSnx&wfEzV;Yuud;}Gy; z`;6-d7$%=ZEh7!V+TpLS1#CuNL1LbFN{7LqZjEZDZaO&9RQcAtZN#+l>;BJhvhFy}kY#3&)01dOYY;Z0>O9;PFTz~Y6$D%I@el>=K zR6HJGdJfhG3MG@q_t#LgK?NlPJ^f?I@&Hi zw!;#I;BOY@KmkGJ7d$*N68Vj8XE}OL`Q-_!b2Kz4)e~f zFO{K?<+@*qK}|eF!D?@DF1?G2$^bkr$c7qOAfwpZ8QfzAfF|s+BCoBDqu_e{@zC+} zQh}vqW%!HRTHNV--EK3Qupqu zKtZRdsHjcNr)Ib|A40+P*3CUW_#89m4?Mt^xnpRUfD8uxNLHY$rfr6v5Wv!7Ya7X* zKNW93vzy1|K6r}Xt{75kux5|hU0GDW6ascBsgJzmO@KmUuwSN!hm^Bk#2{p2@p5Q1 z<5xl0_D=j+#yFjlw2Z^RI4G-p-l&&yT>*;!}fC<7q1R1GDQKJ{NkN}4$m)BU{!6Z#bt ztdjmg@@8Q;?ADEjh0pVXn}qL1?ywi2fa54$nBYW6|HPPbaG7@4;_?Z zl#>y3P{${K`3LIMIOrRHgg9heAIywuHE6`8La+yLl2$na`y~oETM>a@wvPtSn~XFGK0&=e%mlG$qrT|rPmRX;EU!4L8* z2(}dq&*9>OY+?!(zmKo4t=Tegr?3T~^V*I%u&%U4oS@lECBq zdR%koYtg`($G! z+cGazez*(6P+ME?3k~4^&G^ycIqc4I_pNpSsYoioE)7lMpJ2NV$j^!Tz`}rvNROyP zE6LT-c*_A`YP1NUzHt(g)xrT|-VW#!@J(x06A)skL=5d^n4<+G(*_wbBsh3f9qBrB zT<7v+WMo+O`v3U&;Js8VJUh2W8nxgPA5_0!zH&tZMNjCNguHtfbDB; z9EF%4X!YRyGoc=&AM2U_`B1;9HqSKPc7k3{&lJCngm7b3#sDq_JhlrFxivca2+C9} z2(E1JUO>Rz**PRNMm;{$Sc&=ST>*QUU!@v8ud|A2!9bOwTMR9q2+~wgX zd~JxKel;}8Jc;NJOfZFaP~yMaU%*wgYW6d6vu38I=tV-rRdq^S#t;4N>l=du1My)W z^M~mmquhg>e-VfQ{&5Sxe`F3-)dh|E+sa72C9eLZ3AbZT-m+SvzjiG!AOJw3-H;a{ z@lZb<8kP3;hQ3IXJt4v}z`Knhsxi>3YoTEc-8_nox&m>H4b}HzuP^gCM_BYX);4{J zU$Of)w1ZW3ZSBc)9qFt+bFIbp|D66Hn4{Q9(+0g=?ak2W>%!CQ@T>eMcpwumAH$Uh zoi+5CHsm`-lQs!ZP{~NY%Qw&Y=Q(tI&a^Z%$+Bd&k@#IuNeWk32xdp4OvbA!@gqv< zyZC#)kC{r)kPvD4C9Rf}L88K@6*2Srb!aH^l3+(Lj|4see7t=MCq$0tgqcpm)$A6&Wz`umAr;Vr||E`kE*!O8hh+m z-~)BS{aCnPr`A6(Gcy=>b*|UQo*SMjR&?8H$?nM$#g`|>1^Q7|^m=%iPvsz)V;7zS zx$doWr}E%wxL!$$uJ;#*2WS<@BqtN1f3Wz$M4ykUY|H|h*}c%oCO80-<54W>A(ZIh zX>@!l=ib<&x%&7GDJuX^!fhIdqa-X+Jvlu8XG(~2Q8qvS*USn+T_~S%3dceORyI}p zXJs#0c;c~tPlR#MgF+OtfI3{2?#c*kx-vJwMkQ?WZ%Q|rLYOk6WMh zv-W}7eMJEkX6%tjhw#7hrQTX$aPT>m3~ddlf~MON0}vbEZ&gjQF)!%8Y4`la3xQB* zRfn0ZNI@_?bB4Z}5UM^>TJiINPVv_1)29RDpuAH=I!y$Gk*o#^V7A5m%V#Mm(?IBi z>hcz$^{&j% zHd-qlyBZK(Z;7X;qo{7B&r@w>u9=7E7y*G_rMn0N6>!ZPgv1KWiE8OGs`z+Q1Jv5kzT3K z0}?{izB6p2Rt8u@(h9NX=#|haVFp$fpe*y^eg&Um$1su2R|L#+S=+*z==gElzT?I{ z*#`a^tHjmvSS+?q^<`^_;LWcQ+-F1uVJ1V_+9$9;Qu06ne~5p!mzGUYsxB~pq)#pfXU0J9CzvZFB)biY#|R>A&%fRddE^=0Q7b>LpEFYDP95R(@;` znZCdXWg_BTfICnGsVWrMK$>4hVL5ebT1BMC%nqL`iH2;fiq)a{=KU1O9EOK`HY$!&X#Y-+_gS%#Dq-<9Y)tdFz0*%YA|D>1$q!A(f)Q0||_jbUY* zcTg6`9D#ok!1DK}LkEqDs*L9}r?#C5Nxbi1)v;#H+_$&H*e#OH0V^uN$h2f!-;G zq_S?lMISm85J7@Yi5P{fgGJc^V%w^>>!FO+?AZTIj zG8Uq?)Nhf~bMDlsk1&>GP_3bqw%TsR$n&8`XCbGhaoz=QHRb#4M-szyU8Io$0y_7= zhhLFK3>vgtQWwS>nvp%g8udL8FARJezxg1D zt2fsdGJ&#v4CLGNU_}MU9~1-gLXUpqE4n18MMM&E{YLztM^FS$9%0g73-OaiG$-^c zqK&qo7Z8HOU6qD0hl2P~TbR4g52%FXprYp7QCNtiN^mHok^+(usdwwL%%Mr^GW6t# z9rR(O1M@BVQ-CiE(+>HJozES`Ls_vy<2F_<(7aH|Gf_cG6;K>3t*?U~@=c0rdJ3Wf z0+GF%aQr!6eV-rt7iYJ(_;%nF%r9^>`ebMYn`mOcRd9Z*yTgc;;x>6dhG9DnG&oC2P(DQT>Lj^!sS}9msNGH>wS{4eBxmSP}PlgW4uL8?x$YJ1jGO-fs z=|B?9YvVWC$1gU{Hm?9VnSi(zwFf}{g$|KWftsmH+tzQsaKyhg>9lG?-T+^3$O?H&`M_Tx~^H)I7VLtGmWCi#Fnq_s@ zGElCEl;u$B0AzJwD)D@EgY0x?lXfCLPOw}Gd#VJDP9#r}3A8Alx+1*Rt?x1(Ze$0m zkqQ}$LHAPM!F5z`z#=V;o`TMbqKiv0J!rLzVS{yfA36@Y9(}|11GiP7U3(eeLrv9W)lUtF%C?3pg7f5))-osSAOc1ZQou z$Cn!NRfR&|@MeYfu5tT*M*_E}EDy#{jP}qRsSW6Y#)bXp_tU^r2(bORPZ)$e51egL zJMm|!_-!62a`gK-i2)RXj3QXuKK|1GYJmrH962dtKNF!Jsi@dE?+RWZ#y=**W96(` z1`A4B!WnFABS2dorZqEyxJOu(_Qr)?0Alql>!mQD`nXcqpM&A=mhu|vO? zE-*@O{(ecb(p9mm(qH1(1woo!8p@skO5ShJkD$Wm?3uK5gj1NrVKNAniHPU|szbb8 zc6K(sG*ZC9;UC#jvBL1aW3*?^GL-b=t9-BPifJ0Fh@NW-zaa@C4ga~UtSq=s|MmGJ zyueQjo2tBKh>UTt_d&;D5Y)nxz&Wa_tG|b{gD4sg?J^zeJ4yy~Cw&8H<;$~Un+feK61s!e!z|I2F z4Hgy_8E__>#`%}mf8?cZ6uOt#4L>8$Fb0)ym{S3F01hd^1lW;)5zG#qYnv>hNrI%?*wN}p|((l<4qC))af1PxA*VB8B=r`Ni+M= zYY0$F{YDTrP>=j7R6|!sScH`=tTYR-0*=iDS5$<+jR;a`Bd39YX9~{AxB%!zN*%;- zqU<9(flf3*C&qqdQXz2;X}m!n{G=AnNcy_KLL;1;3P(`F`di@WCR8BU<1%7x35r0X z874r&B5+vo^)T!#=uV&`n;`5ofzw;S%1*Q{qN*3<1yI#ZbsHA+=GlzFX6~HJu0=93 zr0U59T`F`7&lR|7AN$~k=N6MVeMoVzLa}Jf(EU^dB>)myAyv{QoP^RA=>oALmr*k% zI&_HQFSXOqK7&V(9s@ZZ7zbiT6R?Z_juBuh>7Xl!BUgf6IV=I>#zdQD?UjVe@@Qz_$_L>0F-0p=huKiv}GGKP@a{bgrp8| zZmA#C)5$<5z>$l}DIqva@Dt92`RW|;xeU}Az0`{b`L|HkqW(U%#fQ3tNI?KHFfewc z?iQ$~pc+m+!}dAOnkMm#-T0ex6fBXV9CN*l9jQk4cTk{v7c%XRvniPzdyxR0<1!fL zG-$42!dj(13L=LNNze6un8D+5uOqB$qo?*jYyxLpIMD%A0MG59tN{M0Gx(7?)5(AS zRT+N`TUS?yq${g{0azf~A}0gK7TMdjh5hg;*W{Vt%z%!|h5_C}LYnWia7Z=)%>{(p zB7|M@Ptb^@p-wWFskk$e7CGm9ZF~U({v!|A8;*H}K*@trezIJ&i1U>fVuw@`{gn$c zf`jPNwf-@2$$;KBA&#LF3vgsL1@_j1l;>q2E4~IHa{jQ3@K(2;XwS z0bnqkEU*J0p^?|r)HLoq=7{LSEC1+Hc^U2UfVLXY=4T*mf=<1l(-Rjh3U9)hkUP?y zYQu#AO3dAb3e(*`OB37bf&$gD7)?>usK1*$P&@Sy{JjH?+h&TtJTV18dp!h4G^X)^ zXIvO^P@H-1Ki$u?bZJvL<`E}ef<^si=viP@ zBcjbw3JiXeq0>|wDHuOeOJKU09-xb#Ig{@kw-vtjldyNsNLbyfdw@f26rpof#~5DX z1N|R)_$m&>O&(>zk>&)Z^%yN*%qW+|Rh3M30|Tfz{?UpLk7Aklc`o8<&LQadGil(n zuhS*(vofj{R{xim_BwM5Ugh)p9b}x*N5+F9gpx)E3LOSkPWkB{RsZma5V{gT7zZbe zqqJLn`P~q*+sT{ogc+!|`m*oH$mS6E!h@%9@=MTY`xMJiqN7>TNhph1VO~@B3G+Hy zbu6Clf3zYPyoR2&z5|Cc^a~CmbnGfgVRm-8CJZVW(Cm<@*d@@Oh@XwI`}$^nw&zoFKCNXK+jyEQ14K z_uKdkJF2-#~q>kCd=pX7*FG&d$=V>oSu5|N5W6VF#zbJ(X;4 z`hQ)V7QQ+==Fp{2cnCz~`hT`>hB2?%JS9jp3Haa+tU*tzo}SOEx6P43|Lxq~f*Gv+ z<9?17P12AdADrg< zH0VE_gQK!f+Wpxbq2bCgHIDv4&77!WJh>5}{0lT-r zUX0Yn|I-3snBK-$8F!{>P;i?BOT4*&YCQZQMG(`2hOx|TeE~``U8moN`r&X8)KVPi zDgOu%d>gEEjj`ut9RK6Wr%2EE+)2uFofqMVi{5o{j$Qw`oq zP>PO0ltZVu%tb+z@fy251b?al4rnAEviM|pFIj=kR<(@Vln@mQuQqrGMMp=YzYYNf zm_R-Vun@1_Z=*#!wDE7em8}^rh}D3G@JiJYn#W*YRDuTo&sHkbVghR|&CRMHo`L@b zM@FV2Js8ODeyR8;<_zT2P7_^)cI1D2*=zq_b>~IU{Y-(7E<(sT8!XTPOf`_(jn^K0 z1%cY=nEmBmM2NvT0!JZFIKQ$Ab>wt}X~s{KCpyRUvgAbGy&wq!o%&|)Aibq!Dr>eF z2!(&;wQej22E^-0gH0~!q3R{omkD*t2`4dp#zrFNizHpvb!^Lw_=-`Kz(o*MsA4bzP7SVUZqmXUsFEW7B+OuVT>HF!N>B z1s~45KG5=Md^Ze&<0m}kfe#NLH+=3Vnm5mb52QHhq<*%oAwq#=^q{+!u)zpaa83k^OggR~aY)y*Brt+!y_NWF=JLp{`13hpUAC>KUR)GQ_@qn9(vRDYHB%w~rPTHnsp9kUufimxatNuX~jm1ojw6dkU! z=I!06n#5xs*CJX_e4Xrnh$%5Jp3w(pJX2Awjn-Hyf%j)6`y4*l4Z4p#8h(Ycf_ZP_ zFv6a^VpdD?_ddwHe%(5_XYnH0ao`%Ge>e0~>xmS~iuq@r)2D0vOSI8PvDA%V>1*Pf z;}?@v*}%^1I&oxrcFV8n2x*X4+$sf=QGx|k&uq5iJPt&l(u<3&zpGW%9LWE9B(y6} zb)-o9p8wDAJJb8^hF|raPqd$Dj6;17^*2MxPrA+E^wZe=;a7%DaV#ovH;ft+uES@Q z4-Y01F*y#us@Q3An|C-X>EuixVl6Wn~DF6HA%O?TH z(9*K_r$?HQ-r)18s$+rRhVx}zIKEHru2TV`aaxuk)J~PS*qBC@6#6_!RgIyaxUIO8T1oC8?la5S=rF{I%_tJ{*U{M-(2xe(o*}6 zl7i#uanxAbfRrrHgI2xu1n~={S$_Vl6%|~z3At`X=T0klpOv(mGZC>EwBRvD&TarW`%G7=+Q4f%i(+XR zEc^JeRF$9z?i*cQY0O!OboKfKkVCmW>9>&e*QK%Xucu|h&M!YBxbAZRirisXO6%>y z_JT|uIth zjMYpzn#c^^XRmgAx&uZKum?W3$!G!_2}gCN{ydl(s=A(j7E|BelcT5_+Mxo+Vu$tZ z_leDaJq_FV^Mh87iudHk--xGvzijGcmWH_AUS0;3M$a@9Z}IjAykwiBc|UXo1s&H@ zRBF<{bt^7{ds)w<-O58ZJz{jue9rYCiw}-+IiS#WO)4fvapc>0g_;wW_t`!Px6+&MhpLz+HQS04OP|s{ESaz`k?|yv7b?tqQwoaPiy&E9N<1(RF z$uMhj6?>gcE>S~qH83I~1@vhkH)DEML0rgC&B^G0L39A;UMfKX>~FFh4gAp{nWu-P zA&MS|!+hkz3A4f>iH%c0!#rP=^>k)=1xM2xfEB5dbt>GTsRmw4&!5K8W4D$jqe4=& z;!AZ$P3Doq#U3P;{iuE)jOM*C*T+29ul1*lZf84g@-Z_*&Gy2bo3wNsG%0@z44Boj z0b^Utgy}U(#P=;?^}k8Ah`LEVx%a7Yo+(jonT!&1CoD*5CBuf9IU}+}Cge-C{OxBw zw8|9yQy^Nz;+TZ)kFifpW$4lI75?$Ew=TFzBal~l4=2bt*Bj>9@N=MSydt_`aXpNJ zr}UH!1$Xgh-NfeSo-IXe)q;)@4gOSQoyWJTC6twSV?dR$yvd|;FmeAWTzy#MUE|@~ z%MwL_a40SJcYw>1ppBSjkz(<@fb7hH``4;D#jy${^`uk&y`D?!yn8a*!JTlNrPVbc z{&!>e@tA3w-_yhKA1jI{Y7K8#YU-+2){{I`N%>)ZO6`i^)-Aqz5{aUKt+jAZz9O8L z*YTLi;rqcC{Yx{f*z=SU*`FoJhP5Sfc;dps_@e|X~Ef_N)`htm~qc_ z)tq|~y6T1X zB=;Gyg(9I1T?Ip(X|j69iC7}niPl3S&HdTxGsoaBu6S1~+`m5{A6%lF+8OdPc9@em zhnuBBEKgsuimiHJz>v49?@~ux-SgFAd*em>eO1XA7|TreHQ2VBd+sWk(+>=oq$JB| z?VDM}CQ6&eO69z4-1fA$_ZzGqfBT!}65S=Sd@l@Og#1d3vkFnLn!Hyj>!I(7*+qX3 zANkHfFIIl}$uv`Gh0-*Uy}Yg7vH18&b6|%Z*o{Qwso52<#8LE zM!mzn0wS!Ahi|GWr`T;+sl>iGcRtiHra@`rZMd;RbVKIYWaSfYEk9P3Vz&l`bj`7u zlb2sS*j;3*kcYoV(_`YsUtVs=Td}Q~^6ArGopFFyXytjU-;UqwjepXn`CX3Pfr@!w z_>x+_nwNeZiRpy<{yk#TeTM4GH>xAH55!f9_3S_J=s3~a_2>spr@OrmP(5jaS?tCb zdgUC7sGVy0oalwwbvfA8J!iNMf19YWqE&ZWy|tIfg^hLQmO2Yot>{xO@$;8A3X6pr z8XGSr5KW7y_ibq%Iy_F3sCQJ9UozlwyfP&EIYIn^r8Cs=6DGW(70aL}?TqOcJt{ZrHQ4DNVG& z4`HRXm7Myz@4-8F6K0KW#OH)xZ#JwCbym$!yW5j}eaxO+X`m;3NhFMUaM@@qCyX|)~SkA6%sJ&uo`N3>pJT|Q0p00@Qcx*w_cECi9ZCyKBD^<6g4%geoucrW_wq9-exm*M&}3z=_&c`A1Vss zJK;AB3yNipQhM`b;iT12w6vAguFf!VEf&0@gR+cC-9>HN&gZyvuW@qj ziFFiaNqWxX7h7K0p(NP3^GA65a=lPwa$4|RgQ#X@hk6Z3^#&5NiMBmr6LKR1QT@Z* zbZx}uU?69M$Pl)zTk6Xq(ah0cmj-^;LEPPqo*SeekIQ~+W)TYy%}uF#y0ID2HnF)W zkV%%?)Um_SKR#jP5KvN>N|~O>1Z-Uo)t_NbmG-d}<1S6<<&gzXgP4X$PYq$)@moyA zxnrQu@eUw4R@eJ5cuPI@g=@va63cqI@2BY+fr#jW{mhehiximS=X*ST4@wl!JU zZ@`gR5$!)&F)_{Sti^?6Nw~f2Icu9lvkE(JpGd*uG+GXeEgP-zP%OC~uepOZ%CW*q z3*Nm-yWQ>QwLazZZh`^FZ^{JDK2+SNPRA=1a{Dct?`N|yZuS$OilY1DqYWO+)VMbp zi&npF>EYUliwukvEaA-?n+uRhO)&GBLy5x-ltHZ~UX%EzL3` z)kMYFx!0%tVsTRM{U>Q@$NSkibWTuT{o8HQ!A_IXH@a?xUw#ace!&Dy286^en*&A) z)aiX)RMU-hMV!G^oa|Sl{!%jWzhGh2c_5&YR-<;P??>JRY*K_n@;ir=thNz$?pEdy zbKhGEFXKbU^1aWk4Zd93E!Jz+=zzb-_H)94WwQ_4Ay}aFvu9lYHnxf_kg?RXp7pn+ z%3N#VkZ&+FlJ-$G?Hf9yt7~|Yyi$dM9R9e>!)G(Ce1kQj0kWPVYMYwUk%>d5-H$F* z1$u{M6wBO*J8(xhpkMy&yBPT`=I5h0#iX*MzSc4~*NCas{9APwB!12HtGkv_7`H?> z7;C+sT`L`wE72h;9o>lE3SOZ(|5yKc$+3106NY4!C^Z&l9lu;zzq}hQXEO9tqHOQh zn*5(e&ONHebdTfvj6=w1oWrb;Ju_>{iHJ-t5jtHKQOTvi+)hn2&4`(5Ew|WG zKG=4B^AdcGD_2xr1Sahj5TL1v(E9~UiN->``yp`yw85VpYO*$ z{`1T3k*w@(`W>1!C~f(kMbEC9lxRK-a@;y9YU{81KE0=ptDh8Rm65!uIjXBY`Al(q zY>+Cx++~vYw3PJEjGtVcy|=sZv+{hG+R}sNZ|69y4ex5b*?LZYoGIZ4p0BlxKEb9CN#Zmesv00m?7Ig2FPYgdn5Nyfc7JX5z{T|R1e-@^x`Iug zm6hM6Q&EB=$ckw9D+oW`$3U4T#vnKZX|X~d&@FzMv)xR7EV|D3m|-wN7p z2dRzosxkm3r&E+n9KXaisY?%;6K)={#bl+Ei3`F?{F-i?S^V=m9717y^WsJP%jf%co+R@;i3tC9m(nE&6h0!h0nP%&sK_Y=F|^aS(XQO(kmS@XwdFP3(yer zCyhFMvRggMkSE(jeG<6sjT>mWp{4En*u%7XGR~3Yaw$m}#rA-rXoOjfYyl|@0yeIt zp!LS!%jQ+^HSA(;SYrl+kbU=yx|yx9n_k#S(;eSL267S4R_OsLHcTmPyuawinOL2U z_qb72v9!?@CB6PYz&qxkTV`7Ak5Ri56IZS?k*B7`9q6}pg5TmOeHV;{>LYyX+sx!V z-yI0rLeJOh?u;R;r>I0?1r1SlYbsp4UGa4b<31XiII7_Vmko@t)D>f%4>tI@kD)!b52}rC}K- z;*a_`4U~8Py;9he4p`U3WhH~3b#{9D_8+bI{mb^=Z1jmbU?jhz6+RBz{+E`xWC#41 zXh*0vt0<&YWctmN>T3N-*Ui>!HUnY}qbgLPDY6s0?(@ff-Ki7-M~xrvN+qM^QA_c-loxBIe)5EvFHCJfL;Nio~ z{QN}p=>DAGSO`R-c~9SA*5%uWe$+yBT4!&-3u}pwOBVt2)O7Q=mAD@4WRd|hNNRkH z86aP}y#)wayz)Lxhfde^Vgmx=*J&Kihx}}sEy*mfP(30e0k+f3^^{|9ctEyXLmzNR z_!CKN+2Bt%*H;FBG0d4g`x;$n|Iks#-WO9|R7}icFow`ok0GrnPqz|BdV37D-c2rm zvVtzxOvivA(Ji%Lp$G&FQXhfkmX~p2ZhjqB9k}H5v%^31t5vawZhV|C<6ZZ+=1pdg zTr6<_=A!RuBZxJnE+qK2xG0FlgUGg33B3(&P=c1dah>TexH{i+=F5)5;q48<>y{ns zE6qjbnUwDA=;&yPN9Q;>ojP%{v^gtRkvs)Z`r^(JS_;nK1SM1(zZa9HR71f4A~Xz}N||&jornKe!^r-EE_{q;yu+ zygb_PuOlC#U|xiLhd4a!(NDA9t3cbtnCt0IK7wv{sbmDz_k70HhS6fDS#eoy@*I54 z4Mm%F?v|K5;F;4%qfoF|#qZl^D0#jp0NUEVlefQh>y~x42OlN|=g9K;4o^eyG3`!B zXwKYHU0sbz>0P(4wjLoV7KlfOy2Fv2MuH0raphczd2B|w>14q?bh9c-+7t{$v$}7x zbAj%`%V&i3d<6=nVp%m z@xjoFbZ>WYZWG{JLKs(l-d?3j=wl!)T_|>|q(*uSd=wG#)!#_hih&HBt%`fKe0b+X zOGiOg{*_<1df!f?+UP3*rD2^YGbcuLJUuzK&kz+Ifc-m-Gy#vwG>KEzeIsgCZsI`# z;}d^XEc@OL6(tH(N5NLe`j0aI1Y*gMkcLKHnz@1Uu5dyCJO`F{B4BP|dMjmKB7OT! zeW+y#wI;tQnyKyMzn_l!@RihE?3e#NBg@18OY;6oRu!oafhOpKwv>L71vjVUJBBER zR!#Cwszu~Bw3Y=Ciu|&HRuc^v)6BVOq8Za%1`3giY>~@{tDS#E?KW7wUUdKU4FsE}m z5*Ts?r;RJ@_$H*rQc<*?z#?+iekOP!MX9U@UE1}5NT+*AhK&hv*lHd-! zKX`j}M6mt&9Tfkl^Uq>1SYjAm0g2)| zSWHd8OKFjjij*ha9mO+S-asJtpv8-(GqMC@oiH3A=5b$VwcLDI3y|)W_TX>1T(kOVhoCujwo<7cWo&E@ znrqhJ%`tm%B5iUOpgFPjt(!B)-`{_CTQl;=aL{4VDjYUOq~kB*!NXXiM_y%GIWSi( znQ7&oX{ zv2JpddE)Y9;F~$>y1U?WOw55ap{7y^Rfa$OK+GsQ(YZ6qUpdio{{V+K!z0c@Mew_l zwjFON?)0Ze=bABw8V~nzmr5}p)qK(EthTyeMK4*rv!ek`0a?znF|5zVuInxl^rGmt z$LAprWi(O8vHFn(!}w(Z0XmgDL8@Cpcqn*N@-NlzD~iTiV0|lE%J(HwDsCv><__lK z5IrORUc29PXKm@VP9ue@S5G@M(zXW!Pku+2w<%2FGvp=xdz3JG%*Ua6I|H zZ(w(FwdP>_L2L#eg5fN$>xP1I%M|%{<*h`KEecAoy@Jer4X@0tEN?%J$>U3jnjNJ> zT=|)+jF@H}bdfBKGdf@nCJ(KjlxyC;jeq}o zfu@E99~Es7Yt4>ZK;W)_>{EK4#Pog#h3unE4`W)l9kHW%5us1k*_w2rxF*EUP2rKo zoy&f7?Y}?2#KBVg_bPE=**hxB|GYYY`TzUknCZa&+F-6)@jKt6ZCBMW)8}Hx74_<> zVgwKFdRyFI=XRVIH1OFdxK5F1N?bSt-yAu7y3-yv=hz(6!_~!!t*&<0Z}&c{aa#-R z^zukkM@O)Gn(JN<(LG#rlV3AcYuT7z126sO15USE|L&Z!GQPUXfwQ0Y}NUr=8D?R(K<#uT^s-u8});L^1;W%_7JiMzMN z{yb_om&(O;Y(3C=Usu;@!uh(fkwjp@{f<=bqbjFxQ^f(1otBW}-|JnD^<8$gX2Y36 zGw)18<^$)R)ZZ^qI}qWRT>qNFrvJ`ri1c{Y?PqZjJ^5gcM>49u`~%#%dZ#|3_P?@z zD`blw=u!=WCC-*^HT)S<;&S`0OzzTs8>7$2ZHUiVIICf+Ztk7OrWUJy9X4g)8JCgw zT5{6m?fjM1MAhD>ZNDkzpDz0U?YI^2tm~EpIm&7~HV?UOo1ajb77HPV5q9ZhWU6rh zN&UPl*1V&@cGG4>sJXANugl@A^~%}rk-jh@qZbT0et6o39t3}U#M&+nDp66E_XNd{ z8b_9Dr;WPSQjKGgPu^)eW#4XGzw7sB^ub@4kH^oOEz&w`EC&fQ-NzK(&22So6lT00 z-`L&ly0tQ)uG;g8&)#|7rO#4qsxt80-tTm7@%f}(&#l0}(kPPB($bw=XS&+=(XDj$ zf8@nsqL@ur7)qg2_r_ANpuDKHpB^x8YHAAYFu@g=cb0DdZ8e<9)VcJ|?|fKf2Op)I zXGHX#F)9_z%~ZhjT@lZ+hSdb6)g4u_gCrCxtx6-qcc$LALTeFiQ)1f352 zQ6`*>#v*G;>eo>AN{!DI+Xykkx}!;WWc>YG4MGA>#&bgT$_XpmPV73N&dE&xvBejr_#b9S;wWG;T{w&+YlyotZ(7c5>k?m5YE$P3`-o zlgo|k*)07ABvy>(-07<$cjIo{xOKN%fg$T!`(oTJi8Ib6opP-xmWl?ci;C$@xFGG< zrKMOI{7aTPiLGkyi7RJ)SB!;nkaC8Ed73pS<;%$`|i zD8~N5<2<<~7UN?~Bi}8)hK225qeO{K<{O@~aa4MGdMB+~nwpawMrbJX4__tiHp85~ zeVixg8*f@|GMK{FaQr=EZ-0>E=oH1H(Ey`efRC@ktctdU-+SKz<-_(uv&-3DpZQ$f zlfU0WZavc0PTlu0G&H=PDb|$~j(X$fhn*wyfh4B$LyCaEOE3CXW@@Ze?^pIC+X8Fs zwoFr*FSX45%0zaT5L3CU{{H@gFkL3~b1r=pPfeD)BREN8yiT|3_gZ)SZ|!-Bu5+#I z2^K!gc;39zCbD+%{rmS0l?>D8*c)adO6Rj(IUZqQ*O?L%p3K!Py&qReZ1-(7`nA|j zX`SO==T}}*f(c)Mu^!fC3NK15)f!ywBC&e=dw`|#b#pV><<8}~M5f<<|NentvuA;5 zz+#*K?y(<+)>xeQ3HpazRwI-&K^K~f)5S|<>$ha5nJO6?Qhc)FsdHTT;F~6~RAiBOC4m=HeHBR|3{?-W&ae)$xs3jh?Rke9P%}gv{y=46ZaUY0ug5 z?=|~73@Y7UYVA+6QqRg?irXX-@pfT9_;@Gxk7#I@sVEFBQ(T-}p4Z={@H?^o@cdX? zJ3O7o`YOt>#HAmcGsEA7oq*|`Gf66xoDuDh`X*`B5N@5nr&}+lTW2dcr$6=dT#jJK z{_tzI#;obzL35X&DKRm1N%N zH;8rD4cLhw=&DGZyH89{r=HXi7yig}?!yafgq-|<$zB3%tW47$O zc$)pTyqv(QM)y;OfU3h{o0#Qn`r`TaQ)G8a<&8S)Vq49;Z25{rpIC_tFH`Px8FlqU zB))cIakPBiak@-WSGoOw+$D6T!6nbe-u{kU-s5Nr5v}>a%k%S!+c(2|I0E*tAd5Ue z59y#PDJkjxl+M$$Rlmq?z@91^J1EX2omIaWppSe%gcVc%j2_#fEPA8B^Mg=x{wH5( zV@0+FbEh|Dm6W0yPPd!YQ~ZDa_<;+V6PG{ZAxeDCQ;6N(Z$lZK<*<12k!-`>{ENE< z;-G^I0$`rgA%AzqW&)gmKm{$Gcy8o}E>26>kpJ`I0KGh=*S9OtWCAzk@@~TpC;#gA zd&u=+*kk97f>bH=4lcefbR&CgbyBZ#917Sl`;1XkunaCEd!mR|ru3b9=A7DN@?wQC ze}5lZIedz(ZsJwWrEL4HwwE&`k5%^&`N&wI@5IQkpxmtOv3GRrt#3bn;&*wv$Z_CK zY&FwqA7iSBTFLjEgq)5en(}6NmF+k^t8TSSTcK7d*VAo-GUImfHKE)`=(&&NFYdL|S3N|%pl6=8g#PdBX8)btmoIuYyrk})p7bqWXJ;dNdwY}CiLud$ zv7ZN2lEw4}V~iahdU~~fjUd6OX|bB~yjKCL1L|Xb|ys(oTn!ke8p|3=$!ddVc==X~Lg@rPf%90{SFdgLgc7&%E+oetBm@cxW1)5uWx%^@H)Rut)5`k z@U^1=O-+L4BLM8gR_L6|*KIk8yJ49s`V1+X@s96o^qO^Cm&tofF6xB~_(a)xCk_@K zvI>5T=0T);;C?8MY;O(bdl%!!AA(R}6xe_A?Z;fFt4ddJuO{A#!@U|LiQ;?ss{=mv zo#TQqa!q`ErV#pwB?3fANl8t3NyE#0bNK0&EZ4NBPr-MoBYb2m&#t=J+V#y z2HXgl&y$m36&36)zlTKtO}s5F?fSd7GWz8U^TMfJ?W^m|{|EueFt;vh|P@F!rlguQ(xlDyMN?0eHumu6!1N#5v`c#G}FP zmlx*{B4k_T*lAM2Z0sTrMAiItVJ|s18o&cVNUx_iA8Trc0ZLHL6uiCC8xu0VVR7_t z4DsV{v&e_x&b0aae%+F~!Mq?dZNhxZ$GF-%uycu1SVUwLHtxd={tgT7+_p9&s~rT2 z+0{YqV1)%jWk@dGf$b0CuI(68i-+^C$^PiW*qE~9{J`I;>&VHbqKYGHoeBuhMk;%f#a zE6JTD237fCgn2!Ll|2E3l1pX1{X53&e5(KUaX$C*wc_c`9w_q?CaVUBRZl47DLK+u zKaJ^jabuLJp^sVwWvXx%o%mC^h>eA57pj>c)7F)5)jgRrTkmA7Rq>d4FiAy&Hr1Nc zhP=Q=Guv2k48ww|7WW}t>^Me+yVgpsB-hs{izRW5?CbwFP{?ft`KP~TxZZl^_IGkG za23nQ)4fOt`kwRTY*TUxD;YmT7`MmEn0W~c9eF=Cfm{+5PI%W$t-bbu|AxUhTvlPz zn=oAW9@>oMvsqfJ0$=e)S`SUkp6ty>K7`2mso#{-z_v9uri4NfMnfCRn3*Vme|D)j z)UioL^*Dh^g?GUqIao+v$*JkuJH@(`6dIDK@_gjb#Pr*i)C;Y?0>K?71OBKzLCkSV z)|$$x^GR&Q1`A=%3`NWnMv=sQxsNI$>{}7&qI^uk6|8|C1Sy2(ZX82Pc1&$tfa-Lr z_@q$CZQ&l=7snQ7;|60{Id)~Mjn=M<+D$qXtOM=03E%$vzUQEZlrX#(X7IHyw_%vriV*=%%psZAi$~VG9zUQ6 zyK&cxYV86@kvm5VPbu&E{Ge{x>m_@q!~O~1}$Z6MhT=!YuLEj@#P zv=NHnX@%5^e>Y1XvMSRszv(&O5pO_RGVh_Jp4`bi!83v{ zk+DH4?UKdy=}{;^4GlDAE_4FqdjE{8uFSiQTzCF~+6v_ZFbAk@rwcn*QK0gG#PZJX z*wycN(75*orQfq+^`d1!Rh?zJH7F<}5|^UG;-?P37Mh73K75F3G`;27wd8EFF;)OU z1oiIX^mI7D;9Kme_8(3a*wvF_IQuo;*isD|yS~w&UU_t7)sJH>-+)gyLb=u|%4Nu+ zLs6pHfPH4`Fmz?0YWSJz{~{uJBl}`T8|;k=!{*PUqd_nq1JjW45x@;t^DfG}fO8+g zER{y*D<<3XjgLwvy;fob)MCjn!@hYo->Ea0sdu6jy{r1=ToKE##Db2hx%$z@!2N=I ziNq8?<{d~BXBP@$=`{7ElXs+<>=MUn$F>G#s-{Rd{{krP!a&fpFebCSh_En_syH|p zl>)rHAN?sPDBf09s?JnS+C4TjWQ$XgR*I9x;dAKc1x#K+HnXun7jBL~3zUYtU&3FimLdIpEtF~I47 z!0B63GQBh~NWMy*tY$le4Lo9(%wf;wK2B3JXivk?3X|7j`F~IN!TswS2p*W3d7)XV z)jth*?5o!b&imThD=1&SeEAFu0a9+ixlzEeB`jLJl)T7h+9a3f z_=(B%$d$sLljKtRe)QFiW`lwfQ$5Vcy?IOz%4B5g2>z=(!uhA~v>0*JIW4jWF4o!; z0aT3s`P1(G`}f~~rt4A-*uSIviWg(0FRm{x;LklkN&RI#2o-0YX|%%FdPNv)->d&iALVDY!2>0_0H0&4GAXo9w6Ak=kEYkbJwoa{fSQe3F%|+poH@z9X_%ndW``)VPN3?uOCe zcO_Z=-^`N<@)u;U6>(=L>{$p5$X=2RBW1$aqkZB03_1<8NGT#CoxdU4-MN1Okt+V)`K zlue^NL#At%aWVI}dgEYCgyE3YrR0I}xTf+)Z4LUUpB-PN*{3a)kV2U!fut_jedlW{ zP*1i;Ma+>oY&~y}ilf_ELq982)aWsGB>u`)J#wRF9Zs*vaWr;~neB*Y*5Vt#@MB8W zOhNDpbFwKDf+MTUAGCYsZixT=4Z)SCvg6lCxJJd2-^W6oK=$o*18LlZ%EUpUNQWJN zswh@{E(AIh3SukWe^p}07(c6~gKcldKdq^T&N6EvGa(r)mh7S7owZv12vwKZEnS=c zG-|I60V&w(e$NZ2wl+385YYI(tl*?k$ML(xs0M2l5Ap3ZR+<|n>94l`Do+hcJ*TBj z9PUh4l}C$u{4a-52od#CVj_5S$yv}`Y}m}5oAgD{GG$QbBn=&!TTXGeTa%h{akq)9 z;h2U?^)Y&T2S4XWt9doLuzz38gMHl=f+LBEr#J z22S3DRWJ$9jHwT_M>$~bBj6BQo%ngy;8!3fN3z9qd!$p;qpc$Qu3?&|lPQbZif?;vbI{PZVBxF`2``+Q@kJ{kFiu{qP zEUoeC?Z-(eVd5*PPpT&*HPN}VQp-zQ(ssH`5mE*)V?ru)Nlg_GnW>>M!pzob*uK6XE6qzED zoA3cmPK#}!p1H-lSz(iB<44)(@0+iNlV&tt?5W47GbR|G7rZY-Cgqd7^$hx$ zvtaZ>^HYYF6cwt1I}{cfg&H1AQEYaDqC#k(BdV?z-^-r~9!s(KVKRFKoWFcTq@ky=8nMI7+ z>a}-%i4>;}mu{I){>Fga8joi|iv)Z)HqRI_VetFBJXEOUB|RNC+-c|&8y!3BBcq6`s z>U1*WoIcves2558lndZ1PQ7PbC0p4EN42lJH;6?Skb6X!S z>yfJ4o_9~FH|Q}ak=j&@vM_GJe;{FSpZB!f4yQIFKsQ9+Rk!y{S5#}W2V-sS;@(bm3^rJ}uE%t>$!sFh-DSG;^Ea68}x z-kElxl^HbRy_CNOTA-Cw^YCV6``ycv>GoaFtW1Yq@gV>UL?+Qj3BoATj^OL);ay(m z2h)3?Mw%Y)uQjZt=8&Jx#;RgLOCs5ZN+-G8xcvPJ>=KYsj(?*nyF88p?~m|@jT6@zPdDBU9ghdf-6=X146Yra5LphZTJVT--C zlOC(;kqLaQUbz-Q!%sX1CM`#&(Y4?&h@vur;k9fh`ij}Ur^oVZYGQ(RyYdep`MWf7f(5_`+8)E)>q zM!)78)g8XJ=pr2Ja*V)NTu|QLrAY(^%2ZhPG^HoY9q61k4DcR1%%)S|*kjL)8`?;E!y>SZ2XS% zj6Oa-YTFE+J73w_cEdPcaGCd_muu-Co-UU=lU3GsKB=)DA+BX@7%$gWn{^yVKC6j-^TQn{hmiv1RTrf)ySZ(vQvjfi+S`$-^m(>n2! z#z%WA-&-LCcvD{rRs3Njs zmCu1)X5hu~SosKc;67n~6d_xu?@ntt0gD#Ct2mSH{}wu^-yY$5GvbrJYqNG$Q?H<5 z&<~|S;~V#aO%th7fHG;rt5(L`cSnkfFpBza+~DuzCu+%6Z-uiesH&2BaP^9}S?1i5 z@TC}U@n?Iy#xo1cM=nqrbTqe|Qv->Y@f;vjoA*X{%v$Hf_-;4e;Aq*s+6KZ~mkB4n zgQ756`<{&_bSji(!2yE!lZqA$cm?=wA5{wMy0LS~kHgGt-OytE}*6@;9zuV_S5l{n``iZc*I#7!?j_5x!6o!un! z@fQ#jM!$ZI1yvG7QeU6!tN)RqyN5@=xmJY%M)N`}5CY$Mk5$EwX^U2pk8q=&R1$ zI-ZTyjjmQ|Y?@CtJ$h%}U0Q)!9$&b~Ba@d6N%}>es=SkqmEKPS!TMeR{N$n!)XR017oeh&{_-%^)Nb zaKwM|fxtfOm5|;6g)U_s{ueky*{1A!s$&>PirRQWaw0QkK zci%f}GHXuhj%P9mZsF~UyuCCPRMse{&-6}G#W?D}wZ^*Tv z3-6*{kpX80OmQ?Fu)65iuKw8AxDRR=XaYcXf&3LMXCC|`y2lJ64L6#mHw9j6W5QPJ zXO~&gK7-zePaT_ntG5~{FNwqxbGT!$&`ZEY+1cAGdA2$We%fK-G4npzC{j8+8hN4< zF7d@x^>uu{9&w}2&!p4DazEY_wRp>n$7~ms4iLR5LU9p<6QQ6ORRqc(3>r|z5Doz` zMa$g-y9U5b(YtXi*(ya~zeqMqm9MwiXbHOJnVS&qO2Tq1N-8n_o6V9AWv!*!Ka1%W z>=@AHM1WER{cRVJ;It^tW!{WSIN;0>TBEsHBgC&8ZSCXP_@;~` zBSw>Zngi`P{-F@ZT8+s|J)@}#!zhoA1_TGsVwxr}g{1QfXi|9+Z6n1Q`>3km{h&OAk6?Y%@^9KHJp-gc%!~otujS zK^CM|0E=L0+4!kS=$L*@o%*9ikV^K0wrS;n_JqyA!Y{@SKTe9jCy0)?zk9^S1`G_4 zP#<#lMHGQe41q*}Qe!pL2|R8jI8W~FwBKtrGEQi}|GZcOP7;96ix@J2t0;(t?|7Cz z6lSS=QrkEN$gJZ0CEib;&2<7>RSA=e14j4>xij|M#I!el-m4eydH(ajM@XP@IttQ( zOw(ciWKL{HfaG_xCmQ1It2t3z;eL_Jx4w(1c=(g@BwiQyri>aLpdr7xaxiV&hxp}i z$oN;qhLf1o8)~V$7-28%yG6GVfAyF)Z1}qzPKnuZ@q89@2cl?kC7yWf%AsT%mQ$fZfUH5ieiV#J**WCV0A1xNxQ$Gy;p<`HZ z*)SQ@J3juq5?AFgTivn{l=mP`WiBGzG)>hTqCesjTh)9i1^zN5o_3a{DViZ`?sj~! z!JTsh1+xbjbgYjTPn`v^W8_d_mBq*L&RAW~ zVjgAlR(e2pmc{iUQB^!*Z7_A+gWa1Sc!4x1^==~Gx#4x$yvKl{8+Y%RF-Mxx$*W^L zQx2|CyMASe1ux>G)*C3jT3cIT8GN?86?Q@2_n~)XFX<>Js+L#Xz>fNkAR3-S$_yWxAjn!}?T%-uN8 zla;vL64b_<^z*#m-MILB`i2wZTs&UkAGi(@7Ok?6$1NtDFPsGpLP<0U=@T&^Q-=&B zSrMavr9pF8OD$Qkr}ftZlrH)~ak4#BT0LwQF^sTlg+`UB9ZN}*rPG_I{)3-1aHtkv zy`D`m9k8JLB*02D=}p_ox#l!ld3p<#$MX~9!NK++6FGyA;wgT z_u23cY}<5U#K?uL#ERU6QW?U353Hu}dvT(8h%r;ETrUiqSv26i?Rt(wUj1QJ1`2Lq za1pCsUQ?5BsT+X6Lgn;eh+WMeYgoYQg4##!7JYWP4rR`>xh*7i&26#&{-xLzPn3U5 zyMrx9n@oB#0%ghT%F0_%@`Uu5y`&#{Zx;w?rK}0yq20&SwNFxo#6+l9r4A0 z1?$??D}Zv~0b=Ta^Yv<62K|8>(uF=n1J(&Yl^zx<`xRDufndD1czHntWW&%&CLE}o z&V3zJ2-!?s+sEJmTPA9M0V)lyXEOyX7Z`Dr&tJYoLcvM|Ry6QNA}9}VTLhApy8Udp zL)HT?Pbm@H=eHMS{ORXk8{WvLU%iVy)-c}!T!9#C5kHnW*o*hE93cU`8D#{HVHc9# z%DTj*5Y#w>qI1jKtA>Y-RzgL0Fp@EAiTQ}Jaiu<1lW34C0=zT75t%xaG@2c$!M>qU zmDHbmd*eGNpiwM<$AB@x`HG7fX5sl>F7Kt8M!8m(1OK4TTt~vt*?3q0EoGP4dsmEW zR}pWTn`_6Wdy}a(btZU0w;NV&YG`Xqmrg2jDZbTUhHyABHMOk2ctVIU>!M&66a;(c zAdjilN9xcIFlI-ts(EEFyomJh_jk@^v@xXbG*NHY;QF2o_cwKQgka#Nb!=EdYdQH@ ziWFTpMSi{G9&T#D_Qu*U`AE;wjt5!y^M?D_RULhOEQoSCtY`p$x3{;G2s@Ms(2}q% z?hmb{mQF%!;tohsG=frEhUT_+^r#KFJB^&MX-;`hy6lh7 z9V>g^axTxTr*=rrAKui2jrDyvD{8V-dj&)otbl`3<0YP)V`U?AP>OIKQ2M(ES%1XV zhJ?HKS^AcxN10J2Qe8%h<}LG>c3wM!_19tebRo=kyl{;m@ax1xC~}OBXDcZe;h37P zG*1uC&BE@NV_&9cXE9L5_KUPi0TYfzjyl{)L~9CQdQ8t@TdPOX^zHYt2`4cMIWu(v zIS*-6Pkva^Awg5XPs!876+89h&t}X-iYbH7C8?feXJ^xly!8U!2`f(QkQg`+z8_WK z7xUcuqWMgh>t2|^q94!ZNI|aAlIfoxqh4TL-@oWA$}cIg)1g<7CBFYERw^pg!C>(i zowi&nPxnLa0U|-=xKEXxrq^qv=sPR#;B{(p&wgd&%SIAFBBKga;SegxA z>QJ(7w0*GHOi_*HvUJgF{Jf~lPx%b-@c=<#c&0#b1%zsS$HoFGGkg>{r!cTB5m>NV zS#VCsTGat7_Rqiff|z1BTIar=-F?nS&krRT!;-5*)TwaeX?T-Q1q~g{3ovP1n^B*2 zm>}2;a56>7)u3mrPi6OfX{9#2d(F5SAD3;I^sm-|p8V>kSn-7Q2>CMjSRRPp9r@Yi zI$rotddw08Q5PUW2zhVYLR`(X9a-%bTF*?Z4R>a=PP_beL*j#`wxQ;`JrEs?*mPL3 zz~~YsTkXNE+mK(XDTK?Mtf+TA4ELR0IfB;($%lnD7#ExJd*p;T%C)e7@cGC2gu~{N zq@pt1Pg<3YO3*8ZOcs6B|J`q;1HFCULH3i}A#m!ZdAz~%=gM!t0@x2Mz3eUFdlixHy_&F(?{m=za9X}zPp2j14XS#p@qTt(!6G;(L z81F6aCsgbPh+o>WT&6KOCK=52uf-(Pj594UcpDe`GTz`7_>XA~c1-$f8Op;6V#(4; z@H0~5MNr{mDhRZxp`$-e6JJ3U<0+srNO2zP7OD1#(4_(XHl$MpxEUPax}kcKntD?q10=1A`0;9REMU96xy1`lojTTv z`N}=IH@GzP8Kg=5)1STzu5k^NH#O-seF56UPuzH*is`O;f$)Ugga!A(oyVvIwH&nR z*)@9QU?rmHjUl@c*B1hdN1pa7u*Z)WL)+TKy>swYOUTukhOzu9H$npn%`pmUGmHJ8 z&M8#MdUdcjUZmQG!I1e(iKA7ciSj`VX&A6q$V9z;n~wv2btp}UA#+-P@$Ol1ffQ~A zws$DU(a}OsFBYuHoCY~VasiYgaUw;tcPovEnkL?ua`sT{r?JP{061Y?)h>&I9b3@%c|}mubVN z1!cw!Pj`$Q7Mch+TL0h~!FeLy&ar$2fbHN??LxYAKzaw7F0Z2ECL9Ui6-W^&aJYfZ zW*0c<&6sL`@AXdc0fC2`^jYG^8yci6b&=<6TAh)8~UJ! zem&nc4E6Y_B2B6Y9cK*im4s2(flPfNm$!R*4!j$Nf~tnH_-sLzXpve1^OBP8=j^fu zppo_LXkN+>sA=Ipz?AHbpqFs7)P3uxK*-qGQdzt$G?~`#=GkaKFrFMb^~G7PT+4jo z?PJ8753~6YvDsHoZJ8WHa}Pqj|C+0>q*_@UM7jVjFBUJQL7-^&N7|Ey#f}X8U_sa> z(w3H#m~f}##`SRl0Sm4M6Nss4yta6;!ao_$E{@tM6LdefObvvn6m>lmSO|sAvL~O} zvghXJT%b?E4Ahb9uM96Be<04*Y2!dKAahT)h@`$j8$utFFcBzgO#T)QM+R2N?R);2 z!7(7DaHQHMAi_+-nJwcZ%)f5&I!)P9)U?UFsEMIgkIlCpGCsNQuPPWY8z-j+pkOTS zq+*Ev@l4p%(-oBv5;cA2Sh zybI^IXhp|6g5SFXg~lr&V2uQ()-Wa0jZ4@XuuuY*FyzNBuo&zchTu<#xYZ zYXtxT_64+2EyIBB)CX>TsYSReX6~=G_`7;66cD=7`0NQ|#ZPSfE`I0qflCQfYuH0p+Syr4&{L-2!R!prULaOfY5~zf+bcec>=g+WZSkzN9=$NvSl3=hQLi?A*Cbjbq{S=TII=)&k(b`*3hmpqQY`572miTH%J`V3f zQZRT?etoIM3X(MWAXGSK{A0CHS|%zGgVJkw7#Fhvqpu4j<68x^9Y; zIRw9lE;%qQUxV(U2`6LV|0|#+~ zhM2MP;>7iKt7`5SjsN3)qeky1sH5~%TMlyipCBU)4}=p2TX@_&B{o`>%_z;p#KZ?^ zzFX=Hs~)05_}%MRgdZIE^FVwA=gvK#(M-1sJ3saY%U4*t-bM?#4{XCMlU#b4wAN>c zb2q^2`BL|HfAAy79ZGro2WDLH1$wsS8uZk+J(~^bZT$hU0~b!Vo8idRovkKQgg4Re z#<-g4RZeg>OC=mcAhHqB-`Eh^EkO2o6Z!ZJ*b!N?$!lh#cc5NnN)!hs0=#g!k#+7=(QrV&g>o5w;OA)|*M1tYf z2x+p}KLfT1k!X;nhCN`dUO>IB0>L_xPAO%T8)wP2@fr$rgF*+~UG5CIJcSuh2H`B; zl$0m}20+9;_!0;rX+u^Bhq~ZM1iUf)(zv+f`~r->nE#=SL;s^#A%~1_Am;^oAau$h zdLaA)@<+B4>^FE5{5Y&sI(e93Of9g+1LcHN`9syV>68_&F+f2Ip)52(>hl_HpBB5>b9Pa?v!BVDHm z{SNX1j5sn5@FD~|gwcLmTznhY1}N*aqDlD_ArV2Zh8#HUWu>J<0NSX1dr3vNq)^Ee zRy^xKcr#oY;BoG#4Kni3sRQ!^)38q%ikc;DmUOKOnD1~3&ornOtC2wlDp@FE&MabB zLyB9!D$DkhLq(SDQi@wSPWThx*E(1BEc|!EU`Sppo_!a9D@$D!2XUtXmW~W4!a|gB zefK~*?W}I6OnwI{>sL<@%2PGKf*|AMR0$-yoWizh(Rf5@MHBPNB@+xcgz|g~`}Tx- zhikT9J><=+h_%Xez~dYas*J;z_ZU#@10|5$NA5XeiuAp}xL!fooUZHxScoSa3jIpA z9P35Q$<-P0gXgwXW|*(M)UZ=HcH>@sB>-mr%F4ccg+#=$4K;NacsMP%A$s?dW~@d| z+tqSr41tmYkPujOz%vLWXC(}o+e+!9lXi6SP_xBhX0L=w9snha3d~i_EbDrFzgX6W z$II1hA|^BWV!vqE2T)D`iOfk%zDv6C{W0TMYk0bmDp7Sjxw!~vDRgU_EmN3XNNcdj zb^|J$`vYKt`_23y^9&2FL3L`2k!y%39L#(i8E0mXvCkD@H;P5`D zfZt?((CXAzGa{~EjfoA@iMUw-COxhMgM-WOA%T^zzB@xR7w%B=di}@^m$T?J5npAM zUj$hTkSlCJBxid8P0r=Ff2Ah#o=2gnmQ!$%hu zV!&?Mx#c-%HaTjeQ8$QxnW~`bQdHa>U%gE>$)$d2j3z;$+OG**4m?0dgbjE2tI!3_ zhkal=X}$QeQsr&GMKFx7UitIIod*EuF5R=~ z%>%{z@iCeyhiiIT#g7;-@4nD*>$l)il`Bv~`fX8L93cp>-38P)1P@+sW%t)*r3dB^8>Fm+I;T1~ZsF--47d%5Jnl;0 zh6HyHFT!MfIBTZSjp45M>TRTV0uj`aDKd`}^Ze`~pEzp6%e1*g7zt}?9%xMN+X57b z83yh?p!wb#`+@6)5)2Hafa@rqGKKCSbB1^~450t&zsmGq{@H(BYjP;zW!IeAj;%Vq zlFH@#@*!W~mp$?jr%h#6T#HokaM<6pAeq>3SKEC#qwcB2oiPO38Q?zPuAG|}X4(TK zAX`Hl40O>INYcF|gT;)Ewr1aNn65UITp?RfI1!ofXyDBOt&FV$Ae={xNoq;V*S)!U zIl!gR^VHZl2YF-59CZZTkJ11suX?IL7ku`V0Lp1JOpEa7T0fg_Y*bR`6TV#xO@1Rrr@%HWe8+80r+>(QD&MvSfEv5bZQC> z1u21415eZuseB)sMY{r$+DLJrJKf9jf>>5sKm_bpBNy`j;^94qO)Z5EUKNNvz>7i< zf;QhgXi`VItSfe)6&7CdgYIyU1Jwk7x(nML&^~RbCT_*Uiv;IG&Rbd*dsaee2+6?N z0Cm2Q`{T^w$fx?ny|-JofFoh1fMJbfW>=5c^Xo;yQ@U^II?j;8^Z8sTYdDFGB02g` ztrjK_yHHwOE>#b*OGAkU+$Se;e*(d+_u~kNgj13Rauyi8)}yb93pxb;`AlT-_$Hv)P+-nL8NC7ZAM!WkwhjQx(J1|PuK<0# zmO6~I)nAM--}N+N@5FZ4d0WZ75gZ~|$9avnq3{B-B;yO?stg3jRUSns^{%#JS|!Q>5v z`U?>H(V*4|T>5={a^7yJuO9^zxxmT{!mt1?d|53Iu_CzJdbZK@ZeHMH~Nr1@VH-xCdfKn9=}0QMB{I)EmGF96ye%&K4s zgQ^z1jqm_e1H2fd;_B-_TgpH}?^_9iLQG3TG4#!5k?U#SiVLC)zA3t;rYNqKou{m& zc<})!0O-ho#ajKHx$$DWmYEzo-OLAzFCe$i!O>C0`3k@g4k>h`y9E*Bz%3SwKy(PL zolvRAKzra4a@`Q>7+Xof>4GbT+(x0iyc{9QU>k&Z|Nf5DXAt%20^pVvR?3bD68z`> z+h6U+2s8%V1~k?OU~nN+R3X&Ce8X)3=(5n!8Y{Srp6Sv{LUI}$2z3KDMz})gw4Qgw zzveZO?RGHTeqgJgze;@#sHn4fHlE`h@SqcY4}-E3g>_Z(y|hJ<2BG1 z9+>WwNLoZv4DkoarnAauDOv8nREw9RxedS)7>u_XCD(4-@Mjd9W|k#GRtNM3Kn3I( zxFC$HiLqdF0^2%3EqF%SVWE8(FfOZxa{uE2@5JP1K0PcsQTxW0{1S%7LWG(`R8ce- zX3)s@`B#@R$<8ciJROga!M#*(9QOs7I6CymmvvLjS)dz3SN?kpl7Zl9aKCf|54Hy` zp)2iYYaCnv{gB%ukkq^dyoHPw2upM;qM-DHWDQ-Ok%(q2>8aobM_L@2LT9-qA=28d z9MRklAn9Xh6>_5iK#H)+048%oPe$h6r2&BYDE6keImC2eL_lsh0c8CWh({yd7s&n_ zh5H%&_QpP{9(m6^L4VWi{5-4SS6cM`5_ts`XlWMCVyA9Pnm>fD+5b8P2G@dn z%V{_ zYW^|dsp*-bDJNm6-|$e9Y&Mi?H^RGKQt{i4+tpV85KA^tE1g74GNBhQ_{(HqhVFJ*^pVElZ!N1!mc*Q-2vOQXiksp1wHou#%YIak`MT-o|j-YRcLqXM}(6zX@n91vy%nYOy zVje5y$Gui*xxJG8Z$pBZ$2pI=@^j`T_xxtNw=H=B#LZbA!`bPujvYMgjAPByc#(~l z{+75Eh#K8vm|rRMV-X6aDdk92x+UBCIiy*uye7%-ey}?F6@ZCxAXx&yfub>}Yw6jL zRpOMvt3;#9@JYL5)9c_oC43K65?njH;r_#iG11-y*A)p3AuWN?9SYoEki9;CzNS}l(Npo)Q6~rwEh#`&NG1gQL6L{}- zfX9(zB&G1T`ma7LQDdScQ>tua9qE;6Lu;>q{Lw1a)Z^}FR^0Z8>baWOPb*7jsjr^W zJh&#Ms(LH9<8^f3dmUD|g#BAN)ieELas_$+@#&aVrQyGzeX+9Fz>2!!EC{XoOYXw( z;IjHejC4+$_r)R=@%wLTQ)0TdIB2NgG;K*mih${9b6}a^#t138mnas`16c_ZX@oR0 z#)7^^X_&dccH5_GOw!z+32BX;w3Ag=AAj9z@?5;xbE^{p{s?$N*ng~(HAP@Vzr45g z0symDByo-bg|towGL>@BkUJ81;g;z-z~luu`3@c)7Fc}@p23U1Wu1(L$w~IP^3z#0 z(#_Dvd!84Pax7X9TJ|&Gxla^F$PnvF^s|+-=B^(2Sf-dVg69)Ip)+yVqj^E?M}mBQ z=ds0Xbl(a>dvCkrMc^-5)y$gI%vunm=o;CRt_x^FuvN~&Z96tN=`8?0_e!r&oj~@X!8ewnTgEX{? zt34}mm!!Kr%guu;On5P84t`JY%E~AyQ9tja53HED3qRhTz2z10icV0s5zm7N5)D>% zRobW}YC3WjfqHJg_IpQY(A|_3el;_RQw=R@F3Dz?5Bc2$Mv3!P_ml1@NN7LwMk_9a z&OwV13lOeoX|3XKiDanwVhy`O`h_-(UTqBU(5~KG=R*aoKU6Y~W}h3m8#fat&aUWaq#Oj)YcgJ*qR#25@DkfZ;Z80m1!ft9Xpohl)SYtL z;kZ-Xfu6Cdv{)l|jzF(MZ7*bSjYvhA{3=a2r*=>t@JA6L*A=!2y}g%vki<7Rmu`Q! z_W|mfX%^p<_k28{BysH5lFrw4x22$uFFhGCixl+G(bqz$|Krp(k>QToDFjKW34U6! zr&oIUthuT!79E#z8m7JbYn8^+nY@~e2lqU()K{)&&pB2mNv|I)SD>;t3tH6qfS&pm zV}Z>($eVUIj1lX$$R+H{q=Uf~sIpL2gCUDEVWLBM`Es>NOflEMcq>Og@ZSIzA z#c2uh%{a{__-(8NrJoRWTyNIMPa*MaCLbC;O&%;fdKhK*Pmmx@M5}^Sv2C}K`TJ+` zV~y&q(?`FAOVH-KH%)n~#jrobw;f?;t*e$P0^6Z@WOjMV4^AyTo_HA;o=pB72Csz8H zzH+L8qdK|`vKGju2y7myK23cVV~dD@7f8mvC^O>psJbME4=YLfHN8c*=Zk^vA}rHs zpE@xB&>93D_l+58;y!oMgYlO*4>oSvbnE2Km(7Jnla~3U3HD1nGQFKX$x0tcR8rHo zFWE~i&XOoj(U>YE$TwwdwvCtKKXu9GL-GO{S8WF(-^6ehWFBK_u^kn~gai%5^ZZN% zXon)h@-ttt+7vu)=Q2yo>K1yGOYR8c_lJ`R8z>`@OF}{=o<3DuyiE9jWsa+`a-&~` zObYLtC%0<-K*R%Mp(2@{uzPT(NXBdkQ=gSu2%{1yPeI$KlC(Xz2yQS(Ik>}1i6|4akmg+htM3y97|5$c{K2az}_|Jnd2gg z9aUjx(sE1MAFwdSB6Q5^=ae&#HUf2`2FGMHff2QTRK6+QwmZ!aF>0j^Gq`KOGP5Mr+l0K)T1Jf%5CusGKkL4`r!hmgn0&%UL9P<>-`kqw2_$Ael61 zj6}ee;6*-x=SdpPhtP0{N~^<<6Zq4>3kCv0l|UP(1*`As8y$wN4=qLZ!$0N^En6f& zK+>2J(d{?9H%VY!C^NU7f%zTTiVEU0^hkm0u;7bI6AXU`rfW6}mbw-ubQ=c6P$L86 z)pi;;MP%4v2Q_eC#bMfO&-Gr>EXb%SWEmt;lfgNI_{B?#(k$ig;*fN<>^D}LdV43! zhtd4rY8@qf3#|e)9a=)*cmWYtn*8=Z?uR*MN@wU!tC@lygQk>Xwd5xoL}cBd^3{&_ ze&Q57)cYBOonz+Wh)wmSjS|v=`zeH^CqNF7;(;9?04yOLCYo;l+Y&&owE{s9NpuSY`nj}YU@MwxY)4Bu%;t)jK!J%8+r6p|uUqG?fivH3%($vN z)wQ)$BFfS=+quYeyRNk=SX|Ob70Xn0O%se5T`d0s% zV>&4=dq1-T8I@0QNGRexkvj#kJV2%}9qL82EhtNFU&wgM%;~hYI{I~`jvTt1AbU;# zLgKW%CySZ%cos7RSUa=cvzaLn3IR9Hlw$?&WPDg|qL7{a%(qghSo$Pe*>=Cni+BS^ z6_ts<4=g6O5+fs{S7k+qZ$8TG_bNH729fbo#4u#Bui3~<$YhLTTaDD!= z1i-W3KOuQ$1XBJ}moCjB{%`LMC*zUtM$!fCOb*Vve^z~XwI53qmUomC0$Z2j}hvIRiVO;7R-9JX$iRKN3Dfi0Eq_@MyEs?+1i($i%n*(fN2Yzi$r;I8#GlLCs;Q#6U<=XfYD-yd2#Chn}rL8{5M{{>M~LwN70(dHr2+ zKEnps6X;~W8awGLjce`BDr&9z%zOEnM|InCZOx^A`rJG}Cwf7mPz6q-Z3Pg>LF>t- zNqos0L-L^hu>f<H6Gs5vcd!-vUt>Fz(7LfvncRdY|tHEU2VF zEuNBy5Y^9`-fWk1*V^7bz#In@+Q7`3GrX;nsHd_nT4(z*_7#RKI_W$!^|nxZ40_-0 z7=WEoPq(;>J+xXu6JNJub8s-PGJ-~2sS;k~0zvr2ALZ|ulW2{t|5aE$ED>&SkwOKJ z4njo;*6V5vZr4boRv=I6gU?bz`cXQD)Q8TXQKv{TzSnnJ@_8jgwR`p@8EO)~b^hpM1c8 zwNI?yeZfAzxb<0c?`QGM16OKi{IMMC*d9%2*EO_ zKX|&bXH;E$B%pKB8o~&r>WFId4!68>W#_9gWa%KcMskzzr zJ$lBfNXj^q#VM!I!s80{oTf-Bq_unc#5BKmcr6;9Cnbot##mTWrZ;Kc)Bf;Iy$QE< z##&1sp}V~0p;1)Np8LooCg(fW9l(a2J1@u-_Bea3e?R_fPfnTjw!EJ1lKGTCC)cpY zl`O5uE34_7nuVPU9|RaQk1}^%S?!~bLY&;q9w4J8^=O1PdNqP$#rj8G~s0zJ*(_=b8WYH`C{q7YmXy&ruldja+Mka4xw8s?v=N) zE})m5&`cyC3lY3^SLkvYb-!~dj1Wg{K9{!Numptals zS4~=cF{B+pg+QR2CGb?;{4$_K7OcH|dFA;xG<~>(0$;~y9dem-{BEIrXk=ind+t5; zJ||C~u%g+iwxG1_M}Qw|3v-X7tR zTD6XQYeKO`upPAgiE%DBK~R@&M8pE`DfY*-7ArlnZDUZ&doD>rJ~kmZ=3YT!fi+sZ zJ8#lG-L>f^b0-cGYiKI8kq}W*=Po8b=L!JTL_w0i@yo6&gIb*SfxuRc zIt`$oTxlGo2c!g{Bw7F6U1XB?s!7nGCb`IuVI{w7_tRaOp0nBVCo_A`@%ifn|GliT zDceU0pnwy{cW2j*(K?*yHpz0$k&XZQ<{SPO-~2(3Xx%XEZ{=Kbjrvo~g7$)~f6%s> z3xZ`JPK>cYYS58$ayZ00LS^>-^y=_IG8{u&T}?Dymd&tDS7YDzXrlsN=ieCk^c@N| z4~Fi;KYRcr1OXlDfqdzw_U4fvPo1vA*$5;50aRv$+`}?ASefrT#&~W2KvPPD7Vvsn z0?WTg%XZ3KU+f+T**-S*y`gPp$+wTD{>MhsFDUPZR)fSu`~UddFIv3@siWV3F2oZZ z6S3)|V%YjJs;~JM>^>x{8-^)@4cvIMQmh?T;rB<(I|Z4a5+zTVOIx(F{5fHR(*~Z?K_bli0Vc_XO&DEJ$7HJb2T>KV%AL3u(!| zC=Jl0g#CrM5|sWNDOPqI^Sr#8IK6&=z8+vE98)&{E}-`(hq0Llj1uS-P$T1XP`-(q zdqzi_6Jv`uQRRtB{+PYIdioG_zFwCfrgQPBPfUF3jHAkUIWE2{O#XQJuU~p9>i2uY zUW2DHAHF&sdScIyeuB9u?*8o7@cYLAp$jP!d6y({orGXQOELNFgZv{TtvvG8{wV>r z-(3?j9O$Q{-+)0imxHtycPPgdWf+C?CmLxJ41pJj9J=JP6kk^oPM5tw;twm`lZgSr6hA|a8?GP$Xxf1u9Sf{?znNphYssV&fJ{?Q%D zy)XSy2J;yBCuk)}wF&YzyvRL$H)^EJnlet1lhahVZ31F8LV8f9!8o(rejn3UEAbs` zv(*&;d#$%`_-q1)@F{o(4^dP})2a;<=t~x9EI6~GMsUluU&b%dr0f|7JBCO{0=cc; zvT@^5#0;3()^813GUQ-`AA3l@xOKqS&O@+lrl@X@Sg9lnSk-e*=oFKbPDH>b6W6$HQO%0&@9*$A4ruRtvR!oV z1ZaEL_+G@7wv82sq)DlXml#x~>%`GkNAKE24c?M5`=qs+>@khX5}ZTAgYbXjWReM& zxyHbW5_Dw&WZ47Mz~Pl=JW=eU7W2NEcsdU&9>?G-xenN@dFp%rrl#2u2vtgk>7 zE-y!jTJnjeGaeiq&R<<*($;u&P0q_ttn6og_|B8tFF!26)vqr*yYs_K?rFn)$dICC zW-50f+#me$$D9W-wn$rrH2v!M@BxTh;Qa?4L-Kp>4-5{%&ODcLs-~u9O@it#=R34o z@F*93_3DQ@YBi1qmC{bm-Z{TJu6ud^hQR!t6j8nC=hK#6;+KCj`xrFthUfyENGM86 zAB#ffby?SqnI>iB;|B?#f@BMg_R95@xh${L30?Zmz1T!-i}rVg9&L6@NROc4rI=&1;h$ywkbe|zZ=3ov-=^?7k?9Tn%+=kKmK z>>OXh;i$b%wltO~Ma~&9`dn_znl zwDYa&K=XD#USF$5Gj!Wcf=|$8lN!UbIP0$UkQ;Q)ouL<6e|x=Dq6E!ROIO4XNZ76K zn)J{w*$v+fF7QjTlH#F)t9a6yTY2=-tiXR?T0gtZ#rH5L z@9I&=?v0V+wiOuuB+7lWPmV;8L88Qm8$LOM{(A-B@-|Xp!p^G(I+XA&`@2Qi+2;ZT zGKYP`3MScUp0OS&qTPCD#`xx@K8t>*G_C|I5|uu=_`=Vu$|q~*-yQslVodzC_Q0u( zru6&nmu~9HC7+Imp>$ns2P`@ujbT;~7?tkQW^aKWg;3dL7EM=}I+}^wQP}$1vNioT z1m!iZbyeRnHDOa+$*A`X?Yt+OjQs(ZEy`cWB3XiJKz4x8pZqwBY(vw8KRgLXXvb1e z6cEBfu8+h;MKYeFeht*7V96!~w|KVyq$ga2jZn;7*4|X5LZ-a=+6MOv22b@_eVG}l z8HO$WW?@d5vrp(G(29XU-@Dfv2Fa?Oevm;JHt?rV5`7;rfJ(I*- zgMjBA)>QkM#!f$-o>lMcx1i$(BbG^5c2ak@df|*3vUZfNo@uQw+J*g(g!SVPKwJVj zC5)u&$Hs6H_AS+~gxwIG$b2wn9h(fY8AXq-gZv9=^3#trQzZM*`lMa$?hR#po}(%& z$J<4%gy?6EEcrbXx-ikghKID34arZf$l4hU8h;i8iie zw6(#QheH4$GQ4*odw_BUomA7-47{cNVgF%|h_pf)1+}o@=upIBRI36Mz~YBp1X&{K zYi&@skk)%!ah4Q&@a2P};Z@_zfM=*vVRFg7GI=89m}Po%b=vw|`+WP0S`X}H9T=`P zQAsCR=cPD~+bR4od#kkf+5AN`yUZ6ym@#G8#dnxC&vDkTM5%wuZpF7jReXP;(hS4gCppuKrs5@9!?Y(O=@2j+^dkdhN8+20w(koHMmD3P4MR&$L(&Q(q zpTpZ5WO2PTHY=k5bhw!@T7yb;c0{4y81&nhUV!@^{8@~!`PvTB&f?knvwrQlCX*pE zH~7Mfz%h->U6Q%?Cc^`a7j-ey?I&I|cHw!2*mDo%m_XqGhRbX+o9MakOU$-Bo_cDg z9jnCDc@g|ccC7+w3rw2XRf7v%Y(CPX4(c5ETy0RBC)VnoLQky@-=?iwM_b=K1UIRa zh)_TZU34Xd`ARE!z^{QL3wsWTZC z2|OLQQEEMh%{i?3mRb5(Wuh10rE*`|n`jBsL|tHK)GZD0E*^E2(ON3_aP54%>E(`T zOu61E`;hnE@!;x(3tm18?Hw~`s#j{(f5$R~tqUEw)J$%n3SI#R=s3UTURSM|!^OvOdfBFveM1VqGa%)vo8xXiW zL(vbES>xt(NH;K-BTfq92=fO$8|>aZ-tCr=8Rihtp`BUBuqko&{eH+jNvSu?g+$b4 z&bjHCCYWet=rQz&b*=9JevZ<~!zqZ6fH-<5d#|=$jxHfp$WMx^qFI0YkA+ zpDvKtZN}d2<+G-Fj*?h>&yF*mAyya4Aa#Z69iu8Tj{?uZsSWul%!Eh}CBk9|@}M^Y z6ajn+O9Foaf{0t;$)U_`H*dP5zH(W40NWss{k+Umtiz`(^N3;YJxDwB+RotyV#tI3 zY2lzS+nAbDyNaHq+RNV*jhR(#@9D}t%v2@)5pXd;J80>Yr6>>Aw5AW3KmC<1Qu0Pq z-4M}C64AW(Ugv+DdohIDW{|f70u~%3&ybRe2RT3ZiDpM)qV-7QfhnAjlU1B^&-tA@ zOjpG=xqGMN2Or5Gx#cirsqJjn?mJPvz$gd$uHlOl5#WpF_Xzhdtr}xq+*|%es%f{D zeU&)y?AOo%aH&uKF4kiNBo@cbnyXT^(2B;dLJFXE)I;GesvO^08zXIil{||J* z9|L(ekVfw24VV-%IN7HCQGYnPHUs%2ojl&^FP|ODRQ4I9GvuWmRsy7IYxmVsl1bWh z=l<7=uv+t;SCS`tQ=&CZu9(Qo;8T?D*u_=I=>V}nP2oB23~by*;eMj-i(@WF!^Mv$ zEn=Myr|i?NE0B}gzx&(S%0rZWLbdFj`Ip)$l8IL6s&tRzKvFkDAQ(8dr`X3R={j3HqAdNS>Lf6S$;qbA(6U1o|w^3Lk3QZ^L09nPf}MUHi+vk?nGK@9+-Yhh`r zMnME2dPtL4J855YKt@*%I(^5rg#kJ$LMSZ>L6*x5bcqfOapztt@td#rWs|&JiX@HI zzW|C#bY-%e^T=H_RFLP#X5Cr~c_7+HD7SGIo<#~BB9-S5!yG{oqKjrsq8r2}+;x__!gRWj#>h8O$d9vj?XZzo`l}MjK zideeb`iY~L>u)E{4*>EF*aym@)c(h%Emj{OKfMiCFKMV^FOQYKE#+HP&^lsmmuRp0 zCNrs`b9rx(rX*m-*|_C=wo80}`74V=D{47LGe8X-Zn|g*SHa!80vQiEt=0uo0)`+1 z1Ej$BP{PooUs%tmwQ^)#+MTaHV2wHWyY^{Sm@|gl-QBc~?l$%>r51dy200xP5^~MN zZ{jiy3{MM{Q`zrbw|ocA0PVqRq@NtbM*}1Sf)&~L5vPiZ{9SXpSi_0k%QJ<`nJLV{ z4W{kY{HJ-oXaCx0R0u&TBzbs|am->_kH#duVO2ggh|WLF&N8v7Tgvu)j>Uyz&T#x` z@B&PEa8#E@O=i{QN=6|8#LeE!lzZpZ=ER9E+%Sn^kw34XM2nrT+E{5#|IGa*sDJEv zLG!l4{@X4)s~Xo{zqsv9*i~b)!cxK$&L}%2-15ZR0ATD83Ory`UE|OjSpl4P{M{Vk zNVdTvS&5E}%C%tei)u0K9uzlr&7Klg-mJk8a~Q!HQElJQ|#7&kK`?DD8#LCh8$ ze*p5_-^!EpT*Tqr5@D)k9a<(B+c^%Y$1?=vlQ0HkUBcKgRx7EcvaZxolOd~7aV{&P z7Ya$Tq6q4U#|-o49qa_a*U83U$cbK3f7DFhwO%>tB=V)0Pi9FZ z2pzq~-0C*O40Ljtpp8`Hi@1>%YU=4Gs&4j$>G$>FqjF5JQUQUC!zE{j%O^E)4cY6Z zmx_eEZJURxI!iarVIaYGk@s>#Z_X5IQd0_jj!17Oq_kMlEv8E3y_By2o3I~EJrG|| zoITB%WUWVB9)Z}O%tIqqQzT$PJq5KmTEOA~3%O)_f#sfzS?(RinWs}I#UZ|QN49>c z%y#=L{p`^2z!-IJN22Cxaed`psqP&OyA;f0(7_oYl>=ysPJ+uDzB$6ran;{X+?|88 zg5E2(s_Bpd;eRNnR;+ve_;Kd>PIps%pTxo=pr&yT9eTK`pkVCUmK=vpcT0+y+X zKI%Cei>&9J&#`2ETK zEbDpq*ufcEndwM7%1AydS-5EDj~OMDz)DHe15UC&4)m3oT*boM>tN!Olf_LZKN9RS(& z?AeOZ@7U;&le}LzXnMi$aw5IQ0KtIH0GzL=nF2ZH#IbiNp93FGJW>1DLtyw zV8{cDgN&hZ49WmnJq>LyXna_a5u!jo$%iq3Xz%503Qg+0De*$CY)Vozhwl;Y$h}w+ zbqDz_s?)z$w+}d-y}v%wDZkU`)RS%_?-VKmvEKgKJPbviOi~)9BmXkj@ovG;*_)D? z08^e?JpVktyG(y^MhzOAuIpGZ0=pzE8&z~f!J zzTl5|UsOMzX4EWPz3GvCE;CK*#a1v-$L_t2%Pz!efhBbd0BQ6Z2>ezlD~T1u^qii6v#jx!{cwIjF!7@|`H9Mo%vhov^sOUI3gAtW zO^9)aN^8cSx07j|7#DJya=|d%RjvVy0jOdtv~I!!H($^HI^3n5nUvMhFVj-4Q(WzM z$Y53~cbpmK#G=+Wx7p5e@vh9erE!m~Q%GA|?#>>KoOMv=Dku^Xj)0>Wuqxg}aPjD8 zQ!?*mv#O$ZU153hdj{YS!Yr)wn(f_yd^r1oXJzGMiil^Wll;8Cu=OGY^aMycp*ji(1O_EMbh;-jMnBWPyvE1@9vabE3LS_b;<| z;OXoYo9CLnyKn$SASthrf;GX^llZ@h5?}@aTXK)=sO|Lr3Zt$r0GMP0;|b7*JfxpJ zgBv=}Z=OxYLm}kHH~f(e4uC0?|7vno{J-Enz8*)R0?X^V*~6|sgYbJu)quk64UrUK z6XHB9@`N~pf|^8KpB|DZm@j7g%H5Ko+2Vp2Hf)>nZy3U(^l^*&-I}YAGKIazP9Fj( zaC*frEJ%In!HRzJVQkFdCGTrJ&7HAxcUa&79Hw$ZlMa$6GntGG*@FOWGE9$5g6PZN ztB6sRH!(zEBIV%C2&%0~yRIlYmm0o4f&KTm>oFeMvyh7E^m)V{1pzi>d@jFSIDjjawaYuDXxNmMW zQolG@-XQBiarN1DW%ZWW%NAai-g+$?!)yeSlyq++MD?G^e{4%U$CZOJcn$v;f; z(x44*g7S*~f+cqVZuhk#-A$uAFT5}>oH4H{f*Dm#cP}C8;mS&Fm5_W_F$+#z)@>e5 zq&!+CwOj#NS11>4+l)9P)SFuIK$qOb_F2RDUr47g7CV^}iSr z-3_@CW~5O-W%>w|r8GH4G-=$);eTMX$6x~mIwNxlKwz8Bmq;^A%QVPIydkbBvG#2C zBUaO>Ly$S-(_zSKr`I(NtFKtXWsO=MNwAdjy8c zj>bGYs`t5**|n^m0NekJ4SfG$WzY4g3p_k_9_Rq5MBvsPrC_ zL1O!sH65BGx!k$$u#l!)5Pp%`cKS3~t?wO}!Zs2K!RW1!%_6SNdmY$I)s`r&4q2AW z_`OnVA^Z2HtdPyhEGr4~C4Yiq_aPkp?!r@@A3xboTaw%Ps*kO>$2jM8U*_ze4g8xA z)Xi`9cgURoONDeB`05e)&!BJ#d&}VYGq-|#4{J^_`ak^uiRPIT(+hx}e49_xotT-0 zBmLw4{|xW^Zzp;t6f5rrJ3Sw>!-2Vygt|yr1zXHHh1~Fdro#4CePTYrk&0o*$)KIo z6)=YTe@^j0edlOW0y+xk)jlX%P>P0Pj8yCwNWb?W3S}9G`5M!4GOI^wn{l5S+W3tj zXSSxC+cEj0PfPst+P1LZ^D6~Tuc)zt6P5VFERj886Em>#FRF8?JBrBc=wKWFmkm+f z(C*2S)C`i8Yy$fm8FmVv#ptpBU4};3k}oUs7VoTz>^r%0B0L{^{`TPuzRhGk`ypD; z4|;}fOfF|vf2wVs_MeNpwL@K~x^9!aeaPm!qI{U3J#~D}VVr1k6PfFZ4Khf6gNF}Z zYavPvT%{^;QfN)B5S#!-1Vix?JbEG&zh6JTAXq*xdUz2M`E3ZXydIKsNN18=HCfMR zYYO5(!nh!Nuy#yhMG1R7`p+F=;trktXu25J@H^#PopG`6R~%s&9ety-etT~SG)6>i zi>QSblUjavSUrUTu$i(C>2*l^qM02FP(HiC=~!8-<4Z7V+&qdu^ZlJkE|5tl#?amE|qJnz$(vWc<`O zh(KD5D*4nSceZuyXn&1%?pFG8MNtY8dtm{_WHLvS^Y9XZsu?}TdXV~cY9R6=_9OUb zHca83*LKhS)zKqfy#O<{Ue$T7h&(wbmi(@6pV`dVtVN$w`(bOl8B%@4bGV!(^e>yu z*7mxw(I`9Gv~@nd8*vNA{2D`a)6*}tC1kZ+h0J4CYRMXPZzvp~@FZ8a?cRd+2@>u7 z(@Nqu`o0Tw)IYoWVJ{1~jBaOej?_rtH^SvfHS9f=H>?_F3>uuUB^m!R_8ga+~&IoHq#~qr_J39M4ouXZkj^LcqAFhpG4ps zL~8owg^R%by>O-Wgdi<%9gngh@aBsvK_6)f9AtA$pLgvi7dYs|{9zm&VN2NiOg^<5Hi3I?LZ0J1 zY?oS>gsiV>)=rOqwIOp}LmR@R@eVc`QrmN+8rs4FX{YN{G%%Wo1cs%O9|^@FNnr4U zWxh9$=_ZgC7X4pizeyMkaIca0c`=r#VVA5sf$1>GIP1lMHexY0krM+MSBW1=zR~9S z?lJz3sbTFt>hNACq@TYZhg5v+x$Dl9V<<+rfZ)Xb2t5048Y7snC-_QG(y=3Rk3gkx oZ^TZhDKS}3`~UA>j{Yq$=V$uOgYE6dDfq|U#@V{cYHjTQ06Oih7XSbN literal 0 HcmV?d00001 diff --git a/images/op-sgd/pr.png b/images/op-sgd/pr.png new file mode 100644 index 0000000000000000000000000000000000000000..e5ff9a65a03f0d118fe2195188c7969a9517eba1 GIT binary patch literal 18097 zcmbt+2{_dM+wQ0z744BysK^>6TXrqd*s||SrK~k%OZG%cq^#M=zE{Y;q!6-YEZLWA zGug>*&hr`l-}Aob{hxELbDis|$jp4d-_LeG&vW1R^^D+Y77Rm4}0U9Dh9Jd z7=xjx-Ax5QxvKh@3%-ch$!OcDS((^9x@~h0qj=lS`o5Ljee*k~9PZiJnp@%cd4+f{ zo;zh`XJ>6Idj9-_|9Athm5u3nj)`M;;39jhZ|K-!Fb8g=DKDyR~qi*pXuS)t?R{nO6?&RC2e&M|14#2wZX0H($_D07yGHx z9+Ev2oa4D5af*ZY%kC<(Lv;7txL!)p|3iC_%AA5x*K9J>#mznVpDXm;KZNQ=S1+-T z3kWZ>&FHt3uVe}t`yIkyJY=r@Qvwg>QGBhC0)q*?^8fO0)0G6-08JYk8~<#b0$lWc zp~#LbJ+1SC-X+{QrK(znkCRBN(|slPa)0KTwZ4mM|0gPIx3Kh1?L4zL@Ltj(I=ZAk zQ$3a&D|7XAb$c8hpKhk7bqRR>e7E3(ZuOm1dt09EJKW^BPqNX7K*}L_z?;lZIFM_U-tN9HX4a3uET(=^ATe zkyf;fjD5H4&uPDxHq0rw-nsFopaL#e`^!$0n3mplLg@Zms{JQ90%{YcdJ2f%^oGg< z<*rNB^hT++<4u<{hzhQA)$|OPtm9rWNu)>Oim~tjfr;lUHdJql&v{91tr%}E#FF;f zgh;QP>c#9ctMs5CbYw-cPJZgawTX;JCH%}aCC<2$N?=5qLxQWTtG+K@q_v5j+%M~& z^Wyn)Wp#D+=nfUNFaw8hT=66uX+hF;4P7Nd*eb@*amf3Wrlzyc0p^ZpZLN&xzQ1)j+C|fK!(hjiLw%~!2Mz4oH3Ab2N*u6UCurJIRaiDxMgq{& zGYI1{53yXo5m;)NGxj|^;pO>qZ50(2IRyoL^rQYX(#E*dX#aBAa=)5|MLK$OSC_Vd z+v=$9$Ga~`OTIO|=M0L~Vdz_yqK~FCO=Ddl*L+-ND6#%Km(W|3`|jO4eCcD`rI`UEBe&HgQj|9hJs~|KTlLBn zPkr7n-r|WfFe5n~g0TcxGkm%0x`6Ya-!`AG2Od6hWU1xqfz{Za`$7^MvtLG==kQQIbwTKCMnJoU-R$>L#OZUM`VbMBAY(R|9h zJZk>^E#F#O>=s&$$<^`LPMC$I$&}bNJ>#Q1x`}$YA{lxkmk-HG(djEIjt}}vbuzSa zI%bEyaA%HeE)R6Rzx`#gWMET?-?S;1^+8{;My%Uf+H}!)j2v;f-F9^}jGLcdO+-Y* z>CaD7bX|*uu}0s3faO@?oMUiIOg58*lUYZm&f4J91B;7oH;Gj==ka}y1`IOR3!Im6 zSk)jl#f@5OYU<#Kh;-NWKa)*jGx*2j(J9T6>k4WqO6^;l>w>0DCrL#G{Z1L^i79qc zO~9sBGdE9@T>W)qlW0VmFL)2Le-n)(yJT8a=K6I4Gik*KCYC#=Gvnb%O?&!uP?q+G zE4Tu^3ex6G^GX@lMTg(of>!)}*jJ#>Yo z&Sm!VuCc+-Pfcd}%S*k-acRw+Nzfu#gtW1+**sG;&UEC&2}?P7 zdG5{q%x)|3Z|+KN%w9G2j{{B#_prGLQ zv)t9W(ixt%x@*cI*R+`l?qu1SEg1Mcc55-kCic;M85ai!$Fh@?Q!(sQ#mWzOyn0YX zgl_g2923pez6b&HJH>XBs-q(8L3b}+yjagD1tV!pRY}-rc6A@mE*$o?anJtpY#;xg zJ$oo>muCj7&YU^3W6RHNxnv-`DOxPDs_F`fFQ?NICg@&wzNOYw#FJ;&3us$Be*E}> z4(8djXD2I2>lN*QHD#NBdSIdKD<7wPx?4I|bHexK%eHncqpYhw`&XF(JS_03Z_tEc z@9|uaeRZ-mm{YCZKj6d9`ym~4%*;6(8!ly}t@ZXTUUby=pS%;v2dJyRqRVPP$w{fw%Beh$;U zX}!I@7M+ISrKRG6xZV}Nfs~5{18yb19h@sa#9#FxR6f~BVc^#gc0R0=*xnL<^(?kx zYb~QA+aTlg)n^mm-mq+~uQZ&m;E<3o5Oes=(Yd+Xi@G?;gG%7hw0^$TfZ>}rZvc7K z;fAz_4y{=EefxF;p%6u_!|$&6-d_E)tgPxQ<-7Kud~NqGvY|6e*#IEFotRUR4Tmt* zp4dU?%!z%r_xL+Fq*_jmH>EaNu>^RIqE1nV->FN)&Rr)L{LMvl;EeC6*~=*Ic;VJw zrG)GLcvvOUg4lH7Rri%I%<9_Osri}1EqR}u3Au*4~!WnL+hz;X5#+WSsJ-t@siK?$%N>ij0(XJbd!aY5`iHQ{)A&-8tI(4*T)gJ-YW zcaVy=boPoXAQhpn45Z*b58s&@sHnIeD`q#LT((BYsIRa80SVtdzqvc>aN+K^gOA0TB>r?6j~a6G@GOx&5@ENZoZ|a;1-he0siI8%(iS(}A%uC1A3AiX z_*bAjD^^BEhR(1pOHUZ~zS-8sD#dsytaEpdMHiRS z>Cy$IES=ozdY|sUQFq8edsEP|BUp?CA(V@UCxo>R5a43X#2Z;A&POpbhO4@fO68A= zii&g#t#A8R=-rzxCi3Rr|EUVM$@v6_a(Zd!uKg3|-B(|dRv{0ZU>5$h@I(H5yQ7?| zu5Ltx(1Y}Q4WZ^gKi(tsmpMz*YeEK+T{LM;ZyyMz`xB^f`)^_ZB>yew{@k#Pwgl6}xT+K}Fc*~qJO_ajR$@$JN zEG#W`8d~!A@3*|LPhj@T~*ee2=csrezemn#u;-4NX ztw^B<=$!34Av7^S+A4r6Wbm)gOS|qFQ|B4HKNK0d4!NNE<9>*95JnY}aw-;o$g`b2 zTV2?PYb$(c+*V|3YCGV%93JbwB{En_$F2F+u*~UrLC=Fb#>R?(Lya&!M`uOYZ&DgT zVmJw7#ooAaK`Esz>QVpWF&MPK`trvp zA&m})^G33Vh&7g$5_6GJ%s~L|EMV2&yZ6|I%KN>Ae1nFDHg#v&xVY+B+1Vq*`As9B z;;O!JvBY6&K31zIZBP=zd~W!qhwsb>%FAB(`d(~pZAIf3hnj&+Sh&+YrgnsHdBDBG zydyLG#j96Bkim}mFuSGNaXD(ZkN3NiTv_TM7tV#$i@JGru9mqG9#`?@Q69f9Ll+>% z3L!+*DR+6CUrv8;uaI%NSq2o$yZQZ!{_mxvO$X2L_>$8Sz!^#rHKqgiVlY>H_^v}r zppv1PRXOR_ z!Vw7;I9!y-txC+kV;ADO$D3oNjOg{PpTxMW znPY!gxhQ@uqmW2M!b7>hK`PIHFkV-v>j@!j{y^FMX^*TZLeSF=r-5N`;yI( zvboay=AM*TeN0KTL(!&`Z2i=84jS3o=0{?`DV|LJ8ad>}j=|LL$*>NJj?Vh}^{a>R zix)5I8yebB9qmxkU=S1@o+iumII-W7d&!AzBrhZGD~oacE4nZz4ShoU?GSu}X|c;t z-SM>4pet|I69?_ioRWz-99qw$^6De;rYjFu;Osw`-8XO3;Vg{dOhDKPBt14Xj0p@3 zBy8BKHd&=xF;AU0_Vbl16V?2!a`}a9t*^X&W><#iuqs`!qq_EQmCtE8A;ARg595iJ z;#?fO?H>;3!2Q$Xx)Q1aKN4R>)5gGuxww`HQj|+aVm6-CJ+x4s-#n>vnHV%P{w=5~ zXfrsrq3Uhpb;lhTeA#QFRKFh*2sqepL7@w`(*)mtDW-Wd)dZh@@{OlE-v(l=_g$vOPF)q~drCjGYvwf^o zl3h+w@0F$7l}^aNQgmj|O^o#?>J00)T+^Gdy|@Ou)@LemVkDfY(%wBY&HY)w!=o)b znXgII-94u>^?lwu>0hlM0)J3n39e<%s$f4U}{cDHP zYzae~WriaM1lf0S7;&ptXDMp4woO>s{U_jM9BL9z^%)6DLrG22+0n0Jan6VI#-L`ZJ|&kxdetQdBDN4w@(q zZjHNdu}`#Bs<<9HBvf5^hHfN1w!(?Y$ZGx z)wN%OI&Z92GmUntIewJwNKKJj+u6+M;NU=^TwpQ3E|yu-i}`%iJV4pl*^5C|gfO}(?=r+0S3U97 zuf(@xp_J~GkLaNoB|jgox!_H`nh`-!RrPchnWUw8i8Czs1t%gh92rxnO-C86l6+ak zDN=U~QSCmx-`VTrpWW3R#*XP`-&JJ{tOdg#juV>}92=_C(mE$@+)jH%8!E?@UYx3H z-SvQuS43GuUQOfWotQO-jF&ry{H=FJ$)F1qvCxiZ$Ihz%HX2F$NHNTwe?h}IQ|;CS zSNq)W#KQq9FH+PWdoQ)k|H_k%+I>wU^9<9an7YnlS{>Y8^`G^>*gO2sh*K=RwB8xl zbcu!Km!F?<6hTt_xUu^0xflmcgKGK1>VhNFEBWj>ywh{(D{r-mY6+%KzSn;;NpoyW zX=|((OIq^H(!o^i^O(Jr`}3D?UIU%EmWy3qh5KrI^-Y4O*gccJ7qRj;#YU!oVUGUJ z(n;5)&8<(O?uwwi{mgnN#^P;z^-H<3{0NOl^V%u(CWPqHV#oKNOhj6T)!jCe)pj1y z%Z-yfgu}#9M4gNwSlZ8hoKr5z?o!m74((Gx@b34eYla4;_>q10Wzz4Qa!j(6 z(zwu(_O87;;AjZJ%r%?WP5hvs|3kuy6X#Vr6IYy8GuIHgJGfV-n}xOqlkqaPl-WRo zD5N1V(&T(cT>T+s#!Kdbh|$V7XEsMNV)sCVjGGq36Nbx=CTL0ZWN8U+Bzg|7nV(L# zg1Nvn*`#Fi#^CerCw<>|w{~1ieIS$1W;X_dKR!@7y%wRNIe=p9De1g6UhM529vQ?a zQ@9Y1x7zH)V9q@Wg-hJxgaU{MMdBS3p*s-mTmUifJ*`n8#I-f8^ZVJ+jSdd}>Kh0M z@iOY99fG{#pXWB$zL{{Zi<~S;Cf~uM(L^n8WTi0jLa*l&m={d_i~S=!$IxqWQPweh z4vK{9~r=-bJ|U}+vQ z!zX1n&?mpH?4oVsp@e}~HvXZ3H_0j8uYf`qgE?w_XXLx;abr(?#m0khLurw6dz{}J zh)T-@<`pm1nY=c0imt?1#jzaD`9KdBf^_9CweMIIze z82J|td~wI%g&TQKt<|_8?bfid`G_dk1la?w5D7G5q<|8%pJ=%ZgdSALP-VQMrlC2J zstcQgsg-x&K4)=K`U9wuPzVRY2?|#>`^g_NkY9>g4@!HFpV#?#O)XhL1=xg7xW05K z*L4~~dD?a!5O1jr*@?O3TFxiDn%Ap7@cU=3{rXgaC9tT)6YpLMxNo_D0zeGWGEAG@ zKpbV6^D<&fL!zQG-8R?Eq4G(2Fa@(KNN?-%3C~xhxI{}&Z#h!q4|JWFio!K7U;^@P ze|bioGufUICWPyqIKU4S5ER|0Y*_) zkOxrSGXiHHOn2(y z7%GeHi2}wod&_34Xu9*vgZiC_JX!ihssR#zw39j&qD3{JCf%xqn)1YZ5Q?h8Dn{A9 zcNFc>ZBWcLX}nv|6A~13#9Ex4T^7P(>TCosCzGf)dr;8FhD8)PWSjQ2jE^Qh?_yTJ zc5O9t%%QA#PQs;a>uA)``bOHLsnAxRKiH60Z%U%p&~ zF)j$}b2L`iq@%%9>U`_u(HQ3A;$5ODiXhPF0x1a<9TvzV#DU|>oF6rY^UH#a!N70g z$7=rT+Z)8qUgYOLi$&}KTDHlguykM@)`onT1s-$@Kkhn_TC6C>dg>e z#M#s#lZlpiQJ_GRZ^mZ-{(awms#^mn@IMDG_Cq!#E#C+v25V$vvJaEfjrBiMYQS#` znzfvgfEos}57?!l{1>n6FHt+G0gA!i)Zllp%cpA-y-;wzlf-f&v1z)L`z5SA_I_HdD$BwF;6!Fa(HB-#xjP ztI0rkc3?|&_4dV7GK!@CI-&03N4^_ndH%l;Q7Nytg^XIKdjAfIOJ;o+?GXfwlq<=e z+mQBIimvqeHgc5n9P4s}XVLcT8L}+e9+tG*`B{s+t?cN{y8(k`+T$jkpxno1^vpK4TH4oal9Fj`*)cVp}WQ(vWHI-v&qV*~;5068}nI&Dc z0io0Y0!M9%K)rH?A|U-qIwfZC_pd(%yUS?lx%>sxvF6wuB7;4$JDFcRZ)2}KR>^N38J#eM$h?R zFSiE8ma0Zz(0_qO1zL`^I3J(N&!0c(40CPAm3WNG^_c=>fdcpeaf2*c0UIZu6pPBs z!oo`=7EaDIrHWkutWVKi2zK=Il}9ntBA*Zn;-W67%O5{}v>U9XcwF|x$Y!cL-(Iyh z4HVDAhYte-biNK(zC8bwzZS+S30J5%IDCQ&n~+cWE-PGDw$&ft@*1e|Q9x^md@z zsh=VU5Cc|Vl!<%KD$g;C_GD1G+hLpVZ_Q$Z*vvnBQaS;-m~T(i>~mf2t8Z>zZjNCP zu}K6Gk|0HzE}7{-Y$M_fdkU;N>qEE&A#i~tHtlB#ds$;4OZ6l{?*cx3bgbWbraiY= zGGjc}yEDhj#JG5 zaEl>M{ZF@2H41fr|261@@m$eYcxxvg-TH@S*8wIxOcN`XQPfTu;tVm71CmgucL6i! zH4YBLh%G*;gI0+v8a;{_;|i#cmwE=aG~u-V$SUYh2T`Or8$1~hV-?)nO`=KvBOUo4`1Ef4pgV6r>1MY>K)Kk`K8Mrjz0T(rplsX~BnUoTO zY^kUZx9|AHYw$c78Eb%c&!0Om&V*9W@d@W!6mf#^S1^>s3bZT2YY!P2u`1(36}sM$ zFymY-ELXj~y|+L$Vr*jx5Pt_h>(F@!xw)N}e1l?EaZ-%yADyI>6k@M!vql)N0V~$X zbtwcgJw!{1@*ISrP{~_Ww4|xABmNge(hi^t&tn|~N50>n4 z?-CMFuGV>v2kzjt+EG+jAXljK;f^=e-eaeHzQhB;s{VKy*n~$l-W2emVZHd3w;IJs zR0o(cA@C!{e|GS5NDL4jzvjFg-oauCjt}V7a}j$T%lfI^ArPAGGAh9Hac3**zX9h* zXS*I;=O8U_ZjuEZ&ZH?S4OrOKSklk|cV*B)5dtC>-Cpw~Y!AkAYamHNYAqq(9)-6f z6irNI#r{B4%K^z1X{5V*Q0!bBmm(D@(LhEJf4av0j(|MJBgJ+LE=M@TQoW@h6){}A z`+RMQnDXn_U4Za}?YDlWJAOJ+@#1wZ4lWHAtt_qJG%Z*i^B;*XfU)GpqEkSYplXhp z$WdT!sR%_X@-?-fE%Js~u|=#9a9Obi5l*RMWBw(YE^K${m4EPM|LW5Mh-q9~l8;n1Jv&erwkcbTuaNBSMF;iK~z&?bPlbc%}l(sx@v#5nFq3vLE=TJq< zRA{SZrdRG(4E-ovK^X53`oJDqvylm-`+O z!8Bk~(zmsVN+f$3pUZ`5OQOO+!jlaY9eP%E$5^my;N!4goM;v0-Vb9BH5)kNcKRgF zqTOZz6w)+MKD%>G1Hdj~2b&LZ+YutR$UOqZ%SLhb5%`G55gy@qv9V-L9$}Di0-!WV zM%Ej2;}HO=rx3mfnU~=CbkFtJEYz{bP5{UTwN3856a%>f*fiR)w_za{wH?+eb2{~g znn3?pu4pfOIKs~hDX~}b#0asMHrR2)7T-X9t5~=?Fz!gbfvBf|-~&0N^sLG>Sg!l+K6VR8{mg2Vk+EFyK5Ixv>ujg= zo+e$||BE6P`vS?-j|N<|;H@ps53vvucwx-%-bKFwmUREm<7$FTwjzExN>xFSwQ3{xehygUKmk~cx?us4L#d$%G^ zR;NI{oUTd{d^P~cJ6?&L+#eDgj5k+7Cpg-yXip<9jbR^$P>mVvM4KZ0En|TCVq}X* ze#%b=h)0~CVy8>z5r)A**~azgcXA{yJr`4}#jl6qX~wY_+b-gEke@5>2L_1_-8 z)}UzSAm47W4s3<>AKwo@M1dT^#Ft;;LwPm+x!70XCRUU^GwfNS*sdg4aNG|nl#Rxk zqB8&vLA*^v6(5Wu!@loFk~|pyKouWcLy=@FkHg<6Ru*@!T&h_b$SE4 zHweWiCd|qpYYj0RnR65X-3=Aq7J&adHKF!JX`I=sl06oMoV>gpHU1|;LPN)-jvhJ` z4^#f2>wWwWB9rT)3Iv}CINcIcrnGc)oafJr(6pIetUxY=-AjAv-9$F);Jdh=6$)c;kTUY&hqW~|0b`T-azJrl1DQg zahIQN)Ry*te4+pj5(pBJU?iyWu+-<(s^lHRUN3QAG)}w9sC`7 zhP(?G?BzdP;e!a}b);{*jHD>XaRR*#6xMc$F2`ZD&9w<0t$(>ft`+@PKN;QP0&IQn zb&RBLz0K(r2KYp79PD)?lZY1Q##Zj98J{KBc@#LH;AFO0z1jR;TBwxfB2H-?d5-Ey zi|@j8`qX9lI5JsRqyOfR@B5I=lNOPthoN4S_WybR(`$q6($k`v@txiUGR>D2rTr~n zyJ*IdZy(}CIJ%cy+j7SjZx^w6x$lTvIM}mIE?86-yf(W0{4Wuhe|TzMkuqhQ;Ild; z)j?KU2WMc_;GAkxka-7casjGp_Mep4VPa^#>2_UP9vW$!sf@6B@T&*8N`8;|%VrL^ z#e-_6@H#_edp4>&dG7hCYY*?U5oF(f{z66vQgeLXHba8^ z$=H`XKaH*~HR_Vv%!Uh(a4q?1GzYDU_Qe04w2nLa@dba!9MLn>BaZlO;7Thfckc9s zXim3Mob;9&!tA-vo!d-u=peJQ0+}Q5Jn}DA!GlaQB#{%D_q0Myki3OfA@r(L1@@j? z)KgwtFHYKKC@$x{B(tKY$;&D~XD=V(gepW*Sm%PJNX$BQvx=J zC2*brA*KS>DiB&VM^~Y^-MaMqkWJTvz$+=1T(JHB5AS9Z|V+ z=T7C^*RR*0*3%+NOjnTH@-5oAPMwNA2bPzI4)_Nj0|?t3kdJFhs&v)hIRKu_@p7)J15L9(CeHvrR&3Y2^`e#cp`s6^H+ zz-0lqi~WJzHc;jA0Fezoo2?Hbkc6v3ob~)80j0g3j95LS1Cya#{NR;B$tv=>LJ3jq zFqICsUf*?m=4Y<#p+oEpZ^00p0x8EPWN-%@W5F(hY|8s|L@}7xw6>+AW5=@wDc99{#`vO^vkjn#E5pdwwSEMe$9Vxd7N^kN{y~)qZxvgK^Mj6a4 zPM8@NGN>W;EjrTpEcsO$Yq9#`r1_T!vnzLO@CbiL0+i<9pT}h@nj}(Dh#v?%vezq8 z4Ji(gM1y;4w*zNt667a{E>KG0?@EGf^2>i@!;CcZAWcOEIhGj$NhR-4Vt~9QZIg+V zr~Hl?tLy7$f}P9)Y?JUe`plV$$CMt=4v+Y$-^M;{L9}#KVqu{+B(5OA_`Z6z-$5jm zvY>|tDsAwHV}bgHnuFQ_i?Qyo7MoIagM9MBTyr<|Y|iFvO)N9!AKCA7m#aTdhYlA& z#7sRh4JU`Za)fKC_d#;{@Ej~%4JNsD@MqF49SllNi>-VNNU-5WY{7vc z#*#KnvxpLX<2x`_FLOqdJt(SExxt?SB1sDXW=_dWIdTi?ez+r3DFWtEWDw>p`F&CG z?S;#bcC`bYVKnKCo?o}r@q?lBl%T|H<<4SoVI!6nawJ3Gur#2F;Vc%lv#=?=J!m}z zHKHK6xJV0-^CE*I0tPS#Ao(R#E5{JASv#}EK+-t5-v_ydu&O|TvfYfy1h)`sUIAx$ z3)FlT?g>!4oau)6r}p`3Bp;iZs}Ig+)34*_!;-$W(J&(}h?&A#kRXR7a?zLQ!2^QU z6bBDg-fIa20?dwJI#{=KA|zdlp{irWA_^nureqp>jAIqaAdE*Z8Mvvmo3WCCiGUzP zn2a{a%Aq5M8yQszVCIC8TLSNpeLeO7CRGYZ{N2K*r?p?m(kmJr32xq+ZnYyB1xH+{ z;eayRvLmwZDuYRwniR9DpT+y&!N;0TY!6PW>qWLA2*tfubNcK2&+r0NLm#nz0XKZ2}_1KLvWe z*2br2%Ga||3rS$$VTgeHm?ibWK4)Dif-LhuJ1v2CSsuK$EgP!~87|Gm{Xg>o+bNnO zg{`uYDmXV>O=wFAaG2^<*8@1qQRaf&&)VVhdQ?N_(hWM8~6S33)=8%JBG6HU-FW zT$jz9S|m%@kYfw>IXVLx8JfO+=Sa2ApDF1%V1ENo*aC%%0AM_+E7TV?z0~uGNP?Sn z)KeKwWzhme$a=;Te0RLSsV_ANZ5wTYXXWu=JhY$g)d{p)oKX2W<$wrv2j{^}Gkj{R zIdKO@APOM-w)C7ic<*GySf0+OPC7;cPo59_2>3}2y+4nsgI>@ERAB-#r2nvec7Qn> zH7-Gik#kX}A76cAV~Bdkj$C(=8_5#L^a1FS$S0s}t^sau2tbx~foB=uu}Jw~T2zO3 zfCpO{PT)=^BrkTX@5C@X6T3zQf=|;Oa19p2b_sd&M#X%&?e*!aXuL3w3TVcm_DMr< zgH{L_F2vW$ah;IQwHcK|@+NAanJ!<)F-p1=>e_>NiYPvGdXel4GVH1mbO@CJml%&M z+(4rK$Tlchgp-TfTDY~c#Ydb0o5X-|pw=Fz`i!U_)C6NyI(OYW2U>bi{Dqc?4shco zK-Yr-7$Q;KZV!vgEm4-)FpUgL5YGi{e%%0PY&v8#Tjs;%qfACeyt|PK30SU~ug58Wc~!22_I@n_Gee1V{_WD|yfagm_12FT%rziHS!C z++@ls88Voi z#cs#4wGn1gDyLd7lT=`q1%XFvb2C&7wSsad{`CD%MjZdX zw6C%RZR((PIV(`yT25~NQ-`W727BiI|0?L$H#KF?M*RN$n;|;(KM74ZUl5v3*UhVa zPJtFJXv!cNLr>9XUSK`(332;5aA2KU6wW%AmS&dzP zcC1x`5+l7byV;-Jq&yV&>_kdiT5vG!y?gh};VcB!Q_-5jwM=NOjd-K{$; zvDk9eY4FJ|e71oYqQu$_N7&AsxdJvmT$u}fEc6*}eKE)Mjz9bCiaQ2hzLepPEj^6A z*?DK=$f7+i(@W5ffoi$vwsq_Y_%dXjbK*KjuW3UwO5RNAs}vc50)tkb-EX74i)*(p z0av=zOMG^SdO7?*XNUjp=;2%boi1AeHhn_ZhXllN0A$0U)1Pqdvl1+72DV2zR?-y@ zK7D8`x&|3W%BJn*@Q5wYQ;O}UicyzTfWF(O{=jh!dLog*0V*ju2=X)F$28AD-L)ufDbnXfK>!@s z>C2+`lpjEDAPBDTQlP)az-=#xq5;sG!q5;%7ej&$D29?gT#U;+b^&_+!ofoE4dj3Y zkavZxM~9MputdOiB0*DR@kXKy|G20_p z)(kvp zjN|Yg9_T2xs@VJlhs@L9)xDE|E|Ayc9zCZW2P7zE$w_&r-;t*Q5|u>2&3%lb>LAy} z0rSiJ`^UL^P-7sc0rW^yLh}>Ws%$A#Gh08cmdW{CS5o}`78^B1Xdemc!)YNK_Z--` z^Pv~L$`VQS2@5JE>%aM-VOL`A>k%aJ*wvj4!<&ZR&Vi!~vJoD-*U@1_&5ztzUq3&j z58DB=-(l5yJ5|U%7W#TPAx@X{O-ucW9N4%HE(RcgL)#`ZJ0rfRz!E}?wSxkN2>mWW ztSIRN&s6cqE3rkm8P^$4_w`P1n3<6zRWd^nf?J8~Dacl_&7AOG$RR~S`+ z+se=`cgNsFNE;42PcD`mNuB?LbX7T~mnz{@umi|{4_%3?I1xnM2`dh_P9`YZxFx8WD;er=Ni zplb`GmKmv6Cq)it<{Ug~;S_tb`hFTAZPFFoUIFI4g&&Sfxt0C|PWv&aaf;AfwF+(i z|9UU~#fu8C-%($V3G`>0Z>=`FN6?%vZP|PLBCEF1>2t7qzTWRI{fYkGxCn`%5R?Ey zQk#oGd^K+&rFa`@RsPex+=^=j6^`g3`Jopx+0*A81fnL?)`OaGV0t2v%DL4E9bBkQ zc1M#tB$SHa81aWupgw1vBAa_VwNA!Z*u*wVkz82PdRbUl5{76F@C$CPyIcg@Az+U? z^kgSP!c;SA6E5_i`z>s!USJD_tlNiD*p`bD6TgZB)iVYy*#gjn&&J7F=f^140YV_j ze5LBkH&hxAk*r*o9e{>s6BNwv6@(^og!iziYLIZ#Ps}@hbsd~a@Aq%h-v2JP{r5x@ zdS7^a8M@v~gnV;mQMBe}o&Mac016Jqz^-px@Jgd={+G|Kz#`%?#WS zf+5?rfIU=Aq6sP0%*jS*I!`>2Y?y7QU#$X1Id2S z<`1=^@AKy^(6^KWA+Yf+-&JOp*(Z>xabiJr@<)OY><|@5xFW=HyIB89QmO*v?-_CsL&0l(nl9l6^A z{5|jr3^EM{Nm`H+x05z2NLmoF zEe1}md+Qk?pp!S5{UzwvdF(j3k?c zkmqyy{h$BqdA-iu~c8J^ez1*GMyqq0T96olQj~v}xB}A@^TovMQ@bYqhBqJ*7 z^8dd<#Le@8DE|*86#NnrcMa1=2n5xA?0-1LH;Wt*i03u8RFw?td<&wERTW~Z@WqP875JS7$o_!_@Q zO;Z#(6k-3c^S=5Q*B=!Hr2>M7@^kF+d@@%BwqB-~HW>!q%sw^z-s-W`-I{h`w`Da$ z`Wq@%+(D8#PAz}bi+amPN-=-*-(S_p=&|2(kYtTy;Q#l}4l^mvv3{X#D}(e~4;79xyoXPa(PmZTEaYfgUc+Dro9OOV^sXnBo`=w0z_{Pju8`gtz zn1iHC!Pp;x+lM&>F@;x_J#Sd}OxgXprHcL7+e-iMwaa&@-~6Mmny>%v_t%HgE6E1b zacbg{l23<&f7ccpm%hvRG0^(wXKD3z+X)vv>9@wE_z!fta{6~ycYD|qmJ)8>^RGDj zJ)JNiB`JxIXxyk7SnzCum-|{ls*KZlLFzry)PacAtN_aMlPBkHJhUX_6cpbCt&T~V zY$n@+WarNR9&)oK*m!x--?j8Mn%yn9L&9hkC>{?t2X9v8qItKUx!omyI3uxbF*Y`K z)T^!#<|h~5)}~Nq-az@}WO^R^X=Asg##4g6r#;vSr3ysg;o%VzhD-k}&Uc@7X}HmR z9j2ebvQ#wx6gbU3-+%HwiF}lHfbf?RFH#;4R zGQW&m%kb#FSUm33xYsY}F(}@%@X+dnxuWSi^Sf2~?aq4vn-Ok-OP8c~I`DRyGyA+xLgkula3M_xLrLl|MUd-3~fB9)1$< zz5eCf-hgP&$4uF3*V$%&7yrFJJ`Z@?;#yI5H)Golfra)a)wL(;M@PHL_fQ5DG^{L0O|!Ic%SqwUXl<(HJ80rR={*wO!c43mdK znDEo1D%<`D%>P{or@D&RkjOqJpZA&Z=&4?cmvx;xo+vl(`914v_1E9YDF(+n)xtBn z{P+B$VR>@Ibe$vJyiecdR58RxQuZm&ym5))XerOXcw^NBa3LUx8hDN(cM=6q)_;p@-Ht)|tih#yGWFM{OCnzxYuskB)f@S`)VKg=YrsuS^XQ@+P zot2=Q>7&Alb6aa=B^42Sp!=-1zZ~1qSumodoJT@JqS#OXyWn;v+W)4cw(NhD{kDI+ z6RjH<=Ju#%)}%c+$Wqqc-roIi)_3X2-{JFUFPS*Y7N7eQ6_&5Evbxi+J={5LKWD9M z{cSc@X_arPIeFH8x$KYd*^_BmhtN+p_~A-yRLZ{&4{dyWeC|z!Q_48Zy@k&@@H<{f zH6NEVFSBT>*?Pp4s3^wNRbw~s-6geh9d{Vx%vAy z^PkQeTEiP=DMln26MDuz|ADDwve|!&R%#eh^QKUnxcqkW`)jvuY)#34VQu`8hZd8Q zBTwiF7p!Q+6@9l8w&e5K=^CQr!OauXGSgZ$Q#FQb%yHcp|C}4!JZ0e5dewe@w!Qxr zHvFSNAIhrfKY5;1t#Gm4*_I-A$EH`4tG7%Cy~de zTYS4Nl>xKsJA)F#*07e{ptSsb)_%Go>g_$Mn61rgKJ7r)+s|cY#1^=tq=l<&JGR_WD@M|wgG9z)kAtlizIvrlGL{n8SGHf)Y2o}ArGn_uhwpdjyHf4!|;+0M4@*CXpbc|Y$%opH+{=%@W&R{Jq*db9i5ghhB?-!1G%9&P!yqgMt}_piG7eYmu< z#D30%t@+oTCquAz#CP+U1iDZ5kk-TVaQ0IKEKCK3{j}j6LxFFwC`}DR_eK+f>6ez4 zj{Y9DC)_;!MrBg(biuXl*xvbTT}eebTLKYwp}ThyFfL&Cz>KSuj{Je4g=gPoKbX~c zYq8#e3bT4r=%B$7q05bb6egY88C(WV`)l+d;Y8x7zG8=a$!F;xmue%cT!K8|<#$Jiq7$ z?P+?J1-g&vryor8Loax;hbMw6j7uB0n%AildOW&l)ay!&u<(Ji4y|6xbL0GUKXG_f z{QC80sOl&ynAOJfzbCr~l}}i6^@?YQpp2(qPGI0qzuea{f98s<^NrAb_4(=D7ea{^ zo7XEo_^)P8Y!x~J5FvDlS8DqEXMMNaEr<*T%Wv%U+|%`n7D{#YAg`8mfC9~kSvLns zt?;*)oYO_d_Ks&1m)xOTFH}A`6P){1D244mG6dCX`QoaFmzak><+?B=+r-}>bPHNH z--T|-*s-N*da_YV^%3@5;5RZW2lXUL=G&3^Clqn^Ya=h2lJAr}EjMpKEp^8QzJ@jM zbG$TV3J;CpiotN5YYX0^q@?swjq#4Nzw(|*MJBU5=7QjYPs1G3dfhz2Yd&|>i&^JS z+*{&gsFb;8Vqpz>TrN&+DP(iH!DhSl(Dm3q#j3V6ql~=3_p7G$fU{B?vnZE$AJp$e@;%srKO`nLvgxL;`q2Y zey#T!Ekqh;UH#U*U^#mn{k0>&z@1EF$=qXdgaE6L-yYe9{acM`LFGF zbRhayuEH3=dthzCSAi7Ln~aus%Z-;d%Z*FT2;8N-|P+2Y;P^yGvz zq!En^oSh2?kG~zBtani(f`gkZS3H}xg4Oc%lLzd?y7fv7_4w(bU_T$SPt@iWzi}ga zYHF&vS@K{+-m2_erRa>%dd3%4`)^dyyu*MHTl;(hcY++P@2ofDym9Hc`-G+MeP`!E zANe<(UnpleoE@IORc2E}mJ(N~2S(vO?LxE`zdO2Hp;cipr+yIC(_|s?^uv9a(xbpO z8Jv}a$27$FKZR}zhxM2TcN_# z#DjF#^NciBu5u^Z*dp~!UohacwC~^h@8a1rwfr^8ue^F6rI*M7S$=~O*A0tw?)1CV z61H+PA|5=GQ~YICw0U?!Lm3ILrjoDQhxc7f;3qL}**=^g;Xzmk!B`&!DkN)O4j!U!&!hcMpj1FMw) zURBTR)}F_Yepie$EC)l_nn+bj|16&9{{-kieMefnL5D99Ot0PQKP zlY=w@x52g7n1c2$w7DjW_=aqT-A7Fp{0wM*dQxwkj^%r(*delbo=$?#WSmpwJYy8Q zn$Tg!(7&E4IwtGT@(6VO9_7&8MmCT)iNW4x?>+hRrx6)Kc#oFd>z$l%nh+%hMFaP$ zyID|Uo0xkMna6)6bztU`;wq;SY-yTk)sgx61lSOo1-RM6JrDMKw>UlTCQiP1aEbu* zsmejU@P!BVj&d#ncCAyr8KZ?DDF>~Gn#bigQ@60q&NQ&uEJrA!$UNp6O%Wp<3{AC3 zELCHuB0?dXs@jCS-i%_+E1l>?OlS?yb;FAEK!xFQ2FX`w@r!wvF4L28vL!qk=pGy- zzxm+$YotPU<$%0$Ug*UNBiA1r%=>&bY9ZpEoP;`6V8u?G)uz0FTVM-H0kBy+W;v`(|$HwL6cOT zI2|R#W$Ud`GBl*xBYqsh=}?ZM3N?#C-Qu<}e!Qe_eJ31HZjjtu&{Gb8p`$ z|6JJB0YY3H;N%ME2Pjlni#_5qMVDmIOAGGc_H3feegj|RK$!G++E>Lii-+~h_75Jw zq*S3Wq*y*9r&1~>OFT(Oh4-1L9{P=SpB8-~2EfM8 zhgbb)xjgSN?6#iDQrp}v&Tw$lA6*mYCp#`b{B#}#wa^k)pw}Ma6S)Hi&BWK-YYzOb z0M7C)L~Ni$golSiYt!IOf-WrAXDX7q6~?H_9)6lVoS3(Tn^%=P~jV)eES|R0aQF4v$SIeuZNOSNrW;E9UUE1s-!*y0yaM* z#bUCRc)4seq1kS#1u_pE-cLnI$;CpMZ(PbrPnrt|fdS2#Jq$$gC7NBoIBMdKKuY8E zGkkJ_KiKxGdHLSN#)k7OZuIBi6a-E9!-18n4LeaUd5o?~rD)KUBmb=nc1uycWu*~^ zFY0`xw56{|Jhw-zbzE6UH3@uLL{EdCSSr4eRzz1Y+|YmRa4o0a343Aq%Y=CsA^_dp zWWW3ZuVcx&>#3vUqo}XCTO7@<9$&PjS=0*de8Xw~=KhL|nO0a$oD=nqJgA4~PS@n6 z-K>Gmsyu6&0pC)MH3pmt(5dXb>J_W$=u3VU%NFdvrRAefp$p1%qd%r0-LvAKDtNsm0n09K5f0gr%x-myF)S%u$p= ztRw65h9r}L*cDUtuBjWS_Y$-s%Qc+(h|jt`1iu?yyHbL$lq*myr)d*@b7z7of3GrC z_e7YU6rkJ;O64Vy$4e?xGk!7SL1sb1uP>psXxG6Tp@Oe@F@xjHeI?NW0dcOi_eeczErlhTqxS%u;X1q~4JJ2uT0(T}H`Qsfj{b(u9S zF*p^Hx6^U0ZfQI}Ax0Dy75N9j8{zG_dQm;IBL|7zB$G*#akTxT&K#piLl{NUh@X3J zU<<-hvb~xnQ+iwUJ96#6`F1E}uSUmlF-{@dwuh9~XHRvMm33s)PP%4zm(vsXvk(VY z)-n4p4sa)JMsvZe!N0f$ zNLf`%Hm_`xmXjp++5X&$l&+1Oxs|+Sm63is5B(G^trD%8`D%n>vh`MfxSlL-ToO>nbAx60a4qT!?f3>G?REMACET8+UH4QS z4r)a?w$*A;m_HZ-kXT_(+*@W(CB_BKJeMPmyN($3t@RYEq-`R*VjY5VV{0YR(G_Vk z@?MsiMw5OzddJ2TKRSnArE{Dlx{MSbFn1=${)wrK??vV1z&-H{x{~B6;iIp z|GE6|1CxqK>TAX-fo@;DOC`ddymxE5o-c5Q;%?BmEtXxb>3)uhxcW2ZhKWX9)N|?l z03-v`4FeZG?(;27`$H}YuZAO@k~X0Yw^(9qa`#^_38rWUX6EbM{>p2vJQzH0e^Q48 zG2BZ)o?B1#alwZRMI)ac&@v}Kcv^-hITCYg%3+5w+hL{L-6M3bNCg~J45p!sf)Tf3S^=WdNT|?|#)XX!XNov)Pzku-mLhU&brG=|^ zw)hK`-ly`OphIqg%G9{`k8)^3>odChSXF%UKR*1J{>NM=-&#g7+;2_2QliElhyJm( zLur$k>NseYOS_Mevo+te4b3?sLj>mVYDLX&s|%zkSDP$fv_ndn`qpoupmgWSiJq6vg?P*7`&O|$sBXVcHUoaZ~#!hD9J6cu?Z z1PH5FVoc;=;@ymD^aS{qQ_1jg`BOB#J-EH(X2~Awi_kYyEidM}K!r-tEO50q;6q6% zT3j9pxK?G6Kl+O@bNb|~;)Zh^u3gK;-8D;XTQ%LYWX7j=z9t<}FX@CFi_kSp#{qi+ zsbyA#o=J=06@a*j)7&n5s4VaThzHyVTVf)jUd9G0B-|;%ubdd5D~+yo=(?!B{FMeT z4D*nhfP$nD*cYh%unF2^B!r`g|J9}b-gbiYw}VVe9@h~+p$R^W5mL;Qj+*u!kD9PG z1`s~#MQiDzl(_%6mkW9Aq`;iIGJ?=mJe1i~u6GkJM6^x4GfT16k9!?~NzuFLnfbgo zM+V_8r~#9BHBFVD9@mB(E)U8k_%BjETQkwXpbZ5sY#HY^Cb&xvB1tl{arH|w_pU{S zmgNzIFS_z0zAWwLR8}UC2|G!dDt1XT?aExKK)$=1mvT$Hgq@ra`2V_)?B@G5x5=`= zhO?Vc6bjU#y>$F-=JpxzCPgWhNz12}Q7^_ahLzDQCR@_-FQ&`ht7HURIo;s4%0Q=i zsPly>M*a!|y4Swe!sPk-hwa0B6CqS!APXR9s9C^lFsSMZ`9)_QT2mgeE|<>=wEUid zBuzE^K{ta6t&L+Izy_Te;;F!>tmZPYHM1eS!&L7z0B-1vUZ7BHsW z_-YeMXgVej3KxZdPgm6FZf5-HvWS^{7kRbq1lgY zMK?&dRM;Rko=Hsmebl1PvL7R@Y92KWU90eQ`}W&>9!5F@>Qbk=*g;de+mpl8#siom7zRt5kKPy@|%pk0#bx-zVIHppD#5M_{Ca%PJx8FvbNMo}f(aXnLq8(x46 z_4s#^Pw8#A3O|UZ4uIrA9Qna}leXL-FDG%^zv%w2>6C_n+MvOowVr8ClFUP>PvZ>q zG@~0X*Hm&Z+5aBlxP@0Pm#-e1is)b*9k9LX-C1mVjhg6{wU|lj@%Z*3e8h+K1K6|o zVNWL|C217g0e%YV3h+92V0S5+J11xG)uNG}lmK2^KW`P>@xJJe)K}tC_gaclR%9Sw zyf&tNDSJ55`8qmK!Ahz&`XgUqKOYX!M%n>S44nrnXAGJ~Vz=M)fhMK_HO#XWdqvWy>3@)I>*qT&!vMd^oe$5^YEXt#zok2q;3zRWj>`0qSY)82p-hdL3my{?a6sL_ge$l6b8uMWdutoxH88 z8h@V_FBbF2C;b9)<+1+kgRdfPNtU^bTF@V4A}Sd9x!&l!oz51(j&OxQ^bcAPtfCbJ50nE-U4CB)R{27S!`*G!cuUVcBRS#vZ_^YFLYOXiU=KaV&QQf4QIHS2MyG3t!sAngiJkXbI z0FbxE>YY@2Y9x@EP5uV>>&Q zu=EN|(UhXfNI^m?K3ySQZz|W|$G$d`jL^yY^X?TBfgiekUoCk1jj5YYxFc9N_SHXx zroHis?cX3~x0Co%DG+QNnhX@ob&g^Tv%HcTX!`&eowv-ukQD;>UJn6bf%?VG9QS_3 z)8m`c`ZvUagniAFP-Rkl0p@pcAePo&!?n)Rdu^{GItXGKI~Gy*=^y0PWEES;TzxZj!z(s(!4s=H zXg_`*hGGzNSdFe4D>R4+k7IHs&G~qnv!Yuo>{%JX;`_&Y+HA~SeFuqswhNw{eN;6t zYHjgD6_zc)DZ$Y@YL)`8&+pf$y12aj(C}>rCeKb)uEgdA6XiPNkr3U@z2iWr48R`W z4aJHt?;kfm~2d?S5SHLA(D`1WVEnlB^AcBwC?4#)X*5~OOf zn4-N)A8)w+tGoZL3-gEg+uxSWbSb)BL|=*2#)z~yfe?^Wr@=vx9wT@Xb8CbjAxRtU z-k=ShAIKrPPt|%x>b`;IuFBOZObQSd`a-95l@56#x@-H;2E4`@Qsu=6YP#aY0)7@s z?nDjuP6=Q{qK=nrTE;fU>K=^tD}xvgs|c~+A>pumQ~bWDni`sUv>XT=qsAT^TPI>UEbK zTaA%Monq7$3qnphnUJwYF3P~+Q4@>r$w-H;F+GSYjCef0L)d#C`M!VrywA3A1!(** z9T`9{D!;n;_({U%LZ^CCsEW{svW79BPztMRWCKYBC~I{XxtBU3X_M}+a%|rFUNsE; zRVyzVpBOV3Wl)9;RTdFB4sgQwindAp31ZGPSD4c0??YJ2X1C|& zUz%))4P0s`Ely2LmA#+u_)6#YQn@O*l{ZS3s8s=>uGn-3TJQPy~zx<5h5NfMicOzntJ}j@M9pKFN`&(%G@- z)SvuCAx-=J>ORzIkX1U?5BB&RXsH*KqZc>$JjwJss{FEHl-Y?_6iu4jQF3vb)I#0c z>fWwKBV~ypHGj@zn?#Bxrf>aERZnN;Ir*d|3L-sA>D|ij)1Y6+-}uf14lx0u%5H!G z1pHkcLWFVUJqp0Y5FOAnb*nZ}6-ap#fHUO(VpEloDnw=iUr)4qc}f=FR2WqaCQ=jz z^<#S*%ewyj`2%g`*h~_Z^r}eiU?n|^8K_FXEIgk?k^N58b8qrlwFFQoCq*XAukrGd zXA|PUARl9j^r94R*D5hozW#azjrce;6e|AAPwwM>`SZrSW{}yLY@krhloN!Yc|4y) zOZce{kjz>MsJvv*e^tjth#{4z-dt`dt@*DQe;9>6Fg~~x;sK7FgG_cIY4Yx_2co05 zS7Y`!gf-gS;LgGG_C9I7CrU_2=yx#<>-9&ghPD5mdcbaXqv-Er>)^;45){%)97L{M zL$wS6tqCPlgYZrcDxHGC(&YX&(5_%2U`E&yux)_>?U71}Xp?c5WJZFXtej^e#FaX* z%S1z3N1&HFc-u=VdXpPXO_2Yh#s2YQW&liBOS;;ohZ67r%F~n9z`y`#5!98X+Q+>s zOFk{&XyAm934x4M`9h~?-9nP9t}(~Y4O1VeijI{lo{q+=-nSf>FCF#az8g2yv{{E4 z#GUFrPc|?ccSHO>p@ahG?}d?Ein}BQh%&zYt=s&)2CHktG19y1zA>fhl*tzeqFExj zsCapFLT0zn&`H6u@8s+LR5!l& z1Tv|Ry=u%zYvSp7!*kWJ)QBhP7BGL;M3`Ox=^#Jv_{lM`usj7{4`ffO{({CdfI!fz z_jB$ww}DH#YaxQ_5HodiNU@=5t~8`FH8o@)J8t+?jMS|gjN;Py>+E%}$FUDA`a}CyVR*fJj07$W4i4@t+2MwU zcrrvdY5sS?^H^uYVMR$PgM_=8txHLD(2sN@3-baxrDs#)0p6s|1rSgHw|YzXf_?aD zO)~qM%2tAfNTebMFn2=h!$W<66fp^j59Lg@eH>(@rVqN-+UcL*hE#4FfMW_FhrjeS z@AUHOLqkKGo!?5oay+aCymf5w?4PL!V%rWRoKVir ziA>%P@} z#P3FvuC=cJDQ+!Uy|OzYpKKRPc#$JMtAB#+jAP zL(lCQS=ZqBQrB&p&pP8iwKjI>#D2`@vhz&L7PdY4E=-2K=(F8{XvhArXzMRpwtx+B zK!DaO{V7Mkif+bL25ml+{*e=21;em}P2@q(4mHrZL4eqKCiME2tzxqvu{g0kX;?Z7G&ZvTNFztpa8L6HdlE$ERtm775d!q?k^u@32Ama)6>C@}I zG||k}{gQ&J?p@N<@QUi2{QmuW<7KehxM-uXK^Ksf46WQ>xddR>W`S&(FiXcAh)qNFXYfFWa(SJ&rlz+(~0 zp?rLxfB`;~J0~V#>JL)xd2sb2)T}%#S5XG}7~a)qOS|jG0^$Q`JKmdR;6d!XMCtaP z>NMSX|4mF+pDM@or^GCo=9n&;z_`>1Za(Wn#GTosDq4xDPlAaWI{^}sl3l{LYpzA~ zM?Hy~ll3@x70tly8>{(l64P7n$RNd?{fN^wOXuhR)(L7>%uEYfXcp}(ag)mBSeZXM z%@m-1g7^TsG*osbHn#4C1&(Y1ZBrvmj$T+H(O4UxOhW+zfOvp4%NcnTdxb%q)hivR z2JinusC^G~Y7ue=LaN(W2s`dF=#$acduaJ6M*7^ z-2&xW1xx~wRIJsR5Y4GYUf&7~ikkSJuu{IeyW4yr&5`%T4>oSHXsChkEOw^rZb6I)AXKiw?Lt+{kP$SgI9!9MX)I(G zw`y|Ny6O_jr~zOAA$^c_SΜMW+ZjL7WB;E)Y}Dh-{1Ao2(BnLhx;xrR}Z*P{hg1qlc zKgRXt%HR6;8iU1QHb!=_Uq>9z`5+PCi#2FJn-1VTePeL1Sl3EUS1`wCpk#uCS#0HO zk@;$@_}2SeuU}_pXE5^?dO$59HK8D8;7k<#3Y6h+695>XRf9hY2`MOH;9Q77;>Sej z8T6o%k}FwwNP2d!_O2WY0A}!A5cx#>_={6u3~sZ%DZNv|0ZR`QHXu%Nx7%Uq-mvJ6 zAjlC>GMC9z<4Oc)erfIS;&i6}b)d292aA1t*~>0T<#)M^JB!rXg;O}L)A9LW!u4f0 zUeYw6{jHX-M{UOizs3siy}<>@p$ z@}eU|7>Rm5fqpZ+2;%QYmAtqxk1L~>2nL!hT8b`=<%RI{YfM5i6ow2sK7{Q*mybJv z<|H@$1oYo88qG5uUzC(}qn z@hh3AZevs3uHT=6nTb_$sR05r(n<0c-MQj=A7I$bPsNg-j;$;;HBe>RG&nGgdIAA4 zeK{PKHO^7~+7N26I(eo_dfArS16j>mClBqx+ByVH;_;R?Gqr!!^9Fz*5o!MKJpb&? z{r#lIJR2MkcsO4Vd3x~uEqIIMqKQpN*gxUbabsvFN+CeTyVUHnP9qPdjS0dojbGW8 zLdVfOxjW?00?M$Y@&p;Z^6#QjnY%_rqT6n2vgzag1J!(s3(8;cm<=N%Bi9+223Pmx z)ImUB;40ALUjVsF1&}DDPAU`d0l6>Y(Pt(QZbL?>n`wAa6Q?oRH=+xx{g?dg8&^R+ z#ZQpF6lp&bg;PbZ&h^~}n*6&U+rHh$t$|Kgqc1y&l8Dtz0?D2ep*2VN)m*1FggT1_ zS4M{2i`nRnX7i4grE%Sy|1NF`8XT`^nLXTnzboh1V;SAF@?Pyq9QDh-og+;;Pi zp!siR?}Xyup2dLD4vY7_i>T#_JFNKvm7r@46|NJ+B$`?t*us3R4{mz>E?2Izh`OQ0 zWaF)r!^5S@NI=kgr*Hy`C$0dP1OlH2P+GBoiH=rQBo$qWD<>`8J23&ef)em6n2pf- zUs--7 zW4=p(yd(@b0dbXI?gBJ zMOpw>Cp1IC;!0u9(vz=$BV!`?uph-eoJ<|AisLRA;e@n-EE9-pSTEy_I6*aU(ygsG zrf;1uT9H4mp2aDRR>g&Jggg*{ebD%^?GUm~;7LFNVQue<{blAjl)L+LbMa@9k>awl z1H$r>!X~F84l&}0HfC`WPP1^nOr8BDhiCd=W16}+eif^FP^cr#@_jLG(OshhC*aFY zuFE1SJdcUzklL=cAV6g9f%1xsxTh#{(6Bw%)P|o&3+sB0zQ2*Vp-XK5aGrceLI?sN z9zLq;&v4<3S5#0Jl(iiXQA{(xr5c6vAF8D(xPbp|J8`DV-V_XsPY$F(qL9* z=J#0LX$R#C+gbP!x1VNZQ{*xwJ6I$3Q))R2Qc z)B@B0Vh?hx4IiV(P7+P9Zi76VSy3eF_K!Il9{XMjSj<8+QjYkh~k!lQA-o%@-uq^Xg?M~X)+2tPSJ?F1ljlM_EOTVx5 z<+=0q0is9Z*Yg2hUUSFhWG+L5s3#n;u=cYLS@&pF2ORunf^#hIa?siYPz4|?Da4BeVt<*)* zcmc+tg=s31m(wZ|`bWLZF+x+-lT+SA!uZ^YTn#-xq-90egiWw>F!Bf&6Qf3mFPJ;J zQFPl>HE|?oLC5o0kBypn$MK66WYjl-IR*Mq)yF-BHSql;M1IQgiaR|byIRGA`B$p_ z2eIy-Pw9pNbFU22hiF!MHVuw#jit-;c)|QzYbyk0s4wk+L@cC305T3g@QXJt}&kf5^t*pWot5h7m(uDVmGroRdA7mH&rG8Hn=o- z#|km(*kom(4lR7jIgE`Ng>|5FlwyI@ue##BPIC%!GJh^Z*6CilBGZeSK57hP9(qM< zoynXp2@TW3UV}6uM31TxtO~HR^&Ee$M{}2}a9`{#pWfXJC7!qDu~fM%Tqp~oppPq_ zSQk=mL=u(Gu;JMRT>DH=QrhbI7F;7&ol0PVik&bghpiWb{Ss<)-ot#pF zn5ceb--|37enp!!S-bPrpN?bEVl<{v(@{AbCJ1j4ChJ3kn|3Y*GMK9nu-wiM z&HhPum!7v%WidR=%<)ovifRngp;8#WqNPB9e)4G8le(L)hxTMt@2if*fn+xbg%6Y0!z$Dt+hpeuU1dr+=jua{yG@F%o- zh}#%n;H?JQiX*u#(DtQTb#anW*-XRdep;@al1Ej;Va!Wp#^==TBKL zC+7z^N(FzoA|UQ!8%H;-bTSAg@O+~sjh&ZBi#LFuA?3Blp{Osr%<|6&}ZDPS+9{_g9$Otu+=FsZ?j3rn(jTg9>$n)CUvvpSr z$mF5B$UG9VGjOWqCv# z%zXIi7yG`0FbkNY0ii#58#L9D6U>EFq=tsDEpNgR>+AdWaRz7iHqB%+8f{~Rq8Ecp ze`9^%f0u1b;K4R=S$56U?ZXog zQSPQ%#Fbr^42TrE<$0?0FKwp;RrC-}28C1>Yb$jje&RFKTd^f$q%YF)$8|aOwv$XP z-tVzQsZYKl_!P5gMB*$g1LdL!yDIt%Y<~Z8;Ne~F{80SP;8ByM>L?O7LY0_e&(?$b z(G#(^0Y*y@@r9o4Cr1f70G6F!^HR>G_Dul`sm;tC>o07nZPCO`00jVc4~{^I7OSXz zDk!)*_hOg8&6Yc6CP8>w5`-&3se_~w6!fbT35Or#jo@+Pm6>R1AX>0*kY%15DfRlQfyXyZl#BV#&=!^C&87DDdz@#ALKDh7fWhbxH$giZR;>>C23R=NU^ zX!1KOB;~z>lUsEsJn>i)!U*h#;TcXwYF6%^uBcTyiQX8GYk3!t^l?6T`a_GaW5v+d z#AUmCQ?8s}t4SYG&=(V4_AQ0}PF4U8pn$Ex+s4}wiPLI-of%>s=u*3qr7urGlVH<=Jxc>d!OstplTo(@;hL~=8v)K_rs?&hz7X;5qP@qh_t-vb zy2eA*D3{1vc}nOtWyd*p$#dfQ>zEhADVmqF#9w~YLSd85fQS|E)`aQlq2v5aRBT4`auKKr{}{N?;Wy z?cRDiVtmLF`d^iaNuaUu&~S#^0(}hxh`j){!!Xoi#Ewx~-y)Bhc2`-AZM68KE9nG{ zxW6$GCdLfi#*-xJ^^eM&#a}!*`Fenb^S2?QGfM7a?~^KP*rNNNVP(G=m(K#q^!U^` zJayC?=OFr1uNfyL2c&cX;>lf5Xod3`R^c#&9S|v8R{`my;Eob-5eaL4^%$mYF2Zt{ zg)Gvn83|NQITJTmFauG*C=yPj_`f3-w${My0QUo%{Y#Dt3#&*(-7TIScS;exqw(@` ze-w1*Cd@7JHv5Ke^yjH<9H;7F+$oC=3H*M1<(19)!0U%?N62s|8zdD>H|t*g6VRte4E z%8=Tjaz>NN+HcG|5vtsFug#FoA}DvK&}rlb3xVE8@VQA za2(b4YTtuSJo&e$$s}NPI?+SBf@J;SA+yENY66}6Cz>dZu4TJC&V$Y&sPj6F5Ahs}o>q<;7&1|{+u z*o|bvJopd!GRajcR|${ zdsIPK&XBPlPVszL+TBq!srjpC`X;-J1=BThFcnAOfx2JinZ|S$pK=9J&X|U|!Hb(2-I=vLJ6xLHE ziySq`iOq~Rvb$C-=$t<4k3P^NCo$D@=#)th<)(DEEdfE;yVkTz@eVCN>bq&WxQZ*o zXt^XPVXU$~JNwTAp6w;T8pOv9ZMHT~w=)Dd-7FH(21@CKD4=$MoFqxBe$ra%M!ZzQFq8C<4w6 zlTs-h<*a$Yk$Mc+;Oc*m$M0HU-nvY)WVV6XWEbNW@vI zsM5kJzxf1&>z^MvDRcIkFr67)Bu#b>-ROapMXslNMS4C)GEh|9tGOylxzVg|&>wFr zRq_z`<|$XRu6SN-@!3=c)DwKN*)waLT!dLa@ML6Yir2_VybxaD0s7@+{X<6Z;Id~` zP`HTU2wKtzEGkE10Jk5XapWRBt|ps5`>Ksn9aQ4JSDSI|?q!|0Hkqe5u+!IkOOJv}k#h zLY-H|nfjb*rv)5fKp%e-bZes=(#39b^5Uq3g?v=^*TtS*291zAsc*;cQj8I#=PaHM zef)?!x%55v(Wo<*3>79D(j08oETCH`Kg*j|f3}r0>ZUly_oRK#?Y)4H>SfO|{Khw~ z`R5n7V=L6hSmof1Hx`RLdGe&?^_?Ebd&CZiwzFW*udkZgrbiE~ybqW^x#v7tg%io@ z!=$FB_C2NPWUB>u($Oktxu<_7+P`OCv}ru}V!o~#TX+r5JJ2Ks{i=!h@RO;Oa$=3{ zKOq*wybl|4YPf3j6w7P|Atshun=Yn zcpL--n<;6pL*h4Jvz~Dnj+Yw3>hN#Dm|WtkkQ3C3aSk#_Nff7Dus23Z_$Ey?8J^VX zt?94@{n9_}d2&hwM+;+pr0kSHhR+DtYQjFaLQFw{(%N@}rQj|i1YCf<0ujW5cVz%8 z_Uw7!PB?p6ZF(>EK&692@m8Zvg8bWxL97c0j?%C1!dZMtPgCY-2;aS7qDk?e z*)ZWdKu?#;?5o*W8+!LW!EuL^P(j8%H}(8AsdOvIt3`H^-iZWun3xOLB@aqWgCYcX zv+iX*B_1zI$8hV+UiQ5Wgdbwt-q9``WaRY`i>f~?Y*(lsr9>UyiNT;OD^ei14E}-T ztcT#e z!AGhHiz>0t@Ce*`lwErAWTx3$u&}Vuuc-mfii3Z@oL!>pNcevb>-$ez1s~g41Rt;5 zz7g5|%}nmDg$KdhpDzti%I^F5F%@Nal4b?{o@%}dAOrh660qVx_|&<1<^{t2=ai|p zE|o#^|rOBv)VnGW? zi^!hT9&k3KK;+bb)Nw;*60F%o4XiZ_mfYl%^D_^4G6Gf{6{-g}lAD_wJSl{pR215U z+F*9zJ(6X|E|sJy+(G6l!Q`EhvVr=57rF0Alj**nK|x8L`x?7oAAk(c*W@3mcfID3d1tFPPS5#!mJg10VQD)mL<0fOoMj4WnS(0Sf#zNZ^ z+dO92<{@dDr3{(LOrmpr`v1=PpYyEqto1xC>$}$On>~H*&wXFR`~AAoD?QVtqXiAq zB~;Xdu8fQEsqvqRF;*?k3=SZK7s{%A0U;37vnc;nNP{aXWR|tlr8#y(RKr)I$7E3B zvGaRp3I>*4t~0u020hdgO7sqJM#Kt%ua#f!`nG7Fi)s75p7K{dzj{rTGlS$zqp=eF9{qWWbsL(8{>)wn#HG6yl&6Qg}B}a#d90+P?VV zPo<7S4a`=Hk#fuC;DV2U#)~LI!-3;5*Fa!cb_JvQlulw=98T2DJHuD~9(KNn4+KUmWRg-+ z10KFF`~tSq&K~@FVOV11@rOe)5x@il*!+x2y+Kvu2&v;(SDqEP^A`uLqMY`&hwfgH z+kZ}YM?(wdEHdo1Jn|~vCvc=AS~43NnW@u2cA+&cbv#4{iZUCsjSWx~z67xfhza?6 zbpH7r=gp3Y1#dsFtTCsS55Y$gbfShtEK@UlO!=h9=#s13@)QphgA^2=U!Gb%He-jz z=rB*LDtH9BAuD>K6ME{5m0b9+pi9;ugUGEnw}rqN(ECVnZ_43~pzxYRpSZcIzznu3 z`ql-nep9zIy&hqVJX_;vCZk&-5XP73Yz)pO%3_9ln(-N@2Ml&^dtr;jabE$|Uem>^vVnihNF? znul)8y0(A68t&4WdL`&#frGA=Jt1H6(2*c} zfWp{jPn=#fYuwlnM_Lk)jl*VV1x@u2x}mnV?@6IHInR4_s&>_YjiFfLKh!O=ySVK*ABc8z1ZX1yT(lp>E8`{)6*;cNHrgaf6{Y17!nGtWD3U+4$QU<0yodgK*G9k?bV^&2tJNL?u1!mMJ~^lGA(Y%qVumNzgey zfhXCEe8p!*ZZ+!fPL$VF^vzk&$#8w$9-e&>yr8QT(`3@7in%vy5ed?lFr4VCSTO%=kFQ>gV`%x z!)c=8D*Cx<7q!DN>`=U~oU(RHYz^Y>eoEVOV^=%d6n3T=j7X*bl!9oH!e<5OF$JDd zV1~QEA7C}*n%blf4T}eOKjW^CNg;J5#E;(x6*tF(zG@F5pPVP9XL5HYr3LgoG@$12 z1ey#~;H39A`dr&DXBAH+0gvs90&r(~67y_SAU)R8Hw{9FJH2+r7oBu)>(AMoKOw*y zCNnP!t?r7iuGWec;XjZs0X90eQQz$`4coAHd{?3r0!Sm_^&+o)ij@1rt3ZrgxGrQXSuPXrH~%%3`_!+APcB$$>$cRl zwC$&qZja=qKI|1YeWan|ahW@(JjLt+?`+NDK^oXr?fqO+-_TWSb>8Bo7p-1~BN6&K zph!Ip9xowWjZY0GFh4e^<3!Hy@Y*VD2wg@g^KsoQcgyiKEuDYmV1%dk0|7h%-o|@z zxTK@M5Hv8`+&v&YDczWOhAaUD!K4zlzk|@cOuT*s86^pD zMGE{|^8lF>`&0LK`!8Tp%EzUmZ$aJZJRI@Jssk7eV%7!x#(K}SvsPACKEDS;c#?w= zLJ;@a-D9=8T`q{GNDJKn;W9OLbY7A#IDYyK6Fb(bt9q_^9~s zDVg)25U>2YfpVf>$z$$Q^yblB=*=D$pkn0XDaGZA;P=jls?dsAvVD-hn3to=hpcuu zBBE{|625ZkX|zQ1tkL2k!MM3oyO`PaoVsClP*&e>nh4+I$ICMEK>YC(KY*dKg4^!$|4d+j!1Y^xAthv$$}7~$>M?Yfw|xoH=)5e9{ieloB8 zj3C)MKpBMvURe>aMi^;c41LH-ZU+OJp?(h}7oCXc8X=}ZIc6}3$*i?~x@Za8+84g0 zeiSQ{fOgy{lA|WswG&M8p;^CFv;7S@Q3Ys2kh3rAxRh1<2R#mP z(?PqGUV1A%meoNxDZxQa^`cQA`qoE~m6neC?G*y#Y01&c>+RXZTNi%b<(5oXb`aqi;WkML#eyKSYPM32_-T3!VN_vQ7h> z$YF2$vl?>RaZ{ZjtWGhXq;%ci9GLvQP#`5h0Knh`gcJ|l?E56!3b`$_D&GQ7jbIuw%pDm*_f#ar*J($*e-r-L?vwF&K1N%aRNLTCwJzhi9HY#7=<1Q*+ zvR#}%|Cb3^(V%JtLR_RmnmD<>`_qO~&v#%=CfhgfqY?AILYH0a<~zNCp%C8}nch%D ztp2msAy}wx3{aYX2q&HtpSAQ9<31zC*GJ#eJ(%FWmwn1q;w1}_!0h|x=vC5p>#yoE z%gVJ_e*I`rcqs9EklVH7*iF~Gctf5lyhd7HA89# z@zeE@1|qa+L>D*%$QM=I}gltz(W+4BLn=8PBCgjj$5!G{vh1 z+~go3iE@g6`}X^;){`*}Z|tA1>a~FwlfO#ycK!Qh+^yk$4_T={e;aS|7%+X&a@Kzo zJ%qdq>h~F0@5RK!5T~LXju2m^NczEQcv&}}hGe_Tj$RTWG_>yN4YFJy?nBTE4f`48 zv`=~j$*|%|x>pNKwnw95n-=F3K(MJ70!1LG+>LG6i?qJcH2e{Mz>3okax@erJdsIb z7!QaUzn)`any?Iqr-0EndWN2>+w4$iIAsv}8fre@sqXENLmW{jsNEq>l?LAfi+bm0 z_5A~kM9f%w9w%VLwf6Y5`JHuJ9{cI7489)g6D>kYt-{L$YKB!@E`F>;k zoy>e3I{kw#Up=@=(K$eSvaqxyU-hb1fBiBZ%`mAnBQkQSv^RGj6}Yc-)GI5WktC52 zTe4U8ZcJV+5IN}p>{$Nez`n%3obik0I`ASVk!|}pPtp^>hkjU=s`TB%%Kx6tAbWxc zSh3DbV27{(Y4BaAg65>>qHS1ObxU=!br#_XKi3CZ#2f<>x3dmMLBs6vv0Sr?JU%EU z(a8V0P9LTMb-3kkhIYc)UQXDNi6hO-+8Vsax`PF-l4ef02N396@}v37oP)msvbkE# z@Bh0m1yFTY%pnS1a?EUg3N-<2;Uhjt+VdDL6}__gqzHN6oZ)QyC_{O&SkPL5;0dBe zq-vVg*E+NQe8y8Lrzyms&a~{=U?k{O5cVSA84xcgWgz^6c4qoQnxPZ ztCrl3TWe7iCG?7js$GF2v_Mf81n_q*6}nBUa>}zEJMwzl%tlM(w{Pos0Pd3(cm4c@ z{FeO9uFLrGHv+8*Kh#O?XVGHgX5Q1WD)zV6&BKvH8ta1q3Li8a=P6EAVP$~AYtqj6 zlF>EY!x4BNv1HB&1QKS*cbB+I zv%Rw!c}k%0$2QMc`L#F_ihiPKT$buFgZQopfs5GAKkCEyqR_WQwZWig#|3F_2_-9~ zef}KtD96tIdxlk0Y%GfvT)%()&ol#p31E^oK#R0OkAe)WCiDF>(RDf`7nN`78YCLn3-J;wdI(((;QSPjWo*%p$%R5NDi4nm&7WOFY z6{qU4MkmwqqE}C#0$Pg(5&tLskXVYC<H=n! zk1u=_#Yd>n@(B^JTU7ASiH9S+thc=hclz2F0p0QS#YF*lchGr)|H7L9ryYc?J%aoY z1n&)YnLNgBvsB#49mV28OW)abmQTMiX62l!!W9;ZATj(p`u2c$6sQ*Pk$tUKt!6&x z2kEhg{dxW2(XcMb;)1UAnZ9GXQ6o#J3X|t>#{JdA+#WVkB#_H2^&=m)V;X2~h}h%K zCFno8?)-SM{-GaS>q2okLY%~Wi8}`eoysY({Mj*DA(Pn3_u{yE$YK2c?v0mKu{bqC zofx6nLTER*oVg(Y9EeWM<8dex2^4v2>u;`RRs-A(Mk(y!D@)hsCir7dl(82F2GQ7I zM+Mft_b^X7=YbL(PWNgE2N8hdlQFJL@G4St$wml@{?6A^QjWATa%7dsQsphn*-z+( zoWl}}EgkE!dkf(&)ZpwCJ)mNVpcDZjsTX7P{>FsfqP$|IAz%~LK2%G~)g(2c0%z-K&6ol}!jb8Ls%oP;V zrR_^50?3;XcA#qil4&9|301He{^y?DpaZdeV|ok$VLq6S)t`^QDu^gua6G25%)+7D zcFM=zhH!Crgv#IgV1|E`R2mVvzUu>=veB*^`8YElax&eEzJsrJCk=W zJub7;^cY`vJs+&pr~1*I5A*j%!Z#v()9|V{g_)De3ba3b2g9Y)jhuuI#HE*&;`gY2 zvl=`fjs8%~wNq1#K_o-siPz~5p~bA5DmyI|!Y3#@b9pg^lqhG;STB*V#~(qg-weeb zJjuRKw6(qX@u&1X#R;WqjSHH}4yqq?8~)R=H}{lR2N5GMlHjG|xK)DeoPa|Bd-M7$ zBNhsMPY3p!WhMH3(tt4dyWqcHKw-=v7Y{)+4MM%vnSa#C_U#EmeMJD4)-2K^pe01) zh64zJ8gAk@J+faHGkN?#m*%b){eO5|FV_ zL30pLgqQPA#-opZ8dfo(*L*e%;6;R50PQ6(lOV#}c+F~6P{e}FKnZ#&{f2tHvv0pu znN$rNfJ6?&v~Xys2ISIy8Z%b}1%5oz|GAqe{LeQ7gx|9YdqX{zpke-Y0F={7sMIv~ z=NYeV^l7XQ0K`}h$&cgw+&! zsr|va%D0OqSe!K}(Uo)F4k?^%+*~~XGZsL`5D=ZYIT;AYK+eFYv)w*D2Mt3+0+EXqn#732_g^rN9~8%H%?uB1}S*OeUHj9XLjtMg*4!y**QF+4T11ScfQ2cel0F_ z7rXjn;!vm6-SBqu^*qj^R*_H!ts17Xw!?+k$F#771O-$G;E06l{iF)Z`vg4y7LWu&1NtaS zm|}r06X{+KX+Bp3<8)D$sFK-x8jvDo7I%(ZR9s}RJ3~^302A1q95;H7(Ko0vzctiu zvYM(x&wQLz5_Mp5(kFHrSh!Qa{`>4pb=ALedJjP;JHNi|i7hs%SHb&9Tv^-nVsVEm zJzVBhuleryj_F_R`~^^GV}#1`fB6LwAT$sPp@0Y5w70;C8ap;3pnjTE$%YFBfT2-U zl7shzhzT(%kBo(@OlBrJ+k4WHA;c(zOFldn9+_rqBL6JbBZJ|mN5;dqC5^XDC+-o} z+tBBX&b`bWMDsBqeHN`@JfnwocKURL{d*DvN-`@qLrD-v&|DF0A;qjL?M8RxfMAK2yyx=*?`S3 zC10?N6pSH`7OOJb)u$bLa`=?|X+RT0U$Sua4|x5Ez=|Ki9w4pB@}<&|VeEnWJ06fz z>V@AXbX!R3WNGD^T*kBnDV+yxGHe;kUs5+Q;got=`IJ>kO&`i1(Ef6iIu@&-1GLS$ zriZ~|?oD2=;D&`g21p}uL2;wj*x}I+1jlfbXsohNR%N<)1SH$PN(y|bksibF*lQJF zK7cW|$Y}=nDOVZ1Mo&Ic2aXF@lk_ptI3`IaSA$+DBKQJf(q^ju%IRaD0HTr7vpz=z zdjb3qEu)Rebq~MN(Ko0%YD%gRX}`4KR`K)hKEr}02Y5xjmt)}VK%Ngj5D%!nZwLyH zwaFjbZabE-G7_nmty6Hjj~P5|XZHqM9)KOatm?88$RvIM1>9+5*QI6?J-yiY{!R}? z8+o(H87fz{L1L$`CB3}E&sU;&9SR%eh?Yq*?9FF0>)y++;H>xPn+qp@J{^EJM4zkj z7-F!+?A=cgCcX%+&-r@%b4eKbj5jKBheNAs%8RbzPMM*WI4ksSuK3QWNkjS6NpSsh zPI2GULP)}#Vqe3;4L!4#dpau+BleN?Qxca^SgQxbQm|lJnn-Mx^u(f4|5c*h%@)k`q0x; zEt)aE9F=}OkE7IS4@xh3S#0@B+|65@Ro`kLU3oxNEPl#>4#eVIRflaHLI=&X-Z57M zRZ_?~EoCnBic{tp`~gz8`)y(&> z0&aALYObZ}VkzllGc&}oVB7*FHBec-+CAbNJh?;?xQyYL&O^^o?}YtWwl9^|`>0RYgzTFRQH)I1`^E6u3k|1FY+-osYK)N;5@Fo z^F#d`j#19Q^R;m!_oc4)-|>p4$QYJ+q172Vs;KCi;AHNf^j)d1B8I^Z62AYF!@hjk9vKC!yaAe!f464HZ(!@-9O^b#Q}hj$F( zcgO-j?GIlgv(=xJj>%QfX}Lyo9eu%C(!0nSEzm8t>?AC5zl(V1b`NDj;#S8y6R$u1HN< zhZOw>jL4X((1Rod60?s;HP3YA5fc(!z<7bw_`54I>=jdpwNn zgr(PwO>-W@5&Uy1Ws!7Ae|p@F#tXm7{CGz9V8|v;!hKP!M?Mgg6Xk7!^GHsGpgb&~ zC%p6NsKOJmZt25`l1>eVwzweVa)D$w*)x20K2Mjg9MlR6v~{pLkQftD|A6i%j~GJD zZm78hVXO&c=7`z)6LVvf-v)Oz?8GfFZ6XxubnbN8Dg=)2FMAHczznd?0gqWe2|Ij$ zr{mrMx%u{!LhO*zMi$a6E|o|dvRu3O zck`YPw(E-ju3GIr08qpZ=28wqjO`%29iJR_D41>l-@>e+OxF{^mr&B)0-*nsi!ryM z7C)GIH*u#HGLM8q=Fs1?2p7S^nimFG0w}e-wos>FC;joc+PJ@=d()43-mLHKw^t5t8ZC}bD-A>J z{69OpE!uuK819m*{Xu*KhYYBIW^nO7>+pVP%jBZkz2CHZ%~G}XLgnAdeKlCUhUTPL zlZkLPxpoMaorA*Zuq3+T9pAFs^a(cbse2Pm)go`Kzk7HjhNQ6bX4%3|YPH!s1dD-QK7Mqbrjc(nU zH3``o=ZuvhUUW-#wbx3(?>{_f#kw$-jIZjswKqwRdE8aU3+aJ%?X~iFeB{BenUsSK zo+WhS@`blhY?e{@yW2AfqfsK&wZ^&Fsa``Vm>u#9fD@$r{+fkMlc7ZRF3?CruK-%_ z^X*aL;pWhWAp@m9LH?m<{XSLxq@HNtWkz`S(y`NypA_gccS?ikByw7 zoj4o+8Cw;p4UU>_7_{^J6!h_^&;Er?XV!f&L8Y_UiDeL^hH6PmoY%9U6=o~> zH&3_3n!&}kkU1pz2#0PFH>&F^9dvpTy`#zDQU+GTtGE@Pqqa$|l>b1Q)?+cBL3V+6bS-r;k#LtrKvEtj=rHU~@%L0afTX469xzo_SQ5$R7d~L`!Gq9h^!~ zd#JZ|!s=9?qf~UesTDRKRm&YKTw?5!GiEt;^#!>%tVkC30G?mc=MPkh{GdG} zSqPY48LI9J#yKQp^a!-+p#J+KziN46541*xjw7Yi&~hVt0wp3u=jL(dd!m#J3SJhk zm%}PsXP;U)DQZW7nW4=)htKlSvi^W!?|qygxd5{cKIp=6?4>PA%L@cQv2>x01l?s8 zxt6w(>4g}IgmwmN-7>Fx({CB&@_7n5bGD==Xcv#@Ylw}cK4P|ejos!@ivYK??XE-v zboQ8ZJQGlTj*&IYoBNAt&`X_zu0tk2@yf zyD*1c%PJlj*{r&0yJW$K2)G7!k{48T9(-0jDxZ78%U(yQIeWcW?5!kQhBSRFgNk1FN!qhyACU}!ePMg=(AT|?+i!zs>?zTQYfPCE zRX?^eUdoY8GQT9GJ8+@J*!}5uI|^)V56Vj8N%xA}8}f()EOcx73+@%rh23Z5U|MM4 zlmfv>^sUZ^6mPqBgdZn37x$HfwR4#>MsfMQi5}BWSIYvSJ{Z;BYu`^MrD-jeb~u}2 zobLB)^v*xlt9Tfmi$*z_g%)03+kba?7?db*{5v_u`)02gghHJRfhFB!cYU^G1-02o zLbogx^pyWT9R)~vI4~M)(PHSUg~k=)M)wU1S*sU|)xKRi_0IZs+8|x1n(G%D{sfzn zmkXkmD3StUr47%y>S^8*YUP;{U80gPrwg}REsTR1P7YZIDcJ<97~$obZ8LDjIi)Q? zsm=TjKhsU_LKgL58;M{eL;og8Jo&ZzkJB{m=0$%{u{>d8@LzL9JIm#)+_jMqUh29QsUP}}3+FsfEr}&iTiHHf8slCQ!AnzTJW3Q9Aqr3`mnwuT zd2lr~O?KtqV0c_)@FoUxR7Osae|+4znECz_5Uk3>&@v<-+?j!{C@ri)8suU*N{;+w zv=^^J>V=FuCpynI4R1Et+8lo{p>R5iTQQyX7!`-|(lN?d3A?oILFaRMs?vsrot?ux ze^IO<`g0PxT;q`!@AeIWNn--=GN-@oc6*W!)*M0ftJ#xx#5s`OV@7>vzQauwv7qp1 zxtosq+?TKw3R!{AIMf2;HD4ZmD0ay1qV&{0rk_@>#n{67`28s}*{hyB=4D+)9;!BZ zU)-;Ngb1Q5ovOsN-nU;!BD~n-U%Jy>l-wjb%Z$L6(Ny@}EKRwL#?09gDZZd4Ynq6w~(1jKbhh(vP+Cw(0Vj~wV!wb&51w^m>hB*T(B;L4*|E6`#c zv4)9@i(<6ryO^2TT!UD~7Mx4D#NE#7ws@{z1x7ed1D=GXSIJ`YLY?NBFDKS(O+CZ( zgrQXxOTxO=MGI?(Tq8KxH4!sqdzA8cP=%s=;luMy9`6OI0Z=iS1f3d;VparAD>l%Y zN%ocyeMXi6_x7{cFk<&^=d+;LUk)fue4k{_aF%^spH)(F&VT@Q4fZNvJH(KsV7(<( zBsA!K;@-)#drG5x=${^0fiK3qXt+JY98E=(==~;Sa7k6Y0ln=i8TJF(&FbMXI5&7< z!fAwzke_bN5aha|>roLT0HA|}oJDkD#4#!@mx!8>_?2ANUwpz(s+jbMr|EyFg z7tg?{KTQG(Wu_jesG~&^E^~7kpGz289gc7^XqB;1dxl%1BC7uh;@Cd*qbbjlQRi#! zN_XVW{F_6SdP}bb)v=~&2$q8v-0n?04mtH&Hh1s$UoU={cbdY zqnwy{RrS+(E_@cnUnwz!L7a0TAMoXu-@*1{szVs-E@tTqG`{$1${-O=xs-*pGF-4vx|q6|+)p264Snj&Iz+HNt6t8$ayt+iF}=$Kii=oC=J6ke+l7zU5v z3>dqJ0+QD`>8BMs%3*Xkmsp+i26;#N&*tNtD1z(XM222Zrh)q0XiN0rl`&s@TNa zHW#%>eRhxamR`=i+p8Yjc=i4kFr0YcQ!E-ug(p9W7-j5|t}_(Qj(Mc(At`pfUkEeN z-Ac5X=8PUg^DW%sH+_f|roCJv|Kv*ZqA=XEg+Mh94R^G8Ai7_|Lhxk0ni(zq64m3P zmo?_3K1rK9Uo59%TX;CRDga%+m|I$AEDeJzzGY<{2@Q^4Xo;M*I{zk;m})3O#-|pH zBh%)Ni|oBx<`!o_Jj#MA>%IOX=*#W8AmYgbxWMpz*C4lZ)}dVBMhq>|@0x_g(={$$ zE{!L=%FSiQw6Js~ixTb($-EdUVF{tH+LR4Y){ruwN?;M~Gn3_J-Ys^V$ zJk3BW{^MKMW2hNgL5c|ZACi6Z=_kHR$i|U6dBu7!`ngQ3t~t{3i%e|{C!X;yGHA$* zUhznC>f=Hz?62UKR{!X>IY|A-kqQ4c3Z)#w5%!!en)_(w7r&t|=gUa5d&071_RnKu zjk668&nne!JF_=+4Lc4{Xa6%K+8zmwPW>o0+vd@_9ELq_%+QIsAd?qo5PVwfgi#5d z^<_>giOCOIagn559OsRhB~3%|J70{GSk+(bf}Uv|-YjRu`@8@tVCYuy71AESnv67h3^bqY9*!Bi zTvMc{z7p}UeHq8mY zwbe&QPIUegsHOR#cNMJ>fi>anLS0lCmar4&x?o+FXcBdz>J5KY{&_j+;|j~9CtCbe z)&*u|0B}DE0Qb{tsl0pb5hjN$zo(GQFtU_OcCK@d(TI53B zX&d~)$D-mAydds5ZZ8%2vaA)!r=g7h3```55VjV;|Nm!&BodJ1m6KpBdS2o%05DxE za0)P)x}V{TZC6SlPZeQ$(R03koCh1h7kLAj< zmGT$?`nA7}O3NBqo5&0%vHJ$8@_&9c{u`_ZL20$~o~^<<%O4Ql5FuShLJnl~k@Qk= z-wudNLgBSR$N2-POdw?qWRPAt%%I^Yt8X?!; zbrFVgS}~bCIAj%G2<|;lG$8{yu}0`W4G zn4Y%|6l4)HP@{{KjX3SDdC5N?k>`wZtFu4ryWA8vuu!t^W>gz{1;+FBuP2UC?H-iw z$vF?G9o$Q;gQ~+Ja|l>XdtG3>liysNU&*!&3?*xQS_G=YT+=E>P-^Fo)OswSk)c0J zFWB9Vq4P~b1dU6{$dK|^BMlgkxw)%5|99cG{(tg%4D`^`TP+-F(uc14aPi~sY%}=RTf5KbYVuY%J*h;*VUa4M@8}qm~((kY^jMPJ*xA3{4 zYHb3;6?f(|{6o!!2l0|!R?uOCKFMSO$hrrXqzIVc3FTPk+%pdCN|ZkMjG?EB3@vFz z%q-OMYny_UC?{8=T9ze=s+;(g8q*4lQNa8`+p2WYgNJTCBY@lNN5*K)nXn&!jSLTj zObJqhBT&?YA4EZI0{$duz=EG#@gJNlSI!y4QIJEEJ?ZW3_3qu>h;MKG=TKd(Wcu#& z(vwS|)6I>!f@RTtIO3!|)5V2fAl&w(BDQa zi7uc&|Gz);t<)rt(RjglUZlXVIsgpYASe{Z)NSwjl*35H9TCuw2p~5j=?qciPM@@hwuKVVPdvl`p6F+;~0@h7j=i&aJlTTucY^@ia_GLXZ(ocT-aB zLhyF8)4+*DXQ;{%QwWGEq`v$ujuE3^zESzT;D5yVpCDU#Zq&p)br zd5(nABHnykQqPCEe(_gsu0T;vuKpHkj@ES3(j@5`CR{%Zj7(Tgoy%dl=etRQ z;V6hG8WeYhm@d{oBX#?1<14FP5B8SICP7(J4_^e7@uBzqqQGx6r^`9?yc-YysY*8) zy%~Wj-A)sJ^;~K6AcF~hA%^&7$oJzzj)?NXT)WuVhUIN@n+P%50{s41=+O2kUi!WB zEYJ$OCMGOR2Q#433!Xx?zusb)rPc{W8%5!wY=P#JtQqT}PFZf4J>8ZBQq5a|{!cFM z{*M?4Eb@F>>9ob+A|R^wxa)XylLNN8n!!1#NA`l8as<6au1a^^!zDUteSA|a(nX(y zY1#S0LUGuR{Ctd+xOqa!hxi#Z1>N@VaE=@|wcEuIx^*KGL}}@cE5qY%*R3%N9OkJNc%d5C!Tbxx(yt|j~C28X6$W%Vcf+C zyYI>GIW*_>JQ(g`$seA4u8Z7xso6nX_In#4aX2pzzuo$bQlSaVnfE- zag$BOPE+4bcd$}FrDADKV&@K{)Cy)EJ6h<3+U}Si#L%F-=wD*Dq#6_Y?@$?JS^iX7 z+;jj|`aehQ*md;=b%9V0SMG#?X`0bH-v^0pt|$?1yrER_nEGgFZ-p-5X;P6vAg*s^ zSl|HVH-5YSg51D;o=?Wgn{sc6E?Fipzi93*Bp;_y`LU>@N(2^m_)VWMJV)O0*De#O zh|)&B*8cmru+kr6b!36u*U<^xz8>kN5(SvE8Mxn5-(4 z&k|~HDXA>l{4S4;&6)T1I${%N!iO!frx@2ij6`~Lg^=ztO!h4YRB8phqqRg^R>nMw z2TnaJlEf6Ake3M6yKkMU z^c4&0a8>LB@dOd>vc}6;3|GiFVU&|!|A*ztuX#In2R~?d{Eb+~Ayk{E$wjHb0^*zv z`Lmi7XG2#nPn4oYEVIJrO;94D>Xh;XX^M<;3Z8AX5{+7a%uJbmj6u|ne#sb3*k$#m zbwNt}c>W@vBkFWHJlS9xMA9+kbXBgG&^An>=j1M1>GjW!@=1ln>{;t(Ihu;no#4|C z!>eZup`Hme=+>uTM-4Fz&AHSy<{}@tMI-VHney*J3UKP`dCl-UpNsF(e0zPg65~;c z&+^NOKaUO478|~F;PEJFXUHD=Qk8cw{=TI)P_gX$9( zrve7D!^dQog5RRA1`J0m7zCHJ3Q*R!GhFaP$3`y*pGeRPq38FEj{X!~kfucyr(-mI zsj!k}_0Pm(vFL0fh%4{&T)n8-Nq#nh@@kGKy8bmPF!ztRdW&%dLqY%_Hk}k0(f50) zS?06tYQdPS-kU>NN==atEo~)bs_&qS#S(I=s_^n~7pxA(u;kOcYjj0p%ye04ZdKGfLUBVA4T4!88ab<>rF z_j+1v*UZc5giy#e=xmO)&WMNFM!U+sl(PD+fBZ}=v)IG952e6^LW%)zH=a=h3A4&8 z>xT`+q;pu9f3;wv9*p=}VUX!AmZQjTkiAp1fE5na5pg3ihoECM4ILMa{w^B5o_bWm z40ixd6=r29Nw#&2=uI=qo;Dy#8c;`Wm@$+O@?r*@t>aIZNpP9xwzC+@cIFRtPFrE( zi;9feHa{rah*2&D`NTyuZM`-0wvM*5z75ZofbEMRSBYHx$ZFmBX9M4ZpIka=jl%i! zQyz(x_{5vsl%0pl7ZFQ3Ig9Nuiq$bqag=eTeeu3-;yR48;jy|6!3D{aCTkYaiVX$1jPARmhc84(92T zD0e>?`nbJWFz)1;3rgw;dGaw-LUhk5cx1%J<^gLKH)n=@m1#~$q#ArHOXjza(Pwy_ z$a$hiD#Z5K+SW;bZw;JLI;xoAAXddRX7^2s>X^iEeo;Ehabi&DD`KdP$X;#0E_rS* zU={d~$sq=`Zh0wy;ec$iO4dQwynofK@$y#!{q~Y$whM5rh0YT5W^GLj@ z7T=1el2oVxd=WT-+X0p>xrAr~d%>k!YDeY`+%!a`C|PkEa0jPIU$;H8Ko&v1u6&(Ujh zhf|8Ia=N#h_ji^K*7##F{*a(y>JF1!`th6@hW32LL2!h-pHPF*jX!11Ep`?aCQ3Ej z9t|6ntf*!mwU@j#R7lB8@fF)(Ze!hRPha)s8TwuoU0GPXn)bndLRWv`jjUj8SPq73 z@Gys-!f;W@EKOzv=&Su=$MeB0(X>#r*(Zw_&8hCYc@;`_P3_i z)IS=3yJG@_Oo0m;LL_G+hDn8-^=)98r#t(g#TpDv8G-%_11vCk`2QW6>?6+g0o+uqBWj zWH~@?GgGU5?AymkRHD1Q@4qc-CsXM8G&?D zASbK^;E2=@w|S8TO+682?1XfurPP!Yp2vbv-vmcYSSa49t4X~kZ2yRprzYcg;&F}G zP5VMS6gzc|KJl~!6=|hZD-BH3NCrao_OMXJ6zx`~RL$**EAe+kp_44>G~85n6~2#? zWFtj3RFI3xEtdyYj5$jxD0Fv>K4_#y9L1J}c2yjZG@c|woX~NTaWIy}@?gY@mlKK@HZZF0?O z65_5-y}a=eOa%XH8U><^gv{xO4boQvqB@lFzx+x9x%LNL{IU&GM%HaHwcu!mrfixF z9@SVjMIkE^<7zo7swB+usplg{{`U5kwk5)3rUAQiA2F!KRGPX)_w zp#csL50gQUZb6oLSYt1|d?J+p<*f@l4k^A{g(R~K^+Z{_)oJ=zs84-z8^2Rm=R+gsWWTj5cgXvkJC|eAiVD3q`pq#tw(xc-o$v(Q_#$U^laiPp z6&kIaHSo>p-)!h>RPBLZfOn68A`lje2q<+yux2f4sE_&Ilh|k^iOq&I4f2@NN9awXlt}`jK5xIBNP0<(|CgWrHXHTOUx@HL`{U=EK zbPJBnS7-ZSD15H~ClxI(;N?NZOO6cUL58V=W9#4OgTG+6v;?&c$Z-ynA#GC-R=0qi z;R?Zf9Rq6UT%!{E^LIs>ZZAGDY`HRE#dy@>rZjWK`S8ve%p3MX!7(A-MYF1yN^AXi zlV)D^#%!T1C%ZS zo2TwPY30^I#IQGrQN}!H!Fhec+Fnwo%mQQqH`fkb=w`1Q9G!J5c88UH-Yj zPJgQ$3M@+mmqRsfK)M0~LBHBIN8WpVzY(13mC<`V`zU>wSZ~`7iK$7o}y!Z{!3eIW2=KmIshl_?KBFQFNuUQks16Hs=yn( z7-#bI`nk_wy}0oEpp?%q3&^50K)gNh#h8T>8B3r1e#H(*puWIjFbz&-z~TO%&lfHcnjuu}w)ISh}zi<|-9 z{wL${-)PXaAt%Xe9rb$X;T!7%;WDa5n%zU1Q9bLTq)J}MQ`K2Fd(uj z@Gc?qEV|0(_D0Oy>w1|hR}4(t$IpMad!I-1{f)7+1@Pnc!J1{Qp|E>luZc&Y9)v4{ zO-;&GiT%B~hJ@#1UXu}vU_dcP*3{k$|DB_yuw}k!v-XPD@SWFjgq_C%xlpWgKL`T%ZbS}LYdSu@m9`hr z-0Ryik+v84s8T(Z-FKtc5h^i%9+nu{@S}6hp+={|W=!&hs*xz!V(s3tRrr$G^Kbt@ z&>KR_6z;tLkAmqWF1)sGNoAX@>jtbH#chuDIX)&0@Mb_!rVuP^wOvbCtIc^5IEvNS zjQf3|LUIUkR)HkxpH?Zqs_Z`n&9;>#kSaYGw0MC4-{K4j7-|5NCHt(ksW|%1{HGRL zx~xDB%ZP5wMVx8OvzT(svok9PE%psiJm3-;iz6e0%B0uNc-!Hx_+=Pa{i84CK>Qo{ zIwwEhI7NW~n*MVVe*@F z{)4`*^n>0Q5s5P3+HoL^14Or1>k9*7U_di?6!NRRTyEaH8M~dlC1_LXJQfPO6@mhT zQY8G8gW~Z4_z_?ZfTgvy^7yzUT=1W%dy)OAdo)&+s;QuIK!ia5%7vvc9SHCbR3Nc& zax|Q2WNt)WcN~W8lmj5D5C*agEL~e`<%WrK^UF(cUxXom?8kDT`alF(fQql~{MnTV z!vPBINqAz#OPXnzNb+ei>RMzA=i~6YNZEN_WVG6!8o2n1+iXBwY{4F)EZqn~f@my;|v|QMo#X}zdX*U_OpE@bO>5TzN zR|Rix2+ocM*p3IGx;L(&Go&uRs=Nhd(L%YE>KJNjYL9*0QuKM$gjnW^i(KzMYI3&L zY86(#Gpu^y=0PwRw?KWo4fJDj;6EJ#t@`KXOCIuMuM5~*s-xq8wXrz*u*U|0t+3M& zbTqEUE{#?Y@{>WH7LS90V+foDIV`BIRKJYvm{zGxSiZh&y|M3frE=Wvo>zeEq-vf1j&ez<>6($(2gvd%{2d(~H-(Rh4!r$l%Xy6?Nr&CG)5M1HhG&S^xk5 literal 0 HcmV?d00001 diff --git a/images/output2.png b/images/output2.png new file mode 100644 index 0000000000000000000000000000000000000000..c4c7afb9f132163e0a393dd60a3a38b7dd8e8dd6 GIT binary patch literal 62956 zcmZ7e2RxPk|38kO21#UOkLZw)>^+XXXGn;QWbb5@5whnY zve*A{^?HAP-`nkfZeGyd06eeyxi|e z^6|O+fB%5j&C`yLbDqu`e#lvOHIsWN6qyzB--(y9g$^jxrir?eyrJ*2r6#|0n;QXQ zM|IUJH_V3~_BHcMwKcn)BqXI1cqC9tA*?b^&U(F_E|55~H2Njy>9a2z3GaLv#>Wv| zk6rrsuIzjp|Nhvm`!{@+_dQou5(1m;be>~sUp?5$l*pP}C@gk;{_u~)_E`O#LDotE zeYlmJ{Qq8)>ESbKWdHAf`xUVmg8yD&)2QgbT%7;Cn9k_s>Hgn)#2=vpi2wJ(pP*VW z(EINte*T48R>*&^Ru7c&9@YO|@uxUH7ryxK<<2DczmEvZC28`=->0- z8nMfEV8{&E8VUVc*xD0<4!}!X^!r6&|1^BqBIr@gf2O z!3hCNcZg1(Bnne_`=@?!b!*g3aZp%#y_1d9Ma*q1wz#yJVbYzBH|<>Eb8m(~xNL1F zSC||j#zDVka#IqyY zpaXo+gvIfug-08y*u>XcZXMyIjP7e4w0E4HolWsezkj!el3|EYJN*%u$5{uzuIzN_ z28Og8d~EqqDseDmaY*fDju&fQBYoyKi`)5qvnBfBN)zo$z{*1be*Q-dE6t2CG}l_M z)&2;X%L>X|PV2H+U2P+q&WYh|{pm9vhm2k%e){cF#m6$&pORm7hVT1NoML&`7j$&b z%;)F*o$tfV;R6HLkv|)JSpUflZFrs3IZ$FH4X@K!0L4CN{yq*$Xb0y2a!sB;Q zVa0ZX_p%_0&b4-wj)B2?bohLVMdc8(9rH5=Zxk&Fy-gOQkg>;HL>u z)A3S&?41t!q&H$uyxV~V+Ew$@1J4ZK7|c2n9yKZ+iZ!XUrGHvLKfd!p?Aw-&pu^jr zuG964Z=CFJ@uo4xCu?!UWoBNSc01m38>z84-W!JZjy+ttJNkRG-UB89t~uy9kD^Fp4Zq!|XW`rLEy-aIJb(V&peANxZ!IAx7OsQ>{tByh+T7fHXXW_FEpO1_ zt8HJV%>3eFD1O@Eo6kUwGU-aK+c?xu_feNxr~$>3D=?QRRJ(Qgsm#)lkk%eKsXkhT z;(tp>>r4%s3@R-5f>H72i>*Qj29mb)isxh`65kSg-#gzv_;$1*dwhZAcnAM)9d2YD zOV>9vSXG;P44eB{;p3SHFGjpsL_NCYT1Sv(?v1O8Q=_7$qKemkITzE4eGFCgOsvaj zjrK^*{Y4|1lyh3I9t#exX39Kd7;}2+-H#VDKY)GJ8bWYxHDmmsz)JdWF^=Eoj~P-d zIH`z99mltpM;X6gGcH4+ENe$S7V^_BwqmbxaxyL3Z|^GDZ~EWpqYYb-!}(C3r%S-> z*@yOZLj8!Yb{d|7d6ylnai3Ih9&4mu^L^&>aDTaW?XxDI$Y14OTqzpN-{r+l6a_c# z)p{?RHXf{hBwglhSQ0cWzHzV`A!`Fm5r2wIy1)NTLjxnNxfezA@!`rHFE6j|wViu8 zFt5(AD$iyA-@NAk72m?emOBmeO8@OwG;a2n@T_BU@f==EyQec@xYMYxpT*NcP33hSom@6c;J2+Qeh_hr&VS5 zC^CJgqPRx+>gRK6GWi~RXO{ln&FSZb&M0na_Henn%$Vox_Si$X1NRT~b`uZB_b=}4 z?HOm>{g^r_do(TU4nsXXo8k8FhLW=mPRl~MDR^S`aAz{YV^CXcvNG$ChdYJ%&)ezv zHjO>Z(OLoAyFRnicYL6Gu%6c9OjkVQ*n!lF>8zuLtW{`qbTlyp zEPMSC?s#UO38?sCA7`vx()cXmVc?meQC>lsENsRXFm+G{1zlSXx7tL-2nfR3PIXIg zTd#~Yb$d#|P4W9HEiA!usKRHS-4qNd|8PUAA?L=Mkk%6u z1sSdi<;LwJc3E+rb+O|Ivtq`TwxrERo26~b-Yg4~{{a(z1XsAD-tJ7rc=X9^Ppsit zRErE-bChG;j}Nz}KQOvUe^&etp4h*m*jRWt5qxH~#4X_5fIU_5&C(Bt+v5pBpTwut zNR$EGOukT*nFh!bFUmxb)ogJvMf(;?8q{&0iC(es_TNLrNc$|(7l8JPKmA2W2i{`e zPH}zjlk|qxv%tNDow4oaGnRtc%S$7b|K`o&XvX6FwmSlY&U63Y8?3e$iVeAar{l!j z7fWg@Twr$6Za*k;P+5mN^{nd|TdYUwr5d}Z;ge;3Jw5StD8D1lG>3doXQsTFCaHu$IMlXOf>?XOKL z(GSPb4S|C4sKawW!sL6_MN#@w%;1nvNEm)2f1q<($PCp;j(LIw}M`^K3 z_X0CUN-t^;nr>ZN9Jel)8@_MML*u}5;H^DqS#E5c<;82yGIA7dl^!2AF3WWO&ezu_ zWuwcVce#W^Gz@nSkJx0MIJ7O%BgpaHG+c1R^S}4Ky;~itt(~1;TkU`QM)%<1!~A{m z=Q><^S zB}Z#E-Ol=)_Ga;O^C&Kj{zOW)NsH|-t<$nbSgMUz7Z0PNxq^6$_|}+WHl{}V1(Leh zk=^K6{oS*NSoO^R7F!2}z{;5aMlS*#-M>2&P9in0X?rZjACsW#KXpOXS{#2GE)aUm z>K6muOKBgqua_xR7u_z+yx;= zaU0O@HjffeTtsW;P}+)O25g*F&Ubl@zLv$(tuNaL4LrHpOuL=dG`l@Bq#H<5WJnB% z{{z5k`f?-j`s_>(*h#8v@k9&z#VvbR+owH#1nw_Ks^p3<-RYEr@SK< ztZa2=_G#3uq-<_Fv$3TLPF=|~z&-u0(WI5H-+!O^-rOgsgpS{hCOiMP?^T$}qnXZx zXmNyE@<;OdPoBd!vBX-@!3FI=8I80N?5YuC^RHsj)m!p@80vO$To%VDbCC>M&odpn zQy%R32}dw2(8}OfVeL@(;jHdxd1sZk-!~VX#N^svmn;Pcwa5mZKiFw!B^yZi?998I zWZE*GPikstcgrR)p_tJ{ZmXABjT;2+>6;oebI=%;Lvj zcrR1rNw1y$Xk9LR+MQgjmbs=SIfmTtC*Ao!b0!rS zg;dUO*sAmw+#yWGIi0n|zFpqJ?;l3Z+BUZsZOr23=R~sl5F82{Yb;hv7hnPa1)CRY z<0Q(G&p#yVVxo+BI7mrYTUCe|t0&cQYB}?j51P(r^b!KX{Pal&HcSCZU+Q%avk2R`0RL;>K2=kXDNF6? z-8-d*+~1lW)}jOd5n2~TY%_f%ECA?(lx%ElpS@U~7QDBud_TSR4(_VesKn?x4~@w! zlRQo=cT7jfpFgf%K0dk<7+tNGB`;aK557k33@zS&YsRaR{#|5L)S#na^o>bb#J8`p z(xRG!t=lf%W)y<0s_ps(bd+luLU!j*2Fr~S7b4BCb?vP3o-JL)2v4T}x;n}E^BP^G z1b2511ECzyg}={{(afiGtTr9|f_}%o>)!AazFrP5Ld7)ru744eIlp%F$a;b>8-_r? z=p8@F+n;|32P>VWm$~l^Zq7MTOQX311VeuCl*Eh(^nM^)%CfM|*MC3O^pJY(Ux&0u zKAjx-^uRrbrJoHx-FA6`6q6gi(yt|fq;sZd#Qu%iKe10GC3yB!a#V2ClaXa_Odj7)6!+|bkmIyy2Q80k97Z3i)ddkwSJNB4w;8OdaMg(~0B z*A@0b_1OCJGiIdHj*X6ld+MJ)z#0Z??)0wzMPO1S-pk+bGE~Xm5Conc^Xh(`*~=kE zz#*}#14q`6B6@9Me_3}!b$3xa#rCHy!&gN64kp+zTwB~1!^o^g%R$s1iQgKmH>tH1D^_fj;&X!cx`mm zS(LH9zP^8aoUC{#dUDbV0PmBJGc`T6w)Vp;I_#FV0X0rKu3@$uc9nTUUj8E(+x=6? zHbK6=bkMdcD-9@Q|H(sy%6swFPc$w!uC|{0R&h5*I7)y*6m})RfQ;S`j$``NvHqAo zDt41sG{r;2wWGa6EI5`TX4EV`t=E=OjgsZHN^s^7TG*Zf-81BPe=j zo>ZA40@dWVV03^g7gS(?6N7R)kBWvw;kKnOl0DP8qFJ`&S!Y=}qE|em$D4+$yJ7g& zH<{PMLD5#>_3$E$qQMtV{dM1aoVo?RtqY!Y2)XLX5G$3(p5~zDhRf=*(JL`x^h9;5 z#n`vbT(zn)_!_5rRmlBnN9l;&!A|d&I$Lb(LEwSk%xG6n`{n~?0Gcpv4Gp*cH*PR& zD!`cJ4LU^(0Kih`LIdVo1Wb)vhU;@Gi%&b%c^iuJxZF? zlAMu`JM-y!H5W{1c+DcAVE_)wF)b0@*}9$uxU9%9n!vA0F}%l;=GmoJ;W>4NDqoaV zf2Cb{u^g+e)Uc6=o9)>4zhyoQB;>`SX#=ZpE6_*EZ>1_Jvp4>a%d1 z@;7~1*IGu+RG#<1PhU7NfGS{s=K7pQ#L~<6TqoCzH-qqQI!>+^liPQfT5)H0oxOp+ zixQ6(YS{>gzT-qA{`r$xN1zfl_Db;d^fXkqo(TPa6S@P$Sd{|!rPNAeC{UKBOHqRS zL$95n_iyaNWF~%`v7{q}30{H{KO+cVi=kIYf3?l6`7#iN%x~Zod5Q?N_O|_+ZbMBB zH*I=aAdp;PMYsB($++B_09fN$fN##CF{UNqj@8kQ)x;USUtjDDI6-|k625%7 zJNTK!Q?gQp&l2QaSILf=Ox}gPW+pS?4>x%f{w?h#hv>N-@@+Aa(EPE5<>j!Su3|E( z|N03YNT8GkT;5o~wt3@v_f?+s_gXU*#ymVBHO4$pXrQ(i{1|c+`2t^yo8g$wk;pwn@vwq$$;QKAcvL zF^|sG#9R}@H{W!;18;2(EZr0GD!7*>7zszoZiv36mo#gLl-6}^K1 zAf^adqeKY4AFUzfYu>R|6uwG!yQ$o?1lnIL)B2HL-s*LBp5;50Bd{hWJnKv;nXj8n z1sq2HHQ}M5;a6ynjm#TzROX~=rMG()EOBpEZjeLs?b@9Qb(Y{xwA)m^H=w6-<5=8- zjNa@URW8MmW&=-pFK|?T;a+}bK(YL^_!dEFl@Q@r?CV8I{UX5hazQ~Y|A7WP1 zRH4yYH~dDQ?6}-c&l7g^tzUe0a5>N^Mnu+=rx(Y*JBxzoH~SEOMW04q14q{{uauBb zl`kv+oXWf5`SOJ*CHDbk+R0zZx+;>-Rd~~!_=hE*>i{K~y``q~3f5s&?li^jpfKs0 zFH@Mp`zQP&#e*OBdDiDFNFGh})#B7gw9Jz?*@Rl2as>{G$gGgrw`g&k`oAGmMTYP_ zKgrTq6Jww3vGn?GV^LSU+}*F7dLfZFS;-&$bXDa|yTf5FuvUSeK2fHtEp*BaJ##ke zrEvXES6dy9>OOuF&}Yp2*E+-x{|UO4F!sc-zP+k?5E5_x0ZX(%p)R!JP%Oj)*5Ve)Ii zRCbOXK2IP4=-k%UHovkG(Kab=f5`o>qz1rP^TTo_Atjycx{_scI=&~(I$nIQa&&oh z*B{zAlsD+ypy~4rn->{6sts7zj)K)NxxLRAuX(tB7<0Y8u@zr?ibJy@tj$X0om$7n zgC_B{_6q~hxKTWps_@hD*?MyM`oMIpri+IcNngSG4jWu}RuQN5U5VH)i9SvRlvc(_ z7Tves1^S*+)Obhc#ICN*uG#KqdSf`EtagE0VROy|#ROtTTh>DTI6o*@&e zu(UmS*?>1dhd8Tk@(~oLK!1>6uNu962U;D)`G^x*Dv?Q!s`-;%=BjY zK-WX`!ucU43lAVx!09UwRQH?LZ z2R0X_4+oyJ3zE-25r(`|onGhHR7Ris4m?rIDp#o+=sD7PU)?DF zmd@GVZd;jc#>W4!4$;DR6;BtVZRK&os16#84?La+tZh*DW9@8J4w;Jd# zjm# zt>~I$Y4CSB}fAVBOc(8pftP z7Mflvt>5EJ`v_i+LQqgpsKv{FRI4W(9S}hW3m>V3U;>&Lax4F|6{I)hP9ba&T_4O< z#yt^SUp~dbc9ZL6+kzJwt^oL7mbhu7G8#=uD{Km>tGuri$&5=qdlGAkZR?3-i!oV==}`TDgy=HZvj9IcKur>EiN z2=yA2N~eCSOm8VNiI!lKrvfduiqN(+36)EUkm zXV|Dj*uJ@P+g=8x-0SvFKWIc<|09hKobjv+Uedc}#$9Y%J8HrYm0eLZBg~2p%oLuN zr_wcOY|ignx85DIh|dXZy3MCK%aiJyA@fkw=(X_)KC>Q*qFv*wbR7-rb=#1HX@I2o;yBwR91vbyOZ|PO_QL$g5*nK4>cI+(%$dZry zt_Gg2WTo(s9ih8Lp)F+Hm2g8;H}mu$yz_s!Jy=feA1)4~Kd-!Zo&vbk?ZDl;BxGbl z=sR?TY;3Nz8Q4^3(T|bbu_3A86GO)SmPvIS|pS1p8Z9Cs#4r8ZfwIre|`go zo{Bgud}Dw+F_(HWL+2IsK!naSMzZT8RQsvBTWjn(vD`G&T7gT_C#d?QTKHT_ha6*f z2twtR50F}E%MV-OG{VflQlOihzG?$Fj&MqKK|omhPBe?|17U5aml6n)B4a7_qS&R- zerru>i+2B#ptjX%r^C(z+(mru**%16oDP+z>3M&Ft9dkl^oSwD5I|K9t;R@;VsxHt@cNqMPuXR1zS|hmV(F3xNt54lG3F$EGSICY8dS@{WyS2Fi_QMt67I~~tDDOlcX;-{!DO48u$inJKB z64S-j?)&&mH?0Kl(eN0fvic$vvLC@JP{GJt)Kz?3(jjO<6CarlzX`@CsSg_a>gxkt zEHQ#@cAb+-k2{6omG|n|%msgP`T~Ld!@vTwb@hC6URr>+6bblSUoVQr^t)W4)~uYr zJyyld?Of4mF;f0ry`1f$!QZQSccKDg4}!+#43;7yS&Ckr(a8B%QP1bFHDkq2`l1uvfve>_)fZ~FB|Zt0r6${l)&S8lV<3gFj?7z zcEN!+uJsCAcn)6{&r5}`Y3U?S6T)fmyr0yaRkz8GGZQ!qYwF+Jv9>;mqWY&VrCR|e zVg+exB2H}V9pY1}1*?&_TZST)^V2hlZ#6EA*5!0Ub+8Nze6b14yX^x`=EDGrOw@(B z-BixWQt;|;yu6l`mGFcQeJyVbJ9vb%%ZwT-z9}@N-W=Je7zAjd+}OtNltB?yM#JF3 zV?ZFiwu-FeDAa7NeSz!sIx#5LIYC7^XLi{ri`XlAGJ-)fYES-jw$y82r+txaPjNjj zimYOy^fJE)`Ymq6U{>|YD?fByavVN3F*sz(wZ`C;Ca?oorZ+C_v=>d#`|8m&x-+PCFP?{JqS!CtLB%z_9FO7?r@b~ayheP4>@If6ZQovG>ZGpl|p`Xd4 zmqM<=@LZ?Rs&*9Q62_CFooDzndIizlsypkp4o@{9Ab@QNx8mPS?&OPWv#l(DX*K4o zqm*#74K$#nE}KyGdTN_lLjm7{8`0E4Eg0;)hyi^DE+GTw*MWIjO}k>@!5D<$;NSqg z03;&@weo+ha{zS0^C&3cjH1r(KEyE=l4InWUpPJuhjDmqTz>Ln>b17YK1>X#AC zTU%2H8+{Rj3+-Sr08A(k*!TYBDFH+XBuy$A?ZHHyLQqs85M#VYqw!L!Imn-z?ns1; zp#^Rmfdt5H1G)hn8hjgAkR8_8A|EuA1ZW0zX0}H@n5=}Mv!CWRdbDow(7*--`)YDy z7p2Ah$mS0LM-&riODP%z zAYW8tbzKx}Vh;A_>AGx^Zk#`{bz=#L1*xq)#x6^X>+(!OPmRAEU`yyAcW!9<-c8W@ z>R(M^X<_5Vosz^ISVAQtG%h(}Cn)r4>Bq+>Z*6~@7rRU~akAa_e~1;2{(V_~)+b#f z-?*Rb^1RVMu(}6eH4xaD^Ur!}x28=RHi-kfgOlCKClc_X`I>1ti1R4w(uznlfZQM^ z0#J^}>@E2UnBAaMl>2SidfmTo1x_{G6`e5&o}~iAO{C6b5=! z<2D|D(;^_H$fAllouN)WNT=|^##|pBA}ZHQjMnxRO96vlq9e(vt)&I`))xjNrXz-S z8Yto8!3CSFQnNbBpFe-jL$nIv09qVvT3IO?`Ik&nbR9{AQ*TXE%ii8x-}OgUL77b# zCA7WR*jRo7tmj$Ex*RG#DzodL8V1UsGrf2OFJDm4HEnL>RwKR*)t<`|m@Hm5UmpY# z`07c6JI^-c7SLBOP>EKX?UUm2&vVrmA9f>0e=Vs`Ohwj0{-aX9O=I_u<3;`3B;|$Y6lN1#*KGcV@mg1xiS&g`e>F~F-F zeo!*-=4H9@qsPnX zYfvQ%&w-heu+TlbN)wdce@YrBC}}ROps$Qno+)iyC)PAaQ(`=_uiSO8v_v6YnUIih zbv`%2+RKXyQV(!ThyYpROwS8?7IYFs64uK8y|}0-eNh!E+wMW?wOfR+y#QkoUbt|< zU7U%CFcgFaRerj5AbP96i%UWB6U>j(!cjHKO>cof0JbTDBMXw&D4K0tXHKDEPn@Hh z+?b6L@!EZ9xu<(N;r5^engFZDj!JdB45S7`WHVl&p`^%5&n+~Zrq_Jar(l;sOQ9Dy z{Z1`;a6yTm&W1g4{d9anLS>S>bWf*Vr7&Lwrl+U1;vuO$yQi0nZ!)*;>)n71tOTxT zyeID?i>B>)n%-~keo1_q@uXvBR<^Ln`VYLRQWQM5T!gvDpTVr2_`AK0BpLVSb4jxp z!-J6wWI#XwfSb2}KWl==Q4=l-RiEW>UKP3n=u4}RH>9jH`}2sylM^;yczAdjupX+I z4z2=T+$)9l64+(PI0JK4R`{JX~B^!Dk)sX5E==4U09r&P`c374*HZc7Wx)thgWSjp}A zA41OtXRcuNdXoLC&+@Z|#8lZtmTml?;sZd0f@fk<4f@54^{BbfNa}pY?B8rk3^5&O z5T~6KmEtL-VxscE&V%(0LdVpaIN_Ny0K;zs^MQ&XkdzKSL-CODDiI6M^!7fesR+pM z^7hVw#3?f~vwjl#Tr_!9>bEy0`q>^_=yuETA;OiG%JKY?lF@KiNN#3+VZrJI@q!lv zqM$w%aRRW7bJ&=Q;rjrUG8U3T5EeuwpNk(~!ADbH1-l{;BLf>2Wj z6kPy|z#$ou#0`edTUyB6Lc8WjV0%8G=p=Gw1^EmDtTfoQ1B0#A`MD|ZXVS?z=^m>Q zI46};tRhL6A1Wl!SGdV(R1O49%nm|U~uW7rv2=h;rOIs67*TB z1bjwa$HtYKxf|m2^v={w=sk3IO;o_DAJfLJG{|PgfgQL<)62UB;As2H3)v(oHAp!z z1n!THPjz1{J?Y~1?pB)(iV zh(hUt^?r2FcgzGz9n=6fzaRfEr9fKu^SmfX`1A9ew|yrGW{cTddtNh=5PBeCGf41t zAn6Vy*$eandW`}77@gFZJ{*Ea9@qTWDEvp?;E8x?BDFeTPI%LK>%#XoUC?^Jd?dI!$ zomxuYB{({~blbT`_P9Q!&LkF-io^C22^<=uIFcW4Z*B^(^eTqI1wk4)WB21l&iF4I zq~ErYIF;Un$BVw&P*Yh42>e3e1F1nHqTF+v;E9|k2Lw3s6erD8h(?q zrCA_(wBpW66N5zEghhHgX`C%9a@s%VYkG8DPD4T~E&D%LV6X;8Mxx|cAE~j2Yy<5y zZuAwn{b1oT2sX$fSgP#%0E2#ue{ew<>Jnq8p=bt@z1AxoM%H=i*BNAhi*BC`Mu9*A zZJnYVNm4_etIT;s5Sl7f@LZ^UASCoGsi%m*6lv}&IMS^w;)m<=C&Xv;Axg=ZOBDUE%Z3ulElw*u{}C5WOzca2C4nrR@J=q} ztI0SC=oBm4@Q#WJ3P~30CvHNK&9MhE14}+BJoPot$E`{XJG>3?-dY{Nx%>PmxwqI< z$kPC=fHINqUofR7GyaI}-#CjmyX&2j$Qj^7y(la!w0a1OexHXSE~lZP!Gm0s5u!9s zY*TL<{n#}2|)@A#L!{2TXQoiDT>sMK?D-817rfYH@5KZF7?l+2au*ndzDap|kk2JhobC0#$an+i8{2 z8xC;SvyKFKx?vqGE?AzB3@~Je)(ueDA466+cvgE59QQs-1p{hwka@Gxa{{6`4c-wH zwfe^^=qm(ZSPZ0+yVxbAq)gt(V|KyEG!|-+lx%)^gu_|%Zn=nYwrdqRRVVD2)|C9j zJW|&e5)=$+ZpQdZXV!f1sG9sYz8n8yfk*soIX-~UjebDvYbgNaWdI~(BWsY;M%G;3 z;6m!FbGmy#0U-$;hp;OIgAMA+#=(YyVS^HGWL*N%4ifuGRAc9d@IHiUVa@Q1M61y# zztXSb2}srAKr-C$j&rb>hDVw5|{)aMWpzX@4l#^BYsJ#V>_vWzmJS`oz(6LVcx0Ys_5&jiP_z4 z7v?(%qOfinw+##s9zXTo>yYZMtz~^s1jxK!>RT~Pe~|26>snN(#vTL+PawfwnD9HJ z_zxf4KdWCU7cDn_ZPfy9uoC+H7OlKIVZOFYYz71)LkgA)@q|vFjD73!<1Gc!3&HEfB}=3@#3-Qw#3QvEpgpz$$Tt}CMH%5% zW$(@b=Y$Rkiw@`m%?2z*ckv&VsnmVcWRir{d?^~F6qP_jpB7xAi798LxqUW|$of^2 zCNU?j@&tcM!tXtOdNE6V5AL*&uYaFGiK-GCUrH_j*axW@hkNZTC|jFu9$gD5+gp{W zc%%JDyu)mSn0cq8NDO%kng4hCKpwal2udL^t8Z?!bd8CN>D3&gyKfef?Zfk(f2BKq zu)8q;8VDS4iFWyDBWT>7|N%z8qi;ek)R{QNO6at@yG3^PJc;>*C(L0r& zc3T1LiBX#c6Pp5axKAWv2@=5K*Ahi=aK=|up^c%jM7;I$Xdd%=DyYdFkeksFpFI7{ zf4vI`F?f$!@@ySN5Qv)FxWsgxjfz-ADPtYa!obkFx49@FD*8dq6n=<~sfqBM7{xa8iYgF53=0y(nbJD(i^=*t7b$y01ByK19Ymxz-90Qg!C)}L4` zpz>lwb$7rCONI3K*w}3Zp8&!KfUN>cAEpAy93zF-cXQ|_!ug-Mx1Kew^Smr%r+=Co z=hbx_r-tN~>dey9(=CrYer*^P8G_oW17_~)+f59huRxlKD54DsW+3eP+N~PPql4X8 zcF>o?&d~}caemZRof+nwO6tr8zZ#Qem%_`53K3g~o{J~jW4*_%doofkDeBp)s6>`a zSSxg~^x9=ghuTp%g8|?We#N0Rh(Rt!WPo{N{=6q7gPoTT1Ga^y{g&6#HR%AsAR{_kd-P2HNaLs zKd%Sm1M%a7jdHIAeI$xSM^FDA_;i{502(B=REv1Bbk;=mlHA-=AWd{w!+DtE_q7Q< z*#D$ix5hO>9qBbCKp_zKh0TE+t|%LEM*1OW!a!J!SwMR6R6)tKD4NFl$S0i>XIppcCk=? zOT#?AqBr7P^S(!u!!kONmx>s|m^|}<1I~mCm|)v^D)d$QBmYKsr}gmZvg;f;m0Ohm z;XNcuBuJ_fTwKSF95_jey3AcoT*VIf%i7kRx;xj+Pf~F4Oz8XEkR9fje>;Gn^~B7A zl)iYn-yU$^+YgsTQrmQRqzJV{mOq0}WmUHcUFCMb<_!qk{N3ElE-fX4<7gOOI8}v6 zTY#?9A(UC)&_M6U$jIoVw*reDfLF$a-PhM$>j8E$OL+s}6By*t^##a{1pVOz)(gnM zEN-@f?W)IVxiQ=Ot<35a(q19l*ak-n;SK?@S>OHMS(+$@U1wEL;ie-{Bc}j861D;q zebOWE#;3{@6^%(ZN{r}tr=u>VY`{02gV6V$?DJ*x<`@;1qo^_s*RSLAXx2|KQpM^Q z8KzHZZ1l`{LR$E>uo)&xRS>82&o9cD+UQE=Z~h(D^XuxLD}TlvSt_@tcJuqb$BoTU zD;|}z8VH@u8;hQ}TD3Z{a^rzZwW-PP7pE=-o{`cW$3E^Jgd`?wTQFwaR_X7bYy~(@ zu~^yy8XPwD({I5+9LTa@~NdUppZgR;1Otl0LBEw z#Ur6y3T!Z-pf-8B zBqV~B{H}t1OC_K+9Hw>}XM8t*>QNCzb)%{B4SAGs`lBvBED@QTNwkLffxVf zl48VN)h$41CuX^}lhb-8z3?;iX{5yN?eDJv(PM?VgVBKlXvS6c6rW_a&5Y`-K@Wl? z9hWZH&!ADj*$kVyzkmqXOrK_FT2R)7Dh_tLju7^h1Y6Dm6-n9f)Jrlrc(oGu!2L{vX^Z3olH&LnHq zSIoQf5TS#^F(Jc?E<`^dM@t&aa6TfG;ta&k-@M^f;RW^)= z;o=NM-ULZ^aQep?x=ZY6HO$i?#}xBQIHjT{K4ZhSA*vgqtiYZmdvp(L6V)Cs_OqLn zt!8k91;sXH9hPWxb`FO$DkY0Lwu2w47za06X6 z)LB$2pUMQ9A|@+hd?f--_(gIMywfVJwCxS~XHnBZNkHnI5dkY!t;~xLd6 zi!R2uk{6}Y6B)VI_2j;}U0(Dn9{>!q$I3;w=AU9UR3Bqy-F_7sgM|p@At#kFrM-r~ zc3$!u*`gaZ3Uh45TsvV;)Q@gscZ0ffO#F_;>t&T>^^b%oY)`OO964anCob%#QV1SN zu?k(-2#oUL^;O`0I@)pX(jG4doK^du_((qSmMs9h0i^T5amo*0DuIIZ_~pgoikOu$ z5k(A66g`*nsrbTUNSj7PkELHfr^%5F0gw-XnAn*8Q_i84mBKsSJ~>ubJmCec8+Ix5 zVc4i38l)q^fYRG>K)*qC(8zD4yu9y^fouchn*@epB7c4@xn&|;ZbgSINVX~%FWAaq z3cIC^o_IbqXbK%=~w)>>tRQHGsmqUn7S`5;n*ltn1lb?gUdfDQKTCk>JGI`Lr z1A4Au3n*m(bWdZoK7CP9*;1c5#i8B>8@CQ!@^R^vA*A>R`7oo4zT2FT_uQ*I_9fEzfP4F|U}zmMH=pM%1;_QR7r?^?y7K9)GRNTN^!5x}00b`C?g{In(Xh$^ zpvS(BX;(G6sLd|Byz@$A)MCrjpYO=nVa9;7VOY8Kij=odkOFoGo5UT8iw5fl@%$PZ z{yQ2Vt|spKZ=jHXuvJ?)*E#Z)W94oZGSe~lcV zBW`k1A)#&vnuGd&DY>ic3!9A!6&!3J>~B@gi$nVq4{^iWi9lt|&b|b&;a_s&1(uJM z0<%t?=hq7*8sd(yAmKLPunG1H0tvxjg8}M|d&RLj#H+^4M*T@EIOmRmSLxf;hM%s$ z$qG;u3+TZj;{wgUXW7I0`8ft_;BQkg9AJj1KJb*X*XUSPOlVU>x)| zB_XrNOq1N;#p?FcrLpAA-WJ;4Dq&R*i-8{+kIf8MeJihx+g)9EoYj2ku%D!oaXDpn z4pJ(bak-Jmftl9#?>*%A;PC-S)c3VTOD30nRsWhshSu(jutcp~ZgharO;xLx|jgfeB0bvs}EdAihw9Vvf~dseQ}#7cQ$|>DeltTs{9aS)jCZ zxzIV|spAY>{N3ijgYAgzI(8x1h1r+58v?ux_cncfSbGqI9Ql{ zhk!q9=lb4x%yXjgRR2k+#qI0S*FdaX@#}k-E&-VI`M0`zS3o$2iY`R0&vH8O{fzn< ze)WRLi9|s<5<)OA1VCQ~yav6o+%(gsbtd3? zOdIkcpY2zpFXg9acUsXeOrI4_QOi{`*I(?E)&G%2C5AnnlpDmIqJYL)o=xqd(!@M@ zk{TAGu6Ez6;U}>6o|_4My{e;}%;%Z=7QEmX6msC3^gZX)TjWHc()9tMk5P8Bd{_1+ z*7m#Jl#>YF#lE{B-Rws1AhOXRB(&SD^;?+s`f@6B2D%H>u>Wm66w_cH z`IM0A1oc_Lo9pK&iu|F-f? z=K#~!iUD0t(Ew}$u7*gW0-zeTm*XpTT_sV^);LVi{Z)L-8DC_&M^y_v&4-Z*gQsQ) zUVdxxlu9Ulwd!Zd$_x8P~cp zL;er9uEc-KU->fjT?Rjw=NEpGRDM5T&BhfrXBqiYl%@@y^?Uf`s2{>vQ-~g`On^@N z|3wY@VLxjR!V?U74jAEC0`br#Vb_%t3wy@-4QzA%j>^NVOWT5Ak4cN1DO;KZ|>3$s!qu)EEJodLxGG4Prg8$GT^PM zc6Nmh0aj}lr>JjUJn)-Lkt&a)$2k#X_EcAvLd-?<_h-*q zLs&wX0U4u7R#^3ut>^gK0Y~-g9jZ-!YZp-811j_9XTuu!C;~Um+Iw+`ohsGGu1~@F zigIHxwEDp-1N|CQLT1nm5O#yWBSY??#JLjY#3Jp#!<09u1uyi$12J~b>u6~S8zxPp zX#Gy^BoDqh4bT>b9by@fj)I^HLdC)Ewfn>bgGsZj$)zo<-3CGzw7pa9eakwpBycm z`Rwc^Av>HhU-Y?4Eo5AQ;CRDPd0uF`0s;c>X*||%}Ec9*J8&PHLeEj{N z4V5qd`2)xCz@q5C{~Rj^iKcb(q?}pLI!KmIdP(BcO$pIwY$P{#{j~zv1Z^uv;K3R1 zKc(4+??viX;Urh4Q&TU2i4uw?C62y98;`L`l82cPNrU-qqsD^#J>)yy_}A?{F+(#5pxTM&Q)t z`-EG{c-u-7TLn0XL&{;Uk+1j*IxhH%WgBufagkX+UG2Kc780)b7=DP`USnhFhRto> z;5`ZM1afo|686A^kr9r!BRr~K(-1hMHF(iqCl<4p^7C8?rf|683wPtn%XAXc9~O;1 zz5b})o;us+5J7_q=lI?)7)J|$M8po)q70%mG5kn;3Mi58Xk)T^}PRsmdBncdUK$ILh_&!S`Pu{7+)R_M%_I)5Q6Z= zXYiO09=XS#Gxgee^V24KU;Qc;WxjA}r9q8LcOJax+8M9c|5ld(IHf_vS%UEGCRmDC9;xaX0Jmx$SCVb)*~7=DKaZ3 z2k+;J^PqJZ@0X;e$wzwDCk!pXsPWyRV?yfGdvBwA1I4&pJQwfPT0SpgF-Lbj79mTd=qU(<8Z+Xd+ zr2h``7AL20N+7xlXY-vDuLHNqb7PH%R)jdYTmQ!!;Z&o?0G9{P_fSc_KrL}p@cR>k zh}r=*$okIdN{Waa8FaY=BKDw`>DPO8RtN7r>|tZ$qsh-5cDq52%+y`@_I#dFsQpxK z?N{m-YNtV8C}b=7LzYLB&Y(nkw(RTfuU!0jSZVv6S=xsWn}HZ~r}*5JE!&%;XAQm^ zjC}LCi?dM&Y0>QKvO>dVpNes;vuF%fi!%J5Tmkcp2v<_}buOVEJDK!wUrxE3Q63WM z!i_7g|I?cJ9*)=-C>SX%ZmopcAHL&Qwro^GuI5{1nw(iKrgso-m=}lN?c>oXf=&g!A@nSpn7otIx;IhED3_#>^h?u>gTG7@;>A?F5q4`xO`KG3~Gu5h- zY0l$c`>p4?k5)L=t$jrC?V3=UymzrQkmmQ1+InnFiOkoQ;6BTFE3SHJvo_!Cj~nI# zT)T|%7Q*pfqq@|gYKx|Q0WoZ%V*X&?5PY+JeW#hyQ#{H(Jja7tF{8XBsaNk3SFyf_ zAq5IiX7vx*Lzoh!SX3IWCCO)%yj)#%JTlObEWSH_`|SEL$PWl`LsK|@4X6B40gHKT zeQi@ld?_!>YG^07FmhIRKg*-F3*O$P@-28&zh1~ohDKvVOX-$Yh4vZ@8YU1_51hy5 z6`g>ixzc$Q$<*eF=U^yjosyhhAWQ^jdw#d(=Wjk259xMsa|?e@BZX%`0rmCk=tdj?4|M35i=w$o7%0pMK)yI!W*k(=LSGn%OF z6gD3<+0t;!>43tkm=<$gtLu+@7C!A;oXu>^9ym)LA-mO`kC<~G?JGbkVvP#23c>Fy z96zQBm8So=fprbuA-^p;`JSS9p#+7j&94?!UgR=r%J6HvrG(y;`V83n^$Ou&VNQ-; z22BwZ$zxA%nrv>7vBR@YJ#}Fn6q(J`RO5oO9iA|VzZsg5E!EL{h?bJG7?BN{jjr3t zWAPpa;unOULW3z8ZN5>nLq0{<7fk_N#7T0iSD@sftDs&sShdjBkfG9Tl61 zR#_7=@$uoKsf*^~WrEBVk&YJkqAfcesyVXTrA6Gys;1OYvclS#<8-K_-O7d<44diR z%loEk_ut;TYv*F0)7U=Xf`E zB0>P&RF5~SQkJq$wqz>D>TT~FBDpGWJSw~*AJsp+Y7?pw!G#m#C*C`T;|xp`_r|c+ zNpHotmnhG$vvlqZoDuDNy2N<%E5h9mC)S;fk3&?MHJWlW=r-5KJLx(;iyXf(M`Jbtx_> zm)0x|H)Pwmu^Rls|3cPwn{6o<4$8jZsO{;nRBk$5=S|MH+8in$lRx&%e zaQ=zurVL8eI#QPjyj-Dr#J%f71eXCuPkR~xDHRliNiu!sZ`fa(XQ%RL-`V~_kX^XR zL?`dR@cB03aZjbK;ezZ!Hkn0b7WeluUyI%9u3)_Ne(k^;i2XcADUPHL@taW+3g#vX zn_1+g!*MuohTJnX?Cumh=m;wfZ`?bLDM{H}0AFbB{eDk4HzXH2Zv|^dw3h%Ca7HZH zLs&%ePTy7b*L+!I_zA|)=BfG&uZ(yVqmDGIKHxQgLQrmeph6&2#)P2!TSK=j#Sq@t zyJcmZH*94!S~D}rl~+jRO`qyB9c`?yB#y^jqIle*Fd2_&i;_zh-$r{r$#G4W^r!pE zXGBp-n-;UAt`%en)e|{&If6?pusC^zzTO-U4=(O=!&!qcOt zDBr8^uY$Xy>q?&5Dq(*B$?Uw5Tl2hy>zK=rT{|U!UyqQNGxMIh3SAAvRi(?}rxGp@ zUcKqn$Lc_xOBV)T{?I45`8-D}p9y{8yx9TXu-fWt1`LD-g&>FVo0}OdE-vB*w6b$i zSziGiI^#A63kfEJy8C$ioN~FkQjJ^{Jpc%4_D&Ia?ra$J;1mJ%yg zh#KpmcHYnOtgu7$;zHHRpOry~+xEEuMAB}$q8Jzy79!V1ucUPc~}bulFW?N35RFX7%n>F7qHV5 zcdy4iM*s3nDK`NLTi`1`PX3mBLF;7}EUeCO^c}3%X*jTb6BtaCDH~XoUYv^gwGWcJ z{0R&RP?=lgyFo7uS_Oz2gSgQr4JC5i-1{su1}GH{&pD_i~H73!y$YIF&d9vjBX_~wML&_FaCVB@TqF)vJ<_j3o`)Y*Q99Qw@kfk9OPxV^W=Hra>Fa~$`+F~L7Y^x61tJf{xU9!l zWaNiX*p`X#LX2WfoscP&x_S7(`+jrO5LDF*w@Y-qe}H@ zmq^$f$j-2}G4r`vRK6_&RrV;7*b;h<%8Sg5eEsHAZX~}gG76sM8dR6ZkWD}ZP{JHV z{{?{@zECyrb^n6;J%LR5blvWYyvlq#vQ!qh#CW1YyJ&eOW_~0{!z}Q|?Mrh2sR@Jv zcRCRYi88b0ox_C*yOMA)ZQ0NqP5mjWYnR_+x~Th5VCrOa^#!4<^ zf5Fr!s<-S3ycr!5NMjmTyWsBS;Xd!INW)zkYGcC}$mdr^IkXW|tWOAr`YK@^K>wCMp5Ko>szJuHyp z>2LQgQAL0p6}qKvM<7{y`I{=cYSZ{TL4&6Y4TfZMTRRlc$4(;5rmt`xTll9lJ?=bzc;H8CrA}Af8ZhUb?>ES0AfQ=k)w@1zlKHGb4 z(?_2v>x~+WVAiFUndieWgF_*l(Eb--(igdVHtho=o`l3l<@vo1M;yG zM`-qn>xDKa^XT8zfS^crLyog*=br7G2oZGR@p)@kQZ1ACNKZV`c6Ho)UhDIDU&*F0b|pZ#sSc*_m%A|8k2E(6}fS#N@gLsI70idUG>9Uv%;i#7bM9WXJ%ke95sljS;-lc_k!bdGt25NdviLKfP4aD2fpiiD_-|He;-=G z)m|tpRtmy#nrBdu=ez*r;y-~|^y90`GKAb2lV<*R_Hj{ReX_HPXK2uE{XD402M~Z{ z+Wdi*Lb<$dkT&>fuGm-00Ii(5aA%m)8Q$vqT`e}`Gb3X)&jzM~C_k>dKFV%=u+TfP zoKTcW-^Wo^aIVc%NdPVQ3}&X%-Kr|=n2w;;*ewu5KM!ZXz~*S<0jIYpDc8MQ+y{j< zicc~JY<3dVAEwGE`THuKp8+$b1o-`bjAtuXzQ)}*QipwBf4$NB!hd8VsVrfIkNM`b z_|c=z&RV_U&l8Hu@P34*7xT1lK*QCpqn`zlA7MaB7Itzzgy+Uz8CS5E#xWM3mW z_)?0pS`4e8_1%hxqp~z^GPKK@*2LvfcMr{-Hk&cUM=r=P1G6%W0@>;_d)=JswC|pu=_WT z5wj&4GdQ;4mSAGQFAwaH9;n(rF8?Vu#-JWPH8e6H1;j$Yv13NWn=_G4DKaJ#3Pb!! zRGtNYm6Uw#6b}>8ou$hTV={A891n*6=t=jPsN#T07nHoUpRI*9zv;5HzDckmQkVPAU*pScNs{od zC@M>Cw9MDu?7MfB36Ia)>*2>CE=k^putW$Ed1TIPz!ie&7ZV>`vD)``wy@kx=2FoQ zs#z?Juunb4vO`0Sm4~9B_ZI3XR3d7p-Y+*v$-VqwIZ9rn1#@go+@JPnRUSJ8Vh;?r zF&D%o=;n0;wz%I(Kw%IGfontqgFX)^Fi(GVLHmwbL^^_NdyGtSgd=8yV}rQg>GW0+ zb}fizb+erA4eK$pQ~r(OUHxV{D_VB#(G`t0zYkYOe-5wH-kxZ+V%ImQ?0b3jnWEu8 zoFbQKZsc=$N~(V=r&ZOcHVWh!A5voZwVIM>aEw6?E_3A(7Zh5`0e)Hyy`VW(V zZ||Zd0+cm7Vs)3lJ#jk6$-6NSnlsZfr-LT+LVvy`z8k^8!HgivFcbkf5~3KAs+1Wv zt`3zrOh13NE{bXQ!i(9V{F3;sx^DRR@uuPp__SyJ?+@jAnKk6PSaZGQQ?qVJNWef2 z!V-8Pg#25^vtJ-K3NMWvFh;PCsLDVD4@0j3exvP~W}H@EC9u=~;eMdGiR-QK)N-Iu z!sM?j+uDbx$4uxZ*Uuw=D0ygTO0exgQ|3WAugALK=@gf<-MN%(a(+MiLO*wjk(`{| zcSe52~Cmt56zQ>zq z8AVpB7)A3rugXtgH?7{ObX`AVCZh1ImwH`sa(dlb%JjNi-?B@{7kP5U`7_2&AUm&L zzn1o}g&tqL4{zUVzdx9aOT3QnNd*xO?h&kIFu+e+08@FU>wr1lHaJt#aVa1&B1Q2} z)1$rYG`v zTGJQ{=d;G&sZZFCF{`i%d^p~Mn34?kH(;}V=hZ$P(SHe=G_}xvqB;uJ02nq4@x?l-U_P@TgKM_T%Uy zCFCF;;mhHdgJ4z_>VpMeiq(QivXWA$~(FZxInZ(TyL{HrMfft@je(SE=>rZ^R zZ7gA?D*54>Y8dnlV#ZLkJy4M8>hA(!{f4-qVY5J64^Ojn(2n9$?MjXHafajblzgMn zb!ctS*SM<2FO1Cj5{7NB*M@EhFL)X_*qeX0k{xuld+Yp8o6BVU>Y=hd;@ivlg@2(k zo!K(no}K&Ul9&fMKx*f910W#_AL~_a5T0U{%&9p3dT{rItG5J2jM!5VHlf6-BT&D3 zeAV#xwd&C)hIunAuE+F7MP}L>-W<&fMZ+Kr3>vS4HTj=xem!tltyYL)AX*^ni(b%J z9oH1azAjhyxZGQx?*sR;pjw1d85-H9trN~e5M3DD;%X3GO`2ymo>9xM?S4%pGc72fnv=M zx-<8>e-N5KFp1XZbh;CTLw(C4Cv<{!KP)WPNSBmNRJx7MNeG<$O_64^E>r0}w)1R} zW1a7GCM8~$lD?;s$LwWVu;Te$?FF6>Kot!U+i5oK+-LAg3E6rx#M%L3H4Oqfejg50 z4iyP;rp?2NavUtyKdcE{g+clH1 zI3{IONPI!ygNrgs^y#O`2eWH#t1g>#$m0;hk^nFV-fDXX2O?Y;WEo;vi6n9uV>ka3 zrC90nsuT#eSOSNRyb;^EZ$rp2rMq>V$~}W)`Tueb!Qm`E+5J_J^y^8oaC2;!Vo1{? zu_wF%^oIFet4t=S{)-Na)BUG;7gkE2mfAo~h1Uo|hmNZ1iL{uP+3NexpX8=It1M

|P zj41_imVa|xpvIz<>c&5>(11Cr#O^ICIy;5JV&$0uvmrzp0bRy&qsy!jF8QQJfh^@V zcB2Y1*|N=bmsFmAm2l%=ao&TQPy$&;L1^vAw@~SzX(d`y8kjEjd~^{`*@d3gK!Qt3x&3gUByYVmZrLQf8SdjsRirf(9f zyNox6)iPX#HIUfX0O(oLr3_#lv7-WBG!jGqNUHTaV45FmH!~1>XkZ{CUg`EBj7zwe zZ&Z1=#R!Xp6rPip6P(G6khI--`INFiJv6oe`OK1`yjU+RBqt*2rheKGckrjc)9gn z^pPawq`_P97F25U5HhYAuTtuCbaYCbJH(-qw?(xBb{;()F~qZO*Y3x;$7d?T0fKmX zdN%pfd?V@sq7a^p?$hS=n&rLj`Ojx$%@WUwpOG^?`}=Sn_X2~M+${NbC3hR=n5f)Z z&blf4U48W-!IbG}v$P)gsQz7da54#0p;094U;ax!tm~mvh;8t(cz7ZdYkp3QOdixO z>9ahB&03>!nbla$((L};NuCuW#gUzzAD+Ud)aI1*WI*u7{Qdy(+S8Z6ghC47)#RTb3dC|+=uw5 zp`m)4lr!TD(cDJo<&}rHV%%_9{7Yas^yhQ!gPkxW9)E13-Yh5w1v+{bC|`k0y+QC; zPn^Q~k7J3u{nlhah~>XLmst<*$PCsI*{z7@dv@AY>Gfgv)zyvL6#9`4pqw@oKluN* ztvHhSpmTo}TwWgeCRyEleLBUn=q8KGg$~!5yEZq_UPEREIXtAM-(C_dUfjW$;u8JE znZ_7|hL}z1YKaCZvu*{$F8ze1=psE^zwWvvm-7Zq|DC2Omn+!TgqSf2d^^>q03k%e zKI8(u*xZ&gr{72cc~Xb24tclOA5^NUU#}5(%;5&N-fBr-AiI#)Ge3?K6f^mTixg#r zkX*!*N=4;d0J(r-M##XkyBmYfWPI@|T{Lp-m>p`nff)~UO_j4%IR;168lvVA zd(Zx_3fK-S&WNQON}=;&iF(9V48rD!@@rXs=n;J7v4QhBKHvtSZ~Gl|ja7&LchvkB z?9}n0&(zN#ag5NqyZXVm0l*AixmuY4B>Z8JD^(~)?#1CCE}FKRrqb>Al8R+4R)3Sc z!?UP{qEfsM|HkJ{^e^7EN7=cSZ$zlr@+U8q&yIWJd#e= zm^c~a7joOu!lUD*ED)mFwWAvbeo@OexGHy!<_og%nBT!d^Ye_piO!e7mB6)G*Fpb~3} zh_zc-SEKlxVY>A&0m=O6E{2V(8YNiep`f&2JX=Vl@Fo3W;;Qz6W!4vBrhg_@|x1w2q3YL+9 z2p|9`iX4<#=Z$CPUkycky~y>39K~hA@b)5aMS}3+ss9|YCj?C#R={lsL^^0~`l)H; z!m2iGVv(|&&bQW=(^!|-JVLsk{NvA}RkouI$(Qs?PwEuR?M-~~LL}8hYk^?HJb4{q z7YK~wcBM-&r+)ZM(|n)wRHH*Y#I(Wx)W0w!f)bwi{DKpmBSONp=ty=|P=K19NsB=? z!R24TSQ@FxTJgjY$==j=NL=Ns-jmv#FREdliVO*St#4re)FgE8l<&-HyB`h#uWd)Z(L|sK6dgnh0A&I0*RZ`F zUn`#0L(;eB^}H$JkSCT&uu-;!)(pHY*Zo(mi1ufpc;&AQVPVVU*sz9()Y-6x0Dw6Z z`~2n5v!E~#A1$%oNa@FeG6sgA-;O~y2sewp;Nq4_T8jtqvl&?b<#2yKaARpXZ`VCe zHT$NprM*i`X56ZjAkHeaeRFd|y!%bZfU$r_CE}7q_eh>ctY@BS$ja@)cX9W$SGU=f z5Q|LCJt18pwhcm0NYV*(^|xW6#7JIAE6%T$na5`~`~`|OGyhLJ3j{MygfJ0%AMm)* zY^L?uLO3SPQ;YWVtM3?pO3IBs)y*uA!$gX#l0Kd=l+?J#bu*YvXdr_B7~grgaB2S1 z>T>b+@oF=px)6pT8o;nYUX{-w-#q>zh2l!{E2i{xM{j6~+0CIV*RD4f%l6IrcK}JQ zI}$xmhK1K%uMg1+{2R7EM3-;RMr7rvV6!Gu8eK)1K3z+!vRie!8+mPyVT=FI+sUcW z**a9??p2$F{U8+f0BI#P>vVptLwqHlr9cr}!Lx z{h8!q|FgXz9`&LM{52AL?v*Zon(5{+vk!Mes3MGa|5%qAJT-XR()7o`amR~jMa_N% zS7lgW{^eTdZc+h91nMEwsZ_<-%vFbuU)2-)fX}Du4ays}r6OCKYzu7;e1c2|7Obz@ ztyB27t$_Web_uNh#5qFdihZ&Iq;dGHAWWTx>F4qG>lH(LDQSl|KuiPMyImmN*mqm z`AnrRXqJ`t(Bk+rEoIoaW1c$Rsws(p5eWVIf=0+O2S75g)h~8sF8B)r*Cj#mA_n4blOQ^b7rh3px^#NCmbiUhHH|Esl(6s_S3~b8NSDiDU6&?h6xO8#T?oh+v zyOX4{2j6l!A6UytTrM%G++D@SEPrHMNe}}bQ1o-8Vquy>SBhMFSq;Q8r+qiaikx)L zf{sS|)XoS}d^+Syo3%3Z^MIEl=Imn#VI_ylG-)r_xIWq7z_aXYZwnj-T7w|qujVjk zB$_RjGVq9<29VVP{|D@egHFu1c&>z-eq3+us!&O38da#eS$^F&jQ|GRkORv5x^sOug4W(Am#hP=oWWCNWm<9;0Nh^}bw(D@W zwo`rBJ6qf++Dj-eP`Xgn@Fd}ONall(+oni6ydRr~v~LymGE)MIK6ijNIIbxzc@dl} zbo<}VY%KtHh{hbAE=Uql5YRFbO}anQGKURd#6`aQHYx89&lkS)COvv9D{j^r*Fn-^ zL{mn*n?#BT9PjV5FCmi?REdG65#x4b9Ngme&{*@qCQ$st@rJcW>3h|>kB1)pH~=^Id9`2e8;LNlZ%LCD_mi2~uvF+X_{itK{yW*j z_QM;p+P!b9j@gn2(}V)DDG^U+HXA)!v=`@y$fcaCiPf>_PF<@Nvk6IZ$@(Rodq9OD zyapH+P+4>g%mE+HLk+&mD5ZHM4Pr`e(^|xE%Kd7u(fhvRwYXM2a#A=VvdYR5x&MlH zkQm7Nn-DR7lq>O%X;ALg1Q||dJ0PPIy-(H?8HboB!yHHvP_~-uvpxdfLYU60;w?|& zHBwbrxnm-Dc#%Cg*B2?t|4UF&>yQW3^)wd90J!nI0jEd*m~_3IPnvQCe9oMoW?A#3 zl?o|#JMTn!>)qumlH2A{_O#{Q&Ol2VEh8XIt4vmCWf@B(C;uPBM~Fb)3}2=rOXe*$ zuj-&{+kT{P1-;0jJmmr?<}oC0{V#edXk~F>!cnz3f%=Sy93CPfIp9)dbBZQ_z*9|= z-p9D^EEp+%IGjJ)c;Rn^x`5rb-e=}gJ1B-VkcUAUbxaykF#H29Rw4`#hfs~hbmbco zblOYwY;#)CW*B^a;Jj6CeWEoM-v;+hc^r2Fp|E}ryPkArQ0%A{qXf3}NS@{Lhhz$S ztKfoyf=U)S2bh5E(R6_hm;S?_Y%DTYg25>_SuliUtBB;4&Ks@kbjc&Y5}|Eu5EA@` zKgf>Iu1$5s0xAc1iNR>hrRI96MLz8Q5enP;a~{>q8grITFsER}iV>jel^;P%GX6hK_SuaG;`jtE)Cvwl z5q{8y`_qF5`H<=OSR>aoOqI?^q!Z~$-0t*VA(lJ9NN@&T)`Q;}T*MJ$o*&-$QmcMVQ7UK?_bO=3QC`ncT zaS^>eLF3r{E&|8!QU1DlSpDcL;hnvy4Fbg%;vmQ1)vg)9xhp3njjNse&E z@I=`X@f*mJ2C$WJkX<~IMSPA_l&VZgq%dktM~bTos_2!cxxWQYi%5z4_oEJJHbxt? zy}P)_HzB3bA)ju_%Pqy%mZ>k(UhkFSsA$N2-N^a5Hl(sw$Q&X1;;O^3zYO!0aa$f=)-6 z_-h3GA=%7wJqp_oS0^Z+-Lc@n@*bG@JR5Kle zB%8R%Pv~`N5Un=MOSYJ_P!a&YBR`Eui`m-1FPY*mpnm70yx9#O)3+Iyg98|algi@$ zsIL~+bA(6-ZVLiqdWt`W2x`cdwb(oM!g~8k<>DEtVSY=}-mPncG8@8k_!<*WKeOo9 zOYNZzw~RbwQqt^do2ZWsw-6^YeYxLMWnwFi5|HxkIk9QE3@-w>fbp#DI`fyriRCP2 zvws+ghc&Y>6l?Osk1IlR8pQE72!amzElX0RsZMi0FPbX^`juten!4XL*!V}x?5G3n z??U&W5`p}dPfku^xrciLpHAKtkbJ2BW)H#ip-=OR{5Us{eFtR82&&CgCB@&$On1Dqe}LGQUA6S7>TXq4P}3MzHm0X|0F1Ixt<*}3NBVU4k!|U4?w<)-0(Td&=2rR0r?I1*5b)^_e(E)L`(nG^ z!k4MQFrqPp5BtHqs4aZy?d7|nQ^`-ZA&~mdK`Tog#=*mX7SCh7_`vT^9**3ZT;w(6 z^7ihSp(|xeC!SC?IouNzk_px-K8qd{_osA!Hd^~+Ly-%Eh^_9riGCge59B@*j%AyF z(J}GzkX1RG6v`Y}i#Ix1Dd+0udtcS1EYKh}X3*3&=@)4@+&i_WENi{66>?4B#13_s z?0rIv+sO4KDnfld5_G=?F1nFTljGgnxR8V+?2g*IRB$SU>wL4d;LO$;vfI}O_nZ?0 zuj9Pa#4z%rXagoDeg;sSV0hVGmgzr{b__%S0;rU93(atK_SJH4jeoy*Ze7;;b}56| ztKr^-@cMy2BJEP?z8N>eJa#>0FXnd};y!K42o)y}ap)HY*n)_KcE&Wr?n`t+6HKh4 zee%T`E(sX5x1YK)o<~fYFbE=E_n)F<=-o}iXa(B2z&rq4-NsAVzIaIVzui^uh!RUM z<+uK$<7Fk%Rng-61DMlP$hiIAGONxSLgIFAmF$y?>C${5c; zUHYOyFIB8Uy0P^IZmWbYr0-&sX;@nv6DN$YY*`5N;NIp~V>ZG9X5{`LBHQ(KG$UGj z9I%T{KQB#Y8?oIaWGS1|Yb3sp->r3Q&X92%T!Fwf@uCyktav;%s@xkDivZwQ+AKCVq#< zZf!3=+kI00aK@KZQhR5#C}pyFs&xw6ZU?>7dG~uZQyyKJHBmDVWd@yWl(abKDy6WD|cwY6wz~Tq~e& zKy?`5*)Awp51S%EKX0)Y@B4oy!C|1Z+jzeV=A>0`=i$rVT4tG?^m7EUjTOa6OE{I zcQsmJVjX)Jh>xvUN#U|!h(dm`O)LLw`w6XHM3d3K>8O%!&buLn#}fe2z#YGz)lg); z?)w$Oy@@SGuhsFW6+}q_d>tPp(%%ej$;VfW0WlD#ocq zwt-a=?td-(#?S`&F2N8tmyC_*Xd*Vo--m<->;c**{0*R6kO}B@|0k+}L?;bfi?FjL z5X5pCg+$yEl&LMuMJR&sJf|4MU7%s0RPeU3o@S9ONV;_* zf4K3d<(+R4-?JuET)n3vL}M&9GQQjwt_z@I%=aNTot4vy?@Rs5S>LPAckGDL=i|>k zcL;#~BmztG-Oy*dSJFn8jNfgKt)F=-6UYvptG!jSb`={o_nmD{NvYmSgjW;5;7`lb zE_mAT*bGJPdUS;Gn9lwf+I^8ddq}?ud$OJLQ>LR@g0*S0Q6hZ>wp$={0J-x(nU9$R z@SY|RKQ5f+Fw;qxl< zdovNZw|4n+SjDyfq8(HCt{r=WW)+$8nZWI&ftlmQ(6#srf3kFG z6E-}xL(+G&xEshW+JL#foN`I7WlVMyNylI}E9hfqy?Z{fY;z z9ugc7ItuR7Ccy9Y8HG&;6c~7@>PM^Tff{{7_tdrl+qAPez)VJ%fY2}Ep2BQ`-uSEkoDqSX;DA8m1YFjTZ&)Ne z;z+_Z?fo-#E(WWwHe?u%-2EYxek#IndYGBvAg?BCqkQwCMSD=BEJUhMAZ~1=NM@&+ z8?tf@tP^1l#NG&GCrVc3(}q5rqW&xb7L75T?{%O*qC2)MgloU2&m zvAQq@7_ebz8}{ zBYE{3Ca?h(?l#fAL6dbZ+GFzY@FnXL{1r8dRF?=Bggafyp-c5!*j2;5*pn@-6@^_< zND2ww&amZtuF#ghw(9Vyl5jq2=}d1IHN9nK|0GY$SwyC8;S&B~Kt9L4c+SGb%-c;< zL;O>ihy7C{<+Y_W_PdtiXF_WuaJdp)|8x3m^GS|Mv?Bdj1CwdWox_LUr*b||W?+@z z0s~qv{EWmRZ|t`LcVegupwc?pZ@h#YD#=-4KJ*B9mqNDVQ*V=V0=VI3G^ zDe@cO>oP54uyF`8z4hVqJ~z@wk=w@D!(owNL?1-gL#X2j*Za5u9(0Xn-2K_0{YJHKn{ab_h%+GR+7~S;k@cWydL6=bqJabE3i2am{qvPW!BqWid*s zv+Dl@ica#F`MWxUHl>}&tEDO?R|Po)ULgO;RWgwii;MM439vpP=}P|ddV%8lne^5q z{$Qv`1g3Y7fFCCp8gx|J|4WBIsQ32}_7dagvtI1&&fi?Q#C$f;iT8$W|Cs8^{y>N$ zrY;{L@WShWQofXPgxAE^MqB*7`Ytp^jl8eqc47APa4Xdrm`<|!mvej1o&A};mr@k} zMx~SsBshkje?kx-8_mgJz9}@z4)H`;URGxEcTo=QYL1K15Mg6W$M^jyFiQ+Qf|m;E z0eFbS3K*LI#4p?eR^^1lfiHe==}q|KIA?GsA{-I&nxESJ&vwToy$4d4vL#(j+&1d0 zb@q2y`N)A^AdiE!k0SXW@LvpcMHji0h0R`Sa@ZmAr=w#P_N4eIZ>p6|i@1GZd1m~? z&V3uj>hs^+B6xl5xyomIOIBAa^(#u&=yrXj`@koA&(}HO8O~#hB_?HlXXvLszYls^ zwS1G6buA~_>*iFMdLzXz*Wo^TDmD-Wd(X&)fBga2lZ@YuuM$rM(ng+-=Vy2hgz^e- z)vRT}klA6Jt_*}U=x;%g#*0($>Q$F#oMYdT%Lb-amZzX0B~XWb4hlzF*RB0-o%b)^V@x#2tX<;h(Cm+ZLlXj2E<+B(30Kjyk*V$(yV11CZd%c z$5y8O%peP>O!Zd~<;zT&-+g#%*$+HHaUqv|pgF9B< zSiRK)nm6>t`hEZMdWVzz1Gye+T!%6kMH~-z6)aCgD!M2Kb^;SSAAvrj8puT@`abIl zs15lo#_55uZ@r@t{x0eN+5CsNCLn6mVMAZ;hi*xy>jXPz&O#ZkzxFDifnm)%6zKS}Ks29WJRT>DSshlZE_(W6H}4WWqY^8qjTikA zj0U3^euHN&L_)0T(SB@p37~OjKkS~tac65K}v^7_a$igfdyb8VR$koSp-}n903jP zFIzW-ZIBWW`=D2!!y!TLC9#+X%`nK;vPePm-#3M$8i(~Af>l+yXa>1qhS>zgb`jqU zoG(wBImZBSyk`VOo|-V+H)f$hk}F9S4!KVGYIF1{d?PFa3ph_@C9U z#k<<=O5|7H{O}@w|A)PWUuBZ3u`~g+ZXG}Y%3yDdWTNFA+RU`Q$LNaoJ^t73+N@{m zd0KBOompP2?|VjGG(Gs$ocgEh+$pKJ!vjZZAkdb}q#1rsAK5RuseQWn8=Bk)Ek@6@T#CA;;v=lC&l`V8 ze_0tRi|3}c-l(2s0U!yBl7hu-31RiR@){G_18rG~zQg)M@h4f2-@WDg@{!yz%Dphs6iasw93adl&p850e&zPHf)CSjvKZnWaHn8h!`acbv)gjdizezp)F($8 zL9_fxO^5+m3GFFyl#mPG855Ty((^IyVs{~l*|4MhhJS$hR%2}zpXt?t4C`HCy#*aF z83GCkeID}}1{<#**t9d`l7BT~)H09`y)m=vG`G60vzV~1zB5EPP{r=jbJXr%aFf@m ztn|FU=%+EWNK6}nUVV5f_nVvekSe_%U;Aag{0I)q=>Uap}=8*wqF&lMl zy_0}uWjGhM*ANO`WDaA_LxcU`rRGD65DX0DMpuRPAm`A0IFNd#`-yl;Y;VarI_qfq zQr^v)l}9){UBT*f9aaD!ln)};fCkN78PB4*njf+Ks&CCqP&|0s_;*w{xeTNTq57Em zlaa4;w^D1?{>cdhR5enc4j1SI@887e_Fic?LC-au%{YiT=L2!`@6k~1+ig;H4QwTM|Wg} zX0+CKM^{8-DmLH!j~XrhlwEa5b?xvA>P`v4%;j9DOEX%~fjve(aWGC9!6PBR?hx*# zqs0D7j#A7$=vi@E5Ql(HjQFdo0)zqhhZgIu(@P3TYiW;R0P>ceT_u{WrxF5@MY4y; z1;B04>08}7ND9Rkq2Cf`EMG$8_;r6e3-40fi^h=))a~mHr2=u1^mBaoR?A9+^7^t8;0lH1BmxU=4J)k`lZSD;urcwl$t+0%EE=?Y)tZ__6iRw}#> z2$?YNNbjedJw56o z5klG85=8c{AU7TCbCm0|sI0QEH$RfL35_~&GhmP1DhA|@x%^$~L9-6gcL+veP^P!Q z&LS-RXY}ho_?&RXdILkI4@;;z`&HpUfiU4Dc$81SCo#7odmqcITwY1vuBom^oB?@# zR!@!4y-lQ!%~eVfv|pNumSuYz{&HEHtSvniL{iL4;d zY$Yo-q#Y50O>UT7z`O(YBc!LeJ)jsm+(fN=PfYY%fQmex9s~%KHRm zG>Q#dZ)RA=FI<#NYK}B4HZDk{H68uSNwQAN%!-zu?zWom8lK`MO`3jSrmZrS$^fpB zpFY!XbeDc<#z&a|%MaY1xHFJ!n4at+m58{1Y?n7`ul@vI6A`DW^S@jC>nFX; z8U@>BS04s8;Z!GSt{dK-WyW_PzXLi^;Ou?UK{Ulcdpb#R;d)VU^JiTuxsTsKZG2ye zLbC_4%Q$vL3CH(bM^P~D`771Q9#AO4qCn++Z&MoDrAp6lWR&5mQb&<9eyvqNrOT9E z+dF9W$%D!GqqBO8Ztp+4J?`VPzY4w$kD`qSHJU`&?_radb{FD8&BR!R%?m)Z!HCwn!W$EE7Z*MFe=fY->e5JCm$& zd!p~mS`j4~JE_UNvh?%rH&1vizo-CXhZa50b6r5J0y)bu*p~?S1+dSpe&U?rXoi~N z+n*+2x&n5`KN!+pH-vq?_X$yQ1MKvoA}J0xzrTKHxi0~i+pwMMiQJ47nnM{KIfKBM z$XjeLGX$F>jl6+RZhhzm&pYB-%tIe9->`GwzU2aM8irTE?SfpjT&(kD^ko>#09&8| zLNc=zdzvE4?!Al4a_b(@2%;NnF{XdAaiOunC+taM3Zw}~Kl2Xw)}bN{TzcYKm`{ka zlq~1>r&+H)V9o?GIGdG?*ulUHoS2YEw##89!`q0h548`m_97F>4H%O{s5T9x{oWt4 zi3h(YkSpMr>`IRz83OUeBVc6<^TBQNy}wIj7Nv~>RGT|5GN$Dex~~3Vcb^hn_FM+*8xBw!UAOkaM)mfB3gK6DiI$UloENq2XIqi z)&`U`m_&F~wbKgfUld`pq(65%$Y*ERE^^mD4Wr7N@sWxCyv9^S!>x}@;lej!*59(z z++wqQa*FG{EwDJI2|PJ9AwS=j#j0?bbij!Q49nM|PwL)Qd&g&`0y`Y~7(`Asz7Fi< zKN@IT6DP8z-Z}_bF@@G!m3OQ7OVk|L$B-BX@s6S$#%=?S@DgB5>J+h z^}kz1`9+Sp@y{r(=I1pv*c5Auv4Z@o2ufqvWIOsW8Ty~k#s!j^_u6l-OgkOXm_rHk zCshS6pjd9TmgS^0^Wf1pQJTKJOr`j=P-$stU9f@I%0|wK=VC4GEO7|}(M^|13_dID zvwyqO$i49&K>HoD3b3TFcnr8gf2LX;&%8y6$~Fb;fulUGEHdvb&E0h;XBd_l+ZFu2 zPkO`WbJhlh*54EI`-u%~AFZE_o&0Jq>}dF+dgI`yH{(tHQ>q7%UR>TW^&M>usVNQ_ ztH^^6Bpbj!8BE=-!ZZ@F{Vy+;jIaczv0Fg-xH(|#3pSC=AkOpl&0Mg$1!OwZZdceO z(-`p-gu4&z$%3+p5fTZ(1YdIqRv{6b<%tlzoPjSbh~x||j7JW5+`;2RJU9$+QoQ1L;WQ}(83e*O6QEEK!NIox_YdUM z=ZaHvpni6S6JiB>W5z{>VVNTXo%H&n6x8cG6Yv2q-rAZ zU5ML{)w`wMYD5}~M8IZ8Z7l2j06o!0@{tS-hL8z! z@j)wibd-XV{uhX!F$Uz0pEf=)Z}EP?vrsmyGUGp_BH;J&t~}M=kY8&Q+$(=NN(c;g z7weX8jLBm5C(~?;+y1!iy8&ks==i|)poX&b$qfi_Mc_1Aj*UZ?&G_xWbQEtgU9Qcy zjk*p61JMK;D>gd_NQQwktTi;*{358Gd0hdMGYcuGoo}{^Bs)%bIHzG{J_%_w zZd~XSHW`R>T-eyTWT12yA2g5;Pc;ZB!Gj$1u8`LQcLCH)z+tf*@NcdzqKIp@ytCix z{p;uQ1CcSkI8VPEs^->)Z(dI_aJZ{!aUU)F!(P{fpNjHiW?@NMe*n5D$m!PK-=CEW z1P%7qfLR!#-UlXxf~Dnb;fE7sOt5MH-8Ntj#|WLg?UKG=%-Xmwb&Yk=Bq$c^T=5%8 zyj`vEEhNpc4<2d6y9bD$p<3D67vn^wPiY@-ZRmgNAZ9b9A&l;~1T#?}0gA{P@I@U} zS2Ey3;B3*;IpXYDP%+kQWHy;S&J={cSozaq{yKycMJXKx?3zvd&E zMSmp?BREaaUe84F+n`7yBoYd$w=4dRl0oT5S(_uOEyY_KbPI)}BC)oysWl9f{7Rbg zq}wlGWw4U~TL!-341@Sp7tVVoB6wjhUvMv z8vFygbGB3JlOQtguB?t$VkV`EDXw{G*Hq42@oLNiTI$q zckfPI3e=r#Ok#I6$*H}Q?>jU@hut@eH>LC0zZ}BeoMEf`SktK|w=*3#=5UnH)L=yz zRda?p|0EEtuj1qm-Tt}qK8-O6XlS@2DlQ(TdfE+u4lD5W7T9G5cix0EGK5oPPX=uX1Yf9Z8MTUE=f@Wob#NQ$h>6O=govG(B^<8MKeqcFeS(b2ufTnNadhs_BfOm{xJN!~PrNADx7wx5 z3h7QIQ!dYd{4^ouop;um#^UVuCp^qj1ko^(1SDT#C_nKFjw8a2Wl|y#FSWhB9U~Es zD-|sNo8Ax;*fEl|eaclzlX#Kt)s@rG#T_F7;T_W|nEFn1fH^S&nw$4VvpLeFrrv;v zAUGWDNNt{k(4QCD#U`EMZoVCK>6{k#BOQjY7h-swF9!Ci2AIjy%JJO!fd<7k*UYdn zv$ZBNrqs*Lb>vEllF@~>gQ(fvvLIFj#5XiFl#r~QUh2OH)-4l`*F;Gd@+v&H;+;r= z;*I(9wK1)%>>?bD6W69Q%GGCinyXwy;)~2y<3A}|dgvFjQf?aWdixO-6MLU&zEPFC zpW*PI!3*QAhA@F`x7r+fDrSk7K!l-2C`5>fI%Kt-Pd?h84SeDpslXPVLo5t|kkS?!T=*Is8iHt5ZNEKg7AZe){1#qc6-35@QpDElz1kPSa~7h@G8xmZEoBPJ|SW!1rQQEK>CNs@en3xz5zpC5~k$ z01p-x792pKY_U9C1~)}2yRrhV+oq%N#p;W0Pkw7Ot4HMvZPlUD&h?Q`%nJ?;RSlJ& zjp@~<)wabu)Gxig(q}FaGGLh~TsFV3Py^QK4r}!c79-^@6B^^;&p-uA1ojxz`qFb} zIU4Fx__OUBLM|e@Aq*h+S5F_`CpOCcOX)-$Ho23WX%TZ-#B&#^?4Yr7Ky-u%cnaA- zB;zVMRuBzrWouiHFh3#pbQ}Od#LN@97_N%HreGDEnrpqYEyPOA>F>F-X7oG$eOjnV z@EP=u;$;`cz@gvh#nQF*sF)6ho>0QQ@&n^5UF+_W5h@c~m}LE2`j4MJA;5?@*H=;-_eytSZ?fd%rCZ2@Bpj{iaLkiF01Y3r| z{q7g4E;9omqlVq{ZkN|>bdnwY?7=! zD=R^Gp8gNpE|lG6yOT+q67YV{z?rLE~O^Hr zk$abMfMI?blLZTX^w<7KY%<@Rsl_tUTm|rr#215T;v_@$8^o*zE|vO1bWgxR?JSVg zYR2~4#>Nl#R;anZT_glgpvD3!8Fiq4@6R&{hBGgvs)_{yB;;Z1gLxfuR-Cx~<-x&0 zB=(TxJH)+Vnt8MRs1-<%pe;n6f(%auKEd?~G&6yno^he1*(65;t0tEzJ(ag?XYI0e zx>PLjj$|r}t+{(S{&ka+&DkxVOR?@uMILHfCs2zHnOcc~=QD98Qe>iGJQ-gsU`Zfb z4@%ju;JOG{Acc#I3ui(2$dajI zLqtNrjSlgF{zpMY5=#+1@CWR=>YuS{pZhyvH*X?hfJQ^WurS-j=PaJ^JlwPe#xoC&YD#emQ8c-E2sZj3puLO(>Y_bRd_TR6EFdw z)OWns9^xg4ka39xa(g0`aK6_zgQDXxjNB)N-iHJ!{Z3o)qtp5hF~DnJzheQK8ze-0 z6kIpcbxYnMO+1uW6Jr2k)H&mo!UNf^3~%!Y&$OsNr1dYi#-y67ZkssXxEc8Fu!Ti- zG*9CAtLz?T-b2auo2ff@f=E#Bq|XO<(d)?or&eqwZ(?x-NN2*7V(0a zM<8qgf-g1d^w>#eON~n-tmmn+h6=Bq!n!khpPh5xD0|l}*;~B9O1WRY`a*4|dv|q7 z_wm@aZxhWlzVWGy9Dz~+spsLm;sB6_wi0HlwauT3ip~Q>axpdjA|dFT5|Vv_(?6qh>)HPG;0zYts=)rko>oqj^r@7ZW&8PUNA{XOJl%(<1ujmCukWJZqwZxrU^IZ z!H2yt#gDb$Vf*(c3Hsaos7>8Z)#+OLzE6t5%9+>!fD1J?_W#E!3RE70QIp z@a_7Y8Z$I82`w%bgC-jiwV_8*ZWTZM+F@eGS;}PclJ#t(>li0(&~5wGl$D(=6IRVB z%K>J*NvVi16bff$!qiQ&9vl6_)t^2TCptDDE1U zKX!2pxp{b7XV#@*!iyZtNn2(^HKqd2pzGTYY~FM65Q|G+*Bkl-fhAR(h~;Cb1}7vw z!jwRF6-@AZ`}+fqf6mL(s=9zd#XPh$!tJFmY923Vy4UWG$?r;k+ATw*KE7*WRPgSy z`haVsx7F%OxBK*w@;vpY@D$n)m;jm>IPQ^FyAcLlFUR((#%jg!YoWi?kFf~M4l_Os zsL~p{pYpk8^c5LB59aMsUVa465+hT<+I!mv4k7S5}I6^KP z&Pm>9_=I5>4B`RDuQNju(=1{eMP9XW%ERgQ_tN4$1a(&#qn`Rjr>t*K*zv%Svsp z%BDwg(b~ORN0^#MnI*f7TPA7dtxDdRF~Mnps1*nMx>d>7`yQCJx%NPgkA>yZ8NYi5 zCDCZ~Z72pteU7|HPS=(-viitaTU$HKbzc25R6-5Zo-$)C{sC^8vM*_kJ)VIBLJLNb z*H+!Utniy7_}(bOcD{2}h8WR%T;;Xi>zVw6FJEv?*Y}~|CLr-#!Vumt43;&VM+2-N zzmoyq3q(0~-F4X*@p(fGgZ>=#kv^$;gJOv8mQpSku(RY1V$_UXyW#G!n?Lp1L6_Sl zu@c+1Gbyi2r&#F?Cy7~;Z5J-xHghXtFssZ6zj%p^`^)g!{#nLCDEBWxPbuLrPJ*;4 zP@2O20;E5$sDEUHrR-;sc4E&r_nr80!cz1y*;1tyK{e9@J%*Mo@-(TiOp`AhJQ6U& z>zUAzyEk2_y^cbX`>16%&mmF}n0cgp{CEbrI}rOWYPtP$azFtvW-ys^jKOfE{v9*Ljt9k zK_7+$F1@Bk5lKjpf)#KUhY%YpW=*b;x%d5zPF5_LQ>V&1^pt6*&#ARXi`ME=gsoM& z%{32DC8uWxh4K_?-KP`1?eHYahU+~|ZJUfeFZCc7KFmIQ(!ZojJpKN)F_r6|)p*-3Rx)GFg@Jdk^Or$4M7z|&1m)lYGhW#y;ML@H5Td6HCQjt`1kv;FtHRX2_ z!|tK9mYYs|QG5@Y{br_dJ*4~$F7ch=xR{z>@xjw{DS|7o58!ZDoczf_)ijdcxVw&% zx-%r`pPadZT3fg#x4fp?@@>_L+l19)V)g0V zV-{V;ueB>V_T>O#bXhbxN7zJ$x~+{cZT*_(%;2jHTjmb|Qp!f2CP{7&GYVxy7oBcr z+SHY(AAcRAI#McuOP_j%eta!&6<2Wo=9RGm-GPUWH#7GPKbEY-@6<(eEx7Gv9EnW( z?RqItVwc2W9(+oFEsdIy|52$9AxZYARk}WB?U}Bfma(P4N2lKP;AXQ$(h#!{5O5u=zk^`{QQGD$nF(X}FD zaB=o5E53<4zVt00d$aDEWHkM#xlK*@4Nbg0yjO<)sKL2=TJAYHb zwavh1uH_o0sg&pU=c#Jt&#+RDD1Ww=wH9bhh?7WgPj{-BODm^?}+FR&!mt0%SINmoo1kr3ahQ(aCoVDWI zM=Hdi-Cfq%jCuU7KP)R%#F(?B+4V5zw4=*L=GM}CzXXm;oUXjh^WB3JgY7W^6U+2U zj>T3;3OlL|u(PIBPMV?qupG9qmzhMk8XOyC= zneQ1ET_&Pa6>hD}r6*oU{xrMz&JFKenG_iv_G8jr#V&$+Aa^74X4?8JE>a;uphZqy zE1s)V)bg!-hxFNvz2W-;J{}*uX8Qx}Lzrakhf|}viOql8G@?m`I@IaBH}|_%1O@C_ z8N78LC)mAjm|xpV9Ahf9>s}Xy-yhKKx9iUD?>=uS5P8>bbW{4gOK)E~x)5hPloz@f z@pmV&lE<>mmD!aN{kt->_qQX<*Wz>EIu3%_D+#7T-u%=f)>{#Ew8~7~@if57D|>WU6szntYbOMd6MYH)*^JKhUSPOygq}b++VOPHyG+snD&Bj7~m6t|V=nS1J6X^xR7AiTvGICN9Boqsm@xnNxBrDXuOjjl6_S*q= zLCnw}I=r5DVV;r47&W&ksw06yJied&fvL~@2eDL3#sFOu-JQ*2zDgf@yLOA!t=@}> zir#Km6z~0t9(-{*i*RB+sdMr;ht}zL117t9QQAFvU0mc8yMp(n^dHcAejjgQ?=D*p z(orq7(qhOb%croVd&+a1xBVcM{MwkS>i%wCwqoS<>Fsdmqc{4cuTd+IIW!kzsDm4OHjY~Mfa`Fl@no!1}+{eI1da43v z^l<0-v*jGMt0ty`E}?~9m49+Puc{Gk(jK%_Cwg+7F{`*)xOmP|lat_xCLBPFcT97W`Upm?aL_GT#Ajz_@ic-s58mU1oBH& zj_c6Y8A%#7=J)m4zOT#gDC$|DYt$uJP$gNYZ3uB|d?Me>u^{jV)>hk4C8*ER1t`#9 zjqdk*&1_e$H2QITC_9I2;bx1PAk^FbA3O3|%*!_%ZeKW$PeTu*O4C!JnRmg-NxkwM)NT*jA9TjOvu8rJf9&4zSQdY3n)>M#RVQoM>yL-G@8+}8K< zJJ8V$BDrgUflh~~k}y4AB*T&RcW=CDhhv+Z)#J^WtlZ1isQ7H^=V-+4J9<4V=X?b}B^QTcs8 zhEZ@)$emx>L{qz8y8M>#k(hX4Y3s2OcYYZ!ezQ;jHJ~H^@Pv?c&9M>X7DqZBxPyhm zH;FurI+xyPx8NKlZgL2l;w1V9xr3+#6ElRL>keoQ`4Cslk&I^O>@!e<2Pq>%^n#}Y z*DY?#$9FBWFN|hCHgwc1tKgoNjaY&`9GhcMICnyg^>6pL%iZ^R%}QN(o+`UEPrtpm zj3X{^7sXNFA@_h*S)D?;d)-|Hmp!``xu9Yq$j7xK-)mIi<B4wFiv+L%Z)KJ(jAbizZFOSZIpk2HCvSbaG|TeN3m(erGQ<}xh&Dij3T z3bZG?@AD@Y%rGfrMor)dEb)=b2Bn4{tF?{Su4mdL47DrxifXGGtZqiAysr~D@22OC z4K2#SJl36zu#4d`?{u0>DX8?yV^?;fotKPIyxbx8(IldRKWN2~yEY_}=|WVPcA{GQ z2aff5$*t+xu)3f6bsHgVdrl8nDUwUxaUL3)N& zVGh?vsxkb#!AMGg^xDLbT;!hM0(Q;t`_4M8GN$251>Hq#-3NY8W zz-P1xlw6o--TE`NySGOc#Qs?%sxDS+=2~-8&wA+Mx{3oC|3{WhCj%*bQn1Kd4qWN! z-t}HCa~%`Y*KTVht*ek)3O`^-~y+u5Ns?^`PJ53b4C z&E1m{v_2ll_1DWKdf`*sJ|wchsDz7%9Cs;cWIqrL_w3oTzQsNMX0Lu+)jrJU;Lq4P zO!JH6(rc!{4o?Tu-WYt5`zMD$*e|o-IHsb+E0AC}5M3QUINvg0D7Q4cDn-nblfw=C zNVOeUchtEWrfli|U$DOcE85S$;fil*Az(@z!jCbe9wZP6j3> zNhO!z1iZrwTN9YO&j1TmA(r7@2PX3vS%uHg6bZ(Pj-KW@e;jj?^=z&rO-iUQ!6k@Y zYBKL;P7tM;rXDv5X^$)AXs#+hk-PX;IJ4;i$tZ&HY zzcL6gkn=t)bfV41$%NK2IA%_2`j#a0i{q{f{9_r6?!xE7=$kvYDo6rY3$y2+ui%uA zxVn=Z#a`1gn2VNX8Z6~S6~D!W60S;~jTf`VUKnd^nY4ZX*T!Xiy1sFL2M&>h{(8f( z9MR2!spfTOJ=t`>B4>QY*EdFS-^cfqjhy4osPTEHEi-%`b_@$na7{Eny^oJ-PhF{) z64ZlH8)Qf5qSMV88x*tCl2FQA?{5R}m8B7PJf%1DeWGOfNUFbUrl?UMVKK++bp%!H z?7WwJKyi~xp`cu{Q^R6<5>u1FWO8~<8oeg}&O*~hreJbD4ll!Do>}%nPdYP5^ra8Y zlZC7uQdX9hnF=x<{GQZD++fIT4xuHN?sEbcexy2LaSlH)Fur>|*Re^@Bd;+So^yDmpma)`ZW@nvZyaIZ zlrgC)O~^_j8*>37wzMn8M4c@8cXL-BZxSO1xrOSNb0_OS;$=-Xs6E`&X5tUqoa; zyVOawTJOpep^I1UkY718ae7nu&RCMgu8d+&jg5z|PF*Qb^ziyZC3-KdpO`-8F4-MM z8Gnz?PH#^%b>UM*?}gD*vpHQ~^M}{oH`F_>aVJ@LvlM#X+LfzU`cGO6Nr%q_)Q;BNCp!N@iyHo!F=g*i8!(IvBk(fcr5-!0{IX~rojc}flaTEQ_W z!{PeKjImg*?C?@IGrO%SwW`Y6z*kJ^dv0=Rv{@nnZ6awvios}YWUX#oYRuj0d&rIx zX&PdiSQfa2|A6XhXOSs4+3Vs+qCiV$7Z>;cTanYk6N;=38MW57wn{LTfgsxq0*A{7 z8D<8hMB!JJ`hAJarrZLpttPaBwC<>gRi~X8g16doOb1Q+Q+0I4W<<`WNuY$574yVw z!Zg1Llcuq{ON8GwZtEizKXG(Y(K#39n0waJBiWf-CUi!2wzdLq>(j{L8V{j)EdLf( zps^1oD6k_yXd6r?&10nU&UGBi{C+AC%~BwS6Z%-td#YnEkzKWNRZ3Yh5pz<=B{ZWP zJyf{S+W0~#^maP>W}$PCU*-3LPw%yRR~>X?btZ8k>sjBF%s{zn)2-SR`OSZ~rVjb=^jcWHDe0rTJz z6O-oZ#Q^h=>vTq&$CRa_v$D8Iz5{I!=uWK51geuJmSKU_lg_tLWC3Ax8!QSZ-*By# zI@N6N`Q1r$h`Z-go+KT!&nU2&D;a5=D1lK?3R1Wx-Y#)F7iTn*;d65$UD8aKO_i>7 zFzlRwTrzQ^@0E0&uFW*2Bq3PrLv&V*_mi&0r%1(2m=m5*VqJ|}RnOD|KLTpCXP3(l zzCWT#ckzx;V4TiCZ$;o@*Z^0Xxe6ObjKqLh`50D_0t^unK^t3dRvGrAwWu3P{i+oMErQi5-*-)bUC~z>NnllT<*;0P!nb zE?;yYu0naw369>c0s>C8#tJLY^Xn2K3LQ8`gj|N{FPUcTpxIs>s=8!OXntT#^1l`u z6YP5re^1;tF<}aeHrF-PGDyl0?G5kE3u>vYTE_)f=IB%#XrmcP7%-?Gf<@{!$)qNK z5)R8ebgn8Nx%lX|bI6Lvrx22hHolvTfDID3wrX&(N6TI?=-z0%PRUNCaKQ^P)aCZj5@sV_id|Tw#bl zNL-!TgJT-DV`J3#r@Gk$xL4^FXubBfR}c%FRfN0(B&X9QuCA^GWw~7%gvO8fP9qL9 zh~qdSV|1I(j3FV>mOBuI@t^?0@c%K3+Lq)uDW?Ztkdn276(1zJioJ)A8a`nFm~Cxs zfqFzT6_>7S7r0nyWx3+iRhW4T<{M)-Z(o}BR{Bv--WF3F*MFO~djEbdw7UAQcvwD> zU)z1)xGmb%w3wEe>JmYk!Eq^l7?nE`(Zd*+Gwq1o&frjCfn^OZNG-djR=u$*o*x5< z-Xr5Pcr|Z4JZ(hAh`EQbuVBU%P#???^L(rjO$TZ&wc-xQ!+>}7s}#dd@(8TWB&H+v zJG;ASvmX5arsDkh|2Gw9qJlpJ5&-GFohc0?6Mj^yQ^oeWtFxqjQjc`#9=;|JYG5ef zGq7f}H&R*-+Y?yRKWU0Ox|Uq`I1oJsViYiauTTBoyh0YalMyf*K9Y|c4KZXB z%Sr~NF+#$VxbOwV?XKNbk2PUG{5qP2C>GDEL??#AG%em*%qewM?_C4@W!tN!V!a(W{aA&3W!9;oJ&9n(n`HG8+zsSbV zISi#GN*vs@in5))0L~`yTo@S7cfW*rv{OjEsAVI(Zm`e~qo1U3@5+SA) zSZX(6fQ|=ros%RmJ*J9Zn!#6yCVu?LH?^@7Q5~KEM;C0eoZQ@FDXzrCoHZZ3OwM8| z3wLI?A_J>_{m>Nw%C?hN81$D5W{g$0Hj~Jjyf*yhIkQ!0gS%0JD9-H2;69$K7pCv; z;#hdGE#K8Y=#SEM#QktiZ_pTpBP zKVcEF5Da&E`}&S`HY%v5sa)z@X3{>%Jb!w}Mk?M zna=x_Dg$^O9zVIf1}3_loo66=iImLB$Kx+^Cu1F(ip$HTG~#Y>4tvAFGYK3!B?}97 zsDtw=*VW+t6CiS#lq3;ioZy`!rbCa1Ukup-iK8x5eDn=a(ZY6!AK>tYIV=`PSHDW^ z$5IY-?Nd^QN*}3n&`z$!#|9B@t=-7njCeGD_1T#ByjhbM!TedgcoHRBmCt?0*|g?f z(wIV7HGZ3+%#Dx!Sg-BlM|lGI$0k7Nka35yBjg|$umOweFz3Kyd2z88saHluOum^ISsBv$ z*fE_qLv>{b2?;KXGH5BBp<7?)#IR4dEz)rJ=4QsM_cg3^RZf;#_ddvQ38u}^Gu?DE zix0o!5%^{5UHNX5ba6hjsBV*)<5k`BTwMH81BbPY$MNP z3gz~W81HD6G(9W_5CKk+`1-NdbN9adQNX){>HZp@5+OBEI_XQHv%M=EPv+Y6`pW4T zk+m{e)NJs~=f1m+BWZOU_6hl>C`&yl(-t35hk=~xYB}ZtWfLjB;mqATp9u^nsSh?h z^;>+Ui@(!M7@3*LU1dfJ*`V)V;P-YlJ-Hz<6Khf9QdYQz9h4Aiy4p2->F~GZcSizcM|r??MtTM(~LyhF*C&K{YJgY>g%bJeH|l7f8rrubt0Cy75z+ApD5*N{A*3e zo(=P4JcgD4@vmzVQyHB=#Tp{~bzDPmA#&Hq2IJf@M^2JYQqnWnX1TBnGgo1wn% z7tSeLsZ#K(Ppi!O1=mOfi^c?V?2lCArDhx@>9DXj36xH|kHOvom@jXEg|A{5Mj>K0 z_b%Y2SB<(;JNBwRYkY9}+3uKz0d(qYPC5GNY9)3WqCg}jh9#DhB0F>%+t4+39P5$m z4h3EC9me`(?au&$NVeYofGH^fkgLzpiG1CU%$)8p(F_n4Yfj}$yww^ zg?FW%O9g~UOX+!-7Tc%!u1GA|Qbi0k)IUsocSEywZ25ajB(7_{Zy`5IbFJt>vv0pi zvw~+f|A;pCeXHZ)(bHV%Di%jX$->Qv9u1BIYJ+^3i#*E!t;Js@H_fwk@*v6qdU+dn1{&y$=vq{f8`HvX+Dk@tUh7RS2PvWKDI7_pdH7Z?gQ>UQlmQtVIHNG7m z#_=xT+h&lq=!Op8c^BQQ4|BB)zNqe@_ev$E=9@7mik$9n+glOtm|T)#{^146(|>Rp zA0?d^`>p@gWkwGll1V-uWaOQ_qH2*zw6sl_A)+74*NSUtHD?cFyes)tpR1%=mv_wa zP(?ZVSpW>$U#TJh;Ka^Cj3R|SGRmP&yUV{rHG10elVrXLsX z5|@{l5C@$F5YXg$Ci% z6#>x5(oV*G{P;0qX^;_xEACa16w%A|{n@e^n)H77Dj((Ww#398^y`2N&oW$CK9({y zIeg)0C%Ws_w&xw*MNfawc|%ZW#;QW#@{)q^~XZGT5EtHstR_KzImT7yEN1Mf)#?Gqm}2Q0{} z@2WY3pXUzYt8&zA_SMFNlaDeaeBEb7M<~+^`YaD(L1XnZfb#ryQ9*6X@u? zl;ai_tTmEREJZ~{6U7p#+GE8MdmKNMl`abTzKzJ?)F+}wvvPt?#Jlmk?vLvDr3?9} zKB-UQ{Pekn;ifPL?n~stgiVF>=i!@E1x`DRC?i(!fR2BFQ{8vPF&@M+*>-m{_W*vbm~K@^AwmQF+sr$kJ1jkxd#u$6!}^j9pvj@VlNk|o{xCh zGdvjnGSG@;b5~94Ke1Hb;x=;BtR6B1iwXw?Qg3J^Mhv_x+_$Rso;rYciULx)Ms z$PxDGmXOQM!={lRwbv%`(uWx7<5Gu_;)62w`ZuS7>;xa`&hyOK$1ja z82!J+ho|K&Y-UjUqysB0QJ|UO?x|C*tyo8Y?OunNw|Mj0@=n7!3LO64nKF}80zr*A z(`EsD*cMLfJ4Muj&(lpi?o6l`D*E@a3=2<>?Z}Vg9sl7y;I6Y7dZT^qQ+__fwv(Z{ z(?Ow^p7*ku)HCffTdH&vlY&ibxN#QAAL@w;%;Sek;U#sB_U3Un(TgG<%@l2ay-PC%2R)z~G z*LDU}Mx&ynq3&a`W?Pv-MSuIubN0jU@?Y3tXIo45aiSnm0_$(jjyz)b8A9}OLtBE;Qd>s_?c5w zeM#419OVlY9(dQ!_Se(Yp}1qsd<^dZSx#cK7nvr;#?CP*BobmYxFFPa>Ad}|O(uzq zul87MTqJ9<#^msoT@xm06%%$rk{wd2ToyYsX3QsBxl7DT`!}(9ro&(GE2s$zDNryt zmL>i>vsGXEyEeuGun0gJn54Tn2HLL&2pKoWJWfULP#W3tUzTeZzZa72w4*}U9Tx7c z7S;aDd}!jC#FCl#plJHc72b?%nytKKsEY~-qU=Go-ab|X`OvRH3HI-x<~laB8F~Vo z*bqz#ehu)FW1i2p_^TA$-{Bx{3s>iQ|MA`1OZp6rJC0W;bJi^JU-It($3&;FB+Oxr zDaO%Hr#ECS{KDP+%Fb_TTsEb9d@(KHGx!fKkL8H%5!Zsjfz|Wpiu(HcP144a5lnX) zyH(N5x)ir6EQ)jl<+S8!vj-io;)70$hH^YFbWHynCZ0pr*my%tYk|Y1 zzCN8^Ze(mgFeP7e4oQYp{+XUc*)fUhs`TB?@jP9BRSDFYj*|Ewc4I{)XbrGM9((cw zf-DCyS!?8SW297{vB_^TC&NDI|EoOTGkC6tDL_6bsB(GsGYoCIIxr0ts#eF9Xr1G) zOlYNWTqz6KQ)HAqHm@)ZSOTO zTH`K{WczDoRz@^scvQ}Kbld7)eewA+euJG{n%9r1@7}++8_+h&(gLD zn5Vl7>EsecSKac@X* z`1ig~kU^*_!uhLn-t%8W+I|Ku2m{a~MwHZk?Ht*8IH3AB}J7Ng} zzXkm-7Coq>Iy^-o^&xbUBD?(Cu$buwt~nxR-|aKA*$%dXOY3H1EB9ay$@{vPDepUF zu6kwNHzV6=I+Dx1mgAq@xCp)e)6S~La9L@X!mBgFtDENxT=hSe`7VvaXl}7qG+Sq{ z)&IWn1UI>Ea_qY1{qe@07f#2f7g}OIua$YAFe)aBP3XS<+LYM2PqzTw0NV8H=VH=U7xJ_n9EcLvZLy55DOL|~InyelF`=y5i`pCS6tA#0 zW=FB!&AMl~kkY`?GRyT!CGCCmw39jS{v|a!wHymb5$o*id(zXB(2nHJ4G`Rml<4>S|Z0bIqSZnVX9m)K-UwhqoK=gceOr zZ#Xs8mm+<4ZZ2;n15|O8zWUK~6<|h7=KmXXAPmcLpx3#VZyL(0p9N-!<_KGSVS%p+ z(T)LTM8VBz41Q`7SmNr>!e_LI{UOX(dV6~*9fL}()&yqdEmz73$GlE`)GoAotleBY z`vRlxr2` zJUcpMHd-w&X2`Wnf;Gnvi!j*$;C-J1Y#E8dY?nL2R<71ikl;$`5xKRE%{5c(n$n+N zUr)psJCXxr0P?w&kXue%+`zAeX~M4}8wTJH>wF8VcqH>gZM)}pvcZ$mxGLjYYn4`R z_bKMrJGx2FBp0YG@{wN$`e!odY`7F=u#U(wsmm-1)u@O&Kpd% zwZKX@*Dz?l;01LZaC?1={|`e)glhhdhdu|1S08$m$yYcZ<6WIMnv>9C`5OA zUoy(72?|t254lO-G{4gV4+LhubR$<1r#taP@Wu{m9&}N&sDyDQ_dgdcVQifFN7&20 z`aldRZ6%#%9sxQC@=OvENCqN@I~zQaFtIO2E8VR?zzvGAVYnb7Kp6E;A4eP3c zj7gyy{xL$#eE!Pwt^%!UjWcWOl7rv)@j9QKwaPv*7_Nfg@a)I;!ZQEwZSr@OK& z#OAi%#En5r3BW|H_JL)Rzt`Sh$UzptPSa(=IhmA{MDnt|y*(l@b!g=;8jrwF9?CdVEM>TGw*7Oho1{%vuN0M1=d@r5C?o>(#4OBV!(g+Td37t&?k0r|y{}msKCkgFyc;@pF5(@U|1Ap7waUE#pMwG7dQ5f5 zgMw#>N)vJKg*w>*N$&*T`fhch`l12TU=a1gyD^3_3L=4mhmV{@0>la+e!?1K*Xm1` ziibLX|Nj4aJM*X}&n%3`5uy%DsMaDo)~RR|kVT=gSd~=~iB-UY5Q>Ac2^2JQ^Wx~^|nWtlWVFCNdhFT>tL#VipyX)u28?Z-ancR8v zEgK4DqH$Hw$^pZ^kD_H3g;>4dQW3Ka;A2qOyuFvd|LESDHlxTyNX+P6iA)QR9Tiw-y)=oO$vz+WR$JbHHg_;lGCo5 zuWH3m87T_q<-4?c;o#!jzB|DiRvu!8YYE(Pq~1RCV`&{up$)PJB6IuiMd8;T_uM7l zkJf1H_8c;iM!xtpHH}OsBEh>Rec{y)jz?<$XPCGUH#aXr+L$m@0}A*EyZDWN>-NkO1RJ=rP>c$R4KkcKlT z9Ibdv{Nv_b^;DXHep9Z5*sgGtRqi{QKL0G*-|lPkkA2nSo~UenKpbmN4T8?OUvr zA(p*fS=1&n*BzW#Q{GZxSiGl~75d15rFdhGM-Ifr#qopNmts3x_hz^)Zy+v)5l-lEW$B;@!r-e#d;_!9Dw%1lI!R0tYVoV*7*Ul$S5i$BHnv@Ob`Fnuoszw zl6utr zTT>8dS)1F&%3Z>vC!NlKd`{H)sp@(gAds)4t>XgV6$tmtg`MgY@4GR^esM#qtH$bA zBujUQqIcff`xTiGAzsPYRC8*^3nTgpN}KN^Eit0PwdlAZpTE{&wp5OGs5AR*2ZZhK z3$Hk2o0S*%RcqtkpeDeAjT^lqrE#9o`6S%P3>Zr@kKAyC%V;&9%aP;=Mc^9YQ*| z(zjA0w5y;NzV$}|jx6mLkzGZ+f{8&Io?Zxy>AAr{;zyFW!B3gx-swxxS)F=ZC>ax-w0b0-s znR=VTya@C<_2;cGUYx*9$b`FlKo*b!-{3*g`_|sp{La;L|3-w?ELmUb=wN9J!O(m+ zsi`Q2er(HtLlJO2S97rDVasD57x`4E1Fi*}tigqpWiY0`l$V#+FN*qdr+!liZ4c3g z!-?})aC`2K-ZI5%Pk&x*(TTJvu1@=FpWCG#!YmSkNrV8mRFiNvYW=4>{gog7%-`+V zz+!@~pa^qSusKKg1p$EutIBc7^hYs`BYDiDKK$7Xu~&9d;wAXBgSc{~ZPsSPJ%UE= zM2V(A=15|}@lQPJ4bMUty>A!+tt8XUY8`8YdG-}h0W`oRIE1x8kX6Z2sT5n>u6H>1 zTsAuLwRnz9Mibv0#m&3?t>=Jg6zIdnZZQkdfI|pEwcTKU7y>S-_V&?Gsc={J|qEYM(624||EvRrjeT+MMg&lq_>ap-A&2X0-I2b*N4 z30*u}d!z&juzJX*z9d2lrWypQs7tJ_51kTG3@c$?QfCQZLGVatQNn66E`=PMyl%RE zof^!f8N3#fI+P(uSA))$lbf3>3H6`+38*)#>){jiUN!SEPrU+-hFTPP$@`nXH)1dH z+-74bo6YBm_Cw)L#a>e>=?RN$GM^?kp}&nKeO$}x z;>CzG!?~QXs`Y;sJ8k*-X7Qhk7va``e2uO}}i-2^O z+;#l^?)~#V&saE|*=L`<*ZR~ZP*wTiHJlqbC=}|NyqvT;3Ux6H{(gA%GW;$Qvx^6R z2)oPZx@$ODxj!{^wM0EKb$5Q^w)k)P`>7as?mjk~+En+P|z!~gdN zE+FRkI4^Cs(?{E;8t z6WqH@$xcdQMq_{@8SJ1{zh60$u3tn}uTO1Tq;W;x-hOx_y+Ny@A?QKDR7Q+CiKev7 z2b>ERarmxcKltYC+MZnQ@9#XlC?e`3CY+!=)wh$(EbLR#Fft~pCp=w0=*kk5@xqki zE%Nflwsunazkg8v{7h&0e_tjg%ff5nftONA^Q-9py?I$n_XFSmzS@9;tN!o%DROj7 z?{^_@#B14Q+ahsOZm=R#(OR#r-;094=Q} zK~?V8f5SA#F_6P0@lYCnPk7t8S9ocrsA{UYlQ|8qX*zs9OcWm(<1Y`V`mM{22Mrsh zKR(`P;o@p%j5B<7`(c;`+CzxCdZ$-ZG?cUBGpBJq#rYQP`302FYGL_|vk<&KyDoP5 zPV=?wQW|?NGk#Ctzw+QM-pjtFmOQo0&8W1~OUv&13Y302jo-4%LhHMEp;zMM2?;s*ZEE~^MU!Kq zsb@US{t&SAWA79RAUfI5r#Qw<%RcZ15J*V@|Js*ipp&2D*Z z{>}`aL)OtJtpXmuWA|>qv;C^3HZ;aK7{)?-_WL2~#ivi73h%;1yi<*TwXoGetAk<@ zeY&nmBBS>9I&CpZb;@i0TK}&vFaHbbThef>o_(u~d6XieCC?N!cPM@^k%>}89;6H2 z3)c>sr|vg=4mW4Jvg3@|rX&w0+;C8fdl-|x@iSf}6RC!&jDDNkyVECA2hopt@>=Iz zT>gac_o|{;n*Q#Uw3SNJrz<7!$xw=Ueb#;L|92;iGJV?cEhI{$<2w=XfdCte^7%xZE z@G1E-5nO%0F+Mit{QJkPWY00%_p+HkYd!3>4XVaNH~cny<{B`oZ3m49;?zRUsMV38 z|4?FZ>lBjD#o9xu-aUASABZ7uI+Q_uSuJUr`tNBQ&!nPAO1tFwkxH`9dX3O}^?d7= zd6@9!>En^A%@G5qbTnF^#C+S@X!@nm{(tWi6BCs?y1KeV+PYC+;(5)>rrx!fQoDWU zO&0&gLzY)i(Be=v`4$#d(cl#uMMcGtlUono(vjd;(ol(da-e3SR3yHJQ1XBFJMnxn zT80%96O%YkBjijMUTz&fH9Pb5HQbNT-@|#)6e<`pUjp9#pV24`?@@X2#+O&_sPs6G z5*7vHj()|7$MG-kxw-KpvkALwe!Xs^9d_-^!Aa@!Gw%u4Zq9EOe3d8PE%@Tap7A~3 zNt(7vrM>$^S0}fJ=j?LB&)(F(e`fn?PoZG;TfiejibCs&9K)-#lY@D7lcOLZZEfwh zzkdBHT#f8x*x#5=^Z2g(Sg2+9DQvUAmUq|Zo%~OzlqJvHU3`~%Qxew>*2drM@9%T4 zFIPH@qo{l4uwJNT%Fa%o{}pW9&F0?nHp7X9M||n^{UHqIsYsQ_sE{y^yb|Q15>@`>wyg|7CffgaI{`fE@|! zg-~To{<(eDb^X0pR`F7A#0bllZY3zqrN6s5@MId^`;gY}PQe<~lOXtHr4$iTl=Ex= z`5dgwHrn&U4rNS-8E-{Z)zS_bvJtWea2PXcx?AQMU>p+?{?hQhW|NLcP!@v85tRE6OA0Dm)(oa-2O+36%`dB00Gl56#3*{*+fAuM}(@ua?Z?njBsnSiV!~I2mM}=0^r2XsNIr z^xnQpnPYIctl}TE*c~^I4Evzz+^>4lQSA74rW_RdrBojjs@$qa>d~WX#np2-6YhhL zV79#ely<1<=><;KJ+^B zyWP`vN^6Ul){m=D{Id-`hP4#*^b&~h-^B!T)yfI`9y*Vpq3zTx#u`Ki1>rDK;IWlk z_i0NU|GwQ*#_xYRPa6XjMcJjs(2(pktI*J@0~Dez*i+H>=sx06@=4b~k&3bGj`cX6 zl$;OYj}9beX4_~wZ&WuhC^$TOZi&>yjpqk-%H|AF@{4gzr`dcibJA@~JFKt}yN2>L zV(Qjw6>V*83D>Is5D!l4H9c?O^VxsGNR7|_^|7ijY?NrEYZUZAV~k!N%w;z&(aF!x zSNpfgV*TuFY*c@JPsk)8C1pjmF44dm5vLA{TnZt}F)8=jGV@&$o&Gw8wjZ5qh8|DC z0OkH*hT{Jpp=4t&EyJSm38CP<_`HdBFju9+XQKgQpkd0uRriOFC8(KK0P9kTz}sa? zucAHLLns&h?5}nctW&?f!oqciX7Kpzcu#2d4KWYg$<*I4(`~%}dpEBV=64Lo3Eang zR+Mrx%#0}NVO1N|-6s^q4g2~N-m698;xunrb-jvsmHNKehnm*PhLg9eFh%KBInt1E z8M1^4rzn3<7ACeIDeSLjijbp=kb8fSpmh1sqem2XYzUl&+eq+&GCmd+T|>~t;HbwE z7JPR9Tg;7?T|Cbb{czj?sLQuflruklVq5jn(jtWw`srCuhD@+C#^~u@>n=qOX0+V; z`dfUOvBl>wju77Z5sDn^&t)UWZ6oQpOOXRN2s{j0*yXW!A9 zjh0!~8k`g2zk5*r=;?V?0ZS0YgAJdfhABUaltC&LzvSbHY5UOmJ#Su%Zv;p?zbzYb zkAthvsCc!Maok#q240>e#RYgX|MSyFep`m&mR8&-I zMn*-?Li?6p_bsiuPi!3ACb;U}EfyFShW})|@*4iT7ERrKEx}+8k{;>YNgtk76~#-U z)cEf1?vF9WMhJdUP*C8p8)8vP79#Ap>B9jHwMdxc#?i5O*OI>8`OEQNAwDUPU)zR;QmR z6$ra*d)evh>wktG!J$`n32E$G`{Pcy*_7dOnH7*{;T)@v7?uIwkFZXL(@PsbQQx*6q5bHxEG_?fwqv}R^y!W5!-6vC$bwCw#{H~xpi)p&bUEGXFrTP)$tx~?J3h%Rm3DIJ z%o4fbcgPKg8s|S4(*hu>7t%6XRipZpj z;{iK!%SNmD{BWwkCz;lZd)_Wk49!jtw>q0YqV{?aX%7FFABD*m+l|m!jH2O}AlUicIPwj)u zcDdcews^a}?7eys5s@E1e!O`5_HsS24+;@?7N$puZ(v;X6nJFOifIT#!vWHE0}Aky zsrs5ImZ37&iz9E6^6H}4eyy})Rt-Y+F2-vAera^UNmFzB6DqvT>}R8& zDAEj~V`I&}$MePuxzK+qC;)t|RPw*UK7D-u)BOhz9^_u^cp>mLhbc~111&VH;N0~t zV2I7`RsjML|hlHPWfzzBa;A2qx}swF^|=E3b=aN@INYfOu-?i z1y2YDN|~?8wpu;RkXcOj4O13v7ix`hNK@=&5-<2{jD>1Ake$0@5_4%+E?fO4RIB~< z$>6FfZ(Lwv2zBIn^7FIf^kVQodTRffPKz*9wiIAs5B<7!XEqnBY1?p0NezYNPPfBC ziMs?jZh`j`kERv3BWX1fz$oVP?V&%*EOEQKyAe7QLM4b#N=j-t{%?%lgnvo2OU*m* zD=I55ey()LNol37qZr<)@NO91*B6lLIbJKt8nmSr^CGx%{bp<3Mq@C*(#P8ioe1D1 zz<)QI-G}f^aXei0KzET)Sd)sQ+ulFr|M0dbXg8?2co&&_Tjp*rGsSfbD7+s?RFp`K zBONktpLhB5v-H8x-E8SR^Kfx8uKYy?HDy)}@S*Yl5VbX;8d{~kmw zAz9Y>L#C*&BSi)gatx?=gFhjyCKCN@Tq@JuCOy9_Wxjiodwb~Y{o*po^eASx(c)1Z z1Q6(VvTq6%QMbWc07z7rd=!&u>wChhmtPyD{`YUJqo3){Bmv|CaBK4s?Ub2Zvx}8s z@^jL>-1V(tdU7YrrJ^ud`%-dy6;H>>hIbvhx$Db1KKV z;2t_Ed0l(%)!_0SAQ+oakmt`1raMYIZU$o$Gdwa3M+sZ~P}I?~xLL`oXBytnEY8 zik^8-aTQU?CmnZ__3=FIPuh_Q#`n*C+fF|fEg;`B^ZNQ{mw8!DZS8+m5XcLx)LGY> z+B;;(sPRa2KU_Qn222nrjW=!+m}`iYkjhiW79YY9YlZ3D%Jp1{N;DOa80rdBaqqRk zw^J)1JNHf}TG5>_OszV_Teg4r@CvYya40H;dgYe|1O(#m*b>QxQ3pQe`NrjkC^@{3 zzu*pNvIX=c2`-VO*<9hgUyxIvw<*hIj~@OJhW-(h&5Id$RP+67@1Fh+`u4X)`#j0L z9n}NM;5Jnglkm0is?3TC67!C*HYftBMn*m8M~Ffs`}zX69Q5~osA-&jOLJx$cFi9~ zb&Ud3hNv{`mA&VFhP}8${8d}JadHdI6C5?XDj3x{vpL)1wUqJ{X|$R;I_7h&ffW2! zc(7DP?fxlH=N&J|vY>SvR6e=S7Bj%9747u>Qglk8AHPmj%<~?@Uq;W!Jlisk<4LzZ zIbu>IMbSc4cIX`GJV4v#2kVnSegt`37vz*u#VBDiHjjKclo2`ULJwTGR2Of&%Bhb? zdGeM`Md5SLlDH-!Z^Y;l9vnr5YF`Zah#$~ zf)ycm2~jkD^(67y{Gd~c=eaQ75&lq!y4SY&Uz3@p{PD^iAd8Konb#jBN%K0h}9D zRHe3qOi#ut@~d(M=t>=K`N1OG94>iIiU9kT*)PG|jqx7FY9tfSPu7Hf#hVjcy~N}8 zOXDAGQlR15$IX`7HLu-r+Gnw0h(j zAj%t?*wI211)qf+cc0y3vy&1%A0JU=q1j8Pe-D~4V*Y*N2Qx3P-28GoT&}XZbO^7lnGU!HAbDkF4_=|Ai?`TJ_PKxZDr z5Rll2y`Qz8Q5oC+mxPR6$M_i|umBVaw1=-M zCXh+sXXB<7>Y=3SJ3Pu)RF2gb1gE@iqdo$yD49bR51=9YWyz?K5$)*c=ovstF=hxCI|VrHrbo#@F6<%)jiIFEzTWP!c*U z%`aZnG?AN<7IVs9M#N5-}l6$ zm7wX%3WDalx&NFEL|ZnipNa zF6{tIy$$qs9_GY4^%>K8&C<;+{^(8%KHWM`PDEA~upev* zD7KDw8r)fMn@FHG`;GwdlIP^#?F0Q`g5CC^@(DXV`C(IBZ@=Y~!K9{}ljzM9y#{Op>Aj|W6?eqw4{WK4sg zyi|g2o&`IgWv(rF3pn>&kKlA`xc{kn1VBwDOCxIbvoTe}l`H$p?l-o)sPi>(IxWCJAQq93IJ(}Gw2^-_vZ?uZ{ZCc;_JEgEI10wAM z1)!(KZ&`Fr2cG{=4hD=f2iWNC^hO7QRB6FZp(oUM#1z%(O3Q!r8l!JIvvc%M<{zK_ zdsjB}MnIIZ2sUguL1Uja0Yo)J;5LeSl4A)r+z?4N3gp@vJOjZ2Zu&WLF2naAU~FX^ zr+W%}ZPFoZxyP+cV1Olum)0hb?smwVXg$&LzeDL)5|m`?7mh6XC>e+XIZRh}j^Hu^ z8*Q*a7hOkF(~h6%qQ&fttSyy9m)5>FHPyOrqem#*KoZFnxJZp|PlmRuTWW?C%ViYA z-zWBO&w_uEOL>y2oD0>*$E-`~<}7-|4X`)Dm{Y>SsfCF^MZd0HVjPMX6$pf6PV;?b z;8+uI-nojk%_e8N+S13oPBj)d(UEZ8OVI*}E9~fViSC)#`xlz%;w4R(vu%0j=4`SNv4jY293X#ONy2^q(B7YYC3iGJzF)wh?zj;0NJ}vG)HJ=7OhPIY_xv6i~X&GAs0EK zz;l>1QvXw>`|jtQl+xfqMcC|rNE>(n-cc*a1FFWxVTp-14E@jc{>ihv=Iw}+ceoYq z9|An^ePP?ye8>FxS=0GD_L6#{aIx*HAlLlrOA9|g?K}T7GGkI|q7A;ZGi+ zXHk*z`Z{ zcpw+prMlG^8W|UaNK|4ipKLURm-mV&)|-5Od;v8xpvc_@6~_fCR3_;1h-H+Rl;pCK zpF20KV?tW`7PW~WsCY?#31oGAU3NEHpQ!PIF23z7I;Og&##yB;A)TzX&G=-PH&0uE zd~|Jk+1>LKvt1k8vTIGN+eq1sMAFJCx9`e&%zFpg>)rU;=c7M}(^rIdJ3QKdS_8ZL zS>whmaemadH1V!w_THmMp}!I>zt5uY@&H(SXm8KX#?J1x4oct*cxzwaQEUtH%Kpd} z$!Z9g6v+aC)C>BK(tqbYE04w)$)7f9-Ouruu;I9^mRm`5kpOFhKOw|%_<~28axO8* zzNNZKBm;5hHmhy^D|(Oj)^F?JdP2T4G$@aAcp+*wJwZ9jS9Oz?gQmXjKb9g{Q_lx8Aes_)PZCP2FSkHS?oa-`bo4=Br zJdZa10HHgiedm}lgJsK?FjOf1iOb3Q)2*}ZvnFKEAvK%l&0MUSpX_f6%(@{FN_MZv_nf_3+_lFP%kU-K;grwpNOEcnG^+Dle5Q@3;Z&>?`J2(HueAM3F;hwmqYG{K184{`%&kDawPb zOndwp3rsRcg{k>d6h@?`o`s>Z7l)K-t>z5H$y#)0UtgE_HtJBqf-~iJVASIvL;1GT zYUfwa&nAEWUX0UZZA=5Vk7LGTtmX6v?>;+COHA(Q)6>UMsC%%|-o9_4 zRlPv8^hvOISXW8>rChNWr(*tTDw&|3mK$k@_g0+uPKE3Bn)e3meeX@TJ3-oat(*XT z^FN>{-*!SMayCJ8YC0Y+arK;3NxUQfl$kllo}`ej2gkl|3-L+ znu$rt(S;JyCEGU%K01nYc6zGlNaOF9-iwrW;dKR7xk*}WK##9Cc4B7FH?Brut3$p9 zn7$@k%y3)`FZyGdx?|P&fZr$Ha(#oNXTQ?=VF zFK}95*dvbW`ma>4mw(17s@y*NrD0LVVrfAian-SQnd#2myJL+b^IJ2utHmwVF7vgf zR(Kk^Ah%9~ zD|9TW&B88_uS{t`vA}7JO|vr63NT)j{G^vM`@E0X&FGkzuNwy~U@ej01nTfmNb^wq zVNhMmz?bB~HGdqxZU%ecaMk3T?eE*sS)eu@5cf!PJ7RfDDTnwjRTHj?vCMsJAT7{< zsWWn|{6;lNGMxhe9B>udd`4rQVDYE3R;hJ3e3Hpa9gg~CF32>zA{KfnZ*p6DdtxEP zr-&w=r8MvoD;kiB+1Dg3q8~)Xv(6L%tH2_=r>92=0+$-(1|lPgfaU?iApro-!p;3q zO^xv4OBBpxu5jXHZjAF~Pc;AJBhd7o@0X`7CcC?UFK>3dyZkJbw1tGJr16+7meauM zr1t*n%dmZ;~SdpdeVU*~-t0dH98X6k#t<8d4AM?C-7UD1l{~eg_eHj_7 z%hzr&T(YMl_z^0+7F1nfo_)9cV)-}AA!Od3PPjZ&##RP*_;9rE`CCwE9pfomNXS5C zlRWMZ|1maZcQS@#eRh`mHs0!8Q^HaB0748H2ErS(>)LaCd!Oe&Roac-A&%58toL5) zc|$^4$4tl=tb|sLBTgS!cGnimPxzK&Zd^h>>#Y0U6eNN0j{m|tUO(nxF;no9papPz z`dkuhC9pBeIr2ezkVxZJOx7nn@l4J1HRQh4ljl#C9r7I-3#gPI2GP06t~iJ>Ts?`^ zKuO!O5CDq)>0XIH+Ajr2Ff5C3aP(@ZtOPb$SniMg{29M@MT~qkd&K8EK0zgKes47TqY4 zqU_aR>=H632V<5>Cx9moV^#z73Hb#?_o=R?NLQ7^WIOGih7zTIZ^RH!a7a;#L&oK` zeQ^yF`=w4cKsq`meuz@<_|xj=XVdES+EwRH#<+!ruaD!U=u(vDtD4R@@o7XXPR72z zzG6Px9FTK<`mDkDd!j&a6#g}q_@;aRlU0{VlAmBWA7N0xMx<)ai9M}Ebi}} zoJr-W*R$8`2L}bIYHKqUW-m-}v$09R9;|4~_wBRe&1dA&)8w1H4;{Xsq%jCuBITCX z#Qq-QW@zacVTE@LE+==)f4%O1_@Gc9jdL*NgVdH@Q4EjLtxbeCFG-$1Q|^2Nx>CDs zZc2_%V@}THaLKk^F~Ig4KNuo>zCsf<4%#KiFg6^oXt3E6mmN*U#g8C2M*? zyD-OlWU~0NX8H@es4lc@Cuf=*L+d*#aqh0~IwV-I{1Zo{Mtjy=Yk;849-M$e7;wnI zj$bonn>3J-LC?#qS8;sy+)L~xg!%~W6}T1NvvG3D2vL)nX{TOq*<}jKm`OW7Wlr^3 z7ao7rzvw!<-Ob$rk%{uKcT%?y)en)N5Lx=pojVKBLtl9U+8FbXzPkc6Q`E1ci(tz zd$JBgYZYTujH-z16(^B;6Q zY7Cp#xG*$~rix@5-W#5E;Oo*$GlqgwD?=-hb{$*~_FJE-t94rw@o(H=VJB4Bp!6Vr zVryA}_)wr5pi!&tB4QK~S=4b9%-1|48H)PI#WP180rMxWf@Kl2#MaKqieN=;X-5$VSx~+ z0a6d`!&2{29c~z-<#!t!n=eR?^1mziKN~&ULny1~g4hum17T;7tRV4FnBNjgefEpe z6T|=g9E>+-urmJVv-9XR#p97`k>cdY$cIkg!NM2J7|x3Ha~B zV@y*RBK3e0IyW)Z;Ijoasz@})fQRHw09Xc%8bACc3YE1dMvn-{wGIES%xm*)SzgG! z$&7KnC_EL@`%ElVc`eT&JeFr}8!V?~xh zQqa$hpC4JCt~vRa)69E*=k1t*Y@KN=g%$}GNWLa+pPIh$1oZB&jU$`TdR z%CQt!FCg4Yj9~dC65O!o+;YT$mmuU9%jo6WDWMZ}UC^)CP1V}nelkkUs$MN4D%IYk z#HpdCYpx5%+RtL$*6rxVHqUTyyTd0EYhc#-{n~vH4L%!3e#_F&C`(G46JONTT1jeu zlsgCud(PW+I*Nd?n>A2FAuA((aBj{_%{|TYO~z`^^H>h41m6fHCKqH4f+KFUUI0oj zcf+pwO{+GZfOi=zUcVBoH$h!$loym`G!L#WI2E*%nH;$IoN561etF4D{%YOWry(k#eqTl2K%)!nyVCf#*t-d^n9xl_>G7E5OY8%kMZnE}#c zrVybM0>};MI&GK<+^wnlXGkyu0?fa9Q-Tq>?JmMUl7-y}@Gc{E5+X6`l|I)7JsRPm z?nOpw3K$#43!T~u9_O;=KWWB`XV7NYy)v!(GMt{Qmo+{6G(z$wls#>qy1UaQC|OyK zTzP#TDgF_75pH)t@y^`m?E)prq=Do?n;J$gCtX2K9)gXyqeYQXDpdvvO z_!tbr#HAreC;o3ixiJ%2i#fe9hI2A|y#_rWszhSds4}+}g(KS{-lWHV!K`AI-Ej(T zqX=&&c3S-C@4w|~O0Oe~t$v)TB1tQp9~2h#oAH98S;U;?u%k~+VYL27bq;pRRSoe$ z*oOdr=_v3nzK9nLG;N@;C}JpUtQ?7Nlz|C=q{LeU?&KCuriebB12nerHepW^azR#N z5dE$Gd%WsKlui5m@K)U_=bUQo$IpmYihv!sQ=zlnL71Ue5NH+K8`7wrd4-FjKHES{ zcinQUYgXUmUm_VvA=tSH1tr`)`F1;eCf305D_j7CkVhR56qAvc$41hj_4{M?!npjm z3w3FI#$@cRwD|3F_ZrmRHcnAknMV;oeK)I99reJc>+X_II0D$2`7m5oO-(IVnl*PY zP?hBkybzUFQ1CWU;8k{JMoMAoutFkrk_U+j+0qfdWvOK3Depp zRXTTNM6N$1YjWoRGzV%7D6GA94-blp$3H!vf>;Hp1X9t&4Gl0|@+>6H2!Pn>lcb$> z{y883wH(P_B2i1cLsu1u0TzIJlI+$i{117Ux8n^KNxjUJ4MY;2h_mYR_^lsR5jrPF zkvGfYRSppY7#9!NVw&NwgG`dke0w@TEC?=MKq0AuC}x%3u6s%1K6jBMn2t`aurhtb zJ$rlm5nQ1}qY_5hotPs>!4okPbA7@vZjOi*-cPg+F(xZ%(Ug*g!|_N zt>-WFFmed!Hk0ZYnl3M)A&5~KHb!TC9~Q1NbgO^KU&vrxnz7lkD#47~o)m)L2^j7D z-4)lXyQyP&dQf&Cf7ogdkh^wm?@}^pg_&F(F()Cbbq>{};!{gU1CNsKj*3*OK#`!O z=<_57%rm|OlJ(ttbT78Iw>b*(p1i#D0sV+I(C}C_CLnF%3Tk#;CwK$`<+>b9M42}B zYGe8GWI3AjUC5>?OeT;yV8OK}YG&waFm}@JWGR@d;4T!%*@%>5*zAz}OBiS9iY;-p zK-^LZXdb**!`?0D0Q?excH|rl#P$2C0X{z(mpDJ&p%%4!os6|y|7_ndbkFTpzcxhCJ!RE#AJ&FdGOhuA3&<;7HE)og@vB0!df0X7nrmxodX#^o zKTDGt6J@(5=XWnk(Gh&Z;rvM6R^Ii>kgO2kYlM=N0r!OrXRtyU0U#9LU+IcT0DU?OE zHAEfIW;AvLOP+Q|i&RZ>y$h{wQ);IIOuIix;BIy1an^Q;RPPixP(c7rAP9!)P@ z$M>#R!U;-tWRKT_?L(K7fEnW5xFdJqOCRwC$+}Nf8DBBB577dp#m>$SZyd?ABRYhS zjcmY6PTc$q7DTu=_L{{)suYE=tHsDszD92I{MKXeeCBi^c;&e<#kubWqH7zR?I_>3 zFoqrhgp=2_`AxEuboZJAIj3TF?BT$w$ws1YEyj&BQ}z~0w(nDcn@a8=_=1paPbvIi zAzoNmD9u7b)Uoi#_nD)snHp2nOSs2ZahL2xQow5_WX!cVsOC`3487LZ*NsfAf|#dhK7GpdaKRFt!==s>#O4Y%uqxZH>+HBsZ{G5%z-R;yKvFYT*+ zXzA<0_Xpl|O2w+F}FTp~riHgRu$b2E>l#THBFELU8qC zR@NnmOkg339CR1t#K)L@iHw5-Csh0kDCFP*lT!Q(2w+ekMjcqF&H&;};c7;Ioz%`= zI#!Y8C1k5}=KYQz@e$1!QnIiMEolGVY$q_P$Zf3EJy#&XCFursm29TeX=kj|yOvuM zd#;9zYicT;YA6w-G$p1svX2Xuxw@J}o}g1enFblaqOP0r+#=guB*n(bsjuwSv9AO? zW(e7vZvFZF`&(BuV|NZ_6`X#8PIcEct)ql*J38m{^uanAB~aNmW<2X$COt5-aLi`7 z=M?%<8$`Z;OiWCaN3C7~c<{#=@pAr`75L$>1G(-_*T`EtlzIMtI-%uW20st-A=SGBiZ1Zxr)$a|Y0hmA zyv3jLn*M6+UGkUqo*P;B(kD~9ZJ$s2vZzt^W^iHbmREh0P0TIDTY(KgrzRF$tFhXA zy4D?tGM_h@=n7dXX7()+TP9n4`@^HhD<3Fk+>+B?`D0E3TctGqF`&wdedv>f||X4 zu$Nfab;;AuSFE*!-1G5mo$l|ALGHD@P@%@EgG%rEFmHC*@1BE9ej=w8PwnHf?I{J( z0=LLCH6X`ZG5RBF3UoLDQWO%tLhxOLI00Z4ykXQJdvAe_6;`_r1}f+^b6Y~7X+ru4 z!UWPBw$S<@-O?#VazF{00%swDP+6JSrom-tz_V45}PSu?`nEFYcAcHi6m#Io9A+qQE!V-VWke7}-DL$eEn(IPQmV z0>m*11YzWi9h_;jxZYdn4@V73Tj1PRAOw$xRP7PRQ)r`pM=7fK%8g0mcNMBX%0mWf zrs9M9pOw#Rx3T=FNqjLjW_vehq8JpdTlP&m`;liatzYEK4mkJCq`k6T1`WJ zJQ)9+_?M3!Jb1mV{0Ks2Uy*ZiHxmh4NVsxSJQHW9SD@EHay+ihCTtEX~!#vC2S~eE5T0))5H4 zYP8Y&IdL7gX0h)vJjzyQHLb~3@@ii5#Ih{iKxs5NvNiLDS14%@!0){$g-!Pq)U^(n%$AdY}Z$wm4x|zhg+A z$p{^yUuvN*9A|%;mpT*68^kzFRP3FO%SUpaPr5>9z}H|5Iu~2n#8kyjKs{8$n-LyS z#~<~xqP0{klUPdSdi9z6A37{k*DTC$RTITy5h{WKsm|i&y$-{ z$X0KbD!^y%54z2GVdDC2>v##2R^ks>D-$qp)nK}N=`g)rwnD6WBy_dZv}p9v1XsPF zSXsQA;c;q;W1L}Yfc|O1UW9#!E!T*e2NnAnYSgE)yQ9;U68{~D9_cJWEOD27t+J!5 zZZIB*uf37>Q|nQ?q39X);R^#hYuh`JDAhF65UK&atJz}%@-pEaGFMS;C6SCltvoe< zl9H0(l-aGy+gjxFf^7RGmB)M`G?08lLig@tj8}zfnNOg~elv?U-EIYq`c8PqyvxM1 zrIZ}eY~FUf_Y~@!rdfX*3-X9{UDqD`{p8WRekdz1pzlx^BJ*1>>B3dq+#5u1K}&8H zhiW17hpFZZGHdZrO^0q|Ut$KiF*5QSy&_}Q!rAZTV=pl-j?%J#D86mm4u(+?g@i*e zfkPDc#oCL(c;?cO0n?iHy@W=wTnHz1m`WT)Eq~3dn-2%!Uh9*v}HMJvh}$ z{!)HJ%V0mV@4ZL&A*M%p+*bXp5A^fLJn?8rG4!>|uMsh-G;m_q!jdtVU{A#%zk;~O zK-nfEQh4Q1>&ERHp*Y<|(;MWS+JKibsvD_A*_v#WNp3fX801_6~0d(P{?=0A~^*pP~1eiGWs&M&@-4bV_= zx2p;0X|KE;hUO^NpN|YSdb|IEo0S!sctGFM1L!^{by0f}tsJ3@%x53&F>bM1FGdB# zn8_^PC`(l@WZ6@ki{MBj$z?O(g)JqOt{S@-dkl>blt9uE)xDh$EhG!`Bsm`|^Z1mw z;P9gP@<6s;2M8c6{%~>sP4)=d zsHQilKq4+)o!xA(OF)0VV4RXsh5|j0j?&xc%wVInjxYWvgBRDWH-nY21zBOqb+4th_59~S6ZTeiE+;usu zWYKdHtfueFmRO6U6r{n+m>to9j&wKw4lz32UfzqXtKa)$G^a}OKC~E+!%81SQ{&IL z)~JHy2b$z;C9@i$1Y)y|trNefX7)(;^H7hA`DyUBGX@SAfousmfEK)~W~I7LD(N%7 z4_-w}O!&;bo($5}GWh0di;0pN$V<^y^AR74wL4ZAU1aEG!Pn@0k?RSf;}9t$d3`PI zad`B8cCO#=Wr~2S-vU*(!yak=3RF;t$i4$QtmlxdXOYH7v%#&A=!F|a*jzv8+Ob{9m20I1GAlD~KH zp-let#zUxh1Irb^AJW);B>Px46U}}(4~x}65ede>RJeatU5~{>M=3R?l~z=ntH34G z?&Tn4?Z+r5Gl%2Vy*u^h!F>Xi1FAEKr_IO9J4XgNinxMpfhuoz{sJmmj_P+4{2K!qTUnD7e(+88+c^Zr@>Moemquc5Mc zMjGqnb#%5-CUU0Aif&*7%T|JKt><&pLUedzNO3=Lqvyntk;j?6p2Dz81W6w@HEEW` zXcmX3T^isqJ~gN@;645r8hZ0T`|_B9a1|aq2Q#X)fCyC@=Lb1}dDYXr3HT5RTghi- z?vanP8rJ1CVe`SNhZnDeUpD>UZ7vmWv^=Y9>>EBB^M5}N15fj~fo`}g>{p9|-N-{O z7k}+B{Zi=x9rVvmtq%ohrd$}iy$5q)D_&p@nPO*EMqib__!-O-i_f%hr07e3bq}n{ zh_joavTb217UEjgJ8-bN$6DH?^OFLGDM~&f;ks{Zp0rB_1J~_{_uqcy#t(wqM3||t zRl1_9rcfFAfI@B|a&z(DDOjtIFf;jtHCHtXFyG8Nl=Jg^Ehh?$z8n$Md8!%YEY^IW z+wl@ZV%~Xq1Y1e2%@G_*@`aHGX|2`_L|@k@>t-Qt2s;BN2@ZomaV*s!jtPS`R3@gr z%nHE+Y5EAQlIUNGZM(#QZwO)+B6ICg?>8?7NoKEh4#+!tecb6wEX-g~TBcOHdLdZt z-@^jeO|y^4idSj1v0`4qSF@o#Pv!vgI6EE9z?X<5!T4rOHZipUr%@ zD<7jQ;rLMc7yXOS*1Uv84To&>K$_mP{wqVy`o+?Uu!!H=FlFyrkU;b&@s&OA2<6;z zGo}2(sN?|U(s+x04mLKT*nTJ`kY;FJcFzE(77#t~7K?=wUkO0bUfX*p`W>ZGNlJg7Ijy(;%G*BB=#z*cL&ej0L>^PX64%QT|}ZctSBe zI8;ve%SS?+BSD+ju7oVdYQD=MwAWr-P<)lMO&m^)q$=xCn}5>prr1|W~#9Sy@EJCj2p~6U~1Ob%6otJRw#6jl9N#~vF4D2 z3)<|~JN;MD36>9DX@=@kf9tRuy4b_!X?8c%aMt^xY=J}L2brRnt)UT1_StI{wDr(N z!ASeb4W~jPl%%yE5G64DT)0FV)DfLVT7&8IP*F8ggSsW~=*qPlZvZX85`+l+9K>-! z7=;zPd2*&Fuj(4AS+)Rs3tBi#FhE{7P2RJ6^eK(AM~`fjBu)Y1Y78%zX&2`1v$P7s zBrYIH5pQjkOlij3s~KwQQK_HH=SBp}6;|$ZIqZ39?r2CbI~B<lgijNRHhLctuf{k0(z$`I^AIgE8Paq8M;C=Fw2M)F)KY$00nEY(? z^U>Z5@Fl{#>;i{B%s>r8fKi<#-rHp)5e)o3pem#}aUpTg!uc`IYw+ua=@q(39W4Hz z(%w9r>b-yaUX|Jz_O4W#Xb_o6DpM#SQ^qV=hN2Klgea0GDs$#iC^Ao3EQL@aAxWl4 z6d5AQ6cOF$$G-00@At=Z-1l=l&vkShmuq)zzP{@-zR%ZrzV|TcpYu8C_I+xtbSFM< zA@*3Gz@j6oSPeK`T(Y#7#kbwp?aJe=Jw4HVq_;3UDa2=;2{&vhKC^M64_tnWPx9NA zH##$()R_EgiuxIqGOD2s1E@-(ekhObXd)Cxl+;kmSJTo8xVif88!xbjn&c+0nbmx- z4D&=e0!u??|A|UYoyF^9>>HBeS=Uv3-}IJRfE^e25!q4*?N&7rLcC3h&w=1x6<1HOW+Qa#ouPM1!m28N3*_tzcPs;Wm$Kv6=D6&N^6>7{80-TQf z*bVqMco7ByKdC$x3JBn55JB`A83&wdH-MOH?+9mJ>&iASCXN|V^P)9S0lpSoT6`z& zxn1WMsm?F~H`2R0{>nz#i+V}dv z&h-@tadB=uEbW#ypU^&NTea4S?@?g8o3*#iX;#krn1K-HAlQ-wkRmIPg%^>`#TgS@AXd@pcz}wbkjsmmI5{;Aax~SJ7F2#M50Sn=Q>b+ zB=#AC7(q7A%lwFq0!V^Yv;=+}{?cnQ<5(r|BESClOPe92zgSoLW2ukw1M&KCVv8Uz z7B>cL!uvX8U(mDqon^SE+gnSoM~WDC!}0opWTp_m2tlI>B0^F{NPQEZU`2gWQPD=2 z%~pK}_3gnQHz38aQ~jfSo&behkP;*>`q8?|1jQG7{Ny zUyv>Cd^amW>#G2!Tt+@f_g_lWi-5n&o0Dhd`H;syQrbbUOa?+;jcPCrt9cJ!yhVu;S^8GtZM}w=`l6eE zKJ}gy5S!_t4dq~sB3VeVdQ~$@&#pyI5@FR)v)Y)@AlQ;~EQEYcTG8T_mA14CZQivwr_yzNWqhR121zWCed@y zuP$r>E`?^qYHFP{jq_2*i{5}63`8TQ)RT9UTKw$AL#BH;0(2%PzRm0g@d!317d z0Au#hcS6X+Z2R*}w*THW7`Pv#r?XLh{0}8l?2mC{d%J&FSXkyXr^v`?Hs9jgh1uY> z{Z01_9V_63kP*sqB0}#WSKfq0Y;V>&-1p?Av~nHVwr7Z}P1^!JW%?IRrj`d1eE1k= zYJ5i*Er0yfjMv{vy!S$4KaP+UTUa??oXr{Y9&`D8k+G{bN?Ta73v(8){S$U4UbRTh zyjQ$CTKQ2akU9V3{(CWhO_K(NF#eeA#2QL|bE;fkTxQC@CbW@>-xpl7)(V3UAYovm zAn|y@cN}JXt9!LpRsRe&5@O+~SDY2?^c)i7mUXFkw}9}WdUGA~n|QL6epTzrbR-7+ zpbdFIFZluC`!l>qBQ4I*|47sTv8UixuS66D)AETJdiHZ9G?|jBA5oM&vfNgcFn64& zwU&ULG8gj-`&D8=0oVUU59JErqS(~O1>s}>i{sbeNOe8{k1>;H`!cVf-qA139xFJCFA-S;%@eifkJEFF2EkmzB^OyDn{}!}{ z$}iR7#pZ#F4_&g&NKgL(9%fU$(w}|Q%%fL`9ZE62exm5lbjY9m5WS!j145Wy!r1hQ z*`k2xCGD8qti&J#M;Fs^UE;HbvRT-#iT;2vJZ?4ca06xKB98gSJV~(0(feZ;IHURAq+Peib)3q11e^KF0;JqDoZ4NhtW_V?@oQ|KP!!jGDsTAj%;pIu zlPZYS{5J@wm#XW``8XpyNmgDxf@RK+R<0XG-rpzU%0jVR;#*f)S)-CDq2e&Dmr$S? zRRK!4aH3`@dk%Bt1pLoWCRLO+4J))A*x$i9xf$U_`?a*#<1Wp65Nz@&)86RZ>%))Ed{!1c`e^@C zCn!ze4|gjyO)7S{ZtG&z@w|23pt!GhHazPZ-^8o(6rJSItTT++WAmC;8eBFfjgqGL zzMXVVkCSFSgk!M1N6nVx-RlMq>KrjJ=D5F0i*I+@CE1py&u31a9@l8m<@7iinIw72 zk?&S-zmSuWW^OVz+uu_AO=huGVqsOrA|A{wdo?+EM?*XmlwpfIXH`h(be%1LRSJIC=GK0$D?NjTt9KZtg1ViImHO zgZBT5(E0_u%!cy*@vlYsO)U*x#UJxC9~K^8W6S1cBNox4V*Pk8tBPh*=($5-Ql-5^ z%_HtvC;7AJmmMSp*5yZkS1oPnb=d~f7omw+y`moRg=i_a_K#aDtaiE5_(ogpPSEbZ z29Fi|sHyte_R8^6`=}p_1T)cF(8S;D8;CzVFo-`S?c7x1mGPS134b#*oC>q%Y){Wl zzNfwKjA*!+HE<1Fpl9jbzZ5pJ5u+M8c2z)geTi;LLJx@VmtFh`1ydT4bgtvy^6FhY z?(W0xH@jZaO2tX{KsYiydoaAEh$aC4k`EmsZ9ZJk;j6q2JlHnwe*(sKxx8ClDG-(sZ$axmQgExLpUIh!TGAoSx=&8W zDunG*<6rzHXRah(`W9Zz*FE|~P*~SZvv(%wOI%8(7w0FJdjcj()~!#>X8cAXRUUpA z=BhtfKoj;4Gtvp@K3H82|Gz)BTM|TgicUWWxhyH3#G4?M4S459!Z*&JG8XtGRhvh< zALe_Mo%uocuu~3G*%AjmqFZxZ;wm}3b>%atC4o!Xxt2?^af?ahd;J=-xYzdVaw~2A zJdRbf6ErNm3mKopNKS+_Nf_~AEU-V8fuT zU|84c!4FBoLD{)P_j`B{$)8+=60n)UEJLAy1ZQ8pL;D#CT}7tjUoc=l87}w$lI-cd zdBcdMH$P76iwrlP&g46sCU%SQM5_4Z&?H+1Po#L*xxEQL8S9OzZraxwdgny4s75Jx za5JA7n$oNTczsvG)UnD|V~P+tq~Ntk*N^%|E#-+8#biqJ>b;I{V?Ptl@+cS=zE!FV zWwdD=Pw%l$JFm#9-d4^=0l5Sy72z6K3yvng`21+PbJ#sV#*lG4Ot3jmtuZgMj1%#g z74X$AzW+Uoshj|9RcW@Zo&>cJv+CTS2hl)d?T_y=hu3&&4BJ0JJ-dFrIfs${gDkZq z#S~|%3m5ETZ~fUJz{yJDmDbrx{dmN$z5;lOmUtn{?9}%|;J*~73hONi!#oyU#z7(K z8~o#v=SIvxCcTbR*t9}n;?|SSUKdNK9Z&jV=z6#T;Vc62U=5Jhb2{PDE{Et4;?j(w zONx#$pGk2hQB-#Q-P{rJv6$9!cqV=1kjRDDPP!j;QmRSruag3+(hjn#-ws>JcR*v$ z{%gtSFPs?`+{pC6nW*9NuMpHJaXZjE{3w_W41r zH<>BBbZ~$|&cPWOZW1bmq7WGvxIqCx3plU;Yjb|wW4JJJ2Sa!exe+WOll?70oMCDT zK)&E|;$X5E3UMa@1EGrIIiv^bai+3>_D!rPpAqqJIYAI7?JE2$A3ikh@_pWwL6(OA z>b7xweR9uNxAj&pHF%g$QkdOJPWRGfY#CuFT#gtI*{)^tt=OB$mk%@>yzUL))@u{f zxsnZqPBaZD*VPs zKyv@~{tA9P!W5U`{{S03*cuXO1|@gk`|#tgm)MOwZY1w3C)c(@GlF&^e>6~hN;NJM z)^1vMKRfrF7l|2!BYo9!7KY;Z&9dLU66AO^bN0!BOXW4Rq1IW;HjR^m{-#}y2H~O| z`I(Wli)mt^_L7=W`X=0V%xzj*FY1~MYz{eelwudXUDnlNbG*-%%R1#zEL;bi;}`+4 zFEvvdVck~77Eg#IKVeF_eLF;3vrjIZoYtj{TKZNiYTh862 z=aG!EGj5)uBKbu#S3ok@*`+;6IVu`u%}lz*E}LzvMT9DBc}C+Qyp80zN33q~vmO0A zy{3PNPl5{|QUEFTpg;ptEjhxFJ0uo%lHED%o(N6{XMPO1{k!g{zz~JEN_L{^lX^57 z8;XG5t;dkis~xY%L*%#L%aW8`v)vZrB#Jt3nDi=peLO(%? zRE3xi;Vr9>`@*-}GsPdDd7DPS9SgXs^pVn(1ot1pHgxgT4_0N&-H~H9gCg(UA7c7R0Zk44Bof3y-wRWja zx#-5A1fWM|hn9|Oa2qNd;S5=`7@ud}$Xy?p;xiuIGvHFHq^BL^IVmFHM=cWYxb#cA zZ(u|d+b^yF2^MMGv%1^o{$?*QFO{f8h1@U>B&s`CB!?E?dx_w?t?)gNS{f@2J!vl9Zs$Qf>=^T4@3wWUAii7ctX^s81yEc5DNx8s( z<%k}bZ5^RCM(w@F#qV(1Ejdkwk1db%<^ z&2)ArjJx>p%VviUo;6s!(k};?RJVdgQ}soI3&KlO%OhWIx74Jnxs?31c#*RL{~mr6 z0>7jI_W>HJk}Im*9LcJF)F5;&I5;?y!(`*NI6pH+I;x>n+^!r5{Jy#Fn3w+YK2*8z z0e0Ve)h&8sE$$qcrp=EOg~Bhn%*o^REz}fn0WN#wtU|+1lB_qXgQ%FO~R;8s(E3M`z zwMl3B0rTwvDv9*w*4oiHmrW)QYbM34w`n@srt8}CsRae!tuvY{@if)L_R94G=O8*Tw1wfAhUYd3GnPD9F97 z_;K!fwFD;MQN~G)mK`iqKv_9Y$Jj_fuzLmyi#AQ+wU3Zr1s{UVz6ajUkDpz^c=gw1DD?UrarS-&FZUU-Y+c2A^1Jy8?z*iV zNZB~^V%^%ceu3WhIg|1-I1X8|p70DtgwAoy`GRaa2ZxGsU-n8R@sApSOOZHz4riE5 zvqFYx`Qr7-0%ZS31?sdZ@4_AilBD&7)!C0lZj{T2#QTJZPqz^N<9$+WYPZ@Ci2XCc zd1JX$Mnc?V^T5Vmw;dYz^$#UzxHr`LY4eqPDaNm)sr3xh9nwnO=x3}cm+-y1NPTfk zslikJkJs*{swf9@7N&}sZ13HeNjyhkFRdiEb-qd;bSaecT@3DETc2IO0O!ou_=8cy zv^B6X`hZka=i~Je97f=Y>Q`0QqMr%0+OVhS=nvsmW#c?d*z_Kh2TY5v{Mp5Nvj-7x7<= zTRo0{dV&#aKM1m$Ci+@iH`w{nV^*`ubJ~2#PATcqxNlItYEm^yt^I&sW+J4+?l9g2bwuHemGCtFMK*xnpL&NTX-E`fD0B8!^ zYV5Khf2=lrV&FyJy>ZWPo(&3~XItjqYu7U@Uo2ZlP$py`Y)OWB58r{H3_vajJBhWL z$4LHpYQt^lNVx7QJ>TT?^tt3q?XrHj_g?_|AH|iUeF~YGCzGGaSdF5kS_<{~x)Kd<7x}B4` zt+j-ET!TLfBgVG3dwflXrgHR1XuB$JXr`FTmBbBLNa~WURR*@OfD?t|12rT49rjoW z$bmqV>!6WQq~K+70p04dYe)V#!UEELRFvyQkaXv(%AyNbP{}2!&ZPJXHh63LcKrGR z^ey9^&jyQ5ej^p#(O+JKp>;;&+wt~%J4$fTYaEI@HZ%PP>%`EvfdqyVZ^2{ZeuGmS zx67w@6&7V%4<)p_b*+_*pQVJ6gZpu$Tlr&6!CC$ zr)m%C1{WWh3RmZ2_#~N$`kqp23iCpcq)SWST7e3ea{Qpb&_$ZsDXG zR4Hhvhc!Udw19&YI&co7+&q)oc|B0{&+mSv3)q#yyv5Xqe?Op_rUqsYYjXST3yyos zT*7LYK4sU^qI3T0oln%qDFtJ1^cQMhYySF&dp~r{mDi87+{{dL*%jpw%M!eUH*`|J zAi^M1loHw?zHTiscl+B5xa%982ScoFONC5OafpNuM6o6}lMJgv0k&TU7O8vfZ4&tk&>}1ABafEMzS%xlkvy_EDahHNt*$QpOiRMPR zl!EgO#`384zZN`Dqp9TiooRKju3I$-1zFoQ(IQU1tlUA(58oM{jbjY-Dhef9aJ5rZ zh7H<`bmv}4rskLJt7L>di_ns7c%!=}QPWTBZ0u9RwZo|=e?A?!0AT>0_^>>jGGDz- zVM%Yndnh|NmdC-en6wb6TKdy6uppZBTp80XE4a0ICZSsW=mzr?{;e7()3XrdapT)^ z!$fy#_fclpt%=|vKmJ7LW~;kDPYX<)-*xA;@Nr#OijD*r%vfX#?_V6bYe3^xjrBvp z3&-3)7Jqcqx7Pr1G=8!!QdNyN^wC`W&S68{mNsmM`mC1=xDlfi^I-egKPcGLx3Bdf z36IOvcXaC-;1wYUK#u) zIeEQ-KYL`4Meo?2H9Z=+48C0&9k8xd-Z$7MRHAKl6ZbZnX0V1B;2IiybM-+NNMtwX*FGN2i`kV&T97Z26-Yrwh_Yyb#*&d?Tjep zlH8)OGxu$+nVjd+tqUV&U-MtESfL=T6qyp1bvr*V0<{-$*Y+~=;8pxn`+QX4>zb$>&?0k2KD7A=15;Ek^DyUVHKX_GgYbHC|umuo26G>qmgazQLGnI zwLRFd8Z=1M;dbvMaZ;5j23!imG}RW9trr4}F6QX$lK$sJ`$Hl<#Nv=zh_v#2R_AMTdNC0jCj$LT$`Z z?_^uxg7VEZnr+XX*^(D|N$HdYmTs$i1lDT|@2p=+36||!kGS2Yi8d(!6tDLuZe_6( z=hfqq^K^bV_`QzN;Tjunvi^!iyqboQ`$3M^qK{mPfdYXJ06*yyZzdH{!Q-dMxNY#@ zLg9TylTE-oR%QTKgP?p*fL+9o>c59SRH%47u_0APZEEYf<`gkaYxOVb-%aL1*eRi@ zsxA64Q&8sQ=ET$DKd=hi+p5e%Ud#1gfmc^Pq-KSy@gie9eWXjXY|sOFDJ8is8tM$r zjC6sbENOT`aRq;4QkQ#XO#OcG`Ao~+ z2ZSqm;iU#jZ@;|$p&%3OR1*$MDpAL><7p@!1@-z0oYkA0LX2rt26CST51e`VM)S=MKPfo&S+XEGFW;>tUrI7AJRd3YT6V@a}cAHf*U;r@6*(x-K85^0%5OLsfm;m3&Pt3XTIdX)A#9cp4Mv2YVM*RG!Ct>EF@l#Ez`6ky>XLskxwCAc1 zPNqe3B%OOb@ML42J44}_ZA;hAmK(w14;1m^{?8|Y`pW3?Jpy92@;P)aAlA4 z>$}n`h=wA={Sw})24t7GeFXF;Y5Rs7gfYkFee0z^o;6Gn<97AUbo=$_)}ZB~fj+qv zCXY;p4KuP#x@;Cd5t+KrHO;td@unz6p;w50jOUW(u;8+M;ANP!ID{TT=>|11JSf5? z@byB(1UYZv3mj>De^}Rw)@g8sGj2tNiY(O|Hey5!D#%k%1;9q>5={^JS&1$YzRPl? zu76c*WaeGFonfyBT_R7%bA@yTmEC6$YfJnhA%dwglUP=r* z{7ipH(9asYdBO5X-^Vkh;70r*>AdJasdnrrox^b8hun$Vo%{j^HiCm~P+j*K!JgX* zi!n-$*ytKl?&Lkb$!j#=SOtPWMnNp~kV+vm>m`(F1e*9Ej=KkjKXxRmk`%*DM9Kbv zzz++)SMOCNPIQW1GcUNcVbaognzlBHDte37^C9<44Y*jVi*=P&>3fVz;)C>4eOd}} z-NE`Inh0tQ0?(sV7W@{VVIz!U{4*ay4Vkx4*leyVnKn3USawb>7F{DWspqel&$R#B zJ!8X*2}N1fcOK(?mT-t84$r1#)NQC`TcoBn&lYJ%Zs-i8j6!)v_yeFNM~sa8_L7KS z#P}h@*X2&|1Ag)7U5DLsa_tZ7;k2=dq9yKR$(z;@kw~Nmz1?&uh+Ff4^s%gQYPR7G z7MyD>B^9v1EMI!-7@v0UOd3r>w#~mnkjJq8fI=1S2Bgoz_4@ii_`*qF5x18+OF~XJ z)0#wuxd zGWNC3vofvgM0e=xdVOFO85n$;-$^%j;!o3b(k?lHY>_pp)itRpQ!aOeG?T+><*Hp% zBn4G2cbi*(PMa(~)EdMi&jkrBX3F08-^cnIy!CquL?05<6U68ne}2XP0fhNI zTh@(`_~2z$(fyGPUl;8%LPwlvfyCIxLq^i<>r83yjA?kU!vnOx{&APvs&ks?47inY;?@v1K#jK zWQgMvCY8OzMOwD$<9~1-f959;C#dqf z-|PA^Hebt3j;I9iZLbdvD^r)tSV3QNPRRc%ev0_TXA_fTijzo3PwUu4@L{V3i5-|B zJ)nq=h<{u`$BpXAKte#p6lx>r(6X|Xct;?yre7Cbkr`+|fTFay>sabve0t$Z@gx z5{S+Dx4%gCGqlek@h~{9n1O4+16D!yseQvcvmA>*8oR5;M^?_;72N`kp~6TC&0OpD;5p&Z zC`W?1Kln8HobgAz+RQhmC2!aYe_HOLz7uSCHE!FZ}Pf4%OGl zcuu7h#K3bSoAx1N7QhW39Bv#{Z~nSSTEc95F%)R&x$MTf*!h0P1T3Y%+fp+#cWZCV z6cAF!N7kk?i4e$`rx{mq&+!Vs(m8WK+jRsZMU zBBq{YRdq4PmS<01Okd0*$Lp~&npwB?nEM+!lc_#WKOWW1;BDa$GcGbR_A+KEkyAk^ z=yGRhNMm{TfTUb~eq84S>7V&}f6{%Hv^%FFmc~S_4_|G%T)yoK%UW8!fG4X4QuMxO zy^K!Jk;=PQb9T~u-0pAc6#LP2wQ3jjlyp+0MBYSH*csD9{_Fb)9aordbi9|!Bkfh{ z8+m6X^Qy_!aGt3mqfpyc1*aQkDoGYku14xDDWRWg6;RdRX;pDkXG8JA!SHrt&S6>4 zC_y)ew3&OGJ-gGS$4VzEHdj6ww7$8?QsB$8!48)Vh7vl`(X)@FoU(?#*wWX8IJ5wX zERPT}M1@_ne&LRGI}xRRPqflJ4v+{tcG2Q;?aMV1i3W<)nOXtb$hpLaLK)kZs%e-~ zRTE-|dV8qd4#RwrcD~2Ha2C^dD~S!IwJ5QGp@PQRWR692OPXz`ujGz~c$=Tw@80qyi;SaQ>8*WAn) z>$Z%_lcnX0QYD!DM&Hk!K=>n?Tn>-DC%?bcN)+VR$P5be>^r{`z2O2$k~oU?q~jn| z5$K>TLZQ{K!h{19q%u;Y1eu%4?2TW?_(^0W)Z23v%{&biY;w6^x~)})nlb0bZ&Fj! zK{>N)HF^BAp*ZDQ1F}~O*&GD%li)E6{cL2+{xqKrS%$0IK~MLf?cI2*&i=??4u!ed!EHtYS=vt&TP zIc7V0NY!RH+h$f_K|;p4L!BRffaUFaLG=T|J?_PlAUsJs6N06Z+z50jU@dkZR)&LF ze&p2v>#psV3AU4l>=JpU`92StefYDSGp!Cy+n2NsRt5JOjWm9vWevHm?HbGtoM|ZP zN2~?7(3s#_GMxeym*NdweZG}g>`7(_3Qfq!eE~f0?fdsPp_rOKxSgSOEMtX~i$;_| zfMA}=R*@5?JX*R(2Tg8#&A4->fS04$wLo~sWM&v?t$kp-`-WGAeT>PL z$?Uv$5AA zFL%osvfmXNIW$bu==C1<*O%|v;HQ-MmSwxX-5&2F^nV8T7WxQ(85S#;Hbq$T0D{Vn(fJmHAX5#QL8;`ju-7PtAcZiV`JnyE$ZwmH*SUK zLN52rd**jcvo}mvZMn1$TG;T=!bPw1L@vt3{7;$i{Y0PrjPDM$wQ7j(upc}`L)0%NXY~h=>SRRO30^J?( z5y2aD6ef?5{sF{Ih)gkjP=9BI+PtspczojT=3)!2^9{}!b9b1M8IKRWH5_p&Pd)yc8s3un=E9#8@&15jb*OXqD!ik=CuYRYwbV z>`tp{9jq0NYxHO4W>Aln9MzTDM&Dh~*3n#V12|7mL?lnigUoBo-FQ?1cn!!(1Tl7@ zb0D4(kvTUYschx+Tfam3YovKt&%xpsg90IT{P&)T{?qI~kl!QzIP76kZ{Op)mQL0j z=&1l!K|8rp@rRQ9hpTy^+^vcV%-JC zduoSr^+4oV0|AO#%H$D+(#^Ce^F(iECWBh_mY%V02@FFA8**9yr`{QUF)fxpV8!`T0*n-r#>qtv)ktTKif_l zrEcVD)p|CDYvN8z<<9=sWF#%&!8Z)VW8xr#m2D>)Nuhe>$Mb;Dtyoza6~C=H-zvXj zDtyHvd!J^X6t5=5Jw@xp7TKqWHsK)bEVrB54nPai%Z?3*NPy+DsjcL8~KaA+1u2oQtrFA=&UmVU8DhF3)8a zbdJVZK#uwK#WDZ;7Hg=h;49%h8bG;>Wr>>@ad3sbwn55fA@OprQ)eLgHB!N?;XJX> z92@=ucGC8{^VhONV$N6wr=cx`;63y}G$P{+dmIcGCy#!}&)FLA+>GTxGmC)RH&o5| zl_f?sBmxM_43352CGqR>LUTvb)p9D=T-zDq7dp`_50)R1F+1C!`o83XH03xHODtHp zxF(;H$1s5-==lHcB|=)c;n6rx|4&r=&VNwtjmv=zkRHX;D5c!26))x>=snrX&d4~} zTYeJ@WE=iasMzY9g_*y)*|i7dcwo+HRrHWCT%F^tkY`gYP_#@zb#>F8IyL5@Ud?t1=bn=RO*F-2J`WI%xuzH+{+y4&v8Gdj77@b?r2vXYnDT-pozr3I(yFK{G9K+4H1bGTFNN!oS=6 z*Szw)A>RDxfx{01t^PM%x)bOgW&gjaNI`&0Dd-3)wt%#uiOqVP8Y#p)26CXl=*+!} zL;E&=ubE(HL&q1u#-GS)3mOLTguy|Zq!S7YWm776nahp73tQ*^ol+zr&!s8vr=fPD zzg_L4`>R{q;J(FuCi&vowKEr6Vw{ju_Fs)HzfPIvKL1;~<30pC~Bb<~X zec9Kw-?>gYjEhjFD|4=T;Wm%Xon_O_OC&7lzq^g=pCU&1MA0$_6Ls9N15lK@OE6&k zy9*s5ka2pz+M1v8sdRRPL@=Rth%D2c=!Uy*;_bn1PrQgEt>|vpCJx}e!CWeiP{|Ik z0`AGg)I>QHuqrwt;(d|(*8REasDxNb-|{d0?XX7m07n0HjtxNKw!DqL6g{)};;&x- z3Xe_nb|rNt=O}IR$hz}cFJiu5fQYsLFM)&2d|7e-@#p@;6-t{f{1|_CBR)v-x7WAl z^;%oJ_s*<&m-n@;+@GxI_>*{bsnEY)HD*j`9YC`e(#?0`{OMQoiajlaoXqsnS@^wz@O z_F`v=X4#sDWk|V|w5nK+kx4MMe-+gBP(%dh?VkTwx;c8W_UY@!%-oVnk3Iu%NcBWg+r?SJ(M8!LpE^jMiU^*f}`XN}StLEO%-zd59> ze?H5^dTSQbTR@!z6M?W`ndNEv_5>Ep=A7njkK6hi+UTk^mcQ@G8mhG&eV2@uu{`ZE2^?n6crL z92D=ph2`{N!KW>9FX&>Ie#p&oSkPlPoTAr#{IL4b3kXWsw(~acq@Y?#5T%mc8FBn* ze~1saiunGBU4}wjEx<=m`N%8)3IQHx3-9~!Yzg2?Y(yI$)hCPmp!G15uVZ9v7$D`z_7-*B$i{F5~TGfd(D36qQX8Tb3gvDF}hIG590?&W$c@w#5)-Sd;S<@NUD&rV>ES~alR}py20)-uf3?Jf zI;^i*I7tZRl>Cet14SwVbAsmS(^)dQ{9CbCB>^Qm;DMWBUbf-4lK?;98zCZcrR3rL*`HY2t(&fxLl{o|9+ z2LkrOuJsFuXAZbFA<|MEv0f2#vs1Q{;~)?P0sR+nE@vU#-+Qlba@51HUD0)TD$(M} zZwD8w`8j*GpU>*Oai!qR8sF9!^JV2US3&=T3A4+Te;3LZCmVCZV*XwIZkJ#C@AdQ1 x*8i-Do@hS&e_RLI*#FP{*nR&m-*oKHBFb*J#(N?4%@q7cLsds5Tlx6a{{?e{r`G@g literal 0 HcmV?d00001 diff --git a/images/prcurve.png b/images/prcurve.png new file mode 100644 index 0000000000000000000000000000000000000000..71d1d25385486794a290b49ff4faf7e9daddfc64 GIT binary patch literal 17674 zcmb8X1z44B*DbnGF;Fp4KmnDI5D-ZTgOKhNX{1xSK@1d8WKq%~-AK2JfPjQ_gLH>< zpLs9d@B9CA_ILih_jSF#)U%#-KX=SI<``qHw=z<~rwK?2Fc{2fQ4v8o4CW9g27^~~ z{3!fJK+cgKzTCADQn8V@(6_PIw$j5$YTH0GnZv$8g_FlS}rV7hbbnxT!2 zr8PG*v)R8dV6w0>V5XfU)`6RxuoQW0jlrDJM*r}V?k5^yFoO1?f)5oO!sq&(9pn|u z_m`wYX^iUQ@ngnx@@^E!p3Oa8;dyFUfq=FyJmmS|3(UuhK{J$&Uvl1zK!!wuTc zL*d7cRMp@16k?3^{3ToDPMp9zudgcwlTEp@LS2F_>GgM&YSd2x?DbFj*I|S1=eYIx3iruW};h za8dlnKDbu=dJ!H56U1+IINa;ehpWkPadGq!IZms_-KHGr8fC>wIt2Ee8qVn%WoxQ~ z%l#$x_4+wR-#qajzB|FC>DPy`)q)?sbeon7D<}l?yyaW@hgC^NQCZcF0vw zP%sI8HQkvR)sg<>^6a9qpoT^yjZ}Ej+FUOK4b7v~>2`T5t1o*y6ZdBp|5Sb>Jae4E z?;9b8D~flmOSgCwD{eFV<3#%7oJZEcXI=dBKw>1?KJVn9Gv}%A9BFnJW}(K9Ie*)LFFkx1PDZ z!rh&W$4;W4&*~l4-=A7k({(j4(&ewH>(*4_*3gSHo>!^Q-V-tR;BL#*yl*?zB80Ws zo-3H~JjvAjD};4*y<%To;Pt5!4pI*vKA&z+RsQ^p>*@#ks0-)L#Uv#qk-q<&l2JTO z-)~jVSU$n$yrxj$w##PFc(rU}_}xRFv@Jr4dufAvYXx6==XwgCeeNl+SXke>Ak7=& zxIEte)49ER;rv-|;-EvGlf^R`{#0{4dEza#s-L!2XH4KJrUxr3NZAadwJTqXVtL7Z z^&3Lt;Q`fTWo5-gM4BV)2a@+;O2;y`_qG>Ol`}Pro1>qTa+oHiW|phIyTtgnj67*v ze`&Z%OiF4kqBUDrm~Xw$y1bJirO0u)fio~XJZ*B)klm<75X}#))kJ6Yb`g9{e17;? zirem%aZheCEF*0}uln3}XO4liXv+sOo}CXA_gqw9DU@||V%3;}RSV41r&<$(XVU*V z@H)*GO|-!~2?+@$8?`1(_ZDQ9Z%s33hHWlS%)mp+ySS9XYnV!A?=*z4CibvI&Bq68 zw3NGUv%%V1y?swbO+_{N$BSZ(ub|u1Y1B`+E>B!ctmUU4rE61}Kuna&-?!C1B%e1n z9Mm2DyizT;NnUV>Rx#xWE8ksvGMG)_w(+oHe|Mq1@R=?egLp8LYQAZAk*i^J&~NL* zNBq{sH(_-b$run0<33$!hUhlgFv`ppYkT3XuD zpK!u(1Snir{30F4Nz|RD;)}QEOHyt3?G^?YMUC5%{1#NSwPT!Cr{i6>*QOeI7TSa^ ztH(9n-&ga$Dc!NRyUlLWaZ9te*StjX1@po`N82+sH7!b)Uc*qvI_+w))Wti0>)T@lj)}I|54t9j^EoBy)dz*L8DZh% zBytWo2pm2}*aj0AkB&s%c~;BDQy!|E?t3njwJs~ag~x}!z0hA6C__7T9M0IBGp2cPz>`6Ef%E*5>f22Knaw)AsL0{b@)_`pws7yLEk7^xIPuA7P6oBAx5X z29wuQva+)JW?(=Gim6I&H86vE@K2Fx98O8pQVzRu+fSS6wkaPoDeBs%`uagUZc9~{ z!(b8ytrr&h*gMta=O?%!0$!k?Sg?25-`l0RapU`f!AjWRPPNT!*Y9wyXW#9AjVyhd z?=K1CfMw&>kIrDZh2Iv_)~0}#@$K8UTMPSp7HAC@N|!&t8JX&wUy1bL9CVS-&dx60 z+nTYRY`#87dH3$))tSytn6O(@PtW}N{aF|SMx50u3rAS`_d?jZ3NkX$XYTK0wM31< zWVAr&V1vCx z1KZ_47aG?97StvT)}{oI7gUdNJz-oz(kuf5gFOs z_Oc(Punmk8GK@Hn{d^nzNKfW0^mlo=J^JAb>vAcfN515YCH?dEri(-0xGje~2G5SP z#EXwDIj}h_YKgW$tguK|%@ccZ^mGe6o9p`0M3lP{1crRGUM2I5bH|BJiR0NC!YUf~ z=BL9^3H+{27=dG_@1bAVaWYU>YuKK~dP%Xpigm29V%t7fTCN<*4aPRV;3=H?~X}}I_sS9LS zg)B9*yFS>tv$@Q!^W%8gT93(ujag=^^O-|MThpnoqW(5t635$yyJ5%Dva>5nblsoZ~tGn;67VqzEA1?P=uP?b{H`^66xHHaaJXl_)-x!|!ng z2&r_HY<`Fnrh$pA#~`;joAu<1R#jC^ur-v&exH?hjzl@=DB;y4`vFH`=JJhLh{(AR zs3pTV8XyODBkYo!o9oeO-d}8+H-c|`q4xCIqfBKha;^}lreULeWlojv6>TXPbbB(! zOrF@9jCc5`;a3klNP(oR`aT*?Q`C|ncc_Q*n94VFL|Y)5y5y9XLM9q^E~AI(NrL>j z9a&)9KJ7C{;WT-@A&gTRouV%}In)uQ#~}MJQ$HjsT4@o_vl8Wmr6!NA#H-Hz&55YpNMS+2NpFUXk5oiNMEJakkYl}leLMS#tap1# zVQG3w9djT-ycToKmtURyEs&g?Twc?S4TF5y?>G^mT4WUuD@-*tT84I}Qij^&jNLz# zUXYIIMYsAF+-~anki$G%&6Td#_4e9Km!W+--V~)d)}-WDGG8nXlhx_E-k%6h9ptzm)q@?0V_4~Z1wdWZhe-TtKv0J_J9StcOAz-rt%b;=k z3P)Q`)4kMQiwbpRP1n5Fgk&iYtfpo%E0nagwO6#~;{*@i28h{q zzOUQj)i6Bh+x-hRyQ`fu@VFgtsN3U2{prgxEB`dR?{>Ny zLF%TbrET^hVXeyx;d9PM@XB_!OZKy{uM&i;fZ*Un+nJ6jl-0{2#aM4IJ}^5muE03t z@+Tr_dn{NpGF#orsW=(H?5oTQz!Nlg?{*6c3x^#&P5KG2XXy4q#o*3LtF+r3Oox84 z{epSy=g+wG4hgye1~tEaFHs6#6L2A5Qs1|}zMN8tt!i*s#sMm^ZLcq^=iPOsFYLrp zi~kB#)-ZxVVANNbO~PUN$-;QM`<}ACenRpuO@RTUcIo@OHeWj-tQ*bRm2{W8mH-fe z2MMk9zZnLF&XvSgBbap^Gzk4)pR~Q-y>p!i3xW zj{U-bhZ#gh?MFVu+M(TLyj9BpA#~LS3H^o)UB4`0y-8JmM*B8J&e0b z>@%547r(RS-(A3>MHJz7w1yIec+?Psd7w8sF~PvX@_U`njRsyiLgsDUm31A}vf2rE zsHrbrgbMe+ir4?UYWIBG=r|0e-2?A%TddGYD0RyKM;q`N08}WRPDvfLDrzgXHDOfA zitZRWg2DWuOsbUxWXo+k9oL;>pq#P`dD*7&G-ndbW>2n>f3+_~COY#B${A^6B6yew zg~z9>Lr`7^h)v(`Hs4o-D%q7^tW6?Vx7AclBLFu}YuyI0C6u0ME7iR{UqCo|xt4_F zy7JSP;T60$C`|)*hoQN3o&KH^K~Zexxx?F~=C zlNc>C?ZCd#@p1a=*S{^O@bh~DGP2#-cqSw)9L#eQ0-f)@EyMJh@ipQqt~q-8)t_@L z*uC(p6D zB0Q_Jz(`zHs+F{rh~#}tLPAnLvAMY^CLxiwv@Tj+=vVHZmKo>&R_a-@a24FUsGpvG zDXD9Yj%Tgj{awHLp!HyOi@%w4xA@O9qTGJl0j*X3NlGWGO z%LDX3yw)RvtsjH`Qr<1P%%0;A;+gZd>!H3oy;3G^;Iky|R(Jkp6W!ZD_w%++Sew6B z3p91cqT)7hJ`o~POH67@m*>tKWodbP-d8HXA@0Jrg?5520mW}w+R;B!)DDdYtKbuJ zoMPMAsDI{^hl$?$PG1C}9Pt=CA6z&7c!`OMo{$raY0}Txy>sj789Q2RoSgk;WP&#~ z&f6*N(5fm?M5tvEA3c+;a`TmO_gRIiiXREF1fH1!Ysa6ws(hV6fQ@T)j#mpLcH?c$ z`jb4-oQi)f{0Mu|U5MfN7K8K72;)GA??BZcL?{!$b6dTGdo-eug-TYwpJbi{ z{MDIWFpvT@$JBeyf#$zs^)FV>$q4yXtcd;KdO`MfbctA#|AL`PX4f3k{il=8^Mv7X zMbakn+RRFuGvPg{V{61@>xH(ZR2!9E*gB&0D6_6+qT8Zhj)|m6l}UMM3urPw?#`RL zSaq1|T{I0RB3qo+=jWW~)8C6qOLuzWpUidNcbn_Zsaf9w&>1^cA8hjdK$uuUBHq^b*%!2Nu59G#%iG zX-Oq==xTO*{e%9&A*DZyBi&x7%lLE%dBpiJF+cTvSPU%m$zUUTzklBj0kkbkyHd;R z@JlL-%nlN-Q-@bn@UJSJ`Y1yb7_hL(T^2mk_LL!DKZyRyAzo|jXn~D@5dNY;Xr9Wq zteBYqa+V+`k3hw-ZJsn^b4=TNnd$aB)k$r-b*Ilasp!>lVkXPU}G*^+|GscL7Gso%{?D^9b}GuoxzJ`&`#$fTwEyZEsI zDaWaRH~7=%7&xC2M+^JlOEgIX0VspNc06phTqAvmc~xeZgNSfdQJ*GuaB;+_@;Om@ zgyL^odeyHhhG!T2g6;8IVOWtpBeqVy3W^4dPMw|Hu0OFF={>^0FlyK7=hTuoTG6JI zGieh9L@QXiWYL)LaKaIYz zEiaz;EBWN7*FW=lpT9o+`KsM%=^~XE#cew&dwK7H?bN!P$fVVCt?S!Qcf8h=U)N3* zj!AiFq{il`O-P*l6gk^Yf4Z=(vQOF$ai1Q4`5p0EAF!S)7$<8TEvS%vD7)w!l=1@Z zcEUbdcc{iad^n&Q{Nlk(emDx$35GNaOq4A$zU$y8z&4)PI^RceA zr`geWhf4W4p{|7N_GT}B{Ixb6@U|yd2D;^_aqoPn?sYt%at!9u5F;%UZR`Z%cs(*F z4lcyk!>_`<_@vgk`-t#Ov&J#O?^*GH@y&WhgQ#H52FVlnRp_l^>1g5QO8gI5(C-sG zQBHlE5KRoXd~2_~s8b*uZ!Z1ub22Gg{bgC800@Sn@~cPA`}`R5l6 z`pb-?m(35J?OODgJoE1+*YBf?&&m{L*a{$4`Vc{91FI+y&<`H`DgH=-=I;2<0#=7l zW|5-*pT8gE_?U6@gkrfbgmz#NUIm;Mmz6mM`QF15cz7+k^3W@G_{ZQOzM7($qSGt! zl*c`@M$9eHVf{#GDA7||1J z%2%Du7jZw()}6Z^Ha8konViHmS=%t%of8-k5C>Qd;Hspi%Tg6dZ&N6{I52kdHa5BE zFI->;oCbw>?1xx<%+QW@PPdCK=bzjTNg4kzD4}U7DFvYN?#a@AfdEBrE*lw_a3!I*PIdc;XDTU4Ng_bF;_^QG zGVEQhGtJiW^-7r<>A(X|RbAF>dwu%K%3805$>!fNr=6u523`a}fNUxk2B1s!=oIFG z!*YAy%isKN4`+&Cn%)BJhQfU3!^GHF^5YzRyrz&ldfuzZz*Ag4;dgjsO;1NlNO&!YAM;;H#XR+@VN$ z6%`ex=h?l|12(#cGQ%eU6lQ4)RKQ+K3ZJ~)$IEKS$B7N_^NRuQ4aoygM7F0r&Ow|P z6ilL60N625h@g@Y%ck`e(-3}FURlF2zSwpqVXn8pq%MGt^tP4%k_eI=<1m$Sb>_|Nw*yT?ON@Eh`RIk_o|PIub1zDs{8(MSzOBUq}k z(1|{R8(Vw;(Zz!R5N&E;c`)4Dx9}lgP;>vXJ9-oMnu{X`;qkg&r5r9moYYbQ%}|Bl zioqc?_!wMNJyC)Sh%vZ$NPvr&a;24WX}IuneLSEn-iPJkhw<5iQ963X_mO|rDY*Ib zcQ_e(Dz4AOUj6G6mc*gB&|`4X$oFHb+a0~*Ua>l8>MWK1u<3fEd=ReKt;+dNbayi6 zcRz@kmP(0I$IjT|9z0Fw>Ytp0XvxJu;EjU$%hrD;B@GA)knqmq!fV=(0#>e^cvvJN zK^_&{V;rvp8T6}Mmm6HABDTWJ&bfk9{-SYz^|puzJCC~~tST)^2bYGQOuR>}hyBzl--HSr zovb43i4>sjp-c?|0VG$i{!&#zSUKBQB#($%fStKIRRm^(ZHySWqy{>jnNUpbwPf4n(o3{1wCFJGucL1ik?aQK6d*cJFm^k3JN}+kOMsv z*vRA)7ibW@DFb}H?Lyi5^z&onToWpAzCt#Q&BgdjqPw87P~@8mF^K%#7{Rj&wbf7k zoc2d*c{KO$YeGWfwi-Pypn$(51U;1r_O2@YWBGFV8dT)p`ztK-6h-6@$6< zqiTb|TcBioJY0$Pp2K1^P|G(&jXN_UV0WrgK7{Dee1WM_u3dE^Av*d2XeVg$Gk|#O z+(Jq^FgBCD%T&c%fnMJW}9?&^>jb@^uFLVLtu?p&%QXw-0`r{UV;(A5T4VXuuM39=NH21|vtJX>aI6<5(qgtWN{hh@Z zRES&!#_1FAg#UU?rCdubiTtYiL~g7^da|7Y;3`r+CmYFXNDTa+0P=E#J^fW%9F`?* zj!0Kf!fXFn8g_rtGca{-mE?@D)`Drs1*WZvYnGnY&TGXdS?ne!sGADr<{85yBkYz# zUkQ4ltSjn|*?tZSx+=s&sVFl`I2Ah#7n1wl9E!rjeBGp^Ii)Y5XhQFB%?m(HGD^~C zi3m?_Dl!y>06QFX>+!Jjp4a`Ihfvom!ERgyI<`~A61};g*EfE*b}{qu#)wqVJVaZ( zDBO~O%n<=K8W}P6Rub>G8+yQ{HZLp3L)t?t1H-~*#LeOC^5F!itrb~0IV|85rO$YW zV6&W?JHFe%n%ZvNnj}j(*I%NH4Ty+H2mMVH%knw|t(ywh#f!>t{44fmD%fl$W%7(# zAKl;I$pN>*O;My{1DmgYa5GsYnXAR@oG`vf*R{vg)YL|x>pD#*CxSu3RkQ_()WDdM zo`#tB@`Gg;Z;op1d!UeiyuDCQ7IjqxbGEIb4P+B zuP{j98*D?yKTC*T#h$+l3zt=HNlTldWM$pNw?4`2zA0Wbg5-Ok?c6h1(9Djd7iFti zEq6SzNCxF=>;v$6>ac_PCZged8Gf0q4na=?XsVvfqAM!~LYqw^?i`I?38K$dX^;f? z92gOyKEDAZbf!|eYJ{~6%rDz3fhNhkOH1`|ctCdpN#UV7sGZn2h`~tHgp;l$S&a^a zhy<}|_~Z1^aTtOkkb991!zcLmHb$^u$e{u^gfQhJpQPUy*e{cdgyLk(&+3UO!x}D) zzNt%9vZBO=yZQ2Mb245B8IZ=ycM$@x1xVt9P?t-s6m9YvH)ni&{1zM|1hnDhqM)2c zfg+qudJ^K{%S#IcRagb$SlD8)kf7-*085l-&_oVG&eYaSrZUK&$hiPN8UdflPIeQH zBHlS5%iT&~UyG{Yqak~e23I|z0F_=kxC2D_17!7BnVt39W(BEHP_Ztd6BfY$= zg6qL45bF%0ToaH#0f_ho2iSDrFj1z2W8u*}iY_vcfWcIcEFJ0F+(yCxSY9j-CZ1@d zSCgL2#5^UiZ)K{r#)9ukSVMwt%?CPGR(VvkBzK|6_?MbfD5l$59-;*at9}xQ9>ud? z>XD-el}Dgo$^%`#0#Db83tuk-%)V*GjMA{M$ZERp=D{J0&8*l{1;wq^te`&u%r=`u z!~j2MmWVETO=c+s`iEh$=aD`OxgZkK7PCS=RSPX+z-MKKi`)`PfIsMpfCl#+TqA%263ky{BN_AFh7%VWOE%y++?-aFEN3OJ zstSc4ZG|qOmjE1dc2X3()nhcQ<>NhdbbY{WMi*Q^#$yMI0Yg=HYyB2NKnS}wup#Kn z11tZ?NR9a}#)3XM-EXj$n=k9e+nOVx@5wXx@wRrdrw)Am5*j8)q6<}pBZA4%Vx=>E z4n7JBq)zqUaAgMlQb(Ui%w0AiL@lKJAlLS1{ri+ame`Xuf&a#T0I5lBj_)or2Q}!o zf^ulW329^~F)fK}<PV#*x#p~nBO61`ma+_`hW z|F=U#rsrMAt|3QGDf5!K{G4)Oh!w!w??Q1u)aUTdn~wHgLyUkI=(S)*7_#TRe*Gcf z89=Hz`tLOy$A~~4&6Hd43k;0!>QWh`WMNqfA32H{auIHlJbl+`B?(o~U_eU-he{x~ z!QatZz$<%nCZeZt@xG+f8z0L;|ij9e!XLJ%V{a_SWv@{CLR2xgx(fAD>h4iHWHY ztEYSNQjrVJ)AP^))CU^@+T@^711yk()W6f{`|h28oK+1((Yd!L{s5M~$%zE;Z!eCq z+fFMWglj#~Sl8INMntmEog;kioVFtA5sb&!tG_qg9!i^2fg1RXl+#@8YbS6QuGQ9; zZ>h*E<3Y4yJs_0=zC_~qKP|l9jm?Y)rL^LB?-TFjA%KVk{6*0?{!fAApqT99f~imu zqh%gObSft07WYfeMk-XzDOOj9prTF3t(z<7hZ(NwB6Y{@@j56$4lX9`{$wddQ(V-_32`_O3CEovw ztLt7nc~H%wXrKd(I8X-7I8rV?awa%5>^v%eweSwO$*PiFevp35eNR}i>7i2kL7qcr zksp8R0avQ<8_ zsMClU-*eSLjm>LXBR$$)!l=X{*Jo}L~Z2S>-ch=c_1L?N8z5E+09la+E4!?ib~ z+J>v%t%96SOHWU)6$WD04A?`fyh2ywm{skVRl7(jOm8WApMS?Jx2mrL!$Sc90R&CXfL>Q% zMj3c`o~Q#M@lFOth0kwB?;zuBPDS^h>eUCZZdj`K#4P-bPx2MO_eo{6wK5gTZHx4B zg!wehq(DE0OuZZJ3JcSy9Fx!L0BZ}eY6gl`bfuNGb$gMufu4cEwztpvZ1?9kZ@v&F z+_fH0f;t`5X1f{wAtA}aY(3WAK`Dx%2vb&l#xm z6hiIu+m^7+w6ugX-GJ(^ZSbcbFhSw|#Fv&JLMeS;15FyZq=Ueflx~gNzl|qQxX21H zJcc_2{L@AJCI|GOrIZVP6}34^(Wh~onDBtDxsRW>7~jJWIF2d&^Q30J=12a|^9Mg( z017GNr$3z#ZQ6le(D;}(T}}dpNBC}z85hLRcc-LqzYDQYNqHHH3nv34@(0A$@%Y_% z94B{o`O-yJ+yOmw5OC`{iVnyu%)#l_xms~+SQ*UkNKcr%jDj7C3Ij4d2AGB8REk^CrXvyuteFgs4t#Z>ut4OZTO}q6cJd@WiF;my0c|?EjWSNZhpy{q z^?YQFjFS82hwRg1jDf%g%b;FPwuYV8tD=f_ZsP z*9YN1C_0c|88l#7!6THJ7#U@qaKF0yvUOPsv~)~NL2!0~+yI*0lZ-IsIybi};I;dE z8=v8|fc1%HKVpVT&(XJj+cYr4?3mmyU0OcuF?2jI;@c*m6%6|g1&)It`_FgTZ$M2& z${_qVWs?FLiPLO$je@Gv7ZXeHSCn^}afAU6kphL@OqfOa-I=`iEKZwa!R=sgMwU}x z@es8Gsk|!f4#q>;$KE~pngwJi-Rt0tY=@WSK?&av1P^k6uYl=fI}gh5cW9yl8I+OM zz}aW{0!H8D&=1xzlbwyFVlZi~0;OWonjjepI>8<|muFs_xtC;DYT&F1+5+f9vExVC ze~einF`*bN`nK!+_Q3ZkLTSBh0$$oo7|>KoYDNp#i1X|hGs(oU_6~~&QT&! zq5oM8+4MkJ3Aw`%Ud1xd|Fm9}F<>!Lz$yR_`1Zoh6mUzYC}&0@?Epf!^8O<{jIof- zn_odX^c#`b~ZlZr@GMxj;si9_7AwcgO_XNxvZ)QcwB3>qnFa?1ENsg{jT6 zL#fo&)kR;$2JsG2UO=>9<7Q_~`BvNHo&MI|bd9nF>B;za>?^R_(uo4(2`}H@b7s^i zRbf=kZRS}h{S2=BX;?m4aKojn>|s25F3{tH)M@an^hbJqLdK~&XZL-TP>bO9l-t#` zH*X4~f&wgx!WEt1`QaCp13L}XR6>}!-1gcWLum(CYLVHMzDC9mED2ID`B4j-U_4}l zd4uMU>fm3uRC7h3-@*^DIar0+z#0x_0bv-ggE!vdXTDvW-ldl(ZQCiD1*@96j~ zIGL{dDyq!`CG-fmLP-7zM*$9|x6iHpkutCXUA%lb5v;;fP-c*V;**(A{Sj^#nN3r} zaN|a-+6@Jul{3`KoL1||pw{?=nhy9t*;CCm^aFQZ64>3uu<$<`plyMet~Xz=pn$LU zP1Hck839frCYlR*2dcOzU;IrnE|Y{iAxjf-hT>faYkg0~qcrHYojw3=KZ0JQ+X1*} zAKc$tx5^~ZwE@XU^ro{G9H|B8hB><#s6x{f`rxs1q{6vkV57jai-37%xy)`XP`M7S zfad@vHE-}U9G}4Adzff*hkaS{S%AY~%PKI>V6{&F_3IabR}>h%;vk736oSZd)B&;! zxzhCWuCA^HTr5qSP#PIaNxW(6``8ygQT_f(BD``2&cUgTV%STu zLhqovL;@MWpyCeBC>$o>`}>m;MU228JFB1bh>!u>AyV_;-IKu}Q*JaI$YR=c+Z7l` zDEJbYiYISWbV6;Kd5-eYWcl{Ie2Lv0o8{00R|sokJ$M*ThH9hWN^^O^)tg%#$HS7R zynmk!j*7~J5{&Gwl^~cYSDfd7;OfaU31%u9J#XhvsJn9&?;4j6%S7(W+K}+6?QI*B z+dN2RpS+b+L`eTXo8Kfc6WvGd)c=_{hMC~RhRJhXB@~qd9`_^Vx1zJ ztp$aGJ`?G-WrS)TAnBd?YAwP*F*OU(qr#W%Ow%fN?_Lzwjs2Qi=uU{cO;40?d;UL{f0rGI#DR zH{I|2cwHa>icsWP1z6Vt+b2)E@+ha;Rn zvT)Q?^S|jaVpaMDy_?u0m}{r-^P)HYSG?*m0k%4&WLJQ7KpDFF{`m1D^aO0fmsIsl zLFnB+T)jK&JlkKw*>xRIh3dsN?PO4+ewr6BFf%tTIA~~Syuy!xf;v^sIk=uWxL%PJ z?=Z&WM0v~XuG(3_bxgIasK#K=v!2hT0_JL@b~`=T>19DtYyh<&Q3Fl3{RW^ z;CMD|m#HT^%Fz70#H?Wo`rG3yt>>HI`)VMw@6(34mH>hpT&$2X!=U=#?8#Iw=@5MM zC=`gZPjFlIs`h0!d!)1@org4=A3=c^wvyS0a4fw53k5Vrzc%40#&--gvq# zxvrr>5w&zcD-Hwc05C>3Zq$jr08eZNgu*E}*&Qec!!DbIbe_IK%88N-+zIt(kZMLV zgJJ^BC_N?i3y%|%W3~#LY+r1val#ibXLU~FnR{1sZB`~_^9+9vr%VKUGb4D|G3&{fz52ES?A zmPMt&ZQlR2SnG&7DU~w4kkbj-833S*^Y=f$Qkt^pr5V+bi%Z zE-XWB0?CmFR1|Q;%3h$6Xa-0yP201$f`~WhEI^qWTmb`Me9wtQ-J9yR?TY9g5RyUi zlbLyT)YT%{@{7Zg&WH_n18APc5Ttb+=yTBr&%8cBQ2o)Lel$>n?aXNIr;Plp6jy|Yf%Gi_XIv7D z3JnNmaDIE8oiZ>1DrRfE_~llRfxxv+ngih(jW7oiEcXZAQiaufP*64(sxjqQ{^7^{ z6`C4aOC7Dj?fep5k*1RUop+^KU>r0sXwL%hVO_lj>6#6s85&B;N|*iJ^>OGu;Iu30 ze`;XRX&g?)so0!nqRa}i?4Wf)uNh=bZBPXddjEw9+>v6j8&S*+HIdRuYQo~@ILRf2Zjoa%Wc62Jf z36g2w=7qPh1_l!>r9Xe(<^vL~ohv==PHhA9vsf@y>{wOk!g=5Tr7Dj&gyodDqTGKj zje(>CgrVsy3dWh#EWQ-`C~0Mgu0SxeoA(vwe?R5iUe@HxxAqBCB->uIf_9-#+L_$z zjsSkaMT&a!Q2!A~6NZ3ipn|p~vg=B2be#uW35EE=mExWv>qMnAl^B4~oua=c-f6j> zIqIssX!#79q@a^((0oke#EBCq;~t9i4-31Jn|ByU@Ax4b@XYOrislRj?NSbuM4QIZ_mqOXb#wNX#nU6Co07OSQ;AA@x=!Cvn zEiYXXkZ9Tg53s|@f`&7yu0JZF|G$E`mX|&ql(`+bMy)GAo)`ma!J!0~O)I3Yd?P%~ z?hzR#X8fNlMMfZm2ljk+TJJW2Cqck?^|vs^6zIQ64Yw;b;A8>>%XMBiKTUl5E9$8e z!9q!w2Q~%No0)gThB&2h!5WopmRvxUy4E1;HyyZopx+2ev^-L4u9QaC$p6u}bbN14 z^8)=Axhe3(>8m{=D}4%~ty8GU!^+Car3Nw~d<}p}UJMTixLC1LPD1X~M3w z$xEX$Lm3=I#WquNmt$V%!HI-0g(@$!bS}PO=Eb6A&g&iULjX7ig8z8EpWeB*4y`%R zJ+Mygi_HZY5N103N5Y}@qNZ1`UX7h6w%|AFvdXSLGUuG7R3FHQx-zTBtU~ZlUi!39 zu|LoUC?Cn7Twp~&<9le>(^6y2Xv_J1Lp#n zEi_&{I26R2ZE{%Q(;dRcPb!u*CFAd-@F!NpI#r=OL@}nrVWkS1fe?4WLdDG)f3`q3(OjQRSVeIkTm;b+@Mi zx+fCAVu1b(y|aC{pt11-C84xpQ4^>s*?tQ1ejy=`*PnZZr0m^`@*Yk23-KN#MeA0m zdPl5^B*2LA3!1;R;q1?FO)ts^ZmY@3>5w~)p0kF|rBKuu^68Ty>_T05r1TjDmoD~SZb3p6jMAW$l{Xhwy zwL)#*u7GUetYPEQ(r$qW>D~&hXsZA>jKEx8JQnn11vo3!_9~UQrg?q=NzzJfA9CVbi!RD%}t~Q3_W5sn98;1(Y3|Ev&$~s{e zp(b)y2s-HDXXXVCC0zhkou41%a(4I}0c3B4E@MSFP;TobgHxc^fny^EO-RKW1eoH# zbqv&^s96mXvg_N1Dai6GKw6jp34@wl!3_kBpCIr?s_v^{ros2>@lhsIgAWj}Ds~0B z(Q$PFly_~owrwb-+P~j^B}p3KHukgoX2sTSE#P`iS5*E)FcvV`$;urJrapL zAKyQqqQuwWlW9-!zhiDHMsE6-?A)$eT{%b6vT}2AyyWJ1!J5b8+!fagmz)oYNQfL1 z=COBkb8(dt6?OVwzaVny%6UXXWf2A&V6 zlDs^bPA@E0_jh_bs z@Awy2l?ZXl03Ish6++$+D{C$LA)kucoWEmGyD*hvRlV1m=2`B%^LBrQJ~56IQ&RLXo0&%A@{biE3{|7O$!A z6I}sgVe`j&`!`b=hrF>3E8eQSB{gT2JI2##ch$12toK5LQ(6Bl{D0tqL!Q50cEdpJ z&BF6-T%?*OT8UzwGnN8O)HK|39P(>_?tGKz&bNs6-?T+3O_%4;A;!d`m!3S#_qefm zUnxx?Mb3BTz4Y|J=kqB${qBV*^WM|se`Z`l%^ORFSCL(7*t2#sny=jQ8>@%#)|9zt z!UF>--lfQY)36U!=6#oVbcaLNv)WX}n>-0Eg}y5bRK{G#l-kcHh*~t=+#wfo_b$`x zkt;N8hpB`N^ZxWDbY5&MYLg51Tl=est2uIH=hc39miH<0(jS<%bKg&X@t&>>2@kK&I+Z~pHW$3yv z{t#icLzy==b+;!qH8l@I=nTS;+6ikLpqf#;{Cjlv)weZTadGi`;x?3|fxb)Cji0jh z+cQq=z{)+!%p9I=<_>POo-InOKC@@*)Kaj4pnJt$4XGRh%hJL-8ZX%+}ZA|Y|SJzNlFqcx9b3d<_T2gX~ z-`}mn&Cw?=UKC9B{&lR}R77TD^|zY3Iz!j;(s1ebm}V|#3cmOTGj+?-bNycBy20|_h9#!{u+s^wpm|Y7GsO-dEvTm zZf-6hS*YlIThp!W>|&R`%Fu8~(sg!r_EcY&*G`fOvZ}wed6m|NhH;;E!_jX(H-ovZ zQ5_GaZH(fSE^rxCGOhC2MXY0G*EjqF38&t`7p|kc{QQ(H@dxU^zqxbD$S5Q*Fz|z$ z%NEP=PuV~F%0$immd}Yb&3x1lwVEAjyeHwr#^twUWpL(<_43>ZtL(MIet*aIH8eGm zlRSQX3GH)!wLLpK`=0!Dxj)xri7OJVS|a~F+Q!oL!ex-0%X5J2=lr$rqoc#$Hr9{M z{r)}MfAyRD{mkg#9o$W|H@ArU{&jPk{>r&|^Jb$$>&?zD$M_%0crggZQIkG=_;7>W zxtuIhJE@L1d$`rKr%$O3|wg@?!9yVo=B`b7Mp_P(Y__TW<)s)Hrn=8ThPtNmo( z*&X`v?*2`jY@dy_MWZU8WB3P!erwkTSDK@_o3|hRLdrG>JHh2eL8KlcWS2)%h94)G z*AaR0&mXsEXNxHB@N3QWEbmKG!1FxN8+WxQv7w%ul`quGTH@-r#=@2lUeTC zwQErBp-9VA*|+xwf;(UNEI6w6QC? zFW%JiHcn_4X(9UhYJD4JS>J&Q%9?oLv%D4EV{XFx_GPx)+&kv_qG{H)EFC$VaC#*4T> zO(fVU?aVv#Y;6mAdyVtmW!IWkKHt%iTMi_%Tv?c6?Dd%rjS%-3jy(FD{Zd8Y z_7gpqsXpy^@!|y*i#R%^=aao|ky$26IL(=)On3iycnB#WGDX`mqL5f|(j)?buGjAU z!#AV?`Hkha*5}@1A0KP(VelHejTBRK?;dNugpN0>jbnSdil#_H(aV=oX}Rg?0Vnq` zPg_9?@YCn|pUzx7vW{Xrc znr>phMAV|b`adF}EhBY#X0KdEldkd}IG|-;J^nOD%&IPs%2<_xZ{NP=i8Y&OSxQpR zOZS`)#0^>x)c8+bG(7R-h;I{XJ!14SlGIJ{TTh<~TJ1XO%rQPO5!AfGe$-jn+B&_! zOouJ}ZDUi@(1*0+0{i!0SSWPtf4P&Rc@R67VYq@N+}gxi>eTn6Q_k)kYra5N%39oelKu1r zT@o5gf-DNELcAQqsw511^%fW@eE&c`vC83k%KH3N8<;+MYYNtg_GF;%`aG zsHQ$bGV|0cEq=zQPoKKn~{9303@-#jME3*omQFQHFMOHU_f4iEY( z8-{Do?_QDf{i`6%>^+i%fXYeA9q%cA(k3V*bjr{$`1;1mH>Bq|VHdJeLeWmYPOhQ61j&TI5IC-1gisPO1xsQ)E)HF1XYidRqu5=n&9Ps%SI(=jp zX=rFD5KCCwaUHpQvkeU@{`~L$Z2ioNRZ7zR`}ZTAUp;w3iF9^CU7h-_`rg~OZwIb* zc6SGlg-CHRhi`6^`5h7CkaX`}$fHMlK6Q3_&DSHHBu;j8B_E319jo>MwX=Gmu1@LQ zgCpB!XJDCWtwk^#W5Y-RIV3&*Z@mn+(?r;+I4tecHYvR%2 zocyXf{1-;NYfte7{nyDpZgCFznHyi6kD|IFikN4XWK(_}2}ThcM0gvOyX?M2%Sj!n zx~Z%$a(1}+YW6|9XxRl;xutyL3hFc|5>qkfVY>YmJO1LM;7J35wyM!5LP*wUkY zPjru8*hIhQz=7?EJ_1dk3i1?B_rGGgAy%7>$*U4UN&jK*3RzQ zR%6~`nU%?+rSY76;_q$VKRi|!DUMFzL^RjVE_OK|Nsp=CpzEu{+(bsmH?IuzzpA`) zd3H!e^Pwa?0R)|$Mb6}#M*?!QoIQIsRwB3lW3Qa|NSxtJ>(Ormfa#6g>oZ#jBzEM; zktN{SLWgdVPoF-K%I8>TGot0{7i%(j(&03q{+`nd>$flC`$U*OkZicz4GF( ze(`f}nUG)=Gunx`l=N9DFtlw+09xj(UT(cK^QS{6BQ=$Tk0Aes}R z>j4BSv}vZbFENhbl4T>3CC<)=T$7_d^PPs}p0n1Eb`04FLJ78K)hwNShL_a%lbBFcP%wSe_cJ28T-&PdycgyCbj=NMN*$6Z{h+9y^rs(SG z-awD~al)L+^w?;o=6!OK=U@FP>kzt*}og*;fCFrWG0*VG)riEOPW&VP>mJg;5j3y-dDm%+23l zxpKwm+BK;=>W?+^yNePpRo!1(`L?lO+~z1zl$ql900m6L=+fJ}`zMhH%~u9n#(Eqj zN`cPf&?5AE!@Owo^jg$tU3anGxKSDqVM_;%(z z(y?idi;Zo+@ZREUb6i}UUy9S0^4LhWBVpN{7oPw)-XPm#q^(UW?fbX5``XIl^m*XL zovUKDuj%sjtQ#8}9X~!gDJ&roKjtPS;XZC~Mo(|Z@b9ytgtt#~bIl`L~V+dz<+ zg{7Ix_s^;LganoXgLvayTKmN}clLco8+cDO!wRQ&a>wzM zpzkbd3};z!>aZ&+EH9UQ(lJ(%w>MUy!DwHL<@6pJPAR67Cr|nv6IAwm0Z<*AlJae@ z>nkZ<)OBH^TSH@_`iK7XVMSk6I%P@V4IJuv0P83Milmq7zIO<`EXjeNn>%?gOx7ay zT{^Umsx)PZ1WX_HLe+2V$~DRUMvyUe!3RuAQ=dQo=s;)mDD`1CmFx1{xrkkdD2ZZ= z6gl&|O@0_}eak$5QBXlEF!^hx_cqt77BAhl3Y~d&LzBNgW&Ka4TB0h!=5Pj}4I5mV z9VVi7CdXn;J&T3?Bud^r+$6zeOjj;)0nY&KU!KS<8;UbDA2V=uxvJb0%^i)1q&Ro( z99V})TD=D*gN(s5X&h{^9|pVN1%VZDhIX>HAGwjw3z79B>rd)J0B zQu9zlXh>+Nzjo$L;szvX8Q#SG@{me$d0`4%L>J!Zm-3?DSu#o6 zNSN9FFdGoX4x)o4MGX^RlvCPc0OXIoz5UDsoBQJY!p>#vcmYH>mq~wL8`1Dy4z-v5 zp7WFEUP@S47?3@m{n^n5OEDf3xuKTegt^3>AQ zq-ee@AS$|e5!fZzJb%X$=L=KX7p7bueIVr2_K@4Wo2C!Qw?DU$cu!N9*#_DC=eKHk z+k?9v>FvjFX!38ep*eV;#yFSRx{wtwAS;msjh-#dmt)i)$Gow{$tn2kXc^lwuhm? zS;ME(+>dv4ENhf$P%CToQRl@mJ9bs$Ybm_)Dzw;fy7A%&k9-N9J8#6WUz1-eP3&D? z_4ibIAAMd_)Yr#BR%j%wEKEjqo$UJHTTv1nBjZg}3IYcrHGt3h*_F!DJm-@~vKH;D%OkzRJf2d3~waBU~rl4U`f?Py~C*wK;Jc@acsnqIaGYR7Qx z7VZW_t4rr;Lq);3Yn+Ut)`{V2djjwV%mZ%^mvFWk2Fm|;G&tQptuPJlNYXdE6Y^*~ zf#V2ZnD^ob8_{wQxXAM0{TWnUgauu_iD%Q9jG$_$X8TErMsUX)bmauU&?>=@6 zWWX*2kyv7DK*;y9`b_F91HqqeQukWztmLsD_%-~3u3#LHF*X9*f$&p$dZT3|;7m?q zfmJ<0PjJZlaUif&E?meikT2_-+S_omcAFuWT%pvyeOp|Ayc>(D;`Q@iW#WuUNe_i9XXl+%ZkPZY6Z!V7y3Fr)hXjO#>XA3VdU{kpnpkK!#7kWx>dW(C_-dr;P2#$( z3(=7AfguDt!w^b=;Kfzm*I6gd9;r&Yq0H;Awnxd>n9cU! z{TRPgT>)$mv3Gy}UNg!)Q;R5#LM|k_P_$ht09~|PG9kUay>=?*D!j2Vt}XT4(?F0` z2k%SW&8NDKBu2Kp|Ju)x#r<{MQkgILdAlAKm~N@J6jR9T2y$AfDF35HPpask{5wAp zJdt0`)&J7{re3zPqoXho37R(q1HJ)a^iVr6-0S|L}+mgpub5clTqzW1$T;E!hjxh5!dP~0;wtrfK z@?nLcBUBOMRyR(k&Yi{i2fR_bd-|~+!P^hIDBzgqp5c>_U_XdDV}vA1;;@ z^i3fS3ygDJBsq`<5er~SvW)3yEEHR}8MgUb`Ftuabed`2DUg})Pq#?tQySX&^>Mz> zV9Ob=Fxgl&Vp&1x+uGVvWs|fs^+O`SdvbylsJr^bxlHV}dYbNyVM)-iYLE5y?AfCr z7^jrcu8`BI#2ZVI6dE9!)40vS;?;8V8X9l_aK-4Ox(^ieeg8*9x$v^Wb6#`1{j*{w ziQ=A}k!VTfpA5fA}!4==<$cuqAK&|GLr6 z;}vt$%OQ3=yPI{y5bub3%M#N{DGut9n z`9iwTv4aT@7?yOK=-SQ}Nhy)IePm=rH`_qcdqMc+)oI#F^J&96Y7!H5(6`C6KDPH* z@_|XrPuc3Uj|&;y)OxKzH>fPkeEhNA)();RH@)ovJR$b=h#yCZZThc&EACA{=XPP1 zZIb&|bi*9IR@)an^QB`++UPuR`qK{Hfa(G2D6L}*t!GSfvWVkx-q;%3gK5RZOxRe& zyIE}!<<|Pj7Etj`{(xw~a z-@A7+vgQ&?Xj-WC2&=>Vt)H-Zl^YXlzHO%-6z zy|nU7FFT@OZ@Wgq&U~%V!{0*oh)xoDa@Qd{LW;vC{8y*|7f>v6&m7O`L=4j+Q!$6D z-1BO|?xONVh~r@I*21|?PfH_1i-XR83yvk|DNX)6Vjs4Z9}Iei`erH;+-k>|{>tYs zDMdop-27{LZ*DTZow=s&uifo>#l{D4j+v-8<1V65LoVC_KCTO^wNyBJ_P*HO)g#@e zj2G^_q%bqDpln(DKAU7FgccZ^0T6b>NcdL2GfRU7T4!{MU^I2lp4}QX3??S9HwOt6 zS&ce~97z$ItDDn_;*6XZ5*^LLn{QXNODaiQ?Fcr%E|3z*1Ca`555-}QArEJ0=gyt2 zzqYhpaFJcP)gaWamwat}zs&m5Fx~?#6es%L2=o$ai7MD;2|~aE5wUT@IJc?zLI=@@ zKYH>+wfC8}4wiV;W>JCujGw~Ye&q)YojW%{-_wJ` ziPsfz?kTV`D!F*N=FK7dD-jDpe-n9nqdLYK(6j;t5kLqsh&6E6>o;!{QI2r;fN3A{ zEvj$qCqMk^+{D=Jq0@U9b_3(1reb-4Kj}^;>(|bmI;Ata=gu3KKR-{AY94DO5N+(A zpY5A)E6C9JO<)duZ)oPeQ%_INQjC>?-o(OUM@}a-k{t<$PT;_SAfOPCo`Sn(hHmTZ z&dSPCaCbj)Lr6*Sv7Wy;<$X;^z(O1+w6wOrvvbY3*)AFNJFN6?{M&JXx}796_AwCa z;)D#-%gc?jiiB`2K#DeNf9HFue5LW%x+W$H>sNI{$X z93>KYj8%B)ag?lWY^+L*E1z=BbhJM;5Ja;7)ZI;dAaEi>sIuC=nTI!OUBmh;$@iMV}27H_w&kb{6#7t$NccVft5<1b68bAK2#`oW>baL?tD z1R^o8_t_;5-Pe-z2_6s|{77q02(8ZL%i`z|{qG+- zPg!~5^OOg{enNyL3gyu7@F^3MaHtgnx7eK(R8%(0tuNUi2Wvh!y!Gl5QBjR7T%hZ0wZt_eHKBdETeuN^tW9Zet%M zI_rvzgrQ>z5vdC#WAU3OQEDcu6vh39NR1rLRuES`Ckva!>_4PR#N9aNw<<|+?q9xq zp`EvRnj835$Elx|{+{l<=<@#6!1U<8m)qCn97~J=m~J4L@-xd0pfuq~5zWp1{ri*b zh5}rYwk2g;HKyWrukcwu2*gS(SN8c71MBf{bn5{lPKbMu0i47P@~NXB;#8&QcucyqDvGNa?BN<@cH{A686Y1e!~KX(|GQmj39GGHd%Kpg82V zSN$U2qZfYlvmfnuV!!O)vGXXkV64+)R&CEE_tKjwQj1XXaK@uP-{t;X_=0k@A8 z$UnkQ0u&hyS@_{GS4!}rDyT`%&gAIU$F*sUY^xNCQwPJAVJTDdp_Iy&dhR)L?8-llch)&su9m2wE!LEnuU4Z_aj#o8tW64UC1EaX5gC_w3sTIRaf( zo&90z3!7@?c^Agn>n=5(s7sm~uO_4Z>SZ2b;0?n82*s-&$5uI=@5qA#d4lJM2 z`=|ATH_Y>c2~5Em zi!1*!4op6bTeof{@vP1aoPX$mQxbs+*9{&bF~)Gc%j6Ow%8zR0GE&Xq1lUft$^lD=e+8t%{HJeF+NanMt}*V zXch#=(tUT{q=LE_vsn(^j@Af>lTDUufF+I1{#K!VYwiW$42WKlC}cx_C-Q^a?FqUA z{H~9WO!D=0FEqkd@TQcHCVK;lF}X;C7QyeTPJgXLb3W57zb<~U!KWCfu+X_*>Y_m2~03T?d+;9#B6*3R2pw$wQD}yN};WwW#*18@?cS z=`{ZxgfsX6TF@B-lG<6fu(v43TV zb|n2r&>cuU_6Q?S7M2kq{Xx{3T@AJK+qT)*qx&LV4=BFYx+&4!j-V1c$7@{zSWB+f6-#X&Zl?v1e zMArmP6BKVnSJ`LBrOBc;(D9?4$?@^Gq<@uff-)iL`a?5kP9n6%6kRp?n4Q2F9h1|m zKaN({5;y4e+s>*~Dj87H8d5g#4lcjG9J{CaL^tuv$k_@{akv#DR#$yOl+#t)_NNd3 zh7WP?M}D_s1P+1iauA{)DEI3{zfS#AcA?nf`l{EaE}8eeavQr%H!~!e*YPQIyJ`Y` zeytv*4|mFz2M&_DiQq>dlR!RZwNau#gXGofvX?m=e94FE>(_~lgl3)K+)+$|LE+-! zHX(e#)4@Mfd)m+}2tb-oR@UrZQ|HJPta6=oA=SC(o@sB}(odf~yI)ybR)3Sv=Im*M zg5>4ABzo{37Hi{%p71x3OpmQk^_AHm=!xiUg1zI@Cj$bC0J8-J1udZ+K^+QmLh`Ek z^HJm85eH_389ax#lBBN=K>=sD@-VcEk%c7~K9FIg>7}Vl*V)}Fk;{Alj|2n+Y7lQO zlRe_q2D>WFqluKqry5a{t`hD7*N5Yma(ZsxKlJDZKJCArsuI9r?nx$EF%#etIV+Qi z=;pZan<~9tAGq7O|0SVNM}E!lgDGhEtM_yeqRTwL85a=-9>@E!Cxm$v^xb@Xn@E9| z#X)Fl{pe5?I&k|3AsgjiUvmKN;sFm2P_j=uMQ*Ajs`H`>G*ku#2K2gOUURn956S@qS0j$HCK-2l68Uaj1clXAu_^^NfoLb0D2Tj3*_CdT2I9m z)|-viwWx`MS6&4Ang}zeQTumZoM$Yp=yA5US2%wB_=n|ISR{M%{HTurOcN0d#kR7y z)$R}xfoPkD;34CK>o4HyH(wTMkI5N^JkrdB#ReN3E<0`r-QgrCc;cj>V=o{a0FNJ+ z^vzPhRGih{maQv(@soflxjW~t4Y{r0ezfbj4XL5~$cF3>N!P2GqGwSJmPwF#m0*@{o?qW1=n7gxs;w|HR#L%2|DUu}C zum(0=_^;8Q&@(b_LRNpoN#G_>mLQF?a&sFU@+)saP9A`5E@0`3R8j!X5w=J|EDUc% z>&&dm3vds-j=uJVsR-3+9kTb~4sx+FtemwvPJ_56h)l3oBmS^g9$@oUMV7V+E(^PsK^LmWveMh1Z8tD55F0J|rh7w@;)Z7b)_>3mCA zA|GdEg^<}V00`ex=AAWuq<5hvXjqb;Ih@@L+>CL6lMeqK@%x%h;2PlB(9AYC2+u9Z zL&EJrNdB*ueNlXLE3$pbXlgu{Yg^Ii=R1jP5(7AD_-ux!9QgZ2U%w?gj4qd0}JYOiEMCvE&QmpL?aG&N5)5;+P_aLXJnp4 zX=+TLLYJ2GRwvCCr*0B+6IQ6f&acb**$xz1)l*Ui{@~i_EFTvi{~U15uEZE?5B7Zl zHZJi<)#0ntKN1G(gNtAr6%TLx_$5e%#0dj zt(0r+s$9*wR#o}~$ApB2Ox&i4YJvv#Mabt0knc!5M~|}H+_FOzvV6h&^2@^jRsmg| z=rWhccB6js!sz51fMXo(hKaUQ^eY8!!4d=I};`ZvYmrBj;BiznkX15u@MNlV1qH zKj>b*_URN_G5BwmV95EEpjX4k94-zM((0Jb^}2Dk{>M24 z36y}^HMvw7gfmWeiy0RCeFeXyeN?Rdujh&!l_2|FjX7tD>0W| z9q}8Q3c2Nd7wHZl=ptc}eX;mHNtz|aXKpJI#E%|5A}j%Dh3cSH&%oei15TnG&KP#z zgKzm5LV+A%og&4l@0@wLk2yT3;w*Y@EF|sqbqUp+EsnTe!qJI}Td8YKa6yv)${)U%NODlIv>S@~TrM^}D`jd0{s4wu@qYZ-o zfVKyIbiB|oiqZRnxbK^~)o$N_4I`#^OueT{2%$uP36-Btki)b0{kq}$+e0O_`W16` z_zo|M>td^73ypJ)fTxK00%F_+vj%Q8di)>`yUnh0cIBCc8=8Ao7ujZlJ`heP7LK6W?P0&HNT0eoqLAVAa;Mlmh&4|~40CKCDNBi)GfWiNK zal~XtU#XK-+xBo~d3Q=BEgWV?c#T!D_#)5IMk1)b?5N-d~#Nk4TXDbMB z5Df%QR`(_!I?JB>xcKnj#uMg=LYA^B4yn_g)T5St-!t-7MKc;2l*O75{ZvWX`$7zh zKGQU@!pL|tS=QScvqD6b1qr&kz(NK7D{8ocw@xHM$hNwwcPP`oX3%AzLr1=mm>5Cr z#w5!73B&4rfY_pye;5cmgQ)qJ_wf>1k9-~*2#R}58WC<4f<48N2-=W`T((G&Rsx7l zlu=TivLg-U@efjuP~054^BPg-3a-tM$4tr_xGlH}K2&azeVWs;bJe!csK9kp`=OjK z8>~xr68j=a zRKj;RZ8iL+_H5t(QZYfBBIbyH=~oDyXR`0A)ytKdfLW?Xlk9-M>)9jsTM$>iI^%c&oa8aDR!@rf0AxQc$ zjJX7dak1oYsA1bgvL^rWYQMF*iyGzjv7YB51`C_H>OtQTBXH=oS|)xYRUa3Ovj)1k z2R9>W04)mPSMczVAo0L@L+q=dpkN^T266>lEkR?v$4`p+_cHmI^)ykW<&);uWIixG zt2OtoOK1eUkJc8bhv;r`RKOGclRt`Ly4lo1j@}wAF44+00YM6)m8ZflOah#K?1Km6 zoo7r{kFmEOWKkB1tGmI7tqQ<{YSrRE{=w$@1@8{47&SXx|PJ0cC%spb89JJ{9hMlp(V z&d%<+iSvsfPT6aBoxW8i0kjmVgfk!MqxJh^>>95SM;36JYanM6g>kQ5C{It7Ob#8) zH&67kjo=v}W_xZ@ZnuWR+$vh`uK@e8E01PgjMf>7B98?mfw{-PAf>`mU;GG$NSt0_ z*WHDw&uqv0i{dxS;=iw!I15u;WKxdVmT%HI@1PaG31f;(4ydMbP6Ffl3?!9H<$udnhK}@XUM5Cfy5N9vgiJzMP~o+dxbSh$8Drz| zk|g9b39CAaCkBFN;h6KDd$W)I!13=Iu9u3Ftv~*D*C&^_7ZazpCzqk1YK4a160%=- zbo6;-E5{G1io}1DFaz2_L5nlYKJZN?O;;>PsTL~_f9&qc&*NTGVNt(Wd&( zWuVNYRvqlfu1M8tk2dZtQ!3?ujT(&pbgDx-M>J~XH75j6yM@%+eYr@}6)-0jsiiWp z{M9v9{V`-r^lVsjLM3)CAEXopy9UaRY@Z<}pm#Reqv|uW#jy+LOnJyLH-$c7GNo zO(@?~PB^cG)NgKXuIzX*Jmtpwi5!Hb4Ir|4bQ{zZBKgE-`yT&4{W(dUI^e~xy!bNl zvN>~C>7rZV;P~(vL-r8L0Ig-VEVuaSl_#a2?~-iE=Fa-|$uvGfu6#=|o1SG-=3K{= zU$GXswMU_uUDNTz;H7w4e-*J05u9TfR05yz zQUy?PPhNkKSJhn!iklfUf1ZP-+xMz)BUuJdsf?Joq@2E&WZ%!1$w)b{D|`CI+K*@K z0^}2~xFNZqBsq4#B?OOzrPu&0T9Idt4NP4UK2mpdj)rHlu}4}6Cm{FRusdd!96t{o z*+oI`1uNeg?{_%HFx(XuqXLWU;0fN@c#l=hM1OwakTX(ku}gGnA2x?emNxVKQJ^m27;$+vL@g} z56`b&mm+7Tr%()J0X7%&%>|kCbI*Zx^-QMx)+EZVJC@`H$FescXf$-WSYnJ$5EG3` zf^mdf0o5E+f-L;>Gn|f{51Ghy1k6&W2sIBQu5%6+m{NR9<0i(BaSY^^#+=rXD}!Lu zU{wf@IZfOZ{8LMvPVO&EVHxn#NlQ=C7Bx4y-Q4>y_U|AJblZNHhc{Xi6dGuZ$*yR5RE?xg*ICVu9_@7#FF5lag6hQ;hKYa!0K}*9NaA)@I^m3ULekbUc*Z0X3vKYbn#OX z!P?T6IfaU6No;G+DhGmc;8BAzf;s|=I59|OYWl_gt&;xUR{;P$ z?hM47Zi+0@a+5VM!Z!8C?Ym7I)YX7EI zuRq@&RCMX~KSRWWsqLF0+64GMz~HX=wNq$tQWZyCqJ4H=Ix^%ECpwS?MrC4Z6oWy$ zw)FH7fF3*t4z%Vt;oxK5S+8f|1KuGN0Ype?&z=ceo(^c5r2Qjj*$90bqnG0tIboEc}-Do(|-pO4qk8G@1dIw`{fu=$V-}@pY`h!S%`+6TLHn9~PAe zeLzu>jE#*Adoyt51zs3l?EjwnG`_d}6mM&L2o?jXh#`lxho-$W$Q@!(FzkoB0;Vl0 z-de>aBn)q?Pj3huz0VV(9jcU8ld`dT9=1w-d+F=z6}q)qMIXl+gy<^PFSu5Ba{(j5 z#4rr-3Jvgtrlw|5$7b@=2KMSPcRZaqBg7qh3dk^c-iSe8LgEJa-TW{hIz$F;x_h$T z64)v-$kV!ZQ;BAbYgh)nhV`u-05(|DBRlTBkc2 zH$pbB+0-WO&yQz}>fQi&x~ETX&Nk@%VcKoEGP9~t9EDgXSZO@!Aye#}XuJ3_cp`Ct z1A>x=vPXmqW~$z5d(%(T{6X7+4m+wC*|-EIHdsA}gILUK@NwM4C=uqUeiqC3zPjr< zazV$xmjiYzM+uYgAEudGxAb!VN5`r5(xmSKGa1m2wy7R`A+IBSJ1gegLW{Rj(9c6v z;*j$p{#;Awz^Jt+dLI?E?`;&)u_|1XH=(myf^6}GdmMs1uMs_uv%{k&kr2h4?X=&`hUX<4oMsp~_j}ZeV6;C9 zO@9V`--+G`5B~;-ZT6z{?Di|Q6av*ETMhm_WaA}yl6i$h9PsA>0SeDE8WYghu8X7`-V`Bb2ha>$^`~C(Y?l?!yp3RI!Rr9)h2W;7; zY1LvL(1!h#7Zy$BD;S5D%iD<&Y!|ye-Zu z`+7|XUOB>E4ctsT%K_>>VT9@PI4pPgM2**v+p1FIZ&6d()UsB7)LpCEq4KHIxh%L} zN4ameyvi0#mmY^IzxJwQux_U)=1SZAdFJ9e*fmWG5>m~i50#I z8}Mhj7S-lPiy*~lNG+|c=OV;Q-6zg~%!3$yzufks$yON)uf1boj;%5l0 zU@kP`aGN#jcHLT>`$IT#O7!lw=F1o_7t1zabAu6$_%>=7!{~~aRZv+UY{vG`Jfb+`O7&UDdFvL0kLWQ z?w+{$6fv;EK^ttig7K*j(0jlC_(4trUnvgq0*njQLO@`WtF*@n8;i^e|$c%6xk4 zA+@Yiaq0q0VRi`*se=X_^G(lM#IgzZzTMWpz<)0#Bx=jQQKOQGD354f^5cHIz3SnV zj%(mr2oVGm3xTL3L1^*^326~6#(xIo(fROfxN|`=kO)VrOZ6zhL&0T<7n%I;h-(L% z@QawKhS>vZDAZqaRsKztm%;}ec98Ym_0`g{{cxstXkYr8{aYQR==-MBy4bC3~IA6lUF5};>$w~TRCK}85j|>8wiEto(JO8iRs@#X@ZP| zV;r!RjF^9xygWofwAk)=>IFLEaFFq(uRTMRhxW=WpBRD71oaZk5=6`^FDlM@WpF<3 zRWRB5_{MxiNLiPT@)B{35I(zKEYSOJZ6pp+P@?YA1q@b^e)e{syD$+V+D0D`AufS< z?m`GI087w4~VddmajrSYw4Mt&InEd8ug z9C-agc*<+TsWLRIVtcyf*f{%rjITrwtt6~|S}!&r8r0(D-V=V*^5}wM+6w03*V<7xc4>84Ywr5d=Lbajy_~Rf}Sl^Sh zN00J;fyb`i06H=I zlHN1E35$&Meh9Br_o^^Vgnf2o4hv$`Vic4wahF!MRO+lIW;(*;oLeQ}axf5#<4F!} z+S>hsZtk^%cU|}?^VQ27Ti}$3-jmo$8C*YjWG-2B_qjr&n#&Jk%AMdNy7J-yXW<{F z`oXLNeV;toS7fNKhtr)3YqyU;X;q|~QU~yOq{TxwGSoTf0*X(8|Bj;Y`nk#b%DiOF zmoXO<5HcT;H^FqmdOgMuGRtHc5p6Fm`iyAv))b{*md`6ux=e@)7;6EQeF$0p*35&Nx&N?i3#d`!e;&3iQNzY@Y&DnqTxa|D>6lPBIw&9duSOR$bb^nAb8Ys+@g0Mh z!)%6OH3VcR^&Li1wenF+SD_s^%ob_!yd-l5LIwadt{vkl#2s{eC=Ie4I%u$y;(s2X z)&4p3+U(mqP;$L~|M>TI;7cRXhk%iz-s>Zy@(dKV`eQiI7vIK>G^U{8fEx-f8r`t) z=$dP)Zi$Cx6~%nG=kG}V_rNau2e@ZIB51X<7bm_}N;8X?h7gB=7%XzMvCd71ncu&E=MfQkuhB3!;T6_nxm*D2bQbY2fwiaX%H#|= z{~(H+O1g1HS7)acOjX1)nTS(~&HfwO0sJ-uV`2j_zD+zh2+}2dFG^PKZEDXj1%nqP zxTjEj-7)7V$pK3b1_G7j98FxUOu{p7>=oA_qDa}0=V_ymyv7-@h{Tp#;~6CPq^}Y# z6q?MA{m-C6h~tqf6@SNb2=eq-<)S&{Z7Y6}wlAk~^Z$)27JMYxXl98D!Qh}PKta#G zHR~@;B8t+lmlGl~3q3ZHeyin%Q-*jN0w!SzN{ARshlL)-(7^lU zGAhFIk&a?k<3iRWS6&!4l*;a&g$)$5M~XKo+uf?slI>!(Aqr#o6nvAWA|EX4xrIO?`kS-jEVOwnC>x?diW4WW*~{emY}5Hp@H4*-qB@ruEn z+|C6zRV8=r<=XTZSk?}aii_*@3=EY0!U7&2@Z+_JO|eJinNV8H`f1dAO?#OkF18zO zCP@LMO}2?f9H0ibMliwuM)izy%2fQQxzqjtC{VNf&m8avSwShP`C}s*24RMBTTWvN zG^bOw=fV4v0)OL)dA827?>RF{|1)OXpOJpkW!@>1wEzPS#16V`|KCroJC1jNLlqLT zf=I%N-n-f-1Xl1Ca!UQgTm0XX%KzSCF*ii~>3Q%{#Cs@jIkn5{e;$qZlK=nzqx0zE zhUQ_2SH|!G!pdc;q2(; zj&LCc_9c_v^Dk=oUECErw{toB9HuEZyJYG1pZVywN#N5${rF=C7IeA_oA>9;FBdY`SJ zoaD&~ZK&nV8~U%WOhw}31CKVotv$G!SFe z2ZAv|`k_ShTB@s{RLG}eJ43S6*&!qlE>_~9BxzdkfB;3|c@dGR=QtB_b9hwJcKG#R z6*)wRStR0DkqImQy23pOYAg6d3Orb>GM-{^9tOJOF-cqC!ChTly|IFc=j4SySm*iw z=Q>aMYH#Ly+Td{d^iETegl_*$3jZNxUfa{nKZr+j!2TFQn3o#E2y-wm!5E`OAtojG z@9dV4=$gROj?SJr!(33k+(xeGcad{yN@z}hf(Q7_Z7Q7W=ff~s-pksXkAM7I&y(&C z>WC^o7$$D`IhZk5Lm15Os-L4cz~{63|1~LpGwOS0*8jDxJ!)!dz#Vn_FJ=Q{960?X zxJhdlXcs21^#WQo20RK4*hL1N6SVg6&G}V(?Goxg&u4A=BO-MO*v9Ff{ZfTML9%=&IJq_4g{05AsO~CfuCg34yEx=7fRlRY_bq`Of&rbmkLM8&2E~Nm6 zZxVn<@PL|_Yk=o#8I~>G;tE{ObOSiCd=|Lw=n$~o99dSj?L+OpEk|{?-#G*vgFFRX zVSNtRSDzKC*Y@X%kl@ooUbn~HUk^6W=Tglz5%x> zyWU#DcN$2a1#XQ4WijA5WiqIh0bBw%=flpUNr}KAm{j2Su+P$DeJ*fZ zV*@Y>LFcjohrvK6k)4#`bD#WM&3beix)3eOqdj?Z2w4x zSKU9TO8y(0u9N!YV#7nZL))hXJ({ae+@!Gh^!S7yKcnpuPW_aoAzG;Jl|$Ex2_11k zD-qSbTd0m`$V_kMR*$E8Z9Fmg?&*BxCrC%wYKkl6-j=%A~X>O3BcFF0+^0mK0 z?e-EJQMY$6{7U;-_^{eigo$R0WcaLy78U1S{EC&1!k^{9^-$F?6}LK|M7ae!^esyZ985ZR0?MgUR|C~IUTWAlP~I5_iM4a$=>ax_7@jv zr939+0u`=L^pp(#sE-t^>n?UaAm#dtgrBJ=NLh@2%WnCZxnW8~hnGoNUA>l)!{^#T z)rVC6kDS)XZ<*|O&%v$2wd`|)&30X{9DcQ=M{2G;|FeEQV*0hq z@Kl}r8hvtd@~^gB4pLu(P`Tp#L{G9VA3Zbktzbr;{X9H%L#*=aD`Ikx`?DHp+HTQ9IQ)tL7a$W8%>oFhhU^Omr-zsL)q_{jc zP8@LW-f-u^+SlXrPrm*Z_Lwm4Uw8NMk>S=z46UqGut*x2h`}`79F*h?>cb6USbgR? zY%1Siu_>f{?)wnM?>Y63GP#vJy)YQDiR8ERnby}Rc zxH28#U!AnRVxty&gxaxmnnEdzEpWcqpJRRAe?2Hh%w{7=Kg;0y^kCiKKuySw;E9!< zsqvy-%gO+1Vo4Fd8yK)uOOo4j*y!cd@F8(89*xB6Jd3IwyLX2?Q;n`97Y=Z&FHr73 za3IjPY+-n&6K0W#UZ6KGhs3=3P@BE(U8cE?_zG#1p z5u+rT7aECN`Jp`4Q9#Maqh5`#TKf98OiJAQ@$0>lQ8tNQ6mb#`#1TIwpQP+A^W9Ck zeQ)*R?C|I8^GAzvEkgT~gZ5UI`7R6lF1bE^{(NA0vb^rb7Fwsl+O4IFKjXG7bI5q^ zIRDE29S%rLO_TJb`B;1Y`=%x(PtRfxL8k-4m%AljI&?83CQw?@36-yintJwc3FVOA z>%a6hNmEnvnqH>9Ma8uZl3p`h3JMA&Qi=O`<@gL9~i0x#N zlzA@Kvh$_w?cm^d`1N#u5XS&+OcM85usAo}o^K`TvmlH>b9-UI^TNf87LBputVb^G zXiAW#j8fS`;uR7)y}q{Uytd*cv-l(O*SGB5G_ETbp51#WoH(fw9@u`Cc)STDtBFyS5zaQTc_wO%&J0yNWan z+FrZZFmrG;fB5hrz-@Vc(uRaTyPvC(+QBAHX3|O59m9oHzQIlv30ABebEGXaYJ9F1 zGZ4hUP|JG0)Kg?r#onvGID`ITgI*xD|Nfe~%PMq(`Tl#i6J))=an#uBj(9g>Ej3wM zSs7YbBv&mV7`*7~GuJmXtY@_vi`0;_AhpY{FKR@KA|m(OknE=iYAPq+y?ZBc_;B_I zmq(%(?^F%-d@C%dWb|%gViPH^S$^HvV16J(NR(vX@bIwU@@!in z_xwjJYU7#BwX6*vKjQvVll=Iy;zTdfY^q4~Ut460@~*kFGjvcgsPqDsrdnpJR91n| zcB|0C#>IE*hps&T`a8g_=yH!GLvVHf_shyH_7${99DP&Kr*lo;l1TGC9vlpej3(dA z-d^2Fx*Hc45*kXUmMF7}EljE1v9IDfVus5}rniPKjI!I`dLP~E^@F~;riOa7>!t0@ z{;Htm{0r5QFJB%B>P_;UGbB}n?~x90+eEodF=*Q!wwK0Xh9)_?tmxv7I@YFXrBtw< z#02Hh?U7+IU+MDY%VEtIk$`rD)GRcZtqtV) zt*tDYhxV6DmbnXRil_PnSxqbNfu{!>kOF*naqHp&Dm1k20@63-|Sa4pQpV&&;c2*`LlzEv(`17K+a-fW*$iNp4ececB#w& zVF9<>SI?8=`d%--LCkCB0&AF(edo(F2J?v0l*}PpBDv3IxV#<(#1V4ZcGbyAn6!_R z^WFFo!Z69B^9#x2KDW)pH~Pt9w^8OlS7lA+Nnc($oDb@ajEv-D2xjk0C?vOLTvu%^ zZXJr<$;5O#^=p6Cc6r4M7oJv$I&>Z(c}#GSimwdObQU?9jW!wNzMW%hia&NUAYk*K zu?|MnhXUym>80-DYy$%Wk6X!mzV*7bnN+%aHzn1RcCfMW`OHb|oSQCj{msB?b*bxB zw(3|@lKkY3qa@^Cov1oNKE6tXE&4rswm#Die*a#%e^o_A#m7}CEW$LmE<~t|_hn)D z?c2vMT;Ot*N~m(fm8cZ9z08?c)8k^G9vB=n`DSBdV>Qx}PDM+5Qz_*H-bk^HovLqs zVS3)gZAkshnRgs(QyO6hP;OFC9xu*(mX~Y0 zFNb`kaiKq*`)q8$A)V*Nvg*--CL?;`NOvjz>uc?A-1z+#`YB7-mPS4Qww}ws*ub3Y zJNwyK&U<{&rl12Tv21xlx@g#Oecbdc5!-{dbJQYF+>MQ;2~*k>*LcgK>Xvw>#m7V} zXP>3tsRVpk`t$oH0t#|5Ld((*DbI}Sg+|$z+Zu+hBySH}EjxLO?u3>W{n}hnIp@KH zTgZiMM=y6*VDv_HC+Z`4tmei#iv3olLX{4Lvmd+R(d%3Et!|oG#dMYT&>`xIgl%R` z-Ps4e)9>85B~U>tW%RqT)WIX}xUVZ|7vK0SirPz@FPMCw7xl)t0K=vl#}tB-x0-3>{rh>|^Oqk)MICD? zGc9&H(f+;rAP>(?kz0sW$;h*M6O<&Irub>rL99w54I>`c5R;o#?)v+_2kjn`ghMAW z;^spiqAI0sz9S{559gU(xgv_CrZbdJzS0cHweecRbV9jFnu?MVh2Qe{Q37{H@@O!B zo9rxXuqa1b*>t>ch~gTC(eit#mjR+87Cdqhx7s7kK~b;W;=89(ii;&(M_QvE_s=tli4cBvHxj*w&~l>{&}S6 z4WvS?90ik{7z2S?B-wngS?i+hFK^t~*gu?aRre$>?~}uLNGh9pX6wjIl#8w|6ZVDq z5jNR}qwgp=0$Ry#Ub#qzjO=xv*Ef-@YD2H%IA5Nrn&ik^sj&`Z0GnNE&Di<<>geI< zW{EX7pT_K2XX1aoOl9TJ0Rz2Ge)s&ZU&#NI>qCP+l=*wGu zJO4dXFJ?TVe%)T4iOp#^qIJV2iaw;O6YlP>x@M;K@82)%v*6^jI24UNvFFy--M5hN z*`n*a(tfr!KNK%$tU7QZf~t~OJ`_+Y=TVRUhPj$O;kX9*VNSwF!Nj7QsObGgynxt+U$Ve z+T!q|qmFyS_sZT`TU}0h@?;}^TMNuJJyo^6guNsyi*9;)+Vjun)1M3N&RsgfHunAP zZp3<*w2mthACv;R(ALorL4>TXtsSTgq?PoZ6DV6>^WMB= z3jyOi#|zsK_CG&4MN6FK{l|}g=4~a4?;SXe6kK*3aTR&(BMHpKUdMUt*siW3N0v^3 zHboT`8bIgiw(_-|2oA?lc1bvXAA8j}FFjd$({FVt8SBau@#b@e9zVcff0tvqnX{(IFz-edl}%TSoz!=$9< zFJHbG04_$VJQLvNzSZNuzB-1?CSb7q^kPRN5y$pXRvupNh~=a!<+9G4Y)WXru6(4+chRBi)kWONo2t8VdI{&W zwY4K(`!BMxFfkR|ca?gHjiMODLDaJK3m!aRdid~Rt)OY?ue{!OHz_;ra-Iy3bp8FM z#)3B=?<)YJEx3Dk2QxeSM?lWHD=sc3x8&?bPF~!}!ct)S^?Cm7+f>g#Uus8%(Gf_? z(!J*Y#&=mFPTY>!?(>r^#IVW9C7z8Dt+8l-9osFoWy=Yba>sIAYDhXeecI3Y+FNa-!|8f{rf=pLj0--ASt$kLe@^2Ep{k*z54@M zjKgh@uo+&u#7nzvoBM*mG-Y@`_qQ8wgO$&oJ%ucAG>2h4?!nf%Uz+DPsGD3kSu1qxD>0 zou_AH926#rPnRK*)4F(=p=`GMmUUf?yUL|mc6jm$Jy?{mO5oT~Gym0{z_3+49=(S{ zSw=M;lr9lB_{L*09BYaSW2c$f$|_>H+0<(&id&r0!|I5AyKt6S`CczCFM?qBnz|if zZbGzJ8kEr&<7~qM3dEX&*wND+Hc5*mk{%10`Qw0u4fpTge`G9ZBkMhP0o8v&`5lFf z6ZtfBOsN&eooU#aGVz7%xANuZU(^8Ge>TPi)r7DNqS!gnmSZB~`se-Qup+CBr!WF(Pg(7yBT^sBEDJh_U^zAA6kGQ7bo;vX zh4iyoyy{zX1)VqY>TeCh;aIJB`T0*ODsJ|j6Tk8&l!k6a7R!?I-g|Gexuc#lMg|5{ znXPwz{kjzN7ZgmTOluQSdZS*KP@KNKTRd!MO?~;VMB=tM|rSJP{F*`k8-6oOjE3h26e=%|JlO&#$a%X=TNyy1Kg9H_TWt z$XGCU+WY+lQ7qCEg3*K6*TOMsq`o=34dH{`+`;U1C%70m_wV0WUtf=N-B9LIxOnm4 zk1NL%_tWF^1C@g}Zrm`(bxXuq9ASIMdb9q5f}!EAkJe)L5^;A+KU@%1MmFhnAMZSo z`t_Z?M2Rd*na{+xGtabxa*z8YOXO!b#NVD@SW4Xgy+2zLtNL@*w;=Lz{1eH=?KOvl zJxdIgZbnG#i>&|j*4qQH>a+nsXr4{;-ao&;*6~l?d-RAZM(x(_qnCAKy1g=Nw~&Gr zZ#+DFem_v8Q8u$>J}X{VUb9QYZQXy53g43pjUwZDOoDZ`W>S7Bs!FdJ(b6(O3EiJl9wRb!zadlYlCr`?x-uCz; z+bXm8tfQjTYgYK;2c|#2K5xQqsy^@dHW1~GTAV~9f1Qwk025ih$9H^NF?Y@!^%Iq6 z3MjFFSr2k$ue7b;B9&6;MPumjjcAP8r2qlu5Kw7>R$C}3Y0pxk5&-tOCOx}Jm5Tw> zg+iQ*hv$HhQ0@oCuGhAk{7roh=j1+p_ROL-beCMn&gpG;bj%-1ZrNrg|G%&ApjU#h z#YP$$nkl5`{X#<9)6>)2U%RBLri{MfJ9Ox}F5gbS`3Du9gGH2-lqrC;R9m;YDH|=0 zW8`pMG=UrO!a(B15Ui-IeVCb6GW@22z%5*Nr^d8{?xI94DWHvqn|okps6ntWt7)uA zthTh%yE%b?ji798^7n(}`WIRHM~9iFx4lV?A?AbG_ZQF9LaFo?Pu<3Pg zG1<@05WHj8u3(^MtZFK=`q{=!@wSCVn=u^q*(%Q%?wi!I0{dd6fi?JaU6nhMx@)1y z1Q)Y&=T59)WetrW(_EJO<0A@ISf7PP7KKK3S2{+X;$M@)but6bz@ERsjK}lIyx;HW z_(q)Up8fXsndD;P(HxPQ`gtF>uvO72{gY`KEM+d*yiqCyuINVLr?9L)9Ij1_fbKKx zLkMk{sD}J(eSTnVi-L}Q%pqE)rrX|{ZhvjOEqu^8R@8}|GDeL8s}wQcTj0QY$?EMb z)&(7@!Tbc5uWZG*!5w6En=tQz+tHEt9#$ubggXVZGNT*I;-0I&7wx2xcA8?Xn%2Q^Ji1-Vjv>IBvd^fUF8 zZ!KCGW$SZc0j(^~qO@~<)Ll_l`|ay79R~qotYY7AxBYB=E%va)sOixoR&0Qi&$PYb z-+qvb8DcaCh(M0_bTLs41{& zswT0b>FMczbrhs(nwB|ar&hNd`^`-VDz+bDbsIBFHaD&Dd*>U3f|e)3YqBQEDa*p` zDBFg0qkGC+M_6_QD}EaNs}Q+4u8{&$9;S5j!v_@$C85Mta-bUbO_gUGt>~-^3?C^m z7k?Fe$YI)GU6AZH`VGX4!f?(=Q)`*YWvf`hhlIdW-9?-+RWV}yj+~(2w*373yDHDN z?a3SKXuHtacBylFjGmU(b% zGS`jImlTzislcG>I1G#!t1nMqqW(9GPq-sXuaYxqy3==sg@!63XFkcWzhkLR$r?ryt8(t=w2M-?( zK%bKIUz0&NF=@(uPD>(7^&LRwGI`_rF3zzmSlsU0C%4Ph$iG+r{JMVhyXU6KxATdg zPDEmV@U5NidGcickDotjd>vz-T-)nV;T5a5#_!|NNWp4F&|{#JHXQ#YT;owa5Vs9` zGCAfN#)DhHdt7Io^^9!Q85Ot6da23hg=>hXUq%TY}GEZ5RciKx>ED$9} zKQi$9`uY=q1ISE#e0;`Aa!!{=$>mME%D0CtkH`XLdH#MDEo}XfH6Sq10>aFiAj9-N z2?=KZ_2pgy7!!3Q5C`JgACG+O02@RXHEu>6uClT+VER{F#x-@*o`aVrI^WKm$@vfG z2!pD9nfCjkD;QM_GFHgrOhJ1?w~ zsB#O8vI!8Qon8%@C(nP~??H6*$#h-h`U-Pl$#_+V`}*E<2X@_kGbp)@;0B1&5(xRc zK{=REwuf2wu+TSA&{bsUWqtxH58`l@!*AjG+T8;IM+{evmdu^J7TfrfTXsn^a_M_y zuAAFY9p-h%%a;YO^-7bc#dA>6f^+?~*c>tX;V7jrTUg~K61EsH2VYd>1<`lr!c>eq zz%fyaIc_MAc>5t@6pIPqC(mQjl&JHuXn!d`*W_jIY`IDvH2P|HeB^Ypra9;_qKe+b z(3X`YfD+()#K8kin7p4KV{W4SqYmaL#mjgxK)ji@s>e7V9V@r}X*0GN6ja-fIF&7~ zjhQa@Yul=4-u;M_U1obRGjoNBg$1ZqH_dko3A-nhx1#9cgN7mV(B!92H{*)ABj1q= zp}Wx>*fJIDco06Go1Q&O)9qII zLjLryo%wpfs=`^y5%pxvK8S0zU~Ya-B?Cp~Lo7Bf^XZ6qc3=+BGVkhNvdmn&)wVqa zSc=o#F3lLE#~zd4A?^gJr*0zs7#gCs5^CFg7TUP2+Jc{W)7edQ6r1jZga8Kwf_wno z7Z4CYB3W8mvM1WK=5xfP=iA0Vo7uliPrcCV*j?Pe<9MOb*6>00&bJf<*4nzzpTAJ8 z&mDO}fVs+E;v^Tt3BbY3RvK!jGiQQ7#e~Q|S9x}$(YgxkJuolCPQjPadb~`SPKEPr zvESZE@#IW2CA1_O3)Vrz8@XS+kzn=n+{caNqe3MI8QbbO{JSqIUWXQX;lhQ!oRW!3 z5JS$tK5>?=%ruZRGpqHUX(vO(Ha&clGoU33klNNZy-UjxBp!+g=jnk{p={zb!~%VC zDunb{KiCeNFq}hvqEOWP{PDI@so9pbsNCy6BH!J=&wvyzb%e2xQD?dQ$O842v920m zV3Nni^IBT{cYh$?BJ%ull|mMv5*J6DkxJN>s*$8*YkLUUGSKu|sEFdJQy7Yr($dn- zdWH-s$7Q2)+D9!cEC^v(#Cbrm=;#}jXHVp5*n*i48}&iQs=G~ppu3iflXJt#plvl! zz=WYWAb%3#tYC`Q6haFDBEYXBDzYEDvNdkY<53+oz;X|yI}c!+aBt>jY>N0H1oM5zpY+MJnh zD_U>oM!kF8X^`dJW-6@?^s5%W zoZ*n2Wyqa7cVl9xQA|LFvbb>r^Y`TOV-n~ps_ol}bD_q89%tNC_jR&qUCJ@_`6h7| zsF?n1vq_JHEpF6pc7sjA;O$j$l;=B*UtbB#$xd<|Yo|xJ;GB3pyfa;Rw8b)tJ0l<_)fqQL&2AxD5Rhsj_tziw|;YvwtK-oBm^0XwwcBCa8J9Y9?= zD3$@x#%35pDC4r8CpZlXrId+*-$B)=tU&}V?bb&xnA9!2bx>Em`towm8?6Za z9iQqmXV3kfV2~Up&7P&gmI)Lw;^*Tdb*Fo6*r&!@;ZeQOFDa|y(h-H+wv&Rx_qZjoY*ikGXp_{CPAGtK|Kh|o3x{IsOOCvEkRyM zmqwI4-rnswE*20Tf3qqZ}mk^zE{Lc6|4ql=YdZ=Yg(#`LQ+wp`kE> z=nF*!srQLW*`-{m9LrZF+$XxJ3pzsg%3j?EvhXJ5_S#>cQ?Mr|W|mN? zVMz^)v}Tq`?bN2!6HnUzG@Xy1|0XULA}vnK#eg?F!2&xS&VF4#^Aus)xTowi)-GZU zHIE=(ae0KS72TF33Wmd4Z}5;jyy?AquMUFu#fO5Bs=iQ zuVtF%p7!*V#Hmno0B}~YGWwm%Y^|JP^5GGzWo;pgBYUHwGb*|q=2*5!vADPhGDpE> z3)Bd*F=+~x#HwV~@+z*TSrHw?ji+4JUv5eYtdmFpcDxm4_pr5ORm4`xq-| zNX?<*Hk6TYv!tABn4mrTr0SusHXn0HV5i2i+g$l354k^}6K{iHwph`NtmmSevBQY8 zlCit@MK>htX9n7uUKEWHPT;R|Mp<&b{z4@*Z-{oVJzW3s;{r0f#Y!8v#}x41Ky7#- zI5C%P#KnEObOhL2(qn=hD;LN749yQwOpO!jiXB%x?%7}Mpuon7)8 z2y9P#4%LyS^E!XE2UKDihu0@l)e|Z)fO)>l?iN&<9>7;3mp<(){qsdt(sODb>M@=_ zJR>@4y84>i_&nNH%aqQIIel;QQWLEQ9?EhN93XLUF z@$w?nGA*!-FJ6eEv_e`0y0j4ZfDC|u$>!1H7X7K}lL^DJpKm1s6Lcg4 z0~Qt*p3uS)D7POIWzR2IS;OwL@H5UaL&n;`fK?7=4j(KsR(U@eAX}fS+Zs<1q1g5- zcj;`Cv?ny5eCI(W=(f8-H-pt{e`(7II|cVxIW$K?!)o0dJtzszj%vKyO==Ip!9r!R zgo*7)xZ?rfTndCh4*wN;MsBs^IN`zUr-riYW3CjVIf(WIyqoYIkU&V4#U!R#` zD;w9!bhdW7j9*CgV3HR8T0|*gZ&+TQFyIm)Qnr`*N)wtTK8{rX_Bs`5J3I2x@2;Q5 z&6O^D31VO&aGbQa&zg!lU`3~tqO~v@;HU!XQd3`_;+ZxPl>tYQz@YpRia#iDP-xh) z*yu#n02Dy5*+eOU*{l4u#i!)F-^`|z&$oeEFacO>c%gK{n&A`|-w7HOL-Xs)Gg`t* zhfNI3t{YR$a1I%!im-aUv}4K*H)QW0_L zJ5KCvTz(a;P$}WEX(Ov?&6L0s(U%e-r;w?iy@P`zf zWJ$S=1OQQ3cD%UwtEc4X8`t03ne)&wnnb z8Z!3hXR0h?-LDxFq&;rcSe}6SF7Qqs_5?w_!ov3Ssp5il`<~%tTMYiMt|FnUe@9w1 zQ-{S1GrUalEw>Oco1i55_-F_%%T6GiweYlfBg6%$)#8dwgdPQraeiu?G4Sh!5cuC zR;Nli@Bs8U<_vDb+hJjD(w!T7?|t-3AAOLIdN0!>o^8`TK*@U!C6ehR!%rfsI@DkKMTp1fra3nn0u`|Vb&hUp)X8c)vUntH-y7})WWyq}9}^XzbQ9k_X) zrNgIm?nH{2t@VHG)oGpnCYEuiE?s0wKmOYD+0X&$fXr5MveiS712CXD{~ggQU7jc* zjAU2m#(qzYslX}j=ecAR{0~!lfGpc5;Ty{bPdafbJKd6KmG#nD`J`m z^8#`wXz;=7lzW|i9T$N&(r32uXgl1fek;?bQMg-vd?Zro4y6JU2-c;4s=vyh#Qm_` z@|alZ!azu&pwHPjoPo!Kjl9&IQQQ5uR*dFSr!$$ZG)k3pc5v60?!}b>o1V>n z{z?RpghO}S$*&?|_#^h52<$|}p2PH?f-o8;HxDKdzNN!zCLEduvfXdoLN=Ha1_`TB zkp%TR#H6lb=ajr=7$bL)9>P_|YGn^psK&*RUs@_-kp%W7@A2b()<@WS%CPy&2^$t< z=_-;iNp1f<;dEUn9x-`H96?Eoy^Bc+EP)E|2&oou_n#;Wx8i$PZ>r&i{rLQBTrC9P zb~vruAx3r}MzupYe@}SvaLgE$XO^h41P&bv4!m{i1qe?GD15{R^WMEpuwhj_(c}d) z({M0KB?dz8mDlkHxw&6p`xYQ_P1UK(~i2%Y}5)7HSXet z3oQ$BUeMZo{Sv>Irmhqs(Y`|6ZY|7e{GkNm3}Hmzj#7~=larKubkW*c6h_2C^3FlY zaOmT&Jf|(K^9{&Mnb@0@it#W*kzM5)O&pT6Fq%v}@@cAq`ACfvp2NF_nk75zB{15k z^jtdTz$WBH@t+fotp73nS1KXA(7xmT26J0m+mF@-`8uiU`C+?{ie|PNrHIB$xn(pB z@FS!AU3FqK^*gF=YxWs%SEv~4Zd*ZLf-tvnaAi;lEy#A@!`Utq_(%3MG!Am>5W;v0BOj;pEB zp}K$$a4#w<5V3y$(WB=c{kq0sLYSrj%y7QF-m>1Y2Jfs3IOXLzu>J7I$jrdBkT4l< zO@C-=x`k>4X(*sypgSQt)g}9|9~Z@AKj)bsqHbDU`s<0{VsbSKuGKwIi+vKVKHxwd z9U;Fa=?A#L)+(VV{xGcw$>+1(`~!I)qQ0*h@->9WENbQfpD|IZ1U)}CF;y_QNA@by z`s$=V#5*L)-HxT#3C`#%pT3*p!d0c1;}JTK(;LKS9!s{~I!f*yWk?12zmaOpMi(_O zR)=ux-M4U-_6O6$m5da{^q-0>CWU>~R6>%tYwcF)rqrKI+ z;aX2o&YZp_)3`&u2BHAeJ_PdYw{VmsQYDQO&*OC44=IO*qkcs0_wrq zZ(LrkMcb1qW~zLq3$CXBV_zZGLY)95+Fj~Zpg-<6&bag@O(UMo2&rTm4vc(rBz@=!wLC|FN%;e31|lg zH-zL*Fx(^;RAD9fxaS=2t4)`hE1;KPcJo!*aQ3KrSzr7D%JVjI{HHgy^(M=0$AcNI z=wL^8kJ2WT0xQ$Av5kD4{TnF7lZ!1V>GG2f>E>7CO!2|!1{1Q?SO-s@ zcz+J}!`x#-jORcq)44qR`dbqM6E<7CoUhR({(2#wVHCt_+&VoPEjelgKa+M{db>G7 zkuBLlB5tZJLwfCzUgjG~@y$?SP{9qtC+}=4R=*6sGaoeI)$(Zd)GCx&`QSAG*$MFo zOHB#Ra^b6gEsRBR_-o_F~umyteD_xATq`aC3OVElk+-i*&yCVlQ5fNWpA^NG3uLJmW-xYRTM#MN?UxL{VkKe9T=975D>GV|Ro#VG7DS5!V4qGDTH zn=eoCo}VB>-PML~522Ld_0D{Ub%rg~b*9wVD`lx{Rjw_6y|A3c)WfuV2Y#$<6)aEi z_qBqMdp9~d2nm?$;6bmIZkPE`#L8M#p|=5modCy{P`?W=hd1>vAqvUnG=VqjFNh}7 zB{G+Z>FXuDka25yQ7++Am;J`I4-VEB=LUad4goWoqlVLa2*8zhDulVUgz>zUv5&LH zq9rvAjiuw;zs#9wX=z%oWey!ad{KV&4h@ly=fF>kLua87tfqIBf!UZ2d*yS z7ce}lDl416z53S@v0Z?RD- zz8IP>RJL#YE>($dwd- z_4Iwu>!p*vNm?s^9WtEB0;Ts<0gy#1q?>uoYU?rZ1OkkYk0;Nsj%4OOGRmG?SOj0y zZkPM^XTgglg%o8|S(8t&QtGy!&TT7z&h!FG2o_{Jcu8XD_Jl`9Mb+He&H)H_kTABP z6oJd^b?wm9pT~t95)C>7A9$`OHU;J;Faexpw*EtO@GUblGuJ}IAbLiKAwr(9Ac*jg z@NjF0ugUs_8K)4Lho(=@7{P6Mm(w&NvM3rPjqdq}7?6A%p`1sk%m^Za&lL?XZ^J^e zUepjUhy8eGVHQFutaw&}T`)2_5wqBX5^*Nfm}zO zFdZwcUP+O;W%0RMu@7y|FLL*|*O?1rVAvm`j|0kN{}mGy55%;=-G2f5{jaUz+s1Qk zkF2upz0AoC1XWYCM@Dh~J=MCy)@{cc{G5XvSw1wU!Jm&-4d8ItDn8XdM|lDsjF37I z<1HlOdggw3%**-gHq<}st?QASZJQ=DelA**aAWcErhUuZBvV%(hlM)byS~PPGyf@W zM(3L_@F+O8*3^sBsY}(=mmV1)lv$uR2+bJmm*pNTuh?@MFHW9Ol za7b`Q$%WYfL1zHG_XdC6*7M-#Is)1p5vUvLyq< zezjJb?%##y3=OI8DQ^asf+i&_9on#ro`cyRZ4Gip?%NEvoeS#C z-;3`M<^ECigO2{o=OfjPH`O3zjl18`0ILGZf}pxle?527z?{<}L{*^@ycZd%lNxRq zuw%e+g5eyTXyERV4-ZI4=>N)_tJt)?4?aeN0_&{|3=C`+;-`+cJiULeZ~h+TSfpav ztFMg9)lnLz{NTFt4G8id9tcR#5M2qth3mnZl>L*DanMcuaYE5K@j!kv=HxA z(~x8@H?L+FeXoQ^HvnBQ&^{NFFH|Qg?tceJWny^|ZEa`;vv1Ga0BH*HOXVx@09Htn zSh%Jfdv5Gd@M$C$?w6MC8rN+zG&Iyq*CkBx#1vYbN6+DRzhwtrbdH8qf9XC_|061Q zJS*qbPN%cRi)}NxgErk@wxJ}la327KSNQ9Dwrs#7x}ww3(}L0ckjoL zdafAS9AV41sG=YQCkPj`A1#i@vSN0!^+#W} ziskAr^YOKEZ7Si+9le4&nCfht{HOY2@2H6zSI zX@~7(#p{0*@=e52OA29{hK7bfAc0eLebnYBuXwsic6}PvMANf3zOiheeu&PK zkEus@SJ9ToRNQU2a9MFWiJ?F!BH_WF@WNRTSA(QUw?F#ULDAB$aI+@ zBn>ucn0#Q@tYw9?j!vDE1sgmPvPzGYk@dRwDrzU%89BgftT(w>`xj70P{bKb(h z5+;;G&JFzeMMCpifb7T6 zcpnsBHH>tWAnC5VJ%a5L=3R`i;{FrRr|uSCl}aq>l|4Ic6nEv@kXvIQ%m-M~MAI3G zV8VgCly7z)6=kopsJ=~)7L5433D6fUF*)>ulZOPruDksX8FUOu} zpp5lt?m4^bL}yQy@lk`^4M&<+^$h%gSGn`j16QB_?vkr~*~N<**hL2+{f z(K!qjg9V~48?q+?9-`HeH`gML#KoS&9=xag0y*pY3z9KtL(8p^C*u<&08+fQhc5F=v&}OGmb( z)lZW%kDXN}ky4bxDsjFr;_iT_ikq>qi6_YJm+s`KQt{4QyFe!5dK=Y3^syS z`8m0temksP=tV$BpW<+JQ5DqCiZ6VV+5j1H}QsYJ3-sQ`tj zd#+5GFTdt2+gXo2yM0z4=Qv7t9rr-5xIfGF7EPB`c@-+#GI+ICO#-Y_4MQc&bKlT! z${4UE8=B3xxFvS}vphb1P1YCBJ>Fw?3$}T(!*11aZI_%d;(->*vn^v}Q@cu&acj3x z9~1tO%VP#A#)NzEOLq&um+w&2Idmez-*g~LjFnDVRrMqYAT){~oP@yL9@KUb9g|q- zfCIPh+^Ix=B8>GTIuDGTqyHQ`N}0EA!o|?)X|Hc~FmG#zamCtOc$9{VB=5zhNN%|W z5L@myCw>%!idH7Rl2yHH? zK5qg6ZYchGhK#cljqBhnoM(TYB|3r;$kB0^+uPA{&$n{qvTW|L7T1}2DfxVu=E+B# z_a|z_Z>&NYMbE-=I-g7;_#9aIb(4%YK5j0v4r#?k--X9I9PTQ#W7#d~v@cH9TjKww zttbD#X=}SbYhYRFj=yCNA7rg_2Kg&;Px*f{!TawOn=Fj4RF*gORC1Kag}59`X!CZ- zm(Nk=vc!`&;FqAd1|MR5uJe;;)~db(iuvT?n)6A%IHGvCgNtsP4U@m`A@!{(a<8kw zZjY>XoOYg(H8UBM65owUs)8?wumT1BSsqq21#%xDdtD zr)igo4rfq(2>DrE^I~jayoV3F8H|K(YUdsQ zrp*83KpfSS!_}Uxo2+y5tAlm3-$-s?;`evnTOB`fXfkt>piadDmIyBH+#Q`+t;`?d zJUo=xoVDQOLFf7CakCJ66y`FJ_7Jv;^$vz4G8mer)h~Nyvd;yl+HJMVI6?qNS0L?2zDz#$q!y_)IE& z%0)y(6x_;J-TmUE(Q9z!b*aRuZ2INrn+m z-wP(A*lYHAmEG!29&PE?8tTUei>fD1T(6pR)$ocwny5vpsc$Q#=NWc%S{x_Uq#sMu zYaE4Q5CM4;RJ@7-;Z+55X1rj?7i9@?ywZ;Fg^Z2aBjHk#K7l(0<0bh~ryLe9*g|1f z+GZ-19h-T^(!k`fy|3M+-5IY*y@^p8njm5{2R|g;M9&lw*fi3~MyHh>^EUCyt>`G~ zM~_I@&w|`TGZ2X$OD@J99cTgNO8V2$X5U&=7wx zObFPp_aFl``rFh5n8m^eiDoJgIxwSiN7lE)eq;!PBz#qtq;}u=p0-N^iXp?#awr}r#3>@8)t*#di?{(lZpN$9iG}^@)o)RnKQ<6&a;!-&tK*#T z8eP(k_i6s0p=k5EmHjhE;+Vg~e6}j3;Br2BoY8sBWBFCi3gH(PcKj~0ve@i@3r3Vz zyTX*vI{m8l;(yHiybns(H1y6KND|Q38~puSyeUIPEmPH4HY(*!r~YttD_r?laNst# z5QSsVg`-HD>kD=Ac&N)Qa?{;^X7+xqnI(DgGn#gtYLCl?(#|wy`Z8`D?$jqKIApGF z-i-W?(&vCuXa$n<=QnP4L2WQ|3O$ndmqRZv&CPe3xwHSC263U50T;Okue+GUwMitZX zmZ#qeGTOem%MS-{Aioe=7n|}H+px@LP!@Ad7Cth7)jmYFT9nayUcsI+h{vAPp~Bh> zb6!Zz!2IUKe@zECQi7xhIYZr-L3XXMsm@98rVE2z`BZRbs=6WY9KkRV{t=?{W!t0+ z@hFw`mD%N=D>fW!>KtlQeDRV@>Q_CNym1RA=|jsN%7wgYFP2Wf_K>C z`R4C7LiM2OLTn-m6I8>5jR`FZPpvl+4Hwi@4@#xd&wjmrYvpQ>$(IoscmDDo2xJiG zh?$sre;@)v2u&`(kWd}A6yeuGyCpaV9kC5Wm&;~471JK4=n5&1*bK+Yb9xS$CB8l4 zjD6A&PYs*az*lw)~&-oT93W^qclM7 zt^eTncGeG8vOJ9&Xf-9I?Umm3RSx2@K5dYR*d?7v{>xpxPCq~Hf=)u_K2CJPTvM#i zq)fb(mSKmEi?2pK%9|1y&IKzDi0;~8MMpT|(XBewZWV!EJK8QNR&uL~QcLUCrOyP2$ zlftWBcCOd^gW+-RTrdlyYl!N(rgT?^bDzTDd%?yA4|)Ra)w*cF#M3)%9Z$LwmHXdL z(NAK0!k)|ju7rQR)eCh6EZ-}}vCr#wx1kZj`}><$O#Ho1B)3r9(dk3ZHlJ!O+^JVi zOLVcIQFhb8+<)J2nQy)@!-uDBL0JysOup^mIopZQQP&~j+^fBRU8me8`YSL`Vw zS1?hS?`u@=WB>CQwJ$PSGejQ~h#QLkIi%+Q`$ss-8~D+QXa1mZ2y}EMI-*xio+{bZ z-#^$V*<=CQn*P;pItujRamvWBqin}B3{DX}mm)6;3PdccsUT6IK(}~zV+*`ctz}1R z(%n~f^54-JCq~3~ZVOuCHr|wK!NtdBC^+EZJH{ zc(TtZo+4I)yqt%vK-HCm=eRt)d$$7Z099~R4X7uhwfr60}n(8ifhkOQ^jgoyYj6l(Z(wvB&5-9gU)vWUf$aX$`O;Q z&Ka`))prJTy@`2A^1Xg@BE6z7*ZV`lHL`@cXpGZ9H8q~iVPL=mP6AjF&=8Nv3F|_m z?hY1~Aoy_yQOuoocb6dbA^(H2-PR@sc@#245agX@IojKd?_eD#LlSHIs$lY6$ZPX3^AC9L zze%E?-dq*5oyBhg?lrYpPdjiC8={D2T;iDv zaC*{zgR6pgNQv*#AGCyQJPnyF$N2RPw7C)Q&`xjZziL|QNe{KD^6wbX5kv!m;IK%7 zl7JQ#sy$M!PRo0lcqXUZ(1!i5sq;?$6*ve%*H^Cm1Ch-_79P9Shy)utZDJtf{Xev@WLFa%%_&uug|FzSgWDGn! z<}eT|@0llm>k()U47lVr2{;Cn0$jglDy7%7akX!Ml562ASL!6l$&6Q@O$C)%EhhO> s_JFr#PH1pE3Elz9!6`vaq5u49AG|Ivw*71bJiU^^)78&qol`;+0KOVskpKVy literal 0 HcmV?d00001 diff --git a/images/test/focal-pr-0.95.png b/images/test/focal-pr-0.95.png new file mode 100644 index 0000000000000000000000000000000000000000..70cfae74d0549081f87cc12c939d773f45384a20 GIT binary patch literal 21187 zcmagG2{e{*`!)I?LYXoo6j3U(lq52QN~RDJGKI{944EmjR8oXgQkgRkA!8*Z$&`dd zNv6!xx9{Hf{LgpR`OZ3PJ;``K_x&5LYhQcs>ld!2agvUfgO)@h(Vae}q)j4`=i>83 zYASrZaXRe<{yXZXY~ZHjWaW0%%=HpU-OSC|-pS4WvN?~(CD$vLog5`ZBt;Gi@z}Vz zIbV?$6?OQZUl4I}wHDn!#%_*_&^Vtue}zP1FeCnvJ(J70Od@HEomNuN^?Wdq?B&UF z?(;@H&kZfyBRl8g@2>?O;9o zh4gyoCd(aUOiDNN-m-1u@%i{uRyL9p|7Fy=wZlZQ*-9K4sj*L@Mc{%k1R1Eb%BpYwo`G zbNd3%5w8^TO%6}e(sqC3XG{+GGqVv;Z^t>^GWqu1yV~d@U&FF5l$dwtnQ1-OWtVd1 zDR%6qB`y9gXcKe(Cci&kb?Z)Pmg?1+Gq-(n42x*X%F46^;@>nk*Yy_J9T*kdN_|`h zU$?e4COK7whi=&(A*Z%y8x02s$JAG!Nd?|GdEPkF<-b4U4wonGUK}24e|%5I>!6$T z&TZSaO?^1Q;6)>hku1A1YCiHVo?Xn8#6nB?Irk#BLNnh)wkrUUoX1~Wp+m3y&hex_QTzrI(_l6}KtIzLj_uEo0-I#k0S+ zJ~(=Xs=&HUWn+CUP5b%Hn>Pba-{xQ1xnO>XWBLtWY}iIg$H$Li?!R<(&z%eJD|BnI z?=NTF7OwP(kz83>`6gCe)wQy2Nh~;&vtUnM84uMBLMe|&QK z&6_s?7zA%`>0MsmnGA&P@_TGqhAN_1 z17CC(+38=XD5}%ym1mT48QMe)#25dKwbJpNim8uhL3o`CV{IRdrj5*T&kybcWm-P2CNKCf|kr%_OX_m^*L#6W`w6 z$0sPbg?Ou2x%Dvpi@vNyMMVbr=Aor63j_YKnsRF_S4LZvF%Tsi(_LSW3yO+1g)#9d zG2Od!C&a0Gjktx7x0bba402mZ&SgfW(~X?@Ub9wTJo+3w$I@NQo><2Bw1}4QCoo8E)SYY_>9lgR&#jq=ij#JX~ zYo(Xe)jwP&eoL2fC;S%&H(#6YvA!qkBZ-@u`jwe$K2#sRUqnPjQBl!Zx|CV$^2a@Y zC;GOx$!*B6TNo7DFr|3^I-r&!v%`P6BUS7C`SA2J2}3i@qD`XJt3ln}2BezCXik^m z=p(#)_fj&*{$<=sMG?bwG$^-fnHFE(ENywNlObl&xRre?6_>OdwbQFPHu{~?A>96} z`F)kXUka=lJpOzM?{lo6yL|cbegT2nmzSEIN8?H`SNKAGaUjL!mxYCgtR#~fiV@@vl7u8A zBtB(yIF$W-nsm=F+iJ8mnYk~9Tdvje;Evf!p+g*WNs1_9ZmG>ZRwBsv+fJ1xWgQu~C?so+ud*DQ0D56^|M2 z#;{cu%X&`n+@|E|T`ThI%vx>6|&RES3k6o*Cbvecr?4)Az2HN}yOqdm^+d9?vv!zek#S2$j?0a6OhijNd z<#%LgN|1i{UmalW!#y{W@~T%yM6+M|Ob<1v@y2=nyoE`8&`@9RS>)AQ$8Iq@+Gb4~ z8nh!?B|rPoqoB8z2XpO?Js={y4F3n2e zQJ!if(`M@lI$mvH)i?cC6F4aL>cWs~S>ELi{x7c0!l%^LS^HN0{tQMK5(&D?6nIa< zI;LxMGxs${(iEmX%t7DCh0^uPl{#B}>!-55jqG)ahwYp@)Q<#;Uw`pJz-7lV520Vb ze${ua*nQ4YFgJfxdQmem@?Aq?qxr(0ekuR;Yng2$$Yo?rE{n6N8^1f(yDehzw+J1d zGkyP#wVRyHQV6C}z~W!{no~=`Aj7l1)?=OedcwnE=KEU{KMD4&V|^u}#r8eq-)b*p zVCaSiZ*a5m<&&rQ={(mR8qmvR#b#m`H{V3^O!stimsxo|==`v}oWpnduY$dOmcCrp z`2wn?r6u)8w`(TXdcWE|-D}m7*qPN&M@RSU#f#eX1QXiEd-tjg5E>@>N`|p?rauZ) z&8sC#vq~n>W$Nd$^&MaO&McLz@x{H%c%rz1@1`dmd6h=j_#7$V?_am-3B*j2$oG$= z?Mk;r*L%ahX`MYw7TKVSy@ANJC9cNn3kcl*(g$IV8cC4aXfO4|i}K zyuTHpO}#fVGEy8Fvc9S5L}n-Nfde$e>IfKE+h=rDxF`Ac?O?gpK?Z{|*YxgUgqtXK zabEK_wRc{0qT~5Lx6F0xAvZyDyd$hOZA;U|KaO3w*;TujEygjM}Uf|*5)r%k4`RmMOlw#XP4>k-|&+9iupp5JJRL3Q}>;l{-pt-6!&F+8+fB9hQ(_MpO;zv7e8q+9m6)Yc$aRwzZYYVk@GRVzu8|Vn02J zcFPuuAz9YZB=Awc8KFuadT^{ zikX>N!HR9mVdm}IHdUF({C7(^4q8%s&;1J3H}Oh;`$~N=g|Td| zzfCZ=avR6+F>$V@!#{5ji6T4%x5u=Zo@?rYw(6pvUC#aY@70{SZXj0pWcve@^;s5- z9uKXSJ(EVZ-7gC`WyBMpQOn5ach|1K`g$cJtntNf!3=rCp5Qz}A08f_U3{Qh>-*ta znT^%i#bNG^usFVx=8aK1o@Hk@*yX;ujzJSuII}4Md;Z@p07MeE`z$p5`d&i9jkT49 z$UZvM5m*Pca_iF!Po6$~q@QatRCA2?+Joc197hJONdVK_Fs|?z3}!f9v-9egz}3~& zQ%RpMUv^4;HC4N%`{kuAB4yvVees!mg(RY^u1<%Xc0)Z$GVSS8s+!QQFhRYn8YH`j zRKI1K1Y?gKC_#v%@jgYC(|>iCJLz|yy(FKoFdYJz;LPl7TBmJ3ehlE+B=~ZqS^Y?V zNM=qsErEw4A|h_4rp5xJ(5L#ZAKm4*XeMBGW6RlBK=1U(Z70v3WpXSVVM9p!_V;H8 zV6!lG>v5U&#o?Q(=?2C2I~>b@@^9TG!!BXISpA>vSJ}x|OcZG*1Ic z)gtNxSuEmjolzm3O10`P0~noNUzt3S+r@X}$o2}4iCTo3#5+dV7Q2XDfD&O4;r{i9 zv=e7_bb>{z7Rj9|r>XEf7u;LM=DgJs57C@S5D8V{RX_-@TK**{Ze4a5fr01PF-`zx zsn+CUo0Bze9Jc$s*s|m|*QqaV`)NOc?-u&6auaLo(IZ|0x0|#neycs~Kb~EJT4K4Y zy7-ku@acP*oJz9ms+anm>*&;rDLy>miqiUJ{`S^hlL=r;@#eR0&5-s-Mn>{+V?pW< zq~b=te-HUBL)|Fp^!2?+)uK6nLi2gt*h-uKdfhIc-{Mbo1sWVMJnuxRS6!cKKW8Ti zB(YkB+>*b+z->j$RAhL#nTv~y{hu#o@6GeW`j#rbmJ7ZfE0~#am9%cH>X~9q z6&z@MrRDJN?2@lDy*c^$ak5L_Z)XuJ%!9bdF|U~?T`nQ6(vnHhElEdWM@B~r?%iX5 z+HPau=Xcx(kNawV{DMHFc;kC337_wACk?PIhrLqfCi)VD&%dnCe4=?}H2(hmo=Z6w zUpK|a$E$zNK3{M>n&WW9SdlcGUBS(SYJ7BW|lUf zeV!w_F}I%>Jj5z1!|c1b>`QDJeW4wrWekn%fv*p<+I%kK@XLf?XAa(A$Ko0mQmiI-}&oqnQ?L)vBB?Krzl*ybV=#r zS!L!=)|(VU$bp8CKFf_ z#_g-Ci!RqtIenTW2$sP*1Xa{IKMzw2X=}CGg&aloq!PO;y5djymgmo(OL_m@|J8Gt z4&_WP`6s2RpZygjQdbx5OIYXG_Z)mP;wm#;&m1QiO%N*5loeMe8;QcZdVMap6o90` zJ3lU@-Yz6OGO`ZaW;%6abu*^$gUzAR!Rwp|EuwDEkCq}RoGoEo$Tgp4~F zYC|@2&Q0Dgg8q$WJH?WKG>@FS9Ph2!<+uA%zqOy_ZU~~>lIJvV{QKyr#qaKX2LVcj zkj?+EztG`LyN8MVbM9UJh-*GZx7c%f=+wOvhyHU#<;~wS#saUg?!1{=zR#@9tEg{c z5jQLj0GqEa5N{5oiV{9yV6xj@GPg$`0L0eT7A%8&$JOi9^ZpVq3mf#mXH0eMk|X<` z>3jk=%Wff-)N)Eq?TOFDeK%6hwg)<^r$2qFC_wkMc|9+(3*Z?g`ksCJe2Vt%+ZQ>j zyYkX=+MLKvgJQ8$C+vKc{UU_i)QS6QMTzgz`}YB_oHE;t&S=JyC!2uA6#6de>T=$b z^FO}J_wU*1E8sy69y}Q2#}zYNe>BjS$uHh(U7C6Qvu#l+sxBsGW{OuP4ACkS*?L{cIVJ6DPy}jSyf}Hd>7a$05rzS;EImO`XdhOZ6P%aA$E3bzj`7?~RaI4e*zuFs z=6qMZ<-y&kL=Cfx)d%?GLb+e-I|Qz>_-&Fyg|o@M+H89+65=;0dIUO?348#t<5&Gy zYyU&7{fds9O)g+hOrs8ag??AcIPyA2c%ZS*UXqjD0uT0Kd=3}HdthqnvE~Uv0QvljOViH% z`}hB&0{)JjHOSU;NeyzID=ZMsRob&He7{HEP$r(vM%DV&Q);K6k$uS;CmH$}KYku% zSvuf)GxbrhX~w0HSG@s7B2Cy91O<}cf*NM_M++`XU2>FH`?+qE0XgFaWg@M<8Cd`V zCXpw^#l;aAf?k`-W0K?U+}U(rjjGH@#BtoUOzAA>!riyu;t@XC9`;OG*p{gMoaN`w zpJ3t$!i?SGl&0nljf`N$v;f2GM&<3sAwGY~HedbfwGa7^B4zYd>uJXPY-QfKfKe|O zG7&YMzMgB!heB6bu*e?;w=O^6O;qgCUD(5WnIiW1@_wYo>&U5Q*m#~`4?cYO5U@kS zN~xAhbXD1yLfJfB`@r(TWGs*$Flvp>A;rh-z*E>56o9^pGzG^x?~w+dx$v zdiU-f0spfuR#%<==q@!K6-I7z>-e|HxeC2Z<;kzF%<>Je#^Y|@Bo!IbVWcxVX)F5a zpX<`bt5Rlk&>+H=^a(#@#JEpCXt9zY$@AX^=gM>VFso~sk(wM>$D400!@|QAu-UTo zGHq^v3q-c1A zjf%NlC(^Y8N4)?`P>JF-&05uB72G#L)#O5~2mqsq$jGyXhO~GR?1=kn*Fo^|NJ{Fl zv7h_h%VeM#*u);J zkpV`^Tvs=;9+7R!B{Pi*r^s53 zZ@bkzf_Y(joMl_Y;aI{+e}iIM_$IK&`T6-_(b1G`v!LUhEBf&fkTI`sBCp3j&oJ9r ziVJ}Ue`1)emu1LEeNjP}TE8vOOz~4;nJ@L|h-gLvk*=s8Nhl7neofE4#`I3lD?%0& zJ9tB^5=$$qi034Y44tT`r|Id4a>lDMeG_b(&mV|aMO?xorHm4*EoBt=IIZI+m?iR7 zrQLTrw}lkt_ScU4q3}*jObi$u7gc|lUiI(2g2E2>>$U@K{vAWdAL90tT8b?zdQd>gsx&lS9uINvV;+3<1No$nd>;c6N4Xi`5B7 zM@M;|qcP0mpS(UNvOdbdB``kj?(WZWbDd^<2R_}9=e_$s&)IpRk~TFo?5W)DeQIL3 z;fJ~cW<`b#g(Tz-Y!GY~+%y=?J9qEa+8m0QJup7!y=TuJ%yKwI_BLkbvllLG0e(S# zyVqg`uAlN+yr`0u?5q)GQYe`bm=X*+sZwyC=hN+^Kpm=6_5W0%_8mXxhdQtJ>JP@3 zGltIXGpC$R#K1M)Gk^;A+v8Z23Ln6v8b34g4Z=JE$bLf*8d`X>nBfoDB`Eokn(rhe zoXFN22IG0^%$eZVrZ(EOw4^(#mu~kIguKb)F=>AHuJX~Flt-QVc~prv1OM~T1??!h z9#(4a-X^GYNcPGZ%E3`LY0Q=>9{U}MHk90VWj@p-_XdX2+q=A!0XysZbt>Zdp(2SS z)R~Ia{B(O%Rb}$tg4OD~G}wLIt@pwoI;`hQsbZAbJb9EWA%TWqs(_SCitLh_UFNzp z{)uUL?$3B`a&rH1yzK$g!yI%7vJ6Pl*ceGIR4JooV(g{`JzCn@yejti>Cn&+!7e>+ zrw&yl3w})mvfFP%%FCt2H9H+k>QI!4i!*^Q7UPJP0uux-6^UM%Nibe@O^X^%r{stT`zENq0)tLG_v3n-oSb#HcRH*msNlw?-ZMZ79<=3_1!`7=)(Hg@(ci z;P{BAL(0b|L&L*lq`iCh4qXj(z#JXoh~BRq`k)&e9a1wP-%tfBJa|*1Z%Uh94zk~@ zpvRCUr)qROmzM0m@BFAQqU)|wqLY#~qXz}m)*8rB;i!Fe_4E)t6rSq_iBm;3kYnXx z50sWl5#a-6i-gl*d}4D5KTR2JI7F5*diLVQSYSHvpP+1NCOjUer73WYQ5xM-{5;~S zkfv2*RS@28yxUj)6z6_XQ74@Vy*BCsp0EoN*+T!hlTs|d!&-kb0w#YO9yo9S8kmBw zuPmU%Z;y)o>)>gCMzqeI3q_@XjUCy*``H8m9_&7H0s>Es8X`_OB@$ zgp!^0sCX3~)|YRw8Jr4~gt)tRuLCq-2o5nlB>{uQViD%k28i8MeWt;a&>VOFK21Rn zAkR0CiiS^MpTZF|Yz}ec|2}7LFNB=~L?jiNfJF>$eZPI^nB$q-be-SUpPR2EJ9O?p z*^&P?O>}fLFu!XmsQ_LUjMfT*A#wSurj;kKKPk3u?`9&bVXrW6;#@K{F% z!>!vy@>62Eps&9f*%%K%0`A-|EF7xFAB>w8+(A90eQGx-FnJVk0b6P>Wa|Zs10vBU zYwSxo3EqN(lQU^&RHMrS{ld-?T|H~29FiDH**$yr4q`RE28Y%lUEx~BwcXf_iI7z0 z#=9(VPheVDt23Y!K6nt7n8DygE`qB*%YQF}bs|(L$ap9H{HmnxsXo_5+}QD!*}Qe5}InOL=@{NpGs4-US+FF`ObE+{>vxabMF5A!Ak=>f|e zQ$j2gBhb@?9EO6KAj^iah*4I=9ZwgD?D$#FtSLiQWEgGH6cacsMHIA;RiYI^b(2hg zyuT0mf49fvSGsgO=sz`uecTl!`2>VV`N6T&0uEjrEaB zlUlC-`el13K7J4~6xi1^ePhG6Q#qnl%sWX_stM0BGl8b;^yRL8(yR$hEGDROHc^u( z@J}9-P3HOEpsTzdj+KjnbArC-(~h5EsR7>>RR!XQASgEstj{0W$|b8O9uRAE0U-9;)bPi_v2}mO-y$EDIXW9T$}In#4p4pC+`%QrQsEr=E@knuiq0N zYG)lZEQMMI$&aY}$Tq8$xD6zMsCFzJq#_0#w4;izuWzZwZh@a3ar$Wo14gYC)EXNa zURxDF@TvoxNYe_NI~Qv6qIpE|^5p}+#>X3I$q`);fZQBW0CF97C@^y zeFHhXZJ%41mGp`4oe5c4LPEynEFgVmkF~hiNr9rPS{&L!jFmC(KFLI0@BTQOs7eog z=`-IunRoBk1KaxL%NLJ<1#A=NU!M+4$;4JxRzB0%`|yn&<20*BZNM|Yh{&Hr&WI8R zxck)EnO0cH5*ixX4Z&SNP;k&$3Y$7EB_#$6OuW3eyE{zQXC5^B@tTB-e&Ha92cdyJ zd;VMjH4Z#541h^G85(IYtN`$XazH8f&1)B+62S*>L=(HM<7bHWb0u5b7x!Fwo`{Pz z0(c>aH!SC*xSLU4+h;UozmP7WZ0u_mWrkROPt1&5BlURypYt_RF(*KMf+F)b>nnC3 zTpEWs)Nf|*1@}$(5h_8PL29&3m{L1)rVi_R8os0L1f5bJ&J5p-qN%U~qf!%Ygn+Hs zSuf6IYU${7iAepxS3V0vpD#EmLv$i6 zK}4_thMRi9(#`?k1QMO#-iN`4EW$k#0}|2j!Kt7zDZpT&RyXlqbBDKU5PaxsNJhO} zNA)v1OMkt{bcXwZD5VMOhTqzp{-;l$+{!8q5b~1%4MCa_CJZQQCy^{>W@eD`K0aMT zF@_iR@I5ttkT)nu0)|T+Q`tUFe5BfRqvX)a9mdlW0I`HH7p_DOoPigL{U2-%O-)4Q z1obhf-3HUKk7UGnUD4qTQV$>u_7*A|vzh=hSbyYQT*L|01OYhg_Ev;-P^c(!FbU!t zdME^}3esM_)Hd38`z=-t0?kw6`C;EXIgPPFSHdS$bt#>3Dsk8MW36olz z?7{=7HAf#z&i(@jUjJxGng*B840@RMQG8mu#8bLWk2F({d;Yj@?Tl?25q~s<+o^Vc z|6SCtMARgh+3hBtWEYCkN*T0HNWbGr zLqiVKU0@jU9r`5m^^#N`PYdKYmGqr8Hjajf!?$nWW|hZG*sX8hz9p6#IA=g-b}!a- zJ+LO=Lc9>F=z!beRrjhGg@zM|7;HqMEcdsoX}_GV=iB%S6Da=3S5FFTA%grclT1R{ zjJ(6h%^eFL1simJ1GqaJtJgdL@0R)*+GfZ4D~=GQ7E&opVr?vebY%N99@Kn#u7miD z0xTMc26Z9ksuIRQ?5;Wh1j4^S$?^#c9(6Qc(8^;uU?)^sfUIr){+>8dIYGwTPSo7b zo}GHYD#6cB6}*{&O^21D)0b7%!phR}8@91SB2`spdv?9ug=8V>1W?_mKYfa54qrH< zs!HUkFJFuZyII+bnowJkYP$9Vc^=|IRCI(;OGx%V9`)Kw5~(c0P)CO^hATQY_6C4& zgLxnZQ#o7ALLX%W&?G1&3=X%Jy;sCJf3MsigIGOw3n>`t=(&&o?i5LA7I*w2l?6lL z#`;2azIEF!MB`7H28E&^1SYFDj?;88!u7GL$LIOC{bV~rC5B}y$02I}rRIxb!21E~ zn2TC077X}hHxUKKWHta_zqREwcmhcQAX_O)8NVcgio?wiavTBJP|UI)zvfx9VuDhs zHAObEySv-**lUH7Gl`5;!b|ifv?127bT!5KzCXkioRuOBETnu!ro;EuOryYLiLc3L zbbuOq1j&(r#t^9^_)f+=M1g$iH;pob@39nFC;!T*#vw^b$)2xP1%r{IRq_P7@_`NoDlrtI z16YC^&8v=t_J~3ZB~!lth95x!vmbTc1Gm$4_}U)k=QCma@B*WRV9D*bxZAOET7|Uz zYmO1DsGh&`n{M8|eImGm`q7S%`@6#5>{erjj8FGmH-dNz-neh!`%-EEe@ER13JkLW zeiz|86E~~fbPY&^BqCEC%PmI_fV;fB{ES|y=&mEP7u}tM-&U5tTx9=xF$wIVq9Qqz zSEV?cf}VP9quQgj*nTkz@-cHw=qzSl zw%BPP28$Tx6e?83M8rWoMT9ls3&luAkt@ick!-@X&~3r3I-@SK|5C~X?U?aORQLxT zmMMb01!eK!@ks`keiQ)HNYI2k_TLnc4cMMC#xNtQg4c=BwAF^&!?v@l3jKm{}ml^#j(o7k>ZzN*vTK3=o3oSI; z`|!>I8{5P1WdH8Y0m4sa3iqWPCrnK`nVo8xoiCaARPvB8l8oIu&;5RpnPU!kddvsD z&K_*q9yl3m31^$%`jR!K?0B(Vmq;t4eN%1 z!<}cPm!q~VC#9L5FZG@cFU3j^p z`^o9siAI`^B}qN@k}x0M@3E&Z?#brY_5Jd+Fp${!DCZZao4ARsfHKDjrW_j^8^#hZ zNY7Iv2^Y;fU!3bMcHnGHm5YT5By1cgmVo5l6CQ9xGZW4hSkPk-e#(WPZlY|XPPb(9dUv8G9Rf!%3Tx> z#K^l*$+;6ql?Yp7S~Oz26M7N=!L+{7?XoYCYw-sX6hm+ zJb9wt4$J=#tNUEkt!0svxGwp~YMZQT-z62(a{{dJ^V?{B=#~+96XIeT? zS$Ogctj>vKuf0^1D^lnG^f!ObF>e0t;Zx%P}6^hg9E^GK|clwzY z?lBp0ExV`qfrCsitov?#UTy%ZQWiEh>KwxAaLLN*V3A=9G`J4iA|YAXWH?Fk9z5W> z8z0{Qv9Jzo6`rlG8xPk?cmw8v+zUpU6AED9328|_)-`#;fHzJI(y}`&DbG7?5w&)Z z#4iO7mj?KbE^&)|^858ZQv123Xyue*P12(PgaEiVOuLM)ChPxFd6t0s<@#JAen*Yp z0yZ8~jJdUS>jN{D$L&tsKnH|n_HJq_x8z02X3h5XJi6@;zA7{fhBG>*h&Vx2ZSywB zrJj#Yb6>TV>zVKXW)asjGWzn{w{6fl5BuTety|lEcvPHl)XzA@IaNR5LD)nafg#lIT6bz)=uBpl`KXxzI`g7SwNZ zB27GvOkarpnD+Be<5$jv^lB#WK$AsAiZ?BGHj?bM!6VV6(hnH~-+Fv~(E+S93?|VDq`UMXD?n*BSka0Wj>XOgsEZR&; z(DKL~KAG3?xOaSC+O_ma@4=Pzv3Gvke%;|lu|$+xFjoIus6uJ-0lOZ2%x1OlNUC0A z2U7%3m`v-5bgAaE`bcYkZ!&kMp7^iaDBUY!v8tQatN4CrmiZoR{N^l03;~$td-tdt z*^y4uy2eqw0z3gx;yZpT6Gw=O?gqDC4O0DCUENRLJ=YmS@-o6a%8V2Q<2sq-lqoQJ zsn=#`2>aF9$0~!^s&gD`f5J5~>fpadML&&Y9@_Kq?$2LU<`poPf(YHd|}ZT^%_=eXZV}~eQ)TO3alB-ff>o2FxUp_-_!05kTJiE_GR&K?w33Xp(B^Ou)yl@qG7|c)K1_z5| zM0k&3C`I7jjQY7@|BDQ)jfhZ;WCa!n<{3}?WRClGf_ik}E zVCX0xeR}GnXjBjUv#P0Z*Pgj66bN4fNMgX~d@zD}-B)mjdB!^J*Ohn!)qeP95-$Ig zYcr?C*PiC*w+p`F*S(plct$McENSUEU!h7VRh=fX;%51_XY%aPDj>cf;-9nctGFtP z(M75vhlqFFci9xitT>66e1&@zJU(ZgSIg}xKxf0tj~}&NF2l}H;`J?Xvw?~V)e6>5 z51bF@;U5;?Sop$dj7#BA+OJ^ z-;L4brFIi)6WC;1l!(yD#>v@yP(q?7fQ-Vx!=qSV)?h&SnF(Z8hA_ z?qriw?sM%tr+@f)<^t$k<@YJz%ZL#u2K$f~5kWgmh)6()O1dl01-FXPQ0_#)Tsz}O zEByMyHVpPw>Q;#tg3CWag1xsq7@i7QAE{8idt!{GlZw3m<^bA1TsYJ6oMB)9$h2Qw zoX#pN{A4GG81}n-JjX&HK7z2jHSO{d+C$kX+wf#`K$xamUa`0+o;oq<%fq8&nXu{s zCZEyNvyvT{*s`B0rC`=(zDpOIGA_sWIdjad%QA6SuM zZ+n*WV_!voD{MxUy-_L_H3D1H_UQTwnF%fP7aqBeVAR5ir)tb`VxD8Qi(S3_iRz;!sKUdef@n^w=N52 z&*>D3;~rNRsy9MGUiE>MJ*%aKTBSCu`xERD#$Eb5cI*Hx8LRK;ih>f%7oT?CF$2F} zV}8^dn=<|1YNqXD_x*BiO&8S}c%>pk;bL$Zug&v$WMyTuibGz+_8AKZa!ehu(BmQN zGF0g5bv0a9%5h4XI?qn{Dp9&YZbes(_x$g0LiT$XAofk*W&oQ#^E(Hc$lOzoPDjOt z6h;1`aCsFX=sZZC{p?xT&2vgT=rfDqzZ9#HA`=cykovq5ni{2HP2-3*sbwwYF*(ek z9+E|Sd_p9?vxkP|{2XhnFx?ofvT5(ERP8z|Z7BPJoZQ?SP&f558xT+$o*O6i#g105 zx7J-T-rts;*-_$j5iZ&1r&qucG#t1V-Wq6<+a$a2rQ^F{H!@Aq3w!9?N?XukWA4tY z$whxM!Moz~CBEDip8)S5iD^LFdtJ`S{NzfTKBrCqss>@_4 zeakB5vV6IFjQX1PCK!GEPF2HBSRCuiio;tKP!-0-#SL~^_m38;m$5U($68@vK%>Q9{t5UbAKwYoXyjg>+Dw?WO&rjA082968Cmqu zhB;qB7UQoal>b5JMfJU5R^^thb{A$0F6ex@Xu}Xcg)$Bt9yne?#P7`94rJf3bpP1F z()SAmJZ|B|w^LIY;1uh{KFYK0e1QeBiC0vVK_LEJ=ETZmHACMMCU{B*Rqm00y^R_t z`}DG|{=+jWCKn!+x$3kqMf@e-&7hpESNGFR@wsm8h^rZ#uwF z2h&>1IqtAenQjWDFLVW9ddio%TQ^t(5+W(Olq&Jo=PR$OA6(>k)_EKR0*n)ro#L6-i{@c&PJ%vR@PhPurEkSMjZ`U~efkPyJPgFzzm||&8Ie0 zCSnJw9t5GE?gJ7W(Z)G4clQ}fj&^R}T~Z_wUV@H84`vw^)t00-MlH0ma`Onl9? zcHh)CoBqshrF6FSSkl(dwl+33ME9vB6H^#`YNlv@Fmce!jHj|?+SGpOsPi`xD(xSg zjV@e3MZA`0$9}$y)Auhta*M;pH86%p$+)?>*=2Fc49pPx00lifMPFbil_mrCiEq2PUmmmUI#;< zWGWOYbUQlToA{u!xK(>(<&`O{idwq5A#gpRUWWpKm#)5kiPW#FJPmpsE2^xxlHo(O` zJ8e9Zqm-b=NxjGPg1~mB)|cl2{J@+LR64r_OeUAzHC|Xt%b)2h(bbN$+11ESU}!LX zgfoHtkPRasq&i>Mu> zJcpy>B!!>2ou1|h`~3b6>#v@|Yq96fo(%*^JSD@BuD!!8Zb!~98sp^TV^;}!9Ckxq z@lS6LpcfeJS<=Qa$8hmy=qXl#2@&-K#r>@DGZi`h*Zrt7cOgGuetmP z6$zpJRFXpBw({fDL1P-Y3&JT7C&?$|R`#H)_(N}HcdM#3)4+dD3mANKA+qc9#~x+- zGfD*$|M^~uTXSLH{I(o73jY;`J@S|3+5WkB`ol#;O(*iB z-DCOhxPq}4Zs(_eX&NmTyB7yukZ&$7EYc>YIsfk{g7R&~ij}ly-~I?O<`ExHYU8-P zyYGvaXK{&2{qnl{KdTnggquyx=Pja@Bv9k1aSZIi>7rkf9tHs9EO9gt5cI!qE+Frb zFU}OGI-oWMdd>bQs_=NqGnB}D?KRtzIF{0sQNGoQvPH*^v;69bEG%+NX@n;iz3-bQ zzMd>p^GQ7mC;3McIWo7&@tneAGv(m(E8*eB9N*Mm;fs|Cg6zWqej^B}7VT*Sp^Obm zQ4@OktP^-Gs8R&4m7bn{4=rnO58?QOf&7B$w8P}B5($Ssp4AVOZ`b!%>_4)-Sh&Ec zh^nH0m#ZAp&KtN3qLB_g0^c*mK76%ik@utBx3hg4seh$hIBO?JoX<%2#h}?d&`z3n zW0!ZBc;mfx8%vqCf^(UA;eES~x`vRMqR+-0bOmCH*mGS}+bFlO z8j=|JpQ2Og9|IyMi&G-2eT%Fv|M7fnBo$);j&fRt+d1y7r5gWjH0H85xtMdiTOLLG zn%1h)8JmQd#qevaReKE;jD^;U|Hef(;D=L3wXQy-Xw^ARfP2UgwybAchuDGWS% z<;S<{oQ^f{u)XT_2SbXoEO#E{2i#(&&>2YqAg#>M8w<&ct%PW3MT|p(_xA-)_R#@Q-6ukYJcNImbIw;6MVA=fc^R6qILTFdB>I ze%PlY&v<(;Qx2zVL&Jv^W%{Cj&@IY)mJemkk7&{9vDMC;j}nL8nR~@-*K@L}QM5Uu z5D#`d>9eL3l5lr*)6HC7Wo_+SUDoAKgEUX3qA)tZ<@QN)edgj@&Hfvb;awn1Wd43Q zfp*Qka7aG0x2;8~a2B9f1eQJ$PlO&!G3%My&rz9NFm@GS50Wq{ds)SMSgY_HWBDNe z&D5~g&HuVFilSTRqj*n*b~XrmJH8%1qS93Oznj)dlT5@C?>BSFlB zCYml@M$99PeeH7iITj|`#uSA8QA5Fy7ZtU2er;i(0Id7VpdfNREiIm$tJ29rqN1_J zpt0?NrtDz_7dmhtyd_nxy0eKzC6{O~0v&osHNDHm=bw_WJ%MPy>KebVm}ZJjTd9}T z66bbI>AOEnSALel7&U^B|0gfihGy*}lUz}gK3ad@n~Eu|Rz7xk+tNb!?p3VH$&!>} z5WYl-m0D~Y4o@<+Q17n{)R}sQhP}VmnA0lQf{xdHMrZm~$Xk%fYpn{*5OqA!?$t2I z)ijuyTU86TLrY5wPT^ppzZ7lU4zu~tK%`<|35O^Q(c1iPyw}!;FMI4E34?Kf1dBbU zks)Cka`02`0Hwh(DzBm+$6gmE50}!fU^EBkbsQXouhZ|0u*)fHLIuWlk+& z7y=_0l=GbW<40nc-Kh*8?+x*<8_9rEl)&W>515Irc(g}e|81Z&d&)pc*YKwJeKknn z>M9}S{f@|fc;&Xwr#z>G&Rb`td4io?P8jIG_(vjQy}J3(+JC@u+xZu|L#w>G|W8-K)%5#9*etI_0wfQ+@=f zXfi-YB@GRYikN<5>dqp@zi;fMnChSLtV_iNtELATiNIkTTsJty;U#+K=1T*iZ&Dg+ zUy6I|!6;_O7E4E)}<(w|8^KD`3 zl4rW;KYp!bwj@P_|Iy7lxhZO{c!C<>;D|>;NaGwbEUPI8?N4Fl2B6j@Q4X2^e^s1UZFh{9s~K5g`9s+Xe%U zy(GFA#@wW*WF`;OIh>^4BNBX0A)sE6Ne#eey3eV)UHt)1m}9VEwhAQvv6DXgGMYUz zPR8!Khu*^~ockk#R?0E-AVNpS(2<;&GSTS-|E1Rc%JpE{A+)|chNBZl6POQ$ao&VU?FFi7>1l3vsIoZSkjbMZ^lW0vP8fFQfwh&w7y{L<f)TC zNh3q~Y}8IC?ZI8dQzH?lTPh#oy5=U9cF}#}{ny!Wj2UwYs80y8(>RhM{4#kBWnkj{ z`{5f48|&P}EyL=$8HQ97UcK&CoqDQwH{8pNu$%vB_-{sL!m71-^8XzTrF3=Aiw2NF z^>7xtfXOlMExZgLtu?btFK~m*!j~(=nI~dbey9<`+1{5S4gp)@3^0A^+CR@7Y@RKu zf&r^;FaR7MYUEinzH=gvUtKEyZ@WkQGq&7Xq4Pw0J~p?w*Ni36jO;W2ds@I9#6016 z+k57&DR@l+{Q{9S+%LUmS1-Uq3x%yZo(k<>Qe1eU5=K?>C@gxD?xg@?NW=ap=|<|4 znbig&4QCmZZDZzFtAUR!?4ti#r`?l7O)dlle^wD%DqmbNvwWp@{PAu~L6wI3gO>rs zo+sMjr{O`k@r8f)jp9tgVbe9gC(g!dteBgedV&8@jr>*3W?r#L+Vf zFlm6EBQzTHQRn)yY~MZ%z=@_jblu8|IenFpN^WI~Rrj;yjGJLydhS5nZ~1~U1JT|Y zSNSxt=1~-y$?rkiAr8681BZ|gswV-5sJw*14Q=}e&gYquapE{HL1AIm1h`*a)^Jiv z4c1W)EMo*Q-2;zvH`IE8{|i3A6`Ht)nf?uvuo+Z9dk9@EyAoDEdGHPj&gk^*mQ&vB zHW|5VEHQ$f*Ij*y?^pdeM4KM?#_QWe5+c#7`Vv6&- z==TUoIXbG~fpxae zOTnuwT#6HzPG@vQ{?ByQx~Nm~zNpXqKenQVJ-pO@0)8!m5hnN=93vsq<})`6TO3ZT z5Sq6J4kq9Xke^FZH0Ke;jE>z$j&x0mztMcX`x73Ra`XTGz+7Fr^1a8u3cb9xI^6_u zJ&zELp}Z8V{Hch=0``tJ;qx2KZ`x%6#pV*>3L#`+qMIITG7F~}iF>3KD*qo8mTJ*E z#icN%^nh3HK|aB8DcYIu8g8ccs_eO@jCBQ^9q`AuodS}G!jqf>{z}Q7m!k4O56516ETLNhm-s^-Hvj=AkV!Y+RUaOA<~J!?`vV5ND#fm6d7N1!4)8OS|5nq1Pn(!^y8nF;Zgu^yP0<%RCc*9X2e=Ic zJe=U<6Y>;x+~HkmL^($II7BR^5ea83{ literal 0 HcmV?d00001 diff --git a/images/test/l1+l2-pr-0.95.png b/images/test/l1+l2-pr-0.95.png new file mode 100644 index 0000000000000000000000000000000000000000..1e187425992850041af4aa25d2896bde8fed2f83 GIT binary patch literal 20415 zcmb`vcRZKz`!@WclG(6AB4uSOgp8sjnGurAQrRl9N0DSzk}{JrLP+*ZMrBrJ$Vz07 zWX645eSgpIzMt3g`|Ex^ua}DO`CQlgeZJ50IFI8vuOMyBlXTQ<)Fcv#?v(2BGb9pu z7Cw)rq`=>SrxIV`ADJ5`3~%TeHQJ|?Xx<9+hMCZUv+ zeSwpkyZye%>Akp}T1~Dxt*W~B#RJ>1KVIHGj)&|uq(0h9#d!8*b(E@FSzS(eDw;dr zn5(r@yq1NM%YTOwCDo=u?One31Yh~+%&GnR-zo~8EaID7+_u{P_y1*d(xyGbPnBEA z#l+2F&c$BSC5)YQ?D-D* z#~~{FxgQqGTYvYMmX~G^+Z%az2mMs)&%7|{u-i(BzN*~R&N`G_3exP`o~S2l@7kZS zc|7_6<2_lvtTSnk1SrQ+U%e7&J+W8g=;>vjqaSVd6ctQg?RdRss$#=?qPt+b*UE3d zGik>Q?0d5v`V>f&$r>>&ndcAlGgAMa>fK$jzLH)i-jQV*{`x|RQlj==VPU$M!w$(( zrlG#!Pn8mns;NHTqT`oveSs5!ltxQ_4Ji4R_lXvS|!1!A6ZO|de! zorY?;_U$A8{Q2_}nd`}?pYzZMiCNatdanFRDO~;;!xdGZW7nO((}MOX1{7F4wSD>DeLJmwpvRT-<%FR{M}W#(|e**Ts>NXYLDy+9#2r+4v3svSRh(sH6R$7HpPg_c5Ybt1QFV=~{a z+oH;!ieE&8`A^zpd{==3=ka|H?kmr{$<5`W56ZS`WHax5aVp~3=PQo0gC}}!_Ib5f z=ehp=e3FdR=e4+}Hf&Guix=D*lc}m zndDpMv8cpNZ$AICkt1uh*=K#z16BWwjErKFc8VmcO=OM(Ra@4u5|x}AODE<2bXqRe zDX#nN+^^Cg>EhConM2wW3lABuNcYOO^qH^GK=ka#KQdjW_mm?;w16!)At0`AK*JkTn2ZQ)p z3LH%37Fu;lzKg9j8xqj6-?QmoH~LanDr>9)Bj@jU@Pl zu^zHIn$=OTq_{rj(MU~A?bvNsKy}JYU7fak`R8u+I9aCQ;o&EeHq4|-`+}kM)#8%>G^M8^XSgwxvgP zbcof?RBqaCHvPTqiLA4L`=5!R$?gKnsh*-j_XUCV3{>83^KwKdPg%Q$NGd z@5pp11CFBLzWw{jNJnl?RpVvD5&M=u8=l?`53l?6HD$KVz|{!w*CkU*IF<^3f9r;@Nq!nGQ^aR4UcA^VFJDGxP#DjW7SWb&aELVV z<>l!R@!E$G5v(Ma{z@|Q1g!ZXl6sonoBAkGn(;m)BMRTi-Vy`D4y3X6e7p1dIyzh# z-8es+D)DQ#y<~;k@9y0HMD3-8L6!+qdz_+A{3&kwpPuJa+pMLW2CH{Gx-VASSrtIT zO8SHSEzC&3=54AB4V(^JlU<_s5Tm`bI`$Z?dlUEJ+_ZU*aOXsq)WspJ>K) zAKrtto!I&={MqezMCWdyj5%sqP#!oU z>W3T5#3;w9X=t7v-{(|Ru$w`0H>EFXNb%b6=PXl2QsuK_x9>lC^do1zpwD{~>BsQ! zz|!o{6ESmg3AWJeK3w7F%<~1c{O-XQ3%YY`Iz&R)W$3A>sH#@N_8hV3%r@r|Vx8qV zbm;5wqT=6QS|nfmH1#;eHuk%C6DjMW=r=3IhiX}*?0c}+D!$@(1_v$7Sr1;M{PgLQ zf7aq*`yR?N6H)e#a~gTq9z1xk^eZLdepJ-RVv%icF%x^;z|+g|PUjRaH?iZ8Hy-XQ z%xM1b!7;67?0eafef#$LH-G;*h+kp${{HqV1N*kEwV}I5=nHV-Zj7~3c`QzCaU43I zf^{=*&p4-~A=E5mulDlHQrE?UiG_tM1-&l2Nre)#SEgdKZns$ziRE*S<;mkJD#gZu zp}P-1KN-%!krz=p-H}(msBVXftZ!MA{_2&sv2jSZL&csD@x)~dWCrYNI7(#U4}q!S zr&zfLt3y(@oqID-K$^{RyJk8q!`n)F=#G7~Ar)@Dkn)v`M9;ub_F7a}c#C6_FrDN6 ztJg;C_E3dXRVlHAsuWL|zd(i-sYrS8;;0aF$=f3~edS*Jqh4K2ZXf zJow2ImZ(c}KR%M|dlX4T>A8WV)fAUw;=Oz+R@#X?C@5&OyFip#*htUjjN9_uC2nr+ zqv>tM85O^hWBezZdK4qb_6i87Elt>o#17qDUvm?yZAsJR3-63m@cPDMPrCp3vHnob zX*D&m>p#`2Yif?A>Fwj?RdKC&^XARoIGwMS5^On$)x^v^ldO}->$DWN>zxZ-XDu>2 z-eSEpxap~o*v4}d`1rO)@Mt~`!?qFcJ?YC(w`I5Z%nwP=(B3)fwr}4~!L6mQ% zb}s^gOy+kh{b_h1l|@$RWE|Iis9+m~|NY`w{nG=+UysTyUvFF*NaOIB5Lb_t{ygr4 zLjV2Qzmi8}H7SShA$yLv^hX+)ygMyg=C2VWwPhkE{PA4ZIJ;utdot8ihw|mx@#P~v zB_rWPc1MIiIdW43Rf8&2WmDjLKUBl~RP%=Q-zkdbIBP_S`ttQ_;@4k$0h5qfo*8d7 zmCSZ2=^b}3G8Xxr==2@XX8OdbQ&jODQ!+1-la(^{hsN5{pGaIiQ}#*TylOL1(U5=r zx@>F171!?;e0NW8s-t35Gg0Q3kzuV2-DWyfnz`R^=kDD!0ZIcM&JG9S=%b70N197o z4_+vAB-<94RCDvwt5aUD&taKSzEGtP9z19*=MB{7z4D9CFjHUk>dQ%^<*;H-d`d_Pa|Jj~+21 z)SlN`E?;jxe&Pg~Z{2Kf#f8+5vqN=GQ#~@CO9O#OCAYG@@fISh&Z8}4Bx~WrBm!pV zUT&@hh%lF6ZT2!Awh9McLRi%hxp~#B8&iwc2=gvZ>q>imd zIyw(#=0`s#>7YL3{i!jaOX;;=T>2yfWQuGi7SpIu?+m#1&c48-v_o-YS?liceJehs zet=r?IwwG*oVta}Aymr72niZ2THSb7#nfz9ZADmCk+WhGzT$|jI&98f=VlzpB&hG& z>W@0bh6J)8`+{-9-Dm14>VYGB;NR8765EZAiuJQ82aj+@Y;?KtOZ3-rrr-ST#-{*a z{o}_ESK;kiSsj+htxG>5v}TarEJj-rTgDf>qYkvB{*gzPzh6IoCsz%uM68V+E<~7l*KE@^7YFX#~&YdnpXfe6Jg*wnb&b2tBfi| zvu9d$sOZKodJflqGTJ?|jOWgs`}eMaifd%@?!PIWKSyV*nB)SK??gI1QQ`e}1{d|* zrsFmLfdlUb-Ukvj0l1J1qHl+Vr-2Qg+|Wuv~>G;;CA>pL=~a{w^&I zh2y}t%$YMYK!a3vkN-Z1j=qP(vIa0(3;eWm=T1Kq75nY@fg5rXqFDoC3k(wE_YHow>~l z_4M@gPxJ&X#mPEbWR=d{tG}-x8E0_q+O^ywpJkR^OiXUJ-Gxs3cZ->kbkp027iw+Q zd;Ik2$EJAs@i%?AyXL8~MH8-Vy(KqqvZ_sdiWIbMP1O-Pc<|w`8?sU^6NZn0GQ@wM zyUr<){`T!7jd;1IzZTq+KVRv*&!yb?^w8zfb)RDIzp^pnmJ~K$lj$NpUd%vKY>N~q z^1cb_j**Ee2kUz%QmqE9X(!Q@xeQiQWhq}uYqQQ8R&X9;tpD)Aj4kvIUiS~q47GBt z4Cig}TBKR7YNJH$Yy@t0#otK>jyj2$Mj-)#d$_Ww=7-ul#M>K;vJW%Jd;B@Bt{!r7 zHxs?_{*z(V2;cJ;yI&_?`TYC@(W~9NcTZ`B>8y03jS3|dMNH!zfB(%PEaK!F>x&i2 zM$FdpY!>?IOj0q8mwL;+Rvmwj>hw5wTu3~iM>C+H@f{nK<2it8W(~kAR1(ZWIcj$StxR{xk0+4`)&@!C_XhM&EXFF#Y z5=+jx#&^ApbVxqPDkr?X6~GCg;^x?P9SnchOU31X|FL!3tFuH}YRSE7iZM;f2ASc(L{AMkCox@{*gi{M4b5f%Ght&d%8nImS=Y{rqtHeol0+`_+1zp zUpltnj@o(a7J1admMvS*X)ms@6&Y_UGM-xW_;B$cfow&h2+);nC`9UCumR5dA$f{1 z==hG{8Wc{|Q>TvMva2n`U!|vm-r`~o#@~s00?5N;K!xdT)VW=>wJf+D0 z{~u?0BaZERK)LEN)x%10n@m5wZMmKIKX~+LGrpH@ zkk$UAXZh9DEu^61w?LS2NlG#qWiqqZ`3*^fHbTpalIF<1HP1*mHcBPQPe1*{#f#h) z78cLithpYj0+#N5pt=KhlBrLFMM=}64mwVrsUPg`@6Xm8Sk%~G&sW7>x1}sj6ZP;m zn;<<4W6I1?C+h8?v$6a9jxFldGd{H1MBuUNAcoH=TAaTpyLW*Xl702+m6+Sy4`23* z!a~E;zrX+F9qE5sD9d+OAd(u1S;^KmJs&-xfKA!q|{VO8fKxR$Pfg_gKX?3QT#gV&6|U&FV76zG^NTo z14Rd*|TR`EKZQ$9%SUew(jq2K0wcMLn}{x zpZ@v$*3FSoQOYS_+X}avT7J52e`HMf0aI|z-Jqaj$bkrH|EwR&Kgp&5RInQNdtT`Y zaCKb@d3Qyk$~sR8;kBpm;=!lcq0>E=q+)c=p4}2$b1Nf52z?+|*K1*kZGoFyO7@`H zNT}Bry>#i)f<4U-tyonv32seN&8wWv0-AL4+h#?yJE8^|J^c!68B_Xc+9kJrq&**+ zm~65%bqYa#0*TD&tHxof$@9HO)IhOt=|rl%%hKEV|m ziv+52&t3UML{`K{e6%DgZ%w%L!{;VPPNj7og`^V?!JA*TuChqYSm}?D3mdY|c=x-# zyzTr+5e26$q?cz7+~|4JWqV)krCA6dHNi)Pi0hp_OXjQHZJlFihL3{ofH{PAqRTE4 z!6gbBysk78bB(2`P_$IPa`H4G6@2+3(fxzT_kQWhbAT~WwCK#KCDXr`zupyGb05K^ zYHutOpu~0K(O}>Q0a4MDXU|4z4+%!9ftS_3a6y{v0y{NdE76;ZuHAb8iEfC z_gcCbYi)$evg6A`$@(8{MJE*$Ga?UpueB49WvF1TadWKc_&OWTQAzJMB#4)1sB*i6 zT9e5u!ljTGu`t@_&K=-R@vIYCH*_hvpn7N7^4p{fHxJJMSV?|C!Rt?ZDvN5{J7je2 zga|1ly2PsEXIt5!#|1`BU?)JR9esIbIkxPR%+p~8Gmw2j$M?}*vz3Z57h~BQsRr=5 zgO&9_1NS=?LR-Lz2dfQ2MofuJ@trT2oaGCN+MrjH9Qw+Y+?Mn6%IS3%U&Iiq$_p7A zeaWov^wJ|)6Eb1SjrisV?81T2Q+s5+a~%e zjjw*T89cA^Igx;_0(7V{GUScQYd?)6eiU2@>l&Cw6sS22>7p-Uu-s zA;ke-)P|22=~a098O%$1Mb_%0F5t>+rS=~@NDuU%A?f5SnlkVDmIyemMxESKCSG}G zx7fFa)K*tx0q{=Lr}$03e(Y!}=B)qA($?0d^xV3j8xinKKOJBfq2~YXg7;6s;2QFn zMvAZ@|AD*-my#CE_M#%v2HOMG&5>%u2W=l0%>RCT@kqGw(SL!*9^jljB)1xQJu|6b z^Wy|=Urw${w>yI6?;jme;CiI?vdYnrH{z75=*TH5?AiU;Vy#W}&E>6CHb*lzH)ox3VWF+mkG`{?A?UbLiaZew2h2mLG?_XO>RQZ~#t(gp+sTCz=0J%PxXc+Wr~ z?<#Wd2?P8NZGtl>Fm`!&#-gI4)Yq>mknLW*nqyh6EXz!vm%X{BATedr50-0S+Gpbk zhx;hkTkAGzw7hiA5AJR!q%t|Tg9NXF3}M+AE!m0QFg5rDCD$>_+%AHBBbrQf;er;H zmdY1iJfj}}(RTjU&&*!IgdfrByo|ecC4rn#Iw?>t^+?MM2@*?g3=$a&Y*Q05AXhIk|L8J=^3L?J) z17NR=n_h~XNQ$RJL%OMIIA1w!nKd_5Y%ReCKrqpjyS2n+ z@>Y$-PT7ZOIHRQU%D)w^c+jc7hrCI!W9Rd2olY6&=H})A|Lk}iQW&B3l2~w;iB3NS zuNBITjV$A$TVAVw0`eVkxto!s@IKo7j3Pm=K3-HZHa4a_&FpD@VSX(B#jIqG=krf| z9!-)LBO@dEg@utjA8D^rldSWMSaf_hwDv~TzhhAb1V)RF^#_@T6D@Xzl(2+6bu7JY z-{Hf%aHD`Ks4+^RuYtUgeOWA*z*9IajGe_DMP)55^KSVrYc7+Jv?}Si-sP5 zNlGri%Q=SH+S?u`F3{8G8PNgXewjL( z@|8-1ZfPKAsal^m0%#El8&DBw=t`au7nz8lAcO4n**d*6JrqA88v(1M3kmr1hB|=U zD)-!#@iB+YbdSNY$(~caABV4%{{C{BBS?@$Q18%=&F`wI^nel&GAU&NI&?W@O!n;A zGZJ(xdwhqI>m5)s(yJW30ZIDC=zX!!@F?$0I4FyjQo)Md+h^pVxbnJiD}5dw*}rd;P-OD9<_ojXo#nrA1X^GRh58)lqaO{c$(HzdO_{HzdjH zUdFMBf|l~wN0<$ym&|3_tn)ggGF6gx_W5jhQL42UMr+I&ov*4@>{*I#L-Tno=`-c{ z(vQgL(Q47P`$hnS@d?#6(>|&|4KEOKxl@;pCSpFxQzET$+6?YO>=xb z+L^QeLiY}+eDA@>+(!G|Fj81cAGFzLx!&}Cbo93mFZcW3uN)HmvQ#efojBtkKYo;G zveEr%7ovOlJH3(jl?*7cs@(KQ6qKg~!V|Q8r|)iAQ#j{`zU=cAMr(~s{qz|V&)r5j zhC(52Mo2LDdEgcb^E+S852P-D%%$&L}XP*MsI61 z#fc`^EpupXk|u}J^zNnUrVN5jH!O5C&vh_pWvr>K9VD34%p7w25QXfU()mi-C_LdA{;d=8F1DQ2x%CF|z=vqzz|Lu!OgBeyH$;X`_Y$0qsb zr>)JvBzTM*d5 zs>Z?(c~XTEX%#v3e*Lg^dRvu57VH*Jn$7~d0~g`;;RFf9jzV}rjz9w;wmu#yXyBip zjXebEeB$cW11Ju_KL|%N2{xy()&q|oKUPX_dk$#{9kECfe`~vXWyb=Sz6)Iz zyM&$*HVdM6%i;_h+5vh9dmXFj!vS822s~6p?TGV+hWu}Hoi&dxSNNk|;$#3J0~-ec zMWd(=f!HJY0+_;|qRFCPUzVSj?EiSFw)tM|^$Hi59I9H=baOlw?S)LsOKblqi;Igd zp_LTB`h`2SZR}ZO(M#Z+Yrmd2V(&_9E3OSwL)N57Z!;RN-iZdY<__KNnYH=m{j##M z{KGuop+B7DaNCT~uY&7>V{CB8mlu(b9~b}No{GyQl$g@l+TEQMK8hypzh1H>=pa^+ zLBJo|NHtPcDYz}vBn-R+00vlt=(-to`tAAQ#S-to#VzO3OH0|=>yBl0AfA=E>7lj_ z&JEY&5Z(dx0zTl?9}qb-Xhw1jX(QDFApc%kQ1N5k=scGxz5Nrk-3TRVr zLp3xtRX|KRqWeSOd>NN0l(2ogA?q@67wq%kyRDpz?L6Gvl$Mj_D`V+|8EEDmu~?qV z!%>nPxvO%ZS?Dme>?w2tC^@U$ocMCIE0>RuJm1~kx~Wk7n=;f%G7@@I!!mct zDHI1HEy3OM4l;%HWa_i8zp_EC6FmCIhdipMPtSK93*Vu{b{++ou!R6Rkq%!AK>tUH zenL&HrOe|dAsS?ruLuBQ0s-g@iSy7?0axjqIdjXhE^Gk(qKKDQl}4_HiC3G7ET0p) zWP*!C0&0N;Ac}Vjid(AHNDMuyp`M-|Wdsv(;IXVJU*B2f4m3PHM5Oc2SB`^6VWbXd zaW#UO=*^omEKf6ctY&r&^9oKw# zu>ZgTYhQ>$rH~J?Ebk+<6oNqR!6j5>k@L^ggJe2e&7jo}QUW_%U9r9(>iKt}W9d(~ zgN=MXun9Q&8J~?sAELIe&nIla6_&ZP>D~?{Pr(BR{D514=^Xz|oMU8U+zU_x;Kvch zsTc;tO|)0YpZFle8F&D)v9Lx7I_z~^TwG*G^~gO$2GC4U=vBSUZ0M|Jf)x%U>HtD9 zCntvxU;c6J;lN)I0#Kbnc8IzEzJfO^oQQzI1L;=z&^it2T?T6@X86Y1T273tsq^G-&W?ag5%)Y(7D((I| zwXU!MUHE(0n}{@Qe(&cu99+CCGf?ll{o!)-kLCv?3#4UisC}fjj&A8Nc=e`H3OF!)aCP#Zq4ihS2>7Q>lC^bjGnqG+B0csS2E8>YNc$cUO%4+5` z4|DK?*w_%ABo%XH4eX>>OOv4C*rQT!sHq>owGl#e+>x6gp)7F!XocwixZyr#!5&-u zU0EPvjHs1?9PX-}_66PI(3{YB0!5MtS0UUKx1kQV7R}`4ISjS^VOoWE$Psr(sC(>n zK!zX+%vFRHmhaxZyF=CvP~g^(^cphn5}aP(UJ2+}&}}XiLol$AE}$;=qp2~e{}fdZ zzNoa+_{ncyEn}Q}pu8<$NuNL8$F=kCKp?08?3J=MvH2it4GrEkrn}MsY;{hAfKNC~ zV4NZ=ob{=*%56K4BX{iwCE@A(@$=_OUWHO(CE*8vU9Hq)_;oOpf5~7&g0RUDyR~&2`^@U~=V(Gkf!=O^GL893&*!jK*7T0? z?q$Z7(to=aMT)LF^l8A6IJ0-}-J_R%Aqzifqt%O)lp#@{<0%PD4*rKwfd9=C#%y#pzEJNee7&$&@L17OY(hI^i(RQwNYP5LA{pxIGh2q_ zz-ewdY`gTHvJOAb)l?V2{3#Okg%W(NxUiBxHFs(HlJaniFZrV<03|(u>^If;L&~&1d zo&(&_P1DOjX%Lc;c}ggQD8y1XMzx7Q%zO4UqL-?FuFdbi_@kaDQtc@;JP48yN^=Og z3pbbz8MM9V`sMbdliS;IIEf@m*t@dV|E}hu_`X3(taV}^k`4>1u?RoGO)vgHmD@Od zMQEfsVY_OqQXUwRe8&MLD+xCFPv`aYs;7!Z;$=DK^SkXW>%ut~R~6jG(o$}D$NQD0 zDCNP_2}_8al^BchC-i?^!J_3K0LI5X8}8nv%!hj=Yj*J`UVtW88cVk9tRQ^hLV^y8 z8Dq+hR4oz0c1W@LCo9t@X&gl>G&`Sc@hZf^pt_BDHbn4gy=hk5=$URV!`W+JmS3ys z)AcK_rL&$l($}XTDKRY~6@mDIn#MH|0TmctP}D*)5==CNzZZ-H)haFP!Od_(O1sUy z=vX{g?kNMRI2(n4x;u8G*i19;e$(W!r{RCHnzBkD)dTGSIgo?W133w{AD@(&gku}b z|D?l3Xxp7n2WAAlE0~e0QS#Z@S%7)yQA*Cvc^!-Mf6glUh(JZbnZE_rq|G`28T`bF z0I?7QP0ekqSeoGkT>v$-I%0k42`fD#~2w#%fEkYRSEwcKe>ab_y zo;`3h?u2!XANJmf4%32i-dM^P@Px{kE$ZZ+JTK-zzP z5w3`j#`(iPe?CWLVUfLYB`&-hd`!=cuNnlq0kgvcBgI9wAy%d<3-%!+j?!W_?LvSh zrlX^fy0)YJ_MB`C4h~lK_Abv3pARIji0k{=2=z|Pj*Ie1hS!}L+1e$2@DO<4kj|N{L1?JkHx+Q9N*{HX3ccx*Fat90-xLO{Ot*q zbMHN&2AgwO0+4~SQ$ON?3L=}gy3qbEU4)H3rM4Z+dMV&TA%t`Jd|a3uDt>3Vmq%H+ z4~)w_*PG>8q-!GXRZy9dxQ8)Vm= zc+Jo%8O?#@@@D>LZnbII*<$>;4Mkeb#(-X_sr(hIhOLJ+zkjQ^qZ

I72_ZuCR@G zw|{Jk&h2mgDKB3p0yq=(Bj@^vCeRmAwb20_fm1vLp?fstYhr0>k0r}%NA2k!l7|k# zeHmLx^zk3&TzR0)Mb&%R-_$hwJCMoyI7?=j!2o0#?e$AyEZQa}VUR|^;ptrw{3z-< zB2xRLFYdUtU`(SG1HE;Btwb&g<&)(00Y^%oO!pz-W83q;4YsmKhrQ1>e?Nm2B9gbs zA{@Rne0$K5b?^wixN& zjWiaiD|8ylMyrQ1*M6xRz20oYq2@~P=PrqscLH0;(g)l3^4Ux z=Gi;V#IM1nIq>R$e3FtKqNd96`aAs&2T>!VSil|VjzkYdZ?Jydq5AGl==)B$`veaj zJi|i&2G9mZWogti0{OfT+@1ti7a?ZUhOpu;tZf(6OfEM(@dGxZUR|8N={5>zh5nXu z)6_g5_6|-?(TVp4i$@$r3fi_R#tZbFN=tsx=oNE4_ZGT{#H&Y9C;+dCdT;9UmkIlE z)Z9Gr{?Tjfd?80GW8D{5gMCa#c(>(EPWNy%^ey&pv54)sQ+uHEjIM6Z#gFvx4Yejw zJTibS5|(h9{mPrwoSh|!Ndp*5NF)=lg|pmzd_(AQL%*!Hl?7ha4U0tS+gSfA?z8Sm z#5f22Q zOyqL9wm}iq*HlrSX1=lehzTT-O#Rih9)RC>*eJRD!ze~d*46^JPO_dWZ|=v%g~AS# z&Hg1v)43)@oG_HbC0iRW?;&TM?+&gvO>bSOpd+kOOpFesJWLtiI{z|YwL^nfpuu$CIqdn5m*51pVNlZ#C@sc}d zy4)1a^;l-Rr6_8mOm8rF4@yjo9lXi>f7eI1Ta%Qbk?X zgYy6+Cz|i(X8BN++iPGmO&k2Jy~ z(22$A#I2meLY&sp+LhmJEA{yC<62yHLm0bE6~-fKAw_p0d9I0U?el1K+ZlA6BWc@A z+0ya}PzE%0P8{;Hz;R!%NDv;Eh3US8g^8{R9zMR@&Q3!ZZl0(lnIoYJiHkpg0XH0O z8D>`2k5E49QpwAiy&sX4)3VnUJ*qDYX$mgbxusNis-yO=Y}?yjFII^w+DC^NLtf&B zg!uSU+UJOo1@)I_B-Ng>dHh0~SUH_$CIs)yMaT$}k83U-BrH3DYtd4}(mJ9p(`+jt zgIS_A2MWm_oQ8)@Y_C{zs#zUuw5J;`9&9TN@3OT*d{}}0J0^VE62j_h-MO*xO~e7O zQcy{Hppl>u2M8n%4-hg&4IIxuuf?JS!~H9ktS9i)BzbXH{}r^&x>yr&n-?I+Zk9Sq5(Bv_i9U zO!y@K=5e-Q78~-f&s%le+=}WPWh+C^?e95aFD`1@xGH;TecahwB@;+WtQMlBd2W}# zloW6bs4K#JNTk*Dwy{OMOwZltM(nz^~jgdaP}&8tYpd6ls)Mi~dQTm$P5Imf+Y4^s!iS;btL~UM!nC z`{0FVud$Cy?Zo-R#P`MWL~(c zvFBARgF%jA2+=UU((kWTX9Sf3!w9Sk;6MrAXv=Kf`7fV(?hL;Yc60IZvRnGQ#=0+~ z$bIf3pA(1?_l$z>NinuiBzsq&&}ipDHW3Un4dw|)!RqT!@%PTBPilZTZ@YM3!^AW~ zaFD)ao8;PYhKx&G=!n7zo;FwA`1XM{ip5u35}wKO1?7cq?vE{;`)Gq43aSV|9heNo z7Ht5M`TdxfU^EAb5m1tQzgc^F@#IWNzFDUwYyU#8e;JLtiOp*yapxZQ@l1le0U@;W z*2A4QH*MYa`-u>k1vAX16fU%%C+uB=gM&LF!*(cQBEi=7AU~azk_#gf5fR;7Ij|T zP}8msNx#g=(z}9a6^~36zPI!;H|Ijfv6)mgahdxqq{u9jGP!n6nQQ*^21=^AKOCjC z&z>FroUm6^bUTc8n@KQG`-cDeMlVrfwW)GC?zyLvrcqoB^^D?aa2Psv5af_X;U4KQ z(spRvQp(dL$@5xrmXB)t&+(Wy#54dfPD$O$P+d4itRyz`>??=JZ`Shcn8-LJ_I%qe z`segJzm&FKddU7o8XGAWt%jBYyp)H!*Xgn3bG%uSvtVSs2Bf#46G03@CUJS%P-$Q> z*6i+MZSa?s>0NhGYrfX?{mjAQPJ_q8w^P)zfVUG|+3R3|@Z$*IJ`OG)REe0xmVGat zQq?X0ia7*<6-KM@UsvisecG{m_vu;dXUxtEo;>MI-H~cM5RkK(J$HAYFIzf$``r1) z^orHh_htD7JVgMdvn|To-7=aR8!;>C`FUx}J_R}!F;cVqVr<X^;uOHax8L=Dv8_DMmwq%X z%ZS0DZoYjWz35&@NOgKv`IvJ; zK+S)u{&UtY;-BdZgHAWDP`8J?y&K)}&Dz)voNI_UWI8n7|D}gXuwk;rZO_!F?&hX( z@~7JQ)ol6>C~qyv8oR?604va9xKXMd_Y4XRJ%LIu-%iX)A^C4R76kFA&{IS0enf3xxE^51B%mFBa9 zHA}b)Wj%pGy1t!Xy3p(pu4ES4J1vah>TZ2FKQh(ly-Ek$?-ihnp3CNGMrycmuKd$$ zAAvmBpz_k#7%R_AzSb(a^JR{yJi2jWwo!>zn3-mMdSgADzJphlH^Llac2yl02@D^? zdWav+Ac^zPAf#e6p0JPf6kSK_NjNQeUX!)%duULZSKHP-a~6UYW=Ww9f*(g^Mkji$ zt8RHDI@!-oRVFPt&k8+jA!yNnKFp2<`fRNB3IB1IxCH0iN$@lz5?0mq=hMrMsKYy= zh$T$P&fWoDvNE)}42jMR*7-+;6o$E4CVt--fEMLZAdhY3F|vLT5Cf~6K%#@e?1m{Jl!fWs?KXec>`GoMd#4j_foIOiZDuD~us zyqf3K9y!+?sMMU!U#M>}KPYwIogJ?w0DlC*h(Z|o`pfa}inDQr_XSrC4XT$}pSRv> zyPD2}={00TDGcWNH$(E;(!03^9)z;R??k0=octy!H{WoGm_cdm)1bVX z5B-B65s_M+VTKkk6EfExoa^0V&m~VcmcM5vncor0F`Rg)4a^haSMa)qwiE8q&g>iWy6yD_Z$884Q)c0>h~U z6913c;X2}wPzRn!JM9DgO9SHJ*lh}`Nt09kc~1n#9i@#Qsz3@H9lZiw2LTJwX(jed zYhTx!wYHXyf)`X&Br{ZZ*P+nEj>Dgrh#5>c^Qqvm*d-gc4Mc)Ch7^?LrY593O-#+=#)@`tcjR#!8IKu1^C%U|3{dhBsy+O?2#ej%! zAg4DAnCoqXi$gX}Gu7>7b>xmO^zhfoVQ3V;bPUXfoK@Stcb_c~p9_K>D1xAJssbvC_>KVFCpNd`|e@C_0A+Z>2$kl-{_@i zBdN}zf+8)u|Cry-28qGZR>?+u^lxZT2MME`^w|tE3g}ZD-7er3Ank2K&kG0+ zGO|EttJvb>-$jSFILlgQ;PXc z(2)_U+$Ouck5tTL&F9b5*?$-`(Og{cGmZ@xWDX`cP6!udW&}fdHTKG^!&TK-e*Msb z&11P)85s@Jo%zQXyi{i4(QK7wdwANmGduBJg4chnny(FV{jfu{oC@r4jf;$L2e}8( z{6+yL;8Ukgfwm(jfiFxvUtoVXIGEwjztPG1dh~^-vZgP?GHPNn^+tm6I@^4kL8FaE zR_3X_<%5guck=TW?LMqJvh%GqImL=yy*;nam3Wt7R_nsxX6+26VUQu)mM@#0Zn=M% z@u-uv5M9t$(3rHo@jAk1<03kU8VrxTVYz2fUH;mdCu(UpD=!ix=rhrYp|!+Ha0za? zm^B~0A!~k0T|L7l=WkW%jeCO~9ShP6UK_R5hj;dO|90O^(Qr;Th#~EqofA2~ej@aW zp}8Zyx_%uk|K69DE;ORxPZnd!<0Q?GHlQJ_nqq^r6#qh$+h=%bP7Ks7QH;Q3+aC=( zulr_H@Btl#&v!oUVMk4MnJ|WjXM>J^>1P`P6nlEiKQKN@QMj9!KG z;XSGKHeur>o_|6>8tAU?CKn*W_@>kI64R28SW>3JhQveY@L zgT*g0ZbB=A0|n=24!jC)FdU|T=1dhS8wEu2sr2VTkN-M0H&FHVCU~_T`R3#7_Mc<3 zG!}h&^BgP29OBW%`SNA`&&~H-^#9y^FVd>ajlqU0270ZG?Vzpx1!je-!+|S<&AK8{ z!~_p`qHGRQ@V$E$unbthZavJ_=P_NT!K?Xp$%Kub@7~!VVTcRcKV0UNxBY7n^`HJZ zH0yQI@x4SY?5Ap%WEN-k-aj4n&keri_Y(`J-jj6mBVTeh^7cD_??`aT{~k8kBhuF4 zapW+Sqc>;yN8eRjbL{$dg{8fZh0fgq{b=s9&K4CJiHCDMZ=Z8#2$9}7jW_qTXfq^d zO1Z-k=(;O){InBw`B8-=e$96b88*h#tocU8#Xr`ZdkYly6vo!Qa@MR~?u+X#o~t7~ zgv7jy;`(ejp#(^w7sG=fTBZ*&5KdGHW;K(Il;jr=w3uyP&Hi3syD7<&oX7LJ{FBak zJHiy^C{4`2!8gHvn}Y7zDVO>A`PnKOQM2A+=e$@h!qlufl=Nf4XYG{sUpwBGmTOD8 z^J6{!m1X%%aCwi(k@@}el(Q&!N)rQ%pneNWe>qF2C5m$gk5JPrzzCwhM(ub)2BgTt>9guUOk_wkL*bn%q(05rqMjlDBzbl zVdGYcrdKnGThbjr_tj>+IAOJ#v_4V4LA&-{y|Renu>)^^!+;|}o*Ne5H~_8j=bJJ- z1_N_t)ZbwQg9)Y6Hvc}~%s-EDIj*I)Ojp;A?cwNbmb2m=57wRt!;t_jV=w1VaP<;Q z{VYoCU~-K8HMa!9TSO=!;DRAdfC3rw68ZN!p?(hy4mU|AI%`}UuXh_2Fzt@@SxnJo zwxosV4w9n=;22{HJhr*rlS@d)VjwjM>d-3pX*3m4<++7$CCMThTiNEvogGf4uXbjx zxu6L`oRrQ~(GUXsi!*66#o!n+U_B7j&mf*s0c*7+!(L)@I-mV$qj8|h@JLC!!|N&8 zmhax(asCilx$finSvVh87N^4vOx(6$$kS1#3Gyv*0fh4pY*(xLzlZji2R<|q?TIj0 z+VQ zw+_1I{iSu)oc`o65<^w!U>P!iy{aPQUwBC?ZKYr@-$Wu54{+B6@&;vvi=z{`X<7cb zRbwx2-Ck#1criyhpu*#Obh6uK!zx}grX-8*z}!|_9Qe3KtNGRFEo1T5c0K+$4%$-r zg8wt~5I2p3%dgxW5bFLRAtBEmrC_K_Htw}amR*yRwe|l#%6PoWQKlf*V@}kZAZ>MG zZ)GJeJ}SvpH#rZnoAlx1N2<}9y@%J;)YR3F1FK=TFb+B9C3H`BX7fP|eh3%>5BUu; zDvYu+agcjy717lHh};-6PWg(|v9J2&)p&9zJMeqEQf*G>P>W!|jF@c0Tv?#mh4W66 zB}8~(_CeympTDGH$eV?ZjAoa}4OaSln^pE^3D+EOCHJyBp#Kh6xg7&T$C^`Tc1+j^ zT1cpDBTgJ86@&S?c{SpNl#F=sSS8{UBIqLjy}Cc$|M$N_afh(P1;OKcEK&QJX@&O^ zjt<Y6cJIZ5T#$ueorKMsMc!QkY>9Cg!N~u=93=sbR_P062Q-}- zUK#4dj@`j@&Sg z!XqUbK-=;PfyS-+lak;a&BM$41}HZ7_SWrhy6sCsd*PU=`}7%8ijy$nxH3V* zc|$88P`g+6yZ_l-GE5JlBjnn@U)hik77%cJc!bc7#~D|Tzzc~WA|`nVynz@aBeBcg zpaeHP?4F#Qyzjt)Q-$%+XJKyG4WQ@mMLbmoN+=#(^JRP$cb6rOF~e7iL@+g%&tPoK z^~!|Dr>JZ-6Ldf31>F}k*-8IFh@8*QNZP@!@IG47CflxCiWtX+6RC|||Wisvg2pWGG@oqN#8+CsUVfb(Jk z^X(ScP?55Z57Xdq-@}Mj2ZpoSdud?n;|CAk{dSiZ6cV}^(#!G{%!p~LlVR+HCCCz4+na6|7ClD0`re@4O=2c6!E505RNBmrS00~YvQL|^ zTH4m!V-muPeY|+E9Z!M!GZe0Pr&v{^{rz^u23%hwC{bcK+5@d!7u>P_lm9a=yB6|4 z;j+B;#boI=jZ_PS)$acztSE=&hc&BNEXmRod5J{B#r>h`Riog)q;s{4-|gS<8JGF( mhX()B7`@d0pZ~Sa`C~%7dTXxS1|FtII(0(x_-iGzTmK8H8cGOBRwXkd zW&54a`h35?@9+2>_kG-d+{f|i{kC4O=XhL?>pHLVJg;ZSX^mrBY1n8;B+}Ls$5pgQ zB=Q1$eV=M0{(JL8N;dv?$n~g!tG3g5*DDs6tV!w?uFm#OuJ#u#x!kQUUB2k#C?PB* zEH21(!PV9IvW$p`!+-yQu+t?Q5xyU+miQ2A=i_HDlSs4{#6Pl3g^Y_N(rKX+DoQ#Y z36qJQ9!$C)oBGGbZKwH|s-=Q5Deejx-57jv)9T0j6nxLMa(j06((&|8 z?~bcWqZx&Ud8SW-xv2bZ@)UFij(GCLsyVZd5GUe%tOQ*7Q^o%NB zofD^_(~0@;LCfrcVh07=>wdD3F598F{`M!Z$qqFkVc}61?pEfiM6{%TaU~j%QEPX0YwCoRUhZox) zd;Cbb={(Ub=Cae~PYv$Fo5aK0g$$qi<1=yXGarqdu8Ez0mgsDXb&(qy9zMFf^Fx2Y zz;Ln6yP=kS$tupyqEl6WOi8s}W_}TledS8&S}7-D_Oi-(N#>hW=nb;o+_tNpH%j*U zz<@a=CFR4*BdrESmO*7}9a-9Oq88+a&m6bnrUeI6ow_ecjr*BhJeN!RC_UZc)6FdhLnG?_+kVEW!gKCB>p@5MOP4PuT9 zCUSVXal2Wt1LNLP{;Fwpu>$(jFL|RBb2=?2x{FBuxRPDGs^N;Ru98eN8w{UbxYko_ zlU7+-dA+Z`ibqgz3x6!lWbd=)>l-$cNZx;@HZ;3*S9)F!TCHCEzSEig=GU)Z$K37m zQl660Ixo&z%PxM6@tAr(GTouAIhgnCOZ_eGBhziiI0re`7dAasf3T5sTurV1Wi+qL zVEu;UyPvH)Enua@Y&-Z|$2zD_oH+6F-Mi+mEirAmXC=&%v;syJW`JTUEDIOXcDr)ypkmTQJSvOD@P~`o`F`Pq=O~R&C1##m(^*IDzmR0H{`K@`{e=eh! zIR8cw%j-P;QD~yShI6Df@km#`N#fKC))#3}@}X7Ue=KLewj4ixycY3(9V<526tUCe zPv4cv(*7Dhh3e(0!>1ldZ8gke`B}3re`D*;8^3LbaZswq04)DczB$r zJ|9{^^1!!`%ify#tpnwk2$&(^^{Bzf^e-e|~;BPVyo{x%*`3=g-FWJx?}t6__2n zaN$BkLHsMx2XBA$*C-G>qH_MDQL5ZdDSO4UXLmf-NDRGoi;i9XDl2i?^W$Ab7B4os ztZQdzq+I#=+I|!NGFWU3{G311wzRb1*JC*a4W&Vww~Lb|Dt=by z6jr@2m@<|?HpqL($Z9n))|s<~WK?`UqFc&$#bcv?)ynK^$DYJHcN(N4i`(}g#yQ(< zOWYkwe~UJCuPn~RE2o%m*s#IU$lYBEr{><}ZlZjVg5%+lo7>#iJ#mjHNYk|xv|KVW z<;u&5)D5JUFJIQ;q{JLQOJ9&=bE%N`S$c?YakKDBYp^Ub$3|n7apg-*O>Ous zGM^J)1PYs!>jZ0%ua9@#HC)-b zr~NhM7bz_)EZko=gfNnQuJ$DjATUw4d`dQ1RV{vhAbt7!7NW#V^;K8_1nGvpdiqpS z<>*nRoX$@r{VvVBhP;f}f3}e5*x3cYc<-bsU8`^%Wni_sfCF#n$IWeRbt2Jma+-}6 z&CSjdupsc}%_Her+=7CqR;sadB8g{KQM}kUZx?2|oOk5N5qcJu8`rOsSNN7)`lc4^ zW7ux@Sp1RJ{`&`=OjG3KBP|afJMK1m!jb!R?SxH`F`-xpU>LPPx z%2?nq);$Dy(rWJe+wLN(O?O4iA`gD?pg>e4Hh;M)dDpujZyn(w9r>cvp*JC^X0liA z3hSXuyNT?J%*)NqO~w|nQ7?y?V&j$zI@WJYJq9=Ao-N*3eEzMnr6rH6%r3n3M_XFe z2ikm|LYA<`ixtW#bj|O(9hcu9q2(44p%tn6#V|B9L`O&GPkMRr4oJ|_bsBgMdPf04h7p8`|_=;S!>ZMEah>Hg=gqqj}&jLv?0 z4QLtRds@#Li(g+~|FF~6qR8NVfmw}O6z9&JVc5xa=fsuv#^}B-efjb@QP|oas~^FB zCrU+^srTD-kBE?vI-sJ{#>V#BedPSsD$A;i7`AN5Y7b)S;<)-u~ zgd|aa1RampMt1fs zB<9GU3+^f68p-kzVcSK9UW?Q;l(`Hy{6;)|a_A~|vm<4Ga3m2R4Q~r@8~>Ps2ojIq zlBODQsdumDk&6`ayZQNPW@csz9LM)|HT4KDwzdG@-Z z;_Bk1pwG|!{rzbU(x*->PQRd?lrJ!T&OqWj_ME}?gN^JvtL{RJ?xz=H+BX?$Xhbe7 z7h1fy_29v{n>^pPueVE;AQpHU2aYuvTkXq_dEJrQc^edvjYqng6~d z4|04?%k4ePOUYt;@0N{yDiI)V+Mh4p1@%?x-I~FlWjIEv{(PB>oSA1$8WH&Qf~XKG z$~OTkP>^JV_V1baiQ9vvP8yl%b*kyfTkon_(-nH)5Ve2B(THYi+3LG70#LkDSZ5y{ z9o3km2V81IJ)N2FG9xwxfy$JR9O)}Eh?s`&I_&;XzrZw3#w~lnJUl9@833eVvfOR_2Jrb{;*~E-Iyy|aj6K^bdB-Ai z^b3YiTpRt#C~hSrgcsDTu_3+eE_WRrvTGj`Ixtxbki84J^k@`^-1J28yHo_-%h#`8 z6j?PF+I0zk{q~KlY?W;$r=YqXQRKWZZSiZWZ)bXXdUuK4b|m;4%^cpj^+jP}VQm1k zTR7#}P0C%b0U{$Pr$>_gJ{>J(-ywdEYN}@4SJ0r4l$DkB<3svp_lfRnoW2WW*n+7H z?q$0=z2`gi#r)Q;K6?Dv5?$DP+mbS`d44IUFX8*O9}oQWTR*&;fm$!mFo^re4K8eG z#(f$p=g#eJO;(7ybB76~QiN*DmcQWbVE8X364UBu16{nF)ojzh>2$P?hO_R)!$_jyJKanTm9?+PvaNQ-)(escS>{2hrJ zH}MDN-(JNINN*#$uhER;h6L*?!C_%X?Ck~D*8bEC1Beo*fP0eg{c6qn+Hx5Jsjb9L z|5UvA24DtdTU&nLwMCl>8*b<2`<(JurAg+aAJRL2p3>B6?%cY0fxi;A)_Dz&$Gabv5Mi;IitVcP3OeHB-V5C5!;Y58`E zW#`V!58s*Io5S`b@ssT zxs{d1pIdw8KN`%aBwJfs7Xcv@vj`cA#-C~euFV22*-{Zr7xF9YrZsX-u8u`|imaIZYWVneh-aoB@5(T-q{2Ln^ z|DF*tR=2}5zjfc=NXa3-KR!P%HrZb^-c?WxXqx~WBnH5z8qQh=fWd!9-tI^Gli9hs z9+c3t7cTI%Uy#i8TVI<1Y|>ay0v2dQ6I^%yfL+tqONR*Xx>Lco(xm6mmHc?rd@1{G z(Z_l@XVHjy0}FJ=OV}jbeMLh>&3Qiq}aS|+j*J9)+y7W&C*S51{=L8h;oGT&U{IS>ZiEtkJFDH zJ(7I&Ie+QpP-7U;ouL<8_{AKnpyZ=U7kCixKR7h>Zv%*9Eq1WH@|+h#c%Lus$#(!I zkoKJ2z4Uu>d}kUPb!7Wj+;?iDXO8K<`v}fuQ}z0qH$Ja>EBPGrow+e9$IoTgh%}p( zk)({JAa+lb{1O#CJ-z#eOzL;-NaHS3Q-Bk>h9xwYp0kToFQgWz^Ww9Dz3Nhq+;kr6 z*e_^O&UEFAXNG~u$9uOt=EV?4KR)K|MCe7}-k~8kfB#U)V|Bi3X9xS|`DikVjpl&I zFW-Fh{vb-4E{{@ z_29@?t!d6|_$sjOzw(vyR`SZG*;qeCU)!q-yGP~~))#4sngiT52z)@K7hq7cJS{qv zKE>);+LxMZWQ#3+TxN@#zGkR~iZETqXHKfcqYY+ZW^TNF`}S3fZD*+euMbb?@NCU# zyU>6Jj>t?!>O9d8&1!s)YiPKaN7b1ZKJaO@E#Uz=z=}%xWZW}fPmE5Nspe7WlshoP zs92qCM;zH|3qlxKKi%6*?q<@NwQJ7mM}gINW-03q^ImefdUmm^r}aBJG*$YJ;C34?jsoZ*75+-G-Wrpd%JcL>8#!CV zW5ea>9W;b z2*ERF&VZ!?)YurV%1e^=5vp}b(2joT!j5`?%1IBLR9mZfd^f|L*jOdJk0%;$RRo$9 z6{Q2@!&ccCKo%~>8llRxefx`Z;&rwqp+maD_m1$#hW3`)b!|iLK(5nxceL=`*$1cg z7JF|P+L}F_Gqw~m&HknOG1a?){R$g4Zv61#W0=mLLq~mQcYWQrUfX_ghnuN`qVT;m zY`5+z?`PfTOAHBkwR`Vgudjzw)6%%_y>>xSP-{%gIW9mtp04%OzJ~#M8>MZ)lSB61 zk(AT5wk2o+{6{>oYl278+b#eB(lapy78Z(LC^5uaoY^;J>4f6?@GTz`&C7G*_#wUq z+Sm1xe`B%HOo?hv_UF88VqhR;!BXh-7MvTgMLHTU;~Q7?0~%LvONrXFvI9?ZTS8wMVq)dh| zcy7E6UpzM!-pf5FON%ax<77sANEU@w7L)8diZVHcLLL4fW8s^fwntG8#U&&Jm_J2k zZLRmDK4a`8=CkB_Dp97>u9`=dVzC9Gyh!`SSA#z3T7Fhjh-Slh=9#oxF);yXjd>&_ z7?BFVNqPr88o#e)U_cdrYOk;R9&-o!kK?W~PqALeH}0vr1|o>Yd#_V;`0=tpe3lq; z$EqETwv~EN=fduhbW=5rel8=BU6*@=*}u#W#GJ5MwK4arvEWIsrnqCrejXwaB%hGb z{QUx|cZ$A$(?r0tWbHtkhj!U6^+nkoT5^vvGpS?}^FKHQ250#@Ol3-N3q&6$S{!2c zq_qVXd=2_VI);+xDwD|P*lAnB=f1;=PekNq%em{Qx|^I)mR%A>%U+v{K79I=38w@m z0Kebf=&qYzWSEDYkJpr|Q3Ri$V6Kbst;4=NvPT?NC~p;v(P%Dal{RxH3}>zFQSju{ z{3W*7vh0x)Jh_+nb#XX^@lM$2dEn=`DqKTC(7MmPS{#;`{6;vVC{ zZkDhOd-m)>lYxN47sQzAIan@J}exX%8Phtbb0`E78;-YxtMr4{lNoU@jo3%#6_hT%lxwa62BJ zE8}fKENrYAckGub;dHJ2+wL%^onvNZ#u0SF7eKCqEd}v&#+637TZ&)sYaV_C+UKcL zKgUg4&iuj%uBQDT{%Qv*R*#iJ^?T_TmCp(o1uo?Qf-#Igqq#_4x-2ur8>@y^%e=%e zMJo#(Lc<0A=^9%KbcyWEDUTkhFlE%&3Jw~ugdJsiQ7ni5r1`!)RgvtOQyRvSsedushe1ldl5TG(kZAiG#lzEv7b7oiXj33vS6bMe-ilmv7F&?Wa@*z;zcTV z`$L|BR?37)0q>*{`W-t$fYTJSbjS;%3T1Lsxh4>u4X$J%D%T-ji0wh9OGOWci^3WW zg`1LNwUAJ8O5tL0r}nzAogHvD%{^`U8h?j=ZNSr%{j+Z8^H1NueaslO{1*qZ>H(pZ zlZ zA9jtWbd5K@qP$L5Y9KhIS?3<2LXJ)um;V$EvD)C+g$xI||AfPh;{o&q`ImIB^+vZL z{RQ5*fg^?R=mfjcw4H6XI>eEdn|q2W8<)V|%+19`@~YxcO*<1lMI&LhBSJOq?fGe0 zk-J?_3(pIO!0aKoi)_knr$u zwX~f44?B<7dT~Y$Hz;`%dfAy|^YD{vYbx-$J7KXNgfa$z6I4fv(r}Wx8 zIHKeIwB5|usfUMNdo#0V{v#T}%(!sH(rsm?%ssU?Ksm+#Unx{eSN8OLE`1To2Yt>K zD(xDz-3*c!KTs|%E~4rj1zm=%I>=mInA~Wo1ceUu0{AV!XZbf05GC{?)K;&mFH^?Z zyoL@%dFK>6*dvGE=je-660PN2>*2=VP(!rNKJhxPtV}My`b*n&{G)oMhL)DrReNSg zvw!HwZO~^i_qxiM1o$5Ae%N{{xLoGJ{*w#w(a~fBeiS8v!2-=L0BTIf);7DD1i6v| z>bUeM(BVQp0ds?Lx;Qz3!%pk#Y^Mcu=Zc2WRYT7kp;byR_1U-Ota^Z^C%6j@b z%Pn?z%#o9>ImXRo?--HiVMbyP!R0wL%f4Y<9Wz`WuSsX`DtnDdmmc#f$rqWYK?~(bGGB&^ni{ zXzR9ZH&l4)q7>GGAwC6LKhfcjjdSOsx~QMpc{Vb~!LM6*x4B)UR#rnOvp^xJD9TNn z!X^PE!3n(h_WGXBg}a7r4y2 zWg~V@uv6%U!10Udf;>jk?>WzXSLZYwm0K~aEDvxvN=6XMJ!wmQs8D&z7OEs-s&=k2 zuAg7Ua6=KliX}*Lf<*%IZfIx-W@K`m=%zn(=nz=4Bgc1 zo-a-#9IGaF>FaUyZ-T~UxAKF$j$4m%P%3?XoSVA^of+H)xxcFS#k7b*6C+j?G77Y} zt+Ngm0WF>-Z)x31H0bWKH`keqa*2p&G6^UVrP&xi$*WQ&Niu`DuZ zh%X9cFi>{r_V*{Di^9H61Mn$>IwEXZ84Mr6;GcfKW>BBEqNA??rhtsBzaYsYDanLn zd@Pb(>C74WbK*PdU%Y5!+F--esT)fAR{b$NOFKh`IY0kZ1WKL-#K-Pp8``B`qepy< zZ&pG!V--Ia-0LHJ@AV7>VoOv`R*CalkaO+{?dA_qTcB5&2RuMHW;^#^c9TP^nTpMD z3k;s;++&j+tv3_{=n6^~cgeo%4be$?`&+`<=&MPYGZ{!==J5iy2vx*;(f1s^oFH5{ zC>BLUf9bb5#=_e(E`O8W2H8!NEuzeAoaMj!<<02hKKfPpuF4>A0RZrFnf-d=>&QqN zDi44a5F?~2Y46{HpwLn}ZHa~ufGo64+o)(P@_ST8|Y( zzGGryQrsJ(l+jLBCPybAEzJt(MXV_H2(gL;62AQ)G0{O^>!blLr}1aY+qXv%)7P(G zCu%+fcjFr0U8MJ*z6cpi_+D>_LGN6qpo712q^Q7se=EpLeOCxCgZs}f5g_Z-Hr)vf z3K}E?kU(liNJ0Y#9_-`=DwUV7{@}MI(607^qa|F7rt$1Et zU;RUPPe2Y3R*h>To@lv=tO*oSe55l0hVgTqr<@j@KK!ZvfD)5u!;5Ax3N$G5uvn-)sJ} z`}z-8_NUg%72q=r4cS_gXhT2kHj1kA51;0>oo* zs(>cph&##+8&Z(PkP1=xkKl8_JMYmGp__FKYN6e-k%DIPW()Cn0^fqi0G5o84*`n< z+-qFnz7?kpLE)hDaMRWw^Gj++16_$~N!c6Gg9i z`9(wsgVC*9xBS6Rl*yK!+Iu8f-sgSA6(_=RQcyWd^wr-zHn7g^ zA(G?AV#`LFmHzcrPLTXqJ>XG<=mxl`pe|XiudR9vT-%hra#J0ssv(%3Roa=W)Uhx0 zo~c*Jd9Q4n)3%%1x?i@o-TQt3G-BYWiC>AaVAT3QTK)yt09^x&qL zpy4!vFPbQA8=sGp_mP303+l5di2HNa);$g}NlB4P0UMR_^wQ92#zCi!;F#8>E_wBF zb7}#i8fFw_6%|S}Mqo4v0O>D?y1S!9l5Hy@1nUHM-iAEAFc6aLhc2mvGa&YcVDD%m zTt^&oUJnZk>0p<*eBZ!CPmkz3(79BMS_E9b-Y}0lz?{R2H}HVyM-63G-Sz1)Emamx z>Hf_JLaHNK#Zo`|X49hL$*xSlAjaa6mpFfV50{RW8IuAIRyo=u!QUeINgAjX$H2nkj^mvBOuIC z00>hF5qS3f)m7VC-xuqgBydmxv25EoWQh%0e@=XG@FpkANp-SXs6;cvQ3{q&xfURj z!t`?uO0BZ7Q;~t_h4)-2cI?v5Bs1T|J=F_Cn*kaMKQ(QRA?X~|E$A*VtqO&UFcqRd z7%#mX-Gq<2Jkh~JyrQC~ukz6_ZbmQ4*$tl<+65Q}u+-RwIDb^YB9~!RLMG43yKVxK z0TeyDG$7Jc=UBCLqGtq{fImZpdkK0INM@+X(r>RY2ijWiXPg?MR#;?98WAI;#7|GD z(RIO^;?!&}rGL^ON!o=RjU{1S{QmJb%$r1)kc9ie)?=~@&W0ZItMga~E2PNO0x&{r zGf{p6!0F5!&ZTgv!G2 zn>S3)&X(9RZ{D)y+{S>q(LdPqdIko3!q^&CBv#ViST(S>R+pX|8#B=a_5G~38NAYb z6bc!&K-Rt$BeI3vj`6v-}9JwZBJJy||c$h0y}=__R^Dzm^$lNb+ z>Q6dg_c0uw@B~?{h&VbD?MFznzajBHF|G0{Lc$~jC-}XFJ(EuCzD={a*##D{q5|6| z#^tUpyuP!Y40Lq0;M*Ery?!mw{U9dh1;^FtI$KV}That9QjTW(v>%_ES@QIny^lX; zWqk=@DbBRuSuuFwC#a4^FfKidL>Cipn0KBbB=CUKmjs8NCyfqfa;v}EeFrn3+&p`i zC8phHqhn#gz1Xs;L**ot>1eVfPu0Z_nk->Kqw`)+874pF=?NIYx3`Q|?z4;rI$QxE zA#1&y*!0JbpVX`^y>{4%G@fmJ*^MrLzvds8yp8tM={p1K_9Ha~p5B*4WovJEXDdoU?>6s0lN0OYMP6uX?|--IaMsH|EI;4 z?SzDa(0@@Mw7IcmFD0xuk@w7echs!@HY$noo*qzwJ%R zD}9=4s_IE+NQ+rA9;uE_>MO4BK#H6S(LhE^0x=3iq79REw~BV$iRRV0I!afz#Z_C z2VpTGavi~9@W&#j!aPK%U2ax=o>Vfus&s|Q@gf#_1;Bs+8K_u5&!EmfS9%s3de)R) zuio3yr0J%P`&;BSZ=12b+O(jVC@RRc=}pZFZevV{c%?1u(sUsqAwT*m4g&V^t{vev z2f)1M|7EwJ;G3ypg~e<@xdm8cVJZFL>Z7N}f=Gjf+A!^EDWozBG)5jHiB~}AwGr9{ ze4Fs42_X*=>=yz6Abc3Ow_tKqCsbiMOWfXuH&>+N*NzR6#tNPky+stH!V7IYxXfX| zHW$0~`%5in*K!mVvp{u2)IykL7HSl9S;1OS23x(Y@%~Jd1IwW6=tqYLj|O;HNZ&|E z9{s?`_3-x?4LVg&{`2ZKGR+Rpyu9Q}bz@`pyTT@+@EPa? z`_p{={+(z4{+8i+-q){QITQF8Ll7jQjPmZ?yK%d)ab`?g0oWV&FRvtX&r8Xjt~<7 z62B*Uw7H*j!gPd;G4Z9!$iBjPko-e?d!zn!>@v9HBtf_|IuK5I$iS|!Myc)_bTrMG zlo>4MqCz2n-{n?pY!LiVgiVy_e35l;V(f!UK;R@(p7Jg|wEK^#j_>X~$?5*Ir>*)E zSHe9-hrpak^~zG;*}b$1E24xO3*#>pO!O=8e<_Kf9KVwGl{VSugcY zCNR*LV!7v}?2*)rmbTELS1KHMR%=iO(1$>E1kqDu*%-R<%!{(>g{+jJ5E~|lt5QkR z+5k9Y9Z@z+R$Fi{gy;Nl?x@6+Nh4qwOhS(;71FYblF%O3Bk@&9)!kA}Q@VP!(u_u* zl&M#84IGO&96q?VX2&m;`-Mw+JBgVAmR-Bv;vT+;WIt37%jH>1%ha+j_EN3tRW)6D)96GujhhT5#;8+ z2Jd?z0#ZCe^#$63&6_t{VTi?C&g+*sj6Z^We8C$iDRnaW2W;uHw@^t<%R1TION%HC zD-I=ZWofQHYpXx~BuWfT_DOZle@Hp9DauUy zz*(a2DTRIiu~t^X+GN%2D*@d|`vVW&+9Qjd;*WiDw)i|Iems)@IQh&mMp$0aa7aF* zynZ{mGHl;d6;o3V3fZ~v?7ZY{obqpA%$oZ31u&rpD_aZ5$}e}L(bB?ib$+{mh=>hR zqVQq2F`Yd7Y!Q!f!_2!LZf-|R;W{r<2V?dC7JS07WLt7yZf#+B0x873`GmTIDIU}EwRBfL$J0{lVqbPHVlpyO;$Q63=N6kYX*)Cqh)20`qn@`yZAr3hh(^W> ztdT$b(q*5&qwfJxNQFHlQt)Z$r0wv&hmKbvdm`SqL`?v{7;PpS?=7s2M^0Y`aM(I_w}7-tcTrmwFkXcm)wY%6q&?rukVRC z71qac1vlO7v3ECA-y2J-6JR+h|8e5;eQcpd;WwkE6v~C*sO;s|GJPa^EDQgOIEw(<-d$RuR-Mk zg>(Q@ACbTjoCd1h^)BpQzbDS7RDsvDY6`CdcTScxvg&Sn2_A%Ffg?4;64_vAHqmmZ z5R++8KL$Wy%|!>ToeW?qP<~pReL>*#nKGJXnq_JU$BU9|gqRaUkCSnE^z?ASLL#+6 zuUo6yRk5beNmUKnZN`4Q2M&}dKd3XW1)3z-8RW8Nzhl}`T)P=U+MfoZK^}np(mXuc zc@I^p5=<*DOTR9D_WoJrK8e~yv~~2`x8H=jJz&b`z{5JZ&JBa3t>d0Xb+*g#Bc9OT zL;X&lJ$rVDlJa`oxp1X|F8!rf)#c=+*>gM-(XYP&m0bz?JuzW#T;;_~YUp`K)z9;W zW#lCWxa{PLHYw4m_^9wi!#|tycO+y_>l!>HTrn+U-Qw#RUX3SKDX)B>WZ&LWd&Ug0?ltHrv-w0y~ zg0M&Z{D4|qdHa-xYiD9MRcmW{wgVd*L}`p<6^JIwSZz^&(phr;FmEL~G?@I)1w}tb zyLm)SEi@{ZINWg6t!X*X*UYKe2OU2v!mOGtS43~2nKmY;Z`tWyrIt=^bt)nK#7h^4 zkGb(i^l!3x3Z@)?Zfo5bbbw_eEk`)mhE(Nca4gdp8S1K13Oq@4$cHX}*SXLSC=?Jk zi_z8kXt-K<|BlwcdDnP{EcLr&S%SX4^lJww0*{1|Qo5(rgolp=@9M$+jEdqLH2!=O4tQ1NzM`Sa1b zkfXm4+&sEm=CRiCc`rmDjB*PvpWHZ-7F?;v?7|GW-aK4M_}&Y1QNjX;79g#Sin5-3{IF0%v;WTQ;eB7)vSKp#6q7B_?_3ja~?di^N;u3oCYd%l!GR} zynHqc(vZ;agQm0Y+u1?7I6c&kVh%T+L)tRa23thZ!`Yy@6 z=fuwjT}?rrBgPB>R#hQ;13BpOk?1JkR@c?Cw}neu(52F zcc_i`a65YOV%CC}cAnk~%OWlzp}Y@T@(1#G282rz8A`c7K!_-65+)G_ZA@QugR@T? z+vLY3D*ArvK5-L?p*S3y)9@%RLJrJkpJE>PCEzl`?X}gN&dsEKfVZHu*hqTKl_?2q z3^Y~99k9hfyGeC+JFuEFT>fezGoLQ~Qvq}I@!cL@qmQX@LS^~Oj#77dQ6cOg=&LWyk+qm`J+>pc=9K3|K4;t!tnb$2G&Zj*WS=QWh2~wBA=S?kjpO zmU^165H@47-|4XAz*rS=IFU|=N3Lm)|27b`er`N1gi^0dzwhZV7gPt4B-(r!1UI? zLQKGUW6+{7IV)YbkXfK^cT19HhX2hicycBJ(_y92;Ya-J2PAGV%#WpR|J0#V!dzRT zE_Oi>?3b8Tllj`pVwuMbPgCTsFtDu*N9O6k@-hqP4TS7VszvWtc>XQh{nFc5QFSO7 z+jhwW;uZ}<#w19Szazi=4onQM_etJQDlyD+Pdx*Z61_gGfbb;T(+({^Y;?Dx!+pI; zlADaQWrsMWfL?AbMl;1gOrsI`(zTafI1ck}0BMmRzpStsCDlcg=(Z+drY05M4`Mb( z^xR82bbhT}dk=W9MR>SL)%ok?9QE~;pPilk%#vUIxVmT90jqnyH6a8w)~X}(%<+>a z=SoflZkCQb0tXP0ub^jK3&afmRt}sTS`$Kd^q6hg2YGU{*@F%~XjIIFe%4On@y<|l z4e~y!?xR|zhC2(MRqzJTS$n&_)5X@Zz5w5Os*6#HE@C4b186nr5Y6zfS4(BIz0YjO z8Lk!Lu3>goNFB{i^*@;9kd#+*8KMP--^)%|t?opbn_<|oW7Lk3ZC6C9&RwC_S^XSd z<3x3#@yR8JNbTN#!~c?cY`R~WGd<4*4@-;L8kwb@j5x%0l6VAw%J8GMqo#dzXI+c4 zrJRl(O?*3W6kCq4q&KPNHH?oJ)NG3!CWefQ)Y0~XULXPy_6%YoC^pvmnHj!Qa?hUTHS>0Wy+le+R`=o8!9#Z+A1BM1$AwHc4&uo48%G5awWLf}OoC_DzJAJwq z#Ak1zML^jkfI2JbZbHHvRx5kdT-Ra(Mtsz6dz_yeRAEr8Q*BjSuzyv7LLP zkH@L-SjfJUNE(UP;dd*i8V@?!{jP_Hy+SH1EirO3$=E&$9z) z>e76%or2ddJ|JcjZ}jnSSw<%$Y$3s7uL`6{$H5`&*k0r3N3boJ1s?sg19~qrbB|C- zP*2BIH)hW~`~Fwc4FbM4ho0*CI5||`9PylycsFNxZ4pZy+PhS*8R)IktVvpYrB6_S zBY&!!6w$?l%*)S=AljuZ{z+#dVr|2^ut|q8JOITpyHFVB2V`p0XZJ}ka~NGApK`nt?)&!wYPQarwP;4%v<>M(X}3U1Bu23@uJg=3yB5Omn(7~QRduC2v=k+p2z~6Li)YgIqqz=#1UE;tgv(2>G*#v^U;VwY#C(a*W4l+y z9z#1e+)A#D*tha^VWYkQ?X6@siq6nV`GtW1g2&KEkmeR9Ea*tS0&BuCEroE)yCh?< zhYO4^$PSW!LxW0!yw4}cq$Lz>9vJu`bxgm%_&n-xePK4Ay#w!4w^(7Wuf;Uvgsela zKgbSMMm35f0-%z-uqI^rgQm(iOos#jr+Z!gX&3yzPpPBI`w9tr_i2ZF!@Wr=r6yMI zwZ)OMAliE2);J8K;>lB|&fzSEyo!6?VBoF?z1bU_b6u%Ze=CGSV&uASO+zy(yfja0 zK;r}Yl&n$mQw78E^tm2{V*X6)ae5n9 z-o1CP7&>Orz<@dCl6oMIwE`|)e5MJVZzr@^ZCH#YCGWgVJbVv=%d?vHokN|a=k6X1 z%$YVR+5bQ{@hDxMa+b)TEHljpG~ZB4LMBOsgt80|XI!IY(fII94zJ8F3n46BCmmK) zs^7S*`Q+EKIOt($%*dY9BZQx>d@7XhWZ4*Z!V+Gs}3nL2aAxI1QE;mqy z@N%OK=~^F(RCGJ2{;<@&jM1}1o!dFQl$gR>%r)xefh> z_X5+#4M3IAcke#9=JB_RXsKs~|2_cRWM#^z8)aW&CzTY*16Jr+)>lRp#4sv{s_9aLUh(R};7x<)m-c|&!q5Vr`af?s z9y*l6m_TjNtfXDSd^Pr{QKG}Rpt>UK9cypdf7V$+vua{Iwdimwo*GbOUPo@GOgw-E$)Ldp^0Dvor~nB zw#u2Non_mYVQG!ap4G z+u@~ewiEOr(qeZ0^qpipe_(Kb4Ankj6i-t&?WN|IjMA<)Pf&m$?_;n2 zqJh!pr0=YJ(wNa~>=o|+@yE}W^t9&p{);-wGYbFXQBgQNG8{zObNUPze@dD#A`a); zf4iXazXp$fh0oGf_B~@yV>|Tk69SV5?nVFSxl^ew%0vI3pG$>yvzbpJicUYQX1R zbug?t2VkEI<&B_hhaj@@=HvM@BWJ@{gt}qe?LnJp0Fc@v_vbTj{=o-t1?A4TT=$*W-*mcKmAjj_24&QyI6<2T4_^>0x9l8sZ>;X;LDQa;pc#sTnj1#*V?#9RO zcPzH;z{iRbUDoyLRWNrh+)aT<&{n4k5?$nOtf34bDoj`v_NJ~#nh$c z19&yrn{^TwX}j%zT;%Dlt~&xNYL(x=e}|;qohVJhcIB0jXg{Xc>E!k6 z$2CmDlJ`DyYQ|%H2tzP22#?uLVzL#&+v(G{`s7PjQ8-4Q)&NssU^Be@H`em}|FM>3 zkBzzW7BAAR)#51tjs3Vscpj1$7qqE<-(?}VLTQC~*|~{P)xU#$3bzVY0+zn+s|l^V zapT7Ikwu!cu73b-kT+)~j2NYXMtD!e45LSsFuM{=Q)$uUJ4kIAt3tV#H!ikFc=YOj z-S>CI?Z=l9h4%-(VLI@@H<}uT0)Sjt(_SDz8l`eNL&4GTiix$|yt_z?g(Zy2VAb3H zX;T$zmH!c@)=r%|)qpY;4SCM77G-?7?zV4`;#Kfu%vA11+&T;;@KTA6{ zbpO(c`Q`_UcZmoNQm!L>JMN%mrQjw<1fM(T6|ukx^Q|>FSSxVo)_yB9n?SE|Zr-}p z8gMqes5e~*tw9fl4!Vgz#t<>U8q=TcYDR>GY62RhJ>E-b26>mn5Ws`~j{&^H${s`f zgewH2c^`oZ-C-Iqd!XaAze}noz;2n3BJVB1W6~3YN+HZn_vH5v;m`l literal 0 HcmV?d00001 diff --git a/images/test/l2-pr-0.95.png b/images/test/l2-pr-0.95.png new file mode 100644 index 0000000000000000000000000000000000000000..d1f47b37eb723ff859918cafa0646f75adad9f1e GIT binary patch literal 20604 zcmbunc{rBu+b#Z(DMN@18Iw>%N)j28P?;)oW{G63B(q8-R6ddrk|JbEWFA9Oq%zM_ zip-g(-@5yJ-}m?Kee7fZvyVfidOXj4U)Ob>=Q`I~=N+V@rN%(Jot8u*F`Q6WIYT0m zXX5*48Y=vL=R`s({y2Q)xZ#zv&KIs+vvji|XZgiPMVzeZFk-bt(zDOcz|2m;^RM+F_ zc$4Yhk&yVeU=&_4<;SGLrs;!y-zL`q7(m=%DAHPAvpVYDv`3j#64m&bEb9K*#p`(B`po&a7r)gA&olK@w;ymV_b21nXW`%LAP}v94}MPd zSi=1Nc;~y7PWrzew;tTqOGUB0QE}slkj4{Il*SL|vv;X1mS%=I4qTv*^Bmpn7o*HX zc0x~Y+k2}<-h=Tz^PI2s(;kQk&i!u`V6RPs47QuK#n+(=Ucu zXEF8jkXu3RfSy2@4t2mCU0vP9PKxKuUrb7=1^4)7e|mbDWvn%`wq&7)E=uEetlYKbCby0LQ0bzpV{B#~{gf&y zDoR4({XJfj)$Hcpr^gLFOL$K`7CTydpJzv8J@dA0fu|Ey`$wD8+-tK#ukRHVt@_=b z)0Cvi_2K;fw+`)FH&JhSUl%UCB-=3Iw{6?DCx@JQt*os0!|T4JoE0u!=<%`$X>T5E zxU@1quCAdmH12$|m%5>Lq%pqsK;w~{U%u%48Ea)EP0h8MC)zf~>4>n}H9e=qe))49 za?m-3Vvbzjue)bkhFQtqOR&$~-l(u5M(R`CSYoWX z&lB9%W{5?2|Ngy2!_&jBQd3he9J-cC!^n6?IYB8|D>loeUzt?CzP7T1iDqj2U9W!U zg!#rYI}Z2PuV0Tiws;=1++^1GF+$YiN0jZ<*HaSx1tW1)UXvwv`m62?hHEQSn6J;U ze|jRhiS#f!`kw1xP5;-IrFcDesZU))p2LPoHReY-k~#(;lPDY{>JGw_qK`d^Za9X-qv=fnAj&dhAtWoId?JH zD?j~*>mzSU-agdp&EmHW{xpU-jKsyQUGfpE4{g?8Ao-<%;XmjOWjv@B7)5`1!~9 z;Phav>(B>gjVJra($Bq9)z@d!&om1q+eFoe>(<#5LGquOaXa$o%dvcyesUu4{`_p( z6c`w|I8ij|GW$c*F1JJ0{J=p==@?0mDGMSfCQBB0og06AjyY{)6!hy`GVY8XQCWo( z!k;)*`ta_o>?*Vbko2clOG&Ja2GR+@^?NsaF z@mgD+yZhjQ+L<$F;f0H`SZ^!R6XgVp)=cw} zdd0OrXQ}+hd&}Y_#=gF!yVPBHP*hZOupUuUPRh#9mobmm%CT9T>eoooeRJ-e)3i-g zRFsAo+kwt{0TGeAn$c2qjBHy&B=bC`t*HD%IV3AHylX-@=}B^zf6!ZpNRl)}Sl@(% z(EB}UfAz{aMl)76;`s67*_D;bMKd@*`$AQ#_K1pdT8H>dSF_WTR{Cx-rnXz;8ZT{- zWmN~W&&D6z&T#6)iIiz>AA4siI(F>c8%kzj?z^11FXawEn%@suAe)^RAU84=oEK`t* z2Qtt2$C1x5)HNKw%fEz+W`>5&7n!}zFf9_0k$F+MnN3!fS74_go+0d6AsFQ%H!a z#A~7EpIxWyw?!Zx)vjET`fi_Vx+K5QRh9X!dOD7tgz~sr@-D?7(1<(2x!3ru|H+ric;)iKBx9f7`d~&; z$8Rll_42ia-UoAIt+O@+;<(AE@bjImP<62BE;fER>jT*~*N)%o@MQpE{@& zDA0>MA&o^zY#@_kyIJpq6LtE7Db5|hKHkEi?d!@SvSdE@@{|lp+l3v3R23d%- zPjT{GCr+IBVkZSa_hg^t4egE!J;vA7R<6e4;dP6WQh8UYw{YKm{#>AVzT=X*y1J5% z4inBzAW%kY-9!+Juoads|N5*DPQ`s*`Fjr(*V_iyJm|J&`U;ARZz=C4Grun*y0iFL z{o}nrPTlqkKlY0xWQRvZU2LttGW>CyVS392MUgb2(XSV<^2)57|611XsmvHeQEgCj@djeD(aVM;wJyS=khF& zaXdEG7MAvxm_0yFDe}a}t7~g#x|&az9Kb;$={RoOcV@RA=qk9J@4d9YCH>qT-2TjP z(Y49EG$1fJ(yL}C64sFXM?-8d1DEu()KuE7K@@|v53Y3zIRn=C3d+iE4+;ueoT-;M zZD!UGxq)wFu1!4U+k2_wu8M%5u&^}%p}XrfgA9`tHaT`yR^4$SWvL@+`sr_0irt1! zlAdu4Z+~?vCP+mfgjaq$iptexB~cNPz70NkPbtKF?0jkdX#ZP7v1YTw?|?&_nws`; z(2I|Iu1?olW*esRj5+(QZ~<)jFp@&HAEXrsqe1#hZ&^pMSLzvMZd^Iq(~(>&qW ziK_Q`z&Bm2QVn%N$6gO56EYFVz zqxR1-*1UhO@>IbmIs_LB z5&LRgd%r*74zKd@y$x z+aE*~xb0lF#`Y~qvx;wHQ4RU>wOPsbsymEoKxL9PA6Zq7AMYQi4knNnUQDz(1a_M& zp520kZ=7o%81J{viNiU&a8X)@0H3AHqoQ_F+pkP?abCQ5u??%1`{>f_NMr5ez32A1 z|28b1s-*kbo+Etk-o2^rYrXvd+{FEK6<(0q&OpHX2vGxNekOhe1zyF~sZD%2zqf4O zycy`Jmbk#K!mD%@6%}oTSJS>dncOC-|IED17f_HoNi*g)^1J}uoOu{(z;-|O=O z&I44WEQj{}ja=Viq+Hx@`qvtzzP7Bot(Qjq%vhE~yt%q)vh%=uRlTH;^;mr%3QfEky^DD`?8j1M{=;WlDWp8 zZ``sUXj2+{tZUzM2zP&$G z)%u#mG&Olmv>}BTOM=(J1lq1lwnXK{$H{S?w49urpZDjbNxnH>w^huvkd=~>(%0ws zHg%mCW{Q5gPZtg#pe4N*T~>hy|D^3@ogKBs>Hc&f$Fv>Xfy<9iob(*~$`w@)vT!HY z)qnc*{yvY~t8RjGsSE(~k@)Ocxf9cqvS&{W6fdJyLYf^!Pk9W0LENnPuC~Gw1)3N4 z&9633enT4fotQvgvYs1let7cb;AQZyt2hYu5pL+hO+2fcevCJ+VdwrxAa#6prL|1ke9JMhM1Ky>D8)me5$ zvZ1uwxAAuSYIOAVsnYdNEtINmkxwMwG!cF8{{7oJKT9Il7{tx!=;%+Ok7;&#@v~inQ0gpjypLyuDDb?0w1+1;wJ@NajZvi{_hZJfR@<}(v*AiiY0=3m#h zaW_cUn&0ZOEiq$EYc{?lC&hYoj-_epVJ7(|1K&c|L8==!Z?4%HeS7itEh{n!nhjn@ zHD7xV8T0GpODX;Rt1tA^N(y_a*fWjO*-(YAU%&1?jNic7Tqz9I5W1-$ba{p2ObRP1 z_`|yM`QW8ORCkhOeD?A)(LBAU5}-s%(4k4!4@SnLpr$@1!utHpo2~n!=#>+g@H?nA zvle~hSs_%7()$rR7;t=0 z)9^h7CFS(U%QGp@^wXHPZoM%zfk{BDl-zh6wSTk$6 z<-nqwvZ3JCr6XF&$SMkR+xmGB8aV9x?Cy@R_VfIVwvSuf|nb};v3A0HZ=#Pr7P*~i9mz0$vDrUE?9r!U>WuT=RkK)AimMv zGko*maRFvlTFNpB^xt>3;OcPsq-!J8Y{AtyMObozO2DZLRqm908z3i8OK zv{wqV|9yQfQ*)Q^O>McNc~E;*z^wKG-vgvwG2^#11qB5^drIWoC%TOG{w&P+c|}%T zaO--GDA^^tcV>xA&j3JhtaDk?yF76KQgmqxOt#=Ft(g{I*@mBjb#vP3aXP}(DI!i* z*J`^;rkZ>bCHbykOH2yfUK&fJ?aUkFv^L`@83}1hR7-sRywbK*pm-D3j9-y*OR29G zb5B4<%8wxb=A_5lcf5T065YYUmVQr-!w%MJv73z&bnaq*-l9E54e;C57)UMiTt6+L z$#Q#g=UAi3FY#&%{ z6@YFdxqbAOR&v^9v4?WL0>#ICRw*84Zl`r#N-160@pLeKewX4Buk%~UrMiX1)X=s4 zRr<$tzKM9NofZjGClG7bC9GeH?mhSMj)J#gD-JQ)h=e8G{C}BuDQR*6J$=(Yl{j_5)NJZ+ zM&4;T0VYpfC`p0J6^vc`V?HBgAhN8opCR-@BtdwSNWGo*Qrj)@m2K$Z^;%!Fw}_5} zM!5oI`ZQRCag+RIK<)dF|I+-=3!2VXi;~QW3zf06pk-+`Z|?Wfk1feyN2&>~W(uB^ zjx-S;p+4!l`_0Kyr%s!Y8x4e0`<(Z@WOwWpopRy-+m5Vu3~(oSUkussP~O$(LV;f9vI0J!UCC`Eo0=jkcS^J`SBTXUMTVp{h3@ zK4kJ0+FZi{HXl$IH8kN&$|5~w7sV#4?6!#<6Y)D}yiupFdlj@98&rNjeT68P6i20O zqIDb74v^Wdd^8i>x&vJy@+;VG(r+)rSeu=FdAJ+ze19Dg73?+NKOn?T>*-NOoDBT< z@uaV+#1@5XV0EJI;T&Qh1XFa?obo(O^I2f_U3v` znP;tI39VyGpD3O(JpO{>LQWKW^8Ih+ZaL2F^KZ6?sw!0ZJKhsV8rZ3Jzi)AR zP|GpJF=clV`Cn;EOwkvchm*l!y(&nBe?o#()6&ukElJC$ z~0N(bqJ%WLn_5vkKwFs2^m%jnnEmYmoM+w8njqP$zkpNAUV-v z*waLB&$h~{svY5VfY?ObBVA&nuwB`P^f(P*HEZ+S&Q^8I*SK9Qk_p(uO3Td3N`e0= zFuDKr>lsK=v>?8fP@{8aFJB{5O4y{JEVwlRB=KTr@A~cLG=sBphurWH)1Y9i+p;YG z>SL8709jq7K3uqiT7n#TLG40)C6BE3qJDwFVnZbrhxLcXMm69VGJn2()eP?kl&O(6 z_=M0wE^elGb91wh+76(y#A|}E!DZw3muG^&nu|o7Tz}H#FXmK9F20b~Y(M|n1b@xIHueOIT|{9=wXQS=|UBFh6c=O%#l!1~JM9o59?cPA8fJ*!ST z5b#56B7&s=`WR^YyZ7!5P@i!vNqFiXp)LsAf+U8b2(<}9(10)lxE=4uWKN?7I6Q27 zji2S`bD$^?+7_R9c}e9+UXGy{0m8t=d3wr%NGIe05ms7MS%{29m#0_sgK_G^{@7#iZ=v*#Y)tLo|p_x^&8*(LLW;tUfRe*ggG zgudf1jMHzc2=sed7Hp>Z`0*nXE9?14zQ=Npo9t9vT=t=n0=;?%j6GnDFTW9vHgfjZ zF5`mBNso-?)WjnPha=5vo*xfp+P?i`q^*q&T3rU;w;?VnBCJ+@FrT*Ncsn z^}Q`?-~7(-x^j-2TFEzobb(t?VR7*XC|xe*Ax!~coz~aCjbvD~+q!_a6Ivr6m^Y{| zuw5hH&hKWWRru{cw%J{JU$C5T?f%aBEYs-a$kxaY!*1Sxn$$dqp7mB*-TBIy;d)mP zc#6hqZ30_^_FbDW@t*yB$h~qKiD-zRg>G=D<_FfDpLw^Lg4yMXh7h4ciHkRA ziJi-%haBSjwqXH*dzHE~graK%eAZF1b@SxQSUL*w0Mo8C)x`c|4EcWyP3{tRqAqv? zz+6Y<7RsG*`VY!1t>i)K%dRVcY^d-uZbLL+AuB5@7d?ysiEdVu*A{l%)3+smTqP-0 z*X`V9MO+Ft~Rrb$-Fw1{4D`l zdUATm%C_M3Cho2@-_CqPaT5Y1;Iw<^kt6S*3L%U^2|W3HfrFl^wD`pf3Y=jzUta|f zEx?yRDL7C9J9jd(vDJ)(UfrdCNzS>`%;34xTe~K5&^m`Ne0p+PGoQS#Oybr?*vXeq z4%lwde{Dz>sNDbdz7l^qwA~#MC%M{WD^0oiN-2)!ClwcSqelmc>#rh^k{1_q+jsWI z=jNnT=aW*L)5b9tgA~-QIi4%?j-ZN5KS`@boN~6wHe7sUj9^2Xgx&#{|K-;e#I-l0 zn03hH#ccppyLSg5Jb*qx-fP7xFd*w-eQ;XvE`-Vt^b=r~sb*-%Vf@Z16jkq?%IkEC ztM2Rfr^{5v0mChuQ}sON+ihcM4M?yqkPyLv2&A)}%gnjPp#(h#1!(o^Z`z2H!+(Ud zrM6JfbNKtM&&IDy-{jve4|qoaJCIzaKems=0VAE(^!(zk6x}Z%XU3@q$3IcXLB0+MA?QfILX4_p)TCFe*Dg~=3>qTNyoJcsuK*ba;T#a zq(`W<+=tyL(3RsI9X1)CAo=U3RSU;^-)PUVE!uT5JUo25L2iRg z4|KYy4v9@PI9U-VDQh?sIf7$2gHHui58q~>rM+RCt_n7%BlprBXdx!0-kgMri&f-% zdgS_6+!mncQOJF0GC|M+x%;k+AA0oov9drIzkmQaRDS=bC6wzSZf`5Wu=4$=TI0A9c=BZ>2>YySlV%WaGs*VudfN2J z>n1r*aP^ItL(a>c^p%?-w5bBQ{+{qMS=O{gwugb@tCRh5l1eyJW?o6AK-jB}OV?@} z%T2?s{rb8KjBe-#Ig%p26h_jJk^y`)gpLtN;xihM;pEHPXee+y0bnjb=JK=BCN$eK z^YJmJ=zbjWD}h$QM|Vj&#udB~D?584q5{QhPXsMUKpBu*_kx2H^wXLWj#1m?8Y>93 z8fA*AXF#BkI?hxz;i0u6b4!Eu@UmY46f*^5kvhH(Z zfv8kbRecWaa$~L&D44Ln?1|_IGVGjvwcEkpWy>Ma?RTs@p{FpQOQ}W+9TpvJJb0uD zbrd`&kC1j;$g^ks@$DL2)p?QJ zK0U|PFGsLXj^zEfAZg3&1?%a#>6|i(1<~KcJ64ZH9kBh9tj$Lpbi$GVZV1@Uv}Xay z5p4q@IUzWNnpn87Qrjk8M1CEc`%qVR6d|lAO1V&fOY%1CFH<*jQHp^GAvK^g1BLQT zN5loI0;dbKcp4ySLc>DlMUG+sG6Y0Ndj6M&D7s@~W3!9T-&9xk7Ll+ugaExjUaViW zGcn;NBFbx`fO^M{9a_m1FW(wXd@J?wa_BDH24Ydr9Q+zX4adj&`f1=MYiMPw527GJ z4XjL-WxB>gH0(>>!2_3x@mst8ZqW|2T!j@0Ad0z?fm`UW2;*1)%bK*xJz zdoQ`6W?*?*I7W7b*AZFf#mkqLpb_CDx^h_Q!4yNTskX|X07`AIkd!DbEv?JI`^`^f zTyIEx8=K4boZExTxcTG>2T{&B@Y(A#k!5`#huhv>JR7MWp`C}wo5L!Qf+Tn-6Zg0bJ z8@63>JEAt~lO9Freb6?_S+tK>8kE{M?;)g1fY{1QnI*S7-#O2Y!D<9^QKhl45PGJc zy=967=?dK@F#h?YS6tX1kFoT3Q$J#yJ3hP30|g{ro9yv`4(c*DszJ>IjL zhy?Vnr7dd!)y0bg!33_5cI>zXf#r<0*ik0mVHio&R8^@w7bZf1qt^F2A}H^3AHIP# z)rgS}Z54wy_8yL^DM&-#msicHYepCPEDFK zX|ypi;zX!3b8^--QWA}}o?bPzEFA^8uj*dZ1LQ5lfl`8w638>Sl*-oTx#F)YC4cLO zJY9=hn=0SLNc26^|UW%Cz^l4dIUw({YK}! zH>b7ts~e6VlubR&p|qZJRy;^`OL+$s!}eQfLY^a8kbYYWAK1S?%c`38cTY)YO1!vv zX-KwpZQ;QuM?ojU*vBR9P!7KVmr8jLvV>@>uJzHh=7HHp#oAL6B^2=X*~a^@!GxgF zTk5l9G{X(%*#j=1DLC_{6r?!la~t|Vrb^m>7a=l^9|TCB(afYD!skYptJ-5W-7207 zvH$3sD$&DHGO<^YOml=2y}s+r&u?r40q9I<4G^@s}O4lujCdU*;}wcQJNH87c}!*8fFK}NBExFO1usMC=zP` zS7Isprpr@UWNZBVA{qd~f&%m4^cV;g=mb=WO++7U0WX0eOrGe9hO(#gSZKeiIA*qG zLI8v~mw0uo1qmG(clB+Ca>7HuCm>{JZ{~rcB$_>RK5w;uV#ES6fgpzLtB~lA0uPT}D6&;n%{cmdz~2B! zt=8zB7GZwrDx9nvc001MI?EwxrP5b&)oP9(P9ZXjveg+n>kz^^1en$aFWHhT(2xbm z(Aao8{vB|CUxLmD)R`sOG=t0wVA4NX?30ndZ7)dRmy4%pPi=Rge zZiOhZf!lzviDCN*=NKCrL_q&`sMc-xWeD(mR)p0ZZ$9#%u65xIVa!vU$Eosqs~B8ed7n?Q0rxjN?=uPa z4KGg>Oa7&gosK4%PYhzUs7b4Rk647Yz}xOPd^jpI{NY1?5Zx$KT7qyu2LtK`uk{NP}QApa&ib@NjMWO?64gf9yO7#b~jsGUaaFI9EwC51UIl)CnN(%7z8_Qqm0MY zv)UDyKSknv=8XWaRzU{86KUqT8NQ$C zMY+!dwf8x+?Q?)xD^kKduYM1CSBd`DZ{HHW{o-d`cIQxfwzB)ntNH`9cG12A z9hIFjNu1|H`jL-$#}mbUK}T@-m;0)A7hh+=9on^K@c2!1`Ami$>M0+p3zxJgCq0-4 zWzdvnAVJtT7oq#!gPrEPXD^+~D0de!t)$ny17YWY@r6WapwNZZa}TMhs8IY3u)IT* zPV(;>IO*8L%5lt=8X-8WM&9?TX3S>`%yX%1ag`Tl4OHHNwjN9>Aro-9UCNZxvE(*rP|c2qPBY zS*EmJO10I+hf)WCf!*Ub)fu2g&McmxHS=4$x~_IxEBV;TleB;!eeNC)MLDbqD-*#C z68vYZ?A1!^2lBUJZYS)kP@kV5HNZSyKR?43@H<&4F{4rB*{`J(@MDDK31y4-$7ZAl+E;2Ji&o z?uWaQy(Pmmcy-mAIBnV4*&vq*7y%Ki@(%agORWv(l3Vz{8x<$Lc)^diL)xE7lGh5W zJ1;&mP5GPhwVcdY(6Fc0;r>*345bWq?b-!r^Kqn1RJf|zlWuf}@`EMyCoS9?gg~a! z+4oII3i>BbY$iY( zIwp|T0@BiKAe;Db2JgatOK1w0T3%OR(Z+nloWF5+Q+AE>_<^{RM4D4re{QoC2oV|NLPzS8GDvVyPKGz=xBMZNCw?=r+) zmUIh_o;)Z&#ogL|d)uu$cV-jF2vr-!BMc}3bzuiK0`Fez&l;rSO+|j;Kw+C<64)O>skc`1ufd&*udegp4&sZ4-e;yq@)&E^6sKf$!2=2_x*}gqML~W-yrLEyM9=OS^Sa z8j&E3eGAbf5zPba<13wy?7!D)-*cQMS3RI3+oFn*mhWQj$gPSM6ky&OfrD5 zFSd&~`Es=~kj7)X=!jiTqR$+3+55{h2Awe;K5Ij#2&hIFrC{E2-E9I~MtI%;+iFJU zA4Nv)+_^Kc;_Cy{4v)F$nO%gM2Rl<1oSDfbgK+9)%S9%s@GtFVny&eGk=%ywnf8p< z_#ayR4lG0pm<=g}VGtBL;#ePy-LKhs|n&UD{m+$S4_(+wVk`RfQ^;(Obss5UK$-o`% z%k7Sbff>T<&igultNAUwy?Wy5vO;1$A@j01+XaExqVgEw9KNI&@%V8^Y|H^PSCvUx zu^+)-d)uEnHkc+ouU=eOxFZvVFY_!q9dMx)V4b7Rq?`wsK99xA>(mCF#f3xziQjIF^xS(wr8Yc2$-KCKdUf zEiU82&d;0drY8M1xZrHRW;6oJFo%M-3_&!-cMNEc4hlcB^xhR&pADl?2nH2?dDd_c zgB%9tJ_q@eMXyl*?@GPvvBf$#PEu1p4zEQ>-bNQrIo^?b%)#Ncw!@Tgsl9ct&_M?a zZfcFgwE9{yvQ_%|w1LXEZrviTf8|mAFq+Sy1I$RpAW|au7Oh3qd5*ssoW8^o7I#;- zwvcS`+zT_JH}`Gn7#rfW>iqux+*Y$oUn>vl*nLY1HSJM72Qn|4aFvFGtx4L{&limbG1{Ulzo!9*D3SiLR zA33avicMr?9Oy5MRkBRasy>-mW4z;vk%_adrVOot(>W(Ory6wk)eA$eoV59erY+UCnWM<EmUG77`DRkRm;*H2E_0SW2iS3&d( zMQ#}9SnQ|XsuCJ<^d=P{61&?Fa}*GqR?jmZmD(#JRN!ifvK12(3?88^f=~7ejdH@5 z!JtqYuV}rof~{$JW7}vUU$2U3nuJ_}1H5ar;&u8+bNBK@Ut4GAQ(`7-pZ)h&_QN=l z<V_f$jxB=p&%l?5mOFk^)h3ca~FJ@qg{mb9jQ~UfA!+Ji`eV~iE(YY!)CB1RB9?Y zO!EAPhxXamk!u!z=QI*`#dK>D{BuQ|ycf}T70saGBFg9f{a>{oALNM+^hi&yjleYL zO-U+96*nsg2OH#USTisZll&{=>6-JoADYu`y4A0e-`CVU*GtoH{&))WAn^GwRtQvX zgHb4>zUG|rbuBT$}@^{R%@O;kg->y4LQ11h`nyRAuE|KQ%}Vvnm4 zr=JOtUHZ%VLQCJl77VPgDY5CNeq(B;=aEZva&}tkg8$fOTA@P2cX$u5YpHHeB`50Q z&(_R%Q>`JueQR{5QsuY!M`@~0Njo8OJpcT(yw)q{(nq=?Ynt0*_}odVK-cKL3`=Il zt5>i3l3mV1lr$8}_g#|>QBACO9F0C+Zh9ojF|7c71hqn~xXYo|emE-uG4Ee!-V&g6 z{CJ?LL=$3k8dCv@Z{L1@pwCQkba6|pmM#1CEC3&{&PUMBX}U9AJ@#$Luhf-=L~2$W zk)zfA*Z&2U56gY+J6o0fKisuMxfgA{AC{F%G3ni$c#1NIBNr^@{d#2L3vbNyXqcHuY=qf{uB@9U! z8S^6=B)Jv0mY227JTWmlVRZydJdS44zi9I_b}>U8YeVXOK0tx#3Ti%n%v(U)0UcCT zag%z@kqt+*5l#eU@cA&8{PC1WJl=+*8Ye>30`zu@I+-d8eucBr#%& zb)R(&{ofgB;(l2WZlFNvaq7VmTL9`~jEJy5tvMQpzo=tuBQGCugoVld#y>H%`jB^? zKPQJgw@ULfI_cW5TWU))TkVt1!rzI9i2+)|YJx#HVjzW}2!K%u2V1997cecv#L4R7^!LHhV+c>miS<2iwuPdT2JZ|G9c>HL zQ1>Xg#_skvT`x;JTh)$G3xI8`Rpaxy1^Lbjs!YDe^z$-Jfv3dm!J|j4U_%HfzlaOl z&A00)lV&us!0+BNKGj5K=>0^E8Fq6dMIUb?^&QdDOV=mlE3_d_bOwIkx+9 zAMk%T`R1{(0DF=u^}fG;eW2d~kBNGqJJVMn6JKL7;nImric~^7_3f z`@%=dm4{ai$_qb=^qm^zvgP^-2Wx$=5R;Q~Wd#4-A5@WKckE=MHQPvPj+~q9E1SQ+ zDQ)QeA(OlJU+dH5mqv5NlZ!!NYXj&5o2JakEP_G;#< zoUUv^lfO>|uygu;s9p?U=kQ~l3*7bgiYGQWNVvq|1KAg~(VBfDZ zU{ErRKTSgWpYq@_>1R)?gXPs{uV05;{rM$eyr(2)Zn8K2bM(Pr$r?kD0O9I_4xr1u zyFroeBZ*;nRI;WGvHC+bNc!$F6`szk}cIrwkD0{!V@XPL_@p+3^@j* zgti7fF%)wzbQvoM>}+VS94}G`PK>=j++*UfAj(P`1qKzSL^2D)g)+yocVh3{G|N(I zKbv#+$`#qz&Qizw-{&~1b0wBiEMGl%-1f%iRLP{zkZ>=WkBqZzN+5R#mp?JCIrA?8 z*&ZP*D98`e0z?_f|Lt2T%%N9{=e`FGaN5}T9(+N`wFe;4?%kVvZj>&kZfP`iBsaemYCNo9Y{AR?@-u}-5&zZi zI_SP3xolEueD&jA?Z8!(WtrGl62+U_52%5OB`QNs)1 z)m_|$AdC=NY+!5|3rr?NV^Xux^Ft!?Ex@5Om_HY8cxBgl zp8&bq>Bl^ImAbe)D?Kr`)}q=r1NeLy|Bf(RS3T>cdQk6!wu;ZRU3m+J4gNFVH)R8# zBY~RmsDltpxe^|BfaVGIvl!6jlkNKp?hhi7{SMRyT7JI6C^Bd7dOvWA!pX5-?j z2l%Tc>>7_BJ$esvU~vwPO>FNQAkXY?$=W$6UT@Hs=3#5zJ@_>q)|A&y)m10dH~xuy z;ymxGQ%Ph_USaC*{or874Ap*o3v~d^xrTV;0TB8SIL_tTZ%cdi$^x1&J;@8QF;{53 zoofkBAcj27!Q}8e!iz8TzB`|G+-Z}Qf8w|EYUkcM6n`4w(vM!f&?7xH)e20e1!O}) z<^Y}d23e%jF+3uo8qz~f=FYwVYziZI>$f%SlqbqwfT)I9ykR{zD zRbt|Z&3;bcDvbo4sbP{KkUZwFxZoLdcRYfJil`0>8=FY{8^(`85nUhdQDZ!}Fg^5d z823->p7NOGJnlQgg9en$Iw10T+24-3CT)e4R=#oj53O(68#Q4aEmwsbTG~q;2hW)D zbV>`B&&!y6@E>%rL}4T}eU#7J&=^V;T5BM0W0P|`#^}uvs9OJL+d7eTOREeVO-4BL zqUGZ3e6`0~Y)Fxg8OG;!H2CC&ULBst?$Z$iJQ5{;wgQEhHCXH;1VN`xjla*3Y0`P< zu_kdaNL5R$<@?|-doDHmtx36?4Gi4Bw{(t*n565A5=Ij|rQ*o)&qQ~tLx&ErW71Jp z+NsO1p7TF$_9KF38^Lnq&E5L~mOJ{j8q*wU0<4`yNu}?a-O0(}d4Q4#Ln1Mp1e!m# zTbcld#n)%yD3|;>x9k~9{kM|clHi{n^)EZ-?^u1=Q8FXrR+_rtn^OVcVjcC;n$=I7 zsDK&)li|`bYVo-|hYCz+6HW^#-@cxP|C*0$D1r>Qx_-^QzIaZ1?64MnpO)!_U!R{P zd7gZh$rJy*aHIor*Ty)P1_7LPq)XsQ9-wQ3@z5G>(9Rge@nxU-YX)b^Ag*TcSyIQV z2VVyBu6Er?WVkQT;@*ENE$yfgv|54`@9`YlOH2s3*B0O@6YHxZiq=48z=1c~9WrJM z{x0!RDGEU|o~-fBbGjc|wsn5j%V=r$b+^@Fv!;hN2rWT1I1y&Za+x@8i+J=5@f?%$ z7cNv$g;I z4gsaX8AO8XRNv9RQ{CFycg!-A_mTbG9P+JOGsRsZo~LG1HfJa2=4oug78{CXNOO`| z)5ARcSK&#H_uUTp(LA|zEE`kg#j_1^z`hCp^%l|oteFfuO1agRysZ6l*BEu}Dv~+t1nag!|@{ ze9z3;ix*Q4ecHj@*AcP$eR2ABCL*f#T&#P28#t#^lA z2Ppmt5BIUshATp9yJl>j<40e62jnZ#Qfk7~<9Ixbr`Tp|KgG=1zP?afOq4BrUx;=S z;X!oR>HAn=jE~3JQ~W+&?+Dad@o! z{aMk4QIo_bei@mz#uh2f;-)+TEu`n|GGAi*A1_`^bqvfk*zxbfpYGP+(EMF@JTi(# zeR@xLT^1e(QuIjY*0re%o&Usp-+9;h*n61k->D{-XSTW)ePems_I(UH_V2l+pdo9Y z{m-MOq_qE+r$+tP`~DvvMYV&!dMs5h?F;eDB8cR$f5^E1ep04s|CSiCCJ!igI-#!K z*E%-m30ng{njwTiqS^yhGqbpE1xT5a5Eapp60Q|E6z(9B=GumY8>b?%H*rTXqWH6i zUFOTdZ5)fU(Wz8)`;d!>O0t51QA2oVyztBtVrI3zzJB)I#n68UMpPL zi_V0PV2W{5;Q}QltSG703zMEQyA0&Q@IwsJZa8Ec8e;nMl&0ofqF!hu@!7Ck9yT>N zbEXobxt*}^nY)7tqVfm3fk(h#Opcm`Hc;%)p~%b}&pCTGZthR?R5$Af|A{|R%U3F( zczp|??lUj*J|#>l_GMoB$Vs+M8e{_@5TVDKwLvDTtEfDr#!PQ<@0h zYglY714#xa7LPMA^%DAvAs;(8{tF-}5pv$K=w87HuwqbF>w%hYsvN^F3|V&XP^6@~ zGD*k%Gn$ru`*O6~aiySE=sr-bi&&`r@7|>u`tf7AF16+}G1?AN(F&xrVTtG8v2sGi zgcS4Pzky=6bl!MWOw8EZl7g!Z{EE$?x97Jlr8xaB%b1^JvLj>VB2z#)IE0z6e%&Uqn`%%cB-`JUQnn&ZN6{zWD$;2 z09e99j;^utUvQUk-_Z*LM6!;~z;qw9dn#Iq<)tR#XQ8wlb7|$zc4X`}pm^i~NrxCz z$J3PRBk}AD!g2zs$oH+73uwApGzi2~y1+%Dw{OcGfr}Pw@8@^6P)-QS5&T1G1A0nk zw5|BNoIKT1o!nvvrcEb_`P%Pfma>`z) zPVYfsea5I?9aNX@lkCTQXXyPF@2w6U#^U);_ylY+JsS{Ema*HG;;DyCNH%8g-vD_C zMVvGOzHEmYyykc&(FPs77zP(kygbu_XI)7{rgX=e`ue~i8Y5{^8zox1G@x;7U#h=BUGY)C{d+{Vd(uw0*DjCWaH~v4un_p@G literal 0 HcmV?d00001 diff --git a/images/test/mini-pr-0.95.png b/images/test/mini-pr-0.95.png new file mode 100644 index 0000000000000000000000000000000000000000..314b3fa55b2b7769c1babe670d61fb1532b6920c GIT binary patch literal 22534 zcmZ_0c|4Zw7d`qI5~VUHm8pzL88Ve236&xVnTJS*%$esoB$bdPNfJVmA@f{9Dj_mU znTKSIv+no%JLhxGALsMI>qXCV-`BOTz1LoA?K?u_g369dc~PU+GR?7lD&}6xK1MJIG<5EspbA?D%s6j z>+dsqw*W#yNNPe}An+d(epHzn_MO z2h<(;|lf1)!ttcNL( zGu$#pfwL+rw_?2W+Vk^Cp?{}(w$`(A=efV*+sS@{HE8Ruok{1Fn#1rWU#s=)%R}sX z-iGwh{`W2$yBv#mgo{7+owel-1X23xz@GAXDy4ao3WvdaY2Lla+!xT8Fiv%c7E>{gYR9zJf>4^&G*0tk} zZ~n)U%McMvMZNy)`E%Z0Ub+_lZ}YO8bK`u|bFx!CMU5{mra25$k@fm4{m|fN`qiGc zb>}`Q5~=I8#dgm>zsO1qZp-DaMj%YVM8bJ0eEjV~`}ow#iwnm9Y2mHX6rto2UwsOp(B)d?cz4vXWL$%o}L$$H#|Fo=Bqb z@bE}D?j~I7@|!$FF`&3uDvCqCZ=x*z)pTj22O;shNvx%Ru$7LPIpoYeUNTa}=7twukbUZV zVG!0pPmk@f&)+Mo(aO8tmDrqCR3vBGwgqn;7;ofBL(22p^rfaGxBXGtG3=b;^LGy= zIhm7_)4JU^-czO&WCI`K4!I9S@Ex`JCZzWG#GaY5g`Mo4zqq_-tG6x>b8Lo}IFFH& z9ta!WqG9A6$Vl-G)No&OtJN{~35j6jd#Vz{u3PFNAb9AIi1SaiH`l-LKFatyv@#gR zan!7i`q{H*1BIPNK|gLZrfmG-J9zNmtn0T|hLQdMrrmz^6dif&yLz3ZpscK1tahV= zh#VqjKc}B_{PXK#*;1d^i|p*WhsSJ|W%_;B4p*$tpZl01&oMVQm$T7mY~GVyT+I4! zZE5VZ32wP!W7X#4BWXs@a`x@Jg(*p0Q#Yg7j%{1}J5_5QBOAJ9J4=xkEFvRBWrP2`Q9r| zy~U0cdnIp-$P)))sLyLAM2Wlli@JO?(jyVD%QJqPk&^x1jL475h)^N{sBrjv9qmG1 zRZ&)^dR$ z39*Qc-AL8U?E0E{sn&$6n$`T=10hpV7c!yYhq2b=W>Q|kwKmZPR*I@%MXuw18{SeM zZMDSg@!SelwBe23;jEk-iztz|)*XUW{{N=z{TA}72OVZNDNOL1 zgT^+6dJ^`1WioB1<6kp{J1cR8BBaS^$v%fnEUpwU9d%dSAsvI;d~s(DKeRrU#aoXy z$9H=4ss=2~VGUd34J&<nJ@4ffBmoGCLYinxO)S2a<>)*-4Btb_ib)EP*-<)P#=}YqO zU;im-)%hw}W#vfaIytG>b%Lce`FNPXrRNGc+6#+RJJ^ERWj%vy{%A)aDfE?l%{3i} z;XHOM?nveE?c+zCMw*W5DKDG#m3au~ZjSkFY$fG6k6oy+{q*D{&Z)lYly$54^A=X~ zt}+iXB267_(9qUyu&)i<6?P$Gm}3Szum=fZ-8VVYMoSoHs`2*z+8q5NHgDnMZqvc4 z2W!OIP7G^qphyIXgyvRmd{6goy2B-$rYr09H&{7sFt_}0NO!@tg-!eJ*IRamQQ){b z%;`HhiORT+2P6C_ivNB6{k_mex7dM8o}qbgQZhubdedGs5!VsA@o$a7|6I7rxyF+H z+1iJQtkSsO4M+QX`hEmQRCcydO#7LE&YO0&DVZ_S&Og6icRPQ62a3Q^lPc2DhUMA% z&!08Dkza5;LnE~vi>`gRFK{%erR&XgM&q}pwNyBq$kHY4Hzl_)rgYf`-dZ^|>hGavJ$v@7i8x#4j|1Tsl4VNDTAP~uHTYd3j!%3_Jr$l~ z-G_BNd+yxD%a=oT$*-=FJe-s}3UG#lSZN{W2*M*PoI z&+gocRqOJnqDPMG%FN6Rzjez=pmL%0_{vhUVupkB*j>Np;{B)w5><6;l_t8D(mA@6KgZ|@Tf z3=A5VFOPoSsgrAzQ*?fB&$V$yA(k|pDfZEom6ZeuJ2o?O^HlAu*gJRpPXQ?O8%6iIX8>UGUlsMq28?*MuX-zPVl+y?`%VE7>qjFDF?%F{Ile%#F9Kq=B&GoiT zlg054B5siSQah}Ho@TquW45I4_l~amK6Nv9R5URv<N546 zSuk#!qUb)1`uUZxw`{$1fsff?JWH={^ znl>UL0{Cf%_0l&{fz%S`m3fQ!i_Z_~yaI@PvwG%=YkPvkIaO5!EiI40iOm>Or=4h)PWT><~2keFVCgL`2aR2`OCvG!+?h7rFKDRpYK9fJ*?WPKW`cXgcZm0rh@B|xW$#RsMe zZxnLjMVXtE)TG7lJ4i9Ie_0=UO-p-ktc)FHi@u|JFhR=EEXZz~IP#OS=A}!qiHQ-% zY`#4yEq!=I-hGx6Icc|Yvz`QZEcK~S+G>uE$1^lDPY81>{qorSw`6E^ z#JFM~iC?*7C)*cG{4pwgJrF>7-zOZMl}#jc6cqX?NahVu0Z2kNx#d6GH=;!3>MzgqmA7Nj*8k1;Efv3Y zOc_?b@ndOWsd7_RszK6Ri91&1xR7y0ulYe2-~cJFzuBGlHG9YQe!hmH$Hfpa`@^lj zq--!x66G~rvK3HT#lnJT1L4jsCidm@Cx(F04jtoq)bb$W_h`=s z?V}PC6Q!Jg(i-Qgr^t1^b33x}x2Tfq*fD05ssX+}`qW{hNLE=-apfr1fJcw^W$PF1 zR6j9C`TF(i8aus$^nAOww%wwW{goX5Ru^k8smq4k_)(hr^eK6UdP)PT!o`ah$p-$K z*I~~FO2!@&po0J|PoF=h@>-g%M@-HEGhkAq`)e9V;^4niFQ`L+lrGp3uxvM-k!_S&1w4b>O>{*z(% z7@=1>eR>er-c{;)h(M=hvo+i4wuKNtiYPaK#yhqX3v~AEHetik;Dxa^^QGw@pRC0H zgK_bd>sz$5n9&ba6RTy@`6^^h{8THNu)Ld7dRB#cE)(B&NJ~p&!E#kT6ar3~etCYL zRo?f6<;R2obYf4i0zF0cjaxaq{j;;PsTTL-Xh-7S%>fkA6f`w8Ro&iyd^uq>^i!dY z4%)JTkljXAElHB8?N)gn3zoSe{a7V-s-647v53RJGg6epcJ6ohx9aMR-c5K(ao}bO z2iA%-fULDtDME23ykM`=i9SsW+2w&C_C=EWv!Fpu!?J&WdxS@gz2~+}d@nq7@BLLF zF|m7g{T0d4`;R|xo%(*vYV73ExAy&VH#-g8L^8ELh>D7KRc`*X|BEv!R$|cFS>p1W z0YSf(pqOex; z8b5#joS?*Q`u_d<$)d`ChY4_OINtH?+iP?)5w5>J1>_QN>gIp#pu=yMkCtNkZ>;E> zKYTDl(5R(r=A+2|C60qd<#gt2R`ZW0NAs?w_&i8|{#-OdsRm`dj!5V6_vKuZbv!*i zBY#&uiaB@goNQkYFvVUe2hK~GTEy$1l)Uy>_?e&LyZS!8FZEPd7m}NY{GZA0FFbKw zxRb857`YEm)6x>Pvn+-iW3Cn5_%W~Q^X>B`i_6;DuYZ5ZD8Q+EuAS9AJ6PMDelEVu zHwB2Gdwpf$N|JPwzv+?fuR7&+wwRTalo(yI z$kY_4$7u`-sYbpU1yOcQ7#7UBG(6-N8M|ny2{4 zJvY>s$=;HC-;)V0rMK&?-Cn$&A#Xs)_FEo1#E1%ZhwIc)kNK;_tD6~tDZmzw>e26pd?A%)ard;oHdV=;T80gA3U!H5^m|LC59e(w0dT60O zl#wCVl$V#6%4hWtn(=@3Xr~m@H3zG=a@4)HXx976*4q+Ge?WO)p-o=p;zjzaqI*zv z=f3INdmMD*!v%(a`+#@KyYWMYIMXR0Xo_1(&KC#TZ6fi#Mtvi|ZhwVOcfNUJjm5T$ zyGF8_{MVWG+)3fyI)C}9g0HntFwald+Rz>D(Yw`f4?VQU;0iiH^uy= ziGw2|xh#=eGA<<7pjlfHP1OkJIu**v$JaPDw(gW z&oQqE{1IiY(0RkP;a{$HmWbycD`eJ_ zSsmCU0vO#WI(3i%-w2Bt#a&|=z*+v&k|RUM^0Euc; ziE1n^Jxbj4AWc}!*<Paj&V40(@c5nWFxYJh@ZoFaFu0&YVvE>MIjQ)^qaGDWHe zH9p?`*!k{9D+h6l_zS_f8q0!eTZteMD%@L+HUNSD$jDWc;R8U^>FMdJ>gtV*>L&sw zCv95-aNUm7bCt8B|Y7qQfgI@_9 z{r4jKn656}qYY?3sBqI*t#r)@PzH=*mLIF0ow?_L-baBuw)hbvpV{793Y`8*+=G$> ze?<#hT6BW>Ml$|8PvV_xOoKFwncvRn)=&``jsS&j{XUYbf2SgGuxDOmW>%vwsWrX5 zy-(TDC%SH1h$4EEEyx(b9oDDOk7@}rV}}?R8Dk$m#){wm{$0;V$!Tp+aSKu@`gUs@ zo0Vbe5XBc-g3mHCPNixn2*=mjO4M2wAOIIq$q{&9EQxghE#bR9r?T&aJ6%Xf$okyA zoneu5OI!F1q>HP@Q437LfwX+qsmmo!*ZifCPmg9U)#YlWSSJUcF1zqZiXPkOJ{qT^ zp`}H100h;^ezG&Q&O?dGUuD_9sBy-+kd3(TcB^14qJhCaTw$G=h#D`W5X*K171$12 ziM?nY_wC%up~xBEyy7guN=qW;>(U}zaClYIHRaZE{ilRj4q)?Sl6UgnizouE%7t8r z_EZHKl~b!wq4H`z4y&O=b_KCN+gFJdw=zoh#|ePqxYcN7DC?M-u}tD5KJ-s5(;jy4AK$|(G^k#Mxx)pza`S@g4W(><&n|R z)a>jij_5*Np)x6nM72*7i$MMLoyLBssyDt$&wrrNu}^D3{*y_5)t;|V{g-j>(D^w= zg^F#=0rQtGEuC`b)0jHvyG<^@%6$IPERFVF6{WWU8nv?4V@g7j|b(1a-ZQYIulQ~pnEpr^UxzDQ;sm0~h_*yn+k z;AxyE`42C(1P2|YObYeT=snTQq}#tg`qwWj^i?=eQu}t|tCcvLt`JK?i)DfuFA8h8 z5;uR`*%uwway9`+dbb?oGf3tObxeEiIu&&Mh`mVp|Ky4mdWKww^FE_HER-_s~*l>FAuw_)={pj*NE_v6`thpZ^MtAczc* zI7#YWr@84g&OoU1KAWBI^UutD?02TJ*#|ViU1tMsKvWv~c1WP(*AdzAlHH0x3j8SC<+^G*jyq3JqWz_GQ5_yZ4p>$kdZqE~0-<*Zgh9QABx| zFHd@{I6@C~6gf<|#Af1_ z+m$LrIgyQ#*HFUo_6!k}hzIO6KR^F~itS}VW-~K04NXmA&2XIu`S=hHin*N#kU7Vf zIO0@6WFYK-V@~0Uh^4xJpNUvdBG2b`Q$Jd&wqTp(HAtRgkr>#ge3EXX%A#f9b2X6R z8<*lZaRD9MUl6>uT=-Oykv3%152cG$#EcTCXQiVM5&z1ld>g#c!nZQ2)2K?MD>aaV(;N`3Nd8dSy zpPnIEYb&13iVAca`15hKc4UC|&qyDsr;QZVvY2xhBgB{J&s^woo$1?ukN3Qyr6n(5 zaH8D8VaLD{k_NaXl2%6`SclmckQcl3rUyXj9#$5RjDc&M*|GicM;2Z;NC zI{sof^aBkx4#tLukeiXi0G>iM_=D@s2J4NHs(_8bKx*jeZHrZ zCAcE-;{A`}t6gvG9ghmGq}?Y)hjykWYLD2baxXUmaPK~1RM(!S@_S8*PAPH(jg@YR z6OVR|UI<$1;g5-8#b6cNEB*XdML3l7a@07NJVd2`ou(Yd8| zPM8+;tXwX`tzik=O`D^qzZG@)FKE7={u(zU@zsH`uMB%fu(SK*yc2k-k5QnF5b<4i zhqT3c-~a_q+o#_yx^Hdw?A$LC3@*r^!aLFUbHXW3I-*K*$5vU1&kOXS;dpqQprRol z<5Y%c>Eu3r@`QvFd!%BS+jk+UpHoDH9*JWvA)|(Mc&4ZKY_d}A^|+zSoOEEvnW1VG z78d69OqHoR8Et#8m)Vs?9U*$H^${6~D5sDm!Mg7kXWN0y2fRb1)OITZfDz)VXZhpZ z`Ts!$8k{x~(*H$d24D)Jx`__d@$6Q_39ZRsXNauFzMDh=%POX|&yHbb1HOO%F2k1w zT_V0+dr9j`%jshBsxprSbdvs;v$O}H8hbxBM2aDRAF6j9I)J10eJ8ZEwdYeV@iT$x zRXlxq%X#)~^vTEFLUn~22C9QrM8RvIBPI~BmADx=Al=tjX*OLHvO0z!zt;ggKKb(7 zVfD{-f-^({H++NNT4 z{Lt60Ux`g7zlVESN+3w9=$g&l<@Z`EUn^9G_tptkb0U)T+ z(NUsSsPPVmaPi$JsRV!nD5wGHLIm4Y3yZmXnW(3Pj`nx*3SyocU>PS0JA)8BX=KC> z?1oc}KL4VT5y86kNfdN{jMNTLASJ4WqW+`Q$7gTtb$W9)odKv5yJBHs0fvbVT8~t~ z0y%B#x!%>%E64cetPAz>t=hRif~rL11R3S3;N_>^&B!6d_MmJLq~}-bW4rtQ-BKNy7vAD|H zGC8b#tmn=3+L)UU)p(&$%k>LN4hb?um=tuopKKg;8)bJUFH#X!!J9(1$6709YHd=JF)oed90Pghs>rCm-O!8#smoB3Tg77J8Q0hW+>ABiqyvhw)6f{C(H}al4&9r;B zq^EpKtinoW<{DQS^0A-Z)-bx~QSyzuU;2tW9=l-*oAOuxk2e)9k6CP`-pIyB-Q&l=9(15%OH2#%a%b6MrjMCUHQl6yIW6ifLQ3)abpaQd{r|(wh^j4+DaOaG2?8uZ z;f4#6OX}OV4~{q+@BF53xn*qq6?s6Fx#)T4L3k<%orm3b*_4TiN!(K&VwpSigt>o9 z{pNosyYD9*@ps@l3?j42cw>I|2~c5R)78?<1h$ZqO_wcPu+i<8_AyWKKpTT`>me!fVV8 zQXtPni2(Tga*;u{K5JDzXASj2uvlh zUV?&x#Ck!XKbhM(3=ad*JmKE~V}Tg(NEM``Cg4l*g{>eqU?~D}ksI;fZf+636 z9-Z)DsD#u$*CN?3zDh0>-%R|DU`OC%stTrIgjha?Hf?0`j6O=0ALxh+5QNtP2#r z6^AXt<|l!ih|{L8ABpm~%p+Is8v0YnNczI#6A_NX4TBMUkE@{5%)$a7VO^)o&%}M` z&~{?)!8j9aDH84{L36Tah|?JP4Jm@#hnZzyZKl%x>oaLAx9`7I(;ua-M2!pGvG=Fw z;9XAYrzM~A%~itd%|^z?2)eB7_Uvv@Q|X#CKthOOWNynf7xAxeN@?_a>HK^oWp5lj z1_T1h5Q*X_D=j{}yGSG=>mtelFR)ZK@Gp>hSweBPfI^*0_5p$59}vc}zVhSP$*}cx zZ{pM=Qbu?0!Owx8LvgCwtwx6J(=`QvvIyC13Ec^*F>(mRshAkK)uz#9*TKi^+lyuQ zwD<%I^)kL?3)IVLxTh``A=&31Wb9i+D3UlyCSXqq`&9r?;?_?e1{kJk^mm*Vj5GU~ zAmR??1EA#7uYYK$3AqO`UM0UVw+lfe>aR_;>ml{mvQ!%V*i+64c^w+yTTsQpO8j^h zvb|VCMVMVXM|BOoY9Zcd9j04~9MUv|CONi^4hR>YOV z*)nf@Fz)Q=U4wqJ{3mGEpa3WWGC)(`f<76fDlWUX%!3hOhrUQK?$)L;G88A>lQ(bf z_osjx0WlFDGs+@?Q zXVW!(nF3c=L-~S0Iq{#;!XAe*yGvU$MfQa=EF0Lko?=JwElPr^0r^ zqnUaG!e85zAmr7>V3M!Kz8YJL|M+mVejeb zu`dku59`gUkpLZ+XHAbbK1( zqi1}_O!36yZrcXJ3P^CHaEKE56gA%DC{u+@*2lN(53eCy1=Ir5U$G9>G}ESqQ|0trPJHtz8JUItUu{tVn~> zFfcw0cO1(+7Fk(YL`4GNFhSxib{gGAAhf%8L7>w%u(qbi?+U98Ak^JIzuIxJwLSKg z(eSxG!EU(qdGLLIYquSn30;xK=3934Sc>0mTvW)?Ree%xXAD@-^6Hc%_!o|TLMJlHJVaN8UpfCJ-HJIT8O!lJ-wuyr4$LT1Kxh zOC$>Pe32}NYfxl9y|vRP%(LiPy;V)GT-hVP^6qra`T+EQGlFx!l+_``#T6jCK3h8p zg-+NtO8Gz%e5{et(H6*FxQS3~N6FXs&CTY!PRx?f-w}Ub4w3w$b)iJp&g2V?q~$_1 zi@Yq6E9b%euj8z%9b^!RRjmWP&A2UO-DWI0tEa-p>l;3K;f4Dv5UWaPq0k%NUloO? zIZ-q7DtsWeaMRcVju6%_+i%%dvi&wU)H1b13-wx7muA`sOZ81assa?k6j>Y-Tex8- zn_>@4!p&@gf@J|F+zfUCOEfRGFaiDdiR5hyEj=67;&qXFGZ98=O5rhKyyw~UA<1;j z_jP8D(Yn2-By~Y)6d1N`Pm_h)FlVgcVNqgtz zm|q;0mQF0+Se=-}^<0B#Y+%jACj~DrgrB!0iiIW1xV~&%fR)jFbFFf-8F*elI0ZdN zko*^exo;T{&t96jXs~uSCGZ^Q8_LdxfMS)9T6KsJlgMOd=q^kFT0Ras9DVo0Xl4wD z^^lOz)y>t;N?rIzCdyPC?b`4Bqlz>s%r_o#U7j7Zh1G}ckO2r zGy!pY?`%4I;5QHBX>#pUjiWi*&7O+%iJ~Ln@=K$_+*+Kld&>V^9*!vh$x{Fw zHjhx{fhix`b>#*4tW6b7q8*rAo*Rbw)MpZ%y(N4P*ATpxGnJcik&%(+&@I5S!#0_q zEA%s_Ee^iU=URfqMs0ZovD>Mn_u9K1>?fq2`C8xB2hx-E^_O;rHvvAo6D*93j1qg_ zA!lG~ejyIUR|^2aC%dnuSirMu3g6P0hf%3Z#QBHf5omKxze!PL^2o?s;(z7yUcH)! zP7ehvkSw4?CFF}bOJsU`O1Z}Z@7jd%=7){hF!`h9Ml%JE-(NKYyX;G|rqC`_mvtQb zLrXdiZ;^RaKDbWaSk*3YBP%i}1XoGA7cT6?&%uB|$^FGmrJb!?jRsCEsl_P9Tr@EO z-o>K8K=R5PtdA11)XUBuWY|48ZnGf4HeqMnN0|*51&*JErR8fFDf9YawowB;LoRXX zP-OHz>AO4jN<;w-asvHIRHj3zWFZMu*^O7uwkjV zP!0cApO+;!%<>at=bH{>7Z-PBIr8yfFaV_C&jChTQYp+y^Z?oJ)?WC(CRB z!2rp7*0uEJ)UBIS-?{kswvq^G3;t1%S`oQo-pdZ4;8Q$~K`PybK(t3%^X=}w6LF>0 z@#$j6wF``?<1d?gdA%HyY6q)OlmoH;L$I(bf_!B)&(q5xKs_3#*p!sEw#O1lEri*h z=;*=qu_Do}i@pV^4V%Q0>iV>U)N+^Z*nr*iGHE&Cd+CrNVr*qIXe#69Hgj6SS7p4p zs*`f)IfO>Sv`0vn`8J)xa9xQ$6HqI4n_>Sf*I|&~ZA*Z*hNwM35F9a%dKH6hy_!7adY$yhaYUsE<NG9Cnwku^ZrxgzY2CeL+GkqUUdX77 zRVMj%|GHsMUr!y6@gmzHDetL%!z!6gV>By}g6_w~LAmx9q54nHZpx^9t(QX=p@eb_ zyh_{#VTwmgkr$WGe*)EmW~=;y_^>FWRJ`NRWqzj8vR5%CYnjrB@L5>b&EaM3s_;3E zOD+3`Qb5$Pishm0Wy?d6;W070B7CMj$n*wc|FUm^j(^7dUtM~xi(krGnWWz96!6)hyEty&y~{wrUiYcOPVeWt zzFLWc+62fxngH6lkQ|A$Ft2g9ty`K(vHukP)R^e$f%4HP|<=eQkRm(cNTe z4=@lb5%9f5i8De_GsMKfKvlpp7Q@hY@pxLh6@fRvYYpKP?95MJ{PNjnOD}r}ist(2 zKm}U+DwtFp;0HFxphAmazoX6UrM&R_URvn2n4~~V5Qd?#*qoOy=UIhD23Rf-V1&R) z;Yv^G^n1kFj?K%!XGKg90OF{i{H@GG3xetxb1@SH2;`Ur*Iqvn$J`Q`)GEU~>B^tV z^5q>1g}I@(%RKi+xHi~Iq+!eg5*t>JXy>46K{CKQ%egg8?oR)34pfJGG5~!$~oHRtABnQ zIWNeB%@J%G2YQ-MA%|83#KlL69ex-n@AE>ycb@k{lX{T|TQp&yYooWCF4X~-4z(ei z@s)qdP@G8U%EFjA&f@al9(%%68Naml=Ql-!QXsZx&O-j*A4XvC*yQ9Lq^8!^228dP zw09>gzq^o((Z+nc?>u*_;LgIeV7ML>;bL)2?W0V6M{*YMybqpjmFyngDjZ?MkkK%K3W)z3L>32O(;U+|1hy}&>f55VfF^;O{Bb8D0 zk-LWpq8qK4qFEcR`qZ}!?g%&w&0$3pP8B0L{QS5FK$|K}C8mL5*9m`+0ijnTuFPL@ zpsADH#wmX+B$PT;VL8*jzk>9OeKeXF;|kg(r||CPl)(p>;fVeelMO@Y{rQE3v1M8b z*|yvpAEzIRUEBG^x^NOuGCMEtPCsFekilPC0zR1&V>ZV<<_|Wvwpw;~cdxG*yv#PO z4b2z3)|v+Zksll!{3LyGE-s@(|0kL7asQ$mfkbNW{ms(b$>JLXWn> z_s*N%8($7eZsDfPn7eE1;`gp8$;y@Us_RVGdqDNf#Olm|t)@wm1)|!1CFRze9E=dK z7sTuqHehY{z4fQNz4|Fi@|f0@k&FR)>ciFPAGX!WzT{cWMBO=%g*M}4)07oU=4)@m zJMf9ObPh6XZ>+033LMAo^XHQcJORZ^_BOG8tmV>)$32YO0DG=#FgUb3~om+I6(|rJIwO)z)mW?Nzof>k)T_) zUJC6?D<-($_~)w;`Nlm`bW1ND{N#g7K+JW;i)MA`U8|Tk0T01)l*OZj0lmc=J-hP7 zVwH`)3+?~rJWsI~i5=l0t9W4}pf}dpnxw=HOR=Jhi#U`Cf`tJ=yBpoH%H_*(=X4be zO=+i-7QA{lcbv}nax$%5ytqPa$Ks`D?O8fUh(e-~)!}^wTmy8iSYTO}q=!R%PexY- zA#4EuI(rCtOnf^G$*%dpD-kBj59;TC>>5l~C_J(vuuS^?%T5P0NpdulnheL7qW!X>b9E6z#0hrR&h+V7lm> za0H`~!u_sd-|JSzZ-yfhE~ex)abWN~P8eN_GDUuF5tQe5^on~19QW@2WgQ*!g`X{^ zufs9hS`2;@mfzz0d!m)4_T3Iwix`b$k)0nG{xyEqgW0w$dcbKjQi&Us-TdzoP;AJk z6y-)S=y2VCgcTKQ+b^^E@T{wF$C{u7u}`^;eqgrke$At%P2UIoDdB|2>qhg}AlO3> z^00tWeF4$~PLjjVG&9ewAVtd7WN;_52pCN;UfZDVYG`Qq7V>TYRTXV<`0d-Fu+#um z;cW>6l`lQnlJ1YtU^=N&gXHJO+EqB}L0g~rpp&h8l8d4x>fLndcEa~6P@tDXC{59K z7%AJiOFS1}hB*{=+j_SyKTwLK-RrQ6;>ApCd6AR-Vi3ogkeXd;q;s#eJ%A|__Z{ksch z#2`R~yni~-&aGlJk@m{vk}G}GEGB;mwHP^MQ}H#b7EJE)7qjHN)_3s1W*`rTA_j&2 z@b_al4dbhOs3NJ2p)vHBj5$3qpM#7^M<6Ddbr+b85M)%sii`Ddyz`|gl|Pxp0rzmdfOdO3`YQ5 zT}qM=`)XYn=1#OC&^WVjg9t@~$(!#~LIc1Dut4c+A5u2@QA;Z0`R$e=5;ID{qYDBG z#TpGGY#7kPFY4*t8Xq6`wEJUGWvNB!O8)?eQ{iCy(-uBXlBOtV=2&2ldKY;>; zJUsn!W+`$qh&c@ngd2 zN7l=i))ylgioYNl$}j4OZaT!?y&DLE>{O0++RK;Qu#b1nro$5f>>J&eo7=9#=4!VO z7LWOa?8}!f1wqmeea~I98+w}(7QpZW*6F%5{6u;LQNVugfsT$&QB#E8zQZ?1I`&5I zKeJd^tZ->S*$~YxkrhCG!WtS>?GM47cZOp&YJ~^!h8TfmYFw;+8!>k zj}MPE*Xw{+=I~wS3UPx8h1)dB<5?pRI+5J4*)>-$&t7*N>d*=I_uB8Lo$0h`z=^X; z%sCKl+PJeo>-c~sYBcjq&~J+R=JKg?4Oc}6+x#}fi220${nAd9fFxn{W;AIQ!N)<^ zarpd+ZGP!OjJ;w+flfIKzJ|baU_DcIvy%Ys+98t1c(5IgVBs?&>t9jdyIP`wadtw> z$8kgcB0Rvt@sdqc_IsGe8AlEp?cHil3p0ETCORBPn&`0z!!UdE!?aLzJ$Nr<27(Sy zzP&F3^we(1dBo&;<=Oo>$LD~={?FuiV+==Qp-ra)3KgjLr_ zhU5dlC?DkI4efdK_6)<~IW2dZY6>CbdBR$nIza{P`cg6o6N}zZ;izRnQdP!v0YWUTj|NZRI^*B?C zXdbOWs=mK7=ln}^vrqqLFKoYieQu~D{*y~e(?|^Gj=!Jt`(7Mr=;(1O{+}c8a5T#y zqwbLY-~&pCL?)6QLYNK)`heBJ_&<&WVjwTG`x$m|-M4-MB{ z+WgVS}dlL^a-zNs_z3)S^_f9=|DsNH&y<2cjf49liyKKDuwL zE~YtObK-s_T)o@sB-@3632(XH&DJEZ&yPj5!Ax4m_B*(gwv!`?x`=ER}42n z2dvUOu`#wuZ$FSr=ra&XiS9Rk9upcY#y*S85;uAYHkiQi&~ylC*}o@ifDlO0d^7;a z5$+jcnv^@1U@fh`cNe$Qk&W#;$2NUYXQy#mZeMVzmr(Y?ghEuQp3s9QYY|p5xC|4J ziK^$%^B9NtH}s{E<}dMIzx9Ch>wBlQX*A}-^DrTqkG!6TQNnzvYeySckq*pYn6T?D zj?MML5H^+nC}wIKSbIvG`Ov#&zjzUzTVPhd?RmRZLbvUWPjjv^`zbKP8K5xm8qF&5 zo#9wZPX*iS4%ae;8<0IB>dn9jc@x|T@hw9{g6hGco)-c=#6a8--}k_G$LiHbvOd`b zl>YtgQcAV<_SokxFQ(3lk&I8Dm=5RTSpdAoULlp)e{>PV$ zYxZF*h;WU8^CbCW?h5sf0#vYfG8|LT_=k}Ijbg4zBms#SO4y5AjC@ULE0upfW^(e@ zkww=sjeR{Hi6sgv5!4VKXgG~SA^}6Tj(%4u{(RqyNx^p;^ZB_im`5V}B>S>(sL1`_ zP~;K9r30_T*Wq#;6c|z9q~Sl>be*knQwJ$(4^)Y~~lE|hRY z+h%9dldEzpd#s|m7UP2Awutz!nA7eIs~t5+xMbzORswS?fR2ApyRJNaYPy^}*+`ZH z20jPoAFgT*TpuU;ppd}ltMB#K53OV_4#c}dkg5vYvYk*)nnveMx<{%pJdyh4_i_$= z2_*M+L9o)5NU2UGWz_;1W(Zd!>cfHs(iD7$`-zb`GgzG=y+8=%J=4pKFED;OYV11MMGuXt0i`SU;lo?drOiR|7Go}3L;0^h1!3FF%~ap= zK%tii@I0E}l-`s9rx}X#3ttHC3*D_LE{+gVKpI3MoCqm|Zd=m*ClS;KHz=FN7d>xc z&N6-qx`8F$$P%RLa8S0S-S;}bpM)B4@>_3k4oHKFRvg z{r|SPlo)p(qT;w`6NO1Nqen84Z~!~$gZMz}OwgvWs$Z{??Y%&+AMZZ;R^e7BG4_7` zFQZ*`Ke{LTit+9OzC--{FA6rGI(0oc8KhdbnvV@Q%-LB{T6d_3zG!ZYy}r=?=szX* zM&rW}k-*M2aF00+@DpU&#L?%>_*Lak|eP$Mx zQtzLzB-xHM#j2%hU0 z57!VRCH@9${~ITOSFlp`<8{sW+Cdl{Fp?6Y z#v6oRsUEb}dffTEkJfvCLB+psi*i4nge#cA=LF**@fZ_Kj@5#&FBh)lzxV#=%}HHi z8Wtmy!o=cH+0b0;&D~P1E11No$Bot%gJu62h#)(fAgR+u%8nH!wOHDs1tCUUiRZr% z1Jb5>Z(SMMhdQhaYhaVFx!;2&fl~((G}^f4rmTYSV~J`&fhg?Y^N@RXTu80|!TQLa zZi8Co!ul%P+~VKIUb6Nx_uP3N;s&b_yC;0P#2OsdmmSqG-~uJ88sHypmWjC)oQ)F; zAH}5b3=U!l?6IsDH>MDj57tn+B|G?)o`R9zH~sBfmaV(k|LDHK^KG7hu0kYH$o>0s zX&n>8A)1+gmc8LyBS?2zI1kUo3)jQt5?)qz!jl|RJ*&6pLFIu2V@Ik)l4MUMZ{^nJ zj&*0w2Q&YF`uR*PSWUe9x<}P+=6apmOso9K zz&r@gB&qQdli~!Ia1{Lq92R$s&3hAJJTIGT*em7vhaV5f`OjT!-~U+2mX(YC99>`R z`>OzvwGdw<_W>AdXLXGFzC^{Y7g{VUmtLOk_Q*?P_!tz@fy0FbHiQ1fU6?_u&q2qpZ^bJs}q2 zBGZ(kYcM-Chfd7HdlN+$?qDp2h-nRFuixfBBaU+V)DR`1lf~Q&5kv?QOuUrqIMZ{r z#K1QB&3%>y-RX~E-Sa1-$TM%;nGFXZd{uM5jvH8+p%xNP%gyCV_o>I*}Dp# zPPZVMhTP*1^O*Ng+SF*HiJF7ghaUDS^i~a6;Ih!|7?&H4Rbj8rzEbe%otu5`foy>L zWeAOP-)(X|dYSaLx7cyhoga4!;k7-zv-(kXGfP=h6dZfxHW#e+zWZ(7q>4O;c5Vz=$lQ_l6n?q7IJk6OT_^ z$$zVB0XGc;Z3QsL?sVk^fl=oJt-=)DKbRHZW(m_*7F+a%Fm6V%YwLdrNB1 z!-u5r9L7N9(2Z-AquJ__EZaPxxSmguOWqIPKWKyv!bsfmNLp;tj^(}Ywwv=_oZR+1 z&hugpEs}{6w%&aCHK-ntHUt0R;SClzI@e@_s;e;5P!D~5;I$P}kJ;wNQsrJdn`aE! z6?ABUE?>UfRcN!D_x!_P;7QMq3{2FNzrJQN_PG!5AfCzu-dzcxBZWIMi=vl3BCdH9 z{DZJSLBgf%Y|Q_l)_`AxjZBFmJktwlJWn-GsRXwXe!7e>qzR^aP&s zV~*78KAxFDRG^CfJ+z@3iRZ-0OCQq(A3}uzuwXrAeP4zDsThWNh_eFhKL_fL3o3J) z8iJNt&{_Wk{r-gyNF(46=)nu2AsYhc)nMrMV^pM|`$o|)8hPSa0VG5~1>cqWVZ%N| z5Yg3G>uJL+%p4Ez6s{bCuZ>KUNlC1k(Sab7hB7MXw~+x9Te)G~#lf_Ri}}R=;I+po zk=)o*dFDnGAr~@gQRiadzC8iqIY;>FEnZvc!3pK&^R4JkYZ3TIueI(24d+>x0)H+H zEW4KRNhq+;h>?|%axlmi*;N{xslh)oY=Q(UpLys$<$^noT98R(Cx8+$M1_%x>v2!T zH16gUtOW-T|0aKxVG<QP*mzfzJ z7zWdib7l|7I~-41!Us=Gs1x-aQDOc@8`=^ELk1mC#SB=;g~dSM2iBWi7daD=#2s~D z*6m{5=dW*H%`Bi(0h>fTvbaX6xc&e2hk+e$>5~N`|F2fg{iUfe4&!#w zu+%b~uEKPyG%Lk~F1B=k8{aDde=Z>2N*obZDvl)IV^}-m~|-=llIW&+{2i6eh(^G8hXA?WE|oz|YDJ zc3C8Ib1(L*bJw}0&u=)c-2W(dB5vOh#IktA?JImXG{JVf7lNNWfox1FpS;{`NJkSV zG9XaUgrBZ29s{e5sl%VBCiTJe0f+`JfjF?!jyUYsrD)4VWPVAz@25EzJ&C%FZm0*=t8R=mdH_0UM(l`<(TaTUv9b;9 z+I-~1%2CLxqhZH3jNyP}0DghH);($A+TzCCAn`K&LKrSVHRL0p`BzFxE7UdN+r=gIKx4)u_d`Ud{50j zzypLc(_^4#d~8vi+A-VAB8Zo~{l+jwS2akY*9{t$O{avO7xv37F0eG+9mBo1+%w)M z%t+b@-PD!p!XO%Tn;OX3S8?2{{due8iT7 z$zSR_?a}un;E?4&sg4J9%zBSQ08cGU(+aSQ2@{|uTQu)yRhx56_LCL1t_PPT7!7++ zpM%$3uEoM@(G3*z-8%9VNd-1IJn*Ac!&gD9g8djC=tp-}ik_D<#La&x!NTcEa7T62 zv46b4#b-CR%=O|S`)Z`e`n%kWHz8$TTmMhwtm%B3H{(SOPTL-54YyzA3c=(x+sz6I Jtl4qs+;6<&!Ds*g literal 0 HcmV?d00001 diff --git a/images/test/pr-0.5.png b/images/test/pr-0.5.png new file mode 100644 index 0000000000000000000000000000000000000000..73ab320e4ad7006be2abd20318f30f9f70f654e9 GIT binary patch literal 22689 zcmX_o2RxVk`~3$c6&VRhnMooeAu}VXL`7z{L^ct!vLgGDN>-92gk+R0qm-m<*))tY zve*CI_5J;y7asBX-0u55uIpUqoa-HWPW>d!Hr8z<5{c%Ns`3RAi98qIKcJ$-*ITDj zpW%PUuAR`mrs-gL?YgP+Wzt#GYmT-K*KDoLINUBfyI4EeA2}?3SX6++>e@9&7bzhj zyZ`@!!w$|@g!q22nBgK@9aZ&QNF-WQ;*;#De1<6*k;Rnpit@>7n#7p%zM@Bd{0Mmz&cPAV$Q5{E zv&AkRGPdK2oGzdrPlx`7~2C7$#ooG)%eAV}$yY-t8w*R}a2)_~f-~Vk%Ml zBEDp3YePoL%^V^k^u!fC|5S~&WmU7dJZmuSn4j!v$Et#Wl{`?rrtVIPyEF_0X*yp&NgGgPO~oH3Y?GN9;qZurK3^Y%|^ zCu#ZOP7}ki{O9Ms@8v({JXZ&4ed*R64)E}p%ujUj9Xv=s*4lAp$37XV7*!rCs^p0Y zTa2;S>U4u*7sfWV#fo_LuP)89R9m-JQ_#wgNQ;BF*oD29uU(tyB%U)gG<5L|`#LG0 zdcab`H#g+=ZGTL6)IQm%n(aa)(hfFBQjBV#T~E;~@89wpOSD+ek^5x3J1yy~Bp&mz_&3aeYi{{j-Z%Q(rXX2Yavg zpYZTF)}CuD)Y?_)D_^lVv|T{|B~?sJ%;b85v1U(pULIY*7Fs4{6D=)9x5@4xkJ)dj zFJ3U5xhp_M>a-RAdgFKb+qZA4vh@n`+^5a7uyU{m-hTM-r&}l4eQ2v~*Ne?zOoED6 zukvHwriY{ChiZbh|LDj~Y4|N%FYGj=%qHnbn*G+K)L-G9f2Db!%*sST307^N&x&2f zvi$lYcg5<=83Elq5+^68`$F$^5!W%Tk&zJ&F0L90ny=gL%Xv$^b{!9nJEY?;65L_z zyH}`Uk<0SK{hL_mjCFN&x&@Xr!L;m=DZcBwQ&Uq(e&sh7hWc*&K4EJsz$9c8e*Zqp zr4mQ7ey>>?{8ONH38OwW^@f%k%S}&DZ?U6tJt#X{VD--zjmdA5!=XD5IF7uf|M1}G z_N`mDzWw;IzPr%IsbTN+fz_qibD3Hszp=5a)O*CKnGav8;*OH>_gPy`ef)TnwA)10 z+;|85?%iD@a+=KAS-Z^Z!>d1~D&>35U9C=TN{~n^Dq_-*TjJs3;&NPFbi#;IcH|m2 zd}~Sw`n@spUWi59mgVtWO`v`QV6H&X|2?A)4_5 z&n8N;ZF+FjHCaM;z}u_edtvM4uCA`|Vaa(6nsl4&^keQ5kF2#Pde44t$<0nR<(T7uUxKsH$7irG zKPoCJCN{E7nuh0Jet%cw)uoSrJj>5%YiVI%LpA&DPx0ASZ9&?QTAN`Jv!WvnJTLvF z*buq5x6yZHQi62c$Y>wpYJPtHz>XDzV*3*o7LOe-og8D0+fGAMhY%Ef?_S4%P1h@z1Co(% zG&N*Lwbqd#@K(c8w_|ZptVbKI8M8D}r+`3miTtU$r!jd7NVx_?+Pk*Jvp0TQm8*Y5I`&5_3PX5p|&k0Qid5{$Vd!3cgo(q zckdoW$?h{0Um4FncjxE!QaXR0o|=-P@CIEA?meT~@b$Hux&m&urN>({HMbkIy|zA` zu#1^lDYs+Tcw?FQ(W6I+MYq^}SgM-VDM&icFDW2>u*&Wp&-Gn9BzojX%>DZz*m`Dl zw|C9mZnWum&UyIo4g@{*(c-VpVR`-Z9XCWtfk8oA7y63)(>Ad6Hr2Br^nLqQirJK0 zq9J+Cja~en|Gu%22*pIoKb_8S{`~oxB~0DwwG%nC0o8u@j66?;6h?-JDF=p;2@XR-zDwJQV4qUHWF@p(hX^PqPy_@ z@SJo-uMO1^%MVpC+$X0d3Ys4|^jF~Ku!2~m-E2!wo6i%AdAvR64Hiyxa`KKO^)1NA z2rEnJd&?rKx^2ayMx9?>y00{>d;QOk7QRD=-lVMmIq>-Llb0_j z+I;_-Xpp*PrnY+T6tkL?<+)!Ou&HB7Ll6V!1 zQigicC*&}xakArcT=zshWP_L*lW5YVjr3ZF{IVoSd9~v}G{^Mnoa|rLH2a;ewY) zf;K&lY`4y*shA>Ct2j`*&O*B(-?a&1?;WqxX#6Y<%nQM-M$SuJrlQnz^&j-hB6#!v5+^M0R& z(tgvo(VXr;mgkL(A}cr6eq+$?#Xj8c_5Sv*LsP(Fe}6yo?m*BM^IW5H$8R5Yry6an zujM=R%azTw8z71kvmY3GUHQEe_PSc4B)xepwheQz%y0 z)aO1-Lj=?SN}3w;DB0lFR;@d6af8@?oy899jg5_@uU-))K5L#bYk$5-`m9O@)9eX; z@PKuqrgXIWNie<&Mf4vwRLY zxqV3Gd!HMXv;KH*>qJywUdul-KK;Cg1V)SnF+r)PXPmY zURyhOue94h`9dF_Mn7OVTs`9r1|;9Ii4~FN8a5|zU<6&kSGo%qE_}jX5ioqs2&Chu zo%MHB)_Ya1{3>OUy2iIWH-3wF04y3sH#hN$wRwY#E1Zr6%^C^fG^8mEfp~?8_o?ky zB&a-P(i>UjeaZ}EN%lWY7PXiiDwdvTE+ORToj$!S_Wfu!@|`WBg6&vqrojIFbq*a0 z!gph0s_o0?w0UFS>0;k^B5}M;_V~8@$vM72DP|!f3#`8@r_=uC*-w7!cJVPRqB7c%d-j<-jYFMUf;Kj=O7`ZUPqv2p&C!liI$h%lQD=WS)Kd;#$X$S}j zH4Dz^8EC{^G&1_Q&u7t;Y4`4TSdauZDRrNI)Ucs}o3lkJEFdSB3B0NhN(L=b;N>u`#EgunVm4Ug6^B zZxmDsni7iTJ*%j#tz8;Ec{L(iH=mq{%?M`{%eVROKNRPts$tj7(MAw6MGd&PP`R=9 zoB`jrqgA>BO!#@m3lv;Kh{2#eq{+>-q^n)y%dk&Ozkf_>{Y8)-gEiQM=PzBF5Zfwn z?%W3(zgH-jR3cb|KyJ_>7MHkBbD_eKt*xz<-2af*O9Sr=DlE-4EDbKS=}_d29gOl_ zHGg=P8m9v&kKHC+# zAgV-&7gAogv6$%0UqtPC{@ghdIEO!fu7R2PEci;ApoCuPv_Cft!w#fI600NjiIs~z z!&8$UBI*eoJQ(_J)LGnd;J6zuay(wKm12osl0$y;mXVBsn_j!vqEour$wEDPUs~@> z_F1+TFs@+B&`43iDn$MI<*62(^84cz+jhLws3u!F=+0qGywUA62jgtjO^T!o@yNDJ z%*+j_nRijSgh>7S{ea&pqfB(JKgEpZ%Huk7qbAEE>Pb>Tz}#Ceo8_~lsYKKucF6iP zSco3WsW2<cb{6Q z(B2`N=1)b*{CjQa&InKSm=yBuOPO=A2?=2UVkvut_+HQm7!*+>^}d{X_2>~f zqSv1#56Q@#?VH?!HZFc!91q_xNNX_}stpBoaZ^1bKtCr~B@IcDqQMFHXh3oY!@H($ zMfy3o7rIboy0AL?l?gZLZ0$pUuGl@Vum9dbdiwl1WrGu{_FBLn$N338Egc={ocs?g zJH<Rb?^unTw7CO&YIWy+UXvdzo!_K~FEVwpQ6n?174R)N1R@ zRK->5k&L^y7Bp2=Lo}j#hK7!ciZZY@q~_&)$}9t=AR;2Nuaf)Td(M0B*X;K+IN{Dr z!e5muI_}Du*bu`03X6I0;PyUQ&*QwY3jA^Y!;)_;M1|`)V&6S%yUNKFh7Z$%E|Y?; zKo{_LnOfW8)hM&tw#B{!B*vp%liCXc21NyCClp9JwWNdv$gN~!eI+J2Ig(%i0I7so zBWgrE2FI+fm>Y#6{3}d|*Xsz59;iub@6MpQ;x&38NBaz|f&Ayr?~F?a9f>J7zIFMf zdl6Z@TJZYX3Q(64UqR0#_>beBo}OnCxH*`@g6PkXYAXFo9Y-Zdm=T3apEWuL2LGo| z`LG*_+yy`$t;!Sq&O*^Jp@}y{F<+NDRGA!)5O;cWrq&pbSe=;&%8i)B#PF#pN8$SD z`}e7Gw70*yv?K0xkb(WH%>)Ow&wYUG+GO{x3z@AyAGp)^oWtWjzL1$mCUGy*&aQ&% zE9bw>^srDagX;QIjY17_2JtCS80H@nkFf}wkSKSsgG zZ`YXt9aAJpUk?UGHOjrEpM#|l5*ev-;Q|9VCKTwK>EE&6qTL0u13C9;PR_26+)QDq z+F3Do?rciGuoY}7<^i)2p~4-w4SNw}B>`+v9#ta{`hyDOl$SS_OzE}1&M?$B5Oj!^ zUAG*mKxSzqHs`ZW?Z*EiLF!TYjF1fl?`Pf&bkkBU-_#hHnTONw87V3#kS)(ohJofR z-E3IQ6UqIE^tEP-Ou0{omDmp;R;=t=GZFA84=-eL#HgBxv6_k}V9BIv@tYRvo9649 z6!!$tkq0SqUUIp3aTn=0SIlv+(I~e> zzCkI9+YQoLNXJ` z0G1*cPZjef%L0x_OalL*LoxC3p(w@&fm&Q6%VuiYzE~A>*{Ym4aU$0I=IZ2uAz!fu z4bsxH^r^U%2RGPij#OMVo{8OoW_FI3wXzcI_l)G6d>bBl>Fg5HZhoqmo#4pkw(A~*>rGzrJ6VWa2i3Lq5n$8BSc zPVyJLYEC|)p zrx_HMIS^*`ytp3O1qUB-nU3U$5-XVhK&JKg%!tvnQO5kf>exZ*>mOUjJBbm z!mQraaUay)FJ6e|c8niXdstEQKV3v@(x^--n6foa|F*_rbJ+PD?J$fGQMw;Hb_@|4 zNjD@kQ~?zH(9jTRRY(?m+^%O?SqLIz0o5dIGVHdv)B9^*gPlOV%6ar?TUI$+!&Z+m zHkYQEv<&eC8m6$#yLRnDh<975u=x=nL4W42X4AsTIX%WeS!D4J5KRA9(3Pk&HM5~=ST-@BKV|HM6QJ{hN`1F|Ig1r3yH02d+|e%*Ef_ooqnX!cSS??;z*IxCt2<-t!(c&YVrlOI8*T zGUDdqs$$tGN<;GNvJE!MJ&DJ}vNbL4No~7|0o~N1k8BJA97||%(H+a|z8Wth6O&^4 zg+Y|Ns;a8T)zrcbwjCm2uI#g}Omn{}a~I^}b7Vc?#+dWmzpclg`k(%k6X7OkR9+W1 z!<~-@H@7_~w2F=NQeO}oJ$m=?!}rp_a3QW?*{G_iF-Bq@&uMA~tgd>Y>_rkn6tB8k z_~`X({Sfm}osrjGOQL@~Wu>nFqK-Q~YQbK)Nl+-yV`VW^UnPwmXh8jy&G>DnIW6`7 zjk$HlP@5|mxyFje;CDWgwyQ@0E6E~MDE=j{Os(6Xqw#3aMYeGlT`goaH8thq=l4e( zMhsF@qt@al#s$;QS)2Kw$&wg$WLA25`cLC?CD(p3U<(n$MSqAXOxBXyQHCPu zwN|s!&zxoR|CYFaZPpfdh3^j{Z*Rz$RFVEytk#U_U&v$xF9i}y1uG8V0Lm1;;`zc= zxbY1{8!{5Ie$DkIDa(T0R}1y&GQHF$AZBpJzJq!bjGH&*q|mwfE@O;eP%!A7#WS6f z*G9P+0-OFf_@QoxjK+6bKj;3hEN{H4-~f@w{*1M4C-5bI9Olj>yxK$Y7Fae1j)62?rS1W=f9xY-?*H%3)MZ$UIml=QTCC)&7v%ALg_v=;FBd-c&R` zu*Fc$%a3*spMZd^)-UY_dP^fZ2@5^Ff9mDkC%s`h4*4lE&$Dd6LK89yt_ggEnBl*O zYUd_K{M4zf!0pveY}Awi(Kjw4(xhKdfE2~Uvk5nX`6(?hULcMJ^=0|cFZZ(B^4d_|y;0(7v!6S8#&K%MjpKb;gi2H)J8uHM2v zfP92CLT*ls*3-<)n~*RSQ;#EIVZLzd5bVww8b)+?>)*M1cL>=5`J*~wkHk4$T`Dld z&z|uELY4L&4!IPhc$2^>4GjUqlBh)jgM+udy0qlpO%Pavq z)xvH&Yh4WJkt-hu7N>_Ly%vRMW@do6h?LoO^}K;W7~(6k41tThm;WfB=%Ht4j{?Xi zwg|xIvuE2-Ao2+co6Vl1L>&Bi1Jo;I zY^0!@!lk`fq9Ukv22ZvSGAraGqM|{SS0A}on&4`o=SZ)00t6FWAVG~F%8-l{R)$cL zodB>Px1&_pbQH_8WU{Cy59$gJlufK07Euc-LiAfj9d=*dSB`kAj*-V^$^eDMedg5c zzN;cc{q$pQxytZ39k*G|sZ6nGFh73w9^-L(Iw!<2wg&8kDhtuAsU*ZBMgD9g`Aem4M83iP zguvzD;SmC!x!As!P<8=wkyVhiAi-MDAtfueQy{@0LEvXthe#rbdS)OB7eNLDG3u}K z3HtU%p7|>EWW%`@%E8q_auSH_2Lhyo@dG6Hq0j?U^F0n}Po7X>B$O^+-VZ4t7<*zE z2?3n20Cw9{lSKajnEwDZUL`v_!C>m${se-C2(&m7t1$(+YZ$bNxe3rLf`Ix8x;7Mo)$|p|_W5v6#FMU6M;evk{vrvs? z!O^bd_S?CutzU;(B2+Tuj)GIW7##n2L zvx|#}^N1=zb3uMV(g8$4)hOvU!Gfsc)M0p?69ogt6JX#+U%9k}s9wU2?W4IBpX|+z zW@l#T*x7~3ZhsHr+}M`lyO;JW+bF6LL@)#avIZw)d=+hNCeq&lKuQIpNVjhvQAMDt z#R4Pn83ay13M14UWfgr_+W1+jgApIVmuY%x74B_Dsi2<&ZL0 zj4-A`KPaw*&8g{Wm9c}(*4-pO-;I@i1VUXDxW8U~-N zfxHtE(cQy_x4{MaKKOcg@Q9&s{W;W*2$F*vyDAe!*h^*M3Lwa4EWHx9NmfwoWF$hn zng7+h9bg3fk|_idG5)~=NKTB~f(%l){F(6!(6FdmxIaC4xd&TXZfRsE(r7j~LQwlI zo(WyK#_}1|`LHq@hlusr+sEATK>o8=QDIXXJp3A%z1&=X}m7zlF$@}kpF z?beae(XEP~ff-Qu0#9PEV15*wobov$5#|tc@TU$6T!NluA{u`VnVm}4=kXm{_JJ>! z7qzt?J$zX8lNB#~e8D%uQ&)^Dg#_~e!jt=0X2xIY87pv~PCU4& z-RT!j)f5Kp2Ibo4HG4KgB5ST(Wae5wq*7F^AyH8$&z_|@Y*f~1+0U?i+l^Vgs^LE= zpKo;*$T;8&K`x;F8gYI_$5j>e1hNajV;bPn{Yw}1^tK{-6?9P}jD!CB^Q(6cMuUom zCJ3vq*Pd{iAn6gH5<(O-t>d{J+((b@Ldk6Kbk)P9h$O2k3Xx2f-|Jq9&jH?aBUjy;ab@X0{5A}IO?yV$J@x}s4O zE%e=>g)_h-;r=f6A9-X0-}nL*Q|W4K309d<;K8@p&WO-ZQi$7s4cSFoxInSW!!UQ1hh2-`#nQ-ikwngh3@76C9Mi&5QF zZWM(-fZWK(xDB);Kop2{z}Rj1xu`9*vo5~jg zhte;E5?ZJH>J$Z$m0((OzhoH6LB&NE0{pQ5tCEru7#tZ(7Aro{cS~xA&-MhNEmM>)KY(ca+rMpO|VOWR|p#i znDi5%T%timz)JM_^95BN2BJJ|69j<*kd4X(SqK0vkP+`NJ*JnWe&Eh@O`P$EhZth` zEgbHsPVubk7r2ie^O)fQkO@XUFh^)1SQAv*Kkx2-B!>v|`Sa(gpBX7!hYoG`UFqp3 zygJ*qpQ3B}4%V8;J^gV(sf{!4 zB*q0v+0}@4N{%_~X(Dpq&(=h9DiKg0H5@<;W}s}Q@eufzYEbk}(5XBo zr+|h)r>Ovsq9~ba)zoOA%8ts+&aQD=Lj@66JC%qJ&4s$40 z3fx9LfBD>}&Y0>gmNt3yI6furY*gq6{D-%DzItI~2G?^}`y0$b8b(wNNL2luui>u6)K! zR@XFq5Wq^(cfCyWl^X9G82s{Ke)O8E-XiHVw5dH?F93v9Zi6Tb^&&{gQzgq=F?cZS z5VD6NRI%H!?w5&5&~I3hv+eGIisi9GjEsy_4#%iA3gDL_B+3K{hkC+NXXQf0#W(PU za%Q0b@D<6{6oPWikuhR%AqZ>d8W~DVvkp$ZtMN zWGsSf5RKn7__$*nJYi5-)@rUmJ=|8AbUvspP*I-){Qw8#aF|d&K5-Rq{iW)p((&p!r8#+FtTOQkr^u)z9!SYG7n;52>YzMOBhRvT7TwY zllNhR^1Ip5<&RhE)APDz?jkUMoY*@XH+j%_WOX|s}eTWb$*476B%)$uW2_<}I!4+Cm7hqRo?%lfuIBte2 z4=l>22B(^FFN9tQlG#3W+b{a;${89mGaY#+B35-V`gQ$lsru5Q6R5)o#dA>MJIR`tmqz8;1cnAl!$6*Ed^Rp7Z~~^`HT- zAtM3kyTeKr#FqcPIi&&i&RaPK#fpdT4MS~NgykgAq7Oz!1w}=2Lar+PU9o4lA*#V9 zx16_ZdhxgKMi>D%;S55q-9EA(4rZ+0+O1F9u74Nma8K~IUt(v*|7_v#%PvACO<_`yOn z{)#hkc$u zINiP{U4J3{yDS#21@8%1NiUy_WHXiDSUo~`{iI#T7^S_J#iTv|@JTxkkciKo3U6rx zcrnNO%1a&9LzQb#Nqi|h#JKH=c2>|?Ts>6zfVjSW93b3$y%^cMTA_0) zP|v;95o52^{fpxBbw~Km`RJpvxdD^8uBj;}sx0*t05o`C7dpdtAJGLS{8E9t%|pdN z>9?PUCl8vc=Y)or!D3qOQAXcFr?lE}INds7*MgwTEA8@)x)hFQT~w}m2%YD?haN~a zfyY>Yn>!#$#^XPleKPlZeO4xGe6rdav9s%-?$-INFI_2uS&z`Y;izagk@nheWLO-$ zO*e8F#g5C)myr$5yYgTP_<2pLz1YE6+-*X49{DC8!shn9(A{4s1W@L~zz_v*W=zCh z>AQrQ4@ehf3x9_#(#-_whzYPO#C=S57luuC<_FmIzK&ZPX5TOYm{j9o5Xsm50N85r%npyJG2IC21$tT3L&+iA&c=E+a6A+k!C>z<(yE<@pdQcqFxYS1TmVlIQf4*l~8b{;4 z$)zpM@0VX)}f!Rir#b8PR%{9u%k$AJl2e-6r*) zv|WvVXEEcxFRkS*VSW^pkSIP+OKtR_?SN7Gh0IvTxgrnNh`DP58syrUTB6vb#7tQ> zCpW1?vb}q$pTlAD<@4uGxS2b#OPYWfbKa?Fo&eL4Os&Qd=VP#kP?PYb=4saO6`#tCNw6D&-!j@?!|Xc$BQ2_ZDXh=3 zARpCI9$cmQ(b3UN#rf$gS~g$dVEKDpSfdQTpY661dx4CBH2m$Tp754#4W8SqD&{HY zR|D>@w!RQMaRyH9AhHS%mCXeyA5-L;pJ=3fod4Z#oIxj^(4>~zQGjuUq2!avnv*(V!jVnBvNSW= zWbeatv64`>=ph!LIeprUKkhbspHEt>bm410bLx~S zFp|KrWAUz&-Eo9x7!fls{mi`=Kw(kd%Re(F;4HUH5Vtdf*?eY^jww`Gom=1eRU#xR z)7DU0y#dLOHa*AIZ_O5`=+DAK)49i?Y;f+$Tl0dhPH;wDn53^pzAG-{5EaAbGuvM~ zu{FT_@cYm4+2Af)OM*!|1ADB9@lvBk^=h7LdWBpY8!O@j`%4Jj=?C?PV5vwm*i)=S zEJDyKn+|4?sg?j|Jk@EORSy)>hpn|bU@+1?b7x7t-3hW}VkFwDoH zl8aD+P|Md9cwG5{kh|1Xoy)ve+yJSzpg<;(Q2be3x$?%cz$4MB{tB<7!0;6=g3N86 z8+4E_v_!c|%-V-!**yS}enz3hY)Amjy@BIv+gvSeH zYhmAOAY7MkAF5N8ZcQ~F%H@!f>i#_+lkzn)7yI^!TpDRc^UP;0`RSjB3>Rkm7nBX= zcA8T=l+Q6?uNXS`4oU8SHVIcT4{Di2-UC~9o@L6#f>uVPMA`l0%ncc?d+#9xB^3pK z))nd2B^&3{_c%XRa;$y&WeRf?2r_V$s3PIG0~3F%$#Uo2u+feP3D$_eNgUQEq74D1 z&j~j-w}9sz|7u^eIObv+`gxkvV?Ns`5zWQzx&setJ~4q^8U(|PzD`!#5Lz)B;1n?U zR1^H=Ld7;(T8H*$S0d`J7Mj6fA8~ruPWTH5YoKnvSx_Fiu}x~u!a)+vFU^Sky2(>;hDbSn%$^%3TwPSy^V%gS6^m_$B65!zERN#vW z4ZYcA>!!I1FBcR*`mvIAvmyCeSABAw>Tiqj>}!9tntSqDrDn#gdD`irE#M(x+E7Zr zKv1(N>cIk`W`^vE52T$#XnqO7R@?(G8H4TfGhVY?@f%TBaW8RPhvUc6x=3> zwLOK!97QWi6Khxb?mdcW0+!)_yP6Oo5rzmB|JdYj^bSF06%`c?d|~XnwhOeVs)oiE z(&LPbVYKn6S5gryVUG5p5x&{|k&4enXnC#0%6VD(5PsZ$-z)6W4@(z| zR9tlB4m5lC{ox>DCc1Qp3rr!rFB#V2!S`J6b-g#$rRj@e<_+9vgy;imnoCHC77WBx zmZ49Y2-yn_beOKz9-Z zTIm4?5qA6bjDbG8gNMHC*}kCzIv(8*VneHXUa=L>O<8Bdyr2h*2$9~#Kc|Oj%IS7Q zG#f!t-Xy)(rEJ-Zq0#VqZyT4-wxY?8(!a00Pbx;X^y`X!@Sxkw`&sIqlynF*rzJH| z)ZSQ|>sXU}Ux`9U;J|@~@j1eoY=16!xP2_cB*kQCtA_Wpe6fYyqxbp4R!8Isl%}Ou z;jXguS;MU~$s3yt2E*-Za$;h41PzL^-&yCgHX;G(nVCK6xS|E_ENy0B*dc4p+AB7+mrA%@T+`9zCf4{_oAG-C`9rXB#I7r+tFUT{T&_?$;eSRSe$sq}8=-bDdQq#?KwQ{-$>G)-QY-`vA{ z?|m1HR*BEs?28M~u(RdE6PNEF3sqCDP5`NQJw6rNNz|Aw@oKz9&ZCW%f^03(b||In zLz{P(#?za@?4>Yyz&DKRpgG^$U#tkrgIbayg0^BJ$a z12{liT0Z#J!EX3P46tNj{g9KrcL?l-nYFd`zLfKQOit4W)~}k=n^zY<^aizhP0Fx* zZc%4F`EbkJoTrje@ex{1vc9J_2lX48BNMdvH#ayDv@K*tAXpLGPGN#8^(^l@DDd#P zFl9%R6Z^(>rOc;Kt(?!@P+DWOC5*iU6)46UaZVfS5^h1b&?#%5d|TW)RhbK#(+LTpg+J@*)8kC;3`RiAQ2f{wvZF;Vldzh@_oI=N^k_#GK9fjc=w#7ZwEQGU8i$4hFI#|VE*dcUP z1A{}Y!{eSiN4R2C@0X2Ag=UF3MwEds^5x9C@;zooBgDGPJ&4;5ow? zXX7c6ZGh=$W8aOm>}VL4Tp#}_#kR0C+ubdN)lV3pdmEb*j|Bjsl5`op5@l~NAspCU zD+;T3?y)O21!ZYJdO#yNu-as*#{=EJmrj8S2D*p3%)_v8N~qlEw}>nfw4J5{S$BlH zYwblD@%`KiO3ZQt`^dlOiV^JASCB$KC}EdZr*Tz^jqHxXnRT;|oeF71+go zl#sy1#5=8HO(`Nm&Fxg*`W5SJR458Cy|EQnf`tuQF1jZOorE_|?22>z_!Xlc3=sze z1<&eM2Of}+U+0%unw@be=CN}g+4c0s1tveKg+j(M z$BS@o>E|eV3WU}9qyMJk*wEO)8~)?@vURJUmE)dZf%V>PIl>x2v^p1BAL14lZ@06X z#d-p~+kc#iev`uDJxCD}ghck0H>YSn`hkY^8l8lrO zGSuEtUj^-OQGj`)#GB3 zAX?EU(vtZBpcTy&WG_OdR8V9Q&YKKT0LQhJg)MLYE$)jKM~eo+(7Y6z|6ImSyX^JQ zsn*R8Iy-d<`zEwg&+>iX(Qc{n1}LUl-SzHM7KnH)95Iqy< zja457F!wB%6ILN625kMz>}>B$2?~5Z#@i&lQQz)w?k|`hJeXrl>Hv}OUeKGI=d>cex&9OMNig~R}7T=+V zm?9opXQrU5d*9$Gl=aIA`a9a=#3g3N1eL1_)y=gto!63uuzb9c1wh$BIwa+8(@5!W|&|9G1vLDmyZO)eNG{@%Vg4RRJyjG0pd zpwmR2a!m}sXzXnq$y9uj#hmEaf~SROhI<4N=dTao_HA-I)4Z;HsAUSFZxw?A%H;yx+xxt2$T!O4qg$e z={50$h*}$i$NM*5Rf5G5FNpB`^x2<6Py<^435MP3NC+jYBrruVSRH|vNuL_Q^(m5e zLJQZ+SNA*WKYc3cY(H&7-~Z1KCU~NhDVHX_FsyT#%ChI*u@Y?7_e?3yrl;4?$n5P; zAf<2B`}^9L2fEAL=Xk{o4~QOBi7v9xCQn{AyCf@k>wj*>cB_J+w%C$uf;M(Li~W}E ztZkocVtDcIt^2zJ-A7OEA7^mutIf8Nv3VF|YuGWU+eb$~zAW+26PNcTd#iy%*)%1n zt-AtxTz7Uys0dstp+g>ki~c@3!w3PT;$CcQ!1QnfQDy6UEs9DT|>~LTG8=fX;ViLGF>ygXM58`9guSb32bORLq}_J!zzo zD0!1O_yL9`C;knbFyQAFBFE=u>$$6n?^zwQ5!lFPhvK@2Ygfi_u z8WmA#Xg|NyRhH$H%1QoF$5A`=ss8$^sfrpm}mnPw91`JtAhC44^2WW4qj_8Goav%%kAk0yI2y za)Z%D2RYD_D0n~+(t%R&*I(Apxf`$cgfgk}(IbB{6ViQE9_Q{_v;2;x!so-^e(KV6 zjY*{lNr0wQ<}!t6eH>eb_?E3f1l5`N)sJo&Wo+|o%ETJ2Uz0`q9LY;pzI-fBsOX!No@|R8`4Vt?>~Qp?IHN$ zNPgh;9wD9+Z5ZdSe7G+H=?t>a-G*6!Yl!AjcF9&B-&&hjj4wY(zO{6)qP1s9f9NY* zA~pRLGdl-wunwc&V;3Kx{NB64KB(rBe4ezFnQj%C0t~mq4^@7gN>~T%bVGnqu)oCh zR6v%7Q55buskrNK@^0R|S#fVe0(oUh|MyUEbP5??wi=k34V@jXGsDh8z#KHz@c++4 z&*I@hvkrqD+TR-f=!J_w*3Pgo-H}T6yn~k^6kF5V{-oxb@=JlarLE{_+18Q1CsSi7 z8MG)tuY9^B?{V9AzkDG(>wY8X#zci`+nGnUEvUv={8hefmnf8BDg(e!64j%Nu%T@5 z$DKwTrp!p32^z4?)Ya388MAvC$NX9_LPDNCC#rstAKoJz7!s)bnfJfgO}kn%SWnvA zP@zxWN-1wx>9aRJK3>>*Rw!~f%*JhFyCNTF3R816{xuNFqXe;-Ekln|6pG$dzN(;`btN? z57$@g?7I;6ZRX3H6H??>r<9`BbU@2PK=`XVpttbo%7Y$?^|9@8%(?%khXnDRRiO)&Sh3XjpEzWyw`3Q8t^T;FT_ENfe&G-+a}i(kq%_{ z@B%zbL{ndbpIcGM=4YJD$kYGFx4ocK?}v?^EgZ-@IL)+NX7lt=ebuZU&2dyTcVWED6^L=f{iSP3Jl{ zG%jB*?t$zHuNADCc0u(1}FkERyKv|`dhI89YaEUgY#!1pc$v)%%^=T>Np>QIJXD0zmtF# zghc(}gBk+yrmC@dg>zvYV0?E%7ly(R40Ut+E=R_EWXH6SLj4@zUmPQV?yF#s>ofJ@ z*DPA6$V+%QabL(uAK`q$?rh&C~Vc4CCz`#$acVq;yX55d8at>Z^D zd55{Q{qyf5){%a8x2(sse7m?(Pe?M5&jWHsOo}BJ#1y6XHMq#cK#MG+Mys8j8c^w)peG3P7RK@=yfhd z^Qn2;vx_XiQ4ke){zy9j3=CyvB-g;ob?~sbU#n{_2mP6s*BKZX(B2n<9#m7T9{X2@ zC=ZD9poVe7_m8>ojyQWHHGqx(d+rfjWN^4ur#va%<8M?p14EZNdY%710thmqwNNGP zysp#x^RE`FasHs6Gm&y+(9C&6ZPYT%$FaB*Kv*!1kp5&BjklT{>$(3Z8{F4uO{OK z3|qv>PlPEW4~_;r-1e@`ejB~f$0B#WppjG`BVRwj0Dus!eg>PHH}+K!z1VkGZ_SF6 zI}1aO!#el(I4eLfJm|D;gIT@_1RCPh0K&nCEw)W!6-UAi0K=-&`aw7xs#y7DL%$OG zdYbWDYqW&ork1cII0VRu_+<~i>&9%DT+#{ps41Zma8ja zLt6bVzhOJ8X1aD>F_QnPP8aXc10yI!!p5ym=| z^GlwfA_SN~+f><#Z@2bio6Un&mcV@Hb+g)7KN)NMG2zrdgpLlv9z-0x1y;ojdSNGQ z6llo#FE*C&hY#ZH6crrg0w7Lqcli94KWXA;mj%zdEAjl9Dq%6mrd6GTH4ie|P*efky>ENV+T9m#appelC zq4t)q>h~7=zNgSw5cy%pY}g}_Qs>7EKiJWSvFYw)<3gNg!x%ShS=WDDWejxd$fo1q zu3!-GUw^T^RgC{YbxIiH;&yZtCp2jjzwl=|I7O;FtqmtDVe$e%ryvFpr)(uMWTHm_ z>v0Gs{#tlQ9ibT!M;sk;di5elMu$szbnH zTnCXFG9RHUV6Ritma?hPeRPnSjgOD73I|;fb=B(nLS+NUxgjyGcTQ|XM=4DECPefX zF{gy9L4YYNA!PJk%p9+p;fd@^hp+38JlxOu?;u3w8=QRRM&+SLkyhY7M-&2Ey$`9f z9s-I8U=R;4uTwr~%fpLim>BO$QzHi8nA;aLF&R8_ylo@xM?8g}wb% zKblnFT_wCuK*iG#?pAuA{J&PtHm0dF48sUTEY0v^LZ=q#X0SnL$PBt=RN$aAflZ1Q z6hhU`iZr!Omw+n>~r{{g&=YF2+zB_K^3s63NA${BW{LM$vwM51Iz8hD&9!oPv<6%xk zjfpGipUf;=>9kty=L0HK7Ox{{;tsT*@fUZ+nPqJDphbF4?^H*=Wayfm{`Lss)L%MX z6&O@7Vh}Tvrp!I{6FDE&{_>Pp(AQz%%|CAH2tQzFyG^j;tAaUmO-F~j%Qm5xh0m2j zk6cK63G7y|!-&&&ot+FdDl%a^oy;9R-|Y1BxRZ0FgZjx7vY^!&eKAb)Id?MUmBM)M zA(P&cE2)V6^HbU)E_VCCa$k~*0xj=%bazu0ECq1iBxiy=yfG?^ItW^&qN1W03kh4> zuJrWroGR#ms<7C#IF}#}l?cUvH`luDeS70)4D()#fu>Y}LE{hD{1km)knfP;zJ#Jt zmO^Dp!wRRDBb4bN8EqgjD+@ZPWb3uG7WjC`xae!WK2iaC&h&~`rz{O$zrF?Z>@@>3vIz*&p@ z(E1vN$=`1iJ!Y0Q_X;&?=St4K&PZi_OfZLWRhaiqgK05LRG8G3Bk{*GRKZV{VSR#9 zf*AHtI!^&m*#BtfBvN&TuOn7SfZ?9ehe9U%lz?jW$s~F`(x>W36ov`UjMZiyr8rUT&_CND%O2 z8YPEdJ#`9%c^Q%heUrZ5OnQQ@V2K6SckkXV>WEF0qPZ;)2;da?ap;Ik`7(8BT?w!` zBXXho*KZ<8z@SSSH&#ne(%s!k#W9th*DEx3jgm#am@J@KX^U-ufbCk-MApsP#4!Umvt--OLjfeRG-rwBXPJvUKU6*&7ODhrr?5R z^_I#6fuIE`R`egg4TQiAaL6(HEE{8^L--#tQ{FchqyO_S99V~8rTPTF%3+v4-bi9^ zSIIdglfm}JDUz^oYu0}$GBHlY{SzT%Tml7r6Pxl4v~ys{qcH{RRe|=2yEq`PL49;q zqX9`&^>a^8D=O0#JXDqgx+fFJC5y$90wUU3$FG5Ojt*TH9eoj9nrcu*gr6f(I>06; z{(Aw7m%m3}5Yk##S8|EzE+g%ZJMOm6=spGhmpEK+JJsuq-AD6_{6~rucPkI55f|)} Mn2@~Vdc36cUk`hf4FCWD literal 0 HcmV?d00001 diff --git a/images/test/pr-0.7.png b/images/test/pr-0.7.png new file mode 100644 index 0000000000000000000000000000000000000000..006b2fb9d5f1ba90e239bd5bb686c40b7c097519 GIT binary patch literal 22586 zcmZU*2{>167d8GP$yCM=GKVBnB`J|ai44hsnloq?U36E1Glrzwr-vlmu*NI7H%$%&TftuEqOg`E?>Fm?6gl@MqFBq*Urt& z<%*ny#HIi97sQ<}Uyu;_&2EW{P`jKoyh0+;TM)mGZpXZ9YtqvbGHFYS{acXj%?bf?PXucfNzJBTAb(%3}!xOFBUD{vo8D%qB`>y>& zLhV*8`4``Pw;6c({BNpD`+u6GFJGK!ZM~~5@k3d&JpFJ_^ZnKP!x8LO zbQH%Jh%ZL+h^v=K|NZ%xE*n$sf8SSrr#O(nOBI4IsvRdwng07O-=;`?;#<5_{MNkF zYX2^9ER;^rl=|OyBW?uO?)l$krEhrc`uERyl_;5V5BzMBs0ckNsAOwvo2S7?6=F9P zq0C=8UC()7vW#$V7+YwG&gol)@us+3(UAylWLRRjcY-jlc2 zdu~7$Uc<;6g-3C>`&oF+g=o2wy+V%a^6O{pYmDy5F*Ozx52)$x_ZZ^B~W2(v(!W zGC$gqbyiq}g~o04+g4%ChjX&O?j3Nrapw+Ym{M@;&cl{9*S50Eo}-^SdRBzxw4Orb<;yy~5t`qt0-AVQPvWy3vd*)>8`)k6d zr)ua0`1#503ppMf_N-UfSk|=IxV!Iyr2B~OE2nM_+-81$KJhTx1_lPs?VSw8u7i}e zpYBKE8INb_@{5Yn4A#fY%1xfgZ66#;G-F+N78VpVpZWP-L_~yPM7Qn2!bCT1{7FGO zs)rvws3YL~mWL9RIuUQFEp{&RBj=8+P1R7*($+jVb&Eu*Sev1(kKqizv-dn=N&rtQ zQL!c+t&$ery;jCABt)r}&O|(Xc5XQhsiWWmy)r+ejAKXNblGJ2>NdQz@NGMvT`c&v zgNAczll}|iDrU_i!3yisab7d;g{OObCoPty`j>v*(ws`HSlhhs!Y2xnm`MrCU_)HP zP*WlwYwzFgJnvas^(0BM2XgM!U(!!&8yiPoc<4>J*XR}1uU!Xx&OAI4nR+~&UtD~f zbNRB+n8)EBpV7UwwY604<;%Y~kF1Ur{BB9x@-T4So200wrk1Df^d*`{f&2aY_XZ_y zy8~9o5BklusEUY-*SDJm?rrTX^F64SYZ`-K5|EQCdB3rgeJOe9*RRL=xuzjh(UFl= z-*V1Rf7sXj=+!G0iLyB+Ql(STV2dhG-3ybqlCA^FAMWnkVq;^|k#Du-(}Tmq1-a@e zM|V23zo;AQEQr5z=UR2O(%Q;sZn4)ie~HKV$o%1Gsc3d7a^Hoqs(sBzu8NzKn6EC3 zCn*FTb?PmTp;uV@oW7o0v3`AiwB730hr7h9QRVRum9nbm-Lr>QTU&emVjpEC!r=4k zOXtN5Us6O%iJ6wN)3S-zVvkIZ6*TiJDDX7h*?YVq;IGTf&r_k{;hRVvV;#Y`3=4uj zY2SrymR44-(*q~g=Dup;|Hf(!e=l@MlDWh|e1Cn-du_FMqkegIc)H8E;=tXaIMq1r zx~i*Nr0}?cf`YvJ_AxglN;F)hKN^9LRZQ0*BhgWA;`ZtzGcNUF)KvJpA5VHcB!t}Y z`zz`qr*0)TH@BQsb(;=HnIm(bj}yCshz06}=Y|E8+qZ8|lCq+F{P?lU&v%Ss=U>y| zUsNM&gifX$x= zUe-owY3U?oev41tN;!H3yU#wQs8R}%s%PD6R7=WZ6i_L?-F*MhEi&^A%@o^cDaxS8 zI!llBwPo|9&PSOJ$?~%w_KAs$$8Kj~DZZ_FUpD@ao1C7ub``tT*le@H1yaWr9=|?| zt2O-$>y(warl8-qKW>iSo*O2Z*4*BG)_5Y2^PrP8sROTOT*rB=BVS#RDSwati{ks5 zLbu-BesI+P9+^2_fA(ByD*5DK15co_NYjT8)?5wwbx~|@TjhNh#BQMqz4>Tsm19(B zi3faMT-=fVqM+AH;qdI=#om1+$Bp&BN_SWH#Y@$%EKWA#ms$88M_Dh2@Z;gzq)20< zxfQI9rh$LmDT8v%Dtgk6_P%KQvkxIX{h2yi%H!_}e&CO_SL(zavy&Ev6*k@&c}SR) z+>TV{XEXVdYo@@;%KA&^mm|GZ^j?F!p!Y+UpSF*Ny(}#~A{2kpc*VnC$zoFg@7}#1 zhZ0qrAIg)F0+(udKEJd%9XEr$MMipAP~f^SW~lz~$PSJemCW{vz(BW=)~uuI&Nn;8 zJ;r{#VHQx0Rrd2M)#`bw!AZv{BNlOou{`O3!=0vKHd8M$Ql3o{YwGjBjrEhKPiO1D z<&ZACxUZfadp#U!`Kr`4M6ZSK@6>QD9UcDC9zl|EnT%4O;|eIjuN6(U6HTF&{RlH2qg``_8HWM3Kn^x3|!x~wQ)(tpLRe-gX8 zrr*VUZE0FOASx#2MAz#}`4^hGNuIrOCKUlYkzj60GBpj39Zc8Ry>?0Zu9lWokZG9@ zSa`*hhpr3HEbF6pBz!kPxxy37 z{rS2jT8ht43K?N_ak2rCKK}UJkMX-lyrnet;yeC83qI#o%4}j|2r8dAS6_8lZ?a?^!D!-5=!lL)U9?e>2JLo>z?-y zdv3#L5a}9aIY#uvPz>im1|FWcygbRo8Q+OFsvVQjtMWTY{QUf(zRp%voq;=c>@bf` zz0~!ZyZo)!^y8>r(j%*e*aYsknVD2qetkGL`|D$>t|%ijv%vja>~}@|)+tGj7_Yzc z?O_I^zkl1IPAKNKW8K=a^|KwneqXrTc;lqt$&)9iM4B5Lt5FphckG~!QMsCw#6CCK z%TpQnw_)+^v#~Q88g>4Q-Qfv)^l5Cc*_3ll%R&}DJW0}5sB|@sX}sG-u_=Vt{#ubX z&2T(r^{tUtJ5nBwycbTX#Re$l&OjKrzqGCz|?Dm-#MUJCku0|F|}idDE9|qSo7!x`YmdO%aUi2dS|ZQdCNykxl#UAv2-Miz{(~g!BFm)_prdEg`t+lvr6mI^ zE9Kkn*ke~I&-tt&NVtyrvFl}T*U5UN^180B&H|+^>ChFSnVFf-g%0|tU>zA=8ft3Q zsG-_=dcUMseExjdWf6E*c-OAY(NeGM+i1qW7iPcWCLwA*WyB#Y^Bvm7OP7Bo|9iVL z(b04p96QOMo4jQ``&7MZb+SU@Hjw}Cd7nfd6a`t&3FGvJXJ=9(BO*woxWTs-CYjL% z7n%nadjlKv&HTgO-x8)BI_xp#lGR?~?m)`?;zUZ4b>%np9@_4=@plnXbVDsYNzy{8 z@Y2jd78wTRfx*F+d@EHy#FivGozil-|EkNvSSPR1x8i=;ZC5F`Rs%?x3{1Q*elx&$ zI72U6-icrN?<|VfTR+p+jyp(N(U*5&tz=_sQ2+9ry5(}|U#+eA^-rSIKYH}2a`bmp zF5{WE-4oM|Zww1;BjV!1I~^A;w%5=r(BZqTFMt&o_~Rqic}N6~#dVUM%m1{jW5d^- zYky(V^6cE6wLzYZsp6vP-a%ET?zq{wz%>EM`h(`Ov9osJHcfZDqeEkN?4v}XTDYfk zeIvkqMO{aS30GSGyK1tq(Y&#y8RO`2RA{5 zmK4MXp%C?>1lAD%b8c?VJo%e>)}`dK*-wWFSn9Jd7CHRTciY8_7ez!xtI;CmT^T-u z@Fy!?<(NkKs^61a8iEpm?Z~a@?S05&;zuNK_dtFF_pGdkq2UfDCMHRbF@q-=8OPIF z%yBcaK69B(@9rF~38!xeBHJ`IlAX&BAoSwJiiZOwX(7)-EgR4dA3@ z6;rge6;g@iibO&)Mt0|vajeAZ#d**EIwrmS}VUyYhig z>5m6{6*Io_?cKW-sGHb0@;Wa* zrYP_b;1l?83g9m7e328e08cfNr;v?!<>kwa{8ci(TKp(>H9!yozU%1dOrb7NOEtCe z9XPNZdnM_hGdHm4)*QVk_t9_OG0W?})8bsP3DR(7ul40&BC@P)Z7q>)#haD-oKkoW zdx(+xas&T5eB}I^(t5??>Wzl;&z`Gtd)KCMlj7VY{hmd6_WHM{`?WngCwAaK0_y!Y z#KG%}Uxj3BKd|4qcaI})l$X7$(1GpkVvjF2t`%+sSoWwDQl||~m{R5y*a*{porK2@Vg(PPdU@zC{uu!P%t;=29Q$U zYJcFgrsjo>S%r(+6&I2pAuh8ftaUl(je>apUVdjywh%kH!R81T3`^TGt)1vu!SNYm$D*01W zE>FMy>A)*A@bGx8I#N*oP&B)^I7uT}Cgy~y>b@A28g8H8d>&Yk+>I2#fljmT?KFs`_5!+{`L&{M%K%pz{OjaMGEKD{m4hHZfYoh=r8J ze@;KmhMMYCo5>Jt^YdN2Y~Z@zt>|(42!ht|n*De%J|%^xRbMxiqHxDChTuxu0=}b1 zxrr^bu|By$*~WU^d#g0cf=u$qbjQh_GFktX{oH<2RekJj$}VO?5&{C7&cAj{^$;d# zl!HX0jSQK1%DgJX()8*FbfQvrpLvfg|Gb6l*pPlY@n4Y3$b8#HcA!7dsK{yW^KO4& zd@-|fF6p~;fh%8ALN0L-49b2g0>PmHC8BoEMA@P#pP8d1-!z9c9`bX}`GbB7ofqCU zH-{VL)CSov>=O$9VvF`ih&6O=+0#J18LCqYw`IZ^x742xIMy#9-7T6gp2%_L*-3-Ug5=Hc`_+wSaE-hLxjY17PEJH-H+o$vHh z$(FPJFy2mT=LuLM%PpOu0s0SR7CwVryOUmiPAf*|7{mOgWzqe-3SpE#Gd>6VZRfa= za!;g6>jSRoa>~ZCsLRmL@5uQQw~LY=_(cEvIq?C%70YS1zSGpW7PXsy>IEk7&g z!$(I;-A+j0lasqQ;lGv3Mu)zX;2FF99032IwqjH^ z#SZeu|G4Co{1GT*Tl`6ie1oz4=6)AMV3pl|rL>kuCT~4Rq^nh=*g=Kr{zbfI z-yG?C?aH+UcUGU&u!q94rE%TaLOS0d`qiububg|i5w1E}EL;u8gl+{(QQlRj%+aIG zH=x58p66}1`2DMcvM1AZ-dRhds|IG1tT!*{eDw7XFHira<>lp*098bh z>?!j_mfKnE_J>Jb=$4DRX|Y_F;VpfB{`iv&Zx2kL!vjt|NnO}oy*+UGRCe2!8kwNh zxkD!cXt)t-mAw`_<{w^C6uOm)EY(rykf`;`MK%uzY;L0aZTUw=hN!ygh+U+9v&yr@ zGn}N*u&`7V3y>Gb)z#_1Di8&X0N?!axCXU5fGICcou!l@6Eza3uITnBI$2SlS)%H& zn#v#;`2_^3*pFLU^1m|L3vLg8VdBj&_mRJIUz7GY2td(*$RJb+cp3pIBPOqT^eMy@}7PrZso!BasV5I18Cnj3q zLRFFto1N2Ml&e_cc98AjfV^w$3zc%)kLT!NjrTizqeDv1>l)9@%w$j&4CFeh3&!JE z#@E!xkCkNO48*P(<){EP-B#PhLbDlNm7@&jevTLhQEUP*mMuWHPo6yK15MOXyj9^}xW_|{|mbCI*zE4vnQ++2Tu z|K~q$TA~R6+4uwcQG8YJ@hj-03$G!I9lUY>espoMthJ2|pRn*2JPNi4o^Pj|o1&Lj zG4Eq({UQndTNr20#1$@4=|}JNA1|k8p8l8QSkY+OHs? zQfRanEA$yv124JCsR+AIKt_i3knZT=CQ?YN#4mS?o4l(FBH3 zBV%K_f=(iDrYv0M68@QW<P6|`%&-Y)UJr*hu&kp3#B~E&dX!4EqJ5WKN3*Z^OE8J|LA+qy>ir^yoozGQ~d(XD^bVfJjMt- zE0UlF#S8^}KS!!wHlcDcG6v7gTxO3^u^7t1AMk{d^++vYl4M!BG*_#FmX^F;Id(EZ zHA0*~qN`Sx=$l}A>G5_apoMLLA$#{w&6cIS;2%GJa11%Qb6fn{?CO3e;lJ?DbiP;W zHNSoJ{a|^Cp0P34z`y`rDlco4MZN*WG#hxEH^u~c_;Yv|^$$0}xA^R&V2E0Jh*GMe zfdM;;FQBiZ5WUytsqf7O4bzWI1SCkeG;sW|TukPtSJw z&CK*G3kwUdS|NEus-D>#?%Sj4#CI3n&l2msWpp&E1_nttu3u+6^@-lF&}e-6bHaOTS@#i^Sgu1Mo3?D@ zJ$#rGwO#JPHf&l?#M?h$m7+e~XQ>HFi)-Pmd6zSXf#4QA3#` zl^I&s)J$*zgb}WRqKIX}(_`N&UE72f{CT5IQJ1!^ZYZ+1+MxcS*jc%O#v+a5_nsec z_$F35|Lr`qQjg^-ULqX#h~EAgd5E1qe_GoWem76*{)r61E@>Wg!+j7` zNdpk0l<$Hg0mhI-Y6s&KVuAa8soGB660-QaG7k($cXM7Nu3~*Y*A9e1-bdbu8&B~X z!R8pevSUQRPT@LMeU-rkOBseP&K#`w(qhF%OvT!e1a}lAR0(bn2VthU^s&=?XKvAP z_L)UF6dE0)>vWVsT_ZGCJS_q=$XJ|>Vt2~S^^HZaOMSB26#mXJ`^^0YspMuMjT#qJ zWnTH`YX%}c5~Of#T^)*3T4^cQL8l)9a#rVPw+DWuU6O8SV-SB ze#t$>uMe!4-S+s&6N=57H&4QFZIwbQ4e`_-B!D>Lvlfd6(`TXMxeYaQC*KKn}p{TAI0X$s`> zFjUS?N0np8$O8V(>mzwsb>vyF@3&*X=M&!{m^AUk<3hJKuf9|Y5!!7^M#L{7l)FPqPE_SB5WZ&BIEGYM+u+wvo|waN@uT z04a(9KS1PIWv&JytDq@BNJEw-O~i7{2xL`uM;fg;Y&q%})VtKY_N8zwR~DLhbl!JI z8H-)w7k=y$ooes8Q9DYo64j0}R)4;vdoA^cn=H&vbe~`Hg=lSBk@E0iEd9|Xl1dsQ zIEkuK@7Wu7@9sExD_IaoIO&m{OmfR}!+rf5+j%xU1sH6xlf3kOKZ(FA();!i{SQeo z<*5G@OdtSegZQoX@rkI=+s>hZ+9E8#AKd=esZ6li@d*iG$bXbww}qerRz5qIjh-&g zu7w{e)`y`>zseSSMs*Yb8?e#defXdZ^*F3#jk6ls8BiYI9>#u7Mu(G=5!t6MUfk^_ zXOdGfd1U3CE0>$xPNUb3)McjhfcfZ)`z8X_fh6y$U;FXH_*n7NCr_xRU#O&MGlWBW zS6ZCtj=z076v-5?80{Q&GSUJr2xb74$Q7^N_^roQ$kE7CYrK{(RT&`_*)>$lCkHcDE(FuZghq=-?4Pi}U~eQ=;#O}+Xz zL(?-f`1oAL`oe|5oT8p;5QoBR26l9bpa3KT@z#3Z47fP(}%N_*87g_rx_8ueFwXcX>)HI&6y*xKE&XcB_bph|K-< z70(83Y;E!01t4^&rN7i`xOkG{nZ*7>(~S)``7w|FaYt4VU$RisMT9H&QO4aDlx z;*MSi>z|5Wg-2ss>}nBPQ_X?v%)`wo^xll8A7@$|A2{GWvKxu$s5Bs8PWvIorX)^hlTLO1guS~-d70Z?(FO&IBJNed6&9mZr`~xfNTfo8IFJF z=C=Poj(~_erpQO_quM$;Bg(Cye3P%oR5r3+uCr*{$e%-{>7 zE3RQD#0)8)IXf`$W#5>aWMhx}_{beyU$PqODxzl=QU~N;C@9q646g|W!)k$U_TBsU zS@RovP{I(C{fTA)Rj?xv1bDlT?p64{KBIylN&0@2)G`4uCfGxW&(uip?>>Ec+IrP# z|C^-t#+f%pVyu8qXhC>UZgjF*ca7ifc4A`{?AvS$2^pP~>+q+Y0C#Ao`rFo_&bvZ6 zcN_n{9fX5ccAJQpSg108FlZpX?wd_RK+1s0`2LNiA*>FYvNWRQOa^nKSAU~~Es?v? zZNkVzR9m#mnfaNFU|BRZ8xHpRT}A#Jgy7$R@*5T= z7*TR%tV4=!rySuDAxs)leoHQHa2V8=gJiCG7cW4tt&TmVI|A2dQ{o>y*cw&G#M=bl zoBb9Z^33*83rY4;Tf?jgR|EotY8Yg$0p7ZSr+%Vp`S-*vTF$=Xl+PNkHpV@Xarma5 z%fa88iFfcyxf7cyAn^XFo7W1Y-d zSy|Qmn?N4GAti#|5DgmusmyQlpg3y7P zk-dBs66{v!nv1UtZ$oD^6S5e2~(a1GZ+h+4H5dlK4~|JUnD{ z&Yn$eA0-GSw8)5gLc0ac!R|e@p(nz^5UGs4#unQk@u)Jcc!rh}ZREKXlBe0J4_!1? zsrT-^Lp8mnd9(^DB|*F3$H&rI;A9ezmS%D;n`cE{hP_bb$okSCa^18KSC;N|5K2UQ zhxW`1UXF_t-G+Ht}Nz05zJgP=+XbnPh^&(r$hH znBRpgs~gB1A~at5q2tmz(AKa*pWM?Qv;e2Yl+Q4x<$x zLf3-MtPYz!&$8}cnj(BO`>leJDzROTS07NsRwa@vAQp2YUWrL~xy%qej3QkFMK0g=BZnW{dsQ;w@PKCNiiXmomhu7k;L6Mowc$%V6tMBvvlO~z z!Zk{Qg~r}fy8huQa7A8S+??)f@`Qb*K^D<(B6c7_fmlL&eoXeyybpR+zR72Gmd8+( z*{zTnl$HqcMJ4SR`1>>WWrJaH7#ygJQW6ypu#pI0f@sAG10=F3{tMgObG_^v$#-&x zk1}_4+b)iJRy?d1`39^8gGM--iy$eX=W}jTea8}Q*1WKtWG;RG$^V?h3;AZB?FU6D zmBx4EcdZdd3bG&b?SzjLnDQ~$Np@*#D!BCi%=$uKtp&f|0@aS>DLlB9U6MqYG{8b% zupza6NG6Kz?&^KdfLsj3v=oGF%!kKR&DyK}-7aH$M=GbhXM?HD&&YcrVY$BYYXqAr%-ur0Fx1Ft`dV7VNBlZyls5o>z$YPr` zk1h)$D-h}`lwfpz1OUDC{nar7Z6_sB#SVtHFM~^dx4X%i6ngFzkwM~xhd&23&XmZ} zE@^2V`$-F80>)2$ug}u;M6nv{t>8fkXFuX4iLOKoUPU59U-)Y)XG?}%A|Hn{-3u&%Z?uYub)+N8woeLA3oHJUJMwEXID#Nm|}5DZl78}!`1 zfYEn#vaF?~q)<7$KiC)Qb;aJi$wc``g|op`9Y8%OD9^vkBlCfP&hBYxxbr*=BZAWftnf(r$WGyWJwG1(cTJ$RhS*# z`OJ^hp(p!lxBod<>#?kihnAZt>CA~=aSH3QtG|++J0QAt!tc?Ewytw}u%Qz@RtLBQ z!UFj37mOR7FKwEzoa3QakV%A?B8^{|q-sfmq;wQbxPD6TrfAotcQ^RvM}z~N!Q0vj zs6?Av<`;i!`2975e&1bn?)Jn74?aRTeFtv+YQO{Ji|oatL(Suz7gB5plP%`~``b+$ zCL}y=0c7$}!UR`WUtcmd+EaG8>HT|)|7>)6Mn)s^D^5R(t4w{z51`3!6Is)RVn05) zU$=BVt3;>$0!wfC&y30e`n^>}`3euUt7g8UGIjiXf6LIxN&Jc|m-s3+`zmZFok#}q z`&;pL!h9`2PICecw6E6|o#0(Da;MhiY(H6g6zq~sg(B!eGfRk|NVGnCUN`~j#8r_jaOG}GmRmkSH*EMD! zJhNW}4avshJ<=Z=^%L_X%hnaWdnUsQ!DE4hYa>y<#Ls!eEAO)u7I?I?K-hO}x}h_I zQJ@0^ogvWL>erO@+JL40Ew6nSojlNhdcZ15+{bJ8Q9Z&$0ES;~0nbS=P zuU`2~o?ZU|ZRD0(df|!_(p?8iMCWA1hUuRJa$MVpn~<@7cSCKXIXonVnFCXHc5@cq}0oz=CL`KOOd zn3dnZSZHJ`lU(+&!CE>WJImrN9Mmy9(Vwc@61@`C(#5OW+J9Zz|E(*(l-eL&=RL@~ z(T;q9WOx8MWnFl`LLUgyfWraSe5>Qv=q%u9A$Fbn@6W+8T!(J@!{FqIpE=Htv=KKl z_I9$|YV=zU^Y`ZEd(g~qf9m3i``#FTB1yt(7F{A2_-oO(3m(~#kD6QEnIo0Q5cD~7 zY-Qa}7uY0Btx+OuK&;I>S@|z!T`MLQBgeGt-dn=%){~TINfZnKplVDBl#V zVpZ1J&Rgezzp$y2_zt_3BP>yLq&?!|9$D=WlNT^vAz9CUzSxBi_72a^!13<~D1#oz zx>k>RLwDC5-lB4D;2a#a(dBx(%)J@UC$M|4<&{R9%hDBt^u0?^Fb@VpWT7M^HzdSe zLP9U$s)LiI@#d{th9Kb#z^xLy8MHC?Dq6P=K!}?1wVBfkaB$_pZ|>_)6{XBy?|MH^ z6APH2wkuk0nva&NVcGHU@PRW(i$$6<@n4@-rs^ra`7 zDj_5Z#~aD>tQxj*+p`cVn_4jY&}piVVHFUa(f=1(<3Cl{7k>={>Adx z=2GiDeH$;pUjdx}Y=T3mVn^G14Y=2q(ATeTo0jfIfZ!jxa*pD==GGm6d||X~mY81FqeFKx4ByB@OfSqlKW^fH^}n^Ebfdk1KdG;8p= zYZv46LAbp#%4yOwu@_Zw5H){rVvmH{gM-6zJqxn~El`)mSV4rrLcxKOiKnZ+oDX64 z-JccM76lF-WW&p-L$-~-d)F{$w9qIAtzU@2P~9c>P=EK#s1zlF7$i(0X{vGcXv^Xg z6Nd|4=w;U-!%JQGbl>My-b!m?E})*Zw4q|`cog{BR=b^3Fa;2-twFI%Y96`S@zngq z-K4gOvj=wRKGfEDQ2$#v`J>+CV;2|)&`-2YXs&&kLr=?h*C<=ha|8i92$WZiB6;J+ z4c^-g_4Uvgy+qc*9zlYlasLr0HJ!37Hy`}g{L1==xB#E*;ZcLOo!;{@Orz0Y22qYM zC4kyY2uY9*AT&VDfQpHSL7QO#`wzjJV@3EnjPEY}Iw8Hm)8Y|Yf3zoXt|E?Hc9DU+t29o>X0 zTF0Q?TF%EQ9OP}|XWP=nn?-`wblL2`gpUjeFCHvj3s_&Rsz#3lyiko5&4oQVn75v5Sp2h%X>{-SuY>hVFANKpX`};g(DgaCA3D6NgJzMzRTKsWMZ? z+!p|*It*Cs$+42YOEhZznt?0KDlr^kaG>`iH0d)<6l>7;X zmU?{4otrlYZqk4AA1q*l=2mrPm@9WZDRd@WVJ+2kjm5qT&dwv3iSEt!Sb^}~y*YSJ zjn@RwMaNa&(fvvijv7a>j$|pk2{&$3ikp>>&H5;yYgQ8$m2p!DTcKcf_8L8VApJ$N z$gr*)aR_a`{A7{3JAM?Zd7rrAbmHg4MeKZvTMuOPM1E3@!# zC0=%o6Hw+k{wZDY9`l;&YN9+2w$FME!oBVYX~#508~i<)LdD@=dn-n()S^fJ|MA%g z^Go{cJ>o5Y=Y8Bwi}p$Ik(FmU?lu~3{)A3qbAv0?yKoReXt1X%H_@8|$$uW57q=iw z2$L#y{Vpi3gCAPr`O7OXwRU zNyH}Rj|j&Q;lAk=qVuuBOwSSqr6zQse}20U2E^Iyt)Wsu56|*_@M>KwxBu=N`4Y6Ahj38VycKadR5f%Z0fY;XMYaJY2 zVfsl(6Qx5(BeR8E^FuvrEu|nd{h7Y8ckkZ$QT0FdD!8BWm61JuaKaKMav0dJqKzl! zNyqL(OGexDZ!&`4?0{m(USsO&UI<_o@Rt(B6K>o%vQ3ocU||k4Ueh@X$`380{K{D@ zZ{?>QbmWJx@JB3h7`n5?O)!^~4ynx_{50GjCz03`7H@g6{(-De1 z+~{{FY8x7eaZu8;gIPJR!K#8$^tnBob&!)*L#0%1P@LQ0R{Wz9TAnF)QRcdT0?`@S zr(mbSm>{rVCGNX&yTdS3kCmfp((?uLb?PSOFeQZs{YC@Cog8Vg!EFH{XGLV%N2)W zk6T+mx$*EcfBYlR1R{I))}ePS<*qqzoPF>|&E_RZ^2fhWLVg5p{N*0^9BSPD+^pj0 zNj=6MgmeS8g?wWilwUOTTdMd&cq1xxAO<|%;RSMb)Mj(l$`kGD?ayirH7Fb}Sy}C= zF>$dkG$O>Cf8HPz5^}JiKnIMMYu+@Blti^RT3V3lGoEgZh3VJ=!&BTC!Ia3j5lmTs zrCDD1XYfyp=zh4)u3<9x<~gizumF^`#UEGVRNsIyXOG$H&QS&{N78O4FZUzlPTi5O`rFZC8F2Bj z+Bhb8C#IQM|UL5^F?SBLNNXLYq~{)+ru6`d#jpz= zVd@%2iIAhAL!Dkmku@(gx@x^0ug4rvjC)Z&yKRJVQ_P_CmL}}+nT2Jh z{QV&ineugKH}gXUNhgu$`{Qm@U* z=H`DsjKjn(MGE#B%Wp7lghohUtK7)9&_4kLbRr|0F9uBq$~DlrbYjp-({YCFX&v# z#RA+Rlsdu;BUz70Exqw1-Qo8J=h|{b(^<6-MN1K5RFLI}3AGk@Nr>SsczCL0VqA#n zMR?q?tz>MQAI4xxZ_5^XZqW4Jc^U!;M0SEuwXom=)JMmP<$q;#DeohV2zKzwVj~iy4x^LlU*sA}R^-BGE0o7&y{32(g3)k|#8rAd?#GlHp-2!T%0xx)blmp( z6p|3x2^d_3gj6CXi@L@IO*sYTcWY%sClBg$e9?0C4l7q?AgoC){ncSODnS>38IznL z|4vQNc1CW62brQP+9$Q8uJl{zNPV4*F30sHp?`-oWJ=t7<&`78)udMMghKk7wrx4M2hs}mX-re%ME?Xk?&(ZiSp^#Tc3z(*Kw-1h7I%NEx)vjJ8 zZF_D{ZMv`F@#Nyox|dFC?AvwY#y|VjW2qLA+C2)QhIjL3ciDCi8eZLNz31(=;hB*L zgT;#f&X7=gAg9scgT6m>zSbLTJ*-k;Ahr&j~SpXIg=wKU{EU9neWoF!w87ee! zu22V{eiMfc0D$1^iBsJ#>SIQzWQPsDn8%gOEOGeH3$=DzSvb60(Q`*SBwJ+G_JqH= z3aN{chexyg*%tfNXmS|mPno=;P+Tk*qRrlnt@a%C-w`SSF`n!A=|1A||0cq^|6d|Z z>g|=`Sgi|)OZDtF>4Hw8QG@hrw+yNo0pQAcLp2|(1iae5h~GKRKH8qc0R+XAkMOU{jorj7&N$4NEVj=b5mTH_FaM;^GwcNUaH^F;j`%h#0mAF&_EM)(uQb}*evJ9&mlM=Ryoj;-T6PIw8k ztbsy}=ndR>AQW^!%U;kljz=LDP8dQ(2i(CIFaU9Y0tJli_{18^d}09DPXgH;x-lsT zLt$}d>T4IuV~Md0qnvLxgZ-+zmMdT}B|(h^64u|-o2_6w+#Vj}&f`6QfQeHCoWbMu z%tlScdH?jUfAYXT6P5-T?FfqORPDE5Vo0gEHDfIbggj|^_vfV=%?W3h<-dyEf5F~| z;EaGi6o?u?I${>_X2d1)){~{!T@3K1)B*E`=76MvL-giUk*+9l&_w8@ak<|P^cOhX z;2`Od=VXs8#`s~D43$G$9Hf_h!pO)dCOYw?pmhJ;3x}3F z9e|C9Jq>fSbeE}Uf;5^{N3h508DFJ9Im^aoU$zZA-YDI-cU18lXNr6kPZ!VnRJhz~ z37uO+ zry9J#+av)q=yj0yP%lk%R1eV_ z;DInXqLnMkc%EmV@O49$TItHH1qQeK{;%g5foj+UaJ(#^{IMRoMqN|rm|jf8ccCxG8LE9*{QR|j69r^16H-ZwGrw>s8<6Ct2_y##`3 zT{7)zrP4KHkYe>24acg$Oy~W9%3YQVSsP#C1>+Bn)5^wPRTtW1MQ2;kX~SBvukGTU zlG4Y6ag&$ggG=rw9tzW3x=OgY8l0yC_{lX*)+m-15?~qw@1Ae{o{2cF1G&hw!VFFo z!f1mMU3_^+EoagR-H{XqU@ltJrIx&HXzo1{-4guP?=E z7`(8or6OodOr%`OakLwQQ>*o&cZYcm`;}Aib*^0S=rat9vPOmZjBV%`9^%>tBLEB& z7-a!!bK%m@K9cM1&%Pvg;ao$Gqk{Y+s=#XY8f0uKTsNBQ5EG=!IUfQ2EZro`e-rk~ ze?C-r6&RlHy6?K7%^i{clKQa}&MPA31c@U~a3DwRqhnV~*IjZmGYP}qXBG8mWk$B_Fifk(J+R?2tWTc@)IOnt!W9XCTx;;*^=C z*_4fF$Pnlm;P0TQvL~M^6}}O%D`JE%v5A<~Cg7Aona=^@JfhgaBO^no-_rwi|Bht& zba=843^L)ArlUO0@Z5<5_l;8zJc%v@%?zMuoEF&y#ytsYW!DWrMFO?La*Zd!VHH1P zawgto7TkEQ<|cRcLHJ4c*ddLR%*wprvzA~nyGjrRh}3uQ-c7A+h{LQ8;-wCl!}ZsP z9Ypq=EL-Hp_|@e6FHH(o=fz!2`4rmngm2Y%ObS%%7Q)U3=sQ?ANk9%ri^Vu`i10c8 zfIpD%01{N(e8W*~UnQf`GdMqJW4SqSYJGK*m@_~K<37Z*O;BtA0%4Q1a7$=dzBX~+ z^fYpOs#efoF-JH{F;AEG6$N2U6LiqZ`*0E%rm7Ga|A^I6*u_))7j_WS>ZsZR!om&1 zi;yePQAy!!fqzFPU|ik!j+@{}T%)pBq+v*L6s*Ib2;?Umkg*7-3xSvj0}c1$iH9&N z5LP!FapVPOSqsF}(wW9R;(yvBN*KQkY$w4kM;trUhXY({G3XuxT#Oe0_XlaCOe(6* z5|e*?%9Y-8cnqig9E9-*Y&wPnF&Ouf?vlyWF7XF-9vT(rzsgZ)GZUN;>LgA)+6hXB zVc?xN%nj4T>X=moEMb&AG+;OiO-kv~K$Jm|lSz7%2t#oCOW)0r29LAS^s)(e1(Zu# zm=YF}D0af351)=DPKhCSpr4n$(;L2y&M#q1T+;SKl3L=p&@;_?Cli7wv5A<45^^WoC`&zzP5RH!`QK2Z1;saS5n<4)_`ARft0&oy@o?wTX-btiZWFUaMct4h zN#T+V292FC=Yr73L0>D+1rpSV3`HDmL&!t$a?(6FvjqdAu+yi3K2f?ZQqN9I4C9EI z_V!)-jg)-iXP|fWfw*sgucQSz$wC(hj}Io-+_D7@p)>a*puCf3>*uNj1e8l&Z)_iw z-3H76&;)0hK}E+QdcxfV@V6tZu+#C_-+A2!TAMPOqFp!2$&7UgCtFG%&B$oXhXJ0h}K!hF-NCl}*GKJ#itu~5*ghYM_2Gc{C>Os{hmYQnjdVm4uL$^#~|2u7~pz1LDE$ z?8@EL7pEI*BxGG+|9p-^s|Xp7R-!Zr9-89llb5-|i9^A_TN8dBAS!y43y>{*mdiHQ z{?unZiO(`&J(Q{WzcUG2bgAB_kjiWC;bpbhDHD|L`ig^N*XylmDlyf>A!BfDB$g28 zwjG`8p`geIY{wKhk|H89*YyQPi13B6WB&Lc3|lJ~NolcJs6Q@Q&vZC{ zD|ci|;BsWjlFAZWxygIYtvrDk4TrJ1E#n9Esc9peQ1>SQXTE@i0`wWc%dQRQ31D|g z<`^B>0mM`o8}__WGjszACb|ayehGy)8|=bsw9C8QrW*DUR~q^L?@AmvgNO94vGFnW zv4E$Th`{*`_P7JL%0 z=A8-Tcb9FjuV2-sE)v2?-0^huoMp@qmfWZgl(1`&mymplB!>aJz6PRm)4m!qWI!@l z`i-o^h|OA*mKvn4>yTfL?h-SCW29<;Q65`Hsl^abD@gBg{E@OlzZW1ga~{Jal8tE= zrR<-ou(sRK*jz^H(ml~%wLP|DUb>IJ<4VT7pf0Ove9$%x0;v=8c56WP!Gj4n$gJa$ ztO8maew*{Xzvx|z&_j>4+ls2Wc1#>eiZFa?xty}_v~EZD7WD0p0)``tF-P2U$~<2u zp0Up|(!JptFI6QNBPI_LUU}l0TU>x8Iy*ZPTdvH& zt+5x1V!LWv(Qfhs1!Z!yex&Imnx7qwWo||M<#lS|o5 z!lWc$JTQnTmW*rfQsm@(Ha)cnk`FPKU{!j^PV+E2Ywyxa2YxPVPzieSc%sEsch^rR z&?o7osp(0VG>STh2NxR1y@N{@-iBbrb*Meonm%IWg=0Lzr2Av}TGW*C*R{k_!86}W z6;YK30FJS$TcFw1v@^R(FxtIpi1GefkLt>ZwT-y_jIe<;BOhN4^8kvzI7LhNCThc2 z#bYE~yPB3v@8`Wcq}lA?Obr-VTC|+Bg@uLEliBRKj}#JOUZhaaXz3L>yox9lYI^ec zqNP>SYnw?Kh~Xj%(KteR;0lk{giAGGR%XEWJMCy#EnFToa06BY{p9tA@1Bzc*p=_k z32y$8BduE$216LgnNxwYS%cqM9FR6e7j-tWq}Z~;PyS*O_BBPE)c4Ngh?G(DCgL4{ zwFX}69rQryHC!U{d1<55CYpW&&GvobKhtabzx2bm0a2W^n4oz{F5vjug@!Dhe@-Nk Fe+QQzkk$YI literal 0 HcmV?d00001 diff --git a/images/test/pr-0.9.png b/images/test/pr-0.9.png new file mode 100644 index 0000000000000000000000000000000000000000..52fc01d4a78b34736494361571074d3efaae6e41 GIT binary patch literal 22467 zcma&OcRZHuA3uB<$t){mW<<#>Br_5!BU{MK2w7z&B#P{$B`YDxN;0xDLejD~X&8kf zm3ZD~_xJhz{&@a*?w7i|ySc9OI?m(xeBSGGMjzMHVxZ-uC6P!BN3=BzNhI=O{P_+w z6@I^RBQ4#^K(X?PUrmXd>l!-cIUj@J=c;w!~(&1wFl+oe*YK5oTDJh+^5?56#@T-}Ru zmxx!4+DH(3O-0GIRdr2DSU;V<%8J*;C`!}z%iEk=Qg-C6vD;Z(jHm^6NpsLAYR~lc z1pj!WRWdXm@;GWolsjhH@8i2z8KX7+U5RA>ydOtg>%mke*EDDn`3lUB>E^ zRaVC-YSxxIo7h>Bv?Dq?js~v`IODSLbxY+!kZqiY-NL$j=(>`y?j6cP)0n6z>X)he zyN|d;YY4ndQ)GAReWZ5uDD4NI15Z82cn@|`T#=laYmMUyzz2Tw&}7exX`lP|?~f-Y{iIW}C)^Xbl;X+={U-yinPF23B?y<_)o8lNieH*el> zD4g3B&!Z^JJ@w_6*@+X;pVH57SzKI9?415QT(xgBXjWXR^=|ysH#giCZC%}MbDnw| zTWb=!)0Ja3^93{7+1Y&_t5+qB$4J&4#9w9^i!$-@#&|?LnHp?>7_OO`10;e(Md(DS#xvq_!}+0!v+Qh*(1(ImwMHi0DS0@Fg~j$HkWEpeKcI&Vr&rJw(*rmaoQ8}yl<)R3UM9u>_ZBEZj2hDE@q zUG214C%@DV}5Q#H(e5 zu5bTV_ebLB(W48$K4s9g&5hP_jfMOX|M)5`=EaK_Y#Y$G;Sa5Vl&C1} z(9<)|9TJo;FD>~feSf)+L`vW2=Ikre&EHrM_fjp^?<$LZNB zEiEnY|CRfx`#^Z$_m4DfYwLf$1$;=-Vq{^tw9om~`17r*%~-*O@7<~uw<;2};<+0e zFKw0%TsrmS^gAlEV(XTx+xB>UO7owb8z?)TZ%hiidX<)*LyCm0@jN?0gGchpe~h%Iey)}RXGQ3^ON?}U}3CmD&R z%;7Mp|H4^qAeAVeU!it9`OMGp%-|Edpjzu)L(lvrDH@nrSpHs66u

$8M>V^P1U zR)(y($(9%$fh4Imr!3Qg0jvnQEq^12Lkzp56RH36o9wg>)V?lKNwSFk-c}BZhGu(d zMO^=mm+po#PhRn!pOa?e;_9TOqf6@$(NBMQPJyT3;X^c|m3EN~Dbn10#h71Nqelf@ zJ%ue^lWo2C%Q^Q~cMtT8KF53AO%F|#J7Z7kpDnKcdTuy^hUJ#Fko`@GlRnkyI>Ki~ z6$6)qC>m}^+E~x~UfML;wpD2%?6}|Zj7h6Ex8>tg(eFz0^fR28qcwI_SQI`wGxStU zS~@A^`gM7p+0Xk&yW@kGd(7xbL-nEc$3G5=>}~DORJ%m{;`F+ryIFtP>+@@Vs;~>| zzdorC9FweVCY3O7$yM@n_qm-Je3`C%e)t@@L+r^apGY#>jF8{?$K}op%20(VZ>)VU ze|&!6v7?R<^MNndE>diMoS4X%w^!>thlBe>Q>2c>%`#N5EHPEpj3YwKc~3`f9q$j@ zs;#Hz_xt0UJbgY=!%6><$cPBailwp84IYx$_m8@FRW5KE<>^IgW;4Ze$+$403k`DQ zR%pA+ap6yq(hjXVBqa29eS4inp&8G;{a`1x=gZss+P-|tOAn$YmH5t@X1Tx4RKuHi z7(ctScR7DwD@Sj!O#<%q)>vs)Ha6O!g^A||rl!I*qc-&+$^wFdk>3>zM;=(Yxa``( zrxJ_p-TT}6smBOy{M5paclwGcsy~O%+Q!R!Uiqph( z-18i(BaO38z8Us@v^l0F{N6o*bDv+6Wo2dQEtiD+4Z5F`Qx&I29{S$x!jO)x(ytH6 zJ%cCFu$r3GhrQc)Y-4FAVm58s)L$Q}%6s95fk@$`YxnznBfGt~OFTvtvgT4f>n`@V zwxC4Mobf-jV{wMUDy`_<7ZM5epSSba(W9i{t2tyI(ZXg*DNJ?zs;YccmoCmIM}6)u z&3-qAGk3*Y%RrpUn9`k5btx3@Pn4UM;G{ruCRh`;fbD#>I! z#Kd$0R^-^Z|N1XZ9+qk)R&D9AjVmq959Xf)nvr)~z=acZF6sy=(fX;O+Ciz)Z-uy(0vPGo#18)aI+FFq z#kOKd+P*o8Ev0oXKQFy0FC*ltb9x}vmoHyle>q1$C#As0HZzSw)Q`HHzMD(j?2J4h z6W_LlM}f7arDb(!Z2hvt$?AiJroca31k9?POIPp}MJu~9+gJSj)ZU3t8KJGA8-K^jJ8j3-OJ9-I=;)*Zbc+selc(*?}IV>M$C@L**?b?3&u&mG|#cq6HHmVBzgC zNt$VPN$VelZ`2y9eP^Xmb=GEWHkdnNH3f;g9q$IHi61LaHajz@V{Xnts!SVOo>%uJ zYDoRx6)u%ObNh7C6ijxFRh`Xy=RH4IP7%gAPZb8VHZ|a!(PCzEVbi5XQoixkKi}%> zd*yy{(sEJnz)l75Yr$g0qXA|GkJVj}zwrAUN!)GJi~9=yq06>_hI-!qM0t)$Gb-ru z*vfQoF%aPS?z(kd@Bz~CSRdKZ+|LpyvWr#Yj z%jxX-X>J~#xXMcTTROtUej{hQl}iTPJ^F&sgLg1Tf8HQ9RC-S}cyn6^PH(ID?Ho(9 zyC~?#=Zn}wlVcmegk^CX+^RmaLFvRzU6-z-dG3AJQd!KVZupGQxwX|r`M{<7ZPyLg zKDoVfLeFdT=3eTPb zTcaiGR>^_H8>5&68PV+BQiB=dYN&1j08Vy?uJ8N3JbQ&G0Xui@T>Tch5%d1Nv54BS z)f+c$Lbj`}El?2uUnC>g@H2;zk&*XgGtERLdWk)lL%^T;3MO{;EBGL^EZ?G9r+^&^ z{G=Jnaq-ZVEfc`j4VSj6L_K-(Y3ksQ<9+8UCpOfRX}7?0SmS@tCKO6LCd0V-@e6JRvpLM@}&oU+}^!dRsu(jUHF-G{^!?!0E~+(2LERY zeX76IVe=CUajGrcQK9SKGfK?G0D)ygRwp)FRr&0ET`}-^7%0@dHb@o#;#zXDH##!_ zO{e(uVE86FqOgM*FeRw`-W9Ym7d<&??><_yeUDj@hJ}Si;b5#@-t*>YmeSx~J|G8A za5^oYx-;3|a65#(`nvAI`Ii~0eEU6y!%PcWaCekjgX_^22|hz?D`3NWIFH04uJRoU$GB@+6NhwyVbMo^`)+jehmngmzV* z`_cr?c1%~-5na@2sx86!Wc9hlp$m+$j;BtQ40+b4wV&GCiwjv+K6nsY02C*dxv-*9(KbhMrS*oFOnaL3Z(3E+jjD}dHj=tY33{(o%ndEPte+dA%z;hV(7 z#p3`wq{=P2aF_dW_`jXA?lV3SE1lanJ7BZE#LmXf-iFtm?JpHPk7}M~_}kdu2IaCV z_wSO5#I9XlLlrpJz4f7?xuylTEef6RIqlAVd}+rnVdbUp6{XuA8+qH>>q5)@dB*mA z#Wv0kZSjt1?mBtzO2Ne*V}Yu3RNTJiKL%^*7feuU0us5cnQaF!?fj`b99cSF-!NDxek#eXaTas)3_N-Rq?AH}seO zYTrFQiiFfsS#tWFFe@voye>H%E9-YoTaV$&i$taExV}3oCg%CC@1IJ2rjLR)%kRt- z4%Wx9jVOOseDc}lZF@`)3MWq#hyHcT)Dotv*yjC-f@qs1pl{tblG#;tI5YeV>h8v4kPzXUohR@i2k_Pujyd{Gr~77nRp!xaSfyt`nU{8)=1Q+mKgRaR08c|$DRX=&R(Ytcj10v)=2hixBL#( zOY)i&nk>WSyH=NCnqQSA3JuE+ifvm`2W24ZJD5#1q1G_C{9-+>DXx< z?Mpdu_Zvaml|oui?LAOfXJ0X7U}Y5xX~ClIoqowiy}+@P!G}X!gJ-5h!h(DHaitWk z96y2xJp5&#uQ^LaRDOKO*vg8#*?z2c&hy-&g}FI3NU~|6#etLx*Pf&1d4nmS`4cH- z)~D&eQ*V9WYxW_pLH&#t@W&xf58-`4in$cM3XoiDs|#*e*P9h2o`&`jWs1Jd|>P5~;4iwq|qhZpzeI8BQ9 zsU1nf4?PNcXj8kWlC&vH&F7wWdsIAkEpM`wI+*k*VED%3Qf5VcHR-0o}LB^y`q_& z|L)TZ{kW~)3aW7rg9B7iHCBJr#7S5S3JRi~E-fwH?fAa51d2VixDVQjPu1|Zr{3I~ zab>NyhW1dJz3EurXgY=afsRE8OgP7=EAsJ|bc87!==a{HwUN=mBqo9D#YOT2X}iV&oL4*RRlioD8D z-J1Po*WG0HqIkdF>69qI-)4`K!9C_70>h^tp1JDPY8LX=wfz0S@1*J#Bit#q5ZW!l zJU8Ba9-zWS5$z;4mOksHM+H6_1zt7oOnjKR7@MXT8MP{z|3rr;iIJH(92&q5s24!u zQPI(Av%Q5(+qP|r)*!#FBh2kqHb7~xi!FvfNgM1w%P=3mr$ywNi)jW2D?wjmT$&p!#8*hovE0B5Y}>Nt8xT@>_O2Kg%K7>d$$;Ep>Si-ZF1wid&_mZ%pw#& zd*R(IB1PZOD_a3O107GXBUlX z+PBzCLsp9g4rsJ5CFl#zJ$DhdwT)spsci;bc9(RneLI{jAImqHkH}q`X*azE74yGF$0=XVsf&e6}F)wjko7Q zQ_7XCkJ9%!Z%GHF68^Gha_b9y;%o=Fbo^yq-26V*LYR!H_~%%tDsCfza{2e~XD1}1 zmHDBO@FFgjHYNj-#{@;Xb-kMm=M%TSEmW7tutA`vK$S_<7Q*h8O6_8dX*n*Mf?Wa- zfz7N=eNjD&@#~4=J_?c$GmVA-6H3O8`XpL|jr|T&xjV>~@evnTiA|tav zbwKt6vF;I%1_+t2UmwQ_-j#AxJI4@zK##!J z#J0NjQy>+a+q|`p9#waD7km8pF&2;lXZp4d6|VI9b=HW>muUs=u=n7T11}!3v&)j= zbdyWnns!XA;8CA(X6tp&( zg}8nWr0!mQ7}Bo4-p1~$6SAbb{%|Vuh1~1@h2p_Lrp|;01zM$64xqC8hWS#W58t?C z8jD6oo0IS_kh08oU$Bi0K)fLpk`6*~#7+?1v&XL70tEnclGqT2`FAxh2CkkxhEwWB zX7g%@j)Ybp6&Ke6*=yvhz8D*wV8fb_?0*J>ZCG;wJBLFPgo{&rYT1^ zJsa5)(?X8gQEm~3wZkH)i>9dO8#j4W9LhIVFX(A zzttvLNh=){Lca^%Nsr*JZwS*6z=;TZp?3F7zV_1jI!} zksNeh$dE`*W!rOda$e6a?~;_f0u8{lfRMH{+`PS|@ope@#92XO!$}3E#T~V(31EU; zsivb7Ye~C@1V6{4z)Mu-CBf3Qs9Xp4 z-I8nAptxbNn%Rll4@%t32JnP_fL?-@#{LS$`8YQ7-Micz^i(fS?FFW4a4p9^R*!O+ zHv0ew&kSx&_!PJnkw2?DT>>w54YldN-^&@d3&6MIq~*!jf;^x9wsNj^3|ny#9b>>? zH=U{$S%GQ6o2s+U*pxWvAhkI6#Ot5h%de=Op4xw{*kITwVicotdZ#yK?q zv+3Skhq^^({kkeQdvfC|%qxONzIdT+=PM3s5Apes7@HspKKLHC7kt@m^XJ@*M=>+N2uHywg;o8#<_Qh6JXlR$Q0dV!yblWRwbyQ5u3=EibgpJ~wda&mm z`TuhOU5-96U$jWpKFgEzA@U?FE5dMrBX$n}6M_}qE*54T6#-((Er^=?_%SopB{lQF z0{j7&VH>L^nnG(wZkW%yZQC|L-9zf?#BQDQQ$&r4jJ9ql+<6L{9;`}7I9aN?^UBr* zJBq--K;Mp$8TqD{bd!T(dyf6HFyHh)30RyFUrBEB^)1AzHMh3nu9Bm1IF+4X4CUwN zhsU)`OiV*fjSMFoWXh-bs)hjWG7PDRhzO$n6`E#0d`K&tOfxYt(e%R2#AF-lJEQ9k zNKKm<01i>Cnw~!=Gz=jtU164`@88`{ZjJ98SLkJkHoI4J?(6V&Y~4l_J@4s`ZMV8U z9!%9>q?|C5u&NA$29>RwD(5ovRQ%N56PdcMOabYo@5#~6JZ@91jydk#e*I`p8_mhh zTeusv_%1|%KM|s2thBMI={>BL-!mR8C;T_!rnPyaHv!dcdie0+abx2Mx4t5x!hqWz zw6^AjR*Z|qhaB->*Cj(BftU5Lx0@`#du!jtNTX-4!zK#H~ywY;x#J; z>2R5OWL?WCs1>hKY+bvs_PtxNR=n`RgM*ryR5*og-AkR%SbXyiUp0fT2DJx^O`ZQ> z^;J(P3r>Vb+Cv@T=b(fOFxz17P*etf7e=Xq0Dx0Wd_F5H`huRTXw#XN6&@~qMLhT{ zanMc#_U>ioZc{7n%YN{H8kW?H_V$bD`;@ZvhByBKn9F*3mj>K5v2jtiP{0!>z?EnU zd-N6Q#dW_$fz|HTd7(HA`wg8jf95By^6LW& zcJF};dillzuu?4w>0SxesH+7-^hr)Ria_E8Hwkmigdzze^%z-RCwAb{r&OIHa4rKh8q;B8SXRDIAFkx!>qdux=Gl|aNYT3WZr*?+cv?& zy6E?tM=<`7Q0s;bzY;1%rd;R9kLxrYv851`>r{%X)RaK#66Pq81oB&LRx2|q` z3?LBEw`EP#BG}ptHw`@$F3N|GA161~zilMmzWwF;&0g1X+Mjb*XVqcGh;3f`=IH3S z%vK=}@ zuCO@J<6SF*f9-{+GAhvI6>QMPpsZzQ$8R0+t(O#U9|NX+78#RHMnfbVd1uZZ=@bY*s^?hta9pOW$dT1Cxq_D>& zo1bygQ>k%-^K7dPT2=>*frJK}3IZqKj<5hhZ=<5ZfbjhMbm_E!oMNQ?^iDWS?0#Oc`U!u&$Z;U{pZeX_w zev`SXjk5tp^T?`-846U2rI?}ATh`_RLEI{+fo;$y$1?jnU`9N$D5vGS@Pi4)G0P7Y zZf#cCGuky&TXhfDR5umh8c2LZ0c@$2z#9q9UEwj3`Nk#K-g3u+nWak-%Tue!v=I+2 zfUhE}DuIZt03=ea_>SXHVSoltIXO+fND>6Z3xl0=G)Enr9lbu%U>K*C`+yInP4MC- z4iUjIH^;hvs$R0#0eG@{7(P?UnN7s!-^5S6DkI12R0e? zf$`@Y91g&vpdacXW^K3Qm5S&jqa0X0|vWE+?Nqral!l*MpF;mlIioh~PweOx5Jm>9ib{`=kY*Snlp*o4M6 zIl&W#UXhfV8iS94IMqbYI{KU!zzyMUK|w%&+a)R*4z2+RXF77Na~hut0uKHja0`cs zRby}c-A8(PEFA$89gzS`ghi56`wvbQYh;3*&m+`{uh@a#Cw!u6=2TZ0W*cPEfC$? zAS#vyes?0&e!zn3$8JCs-ONXBZeej1n+RrV$JDj2vW-``EyUOex^dvZfzPl=k0&($ zzRJcf*KmdY{q@Z$d`IHI)6SiH!f1&URb+4x2?9?1gkC8$D}WmDpmyxKy? zsl6InS|F(cJ9loPp`n41q@JO2;Wg}4yCgD50k>{(!2ZKB6JYbol|#bGji>fzWo91i z7fI44I2W!BQ5Yi8rq@@zrR{J0c6O`!5!sv)GEd-tCHSfVf0z3rr~PLywb-knZtdN> zcL8qmW(d=ZSt;u|`H>6(hqB+;!r&qNis84ZJ#4KUgtmZ&NLX30Y;cgH6U3Ld{!pks zeaMcY@sJS%*McUB5i4zEVtQGTR4XAwR9VI2KoB)iPOi7j^fzy4k9Q1b;PUmvF|IZD z_2FSFsn!TjJ+KwzTu?k*Ak3qh;jKzM$5bYU7&AKGdar~4c6p4}M8lIMWGCo+g%;)E zE%uE_R@us>Mkbl9`=g5Egh0xl2wo$nU5naNUvkm9m|fU4@EPCu)~uP+k)^hAB99(C zXn;djiWmPe+qV@I2^w1!9k;gLf=&!dj9ADxQf%d}`oSSV>py|>9S}+^@0IC_W7}yxJ9Emq65UroQnEWg zwtL`CS{k9ppT2Bb7=ERozU zW#3Fq1dxa#2?;tJ#*bNQX@jklEn;LsR(~lS=x^V?{Q@3H2Vz2>gsh<&p{+3iazGy| z{xta5G3MP(#ios#pl2&F|lyWf);A_iU^?5R45_Vwp+3a5#tx_ksRAP^C%X^Vxr5_0ds9XhSv4wXPk>Jqqd{~?yKIFm=GAx7e*#zH(e`~~2)CKA zRitejNTdqkDF$984t=FXN&tNXAi4gST2R7opm{<=$@JsL+yD!N9M$zzLBdtUw&Nut z4nV*tKErH16GkUYO-$^1ADvjmCL|l?)KLswuaWwedtha{=*g`lGf#esqT+7l3(1Sd zuvLf*88%UtpzLiOby10s$UPxn`q7CA3kSuG(7tnZ;D&{h6Iws^542E%K`EU390s^8 zprXRd-9}UVJ;yLV(dfn)iMqfAITmWcy!b4#o@rlS)`g;`imFW00&keoQ*fP03vFVn z=p=&3`GJET2IPZKZF{uecM6CCUKGf7{|zn>WHvAm3tEm5k^k=CFS+GjRRO zAa1OEQibwJv9#Dd7m9XivC> zhYy#kBC&?Crg+ z1Cwfda_6*8)^Vwnqb`;Z|`PGRl11Mns zeo<^yYA`Lf?!sPw5znXkN-tfhJ>>7QncrN$v>zPwr_SBH|9-(`d(f3<}klHcN{@vbZ373&b{@pegEBblhYvt4yCmGI>uiwC= z+~3?gEG8i#G5!oXDPt@$+9aF*c@d zL!>RHrLCF8>fKQ`*W8z+tn`IrZq#x^2Yoe{X$J_`vFcc83q_KQ_Igf;qvUF3#?;ru4QoE{OuC$JKHPWu>XRw)SoZJaRbP3M+~bczT}RM@Qvi;=cst| za@S_{@7xcl4OkSQXuw}|aX5$x3SJ`fI`4ZkF|lDZ6!~-Ll+u+nF+L48yz1R|(XN+`x zvB8Nr?>u&tg{rjQtlc_r#$!Oa&1o6oRb{?8xpF;>GlN=-JmSCdz4H@ptl|{Sn6`=c z==(iOJ6RWe`!DLg>{AgG0Z@tO(ACD-9*%Ea17b@%)8J7tb=x^ztv=*0BA2w|rbl<* z*7wNX9D7i3QSRzodsP42#OjFO z#ybWd<%gaB!(VrGNMCn*_M51~F>H2_M*3?4_rWkw<`rR!LGsmq9EG73S+4{{`!!3u zWhHHoEpKz6H_Fw?H+f|a;hso{5%^<$rJ}y){F?}v_da>Kawax2Lt11X@>=iLg-pIP ztN!{)^;`7E84!>N$@(?sY^{W%Qe^~{0a)n{I9!r#v8`>H1>J>^6pd)b;LVi)4T+nF z3VIaIl;;%LKPe*bHF&ag@4fd~rPg;L)=FSgQ7!h6^E5Oy2^9r)zPUs%T(tuyL;uY0 zhYDv0Xg~yEimYob3jUPCxP=3!x<}H(O>oZb(4jR}dgvL!2pn;s)ne0MLX5Jw&9&S@ z?8IZr?;pF|H0a#)9ezJ7{muv~+biCp;|rPJ9ue$-iAeT4RiySL^nq*nY{j zQ0VH>ubVM*>%4y?c}J4A>qt7fr-p#RYl#Iz$wk=WR_+6jH=SRZQv<+=SOQ18)#bFm zB?E&J`11rupQp~+*qU_Q#aY!GQ)6qN^YW%@(h8mm7N=|4^B_z0qOb(n5(to|zyAh{OaS%;*KxsPW@W^M1)|fs3wX12fkJ_ArLHUd6rVRtc_beSZv9 zkYKl5Ex7=4dG)E`#n4;W#4RESEQEO^vuv8@&;%0>1lKll5C#$;>&Ks4@^=5u-+g>Y z&cu@QEpcZrAHSJYb9uFWnL(mHV>w%yi9@Cld@A?=a9uqye8BM{wp86>XqG( zklAfbH>2{yVr&jTe*rW3c_n8*=_xJ0H)`teSr>w3f`GPN`TU5B457R=qYg>CzTfp@ zeu$kAmu%+A@8o8XGkg=#Kl4!KldB8gro;?Ra@7SRp1K7i+%PhkT9pnI1stMgq^YGL zN)U=4w5|~LQVdYtI&e03A$a+H`qh}2MZ5tq5`yUiHlNPTJAE;shZrf*^O2Ksgs#x^ zQU3WEV0{8y%#YTl@+b#g&&kUx`|;zPooa@t8}QN`B8%>joW(>%J3LQcsF^;!EE5=$ zVKsf)OppbJ4S} zuB@t?hU5_9tf&d{tX(#3m^*?wfG2V$Hw(dahzYXTQp@B4bgmaTT~j}QQ{z=pbQgl^ z5#O~gXW5oooe_Q^JX%DlJiq$wYn2XZ6SiONp{wf07V;klztQ?Ns1G@xZ7DRS#lAP| z(B`KIer8xdXTj>s#VdYY7}SC!AYITi@ ziUnH3J(-4aazCG|=1iEf`E|bfaG%-D^1zgKr3lJ^?CKmBo(;d@f03v|5Zj>BLEx4G z%_R05s)C*!Sx=;NrAPdq)iJkYCr+HGy)@`Hn`fJi{YCJ{v>PJ@aN2@`6d*=Y*c%;M zqg)*`1Nit1l7LquiYRiYJivd;=Pz_Y5&IWcJpuL7qyDcSDBZ8+!Sn?}u20X^2AOHN z`S^#)UpZ%0*=>;N*H@CQi`%+YH|WuhP$MQ0;f5qvo@ml&bL!NoOfW9JdEnhfcR37o zH5d2!wb=NIEe_nivm;);+n{DK^jYikUd@K3w)a9Lp5p1kmj*g;vf&4#_D%2=0p}1x zyNOAPZKyAK@4LT2EJJFmX*oxBu*DFRu|n@D08`$+oK!BzJ{b6-BoQ>1$X^l~DaN{1 z=R*xdQ|=+~=`jrlNYF-Bja=M{rl}7uqwVL{S)?%Vc8A5u7MwH+Aig!WKb{psZ=U&k zR;)mX5Y_qYx<$rvaYncQfZz3Urjqr~<~+sEGi)So(h0T%=aRwMD|7B{I<+@&TV|1Z zZ?e=UZ=OhDGE092zd2&4usS6}-kTf?M^>_H6=E3Ch)AnHLl^Wzf3pyW%=A@41Pp2! zHiX?kG&hZp{kVwZLKuV7n%Qr}L%pTm*+c9unk-e>PUHG);bI<>dEYDo%&3|ZcM&0l z+6AFr{`|_Lz9-i4>gCn1sr!;J0+8tOopO&V{&GJ#B@si;t$%4jkGCw zXp?kbs?dChKpgh1Rei|F)B#sox^eHgg6Xr3%)VM!?a+;Nk7fTaZ+E))m+&7nWlBdK zX~7X2=?MKb%|16)U%$v8KpnoY57hv^&tuC#c#LJ7zMJmk2NWK;+jF=fh-=xMx+ome z15Hk4aL`yGAH&;*8!qoVbA2JM-S=@yK>*Hg5A8tphl@Lv_F)_@A>0LIfOYTd=76=u zwn(K!rC8};Ol`65J;F3kZyq&m3b-@I(-S`PR@dZ;D&-?>As}2VGdveHl$4v4XPM|K1c;z32cI}(tDTe{m)K1*z$Cq)(j>lS__6;MhRD7 zbzy>ZLL)#B203n}o+CO%D?mK?DJE>c&{B+c#E{^X2nq`eA7uM=)9Jv{jQC#@-7jSi z6|WRebYr=Y*CQlz2)I_2US#k*%U`w41bG&neqxoCc=0#Uivch59z#oLw3VWKA<)F- zKjOOgozP{M-qxKByNxC zbYU-9_B-=03PffUug#qCzIeGIq52~{ZCuNP2MHm_2wT`!=b?lALEW~#>xMB8crnh1L1c^%Om^)b(}2r|eP@UJ zxOq^f2?@e@JUoCAIhY27_Pq#66NwVE82TrtkrxZeCQiSEgl0%cU1H-4+3yF>W}mof z=J|f->_LYp^HvTh6GZwAAU;xk;%w3h%cNt*-NckIb{>4zH;lnGWO!ph}>C?+-mB#tuK!@7#Sg~HtqG_qaE&Wb(z)# zG2bk5)IBrFcDzj7x9j>r^?&)nsE-b z27o%8+K*GlZZ>ZJXcz|hh>_0gI1d==*$j;uVKNTY5G5iIu5vRaB@)0$Eys|E8AJSj z;IE=--E1PV8Z53&vD=I1+m($G@3YFeS;UyXNQl519g_bqUcFiwC`)*7`}c|gIBHH^ z2>IuMKEwQe*b_- zW)qX$L@opp5SWZT9w5Q+jEmh>aGcxW2!--Y$JCi0J;}%Y<01_Ie6rJ ziLrWQGk-l~df@qw8YEwKp$SXBAkJpG6%3x3h#7*|O^oJZ5AtFL8_uY3%FzL6!jTT$ zX^L&65&%=_R*oTzcd*2?i0$8RChzorL@eWiS*(vViJk;qLod}_Y^A!2ceXN6!R*Y_ znW9gfaZ~cbN!quJMVG5V#qmduHt*Oe`K)-($0ut7uv+)J>MakgY1FyabeVP65t`|r zr#lVDRIV1=EE!F`W)v^=7^$XG{qq8OUmIVm;*yI8&VIDTvT*D@6=n1bL>>fn(s&eg zR!B%_{B_nLQW!2c3lTCGNF81;iSb}WjDf8JYSNKG4GgS$_c8i%?A_k!vZCTIfwwXy zkJX+mmM-Gq;Spc^x<{3%E>9wa{Ds*?n4c|@-6~DDFaIzg{mL(OiOL889w5EfDmR`H zv#wwN?Z&O>M-O@I?9k2BR64X2#C-FXhD#_qvvg+*cS>8S~=oxjFl+K~=PX;kaYUA z|8kfwPvEi~^QJ%1SDJ*L^`M~iICsxLtAO; zkL4JG1W;#G{eMM*q>Kzn?lKT_xO&i&`q~4cH71`ZiEea54?~WM1_mIq2~qubG+d3^ z= z+~t44;ZWw(We>~19ookngm^J!zfM^7yttTH zEM#TE+;AGgG6=&v6c-YT_;OAGQZYgsvajYmkDj1Xa^!h%da6uh)&ALR(KF6Dk-@ck z*=GHoU#^(Zf9YCY&0}-oL_6m5yD@Ouj;v+FH&yeec(6={(w~~HVc!}y@0jWzutI(h z=|?E~_Aom@2Kya*S@GMvb*DuuSNjEdS5cvHDBQIrd_Rym;OmE&#elDN#IAyL!jZ zd%i;SD~f}zZut;SMAo}6!%h){=%`&z_{v*lZF@})e45GN?D+VI-pGk0=5fp7np_FpH-LELohffr!?>hq%1W zIkx;XyJ~8WYR^ZdxRj3K0|qyLpNaj>IJ$V4$IPFYxln>P-2cqKSn6i$HaxaxGj9M1 zaXBqW;WLhh&bHZ{;eX(4jpyeWp27@Nj^Xa+swI|V0p1;XiF-Nd0n-tQ!OY6Ie35ma zHP_(wfM-s+p9(!xeUC>JV?)yuQ(wpz+JeXO@_m57MtIB^Sx%^5UoO_h<7~omA_R+U zI{ua#%c;qj!F?uTF7AU*XkbY#uC~-7ddL^NKt}9#V!Re96xy&H@#IXlV$et!=Zv{) z=qMQ1fZq#PdRNn$=kTL9E)f`a(9A~Y$>$Eq^xdKKz*{3W>=Q3yY&-?)(pRc@Kb=;M zHf!PomLV)$*iVv#tbj*h95GLSlZ34GKNJXeD*`B)n1LaN$1DoBg!NF4uj}k!I>uNI zfaZU1OSo_%{fbx` zZP@@Mh|g@IN*QC=T|u{T9L2?m}tk@zH@K!72AHQYjN`AsDK?wuHFFi;F&dUj?= zjBJz~-dAcUwx)&Ucntg6pN|90kMc|W-f@wN>q2vuT0Ume8DPA(N$ zhr6cF@K6#W4h6pUSu|maVnn+321X#%vq){;zFT&CDOXH=4AM=%Ox^!G$|?MTI3nIS z0KS%Aasj)E$QjjE-dN|13%w4HJ)zShqyd6*57$8G3|e1$$?Ea!z=h+~7wfCEn+bNOTCZ0=zEUwRx4RSifpnfGP;R2+q=Poj)=j#wRT>JYi zw2hd@7Tzwxd1WSjn~;6=}@c=DMpYvD;FCKp4F~W&`f6Hoemp$s4v1rP>`x4^`o2!uo zgmV91WR#eDBA=DNHw$JRZkY02ywF5nDfyQe)kAa~x6t`i#nFg(*iI^^jZ)q-e z!?k;;*hV#$S9!4SBeQSAa$({gA=~I1R{@P-%M*{15|EI1HS5izaPD7t3BDpdrwp}W z{*%G)yx4RAk1OR>;@7an@q`hKBY24t1I}z>=3(NNPi@!Neql<8?J*rGR4EYyK#v*Z z^=8P|8KYsUXy@(3gdu2K6E){jb)8B^cC>}Y4&*+-a~`d5fVL5@fLJkyqMsN+mhiMG zP&N1AN+wwP>Ub1G;?7fm#2iWiUVqwa2!IzBi?7&x9=n|QiD>E*@Z{dxk%wki2_AD zzkwKv0L1(Id-)RX3e-y?o<=+x3-TMp5b7sYYWl||4e_W6EG9AB3A31s@aWfnSEkkM0KU#mNP2!FeE-5P%jQkdt}@^Oo};W$}H$|Jn$8lE2U z92S)n1WzPQH8|8ZdH7y~xk5Zhr4$Og((3pn5Ui%7Rz(MhZT!Kfs!fL?RvPL9zMxY< zH?}i0+mYFKUZdpg+Xy_qPvaPK(fa)p?*;0|4?^UI1a!%Js&#^hCxa8+RnU%~dX20b zp)zABiFZd=z;wv4hFE>qV~TAqAv!d=>PYyzo;AP$6ITHSTKahfJrqt8>R9?hSFfL`ex7j0DI$DQY*1yHvbpY;FCO?kqL?YS2!MQU_1$SxVkmG)eW@xvRxZ zH(3eeEeLZEg93!cKp1Rm9?5w*ds8WbYU@Tz6J@sNErNQGmP{Nb_NWFPjn`YH6@4rS5^{ze^jrR{W2{64UF%H?BV%a+0?D$H}oL zxBuU#C|=HFEe4b)o`7ZgULg32L530c@D?aSmIEaB{Ov+L$8#G?5pOxEX)(;hk zp!F8QY6q77_ngKjI{*KlFpqsgsLFDE@g;ucnF>y|thDZixy3|PDGOb9OxIv|D2%=@7n3d%S zQ&*UwQaIC4)~K{$h#z$yP1uk8(U1NQ&R*X0p7T8SeLq(RVG{zVBR&N#M#U;}b#T=L zn0ACcN|`Ww^mZl zI$=vBeb9XY5-{(u{e4ghGu(hhGa(?h&ZtR0Euf zJJ^aO(Ob-4NM6lJl-KF3JFo-w+4Ar4Kno~sQJ=5qJ=##$Ls=F_yV2k~3Ds(KS*vP- zykT$<`w)$2&**1?s6r?(Ww`Qj0^q$6r8jQ+gbuo@{}=7#tP7S<=8+|w9hP7o(JoZo zU3)BG(9uBcF8zj}Du%xrsENf+jVbQmUo1s*4!Q?9pl3*^kD8|$tmzj~ldmsJOylZCvq$MB!qJ-}7FO<~A zgF<-(#11lHl>~kr8kcgr-A+5{$%7DWL2-b=r34%^qyVx0=&N+aH|$|O$mj2YB}-Jk zf-si!2XTb0~&;au$8(oz488euSP! zzrp+> z7e)?Y3N)R6PVY2W0*H7zQzi4lM-ObqPDoNG&x`U1Vb(?D@Jg!%roUhs29Tbrgkr3jsynfxm z`KYLk~a5Qg_D}@2~&w~UYeKw zZpePIHvfEf_vTXvDQ^17JqfvalV_X8r6&Tswt+jkc3heC%YOMfpIXqc_GZLurRY24 zyqt`oegUMP-uG0J=T>g@m#e8JHk#cVTl47EzUTbAXQgNEd(T{)bMhPqnQ6E`57kZL z7da`Va{K@O9Q^InQ1pL)reakpW287qk6&b)LbU(=C>5^}&&)aEKT({dpy4yv`tQF6 z`}x-#`1gYp3}ScP_x|r?DH(JA`{xQ(azll8o*R_2k^7V4;^Nk&0(q!X8~4ytO}{^o z)AsY=#SFF6CMK!sle^2p-pI@(dH#BPVzFoVaD4D69p3rb?R4cBlP^zI*QIU|&lbE9 z+1XD?!4@gIeq^6o0#%&KsQtxYMWdge(^-$X3Modgjo4qL;^k?bn5Pe$_}cFE_h&|K zmyJw*Fi)^tkfOmvuoB-*eUTtJp6TNK6er!Q%nRNci7j=9`@Pe4*%#9^A!M+ZaqD*a zwy5{-&-up7Ns{Tk-yjR=I6B19e?K-hm|>5i(Z>4PkFElKX6ntaum8Ncwz9a1BxTd- zCvxSroJdUCnMkf9F5?fHq&r?-3H$!ttYO6I$&)8W!*vnNbL~_PGWVNCl+K-dSI_Mm zu5EB5aKnU`p6a}=Zir~b5;@igzpy0pIjzDp&D=Xh4QiHVhErNC=~-BA-f~I?G|o@^XKWgJSW9TRi9)x!X1a}cFV|cNyO3M(=K)QuTz#A z{5Cnf_&hi`*zZ(|T>Tx+nV~RIa?-+7_ZDnJ1pDFFUcch)EBxhns-pIs8P|KU{q{S` zva09<+S5PMB8PrvB-cGTdw;t5*zbXqAg*`sqYuoy+a_wXFxf@&yV~^7cy(!} zfOp;f>_v9Hp<9{uJywnp(J8Xob?)4`>F@W|d8MSjCKtC&O1q3R-=^gZ{qe)H?C*GX zuHFmxslpC=28OrXbM4xO#()3({L!Ah)BHm$842Mv8`CKKXlA&6kGMEP(?j9voXYi3 zI+-QX-o1O5W}8HpO&5OkhH?8WkvWewpLTb558Ig4?mybp)FhuQz$v!d^u4R9e2>e1UnFW%uVFp z{reX*H3JNNmN)Md(U)8N)!XZHTl_Xw$fUo*+kLi?zxBoC!;?LwOxt#f)V#P{Jl*H{ zTbg5|Nwm_a`u6tN6P{8xZ{D27{uq6T6>oU|{*;bRtearTRx!JtBd_fHxv)f=O=*-L z3cVew4HNfSbyrE2;oQ7=vrdJVG$jqI9}dv&BS%95;_FSo{sSbnh zHrsUNZ=M_dI2^e=94RYi`%O~e^y%Gu_H0V_n%ycPAu)}xEs8CU#BNs)RtJeY4k^5{ z>t#dk(#bQ~{Ht_~D?!$m>s&e`>HLKY{_ATi!|wvO{X2E#o^H%6EGBsEk{fgT-c?sm z^qOZ?o8%4nZ{d=w^jRa~V0z*Cl{YMxE?tT}WXJxx;H(4m2N?B>J*r7$I+T{m^x(rm1qC{t=Fzy z+x~3O<6ZF4ndPzMgQUrCh1TKXb&QORtR&Z^Y2)?S#A9v}B$br&xf2~Zb0gfotKyrg z5Xbc~EG9G*v$#wL@t~ypzQtWvFvt7G(t&0_$ZEZQ~ zi9Of7eqHi_kkEC3SqV2eUE}izOMRS5NsdILuDZAY6 zan<-t7(8^oN6=jyw=W zeFzt~>96Qb@tPiZOPi*HcMnud8%!?$7>K+uTWQ~!OC}Y+eYif-ZThmNCiAyq`$+GV z1+tR0uRjr~v9i80vW!i}zYhnVdb?pK#(G{yCs@Y&FUe0n_>6OX1=k1jgQx>7FRvV< z*s|qV8}YzVj~b~pX1_Ozu|?<<+i@B$tS$EAXc~Qfa(2Gx&F;JI^W@EH9ae=Tzmk$8#Usd* zB)j_0q~g=}5B_>j_4{seGF`cW`aG8$@=xF3?Y&)~&<>ZuZ=`QsK2LT%360S~nzAhiP^a5QV1a zuc0B65AlcTUg#CxM0rwBpztlv&zIotz3@dor(-xh#$d?wMRj#G1G4$&&l*7p@KUH5-_|NdQD=0yfJHli#B2UF1?II5D@hreA>b#)tW+v?Wqvh(Y6 z-RhVZx&@TpfB(!}PChH1V<5-J*q)gntttjIXIH|Wp38lWM?X_F(eY>IKGjD7`!7B% zIiU^&#BNp(0MlCO>ub|f!XUf$hpEqJ#ddYVaO2(W?d)X>qiN~KJ*UEbK+*P$rb9CKrz&gki}z0wn= zASVMF{Bhr7T9VwlP_Or4lbM7MZNyrh{B4?(j*jB%Gm*ZJQ5Mc;YL>W6umA<5V(+YiKaypJkuWw*97}q(nt3N$6jmI^~jZ%#F5kWBpjg($F?!k~q=+LhG1nN89eA z&3#|6$E$;W(R&GESqHq(ar0v^2dwJtcK79N3QSRTrpTH0oE?jsU!+peo zG}fFrmv;3ddz4bZ+gn>qk*H}M-LzloJBB1)%+wU2V@RD@p01|jTsJ^@CY=v=I@FfY ztia1q7ryJ({6xo_sTOK#>ZSgA{1xe^I88K3@yH9U?4|=_SoE5jnkq|4k5>~w0|D(; zE~Q^Rf0qM%$!%;QarrD62P^Orct~Xa6YKCreV5;ToLIHDE59p$&)N*j)JOCjO&-Hh zUyPVhWsOq$u0e-7=C*4q=RtFt<^<_ssdVPWQsjepj~_4lDs_XM?Z*5; zV3S(I_1T?&rn+}xDdf+d-MYTgzrnkAZ|%tz#y%W*gSYCkYXKGBD<=5oUiGo}?%n*7 zp*~kX|D$!&8@JzeZ+=&VA&0+0nM!s)BgutRRNWA@NBsJa^BmGn6vX>-dH=caW`BIX?V^&Jnj&IeE$Mg&0xPYggtcm_BN%XOZ<6Ka-HCvc zw7y6m9u#tJvkq5A$w2T#r45r_M#Qcs87jf)GpkfyjBhkAG*!rxn+v+aJ3Dn& z|9nv|ah-ZpXMp0HT?ePQ6Xodot|J#5F3@g@6;wfA(mM)#xQ*n#Hs3K}5ZCu4 zs(_v1_%DsC+qq?WMvjm~ej1f%?gXqTl3xb4sXyv6UV~Om`RrNa_`~+*ctPXDqb{>u z-t^&9T?IkCH^vfG1f%m&R*J0J1&fT{lA{-0HpR*`0MJ&U)!Za^t$=Np$ljLaxv{R! zJX2k?F59+lH3opc>QSB~+kC~-I@3L^d3JWTGeO!}M_-@gz7n61pkQb(9$@mmx{TwI zmw;U5OG9DLRpX^r9Zl=+TtyXfDWQ!~tGATQ$13KxwP^yQ)MyIsP*zpF%I*Cps`^Ia z#jE0Vv1%EnzAN4RI;d25-RG#@lT*e0u1Y^I_Id+NNyaZUEtfogTy?b{i>3>-8w;E$ z7#->|-WCEN7j)(I^~S*x1YzLzT@nF{@`wyhjga258}}o)PCVMYWy`@AT1^O*dVriO z8p($iHFZ&hZN9y_CUpFGLT0#H}U+^3D6YGv!XyC3l!&&*hQ z;J7db{D!*R*Wpx};4;}6C2UaEIg+557KN7(d!aQkEi|)*yzY@Mh3CPP%f)u+2OUB# z?DlGUb|LL6=HqIc2ld2Hx|Rn3kIt`i~ zOJyG_iRYCMq9tlUSWk~WIE5$a>Bit%L>hYu{wFm(-=vn>3orQN>kD?R9D^x)XS?AX zqwbCM#Y&;wyZr%izh-NTy8iib!8h(y8);ckj7N4e<@by#f3F>^ca!zFd_r!lt*`u^ zL4F+?i7~8eyw4A47rKSZ{jpjmPjKCTKS#c4_TqqC1vO2Bx-he^z^FmFhx8K(fL@_} z`)&(gF8aVdO5gt9_x;J1_dDrcqU4Ch{{?V4r7K|Bs=<++2Fpe1I?~0sHo>9hGW@2Z@#&Rr(w2D1+Uz7dZ{; z>w(`ijpTf+{&F01eXh2~yxdrMH~EpwVY?o=iLWopT`T+=q;f4=d5^D57OeJPy?Qk` zGIH^+3#w%0zTAU7#S$y_7CpbM3fb`J1Ze@tgEQJ@b?CX)0sIjDfUh+}-R-t{I!1+h zyXmQTn5nNUblFJh2(kQ__W*t($RDC*B}1J?tP|N5ZPUrqrvt0mn!?3>3c74Sl!>v@ z;HyE7s0CY-xu>44zw3O#cpP5<3c_BTDB&>$H$0o<3q7VD2mk?<>@?b zx5B5T-?1YQby**g4<0~CNvSF=QYQ4(D@ioM+rXj)yfqs5)VNjK^Vr1fIR&snCdDEZ zRzk82FD2WhP9GT(mc1s)Hg4msbY*4#?EMWQM*C=+EdSVS(#T{!;qj*`>4fK!MEu9w zCp;H;goR(^eH>(<4qOf1OIqh25Y#W-P6B*y0Rcdf!C4#(Ww-AwDU?TDhigC0<5ONVPUrv)BLeo8ksem zZax0|N$%v4Cl*-IBy9;%7;;cg2!0`q6=Vzv==bYxYLhx-$nf%RGI2bNS~OSozuRGT zQJASRU^@{==$xrN7A8Y*SO$TC&Ro5^_o-_9D4jEh!{PDqYkXP)%&8~>mfc0dNJ!{i zQZzEr)Y0$S6#_h@^FmAW(xn;Rd&lT@3O?2pOlh~eaOqO5A?UYL=^7yU$fyI!!6quE zF|dSfMn6io0~Aq*N~|ARx3WKH68}oRguEs}! z*-v@N?@b4B764fT4RV6c3n=L5us%4q7fTJIQ)M3$VhR;gh-Di-mW>oU_bDC}Q_rtI zuaii5Iy7MJaC{L(GOOTg<%L-G0I1-|A@s{QLH-f^<(CXPqDRGP8$dD?*uOusy&+qU zXTa1>x@3g_k3diH4|1rq8`S^h8_Uo&=0WPh%!eU%sCHzmR2AE zF#c#s+4Of|Dh!wg{3Y60`Rw*nDd**QqvW#N-`*(a#PB8kE5K9`W9u+O^=xIs*ta*28GVN583?-ce;m*9{IFrM&rUhL~XSERR zNMQI-j3E@L7$3ahQfZKL#?djae#K?yzVjEa{HK{L z#j}VSOv!J`QWmb=yE<0$Ofl^w@`GNXRUmd5r|p@hAi+dRNHB_vi<8z>BGbS8Bq&C- z^vK|N9w-R{(dT5o7NQTtsRM<>HMJu|!7J(Lihe=Q4`8IgE*nK%-Ce*(`ZB*c{tle2 z`A@}>JgrprEkyg5y`93B#Jj^Rta#$PO(TeSFC7&8n_V`yk(%(-r%!Koa&kid_&z5C zDT{%Hg%XsE`YUQWx-;lxaHOcWZAn zek)T(n&yy@<9+x~uX(Bzwlk->slq9zt@MJ98}CD=94wtt_)Hunsme?u<<%?ZqlvT# zAnY)f5(`>pDJ&wQhw$lr_!FQ^FnrJ zu}nForKPlK4GXF5y15>DcmLD3QZrjqYqK*-H0<~uvbVm96dnmkt~K#ThDA9zxCwBE zV3YM;uwXTjhF7JLL2$66?%&^p&Novt^w~23BBV7nryZa7gzBTIJ$dcg{%=LL+tM|D z8gUm>2=nJkuat!7QQjg$-JvbD&JJ^Q(N_DnS+R3@eCJgvxGELmhakxQlA?)7z_T4*dF4jyt7{xE23X#p6MNNGZ75iNJsY{o3AjzDPmtT(R$jTB#Co0n>x9|SU zHa0*+VpVS6PR-42Ia$IMp$L|z<2Bc0%-g~ocE%iqE7v++a^f@GO-zjV@IeJ}grDMF}}5t+H>Sc?5C0UwO=SVZ+>fDF!Syqd+&>DZI=X?k3Q+i&v@-s z91)Rm)}?AH-R<|A-!dS?6ki2T*D$Fc_Xp81Tob}XP+Ic(t}Z?l1Fk!cL9Tt;ywlLj zAG}bS#iu0qncAJp%+ddZ69B0yBe9Y-q2jV*7u@uoxMQ`^DV@YlYzT);=uaKH5Pfds zbLP2pjRYBQw#u~yc3RG(0h5z9AYQTVC`y1Q1a=4dnEF;oG?cAHwwLi?Qn8FwbaX*b zdet)IFI-?iaNfn4hJ3Nj$}U|biW&;7356CSnq-!stwz@M^ch`W9_%^445=ia2Dqik)V+kG_7 zLjR$4e~~Rai->+OsNM}$?txbgGq%49OF+Zd-mNt`iGq3R)T#5(<$xHF`3&wl?awJm z#;V;?;v>kA7W8T0lxFW|es_{a1#v)Qig4yd8OLD(w8QDF0bge<6~8-5$(@Xyi>tZY zT#{|MMB87E6sK}~V8Do#hBD~+mV^crYNYRf#l)``p!cEgj#yuEeAcm4PukMc_UOkGB9?nn?-v%bpd8id}5mNgK0US(f3LK4~hR=MY*31moO z(Pro7^2{0;iEbz=DvDS-9E%``8vEvbJ9~7>+{Mj5B}D*Q4uWy~Q!GuvaM$eWRYD(x zK%c729sS@z0Hle5IEy4QQySE*BhI5V%}FQ1LPM#;xlXWw7zu1Ndq?QWh*ut*D8rNY zpK*~{pR2Yhd;)x?_oApTc}y!kG$LZ;%pC9vw*)#i0$Pi1vCh+3y7Qpvw;=FpM{2k@ z2ybTOOJw3ejZ6aN5?g3sa0f*JXkqbv}_P4E(AdnBL9=`igsvUP|233jiGC;k!d_8F!Y2SZdnn$l!EeJvu9l@v}H%-`HyjXMD$Lhxoszvu~ANFqbaB=3H zI|&(8Nm<#N!T3nuv*FuGAjAh{H>?}(A2IdX4 zb-d_gP)~VIxbBQ znjfTQw@iJO&hTugaPMd4ngb-P-`xG@wo>d^E$i@^#ek3I)$Q5ZIIB^yu|M+VF7OOx z7qtw%qfCf7U5E?^w5B7Z2vuOi${?p>u6hxD4`Ti_LJW)oARsy>V~IF=X668_1`6Ag zjEv#Me%~`0YKblB$~zUHbwFW<3JzHh=ZI)_K{*3Ip(mlmenUk=o8vR9jf#m^{12u3 z_Tt5mZVkM;BUkl=SO9ENKuLFT4*$~4%M660%<8oK zhewCD9ngMR11f5QF-)N?65PdBJpkynPAm zF`n)u69?5zOAUw8?$VIzp3pdr%va50jMRaa{S_y00Pk?i(x#jbetG51sTW$F?W3b| zVF|fcWxq9ieE#Xvr+Vc0rD?JV#Z7gr=qTR5e~(&n3k(YJt_Xj$B|r)2668^RWkWAt zx)g|}dJs=v2a^&(Y@1nF5F|X&nB|#ndEeAD12vauo3MPqa|9Mw;sdI?CC4L&(8W7| z*T4oaFfmmJaX1*$go^_u0x-x_W_ugx(2i~1IoXtW?foA8aB)K4q?270!^3O+4!MeK z0PcPXMZ$5QicBR|j7%{4ebd(>8&*@|z3U>mBNGx5JT?r`EPO~jwiA+f4YoDXXYFrc zuy!h(UHj0<8$K-R&^!%!0mqZhD{-){Na zkAW&+gK|zh9RV7^%1V&X2atRINnvo*ycgv=DVYG>*%bYE@SQt~gbf2y_wK!W)0-AXj)TC~%D|5;dI5cu{L{VeUo;?h^b~V;Ngr`a-`GCVp^hxw%uU)4?@jCjY zPMfQ2jRhD(+}|FEK8GLN8hFaTIq}#YxQ=vnb&1y_gaT0s!ZHQ;52S`Z1RxDL2WJpL z0CIVH1*?Zf3|&H0baWuJq_)Ao?Z%b;GQ&6Lir+kCoYUh3j3*3oeK;HIJJh@pq9u;Q zl!SGMNFfak4b!R773uqH%Dz%U^(CZ3h@Wm}?X@nmni75+G$9r1f33ad+qID@X7bZ3 z{7v@9OEJ%}9g&QV?f9kv8nIO0;P+`7{Cs00Dy_Vl8ZGQB^qibiR}Yla)s}gXxourO z@wT>lbaeElc%84aM4ZaAtgM@jW~ab-0wh6A3*5AYcDny|iT=Zdf<+Wi0vf9&9wmB0 zq(4H|?y{)^a5a*MTZ+>Dgg5{MY(Ue5^dKfiKCM+Q)>A(2K6qC$Vvc}>LBHtZqgVl>`kJyFJm3?h*OmJuf zyJcXIB)==BU>>Cg087EiNdjHSvd*P}1wjL-5y^f#kb`l$QvqrSOMvMGa717fWkdD! z^=YD%Y9e2U)|wC$ucn|u8ze=FoX~@P-r#bpZTcsxMN}lj?>y{l!=3%jt|>A!z`Mc+(0}!uz-+ZMZ)hiLT^S( zG@QJ#YEgLLj9qup_L-R(k+mDjskN$|Ly8_*m;K*!t$1ZFnACxk2U3FmvQrK1C{#nQ zr=(w(Sxjlbd(z4NM-u?06Jo(kHJ$7Lpo5p7h}~6DJ4P)nEf(Z-oDqCY?vHK?ui_j_ z*k9FUKDOdkkvuB!6+{uSu~<(SUf`b^KqS0{(`)$y%>s^?Ox{KS|7(obbm$)7eyVVwZi(^pwX^s$FY9sl+)7oRU_X9o>0RhrWH(k1zIOY42k&7r_%0AI_{@b1QBA2w z^#zr~YH#Wmm=D53MCsruHU*#CYFYefXUwrLCW;0p0%?v^%D646)?JCi(L>P&tXjU) zW+^$_^xElwzN2zIOrZ=YP6C30?+`p<08mIBMv&^UY_~s}%e%Tt5qN}b6D5y`2rX|^ zuy3Mhl+sc{eh;Oe;pyzhkNvo%3+c8$19&X=v(MU}&lU<{DABDi1c`;UD!E{Qj_Y_Z z?5#ArBq-1yAWgje7=M_^NI<~SDirsW_|Ob)CH$7<29XCXnvKwE{PP~Nnx-0GpZc}~ z+&3bzURkufM)p-Cx9lDMWG}{JZodee`!&Zfl5p`IJI0P83GD{Jmz)rDk@NpqDG7xb zsSD+SKqhcq)uYcv^FA>4hL7sz()|L9PheLc!;DLKs5tkTppb3d#v(+x5yh{*XGRB! z?bI)GXCRDGgknt?81aamrOy0d6Oo501{PK$pw{wAO1`=GtN7(8`~hg3Q0;n$kY^EKrtym5ezZ~8fqrIu20Vk=z#1)t{98$vUyp^ z33N^)mnenvi%6|J%f}d$Y?2onqQJY4F@*5Wol3d8(d{#QM^#0|48~l@oJSKb@w$KQ}%|ZHF^)20Qs1x1LtMxAvk}ep}f_!cGbe70LxPV z>|EJz;o;$tR=nTd4vmG$%EFZC+TVHSE`E9{9c)S0hq!}r`XX+f9WeX2uKk58%@o0E ziYhCzXkMt-1rXMWUH*hPcodinh-9@E_cZj4RQq|hZ)Y6mm3?M~`&t^yJMyw88q-eru$OLUwp!}^?kn%w6M6id;vJ4g@OSTFzvv>QUBbmyfaW%z z_-y??D-nd5z_!04(YCKF?uB7xk~e(bLPA1>192ZSb(|cJ5u&V8MjN(HpkOoT^E*pG zqMoMjw1+)IJ?(Gieml;i*BzG0%|8)K4$@;)FdPCMd%5ZjXP7Qkc%$07Ww9Q|kGW3j z6fRm8baldK+=U1E^hD#D+)Ac&aO(IsP48=#+_mkZ%ZMN;xvI3{gHP9TBVkzW{uCrn%mPaKiN#|$}Jg(+T&JNy(s-Sk2pXS z&;dAx_rL~h&#E|#a7Ls~ge_?^VZ0S=z(3~yg%v| zzVNR7zI!y#>bv$Yqjr*CdrNz^5^GLa9k5aN`PI#_aoqUVWqzvgKA?b`0vXE^J_sDZ z=TKg3+MZpQgh||as`rMyiGPGAB`m74`;eXDB4?OSj(aS_{zQy4`MvSJUCtb=UWZGnpPelO6BpFl@rXi*-^7}+x|#eTQyyWm2ns47 z3>Z)hiJ&@_VuS_)$2Jc@?%!|7LI4@ZSU5R95}OUYBwge*a&7?_BM&WV!SBkAq>qWm zI&Arc=&53r_=Xl?8o)~}M`?+eo#bP@@%-3|?-9e5%>DMjL*>h(@m$=Y99r4Yh|}Qh z>{1_gU$5@C93ygttx)y9^(77@S}?1%n$D@9WmJ`S$dcsE>i#`lM=xHCx1w^HN-MeZ zaJ8+Z?Tqp&NHw?2;fLe=U_@cnd|zbWZ(!;PtygHzo?ECIAqdRm?$HA?dcSQpq1z=) zhp@2|b$!6~-2P0>@q4$Qp*=wRKN5MZJuAA&$1eF8i?Ch*gd3kXj>C$HHZF%98^1Wt zs~#Ktx%$D5H+Jqf_(g(d1U-g;VKoKBAyCfW0|i~cbRcIb(L)2J8Y2l3hDB(-4Oh+0 z-&qyDPPDAMx-VCBSc94f`AX||9X?j?0s4dt%2*M_b#OCYfd6md2wGZL$=Lh77dZ*0 z5C(?Bq2A3m$S!B)u$smmaWr{hUJb&GaEvX%G!BR4YFb~|zP8P?_YWK@%>1j-FGI~E zduZSMJX1`?=Nqz%H{2w(Wsymq8&-0`OY$=BL`ba(oLF8Lq2%pp90ysULUpNk3O1%$R#NApdf(#i;)^z+W>D{%iv^kGFZeAJzPZpOBkP# zDkAHxB-w;?^C@7$w^rC@t?s+2Qh2|KSyV=J-1%5-NzVcWN*zRN(I*c zGdIlCAMrIES|7c0jV57p{91p{kBm3N#}l)Q_T>ChG?@}-i)g@91>_4Wf_G;hgc+Fw{d(tyjg?bYYc$>I=tU@6Ta-8sBhK}CO zrLCtI3b-g0s@i<*@uQnL01xKP2_Z;S+;AyazM6O#6Z7Wd;KbHCRuG+z7~)ADJ7W{- zV@2Ioq}u-Q_MZ!+<;>k}SNU>w`#AaBYML68`7MfOl7Ln)mJt+wgzJ?E#p*Gh992(~ z@R=~)&Acv*IpN|2TY$V*gTANrsVaNW8r~1W%v-`3kq^`3?gIz5VG4od2h#;Crp<%w zZvi}Er@Nbw&~w+*F|7PDy8WEk-CoiO+85<>RA( zl%|o%4EsObA(*FHCg#1kzJ0sH)-8JZ@|P^V1v*E=zx!Jt0lVsI|3$15gB=i7!%v5? z3k7$t-_o$_c6|*#j*NX!rX>{}oS&qHmGxFQDT@`Ispk*>vwUMMLwWLt)nn z^@@Bqd>-DvUv0l2U4uPr92y?(!s2$Jn(D&TtgNg&yy%>n|EqGt$Mx@@YshG{EDQ{T z1+Qe1W?#LIFRN93=~R4(kI6s7y31nsz-JwJ=!h)*wba?-;e!X?@6vs}F`T~>JWik5 z3P(;~tk`t~nN(;pxh=b-Lkn$96X;WY9pwBE8X`Mk~wc8h+u+-|p_g|aSvFx#aDFu!Zt$5>EC4FB4Kge3q7~o^-fzwP z3ywKkx@xrW6o-CZ|dB{{I@bY3%gU~$1n71yjt+>wujvS#NOMt zZz1y${5BE>!7_tmI~uTAb7$Q^S=aAjpB!Ppoq1ZToEORD5q7<=iRRH&=Y0;y3>-`_ z{)=I%AngY{4bh?y9$ENz5cKs|+F9#iJcJ`yqQ_q%NFj=U}i-Ct#MYLGvc z|9ty3{V-r3=k1@ zW7w1gfSL-UDeY9FrQ|y^3HX8=GCExAv|WT2zQsM_Svd8{pv=+tSbg4KyoYmBM@w+J~txsdAdBk z?wkf<6|^P=iC`o|%l|MchO-V{oDqytYALW#kD0~%)BT)BJnJkkDF$uP$iZJrBB3=G zGw_@`WYhb)J!7cdykPL>NjlmuOCwrAur5al!BCHeI)O3Dq~4A5qx!UIV)fR%cAZ2gesm?DE^xs%opkAvnNi zmR)|mo)8IVJM=z%wZqUi@U7AG@;n@sM-+H3q#a)b@O!M0ssDaE@>=<1pp{DsL-U?bas&JJEgZ($ zyWS{oX01j;XZ4{+ZuP9Gm*cs!XZ_J^2^@@5>3ntV{-+#O=+G*r-=nnP*Z*`vWUslc z#7PS3k7H^H4*Wl|ly8h!_msaI^Vu1q04ZwZi!-8{2q36mm|J_=?cB!9QZ>k--86D@ z@Aw_4^&!L2mHeEyhXIzKv-kIvKG=Z!+-r&aB)x)jYE~9CW?$U)iwX)_ zX{EiCJGdj~P)NaRDjoH-r0s8Y9Z<@#`Gi%9H;M<90W&M0dq*n8rPYg^SaPJ|U+C?= z9CJK3z!S4@5y(2PALQud-8@D4h?U^$0LsVCn-_HD!ck4V3uaYajq~UIV6hGY*2PFh zL8#kiJwNw(<^$tuKibWoR)_+EiN&d`{w4-5;6JI9akia&{?SrMTa;Piyeyh72%jA9 z?RrWG-S=-J?>kO#7-*}VmQ!7Se%?zkN9tM(6epKx>sYacJS@i)Z-I}30QI*~u)kHP z)>>6F#xCoq*KVWD{Nrmg9>pLx%`}rizH#vC&0ogEF zfL@2vV`C$P#+LAe**2U~-T&rz?W)FY|G%JNTj0D5lDPHO4@}tkL@9BC#ND;)=XvyE z0Z^vu)LDoR#8S{TnZN3av+o;zjp9*nL$-5+oUOrH2mj0V%QsK+F+wfFDD`ga5{fs7 zCy|ZoNvF2-a1L{9vNlvZI5cqv2wh)sP6ToQup_Z}OlYgXB{~WanXx;B1|H>)WN6m& zsr(?@Yid477Md0Q==8n);@|8?pDixA(b`uhUItDOj7|kN1m%IybD?NjCq}k^dAB7= zQFp)DV;>MwHGAzWK`H<{_~gT%P`=o=4YMET7eJ1*?mT>x=aH~}5wGWSE$f1Cx6O|R z8x90zglIR{w~caCz+^|DQA|rJqM5pWloK!tw9@&p3C~Anqau6AE*yqSOx)?aQji2V zI{e(fj{+xptc>?-`M9@6RiIE-%@|J72iRxAVbW#eDlk0SBB}joq#^rQmh$LtQM7oi zu!_RDgAC4l`0!3F8N4?~6JPd?%}f40m-cdgIIo_|Iqvx-%!R|E^Y1OxWtRDdhK4xa zBVw|$vi|oLz?V3ZF8kdM`)8N7*qkxwz0e<}sUEgXlESX-5M)nKY=o~Q@lc*~3QW2j%Dobt$WjTX^IO!+V-wG_~h{+VaSU;X%^AIJzQ)u*|MK9&U z<%9O%&G)_bYLZR4Wa{KaPq*qs#7Q-QAcp<~XDG&`PM$njc;{>(-IixRmmX2W5|AmU5)l{e4;}9l}#JvAr@4?)~5x8pbENixG*s@Rm z6Ed;u%QTA3aa$g-f7B@RNEOlD!X{rMQHMFeNHE%v41lY0!ajTp)lc=H<(3HtFUcb= z9%YyxW9cDQho+td^N^fu5x2cg(<>C5;i2ad5~6|444p9!ET2LAo{0VDt#5raztw6P z&}#X7-r~`>?*$L#AeW+={I)+BtOr-XwL`);dGwee&VpiHmrA=}=_;P%l2YWDryBi~ zx8lDm7}!9M8dxh|+?jWXp`nQB-@OZ+UwEr2$CXV3*-MU9@{^ro%KvAtv^*>6IWvCN z@~FC5Rv3@%hvyU=hiXe+U#5-ucke@LX{$|b_A$qw`d{1j*^wRU*62{#%4hcPZ7kI! zx6QndIH$!wc|1gS%w5ZOTi5un>WVTc-mlC5h81wZLdHp^qCT%VRfr_GQ6O3LAS+Gm zK?_>sl*d}x;^rS%(bh?OiJ(;g@CbsX!OV;gMi8CfUf~JB*=o}_F5mroao}4&-Qt_I zQ7;wwU5D)wv{x0DSYU5rbB43_g zFRonM4&JX8{5Cwx;!t6ZL){~`*{^$fCx!~|z;?$WflmixvrRf@b> z=3!fZ+DnckMZ?~$E@L{Kub)?3Vh5A+X-z?r1CJr*v+9naw7WTM{(l#UZc6-G@I%s% zt_~C9c?dswn5iy6$mRKO+LDjqLh(A*1H!^rpmmPGC|g2ponIz6|Bo{sH7Ym zljr+zp~d&n(b@V=S>}?p9vL^G%SAM35&Mx4?bt<`;bA-lQ@?EQ)^nrAQT~5}uc%Aw z#L<1R5U<04CdaS9u0YBo{qb@PLsHp~rh)y}yl+BCtJ`z4#8vy;YDUY&rR#55DZ{ z{*1ESN7xT&ebs&9!Dc%WU}rkqsIKrOO{C(pr6l3(Kd-cH_K;ND({aU%6KPb76gQIz z*oLr9rlDZio}pIW3MQV&Fc>+5EgipxLFq3I+@j-Q32Vg?K$s>lzn2K|I5x3Z*zxy1HQz6;8l}N-r*IG6x7e7`hPVs!MAv+^V$FP-NmLcMd zst>u|ZA4w^xik^vn5nv!gcKAjbk4nK_=bEX~=; zi9_aoTwEheiFGh$Y@?&IfL3N?UQqhAL_o8FaJ5|e%gcD!?xuCx$bvv2r%y`z`l7Ef#WCrNg0?bTAPU-MQ^zv=9Lz5P^p=k)OD=kifPqC zKAxD3*?!}6ePVwv@22ggA_d!$rzwe^`A+{3icHe&rLE8Uv;pbo>zXXX7yct0?N zGafxwn34!?=j-*p@r8?9PP@m$Nfgc@&6uVbLD)5WWEu{!ZBO#~dyTLFVGg&y6~nu- zI_ElvSJQiTDqm$%aE3u`GX%^!^nPMqOAf_`Jy@t2&@rZ%Xm+1?QS2}`sw%7VO=7F% zjFnWpu^6kn@q1geSdMvGZI#E0iay`|b{KiTV?4QBMJ}uZ zQ}hGGxb!*%hcw6&fPuJmfHwOI7b!Wxo!1nCoZsnjhq4e^YwVM1WS%APp!Mbd-aZj7=t2{t@XlbrS|yo zsKWIq;vmM0o4zr+@DJ1;I0HyB+ME~$xX1uQFE0j65cW%r zdlz`MAXj8+9#t8Kz36ebjTB+~0+)n?3iQV9U&!5R+h7?um+ixtp>Q!k{5E_JgAieh zR(@cRqD#S`_8Cr&1pqQhdrM(LFpSTnw4;=KNYN#eV^ERnN-)IEKfh&rpas3w)6zm!hmUoCtsqg@+0)lP{F!293F^L(C7@vYq zV9)f7f#(#Bg;~N3JC43oeMWY2X%kvZ!a@TJ6UY%ckialrQ`E6yYl-#z^YhCVSik;I zN1(X`?NyIE+{C~`6SJbk{4IeQ=&2kgz6ul5if8U{5Y$hg$_;-%gC}x4^ccLu5E>N$ zaFT9}?&@*rxFRCIh^Qm(W<#DJ7L9P!l!p74lGkMM4;c*kCPZ`1a3KK-v!PE(U_F%;DpIH32fib+^wfb!QRbK=61 z#mWuhdNATLELhv?A|I0%Tb$s>wFl5A>QGQ;aKRYts&fY%rN@G!8_lpUb_cg(BvvYZ zIYfwXj|Lt=`o(nmyW%-XHILBvV|WY} zz>3vbWg;p-@zep3{k%7tfmG){_wg`M6rSr9QX`Jh@?LM)w5^A$aOAUjNtiPX$#7r8 zoDC-|zODw_IX~Y0E>^*1xV7c=KEp$_eX|#D+$cT#VRyp7c=T%9pPAbjsjjHMZ2LaW zk2&Y`>C^4MiZP#%m30bNQ{XPK6J^LAGR2L(8gU=V64kVS>ohz<6B3C6&trIqrEm8B zn}jz3i}N}?;li^CHsEB z@T3nlM$!E@&0p~MFYbPDkZiv}DJ$k9l@CgL2OJ)Mh*8S2OU2(0^q=~FelTaeNLQtk z_rEI=^(g=E6^grgYO^t{0BeE%aK5cV?~HjbMlyqnCmwo@u>Wtu^s$Vf*tAP8<#+1K z|2lm7|I^Buzcd|(aopC#NSt6!DzWT9v^1QcO{_dHhPS2VvT&Q zvJBP_9W2vLoLUBJX^G3i5M{Y2H80S4q&YQp^!}8EMb{7g1)qJtd%n--Io|J=Z}Uc5 z);9{H7)JgtrpAAuG*WM+&O@LCVfZq9u}GIa7?VuY`UQ!>BQ&ODsSXacNmo4XNUMm*K>x>nAXw*U6;PnD^K3U0&E(F7ZzVr>`z*yIJ}fKC z^G&g-qiP!Jf|Bq}(PSmi+|R}x*l`RCCMOd#=-e! z45!O00dFj#G>N6k(ZB*-3ET0QXn*-$E6A!*K=rfAu5SU;%Y{fD9?2AnVyLicl7}Oe zy1zH+Yh(e!dme@{`iyjhSeVoG#r6O6(91c4G@%T%w>$(Y7Bi{$ z!dj=JTHp~@9g7{=)Y~x5s8p6PofE*1aU?CWx$A)ZI zaC-ZA*nC_dc}(*~j~T0T>&wZskO6&&FNwC5W(4u951(HlxgW3nIP%sSg-RpRh#a(r z1CNr;fJQuz87qX{5R+k^X|sdJkwDtXA1Zw_K*JHS$H);Ti;fs$m5!f%V5s$`Qc$P$ zh(@*5o53h6z{Zhir$g;6g^GN^xi3_Q@3e;NmnD?=URT`ADCVN|kx@|u!Z&w#50@+i zkfyt^BY>HcsDk6-qzw%HQO;?yhtw@DKU z$z8)$6fDSJCfIQa6^;UoB2|!;kYzuh7O+<{+XlY2pU*TgzwA9bhFzON-aXMM*W*M? zc)VJasx06dUad@czTuQ4v7e)y9r3U$QokN-FY6%q6||gefk57%bA2CzYh0xt?QB7b z--ri#3ckb(Fw^#7#mv(s$LB#_Q|?>tHS*gT>|5c(&HfCDf#xIt literal 0 HcmV?d00001 diff --git a/images/test/rmsprop-pr-0.95.png b/images/test/rmsprop-pr-0.95.png new file mode 100644 index 0000000000000000000000000000000000000000..a5e01f9f6d8fb5f27b23313a114ba95202b67e39 GIT binary patch literal 21294 zcmagG2RPRM`#yY=h?G5&WE5qDlq5S;B9)oFDI+qHJwv4Rp=5 ztI%`4`+R=C|Nl9T=Qy74aqIi(cK5#D@7K7l^E%J-dPST)b7C6}2Mvit+IH%s@_7=8 zJRAT0a0?~=3_F$b0{?f^O-0{L>#~j8Rr4#>Bn@*nXNSvf4i_!BJ*=;|UcBriaX|9G zL1At?H#cWjX;D$f|NX#$%U5hg_kCx#z(uH?PhM~(k?72cAF^li=@&_)^YN#Y6}3GR zrW3FFXzOq+`%7G%`T6egUGn{V4jrc^7o|V@(fGyYCtG?*^*Z}$SO>nk>kQ~P>s@tM zsV|t|E#l=C77U`VCTC!H5>i0Mc=xsmf83squ`>U;Po-K~0&(gKKJv-G-@GfHE*^VR zynJL#ZtN&y1N$aLdJ5tdLi%8~Q{mtLrWXmV6Z-dkhJ&{~_ihQ|#!HEkG5haF>6M!l zMq-G!wghe2ak7l@-*KUE=#+|g!=Eh;kN_p?1fh6YUz0HoV=Z! zyxTzwS16HTjG)NS%XaFN+sbx8SxrqXtmildt7&W9WOgN2x2eBxn*(o&JT8(--SzT9 z@UCMX6#cY+FSsH9%4{e7r2*Gg*#}21b1~DX5Rb`e>@D(KuDC+HgualhRag2B|%% zX-hfoGE_xIst_j^5Z0|;Qe6F!K&sN;_ zJ?D2fX=N1^^VNl~PD-bF@0j(zvhI0(k%^Lyi#Aj#aIo|$Rr|saL%4LQ&+5UM(pkB> zh6bgSvu1Nc)t-OWm&@N6vlZtSMmoh;|earM(R0bX8S=a$3WB$A}lK=>WL6G~6c^Bg?L_~Tp4 zadY#OZt?BA<)U_8E@Qy|+UyRoOFFP`%-`}4pVUl{3Jl%K#(VfM3+~dz#iaEyzMVe0q`>4JpU}kKf5Xj1HeG2JI_v z$#1aZ>b z)FiX%zWfIgw%gw)9;15x^X=?)(aJSO*Rl8YSXH?m(*_?uel%-ORr!wT6%&2l{{wr& zV&dcT@LRVUvHGdPY6Ioh$2G$vA{Yu+zo*@D#!OrO{NC<46i7uPUA%a)`e5-12`rw+ zj~^3XwSrlk@3YTNdHR%cr=$aY;p(^e%X8!D$re~m;nC4E^YR;g2DaAL*6hbTUhX5e zw6K`#)H5~5Ej-J}sJ+1=L?Ueu+jQi!kHo82uf#5Yk`Xqo;8aax@Lrx#IddlZbHPH} zaXRzKu1x&`haDd}I?n0ngksFeY~LqThcoc`%+#{i{v7Yf#o!4Wyxvk9M%S1m>z#Au ztC~@T&yMV}g&X}#@@sRO{2w!+bVQy~jIi24vX5S^u%*@O!C@3h#GO)R5eW|~_ z(%=8(g*?hA@v^y^t)9Qe(}_(o;Qwd+*|TR=CGL}A<~0;+zb3P{(9uzmrUpydh`Syc z9nJMwy;4_SKm0CEVr3*!GzWimiH~Fx9r@%vt72rtc_vXh6f2l2{Y+vF=C#N2lN{I4 zD->bdch!_#`_YC4_GN6$a{bq0(Z;VymtQ|GKI^@%Str-{i!`N!(fhTY4n4Hbs>X5On2+@j+0B<YAY3C}(!3#R zhtt?6L<0ns+i`Kd(Hu^EQFbi5edfqERV^$muv;SwBPTrEdCm6_`o33=Dw&Y zYx5OX*En^4%d8fqwDz3MTUjZpm4d_@l6;pgPzGou%ME7wyt%uVmUPT-P0BJ#oTM%o z^GYlI%;ws62UNT#9k7;!<>ZodbahK&TH}x08ejD4>gj1>x13sE{%lL?`TS?&s_4#y zGwCZkNZw1mw)L}K*tsS_OD-VjNU~{^4?e-8!U*I^_IMMa?ccYo7336 z=C4lHjkk8=BAEY&GMArmudGBLo1t%B`0-;$qsvq%n~8J((w8^))cNm4eDx?zT%7K| zkAca1_>iN}(RiJIr8ma^&+pH)q~F-Gbq8B*c`c)iuMWCTl}u*YH?nx_^65P8;UT%H zO46Z+J686`I|+PrDzCMyfNdgwucOVMjdc_0K=B4*$Vp4pRJ+5ix3UVGk$QG-%!RS` zmSacr-#Izp_9ldyNnc<8fni*RY?OGxrB1=8XZJm*HluHT+uV$?b+zwLqz>Ii5%BY; zTcIhJWkVDhY3g(&Jt}X2O)|yP0sVn4!o9s6K-jTcFSikUozjvdVN$-pzBj!>DVu+eBwl8qx+NRCdG4e&YW^S z?6?V$idf@PkHAqWnS~}kr?1#CQtXy16B*e9Zw1aIeD8`p?9d~I+%^BH-`MkeN?2WM zvhUIkq}*@s;zqv}78ObToc+A}_wp>2^Vdu*6B91om-;+Qbu>l4G@hJ~NN%x_5EK#; z_n6WrId7f+K2y{c++uTFM~CIt;$#@^qR^|Sz;Wlng9ppJ1Ooqb+8g$(y9%3>6`d;G z$-!~|`q}W)>=h_pjSGx)?e?C+2!oDL`I^)^1fNHa>2c#(T4_*8fPNB_U0Y zloyr`O;ipH7>PBsA^3@YPCV+`&~lk1X4Q0?|CX__@y)Nz_xU6xSp{Qg#Kpx&RxjDx zANzizgbO&RRpv(&yZx?RyKdrk*l8&Xy%0*2^4$BnBs-W7#?kuz`Z+Hsx^G_`+vfZ`d(x0pmd@9A zmH}jn^qIAKqM`Phn}#(`PpF^NbVoF_tPa{NcT2*dC�g2+~I0)A6K>Fji6S!-@;~><-FdOcX#@qNoPVjHT7MLX`Q_4TiVTt#S(lxY`gi_w=wK;K2om@ zM6iOMo=NOW`|v<^ZLW3&X*S2Ap2o_?Mk%}dIN;HzvTM7}(`|T}?b;sJdL>keCpyJt z(Bs47Q_r%p8fN|fc++wm+QM;@5)rKd58ZFIj2J@X24)tPYKz>V#@+q|68$tWNLM=%LUUR!(p`Vg^WB;&Wqv=+WCSXuET^4sZHVa03LjuPpD&BU`h+f(Dr znT87A-)4t62E9yMlVpXmX2%~tc@ijo9q(FH1(0btQIU=wJ?iIcq@@-7@};oM@_?)7 zw>aCng@J*ADvn*`4ud5u2s%}tHXwAVW`d&z?P17P%|=lej_%-j(ha$}S_1P*(awMY4IHKpj0ghoazGr@W=Q zy31jUx-CDa``NN9e!b`}*XYswUc4ytJ|nxLPrTu(xm5Iz7hy=Y*A_$GKRmn@Sz|fw zyjoA?UPpe+G-u;5Vuh>WAHbu6w>I6DG|9$VDP($nFV8#>Bb%-KBS%9+V4|}dJc8gmz(H~Jf zO%dCfp*M;p*03@^n(H}lF<&i(-*6uDP#!f2bM>UA<_UNA z!+xt@*{1pn={h?*Nm*s813BiKxV)#t*M4?r7A^JJx3{$g;493Lwu=_K49lY(4{@{; zNIFS&=Z+ma+Aif2Hxtcybfhcq>l=~6fuNmEMP! zio~W!ko9IIkQY$lqmJ>v7;Z7!KNK;4_EY&hYAQZaQPH0Jz2gHuKU!7*c^`F8-bqS| zo|K7(SyEbm5{GQu9$9sVNd$Ck{5MZUJq_;ExS@!^Rw|u#B^z`Y|mb2x{ zT;6N*jdACnGZ!B9UJ{NMGbh)2u1!mN(lTKc@{dBgX0lD5ZL1BivM?`ikceSH6d;7l zG1KYHbjEOLAt52l)AtWpM?^$Kja_49V{7#L-T(O&Aa0{$X+wkR(nl@LTm+XJ{Vhqd z@y12Y)zdOc(z_z-Yjm@W-XOCAsIYg~9TMi_3ob{!;MBON9#hY5shW02_Sg3`VIH2q zd70K<%d@Q}UgLWU|B=%$*1K}$O5w%Ipj$$Mf@NJ8z?;UdEr-?9+Qn|F)>3Zcr~?Xl zi^m=-7^IV5tK!#qxaXI7Pma0M^ST>1ZuCU$kkI$^l(ypE1eu61*4?x%8ZiDIMozkZI_vI^@D#d>7zb$ptd z8r1UeaOCsOORNkG)m%Pvim~_ZjY{ams;13fTpsU8@2!hqiqp-oZf|d&x?1@=@xj6O zi|kS2_!QqSgXh|>fP`PAC;RnHK46UuRZ&(JD>s?-5T&MMY$&-v;eEt>Wo{T1*!+!i zJkqiKPNmzhekbna8XMmsHhA$^(s7gkXHCzAGHTmWD7sMqX;4#B7XeYvwfb*JJS#Z+ z&i;08uR~7%w39W}cFwB#(MA`<3980tTtQ=pt`!#-_vG8NbsiP6Qc#_ihL+C|&Q zx3V(-;IP6fjY5VYYD`tcpS@`k8D3FeDrACer6g;ub*}v7&Wsvr9+!m1rKq{hf;n?ZwvHc;kcdb#ibZ=ZLsW` z1QDTRfUZ}*-Z#az4FnW@EyzOAe)M*>(xwG1I|Vp=#20M;lF=5h_EBQ|=L5Zr&KqebZdr7`(6NZq7Ocng-$_iI zcHJFWKO*`2M#s1^LS|}es@<>m+k@8s?6_bsDzu`^nr%&*#>spqqF+xORq>-a@FhJ<)7+c~tCuNfG*r1DP$xroIJc3Dsj|DP zix=hJ(AcolnFOXDreVFf$!v+?Jl%|XRMQN=8RaH)H&r)f>TV6IC5s+?)Oo4eh12Sl zP^V*I|FE+Z_nnj6F>2*qM-$KVOnZRQ0R2G_L8P;$rgYJxx9{Bxmi1m5LLz#WoqaXl zGESWT05BL{HhDYFq)QAfem!No8eu1oL99wnrrEkRrDHtE?!xlptgP(_EXWXpH@8Cvj7vfQCiVyjjJ`iMt88P#zce!#iAY)F zAQ{=n9Fmcdn0ak4@12v%x&0ib?y<>RE|*-2=N+K_CmG)*>u~ILmt1<2W_2(ooI+YS zts`$+)7L9eoJSciT)1Enhh?Ix%X&~k;#fZ?!*gxHC4F-GKjfckbo5Ew!oswCs!>4k z>;w#CV+%uI;^XJ11k%1zY&6g{>>QqYRxn11|6btOHSh;>GPC@Lo}Ay$$i#H#?%klK zrjud~w;w#%l6ZzHREaF#;ATcv2@Sz3pjtcd6Xl#tYpL-)ZVSU3%DiN)KSs!n;+_^{ ztlpR-7U%6`rQobz3A|+~lARLNYCTm1fJ2#X_VL*{c3H1OCccY0hrsBeCfRoVsME@X z`(ihfP>h1&-hx@lWxC3P1Swq9EdA-7YDQEZ5 zGcW|^S~jNo|Ji7I|Gok2?pZCZj?^T*2xZ=e0h%q{$3RSBEZz2-GJL|gBP@MyV@cKu zIYQh%W7l1$;sdJ2#=Cxc`G)N>rN5uVLmuGW0~EhW%x}%}=gi>!+Sk91wizcJF|Aen}pi8_I(#LsGLf3#}N;5PDIlr+rL{n*u2aFq2~+Pd=E zt)&%eZc}&Gzy&SuTgO-U&n}+!oA4w**Z3tpIz4SdYR{`}Zjv<_9*T7|vN>7gx5O#2 zB9q4IP0k_G#Hj7vUPn%fQQM5aApRtc5je7>M4F@kmK+NK^toAKKb`=afLIT@8G~Md zn?o#{tqzLY2cA99vz3Hr2bX!`+_^j5i>IEP&!y65f2{gfKwzM`?YX$gQk~Q6tB`N3 z(SZ{viF=w~=w=MNNt@^OBBDKNx1;CciUtWVCqsw3NbjJ=pSZz{PMXMi^1NQ!_!dgU zLfwp%&P(+#H*d@_e++VV-^I@V^P!|W?Qn@t{m*|D3^$dNWi_&kF#<|`f_k|EcTVEE z+rd73`C=u`j1iBNO+$gKXkn3BbgN^Wnd-v+7&SyDgxaJr1{RjhNn`j1L`3d;Z`R%` z^E~ck49QO)teNz?_a%cf;*$S_6G>T1qk+dc%8{2ND41N*iy!pX6jA)9sUv`1PKC*M=J3Q*dpYobFX#v^wMxWWRI(}pO9j5^o92c z2?ZNusyaCxK$Z*!d6dnpOF}7LZqv%>b$#=^fq}t9SLBqSf$ZjtO6nbdl`8HM4q1b; zUy(vAUKXKT8r?nT6<2zvJ@73LT5QB60zmbHw@c}sG|$yX(A~#{-IbD(LbiABUJS+U z=C8;n!GlgGe0|H=8wKArxo@mp1BHT6sg$W(+AE;0D73|)TF(4YY_9{JDb#SL@2Q26 zZw%AlF?Un(dhNNG5Kz_arMOZ|qkmI1n8FI^_^%;nt>AaL*V|R!bvvBU*IWczHrj`~JA0HV++ZKe%m$F)M3@W~cMEw11b}ceRxnuPL4tCikTBmr73o5Rf@lZ*qj9j!f0d zHbEQ-Q%yr6A^2tB@-UPISlk9KTLm4dOMF=lFG`p=a8H-xs|g*`4#5 z_^X1E6&>V@6*CVo$h=-{rl6s5^TC2zrY`Wp$L?;TUWV+W?BF1bxKs6`%y8gEyImc) zv2#X7w2}3^OEWaXo0NJKki|2u6ndR;CRJVT+8i`@;{16=R0q{&@c`QG7oj%{O&5ON zUa&(pnro-z(2j#`+M+M*O+KPZt!r#dtEk{YMW&mf!|adB3wQ=w0?B8yRCMqgD@NCB zwLOf;?6~QW&`=^HrL{lG&1GPX+>C-5d+lsSCvs|tNjBT@ZOk;GQYnG$b|DCJR#tmJ zcn*eS)LVcVx)wQE?apD;UBWZ3_Bz%+tC$jjD8;CnLh&cN-^wtR3x|i-_Qrw;(l&Zw(N;t=4pg`+oDC zgale7#OP7v8}odFly*DpC*V1o7Qvx9@~+p_M)8 z06C8vGmPi45EN8wDn7G01H97H>oLt=r97tC{eF!LaLRbnqi94ZLtbqgcf&Xnh#nb< zAdSsyuk%1%1ka@kk{lp@Tl6T3(l4=t& zS8X8Rg6-EUQk-BCRV^*kS}(k&0G-r3D)>=DZ{n~aAkD_lba|e=dsSZU9=fqRt7JmZ zq4(8hf;NIIIA-jtCtT_8X&std>OU||L zK2V0jX=Uw4E5XPV`Vx}dLbE6z%7K$z2r;jd5E-zaSW!ufCHX9zn)+P18_avvK(VX1 z(}0u=YIIa0DhMeYJ9iE)WrF@Bc+D?|W72LlW4Yc7l(OZxhlJ!XoxR@)_Gs#T{;xZ?Fvs5YM2kt4n}2jQlV~ z7L!=f8J9`T#~v{zdP8cIp)o>w7GS5Od{)FJCMKLw&Z>imLuHJVMR))}2p=#h+fr;4 zjnEafTb@hL*qsIB)O@!8`qt0B%e&4b%Wb>&hI#7rM67zUoNmUh5za+-m)|T(c5k1Z* zHG1U^LhD21TOnxuy{BV`pfBz_aG>GYxwN?+%Ue80jtqUpjbzMw+KG1CgjhN4!DIeL|ad$3Y5&7{nK7ib|;DF<@u)^aQSx&&i0M z`TW*}Q|87x!;~9N-lY zXcVyw8gyFT$veu@ZWUjrET6ZxrGRphCjdz;A<``r;7Ni_w3jek3i;KZ=U?6r&iynik0`%?!NtUQ&2f(fobSGg7 zfc?YstJQL7Ot`1`(&(#^7GfYKr-oTX6c1dohZxF}b4UQ%&%6nUwe z!7l&s;lmpU9$a8|f;+}T&OfJUbOE)ysnG?yy6MfEYN#er)BS~`O?UYA2@5N`xQK%* zxC43tV}-F!Eh*su9w2-iQL1SVI%34HBNd^r1KUELpP!Ek2oHxV1_MfAx)HLcJWBiB zG1aJAZe$x6*FT%<)w9{mGozzlaw+(z|Aq|o!a&2z0a# z1|`%<027Kpu*Cb22H8;+c`kP9iKBEw%qdtc0`*-_wc97)&)S&$12OZUZhI%NV`ju{ zBkU70&E<+!et-#r^d;HpHQiH62|(S8C_#jk$a=`R zbG(>)dL~+xjO(yT>P*H3^x_QPr~HzOrRjxPBWf2JgEUzEh2)$Jro{% zb}u6}r~ut;lfkT|J!Og0-PyYV9Qu1$MrZ~Fa#BMN#k3L_*6JWpo*>r@T{BTXw%I76 zUP~}0mHrSrEm8wvGa^Ei7(4I?ig2^MUgvM`c6|Bz)g0ve$unoJW9+fZP^}Y1$s{<) zfI%m!)*l3_+Q)2hGO)#lDg9pOFOq zd4S46{nCinz$q+X$+VuTyELb^_xXgQpn_mu-Eea!SjC(2&_!0@utDTuYib^E-%_qh zp?K&f1PvGo2!#Z~V4*u_BLSQ|F->=plW$?rEr>_e)V#b%8;fmRW@&Vw9VsQ^6b(AU}wiUZ1iG*c^MOU9=4)u@S83hYTFNCMjC3Ofe ziTE(#WTNAWdi;0~V6NG_2jc99>~2fF2~c~Y1PctV1BV2=ztH_=)I?{`o#V;6_r?lU zABur}5Q(9UO?qrRbvB-T=u(|GCfT#8z#s?}sqFGV@K~}x7rxz5E*g&rHWO;b+%5mL zw88T0iKlWX9Z=<~CrB}T_Wx7TiCukS>fpnI-;1Mp%LpXGaP;21xhuP@xx z+S<6W{+p0ODRBz=DKf3Fv?78jBprGb94+ z>+nW+P{8C^+{zHk1)z60SkWf&sk58b()jSF{G$_-lk;7Mmxuc=SJs1TH9y1w-T?G0 zJ@6CZ<3a^ND5lPhyRLHc^EZsScqW~=bV=~MmKLUAu8Hr~Svm&^R7^fl2Q-|t&YlhM zU!OD`S-xDk&WeX8MDRWzKD~X+>{8C$l(g&tC?9V#WT(8{b#-7kPve}ENvZ&W$geGY z;V(R;rdAWQd28Kllz4*7HAX^ag1xHmXVl%3dq9n08~^|&+Vi{?_s#bi2yCr+g5iQQ z%*nbYJGrJt3A7ittn4mu-4-teo%ikxIR9MP(vlDCEI2eVm_7)C8C%>!_(i=1ftkI} zWn^SjyCn2X3f_BTb}$b7jq*96cRigwJzMg6qd;be>!@jU&)BPqr^sm63pv+sbfjyJ zqIz-qiVZ-B4zVJJa}YX4kY4l)os940C4%(x`PqJAkI}I$=DH6F_Z;kQKMgJy_Pcy< z;~}sxfvzxu>s%R+A5*~e_Wh(QHR%t8)j|F(ankOB{AUu_tunUoy3temv9Yk2|6ZE5 zC~iw49B2tJGcxh3lNwz#DpZ)2n7v;(Z}u7r5NT~+Y#Dwi+NtvnlYsz@z#Crk2BfKA zObw`A*;IFTce5x^yW(pK=^ct0okZTNTwB;GxBgR$u!vzb4uQ$4`d_QBH2WIdGDvqEmUbK7i&I;136Ix#jQ8iN?oP3J>)WQ9DpM9Kk@ zrP0>WF^2|R1Zx&BLLl^tMe$yF84lC@q6YNYEnzsLkKz&h96+XI;p+g z@ta$Jcn*iM<-je2s}gl7td8~9x9zNBw@h6$D)VHZlbIudN|$x{G6OMk9@eTG^LcEd zCUwN-I)c(@2T~S60uuq(d#0GG+sJhrVRkj!SX(WcZ`e8i`|}?zWRb&{E?sh-88}L; zXTsEk-5BIkKNvi-!dIBCG(IMs43fJHp3WxA5!^8GH zs8}9A4TXhh3c<;@T?nh)*47_R{?-R~j7mkja5h51xu^DI!M?P)u0xEa~J{xOX1&5Z21*RL|&q zg;e|sBN{g7T)S-wrIZ=5Gk(Jq&;zEv2d0F#(Yxi}M{~)(B@7U;iHR*sv!7duACIY? z>aI+~Mg&RjBrX1X;t|Rt9@A=1?p{2^;c^aF=f8K@@bWzY%^7X^&0eQ8G^`PdY|lS` z-O|W@#EDZPzQv?l&&cRqlHae3vA1v2|D1gH=FRv|NtS1!qf$$l(4=xq1vcx&%)TQK zJ->eYb}+uBfvBZk-M!10ZSN|@DJ&{_Ykio`-%L6&%W&m+K|w+NZ#NyE{O3y_KH2_r zwh|otUU~ziXQK)-X+gsRrGxKHeCAb_@OZBfe!n?O8I)c2^OKtd#zJI{wWj|X28F2Zdp#jL}P{g`x4fjfo~~c zTow@WgoT76*TFS7;1do&BqLtvX>9jaTzSl(dek_fC z^ymYl1IvuBvlWO7Ggkctj+U3p<|!j@+^}Gb2mykC zi4wb!sa5nJ5RXrFGvZ)D-kf#*xs}?J50}f0{nr;0C(^Tukb$ZusU8S{M{^ke@C5D% zUOUOB>FHO!;wJ=~0sVU5XzoEt_pnSgz2nWRyu4lnL##r&i}LPN=RRu3UlN-3Ri!3W z5q$CpBycVS)o{Nvm z$`Z)T;I9>d4K}#C$}`E9@bwlRb^S)WsS4k=!!im;G7=9|c*CU9Pqt&+?H&A0GPimi zY)}o2oY&Xyc|moZ``bgNY$$%zdj65wpY%-|7xtRz2(rMF;ee(B2ZWKS!pe0K{Oikouru~4OI68_*>Dk-uc~x9_nQO=I^vu-PKITwY)+uN^jnq1)WPJIfjcWTKO$ zZQ=8*BDk}1;8V}T`X<(1=cUDK)7bpPv^s#T7xDVt#mgh-7~%V0``4jiz7v;JjnZf?iaVl zGlO%@3LcG^n0itUVc(s;d-v{N?{EXVC5+UEnwy%O4gKdwR44=1!I#Ok{s7rn@H?+;j7VcNKf*rM zAs8a;%sEy#WAtZOx=+*i+Bw0Psd_fkpWa%`D8Q$Ns)LDO;gqs-S2^u2>DOBQ+Iq&& zwkLtrfjOn{KdERQa)kB&c%;-dPnbYf%`w6j;;k{ApcOinXRqNvmdnD5+Jny z$(Jj|dK{@hxhTwU^aCGzWwLdx5_SpH6fF0<-aF3P58bVt?tAD}^Lak5SwXC|_2$i+ z1RVWDRW6*^8Yn3cbBU}ywD7f=ltnQxHZ}&faD~&3--_Q^ zglVA_!ffGeOMAQD#9IgsGV4D(9?1L4dCUw@2Uicd9z%TqFYoX@O}T2gsi|C)FP<2U zW6MeZ^%lUrtcro{&VKkvEzOdGJU_I$eT11 zPZ_T7d7S;zNOWp8a%MsxC5sS4;+;yU2^9R|#S0&&<{vU>UjRFN)6{>xbJoK+Q8Kdo z$?5xG!l;tLvT{$)N1*OJlkRG0pk}}OWF|{aR;mvDldQ-|$%?M6Bkid0!Db$~&j(@` z^$;d`#4Yzsy4Jh#UvRjy0Z7B7E`l_OQuP-cIsqBaTL74ybD}1gA81!5zDb1$HDxHy@lllBb5^m&1qBJ`q?kP6D z-;dGmg+_kt*=wqcZcUnj5J!-;sX%d|>~(r2OPv?y2Ul65o%xX6Jx^n_YgDX^Yz1Kc zEK+HK8W4PsUbgmy3p-Fl)H%xdi&K9Nb(G$uS^e#o@%Qzg`H7X5`LD-1^)z1!LDRtF z5F`?$Is8-XS(E^fm>eW`;#J_-e;pxm2;oxE$tlauRcpkM{!NglyA)@p+8q{Jd3O~Q z4Mal_wlII81Uu~tHtex_{?d*K8GigoTA}DDuAzB+`l7ftmt~ z_>UOvHhRgT^_*I%O^@!y76-XWJ zsB@rEmk!Rj8@Et9bziiP?=MJARa$fJyW>Z5xTdz2VfXG?T^Q9v?wfc~{>=?QPp2OoT+X_FUsbGQ5_Tknb7=dacVZ_BR?ZF1Sklj{sB9JtW|)>xB> z+8;lD^uE5>L3F_owmiYIbFK#lDaEM!;Bh!l8@j!+!7o$cm7UHpEenOyIDV2jYBol8GR^ zwfeO8iCoHm=!;Ef(tRo4pck0@c%SCrxcSbLYn|Swlg}xw-%XZ|UHTP~`=`_8--kgl z6qUCzWSnK?=ZzXKBxTs zplQ1nODAi7$Vf#Whm{iE7VIr&cvvl9c?FB(H2<<9diGLsdS+6xp_-$kV|;L*;Y9jb zqIz6GmM0t&uYUdV!d^hc6WAx2->9juyx5tl5;+H;SsVivcNo@^?Qc(xf~_xaC&^nyGRgs4tw0t{L*?LubSE1my!ylblys}0#RzAgg>if@U zCW-Byf0<;RWpN(SGOfJ|o@i61&GhtWJjU750ZhEBdh_o2putc7xs00)4pK5%fCD!%acaR zpEvtSd8SDHqJB*-3k{*xs`C@d0&*1c{l9$f$dUTkbjK|6E?1Wp)wUf+MN0XI*a|gx zM#m4U{&vg#ZsYO(LQ#J82SYkZF)^F-dO0Z~;Wm(Fh4v~@=?QxB5Qhf6@C3V8l&5>W zmW)@HeT13g^A-CSV;$~^PFp0U$LG|5M!k3&{|eExaQZ)w<}!C0WjtZ7W#fbW&>Vg+Mn*w{5A7<5e* zuYxJ`LC=-qs~dBn2AK`$$eQ)YlY{A)u(l&{P_`co`pyLkgTIHLo{LaKzg`j7ly&}E zQRp^)o|a2SDm->`lGA>ZcqZFSh8z)U5j&BjARzzhVP|g0i!!ZzU>V>#fkH_yz+m?x zz0-6{pb+zcHb0wp4~WiBub6Dp$|NPq5_VKvjmUf7bWw4V$5JG7dr3pp)5+1`mVxSL z!b2Ek2zxy*jLB9yjcwEQ_Vy$Ch6m4A^3mVjyfqn6HxkIu#qV2ePw(AN`Y9$Mr)a{v zkc@{9ciMrPEO6*$+!MLQUp+~tH*=Ycw1K)UH6?}TBr5}ay23!VjvK;k)1^@zJX(sf;WEtwEdXFmzNjJDPXdaJOq zJELotTVHu4cvK3Vm_;$-4LL5Os`|pQL+mQ>8U%tyf=i$n?}Ka|b|vXO>u}VvE`D0E z5JQ>q+&wXr+X#RkY6vn3NEt#n1e?u&ob}=9-mjwH?o(dMCpdT*OG;wmT5JF%BPL!) z60$7(?8Pz0pejqR&ThY}g6**@GMlUxfg?OBYASX(XfSK6Q^M-e-t3Kj#%_*%)io}h zo=IUaHzHgDfP#d8Vc_%2n;TP0QGxCv=?wFZmgqABr{N)V422BxHYYKNuvzj63ck&B zK+A{)`*uZo<*Ua}W{?8b!&$0`xLr%&)~awHfT$ZAg3m`vCzXzr?n$fKQN_L~rffM^MC<%U$V z{V5n;no#I$dA*SG;g1To(`js<_A=SLwykVo;OXAR@B1)xSSjM3b7stJY_)cWfEkSv z*3%D9Du>K+mnW{E<@$r^bVJ(ASKmqB6ZerbT=g4Jf*f8&SBhC|)q5C;@g zjy;jmNlv{#Cboiz7m6r^HzbN(oZKLj6)nklo_}R>F^-##a#@w1^d{ULccQ22ez#dB zbT2d@6Kieb!C`w=s0CxXHV5OLg(Yx@JDmoR>L#6N2zRoIl9Cb@pJ$0; zR|1!~f0m%~83r{9)CIVW@)rPnT25|g*N@X9`HPSeg^h~Zgr+}K2UEfJ!nr47i>Whb z81`35%K^)SaXEhLUfJwdFm^LA@SwfI)ms${Cqc@k=5(8fKuMzKA{*~ev4*|P^MwIX zdN56Bb|5S-AYuVI@InG;+5X~ECVI*?+7iX%TmE)&L2Qh)4nwOf+Bt;2ecM|?iI1ZB zj275RAU4yma62KWd=J}+FwK}W20z=tr>+eU4(u|XIo*eH2P2#WOvwJMY8sZ9+Cu(0 zXJ{CSiZBgo5h_hM4n$s6>#2r*qc|GTT~N(l3l1mO>J1~OwA&V#-3WUC8YqJuIfnms zi=hXsr^tm5s+Ti3v9~!`l!YqrkL=%1jrKBdbjol=0C$xi%yK(Yk}bTfX#Z-vo2tp7 z26kNL+=UB3hlau?hThw|E0z1D+`iMJRUzb`f0$j~nxxua!GW z6lVTlocg=zzQOTxBRY>HHeWgo+XI-k%!ljg8QbJ0snPH|f{Ck^47MYS5@)Bq{-57y zU(8!4*^|vNPCF#q&Kq#B_3Mlaj>P{paHZybZy(8j;^xlK&za)zw-10mLN11NA zMSM#mo}q3Mg7a0wNl>balTKm;(7am5lSl0!5gJh4iukjW-As0Cryx-Y4`^3sriKkPCiBskJQou^Ycl{>K6h+K()r_z5kJpPkRQx84`X&Sd zW_)F1B$vyGCTs{DlHgvy>281p8$s_)9TWj{0OdOL9(r1q(aOX z4wew}-|&HO2ZO-t*-J8Z5dp3@_ippZ&IrJcG*uduVC`D;=Jqnq)U^-$O?ceX+sr^Z z!Wax|EV-jEQDwY;ENeji$lLT*Xg*n5dlS*^0yB9tQF;}iXAqnNWiZhOgOtMSmQ1(uN zTv`Z$!M0ETWmFuO%VEi%cLVO)?_h>0BAPhFTt<`&7ts9xn|E;x9eN-^0m9o%NwTuF zB?3FVLM(-G2d!xcU^4M>fASd2J81rQHS}puO6usEnp}No65xK;=XvE1_l9Ec#fiOs z+y6-puj=3++9S*mV28FBFEh-%9^0|`cCvKj5}|(jkt?)5OH#|Ip9I?%M4&^EM~en} z1_m@p0Yo3~!vF9MMW2{M7HgzUUmBOPdX<|P0eEM#i^dS%Ae`jj?@O)r&Gv3!LAbI1 zQT+>4Pg^ab;Oj0i-s(!dZLUlbX*s=Phx0KkoK)9~?=?xQg8I-*i+s~1Sv>oG|E>NN zz1P18ZN#j7bhV4|6cHA#10#`pv4bBwF#6S-NOWC5oz^vibAe2OITPD?4gMOU-!tKg zAbn6?o`ton%8SZRx{BXDBsbQS-DLmmLUDJ?w`CsQxxmzJVsO}O5_Q);QPD=6dQf)| zfE2B0+rdanqcqs`*Y7&C6#4w$h6qvs&}we!XZP})_iQ+RgC?|QOuE}dvw~Q8dg|PoIXF-*c=POn6#jE zf@zEVwTfz%u1#OklN2(%Oo-4s0)i7hxd%mr;!UKYmAJ8MkOU%r6B!sHV$-{K6ePfY z;)A$u-9*IBc5Udz-v#k^hsf zJi{)!)%}O0!2c@D_=a32pC<->mj?IRA@~tVZnKlQudmkKpWLF@!0rv3hCWPyztL;i zgSNqUD7`P(*gP%zm6Wv_6F*paD(x$H^ zK{+ro0`Ks^B-@rIG{^op*i7FCJ@j!Tq(*6D=Gq@kd7A2qf<@-F)ZU--=$SjZuVWZLj>I z%$}DL+6Dp7GctlrvX?m+zzM;&iPxZNf9ZAB|9WN~?DL4b#qe9?dF)cijxCMLhuP8Yx4M9 z;g-K=2`NWXU!1=LXa?K<{brt+jmuMLP=sj+j)K&1_i1Am<(ItpYvROICT4S>>BN+d)bCWwhG|$MG`*2#6IPm}y7Tm@rDMVFqDW3yH z0jTl_bw#^An1;H$YscMCS1Q0LbIsDQuXJ26$~TmIC9Qahs^Wd;N69@#f79CcnUL3> zi6B|gzxikAvj6X$IOt_dMyKF6clX2)n6#0{@M^O9GwI;L@-S;WA1e=4wNx}7!;xki zee`sRXOh+_^k3UC5bi>mKWjf={A3UiAZ>J)qKAOzelyWH zfV6q%MnLJDM4UR1BGw0}A3TG`@qVtgh-L+A`u`49Qobtir9MLe&F4ADcRn}(!*k+! zdRyt$%iv2P(2{0&byLm~{W&RTi|XIfjG)yf6_}0iJ_sI2q3X&%QMi|B_e$*#9r*~Y zf6r$6hMW8aHMH95U~$YMjKav&b%fPZAjy+B2Po)`72)KZtJM3cR6xdaEHHz_qMTYg zOy6-4Za%DrY_XuFvaHL^ejD#k)Wi}`9-gFdGO`;|^eE2WsDeF6vgK`KKOgKRjL5}hY_6zdo!TV6aC9#IGup-dx01X1RGn3%ncJx z<7v_I5W>}lHnI?yIBiF++%%4PV+FGjUUCxK#2V_>USY?B!Dh~_4tPaNfGLXhds{Bf z3v#PVoi#AHL7bO>Lkv7uhW~b477k>?@&mF3Hilg|gW?7>AxvDPgiG-aeRGZr{xu)9 z>I9i-3c32I>GVG)CUXA?0D=uhb{0Do5(DOwQ@ zEqW9nycYf$m`4UiOag_<3uIcc9ng4C8eu-10A$YD7$MH4y>>#lq$kp6M-Ubqml}@DkL{C9R~8$DWxlUR=5Y4M+h+3SqH*E0j%eyW`IB zA?$rK*I{Ef$-dlC(Xtw`h4X)di$Lq{QDrk8^kD{is)DjhS}NGDsdT7pcMJIK!8u@x&OMW03+JC+Z^BCyUm=fMEe3PD{R!S z4iDZ__$adae3V*y@NTv=>wleO-*>QZxM>f1M3Nc)i+z<_1OCtXW_T2xeaxPqJ76*k za#SniyX_94Pm0{Q@JmK?;J=-8R9>o~l)H=z8C8#7`8WK8)AQ`{{-2}GlBoZGk3Rd~ z^VINtzN0sf+`fC49MK3$=n!xbO~EN+;vfK6PK!jKGBI|?x7Y|9moUTQfN)5poVRb^ z4n&`W*@r;2h;YQ|TxfC!@enV2Wc9f_MYG3ICglQOv)B9uh;SmMSMsKpt$-LLEKic|ko%B)kyR z?X)&-=dT|OKWhekaAXYK3+A{o=$8g!^~9*LC^v7>{C~GOKN4Eq|JchUEiDa(nC|cS z@ZO@wX!DyFZM>l1K+9IG{upCmVNIhFS?OwQ3j#( zO4*eEyzP-h-#_w7YGrT#zuI4e?Jj&LdP;DLAGe$w7uuOAVE0(O1}6)=h2e{UMiEe> z3A$y#1_mA&%MeqSuWet@GW%|4dMBBD6QCk$tM3Yqf``6GNq)WGb?eC115nwhwe~Sj z)zZmZ5l0*lKAWv{bXRwltFGOG&p2V1lyd;Awz*isuZV?-Qvq~MOy0AX-tFVvzyGi9 zJOwwR4Q@bKLPBf6^rR!1MOn-YlLxKgxYWjcZ+&EK+bQ%*Z_@%$eN7y5#>1 za8m*_&O4#25_%kCl^OEMityrvn#VQ54gF)^@Z({1;DRr~z_TkEJYD@<);T3K0RY3A B1KI!p literal 0 HcmV?d00001 diff --git a/images/test/sgd-pr-0.95.png b/images/test/sgd-pr-0.95.png new file mode 100644 index 0000000000000000000000000000000000000000..32f552bf0c753479cc5c4d17668bf641a4b7951d GIT binary patch literal 24358 zcmY(r2RxT;*arO9kS&p9hC;|FNy?TaduNZz$gGU)vNuUIkR&TBBiS>Fj3T0xG|4Km z`HuT}-}n1{-}Cbn;{U(z>$=YKJkH}d&O1_D^E53LD;0@EqCKOktV<$oDaPk_Dai3> z_?gUn{B`{5DdVept{1O*Szo?D(y+ej=HzH7G3n(zJjvIECw1}|B3q#r-=x9i%!uH~*fSJGP;7_K*2iLua- z2RBiWlT$wzP#HXQXW@Z*V)G{mFJ>0snzM2)dxglE?*|%hk7talQHtIvoCh0U=@xK?g zK_6L6OChnbP#kEzwltT}`K?|ubZq;m&*Y&PP8n8u*`)`?8rEW4ZoYb@rn-On=uu1m zh22jKFKs>7iW}s3_jiKNrj&&$bPId?@-P#5@Yt4u0jfHSnM+5uM1=_+2~`}c^iEdG zeiGcM@v5`a-+4<5y}e+=Rz8c5k0zGVtE!}E*d%Fcyk=fFKl@0Yts5y~UTw8F{gD)8 z8L+(Fy!z^O#Z38lP8qi^t(4)mMd!-M)1*Ca;CqUSTiz90_Pp@BMmB1Pw|5??Y%vmw!Dbrpe{6wE-4Y~x_h)! z)83su{LT?On}K|TpC6td`Fi>I&7>rM`{y&W%6GDJa>nP{xlaH6{+c_bv+wy8J7LTE z4`XINb)3a@|5&B3{v?GeUeC=HI62>|RCW1V)W>U1?X|aW-?sVp`+Y=obg-Go>9UKj z#oRv2v&#jTy&V6&VPs(ucl^rteSCc6m!Gq9obYV*ovGWw^R%Oc-_WPj z0Q%bap0pF;r#Y`}fLMzM`hpCstWk60?YxH$y&hu;r{{X%zxXjc zAz^3kfaBGv;oV$;Yo#Td{ds!0@m<5^4qI`NFJG#j+*lfa+0(N)?6I%H$@yhRyI_Z*#Vim_;pO zN^RS}d})i`8R;T>Y;9w8hUJ(Gd-c^{H`=22WR;Zc)O)P15Y2qZ@7kHzbVhzntCtDf z5m8ai&7suRrN*->lf}F|Jc=*>t}lKXkK|96?@5=L>(|pFBMnzNPYNa7ldx@%J7s3Z zPP~&+INey1maKxcHMe1r*}<>N0STO2YMVT`~BN#eq!M4&g%>e z3`0*ZP(N0`bK~aCU0vxiY$U5vV=<>8vELt_Gmf{%w?8>orfp&pH8t{Vyz9;pk;zxs zy;9F9ldk*68FAzl0|I3KO^t;A{n3-j+f)}vH;d3hAn)PL2^E%#3-!(o0@xP z>Uuq*#J-QGD?^S8H`&Ihb@KX$4`#yWo^JE{=&?uhzSQ;4pRGuZxB_upv+}7^*6*I2 zi-?J7UHd7Zy!p$dGkj0*_4OKPEuae?D~ScNe`Ypq48h+*G9bN(s(>^pD#N*TVBMnxsSh~ z4G9k)eBP}e{@&@u=ceGk94)Te#ZliIGMC;xQ8;yK`(urJVTkCpg+WW>r{^hMK2%*l zdg&d-CpnJ^rj>tF)Oq?*Iq5!B?(XggQz}X4;gD0&%$a!ih{(vMe1ih9%U@M%t`wV8 zP$83?LTZ&!tBTv%a;Sd&pXnC)!6I{Bo`*w2##`if(6R6QwaERu zDBl}WSD0wvAkJS8rQvzFotk+kiB;St#C!#TNl9AAIaF5O7NpF>kS62%ZqLP)-3y1x zu-n@D`b^)xeS4oB&n1_BRhq*8PpA(aPY9ROWef@AXB;kJU%pUcAt?w$3!SFm0F%sQlK> z6}X>N?loh|Qf>liMy9AY(9Mu;2R$eL_3}40?x_JI%LAnOPSFObuRl5~ zBt0%-dFiCDNBkVFxU?;ZSaELWFRhW=f-C}-znQ$R^PaQ$BGs*#^1)-!oQa9)e9Fa3 z^bCEq*Z!)Cr0D7BBqrQWN>bVt*;?e{%P8s8xb^Bpf5&vkc-)C;66wR09vSg8x!RCH$KoxQ`r@UGA_e5@rrID*KQ zPQg3qRovZ6XMF-cR(l{D?1{T{)}!unQ&W?a-;&tj!-pOH58XTF8fGl~qO3>uQi`ly zH~UV8N~iZWDY90Lq#BDSMdme%sH2OcFPf1DLN^1KzwN=U#&Dc?*X^2^m}vj0UWQ1U zpTC>tTpBF0MzvAY5{@tYbW1IJw!xzKw1owy&%(rZlBd#1))STAtPbBv$jFGtuW(CA z4HdBy*W22v96oyHbKp0VL1{h4w~sXn-cA4cbNTDHZ)4pjX0|a zCfWHijC|?sRu{-btT4$&LgrASn1$C|t;>sNeXp zN8ynH?nKpIgnIaVf4{!^T?xv}%*7hJS3-8@%l=*Aw7sx4I)F!Ic| z!ut16sg&Di5>XUfK2|Ga^))(H*r4WV2*$iW(sMG{wPBsP%&td8S9ce(h*Vt5(%d-P zBX+ZeMiXJ?oL`rpo24q*-t+q0cwIn1pz*9|T?lRl2;)&sj_sRAXFQ(zHiuBA9=*hj zWQ%(UB5LAWEjf=>sq`C>MqInt*r-2$4=K)ujjJ1231@dv_Z!4-dtY{m8i3bfB2B6#*cuMIBNMa zhRze}s;U$uDfWhmkJ?*-br3#MRE#PK7E>(o0|;hNcr5kI|=o6J)HMt{fEPEA9ZQ95htf% z38H0_9Ez=}@mqe{GIYGcWXg@v+B>61cC~Bz@67{eNkOqXMPb#q?jU>Q>SUF;e3Z_i zHF0q%n%%^g$Ui^I7uyWzbJ}d&y}x~Ua_$J;u*FKOs(iA3bvhW|l^O(&q=*|InjtkR z(aUTrHIBi0NZ*oUpyVzhRu!u@4j6a2>e<|?b$}^`*8NSU1X90=N-&-cky*`G1 z>rCN2dUPO9=H%Ge7&5B>>dTHND7Z>tGz#9{-i6M8B%b^jXs=y(XX^d=`i|ZjFIV;S zlY2u$Lzm{?Y9%HlSn=EMP5*|FZ$S|J_s{nvHSAd!ckOcf^Ysk3C9rXcZ9APGieN-s zoC*?4Xrvd-jQiB^(HIu-EqI@%rr;fOE%b7q6Hjw0*w{QQ*7$2WVR8|XAW1-}6Vp{& zwPcs~OM6U&ATt26v!f))D=3f!-797=Dl&`wkrBulxW2FlkRlq%5+Sw~=dpb&{mIX6 zzu&ykEq8jqE9-Q;ij57A1S_rQ@1g6wr{jheoD423&5l*APS+5ScOMXRWMt$}r88T= z`hpSQ;Jwh2me&?_$3FQnqSa7RQ={Van^oAheft=4EfMwUJ`)FPXPc>aMk*UuUp*K` z&lQK5wkFUP5G?l3?ceWnKqb3P3YiJWw(&P(v+?}lOhgFrHpn91Cp+h*Tf%5t7C!~j zr)h?3rb&+hNFj2s$VD2?z%_S3gRR@QZy&01=dEA*LcO1l?_GZP z&#TfgdykM~|H<0j?MEsPA+H^??z-$85g&hgq|$k=nObz8j0^`Z0ZV^H`ui$@kTYcc zd+U6?PA>H8*#k2GSlY)HolgY^O?6NHL|(Zjs;lz>=HeFjKceV=&S0@ja806 zWNs8YTEeTn5oA+u0#|Q)<~aNhKxcEW+q1uTFnB&MM<0fg998Siio1JV{VU zDAcce!c?z~@xtx2G>sz{yB?&bvfNb5X4<>=3~;8X|MIsK&t*YD!Jo-S7MTbU>SdL9 zP7R!i(i8Mtn(bC%y&s-mIVdikc;m(m)j~r(oB)4h3D5RIR>A0q-172U>Aus)qvGQD z^7PdJ^K+2I2Spxfc?|AmV;ixb5S^M(g)w@#e56y?35BJ}}`xDEWr!PoFNtv0G z5pcKr{_$}M{o5vmo{oz+BKD0zWRLpn1x}v4pYHeP4EOo_Q{oX3_#xgUlT2-GbaW0I zYs+-)5-c=KyLKr`r*%(Te4&f*Oi1zQ4th z62}oVOJAZzckbQmuqWv5*fq4tyiY#*udjFrn^!X(zC$Bgzl8i?OAs$Dq6Bb5#DpFj z_1=o3RRDWFEDuxTouX7Ax`avMv$ zPoF;Bm(rPd>sAPUxs$u<#DA2JMlw2}FGN@W%;jT=O&gWvy(^5Cw3X{fcLyaUZ-a_h z`29YKj!X8pkRHp?M!(%GVshKbyR@!v{cB*=xYj>E+mSj5AogFmxv`zvZEeXNv1&8> zxydE;hL!h@?*)xP%Lm1*0;t$ii??k3p2HU<%5(*d?UW+w2QyCNWAw(W&Fm^i#Vr4O zWwO6|pa18Lj%w7(ejl)x_<|IXddxLFfp1r&7~m=UN$=iYUf{AmP6!zm>_!x!pS11t zlH55TDD<>yTgFAZ-Sruy}H%DTm# z;%nEgl^6@#kJdgn_d)6l^~f)H3cN3DR@KY)UHrbbsinBwGP7Y0E}nn$$IC=smkPZu zt@_aAj?FV?&nltylJTq!ijWj@9X)w+bM0^Qk1t8X<%ps9xJ$cgQ5_^GXmn6{of5aDk!NA1apZut2YpuC*T}Ich z3&~|?XDbv8tn@y8apue!N*fy+P$nN%IR7Rsj`@G1>(UwxU)0mqPB9)BpSs7SBJnTdp(iMYCr03U$PVmMx_m@8=VYm=FeF;e+we;%W>=WmKT>g0L) zRHeo=_=M+%I$yA1L8$8f8~A9mx!z{O(9O*p&7G{qoz#K&u@+;IR~EbXy7$-B&r)>g zC(xv{FH8<5-n$o#CYNAaRMpg)(eAsCHE;j9;4_w5>sC?mHqD3!6p+mzhvl_SEt=D7 z6`JC|=Wb<`n;g32#J1CG$qpEm0EW5p=Td%pdDq8mt7G+1>KRS z@93pb8&PQDYPZdK!!wG;H2T+v4tDls|Zm zIRAWK#xJ|_llN9iiYV^n**HJhdV&d92DNU9uoh_C# zK&jdm7Sl%cHd4(vE68Yc8$+7n?A9Ln4$V5w)!)`)z>)pDT1|dJR#c>bj)C+$oc8L^ zUa~shMHSF@1pUd*PLrm&BU_geXC9xFy{9RAFI?MvjD@Deq;O|+8>m+$uq3*AdWm=L zP~x8v6_Ls}y3skW>(U32NB_qN1mf7fAa= zMCfoB!0aG0iF*J|ir7`lemc4R`&j&;MAeYo?S9g(qNHs*cJK-cQXO;o;8rD@sJefi z^f#&h|1<|OJ_~bs<>qZdc4KAd5AOvU39&FtR@;v3l+>{;Zv25^0hTWYd>$GTP`{uR z@TYx+2@6gk4LO26Rh zHp|W%7%Y_-RNBOkOX13tGPUhW5luYS*`W| zbGyS4MjJ;yW&KirIY&){(~lUyl35!EnG_O@s_K441l6louMoMB=pwCUE&ywTn8X@e zKQ!?6mZGAj#%18#g(IRuLPDzil6w}rhU2b$bNuHl=myMl1N#7 z5qN8q-G`4JZ9^5q`NIj{S%^|CAS@hWEc{;>_1Oa_C8VX%CaZ;lw#>ZHc^k~_RSN6v zB&yJ6>jmL@yVO0!=gyt;tb1Acup-~eqhjCI;4u+sO<>-Yjg46>u6^4*mRTqboFWxh zM!oq0FL-?m!&sWvr~-N>=0hg>1q0N}0}{KbLiY$e`AIm;O*onz{KVL~Xg?fx=v!#U zd#5nuY>VPOJX>FWy9|DY6ATiPA{2vWain`lMhM_YbkV3K*x6<$Nt9f5miAZ0FFl|O zK&{BsxF@Ndr|m#77*#di8R93q8K5Dx(u$|)m)Q`}N!XSf!fuBRAyy*VAE*_yF--?Qb ziiV1taQimj{80XYBQ|{>KmU$Xr%pj_!;*)nWh){9L`6r3y63B8G2qCe9-qbnM@2=s z{d#i%d^^}13LeA#yN<`ISozY(z6m-q<``XOy|uDMfQ813=%!67ohXqa!a02?&~mn7 z4P7`@=a~Zb#ra z#DZqwG9Hn#`Z7RS`=Ed|E^5F)FdS#rnP_97#LQ@c~Xo2{f1+%Tl)9E$sc{W zY%vrPvhC!`&n#6{)gWWxFeC)coM6Swpgwy<2ae<^EPl{EA)7gBa^ykcl$DfdQ(VhN znM_vGF*FPVLwxo35CgHWNI<|N=Ai(Ol=6#o!m(`_~$$mE_H@Rh$mrJnA`1EssbgV#o zQZEmJ{p}2rRjITQ{avS?O9P`}cYUmv*L8Gs(E2N$JGU1*5u=i|Zv&~GXflvl(DoqB z>KhtTl^Pw73s%b}6jNwGfKL66M}bTbs5@C%1?OuG_4Va*-cl;je!cv>R{9lseZ`PR#qFFTskRd#+JzD)}S+Y4G-yqJ3*b5chLc&Z1vxi2Rr#U1H=gRI0p z*lljCYtA_9<}u*}UiHyB-=D!Z@>eiXmEGdr+-B$b!$^WTjMe{UKE;DsrGg@$3?eUr z0woVcFnqu<6qktug7*hn)qzlo9IUUezfVq%3qrzaM@PXoZ{H>&Wkt8$K=vd`Nui;_ zS3xE!pv4E^I#4#n?x<7H(J|XR|1<6oeB%ZX%yw&2ywt;o4_PyQD)S_ozdU4`AMG{i zY^IUF)kUNZ^6TQ$_jd!DgUGht-uKZ>d17>eJZ1$A$$Q zHkF_#?w`E2i=dE*Wr&HPL92m&1oam;`ryF>5+DGG7$v+^-(w9n=q_83u~bkvfc`;o zCL%K-XwF}}h?+@p=i?p{zEvIMIO!D-3L`1q3gvD9O zD@!;|8^Z&`kJIg5OLtMYKC_(huL|L z#~x#!(06WLMNZu$!Un{Klyg=D1=u12pCP^Ln3z!UDB|1&Y%JRmZS>O5toU9?M}G5t zrvu(vGYLp^SZ`gs{EUP0({lbW(F|;nJbBWr1t$P^EboRax`stDnOi~t1j=g*%I3xoRhPERuOkpnK~k@|u8%2@6zKf2o>*|{&x zS`!FzWnr>vvZ#j0+<;OsTymU%+bAQUNPkc&eHN!96o~|j(>45XgH*q3SWaWDk(zj{L7tCR`y9qFkxw}t*t32DHTxM)YQ}fJVR$@JD)|h z*_^*{L7{jsi>Ta!$!Pm_G0S|mJOGSMO?$i{ikWM0;QV12VTiZ~{#g2c&(-aF*WQ|{ z@{48ftreNI214mT$Vx12Mn^|ae(*hKDMxm!omS@Gkgaj8w>aRS#gB1hKN}DV-eaMA z5^mnq6}`8XxUxi<+fYojbI^PWx<5T@bCR?je-Z2b@4a1Odir#t?Fx1JA3gv0zmT5? zYc!9loHVFUm!@kunl3QD!f6YYZE5XqkIWmDJL-HWb}!FARaszulsTc8bZg14*cREJ z(4En}0IDd8q$uU-D*_E;Euak%$r{H#bHEX~EmJpdC*+a1aRO`V>fQibM^r8l=SSi= zWukC6$I-S*UH(dea?SNU6gsV*Pr-0Q%(3OKhZ$Iiz3b>_qKqZzn6!h8nubd3e zy(jOE$zsFSR~E|7cD{P02yl`X$DgP=+p9!x{i)tRRnnPNf;E=E>--uQC;*SBCaeC~ zs3o*}7;3ua8UJN={xLn3V~9)DbzD-}w-75)(5s%Dz%+pQ{9` zj+q%vR-Zr&m-E}lv@44<@h4_#^-@z0Fh?^mF+q-?d2SX5x#n}j=DH|6KJh3f`wktV z1-Ges_G}9j83LvB_G&{4rbv2*oQTy#QyAJ|iNgXGjtEttF0{2f@p@2mkONX*U##)I z<2U07U3MRfQ(La{hvEDSR&1Y=GibiYo7Ma6g%b7xG=5NddAT$fKY(I}|G&K(Yk#%W z)1)g#Wm;(V$;xtqj`ehCkLPNKRBll`{-UjoP`ujE%uvk)!F9}$VusYyk14j5(@AC0mkgX<&t#z&3zt3(~T>p>hXCFsjig zDOebyjaAjuR6*z!S=2>AssN6Gg+d8MLos<=ihwj|+EHx4LO?ogPS_g2vXucr2ilc- z&OEK~fTc&%_L2GgCB5QH1`!nCXWF0^g+Of{SnkjlX66+aXCRgcK@kj?23o^+X!x;` zuI^2x)^G?N^zpAz@}{UO`qJdi8ZM{o z=;%<@&?tO+9Oty!V=|0@Lxhd1+~I9+zJU-D%S!6#SL+53@+=oA(^OK`al8FUBj}6> zHW@hq9uWPU%H)jmh5CZ1?Sxwg{hss_{UIg?ESYo!1tK^%H&3@RNiKa1GqM2d|t^%;|6Z zUZEi&z=|*s!0x9Q;Ra3%AE1qX^Etyzh}hKK!n72*R>ZKK&3wOKgTX_mRPs+mf2}N%FZSXW>rvL z=0<&I2A01IAvMdUlSA1XMro`alU_2>!y5k2PM$el3+~2hWR9R9OaMU0FPhLS z6F?npGt5#$Wp?pmd|HKu)HfJ|c4i$#ONcB0GXMb!P+-84C8Vd*p+5r`Rbg^ytyo(C z=1fpOfh;)&gx?6Bj}SAle;`8|ZAyuP zQQWX04Y+~jAU}!d1{dV!!wwG<_{Ik)o46^WXl+<8+XTJ;1$sI$+0NzI-W9P-FmQ zUejizMkJ?L$k^6cZvtyzvu2Sh2J;qgjZ2|Vd#IHmOEB9&h_f)T`Fy>5cZ3?Fg$CjQv5k7BcHo(Kn=SPKCG3V@PR;dC4!gKyWW3_#=|+|g_z$;o3sb?A`}K<#82 z7HrqK1bzpRtD{4PtdIQfXeVHpR{Kp@M!QYO?d=9|+89JS&tFh?2r(G_>nv;lV^9^~ z89P&P_Md^FArZoM%@xe^GoL<*Jn2LSPy!8y3UdZ5SzFtT_hu@I+xPAx zj=iX853kH)fF0q0Vz&PI8qeKZVJ2)K*Ity)))$<-a4dLClqi%g!hwE%CkdsCQ^to7 zfr)w_ur_xZTi5`91^U{GFn7Qmk$xB*F)K-A*)^A!P!WN?8x{1$7%F!75S2^TO$~nf51mZsK<6a z>Dx(W&o6IZU7Tqr>gK1-4Wpf+pw3xiU)c6-1%@Y51&$B6!=~|C`k%m6|R;l4~t~C^T zwvRd@jEt1X^Xp}chmZUc)Bx2D!VRtKKAy}S$(HYuEytoPr7K~dBp?Xvnw74f;s_tl z^XJbAZzf_4y(qMn>wxiNMK#lk>gq9K0q<-|4z8-Mdj( zwfC=o!v|(uZqLA{aW@3y8PNd^)%%}7m+<~k3vGqNTa_y7t&MOM5w?MvPpKBg?eIW^ z>13&J7$}${0t>-LCeGbwnH&50+3xD@iT;A(dMcnh;DzOnZ{E_Vm=m7q*&sTS zjL$qQ-8a%yv;~-0B%N5GuZ5$Cgvf}1 z?3+G%xwRk^Y@%-@ItJi_lJgw|5^qLd4D4B=#Funbli{q(Ec~v0u$!x}#)bh<|HP4f z0Gq(jx4b7$9)aJ`v$q$>8*udbnHi1+=oIOJPVfun8QyH&Gw^}U!{(6CaX!C-qphuN zTVtVyFmn=`F-d4li$*+&3C6;FrN-(!i3rEU+4r8~e}NJKdD#)6HMW4rklptub-=oq zq?ieOehT?H8$0o)%6&Z7vLRp|1yirsq7DpsB9wcJI-kCVjRnzaK&oHJypJIlr`B(7 z_)5dtl_uqWgD~MhiDKc93%F0mc~Z5;bLt_^Kp(v1_8m75^k*vV7`qR>4Ge9KXQ-lr zV};2Os@$3VH(5KKdmkuREF|STLs{vKVBiIxJ+RE;HF}Nz*Md*@WarD54-o5mSFe`$ z6#oUHv?$i=ky*U|Q5+8WGlI#6s~m}{%7ooS23#6p5oJB;Eq2s(^gf?fy1J0zlLsA1 z{8*bz_}%p{xn8?=JQj{s_#71t3o2er3JD88LOn+^f5;k|0s8aOItS-ySXkr0LiMX3 z`I-YME0sEa%PViRG|05~?D(Fw7?VM|W zzv}>HUASeREVXgQ^?{n-zq*uNj33`K_V51N5wD7f}Ny3?-C|J1=j z-}CX>kF@51viIt6rbr+eNxOg9<~&+^2RYnfwDwv>WsBaIiU~tgGC-I!d`ZVCOh#-C zc9+1A0@odiV=S&l5$hmK%Pyszn`%;cd%9|z&IeiF0f|!r4YiuO`lCITeu;*~78(RP z!_Yv?#>%AV@bfGD&hMXwA_1!swh>}6QS~Cmr9c3|+It4{=bGPLwQL?7Gwl1$Dyq;M zOjMzrmnT0pG#IUajWkdJgvFb*gwU>}%nX6BJbh-ZE?bLVa!+cb{OJ3$75$&U;R4svr}hk00@umm|&m?$*z@$tO@ z6mUQ!-AYYW1xDz{l!y;3Xb#_ACBrD}vjQ)m19aheRJs)8HU3+c2JVpJ&maSsiSU#5 zr*wu|7>)F-1pp77O{x9PANWx!E{i|i`{6LZPjs6i468YCX%HTPLFakTw5XVvN9giu zY%QK&4poU`KjT`rzIDP@q&YvK4mfB5-=#9?Cpa@@2^&wwlBDdIqoWkS-ohnf{&~-dgyMen*shd#sP<`kgzjF#l{}M zR|qeFp0?IjZ9py<#q^MY;qoMC;GdNvE?Ijlyss11wiS$tIH1)i_gQefd;H4dw}Tbz z?TNrq|2n>1hH9&*B_wxVL72Hl_{0d8nbK-U#xW#O6wAuadpz;TETB-{;s8upOiIkZ z%RalO_+1`4lLSbLCmv(rQ!IS)Ua+}o5RsPq=+UF$%SFJ@RB0!?;-F3=<6(o*obuCh z$=*MI_?-N52UpuA4TtVrjkJ9F|KDC%_|2UPKkQ;Jw~j(gr_>8Nwr>63$Wd9h!B!lP zkJC#Lv9Z~(=tf0G=6SH4x~lgQ$60czg;%E~a!^`S7w|*e_n*`J^heXw^2Fri?RV6_ z@BBh+CFr7Ee^6dOSj#o^>?ItCph-%e*SNSj^Hb@Y%MNguab#%aY~Jg?uo?&o6MG(# zprE`hQ57HiLmCd>Q3vx5=^YwK8wyW}$D|=#!dt73?>lkez^Mo~?S&7_(QP6L;_II- zS2eyq<5Zb(>0##j*B-EF#Lx+h<&Bv0(9zfbDv<$cgixPOtruY)3@0Y<@#A|%>*jY6CPsLOb~dd4V?$-( zXs!ljM;I$Wom9xuH_ZP=+dYfXE&|9dJgt%R9?=?Y{5NW7e)rH?U8ST)eo=o#>=xFX zjJ4$Il}LKaa~^V={&xL?S}=sV*^2^8Mx$sG9C@Lw!2y^a2-hcu(vZw=pn&e^Oc8B| zBa0aE0lg2UqGkpa-K@@Mw}XR2g-aHRqVv7o#f#*>T`Ri#$S-!KUI&D>0RB1{Y$)_WJ9NT-2QQF7!PnHMF7>nJOgTfCyYWoicmyQL~s&duYs&1ue=0< z>drlT!qE_B0&08OWLE#3RU9%@_PuOSxUzI`C*%?1I-jEi*$XoMGk%=;U3yWJVL{u& zQ_)by#R50{L`_YOEX*aVWHn(QekE9FYX`wpg~lRMc}sMgZqEC4U|R1#9sI~*(6XmO z^7REzsjJgK5g_Jr)>c1l!XVOu)``&3(d$UX(&=(Q7Q)CxTLQO|7$$RH1I8`IY3ASsRg;lNSu;?(;uVJk5K*cOASM|tl@wBKmIGKYecE78K2YA_TzNbuDD*d z-nBWqG?a7nz)83NG4QvCZ< z0~bJtqG*1hSYZ@A5zSs?$CN0aGxBuq3HWmw4K1jbn69oaN48;H1u?{CQF`#$vBBvp zN-O!u?eN_enzL?dAAns4yM+!EuHTC8Ik!T?0`r}2oDh8w7+(NPFhjSm$g&}h*k-H^ zF$+fo33^UOaDD*X#HfpL!HcNCgiH3dzxeIEClo5`hlZOri}eLBJ<+SkmUU+O>??P4 z_r!QkzN_2v`r4w*Yg8y=+^pQ3=OH-9zlP}9Ujpef2i1O-+AItpk-fSX>&iUigDfFtrq zZ3v{Ui)DJ;795qG@7~=y2F?{ckbKL^!Cr70o)Jnum_@4v7{_nHr$fvF5dO^FzTjRb zE2I}b2h&SGxeZVm3I70P><0Kp>=Wx%@g2Bpd|?Arpj|K^gAk7hn!6FW1f(c=ZOAxdhF~BKi-MkG{6F2x;Kpdp{=E7&AQ841MAHTc} zXHjz`7ifkaMzNNkeOUzUIcOQkQHWwJ=F3LoMgCIro@6Ypb!xQk-r*xhLSK7^eFP@U zGbk{ehsUlLTqvZh$eTBBhOGPLK2ZoJ?*r^Vc>MSsG*_&`PvQ%t3cLAS=aLHUJ1;~k zf1WU_)S*}sGelG~v9X;+C43A!|8QGyVf9=eHQ=dLj&qEWmO4xIk96PKFFEof)Ag$^ z;Z;6I+kRepSxAgs<>`Tfvvl_!xE?|TN#tUC{b(NpcMDeHPkiLa{1aJ0Ru-~lvA5<5n zmajMPkxi<-d?&d}!6TYYpWg~Se`r{kF7m3!^oKjrUeoHuwSTC9VY)^74F_W5Z6Nl` z$X@cnd=Bk2RtZ(W`D69Kv?G4LS0dz*k2;`#?wrHoM*wvydirOb?Ss2r zQ-Y0!A2aZ(X#4p1R1B{E=@fkn8Ab`ynTz>p5W#F2i@Sl?-3+FYJeU3~RA$^|U07i3 z+k7>|=&Y|1AnmtQqI7Z|9v^MYo|wxfb$m_QP6mB;9n@FzjpIcVZvjev!720z9arBa z&y`T`g*}cVy?-8-@`;}_&lR$ZX6cuVF?8;B5VC?$FCZnAiqR_pS=n@QT2^J(+BtFz zaCSLV9kS!Oy{Dv`+5EFq_tfan%Gzhv0`IAJh4)(CR+RByadla!6Yqa#gsOkD#Y1lK z!<7Y-rYGE$ko8m082#KCef#J42{Y{H{$#Z}*6yyPfXkIuO5U;z!z8S-ep1-4{!H0(!pw*7y*@9&T32nXpfnIFeVUD8 z+mibOgZ83f71HOtmFJIbb!lx+b#!>Y%Xc_`F|3z`5^P3E%;*7|iSPK?WyF~`xUEvOiPEQb+p7{5 zTF@ex#U8Q#MA#Q^-n7}HSS0>Mv!5yOfn%DD*cw@Mo6R1|Oz1R(7793`o0GeRwgW@c z(Gd|8X0_gZ4s0kMtQskdgPlgb_N|NhpDva#C6S9oIx6WgHUAcdfh2Bw1! zMNH_z@Ey#Oy&2tOG9YP6X6iA{pEDqqKskhdW_rYjo{taL@!JJoXn) zDk!d`>TH1GgB#DbsOC@ApfWa_0fPAxr!uk`jxAeS(q? zE+ANQ|6j?Cb1R$=q}>e-P8xnRVrw!noij4;$(fRsC5dwtXh2Sb&kY@Ufh4JF%F<5p z_MSq6&`bLkUM?|ueQ*yC-p9k^G*r?glzH2)gRpYJj#ty8o7W%CY@kInz;94?!Adj- zY|@Zt8Lj~pdU7y=NBJ}POcKhi;{0~b`rt0h?Ox{gCyjKs+iiJm5TA97^|0NSo12zU z!ob(_B&z=OpX$rn0dVhz3X#+9cKZB@N&gE~@xVryfnk3&1F>icGttBb!*z|hw2GR4 zpm&HF9oh0%N5LOsq&q}u1?oRB#>8d()!dBs5LT%oJc6CmlOD_T#O;?WECvw9KV^=> zmbycM?Wcs=oXK0-5e_obdzss(bq(Cm>7#!k91McVJb+KwNp$qPm>F`5as~!=ZZREl zyS{P+2?;F82)leflp=KbFCk2P%j$U8VR0ebdkVuzj+HVRk4q# z4@eRt*~t*b;C?^NY!DB?KK1O=bV7IW@Ib2l{Fi|=_a{X@5;8L1D+Hl8s$}UbHQ)q; zq-1($R}`C8@hkRQXPafaz{&|63cBJBNB|`lU$b(Z`ziwl0?^hah3Leu`ny}UxU-|7 z_&)o<6R3mO#bYYV6p|-zH07Q^&j_-y>}+&oq;HuQyOaFmJMNhtXFgSvkN}Zi` zgLJ?Jy}hvH;cYn>syPg0x4BTw4htu8*h>@zoM&@VvOG>5Z17RmwTapYCT3g|%*jZl zu#%6V4H}?3mwWJhN`ZL86NLgczz+~UT|;$0pHd0R-mD?u<7sBh^2jR-GiPCbwO%p{ zhBJLU`{IR2Atr>uhRZ(9wRX7rWw)D%%Jt#!p39yzS}k0rncBpALvTmaut(HF+0f9i zVyrfQ*ul5HSa4VfFbW1+!Cu0;r>PkyCeoAkx90Bo@4`G} zEiy0~aWsqEd3_N8djPj#)>rLuX?}9BN947=gybF0%jCg*^ElI2y+_Vhn1GJ{%@$lM zpS8Q#AWtNuR`J z+4XrnxIw5K3JeRIp^8DU^S9rNc_;}QfN~&I2;;loz@Zy9J3Fg#Vsy8CD`Tb8=AVAP z8$r*SFJj6WJ|SL=87hasE@u*drXnrIKyTx&qN8|zcti;vnQ{L7`OhG2Pr*V*ShBu; z{kk+P5ynWcJ%pY>j6CC?P*V;0%=Xf#WQC4PppSIr zBma%Qkq29!O=6eSHmW`Pq4E8kIiC_ToJt#@&g-flCqZ6KECsBy=vV54W~NS} zAi1;KJp-MZVmeS;d9TcN;9|kFU-}2+d=S{MVT&A#R91wvgKtEFiHw;jgL2ow8(?GF z;<7Nu_&0e`QtRU?A*@V|JXSRy5vcdOlToYWU)~CH*`)uBZGfXUYkth6gp(Dvs0w4Z z;>6=8=Fyxtoj?3OyB$%1E{`A*NS`q){PRsVHOzG)U-v>HA%G6V!<-*SSZD+e9xNTX zual9k=T&dIa8!o=Xz!A)(T~3`p5HrqiEnM@pq%*0_!9wJQj7gg0jIHj9c?ek0lUz+ z_Vp0R1;V08x|DTS&?S11VEqV#6&~Zm@ek{QtVukwLZt5hXv(2crls{YSvz5iS{8V9 zhQR8$u!`$8N4wt60cnBH=Nq%P`l$NCeeL;+sIC5Nm#dzbbsqKY=D1D>4!rI;i$)dH^Svki) z1H?l`h$b6WV@_yeF&MIoP}O%v;n7j*Tja2fad$*oM0OXnkUuA^~%*{ z|88Utd}uDd|L3y{E^%I%B`~cw?<0eNf17^BE@P5+sg~R7($nI{p)?a`{c*jVN0%vc zM~w(R00bs6wM#k{=mnc70bU7771Z7J*FOt+K>~VaoJ;#7oNk{*!U)t0#(?}4@{~{X zRWtlN&6t-caT`-4+|G@!|4Berrk9!Dd9nL`Bw>EtbtWr9WLUthK&%70K(vz}f~zb^ACe{xcKnCceBFDirh1Kx&P=^-0X83683QIT4oK?xuo^*uN8!9cFaG-t zTspH@7{W^94e8na_mKEI#!1nBuNNs(GzvTqF?OPhQuhx)M~ z8$&h<{s~{)t^4=Yp)G@huQka?%BW+;_%xCM*pQD-z8DzCoejZEuA1{U5t>n{vDtW6 zKw#A2&%zV(8f;uLO^hRGZ1h~^N(;xHtt{o`7ehe;@z%jQ4%BM_)8V~o0-TnYK{v+R^Kikcfi1zr3TMCwl5V$?RjTv zeV&$bNV!?nt+!T&eZttCQN3=#fQ0j~M77UCe&-BYkhjQWzsAD39;3I-NC|Fm#lHM| zSyx;g_F&@pJ?ZIk2*^GyS~R{N26p-F^?exobU_bhbAOnp03&`pR0T4n!Z! zI6*m5#S6|fW@%-Q#|@ul9Mz`LN=i?Uv&-;j1{HaN@Rox$JpOe|iVl7^;}R<};t3fL z0If0h1UJ~f>uoe7I{I%;X2QWbzL-9Wgtd6v={WW#b2^rO*pVQr!M2uP$zxbN_&>CXe75d;4N}1` z@}6Tejc^`nME7FoN5X67#|5MA^M?;V=ll7*Kd<+D;ik!$2=>7XpIcPaxP^@=4YnqVw4kO8 z(r5~7O~x7ggbRBVH40T+>tHTI5iY}>hZTV`K1aAoUs?$O!l1BNB9{VdGTn82i6SJ= zwI|vf$6bs-#$I>>HhkDFU~QF@qktD`nr^FA2#OXr6{Hfp1pw_%ZK6kmsgD*-W+r<6dNng}B?DEK9HbJdgUQH=Po9S;K=6GQXQMH|B| zK33_Sxi84+NM-1E@a%yJq4mW~Y`Cy>-#InAIrx$x`f$o0!T3#~f*p_;*u_^Q8ueXa zIA+5LLzB?|h6{cEwC|h({aW>XKq;oX84aA5ik{pFsoIJqHY|)7o-QY8`q&rut$BOW z?kz(Y#;8+qjj}vZM;8qdZxo;cBX~kE?&I&m_y7`%C+%Z7o`QxDooZ&zgY~hWjuqbsXP%QepNV-$wbP)pp`Y* zhX5?sJgaJl#M^1b{k+N^F9_>`Nno+&L)71><9#UGVE9eUm@YJk>)`*?)YZ8rTp7RE zu(>IMh4~ysz!33H@W%AZ8jqdJSwFlGD;aVQk${NZaQl{%)fBe|`CzH=`_74*Ixj(o z>cdQ=_55D;0ScYMF%O@nvj=w+POCum+}1#RTg^;Oort)O8d&9V(uM)mF;p!NXX7Tq z?~=jFacd9HA?u0L21#V>3Hw3}pRm1}Z#dGoH41_ZUKi{WI8G8_d1>WCriV^^rx~E$ zLj1mnAPgwxF%l(m);(>I&EsLcam@K@cqHzi#DTRE-+^#+m126|__<0f50JZ%5QT&} z+D(H|nSOei`%HNxl34($^vGiai z7X+uWP{T_CUt2ZGG0>;u51L;{3*!x&b%d^ojPV4kQnN*RDjy^hCTc}S4v24h4zZMF z{dbpmRJ@zo`{X+3K_;4>4lo^+0AonyqR>uwe1UuYnZi^y(CF?_(Hs}c)-N_4X%vuB z2}X}17Xel#DK#Jmt~yy`7`Gd(@_?kGo6 zY27UoNriFCoXu5xwxA({CyDMdLN6=ovQnrmlT>Ti>=``g*DF@!wX7OTG*i{Ju^NyH zvl91#O5abhCwQpbw({e!kyYW)f=^FSvcD$Sd}hJq6%v1}o;x}?N8ihKoWs~v1<2Pj zs8%y?hmohT1~L4!LWan@x00h)bM;XQYjo_D%e)yHNA@M?Kdy0vh?2S7(=(bI@jYxq z;;U$=5az1WWo5m_?pYq@P~((ov3RG|)zwHakjoOM3x0(R1fQ>-;S8p+oo`;g;n~Ie z$DoL>>x+h-g7F^sM+Yi+H4r{g$D)#n_4+SR&YES)erefLvU1TT@ZZce+*z{P@9XQ{ z(cJxZR`ZbX5RauFy6e31uzXYbIc#TVXZg014R_e?d$dRA%waOM^llp1+LqqE$&C)S zv3rSZg8Uo=zNlbMRi?a^tn=Q!6IMuS!v#INYzN(bj1#-GEO21jWtj#%FG&3MLp%&i z7n-|I%c8r>v_EJ8sjd?~iYzvmd7~iEoR9{rouWeAa;wsUZjU?&jVR?E7fe(7BS#~Y z6XL_EuMg5am{WxA=#P+_wAkKAn5uvOrk^M+IHNW zPFEy9>)b!P~06dc%3cD}`>;~m92b-y) z3m2k7GS(FV1%HK*;Gm5gCk9~eC5(alLsLV;8CT;E)ZOEfegWxAbMQpnMz<9!P61e{ z$0W2FOpT_#z8C%~7%ao{pMFlySN-_;f>(zZDtMK_Pm=~5#DHJSnn&2(ejSU!9N*E~ z_~gH^v}|};j!qu4|3&EK27M#4{&BHHeY&_H`p6hGCR{~MSy<8^T2o*I?Nj={9u_Pj zP#RhWG1La0v(?ul--)7kRn7XhlTiXLXB2oPN>KrG6i9w@UBS*6#Fw z0tsNgL(`<~?^9%Fw^1xo?-Lyxp{>@G;nQ9vPOFD*bH*v)a?l!m^XSrCA}Wzk*9F`K zX77QVpw#?N@{WenvK8|G$wbs6w@|cx&>x~IB%-Jdz8nILv7(~hip=^An_Un&`d9r{ zX)4kZKD>^|#Kb|Z{y%Sxv2<3#C&KJ98?p*Ge><1e$Dl7-Ohf_vV@C`_{$bss1 zzO6utErCoZHCVhWlZiZ%T^2z|f>Wfikx?hs|FAqUq`dZW3RQ!zedq4U&rR;t*Ozmn zr7D#E^7D}59#so9~DzKfYZCJ0IBM`&hgo&H9@G1Q@Rh4HZ7_W!8*QmrPrH zh^wxUgY$4Wzk;#&S$DTuLtVW#W}wrs7saDEx?ys|o@q8eTQ!7S4#dG4nV5LPX8qIk z8}l7Xk}UW)M!J`N{1VFZz3+~$nwO{B?)v4SvCIr~elD7DN*zPI z&otmDh@M?5f@$wdw6J-f?8$+4eX=KqV_{XdqnsxjrC9&gldx|MPYne}pCF86Xd@5I^r8x^vdkG7q7)N)u|yP(o#%GADDT$dt@d zNXBKzOy>W*)qdaIe&6r^zvDlS?Xa`fde-yY!*!k4d7jsOKIXJF2tS=gBiCivu`Sj87i8Tth@9t&Wwp%%NrQ{#KN#2dzrhJ^XP3A;|Bm+&7 z;rCy;f9Igzru_S_+wNRBy_VWHz1&L0|MXfdcD<2V$MUhP0~4QIj6wyz78l=lIc1dk zfeSbA!do!h7Qg9Uj7U_i!td;p{~y0z>dA@_(LKJ! z;r9<1H`+EcsHdCODkW&7-&?bUZtIP3h8H$AJvAJzgD;nt1n`7@`t+%tMvJ+*VUOvT z*Eh0ky58Bi4)9wvcE5jojB)?jE1hNc!-hLb#p@>yD13ZoVaR(QZ=ZZyG4%SzI^O%I z@E_v=qf;qe`Hn+RuKl+8$@}-Gw;W$Z7vrHQwVdvSSb|QjhE@LTGc9fHv1XTnnBzCr z-n?<6a=iazZIm1fv!M0y7Psks8>azbhp)R29a3Ae?6=ePPqjl!UE1FTYdU=WbT>71 z#OD6I$-{>aZKuaA60|ZE${+Bh3h_I9)ymAwqf`v2qt(xQeKBQ`TFI~En)?VzZk?TBW<1!zo znkYrh$;}P@=n{B}9TyhOm<%nftySKzN2O+Fa%3G_?nr03BHo;4P`vio*-Y2zXH^l> zyBHW4jy2QMg)Hq~O=oUd6D@!9=FO^!7I!PZLH6CJA6?3F7_f9=-m)dGwZL|jYz z2o-ZR;Jtrum)us$#K*;J=Vp%_yY}1NVuO^%484M7%CSn6=H}*-JKH^0GVG0)6Q8ZI zp1B~J8zf+*(oy2)C+6zxBnaYc-)STjtKkyMjGbBXZ{RJ zRjl%!*{R;dmGtx(eIK(O5@jDAdaRP5!N%x5J7qWawMmmr+FuFNOqNWRU2l(%_*~NM z4=IMXIF+KeQB3Qf21m&3XcdZ6j*DE&CbgTD^*C-$KFgNI6wxihKfC)6G99*mRav zURkk@x?%qA&XY>{ZmuUzo-}Jn(qk01k8gJFG=)=%|?{Y z@*n}t@s4-FAGwNiEI#s==Iv2^8mO(UUC!b@lWf?6SW!kT3p?ra>_Mtb5P#>VOq*Rd z^#(t`>|8!?bI5JRF_m?sHcpjgi^D6InQv`A{;t?(`;E&V)L!gw$fK9E!Osku`yoAkyFd$rVXX}8Wm7XSCFaxP9ave0WwX?eL! z%f%5HYRf7*^Q++umt>rrou#Oj%{lkOhumk!0+^VXlpY;k6gQifmp42g+pWNqWI z0;e!`w!L-SakKQg(%6b@9P0JMg;&_eU#dE2rbbo&7ar63h$zhkg(JJZUEE9{e!2KonIDC&DJH}^H#cGJ1Qrxxp zQUVFU9CC7UlarIQ!PbIep@G&d#aoLiD~Ik*mm7^7$Uk{B-(<0ag98RyW{ZGjP4+-u zoX2wdSf`Or%)82y$1Wh!k(Ipv`spGA&=j^xkieDk}wROsX!E?#vz%X`W(V3fcAC`_scClw^`m zH+_8SZ>-xDKaSX|-rCyg@3+Z(yMEzql|9U?j?W)(QP!+k6DuEf4U-f#KRe(~G9$?( zBzfJn+4b595$br6H?wdgg2Nsx_4)qATf=boLgznU!u(CX4Vqs&Gc!_wJ)M;|Kj)Hu zu9Bo}6^zn4S9Z$mQdSPjrYsVRW7Lw*_SD4qVvj`Rx=b{hyU|Hocr$BjiGL zFs<)9N(0t0i{lB{WgqUQ&4qTcv1#b(eR_U@8jb<^!1WX*)2$S_RiuS3k4(i2D^qWYfex zsH}-m^xJuI4YCd`dBkU{sD@o{o$}$sml`vy5&|Po7(Fb=;7h9Yz@=5 znhW@n`Xs%Any1>rx#NvyLbly^I^PAyU7Q?N_bLq)&quE0bDgqva&+8{*&UvkP{nik zZm36G<+JNiTD?`IA>~RV(qS~7f|gn#Rvj%LM&)Cnn_*CLUL?X`l{@CYW~)eaq)d?M zR6|gsWYP>%Vb7s>1_OA0txxl(NA$wH!&JGsPC6g?Gr9uym;{3`)yvE4@e~DO~u;xHQepHGUW7av|4U#sEEa^Da)>>IX8QJ zpd}Guevk3HhbnCkgM<0Z>bL}jgkmwxrXNxwo>?|Mh@Z%E8i{OnpLflj87^hqcjl6z zI}&$ou8RYClx+L{lw!L@hZO?LiZk^W1K2t)lBX@Dqr23!^Z)&;t#!T0@rxI8_Uh#9 zrl+S55<9z|?o!P=bN*fo^zg`tug9^H`suIDxp9Gkn}RBOzkJytARrJ_Va6lrTzwrY zlwIS}R=P`R?O1swNclGl&rf{S&UE=EnVexEmXVm4`0kns2LwXw?5qX!G=#l9V`j*`pB5p($Z z5Gd#g;)Tp+UW3y?{1ykT+a(1BXM@gKen>e1Tv>(Ny?4M^b~V$X_rtrVeo>4(RoPt` zwqfJONC3@VEZn+1i8*Hl-S9xJGebohNoOuU2@Bh>X;U@ob)TOO zt%{Pf+FYNke{%H}{<2{q?JQe=cb{9g2<&a|?Ty3c?ZLe`BgeP*^~Lk#eLG6E?JV1j z6(fh&>X0+iO{&@Ly5Ar9kZP=Y=FB5jlh#*PdurnXBIQE&y1To}1nxTmq$T7w^E}0< zoRiY?AvH=RQ6~ZTy|lDc8tGKIto2? zh>TPBc^~Z4d$qG-a;#og8Awn&$FWl3La>-?7Kvl{M9G^sCxEM}al3Zk2K7pvkTg#_ zIzC5|-a{cf{_4sN2c3pz=Oqe@ipUNDR12D#7)ZQ+{a3?c>Inh>t0QIDD98hf2wWSO znBrA+UHK^Wfx}Ioun|nWDAZzug8uxg>;Cv-JB1|6+PO@dE>56SPWdNS$Zl`So3-Mx zK7T$*%Ad=m_U!MNT_72(wb#6n*vcw4%a$$UM4ePMYwvUC&hK&iNn%n@jWj$ZDR~_L z%9t-w^6rijzdZqlrxe~d<6F<{!eAxnWM^fS)YgvO=z3jL6o>Fa(5=+H-FhEdfcZ)E zbaQhPavXd_1_SW9H$d0zE-Ua1TThIPBlE_MO`=iKx{#0%m5*&yozxHUPqnj65o1Z<9qufjuE{)h>=+vbD>;C5 z=`X*Kf|yhYhGj@jr2aYk=B9d~d1G3!X$ZEU=CPG}=DO6lq8F&;Yq=+8g@b?2}fnU16F+KHlO`fX@ z-XwjW*N_?&6$LC6dFj$6*2GWS?v5gihYMnD``Wszr!1cZ{wE1sOG_*5LYsv2ViYm5 zzR@`Bdw?{9BDz-2Zn zrGPQ88|zVC&3I4}&%&t~c^jL~%+BWHx1qL<&z~Q$%REpMeYitVElR-aOt8+jj$~P$ zJG=@VLb)AT#qHnP-9EPOD>|`9sJ&O|f>+E2QE*0dNiJyu__gU>p=fT+{?MD@4B%SM zRhSg>ifql_h*w^GUC2xOG*@D}}-(Gh-bhUNiihsY0wsrW5OHB(mbLOD4^Xdhb=*+>!Ex#4*`URiPKKcCy$!(GE zq3he~x3GgMtIZCHZO0!PL^;WLNQ6bzp9lD*qq~-R!DWeijyvbiFXz5Izpym_daiPV zlp(62l5^;_pRPM}e&x@P%NU2R{`c7Y^i1ch_AxEo&fjn1;!)g0lFRpfAR(97DoJ+4 zZ$`ZL4R+A@)`Lm;*UP_2MASR}d{?9MLEK#h>waL0?*p^X+1cy+!0e;yv{jO@_t(Ij zQNl}qpNE&xql^nP@~@F1PqeVcH{Bjz_K#1q` z%4)eU9T!GeLO)oi;HTR-$8Tx1uey0q>8FP&s}o51U_W_a`uI=RA$RzFK)KY74mEDU z)BH6lwq79_$?zeFBvpJ=zBNxEnRHX;t`* zy}Ehke5AgQRZR>*Hjj!|PmKj%0W6Ttn2I9Sk6Tj(#TF;nE2DQ0@9z%bP>kFy7b0S9 zW8<5jpFiIB!M9H>i*Q z;1~;Z7JH$s(7)}%g$v}n&z?P-X455$3P>9KT+O2+9$flBXJH6ZG5A@zdbKhDe9hxy z%M&y+-tij!KoZO7x5m#-PsE{kSozy;H7M?=OwvG`MyZqPVq7_D|3(ak*0vPd`AY|B zh0Vnr%!}`^pOBE?4Dt!sv113~_x&%)j!sS-Wr$blL0VVQ_I1mhldi3Z~+ks}$ z+IaP9-oG+Es#rG4%a<=X)lv;n$U%hfg&FjMX z^QST3-1^kD(h5n=OAuRvuiw6%=G@=Y!>OuTzbj-N3rpfwQRir6H-br6Ik>n^?cKW< zY{N6gAZ|^5Kmzqbk-$NACb>i7;r|U2s8RJPE5C=F1EQWX3Yb$sIKvNM?mr#1t<}cC4{@@yOQ0rK*-(cJUs_*Z z&)eCmym76HlH>WZf;cWMlTq3F43XZerxJ? z75V*bb+zJ~n;TMZJDvBwvVVmQ5Ky#MrnQRxm$o(ndP@VtUsJ#5_NqYaII>)Dy8+mc z5dw9D4z{&U zR5WR8Pq0$lgGGb7)m}Yo?|O5iGYg#Ua98nm2V>t?1qEKYztd5UMld8@E-_qnZt9iA zO2OfPhYy+f(t3k5_!8oDEN3z;TfCBQPrDVbSsnVUWO!=4$pu9g_@~%}<$Sh1oU=A< zk;5HjPgdYw%o0aUr)j4s3YOw5+_PD!Ml(6u{maUf##C3DH9k^VIlW6^i-(WK8>Ode zd(*8HzrYWOBOHtrqWjAt#T$f>qaN-Q%o*Okce9hdqr9<=?N%INjyut9*zfF zrkyabt^eS+UBN9g5juPQ6@|w`Q~L641SA3yn=ZC9wF(S$XTSN#omior_1KDG{%Od- z>~#E)x6B?|-&M07amyH1+PC|q&ix%TJ#|@G%2h$lO((?NDpgq4geJ~0_o(Ii7%vk@ zx7hUPS?If(x?FdSFSGhIW9JBit^IuQ+4q8P1 zwwYJ0f8KuT;E5}qz15dJ(k%NEEBJKiD!j*+eHI)nJD<p4&P9y$WHc2e6k0SmDa}R1Gi(SQq}U|P&Ypjg zOdYkZ)Uv){U)8BSzjb<~&oDUKR2uc%~k zzY;5xJ+3nCGY8^O@NA&b%puJ+Yc59YpoP>Ia11)y&#!v`X$Q6O_K1R{7*O#VqSxqS zZWS9;bvMhTkG$ZR9jM87->UtsS1ecj%(EWb2jTn0<5lCFH;lG*S*#5fH#5-G{wOFL zRqu1UJt4b?*F2;{jh{tMJI_*^BhOk?L1*h%Yn$BA!}-i=vW7R?Ym9Xh9Stt#iG|$s z&WySqEnGLEbxVn##Xs{%qkQWIch~9JQweJ6prz!hQT`~UIvY0S-2axiKhdpswNT*of7vF1B?n>RByMcrsz9T?Lcs1~F}eQFCS;ZThL?`%mBwaeIy_-wI<+!;BZn%3v6JEXjF6%t#el>Ua~bq>j+cpOclhN| z5Y^$ea}m;Rb^RYRYNvuH;>WFKEmGYkosxN<3vze_`S#R31)b0uq+Z~;hM&taClIh( z=jN_lpt#|&F+Z?ggy)6!&*qq9za;s6Wj%q$S8L4IfPzO zC>OENx2WMz45J-~zWfkA58C&s#Z5pp)_7)qzgEo3%BuXKpd!^4MCcDCjWFcow(zs( z(4mH&hu9C$YP1OT$;f9K4uHTmIdb(v;e?B(Rj!VPomgOa{$8m=b2l9O zHi3bdzn*!hCBMsdg2h;=-|v-*zG;re@of5#yR5U%x}KNtF>jyWsH^ep&Q5oemk(Tr zt%f4Lw3Q2;AANZC>zmlD`TUXfWx>jsDaI*fOTtgc%gYPdOx?TanyT3!I@vZ6JJG3G zLVYvEP&0YU|D4=gmd0EjrR<5Tri}szSSefFr?pvZSMYLK(ouY4RjjT<6NV}qzIf@% zx7ZKV_SV+Nc&d_$3OUFU3gC-S{Xa%_m!c9f49vgDi%W}$223zAXrGhs#7%2G$|+qcIcgt;o>Wn&jDS#}P}4X0Ytqh-HsdISSO4|soTYwIeoNwwevi0TRaQv;5W zd;hkvKx|;XL`@y5i5V67jIW$Q6|<)1$7{5kyz-)Q1bO3}nuawpX0JcJ+M-Z=l*go| z$ZO2y?FweG3-Z+UYB7N+M#D;P@8++!6V`Y$Y+TPEy2Z5XvZ9a!EsK?w9hwnmbBmL) zGWW6(cT0rnhLtgtgn-)aFd8*H`eUVv>uaiQuk7uoCqJe1`P|NmyI=a}SZ$G)o#+>T z%jT@O3$x92PsL?Zt(R2Yn{#!E)0q`OT(ShuCm%|`h3n+WlYC~CRlJ=w#lDSm)BN0; z_rJNY>CVllBqnN4pQI{)34Yj}?t;>}I;y-Boj>)1aOBuXofNg$>FlclF2>DDu z&8OBtCD<)4o`1Y6e{QOG3P_AQ5r{1Ti@O`bfiElSILZ0xmidF&R0g|pu`g9Xz_L=H zAS**Vu>@v#a9F;(DY8zCOw4X?dR_^LWa-P^h#)*kOP+TbO8~G*D=5 zXJ6G4P>_DnCc1DY=_PMx;;s6c=#REuJxyvy5@KnuI?mf|=I5zo%$2KlC|mocD2PC& z%&bEuZSTT*#H?FW-RWMe>V9=Kf2>)U+itdz&+r}fM51zhc)~{qb!A)Q@|hz%9d92$ zNH>i-6HaHo{f%!k7B!J~sNv87&p`x>)y#N`(GNqlYKHRf!9f!$p~j-4cfTntEU6x8 z5iSEqSDUO~v@5R&MgUTGB1pVIDkL9RBOadf2GgdQE9N{JjSX`q zJrPw7Sm8gveEHJe-5uCo@kl8~!QZ_iWOgpJ_Ni9plN~2+c7ue!(Z~ms9`axmV7ID= zVUdXLR~`q~FGKk}o^ke`H{_U7Em~G6TM2)S86c~DY1#~Daq?38Q!{y$`;&VnJ9doC zSXb_RM^|-C(1t<8t}Lk{|2=*rt1c?Xs#FKNbj~wwton7UtX|Ig0h&yxSnkU8yB{H1 zM1!M$09lAgg9CZfvMBOM>}_^zTMa{x6cINsEm{(9$!g=^;Qp#_LiwqdI;v}ky&v*F zLwE@7vw|In`DmqYhG>yEX>DN z3H~-L|LJ|c#jMMhFK^1UISJiN2_*>MnHO}V%D}p>A;L3X9vQ5ls;ymqsyda4`E#*E z5P)c!+*bh?2h^i5Ua63s83g`#;vv?~yE-?rYBdXxaigHpDpuiZf)41b$SiX`F99ZXuG##*OSWH$RO=_^N{J_2P_6?`RO z_ltdZnf27Tvz(j;2Ve&MbLFqUp4QTONUpD3D|6FFY)X>&hXVKOgWgyI8slqB0@$r> zb_ec%wR-lDUe5oEUo&K2PM7h%63DSLv$JH(xOH;WpdeKvzeNz<7aN;!qV``unPgtz zI)Y%7<~VdVK`r?xZnF}~&{I*DagpI%ki+39F3mo_xJ=w3Y!qlIiV#10>Jt<3q_L!? z*GP+o916(_#h(sZNm`&;)Tq7O_%^UW`1vM0UGsis?w28IuD1nygM?xK@h^=?T zX{=UttjVFp1V%AV?X0xAL|rR88x|C6A@2;_p3@F`W!v@o>p0Wch!BW<=svZA=Q`vI zCnu-kbc2&bXA@%DCXk7zhs1MYLaCA8)B@7{*=ke;~I&#}^iG-2TBJ`g0x7 zxyhqWick@&1-kCH&d+D49v=NAsYYAg87BTj(ryyXE&PcpJ_F89WI@F6sBAtX@;|Y6 zKZr}te||b1pZWf2aE#;2?v9DA{+SSU@fiB~2BiHr|HNl{fcgF3-vD7w|4u$unt!U^ zvl7haf|Rqbam($KE@Y&B(8?ak2KWE*{r@ol;L5+#muEmq`z%!RKj`0OVO3@#3)IjL z`uDd&FY|v4-~a8?;8%al4{IKGy67B2>1R{Ev3wHK@Rwf zTi^5_qb3;meM?IGG#aP)zZOJPO@F6tfAdc=xX+!@-tf#Ks2M&TSXzn=culaAREi)> znPq<1s~4vjC z&p~u-KQ46z$d<`Mmi$3{Q0s|02HJ?|dobeN%~`dPJk8+;Hb`@Rd$lzn5j*t-qCV&b zSoXJ=o0(K8B1mHAN$+#;M*PL2A!Vw2pOlb@g=|DDkl+vjEzYgp%uCFd35I2;l4?^7 zrPHlibdXX`KNM5Qs9j0oa{nqQ5)zG2G`7fAt(T8Yqvu85&TmL@j8=g$vO6x7s!iOWsxynTIr0p7!tlJ=Db zf=5>OqBzc`?Wf=BKA3aTi^91ONBUk*j&ya#MD(!nUReM8-w|LkcZb6{@pg8A`$p zEG#_G_e%p&_S4|n^WTs8It|Q5yqTqeD6iFX>!C`3P25H)2@*)emnRfrf=nS9`0uBD z4>w8obfN?}Ii(&yehm8G&vyP=GW^7ZkVOI3Qyt}l6&!)thN38A`u@>n0+TRH6a~ob z%2Be+c6|-_`^(avw0jg78SHicFpq;G( z%K^cW2Myl-P7oyM)7klo;&4#m-6Iv^_3%f-^0_^CqS*xtR}otT>wk2CS}l8NK=oK1 z`quwbCTz4(z_6M+yI7yV>spy+Qf)i<`3R9XKwy&(VmI(z{B}Oh{sx49lGur>47R?S zaLPKF2M3F-KY=Pn^iT!y3l%>Kb}}>MW)-u^JlK*R2v~){uM~}9Qi;GYcw?2G9A8ly zNSNWe1Wn=_0}H7fqrgU<$w;?gqZ0S5FRcdCN}3(gfxD~D14M^ zXj18(b+;e;@Yzk0bsR0J!J~z5-k5wFY;~qZ1l-$xY#A&Y8r0Db#-TL0Of#G=;cerE zqfGoF>M6dY96JX;Eo!NIT3U0iZ;#wq%SPzwpk>SPzJ{ZC3mC25k5>80kas$|yU%^l z&9XHCAT5i0iMwbByTVp#p4nQA@6~yJ{>ajm>m}2~#l&>5Oj9YRag9sdY{E2RAa$Fc zoj5-2J~wGhj8Ob5(6sO(L@>}iA0M7Q{tR~O7%cm&^R0hEA{Ybg=!POkih8WZF_E(n zZ(Z)DpiFAU_06^Pnnp$Sn9XOIQ0=eL8mEYUo{OgdK|3C1bD;5#zw(H zBwnSoGcOl+yuDjcw;%FA!v-=LeId#SMm*m@Xc%3 zeVNP~JP9tSJs|$@DD{VtEY1}Ha-L%w-t?l5>bmnIkUEJU@USY=s-sk4k0k{Noyh%S zgXz_B{(a%N**xMCft`PEKAZMe*-CE*;DL-QLj2ufm5wAJ8_uE)yH6jEkn&6UF%>gWcFt@Z;Is*V;696; zBDv1I$y56A1dV!cRQAC^j^cH0qm?Hsn0~{$)Hu^?Sg4lLM_%)05f`KQg4|m`wc$dT zp>--|FK!Kd^4~AQ$tbzKa^i~uaj8jpiMyhYB=IAkeFNP#>2w{C+o)@?D(c^SR00@+O)B;v07A$>-t;J;{pD` z*!K}$UD%u-VYMS`KHFiyA8bGAVnJIA>9YVxaoYNQYx)+CZwcZ0(7zgAstRKfVB=%> zVB_EhBBbg-b8aox>q3yYqyzY zBiHG158o<6CR^7N=!JO3t-mmd9ix$Bc<>vc6NC@~4LkzkHAD1LM5A{d(Xy;510BB}u~m76}x>G&E==*P6ki z1>x2N!#LHKT4BDCB$hLK@Kw1vIq^EehYm#}5Rt+V=6Z|N7kIVL&x1C%5EqK2oZ-SJ z_Fe+AHy<#%sI#9u55HghmJiU3m9y|o6s6m(n^Z0NFIM!~2knKYk zZja~JOgr}&wg$08HTWa?iJQK10qx&&b0LQ5 zj?w$(GdTw0*T|4NR zz!GXd(42rN-?MMuX-sqaZ4-PYxW6YL!q0)3X+!~tvdchl>*mcdAjbC~Fs@v&q7u21 z4*=42xvWU|91xHF%E1ikL zXzufWSzJp6e0S_nm=oUDI_)@`Pjq9bH~e^a(9QcD0UL5E~v&dp6*p^7yD=}Mg3uU@@s zhozcA(gli%NPuDr6`=Des!9_)x4$ECy!de_N`PFHQ{bX3)ZH)6te}rd>R@k@i)Hx) ze$JQqBh(FI0KkxIj1%?;eogFaYB)NCplWHZ)uE807PvRfWx}#F5E)Jlex+K;OU_f9Ij zxHf=;1#4~K$?~DkE+Up?9z~(>K_oA@U0#ONQw@pR#MJ7%on3lUP|oLt#k+~C^#&q7 zYjJgTwW*7LI9w*GRNKj6!?;;e5HXD)hy!}XdlwZJ_FxUF=x^mK@)#I;PAW7F48+1h zzm?-OQi4x{L`>8Y3iI$ql>1oYEbM(9rWO@5TlHNk| z9vqPxg(Ba?R_L#7-o=s3`h&j+srNFc5V8{y_v*E4Qd#Z=YUj>Hqj2AaM$i9Vq@>0V zo=!U_Pl{;3+ZqswY5GNLi2VgC;trq+YYc)5u_(clV%Prm4{ojJr-`TlM+w&jxQw(> zp41Xny{}P6$wkap-Gz|-F|HA@CPgurc{>N&>--a|* zfY^$$$0m}IROUlKzJEO*-s!wc=4^P6qezHT;uE^AdIV;3jCLs?7T^u!MiYa!k& zbMY7Z6jkoIYoQ@wU!aHibeH{{?Y!+p2}HHOm?>gMOwp73le;TL^=H!Qy93epX9wbP zU&n`>9(bJA{mjsaK*pKueKZivxsh{BtTLjNWZ-S*=W ze>p(+`I=9kU)hr*_Y-ILvYW>D-Szp`SLqk?w*A}EICP7oy8n^E3oN#EPwlwq$omsB z*SU>=qIbT-#GNN~^{i}IOqg24|vx0N84lS|vUZy3G=)b;W zN7j#0i+^#89nF=Y^vvN3Csw@`P+aE6p(7b4;kGyR!_3n?^ z35o`lgcm}w8`MsEEW1cu+q#G+eue%?n&;-0bB!6|(UQquRyMIbc|_k>T3sp~EZ%3t zXWubw*qCjckzzcN+Bh)ZV&#(l`08Fa|y9pQktZ4mqqe~gxt=PwOc zRdrUs$FtZCzYe8_A6q{E{^@7tSoLggLt>&A>wYiMlfGYNzy{XuY~X77K`MrVQvm6nEDlX8f6% z8RXX|pgrSUCceTtrjgS50puvb5~#1*U zDF_|>d^N+i_$;^1KHURGbKwcX6Q+$0;yt}L+71pxeV~TFpWXgItiw!Zw$qa}eVf*| zX)BAy=Q;yvt}UkSK@-B!n2g#S$`ZpNYt?eo4Ykir4p68bHxjkBu??;J_AA6f709M` zUtX^$4;9yim7@j#h)|ZK_W>D?60%3yp9?OGCY#$E$4fqb)Lgo9V^xgeE=8gBpRWpZ zSG)BLUC`xo%FetQusddBLUX03cDC6}U?M98J?!6CKj(aRiRhl z3)pxRrg-&Lppj9v_aXR;7Pijiyk#tOk(g1y%7OAq%SVM)A>2? zmaSW#g5=nZM*%rsL$ou}y4>>+$vqZoD@qSV)Qh#z@;eu-lB4yy?lGv1;aK_fyI$9m zCr@lUM>!^^jO1viFEKRt3uknEJ~Qjr)!iM9oK8`= z`USiIt$<$q9y&s5_v`BFrdu{?prTES?>_|oo+to>uAiTqCCzuRU$-WYwfNeW^ya9u z#VMW-aqxvvsye(EuI)olPTcANdG_7g1eucnSk@Rw%!KwT^kGRvrN$=Y00cu?g`n*3 z0Bb|3f-p-&gIP4@F0|a<-t-vf3!FpY?I&0#B}k28l`~57}<%#HmpaA*r`jIWB-h_O5SMRv9S0>KXOVbUqU?&u|g;b3sp-<;{B8x-V2lTf;hR_7JzgmAj zTD743uu+JS9u^~Cmce7NV4L_I+Bp_bX z77bGLfskD+dAk4f6&}F5-V^9ZQ9iQXi z8D>#uB@m@mX!|p~zY}gaQYh}#dj1G3ao42V?}R@13>3JN=6dDNrK?OqWsn0e@CA{$ z0;EG(;(miJg%XRsw1LnEShCebvaS%H*CKNMnKPevcJaYK2Ok5Jswad_#5y;vd~y|T zA|4b(GF7vN#pLc`J%|QXm-a6G8-kf~Zm@4XG zPeeBO-6bmz{ktkXXGf-Xl@ocbo#yxv)Mvxqr^bWOQr z?QY*a1ZThTGOs8G*M<(xHQMmygVBB9ZMm;I0;4t#m8y%b*$w!!{k))Z#`xX zv{*qQtsamI7i9Tx3DWoSGlu*@DE`be{8!*w_+>Q)c%jEiJ+bwi)!*SWwEe$;@^^&I zhHon67DSKY4&P#fbdag9t!FUp=%uE@l+A1KmNcJrgSJz#c?cZ}&Jsmm71Hffk(gDdwQ@ zGMIWv5A0K|7>tz}G>I%6q=R;PbHS|)3{luK9O!-kl~4of=AcdIDQE+4d6A(GkQN&J zJViw~)?ImwoC<)RJudx?d$pp;2_`tZqcPt-A7PBR`f*sro6dSO-k@@$po*JHyLfpO z&>x<4k^3m9Zw}@)XpU*QB~APN(m@WqlzH(0$BrEx`AgR2`DC!nY5q0M%A9w17S|sF z#lfxl>=abG8{Q|5A1BF_C{qvkEjTGcXbMHIe=I8f+^L?psegCd%0nmjWhGQ9>9PeL z=s@a2qYPNLRzJwHE{toC@J z5I9(E(_kwe<97a*x3`=5uka9&x)zfa1$_dD(1scgDjQ<892(ivZgVSyUkCLbfqSDU z{OGZT`pW^9hZu;g+o5H8*s$KF1n$J3Z{NOMMW39wk!mDUx=HgtNr?8HMYu~dOa|$& zhZGP=&KbfNkOui5R0<5PaW+^SkoWnt4)?4(HG^~~O zN2Ru@&xu>zes0DoZhRSfa!z`~9{9AQ1?P_t4TSXS622dxp!|!J%)*9fSb=8Oxc&>2 zfdXhea4BsM7I9KQV=UU&<-t2F^v0rdMwN;-?x1sgo>%JSwzSb`95{A^*nAfnWPSH} za{o}VBLcWw)RdI&5wjhH>o_#J0JPNM5xGF?ia$kg=0HTG5{ez%rFudNl$d42@(X(T zucjl?84OhQw{BQ{=>@jl-;xM2IJf0{%gGtla6Z*;8#k;%PVr2L1A-bgk-A||gUO8zUn{Mi zVsMw0oP&anYtl#e@7{ZjcMkux=M{*`XtOVRjL0EaaA?)w$SiU=1yPHjKKSp4C6wS| zV)Z~$i$Sc$Lb7-g^wIpXopbfCb+n}lTYEuhqIv~zr8X(q-};HAxWE$h4D&6ZZRszX{-?}y@TZ;^-X?3g;aGR3PN0T^yj5$ zP@!(a@kGkrrY3D*0Yzjn0=RLe4ms`2|Fytl>!qKEV0s{@>X8U6VAZSygAop6h(mE5 zn|qk^rQD7?61apEmDo~o^j9}vJi-5Ylbu^Mm@lyc;M}}*%NH^MF-a2$>NMO=Qs7yA zeHeLPRQ!HNYH-upZL2>%zYs=nHv!2C5mH$f+OEOI6s1>iEe6c<)c8j$wi~7!27jfW z(>i|Q1PxdMC;KS?uoJ@?nkJ%=8~t_nvDj^;Ya3Kt90(Pm7%L09eCD zK@Rr|3)^Wnv6$mZh|Y_5qR$r>5HSHRD(KKOn5tB9Tpl?!jYtyMTB`6hNXYM6tm!wz1a9X(zyGi6 zp~ZbZ7nV5SrM-fO4(*1=MSOPD7sa7fCPitjna&apcxGO_Bh(zkeiaz&h*JQq`gPXv zKwuir&p&pXqU{2jsNj5QsLu9cs_P6?FoJc~u!zNDA;zF6Ag<_I99js(aTp6<2~NH- z0QBBa_c?h<$zSsiE{^%N<=mxUr*G`{q0qqeXhe?cA+eCwB3|(hzy*B=3czdYnV8J& zwql$HDvpqT7mPHq%%l8NCUFL5d_XRgM$5m-@#9y>sa9Cmy$Cy1o9$o~tMFpy3^pZ7=3F;euE-$;piuo_ zz9jYzzV)|6 z0XQpoRj4@1hiBKWUFa-{H0VBj6aK|Ocvmdb2XNhz`v;;*{JG<>Oye*xgdfm=(H0TU z6o;)M=nM}H$pc$vnyi+LK_Q|h!D(Z)b7+7eq${cN30CFFpHYA% zyC`Yr3NsIOHFy!4ow}I$(1T5!A`s0;sDev`15q72$Z4g-s&KItdk%2n>tTzGJ^lDk zY#%VFeErS2n&<#0ke97#-U&T8F-Vi7iD|9&Hb3BkzSr=^JVs$g8q5TWy#jF{6ThKKM4}A1*w>^LX;v;Z6+NHSOa&_6Mv1KR$V~`e~EJvuy|BSp997W$1QC)HZ~^ifF5-86C-Cv zi<{<&o9pGlbisXk5=I_@N~XgaY3}oGF!h#Du=Ul~v7b5(0v+`5ZbAZ~nj*#3C@815A3mrPxfPcosh;?2N!&pFM$W{%m-h=@ z#U%n&WbX5xKytTj##O&?I^8rba%8^ zb6>3b+-iRXZbw~`B#~*blGpXZ?n^Ra45~O{I$E2~b7yczg3Dkc)BMbc51POpK}RBI zAc0rMdm>mVq(=z7Lt@1Cg{Q(aP+4Jcq98j}A=wcgW_|V=x{7O&V%z){^5!^VSS_%h z9nOe_IImHN6NLSC%O53Y{vm=qg}aOWf#($llO}|BTh#R+=6A!p-v|gox@E{{VZSS3 zj>D(vO>h>LH!&4qz9h5eZPdafR+G~_iP2O_XW1oVkVxTY=~W_0R0XfpgU%~b7jFQw zitww>Ev$kgLeZQp&P!Wbl|qh@>d$ELN1#Ms?;{*He2!T9aqO&VU3?6-(m9+u;g5c> zA+mbGcWtB1@%WQQ1>6pC{woA5`Ye9NYs0n;(vpro@W6m@LX?)lQIP)NcS*|?Jd$wX zNa3%wC~5gz#?3p*gH$mMr&`}$u4#iQWg*AHULA|W$q17`FFx}KCnEQP$0EK+a*!2q zy%FPcF_kSH!Vbc44+{45GR34bN04+%dRlqtbeLedj`@W3GzMKnl8W;D3D{&QDiB8$ z4&5NuU{@Jqjx(W~RWM~NE?af0UgVQSU{W1P zjtf!v;z^kSx+HBBdDCBo$%)A5lp@DMvk69Kt!kjRG+3f=W4V>&M<7kK%f(}*^$`4w zo-nfSM!G6`fm5pR9NhXWbGd$37{00Ew#d3B<_zjuwq(F3U-XlAbjrc80pQBHcdz#q zhNJ^1A~**>rx@V)S}$<%;b=4&}xM0c3T-Z=#Kx zttW67K`I*UX%EER^T;7X2pN&*YYz9ov?E4VDeTi#yFxEMK}M9$3ax3*bJb*V9lZzJn9*2ErO620W>}3=pFQZwX=a2d1H*Xw|1@^) zQ90*%9RHcbS}Zy;r_m(qNsGs{JL57@&p7M$JQW6&+d(r7g<%wb`&{E@)%f8;t{6G7L(>a~g@A-Yd-_Pa!dB5M^gNvSRAJW9u z7E^Dwfh^pBhDMU%MMxu^OCg`+Jfdnv^O}xpCb=*7DLp!~(KWpr)rCS$@k_56w)NOL z%Q2Nx63UB`{^E}v%%OMtH?5rtgGoV7Bs3hbt5^@tOfaY^t(Juy-J?&RBwl(1+=lkG z*Ct-4+8GJMcnvN^1@)IE=y%~u+ZQR^*zPiB45p%@7?D>YL$ZkJ-XUEABbV-3>gN^m zHM`k*VDitsQ_g5I#;!2)loZ~2c`)fla!lI0xP+xwR^-kd*k#DSKP2w=!VmhCt6{%0 za=x3>B==9e?}YTrJUz#T?8WPjk93D+TsZb(_fjs1S!c`qbcs0IuA2PLV z@8qSJ)Y$aiCH$Zqae~jCCkjzQB&aqxWEIr-m0$N z!SAXf&IV%=DdrnLpw3UhO{qWpO$Wr#5Q8G)+yWwLjWU6W3jt)w4VTnL5&z{dM4gwd zc@aBWGcF7Zl_YL8OCkCXW#C5c?-u2482MS&=%sfm4|^P!X{5RWp{CG$fgQdjKvT8^ zi1SF;tEYnYT;Jta*8Gqae}YTY`L5%p9Bg3y7`R+w0Z{c?sNM^AoY=?6S?#pk|M)t# zXv*7|$<11Ev181gD#(_ysi!O2LT!Eu20-zlnah)q1glq}VA{?99=Fl|NJ}H;e(i$M z*Srrbe6mZs7zVn{zU|OuM#v(;%$v7Ixd<2@{lNQ5ON}cwhkd| zJ?)sHQ}9iqbcPZgdsn3v^VpsvLQsc%59zLS09ehow>#7MWh3~m)3B>Ib?ZywxB4+t zHwFs$SzadfR^meCa+ZS8h_vK>)%s~XVFmxjuq*i23+G1%QvVQRNg3rXep0?bo(N^- z<<3wBK&fSBUsP1I^3o$lOO1cpN-fEYHW$2p)u2la>>mEyv(Q^sy!O<|OP&oDi2_&Y zz}(M1(ujs*ZT4?w#57@RcU(un(wn3&Jq0@wmU#}3(gl|SyuC&rLQ&G?EU47hZ43k) zYM%sNb2)bGn3f>vGC^JAK8c0HZ~3w98;!7eJ81$l=mz6AP;D5-6#TF3VeEG`u5wnR zbCJ_WqG_Xd#1Q5_J0|9RFAPL(WeiBw7t6&=^gYV1fa_IF3~LHqT461o^HubYV;Ii{ z?VS-MFoCXkjY)Z)daanp-^v3_C`!ksUps+zFEy|f%qObM*THliyrP8Kmf4?`G3siQ zfEg4aS|JTbC<9JWX`(9Mt8RzI?oPKO;sOYkFAU|>wpTjFm`YhFRemBPQf+3}c%h2M z_)VV;3@4phhx-;bG4J={J%aC5Qx2}h+w1hS_u@M=Gu)Tsh-y0Q?^Tehwul9#Dor%W zx{}dSF;aTG`Tq<+dhGTuKd*#A60BoMZQ?JTI_jZH zgxbn#SG~*WmKL$2j8Xgea{*?-)ddNXl6H6_dQ(J zdD?H;IWd9%ob$;w7t@}8l%xgBhc)B!xE>oD>v7%Da9_g|?M3t7W+jqcqJsxRL0)72 zM{8rijDei5Kj;&uzbQ->24U=qM)a|9fRMHDcfQoVX8fH&uQYzrn2g|IzR`7m^@$?{ zp9HD#@p;s+03vQI-{RNLN4Sv|iss}#uS^`_ z6dQ}7Gv{hpMPDlLKFQ6Egh%XfYdsf~sCW}K3l@wPKX~WZ&UddSEn_R61mab_YuX5r z3pHONg|Eb#%FfKklDwrYz}1Zg^ArXzbfFiIw%NWYx1e*se&fm8qve4|lHl2^5UpM2 z&<7Pn&$o>tMexZ;LKAG@PWigvLKI>EQt*LG)Hbu~EhvIV;>1tWwoBT=>gjeKYI zI}`g!D71O;FUiWCp=DShY^5I7;i0-uh6KJd?kugJ_Et(t3Nqs@)O=n0cQCB61fl%T z6y89rqYB`8HMSv$Y^i}{F^HktPuvASlb$D^8SJ$hA&}W4K<)~?hbMxInMLk4b*L?Q9pq#d1QM;iRNqT9Q`}LVkz7qsy(4&Mv<*YC~ZZ$VfecfbQJC0E{e(Q{u~HI4aWiJ-_<;RT^Qnn!I@dNnPfT8_4CRNpwwJ}tt*5M}YHA^h($fjUIBRJL$eDJ=?{gm`p?X~tcjuXqmiGhsHeN^(AK!OQ zY1ZKyE}-Cz?zqifk`PKs65@%$~Gw_D0l|DM(UhyMgcA zdJ0Z(8mvDne=Xl1lR5rk8PqJUy6DsCgC%8Ly#c;F^v7q6Hj_P)=al7s^z#DjydwyD zr%5q;-ue$>fe0GzGd#_ULeI_XRyp^WHb0-*cjfKqb*9JE(VZ490^zt#{V;A)8*Jxm zXkbx19qQR2&Q}hO_Rsh!eVQVWq$psZ;K!{xS;}17whif%a^^NO>UAE;ZCu~4Eq&q` zQ}X2|PFMwNE@`DE<#d9weIPe|>@ADt3`+$Jxq;-e)!;T4eb7TdDNp0Jk#9ICF#E5D zpQcpNMl89J;LeIMP3E?i8TOkN%Kh0_4^n8)7Crd$?uz4+1fM%AJQ@BI*<_^1vEIg(%RrWpB+)W{ijC`d1&>2(y~q%R zMG1XDx5C4-UyT?8-jO+JD6%Ie*z2JoZrPtbweV5E-*WTvJR3GZm9iCcrZVlr?k?G! zo!PW`bE)>_<@1Jv1E!VR6#T*23*+k9Z2qg4^=IMD!G^UPp>I?HeQ3sjrEl2WCIefG zJr7jq(4%7mxh; zW`L3bC;REK-k(4I^*#sX{mVSQIpQ6%w_O(!(H^j-ew496ESZmwPYDREMm`)Y7@=u` zuNG5?C8Zoyn@MTB9fMgR$!aqR9$oK6x9nivPO}uIu2A<_3|n7!GUXB0Br>ynN$?g{ zU4MRPCxOrcvrH;Fa5g|Gomi*Z5I=4OdGc27)Z-3DdOLDdULrA33@>p)2_iuZPc)yB zh$nCf`*@0|1IWi?@$-=l7bTJJ+zPf$I{%(ixdo+K+X?2PAh4Sn$zkjUbxtrT(^(OF zs&ETk@PNOne!cV+U|7K%G>`I!ITN#|u9S2}9WT4@`HfXx_W1>Zf}($^Ntg72G5?kQ z5owl&nw&v51rSp>-BU*-a>I_mZW$hhTtD$OjbRnYiTV|lTqt=iIQ1~{PX^pRQNCAv q{?Zn|jbnc&4QpKZ|NqGA=J|1}M%q5@yq7;=*aib* z?Rt-^azFR~`Tw8ieLwI0xlzCI{ax4fy{_{-&f_@F-z^0>$@P?UloS*c>!qbmDp63Z zkfWejc5BTacqFe%KN9~4Scz*`DPOs0WqZ!z0)^~3D>IWTRwjmeyKF94SQ=h2<>olT zarnTlOIB89mV%s|m;ZhN#}x|$PL`hSdbr4+W>RM?DJV9aBY&2~ipCgHP)KG-pFE~w z7xJUo-b!U`vUs@i{NVr(Cb3ge%Oy6Rr(U_LZJSykGmFO)Rn}d*o~vA?xpiBCa+%6< znoVanZ9S+cKFk~$pJF)L_L zVV-X}*wnqR^3zd~*1>Vjb%lpkVoVe)igycEkRROQect>@esGE~TTcFEWC-%uI*#S-vk58r@h@Jy&}&c9Os{Imb7be{p%7d3*lf8Q+qajErpm=W^rvQ= z2AZ-oUz!A&90_(A_R{U~;>>3mu}#s=QOmI%tczDo;IZma@U8s$^QVe}g4t*DVC%UV z`&v9+m2Ar_b9=1Cad6CTez=&C{oui*hRjHIjt~n=OKJuN7xC6*6qy#MYgf2Ye2O@> z;WYC}f^`lyNyy|-u_VrHmt1Fy@BU2Tf4uDZ5$;Pl9Ni=%vVj;%VT zx|NnTZfy@*US#O&a>M%ok_NAbslHk zv*)-c6@Ar@jMn7$@1@r7I8tVC;6kUB;8;h1d|!M*veKnXu?}N>QSPfZIPA0>Dd$U& z4L-E^C^Rb+-HF1OJj6$f8?XQW7;r3!O0&atfn#qxFX6=xHBNiP}%=`8k&CN`fl$Y1~ zGoK>!`q7e?bJ{p_pIk_+pmpD+y2LYI3S0~BA2{>msibc{guBjVh1qw}&Q7<^*L_JhX4am`oB6h_;Nw`mZi;|q z7Yh^9$<-SeYU+~CaRBT;F$XAzM-bTb>3p~%yKu~?GzLR4wIb^)=TT?GWWI?6nu(Re0o@S zFCSn1CEU{8A1>9z`k7-x(Q@XE`ul~3YJYEF5O&y(JNWL?Q%T`>p>i?P;j7ovop1PI z(~grckb0$Hw(jPgJ3QD(ir-tZt@|%-rJ>0#t_%}4u8C7F-Y#U5Sj_wU`SUxN-L@U` zto7qIJs)4Qu&|iQx z^1iat)>jmBy}{HzQYmWdJNEr^_1*Iaw6km4g>)Q$@a|<{c|Xzf)c5GS2OQc)Qiorf zHXCifaqj3y88_a7fiS<*th1w}q`WgV*1rQ6=Hk%G{3f7;YC%7Dm`O;qMm`qNV3Vp`gm8x&fQE$ZH$IM0vZa&YL%HMnCKi@A)Lj z7-*FmaL8fwQc+P+F9~Rl+4TslFYHGyHoMNxW>57c2S);u z*(v7j@9aw|NILJIk zH7vfVe63E(h%HK`_YVpWwAY=z638^}oGB>QUzZe6-JAQwPGtH!cj!@jrS@W9b%cxQ zOoX6>3#Iop3tXIUwf>lzoFA|)7}@UH^Vn0y8wdDsbl);D>Q9)d5}#+LQo3<{owB@e zR7{wIjHEAvs)Iu|%>j*w?l4C=^3)djqiu6fCyR3?XK_1X?ga-Y&>YmBu>9mXGM_VLMo@C+RkdyS;nU&bTa`kG* z#Mf-{q6bf6`0Ua}b?13a8a_Ua@Z)GHMxLOir~fgQBOi8@RhsUo-Lw0gy2)Jn?=JP# z#33I&7|0!wYqqY}rlkBi;~JI!O~7F^mdSorIK$+#(%F|Ltiw9K48rj^+Ps&))aW-g z+Ab4|Kw@^I!(oxgo}ZhxE~dAQl@8danQjyqX7}wDWsZ)9#=~Mqb-s@DdL3mG6O+_- zclXk6QTdB0TQ+Z2N_@q_DLRlj`|#X$hC$bQ+9qB6n z^1?8nE=4y5kL=v|G!yomet{qs|uJcq#SR8OW=t5(G!7Lzri;n0f3tBs~cd&#)s!mk>i@SB|; z-`3xN4{M#Zm+lq}m7^E5djGVvE`?|B{-iK+6L$QywJ}vbn?I@#$=hPydp)gFgEMj&lK+|1N^+oE;)Zet^Vxsd zV=0*98eVqhTYYa(#7fjxMV%6^a7G+{fwQ4x``&VPW_~nA)cy{q=8N|#>nIcgKbkLh zqZm$cojo;}Kb_3f`}MUu3G2<({fJyK%U1kx&(2g+^O1i*0I%6svDw!7+3-Dk_K-uC zq>*}ja&qz!ukroq2GQAG`M$cOVAI@T36i(!wJg1Tb_zVfAlSLNmHkKGZjsLn-^PR7 zziRdBexxh~7nl4nhd$Qu@y(bx=6Gphs4aW=-Hx$--FeMVpFWXwBO3#tqc5vFY-Cax zH)>%cV*zkCbSp*Ya}jx?udY~qzu$W1GTuLh_r|YguoDYDa#^W9SzA>_CDM8NS1;z5 z(BeApY>joX>?-?&BvxDC>dI?WBeh>XtOmg~B_TOm2K$WLS~j>m8d=jADW~sqTFi}g zwBK5MauI(X9ksW()%_B9kc24m9+Jzov#k_y=_?BQdq1q&yq zyf+zuA&UaclW?Dh3SUR3d5%wcpy}qt9 zPk)Y#)IK|R!WyTbA=!f29{UB!gsnV8K$*((1Q~kx+~|JaUXxC9de^m-lvTLVV`bcx zJ+4bb{RuZS{K#94E!uT~j(j@R**No}%rAjCuD!$e)MAwcwS&#(#q^IvU0vcT&HN*&+0|HpMiSJL$VXZCCuJDTPK}Ag zm@gMoy}+fhijrc@q2$$RE>pcR)Y)5hQ&4aun*Zl|fEQ&F1;y7D^#58P#F|%{BbZM8 zYP>>COWQjfvVpve*X!JNLC0T-WNjjLF$yym`ijg9ooL@yFyXOj+cpEK!!7pR^x@qm z$hVnoH+HPcX*T6S=(7V-kkuYRGQ7d0lWRBp4atv_{BW3ww%C_({EXy8db<_CG`VNv zt*!+mu!a}A&W_dhAs{i>eO-oxBh%a4OUHfj&bM#h?mc{{5p66XAtB@M!zh{@8ym}h zyWlAQPAY7N_$#gX&p(^YQLR?pIk`OTJ?%sBidP3L{660d3S)kphrB|rp6OUuw#VQvHPsSY&%)i(7c}2&Q7{g{22VyZal8ZE z*Z0_yfo(YC-o35mVZu2LcF5yz3JXhx-j?3Kf4^&R<3_Rf+kTJOkNZ#pTgPcrQ_~>d z^|5bQ+1XEVad9!|=J+)-U98Bj*QPHF7x8E8meBaRd@XB>peoaEN9&ue2|I~pQoh> zzr$aMs;bO&?8~qrV#Ailo5@H?Dd4ykYv5xyZ{9q!brYU(d-N*BqZ+~YUQke6S=njn zZ5cZ%%gSm}^^2LbwZci^F+RNE=#U!~qevo9_a($}hq=k_vHF5J)qwr-za%Hfjx$ZMk(ev_;Srz~Q}5ebTL$*X_>+5=q+6h4XlQ6upBx(IGG%yB zH$S(ma-j-#D{ZSU-))*dd6D*p;lW-fi#~jlc@*s(X>zPV_~!$s$6!XYW*X zm8hN&5Dz{Sm@%tuuyB%Yu8ubFE%}RWWbF7#ks;iNa}QP z^$7_2;^q^;sIAJUMW3AfbZ~B5bT-jc8#T47=XJJ|U+vL?>s}?Tcwz;9H(NCFw;bHaNOXIW}=;r^l^Z{BqebifNU3?;E6c%2^qQ3Z| zSF6L?7d}p;A&EwM>5V6UKUcSS#SIT^YM(ALDJeZm5B-j$-_;gJBNo?0A9K90((fMQ zBFWNOlKzf0+=tAS!p=7CzowN)BfT`+%^uGZ7FW)vd+D-A7w79_HW)9t_+zf6FvWw# z%iMd#tLnQLsuh;27k@C65|=Bi{B&=_?@y$0iYtrd(BA+1_gZuR_{tMztP5**k3G2d z+nj-*T<3X&UZbYW)Z-^k)Mi;4{AfshTGPJmpk^cxG|Pblr-z4!k&>T-;b3FcB;(K5 zIB?%6BP|TklGnJ7g_TtrArvX+0f91a-<|}_uj(Hrd<)=JU`R+}p5u65)B~L=V3<*q zqWS)NSK~4Ybn5kS*;XOfX6=U&wT!+uq|)&k-D5KBt%^cbkf)ZY@fcX1M#u$dw(m=N z!VM~VHfb_aV1*~7N`GtI0Zsu7!mP;t{gVD2X8icSWW$ zSSWVsg=}I0Aq1T!o*gl1h-fSHd|(&)-(q#jj6{hvVqL)rF^b)~OW^<^`)kbYoodoF zm#56qsA|~e>{Z_fH8nLIX6(;+(>vN*&4!}w^yxdrcK8dVRrgp3D(gNxK|tQRLWOhZ z9wX6RRf_2YqarIUEj=)fh;rN4R~?~|#9R?R%T+t6JPCmkBhLsn!`0KB&By6?&Y=-- z_n$Ezyx1A?K{;l=|H-dm>!x;9Rs*fHPbF_sl*h_S-oO9Ylw~pRYd4EG@UnzT7+hF89Uc z!HhR?fc(!jlK{PcZLh4TP(z-mwv<>kh{naL44KGTqB`S9e3T?JP* zufd)W+g8sn?f>-skR?-R;g!G}&8F&Lp6-Q(4KP>=hRVpxs~psZ2yoBy|)Pf{LeZOdm5dvmsz%AGR~Ni%8IBz4*id?Ozgiwm-hHeg_*M zo`Wh(GBnYla0x7?xSCXd)ITZJpWn%AO_x%Q^-)7K&6HXgg7zd{AAWx(~Q zsHxrml5vGpQrUcW_yM0KJ$pB}PPiYS@tPa*6zvJVlCNlG_2Q3p+avaeJ5}js;9?Z7 z){a|-#D7>}Hk&W-78#1y{M*Tt@C)b9+vRScqEfT4cn<8(zWXqF?Ss;Ef$L8n9i@2C zyp{ZZPsowCpI>n?RN4L`{50kC5#j*<<)-Ci?2TE9N+z$DLYGRi&z8kB7O~Psa4~#m zpQ7JS0@Lp>QIVdYBeI0_{ti4x62vzzz47GV0W_KS@0dUE<9+X9jI#Y59c^kC*k(qp z4X-Zz&H&BkY&dUf0|?OgA1|N+Ew)UfFo;cW!ZQ*tO?(a9#?uPHQF~x4)%ZK)@_l%N@)u*DQ@? zxzOTjv4k3XD=+)Ka*Hu}!pu-z7^|x#uo!fy-{d9eDEfu(&9Yb=B-?f5J*lNw{(N46 zzcWo>A>-H?thKQYSz_kdg&O_HYKrxKfBo-yXvadzq_|fx;NY`Gc`UgJ(786#T;Joy zjd+~lFRA*HamC@Fc(&|2t)Qh9g7aIGYj1hE;n`#VCuC1H zf^J_^RvKb{Btkf;`%qJI+BhLP0yaJcv4w)7MXB({dTVfTU}|H2x-UfW_`VwRpT=!3 zKsR{P3#ox;^=CS$ovqSepHhFDnw>q* z@hxpLV*#1hFTl#m`bgN(CUv-`Mg?`5?xgp<0B~!ro^BM!^B0PX1*CPAZ#wOuf8tbS z#(qFNK8A2rkB|@LVEZQ0ARPi3wcWR~_T)IJH}0^S>mzfQ;!KNdhxbeRW=SKQe6Z zs-#=Ix4pf`9OSS?pl%eu$VH7q$_Xs|^Tr=V6@UKu zr=paURH}J!dDpmZjjw9DokIFQOPa5;v9o$|TLo1Qh{hkUc$k&n`f_hZoI}Q2R5A(pxKi$Gx<}*7x2*hpK%g7eUoDXa!7DQYtgaq zr2f&IqrO38BBCN(bg<>ZmA5xHF$7BEb!6o90-2TrAAMi@Fp9X2qJW!LEo7cRtsx%iT4{?xJX zrhc&xD@%{kG>JN76Jr=`yS^y)6PhD#N;7fuBK>C;QJc0-D(L;9}b~NY2%1o?ia@^ zcO+QW-rk;?n#|bE=q*650^6D)Yq@AX&xeQ3UF)h0PeCz$`z8raV!Ul%e6%QMJik8D zX&>#431<@)){cvdGirR9WKI akcoP?G9ik-{Di{SC^OQeU z_Hj>7kHuOdK8ub0wSmh2C$pqq+n_@7&EE3e*wiW0g9We=_&zk+t0z@%^>v zRyp3w-qo#hzxeV%@n%nU1vl$MQ_aDeSXBy-U;5zB+)2xbSG!SkIrLoi?&t69>VkX} z-C&0}6ckUE?G^Gd8|zRwSq4(b1DpW;H|cNV(E9lOb6Vity9&vRYi9DxsLK4Xu7+EZfVUH}TC2B4qOP>^turV?Rqd`w3ea6YdgEgiEmb)SH^MyTRjV&ut+P!oQt-ZmpMbeAwbEH`jw`vu33AN+5A8Z@vKdtls25B7|6F0`e)I4)IbV^f*lep_rElFt z>BlxZFX;9^(FD(HMu>VL$zXpH<^(=xSu*Uv!i#w?LSiJWLb7cKlU-(~0w?Uj^wy*q z$X72rfMSgtJcwl^ClR38*49P>!L4rWEh3Qvl)Ze!W2iUvh+K`$vq&%NMVbzUZAeM3 zz*{V!bvbYSz5YKo0_G5p0;tk12JrJrIA`gA0-Gy?xea{!>QhpnN%!N-vW?LpkC#9s zCOFKGNnj_Hz)m0bTzB^F+mG4aUW@nrXF2@**_nfEEdCZFYdfClYPBd+Tf95H4hswJ zBYMkzxme7{Kk~Kv>VA3GsQ^7ay)wxO_v#pVg6kS=-@biII8U9*&(AM-={WQ$nrt|G?gI4LnFD&eeg*w!p0ajyzdxoWR1u+Z}{nnxS;D?u7o!ovosx--gSh%Sg=B*3Pado=!Qx!>3`dsz^Pa|PziLY2`%sa z_6oPOIu7P_Zhi#`5Va925sc29Ib+nCpLfKxsi)=8w}w=GN=i0MeNrBYQR`dUh8T&p zjUv9OYiz_8ssVeD=W^fAPq8lxwDo~`H@uGG-VXI*R#7)0xfd4XR~44vv2QJFt~QxJ zSs(=z9)EwWCVe&U-K_;eR?Oph^&(eVm1X;z%^UNhmk_?<<`TPk!CP&lEdj)j*#396w^*i#q`#t>iaj3up(!X3*JEZi>2W! z-Zb`JjLsBx-8$`WRfNfyhAQNihya7>PnIF;_8toFT%?*Kj%NwV`KxS<*zh{)_tMp! zx*!=bkSMvp7epNY?4rU?y|U+zO-sYL$NPSdvBF=XrN0-~Qnr3=P3YKSHLt=SJm%@6 zygT>=`CvEoUwIE*_y9}Y>RKjIgmGg4bAy` z@IJrUhTdhFOVo49-)l6ybCI+N1&F(~boo7tANcjeO-Ju7zX!5Fh-W)Nc2jGA=S@vV zx8MUoDraWMG5LHL%BHq;f1N6E1;A^jByHKOgQ7v0`{T~@(g)Wt|vETXHPwlNz*{=~7~&snVUZ1)|5FGa zVlH#x5~U2?7V{lU2A8FCfhpCwjKCszA<(`)SzW@2KxXV*f^I)p{u!Dp(1Eycc9 zg=}K=R|74ooQD|Q`p4rO{@>!MbQNe@UX{ z2Gzmm>luz}#K?tKl?8DJ1_nlfQ8&iU9$3E@$R#==;*@tPF?mEph}kw>^J)M_Lh!l>HGIXcCMh2Z*L$lRxImzR#>~r_JHD03gRQPieehWT-hcu2PbG;=Nw67}JVTnbB zD6^;cn~LyWis0WD)Vf*ACVhC_2kAw!vgq@*g9ENqZ!i3QKEznaLYnfe!B?dPLN?Zn zl(C{bp|=;cDKT>zucBt_zePE1{@;wTrEux3-%8T26UD3>!>^uN3~)+ILL8$>omXSu zVi1O?=AHzxu<%>^`*_dABog&({-gQdS4M969jP4Eg_i;j{qG396tTn>qps7lv-T7m zSU-w;CE9<>awf00g}1A`{T=#pYT14d@O`bhp7#P-bZ^(&bb5iMt5(pw%IRA*E#wye z{?IyV8k%^Zs5dD%^IM_A=jP_hWHH450e{=quYa96a5du)sFbf3S>d=DTPIL~5w{Ym zU$v4kNG%X4U>m4l{KR|O&Mp&vg7X=Tv-GIn#iE|A8d4FajA1l~`C+O*gwJv=_ZWeThGK&vP|)w+0vSpqHPc9lPV0tnRbAeDdPhO6h;{CEL7$6?o2a0LsF7r3A6)pebt0E-M!f(qg= zuWEi>6uO?X9#R)Cq?Kl?YFP*Pr$&pm>Gpu9sS6W!9Q|UPGReFT6W02Mph1BTlpJtB zw>|qSOZ>AzTfxw51%=43*WT#mBzk;Kj1JpNy?OH!lyfQJ%{Gmfvwys7JYDn)Ws}j& z#BlcXKu)v%k1y#X{O@|Lj9y<`MZ;K^YkX$uh? zb|RN3WGOa8o2nwY&q3S<7$=`01XIdC|NMl2nFKpyKMH;|I5voO2uCq7%@UEaUc>f# z!(-xd15iXg;_pbzO@y({X|U8DET+%!WN?rQ3JL;Kd6%i#X{6k!I@Af4e)T)T~<=H{lo9ae(8u5(VLSV#3t+(W$j@7591VYJHt)~i-^ zmn~wCQ|4C|rT(D7>CP{@<DJM-a^7z(Gn;wHVcl1sJYK|V54OG|p1b0>}7#10SLaM`5*Esu3PugLA zc03TyP0*ev{D}n_3#<*7u_~yK1-mP7^KBm=HMpW=wLxJ;2wE)Y;&Y?$V-?Oy=2@kd zj)D!<`87^7Jrd*f^!2T=E^)-G+{x+MJD?Sc;-^w%Ix);~K)`#afRcX=9FKrGvi>g| z#*Dym_JZ+HMZL)+4Z19Zh1B z78Z6D=$lM&phdor3ec`?)dJ%FWFBAl#zf7TcYo@e{MKHpK9h_XHP6e4z*W4=#RAziuB?>_F6y}@UTgE z^W$|9<^DAAuu;Y-c`rlu4e zN*S6kyms+=#rJtGJcA*REY?mc$vACT<|FjP?-#ZW(FQQVy?h!ZbPXB>0`K3CMw|mn zUrC?FL|j35a+IGFNaw8`PK=Si*Z{vOB*=efJY1S}(HV1Zj%0a*|B zew&Iy?+Ytj5;ze$zL#s`1BvBzq`NYw80$}LzUlD3zcp?`i^>9X4qgGXt!r1!vALYm zy^dZ`1rw@<%W-hbvc790F=U#5yIyR7z`*?Or#?Ig#GFR>bXb{t5zcJ38RF!qL6--p zQ9IBzF)?x2c_CqRYqodX6NjFBT%j)9{2=4eYg^&534^c-ytZ2S}7MvFlA68g9f_!WnX9dNcmd-R5IW`4mJ;3T38VN9h}&<>Ago`(1jV)R(?m~x*O+uFvi>H1{o{c zw=zFB_b9!9#Yt3`7b^I`!Q(cMp`W42X5+~*iA8fK^w+{e>v+TMhd1#s3OA{yS|^)u zr?CeH1U$t8_CkT-9CQ76%B5xJw?!`w+mXwN^zUX5M1&);{&a9ctx?~utfa()G3vEL zIilRKVSM{q7&ZVG$vJ^w&7EOUR1qe8Hm=@%o_g!no;MzAzo4ZGoV{#lze5+bg4&}0 z6JDI>Ms$XOMSCvK4V@65$f~PYkb!Gm)bohtn3eUzY)h>8}hpqOaq$oSa;c@0f8LXgp!`c3dzpaJ*w+V8DLlNL{}`YHDh<&xSw$ z9L}bHQGSvAmlw=N{zZC<3JM>oudLTm1O1j2n%w`SYYinO9v^<>m9JGH5c~Nb=Gevh zZZ67nslNM>h!!14yTAos$3m`OzpmG)8xs{3Xm=DbltPQOK)&`AHW=B~Fd=~5lJ=rG zScUuv2RMs#6`)HEEYneuky8G|WrR%A2e79$KQ}w}ZpW3Lv`Ud`^w(*aa!r~StgG48 zL5oxQb;$95blWYzX&6_n`I1fBJ; zkA-gL;{~N7R(rf{bPI4ew7+=Wf_$Vc4_&~!OF(hZ0#_@)G};(kE)fHx<1RM^{=ip8 z>1rj6FEJQgigNw>MNTT7g{GD)x!ZaW0L%weLR~K(ohxq!7x^wfXNEFhea5@;RVy?gf@)v9G~|726rmh&1I zHFXj7jN&hv-__=#>-66nUSlX<+70WW2~`7C7xBB;pi`l5nDiNvQV5wU{c@w)4lucq zQi`e%KLkNdigO$vAetB~c?mFVPnU72h+do*ZvTlb`(7{g(#MEn)H`;??@WV6R7MLc z!ZF-h)CY>VqmzTm>-CQq5LeBAa#Kz;{(Eg^FDD^!gY}c=U1PX=)85L?fY1hNT8)9Hn@RhI$SWI|*4*BrEv2t^I zM+~(7A;qLDOusw`;SE7ml2G>0IEl7x3~9m$DhsnDl`B^;_y6kh^ehMwb=AQztKm>8 zwVELX6X`s?f7Vp-;>BnNho0TuwA>PC?{HZqY2<&EvN}$AzdppgfpOHQ67GMjzXL)& zrMT6yQdj~(LinAa?SRQl7hgf#M}9@?hvh-xYzGeTK>PG2qS=$8NG?e?el%r2`k?y*6h?j(55~2gfc56#2!(H)LVaU z*~fxv1DfzBxF?7XbLL#3FUNiZh-y!u!ez&d(2F=}V2^%8L#_@h*WRI(C9SVs&rwBW z{|A=RUU)w{dujhLBnE1l{qa7fAA-V(=v)KEP;dU{u`w$Ffi(08=8aaJDk&>VyuL=U zR!gp8Cq9DFY3M32Ks3-(55x*mGlF|0HpRUr6Q3|K7;LQJoFdiJjdP@T3f_GRO-(Fqnr(`qzQ@}$ttm1|Z0jkAi`Z9s@z?+!`Csrh{p^u?d`X95Q zPE*UM~l1lAoXH7PUr+p?>~h?D4X$GT4QzI^J&rIC~}BWhKZg{a@OYX6muR z6prpzZX9j&k-&2{koqrfDQY_InSKk4i|_8xlKJ4Dz0$;GLW(1l{f00FQBr=JZ!A=n zc3mMUF0LA68gQ~W?hQI!q1zur^)SGNiI0w2!R2NrynpxZ*X?%FGN(?l58J75J_z9U zA4LanFJV$3$RfKIm#m>yz5Y4G@bmL1k@*=*C|cRNs3)xk^#GrAgW3u=knsZc*J9^3 zi@#hjOsQ#U?G#sDZzdoR5FC6qk>7&4<;FP`t!HaAmW}W|E3l1;t!S}pU%!`$>8(bV zMbt3h8Z8)9ZuBFFf)6WisjUYcq#$ZeJ<_u9rTMe z>1MdeTs&fc=w?8AdEp#9OjsfpRNr+=&$-;z9y4M<(EQ%OwfFGhs)w*hrJ@dPCtb6O z1uo9*xAun()gO%T4=N8r#3QenK%Jn6t=S+YE6WSX(5MNKVJ>@>%5x+eI*1fU5c@7m z9R_y4^t~moksrO6=eFNK}8mf`ABHchi@iu zC)Z5*=?e71zQ3#T9iDfs$*YA|%H|xqidjO8_N57=q2zjsQbq!G+owqBE$wLT{{y1vz6j;Ij zAd@$METjq$!#?G+SJDS*kA<5%?XCWdwJU{N=?Ppd){4d}s-_;3n4#Z8LBVis7S4u< zE&&v?)8TmdDabP;#PESsAY12OpADi5GC+RX!j3GLiZMt?9&djV~~;BCT&Ai3UbUEq>NC zOB@~Mgswt3xlL_^bd!(X+9+I}@BvR7;4CNPCh;yI=f*DD0rlg?bJ3B*d!Zf<69U=QxTaAB^6a2YP7-ONgTE@!k(gY{iUPqC#cCuC^-A_ z##^dUFIYp~fe@oZOpHv@q|j1T*N!3-8|GO3_UH?;82E+>=_-Wc7y89iq*ohw%RdqWxr7w% zfJG(WD}ZK*)8zC3F0o1zoL$UIPvuFfW9(fSf0!I&frBzdbumODkImwX7Va~VN))}K zRZqmd2sf-Z{_OmR%~0%AF!dKqI=A}V*`14#W+dekXd=}u#(l-ZZJ;!Tby|s3I z8S)Wi`~--V4k6X)#_BMb*7pm4hs_j8_1E@OQc^4s-+xmy+ZI;yMgzaiNCs5gK5zk*&90U&!LyxQt>Y3xp6i zqfTH&(l-El*ZN0#y+bY>l-(l9h$5u5MoC$j+_*kC3OTCBksaay-^dp)6i?u*83?DB zLV8PO(852oeHzA5*%n%gSK&lnu9ZRLC9nbSV1@2TkQz8D9_J}5vM;mE+OCmXa_7!E zLfPQ!B^JzFNL_)GbmTS?lNm&cOE{U21g+x_b8{2^JEd53=+z3sS1~w`DiSj|!FdP) zrM*7OC<3oS=W#PC0`|oYCSOJZ4@4A79M&U8)Px;I70}EArEw0eK1T5Eq76h19FG;* znmCXb^4|@*j0-t~>?KXP*0{0g)z(B?v}vmBJ}nY?XMbFAt%j652IuM-gy1RwA+H}B z*HFY}ANV8SB@xCWRPeigI GUHd-`3T1)- literal 0 HcmV?d00001 diff --git a/images/unet-mini/loss.png b/images/unet-mini/loss.png new file mode 100644 index 0000000000000000000000000000000000000000..7efdd0a83ea9bad7d71dded42af000939c8e03ff GIT binary patch literal 30807 zcmaI81z45aw>6G>?1QL?9#KFAR9dA30Ws;2lr|8gk(9X zq@h_+zitg)2}`q$!VeLx_ZxVvY>fF1{`lt-F0$TQTFaJ(hVCNye?{E!SQ8o=$G0-4PpDlF zA8c{F?yo-c{+El2H0yft^_!i4NDoT~?Rys|trhs<{0fFG3~GOIy?7D#>|ZkjpBJ9x zoO6es?JEolXw^A+V6VUAk>cZ@6)#A8-j*L#+}~DZU#Mx+>SWv#!Zy^?6F#;(ti>{W zBZffZ!>+HfgZzai!qa*+`N=Dpvy%MWu}60Wet2%&OdFC{Uvb`O&i^-~ZKC6y>rKi+LS{`mxsStAH%$1M+UlY_5Gt8*G>T$}i`+a@n zCi?5-9NXL+L&q}Bs9Db#X-32_6zj__Q$uyHu2cw^)pLtae!CoceZ`T#zRHz`+r0(&KYk~|BJ?nu4d(mlE>tht2b^}i&cDD zo2(;@f3i=cRRr-RDnCEzJo0*NjToPVgg&msC}e)VKUXe@*Q7S?T!QlRn{#t>+jj1Z z?~U}(58~Ccai&xn)wI99C3xlIHuXde1$TG%(BmFOY<-v!RlofTYB|;ySO4`_oMlVi zOvgQz>Vm~P8+VM?sw%}xKiRio(2o9+(Mn$8l*wdsDK?=f#5z-OS3+iyvg`L=GCt! zb+XK5Z0EBqn#go8aH>h;*%LHVB6>bQ9k8pU8hG%8RmL1&_karSs!g1Q{}h<0XzQDtaAPoucY5{37#Os;3>St9ngvSC{^ak*Do!}r_I&yp zEf-XqZmc9@G#+n8rOXVZ6p#OS>75`Oz}Z;flrHhRebwN%v{QKJHRrZ754W4Vf3%ZP z?0PDh#UocfO8ZL8jhwO{Y*a6FnbJ^E@r_Xki&@KjU2?3aQWasN64_Sl;ZYfU_>|ks z__>#7ACH%@cpMcU+Pq^&EFLy`P2P($5Bo83b)G9$ZDV0c*?a1);k3)|kvDV$VOB-w zvMpQ2f2LQNc7F_D&0{|#$m8A{_58kj1sOn8@3&M<~BPivibqy z1`DEZS`+j5y%!UgOk|nO6wDgx}CvMsO`hLdkcgH=`mb^?M ztJb8{)I&1W9*eUEf)g(%IvdaY?)e|(W||H9{ycT}?`wHk9*YYOGLu;H=!jj1E_jOX+gIxT{q6c#GndJqCUms43S;h6 zF1@^rLWGI1tLvM)w0QeH7WZ#`bEy~KV8{=*^Sr{4XMZ-ND#znRs>T`a!->r#KNzyCHD zB$}V+&Yg?zEt=`)%4c&)H>y0M=Kb>SE+*^-rNS(`zG{qt#bfU9L^GmnaLbl0lX#@q zh+Rhv|JC!Y8CE-a@@AoV!>dU|{x_`AphJGkLU)isBYQ)e$Kt$zeRNdR(K<~m=WM)c ztP0CwUum!XWxKz*`$l=K#b zND1)?r&y)P`qDca>t0HE*V^(Me^v|NR9DNjx$^YrwS5y;5wL6~zrMdy9Bz4WW}`ZC zpMt`Q6)O~nZ6|+fwK(-Y)y}rm>vt;KR(fOAT2XOQX6*8;vYRG4y^kj#M`KnM?NO2R z5nA@nEls~F_==@{?`~r1w_9j1jtq#Z^%I({?Ylq)`@HW;b zQi|E>bZcwtPD;mDDV91sT+MFkV$#DMd_w}V+qZ6gQRFsjIzKb<;PK-C!=h|jMge84 zj!H^JP1#DA;cT`(}KZk$q`rs$%G}`rdU4WLCHpOFjWW<``pt9ub)Nqht zY1jNzTZ*QEn>r~i+F9oDKYm=D?_^o@iHwY7qu*})Dfl^(Tf*u4TTQ8yr({MqF^L++ z1;)k23G{MmB*h^iN&6!AvFEo?p0G-pc9lQrD|(-Hxh#BT<70P4;l$?_O z)rcSd`JJjNDr_=~bG^q=+KTN`ayz|_9huMT%au47HT9eB_}nuFE{z|66!kY(Zyf(} zip~VfshxJ|&S-B{3hJZ@a)@^7g&Xek6PoiVWaQGd*;WQ5wQ5nm{+j?`LiKZz{Gdu%9XVR zPPS)GpT0UX-e+2$6tbO1J1R)u`9q%wYAN;o<6U*w%Q|Zw@0v!^?;ajbL2`}q>XEL- zT6f#&^;Jg)U|LWmMIYDyY|O0aBbATy=+W~ZK7828sF2I#rH!f)BKl%qh|%AOqI3Af zQ;Jn>+!IV?lyIA?DneC#xV4ZhhWOmb8{a6`>Ct%X=l<&Ghbk&60@m%4Zj%khj3PE& zJX0)9s2`!W#~gl2TWnXM=!(errleS9xg9_9@$dtO!QqbxGB%FPR^)ZF*~vkZhSK~Dk|gvoocF% zFD4Ba%_?eAbgzYOJt)(X??~-#<{ATg0T+zNv{-irvYC z-5kgkt>_`pZu??@6Pu9+q<ER%>0Tc+O&L+x1)U;$w1z|uEw*h7W~39QD1)(&i?r^oI!4B$}RZ_h*} zyOsWc;?>gI>rGnkZQ-DaxcdY??)=qVvb!@3M*#G01nY!0%;{achvR?0Y`# zB=9y-Be@!p_VUM%AGJn%+g!&UOH6ms6Wj>QQLuIE)^RK-7aJR!;4>0|=otJ_Ym$B0 zZNuYgampuvw`=H?#GaG30ORG<%}I>_)~GeZ?urBajRyd9?s_7n zhUk3v?w!f>Xt$`{4<8}R=Ia$xxgqug^?hxN3utVx!8AMHKUN*qOgevV)tbM*^w%Xa zY~LQkS3IY3?bG4Y8wyW4KGh{n!b_DHdxz(PUL@(q3{SuQ$Tw)p!U^N%Hw`@tbLUym-}%&Mg=l0ZvGMENkw0n& z*c#T-GWrjhp%2+H85egjAGy8|SZgw+Xy&7YY3;$;iA6`>;NYt)0#|(s(F{xiTs6IX z`4VN%DqHRqmas{Y`u^QJavekOM~^aQXJ#7Tym>Qd(U_5@6d^Vp*v2K*G&1hBV%3^& zKqd32V@vnf&obA_Pf1A;KXRm6;?mo7u@1dJ8tGI0brt#vY8*=gIiGfE5{+jQHA&0Q zxe|Hyf)y%HA$b`aqCqZz^NI&h=1(ba=0cOlUP7JN=@d8Q-lb{4qs#+*W>_`n9Il)| zNy(ZTY@#wVGh0qgOk@TfJXhL^Of-wj`Zzy+$uL`~T^6hP=CPOi{EUd3(lPsfLj&aO zd9Pzb((_u_$NVkY`St@we9F%}TiV*%TA!U*HCx~`R;}x}Fy}NY$5-e-!@rJ>F57XS zzOo2Su0Y$%fxf)Sd7Adm<_^a$kJ5Pl%tm>xqv+`@E=(2Iq4pmf zE%l;CkgXhc>p67Kf>y0!iE=AEb?*tHl@H3d?l>80izF0;|3ZbWEKi)Fp)ovOkG5ZT z=&57tS0F;{F0Sd{zoW8vJ;uLE)nvG>r72M*ga9u!N`@XNNjar>ArEsJs}e11GXCSM ziT2x7H0?6yZI`)(lFo0wGaD#E06Tl%?_Zt3Vks|Pys*qYH&VGop|scY;=f5B zQ;|KdEs%lROHxYyWq2j0aW*krzl=R)iIH*I{hw3|P1jaJlHg9sysLzlNgLfyM(Hi% z|A;$}TNDla@AXsK* zVqhS<&E3|yWgvESqq)%hfWcxln3BYj63H`X&X^1}=W5L?EFj$`Xe5Uc{v$?y=i^<% zpZk6(Nlc$ci$f>_TrAIiAaLdzK~5+}2lwoeLg=GHJK<);7H5gqR49rtxmm6g|kEXq%4qKIM`NfaAyO_@Z4C+%uErQPD zS0{daJ%u7&Q*vXKI@+d*;Wh)a`lPR_O5)K3Pbh>6d_^af0puuSltBS#b?$xYXg6Fq z#kqIy3AsS-C*m*f*RI-3Y1R!Bs%G&Bwx0Oisi8?0QPXKKlWK=%JGzxmEzXBPHs{3& zssR=Kq@d%FE-kaz@4G2A0L6qs^Bu3(vFdy2El~{|Q2YGUJ$dRTBb+E%Y!n~2UaK`%dxjh;f$&3%D~Rzgn^$ObNnwMMYZNPeT8 ztwmF4%EKLUA3oIABW&9@tz1>P&X+;z!m|MhDHQ+kp~z#7ia@Zcq}O{UxuUx&(m*HM zvJO3*<&3Cf^EIjd!Dr9*+_`=G$G5c0+3Gd*$vSlzCaSTv7-JoFWdItU{GmKK+*t!8 zSZ%Bl3*qm2t0IHg>XNinQ7X;>sEn7aqWdvcb(~6&exg_N1MBXdernLoThXeqQM9{~ zNd72s777aqHGbFean0ou)JneH0M15L5y{!D&T^RauRs}UFVE7lv$MC1+q=5CrOYmT z^Y``ro_8_@nJ9@=Zp;-St@NF`8OY56XrE+fXK&}#jUyccU_u=lxg@YmCaBR3Di4qC z)6ErOVTo7gvYpMFc!UKU*#qF94qRc6vg0V(n-*E2Ve|E4jQx&9O z1^_k_T1E8)wGV++?Oy9Nb3HG&)cLYk-`S`l>6tl!hcB6E^;mQhN0(z-9d)0OZ9DX@ zpZN9bSHq}2X<5-QJ^fs`Ff-r`+EeiI`@aiEKXN(GPf!`QYV zIN8|V_S+a{%dyK!OL>QWO%$?7qO7B#+0(0AaQz(0usVt>x*jWgkr7GZS*8kkp$nDj zycg2-m>mX%Ckg4U_7B2{ndOwPwMyH!`MC#1XQ>|WjOeLOm{`uf$MpH|;kwY>4$ zwQnctvI(e}eko~=VLyg9w(H{xe-A7X_EV>GK3<{FYC7a+X5v?STr$lYRKQrt6dI5u z%5r=mrYfz$Je1#9F|e&kJ;g5wV+uL@II2Xl@7rOMitWpx;+$vK_X3T1)a*B)Ul4E^ z;2PwM|GT*9e&(-JWkZ%=a1^CyjC!s$tzcHFdT5{Vk=eW?d(0!;uM=( zSu2ULObJ{lp&{S_#Zz|d8{lKK^F)6ikWu;g0NPEp8#iuH4*ntyOLuQ?5bJO^2cFC4 zvgsZL9z<^hR_Ffx`rSKqgT5jyG2jE(YMC|DXjM#lK7}xXg;R_Wi`Or7jt9H2;qSlI zNIF1+(>89O61hFcwpS5YNcRsvjjbBoBf?iOa+8n_s5~V31EACbjkAY5c}XaYUBZ_B zl}3J*Msms1GbT5}gsn7yE*Um&eg=YPfDk>ow!JDW!)?XIFJ8W!Knda4x9=p1P(27( zm9_x~aH*10&9>g8>H(nG54Y+8(8qfNOrFEssaRX5o;-O{4SZIzR{B}r46rSv&=5^R zS=k4vI>x|#x;xA4!@5XwH+#d4QaLm8j(ww7K2WLEHkeYI`sp#1g}M5Isa#tXN1&BGsAtaz5Rk4_8zBxK@Opk3D@=d^=s#a>0Z(dS~R>m zGuB&0wOS0@j_nlMBZ#(xuw#Oj&F8^u)`Pnl2jOit(*9a;g$?>cl4`!cdk8^?mlR0s z*J@U8F`J4izt&#czY>YSfKK}>Cb1URpGU{&8`WCqk_c94X1qqJdvGuryj=N|hsSO@ zMgeIV8JQVme8OfIFD~dzr%z7-6mD#}c26zpU%T(OGi;)3lR}nCf4ei$M8E~>&7*HJ zZFm*U#?L;28)#m=8h7&4DM9mZskH;hcQQQZQziM0K9wuy%nW9?WuTQMue^J>BZ#eV zqF%?OUZ!wvv?4yc0G+lK}vDUJb3Ux)@=cm)DFFKB1(yG6uPe~d3Qfu(!Rjk)ynsNwIrQ36pTk3l*|R01HTJI+|9SyKS9~QwgA#OjCWMKpSzgvoE7e zO^~@xE-taH-iQE%#gPepYLT&_p&@xA!aYIq#!A9WvYGt&^4u9xL0y)GP9eI(#zGgz z{!AtD3IEpXowP*4fYy?iyk=hrGG_F*Ve)8N%SHWHai7~xL8O{_05c+nkVJ#hmJz`23xNSQtZhZL6=E$nd&!m$CE%El1)YAB`j7fXrH4^rcaQ{ z0xx%&cFS_?ech;yz3Wpn)RJETf{D~Sz~RJu%+3ex=j*^&*<)piRv8Oa7mt-R0pYXL zeGsMg2dF7g;L847aD_+p(#;!=1n}x<^A(Q!l6#@|1`KWM3q@ngAtEvzIGlN{^DO)R z{V@?bd3Nyy1qGl-qyMIc@ARs2#CEK;C8YD`aFLfJ*F+=&ZbUfs?3`~~oR1`Vz-^*V zGv52m*|YuFE$E-qiCEQ-y;c>d&4edXYj~xSYf~M-RUPS}O*#XbYQN(i?qpN5o_+KM z)M{O^$6{?6I-(5pojf{O@&xl;_7?A{T|cbRm}QapfPpK)pxC`J=i19aZmkzflw&BK zg9JE~%Nk751Tt;3*UzK=9I9uD>44ZM|rxF8xQuWrsW0RI8-EYyYh z*-X1Wm1O-wZJ?MZY_vO%oCb^a1xY9qN)Q6)=tSDjlQ|#X1v3IAv@fjr`=4i^@Dd@? zDGt2Ucb~pe7q2P>dP5WFpMjZ~0?O&{VhUPrf-|93#htjdh6MOTPneacUQMQ%ruf(= zexf{@)+Iz=sR%Ry@2yB}#`^Ssd43C$N;CjpOw%TbLx+^fP>@&DkOzQ86@Uo8-d<0C zWU5lS3Pt-6{=nmvjF;A+i z!@Fsmc6D&>;8HoApx4yw^#@JuNdcO&`RPbH`JA=D61`VVx6reuId8%Xshc`DgUssX zKL#m@URQ3+t?4(#tFP$XzWM0sPULrQ?=S_eNVM^}`T4rki>FX*`(vn}UsO@%1B;7` z!CXE^ZGG4G3u|3rlrF-=Bx+aw+519BiDbNqs%=>O4PZEWBr7=(V7}axzasjP*L~SQ zl5rP$d2>DZ@Bkf#8S)h2&tVXV`_)-S*1xgHEgwN0*fWDwj7LjHgk4d`p(LyrCzMto z2vxLXswo3l*P5YE5b;Guoszy}C1+euTd%ol?b1f_Gy?&15NloL%@PEHtDvCyk}C~! ziDmWxhJm#ThGyl%*ku*eJ*$hVr93e}Rci6%My5r%a31||K+yH~hyZm8TM-N&vYCE= zE-FJjqMi(xjo*f_qLm^1y;-Iod1iG*lC;?c%@5wWD|X00^4_ zlPRI?m#4j50ZGNk>FvkY)zT^Xcg>4~l$oA6Z%Qb}(lc9Qc$LxMQ zBdscyp^jvc?+^JBPd9{{ynM{p$m-?q+8gQipBUg&o!zhOzM^ zW-rjny-|md*9EYWlXEn748RYQr!*x3To96{?+YzAcHfx?SHW8MNq|_51wf2t&AxU! zv3S9Ef%@|=TtsryD*;{d@Yv?+^72r9q4N^e9F@0EA{KutQst@vMy;+FvLS$_4=6>b zp)EDr;CPCGOO{2=`&X$Nqq|!!Q|Gpmeq5t(-7Js%0 zFq`om?`o8eC!^+@fdWO!3_I)1oGfToe--t@Hws|8FSj?M1`(bC(+|e-gD^WFK5BvZ zaBRvzbD_Wv_bT{)WNo@9+N12+wUU zx;J@*tSn)~Ur#N0pps7Hj2`0AmTqmW9%`vBa{KdMCcJ@uH@BeqRm&Q|&G<;U2wr)+ z)Y|On-9i!bVby*2R+@uji2$MLV!&@}Q=f0!W;mJGSkSPPp*#z2Sa;tT?dE^X!xpoK z(0d|xth=9|U&?Y_+@%5cOl#h|&W|Z^aC}$-37!R>_wvX~mgmF$cA{8&qxF?+9UamEx5uy3bdvPj?;9DZWt-`izntqM?&AZ0 z{Uu!)8qy?BOM?8>+73?d3oQ)zt4|?5a+_6`N1t0S_mTzLJ{r#h`*gdvWSYsX-YEO) z7wjI(%W<8#RGqnFkSEj9!jgaK_SWKfr8?&E^hcvo^0|R6l+n$2x+@h?peoHspor0S zaMHyqpWsxNm6i2fn5kG=6q+g&@>AwQ+OG(&)^Nus$n1g?pEOj}|c-6F3cl6hj$)SMB zpJ~f0$Bzr3Lx_I=xYFWm3O+(Z-J{!$)JCR4_n~!w6u^2BuQpqB)cNIUT#q?XyS2v1 zx&4D*_4~(v!jVk&N2;c2Lv^#!(ye{$@ya9nCFWoNH#sDgqy6f1-u17`fz<3}9dJ)Q zne)y)xgEUH6+ufxE{#tgHpeiJWy_mF5VsBoYMn6c`?OO|j?AHr zAb!1LCx?21q0rWadB-KbfX0Telwo<>6ViRjD@d$^$`ygWK|vXA`Ov+Vmp_-jV*{tM zWP)bZAM(Q5Wu2zapIwxQzjp1W{B-y;64p`%Hkrq}->&-9Z+fBcUjwY*<>($+13Qe35i4*lR8ksmA;vR9@ zL5&L>ngGC4P0=qT--KjnJdbehA(i$%;%U0cL|x8EYpIrL;v;3J6PuTOswcEJSb5za%oy=u|23?u<2 zsK$Ejmk(~YYatpmWM)&y`lAyQmG`}U2b`P^FKve$y}-MPQBiEkdifd_Ok-c!VB?5K zd0r}iRa!-^xiu5MBxlDCz?VSSRB^*W+f7JT^fHqZdhr_Y`>8uh!r32~Tq zQq=MDpE!IwYI1{;`e-SC=eRMk88?#0fAkBp3j=@)}T2fZf`!-uc8x3{aSD`8W_XMd&x2FmB9 z^!-SP}Y`s5n>-^l*VaRgsa68Q-BdjE?4smefP9Q-G5WUHL26LeKVlUfqtE-5sVMw)T~-{&SI?xQKf0E42a=(i!F< z%b_&%(E3i;t3No!@UM;y*!tn^I~qQs38)JBc@jDIzbMC_SoLR~B(*~}X&#>&xdk$S zLuLk~cBbR7K6bJKe1MPio%`5>cC4G~_`z7d3`LUV?XQTapF~l@O`)fKlv7ZSOfc-7#vEbSQ6Q^$!IK7Idrl#)IrEUVIY^&GE zmU+qOWSw7X^V{{0Fj1IYM@|q*6KEJcfojttt#OiWt_nIV2d5j>Ebi_qV?8}W%gnYh z9s-PUeeuEspZLs=m)f8spzN{9w6?Yq`K@B(ZI|auY_^XC`pk(s*aE}P-B`I=SJ}(u zUvF>1&wY*%PXtI#thmOtOISA3ROZBq>b@HIewL^`nuY`X4SQ->HG%Q##`|hihtcQj z5k>HWF9@)jm`|Dyb)(PH#!GMEIDAe!w|cqwPd(|g7K8^BB!{do(QohxV%Sv&OD$mj z?GTyV@7-tQ9I&=~#PJl^Xz?AU5JO1QOze}y1Wt^~c;@3t`6LFaKicJR!X~kaS?r(; zjNtC3*^*Fz!9`Ft){R%h^}(>x|1Iq$n+e=2#2JIB znFaH~X`nBw7`QOE-0RXz`Se*&0JRfXPO1hOIyyr+UoU3y1Wrf6h**LPUohUYh_H@pfdXfPIS?p zc_5u>7WN0|SprG?9_euI2{9fA9U3dLSh|t#2PJ>VM(dijl|_^6Kz&Hy&q9}FXmTN0 z-dmT91dbSK+XcAct6@SN^nKxTOgF!cfolp6^5mzchq^}ZsRgN$@?`a zq^tJ;lPKF@v&k}c%{(H`GXn3>SE!%~grk!IG>t;{Y5Mb98maDNo;R%X2^DycEi}ZAjoWsD1p@h)flX9t& zLANw*$aLO0y=@83!@JSGwWC8N)ATcd&!ZLJ$&RUzw%==JKYHG@w)}rcqgccP5lBHb z)Ivrkl1$&H5Psh%;&puc?-mM$F82`tz>=lHNdbxY%kxv;AGGaGbK=EQ90#RE-F5%F&kOhK zvxbNj`}_BAfnLX--=2fK%ZobLr9V9y@_zePJ)-vcWE+a=5@I2xa59vbL}WnN5#gP1 z(=ABH$ke%XJPqWnJMdgYz{CO)iPf&7bTxqxVCR*gA+@@WRsM|IlKY5NcYZq7-`{Yl zbCOj2_2DNyn7T|*ub}e{AW`@c1qi;jxa3Yg(=MmFM7ehlWRTa9kSfD;mg3!K-qMA> z0}$5)d_R#i(sw5jM;koh1wP;J{#pX3i=RMji#LIh`7xXsq4~el>Px1CC`D<1Yzgtb1D%O;MPvS z{v>CIh=dDQYYKQI@Y9z}Cx*+KXNYKxyj6o- zK8_q2rGrSW}|z(y>JJ%)qmK@bKYt zcpy1(Dl8IE2jt+*mz@&-BRIFY&nj5#KE)~Ak+T5uXv6yTx!n`e10^fs?Myy2>4-Y1 zY@p4|+eh})*bzTklDObaP(eM&goyc6%t-}2Pc7PyT8x9hXc9G$O(#C_S2d4jg0IW~ zzK%7y0|zOw4FvKTL=4%IKaChKLG7@*?uMf*`;{V+zI;)JeSyEl3~s=v-@mWNuF_Kd zKY0Sl$qKt1qQjGN6GtF(FQ;1EGo1BO0?Dt8>N0R3FNcu}$UO=+oR z&faV0=H_=Pk&siMg7Se3cEiak?HudpQ2l*}%)EB;pMC!PdA!uwv(46KOK?z9-?z`& ze*DKdy<8ji%4s-Wqt=9jQ0CgZcke*ml@st_5{Eib6To>XBc0hJh1;bt9lmrM7$MAg zx7hVV_Yx=My{sANFIy}@IK^_i92BVl?A^m?(} zSLA9$Muv-{S*4aCa=AVbgMsTW@MD}{O$I*Vtss1f-hfy98TE-W3>vRxG!uj=(PlY& zLZ3hWUwRR%>+_i@E|_SY`oE|gYSO3;%|_#duZiHTN&W`IB-!c&8p0Rt!v^U>1~k5G zVGR5zJKYOm`yo;bxjCc2)n^EHE`%wa#P4Tp@i32ao_lc{r=M75$a$PP9K9e32gcfJ zX#W{Tm5d4zVp_ib!NGCFtc@L|4x&*p{OEHu+Wk089=X#QZL-4OTcL!*0+qEkZxWQy$ZaQ9pYt!zdd-zfkSDF7mSwYae zF@zO7pct;)QF@1np*&izPGgf**c6tB!}OBfCe-oKQn=PxgfM_scUF&K;#g? zmz=^uI<0}A$iTufY)2!!)NFYkNN>QQFQbU|ZhJxR2J@^X2cuA!0t9SI;^%$;)4(!p z-FnGhgqf9BaRZ%jwl|aCgYB7FgdJ|zAS+$><)km{<*rS4_F8S+=r@#e3K)Vk#b4hn zH^tNsNFT7kJJj9~dtsqN4|#s+VC)EYh`uem3^9$7bB$;uPUAdKAR7c^$M~>~tAv*b z$t5!FdMI!t4quV8KAMt}p3u=_A=1hClC}oUvkEj?=>k@~)4!!%rep=40vdWA$W6Aq zfznZp9)p+Iv&V=T4p~B1d$*XeoEt|I$j8Awu)c_+$Qy?;PAtjBf*H)97+ zE-~5xTob$d6DGmZH?=8ztJlgwDB2~wEc>=IhFHFnaQ$tKVi<=p65I>TiTC*N<7Dkn z8x0+5*U@zjaAjWITN!2?v!Kxk$_@Gafl@N>$WOEm|ek6ze!Phyc=$C*bi%9eX51`fEOLryxt1l@l5$rV`A7S+XV6TTdZTIurVN%`5AsnLEBBdKkJswg1pE~5p zWtgYap1E?>Dq@g%D&eM$Q&Uugf}Z-0QBNU@Pt>}^Xny0Um8+AIU{s_j4@DCs0}$U! zjusPN!cvy@W=X-J1Y!VZBW|!&kyiDr z*Y0>6<1v=9C|}i>6_8~mJV1Hza=EFM}Rfka2>ON~h?0n?xFpNqB zoru`>{D2cj!>!EVgXI3Bd25a=@tnC@XjpIt8^#89g8ZR2QPHi9BkLL)Ta>d>TI7$K z`KggoFkqPT{2iR@39%8*vPxpVZo`)FDt&*~;s2nR(W)$WWrq59r6?d<`PkXm$hmE} z>YsyjeFlJINUr;be-0t~zh^V&o8@#nH&#V}%hHK-A&XF0+bO8!#Po)#O_g{s3G3z|w$Q$h-i@;+JYS z)Q^n%YG(^&{~2*Pd&dUr)%Bzh?GZ-nWpT6=%58P7?Q*+lxV>Y8e9H)l@oxF)m-x3+w3Z3XnyeWa(j$|if;IFHVHYAb5n;yTMebT zSwEw^8eghF<0-#a_w``v(8o&-`E{g8?2^TGo|?U3@aXN`ldl(gJk;FdK>A^v=kcI}=SF4=W;U0aZPTJq)Kkg@w2JRZ3iJR8KPqqh^;go0Z(t>56w zC`_I-c$NFSdV;>*Ovl;}Wm1esl}D$7dMf>9Cj5N;k|_}J_Gs?Wea(|L#JM*7*a7i{ z9J{F&NDXSauQD#(5xDk3z$~z9fXi*MaJ|l_DkS6_c08mn^eOGPB{Es(i<&d8%>CrI z^(fzL(jppfsb^b!St@F!rdJW(4q5Ntct8Ujq%uen)tOLewTK93e%k@sX z@({A(dKnH5l}HJrY@@Qzm3=!8NjfjO+0J$cMX#r~iP0d_1{Es%T^`pC8JWW?;`PN% z-mHnYzF1T6y~!$ip#*VXtcY&P@+jUJ;ykI< zSIu5iaB0k_Z(){yO7!K~5PL1(@%CHQKO1=YuzGv4N$99kxFNb8dHw2&hNfS|x4~+v zft;YJG=#>PCXdMwlN9DHPo}Bq4WE8cPtk=uNsSPXzOzwJUkK}Ec^2zMsMzZ|UM#|_ zs$k36*`yUhrNQudOPChHU}wZn%bRD<|M>8Wm(kI3dKya~lR{*%>Rzd?Ivz%Q!?;Rl zR;_R%aJ)BCWqOq21<@U2l24%4Go3P(ye5{U^WdbNV<*PyIxN_p-6Fywv1T)7}e zEi*yuB)qRwLFckw}VpzdoE0H7T$I#j^Ffk?L|V zbJH&} z1cKvDDphb#NE4%Hl#E}sn>Q%qL^z;uX15p~`GB5ZKtkwiD^){4*}!!-U;e2%}i8HHnv%Dy)ec^(ug{_dsph&Exm)oGIxzAY!a^5^`N)QzDDjZ~q zFQFBZXM$}9?_5A6v5T}?fLzAE9)Ax=b)qQ`TWfk8K;mYeH?3lhzanSy+ZqO7?8%Dl z{7J^>8Y_!5?`)9a(hLpd)z8S|#Ma+^WjZwRryZh@u=6<6gYSmuqfHqb8&gFstywYk z{hy>yerS<`K*rZ(d`~Hknwzeat_v4YNxP(>>8PG*YDBBCFjoy==*_(UFRXXh7N}+a zduv?CdY&AAfv=72P`3?r$nnY`=j+|ucNm|&!R+)_J~Mwzk)H{`C_QVhwL`o?o86Z2 zDdC6R%&y9^GHJ_WzG#y3F^Dg+zdkuJ*z7JVEJxeWd;zdP;KQHC^!Q|OdAq#UElK3t zCkTZCcIR^ho#*bFxF>xJZa;%V)(0K<6k#Fs7ryWzJ-ar4IMmYfN`pg+67f#9 zwoRQnuOh{{CWiT193$aK4%w7r^thq;W8JQm#zBftqdXRy9#IrR*$RKZSR&R9k5#-; z#{rCS!e0{a4E$?^@~DhFemv9U9q4^KoVu$W2oo@Q0b7~rXx9hWZDa7|8f)R`k|Kf( z80SJ#f|RF>KhoS6_3}D5^@Uln@$n&^x@Bv=i)HtH zJvD=hhO@(!2;TPB+-)^<_+vJ~&%N3zw>>^wO@m9rnv zr`7Nl+h_5uedlZ0BQ-k>+#8yi1*{jr%~E8PBup%)hOHXQK^kBGr zGGW4UXmPTp@ipq{+miq1s93_r5FB(W$UVYf_jhKvG60 z>$5pMtN$L$r*J8yo^E!xh1~VNGBQSsl`X3Y?A^2}&$e&6|%N`~6#5HCA@8G31@CW1EF&0P4zh8jSU+ZiBB|k38~8 zO0lfFJFq}7opOSIT|l?k@#7}-+%>74pLWt`IQ&dq+9}+ux_hZ;vvt!9dq3^$i(K^2 za}=KM9H@O#pX_({@541+qY2OUn6!%3=q!FaJa$Ulx}-k=_j<)fw`hN_8Am($A6iyy z=MbvzH?{np-6p^In?qIJ$9ein`ujLj^+YaPy44$`H*S{>;FMWQC+pb4{_dTY9%_Aw z1-Uba?s;OML-ubuNn-n%*Nlxds3 zs9WRG{Vg|kY{>O(qU38AHkz-)0rH*&dZl368@mKwWpHP2-)Z9RgLTb46RQXis-X$r zl8*^OK$d!!E5D^tn@uK&PcEg1Q_zyzqG|t`)4@Fqk*=5OcXaf;c=2hS#_O9#{auAq zvgr88SS4dNQ+&7t&5S}nGl_PsdEA3`=jrfSZz1vT`HsRo^~dZ|b5eC<&eGCL-?}Mp zI#gF-p87ZLC`UfF`mbOyR;`>NPWCgQhhB5j=oB^zTn!dg50z-){`*u9T$1y1=`x>f zd!*^a4U4KUx4AIA-oh`s zz8a;z!w@wz8wPA+oEI$=!>5`xwXuKf6JsXV97uP-ZG)o~PhY*+6! zZ}I()nanJUM{dF?y0nLzA(H26XQkxJ%KNX`TW?Xq_66z@cT^<24=d`2v_s4)3`e&C-8&#ELAo%rp zmTOrRap2rHqt5uCndkcS^9sVf9*r!A9#JJ|f%s9E#o>`R!w^xl4&V7_Tcb zb}#PUs|I;$NlG!q?DXA~g$14dnzBdAGAhHZF}rYpLyLz&s~g#2I@;go!emK*W1YE8 zed_bN0L+8*r7liAOF&Tvif}7=L#2 zGRN1LjaPZd;@J3evkS5haQwP@qyxZ6<@w1Nr_xn)IT;!`CHQCW=lu#hxDU?%x~KN? zZk;-AL>CZZE}0{Hujx)=SXxtbXIae}-m+^$&5t7oy07%qMhn-anm6dyr0x~cc<}F` zm*=7SoOxh4x*8@8X4fy~!R#TGH;R9sGEgkvTMC<&K)abmE^E3b_s`iu$_PPR^A)C-Fk1m?(5WsPsRQB z?#NVziX1n}4%-_!94U*n=mDcGo|Z*A2dE0!d#T zX_R9Ygs;lNBn_CwY=a8>QjLRuUm)$m7)$!!v93<4-+B0$4@o|F$bZ6m{A&7%yc+_iGe1+Ri1e+FTm@J67G*<9sNcsD)J+;e0GD4S3+r=izDI$F{vu_(G!nNQ+LAfePnq6Ote`h zs{Ah)wi(*1Bl+SG@T-5V?Za^G#NXpFj6p^=J&+P^QMUb9<;Df7p7D zgognoh&0GI$yz0JM2H)8w(j~hB|J7?ZALj)aNTr-QC!=3LOouJ4kw)!#f3R!7zJgW zdzt7L;I}H8em}QmQ&qZau9izc@Ihc40XNYa@f9?ZflH$fc;o9=nHMrH$~e?;xo4(D zT2j(*~8rRUMs|&&J@y!0fl~3e8*8MX$^nN6zuzya8j42U7eEw(gubo@(nB=fqr*41&C%VR9C5f zuZ&|DjgfGZ-}T|dtthI2aLtKGxBC8s_6yl^VZvdneSt=J1qK_JDk;7n@urkXQ@yL+ zxTb{O2Ht(n@4Bz8S}P0JJ73X3+Fkqa+?MthyJWBK)a1pqUs)k+zeS7l#N4M4qqQSb zZNf|^SD+(3-%abSQkaLxwp%CwT~Sw8!t>~#i$eDUqso}`V*=Q0J}u10TsD3x3T`mw zR&RZBjQRp9B)aNQuTS9|Xxbm|ava7G3}O!|9qh+B_rGt{Za@3}(GzBmX8AJ% zHBvKG9!Zq)v3Ku7CoC1hWUqV-_RM!LY~U^c)4_gHHyjknc!P0uVhD1kNhqOX)K72V@t2-|LfXNDdpH9oEq7c2bNG$iJR#!WwXJ zFV1$spf$aaZEkW>4R+58zLJ?Uy* z`r?3r%HqPD_+2yIf~!J1^)sY#IBuqsF8w^+PREX$A=)Aqq0`R4zSotR)(hN7kfMt> zZ%8Vv`WR3RpwoBTS1p?|{^0-`IxQDHc;0SU2b{T`*lg7M5hLfq{)(a{v2$3e&_N^_<-KJ zT8=N|v$s%~iRZ6+o&CF4(fCxZ)6~M5;CYAPzzEmsxyo>#_POAclZT%GH1+?c}itki_Bq}inXvJ zLlPGDb+3NEeZ22J_TGQI?_UlUzVrRP@9R3x&lw{ew;3q>j^+JFsI553yva8=Szp%8 zalD$FTWqNLXt3FONXqHsUNQ!WMONnpu1GuE5d!(3fE1d!y){g9?|!e%4t;7eD3m9e zX(Pbx)72J3<(+aaa$Bm^hQ1XZpI@8kFI{hU?JNzfU*qAHw;Ku+Gkv~V_2Tm!#-gXx zsr$!Frtss7@E&DW?@YTOJ2KDQ&6PWe_{d7O=vX>_* zI#pd#c-KGM=d>!uvRlGz;p{uZrqIm6ql)j}x(b{6NxV|kl4(}(HCPtXoy$`#bu*nV>s zGp)EpuO9M0L~OV{mJ6ZM;k(@z(+?0^kIX}hQ6P%k5}NfZP3<&K;tBx5hc z+QwJvp9D6BwlK^He?OJNb^y%-ol%EAvu^UOx{vKzuu>*>V9Z|m5+`a!~V-}# zU$Bq1%79U2r;(OM)LVC-eP(xlrq>o|A0`(WWN6MOMUljnwmv@&P{;h3O>oG|Z=UGp zciOtkmQCuA#=buaenh_&iI+k`ZB<7`THm^Mzfj2})Y%Z&v8Dri=k4t(knL$12uO1VXWUABP?)K8;8jh zwH$s|Y%a%^>G$(FX!N=C|MEy2ajW9n$0fvd&bh;jBH+Jp?^n z(#k*2_hv~dsOJT|*s>)Alt#6eslRMX1Vm4@5V!rD&>25M!=!M<{q{J5V}F@G zb0nA69gCG&xHMWZU%tD>O{CIq_2^>6vcLHiN@KNOz-q1Zs?RCC_fkXC zgFV!u1WCUQ88=wHNGUwjLPg(`squt#db*0=lb;)E-qnM=D?>$PwrWEZ%~;QUW_`Ih zoye$5t*tQ67g+eUfqR0rSPT0_BA{0?sphyC-``c=l_W3pRh2n>tDZUyQ?swp~xK3^9Z+%*`#KF9s7dl{>&M4H}nQ@s*(f}j@XejyD zweWo;Y=n1_RQqgNJn5WPiZv+srWjLXF4ylma_vHJF9;896;Hgo>*4-Z&ec50Nqup1 z6_ef7IBW(}_QzK)sc8Wq!e^=?X3}n^q!X{+KUhLi4hiFq{rFh?`VqRPWZLQ4scT=Z z1<2dNVc^n~4uCH)MkwKv*WA^*n#0!j(qSnD^;plkTT|M%L@lYaU$b;^u`@lH2{ZR2 zls05=p5$aq$n4ezxMuTnxMevw9QtkiH}Wg3DvG4M^Pqzvb$~ud5ikL8Z%y)_)J=rH zD=PCVGckRB%-x->NXY0iXC2Ud2CGKib){jl-C-Iny`a1;&Z`d_3FR0F;N_G$!+VWY zv7t`05;Rbmx#O{-q=2s8kAsk5IE2I(~Cxy!c;kr zOw^JE@rR(0kR}o>kNAuwum1v5cc%y11$4Mqq1e=2ufY}H{8b*MSK$>XeD@FZO zQ2LemZ+L^KQiMSByMV|*8iW7KYo2I=-0RSQ_)q!W4>$_Myg{%CIv^^&&h|( zCId``_nF+OP}PDXc3l8Gj1+Ns7rZ#%emi+ton0tiF!0~Ob9%XPqFf2N zf29$-;VpTWk4sc>DSsxMK3+pB??NoVq9k9q@Pr!Rl! zXtHA|Z4{^gsmzv-;RkrtlDJt}Vocvk5gdUIM8b=wnGC!(oOAy4+9+~6mR`M$e?kcG zU(lXMOz?wTT*-cQAkUJA9y-+Pv!pt~WAz*fA%Pj4p27*ZMX*MufhbGf0+(7{9w-PBftqG=b0Lda#PH3VvH_M?t_(?Az(ceD%+KjyvkK2v7a1zNkUoTC zBJaPvm=VS6l$NT0IaNlVdi1*UhBvu+lZv-wa~+B=Nb;IZ9|_rLpm&-#XDi+M)pR?p z;Q&8Az@w{6;CUB;sij1Mt>CWPx}(g0H3b2DOKVjQS%WOOIXQ6|rXVOoC>3d~Li*#P z?(Wb|_VD~RP5nI6W7O1N_7VsnB~}AfUQXLr2QiY^if+z1A;ZUkcB=c9mY-P$n9Pot z`K>$6kW+PJ8^71beT2k2PRtpcTaucrn$M?f*R-omqVjazbSg1v#o_)r0{6^XSxr$6;>L;&}4 zFw0sc=PIvuMyh|V65g(cr ztn^>K?>hr;x5`v5>LxUZMtpElxiP{zEs2uNRMyVmog{D%mk@$&lMQ2p9vd^eM8f=5_>Xm9(nG9Rer*jYsRdLGrnQ?(A@ie3;00RhPpur8lK zMR*Vpn}~k^upng7N52Rt2tR0j0K4HNh?sQTp{J}b{1b+_88B4I-TF@T4ZF zzYID2u~Vb4<^;>(XxXYxegR9@3yZ_<-JvW3zVg0zv{ooqEc#D4$)keLL32V~6L2Kp zP9~qbv+@R7*S8LHiF(cQu?yLmB+yBS89fm8fz2)zOxpE4J6_vWVB73Qt$~)~;} z@9)2dU<$EWbf!n=$T2AIL%DEfjjZEysMRwQ_tc)6H*cp+Kepn4^;X6?fMj}kB^weF_ukv#1|vEWn`a_`AW-b#~aKx%K|BZqOZBf(b z-sp{C&q$rr)!qh8U=DpZ~CO zkJ4~2w>Wz02fBSXp6;){*JsLJeEhHVb~9Q1%zMqqf_Q(!Ls zq!}I2F)B5LMc#`Cc(?STxgH@&rQ=Kj^I zhuE1XxoAr#`j-3y2fEQA4saZOf60&*D#dUuv?m6@!Y!ZzVpO z*=`4IT~6mKR6X+TYog`!t&lfOVLkiI)0;axwZ&^pcI?yrR-8O{+A3B+`^?7mWCe#U z<6~0lKxP`=2pyWkOg43e*eu$R1s$R_+9CuFx(=yNwN;Wz8dmmkMZ;QA1q&Z;8}pvP zKZFIedcLXnHph+qzc)H*533q;B0;Ue#x{91xHf8h949;W@bPm7hT?6>Da|letxhFj zom97ZD8_&Nr~&4*{II=Wzi6}VR(mm2Keo2`;&@5(b6)Mf>?mPXumTaLUG7r*3I|3z zrfuu$GB^B<e3OH^qg?n&P$E|1Pt96h>Vk=`u3&ZdI87DLuZ<26%@wDiXh3{Xe^R@1VmPULZ*I}E)Js5H>oS=hYt*b(tVwV`0l zT}FYCk!X3Q-7$O5u9kaUPqgCj*?pYu@s~W5l)CkG6Bul4(hYLE=j|+V`}@v#k&_dg zr;?*>0s_hC8(^XVd zbTmFcF51R)6UH;wky)y5t)GD7h)3kL{6rjUCw>3#LJM7S>WCXg8W!cMd`H!6Y}U&q zJ+{AmNZJ%JIc(A1;<358y}J6n&cC}y7Z>#pr9O44ouaucBR`Oxe|fY^)8XzTqW4*O zpVPKIN|H?jvL5u)n8>O3FNW8a1?)yd;2b%mYv3Ulp~d)5VMF|-ja}bA-;{O~wVJ0k ziCS$re{${)k$HJu{`aU5L=@%!Ky9Qvdf}bceA=R|veULiF03e`b-DNZw=j7p;nyEV zUCYKbIX9Dy8TdN-De2|!!F@Kxde31O- zU#H5j4ytAHK5yOhu?;N0$5u!QXl<2cwV|hXYPxED{9X$i-$|S+n}meu;(Et=d9+w6 zv)RBO1rJZe8Eg;_7>sQ`J260r3MAgk)m>PUp!|d({G#1J)*>bB)Y{IFu-`)&XlV{X zCmSH}XM-&6%;OUt*SxYQD^*#YJ~`rmOH=s9DQWq*(0%j%P7e0UwX%rKx$ZsIM)f3p7nkc?kA(9;pXE`LzSm{er6eJM6H3aymjv_T zE%?LDuh}`)Xfieni=0vUK>cdaa?+CLE#vLv@cKoP`^-pey0DS9(Fd%8FzJv93s#P6 zS8YxDmk$|TY57|n_Pcu+dKyd5L%$50k*=O~c|_=8LSb{HL!Fm@*DF~!lfb!w3lI2k z=RV+{;njC(xyQ{<+UY|NcX`fiq`t2#Wy|62R9km{zM;|Y|1#-jX^G)`t-e3UZv|(C zOL8&ocHn!MeD->QPaa1#yOmXrvAEcSFeU&T8Ba{`C+#pv$W;-Mk_vMeADlbP>OAPL ztYE3YF<+=kGiDZ$=KQ_B7no@jdTl?T!dw7sjkxPqsS*Ct~Y| z07>LpM-O#EVK|n_!*z8SLEXhK<#j*1GfML*?mwiJM$H4qgXC^KiZk*KdHZd9mO@GJ zm!TOR&dXD&=`HFW#I^@}W|#_Xo3+EX%oTOs{QPMj|$C058TuP zfDOwPZarE(!kB{(DJK3r4ANWJ-5?iCiG>ArsXcFmiy$1;QKs1i( zC^a>1b+2iiYhZXlypdrXJqLXBhN`SN$wjT>$y!thOM3sE^HyRtwPVEjecQdzLufbt z&(t=>SRh%0b&Ve^8M#_2#~R?*kJNj#XrRBJ>K~Ikf;_y?`Z#k7n(_b3iGZfwDcg^a zuYwy9MT!AEP7tVOU_B|X5}DkOf*M?8aG`q-+jt2sSc4g+9~om1*8(zpkRrA}&&1Zt zWZ?>UbP#$P2ywYV5LX6qW+2V4nhyKJXbk{^P=DuO7qc`6GY>7BiwNK|B!mOc8OkaF z{U$hedlGFVA%HG&30TWCdj^E1ARj!$9p!?$6||?NRZ`$p2U-`9jeEF!h}Y3h0r=by z(1KHdU`McK1U^7ILqJ@bS{zZN`G%ov;0!e+M96}etz5`bPy_4Eo4$<3i+lnCDBLXZ z>`j}hNVL!bnn5J3Vh8L46%`dkhJkdm_@)@l-u%xKT?o(tCus)O#K_~Cf12soEb_Pj z@&Tn!)GmJHMBt8(k=*WZTF#@W2he+z0nP+nCWN{L8Y?m!s-N=#dzLU@&Jp-uG;ePT zr0byo7vRmr+NtIvvjIfbK!1wm86Pag48eqn_$tT;vL{!Eo7ZT;5u`LRur9mS@)MTE6X@= z#X8=!Z`lJORk>h<&e{%SVPP?Vt(O5ddXI3mICt(Ix?(Lr%EI073NWCr!L@4`w}TZW zydXU?IKJLi9h{_x#H=omSiT0O;w&&RdckzE0@-+iCD z#&r8U>>6w<3t_*b5j7F1rJ+0lm2@*a{Fz-K^r1i%$xg*I@HiV=99aqixT=QUzo<7Az0E|H ziQUIOxRoQMZsNH+Z&6qegdv(*98fgI$+#kLEbKAQN;X(M{Z{8`v|K=WpsfR{H4$^? zA3)_~19tC_0i!Mop16HmZo6_CP<2o<4Hvp#sRu?Uz|RN^2nej0!%$^dV2;c~X2ye0 z#6|x+X8-Ah3i4e;o$@4%X;~f3=+c9!?L%K<4}?^yx?an>0llFlHibX70xSS z(B}Za6G|AMc}dBG5G^x!;I4st2Rdc$uff)Wfd7cP3f3YkMCwHkToQoeA(Kh7wjOa$ z;6i|z7TSUtQg$tWqNfMww|YS5mWJ{Sj2Mb#X)mf@vMYd|0i(4_MetW3Jd$0+Tb_Y? zOGDV(F8B5_39$f%Dm}8$=!0%M;6l8C`#d`&gb}dldLRQw)MA=)A2juaHA|0>m&@z+ z0v!;BtI+|F?xNs3xVhTlGJqgIQSo*$^6oFTy#%H5$t8p8yCnMv za2pySLb2iNueCKnMMdJwDZrEPN!ou0)}H~;Wf8U*Yz#9HP5@I_i=Z*d9>4B|9e)X$dL+s5-g0|RlrL@oL(>|3#loeq&x0_JcJ{&CqU{G1E+*Cw!Kvj4|#G&Js7n8 zAe9Duj3}Il0*9;Pp9jX+e-FR@066fQc);Na!vo}mYD9xHkOKjl!L5PvDiE~^slnZA z7FDaH0RW6DYzU6bpU@BsWET{~mAA=2$NDi*m@cT<2`uLNzR~FrPL?t1Myz<#V+#fQ zejwKJX#n}w05XI0@5k^VfHAlw5GoX|X~a>vS0K0`mWC?KSMaWQgU=kO;9w?vGrXw| zP9Bu8x^Na=El!y;m73?zpARiqURm*~axWQ#RDx(Oe(1$AVqq63J0Ifh0()5x?tUmJI&uN%ACV8hC!9u$m_$?*IMWE#fG9QqLMa83 z?m0-qlG{+Br*i{07aRbyO^^SF#M}R7eneG1Lkw3w UURn|`%ao<^5%URXV+}YLG(G25>v9rCkowKziipIsv(aF-zmXA|_lb4<5nX|LK zlMok|&HwWYoOX^DTr9uIQ1Btx_OjYe7#R4*$p0>6i)LA3U?e?yEG4eymbhN;?lqxa z|M&05mnjM#I>$1e+^fOB!hF+(S6;8QA4H^$i7BnkZa~CEXP`a7859_JkxuhM5nXpZ zP9Qs-?i&p`UAcQ>pXEPhSRV8!FqQUsdB56o#j|+&ZHX^Zz;mjv!-OjS*z4O8y!f1W zi`?xxGAut{_My3oyvXQ#OdewV_XFy=q)*iU-d2?jC%_cH0WT9AY?c50cLiE;Ipi%& z@!&fQve^IL_2==$yz}oDF?l|R(=h(~RGM}of{g$Eye&?`$N9s~h)GzpDQ{{{j%B`| z#Er;g$s{|AWOt@ep_Odo+wziN|fj|EhSMmP+Wv><0l$LS3#t=e9;hRsh2usa-TQ*<) z^;~es(uA2tZu*>ODj64+#a0RAECysDS?tlLrI&4%g zwQL@?uI|qzI(=(yJm2SP`1|d_=DSW)3g^TXPrKEj0=M1Xd&jPQ@fOMP!!Zr3?f9m& zNfK*g<+!8Y*cuXQWKw{S79&X-eY&%_uea*};nY`oUB=(FWV0h9J?*I!pWA7q{STw1E?BuF`SukpB7yyNz(vuz#L z=(+LD`a^^3uMZ}i`nGK_${uV~nS8Id=!r|!hh;q5=j#(rzwq7Q)t`OiS`i;I#jm>@ zBth4oJFS-wKew&am1iLE8Yj0%Oug{k`(z+x$EMR%7}cyo3OZhTm~DVKfwQ_c0Tk0 zf3#P`QtD^Rv4}@hIY|!fav2eGH0c_YZyIA5AJQ2 z53fo;d2-zhpFrxS^<)k4^q&paZTR--+o`zi&~_8!_2gp=K>j)-~@%Ny0%Joeu_*4T(opKbnZaEBTTWk;aKO?$=N7>}Q zl+;lf9TP)GgtKrvRxZ_4d%)4=%5dH@tk% zW6rm-x~i|rg?F0T zLq^%LK|VNFJ@4{u=D*KP4a;`kG5L31-IelB_ETf^g>O_E6^ZPenf0UoW_7yNil3gA zb`eP&7&B=>oGs^nPPf0(hg}mAp$aoGGBOh6dPCEW8HD!9l#iXOUP|tEig$H(o(W)1 zZpz6@#(||BEw#8LHg(w7)Pz9=$4vaChcH#^zr_;`_l;8e0PFMZ{?fk>hkM(ad5b^y zQ&kadA+k$8wb*TV&RbZ!A(XFGd@<$h7xQ-W73!IVSVI|ZvYypdC^WukRP)2biMRHG z*Zf-FK<>B|9UYziQX7+J&TEb^Ma^DV0Zr_7vYh2G`C@o>f7r0&PFA9iwLsANc;!57S$j8E zV=&=UL1TWdNE(@U)aP4%ZVSr!Rx7G_#M%blkE^0*v-ms~-ze2IG$0vAljQy@;!&A)sktRdkZ%|2MkJnlL;dcz2V)>e2OJN7Q^T4Ed>-i9z1Rrn~-L(b9mZn3z7 zs+F|yNV@KD%G1<=7N7?cX z!7+{W{>JYYDa3>E_=m5~ZIMN?pGH0v!lwRv)UgelkJHp_whhN}yS(V-_3872%154p zm^_xL)iO8IFZJH_5fqlG=k{ieZaLXsbyzK^+_5n)C6|w3Z~l1KDyjoQ243evvE8Ya zm81&`3uS7gJeJ@2umAb;C%d4)chu|X8}3Id%+&v`Kr-Gcol~~9wl<>ITv=T`y0Shu z7YA~HCY95$zAJ)|rk-63qiIi!i6QwpIC$Gd6t2023_gHIh=^~PsqIH<<&*~-a-Ziy zlz1jckZ!l%0{qf$Z)&2*Pa*B;`QT$h!c83C@a_c+%Ci@?yzxfmI>zNX5l^!sW*IH1;pVHIm?K~enx{{lh7u_L9iI=(cb6jM!)0Fr3`nt5LD&fKAbeI%f zvu_m3uejGxdCx@5c*#w9pRBt5*&ps78S&R*|6F#$6A|BO3WyJO&$w6%R;yb2 zhbiy&Fhs!Hhlfq>jrwZ$sJv^a>roT|DB`|8a(6}ks5mO)YR12pRQM? z*Vo?$2+eNbv79M>VOEv+$-s@Uj^bB;z4`CnMZ!H^fr(2biq@7dFv+wyT_GxPor46I zodg#`iXZ^<^5x4jfC8j$6NXsdT9qdr&LPM~ou*D)sprPH`EWJsNRROy`VZ>sCBjT= zT^1q(_N0906=Ai5$U{6j?zW@CBuA)Mq4OJ{o zr|Qk2L-oeXn31kF)2W(LC5NbzQl~&8L*evM55CEjNu;Re^ubBU+dQCA9{~Ml(AC?4HG>a zM3gg&dEpb`$UX)JlAu(m|GmAvzn7QAnIg#<*wNG1S>@B^>Uf&l&r5 zYHO2I;$89Z^z5IU3^C=+Q6T!z!B9K5P?2ksU!ZK5>(ohPWiv=vp2ny~l){R82V-x4 zf5DgcUmwTg6;5-T9&TA8^#R=x#TUpTdP=_P9c*pKN-7zfNt0c+FWxY{(o-SoVi zE?$8y=_&m9siuYkV4uHCx?U6lYm%O(!+wc10@eiP{qmB|P)()~YM!l#VXx^lJ5a;NpP006yU6i!CW*QcH) zPx1+RvdqlPH~|}quC6ZF?r>R#8#un-hlc@~U;&gE8`J4YyiX{Sf^RikC`}h3#u+=m z9YGa#1)x(Me^i$oYp8Ug=kuQ$X!H$(>zX(u#|3hJ=J5%MVZ#(wAGm2aPDbUIkItcCY zfbeFdcK|BGH7e=rhZu4DLlb8-l&}4JZLRI|lLVt;Ex2~KWfmrDeNIwQ12f{mQXi7Y zi4215+>xiz+3ZmvMfW(FV$g2N{iv=`&FW3G!~0g_sMuJ=ufLd(Mw_hf`@Pkx1R*m0 z6BEJuwJyeg&;NWiFV%Z3ovsYO*1GOO571H@XP@BBn#%(u;j*y-I)1cOZhW{l`qp*I z{R*IgFXQVhY;3In$ZuS`-2eUiYhPT_w9lU}+t}D>RodPj8y|P?`8=>J1&3ECX|Y@` z=_zyAU9-#&Z4TsU*OhfbbOw9fs3Fs3X)7xpv#hpt8Iuq42E{gXGMTB6pW#5VY`;br zg!kkG8LbLTk>ZMq_yC2A?WRTc4i7JV4eKb=Dey<5;I-vZKS6NEJTWLnDXimdO^pyG zT&`A?JuL>nJ&~p$t_FWuhKm?1ckVPN-gi<`RegJM;?a|E5C0LR1ExIxxCO_7AfS!L>QkH-L!e}Jek8jBnt?W5P*p}DubZX@vn@3ho1zkoGl$(HI#A8W$v4>#$#hhdWI;ViV^M_Zotwwl>~H?|zgkhQXIs!E-wW-Sqw0J;4Cb@|4C>AyoJfXj!a zF*Y)4`f^kQ$(ck10Qvd3H|E6)fO$9_p(EzD8RPHyco!EMM0-KXk!mMqmyL;lh6WKW zb`tnCLh#HHw$=xC$TC7p!S6Cq1O64box4E)D@c6ulR4WJG{ zx+peoy}Y-#*97Iitc-}y;+quB4Y8LmABH|W(CUfjyCRTq-JmG8c5+~uzrtqxeYw?e zT6+4WPSX!T95J0-I06+h51pne4*|F{SjRaRE^3G&$b`noV)6s_*ih``OrPRxYf%UJ{1PX+*JR3~^D z8DSJ_A(sbf7+%?hg)&IOV`Ed+)bzu`B{2em%D#5;_r^v$urJCQ8t>uFrgfKHsay`- zikVh?Q7IOpISt)v4B@T*lDIT(Gl}Q`bNG(hNxa(0P$)^x&8ylxel_L~B}4B;pK55E z?W1JThvI`W3jQBDa>tl7Zeg?!e|U?O1fG6c@m#S!id=%bYem+@CRU|(Mk0@SQ7^{ zh({^-dTPp`4aJlEi6K;3(W`TGQz00NIHxQWB)4l;MN1dCqN)oig5=033eGZwDhCefIwPq2E`Ol^HF4OZxr$_e}f_>X!Dqk|op~y3)~W zvE5kks-65s_#Pk%)KWMykQ)1P!_X+e>uA!3EiCxFL?CPYJLZp|nJ%^*U;-rZ^XJc* zy#d8XP|x8{;20pM?3cF9z6J%V5t+Phv&w7mz{0H+JuW5}lPFVM}+?jFy$)NXIoZl*!0 zhpGoBt*y>|SINNOn+f^p$;p?Or!Ma#Xc-8w0Z@yZ5Ef)O_GEi;VC?7}_M~;s$*#LR znA@(heWEx-ElHB&D9j|uD5idx6k=GhnA`qI(@IUIC|{K}D4#{;^z;-+47tuHNJu!u zDU90va1##wb9$H#!CX*KAbjh#Qthkw*T#j`5XhC|*JnOu5AuiTid_KWv}tvJagd~3 ziyhgVa@o>RcBqDMa&>fczK@OuK=9He^v=bZguWSA{v|<#L0St45V8TT43o${`+J42 zCB>uG72*<4iNY0vO9WLkBGsf61xW%s)X;B82;TTk{N9PfDUaqTbF?n#cSu9?N6RTY z5+VzI?UJfoxH&I5EW+AkEh+F!aGvDuRj!ek$0!sH;}#8fM@Aw5^YqmH4s$~9`wt%o zswQo1wK4GmbG6vtE3v$D6UKuBS~(t~#)>Y;gRZn?W3twvho^%EnlU)3FJ8RRll`c` zl$`x*+YM@Xbsi8izoK0~6kQ-oq~!|KDBdIV>}|^iY=}m^8DEz%G^FN@@A-6b-vetk zNW6&m4Xd%-3##pUKF8v`7R)v!tRWfB{fv^Sz?dcAOH%q=WgqMPW9}(U<*xpKi-J`* z87|a^FluuBbDQ^J$EkHEb zpV)4+v<(Z94;m$|sYwbr^DT5>L9>;WmAh^~S5}@wJ%T!Uq*gH~TbE~o}@Z}fJ&yEA#>v3PABGc7| z)Q1d6M*LJy9uFGS*?FWz(N1+k@Tjp$|1X@#6m-P9co$sP$9$m)zIN@}FZ7cxhmam$ zPE@(h?7m0!xL!|;YwaYUs|lfx(2hOLsyzJIu^ScB^rC2LiS0ufk zrNVAH6so40x;iav(w~$4tz$114i0Hp`cT2StI6!@IyxWky_ceUBSn|08*UK#iby(V z)LI63sOQh0bGvTnfrfDjfNs3PWeDzPHa5P!=9e(a%F9!;vY3k$BT#zVzFiW;^Cw(G z3w_~|SbMBYU$z4}ivQ&1dp{ZYUpc~ye9SCM7=Q^F4k@5e{~@VR@pa}qvNi*!QvJ!) zMyrmcn>VauUayQ-v*zey09DKcgN`P^R@dqWNly*PrdRi&$|6M+sNdE?{aOex9;ZbG zegOfb`ci}-2Or@b^7DViXaj14%nLOcK#`NHP`KT)$uN)sRj1Rol}LvGu#(TbM@(P; zcI6)Lc69dwAmAHUF#+sc0o)GT2^(o<%~DE58rZ59&?{jzQM%-@#6!?1lPA}CQQhpi z*)X$iws9l}ojw71>RIL}ve0hDkF{QRco8U&N?TYsGH(~i1Y5sii3bG6Y z&#bKGQPGTlFqClUgU~GnaXokYzV(Jet8Xuq^m}u2$@cum4;6q5Gn1~<=rrjdC8%G1D5 zjGVj&F^cKn!#Bbnx(7B!m> zG6yU{yn>)_75OKmDeNvDM6NVN`ajZagT?@QvS0Lb5Lj`F7U+@`vU`Nd&g239vJI(pWG`jl*_P#;jm zJA1+4!a~lygM+k^k`KdI%;Y_x0zw1JnK&8;uvwT2-@NyuFLG-&H9B`B$d{cd;uYRA z3xNOu=i9B`0QeN(jEpy@>fe6I#z`H1O7a<{d%yUx8F6&C>@uTc&cwRMys9tl*Wyga zlv#T+Kwbaaxf^lcefHKXr@yfcGX!0RgkbfC7dLTjhgkZ$(=s0$!)xI;xm|jdqt?(B z*jMWb3q+wqOXlOv)GK~MO@ev}Yl?jP@UY2r!^@FU3w$8dcwU}3*Znyd|7yw${RDDs zT4!IwxdQaZPl0}O=?ahu(Boi0pu%a8qPq#W7Kqd|5Y~Y22D5SmI>J;-Eke<9 zwDAfpww1eaT9BAwFF~(pXo>P?p;@qYd&r|5oE=>dopx89tNO9XlF!3#WY0eqj~dLgmqINlL)QdT^(L?D#vy8*zaprDx9 z_kf#f3R(b8ordfh>iq2Z*|TS2($ZLKF14vzgsYJ?u%#@pq0o*&w+ti_V7B&FOcHjj z*N}stcf1ozWcDY}N7d{NKkK`qO8q)N-*?$lxymKnF&&xDnQb-A=Bz%xhi2hF5!d0W z!ZUH4Z2ir&s}8l3df~aK3ugU5`0e8K29fZRlxnM}Tny`Iog8D8&tv5mQ^>yf8bnhF zEChTv8{J4sN`fxB8N#}MaL^avunAoA5p;Ps0;Ixw%_BNZfkk_ho6DLpVCn4YiZocy z%TdifSdc_H*#@MCRsI%>N7AzrH(PRMT$!wIjoxBTHoD$ezO@qOHsG zCIGF%8^lt|P+}7D!9YqYF-yxxG(r|ZxNRU~1j#b^NC%M^LxLZvdBFzDi2emJp zX+i4R33OCd(G_HI;k=HsrKjB+nvWl2!+w3TyrP-00xZId7k7c)D5Cnr8r!xJxzdn5 zC!>D&q+H)SWz>5xjG$giO})-CRZG=Dlk7#Z*0qGd>jNe0xl&%%?O1FoF zt#kD2DD(}s!(T47%CPL9LqeK>nA}qEs>Z07a}HQS-F?Ew##U_>6~YxQms(y%>xzs!zg&DVKh^0mKalalZ?ng)#(y%fBUNl|Hi*l7BcgsOL>DYHN#{LUa5Pi3&JU3_G5kAGhsN4G?FSuE^`yJQ} zU`u?KLZs*rI;H;+brLg~S^(3U9ndp#+k#xNZTTK3_jIUT(1k!!LF)YJ;bz}z*zJyq zBZc7Xch}^@OGd2`R6}#)b?fX`r`x*hB>epRNCx_rcppOYnXRpiAZ0sZo=ALoFj_U^ zgKJbd4&b)Sw_cfFe&viPyS$xD@h|eUW^tAIRL! ztN&>4U)7&cTEx9m^`8AxQ=zaeTQ)%M3NB|velhQ*z-R(Z1u)1_8`f+1Z%x($^MC@> z4-yoZZU#v0P+ikj`>K7oHtSf8VHBP>j4GzNan%R_YutS&Ca^|;yjqDFn5Hh%H}=DQ6q}%+1XW6)2K4?^&@{6iRJ?KRNua z$`@WuU@Sq+0VpK}iDAOF(zY%;d23*tnM(KS@f4{lrXf+%jzF}Sz}ROxlA!IXu?VA# zMRFryAc=Fu;aJFo853vpIBNV);|bifva@>xP5hL1-e4eXg(f7F+)FA}7Kg4|pQnj1>yC8Y-jMWoOxwC*f)JAfRE+%^zi!Vz7|&ZvRUPu$s* zLKr`~*mwT07U-6|3B)3_y2`q`xLE`7n%!!|=~jE(5{h3}&=7ts0Y~#5ALN9HzArH^a|;VEV>mlI1MYoqxB2^b6XcHWaVSxXw_|~l8z1iui**pB zd|!Syo=uNYZXr4W(JvgU-4wE(MHA|;SflA6Y_L+vNIS>kdd+Q#UkD|^dGnp#^y`@K z3=%gTorC5IxNyNae|m1aDPe<>#|>e(Z{LpNv%s5r_4g%WW%8Nc)HHt)#>Boy8`%kM zF6>v+=3zQ$fB@Tp`IUqQ46+@nSZk_SMnh5k!Na`I&r{!^CeG(P*&4V!I=YsAJTMT! zf4~HIKVBhJHuWsxqlMTkXqBq}gcFZzc{TBH8X&uGujCc&*g)@$q+rm4uVHA_x$%IK z0RE7^@w$UCE8rE7lZSUa;n5;d<^@ehRX#8dYRz(Yi=|jdZn27t)a?I{-3PvDw~gi2 z+kxe_z2yPKJ2C5n%h_a^mGmCCVNMw|5A=vpF)^r(iRxz%>LwHZ_h9s1PRUvqPYx6m=`dH8;00lN z|D1n{*~9nNv>_lwlv|O$ss~EXdZOwk!r6(u6lyr%FPirgJ)>RxmJ}4vXE9eXZYybH z!_lXs_r>VK`TF$vb;IK>%`K!J0cb{yRGihnKBSf2B%d4GZ8Bnu*89sF+uaPDF~H1d zIUq52OyUL23f*EDHyx{iKnVr=2e_evSC;?4VFltx|zo8f4wres$e~w*zV{Wi3t~m zORJVoFiTExlGY9rMwXaWk4UjT)NGunOlAoIHvaUFUzy{8+eZsbo_Iu>o_|aGO0`h8 z5)W~B z2ow{%Uo~`5_)NSYK5#8KgNE@5=u=pTcmmx4P^(2~RD(FBG9MT)2 zkJidr&m@aP9oX5cJ6HEtl2yaD`2l|L{s%w&)cu_EjrPY7IvF|$P9}99akKmKnJUnC zT*bTy>8GxZ&`Gk?54sQ7v-nj7CEmk_r3Ab;)m2n{5RnK{&i?+s7gnaTP;byIsXS+_ zq`W+?fX&#uN7OHgVhz3T1JzfTRmiYNZi{SG*C64qMp#z3b?N#;j~B8X1i2xy3g-Xx zSEU}kgzr|P-Pp`%9XV;XoPQ$E0?$Xfd_^EDgO*CkI`ugHtOam^vNhuVx*Er8l`Wfk zcU~QG5$GBSD1gKd8XFpMD7~HWqqBVkd`MftR|wAemdFC`!GVFdKxk3XHFN9eKi)88 zWKu6TUpRjsm>buiY@@n;hVu8PWc?t^0E7zUXnc3;e}wO7{C6L<46?(ATM=LRp@q*> zflZq*>+2%#>=?5afUXZZ&yALQ3B3~>hT7Vl99if#a+09&^+h%n#F+wx2rvoAez(-$ zqzA4NX_}(SAG7^)8$hMM5rj74jlU5hqpYnR0E%uy3lX=Lb%|3p@3Q*5v4&MYYp$Qc ztF*yVCD}LZPxn#o3nu(eB*EsOtsTE{gs={%T)tUw14N+a+GL|HUcs&F_(uqH%4tgw zu7)u#e6fM>h3ysQ{0Z8GwE%sz9C={2wScE=00)pn5RD-H_<&0bsOn><^j|5n@1yfo zwE4AtB0J{AxyhuUSA~oRsuOrB;6fw17nI;yK>+ctGx%Kl%uG!`rLH&oU8ME>!JsE* z#?*5!a=YXMOw2*i;@-tzX;9PFICC1)C4JkpGL5EH0xmGN=Q8f=lQ*_G*V*h&- zxU0KL69*8*ww1RK8z{(Q$U$fbPNK{c`ta4nLLwpL4SLq2-T>$=q?>PSqz0-1atfq$ zgkT5g2TqhAp|E7nMx}{oJaa1h27#LqQ%=Q-$9$hlhDwKvwXBt1>L8*j4IZz^^Q+hC zQF^J*h*hgSZsT3y>Wu^+3piCuN0or+0jJ#+HjVry#O?*4CiC^)^jhK7Dga!l|9)W0j$g==*hYV{pYw2juYUSmN7Yum2!TMZN;}L#0YEpMJq=;ES zeLLCX6c<~pzG9ASFZbft6dpjniN5duQ|05ZIb`F>esq5)Ny&SMt@|b*z!w;*#1})_ zg5Xg5#|GcH`kM*A_~?hkhFiMNI(ly31NNQQ-J;gUfcIe!wZcJBZ{PKN>;)k}W}St0<;1|Qqc7g|!7cEKhR}qTBGee* z8UPxwgST^axabl1JeVTy=X>K{xvxQh!4VpSs zY<xM9Kw+tI8I+AwSbKu7 z4XP5jSlrql<|*g;pg)pO+%ggD;yd;d0j3I3sh>P~0-0&yv6hMN^T9Md&JM|IU{k zqIiKHyu&@B!mM*QNSkj8@(frmva+s#jwsw5P{0}0YkuXn<}>o|5wZd$TI|BrIVB|o zx9-_OdQlIx<2TYUJl4^^lK~0Zfc6vMLBPP!{l4urM?_bE_rOF$Yrpf3gU}XH@G8TP zVooEJ(Jun~_SsiFL^*?7c;YhEY*Q4Nb~OqRvHU8E;HpaW!hmelNQe9;9{&9bEt&6_{xn|6>YCp&t@+ z=rnY!@J!8Mde~iE)fH8>Q9lyPI{Vm+Bf3=xNBj5PC-jvM5urs^!A+bso#49f5Z#p~ z{Z3>JjQxrEsh{UBDoy;Byjh!nbOy>)xLhWpNih%v(1zFuhR2Q(-JD!e2o6m92`rqc zP?fb6((2b{J|U^Dc%vSy4Si`_1ClQ3c?ZOvbyZKywAInH9rF(VQ88EFz^Mr0 zIBpy3vN62?9V7I5zCe?0;8<8q;7bdJM$wc*lg!43EGt;D1HhMvKWp#yGcsZ1Sj*TA z6nOANSm>LcLMQ;62S^-nw6dxyShC-PnN*1d6QM>U0}u7ocOFO6+C}YwM?uEco!%-<%`8}*U1_pQ_TY_B{kyk(74YHUlH!&dYy8^r%EgitU1;t5LCtpA5oDlZ6J zAje1O}A3MowG_t_GNd%sEB4j>eFyF|(VV1#pgTB8b-FU#Gq0mf`FSJCmo zadj?L-bB%J(SrX{7&Xr<92h|ZHBS7D60K!zdCAlpLPA2&jyDZkPzQD!=uLYueEHWt z0_YUnZX+x<>n3?8k*eH1q2WvaSvPkT>^O05o-a&hXK_QvId~m^tp@QKzw5DddK3K1Wv%x(W>ujtE-ZbbKt-L zJ^_^IO}eeH*C!enG*VkRag2JF_UR(Hw_om;!L_s|R?#6hgZkGU43LVW8(JLXMl zsxBaV6-=6M^6>Sn1PLWN@Vc@fcf=r^O#mC9SO|;jtc~r{Thd~QvdtWHxA!LCRmz0*4PWDxc{=-2x+(n7a|Ku&Gn{dLgnG;`w!IBbsV6XUZ5kzgH z)*5#_q?MyPO}|(Tb3*Tv4xVniy6wx5-{>N)7D;x^J&M=*sp~iOm6)@`YlQfRC{r$TEDJ^*sT^ny@Pm^Np=Tpx-;s7%pm#bb7C8@2{{Vs(T!>QrV$y*J zkt#A2A@+2Gpdbz8eQ-!Xs&oU7@fV9en5b&L;&!|c>t3(C{pbzwE0eaG4WhX!iaRb2 z336=|v^YB2iM(uV<6JF34=iQHQA_Vg>S^%DcK;`L^DM+~`4D}td>*jAhnbuF$-iS> z(0&F3CNHXu$OdC&Qw&>L(b}h(tV8P%{3*ZHuhUaJU{Q$BZNL+{vhxqJQ2J?zx z$Dn>74Xb=MnQNy(x5iWTwM^@E_A>MO2pVR{$9VvlQeG%+sucz1B5wys7U<(2?nfU7bc%<0mkwF6JGSO_BX?1m!(Cq`>6npdt-d$WYXE$u1 z1SAYCUDfeo0)BTcvu+kn!PgAO^jrch;97v!MT#pl0lIWr9V49|gg~ zeksXyF6`AAJ=C@i4_QK-k5+9;kYcOWE5_~n9v*IC8T-!~%lho~-kWagie}q}u_xT3 zx*Z&_nZ$7F2g1EfE#8_wx(rtN##tC+Yfi9hKzcVl`(`Y!R{{xWpz^?J{>5Yex$ybX z{67L5+{DyBu)bo`&yhCjnW$NFQMHbBjZOj205&Wzf`B5p;FGO1rzDj0Ey#-K@114s zH9Rv*6~ETzQ+&*e*+oSiuoh6#p+1D)3vHElE~>1km;-iL8d@Mo9#bBx91yNFVEVH@ z!52NdvDx@n1S+l)^!OksLyNpsr8-y@95@=3rY0go5`ZS@*2LD_{zGcjx8m#doC1FmHqQPSuU=uwJIG>Fp$P=$eJJ{dC>a+lmlNkvpvjmUBp1l2#9H`_v2l`<6n{6 zb3t5lswpQ#5GYFO>R1@as9^{)%LJd}t|9mkZVe3f_Av5w2P^bUuk0(icDa;sYv>&= zt`6w*Ly>Dld~14~vBvd%|6FF58>drZwQYZiSfrK2S;a1IZgxP(+zdiPv%R$>`jDvW6j=c6i(rgGe|e0P$VFH-Xd*uYAAz#-FNX$dJ+w zyGS1d9V+2V{e1P9;({sA@u;H-2m}>5w_}yVsJhu1zlz5jgzyyf#uiFqx zYX86}@0M`9yM&BNc+C}RmtIEt?UXW%FV>^HdN2=%h=t(#s}f&&%oHih6nXZ7fq?v{ z3=w9Dpb|PH&|ic5e&HABViB2iV?ze|$$X7GW5Fh<@W?zudR*F4j@nANbo!*NAI!xG zQp$iu?95vfC?Y^4cv%CTr8Pkzia+^7aOJ?G0vJw#sdcp)PPqxPZp}oxA{2vk{2m>PQVx7bv94k0lV&=2p;3Bm)}Ae09Fh_7}#HA zNO0>{q+;m460Z{4^O^Z=+)&{jdfI~##XIK&GDsnQLGJCX8=d__@FSW$y1s1Bv0KpB8I z529)_`VK}zK8rk^YW4S!_N)?@py3SC%{zyxJulULuV&AQshbdL?x~(s&Ds#3XU-SEOR6r(x+J<>_nNcUuHUj zS`Hu-+Ql#b$)M0oz%_DSTyQ9+h;yk;3X*{X38ROrfwt2Px50Ue*r5?)F-&NuR#%g! zD*5B`o8L7z;YsL)Z~^)h0_FG0iUhEtj~_oa7-iWu;1mC>c}dNh8TWoVHBJ6?+=Ou7 z2G({};VG6xG0I4PYvaLFudeyw)mOqjcTs!W9`#j6b3riAawef|dtI>V$1qY>z)Y$7 zaNPLy;@HntQ(j~O^k_x1F%XR9WX(oO%UGa>R)Ina_RG&aWD7rM!ZDYT%&?U5iV9}G zCBU~dZ2(?=*mfnBs6(rg^z^rX$G{!i4tZ?%#AGzkV>A`dPx6quB$2l0WQR))B}**H zaxefMRXAw~a|_`I5}({ED_f#rFir12n+iY>_i?n~FzN*8YWM*c{=eFGdu!0@K zeNKa&1SW5MT4!f8Okoqila?{CTsIhH+9s%Y+>nd9j~>w&eORPp`8Zg6kg#~}c#l18 z=MR_Z^5AKI8#pj?uaOx#g^;;xwVxrQmU@nzjNtx`m_0?bRG8a|X#33#6LHUt1rm_a zf*EA8QRMG&UwU2L#Fv*sNkio>gsrXNC2Mz|v?5E{c(%ZWoE2`T#h$u9$Sf4}z5m9c zY&t@3gJ9ea<4_kcf=Ia#a}r;82fd}ujl!!H-bMxn}ZBKsw+yH74Q`RYLb z19L85UyX{-@6p%zS_8vUK;-~$ad~hbGn{lc9){0=y_02dj*SCftJh#Um=F=e2{E-ap?=6u9YI?a|_~S9@Ogx2436Jb*CG($Up?-SRfG)fd-l9 z0O=|2t`!O3npv0H>MsKEc%1dDI7)DC;rHqclRZeDs5903PYLZi`Y5F`FsMHmYRp}W zOwKdhEH!!8rIJ_kc^k4|M8~r893pP57Bz+<6Rb${Ssf$-BVtW&E`blDcg*4}aSh9|P_( z68&w2iZftZc?<5aMiQv-pfn;yF0ZJ8;@+e)q2ib0vEhdIARNs@e!h&su3tlh2-d`! zdT&5cB878%1ZgJ-atPk>a2h+mv^dK2g~~pyZjWgtTVBy9ko^GEz`_Ou{lPn_?{ zhXu#`P+jOj=~~^#qmUO!SQu{U5&-)cXb26#Ih34G>0xdg_6tUM5Ox(zXNhklp90urUpl*U)>)%wsmYKp* zPdrd4pB2U^Z_Hu~icLR@$x0Si0F;Tx$&MJDpbHVM`OAySiU%!sD0Pvg%uZxHk z6RaB`n_vsUQQ(Y~zh{zcmcvYdedN_phlzzTaj{Ep1`N-q$xpNT!J`T0N&Pu%{Uabj zZ$EG`0@EMd=p*p7f*t_41c3h0eW;wUXh<%anCOW;f^qA*!e=mmMHp^2)}0xNvE=|e z4~@y%bR#va%LMOp-gv}41V-L-k$}TEU%{`3DdmJWyG3*41OrxE`R-K-n^y}HJ$Sk= zDa9xvJ$r}F@51kw??;xxULHslcjw+h06&at)hrmcKQFwQ{O-4H6~P3l$C zw73$*e?s34tUISh(`P1DPFhs1EzhE zv<}`uKplX;z;{X$Ew_EH$Elfo73=cw#Xd^q&j2 z$+i-v+IAH@`&(G1uDEQ%EJbB<$tsv&;lUMkYD7WW`^R3uea+m}(~hU8xBBVidTa2d z+1J7sqr^o*VI#@3I{oUlClWDw4n4Wl($>~Ho*cDn*b-q-6A-`&<0H?f!iJ$d%!B;e zh7>F}VUhRr4E~)U&vt)ODnwXQ1XUp?leJtR_}ZNu%R0J_4_$^Ez6Y01I+fBGIbbdu zSa=wPMA8+U4)FGaTlf=uUYpTEEZDauY!5%h(Z$%e>23KIMi&s7mFrYnfz=cRB?-Dy z*kN!`eEe(-wpQc;7GRP*=FJAP2B6M5)N6oYP|Y{2w1Z2IzJoyptN8bh5#5k^>GqMD z13Mfkn48@E#HgmOAvYRwov0G8ej@abEK5{d#tG%uc|L+58MD-1R?6t)z`n=f1n8Z^ z#=p10V(vZ;R|XaZ0zL2Jg*|OLf8#m8ml{k&uQr@gTJgQNF6s1nlL5U`rj!y1(+?J9NQWIQI6W%I3!FU@zyWjD z%%K1%E1*BXxP&~)fIK_*P(rxTZ4#{|tNvSCZ{dfsZ>SlnB>eSHPmT(8>^X_FSQ=Ag zBFt{OL3|vbeZ!x1yY$bW&9BKw--rx@2ZiJt)O&n)0V4jEZ56E@7T4SsBI}UIII

v>CjC}8+6#`xHqh#=MD z^p~}VdXgFng#vr8x;o<8HbMsy12aGwz57|^P969oyIw-lZ{nz&kQkk8%Rq(@;pZ83 zLz%ZwbOGQfS~9+<)~i}d_H?%DC6F{}=?D+h?q0(+4BZ@X$_zY>-}+GCl=j_NA`SWi zh&99t1NaL%fura0?8#C@_n^iA=Q>=*g_9&j7g0Gz*sWzjeu9K$z2`j_sDY3L<(11T zD(GNtk}52{w)Ph6W8FJ7FkO{tococ;2cPzpvsFLHREr+r9Lxi>qxbvIN!?>os~B{ z`SB@w3I@y@cA|@b>Y0HG`!{EKpZnOkU z;s2#f6UNqEoVK5pjvfU*QJ^H=wF-?sHx7`@_s$00#L0;dX5<;yCaMX6<^bjff)TnV zVK11z*mhG>7Ut<@s&#oX0F6L2w!$1iLK=7EW`LeZP`yj-q}M(ZhL=wau;GxXVEIQX z?WoQBl9OB;N40+a;w9d}zphNQQh$i{f2e+4MOzCjU_rFeVG-RDIU<#9N39?={u}=` z>ioc1wN}z?4`3O@4@qz`W_KWFv?!8;h<`J?Fuj=POb+(*39sE=B%8r=P_CQ=-<+p{ zt@Lh#F<#_pGjjk<+W`23%Q9+oG~F`V+Rm;6e3@H0iZA7=|H5N_(8%y_tbvE+&vt(D zcp{&ufO^Se$JqH(Q)T+$3#LN_&|d)~uv^sw5Y&M8v0k9+0-k2G-b7Dk5_GDd7XLRY z2(XP9fpMTs!1hDv0yz)Ofm>&ewZMaHUU2I`$JzNwDA@yBZ_cUM;4_QVsFSuSWe#wGaME-Mn zdR#Y$+T4PPrDy(RY208n22vLpmSc?7^I7PQg{OC=Ra6Ywb3)~|hLOdeQyswnB9D3z zT+J_y5_JO`!UjBa3heO0K;i8j)3x6Q^8^@)5h70HbhHn({3A0vH@p79Q z^7JEkCI*lqVF^U5@-X-6V)UyifQ6FS@9PGeLc}y4J8EDjiOBF>> z^QLrily(3qr#Jfuf@Ms-MAhIOQ z%ob=|t8Vs*{uQQzXUyEBTsA_UFa?k#z?0Gx-1l2an_gFt{f3=>^uii5wZ&Sb>it-@jpXnnaVCWQ?>;ZAB`SX{VB@z0FbEP#Fr9Bs7`{8B38NnMIjGDKnK+ zk~EnjG#E>!_j5bvdH(NO&-1SLEbIJQr+(VL-+Q>O&vZ$Zb{EI&CSZH0^A$g>@#s6x@7*={QW$VIC8;P`YO|*?ryPAJh#1Y>&S*;ZF9d?}?EjY$yLc3;0;eRRn2xl~QI52aNfdJE_ zjDksJGpmaO^Fj@3 z>KnZ|Qo^3wSHXAwtF+mBB}v@F5k_@ zEWSW+Itcn|;C#@f9um$pudbLZkV%;gA0! z%@qy@Ff@Or`*zO9w zH&Jcf-J5R9)$l00uxUwb+X@o}89$(+q&KnY;t}TKt7MZeKP08I;0sC7GkG+^Jq?^M z_1$+-1&Bg8*UQ9zNMEPPV^L7DFyvr*!7f%`4cOo=H}yVEP(4?|XSYWW4;bbLf!ipg z$ZO8GS*mp6QwWhK>~J62r7ZYW&ZEe$qSc{y)x^GVGp)-{M9|`)qJdD@D*Xb|c-oF` z;=2L>y4}kq=WJ0_nv7SRoss;6p}ua$A}&W003^`%0|&%g!@Gm(nF;uvpuwmZzkjcJ zacc)aBh){o5@y_PNxVBUf19i5@m#41Fdcr#h_TDJW)yH-HcMpuKB%^|bZEC9WC)h$ zz89ACT-&$l{Hzy1M$??Phc_Mt9iHzq<7tVq9GIbiU&~5_$z4LS;R2xU4-S_>3`Cv{ zK589Vyw*|G0nq<#f^gPrvdOxZVRFzHq|M>)bHx3JCj0f_?ngZJ-` zEElY2229GCD-7dU<#lRyQ>k8VA2Q0rykF8K&eDe?(SYFwCbCj+N-_IUtH1*U79S1V zZETA8ttV=Ujh}EtxNZOC)SC9um_L4!F7dlNw8-Oic0WN2j^-M^@^E$}C-B2Bh2 zP@?h#yCzMdO6Vl75DOfd$+Hy(`(G2^0Su`wEsa+?z?}f32IpMaEe*8KdO;v}))Ck1 zG8Y5PytjN$xwa)cha#gc|H!a>L*}`v_XYX+KH5+C5Q&0PUbY<96)AUd*`nvfGxY-z zi=GtS%M%#W2v=YneoZzlnU7HsM(fZDzO%+xLuu?#;@S!|yJ5Mu0}?BRA?P88D6ZgI z+&}R6eyHL}!OEE%7M{BZrh#r^QUwJP`>#lSwQcsysQlA|#$*{j=M70cY^8M~Zvh?>7naskT)Zj$E@Eb{qZ!^a436&9}9{U`pFUubtDPyQFk>CVWHF(>E;~HhYrl*Sr{?(;~ zwLa+h4%=5JtD#di(w=fHR_C1!)zw!d8D}M6h6hgtRh&sE4l69(zM9a%fdRr& z;dF#s6DKp=MLlL#jQsencl4k4tLOk2@)LI}_pew{eW z1?Eos*s+X}&G9f>;Q2u42I{}$rgbV(5rg0v#B*Hy8HeM>Hstsd=Q+WFpCVXG-sR`H)Is?S7 z)}IW`yp{v+?u-5zUe1W>3FdiPcX&sA^82H@)t#KneSeKK$pg<99PMi+Ea{Y8*~Z7sCT3pc{bLhWKw(gqm*; z_gDB+n({vAg$!;fIGUOLmGVSRSYAl_(~0QTXy?tDL%Y}!(c(ukgGm4`Y6p*n2T|6c zqQ+;)>nl4y=R?|dWgNAx;7_=QreNc%Bq}G^7(>VG*so)+8c5L}h$vpyC9ym>kL5^{ z00skifw;LL?MSM4W{Dy-zEedbEC`x+ko z^uHvv7dW)_s6=g`m*lCJH-?I2B@dW!$ui4ROl=S9KdY~6>OM4Bx!Jb!Y0P4~x=l?P zDw1DmTy5dJ&E2QAX>izzBwYbW%#e z<3p7MB&*D z0z|y#^zPmQ#5V2*|CiTEv9`|NN$a^H*?x`HYrXk+cE0CuVx~Kd`QYV@1kE2Ryrlg6 z{Pd#4zi;mPNnG|QLEhmXh-X4cGAC5XjG{H&FSX09zblp&k=Pv@%h0f^oVJ}0@1 zsZ3fR_n~)&_inX2)skFH++3kg)BRqMUz6}xlPF|C7$4Iv?D+m?=*Z4s(hrhH`vQ5N znpPr*6ciw}yv=jE%UV)n>`F|6qT!F-K<}wZjf>=I_kzCj+mAju-B~lp6oako7hem6 z{~&Z`JKJ`|8a_F5R&eCcchDU#$E{CCt!wcWF( zADjS(5ay1+A=h>7Usf1>+%0}s)?!2GC*F$8e-sL`tdDP)GYvoZd%bQQjz7k!iQ{L}KwoQ8$Wdz6wwJVi|ChTB1rFiB#Y%u?}T-4mQrkl}s=n_}GwOIgbBGBETj6~#%iP&qz&6h67PjxzaBPO=n zAONBw*QuQf@W_K2s{&cI?M?7iD=*39w7sk zl*6eUw|y6tJ1`_BZ=#VYuYW8hg0LV$q!2SpR1|XA04$S8JE)>8OOVx!iW`Lh$wGs2 zgXFeC=M`J5aaCDQX$dudpS+C~S4XDSrq&rwYQYtrzx(o2Y?`s$gRVXXj3f1gKQ2p7|2{!MK+^AC;)Y- zy7g@Kle6{R*R&r{)DAo{$rN6|&J$?{%@4V9&3qL16AK!E5)u}TOdD--8}i-(VuMnn zY#PsWav_ny}&7hq;^+ww#um$h;KWisM35mNU zkE#v{?^n>Wmy;M~~t8be8u56*P%;IA8q79a-ht`p~{)(Ux#8Om6ddo0?$Uw1KX z1NxZdsE5j86Opx!BrUz`@+vjH2Q%;!emNa+qU<|C2C96B@sAX^9^dZ75)B~XFvJym zT$@tYq`D@>6u=!Dq?lPmvrl zo%P9%zFc({Qs07~7`H1pIF5NriJeRzX9RZMEiW(cFZ_pvQ85()9*+i-8ht#8YkgT*YVCaDF4#!itcE{h6p{ni!#DQc0UZyfgZ*c)@{;_hYhE+#rR$>y zg!n%m7`6o64$n9A&1#8ZkM%3nV`q`b4b&UPe$=(ZG=K(}v|WacU9`>DpNSl9eBmu6 z=Q7D>R-M&o$1N_x_^lmnpnZHQU%SYjm)Txm*R2*ahLg1pWYmnhP<)eI89S*SaW(rO zAikTZ6;VmL_Rg)mj!t$oT=bGMm+4c7d;$mnQV>^8t~!DavIJ6*r4pPzs9);HWC8Rh z1n@;n^%B(X8OgbyVTm0St`L86<+1s;j)QjIZ#vR8&=`5W?p-INwTo6$TBQBiaA2Y^ z^iWAqQLhf_zi(q!dKX0+>h(*~4fTC?ea2>**N@T}6sa+TTfE9~+1%_)&X#U~?FhX1 zj~~YgFFUVDNJ7nw>ISb7tb4hN-%+Z&vLKFDPbiO6t6?dnUw`s zugYQ%d=g>vUxV(w1R*xT=I*DmN#y~_+!BchfCS_mAfyA7lOzPaSN=Rd_=(tGe+Tmh z{REMy4fm_h7C${*rm6QA<~D$DzotIV3E|um-oX@a)83u|As&y+p?4c%OAcB z(|qP)>$|sF5J5_C?Cr?Wo&o)nmhH+(v|FPtr@i&j>rDIPT_jee}ge)SG_11 z;%(xwa8eqz(?`S>IARZ0AvD$K&H(X{bjk$P_&Fo{;MIVJh|>ST1Nzphh2i@wo5f&5 z+~}V8sWfO!F?1gL-Eqnd58ZF(`S=NVa8y6R&%j7WtbKR5042BAc$W3L9*PPi^8`Tl z_umM?!ZZ{f!YCBIVA&qNyK{yWmov*sxz)dLUHo$-(OZcqJm6cjZnr*nZYs*c z{*=z82iRd}K6`J4cRmaVNhdyU?cCJ)xm6a$#}~7Bb+7$giI=&RwE1MvMGN{mfC3kU z6M=^z9v$Trm`wqMkSYtE8=?}`u)o&=${G<1t#Pf4fuvZ8Rq32*V_FF+l9L}sJbJm~ zwM{6V@Qzh~afF?-$wU)-{H7v)qKeTJJOJ$XF3Gz%7Nk_iP}E|i`^mvBxH z-6Oi_PyVmJY2k207efNf=HUzl^sA%246`p~do9-n+EfTHVb)yIkfyAtY0dhbkY2E* zuER2Z=-!?4!8PFJ>UPdjAN}%`59uh`yZ`ksqEmi6JNTGnp%#OInZE_e{aUVEh~}99 zbINnmqw_vE7p^Xq6dwe7_(2!-*F@OGY02zMd`YQSLl#OKK5On|;|RQsHjDS*sWo#)8ksV^ z+%8-8AE@=uf95!Gvtkma?F=2S=ZzTwOo{mCUuD+;`0sUQuedarYyc=;h3(dNDACLB zsbp=a*Rry+lR#^rFXC4A@obw&3a|7r+XlN1|7#)Q=9V=Ya|FeO43Gp{0zQOA0W1R% zFvBuiKZxQGnYbcc%SlKuxQvUa>tTmm(wg;pUpeLL-|8vmo1(Zu<0Q||?E`cGm74(d zqA9%HUF(*+e=+e2XPX!9J^M41gnp9fBP_|#m-Q=!@wboxF61h|wPBZd#IhGV=e!6u zfB9-gM#lWqg?)0Ri=b+N7qhPYNa8_y_BXAIU*Er*Cm{6ICVRqd)^A1M2jv+r`@XgN zK(-#o%}zq~&vwB3E?53bV|p}kPVkg29s%L+yOA^D2hTs0+Z%w3B@c@0FBk+9^P1HxGKN30qs80$&aA_v{P|Klnf3k|FVi zM~2X3jJmsd_y$bdXe+vl2S5DKmoyv0`BR-5Qe3KJ25`iGOq-W|NuBpwZ+IPWz-&!d z3H|)DZszyrypZM{P|VEY@vkGN1zGB3;Wl#LmgIz*%pX7jcg6M_^?2L0-rw?ZB@!%~ zD1b+cVxyu+#Zjbi@)7uaQklI_?q>hs)+DRk9kTfzV3rnvk&?spbL#LLu>XtD4d#}u zJdbCQ`)48BR;NoE2Ml}%lU82FnVuS57JpD znOf-{i9PHdtyJ_ixQg&^QhdGW2NFBtkX4}8-uJB6ZN=VY2R{DRh|zPE>7sUdM+6V7 z9Y4TckY&}{=5fn05}D*YB!a~M)DWbs*VTWYDYQ{w^=)XV=aP>Uw2eeDt!;6uE(n*s*YC2=&)FguTp-2^;8Y1Cad^U^ zYqxeGbBXv|CBIv4X4YRi1+6jB-GB1_eUNDONTmY&tSEwSZ6B@;Ncg{o;qyJxmtUg) zNj^wCdi-^L@?8!QN^Gu->G+j>)YE%w)Z%)>*Hv}VfF;0Q4)62XT2D&!C1h(sCk=L1 zS?~p?zh}3}$E_(d%#p}HZ941&_)|E(2;qojXyUXTO9e8N8^zB=2cd)@YIuaLAZV^} zH0V2nTH95~!pF6hQq1j}@u_dWk2RZ_dT8}uk9fz(TVS8S3Tke5$9#`J#pkDr4-2*Y z8YOobR@=^zBC{N0@-S*}z^153#y?LkEIe%#E16QN^zh!pSN=~os136Mzh(b8iWS>|RLC%4t7Ew^ zFfgFr9yp}vn1Vo?U+g*)hx$vawMCN)f(n$nG-Xbt_W49EzLLNew=VCy6&n9UL=0R-7 zfdpfv@JWCS07W8xHwTYDxpoV%;_XI9U7mPCr8zOul0*6-E(L{QK2oTMa%2}ow;)s->jry}P*am$=r&QL zLc0C+>BG2_nQBXE#^%&FyX0r-b{iRn_0N+F9`Q_tot5c(PluAJ6BFFF^~g8k?lfy_ zR8Al;FOi*cBqdM5@h_ACIPfxLVw@$>zHzQUSsw|KALF5(hgkxv5=y;tSI6Anafzv(Cu&B@;Ht z-QWd>01=+J0$=)vg;>pye%}=&om)w~tcYRZCv&Fq-Fh1}&BdC&o%$+KACRmmQE6M8 zBcrC}m=#yPp3P$0i)-IGwKGcgtK1z(G8qXp6T>ao{M6pYMj}jC@<4+2mRovYq5U$A*;}1GfIn z7frB!pu!M1*7K=ETW)PJVb!8rupV z{%p&>bUhxFL@Nqf&q^VTwiAtl@S`UoA`tu$9`zSVFp}TsLOL*?#hESkI*yg6-QBy` ztp6+|bp#j_QvVa=n6S|cS;(S%;-q8)6bq}+w8)8{fTcd=7_UUK^`KrCLYv@M*Zl-> zdx2zJmj4zHsP~@f%JkIoc2J*GO*Cn|byDhM<;i~#Wx0K?#2DRXbw`kx8J7aHT?$?$ zB+tY)z1gw?${M71eBhu+Zr&!i5~uDXdDJf;_4(K-zR@x|;{*4C+SaovwfeZmN3`zI z6T*-q-;VG2tJQ&G0NBL#6I|*4%4lOupHZmxxcRsliyCFAy)8qQzD?auLRRU)73!z2 z@9Bp@Z9!Q94Uhk+Y0TvECzG1WbvryHk;cD!=ifC%?m{v@h%A3aq>H5VmbTh?2$5TW zn@lc&AWRLxyemfQ{StA6Tb^!ZC?gTc6{_qm7%6KoZR(t9vX_F}JH+oSG|u~unRpsN z_>om*<-E`DX!~o;tDI2>GlvQVEu@N$EFQQR#&Na!eF}{l%-mTZV*j=RbPcShC^`tk zP^s?7gdvPXccLrBX;Ot2#{4x2;`j`Z0@50sk7t_%8)ImGR$d#=$-0%qh(t?VHw$Th zhb&;6Wll=*3Tpa{*9U$)etBe9(b2DNrRB}@ThVq#N-4Q>5RP=yc{bj5qE+{ZDNe_ zLp|8D5;vOD$Db~tYqaZ(frdva4Md{Qc8qGw0+NF88EYJwFyIqV_=0mGL4?>tWZ4!J z6sR`{j7-v_7l*uWx;Ge;Q%-9*ObJetdV%hRH>qnT)_T>r>RZRE7kQbrBA{CH{H1Ki zed2U$6ok7&!Fpoap^Z-A%6LSsV=5vqQOOX25$gup#mm;eIG?=I(iJkwcoV+)`#E%y zk%`lbfUW*PudUWuE#=~pyKe7_w;7dSrC3P9aVTx{$}fqC+}4M!vfJ7KouPH1{M}g+6Sq3g6MLd(fh2+ z^>M!^6f(+-GY8+633s`hMKyk3)msr;S1%>GKIz?PL!x;5!o0tRyFylEyHyz=w;Ff! zEa_sHMzJ)pfP6_P8Ii)(m!QFPqjo-C061N6l-HAf<+oN6Ogj@bY7wX%(Ka!=MGmOi1e`YL9a!YaL(5O) z+(DaVPye)5^`d3}?p0;9)*}W*8`PGxE9WWt*Vt_JZO zY;Sb5{YE#eAD1hR_!+EnmDzMMur1pmYkRR%FZbuI+aByXt=H<_sbiPX9-WK-&h2)Q^c7jW(tJ;-<&R{BZjoCWYH$Z} z<$LniR+xBRGNL`W63pYm-~QJ^_jBgSZ?00z7`}Db=9^N7KEpAOV)4kL-CC<7Ba|#pu93=HB0`hi!GBug+7Rt zl~4Sfeu5#!MO6Z_gGiT>{t28&yKzh`yNbXf7IGeGYF3%9y38jk8H$GzbAj^q)rMKS zX0}pWJGL|@*)49IP2YQ|e5^EAL7Z^S@8k9EPTqj#hzExnfI|?db#H>|np4qMcA)5KiT&R<)@@#-fe;j$eD+&ybeMkU7VmzmC&{)}_OBikTr^q|bAw zfSX}w7A>2H2ZVnxY^IE6ygZ2YCbSqj>z``tqXGXk9%R$T=~1)nfZ0(2GlSkMV$qe{ zKcgd}%~q*4rMIkFT7ml@O;dY%dPPm+-mX(#_rMf^v^c3#M`m~u;~hTABI-88dcmhU z8h-UUMx|oh%@%CE+G~3xbS_^0p=73WFK#b4?UGirY!1i00;xz$ws`)Gxrl4+j*eyu zYrv&#a4|sPj)Tcf50WS7e87Dmw?6jm%dA4m=PYLJ`XFtyU0FXO6HFPb+Tw#Unnh{? zt-tBqC9yv%o+T|aoGhoX$x>(e5#@5=!0YgwAlxo`+>iB=0iq!DiG*Waw|f~O z7_Ytz2*|g6#cG5hD~KsQ(n-(BkZW5W?RzCbq=j?$kYzzM{fCJj^VQ%1r@Fs(d-mzt z=066nW37qa5qUZgvm;boEaFQZqm6m$7A>ZR`M!SPL7rP9g?u$v2LdrtF5ByT==+8k zi@lUn% zmz?rlM?z)ID|zI?!$b|Y`}{!!=l0Zvlh{@S3)M(^S-&DkL{b#$9#mo0E#JZT`%HCw zzWN1EkZH8sXj|zXU9kmYvL`$jsuw+IXz!=2k<1;=<*;IQg~@O+>ZoiPZG-C`JY3DG zoQ?V(lPfNwJNid?RqBxkw?01BNH*|Ih+~X9zA274B)7$n*}}$u zNczZ{?s&XCLO*I3pKx$^ni8hASGsw1_3C5Cj|;uJF+nCxV+1VK?H{q)kUbl9YI-DH z<1<&@DRH~n=$yB~*fuGJBXY!*#zUjZ9gvTxgLekmLvDTl)LSS-%dQ=8D@EPGe*am` zaQeV~0oE59tK368tl0vOR}5!le;7gBj-_Dnbk&pk0f#FTKR$!G+lCTbuRpi%?Yqji zv&XG8xv2&CF{)Qps7BXz8m_7C0fN|x;n&ic&bR^qz1Ep*STD&NX%xP2^7uKk@&&aE z4>W6->g;N8u3Njq5>}5^w!RA(R+o#d0?rcZ zp<;FKJD{Im&o(#rOX_hfI;@MZBg0Q5)r2g?lucqxnYag+q9nF1xE#BJVHo0K$VwkB zrA(EF7wUQC@Sfi|f$Vn!@SGTYyf_1*e^8xp}+q zP!N?SI`OmZzfsJCNn++>%-+cR)NEu3Ks$7n;)Dg&0zkp801UCIo?voYp%8dze zR3C<&$pzvf_R>XM)Y7;&m);;D*jB-Hfk@qtKrV5O@#>U!R-ZOl2#+_)2iB!8;>BoM z62FQlFhAs*rX2$d1cCYoiUYE}U6e@~GPTW<$x3vm8@N@!nyH0W3yl7vamT6y?<)S0@Y6;S7zRH)^_jB=$3y20tJ6 zjHbVkKA>}xXS@}JcPJ%)avsX1F-~?tU)*=fW#q* zcqSdQIYAze0T@Xe$cKxaR z;xw4#lMk8ITY1B%pr&0Un9A(hv3q2(W%&F1kCEz$@I<*OI>TP}ei0tk=Ip z;&py^_~LIQIGP0KAQh*vV>a}J*FWcRGm>NW3$zMaaGS`Ld|CKtXZ&*}76+Pcg5D8g zos#4J#|bJh7j|B&?No9BL%!u98KVX2S@GNK(ka`#?r>TTo{$aFf=dXk&6Ac=z$J;Ib8|xkg^}Q;yub5(9X*nHK*VMO~GqY#Vq^5f1ZjOjg ziVF0^&8nTbOffPD_~`s&?n9;s-albzWy}iJpO_-rVFW-GH7D*A#@Ksedt+gN9f!JGSE@QXek`afxIa*tQKpf#pn=CQMJe-p=A%$8k=rLuzupo1 z=ce74!O%TF3j_LZ7_-vEd%~BeOo>>>50w6SXrS=kfHTzZ;Vb0ubt}rYm-Gm46yrql zRJGP+@}%#L&3|Bl(QBr!WsJmYI}P*XN)5SjI?Qat<8 zgCrQNmy>KyXZ>a7hx>A5#8tL(Zp`fZS@6z?b@SUJqQk0OgSRO8yY2FAyJLLQtbCE9 zR;{@#@Bfuwamqr-7f?x##ceKX?x2zz;p$^6HgB)ZvrQ>_G3x%sJazo(+sc(ue}RsW4@$IS!#ince}C}!#%>apjw&bk(|+{|HI zV?hY>GQ;MYc51!L8&*Y*WSX<&{D-Z?xcWNVgasHRtYNS7xuoyr$(6+B1A=O#j>w3? ziihmPkR_5iHc9=DN%-H%{p61##P!oxpt%>pH^PY&-FF(1oTyI1G(p*;HtER`&E;56 ziKtY#*M7NXVbG<$&0QNUl-nmXxG4M*6XIn-j9ll|ch#fm6TAg!1LF;w3W72%Czv}X zw=>%0EDmWKN^c0vDCpA8O8=uaV76ymE6*vKJ8zHO+2}g4iEaF3^2r&{k|EUVM_4dl zA)MccJ)^m=%5e9(=;G(y!?!`?oOt|qAj=hj^h5v&evm|;+=C0^rq@UV%Y{4pVwoU9 zN`ULTKw?7-3jd+{dzA&R9)2j}4biQWQpfFTj$J#|3?!n)Wc)A8QZx&=BTLI=d74Cm zg*(!==iL;P2s5*Dw(XYbX?$B|m7=83#n-E_*O$42(f9Jceb#Euf}SF#V2;!G=&3{J z8Oc%J?$y88T2~3U%cXeGE7~FtW1D%@^^G2e59(~kQOtFDw`pjf|19*gmqEwF6oN@6 z`G^Qp!CmI{`2QPIuTteY2tvvzBPyxPEDUh&22~I5Evls?q==Uz%u`Xf*BJ$@+c}1pGgbErLjF0| zk-Y!yaSu8hzwo0WBvEj`a!z;;hWlKEbQ1R}BpuSR`L=mAkHwy?$Ufp4+S@>)T{M3rBO)<>|YM0vh{{ z?9ryx^SDO;dNbAZHzq8?8q%Wa=DF!rPdk5=xPH#Z=ZReNzXs8#Rhv&JbYVL*NYIR> z4R!cS53<$71kHS_2@INIh?R!F+u~N5B@;-Cp{X|AZd{mo#(FF}-Lu=~>HbG;p1)~o z!j9r~KO6fvY%T{Ml%r3pqclM6w`8WCWy#~;o{tv<7rvU0__VdzyWHqYN_2b=pS~)F zkS*eMyq@{t!-!+6gStX;rGne$tSfOUwCHrk!T3+gW3`zAWfUt$Ug#&P?_WBro7wcb zMkPrpwrDS-gO>vYU)&yOI?B%Z(ri8!x9VvWcdAmnY@TGsUao+rySaEMyxAThjg1?{ zEV@EuQVW7Div%-Y$j?SsEeom5dU%{+F)8$o^{qx9*P6V#`fC}*6{hMNiZ;4`GhiI` z-K#SYdfDs@BYK@qzJRwL57)Puj3|;&KldctXyjqnnah@f{bG8@efC3JOkRK9=49Z&wO#r_POm8 z{kUgz?~TG@^BfQ|T$+0kPpfN|_CUn0VgI*Np5bwn9yR-MMeQ|W_A$YHW=hwk>SAN1=&n-R(?8XK2n=Py|Z|u%cjze$Ze;5S;>C2>dj@=5DgxUHD)RqOiH_Z z`-+1h+>FyJOP?EPC7GsMM=Rz&H1T|EDV~($u%WoMV`UF-SM0~R?3{rLp5_dWIg0B> z_$SV?D)W^Mq31wBSEx7nZ8v_b)hs&UBRy$!${lGzyRCTv5#t5#;`V(Jf3iVtYUA%C zS5#^>>iSE61s8e+&2R~1SxH^Cax+bOM;E`i>QFd0LpzB(b?k+#ko>HoK-hf3*M+9u zuD7T;@s8A(jci6=4!Ipb{Y^JWs5u;zH!gGCvz~g{S0*`G!l?O{r4+wTp_hIBC5Aj} z(Dws1UObwjEg8!tq-gc``+S*(jJ$DsOhDv(9vC_5|MiN&;x&(Wx*E2$FL!SNee{-Q4I zfh8mA$j7KK>7I!r^~1?dUL%uZf5T;CeY;H9%(mBDNkfV-EoT4O5Z@0!yBsSPNv2Q( ze`lFeDMA*yBOER-1sZ+cA!dJmKJyaqle2U64f{QFJu)q+A>eL)XE{LN8D9+#JXZw;G>E76Uy%-ju4v0gO{i4^K(2!xv;5};zMIs zi91S>jV&m!UT5w+M(m13uxu(BTBFIc*X@>GDQcZP@@w{T4{l_$icXK3GH{NaTPZPn z;K%OrTBgP_Qw!Cg{9OXR+u_HvQewN1q)jjSG+=hn4pYbO`@#48?-Q@ywCi))LYdM% zjFb0GwJv5JQMF576ecL1QLsgzbT;%_3_Va&Q{8U3mGhSG(%XkWwZ`NYF zYc&$*B^@T4if)%pIL1C4Mi;hO45p6+XH_n!vUWilP%Eel(5=Z@<9&ao9yr;sc! zSk+egmsY+B_NPB7%3{jdwKNz=uw=YQ;XO|Y+n*LL!SLm~T6yjI*vtF2JmPYUI_~8g zHgQBTg}Zzhui}*D07LdBN7ndV`}d8}gg8<;(A^^b2EFImh1&8R<~-80ANGuMuJMgs z=>yiy3$qFiHRiFIO@=J59mHX1vnfcJJFNA7c4HlPP&;E>_Ui6d`5ikQtGWUn?(NJ!kZP-uS7t|O~DA(IHMoBuletW1CkloXk)Zvsa#iqA3k)17>;hW@)D+dm; z?YN7ywjge9?OZ7)!!>hA-b{1;2Y14B>I)KE1NkKC>y!7}RdD7+(uVJhOuhp;_c&>} zdBxzyqFaXS*&k?jhg*ZSqZ5Mz%*HPG>~GO%*fWG|__TNPdzNoQxCo;%+YXrQ3C@}* z)3x;G92tu>p)!6n?{9%>DYoK_c+E9A?9@~0T0GvFqZwN1du0Y{P7CDZrnV(oiE-Wc zQ;1dh?=yMrx{dwQ@m547Y0ud~`F9nl{><8-7N$dwib%#c-B#Th9OWc{DH4m(C;8fgUQkAM#?i z$vwRieKSX1NIdw1#>`-#(YCjA75j7^Q*MfMnnx~-FT9+q9pi$y7toDO^3RKpU3ut4 zwR>w2|D5*k5f>*CE}~co>R3Iq;M#zw`M0qyVY40LqUo{Ta%?6k)NiHl#wjdZ!7>Kg zRGGSF1?kN@^k_fTGM=udpGQ)I^^5<`8|tu#x&sTR^0!kc@FD{uYV^3wXydBA-SnBv z_xIds{NKAywoV4+hYUD#HtlM-ldQESbLrYhE1e4^`+vR%oBZETcxiL$iD69aiL@Ah zM`l@io&Ue}`FUagN1s1h&|b$WQ_A{MKW&X{IL-Kg-(D^rx9d$^Mnz7U*(sE!qoQYu zy+S@5k&Bg9+GTZJR7#`~u5x)-Cer^Udac2lWpP)EpkL8yPIkV$|_)%4hD)q)3h(N>5+@Hmmm8 zdmhfu4odNpd-p~fUdW95pAR(wZ5M{i0{>n0UTCHNFm#7J`YOYVUZ_nuu~Y&84?;%q z7i7Hh>ZwiIB0+X;ek>q?P@%IVii%-G^RN_uaAW&XK8ovTqUv$-VLyqjHOzb!s)Xc^ zbgO?HE^ahmX=f-cTxAv9AALa~NTRjrtI7AsW(%Dtp2$rS2__%XHhgXWoRP3`XDewe z;Kf?T9O5s?$iPS?$nHs&BY_j(=KP0+2(Ljbk%@st@V?ezBv1bTni%LZ*0LL6oQdhNv#{+>8G-qnq^*5k7?|y0tTHSYkdWaw+crM&ja4tY<5T~` zkoUaXX+NJZHDSMmUIh(E6lY51o11unJY?=&{t*OXBcbG}O_-`5$tNNHIv4|kU+e8y zf%6a!5)44VK+pOeY0zUqU&eA_Vq&6vPt(MGZ_f|N6(=f!Fpz9X>{Is;%7{QEma#$W z#=Psd>4BT6Ukk$HqI^?iJ_I$qij~bwjxUcZF{z+7c&{yN<4o(~`&adbLFqU3`l4K) zXT@cb8G~#8U0~OmX2A~hHuK7wUy0P)&PrmX0L`z6ZBiV%Y(qL*VxaposIy)nGt$Je zl(qg0HMsXSAB}o*L@lMnsQsh-9Ao@gk62rW{Be0YC*!owSwTv0zLz)q{dV@Uk1MlU zZ}1i?wqE~#{iVt>oOFyYC9#)~J7Ic`07ODb22y$Zkpdd_JR>((DC$U8P>0y3FukR9b$WwZb`RfMY5k|a!mCxPe9d-RuLoNc;*g#>4i0iftMS%~6z zm>|K(ZAR?YB9{M&E>66W<%emMQLk{Q$aMy?8b6hfu)g9UFX`^BP@#wyafo zoN!`;?E~P*do3QG$|%B^=iEFVObiy1`=iVZ|^c#g0&rv9TVLeUhVN{ z>y5M|DCDqRx3o#JbWh&jBE;AH+yCqPYNpEhnA#h|J}0V6jh98H?N`}JQj4JbBmJb; zKeYl6cm91@!7p&?@mSJ18}^ThN$S7%2|wKWS2yk4=F@`%q%6l*_riat9Am;loPy}$ zjH=Gcb!R>-@UNo2)#Q(TIn(0*KITIB`1mzB*SukHZCQBn0x~A>0M=6R0@G9>pMQ^EJOGm9Ky=Sa$WxIO2pv&E z`1UPhYwNrUKr-)vSw0|2&#CGSYEOROACHNZF-xw1qy0T}owpZXej=Jztdd|>=AQHR z<;&Z$<_~nrfa^`VKiulS1&d|(5q>m$1%E+yMHgFU4Y)z8Iiv4VTnq<-|a`@xdE)7{mpXw+{yHpmOGX`FML8C z!O;ZoMfjy|VX6JP!3FHTP@db~Z!cfV&VsuUi3n4Cp$?}SdfooON_zEx-nPXgo|NS_ zkS^GPFYXe_b7nBOkvnk~ahNt!k_vELtXFb+cL5OZiIS)3` zD3TAQby>z6T#8cu6MXEy#PB*#sqRZqIDSCjtOvqoK~L0qDp#++^wnIAWEhkGJ#adA zzf>&Ya%!0TQF}-%36$DYf!2PKU+{%^{7A$x=661-_@4v3!owN?64AdyzsDo3YJPy@ z|0kfDHdL`qki3z|q*A46-SM+aURoZY+V#CRU7Ei#8jf7UvQEFXe+HeDvfzSuHd=ZC znQG41D(244IYnR;)u+rZj1sr^h%@Z;CQFoqug61!e(&q=sX{F=>Ig4Y19?TxP!FFC z1-PpG^+dhXf8jM(MJ{~9%$-U7v%?ta?piO zG~WHWV%t$Xc=<@D0#}HQ9RW|j2cw^~PTA$cPEcwmPJTSyb_{?&Y}MZtouLGHk2A0k z9+=UY>_yeD?(8chTT8xT?3%HmAvJg3EaU|8vCYgcI-pUpC8GjsE+6T~T#{@Zc*1-3Do= vfG<&f7j2yXgNvwX|9|J^|Mi>VQw|2UI1?*NKCVk#7dcKD z+u2#;M7X&v{^J5JD_bLOmXTxk;U@d6Z)@N%7-~KA|81!fDJB?iC$+X zC4-I4O|_s)Cenhr1stkh&b)aXFL~_7gFMA6Hr7XvT}fkky8Ud6!k!~(?6i9h-8vX@ z$ojYM<2OS7_Y^WxPt7TGR&sql!?L&F;Q`J9JL%>r>f6S~&$V053yU%lLcjd}CEjp( zPXYJTsyNAlm$LRC2J;ZBzOD@ed&qsr627J#{Qvm+5ckcZs5dz=F_Atd-(f;igX3tH zcG-I!QwoO)SCZ;fUxgUnb7^1?{G3y#{D+mmHX>UM)i=yhZXJ&2b%V}c-ri~2We$-% zdXH^!xOHuv54b(MNVTSg>Db`&^gQ<-UNZmjb86P@jG&+zsn;>CtH>(n>C?Rerfs(y z8X8;%pIxwWVD@!LraIl?uz1F7yqPf+p*iYuiV*Xz?*JOU1Ne#%tcwS-!0$#Qq(1@ zzRbmmZr6&9U%_&w)sJ_HFK4bSmF?Vl#wQ6QG1gs_!)$_&6$_GW_I~E?-$v^9%z3n9 z4;ves)Y+TM4i+QY{rRDQ7b8Uz7t(+Cl+V;NNXg2oIyn^&4i4IV;Vd%V z+*sGK=;=3uS9(#W+%sp-wilQv^*Z*u+ls^#R(goJE`~6>Z?2PcKD{_8mhL)Lq4w{2YNp5}4MCZWJ&`?$Z0TqH4F2Jxkdh~cU{bh$t*yNcC zZ*Pvqx=wzN6?5e`YCd7nSFSNm$RW+wbLf<-7xjCTah3hKC=+o}GA}Q$tK2#N-Me@E zZcEcr<4!O)0_Hz>v>kixBYE|Gm`%FhTWD5!RGgQMRySCmbjdCqV>2)`WP_7|7NR3Z zH>W8|kp0r7j@FJ*J2n_iZ>fFj*9g9a>OD*&5k|2JQI{<2U~LIwE9=v>)Io{$0SvBz zFtzDwIXYcco>ldMj2Zj6im$}EFGeKaiFos554GvypU&9#jy*QM=wZ-yoFDnl#?IcF z66cY=xk0LmJ^9{w?)T`sFI=rMg1w0^Umjd1N^E{Fwi)_mTf*Yws7tURT9xJH;~6ZAufBTq%4L0lfVN%E`!8Xftp?%R$p;ukZUp?T{xW{~{ znJ&TcFyhcIZ4;U*pYxxdwjP2pU!<(%X=!Pp#MZ;TDw;RvTji**^+D&P%L9!J44fGy zT;@{`(b5{&jdwH&*$jHA-3|XTye!Pg*;G7TvtJB#;scn1_lNy9=%Lc)^YwC(ecJbhn+>z!E9 z&fHG(`o0QRs#+d@YKgUPFCX;a@M5&$IctS%92}X`E~cjG-%IVya`Y=)7B0FhjHx92 zmVACRW}!^LvggN0TUx6|cgTf?&!0c1TCdgY=jMl*5XJX;60=KwM^boZ*ZNTL4Gs-e z1Tu*_eaqF%(($}W&~}XZo~M87ZEEUg+}B~-<7&F@g*M+M=~T)L;}du}cJarDgd7pD z=u(E$yV4rBk@)%Z?JV`YYp`7NrjCYk^$b?!39nxt)An3n5V8IBl=vz-IuovOhe->P zUHow3vcsL=3v$^!67~1_%R~MkOw22=-V%LHMtd zp{gQ8%r2Xpb?M7DlAGwODC>%gc=aj)A%sT0;aF#W%6p6MWTRN;`V7KQfMB0IAYps4 zjed?~rz8 z>FZR-FWvy$n$!9e=eePgmX_94f-~|SxOGaN2hCXtj+hQ%k7D0Gg=^Oyb5$N-d5$g$%bE^`NVV%OQ-8*<4r&lWk25G%!tFAu;u{9>EL`0Fp2*W*mL3HMMXGn zu|&r{=ah}5PZH^=skfOtmJ&ALIIF$R&&LsE*Q+*3n`~}jcbCoD-$?EkFlk9_oMOQO za;e?C=>su2zNY3{4qnF^2+f^-M;pjbyEL$>3Fu%>f(feSqI0t^XD5ai_Bm@xGZ)WnYmqdH$YPh+dCCV zk8Dw=ngDN^8$LLycHrC3>L-Qw>nJJ!DH@xa+E*6F1>9HceghH!tKvtyNj$yJqyF{-B%s(;{tgP8V<(@+0@LH!88YUZ^=`WoCYz`;x6&<>BY&r)X%H3@_zf$9)urS2x$@@H+S` z)eNqxHCwErjg3tb(QdRwa%N^GQo^%REeb-g8brQUD#0H4EI5!bS0O<`gU)N3#m@o) z+5sF3VJ}#8zLRWeFe}un-JPY8pL}ig?X4H-nVENj=2!bSb$s+jzTaZX`qu28)l(re zoTIIy6AKJNd1y*Cv~03e8sa8FcVm`r;z!=wnsMI)j4d>Bq65x-$ubQ1^3z3#Uep)0 zr6eY%0xQ*gZyo_VFgaVh%!Nu1c4vm;RG-UC9UVKBEQFox@5F6X&te%)?VSe<0q&>* z&->oI^Nq*)3M)Uq@@2=#HiU`9SXWukrCO#VjEq@Eaqg-x;0_fv?WBQP-wZgeU8VLJ z6#MsQoVZUf=2GCXJWRJR(XEC^ipSc_Eisrjbey5mo7Mu6EesIic)oV{jVU5PJtEOMB$VNJdU&%k1!% z1vr;1TwJp5EA!v8iu%%lv`ztfrL2&q0OykAB-WMDue|orwB_hZ$i3)*C9q#xvf)(E zy#lKyFv*%G1v?g<1Voo(E;}x2COEYw%eVmJZmV#0lw1A&_SQJycgvLLrYi~z=wUlD zHQp8%7t_028XKp2kjnZ^Mq85DSXjORgJCa-xa^n>QHtIkXs3R?zruJ&R%ldI29W6y zi0UmJS$D@5haasB;_ntd#Cfm2@8Jfzo;d*l&i`fry~^^6Gpl)<6eB$MAc%&#fumH$JUHK zyWd^t-&ib?(yf|!-%T0SWca76@Cy%Rt&qc?*SrReN8SP~`1D!|0)6&}b?AC6j7wHf zR2&q}fupn3-M?X2VAbE3+dXj;CNcnc*f9n{%lXnU$UjOB9X)EueC`}Xrms9lxwMRL zUj))NWTMu6x4IV|@7|qA{sv=0b_}`>av;P&>VxIPO@0jzJ9i1k$PVRru4f#gqccLk zgiuuvJ3GCccFo+A*yp+FemzJpPu<^rby213_v%!Y;LX4jCj4d{U-wc`3BXw}>2Vqg zsE2)%u~32W%sp1Gv68+GgLzDe`yZr{(YWVJkcu!0Szl35P%!E}cN~M+d7zdDvI|~- z^*1#eu0|rnnkGnHLSDZfnYxI3m6E`|2>556XKXv;XI7bBQo~H-{66VdLan za6F!Rx~z92qsUop&%kcXJ$fHKmJ1hd-Fk6y!I3p}S4Mj}M7IXZBEqOUx=E|`o~WfI zC&?Q(a@EZa+Hk*fg*~BdUA@bGCI2jZ=$-0OJD0~z&cqnvl&$=JM0(*-lvP!ezkU0r zSw&6bw+)m0GghDG(4hgMl>FVv0Z2eKQb?!Kd%Y7~;WSR^QqL0Atgc!MX*V3mDAalO9xpyLRmwYfB6M-5hf_ zYZ3Cv?*O9l;_fTPz_3e6eXas7^Tr4+W7&6M;yrpCx-H(RbD)3S6DSQsxilm;SdnFk zg-HTrMUj^*(qa5#utQhcNtYEv-z*4b0Y-W+(vcLRghVE#6!8XOD~+qrC&!ZIxy5!0w5z z!tqSAnjV+&EcjQ%Z$GBo6v1~3O*jsD^ zg~iT@ghfW8Oth#G=lA@%ik8+N=h(P7UGBn(&tl0@zcWdqMVg5>7Y_>9da=~#DJ7o0 zamaxrA$RhH-49W{5xb~^0&JxG)k3(UGt=uFhUYA-iD6SDHfXYP)e@0ncD3wz3PAu# zzkmQ05CrU|DoA6=QI;(z&-}t&Ro+5!0|HP8(Y#`Pv3q60%5z*80eO^VX~W!VE(98c z`hevVCVWoQ_h8Oll0D$;j|N_z{05wH0rteWW7TSm!=E1skYbqD`yY>;1KyVj;g03< z<+}iCS@3KNKoCX?2|BHS#O(>!_cXocy$*WK;`h)DEqU*#=;#yYn3zHP^EI?4l{|Eb`U7 z>UCh_ao&@3+c!&V)ppw#z2LJSf9H2$P8~e%lR%SXUzSyTsph(c{a6JxH8lY*v8gp` z=IrdO2?_&qOd;t3aK6%|!RHl^1ET8gE8MwrC%`lkP!ULevcEqiR#8=ogeL3e^piG${4%0-FHcWm9@yd>DEdN zO38N=TwF?t&hU(fX=vOxgtdbrN5*d{4co@7(WSw|?W&WdJrW+{7UHQh$l;i|Hq$CW z7baxC)>dM`bv;N~c}!8k5%*dB?3#9)6me+EHHkREEhMK-_?9Xc_10`B;cqEB4H3kM@B}ZTrCoVwcQW+ zzCGO-%&d`>vi-@~8-D4ltFTswQ^x%<%K7oXOmJgP3Te_o%47U?1-Z(%_PghoMAz{h zF}f_qtj5Js@2W$$TMz1!U6Ca3Te{xK<&ckvoD+q zmm&A2J#;7msR)tc?xnx+ah@F{e#+Vu0f*6+x^ZWSbnU<}I5pngfMsoi?OXu#t^)Q% zP$B@3lx&I;9QZkr9H0$-YA+9@Tekwc$kM6k8vg--Drd5{Y&Gr8icy~Wuf4*;UTul5 ztj=473Tv}**t_^9NIhQLV5bAT}&Ks&LKWDfDS5>`TY-8`dR^YmVo_itU^-V9(n!N7apYqErR5-~cL zg?6=eASQ_91la+l>NLM((NnB&DT=i4)Zc%ty>zT5XW;kJ%n-_;h|6e3489zN?Cb`e zmh~ef*#KUS$8D~qFpnaB6)lXLhty^SP=Nr+Ln=YnQyVaNmY}v*>hz_IHx{arzU?0U zfwMjOU6bE%Yi+rj24Yg5q#Kphu|l&2!V9>xR#%ou;`V;ZI`3lF4%uC&9Jv*jG4tbk z=~~<&F$qGaUTScJX;M)O6adXi0}|72DdDl^1iF+doVwEG-%;!qd~QqD>!Wg>NdBCn zn6sp;MWAy3{{1#k1Q|hUn2T&3ZG*98L1)qj;wMpr$S5JuCkf;0p=Vyl1hSLWh2GpnEM$$%p*B_~HnSIKCD^r9(JKpMzJ zmMUWay+8}3R|}xbnL)lo4|+7Q&|#v><_iNL5Sh*WZdy>M-Tp}IBb)0}?ErWFBSgF7Y%DVeu1{Jk zYsj-P1(t7DEz!9^NJ}Vwd^m+dD!PRi)>!yjW;?Z%PQvK?+^pj_;cM`uUyW78v1AqSAn#p56x6o^2d=z`4bqXGd-AXHDX8T7|_nC32J;2Pcdcuf&8pjB45}ZmMY9} z#D0x1Wv#bqxxeP+d-C2~WSpCk*YdWIlWkJ4rOr_)nP@n^`USWT&yhWCXMvPf?JLxv zrO{Kl<7L&MWm`f?8y2hOHv9E-A;r}+xA=5smJ&~gSo-HU>N-Z@$zVl;B8`e7F=5(= z^eTr#%HNBnJviHU`_|K%YsdX?mp@Gg^U~_BcR~f~wNJaL!mqT`DNan~ajq=c=_iwd zuiJ(CzV&;q5xZ9MLk#wETH?2)&1K_Nnhc{=nyL7<&lz;1{_W*rci%YeIp;X?Zda$g zmhni#OD%PE_2Dqly}0hZ2e#eF=>gu8LUsSE`G*a4J`NI>K|A3xE#W_=*zx|b26@*kc0Df9vl1c$#fFq?(}M>n`x9{vc-bB^rWV`|lyg=r1_sB%oA2$8jg7*LmZEI(p-7(d@1CWSmr8%Hrt#C>7G$~g z4M*(0I`nDxwyUy>q1^a}EVcCVe_Z>TeB0sqte+cMwE?hMFk@ci`?IM|hHb}S4Dah* zf6RBKg$fP^rfnbj8YLS!mIE)%uNQ+G>lt0;N2S2=XU?6iX1g@^0&csk*u0E=o4|5}VzhuL+_7%3q+Ah5;z) z9g={DXZu5O0HxhqkJh1N@)$kpooXDr(?fr0w1KX~{1B~G{Lc?t3=^sCDZzmJ%H>(@v$OiN8oeU!cngE6`v6J?9!!})nTg9i_cf#jkT z9g<-Ck#7l7-Bl}N8IhvS?|@hoSae^iSeyNV1jmzZ)787PPhc>`dF$7NQ7!p3uRap| zv|UD%kWhN&%$Wk~ff}i9Pmrm{zQ6VL0Vy&uk$GX9AP4E~YJ1;FcwSG@Ztm#u0jSsC z0R2c=N~&@6ex_&H0%``@T`W(&E6Ea=wC0XI2Qp_-HXIrkH?;usSE--B zyCYZmX_fdAgm zBX7mC7%`aW`mCS!xnLKNi4)i6E}wo3LU>|PpNljQw-zXS=?n{_+zeD&Vjl3N-I>Qg zq1j(BLATa{qoJd_01({Mqm?sMQc_|Hx?vJgbZxq}bfM!e5;U-iPLrt{c~ z+kZXYjt@7&lxa;^+se4CA5%m+fVjDmZlMl zt#>6&E{vr`fOgMu^m(#uOgfPI43pMmdVb@Vv2L?iPj}cy&CVT|Zjb8w(fUKe%gf7t z&z_;_dh_<}x;AX$t5Xds{if9^uKe%S%w&#RV=LTl%6NG0Y3~JJ%c<$ybvU&=v?LM1 zX3X($h=>3W`wGgEw$Na^#psee0AXW$R&@lZ)l{#Brakx73jDL&H!DWB70<)4U4S;;YvL9rBzMPleg; z{`}8*?M6^zV5YIm_SB9WaX$u%>NsIfNF%foKa92aV zw{j1SUnlwV9*1gI!(>I|lF^M8A036k{x^6Uuw+H>q)LWC!@s!qcdSNRYsIr8s;=Ui z&Am*;J7h>5JQ)_WUB7P&`LN5@G<)a%!TRBr8>ceuw}x^JPu3P02I{;26^=21-(=|1 z3pGe5hOLF#vb8S*CX{aB7+bi-_WSB=ALE!RL3>F`Nio}4TORAkib9o!wl-yp{z`37 zx@fz?p>DJ?o}&ipIruBG0sF?lcA;!;ZeB}AjlnSQ>dOt$t!;uc!*BTY7^Fc`LHwQ@ zZdsazQv2z+P|cscK)2XB0o6d<0o*_U3~oX5fKq^2xml*khCI( z!3YsFvK|R=43qZN2@Kel9ARS0fjSZv#CLiTyVR2|Bd439v+c?83qtpi0H+1F?nIF~}&Bh~WFUUgj_{OQCex;g3A* z2zIJVKs)q`iM=~5@J%gA(hIQ4Wlm>e6SXW^N+7XW*Z^!p4L1a({ z?Kw0ef)!f|a)3VN* zmq^V7lZW(7z(ZCL=ApWz3PPY!&{w64qP&in06b3-J z=IbvYqNA1kVrnXDKi=%u94V(^YD#mVCle%WCinSQeeNV}ZHG>S*j)=feV{ydm2-ju zuXq&StGJPMJ>7s@scaJL|1+)$5#S}o%Dy_#@MrBI6rOtO+)=XcVRn?r1gHJdv>rM( zL3U70M2IiW3UzT456#>^JjSlg;&HM&uA{pkGy@MTEdNRn_D`UT3QU&R!T;ueVG_H)yaZ`A|BkU z6;{hl^At>&+a0hA2t9o|R5@b{C%~AbOss*KpWd6eude-o zAQ+oeWn}}w>mmT+4O=&4|4;|hZ37ni*vmC0DxN;fwnQs*gA!Qwd^fl9?~(6sD_z)8 z5ox=L+O(#36cpQ#wIP=1xi-Yqo`|JEW()}T3mP^s3?X&7bAItuf~e+k|Na~1QK+~Q z_At4{XJ&Fx9pfR_E9CaW+&|)e>0)VW&+Y`HxzJM%K0*4651xW?0BX(5z$cqhc5TNz z{9t6`8-;ltb~ht73al_@fD}QAa4X<#w?%}nM_z`IC`9`4*nQQze|^%CUfivit90bd zI+WH?{e{^CPAjVC{PU5MVd*Nx&H$x|xI$rXbTlPS^}&Ng=1~x!=mjmK|6U0D0*ZX? z;0IJ2Sb}2mm=?H2_li$W&_!1tu_Ol|<#Q~)Nn8I_XGm3}$4ZV-DtSA<^(u;Yqwp48 zmRVid+yqPi7U_Sqfq1CMK<&v&+YG?yYCZiG8b32yOXTGOo7dZ#87MAkf~6)0rvNiq zyt5_iXCZ~4#O7K)D28k&UIYeqygGYpOba&EUM|&tHVj|`vSbNuOqNZh!^GKhp_4;r zhLK^(Za?Dz+znYw5paNlE)@g<+5!}!jG<6knF&E?=c9NyUFAr)f_UIE+i(FH7o>yW zf9M2&yQF1nB^*~QSvOOnG`$(f_+=0FlW|bA;k1zca3fkKmaI-p2IB#f+w>!V0#5wb z5#Z1xpxKJE12NmV=PnwO3cd*rX6nZJsu|EuHZHD?1%hr)YAOpV#J~s;qt6*fhm&K( zYF8X!bgA9w8<;*%^hqbGKvxZoiJ8bBgiUR|H&HJQz{qW7G-c&aKK?;bcSYa@sB?j$ zCe8|5cqg?ZK7dcXNY@(n^yJ!ltDFQY8(Vs_B#@4uhi{Mfw6XQfj}!1_Vhqpg-aw3G zKYR8%40>M00v)O13rF_UL`P{-NjF6cE1`m1Qn*g~n>S~un8dZf%>cEzXdTxH0bK$* zn9=8c(9K8#21CIO&csEF-cl9hm}PYANjP-&rjra095SNM75cDrn_^Z@P8IOkEHq!9 zGDhkk@BJI@Z7_?EZ=bTLk{=QlOh`xo%WC?IE!a$)pfeRnaDpNrGDJ2uHo9rU+U>oT z;%d3ZWN9iu{0%M{d5D(CiHk&ZAQQ7L>tJG-#gdO@bS!SDUnEh}CkhmtbwEOrJsCAL zo-C+ZLmGgT=Pq#DNl8hy6pKJK zbyyGrEbVv(gu;W&j~!OMQ6xilU9v$5)$s718*k4^hkYKVcxVM1ey#o}+VDp#7bkni z3oEXHEeTjYav{u-5y~3!VlQDq0SZCb&w!3|B1ZwoT3Qt2j-rW?{$^Qq@0brVunM0z zfX{l8h~u?xY(hQ(_W&vSBS)#Tl^EU7c91D5;qNP(*~NUf=rD5zfjTG1?X zsz+Zr0}*db=$xbGNT8&!Li#_kKE6=Ri>VpB_4kVhB3XRO+x)sgyK+a;&VZ-vI`}$~P!%Sf~lF zZ@>ql?A)jSLM$1o@x3;m7^_x}|5sv1(KSKmHu1kDtkKcYQg{t8iR*YQ8-RNyUNi1h zL_`{x74c_zdGng>fxuhEPSC-DHUw{5@?EP6mHkIKC0beG5@K@n^329G{fjB0Q+?7N9Kgv~+sTz2tQw$RW13Q*Ba0lk056x{y>1DAV zN=6Z7kTg5ME(X;1EmW4-+1bDFH8=rUz0-VRY6^jX7!5n7`u@(EpXxh+L95-lJ8JFk4& zN_`l~$)@r@Hyrwk`Fx3-B07TPwe96rPSnf+jx{7>;d~jwp z&Gc{%_lq#2V=}$X5l=3fUWG!8l68LTKwYvZQuT8SB3`a5QSdv+e!s( z`Z>uDn*3oapWYI+1}pD29>@GmB#r(il0SO11!p(E9U-UE8YSjKq`oaBjE|HX@@uoZ zdLLw`@y+F~Stnr1^Q@p1B6y@(9_B6_|BqKp>r`Z0jRJ+_KsrW96hh?(^J}C3O z@{QfID5R?B-YIhGpRdjl>nyk>h3yTAA>aMOg-mi1%_m&JCq&i+clL-0-eH0JCf}R; zS~6qBi01Jpjq2arw~{uRESG&SwI_kjcwo~*6y{_9R=U2`QsQ)U2DkhlzagjZX~nLV z>SXorvFqxt3*--?G~c@Cv*?qsM~o+XN&t@))zx1krwRB3${XLKWBAw83)W_JKm;QT z2nF=@qxsdhTYKjx@8Vos7eR!?c31yArA}< zF)oN~g4V+@ucEMq#Fgxy|2LJ58;a5(lqnILW7;d-T~T%M<(FYa2M328Y7pid^Dic- z19tu^oEjGcSXa^1Og}FZ*`^i&A4m^Uz`8rT(^CnFwf_yHkf^3PHAAS{Pyq;^rno%} zcFm09;vaLO5)xI5yWq^SX{dk9nT&NAW98H?Rc2Ssl!u~6k_CuSv@|qB&dle}U$RE{ z#DKKFFEoBbgM$z9J42$P#_dI+cK|Aom&Z%^jGEh&96j>Zefy6@T1<~Cy);73_F7#u;8TUnhk_2lQ-bRSd^tIgG)#+`J%qDE5Ecvy zfn21ZfZrahonU-!|I?X|Bs#!-Y!K9U(;$4X@$o4I@$1)90vyVq0wa(w0H3p1KYxE^ zV5j|+a7Us@h5!#abR7SGB!c%)Z5}qxysyMs^|(9esqHzs&WfRRDUmEd-TBZ+mVNGQH`r2aruUIlUy?PjJJs&&LhNMS`reiV z#NdczX+FJGfV_KbTNl+;JdF!RC+zD(y)8M2-4$I$qo-#5pI3R4!6@x77)6DW2lWg* z=LkE=qF0*J@18BCX~$m#ik1ILMxeo&URs)Azq+Ug8^!yzgr*ux3;`1--r zU`vDFI@df2pv=DhD~Z|U;D#QM3jsU+rN*}<;BD!Moh^5zkk9`^Z}MZE z|NFEqY%1Tjsu_)0KVb-WL20z zkomp;Qx;A2fr2j?8(&i(Z2cEsrLK5I{hz!i|Gg*l5wyWchcr74Oud>FF7`WA08_We z^w&1MGx&n`H`tOax(cu{BKC^Vi2-js+ zROR4Wv+fFNgJV6C&nS?&Vc3?HmzOMw2sqFFqL=_bayrN-6_6dq>Q^l{S+zkg0fw8niDbP1h2l+bi|2O&KD z_cZ^0-z56TcGLCtk7{b*MqYc~iYacUdNSU_124X2y*y(>BA-5fRL+PQB_M`EJc_6Z z4{c2VH6#U4RmwHKCpIJ^NSTeR{V5`NBHO-puh+O+vkZ#fzi)17zJK4c^~SBQGE_}5 zm({RXECeW}BFo-+&}rfd*O6Ntda2ksIPSnG+s4{67*bn)ss@jjLoemRpH8I!20>K_ zhCsw;Gd#J3(vm&ndck|g2H7MyUIFJT`&e5&vL(Nl=`dYZblGXzu2mq~g2*d`{pN&tXWpd^q zjSqm6Pah>{bqSobhR67B&}jjKy$J$l09dc+QMSmC{Nt2r>o}wY z=FqiJcMSY3d6vB*`fy!6lzsw$hVXB_*BShbKD7fpVH_IwA^Lq%2hZR4a%Y@=OCpv^ z%h_6^!liHqY?;TcDi*>{H>l^`uhZxTy50Ts=~JGT*46;4s`U;hum@6sd;EccLAzOu zR}}pS$g8|yxWeO7T1^U!zt?>J`Zcp)9h5tNXsfFpSBGWvht|#xvzY4aWWw?t2-C>_ zKGVpa)28+;Sw3o9OI6iS%YC7}USea0`Yb1BfVC2pKt(fXMtsmgYY`F>!mkV$wvLO! z=e&jNL+2A3&Pg$sHnSK*#Te^3u$Ub~ouuTZD0*;^FQ`Z8fdVN5Dt%Y6&09r9MbS^t z;tH?e;Pa8fcjoFnQFFzD6qxl+%+xUkudJ?~3OO$7GpcN)bSbQ8ej&E_8uU5)PmGTI zHzKa)Tp~DwNgt%>vicWHIbL2np^U&-XTer<@yT|W>dQiQ zVbC$D6z586bgTB@O9J@J#{UJoYQZ7cvxozQ-^zY>S(g@(Z+#)hQw0QCwzd7!ftMXE*WKDb^iYTJ}j3<+J1{rgFbRA z@Wgikg4Wqu9%TAPy(SBnNf=`lws!_g_D2(yJ|vze^Nvv>^jtSgqn~5>4K34g-R(PHx*Y&KcW7H zQ<8xun|Gb&Wcz0<*gwIdtl}aIpl#ZAvaqb#@*ge;BfWySpnKTyc~h5|s?7~o)HjOC zkO;hkn7zHci~-V2p@zMFl+nv{j#L7@pr}66WH@)C>{pO9N*;rP4tGv0x?~9-YyT|* z4D0_=s8!wQ@25*&5j)1nsBKko>9Ck!yWzhn)I!*pgs=t;3hQj$Zyg94L1Z)V#?lbz zLW)qNrGL{F4=1w+Vm54UwXSyt&xtnBqnZY`P4o@aX&BzE#VbTr;l*6$zd_G~=zv0y z1Nf$)lbFUl9i0py(x*QZ??|c+doDgy)c<5bM7#3=tdA)q>-ylduLm*StOwlvH=%9u zRdBHWF&{l-K1a=^ViSZMT`MmyuVXNu{0LAUJa}Nu?t~yu0zAv8+XL!hmM4$_619O; zRbG=%9kmyyag@H%>vz(Uw=SXah~&>A#|fcKbtw4G>#xPXW zQd$gEbFqouqR0I(ll3r6f51RncBfM=05#-R7u0lu`eDf3z69thHAqZKaxR3n9YO&3 z6ORMv7XNwo#UI)-1+43;)6Nr?QEw@;iW59AzuUmoWQYe}&h{wl!b3r)lOgJ@wH7*Y z6XgE@5Y$>&*xAi~razIB$;O$Oq|E?JKL#|47y7OJKYqNS4;_#7=(ByeMW3Qp+t3YC zhr2~9boS^}xTpxF;E2s=E)iC7fXdZ3UT|#px)o4H(JkK!xnO$hn{r$xs8^VcDalnbM+}O?wwvp$^HID z5KAEXT;Z1%f%7qKk>Iw4_U$soIpf@q(EstM#jeE=P;-HtouJ)tgs@E~e&mb`fr zwb_Bz_D(Yk(O1AI1V8T6)q4v#Zahs7u91T`W1%fI9If%blMLU9itdzt$a#p#l%isZ;Z#t+!y`DqX$$DAs*Z18`@ARJB=wTEjua z8iTqc$y8TS@eO-+@wFgii3V2EN@Ly(Np1#saZSM{j_lY_=LBX`h}!iwbujcN2Xh_9mp9OsCgo~{ zI`-*woUVe@9>R?1BLs^y!W8C%=WBV&Q>WHvUU-H;vnuNRL>~U&^D-^y&A^d$pp(A^ z8ijMzbetuF`1NXb4ikyva-J)}m20!osB*TsLZ~W$-cW3dB%OAm=lZxVJY>|y)aHg9 z{QZX|&Rg%-c#g;8e%$x{c)FjF5noM9M@vIPvzj7tLY{`^ zw>?Yh7~-Lo?HZ`}p?p za55TLT3)sgZul*_3bSlaGZIwz)$=d`Ih^t-2}rjF&D)=O*T!~;C{ z5(u}%PZ}}vJ>5%bXs)*WfBA9VUnWE(p((?-tfoeR#fK87l9bs!vt{2o?-HHr4_OwM z1P99E)iR7?l@rt?-4@Zvo~T~Q*cd46pgcc2;Nr`zC6bkuRZ>`Z+?QRc`aYY2<^0^N zj?=*N=VIH1?G?3)?o?f0x>7OmT$YZL=$;I-Hci}P$BrGcGYqmJB3wQtOg<&ym7?=P zCBs_zj;ec3-8my6acgzx(yO&E*di9woDbnMdH?uno3naiVxs+ci;YsQ?G<6ii8DDi z1IoCS)y%{dr^ycglA+e|fi{&hXS|oK-4VY-*q*7(;mg|~b$sZbmS&M!J})FABa>}2 z5L}<29_7cSuC`tM+2to6K71JY_`-F|qv@fJGCBeC@S!gyVbu{*tW&vM>Y2IkrWajZ zCt<(n{fEin&bn+X;|^T1`Kg(T7lQz2F|L+)Q2(t#;my@0V{;8jTK-ISc6Q9o4iBVR zFeuE;GnMT;dG@2JxnAz>Rb5qKzM?M9S=rg_vcW=A6YY05 zZQ7)3r5P+_SNr(r;=a~A^`wHiY`oHa%t}RwXd92-t6S?zgN{69igB5r<9R4u>ce_B zT>R3a!TGso>-L;_qr;=x*PLw?*XlTY8jsF){N^h5bI+1R<|eeu2BSttOxyA`d^uE< zr$)LvIyxeXJn4I1xo?nlEWm3=J57%b4GmGFqM`&XyB<4?_Y2Ru&bnn@YVL8{>3rtw z*$299FI<;fO^q04Tx#ZfF`@p{G)AkynO!dQPad5&jBD4ftxHf>DVQ0$ty}K3{fJ_| zqa8)wZOwMhOX~+4R1?&AH*ss8d-38$tbBwArbK`8++1S~{no8}`T3tNY1sM4ACILU z@^oX~-1C)bCY~-#Q?^wvdHKA-B6@eawipH0)%1MQx~2E4!YMwA8AeK;+m9$Gs6Un2 zKUV(mpix!m4Wqi)h!q=H_9{e58@1)S4M=`38f5>wB5fjCzCem{==h??4KCG;4 zbM3`<RR(0 zlw#zWHJ)AG^8XymO&)OR z%FWSOW`1_2t+_E6gILS%>PJF$sj(_abFU^Mr5}cxG^Voc-+v}0C50N!oj-9*J=3Hr z-LU3MZ*M@C@zSd<6{~3YHtyJA>ZfD+;n|hYBDX*Pe8Bwhh*ghHMgb;GkMgyz`KkIC z)_*f+Nv?6jzOsDdhQx;&8X6TlohP2?wqb)*P|Gn!PahrJzyDp}5u5%c2UhJA`7kr# zvWE5aBOO1Te5`$ib}yH^W(BkLsY!UouiqNe0?b--4I9VHxC|>gJu&e>+>2rIRV6m^@~`jT zzhBbusi((i2d~lng%!BroO*7oQrsivhx(Plv#+$3;*>L*p4tuTr7;b&hB#gnvFQ&K zz{>xMITsqITlBm>dgQm{m|M4gr^pxG*|ve#xxL7f8lLYot=2dHy>Klv+tC5Dl#8zw zv&?nNdNHsump{D}wCVq_vUo;zFz>l>eZ1VcbLT?eW|?<*96NTbHs8rX_ibQfYJpA( z6%XRqA-J<4!&oJ*0b8rSB7mPOX2?%atT-+fnfF1aa$LnU#Eg-+>x z%2Ts8=NGp&U{@fV$A-%U36?ZBt7FI1r|OmkKcp!xR(*E)(~@G3&0Mkc{H9&~Ejh~5 z^LAVhd334aOd3)MR`(BRpW@QUR$RGdpW@_D#|B5g!Ox#RA2O_F+QfPG45E1HBi=Y% zEmF&6R_W8HPwvi@Dw=l86#fLKxyjDbK!G%j*&(YQMcv9^;i}Hxt|oY6I@k~{Ca0!) z-lu3&1P4O+sluLNVeK2n11i35alSj@Tw~kc-;XTj?>sXoo;UpV$kb?qR$Z(T2l?~j zy-R!BIVm9(6%}6Ndg6*ZWLV6_h4a9Pn=MeJ53yzWSgO`9Qp*Mxwm=`>n*LM1&y zJVaKWLBRY(L!yQc6B61X%3lwZwQMzA7nUzAEv{zoI-9f!OWU51)r@GxOii_=fYGalZ z%LEI>#H*&UW3kWo{}vp2sX0^7{L8KW4_U*n0_HzE&CiaUh*!K$QN^zd0sEGRL}4es*fq_lS+D zMvnDqYt+luX8*po98er@Ro)0&r~SN`A$cE7>&Sl`gdh-1$T zHcf5h>45vpQkzLW4RM*vVpooj7Iqk861X6}W~a+cipb3Olg4q{%qR@cYLXezOE;Bx&Z6yov#- zWNBDR<9>mMwZm%#Anr%z6A@eR)B0}s|Ng^GA$;AHD_61|CsTR!$_;A7@BBvN-Sn_R zuO-VuJU>6*{IbNPeH(^o1!z_33=G=I} zJPGf92QY9_$*0C$=BKqPf`yxhrar&E-BX_sfZfZg`^Nhy79q**fq`=}2W-B*e}Z(; zGcnjcG(246z3VvV+Pxn9+C{58cZzC0c|u0_J_a-rTcO2#25D;wc_l-qWc|sLC)pSo z#jphLKYeQRS(Nc$^`BDy`yMhQapS*;#y%h+wplBae3$urRhe#T$CRU^V>wW+tRlmr zMT@?Y)av-{{Q(Q0=q$}V`>*G+%pdOAvxiF?0Nw~;ByF4o>c|%8Y>S!KI+P;jTzFH!CJ{OYs>%I<~&^?bgAi3T3A?^T}|X^zXQn2 z2XdZ0dr&a>m3|nzq$22u4WEOZ-9t>G(Y6{SxU`Uv5WD8gOJ9$>t$E0y9B<&?%*dws&BB;6K=Q?}SR23PN*F{}={_4}qby-~@@$@(HnRll!W zw+_qjzHy3JiCg?U={cuM2QKocLX!AyC0P(QP&0Kvft70uA#pd9ufuVvR6 zJh}{ZzO6bW^7%uWJxqov!L_LGfjs+-la>I#^_Z%Qnpxz&#}9y;cjbpvL8Nt z)^*wHR0bQQ7fj@)jT@OLv}@KVTUw^q37z!VD2LDuY)nH_9STSj*MJOcZe`{4RRCM0 zrzPhp$@5st>SIp$qsl9G~~XGc{?WR8*vs>X6*reMvkus3Sga=Up`#6tSSi9h?> z3X)I=aq#htxoab789pq0{rV(kbVbpt0@;greHxmr6-*_5zMbASdCDesMNET$#VNo~|GRhZu3m7JHCmn_5Z1jE{$B8n(blrqK#54hhO>a|8_3Fl>5-fU)XIqDHI}aT)Wn02^Q1g67o0hbA9d zz0_iRq z*B+Z{jtu06U1=|3J9J19m{xAQzlE#B8t{c=VyBTRaT0XXou;i(-b&N+nIyleerl$* zblI|41Pc4v(FR_-A)S^y2bJxDmdUSbQ?$iL`t1mMVap3T0wnm+Q~yEDG~G}Hq4 zE~RE?U8)XWKvMu~2|Hx&ZH%u8ICZvuDQDF~=CZ3B&8I((++VXu!e{sH-Cu%U58r4= z&amP{#y01wInGk7Kij!rdmWM6!+<@&vO~7WkpC47Pq@g+g ztiXR;TBD;a3jh=iO;}ay`NPg!_}kT%u!Y|r^6_k@H)&$O5Hj&6K0ZH=>H%xtGg!0m zm+Ks|w_h#(;~P!%tBRAr*w7?9D3YCd=ahr%r(eEZp_6(g!aumR^9lI|O^!Ipe$Nfo zM2ZJ+brv3682zoD^o^^ES(p6d_dsx)Z zeFGl#?-#*iE!+oLR+1Z^S9NvsGKBnr>wnt;0772A#`y5UFcdaE%eyApD!S#@Ut??* zR`Xx)rN`4~Tf)PhS9$zr_Wp5Q+ru}0eO=Ew-1=W*^UFJ>^KbPcU;E`DM0VkW_rgE6 zPFPgKWhSzTmK}U3&2w*r&I44+-@jfKR&6Zw>r+k5SNIKodbluAe+|r5;k=?B1GANq zG-yC*!oLP)KYL!$!d(9~59bx_J%1f3@6gbiME{ikfuWi0zJI>VD!pF%Mw6VGhfcp1>Q|0}9fs4!QSFg@`Hl}F1mELFDg93|CR^Tp9|515o z+rj&+vOBgqD|q>%7**SD$HL3GzE-inl*RlSS-TF&0C-Opc}@u_%cvnS0eL~K zXr#MF9LT)}xjVz6Q$_>iAVOjq!(C5LC8U5+K)1e@92HW_q4?r8dB4Bx!Ek3~95@D2 zAd$K|$HvU6r~YOF5~*t8dkhybu3d`-rQVrq2d2NS*kAIoK$l7E2> z_qRL(+2NLl#U5Gy8cq~Y5)FO-E-`pkNLbjnuf@*%GDSblu6;*q&FJJcZbwh>fGQXp z^3WtW=UMk@Wb4$me(dR)`d~p4Bq=nJ*-Eyl zdHf8*3OpuMP#y7^oy>W{_9O3*ZANQkMcMS<2Kvp4h=|xve18Ij7hj~6XRn0+_d76u z?&z+$(cvOnTiZ84`zQ&038PRfBvL$lk+O=c)2oMyO!(r&@9qHq?MrHPR5EJYxqswv zLTZ-fqw4AgdO~^V{}(7wj^i|G$yNf%O+cY;dAr4{yY3+b9_g0(WzcQdvLy;ty=oB? zi{Goq3t8tp+w5fz)TPEKaMjZEJW18k?Kuk2o0F4+WmflJrD2ycqZOq52NN~&_Q-$% zXgk`~tLso~)M86X-N*tz_ejJko0NKagx|)ib7Ztn3zp9n=|JNzL z&kl>YcO-IMe9g*mq5AHn@~4c>Me&Ol-{8}V8ZT|=lYh+{sl1TuR{2%;tu|c8pZbq9 z*Q8x`r_n@2Xaj}&{NmZxxC9n6U->6Ot=T&_CCnBC)_i0$ww$_K;D4oYMu}UAP32ur zZc=_*!rCIvl-%I&ax0ZMePxq2zj@-*nG}1mw{m^1%CK5ej7u@irgC2m{+GLX9ZFofxzO3k+o7O%*?$5K?zMiFf+M_zt1; zJJa^BcX$S8v<^+Rx^^wGsL)E2?U4GSJa|2c>9BH+`~jyUk$F>I>WMpDWuhfCcUCae zE02eT@;Y?yi%VgqyIUQUGtQNi)Z&poGaWF$ja%HUpzOETv=c_{--6Y$M&I0aqIoXW zHUc%|=`QTR5`m@t(cF3iuXl2|9;L{!2FwN{T+p&eb;NoSg>l@nM zHguG^#ORMFdU$%)>9>pU56ORD9~#wQ%anI@^`ZU?c_xznpW3>s$0|qE4v6*%IM%1m z&$+t!8TI-&9`1Lb$k$7c20s|dOqkEE@0&Pjk?%4R{br?0OYMYNW>?`@#(Ji_2D279 z+b^?AEF`Kuo9`(nOF(Y&ep>0rTj_q&3g9v;+yfPgv?8yg#8Bx~_C%jwtiYibVqYO0&s^5w|d4@1a; zZV_d?D?gX;oK$A1$n!eSZwClPM`&_+ALkX6PHmd6C>8c|5q18W zn)u!s{>nkS&Rx7=g@$z^!Ep~8o-@A9FqnoyDVWkMp z7W2l@ca6=OYfjFj#_H!ht-aDUv&3Q8LOdJr_OaU2HeW#AUvqUcs_YNx_;`Mt zm-%Ca&u39zK$R-ItYt^(CZvbcP%EMR9F=q%l}5GdIL8PDYgulBz3**~$HR)VR$Sj6 zYOmdq$4Dt1@aLio9MI{Z(@hw8Lfb$eDa0#U|D@eTg8FveYB;8oL2%4%s8e!61S_vv zeG{#5e@`C8V^Q)Jupp&ckFS>A=ZdS+E{Z)-BLC>XB@gSFbdAop!M?J}+`5-7DYE1RlbgAbE%PHY7<=m#y0R7)X#!BipjnpF8B{n(eV&2E9jG8=%Mn=9N`coJJN_ z0=pD4<&3E%SRwP0L;9;4P)oIm8b=~zLo`u-zawHEk`mxWvpMjT-68uCgS_ef9N@Au z{`)kTC?K2O#U{}dvOPDJK3Hk>zTu%EB5X5Leu~^6IF$12tqAuLA?YiB z#@ouQ1HZ>y>?5CnvaG8Jkd-y{HfLFFtM1v#9w9g%6f3$zXs|M$FmBecfn z0#*H!+&BbTl(~BE*X3)yWqu~mcZGRnr()Lz_N;+JLk$_~HY0_V#Xby+&)#1(?V2MXr%Q*}y0$NHLCyR(-=frq4j4yt4= zG`YIS)AWR*!HP!QD*%>_211Ob_^>pk8~QLW3*X_hJVP-qyJN&UgnN_S__f?Lp={$L zLPOVfoH)s0_BP%~>1iO}fJkD%1skQ%cN}!%7Y@!cII0!PXl0iBRC34hJj*FP66f|o zBSYU&990J1TumR$o4Te9RlC(ldM|q&w$z8MtqQ zFA*PgUlp>g^8ZX305tVQQAMdnh2^_Pd`*H@L2LC|UY$38l)V?S8;S;{sg|na&fL8n z3K7Bl_x6aZ6#+-HznESHQf}pD&UYxBMtkPDPomP=PI&y=o4MpY>F$~?n}V{`0a5qk z%+pqTDI(2wSV7-V3_G=Y^>#r;s$%q+T?^`ysIw#0rxn!_aU@W~agUxl6|FijJw$^( z{gCG*0#eF3vnR)Hq(g8)(b4_T;uPpbbz65!DdAp^E+(hqa+r-$t}z8>}8#Z%@_q`j$X@ z!pP*L zp^Bk8Y+PDdEH4VVXu{X91&=^&&>;L3Q%k;+IuU(ZvaPH>K3_yU9^l;TYGV|vz(vB2 z!Op^R3UJ?dTc)ROLuq7%Nr|M zAB2HYQ%;f%Jp81{Ghv`BK{1BPA{!i!`i5!NZ+_ymgMhh^+VUZ=ne6i6w`2kj-+Qc4 z*w!|mMHzt1nc%!mY{=Xtq4?n4c{|?nSi0#$i-JOgzv{i$P+A%Iz5Kw2&e>@9VQ0sF zhfB>iLs?fAkC}|AXt5g3%om9g1?+Nd}m9 z(i*2ksq^2&{h0JS3mS|(=XYM337X(08H;x9+NUOn!c!{40OZY|PVu!z*j7)=!uJF5 znG|_r{Vj0_u*SFxE*?m`nKK&FbfJ-B36+_PKSH2E>nlE%TRs z`}VD%?f1vJTDG>&oS}nu7OAEi$n`a*6&tk$3pmvg8Eq6GXwG<4hmmsh-d-Xmk%Cnz4YOk9Ln`%y73}2( zo*p8?DX3Bi|K$3yJuF4bcRD_X$)kI?Qd9+Z%CH;$+L_6RDz&yk$3DH$TtrCSL&cu| zQd2k->%Gu(V$VFezGjC|G!)11`i>d2&G{8>3Ir%_*GPLYq0B)YLO z|2S66$4Tk0E_^|eSDSH+1FC&(60WEMnJrB;7}Sk&iQ6C(Qi z)ryn&)sfp#z+noxE!=a{hqWpPIzB!cnZ6Osvacuc?P=qC?1=|5BnQWC-nahpW*yOP zh+PU_fQ=`tGjiTSm#~Jpxz&!<9K!bBUx5kx0tyDN)zcZ`qFf)Zsvrp8-T5Sw4>e_l zY{A?Wta(X!V~;?lCqg=|4!wUztXH{|6uF3gTI)i5}Pai`%_3wygaZhWS5v%D>q}*M~aoW6SQ1 zimd&wsldNkP$|D{3*_%#Y^y6M-~amuu>W^n6hp;9n^$>qfr{MUM1M!zVKH9eC!g$^ zqVsU@e;I(05xSp42_pFJ|48hvD)Kb>H=_1``gYz6+h4fyawdAn(WdML050bA!l&Y5Pkl%%j~KiRA#B z1eu!SCoJ6#mDTC`c(g*4SKR|*l|x8IsPYB|CWz_H8;Q6B1#?qzh?t!G{QMBt33^*` zQ8nK&%VQ%O6l{K9h-fh7qzjtz1rS1%m@}Xp#j2)7!s8i~zH;-z^MCs6&zaWYw-Ngb z1ZBh__z|MKu-LsI6kcrH%&lo+m5ZAb)iKkwB^FF1m?RD2C+V<-@<$k2L~jnDK)Agc zfC5K4{I%4Iz5xdUCCCw%1ojuNVf6{ZCj;tnYLfyDcQ67kN+4i$lx)(~t28KF87U3Y zvKUk`I)$gE8qkNvA8Mb|(CBDyAAY6HDiin)(ADz$$D;t_GSoxRpMl_IiT}XS$%&XN zh!eEUaoCf{PCao+>`Y82;9yB-Du$m=E=bU-77R6|8b*{1*j9+5i^9yW(S+#31aQG% zah7_>WzNyg!NHig?EnEnlO8Up6fdMpzTX{*&YqgsylK-PX(Xpv!?r-jYcvygR)KbbKRyD+_(DdW0kSvp zpaLSG)z|WE6e@&Pm^t)#S%8b4nzp2lEP@HI3#zNK_Gc|oGq?bEiVje;*WX^yZ_j6* zODwOyd&rq8IzOWT8=E5BvrH6Z655q36)s;+)-6ZffT}x+b`$&AqHj$ZQdLz|eg}vm zfWanq$g&57G0kfrO6$M?H>EUyKMB5v_#z|(1Gs?w4!AFb81JGJKxmziU6z z^#nI7YiLlR)@EK(&wBQZe6DWwZ913+I zZ}MvZsmov^rjBg`t7lOy!jgN3XsO-ZYz^y!bj>a8=2p;{^pCyhX50RoH_N{=Z-VKN zWDLdrT<5y;U`Zp^J3-;ViJO5WPj80xz9THw+YkAa=-9Cw#3#Xbf;HQj*}FY&-j1Q_;EeFKp zD_6WE;GZ|8!k>!x@?7}}enV5jQbI8^F^NBQcSi!uh9|f2=)41tXQE)T>R`gTG)x2J z@y(NM8=sIm%Ay0>MFuGJ==es_N>3!G)bD2rjr$%bv$Q%rBK;B~4XJNST@bb!}oWV7&axn{Zb3q?) zhUsz1biw?bL*7`EG2aR_E<6twcwkb1FVCFFyijn0BC1J3=xRV2 z>9gk)E|v3gL*pI)FOp^i6q>dO&cYc^IAbE4BN!SWrok4cZ2szZ{Nou8O5%v5d`GD- ziHPdO(0{%4&IIz-uVl`nT6VqL6?FK@vFb39Ho%@H&b|1?b3gJDAOMIP8UcI{H#av$ z9`1=&+xFF5s;MU+*QZM2AKylB1q23E`7dM?~w3ZeWAL@ETc`wRzg zPnvm2Dn}kX!nMRE{p|9EvV4?G##ngpA*7ym1xQF1&(zer!(0~3T|!9;32ED~^Vm9i zdctu8EP-}@zS6*Kzb3VrzUc1GB*6b3_~rbZU>}!<|7Zk{+kA*DiszfxD|J`gXY;8u z`-3Drn0vl_8R;4Ub{7y3=!P(&;KOp7%1q|O;ldALxDiVYw35KXLVQR=l?|n~K7aoF zix(b>vEuUnhhNSYikwpicGH~rw2_MbfyGEe?~Fp++=>fm$si|ZFtxq0MtL~eRke^a z0J}*Tiz6~@B}8%O!Zb|(Y**M_V#R>2DTTu1(GTw)8{QD+eNlmnQ1+8K2BrKO&GFB( z@-AQ?35A2nj6}4EHt#4U6`gtK+XNC2kg`kGvEl~bUsBI?=UMgo0oAj1%gy)0jlx7R z%b$$2?rYL*?!rI$_DA39A}RCg0C?qtL|rtgq~<4%km@knWFU@(37|3ARniC2!15h; z!AvObYV`5>HKX^*PasSqap+G5&6T9{syJ~9q z&&z$%N~qzWVBaZYZ(Ujkg-Ptu`CgH80EqtB@d&~0!QWliir9WSk7um@O`ZE-5mk5L zcZitokIHo*?ql&V)=?Cz=?l~rYdXU-_BJf^+QuP9LB5FNG}Ym?6KS1~x12rJD=_@2 zae}PM^W$@)o+kK<1l_;G(-+b#CD)kCR{eyh%Rw<`29{~&opC4xe-%GJ(!q5HxD<`Lgn4z&#n-e;mnq}0if4R{=S^-0Dyub2*@SV!otGvvg+M_fE#^-VFNQ2 z(NJ704lR?C?1Jb{*wfS3$u=@!Ltq0W04(AL^w2_)?a!@MkG%w$UepS^@8=A$`1J83 zv^CQ&Tf-0yX|^s}?l`Wb09uLg(S!$r$*pAF9)u>1D+_B}y3Ws{F%Hv;i^43q&~1bC z4?ZLo{^C*yjpnaNIGi!&p1DlBWy==m+2wvI_#}MA8v7S+%tG2INf9cM))SK;p)&TMgo#;g{e163j%xBE}~Xc4QtM>UN(NM^=6F z=8emCVnsP`%xAo4veIQP3@f@wxrRhruH_FoIS#+q*#J9*-6#6SIih2mnwn-lT7w8+ zipq(sPOQr``%8QQR$$l(Z-dyMp?V&dyqdry&<(XU-M$aZ9f?D*CSgBiR{TcdkjhWj zO&T*>w-n z;i_e#z#Erp&ydn+;#Z<0k7U*tMi$wg4{!8xPq5~JwowF3C!#mAz7Tn<3TDA>-hc{f zIJPc}`hI+5c&&SWKBdFaHj`;|q_=jU&B$Bgr zZx=Avxz0+2Rhk$LDzz1mhyx8TC7TxZu2@8at$TlWLQb!3)0qBP z;>ytE`k;}b*RPrN8SuH`G7@rzv~S^JSN%^@O?Al27U=T`H<<|R4EFq|#m80PfwXz@ z1-p7IK#pG^LQ&7^9~IvDLp5#uX^j^Z*88*~^2H!e0wejNXAP?@!7HFb4?4Fr@#;ZB zCu{}i9d*wvL`BeTtbo7}#A1NxJnq~{ryB<06pL_bZeigA^o?r8pV5!7CKC5{<1+>K z^~~v@%bAL)TNivrhUK7cm5}g3ytlg-7yozF4J>T`PYWsPMyZPr%7u)$PT#t9%NvbX ziLI;r-Q2_%?6Ye_wG{-HFrN0fb?c02NIC6V*~x+D69eso0WQ7{Q+N0R#^+j&^z1w{ zbR)4!hsO}K4{)e^xVWzp5{}cvCpWSf7a|zg|3^n`5(&ix{6Lxs2=4}&gq1>&AqF^# zAbB8Jf>KGp9o%_9$P!c%To8(SQC?BQ(J(Gl7&L5L{ z*kvyF*zw~^X?my2M1IskNAVvu{PAN(%#Z4NO$sSqfpODa=AFwPz_oK0pV9uasw!?{ zb(Wr)CT5Dyr@)56^wLns2DlnOmXn=bT35$Qv4Gb^l1l2LF$V_+buaucJ65rBaZq63 zeE|!-xC5ZlPVX0=NkO{?jFTf-1H-vz*WX?!1B1Q~5Bp%Kb?J{-n@GCdH#$Sif&0&z zbE#T)S2M>2w}va*F_$1bQ!UZ>fttH8bsj^+u92OtTMmOp{M*}T-ow`7?ELpCDP)V( z#UHl3vojkSO|mFdm@MnYc2m$2WrrF#j8r{iz}KY4`O9L$!O1C&t~kE~qz@683Vj6U zx22&Yi_p(S#CZZVpbT1#Q+tO?$i#uc0iOqW8B&Tddb;1aqX=g>+)+%z*%vrbDZzw# zAMs?MHE*v|e<_acN8^ze$Q(?Ur-{22kf&0TX3LPE z$hy_Ah9XoF`HHL`LOj5^GlF&uAkfp;k7>gtMik3?ioH7^Hydm|8u zq=^Bht2i{$0Iyt7HlEB!L!er^!M&TSwuPeQ=`4|^FiE7DwCusFS8#ycva+vPMtmka zdSTt(!<$%hM7LQkAgQJ~?v(pN`SQb3CD1hh@K@oc9~MQz-cPIK3;FCQey-gMOXGp7 z$#kdnoaMZuBZ23C+3wKir;~a?_BvN*s>-jt)5ttAb*BBwhLF1GE3kUZr z3F&+Qm-yQo>Bo8ShdK188xtPPU#YJjWD0{0)phleE2K30F-lvJ4i-GOe-EMb{QTYj z9EbnJYH_93{i z_p$syVW|!+j+k!`h3^Zexy9ypCshPECo{Nw|9H)Q{9B?*ZrWb>9WqQCiD}a5^EpC! z%n1o}^qY{f>8J`#?l}P9u%olnu_rz`mfjO^HBxa=a9g`Qox!D`%%SxD+Y%$=s_5W4 zhD&OPpenYUh5>s#g@GT{t?{+^aKcgNd%%&JK%#Xc{z8~k+Rq}#Y8 zk9|85ZdBJ+-CRM}`?S57nX=RAy*NEze9cSdvJBm38I3GQ)r27nVelASUMOejQ&CRX^x{TWJqgVIMkNWFMd#WuGwCk5Go^k1mRXp8P(u+274Qv{K9c=z~4SmNDM=58q85 z^14>n*qX$DgtFU@D(bLC8 z+}_gjan325ZmLT^_EZ8*#gtK^vf2C4bz#Lu1N|EIITWYYMMY{AypC_g@~CykC(ZR5 zLj3m`Ri!HVX+Je>t)12oG%E7fLJv;iJL6Yn%+4h|#CJq(jd})kr`2IV7}=u~mPbUV~_r+x}-}PkCnO zyr$c}MkKr?$NFr=@X-P1rfrrI91XLK%f-d5`f4@x(p0Inanmk!p-RS5D{;brYxwvI zkbY5se%(;t)N*Z8po@lq+J`snRrP)4Cmr@!K>;TXM~OX6Xip z_A?jW)Zf$XbRBuL46{MlK>$BuZ2^a^Lb}%B{^VZ0L+Cxv7)F9nJcOJl9N9s=^5jRo zA-;_u1&NKiF;&+G@TAqgmunW?mdc&+=%WWn_JO!NcNS zp!+@u)h3Lh-5ET(9pApihh&BSx4(in=I=wJ@7wuk=v{dYKihZHz2e46agx5bfp#7!4 z-_)uc$PJ*U20j<4uhNuiH0_NJ7Vk7he|}T0T^eC{VOoj-nw1Tl?|a(jhl0X+;?r_i zoqKL`=aZJDk?DZ~4j7i2k}tSE;=2@!Wo``4o_LP=Oh4?UkoJB^0ufk4(Qs^(Odn-z zT>al#N(g_Ne_VWZR~zZOfsG|l8&(o)O--aBC`{cTuO>6GASh=`N zrtWvwW(64>CFaZ&srr%9*_Zp{i|)`R=1va9Io=R2xU+emd~J{L@ioiKzI=RqF=;dZ zjQzcAfj3Oc={F}aM30JWp$v!yLTAUeLc@~N=Rq*cJz(-l%MKHSB}robVj_LEgi%Lx z{m83u8*mQj1h|S_!UA&^r5eg=BB>ZKf+{c#9MUV_O8S~n&87#cpu(caqcgSx-J|Fx zDDB)P)gy7&)ZAlgzSNZoxR~ja!qs(&S~-zk+gp{od^yl3s5rQuIm5JFuP%DB%jHNr zi!`)W*QRun#OUa~b@AIDv(@NDUaoy!#<6?%v9Oz~>pKeO6akj&k|_sQZ#$p{lYs}| zx>>Q8QOV1tv};%T$ga`KQwsAF*}+#m)Mh+x*`4m($L_?Z7vA5J$6*%25G%(aHoMHx zWZPoK(cRrn9uooUgNxhRL|^nqwHSMg@=^I;TDJpnnK4)olXkZGcI}N&x49N0@9%WLY17XPqK1Ej~qO}T`+;rWt%{X%7D2^kkgZGTo6_jc; zd}P=TUR=FX-n6o>w4WMs2E)Xt`uzl7`@Ip7qc5&6 zCEv$wWWkLpVn>tYg)&70MJmzTbid)GlW6cr-5Cv{(2boytXj+0FeH~BFsj{4o*v?Y%ahF@S+1tP z(UJMKUEOvUnK9^?b*OVTdhWsEMMGP*{lP%x<%~CkZaF&}ucv9g{colJrCnQmcZKy` zbkE)Jgf7A&g0#CmyT|pA96f^qxC$F@6sl>YC1J`9(GXVhg-9A`yQxDD&XTf6i|_!R z#edM>l{Dk&Mz5&-cz;m!1w2;mEzqXFv_QQu$t&L~loUnoTTbckpYG@3Xh z5Kx?QD6lbitmu(%f*+17v}Ta~=!MHOZWem$3RFxy8is z7h#X;=1<# zvmPYfe!>8PfIuH6l?k%-QEZL|KqqDj#4Yr?E8xry-pe1KyG*B?U1(iAe+Zp9_V*P< z^Rc;wdH)0rM?_U3Cu5siqMwW+4+%IlENp=VdXMSd3*ZVr6qSh>(@warC+a$SwKlF> z_XLIm^&%k=@tFq`0>sJs@#Fcp18|iQmPq#w*TUSrU-8dAq$}qzw})VWCtXu;`&DCW zDZz|HjshTI>Ssri05~sn&-gNtwj}1m(i)DiZf$+IW3o`Y~z(7)%_+7Px)MN;LcDA;J&+|KQ zw{o2*i}M_=-=HoKHw0YJ!lkVte`v{WN4)dT3R|L{R?CFwd&mf`ju zIvce`Vq46Wpw`D5TpAsNH0MK;!bzw#_}N7IqsOZxLuXs?FP*HejTaxLxV#0GL?Yea z#131Yj;b0?S;PAtO4TgpuOJh#F7%H#6Gc){Dr@&|J29En6P;>otfy>=)jrs_NIi-&Ln%lLmk69=)k~ zmj%_~pQCfCU54-1mhJtt|K9lfFD8sw*Z!K|A9K~ObCBVe~ zuos^uf4RbfKkgrfv45R*^1~|fFDu?dlU$vLm;6Q3WPkOc5i;zTwZzgm_Tt44;tDJ5 zr|m9Gu7{W5|JurSWoN*z9zD7U&B7m(0CoPqF!V{-*ZhtX3Mtte*4=w~kH)a!udLPo z!EU5w%e=+|x)bjwrr*~OH}0Xf9{P-gN)7+bZdU&AdKwz}B6KgnY4R}iz_Vx1-k>;J z>ho#(J$|BFg)gK*^Fet`cf$^*092KvCm2cmzI(y7TuYKIJ3FIb+{R&qdm;)KRWmp* z(=tVIf@pjX%@hm_@^jXa=uPN?jTcu!ISh%AT=Go!={?XG?vqnj)-0X}3BO$HnHcS7 z{qG&V)tg$2(ZPH#F!JjCc`G7!O6V;_$YckmyysHS>*|z{!Tsanj3wQE3#ZJi`i)z3 zLE8FBkYZQ=oRGhNh{^ZZ3qh#QJXO6?j0#XA;kby#8U(#WJ8}AvI(qlu(zyhextUk5 zUq_r_qM5@%7!rl>u#ZgjCJ~DgIlqZ%z1GK*1i9k;IBGb=&{Nf6;?EaLY@aY(QoSF= z73qkX`j%En&SQv$)J2tWycSNnKw)c%2gMbKs7o#cpb}DjVUg_}1CC8)K~phpMVvHrbQt` zgrPc<`mD$BF=U7AInl{48_0oCkiLmYSULXeE^%>j&us@!!IhQ~2ySF6WkzTb+l>$* zMo-)7omS*PwD<4Nf=MV#@z&DG(COnG8-e{9*JpS7#Pgin3_dGt<` z9(!T|0?)wJUIVNP9gZY0awen#lOAKn5$JV(+**l{Il6*uTIEp5FjEd3H~`7o2QI!a zlJEdXsiZFp=c3%paJaVdm@N1C&K+9UE)XvpBp@=9P=unPfi|JNpE%-XCWncUoLwRE z4qjppdJhvc^VC>;N>ZyAUo9YKQjr6;NY@ZvOJZuelZ%~Q5}2DDnF#+~2MlCzyTW=S zb#m*~6vTS#Z-cZ0sA@*Lqe4ncN=Qf6860Agp;ti%$I@vn$H5z^Xe+7|nU*FkMqsg` z@RJ-N3b@IX`&|38G4XN{YY}jeu~oSVAL*gS@i%^i2F}gp!@xj}g+VAG2N%T3KcAoOG+H@W_rY;;sN}_q zqcDPGz;<{a^qIin!+XK`wmFRlK^WD~qA0F6)?Ca6PxkY-T$;ILAt=DSNIa@2Jc`WY z;fYei83g&${YS|0YV0p`Rhgepb)LsS3SRmACyMb%xR{6$V+!V_x_H%t#GFdH=i!zl z&exV_SB^vXo2mXie79rRBI~aq{3ZBYk+fnFk11*rip#v6HIR!@b7lhJp&+Bi4NKTw zD{xsudhby85|)Zg9|<%fPE*lfwbWoBCMI|+J+i)uH4YxeFJHdAGFmOh4)B_+AUgBi zb*Qs43A|D_)*LxE6I-5m&A=qSHTtF>;uMJom-GEC_+wOvvpg)oqqE~}aoAu)IVLBa zkrOJRg;T>}90G9zJgp2uF--V(i5q)6Xspp^-;0w8NbN@aT!bV89|8(n5v5Yyvn$$w zm~VKLiNL&$0Fqi&LK=krBB=~*rR7iiGdEO?T0Um zArYvi>d3*smSwnFA_6$z$oGkzCekcEq$LK`969QT82+%3H~@>uY9{S~s2R}z)VhSf z{yVd0Iw#OBDgNP>t($`Yi}0x4^z2F)&fJV7s}vS3pOG%PR@jWm$&LwcKSlB~jy}m- zl)Puq*tJL<3vX^XWIh_Jo3LZ#@EhR&o(ldpVv0=%kFoL2W(lXyDtc#e4ggHfN;ruM zl~WA19dS-a$^^xte?!84WVjy3z=4A_!ro@e7Gp=6dGAh6Geoc@U3b0^w#(*Vf`~S( ziG(@M6}4y-j^ZV~OsJSX#4nq1g%SGo?JY_$vyekQ&}VW6qfHt?$Qh=DJSAHbP@CLi z3T-FE*A3U4s_^g2#Ci((cbsR%79%G+!hWiRqa*!Bx>n|r6^uBPfjw2`pW)-OmtBn;|&}jhF%vwH7u%b{EF00V|mtlZTY5u58HoX{kIvJF;w-p>fyS zhX=*cI9f%{H-N2H>a`8x6lq?>41#2pxUprz1#Th)Qoj)!hck|^tuZ%5JH|#QR&VTW zX{se^4_Li9aH05Wn%ol-_SgK&+gFg)vkB!TR$!d%;Aawy{k5E9KvEjL@!n;Rqm7i{ zkIOKslO(N`nBxuQi^5N0;*?3pQb`Za#KpoH3j3nWqZ+Tfg?wVd!2Z}$?=z{uvAIlKnbS^SMUA&B{bYu!?)P3 zfL-M{2D}C#u%oXp0U^l{xd{zh4M>;1B2M=QP%+55|w26$Y;237lSWxVSy~m_|Uf$ztPCKE=^^ zD-y``F{JNzoIw@*Gdp4_v(_Wu_2TqRB?1z#7nlsR7(bm<8=ue;AP0irjX97=NIwvW z9VJ|hA}=j{2eB(cR%G%7Hu}2&vwSuR@yL_&d~qIDG^$EA>+Lj}t4=$KvFq~%aIN@8 zj#?q`4|o%VOv;@D52e{PbDzQS9*&14fo;XtUAQf*$Glh|6a-sB@{tkE8!F`>-c|B< z%(A5Yh_@g9zYFh6PUj347j;7=c?R)s7uu*?YoMKwHtgi8M)NqO=xwVzVwq)Q2{Y|2(XLmY_b?Rd=dLL9ow>O0;rd) zUmU6hfBD5p_?FlaNeS;1QwF*=xro-=<27q;@!g#&uz4VyM1Z9&1L1&GRs}|kNCG&9 zhKvERl9Kp?ARTe}i&)Pfw2dCDvj(&_5<4gsRWF8>96N0_H)97&s@6d6uonp4{Bki0!rVQysQ!_;g9f`B9n(mn?- z$9wa|(XOtGMP;8$p}O`iof(eIARUgtI)d;QL6Fd=*jsdzMi4NB^+WpJki^N6+3@V8 zo)!5%4_zjF)i$1mBa{OKD)iC_=m6D04i0>D_(~|rmj9=+vk$7W&f@q*)?9JS9m#Qo zB-G35RS+d;k~hoRu{zD0p=XBGkFhRuAGL8y zRIxmunQ_)YIuT%=`VlfNVr(M~pXAyS_fSuarpByiQ%Y6n?{EAGRw=r(+lS zz+)Brr^dQD^uAC%%r+?1JM@{CP8+nzKCr1AS@;pp?Jr;)==HyA1g5`|Vb~*E;1n|4 zwiP0@&zGiZ2X2+zwQ~0z8cYp6Fs7~cGxlT%15i-v^&1p9#p5P!-ak#c# zF}kVv7?;a9Kx2a;xRC{H zK-&V=10`)Gj_U|4t(X2XNgCHU_(xa)_rZZ%BfH7^5<-%j<}x*`hEXQYXP&2T3g2}1 zT1f$*YNgK}U!1adCp!Zw99(nG46_Y~Z*knupso7wg^wuNuR9K@B`PSy7<0q{=N0B! z)?;!L>d{5O%UW2HQ>d`07DJlvy!>`haGWD%IB8($0-9tE;cOw6A5LxVY9?b7{eol^ zpjwqCRL~LVGpQ*HKxw0%eDXuKCiQT2k8rgMx>u)UIhT44iW{wKviB+@toG+&CZKsl??aNFD;m2AxWAxcQXV z7O+7{T+Q!sq577wjr2y+q66d-TYi=b0zL3LrA286pbJ;eZ)O2_2w}a4ymybA&lU5? z+(qsY@;d_N-a%v_t9p6@9d@A81mLYDztTTY)n&HB!ruA|F=$P^Ov_sOt*kFa(zyr&@1W>7w?PkE~P|nXd8Ft8w%=^gp)dTTIZZ*>Hcy$e5?C$V-15i<&6@tvc6~73=K{K`P`rOMwT>f`~_}y<}EJ#*|#SMlb`c zYN^aVddZ`4u;KJ;-6u?GJKX{|zON|eTeGfcwac!Nz>q-&uXPH`)T|VSeQ9GpW=-&_^+b;6Ft+(uF(fhvu_p;w^8&ur7JXG7Ik}N zGIEFqmzN~O30D4e!mho^0YwQjVjEh+^EEX!J_pKkaP1BJJbid~mRoFQJaMiz6fmhz z7@M>CR$ub47V0Hu0xZe@nc<{_iF|uQFW+ZR^HWy)>(9ZMU||<17c9->>E?6539VGO zbmP&b{|slbzN)n*S2`3~mZ7He41LUy;y{z&x|pR9$-0;u6wv?lkhw>31_5jUJ=y{~ zlr1+mvH5e%7rNHacfjdniU2(UmwAP;%W8~e)&9Ub=ke94uK8heEkc9dGx27i@g!vC z->6$J%CiJqwVqn5UX-a~hEduKj0eQ2>(~I?;O?kPT6A>p)YvaRObzZaA57|uataw? zcwcJ>jGC2g@CjLKK9O7cf@F-l*&O=a0*lqb%}-|pLBQ#rIT%8Ju}!%-vv1u ztD(N-B1c%xLA;r66gk7)9Z!6a&)hNtZ(w0fvbU^{B_>Bmo`)nJ4yvP#_caSbbL7j! zxUiq^^0HskfLtst(d6ZABavak@04;*t=%3(q>!olz>Wr`|JVeZ1;4%;$daO2g%JX<7PO%cyK(7&5 z%s$=(M^CW$Z|N=qz2#E>3fQvGY~R?%HoYk|VYz#{3<>C{Cxbb;lNzEY13G{#ZR*=l z&MTS>m|Ao@UH5w*62l_L+E?ujF{C{g-&JW+=vt(cfk8p@{>;c2XiW<5_k+tm^DmqD z1@~Qz;9)&3%{ zkC1YnaCV+BabjlaV+QvUx{CNW-WbhPc3{gF+W71X5S8^o173^&^FQ6me6X6Gdlq6v zaD>oxb>qGRU?zFSowd`UTNovVb?j3{p+oGCSo(`~PPo~8u5|AZL--(zcgn(}02$(d zKTOsB!0_Lf;R>C)v3GMJ9~ncau-f`EW4<9}*H=x44YowKimJ%P1x#r)E2lzpRLdtA zHt%}rN8l6whs)pV0-1a=x5dF=(=;JG2wqc76P&IhP>cQGuh~5(JYK%Id%9GTkS-n; zHc7(S16C`ko=(O2mBwu=FTv2s&KAk;1*^vnIpaNQcgX0Emk&gBii0Bz@0__8V=8ISzSz&iy}IF%uQwDt*+ME%2m~9>G=Y0`)XT ziG^RDX=3&O*6;7@&1~YNh+0PG+WnFGPy#A>L$Q?aF~iMZe)Xau?HwG7_cDjYrn9nz zO41HAu7p`^fo+I-m#zNn!-o!e-u7Hvbb2XSd>w?~%2*UxSFc}3sLfFySL2_#&1!xi zO;yD`IH+~tIWIeVQhaQ*m$?Q8nT)f{^Q$+M(WO45B(WBl9s zIF6o0CtdX&rbfEx2p8XTODT2*O|aw z&@z#oxTF$;QYAyvoLPI4PHa)qNzGchr^5t8bY(l5#Qhx6LZ83_7F8_ok|bP7M|sP@lxjGb z9-LzjAS~>1f2;V8x*u>jU=+QGV3;#aNPXF)$2M%}G9GjuGltfl&ANzUQ_$T7pJu>n z^38`y@PwG2DT0jiIRRnZ`H#1P28LQ+;oh>pb~2dWw2gi)KMP)i58Az|sbZH2>!vJe zKZfS-zqhveT#i5wZHd(_!k3Y81o1lYU2hI3lGc{#w`kZe?{&{!$GBo;EKZxkJfOJX zl37dfo~f9-Nr>SVK3Fa95_s^w zr?1pkvM0PViv*&)w0MUwg9bP9h?t9 z!?&XHWx!+|_(!-@FA=0JgS7Y7pOQ?1j!h3(ubz~VbaU<|a+K`5r3%H0AxhO1bYjBw z%~Gu)2H8=BAiv-Vsor&<1v;WR;em!U7Y2t#0o0Hh$Tjik#KIg#IuR6{2Lx^CtuFL# zwK6g11Th)l;7+j`@2RJ6@2C4xa}C^#m90Jf->XP$E!Faf!M;lBR86c>-GYo3ip^zc zZ2cdG&GBp zX=oN)U%nK7DXcPy!w*r1!#WP?)@L1@jO@c4}SXw(+ni+4uaK_Hw%-TwjPnd5n z@Ah*J4mS2;{QT$tIe^dF&Xk|CW3w?%vcl%5u00J6tr7WJkR+98MnfZ4Ab;qfhBKw7 z!NoyiXtcDy;`H7-K5Wv8M;9JhcbabTk|qYN5Oz+V2bx^lw?EdnNPqo?>dFNg^j_D# z+=$-(bD>nSRwezbxWH??^h;#)y&u0-V_#q{AboUiS$!jm$YqmV_wPIoaW87@%i4U^XgLN&qnfhLYZ>{4=A!@0738OTw9P{DlZBH)emq~cl7syG zeewVPvbRF;y?b0YUq8tH?)ttl=4cAV`RvF0>^EPlrJL-gzlq;9jcS*Ar^qxdrty4c zPUY6+rO(JnR!__eP*hZ`?x>8VCMa#yP16#xs{c~sSRQd8v8F~N%dGlHmN~Vm!fVPt z%ev9v&Mu{@>_*R%FPt!(HE2ZE{JUFs*Lsh+f$bq$ST*BT|AjauEk$Gp=R;G^d@&s`_5&mb!NzjWm0V%|dS)+q(1F$tI=#@t%@S zy?VP1i}ZxUm5N7R^AEmeFbp2guT49d*pTmJG1Nt66mv)_H60xt<>uur_?7cf%xkK^ zoSLF}rZ#^={A<^~!eQ5f>6SYx!I6;$#(GtB49YGpE;nx7DtOR`I}%OkS|EM<90qSG zTz4kIt>e=Ud9~VfeMNVAX6E#;u+0IP9^-#IBi(wBTUtKcxpQaDgTt$oq9hxd!*KoX zXLVNU$Bx~4@ZdpBsy4sJpE3^S(wu}Ho`aQgj8dKjU9}k*sp)y|CP&BniZgl}@>8|a zPTcVK*P5Q19BK_U94la{9k%*jpj$lp(Ry$oYFbY~K!8!e_{!9H zbae5uzH2-G)>&&iI6S?&W^0?^-9L6>5w5tNBUMwIOI%#9&~>Ql#pPuZ{<))V;bgLV z>T}g4TnAN8pN{jK9&c0(TDfv%@csKK78!+FMn*;o$BxwmbE#{ns{ZI_>g??7`kWTt zRg)Z>l*E~JuJYw1)7j?0xc!ap>P%t|s)r6;>7u44y7d)mH@Xk_RgCZE3OU^b7@*3ho+h55$D#{15^+w|2^ zxbXMORe89#p-MTHWc&7V=0;J^3Fp^u-k7(2xJM>E?q+qv5&vz;EiI>a>pYUiET718 zNX~QYPQXlsTCAykb$z2|qB7IR`$CH2!+o_?@rsUv9mj{4EC(1kvfFUF3Ik!&pD3L8$x!@hsMat;)V__A zm-pB*TIQP1X(#!4A~jRB%xaR3=XEB8@3a0c-rCaA@zpeniWjrohOMaB%r)aof@g0T zcuhL4VG`5O&vU5sW${d!njF`DTd{#=;w25u2=zUGvE|V}W86wuVtz;b7(>Px@g$Di zq~E<-{z&W*zgy$I`4!Hc@u9aU6v~Fuza5n&*Zlp3{h1}Y1bQ9B8m7h1ecE1PmA%z> zEt6e<$9PZn5v;k&Sh;`=!x+kbEReSno_~Mo#wtgMz4?-9B9R^#5pljIT|fWTh)Qlz zHdg8pBcm9%iR8q{y=+^se$zXsm`J$&-N&}&{oUOIBmM*{makYLAUQQ+63~C<{oO4=x6)2#GhQ{? zTp>PiYe$)gW0yv9=H2~~FJH>UdQOfV!HI8S7IOl|>l&xd9^HGkoYKjxsH8NMGyU)( zuWXP2)=hu~Et6Qy?bC4y33nM;Xclu59Prk8eEND-b+v>69sACmGGwj?J7NPA^1jG# zmT-N#VZ(+&obj_nLw8NG`nLj?C%whfp86g`ROZH}t{Grj-1L(KmR%DcW%~8v;sQs+2A`zb$ z>8cm7dG3^yKVE@$Yhn4|DC0zo!y zKSE^oX2jz?k~cjy?pVs?lq7#=*NH;ctVrjd*A?;&0Dz@#+WT9wY7Nxg-QBM@%gXY! zNvWL8*ho*W_279Dr&MpwWSG%r=02~nCqaDQyUIBX#4o>so9;+ z8HO2tTlbsye9Ouk`g}6v?%lTavM$XFX!H&ta0}@)mJdm;aRcP0@V>Fj#Do8yzY_U#ToU#)2H z9PgoXW%9E4_B8qLudlHNg{~pFnZ9g3SFR*!XBd!Ygt>{s(dJ`=on&0eQ5P*_11HCa zLp#3UVvUn7X6<4T%7Fg2vF}@Uo6>C8dGuxljkz~AX7HCxl{}I7E<|s;Y1^$BA+v<* zxz=|fVi$gem1d?ZU%`5AEbC{IL*6LGJd{Fth^YE8;(+#A z-`H2}iOLb&wH}2dKW{R(^Xunn96o$Fujg4E_n_F+g$jw`4lL`+KdtW--7hq~Tr#Ze z)95j*f4!nE+nQgV{n_r}cyNRi!{Q>W<2Kt~5@ZYAhVSOeMq)XaN=;RoxcC2jonTDk zEiF^Jg67gIsp(Ob!r||3L2;Lt(RSf@CzT9~+VqH}t2e85CZwFqw#w^&vlU!Qgs>qoyOwKYW&tkpRb(T08hje* zZ>D2pOkpr^KDcDb64$QeMECECU6H_eg1X`&HRm@fdMxKgL(b?q7@;9vabGrTk zLX++bm|P{#Vq(Hw$h_w0aJ_xNcvyFOzA}r~L}r3gc!JA7TUn<=3Ie_B5h;>prh3_sPELsSJdTnny;mj@SmT((U41dUM;Kx(=Ctq=>4o^_7*qy1J5OdPFXu z(~{1X$!pb$6_p6VgC7JdI;h%))B}A5vDjKdW>trP)@s{NH^TUNpXclj&y{s!WIasaGaD5#O4Z~-V1;_xrX*VG= zqM`Y*$Y&$@Ir5xwE;I0-{l7HO0skaxa@s{iBa}&028;abTuu@U@B6R!td5Xy(^|v0 zPxa`vfXJXGITnw>!2X+t6EBY*J-P=$xM0A)!e03Nx6}1DC2OuWSnaZl-BmvTNc76To!9KZDL``pis62Wa8WFSFfCV zgyq$Abi!V~e5r7&&QiE|`hh3!r=JH;{kKQ)c8g#wZOXDAyV%*eSXoOlo) zZ;(_~TIoma%g*{-`*-i&scC85jk{UrXL{yLCvYi5pVK?IFSN(B+BX7wbg-LhhaRwD%3*DU9k1QeA zh`eO(H@hWdReMsj8-7(trY`#0Xi?$C``Ghd>?hUKVp$n)9&YYkhNo7}FNNrRJsY|? zW1bC1WLyq>&1sRYClnkWo{Cl7ja5B7Zck||EY{|CcleSaKrRx}l#;jp+n+CK>~EOX z`U+cqiLSFQZs@BE3{PIuAu?L2>BvfL>Jl3R`=eHLeGYkT-0yUBxy@Ch+x&Zcu%c%s z?YH{c#2AUvijKzV!tEt{Qj`o-@z&qdW^sm2=YGq+ZYb-c+rO|eep*(xDB68?$zr)l z4S7V$_O!*x2i>4twfx+5TqIMJ?0xT*CbWeb#+&FxCpXK#elQ~>s2X|J8`*7ApTQ96 z6)~UJ`An!DsI(;_gSXn3hYas;Eu51W%CpL^C%clHQ(ZYu%akZH|Mv!4?!6P+#^TEc!OY`~P!WPfoDS-K_%MoAlWyCmcC<+TYt|;rT^jD)a2E z|1KY*(VIPu>dIOTiCJ8i=F(&0NZdhpV2zZVy1@JuPjk2nE$_aseFng?Th&N z8PK{p9@QzLd7EAFZW8k1m9(_lBs~Dr*&AS3;GB8l>A9F|*Os&I+GUPF{jQ=S z&@D=`*Y1qsbYw+I7!S#2$W8;d33ZLQbZH?NS59MlTbn`<;>WhNa!VRMw%Wg5w>)$E z?|);XDq|h3`cQd0gKLW%Q1ag92`v#4y8+TSZr&W&9B}hyb&RdIse5kXx9#2tZA}x$eNt1kRkTtyMMXuKoAK>NK)|qT`K>L2``kxtNJI{*d3OF} zgp`*7rl=a3Cfx=#yE3i+TeSF*_|j5KK4?d3ZT<2q6ajmW;`3{bvg@cZvdhk#KAlra zQBK^ucW-cTaLW({;cUa}K|h?3+=*} z54tLU{I+P?=luIrgqWj(plP|rg$vKVWm}VsDsTTS5u_h-zMZsQBbRyUZxWq}Bo9Qj zBj@Iba<4MXCTDxTYS^Cg#lOJ#7)9jxMh@k{G2OFg6H3QFeNx4K;T96gTDcQiCyh<+ zuNVf?E27RceB^D;rWt3MIA&p!t~~2a*}+*L`=0AWHA!KfJ;doh`1Vz%a~7BH0R!gY z;FrUU@*8a#DyDoDD7$$MWhuD9c@$!r2T@C{n{0D$On%uhd$O-U*12D~>gxilXYsag z_D|llzh+TRGKbmwy@muC6Q@spv&Lxxsk7saemNUYz%koEKndrxm{X(Ok`8ak?;=Pd zo%~BHl?{r>%bGB-Mf2d7ZQr+(OalK39#20ycxb^Kn)=Vd{kp%hrPqaK&{=h5 z_|VU`b#r6cbYTu`g@NBPbNJ0P_wJ^ubXPpxT)Vla>*J8Iuw{{&1i@tJYv5${WG8Xzb^r@}JFMzNIc8vBkQ*@6ts(IQkVcex21EDbz*DFmpCEk4PER&Y z@6NJ8rZh{`kt&3Qg(V@HaPQickb;$uQGn<}LuromTpoPYeUAF!nwKB9^i3VHp!G`5 z8!~nr?_pwFqE()AHa5h!ab=?GP*<6G7B>e+sfjoThg^Suzd?ok(WAFNo*f9gTZ=U3 zjHzkrqerS2@(W*yLf~7uY88)w6{5q`&9O}Bo69cx{p(7LtY7vp*gtriykT_xa#54E zG0!^xdaLYI%*?yDZ*2mQE&{eWxwy&@bMr4yQ6p$|F!&bIY&bm@3PrPkUI{CJW`g4( zBjktLc9HnFxO1a_T3uU1w4XZl8Aw2hB#`YETDYF|h_fYgKjek3{Jx^&z@=&ZpFo zF{@tJtFYxxTFS&x?NbefnwnuK1v+sIf=gF*V!(sg*sN182$47k?vhYs{qxoJ`y#dv zYAf~%3M$@WXJ_xcqarD=RT!u8=GKZ3Q%*?iQo6rS9_Oe59Wp$8=ul2+UrzJdfFT8P zJ#%60(&R^so0Jm{%*Yha&ev%f3toj{(v3*N)yhi_67p-H&T#6o5WxmpNS|2Kd;(M8 zS0^hgE9o|D!ZF@Iw8_<0C1Nd^BP8|?)89M{j;D?_ZB;z^_r|R?I7)h*eTHqy^>A5U zy&P5O2SG(oe3Iv`eopQ1Qj|I=yNOisa;=I$4hp%7H_gQ2)gxy&z}s@QRRQ zU%Y2D4t#BAn_}?DiE@lV*|DppGQ)Ey_1!g+{z(gg;-1dFniTzZ%V34wUVV{5NEjjO zXJFd=t-c8LssEk#ke`WaCa;E?$EK}YPZ}L0qfBD{6|+O_VhgA61k*b@fkM$&qXX@Z z)04wIkex}L45DyN^ua}b%n~P1FbP@DiZ^+0KQnH0`P!*Ik$Zd;Wa}vFv2jk8 zVVSu=n`_5;ziyG%)>bY)zVuhlnCRJD<@sfa8g8zUsOHmoHb7l9tc^bd0}Uq79X|c~ z`XnScSR>{IxwGX~f6c3G_eyB?pl6n}!^_m>=%f7N(2dyNn3$M2VtcM!F_SzW1DE=OaJ)D3=PFNfiZjsOk&gP3WBV z3Q2FXbo zBoRik_J;3`?_s)n4>#kVFgev%-^1Q2# zwX&8;>>T1jyk~FfR?WNrlUmwE45NVX);JT!g@d7v`s6wx@2R#yahJA#-~OQ9r#d!3 zGKEh+FL-PeC971WaN&DvPtCH-;{cKiJ>TN-#U(1L%b^mI;cVV1MwvQ%Jr5aPF(ukrueBZdZA1zuba@L7{qF)nVa))l z`mtj}-4=r#m185#0q+Zr{9Ch?hr++sw|QmXk9WDo%dhCH8+pq>RNq-)nUgl0`rxH8 zS4Onz+VR(|5*Kd^o;BulYN~mtD;ObSD+4AS%C-g!#A~9Ng^q#2RPrSYWmYv{FJeV4 zAByaNYdHXGuu74ii-#vwuQqJIbtG;|-&h>6D=;uH!6cm*1*5683l3iS7azO4S2Qh% z_ua@I^?s>|70k;;?}UbG_nN%d7nyWu_JxJu-1h>P)_|0S6e#v!x3#ElX=WG{+C>PS z|F#e0Yex0pMhJ)RMDy6OV`qF$Sm9=gMFXV9QaHT0Mz<=trU$cdk<5mG0kr#rtX zee62C_}C29l*2-LrY8Ttc)9215 z{q1Ya0Oxn5prlDKZbRdl{{!W`{5XgCQn$vn11f~O>lN3B%j)pn-OwGL?ofEA!Acva z4-O1$Vzw8H00mV=+`Qh5!fP@rNqV}vy1lhvFOKhbXLIuKC|`mOsgFC2utV>S=jgxEKih;kp8Q%=L( zv?b;x*{oD%^&v9e=uPR%epJoNxt?J_8fdj;t+BI8VKSd1<;LW{{;wAjw(fPFcqW;XN zo-fPKZzhVud%0P(Rr~Kk?4#5fIb`G%MAUh))+hJ#d}8g?E2Io>0l7}!KZ3|J7Kzfb zJ(mV_mFJT7kkn>2d7p!0>-1)yOUOH`LX8WHyUShY59pEeQ8&76wQf$>P}7y=eSCHC z@RRw6D^}}Jc&b5nRuh(vf1>NvAwoB&emI|@%~F_CiQ^xi)SVS}&)7-4zdn1Hc=o%? zn8axq$S@1+ohbjv*$4g^{Ja(r3bkdfV0UBw8Eu_aaq#$M(}Ly{>iBtC`buu?oUBjd z+)8F8@qPB`vJI#w>tNk>)#pCB@axO*uFUtL{MtZd&1@@uYT8L{l(zW>oXLQu+Q0i# z^oRH=5Q;;Bf*!!j2XI%!mpb^La-?|Y(8z}m$4L1WW|%4@S96(b7qN-_oT;<~hwcvc zucp&|dM@ydKT|5H0;4QUR0CAhNX;8su|eSpWZT+6L+ax*ifKBTGB7!z2&}nH6r=F| zlQ&3H|AUtzGwIR~jewk{32`5~4)^v94g5Db*G#fQAt*Akw{P9LL;sEtzgs_L)5~iyNlf|G z@b0nO#m}EnUpkg$lczS&UQxT%x*!J658T;J;w*?V#2MS-ijN;1Gj86vemyxwRk77Z z1ct(NNsqC&XP=B7*tS^Y&yx9yX3Oe#-GdyZgT0j=DcVv7RoM#y1=GKtYi+81nG7$+ z;}dD`%F6mTSCo|Z$X(FaKru z>@Ph9q;60c5`Qg`DG$pnGTiU`sII5$Q_SVkH*3@Vn1h0X6eRj!!K!KwkV=O_ngRl^ zxt^O$8_y}Hz7z%u?en2=jY5LIWu3p$|0(at%@&;8bDqAr{&5F6 z=krv>{H{45%YgCkz^$Mgt8WIdE~1?~&S*NOdG2(aK5l*+XM@M{1H;Lc@Ucp07`a17qNKTd8&B4CpX@$-SrN>6Bw zVzxi8APq=qalL8;dSU=l-X74wxC=QaQp3k}JyUBz_oEfQTyjof_NfjKf&T%H5bPqd z>3>~ti)Ro7DiQfaLnBy5CQMX!iatBJvb-Vyg4AnF4 zy?Y-kq<1=qAq`CW{o7{BIsG7#UzA}Sh%K}a`FV6+^MV}e>LsgF7P^4%o8LdxE7Bjj z6;I5Y+t$oa{dZbV;%qQxpAQDY-LI9^1$;J6w1UFid2P(qFXsF^n#~NEGUJ|8-i-Us zZHJ8;NIN=F{`05t$0#Yo-6x-EAh-1V`y`4OTTf&fA7*d-*gF2+aOwf@S{J#z7H%!Q zc*>P{dWfl}SQha!slT3yL)h0_3UpS5Lz(j1nULzBIABRClC=|$Ps`^PTcft++IG)$ z5FEN2o~izMv{A#EL6iniyv&!q-RS5sv*w35%gM-y77BIiK_GHyg zY#R_ohr(*8DlAVOK6lUM7U(edm0pLbensaFI-tb{|Zptiy) zzel*?Lf!cUV=%4Zeehg1cnml6W+Lx!+1BhJmSxi}=S0?d2$JPX5da3@e-1OmQ|2kP(i8vUy&YV4~ z5M)&}dX}W*F)=a3bVNml&d$b`l#`=_5~*WUJ23zDZBnK(dv$F+q`ec5PF*x`?>|iR zTErdVY3j}E=2Mq)!UE~y4m$ucBdKSzDRt-r?Sx%VMjIPXRd2B&P`^NO;tRSjaQv>!A)nBzHJqQtoi5n12WpAQC3{aO;#mqz)wV zoUn3Ky}tCy@p~zY*F#jXB>G=%gq$5UHCo~I&MG_f8nIv#FB=q(!Z*5bK&uZ=z2nK~ zc(IIySdZD|i3b@uZ;z)=CY#6a7t7wge_su&{to&3$a#p}7%TJ`Y}3`Sy3Dwpq5Knz zuA>LJ&$lyG@R91qslWS&S%#`!^HpQjx_oWSh5?dbJPMPw_>qWww1X%U`Syy zdg2Pp);_zIqw;Ft4WKyt<*Tq+gCTNi8+vHMLLI~=0c#l9IK-)zlOrOp2FdWL@#~dN z2M5QxGmu4_zrI1&>t6@o^FuMmE>1|!NSt=B@4mQbSxub$#;=yo-WN5pp!?t+@o*21 zWBsS#`MI`7IFUl>@Fa1sLz?A=r5y`pXt;QqSYv|XkiDKmW=k}z8M=O`H2K8MN4i5) zN{hm{XJU2olU!3erj0$0DUn-<{}NHH%d?MLi%%Ou?GQ8^lEQz>b4+!+d>y816&|gJ zpI~0q1O);MaFOsrVTF|D<+fq7hE#Xfz{uU;qYlADBJU{CZz0t~Ht*^8Kyw3e$JbhH zIr4hS`XRPI&8Nl8;62h&jl=e5o`7*m6 z%_yGAyGqNF-dUZ+gEV@d8VlIG=Pwu2FmN z7L{#Dlb|@GlB>jCDCY7f4rO(^_3LBc(atrw8wb=%#f!}C*v27@$N{C5Hhf@8^!}o0 zT^7V{UZ0csvZREHdRWhw%-9djXgpBLf`yl4c6HCvU=~n497upPh%epH9McQzCTZu; z7u<{)plhaTVTrj|i6Ryh3x&cre*3>CLGw()2=e}Zvydr)2y3G+O#3OIsY+pc4kG7u zVn`2=_#2jR?A`;idq|Rxs`mrp@ThvdR>|2phjd5q7mdh}oWR;^{Nx%I$$AN;if}ST zSdwF{{9efcQd2tQil~tc!4R%Y`Z@|Dt1%68vg#vp0p!WuC_y5<{{-Mj(>8E997Oz% zT~8_`t4UuEo-(J95LKghH98fDK7>LU6v;N`0Du3_tO4Q=;2Z0P##V`H##4)0zR6A% zFFQj-*60L?s%&M)x9OedC}vRpKPpYga7?2-v>=zyXkD1|&i+!CS~A11&8FXArR9tA z_ST+wV0sgG5o|Alw}<*R%L!(`f;2SIxo|Sej&D zq+WdR^3vQ=IO~(=Di*tK%i(}c!!wZ>{3P3(iR=*#70Q4dE?f71iEJciBoTRpRa{ES z5WLJuW$VM0SB*MQet`W{c<95f#l)*Tu;GOx$& zDcQ4HD9WXO{XQ0{dd+^vbW6b}JR$Jlp%mH)4<7%3*C$2K@7sRP)`0m0&XXK(k~cc) zU3vLmS9cgaYMa~ttIsm7R0oXmXLB>zx^(pP_j5ydE`aQC7cx&|pn6K`B$yUW4UN-X zdbNTX-hck71_x_bpG)PXHye;+;d)n*bz!Cwoc1@r3p%M194o!U>Hg}luq*b6Ait@! zm5F~}QK1cr<~rB`RvvPdGGFP{ijur|hxk`pB|m5QsAEB#&N>lt=T5Ug!vf9&(Q!v;O=A2-g~>zUYQ zC(*j%T8TPUqzfFO)aD_qLoT*+<}ok_x0wa zEWB=UXN7jZ#@E#)pL|v^Y+AqmMY^jH8ju_n8fr+9;G)mVP7WA_AjfMIdwLK9aB*Zw z6In9USUK7ROX_yva6e@*U+Hyli1<*=(}JWd)3j2-q&6`#&l+GBbJA0BuK#J^R&D+) zlFKZ1KRmp<{U{$IAt;r)l@*@_<;TW<`@4v{ILCaUwx8-B&iml&Y?Y}Wnww?wdq2Trkn8N-i$ zO${^GE9Jr})7EzkDK6pMv1`|xzU!BN9Q?0->>$A+F(p3BwRn`UoU6{dVc<~rq=za2 ztibahJ+NuzRHQuLpyu8y zEk>P`05J*spx)=dJc_xo^KkT@JA(gH2>W}_B+2u`l-rwDApY&w#+3-2-20^$Z+n6| z(T6Q0BqDnx$p{j!(LVJxCc>s<6QJ>h6RllP~0Ng6v7 zlwrU{8Ky9+g8m~U#DBBMfDt*BTSEB>Cxx5T)&EbT8*17!byReVUFiFs2IMtEg@zp8qz{nXW@LEoMA8x}Nhx z+cDHgkfOzsB28NM_bTwjEca16v_w6+!RlKa_VFIV3+a9$%`0G-L#SDpfvb=$X!ts? z#IQU{Dg(>N4793MYzi3@=?R%v;AtfWZzHP2qRA{eh*hXeI=&NtApkeW@Hi6GSlq)K zC_n|wUZ`AeMvu_&=58pI{m9o6)S3_d*b^=YYox~MLvnIkGYbAFobkCvV=pR-Wc;*4 zXVq(+Ok*DbQ2b^v|1)%lZb%ymn}R8u?=!1lOWAf%%zHIc6N5jrLnHL6v}9FL4i1`#FM{FrBWa6Suf4E-}GN4Ce8J`7QSt5 z`G8zCF)ogctRGujTT()3E00J;ewwm!tEYpgXf>!Hbk1sth`!%VC9rc{CWZ~}>swxM z=u9nL3l)S)MflUy(|d?)C7>VQFrbQVQ3z%R0Tt!t=}$%0i|}!ndUnCcq7KrhF!6pF zwHlZHSG8&7&O^}{vnWilBvB-dr(13P4sfefl5!UUABP4b4E$`9Fl?} zAQLrn1=1T7-?|AI1(77COEf*}gUAgyom;MovInUwM|w@UV4W$#*z=57&5(fBH^wZ` zzJjSqhCKz{j+g-PH}-aR=v(L;q97ou&rXM}ZjMb%TSZhx@$_V0-qct(kKnPz>#%vz zfKB+sqNS^6yi4+G|0zvrS$+DQ`hIlyn2gLN)WL9eH_~1RihzdZ7@`EdSv{Rcq1;0r zP7)RYlQ&0$zCAmiN+Mr}<^~k`q7drX;FSFNbmMlm2PNs^Y03erO7+`=~UbcLZTHVZXtu z-E@BQk=7+Qqv`f}EgE-oy3zFuptc7+9k+0MTL=jhfMOGiI@J*{Aw)d^B(5gd@V(91 zRt@H8mt@2&?}MM)0{yIv5RFM2?WE(XB;&L8XVI-hI)1*pcJFRR3v_QSnpNgrYfJp1 znb9T?E?DZ%B#5Zu2jzhgz0v!p{$>|%L4vj){f{f)>PiXwN|9Gm5+cV;j~7o1u4R$5 zjEj%o0>&hSB%YZZ^93jN18i+Yf2uIs7Et%S0KxOyBwTCutS$)?b4(%Q9_~jQi7;vm zelX6|d;!X3Ldq#I&tlxV-)gXSxAWm9jk2l1M5!&vVzS^o_QQQ|iE{sQef&wJgc~DJ za8P85^uJXWxY(0UW#TQ#1RLh|-#m48mnn=3r;l>?0}Ru~o;U43J1sF_0z=N7uavLP z&WBeblVJrLI|tK4KRygC58#AW*p(P5k}P<+HmM z`5Ib&ds^1r$dN9-1qH-P#O4j{kZHa{cRvC@$1NB&a^E%oeQmsX@ED1m(Yz1m+977E zegA(x?*VV0`Lu||ameqW9TT-qAp?a*ZZMtp8%511fg+7Zg2+9z*{gwt=Eolrs8c8q z90w2$c)fg=(|G%;l24#Wa#5y;G)=W56(z0m#8&FY%gwDo(xcA4-MqZP4OSVqH!q+W z5rCrW&CP(V>WPN8lOUreIPjgvFM_cM(dd0kQ4Hl{UV^9eqz2U;QV}BkJc!ur@}}jK z$}j;FSgumh;Yr*$-=3HTj2A#D>bQH->NwiS(am22yxQRNZ5fMuG;%gBi~~8$0OwzL zFbN#v(-IV5c{FbI-RpAlfEzwvw<8NlcLlscdFn9vS6zrKApa zCPtYWthXK5r97T$oN;=Z8zTBu!Fv+WT!AaXObxO2?g(G4a5GxR ziMce(bJCSeF5y3_Cz?%y(s>I|MF^;;J($IL3 z;*tgrDzjQ@YC(8M+|#G~NcWQ=@J1@b*k_>8gSXYP>nDvmQ2k2mxUk`L)XU+!nD zGb-dPVsBy>zGst*bvOjRb{G@>IcjQ8@4bKf`~BXxRy@yrU-vbf=W!m#ao%^%Dx6|i$Fh!&j*fvM zdt8~0ZiNON-Li%?tMHTHSGE!OOWf{+rk#qFk)7iO8$-G?7woLft?bNAE^;~;+Sr;{ zSsvgQ`(QEgc=>1@ix8G1Ac{baak# zl;cNLuY?S?IccieFTDHdLf5p(dbMinr0aVsPdeA-03nf7YD>LvYR!kV?)M48yu7v1 z<#M)-b<`bl+QN?1(7IL;CdVe#vj+>ME4@GdrRsBSMe&TiPVblUz~PXo^5a62R|E79 z&=>!S5zukUwm*N17vf>PlKic3Bx^bOdp9R_8UFJ4`_Clu&(~|$U^3|F zKL2r(m;7zLyoibXeQ@#Xn*E>O+(>CMpZdEW6b>%yn0AMbxe{L7F;p zNh$?bo$SAV`q(dIlVA74=EY!}V@G<>G$|cTqX2Rs5*rn>%*G=hOk7G!j%!jN$do(1Rd$Dr;=5Mjlp*8on9uRgO z`^K8Motygvg+dvbn5g{Nd!mPni!0{*o9kj0wJ$HoNKJoxA+GutU6(Zd`ae9V=I`!r z;a?lmmQ8%BZf@-v{dJ&$K^+}K7G=3a&a;H^`mn_|IVE|EK<&C zJQ_)S0s;cJZr=PB8KA3t@#6DheGAdxRSYZ<pwMIrpYVI=ea#1+0{}GuN0PZXac{F8U z8HcI8r*W%Aoepfd>ctwlA$_(lI!v|D%@uPMZ&VSa_454Dpp2QxVU0}7Hr2FCN>kI* zaVE7<(?3f%YSVJ<`e>N>7jbIwA6ia#BETYP%? zW^eL(I-BKE8gxGQDxL_+FdqK(Oj1g!KGj&!b$+V1`Q?QhEMk@k%U7=Zc5O9#_4SqO z$KEpQmDbkQ&Szo#dj$oR7^P=la-~kj+V)mXfAy9g>w2shck%&CbAfB_;n^QDbE8$# zT4|Ra6_3u3lnDeKFn&mu@ypwL@z{y92=BwwvQG~=sweB_`}+DuoJ%!|)y}lk%CU>Z zmO1Z!wWGjQ#JG}GYT}c=X>(dEJ~wFX9{2Zdg%~{S#1W0>$Jg%DE1<4eMSs@ZJi&7V zTTu7p56nU1SYPdUwG3n5EoR;79Qy%bhwqw$t=TH;nfZOWo=Q3?TQsLB-Py=3eDR+( zO#D>M)r{S-K1Rq!BLiNIVNxKGUY7H&u|AW43aI6NBNfB8>;f^;#*I&)^nph6{(Fu zAt4D5*$(jt2`Q7c@uc7SJS*$qiQ~sFl{{pNQ;ns~IT=@m#NuaC<8>+sD$c|ClVb=h zrVI0PJZGQ1-lxYwr&&oy*CmH7FU++Sv*LMS%Sk!8yGl`~x9XSrY@ZP2)kwl`}X1MTBTCk*3%J%oau>ON3Tw5(IE#EE7PZkP`=ww;H z>2y$5rYYq*SbQy*8A|17Ni%u8{rwgRyBL|40@oQ9+I^hQ7H@_v`(Llwut5~lGgv)= zvn0BF`SKdcj&VdTW4mwFot~4YPMp|EyI;cL-r9)>Qp`YkCr~(haf{~#K5ACAkAeB8 zmz|!yEJ6miJBNp@a1y(tM0AE<+;mtZTJ%G&&TdiUPF13aoR=Y0kA+GQ0KMCpt77fko_%FqNa6x|fI zkBo>oSf`PoDfsn!Q|iQw`>#$fJNLq6oS7FjIqABT5iif4KmTkfe^QsyW1Y_~<$MVt zSx!O0p9=$V<-^UHNg|tHtxerTN*Z z{<_%5^u^XOynKA81qB5+^yaf6l0D{P*d|)u`D?vE9w%jDyZNp4%>G>abaGS!1oRXp zsraY*v18YF?AT!$@Bib6wI9Duv)fGNp<&g>yUu(U!Twe+oE^EB<2amzZ8+m{xu<;V zty{NDszRkCoX28{#lxt!=PkyJ0u{`z_M{(aS8 zQH!q5&hR9iT+^QNK)KVWeFFjlHuGsdD+>@fbTeMcW#SU@3y;$C<2hB1BV81)7A785 z+03?@Ncr)J7AsyJo(~r)YtlJrjBFBIVq%%Xy;*L4#VXMXeX~=eK|+Ri5$0*(IYPYY z{sUo$_Uw_x{56EjcyR?@NHJ?na{l^2Y%!Cl#jCGlWNh5&Ex7~fkz%A7f^gcLZWfIj z#h(cl?QhS|ZO*U=4%Z^byhpP>PK^XlN=8L?`Mo&(p}a>a zhGi113Jh9!>fCPqWt?KbGDrBw$^;6({rdSeNW{z^Dax;Bo@8r`ix%O<;ijo~_2(^r z0lg&bhl;=hr;z3}@}0-O52`3Dt41rZoq4i#sv&E(( zSd_HC*b#V7Fhts27hku%)RAVQB4W|3x-eDcju|?Q(=VTDR8fPR%ug8^8^atwt&3IJ zjfnFN^I6ZVcQqWlp>1SZ-(})E#rAuc`}`|`&C0JXo}egSTfQ=7aIQ3_PB+cWT?0sf zgObvyokSHMY|lSbp$`aSScn5PiEtT>Ly)>>C0#&C2rpf!A-`^33=&@qppNsmaIYG3 zL_=jNHN@4)QcO%tYOGp@EK0%Lgtkt$&D#sI&$#S|+jUNPv)5yAwXOyC6NGz*hWLXk zjKYSw17-e6(lgng-q?+_X?t+~{qC>`alOVQ9TE5WS-Su(X@u&1W;uR!>w6SJ4u0&s zV#=u7zs?ieQoi<(GSCtwh0$How&#BF9P-aZX!<~ay<*k#6ZcqqPABRW>JBs{s^mHh za#6VD{Z-@D6A8E>JJ^JM`2OV17s#SUdK4w0fQf~kU@L;YR<2x05$b3eA80fiY)+qW zSi5#DIlmtQ1gyeJ>eJ0Mo*s79LX49el^l~@W-T&C&PD2#pBLZ0eM=BhUprYQzdcIF z2om;+LA?Hkc=hqy#}{fi175l;6zA`+N`wjI!N!`#9=31Paoj5|eh%ZT0h&m&>6UA| zT*4-n7%$_sA!z@F>p1c8r`Vm2?^X=0iw<*(Lvl20$*`Dk02o##b9MR4@u%Xp?+P}# zm{ygf=Wib_m`NhpK*XfxxT56Go5%;T*s7*L57Seo3sn`TqcL=TdWF!OR$1< z;WDeo`)W_AM4kSKTvwlBC{O0EHd;~R%9SkFS3Z5U(F0hc+7*nF&*c1g_VV*9Aint( z78Xi9lbZkaRl;Q=fq*5yy(%ZYHn7zotUsR~ABc7;tX0XjF(lF3xhK%r_sNr(JAdzv z(|mQ&xi2!{y9JJy3i)N6O7z1}Bn7nuO{LumA=QX_;|TDkSi#Jzp}|dgPN_f=xxyv9 zIAI7rO;#F-T55oW)t(I7Hf`AwgYzecFIs<#WEH%4vtVJ~CEcu1p-O5phF$<6(C&DynsTwARQ=NxjpDROc`?;dP3u8UJE z`!O;iba&I~96#pMv?9fnaWRT7}*W}+Ia{FZzwP9xd!bg*c}7L-Pp z=fWP}y!nUz=hxRxetdr7!LeKGwsv-Qz8h-G1@_4uE*Pku_~*{whM8}#=9yVZneUU{5!Qs?HR;558L(67QYrhTB z($bWkZQp=`FN+XfAz|aTZSmM4E+@0L7O6=ndo7=ynfZH>iZHm8^XGak@}d7PIZ>Vs z^5RIS4{8j=eQljp)cd))xssBSAvSAwEix81`M-W$nL`C2L|@#m{Q3G-S63!hRz5|= zD!!*)gaYxP?n5|3A(M<>siA<29@|exbGr69B7zImvm6rNSw9{%OQ-P9!Q07naBAdU zol2oEK8t#->+4s2dvR;Q!-o%}RPorrCV^SuLJsYi$kwbT#ER2$DfLqRbA5?62fbA) z7payh*8iYjy8c4OZ^S7{P0{Z9`DDczE;cdDv3Qi3q*48Er; z`t;LZ=W&XkvvJJKAuD50{qt+d;0(#|02N7XxsEN~0DYweR$Dx2j~}Cs8}RPomh-i? z47cWSPO?e$-4tu37khkd-{+(8@p!0GCVCk;*_TFT-$d@;xPJY+_K_nV=AyxK6F`|= zy}i*GVm#6_Av!qRXTuRwV&wz)*U{6fh9A3Chw6Q9cC-p;+)eXYg;A~h!i=8OkJl?k z#>dq#cWGcf`0@)!d#exy)4RI6$xbE+Xv3sC5Plr$nY{dbCWJ*05v6V&piBq^oBH)D z29b9i1A`h)t$+V}`868Zfx*FcpFQk`LedQG)Ys$DyKwGgZ>>9*s+09OuTc;MbUq?) zbGB`Ce?wwC79Tu=?xRPKno|t#k=&&4RH6^1nV3}7HmkgF1S*o9Ogjny{`w;^f$i!D zBo@k(Lv7RQolam5E2TK)uAh1Zkt>AG_u3(vD>esERvu4O)>7zT!`pVLxl@& zGlPHtak}}=0OvS`oB63Rs1eMnpB)vGR0QKd=nqQGq2at2-qQ1$1C7ZV81Vs}+M8?t zu0tS2UX`P%rkkqG%}sWYa8aLWrN?&oswQxcD$ZXwmJc8<_UMgOv~p|v?hj04WFWOd zxMDFGfl1p1Ui9*04zxDSW;>_b&F4i%l4)I4P@sG@Pb4@wc~rNA&9Sx9`q1ISy2W0M z8n~fqmh}ZvR2*^~$}_A|Ys;}8oWbpUkzf@Nsw7iP~ako=T_@D4!@X!c(MXsS$Zs^@XQh z_uaIMw-#4iv(o7Cy3J`usZAl166-eeeY18!v8|P59p3KL%QlBdfA{WPWn2stj$Q32 z63OSB$&x4l^j;=s21Fi<_Plez^ZD0r+!zN4kH^$YxX4l(ECG>8N;(PWzwG;sa;b-Vpu%py1?p7S^h!uD#& z_(KbY&gouWUdLo)#z`o~!bx2D@yu03mr%k264w>oT5mfhqIpLg zw+i5|$+}#VVp!8%R%73xfED2!j>kbEbskpjy-})3U5rvw!wO)|y(dnb5NBP#VM7B7 z;AhC_1BsdK%HHf!Y2XCT1PN2ZTqgp#O!{gfn+x3wL4SqsIC1wZ0?j4c)&OgJ8eS?@N+#FSW;U7_bUURlDQtJ5bIFIp5~^Iq7nq29oPVJ zry$TX1O}lRs82LL<;37b3zuSpOJvaA``%PSRjjX#@-aXz(GD;RF?to}8_RrsnF?xk=6YRV6^z>ZE>oxi^7QVgk zuFJ5{&j0o0UL5vjyYs+4jN~k;f|N|~n-8YP`d)y-js^co(u^9YPwk1@-D~;YZ@{Iy zwES3hn7|bZAPpg6sE%xWN?>ErRwk%%N_et>g*K)dTMOA%nkueZ=c4sLQ(#A1X`= ze*E|`(|iGFB?gC)Mt1fCfJk|C0V)31K<&~&Ka|9Bl8Q>}@Ev$Y$d9?Es&#qnX3fRPL zxK{I4a(S*I6Piu)Qd6YnUAYX>X8@UbLy2O@!SH9#p4oByy=jwO?F6%cZXIuO-g9i? zIMh9~2ynVQJUnvX|BnW3zZDCFiZtg}AK-f+$L^7?(}}zHeZPE-Ja#J~X$`LL!S_9z z)W9!JKG?K%s|jKDo|l%&ih#RsD-kwpC=bu)0z>+#MX%uMIdEA1!NFh4Y#bdmKzcsb zyLQ5~&WA^hw(;-CFt?N(7V@kMRW%o`k@5h?P6YHTiN95nqxUy%+*p^aCrwcvZqFC7 z>5_Gs*)HRG3Dhl%v|AnyRHUH(yGvi+Js=y4>piHfecBmy_XG-JK<@MbwNK;Bj^oS{ zzWrsFh{V&1chyJm09T*m11w-j=NuqOpr-pL`0zW#BoqPX+$@cs?v{QfOdbFBQHCfY zy6$uK^~rjAgyeX2@s{hyyGSDgC~PMt!1Ohi2ObbH{IH2+0n~i8NQSDQVqJm>`wrfl z0Af-T;uvTUHeqb6R(IVP57V!vP6GCBUJ95;kO-+BkzpR0Hj8?)osqpeZC?6$NI>q@<1& zLXpWsP$OrM-f}yq5aER_nuU%10uCXusYcwk>$#uikZ4yWrLOS@ro@bX%l;!exeoP( z3-j?ph93^Lis9p=IF5sc5LKlOY-#LwMP5v6^)j&@oA{MI>)F|B76d-MAv5YTyv5Vk z=X{0HmaROmz*d01yIC+lZRYhAp(f~%W6~=6Ezb@ZSH>7uh4Sd+q!F+RjO2=ZFD5lS zUc7wrdlMmgN+GadAE_QcemtloZ+4_CPAff*d>BLuK?-Cy8BDO||9rQtImbR87!Uu; z?-}q~X$j!~^+(v%t5;RQ0834EJ-+Mho!QZWEO*PxYv2as;j`A(FF~zGU0bobIc&gz z6(9rBgAyQM*YI#Mu+$+w>rDFr^){E`eAESx0S8z_Od}p_6O*G6Y>e<3EBj~%kLJr~ z;O-((%e6V|+j_yNipdg^SdC*xU}yi_WMUE&Sk7J)Pi=SK|NN=^=6a@i4+u{bX#+sF z4e`kZJi!&aC}dUuZV5bkTT(*csq<8KKsQDLh^pi*HSvV-Tfj}D{#B1~!d7!!J&W)H zIpyiaix*jYj3Y6|TF6|95Z6oq^qjxk*-gN1fUYw|%6Y6BgiG4Rx9esi?-8OuWG71Q z3l}aBzFO4$(=!D8ej@EWJ9>k4c^AN8+~?2d=dhWYL6Sk43`eCtaA$XDR`&p9csz1d zJWvgwLU0~3Q|efayZ{k0 zL1fdsyh_e^EvpO>R|(+PsS)eA`r`Tm2mkIfL1bA?TC*-si2Mx(;W_2;uJ>(iIv9%v zs1?LFC+$w6{6}akJ!Oj&Qdgumti6j)W1K1wQ zsFczihjj@SBtV^;0&fl>DF8V*);v@ zt2b(f!`M?~xuBv}{TPsSO+tOpbiNR%(Vbtprj9sQyUK( z%gWxC(xfO?1c@N7Tp*#CJR|VY7%n{k7E28&6d5B5)D(pVCPG|lwEO__TG%EQmN-;g z?G2Kd<>xEabl=gw<0wd{G?j-tshclI=Lx(ZaR8hbFDNY(_9~Hbes!R~C^cmLiF^sc zDTSn8V8Xo+N${i!F7e3J1m(t}ZX@hLhI!L-2+Z}dRhJX%wmZd|i)v@+S~(y(PIoNK zN8_k|1LLEF2S~T>JVqg;Z4&m_z^fAWT0Esa>H)$NzR%F&DpG6rXGv;Ec%%@TwwQJ! zKIXePW@l%cK${@TTnAlyW;UMamWUM}2}6#VjD zo3ZUqVqex`9perSWyz?;seXj|z}kGp*_lUNe9FHn9U+FBi|dp39Fn+=t*r_$tPs`K zD59WX=c$MIF$y69=y6g_q}5RwNiEEdlIbO~qC^5K`^JsWK}~9{-^^D{5Ob_bw2^#b zED-*=Kq2K~&z?9D>G@0cgqX-uAoVR|ng^`n$|Pw3yADpO#VVhG3Zw=2L^RpxQ0EU9 zxbw8vqEbcDsE=0UuxQIsLmtT0bsbmp5+#p-El%?LU`wVV!qcmK z#)dpSN(C~c0euow1`zlS(WxF@i}6qT-c4SAv?q0S84$21b7n+VwZ1=iIBd6U>E zoWT=9hw6WLXs8+`Bw`CE3T`>Va3aRULL`d;)TTvXI!!Uf60lT=TD2$WxzE+R={ant zcH7f4AeEKYlT8MG7#pbkf?J(ga()zeOCD?|TuvDT9$@N$tGZy&_ffOX5-^1L5ewOq zN)j|{vmL}=gqS>{ts@GWVIyIcePx2Nx8snN2^|Hh<&Iszjmh!xdYm$_yyrwLTQwP_ z#(aq0jUZw;R3Urn>eW0zlg}?vc+J=B@S{DF%qgd3!I$*Ms%{t1=?Tc|5}B&rxT_M~~DsR$$9?Y2S>` zt2ENT#EF0Stp78Kdek&aE9Llycai+0&}iM#`GG0T)KFLTpoCWQ%QuUqipSME*4^tQ zr6L^$%Uu^iDDzth^HToG>9!rz>~%dl_$G5Vln8LPaw%CGv*Mud$kM>;`b3UiIrw5r z*Yd#@`JthjhioT85}sUq z3UzMsYA8kAu6urKY#`ZaxV}34_qQ?QP>{(sK}awF(RGwasb|lg^{ z@&w8vk8ELC6U}?}*%5!21mz}rqg7Fl0^|4h^2|)i`|$)8uTTv2y}LO*X9uQ$Q?cx{ z==s-iys?@}aXQ*^3jY2AnTtS{Q*S#pn?;@MLOQ;qSvDfEou*SZcLd+#-$x$ecR}wS zL_Xu(%deo7{^9q`-LUR9ZEZys`aN@W;-1#scaxqvzP;$P_%%*y_Vb2BZauxe(!cid z{OfDi@S&?$BSbC!{k7}X-Eo>UHhia42~$!Ze#0P@5-b*6yn?Ko0dJ9CJkL30)ArU@ zy_A2N2_@-q)x)~`10Edz-L<92k5`^Sqi}Y|+jm;p>+z${U)E?OB{ zHh7{OkYyw<0;-pHx&>GG4^1G?8TXczJ`EBJxXbjo^6BIGU&V{FLl}bHmi7|UPBLL zLo9?}@$nQJMn}h3{ZqDK;ny(uBN?x@dS1{xcLc>G;Q$HMK=TFC0+GwWE~&Zm`( zD~9odG$N##Sc3ldPb6BrwA#LXd*D^>Y-;#1<$;Et!!l%xc$i<93W@(trYu$?Sr?A9 zf(ya_Sz(rMU#hDOc;$=Letvn2Bb@~M&_Pz|%U^Dy!l-dQjpOCn0zP`UIo~Cd-F^0F za6@NzH@CaHyH`cGUBAIRHB%wyr~n5h#G}R7B1x4RBvn1=yT=Bh<6XTi+z&L(UXJbVXJwV&-&BL3qcb0anPKTz&7*; z8iy*uG=bIHO(9w|bQlvWX@k-~3FC?S3E(VO*rBe8Z z^?QH(e3|1xL`77k&M3l}*w_-u@&nIJoZ#KSahOjmGk)t!kVrw|wo$q+gChAOA9x8L zi~t`2QSDHOBU}(d^fK6@kuzTRtFMMq{2tbR zdVajS>*Jw>%l->>90@&@^`UAhtQ=(MIn;6Jw*R(wi;gi}2kBC(D)|1hcN zSqdv7!Wdppk3;%ozZXYBBDs6%R}8Z)eKd)_cqv{<-p50=xg@K;d}jCkNt#pY(zu;A zW0a#4{>>R8lUo;~S*vIf(^4!X*3XEE!HT#0GA#Wzuq_b|oQgZBM|pIqIRpH*VeMo_ zK4<)ybiTjl?JQ-{P-?lpb6r%OlSaHcMNrV+pRg)jCvNgSiBo+PrxB1ueWaf7aw+0h zZKrm|)rDXCeK1%$*J(sHzM3T6TSe?Kprsi(rj0jbEQ(D(ZN)m5GA9J{=G&+ zme-y#@%CO~BFW*UGWbEf{;APkPllRT`V9?><43HHVA^EBU&c?74_J!uKBxXn@+rXR z%X7&`g#H<^9tY5j1Dl59ua3Z&<~BDSoDqgv6>*o}%E}7K_!J0V`C22C9{sJ^si@IZ z;h!Y%2USmHQo!dROwk1`VR^poD?1#FhOU3Jo9ggag`1mOO{>izYg{he&cihZET;88dMCG zjDEq+WS0KTBxlu>?(TXgO`s%EJpI#v*%mXAShLSMn*;u%(dZXz~5NrXg!15 zYj$pqO?0-fj=PCjAR~hiwVVN|d{ifAXK=hHVG>K@kpF)rgB~!oaKL>Zlmd^6WDV;~ zOLzs!vKJ7C#HX0L{=RU*h_OL>LAEhJnLJriik;?Xvg7RgRnLSS)6xAfN5R*3+%mgC6Gh{#8 z+41Z@+}%;mSGYQpJ9=zO`Txxsu4cb-1jI}O2&iZY`~Gi*3v;GaGD@+;LW-`Xc7*>>Gl%}4;$+pQqWEvKpT7sleVbL1cUBp)Y+)KdEgNitJ->gY_Wc2a#7m*LPEfQgLrE0j% zK>>kS3vFBXpBK%{2pF~5TErye#oa_uhuvREKH`JTD1w&I|L-z{nrr>TpzJ7)kVb^9nFmuWqX_BgV;?Dq(m)@Wo& zEyY;YKa;Fo5T4+2Mj^8FEoM$?=Y+5&-^x{TmoL}!*Dnn~^P%;vmajd#!1)ge=q@GN zBm76QiU#G`Sbh~V(k?8G>AYYOlcnB31IjJCuG?w$@kr6bv=z2Z^D_QT`nYp^OFMQ_}NVowk`A5s5>=y2E^@;6wGdE#n2nFV)p zD3H%?3bA@^U_JN@o3sziK_eK3{;}nc%Iv@IX)>?rsi-Mj(9&VRx6TLR@^BOJ!u&`} zGj9?iEHJ{S8Z61_t}_nN%(tmY29(%y2W;KnZ(LdtKHolTB4MNI*9O}}4g}FVDK#jW zx=^3uMyvNPVg9RG{f)_C#BK_RQ)ZO97o{wXh;R^J+WJ=RV3gIN%?0R1eA4`V=`W9( zR-@nHBs@Y5z>`EIb#ii|&_EiBK=8(JB%f)C#L6+5RIwxbM0l~MEY(>hP4qhlG~A^? zhCn9&e$&Rr3k?nkXnS_;ItiIgJ>anzJqP~-4gs*GV-;dcD|hgOQOeOMuaytCi76oM zWONL{$w_!$u-cc9K?0LECvCUC^x0clP9y2}B3{Fcp`zsF;yO+v*5BK=*AOQ>iv4=1 z?N4<%M{XNcL|l9uk!l<%y^yw)`b!KYs3%UHYALQqbx;r9C>`irAb*Soe)TgZ3>AVb zo5Yiud(7I4+xI-V3uH&a7ttb6{eRL}FHA3k>8?!N;8d0_pJMFFLx8bQw1IQ_YeM*X zOOD)z{q#AZ&av*a2vkimh%x(J^`6J*s^=Db#HxwiTw$D^T@;Zc2)H-h{iz0 zjD_?B1br495EljPPa`~K0~nXrCLXSION-yIaO!kau^OC1glKg|w}ol-vukt2Xr7F0 zHJfqw7X%A6G{X=9ktD1_x4APdRd7XvA|*;AA#p&3i?OiWmJbZe8 zD$#&IGHG3bl21rhuteny1G2vbNl(7> zOW`CO`-(`cs1;2fP7ZhIxkEvUsw94OII(&6@2~E>0^|Gh7cXjEPutmz?Q6-jXi+B} z7&~_E1aLc;sGF|^i95Gb`6t91!o0i6=Rah&1Xtcub$d-;(aPU(TNZl-#-UA2OnyCA z5ZmPZ`TFh$rF=&_fjaOYsp|=LBU(LlE6~e+mNWkka!I zp8pCgsI326Q8Jvk(@7H!ihOR0`}|Ziya3Udb;Eut=)eG2qZFu_Ki&XnY}&NRcSs)v zr%=5vjYmBp1}!jV&TRR#rxhPtH>0%oF@6o)!>+vUFQUKm?{) z1Kl4=*4EZh{W6;)R>g74M{J`nAyp~$PQ`xuuMQln%*?wfM5#d_#k3g?SA2+RN;QsG z3_CmxbYTZt-}K8rcStV}5j3G9j}NtJgR*OYJB>R~{#B-VlQJ=xlCCdkibU)92%$g? zA|v7WVK_XCVwP#srU=mEuzBhdgK&mbM`$>E+@BWu1flCHj)quOh5(`IvZ+1Boyp#Fn3)1rl-Jj_K0btLXb!qD~l{CxjgQbDOc5}!_*iD zvd2h*+I@12D*k@5LmmeG`h>k`2U-g623jP%_fnT_ZAg0B)wz9cE;G$Bc`55Q-L<~; zT_x*fT}otj)yi8~@Xud_BzsMN?mNuN0Vhn^+t({mgP%AV)XDQ$ew@@wP882xs!ndq zKMaaSse--h9&TXwOIn0a(g>~!K9T+BtHvan<2Y4~{1fPw6|E_{|0nikld=P=E_t%xaM!ny=e=~k8 zEhYx>_ctwN4f3w*zFDu1q4_mAT#HjNJJH&He%5JjvT&guse_Qs6y*D0(t{Vhc{Q_5 zhbvUZnvXB=!`~@TC#o23gBIeef_S4qWbDc?X#om4-L4T!>i6l-JbC$%FZciJrbh!e zXh48hfk2RMT*Z!H-{PGK>sjI4M6k-e8}}|y959xwmxwgr;YkaloNXR#qHsGn$SGMX zAY=DX2mUASSVe z*|Iw*~Xjreu$1n1V|_y=);=&9>bjUx=pA5)5lih`XhL@tTn;tKr>=L8>`Gs zT6$0qIUXzkeQH10tcC#G2=c8C_IoyIx7NV)o+tkiMbrbn25sI)L!lCP_GojaVoKA} z5s}?_poz0qN`v4Gxa4YB3vIgZBI9sVpz$FjQH>NI%yyyS4)&tg%S=i(EU`W*e6^kZ z@RrrX?;MHM{N!!XlyZW2KZa%&vJXIY)qr{%qQOm7d~;p7e`IcHE3C)zOrr%7(ME~% zi(;n{b0>^`;V@t<;%YA9@B`E5=={oBFqV1KF5-TDz0$zBQZ0@^Xza;HTtLNVP>|c2 zUQoYSskTAfjf$?QR%z$4{==9kA9;ga+gc}1+>8hR01VzSRJ?5OK~2+|<64;tS~;rD zBb0bvLY!E(Slo&y*?@S6AeH&~`gU1&z|$0>yk+DLYAoyYD}swy$Vm$s6fCEN<4^)H zDRdqkj3#3PyX2nY{ltX!J?5{Z1Y6_2dX301cmItW%Wv`H1|E`oYS(Mshl)p}ZHSoN zgM*2r4-)af6kTYLWBu7giu~&1xYZK&aPN|no-a68H<=eD?+8TVO-19JAN>gG%5H&!^f#It%o4qTA(Go(A zXawak7iI6>y`;W_8VY21TX@g~77K6@X!EOcOMuB8#-4&*ilOGx4v6ZcnFLLts*pZm znLf+FCLt^%V%Wn|ZcY278GGe2kz*S9W3@zgZ#0K#|G|<6+jfKYAx7h^asQz?II~%AT+|0S8Oz2@uc0Og;3B=YqQMnzt^4Uw zK5%R2`A$F{A${LO7~U}6R*p?h?1wXhh(yc%nI!CKs~BiRw0}yI^L@EgD;5i}E%xC= zOF8{_!bJ6%MPWk1X(Yn+Bg1>@?XRSt83sA~AD`a{_l`kW2?)^GtjCa&V15oVs!7@A zz7mee0@uVv+gm9~et?S-gYO9m6{EBhu2UYABs6h7;t+w1AU7$9QbGmiyZ8&~e^F&C3~=4t!njrFII&uy972uFj}C~FXf{ssLNoK-SnP@o+Nke< znIlXSjs(m^R_1DDE9cm~Un-MMBb1U>9cXIk2O!O>yil8HoBsa$1#-;p+LdGfKYVb5 zr=`Vg!dEdw2pLAKXO1Y9U5ffbe6@|)q|hXN!UXT4-=Fxo2$UxkF5$8wggv-EA1Os{+ zJq*<#0LYvhoO)1dm6wOIu)>vp4+K3A$sM)wue`yP;%u9?<)ouw<{9y@;T;GhO5>=f zzBt)+>ggeQ+uoqg{=v*8$d?s)THw+n9+ZC=ml`Yr*d?*(l@ZSsEqnRw1i$q}f@(^H zZwTLDhk#nl`Nf=H>Xl-D^d8Cp1!&(s(b3W5JMf0pMqX#Kx%2!)WbUx&lJwyr$%!Wc zKcs=WalCY=_o7o;L80A<6su0ce6;_ZT9^_XpZyR^Ix z&2`+guT^|$DlL&3J`@+rU{dP9-F}d=4=4*(mgN`4>yw;{N$LFa}IT@WF6c0 zg3JRSS~$1smZ#PdC7N`4k_tnt87yEDkcOcRbp4s&@cmO~-50v-Y{DMQNY9>MWIHAO@694VnC0A&Q1jI0*c?eHHjve}Q ziSa5m{$!V9K|#&jWU!Qm^epE`8B`S>)IG&gLD;Al4WgTfA1gc1^i9s%M_Yy`&*U>@4miFUBBz_(KlqBv^;!h&>+f_aMSK zSTkJ5(D*6cqM+;(-$eg)qA>%`$IOD+5qVeS5K;*eVsW3tHO7K}dsps55lG};9qTaU zYuexoA4zRAx3u(PazkBsS~P1g@)LI~lGNhc70{~K57MXVL#&5(ysl0h^_-j>&29Sq zk{-VL+&Ya|;zwj>AKI9&Ui#KNBVJ~O`>!`k;cnm{H+7kKl&$e-?|&fxtr?1#M*Mp! zB5{;J@rjrv5Em!i%bnEiRzH92Pj=#7GCX8MwR5V1B5CRVN**704ck?zOLLlFfPP1& zVsm=g(ikWx;ZC@@)woXn7WaX(2H`p-4UzBRh~aSi z6%H*+HSfw#yDIVjD$(WfbnQ`8jMX{xyDWd{Q}!^N*v*K!mdK>QuXr!P3`6f_;^>1o zIWY)uBu?Fz!u4PD->IO;|6Z2cBQpr+U<_Pq@i@sO{-Cuo9KK7THd|*WC%EW4F37Og zz^VHm+zMwHxNKLhokW4hC%MVJ9d2W988w7fJ z*jF7cL)LJ5aya?LDQ{v__s=`oMYkxPc)XQN;C}}D4hjZe;^7BXACKGo4-bFYU{H5D z`dLWV5AhDylAZ_{iZ7uJfD~n1#0X3}#bIwGTq+p*(*(~W{v;t5of~0!v_its-*bcC z{4W^^+mk%%<%{HjPnD+I)A-ig1JrIM`vJL@O!*EsUa9Gr#pwTfWmn(;b(zB3MG;Q( zw)M)!M>$+GcbPWc3&8H=^!h95vjmF>?fQ+#UswKRjyQ5yChPiuwe4dGd!gTHp7mtb zbu$X&;w!KI(IPI8(xW$dv;1d<9;3PD#VOR%OCfA(P3O9#w=LT1)*qN8YAfk2>Egvl z*_UQ%vvM$q%-mDx#bzOWUDwLx`X;={C8@k!(1e*>>ll%9L$w_idGn9OQ0*bVgSy>4Mok_Zh}>!49Xpohn*X-- zt=Tt5xd`)%+NKW!E+ef>^dV)Nl;6*R$nV~2>#dsg(yreZyLgGQW0t{Pl%9Fi7361E zEpCm2TRYcHt(Q*$Nl83EK80x(W)tTJ+bt|Ha~_Y$PyYBrHc@MlO4A~&BNe8VDaNI5 zZ0oxFe`@7OU3`aFK54cH-#9G8< z!W=x{X`H$SLPi4^!M4_iH+J-8=)qU)Jn=nt*@{)9H4raZA+I$6(%MeR!RwibWfw?e z(ew*8(qXtgu`-q;<{FaE^mwH2CX`%DIGMl52(KP8Tn1mB5_)`46LV3NVO0P(CX9FL zz@)I_%nT@M@-6|G7t%TK-jP^HlgSYBqGwpQiJDgvUoRS*V$o2anXp$>RDId9Wq0q~ zc~n@qU{N5{W%}Zjyj8(osb9~8-3yksYru!oqA$~W2|6czv=FQ2p5P@+$P(!&r0h6S z(Ua&kL0fEp!(V^@y%R4P1DO}?;*K|~Asw-aW@XidmizI7!e2tG{BLTk|2rwhE~;4% zZ@(h0cTAa6am0U32Q61bN>x}yedPkc14Zb$y;_tVv*^ltsfOf5A@QgmU@k-Qn__7B zk9?rX&37U7l_@7SMaYL5YqkHb7tA+&BKA!`q9|m-tiE5eP`1#Gc*wkTbrOTd-o1+l z#6z;G#=5(&kF+`N6%wj(=md}^7`-Ye*{J#zHqdkk{6hx--+#)zCQR94)-obMk8P#{TpD?jHMO(6aFM z=FP+RUh_my`H08cw?GG+0Lj7fx(mE@n(KutJSOIhVyqLGjtg_ttNgP zKALfo?aD5e?lSrHn`PmdQ;R2MjO(=QWb00gri=FWbf2{@UW_oQjaas#Ts)b+W%cJB zYcyV`7Zm|(MPB|IaeXClLIh+6<1oL<(DWP$y3$;JUEiKcKlZEDtZdbVg=cph z`4va%^K->#B?Oh?&eeu|)r#}A8;cn$TCbdKQ!|h(AFXgsN1U#8a}PE0hPa0HOXqaq zOV#y$e{2(>?K(pX5>3zGrz?G+tQ;Y|;9IcJ{ykR0b-LfR`$M3f*7*0m^|AW8)lz~= z(?f@B|9KrMWps#xqwi-)@+yA1muHPqmf?jAu&`b3zKd5F)x;<%nvs?RL@k88ovz4wOJ01q zD@KhsS8pX<#64?2xcgeG@BCeJ`>&ctz2M9h%Ok`(gnJE~G~EnW(3PHZnRs#yMMtDg zZW8!elqPQo16w&3`3X%bPU@ z$*dH!618f?;~j`Mls6k#?(yAWEJoNRV{444Wu9|ui#Eu4dR6$UGE+^9SJ`HLzP{4v z8!ckUyj85TX)`uPN#FW92^7>kho_kGsQx zoaE*XJc^mDIB(xsR6o<-D7K=$m{H!aOiTSamu=c><1h+`tDU__5skY-AU)LSBoFn| zhkm-OElbncg3V)9D58-e;Z!3z@%cv2TfuV*TaH-5GPhxTX5Pi5T@vpBi=R|Wx@zAy z#v;PU`_q%3x?kYj!;W9mf($WXcGqCZjT&=CePS<#3ajYqPyH2tkc=tV9PC?Ww z?mnx@2A#|AxUA?(*A?$)zV~b1#rE>uuO-Rt8gX^?k+s8FJFWOwE>ERQNwm9apyjAs zKQy%G>>Fl1VVNCtt-BTn`dRpp!;|=RNxBy8Nt#MQ2bKEk-q)nib*Z>7xMEx_fY`Zw%@Z-S!R$a<5j+XrZQx&MT^6DR&p|o!&_sDil|o0LZ#>TyQH|y z{_IEVa5>W|?eq`Zq-^MHRxYjjKD6{^c8K=s=@gi|`8fSNVVec+UtMGMYrhc5y%kT* zR>jq^vr>4@zRo+WS{2%J!fCX)P^u*ZV}xw`y@?jF>kRg1c4|}VN;BkzKk(XcL<3-K8 zR4F)(WrsE)__N>j!M5OQaiUR|}rRqpL z6@Mzmyvbf*@1r@n7EQK4o){AGo|=|Zl-v#l zd~W6AWiX+Uz@%ve#N5j>&N$oVDF1jDWxW5KHnT^F@s^&8^aqTC?g^rmb-Z9BcLdJn zk@|$K_k<40*rcSLzm|P}#(!UrAS2_bd{Th!#Zplp@4u2#_K4krcqz*48mCko;;5bP zJg?chS5N-5uvcu}T!y%Lb;TLyiF17wVijf|>8vegCIW3^j4FK{h7hW%6rDdW!=AOY zaQopky47=Rw5rE?P|q#fIZvM1_ST!IGl}sG9^6s+FCwFE`dM!7 zTng8Vqtp+NcGmpp>=8-fvYlPX9hRG${<%-&v*|;&0}Fa#;wsHAJNqvS2#n@j!3?Ea z2~7Rc)X;ZJbIZrm6x||m(SKis57Xv%96Fp~n06)0bsAyr{3lKX>gf(OcONXDcRq2K z%Ano2DtV-v+i@}^Zi~WXnLy7U1BDBsR$`XsNjCLauMmq$gFy96jaKNwbeH6I#nDmB zB?_}!vzPDRrUlHr=Pm-!|r@r_xS6#zvplOqN~Uyote?k zZ{pnpl6$-1(+SFmj@J??_@m+gzn*BX?gMs@Wp^V;J)3S;8IAtKywyF*A3yf26eyf}m#35UQe12xHu_i3 zrqV~S1!`+Jq6;Cb@&^G+7dI(i41dl4;Uwmzhs&QVgGM82`?yM7;Gs)t<3Ug9{ zUVh=)a;ZKy3)N!xKCQ~epl5yEwp=@lReTMeymGwEPfI*&NnxTh%Iu@tMyQ;r<@g&{ zZnoT3D;Z9w4?oN5(C@lP=-u2UQdPXc025ZA+J=MfyJ?cQm2Y*wwzwlW)O%XufLvfc zaE>@+6*msq8}3e(UAdCs{%YuAlj_nwtu^_e6@Ut~{4JmR`{pW9-*Osb#hvM@t*cAC z4c*#uL!Ujr^o|mJ&BxEd!ION{D221r_rr1TWeSUN^s;(jBUqUjdzPs9X(is3DPxm1%$zKZ*Bi!eY^IM(ydMvfg;n~QfD#qL-3Ob^1g`gTa# zXI2jkd|+g_wu3Q2m*eQ1x}zw(ya=c+=KHsmm(Raz%X-vMkahBLBz4dB>0htNggb+l zy103FJnwb^>4Sp}zy4ZtKwx=AjbZ*#5x;F{wll})S@XJB0UsYv-`PpAjfT%^S7>hX z9!Z2M>w`93l~G#Cc=wXmvh%jrR@qaw$w#i%9N<}NQ%jAmu?$D`b4e5)sw+HM*_u5p zn1-ypKm}<$9q8O3RmK_6vo`D;Yr)3lwXu10{4{e^)Bg}>cemSoerM+d?S`bmm9-lN zS_&JBDPyB$xAVk|Vj+w;^SPs?kdg{<^PPP*-bKfbDUDbKeC^k*eDnKtJ_`%Q5-+Er z!DAgfTU-{E=9?YteQ7l}*#Kr$Ud&fWV?B_5kgRhtRL*j9>!B8BYVzX#p!wGkOr}Qg z!1pUWGcr11HbFxwf!`bDGxT>leL2iry~4Z#6r4A=oLKez?~6_zayfc3)&9p6Jf1wO z;@Wpe^O~Grrl0PYbvtWpE3U*_U0%(1*i9r7Qs>Oe?lDStRKer+J^!sGZ*)*#@$coUsPD9&&0CG-(f*Ex17|@5k zIx5bwwySW;)Zz)V7!9(q?zhp>7Y!Rz7|&ld)agFC_e4F`>wU~EpAk8l)6$Fs)4RZf zA^)hWD=_46trTZgpGZlF*FwgvozH4L-~P?Vr!q3y(pp`4WVCK{zej|aQ4;2Fo*(s% zeiKKT64a$38ULAU#q+~=R}#mGA;E?~*Gbyxu&FgbYeS${AePFUSazMDf5-<63pP3) zV-FCPk#j9zA1*)W&7z}2?9EWLVL=}Ip=%dB3DQPl#f#hD6nV$rYjUlipV+0l-KAgM ztxV_s{;5rLsU$Xzq`rH!8~oA{IZivy&u270WpBGN)F<7ZMuQ}>=1!6C*fqA_PgNM7 zU+s6><~XXPur!0z8r!|MXV^aB$>T(6$d8fAM(6Lz$wVmY=(I+{m99=ej=O%NH3R*We|y zHPsxPaz!_p3q5K*8o>*~04}B*$3wD1kEAXw_tL6N-kPiqWWBXkXJ16#keZvo zhwCdo#LLDj`5a|PCksrEy}8@Oo}U14aYwM#>_|~+leE*j7n~5474~oR-a1{SnVEPsS*>cBquD`!uypecl2yethk=^`icx7W6JSHG*lnG;LivG^4+UONN z^wS);^m|&ZZJ~+eI%XWDFV#dpVebk5?$w?*zDA4Iqg)ea!OUzKs5{u+I`6?6lI-z; zB3!*J{Rvy0^;v7UV1>*Boo!4vv);GzZnVV2v5x2Y`#k^XSX?mTjVQd?(DB@CGL((o z;Wzj_kBQ1Pe9iIi+cJ>%xyJ1nJD1$jV_u2G<~;V=pLiWC-9)KM-Zke`Cwco41io_? zcnf@>ufWF&X}f>cMAjVSstIgrb@6j=|Ahl)Zn7TJ{LFVk+d`?&h?xA zF5yc)U;bFh*8W@3RuK^q{b5;>0{~4H&Y8Q|6RSn5rkRBF@847JtbTG|tYoYAmrz@` zPq{Ags?Q?ouCsn>wCz~MKbEjxAfTrBaqs*L;~;OAeZ1{bz%=7xZkBn$sl{+jNjZxE zaaqrJ8JP%Ckt)re8rv1)xRa8kZEJ>j(I>9|KE_z3C0TYhNP6mP7DFWT+WbqF&Xci{ zj^`k;9R%;;rk#YNE&!3M`Q-Y;I84paat3leL(sXSxB#%d>I)mHXnFzVGBV=QviIs- za#Qc{ZP~v=&Ue&v7mqDhld?tf6RuJzwVy428t(^jyuHo~X`aP#k$9|?u}(HVk7NjmcyXk*y& zd!us#-BbrrQTdV8McGSn0`o({?ZF;lLIc;X3>qvP)1M60iyr%khoz@| zRXXh#P#y^epP#j&znm?vng&n-v&tu$IwW+rM?5+~DY#*CJk>}8SlIOM@o|np($R6g zRE<$@y{N_*2hCqrd}LSF*7jt%dGJzAtGkomE{Kss#X2_x&7A=MQ00wS=^0j+uX9fp zxg29hcKv$p93wWKZBVAXdWgZ2cG>O0h3mGf)KyZr)s7iV)a&wS?fbbb|KYf@&&dvl z8!0cI*m`IbM`!F5*XewHXd=CRdXj#Zmy^=`QVK=<(G|@(d2W5un-q=>jx!5l9z9zB zlQq|eZ`0brONP^PbFypp^6prE)T|1@Jek~L6+ln45>h)q8)v)tA^xz-M#kr=hTnJu z?@cZw2_34SnkG|ElD}RxrNP67=9|h4KREGxkdFDdGNN8_*ubo+<{GA8MnE)+ts;i_~UZix`40l-R1u}!#4A@`^M_iK9YBsdssiH;lLyI zuQSSx)Q1k}ISrQ>o3e9Xj1lRx+WDGJ_dB$egGZ+CsdODbMcljhio$(`pI;Z(TA%&e zxG-^}y?^mq?R)y;gO@TtUfuB13&Dh;nt*R=zV))BzE(NdQ^`*#L2Uic9=-1sE7~t%(_UoUu@S{ZNbK&=*FD- zowl0d(a>AX5WIfvhm70p_nMuzbX>zreko{okM*xeZzV0Ff$|JJLucVmuTm+7-hru_(-vY&}O$BAV1 z_@(@Dr?y(Dn)gvyC__Wj+-m1vF|i8C3cl3~KiIJ=Uz!e#Zk1G$22EzeAFeztiDNF- zmsWwUVWO&yJwMczZ2QzsMuS7DAT-+YZvFb6q{$Cm;zsFl<%{~|hJnSN2h9#%*z`Bg z3wb_M6ZwAr31#VQt0E^^wjSavpMMzjULb2TTh7~le_F1=DV_U8MQ^;MH=AiK z@_2g6;*tMT;rqI4*#&oUo6iUNFHw4Sh20b@ZA6QuGu0OS1$B$v89Lkg?kQ0p+j+C) z4H=ngsTCBi$`Z?L_E72f^S3Nf8KO_QQG*9#IaI<~+++8DSCxZ)Dbk_&EF)0N%Bru< zPpjnaV2l{!lx5SB=4hO33!`D?L($;~8*^nV%NV{-GV9*D%Gb2lb{n_zxw{bYcD+qj zyx`@M;M2_VJv@sP!^I^vv`VQ5iVPf!+H*JgwM~|Uym`amKkQ&7|1n;M?+;h6{Y5SH zte1f1$iA+dWAyer zmM`a*-xPTQ%?K{ZNoH1I!h}UZ)ZWl`k;Kz-*$Q*~u&(S?Xg06;`H{qAr})T-{2HtH zmCl=1dld`>y1J$dO06X6M>EEQ>;NgIiWOuy2T-1J`VCwvb^UuVk#Mkz+;q%Fs{##XTwh@KQzhp1{Kck!ekGK08 zTO4q;+ZZNtoiD+{M?v;gJj3&uN8B* zOMHW~j9mSLSC{L+bb~&TuzcR_x|9cfySBj6MX-;Jr}urEp3a-+t&SO6wEydE3%(Iq zyrXVYfBjCeyyCLF!3_0^3(Mfge+sQKkmv($7~qp?{2A0U=l;i=BBu8R{Np#4j1SJC zfFWP4^9OM9@$bLmrvE1k%Rpih7%#NnvC|6iia6xcD8ZP7>QtfP*Hf2dO{NpyEUhz$U~! zRIZ?n^NRGB6nGwS2OT4RBUm@mB*e<0?w|~496zoD<`kiH5yA<~2_8r_dio11dkWZ# zg|Hx4`t|YD-ipi z7p|wR{nPIMy+3<~W*kMUxXg#^G1LO7BajA33N0UeN~*1mdcUJhpgG2%ep^!F`_Ue5*HpkzZ4 z`v^dV)>nfvVK%>nB!PFUW)Eb`UkNcl>*zp0m?lw~%*nq`2XE6s%N-vj5y+IsAh9F7 z-~mxyK~QUE5mjvr3@XX^B93MfGXc#tG5DuedqB>mhKIaSG88Vv+(OcjIhxc2(k7$^ zUC^>o0Udl3^LXcc3=4u4A08fdZ^NL1%sTvt!D+5;{>V`TdN_hqyPQ0QN+PxT+$Q2d z!DocoNtjqlK(0CoiRM#@>eDp|do-XQs@3m)$Gif)TR&U@0Jb%H&3`{f9vKV!?gnJr zR&rrhF|n|`n-{zkM1sKhAb}#olHdc0NRyyp0bNV2_7ugns3(ySu+pY#oZAEh5lP}A z=nWqqAL3_FU7Cr&`8bW6<|RT*@IgM9xs@ctf+2#-f`L*(V0jRCnORtdK_fD{8mAQl zu}b#y9$g^;M_LB?>I9q8J2&CQ*3~O{UmZq zKtT?-d8!o&i6=qYVJGN@5CL)%BQCamH1j<&p(RCxDwZu%xzB45fVfqJfoL*3S%MA zNX1P|(3Timp`D$ba#ooT3?IT4Mc(7>O~BG`BM5l1kA)XRBhEz^=l)&!8dY&Tx<9%> z@SotCa;GQ4zo%|m;-3RF?Rw~T0nH?wSj=(R`0O^dJmbRUQfPW_C1^Pk%S6H;FttiT zG=Y35Ls}O%0mMNVNrH?@311b{B@GD*e>2qDfEyJ?8l>}lBJ-(*PkRibo|o9Va6uh( zkEA<6?M4{aJY8aRvw{Z!89l-V z&MvH=u%RPuBbCIaq-uDsglgZ3!49T3(bd~_{I-r$P{o`Glo5bLR#U=@#ts2-a5p9w zgyLSbBojEc5+4%9Hk{XgMP4|oIUEqM7K?p{*l~Q_@o0Rc~RFOcQmm` z(CGhMR;G(lU5?;A5pZfroJTi+WtoNIw2yeYCYfyHIuXk05A5ulVFo^m-8+04|BX=G zJVm1i_%tRM(ZIT9JNbAwVNq0If14)w$Ra9ap>X3~HOCx&@<*lu)NCS8< z27fu<@;G3~kgTzjX~yrrO-#ta%6tu1g0HXcUS44uXSX6L;INc0Cq(>*@s|HmBfWU@ z-wXUEN(fYgD=7KV2n~5_pOxH zqavUGPs_W)*&|ohBj~Gn4)+Q?zDgwH03H*v>sQ_lyJ$K#CbUVKgkf47pv7ur)Md}$ zI}=(em=7d(3RAX6{t_gW{+++D_dvW)6qm5 z41PN=VkkaH|ne?swqd+H#`|6fYt%MKMEY%|rO* zd7qo0J0|3D0;4DTRbo#inIKS73#&oqhGOat8S@CiOuNo_Fcv&@Gd%?T_Ww#RD3V-BiDV}^s1lFR&vyzNP`DZqp&i!3gGidL zT)I7QKkDAmKTxWK<2>0YRX&R_v&rSbKe0`XAl8Wk8^*M`1>(SmF#06e16aTaVI5?i zn)eATlmbCyTvBMakS~P!BHR|3MiQPUfDv0__Fuy=z?!w3-s~=QpqH2U0i5YVbRy2a8!oKuiOHL{%4A!bfm|nZ?_h7Zp!rGDyZQ>xfW7vPG5=S&|ABl6~J2p+z*4vTs>h$P!Y@zLvcbl0DhC zvSe4*?7#CGb${>Q@A*8x=l{>^x&Lr`)iiU>^*+zzJdWc$&nxiU8FgA}c4{&*GFnXy zRb4W&!;mk z%g1|SCK(~3@r&YMqt-El}$M_GB#gD5Vw2g9M!!AX5|=(ME$4Q~p_6!s@Ex#nI< zNa6M{loO;?;rt+wyRRK%f6OMpXM1Yl>2|{4k=wQv>+{odKFb4hRVQj^aKF{!7aR88HZo1%aF#ohRJV*Y~u)UPl7$cIcd*UeuRZJ!dplBZ|yBLb8y>`eaoi znK$;%nZEmEC=8B3hWbVIGoC(CZjOD56?#E7C_UOPAcn?XRVFBg(q!WIVRMA>cWSZ((|O^2;mz@K=-)+} z>c@3Xq3>dTIy0&Ud(q=@G^j<}yq2JLa-uiIc=Jy+NA!wz`*yUq=7lU2hVn z%ZJA1@Zl?K!}!v1Ly=^g+>b8#=HUngE!3jdWe3{&y96%sH3d&jO$u^!8z26TfP(W$ zO?u3Je4;=A%gTNNo&`Pr#p)Sz`YzNubxY#6P&^s2jH)H^lTonVU>T<6#V0K-y|ZZS zPk7l+QCx%q`IEzeZjApoz4E>Nks(l4ji?dP|9;RD?6Zl;%6Sr5OQ zRWh#l{ZTCT%)0%H_=k-_y25Zgp?Gg^1@DOV0v3vsxH3W~W$PV>ZC^!=8(ImfJ26Yl zqF|dEfotMHm3yr`4ELV49P2$%E4P$*Shr5SS5FJwCOWiq;nJl`BR`b3Z}z-aS*6D( zF_O=`=JaUSNxPHm9i!~K+x+jbW2{b9trwY>+o#3G)Z=mz@rjDwBXxY?BfWmtcafuy z9;_;J6NrmB#ha5zwoqTjL^>f1F2aMjJSZ(z_VeyW^Y+Hsj@PF*v31WO6y7>{9ty>0 zq1_cSvtC8a>Zj_4tZn&y!1V zR-LGfFQf47lu$F4{fyfOm1fRp)8oxd$-hr6sNo{$$eVtDQa=vga{ds0&y%tu`K6{f zGI6WWP#M@LyWMZYCkkhmxmAX&On2*Ty^r8SVX6{qz5GnUdbujr(1ZzMww!FCIo;*N zAp*gLXpy^nH!VAVih8)sR(J7!nf-qdpofC(i?$byt`B;H=1AJqV9;?ufH+ijNwZBU z1bz^e`}E5B3l}~Oz4LwYdCWtZjM#_4nkva?YoDaY!qGDTid>{{ryVR`84xa+E7|<$ zGnG+vY^lDK?3eh$*6wq60P(8&&U^MgjOA_7A-p{}K!wKEy+RJZC$F7`_#IWfI@$=C zpFy4Da_F^)RynrIl;Evb#tgxHfxN~pkMy#(&3)x6&5yobvylxBl-W&=zRYaq9r9X4 zrR2$qr z@*4LjS3!MrB$L@`8BOnbcmsY4xn-{ak3=iS2pQBUqY%qf!tb-A3xa|Wk!J|M*FJSe zNuV^TuGXB@ogWD%L%C96RRly0+fG&)lUvli>6MNKLG>O0gSjd61y-Y!?3$jvi*kK9 z8H$U-XKNwx^Wwyp#_a}0tpPd!sB=ysYRyOAjwc6q***!^CtTVeAxpljZJni=jzt}y z=#se*8Nh+XB*WHl%`JFjhu86~y?YgFn8ABCBlvRO=AgEqnj+=g$xH zGN*ZB0ICU|UEvDL2I(0YOz~Y$Wv``;f4hGfDYs7%AZb6~jBev?sh~?fkoEd?3SDGa zT1xZ|dLI+Mx;F75F3}xgIp8k&E+Z70KoH=o!S!r-O-rPj?n;#rK1CyDFtn%$VwVk&j7e=jVrvSqI za<;r5t%}unPN<=1`AwGbMB92n#}19f(p%8}WQR|vUH#G1b7^nyXyG5>NIXq_BrWcf z&2wE0ngzn-$UZuF*(nNx7jbQVDP0%?CcDZr`oqGf^$voBxi3Tzi?0$P@1Q9C z${oF%$d3-VA9GLc=6(Xflsr2-*|lza{!yidmR9hf`dd0Ezx!K!yiY?(wpv@9nC@@V z=+&h~UuH2Ys~+um=7fn>Px9tTy*@W^)UsyJ8gBHNAS>E}5s_l|yL1K3ptJ!or8eNO9Zho+Klhp?<_)PjDKnh{v0~ z>w3chM^RvkH#9O5UPB1aPSm9;CwZU4Z#FxfI;-+pM-Ba*vBf2>`OemYfN#3qi+YHY z@1H}W>ESekQ4PXI)%*w1x}q&Uo3EP0vW-inN2QW~|0N%S({R~Jm)T4i0QjN=sl)%?GHC4 zLm4tauxMp!8e;ip<8B~kL65XhB&JaFX*LfpYiOavl19_t!U3`&%u~H$tO?N8bE5uj%0klXnX+klL#F`~q zGfa*I5=v1s!yA)^j7jwas5l%Z5Z@}cP%d>{Wt=d| zF#{NK#K@L6y_KX&r?lQOTs`tkTiSn!~-T2CR&p~)p%4niWYT{@%OZ?(&uOQ z4?0Q&1><|rJ(Pmq3GWIDxkpdp6ak)obw?iEIntZhmX8r7Lb_sHD7hK4`47d3 zWWZfjL!cMFs|h~mtoNkeQQIa?>9~^K^9b~ku)T-s#-Q|Z&*>v^?-37=_<>I8au|YX zuU=@DEw63_Md;hWH9z7y`5 z(>;Zb*DiX!f}(HF_|t;6pr|NT@5mL-PHhLiX4lH@L@^;g&? zFL@*J0@CzH;++af85u1kce--xaK?LI?1ED23Z*&j6A{JM*L=y-*?m!f3t#FqHt& zbEc+ZYabLpk3UQ$;5*QY>)p*kH8mWPb`huJ<)j?HrYJ()5l5;>hI0B|)I)U7TwL2V znqx{G42M5K+#E)Id2v?8OMYKU;QdFc^ctCDxjDMM?o6D-2C5rVmhRi0T3T9Tlj`^3 zYds|tD~<*5g++Ad+vZ z)#-ms7Xg%DYN_fdIrh4!sAGeq8>E2D9Ugg>}D#JQl#{Bqq)JMEqf!oZ+^s|u#TFMiOVuBeK@plR%YLU9hr;k1cPCu zWHntLWlVj8yh(w-Ns6(P&^r0_rjgIE9p zC61I@)xuB@$|_RB$WWuqX7N{UmVcrp7C=3aaTZa#38g=p?ApNdd%qP>tIR_oi5o=< zQtCKoIC)K@U>y^5z2MNthzXEvPF*?AZtsg?gbT!;gR(#{>kETmeH>SB=&NUp);)Z6 zYxRfLwQKp3($YZ*ZxITCxq%vB)7I7w9p5K_a5}Ix>ur9RX%38eVB zOG9M~O;Izw#h=r(VPnwDNpuY7L)MXk4fhRCF*!BW7{0sP&fcCJj2LW}I)Q?!3=7d)Kw#Yy5}Kx2 zj9%p%N+WwG(dWc^>Mt!=r+Ml%`*yy=$c0|j{}I&4AnKpaAA*sD!J2J4uwM#1x4PJa+ zhf6VJNE(cK-jOPb>0(V9v>c3P0`{VC(La zSxUaOvpE!qw}Zld;>#}_B#+_H;+L~BveJ^0(XzIADr7`S%xw@Fto<%;J!dYZr>ASG zJU9q;!N@t#rLs=$uR`D=m$fOXzF!1RbDkg`tGfD$ll%omnSsHD3m5WSht*zuKJ^U} zI}Vi*{)r@{ov3mYYaa4X05Yf}Qi2hKYl#7)4@69x7)h2+Wbc;3<4pgM)|RsX4;6>b zIzu$4l2L9%^M3~e7;~@+Z?18STLmYGI-F6jsiLR7bH@(TW@Shi(O7V1)9s#-IlT*k#Lg=Xns0J?NmAyg2Ap;J6nf9JQMle zp3vml{2i#l4aLGaW))&am4RE=xc4Kz3>m5wj*p`;`~`SG1XkONmcrwg=}BbE223Q) zYg0O&=xKlTG>E1?L zAkLDFS)@7{NEKRITDQ>{{Zo#PuOW3WX-28SVHkna(0I{Hmjj)5C~0%wOsCx)wRI_y zF!O@r{H2IgdxZD?9LWPuf0?Pp{+ujU$E+nuxeZK=WtK^9 z6{I>RmBV3|(ZTf|An%y4Nta5eLH)u!_3W`1_{M5-gEwK11~Zb|Q2@@?cLg{AU#p&8 z58?<<=8Iqi=|7VCEL{La568_&9!Ny;TE%sYCDVfiNo*_(1s+tgWpa;c`s>%bK*#Ky)m2?k z)@P(??w_bS_zxT3x5GxhrswIf!Rx9Rab0`oP=II*W+`3=d40e$!HAop{Qu4ZAWpt0 zCda1Z{>7v{m^UI|6c+dTxA77PbzrKT{E-BQZ&e${6@k2Pooc)G ziv{O*x=jSXg?S@}-?ML}H-G^YHs+dM83h#0Q&58czV2mqHtVMSl`9Y7ztmurEr|Cd zyoX02h+GY4=gd`-TYH(wY%n@F^TZSERV{$#D}|I`#}PLv0`7k_g6i-blKH}^fI&XQ zdC3S5)O%EbRMaWUJgBHB@=o-)@0*VO(UjyX$Zv>hB;rVA7CS;d3+j1<0^=FI!ys94 zT@R*2R9CSYFW_9=i#VREB_VE3eY&>EPDX&Pq)qR(Q+FW3hdF74A|HlN5+*`(p;f%K zqvIk(78;4euCqybdAjbW&#w!6czA#r35SH-?=#d_*0 z_`dQdTfrcyasNUxNUYFc_}0Wq9_dF!Fyavg;B5t-5Ez*2ajEOBk^R%_ze zn2o)?y=E3}1R4rW)aUi}wSY0TcXY(^kYpcXzP#-^6ir25jP8;dz36q09qx-M!N34< zeIX7E40h6~`e4=C<6|D097HE1RXJufM6g%2K_WSdoVba-dKP~3ay}7=#q1}QP-X5R z6Uc89f|>fKV)6r^FUjw6y&X6aO-FR6ZlTn)E!A;A*B`|5q(1E#*?~>GG`cGyHq5`n9NjdHu~}Wr9?`XaUL^U*$~R(NNN_7!3ka z^;q@&VmR1SR96GE{v<9E6QE5_%aF8*2DD`Qt@=Izf=<)qoawAMcyND&6oRvvC)4SG z=R&>o=}m~`8`1}v>+}2#h*?njey0(o55g{hH;N?eMhqdzflb} zsUDHIs29oQx_>`1`rbSROc^V3&B;=b-bkAn@YXsj3UlusVQ(4}+qa|K(vjnpj3t&1|YPm(|WgJd7C7 zB&)hE4gXZ!D(|3LCbljS>3?^QwX+c=siFT}b1|g>6Ri*UJAW&R1BF4e{u_0NsD7fM z32Bm4QgR90)zp8i98v1(LYMlFCAtEj{{*2ye)Wnx)UHv+0AZGks}6W@NwLLXD|}}W z@Ft0dC2>SFKowmQ|KE|)#st#DjaBv~n4EBe?=d}IGL;qe_S%p7notgFXqsA|Ec^MM z#(J#b$^1&?wsFPcb1}nD#~or7ZY@UeYz$GlHA;2XZLSQ84cCSj>xwccLx&W7{E+|A zo45!i;^AfGij7gR&l{@?jW+RGqHk3p5>7}>!&`a3{Z+#;`g=J1(QJR|=L7|>k)=*k z8SmH6wI1z06{V1Ed z<#t8c@9)7#(?w!{eJMz;qZ`bHC(_QbtFx^~KRPoMR>+6ry~w3g=Mk}|i;}ze(lQyW z@wTomyF#{RrR}oCnO=RhFwTSEX%)wM)>fZUT(x>~)H>+twIW3 zQK@zCr{xd;o1rb!NT$2c5izlpZ5m?_#L2kqwMv%hO?X|@DoA~qiW^@Q2_!^BIdae6 zt2h*KUn>72f&2DP<<;5imBPrF$R4&MxX5Rr-X8F&4k+$32Eb3KWXQUKG;0#y>~)o0 z>APmVIzO7{G1XDG85kKOny7!N>eCEd4W?v{SrEeNYai8dN!HJ32xEtRzI;gG-xh8-ROEA81Sso=tpSv&I z(l_-k?6!3O`Hph#dT&$walTrQ9C5nFH!iY+nE5=BDmmlcx1N9`kGyZoMMV= zYLooJX~TRQ?UxdM?sp1io!jnAmaVGuc=OMdErewlZ*rhtZ9|?m(<>O~Tuon~*q~3XkUB=3+qNzQKc)hPhw3&UT27nW5z zEBEC1^(-nmNhk<;=M5I#e)HoP36W@u*tPdqRlWIroiFWsw^k}v6k74oaDxlZpFdv* znQp!D`>ZJGJ%)zLvA9Xggh7wEZ9;O>%f=<*Hy5<+2A z8Cr5r{8a%p8ulKye}fbDsKR^w64hgqS7yx$D^DSRs?d_XMb2^VQytoCOH+dWT%M1| z=S0gFb?qG-4#hMmRu;#kHM;iTnTKr9hpEPSPs<6s+KeeFk<&{5CpU3s`be#-Uvf^_ z%)IdW;uCy^QIV7Q)X}{Pi|4+u_U7A$&w1?oXyqL8Y~I;&CH_F+JYwCgHhzM;ahImL zu(kZ@LjA&6V-$x=S!>AG3P4$#jEl8_OWXb*!oK#zl2Bpbl{}GPOfFs0yTmW`N09`m z<7gahj@OU>9-klmJo+*vEQpD(s-{A&!uk767tO*lRK^pLY?-&tNVwb&+K;{Ce_+- z5zBAWk6C>0=1d9f5j^$bxaz)qF_?W??tRR@Kf?1LZOo`A8mbQfBJclllb&PBqpeFI zTGj|@gbRcf%^G+75y`|i%i1xov!pHMZ&(*Sv1wP-dCU2U63p)|nU9G1odtE9=JnI1 zA`fn-+M~S&yFRdK%MPOFgS0?DyMBrkMPYu^Ypk!aWrsj)1((82uGCkYJyetb@fYS$+wFrTfS)6KW2(0w}a=<@!xgNtoiVw#mco2QeipQ-qt zQc+PE^4!>3sT8w~_juS4e_UVMWuR|)<1Ph_74-h*CtqjRe`Ga140$pk>AZ#`cHgYh zf$I;G-t!UZdV?WmPJAPsst6cy^y*O6Im$rF(UR4%I3&i8Qg)VYF87YP()yLSPw4KG zzmX&VtD12>)a5pxT^@r+#djPX*phPM7Ls+YjIz8#0zZwoF7bcf>@zoR#vw`s2T!>eQM$H4qP2Yg9n96X&;QZWqWSW!%g) zJs<`7QfiEaXQTaA{Ev}2v%Ja6>P{J*n%2JO z#v7>qS2OJoP83tNlK6wQh9Y7D51!xgk~IGyMV>1l#eB~nq(IFF=^;ol87Yle z#t2emCeA1lGnd4t%?~Xt|5`6VOg9mcld|+0h@Jg?#+rl_#&>9@I^!9_v}7^!YE zrZ^Rj-$MU?Bqh<8_P+i7?X9_OY5!HbbA;yGV-f;$k4$}J+rFIu8le(~@GVAnuXlGT zjyiT6M$)h$QOUF>oQEeZR^AuCA4J8ed-12~>&oyK*KooYGa{h+#+rRWNS*A^&;IL! zF@P1ZzERG`f(bX0GYs?9pe1d5^e4SH)@U*{ssOG#)rhdMBU?2R|0N~NUiwx$AM{y> z8S3JrTU_zg&pGS`K^?#-UZJ!MCx4?`=obNVt%OzjmoN~>#rSnA zhL=C;^LviC5CVJFSIiRX{1O`Eh_@-mxl5kS^y|KnPL79H{sIP4E(qqr| ztt_?P=!>KVdowNhi4Z>&GHifwMMZdq<=d0BJ|IdhEheW79?nSkJrp%Q1o8AXTajfw z)6(98K^qU5NtG0J09Y|YfP~-aq`L+stH2Va*I$Rr&ucJNmcDv*$o+QH%i$x^V^xQ9 zBlf@qEcBcL!~MaqKaDbc9Ct{KSxUgfc0;+wE*aSPB6S2U%o)L-YgW@jdn@PP6rcYx zdug|NXdo+z;)fa2>#E?M{s-$cz;W<=n+GlX@Vm1&ebe?8o*j8{y3ZFc3)TF>Uh8?N zBtj_HkMDzY1&o?^%hDBDCP;Tw9Z|D1@8YH`yFNtE zRc0Rkny@5p=%77$mv9{TaZvGngymze4_rIN08Y6EGB$^^Cyl~ulwe1oCG-x-QYQ5( z`%0;Wd7stMN10rrR(#qDH|%~6y{kYSSj`k(;XSt(tn(O^C-Pup;91sj1LXd573*1h zxa8W=rUf?@wl@~qid_b)h~Y43;zZGQ23d1w z8Qf?NuuH?uV58kDxaQ~s$X zlFZR&M|fA0s^Gxo*O^=QObM+i>YqW;h*qwB&2HdxomQbfo_)oV=Yc8ZtV&fHng1Ko z%+4R%;}VX>vSgt6V||RUb^A-5+=!!T95AVzrV5>aXi27zs$|4SlxyY}ktewyIouUy z-?$E2K^;E|gdq6fc4caE6GD@<@+0h?K*QZgz%CD*ur7-4LD@WB?}Dwa&VLg8Jo)wY zXp-;VNS^KAwQdWIGN1q0KOI5CGdE+E?o@>EC=FaMnJ!+|{usKK8f!ZEPVJcn3^|7* zHdka)g1DvMgzaIIG6Rs`4d;HWF$ouky0URxGt+z=DTvHkaY1BDVyw)syn38J^Z14d zw|T9d(_&!TPeq*?C&U(O^n891W2Ko?QDL(9;_X{QSdhs(FO|EGv03d7|KzRs(^7k5 zG-LjAMn%(j&~gkvd!6U6{Y5RYjzX_K;wEPL6xpuW{uc&i*L?dFo*QHVfY^>sa>xVrfZsghyc&`{s2*}->w*tl5qn@ds zZF1DQo@t-7(_`5E&@8^vuUe~?cynyuYVn##NjEz` zpsQ_dnISQm?5ArzvVy5T0Nu1VR+_9xS4&b-G9WClsHo_arKM$h@5*|4XE>YU?KhmR z)%3|)67Ci5Jq7k@Jgvnpru$^wQZq~|D`vVanqh|Oc%H>a>Mw$@rLm&8I{xnHT4mxN zC+-VR+q}czSfrNdL|((Ka}9JpKX(~c+c#Wz8}Y&hx~@g!9MvHqZX}-`e!B* z6MYspX@1_k!kOe$0&y65ZMyktJT_3lYq@SJyHfPpk0vS0G%hh0?@93M9QHPCKowD~ zybtAvkA_urnrSNUv#5l>?!-#(%^&f_gED&OMqeWC9h&)vk3P~1jCq*EiOl)nqeEv! zn}r>_J2DJOA|QlA<_t1|DJ*s(`t9UPsMyRndh`kC^(vs*!;#J(peVkZBCo(^c`VN5 zA>8Dz)q8II{^sAf76oWiPaxm5zqF@IzqVL=#0E#a2hHF(tb8{#(_M%!{ogRfY56R7 z+m2SO&qf`eE6caLvp?&G`Yo2ZpOt@S0a~h?eU>FA`bLk)2IdO@GL-+zSTMO~rJgc*;L z_>XRFH!p|g9&uJQGdgk71*6E)@rh`#t0O zJUWfnFGy${P6rpFj#>Y*`SO)HnD*bu@7kxLbGR`4x%WpHsr=lYuIDZI(FZDU-*^() zuO%)grXW}%T*p+?tE3rZXt~V9*<^W#0Xhe79p8#d+(?!E@w0Mks?rKXYaWz|%}aH2 zPws>JP}J?8lq(@t@!NtiJk8*C(~)e#4&0g7H%VYrnW5o&UO55wO5AoJFX~^ASN}^f zf)e!+nJ_K~`>GQe%sY7}HZJZt%obmD-K?2j+Val2hG$PaGkkpfrV}OijU+J9?})D- z_27Onyn4XA`BFaDUs$XP{jdvTfNXv|go&MNS;>EgeYyr@Vyf4^S!C&0$h&u((P=Aa z6?FTx`Rw#676buln=itKc+A3_`MCbUX*TT$k9SO8lcI7LA`(umX$x)(A)^(fk*}5~gemWcBf|$= z7nPIKG?545P^!kMPlE>bL4vLH?3z4>Z`pKZxSI-sjp@dFM`R zpmzV`O7jo9_Z_v;;HdA)wX}w`aRWOzZr#*->4NN1yWVJO)S08?L6UX^?zWUiqTGo6 zRxUfEiDY1qW+YYE*-j$ zq0WMbze!m(TP*oquGAZk+QwVPg`(cr;sNhd!=})MxFbCKcfE6)5mU;0p_W&wWgM2_ zM(6HqmzIHJA%HJU)4y=RdMjUat%Gb9fWe8QG~@N_DDw|~pI~}6_1Uv`i(e|23$vf> zs$0S?BHX0Nxwl~xF#|S61eG2zo;mg|#CNi5e0io<8-Ihg=^44MRA^Jy@!2;jSs+Gk zLfTtb2hcx=?W-}cZ9hr-;84{Ej4Br72wI*S=2SFLYjZb2Sm1uhWwVd8`P8Y->CHTI2XQDD`4*3`&ouvSyhV1{O8$JbTfbAW_FA)o?QE;x*1K#v1};1y)D zvESI7EuCYbrA~WSFG)AUI&nMu;cDXcYT|K`yr%xFONFQ0TRUlG`poVooGedHMbNhW z)-M39a%ZCW&#VeXGN&5zSnt?f8qtW8!7NY2J4K9&9=pUao|SLCeFwTAogv*t zN>+NcIIgx(=DU9k5-eXoCfcCsw*p;ql(MB&IzW#n5eO@6hJm#dTek~N*&a6x^Ban)H5 zI9CyLNSsL)Itg^Ec_U(^^4ApdZ?C%LpBV)|Dn`+J?eTVn$JE9ArUR4KB#NhFMEnuO zVAklgv%uy9-|lC1RMT zn)T*8b^ed>w74q_Gro56gyr>!jS_cH(`bWT(#!NGMUv{vO;0PI8h1X%NPG~o$LTt(Yh1XIBk- z|I3Azko9^0M>dE8d%Glb92wURU@%px+bEO~Sb#!#s$xDS`?0Ls%+z?d;@ZN1*IZ!2 zzEp4KIcf&2Q^S`AAgt!W9gORGa!a)3PlI{=sW{W~rNYXzU+M02?W2!OMPW_u@!Uuk z;BOEI7Za|cV#mxi;~~Bjx7w&FSzJR=a$Y5DEM?z`IeTaAOR^>3tqFD|fUtCFL0uC5QTR#+!hqxWklgQ zxG?LVmT%;%XA2DlUv+?LUO6cR=3$Vz+@TUe!qhXR5;5Io43!&2VE5GK`UV({lEVVq z>y_J%HFlCF*;{v>*Zhi?unp_GHI?an5_7HN(q(7~EvhGHbyBrS_XQKQiIbBK`7R~@ zYUHYR%Z%3lAE8+Ydb!*wRC%IrEICv`2^x6qI5x4{y7R`K7UrX*Hk2mKJ!77f(J(K% zsKN4HF52NqMpZ+e58P>~gYNU;`(bWM=$1Tqckxtj`Y5T6n=q*J@H@mVD*xs)bjSd2IIX z{qtEAG%SyawWeG1kCM4AmD@BtMo8;X;)BJZgck|7>RGRF(j+^j+FM$*vy#d1ni;|{ z)f2OR@RhqiAHA^!M*J{xF7jteuSsnNo*qipJdQ zk9g&Oe~R}ev{!mvINLai+kLHjc=%^SSrx&oJ!;dy288wKsgh$G&-}TM`X_;TcXF&b z(dF)oY@^~PwDe|ovyV-M|6R_y7sP==PB{vRTZ?v4YSEu}fK;cxIUl1+4?xPKkN`j` zgbWU+(Y5sS910B$B}QH(k93s0#e#Y{!amo4JblitQ3(qQ&e<`Qk2gD}n zve!(Z^Sf@3uoWUDH#WZZ>%9EN&kt^Y1Xd%_8x*GaLcR}O>zAW;S94!ymDER{rF-70 zcp+NYA=WkYi&{Ek^M2^X{T&QsKjM#!3X*2wuj=6H&Ce@WI+s;R_o&AnF@LW}X+QZc z7WQo<2lY#Iv@2EIrx%xdT^_9r-Z9Op+`82|_pC|OMP$mgmdo}^>#spt4(YlA`!6HK zm7AH&Yb1(lV85F|6OS~Q@q${=U_OlXOeu9-s2?DXa91JpN@=Y%yrC~IQ+V>SN4w&K z%v%wAQOXou*yEuU{oO#r&icnWTGL{(M z?$f~W!mOJB`fL$oml1B7S5)p1?08+87_8j(nKCK&$h(y^OCwg+(vcV-G4LQPg#;gn zzYnff!`A*8-#whit|oeGRG0_#u}O6hLcLWU3bh7KoBi=A9F} z14mO=$K|t@bKTGCtRGvEJCl){2%{K17D^MF%FA3Lm*1R2<{%2C>|k4w^IC)Wd~UdR zLv;_2ltc8~jXm+@%sM~7yBeJnX@rL*Xp?9U)=ms7UE$NR>gci^F`HO1Q`9^1(CCWz z$Cjn*pC5@mLcaC%gXN|bD!|Pj!;)E}I_g~3-;E}^RZNsrn(5hr1dXW8!LmwVO3J1x z*ZMv=ce^CXZWpeA;5aTufXtmi2{R?4khs;|>JlfO;ZX#veo2;hiI$9A`StyyP2b1h z&~yq~H=A#bGJ}WVF$7ZH$q)F{V_ji&yw&60+F)n4DNp*6bI6CT$Gd{hQ*o=|Qek%G z1ZinJ`T~vy)}jIeSv^8()DmB2i0yvD+j0gr`Ay)72v?2&E!=Oj%GfoS%nklPxGU0_ zNnFrcbh3&U26?Av6f&4(oB8oCgXJ0w{Sb;VU}?G5;GuB&Uo*X!QkVMYOCPw5Q)+Gq z0fGJU9|^+Y%k4wN@+zqPR+glf-i;pl+ZXhWt?wSb_0Df`AFXQUyRgOX<<2Lz2?xQl#?tz^ zx1MDE1Qkj@|Cy=G%HY)xv^K6~gTi4HI?`>!wDp)+*5Cl zeGXdPSTdlH+veqFauTa|M3P0{ToAPH^)KCZ+YyQp+{7FX-Nf7Tnynw~(oR3wzwo1Z z@Wp#}f=cbd^`)ueX65f|4Vr@S{D@B~zuaZHE-wMylGfao#I3~_V@KwJlE&dDdy8Ej zz4N8~3|6dn%A`zHX7Ruwr1(lF~T0j+-(;4RB8J`g69i9O?H;Gb+Ava-CZ){I&fiOuaD8 z6yNZEgw$DEV1dCt+i2R59;1v-<}`Iz6#;Gs*# z)fZMK57Hrn^rXBe1f$I9Qm7Z4Qz*|($oO;LleMT0NFFXy=f0V`8Xwj=d8xw%jF>T_ z7sG4qVGl1Qz?ev&V)mo3T~pUPVZfx3_d+m>NKgZh2jaEYY2#5;RM1;L@zVIa7@gtJT4XBhsfQS%TXX?d^zjh4^xe{s@SpNdHN;CHtu?Rmh0N?vF2P|%7F7Vihz5a)@Eix1q5<{?MR z6NRSSH*4J5%G|kE61OH2gJ$_ImAIz|QWaW#Vvz8Btsmj7{_&FDir56_3RK}sl4=)P zWN;)&ul(`tAhHWm(#{?YMLij#8kjw|QpO#>k|5)f(C7X|dmc8g=2$uEhlFw&rkQQgBLS!^~PpMD2Gf@yf{;bCLP6BgnCKsO4psG8sKVuexCY$>Ktdw8Kpur=#t#XI2hrr~x-YS9d*k0DJm}h33vxYGd zf!!g45;TaAmryTs>=e!a(Gz?>-BRq<*tfa|eA<_EL^(+Pf#i0gEj>mU9%-{vW=5Hi z>7PEJdLgY{W76rsm-2*hq)0L=7e5qrLS+ zvv`W=ho4y<@76$U&X3SD994mZhn=0PSc>GD_w!y^x-H`DkD4BTT`tVs?I#{9x&3^k zbh`R|{q=P{FW9^Qk5fQnPty^v$H~+EMg4*~xrpbfSvfJna}qpHoy8k09!;)R09SdE7$}IzM5uWe$gTUVx= zZ7Rg_nQFS*f)`9K!5ZDp2qNS%3yk=!p#zI386yCju4f~{(G!3+0W)~GdKQsvM4Sj-8 zxlMCVq563{cf18?TRmS; zumSsFL~tkANc{FPqsIEuRacDcuKbZdQXP<@a?ec3{3)sS-f#j51q?R!*=r*FSKoYZR-+z3&hdgrR>aGX{6vluN)U0Xqz{KQy(^Tu@3&xEPSbKw~WgbS?6d_M+ z*#P$;N=vN#d~9s&=?6goJG-5Ss)(eq3-MY`KEx`SC@zP9B1TzMdYB#MzN!Iz$GuX! zPePL=8Kq-c_dC?X(7`Efcq1Z_P3jV_vC$$j>B3s^lj1FmV4UW3nVV!wl&BXr+mWf! zaz78F%qc*oUJUyIq4E@E7$29%%-GyPlBlwSH1j85!ww`WY}gHz{JRDDTl7lA<8qi- zb&1=x*68BH2lFx=imNwt$oprrGEY{7pHnlSlC23Sc?|;3}Uw$p- zeMswXW7a;!?PE=km)eT|GwkFms(t3<-)-BXa5~l}T7u7cnaU|M+?-CY%|&iio!-p* z^p5yyLSLSSXM-GQxDlwY9tYif`!>pNE=L-nsoBaP{b$|qDiPdaeKoSncclT%rO|zd!$5P8W(acg_U4qS%pg2#CkJfj$mZ4ZcOX?cX%1{W zOk78D$FF@y*6W}P!k<|t%c=Ktb&VfSho*eV$PPMHP9d`lq6@c%h?J)jQ`*a1YTxhW zkZwRbbq=*5U7vA*9w>tK7J|3j5vPzO;gI$hTD2!0oMvI z#m77@$Eq5|mNQezl)C-pG~hA^$W7mJ1knBFhnFK0HPFq_U%H(PS{qfb+A3*MrUK$P$=u zKe=+=aibBCx}iF8KFh*(55>t+WJDKs^`*iaAB(F%2@FfpEa-3cnQC#DA15F!4?A=a z5ENtTd!f9Hk{!>(?qpvotdD+fFg+KxpyFfE4%162$S?)c*MsRvbubdvyeE6UcImWq zzOOkJ5-OXMG&+Xd7j{gi%&5G+8?oyN^ zp@WOl-Fkn4<|^L4z8pxi5&SFWhJqni(14sJtwuc}Ls5?Gyav0(%P zNos-JJn$G4^e@pD!`OaJGd3nxb<67T>Sdgkz$WV7($A4M9jLHyMoTZOSLOcFt*(*{ z*l@Wm>+6&z**JBLva96}w1!{FSGkT#O&a~vy*M?A9gBt?agEIs@nC`>80cO!x8!9p z{+xSBc`T*%NPuojJev@VCET1~-NwU!zl<`#CW`4~$z6Ix;1ITo<2~htRS@4ryJfv= z-;N(lHc%9>-0n>qVK_J!di?61ZTP#Rh=dkl-gU&N?pB2Ar5!cp1o8Cz+64>q-*Ae> z45+uBTz|3=l`-nT%yKFF6r`7&tgKV#&kvMm zo@icyWB$kaRQ;8z?1CGfBWF|1dfKMetvRq zpG=(KJOe%i@)Z}7uYeiLes4UOxA1cVKD1rX-S#NXdP*^BQqDC zMM=E7YYc{IiJ!#AjqE1sGmuU;cmk^bFp7K*?ON#Ln&O~cOIfbTh8TmqEbF6U?$r9$ z<39$XItGhli*K}?S;=l(cXyt=`B+JNMqTZ8>qZB=?Ii6?!_VjUO<~I0(M_QP##)y4 zy=)nzIUZ8J1})p)YnJyANBB6PHb{V6Ai!@E>Oi2 zhOM}HNrpasV`E3J)<#bXX?9)E>)ZM9qO|W7tM_#vf034J|B$B_$<|&YyP#g37!|2BUw!PW~?N#rrfb{R?JE=k@+Cu=5zEik7_}@aLz^C{b9=1ihd>U)H|8s%1 zM!mU}@Mn_-R3gp6sTUf9p9g-Ho4mQ99Qn*%q)@-&A1#2C%MgCVacMzzCQiJ|>H}2q zf@UpI?7>6-PZgUOe_@o^+YCva>P88#Sxr!B_{~0!RMfOlLB^L9HFqf#U>u-7_0mOC z0hHM4t;g4i%v4?Xm1RdPCuD44l4%q*Jt2-*9O?pnFVPfWk~a8u@|l0t2_JhP{<9|< z9C|pbRzup8c#x^H=3Zv07TK9|{Ioi@S_ea^5g~RevTgRx z{37CpHSnQZ`ZkA%%wgglQF7Pp+g!`(X*wAE$+YH=7_qf}Uo?b2w-0sVj z`mt#4)-Mz<;TqScQO=0;_2!0XiRh#hNw_oeZD;aN!)#s24_8kh|96tmZI9D`j3vRLgF!iZMgWJB`uW@;y$Jm)y}V!an_mI3vxtGxuWCyM$S$%@ zxov(Qo*=Yo5b$gX$<`NCutvIo}H zfz+zJv*j;(5#ip)_Sk^*k7wV@Bh%Awcz|+iycN2aeEBisQpAmskM{G~N0{posg&6ar_PT`_r1KO?Ps#_1XVjp33<`6HGvw?e;^ zf5mgvbxCfmB^S6X;a8DV*Zb#4g!+x^=&DTU5jn``n+HG#ksJ7IH4_G- zYRg|!cnz4@N5s?7ABz{ufJ*MagQc$9k^h=1vz<(#T#TBDUd5fvi0i4_+%V>C1hc9& zq1QnmVof3RpF0=aeP+Kn0+t>Yu(Tp6>Lp15l61ARUAhFO%kJ)9L!dJ)7K*rUlyqUn zD>Ri+^PpgqvLB055I^pei;qW8Q|#KUHJ4rxf@sz6Yhw>}*qusBl z$qKbx`=?2R3r_0n+{c9V6siPCh7G3Wtm`WHQUoPgc(wC@u>v2A6yMZM7gYv%)P&Ss z&zY7O{aeA)^tp)$S?x;s#`nb&MejC_sPxIjsXKnq*4O#{Yx2)HCagc;yBUx@ClU?A zjQ=b){x01r%>6Hdz3}%KI6?z<8fM^8z~Bs#5mlE19SU2s$zCAuV$MAzboQLT>0H>k zi`+Lc(1_$F>fhSkZ}-gcU6H5DD<4};-A}uaBves%*Ok?1Z-NN)0)6hh0y@tYCNe5L zKB(mTw6giNNe-HG0S5bY8`_~IdMk^Tf9ki!p#`p&c-jJ2Oy2W-aq#UuKcG8T{H*E~ z%U+DG<5{U9WuYqY2lv-Yj>A3C6FV-s@jl1!6=6Bomk^8$$sGU0R_T} z+~ig~!sjD>(7r$KbfoVqz&z8Z#7PTaa=eFfqaBhJ&IE8kIzm?~j{Jrsb@B2GdnKPPwEi&b)9XGLP)V}ZT zFyvCxI9+}ln~ni!`?ult2&oOVDH*9x`F%&PvGlI_saC_S+L*g< ztF*usUTGC@4VTkza?xm)Q`vG1)=JTK|8M0?jU{9+faqvG= zvIB6@2;22<$Y_Yfc6G}?d(`ufhOTNCl>Of{bO`VM;#Fx$Nmu>gdABF`g$*p&17L{f zdVJc#h{Xe?Qy{0ipj=IZ%oPP~aBM}yz#t2BC4)QP24RN|PT?4L8#$y1(xSW^pBzuK z_|b2&2d2?3S*y-B+}~LAc^-5UN_y#?TN2%>DMBRf{nU4VDM#Smc@f?C9&{}R0c^4% zY_p;s*?d1(bV|g@ALQQIseay&VkyqXo+0mFdE&9=jLmS}kh`nuO$jg$X$bz8z@<5n zf^M<*ItUJ!WqpcFM+bikN+})O=u$a0UeOZ&bNkAV;ls#897FXONV=&2l?@qkQ-L$k z`M={X*DoQ>L;hvI(C@T!x`+)p{H=!tVer$!-&t8;vEHRWw|Il{cU%WsR9E5n$*O_r z=opg&FGxb*fBJ=g6>r7m<&sKB3kd1{{Lp(+87vcjn8x$o|EVbSv+!X3Ka_+I7cWgu zyqfh}xh&RL6m(5y04C-H=B2ZL<|A`3u}9v5Ba}V5Vng|7d|Go4dCdP4J#JP3Q^zjf zC!hK~K&;bhU4}Uev%F$q{~P$+NhV8QKJ4Ov48C0cat1X;f%MY{(J@G|A?)aI?EF1=4dU3)Y+TM{W5xoK>Tb? zveQEb>DuZELsZ2VCbz@s^%Jw@{4(}B`^X!$@+fUQN@!>Q{gu4$PmYY|-J|Ap9*vJW ze@p}zT(~;V;}0ng5$Ywq4O;eI0~u?FI-`ZnZ@=f?4Zpv>&Ul^dV*eiecHr|VMinp0E}a-WCg$^cTp`bFIe30T?jp)^z#Fa-Y`&1JQ*gB zgchvdJhc6M0&^Fp2qa7JZ=s?(hoZ`=AWik##Y?pLzSzgumc*mem9>BDhCw%jt(%6M{gc6N5pj=;)g0|NtU zg?HQ-{2mmRum_FPG{C=sQKSK>tL1C)e$TkfN|9kj?ce98g=}tcJ7boFQhj^hn^=|? z=w~y(K97uMCRiVn8ga;XaOHC5UR_-XlQSthcL!*sl8LK}!Zkq9pR7%9et7}T_MQ>G zrT1M?f?^y>n=fek0lD6VF6B@)?x=HSHS^R~B^DCB>Fhis8uB*Y@$OUMosQ!J&S7Y*~p;FAu%_n6~%yPUS^&^hm9~4UK zp0w+AOWVCa>Vz(gDH|-*nxUR|+^y9T4mF z(#`sl9wBiL#)WgL-oWJCKx?U{?t|vJiiYh4?Ez(@W6Dkv_nv&6FSyfMRYBiWxL8jH zBht8cn535Zfq^^H#UHu-<>=(jpTDHsndcql_I&*;Pn2tiZHC{yA7%IT8~R5=mTCsi zeqz(2PU?T71QefzZSZ8jU|uL41+MTsXJCEg9?Wr`#Da$4tY6Nqqgf%px112o zdCR+_jKlYCofbbl(p{ugeFg!3wzsLGzVP* zJ<6$V^PXM{8WloO*C3sGQtz3JB6G2rn-P7&bAgb_J2;J&iPKm!yEvRjW)sZuru=N% zV)x21%@WdoGjTS6FcMO=T)!9}{aWmVv)=5Rdfp3MWLY%~_I4f*+%dC9?}9%}QDn_e z4`qnfhc^km&jeVeqaJ|d$ro_NNy*@kx_eJd=JoLS3L~O^mJbQ%rC)v@LkCJ|Y(8l> zLeJ`%mK<)rwg+>TPScoD$esO$mbu5+H>>259Qm*JX0LRUqx)a3DPNC6p_l12nc2Cx zy2Yc~CH$V!ZrS+{6qt2zDMpHO>CJoR-oQjBJUS)RhC%(H7;*~3n$m}89g)%;lk%nV zT`L+7VLz;V2|a}G0+&6#ynM6rv*Sn5VCpQ7c8q0<5nq8kYKUm-n86hx$)E{fS3c-M zV~d8S0Vkfxw^l`l0Fh$sJ!plBXFc!~6;}bJ_J{oW5mK6ylS3O(bblPif6pLn?+rFN zDOm?dww4Lh^s-CUef`M5WxSEu5!9)J9J!&K9rt+H zF0)2$Vsw;+t?lR!OTTg71%(y=1cU=f!30Rwo9(mzc<1~`IN>bjp>idsmK+X(8^0&i z1Iw+ac}NBNDXumqouMDR^5Qm+vR|1Bom-)n`|>c7JjQtvY0EumiDSx_m6c67sKuE1 z3kb^7pn_vUg``sJQtEafk+)FCGE+lzwLCvOBZ521HE) zW1sr5v2l{JE(Tv%hV6fSFH|ZYFtyK4t!+hY?dL?(z{1=;oD~W-gZ>Hl(s=`B&cZz8 z3&NHS@@vW+IS)lVMzpUCw`N1dl>thHp2IV>T3_$co^|s|A(qiL^9gRmHtUh1kn~JY zEEM-n#A&xA+qmWr3W9F?QuUFm5Rvae6;~R(`HEd5cnBOYFY*Y+I3D^_xalJeIg@s^ z*l5pOB#T?LO*-gElU_Z#cdl|{Q4!jNrvhNQ;XLnL-;tv^Qe-^I%I{#75r+)0y}N=z zyC8=kK?DLQD)&4<752N@7*xSiL*BJ@8m#NRyXXvvjfEBnW&DG!z#b zVLL1&s#2eVWj1-`*2{o8elt4&pGc0P8~>K4ow>WVD6EZM(|Wq;iMiUI`-6NsX(Bh) zKKEWYs9>Oz_}PM&&{ftsqIww{u8e=fA)=z`#Hf|^g*VfMZfU0h+7b)oN}HkEptvl6 zoagkuEvN12#La=MA$(HqLB4{sId68e=F9Z^ag{DGBx+PkHU}ASH>!?O)Gha=UO7~p zjQ2g{qj%0ibps&1p~(e*Ti&{_^LE#6YOwMU4F*rW=8(eRMPmsWGUGBeS=<^mr*7<{ z)f^NpdeCE&@jhN5I_|U4!Wbl}5k> z@8@-g(N90Wy)^;baOOMVXP>k!IcZ7u71W9|XN&c_kvUB2m+myb^?9dEuD&i^%=12; zztJyy&-%K>Abw4?DFp54+?GC2-|y+E;se(}XfJpTTzIn)m6T;#H0t_MF1FOP`)Hg_ z+)fZDfr=@&y8Rq}>KJP9N5NWA3}frbZ*a}bN&mx~tn>C6wcz8_gYaL9D_jpH>aPI}JvoKvb8_1lczf ztc3s_SF~Mlx2xKbxBz(=Tc?HBn>anZ`pQ6lHM|~-4Bp#ix(?7aWa&AZ(FnPXM?*(r zI^WZKfy?&*<*X1~1r7^t&FFQt0_KAqdEc-vy;z%aXNnw4vMIf4;Q*^i~Mrg7? zJ5FD+=`WC!NuCwGJ?kdTnY(c`Uw-Ua^EQs}FJievubG_4EGySS6KaS}Ok|ENVB*7k;lfAsz2=jZkhmw9 z8XJV>q{ZM3Wkb8W^?4LeJu)f@)sET{&^scDq}h5sMRFyml**7X6V9Z&z#n`#UxK8@|L1T-t_$2RXcr zEC{VUEyCJpc2O0PAdCvE?;^(%^4Q?T5_UBJOK3WTZl15dD=-^Q@W({=2`4BhKx7Wn zvM=(XO5NAfh_h2e{nVs5#Q0f74pI zcPM2a=frMmSV1+R9ZW_>);~3s=l<%FJUmh|46klFw9@KNLyUcYwGX~jlLoBxaM2-~ zYeWl7TV|yWyXIaLHjbAdeAI3q2LCR8PtC&-+UXzgzjNT6Yflz&Rc)d{H@9xyIjMm{ zjbg3Bh6-qBLy19fGJNTypi{@qZNlkwlT4T%iCHsp*9#zAA^<~h5tkj|E)b@Rb2k`;^)8o%$Jr%!Xh#!kq*s4kDbRcF0e(& z_b~-9L!L{DJn|Nv3Mqc9SRe#8eOxn>+b*%g%Z+(V44kPp7?qelxIijvZWshflj^M3}%6I~r5ZE>PGde*_I_=7cB@#WQ=QYSek5hzOhhZI=@W1VKqC6l5%Q{5|WFt*qX08Q?-?=3HKrA*e-tRDLcmtRD)w zF(d9?75qtvo(@_OJypCFz$~uR1S-0(olWmD>6*wcdLe;>Y*x^>@KY4O1htLZDG)uo z#uPn%Y@(MTAt0i$97P;NK!w@!1JvlV^mB`g#?$m{%*;lq+OM5Vt8mKzU`$4&oChXA z23rCi{rrkCPf{eA~XJc zV?@W|9}pG04Vcgb`dVj!Ul-D0`%Z}xf;z$Zz8P*mRC@&cz3uJU^L*(5OHudlni&}x zYddK60~P7d5&vsl2JF5qo>ciBd?P<<=1YW@PxhYI@h*e7HRUEfSZKEes$vd9Zj?(Rr(+-E-@QbG=DxR$ z98mCKiHRA=hwZ_b(f<3^-ggdp@*1>rU%s4%A|l{^VIjE+X)zGOph+7R&6cz|&eBea z3YPYVio$cFM|0PUOTtFJ3>Q~OVaDUf3Q?$~2DA z4n;aeqw1+M_t`Ro5p385l0C@*yqI*Bg-C8yr(s33zjK z{~!%%B@3Vich`>Hflsf*8mbl?U4uRB2d`S#EI0%(DhLW_8?pa_6Gax1iEkOgvxDp3 zx8g&2fWNUEIU#d;Eg7R{Gw?kB5`Y1ve^jO&<3!VUJXFkgPH%NDgUE+b6q7!Tkay_69qU8{yjUIl_ahvS*?qY1eapC;E}lMHvhNPw>JV~(YqMbi z)ktsvdNbaOM$m%Vk6pBYEcPC>6b^4UKqidei}`|7HsjmMvRDE^fZFpS1N`k0=)ZJ! ze?78U_n^|SQ+>Xq6zB!7grnr1!ahwpugxvlm)d=qr~CWZO>`QC3*7yZS!@~ zhvz_ka;Eryb@PRW57GRi1^CZK{Le=G&qnhZLIUw`Ifu;Zy=XawC=06?9);EPse&H?e2;Qq7ZrGxk`# zq=ItZQTS03{fPq3pWYqAjBx-}ia%qE`G9uqe zVc?LPNFg0^4jN750g-@{+#%A~P=9ff)iGGOL(`YOWLs*Iq0VD*?3b?dChkSM1MP89 z3YM4yR+~b(Gp>ghZ92+`K&1>HA|1B&%Ifso>cqr_^`^Zv+^(^o@rL{;inbI&A)DWr z*#55m7Y8Et-@Gdx%XXjGnvcVV6H8ymJGov*YGx&K+}9Xltz0t$?ap47X1=B43~&r$ z>zu-(za)(bF-l>*Pn<@xxYgY;^L>AYYe(%T&zk)}d|TyEWjFtI`CkmmgvLUV#;4r( z7{rX{_M+YBJtR2}u{1CFM|~g0CHlghdG4&`!Zz7rwjC)h%pygHR%zQBzU;#3ee2rN zfFpG$|oB9^GZ#R z2Fr=3wI4(Uy)C@?Fe*G#YZp(C6mSf1^$&N}=}|;KxSV?Ctm$pl8Eaka>&v<|Z-Q{x zG-7GY@}|Sf?5a3vb7hUN?E__uxhY5`Khs*$;JJudQi{<8;TH_GebV!=dDugNlu-zvz44!C^b^_o< zIAKq&8>!DB%4L`trkPd2B#vOSF-}11=eJeB;#P|=s?b09Hu*SG8`#o$)HEn=Y1wu& zZ(qJaTnre7ddszi;}|BEk3e;M`gR`|2E6$uPBZn-(*v4F0^U@9eZq@3gGq%hy5ow-lY>4Keu|d(228z z2;W|}dJv<+3G`f2EmJ8KrgGx?e9_s`_uPB?LLaQZrKX|bbBwpg8y*go95{FBv}MIU zyWo#PmNC?P<);PV`obd7%RYeM>QtLvTc2FBNM2#7jgb3xKx+m{gP7LqPXYQ!Q$Q$c zP8D%)3|!ch9?J^T%+4Y_FXz;9%l-AmK3m78oR3H&zLhnlC5`QGd`g%25c&wev z9!2Z2N=c$F9Mqa#ho5%AeL9Z$t)6$Y+zW2YE*3B@kO|dXIo}ps_NCJc!J$Qb?}mqq z5qe+Sz#u`K$UH2#shWL?{Tc)0P=yJNw&=I~S2%mJzhRimUBPF7ohSNH0P>sLkGEvnWE3qR7%ji$(@&5d6`uWxk0{K$K-Aj%#w;q4ip*ov^hJ&Yh;k6FI@ z{Ons?X3H(p2-aF!kMWaz(R|JTrnHmq+)>^c7zeOxvUq3NZIOMP5?nduWohB?6I5O$HGgriMiBxoc zq|b}g-I681jd*&%CG8fO*+3lsDx#Y|0)f&AeFqp$oWo`mI+(Vul1^BHQnip-uUL!1N2cI%F3Ka3uSI;3{52 z5T!=iw9K>~0vt6HWTxQ9yA30hp%0Ra*^Z(fof$Cq*5e83$SEt6p7px#5KrxKOX0fq zeY&zEOfpbqW)TAi{|VUjqS>dso?`V)cZNh>y?UkX!hjSMCqgwm?L?MV2NL2o57@~8 zhhAhc+O~7-Pa}|{#c)lr+)dV&i>Ft8yXkS*8$@TgI*#{#XT~Qm5oji78M$Zs>=DK0 z!w0&LvWJ{Lqp+BhP50IOHd4bfa}LOGp>G6Ah%nIh%T&MB_?=s$r;!|P_l)nIi!0Yo zO;To|_qq$2a#z`#5oIatkaE+&hm%(URYIW}SJ8wk}@%;jSjba;xDwpBo z)7@Wk-88YGM%cQ`(K@d3Y>F911qZUP>gL@vFtI+p0WQjX)5{BI!VCsy+B@EPaZRZ{ z+pjo2RzOar+Qfq1^m%@YXKyIM3H`$1^K-i1>nnUdLtnaV?5q$M{(=`f- zk_T^@l=caQEyeoP zmOQiz`%pTSNt+o``B5IIxbMd*AH~{eHmwKl%}(Hc^1gl|B=U*_kZWIw#4q_eN1h1T zi{F&~_~PCrYy>^ty~JbI2MgPgKzvqAm)FMw@%^stq&Vn*B*Cx&399E-Z%cD;EYDvhE|ho}1w(hG_DndSfKwl=x+kZi?+ zz>h*D4;~mOfVI{F=zt!b(S-|~G1}Y@!7aPguW@I*q_D8{wtL1D=beIPE!DvY`l1@; zd){diCN7CD3n|%DV0#SVyNmWKbG*An+|+8eXl2WwcFPe;k*1UDx)wG((7C+zukUU@0Z>s%M+9t)wF^r#vqBB`d)J5 z_Q~>dk2pKte};!WP46K#k)1xgdG!+oHe91A71=8hQsPYR7cdKhQX;I{#WbEbpW6?I zeS&|DH#8t@|DExd9y0y>Q#)e2ep8(AmIu^9zOz*5tINW!+OB5NPkj(WE`6} zxd7fu9Aq9tWo$NK1VzkHW=E7zInwl@vvMy%x?!PrDeBVQ^A=m=!6R0Cmul*#Py9wX z+Zr+E>2y&ngd>p(&`9M6O(DR3|LQ=6KBF)MO~%V==$oY|L;Tws78+n@A^y_?>v{#@ zCySs=W-eU_TveBpkvS(Ke>IArjB#>J1YuS&C@7M*#r8caWC8wC2`w^=ufJTE^(~qz zX)-JC<22TW_Sh&wO%-r1rbX|i(~I%U6~Z`K@(O&fyRvFss{TOXz$+(ZT57;n*#tQI z-^auCEFxsvFp^j?YaoIRSIZk9n_pNkf=q6*R#?s`6r%NyIyWZOEMw#Q7m^cyzP=gcW*?toz`d0f6!*)Iv3V6MgJc`P?<|?k6 z6J3K!sbzdS4~>X5H*W-tIGk+S*VqomTII+*wtAO|oaO5$3 zKLE+x!-KAI&OG7$sR$s=IiUu{xDGQE?Ezr@B8h>Wvzc~_l0fAue!KlvZMr=qImNBC zAhGihdVRGNY%eO!eEk1>97jSBI)B8#x8~8Ue6{7-yju#GE^Hf$8WH8CvQ~ndoO!AD z-1lgwA9r|K&NPt2u|@DgSJn=LjYDc6jmr<$HvX8~dKJz&;RFZJR#EBA#7X<0=|VVv z$AP z>M;3DV2Z*Lr7w;Eg6QA`JVPQt1CS=h12-^kMw$aMo_!>ClzTPG-`Je4iT=m}&t33{x{0y1zHuO?s5nxT5GQStSf%6cU zBzAvGu9_qJihc&; zY6S-)jeJT$z~@4N=}YUKY`^I|ig62YF$SxEH5i@z77V`$F<6WR>wfvG6Q9ESNA7k{ z|3D4}Gx~S?UL;{;4z{0Nx%BVQ8Nc&rntt4|F#B$h>G@-9msF|Vzna)N0-emWqdpphw-nay>c@Jr??9N2FhRA5kwUP@y<{te1xwc0n(Bww25WXELTr;MJ- ziB;+A3WSFfiZSNVx9@Kl78{3mEAZygc-;)LUv(e4IqKJO;%WSl@5$Wi7~Y zuMp$pjpMnX7VPpoy07Mpc-uZy0C3382_lIYbS={UCnXpHUIfLsun79QinCAH(RP^c zs5}_OJO#7Xha_#f9(uxAXvKjVbZRqX?|Z2guGtNFxWn{42LcX>P$ue9V#9TsQURbi z|LXQ@Fn+#hv9jOf;x1<~g}7K=g;>h3Q_j3Z-kxbqr-}~%P;UD+g#jXc4FTmx0v`WOraOKbq9TLdWB%tkugACBVeRD56|Y;ZN~`<$8-Lse zu<~}q)&+-!E`jD1S^MV8bngPhJl~psK?=pos&@}71I<3ch_)^QKf{e44-jbd>&q?K ze0=AVSMcVz83pwnJPwCqY@o+vlS^NJYOP_kQx#)sZrjg@obizGgR(wfpXW zS67Jf5mP^L*f8nCM=P82$IyJP?+Q`dth9SZDSz7@JP(QG6xg!l*}E#cj7I zlxR=vT-f|H!$@@BNroTwILfrwGLF#O(9~~=Siv}F&TfCy!d7!mb-eIFLRCjeE#|ODPGxJ}2QshkL6wDzaU%gl0iXsSyn&no^E)AQ#YTjo_B@REDKMnc5f%PA| zX|F~R1g%=V^SG8l7ccm$b9MvWoc7PYV_ z&WFcI0YnHd57D4OSz_x9RW&*_shBM7*k&HaKuAhC?lpx~lK}9bt(ssDX*3kz(sS)@ z^QtG26&37#nC^cwYWa^ z3Rrd=rb+Ece8xM~!L%U~c>Y-qKj;Cdk@vl0%et$Ipf*%j!#49JRxA1;o#om^eZCbf z6t6%t;OSh7wu=!){Ue|9+!$liH|0+rX2F=_VF6Xh9pNI6C&Ytr^2?#vjyCk^%L$yY zdDYSx;eP$b7)*X~(87m=QqlFs0kK8*E@s=hF#5UmOau+g8{&}I7o17ZA)r}nC$2j4gov0`w{@sS+5S-pWRu!)neqA@3_txm z^3#2eA0=P0Ee(K{FYlB})@_Ww4z9+$*)C7w?ISs(rb4Qah36Qe#k(!*{cN0GqomClcVX{ctn zIIh(jwy+-by=y?Sf<^^U%#BbQ7wDcc+UbP{T|X@4rOFG?4cQz46C7_eTg)UvM_#># z?SFlFqDYC+N%b&QcqWA67#0!;kQ#0ag%`1E5SP}R5bTOLNTuY$$H}nVe0f0*C6f=*WxaI!WGAav~CE9Uc5)K25KtioZ4;_-IUdjf3iUGk0_mAC!qnMfA;|{~X zKalSI{H97pE4L?PV z#9ckMt*ME~%*yIRel$s?30n7zZ{I1um0PM#UYMVML_CZ+H9)qm2BHXxB3ZmFhPFW6J&6acfQH%ppwR{h6 z-IYO@9}V2YUve)Rj?*&$z)1|Uc;ccUYHrgfCR*7F`wnYkKujP0a=Vuk$^v=R=q0=M zQGsCncbCp#e9A+Sf&gsu#yeg-^^gfmodUHBiWc6ESjNx*3E!HB>5q{+ z<^7Gf*6#blI~<1iI`r!H1-z9I%7W4vFxx`B-10*s-BIVUa}-o?WFAI#@umYhGv$D^ zILNPTB9kH^)L~M9-58k^AgDkjQM_1%VgwrIE;y3h!O(Nj+Yb<^lbjo}kw6s2y;8IH z^~!TdY6S&L>blR;u?NuTczR@YE`EtO5N&=NL8Od2F!I~AU0qCKKOA73Ry%%Z7VcZJ zPnghL*t&W=zy?p8%aF^*D@FVFRWvHl~@7K2#tZU3d=& zt3({Q0q_I611F(c-&nuFD_k_ZQEO*LMEibdf4S7p7dVAcNf~;7>N-W|?mGJMC5L#e znCcOva3-CE@9cPHgfoa2M%(UCd0h#+k+wupCUqRi1{z2fQp|W~$2}t)MqDC~TnxIu zTc>pp01|x7fiBcUX*x;;j|KGJwNPUc64JtelvT7S&id{ zAFHyG@Zj7d6|l5Eunwm!4;|=qkS9#!!F-)JyNhiGQr-wD$oI3;sNxT!W%W&*grePF zwsdZ6%CX#r8xvKy;BBtSj3eKwCUuYf&!G|~1Z+>^KoH7mHb#k3q8Pfs-WM@~3+_Ik zu@5vLq=XeG_l-hpoEw;^%&V$SAdcV$5;mO{(#6si+4j-?6fLs`z(oCI>e~wfE~}>rEgQ_zg)0XC(gM^jGH&5P%}X3~+sZuUB#za+bcN%n@Yngai2vV@taIx?DN5Q&}h99_;YIrtlfHALR5-C?ImSXI>`2N{VK1~=Y%`NYJ6k}Xg0jmcr)a(nhFB?HW zX&I$q4Tp;#vgJS;n=&Lw;zkc4M-)40@6oY$0R#hajEQ3QJ%`lIxPxD>97IPVH#p!9 zK86(?fQ>FH7&~`P&KK9kg+4gCs(JgsJ~Rrd*PiU4k3>E`)njo)A;kk^cH!KI;)-|KM;z? z;Yn+pNa100eAWmljd%I?;}BY>BSjteqvPowDopO`i|e00&1Z+Fw+FqB98**I7rRyP zA&`&$3Lbw_Bub|$UAhWE2)~=M_Ib;VrEPUZXo|ts3*X>q_pgGy!ci11rh+#{5>sq) z3zC?i-D!;WsSgLqvWwEIi4AuhGQm6qkMNMbT!L1y)e*mV!q_f}?<%S73Gprw-QsYH)*@feVG9rm7?gHg{#s3jilP9pUnZ{x>4g*0pDqTw zsn@j8BuK6CBjC4K{Vc}Z-_KRSgYSfY4x+N=B&ax@<#r@TZ~VJvtW_4Zv%Sq}8CAY! z`d?4aOp!!T?uJ#xmsPsln+d-i5200{N1jd&TXGQzC{iR>f+#6Kiq#R&6n_HDtbKe` zXpbFI!Mk|{^>`WMtD$SdD2PPQd-<72q7slP>nGFVFmU57lKFa$e1`^5e~N%{l2r1j zH-u8+Xp`e%&;r6S>!;HB_%Ar0@$}>(Da-=vhsE!!W9u{_ysn$6+QF8&h4d?dRR)QY zjD@k$7^JcxHqgKF!PCPLS zluSugGg{b9HR5vt(trbw7ZT9Re!2WeP`#V1Q9-Pv?v85}@#Q(|4R8O=L9cPZh9BOGDz=Kuw|i9|#eterSaVp+Qpn%oiLaJi)hc_3=h1`(Nh>}0-g_D!CeEu{i7Puj$?`!Wil}iES)rp3k17>5fy5r)m>B$PKsibu`dmdLq-zBXA-IgoiGO4^XWG`UKue2~n0WVktNbG4SfI zq}Tw!^S66CqsT;oXMON|at{Ho1~59Z$hYMHDA3J|pW|yPs@(;LHT{teMk+{0gWeyV zxkfwz#aw#Tv_7CueWVp)d`xp6u)L5Z;A_Dr|JN|WGE~Qtc~767Z>Rao(bo^8luuFs z>ub+pcmP=6*blnLV0nXqLhDEn7FLBpi2j!({V!)aP}25lxk~tX=rFlfBz2Np}=!sj^m+o zcL3iD0&PPG&H4OMgO`pdk<_DWjhwm9rIru}l z$rA0Eym+1W1&4?_ePN>^^nO`NJ~2sSesX|FQK{aB8VDmHahx08~r~U{r`g#-9XK1ZMNNMdF+YP)1_Kt6 zv3a`eaLD9fRD>`4bcwa9Nr5lV*d1hyhtGN>k{|*HzSj%weE2t^@baPZ{wz12Gia1a z(#ZDqwszi(8*-OMTfakz!jACKcikgQq5ZoPT@4DIi5UC-Y18I1Yx zOzH|TkfyE+n+4bVoXT2+d*&b5y~(iM!1?Xd0R(yNjKbb1qBKTDF)p^|hIC(gs0{%G z?f;x`@Kwf#O+{C-fZio-GU zkxG*RfCxJA#m`-Kr#%s|JE_dX4r${1Rn5V;;g~OYtrfuyed zi+Nd?NzszW{GyO0rJm_1<{6wajJXwQ^qI;ZRiGbd{;-!Hj$M4H;fxQZnyv}%YvjKG zrT^aCP{3igaoC!MVBW6|7<3K}P8z;go5Mi05ZWYd&}ZdTqnh~Pco7qTBWVzD#z&G@ z!aPM?lKZ=V=Y}nuI|fMHNEMDh61b7q9tDhWG%2C)eA4@PGUXP>)DeVyD-`F3`c#7s zTf@NcZ4dem4zI|2P!9;;O&uVBLwq~ie)7Ut!sB2jHjD}$#B2!4)WJ-*bY4cNkWv)& zfdl;hJyB6nXF@_kTo|DLR$32_=skE3zrU2AP;epSmoJDTO#}pbU+zPlN2VRlzQH4% z8Et(3f6cPh&&131!$mB*p0-|-iaTHO;m%Cm^%3U>#c+3F*!|ika5+ecc(;tI9{7Vk z|CYTH_oZ$UZl6Ks*^R(t#FDqNM^h03cI|_9Da5WPyd0}mo`9>egdXL?9J?r@i!6SB z_Pp@gq&!T8-_+x%O>K{$vQ}wd3NY7lT3lT8X7PE^I~nrlm(z9OT0>}ZCz@5-XuX>7 z8@6Ti{k`?M6d0(Q$>1G%zF-cL3ig3Hazg~nVZfmt2ea|eE!E7U>&?` zO89aEjVwG~>|1~j*Hut%y}?qbuk`D?gOZ800yw?f_ZMtN8OVIV_%_p?fK(2Z!1iYW$LkIlG zFtyf(d(}v(o#lzwoijc82qHWp`@e2zla>ckYws1mb%|@sbYA6e|9$E>g@1<>Z0iwZ zIv3a@7*Lk_lRm5=i>R9VQRJ+7+=Umxd)o88)O7HYx57eE{@oGnnw>XG%yzDQ@rH*R zKjYFwzjyI-Oo@jY(s&NTz32U4XO<6+E*T>^n#Ywk#=H&I;WkF4*ebn@C~mPw$fesO zf#2Tb|70sZ^S$5LK;1VB8UN>cR3vE?9+UYSsYQbIBkUB%pAA|E_a3-(8aVuS;`!mk zw~$Ugt@Nd?$8UN-v-j62V=bq9JQjQBTfWY3|BM`wl$!Qg>LmvYW@zq&GlRPO^cr8h z{8}4->m1w4mDVB+a2dLP%a>E{D$hz=INc8$<$vMX%EQvG@c(|3(#&n)bxOK!TNzA3K|>l01Vt~-i|V#bbEQ9wDxMDl55u!?E3T5!j;Gq) zd%n+NK6Gm2DptdgK8=~p0US0Hu<+KRQbNWR(@lq>n6$=ai}@GOXEmj4`|rgMyVJ#w zr|2JCNYDzB=)WT)T z3V@>dVCnQd|ABQQI(Fl-370QaEX~kYqKBc_D5!y0&E{9$bdVLNa_eQzo+=!491tcI zQynog!WE}(#vU@uY%7P_Jv-{gS~z#4ujI&iUb zcsC#U+M!SLD;S__B&jP>M}!7b$KXp76kw#ddW`M;?8>aeKO?r+z`prspW5Tv`L zrKB5Hx(1}BRaCl$Zei$@ZcrIodgxLZq`UjQzwYkyyWYPxFQvTCIiFN7kXE2ifz>2U zfl{C+RLelTaEj`tXYi?G6o)p6Xbyu70zq_pjpBy!uG<7l2CT_;DH_R9z744%M~8;g z>hk?hdreTj$FoHAxp71Ozi#EW4P*TGrpjE$TY6USF`7>f+!F(NSCKMDLKfRDr+Z67 z>BV%PdtUiCWAuT7o-9ZVyXa79s}a)C`|a(5s_(&&9O6o*6ezc)d_ioi8pxL}E?1ga z;rl;0gZm~Bv8F={82n@$wCc!UTO3|Ki+S5GfHb3#*U{$2|Geo1_ zwE1ng9fMDF}?*8IPnpfIDdTZ%nY3Sc#p4EpQY(X2y%zsc7Gw#|eP z@!J0V867@c{j=+CRlf?ZEhL&`>m8sEGZ`9)>dV-!;2;}R4HFBi5F|tEmsIqysLdo5 zhsJEpTb6@VDd*wZj@D&ppHluBC}kL8$#A)P7<=IXyC^JPrc2QAna8`uaV}dCuLs8e zWFE7W8sVYBk7Ajgu9vYDi!XJj&GVI#Z507mHE9dtpkaa*o&o4SL&%^FqTN)qo=Ajv z_^v9NgqSKYsH76NmyB-l*Ty7OD+@pWb&)P*c!6?DufD4ktQPYXfCD-7IBPWQpleRY zTmveigRJaNJ0=DOGQ`D&ZWxVmR9bb`79c;>g9!0hpEC1#-J`0dx5Sep@uJo-&1SZk zNNs~1?4KitE)RJ2SH~jximDSc9=DMah#83=hO3UNHggqrfJeE*#2=Za=+#WW9(P8r z5d1Apqy_rJ;FO|u;%fF}@m(xnT$S$+4tMrOjPSNU_k#ofv7HPxN??}O>SJjU$Dzsf z#j<$hivC_3$g*{H0~uXN!r&&vMAsXDE-yFu9Q8EvamwVcQ5yILz1!eP;c@RctiPihaU6Znpp|d*L7H7E{#Qf z4*^CgBL?Udr*&hn!k2G;Dp)JAmx-QvUs5ym0t_Rs;DM(&r`@+W)I+z9WPHLJ8|>&k z(|0*H@J|J;3@HhAIoqu{l+)dsKY%A4!9DH$?QXe|R5!Zqt^&xSm;rWL^{}~$D#W_tA7>gv~RDV5!9QHLLpWCqQ{2Szmx4O$7*;EKm{ku zq%_=d7Hot`Hq$(J-_bz_SN21WIS`Uw9*Rl->jLDD>TiM^wdk~it|yWC$F0|w(ao{H zUuRaqpfU~}^*5_vXVeHJcMkFb(Z#X19gTbsM{UmQX|jjo{ZC^*i4rqL4TP zA@?$psi2@w=b!gp&YuAe-uoBdFj7jNL1<=S!_Sl! z*JF9Rfs%VPQ0yRch58%VRruDPzb8kk;8JaX*x5obGwbTwmi$5?98&h)Olb2T95Q&8 zwFPS$eGb0Rg)JxT9I{teZP?<5&>mbqI4Z`m4WD2E`sJ`u*`kysiN-SDO}jNvIbdIv z%d`mp*{7i*NPngsOD{#Tm^-j=f8s1{kgm$dS;FY@RkMu^?>=KTtoF)Np+*2G!$(2j zDv|H;0eyQN`kb+xN{-6cwaS6Jxx#uMs>}u%357+ah31!Uz;u0N`cM3(44f=7xrYA81xPJpqFRCCl1HtTG9ae zlbdKKvzs(jvRbGq*$YK*Vn_HSJHIY%q1!UNs03nl&BybnARvWgUD+Y_Fld5x+iScL zHKHnB0*nn$d4WyLtaT6MspPUZtk52UoTnlVpI;BvB&q7r=N_PYMAm=c>NQ)OfG>CO zRyT@huchKXXLIe-v~DQN$l6h2cnc`|_kidU)Vg05=lPy^y}nzMZ% zCyLlxTQIaaE}Ybfkea^sUWBFv^1o@(wu5f98)t;-G_x*APBl!Rt_2kERumh9hn%T) z%S!xQkA!x_svEF8%DFdE#`*Y=nO|xY_{!d}kN^(Ist6Rp&<7;!Fb7`?{Cs;WYhfAB zE+$*{Eizi(zBiH63N|0u-n3taEVjVQ>-H*>x<}Vm}!VMZ+ zZL-KI1#e5P(Ra_O4U1%H!IoHLfp`;%C%|D-*Ps8cCD*#!pneG|cepZ-sCL|J@ zWn&taH3XDI2mMjmIjqKeuk<=LOm{J_OSK1XSqJ+_nrD#R(Ry`QCdb*JZpB>W^#V;n zP#}3W{D-_)f3%rWA?eLGK3>}nrb;d*H}4~o=Otw(@$POLGvMj?#dQ3vTTn<3^*%FR zQ;+*=zh41Oj1mVb%4PtQO4(a>CK|-9*mappJ@aE#ZTH)*Z@p-d z^zf*KQyH*N@3X=3_Z8D~o>q?f3xWYN-GZOogkAjwWOy<941*Jb?ALW8g~taF!UcW$ zBWKooBI5D-y4|il8e8Dbt5`YWqyy#h5# zUsuLf5!APWofQR~9Q75`Mjo?TM&M`df9ZZ%m5~dE=y#o&1V_!tPP!5QE}`RBD_G&p^LecBtLE|ReAI`4elENQ3PROOoDhn(w?$_Zikjr zOJ3MiRowB*E~fZ~dO@q3nS{bZzZ1=}+MJ-y8{BOx<2q;=mJK|WSG%G2S#cf|b;%dD zeH^Z0PANR2{tcWx`Jf%iV`&f+!VcuWemmi+o@mgbXLtl0hYGp)DKH$*aU^&!vO-CP z_G~R2t)yNB(4|m`Xt4o_j0Y@AmV0TD>iUgq;vT46D$G^Qprq)TS^0jK`AC$tk{ zMg7Q#vSEagHlD2&je@3`V%u>On{$4c25=Q`CW-rluvDE^p)7;l0?OB4{~FphrwZ!z zzX{m%9uEm%Ik3F#x{L3=QhhbDT^GMc4g^3+4Kx^y+=1# ztt6*2_@FC8)R_v)i8(pxfbslr&o{bAOQi9_c#NwR40hBx@Dy2>>H6>+{=x;gPD?+` zc)BV?inF`hu4Z7Q`0h=+l#~5H#tKHj6DB!wv+k+0N}CcTJT=IznX+X)MB=N`72;Bt z7gz8#fYbZW2z)i;09|e0nyhNO!;{CsEp6&pM*_?Z<6Plu_B}lD@)J!^ zEb2t>?U#Gr&cNjW!r+Gd4nW?e0L#7lBTrk*#6fhr7a*lCQ}G$ZW{by6{qP<+0(59` zeMTk&)W$r{g!8E+yooz;31$4_XKGdDk36e5agFKoNPhttKTa;}YrM^Q7y>iZo$P*x8aA}}U$zKT6D*12T$xBwJ^a@>NAHoL*7KTU zkKk2SF20wR?y57Q+uFQ&N}H5xW(-M2BKQds`G<##&OK{>yO;7HFj?bBp|Yv-!obsX zd0AkwHJ=$4i>qNUuDntP7!p#kNU}BEgMMD3zb_h$mXv+Al+jb(S;mk`{?Sr~XP)sj zKXhA{2CH-J&sD6~#KynBFu>;skNnht>(@H2AS*Yg>0=8(t34rczRe{2T=&SAMb*Bf zX|taq8Lnm)fWT$p;q(ZJ1kxQa^wv!L5 zb8Aianw_^PcwqTO;;^CF^Gko)c1mPj01uA}KQMm!82q;pD!#5V6sT9uVXymn^Uu;B z(4~RX6$EfBS!x5Gm_ST;4U{W6?mbNTKg_-#l6p0*0I64DYpZyTAs=}Nsev^mMmnH} z;L3lcVbr!08c5%>-vH-FIq3_yJmbS#%`q+@AqR{tF*L2*-yb zBV`lBln%j!(FR9Lqz|Xz7S2CnhUy1}Sn~2-IG*qis4U+!ucxC-lbSUV>`go0&dUOG#HL|33% zTyxD(OFsmLZMI%ty)c~{G325Q#{D-U*tj=$>afJOihtHMCYjSrmbCoM7%o7d7&T(; z&U^M8<^iP1>RT{nbsnthV~YHhbjYX7EtFgSh5SpBz2B~;2y|vle<>@zgxb5Qs%yzq zLmlT~4G;#U{@qWE2oeH45TjavGb)a3zl)a~lUb;BtO|_DORa)ogEJv!HEX3>*>^+k zNr6Fo=E@tcV6te%&bBckmNJuD<=~tUe^aOnsDYYem}L%b@U?E!n{qF3ftUU6Pa`7` zF#-1h1Mf|ABahn}D(+6$bT=RoC^EnJ4S*x!z{vZp0zzM6Q@^Bdk-zT=+(Ty}!(dd$ zRtpS;TpN0`Mxk4|N6`n8M%nI_@8bWJ?bg-)ZRojf34JXwUKG@P_ zgWq!)8Jvvz*m@F)jrzf1lu|Uh^4ZargDxdde};myfJ)V4;6^k*b1MH7X4CSHAac+oM z;3Vp9Fn*(1g^sL}O2uir#x4+V5=81~d(;*wCR9=3Qz@mEgLVGd9j7^i(@kl=)N_es#;pB;aRQL&rjmKtSPEhb+@P3Qw zBTolCe0=hhng+E=AaXbljE2y0&s54qh|bMflMS`|`)_KN$GratN5d_KRO-&|T>+w} z5M&_~wY0RX=mh?kz7Ej_XzC+CG-!x|Jcu=bvNXU=qYZJG0>B*U`FwTs?%l9AA}g?3 zeUy+kk;euOm)Hi0$`N>mH?ts?gFetv{=36wPMY7IG6a(keV)DpSL^D+c*0L0@%7kL z&KY9@TDRS2oI1Pw-T)^aL;#jT1zIc$D95Ty-RmEq|GbnEbk4^ej~CIGhU4+e&zO@U zVf%pGs1X9&_9#FT$bHY(ILZe;w1KEwvPu0v=M1wPqZ9m88HST~0)|{;0chZJM17_E zyavVLJ|tq-1hy`f>33!URWeA-cz~Xf80`$okV&iN0UL2XIB)btfrER9rYBPLNVhHN z6Q*hRL*2K;Kp|<Vq+6%xL}>Pl%2pnr7EC2r6sSK85dbmEW?R<~z)|0yk3F z7!#3^YqUP-yq62oNeQEAjiT*6yti}-HEN_sdl;A;2JUvxho-p!mLOt+%E2|mK?!Q&yE}T!3WyqmQHBU<9uUfuGhV!dYtH4rB*_hu3fx zkW10ZpoF+A45YxvN4G))X%rj+WRp^~WfOdxV>Eld@WdK6>?Lj+jWKzlTxENA%<59LGpe8s>agnQqE$`s{FMkswK7 zIF6R?Fy+Oqa8sdl-y^-l*=;`^(0t;EI%e47X1H&3$fq$jPp4tzWO53W(S_s`=<1r& zZ`gh~?REa^2J`CBq7d|Lv@{Y;R6%4&b^L8AH}zDaY!&0g4^%=`_dyjR&;?Ts()^1& zTK3aekFA%%G;3EwnF#TjgTWJo)$aqu1F^*)A#-&XpN%_2B?e*Tz_3u|`pQ!rvy zAovxOB!no3C>3Ay6DpF?+L}>wIegQ_uskwqOXWm&qxk_-QcQ(GWIc%bl_Q z-{Qj5k~2xbNEm;MuQ$nz=5Wm=tFiCAhjtpeDkmTQK{Zpl7r162Hvi$&RTVB6VThZ*jpj;N7A=RwVBQkpd(oML=aSq&cvX^?O(z2751ic0SQ5mRs6Kz___ULX{;g2lwwnGCoDDGHtyhr7V4 zunjrl#NOnni4?btXOF#|nf^fupC8={U3Vv=$hNbkQXoUguvkTWL=|lZ*6~a!wtxl) zTK~|EBAyDyy+U5$q%fGwumOMx1iMneOp3Q`TfCBd67=H zkDcLwXA90dpn`S^ws7$$Z|vkzEzr7T)W|43NnF2d+k2V}7W5v{M+>#_KHXEgSMJpZ z%4^SGdefxT6PU7Qwy*LPEj_Ni%1&ox@RSQT{i`zF4ov~M{XmKjI4n^O!!68IJT|8H zR-7zf9m^Yp+b4U)Gw|juOo^g84_Bt7W+3D>MSw)TGkUM_jFp{&xdE} zN99W|%<@l42>pa=&tOxREGEBYEWevI(3@54xCyCa6~B)HhZiM6ejM-@`nZEgCNr^h{}N{1G-a_LUUmYh+rw+ zFzX&ztgV%m%sbh%D_()GfE4%(w> zkz(i)Favde673=EDqkY{F=o_fSUuevk>EdDjP!uhwEgl+wk+z}?z*}>L7?n#wv-#= zlWz={YSt6 zf25nHzhDGP`DwFYzjHwPsKQ2!00xNpa{Gw)08eiD1r~M0V+1*trRq z#BCO17RkMvc#1d^x7EfY{LIR&WAQNC$= z{P10xf^bD|Em-oj!OGYeV+@Q;3mvwY=bj~q(C)l_N$?j(kVdJq54{3P?c2A0rd1}=TAmh2`a`^c#p<%_({2bw5C_P82lEb91k zQhGn07d)_K7lQduK05tk=k^d`%pe22+Qc${yfLZ^)#fI={q*i#AfBFT5`SSIBuuE_qH*XRKr&0ib&R2Dx-SNcH3vctUVM-x33Q@7Y)$@CgVIAJVu- zZybmG01b43DIvuVjpWboQTcp%%A^qIY03Z--d$l$VPmwt&A%VNh6jvy%1YX%$H`kFV@mY=;-cw&k? zroA^>)c|4vx#dO6XK<1D)TlxkmHtOH<)Ut=l5Wh^Xn?y9`- z()_j_sDHzwF{Yop___7wA4TNosi;18g-5f`=^m4;&RTB^kYDV^j{S7-X(+%Qe)|`Q zjK`#2daVc+7dq8~G{;e7-Zc25h?Y=(ir9b!XA~X{x1OUJ#Ysj{@jf3dudHl2(9b4s zS`RP(=}cM}%ZM#_1$yORc%o@^feQTx(W&;kx2$jxigRi=IEwB_xq>C8>3oXc;;$MM zZ6YdgIL-XkapIOIV~OBs&sMb4ODgWe*vxl?w|z>>sFs`3>kiFs+oXa53IB75gMm0V zO<|4xOL%1)pyjX-F2YI->U(-dsrD_5&H7~&zd z7$)V)y-J@Fo1QdSvVLdm3(|d2t^Fk3E{=unrD!dD)w5@ZLoe|M5^DJyo&J-ZcP6kp zq~`=*;*VQeSE-uY7NI(5Ym4yNgzShOqC<^Im7quYTq5Q-u$hF z&ru4&?@LXNe8(@qM=}+RFP;05rywRUVVHK%A}m0R5wGs>tXmTRnf#Nunj^*J?hEW}g%5 zo+PWxgEg0@#ZA6EP7CkXmq&n39Z^RbY$O1_8?h%@!+`zG%UnLLM0Um^Okyr+o+c^y zycRb2T4fo&rD4xp(8nnF0H~=m;WHSg+h;{afJ?|32Vu>i5zp&~@SjFJKb7|G$_Q?% z;K*R9-b?Rt$(|t^uolg%j;aD*t$4)a6uQVM1~R$`BPq)2*==XYwOjb+(!fxi$;8-I zkf|A<@<%Hv1oh$|pAR(-Nd5e0t!z!(;MAOe?E~i;?N2k1VtDHWKrqIuKW(cxb;)jM z88m_DpBEF`AWO{l*Y}Sv?&yhZi0VwE-_K5tGwVSe?NiXA_@-F8vh zE%*v6tULGl45o5SeKx-YXd(LB4K#Z3x;=hj@R*B>rbpBhZ>M@9`u0b~U2EnA+IgH) z*;PfV3vSS=>;|5$(u@94LJS;s^&oi@A`>4c^qbhW`1YHl_(57 zMAu>3wh!Zjjw>+R@~%KtHtU&&$%1NJ4bUo$=07bL2hXwkPbC*9R}2xrvcMIQgX2&{ z-Z}W67N9>B!ePj5?YwL?6aP$}>>H=1FoC%RTXKFyG|s z-ODu3pDz8KG+8M}rQ$Pg4(gsI{iGQy3r+y%4q zus9}tM}w}`dEhCCY5)`l?R9=tB`|puaro_qvR-e&71`B*;_0Agp=XM{@VIPjEpN=9 z%)_KgOWpdC+}d>~eM0Z>NU@Pm`6vRG;@`ChofEpnU&5#=9>kMdhh|nZ7kY~e>#zJXjo;a27+lB zJNjT6Zc%B+nL4MTRx-Q+hI!FlEpUuiP5v;+wirAg0l>u;hM0{7+SB`fT}3DB{9mV( ziN*jjljUoy!Tn=a0j;?CAd(2SR4esBJIL1+NC?Wp2ILp`N9~w{?c#jrr--A#FqXTg zJ$h~xBZBBur{d5V;OIYYixoYtm;2h;mfvGMjcWDYbLf3FwYNEB_cV!FuN1a$Cb{^S z#S*qS=S`7}6r++Q@PHv6P6vg13@b3o1p2M7pDae|faojBsuuWRP}4M?suNK8GMD>D z0FaS>J<~G5nAN^!(sJnO!ZpG4%E5>#RXI_r~g$8bEb(jYEs1JnRy4Y$~WI=uE8bT6YFk}F*N}8 zjt{u&WZk=Q&C5{I!@pt@ozdSX!Q#4pWgNj~(T9mA_7;7aE=OjZ#?UsOXd* zT!>HIMQ6dD?&`~s%;rY{M~-9Ln=KuyYr4WQ`YPXP9WJ{CJmo+$R;aDo8VJz2?wp&v zaVk1{er+!*T|FID-xc**K}pnA#Bi~~;gfK!j%XDL9R_`!S0f^yc2C0k(fhjKte~Sg zTZ|m}=%gU^lEUBWjZbSREk#iwU4)jK0ZjKdSyyvCDqJ`C|`;ktxyn zebHq%$|D!C<^3;l;IXGLFIGUp#es4)e36r`&+v@GNqJoIYr@3CAiXSC4L!re#XQ*U zED?`6z1>WuB}%RSF%A*C)KhP~m$#pXmpOX-!^p%t7~&sqAaKZBz`HP9`&WHng-<%n zDqoo`k?mZv174A{?eEzUh3gEXWj9oxapdjE-Q_e2r!iY_#7P_C+ooH6rzY6|pv;<}6l|{a+@AfvQiRdBhFp9mI(A!tygXZ#exZY!5=0hTp5B@GkyK3l zcBsL+%}T14#KMz*G`X>W%Z2)P9Kl{kRQb^CN>LD>VBds>{*dCFa>;<3_R_2-1?R54 zE05k;W^o-^Nn+lGW%X^JU4BqJ@%Y4QuWEPzZ29Htz0 zZ{*ZcgVBvAS2IN;qWsGhPd4j)K|*a;S)%I5Z|6liWrU#578fBG89!=unyeu=lIokY zmHvtR;lo`X<$adPHEa8g_Xx8Gm;HdsrupJXdv6P12aGPl1fKS8EU2N!nVaK{G*g{} zfi~ILG2!;_Ns4w_F!NwG6^qU>pMBqsjA@8W2brF<8WdI(KiyQ zQR%T^a%D^^@{uXnYX&EXJGTy35ViEZCkp(ZpNq;5=2MFPe0P@QCm3wrs~7UTDWP*` zHplI2&51HK>TfxLnSnH6oeR*}OYy?8IP!7oWqBt}SC;zYpA@&VWSz~Mio|0Wl<|N| zHV-%)vC%Cz>HUpK+Q$GX_Gxm=hLrpUQ5#0Y*G|!!v66nY4EJ@w~mGW5RNBxmjlqy0aG8EQ7>;S(#j}>9hkZfhFLF zl)u?I7E2#jgfz+B-(Ql|`w5OLHfi1(#Bfss{w*n3~9b3QcZL0V+SZR+Faj1N5T?2lI8vwFB9WIvsU#x`OYvbaTW zLT!@^7mRgynP8J85-X-L?#ps|2P;8uPj1E|CUMa~AdhYqx2VPkbh_^;eQ3y2PO;?q z!1s-N;r-{rD>K8_9Om#;Y|P#fZ3I^NOT>NjEaTey+^O;Tc@7X49xmPp&>(q=TVaD= zu)kkD_eW8zgL{D;#`wCmaPAb9Cq}^P{daQ~`(dp?H@m9XX|}+|m$tB&Wyx!&HcWnu z+l_DimOvLbQ|jx98WoL2g^fOI6HNzhN({n-Pj5LqnkMdjp-L3fqw|IDldIh6HRW+ou&!Nd$c*p2aNz=0=E#-)i_`t~jmgS($eiQ^j*a^Q z`O_@{FSJaC&Do|e!4B1XDo2ep*ChU^od!dB#8^I0rL0|wGry_3gxyS0l$ixCb7?DCa#=C4wThnsoS5T%EpMF7!Vi0zt$zU%V9e z82Y%@F%@}}B=RG+N@rO!oH|GrfM76IV{;_qs_JXn5hx92@B`S&LxH|lu#?Q8>YQpjoRjZ#j0&-5LV zo9shZZ^|pa$m^6Hgn4R`y{U1sx~!mIzdvYMq3L79q+OW1GR3pnJZEpVv^FOfxR zR~6&>v~8)I9gyltm%nJ@xvk-1v@i12mTiVCjp+CB5YQ#LNsV$zgXhoL^))+p{JUBYt zT2X0hxw0dnmGK?ZyQszWl;7*$nrmSf#3Q=uJIWF>Ti^oeZCnAzz5$kG{6J-&Qg!&9 zHeGc-*A%sQPV=7d$W_}%Bo<}~OJIdL)H@?<_DQ{VuM%6cPA)G)&GrtObtQH*X!-?D z+gB>vr<*Qc3RiH0#P2W;?OYa2wN8r;3n^^rbvjoTE1O(kM)lshR!Y}C)ysnA3ME&iIuu6kR7!6o7n3u1 zE?g{-IUP$gcxW_~V442PuOoEgWXM{S5m$^M`N36lTeFxs#rOLWnM}`e_(uz}%JDI) z9$C47D;)~_0d2XM94gb&YTC-N0gqMw(MPS!zV7j_sBTSSmLE}j6igWJ3}{~~Q-o)n zzbh-jnsn@uIe#@xjLop$Q=_tGt(4DK^vLYhfcDcr_)ut4@&$?0m5hov~!2ZcI zg5B8~u-YW4g4HJTu`x*xwRkjFYenZ*A^8fLA+vVm5*%fbk)4D`{CU}PVNW9S z9r)O5&AE^O$Qf!dZjrdDg@?g85xs>`mfD!^e|7pQ*je*E6}^3t^D~@}w95QhW8vka zRNn+>jQE9AU!d_BvperZA`^=$y!^8iJinOyGQCN*0BUKZ4GgA(R`JID9;^Ef#(f;R z5tS<$wny5kBUr2F;ezpjbOXcr4jPZ{8K~Y~!MDoKX1_ZkdksjsfJZe#p#P)XbyYoD zPPUvEk3T8A#x1K1z$kSyw_2ePh!g1T`;E;$meAoc_%5=K&D`I7sy zNv%PT-Y31!Hk3bW0Uf-Ywy6AxZUp+t>@VYPB8U%pB=SCxOWxNm(u4*272>3VC46Hg zaRzbEiQ$~kj@szK+_hCT{{O#xRH@w;jbb=sP?O4H- z?LO98xAWgJBwEK))pi!=_9W9`_j==1za~^qkB(Z*c+NhfUM(iW{5!LU*;9mBP5D5y zIW@dgLp+9Q(geFHb6tNOk<(LE|=mXk(+TiSsvWi3>Fxouy+6kjl}=B+>0>}W_2=_XIMJX%@ZCtlsF zcYMyV59C{9$3?|LS|(1NK47T`hTNRGqc0rVunXjvc|_)#HhL*Ij{e%Xm#Z58h$>G< zNjMO>N(?*9wH7`gPH|``koa4YE-_S0j@;>klJOznvh;eCAc54OaD!T1>EckUR(ra+ z5Fgtz<-3r;;i#WDS4iuUl;!r(0nj zOf2f4Q}g5 z2=vu8veu?J+lG<1#j+iN1>kIryl^>SikpfkYd)ej9eVM{GOyZ_PHnBjG|Yp zeg3+sGVImj+K&{0-pEm;c1;Mh)s)V$uA7B@tpIkL0D*%+sXIpxR;2euJhuxy%Tfc~ z>$WF^#>bUu9q|&_&ie$;@6&HzgW92J50W#)QT)@IiRbAskPblOAAVQ`Zq88f^Q=1a zW-t5<_v6ZZESO$79^5ImqdWXqQc{QytM={uJ$J{;po-#~;_{EAC);r+ zJdrnGma4drq4woYN)umYqF@i7Osz+FrIeb2s;0yMn?Zct*L>UD-{n%@8i(lE6u3=x z2hA{c>_?h>zaLVLSh`2lfdwn4kMf|*0%&J|u4mYv=;$2SYZhL<-LE*z^n9N_VmWp= zs%LWkTxlWe%J|7&_NhAbiqgzH(nX;*kR06k(F}l(B7GMdYabk4v zdIz`jal~5e8)&HDSCs{Ux>KTFDw;Xdi@zzX}@qi?>C zode}4j`v1+U>(p+n>Vo>CZf-ur4d0J%HbfS0Cwrw{j;GkIDPHyX)~0*8(cXX+#wz~ zpFcce4=hXtrBdN_f{pouSwjoHP<5^8T&fUEgYhwJeeuCefwE${)>-+F3No?o@ z`;BV5+t=%|?*ra+jWU<1ddNq%-wXX>42Zq$7dfE0xqL(l0)j zJ8{V#BVSje=KMn+e@JW}*~4B2OO6Ho$up&-HEZ~pv9^+kR%=PbC(hlFA3e|JbLKVo zFLHY-B8T>8R=EtPUSviv{P4{lZGHe&65jJ)BAk>Jzva?}3J~2{Q%&>SgxcI@ui{=& zA=YibI4kwXpoVxHBMT6nnVsKXnC0)WEDa4MPTg6bp9cZ~i+=pnk5t|poZx5yDXKW} zyMx$Gk3wFJ;b!?h@=g3Spd~7s&#uZOOmwNjv^HLX#%#4J6nOC%ePhc0tmA`Q}%_=ZHo_hnBg(fOSda~~47RhxQ09wjl9?a~lIoA16 zWnGOiwqulyKmbeKdV;8dDganGzgv+=_nG|zuax;2cu&?yzRAfI0d{leOzcOGFmB%{ z_g#2DlL6v^zykVl0jP0f?n|FUy|ugj{E_?Z4mGPX;q4}k2lMjD2*#`Wi@n|@f2sVj z0Dgw>m=_KB1jFSmajzQjPUIpfpB4qsf^851*j^uyH1Y56*6~kGX)frb202F-~HC&0&evn5I!?F^)i$z=-UEDb`Zc| zUQSGl*mQhQQ0N|c|Gq%62eNfqt9CsIE4-PKIonC@5(eq9>wxC99kiUBOJCX?H2v-D z7sP6Y_fyG9x6!@CKI5rb%I@Ejd-qQ&+ySp2CS10DH!}t4^$rVr+52{N17IVw`}f~J zWRE&iSa}dVNaox?8T4c;KrPMMu)-DJ$SPF@e_lftvq4hYs6mCGON;-lwD2o|JBWw3 z?}d6>V2WTNh6dEsb?3!08a?cgkROjZtITDFG9Ihz=8A7bhg2*90{l;H75`v z@Nng(T5Ste4yIZ(_q*=Flr9!8(N>@gY!|;;6lYj_pUHalov4Kx623YCDid84J+}O<1bO?d8!%g;LHBxnox>Q zu0C6?8@oXXACv8qhZ|$CfZ(D_#<^kfm8N4Y`*!x7TW!abz`u8@d|N$Tz{&LYv*g@ZoykB=>o|YmIQdd26*21@}%&{;ZqN$@iGP-sP49oJ5ennK(){fU<;Ww7% zi%DLV0GHCSMyng}M<|GzgY~AWd^y!6;^e5d^{KxP7$aTgZ88~6ZVQwTD#*`B8GD)a zwt) zG0P-U%Heq&`9r8f~kPP9{Du~Hx)*bTU)qmD;0SV9N3K;Mn=yuMD><-i8Ex5RPRt zc(b&RA7^r)t1y%(?c`praQs7|LNV1bDmj{={O*Ef+3@t*Zuo)o5cR5)+eDXK*#G0~ zz2mX&qyO<-UCC8sRmkQ-nW5~Ny$K@5-5dqk0t?Ce#fkWu!QJwmpO`klAx zzVFZH_x9rzRkROx#>ZHD~74zL)2_Br6)j=<5?+-J&TU>Um?3s5cZZaHrMR(Klv#xyi z{O!*(E3I^ZO$hA59v45}QCA4F-VU}CYxH`&#iZ~uSoC;d(S)%m6Vv`R*CmTjZ0@|S z$Mb4~YlszUB544gn3(au3ME={uv&S+J;AriqVmmK=26y3CO{?c) z5zTW2%2YUp##~0gnnX9t^L$X_dyy+_6BVy{$4;%}7y?b0*(1UvvQ{^(mh){5EdiEb zW4l3-&SCF)tIoTPXjDV(+CD|p=TDR;0}3;g=a4x6V>B6U*GqDqyRmYP9G?eLGwL*^ zEf31F)9>{DysBd(1-T%~MV?kJZddVWGseKxJ+K;VMr`~pYo@kPhwvD97`Og{+dnJ@ zUl={h{i_A|b{QzmwYhLsk-`6RiXO15m~*ubkf;}CT5e;8R;D;o`On6xe7f1VRJxhK z^ZB#sW`%{aNR6jHHNm8;=@Zp;Pqn)2nI9@=-h>4eAH8OG>KjF*r60VMQFtj~QX5Hj zZJy=wA&)X#)H8rGS-5WS)BRClK_bP;S6LqT8ye8|Yy0BZh3+8dceX#ZbcrE_R?M~2 z`$gU4miFs(?!uG3v+tndo6TOY;U|g9SiM15u(rb}K$P=u?~f4z@<^AV%_OkDHm`^j z>D+Q*=n*AWL~7A%y>G<2QmMVr^s#A#Uhl?aD6{bU+s6%E&jPOL*O_l90WrXt7K%GC z=bbOif_Ac%^;Kp{v?M1PQiQl6-aYBX^7&eY{PQigz$EYfGFQ*LQ>Qwo>G!?N>aM?h z!f6(MxA)XN$45X3oHQGT1mayCQzDPE1BWDv`N8`)jlDNZt?u8yfAO^vfEUzBYMgU! zuCBRmv}9910~tfZRUN(dCuz+X==Te!q)?p1c$fPlIML8N132C3I!KNO!bFp1dhc{L z{0!n;VzYvIDUH~(QyLUOaz}AWuFA_9-t_!oW($00i>b^-bWdu@_~YGaED5U|7i;n9 zhyB;yu7g07?BrQ?qIB6Oc6VHhISA;9?iQpY5>1|ji;*Y2pe-2%H`JIV3p?fM*1G=) zX8_IXO59o#LcmwMtY0;kApV^jVjb+I=<_-dE-x7Yh;nS^_!hs|GGu$MhT=bOq5y@dI-v?d2*@LCQcM9&7O#x=D^y96AOA8A{3k8Zl2@+_7>^i{3-<10x#4k;HO`?q5g`$gI{q|BrEBPx50iY{VIiSRzt zYah$snS*ZmR4m`O1$L$Vl#S}7#zT-Q^$Ey%5Fsi(R>3(n`k{vNN`j6|HR>D6Mm#|X zNAeK*T5zuDKM(!hzgU=W19A-1+BvF;A3F+ZH8lnjNUBHS<_)*|rQUfBr5>(CY6i@b zN7zJk~OnE48I z$<0d{+2f>0Y3Y`ZeOaW+YnIUO5=qEhfa7tKtbPUmP zW}DsGwgnyhW5~PdKV5~4&7HxRMmw2>?maIkZaIlw?xQWSMG!e?*tK(MvhGjn`Pie~ zD<Z-i8J;@( zC^3Y!V?cIZ+oopo8jg$jl7`UGrGZA%n{O+qW}idP3Oa7@hYF(SH8V}f2QRs8S!S2D ze&J3k4VxZjCdxqoh8%Ek=I?DHeYfAY^=8pN3F5H4bWtraENqC)|Mfa_sXxr^u(Tb; zjyE1`A=Qb>I;K1}k4LrFZw~m|*|!{0B+Q2tiOS9(wez@-F(f-CfYpi_DN>nw-cH)- z#PTEg>nOR?(D%59hN;a4gze|QoA_CcfuB!aOv!BodRVKp1R0}Stv}l(f`Vkqhudct zbp{Gd2cC^XlpmBL6r~b>Q4%S(a&T}6%rJG_wS=67#^$(4QpU?C`ZyX@dQYtq%hbw8 zO$I;Z#ofs%Na)!v&UHC57Qj&CZ`Eo4)T&4}L$8kTa!@emQ6td_Np`wMf!(i!UguW? zw5YIWqAw+~^IJ2Y7d-mlUgiGtQF zA6qlh4vdEJ-#b%OCWG-$Y&^EwKYsK+bX&n2UX@KPZ?rV~Abi!8WX`zwDIy+>uRZ@t zWTQGWbdNS=>8dj#tcOEoSEh=RawMezkxYm24I@vI zG}SUep^-WKw#T#A8&&ytIR;7uP?j?ov-bYjU#0?2x$O zh}kRhn|+a++2MYM&7hrF=y_#gwOeGY`l4C%b3U(F=74j7mKfAZ_mx%D;R+7za5Mir zrg+?hhbPeLj5%%8hIItOewgtvw6Qjj^Gv`0uyG+EByn2Lwo-feSU-sjtv*6~B)%!@ z9vD(L`FOrgvP(Bk&ok)r9(|O+XiJ}cD@WNUsxMG`rMq`yF=nu7HIu+_Cj3&~k(JEr z_WarpPDw{qUC^hH<_O4IQjMgFez0x&rM8Jf>_Pb@RCUtzu%a_gnli={XFh+XTloe7 z1m`Hgd|iFIrbad^7Z=S4uAjKyO&Z0!URsN{W`$)w-D7Njxdv3-lQ(S&YsH^hZW%9p zu&`IlDDGX!glvF|%PBuk;T%KN$_5^*)cKtvD$E>`jv4ZJ&iUBIVqU^t} zUb{irLihFCF|lo|^d5PLT#T4uUE12%(1k$Kfl&Bc!L7GTNa%1OkkOgSmzyq|oR;K%kVMwo zPzRG01TR48i!#DrHJ~oFC-JKdLrT;bW;R}x@ADIpjoOg@zgf#P zm8>JZ&@LhF`04!!W!H)Lc&wtso!VlKThK16KSJ^QItbWCGoIf9lrhh~Ff}Q>&CH7PVN6@2JZxwJoR}Faqzhkc9LZB!95eYWS1EYa6OE z6Cv8Z%Pc{WK}8|0!;^@mVAt0Oyc2ahB*nDxbx0FbpR#e*?c24`UCtNx%%g(z6dzh> zLjkt}3K}ysc|-IO2yk5uw}r0vW3|Uyzz#!bUd0MRsb|pk?m_>K1ph^_?5kB{2iCeg zc1dZ}S?bMO`PFNWcUp96c^D#I?zS_Ai7+5cCdKf%B_B^_1+T{v=MWO|QmM3Er^rg0 z)g2Fwi(26&Z|?P-Rh^hzLVYj)TAOQtO)PPVrXqY4jPyILucut3P^)DB9m&Q+RduORgoWQcUUx>eq7JkS=pB`HwTFS`~VXBL&|Kr>I; zyjs+nUfsrVY6I#1Xs7voPoJaso=%X?NN|5@M#c1($?(N;<%tUDOVD(5i7}m&5YILx z8LnYXK*@&RA8o416^b%FHgeT{!t`7+)Awzfu%{uMs(A{Pzf>Y)ln2ci`LV}3)U6&G zC|<%zU2sd3lDisdjN5+S%Ism!Q-(chYOEFlCuD4F@>f~3dB#-uN3@cG!uN58UGSO8&jm2eFN66D*A*+vwO#y0*T zZy@*P<3@ep(~cXGw&Fu@D)l>N$L>S0$B{js`E&xRC+=vuM5Pvb*40)&|Or$=La5hr!WMQ}#g zELD(BFt?n$ouCMxZN-NunXr<0=RC{E=6TUINM+Jl+1q}In*D<_W-E~rkS{cGYU@Bv zlu{+>eZyovI3KQOX?Z&;vS+^da_cFXfg!+l6B9Ha)jP-No)Q_Ke5Mk(Zn1Wr7Tb8+m+<*=gUOnh2|>KNal(0=1&6*= zukZf3T@RP649vOnc*HU4FNg3`tcSmSQry>SRMq)K<5=mr42qOQp^*iLO1*W76cZxS z6FhPekAy}THg@tZ;0(@Nhr3No&`RVJd$8{bOp{DEz2 z5TJfQGxBC$#Jr*a^H&XGN$OR^UdQ;t3n}fEZEP+{aoi9tVrp7*!9!36w`R0;OGfIa zRo>6&sEx22HLi}i9akgkh*?#m+@9067ja#>d;VmE#0j5Hkc3Pv;?N*Sqc9_{eB#7v z$FKd4!VTguBBzOdse)NV#(~=2U{<3jG$L1O@prIqxfr1Aa+q^TzwI39<+EG!_&81# z-9h2zSY~LZpqnC_>p53^ivI$S<5c&(%XcP%kD11mA2&BHS%EIKH6>rA2DD#Yn@+?n zwXMF>5O>nPlk0cVMSDs@xkbenW69>%*vuvH>nqI(t5m=&f$`%CPB%-MF|H?VpW6c* z5yyXBp437~nxBQ_L6UV{RWH9I^E$f2J&`)ES(eJwE~FrqXe$;2EVH$xbtx7EA5_eG zww_kYLC=#nt1k3xnS=_;rj6}JWpq7DeKG&ZtU}~B{9x!PTdR)x&1;mjf*wR#E~;mY zfqV729rQMQ_&>6BdElwv2 zKNmKsm>3MSi|+aik=#@Lp}u4?*HH5I(FGO5=M!J(Y&a%DCp<;xgPIs+1V>3Po9ExJ zcnMlp?=ls9)#$R-Tdq)WaB@1NWVJXnNw_4;)vA z!``j)t?T&s(AN=KZONTlR|+k5%sx!Gcq|4P-X*|kpM0oz_PLt*`ZLm<`_` z`VZ+w7-^NCuf}XbOHNJ%b0C?m$gkl>O@n}pG8Uism^Fl16h`NKXn!4y{WAE;1yBTt z-?yRlIuzF%yiGv3!sBxu|7dpy(tPi+9F2?goWj0?k5J+;p=!S2-e6ybuQ;o7I%mxI z@v&=f2_2>E4rW~*Zj_+K6>ZDF=pvNaDW!56m;$2Wth3I`apXbb9qZuN}30=+Rb#~C+TdAM&4R*D#d<0p)O64@zn8S{%J;_Jj5x` zKIf3~I*Oe+Xst=wUu8+#LRZ?j&#@A$NlD^4D5AIw&i)rWsTG681)3W(V~BvQ@V<^t zpE`-gemk?p@s?LMmes3GJbK*8ceSsm&8gbb4BUP7I$&PCYvU!-cB~vKgBuYk0JOlt zA}Nwj>&jn*0l-ip8IRU+$$NcyXYN;)nOXAEuX(%PX z>bX<(cTC{hMlb59wU9Vnt9N=vwhxo;8KLI~)j){FgxyFyPF=?rN9JQwflAl&j^k(R z_a!_y^-MCOEyQ$y72`h_e&S}!+X--K#L$6eq0=Dy%k)>zt;sNP8fIFfRNr<&H=0qG zZ-pNMI%y#&UULF==*7N%4Y*Yd_W6LzY|0Dk??~%1mGd{766#I&fkWwhfutBvyG782 zTAlrRiM%JScpc1tX{2%cMnB*V4R9|15NQ=qJYud9!aa57MY>aVwysjAV5iX?5$Ki1>GA z-5Al6mg)r^R9^e56OeTbH@re?s}_7fE&lSlX?@+8Gt8b!tuyXSREWzvz^kOE*&Tt%*_FK_`ySwYyDk z{*;Cm`^C3iHmn7kGcPZn5@LHM-CG8=9T(|=*QtW;FX2%}ntpqFbKX5iQ>lj6sUgAJ zu(MD6N$3kLzc)lk^Z!8>cL{ z@3p%6-2;2k`!%cO>V2JH-YbI!VS|(f{F65^D-+G@sy8N#l2adyc{m}!9fLll8TN%( zDxV;UWM}RB9U7d$Pq8MvufFLke^Z~BI9XptsFvK8OJhQJj!rqXP~pLOX4@l?w>^ie zM20Teq~5RjP?9k6oxl1-(m=+lju`LVF*YGJOTVYX-Uu6x74a;JVVO3 zYd`m@M>LmHSo)~XE4MQrX>1EomcZ1E@Uk!s_AK^##6B5W)Vmqp_ zcGlCJjh379s;*l=a193dpc6Ew#EtrEZaRFHk=nT>>aikv%#%p=PieswEX^ zESmT!3X#Ga!|1Tc?OvpgpqZ_q)!@SD&jKl-TrngNxQX31NCfhesEaHFUV?NL9;Gh zicnOmDZn=@%=+c4{ZKwA$e-6FaI0n@JP3WiD!w@em_K2CI*E3 zr|ny=E#Goi?xJY5bAe$whGSbl2l+fh?yzTP*eXrlrxV zT`hrO^P2b+pX^BWMa~>2w4K@b(BzebXg)8zp0oPMZE9(3(DZ|8VUoCpmgmW23STDk z4>9Fge=91R!S4x?R;q%KwVAQb$)O7DeAGC7t29FLd9nE2s;G>ipx|t|q~w`zOs~IP zSjp_2HF&jPo%1-}+3Zk(67#CP#%6EArgLE6!uO7u?4gdUaT-Mv`wZ=wEiupIRMv_w zwcUz5J=?eSRDPCs>F(1pEsec+tOw!begIO|)SwRJOW|+wWi(m?YJ2kXKK7Ob7Z&se zGB>?rHKvWqSa}wjdHG(v;h8VTDM~MW?@NG|h4%7Vd*Li|TwXtdZTE6|5$OqIfZ#;z zuid`7v&iTI+dZq3UkHa|b?sXo-KF&-&LHfTTq@1l= zJewn-lwSJcix$)Xd_1&!y2M)O!agP|wB$EoJ(X{8l1@cxRb+A7vDTJZr$7HyZB1#= zLbsXA;`!n-urBUuzGa)~)-Uj{2HcPmU+B%{kIEk$Y%PTuCZ{sBhe7dL(0LpeR~jU* z3X}mc3McHsl+s~#fE1m&cw|xfGALg)zE!Wc8v_E1liZ6Kk0!*F_)2^P62?bZL88|y z^jAL1Xi(^*r{CrB^)XYG<0+S7ZOwXUuT_)k6chU>~|ovO=&6L zk6)9~zB^}q<+JPYY^_wUo~{Mm%Au~b_;wo!6ztr6-#yK*U=)ZztWHU6t>hZG*PqVv zp8b$Oeu0l8#e$B%Sz$L_fW5&gx&BgY^TOw$AvTzyb%z_|v3KeV0RsJ_%8NAoQ}I)o z*%Nf~COTpmYUt3X$aHSlKFlQv8V63EIbjaZ!vI7c-`HB{>84?h57+&KPajkeO6L6L z;}$xN7e>Q@Y%UG58WxOxY3x+Hwh;~P?DR{dG#wa1^$rXrM7 z4W+?F`%u@xAht7pG-2cPEcIq%ih0o}k~e~(%kDnw@&8e;6f#@Vycp6{ct74Z_Q2s}9= zz9UG3m3bt2*4MZWR%vY(uXp_+m%F5d&WVAe&D~b*XqOMdDt$rzf{@A!w-Saj$7AiZ z&fOihH{Xi#>{bIRQXH8DHi)g2b>M0lWd5_GSPFKhC1!5KRf|N#&CopD@3j9#0Ywf9f=olhQCh&-9B#!x5 zhrFG{lP#uYF&$gY?RMu!Z&eKRHExx@{3xbzoVceJ1_ry>SgdCW%MJ6^LY3~90aBlq zLKfrKUQncslD!Lke8`|BSGcxRC^DZ9-7Xw%L+6%zv*tPgLK?d|IX87#(Sm%5E4Suk ze$IORl-mcz0w=kD6i+{%PR8`rf!FM_bkaaJw6gDMf#2 z3PL==l&!cijqP56)aM@I`9yR0gbsXAj{HW$P4}Z0s&;tQn6}=v&?Wlydn91!JJL?8 zsCL5bYBI})M}2R&P}t~cx6e>R&wv1=J6%YNpXNP+Xk_CHhAvuN=rmQ1Is2=^<*hJFLua7htSl# z^+_?Otn0Ja)Tadi1?5PN*M2~O9!Cdj-GT61MvA{$fF+w_KgE~t*vk4QAKAl**xEIL z^2)6cN?V$X3EJg5S6K&8vxx{+m8kU%#Vx{G-Xb}G|Fc4{h5Xx$rclOMcys# z-jBh)T0RHE*UK&GmA6RsbsaxEabq7oK3`hmnR}}A3mNK}P-T@}eu&F`puSo?a9o)` zp6Cp^LK|Yg3i1ZFl^$eT*yIJ1dvz^tW+o+1I4lsQO%^C^I#mx;kL{}O`@P27#TUh0 zHg?z}8ItDQ!EGlMI7ydT57~RRjw|IWZ}p(`UVt|l`XDy6J%w{dwfm;b2!TyeGc%*{<>{1r-Saa{AGR&=I#r#@hfPQp#V#=Wwyvfs zJ5-)e-%WEEwpFNzntGP&5*Iz5R7h6zadle{edSHpn1HbVERBS96CUOlz*lmOA;(DlZAQAyYe6ZGVp+G)0*O>ro*V%)wcmN{=} zR>6S25}I#gkCb5Jeo`@3V0xl5=%Lr^JlN!Wi#?nD`M&6(@`kjyxrdyG?gyh+?Y z2!*^?;C$AEP~w-op$?vNkGS$uSlhXb73s%_w`fI=KVE*7y{9)gbulP-{hq6usVn~( zbN-_qr`qjYsZQ@-D3K+?Eb3EO^daljWhDEXK@v>b&EnVUqnRR;@LKIVbeWmVKZ9i0lyhn(W zWneRGA=S_Oz-1K2cCH5Sn0LIGGNpTbw*i@5(}lg5^6IV6+1U=P{VW^%%F&Wk*BdP# z4@eY{18 z-QoO=r+GSk{m7{w_OtCVm`0@C z=f=Gxp>8GH$5*g2(pP$6u9dOwf!QayUP+V-?8|R>z8g^5lu>xh6cfmkU-z?8YlpFa z0;bAb0P%#Nas*)j!h&}N$;T5$(+hA6trHm4tbMn&+fv}Ls+t{b(_^YZ< z$B#H8JpxG)Jr8j3sJNv5#c}83AB?c!Gn1S^8HD(;;o z)$w3W{p%O=Ga?3&v__APAqPXqSx&9K>DfB;bTS;&~wndA1@! zfsS!XXtlS5ceJs*7&90!l?k~q67c`zpP7c7lu^mqHO5PWZzkeRLL*eS-1q;Ab^>x* zyIt!~7&P@Ay^%$TJ=Uu3s(7%i(Qri5z&tWfE5+uykZzK_Y(k}K32FN#e)28RgPki+ z&{rJgkG%u;sB*)unP~#3NmBXqM^mP4y!P~e6hraw;@YhJjHUe4Bd6}MUBF4I`y*oq zDHiwckscfzp!O`1-H#Z2HH$M~b_`frTDqG0xNbh25gC(^aFH4ZrP6_Rc_gM5PT+oW zPr&pgB!dksOFqk9t-}~x+|5~ZST7A;c@ukN2J7%VTqo_N(~{5dNdvjjt$EkB3}J19 z0F8sNleIAp`IIq^&nvt2ZECbfdq#n3Tzh)jYdtD*dw%=x%w%ZNL)fr26ZggY~DMILo+BP!a`e#o25`~a-Q)xq)k z5IE(Jo?d!aCBTmiev#s%>kwHFQEsU)ZH^=!De+**<0{>IL~t*5GfCoObJj&3$5gB5 zl~=!A){QE_borf2w_>%8nNMh*vGmJ`MTU{;!ZYfe_~g=yF%??}o3$Fd#C5Tmigsq!F6Lh$rB`$%2d3H}*5)hpGYiknb^A-uwyk zAsuxsQRw3jKdl0SNn8Fpy-mdckcDwt6w|)5aKV`Op7Eo|(`e;BF1e1=8bk2{dlWrC zv#1r54W5V{>!DT~ra0f8saw-p{6y+x#aESQZI*BNiWPj?dwyUSgrl8=GLMPQ4lr}| z%v6)vk;G+`%WAmD5dO@T6?5$iPF?gGiZVVH-*isC=$VRQ$*WeOonLo^y32Ks+VZF* zD*M}H@x7~)Abf1iif~KzTM^f`FHK=Nje`4SI-}~v$+v60fcQ2ONkx(Z!!VPA(LJI^ zSi4F1%XW)^ct)<^vkfl!^2n`v8w{UN$mMXE=sJETiInAlb+tL6kqkkNExk_;%Z17M zpgtxrd`T%PZkF=QA%$Z(>$#APrm(@_tMWI!Qq}|@KwfaTmG3Kn34E0{(ff+Ls9>FI z(K=peBwQz3*dskB~Ixd`&v0J>98)*HX1h;nfO*YO-Q{ zd;iI05Py_mO@$4TbX7}NS-5AIJ>|+7lVRXe$uTWYIaWhL<4;{HA7^{Is!R7ENmrN$ zNjit<_(^lA&{QbcR^WaKeP@{Q`BSplb)qFcu5P||~6@nLWw2 zVkd8kY++~_;|=(9-^=7O<66@PhsyyWuj_m!ysKD60)r@fj(+__zI}d3V!@)ku3Ls~ zgPbR`kaKdMWRqLIlD6gXWXe>OccsdjM|}Iy8TLy|@9h-O&W9akSncU#?W45LNHIfA zo0VPpO1F%+ljfp=jw8RejIszNbsGZV4=#3|>c?YfdguzZPI=lhKb@e~seZp_wg5A5 zZAUM0!D7^7+khL!T-+-3BCcX+>)=uH>`aiJ+)o@O9T--Tna;2X!2s&{bT#&ZA9R+9 zF;6`|xu@rN8mh0)74wI6oF07oB0Zad`6d55V)NjtNU5+W}}#F&zYV*b-Au@H5oBAgraA!^#~=hSB+<>nGWkVh@Y@shtA%E!hX2R+VLHv+(Vy@3X7v)-m|TY<-f; zCf|&nF&dcw6J>a*|2oM>1-dCCIl+kNpNS+pT`0QP1C8_Rknkt5-5M}&ooY4{yKgG# z8v%^cM^i?3`LrJN6~YJIcWd{>Fj_J|uV|a{cPC|N<*v2fpF`f}d!5>~GljrQ#O+>a zp?fi5YQ_YZ;3`V`nk4EJ>G${9udAwt1Ru+w(uMjc_&y4w5E)F#<|YQXi1m~0FF~HS z?kL~CT#x7fE&N=+dZ94ZNCgqN{%rH9{;NOf`+9dz*?C@)`FVRh^U5rTpSKZ`5kd0B z@1eVLa#`Z=3X+0BNHp*usY)R^_h+8~Hc7qPdA_5GvSUb@gE@6#&CR{m-+d!s} zCW%Jux2)!+Af=uq4qiR$9xJm0Y`Cm9UvW=+Smxlf@0OZN)y7K=&>16^*B32M2gWWh z#M+_|SGj_R+2_KAST;qv4J@b3kMABNbUp-NwmA4G;YU-LO_dbHYj;2R3W3$q5^m5H z##4XU>LP){8YzNqF*9Q=?%wm1ybBz=ED4du6_-#YUDNw?I3yRD#+AMuYplFld7-Pe z;%Z*D9pR)&CC||Yo8yyEdBLXTaD&<94L&MbiD}OT4%bW2W3_d6DF7|7DPD96gN+{fxPRg zL^Gf3#@w1%OCo$Bv>$Z^FUIJ6F`{-x28b1EK&e=S^X~l1_d_;yOR5b6k+I0Wr+GmB z5E%?V0Ye_BB6&U6qEZ8)b977Cx2l!etFjd0p6)KRW-3?-pg^e-kHU|0A>N4-fRtfE zrG0nZ=4%^;3RB3T8Mj1VXnzw%a3aZ@>t5NbSFJyM((<}~&>J5;$|Uhf%L(_amnP_Q zk_OWd)dTqYiY|-N#ycoLpeP}YPaIem+oiVysBMnCQm&ShP6edQ%H%@!`_P@36j2qH zgWkdP^Q*i{#ZSqCU6(&u5@MWH>Nh>E{7pW(whd;iBBG3b@U5D`c|f(5X9@Gn)3%l? z)yE0n{C2dT@P=y^zvG=t{jm(__>dgDnuwLBkjeQ{nvT?@T_rpb_$%P`@s;Z>X6=LW z-pyIV2}c3GzUjZ0UxW0JjqJ~ITl zX_R`UQG93%-g{E728%?7v|8idu#g&&#I4;vZbA_K=ibb=h0nCD^qS6P#d6)_QiU^Q zjGz7Qfm&yO2 zYmR2~PFmFZy*Ft7p(|qg_U!IGAJ*hl>y<@iqT?q&L~CtMlPl#QdsGCcDg1)dZP3b8 zi0Dyb;)#s#DM%Her!Rq_X!4I3XEOwj0wKIY3jefP~zgSq%l1y5{%^AhKSi~ezcR}B{d3v5-`_Fyme&472 zv(|^$%jTqT+$?1?naEGJLe+PKLKnVZ6B4M&gbkz&HVvGqoB%K!&G7WI)cbvnta zRL?lQH&?I0zhfC+Pf7m@MTW@!#oR<8#~caN(>XuvqEZ~^8HjDCJ;ErdrF&zK{!R{gP(|vI}L)ZbX>}lkymmc_U8e+GEj@-l5CW1kewm)ucI5zCHks zmX(FJe(ZKj&zjj%^Pxk!J?~0FHe6iahg(|@@pTp@VVxZ61#w!N<(>1#megDR{H4|H z!@o37y8EMO%M_(Nadq^YQLfLQMX$$l@|EOpwCWy3Zu}mywfZ6Sj+O6sR;`@C6X}oY z!jC_DFRSYfa^^s559c|UG%dy2HXsLga6b0WnS>-PvbhdIb4*$jTN(d4sO&XYLu-|2 zx0dPVLHYXVBli38kvX+gCJNde@rHpc^&oU_$A{At$8wJmhZH=N$(8Jsn+ zQ3HTF-G;wl@%QVjWLjEi>%=-~_7s}64gBk^cBQDFEHXB3J(LHY?YFPGmSFG8*JSp^ z)Swg%=SGRWLgXOx?|lw_-$y8Mp}%Ox5*6|=rtM=18f03L#)2g0CJ)(OII3(n< z-fu$%=;iCx5ZMuB8MYw@+Rdu4->fdLCM;xzebhpid=%SBhqRh;baE2rXJxhMZ;4@h z52bF&_h>0k^MTsOT1O{t{ivkD%XO(nTwF!(Q`tVJ*sEkvR|2=T9^j;$pE~nDd<`3? zbCW-YwDHReB^f!nNB5iuXh`sUy%+cV|2A78@D&u6L~;HfKo|~lI_njisVZBaP{<4z z7J^Ua_T1mG6K?_sg2uwHC!_%&909iw$4}^-f8(!3o3oY*HdCNeMwPa2I%?h*4La$o zHSX!MyD@JJ5*o+JuiNrzfO`@+2wtR7E5gWEQcOR{PIC!3Vwrp{VlD(x`iIu$M;P+u;ao&H^=b%c7OhBbVpSNkk7)4@&+0?B_##*>xNfWx~+$Qe=QLP zdO+kYljePRcfwY+K&=f6^zT|zil^q^uj8qCc>j0UdR^V=Cv31S|C}~x(}_IjI4usC zcmCTYVHf^dbM<`=P_5+zhy~`i4^N~${ZDP=`_?QEAUTMeWn}B65 zMf`WeSxpcXc3{;{;utPF7ZMtY-=BXr+Wq3Qk^W;MBc2?P+H!)UISCl1<)MZVrF_~Z zdTwrXm)qzhY`Vw9Y3XjFSh`XOW8e{bN zf(W25Mdt>h<Jb zd^zZGNIuE|5OE*gISXF`a7L2A!Z%)wzYGBRTTfWrq@Y*UKdsziM0EM#$-U6zhGTWy zCcz46V1(#3`80avP*`<-fEU?G0$|XsNybN_lP2F?19uot3fF>cu~;8<%+4S6M;IX{ z{0K(+-+eR@!r-G0ZCY8QBTU8R(<;F9^$Zu9cPK~@8?m#u9|OxVhPik)c7^fdR+NMg z?4J7paEBdLzzVftbVFlWU~m$J*1qv${H0*g1x%Ws`b*aTQ_8w{Sjy^QWF)b%vEeTn zR72;34_l`3!W9&<_i=^SJkSF_GfC3$zjQ~K*D25;MI7%al(ziQ6L>ol-Mu3tZ8%sQ z66l71*fT=F8nzUcNC|9HGC7ur)8~I#rpi+~L$l|&N*|%Y5&j3{^4SLVo0DWc{M%*n zJG}q%sYjwTVmhKPM;^g+D*m~P9D@O}k*VtL_XfdPC{CR|%9KAx7RyK!i6q5xS| z2CciPFadp*87i`;g8B;9#S;12;Sx8&Uq;4JjWObYxb;X>c{vY><#7xQtrjxa{t(E4 z^$|jxum+2KVdEggdj@`9~1?)rCgBH@(iY11>Bz_>FhRa<`!m1PZb3f ziIIGV8~rgPJFs%$645}iOfQJN)zwWd#;Ownm(tUaUdC;xO}EMy zrocN;0GJqT?}vWJEU_0~@FA{-(TABR%|n?~Ho*fw0?L_* z;2wdNuO~(#CJH=0KQt=?l38$aa*{#oa$t58e)lh%W-%&Fguk{!Imo}J;ue=caWMYx zIu?XSxH0*DD_nx~zsPKq`4sVw=Tqe06 z12D>fnxZrq9w{2GAvs8e@mH$vt*Eso0bs;$>zSX89R9x>w|6>GdpRRGhBdTLA)_P_!wt7Y^^-A&n)dF}6f)U_0e;)}SYE1(1 z1^_4D6nopfOu@J!zKFB7PO>WJ4H^|PBf|{ z?9RLM#bNYtm`NtGiqx>3?1*u=Jo@eR-oIX?^1ogrY!BUkh2*@?5kKmfBN5v0K1!nD z`ps!^aaB|WAo}Jfplrun|UR8B4>_3v^J# zN*(=!09Ke4@fb`7y(*|%#DJT1C!0r+eGEZpPPEr`seq4|oGCBRMqI?GN{>o1Vw%n;0eREH+_EcQFOI6+p>%lg;Kcr< z6be>b<9ApIz}B`sQbH7*fi|JJC%CgTA%wz#V3Zlh5D(k|7vuW}uq@a^CqY1hmjv9* zI~qf9+ldn38C1y4wz#EX@vl&6Zv~+fW#DiZHzn0Lrh31wu^bv7A2+&Qc382vTVL-z zH$QKidPH9y#YALOkWNBZbOPQ%ED2o4PRxE#036UlSMhmO26n0(9>jO1bp7}wS%Kca zL%cJ@MsKj=EPvo@s`tQM`0Ex-C;c0{#(mgNA^$6k!!daDYRUcy*^m@U1v|bg_UvzW z<0JuT@W0(x{&F6OwTxB+x6oqVat^q}1*Upat6exl~i~86{Yyas_X0(_t#I(#Plp#4R8W3>MoA z@PXEVv>q*HN3NdC%MUuk`FOd*UF7K$e@8_K0?;GLdIWA^;p?Y-#9GOD1BC~%6n6Y1 zPSd+Jvy6UKc->fV7w;=1QMX9JFZ55gjz&n3B0&%){gYULJS=`-dW%?uL@})1onGhS zvSreLsk&?bB@C8HjZP}0p#dRi9rDW9&Z}_UeRY3d05b)JpjdvPS~!y9c(5fx@zF_= zs54;75azjx0hJqz-pBs#>aa$7QC|h#pddiVYoYP9u%C#3cb&X)Q!lnUn0>C}{i!Cz0SoD~hPZ_v%6g1oMr#lX?B?kHIZU}C z1m1a}_(O06fq)HN&dksaMZaT0&?7&F*%rZMeOeHVSS@@k9>Wry0!4QKZ|pY=W{L?y zX_w|zQP@B_cpwB}V|@D{+HkkrC$?AgH3V^OU1Mg!2>Fh65nwx-jr-x9ZHsth> z0ty>04K6}}U!Kkqd;!MIeL$GR0tJxq(yi!$4@6+iF}7L*EF>0ZVfEV1*=+TCp#F(> zM;87Y?|Pst=`qm~5Y#Gqe`JMsa9t6uuRl(uW$_sXVdxYR7I>qn=%I2Z!pDeLK8@i| zWUC|X-4p4ZigwqlGB7akMBRP`|BjVK;!$@C@j67nJpZqu#5h<;bulDvO}%grfLB%= zpvRupBtu3V9Zcuvk)DWKRq&w7$n_z;R({C4Fu%oeBA6^u5fT6@)Gk{|=y&u09`83r ziqiX3qvIQypzQ#l`0*298f?w5{ijIor^4bdhY^EGbR>c<2B%u~abZFE7yw9Me~lehX`C65 zg020HepZq!#1$Y;3(Qe8f*#FC%{-7G5&8nb6rW>1R{<8%`JBf&bFZbx!xt9UTp^7H zaRtD(0D@Pi2K1;6+#&?4fD&8dB8-LMbw`4WI6I4r@mB#~a4U?G1mUKPY%hKiL<;Qph*Gay^a~)FZYW0?v;jgFBbK%zojXhyM z$^QRatMqJDGzBlw`!JLIH=DMS{V@})(l8c~f_3OgeHoM^;tIfN zfjROiLJ*_n^V~4>KI1>cGXj&bL`+Z%P*JIdEG|2yTMAsk=KUERc;*~NK#V|*-6r|| z5Rl;yo~uAtg-eitibF!I3ve~1zd8<$Z+sTULD|NPG zuRWoxQ$k@2e7w0%Wk*X2+*7E3dSuz;8L7+>g5lQ6Ee9tj7`gDjprqLFhl!i95L`=K zMuadgJY+9Vc3f9Df-W7lQvzbknH#!#af8%kHm&@rX_KIlB@yOQ_#tyK2E&gVkrqq1 zp+r^6U}gKEVbXiZnlQw28FH3_TFF)H?&_I7YF&=Xch6xR&iqbv`gw8gJN!7rC`Le) z6YtErlEfj+a1JrO&s~I~IG2|j0~THkT+r*V%XQKKVCzSCm(y&wLxe5*X!@df%m2IM z8<5{2w=4;TE%w@^gDc8g32{k~`8f+)Lj5CrH1kZP!cjW`Jos7F`ncec{>X1!Vxnf@efa4Gvko-OL+6(nIFZJ z%lvDEPJ$6yD|mZIBJ>zt$ve*7EUY88|6R%!$jabD=@bPov(4qg71&KCNNER|*RO3a z!@D)P{~ujn8CK=Gbq$MJbV*39g@J+yf`ov;A|#ZS4iOOPE~P=bl?G`peftb+*S1Ydz0>k2&U;W6l|ZseSv3Rj#rKgVa$I%4_RDgJ&jS z44UKMr27cgZ_(r4g@NcK*QC(PBF7UJdIKE?URCd?W1%~n21eVAVV-h1Y$y+mj>c3b zkna9C-v^^H0@>ZxpXm>0D}EaJ9wgOh2;yC4O?QOFP4qEb&Q_}>gO(#5dCo{G>h8H%P^w84Fpbu^+sE@(GJLmM;!0fU zhk{ee04to#tg*z8b+XsA@NX)UoqfOP!Ukb+>RecGnV$t-G}=zG4bJxDqO+~v*RQ!D z+%G4Y+MaL%@?A)N1=)5W_XxdHf6q(q|IZLe1lYzhb%7b&q@x!*Sj|KxY|_?1OK zf~}$;TUa(?8*XB?p7IKaJetzr4+}E;tRew_&^%e-M66pEO03kYuS4#HIPw!H_mzee>DJ<~Rxeb4<)(Hp(h(Hc@H_Rj&h=E`gm}OD07~=PQ{18gKZ$ zF}%QdApOb0e+`sl$(T&zhbEjtV^o8E@u_Ut??toTvx`Q}x}_IhW*=IVv{LFv%JSrF zmYoyfJ_5si14yDoKBi=uBXKieO*$GPoR6Igl%JUSS(ve-sr|^pMJJg7XCHXVS9aNhY}k7 zx(jB!MMepNR%T`!&@~@)`&mrDK!)TU$6eaFW4|geuPmf1=G)qGtS%*JrYQW%o6KdR zbX`Sr%!{W{gjlW(tQh~|p28mCc@J}chuooDx19K>q$+k9BAmbvzw^cXIay)5p!x0&+&a8s3u^6ZY6QAN-iEwp*@qnQ)rQvUmwfTEU*| zVLLzjd{fx|ra$Lk(QDBgFjh86exVfV4TDGAq_rqM(pV_}3u zq#L7`E2cGwGi&`Hs_r&0C{+Jbu_8zJr8H}_XL`W)0jMW-NuKP|+R)!KhB!t6G|Fpp z{MYwe^JF0T^@TGNd9P2WUyUh0K>-~VArWYC3!NA6-^zH~@b#?>59p_u-3COc;)76w zEX*C!%e*a!(wSC|IpV#*B74z5Ly)8#pZ-l!Mu5-dIwQ51-yTPvmR^1}5u~GENwPqm ztj&2nE2}8EcscnBzXys)Py!9IslS`jqHHW>5VXSIvo?&^j7<0w)q5Ra(DHYz%L(w> z4xW{VmlSW@=-uUt1_^UQPDa|C@^dxUxQnbg<+#PJ7m&#Tn9l%zN6XAu!B@95W`w*FfP98CN3-$x|8O6DAF z8@iPxm&5`c-3h<{+>S6(3nlDd(EMq2u!Egi*!^7Lx+{i5cZ#rX2n~1c;AOEbnK8GQ z!cmE;-SUxiswph3P$%*GQ(Z%nZo(1A4kXw|okpN^;H`HdM+SF5*pczjK7rjw&Idn~ zQd3jIU;7z(Yo5)EWUP>Z%K!}Yq))>M2?Oh__Xur3A3-O==(Z3${|9T#Bte%7YF^8a z0F3;A3!7H;6R3sjW|j*}k4YO1rDwDpx!ojL5L%g{F0Q+!K;d;2{+fi&wr*PQu1`i* zx}DBIYbuyyST$})gfq}j3D%iU(i>}-zs&#dn}5GTv*RA`?3;|Qm7x_=$}xd4!I9sL zUuleHmnN%{b=1lakGvk6Qlr9g_s7fy3d;Lj+%k8Nr9nrRNj{l%r6TbX<%--uzLs=Xc%pQsNp3Ru9(hCcwAFliR$H?A9zXxNSOaK6(T_VO2iccb#2f9E{SAMK& zIP9Anlq;)`>%kaz42TwA4@osj!|HDdU$H`2M51^tTMJD<7ej7}h7hWFKoGD7$riD$ z4~EJYA;GWsGt_$xVQD)CY!8j5q#D&gI6dXJHRr{RdWIC&2?&*=;?fCtM^YZElJRkc zR%2K$mVd@}jLgi8-izd@WOQIDRvJhHjFXiocaPS}2)5-1*VDC!Re5(9rnnBhFLge# zhfkh!9*T~;px|}*HVAw@?QtA3>-VVa5-Qi=qLkI%TH|hJU~#p1QYs5tCThZ$^}abt zrRIRGjCJz{1lMUjFt~O1dI9Nq%&Hb~DL|1zCv4!_omII1^NfB&i1MQ+>{%qL3RARBtzu8lmhp9Hf?ie)MU)zU7C4n+jUFx_ zjERv)gR%EuuOO{7_*X&?E zaF9~PmtQq2A5>nYR5yP-BoqDxvRo24w^TrAMB%;F1sGEdA2G=TQn}NA&g?>Qu8P0| zriVto-RJo=RiV#dKHHWcpqGaIZ9uN*K2-fXJ7BB)J#`Z%+DU?m-Ui?WyVQsYim;W^8vHF zEDY4Ez`8?hMo%x;MXfP9@D%p;D6nR7%lT|$p%LUaBS0Th;?^6L2RS$#3_9qUkQke2 z!|JCaX_UPVl#XO-RW0b%u(9}7Z3OyE^}$kM{oiW?qDguY5l@B7fY);+ zyM%2FdLPxjN!x&|!+q9}8;f!o!76I##-S45ip)*6&aO6|XD6pwp?eyEFSA z`Rt(C#Y-)yLz)Y`tnYqCp;JND5b^ z($5=mU?dV9wt8UZ`n`Cll^5iPH+tsIP~a1H7Sjmx*n1uOVYt)tEKaEjj#t?k%r)M}_4p8YYR`A^M0m<$YFDoIO$pHoKciYWPXMmBX;~2o z(H+bsOIqOK-1?H4@<~1~+CugQn7E%EoV~f77mU#W>ht9Afw@LW`cRrxt}{KYYRTo7 z&w@{$HRR-~QEwK3H*=;=KYa|UBVgttnC@WD#n#fKWS7f&Mm;UdXjL2(NwLc7Yo#Pf zK4@xbsVh3uo*1M{fO}3ripWizKk>)<2dq z-ns^?06sLgS|p^3%v2jqwn5`EsV*3^(3&Y7>F1`Z^P0h~n?oOX&EjP_ImFMvJjYhR z6S1xZ0x$RX{75V)1^`5?55t*~1+{Wfo!YeTNb0$KAth`M9W2&W0r0Lk=GuL??|7BM z`>$uRe#rL+brh0?N$vrR(PwWj#@r9`bORCR^EeA&!y}~uSe7t~xh(GeiW4x1PV;1G z#JYJx;Cn0>BRH~@9sR|$w-n;gyq}1~dLr?yW$d>*r-Twcw;c{oB!y4k6ZAWP)|z0& z3<<)sFFSO>x^!TQ)xTF#Y&qFwhwtPM$P13rQd&D7!7(eG4>t66GcLhRCge-W#amlb zTqT&V%!M{9WT)S^aR8^i=Fv}qTMFFhv!TkeaR-q=q6aha7ZxV4E2to#0q(<+!<3qB z?AN{jQ1Qp+WP)HJl0N8fqjj7OWTI)ue>_#ya5&zy551FU$pG&6sD}^=nA)yR1`Wv8 zs`;^TJEzdyiH&2*2y)@g=>wA*s;U6VZUr-az~0VEZ}J9dSOs)o&94_f#^p-7QWU>x zTj|a`26otNu#u_abz!o_hb@IvEq5>os|5@X5a#NZ-h-v%zFl1Lwa74AaqLUQz8Z3=TxLA5YX-qw#MIhm!kz6iugnLn#qkP;0J)eU7P*)#*>d4f>>y5k0 zPoN{m@*+PLGeM@&At`5b+iZVYZ?5?UNjh7LN|L22oljXW|1)i1r5}{wU1uJWQ*(RA zKT|wvPwqm#AT-)y^9qz$iT;WGaU1rZ0qaaZ{gEwOXtIUn=5Dy&b=@T`Y^1|#2@0Jt zu~<;0QtA$g>6UN)_^*OEDzLOH_PX6uj+d_8s@>S`WirsgGvw6QxkbY7rC`8*49Zvu;_OH%k55r zzQqAK+y;@Ca-%^Cs72N@$--7=rRI{F9Hu5V?y}nkQ9I1v5f9l8t&~#MjV6L78m(fa zp)uL7X$LoK>)ae{<^c&Yy@l-&&>BZaSXjs_gVtaVs z$MU-kAcB;Dq%{Z{h`lGMoe9~#7l0><0?Zic%8vyIAPKz)p)jl|8Q{bIivSOjy|psEa zCrf0Da*dE9@E{LfegRhZpXQ5~H3s}$|3tR z)#F#Y@a6wvWlbr^TY6x5_;kBB4bssM)AY(=CI&#Z>ELjr=N<5r<-&c8%~lpBn7$L; z=C8NmS34-fAbNxXru~ODPsiJ6P)~rny}U`?iXQqg8}n^e5kPwtm35!j1WVSYM!0I# z-0IhtfBw3qr9plo#oio;$yl(la&Q~m+_yJ786ts|?{5I#kPOfTP8YaOHolGG=R^ve zZ_314F-ey8j*6eP`kWWlav`);C1f6b3Pk^Ox5RMU@IX0UX`ZG&hq;U@jijhyT0@E= zNRM3b7d}sWv=V2azuQ&zdrVsv($N9J6zF&Een72V@p3I!w;_RDFxUFYYI#AZ-rA=3 z#jjvg_F0^6M&sxQl-b`v58Bc$v1`~5AY(X`l0pXOU)Y9%HkVTy^c%*dYkNm*fbSyg z;`yc|z+r$Ze%@T1QJ$X8e&|Qwz{OT5SJ4>-LT;SNoCYutz7#|s+dlaPOoCv{f~)< zZst5*3S(e-#KErw;Gr0EdhU$a5E_lzGZ1dR`O>U?ga`h;@1Nc;tJ>`feW1ktATcwA(n#760gT$1KDzQvfX@O;^Ojf%(yKq#M*wny-CRX_|+XG}D&rXqK#RCMyOI^7j zHz$ZOMCtW2_wMx6f9=dJ1#?b!O#_Dhr*)Ti^9qxO9o)j z0zp<>>mm3(ALyUP^ORLM-laAhDFnOAiCS+yC@&}0kfRi40G}NX%g+16<<`CZ3tDE+X#iW{<9BJPU(yHm#QzXS~BzO6#eIqC!T(pW~PAw%ckV zy0PHaqR6pHe4V_a-NlB{gXq@QCmfF-Yu6NX{braL;AQ_fB!ta=A%Rrm8{JiD-SPq- zuzK``aj9R(Gq-LQop0Q8jjs~<-tI5WyS0>#@Ge_5ODsCQ=ufx*P_I&#xteO&+gO6s!VYbet zQe9J%Y;ke%iQc-~*&&6lF6i~YYi*1_n9k!*j9_CRRetyFw_v6aQaL&`i)CHB{gC86 zotT51>h1IILPt9@uNAqP3 zu*3^e-cC6+RhbYQ!Rc!_-+yMaG0ZIDAz(f4Y4c+Q*)HI;6R?tyzl&~e5si0wRLwW!Oaf+iVw z|+1ss8WFL zU|BVl$#0mNNCO>a({2<3zT}503`ayQ|Low7;trHK2e)Yl82m-K=(4AjRXz0M>=o$aJg6aoC5s`vY+T5+-YuZPT%H- zf7w?F*Gq7eoOz^^#AIHx{ZS-D69N5hH)Rw$91Zjx@wHX9_Pc1C&P+`nk9rJ_wZ0xI zU*}^Zc26{A@2}cW2k)QN^m2Eup&`5V>=iCArfrnL^aE^R6p{+lwxF*6)9LA# zSW(wm2Q#^K7wQ8JJHC;NM9D(ie2;s9*D<`Tul|xU;q}v|bmYAM z|Gr8VC1Jh@cH2*8BGZ_xAR@3906yTz|cFcYo2{+Z%*K%y7+Z z#7V`xwxuQveMilcz%&;=GB*C1$%mOu zeZ%}RM{ivI;n1shCGJJY0N zMY`;V-s=~)PHPjIWxvkVIG8C2&r|@Q`eOU_fw9;XP`Avd8_oy(Y0h4L|uu=y$n^Bgbwq z=6)!|*3R>YC0>jBn2=S6q>tnLdHxTayxG!r3-MnYFfuiLdVaC%K_z_BDc=GWI5>ED z@A&!o@w`{Xm>cnQ=*&A+k04-)CB9cfgZKXTT>H>W3g0SA`)QeXoQW<3rz^Sd)PTv$&w%sw4P zS3I|^QXnNb%|7e^s)rhw4NdD!_862$9_~TA6p348WMrr-J!w311{tSVu%tJh@bo4L z@WQ?A%NYbPMzZE z_Q32U0z8i#-+FsiWjE0cp+WgPCd~-BU%|TPqUXo$!j!*L_dw&K!maoh^{yHrVPX6t zTc=eaOM#;b9<1{6D8-999;PeD05pQ`D;T7rTGwR)GseWE5eEm3tM!J{WkM7BBAVAQ zypi_>NBFQmT~NP*<5myqPEpjL}^laAH{*evF}n>IJLh1%ngq>0XES z^{KF^L;V?qES8J%h0F$TWMt%%J%b^faK(ew=~bQ~011|6J}1zJI%XRCydwFzFR3AG zukj5ENdYh-;bhtZjN4nh=1)fRke19pUAReK%cXM&ED(7dkav*7ojTMy!!*K-F*AI1 zI}ET-QAmIjZs({1z09`nxgN0<-L+1;lYTI8wkd7FH!L!vrR~D}L4RS`9w~-OC=nWQ@O8vaX~v zTCs_YQ&pR-9M&v#uBEoAVUZoTA4+!=N-S#Sd!g^2C7->iO zp=j*JX5wK)aG!ug53`&3aQoJ2;Le>t)m}ehj4DxQR$Bt2_Z z@i1G0O*~A9NKP-Fh@JfEEOR~mom29nC@eGCNcto(XX8AkPBwkta9>v1BQZgjWt$J| z=`CKdAk$gWI88!)Spk{XN8=!uopWwqj5c&w4rvF+9MU(G=?i7d_p_2yn%YsHyF)Ja z4O$wP(R7Hn&vWEy*FK9vfe-IqKNhU|MuZvRbp)-f@qJb*+8$6JcG`{7?7;6FJ0Qf5;K3?pxd*+edX z<8lu0w4xj9=YN8XavdEV4SIS0{yk|)Y3ZPt6vwg<_yX@q68Gc@U)a8#msCkzzKkGh z0>70A*0(N@xEMjU6Hdo>0}SorwwZ7AlAY?NyvBynoQ)y44^1e)77KIs2?(+sYHw8t z@cAQ@yyf1*2k3K=N{jg!V4z04lJq`@tAGNG*SpnLIc{r~=zI#x+_-%zc`%4bJ9~e zmp_l|T#oS0Zc&H>S$5`&;*yS@t*x!KN2&7~{>-{6ACwg#|GuIkNR`gnzf7B4SL z6*lZPboGkoQD|^iUo?vTTUt%y<8kWh>MwDg-SuFa%Ns`6*S+dX7W7TBdHYsl&6yDW zMkJ52^(#iaXi7J$dkP{?#H{A(?-y!UFJ#`UddzmSohQ^}P&YTI!UL$$3&T0jv9Ouu zIBI*){X850FhcYl7V#hYK2Iwh`d|$M{Sv-(8W7w!)22!wS(vkQ|E>QpA*GLkR14j^_&R+^0 zP5b_L${qP+0tUlWkIg5}0q}LcSCN$itzydm(ETU_nKVH6J?}%LO;+9qe7Z%iJx>%1 zrfmrKuj(l}e*0`LqT3SP`SNr@bbXW_dAk^VYVk#@nr5i*&D%Bq2R)0kbu-?UsR;w^ z-M_q-_&15CI~$(YzQZAw$Z>i#^<2dPQ=6ga*Fd-eAZH-%od7BW#XV*cVi6*rX`?@v7v8@` zhH%QMPVci<^$JPywNaS;#KNozLlu@&)hGiq{i;soN|X@WhJoV+*HP>rfUh2E*B;`) zz-!ZVNeiUm{QWu{m9>mCQE8)j?I0nZ z_Pw4NK`*{js?PoDWyX4MHP&ZZC>PWV1%dXbn5WBQkGmd1Z(~5$uiF{svew1{P1io_ zNCG+80kwns_XPu)yu4L|uFHxyCgkDbRBvP4jc^K1u5!Z!^#4T4r8p~+A&DW0*{El- z0i1R1QC2D{i?N5-_p_8zc>3j`Y?_rqH5DJz_6c%~hEs?qpeFa9+qjNVvpkI<@tq1f z190u$F{Eu$W$`Cx9Wfq6`x7lVQugQ8LJX{?_QpINyoxbmbHYLtC#^Eukd+_}TwF_o z(AwOZxBVj1hb)@tpz9i<>W@g)fHBubTMV?rZyHAGXlaq#_e)Ahv~+bnRkJ~#Lp9=i zX$Sip-(7dwou$8K7Dap>=UsNIIG5AX)JSPm_~Q3-8&Ho0dx<$XO7udzg6=&Pn_pN+ zf8?+c6+uk?6sF?W)Zc{pA`u?yh58PCJWW4}W(=<-_>!}u-H^y#y=~y`SQstPYQ2f9 zb=+n-lo%27=@A7;ap*j8ymSuE!b@&8!Ic9ko$;d+WE;f^SLsk@VNMR((m8Di*6vb zDlO^Hds-HMH2VjO<7<^XIH}uu#>g1Urb8CaAV{{_mqMjgVa}Z7JhI5CB+N;1Sh_A~ zSg)&lnLA22hvCIU3Xdk2-Rl7S#k%nk3ds%o8Ja0U{o4!80}zsy)>TWfqw97390ec0 z?ncd6$OLWpq87P{>?ecqb(O@VwiKgM%OF0*E2s!C zAQYz!1C~S5!7gL(AHhk_O^q=Fcdb%t+vZ4pCWYMyzlI2m#RICehQVI zAA`2TQ)rw)FA3#bbT-)XC{Lg+2)Qd9ky4F#SZFqs)=1SKgqfdZuu{gHDhs|?%|N6v zp|3v2o6Uu8s!9*-90o|5!qJ=(nVl}rNhOJqjpRVdVHD!gDRoIOEo=R8oxjOK7Iv3+HTJ)PDu=fSeG=i_;gbz34jWbetpMhzE}78qnC8Z z2#~J-BGex@p6pJ{&BayBIvW2?8Q6KaJr#Vk^qUyMAg+G-KnR0wzepv-v;}Dugh4c= z%@Lt~LW743n)u&GBo-Hk-W&M0wU3)~WzpTO{;ZeLxo3Z5BnQ69Wj^vX9%dJ5$4Jpu zWV3k1i!Ot#aM#_E>#aNiNP6r@v_|-i)J?s@BI940=qmRAT6opB6jD88rN(R>j#< zJm3CV3PI1Q8#c$;DfBlsZerk}Qt2^W7pwe6na|3X$|@?D)>6YmLIR?rqa9!SDte)S z@}+sJB`Y&euA|wXmSnyt_p{MYdVd+rN;PtOf7!LV=%ow_Ov5;_7GS7Z&1`-VO;34fOTJ zV$v2gxEa+@>bQ3VStYKN|uP-?m2@9^ZvQLXVn;WD3j>j4o-2bPyMLbzCPL4W^QUj6I%+KiRo zaSS6PcCH)40;SuZN~e(<&kx@ug}eJCU{-%zx$M0O-t!zqYquAQAG2yorutW`r6KA% zoC~B_6(oqno#EkOKN@U{VUgm3Hxus&hd;}GEaV5;Q%^Eq2<4Ub@b1ZPs{R}{b+=54E%)dI%ls)@+T+VAZL-Ua=Div_%CK<9B%gggW0wR0ss1=lm{(u>d7IGA-bN({|_ znSTvXUgTGf1w%CwqwnmUgQ&HnA>?*y|2#>T=ID5D5i5@EZH&X_xoT^BR6%ZXxJlkG zv$Az$-{5X{Dz`AE=(70phd=%ooNP=QC%6l%>KbUB7YENik1_MrRL_woU#q-&IrmvP z*dWGGJsPoBGSHIkyR4s4?X>$sZ@1d@q?DSTzT7gtW{;y{oOax}#`)z%eL%=8`E*%scjHPABgy>l<*}$42>#H=reO2 z-^2@{(ce0H?sxJDsuRS}@B(Eb=daHFS-0~;-{hnwX^1c<=M7a=Ri!<`8k8sarIfge z(Z8W=#ko8D!{%}`?-w{{sIMCuSgN2et0n+Yn3^in`Rj1_`^AY7g!y|OS?u`80(0!s06ZoCN9TG2?uq_O4`|yV=h9NDAX!G;{_)AIw(lD&K!gkV0*u_evqg>e{f6 zu5%q>7UUo8{z^-?>s~@!T!89s$Co>~3&s}VV<#Ju+0u>c;@+_&kiN>Oo=Oau%QD;= zIP6!6&+y?(-hVNQZ5eAL{LvRhoNr%J%(;nPP4U~*e84uZss6a+-gi?Hl*lMRi45SI zZHQG~-cdxI+RBaSk($qs)71}BhA9rq*Ede2RCo-gELrk+eJAnPdy#j?BmqLGA}AEl z07ifa2(m3zUE!8hozE*^eeMAVBb6=Ci}_-jCtnhwQkkzLadE=yxw{Kmh@o;nf&vc} zdaIL*&d57BCFs_Lkp>Z_#be}J*3lEjoo4ZQZnMJN&2d>Qu6Y*cQ_d%CxoHlY4oW_G@Ao<6EH}E+6=k#A_Iga2#+kKMm<2^7)!Ge23t7A_{!dQA|r} z4EPfGqF0r;wDMw6bFNp!8X6j;YDF*Tzs_aueunVr+-BU^mcKeKI0)QNf;<9D&qg)) z(uUe$r{191=$H4k7S6<_EGx02Mfrt<=i-l+-5?cnH1?qR@mVkgO}O+vjy-3)4eV?$ zzN(ueM|Lwu>0)c2wKWTYk=+Yx0~xeD^!5>#$s*lfg&+t#?eK(=7~@=t-Ur}6oT_7^ zqj(ve9UW3X>>F|5ztN#IEBk4U3B94`$Uhc?N#shXK0-YNBoa0~9(;um6XeLwVfmEWSFo1sAPe(~f8B~%DuUt2H zcE2U6yAbw@io~zAb|u4k=K_CbDjy`l9V|S!l96GUrB@o&o2)Jl5^DBq29V zAa-jWgoErPxV5#F5I3hn($C=r6TSbXBS1t#p%)9j-jAf^pC2$;o}rzid2wEay=>dn zB4#>3HKan(TyN%(V!I(55rA~q>{U<2;nB~53hBNj0H<972E>?}W~k9fLxzt{jR2^w zx0xciXY|Zl9b{?={%?)Q!Z-AQUW&h`$o=5n9`JY&)pJg~Tz@85DbZFvsH1v1v`3;M z-1`RcIzEGLv$;ku425KZF{R6WNhx7j@t{LK%HY>mY>cdgx$X~7LNXY8Jsf;(leb$Y4ZbEAlZrg{&fHwj^D)`~o-tB{l z!UP-i9WL>jMIx)8EI+cD*Q9;Mz5v=p2Hm0`$1ysr8W~~Ws-;s0SfZd@`A(-L%cjKo z*|*Be$jJs)OSL{`PQk8iO&5{Xi9`4uQ}!j>$zMs5AfcHXY3lYw0lfo=LtREa+o35W zDV05y+qp-nLa%F$h%?&%Bio(aj4<2wWisuEAR<#j3@MAXanGS<-d7}W7M@IrvQ~MhpSU3^`BFR3Om7eu;8-zipVQ0 z>v_GHdla|vqO@&TSN7+{k{qzf#eX>|Lm6hs(eAPtmSA{?&s)&^W*Z zdU%^}z{i#{J6{GB$b&sc$M3G#%CA0QM0D&G!kv!fskK78AiiPvn5Nx?4J{212jeTG z^10omb^{rmzKKcBaiz3$CB>U4e93Q$z{yH>jldB|;oqD$z8UW8i97pr9CBR8d;b%0 z5a6kf1MvU{v{T6Z{MBJI<{0d&x(9@x7<*O{c1bk;4)4^K`(yID_9Q3NjO$X*pFhWX z+%KZ-ggd$HjboXR2f8 z^-r;QGbnfEhMdB&ey1fIl>@3l;g!|Z)~zk`A5(&^$JUC<-<6AJo;0Ll_R;cM1_0wG zjYD8*yP=dCr<*;!G%>@-NxGoJQU~eYq*;;0Pr|Y(%$IPu@|EZbi-8n%5>BG6+l<+J zyBLU~l-iAxtr--l| zw3j0oTKo04+nZ;y3WkDg60dAOTw!$WH~&n5*~N@Zckb|&;v~aJq}J7X|7uz@{smT~ zIXC0&6F8@e3x~3KOdpF=Sd$F+-iJa*#Y^4}YI80^@0oc8Fhp9BWAZzD1D%8N+|p_G zI{}i#-jwERnr7a$vS$5vXdf-lFtw{c1l7#@M7IsQ^BMe=RIO!3Z%`u;bJyCR(aKd0 zbjhl#m;puVRXc@`))k$Ag>3nW)8WxB6FT+}o1w<52Elm0Tm%pv6w*-{{W6|7RgSd~ zkE3UsA%9lGD6a%AM)A7si=+p$FNb;>h`f_OXHVK%)Mm*+u&HN6TKDD#S|VGYL(X>! z^BM=zEz3Vq&hnssC{%AgNs)Cb&j#T0j%@kvhn_IHo>wB;>Gv*kC967Mb8pVi?jxO^)*6dl{x^gsT(Ir>r5t=s*3)W_H1r>A@c zD`nNF-A+3lMX?p#;F__*6o8^WqwQQH5gg0fQ~QLsu&**#x~~-CbJZ)5JF6zKKTH6Y z&DiYb+jJr(BlpNr+og%OT=i?HoKsMr7=N=- zkUdbq<6|rp4^3|#d7IW#T3G6{r|)a{y;|4{4qrU8IaDoqNMB3u#(zn_X1 z&2xob|8kkA-a`>r8EQ*rXAvBm@PXUsiTxtRAAxq29#eIilY3(E3pl%^ZER6x!~g_3 z?V{7(W$KP8*Hd3vCQ8Gip{gP#z5UbCv`l(A#PyFq^dCLgv*7e;NkEW=7%*zcNqQ`? zjb`5^Bg2;#=C`+WKOIU5LR_p#LW}v1Hnj&%!Hkdi;}zZp6Z<#`dU%T`8aXDiy@^s3 z+rH}B5N{|D#c>y38?a-3XhU%@5UwHJv8WaqQ~b#6Be<%(O@&E4iO4E;fWs?+6fexD zz)Y)7ru9gF&-+!xgIjvd1kD9jb=Hm-4Evi+m#Hp`yY5E<5CsY zOM07y7F-T~ewt7=I68VS_^P;C^u7FW^CUg9$=5}>ODzhss%mOj6J%{|Z7oerqIct8 zT~z&2Gg^Q;(OW@k$TsV|S-}6w`;3i^EeP7N{ZIajH6$X5?B{_^FJr1*4*UGh#knD4 zmQTg36xpG_h1=rVih6&C@c7N!lQ(>464pjP-uf9>M{iiZlhoGF4-+QTln=tcm_4e$ zQxAs7pO6RiV>l(kk=~g2&@+nhI-9|M!qYSw?NSuwZg?x8qU<#1ysNMb?17YTIY0mU z$mK8}R6i5Vc)wu4SV=wU@U{=;8_jEkLF-Bf!f8@`UySHFvKhlggE2Cg-x?fhxbrD{@UxyEKWy!NZ7EN^UNgAGIR zdODHlRuW;NrMb9Bku2uRAwn?(&&-4A{(FKj<^zV7%1^q&LvV}s^_pIq6X`;!G@V2^ zD$F;nPh(ev&0#!YWf?F8GuB~8qK!>c2k7l)Q`pY^&0yjTezz3{EHt&;YM*sOAag@3OX zJoC!{at>*&XzFM-CGqZSP6B?wPCg0r?1_58^Jv1;8e;qX)G$MYFy2wMVY}*O0=GHW zcD|rQXgJ!EI(62x1y{B&MMa^-;nV15%m!P5yoA9+7=30EcWd@GBN`v2pP+4All7(n z`x-J}z+vVHP>A=Uwb~@mMflJ!(q#QTM~y`{(vcqLma$so~d;T{`BcK zhmg=t>udv9&le0@K&aeA88p8TN_;E3BlnR6co44H+1cqE8yi1={#59(?NR`=HlyyO zA~cUiKd0wj(O0EzutHv^ZO`cS>lX0u7g&64Ja1@gX@)pe^gXo}kT}9|4N^F3Ud_Ax zocDTUw-Pd5YWOUQL-E!vybvS|(-Rd8y-Y9mcVDuPz>tU*;D7!Km%c6h#be^7A(5;K z`wbeEn)kzA`s>0L>&Ojfm31K@{Pm|){2g(``NsI*2gqN2=YDYcZNuKbus_*11b4W` z#QSvjbvzM;77pXLS`m6!*tF_#0EF>8DcBaHYa@%gju3>M2l+E78QTVslHQ*B^StEt@ zi<|?uIFV>spy8%W+B*^tLwD)eIs5dqO(nyckWIWzgZ5If+QCmtE&n>5^!4?dqPGVf z^YZe%&2bG34D|K%81Z`I#H)T$*%boe&J#ub4_3@2lW2W3y@|iBTQTWiP(L|LVf=#a z@Y;}-@ImbcN2Ho=KC!In=2I%67eE>7ttXB3v0L!4wN;Xlm9>~GEUYI#a8+r2 zdz_5h>qM*emV(oWDn5Dv0vAzLd^b-tl6fC+!+%&VJ(^BIE+xZ?(!7!Cw#ZG z4xO=1`&4ODJ(anC@1_XXtJZ!Tph?StcXm=Fp?1;5cJznG0V}djsZdUXNS?qYvX4#S zSBmzr-KXuRyifKR=9Zkt_*zZdqlFJ-d|P<3OK(Z!e+jDGwp=8e%dLEGZ&80+4H4ew zZe8ua#wj~k*}7EQ|N93=>(@_iV1lgXW7p&2m+d|-0ABQaTpiISfwQrZ6upDvkIE0% zO6FiOn-d)?Ew%o)_SFLOmWvJk2Mlk{Q-%Ce(ZDmTg-+Iwz6l9~Jnnuh9TA<-+=TF& z9mCSqn(@yE^dx!p-g(<2PB=A#zOqLV>|Z)3?P91v!ESfPuhHz(^2esu2S)|1o)I34 zBF4l%U)^zgMI6RgR%yggF%9_Bi)^WY(|dqocm%2Q2axMFP1zdZnUzha5`)d7LiO?; zoduH%rxYzBeU>_$JqyNrenLR?vld0O?e^e)v?<7ySW`V*6ZR@d*go)J=zTQL_lQb# zWzBjHpJ85A3$2uy!K~SvN9eQ1dm0>HfTj*gSrDkPI2HKGsM-6H2y4ab+y&BE`AzLj zb=84^2B%NKG@PH^(w?{=(J-Ao(EvBPZ%bv?VK1VVI$}K_;(B4j#^vTHn#e%F%plZo2;PHv7~W-mPd9dz`u*<(3;ZVw9oHq~djk8y%+`6vx4g}MUt|D{XY%ac%JRa(6!NLDgl z<6Te2v0z|-CNnc`h|mh!?KK^ect^uopXYlBJsB}HTUPTYkEV>x%ZrEOZAU0>g$udg zIN=!t(1JD63?x^z@pR{}zcvIs&8B68jtqXN9qQcwf&)VVPeO!&-o3$cIwrnnh$*~- zK$T`P{tlNLjttzrmg5so*ufJyMgrWdpoG9NQ!()B87+GKcL2;t1ZAEr2%R`{TjOmy$&J5nv1ny}-wxrC#e|yiYiu+&NWHusMVz$wmM;!%qapzfoOMkH zygD0y20w4Pc$5|#1I%p!nbYH+_uHL4+x^*Q$eD9CKv$%`y*-z?9ZOvYk6Z<2Q_zmy zw9xd)q8}B|ZQR5?Yd_9+rJP%6zj#5J<-eYL_~HMt_2uzUzJ1$mBC?gGNJu4n#0c55 zRE8`=Vp3!`ghBRf*%BowvNN_2S;y95mwg!wrtJH^jIq7vMcvPPKks}0@%!WcWIoq* zo#**IzRPhO=K!IH>5uVj2J321aju-(uifoU@(mS<$;QS;YI|GB1k>l+0~T4mt@X?X zO80h$0|h-QJUl84J-HC4CJ}oy)65*wu`;kqJr84X59jE%p{oH#=T9ZeWCs*OyZkn^ z%Mmdfd}pHtomFDP>elxNm|TuY)qNq% z#lt^)%qU|QCfLT#gc>pBB`2`IUir~ea@jSU-hI?jH#5h&O5rY+X9Q6?z;gNZ;MOYA z4m!FVGKWxyHS3!9%}rde4bJ0n(H_>`SR@#A=N4@xBj@{OO7pE`i8WoMPgd+$z)!6y z+4{`%4-4|YAS@p)athAYOgHK4_QTRDgJu@BbMzueY);q52?vJb_ zfOB-@M;9D?`MgnM`n`>@4q<=+tQS$vVkaA2%@g-S`KMUC(ZZ>Po!U1IiBKNJcA~WT zRPK%#Dkal^Dw_)Hiw$pH!FbHU8N}7{jo%rK`zAH(H+4YqR*)|o2JJ*;XeT-ieCa6d z<`c>exMJRmaE4feD_835|}^OXDKr5 z&PP3j&4wN^`CYx5eet1A*e8tdD~II$#r<7bc_lYNqbh#TH!FU!mu0MOGzWw@+M3C9 z-`0M>5u)8S_28Ow)BCrpvl8ardD_P|bHmkj!zLA@DL*DiI^Avept*4Kz7lrDo#9lb zKLs_&avr}1S&kG{>Yg)#Q5wA~jd?uAzE7+lA?(c)YHDiyHA^DMl8|QeDf>Dd)&}Gq zTdU*gR$eRHB3O`GYu=UuFGhkIbk4ex0W_D`PqVVKiw}S0Nt^+*C}VqjO~7)}Q@@3w z88J3Wf`zloGC_A~c zh_ci!exh{0&T&!*U7gx4Z#*DrGRq<8bq7a4N6MU4OuwF!wm9_5N%mbwrORS`=^+_* zeqk`0lAemozT)D%2%keH^-4cDw~&o^{d&H4~gP!6}L7CCbpsmp?b zlG#_#GG~vD>N)p#H`$2hZtfR5k#)*XX*2n;bPY2AC24Kzd+^=m+QrLcPTIL44M{#iFPk&Wyb8#)=z?jQej?KntKs6c`;|M@m0YuLS< zqYGGHYq&4axdj8XC`CO zHzEmxJ+B3D?P7x0&@I|q8}#YhHcF-Sgn$J$=n*+CLV?(2PeJd8%A)-}u4GWQ ztl%W+L%xZ_0ci&J`ttV-@UJrt_aoI19KMagCi0b%Dh%i0nI7__7%l?G8bj%3GmvJo z9W6Wo(qu{~Zc2G0hyzudEnh!dr%Z?B(%q0bX(ziquMSu#0D2TzbD%))bHqjBdt7z9 z7(^avfMW9Rx8mbgb|STjsn1O~K!FcZ=>J+k|Gcoev`4N8fzRM^tGq4|o?j;PY>d}O zc||VPJ8a?|Cfl6g9W($D(0?Bpd0uayuES+lTCjPjxDtu1s}A?fpd=>{Ja7_vVbx3#Rs+8iNxmuYKD==#yKv_y?_6{=AKaH<%8S9E5Nm$ z#-MWlek)_N>tu!Ze$@j*Lk7?%|1O%DB80@MR_<=#58NEjo;_PsH}S|H1gN5KD(2vP zCUZb(1PD0v#(dL=+8v7uK;@Fye;=s@uZ{%cj1ed|22Lid7rU0@T=0@Xt$EfW@r$>z zrxeJSl^CD`qT&3}h3e(OEvg~bd?z{)#y7cg31wvx!lI&uK1Eps-V)m5-3!RT#{F(L@N(L{Ey&XP-Q*gO zs4xO{sH5+zr7gn#E+KgyoVDb>D?L7n$3zX!`o^D7I!DZbxGWjNLjyL1b z1CX$d{7`|tI13i#2ZYc+b8Ll}*_7CRD(z>k2u}cY!XPSZfy@baf8L0(oL*A5=R#KR zpt<3~sSn@`d}ldGcKrUH0mSk$U-^_Q0>*MSA<4Nti_m{x&2T(IC%`_t?F`Qt2gxx0^7CCVop$`*2Xy*<>7V4FnYg`Kioo`IuBIU;~?0g5$Ae4{Cw zH9=iY`5k>;vdB3GQ@6mK1w3J|n7E$jEnt&xmiqt-o_%lNCfJ$#xjRkH2vV?+v>rC2 zk}iaw1pO4(vB6m!1mqf}#MI04=iD^(&}7WAtbepjnG144Lyc}dg=>#n>U1bke~jo+ zU2egC8TW<8ge6`&MWp2(+D`+X)m%6h^1*M+MKUIq(0MO>WMc|lUb z`xl>FBJZ8fOPxQ%Zn!@D+PZ~B!fcM^eY<>>0+XcbRIog>vm9=}*tWX`Lc->40y^UU zzBWY_aMOF2E($6_Tg;r4zN1Lv zMqGMgKR-}3l3?0YG1_-4ne_rzJc9vwn>gB;$BVwM6 z9?;?p0#-EC*Tr{-#O2lD4(`OIq*ABZ-p8I}a%W^8mViq8JF&PrJ2rXlM?^@j-+c z`)_G=?0%>9;sD$ovL`8fy)OFXNn7}}Y)MJg^T;U<6G1!;luJ#WKgL2k<2B0nMZg8iMrmRmdJ6G0$e zT|V_E56)K8(|f)voCV)|9%SR2p&Bnz@915Zt~2j+92@eh)0^)uu8!Ss>NoMtpUxUB z|D4$@kt)SB)Kgyv&1QV>MJwZl zOj3H_X(O8Hk)Ju0W$l0SM)|YFSi2g%>UB>GxoWO={TD0|Phauxy2O2L?;fh-?yV`F zRa@b$i_4r@<|h=DEQhNYCh~)$*zN=|c0DWb#F-K#j?vIq&v2k&)d062%X_tE+>43t zs=xcOt1f%kJ%b~AK5{frpyJ#?^cx{qZRd6d`@F^8b!^Q&&<(nRwui0tyS7pO-VoZcu z%&ajv0>|^RVyS4F)c2&veGqhk#Cu@BAG_zUlAC;G%y!Hs(H1`{@!wA1u*IOi< zx8iVHtJ5a2_mBzVGqdT@uQ{DEyBq`Pp<2ctU^D#>cB_Wdr~zY{>g|HB8VL`uzIh2@ z&)26TvwH90W=$p@xcfwYB7;69km>{aHH*kZ$#YMy&GFXN>Bzef9Bg*f|BgLViyvJ( zDN!k{ZWrOW{cJLv_0ey@^P>lNaLHemh=JiP)ZELdunNpG24HOF)_DG{T|_+JD^Sk^ zhUvlai4Zp}?kKIPFYOcaaDaKPVstJdpTC)3-dH_uKk@5)zG?IO$IEBVw6WiMAP2G_ zGPP4k@D@R@4&K5j78WDe{R8CK_i>Y^O(`Pd;XNJYQ#U6br!?ljRC}s<$^pE>b?6m( zF<~#Q1^7K#9l9AkY-B|fV2&l)StW_gVhskAlmU%WPOrklBjd8xAJ-H|2H4ReQw0 zq8zhdRzm_`VmG_}JGD$^N&`++t8Bh*7@0wWP0!B_5Li40%Uv`EOYId6E1qlG;EP)< zrPq`>m2Uc;q@1gXtNv!0#0tV1{o#vi$HlCOKM<(gyy zLwhwF4K$gS5@{D#et-8H$)6B;ly%YOKDE&R5!3%{3>e&ihUhpevPVAa z;&%%0Uy!p0Un`ZP1P6kjj$$j!&S8XeXB|#%U#8t$UcL7rsk=jKhJ)mlS&)}8kD|4j zA`57myW(bGAbja;0&F*Q0F%tO#j#3&T-d!^TUvsXI7=>3lWr-z6^OYtdVml10UnFz z0Y0n@i^$3fnVFlD4aH4y%@=}d*=iXebH}HSeR}}5 z3;O5*U`#UpFfxz~3eWl4G&wV)l2#OintheyH?^JCM93t#Ho(dY3oqBz*N5h%!tH_k zieb4kDuNCR3h)uajEXmZU=iwoMd;;n8ijKWZhP*RvDp&o1 z08rw&qT}jDS`)f1w^M)*k_ttLq@Bi_f?^x0J=CdfjzFS)oc(hl^-Qf$H(5lLVNZSb z@YZ-~vC@s&SN#K>4*++zfE08^h_l*U26iVBnZyGMbm9JcYHsm0iX+n|DM>PixUyYW zd-c&3RRs@Pgs6!ZJHTHLE`$q{r?gG@vzXqNjRuA|rB0u5Wb!YX^KMKr6`*Ai)3;IF zQe^<#R3iN(X*sLOB*QMS+XwRm%29z9HIS_W6%@K;Yu0F=7x3s&%cR-7(BR-x>2RDA z^82{$=vl%gr$D;>Jb{Z!g10lO2gJO@bk$Tcyx(9>iGVNOEq4&=g}AF% zzzErTvYpt+2&R&2x41_PS}b8LTrVqwr+V`{-qjM)lCyzV!HYxyLDX-~c8mGTMrs6{ zj4oSWBXp{y3^7?kC3@)*4{qcgZ9fOrrIibm75+=O z-XRPx&HH=voCAdyoC08rup}7=%Sq3bv0&koC9h@loXtZ#OB$D#{aUHa)xaR;sL+9g zrr$!Xx}IeG!PpT+HDQ%vADlgxoclO*zlhP*B_BV4_U{vmSF@&!&5gF8v>J4YU5J-< z=QUYI+F)~??>oIQY)!DS3++On>KX2N0+uq|i@`~aneevi%}m{}s#}u%l`qpL*-(q> zoW*pD^6kK0#z+0|fyqJhT%cbG`5lepX%79|iE3IC#0}6UxoIG7p?I+l+#Kp9UB)cG zK-Z6s-Y4Q_U(ipzx0HYK1S+|ecGDT`u`t#!tNm0LpKgtwl$hcjR)j`>nWH(qBdG89 zeqd6(JRDvljVac{#MV=8op>p4;YrGeV5$9~ z^2~oJkVPbRQvnnTbh4~1g?G8T*2T3e;=+g1QVewQAbX1<2Mmfx&nakZ{fGiU$L6dF zCZzFCBA@C-G-zJ1Pa3e_h@$0TMDhgxj%~Vk)dXrj`vX(r?NjV6)#eo5OYpKkgE|89 z?F4j8K%>T(v7J>x71;{);D$k*E+?R+)+ri+Fpmv91QG++_nq<2c1cdN$`N)SN_&5V zM2VXk2bJg2amgs-(v~*9B9#MbR>gUifn&{OrgPB#zj2sDqxvndT2$G5ScM_txk?&@ z{%O0c7zBv7=@QCugbUUUauZNb_1{LgiTly%BBp};j??INUU1fP_@J;;48JQ6L}kHb zb;p2&;Sk%{9X`Nvi+-iJuJ`DL3cY5Rm9gL;glM|gZ*gdEHDHE&Uz&{dA?3Lve z0=7Aig!6z)caQ*(_FCbKX_9Z~jCY)~(eYG%_+LCwjQKR!plA=?}OgK;0?o%ma^@}>|9Wv|R`e>4Q9;>B2!G2P`{vXGf zfG|V$7kL8>w+&uP0B*rf34c(IpzrjXJEZvQpzHG*^6ctPka2sHUce#HAHS5U!ot(n zik@y4zl}KB^bUPRNcd9>K&?--D*i8lSJic;h$EmuclB^FtU4}imG1%%37hA?9?0H2YP7tnhO|jwJi8{Yv%z?&1iy z?AD#-2mizdgn;XDNAz`^vfmfH1+$=HENAGTuA_UF&hvd#|G7{xuZMQ|<_C@6yuJx0k{a5A^FB%H}ojP%eMY_F#c6n9v^?au+uOUgV?!Mwy2B<1C z+==T>SJP{cG)AcxjVFCPFr zwn!D6CI7;X1pHVS$k$XupkvmQz+!H?^6_r<#Zkwg6IoXvtq{w<;^&1amxzbUzJ+t5@c- z#H`dpDS`5*kNRpGjp8E?<{g>^(myN}w1qyWCuo0U&}Cfx?Z$*AWl{HRq@0@tM3F_S zk)*qifVGao*yC3a>9zDSB314JIMurUQ0=!LZHWK%kS(D2a~d#$(pocwN+=}j=!7)P5B&hAZ%&jZD` zaXpjs*#Ok|^5uZU;tDeqq+fvRG1g~eKi#A7&fwIpR4{ZRi*uX~<#(5Df66SvN%yrk z^x>#zAn5}T-)G32vN#GJSPxb!j{?d_2)j|J>%^IFO_*dR^ z6wAA!!Rio%A@blK%BDhV}CFZ|WCbHE{_ z=9mfSGCo#5NZ)8B)L3y3bLg`ME~eV1O^~N$Jo%_~2vmG}SCub1HS}9((ExGC9scV~ zV5haq|CM=BaXekf-eG&cSgCos1vs+=%={GIeVJWMzr~tcr`|wtGYEUug|7$R6pWye zV(jW#_FJ#R~14vW@gbAd`1q7%clEtkm@aEl0y9DcZNRB42ah zT<2sSH&6G0=F+;DbWjHGPt4dR7#1+nDBx6nBVi)TTI)v=cf5dCiK4uR^paXJ*Tr-U zhVoTbh>{j7k4;kueTMbeLqjRXp>s6w7!6f=n#rH^Nt`Zwm(=JlgCmp?d>9ya=E2od z;&#LQ@9an@j0*1<0SqS%b_{UmZNAJjRq9}Z<4jQ9E+A=Wf2zklDK3?#Wr4)4@P| z+&MaJ*yX7frD&=&H_q?b`e7_Bi!LiqZ7C`AD=P;@JG8g?>7fepOwa**QJiHrFjtec z;x{noJ;2qy)&elJ&ecMk0Ir62-R=4xIlInXXGD(h)%|n_RLKBpH&D6(Pu{t^ zf4v{Ch6*;1rPW*caA_hNj+E~aLylIWcWZl;Q}Vvr-TII%1Y<-JpEoN#O*kmS*m&?< zpRA<%mFsG=_87`Gdv4N1EBIBJCxw-Vg@!AQjB(|Gfrbp)WC#VERIX%RA{zlg;EMvJ zY$_?I?w_^&>mS9y91)qzLHo|D#6H+gb6xaKeSMyqr&g_h>F`J6t*A2Yw~mwHQIE-Q z$R(y9#)a_-z1&#E6k8NwTXr3FPcJbazQGYGFb(WK{05C;;Z0BNI`O1Fi>F4Gv}m4W zo8}uL!R*XfhH_w3ka>yw*E`v9-d>N$S>$w`6?0QUA=O>kW z-A*dg*F%7W6|!UhanmeDQU6hufLYC0s4K8m6TVpcKGLp?)g> z#7UT#78~P-J4c_ymg0#u#iYTH9#eH#ynl^Dt>mO28jQ?E$P15xCXB$}Tzn9P)pF0^ z!}<=c!wD!4&#{{HX12>caXh_1yHiiwc~|2;MD05ZMK%md6hjIT5g%e;whm3AKEST) z^Acc?o->g$f0V`G)8mhx1OD=_STvG~^%mSTGFl3GJ~B5Mb*=c$_@)(3>(-8J_kpe` zUpCc!arKhdaJ_l!CVHLfJXZIV)sIaZF(E+J0>8uc3glTwTuvz1VBoDh{<3}OA>E*_ zxpFtI4>>hi{lTMSMWmc9a@^T>{U=6PG-5++`760Ed;LO**I9zW*3GXc7(t~n1IuJ^Z{AKp9A|Y3|K2=1O27Mi5GDnb&Qdy@M68#fWS;dCxViam zFE%B~m;o_$md4Qo@T7v&v)!2cyUs_Ba2&aFTV5x^9-jn&4|q_uivACfIpAl3G3^Vv zJqmxKSIq4zP$O`TuN%zR>NReEMWs{)+?EKu)!hDk5A*b&%@hC;m49%yA+`wmdEy7N z^*dDn%&O^UiY8i(D*Kbf0c;5WO;CO+cSSvX&>1g$IF}B{be1jR>2i}$cVok9B zRfsi#LM%R~q%aE9-HQA`gYoCjpOJggMuB^<8#lPRH*>OAKBWqn17dOCFzwwOztm1f zt&XrL6*f0m%-ev$Eo(}0X#HQXK~2$jvQr!$Xgbf$vYM>YDHsMhRR6p`=|C*aSpu2E z{2L$%xn5&uN)4oLe4_eVQOnH8ZTgCQoi6W%+o)lW)s~SCv_o-+3X^sLwKFtL0@$T6 zjRab)i&?2vC`qkgy@cceK~{a<-(wbO`!Jpv(~v5))9?DSnNN)1#>RAn^&)rjjH(|! zz9lAxz>*t=Sf?kmlIVOb6_S*0R?w)1)d8N4uoxN;ggMSYC+nK`%yH(max@Sdk9Y(A zJ~WRfa|3d7fe@y*ujL?v${X$HZI+shUoy}Mv0G!RQcZ{qu7%Ryp17^0WHoRtlYp6e z2uNO;Zo$>mY#vvCE=?w}dP9;yc{uRT5}e^Uq24p9%qbZ}1*S!BPB1q>2^-n5Brq(3 z%ez}==bKF7&n0^vDyZ?a4Po%?z)s9Cj5jWR_x`X{u^ZoD}<@^sV< z+;{cz_i{m{A>smnUy-=Z&AEWf2E^Bz=^(NG@tK${x-Yy=>Akr>9>E8HOh6MuHI36cD&pe$isb;S(6iMgfyq4EyN%d~d<8jbA zBfb3H4jyu&?+GuqhL%yh^4TBX(nF&WY8l(qgbt+VAw-?%y3_MU$~$uc*nb?MC_U)! ztfZ5Kd-`$#`}Ej_5YFU20a6L+*&y@)-qD^mG7p9{_(mhUN0vL&@2#zW5awNYY;~`Z z3C5n=Wd7?z9$?uAA8mmPxM>z;JMHI(hA9^{)9vb1^?`hJG-rUZtygCuU8dfA%A)_` zpLg?PAKifYRv5N&{#DfUCZ~B4AbsBZ99+|&0u@pqFjwG#{ouW#R5>c>kR7-Q0BA}h z)4VVbR=#Fyb+Q&%^WH775XAaQ-r0rt`pJ{^M51?3zILs@PHk=78eibm$FM6@pq+7G z3w#7zl6J8DB(|bvC))k{7)z%pYgF`soZ3CoGTv08u{ctPNov+)yJI@KW4*_udF=5N z7Z1F#_x@h@htn%vU4bjVu6ZwjV%6!5o{-~QL!ct6;bmT(=ZA@FqcSr4JF7n4_1$`5 zDWY4(@iLxPuT=7D-+mZT*V!}Nyp4EOYT1e%UU-|3$FzAVM#em;Nq5eTNgDu*v4Q7; z8bIS=l!8fF%v-Ymea@>fi!fw{G>CfggdF$~O2K37EiRV;uzTl70kGxr*#jP(7pw=A zyC%2<3k|ZZsQa8n&5_@ABfr&eXfY<3bt)QnKX)kN5_`huTtp~St-K$bNi}~CrLblF z@X^%9?>^vM_+Y19S`$;^xE!k!N07`H$CNY8aCn>>ol;Jxx1tJerJw*K!Ea25fu|3h zU2*|b6Ard+HeEQCM`rcKwI#Ye*v(~$?CkrD5bUTKIa};JShs!E1?UI%W~X?;KI@i0 zh|77Fm4Uq+h~4xD_E?7mV53!RI3=?C!uX=8M>3WcUYNDw2s(l5(nd<@!AboBpKE>?vUC%62Na3jE^OOF0WL%6LXGo@WQ_gcjByLTo}=pHT)|CGKfg z;M5|bD05~CiOdWC2sG`OF@`#T@QI#~L>tsvj}(;`ZoS4TAO_>+yK6GSKQ;xv3$YEl zX#G>D+ic(+!{}eDpCc#c4twd}#fw~901E@1R2A^r7Prc;IJy=4Hs^n@nCuw*BT5u` z03UrT!pj?9^)LF@t%_eU`hPYf9B+ZWPjzp>H+PB>Q^6w<$m<>{P@To^+>n0K(iRqD z2zq`SP|puozDJor|5}$SGzIX$Mx_s@5w(DYBVKc~yykdW?`KU7Z$z#pGw1{E7Q^pA zeZT|LSh+;+W#NV=Zp9O(8z|V@J zNe*mC{s(5F^|lf+Dno5eq@+DVquCy&-)+B=P*fx)Pi}cw8a=;SrDJ{9HfVx1*=EO~cP<-H+lgy%tJ_V0@fv-(1% zaq7I<%c};Wpv%1FN4=`=o82t!x1jnIFR<-Dz=9%E=}F#z?m*D_P&JproZ}*G;;_f= zy_5giVE-i3cxy3p7$v`&zr^~Xn`dKTh_7mIJ&)N--<7sx z>+U+)_1c%3e?(jfdh@QB;+0LU&94K-t%k&v<*k03KtN|Or9Gj?b_|*REWab7&A>}* z%UHW(U4M~xZfg5J!S67P&8FDZIGg7;<^u{H*P#D;9Z0_-*9KGBM5A&O6RzXx zGq4P2wJ@@E8;5W*{m*6o|ArIz);Azq9w^K(g|QH}tM698kx6snaaCXY0{{)wAzsEU zdRnyK=4a;A8CuXIk1zGyE-rN#zx#$-`lvAb zb5L~VQbwEpvwTK8vD;)l+jx^FPbVQnV(~U>*xXJ30kzn-0U(`XCG##L!m}%7zolY~}RmD2hJ9#H#P_J?`?<4Q(ve9YmAGX+*Z+C%D9WVzUZNvfYxYxhfa@ zv%N;F6VxGH$5|HH-gg!MTps@utHp9Q>3(F+$kqmRAzWSnnnRbL8dh2Vb3#)dYBF;@ zCnHRwH9y!){})G5o;F^WEibo?b$z|-?r8e}m1Ws6Cy;mCJeV-8fC*FEFfo6=1jJ}l zFIY@$qu^yHwk+lN9;Ey2dF-c2|R~tNVa1V&BEOg=d%WH4x$6H zO3MpQ_2eAli=c;g6rL5L`~&_{QdI)xG37XIRc0702K+oS!|utzc7wPoA3bQ#bvlsE zfF(MluR!fNNbH&thOx#f#1YR`?9K_9DvWOJs!+}Xmhcz-BuEP(d@yt00_nidN~ZT% zb8IqScW`)qznYD`xQv*pV`0bGL&d9@&nE=H3qFU8JE6>>=;4D4PGr%NQ;?(luzr7f z=HR?enPxsAoO&G(y8;O1|0{_CXu`yK~-c@vlZ{I*-m$b4vFfOv@_D}~cu$_nQOZE#$Sp-`xm>|YBi-HIkyK~?Y-dOQIh z5RgU5M%PlHKq{1(iMj8N{0@V+>Kc}R_C{iFOHKStyDd~m5r{jQ+3`WjTMY9u7cA3l zh-H-VGhrtVBbO&sMNE$9PvvWBxTtFsCe(xrD3`uN2x_;;u-6_fAyEJD6GVR(s z8wkn>q5J!`?k|3(I%d#3th||AMLp&6dhJWLULI5 zc6%nI@DZ>;VFom5*56ON#0=39kQSuw(j9(qS&AG7_lX%WjPX%q+XL<%fUc4Eg>7dg zx|*R)c7Nw_unpPKY)XcH($)a5TQ&Zgrz1_|wCoEJi=9YjCfBkA-kVI=OVjU)!&`JC zLu?y<+94*di}ojn*nVDwV8}6r`o>y3{ZCNoaGRcDMNIZjzAAgA?X&?O-D9D_?9oGy^2ae^jD23O^LLo&yshJ)1psphZpy+*vc8@7%E7F1OT( zeSTLdx-J|!_-;W9t;c>S|A4a@OxlAM%`JLSh$nL%f_S#QRL`()DSd*xua!20&c|Na zSKoUWLI#8{%voM3+p@vKkSvgh?r|158M;$0a!M<#S<9qhj9_UaZT4!;;VO1*JB#$p z$tWKyF;nMJ1UOtaaf0M>xJWUqjaviR)ksqmpE2-87Nm0Elhx>FK~< zX(=Ob--)N~BRwBHYVqs}ReLk^M&_NiSyO=azV3Jl=%88JZzf*Svodh<=#fn!d97V= zW^}|4)rlz&7J6MZdTs4h)pp*oh%xrL=sMh~#C{od=i)*6q7CL>CS}G6uB_7kNjtwm z1apx8bh)s$76pPxMC_9XWe(unU17hPP!TR;E|ml`@;-oJ_Wz{0@1ZnT&FLJXGQ>IR zbDKqIQjT>>ehrr*kvj!uatnVmd5m=)w-F}1B$IE-ymq4xGi{qf zFvwafDsZ&?nnIf5zDk0{Yjwc?G}DB!Ti=Cd4F~pTM~*o|(>Q2DyKD7&htQ{IFB}11 z|Dre(%d8%vJovexq2Yz@sXT-9J8@t0*!t1NGo%WXn+7jdl)Pg3_%smZ9HHwAl8a*z zfIrp`lI4{JC4AoER1NZRcR<`?p`f(0~n8I+m zR)^DKPdB1$uQRi2bYT@N2HD_+>i?Piuvi*B_dO0Gdmks=%(kV~rKBBDvn;bs069pK zjL<+Ryr<;L{C4i7esA!kodOe}pq@H?{UnIez+f@@tP@djxcdexoY^S=*#14=?$;m% z)U9rZof(di^8Rx}Q3L$4@gXSU3d3GH0uo#vT1hWsbhTjm8Rp!?!R#k({kFj82WRNe z;6)qAj&}bbDb!@?4W~VP02+Ka$tlv7wWLe=JqfiWFFfYyg}?6bf7^B$KcODk`1Oxo zKtAea((?uIqz>9(X=l$#g=1U$EflVTwfOIc_M`csLaynO)UtmYrM0C7EnDa^bg|a~ zV{QUs8_;w%Gz2}+*I#}cY_)u8CPT(8gN0(fp04K-k@R9kUXiqYcnefnq1` z8F8egq%qW?!xki)rmBpPUDssS)TvLtz5ah&B?RgBD{mar4?1f1*YTSVi+|gzGXPUe zS|m!gfdA9(+JsJE{G2u4K->r&eT$^hP2*oBAtzn-vWWGYU|Cb4h9y7_(ss_?%j|HY zsp@$Q!M=syc-pq=Z4g7;{w z@3nW;Ff<*Q$3($zbRSTz?~!Y6hR)0UA;sDjblkm#NGNQ(cqMM?pED}Cli|V>gbA@7 zt~rPXGQy?ix4A0LC|mZ09s8eDz|>F%(i(UF(b&w387Z=887Bk=R#S?0&u7e3l|K8U z@WfBs5VJ)eiK{{T0R1F&~%V#QPq3N zU9r;txmZlNL)E^daSPlb=CdNuYm3N57_ilGI&O4lW` zn2{Dl^_!+xKX8sv2$A zEMvd11#$!pA63`TpnAwxr2Mu`Vk5s2lN_r6LCyL{a|^sARMBV+pgoP3;lO(TJ9a>R z{9#X67qz~l9^viXa@)Bup@iIGoDTX)mlE3vLM5<{NED)g%Ap_J@4&o9yw`XJ=*Sm& zViyu|+}C?PIux12ZrHyXpv_$_teR|yvgNJh7WMk||9{gdX;9I0SmA=ZdR*@559VHU zvByZjKy@G%OE?no9UPOC9@Gy>=XckpI+}N z=OXd6EIS_-5qR95`Dk~exJA6d0q=tKKcMqfvN~7z3TlRuw3o-qZsNvAZ6}LQQ?t0` zt?d8|k`FGI1P_vM!TP82&mtyWpgoGy&>nslUU?@^h;!EhBbk^hatRkhCxMHwM;ZVt zDY-;Elxf8jcRb4t=mApG=cm`tjz^TkS2f=JWSA*I-7T>HZ%~)q;S98d{Gb^_?XqSS zh+vj$;}(8!wo#E)FUT0Daa|^{Ggvqi5DH%kq3%1pZ~=lINsTH@=gz2Q7L`N*y0n>OLyR zPjT3qnOV%wI-XG-P+b2CepGM9qy;u4=aTxCW+{B17+(9ce~rhz=3`Y!hX9pi7jt~b zAJDzZYBvSi_3Olez?X9j&G%K;20G={TFsbu(`V$$Is<45IO^)|KLdUUf803}{nqT5 zyTMHTSPn>-5#;%d$Zn?#2=0O$Q#H2RJ=SV36^6cKucXd~U}Z){qO*3bco`m0z*_@enYillBrsN81V~#;djZ5|RP)4<*|1?w`$ZfAQ z3vHe^c6Q8z0P!gR#FsQ9Rd;y%8QA3sJ2#=3wO3T>XuQ=os zhSwI0#XcmOHukC>{qoQ0V~f(KO=erogZL-Vmy)~r+v3%H&hy*bg#AYz+js&KKvzqL zsYkDC0r-q-?1p{W(t*Q-BCA^_aEM)ZthDdkbJ2w|$H^15ijBpE{h+Fb)%s*Q%M95~ znOIYVZ8=o#pWV*~hDKr9((h&@r#%KdX0OWhc+xpcAwBb}3X#)4>Sq^6=d+=H*cJ_Wr^-w@yP7poK3V1}Rq5?B&O#R4Je2ka1#1w>I*ACJ30T*AFr%KJGL^$cB(SKT>y198@ZQ zSP`BQfQHYyvb=sHF}@?KGM#`jG^v5l+Xyppmf4%mE?V)y8jA`BOM!a`JK=qsmrGjg zjIB2J`)2d_B-A00+zXUz`k=3u3pDgfyy{X1ElYqXH+wGvEy#=V7QOsCD<+)=+JG$K zwZri`^+c55B{};dBah{P51&5S1bB{7icz@(oTg?C+ly5z_RGxVS@vV!Nqq3YvMs;1 zJ!@AHkOLkb2d%ZWI3vVr{x7p}lLT0pl(aPRGh+_2p}uEh<{lo3`{}P+x?OTP=V!q# ztauhyOPfDUsu`IDf_tfJIfyQ=vn*ZpCBWPNRUd0Y<+PRidXi;K`2f2U-EGa1NSV~G zk>e+T!x|h%mR2!vkj?wSH}wTDAonLVib($w!0YtjTmamtJN|{6PT()bYvde96eg6t zECl`v4WHV%1&&=9K_ktA2B-wDl@L6fCco&@R^DH!lkVkt z_EYa4TCu0`mCIcR=%eg@)%EhNBS#Lo0D$(EHM*KRfD?4$&$jqb<&p$^qxN~#6J*$q z36a26nB5W6xa5?Vujl{)5Ie_yeDq< zSwxuY7u~h5&KunhZVvwVkZtdGEU8Jk3-AbfCdWf z_Mk{=)1lz7<7F)Hn0A0FDhROh4*{#~+_ErsPg|F~d;A@CK+Dh~6Y!-l1s!9CK!PgJ zF2jCeptyrWu(ZGO-PeCW2Mik;O@b1x1%ig0gqjoJcdK%N0^8?k-I5}QsmEzFU3HN~ zmY9o#CV0B*(#=njcgG_41vV3EzNk~*o8mZ_l!pLE51^(9wooZ=?GLKEeTwrxKaob` z`+)I(eqxHF0!@d=6YgNp4nK|=NxWixTbWT-s`d{xZw^WG z3+1BX2QpoMY$N8~`u0r1z2C-)b9)a~YuT=&68G8u8=^s~Mw$t9SU|7mUK+j zT>?_5cGs-$A{d3{By@*HkdBX>Oy6D4VA3y0YLvv8uwXF@vG%^l$ugJr9BI93%4A$+ zsGIJN`aL?I8_w+Vej!dg_d+@rKeiV{gbS)F zi;Kkzu>bP;T#Kxs2;+$8%roRZ`Zc%_WCje!iBXDgvKOL7yo%h`@*Ymn9>;DdmR|=A z4PX&cmPo@IMs?R>)b|?@>=K)e_Rb7NkAoW^epvqk(>2GBd=AIb?uP{q0JN* zSmXm2KV6c$IdX7eau4Yz#vp*MDm+Z?Ze^hR4&ah1;8^UjNezh2QMz=4mNdGI%HO_k z4OkDi*flP79NCq^;NT-xLg}ltd<|q-XhE${THDjsur9xca{yFweuK3vT4&8P5(gB1f z*mW_@iG^)oM9^&YUHR{C{k7{Ayzi7uZ6iAUK3FmS%FGVN!04>$g6kddo%IF!EDY}} zuri;}8n7s>Uv->pGu>T-HN;ZNx8#6Zss^7mm9)n)ZA3FTN54`o z4_p$wdGWpE6&e^z4Ou$$s}1>U&r_Im-CjAK<3!M$b*UDBbmvSXCJF~zLFS~Ss@NW? z@IXvISzs0vZZFS6fVIohrNk~Syq5a~7+c zaYFs(4(V48t%0+Kj3DURukf_`gpvC5x5X#5B#sv^CbMt2>GVQ(LhJJKGNWfs7F{!Q zZ0x|+yPC{d47=vj>KCVbqpdA1m?JOI0R0P`V21AGTyk>%v^3iq>L*@I&;z+d( zxSQ`pb(V$EC;9-zA~|Yw%F*IQN7CAJn&H>-wL&58V!KOVAqQ+XnaU<&Icj(EHz69tdfC@SP+xnPu@|dvC{@ow#sh&K4`Lfg zO^)c_19$P|QW!r!BVb`X8<_0C%w5$>Ltli;K5onZ#25p%fXqU>$KsgG@3(*e))=I= ze|&f0Ujk;eBf#`hNQkA>WKU!8pvp33gizv54_x75yQ1XPzI_HG7q2WyiIdfDOijp} zFwm+3T6G%3^~~P<^VM!NG|}0CUe=;5J;+BLP%_qm(cd1xS8TIa-ShaQ^{t#za2?q> zM`{r*t;9pgV3Z@&v@Q7v$9sWrXae>P>p9ydyn5yTCewIQG&XjK^Yy*0cbdH z`7;4~g7M`e2`E*YIPwc;v_NDM-@^nV&6H>9B0j$myp6Z-8nR;6wmSluxTyhQ;PqF@ zdNg|9Y=*^N7tGm$!3FJ)ey9ecXDgTMh!ib zZVB2yxf@j4*TGe^LN!_E)J{%0qb_i@PSSGZhcu}pJ2jYOAq@P21;KdjjJ)V~r!v{J zWVF;H8AAl<6YxCncuF;?UZHApw?9ped;;r83a|oNN5+&=YA!aGc%&n@BOy`QZ1pql z#|{_oqa@JAi5Xr>`$^0@46r7vVSFrOA)j)(OIZ6ZDRGsfS9^0j!l;tRl8*a^nLBq~m zhlZkm?kIoo&eW`f09Ru3>ZIFp`&G0dLkn|0RVhaNjcQ;vd32?PYOl_HuLx9#yYddk z^tWr&q!@cBQVJv^T3adjOlN1WTJ`*%Cea)f|H_UPdO;Vfj>EPM%>`R}#&&p*aplDp z#iCRSGr*>R1J~~~uvD3=;9oF1E}Yu9y(!(|hBXzkCcp2`(KR8~y4Y;OdGGsqYh1b2 z^}%8S+~G3iixMCOi;9!NaQs+LQI|!s4&}Io!|D zoui=T;?4Ay?Dr`O37o;8JQ}>S)E5dh>(R6Ck^VIZy*4g4IS(neWzFT%b7WDw)w{0aDLG%E zPIBfPi6vRPK-z9WYdsnNiv@}(D`BRty4T9AS#qrj3tb5;?ZKy1@d@4J@j`N@JLoT3 z?%b(=K5q5&Qw0_^;%8|}Hor?vv@2}|7U*+UifgT)=d4O<#1y(gW z%gv6=j{Dx#hgt(Pe|hNic;OBZ&SLF9$||a1n^UbBO&*u03T;YBNggoc3}pY5pyuD1A6!>z?HFK=eziRYfLET?!<)?sK}LI)8E0jUy-4g+++G zyohGJ`9Y03w8rKd6$6P7wQ$F|`6gU)N4WRwCy{7IYU^BlwhrA;R%l$*E9UT5&mUyQ zy$TO^;O8t=@G~-b+g5EVU?^y(M=27yuKtwWnn+t(b(W&}$K$x`u}an_*EJ>NEgm^s z^|ERGKJdyF`M{@C@4Qazz+&-RyO4RW%i_s~((G|sq_y`wCuH&}aTDwCrcn}6-OkmG zU5P6!PN?srukRPofH~{B-*BN0+{Ra>AQu8XP)TAdj8d#In;)k6pJO_zeEFOTdrmp7 z_9{mrHl$>8y4i;qXP4Q1d;VdwMJ6tzrE}hMMj1LU73HS_wiATVJYUdG<$@nPZ7uy$ zBz;CXJu=F+0gKO;Enwpk`o!iHSCp{5^y6~r4%(6*dE-Izy-c-(ST}R3vx9xvBwu>G zzwC+{g1;pAkR=uT^dsSnw?OUS(q$fs;fPD5{%*(XHLWV%+r->_e0+D)4GY==$>XoB z`sNMMe9nV0=UIPERk6>%wi)JZPI}M(_C+XG0^{bU1EJU#tb#f$SCo|@Ea2Mx8K`^q z#rf$0OlyI8CqLfU zMZTDU$D&?8X(}R|*#H)1O-1`?b8%7`9p?Mlk+AF2ryH)VV0N0%^_1Q{5W_(6r)nA+ z0?RJN(L+ntZo~7Hh}TLQt!;h;aR|2t?aNs#7S*;}EQE((rVm?3;MNK7kp`O0C-SrX zpi*eRC^F!71nlPpj=I!28IT%mOyvt2lJ8VQQpwOg-wD5k%jhe*X4dO+Ux&=NT~k?H zQ5l0uu8+7i8nNw1`Rwz{rY1ixH(?*nO9*x0>SdnNekZsu5A(^I*f@(LDBI^My2( zFf%$%CWvG&_W+05I{ezfc5|i%rC@~(x)ffoU40c+D=RenqehmcJ2q1%y%er6u-`kx zPI`Hnabz#mk$vHox|W7bvJkZup8Lp}bbwXKooxCL9(>)gW5~zwQ+rV>xx<^`+2H;G zPzX2gN^No$@lOgNET9hz+wF8X+Mw-?nb!Ti$*J(0@8O34`ItHt6r9P<+Wm{Kqd63f%eH}+rM-hq8>qPBaS5kLB7>RiQT!POE@}g zQL^LQb^gnCI}XPnxR`Cb|32@p;HTh72j8>He=8LaSL7~^l6a9S`+FnU(mzib9qUb{ z*l_g|@v2LYtbWH;g(q42N!z~ zFlLGwjQzS!u(A8|1z+S#1fui4!11zwY zkAzVZwtX|@1hV_Uw9?$HG(*MF{v#v~V^{|R40`>eZFj+toW?Al1TLc+^CX32T=^3E zJHkwoeqDqYZ=^l;;0Z0QDh4_<^DFz(5fW^9HhL0LOx1jE$s=-AdSpw)g+#o_ug`Fey zvSHm<#0&Wx=N_6bits*B0_uHh2a-_ksG9rECFi5cFI-hqA1=WjaW#QIUU~U9K3I3d zmK5{5eTFNaYkV=LIsPy--LyY$JyJ{I1(W~cxjo;RRsvjcSeHsHY~U9=g90I_h=<84 zP0L%`^rf&dU{*POlpZ+3R08o!ll}zK`tuEQ72~kYqRwczKIx`PfSE=I zj=mti5beyi!5&M7f?&bA=dr4|##6Fj>#&dUU(<5*F%EU)E4j%CEd?Z%B(;zu|A3bN3B;!%Cr&?##|xnkeDga-S4plQ-m*EsLM zyz4nrOMA{o;|Ll+W|wNo2x7mSALeCOJBagJ($Q<`FfE5G=SA9O(lz1h09-|V<%K;nUl6( zBA!6bm4{}~Gl6#jQ^$j2fdl!-hxA?hc^;MQLeOpq9UD~W>lt8Cr5_t>2m&ft|;}N zFWp|=Xa5a5WT7G`G~Wv7XSjEf_0j{{(Pzpl%V22d^dJK1&RFV_8UQ)>83`3Nd3@<(*>&rmbVN>L4CR~yi|ZAtDQG5vXncAS*V8&aSoatc(0@v zy`cY5$&OW&=YyAC@a$Q$8VIOra4ON!duTy`H2#51QBg4n$n~EEF(>l9flXF3!Q&aY z-io-EG7*2DHqi3^ejKI01=Jg7(-yHk>Zd7G#wzS039l7voQn3%UEng5dJLftg`fcw zjm=~AC6B1I8RMhiA!{X8&GZP4PGL@jbHTfr*cQzJb9stq@@YR~<-XO?zhXBE0VOMvsf$B zmVEpVBApx-L~w#1UbVFDDj^w2@0B7wiqLmVtV}B2U4ebrwprPZ-$3YT0|PKI3yWKX zB`i6Sos1<@W2%&H1_xrJ4o(XubsJLhlT0r(QN+?C+T<_-) zE3=e~D?CX~6B`A~BbTOfN_Tx6e^762()uenj@%)i>&}ftTx{O(ORneT0wcL}tZ&W-QlkUB=QBKD zv&lUa`TOYxvF-cdgbFmlu0v6P|oQRRA_7q{zzm6GbR&bq*4ld_hdVA zt4hhg#i)xaMjJf zC9f;qXh1Fy<~4w%S=3hiksu%je=u!>mT(1{s4!7E1E{wV;ze0m+1BlCN7twpd6Do- z2Mo8$cauUozdwjo-vEh3qp{2Ow8#D$^0c}0y9K2zHN`N|cn!y%Rw!{YiGQ9{VXxUe z!lKimS($37QnIT9h-ku7$VFkc&*yCClS*Qp_@)!>8-?$Je9y{ z^Fy+C!m2R$-GYQL{}I}~pLvb=__Qn@=KVhR(7{f-69Jw-`0^q;dL}lI^Y1%f{Tt59$|(Eeq6xICBI}pcMoCSs;XhQhV(XCQ;Yd{)PV)vPgJ;c3f?qo; zV9$xVnO3qb>`ni1Q2raqtxaui9z=N)dCc;E~*n_lcnAn)uUfP zwB?CwBeh3|TM!S@I0mqwi=J574pCilV25A|7$Fg*4HR-*FcDhA9|6wKATqghF97x< ze*LP$?uUhnIma5d<<<~GRul;!XLM^1~f;i6s)l! zl223%!pr(Ns;XMYyX!nn;Z}(Kn(%J(k!riw)1X5Q^N3RI9m5pAi$fysT-&c;UU0m= zq&CIrJmI8OB}1>fA^!d}l`-iRtO;BNKAR?U+WH`!J}&9i(kexx@z?};QfoVnkLdjv zRxZ-;%mIDbrrYT)^Nc9x=_kZfrIJn+k%bmzmZB{z5a!6i5xNdDjo`Xrzjp$lSC zOi0Jg7D~fgzGJ195`IU*8Vd7V-?2;=yVn#4NesDNKG9m4OXK#;f`Rk=?az~a=LOMi zyYX_d{07~*lD0m z1Grtt^hmoDh>`_$OFiGgTJG`?b`bybet`3V`=LpsgKkc;I%(SEP+DI8-)Q`@LEMMk zOUB_1m=VxO@mOo=C_KC~PB<{?j8l&&l`LJf873TEG|S#SVjAmu-ylKdZ7y;n@x;W_ zMkBKdF;thCT^JgA^}p=+e_Rb6KL;04<*3ubFX91fYMNhF7qR!tg@~xQn|fWQ&-L5D zb;UB;`;Wb_7*!}QOPnQe)e_OFuLBdNpqY$)+zxvns{w9^>Knw4Pr(|4WFKbA%|kc? z=0!BX!8>p(0@*t8Xqge2`^JMLZS~VBf#)fXy2sVIsR=^u!#WhxXE3KaW9NCKQ|FaJ zlSIjRF(a>lI3)|8!e`85L`ah^z3eu7J1`JtZL&cdO4L=?s@6gF?PhobAf6g{!vB34 z%&=&hHSu@R{?f8cD{I>h){Jwyh^q5NuwSD<8AfCO-K&e?I-$J6!mMu+5*qv%9*tXK z)-wGJ%2gp9aLG;T%#aKGwA+YERa`y<;b$7UrJ0%8{jp`lBbT!Z790bo!d6E`e?m*K zqOHE?9WFANYuOQ8mO0$>^-BI8HkX5JoC{<^^sQCPwMad+OZACBC-QVF_^x=jpP$ZiH23Wv&c@RV0Wl11*=l0KK#}M`b@s-cTc`Y~d zW(Cy6Yk>!GQ#M1t`p|TqwO061lX7$(tVlWb%xE^hI)1vaUY*qZ=oxF46qQO-mE!L5 zkB(}fUGZt@^WMJ)DeFM7K{+ThGgE0)B3DJJmkz11_ul<|QHg3e?4csz!!eK0Ge7JW zD6Vt-6W6_lib3OpcRB}*r{tqfyoNpGf63LT6okm`h!)i60mCEI$K(?WgHtVWqJ(RK-Pi88rt1zi z_J_Xzv2g=}_tcg4@SnuP8c%7W|9ywltG39fyrhoVWM*KzlT%V06w1Nh5f|AJ&sMO! z_QPg`)$6*rR@1#Zk=o54TBiysHKR9|V^v_tqr#Zp=boMu$H{WdKeFDc4h6t?Xky^@ zRk@wh&k-8RMRtO&eeUp&?GwAp4e5OAiJRj|LQK2C?N)L)47dMDiu954d z6FUU5+OYb`tO;EAO#9>mAjS1>`dG<0Z-~7F{)hCQZw{#e^c&rDNB7;Q`wRV%6yntg z=7m{EE(_5BF?M^AX&4`tpM71N6rBbUb|Lf9-@QWYtM9~R-xnEti-$7*abIK-eIQl{U>d$39$VvTd%a9F{1k zpbfw7HmX=%7&Q(@rTRzYadI+Bv!@qCW_^aX3=Y;e49peaUMKE@=LLfLC|v7Y*OS`C zqrF0!;_39F6BETcKE*S^m6M>9qR14GdZ7x&M0x(EO9mhblFDPHQVN=4$l-8&di5zt zNrv`vMToMq!DRuGf!|R7@9TUWbesN31(4=Nh$O}76f4&8l@G_&S}ww+qO*B*)ppZU zp_zH(D=QR=6*0vR8cIfT3#UX}h^cW@D9uJK_fP3J}W5p7kyL0!y?{3ZIdHu z)~?@QWRU7Fb9Cc>5X2Ky4CMpBRrrE9DvIL7o#_ZCVELsXivZ&)LI5up0_?}JQ?gXG zN|C&(G==X6V|5VARaA~zY6THyj$!%S&bb*yqLn?Fb7ib_W;7ZDa`DuZsYX7hRe~-n zakL9as3`mW`*%hjizYxg!R2jo$T){$@1j_7qT|ZlZczNUTTJ%~pkE^IcH%TaA^zm4 zY0v*hyw||MaBi2?G9p_c(arIxL~?08R=nI5+H^bcfrgJ`K%BpsrdU>CNjJ+t?qDS; zv%uxT7ykJJ@aqB0Bni`i{<1b>dWP%d!R+>g>)U_y+CRDa3|tm+hHG?%Sv zwxp)=alsoij5qh(`=b857I<#Z>b^o30xspL`91lG@8d!h{Zo{xAE&=AlwN|I_<)6a z3oyz`b7zhQ%zsoo!15l+irB6$zx<69nV``O$2M`-F7g+0nbsnn`lS%Qq*0ny zx6M6Tza;`%7ybSP`k#Ni&AK=JyrBXBe!X`g?wjWhWa8f!$i|FRXc-(T@7$1-q$V5q zFSNjY3wy5>EpU(jC(yrMCK%2-DBARY*eB;v*nTkRn)enh?~KO#@Tr+MGu#JJ>-lUL z7#Uc4_$?pc*`?GAs#HNiy%h^Hb@;zg-;u*R<1BS#&ylVvg^rtr4sIZ$KlFpzYXY=_ zXIFU2!eEuG-Z8dF++wngd#M^!=d3$a{hp?yAQvmG1p`2$`ijz~U#^ZUTa^exmw zAGDZ4O})xOZe#zI*(a0`MX(}+pN-*b3z#3MDrK8S@lIG4vv!rjc-c?cRVHzER&l9D zLD<0MwDcC1nF*oGyPsw1TnAx40hhrmDEt?R0C96b6Pj7ZT4(O)IFNYl&A#I3B>j2p z5yNQeIm?hrLIE$*IduM(-sepK_<4s638hIEQXBq)5#(Q)W}k(ug5qPX7O*0)V1mf{ zmVv+%l%HFkP5uX5K5s?qgo^UyC3QHHgAgF=`JfV<=L?8jtwR4BQ3(@u@ExEZoFsP8 zIo*c_Ec;X{!F)@95F}-b@&<;z9m=s*+e}vS$*#%tZ#HOK&%birk@For6@IFd*d_~7BxGeN zVA;arq~eU5`=YeRNl?vg3sM}zp}WF_7N97yUR}OR+IqM1W3;<|Ir2E_R(ca0?l9GK zx-jj8DodXJP*9zvVRD}OIFXHb9(*Fg!kt4Uos@@d&y9mR^s3PV_?;7NwQER)~yl3god&rBky$!BYl2Y}u2>J>Rf4^x@`XqtT?xq;{+Q&u5>1tTYGGvAwk0*impB=td)LaD{v88{6;LUWC~ z4P|#DrD+3Hq?JjB0Y<2WN;1(#Vf#XZ+U#6#P)0gBa=gXoykJR@eUfY5U^xu)gNHZVfd0@&p&R-m1`?w>v!ltFa#QF z4#-w^)hNl)KiE5sT7jDkBI`q3K$+6e_6-|NF&SSN0p|9<$n{a9u#i}TF;c19b|t$^ zs&jez0^^!t^5a=rNktvr>#>9#GFaYR55SA(v;ZFB|4ynX1#Q@aGD(}U1LI>0uDwHV z)CM#mq&M}mYjC0Xk?W&{K;s=Xz9Z5U=a~twXA6zdm4nSlc=mC~j}0;?08g{J2*A}< zMJfKm8wj)>pM2VPO}5_+M>0+KL?y;WRl~Vv=@-!X_B)?HcvvO^T%*7k>5ixWUs82$F>B5((?J z%iYz!F5jmW2X~F4$+90DN61uBfKU2L^r?$TEXNx(5OgnG1l_Iw5p*|Y33k_SpCs>c zR@yN>_WTdj&#*Vh%)i8@$K}tQ74q@vS3>8a*@)kNlHxJ+k@ZG zb)}x96%N>WGAsnSz#Ekzh2aknxc+BcE@?wc=M!qF5{+y9%XC!h4>;R6;&v9qrQ3i3 z=~2^lD2WNpNqxm2a+sR9R^K!5Y2?}Of|hw)kcM<<=4M~*v?Cp;wyt~c>B7sX8)-Zi zdXfeHcAFr6D>AsSl|*wN|SeoR#yOK63=HNKeJCI<(p%jN^x1z$p|)Q){=!?_at4lXtH={C`#* z(0~i5>+LtNUWcJ53I1uRB$1CwJlG}ZO{}6Xte^^u7})cmTv_k;TlLkrf^#uJq`>Jb>#xl4D|mPj)IWmUBLKoecSs z^?JPM7o2rbBk$9-l453wte$dt#`iEVkD&JXdUDkvVK`STSpk8LTvtb+3q+@|{oPXE zFIW-e9J}9-c~YaBS9m%$lpgxg`Z=f6KwGZ>RG==Px&_dJKY$LYyf&MLkQtEa4MbAu z-9q2zPYU+c_8vD?h~tdo30tfzskf>LI~H{+cVXt-5W3Rg1q2v~ysUYis5xLK-I#NS zjg4(&l_BvC$Eia+8nRmp9Xhp*yr7M@;rdGZS4hbaC=Gyko^$uNhwPSxN^U+jsPe;g+7WnQ>6 zdH^Sm2~ryl%yUPOkkZuLS@H#XvA68nut(yKiD=mK{+A9eeFJqaZQDHZ_~b*TDuX&X z+o+|VANpYT80k6d`|I&c6fA5MGH%gZFSP0olrjRC&58Q|2(yGT`Y%x52Ec@mSO9Ns z8j9(whCktRl0og8P__)Ed>54j7rH3xEx#;!PJSa*ji&4$&Ssuj)|eEJ!cS~<=c8!V@BFd#Oa7vaf{>B$+ z+R+Kzi5(OAz;7|Cd!{_%&*W~&*$~`xOAp!ptV*e;ocR54osdc+72rbozi?p%%qr^T z1qF({D5(dHY?(Yk#w;J0zWV-rzLR0sgJY^Gq`(&i2Fr*z~wpkYcFG#ve z#i`qqo2|B~a`QYf@v&luzZThnJ3kcade7g*Ahf{xSE!q`U0%CFA%7e^7&sgi8=cC31T&4r+VvdSHArnsy;NhF>cWyMn*bqjus;J#XRBTS$J}Fu>YMZi zm%T%-Ke^3vo2&XJATmk-W?mFX?#n`fYi{HRJmXkxV^i`D+CF7o)2NN@8VHiO|3cD# zqpY2TuV@68!PqSJ{K2lu&j#}=&?J)BRZR^)hsm$KofybIU`eOIYFx1mw zUcj$nma0!v?zrY=xk|X~Pgu zLm)6*Q7cn4Vb{P6*(hr;{~a*OISsEH;+o-eiA|ASDRMMDQFT!7N2yWsln8y^*~&qw zQw#C}$(5WHtrfSbud=|Dc|UUvyP%4W!~mG%3zJ{Qb_Tjsv_$UR&!rzTY3>;0L#5s^ zp|N=QS#dSGI;=*2^z*nW1>%-m$DE(z5&!=J0!Z}heh2KsaI8fPbcn%BU<+s}g1GUo zgz4Jj-8?e-1&6qM`6{~Naey-CPuES^4C+h$f@s6aT|_|T0Zs79|0KfqOIxpn#OTy- zuMv(6X?PMnr&Xpw{79mwEFG+pH-U}rVR&jbPY=A z)XtV9_nw>X3=VH5KFn8uEArckjlQzmxIEZcJvIceU6c&McJnJtGznZY2;QOU@WVK7} znmc*`-&4IgzD5Z~{kX-m4Xd-dF|Y|aCxwQFVz_-asOH*hq7PI|omd_F0peob<)=WQ z0@8DrJh0gO{1>2D;;M0b-7(=`mDsm3-Iy zkrJtS;Yi@UezpTTfZ?Ut<*mAJwj#MZx#+485EZp4(Sn0<{!0<`J3;cJ z;79!o4gCbtA6~?{4^NfG`G?*nSm9OJt?{?k9aaN*U%udrUm1{{<9!Z>>9anugSUeA zGcSQeFte)JF8q!yw<6tknsES#9}wPcvDwHT!>_{0_igYYi8jYEoPj(FOn;s6&YD8adug1N$;FDPsM?A1McHOuz@qO=OK=KhB_hJ=LK|JKIQDOJuq)c1g%&WWu z^Fldm#Ng`9n2c4^om!@wUJ8Qu%~J$TWko)`Mw!g;PR^G8xSF*+$s#x!fB4H?M@2^q zNH!+uyd0$!@Sc>o`f|p~Zt_~)b^{V=$t^BEy-L5ph*Qz{Vr%wgcp^f~T0{&AwCewv z$Uz!vm(6Q!Sm-Q-9aTZ0tMIvjr)`Jg0UwpRZe*iCRqyySvf7D$FZo|!tm3S=3c#2f zX?G`JKqbk-*QjW9UhBXE#1+D??_MWdzJfl1aTnyS20{khtjf>L>dP6=wPK8rxAzLF zQ%?VddR_7ZZ6)0S)#zHLJE}|fCDWXts$ovH^6sn?i*f?=7c$5UsYn(o9lGO$$bxdG zmFQg>kUK)!YwlgGz3Qv|Q~`${2Mph^%x3kPiI6pUGuIt|1MGXE{Z|C2Drub80>t+& zO6vi<%s)gSzc^-%ziN#WNg1n4j)NbTJaQ}Q;v-y7?oNY1d$enTEnR!s3ws3 zhKX74_Xnz-)ZY(G{Do=*x{N`uH(0)&a!se}b_XF6-`h!W3#NA}xPy490cJZum>nTZ z_g^4;*L6VPfNfj6ha%Fk>qJHRB}d;o`L{iG+IUIj37rfx+8& zyD}U8R)SCdL%9m4`UOTjt6r1h?-F7xfHR;iR0yPfhK>$? z=f9}r?2)JY@e-b1u2E6}G@GFynAHY!;osE({Te1nwvZ1D?5iCYWU@X)XMEUm9S+U* zhPiobwCY|L3eXAWP&aM0+R&C?9)LbZ3CSt%PGP44uGi_cJo)fU#* zjeghygtzbtp+Nj~>ufl)id~2@Z4G%Ip<7=ir`{U> zQxBl}^8OYBs*13*mS>QJ&@s2`nkk{TCfmc0_M{#Ph#OC0)OiZNv|R+73wRZ-c};-i8MsNQ)R@#A$seDctn@8`iku| zC1f59bDjQC8IYx+>z@_Xrk&b3bTsr@ffbh1@fLKGLVX^ZC;3I_;yjl0{r0mh8QE{r z2*1SRb>%Qit3OB+<%Hf1-xX!-kb%X(93yDE5KHP_p)<)2 zh8f)qKuKNUW^xa}`|@UZNL~jdS@Fzf_K;-o(oKdNLc6#!mp;>G25AkRLF$T}_MDkL zAoj4jLMlnPdAOV%*#b%V0fo#)Nrtf{Mcdx6iX+F@xtw#5H9G>yeYlmQ3vtK4Q#iMG z0Eupfd2KV8g89oOr1Bi)g7$}2GkK8Igv_6f>>+Qh2; zB9iZqTTUE_orPzwgjgyY5zq~0$ zv(`0P#g=lS9eSO(up($md9=UC^L~P*^AXWiw*ki<0F^P4V9kyDDB5Uw)+wblleOFWi81cJiL}UXRfclPU=zG^` zF5TFv&ZRQ_6Fz82op77R`l~JPdf=-XB}(Oo!W2#%-ZS#XNWjWmMD=6zoX(QYUQZR9 zvQ=ruvu+VErWO=^RgB&Yvd=WO|I^I5a#WdYNf zef0f^WFQuQ@$1R`&8&3FR5rQEVNkkig{(}VSv5d_rgkm!*?tlzncS=%`0Dhl(>Ee- zm;V_bxN0pyTY?f@AfAD`Zs3?epkmM_fn&!nV?RK21b7JD^&hG|V2UiLDO@Hw-^jIJLQDjK)0t(W!}~jYjD> zykjTjjS+OmXo5TD1{Q%ZMT>6RhGE*NW0*hz5E&X{Ts_iLWD2%|6;}-|HvkoeEimNM z!*zVxL(Y{`;{DD>e?&Z>t-m~fGis?u_bd_Ywi{~AV<{v3v}A9lVJ^8^r9!6AeKlW$ z^H;7I`%cy+-}5AEK6TiI7iGXXM{|2mvJ_%=;@|jzn)N^yIZSWR`?EB+Gw;vikv8g! zQf8fT;%+lv5&U*FtO2fk>Y?|x#?D6<*YM!@5KK~auPzpGJvlY0ZN2N?;gNUzh@_ze z5wGuN&A@-WzfOGb9%Vgs2d!wG{=ZgIHGktWkK9^mWibtO{iG{g+3KO9rYAeB_Q$Ib z>Q!jtb4q{`huG$eS_lZ)*$JW~jHA1ojV>Cd9Y+7Bal+29i4benuIq@ zsbYl(Pg8=j&4L=Derg9tPY4LqX^%qLe$oom7v}`xaWo&cafxPoMbXskd@&(cIp*&3Swix<+S2 zz`aUG>vx#;#&g_ZiMSkece_1e=S?3BiEp8eGPx^PK%hY}ppGP8aqit>!69-|{vJq! zE;MD}&77af%+NuHFVpi)^5fQ$_<7wSQpJbW&~vL*J~+de_xxl@{P=1oE7dJOncGpf zY5edU>s+Z#x0{#0`bLzzIyG)iSn#`o>|j2(voZq;;HHokQSF6CpxQ*IQg{tk( z!@Q@}fFd6sjAx_4bwd;gBQ)K^Qv~cn{#*|Hi$38sO5+V}Ui=qr)^nB3bSII-lUjr7 zfF2}U5)ggska)^r_GP2Q#q)5)xSztq((>C9WVAhInc@xA|$-v9Y^U!7D- zR!kEl?oYDsNJFb{=8VHaUqo#&9f$mDwNuS;mz^^Qdv;74wBx}7DUUX8en-}GONRDf zw;V?1wp=I;?RzeZPvXB8JVe&-hj`0wT&9UT83+A*+`Il=Vg_Nk`yy15w6IR-n}+tl zqj0DoYVflw^^cEk9b)g@j?;cv{oYyr^Qy~P5DH$rO^o%1zy3axGZozlm-8Bbl`KIL z|N0}h$AHkLs~;;x&EJ>RI6Ir?l??0U{nO_%s!w;)$M-13X9;xZyfqsqZb?-EvU5b- zF`k6%Tw8$xhw)5Bi(Cdp<(7eg7+@N?o5og2C&YG3%v}?Bs&qdlNhHYx&P}VN zK{PjS-b{QI(q8uNT@YYOg2C{I@5uh9%h)Z9Kjo@;p~sL&58PM>Ggv)*KF!OX`T>2L zt%N+ssj`3!*WzV#7y3`&3lEUd=M=-iR3LV6g|EKWkMgt!bbZ>|dzaM_-#Sg*KyT(4 z*Brb(FcO?vg_4qTHS+S!oDmLF?iXv5ax$V2%v`#e!;-^oNBJ9-{P57lmo__K?Y{N*8luI=)3Ymi*WzDyN$QwJ*bn$6KnghWRZ-9jQGvSs3ahAnVP z2-ZPKzRg4|?&PkxBRzktb<|I_=3q%?$W98p6Ps%XC{uD5LK*CQfzYAsD4%6uLCSxW z8E|M=8(QGgu++ac#Qg)pM9-KxOtzs*pe-Y{(naao&W^j*`=x zx#_vtX$iebMyF3NALA7NdULZ@3DknogL4;3z`Uh0FPo zoGsg`D;AX!aZPEXQ`?H7Mu{N!V&0!yjqc3DZ*S$pfXz{gaiG2(%^1xI{qVy@ag~UA z!n1;ed_v*LZF1w+o`fCIkyUE>lq-RfOz+>Nb2`@_P0VSs1#i(P$WZotg^po?(`S_$ zmU(V2pjX=oCPzumQ;)~;x2h92)`yu^m>eIXkV|S2#gTy%xVP+V@A0-S^2^C^K)W=f z4mG*@ z5Ku`K5ouIXK@mZ^q$MOor6d$2rKLqcN=iUtOLqvO(q+)nA+ZUiyE}h#Z8-Pb=YHS! zzkBZC>{xrP@tJeXF~@j`6DOk~PY&DNHRqBGs642*A8LY3;0pP;*HWmnF}3!_&29^c z0kyJ4i-@jC(ErN4y%Th@>Pb);c1#SU@d{r^O8)zYB4@Gcx)D*qYQDmK0XuC0`#Dm1 zd3ltHI%AQ7Dlg|?`AvJYZ5M+*`ps?qBGowYrWzU#=;37u&!zX8>kgidWzRH#0L%P@ zm$Ui#`3F{>gg^EtBGNf~$~0*yhc1ia{jCs5;JA(rddhlw-Wu54hOID!)KqlNxS`2< zq~L`l?0{!lnwqm$!>Nwg)1m5`ODYbFL)R}*P=K|F@1_<5QA5dISEi~yRAETcGfE>gh+Mzdp;P5^?~}E!A6FTi@E=5kFpqxCWcY&x>!9KY2qq;+3~f zq`xSY<&9Z60jaY1rPaa{$bxSqbv^XuP()C98c^i(y*NCKG|@f-Dd&+vV^BT-hd ztSsmBlI!gGX#ujS``x+AG|Y8nzbNKsSiX=qB~co-y}ur!t)eH#@{q>+;wdn4pqCcD zU?OdvO{kJG>qYo(f!HeU`TwbnF2mB80`>z#%Lp!+(E0bqo35?gC5lZ%xLU`z=@m2P zw^x)h(8EbNtrQhsXa!%kZOVtam_YO^veZ_jS+po8IJFqjAH+}J_R~(jblEv)o`IY{ zf6cpBs<`|SfvTg=^x-9a z3>$)nGFPT5tKVa(kTv+W)SqBcSQZ$A&elw!VKr-@1~QApsUdm{B*Fe*Vm#Wm68kji zq$P^Y0mmSdVC)io%r3{z+z-3N2CfVQWA%0Y#u`j~Z-iAM+18~>Ndh=Jdp92Ii&jz8 zP=~#hY+wLUUm0r}^B8rac^Mf2QLa)&Kj86MFYA}+5RUO97ndyDdzf$rF=KXT> zZWl=W4~Pl7u`ES@B({88jd^^g&}q*_!j;QD@8ErokM0IlIn_dIt;i$axmw+<#X7`gk%p zC9NBzC^)jay6$(W>ZDL5+1FRJ(Znf#?dToA%WMOm8#d}SM;G&UV%dZRHr`BLRI@nJhp^L`8W2Zkxmc&r#vIK055Eaw3U=12 zVYBXQlyRzSQ2#$XfPu)*~fw{#gr0DR+@*U@SC2auE4qWJ^ z%d8K|3PY)0n-oS1o5b=|-?013{Ui|PX(1PxIAA#B_`_cAsk17rUOoNx@VwTd#ex7n z<&{mE+8uF3Q6h%-hysBd8t>zBB*eg@kcjbU9r>)$_oEpQ-7$*EpShjlM56WiuciC0 zWtjo(j4v{L2C=j1IJ}SVcro-kuHx3Zma4W91 z; zOWl(!v#aav(sX{{_gtoLXqY0xT~X1c@3MxoTnya3Z%s{&o8}5@^0(Xj3U5S%nG~_B z_zcWRG9R3kr;|p@w4)@I9-4F{E2AJOD?mfnwSc6mA@663XN2Vku-jTc!(T791b7v* z-GbCymA)Dh(bwDaFNNzg--EIFk~AENwaexbl@t)PJk#fN?LcG_6P5pPjDrwH*}i=()RN{D*klfdX|lbeYv0o(VJPDA~DS zb+gafY}TvFIqTdv=Qt?1US8HAvV(#PPx|dUe0aKU=2}vr==}4vqZL2Itqs_omariL zgRVMljxYXN0d(QtQ;1wc7c+>;a4)Gcz+*d_k-XgCV7s$6{o~FU+y25BrDqURx4G$| zU_O7R8hdbR@a3u(+u2*?=3Pax1D+83MzRzYvUxu61V9z{Y8(Ppmetvb#QcNDPypl% zN-2RUz8R!x1U9!>B$l8rnjdsiP?|>L$D*?QI|2fBQR90qo%jIk$LMP z+a~x>olE!V`2cL$A8+gRF8Js5DE;aU#(#lnihHNlQdM)xxZl}5J4H}B)*@o-1IB@o4PZHVM?(e=5a?J4etY&T%cM zh=n8un5=pOBYzE0*mKNr{hkVdJ0K?z%y&MJR$2$M7NxUlWC&jNMXgj^-!A-h+vi@T zKw&=D*2&4rpAU5jkP0Y>KZddDN&JV~U-N_uSv4(`P&B7Y%*8G4?eab<(rxRsIZ1Cg3{q#R6-7(^lirwhMyudob5!19jUiICot`?PyHv-Ay_n0be*HA@QB44J7L z7&oRvu$l6EsHJrtY?4qHMmu8D9tl0m#POhBw4k}8cMm3>TZ{lLqsG!7ALA`|+rbin z^QMY&A;78361-mmL5rf849(8f)Gp*5#&}21AI3H1>XvE z+{BReKhMe272zfdTT;;ie`z42$FaV-y zo}5EKBFGY@yqnvQJI9{wHE}6H!lOu`C|UyKIHeWY4~0mlE+BWL1^=bU#jM~3Z^dU3 zZVofDK0#@ko5J=501Um`;=45+b%DCYwxyMpRNWS(LXM>&glN3u*FTwYrol4u6C?as{>LrZ?5L0U?!$=qTsNkK&Xe&=V)W97Jn?qPM6gq}jhq#u zESqX%^5$ReqxI9fRZZAu6wIf1v+5*v5`IN;25b&Fw`NdTPv@DM*!w|M(wZbTNSRJzAhVnlmVCr@%DlRqn}qT|6Ujm77gMb+;bpehu=(8@)#VZ)zX@fx}|7aJV(TxtqW$(7>VMm zS0IRng1@q`Mj_gspybmF8&$>-gK{ysJrHkWVK*a;rfG5z6A!bO>_TEMTSaaK`zGf| zT1-`df=Y-faWvD-ngJw@O%ge06r@L2RQ;MC8LR{|^i6&9z(I|~sKt+f1Bi#`n*pBZ zi`tES)?eAvt4VB5KvEg(w83w6^ImT6JR{!^TRE8vnvWl!1qX2dt^GxJPK)8n>$SDD zJh#0GJN9U@171VfqWw}&3wd;q1HhB;v(;~U&!sXO4u6c<7Hg;N|E*MVw|A>%-*lCf z@L7QiwT_tb&K#JmBZ~+sm3?n>RU9{${{HlEWR(ql?9$eyNE6RrhU@66SNYm?s(1)1 zNiP{gAxUy0MGJUXVUd2ijA4q>&rAdIBW3}MCt&$5DDIs(*kWv2hMiDT;7CYvfB_*0 zGeodh_#_+h$4OF(!z8)2YWOpPEv-#WvM-6sZj{)~zE{70@iO{P^x zLW;#jU>I_!0g2ZSAVP1H-J#82+3;h%^UAL2a`Ef{0+ zryifqUgaUtC(l=#B-|qFb2P|XiZ&2t!*c5D|m0- zYq(|Ry*t*g#UD$o6RdbWx{T;H5FCeuVMAZ#4&Sy3OlU^=6K9PX03yxq21dPZakc&O z5^Xy(LvoD=cGd?6@8?hx*peVcZ9Tg7L2=`zxq(S~UAb4|X@-Mz_{+ti-}xh2ICp2i zoi>0>yKm9>U3)SvDg9W`$0>+3t{ zGRZ;Bn;ZCtcJ6CD|HePW!);+k7D=j|S4!c#OTrhu4JUNZwJPl&{_vZ!h$F4(N+B!C zxt`gAS?a-!z6e*d`ma3v?3<=Ggz60i*yj#Ui)Ks=1!vN^u~On<$8VzkqQH-Eijf7n0RM| zc?G8Dukt8!wcB-v&Y~9j0^XWCQ|XM{9Mqd^bcjz#NGq}4RrqAZNKcU3#4s90*Ljt_ zYd-Aqy1L{#QDU;y;QMm-*8AzG%^*EH_`@ko7h{1^vAa=9I5O&UE==Ohgl&U%vCuXn z>1=EKX|iJhEhecFAt>_9tyI%!p!gUV2qzf3Xc=-=1nj+DiLN5Al-1UrlB1Uw|C%)Z zQrLh&Bgx#Qb5^R&!!=B-^-y_)Md@3>!{33_M!-+MsP|4?aFS`cG?V^|lZWm}WW{L^ zV+>WOeHk~_Q1qq&7b4MD_<%9c1f``J6iMv6sy~_l|6M%Z1lc*RJaocLWD4y1E1Zkqke}Ok zS^6VpHQ7RwctK1pB6R2C=Wk^n1F4-24eu6ng!)y6+{J+y@qhHqSOlVY?PRYAUu(9L<64v8Sxw)NZ8f%*S!&noA7aenSOay$ z1w_R#Ee#*g@`|+GjbewzxMH_`r@YukA4BQE7fwW}(@67I>!nSZ*it)FzNU5shTJ+f)=%_VtVU-vh%mX9Oc-vke-iMZx^ z@tQbmo=_Yisg`a~G6c^<)hDIX)uZN}+QOhUj$Bw^c|eR?>T}G{P~;|Er08gdAXzhW z!}2q+85ebxG=5O6r;M0)Ryb?c`P&eYe#BvadkXgzmJ(9Zn}1z%*%q^32f()mZuFCUV>Be>ZR2?u8a=ev!pV) zJi57ld#l&JvC`aF@i9(KcSDrO_TW&3Grmm6V$n4@-lI)9rUwrmIL&wOohWqmbM%QA zG+3MT5Dlt)CKz&(963&pG3ox($hH9qVJm@~B|g4Puqc?~`QZ73VUfIwjmL`wCDue4 zldwOnRunWW2o^|xe7IS#A;XX3n2&~S6UJznMpCe<&!4dpU!mEa(OJ8t>^&SS%mn(W z!LNd~f!)z*k6n)`ot{baWCL0i>c)xmGyhHJh%rDZppI0l&>!{mkVp=1es(L}dD%Ao z!12opHM{g-p`gR*YS?9u0AtKlU?r8^a9MYDs}CzZS}{_i2*Q&`N}Nz6cT!NNig7rG=FKRWOQ z6HRbL?iKYZW0l{ZdX&Uu6bZrxE}K78yA^JYyW9Uk-z63$@;xB|d>KJJc9Q2J4n%s} zBQ(=7V#QsE-(u<;V#*F_z0oZaS<>RV_xkxgy7+ke4`#}&WcBU2ZwF7p+h`Ju!JJb+ zN`Ll=26@@XMy7u%4jOUQ{VO{KTW8!oXi5(%x;Nsx|J zo@YNp90$Hq%rCRWc?)*C^W3fux$VyDFl;LcZ{G#uOGPAQ5DFCMj|^AZv9K4)>CM%X zd#_MuUI6po|9kFaikCiidAP50fs=>wwt{cy>mb8Zte*8LzG`z?*S+qIw)>pDdH|z! zGLhZB)@qwpA;_G%!|>+K8y=#MOnAxxyz-B`^~FAa<8tMN#26QHZ}`5W*wB-apZ%|@ zseWWcUuhVNaxAAP?&KyD32rGVkj+0+ie5D^hz)Cp5r>5reqJixx$tsx(4htdaHB&4 ze~uk_-bY18BaBn6L^3~5#%NpF8|w2ZI9Kd`ucNvqz??;V4T6pd>7kK=f>{ELTv7&IK{Uby}e2=0)U(AQzC2|j2a0oQ>gY$4HvfFpWx z`czvgvG~5u&hv`34tX76-7H0k8QqlFLe_Xrp#(LdpH46QOco1b*AXgZ`&(q%`%$>F3+|bKWA_I|k(valQ>4wEulfMUbI0Xf#&RXI3 z{?op*+#s212I$QC{|TLV4csZ&@AJ6|J1?)_C{?1a*~wUm?iz$(*v)rzC}9?iHPs*^-vHI3SMYdxmG2id|p033mAZFuud=-U*KBZAes zUU@HB$*n00ToiW3WN5;b_IPZ$2gh)}&QRNx4h||HW%^O=ZLZ3|B@@ACn20jV#L+rw8Fd)~D}x;5dU82kLhk{uqAK-dW}vUgo=@1Ig&Y zu7L}MVSdG#_5*$V8BI{&(LBTuBQO6c@P2uZqrO03hKg%)H-E7tGg*oG%b`v#HK^}6 zJn?t1p@$U4oOL(v<=cJA_8)v;+A~}54#vkltv40Z0}MYwjMkbdC)s?F#h~?X{nvyY zm1WaOcY4ZZAM?85V~f&5*$dafFa!=HJ{uo*xYtHL77fje+eOF3aM4l&TRxD^_TVhW zmh*iXqG)=|nPGfn&*0pdaY?9K-$Ui%gL4a2+Y>0nn;16j1uA~{IC-e3d$69maaBKQ z*sNCW^h(u{DM?musa>`WO{E_msoA90=LjMUD}L>N&mJSygUlBB&jdE1_f^RguKIU~ zf;04n8`-m+=4W@VQ2v=}Pu2(VgFXmPQ9M5%&_8OF>C&^Zy65x ziV`uYGp|bGzkL9`XMJ@;h*(pj+(4)cS-sH3>eQcCuDXUwh=&r}Jbjv~`zl<~*QMy~ z+qZ<&QOFkE5MKCOGZz<^PQ7=Q(Z~A+huWM|(qCcVMSO=v`9~0t*lR-!JLT5&F^9E* zR3ja!@;dxoE=tZi?7x;5CJH1TBHRenBrsC9@8W5oPkVh!xKy#8K36kjaWQ=Fy=~Bu z$)?Akcu8j+@eNX3T>hi^aJ=jytKF$m3qy$i@)p+R^2l%!OtFmQzpx+II4K`d)Afo( zHd)p!(eC_J^TVClyc)#h$IX%nZH1pFo&NqGki_Hr_)hqp@J>b650Rg#yxk-pl+My* zw%(pLQIO|-r(PhtY#pTYt?Ao@Fn5(D)w^-lO7FQ+rtNPVg^5^Jl=zpG zf~I4|EZ=~7m0X}L8|SoM)vQZaiOllqDRr|xkhfe*g*bt$CW;3@m; z(~510+a=Y&<-8U1%j-?TvW?Gm1{d#c^b9{bd#-agpjHfKfSt{zh>+nW z1EC3^N(N^5SC3A+x4jKZ*l? z1nLHbboTu2VIKYo;hIG8AyuT`z1`{v3aq8OmoQihB3Brp&DwUm+K)eCn@!J-XPvU0 zEd@|TCA(`1mw842ul2|CsDiW_cW3iYJpkDsTZ35UVweH~hW@tvJh~!barLRDO#GqF z-zOi8qnUV$#MtisZwFNwLd~Vnvz0#|Bu~5yMElv%SJYgCe&tgNimx!c~~ACnLueB?@5;YV^arQiSbw1?x&m>PGS*CY~;#fGgkzlQDe zwFx0Uk%~Wng3}+wSw9N4u3YjZI=zNRMnr`XHn9Cmt^Y$vk}?d2&()88xO!jB+e%d+ z?9)LFg|06W$=cWV2nn|N#Gt}Z3^r?S`Nn;sY}gc_sDP*6>)O4HLkrdO;&=_48+Aj0 zYQF!hBx0SYr$@|^J)X#E;ZoxAUNOQYCFHslBJ+04ZUkSL|DH8gf*~bPdUSUfK@WLh zjYBygn1WoIQ!b7z%nC7jPv`6&X3P~AkX%H4XtksG{eEJ}BOUYFH8a2>A$*Q^x%rgPWzVt{qDaLPecFoy zB?f||EA#qn{2as79aUZj3a3nhXocA9=lichAl9OwVIlTN7XoT7#-ttysF5iroIyYh z!zu%)3G%B5JHe63yIo68!>PTg-`ReCyRGE)vZhnHSRpf_yo&qz;P{q#Y z;~4EqAbNRy^#v^arfazVl6jQF((|gp9fTGZt8bv5vvt@aDWsc9AUIMXmF@_afQiC#XZIweiMjm1_kh8m%kMxQxBg2h1`o~sFXde0ni6V`z%s*R8|EJMy$+JY$L^h+< zjc#121s9mo=BvQVwf)!6nA*rNilVy(u3m!PPhG6VM~V`Yr+-)Qe&msk<*+A*2igK@ zMNG5J+3w=qS9(s4so8#4^k`5agxu}_hmiYdrOIH>Sd#t!53dkTjxIa?f`+0mV@chF z^W~d;h2|)*gB`XNCFAXm6VSv@EdkHnf2kCV7|x>PlNO(;77PUU?&xs|2(Z70x!Ty+ z*f)>67F2PYUruMiBtYX|WW+SPja}b!8STqho;}{#JC1-jrR^}%XbL{MLJl{>J75IB zLTpR|=ae%dNlSev=3?VBT<)kkP~ohhRpF!#zU6j*zJV@aaX-^@1rxR7e~Eo7=i|py zrBg@IU45ttMu{x9@AeA=eViMLHGeYy5W5=wy}KRzSX5?T@oegub*IFiq>23z##rC& zholoDhzt^2Wl zmLyhFX`z2K2_q42=|{QJJTUg$Yz_t;gYrMSu2|S1Vu&OO=L8plg+veO)Z-hz)BB0; z()^9eG-h~lYRG%h(u!J2fp}M-HU|}P(kuSM}9)-EQb!F(^6O<*!=vgE|pqhX?LaXi)Mb5u?jUX!q1ar{ts0r6)Iw^en81kc~(-^R?813z(vSx z6iTZGD6OWTw0dF$Bf=?S3?Ez6jQEt<>rOLgT^LvcDf(*r^v#+wuk+HMDnQOK-7TGlTKC@ox>;)vfrk*zNhb6 zn?R5zttc?YSAHibOL(bNqhiV4`fsGPC}Byx*sG!_^lwM(XQ>J5`&Wxe7VJ_+qW_>1t$qH*pY=r=zV z%-$ma#2vr}p*f=TSCQ{WN)u>e`o5GxU3j^@Jshc=7L&FNXH;t!6=Tow$At6d4%*Zp zx=?;h}@Xtz=5o5e`f8qFKy07B3nSF!`vdgS9d%lQg@E|wvAg24h* zrT*0Ojfoc%gy5sjOCh4svp>}&Y38`{(UKVFlj-Sco&Ct9;DuqTvz$WFYtHjD{fZWUglatF_ks7u zqCuWd1QwIq8sFs0-ch;!{(rk}RqwUIGKWo?ur4e&R+}lV?^KrM?VOF*A}q7Y8OP6x zufwy3bY((^eb%Udv;eOHKKxWGc{P>-1}{W+4n+de67E_|owpkbP(v-|lS_`1o|pLI8KA`yis$IIXSZX3&h*~Q zs(Sc0ZCYK;6++a)_`&|JP*owjMy~Jj@-p!d_O)oR8IuT1<*XKw=s{)4+Gee_vUH%b z(%awPO=l4c>L0Gs+%mk}u( zhgNahCQU@;l^K+bkiuFJeaY*QC$KOiIV%=+V!AY*b%R5T18NOquhCXT+cbRd5D7+Ca&EBbbQe?LA7R{jCD{POAVj}}e8wDwMjHfa;|ZxTbgRxP1X7IN!G2I=^Jb!ts{}!nYM~5lWtVFDqI%j4ywC8>}EdWm1udqn| ziwt`^$kXj+O>T|=@HL8`_pTw% z1Ty*R#&hM}dnt5Yih-`#<@^@hEjYCc*OLc~fHeRnG25M^lde zP2c#;Ql6Ptenss{s6Xoro#u&`CY#W?t(`7D)-zD`7|L^t29lXgx)MG{-#}#TCou|i zh!XoxDV!Bz@pvCeF@vnRi8)l~#(!1hDIJXuoDMCmlag-3=H2-V&k9*jGkA`<&l)UBu^Ik{FTgS+rGd_{m|R;d z;mmjXw2E;4dpjTN8NPRE%-qPlu`@T9vz!qU`UHg8D7WN4XXLc(r`i&A7*w`z^3jEO zz;LnCJ49?Kwq> zOQFdq%5`m;8Z7mkoNO%UAg}S~nKdjAj{oQ|c;`QM8AVakYCL$bWB*uH_qokgZArFx zPED*VKjE-A?@H)Xhh7Cn?zPtYh1m*cEu;lFB+i;n{EKJ{10`R04hd01YC=ARSNJ7` z6P?^ws2Jwzt0IIyf17|7x>_j2=68&1^2=g=i8Jn`cLlr+XW zuGx5E-?}l%q&XrvvSo{v=);B-&r~`)=PzCD8BSE^lT0RBtUla^slfUr{b|+F(R8q+gTB{v!xJO{_w{XTT<+WVXB3YM{;IYuKKS{A&BnYVU*tEej{!vx2=--LiJ z3{YL#@t(r9?t*D5qSH56kzn}XYE4p8Js)LF;@uk|vcIOvFit1Ci^O5;JG&qnQ`Nda zlgTI;pc+qFyfT5OO&`-QPZ{5n)Y3Y5nUc()+m(fxo^}aw%sNOLh)JKbF)c+iKQM|p zosVfD@nbm#UE_-a{mYu&Yc?@z`13^uanyDU^P;qBKvXM}BkWh79{GHd}3`ot@s|PQ9RB+yv{>eb` z-f6^)&lJ|OuLNh7G>k{VdR+Ojyt0B7VqFi*;*z!b4z+)thAXLzG>6{RH>`XI-+!(K znaoZ>wu0UKdS~|T_xfQ323nz>+g_x8K!E$|)m=E{-izZg5K7qipyx!O0)YhfqrF6P z%wFQ`RsUoEqam4D@7Hc?$#i~~rGwUXRg)57pKqv2LDCz}Wv_d3Yal4o5#SOXDsxcM zs&dn=XAGEZjbGf?+&@q5u5ohySU2qlju#e>Bd@n(y`C=*7R{!rMOGD!k=~qP(y?-H zMSdCCG@exE;^tPHRsr`g5q|`c%eO`XB7y?GzhpSlp`D(FDZsg^?PkmB#zr|3m;J@6 zhKx*R3VKH`;qWdipz?(9Sx_Ol{NmB}s1M04ANV@M?gP0qY?&kwndzNmo?e^6;zjsl zHmF-tVQw%ZfYud>?L$5Uz2{hY+4JAE$Yvxy<=9Ilog{JJEn6y&0Z%cR2b>*x9SgI> zr^00hrG1{Wyau+M$U zQbDy)m2FQk9>D~2uTQJoHi*h8(+R(WuY9GE{q<{;ap?k7ze}YW4H&f^Tje_y4uaR+ z8O0rGDraiCBi&rC)lCi2`Pen$$5ESn z4}_t`G=n5HJ-KF1IMWBrD=&(z5m=qRZL5m_AtnS)F9uEPsovPCm6%A(L~im}YQ~BU zU&M#a%ESGSCMRL+ka3#st*Qt%HKICEJrwTYlYmxQk~q3|FDeZ)e%(UaXw}JPli^;z z8C!JGnZdN;=QKnk*U;_<7yH5iYXU7cRCU)4-S{rrX z#iq99u3w!UVs5#PSwT78LdsVF8OtPWkQ7pn5^W_C`umdt(6&fFLJk~|vczQQac*|J zKlejpA<@d#QEHP)YCx?I6{c|r=FMXT@{W0F(^?O`IBdD+g$*$L29b}}!x`4k&{h{H zv_EvRP}(8hZbZ9k7-Y7#=TZlp+_~*38hdaPwhH??yS{*F1t?jHt1V^^I3?G^#`qZe zSsggXPt(8_wQJy>Q>NwpTdS}FfD$|RrIsFSeeiCt-N*2IAz}n|Q3HRkTn>rzpJ@pU z4&E%n;UZXIVmMk&`d$8i8}2XS+YVK`v0E@Us@Alu7_Z3H-5a48f#~eC-YWMh2Rd#u zI&7qi{s?C3`FCWbPsU5z&QY6BX*fK|(^30K6!oh11#Is?0JZn!%689%MaW9DS?-KK zP(z?M|K~+m2*^CISm+#!khpJoVzejj`#tXJQa}FN=Yiyx4yX>@J(p(s9Y$Dt0jcjlstCV=1r2HhiL!_lOesApjyFr9pfD zg^Z%H4fgCz+*k8KOw4uToWt8zjp*&QN}#evz!EC`&d~@n%i8#DxA?L5PuaL##Uq#L zV+V;}1-@rC2UX9>D&I)E=JqRgfq!ar3GtDj5kOhoTgtb6n0@O$_O+EW``=02=yhDz zyQO@;q0`8E`xK$UWzqb0$f@^<-4g45(P36AAAP0EL=&Z$tQy&^DbI^lJbw(D=VUwi zW8gT~Lgprj=PVqKJUH0To_Zo?5+*-Nz|jRCz*K)h-+{B$ZRxgrRo;?>;~PF7Lywo} zlqwwcRs!J%x0BpPZzDE7fk(C~H6+E0bk;;>bEG~=D!$|+ZkhvY9>FCyvyvraOYmH# zy@P5gSigorre8EL@f%mbSto#cr`sFLmcfp}l#YU5d&;&mzO>v3m(KK=dt#?Ko;e~ zcaHzOUjX2O@0YiO6@t4AL-hNVj21JL6W}Lvus43^^47y!W&K}+@Jc?#^f}~y0W;29 z0ytHFhz9t^elYSUBtM^^RlCi;^-x{rOb zHp>5xAZ?uI3DzYKQB24kJV{M>dy9t$dA*QT4%#cSfA{mao@G4PWPlxu|1nZn&uH0R z!y%Wif-G%l%+Oygrnff0v_Zj~WgAP+^=J)cz@$mEoDx_9(8=D>5KUl(zz!lXFj_#V zomV-8Ee)lnrlxA*?tZrrvBzb0a|B>=0Zh4tgcvDl8>#3Gf*@QZtfjbYdXuQMg{Udp z#YpBJ68$FTMLqPyu1~j8XM7x z#&gSjzFFDW_pL7L?m2@K9vh6Wu-ez0@yk~5CO{<6T@~3Mvz84e2@5HiAN~0XIt?OO zrdvS;SCc5=Qw^S%I}#q0@(ftQ4^9i);$c6c$C&H31Fd^(u8XDnr8J}<_zdFpVkUc6 zdy&*H=inf8Se4iV_NEBUUYXu2H}4qsWP^t*`>ev-leqnUSpIa}Uo7iyfASFMb6Nb? z^}K&qF;ZxZxMYQf2CP4*`K%397g!>%NsNXKUCbA69`I&+c9Jd|Tk`D*+)~JL#8~E9 z$$e_%pvTgd+0lNZSoAQRYQ%@pAtJ<1rdn_-yo_~NxVC!+j9;3x zx8pO2#y=HJ+fF-ZOL6t(yV`JOFpF)p*FjLv+GdTB)Y475@HRXkDa2nnTj0Qt7RT6I zK5rcyw=1iUjCwpiyl30!nnc3f(IrietnQncd;1zFF75*{U+rT}4!lR1- zRuN6Ac_%z|m+*+w!0|9Bd_6dES#AHV&KJ=Zu(!D7km&#DdtH_&nE}>`N`h~>AKWbe z(0%bJVYf%urCo6d)-MO2Ulv*sw`(jzPG)8~Rrw)e9r4RuaQ#!Is395Lg!J3sN4&a_ z`}CfW*TBbVJS&Ce(iBMc7z?(7F#(u)d3h9M#s4K&9S=ACt|gjq6Sw%#>ep>qUv85N zSC^j8DPM_->RtXX_b?z}mcHeL=QzQwB$OJjmZ3B_t$HJ@93P zyxUkM;OxeA^f>4f7{S0LdX@h0S^o!@m_)Y09QeF?gWl1_hk@WfLeWC-yB91{@I7Bd zruJ9tCR8>PGvpZ-;7ABu?bTm3fgMOh)_gPC7PTYH|o zA^J!fzlZfUMFx)wC=}_avwU}n(ODL{F3a9`z>hO3HkKSXR;m6}L8BkOhGF=JJ{7BH zmS>BJ53im75NSdsbbdQn&UZjX<+TDudp*Iv$ zKAWVgUCgr&n6J^4yOfv^^+ZlG?o#1-M|ts#_$1QDWf#5{-?iijUkqODwycbajdeC! z7!bL&S`p8AtN$!x*tbyObLB)LkYG`&OB71Q@C6X(yu|K2Q6SXikEDt4UW=T74){HPWG z%iLT-%Ov+!4X4I}6XRwUr?S5B?s8|y_g z!Si_^FP%Z_YN{)mU6Z}B2}WSqyNgvK_QsAJCp-q$afM@W!(KBW9yQc{VC9qs?5*n3}kJ!$xik!;hkI&uHo=XM|O)JND z+wnS*=87jl!H#-SvsxERC_2h-*?pX_&>&4m4Sx_zT0SePn?kvpzv$RA-b3L$*%WRa;{)_3xZxx+6uY@ok4PMu+Xvi#Ri{L`|?uCUxqyD|?qO`!vn( zCuQwLB~B7~Rkbdjb#l|3`5}EyAh}aGvMi3CiFtl6VSSnOi6vX}!!Nwhz;NHP6xOWi z5sV*|%cF1e5?z=inpk%^D;#4&r!XaaKdgc^pYCbwwftM4Cv>P}9NRWe;#*-umBoFN z4(o9di`l*!QWlI{=x2D7X)~<~&(pN4>!yTQUGY)RIL%?pBLi0C`$(-V*q-rBF5iP& z#(_?SHre+)sWIGXbjaP+LFcUX=|y&6aEvmb7zkHF?s4)@snMP0euf)AOFoQ5vo#v!~2L$|ufrgi9to zfAO=e;<8^$TeZ(~r45;?#xkBS^5?<9-tB-1o- z&i&dNJ8?>-!f|zicvq6x8JK)~`z+N#+Ha&6~I&??%&r`E;jPkIat-x|54 z(sa6?8ZJl=&($rzIv%6aDa%|_su7j4i-Uh>;R^0ex*w#!^EBNYunBgWjCFW}e>Z^i z;t7wlF4QG-PiVe#Pp1ah?KY0c7qqq%yX20b2K)Q17cQG7uE(tcW6}kVJ4KxDa+V;( zLk$*28*{%14f(K!yoKv0zQ_*FS*tVPxu8(%_lDs{E3S19PLBD6<3@Xt7QxuUD5+w} zBKtVk`_zVI2lq{f&VUger|GM9J=zY<)sY4DK6Gvwl}p~7b6bOueGpM09J(IlGIx|@#p?fU*Gk;~{gAcmJ~K9@9YCPUi?(FJ=F;lT-m#&e{` za#-;es`}xJ{-O~|8Z#t*67Az-Zxar_@_A;=((9yVlhGE^x|IH0NxMxDE|-Aoes{t2 zt4f`4!GN7rX`--p-*DmnPkTX2$|E6Mow2>d4vpfiD^2*6uX(s;{?Gyqc{lv(`C4SM8(MTHTlM-EU;4Ef6zol&iM* zZxz}EhyGmfqtlG@5@qoiFwm9jH8}HBp+o@Jh0jpDg(}K{d?rTQEwXJDt%5HcgZZMb zqds7c2gz3znV)M-<5I5rGzkVi+o}A-8{tM6f`y%VDgj?5_}d+H-fFwo!nuZ_`}ITN zvpQjHGh^G=ZG;UJnjF2mfa4j|VCS|8US&0{UJWf=7*LB`zRBU7#u4R> zlhm8lpMmcdT@a2L7O>Q8>5LW%yDm=1(z&k1>hXj3dg+V5;^sq&*CU^!sRdsu%ML8UAlbn;kf@`M zWkS^mImPyKU8K&+)=I(I_k5xBso833_JO{qt>il=Ktv~ODlbQV9&Cl-25-L)J8Lf1 z4sUnHCKpMK#S^^fufL{>d23Ah)b*6Nc$ntwkeqT4oJ>xCJn*|@zXY~h`g?noff*>fVb%L} zEn4-uJMz&Dkuz*IUUb2VVD9Of2>u%jhAXV4(Vv8_IF^-&ut$>qqW!3)lT2cdgr0-l zTubTWNSU{uv=Xhp8}ktf%+{NIg>)xPUWq=&zPhC&*QWklI`lU~TbyX;xA~3hJlTo3 z+TA(Q;VrI6S>R~%6<6qce_FYtclA>;7BP}B3!8}BBaSk&XbpSWX}O2gBXtq0w}Dj8 z6Vw=h}>5!54Tfe zv_6a#t=byv0^+NWoI88fH3a<*1|>*@QeY#GO)S4Kx|Ppxlg$A>!!zpD5S=tQooHFU zPsje}qrG^aGAOg1 z7_pV7Dfv9UQ8WE!%Qkx>V|??O&Pj^QQZDPiMPoli?B}AK*1I*>IVaY(^M27LuB0$4 z7M0(W&?iWtSAISCldtCdt>j@IS9>Mnfmlb1keu|Q!a_D1ofx6B=m}_nXTV{sWlJPp zBukgSi&lc(K}d`^I_my7B?0&4klmehTvRrtmE5j%y;mG>n|(ux&1BbiPyBQq|GlcM zCoXh7+vfX(!k6eO_6~Gj$JGx`G+L^K5@0tIgeTxz7nQ`2rGF(|+BVh-uV?rb!%xbAPp34l$NJAgQM_k}xFhcFRX$U7j z3c6Cc6~!;`qg%dDqkmvPjYM$il@n}-u`jCrz+*KE;*Q{kJApDS?XukVP10|8ls{P} zd!)@m_G(jX{XU7w(TR=4^I|J(>R(_wJ3qBO71#w64K*P+ekw=yXs{*EvFKIS(Poev zgHmVu-86%Ib)*fklgEzS>Xm)R?5m)bsmyy$_0pGKS| z;X|x&Nb~pszJzXtlbutBc7H$62}`R^9n;Ms(~&M9*5$W*-+&kF(o|W(l(k*X>N6M# z3ojW!4k+>Bd&h2vR!yJ5nRgRfu0A)DnI6~QE*<|R_jy8b$qBa4+LbOP8zXkZ*ojjV zPSro^X8aOEqERtPA`2yxafvZ$Gz5n7P=QQtt|{~Q{?Z{6VCj1E9j|0nPS4XYTL+Jv zkjn7?WA7^;qWreD0Y?R;1Qn1RX;C_)OQi(~5n(`DP(WfpV1|$qMYTdtJLh@M^9Q`2&R62T_ulu)Yh7z?jY+{v-m*kX`}zo<8RpI{c^SFj^mnQ` zL?9#)o*E?2l1iCS;i(tg)g4DEi`Kn7lN#KsoTvjARqQy}43Je97pKh?d3B6bgKVbek_lQs?-iv?cxfAxe1@4&yT`MTWAA-UUQU7Z$;VD#{)X$8VM-TAs*ex!z7i z^DPg!Z`Q|{kC=d~qQ2Ug+1%bM$XD+y4}4r@a*FD5%e1vIEx<3ELTB8Y(7kgO4fhY; ziu6oa4NMybcXy)13MzfeN$hj?>>j&KpMJHhL+o|^mozzl&k@K+^^4GXF zB@(oR>>MU_3rg$PFnmyt$xwdh1ily*rxROEBLM08#?6=P_|m(eMWyQt!dHrQ1-vr$m;Qr3LYbLIC@M5{!ZOrh-F6nn2tcr3qs+=}e$ zUDQKhgV&HI7(J{f2Fqp+b0vwF;IXOfa+wobO?MO-tLUyo?S9n@Di%%1>n4qJ|7~$> z^PX`~VkCWjt6o+u*?vsH`9y8M6}i2&??KeG66ldRu2)-8Jv=--*x%nDsy1*F!u02i z=+}Vx9T_|VIlPpO?!>Ro3=l+(u4VP@nsy)ZnSoDRKZISI;g|Xb38AZkf{KQaKg$b3 z42l=L4TvIN>^C)`;pH*+JQTL2rz%KlOWflZxV~&J*Eq1Yx<7>*S7J$r$0Wx++>Wl52W|%I{Fif-Auk1I<)j?WLR0|Lz?5|*#eGZ=R&Is%;<2= z4_0V2;C@wY0`NW@OT{@>r(YF&u55@jDQHDMy$fZCqvJR4;>@@gg6FQa%O|>~24{?* ze8pAuIyCftVkrM!f{N;6*P5XEob6`fKxi*3e*GC2d?9{Ock`oA*C#!f?rl)s9=QLZ z0COxX%D%kaC+KR}+!@3f?kUoRnb;Loap&o(Q~xOua;r3DcAWjnSc0{~X+NS;&LpiC zL6wt7@BK`&uVBbReG$booG%jTFXI9HV_#EZz|tL$SVyg?qnGjHS8QfY4N&wcNj@QL z(y;jmjz{VTD{I@EbKh6O+2FD-M1Zg)n>tQ9&8J(T+8ylzX4Gp5= zMh{|hsb8QCwY6%mo`grsWTG#VD;?9TW3=B(1)^)a`P*lXyq6W$kGOzdByLnCn*?jKQm$$ixcMGwnqSv$1OW_%$m#W=S% z&(YLW{vJ2?9V3M5z+0n%=&+M-HTMmTy-4`U;$OKi0u9s@;rAvvN4OV_Q*vp9r0}x=RHr&w`2G2&wCir))O93lP=J4QXB~3&9#>C% z3}p?SUxAW&MP>wzvQe&-MUjgR&B#LTt84Zrhr7!cr3-q%T;41tpEa4cu&3hpJdY|p z^(8?@Hh_n1VQ}x%i&;L%b0~`^i%*C^T{t@wReA=R9PM&-4P76ugXzJo`&4Nz6gacy zFv$M_2Hm^JNEj4{C)_%={O5?9hPa%|jG4P4KRT@qGs;wnHhdk*_o`SN$@A?}AFaSB zQ>PxGFJKDd_RQLCbXLIb<(p9pOuU5Nn%p}|aj2KvNHqhvCZpS0%Z3xAO>?JB5N!`39GR#*qR(lIssJ zHTf1hIqJw8=z}2J=EUbrziw-MKe~~ylx=H+8Prl&Glj&niS2zAiO;t| z#5{rbMH{LQcAXZC;EXf$Gp-09t+LE0*x zqFqo+AnDlJ@OHtlX{t~`Om-ent@{r{QO^U7Zq%#1*5?pvmt{)y8pf|~Fv@J&@r%f2 zfowxHlDvnN=MT3E{6^#`ohS^ zt(FSP+xwv^&ah56EnK(Sb6Cd8l3 zOWoz=Oxb1cW5UR7B;9P@*4Rv%EBT-0>DYykFzPVwZ6@CXC;1r-13RsW`>@)_GdkM? zdT@%LOMy^#MF!tjhqY`VC`88owK@1;6fM~ z?hX~UbMAII9<4rTD{R1YIekjnJg$-`1r@qlyPORe)zPEwJ2tkqPd7qJ7h%yAK|o{o zN_^?4{ze5#slNMM!XghguzYP$Eu_(lR@Vzhl7w66B};?F%B?=996kR+uBYn6oH=pw z{>QQM;n`pL0RFcUUg8+MR7Hu|M~TafCak#FDNjFiXbqBOE?;GK*IGZ=5`-wTry>PK z7eo7sd)3VI#VuVA{`?+`lf@h-uLc*7PSzJxKY_DpZDtFK4$$0=u}gVmwzi#^IXI$_ zY;-TXUj2HBNan2N+;L{p+R~A++_p8iM1zim3io}W)kXdpYWk+kjn$kDAt3Glk&;k? z{!y{TH@+7kUNm>CyOd11nAP6@J~83WtGdve1TYF}NA7$!sdzSz2sZOJzunKkVb<1Z z)qFglHok|QcA|TuXi!AxAJQx?F?OAa>Z!22Hxv0%WTQk&%fX&d0jxG_Zn}bd)^yEL zsoiyc&FU6iYA>|CIe2n9m@PG5U)frwwsT(z zw)brLuuEX_`zD~MPS<7@$%^T)>S;ehsNVeHMNUr0rqM3C@@y&`BWg{}+%sB7==F~$3~o_gM}wHx@10{4SdeqHc-lA%bz3Q4*;I?BS9 z6=o~mWkCBu=dnO(zVlnq5A|wAkaAIPD6O`p#Nv-`RM^I=4pm{;{1*)DJ~wg?BqOkV zQ!&asQp)k3(-qwYO{0?)-64Rmg?}<1X^Cu!G&i;H~1O?Cx-Jv_EpF-nKa z2{_hpUmC^lnSMB#pd)(WlbA&MaWnjz)N68a?{co+w}o3j(VO~^gs0zZQ^?YMOq!hTQK*6p8%C%oOY^`(-Cz) zotwh}@NY|*E}}6ysHYe_rG!+)(&RgyIm;3G+vVd*QZ;+<@c^AX?%ZN@LFmUFfzx9SB-R(H;7Cf_H^K&?vE+bMs%UNb0 zat@u!>gZX%vs&Vbu!(biXJ@2K>OP2ESu4$zr_@a8Napigbla;%pA;PKd!D)MZg=op zrWYLAOF!17Fd9UzUC6Z1i-@thJUp}yShIPSDadm_ALZVfh6!^x!THJ)n9jkkHU@mravfCe%ldYLdK10|k8~=9 z9lm~jjdoQ0Y+CPJM7FYem{4G|GK0wc8a^!Clo_4=5Cjpul7np?@rTy_(Gh!08Wi5) zdr_vOMJ0v#+Brw<1^bG}Z8IU1wCdgM+Q>4r-o(4CPgdhD;~Tl+rcHjoS*-*!O?Gh4 zaNAFI--v52`~drLnSlJIx=c%9OvzKG<%dUn*_Q}MA<9a>SRGoLzQfBaih1mbKKb0J zUTu%xx~F5gx|-|>sJ@m|tL2~Mw^)rf`7QR0PUnpV0YGzqcWfH`QkEwRNu)9)@7C#g zib?5lAS|jNl9QnF!@ZiGeZRN2$;$37L|Jd5$*^04YIckT9ky!l32CU{xhTT9TFP9O zq&f6d7aMG_)wE5zl#v6c>bIuJH7oBiJi$=~4i`ikayC#$w!57IJzxC%{8C5MS}r2M zt8~G&4ed9$?wZfthE;3mI*4i`<<^;9lS}1fe?&Y?dnU=3@nHX&a*~f z;IRG7tY`jCifvRO!gSGk$l_|KLr;hjY22UV*aFO@JxJ*ZFPxHh=U7-OzT0qi zn(M<5W&KqPAr0k?g0$*h2FN%CZ~*b6?LcjV%)#t8enU+P15I}Q8Tp&XLe)jK zJ$nT+rmEBMeU-RPYN>c`p~nsIu&a4Ss6kS1ZOD#C$>i=9h`F;UeoWY|pNZ z^X^s-&b3N<1KG13%(e@6N6^IpFG>*urP~^hlfz(Y#+a|#F6?1D)g1z=S^1ikNW1w$ zk6o@^FhB|J=DY+FsP1BsdA<`Vev6R;Si(GYOh9G>fHPC3>RC)Zu-oRFFx63}>5+me zTol(D96g6&2)}CcDWWmfCX}uEM^_0PYg!~Ld|kNpK3s{kzWGv{@%2!A0+*SJ`045@ z-Z0pHV~BHTdu9$x8nN%A;@gC=F{*;dKusrJ;lMyEg9*~SXUtPh2GuKsU-!YJnPgb1 z);vf4E0yHFU^($XcoeaYsU=&}Ap8W7j+2LZ7{wJkoF1)+!Dx$gXal6NZR%O1O}Q#p z%hUg~hB4z18MX=}UkDeG>HGB13um0uGp7?E!Z=Z>D7`4a*})tl!C$`=Kn7`kfJZy$ z?0_n@Okg)yYrhoMxGF46EZn;CI$}r_@`;3>O|7D|aFl75-rY?q1){3|kRX?(DAzY6 z&X<_cf{58a2u8`VKJ`iTrN!Z6wGP%`I2iL@CMa1EdPi9C%1W8uZG7ZbW^3}%Pxt4;Sw}5!bX)=C89*0H zKI$kN0cMhDev&9i2Ax&R#un!CU!jL){0yCC)441WsNOd z)eqOet4x|I@i%S#c60^HO$kO9u^zs`Dj|uq9(Lo(f`RqBqoyIQ<{1Du2cqyYXZ?g@ zYfEvBijh!;DOkqJy{;yv$+GE_h`Ma*2QQCoVSJC&GnUe-3-6+yj|I$Jz$a{??A?qUWQy^NDLOM|n+A1v={*S| ze6>b{iO4^Xf1Z1k9OVO=TbK23VD6Y2r)ZGF=WF-!~3ZH`tBJGf5VB^_}>B2 z$7ycsw{K~$waZ6k@+?b zr~h&)BQirC1)HA@Ft3C2@;51BY8D%IGI`+9n~KfTdtDxXzFl4cL$_AINSoU5goM42 zWRb(fD62D_d2xz{)d6+suPAUineYca_`C@J;@4x?-kiCeAw^S-l-e3|_m%nl8_pd! zLD;sDx!3nzIuM~CKagF|N6Cw8NsNMhDlEy@D`Vb9@$bY%Q>57H&H9y*Q-|Z(*Zc-9qU}0J zB#J(kyCbkEYc6T++4|;-+OPvyjQh9g3sf`+lm#c?FhPZMk@`)`3j#M43A`r>BQ5ru z7P`8z!HnChy67#fT~yV!LA<$n9Vi)CI~uNt{%&_Puk1*6v5n6&Oa`veiKh)J0Q^mY z3xR15lrlc=VfT!1o8DN)T~V{|7}NHnrS0tDXz0uAnE(}DAUim_s|9#D~XvlXK|Jf%Zb$h5H-f$eC0eL3RM?Y1%q~dr5Zu>fe(%le;DiE%V46n+m|~sHlhtk~$DLnf z@C*l2ZHd%8ZlmE5m4PuL1oiU#VBdcN9Nk@sJ3lROz%U2WOwPz`s^#L})~%L~k*M)N zv$R;g)WdYUVy0Vq7c)J>TMVQYl0R`-R-@EQtWohjO9=D=>e-M~kY37$PxLBi?yTJ? z9h^sQ@wpXl0(&dIMmT|bll1kb2e__b+CC&}%IIPX*J@*ibpl~7uK$l?fT8YPYU8w z4r!9sjsWWZG=>|dx$w~2qTX3@{7DtKp{m{MEher;=4;K|2eEJE1~bet*rks|@F^(; z<4Q7PK2t#{sfTc~a$kV&2t$pBb_iy(jc}LP8^*A=h ztw?skoMrhkB$9vKX)9*VgQi5(;(#~qn<<;dOf9WrZzmPqsDg$Wa0sj)JJ_GivpY%h z$Oa%UKJ-`=M?X=Q*zye*c52Mz^jSTzhs{|YDy>_NABq9m)z2LDT~HTOChcAd*(_eJ#Z-+%g*?UGO+rBFA>JiZ5^C z?rg5YgrLr4$1ck`yr2J=l%gM5@ED?3)qK3O%|j;28`=Xjf498v+_H?eF9-dmpehZa$mZfJr>K0zW+T!uy6N8?p>2LPHgDQJGx+nn^2y9Z6rE!D zRVDTskqH|U#-FVsA%~wcq=3?1M+%Na&FF{MIkNt|koDqG0{MGZFLe=IQuYEx_-mkE zGWi_zF^pZHS>h*?`=UPLfk9vmCK6@KCT<&MO4J9a|1HH5%QgmI<%GKE_Iyt$!JQ;=XU!d`8NG(lx-n5;sG~kg4>rdy9v|v#X7rF=bJo|_kFty_3+X{k zP7X1+PtRL5Ka&jmoISa9Zc=IS-Fc1x7bdAWWbQbyizLk5LlqQw7h47~rQGV344aON zheN!*|Kb94a~4y^T#Y+u^#NoAKXA2W{ z4U+Ynzd^@Fseo+OYiCKZhU|0mEuLK7G4iuzFiEGMuOU1^%fV?JMQLP63kX@eTC~e1 zyAKkCO_POsY&$S&`)#J6O?!_;~vZsb8e*&bn!NlMAanSD@JaU1S zh05khG+nXV?T0+&c9#L|13A9tBSVF)redR@@BPL6>2yg!T9ab*Hlw|iGXJUc@ek?5 z)3YfT^i-~`7cu>eT`Fg`0E>yj-&!!pyE>SAm2iY8KZH({-!bxO*Kfcd z+azqXzD4)+d#!hn3n8ezX%nw|>An7_%`97sq-?xYZL0oqSjYLNhOnY75mmA5p~uyn z20K7*LsDjW5bmhRAUw9i&OVT7NM+hC%>Gz&DbR2?geZHun3Be0-(7&ohAjw)-G4)@ z^uw%T1s-#7mo@AQ-Rsa0smT`%)4fs;2F{iblV~)o8m`$OlTuFBEG_w;*4tPVeTgJe zTMHYR_$Zi$1F>ID!D4<~T8`(~?Ye+(lecv6E_|3qY_xP)%0czJ^8nA621_tpS7_?2 zl#Hcn#ZJGX4Z|Njp3KXmle6kFWiVWku%mxm9wL2O#lLT)##mB;uWESclGfH5Z?LTi zk9(s?Fj#XTQ)kzo#VF}=J+C?vKtDOuqZJ>PL;`njFK`XL@3rNG>@XBAi`ZB*&JF6$ z2sqp#G2`^}3KqKI+BIsWgz`wXtI*jYy6fL*0 zO7S6bP3ZC!KU59jO0(A?m}jea`d%WE#vi0T)Q?K0z7`cGevnv?ek^nJa;~8yI4mTe zNO`Mo^tj8c%gu&)5n~SfA$rnp$+f+&yA~+-#W&5`V2R`=k1Zh^Yf+xn^z` zc09O1{CSLF>keuxd=b61ydcW0c+vYh#K68LMCx!!uprY{UG+ol#mN#ty%1Z!$P zTjt(~v@HlWqholAI%<{XbgZp?Vhb5X&G?@_lKjv-tsU|v=N3U6ImbzzclYL$V2IIQ zV5a7ndttxy*mDZTm}V*F=Qk%`1x&Q6+7kWkg`Ks(Cc1$XUR^L;4>>N3bP%4=0^q<6%|?4Upwow$ZNB? z_xvRqFqwp+B0@&9N_Mz%SJc(KNQs7GQQMmBKHoz%z{YZ3>x$hku3dREKYPVyRmJEq z9J8TMbJklMdibYr2Ou>zfXBB+A{CGAj{(N;#zhC?%-ia<)f5~jr=vL2y}8yaF{d_T z%F&dmt?-8u}SDSHX>f>f=`O*i_+T&7{P1O<0A{% zF3)w?ek^E+sxULsuL8<@9mLz>0YCk!SDD<L5A&p_(i z9qF`H*RfV<9D&k))}Nn8pYLeC#y8WtARZaxp;$sL;F@1BGB<;vnrO2O_yd1RKm5`G zuOefgMsJh+eII2G*4QV50e`$F%8TU^V7iRnWkr}Z$RX%&?}IVCMXfqYW0?e)+J<(v zK6EK=z%Rp!(-6Aib;M#aT-{?kVp(bhclCB&4`M+e%2Xd%Zy13KOiyP!C|A-jOzCiYYSTk^3gFh?FrVI8 z;rJwFnw!L_s`sw0%clwwn6yZ2w=yg5xvHF!r##tSg1VDJ;tQ^6cF?)EsZNbI-{7hS zci_dHfKm(WQLnSjzykjrrBHT|F9EKXm_z}!24){>Iyy9-r9_cJhYQ91JEM==!D}KV zi^;xZ&Hj!Zfjt$Q}$C`UF7G@gW6R+UDa1Qv<5e)302*6B~{(V%H5x}wu{4?S9V8?(DuI* zSLyR=cy(ix?jK3R1>|aCf@B0zQxh@9`(c*>=&|ZXC1>(%JW+PghN6%^l5GV=kEodv$b3ZD zdBK}vJvsKEwqUQM?QAe*N-Jh{8Zi=o=(KKd6$)bTP3Ng(F<{9D{DCEh^Ne;pmLw>X zzDbaY^)SU)EFxOSu)9%L%H4O|^vBSC5&}`*Oxz4exwbA6n0Ysc%-$%8F(VP>q}QAH+qd z^*Iwea;6TW3Aa4#a&t&bP-LKUJe|JXBN}j}TgaB70q66$C-NUIOC18 z0f*?ext*wGT)31?4>%d5Am1Xi<^$uxq_(G2e6ORHNqSRri}skn95(5)O+_ggI1{0Z zGXYwEKYvakGu-np{RT=kT&zd@aqc?37}e7Wz`A*Bf)LC>uh~ujOEab1moJPE1eVfG z0;0TA-?ZUAl4QKXES0rl5Z=kH9}Q^s&j7NgjKd{cV2V2Y6AcYV8?{k$pCc#ZbzBA$ z8uq*14CrQJoZAHw5)uaJVlAXJMy8`|Rg%LJXG{iSv3;<0@JNTG%Dtb**4+RQNnW6h za+m2MJ9>c9)7V3s?mlQY1Q&QHrBrAE@@BPKz0$@Xjaq<1w@2O+R{S86Agod@+tgE9 zU*Cl%m-?2#21n$KXk&?fN4*2c-(lfrr>hO8t2+(bc2eZ6NnR`$$XmjXbv=}iK)jse zcs<^GQAc8DURdA<{S63|A76f{b42lF7mT6LWluq9 z;+g`UcFteFzL-WWz|EfOQDl7~;=&nJAQeoXbGsd2_)!w-NIP*mpijoX08~^bt9dm_ zcaho3)lxR06}X7m+4cb-mVXs$&m*JFI4A$cLKs}0-?C9G0G$wM8H2MlWL~_aPLmj zNS|O|-KO}!v`<-!l4lQ?Iov@*yp-Eug9F9u4)GL+=&lyuSV1(6v)?rb2L#h{X&hnA zrppce!2s^jHOVCTU87pHf|r{|GU8EiyaDK00`A%Xbm#F%L!Isx=9OCZY>YB@|E7QB z?*<_8+m{PQ@8DJtDVMqoZ0C`*wE_hLdQ#AJxg=*V%Dm_7pEj$32huu>#outZDC~Z}%G3Fw3Q?p( zrTz8m*Y!U`4tiB~(Q_v_V=5ogl>AL0;)f!WJQ1WUxejQ}%NsJKx*m za3JLlefH<0KcK9$(F$!G&wBMK+!6^sRX{R%K==<1CV5Usr-1_Ng7}B}MCcBn=GYIq z7m6Crl$4arNX9Uq@b8BpF+);|rpZu;F>wpzVW)P~iSAH^R0^}F=R%z2;P>y}%a&GF za@|0*V~Ki>v{(h8u;lO& zKBDHb%RCWDmk;37n2T*4w)_0rUiNQJ8?}2dA@IH_uW2=wF1aZ?0W9?bWSdDQ(Y9`i z+5YpK=St5;4k(eLMB(oM5j7idd{~M0y;G~uO^3vG7$w7&zMiPTEnD;UDqtQ=BkrxqE?3qEVF|@< zpT&u0UYYcWC)2A3fAorz&uWr529;6J(t^M;9ChO&^NGzgE@_J;*9#c6g6%QiWOQ`R zpT5XETHKB$7YyWZJI*BMm{Opebp)setGm`o^IR1`kA)Rqu8}U@Rq4}Sp9|`vTz|f{ zU56x|907}-1X;Vy1*kC&OGMR04%8RTIQ(!S_-ufv$WUQO zGu*b_qi`Is<1x;Ujp`R)E)4&g)aJa^b&nm8WEi9~0%QpB9gM4yH`1hTIT)|&$}fKB zUxZH_P@mK-hx9enf|~45bF=?*1A|22z!0_v>2rGi2G7nD7^cWZ>RD4?wJ91lv|&)U z{20r*jaR{0__xj}^>K^>JBd|g^QGmTZt@Es=r7nT@VQKJS`Ft+grn)fj5)U!q$0yk zu7GMyJ-B|DqwUEZP*vLFmhJ-mye{(`-!Box;hV=mrLxwx_7LIGB!+80 zy=XmlHHW+1pNMYageuH`i#*_VWR@fKltL z-2lLqOJOJ}0l60*1kmuLh??jGF{~txV@p|^+-w{rcUl|&fvfXZKhjfU_a^MrPf~OX z4U@2p;65%!L5YQ$&b0=Q(c{_!J|4rmFJOd|0EyRi#ypn1KddQmqW;W6t+$hPu8u8f z#7Z+;KNwFn>i5Q9;i{OjcR92f014)aArEM)0QXlm?(J1j7zIGQlnH!$)mvS%u#$G3 z`+G@6C&OR$Ye~hbJlF%6@(xWH@opT+?M3&bNHZe5zRy`<$S1nW96KAXGGh0&)Fm@< z=(UQ(g35P`kQCIxLyxn6cor~u1DCj>QKf>AiX;Q)=;Q9`*(j#&>=cjZ$gPh?+98sA z&z1z!4cH(ckz$)+z64GLpAdWEGkOqlX#g``mvy zkl7W`sIyDcl|GwtqJNGzQ<+Arf}-VM$qnWFWRBVqMKXNC$VW`)wt0So>xcqsCEgX4 zpSqIx$);g^(Y@+!o#59Z{b_I(9)-*J|9Wrcwg0iM6pa0FI_2D0J*Dk`kzCDh4Op`a z3N7Z*bgVwVFt){hs5dN}S-;yg|EZ6%OaC_!ZtYtTz+3ca<4`S ziuZvHtL+_e6=2b%f7>v8yo5lH6o!* zXWw2Y375qqFl8f85Seh<6LIPh-*M<-i}8*yI_nN{p06*%xYlgH8Q=5`8UW<^;KUfs ztc`vrOd^H*wE3&JXOd5x3&R))$T+5M!OBX{jVtqk!Cfw#Fjdjv)tZP&i9)74&Tke}RIDx!E1A4lkk#gN0WFI)ZQyTA3$pA0o8+rds`5keosM6_UnSkh?h-Y0#PD#1 zsX3H)1Ry`#zl;LaSW>Ya3Ib50AkWiB2rITb4vsRpSX>ZRTub=o$OdTk_zwX|fQ;ZO zW#F4RPR`N>PC?UkapIBu3S;HPq6#RRS#0q}-i@6HMrJuw1msKMc$c63 zuqr8}>u$e`Jw4jY0~b={f}zYxfXyyaK#{Dhj3*g(UHX&!Kgvh0==H2hMngG=Vpb!= z1$}n9KLpylGEj#@h5jxTKf?2E#C+qv+}U|>`;XvNd_oB2F9-h@+5_)c7j7LK%!UjZ z9se}?B7KID)=j~7TE@exeEJh_tl*i<-07tZyzI5`uca?V;-TW-Bpx{Z(2HZ;T5h)Q zSmxY$@HpN3F1eQsEkP67Z-Du+NTQCak^@hZ2JHgPP7`mU)kUzQ6g=0`1U_#2p4!5? zn6$Z33@K}ro#@U3l&OyyIAa@vIscc!l%Ucc6vO=~ge_Q~TRn~4fre-fsMQMLFGtc8 z#x*s+QhpVR2+Edw+1b66qMt660OP|=@IL_wVuk2edSC){4*O{~x|3P~JrA`aPR^|B>mq?}QDy*v$W0qID_QzY}oBUlQ=Q@jp{ z^|vTxDqr{rCJRdNih&>Yk%-d!<9snbVHsPatbmBz)+>hlZ)Ct_o3Ee$8fiE!7lW@v z*0}Ai?4YT*4K%p8xV~bw@FB`fUdbHBk)hWJFiN=kcwnKam6Z|*?Yk`5ncdIRJ1|i+ z57)EziuVHhJi5d(Z#}k^?JY6ELvk7Q>wKz&MCZiL{%HowwJ^N+Ak}&e2*ChGI78n_&hoQDQV)aU1is2~-`ZGn|xY#+ZEg}&3d?60c z%_LbN1||DKitv9d`JZYvJVp`$KwJZRi6sG&P6WA6_M3s#!8nT7Je93M8P1)e;T4yVm#O!AaK9+o`^GgH`RaFbmCJ+P*95_H^v;RVWkj`*@rjfZ%W-zI@7 zYF-ET^<|RR@pqa)rx=dGEAMq7-_~u7t1?bU zLfj5_hQgnBz%OudDQ^noy`N*qD@D31e5Dxds+~#}aaNbcgg?jJ_DXJjB@udwfP7R9CsKN{q%_kv z2`8am$uES#>9YQnCnC&sngI$K^^AG-RdO${l*Yrun(&nQ`T1qClnIC&QZTX9tU1UV z2pn;`DkD@w3cp*vswLFm*?fHeO3Xb|4zuE`}( z(*#qjH2}u7(wipV*8I^Q8u|`+-iz>YUp$EK->AK%zd!uBzW#*|vW-y^v*4n+6)@7l z8r=U@^sezG(4a>GgHG4~K2}2zXJE*TbUx4iGtc953*B#MZzP`EXHLF$pq-qAZ@h-o zl92P)OT&a6!J=B>W}#Ql{~J$}kn>+$0PuYy@QUATU}fm8Y!X2>z^CP<1%`i;=#8k4 zyKgSHJrw<9L*N$n5O+{Mci?jWIL^=yc&J;5nw$lO^=NsZHs_3ECJlA3191_?87Egq zrZ)k2Ztuo`5$?Q-zim;vD9Pg(=dq)JC)vlSZw>5o4OGUKP(%S_$N~*t%%#8v7fk7v zFG3cQ@T4sFvKElR0}XrNQ>@cyUVt$5@_6s=!daz3KkWdcR3&g%#%wabNbz?drT8E^ z^~PI-PNqNL&Zn^8;U@)3$9LUo9JmG(qR`o9wP1s1#R4A|7s9{?V^D~ak_8jG*4%4b zK9o+(cN(*-r+{PgYzD&v_$Y9mB*=bxV9^4+8X%ju2&%80OTnbC90MV4vW${yEEEW4 z2%g(_FcJnFH6Nt+9^c^GO9Zn(#HmN#4(R_AGEqV9zZ|~!aK)<;0kooX|DYdC-B$e% z*D`0u;-upo5 zf3;eX{}l#2Z$g5m?+;~WuMq|XfgPG%cK_z=gem8rT^GiCOMOxGbgiOBDo^?Y+=EY_rPwAA+03Wngcb- zsRh6)Vii(Q^58TN5<6(PSp2{(T}y%5b5mC!6bh#TTZ*qP-+5s+^*CTL5IaXZ@)G({^bf~YacwwAx=$EL|W32c6OkNp2Q#* zbYStaZL`-7B_ePIMr{t);rrK51F^Z>rA*Cg<_q|@OMzv_R`eiK`j4QsIp`eR034O2q!h1!{t}Oea6a29$1M(335a%^G0)U3i z2i*vlW4ZzU`p$M4h$MX}KqRT58R^sb7MP}H@x7gYECz1~l@bjnTd{@h=N6FfXK=(+P>b@7}wYQ(j)qm!1kXFLM!C0j&%FQU8=rAXfcaR@M+FG#_j zswtU32OhI8f?N^Ad|~JFaLE5qHZHFHAF=oR-+?*qt)t*zIsp`s3IXBx-w4$ToL@gq zHNfWup_9j>NUz3GoFGYESdxbHQ-J6jr&l20>ZLpv)Km$ArRejXZ(c#5x1j%qj9`l5 z+_Kr`We9_Z+YzwvEhq5q%BLd0rng%{8Dy9gz(3I`T#RE1r2;!Mob?twk0#E=q&NRR z#e~;_U}9oI89@)OXR)@ivFYSk0-M*61zJCd3qim}a62&I*E-ka{(t*;8ESmeB7ghO z*CEZSz;G}0W#c3o{DZdxA^BC^bI+m)6gLA@{=wJg0EUf_^`R(XPzl?5b|8)f|G1$4V@ts2Wor5K ze{`=5GP?g5r&k&T;7rd2l_LbNCiA?`Lkx^0AFksEYyp=LWlY@3ApyY*E+aZ*Q#~Q) z!1=0UzKqKN?8B>J1w$p+z`QUZPa|)cNdA4ubb?&xiOj#nBq;7bVhmb=D>&<|CI^cAo1fD8h0i86x zlsT;f+~BX3y*g;lL)TegJ*YQF2OR&}OaNas>I#IUE2jW^4Ypk=f!mg%g4aQ<)0!0x zK_k`odkb_Whd2X_M!eG|?ay(>}@{y%{$^D!@ZvdcQHg!^4)_VMi!NZe@L< z!pun2?0S3*jZgB+$9^Ci{Ts{xWS83Hw?p9B3!8LpG#D|faoERe3ZUT7^rwU}FE|KH zs}s{UC3||eR*sG&w1c(h{fm}cT?S8pEIF#e8DYQ+w1$?~}Zgd`k#qj`9@LDz@)Y`)YD6uitNCH1ss1RwuFm4RD`X{HA1| zq^LE(`}|pWFQqtgOT`<^Q9F2y+3ea36pIY?ECtJ|@5l$^aMiT`g`#(^vQsgtaXVz( zT74J{k z^~*o@`*+_@71$BGeP(nRyn+u7GQLRP2xffTjaTFcukpPMCR^S*M`1YCUe5V} zOcZDU(IYph(mFe4n48#KR@QwF9$1aw1;n3Uvhex#8|8p6tGq-(?Rk7)5C8rBVmV+Z z-DM~3!7&LWcL%j_FllYOA|s&Ji67OMxvq^C!{$}7q;&UFg+)Y?cCi+%)H}W*_?{p! zuVLrCGzEGHPwE1{UZZ`$Dai;(z=q|Zpm>vt$^}$31Cxv;F8`G!FB$ItQIL#8cO>Hr z8h#GVO8D-|5KTXrto5{j-YJdTC_BFecWKq`_^U$E5hzqjRT5ob)F5Re_MjrSn(vZi z*mixY4G`k^bB#$^`U~AA=xZZArTyR0erKe$N%A_d0Q-%2!raxb4Ao1$`8Nbj4ROTht$u|JeWfCl?0bj@pa6 zF`Y#fZI%ps^%XSyeZ_m(@lLD5T$+!MY^A~7tmC7DiNnG`!LW6#iUgn!o1FRw{;Q>90!%)7ANMHz`~7+U9>0Gx&AeXMb)Dxq=Xss;JVNDZ?jO81p7VKp zY4fA-q(>Mb$O%OD&WndD;SRrU@f2lZu)a5&^M4G4p`@h2)xG?uvsC8q8arDizC8%% zpM~17Bik+kExxzYKI=z{sY=cQZ$oETHvghI-2t-i8Ah(ggA()j&Ixi!17_eE!8M{n zl-_d!hLiCi7!eej+2wLAWhk7E62pHi^X31w%q|V`_b$Q}6sI$v$F(6T1q#I=PTl&$ zxyM5D7PAC8LBg?elVYF+9>AR>pF*JJwDgt`FU(e?AcQ zx3b8lL}w|WL03;wes`P!RAGs;DZRWhNtXUAJlcX(H4g;wUfJK7IhO&Bkf||k=*>1L zp_DakBYhP>hJz6E4P>tyoPSEaL#n%AKGc4FEh@s6zF*(uefPN;t0n@i9#A@6{O5lI3t*e}8?X z0M`3D)md=w+W#2#1dyWV{_=gH?D)w%Y#BE$;th-v$HeStaT+7Ldxt0ey@8py4H1L zwtHkIa(!%cG_hQRuy@rz<+l*!WXo?;w|+7ty<%z|y;$0dkXzq3FZj z*&P`iesg%U)8t^CuS)dB&s5_>AU$0o%r915*$p7x`|8zTK!Wj5-~To7b~w3Ah|rn4 zm#!-lI)B$p z@wT-qaQ4BO1Vex;+|HJ*c#(x@BEjQ53Y)PifMeU;MUYY z3*4H1i)zw$QgYcJXD2tXk&QUZd1Fj+9Z=zH!qv_$L9L{Ku0pUi440z;^SyqP;)^*6 z<6w1>-@aQ~wrr+BJ(r;4wfVaXL-~2Vp7B89QcB02QUewC-^<9}dT%EnoOVwcwWj)0 z;3_a!FsC4A_2vy8UYCQ=2byo!Kd}Moiq}sFC|{E5q==pp#9EA{#u-j10RmfD``N59 z3pJ7@GfCm!TTabSg{5iGME@b^J1%jya|>!vnX8z+`LL3L->}Z8gKPwPl`nsKRR^bi zFXz3tvxy}tNQ(HX9eDru8d@|z>m@&4Ljh}+6UK-Daq2gBMZ=@A6!X4&lz|FL4Xd)O z%@rcRlJovVq04U-!9RyxTt2c2!0!oC`w6kBEPEthFf;-0-|f%z_XQ+b55Kd4{;{O? z`|;eO=pj!TZjoUZmP0?#GE#jiZ}AYE6Xq#R_9Fbnb0k=XY^tZ1-5~ceE~fT1r8Km-7*qp!t*zrf z){TIRfGDqp?bG=q=J`Cjtu$iSSYw8>aN)T+=cM(xd!8-6Keo+Ery_>1UEiDX(ld}} zh+@2N9qe}hVOEb(?J}|`@fl&g+i_y5lok2xZiLSWS6V9sT42BvFWY7v9h_4~k?-Q_ zihe3ktV4FSFqNHqK0t>E4zX4DnzLJQqKo$&K-)_ZpL%m%6k$zdzU^Wh_V3aB6I@#` zHf7_z_RN-daC3=jEX2RCi(ew2l8xPFIEvqBiob}}0{8X4@;?7-!wDDu*M=*?2I#it z180qC*n5HDYh8{8S5_T7^4|M3Yax|a%u++5$_{cdNP(hZa+POBxAt~@doiJnFIxln zKR)W#kF1};Ti{k_08+(AYbTYng``+-$gc4L z^Gu;Mnnx%c8D96zbDq}%BC;G%J=Lp>4|y=ry(yDpPo%*B1aL^Tluh|Sz<*d+H6SFZky@IA|C+8O7h1R%tFdJ8BQh#VE#Nmea?O0!l4yZzo!qB#Zw8 zP`|>PSX|UN$^1vQi4dQ3d#U=f?(b8(en4bu$Atk*m;VGZEXxx>DR2QSsO*H$!dnoz z9(ArTKaT`=T{PF_%hClkTyyo!rHHlnZ!e}MDuYlv$w{Z&ULhwr-e;ZH=QB_uzlQ+Q z!t4*xwZ0#`!N4*~8`fiXNf&EKea?R^}{EY-}8!4SjUVjq@)BGVHfqN-DjAuWi$);=)tQHStrj1K=E z;W~OpVCy*&ic&hC@4&4#MAo3o4lnFdy{!@nTGw8(#^H`Lv= z7sVbqY=W~tiBk7M8~XE@EvI*T{OXMCw6%zo8L2Nz#=Xk6vG$%Os$rlC88wGrx*OD7 z9GDa~Z*Jla7C2-r8$iaN7`gxA|5|?}u>R)OXD%%@_C>o#_WzP82i&N$TtCk57|gnL zWc~k~IBq*ME=d+9NZcys$NKIrQMCQr)q0bqs;?6vqLvU*0d4Elw$HqZ?i5G)=a#Ju zsAR)sy=A4U^IHF)K(jQ-#W`H>?`&3x!0n@`T$2)&FMgePS9*mMnchA2Ze9sRoE|Bf zI%DVVR7FuGQk-;A@x*q+ItASf|F|sN#tMGr0|yXe z8jl(O$}Wejzc&c3eWo=``D(fUYhdot9mRvyP%sTm_tMoxW?()4J~eRfEM7fGFSj-? zfo%{`7+j*DQK|UW;(W?u!nRgPtI_0;o9j_gD^rz)wgVf#v#9Y|mt#<<&t!Ys9 zDM-;YOk89<+X(8+{{L~<$9te+oN-53bOeZh9Ci=IVV^<8MT5#mE(WFliv|3acF5kY z{D`c<8dIm|yOw;EoU~OH#OpO5A}W#p93ZB$O*rSwlIN9$C09z&_s|AD%hYu z+gol>iX_R~tEmTdcWCrej(Txl{rs{?#W)a&aa|rQpa@1&taEFM^YFFD&)@?U)^($A zZ3SeYd$q7MQeNJcu^$r?!#?zG?PaXQs~^6UF$rdSDn9BGc_h17p;YWc5>T~~U2gn# zoimQ@*~%ieSZbt00B#^w4CXeeiY7ML8=iT2WfhDv8EFyrVADvIEqtoC%61>S{>_=> zU}-+e?F#bikz#~I+=rrs(Xz95Wr{PdVdL@050V_Oe;nUhsasu%58~d)2oXkvFf`mE z^|)cuQ(jNfQqT+Ltl6oh8zBg$m&|S^3%23BQaQYLe$M+fAjw2%TlZe`sTm*&z#p#- z3Lgajc>a&wOFu$JrWb6G>K6L4UpQKO>*~3isp!Z>XUi6=OYOfZzJ((9ir5e?vk~-v&u2oP2U-W!RHi5Z@ z?#l2Ta-w++s^bdD&wc3ep4I#YO2qudrF-3~9nyes(RsX?;xg`C**;NaV?^%vXzZJ| z=-@EReuQ#0IbuSF4IPG7+#!j-=+0tKwvDcahCg~G_A{?7+#;t;;YOgs*`wun%Iq|3Yx8VHl}$SD)gS4%z<&BYr8c8SM<7fjrq4m!$sNK8n-gwJSFRFc zdZpkoRaRgq=Us4Yo^}KW{Ywz~$}3TomcD`&!%3k^x$7U!+>x?R&xkjOD=3maL5z;i zjvpDD)LJmJL^Y=|h~Tw8JO)KOEHZvLHKV+qRlHDf+HUv@E>ee>=`eimiqo<=wk2XX zc>v2CH{22vIO=!J`I`hw-95d65}9@+vZPIcG8ZGohJ#%s;zNiD%&zpVLP6}&EHSSn zOpV#R-lN@cFtt2KHN$XAb_7gts8>nb{qoish-EgsIr-0_Jw|14k)kN)#wQC~=c;gj zyf$Bz)>cjdcM>lHs}J+S*QDw_&E|OyJ&e(InpLr#N$tGy`8Cf@@W8vNqtj?gPp(w& zAyYmt32Rz$bh&@U&uD#d?jxZ8U>)poAkiW{{a_+TDTx7pc2WBTwWo3VHg+Wh%{Hj5 zdMFdbCVZ{8p3)87l`LW1x{OHXEDuZh_0;?^D`h8MQk7Cl`c?!hd#NIoX63Tnt-ECS z;-GC4Pvj_g9neaFOqKs~D!iMF9z7qW8>@py-NNR{RbFmSvVl@4F)7oQ(1Rc($f%+`Dat`alqP?HKHWEG5b)Acn@yQ3n(Il_A=`?dPb65+ z(IaN)>1!D$!dqx-HOp7_YP&{cSM{Be*S@dg%E-iiBl1%);JBVN((9e|Pt*QspOcGT z0`OJ+k3Davrv}{$&@4|1*}XoQZM`ivrWBuqqT~wzn_4U4plI&mT&l3(6hv?%APeD< z=&_$TE<@Eek&*3MRALVFfWVb zL0%se>U=`eNbV-xO2C$%V{{ zr4P}AR-G27u2^5+PYdEm>}DSiLcdT)>;p~Gv?WS_7#aoERVW!s@=Ob(``ow)sOOA| z73|id-(_B#+p&w}E37XLMQcv6P74fyGHxrs)ybqn(m5OdU$q6xZ}OnZsfAh=WHbLz z9iIW)f7qKI>QOe8%4LbTeS+vM?T;E6n~3*^>U-6rjXBHJnVFdhKDi5@Z5p1Ufy+HF zSFp2#*_#p2%=XjBvLNZfIkTe6_g@!@85x>ncUlf%1lKma$#_D_?#Il1$_0@Fa?wx~ zzrvqdo^pcXwbnio_BXTTl1c9H!@Rwo*-MjiLj_Pm@fDh%8#-wI@lt}$K=IY}^R~4X zcFQ4OP$Ws1x3y=XS;vcEfkyHDc1sDp25w}?5F9`r#2q$ujUg-g#>K}%is9 z*vka&t$)Lq4Y9n%+3pQ3os+i|mR_G3b1C3N7gwn?m*xlm=q3Pl2h zq75xkIRf*3%o)^I31u`%@9dq~PzY@O_O{sw$SXZ5>>VwF8+q$42SMmtD`6DJ;sIqU z<1eM(!aLuZj%?glhn)+m&B`%6F;hcvC|;{PNB+0(k{`~0rKtRj`H0>y=E<_NXxrx% zvQftjrg)5aF041p++_Fjdl{uDCliUMnl72ylqmfu#s>AC4DZ4M7CqntR&4KyYG>$| zH)0OmTGXR2irigK1>&d5U(`h)VlS4|!V}=ELBcLw1qr62M@(Jh74<8WGw4QB(a`*$ zXK66miniM=V?Px+eYFokv8Rqu=EC>>bYYxef@0##=J&slj+tq$roh)Q8#iP$Fdd#+d@Hy#hqU8lHQGBgzBb^}TNg&j9%^k2 zrU8u?$koRqPA&0bWvn5)t;22Nem0wM<{ZTzrLo`nQlVMb6EX5o^ITe+HKk6}m*L%( zM7j7@%sjQ3!@{(vRXwKjW^>lY_*b^cR5OQ{bNhW+$c_mnG&?2B`fuTRYM;iEd zOgPo;z}WIlhoht2z41xqgRX(A7>U|yXwPn?gq6fYPH3KUEKo0al6sV8$%9I8@s`@# z1HBnj;x%$lm+xybuNT>{b|SD>=du)Ow2w?w+7HJje$<;iJ`qRhzRz~+3|biqSgNb& z4$x)xyox$&tHK$EWG<|Lf?maqd(&e~wI!2VJeq*W{d)0TSOjetY-XuSo0uHzWZzmJ z)wh+*>cs1X7f~--Eyt|tpOL6zFN*`JLjDgWn z1*_UCK%QBOpP`Hlt8~01DYp>n;>nh`P+{?^9WHBIwnvfYjvGKR|5ZC1*{&h-0nAqn zqf9SZVlZK!(&B-3CWH(D>5Ck2$2>n<31$GW2XqlYl0*?$=itgU(_vP5irv8^E$~#DKB>-(vE%(2leY-z=)6T8b zX~@Qz<_a^Mlj85uZq^a-oaCo5EcqRJoL_Eag<@*tQwq@)t(N0&qwbcrgApoj%lnDW zQ$Vm*bq8%m=Y`Q{_J?>}3%uR?FOz!=h~LBc6KD(nKrx%dmu=Qk;CNJc)|~=HK;@4ft%r07eQsiaLt`Ag2y-`=?uw7ciAlW0 zxh&l+?wUM1T_1vJ?({ZUw6nz4reT1<($-%&9G?L-|A+r%`1MBK4p6PODA_3x*fS~; zXPiS5Vs_Le42uO`ha{Z6+153CG3X+oPZ@(0yX?9`X8{<43ja~#Nwd_EQu9+v8|*fR z+0DNb)_h?gRL?U6TvYYT;JXv$R+>V);csEA8nYI6F(Ix9qiS63y3mx<3?Z#_n)n)|DLfk=%Kklv zl$wVf7q_{ml_OIFh~9_mTw^_sd>F*;lNp7kY^i8SIy+^3ys1jp+|p#b+`A4lknL3t zVfV*PH1|s_d%QhQ1x};s*F1YY53(Wdmh_ymM(#ZKrn{olY=Jy%#ev^_hHVB_q&!k1}lU{LPDIDb+2;@;mI5yWjkfl zDBJ1BPxHzi%#S2Cn3!3;^0C9=TWWI!HI4|IKJouRYs;>+;^Z6r?3X+|w#50PZnu(Q zU>aq}0Qz&YriFKxgc5%NMvQk0(9KH!fmCA8_jAEf=NlL?%U5`?8%RPa6POUtZTw7U z7mu;!#>AyfnZGd6@9872mt{8;P(O^Cz)5+4k(X7C_;uq ze`co>e?^DgqmP8NWBGwopPXtU-E`uqZnqiV0WsSEkJ%zPeF0M*)_I0Dg-Ee<# z6M`+R@;04^wx5kpq~k0Ao3fOxCFc}VpXIQOA+Mldu8XR9^Q>Jw8#Q_U+j|O;(u; zoge4^T`gaE9V)m$`bT0H?%ZzmUDy6_1(y*|s2RPY-7knOO41~KaIvgWX=w<=y((Rq z-yHXL)@;N9m!ey?gBvb{dwE;S$Zg`9i{KcbgD+w3lxb{oEj4RZC2F0&vBuVThXs|i zgv(~KML|41)5>*#xB|45auGjy#>hFIBX{T$#4)QI7l|=QOpl~o6`O3_jds_9(oRsg zwOeyW!gd374++mnhuw#+#fm2FjwA!Jp$$-%rSS`H0c z!=hREa1)x~yTsk=%WMYFn&#MLVXSccSLs&a%F-;cHzRen~mO4V-GPRqQu`HOb9Y*s3b?M*sC_pN~d2= z|3tUfwSTx=qGE`@U>(JJ?S`D?kc=x361`tHpizwPF7HqR5^`oriN)&YDTBSroe#e4 z#1n0>yF&P1w1f93pqNHeBEIE64{M!msP$OQU9i7M%+k1xmFeP^cu}$H*N{6a@gi?F zd2gaZa|Cr&)w3ToV@ERn!Q+oX^4^MaX^z)*$x7y1-`}?0qWhU{^D+Nx5;I~Ao3{24 z-fOTxHZ+<$IVaKU@c$R^=0+N^dlWg^=aCA5Rx|U}U`fhJZocp@6*Ju9NW1p^8>7?Gn!A!8@}YQu3&hYGch{IGuabO3$*jsvFA+5+xE=d1T1}ET zsqp>;_Hu&eVQ zZ~XvFdrz)$WGR9r&5NJr(u~{KR8hTXRPP#1mI{z#I3{2suvC$5{xwwD5(K?## zgC!?LDS$nW!nV`PtByp5#FF}t6{*E9`6t5J1F{AlZ+}fnA5|exCa^-gai8|UyD(cV zfDCHZAMhWv2&P#E{h=F_5nVp_{m~T-+_dLQ6!Hj2{HfeBaWCS_fluOgk-L3uo1lG( z65+0co<62L)K;;92chc0=pFLY z&I2$6tM_6-fU%JSQE4NFkg#8Zbd{BJh)L!UK99sSa;q!O7I)Iau;R`#0{i*v669fV zT{{rgrWWL~0{3_tgthRS|GB)+8Q?yBA>)fqwnpwDc4EJN;qf@#u~agBeBt9dp*qF1 z&EbH|x=H>I434=p{dj$?TcT;M=|C(m?Z;;adsXhpOq!4ADEnnaoihO|MnhMz`=@7T zq@PcY)rxE+?QV4?CG?(%`_-_~m9!zTku=w}yC#E}QW}yhSL4(gzi(qWiMsrHcxa#8 z%JJ3A4}`uMx2rg7ufEDpssp2XF##u=Z?}sxPG+Bn&Xx*mPDD&G0Z?3eTIRW_<> z1I|A%R;ViX@R`ksH9Lw#e|>4HP!^k{kCtS8+8*CVGo$99tba>aFs#44JJRFxiDV^O z1};IBPpeeJ@yFbLN{LsRN(oJM9Iq!K83*WNztlM4S@tmAOIfmC*6Cgv?UKXN!2p7p zHro$*oRetcY|>N*axqvTCQ6)L}|FbjI`y>~g%yr89i2)&Am7j3CH(Fnwv#&HW6gdn%v%#Om0<9s}8-R*mD zzjh@9NMXdCepvWfU8u4n;qB`O(D|?gy*)61>Bc1cR+w1d=I+a@hQ-7w$ashlJQwYm z?I3f(nNu?GpOt@QeH@9l5}zH;CT|aiJ@+0H)5F<&L)M z{H*4)YqXY{m6Ba2FpS(?MYuVAU#%zZXu@V)quY)tHj+Vtq#SWLSPf`zR*6LL3j=5Q zZek9!CyiUf-SJax9CCB7UNGOQUdqQ$=)A18hX*W&%Gz0zM$2Y3TZypO#Ch?qw_uhA%2!T zbh&ulc|XnUd1Ybk?TGA{0o>)Yi;+lCv*+WU(mr>iBlPu=w(_gjDd_-a!`y7PD3B$N zs4wZs+}ss)enY(q?OKPXx7-qW(oFIK)91=pF=YNa&uu%DfMrU5bZX~If*Q=Q!6vjK zsfgRQ8c$qZk{TYaPKoayt)*p9G5O>${+X^H8E#)=7&~~%2BoxF2ZsE)!aA4n)#d9c zcV{Hhf%;D)>s$g;YBbW>rBZ?8k&S-+bmluwg=hR_SlwK8&n&`r;V)M6 zsK2XzwEwKrWt}D;Z!ALLZTyppMLKw%f7g!>9VX`Cm(cUh>2zfclFz~cJjnaX=TYeh zsNAcb>fCo2!j#|KL_pxJFgRW;6Jf#$TlyTA1+m1-41?p#-vB%HB|nO6)(_h(4x}xo z)Knz2({cO2d*9CNwVi^FV8z)Wx(*%zvQuUoBwVkXySC+PZzLGxYHHt9$ZJXU}8a8?arNXmp5b%v$S5a(*m(q;Gd|^c;LS%}hZR z!PdamK>G2c(7B z`Ju|wi=zY~_&UxCh1{=2%n-Ilvf#3RGn;rhT5?z~l|$9hZLh0F#C>?BMTWYk`06eh zLsK*J^@>waXIVFD@5*ronaaTxPJP);oUP;s5rc}%1@l=JuqdJ2eQs%^!+f-KU=-45}Y_x4dq@+a6%PwwBtosQ@E8pt2z^j(Q{qrlY_J;xQge?gc<5#q=^C@NKKX4(pw$I{qFU8>}l z?c&AN92U+4isX{pSY^#N9wYKqXsCN(0a8_H=-D5;@`c+tCRn#^7G5iJTYD1pPe75grOuY-<`iymXN0aR@cT z>7RSNmC|}(uoAbeF!mZa)JgJ$T{j_Q{Oo+ny%QTQjShNZE$E0~=!GZSE$y$@+j)C8 zVR~|OK`fmd7Y}Vzl18jj+*_r`YZiJRQ`6XKnciO8ieuRB=aB1mV3-6 znA04=ve?7FUiB$7_$A&&iE;}&+8yG!F>WK)3`{T^# z3w*ky=i?jR=VdB@^!mJBtQq>39Exk})E7(@u<8*3eFb|>3- z)hc#_zhM`H>SI6wNs-Rob3JU=aNpO~)@qx4W?I#MQzp!nz4UD|Q*^7H$|(}b z&lM>&IxoZ?0G-F_r3gi3bj-1gst9x}&1a|fe6fTG>oM(md3!Z~WEwe!eU3{N$zG zJCbJ>A?HWu#9ImGl6O%3#vq70nN!>6tsIs`HDo=e1c5tXG-*B-v%(`6BHD@o;LW!NQVr_&dyFQF>7W1df(8nFJS$( z5&laX@Xhw(D|(@LM4_`%1LwLPTtK&1XIn;#-SeDHj+$+ko1LAUUe}I2?0E~H*R2Wh zhfTzV*9diVr%eItYWOY(y}Pxcx`DkM0-dXT|9&gi>_OPRSHKOuUaX5iYer$Xsfvsc zRj$qvoPp)}OdV(^%s42%bOD_c8`{C!_%)x#R{g-#ATUeUe7&mrb zdJJ=tDOfCYtxyLT^(Wnb;_2tyaKp&hCv7n&tjD*zF{`;utud&6mVpQupNn|Wp7yY% zV8*f(w#JFzp}3`X6h6~1+|Q6F)V?y8!>dcsXZ~V6?`;2NtY=bpc_0tP8QGsSk|k_| zPSs8ksT*{^RoZ(GAtaJFb#_R02b0W= zxS8^+s9UW)y%+;R%PPz<{2tl1P`b$srS zR=zaO(B*aw>=XD?bnt9L$kG*aGab>e`9MPP%>$jKtCgR_^NJE!r4Dp}&74K#NMGcN zjBV1MTogzfXH@OskUJcygqcAmE82Q@dp+#xpkDhG3y*Sd%A4*|V(RAR8ta$WL1g_s zp=NeSC=7{IgtcZQhC?M}vsi?e*UZf4NG-!!N(;d_+atJCI!Pi*u%bN7l^yIBG7H|} zIT)2%aZfH+28ER7rir1p0T_w-Nx7}O_&GN{{bCzL)G(`&&4QXC*+iV{4{nn6=qy4H z|FTp_jF{L`-RFSP=`9URoU$A;FhqV!=H|G zHO20JZxO3vI@^f`KEk}nb}m%Lr{=%@`rUW1tapi&Ply|xQY)Sy$kyOaJw&rjG-hAGU7DUhC30B&AMNo@=7y7|W ziv^ijVs`|s&A2$vrSM0!t2eV8?h!Y1qv4gsHzCHm7*g7fCwOk+Uifu+Q`8@@(q?^8 zdxX1jnDA$;(@#N-LuH$I9ON5h(V>=y;qI&GId=}vk|`Pn{lKQdzrz7y3ts6E01dOuUd~V?CAX zy*I_V`sR4E3zKoptLNAYm*1QR6V4aActR+!LL@B~TXDa7z1wImh3nvlvli&F&LdE= zf%Rh;q*R^9)=Sszm2tj|I(r3$--n>NrcBLY>u1sZ17$hV_bKNm{?D(JXtLZs4iC;9t;2i^LYJpVv-n+g}(`9ucJpiHhYq0>olU1}@aJx@oTtxR) z%V$mDJvUh2CK`iBd)L1@kULn57;*64K*1U(`!GFdOmP+wexJCxxoPAca4_ZMV+Z4e z-=Cw<_v6klwlKHXYggGU+FqFq88A1JHwQG!0h^R+@I$aAd%n7Hf4N9H1oLf@G;`2` zUTobQ5=UYdioQPy2a=nrmq{0Z2=p2*U*BtdDBVHk`<7%lFNmmgxk5Pu&`UczueW6e zXT)B3mD)(J7FJJmfMH5@f*V3_jxiB}X4bx2t(^yjJZ9;9bhhj|J_ZlQq#%CtNB_KwN``d(GP;%rC zs}rhUSV=`Yi`}EX$BEzE%`;BFC$Dd(lGm6YP{VIp*a0E)@mllK0?`IE@vsTNY z$q3lt0ZVFB)?C!@F)*5K@8?=-$YNaTz`_Kp^WmSETqvfIl9YeC17dP=Y+FpoK{J>Y zw$mjUh9u1WM5=M>*5}37v|g3z_=5`d$M4voYV9M>|o3^-b7i+Z83_QOHZ%Baa}pEgfw->ege|wQt+A z#BHkp!dz22Dx|p8yYXfViXW&_d)KXF%&IL;4{<%PwksKWwd_<+K^pb?^mX^Ih{XOu zm(;46G!?hC30&0#rnUvV^v>a{WI;=O1%?-_{zS^l`t(U}yO5agRot40&^j9q1$Ff| zILQJK0C;*+V%j4=cK-G!&Fu|mTk_Xuon}!@nXL*qk5u~(M~2OLj*7n#2vjQM9MGa>L?XiFdJ{%^voVx2@duV678|GTMEFDO8)Z`fbLKW zE^d5V6W5}jA>(b_v9wlx$ao8L;C)>g>@oQB9|A@DX&AiRp<#`}oN!Q>6C%rasq?5IU^)Wx8YRmm+jadp}XBB)L zHpfb5U{y`1Rg8*B&oF~ zco_uRwzZ`t+N+d^I|^o!tgo+w{n(@F+cZW&@^cAw&#J2l7l#E~!V{RxU%4>SM;TDsy z@sQh92lIxS%_#&&kl^V2%ZjY@k8&XhFeN+}*(}J`{~Uf!Xi!_oS+_!=${@8<%#X(} zUAos$%Z|nH-X^BZY?5J?FZf_%Br;EOnV@#oL*& zJ{#TQZj9A(`h=kqK~+&Ho0ov_siClYy>5oy!_h_q#z%|b&nsWXe1sD)9k2My2m zz3oRsKS|bLpPG$wZAp%DeU+U<;<;KHCaT&$LB5rgt=a#9AX7jSF=xb*%ihbTm89)} zuGz?dCRX5?I#YZOcH8#ToVO8A@!?RU)r@!J`lPFCCJt%X?lcP{jXD<-3W&3U7h!*Eq8K zB5C~#;sDeRE|Wf_dabuR@3))#j4pI!dk74|M0i+Kbp&J4Ug9yHLxMbT=tB_Qm3Ajb zfLEn`+x=8A)f)F=dvmjbQ9f?1WdUa}{@PfFQwv70>dGpd>0;XQW?}XMQ))R6bBk8O z***E@a`)JuvHSB^3!pczuiAz*d&RBZ?L!lv4!FHodX1>D#5&G@rhCF4fn2V5m7Iq# zB-^AuNNv<>YsrVVXF0cyH9}L1v#NX$Npfs@Vg*%OW*gEODeoErK`8MDWt2{W(0*WM zBx~%H-NM~`TOIK&y`gR;c=@k&J4QSfw`n&pe0pSN#FCKIDU)>>NBhLz+vQ^*@XS#sH0WTA!sj5 zbs)^k9`vEIRyRN-ujJma*}qHob&+(CINZmgchETep2yOt7Jl%u@*d)y;|yl&?bW#d z&=LQKS8-gaCU{GcfB4gvUDHs2p#)*LyOdt5S9>R_J2T}!l{Is zO|l0}EwtiW--&6-ZkPAU)){&}sV5fRwRs<+RjnacU~#6n$~{wQ)bHom%;wW#Mk%7f zbi-|W=u}E6yrHVL1+hOgGgVjQs46t^*io*k<*M}pR-l6)l=C7cluKueY{!QHNA1Dh z_HRUgo*Te;R2%B<$yJ=|!59U;QzCj%s%+FqbWqNSkw197EdWFWy7{k0N_)H;E}Si& z^Fj~=#Ii1|fE0PUl55(LB1X`@Ia?*VXeElz6sw;?2HEkM@?? z$fyEV1&Qd0^e`jT?k7`N4%*FSX9#2~6;=>aVp)zh2GHMVMG0M=E)SMcm~mcS-nvwr9(Koma!+`>0g%3^{M@!y9ArH5 zKXJV6|2K~BK<7HiMeUnU$?2LsZ!whk2%bjg>}HtbKqe(7&mS4Db1Of~%JSA9NO>v z>ZU3dK82C_nQsn(dM=BOw*yfBTB@^B$|NOcNzi|$l3j_fc6)%YaFucu$cj%a`ZqZ* zfgKSiD%%ohHCz7-O2GaX>x(+E>LkWrJd{9vV)7YE&;Wa=p5Le5?6q z0W7#FmU{4>;T^d9%|1v3(oEXs+By5~&1&s;b-a;f0Ir$&ODHS)c0%}8!^w9CbK@IpeV z4R;y276nw$pp<$&AE!BP%Q)BS1^#?^7;8NhYkUf!A;!V@=$w5ZL#uL-2P4!f*4Rc#= z2yo_dc(rfcw7C(P;)}l7ARJ{z6?9oklkM5q7ES0;>Lj~zJ2{LJ4p0jvJj3nMW(a&r zQE5CkA`A-V+GCzm^iPy9lO4`-WWZnp)p1q`{*|oU3Kuyz3tKW2WZu%CLA$TOa+RYh? zX#qEX-IU)*(&A<&_3TCP(VMGi@X<54B<`mjj?`6m!Cu;rbV^V@$)KO^i%ArV&6B>s zq6e0^D7*XukQ?{ib=w%J69(FlgN#S(&sCx+KemKaJkao^tRslg`%gAE7<$k?;`G}+ z*&LbBcrF7h@;((QY5RW{a{c7WSZ!25YE)Fzcmy-}%{;0F+HGozG3(QRP`v%y37hiMurLuT+k`{yHls5Z{9Y^PueL$n!OU|G|mGd{?BP%Xr6cBsFn zWqT$s<7n-Oy)IbP^f+a1wQZK$aR(*Rd6s8bZEr!*Zb@`} zJZDvwGpYZ;OtfF`aj39@sUwwbyx>|ZtHTS*U3_K3KS}7)mw>Y&<*9cRM!9s_?YHYk zx$yTqB|s7dmKb?*6G4mt_oWBm(&-4bh#=U(@~lT`%C;B5>Z-=hsfyv00Sonct>&?zL`6+U3-B$(kLFP%Kns+~Gx;-T)b>Tu=2L^8zcv`5nsttQOELf1$M1>ya;6q&KC*% z?946TJKj)FU_s!P(^w?_nGA{$kT6?0d)TF2ZkZIA>&0kb=D<%i>B6ub`K9Emt zeqR!I0>^BCHl9-?dD+McVr9+0yJd{si{FYZOu7)SBhUImW8bEzkWM&kF}634t_*<5 zw%8H%T+DraUEWlU%9dqtOxwNvuAc<8X#bp+8oo$e)P}Vo{O%sSMPytQ8RNk3d z&j1i{9Pfo})YRQMPBl(Fs5@TI1~s*%YK^IWI=TLba_qk(XazX}$smT`cFr^wSb&l_ z;7E+Jzx=UJO;d3;1LK~#{%>X)eR6Xi%}K*x&DfW{cmO^MrJC$2$`zdnXxgD_4Qdrf zJfxzYW$ar?=$(k6&A7%jYjo%4&18TKV5eL=jeBUD&%EnoxH|*x@@AR(ltr>Jwv751 za1SyQ_kjuUc@`w=v6Iv^ON=EwPDempLJhK{SgkYt@}{*^!_a%xb{V0^{8mqH^475) zd5;Loqt6Lu`tAzpEJ%v`ZJrF3$TkUdk~hr->!^0`%KWtww&ROAaXOc^6+cB#%-KCv z9CS=kZP2m|CLKK}m+8l+M*!H*)OYGp`B+9`QyMk6O1QZ!d3111VN^Uf3i73A0-JDD z3-3xFP$J_Zsy9|Hmz<^j;IuS2OyPR0;h$Y7^R+@nt7(qXsta(v>)C8A0+{ydxcS4c zbjf~Ai6^^EV9xU$tbZ^v4ty37lRd`3V%Q`d{pWjcQ&Y>NC=N-`7O2T<^&kC}0@Qwm zXMYWhli0Zq!95Gu1|^g?DZf?sb-FlgEx-T7LAG!V}&)r;;Jf(1^b**T{96wbxC9e?A>Uq9XsG`%rBZfJnLAyV zcoz7F_ww#q8=y^Y1PmJ!>u^tgd(00(!xUBVg}PAiac2my2yi=9c)VWR0m zDdtw1%;QhWH|Muipi zTwELq7AoSZY?Q?LEdWQB;A>$nkh7)}o2Ip1*gt7z;3gy=hhUpap#H?-SL?w*e^e$R zh$T(C%jIQauszVf|CKU@YQo^e zCT#ghhIB%I9E>zXZC{vS)@Mj5T=TI%`nN*`Z4djWM|c@LrJv=9H8me~Ol>Rft<;#p zaIS<%SzEW*d;hS& zsnz$kyyE&C*!|lYz72_F)a7zLWVf0jKJoU6ftKp*?mDP*RB}91wbAm`QYoka=@DIQ z_+g+v=QOw26V7RG?@dn}kA?Cyf)rF3wH#0wTluERQeSUm&5vx{+nwn?RaQ~I`9p)p ze@3nL3A0~Z;w)LqSC_K8N5x^P>%v^OO0{doe-$1`XMt7mScO$NDRMHR?QB~4@lu>u`Tm7-~s_UX%=={UDMtyyF zTc)K;KN_}zdf=`gBLZfy@-XI^gqd`4$|(koeU-b_I*q;V*)A@Y!@Z&NNtT3IBaOwc zR3U9O?fPw5*#kTa8&{|@PHujmNfnJuSaDQXRGQu_1m9V{)BU9#DLk zL=>+zSX#V9S2{bx~nqGEvlr zM#3dU9sLSoN#CL8>}jJWxAl~O-B`@rFT7hZO2b-e^{_MKUK+eqfXh}Cr{T+}Y-oSH z{OKByTpwr#Mpd?t2Pgp!!k*_w%^ue&g}R)r`R#JI(&QWLW%nn=wKI|{a%aV++QrHot;^f?DP;wsMe~{Q& zQ*|yAhY+*qPLksby>i>(lJ+ZDtNZ?!^GvyQZ&1QF<%eDEL6maT(BzK z)79&NsRDNzn78WN8Y|v2Czp`(ELCtDg@=#v--vz1mDNB(# za>Br5sCYfppcUFka(u+5lP=~ke1-Dzg5j}`yK$PV1yYY<97j?xb&n`)Bf^sBy(>#k z&I{XTVM;<25Ru8vp^;i^Gyrh6FEH)yE25X2nRU}X6s1XBo8LzxdL3YtoFx+zO}paJ z79C(L*|XQJxk4&bRI|xDX~J6aWQUXlq>|&0rK-0LEek4rD@wuYup8rQU-xGph@e3C zL17!G*!!~>V3P8z%&zVi6l%H+rdvJ|kduMM6P1>Ik~pQ%OT{-@>NtTw}$U_!1`Xn_cO3@b!EFJrQ*$-Hy#EC`cly2Virha zq{BKrf4ad%EXq{N{oX6Fe|Aoa3_e0mVA%SOwvg?W46bJrCXl+tZY?!8kSOh0iQeDG zN5=`nWt-ZJh6(~cZA%J8bmSes_yrBr*B$L8g7Q0j;->ZED(mpu4$~nPl7Ohzf<{52 zExea)aSrx{G9!z(kAH?4*X+|5OA`+LQ1DQ6nH!!M4HPF(9zb(!A}t!w<%8@e5(z1l zcYNdXvP^eMDJ2%^lfAa#AiPAkviEj70YRmxN|ptY`odd?SIlhPr~Y1#hy9wJu3KQJ zs}pq`-7uM`Z6Y`;@nU4$T$-cZs>VLAkqxT>avGv4qGY6UYam%dt_Pw zK>uST{$6;vhyP*i_Rmj(cC^A6>C!wkXHAR~f>U1)4?Z|6!1fNVy%XSM!W76;)$A18 z7Y18Wdvc+MPdB+shxZ_>?>`)C+xA6QzHQ~8@~rXHvF|I%?iYln$YAJd&%pt^rEzKJ zJH))xWzYq!w+k$b3%BsAP)R%Xj>^7`bvWs4FL8$ljk-O5hp8z^tuEBITN2_rdGAb2 zWHsx?rlJg(rP|QF>8l&L1kF3C`mEtIGhPN4LHFqCnPIMo!}e)n=ZlQhJ9`Z!5`_$$ ziL7Q4f(<*D%e>jlpy>cvNymn7Qtq+LdK*{fd!_bUt106l<^Ry=-#7EMH(*PO63<2& ze)$#LZGH72{d?5{p?dqLXi7x(2<7qoqwP1vDok z!vX>xJJ+(g8Mci)Jh*nUn~2nHq~O?Y=i-oEoKa-fuR3^hFF+9Uj${=h^aM?%Jsu6+VC zG{83hx`NUWKPNXgXsOvHO1a%@?KW}D>Cac_NEYqqg=o(z?qXUGAM5FPHz8_%0rOyI zln>^};5FoHr&2?U9vp*8vsdlbb_lE+5&IamnzVLqDi$`qbIYdar&Y5-1Fx zAU742>?c}wXJO%!;H{uENzyglR_LDi`GZG>P>F2Xt6Q+F5GNMO5*UdE!>h>8mO*MC zu3;I@r?&p<7mYbPI07U$u-a`p#D)`yH0E_XU7aw?&*HKd5H06?-00`q8qaOyEg&S0 zk?9mMH1PJy(4kblEzE-cXe@W|%u`rLc15OVSY>w#Q-$ep^f!mj8kCyuhQ+khSPG{o zEkw&7Gkx8PEBq&rqQ)tZWppTz!lkzgp#m9^Ms@pEldJVOIil+31LKr(7Bu{s77m_h z7_EJ8XKQl@xWF0Cg*5MJLRamCBXyp~DH&WH=`v905PKs2^25;*T8+JjUZpfGf08z= zpRe$2;OQ2M?tY0wO3x<)7}d(hHO`(|w6yXh%q6(Y{C0Nf>hSI7fzI(Gaq8mNzcyTO znKAwffkFUxV3OqWSM9-6-~NxTc`)&d(Sw_3>TM#(_%V4R(b9ID$QfPlTeF65gnO@Y zayt}AXAn{9SN2cFeEJy5M^?KK9VB$Y@ioN_cfGvQ3H7T>gZlFCgNGDaT`e59p_}B> z@4g?O7x=n#^DDwzix@u;O6b{N2_>`@@m468(8SNb`yS=KQkK92SC|UU2?DwA#8G56 zOsW%L`-P?+pUAN2m0lvqsZ4c1$eFSUQGzXKfEgz6RTb%`k*n8n79TC6>kqimw7nn2 z#hksNyWwDU_@c-9aAPW2t`VP`zQZfI+g5%8s6M(}yD|IwZ87Pm^Qf!aKw_Dq@ZNm& ztO+@E;%~e)2-!%F)8gORpf6UX@q>=|$gUTVjkGwP9~pfld!VPPrXzFlc zt*$g^b&!vP7Snm5H49?J9PmzqT|(z$V0GE$@tTS%`y_6AC}t{4qjtWO%`3*zJC_Fk zyuqZV{&RkqsxFzT3C;!q;4g5w|F^AiMG55XHO(W2=cJY5FML;u5-mgV5i{;D6HfoT u(f^w^f6f8`9{X?F{CSJS|F^XH_-#?1V^nxTfU^wzuy)(*y1tY1)4u^YmvBG; literal 0 HcmV?d00001 diff --git a/images/unet/output-test.png b/images/unet/output-test.png new file mode 100644 index 0000000000000000000000000000000000000000..3355c1344fb00c03c144ce71349497df7db4a6a7 GIT binary patch literal 34752 zcmaI8by!s0_Xj%qib{xd2nZtGA=01-NJ)1}mvo4PSg5pggEUA<3>``e2uO}}i-2^O z+;#l^?)~#V&saE|*=L`<*ZR~ZP*wTiHJlqbC=}|NyqvT;3Ux6H{(gA%GW;$Qvx^6R z2)oPZx@$ODxj!{^wM0EKb$5Q^w)k)P`>7as?mjk~+En+P|z!~gdN zE+FRkI4^Cs(?{E;8t z6WqH@$xcdQMq_{@8SJ1{zh60$u3tn}uTO1Tq;W;x-hOx_y+Ny@A?QKDR7Q+CiKev7 z2b>ERarmxcKltYC+MZnQ@9#XlC?e`3CY+!=)wh$(EbLR#Fft~pCp=w0=*kk5@xqki zE%Nflwsunazkg8v{7h&0e_tjg%ff5nftONA^Q-9py?I$n_XFSmzS@9;tN!o%DROj7 z?{^_@#B14Q+ahsOZm=R#(OR#r-;094=Q} zK~?V8f5SA#F_6P0@lYCnPk7t8S9ocrsA{UYlQ|8qX*zs9OcWm(<1Y`V`mM{22Mrsh zKR(`P;o@p%j5B<7`(c;`+CzxCdZ$-ZG?cUBGpBJq#rYQP`302FYGL_|vk<&KyDoP5 zPV=?wQW|?NGk#Ctzw+QM-pjtFmOQo0&8W1~OUv&13Y302jo-4%LhHMEp;zMM2?;s*ZEE~^MU!Kq zsb@US{t&SAWA79RAUfI5r#Qw<%RcZ15J*V@|Js*ipp&2D*Z z{>}`aL)OtJtpXmuWA|>qv;C^3HZ;aK7{)?-_WL2~#ivi73h%;1yi<*TwXoGetAk<@ zeY&nmBBS>9I&CpZb;@i0TK}&vFaHbbThef>o_(u~d6XieCC?N!cPM@^k%>}89;6H2 z3)c>sr|vg=4mW4Jvg3@|rX&w0+;C8fdl-|x@iSf}6RC!&jDDNkyVECA2hopt@>=Iz zT>gac_o|{;n*Q#Uw3SNJrz<7!$xw=Ueb#;L|92;iGJV?cEhI{$<2w=XfdCte^7%xZE z@G1E-5nO%0F+Mit{QJkPWY00%_p+HkYd!3>4XVaNH~cny<{B`oZ3m49;?zRUsMV38 z|4?FZ>lBjD#o9xu-aUASABZ7uI+Q_uSuJUr`tNBQ&!nPAO1tFwkxH`9dX3O}^?d7= zd6@9!>En^A%@G5qbTnF^#C+S@X!@nm{(tWi6BCs?y1KeV+PYC+;(5)>rrx!fQoDWU zO&0&gLzY)i(Be=v`4$#d(cl#uMMcGtlUono(vjd;(ol(da-e3SR3yHJQ1XBFJMnxn zT80%96O%YkBjijMUTz&fH9Pb5HQbNT-@|#)6e<`pUjp9#pV24`?@@X2#+O&_sPs6G z5*7vHj()|7$MG-kxw-KpvkALwe!Xs^9d_-^!Aa@!Gw%u4Zq9EOe3d8PE%@Tap7A~3 zNt(7vrM>$^S0}fJ=j?LB&)(F(e`fn?PoZG;TfiejibCs&9K)-#lY@D7lcOLZZEfwh zzkdBHT#f8x*x#5=^Z2g(Sg2+9DQvUAmUq|Zo%~OzlqJvHU3`~%Qxew>*2drM@9%T4 zFIPH@qo{l4uwJNT%Fa%o{}pW9&F0?nHp7X9M||n^{UHqIsYsQ_sE{y^yb|Q15>@`>wyg|7CffgaI{`fE@|! zg-~To{<(eDb^X0pR`F7A#0bllZY3zqrN6s5@MId^`;gY}PQe<~lOXtHr4$iTl=Ex= z`5dgwHrn&U4rNS-8E-{Z)zS_bvJtWea2PXcx?AQMU>p+?{?hQhW|NLcP!@v85tRE6OA0Dm)(oa-2O+36%`dB00Gl56#3*{*+fAuM}(@ua?Z?njBsnSiV!~I2mM}=0^r2XsNIr z^xnQpnPYIctl}TE*c~^I4Evzz+^>4lQSA74rW_RdrBojjs@$qa>d~WX#np2-6YhhL zV79#ely<1<=><;KJ+^B zyWP`vN^6Ul){m=D{Id-`hP4#*^b&~h-^B!T)yfI`9y*Vpq3zTx#u`Ki1>rDK;IWlk z_i0NU|GwQ*#_xYRPa6XjMcJjs(2(pktI*J@0~Dez*i+H>=sx06@=4b~k&3bGj`cX6 zl$;OYj}9beX4_~wZ&WuhC^$TOZi&>yjpqk-%H|AF@{4gzr`dcibJA@~JFKt}yN2>L zV(Qjw6>V*83D>Is5D!l4H9c?O^VxsGNR7|_^|7ijY?NrEYZUZAV~k!N%w;z&(aF!x zSNpfgV*TuFY*c@JPsk)8C1pjmF44dm5vLA{TnZt}F)8=jGV@&$o&Gw8wjZ5qh8|DC z0OkH*hT{Jpp=4t&EyJSm38CP<_`HdBFju9+XQKgQpkd0uRriOFC8(KK0P9kTz}sa? zucAHLLns&h?5}nctW&?f!oqciX7Kpzcu#2d4KWYg$<*I4(`~%}dpEBV=64Lo3Eang zR+Mrx%#0}NVO1N|-6s^q4g2~N-m698;xunrb-jvsmHNKehnm*PhLg9eFh%KBInt1E z8M1^4rzn3<7ACeIDeSLjijbp=kb8fSpmh1sqem2XYzUl&+eq+&GCmd+T|>~t;HbwE z7JPR9Tg;7?T|Cbb{czj?sLQuflruklVq5jn(jtWw`srCuhD@+C#^~u@>n=qOX0+V; z`dfUOvBl>wju77Z5sDn^&t)UWZ6oQpOOXRN2s{j0*yXW!A9 zjh0!~8k`g2zk5*r=;?V?0ZS0YgAJdfhABUaltC&LzvSbHY5UOmJ#Su%Zv;p?zbzYb zkAthvsCc!Maok#q240>e#RYgX|MSyFep`m&mR8&-I zMn*-?Li?6p_bsiuPi!3ACb;U}EfyFShW})|@*4iT7ERrKEx}+8k{;>YNgtk76~#-U z)cEf1?vF9WMhJdUP*C8p8)8vP79#Ap>B9jHwMdxc#?i5O*OI>8`OEQNAwDUPU)zR;QmR z6$ra*d)evh>wktG!J$`n32E$G`{Pcy*_7dOnH7*{;T)@v7?uIwkFZXL(@PsbQQx*6q5bHxEG_?fwqv}R^y!W5!-6vC$bwCw#{H~xpi)p&bUEGXFrTP)$tx~?J3h%Rm3DIJ z%o4fbcgPKg8s|S4(*hu>7t%6XRipZpj z;{iK!%SNmD{BWwkCz;lZd)_Wk49!jtw>q0YqV{?aX%7FFABD*m+l|m!jH2O}AlUicIPwj)u zcDdcews^a}?7eys5s@E1e!O`5_HsS24+;@?7N$puZ(v;X6nJFOifIT#!vWHE0}Aky zsrs5ImZ37&iz9E6^6H}4eyy})Rt-Y+F2-vAera^UNmFzB6DqvT>}R8& zDAEj~V`I&}$MePuxzK+qC;)t|RPw*UK7D-u)BOhz9^_u^cp>mLhbc~111&VH;N0~t zV2I7`RsjML|hlHPWfzzBa;A2qx}swF^|=E3b=aN@INYfOu-?i z1y2YDN|~?8wpu;RkXcOj4O13v7ix`hNK@=&5-<2{jD>1Ake$0@5_4%+E?fO4RIB~< z$>6FfZ(Lwv2zBIn^7FIf^kVQodTRffPKz*9wiIAs5B<7!XEqnBY1?p0NezYNPPfBC ziMs?jZh`j`kERv3BWX1fz$oVP?V&%*EOEQKyAe7QLM4b#N=j-t{%?%lgnvo2OU*m* zD=I55ey()LNol37qZr<)@NO91*B6lLIbJKt8nmSr^CGx%{bp<3Mq@C*(#P8ioe1D1 zz<)QI-G}f^aXei0KzET)Sd)sQ+ulFr|M0dbXg8?2co&&_Tjp*rGsSfbD7+s?RFp`K zBONktpLhB5v-H8x-E8SR^Kfx8uKYy?HDy)}@S*Yl5VbX;8d{~kmw zAz9Y>L#C*&BSi)gatx?=gFhjyCKCN@Tq@JuCOy9_Wxjiodwb~Y{o*po^eASx(c)1Z z1Q6(VvTq6%QMbWc07z7rd=!&u>wChhmtPyD{`YUJqo3){Bmv|CaBK4s?Ub2Zvx}8s z@^jL>-1V(tdU7YrrJ^ud`%-dy6;H>>hIbvhx$Db1KKV z;2t_Ed0l(%)!_0SAQ+oakmt`1raMYIZU$o$Gdwa3M+sZ~P}I?~xLL`oXBytnEY8 zik^8-aTQU?CmnZ__3=FIPuh_Q#`n*C+fF|fEg;`B^ZNQ{mw8!DZS8+m5XcLx)LGY> z+B;;(sPRa2KU_Qn222nrjW=!+m}`iYkjhiW79YY9YlZ3D%Jp1{N;DOa80rdBaqqRk zw^J)1JNHf}TG5>_OszV_Teg4r@CvYya40H;dgYe|1O(#m*b>QxQ3pQe`NrjkC^@{3 zzu*pNvIX=c2`-VO*<9hgUyxIvw<*hIj~@OJhW-(h&5Id$RP+67@1Fh+`u4X)`#j0L z9n}NM;5Jnglkm0is?3TC67!C*HYftBMn*m8M~Ffs`}zX69Q5~osA-&jOLJx$cFi9~ zb&Ud3hNv{`mA&VFhP}8${8d}JadHdI6C5?XDj3x{vpL)1wUqJ{X|$R;I_7h&ffW2! zc(7DP?fxlH=N&J|vY>SvR6e=S7Bj%9747u>Qglk8AHPmj%<~?@Uq;W!Jlisk<4LzZ zIbu>IMbSc4cIX`GJV4v#2kVnSegt`37vz*u#VBDiHjjKclo2`ULJwTGR2Of&%Bhb? zdGeM`Md5SLlDH-!Z^Y;l9vnr5YF`Zah#$~ zf)ycm2~jkD^(67y{Gd~c=eaQ75&lq!y4SY&Uz3@p{PD^iAd8Konb#jBN%K0h}9D zRHe3qOi#ut@~d(M=t>=K`N1OG94>iIiU9kT*)PG|jqx7FY9tfSPu7Hf#hVjcy~N}8 zOXDAGQlR15$IX`7HLu-r+Gnw0h(j zAj%t?*wI211)qf+cc0y3vy&1%A0JU=q1j8Pe-D~4V*Y*N2Qx3P-28GoT&}XZbO^7lnGU!HAbDkF4_=|Ai?`TJ_PKxZDr z5Rll2y`Qz8Q5oC+mxPR6$M_i|umBVaw1=-M zCXh+sXXB<7>Y=3SJ3Pu)RF2gb1gE@iqdo$yD49bR51=9YWyz?K5$)*c=ovstF=hxCI|VrHrbo#@F6<%)jiIFEzTWP!c*U z%`aZnG?AN<7IVs9M#N5-}l6$ zm7wX%3WDalx&NFEL|ZnipNa zF6{tIy$$qs9_GY4^%>K8&C<;+{^(8%KHWM`PDEA~upev* zD7KDw8r)fMn@FHG`;GwdlIP^#?F0Q`g5CC^@(DXV`C(IBZ@=Y~!K9{}ljzM9y#{Op>Aj|W6?eqw4{WK4sg zyi|g2o&`IgWv(rF3pn>&kKlA`xc{kn1VBwDOCxIbvoTe}l`H$p?l-o)sPi>(IxWCJAQq93IJ(}Gw2^-_vZ?uZ{ZCc;_JEgEI10wAM z1)!(KZ&`Fr2cG{=4hD=f2iWNC^hO7QRB6FZp(oUM#1z%(O3Q!r8l!JIvvc%M<{zK_ zdsjB}MnIIZ2sUguL1Uja0Yo)J;5LeSl4A)r+z?4N3gp@vJOjZ2Zu&WLF2naAU~FX^ zr+W%}ZPFoZxyP+cV1Olum)0hb?smwVXg$&LzeDL)5|m`?7mh6XC>e+XIZRh}j^Hu^ z8*Q*a7hOkF(~h6%qQ&fttSyy9m)5>FHPyOrqem#*KoZFnxJZp|PlmRuTWW?C%ViYA z-zWBO&w_uEOL>y2oD0>*$E-`~<}7-|4X`)Dm{Y>SsfCF^MZd0HVjPMX6$pf6PV;?b z;8+uI-nojk%_e8N+S13oPBj)d(UEZ8OVI*}E9~fViSC)#`xlz%;w4R(vu%0j=4`SNv4jY293X#ONy2^q(B7YYC3iGJzF)wh?zj;0NJ}vG)HJ=7OhPIY_xv6i~X&GAs0EK zz;l>1QvXw>`|jtQl+xfqMcC|rNE>(n-cc*a1FFWxVTp-14E@jc{>ihv=Iw}+ceoYq z9|An^ePP?ye8>FxS=0GD_L6#{aIx*HAlLlrOA9|g?K}T7GGkI|q7A;ZGi+ zXHk*z`Z{ zcpw+prMlG^8W|UaNK|4ipKLURm-mV&)|-5Od;v8xpvc_@6~_fCR3_;1h-H+Rl;pCK zpF20KV?tW`7PW~WsCY?#31oGAU3NEHpQ!PIF23z7I;Og&##yB;A)TzX&G=-PH&0uE zd~|Jk+1>LKvt1k8vTIGN+eq1sMAFJCx9`e&%zFpg>)rU;=c7M}(^rIdJ3QKdS_8ZL zS>whmaemadH1V!w_THmMp}!I>zt5uY@&H(SXm8KX#?J1x4oct*cxzwaQEUtH%Kpd} z$!Z9g6v+aC)C>BK(tqbYE04w)$)7f9-Ouruu;I9^mRm`5kpOFhKOw|%_<~28axO8* zzNNZKBm;5hHmhy^D|(Oj)^F?JdP2T4G$@aAcp+*wJwZ9jS9Oz?gQmXjKb9g{Q_lx8Aes_)PZCP2FSkHS?oa-`bo4=Br zJdZa10HHgiedm}lgJsK?FjOf1iOb3Q)2*}ZvnFKEAvK%l&0MUSpX_f6%(@{FN_MZv_nf_3+_lFP%kU-K;grwpNOEcnG^+Dle5Q@3;Z&>?`J2(HueAM3F;hwmqYG{K184{`%&kDawPb zOndwp3rsRcg{k>d6h@?`o`s>Z7l)K-t>z5H$y#)0UtgE_HtJBqf-~iJVASIvL;1GT zYUfwa&nAEWUX0UZZA=5Vk7LGTtmX6v?>;+COHA(Q)6>UMsC%%|-o9_4 zRlPv8^hvOISXW8>rChNWr(*tTDw&|3mK$k@_g0+uPKE3Bn)e3meeX@TJ3-oat(*XT z^FN>{-*!SMayCJ8YC0Y+arK;3NxUQfl$kllo}`ej2gkl|3-L+ znu$rt(S;JyCEGU%K01nYc6zGlNaOF9-iwrW;dKR7xk*}WK##9Cc4B7FH?Brut3$p9 zn7$@k%y3)`FZyGdx?|P&fZr$Ha(#oNXTQ?=VF zFK}95*dvbW`ma>4mw(17s@y*NrD0LVVrfAian-SQnd#2myJL+b^IJ2utHmwVF7vgf zR(Kk^Ah%9~ zD|9TW&B88_uS{t`vA}7JO|vr63NT)j{G^vM`@E0X&FGkzuNwy~U@ej01nTfmNb^wq zVNhMmz?bB~HGdqxZU%ecaMk3T?eE*sS)eu@5cf!PJ7RfDDTnwjRTHj?vCMsJAT7{< zsWWn|{6;lNGMxhe9B>udd`4rQVDYE3R;hJ3e3Hpa9gg~CF32>zA{KfnZ*p6DdtxEP zr-&w=r8MvoD;kiB+1Dg3q8~)Xv(6L%tH2_=r>92=0+$-(1|lPgfaU?iApro-!p;3q zO^xv4OBBpxu5jXHZjAF~Pc;AJBhd7o@0X`7CcC?UFK>3dyZkJbw1tGJr16+7meauM zr1t*n%dmZ;~SdpdeVU*~-t0dH98X6k#t<8d4AM?C-7UD1l{~eg_eHj_7 z%hzr&T(YMl_z^0+7F1nfo_)9cV)-}AA!Od3PPjZ&##RP*_;9rE`CCwE9pfomNXS5C zlRWMZ|1maZcQS@#eRh`mHs0!8Q^HaB0748H2ErS(>)LaCd!Oe&Roac-A&%58toL5) zc|$^4$4tl=tb|sLBTgS!cGnimPxzK&Zd^h>>#Y0U6eNN0j{m|tUO(nxF;no9papPz z`dkuhC9pBeIr2ezkVxZJOx7nn@l4J1HRQh4ljl#C9r7I-3#gPI2GP06t~iJ>Ts?`^ zKuO!O5CDq)>0XIH+Ajr2Ff5C3aP(@ZtOPb$SniMg{29M@MT~qkd&K8EK0zgKes47TqY4 zqU_aR>=H632V<5>Cx9moV^#z73Hb#?_o=R?NLQ7^WIOGih7zTIZ^RH!a7a;#L&oK` zeQ^yF`=w4cKsq`meuz@<_|xj=XVdES+EwRH#<+!ruaD!U=u(vDtD4R@@o7XXPR72z zzG6Px9FTK<`mDkDd!j&a6#g}q_@;aRlU0{VlAmBWA7N0xMx<)ai9M}Ebi}} zoJr-W*R$8`2L}bIYHKqUW-m-}v$09R9;|4~_wBRe&1dA&)8w1H4;{Xsq%jCuBITCX z#Qq-QW@zacVTE@LE+==)f4%O1_@Gc9jdL*NgVdH@Q4EjLtxbeCFG-$1Q|^2Nx>CDs zZc2_%V@}THaLKk^F~Ig4KNuo>zCsf<4%#KiFg6^oXt3E6mmN*U#g8C2M*? zyD-OlWU~0NX8H@es4lc@Cuf=*L+d*#aqh0~IwV-I{1Zo{Mtjy=Yk;849-M$e7;wnI zj$bonn>3J-LC?#qS8;sy+)L~xg!%~W6}T1NvvG3D2vL)nX{TOq*<}jKm`OW7Wlr^3 z7ao7rzvw!<-Ob$rk%{uKcT%?y)en)N5Lx=pojVKBLtl9U+8FbXzPkc6Q`E1ci(tz zd$JBgYZYTujH-z16(^B;6Q zY7Cp#xG*$~rix@5-W#5E;Oo*$GlqgwD?=-hb{$*~_FJE-t94rw@o(H=VJB4Bp!6Vr zVryA}_)wr5pi!&tB4QK~S=4b9%-1|48H)PI#WP180rMxWf@Kl2#MaKqieN=;X-5$VSx~+ z0a6d`!&2{29c~z-<#!t!n=eR?^1mziKN~&ULny1~g4hum17T;7tRV4FnBNjgefEpe z6T|=g9E>+-urmJVv-9XR#p97`k>cdY$cIkg!NM2J7|x3Ha~B zV@y*RBK3e0IyW)Z;Ijoasz@})fQRHw09Xc%8bACc3YE1dMvn-{wGIES%xm*)SzgG! z$&7KnC_EL@`%ElVc`eT&JeFr}8!V?~xh zQqa$hpC4JCt~vRa)69E*=k1t*Y@KN=g%$}GNWLa+pPIh$1oZB&jU$`TdR z%CQt!FCg4Yj9~dC65O!o+;YT$mmuU9%jo6WDWMZ}UC^)CP1V}nelkkUs$MN4D%IYk z#HpdCYpx5%+RtL$*6rxVHqUTyyTd0EYhc#-{n~vH4L%!3e#_F&C`(G46JONTT1jeu zlsgCud(PW+I*Nd?n>A2FAuA((aBj{_%{|TYO~z`^^H>h41m6fHCKqH4f+KFUUI0oj zcf+pwO{+GZfOi=zUcVBoH$h!$loym`G!L#WI2E*%nH;$IoN561etF4D{%YOWry(k#eqTl2K%)!nyVCf#*t-d^n9xl_>G7E5OY8%kMZnE}#c zrVybM0>};MI&GK<+^wnlXGkyu0?fa9Q-Tq>?JmMUl7-y}@Gc{E5+X6`l|I)7JsRPm z?nOpw3K$#43!T~u9_O;=KWWB`XV7NYy)v!(GMt{Qmo+{6G(z$wls#>qy1UaQC|OyK zTzP#TDgF_75pH)t@y^`m?E)prq=Do?n;J$gCtX2K9)gXyqeYQXDpdvvO z_!tbr#HAreC;o3ixiJ%2i#fe9hI2A|y#_rWszhSds4}+}g(KS{-lWHV!K`AI-Ej(T zqX=&&c3S-C@4w|~O0Oe~t$v)TB1tQp9~2h#oAH98S;U;?u%k~+VYL27bq;pRRSoe$ z*oOdr=_v3nzK9nLG;N@;C}JpUtQ?7Nlz|C=q{LeU?&KCuriebB12nerHepW^azR#N z5dE$Gd%WsKlui5m@K)U_=bUQo$IpmYihv!sQ=zlnL71Ue5NH+K8`7wrd4-FjKHES{ zcinQUYgXUmUm_VvA=tSH1tr`)`F1;eCf305D_j7CkVhR56qAvc$41hj_4{M?!npjm z3w3FI#$@cRwD|3F_ZrmRHcnAknMV;oeK)I99reJc>+X_II0D$2`7m5oO-(IVnl*PY zP?hBkybzUFQ1CWU;8k{JMoMAoutFkrk_U+j+0qfdWvOK3Depp zRXTTNM6N$1YjWoRGzV%7D6GA94-blp$3H!vf>;Hp1X9t&4Gl0|@+>6H2!Pn>lcb$> z{y883wH(P_B2i1cLsu1u0TzIJlI+$i{117Ux8n^KNxjUJ4MY;2h_mYR_^lsR5jrPF zkvGfYRSppY7#9!NVw&NwgG`dke0w@TEC?=MKq0AuC}x%3u6s%1K6jBMn2t`aurhtb zJ$rlm5nQ1}qY_5hotPs>!4okPbA7@vZjOi*-cPg+F(xZ%(Ug*g!|_N zt>-WFFmed!Hk0ZYnl3M)A&5~KHb!TC9~Q1NbgO^KU&vrxnz7lkD#47~o)m)L2^j7D z-4)lXyQyP&dQf&Cf7ogdkh^wm?@}^pg_&F(F()Cbbq>{};!{gU1CNsKj*3*OK#`!O z=<_57%rm|OlJ(ttbT78Iw>b*(p1i#D0sV+I(C}C_CLnF%3Tk#;CwK$`<+>b9M42}B zYGe8GWI3AjUC5>?OeT;yV8OK}YG&waFm}@JWGR@d;4T!%*@%>5*zAz}OBiS9iY;-p zK-^LZXdb**!`?0D0Q?excH|rl#P$2C0X{z(mpDJ&p%%4!os6|y|7_ndbkFTpzcxhCJ!RE#AJ&FdGOhuA3&<;7HE)og@vB0!df0X7nrmxodX#^o zKTDGt6J@(5=XWnk(Gh&Z;rvM6R^Ii>kgO2kYlM=N0r!OrXRtyU0U#9LU+IcT0DU?OE zHAEfIW;AvLOP+Q|i&RZ>y$h{wQ);IIOuIix;BIy1an^Q;RPPixP(c7rAP9!)P@ z$M>#R!U;-tWRKT_?L(K7fEnW5xFdJqOCRwC$+}Nf8DBBB577dp#m>$SZyd?ABRYhS zjcmY6PTc$q7DTu=_L{{)suYE=tHsDszD92I{MKXeeCBi^c;&e<#kubWqH7zR?I_>3 zFoqrhgp=2_`AxEuboZJAIj3TF?BT$w$ws1YEyj&BQ}z~0w(nDcn@a8=_=1paPbvIi zAzoNmD9u7b)Uoi#_nD)snHp2nOSs2ZahL2xQow5_WX!cVsOC`3487LZ*NsfAf|#dhK7GpdaKRFt!==s>#O4Y%uqxZH>+HBsZ{G5%z-R;yKvFYT*+ zXzA<0_Xpl|O2w+F}FTp~riHgRu$b2E>l#THBFELU8qC zR@NnmOkg339CR1t#K)L@iHw5-Csh0kDCFP*lT!Q(2w+ekMjcqF&H&;};c7;Ioz%`= zI#!Y8C1k5}=KYQz@e$1!QnIiMEolGVY$q_P$Zf3EJy#&XCFursm29TeX=kj|yOvuM zd#;9zYicT;YA6w-G$p1svX2Xuxw@J}o}g1enFblaqOP0r+#=guB*n(bsjuwSv9AO? zW(e7vZvFZF`&(BuV|NZ_6`X#8PIcEct)ql*J38m{^uanAB~aNmW<2X$COt5-aLi`7 z=M?%<8$`Z;OiWCaN3C7~c<{#=@pAr`75L$>1G(-_*T`EtlzIMtI-%uW20st-A=SGBiZ1Zxr)$a|Y0hmA zyv3jLn*M6+UGkUqo*P;B(kD~9ZJ$s2vZzt^W^iHbmREh0P0TIDTY(KgrzRF$tFhXA zy4D?tGM_h@=n7dXX7()+TP9n4`@^HhD<3Fk+>+B?`D0E3TctGqF`&wdedv>f||X4 zu$Nfab;;AuSFE*!-1G5mo$l|ALGHD@P@%@EgG%rEFmHC*@1BE9ej=w8PwnHf?I{J( z0=LLCH6X`ZG5RBF3UoLDQWO%tLhxOLI00Z4ykXQJdvAe_6;`_r1}f+^b6Y~7X+ru4 z!UWPBw$S<@-O?#VazF{00%swDP+6JSrom-tz_V45}PSu?`nEFYcAcHi6m#Io9A+qQE!V-VWke7}-DL$eEn(IPQmV z0>m*11YzWi9h_;jxZYdn4@V73Tj1PRAOw$xRP7PRQ)r`pM=7fK%8g0mcNMBX%0mWf zrs9M9pOw#Rx3T=FNqjLjW_vehq8JpdTlP&m`;liatzYEK4mkJCq`k6T1`WJ zJQ)9+_?M3!Jb1mV{0Ks2Uy*ZiHxmh4NVsxSJQHW9SD@EHay+ihCTtEX~!#vC2S~eE5T0))5H4 zYP8Y&IdL7gX0h)vJjzyQHLb~3@@ii5#Ih{iKxs5NvNiLDS14%@!0){$g-!Pq)U^(n%$AdY}Z$wm4x|zhg+A z$p{^yUuvN*9A|%;mpT*68^kzFRP3FO%SUpaPr5>9z}H|5Iu~2n#8kyjKs{8$n-LyS z#~<~xqP0{klUPdSdi9z6A37{k*DTC$RTITy5h{WKsm|i&y$-{ z$X0KbD!^y%54z2GVdDC2>v##2R^ks>D-$qp)nK}N=`g)rwnD6WBy_dZv}p9v1XsPF zSXsQA;c;q;W1L}Yfc|O1UW9#!E!T*e2NnAnYSgE)yQ9;U68{~D9_cJWEOD27t+J!5 zZZIB*uf37>Q|nQ?q39X);R^#hYuh`JDAhF65UK&atJz}%@-pEaGFMS;C6SCltvoe< zl9H0(l-aGy+gjxFf^7RGmB)M`G?08lLig@tj8}zfnNOg~elv?U-EIYq`c8PqyvxM1 zrIZ}eY~FUf_Y~@!rdfX*3-X9{UDqD`{p8WRekdz1pzlx^BJ*1>>B3dq+#5u1K}&8H zhiW17hpFZZGHdZrO^0q|Ut$KiF*5QSy&_}Q!rAZTV=pl-j?%J#D86mm4u(+?g@i*e zfkPDc#oCL(c;?cO0n?iHy@W=wTnHz1m`WT)Eq~3dn-2%!Uh9*v}HMJvh}$ z{!)HJ%V0mV@4ZL&A*M%p+*bXp5A^fLJn?8rG4!>|uMsh-G;m_q!jdtVU{A#%zk;~O zK-nfEQh4Q1>&ERHp*Y<|(;MWS+JKibsvD_A*_v#WNp3fX801_6~0d(P{?=0A~^*pP~1eiGWs&M&@-4bV_= zx2p;0X|KE;hUO^NpN|YSdb|IEo0S!sctGFM1L!^{by0f}tsJ3@%x53&F>bM1FGdB# zn8_^PC`(l@WZ6@ki{MBj$z?O(g)JqOt{S@-dkl>blt9uE)xDh$EhG!`Bsm`|^Z1mw z;P9gP@<6s;2M8c6{%~>sP4)=d zsHQilKq4+)o!xA(OF)0VV4RXsh5|j0j?&xc%wVInjxYWvgBRDWH-nY21zBOqb+4th_59~S6ZTeiE+;usu zWYKdHtfueFmRO6U6r{n+m>to9j&wKw4lz32UfzqXtKa)$G^a}OKC~E+!%81SQ{&IL z)~JHy2b$z;C9@i$1Y)y|trNefX7)(;^H7hA`DyUBGX@SAfousmfEK)~W~I7LD(N%7 z4_-w}O!&;bo($5}GWh0di;0pN$V<^y^AR74wL4ZAU1aEG!Pn@0k?RSf;}9t$d3`PI zad`B8cCO#=Wr~2S-vU*(!yak=3RF;t$i4$QtmlxdXOYH7v%#&A=!F|a*jzv8+Ob{9m20I1GAlD~KH zp-let#zUxh1Irb^AJW);B>Px46U}}(4~x}65ede>RJeatU5~{>M=3R?l~z=ntH34G z?&Tn4?Z+r5Gl%2Vy*u^h!F>Xi1FAEKr_IO9J4XgNinxMpfhuoz{sJmmj_P+4{2K!qTUnD7e(+88+c^Zr@>Moemquc5Mc zMjGqnb#%5-CUU0Aif&*7%T|JKt><&pLUedzNO3=Lqvyntk;j?6p2Dz81W6w@HEEW` zXcmX3T^isqJ~gN@;645r8hZ0T`|_B9a1|aq2Q#X)fCyC@=Lb1}dDYXr3HT5RTghi- z?vanP8rJ1CVe`SNhZnDeUpD>UZ7vmWv^=Y9>>EBB^M5}N15fj~fo`}g>{p9|-N-{O z7k}+B{Zi=x9rVvmtq%ohrd$}iy$5q)D_&p@nPO*EMqib__!-O-i_f%hr07e3bq}n{ zh_joavTb217UEjgJ8-bN$6DH?^OFLGDM~&f;ks{Zp0rB_1J~_{_uqcy#t(wqM3||t zRl1_9rcfFAfI@B|a&z(DDOjtIFf;jtHCHtXFyG8Nl=Jg^Ehh?$z8n$Md8!%YEY^IW z+wl@ZV%~Xq1Y1e2%@G_*@`aHGX|2`_L|@k@>t-Qt2s;BN2@ZomaV*s!jtPS`R3@gr z%nHE+Y5EAQlIUNGZM(#QZwO)+B6ICg?>8?7NoKEh4#+!tecb6wEX-g~TBcOHdLdZt z-@^jeO|y^4idSj1v0`4qSF@o#Pv!vgI6EE9z?X<5!T4rOHZipUr%@ zD<7jQ;rLMc7yXOS*1Uv84To&>K$_mP{wqVy`o+?Uu!!H=FlFyrkU;b&@s&OA2<6;z zGo}2(sN?|U(s+x04mLKT*nTJ`kY;FJcFzE(77#t~7K?=wUkO0bUfX*p`W>ZGNlJg7Ijy(;%G*BB=#z*cL&ej0L>^PX64%QT|}ZctSBe zI8;ve%SS?+BSD+ju7oVdYQD=MwAWr-P<)lMO&m^)q$=xCn}5>prr1|W~#9Sy@EJCj2p~6U~1Ob%6otJRw#6jl9N#~vF4D2 z3)<|~JN;MD36>9DX@=@kf9tRuy4b_!X?8c%aMt^xY=J}L2brRnt)UT1_StI{wDr(N z!ASeb4W~jPl%%yE5G64DT)0FV)DfLVT7&8IP*F8ggSsW~=*qPlZvZX85`+l+9K>-! z7=;zPd2*&Fuj(4AS+)Rs3tBi#FhE{7P2RJ6^eK(AM~`fjBu)Y1Y78%zX&2`1v$P7s zBrYIH5pQjkOlij3s~KwQQK_HH=SBp}6;|$ZIqZ39?r2CbI~B<lgijNRHhLctuf{k0(z$`I^AIgE8Paq8M;C=Fw2M)F)KY$00nEY(? z^U>Z5@Fl{#>;i{B%s>r8fKi<#-rHp)5e)o3pem#}aUpTg!uc`IYw+ua=@q(39W4Hz z(%w9r>b-yaUX|Jz_O4W#Xb_o6DpM#SQ^qV=hN2Klgea0GDs$#iC^Ao3EQL@aAxWl4 z6d5AQ6cOF$$G-00@At=Z-1l=l&vkShmuq)zzP{@-zR%ZrzV|TcpYu8C_I+xtbSFM< zA@*3Gz@j6oSPeK`T(Y#7#kbwp?aJe=Jw4HVq_;3UDa2=;2{&vhKC^M64_tnWPx9NA zH##$()R_EgiuxIqGOD2s1E@-(ekhObXd)Cxl+;kmSJTo8xVif88!xbjn&c+0nbmx- z4D&=e0!u??|A|UYoyF^9>>HBeS=Uv3-}IJRfE^e25!q4*?N&7rLcC3h&w=1x6<1HOW+Qa#ouPM1!m28N3*_tzcPs;Wm$Kv6=D6&N^6>7{80-TQf z*bVqMco7ByKdC$x3JBn55JB`A83&wdH-MOH?+9mJ>&iASCXN|V^P)9S0lpSoT6`z& zxn1WMsm?F~H`2R0{>nz#i+V}dv z&h-@tadB=uEbW#ypU^&NTea4S?@?g8o3*#iX;#krn1K-HAlQ-wkRmIPg%^>`#TgS@AXd@pcz}wbkjsmmI5{;Aax~SJ7F2#M50Sn=Q>b+ zB=#AC7(q7A%lwFq0!V^Yv;=+}{?cnQ<5(r|BESClOPe92zgSoLW2ukw1M&KCVv8Uz z7B>cL!uvX8U(mDqon^SE+gnSoM~WDC!}0opWTp_m2tlI>B0^F{NPQEZU`2gWQPD=2 z%~pK}_3gnQHz38aQ~jfSo&behkP;*>`q8?|1jQG7{Ny zUyv>Cd^amW>#G2!Tt+@f_g_lWi-5n&o0Dhd`H;syQrbbUOa?+;jcPCrt9cJ!yhVu;S^8GtZM}w=`l6eE zKJ}gy5S!_t4dq~sB3VeVdQ~$@&#pyI5@FR)v)Y)@AlQ;~EQEYcTG8T_mA14CZQivwr_yzNWqhR121zWCed@y zuP$r>E`?^qYHFP{jq_2*i{5}63`8TQ)RT9UTKw$AL#BH;0(2%PzRm0g@d!317d z0Au#hcS6X+Z2R*}w*THW7`Pv#r?XLh{0}8l?2mC{d%J&FSXkyXr^v`?Hs9jgh1uY> z{Z01_9V_63kP*sqB0}#WSKfq0Y;V>&-1p?Av~nHVwr7Z}P1^!JW%?IRrj`d1eE1k= zYJ5i*Er0yfjMv{vy!S$4KaP+UTUa??oXr{Y9&`D8k+G{bN?Ta73v(8){S$U4UbRTh zyjQ$CTKQ2akU9V3{(CWhO_K(NF#eeA#2QL|bE;fkTxQC@CbW@>-xpl7)(V3UAYovm zAn|y@cN}JXt9!LpRsRe&5@O+~SDY2?^c)i7mUXFkw}9}WdUGA~n|QL6epTzrbR-7+ zpbdFIFZluC`!l>qBQ4I*|47sTv8UixuS66D)AETJdiHZ9G?|jBA5oM&vfNgcFn64& zwU&ULG8gj-`&D8=0oVUU59JErqS(~O1>s}>i{sbeNOe8{k1>;H`!cVf-qA139xFJCFA-S;%@eifkJEFF2EkmzB^OyDn{}!}{ z$}iR7#pZ#F4_&g&NKgL(9%fU$(w}|Q%%fL`9ZE62exm5lbjY9m5WS!j145Wy!r1hQ z*`k2xCGD8qti&J#M;Fs^UE;HbvRT-#iT;2vJZ?4ca06xKB98gSJV~(0(feZ;IHURAq+Peib)3q11e^KF0;JqDoZ4NhtW_V?@oQ|KP!!jGDsTAj%;pIu zlPZYS{5J@wm#XW``8XpyNmgDxf@RK+R<0XG-rpzU%0jVR;#*f)S)-CDq2e&Dmr$S? zRRK!4aH3`@dk%Bt1pLoWCRLO+4J))A*x$i9xf$U_`?a*#<1Wp65Nz@&)86RZ>%))Ed{!1c`e^@C zCn!ze4|gjyO)7S{ZtG&z@w|23pt!GhHazPZ-^8o(6rJSItTT++WAmC;8eBFfjgqGL zzMXVVkCSFSgk!M1N6nVx-RlMq>KrjJ=D5F0i*I+@CE1py&u31a9@l8m<@7iinIw72 zk?&S-zmSuWW^OVz+uu_AO=huGVqsOrA|A{wdo?+EM?*XmlwpfIXH`h(be%1LRSJIC=GK0$D?NjTt9KZtg1ViImHO zgZBT5(E0_u%!cy*@vlYsO)U*x#UJxC9~K^8W6S1cBNox4V*Pk8tBPh*=($5-Ql-5^ z%_HtvC;7AJmmMSp*5yZkS1oPnb=d~f7omw+y`moRg=i_a_K#aDtaiE5_(ogpPSEbZ z29Fi|sHyte_R8^6`=}p_1T)cF(8S;D8;CzVFo-`S?c7x1mGPS134b#*oC>q%Y){Wl zzNfwKjA*!+HE<1Fpl9jbzZ5pJ5u+M8c2z)geTi;LLJx@VmtFh`1ydT4bgtvy^6FhY z?(W0xH@jZaO2tX{KsYiydoaAEh$aC4k`EmsZ9ZJk;j6q2JlHnwe*(sKxx8ClDG-(sZ$axmQgExLpUIh!TGAoSx=&8W zDunG*<6rzHXRah(`W9Zz*FE|~P*~SZvv(%wOI%8(7w0FJdjcj()~!#>X8cAXRUUpA z=BhtfKoj;4Gtvp@K3H82|Gz)BTM|TgicUWWxhyH3#G4?M4S459!Z*&JG8XtGRhvh< zALe_Mo%uocuu~3G*%AjmqFZxZ;wm}3b>%atC4o!Xxt2?^af?ahd;J=-xYzdVaw~2A zJdRbf6ErNm3mKopNKS+_Nf_~AEU-V8fuT zU|84c!4FBoLD{)P_j`B{$)8+=60n)UEJLAy1ZQ8pL;D#CT}7tjUoc=l87}w$lI-cd zdBcdMH$P76iwrlP&g46sCU%SQM5_4Z&?H+1Po#L*xxEQL8S9OzZraxwdgny4s75Jx za5JA7n$oNTczsvG)UnD|V~P+tq~Ntk*N^%|E#-+8#biqJ>b;I{V?Ptl@+cS=zE!FV zWwdD=Pw%l$JFm#9-d4^=0l5Sy72z6K3yvng`21+PbJ#sV#*lG4Ot3jmtuZgMj1%#g z74X$AzW+Uoshj|9RcW@Zo&>cJv+CTS2hl)d?T_y=hu3&&4BJ0JJ-dFrIfs${gDkZq z#S~|%3m5ETZ~fUJz{yJDmDbrx{dmN$z5;lOmUtn{?9}%|;J*~73hONi!#oyU#z7(K z8~o#v=SIvxCcTbR*t9}n;?|SSUKdNK9Z&jV=z6#T;Vc62U=5Jhb2{PDE{Et4;?j(w zONx#$pGk2hQB-#Q-P{rJv6$9!cqV=1kjRDDPP!j;QmRSruag3+(hjn#-ws>JcR*v$ z{%gtSFPs?`+{pC6nW*9NuMpHJaXZjE{3w_W41r zH<>BBbZ~$|&cPWOZW1bmq7WGvxIqCx3plU;Yjb|wW4JJJ2Sa!exe+WOll?70oMCDT zK)&E|;$X5E3UMa@1EGrIIiv^bai+3>_D!rPpAqqJIYAI7?JE2$A3ikh@_pWwL6(OA z>b7xweR9uNxAj&pHF%g$QkdOJPWRGfY#CuFT#gtI*{)^tt=OB$mk%@>yzUL))@u{f zxsnZqPBaZD*VPs zKyv@~{tA9P!W5U`{{S03*cuXO1|@gk`|#tgm)MOwZY1w3C)c(@GlF&^e>6~hN;NJM z)^1vMKRfrF7l|2!BYo9!7KY;Z&9dLU66AO^bN0!BOXW4Rq1IW;HjR^m{-#}y2H~O| z`I(Wli)mt^_L7=W`X=0V%xzj*FY1~MYz{eelwudXUDnlNbG*-%%R1#zEL;bi;}`+4 zFEvvdVck~77Eg#IKVeF_eLF;3vrjIZoYtj{TKZNiYTh862 z=aG!EGj5)uBKbu#S3ok@*`+;6IVu`u%}lz*E}LzvMT9DBc}C+Qyp80zN33q~vmO0A zy{3PNPl5{|QUEFTpg;ptEjhxFJ0uo%lHED%o(N6{XMPO1{k!g{zz~JEN_L{^lX^57 z8;XG5t;dkis~xY%L*%#L%aW8`v)vZrB#Jt3nDi=peLO(%? zRE3xi;Vr9>`@*-}GsPdDd7DPS9SgXs^pVn(1ot1pHgxgT4_0N&-H~H9gCg(UA7c7R0Zk44Bof3y-wRWja zx#-5A1fWM|hn9|Oa2qNd;S5=`7@ud}$Xy?p;xiuIGvHFHq^BL^IVmFHM=cWYxb#cA zZ(u|d+b^yF2^MMGv%1^o{$?*QFO{f8h1@U>B&s`CB!?E?dx_w?t?)gNS{f@2J!vl9Zs$Qf>=^T4@3wWUAii7ctX^s81yEc5DNx8s( z<%k}bZ5^RCM(w@F#qV(1Ejdkwk1db%<^ z&2)ArjJx>p%VviUo;6s!(k};?RJVdgQ}soI3&KlO%OhWIx74Jnxs?31c#*RL{~mr6 z0>7jI_W>HJk}Im*9LcJF)F5;&I5;?y!(`*NI6pH+I;x>n+^!r5{Jy#Fn3w+YK2*8z z0e0Ve)h&8sE$$qcrp=EOg~Bhn%*o^REz}fn0WN#wtU|+1lB_qXgQ%FO~R;8s(E3M`z zwMl3B0rTwvDv9*w*4oiHmrW)QYbM34w`n@srt8}CsRae!tuvY{@if)L_R94G=O8*Tw1wfAhUYd3GnPD9F97 z_;K!fwFD;MQN~G)mK`iqKv_9Y$Jj_fuzLmyi#AQ+wU3Zr1s{UVz6ajUkDpz^c=gw1DD?UrarS-&FZUU-Y+c2A^1Jy8?z*iV zNZB~^V%^%ceu3WhIg|1-I1X8|p70DtgwAoy`GRaa2ZxGsU-n8R@sApSOOZHz4riE5 zvqFYx`Qr7-0%ZS31?sdZ@4_AilBD&7)!C0lZj{T2#QTJZPqz^N<9$+WYPZ@Ci2XCc zd1JX$Mnc?V^T5Vmw;dYz^$#UzxHr`LY4eqPDaNm)sr3xh9nwnO=x3}cm+-y1NPTfk zslikJkJs*{swf9@7N&}sZ13HeNjyhkFRdiEb-qd;bSaecT@3DETc2IO0O!ou_=8cy zv^B6X`hZka=i~Je97f=Y>Q`0QqMr%0+OVhS=nvsmW#c?d*z_Kh2TY5v{Mp5Nvj-7x7<= zTRo0{dV&#aKM1m$Ci+@iH`w{nV^*`ubJ~2#PATcqxNlItYEm^yt^I&sW+J4+?l9g2bwuHemGCtFMK*xnpL&NTX-E`fD0B8!^ zYV5Khf2=lrV&FyJy>ZWPo(&3~XItjqYu7U@Uo2ZlP$py`Y)OWB58r{H3_vajJBhWL z$4LHpYQt^lNVx7QJ>TT?^tt3q?XrHj_g?_|AH|iUeF~YGCzGGaSdF5kS_<{~x)Kd<7x}B4` zt+j-ET!TLfBgVG3dwflXrgHR1XuB$JXr`FTmBbBLNa~WURR*@OfD?t|12rT49rjoW z$bmqV>!6WQq~K+70p04dYe)V#!UEELRFvyQkaXv(%AyNbP{}2!&ZPJXHh63LcKrGR z^ey9^&jyQ5ej^p#(O+JKp>;;&+wt~%J4$fTYaEI@HZ%PP>%`EvfdqyVZ^2{ZeuGmS zx67w@6&7V%4<)p_b*+_*pQVJ6gZpu$Tlr&6!CC$ zr)m%C1{WWh3RmZ2_#~N$`kqp23iCpcq)SWST7e3ea{Qpb&_$ZsDXG zR4Hhvhc!Udw19&YI&co7+&q)oc|B0{&+mSv3)q#yyv5Xqe?Op_rUqsYYjXST3yyos zT*7LYK4sU^qI3T0oln%qDFtJ1^cQMhYySF&dp~r{mDi87+{{dL*%jpw%M!eUH*`|J zAi^M1loHw?zHTiscl+B5xa%982ScoFONC5OafpNuM6o6}lMJgv0k&TU7O8vfZ4&tk&>}1ABafEMzS%xlkvy_EDahHNt*$QpOiRMPR zl!EgO#`384zZN`Dqp9TiooRKju3I$-1zFoQ(IQU1tlUA(58oM{jbjY-Dhef9aJ5rZ zh7H<`bmv}4rskLJt7L>di_ns7c%!=}QPWTBZ0u9RwZo|=e?A?!0AT>0_^>>jGGDz- zVM%Yndnh|NmdC-en6wb6TKdy6uppZBTp80XE4a0ICZSsW=mzr?{;e7()3XrdapT)^ z!$fy#_fclpt%=|vKmJ7LW~;kDPYX<)-*xA;@Nr#OijD*r%vfX#?_V6bYe3^xjrBvp z3&-3)7Jqcqx7Pr1G=8!!QdNyN^wC`W&S68{mNsmM`mC1=xDlfi^I-egKPcGLx3Bdf z36IOvcXaC-;1wYUK#u) zIeEQ-KYL`4Meo?2H9Z=+48C0&9k8xd-Z$7MRHAKl6ZbZnX0V1B;2IiybM-+NNMtwX*FGN2i`kV&T97Z26-Yrwh_Yyb#*&d?Tjep zlH8)OGxu$+nVjd+tqUV&U-MtESfL=T6qyp1bvr*V0<{-$*Y+~=;8pxn`+QX4>zb$>&?0k2KD7A=15;Ek^DyUVHKX_GgYbHC|umuo26G>qmgazQLGnI zwLRFd8Z=1M;dbvMaZ;5j23!imG}RW9trr4}F6QX$lK$sJ`$Hl<#Nv=zh_v#2R_AMTdNC0jCj$LT$`Z z?_^uxg7VEZnr+XX*^(D|N$HdYmTs$i1lDT|@2p=+36||!kGS2Yi8d(!6tDLuZe_6( z=hfqq^K^bV_`QzN;Tjunvi^!iyqboQ`$3M^qK{mPfdYXJ06*yyZzdH{!Q-dMxNY#@ zLg9TylTE-oR%QTKgP?p*fL+9o>c59SRH%47u_0APZEEYf<`gkaYxOVb-%aL1*eRi@ zsxA64Q&8sQ=ET$DKd=hi+p5e%Ud#1gfmc^Pq-KSy@gie9eWXjXY|sOFDJ8is8tM$r zjC6sbENOT`aRq;4QkQ#XO#OcG`Ao~+ z2ZSqm;iU#jZ@;|$p&%3OR1*$MDpAL><7p@!1@-z0oYkA0LX2rt26CST51e`VM)S=MKPfo&S+XEGFW;>tUrI7AJRd3YT6V@a}cAHf*U;r@6*(x-K85^0%5OLsfm;m3&Pt3XTIdX)A#9cp4Mv2YVM*RG!Ct>EF@l#Ez`6ky>XLskxwCAc1 zPNqe3B%OOb@ML42J44}_ZA;hAmK(w14;1m^{?8|Y`pW3?Jpy92@;P)aAlA4 z>$}n`h=wA={Sw})24t7GeFXF;Y5Rs7gfYkFee0z^o;6Gn<97AUbo=$_)}ZB~fj+qv zCXY;p4KuP#x@;Cd5t+KrHO;td@unz6p;w50jOUW(u;8+M;ANP!ID{TT=>|11JSf5? z@byB(1UYZv3mj>De^}Rw)@g8sGj2tNiY(O|Hey5!D#%k%1;9q>5={^JS&1$YzRPl? zu76c*WaeGFonfyBT_R7%bA@yTmEC6$YfJnhA%dwglUP=r* z{7ipH(9asYdBO5X-^Vkh;70r*>AdJasdnrrox^b8hun$Vo%{j^HiCm~P+j*K!JgX* zi!n-$*ytKl?&Lkb$!j#=SOtPWMnNp~kV+vm>m`(F1e*9Ej=KkjKXxRmk`%*DM9Kbv zzz++)SMOCNPIQW1GcUNcVbaognzlBHDte37^C9<44Y*jVi*=P&>3fVz;)C>4eOd}} z-NE`Inh0tQ0?(sV7W@{VVIz!U{4*ay4Vkx4*leyVnKn3USawb>7F{DWspqel&$R#B zJ!8X*2}N1fcOK(?mT-t84$r1#)NQC`TcoBn&lYJ%Zs-i8j6!)v_yeFNM~sa8_L7KS z#P}h@*X2&|1Ag)7U5DLsa_tZ7;k2=dq9yKR$(z;@kw~Nmz1?&uh+Ff4^s%gQYPR7G z7MyD>B^9v1EMI!-7@v0UOd3r>w#~mnkjJq8fI=1S2Bgoz_4@ii_`*qF5x18+OF~XJ z)0#wuxd zGWNC3vofvgM0e=xdVOFO85n$;-$^%j;!o3b(k?lHY>_pp)itRpQ!aOeG?T+><*Hp% zBn4G2cbi*(PMa(~)EdMi&jkrBX3F08-^cnIy!CquL?05<6U68ne}2XP0fhNI zTh@(`_~2z$(fyGPUl;8%LPwlvfyCIxLq^i<>r83yjA?kU!vnOx{&APvs&ks?47inY;?@v1K#jK zWQgMvCY8OzMOwD$<9~1-f959;C#dqf z-|PA^Hebt3j;I9iZLbdvD^r)tSV3QNPRRc%ev0_TXA_fTijzo3PwUu4@L{V3i5-|B zJ)nq=h<{u`$BpXAKte#p6lx>r(6X|Xct;?yre7Cbkr`+|fTFay>sabve0t$Z@gx z5{S+Dx4%gCGqlek@h~{9n1O4+16D!yseQvcvmA>*8oR5;M^?_;72N`kp~6TC&0OpD;5p&Z zC`W?1Kln8HobgAz+RQhmC2!aYe_HOLz7uSCHE!FZ}Pf4%OGl zcuu7h#K3bSoAx1N7QhW39Bv#{Z~nSSTEc95F%)R&x$MTf*!h0P1T3Y%+fp+#cWZCV z6cAF!N7kk?i4e$`rx{mq&+!Vs(m8WK+jRsZMU zBBq{YRdq4PmS<01Okd0*$Lp~&npwB?nEM+!lc_#WKOWW1;BDa$GcGbR_A+KEkyAk^ z=yGRhNMm{TfTUb~eq84S>7V&}f6{%Hv^%FFmc~S_4_|G%T)yoK%UW8!fG4X4QuMxO zy^K!Jk;=PQb9T~u-0pAc6#LP2wQ3jjlyp+0MBYSH*csD9{_Fb)9aordbi9|!Bkfh{ z8+m6X^Qy_!aGt3mqfpyc1*aQkDoGYku14xDDWRWg6;RdRX;pDkXG8JA!SHrt&S6>4 zC_y)ew3&OGJ-gGS$4VzEHdj6ww7$8?QsB$8!48)Vh7vl`(X)@FoU(?#*wWX8IJ5wX zERPT}M1@_ne&LRGI}xRRPqflJ4v+{tcG2Q;?aMV1i3W<)nOXtb$hpLaLK)kZs%e-~ zRTE-|dV8qd4#RwrcD~2Ha2C^dD~S!IwJ5QGp@PQRWR692OPXz`ujGz~c$=Tw@80qyi;SaQ>8*WAn) z>$Z%_lcnX0QYD!DM&Hk!K=>n?Tn>-DC%?bcN)+VR$P5be>^r{`z2O2$k~oU?q~jn| z5$K>TLZQ{K!h{19q%u;Y1eu%4?2TW?_(^0W)Z23v%{&biY;w6^x~)})nlb0bZ&Fj! zK{>N)HF^BAp*ZDQ1F}~O*&GD%li)E6{cL2+{xqKrS%$0IK~MLf?cI2*&i=??4u!ed!EHtYS=vt&TP zIc7V0NY!RH+h$f_K|;p4L!BRffaUFaLG=T|J?_PlAUsJs6N06Z+z50jU@dkZR)&LF ze&p2v>#psV3AU4l>=JpU`92StefYDSGp!Cy+n2NsRt5JOjWm9vWevHm?HbGtoM|ZP zN2~?7(3s#_GMxeym*NdweZG}g>`7(_3Qfq!eE~f0?fdsPp_rOKxSgSOEMtX~i$;_| zfMA}=R*@5?JX*R(2Tg8#&A4->fS04$wLo~sWM&v?t$kp-`-WGAeT>PL z$?Uv$5AA zFL%osvfmXNIW$bu==C1<*O%|v;HQ-MmSwxX-5&2F^nV8T7WxQ(85S#;Hbq$T0D{Vn(fJmHAX5#QL8;`ju-7PtAcZiV`JnyE$ZwmH*SUK zLN52rd**jcvo}mvZMn1$TG;T=!bPw1L@vt3{7;$i{Y0PrjPDM$wQ7j(upc}`L)0%NXY~h=>SRRO30^J?( z5y2aD6ef?5{sF{Ih)gkjP=9BI+PtspczojT=3)!2^9{}!b9b1M8IKRWH5_p&Pd)yc8s3un=E9#8@&15jb*OXqD!ik=CuYRYwbV z>`tp{9jq0NYxHO4W>Aln9MzTDM&Dh~*3n#V12|7mL?lnigUoBo-FQ?1cn!!(1Tl7@ zb0D4(kvTUYschx+Tfam3YovKt&%xpsg90IT{P&)T{?qI~kl!QzIP76kZ{Op)mQL0j z=&1l!K|8rp@rRQ9hpTy^+^vcV%-JC zduoSr^+4oV0|AO#%H$D+(#^Ce^F(iECWBh_mY%V02@FFA8**9yr`{QUF)fxpV8!`T0*n-r#>qtv)ktTKif_l zrEcVD)p|CDYvN8z<<9=sWF#%&!8Z)VW8xr#m2D>)Nuhe>$Mb;Dtyoza6~C=H-zvXj zDtyHvd!J^X6t5=5Jw@xp7TKqWHsK)bEVrB54nPai%Z?3*NPy+DsjcL8~KaA+1u2oQtrFA=&UmVU8DhF3)8a zbdJVZK#uwK#WDZ;7Hg=h;49%h8bG;>Wr>>@ad3sbwn55fA@OprQ)eLgHB!N?;XJX> z92@=ucGC8{^VhONV$N6wr=cx`;63y}G$P{+dmIcGCy#!}&)FLA+>GTxGmC)RH&o5| zl_f?sBmxM_43352CGqR>LUTvb)p9D=T-zDq7dp`_50)R1F+1C!`o83XH03xHODtHp zxF(;H$1s5-==lHcB|=)c;n6rx|4&r=&VNwtjmv=zkRHX;D5c!26))x>=snrX&d4~} zTYeJ@WE=iasMzY9g_*y)*|i7dcwo+HRrHWCT%F^tkY`gYP_#@zb#>F8IyL5@Ud?t1=bn=RO*F-2J`WI%xuzH+{+y4&v8Gdj77@b?r2vXYnDT-pozr3I(yFK{G9K+4H1bGTFNN!oS=6 z*Szw)A>RDxfx{01t^PM%x)bOgW&gjaNI`&0Dd-3)wt%#uiOqVP8Y#p)26CXl=*+!} zL;E&=ubE(HL&q1u#-GS)3mOLTguy|Zq!S7YWm776nahp73tQ*^ol+zr&!s8vr=fPD zzg_L4`>R{q;J(FuCi&vowKEr6Vw{ju_Fs)HzfPIvKL1;~<30pC~Bb<~X zec9Kw-?>gYjEhjFD|4=T;Wm%Xon_O_OC&7lzq^g=pCU&1MA0$_6Ls9N15lK@OE6&k zy9*s5ka2pz+M1v8sdRRPL@=Rth%D2c=!Uy*;_bn1PrQgEt>|vpCJx}e!CWeiP{|Ik z0`AGg)I>QHuqrwt;(d|(*8REasDxNb-|{d0?XX7m07n0HjtxNKw!DqL6g{)};;&x- z3Xe_nb|rNt=O}IR$hz}cFJiu5fQYsLFM)&2d|7e-@#p@;6-t{f{1|_CBR)v-x7WAl z^;%oJ_s*<&m-n@;+@GxI_>*{bsnEY)HD*j`9YC`e(#?0`{OMQoiajlaoXqsnS@^wz@O z_F`v=X4#sDWk|V|w5nK+kx4MMe-+gBP(%dh?VkTwx;c8W_UY@!%-oVnk3Iu%NcBWg+r?SJ(M8!LpE^jMiU^*f}`XN}StLEO%-zd59> ze?H5^dTSQbTR@!z6M?W`ndNEv_5>Ep=A7njkK6hi+UTk^mcQ@G8mhG&eV2@uu{`ZE2^?n6crL z92D=ph2`{N!KW>9FX&>Ie#p&oSkPlPoTAr#{IL4b3kXWsw(~acq@Y?#5T%mc8FBn* ze~1saiunGBU4}wjEx<=m`N%8)3IQHx3-9~!Yzg2?Y(yI$)hCPmp!G15uVZ9v7$D`z_7-*B$i{F5~TGfd(D36qQX8Tb3gvDF}hIG590?&W$c@w#5)-Sd;S<@NUD&rV>ES~alR}py20)-uf3?Jf zI;^i*I7tZRl>Cet14SwVbAsmS(^)dQ{9CbCB>^Qm;DMWBUbf-4lK?;98zCZcrR3rL*`HY2t(&fxLl{o|9+ z2LkrOuJsFuXAZbFA<|MEv0f2#vs1Q{;~)?P0sR+nE@vU#-+Qlba@51HUD0)TD$(M} zZwD8w`8j*GpU>*Oai!qR8sF9!^JV2US3&=T3A4+Te;3LZCmVCZV*XwIZkJ#C@AdQ1 x*8i-Do@hS&e_RLI*#FP{*nR&m-*oKHBFb*J#(N?4%@q7cLsds5Tlx6a{{?e{r`G@g literal 0 HcmV?d00001 diff --git a/images/unet/output1.png b/images/unet/output1.png new file mode 100644 index 0000000000000000000000000000000000000000..de33090747023485d7ce0bf80822e9f323c7f3b7 GIT binary patch literal 37189 zcmYhj2RxPiA2)vNy@g~GvPF@Vbr3Q#GNWUJ?97aeWE>+Qk?pp!S5{UzwvdF(j3k?c zkmqyy{h$BqdA-iu~c8J^ez1*GMyqq0T96olQj~v}xB}A@^TovMQ@bYqhBqJ*7 z^8dd<#Le@8DE|*86#NnrcMa1=2n5xA?0-1LH;Wt*i03u8RFw?td<&wERTW~Z@WqP875JS7$o_!_@Q zO;Z#(6k-3c^S=5Q*B=!Hr2>M7@^kF+d@@%BwqB-~HW>!q%sw^z-s-W`-I{h`w`Da$ z`Wq@%+(D8#PAz}bi+amPN-=-*-(S_p=&|2(kYtTy;Q#l}4l^mvv3{X#D}(e~4;79xyoXPa(PmZTEaYfgUc+Dro9OOV^sXnBo`=w0z_{Pju8`gtz zn1iHC!Pp;x+lM&>F@;x_J#Sd}OxgXprHcL7+e-iMwaa&@-~6Mmny>%v_t%HgE6E1b zacbg{l23<&f7ccpm%hvRG0^(wXKD3z+X)vv>9@wE_z!fta{6~ycYD|qmJ)8>^RGDj zJ)JNiB`JxIXxyk7SnzCum-|{ls*KZlLFzry)PacAtN_aMlPBkHJhUX_6cpbCt&T~V zY$n@+WarNR9&)oK*m!x--?j8Mn%yn9L&9hkC>{?t2X9v8qItKUx!omyI3uxbF*Y`K z)T^!#<|h~5)}~Nq-az@}WO^R^X=Asg##4g6r#;vSr3ysg;o%VzhD-k}&Uc@7X}HmR z9j2ebvQ#wx6gbU3-+%HwiF}lHfbf?RFH#;4R zGQW&m%kb#FSUm33xYsY}F(}@%@X+dnxuWSi^Sf2~?aq4vn-Ok-OP8c~I`DRyGyA+xLgkula3M_xLrLl|MUd-3~fB9)1$< zz5eCf-hgP&$4uF3*V$%&7yrFJJ`Z@?;#yI5H)Golfra)a)wL(;M@PHL_fQ5DG^{L0O|!Ic%SqwUXl<(HJ80rR={*wO!c43mdK znDEo1D%<`D%>P{or@D&RkjOqJpZA&Z=&4?cmvx;xo+vl(`914v_1E9YDF(+n)xtBn z{P+B$VR>@Ibe$vJyiecdR58RxQuZm&ym5))XerOXcw^NBa3LUx8hDN(cM=6q)_;p@-Ht)|tih#yGWFM{OCnzxYuskB)f@S`)VKg=YrsuS^XQ@+P zot2=Q>7&Alb6aa=B^42Sp!=-1zZ~1qSumodoJT@JqS#OXyWn;v+W)4cw(NhD{kDI+ z6RjH<=Ju#%)}%c+$Wqqc-roIi)_3X2-{JFUFPS*Y7N7eQ6_&5Evbxi+J={5LKWD9M z{cSc@X_arPIeFH8x$KYd*^_BmhtN+p_~A-yRLZ{&4{dyWeC|z!Q_48Zy@k&@@H<{f zH6NEVFSBT>*?Pp4s3^wNRbw~s-6geh9d{Vx%vAy z^PkQeTEiP=DMln26MDuz|ADDwve|!&R%#eh^QKUnxcqkW`)jvuY)#34VQu`8hZd8Q zBTwiF7p!Q+6@9l8w&e5K=^CQr!OauXGSgZ$Q#FQb%yHcp|C}4!JZ0e5dewe@w!Qxr zHvFSNAIhrfKY5;1t#Gm4*_I-A$EH`4tG7%Cy~de zTYS4Nl>xKsJA)F#*07e{ptSsb)_%Go>g_$Mn61rgKJ7r)+s|cY#1^=tq=l<&JGR_WD@M|wgG9z)kAtlizIvrlGL{n8SGHf)Y2o}ArGn_uhwpdjyHf4!|;+0M4@*CXpbc|Y$%opH+{=%@W&R{Jq*db9i5ghhB?-!1G%9&P!yqgMt}_piG7eYmu< z#D30%t@+oTCquAz#CP+U1iDZ5kk-TVaQ0IKEKCK3{j}j6LxFFwC`}DR_eK+f>6ez4 zj{Y9DC)_;!MrBg(biuXl*xvbTT}eebTLKYwp}ThyFfL&Cz>KSuj{Je4g=gPoKbX~c zYq8#e3bT4r=%B$7q05bb6egY88C(WV`)l+d;Y8x7zG8=a$!F;xmue%cT!K8|<#$Jiq7$ z?P+?J1-g&vryor8Loax;hbMw6j7uB0n%AildOW&l)ay!&u<(Ji4y|6xbL0GUKXG_f z{QC80sOl&ynAOJfzbCr~l}}i6^@?YQpp2(qPGI0qzuea{f98s<^NrAb_4(=D7ea{^ zo7XEo_^)P8Y!x~J5FvDlS8DqEXMMNaEr<*T%Wv%U+|%`n7D{#YAg`8mfC9~kSvLns zt?;*)oYO_d_Ks&1m)xOTFH}A`6P){1D244mG6dCX`QoaFmzak><+?B=+r-}>bPHNH z--T|-*s-N*da_YV^%3@5;5RZW2lXUL=G&3^Clqn^Ya=h2lJAr}EjMpKEp^8QzJ@jM zbG$TV3J;CpiotN5YYX0^q@?swjq#4Nzw(|*MJBU5=7QjYPs1G3dfhz2Yd&|>i&^JS z+*{&gsFb;8Vqpz>TrN&+DP(iH!DhSl(Dm3q#j3V6ql~=3_p7G$fU{B?vnZE$AJp$e@;%srKO`nLvgxL;`q2Y zey#T!Ekqh;UH#U*U^#mn{k0>&z@1EF$=qXdgaE6L-yYe9{acM`LFGF zbRhayuEH3=dthzCSAi7Ln~aus%Z-;d%Z*FT2;8N-|P+2Y;P^yGvz zq!En^oSh2?kG~zBtani(f`gkZS3H}xg4Oc%lLzd?y7fv7_4w(bU_T$SPt@iWzi}ga zYHF&vS@K{+-m2_erRa>%dd3%4`)^dyyu*MHTl;(hcY++P@2ofDym9Hc`-G+MeP`!E zANe<(UnpleoE@IORc2E}mJ(N~2S(vO?LxE`zdO2Hp;cipr+yIC(_|s?^uv9a(xbpO z8Jv}a$27$FKZR}zhxM2TcN_# z#DjF#^NciBu5u^Z*dp~!UohacwC~^h@8a1rwfr^8ue^F6rI*M7S$=~O*A0tw?)1CV z61H+PA|5=GQ~YICw0U?!Lm3ILrjoDQhxc7f;3qL}**=^g;Xzmk!B`&!DkN)O4j!U!&!hcMpj1FMw) zURBTR)}F_Yepie$EC)l_nn+bj|16&9{{-kieMefnL5D99Ot0PQKP zlY=w@x52g7n1c2$w7DjW_=aqT-A7Fp{0wM*dQxwkj^%r(*delbo=$?#WSmpwJYy8Q zn$Tg!(7&E4IwtGT@(6VO9_7&8MmCT)iNW4x?>+hRrx6)Kc#oFd>z$l%nh+%hMFaP$ zyID|Uo0xkMna6)6bztU`;wq;SY-yTk)sgx61lSOo1-RM6JrDMKw>UlTCQiP1aEbu* zsmejU@P!BVj&d#ncCAyr8KZ?DDF>~Gn#bigQ@60q&NQ&uEJrA!$UNp6O%Wp<3{AC3 zELCHuB0?dXs@jCS-i%_+E1l>?OlS?yb;FAEK!xFQ2FX`w@r!wvF4L28vL!qk=pGy- zzxm+$YotPU<$%0$Ug*UNBiA1r%=>&bY9ZpEoP;`6V8u?G)uz0FTVM-H0kBy+W;v`(|$HwL6cOT zI2|R#W$Ud`GBl*xBYqsh=}?ZM3N?#C-Qu<}e!Qe_eJ31HZjjtu&{Gb8p`$ z|6JJB0YY3H;N%ME2Pjlni#_5qMVDmIOAGGc_H3feegj|RK$!G++E>Lii-+~h_75Jw zq*S3Wq*y*9r&1~>OFT(Oh4-1L9{P=SpB8-~2EfM8 zhgbb)xjgSN?6#iDQrp}v&Tw$lA6*mYCp#`b{B#}#wa^k)pw}Ma6S)Hi&BWK-YYzOb z0M7C)L~Ni$golSiYt!IOf-WrAXDX7q6~?H_9)6lVoS3(Tn^%=P~jV)eES|R0aQF4v$SIeuZNOSNrW;E9UUE1s-!*y0yaM* z#bUCRc)4seq1kS#1u_pE-cLnI$;CpMZ(PbrPnrt|fdS2#Jq$$gC7NBoIBMdKKuY8E zGkkJ_KiKxGdHLSN#)k7OZuIBi6a-E9!-18n4LeaUd5o?~rD)KUBmb=nc1uycWu*~^ zFY0`xw56{|Jhw-zbzE6UH3@uLL{EdCSSr4eRzz1Y+|YmRa4o0a343Aq%Y=CsA^_dp zWWW3ZuVcx&>#3vUqo}XCTO7@<9$&PjS=0*de8Xw~=KhL|nO0a$oD=nqJgA4~PS@n6 z-K>Gmsyu6&0pC)MH3pmt(5dXb>J_W$=u3VU%NFdvrRAefp$p1%qd%r0-LvAKDtNsm0n09K5f0gr%x-myF)S%u$p= ztRw65h9r}L*cDUtuBjWS_Y$-s%Qc+(h|jt`1iu?yyHbL$lq*myr)d*@b7z7of3GrC z_e7YU6rkJ;O64Vy$4e?xGk!7SL1sb1uP>psXxG6Tp@Oe@F@xjHeI?NW0dcOi_eeczErlhTqxS%u;X1q~4JJ2uT0(T}H`Qsfj{b(u9S zF*p^Hx6^U0ZfQI}Ax0Dy75N9j8{zG_dQm;IBL|7zB$G*#akTxT&K#piLl{NUh@X3J zU<<-hvb~xnQ+iwUJ96#6`F1E}uSUmlF-{@dwuh9~XHRvMm33s)PP%4zm(vsXvk(VY z)-n4p4sa)JMsvZe!N0f$ zNLf`%Hm_`xmXjp++5X&$l&+1Oxs|+Sm63is5B(G^trD%8`D%n>vh`MfxSlL-ToO>nbAx60a4qT!?f3>G?REMACET8+UH4QS z4r)a?w$*A;m_HZ-kXT_(+*@W(CB_BKJeMPmyN($3t@RYEq-`R*VjY5VV{0YR(G_Vk z@?MsiMw5OzddJ2TKRSnArE{Dlx{MSbFn1=${)wrK??vV1z&-H{x{~B6;iIp z|GE6|1CxqK>TAX-fo@;DOC`ddymxE5o-c5Q;%?BmEtXxb>3)uhxcW2ZhKWX9)N|?l z03-v`4FeZG?(;27`$H}YuZAO@k~X0Yw^(9qa`#^_38rWUX6EbM{>p2vJQzH0e^Q48 zG2BZ)o?B1#alwZRMI)ac&@v}Kcv^-hITCYg%3+5w+hL{L-6M3bNCg~J45p!sf)Tf3S^=WdNT|?|#)XX!XNov)Pzku-mLhU&brG=|^ zw)hK`-ly`OphIqg%G9{`k8)^3>odChSXF%UKR*1J{>NM=-&#g7+;2_2QliElhyJm( zLur$k>NseYOS_Mevo+te4b3?sLj>mVYDLX&s|%zkSDP$fv_ndn`qpoupmgWSiJq6vg?P*7`&O|$sBXVcHUoaZ~#!hD9J6cu?Z z1PH5FVoc;=;@ymD^aS{qQ_1jg`BOB#J-EH(X2~Awi_kYyEidM}K!r-tEO50q;6q6% zT3j9pxK?G6Kl+O@bNb|~;)Zh^u3gK;-8D;XTQ%LYWX7j=z9t<}FX@CFi_kSp#{qi+ zsbyA#o=J=06@a*j)7&n5s4VaThzHyVTVf)jUd9G0B-|;%ubdd5D~+yo=(?!B{FMeT z4D*nhfP$nD*cYh%unF2^B!r`g|J9}b-gbiYw}VVe9@h~+p$R^W5mL;Qj+*u!kD9PG z1`s~#MQiDzl(_%6mkW9Aq`;iIGJ?=mJe1i~u6GkJM6^x4GfT16k9!?~NzuFLnfbgo zM+V_8r~#9BHBFVD9@mB(E)U8k_%BjETQkwXpbZ5sY#HY^Cb&xvB1tl{arH|w_pU{S zmgNzIFS_z0zAWwLR8}UC2|G!dDt1XT?aExKK)$=1mvT$Hgq@ra`2V_)?B@G5x5=`= zhO?Vc6bjU#y>$F-=JpxzCPgWhNz12}Q7^_ahLzDQCR@_-FQ&`ht7HURIo;s4%0Q=i zsPly>M*a!|y4Swe!sPk-hwa0B6CqS!APXR9s9C^lFsSMZ`9)_QT2mgeE|<>=wEUid zBuzE^K{ta6t&L+Izy_Te;;F!>tmZPYHM1eS!&L7z0B-1vUZ7BHsW z_-YeMXgVej3KxZdPgm6FZf5-HvWS^{7kRbq1lgY zMK?&dRM;Rko=Hsmebl1PvL7R@Y92KWU90eQ`}W&>9!5F@>Qbk=*g;de+mpl8#siom7zRt5kKPy@|%pk0#bx-zVIHppD#5M_{Ca%PJx8FvbNMo}f(aXnLq8(x46 z_4s#^Pw8#A3O|UZ4uIrA9Qna}leXL-FDG%^zv%w2>6C_n+MvOowVr8ClFUP>PvZ>q zG@~0X*Hm&Z+5aBlxP@0Pm#-e1is)b*9k9LX-C1mVjhg6{wU|lj@%Z*3e8h+K1K6|o zVNWL|C217g0e%YV3h+92V0S5+J11xG)uNG}lmK2^KW`P>@xJJe)K}tC_gaclR%9Sw zyf&tNDSJ55`8qmK!Ahz&`XgUqKOYX!M%n>S44nrnXAGJ~Vz=M)fhMK_HO#XWdqvWy>3@)I>*qT&!vMd^oe$5^YEXt#zok2q;3zRWj>`0qSY)82p-hdL3my{?a6sL_ge$l6b8uMWdutoxH88 z8h@V_FBbF2C;b9)<+1+kgRdfPNtU^bTF@V4A}Sd9x!&l!oz51(j&OxQ^bcAPtfCbJ50nE-U4CB)R{27S!`*G!cuUVcBRS#vZ_^YFLYOXiU=KaV&QQf4QIHS2MyG3t!sAngiJkXbI z0FbxE>YY@2Y9x@EP5uV>>&Q zu=EN|(UhXfNI^m?K3ySQZz|W|$G$d`jL^yY^X?TBfgiekUoCk1jj5YYxFc9N_SHXx zroHis?cX3~x0Co%DG+QNnhX@ob&g^Tv%HcTX!`&eowv-ukQD;>UJn6bf%?VG9QS_3 z)8m`c`ZvUagniAFP-Rkl0p@pcAePo&!?n)Rdu^{GItXGKI~Gy*=^y0PWEES;TzxZj!z(s(!4s=H zXg_`*hGGzNSdFe4D>R4+k7IHs&G~qnv!Yuo>{%JX;`_&Y+HA~SeFuqswhNw{eN;6t zYHjgD6_zc)DZ$Y@YL)`8&+pf$y12aj(C}>rCeKb)uEgdA6XiPNkr3U@z2iWr48R`W z4aJHt?;kfm~2d?S5SHLA(D`1WVEnlB^AcBwC?4#)X*5~OOf zn4-N)A8)w+tGoZL3-gEg+uxSWbSb)BL|=*2#)z~yfe?^Wr@=vx9wT@Xb8CbjAxRtU z-k=ShAIKrPPt|%x>b`;IuFBOZObQSd`a-95l@56#x@-H;2E4`@Qsu=6YP#aY0)7@s z?nDjuP6=Q{qK=nrTE;fU>K=^tD}xvgs|c~+A>pumQ~bWDni`sUv>XT=qsAT^TPI>UEbK zTaA%Monq7$3qnphnUJwYF3P~+Q4@>r$w-H;F+GSYjCef0L)d#C`M!VrywA3A1!(** z9T`9{D!;n;_({U%LZ^CCsEW{svW79BPztMRWCKYBC~I{XxtBU3X_M}+a%|rFUNsE; zRVyzVpBOV3Wl)9;RTdFB4sgQwindAp31ZGPSD4c0??YJ2X1C|& zUz%))4P0s`Ely2LmA#+u_)6#YQn@O*l{ZS3s8s=>uGn-3TJQPy~zx<5h5NfMicOzntJ}j@M9pKFN`&(%G@- z)SvuCAx-=J>ORzIkX1U?5BB&RXsH*KqZc>$JjwJss{FEHl-Y?_6iu4jQF3vb)I#0c z>fWwKBV~ypHGj@zn?#Bxrf>aERZnN;Ir*d|3L-sA>D|ij)1Y6+-}uf14lx0u%5H!G z1pHkcLWFVUJqp0Y5FOAnb*nZ}6-ap#fHUO(VpEloDnw=iUr)4qc}f=FR2WqaCQ=jz z^<#S*%ewyj`2%g`*h~_Z^r}eiU?n|^8K_FXEIgk?k^N58b8qrlwFFQoCq*XAukrGd zXA|PUARl9j^r94R*D5hozW#azjrce;6e|AAPwwM>`SZrSW{}yLY@krhloN!Yc|4y) zOZce{kjz>MsJvv*e^tjth#{4z-dt`dt@*DQe;9>6Fg~~x;sK7FgG_cIY4Yx_2co05 zS7Y`!gf-gS;LgGG_C9I7CrU_2=yx#<>-9&ghPD5mdcbaXqv-Er>)^;45){%)97L{M zL$wS6tqCPlgYZrcDxHGC(&YX&(5_%2U`E&yux)_>?U71}Xp?c5WJZFXtej^e#FaX* z%S1z3N1&HFc-u=VdXpPXO_2Yh#s2YQW&liBOS;;ohZ67r%F~n9z`y`#5!98X+Q+>s zOFk{&XyAm934x4M`9h~?-9nP9t}(~Y4O1VeijI{lo{q+=-nSf>FCF#az8g2yv{{E4 z#GUFrPc|?ccSHO>p@ahG?}d?Ein}BQh%&zYt=s&)2CHktG19y1zA>fhl*tzeqFExj zsCapFLT0zn&`H6u@8s+LR5!l& z1Tv|Ry=u%zYvSp7!*kWJ)QBhP7BGL;M3`Ox=^#Jv_{lM`usj7{4`ffO{({CdfI!fz z_jB$ww}DH#YaxQ_5HodiNU@=5t~8`FH8o@)J8t+?jMS|gjN;Py>+E%}$FUDA`a}CyVR*fJj07$W4i4@t+2MwU zcrrvdY5sS?^H^uYVMR$PgM_=8txHLD(2sN@3-baxrDs#)0p6s|1rSgHw|YzXf_?aD zO)~qM%2tAfNTebMFn2=h!$W<66fp^j59Lg@eH>(@rVqN-+UcL*hE#4FfMW_FhrjeS z@AUHOLqkKGo!?5oay+aCymf5w?4PL!V%rWRoKVir ziA>%P@} z#P3FvuC=cJDQ+!Uy|OzYpKKRPc#$JMtAB#+jAP zL(lCQS=ZqBQrB&p&pP8iwKjI>#D2`@vhz&L7PdY4E=-2K=(F8{XvhArXzMRpwtx+B zK!DaO{V7Mkif+bL25ml+{*e=21;em}P2@q(4mHrZL4eqKCiME2tzxqvu{g0kX;?Z7G&ZvTNFztpa8L6HdlE$ERtm775d!q?k^u@32Ama)6>C@}I zG||k}{gQ&J?p@N<@QUi2{QmuW<7KehxM-uXK^Ksf46WQ>xddR>W`S&(FiXcAh)qNFXYfFWa(SJ&rlz+(~0 zp?rLxfB`;~J0~V#>JL)xd2sb2)T}%#S5XG}7~a)qOS|jG0^$Q`JKmdR;6d!XMCtaP z>NMSX|4mF+pDM@or^GCo=9n&;z_`>1Za(Wn#GTosDq4xDPlAaWI{^}sl3l{LYpzA~ zM?Hy~ll3@x70tly8>{(l64P7n$RNd?{fN^wOXuhR)(L7>%uEYfXcp}(ag)mBSeZXM z%@m-1g7^TsG*osbHn#4C1&(Y1ZBrvmj$T+H(O4UxOhW+zfOvp4%NcnTdxb%q)hivR z2JinusC^G~Y7ue=LaN(W2s`dF=#$acduaJ6M*7^ z-2&xW1xx~wRIJsR5Y4GYUf&7~ikkSJuu{IeyW4yr&5`%T4>oSHXsChkEOw^rZb6I)AXKiw?Lt+{kP$SgI9!9MX)I(G zw`y|Ny6O_jr~zOAA$^c_SΜMW+ZjL7WB;E)Y}Dh-{1Ao2(BnLhx;xrR}Z*P{hg1qlc zKgRXt%HR6;8iU1QHb!=_Uq>9z`5+PCi#2FJn-1VTePeL1Sl3EUS1`wCpk#uCS#0HO zk@;$@_}2SeuU}_pXE5^?dO$59HK8D8;7k<#3Y6h+695>XRf9hY2`MOH;9Q77;>Sej z8T6o%k}FwwNP2d!_O2WY0A}!A5cx#>_={6u3~sZ%DZNv|0ZR`QHXu%Nx7%Uq-mvJ6 zAjlC>GMC9z<4Oc)erfIS;&i6}b)d292aA1t*~>0T<#)M^JB!rXg;O}L)A9LW!u4f0 zUeYw6{jHX-M{UOizs3siy}<>@p$ z@}eU|7>Rm5fqpZ+2;%QYmAtqxk1L~>2nL!hT8b`=<%RI{YfM5i6ow2sK7{Q*mybJv z<|H@$1oYo88qG5uUzC(}qn z@hh3AZevs3uHT=6nTb_$sR05r(n<0c-MQj=A7I$bPsNg-j;$;;HBe>RG&nGgdIAA4 zeK{PKHO^7~+7N26I(eo_dfArS16j>mClBqx+ByVH;_;R?Gqr!!^9Fz*5o!MKJpb&? z{r#lIJR2MkcsO4Vd3x~uEqIIMqKQpN*gxUbabsvFN+CeTyVUHnP9qPdjS0dojbGW8 zLdVfOxjW?00?M$Y@&p;Z^6#QjnY%_rqT6n2vgzag1J!(s3(8;cm<=N%Bi9+223Pmx z)ImUB;40ALUjVsF1&}DDPAU`d0l6>Y(Pt(QZbL?>n`wAa6Q?oRH=+xx{g?dg8&^R+ z#ZQpF6lp&bg;PbZ&h^~}n*6&U+rHh$t$|Kgqc1y&l8Dtz0?D2ep*2VN)m*1FggT1_ zS4M{2i`nRnX7i4grE%Sy|1NF`8XT`^nLXTnzboh1V;SAF@?Pyq9QDh-og+;;Pi zp!siR?}Xyup2dLD4vY7_i>T#_JFNKvm7r@46|NJ+B$`?t*us3R4{mz>E?2Izh`OQ0 zWaF)r!^5S@NI=kgr*Hy`C$0dP1OlH2P+GBoiH=rQBo$qWD<>`8J23&ef)em6n2pf- zUs--7 zW4=p(yd(@b0dbXI?gBJ zMOpw>Cp1IC;!0u9(vz=$BV!`?uph-eoJ<|AisLRA;e@n-EE9-pSTEy_I6*aU(ygsG zrf;1uT9H4mp2aDRR>g&Jggg*{ebD%^?GUm~;7LFNVQue<{blAjl)L+LbMa@9k>awl z1H$r>!X~F84l&}0HfC`WPP1^nOr8BDhiCd=W16}+eif^FP^cr#@_jLG(OshhC*aFY zuFE1SJdcUzklL=cAV6g9f%1xsxTh#{(6Bw%)P|o&3+sB0zQ2*Vp-XK5aGrceLI?sN z9zLq;&v4<3S5#0Jl(iiXQA{(xr5c6vAF8D(xPbp|J8`DV-V_XsPY$F(qL9* z=J#0LX$R#C+gbP!x1VNZQ{*xwJ6I$3Q))R2Qc z)B@B0Vh?hx4IiV(P7+P9Zi76VSy3eF_K!Il9{XMjSj<8+QjYkh~k!lQA-o%@-uq^Xg?M~X)+2tPSJ?F1ljlM_EOTVx5 z<+=0q0is9Z*Yg2hUUSFhWG+L5s3#n;u=cYLS@&pF2ORunf^#hIa?siYPz4|?Da4BeVt<*)* zcmc+tg=s31m(wZ|`bWLZF+x+-lT+SA!uZ^YTn#-xq-90egiWw>F!Bf&6Qf3mFPJ;J zQFPl>HE|?oLC5o0kBypn$MK66WYjl-IR*Mq)yF-BHSql;M1IQgiaR|byIRGA`B$p_ z2eIy-Pw9pNbFU22hiF!MHVuw#jit-;c)|QzYbyk0s4wk+L@cC305T3g@QXJt}&kf5^t*pWot5h7m(uDVmGroRdA7mH&rG8Hn=o- z#|km(*kom(4lR7jIgE`Ng>|5FlwyI@ue##BPIC%!GJh^Z*6CilBGZeSK57hP9(qM< zoynXp2@TW3UV}6uM31TxtO~HR^&Ee$M{}2}a9`{#pWfXJC7!qDu~fM%Tqp~oppPq_ zSQk=mL=u(Gu;JMRT>DH=QrhbI7F;7&ol0PVik&bghpiWb{Ss<)-ot#pF zn5ceb--|37enp!!S-bPrpN?bEVl<{v(@{AbCJ1j4ChJ3kn|3Y*GMK9nu-wiM z&HhPum!7v%WidR=%<)ovifRngp;8#WqNPB9e)4G8le(L)hxTMt@2if*fn+xbg%6Y0!z$Dt+hpeuU1dr+=jua{yG@F%o- zh}#%n;H?JQiX*u#(DtQTb#anW*-XRdep;@al1Ej;Va!Wp#^==TBKL zC+7z^N(FzoA|UQ!8%H;-bTSAg@O+~sjh&ZBi#LFuA?3Blp{Osr%<|6&}ZDPS+9{_g9$Otu+=FsZ?j3rn(jTg9>$n)CUvvpSr z$mF5B$UG9VGjOWqCv# z%zXIi7yG`0FbkNY0ii#58#L9D6U>EFq=tsDEpNgR>+AdWaRz7iHqB%+8f{~Rq8Ecp ze`9^%f0u1b;K4R=S$56U?ZXog zQSPQ%#Fbr^42TrE<$0?0FKwp;RrC-}28C1>Yb$jje&RFKTd^f$q%YF)$8|aOwv$XP z-tVzQsZYKl_!P5gMB*$g1LdL!yDIt%Y<~Z8;Ne~F{80SP;8ByM>L?O7LY0_e&(?$b z(G#(^0Y*y@@r9o4Cr1f70G6F!^HR>G_Dul`sm;tC>o07nZPCO`00jVc4~{^I7OSXz zDk!)*_hOg8&6Yc6CP8>w5`-&3se_~w6!fbT35Or#jo@+Pm6>R1AX>0*kY%15DfRlQfyXyZl#BV#&=!^C&87DDdz@#ALKDh7fWhbxH$giZR;>>C23R=NU^ zX!1KOB;~z>lUsEsJn>i)!U*h#;TcXwYF6%^uBcTyiQX8GYk3!t^l?6T`a_GaW5v+d z#AUmCQ?8s}t4SYG&=(V4_AQ0}PF4U8pn$Ex+s4}wiPLI-of%>s=u*3qr7urGlVH<=Jxc>d!OstplTo(@;hL~=8v)K_rs?&hz7X;5qP@qh_t-vb zy2eA*D3{1vc}nOtWyd*p$#dfQ>zEhADVmqF#9w~YLSd85fQS|E)`aQlq2v5aRBT4`auKKr{}{N?;Wy z?cRDiVtmLF`d^iaNuaUu&~S#^0(}hxh`j){!!Xoi#Ewx~-y)Bhc2`-AZM68KE9nG{ zxW6$GCdLfi#*-xJ^^eM&#a}!*`Fenb^S2?QGfM7a?~^KP*rNNNVP(G=m(K#q^!U^` zJayC?=OFr1uNfyL2c&cX;>lf5Xod3`R^c#&9S|v8R{`my;Eob-5eaL4^%$mYF2Zt{ zg)Gvn83|NQITJTmFauG*C=yPj_`f3-w${My0QUo%{Y#Dt3#&*(-7TIScS;exqw(@` ze-w1*Cd@7JHv5Ke^yjH<9H;7F+$oC=3H*M1<(19)!0U%?N62s|8zdD>H|t*g6VRte4E z%8=Tjaz>NN+HcG|5vtsFug#FoA}DvK&}rlb3xVE8@VQA za2(b4YTtuSJo&e$$s}NPI?+SBf@J;SA+yENY66}6Cz>dZu4TJC&V$Y&sPj6F5Ahs}o>q<;7&1|{+u z*o|bvJopd!GRajcR|${ zdsIPK&XBPlPVszL+TBq!srjpC`X;-J1=BThFcnAOfx2JinZ|S$pK=9J&X|U|!Hb(2-I=vLJ6xLHE ziySq`iOq~Rvb$C-=$t<4k3P^NCo$D@=#)th<)(DEEdfE;yVkTz@eVCN>bq&WxQZ*o zXt^XPVXU$~JNwTAp6w;T8pOv9ZMHT~w=)Dd-7FH(21@CKD4=$MoFqxBe$ra%M!ZzQFq8C<4w6 zlTs-h<*a$Yk$Mc+;Oc*m$M0HU-nvY)WVV6XWEbNW@vI zsM5kJzxf1&>z^MvDRcIkFr67)Bu#b>-ROapMXslNMS4C)GEh|9tGOylxzVg|&>wFr zRq_z`<|$XRu6SN-@!3=c)DwKN*)waLT!dLa@ML6Yir2_VybxaD0s7@+{X<6Z;Id~` zP`HTU2wKtzEGkE10Jk5XapWRBt|ps5`>Ksn9aQ4JSDSI|?q!|0Hkqe5u+!IkOOJv}k#h zLY-H|nfjb*rv)5fKp%e-bZes=(#39b^5Uq3g?v=^*TtS*291zAsc*;cQj8I#=PaHM zef)?!x%55v(Wo<*3>79D(j08oETCH`Kg*j|f3}r0>ZUly_oRK#?Y)4H>SfO|{Khw~ z`R5n7V=L6hSmof1Hx`RLdGe&?^_?Ebd&CZiwzFW*udkZgrbiE~ybqW^x#v7tg%io@ z!=$FB_C2NPWUB>u($Oktxu<_7+P`OCv}ru}V!o~#TX+r5JJ2Ks{i=!h@RO;Oa$=3{ zKOq*wybl|4YPf3j6w7P|Atshun=Yn zcpL--n<;6pL*h4Jvz~Dnj+Yw3>hN#Dm|WtkkQ3C3aSk#_Nff7Dus23Z_$Ey?8J^VX zt?94@{n9_}d2&hwM+;+pr0kSHhR+DtYQjFaLQFw{(%N@}rQj|i1YCf<0ujW5cVz%8 z_Uw7!PB?p6ZF(>EK&692@m8Zvg8bWxL97c0j?%C1!dZMtPgCY-2;aS7qDk?e z*)ZWdKu?#;?5o*W8+!LW!EuL^P(j8%H}(8AsdOvIt3`H^-iZWun3xOLB@aqWgCYcX zv+iX*B_1zI$8hV+UiQ5Wgdbwt-q9``WaRY`i>f~?Y*(lsr9>UyiNT;OD^ei14E}-T ztcT#e z!AGhHiz>0t@Ce*`lwErAWTx3$u&}Vuuc-mfii3Z@oL!>pNcevb>-$ez1s~g41Rt;5 zz7g5|%}nmDg$KdhpDzti%I^F5F%@Nal4b?{o@%}dAOrh660qVx_|&<1<^{t2=ai|p zE|o#^|rOBv)VnGW? zi^!hT9&k3KK;+bb)Nw;*60F%o4XiZ_mfYl%^D_^4G6Gf{6{-g}lAD_wJSl{pR215U z+F*9zJ(6X|E|sJy+(G6l!Q`EhvVr=57rF0Alj**nK|x8L`x?7oAAk(c*W@3mcfID3d1tFPPS5#!mJg10VQD)mL<0fOoMj4WnS(0Sf#zNZ^ z+dO92<{@dDr3{(LOrmpr`v1=PpYyEqto1xC>$}$On>~H*&wXFR`~AAoD?QVtqXiAq zB~;Xdu8fQEsqvqRF;*?k3=SZK7s{%A0U;37vnc;nNP{aXWR|tlr8#y(RKr)I$7E3B zvGaRp3I>*4t~0u020hdgO7sqJM#Kt%ua#f!`nG7Fi)s75p7K{dzj{rTGlS$zqp=eF9{qWWbsL(8{>)wn#HG6yl&6Qg}B}a#d90+P?VV zPo<7S4a`=Hk#fuC;DV2U#)~LI!-3;5*Fa!cb_JvQlulw=98T2DJHuD~9(KNn4+KUmWRg-+ z10KFF`~tSq&K~@FVOV11@rOe)5x@il*!+x2y+Kvu2&v;(SDqEP^A`uLqMY`&hwfgH z+kZ}YM?(wdEHdo1Jn|~vCvc=AS~43NnW@u2cA+&cbv#4{iZUCsjSWx~z67xfhza?6 zbpH7r=gp3Y1#dsFtTCsS55Y$gbfShtEK@UlO!=h9=#s13@)QphgA^2=U!Gb%He-jz z=rB*LDtH9BAuD>K6ME{5m0b9+pi9;ugUGEnw}rqN(ECVnZ_43~pzxYRpSZcIzznu3 z`ql-nep9zIy&hqVJX_;vCZk&-5XP73Yz)pO%3_9ln(-N@2Ml&^dtr;jabE$|Uem>^vVnihNF? znul)8y0(A68t&4WdL`&#frGA=Jt1H6(2*c} zfWp{jPn=#fYuwlnM_Lk)jl*VV1x@u2x}mnV?@6IHInR4_s&>_YjiFfLKh!O=ySVK*ABc8z1ZX1yT(lp>E8`{)6*;cNHrgaf6{Y17!nGtWD3U+4$QU<0yodgK*G9k?bV^&2tJNL?u1!mMJ~^lGA(Y%qVumNzgey zfhXCEe8p!*ZZ+!fPL$VF^vzk&$#8w$9-e&>yr8QT(`3@7in%vy5ed?lFr4VCSTO%=kFQ>gV`%x z!)c=8D*Cx<7q!DN>`=U~oU(RHYz^Y>eoEVOV^=%d6n3T=j7X*bl!9oH!e<5OF$JDd zV1~QEA7C}*n%blf4T}eOKjW^CNg;J5#E;(x6*tF(zG@F5pPVP9XL5HYr3LgoG@$12 z1ey#~;H39A`dr&DXBAH+0gvs90&r(~67y_SAU)R8Hw{9FJH2+r7oBu)>(AMoKOw*y zCNnP!t?r7iuGWec;XjZs0X90eQQz$`4coAHd{?3r0!Sm_^&+o)ij@1rt3ZrgxGrQXSuPXrH~%%3`_!+APcB$$>$cRl zwC$&qZja=qKI|1YeWan|ahW@(JjLt+?`+NDK^oXr?fqO+-_TWSb>8Bo7p-1~BN6&K zph!Ip9xowWjZY0GFh4e^<3!Hy@Y*VD2wg@g^KsoQcgyiKEuDYmV1%dk0|7h%-o|@z zxTK@M5Hv8`+&v&YDczWOhAaUD!K4zlzk|@cOuT*s86^pD zMGE{|^8lF>`&0LK`!8Tp%EzUmZ$aJZJRI@Jssk7eV%7!x#(K}SvsPACKEDS;c#?w= zLJ;@a-D9=8T`q{GNDJKn;W9OLbY7A#IDYyK6Fb(bt9q_^9~s zDVg)25U>2YfpVf>$z$$Q^yblB=*=D$pkn0XDaGZA;P=jls?dsAvVD-hn3to=hpcuu zBBE{|625ZkX|zQ1tkL2k!MM3oyO`PaoVsClP*&e>nh4+I$ICMEK>YC(KY*dKg4^!$|4d+j!1Y^xAthv$$}7~$>M?Yfw|xoH=)5e9{ieloB8 zj3C)MKpBMvURe>aMi^;c41LH-ZU+OJp?(h}7oCXc8X=}ZIc6}3$*i?~x@Za8+84g0 zeiSQ{fOgy{lA|WswG&M8p;^CFv;7S@Q3Ys2kh3rAxRh1<2R#mP z(?PqGUV1A%meoNxDZxQa^`cQA`qoE~m6neC?G*y#Y01&c>+RXZTNi%b<(5oXb`aqi;WkML#eyKSYPM32_-T3!VN_vQ7h> z$YF2$vl?>RaZ{ZjtWGhXq;%ci9GLvQP#`5h0Knh`gcJ|l?E56!3b`$_D&GQ7jbIuw%pDm*_f#ar*J($*e-r-L?vwF&K1N%aRNLTCwJzhi9HY#7=<1Q*+ zvR#}%|Cb3^(V%JtLR_RmnmD<>`_qO~&v#%=CfhgfqY?AILYH0a<~zNCp%C8}nch%D ztp2msAy}wx3{aYX2q&HtpSAQ9<31zC*GJ#eJ(%FWmwn1q;w1}_!0h|x=vC5p>#yoE z%gVJ_e*I`rcqs9EklVH7*iF~Gctf5lyhd7HA89# z@zeE@1|qa+L>D*%$QM=I}gltz(W+4BLn=8PBCgjj$5!G{vh1 z+~go3iE@g6`}X^;){`*}Z|tA1>a~FwlfO#ycK!Qh+^yk$4_T={e;aS|7%+X&a@Kzo zJ%qdq>h~F0@5RK!5T~LXju2m^NczEQcv&}}hGe_Tj$RTWG_>yN4YFJy?nBTE4f`48 zv`=~j$*|%|x>pNKwnw95n-=F3K(MJ70!1LG+>LG6i?qJcH2e{Mz>3okax@erJdsIb z7!QaUzn)`any?Iqr-0EndWN2>+w4$iIAsv}8fre@sqXENLmW{jsNEq>l?LAfi+bm0 z_5A~kM9f%w9w%VLwf6Y5`JHuJ9{cI7489)g6D>kYt-{L$YKB!@E`F>;k zoy>e3I{kw#Up=@=(K$eSvaqxyU-hb1fBiBZ%`mAnBQkQSv^RGj6}Yc-)GI5WktC52 zTe4U8ZcJV+5IN}p>{$Nez`n%3obik0I`ASVk!|}pPtp^>hkjU=s`TB%%Kx6tAbWxc zSh3DbV27{(Y4BaAg65>>qHS1ObxU=!br#_XKi3CZ#2f<>x3dmMLBs6vv0Sr?JU%EU z(a8V0P9LTMb-3kkhIYc)UQXDNi6hO-+8Vsax`PF-l4ef02N396@}v37oP)msvbkE# z@Bh0m1yFTY%pnS1a?EUg3N-<2;Uhjt+VdDL6}__gqzHN6oZ)QyC_{O&SkPL5;0dBe zq-vVg*E+NQe8y8Lrzyms&a~{=U?k{O5cVSA84xcgWgz^6c4qoQnxPZ ztCrl3TWe7iCG?7js$GF2v_Mf81n_q*6}nBUa>}zEJMwzl%tlM(w{Pos0Pd3(cm4c@ z{FeO9uFLrGHv+8*Kh#O?XVGHgX5Q1WD)zV6&BKvH8ta1q3Li8a=P6EAVP$~AYtqj6 zlF>EY!x4BNv1HB&1QKS*cbB+I zv%Rw!c}k%0$2QMc`L#F_ihiPKT$buFgZQopfs5GAKkCEyqR_WQwZWig#|3F_2_-9~ zef}KtD96tIdxlk0Y%GfvT)%()&ol#p31E^oK#R0OkAe)WCiDF>(RDf`7nN`78YCLn3-J;wdI(((;QSPjWo*%p$%R5NDi4nm&7WOFY z6{qU4MkmwqqE}C#0$Pg(5&tLskXVYC<H=n! zk1u=_#Yd>n@(B^JTU7ASiH9S+thc=hclz2F0p0QS#YF*lchGr)|H7L9ryYc?J%aoY z1n&)YnLNgBvsB#49mV28OW)abmQTMiX62l!!W9;ZATj(p`u2c$6sQ*Pk$tUKt!6&x z2kEhg{dxW2(XcMb;)1UAnZ9GXQ6o#J3X|t>#{JdA+#WVkB#_H2^&=m)V;X2~h}h%K zCFno8?)-SM{-GaS>q2okLY%~Wi8}`eoysY({Mj*DA(Pn3_u{yE$YK2c?v0mKu{bqC zofx6nLTER*oVg(Y9EeWM<8dex2^4v2>u;`RRs-A(Mk(y!D@)hsCir7dl(82F2GQ7I zM+Mft_b^X7=YbL(PWNgE2N8hdlQFJL@G4St$wml@{?6A^QjWATa%7dsQsphn*-z+( zoWl}}EgkE!dkf(&)ZpwCJ)mNVpcDZjsTX7P{>FsfqP$|IAz%~LK2%G~)g(2c0%z-K&6ol}!jb8Ls%oP;V zrR_^50?3;XcA#qil4&9|301He{^y?DpaZdeV|ok$VLq6S)t`^QDu^gua6G25%)+7D zcFM=zhH!Crgv#IgV1|E`R2mVvzUu>=veB*^`8YElax&eEzJsrJCk=W zJub7;^cY`vJs+&pr~1*I5A*j%!Z#v()9|V{g_)De3ba3b2g9Y)jhuuI#HE*&;`gY2 zvl=`fjs8%~wNq1#K_o-siPz~5p~bA5DmyI|!Y3#@b9pg^lqhG;STB*V#~(qg-weeb zJjuRKw6(qX@u&1X#R;WqjSHH}4yqq?8~)R=H}{lR2N5GMlHjG|xK)DeoPa|Bd-M7$ zBNhsMPY3p!WhMH3(tt4dyWqcHKw-=v7Y{)+4MM%vnSa#C_U#EmeMJD4)-2K^pe01) zh64zJ8gAk@J+faHGkN?#m*%b){eO5|FV_ zL30pLgqQPA#-opZ8dfo(*L*e%;6;R50PQ6(lOV#}c+F~6P{e}FKnZ#&{f2tHvv0pu znN$rNfJ6?&v~Xys2ISIy8Z%b}1%5oz|GAqe{LeQ7gx|9YdqX{zpke-Y0F={7sMIv~ z=NYeV^l7XQ0K`}h$&cgw+&! zsr|va%D0OqSe!K}(Uo)F4k?^%+*~~XGZsL`5D=ZYIT;AYK+eFYv)w*D2Mt3+0+EXqn#732_g^rN9~8%H%?uB1}S*OeUHj9XLjtMg*4!y**QF+4T11ScfQ2cel0F_ z7rXjn;!vm6-SBqu^*qj^R*_H!ts17Xw!?+k$F#771O-$G;E06l{iF)Z`vg4y7LWu&1NtaS zm|}r06X{+KX+Bp3<8)D$sFK-x8jvDo7I%(ZR9s}RJ3~^302A1q95;H7(Ko0vzctiu zvYM(x&wQLz5_Mp5(kFHrSh!Qa{`>4pb=ALedJjP;JHNi|i7hs%SHb&9Tv^-nVsVEm zJzVBhuleryj_F_R`~^^GV}#1`fB6LwAT$sPp@0Y5w70;C8ap;3pnjTE$%YFBfT2-U zl7shzhzT(%kBo(@OlBrJ+k4WHA;c(zOFldn9+_rqBL6JbBZJ|mN5;dqC5^XDC+-o} z+tBBX&b`bWMDsBqeHN`@JfnwocKURL{d*DvN-`@qLrD-v&|DF0A;qjL?M8RxfMAK2yyx=*?`S3 zC10?N6pSH`7OOJb)u$bLa`=?|X+RT0U$Sua4|x5Ez=|Ki9w4pB@}<&|VeEnWJ06fz z>V@AXbX!R3WNGD^T*kBnDV+yxGHe;kUs5+Q;got=`IJ>kO&`i1(Ef6iIu@&-1GLS$ zriZ~|?oD2=;D&`g21p}uL2;wj*x}I+1jlfbXsohNR%N<)1SH$PN(y|bksibF*lQJF zK7cW|$Y}=nDOVZ1Mo&Ic2aXF@lk_ptI3`IaSA$+DBKQJf(q^ju%IRaD0HTr7vpz=z zdjb3qEu)Rebq~MN(Ko0%YD%gRX}`4KR`K)hKEr}02Y5xjmt)}VK%Ngj5D%!nZwLyH zwaFjbZabE-G7_nmty6Hjj~P5|XZHqM9)KOatm?88$RvIM1>9+5*QI6?J-yiY{!R}? z8+o(H87fz{L1L$`CB3}E&sU;&9SR%eh?Yq*?9FF0>)y++;H>xPn+qp@J{^EJM4zkj z7-F!+?A=cgCcX%+&-r@%b4eKbj5jKBheNAs%8RbzPMM*WI4ksSuK3QWNkjS6NpSsh zPI2GULP)}#Vqe3;4L!4#dpau+BleN?Qxca^SgQxbQm|lJnn-Mx^u(f4|5c*h%@)k`q0x; zEt)aE9F=}OkE7IS4@xh3S#0@B+|65@Ro`kLU3oxNEPl#>4#eVIRflaHLI=&X-Z57M zRZ_?~EoCnBic{tp`~gz8`)y(&> z0&aALYObZ}VkzllGc&}oVB7*FHBec-+CAbNJh?;?xQyYL&O^^o?}YtWwl9^|`>0RYgzTFRQH)I1`^E6u3k|1FY+-osYK)N;5@Fo z^F#d`j#19Q^R;m!_oc4)-|>p4$QYJ+q172Vs;KCi;AHNf^j)d1B8I^Z62AYF!@hjk9vKC!yaAe!f464HZ(!@-9O^b#Q}hj$F( zcgO-j?GIlgv(=xJj>%QfX}Lyo9eu%C(!0nSEzm8t>?AC5zl(V1b`NDj;#S8y6R$u1HN< zhZOw>jL4X((1Rod60?s;HP3YA5fc(!z<7bw_`54I>=jdpwNn zgr(PwO>-W@5&Uy1Ws!7Ae|p@F#tXm7{CGz9V8|v;!hKP!M?Mgg6Xk7!^GHsGpgb&~ zC%p6NsKOJmZt25`l1>eVwzweVa)D$w*)x20K2Mjg9MlR6v~{pLkQftD|A6i%j~GJD zZm78hVXO&c=7`z)6LVvf-v)Oz?8GfFZ6XxubnbN8Dg=)2FMAHczznd?0gqWe2|Ij$ zr{mrMx%u{!LhO*zMi$a6E|o|dvRu3O zck`YPw(E-ju3GIr08qpZ=28wqjO`%29iJR_D41>l-@>e+OxF{^mr&B)0-*nsi!ryM z7C)GIH*u#HGLM8q=Fs1?2p7S^nimFG0w}e-wos>FC;joc+PJ@=d()43-mLHKw^t5t8ZC}bD-A>J z{69OpE!uuK819m*{Xu*KhYYBIW^nO7>+pVP%jBZkz2CHZ%~G}XLgnAdeKlCUhUTPL zlZkLPxpoMaorA*Zuq3+T9pAFs^a(cbse2Pm)go`Kzk7HjhNQ6bX4%3|YPH!s1dD-QK7Mqbrjc(nU zH3``o=ZuvhUUW-#wbx3(?>{_f#kw$-jIZjswKqwRdE8aU3+aJ%?X~iFeB{BenUsSK zo+WhS@`blhY?e{@yW2AfqfsK&wZ^&Fsa``Vm>u#9fD@$r{+fkMlc7ZRF3?CruK-%_ z^X*aL;pWhWAp@m9LH?m<{XSLxq@HNtWkz`S(y`NypA_gccS?ikByw7 zoj4o+8Cw;p4UU>_7_{^J6!h_^&;Er?XV!f&L8Y_UiDeL^hH6PmoY%9U6=o~> zH&3_3n!&}kkU1pz2#0PFH>&F^9dvpTy`#zDQU+GTtGE@Pqqa$|l>b1Q)?+cBL3V+6bS-r;k#LtrKvEtj=rHU~@%L0afTX469xzo_SQ5$R7d~L`!Gq9h^!~ zd#JZ|!s=9?qf~UesTDRKRm&YKTw?5!GiEt;^#!>%tVkC30G?mc=MPkh{GdG} zSqPY48LI9J#yKQp^a!-+p#J+KziN46541*xjw7Yi&~hVt0wp3u=jL(dd!m#J3SJhk zm%}PsXP;U)DQZW7nW4=)htKlSvi^W!?|qygxd5{cKIp=6?4>PA%L@cQv2>x01l?s8 zxt6w(>4g}IgmwmN-7>Fx({CB&@_7n5bGD==Xcv#@Ylw}cK4P|ejos!@ivYK??XE-v zboQ8ZJQGlTj*&IYoBNAt&`X_zu0tk2@yf zyD*1c%PJlj*{r&0yJW$K2)G7!k{48T9(-0jDxZ78%U(yQIeWcW?5!kQhBSRFgNk1FN!qhyACU}!ePMg=(AT|?+i!zs>?zTQYfPCE zRX?^eUdoY8GQT9GJ8+@J*!}5uI|^)V56Vj8N%xA}8}f()EOcx73+@%rh23Z5U|MM4 zlmfv>^sUZ^6mPqBgdZn37x$HfwR4#>MsfMQi5}BWSIYvSJ{Z;BYu`^MrD-jeb~u}2 zobLB)^v*xlt9Tfmi$*z_g%)03+kba?7?db*{5v_u`)02gghHJRfhFB!cYU^G1-02o zLbogx^pyWT9R)~vI4~M)(PHSUg~k=)M)wU1S*sU|)xKRi_0IZs+8|x1n(G%D{sfzn zmkXkmD3StUr47%y>S^8*YUP;{U80gPrwg}REsTR1P7YZIDcJ<97~$obZ8LDjIi)Q? zsm=TjKhsU_LKgL58;M{eL;og8Jo&ZzkJB{m=0$%{u{>d8@LzL9JIm#)+_jMqUh29QsUP}}3+FsfEr}&iTiHHf8slCQ!AnzTJW3Q9Aqr3`mnwuT zd2lr~O?KtqV0c_)@FoUxR7Osae|+4znECz_5Uk3>&@v<-+?j!{C@ri)8suU*N{;+w zv=^^J>V=FuCpynI4R1Et+8lo{p>R5iTQQyX7!`-|(lN?d3A?oILFaRMs?vsrot?ux ze^IO<`g0PxT;q`!@AeIWNn--=GN-@oc6*W!)*M0ftJ#xx#5s`OV@7>vzQauwv7qp1 zxtosq+?TKw3R!{AIMf2;HD4ZmD0ay1qV&{0rk_@>#n{67`28s}*{hyB=4D+)9;!BZ zU)-;Ngb1Q5ovOsN-nU;!BD~n-U%Jy>l-wjb%Z$L6(Ny@}EKRwL#?09gDZZd4Ynq6w~(1jKbhh(vP+Cw(0Vj~wV!wb&51w^m>hB*T(B;L4*|E6`#c zv4)9@i(<6ryO^2TT!UD~7Mx4D#NE#7ws@{z1x7ed1D=GXSIJ`YLY?NBFDKS(O+CZ( zgrQXxOTxO=MGI?(Tq8KxH4!sqdzA8cP=%s=;luMy9`6OI0Z=iS1f3d;VparAD>l%Y zN%ocyeMXi6_x7{cFk<&^=d+;LUk)fue4k{_aF%^spH)(F&VT@Q4fZNvJH(KsV7(<( zBsA!K;@-)#drG5x=${^0fiK3qXt+JY98E=(==~;Sa7k6Y0ln=i8TJF(&FbMXI5&7< z!fAwzke_bN5aha|>roLT0HA|}oJDkD#4#!@mx!8>_?2ANUwpz(s+jbMr|EyFg z7tg?{KTQG(Wu_jesG~&^E^~7kpGz289gc7^XqB;1dxl%1BC7uh;@Cd*qbbjlQRi#! zN_XVW{F_6SdP}bb)v=~&2$q8v-0n?04mtH&Hh1s$UoU={cbdY zqnwy{RrS+(E_@cnUnwz!L7a0TAMoXu-@*1{szVs-E@tTqG`{$1${-O=xs-*pGF-4vx|q6|+)p264Snj&Iz+HNt6t8$ayt+iF}=$Kii=oC=J6ke+l7zU5v z3>dqJ0+QD`>8BMs%3*Xkmsp+i26;#N&*tNtD1z(XM222Zrh)q0XiN0rl`&s@TNa zHW#%>eRhxamR`=i+p8Yjc=i4kFr0YcQ!E-ug(p9W7-j5|t}_(Qj(Mc(At`pfUkEeN z-Ac5X=8PUg^DW%sH+_f|roCJv|Kv*ZqA=XEg+Mh94R^G8Ai7_|Lhxk0ni(zq64m3P zmo?_3K1rK9Uo59%TX;CRDga%+m|I$AEDeJzzGY<{2@Q^4Xo;M*I{zk;m})3O#-|pH zBh%)Ni|oBx<`!o_Jj#MA>%IOX=*#W8AmYgbxWMpz*C4lZ)}dVBMhq>|@0x_g(={$$ zE{!L=%FSiQw6Js~ixTb($-EdUVF{tH+LR4Y){ruwN?;M~Gn3_J-Ys^V$ zJk3BW{^MKMW2hNgL5c|ZACi6Z=_kHR$i|U6dBu7!`ngQ3t~t{3i%e|{C!X;yGHA$* zUhznC>f=Hz?62UKR{!X>IY|A-kqQ4c3Z)#w5%!!en)_(w7r&t|=gUa5d&071_RnKu zjk668&nne!JF_=+4Lc4{Xa6%K+8zmwPW>o0+vd@_9ELq_%+QIsAd?qo5PVwfgi#5d z^<_>giOCOIagn559OsRhB~3%|J70{GSk+(bf}Uv|-YjRu`@8@tVCYuy71AESnv67h3^bqY9*!Bi zTvMc{z7p}UeHq8mY zwbe&QPIUegsHOR#cNMJ>fi>anLS0lCmar4&x?o+FXcBdz>J5KY{&_j+;|j~9CtCbe z)&*u|0B}DE0Qb{tsl0pb5hjN$zo(GQFtU_OcCK@d(TI53B zX&d~)$D-mAydds5ZZ8%2vaA)!r=g7h3```55VjV;|Nm!&BodJ1m6KpBdS2o%05DxE za0)P)x}V{TZC6SlPZeQ$(R03koCh1h7kLAj< zmGT$?`nA7}O3NBqo5&0%vHJ$8@_&9c{u`_ZL20$~o~^<<%O4Ql5FuShLJnl~k@Qk= z-wudNLgBSR$N2-POdw?qWRPAt%%I^Yt8X?!; zbrFVgS}~bCIAj%G2<|;lG$8{yu}0`W4G zn4Y%|6l4)HP@{{KjX3SDdC5N?k>`wZtFu4ryWA8vuu!t^W>gz{1;+FBuP2UC?H-iw z$vF?G9o$Q;gQ~+Ja|l>XdtG3>liysNU&*!&3?*xQS_G=YT+=E>P-^Fo)OswSk)c0J zFWB9Vq4P~b1dU6{$dK|^BMlgkxw)%5|99cG{(tg%4D`^`TP+-F(uc14aPi~sY%}=RTf5KbYVuY%J*h;*VUa4M@8}qm~((kY^jMPJ*xA3{4 zYHb3;6?f(|{6o!!2l0|!R?uOCKFMSO$hrrXqzIVc3FTPk+%pdCN|ZkMjG?EB3@vFz z%q-OMYny_UC?{8=T9ze=s+;(g8q*4lQNa8`+p2WYgNJTCBY@lNN5*K)nXn&!jSLTj zObJqhBT&?YA4EZI0{$duz=EG#@gJNlSI!y4QIJEEJ?ZW3_3qu>h;MKG=TKd(Wcu#& z(vwS|)6I>!f@RTtIO3!|)5V2fAl&w(BDQa zi7uc&|Gz);t<)rt(RjglUZlXVIsgpYASe{Z)NSwjl*35H9TCuw2p~5j=?qciPM@@hwuKVVPdvl`p6F+;~0@h7j=i&aJlTTucY^@ia_GLXZ(ocT-aB zLhyF8)4+*DXQ;{%QwWGEq`v$ujuE3^zESzT;D5yVpCDU#Zq&p)br zd5(nABHnykQqPCEe(_gsu0T;vuKpHkj@ES3(j@5`CR{%Zj7(Tgoy%dl=etRQ z;V6hG8WeYhm@d{oBX#?1<14FP5B8SICP7(J4_^e7@uBzqqQGx6r^`9?yc-YysY*8) zy%~Wj-A)sJ^;~K6AcF~hA%^&7$oJzzj)?NXT)WuVhUIN@n+P%50{s41=+O2kUi!WB zEYJ$OCMGOR2Q#433!Xx?zusb)rPc{W8%5!wY=P#JtQqT}PFZf4J>8ZBQq5a|{!cFM z{*M?4Eb@F>>9ob+A|R^wxa)XylLNN8n!!1#NA`l8as<6au1a^^!zDUteSA|a(nX(y zY1#S0LUGuR{Ctd+xOqa!hxi#Z1>N@VaE=@|wcEuIx^*KGL}}@cE5qY%*R3%N9OkJNc%d5C!Tbxx(yt|j~C28X6$W%Vcf+C zyYI>GIW*_>JQ(g`$seA4u8Z7xso6nX_In#4aX2pzzuo$bQlSaVnfE- zag$BOPE+4bcd$}FrDADKV&@K{)Cy)EJ6h<3+U}Si#L%F-=wD*Dq#6_Y?@$?JS^iX7 z+;jj|`aehQ*md;=b%9V0SMG#?X`0bH-v^0pt|$?1yrER_nEGgFZ-p-5X;P6vAg*s^ zSl|HVH-5YSg51D;o=?Wgn{sc6E?Fipzi93*Bp;_y`LU>@N(2^m_)VWMJV)O0*De#O zh|)&B*8cmru+kr6b!36u*U<^xz8>kN5(SvE8Mxn5-(4 z&k|~HDXA>l{4S4;&6)T1I${%N!iO!frx@2ij6`~Lg^=ztO!h4YRB8phqqRg^R>nMw z2TnaJlEf6Ake3M6yKkMU z^c4&0a8>LB@dOd>vc}6;3|GiFVU&|!|A*ztuX#In2R~?d{Eb+~Ayk{E$wjHb0^*zv z`Lmi7XG2#nPn4oYEVIJrO;94D>Xh;XX^M<;3Z8AX5{+7a%uJbmj6u|ne#sb3*k$#m zbwNt}c>W@vBkFWHJlS9xMA9+kbXBgG&^An>=j1M1>GjW!@=1ln>{;t(Ihu;no#4|C z!>eZup`Hme=+>uTM-4Fz&AHSy<{}@tMI-VHney*J3UKP`dCl-UpNsF(e0zPg65~;c z&+^NOKaUO478|~F;PEJFXUHD=Qk8cw{=TI)P_gX$9( zrve7D!^dQog5RRA1`J0m7zCHJ3Q*R!GhFaP$3`y*pGeRPq38FEj{X!~kfucyr(-mI zsj!k}_0Pm(vFL0fh%4{&T)n8-Nq#nh@@kGKy8bmPF!ztRdW&%dLqY%_Hk}k0(f50) zS?06tYQdPS-kU>NN==atEo~)bs_&qS#S(I=s_^n~7pxA(u;kOcYjj0p%ye04ZdKGfLUBVA4T4!88ab<>rF z_j+1v*UZc5giy#e=xmO)&WMNFM!U+sl(PD+fBZ}=v)IG952e6^LW%)zH=a=h3A4&8 z>xT`+q;pu9f3;wv9*p=}VUX!AmZQjTkiAp1fE5na5pg3ihoECM4ILMa{w^B5o_bWm z40ixd6=r29Nw#&2=uI=qo;Dy#8c;`Wm@$+O@?r*@t>aIZNpP9xwzC+@cIFRtPFrE( zi;9feHa{rah*2&D`NTyuZM`-0wvM*5z75ZofbEMRSBYHx$ZFmBX9M4ZpIka=jl%i! zQyz(x_{5vsl%0pl7ZFQ3Ig9Nuiq$bqag=eTeeu3-;yR48;jy|6!3D{aCTkYaiVX$1jPARmhc84(92T zD0e>?`nbJWFz)1;3rgw;dGaw-LUhk5cx1%J<^gLKH)n=@m1#~$q#ArHOXjza(Pwy_ z$a$hiD#Z5K+SW;bZw;JLI;xoAAXddRX7^2s>X^iEeo;Ehabi&DD`KdP$X;#0E_rS* zU={d~$sq=`Zh0wy;ec$iO4dQwynofK@$y#!{q~Y$whM5rh0YT5W^GLj@ z7T=1el2oVxd=WT-+X0p>xrAr~d%>k!YDeY`+%!a`C|PkEa0jPIU$;H8Ko&v1u6&(Ujh zhf|8Ia=N#h_ji^K*7##F{*a(y>JF1!`th6@hW32LL2!h-pHPF*jX!11Ep`?aCQ3Ej z9t|6ntf*!mwU@j#R7lB8@fF)(Ze!hRPha)s8TwuoU0GPXn)bndLRWv`jjUj8SPq73 z@Gys-!f;W@EKOzv=&Su=$MeB0(X>#r*(Zw_&8hCYc@;`_P3_i z)IS=3yJG@_Oo0m;LL_G+hDn8-^=)98r#t(g#TpDv8G-%_11vCk`2QW6>?6+g0o+uqBWj zWH~@?GgGU5?AymkRHD1Q@4qc-CsXM8G&?D zASbK^;E2=@w|S8TO+682?1XfurPP!Yp2vbv-vmcYSSa49t4X~kZ2yRprzYcg;&F}G zP5VMS6gzc|KJl~!6=|hZD-BH3NCrao_OMXJ6zx`~RL$**EAe+kp_44>G~85n6~2#? zWFtj3RFI3xEtdyYj5$jxD0Fv>K4_#y9L1J}c2yjZG@c|woX~NTaWIy}@?gY@mlKK@HZZF0?O z65_5-y}a=eOa%XH8U><^gv{xO4boQvqB@lFzx+x9x%LNL{IU&GM%HaHwcu!mrfixF z9@SVjMIkE^<7zo7swB+usplg{{`U5kwk5)3rUAQiA2F!KRGPX)_w zp#csL50gQUZb6oLSYt1|d?J+p<*f@l4k^A{g(R~K^+Z{_)oJ=zs84-z8^2Rm=R+gsWWTj5cgXvkJC|eAiVD3q`pq#tw(xc-o$v(Q_#$U^laiPp z6&kIaHSo>p-)!h>RPBLZfOn68A`lje2q<+yux2f4sE_&Ilh|k^iOq&I4f2@NN9awXlt}`jK5xIBNP0<(|CgWrHXHTOUx@HL`{U=EK zbPJBnS7-ZSD15H~ClxI(;N?NZOO6cUL58V=W9#4OgTG+6v;?&c$Z-ynA#GC-R=0qi z;R?Zf9Rq6UT%!{E^LIs>ZZAGDY`HRE#dy@>rZjWK`S8ve%p3MX!7(A-MYF1yN^AXi zlV)D^#%!T1C%ZS zo2TwPY30^I#IQGrQN}!H!Fhec+Fnwo%mQQqH`fkb=w`1Q9G!J5c88UH-Yj zPJgQ$3M@+mmqRsfK)M0~LBHBIN8WpVzY(13mC<`V`zU>wSZ~`7iK$7o}y!Z{!3eIW2=KmIshl_?KBFQFNuUQks16Hs=yn( z7-#bI`nk_wy}0oEpp?%q3&^50K)gNh#h8T>8B3r1e#H(*puWIjFbz&-z~TO%&lfHcnjuu}w)ISh}zi<|-9 z{wL${-)PXaAt%Xe9rb$X;T!7%;WDa5n%zU1Q9bLTq)J}MQ`K2Fd(uj z@Gc?qEV|0(_D0Oy>w1|hR}4(t$IpMad!I-1{f)7+1@Pnc!J1{Qp|E>luZc&Y9)v4{ zO-;&GiT%B~hJ@#1UXu}vU_dcP*3{k$|DB_yuw}k!v-XPD@SWFjgq_C%xlpWgKL`T%ZbS}LYdSu@m9`hr z-0Ryik+v84s8T(Z-FKtc5h^i%9+nu{@S}6hp+={|W=!&hs*xz!V(s3tRrr$G^Kbt@ z&>KR_6z;tLkAmqWF1)sGNoAX@>jtbH#chuDIX)&0@Mb_!rVuP^wOvbCtIc^5IEvNS zjQf3|LUIUkR)HkxpH?Zqs_Z`n&9;>#kSaYGw0MC4-{K4j7-|5NCHt(ksW|%1{HGRL zx~xDB%ZP5wMVx8OvzT(svok9PE%psiJm3-;iz6e0%B0uNc-!Hx_+=Pa{i84CK>Qo{ zIwwEhI7NW~n*MVVe*@F z{)4`*^n>0Q5s5P3+HoL^14Or1>k9*7U_di?6!NRRTyEaH8M~dlC1_LXJQfPO6@mhT zQY8G8gW~Z4_z_?ZfTgvy^7yzUT=1W%dy)OAdo)&+s;QuIK!ia5%7vvc9SHCbR3Nc& zax|Q2WNt)WcN~W8lmj5D5C*agEL~e`<%WrK^UF(cUxXom?8kDT`alF(fQql~{MnTV z!vPBINqAz#OPXnzNb+ei>RMzA=i~6YNZEN_WVG6!8o2n1+iXBwY{4F)EZqn~f@my;|v|QMo#X}zdX*U_OpE@bO>5TzN zR|Rix2+ocM*p3IGx;L(&Go&uRs=Nhd(L%YE>KJNjYL9*0QuKM$gjnW^i(KzMYI3&L zY86(#Gpu^y=0PwRw?KWo4fJDj;6EJ#t@`KXOCIuMuM5~*s-xq8wXrz*u*U|0t+3M& zbTqEUE{#?Y@{>WH7LS90V+foDIV`BIRKJYvm{zGxSiZh&y|M3frE=Wvo>zeEq-vf1j&ez<>6($(2gvd%{2d(~H-(Rh4!r$l%Xy6?Nr&CG)5M1HhG&S^xk5 literal 0 HcmV?d00001 diff --git a/images/unet/output2.png b/images/unet/output2.png new file mode 100644 index 0000000000000000000000000000000000000000..c4c7afb9f132163e0a393dd60a3a38b7dd8e8dd6 GIT binary patch literal 62956 zcmZ7e2RxPk|38kO21#UOkLZw)>^+XXXGn;QWbb5@5whnY zve*A{^?HAP-`nkfZeGyd06eeyxi|e z^6|O+fB%5j&C`yLbDqu`e#lvOHIsWN6qyzB--(y9g$^jxrir?eyrJ*2r6#|0n;QXQ zM|IUJH_V3~_BHcMwKcn)BqXI1cqC9tA*?b^&U(F_E|55~H2Njy>9a2z3GaLv#>Wv| zk6rrsuIzjp|Nhvm`!{@+_dQou5(1m;be>~sUp?5$l*pP}C@gk;{_u~)_E`O#LDotE zeYlmJ{Qq8)>ESbKWdHAf`xUVmg8yD&)2QgbT%7;Cn9k_s>Hgn)#2=vpi2wJ(pP*VW z(EINte*T48R>*&^Ru7c&9@YO|@uxUH7ryxK<<2DczmEvZC28`=->0- z8nMfEV8{&E8VUVc*xD0<4!}!X^!r6&|1^BqBIr@gf2O z!3hCNcZg1(Bnne_`=@?!b!*g3aZp%#y_1d9Ma*q1wz#yJVbYzBH|<>Eb8m(~xNL1F zSC||j#zDVka#IqyY zpaXo+gvIfug-08y*u>XcZXMyIjP7e4w0E4HolWsezkj!el3|EYJN*%u$5{uzuIzN_ z28Og8d~EqqDseDmaY*fDju&fQBYoyKi`)5qvnBfBN)zo$z{*1be*Q-dE6t2CG}l_M z)&2;X%L>X|PV2H+U2P+q&WYh|{pm9vhm2k%e){cF#m6$&pORm7hVT1NoML&`7j$&b z%;)F*o$tfV;R6HLkv|)JSpUflZFrs3IZ$FH4X@K!0L4CN{yq*$Xb0y2a!sB;Q zVa0ZX_p%_0&b4-wj)B2?bohLVMdc8(9rH5=Zxk&Fy-gOQkg>;HL>u z)A3S&?41t!q&H$uyxV~V+Ew$@1J4ZK7|c2n9yKZ+iZ!XUrGHvLKfd!p?Aw-&pu^jr zuG964Z=CFJ@uo4xCu?!UWoBNSc01m38>z84-W!JZjy+ttJNkRG-UB89t~uy9kD^Fp4Zq!|XW`rLEy-aIJb(V&peANxZ!IAx7OsQ>{tByh+T7fHXXW_FEpO1_ zt8HJV%>3eFD1O@Eo6kUwGU-aK+c?xu_feNxr~$>3D=?QRRJ(Qgsm#)lkk%eKsXkhT z;(tp>>r4%s3@R-5f>H72i>*Qj29mb)isxh`65kSg-#gzv_;$1*dwhZAcnAM)9d2YD zOV>9vSXG;P44eB{;p3SHFGjpsL_NCYT1Sv(?v1O8Q=_7$qKemkITzE4eGFCgOsvaj zjrK^*{Y4|1lyh3I9t#exX39Kd7;}2+-H#VDKY)GJ8bWYxHDmmsz)JdWF^=Eoj~P-d zIH`z99mltpM;X6gGcH4+ENe$S7V^_BwqmbxaxyL3Z|^GDZ~EWpqYYb-!}(C3r%S-> z*@yOZLj8!Yb{d|7d6ylnai3Ih9&4mu^L^&>aDTaW?XxDI$Y14OTqzpN-{r+l6a_c# z)p{?RHXf{hBwglhSQ0cWzHzV`A!`Fm5r2wIy1)NTLjxnNxfezA@!`rHFE6j|wViu8 zFt5(AD$iyA-@NAk72m?emOBmeO8@OwG;a2n@T_BU@f==EyQec@xYMYxpT*NcP33hSom@6c;J2+Qeh_hr&VS5 zC^CJgqPRx+>gRK6GWi~RXO{ln&FSZb&M0na_Henn%$Vox_Si$X1NRT~b`uZB_b=}4 z?HOm>{g^r_do(TU4nsXXo8k8FhLW=mPRl~MDR^S`aAz{YV^CXcvNG$ChdYJ%&)ezv zHjO>Z(OLoAyFRnicYL6Gu%6c9OjkVQ*n!lF>8zuLtW{`qbTlyp zEPMSC?s#UO38?sCA7`vx()cXmVc?meQC>lsENsRXFm+G{1zlSXx7tL-2nfR3PIXIg zTd#~Yb$d#|P4W9HEiA!usKRHS-4qNd|8PUAA?L=Mkk%6u z1sSdi<;LwJc3E+rb+O|Ivtq`TwxrERo26~b-Yg4~{{a(z1XsAD-tJ7rc=X9^Ppsit zRErE-bChG;j}Nz}KQOvUe^&etp4h*m*jRWt5qxH~#4X_5fIU_5&C(Bt+v5pBpTwut zNR$EGOukT*nFh!bFUmxb)ogJvMf(;?8q{&0iC(es_TNLrNc$|(7l8JPKmA2W2i{`e zPH}zjlk|qxv%tNDow4oaGnRtc%S$7b|K`o&XvX6FwmSlY&U63Y8?3e$iVeAar{l!j z7fWg@Twr$6Za*k;P+5mN^{nd|TdYUwr5d}Z;ge;3Jw5StD8D1lG>3doXQsTFCaHu$IMlXOf>?XOKL z(GSPb4S|C4sKawW!sL6_MN#@w%;1nvNEm)2f1q<($PCp;j(LIw}M`^K3 z_X0CUN-t^;nr>ZN9Jel)8@_MML*u}5;H^DqS#E5c<;82yGIA7dl^!2AF3WWO&ezu_ zWuwcVce#W^Gz@nSkJx0MIJ7O%BgpaHG+c1R^S}4Ky;~itt(~1;TkU`QM)%<1!~A{m z=Q><^S zB}Z#E-Ol=)_Ga;O^C&Kj{zOW)NsH|-t<$nbSgMUz7Z0PNxq^6$_|}+WHl{}V1(Leh zk=^K6{oS*NSoO^R7F!2}z{;5aMlS*#-M>2&P9in0X?rZjACsW#KXpOXS{#2GE)aUm z>K6muOKBgqua_xR7u_z+yx;= zaU0O@HjffeTtsW;P}+)O25g*F&Ubl@zLv$(tuNaL4LrHpOuL=dG`l@Bq#H<5WJnB% z{{z5k`f?-j`s_>(*h#8v@k9&z#VvbR+owH#1nw_Ks^p3<-RYEr@SK< ztZa2=_G#3uq-<_Fv$3TLPF=|~z&-u0(WI5H-+!O^-rOgsgpS{hCOiMP?^T$}qnXZx zXmNyE@<;OdPoBd!vBX-@!3FI=8I80N?5YuC^RHsj)m!p@80vO$To%VDbCC>M&odpn zQy%R32}dw2(8}OfVeL@(;jHdxd1sZk-!~VX#N^svmn;Pcwa5mZKiFw!B^yZi?998I zWZE*GPikstcgrR)p_tJ{ZmXABjT;2+>6;oebI=%;Lvj zcrR1rNw1y$Xk9LR+MQgjmbs=SIfmTtC*Ao!b0!rS zg;dUO*sAmw+#yWGIi0n|zFpqJ?;l3Z+BUZsZOr23=R~sl5F82{Yb;hv7hnPa1)CRY z<0Q(G&p#yVVxo+BI7mrYTUCe|t0&cQYB}?j51P(r^b!KX{Pal&HcSCZU+Q%avk2R`0RL;>K2=kXDNF6? z-8-d*+~1lW)}jOd5n2~TY%_f%ECA?(lx%ElpS@U~7QDBud_TSR4(_VesKn?x4~@w! zlRQo=cT7jfpFgf%K0dk<7+tNGB`;aK557k33@zS&YsRaR{#|5L)S#na^o>bb#J8`p z(xRG!t=lf%W)y<0s_ps(bd+luLU!j*2Fr~S7b4BCb?vP3o-JL)2v4T}x;n}E^BP^G z1b2511ECzyg}={{(afiGtTr9|f_}%o>)!AazFrP5Ld7)ru744eIlp%F$a;b>8-_r? z=p8@F+n;|32P>VWm$~l^Zq7MTOQX311VeuCl*Eh(^nM^)%CfM|*MC3O^pJY(Ux&0u zKAjx-^uRrbrJoHx-FA6`6q6gi(yt|fq;sZd#Qu%iKe10GC3yB!a#V2ClaXa_Odj7)6!+|bkmIyy2Q80k97Z3i)ddkwSJNB4w;8OdaMg(~0B z*A@0b_1OCJGiIdHj*X6ld+MJ)z#0Z??)0wzMPO1S-pk+bGE~Xm5Conc^Xh(`*~=kE zz#*}#14q`6B6@9Me_3}!b$3xa#rCHy!&gN64kp+zTwB~1!^o^g%R$s1iQgKmH>tH1D^_fj;&X!cx`mm zS(LH9zP^8aoUC{#dUDbV0PmBJGc`T6w)Vp;I_#FV0X0rKu3@$uc9nTUUj8E(+x=6? zHbK6=bkMdcD-9@Q|H(sy%6swFPc$w!uC|{0R&h5*I7)y*6m})RfQ;S`j$``NvHqAo zDt41sG{r;2wWGa6EI5`TX4EV`t=E=OjgsZHN^s^7TG*Zf-81BPe=j zo>ZA40@dWVV03^g7gS(?6N7R)kBWvw;kKnOl0DP8qFJ`&S!Y=}qE|em$D4+$yJ7g& zH<{PMLD5#>_3$E$qQMtV{dM1aoVo?RtqY!Y2)XLX5G$3(p5~zDhRf=*(JL`x^h9;5 z#n`vbT(zn)_!_5rRmlBnN9l;&!A|d&I$Lb(LEwSk%xG6n`{n~?0Gcpv4Gp*cH*PR& zD!`cJ4LU^(0Kih`LIdVo1Wb)vhU;@Gi%&b%c^iuJxZF? zlAMu`JM-y!H5W{1c+DcAVE_)wF)b0@*}9$uxU9%9n!vA0F}%l;=GmoJ;W>4NDqoaV zf2Cb{u^g+e)Uc6=o9)>4zhyoQB;>`SX#=ZpE6_*EZ>1_Jvp4>a%d1 z@;7~1*IGu+RG#<1PhU7NfGS{s=K7pQ#L~<6TqoCzH-qqQI!>+^liPQfT5)H0oxOp+ zixQ6(YS{>gzT-qA{`r$xN1zfl_Db;d^fXkqo(TPa6S@P$Sd{|!rPNAeC{UKBOHqRS zL$95n_iyaNWF~%`v7{q}30{H{KO+cVi=kIYf3?l6`7#iN%x~Zod5Q?N_O|_+ZbMBB zH*I=aAdp;PMYsB($++B_09fN$fN##CF{UNqj@8kQ)x;USUtjDDI6-|k625%7 zJNTK!Q?gQp&l2QaSILf=Ox}gPW+pS?4>x%f{w?h#hv>N-@@+Aa(EPE5<>j!Su3|E( z|N03YNT8GkT;5o~wt3@v_f?+s_gXU*#ymVBHO4$pXrQ(i{1|c+`2t^yo8g$wk;pwn@vwq$$;QKAcvL zF^|sG#9R}@H{W!;18;2(EZr0GD!7*>7zszoZiv36mo#gLl-6}^K1 zAf^adqeKY4AFUzfYu>R|6uwG!yQ$o?1lnIL)B2HL-s*LBp5;50Bd{hWJnKv;nXj8n z1sq2HHQ}M5;a6ynjm#TzROX~=rMG()EOBpEZjeLs?b@9Qb(Y{xwA)m^H=w6-<5=8- zjNa@URW8MmW&=-pFK|?T;a+}bK(YL^_!dEFl@Q@r?CV8I{UX5hazQ~Y|A7WP1 zRH4yYH~dDQ?6}-c&l7g^tzUe0a5>N^Mnu+=rx(Y*JBxzoH~SEOMW04q14q{{uauBb zl`kv+oXWf5`SOJ*CHDbk+R0zZx+;>-Rd~~!_=hE*>i{K~y``q~3f5s&?li^jpfKs0 zFH@Mp`zQP&#e*OBdDiDFNFGh})#B7gw9Jz?*@Rl2as>{G$gGgrw`g&k`oAGmMTYP_ zKgrTq6Jww3vGn?GV^LSU+}*F7dLfZFS;-&$bXDa|yTf5FuvUSeK2fHtEp*BaJ##ke zrEvXES6dy9>OOuF&}Yp2*E+-x{|UO4F!sc-zP+k?5E5_x0ZX(%p)R!JP%Oj)*5Ve)Ii zRCbOXK2IP4=-k%UHovkG(Kab=f5`o>qz1rP^TTo_Atjycx{_scI=&~(I$nIQa&&oh z*B{zAlsD+ypy~4rn->{6sts7zj)K)NxxLRAuX(tB7<0Y8u@zr?ibJy@tj$X0om$7n zgC_B{_6q~hxKTWps_@hD*?MyM`oMIpri+IcNngSG4jWu}RuQN5U5VH)i9SvRlvc(_ z7Tves1^S*+)Obhc#ICN*uG#KqdSf`EtagE0VROy|#ROtTTh>DTI6o*@&e zu(UmS*?>1dhd8Tk@(~oLK!1>6uNu962U;D)`G^x*Dv?Q!s`-;%=BjY zK-WX`!ucU43lAVx!09UwRQH?LZ z2R0X_4+oyJ3zE-25r(`|onGhHR7Ris4m?rIDp#o+=sD7PU)?DF zmd@GVZd;jc#>W4!4$;DR6;BtVZRK&os16#84?La+tZh*DW9@8J4w;Jd# zjm# zt>~I$Y4CSB}fAVBOc(8pftP z7Mflvt>5EJ`v_i+LQqgpsKv{FRI4W(9S}hW3m>V3U;>&Lax4F|6{I)hP9ba&T_4O< z#yt^SUp~dbc9ZL6+kzJwt^oL7mbhu7G8#=uD{Km>tGuri$&5=qdlGAkZR?3-i!oV==}`TDgy=HZvj9IcKur>EiN z2=yA2N~eCSOm8VNiI!lKrvfduiqN(+36)EUkm zXV|Dj*uJ@P+g=8x-0SvFKWIc<|09hKobjv+Uedc}#$9Y%J8HrYm0eLZBg~2p%oLuN zr_wcOY|ignx85DIh|dXZy3MCK%aiJyA@fkw=(X_)KC>Q*qFv*wbR7-rb=#1HX@I2o;yBwR91vbyOZ|PO_QL$g5*nK4>cI+(%$dZry zt_Gg2WTo(s9ih8Lp)F+Hm2g8;H}mu$yz_s!Jy=feA1)4~Kd-!Zo&vbk?ZDl;BxGbl z=sR?TY;3Nz8Q4^3(T|bbu_3A86GO)SmPvIS|pS1p8Z9Cs#4r8ZfwIre|`go zo{Bgud}Dw+F_(HWL+2IsK!naSMzZT8RQsvBTWjn(vD`G&T7gT_C#d?QTKHT_ha6*f z2twtR50F}E%MV-OG{VflQlOihzG?$Fj&MqKK|omhPBe?|17U5aml6n)B4a7_qS&R- zerru>i+2B#ptjX%r^C(z+(mru**%16oDP+z>3M&Ft9dkl^oSwD5I|K9t;R@;VsxHt@cNqMPuXR1zS|hmV(F3xNt54lG3F$EGSICY8dS@{WyS2Fi_QMt67I~~tDDOlcX;-{!DO48u$inJKB z64S-j?)&&mH?0Kl(eN0fvic$vvLC@JP{GJt)Kz?3(jjO<6CarlzX`@CsSg_a>gxkt zEHQ#@cAb+-k2{6omG|n|%msgP`T~Ld!@vTwb@hC6URr>+6bblSUoVQr^t)W4)~uYr zJyyld?Of4mF;f0ry`1f$!QZQSccKDg4}!+#43;7yS&Ckr(a8B%QP1bFHDkq2`l1uvfve>_)fZ~FB|Zt0r6${l)&S8lV<3gFj?7z zcEN!+uJsCAcn)6{&r5}`Y3U?S6T)fmyr0yaRkz8GGZQ!qYwF+Jv9>;mqWY&VrCR|e zVg+exB2H}V9pY1}1*?&_TZST)^V2hlZ#6EA*5!0Ub+8Nze6b14yX^x`=EDGrOw@(B z-BixWQt;|;yu6l`mGFcQeJyVbJ9vb%%ZwT-z9}@N-W=Je7zAjd+}OtNltB?yM#JF3 zV?ZFiwu-FeDAa7NeSz!sIx#5LIYC7^XLi{ri`XlAGJ-)fYES-jw$y82r+txaPjNjj zimYOy^fJE)`Ymq6U{>|YD?fByavVN3F*sz(wZ`C;Ca?oorZ+C_v=>d#`|8m&x-+PCFP?{JqS!CtLB%z_9FO7?r@b~ayheP4>@If6ZQovG>ZGpl|p`Xd4 zmqM<=@LZ?Rs&*9Q62_CFooDzndIizlsypkp4o@{9Ab@QNx8mPS?&OPWv#l(DX*K4o zqm*#74K$#nE}KyGdTN_lLjm7{8`0E4Eg0;)hyi^DE+GTw*MWIjO}k>@!5D<$;NSqg z03;&@weo+ha{zS0^C&3cjH1r(KEyE=l4InWUpPJuhjDmqTz>Ln>b17YK1>X#AC zTU%2H8+{Rj3+-Sr08A(k*!TYBDFH+XBuy$A?ZHHyLQqs85M#VYqw!L!Imn-z?ns1; zp#^Rmfdt5H1G)hn8hjgAkR8_8A|EuA1ZW0zX0}H@n5=}Mv!CWRdbDow(7*--`)YDy z7p2Ah$mS0LM-&riODP%z zAYW8tbzKx}Vh;A_>AGx^Zk#`{bz=#L1*xq)#x6^X>+(!OPmRAEU`yyAcW!9<-c8W@ z>R(M^X<_5Vosz^ISVAQtG%h(}Cn)r4>Bq+>Z*6~@7rRU~akAa_e~1;2{(V_~)+b#f z-?*Rb^1RVMu(}6eH4xaD^Ur!}x28=RHi-kfgOlCKClc_X`I>1ti1R4w(uznlfZQM^ z0#J^}>@E2UnBAaMl>2SidfmTo1x_{G6`e5&o}~iAO{C6b5=! z<2D|D(;^_H$fAllouN)WNT=|^##|pBA}ZHQjMnxRO96vlq9e(vt)&I`))xjNrXz-S z8Yto8!3CSFQnNbBpFe-jL$nIv09qVvT3IO?`Ik&nbR9{AQ*TXE%ii8x-}OgUL77b# zCA7WR*jRo7tmj$Ex*RG#DzodL8V1UsGrf2OFJDm4HEnL>RwKR*)t<`|m@Hm5UmpY# z`07c6JI^-c7SLBOP>EKX?UUm2&vVrmA9f>0e=Vs`Ohwj0{-aX9O=I_u<3;`3B;|$Y6lN1#*KGcV@mg1xiS&g`e>F~F-F zeo!*-=4H9@qsPnX zYfvQ%&w-heu+TlbN)wdce@YrBC}}ROps$Qno+)iyC)PAaQ(`=_uiSO8v_v6YnUIih zbv`%2+RKXyQV(!ThyYpROwS8?7IYFs64uK8y|}0-eNh!E+wMW?wOfR+y#QkoUbt|< zU7U%CFcgFaRerj5AbP96i%UWB6U>j(!cjHKO>cof0JbTDBMXw&D4K0tXHKDEPn@Hh z+?b6L@!EZ9xu<(N;r5^engFZDj!JdB45S7`WHVl&p`^%5&n+~Zrq_Jar(l;sOQ9Dy z{Z1`;a6yTm&W1g4{d9anLS>S>bWf*Vr7&Lwrl+U1;vuO$yQi0nZ!)*;>)n71tOTxT zyeID?i>B>)n%-~keo1_q@uXvBR<^Ln`VYLRQWQM5T!gvDpTVr2_`AK0BpLVSb4jxp z!-J6wWI#XwfSb2}KWl==Q4=l-RiEW>UKP3n=u4}RH>9jH`}2sylM^;yczAdjupX+I z4z2=T+$)9l64+(PI0JK4R`{JX~B^!Dk)sX5E==4U09r&P`c374*HZc7Wx)thgWSjp}A zA41OtXRcuNdXoLC&+@Z|#8lZtmTml?;sZd0f@fk<4f@54^{BbfNa}pY?B8rk3^5&O z5T~6KmEtL-VxscE&V%(0LdVpaIN_Ny0K;zs^MQ&XkdzKSL-CODDiI6M^!7fesR+pM z^7hVw#3?f~vwjl#Tr_!9>bEy0`q>^_=yuETA;OiG%JKY?lF@KiNN#3+VZrJI@q!lv zqM$w%aRRW7bJ&=Q;rjrUG8U3T5EeuwpNk(~!ADbH1-l{;BLf>2Wj z6kPy|z#$ou#0`edTUyB6Lc8WjV0%8G=p=Gw1^EmDtTfoQ1B0#A`MD|ZXVS?z=^m>Q zI46};tRhL6A1Wl!SGdV(R1O49%nm|U~uW7rv2=h;rOIs67*TB z1bjwa$HtYKxf|m2^v={w=sk3IO;o_DAJfLJG{|PgfgQL<)62UB;As2H3)v(oHAp!z z1n!THPjz1{J?Y~1?pB)(iV zh(hUt^?r2FcgzGz9n=6fzaRfEr9fKu^SmfX`1A9ew|yrGW{cTddtNh=5PBeCGf41t zAn6Vy*$eandW`}77@gFZJ{*Ea9@qTWDEvp?;E8x?BDFeTPI%LK>%#XoUC?^Jd?dI!$ zomxuYB{({~blbT`_P9Q!&LkF-io^C22^<=uIFcW4Z*B^(^eTqI1wk4)WB21l&iF4I zq~ErYIF;Un$BVw&P*Yh42>e3e1F1nHqTF+v;E9|k2Lw3s6erD8h(?q zrCA_(wBpW66N5zEghhHgX`C%9a@s%VYkG8DPD4T~E&D%LV6X;8Mxx|cAE~j2Yy<5y zZuAwn{b1oT2sX$fSgP#%0E2#ue{ew<>Jnq8p=bt@z1AxoM%H=i*BNAhi*BC`Mu9*A zZJnYVNm4_etIT;s5Sl7f@LZ^UASCoGsi%m*6lv}&IMS^w;)m<=C&Xv;Axg=ZOBDUE%Z3ulElw*u{}C5WOzca2C4nrR@J=q} ztI0SC=oBm4@Q#WJ3P~30CvHNK&9MhE14}+BJoPot$E`{XJG>3?-dY{Nx%>PmxwqI< z$kPC=fHINqUofR7GyaI}-#CjmyX&2j$Qj^7y(la!w0a1OexHXSE~lZP!Gm0s5u!9s zY*TL<{n#}2|)@A#L!{2TXQoiDT>sMK?D-817rfYH@5KZF7?l+2au*ndzDap|kk2JhobC0#$an+i8{2 z8xC;SvyKFKx?vqGE?AzB3@~Je)(ueDA466+cvgE59QQs-1p{hwka@Gxa{{6`4c-wH zwfe^^=qm(ZSPZ0+yVxbAq)gt(V|KyEG!|-+lx%)^gu_|%Zn=nYwrdqRRVVD2)|C9j zJW|&e5)=$+ZpQdZXV!f1sG9sYz8n8yfk*soIX-~UjebDvYbgNaWdI~(BWsY;M%G;3 z;6m!FbGmy#0U-$;hp;OIgAMA+#=(YyVS^HGWL*N%4ifuGRAc9d@IHiUVa@Q1M61y# zztXSb2}srAKr-C$j&rb>hDVw5|{)aMWpzX@4l#^BYsJ#V>_vWzmJS`oz(6LVcx0Ys_5&jiP_z4 z7v?(%qOfinw+##s9zXTo>yYZMtz~^s1jxK!>RT~Pe~|26>snN(#vTL+PawfwnD9HJ z_zxf4KdWCU7cDn_ZPfy9uoC+H7OlKIVZOFYYz71)LkgA)@q|vFjD73!<1Gc!3&HEfB}=3@#3-Qw#3QvEpgpz$$Tt}CMH%5% zW$(@b=Y$Rkiw@`m%?2z*ckv&VsnmVcWRir{d?^~F6qP_jpB7xAi798LxqUW|$of^2 zCNU?j@&tcM!tXtOdNE6V5AL*&uYaFGiK-GCUrH_j*axW@hkNZTC|jFu9$gD5+gp{W zc%%JDyu)mSn0cq8NDO%kng4hCKpwal2udL^t8Z?!bd8CN>D3&gyKfef?Zfk(f2BKq zu)8q;8VDS4iFWyDBWT>7|N%z8qi;ek)R{QNO6at@yG3^PJc;>*C(L0r& zc3T1LiBX#c6Pp5axKAWv2@=5K*Ahi=aK=|up^c%jM7;I$Xdd%=DyYdFkeksFpFI7{ zf4vI`F?f$!@@ySN5Qv)FxWsgxjfz-ADPtYa!obkFx49@FD*8dq6n=<~sfqBM7{xa8iYgF53=0y(nbJD(i^=*t7b$y01ByK19Ymxz-90Qg!C)}L4` zpz>lwb$7rCONI3K*w}3Zp8&!KfUN>cAEpAy93zF-cXQ|_!ug-Mx1Kew^Smr%r+=Co z=hbx_r-tN~>dey9(=CrYer*^P8G_oW17_~)+f59huRxlKD54DsW+3eP+N~PPql4X8 zcF>o?&d~}caemZRof+nwO6tr8zZ#Qem%_`53K3g~o{J~jW4*_%doofkDeBp)s6>`a zSSxg~^x9=ghuTp%g8|?We#N0Rh(Rt!WPo{N{=6q7gPoTT1Ga^y{g&6#HR%AsAR{_kd-P2HNaLs zKd%Sm1M%a7jdHIAeI$xSM^FDA_;i{502(B=REv1Bbk;=mlHA-=AWd{w!+DtE_q7Q< z*#D$ix5hO>9qBbCKp_zKh0TE+t|%LEM*1OW!a!J!SwMR6R6)tKD4NFl$S0i>XIppcCk=? zOT#?AqBr7P^S(!u!!kONmx>s|m^|}<1I~mCm|)v^D)d$QBmYKsr}gmZvg;f;m0Ohm z;XNcuBuJ_fTwKSF95_jey3AcoT*VIf%i7kRx;xj+Pf~F4Oz8XEkR9fje>;Gn^~B7A zl)iYn-yU$^+YgsTQrmQRqzJV{mOq0}WmUHcUFCMb<_!qk{N3ElE-fX4<7gOOI8}v6 zTY#?9A(UC)&_M6U$jIoVw*reDfLF$a-PhM$>j8E$OL+s}6By*t^##a{1pVOz)(gnM zEN-@f?W)IVxiQ=Ot<35a(q19l*ak-n;SK?@S>OHMS(+$@U1wEL;ie-{Bc}j861D;q zebOWE#;3{@6^%(ZN{r}tr=u>VY`{02gV6V$?DJ*x<`@;1qo^_s*RSLAXx2|KQpM^Q z8KzHZZ1l`{LR$E>uo)&xRS>82&o9cD+UQE=Z~h(D^XuxLD}TlvSt_@tcJuqb$BoTU zD;|}z8VH@u8;hQ}TD3Z{a^rzZwW-PP7pE=-o{`cW$3E^Jgd`?wTQFwaR_X7bYy~(@ zu~^yy8XPwD({I5+9LTa@~NdUppZgR;1Otl0LBEw z#Ur6y3T!Z-pf-8B zBqV~B{H}t1OC_K+9Hw>}XM8t*>QNCzb)%{B4SAGs`lBvBED@QTNwkLffxVf zl48VN)h$41CuX^}lhb-8z3?;iX{5yN?eDJv(PM?VgVBKlXvS6c6rW_a&5Y`-K@Wl? z9hWZH&!ADj*$kVyzkmqXOrK_FT2R)7Dh_tLju7^h1Y6Dm6-n9f)Jrlrc(oGu!2L{vX^Z3olH&LnHq zSIoQf5TS#^F(Jc?E<`^dM@t&aa6TfG;ta&k-@M^f;RW^)= z;o=NM-ULZ^aQep?x=ZY6HO$i?#}xBQIHjT{K4ZhSA*vgqtiYZmdvp(L6V)Cs_OqLn zt!8k91;sXH9hPWxb`FO$DkY0Lwu2w47za06X6 z)LB$2pUMQ9A|@+hd?f--_(gIMywfVJwCxS~XHnBZNkHnI5dkY!t;~xLd6 zi!R2uk{6}Y6B)VI_2j;}U0(Dn9{>!q$I3;w=AU9UR3Bqy-F_7sgM|p@At#kFrM-r~ zc3$!u*`gaZ3Uh45TsvV;)Q@gscZ0ffO#F_;>t&T>^^b%oY)`OO964anCob%#QV1SN zu?k(-2#oUL^;O`0I@)pX(jG4doK^du_((qSmMs9h0i^T5amo*0DuIIZ_~pgoikOu$ z5k(A66g`*nsrbTUNSj7PkELHfr^%5F0gw-XnAn*8Q_i84mBKsSJ~>ubJmCec8+Ix5 zVc4i38l)q^fYRG>K)*qC(8zD4yu9y^fouchn*@epB7c4@xn&|;ZbgSINVX~%FWAaq z3cIC^o_IbqXbK%=~w)>>tRQHGsmqUn7S`5;n*ltn1lb?gUdfDQKTCk>JGI`Lr z1A4Au3n*m(bWdZoK7CP9*;1c5#i8B>8@CQ!@^R^vA*A>R`7oo4zT2FT_uQ*I_9fEzfP4F|U}zmMH=pM%1;_QR7r?^?y7K9)GRNTN^!5x}00b`C?g{In(Xh$^ zpvS(BX;(G6sLd|Byz@$A)MCrjpYO=nVa9;7VOY8Kij=odkOFoGo5UT8iw5fl@%$PZ z{yQ2Vt|spKZ=jHXuvJ?)*E#Z)W94oZGSe~lcV zBW`k1A)#&vnuGd&DY>ic3!9A!6&!3J>~B@gi$nVq4{^iWi9lt|&b|b&;a_s&1(uJM z0<%t?=hq7*8sd(yAmKLPunG1H0tvxjg8}M|d&RLj#H+^4M*T@EIOmRmSLxf;hM%s$ z$qG;u3+TZj;{wgUXW7I0`8ft_;BQkg9AJj1KJb*X*XUSPOlVU>x)| zB_XrNOq1N;#p?FcrLpAA-WJ;4Dq&R*i-8{+kIf8MeJihx+g)9EoYj2ku%D!oaXDpn z4pJ(bak-Jmftl9#?>*%A;PC-S)c3VTOD30nRsWhshSu(jutcp~ZgharO;xLx|jgfeB0bvs}EdAihw9Vvf~dseQ}#7cQ$|>DeltTs{9aS)jCZ zxzIV|spAY>{N3ijgYAgzI(8x1h1r+58v?ux_cncfSbGqI9Ql{ zhk!q9=lb4x%yXjgRR2k+#qI0S*FdaX@#}k-E&-VI`M0`zS3o$2iY`R0&vH8O{fzn< ze)WRLi9|s<5<)OA1VCQ~yav6o+%(gsbtd3? zOdIkcpY2zpFXg9acUsXeOrI4_QOi{`*I(?E)&G%2C5AnnlpDmIqJYL)o=xqd(!@M@ zk{TAGu6Ez6;U}>6o|_4My{e;}%;%Z=7QEmX6msC3^gZX)TjWHc()9tMk5P8Bd{_1+ z*7m#Jl#>YF#lE{B-Rws1AhOXRB(&SD^;?+s`f@6B2D%H>u>Wm66w_cH z`IM0A1oc_Lo9pK&iu|F-f? z=K#~!iUD0t(Ew}$u7*gW0-zeTm*XpTT_sV^);LVi{Z)L-8DC_&M^y_v&4-Z*gQsQ) zUVdxxlu9Ulwd!Zd$_x8P~cp zL;er9uEc-KU->fjT?Rjw=NEpGRDM5T&BhfrXBqiYl%@@y^?Uf`s2{>vQ-~g`On^@N z|3wY@VLxjR!V?U74jAEC0`br#Vb_%t3wy@-4QzA%j>^NVOWT5Ak4cN1DO;KZ|>3$s!qu)EEJodLxGG4Prg8$GT^PM zc6Nmh0aj}lr>JjUJn)-Lkt&a)$2k#X_EcAvLd-?<_h-*q zLs&wX0U4u7R#^3ut>^gK0Y~-g9jZ-!YZp-811j_9XTuu!C;~Um+Iw+`ohsGGu1~@F zigIHxwEDp-1N|CQLT1nm5O#yWBSY??#JLjY#3Jp#!<09u1uyi$12J~b>u6~S8zxPp zX#Gy^BoDqh4bT>b9by@fj)I^HLdC)Ewfn>bgGsZj$)zo<-3CGzw7pa9eakwpBycm z`Rwc^Av>HhU-Y?4Eo5AQ;CRDPd0uF`0s;c>X*||%}Ec9*J8&PHLeEj{N z4V5qd`2)xCz@q5C{~Rj^iKcb(q?}pLI!KmIdP(BcO$pIwY$P{#{j~zv1Z^uv;K3R1 zKc(4+??viX;Urh4Q&TU2i4uw?C62y98;`L`l82cPNrU-qqsD^#J>)yy_}A?{F+(#5pxTM&Q)t z`-EG{c-u-7TLn0XL&{;Uk+1j*IxhH%WgBufagkX+UG2Kc780)b7=DP`USnhFhRto> z;5`ZM1afo|686A^kr9r!BRr~K(-1hMHF(iqCl<4p^7C8?rf|683wPtn%XAXc9~O;1 zz5b})o;us+5J7_q=lI?)7)J|$M8po)q70%mG5kn;3Mi58Xk)T^}PRsmdBncdUK$ILh_&!S`Pu{7+)R_M%_I)5Q6Z= zXYiO09=XS#Gxgee^V24KU;Qc;WxjA}r9q8LcOJax+8M9c|5ld(IHf_vS%UEGCRmDC9;xaX0Jmx$SCVb)*~7=DKaZ3 z2k+;J^PqJZ@0X;e$wzwDCk!pXsPWyRV?yfGdvBwA1I4&pJQwfPT0SpgF-Lbj79mTd=qU(<8Z+Xd+ zr2h``7AL20N+7xlXY-vDuLHNqb7PH%R)jdYTmQ!!;Z&o?0G9{P_fSc_KrL}p@cR>k zh}r=*$okIdN{Waa8FaY=BKDw`>DPO8RtN7r>|tZ$qsh-5cDq52%+y`@_I#dFsQpxK z?N{m-YNtV8C}b=7LzYLB&Y(nkw(RTfuU!0jSZVv6S=xsWn}HZ~r}*5JE!&%;XAQm^ zjC}LCi?dM&Y0>QKvO>dVpNes;vuF%fi!%J5Tmkcp2v<_}buOVEJDK!wUrxE3Q63WM z!i_7g|I?cJ9*)=-C>SX%ZmopcAHL&Qwro^GuI5{1nw(iKrgso-m=}lN?c>oXf=&g!A@nSpn7otIx;IhED3_#>^h?u>gTG7@;>A?F5q4`xO`KG3~Gu5h- zY0l$c`>p4?k5)L=t$jrC?V3=UymzrQkmmQ1+InnFiOkoQ;6BTFE3SHJvo_!Cj~nI# zT)T|%7Q*pfqq@|gYKx|Q0WoZ%V*X&?5PY+JeW#hyQ#{H(Jja7tF{8XBsaNk3SFyf_ zAq5IiX7vx*Lzoh!SX3IWCCO)%yj)#%JTlObEWSH_`|SEL$PWl`LsK|@4X6B40gHKT zeQi@ld?_!>YG^07FmhIRKg*-F3*O$P@-28&zh1~ohDKvVOX-$Yh4vZ@8YU1_51hy5 z6`g>ixzc$Q$<*eF=U^yjosyhhAWQ^jdw#d(=Wjk259xMsa|?e@BZX%`0rmCk=tdj?4|M35i=w$o7%0pMK)yI!W*k(=LSGn%OF z6gD3<+0t;!>43tkm=<$gtLu+@7C!A;oXu>^9ym)LA-mO`kC<~G?JGbkVvP#23c>Fy z96zQBm8So=fprbuA-^p;`JSS9p#+7j&94?!UgR=r%J6HvrG(y;`V83n^$Ou&VNQ-; z22BwZ$zxA%nrv>7vBR@YJ#}Fn6q(J`RO5oO9iA|VzZsg5E!EL{h?bJG7?BN{jjr3t zWAPpa;unOULW3z8ZN5>nLq0{<7fk_N#7T0iSD@sftDs&sShdjBkfG9Tl61 zR#_7=@$uoKsf*^~WrEBVk&YJkqAfcesyVXTrA6Gys;1OYvclS#<8-K_-O7d<44diR z%loEk_ut;TYv*F0)7U=Xf`E zB0>P&RF5~SQkJq$wqz>D>TT~FBDpGWJSw~*AJsp+Y7?pw!G#m#C*C`T;|xp`_r|c+ zNpHotmnhG$vvlqZoDuDNy2N<%E5h9mC)S;fk3&?MHJWlW=r-5KJLx(;iyXf(M`Jbtx_> zm)0x|H)Pwmu^Rls|3cPwn{6o<4$8jZsO{;nRBk$5=S|MH+8in$lRx&%e zaQ=zurVL8eI#QPjyj-Dr#J%f71eXCuPkR~xDHRliNiu!sZ`fa(XQ%RL-`V~_kX^XR zL?`dR@cB03aZjbK;ezZ!Hkn0b7WeluUyI%9u3)_Ne(k^;i2XcADUPHL@taW+3g#vX zn_1+g!*MuohTJnX?Cumh=m;wfZ`?bLDM{H}0AFbB{eDk4HzXH2Zv|^dw3h%Ca7HZH zLs&%ePTy7b*L+!I_zA|)=BfG&uZ(yVqmDGIKHxQgLQrmeph6&2#)P2!TSK=j#Sq@t zyJcmZH*94!S~D}rl~+jRO`qyB9c`?yB#y^jqIle*Fd2_&i;_zh-$r{r$#G4W^r!pE zXGBp-n-;UAt`%en)e|{&If6?pusC^zzTO-U4=(O=!&!qcOt zDBr8^uY$Xy>q?&5Dq(*B$?Uw5Tl2hy>zK=rT{|U!UyqQNGxMIh3SAAvRi(?}rxGp@ zUcKqn$Lc_xOBV)T{?I45`8-D}p9y{8yx9TXu-fWt1`LD-g&>FVo0}OdE-vB*w6b$i zSziGiI^#A63kfEJy8C$ioN~FkQjJ^{Jpc%4_D&Ia?ra$J;1mJ%yg zh#KpmcHYnOtgu7$;zHHRpOry~+xEEuMAB}$q8Jzy79!V1ucUPc~}bulFW?N35RFX7%n>F7qHV5 zcdy4iM*s3nDK`NLTi`1`PX3mBLF;7}EUeCO^c}3%X*jTb6BtaCDH~XoUYv^gwGWcJ z{0R&RP?=lgyFo7uS_Oz2gSgQr4JC5i-1{su1}GH{&pD_i~H73!y$YIF&d9vjBX_~wML&_FaCVB@TqF)vJ<_j3o`)Y*Q99Qw@kfk9OPxV^W=Hra>Fa~$`+F~L7Y^x61tJf{xU9!l zWaNiX*p`X#LX2WfoscP&x_S7(`+jrO5LDF*w@Y-qe}H@ zmq^$f$j-2}G4r`vRK6_&RrV;7*b;h<%8Sg5eEsHAZX~}gG76sM8dR6ZkWD}ZP{JHV z{{?{@zECyrb^n6;J%LR5blvWYyvlq#vQ!qh#CW1YyJ&eOW_~0{!z}Q|?Mrh2sR@Jv zcRCRYi88b0ox_C*yOMA)ZQ0NqP5mjWYnR_+x~Th5VCrOa^#!4<^ zf5Fr!s<-S3ycr!5NMjmTyWsBS;Xd!INW)zkYGcC}$mdr^IkXW|tWOAr`YK@^K>wCMp5Ko>szJuHyp z>2LQgQAL0p6}qKvM<7{y`I{=cYSZ{TL4&6Y4TfZMTRRlc$4(;5rmt`xTll9lJ?=bzc;H8CrA}Af8ZhUb?>ES0AfQ=k)w@1zlKHGb4 z(?_2v>x~+WVAiFUndieWgF_*l(Eb--(igdVHtho=o`l3l<@vo1M;yG zM`-qn>xDKa^XT8zfS^crLyog*=br7G2oZGR@p)@kQZ1ACNKZV`c6Ho)UhDIDU&*F0b|pZ#sSc*_m%A|8k2E(6}fS#N@gLsI70idUG>9Uv%;i#7bM9WXJ%ke95sljS;-lc_k!bdGt25NdviLKfP4aD2fpiiD_-|He;-=G z)m|tpRtmy#nrBdu=ez*r;y-~|^y90`GKAb2lV<*R_Hj{ReX_HPXK2uE{XD402M~Z{ z+Wdi*Lb<$dkT&>fuGm-00Ii(5aA%m)8Q$vqT`e}`Gb3X)&jzM~C_k>dKFV%=u+TfP zoKTcW-^Wo^aIVc%NdPVQ3}&X%-Kr|=n2w;;*ewu5KM!ZXz~*S<0jIYpDc8MQ+y{j< zicc~JY<3dVAEwGE`THuKp8+$b1o-`bjAtuXzQ)}*QipwBf4$NB!hd8VsVrfIkNM`b z_|c=z&RV_U&l8Hu@P34*7xT1lK*QCpqn`zlA7MaB7Itzzgy+Uz8CS5E#xWM3mW z_)?0pS`4e8_1%hxqp~z^GPKK@*2LvfcMr{-Hk&cUM=r=P1G6%W0@>;_d)=JswC|pu=_WT z5wj&4GdQ;4mSAGQFAwaH9;n(rF8?Vu#-JWPH8e6H1;j$Yv13NWn=_G4DKaJ#3Pb!! zRGtNYm6Uw#6b}>8ou$hTV={A891n*6=t=jPsN#T07nHoUpRI*9zv;5HzDckmQkVPAU*pScNs{od zC@M>Cw9MDu?7MfB36Ia)>*2>CE=k^putW$Ed1TIPz!ie&7ZV>`vD)``wy@kx=2FoQ zs#z?Juunb4vO`0Sm4~9B_ZI3XR3d7p-Y+*v$-VqwIZ9rn1#@go+@JPnRUSJ8Vh;?r zF&D%o=;n0;wz%I(Kw%IGfontqgFX)^Fi(GVLHmwbL^^_NdyGtSgd=8yV}rQg>GW0+ zb}fizb+erA4eK$pQ~r(OUHxV{D_VB#(G`t0zYkYOe-5wH-kxZ+V%ImQ?0b3jnWEu8 zoFbQKZsc=$N~(V=r&ZOcHVWh!A5voZwVIM>aEw6?E_3A(7Zh5`0e)Hyy`VW(V zZ||Zd0+cm7Vs)3lJ#jk6$-6NSnlsZfr-LT+LVvy`z8k^8!HgivFcbkf5~3KAs+1Wv zt`3zrOh13NE{bXQ!i(9V{F3;sx^DRR@uuPp__SyJ?+@jAnKk6PSaZGQQ?qVJNWef2 z!V-8Pg#25^vtJ-K3NMWvFh;PCsLDVD4@0j3exvP~W}H@EC9u=~;eMdGiR-QK)N-Iu z!sM?j+uDbx$4uxZ*Uuw=D0ygTO0exgQ|3WAugALK=@gf<-MN%(a(+MiLO*wjk(`{| zcSe52~Cmt56zQ>zq z8AVpB7)A3rugXtgH?7{ObX`AVCZh1ImwH`sa(dlb%JjNi-?B@{7kP5U`7_2&AUm&L zzn1o}g&tqL4{zUVzdx9aOT3QnNd*xO?h&kIFu+e+08@FU>wr1lHaJt#aVa1&B1Q2} z)1$rYG`v zTGJQ{=d;G&sZZFCF{`i%d^p~Mn34?kH(;}V=hZ$P(SHe=G_}xvqB;uJ02nq4@x?l-U_P@TgKM_T%Uy zCFCF;;mhHdgJ4z_>VpMeiq(QivXWA$~(FZxInZ(TyL{HrMfft@je(SE=>rZ^R zZ7gA?D*54>Y8dnlV#ZLkJy4M8>hA(!{f4-qVY5J64^Ojn(2n9$?MjXHafajblzgMn zb!ctS*SM<2FO1Cj5{7NB*M@EhFL)X_*qeX0k{xuld+Yp8o6BVU>Y=hd;@ivlg@2(k zo!K(no}K&Ul9&fMKx*f910W#_AL~_a5T0U{%&9p3dT{rItG5J2jM!5VHlf6-BT&D3 zeAV#xwd&C)hIunAuE+F7MP}L>-W<&fMZ+Kr3>vS4HTj=xem!tltyYL)AX*^ni(b%J z9oH1azAjhyxZGQx?*sR;pjw1d85-H9trN~e5M3DD;%X3GO`2ymo>9xM?S4%pGc72fnv=M zx-<8>e-N5KFp1XZbh;CTLw(C4Cv<{!KP)WPNSBmNRJx7MNeG<$O_64^E>r0}w)1R} zW1a7GCM8~$lD?;s$LwWVu;Te$?FF6>Kot!U+i5oK+-LAg3E6rx#M%L3H4Oqfejg50 z4iyP;rp?2NavUtyKdcE{g+clH1 zI3{IONPI!ygNrgs^y#O`2eWH#t1g>#$m0;hk^nFV-fDXX2O?Y;WEo;vi6n9uV>ka3 zrC90nsuT#eSOSNRyb;^EZ$rp2rMq>V$~}W)`Tueb!Qm`E+5J_J^y^8oaC2;!Vo1{? zu_wF%^oIFet4t=S{)-Na)BUG;7gkE2mfAo~h1Uo|hmNZ1iL{uP+3NexpX8=It1M

|P zj41_imVa|xpvIz<>c&5>(11Cr#O^ICIy;5JV&$0uvmrzp0bRy&qsy!jF8QQJfh^@V zcB2Y1*|N=bmsFmAm2l%=ao&TQPy$&;L1^vAw@~SzX(d`y8kjEjd~^{`*@d3gK!Qt3x&3gUByYVmZrLQf8SdjsRirf(9f zyNox6)iPX#HIUfX0O(oLr3_#lv7-WBG!jGqNUHTaV45FmH!~1>XkZ{CUg`EBj7zwe zZ&Z1=#R!Xp6rPip6P(G6khI--`INFiJv6oe`OK1`yjU+RBqt*2rheKGckrjc)9gn z^pPawq`_P97F25U5HhYAuTtuCbaYCbJH(-qw?(xBb{;()F~qZO*Y3x;$7d?T0fKmX zdN%pfd?V@sq7a^p?$hS=n&rLj`Ojx$%@WUwpOG^?`}=Sn_X2~M+${NbC3hR=n5f)Z z&blf4U48W-!IbG}v$P)gsQz7da54#0p;094U;ax!tm~mvh;8t(cz7ZdYkp3QOdixO z>9ahB&03>!nbla$((L};NuCuW#gUzzAD+Ud)aI1*WI*u7{Qdy(+S8Z6ghC47)#RTb3dC|+=uw5 zp`m)4lr!TD(cDJo<&}rHV%%_9{7Yas^yhQ!gPkxW9)E13-Yh5w1v+{bC|`k0y+QC; zPn^Q~k7J3u{nlhah~>XLmst<*$PCsI*{z7@dv@AY>Gfgv)zyvL6#9`4pqw@oKluN* ztvHhSpmTo}TwWgeCRyEleLBUn=q8KGg$~!5yEZq_UPEREIXtAM-(C_dUfjW$;u8JE znZ_7|hL}z1YKaCZvu*{$F8ze1=psE^zwWvvm-7Zq|DC2Omn+!TgqSf2d^^>q03k%e zKI8(u*xZ&gr{72cc~Xb24tclOA5^NUU#}5(%;5&N-fBr-AiI#)Ge3?K6f^mTixg#r zkX*!*N=4;d0J(r-M##XkyBmYfWPI@|T{Lp-m>p`nff)~UO_j4%IR;168lvVA zd(Zx_3fK-S&WNQON}=;&iF(9V48rD!@@rXs=n;J7v4QhBKHvtSZ~Gl|ja7&LchvkB z?9}n0&(zN#ag5NqyZXVm0l*AixmuY4B>Z8JD^(~)?#1CCE}FKRrqb>Al8R+4R)3Sc z!?UP{qEfsM|HkJ{^e^7EN7=cSZ$zlr@+U8q&yIWJd#e= zm^c~a7joOu!lUD*ED)mFwWAvbeo@OexGHy!<_og%nBT!d^Ye_piO!e7mB6)G*Fpb~3} zh_zc-SEKlxVY>A&0m=O6E{2V(8YNiep`f&2JX=Vl@Fo3W;;Qz6W!4vBrhg_@|x1w2q3YL+9 z2p|9`iX4<#=Z$CPUkycky~y>39K~hA@b)5aMS}3+ss9|YCj?C#R={lsL^^0~`l)H; z!m2iGVv(|&&bQW=(^!|-JVLsk{NvA}RkouI$(Qs?PwEuR?M-~~LL}8hYk^?HJb4{q z7YK~wcBM-&r+)ZM(|n)wRHH*Y#I(Wx)W0w!f)bwi{DKpmBSONp=ty=|P=K19NsB=? z!R24TSQ@FxTJgjY$==j=NL=Ns-jmv#FREdliVO*St#4re)FgE8l<&-HyB`h#uWd)Z(L|sK6dgnh0A&I0*RZ`F zUn`#0L(;eB^}H$JkSCT&uu-;!)(pHY*Zo(mi1ufpc;&AQVPVVU*sz9()Y-6x0Dw6Z z`~2n5v!E~#A1$%oNa@FeG6sgA-;O~y2sewp;Nq4_T8jtqvl&?b<#2yKaARpXZ`VCe zHT$NprM*i`X56ZjAkHeaeRFd|y!%bZfU$r_CE}7q_eh>ctY@BS$ja@)cX9W$SGU=f z5Q|LCJt18pwhcm0NYV*(^|xW6#7JIAE6%T$na5`~`~`|OGyhLJ3j{MygfJ0%AMm)* zY^L?uLO3SPQ;YWVtM3?pO3IBs)y*uA!$gX#l0Kd=l+?J#bu*YvXdr_B7~grgaB2S1 z>T>b+@oF=px)6pT8o;nYUX{-w-#q>zh2l!{E2i{xM{j6~+0CIV*RD4f%l6IrcK}JQ zI}$xmhK1K%uMg1+{2R7EM3-;RMr7rvV6!Gu8eK)1K3z+!vRie!8+mPyVT=FI+sUcW z**a9??p2$F{U8+f0BI#P>vVptLwqHlr9cr}!Lx z{h8!q|FgXz9`&LM{52AL?v*Zon(5{+vk!Mes3MGa|5%qAJT-XR()7o`amR~jMa_N% zS7lgW{^eTdZc+h91nMEwsZ_<-%vFbuU)2-)fX}Du4ays}r6OCKYzu7;e1c2|7Obz@ ztyB27t$_Web_uNh#5qFdihZ&Iq;dGHAWWTx>F4qG>lH(LDQSl|KuiPMyImmN*mqm z`AnrRXqJ`t(Bk+rEoIoaW1c$Rsws(p5eWVIf=0+O2S75g)h~8sF8B)r*Cj#mA_n4blOQ^b7rh3px^#NCmbiUhHH|Esl(6s_S3~b8NSDiDU6&?h6xO8#T?oh+v zyOX4{2j6l!A6UytTrM%G++D@SEPrHMNe}}bQ1o-8Vquy>SBhMFSq;Q8r+qiaikx)L zf{sS|)XoS}d^+Syo3%3Z^MIEl=Imn#VI_ylG-)r_xIWq7z_aXYZwnj-T7w|qujVjk zB$_RjGVq9<29VVP{|D@egHFu1c&>z-eq3+us!&O38da#eS$^F&jQ|GRkORv5x^sOug4W(Am#hP=oWWCNWm<9;0Nh^}bw(D@W zwo`rBJ6qf++Dj-eP`Xgn@Fd}ONall(+oni6ydRr~v~LymGE)MIK6ijNIIbxzc@dl} zbo<}VY%KtHh{hbAE=Uql5YRFbO}anQGKURd#6`aQHYx89&lkS)COvv9D{j^r*Fn-^ zL{mn*n?#BT9PjV5FCmi?REdG65#x4b9Ngme&{*@qCQ$st@rJcW>3h|>kB1)pH~=^Id9`2e8;LNlZ%LCD_mi2~uvF+X_{itK{yW*j z_QM;p+P!b9j@gn2(}V)DDG^U+HXA)!v=`@y$fcaCiPf>_PF<@Nvk6IZ$@(Rodq9OD zyapH+P+4>g%mE+HLk+&mD5ZHM4Pr`e(^|xE%Kd7u(fhvRwYXM2a#A=VvdYR5x&MlH zkQm7Nn-DR7lq>O%X;ALg1Q||dJ0PPIy-(H?8HboB!yHHvP_~-uvpxdfLYU60;w?|& zHBwbrxnm-Dc#%Cg*B2?t|4UF&>yQW3^)wd90J!nI0jEd*m~_3IPnvQCe9oMoW?A#3 zl?o|#JMTn!>)qumlH2A{_O#{Q&Ol2VEh8XIt4vmCWf@B(C;uPBM~Fb)3}2=rOXe*$ zuj-&{+kT{P1-;0jJmmr?<}oC0{V#edXk~F>!cnz3f%=Sy93CPfIp9)dbBZQ_z*9|= z-p9D^EEp+%IGjJ)c;Rn^x`5rb-e=}gJ1B-VkcUAUbxaykF#H29Rw4`#hfs~hbmbco zblOYwY;#)CW*B^a;Jj6CeWEoM-v;+hc^r2Fp|E}ryPkArQ0%A{qXf3}NS@{Lhhz$S ztKfoyf=U)S2bh5E(R6_hm;S?_Y%DTYg25>_SuliUtBB;4&Ks@kbjc&Y5}|Eu5EA@` zKgf>Iu1$5s0xAc1iNR>hrRI96MLz8Q5enP;a~{>q8grITFsER}iV>jel^;P%GX6hK_SuaG;`jtE)Cvwl z5q{8y`_qF5`H<=OSR>aoOqI?^q!Z~$-0t*VA(lJ9NN@&T)`Q;}T*MJ$o*&-$QmcMVQ7UK?_bO=3QC`ncT zaS^>eLF3r{E&|8!QU1DlSpDcL;hnvy4Fbg%;vmQ1)vg)9xhp3njjNse&E z@I=`X@f*mJ2C$WJkX<~IMSPA_l&VZgq%dktM~bTos_2!cxxWQYi%5z4_oEJJHbxt? zy}P)_HzB3bA)ju_%Pqy%mZ>k(UhkFSsA$N2-N^a5Hl(sw$Q&X1;;O^3zYO!0aa$f=)-6 z_-h3GA=%7wJqp_oS0^Z+-Lc@n@*bG@JR5Kle zB%8R%Pv~`N5Un=MOSYJ_P!a&YBR`Eui`m-1FPY*mpnm70yx9#O)3+Iyg98|algi@$ zsIL~+bA(6-ZVLiqdWt`W2x`cdwb(oM!g~8k<>DEtVSY=}-mPncG8@8k_!<*WKeOo9 zOYNZzw~RbwQqt^do2ZWsw-6^YeYxLMWnwFi5|HxkIk9QE3@-w>fbp#DI`fyriRCP2 zvws+ghc&Y>6l?Osk1IlR8pQE72!amzElX0RsZMi0FPbX^`juten!4XL*!V}x?5G3n z??U&W5`p}dPfku^xrciLpHAKtkbJ2BW)H#ip-=OR{5Us{eFtR82&&CgCB@&$On1Dqe}LGQUA6S7>TXq4P}3MzHm0X|0F1Ixt<*}3NBVU4k!|U4?w<)-0(Td&=2rR0r?I1*5b)^_e(E)L`(nG^ z!k4MQFrqPp5BtHqs4aZy?d7|nQ^`-ZA&~mdK`Tog#=*mX7SCh7_`vT^9**3ZT;w(6 z^7ihSp(|xeC!SC?IouNzk_px-K8qd{_osA!Hd^~+Ly-%Eh^_9riGCge59B@*j%AyF z(J}GzkX1RG6v`Y}i#Ix1Dd+0udtcS1EYKh}X3*3&=@)4@+&i_WENi{66>?4B#13_s z?0rIv+sO4KDnfld5_G=?F1nFTljGgnxR8V+?2g*IRB$SU>wL4d;LO$;vfI}O_nZ?0 zuj9Pa#4z%rXagoDeg;sSV0hVGmgzr{b__%S0;rU93(atK_SJH4jeoy*Ze7;;b}56| ztKr^-@cMy2BJEP?z8N>eJa#>0FXnd};y!K42o)y}ap)HY*n)_KcE&Wr?n`t+6HKh4 zee%T`E(sX5x1YK)o<~fYFbE=E_n)F<=-o}iXa(B2z&rq4-NsAVzIaIVzui^uh!RUM z<+uK$<7Fk%Rng-61DMlP$hiIAGONxSLgIFAmF$y?>C${5c; zUHYOyFIB8Uy0P^IZmWbYr0-&sX;@nv6DN$YY*`5N;NIp~V>ZG9X5{`LBHQ(KG$UGj z9I%T{KQB#Y8?oIaWGS1|Yb3sp->r3Q&X92%T!Fwf@uCyktav;%s@xkDivZwQ+AKCVq#< zZf!3=+kI00aK@KZQhR5#C}pyFs&xw6ZU?>7dG~uZQyyKJHBmDVWd@yWl(abKDy6WD|cwY6wz~Tq~e& zKy?`5*)Awp51S%EKX0)Y@B4oy!C|1Z+jzeV=A>0`=i$rVT4tG?^m7EUjTOa6OE{I zcQsmJVjX)Jh>xvUN#U|!h(dm`O)LLw`w6XHM3d3K>8O%!&buLn#}fe2z#YGz)lg); z?)w$Oy@@SGuhsFW6+}q_d>tPp(%%ej$;VfW0WlD#ocq zwt-a=?td-(#?S`&F2N8tmyC_*Xd*Vo--m<->;c**{0*R6kO}B@|0k+}L?;bfi?FjL z5X5pCg+$yEl&LMuMJR&sJf|4MU7%s0RPeU3o@S9ONV;_* zf4K3d<(+R4-?JuET)n3vL}M&9GQQjwt_z@I%=aNTot4vy?@Rs5S>LPAckGDL=i|>k zcL;#~BmztG-Oy*dSJFn8jNfgKt)F=-6UYvptG!jSb`={o_nmD{NvYmSgjW;5;7`lb zE_mAT*bGJPdUS;Gn9lwf+I^8ddq}?ud$OJLQ>LR@g0*S0Q6hZ>wp$={0J-x(nU9$R z@SY|RKQ5f+Fw;qxl< zdovNZw|4n+SjDyfq8(HCt{r=WW)+$8nZWI&ftlmQ(6#srf3kFG z6E-}xL(+G&xEshW+JL#foN`I7WlVMyNylI}E9hfqy?Z{fY;z z9ugc7ItuR7Ccy9Y8HG&;6c~7@>PM^Tff{{7_tdrl+qAPez)VJ%fY2}Ep2BQ`-uSEkoDqSX;DA8m1YFjTZ&)Ne z;z+_Z?fo-#E(WWwHe?u%-2EYxek#IndYGBvAg?BCqkQwCMSD=BEJUhMAZ~1=NM@&+ z8?tf@tP^1l#NG&GCrVc3(}q5rqW&xb7L75T?{%O*qC2)MgloU2&m zvAQq@7_ebz8}{ zBYE{3Ca?h(?l#fAL6dbZ+GFzY@FnXL{1r8dRF?=Bggafyp-c5!*j2;5*pn@-6@^_< zND2ww&amZtuF#ghw(9Vyl5jq2=}d1IHN9nK|0GY$SwyC8;S&B~Kt9L4c+SGb%-c;< zL;O>ihy7C{<+Y_W_PdtiXF_WuaJdp)|8x3m^GS|Mv?Bdj1CwdWox_LUr*b||W?+@z z0s~qv{EWmRZ|t`LcVegupwc?pZ@h#YD#=-4KJ*B9mqNDVQ*V=V0=VI3G^ zDe@cO>oP54uyF`8z4hVqJ~z@wk=w@D!(owNL?1-gL#X2j*Za5u9(0Xn-2K_0{YJHKn{ab_h%+GR+7~S;k@cWydL6=bqJabE3i2am{qvPW!BqWid*s zv+Dl@ica#F`MWxUHl>}&tEDO?R|Po)ULgO;RWgwii;MM439vpP=}P|ddV%8lne^5q z{$Qv`1g3Y7fFCCp8gx|J|4WBIsQ32}_7dagvtI1&&fi?Q#C$f;iT8$W|Cs8^{y>N$ zrY;{L@WShWQofXPgxAE^MqB*7`Ytp^jl8eqc47APa4Xdrm`<|!mvej1o&A};mr@k} zMx~SsBshkje?kx-8_mgJz9}@z4)H`;URGxEcTo=QYL1K15Mg6W$M^jyFiQ+Qf|m;E z0eFbS3K*LI#4p?eR^^1lfiHe==}q|KIA?GsA{-I&nxESJ&vwToy$4d4vL#(j+&1d0 zb@q2y`N)A^AdiE!k0SXW@LvpcMHji0h0R`Sa@ZmAr=w#P_N4eIZ>p6|i@1GZd1m~? z&V3uj>hs^+B6xl5xyomIOIBAa^(#u&=yrXj`@koA&(}HO8O~#hB_?HlXXvLszYls^ zwS1G6buA~_>*iFMdLzXz*Wo^TDmD-Wd(X&)fBga2lZ@YuuM$rM(ng+-=Vy2hgz^e- z)vRT}klA6Jt_*}U=x;%g#*0($>Q$F#oMYdT%Lb-amZzX0B~XWb4hlzF*RB0-o%b)^V@x#2tX<;h(Cm+ZLlXj2E<+B(30Kjyk*V$(yV11CZd%c z$5y8O%peP>O!Zd~<;zT&-+g#%*$+HHaUqv|pgF9B< zSiRK)nm6>t`hEZMdWVzz1Gye+T!%6kMH~-z6)aCgD!M2Kb^;SSAAvrj8puT@`abIl zs15lo#_55uZ@r@t{x0eN+5CsNCLn6mVMAZ;hi*xy>jXPz&O#ZkzxFDifnm)%6zKS}Ks29WJRT>DSshlZE_(W6H}4WWqY^8qjTikA zj0U3^euHN&L_)0T(SB@p37~OjKkS~tac65K}v^7_a$igfdyb8VR$koSp-}n903jP zFIzW-ZIBWW`=D2!!y!TLC9#+X%`nK;vPePm-#3M$8i(~Af>l+yXa>1qhS>zgb`jqU zoG(wBImZBSyk`VOo|-V+H)f$hk}F9S4!KVGYIF1{d?PFa3ph_@C9U z#k<<=O5|7H{O}@w|A)PWUuBZ3u`~g+ZXG}Y%3yDdWTNFA+RU`Q$LNaoJ^t73+N@{m zd0KBOompP2?|VjGG(Gs$ocgEh+$pKJ!vjZZAkdb}q#1rsAK5RuseQWn8=Bk)Ek@6@T#CA;;v=lC&l`V8 ze_0tRi|3}c-l(2s0U!yBl7hu-31RiR@){G_18rG~zQg)M@h4f2-@WDg@{!yz%Dphs6iasw93adl&p850e&zPHf)CSjvKZnWaHn8h!`acbv)gjdizezp)F($8 zL9_fxO^5+m3GFFyl#mPG855Ty((^IyVs{~l*|4MhhJS$hR%2}zpXt?t4C`HCy#*aF z83GCkeID}}1{<#**t9d`l7BT~)H09`y)m=vG`G60vzV~1zB5EPP{r=jbJXr%aFf@m ztn|FU=%+EWNK6}nUVV5f_nVvekSe_%U;Aag{0I)q=>Uap}=8*wqF&lMl zy_0}uWjGhM*ANO`WDaA_LxcU`rRGD65DX0DMpuRPAm`A0IFNd#`-yl;Y;VarI_qfq zQr^v)l}9){UBT*f9aaD!ln)};fCkN78PB4*njf+Ks&CCqP&|0s_;*w{xeTNTq57Em zlaa4;w^D1?{>cdhR5enc4j1SI@887e_Fic?LC-au%{YiT=L2!`@6k~1+ig;H4QwTM|Wg} zX0+CKM^{8-DmLH!j~XrhlwEa5b?xvA>P`v4%;j9DOEX%~fjve(aWGC9!6PBR?hx*# zqs0D7j#A7$=vi@E5Ql(HjQFdo0)zqhhZgIu(@P3TYiW;R0P>ceT_u{WrxF5@MY4y; z1;B04>08}7ND9Rkq2Cf`EMG$8_;r6e3-40fi^h=))a~mHr2=u1^mBaoR?A9+^7^t8;0lH1BmxU=4J)k`lZSD;urcwl$t+0%EE=?Y)tZ__6iRw}#> z2$?YNNbjedJw56o z5klG85=8c{AU7TCbCm0|sI0QEH$RfL35_~&GhmP1DhA|@x%^$~L9-6gcL+veP^P!Q z&LS-RXY}ho_?&RXdILkI4@;;z`&HpUfiU4Dc$81SCo#7odmqcITwY1vuBom^oB?@# zR!@!4y-lQ!%~eVfv|pNumSuYz{&HEHtSvniL{iL4;d zY$Yo-q#Y50O>UT7z`O(YBc!LeJ)jsm+(fN=PfYY%fQmex9s~%KHRm zG>Q#dZ)RA=FI<#NYK}B4HZDk{H68uSNwQAN%!-zu?zWom8lK`MO`3jSrmZrS$^fpB zpFY!XbeDc<#z&a|%MaY1xHFJ!n4at+m58{1Y?n7`ul@vI6A`DW^S@jC>nFX; z8U@>BS04s8;Z!GSt{dK-WyW_PzXLi^;Ou?UK{Ulcdpb#R;d)VU^JiTuxsTsKZG2ye zLbC_4%Q$vL3CH(bM^P~D`771Q9#AO4qCn++Z&MoDrAp6lWR&5mQb&<9eyvqNrOT9E z+dF9W$%D!GqqBO8Ztp+4J?`VPzY4w$kD`qSHJU`&?_radb{FD8&BR!R%?m)Z!HCwn!W$EE7Z*MFe=fY->e5JCm$& zd!p~mS`j4~JE_UNvh?%rH&1vizo-CXhZa50b6r5J0y)bu*p~?S1+dSpe&U?rXoi~N z+n*+2x&n5`KN!+pH-vq?_X$yQ1MKvoA}J0xzrTKHxi0~i+pwMMiQJ47nnM{KIfKBM z$XjeLGX$F>jl6+RZhhzm&pYB-%tIe9->`GwzU2aM8irTE?SfpjT&(kD^ko>#09&8| zLNc=zdzvE4?!Al4a_b(@2%;NnF{XdAaiOunC+taM3Zw}~Kl2Xw)}bN{TzcYKm`{ka zlq~1>r&+H)V9o?GIGdG?*ulUHoS2YEw##89!`q0h548`m_97F>4H%O{s5T9x{oWt4 zi3h(YkSpMr>`IRz83OUeBVc6<^TBQNy}wIj7Nv~>RGT|5GN$Dex~~3Vcb^hn_FM+*8xBw!UAOkaM)mfB3gK6DiI$UloENq2XIqi z)&`U`m_&F~wbKgfUld`pq(65%$Y*ERE^^mD4Wr7N@sWxCyv9^S!>x}@;lej!*59(z z++wqQa*FG{EwDJI2|PJ9AwS=j#j0?bbij!Q49nM|PwL)Qd&g&`0y`Y~7(`Asz7Fi< zKN@IT6DP8z-Z}_bF@@G!m3OQ7OVk|L$B-BX@s6S$#%=?S@DgB5>J+h z^}kz1`9+Sp@y{r(=I1pv*c5Auv4Z@o2ufqvWIOsW8Ty~k#s!j^_u6l-OgkOXm_rHk zCshS6pjd9TmgS^0^Wf1pQJTKJOr`j=P-$stU9f@I%0|wK=VC4GEO7|}(M^|13_dID zvwyqO$i49&K>HoD3b3TFcnr8gf2LX;&%8y6$~Fb;fulUGEHdvb&E0h;XBd_l+ZFu2 zPkO`WbJhlh*54EI`-u%~AFZE_o&0Jq>}dF+dgI`yH{(tHQ>q7%UR>TW^&M>usVNQ_ ztH^^6Bpbj!8BE=-!ZZ@F{Vy+;jIaczv0Fg-xH(|#3pSC=AkOpl&0Mg$1!OwZZdceO z(-`p-gu4&z$%3+p5fTZ(1YdIqRv{6b<%tlzoPjSbh~x||j7JW5+`;2RJU9$+QoQ1L;WQ}(83e*O6QEEK!NIox_YdUM z=ZaHvpni6S6JiB>W5z{>VVNTXo%H&n6x8cG6Yv2q-rAZ zU5ML{)w`wMYD5}~M8IZ8Z7l2j06o!0@{tS-hL8z! z@j)wibd-XV{uhX!F$Uz0pEf=)Z}EP?vrsmyGUGp_BH;J&t~}M=kY8&Q+$(=NN(c;g z7weX8jLBm5C(~?;+y1!iy8&ks==i|)poX&b$qfi_Mc_1Aj*UZ?&G_xWbQEtgU9Qcy zjk*p61JMK;D>gd_NQQwktTi;*{358Gd0hdMGYcuGoo}{^Bs)%bIHzG{J_%_w zZd~XSHW`R>T-eyTWT12yA2g5;Pc;ZB!Gj$1u8`LQcLCH)z+tf*@NcdzqKIp@ytCix z{p;uQ1CcSkI8VPEs^->)Z(dI_aJZ{!aUU)F!(P{fpNjHiW?@NMe*n5D$m!PK-=CEW z1P%7qfLR!#-UlXxf~Dnb;fE7sOt5MH-8Ntj#|WLg?UKG=%-Xmwb&Yk=Bq$c^T=5%8 zyj`vEEhNpc4<2d6y9bD$p<3D67vn^wPiY@-ZRmgNAZ9b9A&l;~1T#?}0gA{P@I@U} zS2Ey3;B3*;IpXYDP%+kQWHy;S&J={cSozaq{yKycMJXKx?3zvd&E zMSmp?BREaaUe84F+n`7yBoYd$w=4dRl0oT5S(_uOEyY_KbPI)}BC)oysWl9f{7Rbg zq}wlGWw4U~TL!-341@Sp7tVVoB6wjhUvMv z8vFygbGB3JlOQtguB?t$VkV`EDXw{G*Hq42@oLNiTI$q zckfPI3e=r#Ok#I6$*H}Q?>jU@hut@eH>LC0zZ}BeoMEf`SktK|w=*3#=5UnH)L=yz zRda?p|0EEtuj1qm-Tt}qK8-O6XlS@2DlQ(TdfE+u4lD5W7T9G5cix0EGK5oPPX=uX1Yf9Z8MTUE=f@Wob#NQ$h>6O=govG(B^<8MKeqcFeS(b2ufTnNadhs_BfOm{xJN!~PrNADx7wx5 z3h7QIQ!dYd{4^ouop;um#^UVuCp^qj1ko^(1SDT#C_nKFjw8a2Wl|y#FSWhB9U~Es zD-|sNo8Ax;*fEl|eaclzlX#Kt)s@rG#T_F7;T_W|nEFn1fH^S&nw$4VvpLeFrrv;v zAUGWDNNt{k(4QCD#U`EMZoVCK>6{k#BOQjY7h-swF9!Ci2AIjy%JJO!fd<7k*UYdn zv$ZBNrqs*Lb>vEllF@~>gQ(fvvLIFj#5XiFl#r~QUh2OH)-4l`*F;Gd@+v&H;+;r= z;*I(9wK1)%>>?bD6W69Q%GGCinyXwy;)~2y<3A}|dgvFjQf?aWdixO-6MLU&zEPFC zpW*PI!3*QAhA@F`x7r+fDrSk7K!l-2C`5>fI%Kt-Pd?h84SeDpslXPVLo5t|kkS?!T=*Is8iHt5ZNEKg7AZe){1#qc6-35@QpDElz1kPSa~7h@G8xmZEoBPJ|SW!1rQQEK>CNs@en3xz5zpC5~k$ z01p-x792pKY_U9C1~)}2yRrhV+oq%N#p;W0Pkw7Ot4HMvZPlUD&h?Q`%nJ?;RSlJ& zjp@~<)wabu)Gxig(q}FaGGLh~TsFV3Py^QK4r}!c79-^@6B^^;&p-uA1ojxz`qFb} zIU4Fx__OUBLM|e@Aq*h+S5F_`CpOCcOX)-$Ho23WX%TZ-#B&#^?4Yr7Ky-u%cnaA- zB;zVMRuBzrWouiHFh3#pbQ}Od#LN@97_N%HreGDEnrpqYEyPOA>F>F-X7oG$eOjnV z@EP=u;$;`cz@gvh#nQF*sF)6ho>0QQ@&n^5UF+_W5h@c~m}LE2`j4MJA;5?@*H=;-_eytSZ?fd%rCZ2@Bpj{iaLkiF01Y3r| z{q7g4E;9omqlVq{ZkN|>bdnwY?7=! zD=R^Gp8gNpE|lG6yOT+q67YV{z?rLE~O^Hr zk$abMfMI?blLZTX^w<7KY%<@Rsl_tUTm|rr#215T;v_@$8^o*zE|vO1bWgxR?JSVg zYR2~4#>Nl#R;anZT_glgpvD3!8Fiq4@6R&{hBGgvs)_{yB;;Z1gLxfuR-Cx~<-x&0 zB=(TxJH)+Vnt8MRs1-<%pe;n6f(%auKEd?~G&6yno^he1*(65;t0tEzJ(ag?XYI0e zx>PLjj$|r}t+{(S{&ka+&DkxVOR?@uMILHfCs2zHnOcc~=QD98Qe>iGJQ-gsU`Zfb z4@%ju;JOG{Acc#I3ui(2$dajI zLqtNrjSlgF{zpMY5=#+1@CWR=>YuS{pZhyvH*X?hfJQ^WurS-j=PaJ^JlwPe#xoC&YD#emQ8c-E2sZj3puLO(>Y_bRd_TR6EFdw z)OWns9^xg4ka39xa(g0`aK6_zgQDXxjNB)N-iHJ!{Z3o)qtp5hF~DnJzheQK8ze-0 z6kIpcbxYnMO+1uW6Jr2k)H&mo!UNf^3~%!Y&$OsNr1dYi#-y67ZkssXxEc8Fu!Ti- zG*9CAtLz?T-b2auo2ff@f=E#Bq|XO<(d)?or&eqwZ(?x-NN2*7V(0a zM<8qgf-g1d^w>#eON~n-tmmn+h6=Bq!n!khpPh5xD0|l}*;~B9O1WRY`a*4|dv|q7 z_wm@aZxhWlzVWGy9Dz~+spsLm;sB6_wi0HlwauT3ip~Q>axpdjA|dFT5|Vv_(?6qh>)HPG;0zYts=)rko>oqj^r@7ZW&8PUNA{XOJl%(<1ujmCukWJZqwZxrU^IZ z!H2yt#gDb$Vf*(c3Hsaos7>8Z)#+OLzE6t5%9+>!fD1J?_W#E!3RE70QIp z@a_7Y8Z$I82`w%bgC-jiwV_8*ZWTZM+F@eGS;}PclJ#t(>li0(&~5wGl$D(=6IRVB z%K>J*NvVi16bff$!qiQ&9vl6_)t^2TCptDDE1U zKX!2pxp{b7XV#@*!iyZtNn2(^HKqd2pzGTYY~FM65Q|G+*Bkl-fhAR(h~;Cb1}7vw z!jwRF6-@AZ`}+fqf6mL(s=9zd#XPh$!tJFmY923Vy4UWG$?r;k+ATw*KE7*WRPgSy z`haVsx7F%OxBK*w@;vpY@D$n)m;jm>IPQ^FyAcLlFUR((#%jg!YoWi?kFf~M4l_Os zsL~p{pYpk8^c5LB59aMsUVa465+hT<+I!mv4k7S5}I6^KP z&Pm>9_=I5>4B`RDuQNju(=1{eMP9XW%ERgQ_tN4$1a(&#qn`Rjr>t*K*zv%Svsp z%BDwg(b~ORN0^#MnI*f7TPA7dtxDdRF~Mnps1*nMx>d>7`yQCJx%NPgkA>yZ8NYi5 zCDCZ~Z72pteU7|HPS=(-viitaTU$HKbzc25R6-5Zo-$)C{sC^8vM*_kJ)VIBLJLNb z*H+!Utniy7_}(bOcD{2}h8WR%T;;Xi>zVw6FJEv?*Y}~|CLr-#!Vumt43;&VM+2-N zzmoyq3q(0~-F4X*@p(fGgZ>=#kv^$;gJOv8mQpSku(RY1V$_UXyW#G!n?Lp1L6_Sl zu@c+1Gbyi2r&#F?Cy7~;Z5J-xHghXtFssZ6zj%p^`^)g!{#nLCDEBWxPbuLrPJ*;4 zP@2O20;E5$sDEUHrR-;sc4E&r_nr80!cz1y*;1tyK{e9@J%*Mo@-(TiOp`AhJQ6U& z>zUAzyEk2_y^cbX`>16%&mmF}n0cgp{CEbrI}rOWYPtP$azFtvW-ys^jKOfE{v9*Ljt9k zK_7+$F1@Bk5lKjpf)#KUhY%YpW=*b;x%d5zPF5_LQ>V&1^pt6*&#ARXi`ME=gsoM& z%{32DC8uWxh4K_?-KP`1?eHYahU+~|ZJUfeFZCc7KFmIQ(!ZojJpKN)F_r6|)p*-3Rx)GFg@Jdk^Or$4M7z|&1m)lYGhW#y;ML@H5Td6HCQjt`1kv;FtHRX2_ z!|tK9mYYs|QG5@Y{br_dJ*4~$F7ch=xR{z>@xjw{DS|7o58!ZDoczf_)ijdcxVw&% zx-%r`pPadZT3fg#x4fp?@@>_L+l19)V)g0V zV-{V;ueB>V_T>O#bXhbxN7zJ$x~+{cZT*_(%;2jHTjmb|Qp!f2CP{7&GYVxy7oBcr z+SHY(AAcRAI#McuOP_j%eta!&6<2Wo=9RGm-GPUWH#7GPKbEY-@6<(eEx7Gv9EnW( z?RqItVwc2W9(+oFEsdIy|52$9AxZYARk}WB?U}Bfma(P4N2lKP;AXQ$(h#!{5O5u=zk^`{QQGD$nF(X}FD zaB=o5E53<4zVt00d$aDEWHkM#xlK*@4Nbg0yjO<)sKL2=TJAYHb zwavh1uH_o0sg&pU=c#Jt&#+RDD1Ww=wH9bhh?7WgPj{-BODm^?}+FR&!mt0%SINmoo1kr3ahQ(aCoVDWI zM=Hdi-Cfq%jCuU7KP)R%#F(?B+4V5zw4=*L=GM}CzXXm;oUXjh^WB3JgY7W^6U+2U zj>T3;3OlL|u(PIBPMV?qupG9qmzhMk8XOyC= zneQ1ET_&Pa6>hD}r6*oU{xrMz&JFKenG_iv_G8jr#V&$+Aa^74X4?8JE>a;uphZqy zE1s)V)bg!-hxFNvz2W-;J{}*uX8Qx}Lzrakhf|}viOql8G@?m`I@IaBH}|_%1O@C_ z8N78LC)mAjm|xpV9Ahf9>s}Xy-yhKKx9iUD?>=uS5P8>bbW{4gOK)E~x)5hPloz@f z@pmV&lE<>mmD!aN{kt->_qQX<*Wz>EIu3%_D+#7T-u%=f)>{#Ew8~7~@if57D|>WU6szntYbOMd6MYH)*^JKhUSPOygq}b++VOPHyG+snD&Bj7~m6t|V=nS1J6X^xR7AiTvGICN9Boqsm@xnNxBrDXuOjjl6_S*q= zLCnw}I=r5DVV;r47&W&ksw06yJied&fvL~@2eDL3#sFOu-JQ*2zDgf@yLOA!t=@}> zir#Km6z~0t9(-{*i*RB+sdMr;ht}zL117t9QQAFvU0mc8yMp(n^dHcAejjgQ?=D*p z(orq7(qhOb%croVd&+a1xBVcM{MwkS>i%wCwqoS<>Fsdmqc{4cuTd+IIW!kzsDm4OHjY~Mfa`Fl@no!1}+{eI1da43v z^l<0-v*jGMt0ty`E}?~9m49+Puc{Gk(jK%_Cwg+7F{`*)xOmP|lat_xCLBPFcT97W`Upm?aL_GT#Ajz_@ic-s58mU1oBH& zj_c6Y8A%#7=J)m4zOT#gDC$|DYt$uJP$gNYZ3uB|d?Me>u^{jV)>hk4C8*ER1t`#9 zjqdk*&1_e$H2QITC_9I2;bx1PAk^FbA3O3|%*!_%ZeKW$PeTu*O4C!JnRmg-NxkwM)NT*jA9TjOvu8rJf9&4zSQdY3n)>M#RVQoM>yL-G@8+}8K< zJJ8V$BDrgUflh~~k}y4AB*T&RcW=CDhhv+Z)#J^WtlZ1isQ7H^=V-+4J9<4V=X?b}B^QTcs8 zhEZ@)$emx>L{qz8y8M>#k(hX4Y3s2OcYYZ!ezQ;jHJ~H^@Pv?c&9M>X7DqZBxPyhm zH;FurI+xyPx8NKlZgL2l;w1V9xr3+#6ElRL>keoQ`4Cslk&I^O>@!e<2Pq>%^n#}Y z*DY?#$9FBWFN|hCHgwc1tKgoNjaY&`9GhcMICnyg^>6pL%iZ^R%}QN(o+`UEPrtpm zj3X{^7sXNFA@_h*S)D?;d)-|Hmp!``xu9Yq$j7xK-)mIi<B4wFiv+L%Z)KJ(jAbizZFOSZIpk2HCvSbaG|TeN3m(erGQ<}xh&Dij3T z3bZG?@AD@Y%rGfrMor)dEb)=b2Bn4{tF?{Su4mdL47DrxifXGGtZqiAysr~D@22OC z4K2#SJl36zu#4d`?{u0>DX8?yV^?;fotKPIyxbx8(IldRKWN2~yEY_}=|WVPcA{GQ z2aff5$*t+xu)3f6bsHgVdrl8nDUwUxaUL3)N& zVGh?vsxkb#!AMGg^xDLbT;!hM0(Q;t`_4M8GN$251>Hq#-3NY8W zz-P1xlw6o--TE`NySGOc#Qs?%sxDS+=2~-8&wA+Mx{3oC|3{WhCj%*bQn1Kd4qWN! z-t}HCa~%`Y*KTVht*ek)3O`^-~y+u5Ns?^`PJ53b4C z&E1m{v_2ll_1DWKdf`*sJ|wchsDz7%9Cs;cWIqrL_w3oTzQsNMX0Lu+)jrJU;Lq4P zO!JH6(rc!{4o?Tu-WYt5`zMD$*e|o-IHsb+E0AC}5M3QUINvg0D7Q4cDn-nblfw=C zNVOeUchtEWrfli|U$DOcE85S$;fil*Az(@z!jCbe9wZP6j3> zNhO!z1iZrwTN9YO&j1TmA(r7@2PX3vS%uHg6bZ(Pj-KW@e;jj?^=z&rO-iUQ!6k@Y zYBKL;P7tM;rXDv5X^$)AXs#+hk-PX;IJ4;i$tZ&HY zzcL6gkn=t)bfV41$%NK2IA%_2`j#a0i{q{f{9_r6?!xE7=$kvYDo6rY3$y2+ui%uA zxVn=Z#a`1gn2VNX8Z6~S6~D!W60S;~jTf`VUKnd^nY4ZX*T!Xiy1sFL2M&>h{(8f( z9MR2!spfTOJ=t`>B4>QY*EdFS-^cfqjhy4osPTEHEi-%`b_@$na7{Eny^oJ-PhF{) z64ZlH8)Qf5qSMV88x*tCl2FQA?{5R}m8B7PJf%1DeWGOfNUFbUrl?UMVKK++bp%!H z?7WwJKyi~xp`cu{Q^R6<5>u1FWO8~<8oeg}&O*~hreJbD4ll!Do>}%nPdYP5^ra8Y zlZC7uQdX9hnF=x<{GQZD++fIT4xuHN?sEbcexy2LaSlH)Fur>|*Re^@Bd;+So^yDmpma)`ZW@nvZyaIZ zlrgC)O~^_j8*>37wzMn8M4c@8cXL-BZxSO1xrOSNb0_OS;$=-Xs6E`&X5tUqoa; zyVOawTJOpep^I1UkY718ae7nu&RCMgu8d+&jg5z|PF*Qb^ziyZC3-KdpO`-8F4-MM z8Gnz?PH#^%b>UM*?}gD*vpHQ~^M}{oH`F_>aVJ@LvlM#X+LfzU`cGO6Nr%q_)Q;BNCp!N@iyHo!F=g*i8!(IvBk(fcr5-!0{IX~rojc}flaTEQ_W z!{PeKjImg*?C?@IGrO%SwW`Y6z*kJ^dv0=Rv{@nnZ6awvios}YWUX#oYRuj0d&rIx zX&PdiSQfa2|A6XhXOSs4+3Vs+qCiV$7Z>;cTanYk6N;=38MW57wn{LTfgsxq0*A{7 z8D<8hMB!JJ`hAJarrZLpttPaBwC<>gRi~X8g16doOb1Q+Q+0I4W<<`WNuY$574yVw z!Zg1Llcuq{ON8GwZtEizKXG(Y(K#39n0waJBiWf-CUi!2wzdLq>(j{L8V{j)EdLf( zps^1oD6k_yXd6r?&10nU&UGBi{C+AC%~BwS6Z%-td#YnEkzKWNRZ3Yh5pz<=B{ZWP zJyf{S+W0~#^maP>W}$PCU*-3LPw%yRR~>X?btZ8k>sjBF%s{zn)2-SR`OSZ~rVjb=^jcWHDe0rTJz z6O-oZ#Q^h=>vTq&$CRa_v$D8Iz5{I!=uWK51geuJmSKU_lg_tLWC3Ax8!QSZ-*By# zI@N6N`Q1r$h`Z-go+KT!&nU2&D;a5=D1lK?3R1Wx-Y#)F7iTn*;d65$UD8aKO_i>7 zFzlRwTrzQ^@0E0&uFW*2Bq3PrLv&V*_mi&0r%1(2m=m5*VqJ|}RnOD|KLTpCXP3(l zzCWT#ckzx;V4TiCZ$;o@*Z^0Xxe6ObjKqLh`50D_0t^unK^t3dRvGrAwWu3P{i+oMErQi5-*-)bUC~z>NnllT<*;0P!nb zE?;yYu0naw369>c0s>C8#tJLY^Xn2K3LQ8`gj|N{FPUcTpxIs>s=8!OXntT#^1l`u z6YP5re^1;tF<}aeHrF-PGDyl0?G5kE3u>vYTE_)f=IB%#XrmcP7%-?Gf<@{!$)qNK z5)R8ebgn8Nx%lX|bI6Lvrx22hHolvTfDID3wrX&(N6TI?=-z0%PRUNCaKQ^P)aCZj5@sV_id|Tw#bl zNL-!TgJT-DV`J3#r@Gk$xL4^FXubBfR}c%FRfN0(B&X9QuCA^GWw~7%gvO8fP9qL9 zh~qdSV|1I(j3FV>mOBuI@t^?0@c%K3+Lq)uDW?Ztkdn276(1zJioJ)A8a`nFm~Cxs zfqFzT6_>7S7r0nyWx3+iRhW4T<{M)-Z(o}BR{Bv--WF3F*MFO~djEbdw7UAQcvwD> zU)z1)xGmb%w3wEe>JmYk!Eq^l7?nE`(Zd*+Gwq1o&frjCfn^OZNG-djR=u$*o*x5< z-Xr5Pcr|Z4JZ(hAh`EQbuVBU%P#???^L(rjO$TZ&wc-xQ!+>}7s}#dd@(8TWB&H+v zJG;ASvmX5arsDkh|2Gw9qJlpJ5&-GFohc0?6Mj^yQ^oeWtFxqjQjc`#9=;|JYG5ef zGq7f}H&R*-+Y?yRKWU0Ox|Uq`I1oJsViYiauTTBoyh0YalMyf*K9Y|c4KZXB z%Sr~NF+#$VxbOwV?XKNbk2PUG{5qP2C>GDEL??#AG%em*%qewM?_C4@W!tN!V!a(W{aA&3W!9;oJ&9n(n`HG8+zsSbV zISi#GN*vs@in5))0L~`yTo@S7cfW*rv{OjEsAVI(Zm`e~qo1U3@5+SA) zSZX(6fQ|=ros%RmJ*J9Zn!#6yCVu?LH?^@7Q5~KEM;C0eoZQ@FDXzrCoHZZ3OwM8| z3wLI?A_J>_{m>Nw%C?hN81$D5W{g$0Hj~Jjyf*yhIkQ!0gS%0JD9-H2;69$K7pCv; z;#hdGE#K8Y=#SEM#QktiZ_pTpBP zKVcEF5Da&E`}&S`HY%v5sa)z@X3{>%Jb!w}Mk?M zna=x_Dg$^O9zVIf1}3_loo66=iImLB$Kx+^Cu1F(ip$HTG~#Y>4tvAFGYK3!B?}97 zsDtw=*VW+t6CiS#lq3;ioZy`!rbCa1Ukup-iK8x5eDn=a(ZY6!AK>tYIV=`PSHDW^ z$5IY-?Nd^QN*}3n&`z$!#|9B@t=-7njCeGD_1T#ByjhbM!TedgcoHRBmCt?0*|g?f z(wIV7HGZ3+%#Dx!Sg-BlM|lGI$0k7Nka35yBjg|$umOweFz3Kyd2z88saHluOum^ISsBv$ z*fE_qLv>{b2?;KXGH5BBp<7?)#IR4dEz)rJ=4QsM_cg3^RZf;#_ddvQ38u}^Gu?DE zix0o!5%^{5UHNX5ba6hjsBV*)<5k`BTwMH81BbPY$MNP z3gz~W81HD6G(9W_5CKk+`1-NdbN9adQNX){>HZp@5+OBEI_XQHv%M=EPv+Y6`pW4T zk+m{e)NJs~=f1m+BWZOU_6hl>C`&yl(-t35hk=~xYB}ZtWfLjB;mqATp9u^nsSh?h z^;>+Ui@(!M7@3*LU1dfJ*`V)V;P-YlJ-Hz<6Khf9QdYQz9h4Aiy4p2->F~GZcSizcM|r??MtTM(~LyhF*C&K{YJgY>g%bJeH|l7f8rrubt0Cy75z+ApD5*N{A*3e zo(=P4JcgD4@vmzVQyHB=#Tp{~bzDPmA#&Hq2IJf@M^2JYQqnWnX1TBnGgo1wn% z7tSeLsZ#K(Ppi!O1=mOfi^c?V?2lCArDhx@>9DXj36xH|kHOvom@jXEg|A{5Mj>K0 z_b%Y2SB<(;JNBwRYkY9}+3uKz0d(qYPC5GNY9)3WqCg}jh9#DhB0F>%+t4+39P5$m z4h3EC9me`(?au&$NVeYofGH^fkgLzpiG1CU%$)8p(F_n4Yfj}$yww^ zg?FW%O9g~UOX+!-7Tc%!u1GA|Qbi0k)IUsocSEywZ25ajB(7_{Zy`5IbFJt>vv0pi zvw~+f|A;pCeXHZ)(bHV%Di%jX$->Qv9u1BIYJ+^3i#*E!t;Js@H_fwk@*v6qdU+dn1{&y$=vq{f8`HvX+Dk@tUh7RS2PvWKDI7_pdH7Z?gQ>UQlmQtVIHNG7m z#_=xT+h&lq=!Op8c^BQQ4|BB)zNqe@_ev$E=9@7mik$9n+glOtm|T)#{^146(|>Rp zA0?d^`>p@gWkwGll1V-uWaOQ_qH2*zw6sl_A)+74*NSUtHD?cFyes)tpR1%=mv_wa zP(?ZVSpW>$U#TJh;Ka^Cj3R|SGRmP&yUV{rHG10elVrXLsX z5|@{l5C@$F5YXg$Ci% z6#>x5(oV*G{P;0qX^;_xEACa16w%A|{n@e^n)H77Dj((Ww#398^y`2N&oW$CK9({y zIeg)0C%Ws_w&xw*MNfawc|%ZW#;QW#@{)q^~XZGT5EtHstR_KzImT7yEN1Mf)#?Gqm}2Q0{} z@2WY3pXUzYt8&zA_SMFNlaDeaeBEb7M<~+^`YaD(L1XnZfb#ryQ9*6X@u? zl;ai_tTmEREJZ~{6U7p#+GE8MdmKNMl`abTzKzJ?)F+}wvvPt?#Jlmk?vLvDr3?9} zKB-UQ{Pekn;ifPL?n~stgiVF>=i!@E1x`DRC?i(!fR2BFQ{8vPF&@M+*>-m{_W*vbm~K@^AwmQF+sr$kJ1jkxd#u$6!}^j9pvj@VlNk|o{xCh zGdvjnGSG@;b5~94Ke1Hb;x=;BtR6B1iwXw?Qg3J^Mhv_x+_$Rso;rYciULx)Ms z$PxDGmXOQM!={lRwbv%`(uWx7<5Gu_;)62w`ZuS7>;xa`&hyOK$1ja z82!J+ho|K&Y-UjUqysB0QJ|UO?x|C*tyo8Y?OunNw|Mj0@=n7!3LO64nKF}80zr*A z(`EsD*cMLfJ4Muj&(lpi?o6l`D*E@a3=2<>?Z}Vg9sl7y;I6Y7dZT^qQ+__fwv(Z{ z(?Ow^p7*ku)HCffTdH&vlY&ibxN#QAAL@w;%;Sek;U#sB_U3Un(TgG<%@l2ay-PC%2R)z~G z*LDU}Mx&ynq3&a`W?Pv-MSuIubN0jU@?Y3tXIo45aiSnm0_$(jjyz)b8A9}OLtBE;Qd>s_?c5w zeM#419OVlY9(dQ!_Se(Yp}1qsd<^dZSx#cK7nvr;#?CP*BobmYxFFPa>Ad}|O(uzq zul87MTqJ9<#^msoT@xm06%%$rk{wd2ToyYsX3QsBxl7DT`!}(9ro&(GE2s$zDNryt zmL>i>vsGXEyEeuGun0gJn54Tn2HLL&2pKoWJWfULP#W3tUzTeZzZa72w4*}U9Tx7c z7S;aDd}!jC#FCl#plJHc72b?%nytKKsEY~-qU=Go-ab|X`OvRH3HI-x<~laB8F~Vo z*bqz#ehu)FW1i2p_^TA$-{Bx{3s>iQ|MA`1OZp6rJC0W;bJi^JU-It($3&;FB+Oxr zDaO%Hr#ECS{KDP+%Fb_TTsEb9d@(KHGx!fKkL8H%5!Zsjfz|Wpiu(HcP144a5lnX) zyH(N5x)ir6EQ)jl<+S8!vj-io;)70$hH^YFbWHynCZ0pr*my%tYk|Y1 zzCN8^Ze(mgFeP7e4oQYp{+XUc*)fUhs`TB?@jP9BRSDFYj*|Ewc4I{)XbrGM9((cw zf-DCyS!?8SW297{vB_^TC&NDI|EoOTGkC6tDL_6bsB(GsGYoCIIxr0ts#eF9Xr1G) zOlYNWTqz6KQ)HAqHm@)ZSOTO zTH`K{WczDoRz@^scvQ}Kbld7)eewA+euJG{n%9r1@7}++8_+h&(gLD zn5Vl7>EsecSKac@X* z`1ig~kU^*_!uhLn-t%8W+I|Ku2m{a~MwHZk?Ht*8IH3AB}J7Ng} zzXkm-7Coq>Iy^-o^&xbUBD?(Cu$buwt~nxR-|aKA*$%dXOY3H1EB9ay$@{vPDepUF zu6kwNHzV6=I+Dx1mgAq@xCp)e)6S~La9L@X!mBgFtDENxT=hSe`7VvaXl}7qG+Sq{ z)&IWn1UI>Ea_qY1{qe@07f#2f7g}OIua$YAFe)aBP3XS<+LYM2PqzTw0NV8H=VH=U7xJ_n9EcLvZLy55DOL|~InyelF`=y5i`pCS6tA#0 zW=FB!&AMl~kkY`?GRyT!CGCCmw39jS{v|a!wHymb5$o*id(zXB(2nHJ4G`Rml<4>S|Z0bIqSZnVX9m)K-UwhqoK=gceOr zZ#Xs8mm+<4ZZ2;n15|O8zWUK~6<|h7=KmXXAPmcLpx3#VZyL(0p9N-!<_KGSVS%p+ z(T)LTM8VBz41Q`7SmNr>!e_LI{UOX(dV6~*9fL}()&yqdEmz73$GlE`)GoAotleBY z`vRlxr2` zJUcpMHd-w&X2`Wnf;Gnvi!j*$;C-J1Y#E8dY?nL2R<71ikl;$`5xKRE%{5c(n$n+N zUr)psJCXxr0P?w&kXue%+`zAeX~M4}8wTJH>wF8VcqH>gZM)}pvcZ$mxGLjYYn4`R z_bKMrJGx2FBp0YG@{wN$`e!odY`7F=u#U(wsmm-1)u@O&Kpd% zwZKX@*Dz?l;01LZaC?1={|`e)glhhdhdu|1S08$m$yYcZ<6WIMnv>9C`5OA zUoy(72?|t254lO-G{4gV4+LhubR$<1r#taP@Wu{m9&}N&sDyDQ_dgdcVQifFN7&20 z`aldRZ6%#%9sxQC@=OvENCqN@I~zQaFtIO2E8VR?zzvGAVYnb7Kp6E;A4eP3c zj7gyy{xL$#eE!Pwt^%!UjWcWOl7rv)@j9QKwaPv*7_Nfg@a)I;!ZQEwZSr@OK& z#OAi%#En5r3BW|H_JL)Rzt`Sh$UzptPSa(=IhmA{MDnt|y*(l@b!g=;8jrwF9?CdVEM>TGw*7Oho1{%vuN0M1=d@r5C?o>(#4OBV!(g+Td37t&?k0r|y{}msKCkgFyc;@pF5(@U|1Ap7waUE#pMwG7dQ5f5 zgMw#>N)vJKg*w>*N$&*T`fhch`l12TU=a1gyD^3_3L=4mhmV{@0>la+e!?1K*Xm1` ziibLX|Nj4aJM*X}&n%3`5uy%DsMaDo)~RR|kVT=gSd~=~iB-UY5Q>Ac2^2JQ^Wx~^|nWtlWVFCNdhFT>tL#VipyX)u28?Z-ancR8v zEgK4DqH$Hw$^pZ^kD_H3g;>4dQW3Ka;A2qOyuFvd|LESDHlxTyNX+P6iA)QR9Tiw-y)=oO$vz+WR$JbHHg_;lGCo5 zuWH3m87T_q<-4?c;o#!jzB|DiRvu!8YYE(Pq~1RCV`&{up$)PJB6IuiMd8;T_uM7l zkJf1H_8c;iM!xtpHH}OsBEh>Rec{y)jz?<$XPCGUH#aXr+L$m@0}A*EyZDWN>-NkO1RJ=rP>c$R4KkcKlT z9Ibdv{Nv_b^;DXHep9Z5*sgGtRqi{QKL0G*-|lPkkA2nSo~UenKpbmN4T8?OUvr zA(p*fS=1&n*BzW#Q{GZxSiGl~75d15rFdhGM-Ifr#qopNmts3x_hz^)Zy+v)5l-lEW$B;@!r-e#d;_!9Dw%1lI!R0tYVoV*7*Ul$S5i$BHnv@Ob`Fnuoszw zl6utr zTT>8dS)1F&%3Z>vC!NlKd`{H)sp@(gAds)4t>XgV6$tmtg`MgY@4GR^esM#qtH$bA zBujUQqIcff`xTiGAzsPYRC8*^3nTgpN}KN^Eit0PwdlAZpTE{&wp5OGs5AR*2ZZhK z3$Hk2o0S*%RcqtkpeDeAjT^lqrE#9o`6S%P3>Zr@kKAyC%V;&9%aP;=Mc^9YQ*| z(zjA0w5y;NzV$}|jx6mLkzGZ+f{8&Io?Zxy>AAr{;zyFW!B3gx-swxxS)F=ZC>ax-w0b0-s znR=VTya@C<_2;cGUYx*9$b`FlKo*b!-{3*g`_|sp{La;L|3-w?ELmUb=wN9J!O(m+ zsi`Q2er(HtLlJO2S97rDVasD57x`4E1Fi*}tigqpWiY0`l$V#+FN*qdr+!liZ4c3g z!-?})aC`2K-ZI5%Pk&x*(TTJvu1@=FpWCG#!YmSkNrV8mRFiNvYW=4>{gog7%-`+V zz+!@~pa^qSusKKg1p$EutIBc7^hYs`BYDiDKK$7Xu~&9d;wAXBgSc{~ZPsSPJ%UE= zM2V(A=15|}@lQPJ4bMUty>A!+tt8XUY8`8YdG-}h0W`oRIE1x8kX6Z2sT5n>u6H>1 zTsAuLwRnz9Mibv0#m&3?t>=Jg6zIdnZZQkdfI|pEwcTKU7y>S-_V&?Gsc={J|qEYM(624||EvRrjeT+MMg&lq_>ap-A&2X0-I2b*N4 z30*u}d!z&juzJX*z9d2lrWypQs7tJ_51kTG3@c$?QfCQZLGVatQNn66E`=PMyl%RE zof^!f8N3#fI+P(uSA))$lbf3>3H6`+38*)#>){jiUN!SEPrU+-hFTPP$@`nXH)1dH z+-74bo6YBm_Cw)L#a>e>=?RN$GM^?kp}&nKeO$}x z;>CzG!?~QXs`Y;sJ8k*-X7Qhk7va< zpLs9d@B9CA_ILih_jSF#)U%#-KX=SI<``qHw=z<~rwK?2Fc{2fQ4v8o4CW9g27^~~ z{3!fJK+cgKzTCADQn8V@(6_PIw$j5$YTH0GnZv$8g_FlS}rV7hbbnxT!2 zr8PG*v)R8dV6w0>V5XfU)`6RxuoQW0jlrDJM*r}V?k5^yFoO1?f)5oO!sq&(9pn|u z_m`wYX^iUQ@ngnx@@^E!p3Oa8;dyFUfq=FyJmmS|3(UuhK{J$&Uvl1zK!!wuTc zL*d7cRMp@16k?3^{3ToDPMp9zudgcwlTEp@LS2F_>GgM&YSd2x?DbFj*I|S1=eYIx3iruW};h za8dlnKDbu=dJ!H56U1+IINa;ehpWkPadGq!IZms_-KHGr8fC>wIt2Ee8qVn%WoxQ~ z%l#$x_4+wR-#qajzB|FC>DPy`)q)?sbeon7D<}l?yyaW@hgC^NQCZcF0vw zP%sI8HQkvR)sg<>^6a9qpoT^yjZ}Ej+FUOK4b7v~>2`T5t1o*y6ZdBp|5Sb>Jae4E z?;9b8D~flmOSgCwD{eFV<3#%7oJZEcXI=dBKw>1?KJVn9Gv}%A9BFnJW}(K9Ie*)LFFkx1PDZ z!rh&W$4;W4&*~l4-=A7k({(j4(&ewH>(*4_*3gSHo>!^Q-V-tR;BL#*yl*?zB80Ws zo-3H~JjvAjD};4*y<%To;Pt5!4pI*vKA&z+RsQ^p>*@#ks0-)L#Uv#qk-q<&l2JTO z-)~jVSU$n$yrxj$w##PFc(rU}_}xRFv@Jr4dufAvYXx6==XwgCeeNl+SXke>Ak7=& zxIEte)49ER;rv-|;-EvGlf^R`{#0{4dEza#s-L!2XH4KJrUxr3NZAadwJTqXVtL7Z z^&3Lt;Q`fTWo5-gM4BV)2a@+;O2;y`_qG>Ol`}Pro1>qTa+oHiW|phIyTtgnj67*v ze`&Z%OiF4kqBUDrm~Xw$y1bJirO0u)fio~XJZ*B)klm<75X}#))kJ6Yb`g9{e17;? zirem%aZheCEF*0}uln3}XO4liXv+sOo}CXA_gqw9DU@||V%3;}RSV41r&<$(XVU*V z@H)*GO|-!~2?+@$8?`1(_ZDQ9Z%s33hHWlS%)mp+ySS9XYnV!A?=*z4CibvI&Bq68 zw3NGUv%%V1y?swbO+_{N$BSZ(ub|u1Y1B`+E>B!ctmUU4rE61}Kuna&-?!C1B%e1n z9Mm2DyizT;NnUV>Rx#xWE8ksvGMG)_w(+oHe|Mq1@R=?egLp8LYQAZAk*i^J&~NL* zNBq{sH(_-b$run0<33$!hUhlgFv`ppYkT3XuD zpK!u(1Snir{30F4Nz|RD;)}QEOHyt3?G^?YMUC5%{1#NSwPT!Cr{i6>*QOeI7TSa^ ztH(9n-&ga$Dc!NRyUlLWaZ9te*StjX1@po`N82+sH7!b)Uc*qvI_+w))Wti0>)T@lj)}I|54t9j^EoBy)dz*L8DZh% zBytWo2pm2}*aj0AkB&s%c~;BDQy!|E?t3njwJs~ag~x}!z0hA6C__7T9M0IBGp2cPz>`6Ef%E*5>f22Knaw)AsL0{b@)_`pws7yLEk7^xIPuA7P6oBAx5X z29wuQva+)JW?(=Gim6I&H86vE@K2Fx98O8pQVzRu+fSS6wkaPoDeBs%`uagUZc9~{ z!(b8ytrr&h*gMta=O?%!0$!k?Sg?25-`l0RapU`f!AjWRPPNT!*Y9wyXW#9AjVyhd z?=K1CfMw&>kIrDZh2Iv_)~0}#@$K8UTMPSp7HAC@N|!&t8JX&wUy1bL9CVS-&dx60 z+nTYRY`#87dH3$))tSytn6O(@PtW}N{aF|SMx50u3rAS`_d?jZ3NkX$XYTK0wM31< zWVAr&V1vCx z1KZ_47aG?97StvT)}{oI7gUdNJz-oz(kuf5gFOs z_Oc(Punmk8GK@Hn{d^nzNKfW0^mlo=J^JAb>vAcfN515YCH?dEri(-0xGje~2G5SP z#EXwDIj}h_YKgW$tguK|%@ccZ^mGe6o9p`0M3lP{1crRGUM2I5bH|BJiR0NC!YUf~ z=BL9^3H+{27=dG_@1bAVaWYU>YuKK~dP%Xpigm29V%t7fTCN<*4aPRV;3=H?~X}}I_sS9LS zg)B9*yFS>tv$@Q!^W%8gT93(ujag=^^O-|MThpnoqW(5t635$yyJ5%Dva>5nblsoZ~tGn;67VqzEA1?P=uP?b{H`^66xHHaaJXl_)-x!|!ng z2&r_HY<`Fnrh$pA#~`;joAu<1R#jC^ur-v&exH?hjzl@=DB;y4`vFH`=JJhLh{(AR zs3pTV8XyODBkYo!o9oeO-d}8+H-c|`q4xCIqfBKha;^}lreULeWlojv6>TXPbbB(! zOrF@9jCc5`;a3klNP(oR`aT*?Q`C|ncc_Q*n94VFL|Y)5y5y9XLM9q^E~AI(NrL>j z9a&)9KJ7C{;WT-@A&gTRouV%}In)uQ#~}MJQ$HjsT4@o_vl8Wmr6!NA#H-Hz&55YpNMS+2NpFUXk5oiNMEJakkYl}leLMS#tap1# zVQG3w9djT-ycToKmtURyEs&g?Twc?S4TF5y?>G^mT4WUuD@-*tT84I}Qij^&jNLz# zUXYIIMYsAF+-~anki$G%&6Td#_4e9Km!W+--V~)d)}-WDGG8nXlhx_E-k%6h9ptzm)q@?0V_4~Z1wdWZhe-TtKv0J_J9StcOAz-rt%b;=k z3P)Q`)4kMQiwbpRP1n5Fgk&iYtfpo%E0nagwO6#~;{*@i28h{q zzOUQj)i6Bh+x-hRyQ`fu@VFgtsN3U2{prgxEB`dR?{>Ny zLF%TbrET^hVXeyx;d9PM@XB_!OZKy{uM&i;fZ*Un+nJ6jl-0{2#aM4IJ}^5muE03t z@+Tr_dn{NpGF#orsW=(H?5oTQz!Nlg?{*6c3x^#&P5KG2XXy4q#o*3LtF+r3Oox84 z{epSy=g+wG4hgye1~tEaFHs6#6L2A5Qs1|}zMN8tt!i*s#sMm^ZLcq^=iPOsFYLrp zi~kB#)-ZxVVANNbO~PUN$-;QM`<}ACenRpuO@RTUcIo@OHeWj-tQ*bRm2{W8mH-fe z2MMk9zZnLF&XvSgBbap^Gzk4)pR~Q-y>p!i3xW zj{U-bhZ#gh?MFVu+M(TLyj9BpA#~LS3H^o)UB4`0y-8JmM*B8J&e0b z>@%547r(RS-(A3>MHJz7w1yIec+?Psd7w8sF~PvX@_U`njRsyiLgsDUm31A}vf2rE zsHrbrgbMe+ir4?UYWIBG=r|0e-2?A%TddGYD0RyKM;q`N08}WRPDvfLDrzgXHDOfA zitZRWg2DWuOsbUxWXo+k9oL;>pq#P`dD*7&G-ndbW>2n>f3+_~COY#B${A^6B6yew zg~z9>Lr`7^h)v(`Hs4o-D%q7^tW6?Vx7AclBLFu}YuyI0C6u0ME7iR{UqCo|xt4_F zy7JSP;T60$C`|)*hoQN3o&KH^K~Zexxx?F~=C zlNc>C?ZCd#@p1a=*S{^O@bh~DGP2#-cqSw)9L#eQ0-f)@EyMJh@ipQqt~q-8)t_@L z*uC(p6D zB0Q_Jz(`zHs+F{rh~#}tLPAnLvAMY^CLxiwv@Tj+=vVHZmKo>&R_a-@a24FUsGpvG zDXD9Yj%Tgj{awHLp!HyOi@%w4xA@O9qTGJl0j*X3NlGWGO z%LDX3yw)RvtsjH`Qr<1P%%0;A;+gZd>!H3oy;3G^;Iky|R(Jkp6W!ZD_w%++Sew6B z3p91cqT)7hJ`o~POH67@m*>tKWodbP-d8HXA@0Jrg?5520mW}w+R;B!)DDdYtKbuJ zoMPMAsDI{^hl$?$PG1C}9Pt=CA6z&7c!`OMo{$raY0}Txy>sj789Q2RoSgk;WP&#~ z&f6*N(5fm?M5tvEA3c+;a`TmO_gRIiiXREF1fH1!Ysa6ws(hV6fQ@T)j#mpLcH?c$ z`jb4-oQi)f{0Mu|U5MfN7K8K72;)GA??BZcL?{!$b6dTGdo-eug-TYwpJbi{ z{MDIWFpvT@$JBeyf#$zs^)FV>$q4yXtcd;KdO`MfbctA#|AL`PX4f3k{il=8^Mv7X zMbakn+RRFuGvPg{V{61@>xH(ZR2!9E*gB&0D6_6+qT8Zhj)|m6l}UMM3urPw?#`RL zSaq1|T{I0RB3qo+=jWW~)8C6qOLuzWpUidNcbn_Zsaf9w&>1^cA8hjdK$uuUBHq^b*%!2Nu59G#%iG zX-Oq==xTO*{e%9&A*DZyBi&x7%lLE%dBpiJF+cTvSPU%m$zUUTzklBj0kkbkyHd;R z@JlL-%nlN-Q-@bn@UJSJ`Y1yb7_hL(T^2mk_LL!DKZyRyAzo|jXn~D@5dNY;Xr9Wq zteBYqa+V+`k3hw-ZJsn^b4=TNnd$aB)k$r-b*Ilasp!>lVkXPU}G*^+|GscL7Gso%{?D^9b}GuoxzJ`&`#$fTwEyZEsI zDaWaRH~7=%7&xC2M+^JlOEgIX0VspNc06phTqAvmc~xeZgNSfdQJ*GuaB;+_@;Om@ zgyL^odeyHhhG!T2g6;8IVOWtpBeqVy3W^4dPMw|Hu0OFF={>^0FlyK7=hTuoTG6JI zGieh9L@QXiWYL)LaKaIYz zEiaz;EBWN7*FW=lpT9o+`KsM%=^~XE#cew&dwK7H?bN!P$fVVCt?S!Qcf8h=U)N3* zj!AiFq{il`O-P*l6gk^Yf4Z=(vQOF$ai1Q4`5p0EAF!S)7$<8TEvS%vD7)w!l=1@Z zcEUbdcc{iad^n&Q{Nlk(emDx$35GNaOq4A$zU$y8z&4)PI^RceA zr`geWhf4W4p{|7N_GT}B{Ixb6@U|yd2D;^_aqoPn?sYt%at!9u5F;%UZR`Z%cs(*F z4lcyk!>_`<_@vgk`-t#Ov&J#O?^*GH@y&WhgQ#H52FVlnRp_l^>1g5QO8gI5(C-sG zQBHlE5KRoXd~2_~s8b*uZ!Z1ub22Gg{bgC800@Sn@~cPA`}`R5l6 z`pb-?m(35J?OODgJoE1+*YBf?&&m{L*a{$4`Vc{91FI+y&<`H`DgH=-=I;2<0#=7l zW|5-*pT8gE_?U6@gkrfbgmz#NUIm;Mmz6mM`QF15cz7+k^3W@G_{ZQOzM7($qSGt! zl*c`@M$9eHVf{#GDA7||1J z%2%Du7jZw()}6Z^Ha8konViHmS=%t%of8-k5C>Qd;Hspi%Tg6dZ&N6{I52kdHa5BE zFI->;oCbw>?1xx<%+QW@PPdCK=bzjTNg4kzD4}U7DFvYN?#a@AfdEBrE*lw_a3!I*PIdc;XDTU4Ng_bF;_^QG zGVEQhGtJiW^-7r<>A(X|RbAF>dwu%K%3805$>!fNr=6u523`a}fNUxk2B1s!=oIFG z!*YAy%isKN4`+&Cn%)BJhQfU3!^GHF^5YzRyrz&ldfuzZz*Ag4;dgjsO;1NlNO&!YAM;;H#XR+@VN$ z6%`ex=h?l|12(#cGQ%eU6lQ4)RKQ+K3ZJ~)$IEKS$B7N_^NRuQ4aoygM7F0r&Ow|P z6ilL60N625h@g@Y%ck`e(-3}FURlF2zSwpqVXn8pq%MGt^tP4%k_eI=<1m$Sb>_|Nw*yT?ON@Eh`RIk_o|PIub1zDs{8(MSzOBUq}k z(1|{R8(Vw;(Zz!R5N&E;c`)4Dx9}lgP;>vXJ9-oMnu{X`;qkg&r5r9moYYbQ%}|Bl zioqc?_!wMNJyC)Sh%vZ$NPvr&a;24WX}IuneLSEn-iPJkhw<5iQ963X_mO|rDY*Ib zcQ_e(Dz4AOUj6G6mc*gB&|`4X$oFHb+a0~*Ua>l8>MWK1u<3fEd=ReKt;+dNbayi6 zcRz@kmP(0I$IjT|9z0Fw>Ytp0XvxJu;EjU$%hrD;B@GA)knqmq!fV=(0#>e^cvvJN zK^_&{V;rvp8T6}Mmm6HABDTWJ&bfk9{-SYz^|puzJCC~~tST)^2bYGQOuR>}hyBzl--HSr zovb43i4>sjp-c?|0VG$i{!&#zSUKBQB#($%fStKIRRm^(ZHySWqy{>jnNUpbwPf4n(o3{1wCFJGucL1ik?aQK6d*cJFm^k3JN}+kOMsv z*vRA)7ibW@DFb}H?Lyi5^z&onToWpAzCt#Q&BgdjqPw87P~@8mF^K%#7{Rj&wbf7k zoc2d*c{KO$YeGWfwi-Pypn$(51U;1r_O2@YWBGFV8dT)p`ztK-6h-6@$6< zqiTb|TcBioJY0$Pp2K1^P|G(&jXN_UV0WrgK7{Dee1WM_u3dE^Av*d2XeVg$Gk|#O z+(Jq^FgBCD%T&c%fnMJW}9?&^>jb@^uFLVLtu?p&%QXw-0`r{UV;(A5T4VXuuM39=NH21|vtJX>aI6<5(qgtWN{hh@Z zRES&!#_1FAg#UU?rCdubiTtYiL~g7^da|7Y;3`r+CmYFXNDTa+0P=E#J^fW%9F`?* zj!0Kf!fXFn8g_rtGca{-mE?@D)`Drs1*WZvYnGnY&TGXdS?ne!sGADr<{85yBkYz# zUkQ4ltSjn|*?tZSx+=s&sVFl`I2Ah#7n1wl9E!rjeBGp^Ii)Y5XhQFB%?m(HGD^~C zi3m?_Dl!y>06QFX>+!Jjp4a`Ihfvom!ERgyI<`~A61};g*EfE*b}{qu#)wqVJVaZ( zDBO~O%n<=K8W}P6Rub>G8+yQ{HZLp3L)t?t1H-~*#LeOC^5F!itrb~0IV|85rO$YW zV6&W?JHFe%n%ZvNnj}j(*I%NH4Ty+H2mMVH%knw|t(ywh#f!>t{44fmD%fl$W%7(# zAKl;I$pN>*O;My{1DmgYa5GsYnXAR@oG`vf*R{vg)YL|x>pD#*CxSu3RkQ_()WDdM zo`#tB@`Gg;Z;op1d!UeiyuDCQ7IjqxbGEIb4P+B zuP{j98*D?yKTC*T#h$+l3zt=HNlTldWM$pNw?4`2zA0Wbg5-Ok?c6h1(9Djd7iFti zEq6SzNCxF=>;v$6>ac_PCZged8Gf0q4na=?XsVvfqAM!~LYqw^?i`I?38K$dX^;f? z92gOyKEDAZbf!|eYJ{~6%rDz3fhNhkOH1`|ctCdpN#UV7sGZn2h`~tHgp;l$S&a^a zhy<}|_~Z1^aTtOkkb991!zcLmHb$^u$e{u^gfQhJpQPUy*e{cdgyLk(&+3UO!x}D) zzNt%9vZBO=yZQ2Mb245B8IZ=ycM$@x1xVt9P?t-s6m9YvH)ni&{1zM|1hnDhqM)2c zfg+qudJ^K{%S#IcRagb$SlD8)kf7-*085l-&_oVG&eYaSrZUK&$hiPN8UdflPIeQH zBHlS5%iT&~UyG{Yqak~e23I|z0F_=kxC2D_17!7BnVt39W(BEHP_Ztd6BfY$= zg6qL45bF%0ToaH#0f_ho2iSDrFj1z2W8u*}iY_vcfWcIcEFJ0F+(yCxSY9j-CZ1@d zSCgL2#5^UiZ)K{r#)9ukSVMwt%?CPGR(VvkBzK|6_?MbfD5l$59-;*at9}xQ9>ud? z>XD-el}Dgo$^%`#0#Db83tuk-%)V*GjMA{M$ZERp=D{J0&8*l{1;wq^te`&u%r=`u z!~j2MmWVETO=c+s`iEh$=aD`OxgZkK7PCS=RSPX+z-MKKi`)`PfIsMpfCl#+TqA%263ky{BN_AFh7%VWOE%y++?-aFEN3OJ zstSc4ZG|qOmjE1dc2X3()nhcQ<>NhdbbY{WMi*Q^#$yMI0Yg=HYyB2NKnS}wup#Kn z11tZ?NR9a}#)3XM-EXj$n=k9e+nOVx@5wXx@wRrdrw)Am5*j8)q6<}pBZA4%Vx=>E z4n7JBq)zqUaAgMlQb(Ui%w0AiL@lKJAlLS1{ri+ame`Xuf&a#T0I5lBj_)or2Q}!o zf^ulW329^~F)fK}<PV#*x#p~nBO61`ma+_`hW z|F=U#rsrMAt|3QGDf5!K{G4)Oh!w!w??Q1u)aUTdn~wHgLyUkI=(S)*7_#TRe*Gcf z89=Hz`tLOy$A~~4&6Hd43k;0!>QWh`WMNqfA32H{auIHlJbl+`B?(o~U_eU-he{x~ z!QatZz$<%nCZeZt@xG+f8z0L;|ij9e!XLJ%V{a_SWv@{CLR2xgx(fAD>h4iHWHY ztEYSNQjrVJ)AP^))CU^@+T@^711yk()W6f{`|h28oK+1((Yd!L{s5M~$%zE;Z!eCq z+fFMWglj#~Sl8INMntmEog;kioVFtA5sb&!tG_qg9!i^2fg1RXl+#@8YbS6QuGQ9; zZ>h*E<3Y4yJs_0=zC_~qKP|l9jm?Y)rL^LB?-TFjA%KVk{6*0?{!fAApqT99f~imu zqh%gObSft07WYfeMk-XzDOOj9prTF3t(z<7hZ(NwB6Y{@@j56$4lX9`{$wddQ(V-_32`_O3CEovw ztLt7nc~H%wXrKd(I8X-7I8rV?awa%5>^v%eweSwO$*PiFevp35eNR}i>7i2kL7qcr zksp8R0avQ<8_ zsMClU-*eSLjm>LXBR$$)!l=X{*Jo}L~Z2S>-ch=c_1L?N8z5E+09la+E4!?ib~ z+J>v%t%96SOHWU)6$WD04A?`fyh2ywm{skVRl7(jOm8WApMS?Jx2mrL!$Sc90R&CXfL>Q% zMj3c`o~Q#M@lFOth0kwB?;zuBPDS^h>eUCZZdj`K#4P-bPx2MO_eo{6wK5gTZHx4B zg!wehq(DE0OuZZJ3JcSy9Fx!L0BZ}eY6gl`bfuNGb$gMufu4cEwztpvZ1?9kZ@v&F z+_fH0f;t`5X1f{wAtA}aY(3WAK`Dx%2vb&l#xm z6hiIu+m^7+w6ugX-GJ(^ZSbcbFhSw|#Fv&JLMeS;15FyZq=Ueflx~gNzl|qQxX21H zJcc_2{L@AJCI|GOrIZVP6}34^(Wh~onDBtDxsRW>7~jJWIF2d&^Q30J=12a|^9Mg( z017GNr$3z#ZQ6le(D;}(T}}dpNBC}z85hLRcc-LqzYDQYNqHHH3nv34@(0A$@%Y_% z94B{o`O-yJ+yOmw5OC`{iVnyu%)#l_xms~+SQ*UkNKcr%jDj7C3Ij4d2AGB8REk^CrXvyuteFgs4t#Z>ut4OZTO}q6cJd@WiF;my0c|?EjWSNZhpy{q z^?YQFjFS82hwRg1jDf%g%b;FPwuYV8tD=f_ZsP z*9YN1C_0c|88l#7!6THJ7#U@qaKF0yvUOPsv~)~NL2!0~+yI*0lZ-IsIybi};I;dE z8=v8|fc1%HKVpVT&(XJj+cYr4?3mmyU0OcuF?2jI;@c*m6%6|g1&)It`_FgTZ$M2& z${_qVWs?FLiPLO$je@Gv7ZXeHSCn^}afAU6kphL@OqfOa-I=`iEKZwa!R=sgMwU}x z@es8Gsk|!f4#q>;$KE~pngwJi-Rt0tY=@WSK?&av1P^k6uYl=fI}gh5cW9yl8I+OM zz}aW{0!H8D&=1xzlbwyFVlZi~0;OWonjjepI>8<|muFs_xtC;DYT&F1+5+f9vExVC ze~einF`*bN`nK!+_Q3ZkLTSBh0$$oo7|>KoYDNp#i1X|hGs(oU_6~~&QT&! zq5oM8+4MkJ3Aw`%Ud1xd|Fm9}F<>!Lz$yR_`1Zoh6mUzYC}&0@?Epf!^8O<{jIof- zn_odX^c#`b~ZlZr@GMxj;si9_7AwcgO_XNxvZ)QcwB3>qnFa?1ENsg{jT6 zL#fo&)kR;$2JsG2UO=>9<7Q_~`BvNHo&MI|bd9nF>B;za>?^R_(uo4(2`}H@b7s^i zRbf=kZRS}h{S2=BX;?m4aKojn>|s25F3{tH)M@an^hbJqLdK~&XZL-TP>bO9l-t#` zH*X4~f&wgx!WEt1`QaCp13L}XR6>}!-1gcWLum(CYLVHMzDC9mED2ID`B4j-U_4}l zd4uMU>fm3uRC7h3-@*^DIar0+z#0x_0bv-ggE!vdXTDvW-ldl(ZQCiD1*@96j~ zIGL{dDyq!`CG-fmLP-7zM*$9|x6iHpkutCXUA%lb5v;;fP-c*V;**(A{Sj^#nN3r} zaN|a-+6@Jul{3`KoL1||pw{?=nhy9t*;CCm^aFQZ64>3uu<$<`plyMet~Xz=pn$LU zP1Hck839frCYlR*2dcOzU;IrnE|Y{iAxjf-hT>faYkg0~qcrHYojw3=KZ0JQ+X1*} zAKc$tx5^~ZwE@XU^ro{G9H|B8hB><#s6x{f`rxs1q{6vkV57jai-37%xy)`XP`M7S zfad@vHE-}U9G}4Adzff*hkaS{S%AY~%PKI>V6{&F_3IabR}>h%;vk736oSZd)B&;! zxzhCWuCA^HTr5qSP#PIaNxW(6``8ygQT_f(BD``2&cUgTV%STu zLhqovL;@MWpyCeBC>$o>`}>m;MU228JFB1bh>!u>AyV_;-IKu}Q*JaI$YR=c+Z7l` zDEJbYiYISWbV6;Kd5-eYWcl{Ie2Lv0o8{00R|sokJ$M*ThH9hWN^^O^)tg%#$HS7R zynmk!j*7~J5{&Gwl^~cYSDfd7;OfaU31%u9J#XhvsJn9&?;4j6%S7(W+K}+6?QI*B z+dN2RpS+b+L`eTXo8Kfc6WvGd)c=_{hMC~RhRJhXB@~qd9`_^Vx1zJ ztp$aGJ`?G-WrS)TAnBd?YAwP*F*OU(qr#W%Ow%fN?_Lzwjs2Qi=uU{cO;40?d;UL{f0rGI#DR zH{I|2cwHa>icsWP1z6Vt+b2)E@+ha;Rn zvT)Q?^S|jaVpaMDy_?u0m}{r-^P)HYSG?*m0k%4&WLJQ7KpDFF{`m1D^aO0fmsIsl zLFnB+T)jK&JlkKw*>xRIh3dsN?PO4+ewr6BFf%tTIA~~Syuy!xf;v^sIk=uWxL%PJ z?=Z&WM0v~XuG(3_bxgIasK#K=v!2hT0_JL@b~`=T>19DtYyh<&Q3Fl3{RW^ z;CMD|m#HT^%Fz70#H?Wo`rG3yt>>HI`)VMw@6(34mH>hpT&$2X!=U=#?8#Iw=@5MM zC=`gZPjFlIs`h0!d!)1@org4=A3=c^wvyS0a4fw53k5Vrzc%40#&--gvq# zxvrr>5w&zcD-Hwc05C>3Zq$jr08eZNgu*E}*&Qec!!DbIbe_IK%88N-+zIt(kZMLV zgJJ^BC_N?i3y%|%W3~#LY+r1val#ibXLU~FnR{1sZB`~_^9+9vr%VKUGb4D|G3&{fz52ES?A zmPMt&ZQlR2SnG&7DU~w4kkbj-833S*^Y=f$Qkt^pr5V+bi%Z zE-XWB0?CmFR1|Q;%3h$6Xa-0yP201$f`~WhEI^qWTmb`Me9wtQ-J9yR?TY9g5RyUi zlbLyT)YT%{@{7Zg&WH_n18APc5Ttb+=yTBr&%8cBQ2o)Lel$>n?aXNIr;Plp6jy|Yf%Gi_XIv7D z3JnNmaDIE8oiZ>1DrRfE_~llRfxxv+ngih(jW7oiEcXZAQiaufP*64(sxjqQ{^7^{ z6`C4aOC7Dj?fep5k*1RUop+^KU>r0sXwL%hVO_lj>6#6s85&B;N|*iJ^>OGu;Iu30 ze`;XRX&g?)so0!nqRa}i?4Wf)uNh=bZBPXddjEw9+>v6j8&S*+HIdRuYQo~@ILRf2Zjoa%Wc62Jf z36g2w=7qPh1_l!>r9Xe(<^vL~ohv==PHhA9vsf@y>{wOk!g=5Tr7Dj&gyodDqTGKj zje(>CgrVsy3dWh#EWQ-`C~0Mgu0SxeoA(vwe?R5iUe@HxxAqBCB->uIf_9-#+L_$z zjsSkaMT&a!Q2!A~6NZ3ipn|p~vg=B2be#uW35EE=mExWv>qMnAl^B4~oua=c-f6j> zIqIssX!#79q@a^((0oke#EBCq;~t9i4-31Jn|ByU@Ax4b@XYOrislRj?NSbuM4QIZ_mqOXb#wNX#nU6Co07OSQ;AA@x=!Cvn zEiYXXkZ9Tg53s|@f`&7yu0JZF|G$E`mX|&ql(`+bMy)GAo)`ma!J!0~O)I3Yd?P%~ z?hzR#X8fNlMMfZm2ljk+TJJW2Cqck?^|vs^6zIQ64Yw;b;A8>>%XMBiKTUl5E9$8e z!9q!w2Q~%No0)gThB&2h!5WopmRvxUy4E1;HyyZopx+2ev^-L4u9QaC$p6u}bbN14 z^8)=Axhe3(>8m{=D}4%~ty8GU!^+Car3Nw~d<}p}UJMTixLC1LPD1X~M3w z$xEX$Lm3=I#WquNmt$V%!HI-0g(@$!bS}PO=Eb6A&g&iULjX7ig8z8EpWeB*4y`%R zJ+Mygi_HZY5N103N5Y}@qNZ1`UX7h6w%|AFvdXSLGUuG7R3FHQx-zTBtU~ZlUi!39 zu|LoUC?Cn7Twp~&<9le>(^6y2Xv_J1Lp#n zEi_&{I26R2ZE{%Q(;dRcPb!u*CFAd-@F!NpI#r=OL@}nrVWkS1fe?4WLdDG)f3`q3(OjQRSVeIkTm;b+@Mi zx+fCAVu1b(y|aC{pt11-C84xpQ4^>s*?tQ1ejy=`*PnZZr0m^`@*Yk23-KN#MeA0m zdPl5^B*2LA3!1;R;q1?FO)ts^ZmY@3>5w~)p0kF|rBKuu^68Ty>_T05r1TjDmoD~SZb3p6jMAW$l{Xhwy zwL)#*u7GUetYPEQ(r$qW>D~&hXsZA>jKEx8JQnn11vo3!_9~UQrg?q=NzzJfA9CVbi!RD%}t~Q3_W5sn98;1(Y3|Ev&$~s{e zp(b)y2s-HDXXXVCC0zhkou41%a(4I}0c3B4E@MSFP;TobgHxc^fny^EO-RKW1eoH# zbqv&^s96mXvg_N1Dai6GKw6jp34@wl!3_kBpCIr?s_v^{ros2>@lhsIgAWj}Ds~0B z(Q$PFly_~owrwb-+P~ 0).astype(np.int32)\n", + " # label_flat = gt.flatten().astype(np.int32)\n", + " # output_flat = output_binary.flatten().astype(np.int32)\n", + "\n", + " # accuracy = accuracy_score(label_flat, output_flat)\n", + " # precision = precision_score(label_flat, output_flat)\n", + " # recall = recall_score(label_flat, output_flat)\n", + " # f1 = f1_score(label_flat, output_flat)\n", + "\n", + " rst_list.append((precision, recall, accuracy, f1, iou))\n", + " \n", + " # avg_precision = sum(item[0] for item in rst_list) / len(rst_list)\n", + " # avg_recall = sum(item[1] for item in rst_list) / len(rst_list)\n", + " # avg_accuracy = sum(item[2] for item in rst_list) / len(rst_list)\n", + " # avg_f1 = sum(item[3] for item in rst_list) / len(rst_list)\n", + " # avg_iou = sum(item[4] for item in rst_list) / len(rst_list)\n", + " avg_precision = np.mean([item[0] for item in rst_list])\n", + " avg_recall = np.mean([item[1] for item in rst_list])\n", + " avg_accuracy = np.mean([item[2] for item in rst_list])\n", + " avg_f1 = np.mean([item[3] for item in rst_list])\n", + " avg_iou = np.mean([item[4] for item in rst_list])\n", + " print(f'{os.path.basename(base_dir)} - precision: {avg_precision:.3f}, recall: {avg_recall:.3f}, accuracy: {avg_accuracy:.3f}, f1: {avg_f1:.3f}, iou: {avg_iou:.3f}')\n", + "\n", + " total_tp = np.sum(tp_list)\n", + " total_tn = np.sum(tn_list)\n", + " total_fp = np.sum(fp_list)\n", + " total_fn = np.sum(fn_list)\n", + " y_true = np.concatenate([np.ones(total_tp + total_fn), np.zeros(total_tn + total_fp)])\n", + " y_score = np.concatenate([np.ones(total_tp), np.zeros(total_fn), np.ones(total_fp), np.zeros(total_tn)])\n", + "\n", + " lst_cdata.append((y_true, y_score))\n", + " lst_rst.append((losses[idx], avg_precision, avg_recall, avg_accuracy, avg_f1, avg_iou))\n", + " idx += 1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGzCAYAAADaCpaHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADr0UlEQVR4nOydd3hTZRuH7zTdk9WyoZS9LBvZW/aSDQrIUKYCiop+LBURBVFxoGzZG1FBkCV7711W2VAK3TPJ+/3xtklDd5vu976uXG1OznjOSM7vPO8zNEIIgUKhUCgUCkUOxSqrDVAoFAqFQqFID0rMKBQKhUKhyNEoMaNQKBQKhSJHo8SMQqFQKBSKHI0SMwqFQqFQKHI0SswoFAqFQqHI0Sgxo1AoFAqFIkejxIxCoVAoFIocjRIzCoVCoVAocjRKzChSxDfffIOXlxdarZYaNWpktTmKNLBv3z40Gg379u3Lku1PmzYNjUaTJdtOKTqdjg8//JCSJUtiZWVFt27dLLp+T09PBg8ebDbNx8eH1157DTc3NzQaDVu2bAHgxIkTNGzYECcnJzQaDWfPnrWoLXmRhI5/StFoNEybNs2i9igshxIzOZSlS5ei0WiML3t7eypUqMCYMWN48uSJRbe1c+dOPvzwQxo1asSSJUv48ssvLbr+vMbgwYPNzt3L5zEnExYWxrRp07JMMKWXxYsX880339CzZ0+WLVvG+PHjE523efPmxvNmZWWFq6srFStW5M033+Tff/9N8TYHDRrEhQsXmDFjBsuXL6dOnTpER0fTq1cvnj9/zty5c1m+fDmlS5e2xC5anNSe81hRrdFoWLFiRYLzNGrUCI1GQ7Vq1SxoqSI3Y53VBijSx2effUaZMmWIiIjg4MGD/PLLL2zbto2LFy/i6OhokW3s2bMHKysrFi1ahK2trUXWmdexs7Nj4cKF8aZrtdossMZyhIWFMX36dEDe7OPyv//9j48//jgLrEo5e/bsoXjx4sydOzdF85coUYKZM2cCEBoayo0bN9i0aRMrVqygd+/erFixAhsbG+P8165dw8rK9AwZHh7OkSNH+PTTTxkzZoxx+tWrV/H19WXBggUMGzbMQnuXMSR1zpPC3t6eVatW8cYbb5hNv3PnDocPH87xwl6RuSgxk8Np3749derUAWDYsGEULFiQb7/9lj/++IN+/fqla91hYWE4Ojry9OlTHBwcLCZkhBBERETg4OBgkfXlRKytreP9iOd2rK2tsbbO3j85T58+JV++fCme383NLd55/Oqrr3j33Xf5+eef8fT0ZNasWcbP7OzszOb18/MDiLfNp0+fJjg9PYSGhuLk5GSx9aWXDh06sHXrVp49e0ahQoWM01etWkXhwoUpX748L168yEILFTkJNcyUy2jZsiUAt2/fNk5bsWIFtWvXxsHBgQIFCtC3b1/u3btntlzz5s2pVq0ap06domnTpjg6OvLJJ5+g0WhYsmQJoaGhRtfw0qVLARlf8Pnnn1O2bFns7Ozw9PTkk08+ITIy0mzdnp6edOrUiR07dlCnTh0cHBz49ddfje7mdevWMX36dIoXL46Liws9e/YkMDCQyMhIxo0bh4eHB87Ozrz11lvx1r1kyRJatmyJh4cHdnZ2VKlShV9++SXecYm14eDBg9SrVw97e3u8vLz4/fff480bEBDA+PHj8fT0xM7OjhIlSjBw4ECePXtmnCcyMpKpU6dSrlw57OzsKFmyJB9++GE8+9LKyZMn0Wg0LFu2LN5nO3bsQKPR8NdffwHg6+vLqFGjqFixIg4ODhQsWJBevXpx586dZLeTWAxB8+bNzZ6yo6KimDJlCrVr18bNzQ0nJyeaNGnC3r17jfPcuXMHd3d3AKZPn268XmLjDBKKmUntNZSS85cQoaGhvP/++5QsWRI7OzsqVqzI7NmzEUIYbddoNOzdu5dLly4ZbU/LcJlWq+WHH36gSpUq/PjjjwQGBprtR+zxnjZtmnHoaOLEiWg0GuPnzZo1A6BXr15oNBqzc3H16lV69uxJgQIFsLe3p06dOmzdutXMhthh6P/++49Ro0bh4eFBiRIljJ9v376dJk2a4OTkhIuLCx07duTSpUtm6xg8eDDOzs48ePCAbt264ezsjLu7Ox988AF6vd543JI650nRtWtX7OzsWL9+vdn0VatW0bt37wS9lCm9XoQQfPHFF5QoUQJHR0datGgRb/9iCQgIYNy4ccZro1y5csyaNQuDwZCk/cHBwYwbN874O+Hh4UGbNm04ffp0svuusDzZ+zFJkWpu3rwJQMGCBQGYMWMGkydPpnfv3gwbNgw/Pz/mzZtH06ZNOXPmjNmTn7+/P+3bt6dv37688cYbFC5cmDp16vDbb79x/Phx47BIw4YNAekJWrZsGT179uT999/n2LFjzJw5kytXrrB582Yzu65du0a/fv145513GD58OBUrVjR+NnPmTBwcHPj444+5ceMG8+bNw8bGBisrK168eMG0adM4evQoS5cupUyZMkyZMsW47C+//ELVqlXp0qUL1tbW/Pnnn4waNQqDwcDo0aPNbLhx4wY9e/Zk6NChDBo0iMWLFzN48GBq165N1apVAQgJCaFJkyZcuXKFIUOGUKtWLZ49e8bWrVu5f/8+hQoVwmAw0KVLFw4ePMjbb79N5cqVuXDhAnPnzuX69evGAM7kiCuOYrG1tcXV1ZU6derg5eXFunXrGDRokNk8a9euJX/+/LRt2xaQgaKHDx+mb9++lChRgjt37vDLL7/QvHlzLl++bJHhxqCgIBYuXEi/fv0YPnw4wcHBLFq0iLZt23L8+HFq1KiBu7s7v/zyCyNHjqR79+68/vrrALzyyiuJrjc111BKzl9CCCHo0qULe/fuZejQodSoUYMdO3YwceJEHjx4wNy5c3F3d2f58uXMmDGDkJAQ49BR5cqV03S8tFot/fr1Y/LkyRw8eJCOHTvGm+f1118nX758jB8/nn79+tGhQwecnZ0pXLgwxYsX58svv+Tdd9+lbt26FC5cGIBLly7RqFEjihcvzscff4yTkxPr1q2jW7dubNy4ke7du5ttY9SoUbi7uzNlyhRCQ0MBWL58OYMGDaJt27bMmjWLsLAwfvnlFxo3bsyZM2fw9PQ0Lq/X62nbti3169dn9uzZ7Nq1izlz5lC2bFlGjhyZpnMei6OjI127dmX16tWMHDkSgHPnznHp0iUWLlzI+fPn4y2T0utlypQpfPHFF3To0IEOHTpw+vRpXnvtNaKioszWFxYWRrNmzXjw4AHvvPMOpUqV4vDhw0yaNIlHjx7x3XffJWr/iBEj2LBhA2PGjKFKlSr4+/tz8OBBrly5Qq1atZLdf4WFEYocyZIlSwQgdu3aJfz8/MS9e/fEmjVrRMGCBYWDg4O4f/++uHPnjtBqtWLGjBlmy164cEFYW1ubTW/WrJkAxPz58+Nta9CgQcLJycls2tmzZwUghg0bZjb9gw8+EIDYs2ePcVrp0qUFIP755x+zeffu3SsAUa1aNREVFWWc3q9fP6HRaET79u3N5m/QoIEoXbq02bSwsLB49rZt21Z4eXmZTYu1Yf/+/cZpT58+FXZ2duL99983TpsyZYoAxKZNm+Kt12AwCCGEWL58ubCyshIHDhww+3z+/PkCEIcOHYq3bFwGDRokgARfbdu2Nc43adIkYWNjI54/f26cFhkZKfLlyyeGDBmS5DE4cuSIAMTvv/9unBZ7vPfu3Wt2XAYNGhRv+WbNmolmzZoZ3+t0OhEZGWk2z4sXL0ThwoXNbPHz8xOAmDp1arx1Tp06VcT9yUnLNZTc+UuILVu2CEB88cUXZtN79uwpNBqNuHHjhtl+V61aNcn1pXTezZs3C0B8//33ZvsR93jfvn1bAOKbb74xWzb2XK1fv95seqtWrUT16tVFRESEcZrBYBANGzYU5cuXN06L/X1o3Lix0Ol0xunBwcEiX758Yvjw4Wbrffz4sXBzczObHnudfvbZZ2bz1qxZU9SuXdv4PqlznhBx9+2vv/4SGo1G3L17VwghxMSJE43f3ZePb0qvl6dPnwpbW1vRsWNH43dWCCE++eQTAZgd/88//1w4OTmJ69evm63z448/Flqt1miXECLePrq5uYnRo0enaJ8VGY8aZsrhtG7dGnd3d0qWLEnfvn1xdnZm8+bNFC9enE2bNmEwGOjduzfPnj0zvooUKUL58uXNhghAjue/9dZbKdrutm3bAJgwYYLZ9Pfffx+Av//+22x6mTJljJ6Elxk4cKBZkGT9+vURQjBkyBCz+erXr8+9e/fQ6XTGaXHjbgIDA3n27BnNmjXj1q1bZu59gCpVqtCkSRPje3d3dypWrMitW7eM0zZu3Ii3t3e8J1zAOESyfv16KleuTKVKlcyOa+wQ38vHNSHs7e35999/472++uor4zx9+vQhOjqaTZs2Gaft3LmTgIAA+vTpk+AxiI6Oxt/fn3LlypEvXz6Luby1Wq0xZspgMPD8+XN0Oh116tRJ8zZSew2l5Pwlth2tVsu7774bbztCCLZv354m+5PD2dkZkMMRluD58+fs2bOH3r17ExwcbLzu/P39adu2LT4+Pjx48MBsmeHDh5sN1/z7778EBATQr18/s2tXq9VSv379BK/dESNGmL1v0qRJssc8pbz22msUKFCANWvWIIRgzZo1icb6pfR62bVrF1FRUYwdO9ZsWHPcuHHx1rl+/XqaNGlC/vz5zY5H69at0ev17N+/P1Hb8+XLx7Fjx3j48GGq9lmRMahhphzOTz/9RIUKFbC2tqZw4cJUrFjRmC3h4+ODEILy5csnuGxcAQFQvHjxFAf5+vr6YmVlRbly5cymFylShHz58uHr62s2vUyZMomuq1SpUmbv3dzcAChZsmS86QaDgcDAQOMw2qFDh5g6dSpHjhwhLCzMbP7AwEDjuhLaDkD+/PnNggxv3rxJjx49ErUV5HG9cuWKMVbgZWKDN5NCq9XSunXrJOfx9vamUqVKrF27lqFDhwJyiKlQoUJG4QQyI2bmzJksWbKEBw8eGONAgHiCLj0sW7aMOXPmcPXqVaKjo43Tkzq3SZHaaygl5y+x7RQrVgwXFxez6bFDSC9vx1KEhIQAxNtuWrlx4wZCCCZPnszkyZMTnOfp06cUL17c+P7lc+Pj4wNgdv3ExdXV1ey9vb19vOs8Jcc8pdjY2NCrVy9WrVpFvXr1uHfvHv37909w3pReL7F/X/7dc3d3J3/+/GbTfHx8OH/+fJq+y19//TWDBg2iZMmS1K5dmw4dOjBw4EC8vLyS3mlFhqDETA6nXr16xmymlzEYDGg0GrZv355gMF3sk2MsackuSmkRtKTWnVg6cmLTY2/WN2/epFWrVlSqVIlvv/2WkiVLYmtry7Zt25g7d268AL7k1pdSDAYD1atX59tvv03w85dFWHro06cPM2bM4NmzZ7i4uLB161b69etnlhU0duxYlixZwrhx42jQoIGx+Frfvn2TDWJM7Pzp9Xqz47VixQoGDx5Mt27dmDhxIh4eHmi1WmbOnGmM00orKb2GLHX+MouLFy8CxLv5ppXYc/nBBx8k6uV8eVsvf+9i17F8+XKKFCkSb/mXs80yo1RA//79mT9/PtOmTcPb25sqVaokOb8lCy8aDAbatGnDhx9+mODnFSpUSHTZ3r1706RJEzZv3szOnTv55ptvmDVrFps2baJ9+/YWs1GRMpSYycWULVsWIQRlypRJ8kuZFkqXLo3BYMDHx8csSPLJkycEBARkSoGvP//8k8jISLZu3Wr21J6SYZ7EKFu2rPEmlNQ8586do1WrVhle0bZPnz5Mnz6djRs3UrhwYYKCgujbt6/ZPBs2bGDQoEHMmTPHOC0iIoKAgIBk158/f/4E5/P19TV7wtywYQNeXl5s2rTJbJ+nTp1qtlxqjkdmXUOlS5dm165dBAcHm3lJrl69avzc0uj1elatWoWjoyONGze2yDpjz4eNjU2yXr3EKFu2LAAeHh5pXsfLpPc70LhxY0qVKsW+ffvM0thfJqXXS+xfHx8fs2vYz88vnkepbNmyhISEpPlYFC1alFGjRjFq1CiePn1KrVq1mDFjhhIzWYCKmcnFvP7662i1WqZPnx7v6VUIgb+/f5rX3aFDB4B40f6x3oqEsjcsTexT48vDKkuWLEnzOnv06MG5c+fiZdLE3U7v3r158OABCxYsiDdPeHi4MWvEElSuXJnq1auzdu1a1q5dS9GiRWnatKnZPFqtNt75nTdvnjF9NinKli3L0aNHzbI8/vrrr3ip+wkd62PHjnHkyBGz+WIzp1IipDLrGurQoQN6vZ4ff/zRbPrcuXPRaDQWv/Ho9Xreffddrly5wrvvvhtv6CateHh40Lx5c3799VcePXoU7/PYmjVJ0bZtW1xdXfnyyy/NhgpTs46XSc05TwiNRsMPP/zA1KlTefPNNxOdL6XXS+vWrbGxsWHevHlm12tCmUm9e/fmyJEj7NixI95nAQEBZvF5cdHr9fGGcD08PChWrJjFyjMoUofyzORiypYtyxdffMGkSZO4c+cO3bp1w8XFhdu3b7N582befvttPvjggzSt29vbm0GDBvHbb78REBBAs2bNOH78OMuWLaNbt260aNHCwnsTn9deew1bW1s6d+7MO++8Q0hICAsWLMDDwyPBH/uUMHHiRDZs2ECvXr0YMmQItWvX5vnz52zdupX58+fj7e3Nm2++ybp16xgxYgR79+6lUaNG6PV6rl69yrp164z1dJJCp9MlWsq9e/fuZsXN+vTpw5QpU7C3t2fo0KFmFWQBOnXqxPLly3Fzc6NKlSocOXKEXbt2GeOKkmLYsGFs2LCBdu3a0bt3b27evMmKFSuMT/Bxt7Fp0ya6d+9Ox44duX37NvPnz6dKlSrG2BCQwxpVqlRh7dq1VKhQgQIFClCtWrUEy9Jn1jXUuXNnWrRowaeffsqdO3fw9vZm586d/PHHH4wbNy7evqaGwMBA43kMCwszVgC+efMmffv25fPPP7fIPsTy008/0bhxY6pXr87w4cPx8vLiyZMnHDlyhPv373Pu3Lkkl3d1deWXX37hzTffpFatWvTt2xd3d3fu3r3L33//TaNGjeKJvuRIzTlPjK5du9K1a9ck50np9RJbC2fmzJl06tSJDh06cObMGbZv325WnA/k933r1q106tTJmOYfGhrKhQsX2LBhA3fu3Im3DMig7hIlStCzZ0+8vb1xdnZm165dnDhxwsxDqshEMj1/SmERYlMvT5w4key8GzduFI0bNxZOTk7CyclJVKpUSYwePVpcu3bNOE9SaaYJpWYLIUR0dLSYPn26KFOmjLCxsRElS5YUkyZNMksbFUKmo3bs2DHe8omlnya2b7GpvX5+fsZpW7duFa+88oqwt7cXnp6eYtasWWLx4sUCELdv307WhpdTkIUQwt/fX4wZM0YUL15c2NraihIlSohBgwaJZ8+eGeeJiooSs2bNElWrVhV2dnYif/78onbt2mL69OkiMDAw/kGMQ1Kp2S/bLYQQPj4+xs8OHjwYb30vXrwQb731lihUqJBwdnYWbdu2FVevXo2XBpxQarYQQsyZM0cUL15c2NnZiUaNGomTJ0/GOy4Gg0F8+eWXonTp0sLOzk7UrFlT/PXXX2LQoEHx0uUPHz4sateuLWxtbc3SWV9OzRYi/ddQQucvIYKDg8X48eNFsWLFhI2NjShfvrz45ptvzFJ3Y9eXmtTsuOfN2dlZlC9fXrzxxhti586dCS6T3tRsIYS4efOmGDhwoChSpIiwsbERxYsXF506dRIbNmwwzpPc78PevXtF27ZthZubm7C3txdly5YVgwcPFidPnjTOk9j3PqHzmNg5T2zbie1bXBI6Fym9XvR6vZg+fbooWrSocHBwEM2bNxcXL15MsBRBcHCwmDRpkihXrpywtbUVhQoVEg0bNhSzZ882KxkRd78iIyPFxIkThbe3t3BxcRFOTk7C29tb/Pzzz0nukyLj0AiRTaPnFAqFQqFQKFKAiplRKBQKhUKRo1FiRqFQKBQKRY5GiRmFQqFQKBQ5GiVmFAqFQqFQ5GiUmFEoFAqFQpGjUWJGoVAoFApFjiZHFM0zGAw8fPgQFxeXDC8fr1AoFAqFwjIIIQgODqZYsWLxCn5akhwhZh4+fGjR5n0KhUKhUCgyj3v37lGiRIkMW3+OEDOxzeHu3btnsT4nCoVCoVAoMpagoCBKlixp1uQ1I8gRYiZ2aMnV1VWJGYVCoVAochgZHSKiAoAVCoVCoVDkaJSYUSgUCoVCkaNRYkahUCgUCkWORokZhUKhUCgUOZpUi5n9+/fTuXNnihUrhkajYcuWLckus2/fPmrVqoWdnR3lypVj6dKlaTBVoVAoFAqFIj6pFjOhoaF4e3vz008/pWj+27dv07FjR1q0aMHZs2cZN24cw4YNY8eOHak2VqFQKBQKheJlUp2a3b59e9q3b5/i+efPn0+ZMmWYM2cOAJUrV+bgwYPMnTuXtm3bpnbzCoVCoVAoFGZkeMzMkSNHaN26tdm0tm3bcuTIkUSXiYyMJCgoyOylUCgUCoVCkRAZLmYeP35M4cKFzaYVLlyYoKAgwsPDE1xm5syZuLm5GV+qlYFCoVAoFIrEyJbZTJMmTSIwMND4unfvXlabpFAoFAqFIpuS4e0MihQpwpMnT8ymPXnyBFdXVxwcHBJcxs7ODjs7u4w2TaFQKBQKRS4gwz0zDRo0YPfu3WbT/v33Xxo0aJDRm1YoFAqFQpEHSLVnJiQkhBs3bhjf3759m7Nnz1KgQAFKlSrFpEmTePDgAb///jsAI0aM4Mcff+TDDz9kyJAh7Nmzh3Xr1vH3339bbi8UityGEBB1DcIPQtRNsC0HdtXAtgpoM7b7rMKC6IMh6jIYgkBbELSF5F+NI2Rw4z2FIi+RajFz8uRJWrRoYXw/YcIEAAYNGsTSpUt59OgRd+/eNX5epkwZ/v77b8aPH8/3339PiRIlWLhwoUrLVijiIqIg4gyEHYTwAxB+CPTPEp7XxhNsq0lxE/uyrQRWamg2y4gVLZGXIeoSRMa8dInE+2nszcVNSv5aOSsBpFAkgkYIIbLaiOQICgrCzc2NwMBAXF1ds9ochSL96IMg4mgc8XIMxEvZfRp7cHhVCpWomxB1EXSPElmhFmzLxxE3sX/LgibDQ+PyDoYQKVgiL8WIl1jRcjfxZayLSkGify4FqohK48ZtwDoV4kdbEKzclABKDyIaDOEgwgCBjMzQyL8aq5j3sf9rXnofO02Tp89BZt2/1a+cQpEZ6B6ZhEvYQYg8BxjM59EWBIfG8uXYGOxrgcbWfB69f8wN9GKc1wUwBEDUVfkK3mCaX2MHtpXNvTh21cC6VJ7+gU0WQwhEXokRLbGelsug8018GW0RsKtqetlWBbsqoM1vmkcIEKGgewYGf/lX7y9Fjj7u/y/9FRFAtLyOEhW0CWEN2gLJi564IskqX8zNOJsidCaBEftXhIMhNX/D4q8job/oLGT0y0InAUGEVcx38mVBFDN/PPGU2HpSMe/LIszjG7CrZKF9zlyUZya3IAzyR0/3BPRPTH/1/mBdXMZa2FUBrbu6iWU0ceNdwg7Iv9G34s9nUwYcmkjh4tAYbCum7SYihLzBRV18SeRcinmiTAArl5ib7UsiR+uRt64PQ6gULXGHhiIvpUC0VIkjWGJFS4EMtDMscbGToDDyl6IpTVjFCKDUDIPlAxGZMoFg9jcNQoRoCx7YVB6Xlx9Achulj4JDfYuuMrPu30rMZGeEHvR+5gLlZbFinPaUFH3RtAVNwibuX+uieesmZklSFO+iATtvcGwS431pBDbFM9guA0TfMYkbo9i5SqI3BG0h82Equ2ryZq3Nl7G2ZjRG0RJnaCjqkjw+iaEtHPP9iONtsasiv0M5AUNE4p6exP4agrPa6tShcZAvK8c0/HUEK4eU/dXYmX4fhUAOORnkSxhM74XBNB1DzLyGlz5LaF5h/j6peVO6zrh2pXSdzp3B2t2ip0iJmTjkKjEjdDEC5XHyIkX/jFQ/CWgLyR9h65iXVX6Ivit/xKNvIy/kBLByiy9w7CqDdcns7XLOClIa72JfP454eRW0bllj78uIaIjyecmLcxGib5Do9WFdIr4Xx7ayvClkJwxhEHUljpflchzRksi+aT1ivCxVzIeJcoposSQiKkbYJODpSeyvIcB8HRp7ywiIZAWGvXoAywEoMROHbC9mRDTonsYRJo8T8Z7EDPsk9qOaIBopUKyLmERKXLFiNs0dNDaJr8oQJoc/jE+ol+XfqBuAPpHNO0lR87I3x8YTNNpU7EcOJiXxLlYFYoaLmiQe75LdMYTJmJuXRU5iGTlowKYs2FV/SeSUT/o6tKitcYaGkhPsWvf4Q0O2VWW8iCLtCJ1MPdfYx7zUw4/ChBIzccgSMWOIlEM3ZoIkEZFieJ7KlVvJH1brwikQKYUyPhvFEAnRPjFZGpfjCJ3rJDocobGXWTYve3NyevZMquJdGps8L2mNd8kJ6ANiroeLEHEhZrjqQowwTwgbGURoHK6Kic2xKZPwMQoMBFfXhJ+yDeExnpbLmAXjJilaCr00NBTjdbGw+1yhUCSPEjNxyLCDEbROutsTEikvu06TRQvWHnFESJFEvCeFY4pm5QCvhoiOSQl+WeRclcF+CaGxBdsKCcTllM+enorUxLsYxUsmxLtkd4SQYj820DhuTE5icRcax5jA2Womb87uu9B7NDR7FdbMBKtb5nEt0bdIXLQUNBctsf8r0aJQZBuUmIlDhh2MO/Ug4kQSM9iYCxSjICkSX6RoC+TeJ/OXEXr5ZGwmcC7L4avEsmdi66DEihujJ6ciWNlnnu2pineJGTbKTvEu2R0h5LDUy6njUVcSF8AhgAOQmL63KpBAynNVlZmnUOQAlJiJQ4YdjGefQbSvuUh5OXhW/VimHGEwBRu/LHQSzZKwAhsvcy+OXZWYirZO6bcpVfEusfVdamdPL1JORuikly/WgxN4Em7+A8V0pmpXAcDzAlCjB9hXjxOIm8fSxRWKXIQSM3HI9gHAiqQRAnQPTN6bWJETeQkMLxJfzsYzgeGqyqBN5BpIdbxLbH2XSnnHq5YdiIyEli3h8GGoWg72/g6XHkC7ARAZBX37wooVoM0BQ7EKhSJJVAVgRe5BowGbEvLl9JppujHu4uXhqstyevQd+QrdZr6+uEUA7arIvjgpineJre9SIoN3WJEoQsDIkVLIuLnBxr/AvSI0BzY6QLdusGYNODrCggVgpUSmQqFIHuWZUWRPdM9MWSxxhY7uYdLLaezBvl6c+i4NVLxLdmLuXJgwQYqU7dvhtdfMP1+/XnpmDAZ491347js1xKRQ5GCUZ0aRt7EuBNZNpCiJiz4gTqpujMDR2Jo8L3a1VPfo7Mr27fDBB/L/b7+NL2QAevWC8HAYNAh++AGcnODLLzPXToVCkeNQYkaRs9Dmk94WhwZZbYkiNVy9avK4DB0qvS6JMXAghIbCqFEwcyY4O8Mnn2SerQqFIsehBqQVOROdTt7w/P3lDVKRfXnxArp0gaAgaNwYfv45+aGjkSPhm2/k/59+Ct9/n/F2KhSKHIvyzChSj04HERGmV2Rkwv+n931Sn+njtF+oVAn++QdKl866Y6JIGJ0OevcGHx95fjZuBNsUpr1/8AGEhMD06TBunBxyGjYsQ81VKBQ5EyVmcit6PVy+DOfOySfitIqGhN5nN0/I1avQujXs3w9Fi2a1NYq4TJgAu3ZJIbJ1K3h4pG75qVOloJkzB95+W66nX7+MsVWhUORYlJjJDQgBt27BiROm16lTEJZYNV4LYmMDdnZgb296JfU+rZ8lNq+/PzRrBjduQJs2sG8fFFKNA7MFCxbAvHny/+XL4ZVXUr8OjUYON4WGwvz58OabMm27a1fL2qpQKHI0SszkRB49MhcuJ07A8wSaXTo7Q61a4O5uOfEQ972dXdYXNnNygt27oUkTuHQJ2rWT791UOnaWsn+/DOAF+Pxz6N497evSaOCnn6SgWb5cDltt3Qpt21rGVoVCkeNRdWayO4GBcPIkHD9uEi7378efz9YWvL2hXj2oW1e+KlbMerGRWVy9Ck2bgp8fNGoEO3ZIoaPIfG7fltfhs2cyg2nVKsvUitHp5Po2bgQHBxkn1bRp+terUCgyDNXOIA55RsyEh8PZsybRcvw4XL8efz6NBqpUkYIlVrxUry49JXmZs2ehRQsICJAxNH/+Kb1IiswjOBgaNoSLF6F2bemhcXS03PqjomSV4O3bwcVFxuPUq2e59SsUCouixEwccqWY0elkgG5cj8uFC3L6y5QpY/K21K0rh45cXDLf5pzA0aNSyISGynTgDRtkXI8i4zEY4PXX4Y8/oEgR6VEsXtzy2wkPhw4dZHxU/vzyb1ricRQKRYajxEwccryYEQJu3jR5W06cgNOn5Y/yy3h4mA8V1akjY14UKWfvXnmzi4hQTQszk08/ldV67ezgv/+gfv2M21ZwsKwgfPSo/M7s3y+HVRUKRbZCiZk45Dgx8/Ch+VDRyZOycNjLuLhIsRJ3uKhkSdWLxhJs2yaHI6KjZcXZ335TTQszklWrYMAA+f/y5fDGGxm/zYAAOax49qz0AB04IL2YCoUidfj4SI9qbLsRC6J6M+UUXryQYiWueHmYQDNEOzuoUcPkcalXDypUUDfYjKJDB3mD7dMHFi2SwcCqaWHGcOKEFIwAH32UOUIGIF8+2LlTpuZfuQKtWklBkxFDWwpFbmXFCllxOyQEvLzkUHEORImZ1BAeDmfOmMe5+PjEn8/KCqpWNY9zqV495ZVPFZahZ09YvBgGD5ZNC11c4Isvstqq3MXDh7LmS0QEdOoEM2Zk7vbd3WUQcJMmstZS69ZyiCu1xfkUirxGaCiMGQNLl8r3zZvDq69mpUXpQomZxIiOlnVL4npcLl40L6Mfi5eX+VBRzZqyxosi6xk0SH5pR4+WN1pnZ/j446y2KncQHi6H8h49kuJ95cqsiU0qVsxUa+jqVRlLs3evDA5WKBTxOX9eeq2vXpUP31Onypi3HBxbqMQMyADdGzfMPS6nT8unzZcpUsR8qKhOHShYMPNtVqScUaOkC/Wjj2DSJCloxozJaqtyNkLIPkknTsjrf+tWyMp4Nk9PKWiaNpUtPNq3h3//VVl/CkVchIBff5W9ziIj5YPAqlVyqDaHk7fFzOefyyyIkydlMOHLuLmZAnRjxUvx4iruIify4YdS0Hz+OYwdKwXN4MFZbVWyhEeHc+XZFWoVrZXVppgza5b8EbS2lunvXl5ZbZGMQfv3X+kuP3YMOneWgeCWrHOjUORUAgJg+HD5fQXo2FEOMeWS9i95O5upYUM4ckT+b2cnh4fipkWXL68CdHMTQsD778PcufK8rl4tS+NnY97Y9AYrL6xkWbdlDPQemNXmSLZulcNLQsAvv8CIEVltkTknT0LLljJ9u1072LJFFZRU5G2OHZNlKu7ckXW3vvoKxo/PlAdzlZodhww7GGvWyI7SdetCtWqquFpeQAh45x3ZBNHaGjZvloGr2ZC7gXcp830ZDMJA+QLluTL6ClqrLB7TvnBBPgSEhMjhu59+ylp7EuPgQRk7Ex4uszPWrpXnW6HISxgMsuP8J5/IgqxeXvK+V7duppmQWWImb7sd+vaFt9+WHhklZPIGGo30JvTvL7/cPXvCnj1ZbVWCzD85H4MwAODz3Ic/rv2RtQY9eyarKoeESM/Hd99lrT1J0bixrJthawubNskhRYMhq63KnQQFyT5ZCcUYKrIOPz/5oPbhh/K3rk8fGQuaiUImM8nbYkaRN9Fq5Vhxt24yCK5LFzh8OKutMiNCF8GC0wsAqFtM/vjMOjSLLHOkRkVJ4XfnDpQtC+vXZ/8HgDZtpJ1arcy0GjlSeuYUlsFggGXLZKxS+/Yyo+2vv7LaKgXIbD5vb9nDzN5eFg1dvVrGgeZSlJhR5E1sbKS79bXXZOp2hw7yqSWbsObiGp6FPaOUWym29N2CndaO4w+Os993f+YbI4QMmv7vP5kdtHUrFCiQ+XakhS5dZFEwjUb+oL//vhI0luDUKen9GjwYnjyRMWi3bsmg606dZPsWReaj08k061atZMmEKlVkxuHw4bk+cUWJGUXexc5Oxsw0aQKBgdC2rWz+mcUIIZh3fB4AI+uMpJhLMd6q8RYgvTOZzk8/SSGg0UgBWKVK5tuQHvr2hYUL5f9z58K0aVlqTo7m2TMZc1a3rkyecHKSwaRPn8rhDGtr+Ptv6aWZMgXCwrLa4rzD/ftSxHz2mRTsQ4dKIVOtWlZbljmIHEBgYKAARGBgYFabosiNBAYKUaeOECBE0aJC3LiRpeYcvntYMA1h97md8Av1E0II4ePvI6ymWwmmIc49Ppd5xuzaJYRWK4/NN99k3nYzgh9+kPsBQsyaldXW5Cyio4X48Uch8uc3HcP+/YW4f998vitXhGjd2jRP6dJCbNokhMGQJWbnGf78U4iCBeUxd3YWYtWqrLbISGbdv5VnRqFwdZUBjNWqSddsq1Zw716WmRPrlelfvT+FHGUNiHIFytGjcg8Avjn8TeYY4uMDvXrJqtcDB8ohmpzM2LEwc6b8/6OPsm8mVnbjwAGoXVsWmnzxQsZi7N8v45Be7oNVqZLsl7VxI5QqBb6+MpusXTu4di1r7M/NREXBhAlyeM/fH2rVki13+vXLassynwyVShZCeWYUmcKjR0KULy+fbipUEOLx40w34WHQQ2H9mbVgGuLUw1Nmn514cEIwDaGdrhV3XtzJWEMCAoSoVEkei1dfFSI8PGO3l5l8+qnJc7BkSVZbk325f1+Ifv1Mxyp/fiF++kl6aVJCaKg81ra2cnkbGyE++kiI4OCMtTuvcOOGyaMMQrz3nhAREVltVTyUZ0ahyGyKFJFNC0uVguvXZTbM8+eZasJvp35DZ9DRsGTDeFV/6xSrQ8syLdELPXOPzs04I/R6GWdy9SqUKCHjiuztM257mc3nn8N778n/hw6Fdeuy1p7sRmSkrPBcsaLMgNFoZAmL69dlbaGU1utxdJSNXS9dkgH20dFyvZUry2OuArHTztq1sqTIyZMyGP+PP2SphLxcHDJDpZKFUJ4ZRabi4yNEkSLyaadePRlTkwlE6iJFkdlFBNMQqy+sTnCeHTd2CKYhHGc4imehzzLGkPffl/vu4CDEqVPJz58TMRiEGDZM7qe1tYw5UAixbZvJOwlCNGggxMmT6V+vwSDE1q1ClCljWnfLlkJcupT+declQkOFGD7cdAwbNxbi7t2stipJlGdGocgqypWTHpqCBWXz0c6dMyUrY+PljTwOeUxR56K8Xvn1BOdp49WGGkVqEBYdxs8nfra8EUuXyoqhIGuI1MpmPaEshUYD8+ebF0/cvTurrco6bt6UaewdOshYqcKF5fk/eFDGy6QXjUZ+jy5dktlk9vayWKW3t4zFCgpK/zZyO5cuyXY7CxbI4/m//8l6MiVLZrVl2YMMlUoWQnlmFFnCqVNCuLrKJ6B27TJ8PLrhooaCaYhpe6clOd+q86sE0xCFvi4kQqNCLWfAoUOm+IYpUyy33uxMVJQQ3brJfXZ0FOLgway2KHMJDRXif/8Tws7O5KV6//2M90beumU67iA9ocuXq6ynhDAYhFiwQHpKY4/Vrl1ZbVWKyaz7txIzCkVSHDwob3IgRPfuKQ9+TCWnHp4STEPYfGYjHgU/SnLeaH208PzOUzAN8eOxHy1jgK+vEB4ecj979BBCr7fMenMCERFCvPaa3HdXV8sMq8Rh9qHZYszfY0REdDYKzjQYhFi3ToiSJU2ConVrIS5fzlw7tm8Xolw5kw1NmghxLhNLD2R3AgOF6NvXdHxeey1LEhPSgxIzcVBiRpGl/PuvyWPxxhsZcqMfvGWwYBqi/8b+KZp/3rF5gmmIMt+VEdH6dAqskBAhatSQ++ftLd/nNUJDhWjaVB6DAgWEuHDBIqs9+eCkYBqCaYi+G/oKvSEbiMSLF4Vo0cK8FszGjVnnFYmIEOLLL00PDVZWQowdK8SLF1ljT3bhxAkhypaVx0SrFeKrr3LkQ4aKmVEosgutW8OGDTKLY8UKmdFhwUwMv1A/Vl9YDcDYemNTtMyQmkMo5FiI2wG32XB5Q9o3bjDAoEFw9ix4eMhWBU5OaV9fTsXRUfYVqldPZrC1aSNjR9LJ//b+z/j/motr+HjXx+leZ5oJCIBx42Scyt69Mm5l6lRZ9fr117Ou3L2dHUyaBFeuyNglgwHmzZM9n5YsyXsNQoWQmUkNG8pYptKlZa2fjz6SbSMUCaKOjEKREjp3NvX4+fVX+OADiwmaRWcWEamPpHbR2tQvXj9FyzjaOBqFz9eHvk57A8rPPpMFzmxsZHfpUqXStp7cgIuLbMz3yivw+LEsnujrm+bVHfA9wD83/sHayprPW3wOyIKH847Ns5TFKcNgkKKgYkX4/nuZet+tmxQx06ZJIZcdKFVKNgb9919ZfM/PD4YMgUaNslXftAzF318GYo8fL1PZX39dFsFr0CCrLcv+ZKjfx0KoYSZFtmHRIpN7furUdK8uWh8tSn5bUjANsfTM0lQt+yz0mXCc4SiYhth5Y2fqN75unWlfFi9O/fK5lcePhahYUR6XcuWEePgw1aswGAyi8eLGgmmIEX+OEEIIMWP/DME0hGaaRmy8vNHSVifM8eNC1K9vOs8VKwqxY0fmbDs9REbK9hnOztJujUaIESOE8PfPassyjv37hSheXO6vnZ0sUJgLAqJVzEwclJhRZCu+/950c0hnv6KNlzcaM5PCo1NfZffdbe8KpiFaLWuVugVPnzZlR0yYkOrt5nru3RPC01MenypVhPDzS9Xi2322C6Yh7L+wF/cDZf8ig8EgRvw5wjj9oG8GZk49fSrE0KFSBMT26/nmGykSchL378seULHft4IFhfj1VyF0uqy2zHLodEJ89pmMFYqtPn7mTFZbZTGUmImDEjOKbMeXX5p+YH/5Jc2rabG0hWAa4pNdn6Rp+dsvbgvtdK1gGuLkgxRm4Tx+bMpiadcud90YLMnNm0IUKyaPU82aKQ5INRgMotavtQTTEO/veN/ss2h9tOi8qrNgGqLArALiqt9Vy9ocHS3Ftpub6fp88800eZeyFfv2CVGtmmmf6tQR4tixrLYq/Tx8KIsHxu7XwIG5rt2DEjNxUGJGkS2ZNMnkAv/991QvfuHJBWOvpbsBaa/iOWDjAME0RO/1vZOfOSJCVnWNHXLI6xkjyXHlihDu7vJ4NWyYohvNhksbBNMQzl86G7uexyUkMkTUW1BPMA3h+Z1nsqn4KWbfPiGqVzfdGGvUyF11c6KjhfjuO1PtJ5Dep6dPs9qytLF9u+nacnISYtmyrLYoQ1BiJg5KzCiyJQaDTCGNTSfdsCFVi7/z5zuCaYgea3uky4xzj88JpiGspluJG/43krZ30CBpb758Qly/nq7t5hnOnpXHK7YEfxJNN3V6naj8Y2XBNMSUPYkXHnwa8lSU+6GcYBqi1q+1RHBkOp7G790Tok8f0w2+QAHpLcytHrfHj03Xcey1/OOPOWd/o6KE+PBDk/3e3kJctbCHLhuhxEwclJhRZFv0eiHeesvUFXjbthQt9jzsuTF4d9/tfek2o92KdoJpiJF/jUx8ptmzTTUrdqYhYDgvc/SoKRi1Y8dEY0+WnV1mHEIKCA9IcpU+/j6i0NeFBNMQ7Va0E1G6qNTZlFB9lpEjhXiWQT27shuHDpnqI+UUT9Tt2+YB2aNH566O9AmgxEwclJhRZGt0OtOTsb29dPcnw7eHvxVMQ1T7uZowWCBjYe/tvcbA0ichT+LPsG2bKcDwhx/Svb08yb598vyCEL16xfMEROoiRZnvygimIWYdnJWiVR69d1Q4fOEgmIYYsmVIyq+Fv/4yr5zbqJEM6s5r6HQy6yfWcxYbd/LIQkN3lmTDBlMsU758slBhHkCJmTgoMaPI9kRFCdG5sylz5OjRRGfVG/Si7PdlBdMQv5781SKbNxgMou5vdQXTEP/b/T/zDy9fNsUZDB+eK9I9s4zt26UHDuRQR5yKrD8f/1kwDVFkdpFU9czaenWrsJpulaK+XMLHR3qGYm/cRYsKsWKFOqdPn8prOzZ7y9VViLlzM6z9SKoID5ces9hz9uqr0kOTR1BiJg5KzChyBOHhQrRqZXryOns2wdn+uvaXYBoi31f5REhkCloHpLAEfmzgaf6v8ptiMPz9TSXRmzbNeam52ZFNm+RQHQgxapQQBoMIiwoTRWcXTXO/rPkn5hvbHiw6vSj+DCEhMuA8tq2GjY0QEycKERRkgR3KRRw7JkTduibhUK1aijylGcaVK0K88orJno8+kg8+eQglZuKgxIwixxAcLLNeQGYqXLkSb5a2y9smmLYbD4NBiJPvCbHOTYjryad/6/Q6Uf6H8oJpiLlH5sofzVhx5emZc7M+siMrVpi8ABMnim8Ofi2Yhig9t7SI1KVNMH6y6xNjdtu26zGxVwaDEKtXm4qpEdNsMBcHjKYbvV52mS5Y0HTM+vUT4sGDzLVj6VJTPJO7uxD//JO5288mKDETByVmFDmKFy9kXRKQN6Fbt4wfXXt2zVgF9ubzm0mv58xHQqzE9DrxrhDJNJX89eSvgmmIkt+WFLrRo0zDXufPW2DHFGb89pvxZvllGxn3suTMkjSvzmAwiIGbBwqmIZxmOImLu9YI0ayZ6Ybs6SnE5s1qSCml+PvL4Z24hQO//jrjvZNBQbK2T+x5a9Uq59f5SQdKzMRBiRlFjsPPT1aOBSG8vGQlU2Gq2NtpVaekl7/0tUnE7O9h+n9POyEiE8+SCY8OF4W/KSze7oSpBs6WLZbcM0Vc5s413rRmdndPdwfzSF2k6PZLM/F9PUS0Faag8unThQgLs4zNeY1Tp0y1lUCISpWE+PffjNnWmTNClC9vyi774ouckzKeQWRrMfPjjz+K0qVLCzs7O1GvXj1xLJlKjHPnzhUVKlQQ9vb2okSJEmLcuHEiPBXpaErMKHIkDx6Y4lUqVRLB924Jly9dBNMQO24k0R/HZ4FJvFyKyYrx3SDEGgc57c/KQgQn7tVZ8f0wERVzIzR88YWFd0oRl2ehz8RnrW1NN8pf0xHQHTM8oi9kGh75p4azeH7ljMXszbPo9XLYx8PDdK569hTC19cy6zcYhJg3zxTTVKKEEAcOWGbdOZxsK2bWrFkjbG1txeLFi8WlS5fE8OHDRb58+cSTJwmkgwohVq5cKezs7MTKlSvF7du3xY4dO0TRokXF+PHjU7xNJWYUOZY7d+QPG4inFUoIt48QFeZVEPrEgnp9NwixykqKltMfmn/mf0qITcXkZxsKCvFkf/zlb94U+oIFhACxshrir6t/Wn6fFEYm7pwomIpY3NbD5Albvjz1Kzp61CxwNapiedFvhLtgGqLhooYiLEp5ZSzCixdCvPeeKYDb0VGIGTNkzZ608vy5EN27m0RSly55p9ZPCsi2YqZevXpi9OjRxvd6vV4UK1ZMzJw5M8H5R48eLVq2bGk2bcKECaJRo0Yp3qYSM4oczbVrwlC4sBAgDpdA/LInkeaUj/4VYrWtFCtHhyUcGxH6QIjtteU8q22EuLnE9FlQkLF/jW+FIsL+U0TTJU0zZJcUQjwMemisEfP3tb+EGDMm9dWgHz82FV0EIVxchPj2WyGiosTFJxdFvq/yCaYhuq/pLnT6vD1cYVHOnZPZfbHHvVy5FBe8NOPQISFKlTJlmH33nYppeolsKWYiIyOFVqsVmzdvNps+cOBA0aVLlwSXWblypXBzczMORd28eVNUqlRJzJgxI9HtREREiMDAQOPr3r17SswocjSHt/0m/O3lD2d0sybx4x/8jgqx1ikmRqanEEnduKJD5TyxQ1GnPxQiKtJU56ZoUfHwyglh85mNYBriyL0jGbtzeZTRf482ek4MBkPqqkFHRcl4m7h9hgYNilfsbd/tfcL2c1vBNMTYbWMtUmBREYPBIMTKlbJWT+w56NrVLGA/UfR6IWbONHl4ypUT4mQKG73mMbKlmHnw4IEAxOHDh82mT5w4UdSrVy/R5b7//nthY2MjrK2tBSBGjBiR5HamTp0qgHgvJWYUOZUuq7uIOsMRYQ428Uviv7goxPoCUpjsbiOELgUub4NeiHOTTYLml3JC2CGEnZ2xm/BbW94STEN0W9MtA/csb3L7xW2jWDRrR/FyNei9e+MvvHu3EFWrmm6gtWsL8dJvalzWXFhjrEHzzaFEvHqKtBMYKMQHHwhhbW06b9OmJR5w/fixEG3amM5f//5yHYoEyTViZu/evaJw4cJiwYIF4vz582LTpk2iZMmS4rPPPkt0O8ozYyEe7ZLZL7dXZrUleZrbL24LzTSNYBrizh+/C+HgYCqJH+BjioP5p74QUalsOHh7pRArbOTyXyLEyu+NH11+etmYBn7FL369G0XaGbxlsGAaos3vbeJ/GLcadBFHIf5oL8Q/rwqx720hRjeWohNkHZTffktRtsucw3OMgmb1hdUZsEcKcfmyqS4TCFGmjBB//GE+bPTvv0LEDBkLBwchFi1Sw0rJkFlixppUUKhQIbRaLU+ePDGb/uTJE4oUKZLgMpMnT+bNN99k2LBhAFSvXp3Q0FDefvttPv30U6ysrOItY2dnh52dXWpMU8QlOgjOfAg3fpXvH/0DEU+g0vistSuP8vOJnxEI2ni1oXSXN2GzB3TpAjvWw7p/wCkY3KpA87/Bxjl1K39aDmYAY4DSgP2X8Kw+FKpPZffKdKnYha3XtjL78GwWdlmYAXuX97jid4Xfz/0OwIyWM+LPYGMD69bBqPpQ9zyEbIcQgKPQEKgHhBWFmgPAszwQDWiT3Ob4V8dzN/Au3x/7nkFbBlHEuQjNPZtbdL/yPJUrw7//woYNMGEC3L4NXbtChw4wZw4sXw4zZ0qpU60arF0LVapktdUpRwjQhULkU4jwg4inMf/HvI98CjW+AscSWW1pmkiVmLG1taV27drs3r2bbt26AWAwGNi9ezdjxoxJcJmwsLB4gkWrlV9cIUQaTFYkyaN/4dgwCLsr37s3Br+DcHoCRL2A6tNBo8laG/MQYdFhLDwtRcTYemPlxLZtYfUiuPamFDIRLtB1B9gVTN3KHzyAbt3gUTQcaA1vPoWA87CrGby6BDz78VGjj9h6bSvLzy/nsxafUcylmGV3MA8ydd9UDMJAt0rdqFu8bvwZooPg7HhofV6+9wV2AuWA2nbgGgmuj+DmbPnS2svvaeGW8lWgNliZ/zRrNBrmvDaH+0H32XhlI93WdOPgkINU86iW0bubt9BooFcvKWBmzIDZs2HbNvmK5e234bvvwMEhy8w0oo+IESIx4sQoUPziCJWnps/14Umvr/yovCFmACZMmMCgQYOoU6cO9erV47vvviM0NJS33noLgIEDB1K8eHFmzpwJQOfOnfn222+pWbMm9evX58aNG0yePJnOnTsbRY3CAkQHwekP4OYC+d7ZC+ovAo9mcPkrOPcJXPxcCpra34MmvkdMYXlWXVjFi4gXlMlXhg7lO8iJujBw+VV6UgKAz4Lh+o/yqS+lQjM8PEbIPJJPib9tAnvg8AB48Ccc7g9BV2lYfSqNSjbi0L1DfH/0e2a1mZUh+5lXOPPoDOsvr0eDhs9bfB5/hqcH4MhACL0DaKDse7DwFPjeh7dnQN++8rMne+DxHvk34jE83iVfADau8ntbuCUUaQVuVUFjhdZKy4rXV/Bk+RMO3j1I+5XtOTr0KMVdi2fiEcgjODnBl1/C4MHw3nvwzz/g6goLFkDv3hm3XYMOIp+Zi5O4YuRlT0p0UOq3obUHOw+wj3nZuZv+z6FCBkAj0uAe+fHHH/nmm294/PgxNWrU4IcffqB+/foANG/eHE9PT5YuXQqATqdjxowZLF++nAcPHuDu7k7nzp2ZMWMG+fLlS9H2goKCcHNzIzAwEFdX19Sam/t5tDPGG3NPvq8wFmrMBGsn0zw+v8CJ0YAAzzfg1cVgZZMl5uYVhBDU/LUm556c45s23/BBww/AEA37u8PDv8HGDQLHwvAv5AJffAGffpqSFUP//rBmDRQsCCdOQJky8jODHs5NgivfyPelerOtYC86ruuFq50rd8fdxc3eLWN2OA/QcVVHtvlsY0D1Aax4fYXpA30knJ8Sc9wFOHlCg9/Bo4k8X4mJVCEg6EqMsNkNT/ZBdID5PHbuULiFUdw81+an0ZLGXH12lVcKv8L+wfvVOc1IhIBjx6B0aShaNJXLGuQDZGKekpc9KZH+qbdPYw327okLFDsP+Xns/9ZOmeqdz6z7d5rETGajxEwiRAXCmQ/gZkwshLMX1F8MhZslPP+dVXBkEAgdFO8CjddKla7IEA74HqDp0qY4WDtwf8J9Ctjng8Nvgu8q0DpAi53g0RjmzpVj9CD/Hzcu6RV/+aUUPdbWsGsXNEvgfN9cAifeAUM0okBdWtwO4L+nPsxqPYsPG31o6V3NExy6e4jGSxqj1Wi5OuYq5QqUkx+8OA9H3pRDfABeQ6D2XOlhSS0GPQScNYmbpwdAH2Y+j2NJQvLX45NLu9j0IpBKJVuxbcA2bLW26do/ReI8Cn6Eq50rTjaOoAuOH3OSqCfFD4Q+lVvTgF2hZARKnP9t8mXr0AElZuKgxEwCPNwBx4dB2H35vsK7UONLc29MQjz4Gw72lGOtHs2h2Vawcclwc/Mivdf3Zv3l9QyvNZzfOv0Kp96Vw0kaa2j6BxTvYJr5889hyhT5/4IFEBMwH48//pDDSwC//irH7xPj6X448DpE+hNqnZ8mt17w2KYot9+7jZ21CrBPDUIImi9rzn7f/bxd621+7fyrFB5Xv4Xz/wNDlLzB1F8AJbpabsP6KPA/LoejnuyGZ0ekdy8O16LgvkN5Wr46A03hFmBfyHLbz4vowiD4BgRfIzrgEhd8NhAdeIli1hqKWFthQ2rFCVJwxPWOvCxI4r63LQhWuScEQ4mZOCgxE4eoQDjzPtxcJN87l5VDRh5NU76OJ//Bf53lE0aBOtB8u/oBtDAPgh5Q+rvS6IWecyPO8cqTjXDxM0ADDVeAZ3/zBYSAjz6Cb76RT1krV0K/fubznD8PDRtCaCiMGQPz5iVvSPBNea6DrhBm0PDGY0HHlgsZWmuoxfY1L7Dz5k7armiLndaOG+/eoISVDo4OkoIRoHhnqLcAHApnrCG6MPA7JIXN4z2I56fQYDCfJ5+3Kd7Go0naPES5HWGQw/JB1+Qr+Lrp/9jkiSQIE1ZE2+TD0cUTG4diCXtMYt/buUMe9popMRMHJWZieLgdjr8d443RQMX3wHsGWDumfl3PT8HedjLYzK2KHPJwVIGElmLynsl8ceALmpZuyn8NesCp9+QHdX6ECqMTXkgIGD0afvkFtFrYuFGmhgL4+UHduuDrC61bw/btcpgpJUQFwqE+8GgHAN+GFWLckMdY5aKnv4xECEG9hfU4+fAk4+uP49sK3nDyXfkwYO0MteZC2aFZ4+qPCmD3salcPP8DLR2h+ssON40WCtSVwqZwSyjUAKyzQRZOZhEVGCNWrpkLl2CfJDN7wjR2nAuL5Fo0PMKZVt6jsHEpy4rrO1h2dRv+0REA2Gpt6VapG8NqDqOVVyusVGJFPJSYiUOeFzNRATK1+tYS+d65nEy99WicvvUGXoW9baQ4cvKElv+CS7n0WpvnidRFUuq7UjwNfcqxVmOod/dH+UH1z6D65KQXNhjgrbfg99/B1hb++kvGxLRuDQcOQLlyMhixQIHUGWXQEXViDLY3Ze2huwWaU6rNP6BVw03JsfnKZl5f9zql7Ry5Wr859o9i0nTdG8kgX2evrDUQ+Py/z5mybwpFrDVsbfE+dbWBcmgq5Kb5jFZ24N4QCseIm4J1cn4igCEaQm7F97AEX5NxK4lhZSM9264VwaUiuFbkbFg47/w3h+P+twEY5D2IuW3nkt8hv3GxwIhAVl9czcLTCzn16JRxemm30gypOYS3arxFSbeSGba7OQ0lZuKQp8XMg23SGxP+gHR7YxIi1Bd2t4aQG2BfWHpo8r9imXXnUZafW87ALQMZXKggiwsEoBF6ed5qzU3Z07tOJ1N4N26UtSxatJB1LlxdpZCpVCnNtv3xZzs6Bu3AWgOiUEM0TTdLd7giQfQGPd7zvfEMu8TqEk64GELlTbD6Z1B5YraJbRBC8Pafb7PwzEIcrB3YM2gPr5Z4VX6/Y1PAn+yG8EfmC1o7yyHqwq2gSEvI90r2LNsghBQmL3tYgq5JISN0iS/rUDRGrFQwihZcK8oHuJh6PiFRIUzaNYkfT8gHj+Iuxfmt82+mcgqJcObRGRadWcTKCysJiAgAQIOGduXaMazWMDpV6JTnA7OVmIlDnhQzUQFwejzcWirfu5SXmUrp9cYkRPgT2NsWAs7JQLXm28C9geW3k0eov7A+dv7H2V3SGht04PkmNFiauptEVJQM9N2+Xb63spJemvbt02Xbk5AnvPVrSVZ6RJNfi/xBb/Yn5FPF1xJizZmFBB4dzjuxmc9uVWXMU/4aWWlWgugMOrqu6co2n20UcizE4SGHKV+wvGkGIaQAeLw7Rtzshajn5iuxKwgeLaSwKdwSXCpk7vCZLkwOAcX1sMQKl+jAxJfTOsYXKy4V5LRkYob23N7DsK3DuB0gvTHDag5j9muzU5XuHh4dzqYrm1h4ZiH77uwzTnd3dGeQ9yCG1hpKpUJpfwjJySgxE4c8J2Ye/B3jjXkIaGQbglc+t5w3JiGiAuC/TjK4UOsITbdA0TYZt71cyvEHxxmxvD57S4CbFTIwtMnGtLnyw8OhUyfYswe+/RbGW6YdxYi/RrD3/K/s9XSkGGHy6bzRGije0SLrzy3onuznwc5WlNbqEGjQVBovvaLZuJxBSFQILZa14OTDk5TNX5bDQw/j4ZSI500Y4MW5GGGzRwYz60LM53EoHhNMHCNunEql38iXg2/jelmSDL7VSPH9smhxrQgOxVLtUQqKDOLDfz/k11Ny6LWUWykWdF7Aa2VfS/u+ATee32DxmcUsObuExyGPjdMbl2rM0JpD6VWlF062yWSd5iKUmIlDnhEzUS/g1Hi4vUy+d6kgY2PcG2bO9nWhcKCHDBS1soGGq6FUj8zZdi5h4sauTAzdioc1sopr8+3pC7g0GODhQyhhucqcPv4+VPyxIvmtBL516uL84oS8EdScDRXHZeuaFZmCPgouTsdwaSZWCO7rrCjY8k8cSiQ95JBdeBLyhAaLGnA74DZ1i9Vl76C9Kbt5GqLB/4RJ3PgdBkOk+TzO5UzCpnCLpIcoowISjmMJ9pGlIRLDNn8csRJHuLiUs5iQ3HFjB8P/HM69IFlodGSdkcxqPQsXO8uVqdAZdGzz2cbC0wvZ5rMNfUy9GRdbF/pX78+wWsOoXbQ2mlz+fVNiJg55Qsw8+CvGG/MI6Y2ZEOONyeTMA30UHHkD7q6XN7h6C6DskMy1IYfi53easG21KW0Doc6VcGp/LNumxfZa34sNlzfw1isDWFzM0dQGo+xwmXGVV8f5Ay/D4TfgxRkAlgVBxCuzeKdhzio0eN3/Og0XNcQ/3J9OFTqxuc9mrK1SmP0Wiy4cnh02tV54fiJ+Abh81WP6SdWVnuRY4ZKG4Fvj0JBdoQwT1AERAby/430Wn10MQJl8ZVjUZREtyrTIkO3F8jD4IcvOLmPRmUXcfGEKyn6l8CsMqzmMAa8MoIBDKoP6cwhKzMQhV4uZqBdwahzcll14M90bkxAGPZwYYaosXHMOVJ6QdfbkBCKe8WxrZQrpnuFrsKd0T99sHVh74sEJ6i2sh7WVNTfH3qDU482yfpEwyGKKTTaCXe78cU0QYYBrP8DZj8EQSbiVI28+COOEthTXx1zPkUUGj9w7QsvfWxKhi+DtWm8zv9P89HkBooPkUFRsQHHAueSXSUHwbWbx9/W/eeevd3gQ/AANGsbWG8uXrb7M1CEfgzDw353/WHRmERsubyBSLz1fdlo7elTpwdCaQ2nu2TxXpXgrMROHXCtm7v8pS86HP5JekEoTZJZEdqgDIQSc/cjU46fq/+CVz9QQREJEB2PY1QKrF6e4Fw0nq35H9zrvZbVVydJyWUv23tnLuPrjmNturozVOtRP1k9xLgfN/5I3ntxO6F04+pa8QQO6wm2ocfYUl0Kes6jLIobUzLmeyS1Xt/D62tcRCL5o8QWfNk1B76+UEuEHT/dJcRNwHhxLxgm8rZii4NvM4Hn4c8b9M47l55cDUL5AeRZ3XUzjUhmQTJEKXoS/YOWFlSw8vZBzT0zC0Cu/F0NrDmVwjcG5osu9EjNxyHViJvK59MbckV8uXCtC/SXZL4NICFPHbYDyo6HOD9kzdTOr0EfAvo7wZA/P9NDdvyC7xz7MEemYO27soN3KdjjZOHF3/F3p5g64KCsGh96RjTCbbIAirbPa1IxBCLizEk6OkZkyWkeoNYcvHvoxed8UKhSswKVRl1I/PJPN+On4T4zZPgaApV2XMqjGoCy2KPPYcnULI/8eyeOQx1hprBj/6ng+a/EZjjYZmEyRSoQQnH50moWnF7Lq4iqCImUnbCuNFR3Ld2RozaF0KN8BG23OrAekxEwccpWYub8Vjr8DEY9jvDEfQPVp2cMbkxiq43bCGHRwsBfc30KY0NL0np4O9SfzWYvPstqyFBG3q/fnLT7nf03/Jz+IeCp7OvkdkhVk68yD8iOz1lhLE+kPJ0bK2DCAgvWhwXKe2xSkzPdlCIoMYk2PNfSp1idr7bQQH/37EV8f/hprK2u29d9Gm7K5O1PxWdgzxm4fy5qLawCoVKgSS7oukbV3sjGhUaFsuLyBhWcWcvDuQeP0Is5FGOw9mCE1h5in2+cAlJiJQ64QM5HPZaPBOyvle9dK8OpSKFQ/S81KMXdWw5GBMR23O0OjtdlbgGU0QsCxoXBrCQYrW1rdjeJgpDW+43xzlGt41YVVDNg0AHdHd3zH+eJgE3NO9ZFwbLjJe1hhLNT6NtPjHDKEh//AsSExw7vWUG0KVJ0EVtZM2jWJrw59hXdhb06/czrXxC4YhIE3N7/JqgurcLF1Yf9b+6lRpEZWm5UhrL+0ntHbRuMX5odWo2Viw4lMbT4Ve+vsm1KfEFefXWXxmcUsPbsUvzA/4/RmpZsxrNYwelTuYfq+ZmOUmIlDjhcz9/+I8cY8kd6YyhOlNyYb16tIELOO281iOm7nwPORXoSAMxPh6hzQWPGjXQvGXthNn6p9WNNzTVZblyp0Bh3lfiiHb6AvP3f4mZF143hgXh5mLNpWiljblBcTy1boQuHMh+Dzs3zvWgkaLJcl/YHHIY/x+t6LcF04W/tupXPFzllorOWJ1EXSfmV79t7ZS1HnohwZeoTS+UpntVkW40nIE0ZvG83GKxsBqOZRjSVdl1CnWJ0stix9ROmj+Ov6Xyw8vZAdN3dgELKxqJudG2+88gZDaw6lZtGaWWxl4igxE4ccK2Yi/WVDOt9V8r1r5RhvTL0sNStdPN0P+zrl7Y7bl2Yab/AhNefhvmkiEboIDr51kEalGmWxcaln3rF5vPvPu3jl9+LamGvxY0TubYLDb4I+TF7Dzf4El7JZY2xaeXYMjrwpa5wAVHgXanxl5l18d/u7zDs+j1dLvMrhIYdzZf2PgIgAmixpwsWnF6lcqDKHhhwy6zuUExFCsPriasZuH8vz8OdYW1kzqfEkPm3yaY7MQkuKe4H3WHp2KYvOLMI30Nc4vVbRWgyrOYx+1fuRzz5f1hmYAErMxCFHipl7W2R6s9Eb8yFUn5rzvDEJ8fy0bH8Q+Uze3FruBEfLFXXL1vj8Ks8rQM05fPNcz4e7PqRGkRqcfvt0jrwBhkaFUvq70viH+7O251p6V+0df6bnZ2RgcPgDWfK+ySbZ0ye7Y4iGizPg0heyRopDcdla4qWgZt8AX8rPK0+0IZrdA3fTskzLrLE3E7gfdJ9XF77Kg+AHNC3dlB1v7MhxQzCxPAp+xIi/R7D12lYAahSpwZKuS3LtEFosBmFg963dLDqziM1XNxOljwLAwdqBnlV6MqzWMJqUapItfo8y6/6dOwaEsxMRz+BQfzjQXQoZtyrw2lGoMTN3CBmAArWg9QEpYIKuwL+NIfhGVluV8fiuk0GjAFU/RV/xPX4+KYcsxtYbmy1+ONKCk60TY+rJbJdZh2aR4PNNgZrQ9rj0xkX6w57WcHNJJluaSoKuwc6GcHG6FDKl+0HHCwlmZ33232dEG6JpVaZVrhYyACVcS7B9wHZc7VzZ77ufQVsGGYcucgpCCJadXUaVn6uw9dpWbKxs+Kz5ZxwfdjzXCxmQmU5tyrZhTc81PJjwgLlt51LVvSrhunCWn19Os6XNqPRTJb4+9LVZS4XcjPLMWJJ7m+TNLuKpzAKp8pEMLtTmLlenkVBf2NNGuu5ze8fthztgf2f5pF9uBNT9mT+ubaXb2m4UcCjA/fH3c0QwXmI8C3tGqbmlCNeFs+vNXbTyapXwjLowWZPl7jr5vvIH4P1VtukeDchYn+s/wdkPQR8um6fW/QU8+yY4+7Vn16jycxUMwsDRoUepXyKHBOWnk72399J2RVuiDdFMeHUCc9rOyWqTUsT9oPu8/efbbL8hm7DWKVaHxV0WU71w9Sy2LGsRQnD8wXEWnl7I6ourCY0OBUCr0dK5YmeG1RxG23JtM73UgPLM5CQinsHBvrKvUcRT2Vn3taMxTelyqZABcCotPTT5a0gv1K5msp9LbsPvsExVNkRDqT6y3L9Gw48nfgRkl92cLGQACjkWYmjNoYD0ziSKtaNsSlltqnx/ZbY8NtEhiS+TmYQ9gL3t4NRYKWSKtIGOFxMVMgBT903FIAx0qdglzwgZgBZlWrC021IAvj36Ld8d/S5L7UkOIQQLTi2g6s9V2X5jO3ZaO75q9RVHhh7J80IGQKPRUL9EfRZ0WcCj9x+xsPNCGpRogF7o2XJ1C51Wd8LzO0/+t+d/3HpxK6vNtTjKM5Ne7m6U3phIvxhvzMdQbXLuFjEvE6/j9mYomr7Os9mGgAvwb1OIDoCi7aDpH6C15YrfFar8XAUrjRW33r2VK7JC7gTcodwP5dALPafePkWtorWSWWANHB0smxHme0UGBluiq3Ja8V0rv4tRL+SQbo1voMKoJIs8nn18lpq/1kSDhrMjzvJK4VzqWUyCrw99zUe7PkKDhnW91tGzSs+sNikedwLuMPzP4ey6tQuAV0u8yuIui6nsXjmLLcv+XHp6iUVnFvH7ud/xD/c3Tm9VphXDag2jW6VuGRozpTwz2Z0IPzjYR6YqR/qBWzVoewy8v8hbQgbANp8cYiraTma8/NcJ7m7IaqvST8gt2POaFDKFGspquDGVfX88Lr0yXSp2yRVCBsAzn6exSNw3h79JwQJ9ofV/cogx4DzsqAfPjmawlQkQ9ULGqR3qK/8vUAfanYGKY5KtVj1572QA+lbrmyeFDMDEhhMZXXc0AsEbm97ggO+BrDbJiEEY+PnEz1T/pTq7bu3C3tqeOa/N4eBbB5WQSSFVParybdtveTDhAet6ruO1sq+hQcPu27vpt7EfxeYU473t73HhyYWsNjVdKM9MWri7AU6MiuONmQTV/pf3RMzL6KNk+uvddTm/43b4IxnYHHJLdgZu/R/YyhTWwIhAin9bnNDo0IzPfBECdDqwyZyKy7GeCiuNFT5jffDK75X8QqH3ZKZTwDmwspMVoj37Z7yxAI93wZHBMstKo4Wqn8rvYgoqVB+5d4SGixui1Wi5MvpKjqusakn0Bj091/dky9Ut5LfPz6Ehh7JcLNx8fpNhfw5j3519ADQp1YRFXRbl6fNkKe4E3GHJmSUsPruY+0H3jdNXvb6KftX7WXRbyjOTHYl4Cgd7yxL2kX7yJtf2GHh/ni2FjBCCm89vojfoM2eDWltouArKDpddiI8NhSs5I6jQjKgXMvU85BY4e0GLHUYhA7Ds3DJCo0Op4l6FFp4tMs4OIeDKbTh8Du5nTkZCjSI1aFu2LQZh4Nsj36ZsIaeS0OYglOgqh5wOD4DzU+Q1kFHowuHkezIAPfwBuJSHNofglekpbrXx6R7ZdPGtGm/l+Ruk1krLqtdX0aBEA15EvKD9yvY8Cn6UJbYYhIHvj37PK/NfYd+dfTjaOPJDux/YN3hfnj9PlsIznyfTW0znznt32D5gOz0q98DVzpV25dpltWlpRomZlOK7Dv6uKnu5aLQyLqbtSShQO6stS5DQqFDe3Pwm5eaVo8uaLpknaKy0UO9XWVcH4MwHcO5/8sacE9CFyqKAARfAoSi0/Ff+jcEgDMYhpjF1x2RsOvaDp+D3XP5/8z488U96fgvxYSN57hafWYxfqF8yc8dg4yxrz1T5SL6/+Lkc9tGFWd7A56fgn1pw/Qf5vvxIaH8mVa1Bdt/azd47e7HV2jK52WTL25gDcbBxYGu/rZQvUB7fQF86rupIcGRwptpw3f86TZc0ZdyOcYRFh9HCswUXRl5gbP2xuaa1RHZCa6WlXbl2bOi9gYcTHuboAorq6kiOiKdwoBcc6iOLxOV7RdbbeOUzY/xEduO6/3XqL6zPyguyD9Q2n218tOujzDNAo4Gas8B7pnx/aYbsTJzda1noo2RG2rPDMp23xQ7pmYnDzps78Xnug5udG296v5lxtgSHwq0Y969LTIffa3fgeWDGbTOGFp4tqFOsDuG6cKNwSxEaK1lV99Ul0jtyd73McAt7aBnDDDq4+AXseBWCroJ9EWi+Der+DNZOKV6NEIJP9sgKziPrjKSUWxYGLWczCjkW4p83/sHDyYMzj8/Qc31PovXRGb5dvUHP7MOz8Z7vzaF7h3C2deaXjr+wa+CulA11KtKNk23Kv0PZESVmEkMImR3xdxW4t8HUkK7tCVk0Lpuy6com6vxWh0t+lyjiXITJTeVT55wjc1h2dlnmGlP1Y1nfA43sh3NkoExvzo4Y9NK+RztkRlbzbXIY8SXmHZ8HyKEJZ1vnjLFFp4PLN+U1WCgf1KwM7vljeiXdlEInA9FoNHzUSIrfH0/8SGhUKrfnNRha7paVgp+fhB11ZdXo9BDkA/82gfOTZbPTUr1kynWx9qle1Z/X/+T4g+M42jgyqfGk9NmVC/HK78Xf/f/G0caRnTd38vZfbydcSNFCXPa7TKPFjZj4r2wL0sarDRdHXmREnRHKG6NIMepKSYjwJzJL6VBfWe00n3eMN2Z6tvXG6Aw6Ju6cSI91PQiOCqZJqSacfvs0n7X4zCho3v7rbY7cO5K5hpUfIeNoNNayY/j+12W8Q3ZCCOk5urtWehSabAL3BvFmu/H8Btt9ZKGuUXVHZZwt13whIgrsbaGip/R0VSoD+VxAb4ALPhAekTHbj6F7pe6UK1CO5+HPWXh6YepX4NFEfmfcqkD4QxlMfW9T6tcjhGwhsb0G+B8FGzdosEI2vLQrmOrVGYSB/+35HwDj6o+jsHPh1NuUB6hTrA7re61Hq9Gy9OxSpu6bavFt6Aw6Zh6YSc1fa3LswTFc7VxZ2HkhO97YkWsyBBWZhxIzcRFC1s7YVlX+8GqsZXfrtsdlOfdsyuOQx7T6vRWzj8wG4P0G77N74G6KushYj2nNp9G9Unei9FF0X9vdLHo9U/DsG1OfxR4e/gX72kN0UObakBTnJ8ON+YBG3iiLtU1wtp9P/IxA0L5c+4wLRHzoB89eSAFT2QusY6p1WllB1XLg7ADROjjvA1EZ5+XSWmn5oMEHgCyolqahBmcvaHM4JmU/XA7hXfoy5fFT4Y9kmv+JETLlv3BL6HABygyQxycNrL24lgtPL+Bm58YHDT9I0zpShd4gvWmnr8iYp5wSOwZ0KN+B+Z3mA/D5/s9ZcGqBxdZ94ckFXl34Kp/s+YQofRQdynfg0qhLDK01NMe2BVFkLUrMxBL+WP7YHu5n8sa0OxHTHDJ7emMADvgeoOavNdnvux9nW2fW91rP7NdmY6M1ZXRYaaz4vfvvVPeozpPQJ3Rb042w6AwIzEyK4h1kLRobV3j6H+xuKSsnZzVXvpUxPQD15kPpBJosAiFRISw+sxiQfZgyhOBQuHlP/u9VHFxfGsay1kL1CtJjExEpPTS6jAvsHug9EA8nD+4G3mXtpbVpW4mtmyymV/E9+f7cp3I4T5+MZ+nuRthWHR5uk+netebKYGynkmmzA4jWRzNl3xRA1lbJ8GBHgwEu3QC/F/LcXr0Nxy/CIz/5WQ5gWK1hTGkqj9nIv0fy9/W/07W+aH00n/33GbV/q82pR6fIZ5+PZd2W8Ve/vyjhmkea1SoyBCVmhIA7q2Sm0v3NMd6Y6VLI5K+R1dYlihCCuUfm0mJZCx6HPKaKexVODj+ZaPVOZ1tntvbbSiHHQpx6dIqhW4dm6Dh4gng0gVZ7wc5dZqTsagJhmewlisvNJXDmffm/95dQ7u1EZ115fiWBkYGUK1COtuUS9tykC50eLt+S12PBfFA8keEPWxspaGysISRMPvVn0I3RwcaB9+pLEfL1oa/Tfr1YWUPt76DufJkJeGcF7G4lg+tfJioQDg+MKUbpD/lrQrtTUGlcsgXwkmPZuWXceH4Dd0d33nv1vXStK1kMBrh0E14ESa9aicLynEVEwnVfOHZBptvrMynLMB1Maz6NwTUGoxd6em/ozcmHJ9O0njOPzlB3QV2m7ptKtCGarhW7cnnUZQZ6D1TeGEW6ydtiJvyx7CtzeABEPY/54TwJ1aekuFZFVhAcGUzvDb2ZsHMCeqGnX7V+HBt2jIqFKia5nGc+Tzb02oC1lTVrLq5h5sGZmWRxHArUgjYHwLGkzEj5t7EM7sxs7m2B48Pk/5Xel20oEkEIYQz8HV13tOWDEoWA63fkjc4uTpxMYjjaQ7Vy8ib5IkhmOWWQMB1ZZyTOts5ceHqBf278k76VlX9HZojZ5JMZYzvqyRT4WJ7sg22vwJ3lUrhU/UT2OMtXNX3bBSJ0EUz/bzoAnzT5JOOCt0EKmcu3ZOaZlZU8V2VLQv3q8q+tjRwivHkfjl4A34cy6DubotFo+K3Tb7Qt25aw6DA6ruqYqt4+kbpIJu+ZTL2F9Tj35BwFHQqyusdqNvfZbBwKVyjSS94VM7pwWavi/hYpXKp/Jgvg5ffOasuS5LLfZeouqMuGy1KUzGs/j5Wvr0zxj3Mzz2b82F6m236651P+uPpHRpqbMK4VZZE1lwqy8/auJvDiXOZt/8lemWovDOA1BGp+k6R42HdnH5f8LuFk48RbNd6yvD2PnsmhiNg4GZsUdLV1dYaqZeUyT5+b0rgtTH6H/LxdS3qskmxAmVKKtJLfM5fy8tzvbCjj005/IIcew+7KWJvWB2IatVpmiPfXk79yP+g+JVxLMKLOCIusM0EMBrhyC/wDwEojhUz+mKqnWq300NSvDhVKg72dFDF3HsLR8/IcZmAcVHqw0dqwvtd6ahapydPQp7Rb0Y5nYckPE594cILav9XmiwNfoDPo6FWlF5dHX6Zvtb7KG6OwKHlXzFg7QIV3IX8tWfyu+uRs7Y0BWHNxDfUW1OOa/zWKuxRn/+D9jKmX+sJt79R5h1F1ZDbOG5vf4OLTixlhbtI4lZIeGmPH7eaZ03Hb/yT81wUMUVCiuyzwl8zxi/XKDPQeiJu9m2XtCQmDG3fl/2WKg1sqPAYF3ORNEeD+E7iXMVWCxzcYj7WVNf/5/sex+8fSv0LXCtLjUrgl6EJkrNrVOYCQ1aPbnwP3hunfTgwhUSHMOCDjoqY0nZJxTfWEkHExzwLkNVU1jpCJi5UVFHWHetWgchlwcpCBwvcew7Hz8nqIiMwYG9OBi50Lf/f/m9JupfF57kPn1Z0Tjb2L0EXw8a6PeXXRq1zyu4S7ozvre61nXa91eDh5ZLLlirxA3hUzAJU/gLZHIX/2bjAXpY/ive3v0W9jP0KjQ2lZpiWn3zlNg5Lx04fjkcjww3ftvqOFZwtCokLosroL/mGZU13WDHsPGUPj3lg2c9zTGh7uyLjtBV6VmVS6EHkjbbRKxnMkwd3Au/xxTXqvRtcdbVl7dHpTPZkCbvKpPbUUKSRFEMgn+wyoElzCtQQDqg8A4OvDX1tmpXYFoMU/pjglew8ZKFz/N1lN2IL8cOwH/ML8KFegHINrDLbouo3ECplYD1vVsvKcJoVGAx4FoXYVKXxcnMAgZOXn4xfl8GFYxqbgp5aiLkXZPmA7+e3zc/T+UQZsGhCvuviRe0eo+WtNZh2ahUEY6FetH5dHX86W3bgVuYe8LWasrLO9N+ZB0ANaLGvBD8dl6fZJjSex842dyT/dCCGf1g+flTe5l0RNrNu4TL4y3A64Ta/1vTKl0mc8bPPJOIrY9N39nTOm43boXdjbRlZxLlAXmm6RqeLJ8MuJXzAIAy3LtKSqR/pjN4wIAT6+EB4Jdjayjkxa3e4li0DxmOshg6oET2w4EYDNVzZz3f+6ZVZqZSODgtudhE7XoHgny6w3Di/CX/D1ISnApjefbpblZzGEkMf96XN5DquUlUHcKUWjiSmOWAleqSDrCQkBj5/BiYtS8IZkcvZhElR2r8zWflux09qx5eoW3t3+LkIIwqLDeH/H+zRa3Iirz65SxLkIW/psYVWPVRRyLJTVZityOXlbzGRz9tzeQ81fa3L43mHc7Nz4o+8ffNnqS7RW2qQXjM2MuXlP/n/vcYJDEAUdC7K131acbZ3Ze2cv43eMz6A9SQZrR1mHplQfWSH4UB+4uchy6494KhsSht0H18qyuq+NS7KLhUeHs+C0rK1h8XTsx8/kzQ9SHieTGBqNDCzNwCrBVT2q0qlCJwSC2YdnW27FGo3sb2abz3LrjMPsw7MJjAykukd1+lbra/kNxAqZWI9YZS8pTNKCRiOHpbwrSmFTMMaz4/cCTl2WqfiBIZawOt00LtWYla+vRIOGn0/+zJhtY/Ce7823R79FIBjkPYjLoy7TtVLXrDZVkUdQYiYbIoRg1sFZtFneBr8wP7wLe3Pq7VN0qdgl+YVDwuD0ZVPhNfeYWhq3HyQ4BFHNo5rxR+mnEz/x68lfLbw3KURrCw1XymEHYYBjw+CKBW6a0UGwtz0EXwfHUtByJ9in7ClxzcU1+If7U8qtFJ0rdE6/LbHEi5NJXlglSyZUCY5tcbDs3LIs66icGp6EPOG7Y98B8HmLzzMoC83X9L2q4mX6vqUXV2eoVl4OQbkXkNOeB8LZq3D2msxiy+ICfD2q9GBu27kA/HzyZ248v0Fxl+L83f9vlnZbmqObFuZJ9Posv6bSgxIz2YyAiAC6r+3Ox7s/xiAMDPIexOGhhylboGzyCz9+Bmeuxgxd2EKNitLlHRuLkcgQRJeKXfii5RcAjNk+hv/u/GfBPUoFVlo57BDbefnMRFlkLa1fMF24DPZ9cVrWtmn5LzimrDBX3HTsUXVGJe8NSyl6vcx2MQj5FF6yiGXWC6YqwU4ZUyW4canGNCzZkCh9FD8c+8Fi680oZh6cSVh0GPWK10vZg0BqEEIK0scxGT2Vy5hEhyVxdpQiqW41GR+l0UBgMJy/Lr/rz15k6Q3ovVff45PGn6DVaBlWcxiXRl2iQ/kOWWaPIgGEkL8HIWHy9/+RH9x5IO8H56/DyUtw6AwcPJPtYrRSg0ZkeuW01BMUFISbmxuBgYG4uiaQHZBLOP/kPK+vfZ2bL25iq7VlXvt5DK81PPlsJYNB/rA+ivlhze8qf1xtYuIDhJA3UL8XoLUC70qmTszEziLov6k/ay6uoaBDQU4MP0GZ/GUyYC9TyOVZcDam9kv5UVBnXuqKphl0MkvmwVZZdbjVvlS1pDh87zCNFjfC3tqe++PvU9Ax9X2A4hF3SMLWRj5122ZADEdklHyCj4iSN8MaFWVasAX44+ofdFvbDTc7N+6Ov4urXfb8Pt4NvEv5eeWJ0kfx75v/0tqrteVWLoQcwn0QU/SvUhkobIHrIyVERMlie4+emYolOjlIUexRIO1xV+kkSh+FbTaulJ5riRUqkVExr2j5NyrafFpKC2tWL5984Hoqyaz7dzoG6hWW5PdzvzPirxGE68Ip7VaaDb03UKdYneQXDI80DxAsXQxKFzX/UYsdgojSyae6iz5yTN7eLs4sGhZ1WYSPvw+nHp2i65quHB56OGOLiyVFlY9kcbUTI2XH7agAaLA0ZQHbwgDHhkoho7WXWTKp7K0V65XpX62/ZYQMSBETN7YiI4QMSK9c9QpS0ISEyUq0sUX20knnip2pVKgSV59d5bdTv2VOf6M08Pl/nxOlj6KFZwtalWlluRULIYvdxQqZip6ZJ2RAtrIoVwpKFZUB/g/9IDRcZlLdeQilikh7LHCuU4MSMhmAwRBHlMT5GxVHpERFp9wzZ20tkw3sbOP8tZW/Q7H/W1vIA50FKM9MFhOpi2TcP+OYf0o2dGtbti0rX1+Zshuof4D8EdPp5YVauUzSqlqnk+PtoeHgYC8FzUuBp/eD7lPntzo8CX1C90rd2dB7g+VjDVLDnTVw5E0QOijWERqvlzWCEkMIOD0ern0vS+c32QwlUhfv8ij4EaW+K4XOoOP026epWdQCTUZDw2WzQYMBPItJ0ZnRBIXAuetymx4F0pcxFYfFZxYzdOtQirkU49a7t7Cztkt+oUzEx9+Hyj9VRi/0HB5yOGUlDFKCEDIz8P4T+b5CaVkvJivR6aSwevBUPqGDvDmVLCxts5BHTmFh9Po4AiUqAdESZTqfKcH2JZESV6DY2YCtrfTKZwGZdf9WYiYL8Q3wpef6npx8eBINGqY0m8LkppOTj88QQgb0xmYouTjJ2Bj7FDwdRUbJsfbIKHB1glcqxrvIj9w7QvNlzYnSRzGl6RSmt5ieth20FA+2wcEesjmhR1PpabFJ5Dq48DlckI3xaLAcyryR6s1N2zeN6f9Np1HJRhwccjAdhseg10shExYhhwCrl8+84QD/QNnsUAgZO1U27Y0aY4nUReL1gxcPgx+yqMsihtQcYgFDLUf/jf1ZfXE1Hct35K/+f1lmpULIOIO7Md+58qWgWDYq/qbXy6Gne49NcVLW1lDCQ6btWysnfKYghHy4TMiLEle0pLRBrEaTuBclrnDJxtWUlZiJQ24UMztu7KD/pv48D39OAYcCrOi+gvbl2ye/YFS0jH8JCJbvi3uAV4nUuZVDw+UQhE4v62HElsWPw7Kzyxj8x2AA1vVcR6+qvVK+/ozg6QH4r5PMTspfSxZcs3/pqfj6z3AyprBd7R+gYurTqaP0UZT+rjSPQx6zpsca+lTrk37br92GxxkcJ5MUj5/JWB2AsiWgRPqDjmcfns3EfydSqVAlLo26lLXeuzicf3KeGvNrIBCceecMNYrUsMyK7zwA35gMrnIlE28EmtUYDHIo8+5jUxVhrZUUXiUKZ/61l5sQQv7+JuRFMQqXVMSnaK0S96LE/m9jna2FSkpQYiYOuUnMGISBL/Z/wbR90xAIahetzYbeG/DM55n8wgHBUshERcsvQgVPOXyQFgJiMiKEgGLuchz+pS/NBzs/YM6ROThYO3BoyCHLDLekh+dnYG9biPQD10rQYic4xXga7qyWDUMRUG0qvDItTZtYdWEVAzYNoKhzUXzH+aa/yNoTfzkUCLIgWkLl7TODu4+kNw/kcKRH+uI8giKDKDW3FIGRgWzpsyXb1BPpuqYrW69tpXfV3qztudYyK/V9KONRwGJiMMMRAvyeS1ETGi6nWWnk0FOJwmbxcooEiIqG4DAZcxb7ioxS8SlpQImZOOQWMfM8/DlvbHqD7Te2A/B2rbf5vv33yfeKia3mG9tM0NFeelMck4gdSQl+z2VxPZD1TkqZd7DVG/R0Wt2Jf278Q0nXkpwYfoLCzln8RBp0LaYA3r2YujG7INgH9neVcTUVxkivTBqfZhouasiR+0eY3nw6U5pNSZ+tYeFwKiZOpnQxGSuTVcTNwNFo5FBXOoXVpF2T+OrQVzQs2ZBDQw5ZyNC0c+z+MV5d9CpWGisuj7qcbBf5FBFXBHqVsGwqfWYghBxqvPvIVEhRo5FBwiWLyN+SvIwQUqSEhJmLl6RKGmTj+JTsiBIzccgNYubUw1P0WNcD30Bf7K3t+aXjLynrE6PTySGCZwHyvUcBGXhoqcC++0/kTQ5kZkYR84JyAREB1F9Yn+v+12lYsiF7Bu7J+oDP0LtS0ARfl/VjdCGyFYLnAGjwe+pSuONw6uEp6iyog42VDXfH36WIczpuXHoDnLkin4rzuUivTFa7i+Ol6FeU8VZp5FHwIzy/9yRKH8WBtw7QuFRjCxqbelr/3prdt3fzVo23WNx1cfpXeO+x6QEiAbGfoxBCemPvPjINUYMs8leqqEzhz+0IIbM/YwVLcKj8m1j8iqO9PC6xL0f7bB+fkh1Rqdm5BCEEi84sYsy2MUTqI/HK78XG3htTNpYfEibTrsMj5ReoXEnpJrbkl6lEYflkcv+JrGZqa2OWEZXPPh9b+26l/sL6HL53mFF/j2Jhl4Wp7tRtUWI7bu9tBy/OyGnFOsKrS9IsZMCUjt27au/0CRmAm3elkLGxlmnY2eEHMDZFP1onb2gXYlL0HdL2dF7UpSiDvAex4PQCZh2alaViZs/tPey+vRsbKxumNpua/hXG9YSWLpazhQyYWiXkd5VZbncfSY+N3wv5KuAm9zE1XduzM0LI71/IS0NF+gTiWTQaKVRcHMHZKUa8OKhMsByG8sxkIOHR4YzeNpolZ5cA0LlCZ37v/jv57PMlv/DjZ7IRoUFI92WVsjL7KCOI7fj79HmiT+w7buygw6oOGISB79t9z7v1380YW1JDVCCcGCFTsOstSDplOxn8Qv0oObckkfpIjgw9wqslXk27XdklTiYxdHoZAB4aDg52UKNSmgNDr/tfp9KPlRAILo68aNlmnClECEHDxQ05ev8oY+qOYV6Heelb4YOnpnYTpYqaupLnNkLCZEyN33PTNDcXWacqn0v2EOApwWCQ17JxmChUvjckcGuz0oBTjKfFJeavk0Om1+XJS6hhpjjkRDFz68UteqzrwdnHZ7HSWPFFiy/4qPFHyWd96A3mZdILuEKldDYiTAmGmH4+AcFyWzUryxtdHOYemcuEnROw0ljxz4B/aFO2TcbalInMPDCTT/Z8Qp1idTg+7HjaPU9hEbI3lt6QvW+EcasEuzhKAZvGJ9Ee63qw6comBnkPYmm3pZa1MwX8df0vOq/ujIO1A7feu5U+r9pDP/kQATKmpEzxnHNTTythEXJI7Ym/KcDVxUkW4CuYL3vtv04PoS/Ft4RFJByYq7UyHyZycZIemOy0P3kAJWbikNPEzJ/X/mTgloEERATg7ujO6h6raeWVgiqk4REyIDe2mq9njHs7s758ZkX17GKK6pme2IUQDNk6hKVnl5LPPh/Hhx2nfMHymWNbBqIz6PD63ot7QfdY1m0ZA70Hpm1FBoOsJxMaLt313hWz9w9nWIQUNNE66T1KY5Xg2MBbaytrbr93mxKuKet/ZQkMwkDNX2ty/sl5Pmr0EV+1/irtK3vkJ4daQQ6/epXI3ufP0mS3Vgmx/YTiBucm1jzV2trkaYl9OdjlrfOXTVFiJg45RczoDXqm7J3Clwe/BODVEq+yvtf6lP24P3sBV+/I4lexcRZZMTwRt6ieixN4VzB7Yo/URdJiWQuO3D9CpUKVODr0KG72lu3lkdlsvLyRnut74u7ozt3xd5PPLkuM677yhmhjLevJ2OWAEu8WqhLcfGlz/vP9jwmvTmBO2zkZYGjCrL24lr4b++Jq58rt925TwCGNpQri1uIp7iGLC+bVG2FUtKlVgj4mONbeLmNbJcRmFMUVL5FRCc9ra/OScHGSWUR59Xxlc5SYiUNOEDN+oX7039SfXbd2ATC23lhmvzY7+Z4lL1fzdY2p5puVN8Jkiuo9DnlM3QV1uR90nw7lO7C171bLdZXOAlosa8G+O/v4pPEnzGg1I20refpcZgpBhjRry1AsUCV4u892OqzqgLOtM3fH3SW/Q/4MMNQcnUFH1Z+rct3/Op81/4zJzSanbUVxY5wSqbmUJ8mIVgmxqdAv13BJLBXa3s48vsXZURX+y2EoMROH7C5mjt4/Sq/1vbgfdB9HG0cWdF5A/+r9k18wKlpmKwWGyPdpqeabUQQGyyd2IaBoIShf2uwH/tTDUzRZ0oRwXTgfNvyQWW1mZaGxaefCkwu8Mv8VtBotd8bdSdsQSXgEnIqNkykCZTJvmMVipLNKsBAC7/neXHh6gRktZ/BJk08sb+NLxPaIKuRYiFvv3sLFziX1K4krQou6yzYFSsiYk9ZWCULI78bLNVxSkgodK15UG4Ycj0rNzgEIIfj5xM+M3zGeaEM0FQpWYGPvjVTzqJb8wi9X863oCe5pdJFnBG4ucqjr8k35Q2Zna9YcsXax2izpuoS+G/vy9eGvqeZRjTe938xCg9PGj8d/BKB75e5pEzIGg4xz0htknIxnNg34TY4iheS1ePuB7Apta5uq6tIajYYPG33Im5vf5Ptj3zP+1fE42KSzqGMSROoimf6f7Bk2qfGktAkZvzhCpkghJWQSQ6uVHrti7uatEu48lAKnWIyoSSjGJaHS/hqNjMWJG9+iUqEV6UR5ZtJIaFQo7/z1DisvrASgR+UeLO66GFe7ZOwTQv4AxFYVdbSHquWybyXOuGmqCRTV+9+e/zHjwAzstHb8N/g/6peon/k2ppEX4S8oMbcEYdFh/Df4P5qWbpr6lfj4ytgCa2uok0PiZBIjnVWCo/XRlJtXjruBd5nfcT7v1Hknw0ydd2we7/7zLsVdiuMz1if1wunZCylChZBxIBU9lZBJKQm1SkgMKyspXOIOE6lU6DxFZt2/1RWVBq77X6f+wvqsvLASrUbL7DazWd9rffJCRqeDSzdNQqZwQahVOfsKGZBPXLEl3K/dkfEVcfisxWd0rdiVSH0k3dd250HQg8y3MY0sObuEsOgwqntUp0mpJqlfgd9zKWRABs7mZCED8mZetqSsCiuEjKMJDkvx4jZaGya8OgGA2UdmozeksDNwKgmNCmXGARnbNLnp5DQImQCTkPEooIRMatFoZG+v2lXkg1hsTSqtVnp0ixeW34c6VaFxTfkbV760HMZzcVJCRpEhqKsqlWy6sok6v9Xhkt8lijgXYc+gPbzf8P3k65IEh8k+Pf4B8segfGn5I5oTXKtlipuGHC7fNPV4Aaw0Vizvvpyq7lV5FPKI7mu7Ex6dzNNaNkBv0PPTiZ8AGayd6roy4ZFwLU49koI5KOA3KWKrBOdzkUNnF67LfU0hw2oNo4BDAW48v8Hmq5szxMR5x+fxJPQJXvm9GFJzSOoW9g+Q17AQclg3jdlbCuRxK5RPlnBoWAMa1YAaFWWl8sIFpQdGHVtFJpEmMfPTTz/h6emJvb099evX5/jx40nOHxAQwOjRoylatCh2dnZUqFCBbdu2pcngrEJn0DFx50R6rOtBcFQwTUo14fTbp1M2NPHIT/bpiYgEe1v55S9m4bYEGYlGI4VXPhdTcb049R5c7FzY2m8rBR0KcuLhCYb/OZzsPnq5/cZ2br24RT77fAx4ZUDqFjYY4MpNGRjp6pS1DSQzAisrmcHm5CDjIC5cT7rxXhycbJ0YU3cMALMOzbL4dRAQEcDXh74GYHrz6anrav48UHpGhYBC+WX38JzyHczOaDSyHIE6loosJNViZu3atUyYMIGpU6dy+vRpvL29adu2LU+fPk1w/qioKNq0acOdO3fYsGED165dY8GCBRQvnnMCJR+HPKbV762YfWQ2AO83eJ/dA3dT1CWZfi16PVy7LeuPCCHTdWtVSVdzvyzDykq6lJ1jb3A+Zjc4r/xebOi9AWsra1ZeWMk3h7/JQmOTJzbwd2jNoTjapLLJ3q370tNmrYXKZXOn29zaWsbM2NtKz8xFH1PNkWQYU28MDtYOnHx4kr139lrUrDmH5/Ai4gVV3KvQr1q/lC/4IsiUfl4onxIyCkUuI9W/wt9++y3Dhw/nrbfeokqVKsyfPx9HR0cWL064S+3ixYt5/vw5W7ZsoVGjRnh6etKsWTO8vb3TbXxmcMD3ADV/rcl+3/042zqzvtd6Zr82O/knwvAIWXzusb98X6a4rLCa0W0JMhJrLVQrL2NDwiPh4g2zG1xzz+b80O4HAD7e9TF/Xf8rqyxNkmvPrrHj5g40aBhVd1TqFn72QgbIghyisM/hcTJJYWcL1SvIazY4THo1EspOeQl3J3fj8E+sF8USPA19ytyjcwH4osUXKa9tFBAkr1WDkMOBlb1ypwBVKPIwqfpGR0VFcerUKVq3bm1agZUVrVu35siRIwkus3XrVho0aMDo0aMpXLgw1apV48svv0SfxFNeZGQkQUFBZq/MRgjB3CNzabGsBY9DHlPFvQonh5+kZ5WeyS/87IWMj4ntmvxKhcxtS5CR2NnCK+WlsAkONQVSxjCy7khG1B6BQNB/Y38u+13OQmMTJjZWplOFTnjl90r5ghGRplosJQrLgoK5HUd7U5uDF0EmL2MyTGgge3jtuLmDs4/PWsSUrw5+RWh0KHWK1aFbpW4pWyggGC7ckCKsgJssSKmEjEKR60jVt/rZs2fo9XoKFy5sNr1w4cI8fvw4wWVu3brFhg0b0Ov1bNu2jcmTJzNnzhy++OKLRLczc+ZM3NzcjK+SJVNfkTQ9BEcG03tDbybsnIBe6OlXrR/Hhh2jYqGKSS9oMMjU1kux8RTOMuI/u3VNTi+ODtJDY6WRcQg+5je479t/T7PSzQiOCqbL6i48D3+exMoyl+DIYJaeXQrIwN8UE1tPRqeXw4TZtYFkRuDqLEUAyDojt5PPWPPK70Xvqr0BLDLkeD/oPj+f+BmAGS1npCxgOzBEDo8ZDPI7WFUJGYUit5Lh32yDwYCHhwe//fYbtWvXpk+fPnz66afMnz8/0WUmTZpEYGCg8XXv3r2MNtPIZb/L1F1Qlw2XZfzHvPbzWPn6SpxtnZNeMDIKzl+XPU1APrl7V8j56bqJ4eYs3fUgi+r5PjJ+ZKu1ZUPvDXjm8+Tmi5v0Xt8bnUGXRYaa8/u53wmOCqZiwYopa/4Zy+0H0hNlrYUqeXCYoqCbDAIHWScp9jpPgg8bfgjI/kl3Au6ka/Of//c5kfpImpZuShuvFHRrDwqRgct6gwxcr5q2JpoKhSJnkKpvd6FChdBqtTx5Yv5D9uTJE4oUSbj8edGiRalQoQLaOCnIlStX5vHjx0RFJdxIzM7ODldXV7NXZrDm4hrqLajHNf9rFHcpzv7B+xlTb0zyT4EvgmQ5+8AQWc23SllZryO3/3gWyi+rpgL4PpRZW7EfORZia9+tONk4sfv2bt7f8X4WGWlCCMGPJ2Tg75h6Y7DSpPD8PAsw3bwresp+MXmRIoVMHqmb92QrgCSoWbQmbbzaoBd65hxOe/PJG89vsPisjMlLkVcmOBTO+5iqMlcrJ7+XCoUi15Kqb7itrS21a9dm9+7dxmkGg4Hdu3fToEGDBJdp1KgRN27cwBAncPD69esULVoUW9vs4bWI0kfx3vb36LexH6HRobQs05LT75ymQcmE98mIEHD3kfTIROtkKmutKrLoWF6hmIfsRwQynsI/wPhR9cLVWfH6CgB+OP4DC08vzAIDTey6tYurz67iYuvCIO9BKVsoIlJmpIEsIFgoD53bhChZRB4HkM0ZXyQdz/ZRo48AWHRmEc/CnqVpk9P2TUNn0NG+XHsal2qc9MzBYfL7GDvMW718zqjlpFAo0kWqH1cmTJjAggULWLZsGVeuXGHkyJGEhoby1ltvATBw4EAmTZpknH/kyJE8f/6c9957j+vXr/P333/z5ZdfMnr0aMvtRTp4EPSAFsta8MNxmYUzqfEkdr6xEw8nj6QXjNbJDIm41XxrVsre1XwzCs/icv9BxpUEhRg/6lapG5+3+ByAUX+P4uDdg1lhISCLrQEMrjE4Zb18DAbZu0enl+XYvXJgA0lLk8oqwS3LtKRW0VqE68KN6fCp4eLTi6y6sAqAL1omHmcHyF5A56/J8+XqpISMQpGHSLWY6dOnD7Nnz2bKlCnUqFGDs2fP8s8//xiDgu/evcujR6b4iZIlS7Jjxw5OnDjBK6+8wrvvvst7773Hxx9/bLm9SCN7bu+h5q81OXzvMG52bvzR9w++bPVl8imfwaFw+rIMftVooEIOquabEcQeg/yuUgBcvGFWVO/TJp/Sq0ovog3RvL72dXwDfDPdxNsvbhtTxUfXTaGQvvMQgkLlec2t9WTSQiqqBGs0GqN35sfjPxIaFZrgfIkxee9kBIKeVXpSq2itxGcMDZcemdgA7eoVZHyTQqHIE+TZRpOhUaF4/eDF09CneBf2ZmPvjZQtUDbphYSQwa437sr/7W1lfExOLIKXEej0cO6afEK2t5OeKltZjycsOozGixtz5vEZvAt7c2jIIZxsM++4Tdw5kdlHZvNa2dfY8caO5BfwD5CiDOQ5zktDhylFp4Oz16SQcLCDGqbzHRe9QU+FHytw68Utfmj3A2PrpyyL7MSDE9RbWA8rjRUXR16ksnvlhGcMDZfXXbRONjL0riCL/ikUiiwnsxpN5lkxA7Djxg7WXlrLjx1+TL4KrF4PPndlairIGiMVPXN2EbyMICo6pnVDlBya8a5o9FjdC7xHnQV1eBr6lB6Ve7Cu17qUB+Gmg7DoMEp8W4IXES/4s9+fdKrQKekFIqPg5GV5sy7mYQpyVsQnMgrOXk3wfMfllxO/MGrbKEq7lcZnrE+K2hC8tvw1/r31L4O8B7G029KEZwqLkEImKlpWp36lovpOWhAhBDqdLsm6YApFXLRaLdbW1sZAfSVm4pBZByNRwiJkc7rYdvdlistAyNxQBC8jCIupfqzTQQFXs7TYw/cO03xpc6IN0UxvPp0pzaZkuDkLTy9k+J/DKZOvDD5jfZIeRhRCehuCQuRTfs1KangpOcIipKCJ1smhxmrx06DDo8Mp/V1p/ML8WPn6SvpX75/kKvfd2UeLZS2wsbLh2phrlMlfJv5M4RHyXEVFy+B7byVkLElUVBSPHj0iLCzlndMVCgBHR0djkk9m3b/VNz85/J7Lqq96g/yhrOIF+XJZETxL42gP1cvBuevwPEh6tCqUBo2GhiUbMr/TfIZuHcrUfVOp5lGN1yu/nmGmCCGMgb+j645OPh7q9gMpZLR5tJ5MWoitEnzuuqlKcEVPM7HvYOPAu/XfZfLeyXx96Gv6VeuXaIq1EIJP93wKwPBawxMRMpEmj4yjvayyrYSMxTAYDNy+fRutVkuxYsWwtbVNfWd5RZ5DCEFUVBR+fn7cvn2b8uXLZ9q2lWcmMQwGuPUAHsTUF4ktEpdbi+BlBM8CZLYLQOmiMusphvH/jOe7Y9/haOPI4SGH8S6SMb269vvup9nSZjjaOHJ//H3yOyQR+/I8UDbQBClk3AtkiE25Fv9AWXEXpOfypeyv5+HPKTW3FKHRofwz4B/almub4Gq2+Wyj46qO2Fvbc/PdmxRzeakreUSk9MhERkkh410xwVgdRdqJiIjg9u3blC5dGkfHVDZiVeR5wsLC8PX1pUyZMkRFRWXK/Vs9diZEZJR86nsQt5pvRSVkUkuhfFC+tPzf9xE8NBXV++a1b2jj1Yaw6DC6rOnC09CEu66nl1ivzBvV30hayERGybopAMXclZBJC8lUCS7gUIC3a78NwKxDsxJchUEY+N+e/wGy3UR8IRPz3YyMkkHHr1RQQiYDsVKeSUUayIrrRl2pLxNbzTc2JbdqTDVf5WJNG8XcZZNNkD2cYorqWVtZs7bnWsoXKM/dwLv0XNeTKH3CFaHTyv2g+2y+shmQFX8TRQhZTyZaJ4NIy2ZuL7BcRTJVgse/Oh5rK2v23tnLiQcn4i2+8fJGzjw+g4utizGl20jsQ0ZElMyWUw8YCoUiBiVmYhFCluSPW823dmVV8dUSeBaDIvGL6uV3yM/WfltxtXPlwN0DjNk2BkuOes4/OR+90NOsdDOqF66e+Ix3HppaUah6MukniSrBJd1KGoN/vz78tdliOoOOKftkQPj7Dd6noGNB04dGIRMpSyIoIaNQKOKgfrXBVM33zkP5vkghqFkZHPJgNd+MQKORw00F4hTVC5NF9SoVqsSaHmvQoGHB6QXGzsjpJUIXwW+nfgOS6Y79Iki2pAAZpJwXKzhbmmSqBE9sOBGQXhgffx/j9BXnV3D12VUKOhRkfIPxpvVFRcuHjPBIKWC8K0pBo1AoFDEoMRMcKoeVngeClQYqeMZU81WHxqJYxTTgdHGU4vHCdXmTAtqXb8/XbeRT+nv/vMfuW7uTWlOKWHdpHX5hfpRwLUHXSl0TnikySg4vARQtBB4FE55PkXqSqBJczaMaHct3RCCYc0Q2oIzURTJt3zQAPm78Ma52MYGCUdHSIxMWEUfI5NFGn4oUc+TIEbRaLR07dsyU7S1dupR8+fJlyrYUCZN379hCwMOnsh5KZMwYfM3K8qamyBi0WqhWXh7riCiZOaSTxbjeb/A+b77yJnqhp9f6Xtx8fjNdm4rtAzSyzkisrRJI2RVCDoHEDimWVYXxLI6VlYw5c3KIJ2Bj42GWnl3K45DHLDy9EN9AX4o6FzW1m4iO8ciERcggX+8KMuhXoUiGRYsWMXbsWPbv38/Dhw+z2hxFJpB3xYzBILMthJDVfGtXlkXSFBmLrY1sAGhjLdseXL4JBgMajYbfOv9G/eL1eRHxgi5ruhAUmXRH5sQ4dv8YJx6ewE5rx/BawxOeyfcRBASbPEbKE5cxWFvL821vKz0zF31Ar6dxqca8WuJVIvWRzDo4iy8OyCaSk5tOxsEmRvycvy4LVdraSI+MGvbNMoSA0NCseaU2jC4kJIS1a9cycuRIOnbsyNKlS42f9e/fnz59+pjNHx0dTaFChfj9998BCA4OZsCAATg5OVG0aFHmzp1L8+bNGTduXJqP3927d+natSvOzs64urrSu3dvnjwxZfudO3eOFi1a4OLigqurK7Vr1+bkyZMA+Pr60rlzZ/Lnz4+TkxNVq1Zl27ZtabYlt5J3f8G1WnkT8yohnx5VL5fMI7bImpWVqciaENhb27O5z2aKuRTjst9lBmwagN6Q+jLqsenYfav1xd3JPf4ML4JksDeoOJnMwM5WNn60sZaxM5duohHC6J357th3PA55jGc+T4bWGiorR5+/DiHhchnvCuocZTFhYeDsnDWv1BYgXrduHZUqVaJixYq88cYbLF682JhYMGDAAP78809CQkKM8+/YsYOwsDC6d+8OwIQJEzh06BBbt27l33//5cCBA5w+fTrNx85gMNC1a1eeP3/Of//9x7///sutW7fMRNWAAQMoUaIEJ06c4NSpU3z88cfY2MiSA6NHjyYyMpL9+/dz4cIFZs2ahbOzc5rtya3kXTED0hOj2hJkDa7OsjAdyH5XMcHXRV2KsqXPFuyt7fnr+l9M3js5Vat9EvKEdZfWAYmkY0dFm+rJFCkEhVWcTKaQgIDtUqEzFQtWNM4yvfl0bIUVnPeRXjsba+mRcXTIQsMVOY1FixbxxhtvANCuXTsCAwP577//AGjbti1OTk5s3rzZOP+qVavo0qULLi4uBAcHs2zZMmbPnk2rVq2oVq0aS5YsSVdvqt27d3PhwgVWrVpF7dq1qV+/Pr///jv//fcfJ07I8gR3796ldevWVKpUifLly9OrVy+8vb2NnzVq1Ijq1avj5eVFp06daNq0aZrtya3kbTGjyFoK5pOeEZAZRQ9l4by6xeuyqMsiAGYenMnqC6tTvMrfTv1GtCGaV0u8Sp1idcw/jI2TiS2BX07Vk8lUXJ2lNxTgiT9Wdx4ZvTOVC1VmQOW+Mo4qOBSstbIgnpMSMtkBR0cICcmaV2oKEF+7do3jx4/Tr18/AKytrenTpw+LFi0yvu/duzcrV64EIDQ0lD/++IMBAwYAcOvWLaKjo6lXr55xnW5ublSsWJG0cuXKFUqWLEnJkqbfmypVqpAvXz6uXLkCSG/QsGHDaN26NV999RU3b5piBt99912++OILGjVqxNSpUzl//nyabcnNKDGjyFqKukPpmCqvPnfh2QsA+lfvz8eNPgZgyNYhCRZYe5lofTTzT80HEknHvvtIegWMcTLJ9GlSWJ6XqgQPdm/P+l7r2dFvG9pLt2SxSmut7H6tYtiyDRoNODllzSs1jvNFixah0+koVqwY1tbWWFtb88svv7Bx40YCAwMBOaSze/dunj59ypYtW3BwcKBdu3YZdORSxrRp07h06RIdO3Zkz549VKlSxeg9GjZsGLdu3eLNN9/kwoUL1KlTh3nz5mWpvdkRJWYUWU/ponLIB2SqdKAcz57RagadK3QmQhdBt7XdeBT8KMnVbLqyiYfBDynsVJieVXqafxgQbKojVL6UeuLPSuJUCdbcvE/PAs0peTfC1ODzlQoyhV+hSAU6nY7ff/+dOXPmcPbsWePr3LlzFCtWjNWrpYe3YcOGlCxZkrVr17Jy5Up69epljE/x8vLCxsbGOPwDEBgYyPXr19NsV+XKlbl37x737t0zTrt8+TIBAQFUqVLFOK1ChQqMHz+enTt38vrrr7NkyRLjZyVLlmTEiBFs2rSJ999/nwULFqTZntyKinpVZD0ajRxuioqW9X4u+kDNylg52rPi9RU0WNSAy36X6b62O/sG78PeOuFg0B9PyHTsd2q/g602TlG1qGhTPZnCBU3CSZF1lCwiz8uDp7IrPcQImfLg4pSlpilyJn/99RcvXrxg6NChuLm5mX3Wo0cPFi1axIgRIwCZ1TR//nyuX7/O3r17jfO5uLgwaNAgJk6cSIECBfDw8GDq1KlYWVkl2zVcr9dz9uxZs2l2dna0bt2a6tWrM2DAAL777jt0Oh2jRo2iWbNm1KlTh/DwcCZOnEjPnj0pU6YM9+/f58SJE/To0QOAcePG0b59eypUqMCLFy/Yu3cvlStXtsARy10oz4wie6DRyIBgF0dZeyamJomrnStb+24lv31+jj04xtt/vp1gy4Ozj89y8O5BrK2seafOO6YPXo6TKa/qyWQL4lYJBpkaX728jKtRKNLAokWLaN26dTwhA1LMnDx50hhvMmDAAC5fvkzx4sVp1KiR2bzffvstDRo0oFOnTrRu3ZpGjRpRuXJl7O2TzqgLCQmhZs2aZq/OnTuj0Wj4448/yJ8/P02bNqV169Z4eXmxdu1aALRaLf7+/gwcOJAKFSrQu3dv2rdvz/Tp0wEpkkaPHk3lypVp164dFSpU4OefLVMpPTehEZZshpNBBAUFZUoLcUU2ICoazl6VNUmcHWU2i7WW3bd203ZFW/RCz+w2s3m/4ftmiw39YyiLzy6mb7W+rO4RJ2D47iO4/UDGydSqrIaXshsGAzz2BzdndW6yEREREdy+fZsyZcokexPP7YSGhlK8eHHmzJnD0KFDs9qcHEHc6ycqKipT7t/KM6PIXiRSVK+VVyu+a/cdAB/u+pDtPtuNi/iH+bPq4ioAxtSNk44dGCyFDMjMJXWzzH5YWcnO6urcKLIJZ86cYfXq1dy8eZPTp08bM526dk2kLYoiW6DEjCL74WAvBc1LRfVG1x3N27XexiAM9N3Yl6vPrgKw6MwiInQR1CxSk4YlG8p1ROtMcTIeBVScjEKhSDGzZ8/G29ub1q1bExoayoEDByhUSP2GZGdUALAie+LiJNOnL/rIonq2Nmi8SjCvwzyuPLvCgbsH6LK6C4eHHjZ22h5bb6wM0ouNk4mMlsKoQmlVGFGhUKSImjVrcurUqaw2Q5FKlGdGkX15qSYJD55iq7VlY++NlHYrjc9zH+otqIdvoC8FHQrSt1pfOe/9J6Yu6FW8VD0ZhUKhyOUoMaPI3hQpBJ4xRfVuyKJ67k7u/NH3DxxtHLkdIFsTDKs1TDYoDAyBW/fl/GVLqcJrCoVCkQdQYkaR/SlVFIrGLaoXjHcRb5Z3Xw6AVqNlZJ2R5nEy7gVMyygUCoUiV6NiZhTZH40GyscU1fMPhIs3oEYlXq/8Ov8M+AdrK2tKu5WCSzchMgoc7FScjEKhUOQhlJhR5Aw0GqjsBeeuy0aEF3ygZiXalmsrP7//GPwDYuYrK/v7KBQKhSJPoIaZFDkHrRaql5Oel8goKWh0etnT51acejKqr49CoVDkKZSYUeQsbGygegVZVC80HC7dkHEyQsjS+EXds9pChUKhyBSaN2/OuHHjLD5vTkSJGUXOw8FOFtXTWslu2BFRYK/iZBQKheTIkSNotVo6duyYKdtbunQpGo0GjUaDlZUVJUqU4K233uLp06cZut1Nmzbx+eefW3zenIgSM4qcSWxRPY3G1KTSWoWAKRQK2XRy7Nix7N+/n4cPH2bKNl1dXXn06BH3799nwYIFbN++nTfffDPBefV6PQaDId3bLFCgAC4uLhafNyeixIwi51LADepUgTpVpbhRKBQZghCC0KjQLHmlthdySEgIa9euZeTIkXTs2JGlS5caP+vfv///27vvsKbOtw/g37DCBgGZIqgI4gAnKlahFQVX1VJExb1aLagvTlor2mktbhytIqh1oLWopS4cWEQqKoIDRItaF45aZO887x/Pj0hkSBASAvfnunKRnHNyzn2SQ3LnmfD29pbYvri4GEZGRti5cycAIDs7Gz4+PtDS0oKZmRnWrFlToyoagUAAU1NTmJubY9CgQZg9ezZOnTqF/Px8hIWFQV9fH0eOHEH79u0hFArx4MEDFBYWYv78+bCwsICWlhZ69uyJ6Ohoif3GxsbC1dUVmpqaaNasGdzd3ZGRkQGgYtXRpk2b0LZtW6irq8PExAQff/yxeN2b22ZkZGDChAlo1qwZNDU1MWjQINy5c0e8vizmEydOwN7eHtra2vDw8EB6enoN3gXZo5+yRLFp0gSFhNS3vOI8aH+vLZdj5wTkQEut5j9W9u/fj3bt2sHOzg7jxo3D3LlzERAQAIFAAB8fH3h5eSEnJwfa2vx8Tpw4gby8PIwcORIA4O/vj9jYWBw5cgQmJiZYunQpEhIS0LlzZ6ni1tDQgEgkQklJCQAgLy8PP/zwA7Zt2wZDQ0MYGxvD19cXycnJ2LdvH8zNzREREQEPDw9cv34dbdu2RWJiIvr3748pU6Zg3bp1UFFRwdmzZ1FaWlrheJcvX8bs2bOxa9cuODs747///kNMTEyV8U2aNAl37tzBkSNHoKuri0WLFmHw4MFITk6GqqqqOOagoCDs2rULSkpKGDduHObPn4/du3dL9VrIAiUzhBBCGo2QkBCMGzcOAODh4YHMzEycO3cOrq6ucHd3h5aWFiIiIsRVQHv27MGHH34IHR0dZGdnY8eOHdizZw/69+8PAAgNDYW5ublUMdy5cwdbtmxB9+7dxVU7xcXF2LRpExwdHQEADx48QGhoKB48eCDe//z583H8+HGEhobiu+++w8qVK9G9e3ds2rRJvO8OHTpUeswHDx5AS0sLQ4cOhY6ODqysrNClS5cq4zty5AhiY2Ph7Mwn5929ezcsLS1x6NAheHl5iWPesmUL2rRpAwDw9fXFV199JdVrISuUzBBCCKmWpqomcgJy5HbsmkpNTUV8fDwiIiIAACoqKvD29kZISAhcXV2hoqKCUaNGYffu3Rg/fjxyc3Nx+PBh7Nu3DwBw9+5dFBcXw8nJSbxPPT092NnZvfXYmZmZ0NbWhkgkQkFBAd577z1s27ZNvF5NTQ0ODg7ix9evX0dpaSlsbW0l9lNYWAhDQ0MAQGJiojixeJsBAwbAysoKrVu3hoeHBzw8PDBy5EhoalZ8/VJSUqCiooKePXuKlxkaGsLOzg4pKSniZZqamuJEBgDMzMzqvVFzbVEyQwghpFoCgUCqqh55CQkJQUlJiURJCmMMQqEQwcHB0NPTg4+PD1xcXPD8+XNERUVBQ0MDHh4e73xsHR0dJCQkQElJCWZmZtDQkKwC19DQgKBcb8ucnBwoKyvjypUrUH5jMtyyKrA391GT40dHR+PkyZNYunQpli1bhkuXLkFfX79W51RW3VRGIBBI3YZJVqgBMCGEEIVXUlKCnTt3YtWqVUhMTBTfkpKSYG5ujr179wIAnJ2dYWlpifDwcOzevRteXl7iL+3WrVtDVVUVly5dEu83MzMTt2/ffuvxlZSUYGNjg9atW9coCenSpQtKS0vx/Plz2NjYSNxMTU0BAA4ODjh9+nSNXwMVFRW4ublh5cqVuHbtGu7fv48zZ85U2M7e3h4lJSW4ePGieNnLly+RmpqK9u3b1/h4DQmVzBBCCFF4kZGRyMjIwNSpU6GnpyexztPTEyEhIfj0008B8F5NW7Zswe3bt3H27Fnxdjo6Opg4cSIWLFgAAwMDGBsbIzAwEEpKShKlKnXB1tYWPj4+mDBhAlatWoUuXbrgxYsXOH36NBwcHDBkyBAEBASgU6dOmDVrFj799FOoqanh7Nmz8PLygpGR5ES6kZGRuHv3Lvr164dmzZrh6NGjEIlElVaRtW3bFsOHD8f06dPx008/QUdHB4sXL4aFhQWGDx9ep+cpK1QyQwghROGFhITAzc2tQiID8GTm8uXLuHbtGgDAx8cHycnJsLCwQJ8+fSS2Xb16NXr37o2hQ4fCzc0Nffr0gb29PdTV1es85tDQUEyYMAHz5s2DnZ0dRowYgUuXLqFly5YAeMJz8uRJJCUlwcnJCb1798bhw4ehUsmYWvr6+vjtt9/wwQcfwN7eHlu2bMHevXurbDAcGhqKbt26YejQoejduzcYYzh69GiFqiVFIWANtQKsnKysLOjp6SEzMxO6urryDocQQhq1goIC3Lt3D61ataqXL3FFkpubCwsLC6xatQpTp06VdzgKofz1U1RUJJPvb6pmIoQQQv7n6tWruHXrFpycnJCZmSnuiqyo1S9NBSUzhBBCSDlBQUFITU2FmpoaunXrhpiYmAptVEjDQskMIYQQ8j9dunTBlStX5B0GkRI1ACaEEEKIQqNkhhBCCCEKjZIZQgghhCg0SmYIIYQQotAomSGEEEKIQqNkhhBCCCEKjZIZQgghpBFwdXXF3LlzxY+tra2xdu1aucUjS5TMEEIIaVTi4uKgrKyMIUOGyOR4YWFhEAgEEAgEUFJSgpmZGby9vfHgwQOZHJ9QMkMIIaSRCQkJgZ+fH/788088efJEJsfU1dVFeno6Hj9+jIMHDyI1NRVeXl4yOTahZIYQQsjbMAbk5srnJuVcyDk5OQgPD8fMmTMxZMgQhIWFideNHTsW3t7eEtsXFxfDyMgIO3fuBABkZ2fDx8cHWlpaMDMzw5o1aypU31RGIBDA1NQUZmZmcHZ2xtSpUxEfH4+srCzxNocPH0bXrl2hrq6O1q1bY/ny5SgpKRGvf/XqFT755BOYmJhAXV0dHTt2RGRkJADg5cuXGDNmDCwsLKCpqYlOnTph7969Ur02jRlNZ0AIIaR6eXmAtrZ8jp2TA2hp1Xjz/fv3o127drCzs8O4ceMwd+5cBAQEQCAQwMfHB15eXsjJyYH2/87nxIkTyMvLw8iRIwEA/v7+iI2NxZEjR2BiYoKlS5ciISEBnTt3rnEMz58/R0REBJSVlaGsrAwAiImJwYQJE7B+/Xr07dsXaWlpmDFjBgAgMDAQIpEIgwYNQnZ2Nn755Re0adMGycnJ4ucXFBSgW7duWLRoEXR1dfHHH39g/PjxaNOmDZycnGocW6PFFEBmZiYDwDIzM+UdCiGENHr5+fksOTmZ5efn8wU5OYzxMhLZ33JypIrd2dmZrV27ljHGWHFxMTMyMmJnz56VeLxz507x9mPGjGHe3t6MMcaysrKYqqoqO3DggHj9q1evmKamJpszZ06VxwwNDWUAmJaWFtPU1GQAGAA2e/Zs8Tb9+/dn3333ncTzdu3axczMzBhjjJ04cYIpKSmx1NTUGp/rkCFD2Lx588SPXVxcJOK0srJia9asqfH+6kr560dW399UMkMIIaR6mpq8hERex66h1NRUxMfHIyIiAgCgoqICb29vhISEwNXVFSoqKhg1ahR2796N8ePHIzc3F4cPH8a+ffsAAHfv3kVxcbFESYeenh7s7OzeemwdHR0kJCSguLgYx44dw+7du/Htt9+K1yclJSE2NlZiWWlpKQoKCpCXl4fExES0aNECtra2le6/tLQU3333Hfbv34/Hjx+jqKgIhYWF0JTi9WnMKJkhhBBSPYFAqqoeeQkJCUFJSQnMzc3FyxhjEAqFCA4Ohp6eHnx8fODi4oLnz58jKioKGhoa8PDweOdjKykpwcbGBgBgb2+PtLQ0zJw5E7t27QLA2/IsX74cH330UYXnqqurQ0NDo9r9//jjj1i3bh3Wrl2LTp06QUtLC3PnzkVRUdE7x94YUANgQgghCq+kpAQ7d+7EqlWrkJiYKL4lJSXB3Nxc3FjW2dkZlpaWCA8Px+7du+Hl5QVVVVUAQOvWraGqqopLly6J95uZmYnbt29LHc/ixYsRHh6OhIQEAEDXrl2RmpoKGxubCjclJSU4ODjg0aNHVR4rNjYWw4cPx7hx4+Do6IjWrVvXKq7GqlbJzMaNG2FtbQ11dXX07NkT8fHxNXrevn37IBAIMGLEiNoclhBCCKlUZGQkMjIyMHXqVHTs2FHi5unpiZCQEPG2Y8eOxZYtWxAVFQUfHx/xch0dHUycOBELFizA2bNncfPmTUydOhVKSkoQCARSxWNpaYmRI0di6dKlAIClS5di586dWL58OW7evImUlBTs27cPS5YsAQC4uLigX79+8PT0RFRUFO7du4djx47h+PHjAIC2bdsiKioKFy5cQEpKCj755BM8e/bsXV+2RkPqZCY8PBz+/v4IDAxEQkICHB0d4e7ujufPn1f7vPv372P+/Pno27dvrYMlhBBCKhMSEgI3Nzfo6elVWOfp6YnLly/j2rVrAAAfHx8kJyfDwsICffr0kdh29erV6N27N4YOHQo3Nzf06dMH9vb2UFdXlzqm//u//8Mff/yB+Ph4uLu7IzIyEidPnkSPHj3Qq1cvrFmzBlZWVuLtDx48iB49emDMmDFo3749Fi5ciNLSUgDAkiVL0LVrV7i7u8PV1RWmpqZUMFCOgDHpOvH37NkTPXr0QHBwMABAJBLB0tISfn5+WLx4caXPKS0tRb9+/TBlyhTExMTg1atXOHToUI2PmZWVBT09PWRmZkJXV1eacAkhhEipoKAA9+7dQ6tWrWr1Jd6Y5ObmwsLCAqtWrcLUqVPlHY5CKH/9FBUVyeT7W6qSmaKiIly5cgVubm6vd6CkBDc3N8TFxVX5vK+++grGxsY1vhAKCwuRlZUlcSOEEELq29WrV7F3716kpaUhISFBXA01fPhwOUdGqiNVb6Z///0XpaWlMDExkVhuYmKCW7duVfqc8+fPIyQkBImJiTU+zvfff4/ly5dLExohhBBSJ4KCgpCamgo1NTV069YNMTExMDIykndYpBr12jU7Ozsb48ePx9atW6W6EAICAuDv7y9+nJWVBUtLy/oIkRBCCBHr0qULrly5Iu8wiJSkSmaMjIygrKxcoQX1s2fPYGpqWmH7tLQ03L9/H8OGDRMvE4lE/MAqKkhNTUWbNm0qPE8oFEIoFEoTGiGEEEKaKKnazJQVuZ0+fVq8TCQS4fTp0+jdu3eF7du1a4fr169L9Pn/8MMP8f777yMxMZFKW8g7274d+N+YVIQQQpooqauZ/P39MXHiRHTv3h1OTk5Yu3YtcnNzMXnyZADAhAkTYGFhge+//14862d5+vr6AFBhOSHS+uMPoKxNebduQPv28o2HEEKIfEidzHh7e+PFixdYunQpnj59is6dO+P48ePiRsEPHjyAkhINLEzqV3Y2MHPm68fr1wNbtsgvHkIIIfIj9Tgz8kDjzJA3zZnDExh9feDVK0BDA3j0CDAwkHdkhCg+GmeGvIsGP84MIQ3BX38BGzbw+/v3Aw4OQH4+sG2bfOMihBAiH5TMEIVSVARMmwYwBkyYAAwYwEtpACA4GCgpkW98hBBCZI+SGaJQVq4Ebt4EmjcHVq/my8aOBYyMgIcPASlmySCENFJxcXFQVlbGkCFDZHrc/Px8GBgYwMjICIWFhTI9dlNHyQxRGLduAV9/ze+vWwcYGvL76urAJ5+8Xk4IadpCQkLg5+eHP//8E0+ePJHZcQ8ePIgOHTqgXbt2Us0/WB8YYyhpQkXVlMwQhSASATNm8GqmQYOA0aMl18+aBaioAOfPAwkJ8omRkEaLMUCUK5+blH1UcnJyEB4ejpkzZ2LIkCEICwsTrxs7diy8vb0lti8uLoaRkRF27twJgI9c7+PjAy0tLZiZmWHNmjVwdXXF3Llz33rskJAQjBs3DuPGjUNISEiF9Tdv3sTQoUOhq6sLHR0d9O3bF2lpaeL127dvR4cOHSAUCmFmZgZfX18AwP379yEQCCSmBXr16hUEAgGio6MBANHR0RAIBDh27Bi6desGoVCI8+fPIy0tDcOHD4eJiQm0tbXRo0cPnDp1SiKuwsJCLFq0CJaWlhAKhbCxsUFISAgYY7CxsUFQUJDE9omJiRAIBPj777/f+prISr1OZ0BIXdm6FYiJAbS0gM2bAYFAcr25OeDlBezdy0tnduyQT5yENEosD7itLZ9j2+YAAq0ab75//360a9cOdnZ2GDduHObOnYuAgAAIBAL4+PjAy8sLOTk50Nbm53PixAnk5eVh5MiRAPhYarGxsThy5AhMTEywdOlSJCQkoHPnztUeNy0tDXFxcfjtt9/AGMP//d//4Z9//oGVlRUA4PHjx+jXrx9cXV1x5swZ6OrqIjY2Vlx6snnzZvj7+2PFihUYNGgQMjMzERsbK/XLtXjxYgQFBaF169Zo1qwZHj58iMGDB+Pbb7+FUCjEzp07MWzYMKSmpqJly5YA+PhwcXFxWL9+PRwdHXHv3j38+++/EAgEmDJlCkJDQzF//nzxMUJDQ9GvXz/Y2NhIHV+9YQogMzOTAWCZmZnyDoXIwePHjOnqMgYwtnZt1dv99RffRk2NsadPZRcfIY1Nfn4+S05OZvn5+XxBaQ5jKZDPrTRHqtidnZ3Z2v99UBQXFzMjIyN29uxZicc7d+4Ubz9mzBjm7e3NGGMsKyuLqaqqsgMHDojXv3r1imlqarI5c+ZUe9zPP/+cjRgxQvx4+PDhLDAwUPw4ICCAtWrVihUVFVX6fHNzc/bFF19Uuu7evXsMALt69ap4WUZGBgMgPrezZ88yAOzQoUPVxskYYx06dGAbNmxgjDGWmprKALCoqKhKt338+DFTVlZmFy9eZIwxVlRUxIyMjFhYWFiV+y9//cjq+5uqmUiD5+sLZGUBTk78flV69uS3oiIaQI+QOiXQ5CUk8rgJNGscZmpqKuLj4zFmzBgAfA5Ab29vcZWPiooKRo0ahd27dwMAcnNzcfjwYfj4+AAA7t69i+LiYjg5OYn3qaenBzs7u2qPW1paih07dmDcuHHiZePGjUNYWJh4PsLExET07dsXqqqqFZ7//PlzPHnyBP3796/xuVale/fuEo9zcnIwf/582NvbQ19fH9ra2khJScGDBw/EcSkrK8PFxaXS/Zmbm2PIkCHYvn07AOD3339HYWEhvLy83jnWukTVTKRB++03ICKCt4fZtg1QVq5++zlzeO+mzZuBxYsBmq+UkDogEEhV1SMvISEhKCkpgbm5uXgZYwxCoRDBwcHQ09ODj48PXFxc8Pz5c0RFRUFDQwMeHh7vdNwTJ07g8ePHFdrjlJaW4vTp0xgwYAA0NDSqfH516wCIR9Vn5doPFRcXV7qtlpbk+zR//nxERUUhKCgINjY20NDQwMcff4yioqIaHRsApk2bhvHjx2PNmjUIDQ2Ft7c3NDVrnmTKApXMkAbr1avXJTGLFgGdOr39OR9/zNvPPHvGB9QjhDQNJSUl2LlzJ1atWiUxuXFSUhLMzc2xd+9eAICzszMsLS0RHh6O3bt3w8vLS1xa0rp1a6iqquLSpUvi/WZmZuL27dvVHjskJASjR4+WOG5iYiJGjx4tLhVycHBATExMpUmIjo4OrK2tJSZxLq958+YAgPT0dPGy8o2BqxMbG4tJkyZh5MiR6NSpE0xNTXH//n3x+k6dOkEkEuHcuXNV7mPw4MHQ0tLC5s2bcfz4cUyZMqVGx5apeq3EqiPUZqZpmjGDt4GxtWWsrOq+Jr75hj+vWzfGRKL6i4+QxqpCmxkFEBERwdTU1NirV68qrFu4cCHr3r27+PEXX3zB2rdvz1RUVFhMTIzEttOmTWOtWrViZ86cYTdu3GCenp5MR0eHzZ07t9LjPn/+nKmqqrJjx45VWHf06FEmFArZy5cv2b///ssMDQ3ZRx99xC5dusRu377Ndu7cyW7dusUYYywsLIypq6uzdevWsdu3b7MrV66w9evXi/fVq1cv1rdvX5acnMyio6OZk5NTpW1mMjIyJGIYOXIk69y5M7t69SpLTExkw4YNYzo6OhJtgCZNmsQsLS1ZREQEu3v3Ljt79iwLDw+X2M/nn3/O1NTUmL29faWvQ3nyaDNDyQxpkM6d4wkJwO9L4/lzxoRC/tzY2PqJj5DGTBGTmaFDh7LBgwdXuu7ixYsMAEtKSmKMMZacnMwAMCsrKyZ64xdPVlYWGzt2LNPU1GSmpqZs9erVzMnJiS1evLjSfQcFBTF9ff1KG/YWFhYyfX19tm7dOsYYY0lJSWzgwIFMU1OT6ejosL59+7K0tDTx9lu2bGF2dnZMVVWVmZmZMT8/P/G65ORk1rt3b6ahocE6d+7MTp48WaNk5t69e+z9999nGhoazNLSkgUHBzMXFxeJZCY/P5/93//9HzMzM2NqamrMxsaGbd++XWI/aWlpDABbuXJlpa9DefJIZmiiSdLgFBQAjo7A7dt8bJmffpJ+H1OnAtu3A6NGAeHhdR8jIY0ZTTT5Wm5uLiwsLLBq1SpMnTpV3uHITUxMDPr374+HDx/CxMSk2m1poklCAHz7LU9kzMyAH36o3T7K5ms6eJBPc0AIITVx9epV7N27F2lpaUhISBD3dBo+fLicI5OPwsJCPHr0CMuWLYOXl9dbExl5oWSGNCjXrwMrVvD7wcGAvn7t9uPgALi6AqWlwKZNdRUdIaQpCAoKgqOjI9zc3JCbm4uYmBgYGRnJOyy52Lt3L6ysrPDq1SusXLlS3uFUiaqZSINRWgo4OwPx8cDIkbxb9rs4dIjvx8CAl840sJ6EhDRYVM1E3gVVM5EmbeNGnsjo6vJSmXc1bBjQqhXw33/A/8bIIoQQ0ghRMkMahH/+AT7/nN9fuZKPFfOulJVfj1Ozbp3U89URQghREJTMELljjM96nZsL9O0LTJ9ed/ueMoVPTnnzJnDmTN3tlxBCSMNByQyRu337gKNHATU14OefAaU6vCr19YFJk/j9devqbr+EEEIaDkpmiFy9fPm6G/WXXwLt2tX9Mfz8+N/ISCAtre73TwghRL4omSFyNW8e8OIF0LEjsHBh/RzDzg7w8ODVWRs21M8xCCGEyA8lM0RuoqKAHTv4hLxbt/JqpvpSVvqzfTuQlVV/xyGEECJ7lMwQucjLAz75hN/39QV69arf4w0cyEtosrOBsLD6PRYhRL7i4uKgrKyMIUOGyOR4YWFhEAgEFW7btm0DwGe7Hjt2LGxtbaGkpIS5c+fWaL8vXrzAzJkz0bJlSwiFQpiamsLd3R2xsbH1eDaKiZIZIheBgcC9e4ClJZ++oL4pKQGzZ/P7GzYAIlH9H5MQIh8hISHw8/PDn3/+iSdPnsjkmLq6ukhPT5e4lU2FUFhYiObNm2PJkiVwdHSs8T49PT1x9epV7NixA7dv38aRI0fg6uqKly9f1tdpoKioqN72XZ8omSEyl5AArF7N72/eDOjoyOa4EyYAenrA33/z3lOEkBpiDCjJlc9NygGicnJyEB4ejpkzZ2LIkCEIK1cUO3bsWHh7e0tsX1xcDCMjI+zcuRMAkJ2dDR8fH2hpacHMzAxr1qyBq6vrW0tTBAIBTE1NJW4aGhoAAGtra6xbtw4TJkyAnp5ejc7j1atXiImJwQ8//ID3338fVlZWcHJyQkBAAD788EOJ7T755BOYmJhAXV0dHTt2RGRkpHj9wYMH0aFDBwiFQlhbW2PVqlUSx7G2tsbXX3+NCRMmQFdXFzNmzAAAnD9/Hn379oWGhgYsLS0xe/Zs5Obm1ih2eVCRdwCkaSku5jNai0TA6NGAjEqBAQDa2sC0acCqVbyb9tChsjs2IQqtNA/Yry2fY4/KAVS0arz5/v370a5dO9jZ2WHcuHGYO3cuAgICIBAI4OPjAy8vL+Tk5EBbm5/PiRMnkJeXh5EjRwIA/P39ERsbiyNHjsDExARLly5FQkICOnfuXB9nVyVtbW1oa2vj0KFD6NWrF4RCYYVtRCIRBg0ahOzsbPzyyy9o06YNkpOToaysDAC4cuUKRo0ahWXLlsHb2xsXLlzArFmzYGhoiEllY1aAz0W1dOlSBAYGAgDS0tLg4eGBb775Btu3b8eLFy/g6+sLX19fhIaGyuT8pUXJDJGpNWuAxEQ+X5I8xn3x9eUxnDrFB9Lr0EH2MRBC6k9ISAjGjRsHAPDw8EBmZibOnTsHV1dXuLu7Q0tLCxERERg/fjwAYM+ePfjwww+ho6OD7Oxs7NixA3v27EH//v0BAKGhoTCvwZDkmZmZ4gQJ4MnI06dPa30eKioqCAsLw/Tp07FlyxZ07doVLi4uGD16NBwcHAAAp06dQnx8PFJSUmBrawsAaN26tXgfq1evRv/+/fHll18CAGxtbZGcnIwff/xRIpn54IMPMG/ePPHjadOmwcfHR1wa1bZtW6xfvx4uLi7YvHlzg5yvi5IZIjN//83bygC8dMTYWPYxWFsDw4cDERHA+vXATz/JPgZCFI6yJi8hkdexayg1NRXx8fGIiIgAwBMCb29vhISEwNXVFSoqKhg1ahR2796N8ePHIzc3F4cPH8a+ffsAAHfv3kVxcTGcnJzE+9TT04Odnd1bj62jo4OEhATxYyUpRv+MiYnBoEGDxI9/+ukn+Pj4wNPTE0OGDEFMTAz++usvHDt2DCtXrsS2bdswadIkJCYmokWLFuJE5k0pKSkYPny4xLI+ffpg7dq1KC0tFZfgdO/eXWKbpKQkXLt2DbvLTWrHGINIJMK9e/dgb29f43OTFUpmiEwwBnz6KVBQAPTvD0ycKL9Y5szhycyuXcD33/NSIkJINQQCqap65CUkJAQlJSUSJSmMMQiFQgQHB0NPTw8+Pj5wcXHB8+fPERUVBQ0NDXh4eLzzsZWUlGBjY1Or53bv3h2JiYnixyYmJuL76urqGDBgAAYMGIAvv/wS06ZNQ2BgICZNmiRuk/OutLQk39ucnBx88sknmF3Wa6Kcli1b1skx6xo1ACYysWMHcPo0oKHBS0MEAvnF0q8f4OgI5Ofz8W0IIYqvpKQEO3fuxKpVq5CYmCi+JSUlwdzcHHv37gUAODs7w9LSEuHh4di9eze8vLygqqoKgFfRqKqq4tKlS+L9ZmZm4vbt2/Uau4aGBmxsbMQ3nWp6RbRv317cENfBwQGPHj2qMj57e/sK3bhjY2Nha2srLpWpTNeuXZGcnCwRU9lNrT4HBHsHVDJD6t2zZ4C/P7+/fDnQpo184xEIeOnMlCnAxo18FGIV+k8gRKFFRkYiIyMDU6dOrdBjyNPTEyEhIfj0008B8F5NW7Zswe3bt3H27Fnxdjo6Opg4cSIWLFgAAwMDGBsbIzAwEEpKShC84y+wspKXnJwcvHjxAomJiVBTU0P79u0r3f7ly5fw8vLClClT4ODgAB0dHVy+fBkrV64UVx25uLigX79+8PT0xOrVq2FjY4Nbt25BIBDAw8MD8+bNQ48ePfD111/D29sbcXFxCA4OxqZNm6qNddGiRejVqxd8fX0xbdo0aGlpITk5GVFRUQgODn6n16HeMAWQmZnJALDMzEx5h0JqYfRoxgDGunRhrLhY3tFw+fmMNW/O4zpwQN7RENKw5Ofns+TkZJafny/vUGps6NChbPDgwZWuu3jxIgPAkpKSGGOMJScnMwDMysqKiUQiiW2zsrLY2LFjmaamJjM1NWWrV69mTk5ObPHixVUeOzQ0lOnp6VUbH4AKNysrqyq3LygoYIsXL2Zdu3Zlenp6TFNTk9nZ2bElS5awvLw88XYvX75kkydPZoaGhkxdXZ117NiRRUZGitf/+uuvrH379kxVVZW1bNmS/fjjjxLHsbKyYmvWrKlw/Pj4eDZgwACmra3NtLS0mIODA/v222+rPccy5a8fWX1/CxiTshO/HGRlZUFPTw+ZmZnQ1dWVdzhECpGRwLBhgLIyEB8PdO0q74he+/JL4JtvgPfeA2Ji5B0NIQ1HQUEB7t27h1atWjXIniuylJubCwsLC6xatQpTp06VdzgKofz1U1RUJJPvb2ozQ+pNdjYwcya/7+/fsBIZgMemogKcP88H8iOEkKtXr2Lv3r1IS0tDQkKCeBTfN3sFkYaFkhlSb774Anj0CGjdGli2TN7RVGRuDowaxe/LY8wbQkjDFBQUBEdHR7i5uSE3NxcxMTEwMjKSd1ikGlTNROpFXBzQpw/vkh0VBbi5yTuiysXHAz178hm7HzwAyvWIJKTJomom8i6omok0CkVFwPTpPJGZOLHhJjIA4OTEZ+wuKgK2bJF3NIQQQmqDkhlS5374gU8V0Lw5H+m3oZszh//dvBkoLJRvLIQQQqRHyQypU7du8R5CAJ8uwNBQvvHUhKcnYGHBx8PZv1/e0RBCCJEWJTOkzohEvHqpqAgYPBjw9pZ3RDWjqgrMmsXvr1vHq8cIIYQoDkpmSJ35+WfezVlLi1fZyHPKAmnNmAEIhcCVK8CFC/KOhhBCiDQomSF14vFjYNEifv+774AGOhdZlYyMgP8NJ0HdtAkhRMFQMkPqhK8vkJXFuzl/9pm8o6mdsobAv/0GPHwo31gIIbJx//59CAQCiVmr38bV1RVz586tsDwsLAz6+vp1FhupOUpmyDv77Tfg0CE+mu62bXzqAkXk4AC4ugKlpXwCSkIIIYqBkhnyTl69el0Ss3gx0LGjXMN5Z2WlMz//DOTlyTcWQoj0XF1d4efnh7lz56JZs2YwMTHB1q1bkZubi8mTJ0NHRwc2NjY4duxYlfs4d+4cnJycIBQKYWZmhsWLF6OkpESGZ0GkRckMeSeLFgFPnwJ2dnz6AkU3bBjQqhWQkQH88ou8oyGkgWCMF1nK41aL7oU7duyAkZER4uPj4efnh5kzZ8LLywvOzs5ISEjAwIEDMX78eORV8ovl8ePHGDx4MHr06IGkpCRs3rwZISEh+KZszAnSIKnIOwCiuM6d4yUYALB1K9AYRj1XVubtf+bN4+PkTJ+uWL2yCKkXIhFw/qp8jv1eF6nrrh0dHbFkyRIAQEBAAFasWAEjIyNMnz4dALB06VJs3rwZ165dg6mpqcRzN23aBEtLSwQHB0MgEKBdu3Z48uQJFi1ahKVLl0JJicoAGiJ6V0itFBTw7swA8MknQN++8o2nLk2ZwruX37wJnD4t72gIIdJycHAQ31dWVoahoSE6deokXmbyv0nYnj9/XuG5KSkp6N27NwTlfsX06dMHOTk5ePToUT1GTd4FlcyQWvnmG+D2bcDMjE9f0Jjo6wOTJvFGwOvWNey5pQiRCSUlXkIir2NLSVVVVeKxQCCQWFaWqIhEolqFpKuri8zMzArLX716BT09vVrtk7wbKpkhUrt27XUCs3Ej0Bj/d/38+N8//gD+/lu+sRAidwIBr+qRx03G9bz29vaIi4sDK9dWJzY2Fjo6OmjRogUAwM7ODgkJCRWem5CQAFtbW5nFSl6jZIZIpbSUtyMpKQE++ggYOVLeEdUPOztg0CDe9jA4WN7REEJkZdasWXj48CH8/Pxw69YtHD58GIGBgfD39xe3l5k5cyZu376N2bNn49q1a0hNTcXq1auxd+9ezJs3T85n0DRRMkOkEhwMxMfz0pgNG+QdTf0q66a9fTsfEJAQ0vhZWFjg6NGjiI+Ph6OjIz799FNMnTpV3KAYAFq3bo0///wTt27dgpubG3r27In9+/fjwIED8PDwkGP0TZeAsYY/rV5WVhb09PSQmZkJXV1deYfTZP3zD9ChA5CbC/z00+sGwI0VY0D79nwm8HXrgNmz5R0RIbJRUFCAe/fuoVWrVlBvDN0UiUyVv36Kiopk8v1NJTOkRhgDZs7kiUzfvsC0afKOqP4JBK8TmA0beO9UQgghDQ8lM6RG9u4Fjh0D1NT4mDJNZaiFCRN476a//waOHpV3NIQQQirTRL6SyLv499/X7UeWLuWNY5sKLa3XpVA0mzYhhDRMlMyQt5o3jyc0HTsCCxbIOxrZ8/XlJVGnTvGB9AghhDQstUpmNm7cCGtra6irq6Nnz56Ij4+vctutW7eib9++aNasGZo1awY3N7dqt5ely5eB2Fh5R9GwRUUBO3fy9iPbtvFqpqbGygoYMYLfX79erqEQQgiphNTJTHh4OPz9/REYGIiEhAQ4OjrC3d290mGhASA6OhpjxozB2bNnERcXB0tLSwwcOBCPHz9+5+Df1aJFwHvvAc7OQEQENfB8U24un6oA4IPI9ewp33jkqayabdcu4L//5BsLIbJS2xFySdMmj+tG6q7ZPXv2RI8ePRD8v5HERCIRLC0t4efnh8WLF7/1+aWlpWjWrBmCg4MxYcKEGh2zPrpmFxcDs2bxUoeiIr7M1pZXqUyY0DgmTXxX8+cDq1YBLVsCN24AOjryjkh+GAO6dgUSE4EVK3giTEhjJRKJcOfOHSgrK6N58+ZQU1OTmKuIkMowxlBUVIQXL16gtLQUbdu2RU5Ojky6ZkuVzBQVFUFTUxO//vorRpSVuwOYOHEiXr16hcOHD791H9nZ2TA2NsaBAwcwdOjQSrcpLCxEYWGh+HFWVhYsLS3r5cVIT+fdbjdvBl694suMjXmX3JkzAQODOj2cwrhyBXBy4qVVR4/y0XCburAwYPJkwNISuHsXUKGZzUgjVlRUhPT0dOTl5ck7FKJgNDU1YWZmBjU1NZmNEydVMvPkyRNYWFjgwoUL6N27t3j5woULce7cOVy8ePGt+5g1axZOnDiBmzdvVjkY07Jly7B8+fIKy+vzxcjOBkJCgDVrgAcP+DItLWDqVOD//g+wtq6XwzZIxcU8kUlMBMaMAfbskXdEDUNBAS+levEC2L8f8PKSd0SE1C/GGEpKSlBaWirvUIiCUFZWhoqKirgkT1bJjEx/W65YsQL79u1DdHR0taNKBgQEwN/fX/y4rGSmPunoAHPnAp99xr+ofvwRSEriDT43bgRGjeI9ebrIaeJYWVqzhicyBgbA2rXyjqbhUFcHPv0U+Ppr3k2bkhnS2JXNNv3mLNSENDRSNQA2MjKCsrIynj17JrH82bNnMDU1rfa5QUFBWLFiBU6ePAkHB4dqtxUKhdDV1ZW4yYqqKuDjA1y9Cpw8Cbi58ckV9+7lbSYGDODLG/4kELXz999AYCC/v3o1r3Ijr82cyauXYmN5VRwhhBD5kyqZUVNTQ7du3XD69GnxMpFIhNOnT0tUO71p5cqV+Prrr3H8+HF079699tHKkEDAE5eoKCAhARg7ls9Gf+oU4O7OS2h++YVXyTQWjPHeSwUFPImrYfvsJsXMjJfSATSIHiGENBRSd8329/fH1q1bsWPHDqSkpGDmzJnIzc3F5MmTAQATJkxAQECAePsffvgBX375JbZv3w5ra2s8ffoUT58+RU5OTt2dRT3r0gXYvRtIS+NddLW0eBXU+PFAmza8WiY7W95RvruwMODMGUBDg08kSZ0XKlfWTXvfPuDpU/nGQgghpBbJjLe3N4KCgrB06VJ07twZiYmJOH78OExMTAAADx48QHp6unj7zZs3o6ioCB9//DHMzMzEt6CgoLo7CxmxsuJtSB48AL79llfBPHwI+PvzhqEBAbx3lCJ69ox3SweAr74CWreWbzwNmZMT0KsXL5XbskXe0RBCCJF6nBl5kFVraGkVFPBB1IKCgNu3+TI1NV5iM38+0K6dfOOTxujRQHg4bxd08SJ1O36bfft4Ty9jY57cCoXyjkgxiUTA6dN8IEJDQ8mbpiaVDhKi6Bpk12x5aajJTBmRCDhyhPeAunDh9fIPP+Q9oPr0adgfypGRwLBhvE3QpUtNo8fWuyouBlq1Ah4/BnbsoPZFtcEYH7iyqtItobBigvO2W7Nm/DomhDQMlMyU09CTmfIuXOBJzeHDr3s89eoFLFzIk5uG9kGbnQ20bw88esRj/OEHeUekOL77DvjiC16adflyw05YGxrG+FAI69fz183ZmQ9a+fIlv9W2Yb1AAOjrV57oGBhUnQRRKRAh9YOSmXIUKZkpk5rKpwLYuRMoG8y4bdvX0yVoaMg3vjJ+fkBwMG8jc/06/1AnNfPvv3w04IIC4Px5XgJH3o4xnjiXNZsLCQGmTJFcn5PzOrGp6S0rq/YxUSkQIfWDkplyFDGZKfPsGZ8uYeNGyekS/Px4Ebs8p0uIi+NfwIzxLuf9+8svFkU1bRr/Mvby4oMtkrdbsoQ3oAd4FVPZZKbvqriYt7357z/pkqD6KAV6szSoY0fgLUNxEdIoUTJTjiInM2VycviX3urVr6dL0NTk0yX4+8t+uoSiIt42JjmZzze0fbtsj99YXL8OODjwX+j37vGSGlK1r78Gli7l99ev50m9PMmqFEgo5PO//W8EC0KaDEpmymkMyUyZ4mLgwAHeriYxkS9TVua/7Bcs4O0vZOGrr/hIv8bGQEpK051Qsy588AFw9iyfSXvFCnlH03D98AOweDG/HxT0eigARVRWClRdwlO2/vFjPkYVAPj68h80NDsAaSoomSmnMSUzZRjjXVJ//JFPj1Cmf3+e1AwcWH8NElNSgM6deenMvn2At3f9HKepOHwYGDGCt6F49IjaHVVmzRpeAgnwKqbPP5dvPLIkEvESqWXL+ON+/fgPGpoqhDQFsvr+lnrQPFI3BAI+ZcCJE3weKB8fXkJz+jTg4cGTjfqYLkEkAqZP54nMkCGvh+YntTd0KO+mnZHB3zMiaePG14lMYGDTSmQAQEmJn/fhw3xC2z//BLp35z3gCCF1g5KZBqAscUlL491VtbSAa9deT5ewenXdTZfw8898kkRtbWDTJuqOWheUlV+3/Vi/vvFOQlobW7fyqhWAVzGVTWLaFH34IRAfD9ja8pHD33uP93YkhLw7SmYaECsrXhz/8CEfw8TEhN+fN483LH3X6RIeP+ZdYgG+/5Yt6yZuwrsWa2sDN2/y0jXCBxMs66nk78+vuaaePLdrxxOaoUP5kA0TJ/IfMI1pwlpC5IGSmQaoWTOeuNy/z3/Z2tkBmZm8cam1Ne8BlZIi3T4ZAz77jJfw9OrFu4WTuqOnB0yaxO/TbNrAnj285w5jvGQmKIgSmTJ6erzKqaxX17p1vI3cixfyjYsQRUYNgBWASMSnHFi5klcRlRk2jDcWfu+9t39RHDwIfPwx70Vx9SrQoUP9xtwU3b7NE0+BgN+3sZF3RPLx6698rq/SUmDGDN4lWYl+NlXq0CFenZyTw0tKIyJk16OREFmgBsBETEmJ17efP8+nSxg5kn9h/v477xnh7Az89hv/8qhMRoZkuwVKZOqHrS0weDAvjdiwQd7RyMfhw3wCztJSXlJFiUz1RozgE7u2bcvHn+rThxqRE1Ib9DGjYHr35onLrVv8V69QCPz1F+DpCdjbAz/9BOTnSz5n0SLg6VNeX//FF/KJu6mYM4f/DQ19t+H1FdHRo3y8pJIS3jtv2zZKZGqifXvejmbwYD41xvjxvI1RSYm8IyNEcdBHjYKyteWJyz//8OHhmzUD7twBPv2UNyT++ms+YNe5c7zdDcD/CoXyjbuxGzCAJ5XZ2TyhaSqiooCPPuINWb28gLAwmrdIGvr6vKR1yRL+eM0awN2dz/9FCHk7ajPTSOTk8CkJVq/mCQ7AB2/T1gaeP+dJzubN8o2xqdiyBZg5k3erT01t/F/q0dHAoEG8VGHECD5HFY1wW3u//cYno83N5T9MIiL41COEKCJqM0Okoq0NzJ4N/P03sHcv//DLy+OJjLk5DbMvS+PH81/aaWm86qUxO3+edzMuKOCDMO7bR4nMu/roI96OxsaG/zDp04f/TxNCqkbJTCOjosJ7kly5wmfC/uQT/stOT0/ekTUdWlp8lGWgcXfT/usv3s4jN5d3Lf71V6rGrCsdOvB2NIMG8TZwY8cC8+dTOxpCqkLVTITUg3/+AVq35t3qr18HOnaUd0R168oVPo9YZibw/vt86ACak6rulZYCX34JfP89f+zmxku/DA3lGxchNUXVTIQoMCsr3n4E4FMcNCZJSbyhc2YmH+Po998pkakvysp85OT9+/lrfOoUn9cpKUnekRHSsFAyQ0g9KeumvWsX71nWGNy4wUsHMjL4SNJHj/JqNVK/vLx4tV7r1nxk8N69gfBweUdFSMNByQwh9aRvXz6JaEHB6+7xiuzWLZ7I/Psv0K0bcOwYnwWayEanTsClS7x9Un4+bxu3cGHVg2US0pRQMkNIPREIXpfObNyo2I03//4b+OAD4NkzwNEROHmS99gismVgwEvDFi3ij3/8kTcS/u8/+cZFiLxRMkNIPRo9GmjeHHj0iPcqU0T37vFEJj2d97I5dYp/qRL5UFbmQy3s28fb0URFAT168IbmhDRVlMwQUo/U1fmAhYBidtN+8IAnMg8f8ukwTp8GjIzkHRUBAG9vPldbq1bA3bu8DdOBA/KOihD5oGSGkHo2cyYfSC42lndpVhSPH/NE5v59PoDb6dOAiYm8oyLlOTrydjQDBvBBMkeNAgICqB0NaXoomSGknpmZ8S8ZQHFKZ54+5ePIpKXxX/5nzvCRpEnDY2jI29HMn88fr1jBR2POyJBvXITIEiUzhMhAWUPgfft4otCQvXjBey2lpgKWljyRsbSUd1SkOioqvDHwnj2AhgZw4gRvR3PjhrwjI0Q2KJkhRAZ69OBjgxQX84koG6r//uNVFjdv8pKYM2cAa2t5R0VqaswY3o7G2pqXqvXqBRw8KO+oCKl/lMwQIiNlpTObNwOFhfKNpTKvXvExTJKSeNuYM2d4WxmiWDp35u1oPviAz5v18cfAF19QOxrSuFEyQ4iMfPQRYGHBZzJvaKO3ZmUBHh68gbKREW/sa2cn76hIbRkZ8aomf3/++LvvgGHDeMJKSGNEyQwhMqKqCnz2Gb+/bh3QUKZ4zcnhDUYvXuTjx5w6xceTIYpNRQVYtQr45Rc+RMCxY4CTE5CcLO/ICKl7lMwQIkMzZvAvloQE3lVb3vLy+C/28+cBPT0+AJujo7yjInXJx4dfay1bAnfuAD17Ku4AjoRUhZIZQmTI0BAYN47fl3c37YICPrN3dDSfY+nECaBrV/nGROpH167A5cvA++/zkriPPgK+/BIQieQdGSF1g5IZQmRs9mz+NyKCj7ArD4WFgKcnL4nR0uJVED17yicWIhvNm/M5tebO5Y+/+QYYPhzIzJRrWITUCUpmCJGxTp14T5PSUj4BpawVF/Oh8I8e5WOSREYCffrIPg4ieyoqwJo1wM6dvLozMpK3o0lJkXdkhLwbSmYIkYOybtpbt/Lus7JSUgKMHQscPgwIhcCRI4Crq+yOTxqG8eN5OylLS+D2bV4qd/iwvKMipPYomSFEDoYMAVq35kPO//KLbI5ZWgpMmAD8+iugpsarudzcZHNs0vB068bb0bi4ANnZvP3UsmXUjoYoJkpmCJEDZWXAz4/fX7++/rtpi0TA1KnA3r28quHAAWDQoPo9Jmn4jI15u6mya3H5cmDkSD7uECGKhJIZQuRk8mRAW5uP+3HqVP0dRyQCPv0U2LGDJ1H79gEfflh/xyOKRVWVJ9RhYa+rHp2cgFu35B0ZITVHyQwhcqKnB0yaxO/XVzdtxnjvqa1bASUlYNcu3ouJkDdNnAjExAAtWvBJRp2cgN9/l3dUhNQMJTOEyFFZ8f4ff/ABzeoSY8C8ebzHlEAAbN/OJyIkpCo9evB2NH378nY0H34IfPUVtaMhDR8lM4TIka0tMHgwv79hQ93tlzEgIIB3wwWAn3/mv7wJeRsTEz43l68vfxwYyEvzqB1N41JYyOdiCwnh7/V77wH//ivvqGpPwFhDmSGmallZWdDT00NmZiZ0dXXlHQ4hderkScDdnbefefwYqItLPDCQ/6IGeMnMrFnvvk/S9ISG8vZWRUVAu3a8+7atrbyjItLKyAASE/nt6lX+NyWFD9VQ3qlTQP/+dXtsWX1/q9TbngkhNTJgAGBvzz9cQkNfj0FTW99++zqRWbOGEhlSe5MnA+3b8+kPbt3i1VB79vChBUjDwxjw8KFk0nL1KvDPP5Vvb2AAdOnCb5078wE9FRWVzBDSAGzZAsycCbRpwxtfKivXbj9BQcCCBfz+Dz8ACxfWXYyk6Xr6FPj4Yz5hpUDAk+XPP+eNyol8lJTwBLN84pKYCPz3X+Xbt2rFE5bOnV8nLy1a8PezPsnq+5uSGUIagNxc/sHy6hXvGjtsmPT7WL/+danOV1/xiQQJqStFRXxep82b+eOPPuLduXV05BlV05CTA1y/Llnacv06b/fyJhUVXppWlrB06QI4OgL6+jIO+n8omSmHkhnSFCxcCPz4I6+zlnbcmbKSHQBYsgT4+uu6j48QANi2DfjsM57ctG8PHDoEtG0r76gaj2fPKpa23L5d+cCa2toVS1s6dODjBTUUlMyUQ8kMaQr++YdPcSAS8V9dHTvW7Hnbt/PRfQGeEK1YUf9Fx6Rp++svXjKTns7HS9q7l0aUlpZIBNy9K1nakpjIX9PKmJlJlrZ07sw/Lxp6VR8lM+VQMkOaio8/Bg4eBKZP592p32bXLt7lmjFexbRmDSUyRDbS0/n1euECf6ylxRuUGhryv+Vv1S1rSKUI9aWwELh5UzJxSUri1UdvEgh4j7E3q4lMTGQddd2gZKYcSmZIUxETA/TrB6irA48e8Q/8qoSH8xmwRSJexVQ2OB4hslLWjmbLltrPL6apWbOk582bhkadnkqdefWqYjfo5OSK3aAB/n/eqZNkaYuDA08MGwtKZsqhZIY0FYzx2YyvXgW+/x5YvLjy7X77DRg1is+EPW0a8NNPDb+4mTReWVnAixe8J81//wEvX76+X92ydxlZWENDuhKg8klQXST9jPEfHG9WE92/X/n2Zd2gyycudna8wW5jRslMOZTMkKZkxw4+Z1OLFrxOXVVVcv3vv/P2CiUlwIQJfGwaSmSIohGJeBL0ZoJTk2SotLT2xxUKqy7tqSoZ0tcHHjyo2DD35cvKj2FtLZm0dOkim27QDRElM+VQMkOaksJCoGVL4PlzXpU0atTrdcePA8OH8+L90aOBX36p/Zg0hCgixvi8UdKWAr18WXlVz7so6wZdPnFxdASaNavb4ygyGgGYkCZKKORDyH/1FZ9NuyyZOX0aGDGCJzKensDOnZTIkKZHIOBTfujq8hKQmmKMN7iVthTo5UuguLjybtDt2/N2L0T+qGSGkAbo6VNeOlNcDFy6xAfVGzQIyM/nA+r9+iugpibvKAlp/BgD8vJ4WxuqzpWerL6/6a0hpAEyNQW8vfn9OXP4XDj5+YCHB3DgACUyhMiKQMB7F1Ei07DR20NIA1U2NcGFC7xkxs2N92JqCuNyEEKINGqVzGzcuBHW1tZQV1dHz549ER8fX+32Bw4cQLt27aCuro5OnTrh6NGjtQqWkKake3egTx9+38UFOHy44Y6tQQgh8iR1MhMeHg5/f38EBgYiISEBjo6OcHd3x/Pnzyvd/sKFCxgzZgymTp2Kq1evYsSIERgxYgRu3LjxzsET0tjt2gVs2ABERvLBxQghhFQkdQPgnj17okePHggODgYAiEQiWFpaws/PD4srGeHL29sbubm5iIyMFC/r1asXOnfujC1bttTomNQAmBBCCFE8DbIBcFFREa5cuQI3N7fXO1BSgpubG+Li4ip9TlxcnMT2AODu7l7l9gBQWFiIrKwsiRshhBBCSGWkSmb+/fdflJaWwuSNGa9MTEzw9OnTSp/z9OlTqbYHgO+//x56enrim6WlpTRhEkIIIaQJaZC9mQICApCZmSm+PXz4UN4hEUIIIaSBkmoEYCMjIygrK+PZs2cSy589ewZTU9NKn2NqairV9gAgFAohpP6nhBBCCKkBqUpm1NTU0K1bN5w+fVq8TCQS4fTp0+jdu3elz+ndu7fE9gAQFRVV5faEEEIIIdKQem4mf39/TJw4Ed27d4eTkxPWrl2L3NxcTJ48GQAwYcIEWFhY4PvvvwcAzJkzBy4uLli1ahWGDBmCffv24fLly/j555/r9kwIIYQQ0iRJncx4e3vjxYsXWLp0KZ4+fYrOnTvj+PHj4ka+Dx48gFK5cZ+dnZ2xZ88eLFmyBJ9//jnatm2LQ4cOoWPHjnV3FoQQQghpsmiiSUIIIYTUiwY5zgwhhBBCSENDyQwhhBBCFBolM4QQQghRaJTMEEIIIUShUTJDCCGEEIUmdddseSjrcEUTThJCCCGKo+x7u747TitEMpOdnQ0ANOEkIYQQooCys7Ohp6dXb/tXiHFmRCIRnjx5Ah0dHQgEgjrbb1ZWFiwtLfHw4cNGO35NYz9HOj/F19jPkc5P8TX2c6zP82OMITs7G+bm5hID6tY1hSiZUVJSQosWLept/7q6uo3yAi2vsZ8jnZ/ia+znSOen+Br7OdbX+dVniUwZagBMCCGEEIVGyQwhhBBCFFqTTmaEQiECAwMhFArlHUq9aeznSOen+Br7OdL5Kb7Gfo6N4fwUogEwIYQQQkhVmnTJDCGEEEIUHyUzhBBCCFFolMwQQgghRKFRMkMIIYQQhUbJTCMWHR0NgUCAV69e1fg5kyZNwogRI+o8FldXV8ydOxcAYG1tjbVr19b5McoTCAQ4dOhQne2PMYYZM2bAwMAAAoEAiYmJdbbvqrztHGrz/hJSlxr7NRgWFgZ9fX15h9Hg3L9/X2afgzVFyYwUyn8hKwJnZ2ekp6dLNfriunXrEBYWVn9BAbh06RJmzJhRr8eoa8ePH0dYWBgiIyORnp6Ojh07yjukBunFixeYOXMmWrZsCaFQCFNTU7i7uyM2Nla8zdWrV+Ht7Q0zMzMIhUJYWVlh6NCh+P3338WT0ZV9WJbddHR00KFDB3z22We4c+fOO8U4adIk8X5VVVXRqlUrLFy4EAUFBeJtytb/9ddfEs8tLCyEoaEhBAIBoqOjxcvPnTuHDz74AAYGBtDU1ETbtm0xceJEFBUVAXj9pV92MzExgaenJ+7evftO5yKt6n6s/Pzzz3B1dYWurq7CJihVnd9///0HPz8/2NnZQUNDAy1btsTs2bORmZkp+yAh2/fhbQnZ999/jx49ekBHRwfGxsYYMWIEUlNT3+mY8kDJTCOmpqYGU1NTqeaz0tPTq/dfIs2bN4empma9HqOupaWlwczMDM7OzjA1NYWKikLMBCJznp6euHr1Knbs2IHbt2/jyJEjcHV1xcuXLwEAhw8fRq9evZCTk4MdO3YgJSUFx48fx8iRI7FkyZIKXy6nTp1Ceno6kpKS8N133yElJQWOjo44ffr0O8Xp4eGB9PR03L17F2vWrMFPP/2EwMBAiW0sLS0RGhoqsSwiIgLa2toSy5KTk+Hh4YHu3bvjzz//xPXr17FhwwaoqamhtLRUYtvU1FQ8efIEBw4cwM2bNzFs2LAK2wC8JLCkpOSdzlFaeXl58PDwwOeffy7T48rCkydP8OTJEwQFBeHGjRsICwvD8ePHMXXqVHmHVoG070NZ4l9b586dw2effYa//voLUVFRKC4uxsCBA5Gbm1vrfcoFaySsrKzYmjVrJJY5OjqywMBAxhhjANjWrVvZiBEjmIaGBrOxsWGHDx+W2P769evMw8ODaWlpMWNjYzZu3Dj24sULxhhjEydOZAAkbvfu3ZPBmb3m4uLCfH192Zw5c5i+vj4zNjZmP//8M8vJyWGTJk1i2trarE2bNuzo0aOMMcbOnj3LALCMjAzGGGOhoaFMT0+PHT9+nLVr145paWkxd3d39uTJE/ExJk6cyIYPH/5Ocebk5LDx48czLS0tZmpqyoKCgpiLiwubM2cOY6zie5WRkcFmzJjBjI2NmVAoZB06dGC///67eH1MTAx77733mLq6OmvRogXz8/NjOTk51cYAgEVERIgfX7t2jb3//vtMXV2dGRgYsOnTp7Ps7Gzx+rNnz7IePXowTU1Npqenx5ydndn9+/cZY4wNGzZM4n1XU1NjsbGxzM/PjzVv3pwJhULWp08fFh8fLxHDjRs32JAhQ5iOjg7T1tZm7733Hvv7778ZY4zFx8czNzc3ZmhoyHR1dVm/fv3YlStXqj2HN735/jLG2K+//srat2/P1NTUmJWVFQsKCpJ4zsaNG5mNjQ0TCoXM2NiYeXp6itcdOHCAdezYUfwa9e/f/62vc3kZGRkMAIuOjq50fU5ODjM0NGQjR46sch8ikYgxxti9e/cYAHb16lWJ9aWlpczV1ZVZWVmxkpKSGsdWXmXX+EcffcS6dOkifgyALVmyhOnq6rK8vDzx8gEDBrAvv/ySAWBnz55ljDG2Zs0aZm1tXe0xK3uvdu/ezQCwW7duidcfPXqUde3alamqqrKzZ8+ygoKCaq+zsudFRkayTp06MaFQyHr27MmuX79e43OvSazSbCvPa1Caz6/9+/czNTU1VlxcXOU2ZZ+Z5W3atIm1bt2aqaqqMltbW7Zz507xOpFIxAIDA5mlpSVTU1NjZmZmzM/PT7y+7NyVlJSYmpqaxLm/qabvQ9n/ijTnUJ3nz58zAOzcuXNvPWb5/8/o6GjWo0cPpqamxkxNTdmiRYskXtvq3tvqPn9rqkmVzCxfvhyjRo3CtWvXMHjwYPj4+OC///4DALx69QoffPABunTpgsuXL+P48eN49uwZRo0aBYBXv/Tu3RvTp09Heno60tPTYWlpKfNz2LFjB4yMjBAfHw8/Pz/MnDkTXl5ecHZ2RkJCAgYOHIjx48cjLy+v0ufn5eUhKCgIu3btwp9//okHDx5g/vz5dRrjggULcO7cORw+fBgnT55EdHQ0EhISKt1WJBJh0KBBiI2NxS+//ILk5GSsWLECysrKAHiJiIeHBzw9PXHt2jWEh4fj/Pnz8PX1rXE8ubm5cHd3R7NmzXDp0iUcOHAAp06dEu+jpKQEI0aMgIuLC65du4a4uDjMmDFD/Gvnzp07cHBwgKmpKWJjY7Fp0yYEBwfj4MGD2LFjBxISEmBjYwN3d3fx9fT48WP069cPQqEQZ86cwZUrVzBlyhTxr+3s7GxMnDgR58+fx19//YW2bdti8ODByM7OrvXrfuXKFYwaNQqjR4/G9evXsWzZMnz55ZfiasPLly9j9uzZ+Oqrr5Camorjx4+jX79+AID09HSMGTMGU6ZMQUpKCqKjo/HRRx+Jq31qQltbG9ra2jh06BAKCwsrrD958iRevnyJhQsXVrmPt/3CVFJSwpw5c/DPP//gypUrNY6tOjdu3MCFCxegpqYmsbxbt26wtrbGwYMHAQAPHjzAn3/+ifHjx0tsZ2pqivT0dPz5559SHVdDQwMAxFVRALB48WKsWLECKSkpcHBwwMKFC6u9zsosWLAAq1atwqVLl9C8eXMMGzYMxcXFUsVTF+R9DUojMzMTurq6UpWyRkREYM6cOZg3bx5u3LiBTz75BJMnT8bZs2cBAAcPHhSX9N25cweHDh1Cp06dAEie+8iRI+Hs7Cw+94akrHTUwMCgxs95/PgxBg8ejB49eiApKQmbN29GSEgIvvnmGwDVv7dv+/ytMalSnwasJiUzS5YsEa/LyclhANixY8cYY4x9/fXXbODAgRLPf/jwIQPAUlNTGWNMonRBHlxcXNh7770nflxSUsK0tLTY+PHjxcvS09MZABYXF1dpyQwAcekAY/yXgomJifjxu5bMZGdnMzU1NbZ//37xspcvXzINDY1KS2ZOnDjBlJSUxK/xm6ZOncpmzJghsSwmJoYpKSmx/Pz8KuNAuVKNn3/+mTVr1kziF94ff/zBlJSU2NOnT9nLly+rLVHQ0dFhY8aMYVZWVowxfu2oqqqy3bt3i7cpKipi5ubmbOXKlYwxxgICAlirVq1YUVFRlTGWV1paynR0dCRKpCBlyczYsWPZgAEDJLZZsGABa9++PWOMsYMHDzJdXV2WlZVVYV9XrlxhAKT+NfSmX3/9lTVr1oypq6szZ2dnFhAQwJKSkhhjjK1YsYIBYP/99594+/j4eKalpSW+lZ1/VSUzjDGWkpLCALDw8PBaxThx4kSmrKzMtLS0mFAoZACYkpIS+/XXX8XblL32a9euZe+//z5jjLHly5ezkSNHikugykpmSkpK2KRJkxgAZmpqykaMGME2bNjAMjMzxft787168uQJc3Z2ZhYWFqywsFC8/tChQ+Ln1OQ6K3vevn37xNuU/b9V9vrUd8mMvK/Bmn5+vXjxgrVs2ZJ9/vnn1W73ZqmGs7Mzmz59usQ2Xl5ebPDgwYwxxlatWsVsbW0r/b8vf+51+T7UZclMaWkpGzJkCOvTp0+Njln2//n5558zOzs7cckqY/y7RVtbm5WWllb73r7t87emmlTJjIODg/i+lpYWdHV18fz5cwBAUlISzp49K/51qa2tjXbt2gHgpQMNRflzUFZWhqGhoTjzBwATExMAEJ/XmzQ1NdGmTRvxYzMzsyq3rY20tDQUFRWhZ8+e4mUGBgaws7OrdPvExES0aNECtra2la5PSkpCWFiYxPvi7u4OkUiEe/fu4bvvvpNY9+DBgwr7KGtnoaWlJV7Wp08fiEQipKamwsDAAJMmTYK7uzuGDRuGdevWIT09Xbytv78/wsPD8ezZM6xYsQLR0dEoLi5Gnz59xNuoqqrCyckJKSkp4vPq27cvVFVVKz2vZ8+eYfr06Wjbti309PSgq6uLnJycSuMHgEGDBonPsUOHDpVuk5KSIhFT2XneuXMHpaWlGDBgAKysrNC6dWuMHz8eu3fvFpfgOTo6on///ujUqRO8vLywdetWZGRkVHqc6nh6euLJkyc4cuQIPDw8EB0dja5du1bZqNzBwQGJiYlITExEbm5ujdqJsP/9Un+XdgLvv/8+EhMTcfHiRUycOBGTJ0+Gp6dnhe3GjRuHuLg43L17F2FhYZgyZUqFbZSVlREaGopHjx5h5cqVsLCwwHfffYcOHTpIXEcA0KJFC2hpacHc3By5ubk4ePCgRIlQ9+7dxffT0tLeep2V6d27t/h+2f/bm9u8K0W5Bt8mKysLQ4YMQfv27bFs2TLx8g4dOojPb9CgQVKdX9lr7eXlhfz8fLRu3RrTp09HRESE+Jouf+4xMTF49OhRlSXob1M+1rL3ovznYFXxv81nn32GGzduYN++feJln376qcS+K5OSkoLevXtL/E/26dMHOTk5ePToUbXv7ds+f2uq0SQzSkpKFYoj3yxmffOLRSAQQCQSAQBycnIwbNgw8Qdr2e3OnTsNqiiwsnMov6zsYio7r5o8/83XTZbKitqrkpOTg08++UTiPUlKSsKdO3fQpk0bfPrppxLrzM3NaxVHaGgo4uLi4OzsjPDwcNja2op7sixbtgyLFi2ChoYGzpw5U6Ou6287r4kTJyIxMRHr1q3DhQsXkJiYCENDQ4kqh/K2bdsmPsejR49KfX4AoKOjg4SEBOzduxdmZmZYunQpHB0d8erVKygrKyMqKgrHjh1D+/btsWHDBtjZ2eHevXtSH0ddXR0DBgzAl19+iQsXLmDSpEkIDAxE27ZtAUCip4RQKISNjQ1sbGxqvP+yL45WrVpJHVsZLS0t2NjYwNHREdu3b8fFixcREhJSYTtDQ0MMHToUU6dORUFBQbVfEhYWFhg/fjyCg4Nx8+ZNFBQUYMuWLRLbxMTE4Nq1a8jKykJiYqJE0l8WV0OlSNdgVbKzs+Hh4QEdHR1ERERIfB4ePXpUfH7btm2r1f4tLS2RmpqKTZs2QUNDA7NmzUK/fv1QXFwsce4aGhriH1m16a1UPtay96L852Bt4vf19UVkZCTOnj2LFi1aiJd/9dVXEvuujbe9t9V9/tZUo0lmmjdvLpHNZWVlSfVP0LVrV9y8eRPW1tbiD9eyW9kHTGW9E4ikNm3aQFVVFRcvXhQvy8jIwO3btyvd3sHBAY8ePapyfdeuXZGcnFzhPbGxsYGamhoMDAwkllVW/21vb4+kpCSJ1vmxsbFQUlKSKDHq0qULAgICcOHCBXTs2BF79uwRrzM2Noauri5OnjyJESNGQElJSaK7cXFxMS5duoT27duLzysmJqbKdguxsbGYPXs2Bg8ejA4dOkAoFOLff/+tdFuAf1GWnaOVlVWl29jb20vEVHYcW1tbcRskFRUVuLm5YeXKlbh27Rru37+PM2fOAOCJbZ8+fbB8+XJcvXoVampqiIiIqDKmmmrfvj1yc3MxcOBAGBgY4Icffqj1vkQiEdavX49WrVqhS5cu7xwbwH8Iff7551iyZAny8/MrrJ8yZQqio6MxYcIE8ev4Ns2aNYOZmVmFHiGtWrVCmzZtoKOj89Z9tGnTBmpqatVeZ2XKf/CX/b/Z29vXKNaaUuRrEODfCQMHDoSamhqOHDkCdXV1ifVWVlbi87OwsJDq/Mq/HxoaGhg2bBjWr1+P6OhoxMXF4fr16xLn3r17d3zwwQcS5y6N8rGWvRflPwerir8yjDH4+voiIiICZ86cqfAjwdjYWGLflbG3t0dcXJzED+PY2Fjo6OiIE6O3vbfVff7WRKPpX/rBBx8gLCwMw4YNg76+PpYuXVrjDx6AF69t3boVY8aMwcKFC2FgYIC///4b+/btw7Zt26CsrAxra2tcvHgR9+/fh7a2NgwMDKCk1GjywTqhra2NqVOnYsGCBTA0NISxsTG++OKLKl8nFxcX9OvXD56enli9ejVsbGxw69YtCAQCeHh4YNGiRejVqxd8fX0xbdo0aGlpITk5GVFRUQgODq5RTD4+PggMDMTEiROxbNkyvHjxAn5+fhg/fjxMTExw7949/Pzzz/jwww9hbm6O1NRU3LlzBxMmTEB+fj4WLFgAgDcUjo2NxdWrV9GlSxcsWLAABgYGaNmyJVauXIm8vDxxV09fX19s2LABo0ePRkBAAPT09PDXX3/ByckJdnZ2aNu2LXbt2oXu3bsjKysLCxYseGtpztvMmzcPPXr0wNdffw1vb2/ExcUhODgYmzZtAgBERkbi7t276NevH5o1a4ajR49CJBLBzs4OFy9exOnTpzFw4EAYGxvj4sWLePHihVRfiC9fvoSXlxemTJkCBwcH6Ojo4PLly1i5ciWGDx8ObW1tbNu2Dd7e3hgyZAhmz56Ntm3bIicnB8ePHweACv+zL1++xNOnT5GXl4cbN25g7dq1iI+Pxx9//CHV//fbeHl5YcGCBdi4cWOFBvEeHh548eIFdHV1K33uTz/9hMTERIwcORJt2rRBQUEBdu7ciZs3b2LDhg21jklLSwszZ86s9jor89VXX8HQ0BAmJib44osvYGRkVGUJYmZmZoVf2IaGhlBVVcXTp0/x999/AwCuX78OHR0dtGzZssaNQeV9DVZ1fs2aNYO3tzfy8vLwyy+/ICsrC1lZWQD4D+GaXksLFizAqFGj0KVLF7i5ueH333/Hb7/9hlOnTgHgY7qUlpaiZ8+e0NTUxC+//AINDQ1YWVlJnHtOTg5SU1NRWloKxpg43rp6H95UWlpa4TURCoWwt7fHZ599hj179uDw4cPQ0dHB06dPAfBhOmr6mTRr1iysXbsWfn5+8PX1RWpqKgIDA+Hv7w8lJaVq39vqPn+l8k4tbhqQzMxM5u3tzXR1dZmlpSULCwur0AD4zcaUenp6LDQ0VPz49u3bbOTIkUxfX59paGiwdu3asblz54obNaWmprJevXoxDQ0NuXXNfrMBcmUNn8vOtaqu2eVFRERINB6ri67Z2dnZbNy4cUxTU5OZmJiwlStXVts1++XLl2zy5MnM0NCQqaurs44dO7LIyEjx+vj4eDZgwACmra3NtLS0mIODA/v222+rjeHN97u6rtlPnz5lI0aMYGZmZuLupEuXLmWlpaWssLCQjR49munr6zMAzNzcnPn6+rKMjAzm5+fHjIyMquyanZSUxAYOHMg0NTWZjo4O69u3L0tLS2OMMZaQkMC6d+/O1NXVWdu2bdmBAwcqvC6VXbPlVdctVlVVlbVs2ZL9+OOP4nUxMTHMxcWFNWvWjGloaDAHBwdxI9Hk5GTm7u4u7gJsa2vLNmzYUO1r/KaCggK2ePFi1rVrV6anp8c0NTWZnZ0dW7JkiUT35kuXLrGPP/6YGRsbMxUVFWZoaMjc3d3Zvn37KnTNLrtpamoye3t7NmvWLHbnzh2p4npTVdf4999/z5o3by7uHFDVa/9mA+CEhAQ2btw41qpVKyYUCpmhoSHr168fO3LkiPg5b2vMWdX6/Pz8aq+zsuf9/vvvrEOHDkxNTY05OTmJG11Xdu7lX9ey29SpU1lgYGCl68p/RtYkbnleg1WdX5s2bSpd/rbPcWm7ZkdERLCePXsyXV1dpqWlxXr16sVOnTpV4dyVlZXr7H2oSQPgql4TxliVr0t177u0XbOre2+r+/yVhuB/J0MIIUTBREdH4/3330dGRgYNu0+aNKojIYQQQohCo2SGEEIIIQqNqpkIIYQQotCoZIYQQgghCo2SGUIIIYQoNEpmCCGEEKLQKJkhhBBCiEKjZIYQQgghCo2SGUIIIYQoNEpmCCGEEKLQKJkhhBBCiEL7f66PyGXmeStsAAAAAElFTkSuQmCC", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "avg_loss_list = [item[0] for item in lst_rst]\n", + "avg_precision_list = [item[1] for item in lst_rst]\n", + "avg_recall_list = [item[2] for item in lst_rst]\n", + "avg_accuracy_list = [item[3] for item in lst_rst]\n", + "avg_f1_list = [item[4] for item in lst_rst]\n", + "avg_iou_list = [item[5] for item in lst_rst]\n", + "model_list = ['unet', 'mini', 'dice-loss', 'focal-loss', 'SGD', 'RMSProp', 'L1-loss', 'L2-loss', 'L1+L2-loss']\n", + "\n", + "plt.plot(model_list, avg_loss_list, '-', color='blue', label=f'Avg Loss')\n", + "plt.plot(model_list, avg_precision_list, '-', color='green', label=f'Avg Precision')\n", + "plt.plot(model_list, avg_recall_list, '-', color='red', label=f'Avg Recall')\n", + "plt.plot(model_list, avg_accuracy_list, '-', color='gold', label=f'Avg Accuracy')\n", + "plt.plot(model_list, avg_f1_list, '-', color='orange', label=f'Avg F1-Score')\n", + "plt.plot(model_list, avg_iou_list, '-', color='pink', label=f'mIoU')\n", + "plt.title('Performance Evaluation of Different Models')\n", + "plt.legend(bbox_to_anchor=(0.69, 0.4))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "unet PR AUC: 0.704, minDist: 0.497, (0.885424512257604, 0.51682025846915)\n", + "unet-mini PR AUC: 0.780, minDist: 0.375, (0.9224052152557138, 0.6334823172698756)\n", + "unet-dice-loss PR AUC: 0.692, minDist: 0.555, (0.931617865125619, 0.44876511258753)\n", + "unet-focal-loss PR AUC: 0.822, minDist: 0.277, (0.7487617009547043, 0.8840717896362793)\n", + "unet-sgd PR AUC: 0.731, minDist: 0.497, (0.9538732855195041, 0.5053105923119683)\n", + "unet-rmsprop PR AUC: 0.813, minDist: 0.283, (0.7531937969524044, 0.8625253033281114)\n", + "unet-l1 PR AUC: 0.754, minDist: 0.393, (0.8766366499467493, 0.626387811957221)\n", + "unet-l2 PR AUC: 0.760, minDist: 0.349, (0.7813983872652583, 0.7285129156027101)\n", + "unet-l1+l2 PR AUC: 0.789, minDist: 0.341, (0.9011364203573499, 0.6734219064478764)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3iUZfq2z2npjRpCCEnoNaEjCoKAAgooiCACEwTrqmtb/a1usXyr7q5l1YXFAkhCBwUBURClSxELCb2HHlpIb1Oe749nZt6Z9IQJoTznccwBedu8kzZX7ue+r0snhBAoFAqFQqFQ3IToa/sGFAqFQqFQKGoLJYQUCoVCoVDctCghpFAoFAqF4qZFCSGFQqFQKBQ3LUoIKRQKhUKhuGlRQkihUCgUCsVNixJCCoVCoVAoblqUEFIoFAqFQnHTooSQQqFQKBSKmxYlhBQKhUKhUNy0KCGkUCiqzaxZs9DpdK6Hn58frVq14umnn+bcuXOu49avX+9xnMFgoGHDhowaNYp9+/ZV6TmPHDnC448/TrNmzfDz8yMkJITbbruNjz76iPz8fG+/RIVCcYNjrO0bUCgU1z9vvvkmsbGxFBQUsHnzZqZNm8a3337L7t27CQgIcB33xz/+ke7du2OxWEhJSeGTTz5h/fr17N69m0aNGlX4PCtXruSBBx7A19cXs9lMhw4dKCoqYvPmzbz00kvs2bOHzz77rCZfqkKhuMFQQkihUFwxQ4YMoVu3bgA88sgj1KtXjw8++IBly5YxduxY13F9+vRh1KhRro9bt27Nk08+SVJSEi+//HK5z3Hs2DEefPBBoqOjWbt2LREREa59Tz31FIcPH2blypVeeT25ubkEBgZ65VoKheLaRi2NKRQKr9O/f39Aipfy6NOnDyCXuyri3//+Nzk5OcyYMcNDBDlp0aIFzz77LACpqanodDpmzZpV4jidTsfrr7/u+vj1119Hp9Oxd+9eHnroIerUqUPv3r1577330Ol0HD9+vMQ1XnnlFXx8fLh8+bJr2/bt2xk8eDChoaEEBATQt29ffvrppwpfl0KhqF2UEFIoFF7HKWzq1atX7nGpqakA1KlTp8JrrlixgmbNmnHrrbde8f2VxgMPPEBeXh5vv/02jz76KKNHj0an07Fo0aISxy5atIi77rrLdd9r167l9ttvJysri9dee423336bjIwM+vfvz88//1wj96tQKLyDWhpTKBRXTGZmJhcvXqSgoICffvqJN998E39/f4YOHepxXHZ2NhcvXnT1CD333HPodDruv//+cq+flZXF6dOnuffee2vsNcTHxzNv3jyPbbfccgsLFy7kpZdecm3bsWMHR48edVWVhBA88cQT3HHHHXz33XfodDoAHn/8cdq3b89f//pXvv/++xq7b4VCcWUoIaRQKK6YgQMHenwcHR3N3LlziYyM9Ng+adIkj48bNGjA7Nmz6d69e7nXz8rKAiA4ONgLd1s6TzzxRIltY8aM4bnnnuPIkSM0b94cgIULF+Lr6+sSZTt37uTQoUP89a9/5dKlSx7nDxgwgNmzZ2O329HrVQFeobgWUUJIoVBcMVOnTqVVq1YYjUbCw8Np3bp1qW/8f//73+nTpw85OTksXbqUBQsWVEoghISEALKiVFPExsaW2PbAAw/wwgsvsHDhQl599VWEECxevJghQ4a47unQoUMAJCQklHntzMzMSi3/KRSKq48SQgqF4orp0aOHa2qsPDp27OiqHt13333k5eXx6KOP0rt3b6Kioso8LyQkhMaNG7N79+5K3Y9zeao4NputzHP8/f1LbGvcuDF9+vRh0aJFvPrqq2zbto0TJ07wr3/9y3WM3W4H4N1336VTp06lXjsoKKhS961QKK4+qlarUChqjX/+858UFBTw1ltvVXjs0KFDOXLkCFu3bq3wWGf1JSMjw2N7aRNgFTFmzBiSk5M5cOAACxcuJCAggGHDhrn2O5fMQkJCGDhwYKkPk8lU5edVKBRXByWEFApFrdG8eXPuv/9+Zs2aRVpaWrnHvvzyywQGBvLII494uFY7OXLkCB999BEgRUn9+vXZuHGjxzH/+9//qnyP999/PwaDgfnz57N48WKGDh3q4THUtWtXmjdvznvvvUdOTk6J8y9cuFDl51QoFFcPtTSmUChqlZdeeolFixbx4Ycf8s9//rPM45o3b868efMYM2YMbdu29XCW3rJlC4sXL2bixImu4x955BH++c9/8sgjj9CtWzc2btzIwYMHq3x/DRs25I477uCDDz4gOzubMWPGeOzX6/VMnz6dIUOG0L59ex5++GEiIyM5ffo069atIyQkhBUrVlT5eRUKxdVBVYQUCkWt0q1bN/r168e0adPIzMws99jhw4eTkpLCqFGjWLZsGU899RR//vOfSU1N5f333+fjjz92Hfv3v/+dyZMn8+WXX/Lyyy9js9n47rvvqnWPY8aMITs7m+DgYO6+++4S+/v168fWrVvp1q0bU6ZM4ZlnnmHWrFk0atSI559/vlrPqVAorg46IYSo7ZtQKBQKhUKhqA1URUihUCgUCsVNixJCCoVCoVAoblqUEFIoFAqFQnHTooSQQqFQKBSKmxYlhBQKhUKhUNy0KCGkUCgUCoXipuWmM1S02+2cOXOG4ODgMvOIFAqFQqFQXFsIIcjOzqZx48aVCmuuLDedEDpz5ky54Y4KhUKhUCiuXU6ePEmTJk28dr2bTggFBwcD8hMZEhJSy3ejUCgUCoWiMmRlZREVFeV6H/cWN50Qci6HhYSEKCGkUCgUCsV1hrfbWlSztEKhUCgUipsWJYQUCoVCoVDctCghpFAoFAqF4qZFCSGFQqFQKBQ3LUoIKRQKhUKhuGlRQkihUCgUCsVNixJCCoVCoVAoblqUEFIoFAqFQnHTooSQQqFQKBSKmxYlhBQKhUKhUNy01KoQ2rhxI8OGDaNx48bodDq+/vrrCs9Zv349Xbp0wdfXlxYtWjBr1qwav0+FQqFQKBQ3JrUqhHJzc4mPj2fq1KmVOv7YsWPcc8893HHHHezcuZPnnnuORx55hNWrV9fwnSoUCoVCobgRqdXQ1SFDhjBkyJBKH//JJ58QGxvL+++/D0Dbtm3ZvHkz//nPfxg0aFBN3aZCoVAoFIoblOuqR2jr1q0MHDjQY9ugQYPYunVrla918dAmKMgAIbx0dwqFQqFQKGqKc+dyauS6tVoRqippaWmEh4d7bAsPDycrK4v8/Hz8/f1LnFNYWEhhYaHr46ysLAB0SzuwZZvgYsgBQhpvIi58A3UNIWCMAZ9Y8GsO/s3ALxBMRtDpavS1KRQKhUKhKB27XTB8+PwaufZ1JYSqwzvvvMMbb7xRYrteQNt0ID0cUkdRpB/F+gZ20hscITRqCXFBz9Ig/RzYG4ItEkQT0DcFQzSYYsG3Ofg1AT9f8PUBH5MSSwqFQqFQ1AB6vY7XX+/Hgw96/9rXlRBq1KgR586d89h27tw5QkJCSq0GAbzyyiu88MILro+zsrKIioril/BPyC64m4amtjSzGQnPF8Sf08O5lrD7/8gz/h+rI6xcbryX0Ibf0tl/Do3EMnkRG5AH5PqCLQJsjeVDFwV6h1AyNQO/+lIk+fqAr0mKJf11tRqpUCgUCkWt8NtvZzl/PpfBg1sAMGRIyxp5nutKCPXq1Ytvv/3WY9uaNWvo1atXmef4+vri6+tbYvudE18hJCSEzFOLWfnDvzi7czgRPqOJrBdJE52NuoWCHieNcDIOiCPL98+siLSR0fgYYfVX08X3MyLtJ8GYKh/FsQHZwZDRWBNKtkjQNXUsv8WAb7CbSHITTEosKRQKheImxW4XvPfeFv7617UEBfmQkvIkTZqE1Njz1aoQysnJ4fDhw66Pjx07xs6dO6lbty5NmzbllVde4fTp0yQlJQHwxBNPMGXKFF5++WUmTZrE2rVrWbRoEStXrqz2PYQ2eYCHJj4A4gLHUv7IgmMrOfbd7fQ8M4lmTfvh28SHJjorIYWC3kcNcLQF0IJL/k+zOBqyogqoE3mUrj4biC74DSzHwHYcxEXQZ4P+AJgOlP7khfUhz00kOf/VR4EpCnz9pTByryo5/6/EkkKhUChuME6ezCQh4WvWrUsFoF+/GPz9a1aq6ISovbGp9evXc8cdd5TYnpCQwKxZs5g4cSKpqamsX7/e45znn3+evXv30qRJE/72t78xceLESj9nVlYWoaGhZGZmEhJSmsK0IbIXsHX/X5h99gT713Shf8q9DLKMwtg+FluMhUidFX+b51lng3T8FmMgK9aHejFGuocUEGs5hq7omBRHlqNQeBSKjjqEUgXd78IAtkZuAqmx5/+NDRy9SaWIJOfHBkOlPy8KhUKhUNQmixfv4fHHv+Hy5QICAkx8/PFgJk3qjM7Rf1vx+3f1qFUhVBtU7RN5kIKzf2dF2lck7beye0cUQw4M5d6D99LFpw9nbtUhoq1E6Kz42D3PTA3T81u0kexYI/ViTPQM1tMS0IEc2bddcggkt0fRUcf/jwOW8m/N7i8Fkb3Y0ptTLIkAMBo8RZKPD/g5GrudgsmoxJJCoVAoag+7XfDII8v54oudAHTv3pi5c0fSsmU9j+OUEPIS1ftE5oBlFucvvMP8E2dITIZDx4O488idDD8wnKFH78GnSRgnb7MimloI19kwFvusHqyn59dYE9kxRhpEG+kVoKcNDmFUHGED65lSBJLjYT0DVPBls4e5CaRiIsnWCDDJ4wyGspff3CtLaiJOoVAoFDXEU0+t5JNPfuWVV3rz2mt9MZlK/pGuhJCXuLJPpAA2Qc6/2JX9LbN3w5wUOJel55ZTtzDswDBGHbqX5hltyGlp5XQvC0RZaaCzlXCu3BVu4NcYI9kxRhpGm7jNV0d7KulwaS8E6/GSAslyDIqOgT29gpehd9gCRHj2JjlFk72+553o9WWLJPfKkhJLCoVCoagEVqudrKxC6taVE995eRaSk9Po1SuqzHOUEPIS3vtEngb7J9gKpvDj2QwSk2HpPsi3QrP0Zgw/MAzzkQeJP9odfHTkt7RypqcVXdNC6hW7klUHOxsb+CXaRE6skYgoI71NOuKopvW3LbOkOHL/WOSXf77wAdEYrI3BGlGsT6kxiBBK1LL0Ok+R5FNKlUkZUyoUCsVNz7Fjlxk/fikmk54ffzRjMFTunU4JIS/h/U9kEbAELB+SZd/OV3shKQXWp8q9Yflh3Ht4KI+feYRuu3pgyvHHHmgnv6WVtJ6F6KMKCLN7dsQX6WFHEyM7YozkxhqJjDTSx6CjE14Y8xMCbOdKEUjO6tJJ5Ox/eQRLg0lbJFgagSXCraoUAfiVfppOV0plya1/yem1pMSSQqFQ3HAIIZgzJ4WnnvqW7OwiQkJ8+emnSXTo0LBS5ysh5CVq6hMpSQYxBeyzSc0uZE4KJP0OhzLkXqPNyIgz9/DHyy/Q45eu+JwIBMAeaqeguYXzfS5haGggyObjcdU8I2xvamR7jIncGCPREQZu1+vogqvTx3sIqxRDxQWSUzTZzlV8DRoCTcDuEEZFjaEw3LHs1pBy5ZxO51ZNKqN3SYklhUKhuK7IyCjgySdXsmDBbgBuuy2KOXNGEhMTVulrKCHkJWpWCDm5DMwC+xSE7ijbT0NSMiz4HS47iy0CRlmG8VzG/9Hj166YfvYFoUMgsNe1U9jxAhdvzcAYHIq/1bPCkuULPzU1sT3WSF60kdhwA311OroDPtQw9jywpJbexG05BvasCi5gBH0kEOWoKjWWFaXCcChsCPa6lNFC7klxE8rivUvKxVuhUCiuCTZsSGXChKWcPJmFwSCjMv78594YjVX7Ha2EkJe4OkLIiR34HpgC4lsKbYJvDkLSVvj2pOwNAjBiYGzDMfwx43k67+iMYY0OcuQ3iEBgj8yl6NZ9XOqow2iMxLeYMLrkr2NzjJFtjopRq3p6+up09KDMRaqaQQiwXy5dIFmOSQElisq/hi4ADE1BFw04lt+sEVAUDgXhUOQrn6cy+JjKEEnKxVuhUCiuBna7oHPnT0lJOUfz5nWYO3ckPXs2qda1lBDyEldXCLlzFJgGYgboLnMhV1aIEjfCr26WQXVMIYxvZ+YPOU/RektrdN8IOKm9WQudwNZtJ5bux7kcXRejtTWmYktpZ4J1bI42sTXWSG6MkXZhBvoCtwABV+W1loGwe9oCuJbcHMLJepoKbQEM9cAQIwNwdVFy+c3Z1F3YAAqBQkvlxZLJWIZ1gFvvUiUb+RQKhUJRkuTkNKZO3cEHHwwiKKj66xZKCHmJ2hNCTvKABcBU4DcA9pyH2d/BnENw2q3pp1VYc8ydHuZh/cM0Xt8YlgO/eF5NNEzF1mcrlrYZZNZphTE/DkOx5uvUMD2bYoxscVSM4oL19ANuBQJr7HVWA3shWE8Ua+R2qy7ZLlVwAR0YI2XorSFaCiXRVC6/WSOgqA4U2qCoCAqLwF7Jb32jsXJeSwqFQnGTI4Rg+vTfyMkp4vnny84BrQ5KCHmJ2hdCTgSwHblstgh0Fmx2WPs7JK2EJUWQ5yaK7oi5A3O8mVGhowj6IUiKoh8EFLj10/hlITp/j7X7XixN9WTr+2HMbYteeFY0DtbTszHWxJYYI7nRRroE6OkL3AbU5mekQmxZWn9S8SZuyzEQeeWfr/MBYzT4xMrgW0MsrqZuawQUBUGRRYqkQse/dnv513RSmot3aV5LCoVCcYNy8WIejz66gq+/3o/RqGfnzsdp375yE2GVQQkhL3HtCCF3zgHTgU+AUwBk58GS+ZC0C9aFgXDoHX+DHyPb3Y853syA8AEY1hpgBfANkOZ2SZ0NWv2E6LYaa8fTWPybkWsbiiEnBp1bM7Id2B1uYFOskZ+ijeRFm+juq6Mf0BsIq+mX7i2EANsFTSQV906ynACs5V9DHyyrSaZmjn9jZGXJ7nDlthg9RZLzYaukWCrLxdtpHeDno1y8FQrFdcn33x9h4sSvOXs2B5NJzzvvDOD553uh13vv95kSQl7i2hRCTqzIUs8UYJ1r64lfdcxZIEgsgoN1taMbBzVmfNx4zPFm2tdvL5fNVjgukVLs0o0OQpfl2Luswxqpx2q5gzzLEAy5jTzvwGHuuDHGxOYYIwVRRm4x6egL9IESZpDXDcIKllOlN3EXHQVbWsXXMIRLgeQT6xBKjoc+GmzhUGTXRJJz+c35sbUibyYHpbp4F1uKUy7eCoXiGqGgwMorr/zAhx9uB6Bt2/rMm3c/nTo1quDMqqOEkJe4toWQO3uA/wFJgEyqF7l6dnxuJ/EXWBAJ6W6dz10iumCOMzO241gaBjaE48gq0XKkpnLPcA26DPErofMK7B1+xUo8FtswCgr6os8N87iLQgP8EmlkU4yRjbFGCiON3GaQwuh2pGPQDYE9323ZrZSMN3tmBRcwgCnKUyCZYsHHUV2iPhRZPStJHpUlC1grqFg5cbp4+5TRr6RcvBUKxVXAZrPTq9cMduw4A8BTT3Xn3/++k4AArzvcAUoIeY3rRwg5yUKKoanAftfWwo0+fDuziKRCWNkSLI72E6PeyJAWQzDHmxnaaih+Rj95ie+R1aKVgHvPscEKbTZAl2XQZQX2OhYshQOwipEU5nRDl+c5Z5Zrgu1RRlfFyBJhoLdeCqO+gPf/BrhGsF0uOeXmYQtQWP75On+51FZcIDkfhlC5xFa8klT8/5ZKiiWdrmyRpFy8FQqFl/joo2289dYmZs68l6FDW9Xocykh5CWuPyHkRABrkYJoGbK7B7joz8WPCliwRZDUHHZEameE+YXxYPsHMcebuaXJLeh0OpmesRVZKVqBu7aSNN0PnZZAl+WIZj9jt8Vitd+HxTacooy26Ao8lb7T3HFTrJGNMUZsDQ3crtOEUfXcIq4zhB2saSWn3Jx9StZTuL5eZaGvU7pAMsWCKRr0Dkcou71kj1JRMdFUZCn/uZy4XLzLCdNVYkmhULiRlpbDxYt5rlgMu12Qnp5P/fo1b86ihJCXuH6FkDsngE+Bz4ELcpPVAN8Fsu+jLGYDs+PgVKh2Rou6LTDHmZkQP4GYsBhtxyGkIFoBbMIzZizsMsQvgy5fQ4c1CN887NaOWAwJWAv6U3SpKboiz4m0iwE6Nkcb2RRjYlOMEeEwd3QKo2jvfiKuD0SRbNYuNQT3KNguVnwNpy2Ax7Kb419jJOjcJtLs9pLTb+7/L3L8v7KUFqDrUWFSxpQKxc3AihUHmDRpOWFhfvz+++NX5AlUHZQQ8hI3hhByUggsRjZXb9c2p9bD9s8s1q+3kNQWvmoHuW7fr32j+8pR/HajCPF1+xykA6uQ1aJVgHtbjI8FOm6GuIXQ+Ruodxoh9Nh0A7DqJ2DJuwXr+fqevUhIc0enKNoYY8TgMHfsC/QDYqlUoMaNjT2nlCk3N3sAkVvBBUyyalSikdtRXTLUK1nVEaJkJamEYKqCMWXxypJPKVUmJZYUiuuSvDwLf/rT90ybJo3s4uLCWbbswSrlhHkDJYS8xI0lhNz5BblsNh8pkICCQPgylJw3zrA0ABI7wdpYbRTfz+jHiDYjSIhPYGCzgRj0blUFC7JCtNzxOFbs6VoedoiiryDmd9CBwA+b33gs9vuxZsVhTfMvEWTvNHd09hiZgvUuYdQXaIkSRh4IIStGZTVxW45TsS1AULFqUjNP0aQvw1bTJZYsZfQuFXnHxdvHYR2gXLwVimuO3347y7hxS9i/X1auX3yxF2+91R9f33LCs2sIJYS8xI0rhJxcBGYC04BUuUnoYG8svHmRk6uzmNsREuNhfwPtrIigCMZ1HIc53kzH8I6elxTAXrTR/G14JmE0zICuq6BDErRbCz5SiAlTE6z+j2K1DMGS3hzbWV2JBI0D9fUuUbQ52ohfgJ7b0YRRW5QwKhdhk9EkZYXgWs9UfA1DA00gFbcGMDUFXTkTIELIBu6yRJJy8VYorkvsdsF7723hr39di8ViJyIiiKSkEQwc2KzW7kkJIS9x4wshJzbgW2SVaLW2OacRzAtDvLKfX/wgKR7mx+m45K99G3Rq1ImE+ATGdhhLeFB4yUufR06frUBOo7mv3PhboOtv0CER4r6C0POOHTpEaB+sPglY8m/Heq4BtjTPBmJ3c8eNMSa2NTXi76vzEEbtAVUzqAL2gpK2AO59SvbLFVxAD8YmZTRxx4KxEegq+IoIIX2USl2GuwIX79KW35SLt0LhFYQQ3H33PFatOsyIEW34/PNh1KtXq2mVSgh5i5tHCLlzEFkh+gJX44/dH3a2h7+eoej7M3zXQi6dfdNah0UvvyUMOgODWwzGHG9meOvhchS/OAVInyJntei02z6dgA4n5Wh+20+hyR6tvGMKw17/Xqy6MVizu2E55YP9oucboVUHvzc2uHqMfo4yEmDS0QdNGMUB6i3vCrBllN3EbUkFUVD++To/T1uA4vYAhrDK3YcQYLNJUVRQiiGl8/+2ShpTGvSliyR37yVlTKlQlMBqtWM0yj9u0tJyWLXqMAkJ8XLquJZRQshL3JxCyEkuMBfZXL1L25zRAZJC4C+/cMlWxMIOkNRJx/ZI7Vsj1DeUMe3HYI43c2vUraX/UAhgJ9po/q/F9jfJhls2Q9vPoMVKMLp1VofFYa9zP1b7MCzpLbAet2O/7CmMCg2wo4nR1WP0W6SBQIOnMOoEXP2V6xsUYQfbuVIEkkM0WU9SsS1AWLEpN/fKUoxmC1BZSqssXZGLdzlVJV+TXKq7Bt4AFIqaJju7kD/+cRU6HcyceW9t306pKCHkJW5uIeREAJuRy2Zf4Wq2tYfDL13grydgzR4O1IPZ8TC7i4ETQdqbS/M6zZkQN4EJ8RNoVqec9eLTSHfrFcAPuHq4AQi2Qq/90GkRNJ8KQenaPmMQhPfHFno/1sIBWNPCsByzILI9v1XzTLDNYe64KdZIciMDgXodvdGEUVegZjxOFQgLWE6WHYJrO1/xNYwRxfLd3ESTsYmnLUBlcVaWSlt+KyqCAm+4eLv9X7l4K65ztm07xbhxSzh69DJ6vY6UlCe8GpbqLZQQ8hJKCBXnDNKP6BO01FYjXL4DZgXCG2uxZ2WxIVr2E30ZZyDHoImiPk37YI4380C7Bwj1Cy3l+g5ykWJoOVIcub9HGgR0vQA9foTWH0PdbZ7nhrRGNBqMPfBerDndsJzQYU21IvI8v3WzfKWH0WbHqP6+hgYCdDpuQxNG3YGr63xxE2PPlctrpTVxW46BPbuCCxhls3bxKTeXG3eD6guQmnTxLs13SRlTKq5BrFY7b7+9iTff3IDNJmjaNJQ5c0bQp8+16fimhJCXUEKoLIqApcgq0SZts70D7OgOrx+CVZvJNcHStpDUzcQPURaPUfx7W99LQnwCdza/E6O+nAUqO7ADbQltV7H9LQqg907oOAcafg76Im2fwQ8a9pPCyPceLBeaYE21Yj1uRRR6fiunB+jYGG1kY6zsMTpSV4+/TkcvNGHUE6ji4ozCGwgBtktlh+BajlPClKo4usBSptzcpt/0QVd2j+4u3kXFBZM3XLyLLcspsaS4ihw7dpnx45eyZctJAMaO7cD//ncPYWHX7m9EJYS8hBJClSEFKYjmAHmObaGQMQJm+sL7K+DMGU4Hw9w4SLzFn73B+a6zwwPDXaP48Y3iK366VDR36/V4vv/VtUPfU9DtO4j5kBKZIIGx0HgwInwwNvphPeWDJdWC9YS1xPvouWAd693MHU+FGfAFbkETRrcAtTsXoQActgBnijVyu1WWrGco4cVQHEP90hu4XbYAXqgNuly8y1mKUy7eimsMm81O27ZTOXQonZAQX/73v7sZNy6utm+rQpQQ8hJKCFWFDGAWUhQd1jbb74Rfb4F/7YJl3yCsVn6LgKSuRuZ1NnDRoDUDxYfHY44381DHh2gUVIlI1izktP9y5PS/W+sQJgG9c6HXz9B+JugXg92tWqQ3QYPeEDEYET4EW24bLKlWWTE6ZS1h7niijp71MUY2RUsfo3PBekxADzRhdCtwhXUFRU1gLwTrcbeepGIZb/b0Ci6g12JLSrMGMEZUbAtQWWrKxdvHx2FEqVy8FVXn228P8c47m5k9e8RVd4iuLkoIeQklhKqDHViDnDZbifaXeDRkT4BZBpi6AA4cwKKHVS0gsXcQK5rmU+RQH3qdnkHNB2GON3Nv63vxN/lX/LRWYAvaaP7BYvs72OGOo9B5KdT5FPKOeO73bwwRg2XFqN5ArOeDsKZasaRasJ22lSgoHKmvZ62jYvRTtJHLAXqMQDc0YXQboL5rrgNsmQ7/pFKauC3HQOSXf77OtwxbAMfSm6GOd+/XaUxZnnVAYZF3XLyVMeVNycaNx8nMLGDYsNaubUKIa2IsvrIoIeQllBC6Uo4hPYlmoJVrfEGMhZTe8NFPsHAh5OWR7g+LOupJ6hvG1kDtL/QQ3xBGtxuNOd5M76a9K/+DeBBNFG3Gc3I7HBiUCT03Q+wMyFoFNrc3O50e6t0CjYfIilFgZ6wn7XIZLdWKLc2zXGQHDjQysDZGM3fM9tWhB7qgCaM+QFglP3OKawQh5ESb5WgpGW/HZEBu8fJhcfShpQfgmpo5bAEqIfSrc9+luXgXFVuWq7SLt6F86wBfHyWWbgCKimy8/vp6/vnPzYSG+pGS8gRRUeUMtlzDKCHkJZQQ8hb5wAJkleg3t+09IH8yLLDBZ0mwTU6AHaoLSb2DmN3ZwHGdluYaGxaLOd7MhLgJNK/bvPJPfwn4DimMViGX1Jz4Af1t0O8AxC0G6yLI3Ot5vm99iBgkK0YRg7CLeliPy2U0yzFLCXNHmw72NDawxjGq/3MTIwUmHTqkd5G7MKpX+VehuBYRVjdbgOJN3Mekt1JFGBqVHoBrigVTE9DVkNvVVXHxLrYUp1y8r1kOHLjIuHFL+PXXswBMmtSJDz8cTHCwby3fWfVQQshLKCHkbQQy+X4qsAg5fQZQH3gUDvaHT76F2bPh4kXsOtjUFJIGN2Jx4wyy3ZyLb4u6DXO8mdHtRxPmF1b5WygCNqJVi1KL7e8KDM6A7j9C2Fw49wNY3Ue3dVC3q2sZjXo9sefpXcto1lRrCXNHqwFSmhhZ7WbuaDHIylZHNGF0O3DtuXEorgh7nmdsSXF7AHtWBRcwgimq9ABcUywYGtbs9Ji7i3dpIumKXLwdvUulRZ54+zUJAZnZsiLmY4LQYDV150AIwfTpv/Hcc6vJy7NQp44fn38+jPvvb1fbt3ZFKCHkJZQQqknOA9ORS2enHNv0wHCwPAbLcmDGTFi9GoQgzwRfd/YnaUB91viexu5Y6/I1+HJvm3sxx5m5q/ldmAxVsEQUwB600fztePYCNQGG2qDvXohdDOkr4PJOz2uYwiDiTle1iIBIbBk2WTE6JsVRcXPHIhP81tTId44A2eRGBux6+Uu5LdAPTRxVomVccb0ihMxvKysE15IKoqj8a+gCHP1JpYXgxoLhKv3ecq8sFZURfVJtF+9SGryr4uJ94TIcPuFpX+BjghZNoYGX+7euM2w2Ow88sJilS+WEbf/+sSQm3keTJtf/+50SQl5CCaGrgRWpQqYAa922twH+AKcGwBdfwcyZkJoKwJlgmDeoMYnxgt22s64zGgY25KEOD5HQKYH48Grk3ZzDMyA2z21fIHAXslrUeRUULYOz30NRsYmjsI6OatEQqH8bQm/Cnm73qBgVN3fM99Xxa7SRlY6K0f6GeoTj3luhiaK+SG2muEkQdk9bgOKN3NZTVGwLUK/0AFyfZmBsCvqruOxRkYt3oaWKxpRliCR3F++LGbD3SNnXadf8phdDzz77HdOm/cLbbw/ghRd6odffGJUyJYS8hBJCV5u9wP+ARCDHsS0ImAD2J2HtOZgxA5YsgaIiGVfW1ETSfc2YG36OC5YM15U6NuzoGsVvHNy46reSjwyIdVaLzrjt0wG9gKF26LMbgpdA2iq49DMeb0zGQAgfIJfQIgZDUCxCCOzntcbr0swdcwN07Ig2siLWxEaHuaPzr9/meAqja9PTVXFVsBeC9UQZIbjHpAllueg0W4DS/JOMjb1nC1BZvO3iXdFblq8JesbdVMtkBQVWsrIKadgwEID8fAuHDqUTFxdey3fmXZQQ8hJKCNUW2cBsZJVon9v2O4CnIL0PzF0oRVFyMgAWPay+LZykgfVZpjtEkcMzSK/Tc2ezO0mIT+DeNvcSYKqGBaJA9ng7jRx/K7a/GTAMGJwJzVfBxe/g7CooKNYoG9zKNYlGw75g9EfYBbY0m1YxKsXcMStYx/YYE8tijWyMluaOTqLxFEbNkDpNocCWXWyprdjkm8gr/3ydDxiji025uU2+6evWjoAo18XbzWupssS3grCb4/f7nj3neeihJYSF+bF2rRmD4cb1kFJCyEsoIVTbCGRZZirwNdoMfBPgcRCPwG+nYfp0mDcPsmTj6eUAHYtHtSOpg42f8jR36WCfYB5o9wDmeDN9ovugr+5fu6eQGWjLkat57gGxocAQZLWo127IXylF0YWfpAOyE4OfFEPOZbTgVqDTIWwC22mbVjEqxdzxch0922KMLI2RFaPzQdrriMSzx6glShgpSkEIsF0ou4nbcgJXwHJZ6INLF0jO/+tr0XfdboezF+DwyYqPbRsLDW/s+U0hBFOm/MxLL62hsNBGgwYBbN48iVatbtzXrYSQl1BC6FriJPApMvTVmcJqAh4Anoa8OPhqiawSbdjgOutwi7rMfqAVSXVOkpp32rU9JiyGCXETmBA3gZb1Wlb/tnKQ/pErkOLogts+A3JGfhgwOBuC18CZVVIY5RX7BR0Yo02ihfcHUzAAwiKwntIar21nSpo7XqyvZ2usiSXRRjbEGMnw14RRIzwrRm1RwkhRCYQVrKfLDsG1nq34Gobw0gNwTc3kJFxN2QI4yciC5OLOqqVwg1eE0tJyePjhZaxaJR3/hwxpwRdf3Et4+I3tg6+EkJdQQuhapBD4Erls5p483xl4ChgLh8/I5upZs+Cs/IVt18FPg9uTeEcdFlmTyS7SRuJ7NemFOd7MmPZjqON/BY2TNuBntNH8PcX2twGGA0MFtN8H51bB2e/g/MaS8R/1b9OW0cI6upYgRKHAesJaprmjAM43MrA1xsjiGBObmhrJ8dWkTwPkmH4/pDBqj5zVUyiqhD3f0xbAo0/pKNgzK7iAwc0WoFgArilWiqgrXXYTArallLJMZgff9WAPBX136Nn5hu0RWrHiAJMmLefixTz8/Iy8++6dPPVU9+vKIbq6KCHkJZQQutb5FblsNh9wegzVASYDT4K1KXz3nawSffONy+skPzSAZRN6kNS6gNXpP2MXcsnNx+DD8NbDMceZGdxicNVG8UvjKFpf0QY8VxrqAfcgq0UDciFvvawUnVkFOYc9r+PfWI7mNx4CjQaCjybW7Hl2zdwxtaS5o9BBWmMDW2JMLIw1stlh7uikLlIYOStGcchClkJxRdgul93EbUkFUVj++Tp/z9iS4hlvhkq6HV+4rE2N+awFexOwtoKgKRCYCPrGEPFfCB55Ja/2msRqtdOly6fs2nWeuLhw5s0bSfv2N49TmRJCXkIJoeuFS8AXyImzY45tOuBuZJVoEKSdh6QkKYoOauXys51bMO+BNiQGHWFXutaY3SCgAQ91fAhzvJnOjTpf+V9QmUhX6xXIgNjLbvt8kCWa4UhhVOewtoR2bh3Y3JpanfEfzmW0ul09Jnvs2VIYlWXuaDfA2SZGNscYmR9rYmtjzdwRZARIb7SKUSeghhcwFDcbwg7WtJICySmarKfwzMQpBX2dskNwTdGg99OOvXAZjn8BgS9C/j2Q/Troz0L9EaBzPE/klzekGNq16xyzZ6fw//7fHfj63lw/yUoIeQklhK43bEi1McXxr5PmwB+Ah0GEwU8/SUG0aBHkOUSG0Ujy6NtJ6hPK3JwtnMvVJr7aN2iPOd7MuI7jiAyJvPLbtAI/oY3mHyq2Px4piIYBnQvg0mZNGGUWW2/ziP+4C/w8/+KzZciJNGfFqLi5o90Ep5sa2RxjYm6MkW1u5o4AwUhh5KwYdUV2ZikUNYYocsSWlBGCa7tQ8TU8bAGi4fJUaV4pTHBhBYh6EPon8NuAtBFoAs2Pge76rYfa7YL339+C3S74v//rXdu3U+soIeQllBC6njmEdK3+AshwbPMHxiGrRJ3klNmCBVIU/fyz60xrk8Z8P7EPSc1z+PrUDxTaZBlfh46BzQaSEJ/AfW3uI9An0Du3egBNFP2E5x/DjYChyGrRAECcgLOrpShK+wEsxSIanPEfEYOh/i2g1/4KFEJo5o7HLNLDqJi5o81Xx6loI5tijMyJMbHDzdwRpK/krUhR1A/ojixoKRRXDXtOGQG4juk3kVv++UIP+SOgsD/UeUrbHrUOAvvV6K3XFKdOZZGQ8DVr1x7DYNCxe/cfaNOmfm3fVq2ihJCXUELoRiAXmIfsJUp2234b8DQwEvCB3bulIJo9Gy5pRnQZA3vz5cg2JPrsZfOpLa7tQT5BjGo3CnOcmb4xfas/il+ci8iA2OXAaqSlkhM/YCCOhmsg3AIXt2rVosu/e17LFAqN7nQYOg6CAE9f6uLmjpbjFk8rAMAWoOOEw/E6KcbI727mjiClZS+0ilFPx20qFLWCEGC76CmOctdA3tqSx15cBGEvgzFVftx4HoSMvaq36w0WL97D449/w+XLBQQEmPjoo8FMnuyF5fzrHCWEvIQSQjcSAllumYqcOnN2LocDjwGPA5FQWAjLlklRtGaN5kwbFsaRCUOZc2sgSefXcPTyUdeVm4Y2dY3it67f2nu3XIRssnZWi44X298duXw2HNnlXJAmYz/OrpJVo+LxH6EdtEm0BreBwTNewWXueEyKotLMHa3BOk7EmNgQayQxxkRKqKcA9EWKoX5IYXQLUItuMgoF5K6Hk3eU3J43CqyxEPKu/Pg6qwhlZxfy7LOr+OKLnQB069aYuXNH3tDeQFVBCSEvoYTQjcpZ4DOkL5HTD8UAjEBWiW4HdHD8uBzB/+IL+X8HonMnfjLfQVKTSyw6vIzMQm1UuGdkTxLiExjTYQx1/et675YFsAttNP/nYvuj0Jqt+wEmG6T/ok2iXSqWKGsMlH5FTmEUFFvyKSth7mito+d4jJH1MSYSY4zsDvIURiagB1rF6FZkaIpCcdUQNjgSI32R3H8G7P5waTHUe1BOYl5HPUJWq53OnT9l9+7z6HTw6qt9eO21vphM18f9Xw2UEPISSgjd6FiQjtVTgI1u2zsg+4jGA0HSpfbHH2WVaOlSaesP4OdH/v3DWTGsNYnWX1h95HtsDvdok97EsNbDMMeZGdJyCD4GL3fSnEULiF2DzEZzEgQMQoqiu5HmQYWX4OwaR7WojPgP5yRaw75gLFnHqYy5o7W+nmOxJtbFGEmMNrLP31MYGZEN184eo9sA9ZOlqHGyl8DpUY4PhPy+1QFZL4DxJLR88LqbGvvvf7fz3ntbmTNnBH36RNf27VxzKCHkJZQQupnYhVw2m40WOx8CTEROnDmWvC5dgjlzpCjatUs7vVkz0h5+gPnd/Eg6voydaTtdu+oH1Gdsh7GY4810jejq/bX7fOBHNM8id9NfPbKJx1ktagNgh4wUrbfowk/SSdiJe/xHxGAIaV2q4ZyHueMxK7ZzthLHWBsZOBZjZG2MiaSmRvb5el5HD3RBqxj1QY7wKxReJ3sJnHvWMZ7vwBoFOfOh563XvKnisWOXycwspFOnRoDs8cvOLiIkxLeCM29OlBDyEkoI3YxkAIlIUeQ+134nctnsHsAge4d++UUKovnzXTln6PUweDApDw0gqe5J5u5dQFpOmusqbeu3xRxvZnzceJqEeDYvewU7WkDscmBnsf3N0URRb+TaVVEmnFvrWEb7rpT4j2hNFDUa4Ir/KPHUFZg7ogNrpIGjMSZ+jDEyp4mRfSZd8UOIRxNGtyO9JxUKryBskLdJNlGfe0ZOmF3+CNpMhDrX5u94IQRz5+7iD39YSYMGgezc+TjBwUr8VIQSQl5CCaGbGTvwA3LZ7Bu0NaBo4AngEcAxnpqXB19+KcNfN23SLtGgAVbzeH64uw1Jl9ezdP9SCqzSAVuHjgHNBmCOMzOi7QiCfGqoc+aE4/ZXIANi3ZI8CEMGxA5z/BuGFHhZ+7Rq0fkNnvEfOiM06O2YRBsMYXFl/iVtz7a7ptFKM3fEALYmRo7EGPkh1sS8xgb2GkpeqyOewujm8cZV1CjnnofLH0LhbWCYBR1a1PYdlSAjo4Ann1zJggW7AbjttigWLXqAxo1L/2NEoaGEkJdQQkghOQZ8AsxAuliDnI8ag6wSddcOPXhQ5pwlJkKaVgni1lvJfHgsX7bXkXRgERuPaz1JgaZA7m93PwnxCfSL6ee9UfziZCP7iZYj+4suuu0zItelnNWi5o7t1lw4t0GrFpWI/4hwqxYNBN+yG8QrMnfEBLamRo7EmFgTY2RBIwN79CWFUVu0HqO+SKslhaLKFB2Go63k3ziXvoJud4PftVNp2bjxOBMmLOXEiUwMBh2vv96PP/+5N0ajSgesDEoIeQklhBSe5AOLkFWiX9y2d0cKotG4XHQsFi3nbOVKV84ZQUEwZgzHxg5hjnEPSSmzOZyuiYuokCjGx43HHG+mTf02NfdSbMB2tNH8vcX2t0Nzt74FLYAs+7AczT+zSi6nlYj/6AkRQ0qN/3CnMuaOOl8dtmgjh2KNrIkxsbiBnl2lVJ9aoVWM+gI1sOCouFE5eQ/kfgu5Y6HOv6FZ7X/3WK12/v73dfzzn5sRApo3r8PcuSPp2bP27+16QgkhL6GEkKJsfkYKooVo6031kUtmTyCX0BycPSsrRDNnwiG3vqN27RCTJrH1zjYknVjBwj0LySjIcO3uEdkDc5yZBzs8SL2AGu6UOYJnQKx733N9ZGvUcOAutPl3WyFc2FR+/Eeju6QoanQX+IeX+fRCCGzn3SpGpZg76gJ02GKMHIox8X2MkaV19STrdMUH12iGpzCKqcKnQXGTkbMKTg0BeyBc/h563SL7/GoRIQRDh87n228PMWlSJz78cLDqCaoGSgh5CSWEFBVzHrlkNg1wNhnrkaWUp5G5GI4qhhCyh2jGDFi8GPIdM+8mEwwfTsHDE/gmupDEXbP57tB3HqP497S6B3OcmXta3eP9UfziZCCj2pYjXa4z3Pb5AP3RqkVRbvtyT7rFf6ypUvxHcTzMHVMd5o5Wz2N0ITpEjImDMUZWx5hYEarnN0rGdUbjKYya4fqKKG52hB2OtgHLIcj6P2j6J2h09aMphBAUFdlcwajnz+eyefMJRo5se9Xv5UZBCSEvoYSQovJYkV3JU5FN1k5aIz2JzECotjkzU8s527FD296kCUycyPmxw5mftYWklCR+O/uba3dd/7quUfzujbvXvI2+BdiMNoV2pNj+Tmju1l2QGhDAboGL2zRDx8u/eZ5nCpU9RU7vooDyy/7CJrCetroqRqWZO+rr6BExRg7GmPguxsh3QXp+ocRhRKKJon5AS5QwuqlJ/wjOPyddpgtXQJd2V3WU/tKlPB59dAXBwb4kJt531Z73RkcJIS+hhJCieuwH/gfMQgsLCwQmIEVRB8/DU1KkIJozB9LdYjEGDIDJk9nduxVJ+xcyJ2UOZ3M0k6DW9Vq7RvGbhjatwdfjQCBfmlMUbcWz/BKBVikagAwic5J/zq1a9L00eHQntIM2idagd4n4jxK3YhFYT2qN16WZO+ob6CHGxIEYI6ujjaz21/MzJVJDaIRnxagtShjdVNgy4XCkHKVP/x90mAAhV8f/fM2aIyQkfM3ZszmYTHp27/6DisjwEkoIeQklhBRXRjbSoHEqnt3IfZHLZvcijXwcFBRoOWc//KDlnNWpA+PGYZs0kR9DLpGUnMSSfUvIt8qlNR067oi9A3Ocmfvb3V9zo/jFuQB8ixRGq4Ect33+SOulYciAWPfRLrsN0n/VJtHSf5ZLFE6c8R/OalFQswpvpTLmjoZGBoh1VIyijPzgq2M7JVqRaIAc03cKow5ohS7FDUraU5DxPyjoB74zoG3F33NXQkGBlVdf/ZH//GcbAG3b1mfu3JF07hxRo897M6GEkJdQQkjhHQSyA3kKMtLD+SYdiQx7fZQSQ+CpqTLj7Isv4KSbwWGXLvDII2SNvIevzvxIUkoS61PXu3YHmAK4v+39mOPN3BFzBwb9VcoeKgTWo1WLinky0gNtNL8jniWXwkuQ9oO2jFaQ5nlucEuHKBpSZvxHcSpj7miINKBzVoyaGFlr0rEVz7QSgLp4CqM4tCE6xQ1C4T441g6EHi4tgx6DwMdU8XnVYM+e8zz00BJSUmTMzR/+0I13372LgICaeb6bFSWEvIQSQgrvcwoZ9voZstEaZFVoFHLZ7FY8VILNJqtDM2bA11/LsXwAPz8YNQomTyY1Ppo5u+aSlJzEoXRtKi0yONI1it+uQbuaf2lOBJCCNpq/o9j+aLQltL5ISybXuQIyksuO/9D7SjHkXEYLaVOpfg6XuaMjQNaeUdLc0RhlRBdt5GCsidWNDawz6PgJLXDFSSjScsnZY9QJacOkuM45cSfk/QC5Zqj/DkQ39vpTWK12Wrb8L6mpGTRoEMDMmfcydGgrrz+PQgkhr6GEkKLmKAS+Qi6bbXHb3gm5bDYWKFb5uHhRyznbvVvb3rw5TJqESEhguzhJUnISC3Yv4HLBZdch3Rp3c43iNwhsUEOvqQzO4BkQW+C2LxgZEDscGRBbvD3CkgVp7vEfJzz3e8R/9AdT5X5OK2PuaGxqRB9j4mCskTXhBtbrdWxG6/pyfwm90SpGXfFY8FRcL2Qvg9P3gT0UMlfDLT1qpGl61arD/Pe/PzNz5nDCw6/SMvZNiBJCXkIJIcXV4XekIJqLphLqAA8jA1+bex4uBPz8sxRECxZAtuOtWa+Hu++GyZMpHDSQb46tJikliW8PfYvVLqsqRr2Ru1veTUJ8Ave0vAdf41X2J8lDBsQuRw7Zua+C6ZFx9M4ptNbFzhUCsvZrS2jnN4DdrcNHZ4QGt2nLaOXEf3heVmC/5FYxKs3c0U8nhVGskcMxJr5voGeDTscmILPY9QKRdT2nMOqOZ9FLcY0ibHCkBVhTIfNv0Ox5aFDnii/7zTcHKSqyeYzCCyFqfuLzJueGFUJTp07l3XffJS0tjfj4eP773//So0ePMo//8MMPmTZtGidOnKB+/fqMGjWKd955Bz8/v0o9nxJCiqtLOvAFcuLsqGObDhiMrBINpkTbbm6u9CSaMQM2b9a2h4eD2QyTJ3OhSV0W7F5AUkoSv5zRHLHr+NXhwQ4PYo430zOy59X/xWxHGnQ7jRyTi+1viSaKbqPk+pM1D86tl8Lo7CrIPuS536+RtoTW6M5y4z/c8TB3PGbFcqIUc8dAHcZoI4ZYE4ejjfxYVwqjjcivojv+QC80YdQTl/+44lrj0rtw4WWwtALbMuhUfXf3vDwLf/rT90yb9guhob6kpDxJ06ahFZ+o8Ao3pBBauHAhZrOZTz75hJ49e/Lhhx+yePFiDhw4QMOGJWMY582bx6RJk5g5cya33norBw8eZOLEiTz44IN88MEHlXpOJYQUtYMd6Wg4Belo6KQZskL0MLKFtxgHDmg5Z+fOadtvuw0mT4bRo9mTm8rslNnMSZnD6ezTrkNa1WuFOU6O4keHRZe89tXgOLJKtBxYh+ecex3k0tkwpB4s7f0k+4gj/uO7cuI/HMKobleoZCO5sAtsZ21axagMc0dTjAlDjJGjMSbWhupZD2xEDte544sUQ05h1IsSi6CK2sKWDoebgMiH9M8hfhwE+ld8XjF+++0s48YtYf9+Gej3wgu38PbbA1yGiYqa54YUQj179qR79+5MmTIFALvdTlRUFM888wx//vOfSxz/9NNPs2/fPn788UfXthdffJHt27ez2f0v53JQQkhR+xxGulbPRLN49gceQjZXdy55isUC336r5ZzZHY3BwcHw4IMweTK2bl1Zd3w9icmJLNm3hDyLJhr6xfTDHGdmVLtRBPvWUsp1FvA9slK0Ei3rFmRlqC9aw3Vpk862QriwWVtGy9ztud+3niP+Y0iF8R/FEVaB9YysFllTrVhPl2LuWFePMdqIMcbEsRgj64L0bEDODhabicOEHKpzCqNb0VJMFLXA2UchczoUDISA6dCq8n8Y2O2C99/fwl/+shaLxU5ERBCJifdx553NKz5Z4VVuOCFUVFREQEAAX375Jffdd59re0JCAhkZGSxbtqzEOfPmzeMPf/gD33//PT169ODo0aPcc889TJgwgVdffbXU5yksLKSwUKuBZ2VlERUVpYSQ4hogD5iHrBK5ryHdihREo5D5F8U4c0bLOTvslhzfvr2sEk2YQHawL0v2LSEpJYl1x9YhHM6E/kZ/RrYdiTnezIDYAVdvFL84NqR5o3M0f3+x/e3RltB6UPpse0XxH3W6aMto9XuVG/9RnMqaOzorRieijaz3lxWjDcDpYtczIhuuncKoN6B++1xFCpIhtRMIA6R/Az0HgrHi7weLxcaQIXP58cdjAIwY0YbPPhtG/fqq3lcb3HBC6MyZM0RGRrJlyxZ69erl2v7yyy+zYcMGtm/fXup5H3/8MX/6058QQmC1WnniiSeYNm1amc/z+uuv88Ybb5TYroSQ4tpBIKfMpgKL0dZowpF+RI9Tav66ELBxo6wSffmlZ87ZvffCI4/AwIGcyDnNnJQ5JCUnceDSAdfpjYMbM67jOBLiE2jfsH0Nvr5KcAitr2gTntWYBkgDx2FIQ8fSSit2C1zcrk2ilRf/ETEIAqNKuUjZiAKB5YTFNZVWlrmjMVZWjE42NbLBR+eqGB0vdqwemV7iFEZ9gLAq3ZGiyhy/HfI3Qc4kaPQ2NKlcxfD551fx2We/8dFHg5k8ubNqiK5FlBAC1q9fz4MPPsg//vEPevbsyeHDh3n22Wd59NFH+dvf/lbq86iKkOL6Ig34HPgEOaMOshxyH7K5ui+lhkVkZsL8+TB9Ovz6q7Y9KgoefhgefhgRHc2OMztISk5i/u75pOdrLcBdIrpgjjMztuNYGgaW7M+7qlxGtlGtcPzrPsLliwyIHY4UR2XFmeWfk7EfZ1ZB2upS4j/aa5NolYj/KI6HueMxC/ZLxTyM9GBobMAUY8IYY+RMEyMbTDpXxehosevpgHg0YXQ7JV0HFFdI1mI4MxpsdSH3e+jepdQJxOzsQrKzi2jcWC4hFxRYOXUqixYtKteYr6g5bjghVJ2lsT59+nDLLbfw7rvvurbNmTOHxx57jJycHPT6ik3zVY+Q4vrAgnSsnop863TSHrlsNh7pdlMKyclaztllh++QTufKOeO++yg06vj20LckpSSx8uBKLHbZxWzQGRjScggJ8QkMbTUUP2Mtz0JZkBUip5FjcQXRGc3dugulB4rZbbJCdOY7WTG6tN0z/sMQIOM/nMtowVXv/aisuaMxxogpxkRaYwMbDFrF6GAp1+yANHd0CqNalqfXP8ICR2LBehoy34CWz0Jdzw79bdtOMX78Eho1CmL9+okYjSqI5VrihhNCIJule/TowX//+19ANks3bdqUp59+utRm6a5duzJw4ED+9a9/ubbNnz+fyZMnk52djcFQcb+DEkKK64/dSEE0G8h1bAsGJiInzsoYBy4okM7VzpwzJ3XrwvjxUhTFxXEx7yILdy8kMTmRHWc0y+gwvzDGtB+DOd5Mrya9an9JQAD70ETRVjz7diLRltD64xkQ605huiP+47vS4z+CWshKUcRgCO9XqfiP4tgu22TF6JjD3DGnFHPHaCOmaBPGWCMXwg1s1GsVo32lXLMtnkGyKsGqGlx8Cy7+FSztQbcUOrQEpDv0229v4s03N2CzCZo2DWX9+gRiY6/cc0jhPW5IIbRw4UISEhL49NNP6dGjBx9++CGLFi1i//79hIeHYzabiYyM5J133gFkv88HH3zAZ5995loae/LJJ+natSsLFy6s1HMqIaS4fskEEpGiyL2GMBBZJRpKmcEQx45pOWenTmnbu3WTgmjsWAgNZd+FfcxOmc3slNmcytKOa1G3hWsUP7ZOrLdfWPU4jwyIXY6cRst12xeA7CcaDtyDbLcqDSEgI0WbRLuwuZT4j9s1YVTJ+A/Ppyhm7phqReSXYu4YrVWMLjXQs1GnVYx2lXLdVngKo7JWCRVuWM/D4SigCC7Ngi4Pciwtj/Hjl7JliwzTGzu2A//73z2EhSlnqGuNG1IIAUyZMsVlqNipUyc+/vhjevbsCUC/fv2IiYlh1qxZAFitVt566y1mz57N6dOnadCgAcOGDeOtt94iLCysUs+nhJDi+seOtHKeiiyNOJdhmgJPAI8gO4xLwWaDNWtklWjZMi3nzN/flXPG7bdjE3bWp64nKSWJr/Z+Ra5FUxm3R9+OOc7MA+0fIMT3GvkZKkAGxDqrRW5aDx3S5Mc5hdae0pfQoOL4j4CmboaOAyod/+GOEALbObc4kHLMHU2xsscoo46eTQ5htB45Y1j8F3czPIVRTJXv7CbhTAJkJSHyhjB33Uv84Y1tZGcXERzsw7Rp9zBuXFxt36GiDG5YIXS1UUJIcWNxHNlY/TmaMY8PMAbZXF22SzsXLsg+ounTYe9ebXvLljBpEiQkQEQEOUU5LN23lMTkRNYeW+saxfcz+jGizQjM8WYGNhuIsQrj6TWKAHaijeb/Wmx/DJooup1SHQrkdQRkHdBEUbnxH4MhLL5aOVZVMXd0VowyQ/VsBlfF6Dc0OeykKVqPUV+kUFLzTkD+DjjeA0uRD93vf4vkw7ncdlsUs2ePUEth1zhKCHkJJYQUNyYFwCKkJ5F7NHw3pCAaQ5khEELA9u1azllOjtxuMLhyzrj7bjCZOJl5krm75pKYnMj+i5r5T6OgRq5R/I7hHWviBVafM2ju1j/iGRAbgnS1HoZ0uS5vMMiaJ8XQGWf8R7EWZ79GcjS/8ZAqxX8Up4S54ylrCZWjr6t3iSJjtJGcID0/gati9Asl/CCJxLNi1IqbWBil3gIF29mb8hRLfh3Kn9+6SzVGXwcoIeQllBBS3Pj8jFw2W4i25lIPuWT2BOUumuTkaDlnP/2kbW/USFaIJk2CVq0QQvDr2V9J3JnI/N3zuZSvjad3atQJc5yZhzo+RHhQ5d2drwq5wA9onkXn3fYZ8AyIbVXBtXKOaqLo3FqwujUp6fRQt4e2jFa3W6XjP4rjMnd0NF7bzpZt7miMMWKMNpLnr2cLWsXoZzzTTQAa4SmM2nJjCyOLxcbrr6/H39/EX585CWfHg60BFHwPXapXzVNcXZQQ8hJKCCluHi4AM5BxHs5eFz2yqfopZJN1OX8F798vBVFSEpx3Uwx9+sgq0ahREBhIka2I7w59R1JKEisOrPAYxR/cYjDmeDPDWw+v/VH84tiRxTPnElrxjuRWaKP5t1JmHzrgiP/4SVtGKyv+w2noWIX4j+JUytwxwqBVjJoayffRsQ2tYrSdEm1JNECuFDqFUQfK/e64rjh48BLjxi3hl1/OYDDoOLD/cZqLeLCdg4y3oe0zEKpCUK51lBDyEkoIKW4+bMi1oanAGrftrZDj9xMpPfHUgcUC33wjRdF333nmnI0dK0VR9+6g03Ep7xIL9ywkKTmJ7ac1U9RQ31BGtx9NQnwCt0bdWvuj+KWRilYpWo9nCaUuculsODCIivMx8k45wmKd8R+ZnvvrdNYm0erfAnpTtW+7SuaOsUaMTYwUGnVsR6sYbQXyi123LtLxuh9SGMVRetLJtYwQgunTf+O551aTl2ehTh0/Pv98GPff3w4uvAaX3oSiTmD6CtqWFnCnuJZQQshLKCGkuLk5APwPmIVMQQUIRBo0PgVU0N9z+rSWc3bkiLa9Y0cpiMaPh3rSE/nAxQOuUfwTmdr0VbM6zTDHmZkQP4Fmda7RN58sYDVaQGy62z4TUhk4q0UxFVzLboWL22S16OwqSC/WvW0KcYv/GFzl+I8ST5dtd43pV8bc0dDYgMWgYweaMPoJTzcCkFK5D1rFqDPlF8lqm4sX83j00RV8/bXsZevfP5bExPto0sTxe99yBo5EA1ZInwtdR4FvWZ3zimsBJYS8hBJCCgVADjAH2Vy9x2377cjm6vuQ7/hlYLfDhg2ySvTVV9K8EcDHB+67T4qigQNBr8cu7GxI3UBSShJf7v2SnKIc12V6N+1NQnwCD7R7gFC/cqpStYkVWTJxjuYfKLa/I1IQDUMO6VW0nlRwHs5+L5fQyo3/GAwN+lQ5/qM4lTZ3dPQYGcINWPU6fkUTRpuB7GLXDUa2VPVDCqOulPsdc1WxWGy0bTuVI0cuYzLpeeedATz/fC/0+mKVyNMPQvZCyB8OdaZBTOPauWFFpVBCyEsoIaRQuCOAjUhBtBRt1qgxMuz1USr0MM7IgHnzpCj6zS3stGlTV84Z0dEA5Bbl8vX+r0lMTuSHoz94jOLf2/pezPFm7mp+17Uzil8aB9H6ijbjOdEVjjRwHI5swQqs4Fqu+A9HtejStlLiP+7QltGqEf/hjtPc0b1iVJG5o76BHptOx040YbQRzwg4HC/1VrSKUXdkNFxt8b//7WDKlJ+ZO3cknTuX8T2c9xOc6A3CFzJXQ48+UImoJkXtoISQl1BCSKEoi1PAZ47HOcc2IzAKuWx2GxXOFe3cqeWcZWTIbTod3HmnrBLdey/4yrfH01mnXaP4ey9oPkbhgeGM6zgOc7yZ+Ebx3nt5NUE6Mhh2ObAKbbURpAoYgBYQG1mJ6xVdhrNrtGW0/LOe+4NaaJNo4f3AWJHSKp8S5o7HLVDkeYwuUKc1XscY0dfRY9fpSMFTGKUXu7Yf0AutYtSTMg0cvMLu3efJz7fQvXuk67UVFFjx9y+nTiUEpHaFwt8h+xmIfh0aqnDVaxUlhLyEEkIKRUUUAV8hm6vdRuiJRwqih6iw1JGfD0uXSlG0dq22vV49Leeso+xHEkLwe9rvJO5MZN7ueVzMu+g6PC48DnOcmXFx42gU1Mgrr67GKEIqAme1KLXY/q5oo/mdqHhWXQjI2KWJogubwe7Wwe2M/3Auo4W0veIR8OqYO+pD9diRC6wb3B4Xil3bFymGnBWjXsgklCtFCMGUKT/z0ktriIgIJjn5CUJCqlCLyvgC0iaBLQIsa6BTey/claImUELISyghpFBUhZ1IQTQXba4oDHgYOXHWouJLHD2q5ZydPq1t794dHnkEHnwQHD+LFpuFVYdXkZSSxPIDyymyyfKEXqdnUPNBmOPN3Nv6XvxNZSWqXiMIpDJwiqLteHr/NEHrK7qDypVKLNnSr+jMKhkYm3vcc78X4j9KvAyrwHra6qoYVWjuGGNEH6h35eO6C6Ni0baYkMtnfZFVo1uBqg6wp6Xl8PDDy1i16jAAQ4a0IClpBPXrV0Fi2fNl/pj9EmS8Cx3+AEHekGgKb6OEkJdQQkihqA6XgS+Qouio2/bByObqwVQ4XG2zwerVskq0fDlYHaWGgAB44AFZJerd21XVSM9PZ9GeRSQlJ7H11FbXZUJ8QxjdbjTmeDO3Nb0Nve466Ok4h5w+W4EMiM1z2xcI3IUURfcADStxPff4j7Or4Nz6UuI/btUm0ep08ophoCgSWE9VwtwxVjpeG6ON6P2lMDqEJorWA6eLXduA9EF3Vox6U75LwTffHGTSpGVcuJCHn5+Rd9+9k6ee6l49a4bzr0D6P6GwG/gvhlYxVb+GosZRQshLKCGkUFwJduRc+RRkc4zz10csskI0ifJzKhycPw+zZ0tRtG+ftr1VKy3nrJG2FHbo0iGSkpOYnTKb45laJSQ2LJYJcROYED+BFnUrUZ26FigA1qJVi8647dMBt6AtobWjcnbP1jw4v1FOopUX/xExGCLulAaPXqA65o46Hx0CKafdK0bF6lvokSP6zopRH2Qt0mKx8eyzq5g27RcA4uLCmTdvJO3bV0ZBloHlOBxpBtghfRF0HwGma7hh/yZFCSEvoYSQQuEtjiBdq2ciK0Yg13geQvYSdan4EkLAtm1azlmuw73GYIChQ2WVaMgQMMo3Jbuws+n4JpKSk1i8dzHZRdpQ961Rt5IQn8Do9qMJ8wvz1ousWQTwO9po/m/F9sei+RXdTuXn03OOaoaO5370jP9AB/V6aJNoVxD/URx7nl1rvE4tw9wx0qDFgTQxojNKpXccT2F0pNi1dcgutduFYOt9C9mx/AAvvtiLt97qj6+vF0TLqZGQsxTy7oeGU6DJNd6TdhOihJCXUEJIofA2ecB8ZJVop9v2XkhBNIpKDVJnZ8OiRVIUbdWWwoiI0HLOWrbUntWSx9f7vyYpOYk1R9dgd4yd+xp8Gd56OOZ4M4OaD8JkuFbcbSrBKaQJ+ApkQKx7DkYocgVyODAEqGxQunv8x9lVsgHbHZ+6EOEe/+E9AeBh7njMij2zHHPHWBOGCAM6gxRGp3BbSrMLDhVYIcDxtbyQCynn6DCgmatidDuVW1V0YgM2AWeRBhF9ctdhONkfhB9k/QA9blX5Y9cYSgh5CSWEFIqaQiCdB6cCi9EyKhoi/YgeByrpmrx3r3SvTkqCC27zR7ffLhus779f9hY5OJN9hnm75pGYnMju81rOV8PAhjzU4SHM8WY6Nep0bUZ7lEUOMiB2OVIcuY9hGZBNNM5qUcsSZ5dN3mlZLTq7Sho7lhb/4ZxEq9/riuI/imO7bPOoGJUwd/QBY1NPc8dTp7NISPiaOo2DGT1npKvHaF8p12+LZ5BsWQ5YS4BnkWLLSRMh2HMsjpCi3ZD9PDR7DepdoyafNylKCHkJJYQUiqtBGjAd+AStLdYA3Itsru5HpZpfiopkztn06bLR2plzFhICDz0kl866dnX95S6EYGfaTpKSk5i7ay4X8jT10KFhBxLiE3io40M0Dr7OHIRtyAh5ZxZasUxX2qD1FfWi8qFgditc2q4ZOqb/4rnfGCzjPxoPkdWiwKZX8io88DB3PGbFerykueOyg4d5fumPZOQWEuBvYtfuJ2jWTPagnUe6FTirRsUzc0HqQ2fFqC9yWG8JskZZ/I1PBzx2+VM+OfcEWKNArIGOrb32ehVXjhJCXkIJIYXiamJBljSmIP+Od9IOuWw2ARnWUAlOnYJZs2Sl6NgxbXtcnJZzVldr1LbYLHx/5HsSkxNZfmA5hTa5zqTX6bmz2Z2Y483c1+Y+AkzX4aj0MbRm6w14ev3UQwuIvYuKA2LdccZ/nF0lq0aFFz33h7bTJtEa9gGD9ywS3c0dL+/L48UpPzD/N1n36RIZzqejBtGiaZ0S5o7OKt8l5FKXs2KUTEmx0wwp0fMonUB7LmcPRRIsMuHyh9DpcfCvSRtIRVVQQshLKCGkUNQWe5DLZklokZ7BQAJy4qxt5S5jt8P69VrOWaGjkcbHB0aOlKKof3+PqITL+ZdZvHcxSclJ/HRSM4kM9gnmgXYPYI430ye6z/Uxil+cTKSr9QrgW7S+dZDN1XegeRZFV+G6wg7pv0lRdOa7suM/nMtowd6Z2tu27RTjxi3h6NHL6PU6/jT+Fv7vjh7ozooS5o76UL0WBxJrQh/i9jVHJqA4K0a/UcICqVTeP/cCL1z+DxT2gqCF0PzKQnAV3kMJIS+hhJBCUdtkIsXQVDwTTAcgq0TDqHSu+eXLMHeuFEU7d2rbY2K0nLMozzeyw+mHmZ08m6SUJFIzUl3bo0OjmRA3AXO8mZb1qtJ0cw1hRZqBO6tFh4rtj0PrK+pGxQGx7hRdhrQftGW0/DOe+4Oaa5No1Yz/KCqy0aLFx5w8mUXTpqHMmTOCPn2kequuuaOTLOAt4N8V3EOzoiMcPtoSHQIuL4Uew+QUo6LWUULISyghpFBcKwjkaNRU5Lu2810tCngCeIQqzQH99psURHPnQqajAVing7vuklWi4cNdOWcgR/F/OvETSclJLNq7iKxCLSisV5NemOPNjG4/mrr+13H21AG00fyf8BQOjZAZaMOQAbFVWSGsMP7DR4v/iBgsl9Qq2ai+Zs0RZs1KZurUuwkLK3tZShQJrCe1xutyzR1jpLnjRj89d1TiHi6eHEq93JWQ+yA0/hgiGlTq3hU1ixJCXkIJIYXiWuQEsrH6c8DZl+IDjEY2V/egcs6CyJyzJUukKFq3Tttevz5MmCBFUXvPPKl8Sz7LDiwjKTmJ1UdWu0bxfQw+DGs1jIT4BAa3GHx9jeIX5xJy6WwFcikt222fH1IMDUOKo6r2kluy4dw6bRktN9Vzf0CUtoQWPgB85DSWEII5c1IwmQw8+GCH6rwqFx7mjses2M4XM3fUgb6RgekxRr6LMbGtqZFcH13xQ2gCHMtZjeHUYLAHQt466NpNjdJfAygh5CWUEFIormUKkKP3U5BjUk66IgXRGKAKOWNHjsjm6lmz4IzbUk7PnlIQPfggBHs2a5/NPusaxd91XptFqh9Q3zWK3yWiy/U1il+cImTjjLNaVNzWuRvaElo8ldaggKwWZR/UltDOrwdbgbZfZ4D6t5IRNJgn32vIgiWnCQ72YffuP9C0qffG1e25dqzHyzZ3tOjh10gDm2JMbIwx8ksTI0VGHV8CI4UdjrYFy0HIehla/RXCKtnUr6gxlBDyEkoIKRTXCzuQy2YL0JwF6yKXzJ4EYip/KatVyzlbscIz52z0aOlNdGtJA73ktGTXKP653HOu7e0btMccb2Zcx3FEhkRW9wVeGwjkOL5TFG0vtj8Kz4DYKgS7A2DNh/MbtGW0rANs2BfNhGkjOXkpFIPezuuTM/jzyz0xRg3yWvxHcexZmrljZqoV/2LmjvlGyG9ipLHT3NH3E3SXngFrLOi/h3bXSYTLDYwSQl5CCSGF4nrjIjADGefhLF3okGs4TwF3UqWu33PnpFHjjBlwwK1Zu3VrWSUymyE83OMUq93K90e+Jyk5ia/3f+0axdehY2CzgZjjzYxoM4JAn6o3CF9zpOEZEJvvti8IOZI/HDmiX8XWmaIiG6+/+jX//GA3QkDz8MvM/cOX9Gzh9JpyxH84l9Hqdvda/EdxLJdt7Eu1oku14pNqoWFp5o71fsTUYD1Gv9sw9B2Jzq+qKlDhTZQQ8hJKCCkU1ys25Dv0VOQ7tJOWyPH7ichYzkoiBGzZIgXRokVazpnRqOWcDR7syjlzklGQwZd7vyQxOZHNJza7tgf5BDGq3SjMcWb6xvS9Pkfxi5OPDIh1VovOuu3TAbeiVYvaUu4SWmGhlT59vmDHDrlEOWlSJz76YABBBTu0ZbSMFM+TajD+w503hGDeRTvjUy08n1q6uaPOR2CM9cEYK6fS9PX11/fy6HWIEkJeQgkhheJG4CDwP+AL5GA0yLGn8cgqUVzVLpedDQsXSlG0bZu2vXFjmDhR5pw1b17itCPpR5iTMoeklCSOXj7q2t40tCnjO47HHG+mdf0bxJ3YjjTjcY7m7yy2vzmau3VvSg2I/dOfvmfmzN/5/PNh3H9/u5IHeMR/rAFLhuf+Op20SbQGt3ot/uMC0BTZobYB6OM0dzx8Buv+LVgu3ApWzx4hXaCuTHNHRc2ghJCXUEJIobiRyAHmIpur3XMn+iCbq0dQ+ch2B3v2aDlnF92clfv1k1Wi++8Hf8+GbSEEW05uITE5kUV7FpFZqOV39YzsiTnezJj2Y6gXUDP9L7XCSWQG2nJk1ajIbV8YMAQu9s0j/zYLUR1kE3RhoZWLF/OIjKzE7167FS79rE2ilRn/4RBGVxj/8QTwKVLHLXPfceJORM46bGdfwWJ9DusFH6wnraWbO8YYXeLI3dxR4R2UEPISSggpFDciAhmwMAWZJuUcnY5Ahr0+RtkRnGVQVATLl8sq0erVcikNIDRU5pw98gh06VLitHxLPisOriApOYlVh1dhE/JeTHoTw1oPwxxnZkjLIfgYfKrzQq9NsoE1yGrRN8BF+J4jJPA1sYSxse/DGO/VS5VRsrBWOQrOyyqRK/7jguf+kLaaoWM14j8OICPbdMhAV1cdL3sFnB4O9hAoXAedu1yxuaOieigh5CWUEFIobnROA585HmmObUbgfuSyWW+qNg8OnDyp5ZylpmrbO3WSVaJx46BOnRKnncs5x7xd80hKSWJn2k7X9nr+9RjbYSzmeDPdGne7oZZUCnKtvDLpBz5cJMfP2lKf75lAE2foWVu00fxbqHxArDvu8R9nV8HFrcXiP/zd4j+GVDr+YzhSyz2OdLWSz2WDIy3AmgpZf4G2r0Kwp/uk09zROZVWmrmjoaHBVTEyRhvR+ylhVFWUEPISSggpFDcLRcjq0FRk6pSTOKQgGgdUccrLbpcmjTNmSNNGZ86Zr6+Wc3bHHR45Z05SzqUwO3k2c3bNIS0nzbW9bf22rlH8qNDrO9dq9+7zPPTQV+zadR6AP/yhG+8+eRcBP5ikwtiI55JSfeAepCi6i0rn75ag6DKk/SiX0MqK/3AZOt5RZvzHBmRSvR/S4tM1FHfpPbjwElhagmk1tIkt93bsBXasJ6zlmjsaGhlcGWnGKCM6nxtHDNcUSgh5CSWEFIqbkWSkIJqDNg8eCjyMnDirRrZYerqWc5acrG2PjZXN1RMnQpMmJU6z2q38cPQHkpKTWLp/KQVWaTaoQ0f/2P4kxCcwou0IgnyCqn5PtYQQgilTfuall9ZQWGijQYMAZs68l6FDW3kemIFnQGyG2z4fpE+Rs1pUXU0oBGTu1ibRLmwqGf/RoI+2jOYW/yGQHua/AG8Af3eeY0uHQ02AfMj4DLo+DKZK5uGhmTs6K0bFzR3RgzHSqFWMmhjRGZUwKo4SQl5CCSGF4mbmMjALKYqOuG0fhGyuHkKV12qE0HLO5s3Tcs70ehg0SFaJhg0Dn5I9QZkFmXy590uSUpLYeHyja3ugKZD7292POc5Mv5h+GGrIS8dbFBXZuOWW6fz+expDhrTgiy/uJTy8AiFnQeafLXc8jhTb3wltNL8rVQuI9XieiuI/mmiTaI0GssAnlLHIatAJZHUIgLOPQuZ0KBgI9WZDVPVH+d3NHa2pVuzFzB0xgjFKa7w2NDag0ythpISQl1BCSKFQyM7W75HN1d+iNXTEICtEk4BqTHjl5ckls+nTYcMGbXuDBlrOWbtSxsaBY5ePuUbxD6cfdm1vEtKECXETMMebaVO/TdXvqQYRQrj6m/bvv8gPPxzlqae6V73nSQD70Ubzt+LZfByB9M8cDgygSikrxW4Ysg9poqiU+A9rgz40v/1rTviE8pmw86jTD6pgF6TGgTBA9nfQfaBX8seEENgz7C5RZEm1IEozd2yqNV4bGhluqL6yyqKEkJdQQkihUHhyFOlaPQNZMQJZBxiL7CXqWr3LHj6s5ZyddXMivOUWKYjGjCmRcwbyjXHbqW0kJieycM9CMgoyXPu6N+6OOd7Mgx0epH5A/erdlxfIy7Pw4ouradgwkDfeqEyeexW5iNSny4HVSJcEJ/5IM3FnQOyVeCxa8+H8Rrf4j/0AfNDmeV7s8gFtsg6yZ/db6BsPhkZ3wrn7IX8j5EyC2PehXtgVPHnpCCGwX/SsGImCYuaO/jqM0W6j+hWYOwq7wHrCisgR6IJ0GJsar8sKkxJCXkIJIYVCUTp5yFyzKcDvbttvQQqiB6h60BYy12zVKi3nzOZonA0MlGJo8mTo1avU6kKBtYBvDn5DUnIS3x761mMU/55W92COM3N3y7vxNV696IfffjvLuHFL2L//IkajnsOHnyE6OqzmnrAQWI9WLTpZbH8PNCPHjlR5INCDnGNwdjVZ5zcQ1f0TsnxC+Wb9Pdxz5lt54ajm0OAw2OuAdT3EVdG4sxoIp7mjs2J03OLp2YSbuWOsY1Q/TBNGRfuKyFudh8jW3up1wToCBgXg0/b6snBQQshLKCGkUCjKRwDbkH1Ei5DNLCC7Rh5FWu9Vs5M3LU3LOTt4UNvepo2Wc9awYamnns89z/xd80lKSeK3s7+5ttf1r8uD7R8koVMC3RtXY1mqktjtgvfe28Jf/7oWi8VOREQQiYn3ceed1TUGqgYCSEETRTuK7W+KJor6Ui3d6uQlu4339Ab6ZR9h3aaRWvxHBwP42CDzdShKg8iejviPKvpUVRNhE9jO2rSKUTnmjvhA0Y6i0i8EBI4KvK7EkBJCXkIJIYVCUXnOAdORrjKnHNv0wL3I5uo7qFYJQgj46Sct5ywvT243GmVj9eTJstHaWPpk0u7zu0lKTmJOyhzO5mjLbq3rtcYcb2Z83Hiahl6Z07I7J09mkpDwNevWpQIwYkQbPv98GPXqBZR/Yk1zFmnguAL4gZIBsYORwuhu5Kh+FTgJNENqjF+BLnlnpJFjxgcQuBssbeHEYMj8jzwhLF6bRPNi/EdFuMwdjznG9U+XNHcsC12IjtBnQq+bZTIlhLyEEkIKhaLqWJEliCnAOrftbZHLZhOAav4+ycqSOWfTp8PPP2vbIyO1nLNmzUo91Wa38eOxH0lKTmLJviXkW6US0KGjX0w/EuITGNl2JMG+1TXokbEYLVr8l1OnsggIMPHxx4OZNKnztdesmwf8iBRFK9C8NEFq11vRRvNbUyn9Oh4Z4PKQ418ArBfgcBRQCJc+h+xESP8JDwdFYzA0GqB5FwVGX9FLqwpOc8fC5EIseywVHh80IQhTzNURbVeKEkJeQgkhhUJxZexBBr4moXXxBgEJSFHUtvqX3r1bVolmz4ZLl7Ttd9whq0QjR5bIOXOSVZjFV3u/IiklifWp613bA0wBjGw7EnOcmf6x/as1iv/ZZ7/y+ee/MXfuSFq1ug7y0uzIMs5ypChKLra/BZoo6o00Hi+F34EuSEOFY7gtiJ6ZCFmJkD8YwhOhrg7S1jgMHcuI/3CKooa3Vzn+ozoU7S4id2luhccFjgjEp8P1sTymhJCXUEJIoVB4hyykGJqKnP120h8piIZT5jtsRRQWajln33+v5ZyFhck4j8mToXPnMk8/nnGcOSlzSExO5FD6Idf2yOBIxseNxxxvpl2D0sf4AbZtO4UQgl695Fu/EAKr1Y7JdG37GZXJcbQltLVobV8AdZD2UcOQS2lhnqf2R9YAXwTec24s+BVSu4EwQu4a6NpXa3YXdrj8u2boeHGrjOlwYvCHhv20ZbTgFl4Zwy+OJdVCzuycCo9TFSElhGr7dhQKxXWPQL67TkXmljsbNJogG6sfBUpvgK4UJ07AF1/Ix/Hj2vbOnaUgeuihUnPOQAqY7ae3k5ScxILdC7hccNm1r2tEVxLiE3iww4M0CJRhElarnbff3sSbb24gMjKE5OQnCAur+erFVSUbaSG1HFgJuBXeMAK3o1WLmslDhiIXPk/itgCa2gsKtkHOY9DiXQgr4/2kKAPSfnB4F62C/NOe+4OaaZloDfuByTuO4sIuyPw402NarDiqR0iihJBCoVB4jRPAp8DngHN5xAc5ev800JNqz3fb7fDjj7JKtHQpFDmmgfz8tJyzfv1KzTkDKLQWsvLQShKTE/n20LdY7XLUyKg3cnfLuxlU90Fmv57Ltq3yjXrs2A5Mm3YPoaE3mBByx4YcEHQuoe0rtr892IdDh7/CvgB4H3jBuS9rPpx5CGz1gY3QvhJLokJA5h7N0LHM+A+H03Vo+yuqFhXtKyL3y7KXx9TUmEQJIYVCofA6hcBiZHP1drftXZCC6EGqb4+M7B+aO1c2WO/apW1v1kzLOYuMLPP0C7kXWLB7AUkpSfxy+hdIiYOV90CRLz4Bdl79Zzx/f3rEtdcQXdMcRhvN34QUSsD0yfDodIi6BEc2gWkgEFgEh5qC/RxkvAWd/gR+VRQVlpxi8R/HPPd7xH8MAJ+wKr+k0nyE8IPAodeXCAIlhLyGEkIKheLq8gty2Ww+UiAB1AUmA08C5SeZl4sQ8Msvsko0f76cQANZFRo8WFaJhg4tNecM5ETYiAeT+O5rh0th1AkYuQTqZNCybkvXKH5MWEz17/F65TLwHbACCtZCdAqcD4d5Y2HsUmTzUL9voMcTULceBH8LsWWLzwrxiP9YBefXlYj/oH4vbRmtTifQlV79K3Fph7N04bZCLIcs+HT2IXBoYPXvtZZQQshLKCGkUChqh4vATGScR6pjmw64B9lcfRfVTxZFehF9+aUURRu1AFcaNJBGjZMnQ1vP5RshBCNHLmLFigP8/bXb6TnGwtw9s/lq31fkWfJcx/WL6Yc5zsz97e4nxPcm/L1pgf93Ev7eDLrugh1xxRY42/4Gt5rg8fbQTX9l7tZOrPly6ezMdx7xHy78GkKjQXIZrdFd4FexUVLR/iJyF+diaGgg5PHr7+uohJCXUEJIoVDULjZkkNZUZJCWkxbIwNeJyFGmK+DQIS3nLM3NUOfWWylKmEThsBEER9QF4OLFPI4evUyPHlo1I7swmyX7lpCUksS6Y+sQDo8cf6M/I9qOICE+gQGxA6o1in+9chFpXJ0PrE+FvguQy2hb7SDcBGxjZKP1MGTV6ApWQD3ISZWj+WdXyeZrq/tEmA7qdtMm0er1gFK+NvZsO5kfZoIOwl4KQ+d7fS19KiHkJZQQUigU1w4HkRWiL4BMx7YAYByyShR/ZZe3WuHbb2WVaOVKDtrCGMdImhuzmW8ORPfIZBkCW04v0InME8xJmUNSchIHLh1wbY8IinCN4ndo2OHK7vM64Umkx/hQpAYC4PgOmDcV1t0Lm4dDvpsACcAzIDbcSzdiK4KLW7RltIxiRkk+dWRIbOMhJeI/Mj/OxJ5pJ2h8EKbY62Ns3okSQl5CCSGFQnHtkYv0Lp4CuDU/0xvZXD0COX1WPYQQTH9/Hc+9uok8C9Qhn2SmEUUWtGsnl80mTJDLaOVcY8eZHSQlJzF/93zS89Nd+7pEdMEcZ2Zsx7E0DLwCq4BrnINAG6Rhwj7H/xECjnWDot/g4rNw/p/wg59USqfcTtYhA2Kdo/kd8M4SGkDeGUj73rGM9j1YMjz3h8W7JtFyNnfBsteGXz8//PuUUq6y2+SSXP5ZKaAa9Cm1ulQbKCHkJZQQUigU1y4C2IwUREvQ0jQbAY8DjyHXXirPxYt5PProCr7+WvaY9O8fQ+KTETRZMRcWL4Z8R0CXyQTDh0tRdNddYCj7za/IVsTKgytJSkli5cGVWBwj4AadgSEth2COMzOs9TD8jDfe6P19SLeox5BGCQBkzIK0h8EWDoZN0Kal/FImo43m/1LsQjFoS2h9uRKd64ndCpd2yGrR2VXy/27xHwXZz5B//g1Mjc8Q9GCQZ/zHySXw67OQ56bgAppA148gaqSXbrD6KCHkJZQQUigU1wdngM+Qb7fOPh8jMBK5bNaHikoKa9YcISHha86ezcFk0vP22wN44YVe6J0GepmZsGCBXDrb4Rbl3qSJlnMWW/5U28W8iyzcvZDE5ER2nNGuEeYXxpj2YzDHm+nVpNcNM4q/Cem56It0jWoIYC+Aw03Afgky/w1dnpPC0p0zSHfr5chMNLeBMEKAQchq0RCgohQTm+NGzgIRyG+FsnRrwQVH/McqSFuNNaMJ2ad/QKe/RGhMS3ShbWRfkSkIdv+jlAs4vm59vqx1MaSEkJdQQkihUFxfFAFLkc3Vm9y2d0QKonHIrDNPCgqstGwpw1Lbtq3P3Lkj6dw5osRxLnbt0nLO0rVlLwYMkFWiESOkeWM57Luwj9kps5mdMptTWVpVoXmd5pjjzUyIm0BsnSuwC7gGEEhbzB3Aa8Drzh3nX4H0f0JRNwhbDk3L+VznIsXQcqQ4Oue2Tw/chmdArDtLgGfxXHZrAnyE1Mjl3rwdcXEnGZ9Fgd1ISNOeGEyHKjgJQCcrQ8OP1eoymRJCXkIJIYVCcf2SghREc5Bx6wChyEmzPwCtPI5eu/YYX321l3ffvYuAgEo2xhYWwtdfS1H0ww9azlmdOlrOWadO5V7CLuysT11PYnIiX+39ilyL5m58e/TtmOPMjGo3ilC/0Mrd0zXGImAMUB9ZFfIHsJyEI7GADbK+hO4jK+cKbUeqKqeR465i+1shBdFwpGAag0fQPaAVBr+kYjEEZM3KwnbSRsA94Ft/LRz9As6srPjEAesgvF/Fx9UQSgh5CSWEFArF9U8GMAspig4DUq9MmWKmTp07GD9+AmWvlVSB48e1nLMTJ7TtXbrAI4/A2LEyCLYccopyWLpvKUkpSfx49EfXKL6f0Y8RbUZgjjczsNlAjPpqBtTWAlak2cFx5MLlY84dp+6HnCWQNxKaTof61bBBSEVbQluPZ0CsHi3Krjg6ZGXoGBV+6fPW5FG4rRCfrj4E3h0IqfNhy0MV39ut8yBmbMXH1RBKCHmJyn4ibTYbFoulzP0KheL6xWQyYSinGfj6wQ6sIS3tEx5+OJBVq1oSFFTIvn1f06TJRKR7dUUNJ5XAZpM5Z9Ony2qR83ejnx+MGiWrRH37VlgBOZV1ijkpc0hMTmT/Rc0gsFFQI8Z1HIc53kxceNyV3+9V4EPgeWTBZh8OK8y8DXCiHwg/KNoA8T2u7EmykFZTK5Ad2lmVOGcd0K/8Q5wZZIZwAyGPhcC59fDjHRVfW1WEbgwq+kQKIUhLSyMjI+Pq35xCobhqhIWF0ahRo+u+iXfFigNMmrScixfz8PMTvPvuBp56ar1Dk/gCY5G9RN2884QXL8KcOXLpbPdubXvz5lrOWePyJ9uEEPx69leSkpOYt2sel/K1CPhOjTphjjPzUMeHCA/ylvGO98kGopDuT8uRq1cIAUc7gmUPZD8H7d6GQC85Ks4BJlTiuHnIL3k5lDBWNNlheQzknabkuhuoHqEbjIo+kWfPniUjI4OGDRsSEBBw3f+SVCgUngghyMvL4/z584SFhRERUU5T6zVMXp6FP/3pe6ZNk3PZcXHhzJs3kvbtg4EFyBH839zO6IkURKORAukKEUJOmjlzzrKz5Xa9Hu6+W1aJ7rmn5PRUMYpsRXx36DuSUpJYcWCFxyj+oBaDMMeZGd56OP4mb1k0e4//A/6NnH5f79yY8RmkPQ7WSPDZBK281By+HqhE0aYyFSFwM1acEIQpxiRH5zeNcux1lwVqauyGo7xPpM1m4+DBgzRs2JB69bxQTlYoFNcsly5d4vz587Rq1eq6WybLz7fQrdvn7N17AYAXX+zFW2/1x9fXvc9GIJPvpyLbe4sc2xsAjwBPIEMjvEBurvQkmjEDNm/WtoeHazlnrYuPP5XkUt4lFu5ZSFJyEttPb3dtD/UNZXT70ZjjzdwWdds18wfqKWRkrhXZ79wNwJ4LhyJBZELmh9D1aTB64fvLhvQeKqdoU9keIYCcr3Kw7LXgd4cf/r0dIrNUH6Eo6PphrYsgUELIa5T3iSwoKODYsWPExMTg73/t/fWhUCi8R35+PqmpqcTGxuJXwVj4tcj//d8aZs9OITHxPu68s3kFR58HpiPjPJxvcnrkKNJTwAC8ZnN84IDMOUtMhHNuc+G33SYF0ejREFhx8vmBiwdco/gnMrVG7WZ1mmGOMzMhfgLN6jTzzj1fAROQq1YPAvOdG8+9CJc/gMJboP4yiPSS2/YSoLSiDcgvXyWnxgAKtheQ/30+ppYmaazoxG6DI9NhxxNgCoGRl8BwbTSyKyHkJSojhK7XX4wKhaLyXG8/76dOZWGx2IiNlZNIRUU2srMLqVcvoApXsSI7b6cAa922t0EKIjPS3c8LWCweOWfYHeNOwcHw4INSFPXoUWGDtV3Y2Xh8I4nJiXy590tyirSw0d5Ne2OOM/NA+wcI8wvzzn1XkZ1AZ2QR5iiOGlvRUTjaAhCQsxy6Dq3cKH1lKM1HKBSYSaVFEID1tJXsmdnoAnSEvhDqWWWzFcCiIBA2uO8UBESWfaGrSE0JIX3Fh9QsU6dOJSYmBj8/P3r27MnPP/9c7vEZGRk89dRTRERE4OvrS6tWrfj222+v0t0qFArF1Wfx4j3ExU1j7NivsFhsAPj4GKoogkA6U49AuvntQYqfIGA/8AwQ6di298pv2mSCe++F5cvh5El4+21o0UL2En3+uQx77dgR/vMf2YBdBnqdnn4x/fji3i9IezGNOSPmcFfzu9ChY/OJzTz2zWM0eq8RD375IN8e+har3VrmtWqCTsh6mg3paQiATzMIuMfxAuZCRrb3nnAkcsR+HVK3Om+iiitXhnADGEDkCeyXi83kG/wgpI38/+Wd1b/X64RaFUILFy7khRde4LXXXuO3334jPj6eQYMGcf78+VKPLyoq4s477yQ1NZUvv/ySAwcO8PnnnxMZeW2o1Zudv/3tbzz22GMVH6jwGn/+85955plnavs2FDVEdnYhkyYtY/ToL7l8uQCbTZCenu+lq7dDVobOIPuI2gI5wP+A9kB/4Cu0vLMroHFjeOUVOHgQ1q+XAa/+/rBnD7zwgtz/wAOwerUc1S+DQJ9AxsWNY/X41Zx8/iT/Gvgv2jVoR6GtkIV7FnLPvHto8kETXlj9AslpyWVex9u86Pj3c+QUGQD1HD+Xft/A6aPefUIDsiH6NcfHm4HLVbuEzqjDECGbiaynSvkah8XLf4sn29+IiFqkR48e4qmnnnJ9bLPZROPGjcU777xT6vHTpk0TzZo1E0VFRdV+zszMTAGIzMzMEvvy8/PF3r17RX5+frWvf6PTt29f8eyzz5bYfvbsWREcHCxSU1NL7NuyZYvQ6/Xi7rvvLrFv3bp1AhCXL18usS86Olr85z//8di2du1aMWTIEFG3bl3h7+8v2rZtK1544QVx6tSp6r6kCsnPzxd/+MMfRN26dUVgYKAYOXKkSEtLK/cc5Ap+ice///1v1zGXLl0SDz30kAgODhahoaFi0qRJIjs7u9TrHTp0SAQFBYnQ0FCP7RcuXBDBwcHiyJEjV/w6bzau9Z/3rVtPiubNPxLwutDpXhd/+cuPoqjIWoPPaBdC/CiEGCmE0AshcDyaCCH+nxCi/O/5KpORIcS0aUJ06yaEnEGTj6goIf7+dyGOHavcXdvt4tczv4o/fvtHUf/f9QWv43rETYsT7/30njiTdca79178HoQQ7YT8bL3r2mgT4lArIfYhxPaXhMgvqJkndz7x/Kqfmvt9rkh/M13kfptbcueefwsxFyE2PXCld+g1ynv/vhJqrSJUVFTEr7/+ysCBA13b9Ho9AwcOZOvWraWes3z5cnr16sVTTz1FeHg4HTp04O2338ZWzl8QiqvD9OnTufXWW4mOji6xb8aMGTzzzDNs3LiRM2fOVPs5Pv30UwYOHEijRo346quv2Lt3L5988gmZmZm8//77V3L75fL888+zYsUKFi9ezIYNGzhz5gwjR5Zfhz579qzHY+bMmeh0Ou6//37XMePGjWPPnj2sWbOGb775ho0bN5ZaUbNYLIwdO5Y+ffqU2Fe/fn0GDRrEtGnTrvyFKq4JrFY7/+//baB375kcOXKZpk1DWb9+Iv/4R39MppqcbtOhVYFSgb8gI0VPAX9DuuaMA7ZS+thSFQkNhSeekCP4O3fCM8/IGI+TJ+HNN6FZM7jzThkKW1BQ5mV0Oh1dIrrw0ZCPOPPCGZY/uJxR7UbhY/Ah5VwKf1rzJ5r8pwlD5g5hwe4F5Fu8VVFzuwe0qtBHOMygdXqtKhSwCE6XvtJxxQx1/Lui6qcaI2UTdKkVoTqd5L+XVUWoVKxWq5g+fboYO3asGDBggLjjjjs8HpXh9OnTAhBbtmzx2P7SSy+JHj16lHpO69atha+vr5g0aZL45ZdfxIIFC0TdunXF66+/XubzFBQUiMzMTNfj5MmTN2RFqLTqSXx8vHjttddcHwPi888/F/fdd5/w9/cXLVq0EMuWLfM4Z9euXWLw4MEiMDBQNGzYUIwfP15cuHBBCCFEQkJCiQrHMcdfbe3btxdTpkwpcV/Z2dkiKChI7N+/X4wZM0a89dZbHvsrWxE6efKk8PHxEc8991ypr7+0871BRkaGMJlMYvHixa5t+/btE4DYunVrpa9z7733iv79+7s+3rt3rwDEjh07XNu+++47odPpxOnTpz3Offnll8X48ePFF198UaIiJIQQiYmJokmTJlV4VQohrt2f98JCq+ja9VMBr4uxY78Uly/X5v0VCCHmCCFuEVqFCCFEZyHEdCFEKZWEKyE/X4j584UYONCzSlS3rhB//KMQycmVvtSlvEti2o5potf0Xh5VopB3QsTkZZPFhtQNwma3ee3WC4QQ4UJ+duY4N1qzhNgf5KgKTRPC5r3nc7HJ8aR1hBCWqp1qy7SJ9DfTRfr/Sxf2QrvnzvxzsiI0VyeEJcdLN3tlXFMVoWeffZZnn30Wm81Ghw4diI+P93jUFHa7nYYNG/LZZ5/RtWtXxowZw1/+8hc++eSTMs955513CA0NdT2ioqKq9qRCSI+M2njUwEDfG2+8wejRo0lJSeHuu+9m3LhxpDuSpjMyMujfvz+dO3fml19+YdWqVZw7d47Ro0cD8NFHH9GrVy8effRRV6UjKiqK9PR09u7dS7duJZ1rFy1aRJs2bWjdujXjx49n5syZiGq8rsWLF1NUVMTLL79c6v6wcvKOhgwZQlBQUJmP9u3bl3nur7/+isVi8ahctmnThqZNm5ZZuSzOuXPnWLlyJZMnT3Zt27p1K2FhYR6fs4EDB6LX69m+XfNPWbt2LYsXL2bq1KllXr9Hjx6cOnWK1NTUSt2P4tpDCIHdLn8ufHwMzJ07ktmzRzBv3v2EhdXmRJsvWhXoF+BhwA/4HelF1AR4CTkv5QX8/ORE2Zo1cOwY/P3vEBUF6enw8ccQHw/du8Mnn0BmZrmXqutflye6PcGWyVs4+PRB/nb734gOjSarMIsZv8+g76y+tPi4Ba+te43D6Yev+NZ9gacd/38fR83MEAyhEx0HzIPz6Vf8PCW4BaiL7BHaUrVT9SF6dCE6EGA9U6wq5NcQ/CMAARnFk2BvLKplDrBgwQIWLVrE3XffXe0nrl+/PgaDgXPuPhPIN41GjRqVek5ERESJjKC2bduSlpZGUVERPj4+Jc555ZVXeOGFF1wfZ2VlVU0M5eVBUFDFx9UEOTmV8tuoChMnTmTsWOm//vbbb/Pxxx/z888/M3jwYKZMmULnzp15++23XcfPnDmTqKgoDh48SKtWrfDx8SEgIMDja3TixAmEEDQuxVZ/xowZjB8/HoDBgweTmZnJhg0b6NevX5Xu+9ChQ4SEhFTLBXj69Onk55ddDjeV43yblpaGj49PCaEVHh5OWlpapZ4/MTGR4OBgj+W0tLQ0Gjb09BYxGo3UrVvXdd1Lly4xceJE5syZU+6oqPPzfvz4cWJiYip1T4prh4yMAp58ciXNm9fhH//oD0Dr1vVp3bp+Ld9ZcboiZ7Tfdfw7Dene9x7yrf9u5MTZILwyhxMTA2+8IcXQmjVyDH/ZMvjlF/l44QUt5+z228sdT29ZryVv3vEmr/d7nU3HN5GUnMTivYs5lnGMNze+yZsb3+TWqFsxx5kZ3X40dfyrEZYKPAm8jZSJ63EYQdd5GjKmgM9mOPsrNBpUrWuXiRH5qZ+DDGu9vYqnRxqxZFmwnbZJh2l3wuIh/6ycHKt/i1du91qkWt+tPj4+tGjR4oqe2MfHh65du/Ljjz+6ttntdn788Ud69epV6jm33XYbhw8fxm7XRv0OHjxIREREqSIIwNfXl5CQEI/HzUxcnBZoGBgYSEhIiGtKLzk5mXXr1nlUS9q0kSOUR44cKfOaTpFR3IvlwIED/Pzzzy7hZTQaGTNmDDNmzKjyfQshqu0mGxkZSYsWLcp8lNbX5E1mzpzJuHHjquxV8+ijj/LQQw9x++3l/2Zzmn/m5eVV+x4VtcPGjceJj/+EBQt28+67Wzh9ujKpmrVNPWQV6BCyMWUwsv6xEvmO3Ar4gCqPMZWFwQCDB0vn6tOn4YMPoH17yM+H2bOhXz/pWv3Pf8LZs+VeSq/T0zemLzPunUHan9KYN3Ieg1sMRq/Ts+XkFp5Y+QQR70cwevFovjn4DRZb1YK36yFrZiClIQC+rcH/TtAJsM+GrJzST74SrqRPqInqE6qWEHrxxRf56KOPqrXE4c4LL7zA559/TmJiIvv27ePJJ58kNzeXhx+W30pms5lXXnnFdfyTTz5Jeno6zz77LAcPHmTlypW8/fbbPPXUU1d0H+USECArM7XxCKi8R4hery/x9bBYSv4QF69+6HQ6l7DMyclh2LBh7Ny50+Nx6NChct+M69eXf7levuz5i2/GjBlYrVYaN26M0WjEaDQybdo0vvrqKzIdZW2nMM0spcydkZFBaGgoAK1atSIzM5OzFfyiK40rWRpr1KgRRUVFJUJ4y6tcurNp0yYOHDjAI488UuK6xW0irFYr6enpruuuXbuW9957z/W5mzx5MpmZmRiNRmbOnOk6z7m02aBBgwrvR3FtUFRk49VXf6Rfv1mcOJFJ8+Z12LhxIpGR19MfagbkO/B3wEFkFnsYcATZOhwJPIq0HPQSDRrA88/Drl2wbRs8+qis2B86JMfzo6Jg+HBZOSrl9587AaYAxnYcy3fjvuPk8yd598536dCwA4W2QhbvXcyw+cOI/CCS51Y9x+9nf6/0+93zyObplchUegDq/VH+678czhyv5osvh0HIytB+oIqrfO5CqMRrdI7Q3+heQtVpLLrvvvtEaGioiI2NFUOHDhUjRozweFSF//73v6Jp06bCx8dH9OjRQ2zbts21r2/fviIhIcHj+C1btoiePXsKX19f0axZM/HWW28Jq7XyI6U36vh8jx49xEsvveT6ODMzU/j7+5doll66dKnHeaGhoeKLL74QQgjx6quvitatWwuLpeyOuzvvvFM8/fTTHttsNpsICQnxuLbFYhHh4eHi/fffF7t27fJ4NG/eXEybNk0IIURWVpbQ6/Xiq6++8rjmkSNHBCA2b94shBDixIkT1W6WPnXqlDh06FCZj9JG/p04m6W//PJL17b9+/dXulk6ISFBdO3atcR2Z7P0L7/84tq2evVqj2bpvXv3enze/vGPf4jg4GCxa9cukZ6e7jrvhx9+ECaTSeTl5VV4PwqN2vp5P3DgoujW7TMBrwt4XUya9LXIyqqh0eqrTo4Q4jMhRJzwbK6+Tcj57kLvP2V2thAzZwpx222eDdaNGgnxf/8nxIEDlb6U3W4Xv535TTz33XOi4bsNPZqsO/yvg/j35n+L01mnK7zOfUK+6kdcF7YKcTDW0TT9FyEKq28BUyZ3OJ70w6qdZrfYRfpb6SL9zXRhTS/2XpqxTzZMLwwUwlaT1g2Vo6aapaslhCZOnFju41rmRhVCf/7zn0WjRo3Exo0bRUpKirjvvvtEUFBQlYTQ6dOnRYMGDcSoUaPEzz//LA4fPixWrVolJk6c6BKbjz76qOjevbs4duyYuHDhgrA5piBGjhwpXnzxRdd1ly5dKnx8fERGRkaJe3355ZdFt27dXB8/9thjIiYmRixbtkwcPXpUbNiwQdxyyy3illtuEXa7NskwdepUodPpxKRJk8T69etFamqq2Lx5s3jsscfECy+8cKWfwjJ54oknRNOmTcXatWvFL7/8Inr16iV69erlcUzr1q3FkiVLPLZlZmaKgIAAl+grzuDBg0Xnzp3F9u3bxebNm0XLli3F2LFjy7yPsqbGXnvtNY+JNEXlqI2f97y8ItGw4bsCXhd16vxTLF6856o999XFLuQ40xghhFFogihcCPE3IUQN+X7t2yfESy8J0bChpyjq00eIWbOEyKn89FORtUh8c+AbMXrxaOH7/3xdgkj/hl4Mmj1IzE2ZK3KLSp+a2yzkq/UVbu5Ll96XQiilhRDHKhZTVeYDx5MOqPqpmTMyRfqb6aIgpZggt1mFWOAvxVBm5QVlTXFNCaHrmRtVCGVmZooxY8aIkJAQERUVJWbNmlXq+Hx5QkgIIQ4ePChGjBghwsLChL+/v2jTpo147rnnXILkwIED4pZbbhH+/v4e4/PffvutiIyMdAmjoUOHlmqgKIQQ27dvF4BIdozC5ufni9dee020adNG+Pv7i9jYWPHYY4+5xvbdWbNmjRg0aJCoU6eO8PPzE23atBF/+tOfxJkzNWeY5jRUrFOnjggICBAjRowQZ8+e9TgG8Pg8CiHEp59+Kvz9/UsVg0JIQ8WxY8eKoKAgERISIh5++OEyDRWFKFsItW7dWsyfXw03tZuc2vp5nz79V9G/f6I4edK7v8yvXc4IIV4XQkQITRAZhBCjhBDrhRRNXqaoSIilS4W45x4h9HpNEAUHC/HYY0Js3y6EvfLPm56XLj795VNx24zbPKpEQW8HiYe/flisO7bOYxTfLoToKeQr/Ztzo/WyEPsCpBj6eXqVnr9SHHQ8oVEIUcVvrdzV5RgrruohhdDxRV64ySujpoTQFYWuXrhwgQMHDgDQunXr66JHQYWu1gxCCHr27Mnzzz/vao5W1DzfffcdL774IikpKRiN10ZC9PXC1fp5X7PmCP7+Jnr3bgrgUAKg13sphPO6wQJ8jYz12Oi2vQNy2mw8MvfMy5w+DYmJMHMmuA99dOwoJ87Gj4d69Sp9ucPph5mdPJuklCRSM1Jd26NDo5kQN4EJ8RNoVa8Vi4HRyAbqE0AAwNnHIfMzKOgPkV9Cg+pNp5VJG+AAsAh4oPKnFe0pIndJLoZGBkIeLdantv0xOPI5tH8V4t/y4s1WnWsqdDU3N5dJkyYRERHB7bffzu23307jxo2ZPHmymly5SdHpdHz22WdYrVc38PBmJzc3ly+++EKJoGuQggIrL7ywmrvumsNDD33F5ctyulKn092EIgjAhHx33gCkAI8j5cFu5OB5JDJW/YB3nzYyEl59VeacrVsnhY+fn2y4fu45mXM2Zgx8/z3Y7RVerkXdFrxxxxsc+eMRNk7cyCOdHyHEN4Tjmcf5x6Z/0HpKa3rN6MW5HZ8QbbdxCUhynlzH4TTkuwHO1MAklnN67JuqneZsmLadsyEsxWojN8HkWLWE0AsvvMCGDRtYsWIFGRkZZGRksGzZMjZs2MCLL75Y8QUUNySdOnViwoQJtX0bNxWjRo2iZ8+etX0bimLs2XOenj2n85//bANg2LBW+PoqsarREfgEOA18CLQEsoCPkWWNu4DlyEx3L6HXy1H72bPlmP3UqdClCxQVwaJFMGgQxMbC66/D8Yonu/Q6PX2i+/D58M9JezGN+ffPZ0iLIeh1erad2sYz3z7JqTUvAfD/inIotFnAryP49QWdDayJkOvluI9hjn+/pUqfOl2IDl1wGcaKdW78ybFqLY3Vr1+fL7/8soQp3rp16xg9ejQXLlzw1v15HbU0plAooGZ+3oUQTJnyMy+9tIbCQhsNGgQwc+a9DB3ayivXv3GxAz8gl82+QcsyiwaeQLpY15DB5M6d0qxxzhxw2mTodDLnbPJkuPde8PWt9OXOZp9l/u75JCYnkpJ+BJ4/Cf51CF46gYf96vLHdk1onv8y2MPAuA1atfbea7Eg4+EygJ+AWyt/as7iHCz7Lfj398fvNrefB0s2LHa8V468AH61Z/R5TS2N5eXlER4eXmJ7w4YN1dKYQqG4KcnLs3D33fP44x9XUVhoY8iQFuza9aQSQZVCj1YFOgK8jOyuOQ68gozymAjs8P5Td+oE//2vrBLNmwf9+8vW6u+/l0tmkZFyCW1X5WImIoIjeKHXCyQ/kczOST/R/ezvAGR3eZSPf/6Y1okvczbfCPoMLl/8DLzZTmAChjj+X0VzRZef0Oli92MKhqDm8v8ZN+byWLWEUK9evXjttdcocEsEzs/P54033ijTFVqhUChuZPz9jQQF+eDra+C//x3CypUPER5eS/E81zWxwL+Ak8AsoBtQCCQCPYCeyK6bshPpq4WfH4wdCz/+KJuq//pXKYIuXYKPPoK4OOjRAz77DLIq5wAe3yiepc36YxICom9nYO9XMep9+eigFBtH+IC7vhjAnJQ55Bbleud1XGGfUKnGiq4+oZ1XcmfXLNVaGtu9ezeDBg2isLDQFbKanJyMn58fq1evLtept7ZRS2MKhQK88/Oel2fBYrERGirPT0/P5+zZbNq3b1jBmYqq8TNy2WwhUOTYVh+5ZPYEcgmtBrDZZGVoxgxYvlxzqw4IgAcekEtnvXuXm3MGkICUbqOBTwsyWLH3C0b7vYivXtDrB9h2CQJNgYxqN4qE+AT6xvRFr6tmXls6cnnMhoyCi6ncacIqyPhXBtgh5OkQDHW0TE92/T/Y9XeImQC3JpV5jZqmppbGqj0+n5eXx9y5c9m/fz8gw0/HjRvnyj26VlFCSKFQwJX/vP/++1keemgJHTs2ZOHCUdXOwlNUhfPADGTg60nHNj2yS/hpYAAy4KImnvq8bLSeMQP27dO2t2oFkyZBQgKUEbuTDHRy3OkRHNrk9ETITmTXxebct8PG0axU1/FRIVFMiJuAOd5M6/rV6CHqi3Qo+C/y01JJsmZkYTtjI3BEID4d3PI7T62AjcMhrCPcnVL1+/ES15wQul5RQkihUED1f97tdsH772/hL39Zi8ViJyIiiF9/fYyIiOAavFuFJ1bk2s9UZJO1k9ZITyIzEFozTy2EzDmbMQMWLIBcx5KWwQBDh8oq0ZAhUMzS4i5gDfAc8B+Agt8gtSsIA8K6ni2hOpKSk1i4ZyGZhVr2Yo/IHiTEJzCm/RjqBVTS7+g9ZC7uXcDqyr+0vNV5FP5ciG93XwIGu2Vd5p6AZdGgM8LoHDBUvnncm9S6EFq+fDlDhgzBZDKxfPnyco8dPny4V26uJlBCSKFQQPV+3k+dyiIh4WvWrj0GwIgRbfjss2HUr1/5gGSFt9kP/A/ZT5Tt2BYITECKog4199Q5OXL0fsYM2LJF2x4RIStEkyZBy5aA1CODkZaRJ/n/7J15WFTl24DvmWHfUUBEUFQCxMzdUjOXTFwyrfxU3M2lRSvTss3SrCxLf6lZWgoupalZprlmpmlqruEGbogbAqJsssPM8/1xYGCcAXHF5dzXdS7OebfzvsPMnGee91mU9LScag55/0LGcKg7A+xtyc7P5vfjv7PwwELWn1yPXhQ/eGutNU8HPs2A+gPo/FBnbHQ2lMpRoA5gA1wCyimj5x3OI3NFJrqqOlyGlng+isAvlSEvBTruh0oNyzfgLabCBSGtVktCQgJeXl5otaXvXWo0GvT6Wxj74RajCkJ3N/7+/owaNYpRo0aVq/2WLVto27YtKSkpuLm5Gcv79+9PnTp1eO+9927PRFXMeOedd8jMzOTrr7+u6KmUi+v9vC9fHsXw4b+TkpKDg4M106d3ZMiQhuqW2F3DFeAHFC1RVIny1ij7Q91Q3KpuE9HRikC0cCGUDCHzxBMwdCjy/PM84uDAYRRT8LEA6UvgQhjoK4PtLgiobTJkYkYiiw8tZuHBhUQmRBrLK9tXJuzhMAbUH0ATnybm70EBAlEy0f8CPFe+JehT9aR/nQ5acBvrhsa6xLh/toWLW+CxeVBrUPkGvMXcLkFIzTVWgns519idonXr1vL666/ftvEvXrwomZmWExlaIjc3V+Lj402Ss0ZGRkqlSpUs5u1avHixaLVaeeWVV8zqSsvlJWI5T9vy5culdevW4uLiIo6OjlKvXj356KOP5PLly+We//Vy+fJl6dOnjzg7O4urq6u88MILZeYni42NFZSvRbNj2bLi3EG7d++Wdu3aiaurq7i5uUmHDh0kMjLSZKwDBw7I448/Lra2tuLr6yuTJ082qU9KShJnZ2eJiYm5tYu+TVzP5z0zM098ff8nMEGaNPlejh27dAdmqHJjGERks4g8L0pOs6L8ZtVEZKKIxJfa85aQmyvyyy8inTub5jlzcZGIBQuUmRgMkisiYsgTOeZdmH9skkhB6RneDyQckDc3vCneU7xN8p3VmVlHPtv2mZxNPWvaYZQoyx5c/qkbDAZJ+V+KJE9Mlvwz+aaVe0cpOcf2vl7+AW8xtyvX2A2apZuTWhSISkXlJvD09MTBofzbDDY2Nnh7e5v8Ivr666/5v//7P5yczF2Xw8PDGTt2LD/99JNJ+Ifr5f3336dXr140bdqUdevWcfjwYaZOncqBAwf44Ycfbnjca9G3b1+OHDnCxo0bWb16NVu3bmX48OGltvfz8yM+Pt7k+Oijj3BycqJTJyXgSEZGBh07dqR69ers2rWLf/75B2dnZ0JDQ8kv9JJJT0+nQ4cO1KhRg3379vHll18yYcIEvv/+e+O9PDw8CA0NZdasWbdt/RWFg4M1Cxd25733HmfHjhcIDCx/biqVO40GaAMsB04D41DcqOKAD4HqQB+UiIO3wUTWxgaeew7WrFEiVH/yiRKxOj2dPsOG4R0fT5xGw7INGyDlCri/pPSz/QkuppQ67CNVHuHLDl9y7o1zrOu7jrCHw7CzsiP6UjTvbnqXGtNq0H5hexYeWEhGXkZxlOk1KPEqy4FGo8GqWrEbvQn3c6qNG5GePv/8c1myZInxukePHqLRaMTHx8fsV+Tdxv2qEapRo4Z89dVXJmWWss/PmTNHunfvLvb29hIQECArV6406XPo0CHp2LGjODo6ipeXl/Tr18+YBX7gwIFmWoWi7PNXU6Rd+f333yUwMFDs7e3l+eefl8zMTJk/f77UqFFD3Nzc5NVXX5WCEr+Crl7Htea8efNmASQlJUVERAoKCsTV1VVWr15tNqdTp04Zs8E/+uijsmjRIotztgQlNEK7du0SQKZNm2axbdFcbjVRUVECyJ49e4xl69atE41GI3FxceUep0GDBvLCCy8Yr/fs2SOAnD1b/Ivy4MGDAsiJEydEROTbb78Vd3d3yc3NNbZ5++23JSgoyGTsBQsWiK+v73WvrSIo6/Oen6+XiRO3yLx5/935iancBnJEZJGItJBiDREi0kBE5opI+bXQN4ReL7Jpk0ifPvLpBx8IIlL/v//EYGMjMqSbSJSVohXav+y6stKn5aRJ+P5waT2vtYmWyOFTBxm0dJDkO+Ury/y3/FPN3p4tyROT5crSqzTNyf8pGqFlbtc1x1vJXaURmj17Nn5+fgBs3LiRP//8k/Xr19OpUyfeeuutmxTN7jJEoCCzYo7b4ND30Ucf0bNnTw4ePEjnzp3p27cvycnJgKLVa9euHQ0bNmTv3r2sX7+exMREevbsCcD06dNp3rw5w4YNM2oXit4HlsjKymLGjBksWbKE9evXs2XLFp599lnWrl3L2rVr+eGHH/juu+9Yvnz5Dc/5ag4ePEhaWhpNmjQxq5s3bx5dunTB1dWVfv36ER4eXt6XzYRFixbh5OTEK6+8YrG+pK3S1dStWxcnJ6dSjyItjSV27tyJm5ubydrat2+PVqtl165d5Zr7vn37iIyMZMiQIcayoKAgKleuTHh4OHl5eWRnZxMeHk6dOnXw9/c33vuJJ57AxqbYQDM0NJRjx46RklL8K7ZZs2acP3+e06dPl2s+dyOxsSm0aTOfDz/cwsiRa4mPv3LtTip3ObYUa4H2A0MAOyASJRaRLzAGxbn9NqDVKhGrFy3ipdGjccjP50CDBvz1+OMQvhI2FGm0F8DJU+Ue1sXWhRcavsCWQVs49dopJraZSEClALLys5gfPZ9favwCwF8z/iI6KfoaoymUjDAtJZ9BLiGgtYb8VMg6Z7nzPcoNZQFMSEgwPgBXr15Nz5496dChA/7+/vdfAkh9FiyroOiwPTPAyvGWDjlo0CDCwsIAmDRpEjNmzGD37t107NiRmTNn0rBhQyZNmmRsHxERgZ+fH8ePHycwMBAbGxscHBzwLiVeRkny8/OZNWsWtWsrBoA9evTghx9+IDExEScnJ0JCQmjbti2bN2+mV69eNzTnqzlz5gw6nQ4vL9OAdgaDgfnz5xsNeXv37s2YMWOMxrLXw4kTJ6hVqxbW1tdveLl27VrjdpMlyorDVeSsUBIrKysqVapEQkJCue5fJOC0aFGchMjZ2ZktW7bQvXt3Pv74YwAeeughNmzYYMxqn5CQYPY6FaXZSUhIwN3dHQAfHx9A+T8UCVH3CiLCokWHeOWVNVy5koeLiy3ffttZdYu/72gIzAW+ACJQYhKdAv6H4tjeEcW4uiM3mHyhTCq5ufECSnjIqb/+ypPvvQc/L4CO+WC3EZbOhX/+U9zwn3mm3HnOarrX5IPWHzDuiXH8e/5fFh5YyOaozfQ60otKmyoR8m0ITXyaMLD+QHo/3BsPB8s5w3RVdaAFyRAMaQZ0boWBFXU24FIHUg8qEaYdq9+S1+Nu4Ib+y+7u7pw7p0iE69evp3379oDyRXI3e4ypwCOPPGI8d3R0xMXFhYsXLwJKdPDNmzebaCiCg4MBiIkp/ZdSSS1HSY2Gg4ODUQgC5cHp7+9vYrtTpUoV4/1vZM5Xk52dja2trZkXxcaNG8nMzKRz586AYs/y1FNPERERUea9LSE3oamrUaMGAQEBpR7VqlW74bGvRXZ2NosXLzbRBhWVDxkyhJYtW/Lvv/+yfft2Hn74Ybp06UJ29vVlxy4S5O61nIOpqTn07fsr/fuv4MqVPFq29OPAgZfo2/eRa3dWuUepBLwJnEAxpOmEsuO/DugCPARMRQnVfGsZhWLJtM7VlSPffAMbL0JWbdDkwVOpsGcv9OwJvr4wejQcOVLusTUaDc39mjPr6VlMmz4N0QoNEhvgn+bP3gt7eXXdq1SdWpXuS7qzInoFuQW5pv2tNeiqKMKP/vxVz/P71E7ohjRCzz33HH369OGhhx7i8uXLxofff//9R0BAwC2dYIWjc1A0MxV173Ki1WrNHtCWNA9XazE0Gg0Gg2JJl5GRQdeuXZk8ebJZv6pVq5Z675JajpIaDUv3Kuv+pXE9fTw8PMjKyiIvL89kGyc8PJzk5GST+RkMBg4ePMhHH32EVqvFxcWFzMxMDAaDSYiIIkcAV1clQFtgYCD//PMP+fn5160Vqlu3LmfOnCm1vlWrVqxbt85inbe3t5kAWFBQQHJycrk0dMuXLycrK4sBAwaYlC9evJjTp0+zc+dO47oXL16Mu7s7K1eupHfv3nh7e5OYmGjSr+i65L2Ltiw9PT2vOZ+7hezsfBo3jiA2NhWdTsOECW14553HsbK69doAlbsRLdC58DiJoiGKQNESvQl8gLKtNgJFm3Tz1AaeBX5F0UOFOzhA7Q8hfiA4rYAvpsCH78OFC/DVV8rx6KOKlqh3b3C+Skup18O2bUri2KpVoVUr0Omw87aD5sB2OFj9IBGPRbDw4EL2x+9n5bGVrDy2kkr2lehdtzcD6g+gWbVmisG0rxX6eD0FcQWmEabdlJRapEbektfhbuGGPulfffUVI0eOJCQkhI0bNxp/4cfHx5dqN3HPotEo21MVcVxHfBJPT0/i4+ON1+np6cTGxl7XUhs1asSRI0fw9/c301Q4OipbdDY2NmZav5Jajtup0SgPDRo0ACAqqjiOyOXLl1m5ciVLliwhMjLSePz333+kpKTwxx9/AIqtTEFBAZGRkSZj7t+/H1AEIIA+ffqQkZHBt99+a3EOZXlQrl271mQOVx9z584ttW/z5s1JTU1l3759xrK//voLg8FQri3p8PBwnnnmGTMhJSsrC61Wa6JFK7ouEjibN2/O1q1bTYTrjRs3EhQUZNwWAyUPobW19V2db/Bq7O2t6dWrLrVru7N9+wuMG/eEKgQ9sASgaIHigDlAfSAbJa1HI6Al8BPF+c5unDGFf38EEgCce4LGA3SJUP8yxJ6G1avh2WeVKNW7dsHw4Uoaj8GDYft2xY7011/B3x/atoU+fZS//v5KORiTsDr/4czrj73OvuH7OPTyIca2GIuPsw/J2cl8u/dbHgt/jDrf1GHStkmkVkoFHiDPsVtqen0PcL96jb3zzjvi7e0tW7dulYMHD0r37t3FycnJzGvs6lg4rq6uMm/ePBERiYuLE09PT+nRo4fs3r1bTp48KevXr5dBgwYZPbuGDRsmTZs2ldjYWElKShK9Xm9xPpY8sMaPHy/169c3KRs4cKB069bNeG3Ja6ysOV/tNSYi0qhRI/n666+N11999ZVUrVrVJNZQET179pQePXoYrzt06CD169eXP//8U06dOiXr1q2ToKAg6dWrl0m/sWPHik6nk7feekt27Nghp0+flj///FN69OhRqjfZraBjx47SsGFD2bVrl/zzzz/y0EMPSVhYmLH+/PnzEhQUJLt27TLpd+LECdFoNLJu3TqzMaOjo8XW1lZefvlliYqKksOHD0u/fv3E1dVVLly4ICIiqampUqVKFenfv78cPnxYlixZIg4ODvLdd9+ZjDV+/Hhp167dbVj5rSU7O19SU68YP++5uQWSnp5T0dNSueswiMg/IhImIlZS7G1WRUQ+EJHzNzV688LRxhUVJL6reI8daCRysUQ8soQEkS+/FAkOLo5LBCI+PqbXRYdGoxy//CJyuPAmtiKSYXr/An2BbDi5Qfr+0lfsP7E3ep1Vn1Bdkicmy6WPL0laRolnZc4lxXNsESJ5t9ZzqzxUuNfYqlWrjL8GV61aVeahcud59913ad26NU8//TRdunShe/fuJvY55cHHx4ft27ej1+vp0KED9erVY9SoUbi5uRm3TN588010Oh0hISF4enpy9uzZ27Gcm2Lo0KEsWrTIeB0REcGzzz5rMQLw888/z6pVq7h06RIAS5cupXXr1rz44ovUrVuX1157jW7duplpaiZPnszixYvZtWsXoaGh1K1bl9GjR/PII48wcODA27a2RYsWERwczJNPPknnzp15/PHHTWL55Ofnc+zYMTMbnYiICHx9fenQoYPZmMHBwfz+++8cPHiQ5s2b06pVKy5cuMD69euNW6Kurq788ccfxMbG0rhxY8aMGcOHH35oFsNoyZIlDBs27Das/NYgIiQlZRIVlcS5c+nG7WQbGx3OzhWTP0nlbkaDogVajJIYYyLgAyQCH6Nkve8BbOFGYhIVaYW+BTIB3F8BdGCzHy5sK25YpQq8+SZERSmaoMGDwdFR2TqzRJGZxKhREKRXsrzmAptMm+m0OjrU7sCPz/1I4puJRDwTQRv/NpzlLImSiFa0dJ3Wlf4r+rMxZiN6azdw8FU6px667vXeragpNkqgpti4P8jOziYoKIilS5fSvHnzip7OA8O6desYM2YMBw8eNHqb3U3k5+s5cyaN1FQlkKajowa9PpmAgNrq513lOsgHfkNJ5fF3ifK6KHZE/VEyil0bPUomjFOFo70CcPZ5yPoVsrpD4CJwKsVWdO1a6NLl2jfZvBl+baNkoh+KsuN3Dc6knuHS4kvUulyLDwwf8A3fAODj7EM/NzsGaE5Rt+VMCBxhuh6Dnm1ntxF/JZ6qzlVpVb0VOq3u2jcsJ7crxUa5NUIGg8HoumswGEo97mYhSOXBwN7enoULFxq1PCp3hszMTObNm3dXCkFpaTlERSWRmpqDRgO+vi74+7uh06m2QCrXizXwfyhaoEPASyhJXo+giDLVgNdQMp+WjQ7FgwwUx309gMfrSoH9Oog7UXrntLTS60oSH2+0EypvlOkabjWoW1+x8xtbcywvN3kZdzt3Lly5wBfnTvHwWWiyZgIzds0gKVPJq/Zr9K/4T/en7YK29Pm1D20XtMV/uj+/Rv9avnlWIOXWCN0vqBohFZUHB4NBiItLJzExEwA7Oytq1XLHwcFa/byr3ELSgAUoep3jJcrbo2iJnqY0J+0MlKQfKcAKoLsIxDwCBYchYxTU/xKsLfTdskUxjL4WmzdD8zbgUXizPYB5vFkz8s/kk7EwA42zBtfXXcnT57HmxBoW/vsZa87upciM2kprRUPvhuy5sMdsDA2KOcLynst5rk45M7+WQYVrhEry2muvMWPGDLPymTNnljtruIqKisqdICND8fDx8nKkTh0PHBxuYwZylQcUVxQtUDTwB0qmey3wJ4qjfG3gcyDJrKcTik4JYAoo3sKVX1MK7JZBQqJZH0Bxkff1Ld27WKMBPz+lnS1QZB64unwrsvKxAg3IFUHSBVsrW56r8xy/Pb+YCzVhhpcVTao2psBQYFEIApBCu6lR60ehN9y9u0U3JAj98ssvtGzZ0qy8RYsW10yXoKKionI7kULXHgCtVkPNmu4EBFSienVXdStM5TajBZ5CsSE6BbwDVAbOAu+ipPIYAOw26TUSZcNtO7ALwLUv4AZWF+Dir5bTLel0MH26cl6aMDRtmtIOipOw/l6+lZQMrGjiRu9cG087R151LWBPrx+Y121emeMIwrn0c2w7u63MdhXJDX0rXL582RhcriQuLi6qXYaKikqFkZ+v58SJZOLiivOD2dlZ4eambn2p3GlqAJ8B51G2zZqixB/6AXi08HoBkIMP0Lew11QArQO4vaAUWC2C5HTLt3juOVi+HCzFb5s2TakvojOKE9x+lDBJ5aBk3jEjGi24FUZcT4nEVlc+b8v4K/HXblRB3JAgFBAQwPr1683K161bR61atW56UioqKirXS2pqDkeOJJGensvFi5nk59+9qniVBwk7irVAuwrPbYG9wCAULdE7jC6UTn4BYgEqjQQ0YLsLLuwsffjnnoPTpxVboMWLlQjUACWSIQPghSJ/gWI0XQ50vhY0QlAiwvQBqjqXnnWgJOVtVxHckCA0evRoxo4dy/jx4/n777/5+++/+fDDD3nnnXd44403bvUcVVRUVEpFrzdw5kwqJ08mU1BgwN7eijp1PLC2vnVuuyoqt4ZmKFqgcyjaourAZWAy9ahOB/7DAExDwKYm2Be6x+fPg+yc0ofV6aBNGwgLgxGFLu1LlphvqRV5j5XXTqiaohHSJ+iRghJjGSNMR9Kqeit8XXyNhtFXo0GDn4sfraq3Kt9NK4AbEoReeOEFpk6dSnh4OG3btqVt27b8+OOPzJo1664OpqaionJ/kZmZR3T0JZKSlACSVao4UqeOJ/b2qkG0yt2MJ4r90CkUe6KnAANjeBuAcLJIYTZ4DFWa262GuFPlG7pbNyVj/dGjcOiqoIdFdkJ/omQOuQZady0aBw3oFWHIiHuhRijlADqtjukdFVul0oShaR2n3dJ4QreaG7YcfPnllzl//jyJiYmkp6dz6tQps2SOKioqKrcLvd7AiRPJ5OQUYG2tJTCwMn5+rmi15c/Rp6JSsehQPMz+AI7yFHWox2EyceR7YsGhD+g8QZsFaQuU5KrXwsUFOndWzpcuNa2rB/ihCEF/XXuoogSscNX2mFs9QAM5CZCdyHN1nmN5z+VUczG1VarqVPWWuc7fTm5YECooKODPP//k119/NXpoXLhwgYyMCsrUrnLXM3/+fNzc3IzXEyZMMCZJvV0MGjSI7t2739Z7lGTTpk3UqVNHDSx6B9DptPj6umAwZPLUU4+Qnm7umqyicu8QhIbpjCEAgBmMJk+TD5ULHZBsl0DiBpTI1tegVy/l79XbYxqu23vMoiBk5QjODynnqUoC1ufqPMfp10+zeeBmqjhWAeDH536864UguEFB6MyZM9SrV49u3boxYsQIkpKUL6DJkyfz5ptv3tIJqtxdtGnT5pbFinrzzTfZtGnTtRveQ4wdO5Zx48ah05mqgbOzs6lUqRIeHh7k5uaa9dNoNPz2229m5ZYEuZMnTzJ48GB8fX2xtbWlZs2ahIWFsXfv3lu5FDO++eYb/P39sbOz49FHH2X37t3X7JOamsqIESOoWrUqtra2BAYGsnbtWmP9lStXGDVqFDVq1MDe3p4WLVqwZ09xTJL8/Hzefvtt6tWrh6OjI97eVQkL68uFwhxLlSvb07RpAAMGDGD8+PG3ftEqKneYMOyoClygCks4AK7PANZgdRYSt4L4o+Q8K8ML6+mnwcEBTp2Cffuuqiv8u5pypUfTVSs0mI4rLRN9ZHFbrY42/m1o4K3UxabEXvsGdwE3JAi9/vrrNGnShJSUFOzt7Y3lzz777H33YFO5fTg5OVG5cuWKnsYt459//iEmJobnn3/erO6XX36hbt26BAcHWxR4ysvevXtp3Lgxx48f57vvviMqKooVK1YQHBzMmDFjrj3ADbJ06VJGjx7N+PHj2b9/P/Xr1yc0NJSLFy+W2icvL4+nnnqK06dPs3z5co4dO8acOXOoVsLVd+jQoWzcuJEffviBQ4cO0aFDB9q3b09cnOJBk5WVxf79+3n//fdZtWoLn332PYcPR9O16zOAIkBqNBoGDx7MokWLSE5Ovm2vgYrKncAGJTQjwFTqILrfwLWfUqDdDumewHgUQ+sw4B/MJBpHR+haqPpZssS0ri3ggOJCH3nt+RgDK6YLhvQS+TmMgtABsz4BlRSt1snkk9e+wd3AjaSsr1Spkhw9elRERJycnCQmJkZERGJjY8Xe3v5GhrxjpKWlCSBpaWlmddnZ2RIVFSXZ2dkVMLObo0aNGvLVV1+ZlNWvX1/Gjx9vvAZkzpw50r17d7G3t5eAgABZuXKlSZ9Dhw5Jx44dxdHRUby8vKRfv36SlJQkIiIDBw4UlE+c8YiNjS11TvPmzRM/Pz+xt7eX7t27y5QpU8TV1dVYP378eKlfv75Jn/DwcAkJCREbGxvx9vaWESNGGOtSUlJkyJAh4uHhIc7OztK2bVuJjIws83UZOHCgdOvWzXidk5Mjr776qnh6eoqtra20bNlSdu/ebaxPTk6WPn36iIeHh9jZ2UlAQIBERESIiEhubq6MGDFCvL29xdbWVqpXry6TJk0y9h0xYoT06NHD4jzatGkjs2fPllmzZslTTz1lVg/IihUrypy/wWCQunXrSuPGjUWv15u1TUlJKfO1uBmaNWtm8r/Q6/Xi4+Mjn332Wal9Zs2aJbVq1ZK8vDyL9VlZWaLT6WT16tUm5Y0aNZL333/feH3lSq4cPJgge/bEyZ49cbJ69V8CyJkzZ0z61axZU+bOnVvuNd3Ln3eV+5tkEXEUJTLoHyIiucdEohGJ0ogc+UFEWhbWFh31ReR7EckoHmTFChEQ8fMTufr7oltht4nlm0/a92mSPDFZco/kFheeXyOyCJHVIWbtv9r5lTAB6bHM8vfhjVLW8/tmuCGNUGnJVc+fP4+zs/ONymR3KQJkVtBx69PAffTRR/Ts2ZODBw/SuXNn+vbta/wVnZqaSrt27WjYsCF79+5l/fr1JCYm0rNnTwCmT59O8+bNGTZsGPHx8cTHx+Pn52fxPrt27WLIkCGMHDmSyMhI2rZtyyeffFLm3GbNmsWIESMYPnw4hw4dYtWqVQQEBBjr/+///o+LFy+ybt069u3bR6NGjXjyySevSwswduxYfvnlFxYsWMD+/fsJCAggNDTUOMYHH3xAVFQU69atIzo6mlmzZuHh4QHAjBkzWLVqFcuWLePYsWMsWrQIf39/49jbtm2jSRPzJD4xMTHs3LmTnj170rNnT7Zt28aZM2fKPeciIiMjOXLkCGPGjEGrNf/olrS/uppJkybh5ORU5nH27FmLffPy8ti3bx/t27c3lmm1Wtq3b8/OnaXHN1m1ahXNmzdnxIgRVKlShYcffphJkyYZvzsKCgrQ6/Vmeb7s7e35559/EBEuXLjC0aOXyM3VY2OjIyioMra2ejQajdl6mzVrxrZtd2/0WhWV8uIOFIZTVAIs2gSC7VOgEchZD7l/Af+hpJO3Bw4Aw1FiEo0GTkLHjorh9LlzcPXn9HrthKpZCKxYpBFKPwYFpi5oD4RGqGfPnjJs2DARUTRCp06dkitXrki7du1k0KBBt1JQu+Vcv0YoQ0wl7zt5lJDur0F5NULjxo0rXllGhgCybt06ERH5+OOPpUOHDiZjnDt3TgA5duyYiIi0bt1aXn/99WvOJywsTDp37mxS1qtXrzI1Qj4+PiaagJJs27ZNXFxcJCcnx6S8du3a8t1335U6j5IalYyMDLG2tpZFixYZ6/Py8sTHx0e++OILERHp2rWrDB482OJYr776qrRr104MBoPFeldXV1m4cKFZ+XvvvSfdu3c3Xnfr1s3k/yJSPo3Q0qVLBZD9+/eXttxSuXz5spw4caLMIz8/32LfuLg4AWTHjh0m5W+99ZY0a9as1HsGBQWJra2tvPDCC7J3715ZsmSJVKpUSSZMmGBs07x5c2ndurXExcVJQUGB/PDDD6LVaiUwMFCio5OMWqCYmGTJz9dLdna2NGrUSPr06WN2vzfeeEPatGlT7tdE1Qip3M3EiIhWlCfBIRGRK2sUrdARZ5FTx0u0TBaRqSJSS0yfHx1FprYT0SLy6qumg18o0Sz+2nPJOZAjyROTJS2ixHPTYBBZ7qFohS7tMWkfnRQtTECcJjmV+n15I9xVGqEpU6awfft2QkJCyMnJoU+fPvj7+xMXF8fkyZNvlYymcht45JFHjOeOjo64uLgY7TwOHDjA5s2bTbQEwcHBgKLVKI26desa23fq1AmA6OhoHi2KcFpI8+bNSx3j4sWLXLhwgSeffNJi/YEDB8jIyKBy5com84uNjSUmJoazZ8+alE+aNMlsjJiYGPLz803y5FlbW9OsWTOio6MBJSzEkiVLaNCgAWPHjmXHjh3GtoMGDSIyMpKgoCBee+01/vjjD5Pxs7OzzbQber2eBQsW0K9fP2NZv379mD9/PgaDgetBLOUbKieVKlUiICCgzMPKynJ27BvFYDDg5eXF999/T+PGjenVqxfvv/8+s2fPNrb54YcfEBGqVauGra0tM2bMICwsDK1Wi7W1Fp1OQ82abtSq5Y6Inp49eyIizJo1y+x+9vb2ZGVl3dI1qKhUFLWAIn+r/wE4dgRtTdBegeSFYPz+cEfRAp0A1lKcS2M9jP5LKa48H/QlvCqromT4gHJFmS7yHNPHlwisqNEUa4VSTe2EarrVRKvRkpGXwcXM0u0I7xZu6JvPz8+PAwcOsHTpUuMDasiQIfTt29fEePr+wAGoqJAADuVuqdVqzR6U+fnmbpbW1qaB5jQajfGBnJGRQdeuXS0Ks1Wrlh4efe3atcZ73ej//1r9MjIyqFq1Klu2bDGrc3Nzw83NjcjISGNZpUqVbmgenTp14syZM6xdu5aNGzfy5JNPMmLECKZMmUKjRo2IjY1l3bp1/Pnnn/Ts2ZP27dsbEw17eHiQclVY+w0bNhAXF0evInfWQvR6PZs2beKpp54CwNnZmbS0NLP5pKamGvP6BQYGAnD06FEaNmx4XeuaNGmSReGwJFFRUVSvXt2s3MPDA51OR2KiaRbsxMREvL29Sx2vatWqWFtbm3jQ1alTh4SEBPLy8rCxsaF27dr8/fffZGZmkpycStWqVenbN4xatWpRo4Yber0BW1sr8vPz6dmzJ2fOnOGvv/7CxcXF7H7Jycl4enpe66VQUblnGAMsB34EPtVoqVp5JCSNAdvFkDQKqpR0NtECnQqPGGAWSATUSoHxV0DvC/QDRgCNFO+xPSjeY0PKnkdRYEXJEvSJeuNWGW71IeFPE88xAFsrW6q7Vud06mlOJJ+gilOVm3wlbi/XrRHKz8+ndu3anDhxgr59+/LFF1/w7bffMnTo0PtQCAJFsnasoKP8geE8PT2Jjy92p0xPTyc29vpcFxs1asSRI0fw9/c30xY4OjoCYGNjY2YfVqNGDWO7Io+gOnXqsGvXLpN2//77b6n3dnZ2xt/fv1Svw0aNGpGQkICVlZXZ3Dw8PMzKLQlCtWvXxsbGhu3btxvL8vPz2bNnDyEhIcYyT09PBg4cyI8//si0adP4/vvvjXUuLi706tWLOXPmsHTpUn755RejfVHDhg2JiooyuWd4eDi9e/cmMjLS5Ojduzfh4eHGdkFBQey7ys1Vr9dz4MABowDUoEEDQkJCmDp1qkVtUmpqamkvLy+99JLZHK4+fHx8LPa1sbGhcePGJv8bg8HApk2bytTytWzZkpMnT5rM9fjx41StWhUbGxuTtgaDFSkpVhw4cJoNGzbQrVs3rKy0JkLQiRMn+PPPP0v1NDx8+PB1C4gqKnczjwEtUCIHzYTCRKz2YHUKEsrKk1EbmAKa87CglWJOpMsDIoDGyqhdC8NY/AGUkb0DCgMrVrMQT+h+8Ry7kf00Hx8fiYqKupVbdHeM+9Vr7J133hFvb2/ZunWrHDx4ULp37y5OTk5mNkJX26G4urrKvHnzRESxBfH09JQePXrI7t275eTJk7J+/XoZNGiQFBQUiIjIsGHDpGnTphIbGytJSUkWvZdERHbu3ClarVa+/PJLOX78uHz99dfi5uZWpo3Q/Pnzxc7OTqZPny7Hjx+Xffv2yYwZM0RE8Zh6/PHHpX79+rJhwwaJjY2V7du3y3vvvSd79uyR0rjaa+z1118XHx8fWbdunRw5ckQGDhwo7u7ukpycLCIiH3zwgfz2229y4sQJOXz4sDz99NNGO5ipU6fK4sWLJTo6Wo4dOyZDhgwRb29v42swY8YMady4sfFeFy9eFGtra6MNVknWrl0rtra2cvnyZRERWbx4sdjb28s333wjx48fl//++09eeOEFcXV1lYSEBGO/Xbt2ibOzs7Ro0ULWrFkjMTExcuDAAfnkk0/kiSeeKPV1uFmWLFkitra2Mn/+fImKipLhw4eLm5ubydz69+8v77zzjvH67Nmz4uzsLCNHjpRjx47J6tWrxcvLSz755JMSr8M6WbjwF/ntt50yc+ZPEhRUV5o1a2b0NMvLy5NnnnlGfH19JTIyUuLj441Hbm6xB0tmZqbY29vL1q1by72me/nzrvLg8KsopjzuUmg1en6YYiv0X1uR9MxrD/Dnn4r3WEcXEX1vEbFWRjQgUi1OGXzdxWsOk7UtS5InJsuV5VeKC1MOKjZCy1wUm6ESvPT7S8IE5P1Nlu0+b4TbZSN0Q4LQp59+KgMHDizVuPJu5n4VhNLS0qRXr17i4uIifn5+Mn/+fIvG0mUJQiIix48fl2effVbc3NzE3t5egoODZdSoUUaDt2PHjsljjz0m9vb213SfDw8PF19fX7G3t5euXbuWy31+9uzZEhQUJNbW1lK1alV5tYSRX3p6urz66qvi4+Mj1tbW4ufnJ3379pWzZ8+WOoerBaHs7Gx59dVXxcPDw6L7/Mcffyx16tQRe3t7qVSpknTr1k1OnTolIiLff/+9NGjQQBwdHcXFxUWefPJJE8Ply5cvi52dnTG0xJQpU8TNzc2i+3hubq64ubnJ9OnTjWWLFi2Sxo0bi7Ozs1SpUkU6d+4sBw4cMOt77NgxGTBggPj4+IiNjY3UqFFDwsLCbsiI+nr4+uuvpXr16mJjYyPNmjWTf//916S+devWMnDgQJOyHTt2yKOPPiq2trZSq1Yt+fTTT41CdXZ2nkydOkeqVash1tY24ulZRV555RVJTU019o+NjTUL2VB0bN682dhu8eLFEhQUdF3ruZc/7yoPDgUiUluUh/XXIiI5hwtd6bUi0f9ce4D8fBEvL0UYWrdOFOvoj0WkmsiLs5SBX/lGRJ4Tkb9E5Grj5gIR2Sx5sesleWKypE5PKa7S54n8ZKMIQ1dOmfSasn2KMAHp9XOvG1m2RW6XIKQRuX4LzKLAiU5OTsaIryX59ddfb0ZJdVtJT0/H1dWVtLQ0MzuDnJwcYmNjqVmzppnRq4pKeXjrrbdIT0/nu+++q+ip3LWICJcuZXHuXDoGg6DTafD3d8Pd/ca31h977DFee+01+vTpU+4+6udd5V7hG2AkigH1cUB3qg3k/Q1Zg6DeHLC+hrnvyJHwzTcwaBDMm1dYmA+rd0PXllD9DJz2L7TGCEGxI+oPbAReB84jeY6kfnEaRIfrqO1onQtDVK9rBCn/Qatfwe9Z4y1XHl1J96XdaVy1MXuH35qo92U9v2+GG/Iac3Nz4/nnnyc0NBQfHx9cXV1NDhWVB5X333+fGjVqXLdH2IOEwSDEx2dgMAjOzjbUret1U0LQpUuXeO655wgLC7uFs1RRuXsYhOIbdgpYCeDxulJhtwLiz117gCJnjRUrwJjixxratQQ74GwNOPQJim1qFIogVAV4HjgPgMYmE52XYgNZcH4OUKjwKMVOqKSN0A3oW+4o1+U1ZjAY+PLLLzl+/Dh5eXm0a9eOCRMm3KdG0ioq14+bmxvvvfdeRU/jrkan01KzphuZmflUqeKIRnNz2eI9PDwYO3bsLZqdisrdhyPwCvApSoDF55y7gsYXtOfh0g/g94Hizl4aLVtCtWoQFwcbNsAzSooaHID2KJ5jq9+HR0YCC1F0UMfMhtH57kGfWI+C802wqTMK6KZ4jgGkRpq0reVeC4C03DQuZ1/Gw8HjRpd/27kujdCnn37Ke++9h5OTE9WqVWPGjBmMGDHids1NRUXlPsBgEM6dSyMpKdNY5uxsi7e3000LQSoqDwojUfKQ7QB2aqyg0itKhfViuJxadmetFgozBJjlHiuZhBVX4FXAPE4XgFU1ZYurIK4JcA7YVqpGyN7aHl8XX+Du9xy7LkFo4cKFfPvtt2zYsIHffvuN33//nUWLFqnbACoqKhbJzs4nOjqJxMRMzp1LJz/fPDWPiorKtfEG+haeTwWoNBywBetjEL/h2gP07q38XbUKSgYeLRKE/gWMsQ8TLA5h5bsHAP2FBojeGogH98IgvZmnIS/VpP294kJ/XYLQ2bNn6dy5s/G6ffv2aDQaLly4cMsnpqKicu8iIiQmZhAVlUR2dgFWVlpq1XLH2lp37c4qKioWGVP4dwUQo6sMjoXCjX4eZF0jGFDTplCzJmRmwpoS4aSrAQ1RfDHXFRVaDqCrrRSDxv4y6O3QJ9RT2tm4g2MNpcFVWqGHKj0E3GeCUEFBgZl3hbW1tcUIxioqKg8m+fl6TpxI5ty5dETA1dWWunU9cXNTPbNUVG6GukBHwABMA/AcpVTYboK4Q2V31miKjaav3h4zS8LaCiWBq+nWtUYDVr5F22NPFbajhJ2QZYPpE8knyp5bBXNdxtIiwqBBg7C1tTWW5eTk8NJLL5m40N/N7vMqKiq3D73eQFRUEvn5BjQaDX5+Lnh6Oqi2QCoqt4gxwHqUGNEf2TWgknVzyN8JV+aAvhHoytC69uoFn38Oa9dCerqSnR6U7bGJwAYgD7DRAdOBHijCULHXl67aXvJPhFJwfhA0K7yXewOIW2WWauO+3BobOHAgXl5eJq7y/fr1M3OhV1FReTDR6bR4eDhgb29FSIgHXl437xWmoqJSzJPAI0AW8B2Ax2tKhe0vkBBfaj8A6teHoCDIyVFshYpojGKElAH8XVT4HEqms2omQ1j5HgZAf77E9pl7oUaoDBf6u5nr0gjNMwZiUlFRUVHIyspDq9VgZ6ck9K1a1ZmqVZ3RalUBSEXlVqMB3gQGAF8Do12exzbBG3QJkLQIfMaW7kpftD02cSIsXQr9+inlWqALEI7iPfZUUYfngG7ANuAXYCZWPkoSckOaAcMVA1pnbbHnWNphMOSDVvkuqO1eG4Dk7GSSs5OpZH9jybBvNzcUUFFFpTz89ttvBAQEoNPpGDVq1B2556BBg+jevXuZbfz9/Zk2bdodmQ/ABx98wPDhw+/Y/e4UIkJCQgbR0Zc4dSoVg0FRn2u1mgoXgmbPnk3Xrl2v3VBF5R6kF+ADxAM/aazB/SWlQrsI0jKu0bnQTmjDBkhJKS4vaSdkEv9QB7QB3gZAY7sTnZdSUxBXmIDV0R+snMGQB+nF8YccbRyp6qRojmKSY8q/wDuMKgipXBdt2rQpt1Dz4osv0qNHD86dO8fHH398eyd2l5KQkMD06dN5//33zep27tyJTqejS5cuZnVbtmxBo9FYzChvSZDbvHkznTt3pnLlyjg4OBASEsKYMWOIi4u7VUsxIS9Pz6FDcbz66kiefLIuTZvWpEeP50lMTCyzX0ZGBiNHjsTX1xd7e3tCQkKYPXu2sT45OZlXX32VoKAg7O3tqV69Oq+99hppaWnGNgcOHCAsLAw/Pz/s7e2pU6cO06dPN7nPCy+8wP79+9m2bdutXbiKyl2ADVC4Icb/AKn0klJqcwjiNpXdOSQE6tWD/Hwl0nQR7QFbIBaIttTRF/AHDOh8FT97YyZ6jbbE9likSa97YXtMFYRUbgsZGRlcvHjRmIbF2dm5oqdUIcydO5cWLVpQo0YNs7rw8HBeffVVtm7delMhKL777jvat2+Pt7c3v/zyC1FRUcyePZu0tDSmTp16M9O3SHJyNkeOXGTixPfYtm0jERE/8vffW4iPj+e5554rs+/o0aNZv349P/74I9HR0YwaNYqRI0eyqtBe4cKFC1y4cIEpU6Zw+PBh5s+fz/r16xkyZIhxjH379uHl5cWPP/7IkSNHeP/993n33XeZOXOmsY2NjQ19+vRhxowZt3z9Kip3Ay8CTsAhYKNVFXAo/OzlzYXcvLI7F8UUKuk95gi0Kzz//eoORSheYla++wHQny8RF6xoe6wUz7G7WRC6oezz9zL3a/b5GjVqyFdffWVSZin7/Jw5c6R79+5ib28vAQEBsnLlSpM+hw4dko4dO4qjo6N4eXlJv379JCkpSUSUTO5clQHcUvb5zZs3l5opfPny5RISEmLMmj5lyhSTvjk5OTJ27Fjx9fUVGxsbqV27tsydO1dERAoKCuSFF14Qf39/sbOzk8DAQJk2bZpJ/6uzzZfntTpz5ow888wz4ujoKM7OzvJ///d/kpCQYKyPjIyUNm3aiJOTkzg7O0ujRo1kz549IiJy+vRpefrpp8XNzU0cHBwkJCRE1qxZY+xbt25dmTlzptkcrly5Ik5OTnL06FHp1auXfPrppxZfw5SUlDLnf+7cObGxsZFRo0ZZXKul/jdKQYFeYmNTZM+eONm8OVqsrKxl0aIlxvro6GgBZOfOnaWOUbduXZk4caJJWaNGjeT9998vtc+yZcvExsZG8vPzS23zyiuvSNu2bU3K/v77b7GxsZGsrCyLfe7lz7uKiojI66Ikj39KRCRrV2FWemuRmMiyO548qWSj1+lEEhOLy78pHPDx0jp+LyJIQVKYJE9MluRJyWIoKMxWf2KOkoV+U3uTHp9u/VSYgAxYMeC613c1tyv7vKoRuhYioNdXzHEbEtV99NFH9OzZk4MHD9K5c2f69u1LcnIyAKmpqbRr146GDRuyd+9e1q9fT2JiIj0LQ7NPnz6d5s2bM2zYMOLj44mPj8fPz8/sHi1atODYMWWf+JdffiE+Pp4WLVqwb98+evbsSe/evTl06BATJkzggw8+YP78+ca+AwYM4KeffmLGjBlER0fz3Xff4eTkBCi57nx9ffn555+Jioriww8/5L333mPZsmU3/HoYDAa6detGcnIyf//9Nxs3buTUqVP0KtpHB/r27Yuvry979uxh3759vPPOO1hbK8aAI0aMIDc3l61bt3Lo0CEmT55snG9ycjJRUVE0adLE7L7Lli0jODiYoKAg+vXrR0RExA0lJvz555/Jy8srNdeWm5tbqX07deqEk5NTqUfdunVN2mu1GrKzlZhhFy+eoKAgn86dQ431wcHBVK9enZ07d5Z6zxYtWrBq1Sri4uIQETZv3szx48fp0KFDqX2KMk1bWZXu25GWlkalSqaGmE2aNKGgoIBdu3aV2k9F5V7mdZRtnY3AQftmoGsImnxInQNlZXyoXRuaNFGeM7/8UlxeFGV6B3DZUscnANBWXoHGDigAfWKhVqhkqo0S32X3gkbourzGHkgMBvjnv4q59+MNy44JcQMMGjTImKV70qRJzJgxg927d9OxY0dmzpxJw4YNmTRpkrF9REQEfn5+HD9+nMDAQGxsbHBwcMDb27vUe9jY2ODlpVjTVapUydj2f//7H08++SQffPABAIGBgURFRfHll18yaNAgjh8/zrJly9i4cSPt27cHoFatWsZxra2t+eijj4zXNWvWZOfOnSxbtsworF0vmzZt4tChQ8TGxhqFuoULF1K3bl327NlD06ZNOXv2LG+99RbBwcEAPPTQQ8b+Z8+e5fnnn6devXpm8z179iwigo+Pj9l9w8PD6VfosdGxY0fS0tL4+++/adOmzXXN/8SJE7i4uFC1quVIsGUxd+5csrOzS623trZGRBBRhCCNRkPNmu7k5+s5fvwKNjY2ZoJWlSpVSEiwHJ4f4Ouvv2b48OH4+vpiZWWFVqtlzpw5PPHEExbbX7p0iY8//rhMY/MdO3awdOlS1pSMlgs4ODjg6urKmTNnSu2ronIvUxMlP/zPKLZC8z1fh4RBYPszXBwHZXxP06sX7N2reI+9/LJSVh3FN/8gSpTpfld3CgS80GguovO9QsFJZwrOF2DlYwWudRVbodwkyI4HB+V7ryi69InLd29QRVUj9IDxyCOPGM8dHR1xcXHh4kXF8O3AgQNs3rzZRCtQ9PCPiSnd4r9u3brG9p06dSq1XXR0NC1btjQpa9myJSdOnECv1xMZGYlOp6N169aljvHNN9/QuHFjPD09cXJy4vvvv+fs2bMW2y5atMhkLZYMZ6Ojo/Hz8zPRbIWEhODm5kZ0tGIxOHr0aIYOHUr79u35/PPPTV6L1157jU8++YSWLVsyfvx4Dh48aKwrEjKujsZ+7Ngxdu/ebRRIrays6NWrF+Hh4aWuuzRE5Ibj9FSrVo2AgIBSD2/vahw7dpkLF64Y+9jZWeHsbFvGqGXz9ddf8++//7Jq1Sr27dvH1KlTGTFiBH/++adZ2/T0dLp06UJISAgTJkywON7hw4fp1q0b48ePt6hVsre3J6tkXiUVlfuMorQbi4ELLr0BD9BdhMQlZfSiOAnr1q1Q0kbRLMp0STTA4wBYVTsKgD6uUCNkZQ8uyvOipJ1Q7UqKC31SVhJpOcVOD3cTd4VG6JtvvuHLL78kISGB+vXr8/XXX9OsWbNr9luyZAlhYWF069aN33777fZMTqtVNDMVgbb8cqpWqzXbWrGU+qRoS6cIjUZjTJqbkZFB165dmTx5slm/sjQOa9euNd7L3t6+3HO+mmv1XbJkCW+++SZTp06lefPmODs78+WXX5a69fHMM8/w6KOPGq+rVatmsd21mDBhAn369GHNmjWsW7eO8ePHs2TJEp599lmGDh1KaGgoa9as4Y8//uCzzz5j6tSpvPrqq3h4eACQkpKCp6encbzw8HAKCgpMNEUigq2tLTNnzsTV1RWXwoivaWlpZlqX1NRUY+DSwMBA0tLSiI+Pv26tUKdOncr0qqpSpRpLl24mOzufKlUcTfKEeXt7k5eXR2pqqsn8EhMTS9UWZmdn895777FixQqjp9wjjzxCZGQkU6ZMMWoBAa5cuULHjh1xdnZmxYoVZu9bgKioKJ588kmGDx/OuHHjLN4zOTnZ5LVXUbnfeBRFNPkH+Fpry2duwyD1M9AshCvDwNnRcsfq1aFFC9ixA37+GV5/XSl/GvgUJXx1PmD20WsF/IqV7yagabHnGCipNtKiFM8xH+VHsYutC16OXlzMvEhMSgyNqja6RSu/dVS4Rmjp0qWMHj2a8ePHs3//furXr09oaKhRS1Eap0+f5s0336RVq1a3d4IajbI9VRHHdfzS9/T0JD6+OKpoeno6sbGx17XURo0aceTIEfz9/c20A0UpVGxsbNDrTTOI16hRw9iuLGGjTp06bN++3aRs+/btBAYGotPpqFevHgaDgb///tti/+3bt9OiRQteeeUVGjZsSEBAQJmaKmdnZ5M1WBK06tSpw7lz5zh37pyxLCoqitTUVEJCQoxlgYGBvPHGG/zxxx8899xzJsFF/fz8eOmll/j1118ZM2YMc+bMAaB27dq4uLgQFRVlbFtQUMDChQuZOnUqkZGRxuPAgQP4+Pjw008/Acr2m1arZd++fSbzPXXqFGlpaQQGBgLQo0cPbGxs+OKLLyy+Bpbc74uYO3euyRwiIyPZu3c/q1b9zQ8/bGDatB9wcrIhJMTTLFlq48aNsba2ZtOmYlfdY8eOcfbsWZo3b27xfvn5+eTn56O9SsDX6XRGYRyU926HDh2wsbFh1apVZho1gCNHjtC2bVsGDhzIp59+avF+MTEx5OTk0LBhBf2QUVG5QxRphWYDGZVHgliBzX8QZ/m71Igl77FmgCeQjhJH0YxCz7FqiwAwpBowZBR+fkvaCZXgbrcTqnBB6H//+x/Dhg1j8ODBxpgiDg4ORERElNpHr9fTt29fPvroIxObjAeZdu3a8cMPP7Bt2zYOHTrEwIED0V2nfdGIESNITk4mLCyMPXv2EBMTw4YNGxg8eLBR+PH392fXrl2cPn2aS5cumTzArsWYMWPYtGkTH3/8McePH2fBggXMnDmTN9980zj2wIEDeeGFF/jtt9+IjY1ly5YtRmPohx56iL1797JhwwaOHz/OBx98wJ49e65rjVfTvn176tWrR9++fdm/fz+7d+9mwIABtG7dmiZNmpCdnc3IkSPZsmULZ86cYfv27ezZs4c6deoAMGrUKDZs2EBsbCz79+9n8+bNxjqtVkv79u35559/jPdbvXo1KSkpDBkyhIcfftjkeP75543bY87OzgwdOpQxY8awatUqYmNj2bp1K3379uWxxx6jRYsWgCKEffXVV0yfPp0hQ4bw999/G+f54osvlhm/6eqtsSpV/MjLc8XFpSp+fjVp3LgOQUGVsbU1Vxy7uroyZMgQRo8ezebNm9m3bx+DBw+mefPmPPbYY8Z2wcHBrCiMVeLi4kLr1q1566232LJlC7GxscyfP5+FCxfy7LPPAsVCUGZmJuHh4aSnp5OQkEBCQoLxPXj48GHatm1Lhw4dGD16tLE+KSnJZI7btm2jVq1a1K5d+/reFCoq9xhdgYeAVGCetQ/YP6NUZM9R4gWVRo8eyg/uf/+F06eVsqIo06BEmTajPuCExjYOrafipm/UChmTr0aa9LjbBaEKdZ/Pzc0VnU4nK1asMCkfMGCAPPPMM6X2+/DDD6V79+4icm136ZycHElLSzMe586duy/d59PS0qRXr17i4uIifn5+Mn/+fIvu81e/1q6urjJv3jzj9fHjx+XZZ58VNzc3sbe3l+DgYBk1apQYDIqL5LFjx+Sxxx4Te3v7Ut3nRRS3bUq4zRdR5D5vbW0t1atXly+//NKkPjs7W9544w2pWrWq2NjYSEBAgERERIiI8r8cNGiQuLq6ipubm7z88svyzjvvSP369Y39b7X7fG5urvTu3Vv8/PzExsZGfHx8ZOTIkcb3yMiRI6V27dpia2srnp6e0r9/f7l06ZJx7LVr10q1atVEr9eLiMjTTz8tnTt3tjivXbt2CSAHDhwwvhbjx4+X4OBgsbe3l5o1a8rw4cON4QxKsnHjRgkNDRV3d3exs7OT4OBgefPNN+XChQtlvhZF5OfrZf/+C7JnT5wcPJggV67kXrNPdna2vPLKK+Lu7i4ODg7y7LPPSnx8vEkbwOT9FR8fL4MGDRIfHx+xs7OToKAgmTp1qvH9ZSn0AleFahg/frzF+ho1apjcu0OHDvLZZ5+VOf979fOuonI134ri+V5TRAoy/i50pbcVOX2k7I5t2yqu9JMnF5f9UjhYgIgYLHXqICJIxu+7JXlismT+makUZyUoLvSLNCL5GcbWE7dMFCYgg38bfOMLlNvnPl+hglBcXJwAsmPHDpPyt956S5o1a2axz7Zt26RatWomsW3KevCV9qV5vwlCKncnBoNBmjZtKosXL67oqVyTpKRMiY1NkYICfUVP5aY5fPiweHl5SWpqaqlt1M+7yv1EpohUFuWh/rPBIHKsriIM7X9DxGBRmlGYPVsRhBo1Ki5LFxGbwsGOWur0sYggOf9Nk+SJyZI+P7246pcqijCU9K+xaPHBxcIEpFVEqxtfoKhxhADFgLJ///7MmTPHaIh6Ld59913S0tKMR0lbEBWV241Go+H777+noKDg2o3vICJCUlIm6em5xjIPDwf8/d3Q6e6prwWLxMfHs3DhQqNRuYrK/Y4DUOgEz1SNBjwKjZ9tlsIli0GBFJ5/XrFJ3b8fThS6uDujpBeDUrzHiuyEfgag4EIBoi901rEQYfpu3xqr0G88Dw8PdDqdWX6i0jxPYmJiOH36NF27dsXKygorKysWLlzIqlWrsLKysmg4a2tri4uLi8mhonInadCgAf3796/oaRjJz9cTE5PCmTNpxMamUFBQfjuve4X27dsTGhp67YYqKvcRI1HykP0L7HAbALiB7gIk/Fx6Jw8PKPLYXLq0uLwouKJFO6FmgDVajx1o7AxKYMWLhU40RXZCJXKOFQlC8RnxZOZlXt+i7gAVKgjZ2NjQuHFjE88Tg8HApk2bLHqeBAcHc+jQIRMvl2eeeYa2bdsSGRlpMcqxiopKMWlpOURFJZGamoNGA1WqOKHTVWymeBUVlVtDFaDoJ9cUrS24FOboM8yHzNKDp1r0HisShP4BUq7uYA80RaMRdNUUJwWjwbQFzzF3e3cq21cG7k6tUIXrwEePHs2cOXNYsGAB0dHRvPzyy2RmZjJ48GBASbnw7rvvAkpguqs9bdzc3HB2dubhhx/GxsamIpeionLXYjAI586lceJEMvn5BuzsrKhTxwNvb6cbDsiooqJy9zG68O9vwEmPUSBasN0NcTtK79S9O9jYwJEjcPiwUlYTqAvoUWIKmVG0PRYJlEjAWpSFPvUASLG2+W7eHqtwQahXr15MmTKFDz/8kAYNGhAZGcn69eupUqUKoKQpKBkfR0VF5fooKDAQHZ1EYqKikvb0dKBOHQ8cHNQfDioq9xshQGcUr6BpNr5g21GpyPwOCvSWO7m5QcfCdpa2x8qyE/JVUtsUxBVqhJwDQWcHBZlwpdhcRRWErsHIkSM5c+YMubm57Nq1yyQa8JYtW0yScl7N/Pnzb19UaRWV+wCdToO9vTVWVloCAipRo8b9YRCtoqJimaIAixHAZa/ChMy2qyGhjCC7RYmmly4tTppalG5jHWDm79ES0KCrtgoAQ4oBQ6YBtFbg+rDS5B4xmFa/DVVU7kPy8/UUFP7602g0VK/uSt26nri5mUdpVlFRub9oCzQAsoHZjk+ANhC02XBprklmeBOeeQbs7RXPsf8KE40/BlRGidRotrPmBtRDa5eO1iMDsGQnFGlsbRSEUlRBSEVF5TaTmprDkSNJnD6dZsw/Z2WlNUuToaKicn+ioVgrNFOjIbfyKOXC6idIKSXxqZMTFOYANG6P6VD22eAa22PHgRJ2QkbPMVUjpKKicgfR6w2cOZPKyZPJFBQYyM0tQK8v5defiorKfU0voBqQACx2Hww4g9VZiP+19E5F3mMlt8fKdKMvEoQ2AyXshIyxhCKNLYsEofPp58nOL8ODrQJQBSGVe4b58+ebZWIHeOKJJ1i8ePGdn9BdRGZmHtHRl0hKygKgShVH6tTxxMrq9nzEe/fuzdSpU2/L2CoqKjePNVAYUpGpWjvEaaByURABObmWO3XurGiGzpyBXbuUslDACjgKmClzijzHFOGq4EIBYhBwf0SpzjoPuUowx8r2lXG1VQKcnko5dZOru7WogpDKddGmTRtGjRpV0dMwsmrVKhITE+ld9EumBJ999hk6nY4vv/zSrG7ChAk0aNDArPz06dNoNBoiIyONZSLC999/z6OPPoqTkxNubm40adKEadOmkZWVdSuXY8LZs2fp0qULDg4OeHl58dZbb5lFqBYREhIyOHr0Etu3b6Vp02o0bVqN6tUVg2iNRoNGozEmpz127Bht27alSpUq2NnZUatWLcaNG0d+icSMR44c4fnnn8ff3x+NRsO0adPM5jZu3Dg+/fRT0tJKUbOrqKhUOMMAJ+AIsKHKO0qhzQ6I2225g709dOumnBfFFHIFniisN9MK+QC10HoeRWNbAPmgT9SDtQs4FSZEL9we02g0d+32mCoIqdzTzJgxg8GDB6PVmr+VIyIiGDt2LBERETd1j/79+zNq1Ci6devG5s2biYyM5IMPPmDlypX88ccfNzV2aej1erp06UJeXh47duxgwYIFzJ8/nw8//NCkncEgXLyYiQi0avU4586dJz4+3ngMHTqUmjVr0qRJEwCsra0ZMGAAf/zxB8eOHWPatGnMmTOH8ePHG8fMysqiVq1afP755xYjvAM8/PDD1K5dmx9//PG2rF9FReXmcQOGFp5Pta4G1u1BI3DlOzCUElG+yHts2TLQF9r8FHmPlWInpARWVNJXmW+PFdsJPVT5IQBOJJ+4/sXcTm5p5rJ7gLKStt3LSRivzqguIhazz8+ZM0e6d+8u9vb2EhAQICtXrjTpc+jQIenYsaM4OjqKl5eX9OvXzyTBLaVkBL+a06dPy9NPPy1ubm7i4OAgISEhsmbNGmP9ypUrJSAgQGxtbaVNmzYyf/58ASQlJcXYZt68eeLn5yf29vbSvXt3mTJliri6uhrrL168KBqNRg4fPmx2/y1btki1atUkLy9PfHx8ZPv27Sb148ePN8laX0RsbKwA8t9//4mIyNKlSwWQ3377zaytwWAoM6nnzbB27VrRarWSkJBgLJs1a5a4uLhIbm6uMVu7iMiVKzly8WKGSZmISF5ennh6esrEiRPLvNcbb7whjz/+uMU6S++rIj766KNS+90L3MufdxWV8hIrIjpR8qf+l7FVScR6xFHkQqzlDjk5Im5uSiLWLVuUshOFA1iJiNlX3lwRQbI2fyPJE5MlY0Vh1vmDHynJV3cMMLYct2mcMAF58fcXb2gtatLVCkJEyMzLrJBDSnNzvAk++ugjevbsycGDB+ncuTN9+/YlOTkZgNTUVNq1a0fDhg3Zu3cv69evJzExkZ49ewIwffp0mjdvzrBhw4wah9LSmowYMYLc3Fy2bt3KoUOHmDx5Mk5OTgDExsbSo0cPunfvzoEDB3jxxRd5//33Tfrv2rWLIUOGMHLkSCIjI2nbti2ffPKJSZt//vkHBwcH6tSpY3b/8PBwwsLCsLa2JiwsjPDw8Bt6vRYtWkRQUBDditTFJdBoNGUm9XRycirzeOmll0rtu3PnTurVq2cMLAoQGhpKeno6f/zxL5cuFW/JOTnZ4unpaBYhetWqVVy+fNkYpd0SJ0+eZP369bRu3brUNqXRrFkzdu/eTW5uKfYGKioqFY4/0KPw/H8Oj4OmFmgzIWme5Q62tvDss8p5kfdYABCMEktow9UdigymlXhCZhqhe8BzzKqiJ3C3k5WfhdNnThVy74x3M3C0cbylYw4aNIiwsDAAJk2axIwZM9i9ezcdO3Zk5syZNGzYkEmTJhnbR0RE4Ofnx/HjxwkMDMTGxgYHB4dSt0yKOHv2LM8//zz16tUDoFatWsa67777jqCgIKPtTlBQEIcPH+bTTz81tpk+fTodO3Zk7FglGFhgYCA7duxg/friWO9nzpyhSpUqZtti6enpLF++nJ07dwLQr18/WrVqxfTp043CWHk5ceIEQUFB19WniJJ2RpYoKwFwQkKCiRAE4OjoDkBMzFl8fB7C3d2+TGPo8PBwQkND8fX1Natr0aIF+/fvJzc3l+HDhzNx4sQy52oJHx8f8vLySEhIoEaNGtfdX0VF5c4wBlgK/KTR8JnH21RLehG0P0Lam+DqbN6hd2+YNw+WL4cZM8DKSvEeO4piJ9SzZOOHAC901f4FwJCsBFbUFqXaSI8CfR7obO5aQUjVCD1gPPLII8ZzR0dHXFxcuHjxIgAHDhxg8+bNJlqL4OBgAGJiYiyOB1C3bl1j+06dOgHw2muv8cknn9CyZUvGjx/PwYMHje2PHTtG06ZNTcZo1qyZyXV0dLRJhHHALBFvdnY2dnbmAQJ/+uknateuTf36ygexQYMG1KhRg6UlQ8eXk5vRygUEBJR5eHl5lXsOFy5c4fhxxfvC2lrLQw9VKlMIOn/+PBs2bGDIkCEW65cuXcr+/ftZvHgxa9asYcqUKde9Pnt7e4DbajCuoqJy8zRFsXcuAL52HwA4gNUpiF9luUO7dkpW+qQk2Ky4xhvthNai5B8zogFaobVPQ1tZyc5aEFcADtXB2g0M+ZAeDRRrhM6mnSW34O7RJKsaoWvgYO1AxrsZFXbv8qLVas0e2iU9gYqwtrY2udZoNBgKjeYyMjLo2rUrkydPNutXtWrVUu+9du1a472KHo5Dhw4lNDSUNWvW8Mcff/DZZ58xdepUXn311XKv6Vp4eHiQkmKWFpnw8HCOHDmClVXx29tgMBAREWEUDFxcXCx6PKWmpgIYt7wCAwM5evToDc3vWtqnfv36MXv2bIt13t7ehdtOBcTGppKRkcfly0qW56ZNg3B2ti1z7Hnz5lG5cmWeeeYZi/VFW5ohISHo9XqGDx/OmDFj0OnKH3SxaEvV09Oz3H1UVFQqhjHAVmC21o73HQfjnPkN5M6FvJ5gY/pcwMoKevSA2bMV77GnnoIWgDtwGfgXJcOGkVbAL1j5HiDvchslsGKgjZKA9eLfSoRp9/p4OXrhZONERl4GsamxBHsE34mlXxNVELoGGo3mlm9P3Q48PT1NktOmp6cTG1tGXhkLNGrUiF9++QV/f38TIaIkNjY26PWmiftK2xbx8/PjpZde4qWXXuLdd99lzpw5vPrqqwQFBbF27VqTtkXu3UXUqVOHXUVxLAr5999/Ta4bNmxIQkICKSkpuLsr20aHDh1i7969bNmyhUqVKhnbJicn06ZNG44ePUpwcDBBQUGcP3+exMREky2o/fv3Y2dnR/Xq1QHo06cPvXv3ZuXKlWZ2QiJCenp6qXZCN7M11rx5cz799FP++ScaV9fKaLUaYmL24uLiwiOPPFzmuCLCvHnzGDBggJngawmDwUB+fj4Gg+G6BKHDhw/j6+uLh4dHufuoqKhUDE8DgcBxIKLqOF4/+Q3YbIW4SKjZ1LxDr16KIPTrrzBrlpKdvhOwGMV7zEwQAivf9eQdaGNqJ3TxbzMX+siESE4mn7xrBCF1a+w+oV27dvzwww9s27aNQ4cOMXDgwOt6qIFi4JycnExYWBh79uwhJiaGDRs2MHjwYKPw4+/vz65duzh9+jSXLl0yapOuZtSoUWzYsIHY2Fj279/P5s2bjUbNL774IkePHuXtt9/m+PHjLFu2zJhYt8jg97XXXmP9+vVMmTKFEydOMHPmTBP7IFAEIQ8PD7Zv324sCw8Pp1mzZjzxxBM8/PDDxuOJJ56gadOmRqPp0NBQgoKCCAsLY8eOHZw6dYrly5czbtw4Xn/9deNr17NnT3r16kVYWBiTJk1i7969nDlzhtWrV9O+fXs2F6mNLXAzW2MdOnQgJCSEjz8exfnzx7lw4T8+/3wiI0aMwNZW0Qbt3r2b4OBg4uLiTPr+9ddfxMbGMnToULNxFy1axLJly4iOjubUqVMsW7aMd999l169ehmFpry8PCIjI4mMjCQvL4+4uDgiIyM5edJ0X3/btm106NCh1DWoqKjcPWiBNwrPp1l5U2DVFjQGSPvWcv6xVq2galVITYWiMCGlRpmuDzhjVW0boGyNiUGKU21YiDB9V9kJ3VIftHuA+9V9Pi0tTXr16iUuLi7i5+cn8+fPt+g+v2LFCpN+rq6uMm/ePOP18ePH5dlnnxU3Nzext7eX4OBgGTVqlNE1+9ixY/LYY4+Jvb19me7zI0eOlNq1a4utra14enpK//795dKlS8b6q93nZ82aJYDJax8eHi6+vr5ib28vXbt2NXOfFxEZO3as9O7dW0REcnNzpXLlyvLFF19YnNPkyZPFy8tL8vLyREQkLi5OBg4cKNWrVxd7e3sJCQmRzz//3FhfhF6vl1mzZknTpk3FwcFBXFxcpHHjxjJ9+nTJysqyeK8bJT09R7KylPufPn1aOnXqJPb29uLh4SFjxoyR/Px8Y9vNmzdb/B+EhYVJixYtLI6/ZMkSadSokTg5OYmjo6OEhITIpEmTTF73ohACVx+tW7c2tsnOzhZXV1fZuXPnrVv8HeZe/ryrqNwImSLiIYon/NLMXYWu9K4iiXGWO7z2muJG36+fcp0sxb74p65uHCoGvVaSP0+Q5InJkh+fL3J5v+JC/3MlkcJnyDsb3xEmICPWjLju+d8u93mNyG3w0b6LKdrKSEtLM9uayMnJITY2lpo1a1o0wlW5fXz66afMnj2bc+fOXVe/hIQE6taty/79++9pzyWDQYiPv0J8fAYODtYEB3ug1Wqu3bGCmDVrFitWrLhtASXvBOrnXeVBZDwwEWgmwr/HaqDhHOR/CvXeM2+8cye0aKGk3bh4UYk83Qb4G5gBmJh8fgqM48qP/1AQG4JDZwdsGwDLnEAKoNtZcPQj4r8IhqwaQofaHdjQz8wXv0zKen7fDOrWmEqF8O2337Jnzx5OnTrFDz/8wJdffsnAgQOvexxvb2/Cw8M5e/bsbZjlnSEnp4CjRy8RH68Y5Ts4WN+WGFK3Emtra77++uuKnoaKisp1MgKwBXZrNGz3KgpZsgAyLHh/PvYYVK8OGRmwbp1SVmqU6SI7oS0AFJwvAJ0tuBbGeSuMMH03bo2pgpBKhXDixAm6detWaAfzMWPGjGHChAk3NFb37t1p1arVrZ3gHUBESErKJCoqiaysfHQ6DbVquePvr+QJu5sZOnToDcdXUlFRqTi8gAGF51Pde4HYgvVxuLDWvLFGU5xyoyj3WJGd0BbgSsnGzQAbrKptAQoFISi2E0qJBIoFodOpp8nT593kam4Nd/e3rcp9y1dffcWFCxfIycnh+PHjfPDBB6V6qt2P6PUGYmJSOHMmDYNBcHa2oW5dLypVsq/oqamoqNznjC78u1Jjwwnnwv2trO/hqqTOQLEgtHq1ohkKQomhmA+Y7IzbAU3R+e4FCgMrZhnMIkxXdaqKvZU9BjFwJvXMrVzWDaMKQioqFYBWq6GgwIBGA76+LgQGVsbG5vq8/FRUVFRuhGCgC4oXxFfebyuFtn9B/GHzxo0aQUAAZGfD74X7YaV6j7VCa5+KtnIiAPo4vRJLCIwaobsxC70qCKmo3CEMBsFgUGx/NBoNNWu6UaeOB97eTmZ5wlRUVFRuJ2MK/8638uCSdSho9JA829yVvuT2WFF0/iI7oTVcFWW60E6omhIXruB8QfHWWEYM5Ct7aaogpKLyAJKdnU90dBJxcenGMltbKxwcbCpwVioqKg8qbYBGQDYwy0fJ+4jVz5CcZN64d2/l77p1SlyhxwFXIAkwiYXbAtBg5bsJKEy1YecJ9j6AQOohQBWEVFQeKESExMQMoqIukZ1dwOXL2RQUWA5CqaKionKn0FCsFZpp9zA5mhqgS4aEH8wbP/wwhIRAXh6sXAnWQMfCOhPvMTfgEXS+hRqhosCKRjuhSKCEIJSiCkIqKvc1+fl6Tp5M5ty5dEQEFxdb6tb1LDNZqoqKisqd4v8AX+CiRsOiKtOVQsM8yLGQELVIK3S195gFOyGd51GwyYU80CfpS0SYvjtd6NVvZBWV20Bqag5HjiSRlpaLRgPVq7vy0EOVsLZWDaJVVFTuDqyBUYXnU127YBAbsD4C5y0ESi2yE/rzT7h0Sck7pgUOAiZh3Fqh0Rqw8jkCFBlMN1CqCjVCD1V6CIBTKacoMFjwVLvDqIKQisot4IknnmDx4sUAFBQYiI1NoaDAgL29FSEhnnh5OaoG0beYd955h1dfffXaDVVUVEplKOAMRGusWO/+kVKYORv0V23hBwZCw4aKi/2vv0JlFJMguEorVBRYUcnDWHC+oNhzLPUQGPRUc6mGrc6WAkMBZ9MqPhiuKgipXBdt2rRh1KhRFT2Nu4pVq1aRmJhI70LVsZWVlurVXalSxZGVK+fi5GTHl19+adZvwoQJNGjQwKz89OnTaDQak+z1IsL333/Po48+ipOTE25ubjRp0oRp06aRlWUhIuwt4uzZs3Tp0gUHBwe8vLx46623KLAUa6QEx48fp1u3bnh4eODi4sLjjz9ulpz2tddeo3Hjxtja2lp8DY4dO0bbtm2pUqUKdnZ21KpVi3HjxpGfn29s8+abb7JgwQJOnTp1S9aqovIg4goMKzyf6vmycmKzERKPmje+2nvM4vZYVaA2Vr67gUJByCkAdA6gz4YrJ9BqtNSuVBu4O7bHVEFI5Y6g1+tLzVR/p7nVc5kxYwY9evThypXiKKmVKzvg5+fKvHnzGDt2LBERETd1j/79+zNq1Ci6devG5s2biYyM5IMPPmDlypW3Ld+XXq+nS5cu5OXlsWPHDhYsWMD8+fP58MMPy+z39NNPU1BQwF9//cW+ffuoX78+Tz/9NAkJCSbtXnjhBXoVfbFehbW1NQMGDOCPP/7g2LFjTJs2jTlz5jB+/HhjGw8PD0JDQ5k1a9bNL1ZF5QHmdUAH/KVz5T/7MNDkwyULrvRFn9ctWyAhodiN/i8gs2TDVuiq7QPAcNmAIVcDbo8oVXejndAtTeF6D3C/Zp+vUaOGfPXVVyZllrLPz5kzR7p37y729vYSEBAgK1euNOlz6NAh6dixozg6OoqXl5f069dPkpKSRERk4MCBZhnJS8s+P2/ePHF1dZWVK1dKnTp1RKfTSWxsrNSoUUM+/vhj6d+/vzg6Okr16tVl5cqVcvHiRXnmmWfE0dFR6tWrJ3v27DGOdfr0aXn66afFzc1NHBwcJCQkRNasWSMixRnYV69eLfXq1RNbW1t59NFH5dChQ9ecS3JysvTv31/c3NzE3t5eOnbsKMePHzfrt2LFCgkICBBbW1vp0KGDnD171tjm/Pl40Wg0smTJXxIZGS/5+Xpj3ZYtW6RatWqSl5cnPj4+sn37dpPXaPz48VK/fn2z164o+/t///0nIiJLly4VQH777TeztgaDQVJTUy3+D26WtWvXilarlYSEBGPZrFmzxMXFRXJzcy32SUpKEkC2bt1qLEtPTxdANm7caNa+tNfAEm+88YY8/vjjJmULFiwQX1/fcvW/mnv5866icqsJEyWpfN+cGCUr/WFPkZRk84aPPqpkpP/6axGDiNQs7Gjy9RQuIkjqzEOSPDFZ8k7kiex6UclE/987IiIyev1oYQLyxvo3yj3H25V9XtUIXQsRMGRWzHEbEm9+9NFH9OzZk4MHD9K5c2f69u1LcnIyAKmpqbRr146GDRuyd+9e1q9fT2JiIj179gRg+vTpNG/enGHDhhEfH098fDx+fn6l3isrK4vJkyczd+5cjhw5gpeXF6Ck12jZsiX//fcfXbp0oX///gwYMIB+/fqxf/9+ateuzYABA4yJR0eMGEFubi5bt27l0KFDTJ48GScnJ5N7vfXWW0ydOpU9e/bg6elJ165dTbZRLM1l0KBB7N27l1WrVrFz505EhM6dO5v1+/TTT1m4cCHbt28nNTXVuAWWnJzNkiVrsbOzp3btQKpVc0GnK7YDCg8PJywsDGtra8LCwggPD7+h/9miRYsICgqiW7duZnUajQZXV9dS+zo5OZV5vPTSS6X23blzJ/Xq1aNKlSrGstDQUNLT0zly5IjFPpUrVyYoKIiFCxeSmZlJQUEB3333HV5eXjRu3Pg6Vm3KyZMnWb9+Pa1btzYpb9asGefPn+f06dM3PLaKikqxK/1Sm5qct6oHuiSI/9G8YUnvMQ2lJGEtshPaDhTZCTVQqlLuPo3Qg5Pc6UaRLDjudO12t4PADNA43tIhBw0aRFhYGACTJk1ixowZ7N69m44dOzJz5kwaNmzIpEmTjO0jIiLw8/Pj+PHjBAYGYmNjg4ODA97e3te8V35+Pt9++y3169c3Ke/cuTMvvvgiAB9++CGzZs2iadOm/N///R8Ab7/9Ns2bNycxMRFvb2/Onj3L888/T7169QCoVauW2b3Gjx/PU089BcCCBQvw9fVlxYoVRiHu6rmcOHGCVatWsX37dlq0UCz+Fi1ahJ+fH7/99ptxLvn5+cycOZNHH33UOHadOnX47bdN+PrWIS7uHB4enjz8cBXs7Io/Tunp6SxfvpydO3cC0K9fP1q1asX06dPNhLhrceLEiRtOcFrSzsgSLi4updYlJCSYCEGA8frqba4iNBoNf/75J927d8fZ2RmtVouXlxfr16/H3d39+iYPtGjRgv3795Obm8vw4cOZOHGiSb2Pjw8AZ86cwd/f/7rHV1FRUWgMtAb+1miYUeVrvohrA/kRkPcS2FgXN/y//4PRo2H7djh3Dp72gxkoUaYNFBrcBABVsKq2i7yDPZXAinWLDKYjgbtLEFI1Qg8YjzzyiPHc0dERFxcXLl68CMCBAwfYvHmzicYgODgYgJiYmFLHrFu3rrF9p06djOU2NjYm97M0h6IHa5GQU7KsaF6vvfYan3zyCS1btmT8+PEcPHjQbMzmzZsbzytVqkRQUBDR0dGlziU6OhorKyujgAPF2oyS/aysrGjatKnxOiAgEGdnVyIjlQiptrYGnJ0dTYQggJ9++onatWsbBa8GDRpQo0YNlhYZGV4HchOawYCAgDKPIi3drUJEGDFiBF5eXmzbto3du3fTvXt3unbtSnx8/HWPt3TpUvbv38/ixYtZs2YNU6ZMMam3t1eS1N5Og3EVlQeFNwv/fufUinSNO9hEQpypowPVqkErRePDsmWK9OQEJAD7ihppgFamgRVdH1bKs+Mh56JREIpJiUFvMMnTccdRNULXQuOgaGYq6t7lRKvVmj0wS27xFGFtbW1yrdFojIbDGRkZdO3alcmTJ5v1q1q1aqn3Xrt2rfFeRQ+monNLLuMl51BUb6msaF5Dhw4lNDSUNWvW8Mcff/DZZ58xderU63KdLm0u14uVlRaNRvkbFFSZWrV8SUlJMWsXHh7OkSNHsLIq/ogZDAYiIiIYMmQIoGhj0tLSzPqmpqYCGLe8AgMDOXrUggdHObiW9qlfv37Mnj3bYp23tze7d+82KUtMTDTWWeKvv/5i9erVpKSkGLVN3377LRs3bmTBggW888471zX/oq3XkJAQ9Ho9w4cPZ8yYMeh0Sjymom1dT0/P6xpXRUXFnM4oyeWPabSEV57CG5eGQPpsMLQHbQm9Se/esHWr4j02ZgyEAr+geI8Zfzc+gc5rBVjnQK4dhlQHdM4BcOUEpBzAr0pbrLXW5OnziLsSR3XX6nd4tcWoGqFrodGA1rFijut4cHt6epr84k5PTyc2Nva6ltqoUSOOHDmCv7+/mebA0VHZorOxsUGvN5Xea9SoYWxXrVq167pnefHz8+Oll17i119/ZcyYMcyZM8ek/t9//zWep6SkcPz4cerUqVPqeHXq1KGgoIBdu3YZyy5fvsyxY8cICQkxlhUUFLBjx7/k5ytrPnbsGOnpabRr1wxnZ1saNmxIQkKCiTB06NAh9u7dy5YtW4iMjDQeW7ZsYefOnUahJigoiPPnzxuFiyL279+PnZ0d1asrXwx9+vTh+PHjrFy50mwdImJRmCqi5P0tHVdvNZWkefPmHDp0yKiZA9i4cSMuLi4mr1FJijQzWq3pV4tWq71pTz2DwUB+fr7JOIcPH8ba2pq6deve1NgqKiqKQDC68Hx6pT4UoAObtZB0VYiK559XBKM9eyAmplQ7IY1Wj1W1/cBVdkKpB7DSWlHLXTFzOHH5xO1ZUDlRBaH7hHbt2vHDDz+wbds2Dh06xMCBA42/msvLiBEjSE5OJiwsjD179hATE8OGDRsYPHiwUfjx9/dn165dnD59mkuXLt0Rl/hRo0axYcMGYmNj2b9/P5s3bzYTciZOnMimTZs4fPgwgwYNwsPDg+7du5c65kMPPUS3bt0YNmwY//zzDwcOHKBfv35Uq1bNaJQsIlhbW/PSSyNZuXITe/fuZdCgQTz22GO0aPEYAA0bNsTDw4Pt27cbxw4PD6dZs2Y88cQTPPzww8bjiSeeoGnTpkaj6dDQUIKCgggLC2PHjh2cOnWK5cuXM27cOF5//XXj/69nz5706tWLsLAwJk2axN69ezlz5gyrV6+mffv2ZjF6SnIzW2MdOnQgJCSE/v37c+DAATZs2MC4ceMYMWIEtra2AOzevZvg4GDi4uIARXhyd3dn4MCBHDhwgOPHj/PWW28RGxtLly5djGOfPHmSyMhIEhISyM7ONgpmeXlKCIJFixaxbNkyoqOjOXXqFMuWLePdd9+lV69eJtrDbdu20apVKxNNpIqKyo3TH/AEzmjt+MVlFGhy4eJVWmMvL3jySeV82TIlyrQG+A+IK2pUD3DBqpryI7UgrkQm+qtzjlW0ndAt9UG7B7hf3efT0tKkV69e4uLiIn5+fjJ//nyL7vMrVqww6efq6irz5s0zXh8/flyeffZZo0t5cHCwjBo1SgwGg4iIHDt2TB577DGxt7cvl/v81Vhy8796Xle7j48cOVJq164ttra24unpKf3795dLly6JSLH7/O+//y5169YVGxsbadasmRw4cOCacylyn3d1dRV7e3sJDQ01us/n5+tl8uSZ4uTkIpMnzxE/P3+xtbWV9u3by5kzZ0zGGTt2rPTu3VtERHJzc6Vy5cryxRdfWHxdJk+eLF5eXpKXlyciInFxcTJw4ECpXr262NvbS0hIiHz++efG+iL0er3MmjVLmjZtKg4ODuLi4iKNGzeW6dOnS1ZWlsV73QpOnz4tnTp1Ent7e/Hw8JAxY8ZIfn6+sb7o9S/5PtizZ4906NBBKlWqJM7OzvLYY4/J2rVrTcZt3bq1WSiGkuMsWbJEGjVqJE5OTuLo6CghISEyadIks89mUFCQ/PTTTze0tnv5866icjuZIIpHfJO8i2KIRuRwVZH0dNNGc+cqbvSPPKJcNy/sNLtko06SeyxUkicmS+q3qSLnVysu9KsfFhGR19e9LkxA3tzwZrnmdbvc51VBqATqF+O9R9GDOCUl5ZaNmZ6eIwcOJMiHH/5PnJxc5MKFdKMgaIn4+HipVKmSnD59+pbNQeXarF27VurUqWMimF0P6uddRcUyF0XEThQB4e/YzkpcoaPfmTa6fFnE2loRhqKiRD4t7PB0yUaTRJ9RWZInJkvyxGTRXz6nCEKLdSIF2fL1rq+FCUj3Jd3LNS81jpCKym3GYBDi4tI5duwyeXl6rK216HQaqlZ1LtPQ2tvbm/DwcM6erficOQ8SmZmZzJs3z8QgXUVF5ebxBAYUnk+tUug8kztXyTNWRKVK0KGDcr50abGd0J+A0YmzFVrHy2jdzwCgT/YC28ogekiLumu2xlRBSEWlEBEhOTkbAA8PB3x8nMvdt3v37rQqcilVuSP06NHDJPyBiorKraPIaPp3u7ocsw4Gmz0Qt920UVFwxaVLoa5AdSAHJeUGoLiQ2WLlW2QnpDexEzK60CfHYJCKS8GkCkIq9zRt2rRBRHBzc7uh/oXKXAB0Oi01a7pTu7Y7/v5uvPDCC0ZXdhUVFZUHiSAUJY9oNHzlMVUpTPvWNOPBM8+ArS0cPQqHDlrwHrMFmhXHE7oqwnQN1xroNDqyC7KJv3L9ccZuFaogpPLAkp+vJyYmhaSk4mB8Tk42uLurHkgqKioqRWk3FriEkqTzAKvf4fK54gYuLlDkDbp0qWk2eqO81AqransB0MfpEdfiCNPWOmv83fyBit0eUwUhlQeStLQcoqKSSE3NIS4unYKCilPLqqioqNyNPIGSeiNHo2OW2wegzYbE70wbFWWkX7IEWgs4AhdQXOkBaIWuyhGwzkZyBQNNlOKUAyByV9gJqYKQygOFwSCcO5fGiRPJ5OcbsLOzIijIAysr9aOgoqKiUhINxWk3ZlYeSrbGDuQHKJnSpksXcHSE2Fg4vBeeKixfXdSgBRqtYOWj5N8oSK0BWmvIT4PMMzxU6SEATiRXXFBF9dtf5YEhOzuf6OgkEhMzAfD0dKBOHQ8cHKyv0VNFRUXlwaQHig10ktaBH12GgtU5iPu5uIGjI3QtNA5assSCnZALUB+raoV2QhcA18JI8KkHVI2QisqdoqBAT3T0JbKzC7Cy0hIQUIkaNdzQ6dSPgIqKikppWAGvF57/z+N9DGgg+3somWqpyHts2TLoWGhmsBcw2j+3Quer2AldHWFaFYRUVO4QVlY6vL2dcHW1pW5dT9zc7Cp6SioqKir3BENR9DpHrb1Z59gZbHZA/N7iBh07KobT58/DqR3QrLB8TVGDVlgVeo4ZkgyIU2Fm1qsEIbkqcfidQhWEVG4L8+fPvyGX9ry8PAICAtixY8dNzyE1NYfs7HzjddWqTgQEVMLa+vpysN3v5OXl4e/vz969e6/dWEVF5YHDBRheeD6l8ifKSfLMYld6W1t49lnl/GrvMUAJrHgJrbuSCLwgrzD+V8oB/N380Wq0ZOZnkphpmoD6TqEKQirXRZs2bRg1atR194uPj6dPnz4EBgai1WpLHWP27NnUrFmTFi1amNW9+OKL6HQ6fv75Z7O6QYMGGZOs6vUGzpxJ5eTJZJYsWY1GoyE1NRWNRoNGoyEvL48vvviC+vXr4+DggIeHBy1btmTevHnk5+ebjX2rOHjwIK1atcLOzg4/Pz+++OKLMtvPnz/fOOerj6KM8Fu2bLFYn5CQYHHMzz//HI1GY/L629jY8Oabb/L222/fsrWqqKjcX7yGsk22xaEB+20bgtUKSC3xPVPkPfbzz9C5cNtsI0qARaoADxnd6AvSlKzzZMZia8ihumt1oOK2x1RBSOWOkJubi6enJ+PGjaN+/foW24gIM2fOZMiQIWZ1WVlZLFmyhLFjxxIREVHqfTIz84iOvmSMDeToaGoInZeXR2hoKJ9//jnDhw9nx44d7N69mxEjRvD1119z5MiRm1hl6aSnp9OhQwdq1KjBvn37+PLLL5kwYQLff/99qX169epFfHy8yREaGkrr1q3NssYfO3bMpJ2lrPJ79uzhu+++45FHHjGr69u3L//8889tW7+Kisq9jR/Qs/B8aqUPQZsJ8SW+v9q3V9JuJCZC6t/gi5JqY3NRg1bFgRUTrMFBEX5IPVjhdkKqIHSf4O/vz7Rp00zKGjRowIQJE4zXGo2GuXPn8uyzz+Lg4MBDDz3EqlWrTPocPnyYTp064eTkRJUqVejfvz+XLl0CFK3L33//zfTp042ah9OnT5d7ftOnT2fAgAG4urpabLNv3z5iYmLoUhSgqwQ///wzISEhvPPOO2zdupVz586ZtcnJKeDo0Uvk5BRgba0lMLAyXl5OJm2mTZvG1q1b2bRpEyNGjKBBgwbUqlWLPn36sGvXLh566KFyred6WbRoEXl5eURERFC3bl169+7Na6+9xv/+979S+9jb2+Pt7W08dDodf/31l0VB0cvLy6StVmv60c7IyKBv377MmTMHd3d3s/7u7u60bNmSJUuW3PxiVVRU7kuKAiwudXmGs1Z+YFgAOblKobU1PP98YYMlFrfHiuyE9HF6xK2BUpwSSYC7Kgjd3QiQWUHHbbAb++ijj+jZsycHDx6kc+fO9O3bl+TkZABSU1Np164dDRs2ZO/evaxfv57ExER69lR+B0yfPp3mzZszbNgwo+bBz8/vls1t27ZtBAYG4uxsnuMrPDycfv364erqSqdOnZg/f76xrqDAQFpaDjk5BYiAm5sddet64uJiazbOokWLaN++PQ0bNjSrs7a2xtHR0eLczp49i5OTU5nHpEmTSl3bzp07eeKJJ7CxsTGWhYaGcuzYMVJSUsp6WYwsXLgQBwcHevToYVbXoEEDqlatylNPPcX27dvN6keMGEGXLl1o3759qeM3a9aMbdu2lWsuKioqDx6NgLaAXqNlhvsYsIqFuBXFDYq8x375BToWJmj9ncJnWSt0XkfAKgvJEQzWbZX6u8CFXk3bfC2yAKdrtro9ZKBE6byFDBo0iLCwMAAmTZrEjBkz2L17Nx07dmTmzJk0bNjQ5IEeERGBn58fx48fJzAwEBsbGxwcHPD29r61EwPOnDmDj4+PWfmJEyf4999/+fXXXwHo168fo0ePZty4cWg0GnS64szwNWq44uHhUGq2+BMnTtCmTZvrnpuPjw+RkZFltqlUqVKpdQkJCdSsWdOkrEqVKsY6S1qaqwkPD6dPnz7Y2xenAKlatSqzZ8+mSZMm5ObmMnfuXNq0acOuXbto1KgRAEuWLGH//v3s2bOnzPF9fHw4c+bMNeehoqLy4DIGZbdrjvswPrz8AS6Z34GhJ2i10Lo1VKmibI/JJrAPhXPAIeCRWmh0nlj5RFJwtgUFOc3QgaIR8leCD1VUUEVVI/SAUdI+xNHRERcXF6Ph7YEDB9i8ebOJliM4OBiAmJiYUsesW7eusX2nTp1ueG7Z2dnY2Zm7tUdERBAaGoqHhwcAnTt3Ji0tjT//3AQoW35OTjY4O9vi6elYqhAE3LB7ppWVFQEBAWUeZQlCN8vOnTuJjo422xYLCgrixRdfpHHjxrRo0YKIiAhatGjBV199BcC5c+d4/fXXWbRokcXXtiT29vZklYwYq6KionIVnYA6QLrWgbmuQ8F6KyQeVCp1Ovi//1POVyyGIgX076DEqW6FriiwYnrhD8PUwzzkrpxXlAu9KghdCwcUzUxFHA7ln6ZWqzV7A1nygLK2NjUe1mg0GAxKAKyMjAy6du1KZGSkyXHixAmeeOKJUu+9du1aY9u5c+eWf9JX4eHhYbZNpNfrWbBgAWvWrMHKygorKyscHBxITk7mm2+KDfXc3d3IyEg3GzM1NRWdTmfc8goMDOTo0aPXPbeb3Rrz9vYmMdHUNbToujzatblz59KgQQMaN258zbbNmjXj5ElFxbxv3z4uXrxIo0aNjK/f33//zYwZM7CyskJfIihacnIynp6e1xxfRUXlwUULjC48n1bpbfI1Wrj0dXGDIu+x336D0MJnkAU7oYJEB7ByAkMutXQFaNCQnpvOpaxLt38RV6FujV0LDbd8e+p24OnpSXy8MYwn6enpxMbGXtcYjRo14pdffsHf3x8rK8tvDRsbG5OHJ0CNGjWuf8IWaNiwIbNmzUJEjFqdtWvXcuXKFf777z+0Wi1JSVlcvJjJqVPHmDhxNJcvJ1O5ciWCgoJYsmQJubm52NoW2wbt37+fmjVrGgXAPn368N577/Hff/+Z2Qnl5+eTl5dn0U7oZrfGmjdvzvvvv09+fr5xLhs3biQoKOia22IZGRksW7aMzz77rMx2RURGRlK1alUAnnzySQ4dh5XElQAAPJpJREFUOmRSP3jwYIKDg3n77bfR6YpjKh0+fNii7ZSKiopKSfoB7wPnrKuw3LkHYWnLIW0yuHpAixbg66sEV7TbBHSEXcBFwKsVVr4fA4WBFWs8hiblT+wyjuLr4su59HOcTD6Jp+Od/UGmaoTuE9q1a8cPP/zAtm3bOHToEAMHDjR5yJWHESNGkJycTFhYGHv27CEmJoYNGzYwePBgo/Dj7+/Prl27OH36NJcuXTJqk8pDkdYoIyODpKQkIiMjiYqKMta3bduWjIwMExfu8PBwunTpQnBwXaytq+Li4kdAQDA9e/bE3d2NJUt+AhT3b41Gw4ABA9i3bx8nT54kIiKCadOmMWbMGON4o0aNomXLljz55JN88803HDhwgFOnTrFs2TIee+wxTpywvEd9s1tjffr0wcbGhiFDhnDkyBGWLl3K9OnTGT16tLHNihUrjFuRJVm6dCkFBQX069fPrG7atGmsXLmSkydPcvjwYUaNGsVff/3FiBEjAHB2dubhhx82ORwdHalcuTIPP/ywyVjbtm2jQ4cOpa5BRUVFBcAOGFF4PqXSu4g2HeILdwO0Wih0sOHPBYqFtQBrAR5G65SL1k2xRSyg0JSiglNtqILQfcK7775L69atefrpp+nSpQvdu3endu3a1zWGj48P27dvR6/X06FDB+rVq8eoUaNwc3MzumO/+eab6HQ6QkJC8PT05OzZs+Uev2HDhjRs2JB9+/axePFiGjZsSOfOnY31lStX5tlnn2XRokWAsnW0Zs0aOnR4miNHksjIyEOn01CzphsBAUrb8PBwANzc3Ni2bRv5+fk888wzNGjQgBkzZvC///2PF1980XgPW1tbNm7cyNixY/nuu+947LHHaNq0KTNmzOC1114zEw5uFa6urvzxxx/ExsbSuHFjxowZw4cffsjw4cONbdLS0jh27JhZ3/DwcJ577jmLkbrz8vIYM2YM9erVo3Xr1hw4cIA///yTJ5988rrmt3PnTtLS0ix6pKmoqKhczSsoAtF++0f426E1FERAXuFWWJH32KpVEJqnnP8OoANaFtsJ5Rbm4kipWM8xjVRUco8KIj09HVdXV9LS0nBxcTGpy8nJITY2lpo1a17TsFTl9nDw4EGeeuopYmJicHJyIj9fz+HDF9HrBScnG2rWdMPWVt3RvdX06tWL+vXr895771X0VO4Y6uddReXmeBmYDTx9ZQ2/xz0NdivAv7uSeiMgAE6dgkl/wHtPKd7XlwDbz8nZHUv2hs+xqp6Js7Uf2HnxRZUxvP3n2/Sp14dFzy2yeL+ynt83g6oRUrmreOSRR5g8ebLRvsnaWkeNGm74+DgTFFRZFYJuA3l5edSrV4833nijoqeioqJyD/EGihntaucuHLUJgvRZihCk0RQbTe+eDVVRHID+BpPAihcdEbSQc5EAp8qAujWmooLBILRv/xzVqxdHeK5UyR4fH+cy3eJVbhwbGxvGjRtnEp9IRUVF5VoEAs8Unn/l/gZYb4KkQrvPIkFo3Rp4qnB7bDVAE3RVToBVNpIDBhvFxz5Aq7R5YAWhb775Bn9/f+zs7Hj00UfZvXt3qW3nzJlDq1atcHd3x93dnfbt25fZXuXeIScnn6NHL5GQkEFsbCp6ffkNsVVUVFRU7jxFrigLXAdx0aoSJM1UCh55BIKDITcXKhVGu/8dEFs0ukboqh4AoADFTrS2KG7zydnJJGcn38EV3AWC0NKlSxk9ejTjx49n//791K9fn9DQUGOQv6vZsmULYWFhbN68mZ07d+Ln50eHDh2Ii4u7wzNXuVWICElJmURFXSIrKx+dTkONGq7odBX+9lRRUVFRKYPHgaZArtaWb91fAc1SyEw13R6Lngm2wGkgCkziCeU0AcDxShQ+zkpmgTutFarwJ83//vc/hg0bxuDBgwkJCWH27Nk4ODiUmmF80aJFvPLKKzRo0IDg4GDmzp2LwWBg06ZNd3jmKreC/Hw9MTEpnDmThsEgODvbULeuF+7u6jaNioqKyt2OhmKt0Ddur5Kty4a4eUpBkSC0aRU8UdJ7rBVWhZ5j+rTCOHQV6DlWoYJQXl4e+/btM0kEqdVqad++PTt37izXGFlZWeTn55cawyU3N5f09HSTQ+XuID9fT1RUEqmpOWg04OvrQmBgZWxsri/+kYqKiopKxfE8UAO4ZFWZha4DIDcc9HqoU0fZIisoAK/CXIerAZpj5bsfAH2KA2JwgivHCHDzBx4wQejSpUvo9Xpj8skiqlSpQkJCQrnGePvtt/Hx8Sk1q/Znn32Gq6ur8biV2dJVbg5rax0uLrbY2VlRp44H3t5OqkG0ioqKyj2GFTCq8Px/7mMwWEdB3EaloCim0JlvlL87gUsuaJ290bqeA9FQYGgLYiDAXslw/kAJQjfL559/zpIlS1ixYkWpcUDeffdd0tLSjMe5c+fu8CxVSpKdnU9+fnGKjurVXalTxwMHB5sKnJWKioqKys0wBHAFjtsGssapC6TNVFzpi7bHdiyFuvlgANaBSQJWUSJMB1gVAA+YIOTh4YFOp7OYjPJaiSinTJnC559/zh9//GGSUf1qbG1tcXFxMTlU7jwiQmJiBlFRSZw+nWpMEKvTaVWjaBUVFZV7HGegKE7+1EpjwGoDJMdArVrQtCkYDOCneIoZ7YSK4gkVGkwHiJJ0+4EShGxsbGjcuLGJoXOR4XPz5s1L7ffFF1/w8ccfs379epo0aXInpqpyncyfP9+YEiI/X8+JE8mcO5dOURxzg8FyQPPLly/j5eXF6dOn78xEVcjLy8Pf35+9e/dW9FRUVFTuYV5D2Sb726ENe+3rQ2KhK32RViihMB/ZBiDvcax8le+cgjQ/RKB2vpKyKSkribSctDs27wr/KT569GjmzJnDggULiI6O5uWXXyYzM5PBgwcDMGDAAN59911j+8mTJ/PBBx8QERGBv78/CQkJJCQkkJGRUVFLeKBo06YNo0aNKnf71NQcjhxJ4rffVjBiRG86dnyExo1r8vjjLdmwYYNZ+08//ZRu3brh7+9vVhcaGopOp2PPnj3lnldJgayI9PR03n//fYKDg7Gzs8Pb25v27dvz66+/cjszzmzZsoVGjRpha2tLQEAA8+fPL7P9hAkT0Gg0Zoejo6NJu9TUVEaMGEHVqlWxtbUlMDCQtWvXmrQpK1aXjY0Nb775Jm+//fYtW6uKisqDhy9QaBGkaIVkEeRkFCdhjZwDHnpIB7ZVQeedDbocJNcWQ34tXK4cwcvRC4CYlJg7Nu8KF4R69erFlClT+PDDD2nQoAGRkZGsX7/eaEB99uxZ4uPjje1nzZpFXl4ePXr0oGrVqsZjypQpFbUEFQsYDAYMBuHkyWQKCgwcOrSbZ57pxLp169i3bx9t27ala9eu/Pfff8Y+WVlZhIeHM2TIELPxzp49y44dOxg5cmSpoRXKQ2pqKi1atGDhwoW8++677N+/n61bt9KrVy/Gjh1LWtrt+RUSGxtLly5daNu2LZGRkYwaNYqhQ4daFAaLePPNN4mPjzc5QkJC+L//+z9jm7y8PJ566ilOnz7N8uXLOXbsGHPmzKFatWrGNuWJ1dW3b1/++ecfjhw5clvWr6Ki8mBQ5Er/s/P/ccbWAc7/AH5+0LIlYIBaR5UGq0Gja14cWDGvBRRkEODqC8CJyyfu3KTlASMtLU0ASUtLM6vLzs6WqKgoyc7ONpYZRCSjgg7DdayrRo0a8tVXX5mU1a9fX8aPH2+8BmTOnDnSvXt3sbe3l4CAAFm5cqVJn0OHDknHjh3F0dFRvLy8pF+/fpKUlCQiIgMHDhTA5IiNjbU4n/DwcHF2dpE9e+Lk7NlU0evNVxMSEiIfffSR8frnn38WT09Pi+NNmDBBevfuLdHR0eLq6ipZWVkm9a1bt5bXX3/drN+8efPE1dXVeP3yyy+Lo6OjxMXFmbW9cuWK5OfnW7z/zTJ27FipW7euSVmvXr0kNDS03GNERkYKIFu3bjWWzZo1S2rVqiV5eXml9mvWrJmMGDHCeK3X68XHx0c+++wzk3Zt27aVcePGlXs+9zqWPu8qKio3z5Migoi8cXmqyMEGInq9yNdfi4DIQ2OVytoiYpgvmX9MlOSJyZIxa4HIImTgj22ECcgnf39iNm5Zz++bocI1Qnc7WShJcyviyLoN6/noo4/o2bMnBw8epHPnzvTt25fkZCWceWpqKu3ataNhw4bs3buX9evXk5iYSM9Cteb06dNp3rw5w4YNM2ooSoYjKHzvA0o8KK1WQ2BgZfz8XNFqTd3iDQYDV65cMYn/tG3bNho3bmw2ZxFh3rx59OvXj+DgYAICAli+fPl1r91gMLBkyRL69u2Lj4+PWb2TkxNWVpaTum7btg0nJ6cyj0WLLGdMBti5c6dZiIfQ0NByx8sCmDt3LoGBgbRq1cpYtmrVKpo3b86IESOoUqUKDz/8MJMmTUKvVzzzridWV7Nmzdi2bVu556OioqJiiSKt0FzXoaTZnoL4v6FHD9Bq4cQ3YCMQAxxrh1U1xU5In9MQgABrpe/JlDtnMK2m8n7AGDRoEGFhYQBMmjSJGTNmsHv3bjp27MjMmTNp2LAhkyZNMraPiIjAz8+P48ePExgYiI2NDQ4ODmZefXl5emJjU3Bzs6NKFSdjuYuLrcV5TJkyhYyMDKOQBXDmzBmLAsqff/5JVlYWoaGhAPTr14/w8HD69+9/XWu/dOkSKSkpBAcHX1c/gCZNmhAZGVlmm6vjYZUkISHBYrys9PR0srOzr5nwNCcnh0WLFvHOO++YlJ86dYq//vqLvn37snbtWk6ePMkrr7xCfn4+48ePLzNW19GjR03KfHx8OHPmTJnzUFFRUbkWHYEQIErnwhy3Ybx58Wt4+Fdo0wb++gv8Y+F4LfjdF6sXFQNpfYYP4uFIAErQ4zvpOaYKQtfAAagoM2yH2zBmyVADjo6OuLi4GG1FDhw4wObNm3FycjLrFxMTQ2BgoMUxg4NDOHtWeYA2bPgoW7f+WeYcFi9ezEcffcTKlSvx8vIylmdnZ1uMBxUREUGvXr2M2pqwsDDeeustYmJiqF279jVWXIzchCG0vb09AQEBN9z/ZlmxYgVXrlxh4MCBJuUGgwEvLy++//57dDodjRs3Ji4uji+//JLx48df1z3s7e3JyrodekgVFZUHCQ0wGhgKTHd/ndcvB2OdekbxHvvrL8j6GXgbVmvQvhWExuU8ku5LQW5DArSKbZAqCN1FaADHa7aqeLRardmDPj8/36ydtbW1ybVGo8FgULK8Z2Rk0LVrVyZPnmzWr2rVqmZler2Bs2fT+fLL+RQU5GNvb8VDD3mXGRdoyZIlDB06lJ9//tlsq8jDw4OUlBSTsuTkZFasWEF+fj6zZs0qcW89ERERfPrppwC4uLhYNHROTU3F1dUVAE9PT9zc3Mw0IeVh27ZtdOrUqcw23333HX379rVY5+3tbTFelouLyzW1QaBsiz399NNmmp2qVatibW2NTleclqROnTokJCSQl5d3XbG6kpOT8fT0vOZcVFRUVK5FX+B9Ec5b+7HMtTt9E76B58bCiBFwfhbwNmwHkttjVW0v+em+FOQ0pbbNPwAkZCSQkZeBk435D/NbjWojdJ/g6elp4l2Xnp5ObGzsdY3RqFEjjhw5gr+/PwEBASZHkcu2jY0Ner2ejIw8oqKSuHw5i6pVfWnWrB4dOjSjdu0apY7/008/MXjwYH766Se6dOliVt+wYUOioqJMyv6/vTuPi6pe/wD+mYUZBhlmQEBAAUHccgEVRfQaahimWfa7KS4ZpmldsVzKJdMsLbcwLdLMQjEvidkt67qV1yX3JRUXUJBdURRkX2d7fn+MTo6AMsSwPu/Xa145Z77ne57Dl+k8nPNdoqKi0KZNG1y8eBExMTGG1+rVqxEZGWnoC9OxY0ecP3++Qp3nz5833MkSCoUYM2YMoqKicOvWrQpli4qKoNFoKo39waOxx71eeOGFKs/d39+/wsLA+/fvf+x8WQ+kpKTg0KFDlY6m69+/PxITEw3JLAAkJCTA2dkZEonEpLm6rly5gh49ejwxHsYYexJLANPvL5m02u4dkHYrYGMNBAYCSAMc7wJaAPue/WtiRc3TsBUBLS31Ex8n5dTREPpa7XrdCJg6aqyxmD9/Pjk5OdGRI0fo0qVLNHLkSLK2tq4wauznn3822k+hUNDmzZuJiCgjI4McHBzo5ZdfpjNnzlBiYiLt27ePJk6cSBqNhoiIpkyZQr6+vvTrr6dp//7LdOHCLSooKKsQz6OjtaKiokgsFtO6devo9u3bhldeXp6hzKVLl0gsFlNOTo5hm7e3N82bN69C/Xl5eSSRSGjXrl1ERJSUlESWlpb01ltv0cWLF+natWu0evVqEovFtHfvXsN+9+7do06dOlGbNm1oy5YtFBsbSwkJCRQREUFeXl6Um5tb3R+5SZKTk8nKyormzJlDV69epXXr1pFIJKJ9+/YZyoSHh9PgwYMr7Ltw4UJycXExtMHD0tPTSS6X0/Tp0yk+Pp527dpFjo6O9PHHf424iI6OJqlUSpGRkRQXF0dTp04lpVJJmZmZRnW5u7vTd999V4tn3bA15u87Y41BNhHJdDoCER1MG0iUFEEUGakfPdZyo354zVgdqW8MpJwlOZS7IoV0/wb5feFO+BD0Y+yPRvWZa9QYJ0IPacz/Y8zPz6fg4GCysbEhV1dXioyMrHT4/OMSISKihIQEeumll0ipVJJMJqNOnTrRzJkzSafTD3+Pj4+nvn37kqWljADQ9etJlcbzaCIUEBBQYeg9AAoJCTHar0+fPrRhwwYiIvrzzz8JAJ05c6bSYzz33HP00ksvGd6fOXOGhgwZQg4ODqRQKMjPz6/C+RLpk6j58+dT+/btSSKRUKtWrSgwMJB+/vlnw3maw6FDh8jHx4ckEgl5enoa/dyJiBYvXkzu7u5G27RaLbVp04YWLFhQZb0nTpwgPz8/kkql5OnpSZ988kmFpCk8PJzc3NxIIpFQnz596NSpUxXqUCqVFaYlaMoa8/edscZiGukTjWGFu4gu9SbKzSWSSIjgr/9ASaQr+SflfHKbcpbkkCbSg8Z/7Un4ELTi6AqjusyVCAmIzDiVbgNUUFAAhUKB/Pz8CuuOlZWVISUlBR4eHlUu4tocERFyckohk1nAysrCsM0cK8Xv3r0bc+bMwZUrVyAU8pPbuhIcHAxvb28sWLCgvkOpM/x9Z8z8EgF0IAIJBIhL7ozOVhHAm6uAX/4LWBUAJS2Aw9tQkNQS2ozesHJ8A8uFR/DRrTt4vcfr+OaFbwx1Pe76/XfwlYY9lkajQ0pK3v1XrqEvijmSIAAYPnw4pk6dioyMDLPUzypSqVTo1q0bZs2aVd+hMMaaGC8AL96/XnxmNxu498X9tcd0gOj+zPr/DXhoAdbeaE/ZAIDrOXUzuzQnQqxKhYXliIvLQk5OKQDA1lZmtgToYTNnzjSaqJGZl0QiwcKFC6s1eo0xxkz1YILFrTYTcMfiJPBMH0AmAwq36T/Y5Qxxm/tLbWj84CXWD4KpqyH0nAixCnQ6ws2bBYiPvweVSgupVIROnezh4iKvk0SIMcZY09EfgB8RyoWWWGc3GciLBJ5/HsBvgFALxAsgVunnlNOWdoaXSD+LXkZhBkrU5p/bjBMhZkSt1uLatWxkZuqnkbS3t8JTTznA2lpSz5ExxhhrjAQA3rn/R/R65TSUaLYBY4IBFAIW+qV+hIeGQyC/BZAYNmofKC30qxIk5yabPT5OhJgRsVgIkUgAkUgAT09btG2rfOwEiYwxxtiTvASgLelwT2yP7+wCAe9iwNoaKN+hL/Bfv7/6CZX3hpdU/8d3XTwe4yscg1qtNeoE7eFhiy5dHGFnx31GGGOM/X1iALME+pTjM7vZ0JV+A4wcCWCXvsBRW4jt9BPqatS94SUqB8CJEKsD+flliIvLws2bhYZtEokIEonoMXsxxhhjppkEQElaXJd0wH+VdkDIQADJgDgB0AggTncDAGjKfOElVAHgRIiZkU5HuHEjH9ev50Ct1qGgoBxare7JOzLGGGM1YA3gDYH+j+zVdu8Azn8ASiWg2QkAEB30B4QqkNoR3UX65Zo4EWJmUVqqxtWrWbhzpxgA4OBghc6d7bkvEGOMMbN6C4CYdDhq9TTOyNKASWMA/BcAINjdDaJWlwEAnXS9AXAixGoZEeHOnSLExWWhtFQDsVgILy87uLvXfofoyMhIKJXKWq3zUQKBADt37jR5vwkTJmDZsmW1HxCr0oYNGzBixIj6DoMxVs9aAxiH+4ux2k8DRlkCOAkIcoEcCcSimwAAZ/IFAKTnp6NMU2bWmDgRakY0Gh1u3SoEEaBQSNGliwOUStOWFhg4cCBmzpxp8rFv376NcePGoUOHDhAKhTWq43FSU1MxefJkeHh4QCaToV27dli8eDFUKpVRuYsXL2LPnj14++23K9Sxbds2iEQihIaGVvjscYldZQnZf/7zHwwcOBAKhQLW1tbo3r07lixZgpycnBqf45Pk5ORg/PjxsLGxgVKpxOTJk1FUVFRl+dTUVAgEgkpfO3bsMJQ7e/YsnnnmGSiVStja2iIoKAgXL140quuHH36Aj48PrKys4O7ujk8//dTo80mTJuH8+fM4evRo7Z40Y6zRmX1/KP2P8peRansWcHEEaDcAQJzoBACQaHtDLhSCQEjJTTFrPJwINSMWFiK0bauEm5sCXl52sLCouw7R5eXlcHBwwMKFC+Ht7V2tfSZOnIgPP/ywWmWvXbsGnU6Hr7/+GrGxsVizZg02bNhQYe2s8PBwjBo1CtbW1hXqiIiIwNy5c7Ft2zaUldX8L5D3338fwcHB6N27N/bu3YsrV65g9erVuHjxIrZu3Vrjep9k/PjxiI2Nxf79+7Fr1y4cOXIEU6dOrbK8q6srbt++bfT66KOPYG1tjeeeew4AUFRUhKFDh8LNzQ2nT5/GsWPHIJfLERQUBLVaDQDYu3cvxo8fjzfffBNXrlzB+vXrsWbNGnz55ZeGY0kkEowbNw5ffPGF2c6fMdY4eAMIJA10AhE+d/gn8PEIPBg9Jv5df33QFndFF7F+LiGzPx6r1SVcGwFTV5/X6XSkK6+nlwkrobu7u9OaNWuMtnl7e9OMGfMoN1d/PgDom2++oZEjR5JMJiMvLy/65ZdfjPa5fPkyDR06lFq0aEGOjo70yiuvUFZWFhERhYSEVFg9PiUlpdJ4Hl19/mEBAQE0Y8aMJ55TSEgILV68uMrPAVS6uvwDq1atIg8PD8N7jUZDCoWCdu3aVaFscnIyyWQyysvLIz8/P4qKijL6/HHn83Acp0+fJgC0du3aSsvm5uZWGe/fERcXRwDo7Nmzhm179+4lgUBAGRkZ1a7Hx8eHJk2aZHh/9uxZAkDp6emGbZcuXSIAdP36dSIiGjt2LL388stG9XzxxRfUpk0bo9/hP/74gyQSSYNZ4Z5Xn2es/uwj/eLz1poCyr00lAgKIqhJBx3lfhpPOUtyaMFKf8KHoM9OfEZE5lt9XmzeNKsJUAN5K/Pq5dDKeUqghhM6FxerUFamQUmJGqmpeejWTT99+UcffYRVq1bh008/RXh4OMaPH4+0tDTY2dkhLy8PgwcPxuuvv441a9agtLQU8+bNw+jRo3Hw4EF8/vnnSEhIQNeuXbFkyRIAgIODQy2dbe3Lz8+HnZ2d4f2lS5eQn58PX1/fCmU3b96M4cOHQ6FQ4JVXXkFERATGjRtn8jGjoqJgbW2NadOmVfr54/pNdenSBWlpaVV+PmDAAOzdu7fSz06ePAmlUml0boGBgRAKhTh9+jReeumlJ8Z+7tw5xMTEYN26dYZtHTt2RMuWLREREYEFCxZAq9UiIiICnTt3Rtu2bQHo7/ZZWVkZ1SWTyXDz5k2kpaUZyvn6+kKj0eD06dMYOHDgE+NhjDVdzwLoqi3DFZEcGx27Y+5LOcDPRyHAIIjVWVDDAb2FvgBOmv2OED8aa2KICJmZRbh2LRs6HUEoFMDT86/O0BMnTsTYsWPh5eWFZcuWoaioCGfOnAEAfPnll+jRoweWLVuGTp06oUePHti0aRMOHTqEhIQEKBQKSCQSWFlZwcnJCU5OThCJGuZ8Q4mJiQgPD8cbb7xh2JaWlgaRSARHR0ejsjqdDpGRkXjllVcAAGPGjMGxY8eQkmL6c+nr16/D09MTFhYWJu+7Z88exMTEVPn69ttvq9w3MzOzwnmJxWLY2dkhMzOzWsd/kOD069fPsE0ul+Pw4cP497//DZlMBmtra+zbtw979+6FWKz/OyooKAg//fQTDhw4AJ1Oh4SEBKxevRqAvm/YA1ZWVlAoFI9N9hhjzYMAwGyRvo/qF3ZvQTXDBQ9Gj4kTbAEA7QX3R47lmjcR4jtCT2Jx/85MPR3bFBqNDgkJ91BYqO8gLBIJ4ehoBRubvzpEd+/e3fDvFi1awMbGBnfv3gWg70h86NChSvvPJCUloUOHDpUe9+E7GY+7a/EkUVFRRolLeXk5BAIBwsLCDNv27t2LAQMGPLaejIwMDB06FKNGjcKUKVMM20tLSyGVSissHLt//34UFxdj2LBhAAB7e3sMGTIEmzZtwtKlS006ByIyqfzD3N3da7zv31VaWorvv/8eixYtqrB98uTJ6N+/P7Zt2watVouwsDAMHz4cZ8+ehUwmw5QpU5CUlITnn38earUaNjY2mDFjBj788EMIhcZ/a8lkMpSUmH8RRcZYwzcOwAJtKTIs2uAHL3u8YvcHkAOIj3gCnqVwUNfNEHpOhJ5AIBDU+PFUXRIIhLh9uxCFhSoIhQK4utpAKNRVuBA9eqdCIBAYltcoKirCiBEjsHLlygr1Ozs7V3nsPXv2GDrOymQ1X5bjhRdegJ+fn+H9vHnz0Lp1a6MRXq1bt35sHbdu3cKgQYPQr18/bNy40egze3t7lJSUQKVSQSL5q1EjIiKQk5NjFLtOp8OlS5fw0UcfQSgUwsbGBsXFxdDpjH+meXl5AACFQgEA6NChA44dOwa1Wm3yXaG/82jMycnJkNA+oNFokJOTAycnpyce+8cff0RJSQleffVVo+3ff/89UlNTcfLkScN5f//997C1tcUvv/yCMWPGQCAQYOXKlVi2bBkyMzPh4OCAAwcOAAA8PT2N6svJyWnQj1MZY3VHCuAtoRTvAwhrGYrxS9+FIDQeovQOAAphoW4FV7giNS8VKq3qCbXVHCdCTYSjowOKiu7BysoCnp62UKlKTH6007NnT/znP/9B27ZtDY89HiWRSKDVao221dadDLlcDrlcbvTezs4OXl5e1do/IyMDgwYNQq9evbB58+YKSaCPjw8AIC4uzvDve/fu4ZdffkF0dDS6dOliKKvVavGPf/wDv//+O4YOHYqOHTtCo9EgJiYGPXv2NJQ7f/48ABjulj0YGbV+/XrMmDGjQox5eXlV9hN6OKGszOOSTH9/f+Tl5eHcuXPo1asXAODgwYPQ6XRGyWVVIiIi8MILL1RIUkpKSiAUCo3uoj14/yCBfkAkEhkS1W3btsHf39+ovqSkJJSVlaFHjx5PjIcx1jy8KRDiE50KFy19cHCoM54R7IZA0xGiskJoLW3xD0FvbKMbSMtLQyuLVmaJgfsINWJFRSqoVPqkZPDgwfj11x3IyrqK69evIiQkxOT+O6GhocjJycHYsWNx9uxZJCUl4bfffsNrr71mSH7atm2L06dPIzU1FdnZ2RUuho/zoK9LUVERsrKyEBMTg7i4OJNirEpGRgYGDhwINzc3hIWFISsrC5mZmUb9YxwcHNCzZ08cO3bMsG3r1q1o2bIlRo8eja5duxpe3t7eGDZsGCIiIgDo79Y8++yzmDRpEg4cOICUlBTs27cP06ZNQ3BwsCEB8PPzw9y5c/HOO+9g7ty5OHnyJNLS0nDgwAGMGjUKW7ZsqfIc3N3d4eXlVeXrcXfDOnfujKFDh2LKlCk4c+YMjh8/junTp2PMmDFwcXEx/Iw6depk6BP2QGJiIo4cOYLXX3+9Qr1DhgxBbm4uQkNDcfXqVcTGxuK1116DWCzGoEGDAADZ2dnYsGEDrl27hpiYGMyYMQM7duzA2rVrjeo6evQoPD090a5duyrPgzHWvNgBeI3015HVjmOBofprgjhef5d9sFj/eOx6znXzBVGrY9AaAVOHzzdEOp2OMjIK6OzZDIqPzyadTkf5+fkUHBxMNjY25OrqSpGRkeTt7W00/ByVDDdXKBS0efNmw/uEhAR66aWXSKlUkkwmo06dOtHMmTMNw6Dj4+Opb9++JJPJTB4+j0eG3gMgd3f3Ks/TlOHzmzdvrrT+R3/F169fT3379jW879atG02bNq3S+rdv304SicQwfUBubi69/fbb1K5dO5LJZNS+fXuaO3cuFRYWVrrv008/TXK5nFq0aEHdu3enJUuWmG34PBHRvXv3aOzYsWRtbU02Njb02muvGcWWkpJCAOjQoUNG+7333nvk6upKWq220np///136t+/PykUCrK1taXBgwfTyZMnDZ9nZWVR3759qUWLFmRlZUXPPPMMnTp1qkI9zz77LC1fvrx2TrYWNJbvO2NNXSIRCXRaAhFdOTWGCLlU3q2ccpbk0Lll+wkfgj4/9bnZhs8LiP5G785GqKCgAAqFAvn5+bCxsTH6rKysDCkpKfDw8IClpWkzLteV8nINUlLyUFSkf15qZydD27aKCo+BWOVKS0vRsWNHbN++Hf7+/vUdTrMRGxuLwYMHG0YfNgSN4fvOWHPxT3UufrKwxaS8TYjwbAktPY+C2QXQQg1XnTum9JmCj/t/XOX1++/gq2cjQUS4d68EsbFZKCpSQSQSwMNDCU9PW06CTCCTyfDdd98hOzu7vkNpVm7fvo3vvvuuwSRBjLGG5R0L/ZD5f9uMR+YbCRDmCSEo1UIEC3jD26wjx7izdCOg1eqQlpaPnJxSAIC1tQQeHkpIpdx8NcGT+dW9wMDA+g6BMdaA9QPQV5WFUxIHrJtmiaUrdBCnWEL9lBp90Af77u0227H5VkIjUVysfxTm4iJHx44tOQlijDHWpLwr1t8VWu8yDsWdrkB8U3+d8xX4IiU/DRqdxizH5USogdLpyDA5n0gkhKenLTp1soeLi7zChICMMcZYYzdSKIan+h5yRC2x5aM7EN3Qj3zuLfCFRqfFjfwbZjkuJ0INUFmZBteuZePu3WLDthYtJLC2bgQzOzLGGGM1IAIw8/6SCmuGd4QgUwxoASc4ow3aIDk32SzH5USoASEiZGUVIy4uCyUlamRmFkGrrf48PYwxxlhj9pqFDWy1RUhs4Y7/jrsHUeb9u0LozYlQU6dWa5GUlIu0tHzodAS5XILOnR0Mi6UyxhhjTZ01gDfVeQCA1fNVEN/Q9xPqLeiNJDNNqshX2QYgP78McXFZyMsrg0AAtGljgw4dWkIiaZgruzPGGGPmMt2yDSxIjeMdXJAquZ8IoTeSsy6Z5XicCNUzlUqLxMQcqNU6WFqK0bmzPZycrE3uED1w4EDMnDnTPEFWw8SJEzFy5MgGEw9jjLHGyQXAuBL9WplfBusHDXVHd9zMuWmW4/EY7HomkYjg4iKHSqVFmzY2TeZR2E8//WTy6uuMMcYYALwja4stAL5+2QJLPxDAQmaBFsWOAGp/5FjTuOo2IkSEu3eLUVLy1yrjTk7WcHdXNpkkCADs7OyMVpJnjDHGqqubUIJnS+KhEwuRINffs/HW9TTLsZrOlbcRUKv1j8HS0/ORnJwLnU5/y6+25gXSaDSYPn06FAoF7O3tsWjRIsNcRFu3boWvry/kcjmcnJwwbtw43L1717Bvbm4uxo8fDwcHB8hkMrRv3x6bN282fH7jxg2MHj0aSqUSdnZ2ePHFF5GamlplLI8+Gmvbti2WLVuGSZMmQS6Xw83NDRs3bjTax9RjMMYYa7reEeknWPzZT99f1l9rnvUhORGqpuJiVZWvsjLNE8tmZBTgzz9v4c6dYggEgKNjCwgEVddbE1u2bIFYLMaZM2fw+eef47PPPsO3334LAFCr1Vi6dCkuXryInTt3IjU1FRMnTjTsu2jRIsTFxWHv3r24evUqvvrqK9jb2xv2DQoKglwux9GjR3H8+HFYW1tj6NChUKmqH+vq1avh6+uLCxcuYNq0afjXv/6F+Pj4Wj0GY4yxpmGI1BHdylJwvN39Gabha5bjcB+harK2Xl7lZ8OGtcfu3eMM7x0dw4wefT3M19cFR45MhEym7z/Ttu3nyM4uqVCOaLHJMbq6umLNmjUQCATo2LEjLl++jDVr1mDKlCmYNGmSoZynpye++OIL9O7dG0VFRbC2tkZ6ejp69OgBX1/f+3G1NZTfvn07dDodvv32W8Pdq82bN0OpVOLw4cN49tlnqxXfsGHDMG3aNADAvHnzsGbNGhw6dMiwGnxtHIMxxljTIADwjqYM05zF0AgAG4vaW3H+YXxHqI61aGFhSIJqW9++fY0es/n7++P69evQarU4d+4cRowYATc3N8jlcgQEBAAA0tPTAQD/+te/EB0dDR8fH8ydOxcnTpww1HPx4kUkJiZCLpfD2toa1tbWsLOzQ1lZGZKSkqodX/fu3Q3/FggEcHJyMjyeq61jMMYYazrGtugEhTYHsa3MN50M3xGqpqKi96r87NFOznfvvgtA3zH6+vUclJdr4O6ugI2NJYRC4/5Aqakzaj/YR5SVlSEoKAhBQUGIioqCg4MD0tPTERQUZHjs9NxzzyEtLQ179uzB/v378cwzzyA0NBRhYWEoKipCr169EBUVVaFuBweHasfx6CgygUAAnU4/c3ZtHYMxxljTIREI8FZRHM626QWPVPMcgxOhamrRonrrfKlUWlhaig3JUZcujhAIAAuLyrPZ6tZbHadPnzZ6f+rUKbRv3x7Xrl3DvXv3sGLFCri6ugIA/vzzzwr7Ozg4ICQkBCEhIRgwYADmzJmDsLAw9OzZE9u3b4ejoyNsbMxza7IujsEYY6zxecO2F2Y4AqPNVD8/GqtFOTmliI29i5s3CwzbJBJRlUlQbUtPT8fs2bMRHx+Pbdu2ITw8HDNmzICbmxskEgnCw8ORnJyMX3/9FUuXLjXa94MPPsAvv/yCxMRExMbGYteuXejcuTMAYPz48bC3t8eLL76Io0ePIiUlBYcPH8bbb7+NmzdrZ4KrujgGY4yxxsdObAWPsqtmq58ToVqg1eqQmpqH5ORcaLWEkhK14ZFPXXr11VdRWlqKPn36IDQ0FDNmzMDUqVPh4OCAyMhI7NixA0899RRWrFiBsLAwo30lEgnee+89dO/eHU8//TREIhGio6MBAFZWVjhy5Ajc3Nzwf//3f+jcuTMmT56MsrKyWrt7UxfHYIwx1jhNdG+BHFntTDXzKAE9mGimmSgoKIBCoUB+fn6FC2xZWRlSUlLg4eEBS0vLatVXVKRCSkouysu1AABnZ2s4O8sr9AVijDUsNfm+M8bqz3/DUvDCHM9Kr99/B/cRqiEiwu3bRbh1qxCA/hGYh4cScrm0niNjjDHGmh6bNn+YpV5+NFZDarUOd+8WAwDs7GR46ikHToIYY4wxM+kx7P/MUi/fEaohiUSEtm0V0GoJLVta1Xc4jDHGGKsBToSqSaPRIT09H3Z2llAqZQBg+C9jjDHGGidOhKqhsLAcKSl5UKm0KCwsr3RiRMYYY4w1PpwIVeLBQDqdjnDrViEyM4sAAFKpCB4etpwEMdYENLMBs4yxKnAi9JAHS0CUlJRAIBAjOTnPsHiqvb0VXF1tKiynwRhrnEpK9IsdP7r0C2OseeFE6CEikQhKpRK3b2eivDwPRGIIhQK0bm0DhcISarUK6soXlWeMNRJEhJKSEty9exdKpRIiUd3M/M4Ya5g4EXqEk5MTACA+/iaI9HeCcnKKkZNTz4ExxmqVUqk0fN8ZY80XJ0L37d+fhC5dHOHiIoezszMUCjsAOu4PxFgTZGFhwXeCGGMAGkgitG7dOnz66afIzMyEt7c3wsPD0adPnyrL79ixA4sWLUJqairat2+PlStXYtiwYTU6dlmZBu+99z+sXXsagYGe+O23VyAUCmBlxZMjMsYYY01dvff83b59O2bPno3Fixfj/Pnz8Pb2RlBQEO7evVtp+RMnTmDs2LGYPHkyLly4gJEjR2LkyJG4cuWKyce+cuUu+vT5BmvXngYAdOhgB7Va+7fOhzHGGGONR70vuurn54fevXvjyy+/BADodDq4urrirbfewvz58yuUDw4ORnFxMXbt2mXY1rdvX/j4+GDDhg1PPN6DRVdXrjyADz44gfJyLRwcrLBp04t4/vkOtXdijDHGGKs1j1s0/e+o1ztCKpUK586dQ2BgoGGbUChEYGAgTp48Wek+J0+eNCoPAEFBQVWWr8q8eftRXq7Fc8954fLlf3ESxBhjjDVD9dpHKDs7G1qtFq1atTLa3qpVK1y7dq3SfTIzMystn5mZWWn58vJylJeXG97n5+cDACwsNPjkkwGYOrUXBAIdCgoK/s6pMMYYY8yMHlyna/tBVoPoLG1Oy5cvx0cffVRhu1odhrlzwzB3bj0ExRhjjLEauXfvHhQKRa3VV6+JkL29PUQiEe7cuWO0/c6dO1XO7+Hk5GRS+ffeew+zZ882vM/Ly4O7uzvS09Nr9QfJTFdQUABXV1fcuHGjVp/3sprh9mg4uC0aDm6LhiM/Px9ubm6ws7Or1XrrNRGSSCTo1asXDhw4gJEjRwLQd5Y+cOAApk+fXuk+/v7+OHDgAGbOnGnYtn//fvj7+1daXiqVQiqtOBReoVDwL3UDYWNjw23RgHB7NBzcFg0Ht0XDIRTWbvfmen80Nnv2bISEhMDX1xd9+vTB2rVrUVxcjNdeew0A8Oqrr6J169ZYvnw5AGDGjBkICAjA6tWrMXz4cERHR+PPP//Exo0b6/M0GGOMMdYI1XsiFBwcjKysLHzwwQfIzMyEj48P9u3bZ+gQnZ6ebpT99evXD99//z0WLlyIBQsWoH379ti5cye6du1aX6fAGGOMsUaq3hMhAJg+fXqVj8IOHz5cYduoUaMwatSoGh1LKpVi8eLFlT4uY3WL26Jh4fZoOLgtGg5ui4bDXG1R7xMqMsYYY4zVl3pfYoMxxhhjrL5wIsQYY4yxZosTIcYYY4w1W5wIMcYYY6zZapKJ0Lp169C2bVtYWlrCz88PZ86ceWz5HTt2oFOnTrC0tES3bt2wZ8+eOoq06TOlLb755hsMGDAAtra2sLW1RWBg4BPbjpnG1O/GA9HR0RAIBIaJT9nfZ2pb5OXlITQ0FM7OzpBKpejQoQP/v6qWmNoWa9euRceOHSGTyeDq6opZs2ahrKysjqJtuo4cOYIRI0bAxcUFAoEAO3fufOI+hw8fRs+ePSGVSuHl5YXIyEjTD0xNTHR0NEkkEtq0aRPFxsbSlClTSKlU0p07dyotf/z4cRKJRLRq1SqKi4ujhQsXkoWFBV2+fLmOI296TG2LcePG0bp16+jChQt09epVmjhxIikUCrp582YdR940mdoeD6SkpFDr1q1pwIAB9OKLL9ZNsE2cqW1RXl5Ovr6+NGzYMDp27BilpKTQ4cOHKSYmpo4jb3pMbYuoqCiSSqUUFRVFKSkp9Ntvv5GzszPNmjWrjiNvevbs2UPvv/8+/fTTTwSAfv7558eWT05OJisrK5o9ezbFxcVReHg4iUQi2rdvn0nHbXKJUJ8+fSg0NNTwXqvVkouLCy1fvrzS8qNHj6bhw4cbbfPz86M33njDrHE2B6a2xaM0Gg3J5XLasmWLuUJsVmrSHhqNhvr160fffvsthYSEcCJUS0xti6+++oo8PT1JpVLVVYjNhqltERoaSoMHDzbaNnv2bOrfv79Z42xuqpMIzZ07l7p06WK0LTg4mIKCgkw6VpN6NKZSqXDu3DkEBgYatgmFQgQGBuLkyZOV7nPy5Emj8gAQFBRUZXlWPTVpi0eVlJRArVbX+gJ7zVFN22PJkiVwdHTE5MmT6yLMZqEmbfHrr7/C398foaGhaNWqFbp27Yply5ZBq9XWVdhNUk3aol+/fjh37pzh8VlycjL27NmDYcOG1UnM7C+1df1uEDNL15bs7GxotVrD8hwPtGrVCteuXat0n8zMzErLZ2Zmmi3O5qAmbfGoefPmwcXFpcIvOjNdTdrj2LFjiIiIQExMTB1E2HzUpC2Sk5Nx8OBBjB8/Hnv27EFiYiKmTZsGtVqNxYsX10XYTVJN2mLcuHHIzs7GP/7xDxARNBoN3nzzTSxYsKAuQmYPqer6XVBQgNLSUshksmrV06TuCLGmY8WKFYiOjsbPP/8MS0vL+g6n2SksLMSECRPwzTffwN7evr7DafZ0Oh0cHR2xceNG9OrVC8HBwXj//fexYcOG+g6t2Tl8+DCWLVuG9evX4/z58/jpp5+we/duLF26tL5DYzXUpO4I2dvbQyQS4c6dO0bb79y5Aycnp0r3cXJyMqk8q56atMUDYWFhWLFiBf73v/+he/fu5gyz2TC1PZKSkpCamooRI0YYtul0OgCAWCxGfHw82rVrZ96gm6iafDecnZ1hYWEBkUhk2Na5c2dkZmZCpVJBIpGYNeamqiZtsWjRIkyYMAGvv/46AKBbt24oLi7G1KlT8f777xstEs7Mq6rrt42NTbXvBgFN7I6QRCJBr169cODAAcM2nU6HAwcOwN/fv9J9/P39jcoDwP79+6ssz6qnJm0BAKtWrcLSpUuxb98++Pr61kWozYKp7dGpUydcvnwZMTExhtcLL7yAQYMGISYmBq6urnUZfpNSk+9G//79kZiYaEhGASAhIQHOzs6cBP0NNWmLkpKSCsnOgwSVeOnOOlVr12/T+nE3fNHR0SSVSikyMpLi4uJo6tSppFQqKTMzk4iIJkyYQPPnzzeUP378OInFYgoLC6OrV6/S4sWLefh8LTG1LVasWEESiYR+/PFHun37tuFVWFhYX6fQpJjaHo/iUWO1x9S2SE9PJ7lcTtOnT6f4+HjatWsXOTo60scff1xfp9BkmNoWixcvJrlcTtu2baPk5GT6/fffqV27djR69Oj6OoUmo7CwkC5cuEAXLlwgAPTZZ5/RhQsXKC0tjYiI5s+fTxMmTDCUfzB8fs6cOXT16lVat24dD59/IDw8nNzc3EgikVCfPn3o1KlThs8CAgIoJCTEqPwPP/xAHTp0IIlEQl26dKHdu3fXccRNlylt4e7uTgAqvBYvXlz3gTdRpn43HsaJUO0ytS1OnDhBfn5+JJVKydPTkz755BPSaDR1HHXTZEpbqNVq+vDDD6ldu3ZkaWlJrq6uNG3aNMrNza37wJuYQ4cOVXoNePDzDwkJoYCAgAr7+Pj4kEQiIU9PT9q8ebPJxxUQ8b08xhhjjDVPTaqPEGOMMcaYKTgRYowxxlizxYkQY4wxxpotToQYY4wx1mxxIsQYY4yxZosTIcYYY4w1W5wIMcYYY6zZ4kSIMcYACAQC7Ny5EwCQmpoKgUCAmJiYeo2JMWZ+nAgxxurdxIkTIRAIIBAIYGFhAQ8PD8ydOxdlZWX1HRpjrIlrUqvPM8Yar6FDh2Lz5s1Qq9U4d+4cQkJCIBAIsHLlyvoOjTHWhPEdIcZYgyCVSuHk5ARXV1eMHDkSgYGB2L9/PwD9iuDLly+Hh4cHZDIZvL298eOPPxrtHxsbi+effx42NjaQy+UYMGAAkpKSAABnz57FkCFDYG9vD4VCgYCAAJw/f77Oz5Ex1vBwIsQYa3CuXLmCEydOQCKRAACWL1+O7777Dhs2bEBsbCxmzZqFV155BX/88QcAICMjA08//TSkUikOHjyIc+fOYdKkSdBoNACAwsJChISE4NixYzh16hTat2+PYcOGobCwsN7OkTHWMPCjMcZYg7Br1y5YW1tDo9GgvLwcQqEQX375JcrLy7Fs2TL873//g7+/PwDA09MTx44dw9dff42AgACsW7cOCoUC0dHRsLCwAAB06NDBUPfgwYONjrVx40YolUr88ccfeP755+vuJBljDQ4nQoyxBmHQoEH46quvUFxcjDVr1kAsFuOf//wnYmNjUVJSgiFDhhiVV6lU6NGjBwAgJiYGAwYMMCRBj7pz5w4WLlyIw4cP4+7du9BqtSgpKUF6errZz4sx1rBxIsQYaxBatGgBLy8vAMCmTZvg7e2NiIgIdO3aFQCwe/dutG7d2mgfqVQKAJDJZI+tOyQkBPfu3cPnn38Od3d3SKVS+Pv7Q6VSmeFMGGONCSdCjLEGRygUYsGCBZg9ezYSEhIglUqRnp6OgICASst3794dW7ZsgVqtrvSu0PHjx7F+/XoMGzYMAHDjxg1kZ2eb9RwYY40Dd5ZmjDVIo0aNgkgkwtdff413330Xs2bNwpYtW5CUlITz588jPDwcW7ZsAQBMnz4dBQUFGDNmDP78809cv34dW7duRXx8PACgffv22Lp1K65evYrTp09j/PjxT7yLxBhrHviOEGOsQRKLxZg+fTpWrVqFlJQUODg4YPny5UhOToZSqUTPnj2xYMECAEDLli1x8OBBzJkzBwEBARCJRPDx8UH//v0BABEREZg6dSp69uwJV1dXLFu2DO+++259nh5jrIEQEBHVdxCMMcYYY/WBH40xxhhjrNniRIgxxhhjzRYnQowxxhhrtjgRYowxxlizxYkQY4wxxpotToQYY4wx1mxxIsQYY4yxZosTIcYYY4w1W5wIMcYYY6zZ4kSIMcYYY80WJ0KMMcYYa7Y4EWKMMcZYs/X/HWrCteohwi4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import precision_recall_curve, auc\n", + "\n", + "idx = 0\n", + "for cdata in lst_cdata:\n", + " y_true, y_score = cdata\n", + "\n", + " # PR 커브 계산 및 그리기\n", + " precision, recall, _ = precision_recall_curve(y_true, y_score)\n", + "\n", + " # AUC 계산\n", + " pr_auc = auc(recall, precision)\n", + " plt.plot(recall, precision, '-', color=colors[idx], label=f'{os.path.basename(base_dirs[idx])}(AUC = {pr_auc:.3f})')\n", + "\n", + " # (1, 1)에 가장 가까운 점 찾기\n", + " min_distance = float('inf')\n", + " closest_point = None\n", + " for i in range(len(recall)):\n", + " distance = ((1 - recall[i])**2 + (1 - precision[i])**2)**0.5\n", + " if distance < min_distance:\n", + " min_distance = distance\n", + " closest_point = i\n", + " plt.scatter(recall[closest_point], precision[closest_point], color=colors[idx], marker='o')\n", + "\n", + " print(f'{os.path.basename(base_dirs[idx])} PR AUC: {pr_auc:.3f}, minDist: {min_distance:.3f}, {(recall[closest_point], precision[closest_point])}')\n", + " idx += 1\n", + "\n", + "plt.plot([0.0, 1.05], [0.0, 1.05], '--', color='navy', label='baseline')\n", + "plt.xlabel('Recall')\n", + "plt.ylabel('Precision')\n", + "plt.title('PR Curve')\n", + "plt.legend()\n", + "plt.xlim([0.0, 1.0])\n", + "plt.ylim([0.0, 1.05])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "unet ROC AUC: 0.789, minDist: 0.121, (0.03855843283619862, 0.885424512257604)\n", + "unet-mini ROC AUC: 0.789, minDist: 0.081, (0.02485883834974988, 0.9224052152557138)\n", + "unet-dice-loss ROC AUC: 0.789, minDist: 0.087, (0.05330329573045489, 0.931617865125619)\n", + "unet-focal-loss ROC AUC: 0.789, minDist: 0.251, (0.004573449270014527, 0.7487617009547043)\n", + "unet-sgd ROC AUC: 0.789, minDist: 0.063, (0.0434974242368962, 0.9538732855195041)\n", + "unet-rmsprop ROC AUC: 0.789, minDist: 0.247, (0.0055918602005307965, 0.7531937969524044)\n", + "unet-l1 ROC AUC: 0.789, minDist: 0.126, (0.024355441418179306, 0.8766366499467493)\n", + "unet-l2 ROC AUC: 0.789, minDist: 0.219, (0.013563852969138058, 0.7813983872652583)\n", + "unet-l1+l2 ROC AUC: 0.789, minDist: 0.101, (0.020355838523738234, 0.9011364203573499)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3UklEQVR4nOydeXxTVd6Hn5s9adqmpaVQWvalBZVVFBBFRAGVEVBBAQVR1BlcEPdxHLd3cGbcQHHEYVVBEdz3ZRBcERVl32STraxtumbPef+4SZo0SRdoaaHn8XM/Te49595zI0m++a2KEEIgkUgkEolE0gjR1PcCJBKJRCKRSOoLKYQkEolEIpE0WqQQkkgkEolE0miRQkgikUgkEkmjRQohiUQikUgkjRYphCQSiUQikTRapBCSSCQSiUTSaJFCSCKRSCQSSaNFCiGJRCKRSCSNFimEJBKJRCKRNFqkEJJIJJWyYMECFEUJbTqdjhYtWjBhwgT2798fc44Qgtdee43zzz8fm82GxWLhzDPP5PHHH6e0tDTutd59912GDh1KWloaBoOBzMxMRo0axVdffVWttTqdTp577jnOOecckpOTMZlMdOzYkdtuu41t27Yd1/1LJJLTG0X2GpNIJJWxYMECbrjhBh5//HHatGmD0+nkxx9/ZMGCBbRu3ZoNGzZgMplC430+H2PGjGHJkiX079+fkSNHYrFY+Pbbb3n99dfp3Lkz//vf/8jIyAjNEUIwceJEFixYQPfu3bnqqqto1qwZeXl5vPvuu6xevZrvv/+evn37xl3n0aNHGTJkCKtXr+byyy9n0KBBWK1Wtm7dyuLFizl48CBut7tOXyuJRHIKIiQSiaQS5s+fLwDx888/R+y///77BSDefPPNiP3Tpk0TgLjnnnuizvXBBx8IjUYjhgwZErH/qaeeEoCYMmWK8Pv9UfNeffVVsWrVqkrXedlllwmNRiPeeuutqGNOp1Pcfffdlc6vLh6PR7hcrlo5l0QiqX+kEJJIJJUSTwh99NFHAhDTpk0L7SsrKxMpKSmiY8eOwuPxxDzfDTfcIACxcuXK0JzU1FSRk5MjvF7vca3xxx9/FICYNGlStcZfcMEF4oILLojaP378eNGqVavQ8127dglAPPXUU+K5554Tbdu2FRqNRvz4449Cq9WKRx99NOocW7ZsEYB44YUXQvsKCgrEnXfeKbKysoTBYBDt2rUT//znP4XP56vxvUokktpFxghJJJLjYvfu3QCkpKSE9n333XcUFBQwZswYdDpdzHnXX389AB999FFoTn5+PmPGjEGr1R7XWj744AMArrvuuuOaXxXz58/nhRde4Oabb+aZZ56hefPmXHDBBSxZsiRq7JtvvolWq+Xqq68GoKysjAsuuICFCxdy/fXX8/zzz9OvXz8efPBBpk6dWifrlUgk1Sf2J5VEIpFUoLCwkKNHj+J0Olm1ahWPPfYYRqORyy+/PDRm06ZNAHTt2jXueYLHNm/eHPH3zDPPPO611cY5KmPfvn1s376d9PT00L7Ro0dzyy23sGHDBs4444zQ/jfffJMLLrggFAP17LPPsmPHDn777Tc6dOgAwC233EJmZiZPPfUUd999N9nZ2XWybolEUjXSIiSRSKrFoEGDSE9PJzs7m6uuuoqEhAQ++OADsrKyQmOKi4sBSExMjHue4LGioqKIv5XNqYraOEdlXHnllREiCGDkyJHodDrefPPN0L4NGzawadMmRo8eHdq3dOlS+vfvT0pKCkePHg1tgwYNwufz8c0339TJmiUSSfWQFiGJRFItXnzxRTp27EhhYSHz5s3jm2++wWg0RowJCpGgIIpFRbGUlJRU5ZyqCD+HzWY77vPEo02bNlH70tLSuOiii1iyZAlPPPEEoFqDdDodI0eODI37/fffWbduXZSQCnL48OFaX69EIqk+UghJJJJq0bt3b3r16gXA8OHDOe+88xgzZgxbt27FarUCkJubC8C6desYPnx4zPOsW7cOgM6dOwOQk5MDwPr16+POqYrwc/Tv37/K8YqiIGJUDvH5fDHHm83mmPuvueYabrjhBtasWUO3bt1YsmQJF110EWlpaaExfr+fiy++mPvuuy/mOTp27FjleiUSSd0hXWMSiaTGaLVannzySQ4cOMDMmTND+8877zxsNhuvv/56XFHx6quvAoRii8477zxSUlJ444034s6pimHDhgGwcOHCao1PSUnBbrdH7f/jjz9qdN3hw4djMBh48803WbNmDdu2beOaa66JGNOuXTtKSkoYNGhQzK1ly5Y1uqZEIqldpBCSSCTHxYABA+jduzfTp0/H6XQCYLFYuOeee9i6dSsPPfRQ1JyPP/6YBQsWMHjwYM4999zQnPvvv5/Nmzdz//33x7TULFy4kJ9++inuWvr06cOQIUOYM2cO7733XtRxt9vNPffcE3rerl07tmzZwpEjR0L71q5dy/fff1/t+wew2WwMHjyYJUuWsHjxYgwGQ5RVa9SoUaxcuZLPP/88ar7dbsfr9dbomhKJpHaRlaUlEkmlBCtL//zzzyHXWJC33nqLq6++mpdeeolbb70VUN1Lo0eP5u233+b888/nyiuvxGw2891337Fw4UJyc3NZtmxZRGVpv9/PhAkTeO211+jRo0eosvTBgwd57733+Omnn/jhhx/o06dP3HUeOXKESy65hLVr1zJs2DAuuugiEhIS+P3331m8eDF5eXm4XC5AzTI744wz6Nq1KzfeeCOHDx9m1qxZZGRkUFRUFCoNsHv3btq0acNTTz0VIaTCWbRoEePGjSMxMZEBAwaEUvmDlJWV0b9/f9atW8eECRPo2bMnpaWlrF+/nrfeeovdu3dHuNIkEslJpn7LGEkkkoZOvIKKQgjh8/lEu3btRLt27SKKIfp8PjF//nzRr18/kZSUJEwmk+jSpYt47LHHRElJSdxrvfXWW+KSSy4RqampQqfTiebNm4vRo0eLFStWVGutZWVl4umnnxZnn322sFqtwmAwiA4dOojbb79dbN++PWLswoULRdu2bYXBYBDdunUTn3/+eaUFFeNRVFQkzGazAMTChQtjjikuLhYPPvigaN++vTAYDCItLU307dtXPP3008Ltdlfr3iQSSd0gLUISiUQikUgaLTJGSCKRSCQSSaNFCiGJRCKRSCSNFimEJBKJRCKRNFqkEJJIJBKJRNJokUJIIpFIJBJJo0UKIYlEIpFIJI2WRtdrzO/3c+DAARITE1EUpb6XI5FIJBKJpBoIISguLiYzMxONpvbsOI1OCB04cIDs7Oz6XoZEIpFIJJLjYO/evWRlZdXa+RqdEEpMTATUFzIpKameVyORSCQSiaQ6FBUVkZ2dHfoery0anRAKusOSkpKkEJJIJBKJ5BSjtsNaZLC0RCKRSCSSRosUQhKJRCKRSBotUghJJBKJRCJptEghJJFIJBKJpNEihZBEIpFIJJJGixRCEolEIpFIGi1SCEkkEolEImm0SCEkkUgkEomk0SKFkEQikUgkkkaLFEISiUQikUgaLfUqhL755huGDRtGZmYmiqLw3nvvVTlnxYoV9OjRA6PRSPv27VmwYEGdr1MikUgkEsnpSb0KodLSUrp27cqLL75YrfG7du3isssu48ILL2TNmjVMmTKFm266ic8//7yOVyqRSCQSieR0pF6brg4dOpShQ4dWe/ysWbNo06YNzzzzDAC5ubl89913PPfccwwePLiulimRSCQSieQ05ZTqPr9y5UoGDRoUsW/w4MFMmTKlfhYkkUgkEonkhBFC4PF7cHgcOLwOHO4CnM59OAv2499px3VQy6Y8U51c+5QSQgcPHiQjIyNiX0ZGBkVFRTgcDsxmc9Qcl8uFy+UKPS8qKqrzdUokEolEcqoihMDlc5WLEo8Dp9cZeuzwBp5HHHfg8Bbi8NhxuAtUIeMpxOEpxuEpRbgV9B4zBo8FozuJJqUtSC9rQZq7Oaneptj8TbApNkzGZIxmC3p9UxKVZmjpBYDfL5gwc06d3O8pJYSOhyeffJLHHnusvpchkUgkEkmN8Qt/hOioKEBii5IYoiXm+DIcntKAiCnD4XHi8Dpxej1x15NAAilh/6WSig0bTUQTWnha0MaXQ5o/jVQllSQlCYvOgklvQqOpEJKsAAmBrQocOigwa7huWB/+Pv+EXs6YnFJCqFmzZhw6dChi36FDh0hKSoppDQJ48MEHmTp1auh5UVER2dnZdbpOiUQikZx++Py+mguQWKKlBudw+9x1ci8WLCExk0nLkKBJJZUURd3fRDShqa8paaRiU2wkaKxoNZXIBm3l13QrYDcpHLFqKLAoFJiU8r9mdV+RQWDxFpLqPYLYsouEomKu+lNzOtnac6fnTCmE+vTpwyeffBKx78svv6RPnz5x5xiNRoxGY10vTSKRSCQnEY/Pc0KiJHQ8zvhY+7x+b73es04DZh2Y9WDSgVkLKXoL6ZoUmig20pRyEZPsTyFJpGD1q5vFm4LJm4LZk4rBk4JGGKq+oELs3HIPKA4lsGlwolBgVjicBHub+tmZBVtb6tjVVEeBWcFu1pBvVnDqldApknyF5Li3kOvcQ467iAu9CjmaFNqZ26FNyOHp57bzt7+twWo1cMewy0lOSKqz0JZ6FUIlJSVs37499HzXrl2sWbOG1NRUWrZsyYMPPsj+/ft59dVXAbj11luZOXMm9913HxMnTuSrr75iyZIlfPzxx/V1CxKJRNKoEULg9rlrbhWpgSiJNd4nfPV63watFrNOi0mnYNYpqkDRCUw6gVnvx6zzY9b7MenLxUuEiAnbZ9JCgsaM1ZdCgj8oWFIwelPRu23o3CnoXKngtCEcKfgdqQiHDVGcAr4TCCD2glKmChqNQxN6HPncj+IrxW0oY3dbP5tzNWzsbGRLjp4t2Tq2pplx6OJLiSzPXrq4N5NTtJscVyE5XshVkmlm6oCS1ANSzokYv3dvIeNHvsHy5bsBGDCgNWZz3UqVehVCv/zyCxdeeGHoedCFNX78eBYsWEBeXh579uwJHW/Tpg0ff/wxd911FzNmzCArK4s5c+bI1HmJRCJBFSXhIqKmbpiI4zUQMQJRr/dt0pkw60yYdAbMegNmnR6zXodJp8Ws02DWa1TBoROqQNF5MWs9mHRuzDoPZp0bs96NSe/BbPBWLloCm1bjA6LFmPCYEI40/A5VtAhHqvq31Ia/NBVRlKKKGEcqfmcKwmlDuFLBH1/QCCB+1A6qoHEoKGUBARN4HBI1ZZowC46CxulBoQRMZSgpbkjzQ3MFsgwczbGw+awktrQ0siVFYYvBy2as7FaaIBQl5uX1wk1H9zZyXFvIcW8n12EnxyPoKGwkmnMhsQekXgxx5gdZunQjt9zyEQUFTiwWPc8/P4SJE7ujVDHvRFGEEPX7L/gkU1RURHJyMoWFhSQlJdX3ciQSyWmKX/irLUCOR5TEGu/0Ouv1nhUUzHpzQJiYMevNmHWB54HH6l8TJp0Os04bEClKwJIiMOsEZr0Pk86nihS9KlRMWgdmXRlmbRlmfSkmXSlmfRlGfRkajb/W70W4TIiSFESxDX9JKqIsBVGagihLUQWMIwXhSkG4miDcqfjdKQhPcqWCpkq8AsUhUBxaNA5thJiJEDQVrDh4QNG5wFICyQ5I9UIG0EIL2UZoZ4U2FmimQAb4EmG3AltQt83AFiHYgo9jSnz7iM1XQK5rs+rScm0hx3mMHLefNv5UdKYzILE7JHUGXTXcbmH4/YKbbvqA+fPXAHD22ZksWjSSDh2aRIyrq+/vUypGSCKRSI4Hr9974rEkcYJd442pqyDX6qJVtNUSJaHjFZ9HjDFi1ukCQsWvihS9V7Ws6D2YdE7MOhcGbRmKUgIUl2+iGCgEsU99rpSA4qibm/aimk6Cfz0gnEZVwJSm4HeoQkY4UxGuJvg96Qh3OsLTBOFJRXhs+D1JCE8C+Gv2ZR6Bz49S5g6IGgVNmR7FYURxaKMtNGGiBrcqJkMYyiCxDGwBq02WarWhtVkVNs01quDJABJMQKQIKwW2ESZ2UAXPNsBFBSuLohCUBK08u0OCJ8e9hRxHHrlOH+k0RzGeAZZukHQlNE2q0spTHTQaBbNZh0aj8OCD5/HIIxeg11cReV2LSIuQRCI5aYQXTTuhWJIaZuDUd5CrXqOPYRWpuSiJOz7Gcb1WCwRFSRER4iRqi3NchB1T6uA19BMpXMIETMXHwmUIuJlS8XuaI7zNEZ5mCG9TVdD4miB8NoQ3CeG14HebEW4T+E7gC9XvQ3E4UMpcKGVeNA5UMVNmRHGY0TisKGXaCFETU9CEYy6DJCc08UBTIFMLLY2qsMnUlgubplTUNTERwGHChA7lwmdPJfOMfied3FtDYifXtZkc1y46OvxYaA36LmDuCkk9IDEbKqa/nyBer5+iIhepqWrGd1mZh7VrD9KnT/ysbmkRkkgktUp40bQTiiWpoSjxi9p3Y9QEo9ZYI0ER27VTfVFi0pnQVZZyHEIALioXKkerOB4uYEpP/MWK9V1eDdESd59IQPibIHxZCF8L/P5MhMhAiCYIXyrCZ8PvS0R4rAiPGeE24nfpES4deE/A8iB8KJ4yFEcZSmkZmhInSqkPxaFBcejRlJlQHFYURzJKWXK5hcZViaAJ4QerE2wuaFMea0MrE7TQlQubDCAdMFgAS41vwQvspII7K7DZK5mX5j2iCh335kAMzxZyXNto5RRo6QC6zmA6ExKugLRcOAlZ1rt2FTBu3Lvo9RqWLbserVaDxaKvVATVJVIISSQNgGDRtJMRSxLc13CCXCu6YWomSqqOR4kUJRqlNn/Z+ii3ugS3imKlKmtM+JhasrqEf3dXZnWJtT+WgPGbgCTQ2ECXDIZkhDYFQXOEaIpfpCH8qQivDeFLQngT8LstauCw24BwavE7FYRDVBH1WxV+FOFE8ZagOIvRlJSgFJWiFDpQir0oZTo0DiOKw4JSlojiSEHjSANXExTSqn8ZjR8SHZDphaaiPNYmSx8pbDKANA3ojk/cxKIY2Eq0hed34r90ivDTxrMrUuwEtjS3Av4OoM0Fw5lgGQYZXcGaUiturZoghGDhwnVMnvwJxcVukpKMbN58lDPOaHpS11ERKYQkkgoEi6adaCxJTc7h8rmqXlgdEgxyrYnb5nhESfhxo9ZY59kg0QjASc2ESmXHa8HqEovqWliqOu7TgTYZ9DbQJ4E+ucLfJIQuBeFPQ9AEoUnGr01G+K0IYUH4TfgxINwgHELdnAJ/mf84BI2IeKxoPaqo8ZWgcRWhlOWjFNpRCopR8svQ5LtRHHoUhxmlzIrGkQyuNBQygEwgsWaX1/rUWJt0nxo0nGVQLTaBAOKQOyoDaKIBTe0Im1gIII9IsRN8vL+SeWZ/WcCis6XcyuPeQgf375h8GvC1ByVHdWuZLoO07pCYBZWkt58s7HYnf/7zxyxevAGAfv2yWbhwJK1b2+p3YUghVCv4/D6+3fMtecV5NE9sTv+W/dFqTl6g1+mMx+c5KbEk4fs8/hP6yXrCBINcazOWpCpRotfo60GUVJdYVpcTETInIdalJmKl4j4vgAZ0qlDBUFG8hP21lj8XmmSESAnEyCTi91gQbh2iTBUwfqcfYVeFTFDU+B1+qDKmu5L3gwKK3q+KGpwovlJV1DgKUIqPoNgPoTlagHKoGOWIE6XMgOJIQHElo4hws0pzoCs1tqoYfJDqUa02mVpooY8UNuGbTQtK7A4EdYUb2EFsd1ZxJfMyvIfJcW+KDFh2bSHbuxeN0ICvJYiOoO0MpkvB1g0Sc8BsOulWnurw9de7ue66d9m7twitVuHRRwfwwAPnodPVbtzR8SKF0AnyzuZ3uPOzO9lXtC+0LyspixlDZjAyd2Q9rqx2CRZNO5mxJA6Po96Lpuk1+kotHrUd4GrWm6sZT9KQCY91qYlb6GRbXZSAABHH5zaKcB2FnVdnjWt9QZ8MxiRIjC9uhCYR4bUgHKjWF4e/3BrjEPgLI5/HFzRuqqFyVBRQTAqKUaBovSg40fhLUVzFKI58lJJjaAoPoRzbj3J4H8qBfJT9pSgOE4oImlEqbmeimlhqGHNi8kFawGpT0WJTcUvUglL/PzrtxHZn7SC+7NYKH+3ce8hxbyDHvSkUsNzJvZUUv10d5EsHXwfQ5IJhKFi7QtJZkGADbf3fd3Xw+wV33PEZe/cW0a5dCosWjeScc7Lqe1kRyKyxE+Cdze9w1ZKrouIsgsF1b416q07EUKzOwCejxHx9x5MYtcaTFuAafNx4LHvxrC7H6zaqC6uLAl5NQHwIcPurb4GpKGB8EPXPWWtSxYiuCitMRXETPlaXCIF/M8IfLVZiCZgol9MJZt0rZqV8Mwg0OFH8ZSjuIhSHHU3JUZTCwyj5B1AO70E59AfKvj9QDvvAbSO+6giP+NXXbFGJPkgXkKmBZproU4ZrqWo04awPBLCX6MysLcDBSuZZ/U5yXDvJca8jx70+ZOVp59mBUQT+Z/sTwNcO6KQGL5vPAmsPSMwEg75BWnlqwtq1B3nxxZ959tnBWK3HX5agrrLGpBA6Tnx+H61ntI6wBFUk3ZLO/Cvmh9KFKxUlvuqLmPoumgbUzA1zgrEkZp0Zo85Yy0GupzpBq8uJxLeEHy+rm2X6tODVBqwvAtwCPF71cU1jYOIlmyna6guVuH8TQRvbclGloAkImCiX0wmGfSkmBcWiqH/NChqzBsXoR/E5UDwBUVN6DKXwkCpqju5DObgH5fAhOHIEDuVDWQJVC5umQBpVdsysiC1gtYklbCqe/gRqDJ5sXKiByRXFzlYqt01megvJce8k17WGHNfqkEurhXd/eey60KpuLX/ArWU8U63Jk9gREsy1nqJeHwghmDPnV0pK3Nx1V/w+oMeDTJ9vYHy759tKRRDAkbIjXP7G5XW6Do2iqbnFoyZZOjGOG7SGBhxP0pCpaHU5UbdRHVhdhAa8+oCACXMdeXzg9oLbV0OrS+w2BCFCLqMKwsQSQ7AEBU1Fi43WXK1fzMIfiI8pC/wtChcwfoSjLKbVRrhO7LdiUMgEN41ZE2GxUbwlaFyFKEFLTUEeytH9KPsOw+HAduSI+rfQQXzFcV6F501quFChTqnMFRWRBn5qW0vziY7b2YKaoh5Pc+uEnw7eY+S4d5LjWEOOexW57vV0cm8lyV8h6sfXFLwdQDMkrCbPmWq2lv70/Oo9erSMSZM+5L33tqDTabjkknZ06VK/GWHV4fT8v3ESyCvOq9a4VsmtyEzMrJYoqUqAxNqn0+ikKKkzYmUYnYjbqK6sLgbw68GrC3MdAR5/QLx4wOWungXG76dapgytOVqoWOIIlVh/DclqLM1xWPkiBI1DIBze6DiaCi4nUVb7gkYxKWgsmoj9GhMo7mI1A6roMEp+HsrRI9GCJvj42DHATPwYm6iI35otWisCbqc44ibcJZWmnHbfCH7gD2K7s45UMi9JeMn1HiXHtYNcx2/kOL8jx/Mbbd070Vf8AeJPAG87EJ0C2VpnQkJ3SGwOZuMp79aqLl98sYMJE94jL68EvV7Dk09eRG5uen0vq1qcZv/sTx7NE5tXa9yC4QsY0HpA3S5GEka41eVE3UZ1ZXXRgt+oChifTrW+eJTA5letLm4PuN3gdKn7KnMb1SgoVhcQKWGCJCGeUAkXNBXcTZoaxojEehn8QUtM5TEz4S6n4P4TQTFGupyirDThz02geIpRCo+gHAsTMTtjiJsjR+DoUfD5UFO7YymPs4hWIDVMA9eL+MKm4paqwKnvbakSBzFaSaC6syoLJMgWblXwOLeTExA8ua5vyfAdii6jKLTgba3W5NHkQrDVRGIHSLCA7tS2kB0vTqeXBx/8H9OnrwIgNzeN11+/km7dmtXzyqqPFELHSf+W/clKymJ/0f6YQcQKCllJWfRv2b8eVncqUZnV5XiETB1ZXfxmVbz4jQHxErC+RLiOfKrlxeUClxNcnjhWF19gnTVZqxIpRqyVCZVKrDCa2v+FKvyqtSXkcnLEFjCxYmtOBMVYwUJTUdAELTaBx4pFQTGC4iiLts5sq8Rq4wmmj9uIVhpnxNiXgWrlqQGmOKeJtdmU2BWfT3MEaqnKWO6s3UTHvgcxCEFHPOQELDw5ZavJLfuGjs6vsFIYe5IvA7ztgU6gPxMsZ4H1DLDawHjqBy/XFj6fn/PPn8/PPx8AYPLks/n3vy/GYjnxH0onEymEjhOtRsuMITO4aslVUceCWWPTh9yEVrMEtUZGf2ocjNhg8XHiKdHhx+sgRV7oQFjKBYxPHxAvgdgXbyDrKGh9cbnB5QCnA5zOGFYXR2A7DnQJ5WnT1iqESqx0a31SwI1Utx++QoiqxUv4vrB4mxPCSGwBU1lsjVlB0QReD4cj0irzRxxBE3zsDNoIFCCVaKXRJca+40gDt1aYXpm4SaRRiptY+IBdxHZn5VcyLwXIFV5yfEfJdf1OTumv5JR+TWvXcnTxmlD4rarg8QdaTRjPhIRukNQcLKbTIni5LtFqNYwdeya7d9uZN+8KLr+8Y30v6biQWWMnyDub3+GG92+gyFUU2ped1ITpQ2Bk7rGwkVnADKA+agvVdjXdOrK6iITAZlJL+odcRzrwaFTx4hEB8eJVXUculypeHGXgLCnPRqqNdlYaY/WFStzA3kQ4yXWBYgmaWALG74wWOSeEgeiYmYriJYbVRtFWUABut+piqkzMhD8uKQmbrEGN5I0XCBPcmgXG1fD/TXKMU8WLvWmgaeANhVJU11VFC8824jt6FaAVkCP85PqOkePeTk7pr+SWfEWa6weUeInsQqe6tXztQZMTaDXRFaztwWpRU9Ql1eLgwRKOHi0LtcXw+wX5+Q7S0uquEncQmTXWQBmZO5Jv93zL9B+nc3mHy7m779n0b/kI2qgfEvuBq4C3qJ4YqsrqUlMhUxeFCfUgkoAE1fIiTOAzhgXuKuWZR25/mHgJs744StTN7UH9aKyNRpFaMFQhWKJiYGKMjZNOfbIQItrlFEvAxHQ5nYimMVC1gAk+D0/xrihogvh8alDw4cOwrxrixm6vcAId0WImlyhho2kG/lRqHBQTyygUT9ycQmngDQEBHCK2O6uyzugmoBOQIwQ5fjs57h3klq2mQ/EKLK5fQewg7mear3mF4OWgWytJtfJIt9Zx8+GHW5k48QNsNhO//XYLVqsBjUY5KSKoLpFCqCr8PjjyLTjywNwc0vuHCqYFKXKq1qA+2ecwoPXLcU4U/Ga6AfgW9Qu/MhFznG6YKrECiSASVdeRsIS5jvSBrCNNwLIiKgTuOgOuo1JVvLiKwXcMOFbVRauPLrH6QiWeFUZraVAfdkIIcFF5ZtPJEDQB0aIxBfYFBEyU6IknaIL4/VBQoAqXXdUQNseOQZTh2UCkyugEnB+5T9sCaAo+W/XuN2gFVCg3ClXlkmpKjWsDSqLxENkZPVz4xInCAdT/TTmBLddfGkhL/5WWxV+jda0H32bi/jjyJ6puLV/7QE2esyChKyQ2VWvyNID+WqcLZWUe7rnnC1566RcAMjMTOXq07ISKIzYk5L+Uytj7Dqy+E8rC6gVZsqDnDMgut+oUOAsASDEdAyqvLaSKnOk1WIQBNYAgsIUETMD64gvWfAkL3A25jjzlriOnA5zF4CkGTyF4DnJi37IV0JqrFixxU6qDVXmtUSKzIVGloHHGFzUn9FLro11OlWY6VVfQlN8YFBXBwWq4oY4cUTdfrF/jFiIVRkciVIcuS7Xa+NLAV41MqfBLaKla1AS346gNKKkeRcR2Z20nfkcyDdAG1YaXA+T4PeR4dpHj/JUmpT+BYx14NhK3PrPQq24tb3tQAsHLCWdBQluwJoDJ0KB++Jxu/PprHmPHvsOWLUcBuPvuPvzjHwMxGk8f+XD63Elts/cd+PYqor7Byvar+/u/FRJDdqcdAJupilRrgfrh7r8QvDmRFXfD06aDWUeOMvCUgrsQPEXg2a/+FbWY0h1Mp6609ksVokaXCNpT55eBEALcVVto6kLQVEvAmANWm6DLSXccH/KlpfEFTax97nhRGeFp4B2IKNqnywJdpvrYkwq+KjKlKv6z1VM9YZOB6r6ScasnBQEcILY7q7LO6BbKrTs5BOJ4vPtp71yDyfEblK0F93rw7yS+WytTdWv5OoK+s+rWSugCiQG31inSX+t0wO8XPP30D/ztb1/h8fhp3tzKq6+OYNCgtvW9tFpHCqFY+H2qJSjmt15g30+3gNcJvhIK7FsBSNn7q1rCxgNkAu1RHeG/UF5pF4Dlge1EUMJESk1iYCqIG+2p6zOPJ2gqdTsFrDYnFExdUdDEcTlFiZzjETRBnM5ya0x1rDZllQW02yhXGO2JEDaGLFCagz8N3ClqwHo8Qp3Sw6hRGjgyU6oecaNacmK5s0oqmdeMMHdW8LE3nyzXWjSudVC6FlzrwLuZuIkV/mRV8Hjbl9fkSegK1oBb6zTor3WqoyiwfPluPB4/I0bkMHv2MJo0ObVjgeIhhVAsjnwb6Q6LhesorBwLgD3wqWHL+4FQlmawoGYJ0RW9tJZq9D+qygqTcFxVeRsicQVNxYJ6MQKFT0jQ6IgUMNV1O52IoAni8URnRlUmbIqKKjmZgtobIQNoC/QhFGNjahmItckAbyq4ktUsvFjEEjYQmQZe1WZFipsGhp1ooRPsjB4vhUILtCNM6AQ3vwObezO41qsWHsda8GwAcTj2iYQevG1UwSM6guEMtdVEQms1W0umqDc4vF4/Op0GRVGYP/8KPvtsO+PHdz2tOxhIIRQLR171xiV1hsT2FOz6FPCQ0ukWSC0F/UK1dBBAS9TH+uC2BDRX18Wq6x0h1NT1WAX1qrLanLCgqU6qdkWXk74W39g+H+TnVz/lu6CgihOGp4G3Vf9qmoO5jWq10TQHX7pqtXFawR/jy8RH/CS86qaBZ6D6PCQNGj9qdGJFV9Zm1KyteCQSKXSCwqed8GPw7FQFj3OdKnpcQbdWnDert0V58LIuELxszYXERLXy8mnaX+t0objYxR13fIaiwLx5VwDQrJmVCRO61e/CTgLyX2YszNVrn8HZL+Jvej5FK9SX0dbtMbBmACOAsYBT/YUMQDZqkHR91BGqGRGCprpxNEGX04lk6WsDFpoKLqdQZlM8l1NtCpogQqhp3JUJmvB9x44F+nRVRjANvDVwjuqCsrRRrTa6gNXG00S12pRZQFS4Lz+VVxiQaeCnPU4iO6MHxc5WKq/u1YIY7ixUD77iPaKKHNc6KFsHzrUBt1aczFV/sip4gpWXDYHg5SbpqlurEfXXOl348cd9jB37Djt3FqDRKNx9d59TollqbSGFUCzS+6vZYWX7iR0npKjH0/tT6CwMtdiwmWyB4yNRS+//AtwNXE59VJaOK2hiuJyEs4KFphYETazU7EqtNnUhaIIIoRbeq058TfCvtzpB6UZUddFD/ZvQNmC1yVatNv50cNugLAnKKqgPQeXCJjwNvDJRI9PATzuOEdudtYtKOqOjhrNXdGd1ApIA/GXg2hSw8qxVRY9nA4g47UeFMeDWagf+juU1eRJbQaIFLOZG21/rdMHr9TNt2rc8/vjX+HyCli2TWbhwRKMSQSCFUEwEGryZryB++w9a8w9odeGussCXdc/poNGGMsbMOjNGnTFs3NHA36uAc09sPUKAN7bLqSqrzQkLmuqmaof1dULHyfEnl5VVT9AE97mq0VUdUH1B2UCGKmqs7cAYsNooYVabkgRwVAgmrqompEwDlwTwoeZSxHJnHa1kXjKRYif4uA0BLSx8EO7WcqwF53rwx5FRQgFfwK3lbQfaXDB2hYQcsFpVt5bsr3XasWtXAePGvcsPP+wF4Nprz+A//7kMm63xmYulEKqAe7Obss/LEMXdgdlY0u9Em/QaXlcndMatgTpC02OkztsqnCn4Kys9Yq/wVD9VO+RyKjtBQaMJWGgqVgOO09cpKHLQnyRBE8Ttrn5W1OHDaop4tUkEssHYCpI6qC6pYKyNv6kaa+NIhCIzOMPeFg6qrm0p08AllVBGeWf0cAvPNirvjN6SaFdWDuo/o9C70nso4NZarwoexzrwbiG+W8sGnvblwcvGM8F8JqQ0UQVPggxebgz4fH4GD17I77/nk5Rk5D//uZSxY8+q72XVG1IIheHe7Kb0rQpfror6geIuvg5/7qUYep8FGm1I0DjyHPSjH2dqzsT1m0vNbHK4Ec5/IMpSEM5UhKMoJHJiZuVUF018C01lVpuTLmiCeL1qZlR1a9kUVlaDNhY20GeDrZNqtTG1Am2marXxpoEzGUoToNAErsCHu4tyjVoZZqrnkpJp4BJUL+cRYruz/iB++SkjatnJigHLHanQqsxfBq6NkbE87vUg4tiOhBG8bctT1HVdwHwWWLMhMaE8RV3SKNFqNUyfPoQnn/yO114bQevWtvpeUr0im64GEH5B4fOFiOLIl0NnXo6iKcHr7IUQzVESlFoVNNXq4WRWrTb1JmiC+P1qZlR1rTbHatp6QwFNU0jJUa02CW1UoaNpDiKQIVWWBMVmsBvAU8PXQqaBS04QL7Cb2O6syvIAU4ntzmpNBe+n8IF7e6SVx7UefLuIKaeEAr7scsGj5Kgp6gmdwJqoCh7ZX0sCfPPNHxQWOhk2rFNonxDilEqLl01X6xjvHm+UCALwOi6MeB4xRgNOnZM9rj0Is+CM7DMCBfWOoJheQGMWKOZ/RokcDPUsaIIIoVphqhs8fPRonNYKlaGDJp0guWO51SaYIeVrAk6barWxm6BACz5FjRStroaSaeCSOqCE8lYS4Rae36m8M3prYruz0isOFgJ8YW4t57pAq4nNxHWY+VLLBY+/gxq8bD4TkpqA1Sz7a0li4nb7ePTRFfzzn9+RnGxi3bpbyc5OBhrI91ADQL5rAoiS2IYxrek7jNZ3cRVfg891NqYLTRjOMKAxCFj1Hc9umsM9zkWMbTuGhVcuCsz6HngWOAu1V9hJQojKWyvEeuyJ1yGoEmzpkBIQN5awDCkRFmtTbIF8A+QrcEypWV/WYG3AytxRMg1ccoII1O5WsVpJ7K1kXrAzekULTwdUj2oU/pJyt5Zznbq5NoCI86YQpoBbKxC8rMkFU1ewZqliJ8Ei+2tJqsXWrUcZO/YdVq9WE35GjsxplMHQVSGFUADFGvtDRW9egTF5Pu6yIQDosnRov3of7rwT9u2jYCBwPqS8+T4o78DIkcQLlD4uHI7qVR4OPnZWFn4Zh8RESMuKjLUJZkh50wIZUlY11uaYFgqU8gra1aE6aeDBLR2ZBi6pVYKd0SuKnS1U3hm9KbGLDbYkTry78Ea6tZzr1GytuG4tDfiyymvyiA6B4OWOYAu4tRJkfy1JzRFCMGfOr0yZ8jllZR5SUkzMnj2MK6/sXN9La5BIIRRA11KHkqhEuccUTaB/ht+MkqSgW/0hXH2Van1B9egA2I6VwlVXwVtvwchgAGMMIeR2R7dWqOxxSWVdf+JgNkPTptCkZViGVEWrTZJqtSnQw2GNWqCkJsg0cEkDo4jYfbO2Ez+kT4NatzuWOys13oWEAG9eueBxrQ9za8Up0eBrUm7h8XVQKy+bz4Dk1IDgkf21JLWDz+fn6quX8u67WwAYOLANr7wynKys2oupOd2QQiiAolGwDLZEZ40FhJAQJiwDTSiX3hkSQQAFQSHkQN1/882Q1QN6A8vXwwsjI8WN3V7zxen1qrBJbwqprVSrjbl1WKxNwGpTGrDaHNGqdfX/qOF1DMR3Q8k0cEkDQKB2QI+VnXWgknnBzugV3VntUTO34uIvUd1Y4YLHtR5EfpwFmsrjeDzt1OBl05mQkFUueGR/LUkdotVqyM5OQq/XMG3aRUyd2geNRgrsypBCKAxDrgGuIlBHSBU7GqUYAPPHTdA/DRw5G7Wrj0rQIpQS9EgdOwa/fRkQQhvh3Y3RF9JqIS2tXNwkt1YrEsez2uTr4JCiftrX1PNVVRp4+JaMzJSSNAiCndFjubMqs5E2J7Y7qwVV6HbhBfe2GG6t3XHGa8DXMtLKY+iiurVSEgLBy7K/luTk4HR6KSpy0bSpWnThn/8cxI039uCsszLqeWWnBvJdWgFDrgH9Jj2FPxYikgSKULt+67ckwxEj8BZqteh3ASgIREfawgVK+1Q4ooGMUXD7JaA0i7TaFBjhsKJabbagBjHUBJkGLjlNKCC2O2snlXdGb0+0hacTakmnShECvAci3VrOdeDeTNx8MF9aueDxtleDl81dwJoSKEIo+2tJ6o+NGw8zZsw72GwmvvrqerRaDWazXoqgGiCFUEV8oExR4Br1qaIPhFO6zKiKQgCzUCsVp3PT6gxu/TmDAbvC1MfgdPDV8KW1Uf2YG5kGLjmF8KNmYcVyZ1XVGb1i3E4uakxPtXIxfUWRbi3XOnBuABGn4o/fHCl4REcwngEJmZBiUa08sr+WpIEghGDmzJ+4994vcbl8pKdb2LGjgI4dm9T30k45pBCqyLeonq/AK6Ns6A8LPobCYEd6DapieQWAiWtinCP4U7aJBzL0VQubplQRqCCRNHycqHV2KrqzquqMnkXszujNqaYxU3gquLUCVh5fnCA5oQ24tdqVZ2zpOoOlA9gSymN5jDJFXdIwOXiwhBtueJ/PPtsOwNCh7Zk//woyMqz1vLJTEymEKqKWW0DoAgHRP18O9swYA9cDa5lxziH2Jx7i3h8OkV52GJ66B8bcCelbQf8bahd6ieT04Six3VlxksQBtSJCB2K7sxKre2EhwLsvhltrK/HdWukBwdNBFTx0AnNnSLCV1+SR/bUkpxAffriViRM/4OjRMkwmHU89dTGTJ58tiyOeAFIIVaQ5CES5RcgZNNUIIn6fpj2O0/4WU4aqT/+6qwX8+3kYOQDYFBhfC3WEJJJ6wIeadBir2GBlndFtxHZntaGGHza+wgpurYClR9hjj/cnhBUhbA++9oFWE80hyQxWi+yvJTnl8Xr9PPTQVxw9WsZZZ2Xw+usj6dKlaX0v65RHCqGK9AeyKU8xKQvWilXK/2QBv7+BPeNdwIeCQtKWXaDToxZTDP4ulr5aScMm2Bk9XOxsDuyLUxEHgFbEdmc1pYax+cINrq2Rgse1Hrx74ozXlmdreTqo1h5tLpjbQaKlPHhZ9teSnIbodBoWLRrJa6+t44knLsRolF/htYF8FSuiBZ5B/UYAFEdY0fzg5+p0wOfGrleDgZKNyWh0wV+awd/LKciXV9IQEMBhYruzKis1ZUTtgl7RwhPVGb1aixDg3Rtt4XFXkjbpa1pu4fG2A39HMOWqbq0Us+yvJTnt8fsFzzzzA36/4P77zwPgzDMz+Pe/L67nlZ1eyE+QGIhLRUgIES6EslBF0EjggL28mKLZFja7FttrSCQ1wIsapxPLnVVZZ/QmxO6M3orjLAjus0dbeJwbQMRpaOFPCIvjaVcevJzQDGxm2V9L0ijZt6+I8ePf46uvdqHVKlxxRQ45OWn1vazTEimEYhGsx6/xo7gCueqzgRso/2YoLCwvpmhKCZtcSXsNiaQWKCG6yOBm1IyteCWpFNQ4nVjurOP+aBVucG2J4daK07JUaMHbOjJFnY5gaVfu0goGL8v+WpJGzNKlG7nllo8oKHBiseiZMWMInTrJUIu6QgqhGAivGuOj6PzgDgih84n8eWy3lxdTNNnCDgQtQlK5S44fgZrAGMudta+SeWaiO6PnUEln9GotRqgxO851kYLHvZW4Xbx8GWFurfaqtcfYCRKSILlC8LK08kgkABQXu7jzzs+YP38NAL16ZbJo0UhZG6iOkUIoBkEhhManVoOG6CKGdnu5RcgcbhGSrjFJ9fEAO4jtziqqZF5TYruzwuP8jwtfQbSFx7UB/HFW47dGWni87UHTCSwZgeBl2V9LIqkOXq+fvn3nsWHDYRQF/vrX/jzyyAXo9dI6WtdIIRSLwI9cReMDX6CGbUUhFOYasxltYQeka0wSTSGx3Vk7qLwzejuixU4nKumMXl38LjVQ2VXByuPdH3u80AXcWu3KLTz+DmBuBQkJkGqW/bUkkhNAp9Nw8809ePrplSxcOIL+/VvV95IaDfITKwYhi5AS1u0ohkWooFKLkHSNNTYEqtsqViuJvErmJRAdt5NDNTqjV2tRfvD8EW3lcW8lbjcvX/NIC4+nHeg7qm6tFLPsryWR1BK7dhVQWOiiW7dmANx2W2/Gj+9GUpJsNXAykUIoFkGLUOiBH4wVzPphrrHYMULSInS64kLtjB7LnVVaybzmxHZntaCW+uL68surLYe7tUScfu3+xDC3ViBjS3SEhPSwwOVgiro0z0sktYUQgkWL1vOXv3xMenoCa9bcQmKiEUVRpAiqB6QQikHIIhT8xWxyg2KKHBQWLB07a0xahE51CogWOptRO6P748zRUd4ZvaI7K7m2FuZ3qt3So7K1DsQeL/Rh2Vph8TymlqpbKzmsJo/sryWR1Cl2u5M///ljFi/eAMBZZ2VQXOwmMVEKoPpCCqFYBA1BIvDA5AEqCKHwGCFpETpl8QN7iO3OOlzJvCRiu7PaofbVqhWEHzy7o+N43L8T362VqQodT1jGlqaN6tZKqpCiLoOXJZKTyjff/MF1173Lnj2FaLUKjz46gAceOA+dTr4X6xMphGIQsgj5g0IoRjir3U5BkvqwPEZIIIVQw8SBWmenotjZGjgWj2yi+2blAM2oJXdWEO/R2NlaIo6zzZ8cFscT+OtrB5aAWytV9teSSBoKXq+fv/99Of/853cIAe3apbBo0UjOOServpcmQQqh2IRCgwK/us2xhZA90Ouu3CJUSnmHJukaqw+OEtudtZv4ndENxO+Mbq3tBfodqlurYk0e38HY44UevG0q1ORpD/pM1bITHrws+2tJJA0SrVZh7dpDCAETJ3Zj+vQh0hXWgJBCKAYhi5AvIIDMMdwQhYUxCioGrUFmjqMbk6Sa+FCFTSx31rFK5tlQhU7FgOXW1MEbQfjBszNGttbvxI0w8raIrslDK0hILBc7sr+WRHJKIITA7fZhNOpQFIX586/gu+/2MHJkbn0vTVIB+Wkai6BFyBe0CEV/cfntBRQGBH15sLR0i9Umpahd0CuKnao6o7cmtjsrnVp2ZwXxHgkInXArz0YQZbHH+5MjA5c9HcDXFkwpquCxhdXkkf21JJJTjmPHypg06UMSE4288spwAJo2TZAiqIEihVAMQhYhT3whVFxWgD8Q31ZuEZIZYzUl2Bk9ljtrTyXzjKiuq4rurI5El3yqNfxl4NoUbeXxHYo9XhgDbq12kW4tTVOwJkCSGdlfSyI5vfjyyx2MH/8eeXkl6PUaHnqov2yR0cCRQigGoV5j3oAAivHNanfaATBqDJj1wS5O0iIUDy9q2nksd5a9knlpRGdm5QItOc7O6NVB+FS3VsU4Hs92YkYaCQV8Mdxa/pZgSSivxSP7a0kkpy1Op5e//nUZzz33IwC5uWmyT9gpghRCsQi6xjxxhJDbjT3gnIlMnZftNYpRM7EqWngq64yuIXZn9E6cBNua91CMbK2NIOLkkvltkanp3vbgbQuGpEC2luyvJZE0NjZuPMyYMe+wbp1qHf7LX3rx1FOXYLHIjM1TASmEYhByjbnjCKGwQOkUc3jXp8bRXiPYGT2WOytOpypAfRljubM6EFWlqfbxl6kCp2JNHt+R2OOFURU4EW6tdkB6pHVH9teSSBo1Xq+fyy9/g9277aSnW5g37wouv7xjfS9LUgPkp3csQhahgCBKqKS9htkWduD0co25Ke+MXtGdVVzJvAxiu7OyOMHO6NVB+MC9PdrK49lBfLdWdrTg8WWBKSB2ZH8tiUQSB51Ow0svXcYLL/zEvHl/IiOj1otuSOoYKYRiELIIBVOTEipEoxQWljdcPQ3aa9iJ7c6qrDO6lvid0VPizKlVhFCDlCv21nJvAuGMPceXGi14vG1Ba1UtO8myv5ZEIqmajz7ahtvtC2WBDRnSnsGD26HIH0mnJPUuhF588UWeeuopDh48SNeuXXnhhRfo3bt33PHTp0/npZdeYs+ePaSlpXHVVVfx5JNPYjLVonMlaBFyB55XZhE6RdprCGAv0a6sLUCcUn6AWlCwotgJtpI4aeXA/CUBt1bFbK2jsccLU8CtFRa87GkPIlWN2wlmasn+WhKJpAaUlXm4554veOmlX0hONtKrVyYtW6pdBKUIOnWpVyH05ptvMnXqVGbNmsU555zD9OnTGTx4MFu3bqVp06ZR419//XUeeOAB5s2bR9++fdm2bRsTJkxAURSeffbZWltXuUUo8A87ocLLFNZwtaEJIRflrSTCxc5WKu+Mnklsd1YmdVR7JxbCG+bWCrPyeHbGGa9RXVgVm4n6WoDeWCF4WfbXkkgkx8+vv+Yxduw7bNmi/gC78cbuZGTIwrmnA/UqhJ599lkmTZrEDTfcAMCsWbP4+OOPmTdvHg888EDU+B9++IF+/foxZswYAFq3bs21117LqlWrandhQYuQK+AasVaI/A+zCNWXayyf6LidLVTdGT3YSqKiOyupjtcbgRDgzYtRdXkTiDilEn1NotPTvW1AMRNRcVn215JIJLWI3y945pkfeOihr/B4/DRvbuWVV4Zz8cXt6ntpklqi3oSQ2+1m9erVPPjgg6F9Go2GQYMGsXLlyphz+vbty8KFC/npp5/o3bs3O3fu5JNPPuG6666Lex2Xy4XLVf7lWlRUVOXayi1CgS/TBEPkgLAYoXKLkIfyiji1YxHyA38Q250VJ9cJUEVNUOSEW3naUoud0auLrxjcG6Njefz5sccLU5g7K0z0iBTVhRVsKCr7a0kkkjrG4/ExdOgili3bBcCIETn897/DSEurs7Ktknqg3oTQ0aNH8fl8ZGRkROzPyMhgy5YtMeeMGTOGo0ePct555yGEwOv1cuutt/LXv/417nWefPJJHnvssZotLmgRcgYEUGUWoVDn+aA1SENNw4UdxG4lsRWIE/YLqJ3RY7mzMjiJ7qwgwgvubTGytXbFGa8BX8toK48vE7Q6VeTYwgKXrbK/lkQiObno9VrOPLMpK1fuY8aMIdx4Y3cZC3Qackp9s6xYsYJp06bxn//8h3POOYft27dz55138sQTT/Dwww/HnPPggw8yderU0POioiKys7MrvU65RSgghBIq/MOPGSwdFEJNiJUkLgIjYrmzdlN5Z/SORLuzOlIHndGrgxDgPRAdx+PeDMIde44vLYZbqzVgUtPREyrU5JH9tSQSST1RXOyiuNhNZmYiAE8+OYjJk3vTvn1qFTMlpyr1JoTS0tLQarUcOhTZp+nQoUM0a9Ys5pyHH36Y6667jptuugmAM888k9LSUm6++WYeeughNDECYY1GI0Zj1flNPuBb1EKBA32qAFEcgXmxCiqq75Gohqs+MthFbHdWHGeQeh6iO6PnoFZcrrckbl8RuDZEW3n8BbHHC3Og6nKFFHVhU1PREyyBFHXZX0sikTQ8fvxxH+PGvUOzZlZWrJiATqfBZNJJEXSaU29CyGAw0LNnT5YtW8bw4cMB8Pv9LFu2jNtuuy3mnLKysiixow18kQoRz6ZSNe8AdwL7As+3eAVNAcUZRwjZ7eS3sECzTvyY0oYVwBY6sIV1bKMTcewiKEArIsVO8HEa9eDOCiI8YW6tdeAMCB7vH3HGawNurYpFCDNB0apxO4myv5ZEIjk18Hr9TJv2LY8//jU+n8Dj8bN3byFt2pyUqmiSeqZeXWNTp05l/Pjx9OrVi969ezN9+nRKS0tDWWTXX389LVq04MknnwRg2LBhPPvss3Tv3j3kGnv44YcZNmxYSBDVlHeAq4h0TZkDFaWFw8TBDNiSXsGd9d//khewWv0tNCs7sKntIoKtJMLFTgfqsDN6dRACvPti9NbaTNxOYL70gODpEObeag0YVXEj+2tJJJJTmF27Chg37l1++GEvANdeewb/+c9l2Gx13vhH0kCoVyE0evRojhw5wt///ncOHjxIt27d+Oyzz0IB1Hv27ImwAP3tb39DURT+9re/sX//ftLT0xk2bBj/+Mc/juv6PlRLUEVbkjEQLH3md03YEiucKOi6Kz1MH1MKZ2r15PAZOcwgh5604v/qvpVEVfgKK7i11qnP/fbY40UCeNoSVZNHJKvCJsEUHbyslynqEonk1EQIwaJF6/nLXz6muNhNYqKBl166jLFjz6rvpUlOMoo4EZ/SKUhRURHJyckUFhbya1ISF1Y4rvELjv7DDkD7u5OxGzVkCuimK7fwNLvmCi7v8R048vE+7EWr0QK3AS+i2oieOHk3JNzg2hpt5fHuiTNeC75WqtDxdCgXPP7mgAImY2RdngSL7K8lkUhOOzweH2efPZu1aw/Rr182r702QrrCGjjh399JSbVX/e6UyhqrbfJi7DP6yh9/01eh3Rb48DBcHfaab1u5DHJLSdJbAyII6ryqtBDg3VvBwrNeFUFx3VoZYXE87cKytQxqkLLVDDbZX0sikTQ+9Hotr79+Je+8s5kHHjgPna7e7fiSeqJRC6HmMfYZveUGss7rQfFDU3PYAJ+PAp/arMJmtIUdqEUh5LPHiOPZAP7C2OOFNeDW6hApfERAvYWCl2V/LYlE0jjxeHw8+ugKzGY9f/vb+QB07pxO584Nrzek5OTSqIVQfyAL2E95nJApEB/kx4/iV/DrvJynD3uZiovLiylawlMqj6O9hnCDa0u0lce7L854nerWqpii7m8GKKAPFCJsIvtrSSQSSZBt244xduw7/PLLAbRahWuvPYN27WRKvESlUQshLTADNWssSNAi5NMEfGQmN9rwlym8mKI53J9ciUVICPD8EaO31lZCZawr4m8W2WLC2x68rYBAGnqCGVJkfy2JRCKJhxCCOXN+ZcqUzykr85CSYmL27GFSBEkiaNRCCGAk8BbwF+AQYA6E2whFbV2qMbmJSHoP6zxf3l4jWDca8OnB9U2MbK3i2AsQiQHBU7EIYaBiY7C/ljUslkf215JIJJJKOXq0jEmTPuS999SWTQMHtuGVV4aTlXVSW0xLTgEarxASPihdAb48Rmqb08bSnx6KliY+1SJkJGgRqmCxKSzEbgKDBs5M9kHha+D6GVxecAHeM+JcTw++1mEp6oF4Hn+gM5hWE+ivFSZ4ZH8tiUQiqTEej49zz53Djh0F6PUannzyIu66qw8ajfwBKYmm8X7L7jwDzAdCT70Jl0H2RzQJNlwVgQdmL7h3lVt4zJ9yw+NwTwboNB9C3ofR5/ZnRtbk8bRTRVDw5TYbIUn215JIJJK6QK/XMnVqH2bO/IlFi0bSvXus1BiJRKXxCiHvgYinbp8dgARXIWrT1DL1gPkP2Hlu+cAkyAhYVh1eI2bROeDaCmZstVOzuKC8v1YT2V9LIpFI6pINGw7jcHg4++wWAPz5z7244YZumM0ydlJSOY1XCFUwvrg16pvF4i4AmqDgVA+YS1W3lr8tuFUrz7Qd3/KfPWu4v8Vt3J51DSgCLNshpQASOsn+WhKJRHKSEEIwc+ZP3HvvlzRvnsjatbeSlGREURQpgiTVovEKoQq4FQMAlkCwtOINWHU0OXD4G0IvlcvJit+/YL8fbC3bQffOYFkMmhuBy1DDriUSiURS1xw8WMINN7zPZ59tByA3Nw2321fFLIkkksYrhDztAfXNQ/FduMRQABJcTQEfeJPVYwlaaNemPJ7n/vspKNkKLcDWNEu1/oRS52tQQ0gikUgkx81HH21j4sT3OXKkDJNJx1NPXczkyWejSCu8pIY0XiHkOpeQEHJ3x61VY4IsviNAKor3MNAUbE7IalU+z27HHjAWlafP13F7DYlEIpEAakbYnXd+xksv/QLAWWdl8PrrI+nSpWk9r0xyqtKISw6HBSw3uR639U0AzL5AbJBXrSNEQoVfF4WFoTpCNpMtsFMKIYlEIjkZ6HQa9u9X67LdfXcffvrpJimCJCdE47UIicinbtQYIZNHtfIoISEUqRWFvaC8xYYpaBE6jvYaEolEIqkWfr/A6fRisehRFIU5c4axbl1vLrqobX0vTXIa0HgtQsIc8dQVsOaYCeTGewJKqYIQKi3OxxfYJS1CEolEUrfs3VvIoEGvcvPN5TXb0tMTpAiS1BqN1yLkuRyYpT7OfwG38QoATGgBD0oge4yEyJo/BY4CAPSKDos+2HpDCiGJRCKpbZYu3cjNN3+E3e7EYtGza1cBbdqkVD1RIqkBjVcINQ1rupd7LW6b+jzYdBVXIDYoIfIlsrsLAbAZksKyE6RrTCKRSGqL4mIXt9/+Ka+8shaAs8/OZNGikVIESeqExiuE8Jc/tKXgDoiaYGsxxRMQOdawglxCUOBRg/RSQm4xJ1ASeCwtQhKJRHIi/PjjPsaOfYedOwvQaBQefPA8HnnkAvR6WZFfUjc0YiEU1kxV0eAKPAxZhNyBN11CmBAqLcVuUAWUzRy0KAXdYnpAdjWWSCSS48Xt9jFq1FL27i2iZctkFi4cQf/+raqeKJGcAI1YCAUtQmrkszvwzBC0CLkCL43VUD6lsJCCYMZYQpPAznC3mCzkJZFIJMeLwaBl7tw/sWDBWl588VJsNlN9L0nSCGi8QkgEhZBq+SkXQqpFSHEHLEHWMHOs3R5KnZcZYxKJRHJiCCFYuHAder2Wa645A4CLL27HxRe3q+eVSRoTjVcIEexHU9EiFHCNOQNCyBI2xW6vpJiiDJSWSCSS6mK3O/nznz9m8eINJCYa6Ns3m5Ytk+t7WZJGSOMVQiLSNRaMEdKHXGMBl1gFIRS/mKK0CEkkEkl1+Prr3Vx33bvs3VuEVqtw3339yMxMrO9lSRopjVgIBS1Cka4xfcgiZFT/hguhwkLpGpNIJJLjxO328eijK/jnP79DCGjXLoVFi0ZyzjlZ9b00SSOm8Qoh4gkh9a8SSwjZ7eXB0mbZXkMikUiqi8vlpX//+fz88wEAJk7sxowZQ7GGJ6RIJPVAIxZCsV1julBBxdgxQtIiJJFIJDXHaNRx/vmt2L49n9mzh3HllZ3re0kSCdCohVDsYGldxYKKFVxjwWDp8hghKYQkEokkFkePluFweMjOVoOg//GPgdx117m0aCFrrkkaDo246WrAIqREusa0QYtQsN5ieBmLmBYh6RqTSCSSinzxxQ7OPPMlRo9+C69X/bw1GnVSBEkaHI1XCMUpqKgNWoS8CpickTUSY8YISYuQRCKRBHE6vdx112cMHryQgwdLsNudHDxYUvVEiaSeaLyusQpZY8EYIU24RcjkJtwk5C0soCQQQ61ahHzAscBRKYQkEknjZsOGw4wZ8zbr1x8G4C9/6cVTT12CxaKvYqZEUn80XiEUK0ZICDThFiGrJ2KGvfRY6HGyMRkoAALCiVQkEomkMSKEYObMn7j33i9xuXykp1uYN+8KLr+8Y30vTSKpksYrhES0a8zgC/OEeSlvRR/A7igAwKo1o9fqKXeLpaA2XZVIJJLGh8fjZ/78NbhcPoYObc/8+VeQkWGt72VJJNWiEQuhgEUoLFjaGN6Q3quAOVIIFbgKAbAZgsF+Mj5IIpE0XoQQKIqCwaDl9dev5H//28nkyWejKLIBteTUofEKIaJjhEzB+CBQLUJmX8QMu7cYiNVeQ2aMSSSSxkNZmYe77/6cpk0TeOyxCwHIyUkjJ0d+FkpOPRqxEAqKnnLXmDEohIQXBQXM/vLhTid2jRozZLPIjDGJRNI4+fXXPMaOfYctW46i02mYOLE7rVrZ6ntZEslx04jT56NbbARDgpRgar05zEIUXkwxIfirR1qEJBJJ48DvF/z7399z7rlz2LLlKM2bW/nkkzFSBElOeRqvRSgUIxTDIuQPHLNECqFQMUVZQ0gikTQi9u4tZPz491i+fDcAI0bkMHv2MJo0sVQ+USI5BWi8QihGrzFTUBv5A8fiNVyV7TUkEkkjweXy0rfvPPbtK8Ji0fP880OYOLG7DIiWnDZI11i4a8wTtAgFhVDYG12215BIJI0Qo1HHww+fT69emfz22y3ceGMPKYIkpxXSIoQWX+BZKEbIGxBJCWE60W4PxQjJzvMSieR05scf9yGEoE+fbAAmTerBDTd0Q6/X1vPKJJLap/FahMLqCAX7jIVihHyBv+FCKCxGSLrGJBLJ6YjX6+fxx7/mvPPmcc01b2O3OwFQFEWKIMlpSyO2CJWnzwf7jJVbhIJCKOzlCYsRUi1CAukak0gkpwu7dhUwbty7/PDDXgD69ctGesAkjYFGLIRiWIR8YQ1XIUoI2SM6z5cCzsBBaRGSSCSnJkIIFi5cx+TJn1Bc7CYpych//nMpY8eeVd9Lk0hOCo1XCIV1nw8KIUvQIhTstWoN6x9WWIg9IkYo6BYzAwl1uFCJRCKpG1wuLxMmvM/ixRsA1Qq0cOFIWre21e/CJJKTSOONEQpLnw+6xqzBrDFPwB4cJoSEvaC8oKIpBekWk0gkpzoGgxan04tWq/DEExeyYsUEKYIkjY7GaxEKpc9rQhahhEBskOIJBAUmGEKjHUX5BHerFqH1gSPSLSaRSE4d3G4fLpeXxEQjiqIwe/Ywdu48j969W9T30iSSekFahBRdtGvMHVA81nKdWFCqWoC0aLAarJS7xqRFSCKRnBps23aMfv3mMWnShwih/vBLS7NIESRp1DRei1AoRkgJCSFzMFssKIQSylMm7E47ADadNVBMLOgakxYhiUTSsBFCMGfOr0yZ8jllZR527Mhn374isrOT63tpEkm903iFUDB9XtGFYoQswUQyVyA2KKzFRoGrEIAUQ/CDQ9YQkkgkDZ+jR8uYNOlD3ntvCwADB7bhlVeGk5WVVM8rk0gaBo1YCEXHCJmCFqEYQsjuKQZkew2JRHLq8OWXOxg//j3y8krQ6zVMm3YRU6f2QaORBYIkkiCNWAgFY4Q0Ya6xwK6KQsjrpSBQM8hmSQ3slBYhiUTScHE6vUyc+AF5eSXk5qaxaNFIundvXt/LkkgaHFIIhdURCjVd9QRiyINCqKiovJiiNWgBkkJIIpE0XEwmHa+8Mpy3397EU09dgsWir3qSRNIIacRCqLygYnSLjYDZOCiEwjvPhyxC0jUmkUgaDkIIZs78iZQUM+PGqVWhBw5sw8CBbep5ZRJJw6bxCiERdI3FaLHhAbRe0AdenrDO87LhqkRSf/j9ftxud9UDGxlHjpTy179+xbff/kFCgp7zzsukWTNrfS9LIqkxBoMBjebkVvZpvEIoRrC0MdwiZHIRennCOs+rwdIewB6YJYWQRHIycLvd7Nq1C7/fX/XgRkRZmYdjx8oYOzaLceOySUkx4XAcYdeuI1VPlkgaGBqNhjZt2mAwGKoeXEs0YiFUnj4fFEIGb1jTVZObUA+xsM7zasPVY4EZGiBoIZJIJHWFEIK8vDy0Wi3Z2dkn/RdjQ8Tn83PwYAmlpU5SU20YjVqys5MwmWQskOTUxO/3c+DAAfLy8mjZsmWgZl/d04iFUPBXpRKKETKEW4TMnvKh4TFCEQ1Xm9Coi3NLJCcJr9dLWVkZmZmZWCyWqiec5vj9fjZtOorT6QV0ZGQk0KJFkkyLl5zypKenc+DAAbxeL3r9yRH1jVgIBasnRluEVNeYt3xoYWGFGCHZXkMiOZn4fOr79WSayxsyGo0Gm83EsWNltGljIynJVN9LkkhqheB73OfzSSFU95RnjcV0jSWHCaEoi9AfgQMyPkgiOZmcLFN5Q8Tt9iGEwGhUP7YzMxNp1iwBnU5bzyuTSGqP+niP17tf58UXX6R169aYTCbOOeccfvrpp0rH2+12Jk+eTPPmzTEajXTs2JFPPvnkOK4cjBEqD5bWRwRL+8qHhsUIRbrGpBCSSCR1T36+g40bD7NzZwF+v/rZpdEoUgRJJLVAvQqhN998k6lTp/LII4/w66+/0rVrVwYPHszhw4djjne73Vx88cXs3r2bt956i61btzJ79mxatDiezsnRdYR03rD0eUt5ZoqvsICiiGBp6RqTSCR1j8/nZ/duOzt3FuDzCYRQ99WEhx9+mJtvvrmOViiJxaxZsxg2bFh9L0NSTepVCD377LNMmjSJG264gc6dOzNr1iwsFgvz5s2LOX7evHnk5+fz3nvv0a9fP1q3bs0FF1xA165dj+PqwRihcteYLiJYWoRGFhYfDT1WLUKy87xEIqlbSkrcbNp0hKNHywBo3txKTk4aen20FWjAgAFMmTIlav/BgweZMWMGDz30UNSxlStXotVqueyyy6KOrVixAkVRsNvtUcdat27N9OnTI/YtX76cSy+9lCZNmmCxWOjcuTN33303+/fvr97NHgdOp5PJkyfTpEkTrFYrV155JYcOHap0zqFDh5gwYUIo6H7IkCH8/vvvoeP5+fncfvvtdOrUCbPZTMuWLbnjjjsoLCwMjTl27BhDhgwhMzMTo9FIdnY2t912G0VFRaExEydO5Ndff+Xbb7+t/RuX1Dr1JoTcbjerV69m0KBB5YvRaBg0aBArV66MOeeDDz6gT58+TJ48mYyMDM444wymTZsWCqSsESIodFTXmNYv0AZ/aHkBS7kQspeq6fIWxYhBa0C6xiQSSV0hhODAgWK2bDmKy+XDYNDSqVOT48oKmzNnDn379qVVq1ZRx+bOncvtt9/ON998w4EDB457vS+//DKDBg2iWbNmvP3222zatIlZs2ZRWFjIM888c9znrYq77rqLDz/8kKVLl/L1119z4MABRo4cGXe8EILhw4ezc+dO3n//fX777TdatWrFoEGDKC0tBeDAgQMcOHCAp59+mg0bNrBgwQI+++wzbrzxxtB5NBoNV1xxBR988AHbtm1jwYIF/O9//+PWW28NjTEYDIwZM4bnn3++zu5fUouIemL//v0CED/88EPE/nvvvVf07t075pxOnToJo9EoJk6cKH755RexePFikZqaKh599NG413E6naKwsDC07d27VwCi8JurhdiMEPvvEZOEEBaXX+Q/ni/yH88Xfr1fiHG/h86x+oKOgkcRmf9oEtgzUAiBEGLRib0IEomkWjgcDrFp0ybhcDjqeyk1olWrVuK5556L2Ne1a1fxyCOPhJ4DYvbs2WL48OHCbDaL9u3bixdeeFX8/PN+sWNHvvB4fGL9+vViyJAhIiEhQTRt2lSMGzdOHDlyRAghxPjx4wVq0GNo27VrlxBCiC5duoiZM2dGrau4uFhYrVaxZcsWMXr0aPGPf/wj4vjy5csFIAoKCiq9p7179wqDwSCmTJkS8/5jza8N7Ha70Ov1YunSpaF9mzdvFoBYuXJlzDlbt24VgNiwYUNon8/nE+np6WL27Nlxr7VkyRJhMBiEx+OJO2bGjBkiKysrYt/XX38tDAaDKCsrq+5tSUTl7/XCwkL1+7uwsFavWe/B0jXB7/fTtGlT/vvf/9KzZ09Gjx7NQw89xKxZs+LOefLJJ0lOTg5t2dnZ6gERmTVm9JZbgPABlvJfXgVu1eSZYkwO7JEWIYmkXhECSkvrZxOi6vXVkMcee4yrr76adevWcemll/Lgg3/BZvPTtm0KJSVFDBw4kO7du/PLL7/w2WefcejQIUaNGgXAjBkz6NOnD5MmTSIvL4+8vDyys7PJz89n06ZN9OrVK+p6S5YsIScnh06dOjFu3DjmzZuHOI77Wrp0KW63m/vuuy/mcZvNFnfu0KFDsVqtcbcuXbrEnbt69Wo8Hk+ERyEnJ4eWLVvG9Si4XGo0qMlUXmpAo9FgNBr57rvv4l6rsLCQpKQkdLrYSdYHDhzgnXfe4YILLojY36tXL7xeL6tWrYp7bknDoN7S59PS0tBqtVE+3UOHDtGsWbOYc5o3b45er0erLfeR5+bmcvDgQdxud8waIw8++CBTp04NPS8qKlLFkBLsNaa6xszBbHm/H8WvQEK5ELJ7i4FgfBBIISSR1DNlZWCtp15aJSWQkFCrp7ziitFccMHltGiRxLRp03j++efZvn0D7dtnMXPmTLp37860adNC4+fNm0d2djbbtm2jY8eOGAwGLBZLxGfnnj17EEKQmZkZdb25c+cybtw4AIYMGUJhYSFff/01AwYMqNG6f//9d5KSkmjevHmN73nOnDk4HI64xyurIXPw4EEMBkOU0MrIyODgwYMx5wSF0oMPPsjLL79MQkICzz33HPv27SMvLy/mnKNHj/LEE0/EDDa/9tpref/993E4HAwbNow5c+ZEHLdYLCQnJ/PHH39EzZU0LOrNImQwGOjZsyfLli0L7fP7/Sxbtow+ffrEnNOvXz+2b98e0Wto27ZtNG/ePG6hNaPRSFJSUsQGhDVd1UVahILnTgiILSEo8KvBiimWVFTLs+w8L5FITpziYtVKkZXVgYMHS3C7fSQkJJCUlBTKnl27di3Lly+PsJbk5OQAsGPHjrjnDoqMcAsIwNatW/npp5+49tprAdDpdIwePZq5c+fWeP1CiOOu+9KiRQvat28fd4sV13Qi6PV63nnnHbZt20ZqaioWi4Xly5czdOjQmC1bioqKuOyyy+jcuTOPPvpo1PHnnnuOX3/9lffff58dO3ZE/OAOYjabKSsrq9X7kNQ+9VpQcerUqYwfP55evXrRu3dvpk+fTmlpKTfccAMA119/PS1atODJJ58E4M9//jMzZ87kzjvv5Pbbb+f3339n2rRp3HHHHcdx9cj0+WAhacVXQQiVlGA3qiLJZk0HClGjqUEKIYmknrBYVMtMfV27mmg0miiXk8fjQQjBvn1FHDyo3oPZbKRTpzQMBvVzR1GU0A++kpIShg0bxr/+9a+o81dmiUlLUz+fCgoKSE8vt17PnTsXr9cbYSkSQmA0Gpk5cybJycmhH4yFhYVRVhe73U5yshom0LFjRwoLC8nLy6uxVWjo0KGVZlW1atWKjRs3xjzWrFkz3G43drs9Yn2VeRQAevbsyZo1aygsLMTtdpOens4555wT5T4sLi5myJAhJCYm8u6778a0TjVr1oxmzZqRk5NDamoq/fv35+GHH454HfLz8yNee0nDpF6F0OjRozly5Ah///vfOXjwIN26deOzzz4jIyMDUE274Uo9Ozubzz//nLvuuouzzjqLFi1acOedd3L//ffX/OJKZEHFkEXIF/ibEHhpwhuuWptQ7hazArKsvURSLyhKrbun6oL09PQIt0tRURG7du3i6NGykAgCyM5OwmqNbdXu0aMHb7/9Nq1bt44bp2IwGKKyZ9u1a0dSUhKbNm2iY8eOgNqz7dVXX+WZZ57hkksuiRg/fPhw3njjDW699VY6dOiARqNh9erVEZaZnTt3UlhYGDrfVVddxQMPPMC///1vnnvuuah1VRQq4ZyIa6xnz57o9XqWLVvGlVdeCaiWrj179sT1KIQTFHK///47v/zyC0888UToWFFREYMHD8ZoNPLBBx9EWdRiERStwTgkUK11TqeT7t27VzlfUr/Ue4uN2267jdtuuy3msRUrVkTt69OnDz/++GMtXDmyjpAxZBEKCCFr4E0Y0V4jBVlDSCKRVJeBAweyYMEChg0bhs1m4+GHH0ZRNHg8frRahVatbAAxXTNBJk+ezOzZs7n22mu57777SE1NZfv27SxevJg5c+ag1Wpp3bo1q1atYvfu3VitVlJTU0PlSL777juGDx8OwEcffURBQQE33nhjSAwEufLKK5k7dy633noriYmJ3HTTTdx9993odDrOPPNM9u7dy/3338+5555L3759AfXH6XPPPReqo3P99dfTunVr9u3bx6uvvorVao2bQn98hXBVkpOTufHGG5k6dSqpqakkJSVx++2306dPH84999zQuJycHJ588klGjBgBqMHd6enptGzZkvXr13PnnXcyfPjwkCgsKirikksuoaysjIULF1JUVBSqD5Seno5Wq+WTTz7h0KFDnH322VitVjZu3Mi9994bqm0X5Ntvv6Vt27a0a9fuuO9TcnI4pbLGapdgjJAqhEyhhquBw2FCKNhwVbbXkEgkNeHBBx/kggsu4PLLL+eyyy5jxIgRtGnTFoNBS5cuTUlNNVd5jszMTL7//nt8Ph+XXHIJZ555JlOmTMFms4UE1D333INWq6Vz586kp6ezZ88eAG666SYWL14csljMnTuXQYMGRYkgUIXQL7/8wrp16wA1G238+PHcf//9dOnShQkTJnDWWWfx4YcfRsQF/eUvf+GLL75g//79jBgxgpycHG666SaSkpK45557Tvg1jMdzzz3H5ZdfzpVXXsn5559Ps2bNeOeddyLGbN26NaIYYl5eHtdddx05OTnccccdXHfddbzxxhuh47/++iurVq1i/fr1tG/fnubNm4e2vXv3Amrcz+zZsznvvPPIzc3lrrvu4k9/+hMfffRRxLXfeOMNJk2aVGf3L6k9FHE8OZOnMEVFRSQnJ1P4zSCS0v8HTf5Nr/R7abLNzeI3S9EedpE0sxl84oKhRvjoIy5dPIxPO8C8P83jhu5+4CbgUuDjer4biaRx4HQ62bVrF23atKmWq6IhUVTkRFEUEhONAKGYoZPRXFIIwTnnnMNdd90VCo6W1D0bN25k4MCBbNu2LabolMSnsvd66Ps7UNKgtmi8FiEl0iJkDm+vARD010d1npeuMYlEUjV+v2Dv3kK2bctn1y47Xq/6maMoyknrsK0oCv/973/xer1VD5bUGnl5ebz66qtSBJ0i1HuMUP0RTMGvkD7vDmjDYB2h8GDpiIarUghJJJLYOBwedu4swOFQBUhyspGTpH2i6NatG926daufizdSwgs9Sho+jVgIRQZLh9LnPYG0+WCGbGFhHIuQTJ2XSCSRCCE4fLiUffuKEAJ0Og2tW9uw2U4td55E0phoxEKoPH3eRbhFKPCSBIVQWLB0iklahCQSSWx8Pj87dhRQVKSmUCcnG2nd2hazW7xEImk4NF4hpMSxCLkjLUJO+1FcWepjmTUmkUjiodEoaLUKigLZ2cmkp1tOWiyQRCI5fhqvECJOi41gTGFACBWUqMJHg0KiMRHpGpNIJEF8Pn/IBaYoal2gzEwfZnP8YoASiaRhUWtZY++88w5nnXVWbZ3uJBAMltZEWoSCWWMBl769LB+AZI0FjaJBWoQkEglAWZmbzZuP8scf9lBKvE6nkSJIIjnFqJEQevnll7nqqqsYM2YMq1atAuCrr76ie/fuXHfddfTr169OFlk3qEJIhHqNhVmEjM7QK1PgLADAprMCTiBYFl9ahCSSxogQgoMHS9i8+ShOp5eSEjcej7/qiRKJpEFSbSH0z3/+k9tvv53du3fzwQcfMHDgQKZNm8bYsWMZPXo0+/bt46WXXqrLtdYy6geXT6NHENZiw6uA0R0aZXep5dVTjMmUu8X0gKwPIZE0NtxuH9u2HQtlhdlsJjp3Tg81S5VIJKce1RZC8+fPZ/bs2fzyyy98+umnOBwOfvjhB7Zv384DDzxASkpKXa6z9gk0XXUHwqTKW2woYCoXQgVe1QIUGSidBsggSImkMZGf72DjxsMUF7vRaBRatUqmXbuURpEV1rp1a6ZPn17t8StWrEBRFOx2e8T+6667jmnTptXu4iSVMmvWLIYNG1bfy2jQVFsI7dmzh4EDBwLQv39/9Ho9jz32GAmnQAfo2AS6BaP68yOCpU0e9bEQ2P2lAKQkhHeel24xiaQx4fP52bevCJ9PYLHo6dw5nfT0hAaTFTZgwACmTJlSZ+f/+eefufnmm6s9vm/fvuTl5UVUVl67di2ffPIJd9xxR9T4N954A61Wy+TJk6OOLViwIG4He0VReO+99yL2vf322wwYMIDk5GSsVitnnXUWjz/+OPn5+dVef03Jz89n7NixJCUlYbPZuPHGGykpKal0zo4dOxgxYgTp6ekkJSUxatQoDh06FHOsy+WiW7duKIrCmjVrIo4tWbKEbt26YbFYaNWqFU899VTE8YkTJ/Lrr7/y7bffntA9ns5UWwi5XK6Ivh8Gg4HU1NQ6WdTJQU2fd2uCQkjdq3gUMAeEkNOJXaeOs1nTkO01JJLGiVarFkZs3txKTk4aJlPjSrhNT0/HYrFUPTCAwWCgWbNmEULxhRde4Oqrr8ZqtUaNnzt3Lvfddx9vvPEGTqfzuNf50EMPMXr0aM4++2w+/fRTNmzYwDPPPMPatWt57bXXjvu8VTF27Fg2btzIl19+yUcffcQ333xTqXAsLS3lkksuQVEUvvrqK77//nvcbjfDhg0LNcgN57777iMzMzNq/6effsrYsWO59dZb2bBhA//5z3947rnnmDlzZmiMwWBgzJgxPP/887Vzs6cjopooiiJuueUWcdddd4m77rpLGAwGMXHixNDz4NbQKSwsFIAo/L6zEJsRe4o/Ewghlr5eJPIfzxfObk4huu1UB+flibsvQfAo4p7P7xZCTBdCIIQYXX83IJE0QhwOh9i0aZNwOBwn5Xp+v1/s318kjhwpPaHztGrVSjz33HMR+7p27SoeeeSR0HNAzJ49WwwfPlyYzWbRvn178f7770fMWb9+vRgyZIhISEgQTZs2FePGjRNHjhwRQggxfvx4gVohNrTt2rUr5nrmz58vkpOTxYcffig6duwozGazuPLKK0VpaalYsGCBaNWqlbDZbOL2228XXq837n1Utebly5cLQBQUFAghhPB6vSI5OVl89NFHUWvauXOnMJvNwm63i3POOUcsWrQo5ppjAYh3331XCCHEqlWrBCCmT58ec2xwLbXNpk2bBCB+/vnn0L5PP/1UKIoi9u/fH3PO559/LjQajSgsLAzts9vtQlEU8eWXX0aM/eSTT0ROTo7YuHGjAMRvv/0WOnbttdeKq666KmL8888/L7KysoTf7w/t+/rrr4XBYBBlZWUncqsnhcre66Hv77DXrTaotkXo/PPPZ+vWrfz222/89ttv9O3bl507d4ae//bbb1EmuwZNoKCiW1EtQkEjkBojFCi2GNFwNbyqtHSNSST1ihDgLa2TzVVayLZNezi47xD7dufhLiuKHBNIla9NHnvsMUaNGsW6deu49NJLGTt2bMiVY7fbGThwIN27d+eXX37hs88+49ChQ4waNQqAGTNm0KdPHyZNmkReXh55eXlkZ2fHvVZZWRnPP/88ixcv5rPPPmPFihWMGDGCTz75hE8++YTXXnuNl19+mbfeeuu411yRdevWUVhYSK9evaKOzZ8/n8suu4zk5GTGjRvH3Llzq/uyRbBo0SKsVit/+ctfYh6P514D6NKlC1arNe42dOjQuHNXrlyJzWaLuLdBgwah0WhC2dUVcblcKIqC0WgM7TOZTGg0Gr777rvQvkOHDjFp0iRee+21mBa5ip4aALPZzL59+/jjjz9C+3r16oXX6427nsZOte27K1asqMNl1AeRMULm8BghS8A0GdVwdW9grnSNSST1iq8MlkS7WGoDI9ApfMe2CgNGlYCudmMjJ0yYwLXXXgvAtGnTeP755/npp58YMmQIM2fOpHv37hFBxvPmzSM7O5tt27bRsWNHDAYDFouFZs2aVXktj8fDSy+9RLt27QC46qqreO211zh06BBWq5XOnTtz4YUXsnz5ckaPHn1ca67IH3/8gVarpWnTphH7/X4/CxYs4IUXXgDgmmuu4e6772bXrl20adOmynsJ5/fff6dt27bo9TWv4/TJJ5/g8XjiHjebzXGPHTx4MOq+dDodqampHDx4MOacc889l4SEBO6//36mTZuGEIIHHngAn89HXl4eoJZpmDBhArfeeiu9evVi9+7dUecZPHgwd911FxMmTODCCy9k+/btPPPMMwDk5eXRunVrACwWC8nJyRHiSFJOjeoIFRUV8eWXX/Lxxx9z5MiRqic0aFSx41bUjI+IgormgCiKsAjZkMUUJRJJXRBejDYhIYGkpCQOHz4MqEHGy5cvj7BQ5OTkAGrAbTzCrRzhFg2LxRISQQAZGRm0bt06InYnIyMjdP3jWXNFHA4HRqMxKrj8yy+/pLS0lEsvvRSAtLQ0Lr74YubNm1fptWMhTsBS16pVK9q3bx93a9GixXGfOxbp6eksXbqUDz/8EKvVSnJyMna7nR49eqDRqF/LL7zwAsXFxTz44INxzzNp0iRuu+02Lr/8cgwGA+eeey7XXHMNQOg8QcxmM2VlZbV6H6cL1bYIrVmzhksvvTSkcBMTE1myZAmDBw+us8XVLYH0eUV9CSKyxsI6zwcbrsrO8xJJA0JrUS0ztYDP52fzliO4XeqPo+bNrTRrZo2fEaatftCwRqOJ+oKOZXmoaMVQFCUUNFtSUsKwYcP417/+FTWvefPmca8dbuUIt2jEulZl149HTeakpaVRVlaG2+3GYDCE9s+dO5f8/PyI9fn9ftatW8djjz2GRqMhKSmJ0tJS/H5/xJd7MDU/mJnWsWNHvvvuOzweT42tQl26dKnUWtK/f38+/fTTmMeaNWsWJQC9Xi/5+fmVWuguueQSduzYwdGjR9HpdNhsNpo1a0bbtm0BtVjxypUrI9xnoLq5xo4dyyuvvIKiKPzrX/9i2rRpHDx4kPT0dJYtWwYQOk+Q/Px80tPlj/hYVFsI3X///bRp04a3334bk8nEE088wW233cbvv/9el+urO4IxQsE6QsEerF4lovN80CIkO89LJA0IRak195RWB7YmgoICB23apGC1GqqeVE3S09NDrg5Qreq7du2q0Tl69OjB22+/TevWrdHpYn9kGwwGfD5fxL5WrVrVfMF1RLdu3QDYtGlT6PGxY8d4//33Wbx4MV26dAmN9fl8nHfeeXzxxRcMGTKETp064fV6WbNmDT169AiN+/XXXwFVAAGhzKj//Oc/3HnnnVFrsNvtceOETsQ11qdPH+x2O6tXr6Znz56AKmL8fj/nnHNO3HlB0tLSQnMOHz7Mn/70JwCef/55/u///i807sCBAwwePJg333wz6rxarTZktXrjjTfo06dPhOjZsWMHTqeT7t27V7mexki1hdDq1av54osvQv8Q582bR2pqKkVFRSQlJdXZAusO9VeaK+AaC1mEPIAl8EswLEZIusYkktMHp1P1hQfT4DMzE2ne3IpWW2vtFwEYOHAgCxYsYNiwYdhsNv7+97+j1dasAOPkyZOZPXs21157Lffddx+pqals376dxYsXM2fOHLRaLa1bt2bVqlXs3r0bq9VKampqlGukPklPT6dHjx589913ISH02muv0aRJE0aNGhVlfbv00kuZO3cuQ4YMoUuXLlxyySVMnDiRZ555hrZt27J161amTJnC6NGjQwLgnHPO4b777uPuu+9m//79jBgxgszMTLZv386sWbM477zzYgokODHRmJuby5AhQ5g0aRKzZs3C4/Fw2223cc0114RS3vfv389FF13Eq6++Su/evQE1SDw3N5f09HRWrlzJnXfeyV133UWnTmqEWsuWLSOuE3RdtmvXjqysLACOHj3KW2+9xYABA3A6ncyfP5+lS5fy9ddfR8z99ttvadu2bYRLVFJOtd8p+fn5oRcf1Aj8hIQEjh07VicLq3sCMUIBLWgIjxFKUF8Wf6GdwlCwdBIQzIiQrjGJ5FRECMGRI6Vs2nSEnTsL8PvVH0AajVLrIgjgwQcf5IILLuDyyy/nsssuY/jw4TX+MsrMzOT777/H5/NxySWXcOaZZzJlyhRsNltI7Nxzzz1otVo6d+5Meno6e/bsqfV7OVFuuukmFi1aFHo+b948RowYEdMFeeWVV/LBBx9w9KgajvDmm29ywQUXcMstt9ClSxfuuOMOrrjiCubMmRMx71//+hevv/46q1atYvDgwXTp0oWpU6dy1llnMX78+Dq7t0WLFpGTk8NFF13EpZdeynnnncd///vf0HGPx8PWrVsjYnS2bt3K8OHDyc3N5fHHH+ehhx7i6aefrvG1X3nlFXr16kW/fv3YuHEjK1asCImtIG+88QaTJk06/hs8zVFENSPMNBoNX331VUQRxb59+7JkyZIIgdTQO9AXFRWRnJxM4crmJNnyeL/NZoYbczg4rQCDD5KeSUI75Q94tC2Fk2/E1lQN2nM8tBeTLpiS6gZkh2mJ5GThdDpDmUQV04Wri8fj448/CrHb1YJ9iYkG2rVLQac7/VtkNAQcDgedOnXizTffpE+fPvW9nEbDxo0bGThwINu2bYuo9N1Qqey9Hvr+LiysVU9UjcqjXnTRRVGBf5dffjmKoiCEQFGUKD91gyXUa0wLQmAIjxFKUF+WguIj0BRM6DDpigMTbUgRJJGcWhQWOtm9247H40dRoEWLJDIyGk6LjMaA2Wzm1VdfDVl5JCeHvLw8Xn311VNCBNUX1RZCNQ3wa/ioyselaDGGaTdVCKm/EO1lqivMpklAtteQSE49/H7B/v1FHDqk9gw0mXS0bZuCxSJ/zNQHAwYMqO8lNDoGDRpU30to8FRbCL3yyivcc889Neo307ApryMUCpQGNX3eqn5IFjjtAKToE5GB0hLJqUlJiRuApk0TaNEisU5igSQSyalLtT8RHnvssSq76Z5aBIOltaFiigihGooC6bN2dyEANkMSsr2GRHJqINSGgIAaBN2mTQrt26fSsmWyFEESiSSKaluETqRqZ4MkGCOkaMotQj6BggJWtYBVgVcVfmp7Dekak0gaOh6Pj1277FgserKy1GBKk0nX6LrFSySS6lOjT4fTK7Aw2GtMG9ZeI3AoaBHyq6mONksTpGtMImnY2O1qQLTX66ekxE1GRgJ6vcwIk0gklVMjIdSxY8cqxVC87sMNj6BrTIPJE2yvEbg3qxY8Hgo0amyBLTEN6RqTSBomPp+fffuKOHJE/eFiNqsB0VIESSSS6lAjIfTYY4+dRil45cHSofYanoAQSgAKC8vbayRlAKsD86RFSCJpKJSWutm1yx6qFJ2RkUCLFkloNKeT9VoikdQlNRJC11xzDU2bNq2rtZxcQr3GwmKEPIFASguRnectqUjXmETSsPD5/Pz+ez5erx+9XkObNikkJRmrniiRSCRhVDuF4vSKD4JQrzE0YTFCgXu0ENF5Xm24KjvPSyQNCa1WQ1ZWEjabiS5d0qUIOk4WLFgQ0Yz00UcfDfUDqysmTJjA8OHD6/Qa4Sxbtozc3NxTp+DvacDRo0dp2rQp+/btq++lVEm1hdBplzVGDItQMFi6okXIlIy0CEkk9Y/d7qS42BV63qSJWbbJQC1UOGXKlFo51z333MOyZctq5VwNhfvuu4+//e1vUQ1vHQ4HqamppKWl4XK5ouYpisJ7770XtT+WkNu+fTs33HADWVlZGI1G2rRpw7XXXssvv/xSm7cSxYsvvkjr1q0xmUycc845/PTTT5WO93g8PP7447Rr1w6TyUTXrl357LPPIsa89NJLnHXWWSQlJZGUlESfPn349NNPI8bs2LGDESNGkJ6eTlJSEqNGjeLQoUOh42lpaVx//fU88sgjtXezdUS1hZDf7z993GJAeYyQBmO4RUjrVTtohHWeTzGbAWdgnrQISSQnm9JSN0ePlrFvXxE7dxbg9arvX0VRTkNrdf1itVpp0qRJfS+j1vjuu+/YsWMHV155ZdSxt99+my5dupCTkxNT8FSXX375hZ49e7Jt2zZefvllNm3axLvvvktOTg533333Cay+ct58802mTp3KI488wq+//krXrl0ZPHgwhw8fjjvnb3/7Gy+//DIvvPACmzZt4tZbb2XEiBH89ttvoTFZWVn885//ZPXq1fzyyy8MHDiQK664go0bNwJQWlrKJZdcgqIofPXVV3z//fe43W6GDRuG3+8PneeGG25g0aJFDT+JSjQyCgsLBSAKf0aIzYjrfWVizG9Okf94vigaVySEpVgdOHeuyJyK4FHE6gMfCrVGm0kI4a/H1UskjY+VK/eK8877r/j00x/Ezz//IfbtKxQ+36nxPmzVqpV47rnnIvZ17dpVPPLII6HngJg9e7YYPny4MJvNon379uL999+PmLN+/XoxZMgQkZCQIJo2bSrGjRsnjhw5IoQQYvz48QLV1x/adu3aFXdN8+fPF9nZ2cJsNovhw4eLp59+WiQnJ4eOP/LII6Jr164Rc+bOnSs6d+4sDAaDaNasmZg8eXLoWEFBgbjxxhtFWlqaSExMFBdeeKFYs2ZNpa/L+PHjxRVXXBF67nQ6xe233y7S09OF0WgU/fr1Ez/99FPoeH5+vhgzZoxIS0sTJpNJtG/fXsybN08IIYTL5RKTJ08WzZo1E0ajUbRs2VJMmzYtNHfy5MniqquuirmOAQMGiFmzZomXXnpJXHzxxVHHAfHuu+9Wun6/3y+6dOkievbsKXw+X9TYgoKCSl+LE6F3794R/y98Pp/IzMwUTz75ZNw5zZs3FzNnzozYN3LkSDF27NhKr5WSkiLmzJkjhBDi888/FxqNRhQWFoaO2+12oSiK+PLLLyPmtWnTJjSvOjgcDrFp0ybhcDiijoW+v8OuWxs0+jKrbjSYAq4xxaOASU2Zx24PixEK+szSAfnrUyI5GXi9fh5//GvOO28ee/cWotVqaNPGFsgKAyitp632wwQee+wxRo0axbp167j00ksZO3Zs6Fe03W5n4MCBdO/enV9++YXPPvuMQ4cOMWrUKABmzJhBnz59mDRpEnl5eeTl5ZGdnR3zOqtWreLGG2/ktttuY82aNVx44YX83//9X6Vre+mll5g8eTI333wz69ev54MPPqB9+/ah41dffTWHDx/m008/ZfXq1fTo0YOLLrqoRlaA++67j7fffptXXnmFX3/9lfbt2zN48ODQOR5++GE2bdrEp59+yubNm3nppZdIS1Ot888//zwffPABS5YsYevWrSxatIjWrVuHzv3tt9/Sq1evqGvu2LGDlStXMmrUKEaNGsW3337LH3/8Ue01B1mzZg0bN27k7rvvRqOJ/koNj7+qyLRp07BarZVue/bsiTnX7XazevXqiF5iGo2GQYMGsXLlyrjXdLlcUV3dzWYz3333XczxPp+PxYsXU1paSp8+fULnUBQFo7E8Ls9kMqHRaKLO07t3b7799tu462kINPpyq25FITUohLzlQshlP4oj0JfRZgr6jqVbTCI5GZSUuBk8eCE//LAXgMsv70hmZiIJCYbAiDLAWl+rQ62xUXtMmDCBa6+9FlC/HJ9//nl++uknhgwZwsyZM+nevTvTpk0LjZ83bx7Z2dls27aNjh07YjAYsFgsNGvWrNLrzJgxgyFDhnDfffcBam24H374ISpGJJz/+7//4+677+bOO+8M7Tv77LMB1e30008/cfjw4dCX4tNPP817773HW2+9xc0331zlvZeWlvLSSy+xYMEChg4dCsDs2bP58ssvmTt3Lvfeey979uyhe/fuIUETLnT27NlDhw4dOO+881AUhVatWkWc/48//iAzMzPquvPmzWPo0KGkpKQAMHjwYObPn8+jjz5a5ZrD+f333wHIycmp0TyAW2+9NSRo4xFr7aAGI/t8PjIyMiL2Z2RksGXLlrjnGzx4MM8++yznn38+7dq1Y9myZbzzzjtRgeTr16+nT58+OJ1OrFYr7777Lp07dwbg3HPPJSEhgfvvv59p06YhhOCBBx7A5/ORl5cXtf5wt1tDRFqEUCKDpU0eAOxFR0JjkoyOwCMZKC2RnAwSEvRkZyeRlGRk4cIRPP30Jad1baCzzjor9DghIYGkpKRQnMfatWtZvnx5hJUg+KW7Y8eOuOfs0qVLaHxQYGzevJlzzjknYlzwV34sDh8+zIEDB7joootiHl+7di0lJSU0adIkYn27du1ix44d7NmzJ2J/uJgLsmPHDjweD/369Qvt0+v19O7dm82bNwPw5z//mcWLF9OtWzfuu+8+fvjhh9DYCRMmsGbNGjp16sQdd9zBF198EXF+h8MRZQHx+Xy88sorjBs3LrRv3LhxLFiwICLGpTqIE0gkSk1NpX379pVuOl3t2itmzJhBhw4dyMnJwWAwcNttt3HDDTdEWbM6derEmjVrWLVqFX/+858ZP348mzZtAiA9PZ2lS5fy4YcfYrVaSU5Oxm6306NHj6jzmM1mysrKavUeaptGbxFyoUSmz5vVJ/aSI5ACyZjQao4FRkshJJHUFXa7E79fkJpqRlEUXnrpMux2J23apOB0OiuMtqBaZuoDS7VHajSaqC9Kj8cTNU6v10c8VxQl9IVcUlLCsGHD+Ne//hU1r3nz5nGv/cknn4SuZTabq73mcKqaV1JSQvPmzVmxYkXUMZvNhs1mY82aNaF9qampx7WOoUOH8scff/DJJ5/w5ZdfctFFFzF58mSefvppevTowa5du/j000/53//+x6hRoxg0aBBvvfUWoGYvFRQURJzv888/Z//+/YwePTpiv8/nY9myZVx88cUAJCYmUlhYGLUeu90eKi7csWNHALZs2UL37t1rdF/Tpk2LKQ7D2bRpEy1btozan5aWhlarjcjUAjh06FCllsH09HTee+89nE4nx44dIzMzkwceeIC2bdtGjDMYDCEXaM+ePfn555+ZMWMGL7/8MgCXXHIJO3bs4OjRo+h0Omw2G82aNYs6T35+PunpDfu7s9ELoWiLkGoeLChVxY9Nm4BsryGR1C1ff72b6657l169Mnn77VEoikJKipmUlHhfxAq17Z6qC9LT0yNcBUVFRezatatG5+jRowdvv/02rVu3jmsdMBgMUa6Nii4igNzcXFatWhWx78cff4x77cTERFq3bs2yZcu48MILY67t4MGD6HS6CHdVOOHxRLFo164dBoOB77//PrRmj8fDzz//HFESID09nfHjxzN+/Hj69+/Pvffey9NPPw1AUlISo0ePZvTo0Vx11VUMGTKE/Px8UlNT6d69e8iSEWTu3Llcc801PPTQQxH7//GPfzB37tyQEOrUqROrV69m/PjxoTE+n4+1a9dy0003AdCtWzc6d+7MM888w+jRo6MsIna7PW6c0Im4xgwGAz179mTZsmWhVH6/38+yZcu47bbbKj0nqDE9LVq0wOPx8Pbbb1e5Dr/fH7PEQDBW66uvvuLw4cP86U9/iji+YcMGBgwYUOV66hMphFAi0+fN6oeJ3WkHIEWXiOw8L5HUDW63j0cfXcE///kdQoDBoOXIkTKaNm34Iqc6DBw4kAULFjBs2DBsNht///vfo2rZVMXkyZOZPXs21157Lffddx+pqals376dxYsXM2fOHLRaLa1bt2bVqlXs3r0bq9VKampqzMDdO+64g379+vH0009zxRVX8Pnnn1caHwRqgcVbb72Vpk2bMnToUIqLi/n++++5/fbbGTRoEH369GH48OH8+9//pmPHjhw4cICPP/6YESNGxAxSrkhCQgJ//vOfuffee0lNTaVly5b8+9//pqysjBtvvBGAv//97/Ts2ZMuXbrgcrn46KOPyM3NBeDZZ5+lefPmdO/eHY1Gw9KlS2nWrFlIfAwePJhXXnkldL0jR47w4Ycf8sEHH3DGGWdErOX6669nxIgRIRE1depUbrzxRnJycrj44ospLS3lhRdeoKCgICSEFEVh/vz5DBo0iP79+/PQQw+Rk5NDSUkJH374IV988QVff/11zHtPTU09bisZwNSpUxk/fjy9evWid+/eTJ8+ndLSUm644YaIe2rRogVPPvkkoAbM79+/n27durF//34effRR/H5/KG4M4MEHH2To0KG0bNmS4uJiXn/9dVasWMHnn38eGjN//nxyc3NJT09n5cqV3Hnnndx111106tQpNKasrIzVq1dXafWqd2o1B+0UoGL6fE+/X0z/sETkP54vyi4oE+LiTUIIId64tKXgUcSAZ88SQvxJqOnzL9fn0iWS04otW46Inj1fFvCogEfFxInviaIiZ8yxlaXUNmQKCwvF6NGjRVJSksjOzhYLFiyImT5fMUU7OTlZzJ8/P/R827ZtYsSIEcJmswmz2SxycnLElClThN+vlhHYunWrOPfcc4XZbK4yfX7u3LkiKytLmM1mMWzYsGqlz8+aNUt06tRJ6PV60bx5c3H77beHjhUVFYnbb79dZGZmCr1eL7Kzs8XYsWPFnj174q6hYvq8w+EQt99+u0hLS4uZPv/EE0+I3NxcYTabRWpqqrjiiivEzp07hRBC/Pe//xXdunUTCQkJIikpSVx00UXi119/Dc09duyYMJlMYsuWLUIIIZ5++mlhs9mE2+2OWpfL5RI2m03MmDEjtG/RokWiZ8+eIjExUWRkZIhLL71UrF27Nmru1q1bxfXXXy8yMzOFwWAQrVq1Etdee23EWuqCF154QbRs2VIYDAbRu3dv8eOPP0Ycv+CCC8T48eNDz1esWCFyc3OF0WgUTZo0Edddd53Yv39/xJyJEyeKVq1aCYPBINLT08VFF10kvvjii4gx999/v8jIyBB6vV506NBBPPPMM6F/j0Fef/110alTpxrdT32kzytCnHYloyulqKiI5ORkCn+GJCuc2cnP5PfLGL3ejflzM6a0nfBeZ14a3IS/9M1nRMYFvHOrB/gBeBsYWc93IJGc2gghmDPnV6ZM+ZyyMg8pKSZmzx7GlVd2jjvH6XSya9cu2rRpExX4KpFUxb333ktRUVEovkVycjj33HO54447GDNmTLXnVPZeD31/FxaSlJRUa+ts3FljQsGtKKE6QngAi/rY7i8FwGZpgmyvIZHUHqWlHv7v/76lrMzDwIFtWLfuz5WKIInkRHnooYdo1apVjTPCJMfP0aNHGTlyZKgsREOmkccIaXBDZIyQRQG/nwJFDQpLSUxHBktLJLWH1Wpg4cIRrFq1n6lT+5zWafGShoHNZuOvf/1rfS+jUZGWlhYRd9SQkUIIyi1CXlQhVFxc3nA1KQ2wB8ZLi5BEUlOcTi9//esycnPTmDSpJwD9+7eif//orCaJRCI52TRyIaTFRQWLUIImsuFqYrBmiAZIqYc1SiSnLhs2HGbMmLdZv/4wCQl6hg/PIT399MgIk0gkpweNO0Yo5BoLa7EREEIhi5ApaLZPBWqW9iqRNFaEELzwwip69fov69cfJj3dwuLFV0kRJJFIGhyN3CKkCiFzuGssQQuFhaGGqzZTMKlOusUkkupw8GAJN9zwPp99th2AoUPbM3/+FWRk1FdvMIlEIolPoxZCAm1ksLRHgQR9hEUosvO8RCKpjOJiF927v8zBgyWYTDqeeupiJk8+G0WRAdESiaRh0qiFkBcDggrB0lZ9BdeYOzBaZoxJJFWRmGjkppu688EH23j99ZF06dK0vpckkUgkldKoY4TcGlXtRARLW/WIcIuQWXael0gq47ff8ti69Wjo+d//fgE//XSTFEESieSUoHELISUohMItQgZK7IfxBV4ZmynY4VoKIYkkHL9f8NRT33POOXMYM+Yd3G61T59er8VobNTG5gbNe++9R/v27dFqtRFNTeuSCRMmhBqDxqN169ZMnz79pKwH4OGHH+bmm28+adeTwKxZsxg2bFh9LyOKRi2EXAEhZIqwCJkoKDoEgEFoMesKAqOla0wiCbJvXxEXX/wa9933PzweP61aJeNweOp7WY2WAQMGVFvU3HLLLVx11VXs3buXJ554om4X1kA5ePAgM2bMiOo+D7By5Uq0Wi2XXXZZ1LEVK1agKAp2uz3qWCwht3z5ci699FKaNGmCxWKhc+fO3H333ezfv7+2biUKp9PJ5MmTadKkCVarlSuvvJJDhw5VOqekpITbbruNrKwszGYznTt3ZtasWaHju3fvRlGUmNvSpUsBWLt2Lddeey3Z2dmYzWZyc3OZMWNGxHUmTpzIr7/+yrffflv7N34CNGoh5FaMaP0CXTAxzAtYddhLVDO/TTGhKMcCB6VFSCIBWLp0I2ed9RJffbULi0XP7NnDePvtUSQnyx5gDZ2SkhIOHz7M4MGDyczMJDExsb6XVC/MmTOHvn370qpVdFHPuXPncvvtt/PNN99w4MCB477Gyy+/zKBBg2jWrBlvv/02mzZtYtasWRQWFvLMM8+cyPIr5a677uLDDz9k6dKlfP311xw4cICRIyvvkTl16lQ+++wzFi5cyObNm5kyZQq33XYbH3zwAQDZ2dnk5eVFbI899hhWq5WhQ4cCsHr1apo2bcrChQvZuHEjDz30EA8++CAzZ84MXcdgMDBmzBief/75Orv/46JWW7ieAoR3n/99+3nC6vSL/MfzRf7j+cKv9wuxW4gV158veBTR6YkMIcSZQu08/3k9r1wiqV9KS93ihhveC3WL79Xrv2Lr1qMn5dqnavf5Vq1aieeeey5iX6zu87NnzxbDhw8XZrNZtG/fXrz//vsRc9avXy+GDBkiEhISRNOmTcW4cePEkSNHhBBqJ3cgYovVfX758uVR45YvXy6EEOKtt94SnTt3DnVNf/rppyPmOp1Ocd9994msrCxhMBhEu3btxJw5c4QQQni9XjFx4kTRunVrYTKZRMeOHcX06dMj5lfsNl+d1+qPP/4Qf/rTn0RCQoJITEwUV199tTh48GDo+Jo1a8SAAQOE1WoViYmJokePHuLnn38WQgixe/ducfnllwubzSYsFovo3Lmz+Pjjj0Nzu3TpImbOnBm1huLiYmG1WsWWLVvE6NGjxT/+8Y+Yr2FBQUGl69+7d68wGAxiypQpMe811vzawG63C71eL5YuXRrat3nzZgGIlStXxp3XpUsX8fjjj0fs69Gjh3jooYfizunWrZuYOHFipev5y1/+Ii688MKIfV9//bUwGAyirKws5pz66D7f6C1CofggCLTYALvDDoBNZwWCQaDSIiRp3BgMWjZvPoqiwEMP9eeHHybSsWOT+lmMEODz1c8mRNXrqyGPPfYYo0aNYt26dVx66aWMHTuW/Px8AOx2OwMHDqR79+788ssvfPbZZxw6dIhRo0YBMGPGDPr06cOkSZNCv9azs7OjrtG3b1+2bt0KwNtvv01eXh59+/Zl9erVjBo1imuuuYb169fz6KOP8vDDD7NgwYLQ3Ouvv5433niD559/ns2bN/Pyyy9jtap1ofx+P1lZWSxdupRNmzbx97//nb/+9a8sWbLkuF8Pv9/PFVdcQX5+Pl9//TVffvklO3fuZPTo0aExY8eOJSsri59//pnVq1fzwAMPoNfrAZg8eTIul4tvvvmG9evX869//Su03vz8fDZt2kSvXr2irrtkyRJycnLo1KkT48aNY968eYjj+P+9dOlS3G533F5bNpst7tyhQ4ditVrjbl26dIk7d/Xq1Xg8HgYNGhTal5OTQ8uWLVm5cmXceX379uWDDz5g//79CCFYvnw527Zt45JLLol7nTVr1nDjjTfGPSdAYWEhqampEft69eqF1+tl1apVlc49mTTqiEaXYg7FB+EFRShggQJ3IQA2YzKwJzBACiFJ48Pr9eP3CwwGLTqdhoULR7B/fzHnn1/PfcL8fvjut/q59nndQVu7VeYnTJgQ6tI9bdo0nn/+eX766SeGDBnCzJkz6d69O9OmTQuNnzdvHtnZ2Wzbto2OHTtiMBiwWCw0a9Ys7jUMBgNNm6qZfKmpqaGxzz77LBdddBEPP/wwAB07dmTTpk089dRTTJgwgW3btrFkyRK+/PLL0Bds27ZtQ+fV6/U89thjoedt2rRh5cqVLFmyJCTWasqyZctYv349u3btCom6V199lS5duvDzzz9z9tlns2fPHu69915ycnIA6NChQ2j+nj17uPLKKznzzDOj1rtnzx6EEGRmZkZdd+7cuYwbNw6AIUOGUFhYyNdff82AAQNqtP7ff/+dpKQkmjdvXqN5oLrtHA5H3ONBsReLgwcPYjAYooRWRkYGBw8ejDvvhRde4OabbyYrKwudTodGo2H27Nmcf/75McfPnTuX3Nxc+vbtG/ecP/zwA2+++SYff/xxxH6LxUJycjJ//PFH3LknG2kRCs8YAzCD3VcKQIolEQgGgMpgaUnjYteuAi64YAF/+9tXoX3t2qXWvwg6DTnrrLNCjxMSEkhKSuLw4cOAGoS6fPnyCKtA8Mt/x44dcc/ZpUuX0PhgHEcsNm/eTL9+/SL29evXj99//x2fz8eaNWvQarVccMEFcc/x4osv0rNnT9LT07Farfz3v/9lz549MccuWrQo4l5iBc5u3ryZ7OzsCMtW586dsdlsbN68GVDjWm666SYGDRrEP//5z4jX4o477uD//u//6NevH4888gjr1q0LHQuKDJMpMqZt69at/PTTTyFBqtPpGD16NHPnzo173/EQQhx3EdEWLVrQvn37uFusuKYT5YUXXuDHH3/kgw8+YPXq1TzzzDNMnjyZ//3vf1FjHQ4Hr7/+eqXWoA0bNnDFFVfwyCOPxLQqmc1mysrKavUeToQGYRF68cUXeeqppzh48CBdu3blhRdeoHfv3lXOW7x4Mddeey1XXHEF7733Xo2v61YMkTWEDE7QmCjwq0LIZg32RbICMhBU0jgQQrBw4TomT/6E4mI3mzYd4b77+pGWZql68slCo1EtM/V17WoP1US5Vjye6Oy6ir/yFUXB7/cDaoDzsGHD+Ne//hU1rzKLwyeffBK6ltlsrvaaK1LV3MWLF3PPPffwzDPP0KdPHxITE3nqqafiuj7+9Kc/cc4554Set2jR4rjW9eijjzJmzBg+/vhjPv30Ux555BEWL17MiBEjuOmmmxg8eDAff/wxX3zxBU8++STPPPMMt99+O2lp6o/agoIC0tPLLf1z587F6/VGWIqEEBiNRmbOnElycjJJSUmA6vKpaHWx2+0kJycDqlWtsLCQvLy8GluFhg4dWmlWVatWrdi4cWPMY82aNcPtdmO32yPWd+jQobjWQofDwV//+lf+v737DmvqeuMA/k0CCWFjAQFFVBBwoThAHHVUheLC2h+IoOKsilVrW0drxVG31lVHRYaDqrWto4qoVamzoiiKC1RA1AJq2SIkJO/vD+TWmICiQICcz/Pkecy559x7bq6QlzP37dvHzZRzcnJCXFwcVq5cqdDNBgC//vorCgoKMGLECJXnu3XrFj766COMHz8ec+bMUZknMzNT4bNXN7UHQnv27MH06dOxefNmuLq6Ys2aNXB3d0dCQgLXjKtKSkoKvvrqK3Tr1u2dry3h6UBH9sqGq6IigETIRiEAwMSg9BdAzXlgDFOVsrMLMXHiYezefQMA0KWLNXbu/KRmBUEAwONVevdUVTAzM0NaWhr3Pjc3F8nJyRU6R7t27fDbb7+hcePG0NJS/StbKBRCJpMppL1ty0Hz5s1x7tw5hbRz587B3t4eAoEArVu3hlwux19//aX0pViat3Pnzpg0aRKXVl5LlYGBwRtnqzVv3hwPHz7Ew4cPuVahW7duITs7Gy1atODy2dvbw97eHl988QV8fX0RFhaGwYMHAyiZ6TRhwgRMmDABs2fPRnBwMD7//HPY2trC0NAQt27dgr29PQCguLgY27dvx6pVq5RaMLy8vLBr1y5MmDABzZo1A5/PR2xsrMLnm5SUhJycHO58n376KWbNmoXly5dj9erVSvf3eqDyqvfpGmvfvj20tbVx4sQJDBkyBEBJS1dqairc3NxUlpFKpZBKpeC/FuALBAIuGH9VSEgIBg4cqDKQuXnzJnr16oWRI0di0aJFKq93//59FBYWwtlZTX/IqFKpQ6/fgYuLCwUGBnLvZTIZWVlZ0ZIlS8osU1xcTJ07d6atW7e+1WyEV706a+xw6kTq9EBCmQsyKXtKNpHZE6L8fBrhBcI80LJTw6hkxljHd79BhqkloqOTydr6BwLmkUAwnxYu/IukUpm6q0VEtXfW2KxZs8jCwoJOnz5N169fJy8vL9LX11eaNbZv3z6FckZGRhQWFkZERI8fPyYzMzP69NNPKSYmhu7du0dRUVEUEBBAxcXFREQ0btw46tixIyUnJ9PTp09JJlP93LKyshRmixERxcbGEp/PpwULFlBCQgKFh4eTWCzmrk9EFBAQQNbW1rRv3z5KSkqiU6dO0Z49e4iIaO3atWRoaEhRUVGUkJBAc+bMIUNDQ2rTpg1XvqKzxuRyObVt25a6detGsbGxdPHiRWrfvj11796diIgKCgooMDCQTp06RSkpKXT27FmytbWlGTNmEBHR1KlTKSoqipKSkig2NpZcXV3J29ubu9Ynn3xCX375Jfd+3759JBQKKTs7W6leM2bMoA4dOnDvx48fT40bN6YDBw5QUlIS/fXXX9SpUyfq1KkTyeVyLt+GDRuIx+PR6NGjKTo6mqvn+PHjafr06eV+Fu9jwoQJ1KhRIzp58iRdvnyZ3NzcyM3NTSGPg4MD/f7779z77t27U8uWLenUqVOUlJREYWFhpKOjQxs3blQod/fuXeLxeHTkyBGl68bHx5OZmRn5+/tTWloa93ry5IlCvrCwMGratGmZ9VfHrDG1BkJFRUUkEAiUfgmMGDGCBg4cWGa5uXPnkpeXFxG9+QessLCQcnJyuNfDhw+5QGjfoynU815JIJQzKYfI+hHR48c0wLckENpyeQSVfESe73+zDFODZWe/ICOjJQTMI1vbtfT33w/VXSUFtTUQysnJIR8fHzI0NCRra2sKDw9XOX2+vECIiCgxMZEGDx5MxsbGJBaLydHRkaZNm8Z98SYkJFCnTp1ILBaXOX2eSHUgRPTf9HltbW1q1KgRrVixQuH4ixcv6IsvviBLS0sSCoVkZ2dHoaGhRFTyOzYgIICMjIzI2NiYJk6cSLNmzXqvQIio/OnzRUVFNHToULK2tiahUEhWVlY0efJk7v/H5MmTydbWlkQiEZmZmdHw4cPp2bP/lnqIjIykBg0acAFj//79ydNT9e/5ixcvEgC6du0a91kEBQWRo6MjicViatKkCY0fP55bzuBVx48fJ3d3dzIxMSEdHR1ydHSkr776iv75559yP4v38eLFC5o0aRKZmJiQrq4uDR48mNLS0hTyAFD4/5WWlkYBAQFkZWVFOjo65ODgQKtWrVII7IiIZs+eTdbW1ioD7aCgIKXlGQCQjY2NQr6+ffuW29ChcYHQ48ePCQCdP39eIf3rr78mFxcXlWXOnDlDDRo0UFhDo7wfsLIeTs4l0J7HX5PHnaKSQGhcDlGzZKKbN6nbqJJA6JcbpS1CIyvlfhmmJtu2LY5Gj95PubmF6q6KktoaCDE1k1wup44dO9LPP/+s7qpolBs3bpC5ubnKlrdSbB2hN8jLy8Pw4cMRHBzMDXh7k9mzZyMnJ4d7PXz4kDsm4YkUt9fQKQays5HFbbjKdp5n6iYiQnBwLP78M4lLGzGiDUJCBsHAQKTGmjFM1ePxeNiyZQuKi4vfnJmpNGlpadi+fTs3qLymUOtgaVNTUwgEAqV9UMoa4X7//n2kpKQobNpWOphLS0sLCQkJsLW1VSgjEokgEqn+xV70+vR5sQzIyeF2njfWYTvPM3XPs2cFGDfuD+zffweWlvq4eXMSTEzefVYRw9RGbdu2Rdu2bdVdDY2iarB9TaDWFiGhUIj27dvjxIkTXJpcLseJEydUjnB3dHREfHw84uLiuNfAgQPRs2dPxMXFqVxNtTwSnhA6Lyda8Ip5JYFQdjayXn4nmHA7z7MWIaZuOHbsPpycNmH//jvQ1uZj+nQ3tkcYwzAaTe3T56dPn46RI0eiQ4cOcHFxwZo1a/D8+XOMGjUKQMnS7g0aNMCSJUugo6ODVq1aKZQvnYL4evrbKFlH6NUWITmkWf/iufDluXVyX+ZkLUJM7VZYWIzZs//EmjUla7s0b26KiIhP4Oxc8ZVvGYZh6hK1B0I+Pj54+vQp5s6di/T0dLRt2xZRUVGoX78+gJLl0F9f36CySHhC6Lxc24xXzAN0Cdk5/y1DbqST9fJfLBBiaq+cnEJ06xaG+PiSlYonTeqAFSv6Qle37PVIGIZhNIXaAyEAmDx5MiZPnqzyWHR0dLllX90YsKKKeCLovNoiZETIzn0C6AAGJIQWv3TDVdY1xtRehoYitGpljvT0fISGDkL//vbqrhLDMEyNUSMCIXVR2GJDygN0ecjOfwboAMY8HQCsa4ypndLT86GtzccHH+iCx+Nh48Z+KCoqRv36+uquGsMwTI1Sq6bPVzYJT1txiw1dHrIKMgEAJtqls2i0ANSsqX4MU54//khA69abMGbMQW6fK2NjHRYEMQzDqKDRgVDR64Ol9fjILswGABiLSmfSmAJ4t12EGaY6FRRIMWnSYQwcuBvPnhUgOTkbWVmF6q4WwzBMjabRgZCEJ1RcUFGfjyxpSXeYibg0EGLdYkzNd+VKGtq334JNmy4DAKZP74SYmLGoV4+tD8RUrfDwcJUbiH744Yf4+eefq79CGmzo0KFYtWqVuqtR62h4IKT9WouQANnSkrWDjHVLF2FkgRBTc8nlhOXLz6FTp624c+cZLC31ceyYP1atcodIpNFDADVKjx49MG3aNHVXg3Pw4EFkZGRg6NChSseWLFkCgUCAFStWKB2bN2+eykUOU1JSwOPxEBcXx6UREbZs2QJXV1fo6+vD2NgYHTp0wJo1a1BQUFCZt6MgNTUV/fr1g66uLszNzfH111+/cYXqK1euoE+fPjA2NsYHH3yA8ePHIz8/XyEPj8dTeu3evZs7Hh0drTJPevp/M53nzJmDRYsWIScnp3Jvuo7T+EBIYfq8njayqOQHyES/dGoxmzHG1Fz5+RJs3HgJUqkcgwc7Ij5+Ivr0sX1zQYapQuvWrcOoUaNULn0SGhqKGTNmIDQ09L2uMXz4cEybNg2DBg3CqVOnEBcXh++++w4HDhzAsWPH3uvcZZHJZOjXrx8kEgnOnz+Pbdu2ITw8HHPnzi2zzD///IPevXvDzs4OFy9eRFRUFG7evImAgAClvGFhYUhLS+NeXl5eSnkSEhIU8pibm3PHWrVqBVtbW+zcubMybldzVOrOZbUAt2nbJZBP7hnaG5FLmQsyqbBNIdGeR/TZIAFhHmjeERcq2XA1UN1VZhglr+4KffbsAwoOjlXaKbouqa2brr6+ozoRqdx9Pjg4mLy8vEgsFpOdnR0dOHBAoUx8fDx5eHiQnp4emZubk7+/v8LG03htU+mydp9PSUmh/v37k7GxMenq6lKLFi3o8OHD3PEDBw6QnZ0diUQi6tGjB4WHhxMAysrK4vKEhYWRtbU1icVi8vLyopUrV5KRkRF3/MmTJ8Tj8ejGjRtK14+OjqYGDRqQRCIhKysrOnfunMLxoKAghV3rSyUnJxMAunr1KhER7dmzhwDQ/v37lfLK5fJyN/V8H5GRkcTn8yk9PZ1L27RpExkaGlJRUZHKMj/99BOZm5sr7Nh+/fp1AkB3797l0gDQvn37yrz2qVOnlJ6FKvPnz6euXbu+3Q3VQGzT1WpW0jVW8m9eMQ8QAVnaJXtuGHMTbFiLEFNz5OUVYdSoA9iyJZZL69KlEcaObQceT3MG9RMRnkueq+VFL2fiVab58+fD29sb169fh6enJ/z8/JCZWTKDNTs7G7169YKzszMuX76MqKgoZGRkwNvbGwCwdu1auLm5Ydy4cVwrQVnbDQUGBqKoqAinT59GfHw8li1bBn39kl92ycnJ+PTTT+Hl5YVr167hs88+w7fffqtQ/uLFixgzZgwmT56MuLg49OzZE99//71CnrNnz0JXVxfNmzdXun5ISAh8fX2hra0NX19fhISEvNPnFRERAQcHBwwaNEjpGI/HK3dTT319/XJfEyZMKLPshQsX0Lp1a27BXwBwd3dHbm4ubt68qbJMUVERhEKhQuuYWFwydu/s2bMKeQMDA2FqagoXFxeEhoaq/L/Wtm1bWFpaok+fPjh37pzScRcXF8TExKCoqKjM+2AUafQgAglPS3FBRZ6U23DVRP/lJmRsjBBTQ/z99yP4+f2OpKQs/PrrLfzvfy01djB0gbQA+kvUsxxA/ux86An1KvWcAQEB8PX1BQAsXrwY69atQ0xMDDw8PPDjjz/C2dkZixcv5vKHhobC2toaiYmJsLe3h1AohK6ursrNql+VmpqKIUOGoHXr1gCApk2bcsd++uknODg4cGN3HBwccOPGDSxatIjLs3btWnh4eGDGjBkAAHt7e5w/fx5RUVFcngcPHqB+/fpK3WK5ubn49ddfceHCBQCAv78/unXrhrVr13LB2Nu6e/cuHBwcKlSm1KvjjFQxNDQs81h6erpCEASAe//qWJ1X9erVC9OnT8eKFSswdepUPH/+HLNmzQJQsht7qQULFqBXr17Q1dXFsWPHMGnSJOTn52PKlCkAAEtLS2zevBkdOnRAUVERtm7dih49euDixYto164ddx4rKytIJBKkp6fDxsam3HtlSmh4IPRaixD+C4SMxaXTjlkgxKhXcbEcixefwYIFf0EmIzRqZIQdOwZrbBBUFzk5OXH/1tPTg6GhIZ48KdkS5dq1azh16pTKYOH+/fuwt1e9UnjLli3x4MEDAEC3bt1w5MgRTJkyBRMnTsSxY8fQu3dvDBkyhLt2QkICOnbsqHAOFxcXhfe3b9/G4MGDFdLc3NwUAqEXL15AR0d5I99du3bB1tYWbdq0AVDSsmFjY4M9e/ZgzJgxqj+YMrxPq5ydnd07l30XLVu2xLZt2zB9+nTMnj0bAoEAU6ZMUQoWv/vuO+7fzs7OeP78OVasWMEFQg4ODgrBX+fOnXH//n2sXr0aO3bs4NJLW5uqcsB4XaPRgZDSOkLSArbzPFOjJCdnwd9/H86ffwgA8PVthY0b+8HYWLN3jNfV1kX+7Pw3Z6yia78tPp+v9KUtlUqV8mlrK+77xuPxIJfLAQD5+fkYMGAAli1bplTO0rLsTXMjIyO5a5V+OY4dOxbu7u44fPgwjh07hiVLlmDVqlX4/PPP3/qe3sTU1BRZWVlK6SEhIbh58ya0tP772pHL5QgNDeUCIUNDQ5UznrKzswGA6/Kyt7fHnTt33ql+b2p98vf3x+bNm1Ues7CwQExMjEJaRkYGd6wsw4YNw7Bhw5CRkQE9PT3weDz88MMPCi1yr3N1dcXChQtRVFQEkUikMo+Li4tS91ppl6qZGfsj/m1pdCBU0jVW8m9eMQ+Q5vzXIsR2nmfULDu7EO3bb0FWViEMDITYtKkf/Pyc3lxQA/B4vErvnqoKZmZmCt0fubm5SE5OrtA52rVrh99++w2NGzdWCCJeJRQKIZPJFNLK6haxtrbGhAkTMGHCBMyePRvBwcH4/PPP4eDggMjISIW8ly5dUnjfvHlzXLx4USHt77//Vnjv7OyM9PR0ZGVlwcTEBAAQHx+Py5cvIzo6GvXq1ePyZmZmokePHrhz5w4cHR3h4OCAR48eISMjQ6EL6sqVK9DR0UGjRo0AlAQWQ4cOxYEDB5TGCRERcnNzyxwn9D5dY25ubli0aBGePHnCzdY6fvw4DA0N0aJFi3LPC/zXjRYaGgodHR306dOnzLxxcXEwMTEpMwgqzfN6MHzjxg00bNgQpqbsj/i3VqlDr2uBV2eNtStMpjursihzQSZJ60tJHraPtL4DYR7oYQ6PSmaNpam7yowGCwo6RV26hFBSUqa6q6JWtXXW2KxZs8jCwoJOnz5N169fJy8vL9LX11eaNfb6bCEjIyMKCwsjIqLHjx+TmZkZffrppxQTE0P37t2jqKgoCggIoOLiYiIiGjduHHXs2JGSk5Pp6dOnCjOUXjV16lSKioqipKQkio2NJVdXV/L29iYioqSkJNLW1qYZM2ZQQkIC7dmzhxo2bEgAuFlYFy5cID6fTytWrKDExERav349GRsbK8waKy4uJjMzM/rjjz8Uruvq6qqyTi4uLvTVV18REZFUKqWWLVtSz5496dy5c3T//n3au3cvWVpa0syZM7kycrmcfHx8SCwW06JFi+jSpUuUkpJCf/zxB/Xq1avc2Vfvo7i4mFq1akV9+/aluLg4ioqKIjMzM5o9ezaX5+LFi+Tg4ECPHj3i0tavX0+xsbGUkJBAP/74I4nFYlq7di13/ODBgxQcHEzx8fF09+5d2rhxI+nq6tLcuXO5PKtXr6b9+/fT3bt3KT4+nqZOnUp8Pp/+/PNPhTqOHDmSRo8eXSX3Xx3UMWtMowOhVkUPKWVZJmUuyKTiesWUv2EjYV5JIJRXBCr5eCTqrjKjQf76K4Vu3XrCvZdKZSSVqv5S0yS1NRDKyckhHx8fMjQ0JGtrawoPD1c5fb68QIiIKDExkQYPHkzGxsYkFovJ0dGRpk2bxi2ZkJCQQJ06dSKxWFzu9PnJkyeTra0tiUQiMjMzo+HDh9OzZ8+4469Pn9+0aRMBUPjcQ0JCqGHDhiQWi2nAgAFK0+eJiGbMmEFDhw4lIqKioiL64IMPaPny5SrrtGzZMjI3NyeJpOR37ePHj2nkyJHUqFEjEovF1KJFC1q6dCl3vJRMJqNNmzZRx44dSVdXlwwNDal9+/a0du1aKigoUHmtypCSkkIff/wxicViMjU1pS+//JKkUil3vHSa+6vPYPjw4VSvXj0SCoXk5ORE27dvVzjnkSNHqG3btqSvr096enrUpk0b2rx5s0JAu2zZMrK1tSUdHR2qV68e9ejRg06ePKlwnhcvXpCRkRFduHCham6+GqgjEOIRVcFc0BqstMk05xLQoU06Tq8QQiQDjH7Qwz+zFsC6cBG0iAdJEIHHMwag3NfNMJVNKpVh3rxoLFlyFm3aWODvv8ewlaFfUVhYiOTkZDRp0kTlQFymaixatAibN2/Gw4cPK1QuPT0dLVu2xJUrV9jMpWq0adMm7Nu3r8oWlKwO5f2sc9/fOTnldmFWlEb/ppWSFkSl3er8ImTnPQG0AWO+Nng8Cdj4IKY6JCb+Cz+/33H58j8AAGdnCxQXy1HO0ACGqRIbN25Ex44d8cEHH+DcuXNYsWIFJk+eXOHzWFhYICQkBKmpqSwQqkba2tpYv369uqtR62h0IASZACULsQI8LQmynv8LGAPGWkIAErAZY0xVIiJs3XoF06YdRUGBFCYmOtiyZQA+/fTNgy4ZpircvXsX33//PTIzM9GoUSN8+eWXmD179judS9X2EEzVGjt2rLqrUCtpdCDEkwlQMm8egLYE2QWZgDFgIiydyspahJiqkZdXhBEj9mP//pIpwL16NcG2bV5o2LDymnsZpqJWr16N1atXq7saDFOtNHqLDZ6sJA4kOQBtCbKKsgEAxuLS+JAFQkzVEIu18eTJc2hr87FiRR8cPz6cBUEMwzBqoNEtQnyZoOQfMoAnliJbUrJ2kIlu6cfCusaYylNUVNL6KBJpQUuLj507ByM7uxDOzmUviscwDMNULY1tESIAgtJAqJgH6BQju7hkpVpj3dLNK1mLEFM5bt58AheXrfjmmxNcWpMmJiwIYhiGUTONDYSKIeC21+AVAxDLkEUle7OY6JeuKMBahJj3Q0RYv/4iOnQIxvXrGdi5Mx5ZWS/UXS2GYRjmJY3tGiviibjtNVDMA8QyZKMIAGCsx3aeZ95feno+Ro8+gCNH7gEAPDzsEBY2CCYmbLNUhmGYmkJjAyHJKxuu8qUAxHJkaZVsUGiiK3mZiwVCzLs5dCgRo0cfwNOnBRCJBFi5si8CAzuCx+O9uTDDMAxTbTS2a0zK04aodMNVKQ8QFv+34aru85e5WNcYU3FZWS/g7/87nj4tgJNTfcTGjsfkyS4sCGKYavbhhx/i559/Vnc1NMrQoUOxatUqdVejQjQ2ECqCCDovW4RQjJLp8y8DIROx9GUu1iLEVJyJiRgbN/bD9OmdEBMzFi1bmqu7Skwd16NHD0ybNk3d1ahRDh48iIyMDAwdOlTp2JIlSyAQCLBixQqlY/PmzUPbtm2V0lNSUsDj8RR2rycibNmyBa6urtDX14exsTE6dOiANWvWoKCgoDJvR0Fqair69esHXV1dmJub4+uvv0ZxcXG5ZRITEzFo0CCYmprC0NAQXbt2xalTp7jj4eHh4PF4Kl9PnjxROt+5c+egpaWl9FnNmTMHixYtQk5OTqXca3XQ2EBIyhNygRCvmAdoSf9rEdIBAB0AeuqqHlOLyOWEFSvO4ejRe1zasGGtsWqVO9svjKnRZDIZ5HK5uqsBoPLrsm7dOowaNQp8vvLXXGhoKGbMmIHQ0ND3usbw4cMxbdo0DBo0CKdOnUJcXBy+++47HDhwoMr2+5LJZOjXrx8kEgnOnz+Pbdu2ITw8HHPnzi23XP/+/VFcXIyTJ08iNjYWbdq0Qf/+/ZGeng4A8PHxQVpamsLL3d0d3bt3h7m54h9z2dnZGDFiBD766COl67Rq1Qq2trbYuXNn5d10VavULVxrgdLda/+OcyD/K4WUuSCT8vzyiEYcI4PZJTvPJzwDETVUd1WZWuDhwxzq1WsbAfPIwmIlZWXVrt3Ra4vauvu8jY0NrV69WiFN1e7zwcHB5OXlRWKxmOzs7OjAgQMKZeLj48nDw4P09PTI3Nyc/P396enTp0RENHLkSELJiiDcq6zd58PCwsjIyIgOHDhAzZs3J4FAQMnJyWRjY0MLFy6k4cOHk56eHjVq1IgOHDhAT548oYEDB5Kenh61bt2aLl26xJ0rJSWF+vfvT8bGxqSrq0stWrSgw4cPE9F/O7AfOnSIWrduTSKRiFxdXSk+Pv6NdcnMzKThw4eTsbExicVi8vDwoMTERKVy+/btIzs7OxKJRNS3b19KTU3l8jx58oR4PB7duHFD6TOIjo6mBg0akEQiISsrKzp37pzC8aCgIGrTpo1SueTkZAJAV69eJSKiPXv2EADav3+/Ul65XE7Z2dkqn8H7ioyMJD6fT+np6Vzapk2byNDQkIqKilSWefr0KQGg06dPc2m5ubkEgI4fP66yzJMnT0hbW5u2b9+udMzHx4fmzJlT5mc1f/586tq1awXvrIQ6dp/X2BahVwdLQwrIeIXIe7nJpYkOwLrFmDfZu/cmnJw24eTJZOjpaWPRol4wMmI7pVYLIkD+XD0vojfXr4Lmz58Pb29vXL9+HZ6envDz80NmZiaAkr++e/XqBWdnZ1y+fBlRUVHIyMiAt7c3AGDt2rVwc3PDuHHjuL/kra2ty7xWQUEBli1bhq1bt+LmzZvcX/urV69Gly5dcPXqVfTr1w/Dhw/HiBEj4O/vjytXrsDW1hYjRowAvbz/wMBAFBUV4fTp04iPj8eyZcugr6+vcK2vv/4aq1atwqVLl2BmZoYBAwZAKpWWW5eAgABcvnwZBw8exIULF0BE8PT0VCq3aNEibN++HefOnUN2drZCF9jZs2ehq6uL5s2bK91/SEgIfH19oa2tDV9fX4SEhFT0cQEAIiIi4ODggEGDBikd4/F4MDIyKrOsvr5+ua8JEyaUWfbChQto3bo16tevz6W5u7sjNzcXN2/eVFnmgw8+gIODA7Zv347nz5+juLgYP/30E8zNzdG+fXuVZbZv3w5dXV18+umnCulhYWFISkpCUFBQmXV0cXFBTEwMioqKysxTk2hsu72EJ+Smz/OKeSikPO6YMQuEmHLk5RVhypQohIfHAQA6drRCRMQnaNbsA/VWTJNQAZCo/+Z8VcE+H+BVbrd5QEAAfH19AQCLFy/GunXrEBMTAw8PD/z4449wdnbG4sWLufyhoaGwtrZGYmIi7O3tIRQKoaurCwsLizdeSyqVYuPGjWjTpo1CuqenJz777DMAwNy5c7Fp0yZ07NgR//vf/wAAM2fOhJubGzIyMmBhYYHU1FQMGTIErVu3BgA0bdpU6VpBQUHo06cPAGDbtm1o2LAh9u3bxwVxr9fl7t27OHjwIM6dO4fOnTsDKAk4rK2tsX//fq4uUqkUP/74I1xdXblzN2/eHDExMXBxccGDBw9Qv359pW6x3Nxc/Prrr7hw4QIAwN/fH926dcPatWuVgrg3uXv3LhwcHCpUptSr44xUMTQse7ud9PR0hSAIAPe+tJvrdTweD3/++Se8vLxgYGAAPp8Pc3NzREVFwcTERGWZkJAQDBs2DGLxf8t93L17F7NmzcKZM2egpVV2+GBlZQWJRIL09HTY2NiUma+m0OhASPTKYOn8l4GQHo8PbYEcbMYYo0pm5gt07BiMpKQs8HjAN990Q1BQd2hrC9RdNaYWc3Jy4v6tp6cHQ0NDboDqtWvXcOrUKZVf1Pfv34e9vb3Kc7Zs2RIPHjwAAHTr1g1HjhwBAAiFQoXrqapD6RdraZDzatqTJ09gYWGBKVOmYOLEiTh27Bh69+6NIUOGKJ3Xzc2N+3e9evXg4OCA27dvc2mv1+X27dvQ0tLiAhzgv9aMV8tpaWmhY8eO3HtHR0cYGxvj9u3bcHFxwYsXL6Cjo6N0j7t27YKtrS0XeLVt2xY2NjbYs2cPxowZo/whloPeo2XQzs7uncu+CyJCYGAgzM3NcebMGYjFYmzduhUDBgzApUuXYGmpuML9hQsXcPv2bezYsYNLk8lkGDZsGObPn1/m/7lSpcFTVQ4Yr0waHQi92iKUL8sGABhrCQDIwVqEGFXq1ROjc2drFBfLsWPHYHz4Yc3/a6dO4umWtMyo69pvic/nK31hvtrFU0pbW1vxEjweN3A4Pz8fAwYMwLJly5TKvf4F9qrIyEjuWq/+VS8Wi1Uu5fBqHUqPq0orrdfYsWPh7u6Ow4cP49ixY1iyZAlWrVqFzz//vMw6va6surwvU1NTZGVlKaWHhITg5s2bCq0ZcrkcoaGhXCBkaGiocsZTdnY2AHBdXvb29rhz58471e9NrU/+/v7YvHmzymMWFhaIiYlRSMvIyOCOqXLy5EkcOnQIWVlZXGvTxo0bcfz4cWzbtg2zZs1SyL9161a0bdtWodssLy8Ply9fxtWrVzF58mQAJZ8dEUFLSwvHjh1Dr169AIDr1jUzqx3foxobCEl52grT53NfBkImIgEAKViLEFMqOTkLenpCmJuXdIds2OAJuZxgbKz8FydTTXi8Su+eqgpmZmZIS0vj3ufm5iI5OblC52jXrh1+++03NG7cuMzuCKFQCJlMppBWHV0S1tbWmDBhAiZMmIDZs2cjODhYIRD6+++/0ahRIwBAVlYWEhMTVY7bKdW8eXMUFxfj4sWLXNfYv//+i4SEBLRo0YLLV1xcjMuXL8PFxQUAkJCQgOzsbO7czs7OSE9PR1ZWFtf1Ex8fj8uXLyM6Ohr16tXjzpWZmYkePXrgzp07cHR0hIODAx49eoSMjAyFLqgrV65AR0eHu59hw4Zh6NChOHDggNI4ISJCbm5umeOE3qdrzM3NDYsWLcKTJ0+48V3Hjx+HoaGhwmf0qtKWmde7Cvl8vtJMvfz8fPzyyy9YsmSJUp3i4+MV0jZu3IiTJ0/i119/RZMmTbj0GzduoGHDhjA1rR3foxo7WLqIJ/pvQcViHnJKW4TEbMNVpgQRYceOa2jTZjPGjDnI/WVvaChiQRDzVnr16oUdO3bgzJkziI+Px8iRIyEQVKwbNTAwEJmZmfD19cWlS5dw//59HD16FKNGjeKCn8aNG+PixYtISUnBs2fPqmVK/LRp03D06FEkJyfjypUrOHXqlFKQs2DBApw4cQI3btxAQEAATE1N4eXlVeY5mzVrhkGDBmHcuHE4e/Ysrl27Bn9/fzRo0EAh2NDW1sbnn3+OixcvIjY2FgEBAejUqRMXGDk7O8PU1BTnzp3jyoSEhMDFxQUffvghWrVqxb0+/PBDdOzYkRs07e7uDgcHB/j6+uL8+fNISkrCr7/+ijlz5mDq1Knc8/P29oaPjw98fX2xePFiXL58GQ8ePMChQ4fQu3dvhTV6XmdnZ1fu6/Xp6q/q27cvWrRogeHDh+PatWs4evQo5syZg8DAQIhEJZM1YmJi4OjoiMePHwMoCZ5MTEwwcuRIXLt2DYmJifj666+RnJyMfv36KZx/z549KC4uhr+/v0I6n89X+NxatWoFc3Nz6OjooFWrVtDT++8PkzNnzqBv375l3kNNo7GBkOSVdYRQDGTJS5ryTFggxADIzi7EsGG/Y8SI/cjLkyA7uxC5ubVjBgRTc8yePRvdu3dH//790a9fP3h5ecHW1rZC57CyssK5c+cgk8nQt29ftG7dGtOmTYOxsTH3F/5XX30FgUCAFi1awMzMDKmpqVVxOwpkMhkCAwPRvHlzeHh4wN7eHhs3blTIs3TpUkydOhXt27dHeno6/vjjDwiFwnLPGxYWhvbt26N///5wc3MDESEyMlKhm05XVxczZ87EsGHD0KVLF+jr62PPnj3ccYFAgFGjRiEiIgIAIJFIsHPnTgwZMkTlNYcMGYLt27dDKpVy3TyNGjWCr68vWrVqhaCgIEydOhULFy7kyvB4PPz888/44YcfsH//fnTv3h1OTk6YN28eBg0aBHd39wp/pm9DIBDg0KFDEAgEcHNzg7+/P0aMGIEFCxZweQoKCpCQkMB1jZqamiIqKgr5+fno1asXOnTogLNnz+LAgQNKg+ZDQkLwySefwNjY+J3qV1hYiP3792PcuHHvfI/VjUfvM+KrFiptrvzpjjfoVii8b0ggjhLjZ/OBGNP2OIY318F270IAfwH4UN3VZdTg9OkHGD58H1JTcyAQ8DB/fg/MmtUVAoHG/t2gdoWFhUhOTkaTJk1UDoJlapbo6Gj07NkTWVlZ7/yFWpbw8HBMmzaNG7NTlvT0dLRs2RJXrlypFTOX6opNmzZh375977ygZHk/66Xf3zk5OeV2H1aUxo4RkvCEMHhlHaFnVDKwzliX7TyvqaRSGebNi8aSJWdBBNjamiAi4hO4ujZUd9UYhqkgCwsLhISEIDU1lQVC1UhbWxvr169XdzUqRGMDoSKeCKYvYx5eMQ/P+C+7xvTYPmOa6sWLYuzadQNEwJgxzlizxgP6+uU34zMMU3OVNx6JqRpjx45VdxUqTGMDoZLd5//ba+yJ4GWLkA4A8ACoXmSKqVtKe4Z5PB4MDUX4+echePw4F0OGqJ59wTDMm/Xo0eO91tkpT0BAAAICAqrk3Ixm0thASMITQiz9b7D0U2HJuhEmYgD4AABbIK+ue/asAGPHHkTfvraYNKlkcbZOnVg3GMMwjCbR2NGfJStLl/ybR8XIFJdMN2Xba2iGY8fuo3XrTThwIAHffHMCOTmF6q4SwzAMowYaHQhx0+f5Rch6ufBqyYartWMRKKbiCguL8cUXUXB334n09Hw0b26K6OgAGBmxmUgMwzCaSKO7xkSlg6V5UmS//B5kLUJ1140bTzBs2G+Ijy/Zw2nSpA5YsaIvdHW131CSYRiGqas0NxDCf5uuEr8IWS8DoZIxQqxFqK75998CuLmFID9fAjMzXYSGDkL//uVvHMgwDMPUfZobCL2y6Sp4RZC8/CRYi1Dd9MEHupgxozMuXHiEsLBBqF+//E0PGYZhGM2g0WOESluEZPySgbJ8AAZCgAVCdcMffyTgxo0n3PtvvumGw4eHsSCI0Vjh4eHvtNKzRCKBnZ0dzp8/X/mVYso0dOhQrFq1St3VqPM0NxCCEOKXaydK8QIAYCzkgccDWNdY7VZQIMXEiYcwcOBu+Pn9jsLCkqY/gYAPHo/3htIMU/v06NED06ZNq3C5tLQ0DBs2DPb29uDz+WWeY/PmzWjSpAm3I/yrPvvsMwgEAuzdu1fpWEBAgMpFDaOjo8Hj8RS2yZBIJFi+fDnatGkDXV1dmJqaokuXLggLC+P2zKoK169fR7du3aCjowNra2ssX778jWVOnDiBzp07w8DAABYWFpg5cyaKi4u549HR0Rg0aBAsLS2hp6eHtm3bcvuevSo7OxuBgYGwtLSESCSCvb09IiMjueNz5szBokWLkJOTUzk3y6iksYGQnITczUt4zwEAxiK24Wptd+VKGtq1+wmbN8cCAHr3bgIW+zCMakVFRTAzM8OcOXOUNt8sRUT48ccfMWbMGKVjBQUF2L17N2bMmIHQ0NB3rodEIoG7uzuWLl2K8ePH4/z584iJiUFgYCDWr1+PmzdvvvO5y5Obm4u+ffvCxsYGsbGxWLFiBebNm4ctW7aUWebatWvw9PSEh4cHrl69ij179uDgwYOYNWsWl+f8+fNwcnLCb7/9huvXr2PUqFEYMWIEDh06pHDPffr0QUpKCn799VckJCQgODgYDRo04PK0atUKtra22LlzZ5XcP/MSaZicnBwCQEOSdlHmgkzKXJBJj5wPEeaB2m/kExGI6Iq6q8lUkEwmp2XLzpK29gIC5pGl5Uo6fvy+uqvFVJIXL17QrVu36MWLF+quSoXY2NjQ6tWrFdLatGlDQUFB3HsAFBwcTF5eXiQWi8nOzo4OHDigUCY+Pp48PDxIT0+PzM3Nyd/fn54+fUpERCNHjiQACq/k5GSV9QkLCyMjIyOVx7p3705Tp05VSr906RLx+XzKzc1VOhYeHk6dOnWi7Oxs0tXVpdTUVIXjI0eOpEGDBimVO3XqFAGgrKwsIiJatmwZ8fl8unJF+XevRCKh/Px8lXV+Xxs3biQTExMqKiri0mbOnEkODg5llpk9ezZ16NBBIe3gwYOko6Oj8jMq5enpSaNGjeLeb9q0iZo2bUoSiaTcOs6fP5+6du36plupM8r7WS/9/s7JyanUa2psixDkIu6fL3j5AABjXfnLFNY1VptkZb1A797bMXPmn5BK5Rg82BHx8RPRu3dTdVeNqSoE4LmaXlWwc8T8+fPh7e2N69evw9PTE35+fsjMLNn/MDs7G7169YKzszMuX76MqKgoZGRkwNvbGwCwdu1auLm5Ydy4cUhLS0NaWhqsra0rrW5nzpyBvb09DAwMlI6FhITA398fRkZG+PjjjxEeHv5O14iIiEDv3r3h7OysdExbWxt6enoqy6WmpkJfX7/c1+LFi8u87oULF/Dhhx9CKPxvT0F3d3ckJCQgKytLZZmioiKlXdHFYjEKCwsRGxtb5rVycnJQr1497v3Bgwfh5uaGwMBA1K9fH61atcLixYshk8kUyrm4uCAmJgZFRUVlnpt5Pxo7a4xkJYGQTA4UCEq6xkx0S4+yrrHaxNBQBKlUDl1dbaxb54HRo53ZWKC6rgCAusa85wNQ/b38zgICAuDr6wsAWLx4MdatW4eYmBh4eHjgxx9/hLOzs8IXemhoKKytrZGYmAh7e3sIhULo6urCwsKicisG4MGDB7CyslJKv3v3Lv7++2/8/vvvAAB/f39Mnz4dc+bMqfDP3927d9GjR48K183KygpxcXHl5nk1+Hhdeno6mjRpopBWv3597piJifKek+7u7lizZg127doFb29vpKenY8GCBQBKxlyp8ssvv+DSpUv46aefuLSkpCScPHkSfn5+iIyMxL179zBp0iRIpVIEBQUp3KNEIkF6ejpsbGzKvVfm3WhsIMSTlfwFICce8vkvW4REQMlvV7bKcE2Xl1cEbW0BdHS0IBDwERHxCYqKitGs2QfqrhrDVJiTkxP3bz09PRgaGuLJk5IZj9euXcOpU6egr68c+d2/fx/29qrXw2rZsiUePHgAAOjWrRuOHDnyTnV78eKFUgsIUBKMubu7w9S0pAXd09MTY8aMwcmTJ/HRRx9V6Br0jhu0amlpwc7O7p3Kvqu+fftixYoVmDBhAoYPHw6RSITvvvsOZ86cAZ+v3Mly6tQpjBo1CsHBwWjZsiWXLpfLYW5uji1btkAgEKB9+/Z4/PgxVqxYoRAIicUl2x4UFBRU/c1pKI0NhOhl1xjJgbyXgRBbTLF2+PvvR/Dz+x0DBthjzRoPAECjRkZqrhVTrXRR0jKjrmu/JT6fr/Qlr2oGlLa24urmPB4PcnlJV31+fj4GDBiAZcuWKZWztLQs89qRkZHctUq/TN+Fqakp4uPjFdJkMhm2bduG9PR0aGlpKaSHhoZygZChoSEXjL0qOzsbAoGA6/Kyt7fHnTt3Kly31NRUtGjRotw833zzDb755huVxywsLJCRkaGQVvq+vNa16dOn44svvkBaWhpMTEyQkpKC2bNno2lTxe74v/76CwMGDMDq1asxYsQIhWOWlpbQ1taGQPDfBt/NmzdHeno6JBIJ111X2kVqZsZ6KqqKxgZC/OKS/2Qk4yFH8LJFiC2mWKMVF8uxePEZLFjwF2Qywv79d7BgQU8YGoreXJipW3io9O6pqmBmZqbQXZKbm4vk5OQKnaNdu3b47bff0LhxY4Wg41VCoVBpbElldaM4Oztj06ZNICKuyysyMhJ5eXm4evWqwhf5jRs3MGrUKGRnZ8PY2BgODg7YvXs3ioqKIBL993N65coVNGnShAsAhw0bhm+++QZXr15VGicklUohkUhUjhN6364xNzc3fPvtt5BKpVxdjh8/DgcHB5XdYq/i8Xhcl+GuXbtgbW2Ndu3accejo6PRv39/LFu2DOPHj1cq36VLF/z888+Qy+VcS1JiYiIsLS0VxizduHEDDRs25FremMqnsYOl+fKS//QkA7JfBkJsw9WaKzk5C927hyMoKBoyGWHYsNaIi5vAgiCmRuvVqxd27NiBM2fOID4+HiNHjlQIHN5GYGAgMjMz4evri0uXLuH+/fs4evQoRo0axQU/jRs3xsWLF5GSkoJnz55xrUlvIy4uDnFxccjPz8fTp08RFxeHW7duccd79uyJ/Px8hSnsISEh6NevH9q0aYNWrVpxL29vbxgbG3Nr5vj5+YHH42HEiBGIjY3FvXv3EBoaijVr1uDLL7/kzjdt2jR06dIFH330ETZs2IBr164hKSkJv/zyCzp16oS7d++qrHtp11h5r/ICoWHDhkEoFGLMmDG4efMm9uzZg7Vr12L69Olcnn379sHR0VGh3IoVKxAfH4+bN29i4cKFWLp0KdatW8c921OnTqFfv36YMmUKhgwZgvT0dKSnp3OtOwAwceJEZGZmYurUqUhMTMThw4exePFiBAYGKlzrzJkz6Nu3b5n3wFSCSp2DVguUTr/zvnSNMhdk0uOvcmhZr1GEeaCfr4OIRqi7iswr5HI5bd8eRwYGiwmYR4aGS2jnzmvqrhZTzWrr9PmcnBzy8fEhQ0NDsra2pvDwcJXT5/ft26dQzsjIiMLCwrj3iYmJNHjwYDI2NiaxWEyOjo40bdo0ksvlRESUkJBAnTp1IrFYXOHp83ht6j0AsrGxUcjj7e1Ns2bNIiKi9PR00tLSol9++UXlNSZOnEjOzs7c+4SEBBo8eDBZWVmRnp4etWnThoKDg7m6lyosLKQlS5ZQ69atSUdHh+rVq0ddunSh8PBwkkqlKq9VGa5du0Zdu3YlkUhEDRo0oKVLlyocDwsLo9e/Knv27ElGRkako6NDrq6uFBkZqXBc1ZIGAKh79+4K+c6fP0+urq4kEomoadOmtGjRIiouLuaOv3jxgoyMjOjChQuVe9M1mDqmz/OI3nGUWi2Vm5sLIyMjDP37NjYeq4/CTAHWJIzDctdfEDkM+LjZlwBWqruazEvPnhXAzm4dcnKK0KWLNXbu/ASNGxuru1pMNSssLERycjKaNGmicuAuU7WuX7+OPn364P79+yoHbTNVY9OmTdi3bx+OHTum7qpUm/J+1ku/v3NycmBoaFhp19TcMUKyl7dezMO/opLR+GywdM1jaqqLn37qj7t3MzFrVldoaWlsby7DqI2TkxOWLVuG5ORktG7dWt3V0Rja2tpYv369uqtR52lsICR4GQjxioGn4pJAiA2WVj+JRIZ586LRtWsjeHo2AwD4+LRSc60YhgkICFB3FTTO2LFj1V0FjVAj/rzesGEDGjduDB0dHbi6uiImJqbMvMHBwejWrRtMTExgYmKC3r17l5u/LNrFJYPaeFIeFwiZsEBIrRISnqFz5xAsWXIWo0YdQF4eW0mVYRiGqVpqD4T27NmD6dOnIygoCFeuXEGbNm3g7u7OLSb2uujoaPj6+uLUqVO4cOECrK2t0bdvXzx+/LhC1xXIS1qE+BLgufDVFiHWNVbdiAjBwbFo124LYmPTYGKig40bPWFgwGaEMQzDMFVL7YHQDz/8gHHjxmHUqFFo0aIFNm/eDF1d3TJ3Mo6IiMCkSZPQtm1bODo6YuvWrZDL5Thx4kSFriuQlbQI8aU8FGgXQKwFiLQA1iJUvZ49K8Ann/yC8eMPoaBAil69muD69YkYMqT8RdIYhmEYpjKodYyQRCJBbGwsZs+ezaXx+Xz07t0bFy5ceKtzFBQUQCqVlrlWRFFRkcJmdbm5uQAAneKSyXJ8SUkgZMwNTmeBUHV5+vQ52rTZjLS0fGhr87FkyUf44gs38PlsnzCGYRimeqi1RejZs2eQyWTcJnel6tevj/T09Lc6x8yZM2FlZYXevXurPL5kyRIYGRlxr9JdmUUvAyFBEVCgXfByxpgWALZVQ3UxM9ND3762aN7cFBcvjsWXX3ZmQRDDMAxTrWr1rLGlS5di9+7diI6OLnNtkdmzZyusEpqbmwtra2uIikveCxRahExRsnY/U1Vu3nwCU1Nd1K9fshbJjz96gs/nQVdX+w0lGYZhGKbyqbVFyNTUFAKBQOWmd+VteAcAK1euxNKlS3Hs2DGFnZtfJxKJYGhoqPACAJGspEWIJyVIBBK2vUYVIyKsX38R7dtvwejRB7mNKPX1hSwIYhiGYdRGrYGQUChE+/btFQY6lw58dnNzK7Pc8uXLsXDhQkRFRaFDhw7vdO3SFiE5SQEeW0OoKqWn58PT82dMmRKFoqKSvZGeP1fegZthmKoVHh4OY2PjCpf7999/YW5ujpSUlEqvE1O2Tp064bffflN3Neo8tc8amz59OoKDg7Ft2zbcvn0bEydOxPPnzzFq1CgAwIgRIxQGUy9btgzfffcdQkND0bhxY24zu/z8/Apdt3SwtIwkAFggVFX++CMBrVtvQlTUPejoaOHHHz/GoUO+0NcXvrkwwzBvpUePHpg2bVqFy/3+++/o06cPzMzMYGhoCDc3Nxw9elQp36JFizBo0CA0btxY6Zi7uzsEAgEuXbr01vVSFZDl5ubi22+/haOjI3R0dGBhYYHevXvj999/R1XuBBUdHY127dpBJBLBzs4O4eHhbyxz9OhRdOrUCQYGBjAzM8OQIUOUgsSIiAi0adMGurq6sLS0xOjRo/Hvv/+qPN/u3bvB4/Hg5eWlkD5nzhzMmjWrQpvoMhWn9kDIx8cHK1euxNy5c9G2bVvExcUhKiqKG0CdmpqKtLQ0Lv+mTZsgkUjw6aefwtLSknutXFmx/cGEL1uEil8GQqxrrHIVFEgxceIhDBy4G8+eFcDJqT4uXx6HwEAX8HhsHBbD1ASnT59Gnz59EBkZidjYWPTs2RMDBgzA1atXuTwFBQUICQnBmDFjlMqnpqbi/PnzmDx5cplLnryN7OxsdO7cGdu3b8fs2bNx5coVnD59Gj4+PpgxYwZycnLe+dzlSU5ORr9+/dCzZ0/ExcVh2rRpGDt2rMpg8NUygwYNQq9evRAXF4ejR4/i2bNn+OSTT7g8586dw4gRI7hd7ffu3YuYmBiMGzdO6XwpKSn46quv0K1bN6VjH3/8MfLy8nDkyJHKuWFGtUrdwrUWKN29dvuWR5S5IJPSut4nzAOtPAciClJ39eqM3NxCsrVdS8A8+vLLo1RYWHW7RzN13+s7UsuJKF9NL8U908tnY2NDq1evVkhTtft8cHAweXl5kVgsJjs7Ozpw4IBCmfj4ePLw8CA9PT0yNzcnf39/evr0KRGp3um8IrvPv65FixY0f/587v3evXvJzMxMZd558+bR0KFD6fbt22RkZEQFBQUKx7t3705Tp059Yz0mTpxIenp69PjxY6W8eXl5Vbb7/IwZM6hly5YKaT4+PuTu7l5mmb1795KWlhbJZDIu7eDBg8Tj8UgikRAR0YoVK6hp06YK5datW0cNGjRQSCsuLqbOnTvT1q1baeTIkTRo0CCl640aNYr8/f0remu1ljp2n1d7i5C6iEqGqqAQhQBKN1xlXWPvQy4nyOUlTdgGBiLs2jUEx48Px8qVfSES1eoJikwNUwBAX02vgiq4n/nz58Pb2xvXr1+Hp6cn/Pz8kJmZCaCktaRXr15wdnbG5cuXERUVhYyMDHh7ewMA1q5dCzc3N4wbNw5paWlIS0vjlgmpKLlcjry8PIV12c6cOYP27dsr5SUihIWFwd/fH46OjrCzs8Ovv/76TtfcvXs3/Pz8YGVlpXRcX18fWlqqf3+cOXMG+vr65b4iIiLKvPaFCxeUll5xd3cvdx279u3bg8/nIywsDDKZDDk5OdixYwd69+4Nbe2SiR9ubm54+PAhIiMjQUTIyMjAr7/+Ck9PT4VzLViwAObm5ipb20q5uLjgzJkzZR5n3p/GfjuVriNUGgix7TXez6NHuRg5cj8GDXLAlCmuAICOHRuouVYMUzsEBATA19cXALB48WKsW7cOMTEx8PDwwI8//ghnZ2csXryYyx8aGgpra2skJibC3t4eQqEQurq6b5xt+yYrV65Efn4+F2QBwIMHD1QGKH/++ScKCgrg7u4OAPD390dISAiGDx9eoWs+e/YMWVlZcHR0rHB9O3TogLi4uHLzvL5O3avS09NVrmOXm5uLFy9eQCwWK5Vp0qQJjh07Bm9vb3z22WeQyWRwc3NDZGQkl6dLly6IiIiAj48PCgsLUVxcjAEDBmDDhg1cnrNnzyIkJOSN9beyssLDhw8hl8vB52ts20WV0thPtXTWWEFpixAbLP3O9u69CSenTTh5MhkLFvyF/HyJuqvE1HG6APLV9NKtgvt5dQkQPT09GBoacvstXrt2DadOnVJo5SgNGu7fv1/mOVu2bMnl//jjj99Yh59//hnz58/HL7/8AnNzcy79xYsXKtdpCw0NhY+PD9da4+vri3PnzpVbJ1XoPQZCi8Vi2NnZlfsyMDB45/Orkp6ejnHjxmHkyJG4dOkS/vrrLwiFQnz66afcvdy6dQtTp07F3LlzERsbi6ioKKSkpGDChAkAgLy8PAwfPhzBwcEwNS3/D3CxWAy5XK6wQwJTuTS+RSif9+qGqywQqoi8vCJMmRKF8PA4AEDHjlaIiPiEzQhjqhwPgJ66K/EW+Hy+0he9VKq8dERpl0opHo/HzRTKz8/HgAEDsGzZMqVylpaWZV47MjKSu5aqlo1X7d69G2PHjsXevXuVuopMTU2RlZWlkJaZmYl9+/ZBKpVi06ZNXLpMJkNoaCgWLVoEADA0NFQ50Dk7OxtGRiWr+JuZmcHY2Bh37twpt46qnDlz5o1B3k8//QQ/Pz+VxywsLFSuY2doaFjmZ7ZhwwYYGRlh+fLlXNrOnTthbW2NixcvolOnTliyZAm6dOmCr7/+GkBJoKunp4du3brh+++/R0ZGBlJSUjBgwADuHKXPW0tLCwkJCbC1tQVQ8lnr6em98Rky705jAyGdlwsq5r4MhErGCLGusbf199+P4Of3O5KSssDjAd980w1BQd2hrS1Qd9UYpsYwMzNTmPWam5uL5OTkCp2jXbt2+O2339C4ceMyx8oIhULIZDKFNBsbm7c6/65duzB69Gjs3r0b/fr1Uzru7OyMnTt3KqRFRESgYcOG2L9/v0L6sWPHsGrVKixYsAACgQAODg44duyY0jmvXLkCe3t7ACXB4tChQ7Fjxw4EBQUpdcPl5+dDR0dH5b2/b9fY611aAHD8+PFy17ErKChQ6qISCEp+75UGMwUFBUr1Lc1DRHB0dER8fLzC8Tlz5iAvLw9r165VGON148YNODs7l1kfphJU6tDrWqB01Hns9w8oc0Em/dzjZ8I8UNYLEJFE3dWrFdLT80hH53sC5lGjRqvp9OkUdVeJqePKm0lSk82aNYssLCzo9OnTdP36dfLy8iJ9fX2lWWP79u1TKGdkZERhYWFERPT48WMyMzOjTz/9lGJiYujevXsUFRVFAQEBVFxcTERE48aNo44dO1JycjI9ffpUYUbTq16frRUREUFaWlq0YcMGSktL417Z2dlcnuvXr5OWlhZlZmZyaW3atKGZM2cqnT87O5uEQiEdOnSIiIju379POjo69Pnnn9O1a9fozp07tGrVKtLS0qIjR45w5f79919ydHSkhg0b0rZt2+jmzZuUmJhIISEhZGdnR1lZWW/zcVdYUlIS6erq0tdff023b9+mDRs2kEAgoKioKC7P+vXrqVevXtz7EydOEI/Ho/nz51NiYiLFxsaSu7s72djYcLPmwsLCSEtLizZu3Ej379+ns2fPUocOHcjFxaXMupQ1a6x79+60YMGCyrvpGk4ds8Y0NhC6MS+FMhdkUnCvYOLNA8nkRuquWq2yaNFp8vX9lbKyatcXE1M71dZAKCcnh3x8fMjQ0JCsra0pPDxc5fT58gIhIqLExEQaPHgwGRsbk1gsJkdHR5o2bRrJ5SWT+RMSEqhTp04kFosrNH2+e/fuSlPvAdDIkSMVyrm4uNDmzZuJiOjy5csEgGJiYlRe4+OPP6bBgwdz72NiYqhPnz5kZmZGRkZG5OrqqnS/RCVB1KxZs6hZs2YkFAqpfv361Lt3b9q3bx93n1Xh1KlT1LZtWxIKhdS0aVOFz52IKCgoiGxsbBTSdu3aRc7OzqSnp0dmZmY0cOBAun37tkKedevWUYsWLUgsFpOlpSX5+fnRo0ePyqyHqkDo0aNHpK2tTQ8fPnyfW6xV1BEI8YiqcMnOGig3NxdGRka4OycFHwgNse30Nszv/QWyZtoBuKvu6tVIRISdO6+jTRsLODnV59LYwohMdSksLERycjKaNGlS5gbLTNU5fPgwvv76a9y4cYPNXKpGM2fORFZWFrZs2aLuqlSb8n7WS7+/c3JyuH1DK4PGjhHSfrlieb4gnw2ULkd2diEmTjyM3btvoGVLM1y6NA5isTYLghhGg/Tr1w93797F48eP33mNIqbizM3NMX36dHVXo87T2ECoVC4/l22vUYa//krB8OH78PBhLgQCHoYObcUGQzOMhnqXvcyY9/Pll1+quwoaQeMDoTxBHmsReo1EIsO8edFYuvQsiABbWxNERHwCV9eG6q4awzAMw1QqjQ6EZADytfPZ9hqvePr0OTw9f8bly/8AAEaPbos1azxgYCBSc80YhmEYpvJpdCBUDKBAuwDGIoB1jZWoV08MPT1tmJjoYMuWAfj00xbqrhLDMAzDVBkND4R4KNAuQBMNbxF69qwAenraEIu1IRDwsXPnJwCAhg0rb1Q+wzAMw9REGj0PUoaXLUIaPEbo2LH7cHLahBkzjnNpDRsasiCIYRiG0QgaHQjJifdKIKRZXWOFhcWYPv0o3N13Ii0tHydOJOP5c7ZZKsMwDKNZNLprTEYlLUKatvP8zZtPMGzY77h+vWSzwUmTOmDFir7Q1dV+Q0mGYRiGqVs0u0VIztOorjEiwvr1F9G+/RZcv54BMzNd/PGHLzZs6MeCIIbRAOHh4TA2Nq7Sa/B4PKXNWN/G8OHDsXjx4sqvEFOmWbNm4fPPP1d3NdSOBULaBTDR0Qagp+7qVLknT54jKCgaRUUyfPyxHeLjJ6J/f3t1V4thmPfUo0ePd1rwMC0tDcOGDYO9vT34fH6lL5qYkpKCMWPGoEmTJhCLxbC1tUVQUBAkEsVu+GvXriEyMhJTpkxROseuXbsgEAgQGBiodKy8wE5VQPbbb7+hR48eMDIygr6+PpycnLBgwQJkZma+8z2+SWZmJvz8/GBoaAhjY2OMGTMG+fn55Za5f/8+Bg8eDDMzMxgaGsLb2xsZGRkq8xYVFaFt27bg8XiIi4tTOHb9+nV069YNOjo6sLa2xvLlyxWOf/XVV9i2bRuSkpLe6x5rO40OhEheOn3eBEDd3zKifn19BAcPwPr1H+Pw4WGoX19f3VViGEaNioqKYGZmhjlz5qBNmzZvVSYgIADz5s17q7x37tyBXC7HTz/9hJs3b2L16tXYvHkzvvnmG4V869evx//+9z/o6yv/TgoJCcGMGTOwa9cuFBYWvtV1Vfn222/h4+ODjh074siRI7hx4wZWrVqFa9euYceOHe983jfx8/PDzZs3cfz4cRw6dAinT5/G+PHjy8z//Plz9O3bFzweDydPnsS5c+cgkUgwYMAAyOVypfwzZsyAlZWVUnpubi769u0LGxsbxMbGYsWKFZg3b57CvmWmpqZwd3fHpk2bKudma6tK3cK1FijdvTblmxS6OTOP+HP59E9OS3VXq0o8fy6hiRMP0R9/JKi7KgzzXl7fkVoul5O8SE2vCuyEbmNjQ6tXr1ZIU7X7fHBwMHl5eZFYLCY7Ozs6cOCAQpn4+Hjy8PAgPT09Mjc3J39/f3r69CkRlexajtd2j3/b3edf1b17d5o6deob72nkyJEK9X8dAJW7y5davnw5NWnShHtfXFxMRkZGdOjQIaW8SUlJJBaLKTs7m1xdXSkiIkLheHn382o9Ll68SABozZo1KvNmZWWVWd/3cevWLQJAly5d4tKOHDlCPB6PHj9+rLLM0aNHic/nK+ywnp2dTTwej44fP66QNzIykhwdHenmzZsEgK5evcod27hxI5mYmFBRURGXNnPmTHJwcFA4x7Zt26hhw4bvc5uVSh27z2v0YGm5TA45Xw5jcX11V6XSXbmSBj+/33HnzjP89tttJCVNgZ6eUN3VYpjKIQWyl2Wr5dLGM42BSv5Rmj9/PpYvX44VK1Zg/fr18PPzw4MHD1CvXj1kZ2ejV69eGDt2LFavXo0XL15g5syZ8Pb2xsmTJ7F27VokJiaiVatWWLBgAQDAzKzmjnnMyclBvXr1uPfXr19HTk4OOnTooJQ3LCwM/fr1g5GREfz9/RESEoJhw4ZV+JoRERHQ19fHpEmTVB4vb9xUy5Yt8eDBgzKPd+vWDUeOHFF57MKFCzA2Nla4t969e4PP5+PixYsYPHiwUpmioiLweDyIRP+t5q+jowM+n4+zZ8+id+/eAICMjAyMGzcO+/fvh66ursprf/jhhxAK//vP6u7ujmXLliErKwsmJiYAABcXFzx69AgpKSlo3LhxmfdZl2l2ICSXQyQAxNoW6q5KpZHLCatWnce3356EVCqHpaU+tm3zYkEQw9RgAQEB8PX1BQAsXrwY69atQ0xMDDw8PPDjjz/C2dlZYSBxaGgorK2tkZiYCHt7ewiFQujq6sLComb/Lrt37x7Wr1+PlStXcmkPHjyAQCCAubm5Ql65XI7w8HCsX78eADB06FB8+eWXSE5ORpMmTSp03bt376Jp06bQ1q74pJDIyEhIpdIyj4vF4jKPpaenK92XlpYW6tWrh/T0dJVlOnXqBD09PcycOROLFy8GEWHWrFmQyWRIS0sDUDLxJSAgABMmTECHDh2QkpKi8tqvf07169fnjpUGQqXdag8ePGCBkCaSyWV1ag2hR49yMXLkfpw8mQwAGDzYEcHBA/DBB8p/LTBMrab9smVGTdeubE5OTty/9fT0YGhoiCdPngAoGUh86tQpleNn7t+/D3t71RMeXm3JKK/V4k0iIiLw2Wefce9LWyxeDWaOHDmCbt26lXuex48fw8PDA//73/8wbtw4Lv3FixcQiUTg8RTHaR4/fhzPnz+Hp6cngJLxLH369EFoaCgWLlxYoXsgogrlf5WNjc07l30XZmZm2Lt3LyZOnIh169aBz+fD19cX7dq1A59fMqx3/fr1yMvLw+zZs9/7eqWBXEFBwXufq7bS6ECoWCarMxuupqXlwclpE7KyCqGrq421az0wZoyz0i8XhqkLeDxepXdPVQU+n6/0JayqdeH1lgoej8cNjM3Pz8eAAQOwbNkypXKWlpZlXvvVlozyWi3eZODAgXB1deXez5w5Ew0aNFCY4dWgQYNyz/HPP/+gZ8+e6Ny5s8JgXaAkwCkoKIBEIlHoxgkJCUFmZqZC3eVyOa5fv4758+eDz+fD0NAQz58/h1wu54IEAMjOzgYAGBkZAQDs7e1x9uxZSKXSCrcKvU/XmIWFBRfQliouLkZmZma5rXd9+/bF/fv38ezZM2hpacHY2BgWFhZo2rQpAODkyZO4cOGCQvcZAHTo0AF+fn7Ytm0bLCwslGaalb5/9dqlM+ZqcndqVdPoQEgmL64zawhZWhpg8GBHXL/+BBERn8De/gN1V4lhNJ6ZmRnXnQGUzORJTk6u0DnatWuH3377DY0bN4aWlupf2UKhEDKZTCGtsloyDAwMYGBgoPC+Xr16sLOze6vyjx8/Rs+ePdG+fXuEhYUpBCwA0LZtWwDArVu3uH//+++/OHDgAHbv3o2WLVtyeWUyGbp27Ypjx47Bw8MDDg4OKC4uRlxcHNq1a8flu3LlCgBwrWXDhg3DunXrsHHjRkydOlWpjtnZ2WWOE3qfrjE3NzdkZ2cjNjYW7du3B1ASxMjlcoXgsiympqZcmSdPnmDgwIEAgHXr1uH777/n8v3zzz9wd3fHnj17uPO6ubnh22+/VQj+jh8/DgcHB65bDABu3LgBbW1thc9Z02h0ICSVS2t119jFi4/QqJERLC1LfkmtX+8JbW0+tLUFaq4ZwzAA0KtXL4SHh2PAgAEwNjbG3LlzIRBU7OczMDAQwcHB8PX1xYwZM1CvXj3cu3cPu3fvxtatWyEQCNC4cWNcvHgRKSkp0NfXR7169ZQCjrKUrj2Tn5+Pp0+fIi4uDkKhEC1atKjo7Sp5/PgxevToARsbG6xcuRJPnz7ljpW2SpiZmaFdu3Y4e/YsFwjt2LEDH3zwAby9vZVatT09PRESEgIPDw+0bNkSffv2xejRo7Fq1So0bdoUCQkJmDZtGnx8fLiWKldXV8yYMQNffvklHj9+jMGDB8PKygr37t3D5s2b0bVrV5UBEvB+AWXz5s3h4eGBcePGYfPmzZBKpZg8eTKGDh3Kjc15/PgxPvroI2zfvh0uLi4ASgaJN2/eHGZmZrhw4QKmTp2KL774Ag4ODgCARo0aKVyntNvU1tYWDRs2BFAS/M2fPx9jxozBzJkzcePGDaxduxarV69WKHvmzBl069btvVoNa71KnYNWC7w6ff7k+ATy/RVE9Je6q1UhUqmM5s+PJoFgPrm77yCZ7O2n8zJMbVTelNqaLCcnh3x8fMjQ0JCsra0pPDxc5fT516ebGxkZUVhYGPc+MTGRBg8eTMbGxiQWi8nR0ZGmTZvGTeVPSEigTp06kVgsrvD0ebw29R4A2djYlHlPFZk+HxYWpvL8r3/1bNy4kTp16sS9b926NU2aNEnl+ffs2UNCoZBbPiArK4umTJlCtra2JBaLqVmzZjRjxgzKy8tTWfbDDz8kAwMD0tPTIycnJ1qwYEGVTZ8nIvr333/J19eX9PX1ydDQkEaNGqVQt+TkZAJAp06d4tJmzpxJ9evXJ21tbWrWrBmtWrWq3GUbSs/x6vR5IqJr165R165dSSQSUYMGDWjp0qVKZR0cHGjXrl3vfZ+VRR3T53lE7zGKrBbKzc2FkZERUr5JQeKTPOzzao2N/W4BaK7uqr2V5OQs+Pvvw/nzDwEAvr6tEBIyEGIx2yKDqbsKCwu52UI6Ojrqrg5TyV68eAEHBwfs2bMHbm5u6q6Oxjhy5Ai+/PJLXL9+vcxu1+pW3s966fd3Tk4ODA0NK+2aNePO1UQiL3y54WrN7xojIkRExGPSpMPIy5PA0FCEjRs94efn9ObCDMMwNZhYLMb27dvx7NkzdVdFozx//hxhYWE1JghSF42+e4ms8OUYoXpvyqpWublFmDDhEHbtugEA6NLFGjt2DEaTJiZvKMkwDFM79OjRQ91V0DiffvqpuqtQI2j0XmNF8gKYaIsA1OzBxQIBD5cv/wOBgIcFC3ogOjqABUEMwzAMUwk0ukWoSP4cxtoGb86oBlKpDAIBH3w+D3p6Quze/SmkUhlcXRuqu2oMwzAMU2dodItQofw5TETG6q6GksTEf9G5cyjWrbvIpbVrZ8mCIIZhGIapZBoeCOXBWKfmLKZIRAgOjoWz80+4fPkfLF9+DgUFZS/kxTAMwzDM+9HorrEC5MJYz0rd1QAAPHtWgHHj/sD+/XcAAL16NcG2bV7Q1WXT4hmGYRimqmh0IPQceTAxaPTmjFXs2LH7CAjYj7S0fGhr87F48UeYPt0NfD7bJ4xhGIZhqpJGd43lCfJgpKPecTf//JOHAQN2IS0tH82bm+LixbH46qvOLAhimDqgR48emDZtmtquHxAQAC8vrxpTH4apiTS6RUgqyoWAX1+tdbCyMsCCBT2QmpqDFSv6sq4whmGqzO+//17h3dcZpq7T6EBIJs5Fde88T0TYsOESunZthLZtSzYdnDGji9LGggzDMJWtXr2avXgsw6iDRneNQTcH1bm9Rnp6Pvr1+xmff34Ew4b9hsLCYgBgQRDD1GHFxcWYPHkyjIyMYGpqiu+++w6lWzzu2LEDHTp0gIGBASwsLDBs2DA8efKEK5uVlQU/Pz+YmZlBLBajWbNmCAsL444/fPgQ3t7eMDY2Rr169TBo0CCkpKSUWZfXu8YaN26MxYsXY/To0TAwMECjRo2wZcsWhTIVvQbD1DaaHQgZ5KC6WoQOHUqEk9MmHDlyDyKRAJMmdYRIVLNXtGaYmu75c0mZr9I/NN4m74sX0rfK+y62bdsGLS0txMTEYO3atfjhhx+wdetWAIBUKsXChQtx7do17N+/HykpKQgICODKfvfdd7h16xaOHDmC27dvY9OmTTA1NeXKuru7w8DAAGfOnMG5c+egr68PDw8PSCRvX9dVq1ahQ4cOuHr1KiZNmoSJEyciISGhUq/BMDWZRneNaelXfYtQQYEUX311DJs2XQYAODnVx88/f4KWLc2r9LoMown09ZeUeczTsxkOHx7GvTc3X1nmulzdu9sgOjqAe9+48Vo8e1aglI8oqMJ1tLa2xurVq8Hj8eDg4ID4+HisXr0a48aNw+jRo7l8TZs2xbp169CxY0fk5+dDX18fqampcHZ2RocOHV7WqzGXf8+ePZDL5di6dSvXqhwWFgZjY2NER0ejb9++b1U/T09PTJo0CQAwc+ZMrF69GqdOneJ2g6+MazBMTaaxLUISPiAyeAFAXGXXSEvLQ/v2W7ggaPr0ToiJGcuCIIbRIJ06dVLo/nZzc8Pdu3chk8kQGxuLAQMGoFGjRjAwMED37t0BAKmpqQCAiRMnYvfu3Wjbti1mzJiB8+fPc+e5du0a7t27BwMDA+jr60NfXx/16tVDYWEh7t+//9b1c3Jy4v7N4/FgYWHBdc9V1jUYpibT2BYhCZ8HXXHVrtpcv74+LC31kZNTiG3bvNCnj22VXo9hNE1+/uwyjwkEin/nPXnyVZl5X1+uIiVl6vtV7C0UFhbC3d0d7u7uiIiIgJmZGVJTU+Hu7s51O3388cd48OABIiMjcfz4cXz00UcIDAzEypUrkZ+fj/bt2yMiIkLp3GZmb9/l//osMh6PB7lcDgCVdg2Gqck0OBACxHrySj/vo0e5qFdPDF1dbfD5PEREfAJtbQFMTXUr/VoMo+n09IRqz/smFy9eVHj/999/o1mzZrhz5w7+/fdfLF26FNbW1gCAy5cvK5U3MzPDyJEjMXLkSHTr1g1ff/01Vq5ciXbt2mHPnj0wNzeHoaFhpdX3VdVxDYZRN43tGpPxeDAQV24cuHfvTTg5bcJXXx3j0iwtDVgQxDAaLDU1FdOnT0dCQgJ27dqF9evXY+rUqWjUqBGEQiHWr1+PpKQkHDx4EAsXLlQoO3fuXBw4cAD37t3DzZs3cejQITRv3hwA4OfnB1NTUwwaNAhnzpxBcnIyoqOjMWXKFDx69KhS6l4d12AYddPYQEjKA0yERpVyrry8IowefQDe3r8iK6sQsbFpSrNQGIbRTCNGjMCLFy/g4uKCwMBATJ06FePHj4eZmRnCw8Oxd+9etGjRAkuXLsXKlSsVygqFQsyePRtOTk748MMPIRAIsHv3bgCArq4uTp8+jUaNGuGTTz5B8+bNMWbMGBQWFlZa6011XINh1I1HpQtaaIjc3FwYGRnh9MIHyO4xDAO6nn2v8/399yP4+/+O+/ezwOMB33zTDUFB3aGtzabGM0xlKSwsRHJyMpo0aQIdHR11V4dhmCpS3s966fd3Tk5OpQbiGjtGqJgHmOhavHv5YjkWLz6DBQv+gkxGaNTICDt2DMaHH9pUYi0ZhmEYhqlKGhsIyXgEM91333D16dPnWLv2ImQygq9vK2zc2A/GxuwvVYZhGIapTTQ2EJKCYGLY9J3LW1oaIDR0IPLyJPD3d3pzAYZhGIZhahyNHSxdDIKxscNb58/OLoSv7284cOAOlzZokCMLghiGYRimFtPYFiEZTwZdceO3yvvXXykYPnwfHj7MRXR0Ctzd7aCjo7EfHcMwDMPUGRrbIiSDHDxe+VtdSCQyzJ79J3r23IaHD3Nha2uC/ft9WBDEMGqiYZNcGUbjqONnXGO/0eUoBmBc5vGEhGfw8/sdsbFpAIDRo9ti7dqPoa9feSvOMgzzdgSCkuUoJBIJxOKq2x+QYRj1Kt1epvRnvjpobCAk48kA8FQee/gwB+3abUFBgRQmJjoIDh6AIUNaVG8FGYbhaGlpQVdXF0+fPoW2tjb4fI1tzGaYOksul+Pp06fQ1dWFllb1hScaGwjJecVlHrO2NoK/f2vcu5eFbdu80LAhW0GVYdSJx+PB0tISycnJePDggbqrwzBMFeHz+WjUqBF4PNUNFVVBgwMhxS0wjh+/j5YtzWFlZQAAWLfuY2hrC5R2pWYYRj2EQiGaNWvGNZ0zDFP3CIXCam/xrRGB0IYNG7BixQqkp6ejTZs2WL9+PVxcXMrMv3fvXnz33XdISUlBs2bNsGzZMnh6elbomoSSFqHCwmLMnv0n1qy5iN69m+LoUX/w+TyIRDXio2EY5hV8Pp9tscEwTKVSe0f7nj17MH36dAQFBeHKlSto06YN3N3d8eTJE5X5z58/D19fX4wZMwZXr16Fl5cXvLy8cOPGjQpdl3gS3LjxBC4uwViz5iIAwN6+HqRS2XvfE8MwDMMwtYPaN111dXVFx44d8eOPPwIoGSxlbW2Nzz//HLNmzVLK7+Pjg+fPn+PQoUNcWqdOndC2bVts3rz5jdcr3bTN3ysEe4/8g6IiGczMdBEaOgj9+9tX3o0xDMMwDFNpqmrTVbW2CEkkEsTGxqJ3795cGp/PR+/evXHhwgWVZS5cuKCQHwDc3d3LzF+WnfvvoqhIho8/tkN8/EQWBDEMwzCMBlLrQJhnz55BJpOhfv36Cun169fHnTt3VJZJT09XmT89PV1l/qKiIhQVFXHvc3JyAAACvgRLlvbB+PHtwePJkZub+z63wjAMwzBMFSr9nq7sjqw6PyJ4yZIlmD9/vlK6TP4DZsz4ATNmqKFSDMMwDMO8k3///RdGRkaVdj61BkKmpqYQCATIyMhQSM/IyICFhYXKMhYWFhXKP3v2bEyfPp17n52dDRsbG6SmplbqB8lUXG5uLqytrfHw4cNK7e9l3g17HjUHexY1B3sWNUdOTg4aNWqEevXqVep51RoICYVCtG/fHidOnICXlxeAksHSJ06cwOTJk1WWcXNzw4kTJzBt2jQu7fjx43Bzc1OZXyQSQSQSKaUbGRmx/9Q1hKGhIXsWNQh7HjUHexY1B3sWNUdlrzOk9q6x6dOnY+TIkejQoQNcXFywZs0aPH/+HKNGjQIAjBgxAg0aNMCSJUsAAFOnTkX37t2xatUq9OvXD7t378bly5exZcsWdd4GwzAMwzC1kNoDIR8fHzx9+hRz585Feno62rZti6ioKG5AdGpqqkL017lzZ/z888+YM2cOvvnmGzRr1gz79+9Hq1at1HULDMMwDMPUUmoPhABg8uTJZXaFRUdHK6X973//w//+9793upZIJEJQUJDK7jKmerFnUbOw51FzsGdRc7BnUXNU1bNQ+4KKDMMwDMMw6qL2LTYYhmEYhmHUhQVCDMMwDMNoLBYIMQzDMAyjsVggxDAMwzCMxqqTgdCGDRvQuHFj6OjowNXVFTExMeXm37t3LxwdHaGjo4PWrVsjMjKymmpa91XkWQQHB6Nbt24wMTGBiYkJevfu/cZnx1RMRX82Su3evRs8Ho9b+JR5fxV9FtnZ2QgMDISlpSVEIhHs7e3Z76pKUtFnsWbNGjg4OEAsFsPa2hpffPEFCgsLq6m2ddfp06cxYMAAWFlZgcfjYf/+/W8sEx0djXbt2kEkEsHOzg7h4eEVvzDVMbt37yahUEihoaF08+ZNGjduHBkbG1NGRobK/OfOnSOBQEDLly+nW7du0Zw5c0hbW5vi4+OrueZ1T0WfxbBhw2jDhg109epVun37NgUEBJCRkRE9evSommteN1X0eZRKTk6mBg0aULdu3WjQoEHVU9k6rqLPoqioiDp06ECenp509uxZSk5OpujoaIqLi6vmmtc9FX0WERERJBKJKCIigpKTk+no0aNkaWlJX3zxRTXXvO6JjIykb7/9ln7//XcCQPv27Ss3f1JSEunq6tL06dPp1q1btH79ehIIBBQVFVWh69a5QMjFxYUCAwO59zKZjKysrGjJkiUq83t7e1O/fv0U0lxdXemzzz6r0npqgoo+i9cVFxeTgYEBbdu2raqqqFHe5XkUFxdT586daevWrTRy5EgWCFWSij6LTZs2UdOmTUkikVRXFTVGRZ9FYGAg9erVSyFt+vTp1KVLlyqtp6Z5m0BoxowZ1LJlS4U0Hx8fcnd3r9C16lTXmEQiQWxsLHr37s2l8fl89O7dGxcuXFBZ5sKFCwr5AcDd3b3M/MzbeZdn8bqCggJIpdJK32BPE73r81iwYAHMzc0xZsyY6qimRniXZ3Hw4EG4ubkhMDAQ9evXR6tWrbB48WLIZLLqqnad9C7PonPnzoiNjeW6z5KSkhAZGQlPT89qqTPzn8r6/q4RK0tXlmfPnkEmk3Hbc5SqX78+7ty5o7JMenq6yvzp6elVVk9N8C7P4nUzZ86ElZWV0n90puLe5XmcPXsWISEhiIuLq4Yaao53eRZJSUk4efIk/Pz8EBkZiXv37mHSpEmQSqUICgqqjmrXSe/yLIYNG4Znz56ha9euICIUFxdjwoQJ+Oabb6qjyswryvr+zs3NxYsXLyAWi9/qPHWqRYipO5YuXYrdu3dj37590NHRUXd1NE5eXh6GDx+O4OBgmJqaqrs6Gk8ul8Pc3BxbtmxB+/bt4ePjg2+//RabN29Wd9U0TnR0NBYvXoyNGzfiypUr+P3333H48GEsXLhQ3VVj3lGdahEyNTWFQCBARkaGQnpGRgYsLCxUlrGwsKhQfubtvMuzKLVy5UosXboUf/75J5ycnKqymhqjos/j/v37SElJwYABA7g0uVwOANDS0kJCQgJsbW2rttJ11Lv8bFhaWkJbWxsCgYBLa968OdLT0yGRSCAUCqu0znXVuzyL7777DsOHD8fYsWMBAK1bt8bz588xfvx4fPvttwqbhDNVq6zvb0NDw7duDQLqWIuQUChE+/btceLECS5NLpfjxIkTcHNzU1nGzc1NIT8AHD9+vMz8zNt5l2cBAMuXL8fChQsRFRWFDh06VEdVNUJFn4ejoyPi4+MRFxfHvQYOHIiePXsiLi4O1tbW1Vn9OuVdfja6dOmCe/fuccEoACQmJsLS0pIFQe/hXZ5FQUGBUrBTGqAS27qzWlXa93fFxnHXfLt37yaRSETh4eF069YtGj9+PBkbG1N6ejoREQ0fPpxmzZrF5T937hxpaWnRypUr6fbt2xQUFMSmz1eSij6LpUuXklAopF9//ZXS0tK4V15enrpuoU6p6PN4HZs1Vnkq+ixSU1PJwMCAJk+eTAkJCXTo0CEyNzen77//Xl23UGdU9FkEBQWRgYEB7dq1i5KSkujYsWNka2tL3t7e6rqFOiMvL4+uXr1KV69eJQD0ww8/0NWrV+nBgwdERDRr1iwaPnw4l790+vzXX39Nt2/fpg0bNrDp86XWr19PjRo1IqFQSC4uLvT3339zx7p3704jR45UyP/LL7+Qvb09CYVCatmyJR0+fLiaa1x3VeRZ2NjYEAClV1BQUPVXvI6q6M/Gq1ggVLkq+izOnz9Prq6uJBKJqGnTprRo0SIqLi6u5lrXTRV5FlKplObNm0e2trako6ND1tbWNGnSJMrKyqr+itcxp06dUvkdUPr5jxw5krp3765Upm3btiQUCqlp06YUFhZW4evyiFhbHsMwDMMwmqlOjRFiGIZhGIapCBYIMQzDMAyjsVggxDAMwzCMxmKBEMMwDMMwGosFQgzDMAzDaCwWCDEMwzAMo7FYIMQwDMMwjMZigRDDMAzDMBqLBUIMw9R4AQEB4PF4Sq979+4pHBMKhbCzs8OCBQtQXFwMoGS38FfLmJmZwdPTE/Hx8Wq+K4ZhagIWCDEMUyt4eHggLS1N4dWkSROFY3fv3sWXX36JefPmYcWKFQrlExISkJaWhqNHj6KoqAj9+vWDRCJRx60wDFODsECIYZhaQSQSwcLCQuFVuut36TEbGxtMnDgRvXv3xsGDBxXKm5ubw8LCAu3atcO0adPw8OFD3LlzRx23wjBMDcICIYZh6hyxWFxma09OTg52794NABAKhdVZLYZhaiAtdVeAYRjmbRw6dAj6+vrc+48//hh79+5VyENEOHHiBI4ePYrPP/9c4VjDhg0BAM+fPwcADBw4EI6OjlVca4ZhajoWCDEMUyv07NkTmzZt4t7r6elx/y4NkqRSKeRyOYYNG4Z58+YplD9z5gx0dXXx999/Y/Hixdi8eXN1VZ1hmBqMBUIMw9QKenp6sLOzU3msNEgSCoWwsrKClpbyr7YmTZrA2NgYDg4OePLkCXx8fHD69OmqrjbDMDUcGyPEMEytVxokNWrUSGUQ9LrAwEDcuHED+/btq4baMQxTk7FAiGEYjaOrq4tx48YhKCgIRKTu6jAMo0YsEGIYRiNNnjwZt2/fVhpwzTCMZuER+3OIYRiGYRgNxVqEGIZhGIbRWCwQYhiGYRhGY7FAiGEYhmEYjcUCIYZhGIZhNBYLhBiGYRiG0VgsEGIYhmEYRmOxQIhhGIZhGI3FAiGGYRiGYTQWC4QYhmEYhtFYLBBiGIZhGEZjsUCIYRiGYRiNxQIhhmEYhmE01v8Bveksd1+lbnoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "\n", + "idx = 0\n", + "for cdata in lst_cdata:\n", + " y_true, y_score = cdata\n", + "\n", + " # AUC 계산\n", + " auc = roc_auc_score(y_true, y_score)\n", + "\n", + " # ROC 커브 계산 및 그리기\n", + " fpr, tpr, _ = roc_curve(y_true, y_score)\n", + " plt.plot(fpr, tpr, color=colors[idx], label=f'{os.path.basename(base_dirs[idx])}(AUC = {auc:.3f})')\n", + "\n", + " # (0, 1)에 가장 가까운 점 찾기\n", + " min_distance = float('inf')\n", + " closest_point = None\n", + " for i in range(len(fpr)):\n", + " distance = ((0 - fpr[i])**2 + (1 - tpr[i])**2)**0.5\n", + " if distance < min_distance:\n", + " min_distance = distance\n", + " closest_point = i\n", + " plt.scatter(fpr[closest_point], tpr[closest_point], color=colors[idx], marker='o')\n", + "\n", + " print(f'{os.path.basename(base_dirs[idx])} ROC AUC: {pr_auc:.3f}, minDist: {min_distance:.3f}, {(fpr[closest_point], tpr[closest_point])}')\n", + " idx += 1\n", + "\n", + "plt.plot([0.0, 1.05], [0.0, 1.05], '--', color='navy', label='baseline')\n", + "plt.xlabel('FPR')\n", + "plt.ylabel('TPR')\n", + "plt.title('ROC Curve')\n", + "plt.legend()\n", + "plt.xlim([0.0, 1.0])\n", + "plt.ylim([0.0, 1.05])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAPeCAYAAADOFAM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gUV/s//nuXXgUUsUuQKFGiJPooXyWWTyzhMRqJlScaNWoSoybymFhSjCW2WKOJqLFg/MTejVhjibFXJPaGoKggXfru3r8//LEfkTbAzJ6Bfb+u631diSxnzpxdj3PvzJzRMDMTAAAAAAAAgJnSiu4AAAAAAAAAgEgojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAqoUmTJpFGoynT74aFhZFGo6GoqCh5OwUA8BJPT08aNGiQ8f+PHDlCGo2Gjhw5YtJ+YN4DFMagarGxsTRp0iS6dOmS6K4AAJQZ5jIAqEwwp0FlhMIYVC02NpYmT56MiRcAKjQRc9m3335LmZmZZfrdAQMGUGZmJtWvX1/mXgFAZaDknNa2bVvKzMyktm3byt42QHEsRXcAAAAA5GdpaUmWlmX7Z97CwoIsLCxk7hEAQMm0Wi3Z2tqK7gaYIZwxBkkGDRpEnp6eBf785XvYNBoNjRw5krZv306+vr5kY2NDTZo0ob179xb43YcPH9JHH31EHh4extetXLnS+PMjR47Qv/71LyIiGjx4MGk0GtJoNBQWFib7/gGAeahIc5mnpye9++67dOTIEWrRogXZ2dnR66+/brzvbuvWrfT666+Tra0tNW/enC5evFjsPpVmv3CvHUDFUJHmNGamH374gerUqUP29vbUoUMHunLlSoHXFXWP8enTp+nf//43ubq6koODAzVt2pR++umnfK+5fv069erVi9zc3MjW1pZatGhBO3fuLLZfJVm8eDE1adKEbGxsqFatWjRixAhKTk7O95pbt25Rz549qUaNGmRra0t16tShfv36UUpKivE1Bw4coICAAHJxcSFHR0dq1KgRff311+XqG8gLZ4xBdn///Tdt3bqVPvvsM3JycqKFCxdSz549KTo6mqpWrUpERE+ePCF/f3/jRO3u7k579uyhIUOGUGpqKo0ePZpee+01mjJlCk2cOJE+/vhjeuutt4iIqHXr1iJ3DwDMhBrmstu3b9N//vMf+uSTT6h///40Z84c6tatGy1ZsoS+/vpr+uyzz4iIaMaMGdSnTx+6ceMGabXFf+ctZb8AoPIRPadNnDiRfvjhB/r3v/9N//73v+nChQvUuXNnysnJKbHvBw4coHfffZdq1qxJX3zxBdWoUYOuXbtGf/zxB33xxRdERHTlyhVq06YN1a5dm8aPH08ODg60ceNG6tGjB23ZsoWCgoJKPWaTJk2iyZMnU8eOHWn48OF048YNCg0NpbNnz9Lx48fJysqKcnJyqEuXLpSdnU2jRo2iGjVq0MOHD+mPP/6g5ORkqlKlCl25coXeffddatq0KU2ZMoVsbGzo9u3bdPz48VL3CRTEABIMHDiQ69evX+DPv//+e37xY0REbG1tzbdv3zb+WUREBBMRL1q0yPhnQ4YM4Zo1a/LTp0/ztdevXz+uUqUKZ2RkMDPz2bNnmYh41apV8u4QAJilijSX1a9fn4mIT5w4Yfyzffv2MRGxnZ0d379/3/jnS5cuZSLiw4cPF7lPpdmvVatWMRHxvXv3JPcXAEyvosxpcXFxbG1tzV27dmWDwWD886+//pqJiAcOHGj8s8OHD+ebz3Q6Hb/yyitcv359TkpKytfui229/fbb/Prrr3NWVla+n7du3ZpfffXVEvv48ryX1+fOnTuzXq83vu7nn39mIuKVK1cyM/PFixeZiHjTpk1Ftj1//nwmIo6Pjy+xHyAOLqUG2XXs2JEaNGhg/P+mTZuSs7Mz3b17l4ieX0qzZcsW6tatGzEzPX361JguXbpQSkoKXbhwQVT3AQCISB1zWePGjen//b//Z/z/Vq1aERHR//zP/1C9evUK/Hle38qzXwBQOYmc0w4ePEg5OTk0atSofJd4jx49usTfvXjxIt27d49Gjx5NLi4u+X6W11ZiYiIdOnSI+vTpQ2lpacZ+JyQkUJcuXejWrVv08OHDMvV59OjR+a7EGTZsGDk7O9Pu3buJiKhKlSpERLRv3z7KyMgotK28fu/YsYMMBkOp+gGmg0upQXYvHqzlcXV1paSkJCIiio+Pp+TkZFq2bBktW7as0Dbi4uIU7SMAQElMMZc9e/aMnj17Zvx/CwsLcnd3L7IPeQdgdevWLfTP8/pWnJL2CwAqJ5Fz2v3794mI6NVXX833end3d3J1dS22zTt37hARka+vb5GvuX37NjEzfffdd/Tdd98V2fcaNWpQfHx8vj93c3Mja2vrAq/P63OjRo3y/bm1tTV5eXkZf/7KK6/Qf//7X5o3bx79/vvv9NZbb1H37t2pf//+xrm5b9++tHz5cho6dCiNHz+e3n77bXr//fepV69eJd7+AqaDwhgkeXkBlzx6vb7AnxW1kikzExEZvynr378/DRw4sNDXNm3atCzdBAAoltrmsjlz5tDkyZON/1+/fv18C14V1YeS+lac8vwuAKhLRZvTlJLX9y+//JK6dOlS6Gu8vb0pJiaGXnnllXx/fvjwYWrfvn25tj937lwaNGgQ7dixg/bv30+ff/45zZgxg06dOkV16tQhOzs7+uuvv+jw4cO0e/du2rt3L23YsIH+53/+h/bv34+nAKgECmOQxNXVtcAKfET/921aabi7u5OTkxPp9Xrq2LFjsa8tasIHACgLtc1lH374IQUEBBj/387OrtT9AADzVVHmtLxnot+6dYu8vLyMP4+Pjy/xapW8y7//+eefIvuV16aVlVWxfbeysqIDBw7k+7NmzZoV+tq8Pt+4cSNfn3NycujevXsFtvP666/T66+/Tt9++y2dOHGC2rRpQ0uWLKEffviBiJ4/hurtt9+mt99+m+bNm0fTp0+nb775hg4fPlzieINp4Nw9SNKgQQNKSUmhy5cvG//s0aNHtG3btlK3ZWFhQT179qQtW7bQP//8U+DnL17i4uDgQERU6KQPAFBaapvLvLy8qGPHjsa0adOm1P0AAPNVUea0jh07kpWVFS1atCjf1SkLFiwosV9vvvkmvfLKK7RgwYIC28trq3r16tS+fXtaunQpPXr0qMi+29ra5utfx44di7yUu2PHjmRtbU0LFy7M1+cVK1ZQSkoKde3alYiIUlNTSafT5fvd119/nbRaLWVnZxPR83ugX+bn50dEZHwNiIczxiBJv379aNy4cRQUFESff/45ZWRkUGhoKDVs2LBMCzHMnDmTDh8+TK1ataJhw4ZR48aNKTExkS5cuEAHDx40TiANGjQgFxcXWrJkCTk5OZGDgwO1atWqwGUwAABSYC4DgMqkosxp7u7u9OWXX9KMGTPo3XffpX//+9908eJF2rNnD1WrVq3YPmm1WgoNDaVu3bqRn58fDR48mGrWrEnXr1+nK1eu0L59+4iI6JdffqGAgAB6/fXXadiwYeTl5UVPnjyhkydP0oMHDygiIqJUY+Hu7k4TJkygyZMn0zvvvEPdu3enGzdu0OLFi+lf//oX9e/fn4iIDh06RCNHjqTevXtTw4YNSafT0Zo1a4xfNBARTZkyhf766y/q2rUr1a9fn+Li4mjx4sVUp06dfGfYQSwUxiBJ1apVadu2bfTf//6Xxo4dS6+88grNmDGDbt26VaaJ18PDg86cOUNTpkyhrVu30uLFi6lq1arUpEkTmjVrlvF1VlZWtHr1apowYQJ9+umnpNPpaNWqVTiYBIAywVwGAJVJRZrTfvjhB7K1taUlS5YYi+/9+/cbz7wWp0uXLnT48GGaPHkyzZ07lwwGAzVo0ICGDRtmfE3jxo3p3LlzNHnyZAoLC6OEhASqXr06vfHGGzRx4sRSjwXR8+cYu7u7088//0whISHk5uZGH3/8MU2fPp2srKyI6Pml2F26dKFdu3bRw4cPyd7enpo1a0Z79uwhf39/IiLq3r07RUVF0cqVK+np06dUrVo1ateuHU2ePNm4QBeIp2GstgEAAAAAAABmDPcYAwAAAAAAgFlDYQwAAAAAAABmDYUxAAAAAAAAmDUUxgAAAAAAAGDWUBgDAAAAAACAWUNhDAAAAAAAAGYNhTEAAAAAAACYNUupL9RoNEr2AwBAEjU+eh3zIwCoAeZHAIDCSZkfccYYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAKCS8PPzI3d3d9HdAKhwNMzMkl6o0SjdFyiEm5sbJSYmiu4GgGpInLJMCvOjGNWrV6ecnBxKTk4W3RUAVcD8CEREp0+fJo1GQ/fu3aNp06ZRamoqxcXFUUZGhuiuAQgjZX5EYaxi9evXpw0bNtDx48dJr9fTsmXLKDY2FhMbmDUc+AHR8/kxPDycnj59SqdPn6Zly5bRvXv3SK/Xi+4agDCYH8HS0pJOnTpFzZs3JyIivV5PzEy7du2iJUuW0NGjRyk7O1twLwFMT9L8yBIREWLihISE5HsPkpKS+MaNGzx48GC2tbUV3j8EERE1Ej0m5hh/f/9870FSUhLPnz+fmzZtKrxvCCIqaiR6TMwtQUFBnJubW+h7kZaWxuHh4ezm5ia8nwhi6kiBe4xVrF+/fvn+38XFhRo2bEjLly+n8+fP04ABA8jf319Q7wAA1MPFxYVGjx5N+/bto8uXL2N+BACzZGNjQ5aWloX+zNHRkQIDA+nUqVP0+eefU7t27Yp8LYBZwjd+6s3p06dLfF/S0tJ48+bN3KxZM7a2thbeZwRROmokekzMMatWrSrxfUlLS+Ndu3bxhAkTuHbt2sL7jCBKR41Ej4m5pVatWnzjxg1J701ubi7v3buXAwIC2N7eXnjfEUTJSIF7jFXqzTffpPDwcPLw8JD0er1eT2vXrqUFCxbQrVu3KC0tTeEeAoghccoyKcyPpnf69Glq2bKlpNcyM0VFRdHOnTtp165ddPbsWXr27BkZDAaFewlgWpgfobTHj0REBoOBduzYQb/88gvmR6i0pMyPKIxVql+/frRu3bpS/96zZ88oNTWV5syZQ9evX6e9e/eq8h9KgLJS4+cZ86PplaYwflFGRgZlZWXRggULaNWqVfTgwQMFegcgBuZHKOvxI1H++fHmzZu0YcMGmXsHIA4K4wqsXbt2tGPHDqpSpUqZ23j27BmdOXOGZs+eTXfv3qWbN2/K2EMAMXDgB0RlL4xfFB0dTStXrqSTJ0/SsWPHKDMzU6beAYiB+RHKUxi/KDs7m2bMmIH5ESoNFMYVnBwHfnmioqJo06ZNtHjxYoqKipKlTQARcOAHRPLOj8xMx44do1u3btGPP/5It27dUuXnDKAkavzcYn40LbkK4zx58+Ps2bPp2LFjlJKSIlvbAKaEwriCk/PAL09cXBxt2bKFjhw5QgcOHKDU1FQ89xMqFBz4AZEy8yPR8ytt1q1bRxcvXqT169eTwWDAgSBUGJgfQe7COA8z06FDh+jmzZsUGRlJ69evp/T0dMrJyZF9WwBKQGFcwSl14EdElJOTQ1lZWbR8+XK6du0arV69mnQ6nSr/UQV4kRo/o5gfTU/J+ZGISKfTUUZGBqWmptKCBQvoypUrtH//fixIA6qG+RH69u1L69evV3QbefPj5s2b6dKlSxQWFkbp6emYH0HVUBhXcEof+OXR6XR0//59Onv2LP388890/PhxxbcJUFY48AMi082PedLS0ujkyZP0448/0qFDh1T5OQRQ4+cS86NpOTo60vHjx6lp06Ym2V7eqv95t6JgfgS1QmFcwQ0cOJDCwsJMus2UlBQ6f/487dq1y3jJTFZWlkn7AFAcNf6Di/nR9ExdGOfJysqikydP0qlTp2j9+vWUnZ1NN27cMHk/AAqD+RGI1DM/RkVFUWpqqsn7AVAYFMYVnL+/P508eVJoH7Zv3268jDAhIUGV/+iCeVHjZxDzo+mJOvB7WWpqKv3+++80a9YsevDgAdZsAKEwPwKReubHgwcP0uLFi+nAgQP07Nkz0d0BM4fCuIJTQ2FM9HzJ/vT0dFq4cCFlZmbS1q1bKSoqinQ6neiugRnCgR8QqefAL8+zZ89oyZIldOPGDVq9ejXp9Xrcbwcmh/lRDDs7O2rWrBmdOnVKdFeISF3zY05ODp06dYp2795NiYmJmB9BGBTGFZxaCuOXPXnyhBITE2natGl07949OnHihOgugRnBgR8QES1btoyGDRsmuhsF5Obm0sOHD+nvv/+m0NBQzI9gUpgfxdBqteTs7EzJycmiu0JE6iqMX4T5EURCYVzB9enThzZs2CC6G8VKTEykK1eu0MaNG+nEiRP0zz//YOl+UBQO/IBIvV8cvujF+XHbtm308OFD0V2CSg7zIxCptzB+EY4fwdRQGFdwFWFiexEz0/bt22n69Ol07tw50d2BSgoHfkBUMQrjF129epXOnz9PCxcuLDA/arVacnd3N36O9Ho9xcfHi+gmVHCYHyuOwMBAatCgAW3evJmSkpIoOztbtrYr6vHjnDlz6OLFi5SZmWn82YvzY25uLiUkJAjsKVRkKIxNyMvLi+zs7OjWrVtE9PxykfL8A9WkSRPau3cv1alTR64umkx0dDQtWLCAFi9eLOtED0CEAz94rqIVxnmio6Pp119/pTNnzpCPjw85OzuTk5MTffbZZ2RpaUlEz58O0KtXL/r7778F9xYqGsyPFYezszNdvnyZqlevTps3b6Z//vmHli5dSqmpqeV+HytaYZwnJyeHduzYQUuXLqU///yTiIhq1qxJkZGR5ODgQA8ePKCFCxfSL7/8gnuUodQk/b1iiYgIKSbz5s3jp0+fckxMDEdHR/MXX3zB/fr1Y29v7zK1169fP6lvjSrp9XpetWoV29vbc8eOHbl79+6s1WqFv09IxY8aiR4Tc8yIESNEv+3lkpqayjqdrsifT5gwQfgYIxUvaiR6TNQajUbDtWrV4jVr1jAzs8Fg4JiYGP7iiy84MDCwzO3Wq1ePb9++LfhdL5+EhASuXbs2ExFbWFjw4MGD+eTJk8zMHB8fz76+vsLfP6TiRQoUxjLF2dmZu3btyjExMfnG7d69e3zy5EleuXIl+/v7c/Xq1Utsy8rKio8fP16KKUSdDAYDX7hwgdPS0jgnJ4ePHz/OzZs3Z6LnE7dGoxH+viEVL2okekzMMadPnxb9titq0aJFbGlpKXyckYoVNRI9JmqPs7Mz//rrr3zmzBnOzc1lZubMzEw+fPgwd+jQgRs1alSq9ir6iRVm5qioKK5Ro0a+/apatSqHh4czM744RMoWKVAYyxw/Pz9esGCBcXJ72ZkzZ3jdunX8zTffFFoka7VaHjx4MGdkZEh9ayqUqKgoXrduHV+7do3XrFnDPj4+XKdOHba1tRX+3iEVI2okekzMMZW9MNbpdLx161Zu2bJlgQNEBCkqaiR6TCpKLC0tedasWRwTE8MxMTGclpbGzMyxsbE8f/58rlOnDlepUqXYNlxdXY3FY0WVnJzMLVq0KHT/WrRowY8ePeJLly5xSEgIW1lZCX/fkIoTKVAYKxCtVsuffvopR0ZGFnmpXN4lM+PHj2cnJye2tbVlW1tbHjJkCGdnZ0t9Wyq8nJwczs7O5vXr13O7du2Ev3eI+qNGosfE3OLr68sPHz4U/babRE5ODj958oS///57dnZ2Fj72iLqjRqLHpCJFq9WytbU1W1tbc2BgIG/fvp0zMzM5MzOTs7Oz+dixYzxgwAC2tbVlCwuLfL9rZWXFkyZNEv12l9uTJ0/Y1dW10KsKNRoNV6tWjb///nt+8uQJL1myhENCQtje3l74e4eoP1Jg8S0Fubq6Ut++falNmzbUvXt3cnZ2LvAag8FAcXFxxhvCXVxcyM7OztRdVYWnT5/St99+Sxs2bFDNswBBfSROWSaF+dG0+vXrR+vWrRPdDZNiZtq1axcNHDgQ8yMUCfNj5WJvb09VqlQhDw8PmjBhAr3//vuk1+spMTGRNm3aRGfPnjW+Njg4mNq2bUuOjo4Ce1x+BoOBYmNjacSIEbRz584iX+fh4UEHDx6k1157jR48eEAzZszA8SMUS9L8KPUbHFJBpV+R06RJE16+fDmfOnWq2AVXKqL09HQ+deoU6/V6WdrbunUru7q6Cn/PEHVGjUSPibmlMtxDV1aYH5Hiokaix6SyxMLCgv38/Lh58+bcvHlznjNnDt+7d0/021tuubm5fPLkSc7MzMz354mJidy0adNix2Tz5s35fgfzI1JcpNASmMSVK1do6NCh1LZtW+rZsyd9//33FBUVRc+ePRPdtTJLSUmh4cOH03vvvUdt27alsLAwWdoNCgqiP/74g4KDg0mrxUcUAMxHdnY2TZ06lXr16kU///xzgZ9jfgQwT3q9ni5dukTnz5+n8+fP05dffkldu3atkM88Z2aaNWsWffnll3TixAmKi4sjnU5H9+7do23bthEzU3p6uvERdoVxdHSknJycfH+G+RHKTeo3OqSCSr8yRaPRsKWlJfft25dzcnKkvg2qsX37du7UqVO+fWrVqhU/evTI+JqcnBxOS0sr85nkjIwMnj9/PterV48dHBywQivCRDgjYu6xsLAwPt5ETjqdjm/dusU//vhjkYsnKsVgMBivvOnfvz9rNBq2t7fnjRs3Fvk7L86PdnZ2wt8XRB1RI9FjUpmj1Wr5p59+ku2KPVPS6XScm5vLWVlZfPToUR43bhwPGjSInZycePTo0ezm5lbkfcbvvvsu79q1q8i2cfyIFBYpUBgLjpOTU4V7NFNycjJ36NCh0P0JCAjg7du389GjR7l///7s7u7OEydOLNcz9RISEjguLo6XLl3KrVq1Ev6eIWKjRqLHxJxiY2NT4LF45WUwGHjixIns7e3N+/fvl7VtKXbs2ME1a9ZkJycn435+++23bDAYSvzdhIQEjoyM5P79+2OFVsQEn9bSEz0mlT02NjYVdpX+xMRE7tOnD7/33nuS97dOnTqcnJwsqX0cPyIvRgoUxipIcHBwgXsr1GzIkCHF7o+dnV2Bezzq1avHY8eO5UOHDvGhQ4c4Li6uTNt+8uQJ9+7dm11cXIS/b4iYqJHoMTGXWFtb88yZM2W9yiYnJ4cnTpzItWvX5r1798rWblEuXLjAhw4d4gkTJnDTpk25adOmhc5n06dPL1W7Op2OIyIiivzSEjGPqJHoMTGHHDt2TNH38ODBg9y0aVMeNGgQ37p1S7Z2nz59yv7+/qzVavnbb7/lMWPGlLivP/30U5m2heNHRAoUxiqIpaUlnzt3rkx/0U3twIEDhT5/ubRp0aIFL126lJ88eVKmfmzcuJE9PT0LvcwGqdxRI9FjYi6pVasWZ2VlyfrezZ07l6tXr65YUZydnc23b9/m5cuXc/fu3blq1aqS9vWrr74q00KNjx494tDQUMyPZho1Ej0m5pBBgwYp9v5t3brV+FzhsWPHckhICN++fVuWK3fi4+PZ399f8n76+PiU+1F9x48f5z59+mB+NMNIgcJYJendu3eZ/5KbisFgYF9fX9n2WaPRsK+vb5kvs05LS+OffvqJ69atyw4ODsLfQ8Q0USPRY2Iukbswjo2NZV9fX/7yyy9la/NFN27c4EGDBrGFhUWpD8KsrKw4NDS0zPcOYn40z6iR6DExh7Ro0UKR9y4tLY3ffvtt43Y0Gg1rNBrWarVcq1YtvnDhQrG/n5GRwSkpKfznn3/y6NGjee/evTxhwgSOi4tjvV7PT58+5TZt2rC1tbWk/axZsyafOnVKlv3Kmx+dnZ1xG4qZRAoUxipJr169yvwX3FQMBgM3btxY9n0PDAwsV7+SkpL48uXL/Omnn3KLFi3wLWAljxqJHhNzSVBQkKwLY4WGhjLR87MgSsjJyeHx48eXeX9tbGw4IiKiXH3A/GheUSPRY2IO+eKLLxR573bt2lVk0dqjRw8+e/Zsvtfv27ePL1y4wAaDgTdu3Mht2rRhNzc3tre3ZyJie3t71mg03K5dO46Pj2dm5tGjR5fqFpA6deoU2G5ZJSUlcUJCAoeGhmJ+NINIgcJYJakIhfGGDRvYxsZG9n23t7fnxYsXS1popiRxcXF85coVHjZsGLdt2xaTXCWMGokeE3OJ3KtR5x2MKVUYMzPfu3ePu3Tpwg0bNiywPx4eHiUuCNO3b1/Z+oL5sfJHjUSPiTlEqXuMi1pTpkaNGnz16tV8rz1//jw7OTlx9erVuVOnTlytWrUi+1utWjWOiopiZuZhw4aVen+rV6/OgwYN4tTUVNn2NW9+3L17N3fu3Jk9PT2Fv6+IvJEChbFKUhEK47yzK0qkbt26ZV6QqyiZmZm8a9cubtmyJderV0/4e4zIEzUSPSbmEG9v73LfW/ayvMLY29ubjx8/zteuXeOUlBRZt5Hn7t27HB4eni8XL17k5ORkDg8P5507d7KPj0+B/XZzc+Pt27fL3p/MzEzeu3cvT5kyhX18fPKtiI1U3KiR6DGp7HFycuLz58/L/r7du3eP69SpU+g2AwMDOSMjI9/rjx07Zvx57dq1i51TtFot79mzhw8dOsR169Yt875/+OGHnJaWJvu+MzPfvHmTw8PDuWPHjtygQQPh7zNS/kiBwlglqQiFcWRkJI8ePVqx58F16NDBeGmNnAwGA8fExPCiRYu4W7duxkt6kIoZNRI9JuYQJe6he/Hyvbx75zp27MgjRozIly+++IKjo6MVOwDLc/369UKLY09PT0W3bTAYODw8nOfNm8e1a9dmCwsL4e83Uraokegxqezp2bOnIu9bREREsdsdPXo05+Tk8MGDB/mrr77ioKCgUvU7b84t7/4HBgbyrl27ZLnqsDAGg4GTk5N5wYIFmB8reKRAYayCaLVaXrBgQZn/0ppSbm4uT5kyRbFL8Dp06CD7meMXZWZm8qFDhzgoKIi1Wq3w9x4pfdRI9JiYQ+QujO/evcve3t6St+/k5MS+vr588+ZNWfvxsqtXrxa47Fqr1fIHH3xQ4AyNElJSUnjatGns5eUl/D1HSh81Ej0mlT1KLd76yy+/FHucZGFhwZs3b+a0tDQeOHCg0DFwdnbmGTNmKHJy5UUvzo+4FaXiRQoUxiqIpaWl8V6LiiA7O5unTJmi2Jnj+vXr8+LFixXdh4yMDD5+/DgHBgZiNcIKFjUSPSbmELkL4507d5apH02aNFG8OL5y5Qp37do136I3Go2G+/fvL+s9dcW5dOkSd+vWTdYnESDKR41Ej0lljqWlpWwLUb0sJiaGL1y4wM2aNSty++vWrTMutFWlShXh49GpUyc+fPiwIuPxoocPH/KsWbO4a9eu7OjoKHy/EWmRAoWxCiKiMH7y5AlfvnzZmNI+TzjvzLHUJfZLG09PT0XPHOfR6XR85MgRPnjwIPfu3Zt9fX25Zs2awj8TSNFRI9FjYg5ZuXKlrO/Z0qVLy9wXb29vnjBhAmdmZsrapxfp9XqeM2dOgTO3+/fvV2ybhYmJicH8WIGiRqLHpDKnZs2aHBsbq+j7N2vWrCK3P2vWLI6MjOTc3Fxev349V6tWjRs3biz0cmN7e3v+5ZdfZF+ToignT57k33//nZs2bcq+vr6KHRcj5Y8UKIxVEFMVxtnZ2Tx9+nQeNmyY8WHteWnRogUPGzaMIyIiODExUVJ7BoOBN2zYwM2bN1dkXBYtWqTwiBQuMjKSQ0JC2MXFRfhnAykYNRI9JuYQOVdd1ev1pbqMuqh89dVX/PTp03zJycmRrZ/Mz5+1HBAQwLa2tkxE3K5dO9m3URqRkZG8bNkybtmypSJPKUDKFzUSPSaVOePGjVP0vTMYDDxp0qRi+2BpackffPABDxs2jGfOnMlJSUn822+/8bJly7h169bCxqZJkyY8Z84ck86XBoOB169fj/lRpZEChbEK4u/vL7kYLSuDwcAhISEl3ldrZ2fHderU4ZkzZ3J4eDjr9foS246KiuKRI0eynZ2drOOycOFCRcekODqdju/cucNfffUVt2/fXrHLxpHSR41Ej0llT8OGDfnevXuyvV+5ubmyFMYWFhbs4OCQLx9//DHPnj3bmFWrVpX72cuZmZm8fv16trW1ZQsLCx43bpykuVlJmZmZvHbtWsyPKosaiR6TypwJEyYo+t49ffqUXV1dJffH1taW33vvPQ4PD+fc3FyOiIgwHnd6enqyt7e3Sc8mW1hY8DfffGPy+TJvfhwzZgy7ublhwS6VRAoUxoJjbW3Nq1atKuvfPcmuXbvG1atXL1XfnJycuHPnzrxt2za+fft2se3r9Xq+c+cODxkyhKtWrSrL2AwfPlzomZE8ycnJfOfOHQ4JCSnXYwUQeaJGosekskfuVftXrlxpsmLO2tqafX19y/04lczMTA4ICGAiYisrK169erVMo1E+mB/VFTUSPSaVNVWrVuWYmBhF37v4+Hh2cHAodd+cnJzYy8uL69aty5aWlhwYGMiTJk3iR48ecWRkJPfr189k9+ZaWVnx77//rug4FSc6OpqPHj3KgYGBWPRVcKRAYSw41atX5/T09DL/hZMiNzeXQ0JCytXPBg0acLt27Tg8PLzAQ91fdunSJf7kk0/KfS+ao6NjidsytevXr/M333yDB78LjBqJHpPKni+++ELW92v+/Pkm34cBAwbw3bt3y9Xv2NhYPnLkCG/atIk7d+6s+OOjSuv69es8YcIELGgoMGokekxMmcaNG7Ofnx+7ubkpvq1vv/1W8TOhZS2MX4yFhQW3bt2aP/74Y75w4YJx5egzZ85w37592c/Pj2vXrq3oWHl7ewu7PS9PTk4OHzt2jBcsWIDHhgqKFCiMBWfEiBGs0+nK/BdNCjkmthdTpUoV/vTTTzkqKqrYvl++fJlDQkLYw8PDeH9caTN48GDFx6cs7t27x1OmTCnzfiFljxqJHpPKHCXWYBBRGBMR16tXjwcOHMgjR47kmJiYch3UXrhwgbOzs4v8uV6v5ydPnpj8EkK9Xs+bNm1iPz8/4Z8dc4waiR4TU8TR0ZGXLVtm/LLq2LFjvGLFCq5fv74i27O0tOR169Yp/t7JffxIRNyqVSsePHgwR0ZGGuewyMhIDgsLY39/f3Z3d1dkzEJCQhQfL6l2797NHTt2FP65NbdIgcJYYDQaDYeFhZX5L5ZUGzduVOQbfHt7ex4zZgwvW7aMs7OzC73sWafTcUZGBq9du5bbtWtX6m1YWVnxjRs3FB+jstDr9dy7d2/hnyNzixqJHpPKHBsbG75//76s75eowvjFODo68tixY3natGl86dIl2W8bSU9P5169evHt27fZYDDI2rYUd+7c4caNGwsfZ3OLGokeE6Xj7u7OU6dOLfSLqvPnz3O9evVk3Z5Go+Evv/zSJCcNlCiM82Jra8tDhw7ls2fPGvclKyuL4+Pj+dtvv+WqVavKdsuLra0tb968WfHxKo1bt25hBWsTRwoUxgLTuHFjxS+FS05O5g4dOii6H1ZWVlyvXj329PTk0NDQIh+z9PTpUx46dCj36dOH69SpI6ltrVbL169fV3SMyqNfv37CP0fmFjUSPSaVOcOHD5f9AFANhfGLqVq1Knt5efG+fftk3c/t27fz6NGjy30Jd1kkJCRwmzZthI+tuUWNRI+J0vH19S12//fu3Svr9jp37sxZWVkmee/+/PNPxVdXdnNz4wEDBvCGDRvyPY7u4cOHfOzYMe7WrVu5783VarX8wQcfqOb2k4SEBO7atavwz665RQoUxgLz3nvvlfXvlGQREREm368mTZpwly5d+NixY3z69OlCJ6IbN27wiRMnjBkyZAi3bNmyQFq1amXyZzxLdeXKFa5WrZrwz5G5RY1Ej4kp06xZM27SpInJtjd+/HhZ36vU1FST9l9qNBqN7Psq0saNG4WPqTlGjUSPidJZvnx5sft/+vRp2bal1Wr54MGDJnrnmLdt22bSs5oODg7s7+/PEydONB4/Zmdn88mTJ3nRokXs4+NTrrHbsmULp6ammmz8ihIcHCz8c2uOkQKFsaDY2tryiRMnyvyXSioRhfHL6dSpE3/66ad8//594Y8YkdOIESOEj605Ro1Ej4kp4uLiwv379+e0tDROTEzktWvX8pAhQxR9DIVWq+Vp06bJ+l6Fhoaq8vFCNjY2/PDhQ1n3VZSTJ0/iS0NBUSPRY6J0SipU5SyMLSwsSnxKiJyGDBkidGw7derEu3bt4ocPH7Jer+f4+Hheu3YtDxgwgGvXrl2m2wT79+/PMTExnJKSYrJxfJm/v7/wz605RgoUxoISFBRkkvu+fvzxR+H7mpe8e5J//fVXzsrKUuWiWlJFRkZKvhwckTdqJHpMlE6tWrX41KlTBZ7Hm52dzcOGDWONRqPIdmvWrCnrt/sGg4E//vhj4eNZWCwsLHjFihWclZVVob9AzM7O5sGDBwsfT3ONGokeEyXj7e1d4q0KKIzLF0tLS3ZwcOCVK1ca50edTsdZWVkcGhrKvr6+pfqCVqvVcs2aNfnAgQMmG8eXoTAWEylQGAuIhYUFX7hwocx/oaSKiYlR5SWD1tbWXKtWLR4yZAj//vvvnJiYqPhYyEmv1/O4ceOEj6O5Ro1Ej4mSqVWrFh8/frzIfc/MzOTmzZsrsu358+fL+gXizZs3TfbszLLEzs6Oa9WqxePGjePIyEjZ9ttUMjMzeejQoYpeRYAUHzUSPSZKZuLEiSXuPwpjefLi/Pj7778bs2rVKl6yZAkHBweXuKZO7dq1+csvv+RHjx4JWZSQmfn+/fvs7e0tfDzNMVKgMBaQOnXqKP5Qdmbmn376Sfi+SkmTJk14yZIlFeYywnv37nH16tWFj5u5Ro1Ej4lS0Wg0ku5nU+Lb74YNGxqfdymX3bt3K3Z2W+7UqVOHW7RoYczUqVP5+PHjHBkZyVevXuVTp06p7qqbU6dOKb5QD1J81Ej0mCiV2rVrc3R0dIn7X1EL41u3bin26CQ5Y2Njw2vWrGFm5pSUFD5z5gyPHz+eW7duzXZ2dvle+8UXX5hk7Iqzfv164WNmrpEChbGJ4+joyKdOnSrzXyip9Hp9hftGqmnTpty7d28+deqUqovkqVOnCh8rc44aiR4TJaLVajk4OFjSKp5KFMZ+fn6yv09dunQRPq7lTfXq1blGjRpsZWXF7733Hvfu3ZsjIiJkH6vSunPnjmLPbEWkR41Ej4kSqV27Np88eVLS/g8fPly27Xbr1s1kKysfOXJE+DhLTdOmTXnu3LkFHnu3d+9e3rhxI/ft25fr16/PixYtMsnYFQeFsbhIgcLYxKlatapJJrWKWBjnxdLSkqtXr87ff/89JyYmCrvcpTAJCQn89ttvCx8jc44aiR4TJdK7d2/OyMiQtP9KFMbffPON7O9TZSiMC8vIkSMlv1dK0Ol0/P333wsfBwTzoymi0Wh48eLFkvb98uXLXLt2bVm2a29vz+Hh4Qq/W/+nU6dOwse6NNFqtTxs2DCeM2cOp6Wl5SuSdTod5+TkqOIqGxTG4iKFJQGojE6no7i4OJoyZQqFhobSl19+Sa+++ir16NFDdNfo22+/pT///FN0NwAUVaVKFfrkk0/Izs5OWB86duwobNsVTWhoKP3xxx80fvx4srGxMf65Vqul999/nxwdHRXd/r59+2j69OmKbgNALRo0aEADBgwo8XUGg4HWrFlDDx8+lGW7Go1G8b/LL9LpdCbblhwMBgP9+uuvZGFhQT/++CO1bt2a3nvvPercuTPVqlWLLCwsRHcRKgKp33CQCir9yhCcMS5bbG1tuXXr1rxv3z7OzMxUfPwKc/XqVXZzcxM+FuYeNRI9JnKnpOdyMj+/esLf35/9/PzY3t5e1u1XrVqVL168KOt7dPz4cXZychI+tqaMhYUF//nnn7KO48t0Oh0HBAQI31fkedRI9JjIHSnzI/Pz2wvkXo8kJCRE4Xfr/6h1Bf/SpkGDBjxt2jSTLlpWHJwxFhcptAQmlZqaSuvWrRPdjQonKyuLTpw4QV26dKFu3brRvn37KC0tzaR9WLRoESUmJpp0mwCmZmdnR6+++mqJr1uxYgWdOXOGLl26RBkZGbL2ISAggPz8/GRtMzU11eRzhmh6vZ5CQ0MV3caOHTvowoULim4DQC2kzo/JycnUs2dPiouLk3X7qampJjuTO3v2bOrUqZNJtqWkO3fu0DfffENdunShHj16CDl+fFFCQoKwbUPJUBibWG5uLl27dk10Nyq0gwcP0r///W/q27cvhYeHm2Sb//zzD+3cudMk2wIQKSAggN56661iX/PgwQNavXo1GQwG459pNBp65513qFq1akp3EUrhxUurlXD79m3ZvxgBUCMrKyuaM2dOifMjEdHWrVvpn3/+kb0Pv/32G0VHR8vebmGcnZ2pXr16JtmWKdy5c4d27NhB//73v2nLli1C+pCbm0s//vijkG2DNCiMoUIyGAy0Z88e+vnnn+nZs2eKbouZZb1PCEDNWrduTRqNptjXxMfH05UrV4iIyNPTk6pXr07du3enDRs20LRp08q1fY1GQ/7+/uVqA56ztLSkr7/+WnQ3ACo8KysrWrBgAX3yySclzo9ERH/99ZciZ3YNBgMxs+ztmhODwUCnT58Wcg91REQEpaammny7IB0K40pKq9XSjz/+SK6urqK7oqgDBw4oflmKXq+njRs3KroNADXQaDTUp0+fEl938+ZN438nJibSs2fP6Pz587R27Vqyt7cvVx+0Wi317t27XG3A/3FwcBDdBYAKT6/X0y+//EJRUVElvvb69eu0Y8cO5TsFZbZ+/Xq6fv26ybe7d+9eSkpKMvl2QToUxiam1WrJ3d3dJNsKCgqilStXUpUqVUyyPVHi4+MVbT8pKanCrc4IUFYl3RP37NkzmjNnjvH/U1NTKSMjgx48eEAPHjyglStXKt3FMnFwcCh30V7R6PV6WrFihWLtY80MMBcGg4EePXok6Wzt/fv3KTk5WZF+dO/enWrWrKlI2+YkOTmZFi1ahGM7KACFsYm5uLjQiBEjTLa9Hj16UK9evUy2PVPT6XQ0bdo00uv1im0jLCyMHjx4oFj7AGrBzDRo0KBiF1M6ePAgnTt3rsCf29vb05EjR+jMmTPl6kP79u0VuU/5rbfeooCAANnbVTNmprVr19Ldu3cVaT8nJ4du3bqlSNsAamJjY0M///wzeXl5lfjamTNnKtYPT09Pk33BFxsbS6dOnTLJtkRYsWIF/fLLL6K7ASqDwtjENBoNabUYdjnt3r2bzp49q1j7uJ8HzMn9+/epZ8+eFBERUehn/8UFt17UtWtXsra2pvT09HJtv2nTpopd5SJl0ZzK5s6dO7RhwwZF2sbcCOYiOzubPvvsM5o0aRLdv3+/yM8+Mxc5R8rBlMePT58+Na4lURnp9Xr6+++/TbY9zJcVAyo0E3v11VdN+pDxmzdvClt9z1Ryc3MVvRzmlVdeITs7O8XaB1CbqKgo6tKlCzVu3JhWr15Ne/bsoT179tDYsWPp888/L/R3Nm3aRIcPHy7Xdq2srKhhw4blaqM477//vqSFcyobpf4NmDdvHlakBrORkpJCU6dOpYCAAHrzzTdp27Zt+Rb/1Ov11LlzZ8W+qHdxcaGRI0cq0ra5evTokUnu+U1NTaUPP/yQfvrpJ8W3BeVjKboD5mbw4MEmLbKioqIUu9fFXLz//vs0b968Sn1JEcDLnjx5Qk+ePKFBgwaZbJvOzs7Uv39/xdq3sbEhV1dXPI9cBtnZ2XTr1i2cBQGzk7eewvvvv09t2rQhb29vmjBhAkVHR9OZM2coMzNTke1aWFiY9HF4S5YsMdm2RNFoNCb7svTx48f09OlTk2wLyg5njCux3Nzccj86BZ7/Y7R27VqaOHEiVa1aldzc3HA5PIAClL53rkGDBjRw4ECzO2usxMrUFy9epK1bt8reLkBFcvz4cVq9ejW98cYbtHbtWkW/KDLl4oG5ubkUGRlpsu2J4uXlRS4uLopvx9nZmT7//HNydnZWfFtQTiwRESHlTNWqVfnEiRNSh7xcDAYD79q1iy0sLITvt9Lx9vbmu3fvKjaOp0+f5h07dnBOTg6npKRwUlIST5o0iYODg1mr1Qrff3OLGokek8qSn376SfH3asuWLWxjYyN8X02ZAwcOyD6OgYGBwvcLKRg1Ej0mlSWmmB/zhIeHV/rjR0tLS75x44ZJxlOv13Nubi7v2rWL3333XRw7CooUOO1lQjVq1CB/f3/Ft5Obm0vjx4+nYcOGKbpas1r4+fnRK6+8Inu7J06coA8++IACAwPpP//5D7322ms0e/ZsevToEX3//fe0atUqOnv2LPXs2ZPefPNN2bcPYG5sbW0V34aVlZXi21CTWrVqUe3atWVt89ChQ3TkyBFZ2wSA4plifsxz6dKlSn/86O3tTa6uropug5npwIED9M4775CPjw/98ccfNGbMGDp48CB17twZVx+qkdRvO0gFlX5FT+fOncv6ZVOpJCYmsrOzs/D9NUUsLCz44MGDso/htWvXuGXLloVus379+hwSEsI3b940vv7x48e8YsUK9vHxET4mlT1qJHpMKkNsbW158+bNir9Xw4cPF76vpkyvXr1kHT+DwYCzxSqOGokek8oQU82PzM/Pbnp7ewvfZyVjaWnJ8+fPV2wMMzMz+dixY9y5c2e2tbXNt+3q1atz+/btOTQ0lN955x12dXWt9OOtlkiBwtiE2b9/f5n/kpXGr7/+ylZWVsL31xR59913OS0tTdbxS0tLYy8vrxK37e7uzqNHj+bY2FhOSUkx/u6yZcvY09OTLS0thY9PZYwaiR6TypAmTZqwwWBQ/L0yp8LYwsKCN27cKOv47d+/32y+eK2IUSPRY1IZYqr5kfn5cYynp6fwfVYy1atX5/T0dEXGLzs7m8eMGSO5Lw0aNODhw4fz4sWLuU+fPuzk5CR8fCprpMA5/EomISGBVqxYQbm5uaK7ojh7e3v65JNPyNHRUbY2s7KyaOjQoXTv3r0SXxsfH08//fQTeXt7U+fOnWnmzJkUHR1NgwYNoitXrtDs2bPJx8cHl8oASGCqx9gp+YxRtdFoNNSyZUvZ2svKyqKlS5dSamqqbG0CgLqEhYXR/fv3RXdDUe3bt1fkthpmpq+//prmz58v+Xfu3LlDS5cupdOnT5Ovry+1b99e9n5BKUj9BoRUUOlX5NSoUYMjIiLK+gWUZFeuXGGNRiN8f02RDh06cFZWlqzjd+zYMbazsytzn9zd3dnb25tXrVrFR48e5bi4OJ43bx5bW1sLH6/KEjUSPSaVIevXr1f8fbp165ZZne1s3Lgxx8XFyTZ+5Z0fEeWjRqLHpDLEVGeMc3JyeOjQocL3V8lUqVKFDx06pMj43bhxg2vWrClbXy0tLblbt25m9e+WkpECzzE2kTfeeIOaNm2q+HYWLVpkNs+VHDBgANnY2MjWXlZWFv3000/legZhfHw8xcfH0+DBg6lKlSrk6+tLer3erM5SAZSFm5ub4tvIycmhtLQ0xbejFt27dyd3d3fZ2lu7dq1iz2gFgKJ9/vnnJnnM3LNnz2jjxo2Kb0ektm3bUocOHWRvNy0tjXr27EmPHj2SrU1mpidPnpjFVaBqgcLYRKpUqaL4Ni5fvkw7duxQfDtqUK9ePWrbtq2sbUZERNCWLVtkay8lJYWOHz8uW3sAAFLVqVOHgoKCZGsvNjaWDh06JFt7ACCdEk/eMEe2trY0fvx4RdpOSkqS/RJ0vV5PZ86ckbVNKB5ufjQBjUZD33zzjeLbiY2NlfWbKjXr168fNWjQQNY2f/jhB7M52w6gJt7e3uTl5SW6G5WGRqOhSZMmyXp/cUJCAt28eVO29gBAGlPOj4cOHaLs7GyTbEuELl26KPbY1Llz55rVFUmVFQpjEzG3Z2cqqXbt2jRw4EBZ23z06BHFxMTI2iYASPPqq6/K/kWXOXvttdeob9++srY5bdo0fHEIIIAp58c///xTNYVx3bp1qVq1arK1p9Vq6bvvvlNkQdTU1FS6du2a7O2C6aEwNoEaNWqQnZ2d6G5UClqtln777Tdq3LixrO1GRERQRESErG0CgLr89NNPlb64c3V1pR9++EHW1fpPnTpFe/fula09AFCfe/fu0datW0V3wyg9PZ2ysrJkaWvcuHF08uRJ8vX1laW9lz18+JAOHjyoSNtgWrjHuAzs7e1Jp9NRTk6OpNf37NmT6tWrp3CvzMO///1vWS8PJHq+uMFvv/0ma5sAIJ2Li4tJtlPZH0FCRNStWzdZ7y0mIoqKiqKUlBRZ2wSAkmk0Gvrwww9Nsq2lS5fSkydPTLItKRITE2Vry9PTU/Zjxxf99ttvlf5LV3OBM8alZGlpSaGhofTmm29Ker2trS117NhR4V4R6XQ62r17t+LbEcnOzk725xbnuXjxouxtAkDJNBoNff3114pv59atW3Tr1i3FtyOSjY0Nffvtt7K2ycw0bdo0WdsEAGk0Gg298cYbim/n1q1btGnTJsW3UxkZDAY6f/686G6ATFAYl5Kfnx91796dfvnlF6pfv36Jr7e1taV27dop3q///d//pdDQUMW3I1Lr1q0V+ZLhxo0blJqaKnu7ACCNKdZg2LBhA929e1fx7Yg0aNAg2RfpuXHjhqxnbgBAuoYNG5Kzs7Pi27lz506lnx+VcvToUTp69KjoboBMUBiXUrdu3cjFxYXefPNN6tevn0meKydFRkYG6fV60d1QjL29PY0aNYpsbW1lb/vQoUMUGxsre7sAULJatWopvgbDgwcPaPny5YpuQzRnZ2f673//SxYWFrK2i/kRQJyOHTtSzZo1Fd1GbGws/fDDD4puozK7du2a5Fsr1cjLy4vatm1L9vb2oruiCiiMS2nLli2UlJRERETff/89rVu3rthnFAcHB5ODg4OpuldpeXp6Uvfu3WVvNzMzk9auXSt7uwAgTVBQkKJrMDAzhYWFVfr7i93d3alWrVqyton5EUAcrVZLrq6uim6DmWnlypV0/PhxRbcjUt26dalz586KtJ2SkkLz5s1TpG1TcXNzoz/++IM2bNhAPj4+orsjHArjUrpy5QqtX7+eDAYD2dnZUc+ePYtc6ESj0VCzZs0Uv0wwOzu70q8Y2r17d0XOzufm5tLVq1dlbxcASmZra0tdunRRdBsJCQk0f/58RbchmlarpXHjxsm+/kJ6ejpduXJF1jYBQBonJycaPXq0ottIS0ujBQsWKLoN0apWrUqvvPKKIm2vW7eO7ty5o0jbpnLt2jVKTEykffv20Y0bN0R3RzisSl1Ker2eQkJC6MmTJ/Taa69R7969qW3bthQWFlbgtV5eXjRgwADF+5SdnU1///234tsRpU6dOoqN4/nz51XzzD4Ac2Nra0sBAQGKtZ+SkkJDhw41XuVTWb366qvUv39/2dudN28eVqMGEESj0SjyzN0XnT9/njIzMxXdhmgTJ05U7LZHg8GgSLumlJGRQc2bN6fk5GSsrE0ojMskOzubJk+eTFZWVvTDDz9QcnJyoa+zsLBQ5J5Yc/P666/L/tziPDt27KCMjAxF2gYAcZKSkmjIkCG0Y8cO0V1R3Pjx4xW5TzsjIwMHSgCCjBw5UvGFtyr7MVBAQAB16tRJdDdUjZkpISFBdDdUA4VxOeTm5tI///xT5M+HDh2q+Ld9RES///47PXv2TPHtiKDRaGjo0KGKtJ2bm1vklxoAoLz+/fsr8vg1ouePYNu2bZsibatJ8+bNqWvXrrK3GxsbS3/88Yfs7QJAyaysrKhRo0YmOYaszLy8vBT7NyYjI4PWrFmjSNsgDv7GKcTCwoKaNWum+HYMBgNFRkZSbm6u4tsSoU2bNtShQwdF2o6KiqL//d//VaRtACieVqul119/nSwt8f1sedSrV4/c3d1lbzchIYHu3bsne7sAULKQkBD64IMPFN1GfHw8HTt2TNFtiKTRaGj8+PGKta/T6XBPbiWEwlghb731lmIF3Yvu3btHq1evVnw7orzxxhuKrcrIzLhMEEAQU63BUJlptVr67rvvFGn7hx9+qBT3zwFUNHnrqij9ONDExES6dOmSotsQ6fXXXyc3NzfF2j9z5gzWqKmEUBgrxMrKSvHVqImeLwaWlZWl+HZEcHJyolGjRinW/o8//ogDPwBBmjRpgjUYyik4OJiaNGkie7uJiYmV/vFWAGr12muvka+vr+LbmTVrVqU+Bmrbti15eHgo1v4ff/xRqe/PNlcojCu4ZcuWVdqJbfDgwYotsU9E9OTJE8XaBoDiffzxx4qeEVmyZIlibauBVqulhg0bkrW1textX7p0iU6fPi17uwCgDpcuXarUawg4ODjQwIEDFWv/wYMHZrGwoznCzV0V2KVLl2jz5s2iu6EIrVZLTZo0Uez+wxs3blBkZKQibQNA8SwtLRW7oiYzM5P+/vtvOnTokCLtq4WSV9RU1n9XAIAoOTmZQkNDKT4+XnRXFBMUFERNmzZVrP2EhASKjo5WrH0QB4VxBXX58mUKCgqqtJe7eXt704cffqhY+zExMZV27ADUTqk1GHbt2kWhoaF0+PDhSnuLSZ7WrVsrdin68ePHFWkXAMQ6ePAgDRgwgOLi4kR3RVGtWrVS5GoaIqLo6Gj66KOPKu3VmuYOhbFClLjvK8+lS5coKCiIoqKiFNuGaF9//bWi9x/OnDlTsbYBoHiWlpayXw0SFhZGI0eOpPT0dFnbVSMHBwcaPny4Is8ujo6OptTUVNnbBQBplDp+3LdvH33wwQeV/pm1np6eiq7o/dFHH9GFCxcUax/Ewj3GChkyZIgi7V64cKHSF8Vvvvkmvfvuu4q1j4VlACqX/fv30+eff24WRTER0b/+9S9F5kiDwUC//fZbpf73BUDtlDh+vHz5Mg0YMKDSF8VERKNHj1bsaSbh4eFYf6GSwxnjCiIhIYEWLlxoFgctw4cPp6pVqyrW/v/+7//S7du3FWsfAEwnJSWFFi5cSGlpaaK7YhI+Pj7022+/KbJwWUZGBi1cuFD2dgFArOTk5Ep9T3GeFi1a0Pvvv69I29nZ2fTzzz/Ts2fPFGkf1AGFcQXw559/0gcffEDx8fGV/p6GZs2aUbdu3RRrPy0tjWbNmqVY+wBgWvPnz6fw8HDR3TAJrVZLAwcOpLp16yrS/okTJ/D4EYBK5vLly7Ru3TrR3VCcVqulpUuXKjY/Hj16lP766y9F2gb1wKXUCpFrxeP9+/dT37596cmTJ5W+KLa0tKSPPvpI0efOLVq0iB4/fqxY+wBgOvv376eff/6ZmFl0V0yiT58+NGbMGMXaP3DggNlcjg5Q2WVmZtKmTZsoKCio0j++juj5/Pj6668r0nZGRgaFhoZifjQHLBERIaWIi4sLnzx5UurwFmrPnj1crVo14ftiqnh7e3NycnK5xqw4sbGxXL9+feH7iZQvaiR6TCpaWrVqxSkpKeUac3ObH728vPjSpUsyfWILwvxYOaJGosekoiU4OJgjIyPLNeZpaWn8ySefsEajEb4/poidnR2fO3dOpk9sQXfv3mVLS0uT7U+PHj14+vTp/Ndff/HMmTO5efPm3KRJE+HjXNEjBQpjBfPBBx+wwWAo9V/AtLQ0szvos7Cw4MWLF5d6rEojIiKCLSwshO8rUr6okegxqYhZt25dmcd7//79mB9lNm3aNLM5iK7MUSPRY1IR06hRozIdPzIzP3nyhIcNGyZ8H0yZAQMGcFZWlsyf3P8jYn4cNmxYvs9ASkoK//bbb/zJJ59wjRo12NraWvi4V7RIgcJYwVSrVo1PnjzJOp1O0hgbDAZOTEzkwMBAtrKyEt5/U8bb21vRSc1gMHDv3r2F7ydS/qiR6DGpiKlZs2ap5kdmZp1OxwcPHuSqVasK778pY4r5sUePHsL3Eyl/1Ej0mJQ3Li4uPG7cOO7atavJzhrmHT+WRt78WL16dbP6ksvFxYX/+usvhT69zPfv3+fGjRubfL/69u3LZ8+eLfR9zsjI4OXLl3NISAg7ODiY9Gx2RY4UKIwVjouLC/fr14/Xr1/Pjx8/LnaMw8LCuFatWsL7LCJhYWFSP4plcurUKbazsxO+n0j5o0aix6SipjTzY2JiIr/33nvs7OwsvN+mDuZHRGrUSPSYlDeWlpY8YsQIXr58OX/33XccGBhoku3WrFmTw8LCODU1tcQxNuf5sWfPnqzX6xX7/C5YsEDIftWvX7/E2wv1ej3HxMRweHg49+3bl/v27cu+vr7C3xO1RgoNs7RVS5R4NIS58fHxoY8//phat26d78/1ej398MMP9Pfff5vNI0de5OTkRH/88Qe1bdtWsW28//77tG3bNsXaB9OROGWZFObH8subH9u0aUPNmjUjGxsb0ul0dOnSJbpw4QItWrSI/vnnH9HdNDk/Pz86dOiQYs/lJML8WJlgflRO9erVyc/Pj/z9/alt27Y0depUevToEd28eVPR7fr5+ZGtrS316dPHePzYuHFjio+PNz6Cafr06bRz505F+6FW27dvp/fee0+x9ps3b04XLlxQrP2i2Nra0tSpUykkJIQsLCwk/96DBw/owYMH9NNPP9GBAwfM4tnVUkmaH6V+Y0IqqPSRypl27dpJ/RiWSXp6Or5Bq0RRI9FjUpmi0Wj43Xff5X79+nFQUJDZrwuwfPlyRT+7f/31F7u6ugrfT0SeqJHoMZErAwYM4NzcXGZ+fvtBTEwM9+zZU0hfOnTowF5eXsLHRHR8fHw4JiZGsc+u6PnR0tKyXOtLnDhxggcPHsxubm7C3ys1RAoUxojwzJw5s8x/6aUICwtT7f02tWvX5smTJ3PXrl3N7r7yskaNRI8JUjnj5+fHjx49UvSzu2LFCuH7icgXNRI9JnKlRYsWHBMTw5mZmZyUlMQ9e/bMd2xhZWXFISEh3LBhQ7axsRHeX3OIksePubm53L9/f+H72Lx5c+PnrixrTeh0Or548SJ//PHHZv+5lAKFcRFxdXXlXr16mf3ZClPkwoULpf6LLlVmZiY3bNhQ+D4WlS1btjDz85XIDxw4wF27dhXeJ7VHjUSPCVI5M2jQIEU/t2fPnuW6desK309EvqiR6DGRK/b29lyzZk1jXryf18bGhkNDQ1mn0/HTp0/5xo0bPHDgQHZwcBDe78ocJY8fz5w5w1WqVBG+j0TE7u7uXLNmTfby8irzQmM5OTm8ZMkS1mq1wvdHVKRAYVxI3NzcePDgwZyTk8Pnz5/nZcuWcZs2bczq8SCmSvXq1fnmzZtl+ksuxc2bN1V9CcmyZcvy9TcjI4NHjBhh1hNXSVEj0WMiIlZWVuzv72/230ArFa1Wy5MmTVLsM5udnc2DBg0Svp9S065dOz579iyHhIRwmzZt8gXF/f9FjUSPiSlSrVo1TktLy7ffBoOBIyIiePPmzficKpB3332X09PTFfvcfvPNN8L3sbB4eHjw4cOHy7RPd+7cqVDzvtyRAoVxIQkKCip0DE6fPs3Dhg1DgSxTNBoNh4SESP0IlppOp+ORI0cK38/i4uvrW6DfWVlZ/OGHHwrvm1qjRqLHRETGjBnDubm5HB4ezv7+/sL7U9ny4YcfKvqIpujo6Ap1+8bgwYOL3JerV6/yN998wzVq1BDeT9FRI9FjYopYW1vzypUrix2HK1eu8ObNmzkgIIDt7e2F97kix9ramg8ePKjYZ/bp06eqXpsmMDCwVPtz7Ngx7tmzJ/fs2ZMbNWokvP+iIgUK40LSsGFDvnv3bqHjoNfrOSIigkeMGIHLrMuZKlWqKHr/3J07d9jW1lb4fhaXwgpjZubp06cL75tao0aix0RE+vbtyzk5OczMHBMTwxMmTFD937eKEo1Gw7Nnz1b0M1uRLqmzsLAo8coig8HAUVFRPGHCBHZycmJra2vh/RYRNRI9JqaKv78/JyYmljgeOp2OV61ahattyhGlzxarfX7s0qVLiY+o0uv1nJ6ezikpKfzBBx8I77MaIgUK4yLy448/FjseOTk53L17d+H9rMj55ptv2GAwSP0IltqQIUOE72NJQWFc+qiR6DEREWdnZz5x4oRxDPR6Pf/+++/ctm1b4X2r6KlTp06Jz68sj7i4OG7RooXw/ZQaCwsLvnPnjqR90+v1HBcXx+Hh4SZ73qyaokaix8RUsbS0LPKkysv0ej1/8cUXwvtcUTN9+nRFP7N9+vQRvo/Fxdramo8ePVrsPixZsoSrV6/O7u7uqi7yTRkptASFWrZsGT1+/LjIn1tZWdGECRPI0tLShL2qXBwcHBR7vmFqairduXNHkbYB4Pnfsd69exvnSa1WS//5z39o2LBhgntW8Wm1WrK3t1es/Tt37tC5c+cUa18krVZL7u7uFBgYSBs3bqRLly7RiRMnyMXFRXTXoJLT6XQ0d+5cSa9V+u84lN3ly5dp//79ortRrJycHMrJySny5wcOHKD//ve/FBcXR/Hx8WQwGAq8pkWLFtS+fXtq3749NWrUSMnuVigojItw+/ZtWrt2bbEPg65Vq1aleXC9CBs3bqSUlBRF2j569CgdOXJEkbYB4LkmTZqQg4OD6G5AKS1fvlx0F0zC0dGRmjVrRs2aNaPq1auL7g6Yga1bt9I///xT4ut0Oh0lJycr36FKKikpifR6vSJtL1y4sEK/N3q9nubPn08ZGRmF/rxGjRq0Zs0aOnjwIB0+fJgOHz5M+/btozfffNPEPVUnFMbFmDNnDmVlZYnuRqV18+ZNys7Olr1dnU5HP/zwg+ztmgozF/tNIIBaHDlypMCVNS1atKC6desK6lHlkJSUpNgXexcvXqTdu3cr0rbSDAYDPXv2rNS/Z29vT//9738V6BFAfo8ePaKVK1eW+LrY2FhasWKFCXpUOS1evJgSEhJkb1en01FERITs7ZqSwWCgK1euFPozjUZDY8aMof79+1OVKlWMf16/fn2aMWOGqbqoaiiMi/Hs2TM6f/58kT8v7mwylCw3N5dOnTole7s7d+4s9n1Tu/T0dDp+/LjobgCUKCcnh6ZPn57vz3x8fOj9998X1KPKIS0tTZFLnQ0GA4WFhRV7m5Ca/frrr9SkSRP6+++/S/27TZo0oXfffVeBXgHkt3nzZrpx40aJr8MxZNnl5OTIfvxoMBjo66+/posXL8rarprUqlWLPv7440J/ptWiJCRCYVystLQ0Wrx4cZFnjXft2qXYpRzmIDc3l7Zt2yZrm8xMkZGRFfp9cXR0pA4dOojuBkCJNBoN1alTp8Cf9+nTR0BvKpclS5ZQYmKirG3eunWL1q5dK2ubphIXF0eLFy+m6Oho6t27Nz169KhUvx8QEEDr1q0r8qAQKidHR0dasWIFLVy4kDp37mySe81jYmKoT58+uOJQQUocP+p0Olq3bl2FPn4kIgoLCytyfoyLi6Pp06cXuCrxwYMHlXbdidLCylElWL9+PdWoUYOmT59Otra2+X7WvXt3+u9//1voTe1QMo1GQ+7u7rK2+fjxYwoNDZW1TRHc3NzI0tKSdDqd6K4AFKuwb5kbN25MAQEBZTqzB889ffpU1r//Op2OQkND6enTp7K1aSqurq5kaWlp/LeWnz9Ro9TtODo60ty5c0mv19OqVavwb3cl5+joSG+//TZ99NFHREQ0atQoOnXqFN2/f5+mTp1KN27cUOzf2IcPH9LTp08L/eKQiMjS0pLc3NzoyZMn5dqOm5sbubu7U3R0NGVmZparLXO3cePGCjk/vuzp06eUm5tb6M9yc3Np9uzZdO7cObK2tjb+eUxMjKR7482C1KXLSQXLbItMz549ecSIEbx161bjI4auXbvGlpaWwvtWUWNvb8+PHz+W+hGUZOrUqcL3qzRxc3PjY8eOFdgPnU7Hq1ev5mbNmrGVlZXwfqopaiR6TESmT58+hY5J7969ZduGlZUVu7i4cJUqVYTvr6lib2/PT548ke0zGhsby3Z2dsL3q7TRaDQ8YcIEZmbetm0bL1q0KN9jwsoiOTmZPT09K+UjTNRI1FjUr1+f582bV2ifcnNzOSwsjMeNG8fOzs6laler1fKAAQN40aJFXL9+/SJf98033xQ7LuPHjy/X/rm7u/ORI0fYYDDwli1beMaMGVytWjW2t7cX/jk0RQYNGiTbZzQ5OZnbtGkjfJ9KkwMHDhS6L3jcZ9GRAoVxKePg4MDTpk3jR48ecf/+/YX3pyJH7gO/tLS0Cvls6WXLlhW5T7dv3+ZmzZqxVqs1HsRpNBrWaDTC+y0qaiR6TF6Ovb09Dx8+nEeNGsW9e/fO9/mRO3379i10TOQqjJs3b85Llizh5ORkjomJ4c8//5ydnJwq/d8BuefHjRs3Vsgvct3c3Dg+Pl62cciTnJxcIZ51X9qokaix8PT05EuXLhXbN51Ox/fv3+fRo0fzqFGj2MPDo8R2hwwZwnv37uWFCxfyhx9+WOhr7O3tedu2bcVue8KECWXet2rVqvHhw4fztWcwGDg5OZn/+usvHjVqFDds2LBSz5NyFsYxMTFsa2srfJ9Kk6IK4xkzZgjvm1ojBQrjMqZevXrs6OgovB8VOXIf+P35558V8uxqYYWxwWDgefPm8ahRo3jIkCF87do1vnHjBv/44488Z84cnjNnDnft2pW7du3KHTp0qNT/+L0cNRI9Ji+nRo0anJmZyczMmZmZfOPGDY6MjOTg4GBZz7paWlryuXPnCh0TOQpja2trXrFiRb52DQYD37lzh/ft28c1a9YUPtZKRe758YMPPhC+T2VJmzZtOCMjQ7ZxeFF6enqFO0tUUtRI1Fg4ODgUmD9Kcv/+fZ4wYYLx31cnJ6d8bVarVo0XL17MXbt25fr167ODg0Oh2/bw8Cjxc1uewviDDz4ocV9iY2N57ty5bGNjI/xzqUTkLIxHjx5d4Y6jiiqM4+LiuH///uzq6iq8j2qLFCiMEWGR88AvIyODu3btKnyfSht/f3+OiYkpsD+5ubncqlUr9vLy4vnz57Nery923w8ePMhTpkxhX1/fAv+QV7aokegxeTnW1tbcqVMnvnz5coG+rl27ttSXDhYVjUZT5OWC5S2MbW1t+ccffyz2s3/58mUODg4WPt5KRM758ebNm1yjRg3h+1TaFDU/yqlz587C91POqJHI8WjYsCEnJiaWue+nTp3itWvXctOmTdnX15fDw8P5nXfeYSLiOnXqFHnZstKF8ctni4ui1+v522+/Ff65VCJyFcYVcX587733OCEhoch9un79Ovv5+Qnvp9oiBQpjRFjkPPA7d+6c8P0pbUo66Ltz5w4/evSo1GMRFhZW4b75LE3USPSYFJUGDRrwsGHDeNy4cazT6Yz9DQoKkm0b7733Hufm5uYbj9u3b7Onp2e52m3Tpo2ksf/mm2+Ej7MSkXN+PHr0qPD9KW18fX0VLYozMzP5+PHjXKdOHeH7KmfUSPSYBAYGclJSkmz706dPnxIvux0+fHi+Ofdler2eR48eXab9sba2LnRtkqKsXr2avb29edmyZfnSpk2bCnf58IuRqzCuSPOjg4MDd+vWje/du1foZ/rRo0c8fPjwSn+CpKyRAoUxIixyHvjNnj1b+P6UJi1atJD1oE+n0xmzZMkSFMYmJnpMSkqVKlXyHUjJWRhbWlryqVOn8o3H8ePHy9WmRqPhffv2SRr78px1UXPkmh9v3LjBPj4+wvenNNFqtTx79uxy73thdDodHzx4UFJxUxGjRqLHRKPRcJcuXXj79u3FXoEiVWZmJm/YsIHffvvtQrdXvXp1Pnv2bLFtREdHl3mRrK5duxZbdL/IYDDwypUrOSAgwLhw7Iv7sWnTJh4zZgz36tWLLSwsKtSxg1yFcVHvo1ri6+vLo0ePZk9PTw4MDOSpU6dy/fr12dvb23hVmMFgYIPBwMOGDRPeXzVHChTGiLDIdeD38OHDCnXg5+zszHfv3i33fjMzHz58mJcvX87e3t7s5eXFXl5elX5FSjUSPSZSEhwczNu2beO5c+cWeV8c0fODuh49enCPHj3Y19dXUtsvrxJc3sK4Y8eOxnukixMbG8vu7u7Cx1aJyDU/btq0Sfi+lDYBAQHluvy1MPfu3eNZs2axl5eXbLcSqDFqJHpM8uLg4MDt2rXjPXv2yFIgJyUl8bBhwwrMQX5+fiX+7v3798u0Jkpxt68UZu7cuezu7s62trbFftmYkZHBd+7c4alTp1aYRfrkKowDAgKE70txcXZ2Zi8vrwJPFfjqq684Pj6ed+3axVOnTuWQkBCcKS4hUqAwRoRFrgO/BQsWCN+X0sTFxYWTk5PLtK/Xr1/nL774gtu1a8ft2rUzywXg1Ej0mMgZf39/vnDhAsfHx3NMTAz7+/uX+DsbN27MNx4bNmwoVx+GDx8uadwnTJhQoc5wlCZyzI+xsbGqP+grKqNGjSrXvue5e/cuT5o0ib29vYXvkymiRqLH5OVYW1tz+/bt+dChQ5yenl7u/YuIiODhw4ezn58f+/n58YYNG0r8nRMnTpSpALWwsODbt29L6teTJ0/Yy8uLiYgdHR350KFDJf5Obm4uHzt2jH/55RfVn3CQozBOSkqqEPfijhs3jn18fNjCwsK46KS9vT23bt2aLSwshPevokQKFMYqi1ar5eDgYP70009la9PZ2Zk9PDxU95dHjgO/nTt3Fnv2S42xtrbmDz74gCMjIzk7O1vyvh44cICrVasmvP+io0aix+TFWFpasoeHR7m/NGnfvj1HRUXxmjVrSnytn59fvjO8LVq0KPN2pR743bp1q9z3Mas5csyPFfmxHXXq1OFx48bxkydPClwCKkVcXBxPmDCB69WrJ3xfTBk1Ej0mxeXTTz/lx48fc1paGjMzJyQk8OPHj415ef2EkmRlZXFOTk6xr0lISOBu3bqVqb9OTk4cFRUlqS+zZ882PqbPw8ODBw4cWCCbN2/mx48fF3q/amJiIoeFhfHgwYPZw8NDdU/9KG9hnJqaKuttRaaIs7Mz79ixgwcNGiS8LxUxUqAwVlE0Gg3379+fMzMzed26dbK06e7uzsePH+e0tDSeNWsWDx48mK2srBR7pmlpUt4Dv9TUVH733XeF70dZY2try8OGDeNz586VeFnX4cOHuWrVqsL7rIaokegxeTF+fn6cnp7O4eHh7ObmVq7L4uzs7CQ96kOr1eY7S1Kewtjf37/Y1TbznDhxQrYxs7S05E6dOrGVlZVqzkCb+/xI9PzfxKpVq/LkyZM5Pj6+xALZYDBwQkICT506ld3d3VXzXpoyaiR6TIqLVqtle3t7DgwM5OnTpxtvR8rLF198wdeuXeOcnJxi7+vV6XR8/PhxHjhwYJELY+n1etbr9RwQEFDmExWff/65pC+KYmJiSrwVxtXVlUNCQtjV1ZW7detWZLu5ubmcnp7OoaGhPGHCBG7fvr0qTrSUpzBOT0/nHj16VMg5Quq/y0jBSIHCWEVp2rQpp6WlsV6v5/Hjx8vW5ouys7P5/v37vHz5cm7VqpXQ/S3vgV9ISEiFnNRejpubGw8YMIA3btzIcXFxBfYzMzOT+/btK7yfaokaiR6TF9O8eXNjv2JiYvivv/7i3r17K35Z3Lhx44xf8JSnMA4JCZE05osXL5at759++imnpqby/fv3eebMmdyzZ88C93OZOpgf86dWrVo8Y8aMIs+WRUdH848//si1a9cW3leRUSPRY1LeuLu7c7169bhfv368cePGQp8WMW7cOHZxceHatWvzlStXCvw8IyODR40axUuWLGFra+sy9aOw57oXRcoXh5aWllynTh3WarVsa2vLP/30k6S2k5OTeceOHdy7d2+uW7eusPelPIXxwYMHUVyaYaRAYayitGjRgpmfLxJSvXp1Wdq0t7fnnTt3FvqexsfH89q1a7lZs2ZCDqDKc+B369Yt2cZITfH19eUuXbrwsWPH+MyZM3zmzBnevXu36i5hEhk1Ej0mLyYoKKjQPt6/f1/R51nWrl2bs7KymFn5wjghIYGbNGkiS78tLS15wYIF+do3GAx89uxZ7t27N7u5uQl5H21sbPjcuXNl+jxmZGSU+VJNtcfb25snTpxonB/PnDnDJ06cKNdnrjJFjUSPidxp3Lgxt27dmsePH89nzpzhHTt2sIeHBxM9/6J73bp1fObMGZ42bRq3bt2aW7duzS1atGALCwuuX79+mbdbtWpV4yXfJVm/fn2p27ezs+PWrVtzQEAA7969m1NTU0vczo0bN/jbb7/lFi1amHzhz7IWxpV5fkSKjxQojFUUNzc3Dg4OlrwSrNQsX768xElizZo17OPjY9ICrKyFcWZmJo8aNUr4+4WIiRqJHpMXU9zzLTdt2qTY33E7OzteuXIl6/V6XrhwYZnacHR05OPHj5c43nLdakL0fN4t7nnhx44d4w8//JBdXV1N/l6W9cCvIj2XE5E3aiR6TMoTa2vrUn8JX61aNa5Ro4bsJxyGDx8u+Z7nli1blnt7pZ1/9uzZw126dOGaNWua5Ha9ss6PY8aMEf65QsREChTGZpB+/fqVuBgE8/PLrJcsWcJNmzY1yf0jZS2Mt23bVqkuEURKFzUSPSYvprjCWK/XK/rcXwcHB46NjeXo6Ghu2rRpqX9fyhkRnU7HgwcPlrXfEyZMKHGb586d4yFDhph0fYayHvh16tRJ+OcQERM1Ej0m5UnHjh350aNHPHnyZO7evTvb2NiUOAccOHCAo6Oj2cXFRdZHHy1dulTSeEdGRspyS4GHhwefP3++VO91Tk4Op6WlKXJbg6+vL9eqVYuJni/SOGzYsFJ/Fq9fv16pF21Eio8UKIzNIE5OTnzy5EnJE0dCQgKHhoYqfv9FWQpjvV7Pb775pvAxRcRFjUSPyYsprjBmZv7rr78U27aVlRXv2rWLmZnDwsJKXURKKYyzsrK4Tp06sva7W7duki5RzM7O5sDAQJO9l2UpjGNiYlT/mBVEuaiR6DEpT/766y/jfqSnp/PDhw958uTJ3LBhwyJ/58iRI6zX6zk2NpaXLFlS4jaqV69e4pxWpUoV/vPPP0sca71ez1999ZVs+1/SFYfFOXHiBAcHB3OjRo1k6UtwcLDxlonx48cXupJ2cQwGA3///ffCP1OIuEihJTPi6elJXl5eorthcmlpadS7d2+KjY2V9Ho3Nzfq378/ValSReGeld769evpypUrorsBUKnY2tpShw4d6MiRI3TmzBk6c+YMjR07llq3bk22traS28nNzaX169fT5cuXKSQkhAwGg+x9/e233+jJkyeythkeHk5nz54t8XXW1tY0YcIEsrCwkHX7RXny5Ak9e/asVL+zZcsWun79ukI9AjAvLx4H2dvbU61atWjixIm0f/9+On36NPXo0YP8/PwK/J5Wq6WaNWuSq6triduoVasWbd68mYKDg4t8TZ06dahDhw4ltpWbm0vr1q0r8XVS3b9/v8zz+P/7f/+P1q5dS5988glZWlqWuy8JCQnG+dDZ2ZlcXFxK9fsPHz6k5cuXl7sfUMlJ/aaFVFDplzfz58/nW7duyX4Pb0WIRqPhcePGGRfHKUlsbKzijwcq7RnjtLQ09vf3Fz6WiNiokegxeTGlPWNsY2PDs2fPLvL1c+fOLdXVI0FBQbx169Yy9b2kM8Y6nY5DQkIUGbeiFi172cWLF2W9PLKkXLhwQVK/mJmTkpLKtbgPUvGjRqLHpDw5cuRIifuXnJzMq1atMt6LPHjwYOPPdu3axR9//DG7uLgUuY02bdrww4cP+eTJk9yxY0eeOHEi16xZM99rmjRpUuJjmnQ6Hf/666+yrqjv5ubGDx8+LNf7n5uby+PGjZNlfQsPDw/+5ptv+Nq1a6Xqg16vx9liRNJnxawK48DAQH769CkPHz5ceF9ERKPR8Pjx40t8r5OSkjggIEDx/jg7Oxf6eKKiPH78mB0dHYWPIyI2aiR6TF5MaQpjOzs7njt3brEHXAaDgbt06SJ5+xqNpsyFY0mF8f379xVb+bRRo0Z87969Et/rPn36mPT9PHXqVIl9yjN79mzhnz9EbNRI9JiUJx07dpS8nzNnzmSi58+Sz2MwGPjhw4e8d+9ednFxKfCoJjs7Ox48eDBPmDCBx4wZww4ODjx06FBet25dvrVUiiqMs7KyeObMmXz9+nW+c+eOIvOjlOPGl+l0Ok5PT+dVq1bxhAkTeOzYseU+2WJhYcGnTp2S9Bznlz1+/JirVKki/POEiI0UZlUYazQadnd3V8WDyUWlfv36fPv27WLf63v37pnkjMg333xjfO6pFF9++SUW3UIkf15MSfSYvBiphbG9vT1fuXJF0iqnV69eLfaeOrlSUmH86aefKrr9OXPmlDgWPXv2NOn7+e6775bYJ+bnX2i+fJYJMb+okegxKU86dOggeT93797Njo6O+QrjPHq9np88ecJ79uzhgQMH8sCBA3nYsGF8+/btQhcTdHJyyvf/tWvX5uvXrxdod+HChazVatnV1ZXd3d1l338bGxv+/fffS/2er1u3jj08PGRdqyYoKEjyqtwvSkpK4m7duuH4EZH0eTGbwtjOzo7nzZvHixYtUuyMg62tLbdt25bbtm1r8ue5lSa//fZbse+1qQrjTz75RNJq2czM+/fv52rVqgkfO0R81Ej0mLyYwgrj8ePH86+//srM/1cYOzg4lOqKjYiICFkv0Ssszs7OHBkZWej2d+7cqfgjk5o3b17sGFy8eLHYSyKViKOjY4kL4Fy+fJk//fRTk66YjagzaiR6TMqT0hTGUVFRXLNmzUIL4+KkpaXxkCFDSuzLmDFj+MiRI8bs2rVL8RWWq1WrJvnZyS9auXKlrP2oX78+T506tdT9YGbesWOH8M8Roo5IYTaFcatWrYxnJxcvXiz7AZ6trS3PmzfPeIlHaGioaotjtRTGtra2fPXq1WL7kpKSwrt27Sr1cwSRyhs1Ej0mL6awwvjzzz/nRYsWMfP/Fca1a9fmhIQEyfuYnZ3NISEhsswNdnZ2Rc6PISEhBbadlpbGzZs3V3zsfH19iz0IlPsxUVLj4OBgfEb0izA/Ii9HjUSPSXlSmsJ42bJlbGlpWarLr/OcPn1alV9sqaUw9vHx4SlTppTpfufOnTsLH0dEHZHCbArj7du3G/fFYDDwpk2buEOHDuzo6FjuyyscHBx4/vz5+e57MBgMJn2sR2milsKY6PmB6M2bN1mn0+XrQ2ZmJsfHx/O7776ryn8sEHFRI9Fj8mIKK4z1er1xfvryyy+ZiHjGjBml3s+8xa/KeztKvXr1ijzTUVhhvHbtWpONX1FnZ0+cOMEeHh7C3lcbGxseMWIEL168mJcuXcpjxozhjh07Yn5E8kWNRI9JeVKawjgnJ4d9fX356NGjpR6joKAg4ftaWNRSGBM9vx2ybt26PHXqVE5JSZF8rzEKYyQvUphNYTxhwoQCf4nS0tI4Li6OGzRoUKY2nZycePjw4RwVFVWgsGNm1RbGI0aMKLS/eUxZGBM9fz7f6NGjedmyZca0adOG3dzccE8IUiBqJHpMXkxx9xjfvHmT69Wrx0TEM2fOLNO+Zmdn84wZMxS75/jlwvj8+fNct25dk41fzZo1+cSJE8btp6Wl8ZIlS1Rz/66VlZUsq7silTNqJHpMypPSFMbMzImJiaW+DzY2Npb9/PyE72thKWthfOzYMXZzc1OkT1qtlmvUqMHz5s3jnTt3ltgXFMZIXqQwm8LY29u70IWeoqKiuHbt2pLb0Wq1HBAQwMOGDSt0IYQXqbUwrlGjBmdmZhbZb1MXxghSmqiR6DF5MStWrCiyn0lJSTx48GDu2LEjr1+/vlz7fO3aNQ4MDCz08XdVqlTh3r1785kzZ7hVq1al6n/16tU5Ojqaz507x0OGDBFylrZmzZr8119/cUpKCgcHB+MLOqTCRI1Ej0l54uDgwIcPH1Z0fCIiIrhfv3585swZbtGiRZn72rp1a7548SJHRkZyZGQkf/XVV9yhQ4cCK2GXJmUtjJmZmzZtqvj7Y29vz76+vjxhwoRCb817+vSpSW7DQSpGpDCbwtje3p63bdtm3J/z589z165duXHjxpLbsLS05C+++ELSs4AvXLigyAqBcqSkwjgjI4N79+4tvJ8IUljUSPSYvJiXF5CaOXMmBwcH53tm+PLly4u9aqQ0YmNjuW3btkz0fFXp4ODgfGdcY2JiuEOHDtywYUNu2LBhiYWuVqvlAwcOcMuWLYWOY6NGjTg4OFj4+4kgpYkaiR6T8kbKWUm5bNiwoUyFrLe3d6H33+r1ej548KDx1sHStqv2wvjF1K1blwMDA3nbtm1848YNvnHjBi9btkz45wdRT6Qwm8KYiDggIIDXrFnD58+fL9NKfg0aNJBUFDM/X0FV9P4Wlrp160o6KJ44cSLOkiCqjBqJHpMX83JhHBsbyzNmzOCDBw9ycnIyZ2dn88iRIzkhIaFMz4MszNmzZ9na2pqnT59eaJsGg4H1ej3r9Xq+fPlyifOvGu6bDQoK4v379wvvB4KUJmokekzKEwsLCw4PD5d1PIo7MZGVlcU+Pj6l7mdAQECx2zQYDLxr1y6ePXs216xZkx0cHCS1W5EK47xoNBrWarWs1WpxHIvkixRmVRgTEVtbW0ueEF6Mh4dHic8HfVF5LodRMp9//rmk/ickJKj2jDdi3lEj0WPyYl4sjPMK0sGDB7OLiwu7uLhwcHAw29jYsLu7O8+cOZPj4+PLvf86nY7Xr18v+QBq+/btwseppFhZWZXpDAuCiIwaiR6T8iQgIKBMz84tyo0bN3jw4MHGLwpf/iJx1apVZfpi8MCBA5L7kJKSwufPn+eRI0eyn59fscWjo6NjmS8lF1UYI0hRkcLsCuOypmXLlpIng+joaK5fv77wPheWwMBASftgMBh4zZo1BR4yjyCio0aix+TFeHt7c3h4OO/atYv9/f3Zx8en2L/HnTp1yneZdWkYDIYS11p4WXR0tGq/OESQih41Ej0m5UmzZs3KPD8WZs2aNWxnZ8c+Pj7cvXt3XrdunfFn6enpZTpbXKNGDb5y5UqZ+vPkyRP+9ddfiz1hNHbs2DK1jcIYUVukQGEsMb6+vpycnCxprNR8T0Pjxo35ypUrHBcXJ2lfVq9ejeIYUVXUSPSYlDfLli0r037n5ORwixYteOjQoYXOj3mF85UrV/jp06d84cKFClkUazQaoY9qQhCpUSPRY1LedO3atdDFW8tizZo1xnZ9fX05KSnJ+LNffvmlTCvO9+rVq9z9On78OAcFBbGrq2u+ti0sLHj27NllahOrQSNqixQojEuRop5v+aKsrCzVrkadF41Gwy1btuSYmBhJ7/1vv/2G+zQQ1USNRI9JeVPUqv0lycnJMT7+qVevXgUuOczNzeVPP/2UNRoN+/v7q+Le4dJGq9VycHAwX7x4sUxncxDElFEj0WNS3nh5eXF6erosY/FiYezk5MRr1qxhZubQ0NAyn2GVozDO89dff/HixYvZ09OTLSwseOTIkZyTk1OmtmJiYtjf31/4+4cgeZEChXEp4uXlVeyiCczMe/fuZXt7e+F9lZIPP/xQ0nv/9OnTCnmWB6mcUSPRY1LeeHt7l+k+uhcL49q1axc6P65atUr4/pUntWrV4tTUVGZmPnDggPD+IEhxUSPRY1LeaDQa7tu3Lx86dKjcY/H7778b23377bd527ZtfP/+/UIfeyc1PXv2lOFdyu/8+fM8c+bMMhfFeWJiYnD8iKgmUqAwLkUsLCz4p59+KnKMwsPDFXuguRJxdHTk3377TdL7f+/ePa5SpYrwPiOIGokek/LGysqKV65cWer9frEwLmp+PHjwIDs7Owvfx7Kmc+fOxi8Njh07Jrw/CFJc1Ej0mJQneQXr2LFj+ejRo+Uei7S0tHxnhp2cnLhWrVrl6qODgwOfO3dOhndKGTh+RNQSKbQEkun1evrll18oISGhwM/Cw8Ppww8/pMTERNm3q9FoqEmTJmRnZydru8+ePaORI0dSUFAQPXjwoNjXVqtWjerUqSPr9gFAHXJzc2n69On0P//zP7Rv3z66fv16qdvQ6/V0/fp10ul0+f787bffprfeekuurppcly5dyMLCQnQ3AECArKwsql27Nn3yySdUt27dcrfn6OhI1tbWxv9PS0uj2NjYcrWZnp5Oc+fOJZ1ORxcuXKCgoCD6888/y9tV2dStW5c++eQT0d0AkEbqNz6kgkpfDbGxsSnwEPVz584ptjCLm5sbr1ixgjMyMnjHjh28cuVK7tWrl+wLYrVq1arYxcUMBgPPmTNH+PgjiBqJHhO54+Liwn/++Senp6fz2LFj+fTp04Xu94tnjImez1ePHz8u8Lrjx4+ztbW18P0qS+zt7XnIkCEcExODM8aI6qNGosekvHF2duZ9+/bJNh5KXFpcrVo17tu3L1tYWDARcfXq1fnMmTOy9bm8QkNDhb+PCCIFzhiXUuvWrcnJySnfnzVr1ow8PDwU2Z6DgwMNGDCA7OzsqHv37jR48GBau3YthYeHU40aNWTbzvnz5yk8PLzInz979ozmzJkj2/YAQL06dOhA1tbWFBERQcuXL6eNGzcW+jqDwUDMbPz/4cOHU/Xq1Qu8zt/fn9555x1F+qrVasnS0jJf5JSRkUErVqygiRMnFjgbDgCVX2pqKl29elWWtl6cL+X09OlT2rBhA+n1eiIiiouLo7t37xZ4ncFgwDwGUAwUxqXg4eFB69evL1AYW1pa0htvvGGyflhZWVFAQACtX79etuJYp9PRkiVLKDk5udCfMzPl5OTIsi0AULcTJ07Q1q1bacOGDZSamkp//vkn3bt3r8Drfv3113yXAVpbW5NGoynwOq1WS99++60ilySHhITQrVu3jLly5Qp9+OGH5OzsLOt2Nm7cSMHBwbK2CQAVw9WrVyk3N7fc7Vy8eJHc3Nxk6FHpZWRk0NChQ+nVV18t0+0yAGZB6mUQpIJT4KJTu3ZtzsrKKnR8Dh8+rMg269atW+yqgIcPH+Y333zTePlMeRMUFJTvuXp5UlJSKtTCYkjljRqJHhMlYmFhkW9RmF9//TXfPicmJnLDhg2NP7eysuKlS5cWOUa3b9+WbZ56MVOnTi10excuXOAPP/yQq1evLnwsEcRUUSPRYyJHfHx8OCUlRZbxSE1N5Z07d3LLli25efPmbGdnp0if58yZwwaDwbjdkJAQtre35127dsn2+CmpNm/ezLa2tsLfR8S8IwUK41JkzJgxRT7rc8eOHYps097enn/77bdinzGak5PD69evl+0Zm23btuUhQ4bk+0cgJyeHQ0JC2NLSUvj7gJh31Ej0mCiRoUOH5ltXYO7cucaDrKioKO7Vq1e+QtfHx4ezs7OLHCOlCuPx48cXOz+ePXuWf/vtNzyDGDGLqJHoMZEj8+fPV2x8/Pz8FOmzvb09BwcH8/z58zk2NpbXrVvH8+fP54yMDMX2pThz5sxhd3d34e8lYr6RAoWxxGg0Gl6/fn2R46Pkc9ocHR0LLPhVmKtXr+Y7g1OeODg48JMnT/K1r9PpOCQkhDUajfD3AzHfqJHoMVEiixYt4hMnTnCNGjXY2tqaBwwYYLx6ZebMmfleW69ePT5//nyxYxQaGqrI3OHk5FTogl8vu3r1Kg8fPrzCLgKGIFKiRqLHRI4sXLhQsfFRqjDOi4WFBdvZ2bGDgwNXq1aNt2zZwkuWLOEpU6bwrFmzCn3+vBL0ej3HxMTw2LFj2cnJCceSiMkjBQpjifHz8yv2WzYlJzaNRsOjRo2S9D6dOHFClsmmsMKYmTkrK4tDQkKEvx+I+UaNRI+JElm0aBEzMz9+/JhjYmI4LS2NmZljYmLynX2tW7eupNVP33vvPUX6aWdnx48ePZL0PuXm5vLNmzd54MCB7OjoKHyMEUTuqJHoMSlvPD09ZbuM+kWRkZGcmZmpeGFM9PzJI6GhoXz//n1OTEw0PkvZ2dmZExMTS+xrTEwM7927V5b9NhgMHBMTw6NGjVLsiS4IUlikQGEsMWvXri12fMLCwhTdfmBgoPHAtDgZGRn8xRdflPuSRa1Wy8OHDy/0PpTMzEz+8ssvuVWrVrhnBDF51Ej0mJQltWvXLvbWCF9f30LnnK1bt+Z7XZ8+fSSNkVKFsVar5U8//VTS/PiiRYsWCX8PEETuqJHoMSlvbG1tuVWrVuzv78+HDx8u8zhkZ2fzpEmTeO3atRweHs6ffPIJf//992xvb6/4Pnz33XccEhLCmZmZ/M0333C1atWY6PnZ5BkzZhTb75iYGPb39+dGjRrx+fPn8923XF5Xr17lgwcPctu2bdnGxkb4e41U7kiBwlhiTpw4Uez4KLX41ov54osviu1DZmYmnz17lpcvX86NGjWS5X7gI0eOFLk9vV7PLVu2FP7eIOYVNRI9JmXJ1KlTeeDAgUX+3NnZma9cucLR0dH5smzZsnyvk1IYZ2VlcefOnRXdnz///LNU79nDhw85ICBA+PuAIHJGjUSPiZzx8PAoc3GclZVlXNCwWbNmJr2UOCgoiOfNm2dcjyHvjLGdnR0fPXq02H5HRkYa7w22tbXlvn378uXLlzk6OprT09M5JSWl2HUepDAYDLxr1y6eN28e16pVC5dZI4pEChTGElPSxGGKwrhevXocERFRZB9Gjx7NVlZWHBwczKmpqTxy5Mhyb/Ptt98udsK7du0a+/j4sK2trTH41g9RMmokekxKG41Gw1OmTOG6desW+zorKyu2trbOl5e/cJNSGB89elTxAx1PT89i58fCXLhwQfh7gSByRo1Ej4ncadKkCYeHhxf5lJKi7Nu3T9gtHBqNhocMGWJcIHHp0qXs4+PDvXr14rS0tGIXTjx69Ci7uLjkay/v34ZBgwbxd999x2FhYeX6jOQxGAycmJjI06ZNYw8PD6wJgcgaKVAYS0zHjh2LHR9TFMZExF5eXnz58uUC279+/brxm8jFixcz8/ODvho1apRre9bW1jxu3Dhet25dkRNnQkICP3r0yJhz585x7969FVmBVs0JDAzkevXqCe9HZY8aiR6T0qZu3bqclJTEu3btYldX13K1JaUwFj0/FiUiIkL4e4EgckaNRI+J3Ml7lF1ycnKpxmHixInGNhwcHLhfv34mvR3NwsKCP/nkE2NB/9tvv3FaWhqHhYVxcHBwkf2eNWtWkW1qtVp2cHDg1q1by3YPcp64uDg+c+YMDxgwwHiGG0HKEylQGEuMvb09L1iwgO/fv19gbB4/fswdOnQwWV+8vLz44sWLxu3rdDoeO3as8ed5hTEz85EjR9jf35+1Wm25tlncPceFyc3N5QsXLvC5c+f43LlzPHr0aA4ICOBGjRoJfy+VSr9+/fjOnTs8aNAg4X2pzFEj0WNS2nh6enJubi4zc7kPODp06MCpqanFjs+KFStMtm+1a9fmESNGSCqQb9++Xe4vD0ubpk2bckBAALdp0wZX1yCyR41Ej4kS8fPzK9W6BnFxcfm+OJ83bx6npaWZ/DnrdnZ2fPbsWWO/rly5wo0aNeJ33nmn0H5PmTKFa9euLaltR0fHUt/SIlVsbCwvXbqUmzVrJvy9RypupEBhXMr4+Pjw1KlT+e7du3z37l2+ceMGt2vXzuT98PT05OPHj3NGRganpKTkO+vzYmHM/HzBhy+++KJM9xzXqlWLW7RowZs3b+atW7eWeABckujoaJ47dy57enpylSpVhL+fcqZq1aq8Y8cO/vTTT4X3pTJHjUSPSWljb2/PW7Zs4YMHD8ry97Bdu3a8Y8eOQscmLS2NGzdubPJ9dHd356CgIO7fv3+xB7BDhgwxWZ9atmzJ8fHxzPz8ksE9e/bwli1bOCgoiD09PfGMT6TcUSPRYyJHXFxcWKvVsp2dHbdq1Ypv375dqjHIzMzk4cOHs6enJ3t6evLu3bs5PT3d5IUx0fPjxwsXLnBkZCR7e3szEfE777zDOTk5+Y7xLly4wJ6enqVqe/PmzXJ/fPJJSEjg5cuXc4MGDYwLiCGI1EiBwrgM0Wg0bGlpaYyoflhYWHCvXr1427Zt+e7/eLkwZn5+Vrk09xw7ODjw999/z7GxsazT6aTPWvz8H4C8s1FFyc3N5cOHD3NwcHClWtlaq9WW++w8UnzUSPSYlCXt2rXjd955p0y/261bN7axsWErKyvjn9WtW7fQe+6UXrG/pFhbW/Pnn3/OMTExhb53mzdvNtl9bD169Ci0D3q9nnNzczkyMpJnzZrFEyZMYGdnZ3ZwcKhU8yOifNRI9JiUN25ubnzw4EH+6aefePDgwaU+JsqT9/c8NDSUZ8yYwRs3bjTJitSFxdPT01gUExF7e3vzyJEjuUePHrx7924eO3ZsqYtirVbL27dvl/nTU7jc3Fy+dOkSDx8+nB0cHPL9W4QgRUUKFMaVIPb29vkWtimsMGZmPn/+vKTLBt9++23esmVLmZbkj4qK4pYtW3JISEiJxTHz81UaT58+zX369EFBiUiKGokeEyVibW3NAwYMKLCatKenJx84cIC3bdvGgYGBxj+vXbt2gcI4NzeXhw8fLnxfiJ4/x7OwsxlpaWkmW53az89P0jOX9Xo9x8fHc3x8PJ8+fZqHDBnCvr6+wscQUX/USPSYlDdarZaXLFnCzFzqx8IVJikpiXv06MF2dnbC9y0vDRs25JCQENZqtWUu1lu1alXqBcnKKycnh+Pj43n58uX4EhEpMVKgMK6EKaowZn5+z3FxxXHfvn3L/CB7nU7Hbdq0YSJiS0tLXrBggeTfzc7O5lOnThVY+RBBXo4aiR4TJeLo6Mg7d+7kjRs3Gv/M09OTz58/z8zMx44dy3ePbGGF8fbt2xU7I1KlShVevXo1T5s2TfIZXxsbG54+fXqBMz7FLS4jJRYWFjx+/HiOiIjgiIgInjhxInfo0IE7dOhQYHGz4h6BV5x79+5x8+bNhX8uEHVHjUSPiRypWbMmf/rpp/nWdymtqKgo4yKmvXv3Fr5PeWnTpg3v2rWLx40bV6527O3t+cCBAzJ9akpHr9dzZGRkvi9rEeTlSIHCuBKmuMKY+fl9I6NGjWJvb29jfHx8eM2aNaVeZfFFOp2Ovby8jP0YPny4pLPGL/5+SEiI8PFD1B01Ej0mSqZJkyZM9PysyYwZM5iZOSYmhtu2bZvvSpVmzZoVWLleyXvoXF1d+dixY6zX60t1QGdlZcWhoaH5+lnewvjTTz/lnJycQj8bJ06c4AEDBrC3tze7uLjwhAkTyvw5i4qKwsr3SLFRI9FjImfc3d15165dfOfOnVI9u/fp06fs6+vL48eP51u3bpX5NhalkjfPlyeenp588+ZNBT9JJYuPj+cWLVoIH09EnZEChXElzPz580t8Pw0GA+v1+nwpr5cLYwsLC164cGGp2li1ahUuqUaKjRqJHpMXU6tWLZ49ezYvWLCAFyxYwPXr15elXVtbW16zZg2npKTwtWvXePDgwfnWWFizZk2+MTEYDLxhwwa2s7NjBweHfK+1sLCQZX2G4OBg1ul0fPXqVfbx8ZHc5ptvvskxMTGs1+s5Nja2XE8VqFOnjvEselEMBgPn5uby0aNHyz3X4pJqpLiokegxkTsajYbt7Ox43bp1ksdg8eLFxkdYVtZjHFtbW96yZYuCnyRpgoKChI8Fos5IgcK4EqZq1aqKLZlfnJcLYyLi3r17l6qNzMxM9vHxET6GiHqjRqLH5MVYWFjw6NGjOTc3lw0GA7dq1Uq2tm1tbdnV1ZWdnZ0L/Gzt2rX5xiQ6OpqdnJyY6Pnlwy9e4ta+fXueNGkSa7XafGedS5u6desaz9SmpKTwtGnTJB90tmrViidOnFim2zc0Gg1rNBquU6cOnzx50qSftY8//lj4ZwxRb9RI9JgolQ4dOvDu3btLXI/lyZMnqjiL6e/vX675trA4ODiwn58fExEHBgYqviq1FBcvXqy0Xz4g5YsUWoJKJyEhgX7++WfKyMgQ2g+NRkONGjUq1e/Y2tqSpaWlQj0CqPz0ej39/PPP9Prrr5Ovry9dvnyZbG1tqVOnTtSlSxdydnYuc9tZWVmUlJREqamp+f68d+/e1LVr13x/9uOPP1JaWhoREVWpUoWsra2NP3v99ddpwoQJ9M8//9Dly5dpwIAB1KZNm3y/7+TkRJ6entShQweytbUtsW/Ozs701Vdf0fnz56lly5Ylvv706dM0ZcoUSk5OLvG1eVxcXGjdunX0zz//0D///EN///03+fv7S/59Ody5c8ek2wOAwh0+fJj69u1LnTp1on379tHNmzcLfV1UVBSdO3fOxL3Lr0WLFtSzZ0/q3LkzNWnSpNzt+fn5Uf369cnOzo5effVVIiLas2dPuduVg729veguQEUm9RsYUkGlj5QuX331lfH9e/r0KV+9erXYPHz4sPRfzb3g5TPGNWrU4NjY2FK3g0sFkeKiRqLHpKQMHz7ceAnviRMneM+ePcYsWrSIGzRoUOa2AwICOCkpqcCYvLi4zMWLF41nOl1dXfnWrVsFXp+WlpbvrHJoaCjfuHGDc3Nz+ciRI4U+C7lu3boF7mtmfn62urSPGikuGo2Gvb29VXE25O233xb+eULUGzUSPSamSoMGDfjYsWOcnp6eb/9Pnz4tvG+urq68detWZmbetGkT+/j4sKOjY7nbtbS0ZB8fH/bx8eFly5bx48ePRXzE8vnrr79kPzOOVI5IgcK4Eqdbt27MzBwXF8ft2rUzXv5XVBo1asSRkZFFLiJTkpcL47IsMpOVlYVLqZFio0aix6SkODo68q5du4rsf1JSEoeGhvLAgQNLfQlanz59CrSn0+n4vffeM77m4sWLnJyczKGhoXz48OEi+7F79262sbHhpk2bFviibuvWrQUuR3R0dOTdu3cX2tb06dMlP9tSq9XylClTjIt4vfPOO/zLL78Ys3TpUlke0yKH/fv3C/88IeqNGokeE1NGo9Fwjx49+NChQ8b9/+qrr4w/r1KlivFeY1PH09PTOI8ZDAZevXp1mR9xVKVKFbaxseExY8YYb9uRQ2pqarkWgb1w4YJs62oglS9SoDCuxMkrjEeMGCH5dxwcHMo80clRGK9cuRL3hiDFRo1Ej0lJcXJy4vDw8BL3Izs7mz/55BPWarWS7/8trDA+depUvoWwpD7iJD09nbt06cJz584t9OcDBgzIt22tVsvTpk0r9LU6nY5/+eUXfvPNN0vcD0tLS7579y6fO3eOiYg7d+7Mu3fvln2BQjkcOHBA+OcJUW/USPSYmCp+fn7G9Rfq16/PGRkZfPPmTePVKzY2Nnz9+nV+8803hfRPo9FwcHAwp6WlsV6v59zcXA4LCyt1cWxhYcFjxoxhf39/joyMlO1zcvv2bW7atCl7e3sXOOsulRru5UbUGylwM2cll5aWRrdu3ZL8+vT0dPrpp59ox44d1KpVKxoxYgT9v//3/xTs4f/JyMigWbNmkcFgMMn2AMxFr169SK/X0507d+jatWtERPTaa69RgwYN8r3O2tqa5s2bR2PGjCEiomPHjtHSpUvpzJkzpdqes7Mzubu706NHj0r1e/b29rR+/XpycHAo9OfffvstPXv2jHJzc8nT05M+//xzqlq1aqGvtbCwoM8++4x69+5Nu3fvplGjRtGzZ88KfS0z06FDh4z3RO/fv59OnDhBNWrUyPe6//73v1S3bl2ysLCgt99+O9990wBgvlxdXWn06NG0Y8cOOnr0KGVlZRER0cWLFykqKsr4OicnJ9JqxSzvw8y0fv16On36tLEPPXv2pF9++YWWLVtGp0+fNr62cePGdPXq1ULb0ev1NHfuXCIiWr16NbVr146IiNzc3Kh169Zl7l9kZCRdvnyZLCwsKDQ01PjvkBR6vZ4OHjxI8fHxZd4+ABFJLJ/ZfL7xq0xp164d9+/fv1xtuLq6cocOHbhDhw787bff8t27d4v8jJTnjHF2djZPmjRJ8qWPiPlGjUSPiZRotdp89xL7+PjwtWvXSty3p0+fcs+ePblx48aFXs1R2Blj5v+7x9jV1ZWvX78u95CXisFgKNcjmQoby6LOVCsNZ4yR4qJGosfEFBk4cKDxNrRjx45xmzZtuH379vnWTLG2tuZZs2YZV+tXQxwcHHjWrFn8/fffG/9Mq9XyyZMnjatNS83LTyYorW3bthnbknr8ePPmTT506BCvWrWKq1atKnw8EXVHChTGCsXKyopdXV2F90Pu1K5dm4cMGcJDhgzhYcOG8dWrVzknJ4cNBgNv2bIl34T/5ptv8v3794v9XO3bt4+HDBnCffr0wWIJiKSokegxKWsaNWrEly9f5mvXrvGwYcP4119/ZZ1OV+g+ZmZm8pAhQ7hatWpsZWXFGo2GPTw8Cn1u5e3bt42XD3p7e3N0dLTSb0GJ9uzZI+vYDR48WMh+oDBGiosaiR4TU8TNzY2fPHnCzM8LY9H9KW18fX25SZMmTPS8MA4LC+NatWqVqo1JkyaV63MSHh5uPDnSvHlzTkhIKPb1x44dMxbDfn5+bGNjI3wcEXVH0nwl9QMremcqWjp06MBz5swR3g+lY29vz8OHD+fJkycXusJhixYtODo6usDBdmJiIs+cOZPd3NyE7wNSsaJGosekPLGzs2N7e3smev6F3pIlS4rcz5ycHE5LS+NFixbxpEmTOCkpqdC1CE6cOGH8okuj0fClS5eUHH5Jxo4dK9uYWVlZ8apVq4TsBwpjpLiokegxMVU6derEs2fPrpALiDZq1IgbNmxo/H9ra+tSt3Hs2LFyfU50Oh0HBAQw0fP7mIubY7Ozs3nQoEHCxw2pWJE0X0n9wIremYoWOzs7trOzE94PNaRWrVrs5+fHGzdu5K1bt/K8efO4bt26wvuFVMyokegxkSsajYb/+uuvco9HVlYWBwYGsoWFBX///feFPlLJlO7cucN16tSRbZyaN29erpVTyyMiIoI9PDyEf1YQdUaNRI8JYpoEBATw3r17y7VCdbt27YztOTg4cFhYWIHXZGRk8NChQ4Wt7o1U3Eiar6R+WEXvDIIgCBEO/JSMRqPhffv2Fdi/W7du8dOnT0s1JsePH+epU6eW+fFvcsjKyuITJ05w06ZNZR2nmTNnCtsnZs73vGcEeTFqJHpMKlp69OghvA9ljbOzMx84cKDIz8Lt27c5IiKi0FX+k5OTC6zY7eTkxGFhYXz//n3u1q0bDxw4kD/++GPceoeUKVJgVWoAACAiImamwYMHU8eOHfP9+YEDB6h+/frUsGFD8vX1pdGjR5OVlVWB33/27BkdO3aM1q9fT0RENjY2lJmZWehrlaDX6+np06d0+vRp2rJlC6WmptKOHTvo+bF55XDq1Cm6fPmy6G4AgEK2b98uugtl5ubmRu3bt8/3Z2lpaZSenk7z5s2jtWvXUnZ2Ni1ZsoR69uxpfM2zZ89oyJAhdOHChQK/+9lnn5GXlxf9888/ptgFMHf4xg9BkIoUNRI9JqaMVqvljz/+mOfPn89ZWVnGMUhKSuLAwMB8K8vb29sbF6RRkl6v519//ZW//PJLdnBwUHx1e1FnjC9cuCDrJeFI5YsaiR4TxHRxcXHJd6/x1q1buUOHDmxnZ8cWFhbs7u7OR48eNT6nODc3l5OTkzkoKAhngRHFI2m+wsSGIEhFihqJHhMR0Wq1PGjQIE5PT+eEhATu2rVrgddYW1vzsmXLOCkpSdHx37x5s0kf9fbhhx/m+1LAFHJzc3nkyJHC33dE3VEj0WOCmDbBwcG8YcMGTk5O5vj4eB4yZAgTEbdt25aHDx/OSUlJ7Ovry4sWLeIOHTpw7dq1URQjJokUmv9/0iqRRqOR8jIAAEVJnLJMylznR41GQ2+88Qbl5OQUe5nb9u3b6b333lOkD9nZ2dS2bVs6c+aMIu0XRqvV0ptvvknr1q0jb29v2dpNSEig27dvG7fxxhtvkKXl8zuenj17Rp6enpSQkCDb9qDywfwIahEREUG2trb0/fff0/r166levXoUGBhInp6e9O2335JerxfdRTAzkuZHfOOHIEhFihqJHhO1p3r16rxv3z5OS0uTNJ6PHz/mmJgYvn79Og8cOJCDg4P59OnTBV53584dDg4OZltbWyH7NWrUKH78+LEsn6Hc3Nx8Z90tLCw4KCiIT58+zTExMbxo0aIyPUIFMa+okegxQcRk//79vHDhQuPZ4M6dOzMz886dO4XN2Yh5R9J8hYkNQZCKFDUSPSYVIZaWlvzee+8Z7y0ryrFjx9jDw4Otra3zFYJ169bliIgI4+vu3Lkj+2rTpY1Go2EPDw8+evRouT9DWVlZXKtWrQLbsLKyYmtrazyaBJEUNRI9JoiYWFlZ5bvFxcvLi7/77jv29/cX3jfEPCNpvsLEhiBIRYoaiR6TihJbW1s+ePBgkeOYnZ3NAwcOLPL3Q0JCWK/Xc1RUFPv5+Qnfn7xUr16dDx8+XK7PUFGFMYKUJmokekwQBEGIpM2PWgIAADCBrKwsWrhwIWVkZBT4WUZGBo0ePZrWrFlT5O9nZGTQ/fv3KSwsjC5duqRgT0snLi6O+vbtS3fv3i3T7+fk5NAPP/xA8fHxMvcMAAAAJMM3fgiCVKSokegxqWiJjIzMN34HDx7kTp06lfh7tra23KhRI+H9LyojR47kjIyMUn12srOz+bvvvmOtViu8/0jFjxqJHhMEQRAiafPj8+UuAQAATGTnzp3k5eVFe/fupTNnztDKlSslnS3NysqiGzdumKCHZfPLL79QfHw8ffbZZ9SiRQuys7MrdEXenJwc0ul0REQ0Y8YMmjZtmipXEwYAADAneFwTAFQoaiwgMD+WjrW1Nbm4uFBaWhplZmaK7o7sHB0dycHBgebPn0/BwcFE9Pxzu2XLFkpLS6NNmzbR+fPniYgoKSmJcnNzRXYXKhHMjwAAhZMyP6IwBoAKBQd+UFE4OzvTK6+8Yvz/a9euUU5OjsAeQWWH+REAoHAojAGg0sGBHwBA4TA/AgAUTsr8iFWpAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArElelRoAAAAAAACgMsIZYwAAAAAAADBrKIwBAAAAAADArKEwBgAAAAAAALOGwhgAAAAAAADMGgpjAAAAAAAAMGsojAEAAAAAAMCsoTAGAAAAAAAAs4bCGAAAAAAAAMwaCmMAAAAAAAAwayiMAQAAAAAAwKyhMAYAAAAAAACzhsIYAAAAAAAAzBoKYwAAAAAAADBrKIwBAAAAAADArKEwhlKZPXs2eXl5kYWFBfn5+Qnrx6RJk0ij0Uh6rUajoUmTJinbIQCACm7QoEHk6ekpuhsAAABCoDA2U7GxsTRp0iS6dOmS5N/Zv38/jR07ltq0aUOrVq2i6dOnK9dBAIBKqizzLwCAGmE+g8rEUnQHQIzY2FiaPHkyeXp6Sj7ze+jQIdJqtbRixQqytrZWtoMAAJVUWeZfAAA1wnwGlQnOGINkcXFxZGdnh6IYAAAAAGTBzJSZmSm6G5JkZGSI7gIoCIWxYEXd0/XyPbQajYZGjhxJ27dvJ19fX7KxsaEmTZrQ3r17C/zuw4cP6aOPPiIPDw/j61auXGn8+ZEjR+hf//oXERENHjyYNBoNaTQaCgsLK7KfGo2GVq1aRenp6QVer9PpaOrUqdSgQQOysbEhT09P+vrrryk7O7tAO3v27KF27dqRk5MTOTs707/+9S9au3at8efHjh2j3r17U7169cjGxobq1q1LISEhsk+YFy9epMDAQHJ2diZHR0d6++236dSpU/lek5ubS5MnT6ZXX32VbG1tqWrVqhQQEEAHDhwwvubx48c0ePBgqlOnDtnY2FDNmjXpvffeo6ioKFn7CwDyqyjzLxHRuXPnqEuXLlStWjWys7OjV155hT766KN8r0lISKABAwaQs7Mzubi40MCBAykiIqLQ9vP2xdbWlnx9fWnbtm0ljBYAqFlFms88PT3p3XffpX379lGLFi3Izs6Oli5dSkeOHCGNRkMbN26kyZMnU+3atcnJyYl69epFKSkplJ2dTaNHj6bq1auTo6MjDR48uMCx5oEDByggIIBcXFzI0dGRGjVqRF9//XW+Pms0GtqwYQN9/fXXVKNGDXJwcKDu3btTTExMvrbat29Pvr6+dP78eWrbti3Z29sb24qLi6MhQ4aQh4cH2draUrNmzWj16tX5fj8qKoo0Gg3NmTOH5s+fT/Xr1yc7Oztq164d/fPPP8WOEYiBS6krkL///pu2bt1Kn332GTk5OdHChQupZ8+eFB0dTVWrViUioidPnpC/v79x4nN3d6c9e/bQkCFDKDU1lUaPHk2vvfYaTZkyhSZOnEgff/wxvfXWW0RE1Lp16yK3vWbNGlq2bBmdOXOGli9fnu/1Q4cOpdWrV1OvXr1ozJgxdPr0aZoxYwZdu3Yt38FWWFgYffTRR9SkSROaMGECubi40MWLF2nv3r30n//8h4iINm3aRBkZGTR8+HCqWrUqnTlzhhYtWkQPHjygTZs2yTKOV65cobfeeoucnZ1p7NixZGVlRUuXLqX27dvT0aNHqVWrVkT0/B+TGTNm0NChQ6lly5aUmppK586dowsXLlCnTp2IiKhnz5505coVGjVqFHl6elJcXBwdOHCAoqOjsYgNQCUicv6Ni4ujzp07k7u7O40fP55cXFwo6v9j777Do6ja94Hfu+khAUKAEFoQECJE5BUVRBSRoogIiAiINJEmWBAFeXkt2EA6IiBIR0SkiwLSq/TeSUJJKGmk92T3+f3BL/kSE5JNMrszu3N/ruu+LrLZPXPmzOYwz+6U69exdu3a3OeYzWZ07NgRR44cwdChQxEYGIgNGzagb9+++drbunUrunbtigYNGmD8+PG4e/du7gd8ROT41JzPcly+fBk9e/bE4MGDMXDgQNSvXz/3d+PHj4eHhwc+/fRThISEYObMmXBxcYHRaERcXBy+/PJLHDp0CIsXL8ZDDz2Ezz//HMC9/btXXnkFjRo1wldffQU3NzeEhITgwIED+Zb/7bffwmAwYPTo0YiKisL06dPRpk0bnDp1Ch4eHrnPu3v3Ltq3b48ePXrgrbfegp+fH9LS0vD8888jJCQEw4cPx0MPPYRVq1ahX79+iI+PxwcffJBnWUuXLkVSUhKGDRuG9PR0zJgxAy+88ALOnj0LPz+/4m9Ash4hVfXt21cCAgLyPf7FF1/I/ZsHgLi6ukpISEjuY6dPnxYAMnPmzNzHBgwYIP7+/hITE5OnvR49eki5cuUkNTVVRESOHj0qAGTRokXF6muZMmXyPHbq1CkBIO+8806exz/++GMBIDt37hQRkfj4ePH29pamTZtKWlpanueazebcf+f0737jx48Xg8EgN27cyH3s3+NTGADyxRdf5P7cuXNncXV1ldDQ0NzHbt++Ld7e3vLcc8/lPvbYY49Jhw4dHthuXFycAJBJkyZZ1A8i0hZ7mX/XrVsnAOTo0aMPfM6aNWsEgEyfPj33MZPJJC+88EK+ZTVu3Fj8/f0lPj4+97GtW7cKgALHg4i0z17mMxGRgIAAASBbtmzJ8/iuXbsEgAQFBUlmZmbu4z179hSDwSDt27fP8/ynn346zzpPmzZNAEh0dPQDl52zjGrVqkliYmLu47///rsAkBkzZuQ+1rJlSwEgP/30U542pk+fLgDkl19+yX0sMzNTnn76afHy8spt99q1awJAPDw85ObNm7nPPXz4sACQESNGFDZMpAIeSm1H2rRpgzp16uT+3KhRI5QtWxZXr14FcO8cjTVr1qBjx44QEcTExOTmxRdfREJCAk6cOKFonzZt2gQA+Oijj/I8PnLkSADAX3/9BeDeoS1JSUn49NNP4e7unue59x/ic/+ndCkpKYiJiUHz5s0hIjh58mSp+2symbB161Z07twZtWvXzn3c398fb775Jvbv34/ExEQAQPny5XH+/HkEBwcX2FbO+da7d+9GXFxcqftGRNql5vxbvnx5AMCff/6JrKysAp+zZcsWuLi4YODAgbmPGY1GDBs2LM/z7ty5g1OnTqFv374oV65c7uNt27ZFgwYNStQ/IrIvWtiffOihh/Diiy8W+Ls+ffrAxcUl9+emTZtCRPKdPtK0aVOEh4cjOzsbwP/NlRs2bIDZbC50+X369IG3t3fuz6+//jr8/f1z92tzuLm5oX///nke27RpE6pUqYKePXvmPubi4oL3338fycnJ2LNnT57nd+7cGdWqVcv9+amnnkLTpk3zLYvUx8LYjtSsWTPfYz4+PrlFWXR0NOLj4zFv3jxUqlQpT3L+qKOiogpdRnJyMiIiInITHR1d6PNv3LgBo9GIunXr5nm8SpUqKF++PG7cuAEACA0NBQAEBQUV2l5YWBj69euHChUqwMvLC5UqVULLli0BAAkJCQ98XWxsbJ5+P+i50dHRSE1NzXPITo5HHnkEZrM59xyTr776CvHx8ahXrx4effRRfPLJJzhz5kzu893c3PD9999j8+bN8PPzw3PPPYeJEyciIiKi0HUkIvuj5vzbsmVLdO3aFePGjUPFihXRqVMnLFq0KM+5dTdu3IC/vz88PT3ztPnvuTlnTn744YfzLb+geZGIHI8W9icfeughi/uX8yFejRo18j1uNptz9/m6d++OZ555Bu+88w78/PzQo0cP/P777wUWyf+eAw0GA+rWrZvvGjHVqlXLd9HZGzdu4OGHH4bRmLeMeuSRR3J/X9iyAKBevXq8Ho0G8Rxjld3/ben9TCZTvsecnJwKfK6IAEDuH/5bb71V4HllwL1PBQszefJkjBs3LvfngIAAi/5wH7QexWEymdC2bVvExsZi9OjRCAwMRJkyZXDr1i3069ev0E//XnvttTyf0PXt27fIiz8U5bnnnkNoaCg2bNiArVu3Yv78+Zg2bRp++uknvPPOOwCADz/8EB07dsT69evx999/47PPPsP48eOxc+dO/Oc//ynV8onIuuxl/jUYDFi9ejUOHTqEjRs34u+//8bbb7+NKVOm4NChQ/Dy8iq0XSJyfPYyn+W4/whBS/tXVL89PDywd+9e7Nq1C3/99Re2bNmClStX4oUXXsDWrVsf+PrCFNZPcjwsjFXm4+OD+Pj4fI//+9MmS1SqVAne3t4wmUxo06ZNoc990ATap08ftGjRIvfnoiaEgIAAmM1mBAcH535SBty7aEN8fDwCAgIAIPeQnXPnzuX7BiPH2bNnceXKFSxZsgR9+vTJffz+q0A/yJQpU/Iczly1atUCn1epUiV4enri8uXL+X536dIlGI3GPJ9IVqhQAf3790f//v2RnJyM5557Dl9++WVuYZyzbiNHjsTIkSMRHByMxo0bY8qUKfjll1+K7DcRqcfe5t9mzZqhWbNm+Pbbb/Hrr7+iV69e+O233/DOO+8gICAAu3btQmpqap5vjUNCQvK0kTMnF3SKSEHzIhHZB3ubz6zFaDSidevWaN26NaZOnYrvvvsOY8eOxa5du/Ksy7/nQBFBSEhIkQU/cG8ePXPmDMxmc55vjS9dupT7+/sVNN9euXKFF2nVIB5KrbI6deogISEhzyG6d+7cKdGtM5ycnNC1a1esWbOmwMvA338YS5kyZQAg3yRau3ZttGnTJjfPPPNMoct8+eWXAQDTp0/P8/jUqVMBAB06dAAAtGvXDt7e3hg/fjzS09PzPDfnk76cT/Jyfs7594wZMwrtAwA0adIkT78fdK6ck5MT2rVrhw0bNuT55DIyMhK//vorWrRogbJlywK4dyXC+3l5eaFu3bq5hy+mpqbmW5c6derA29u7wFtVEZG22Mv8GxcXl2deBIDGjRsDQO5c8+KLLyIrKws///xz7nPMZjNmzZqV53X+/v5o3LgxlixZkueUk23btuHChQvFXGsi0gp7mc+sKTY2Nt9j/54rc+RcKTrH6tWrcefOHbRv377I5bz88suIiIjAypUrcx/Lzs7GzJkz4eXllXsKYI7169fj1q1buT8fOXIEhw8ftmhZZFv8xlhlPXr0wOjRo9GlSxe8//77SE1NxZw5c1CvXr0SXdhgwoQJ2LVrF5o2bYqBAweiQYMGiI2NxYkTJ7B9+/bcSaNOnTooX748fvrpJ3h7e6NMmTJo2rRpoed8FOSxxx5D3759MW/ePMTHx6Nly5Y4cuQIlixZgs6dO6NVq1YAgLJly2LatGl455138OSTT+LNN9+Ej48PTp8+jdTUVCxZsgSBgYGoU6cOPv74Y9y6dQtly5bFmjVrFL+w1TfffJN7n7t3330Xzs7OmDt3LjIyMjBx4sTc5zVo0ADPP/88mjRpggoVKuDYsWNYvXo1hg8fDuDep32tW7fGG2+8gQYNGsDZ2Rnr1q1DZGQkevTooWifiUh59jL/LlmyBLNnz0aXLl1Qp04dJCUl4eeff0bZsmVzP5zs3LkznnrqKYwcORIhISEIDAzEH3/8kbvM+7/VGT9+PDp06IAWLVrg7bffRmxsLGbOnImGDRsiOTm52OtNROqzl/nMmr766ivs3bsXHTp0QEBAAKKiojB79mxUr149z7fXwL0jAlu0aIH+/fsjMjIS06dPR926dfNcwPBBBg0ahLlz56Jfv344fvw4atWqhdWrV+PAgQOYPn16not6Afeu9dCiRQsMHToUGRkZmD59Onx9fTFq1ChF158UYPPrYFM+W7dulaCgIHF1dZX69evLL7/8UuDl9YcNG5bvtQEBAdK3b988j0VGRsqwYcOkRo0a4uLiIlWqVJHWrVvLvHnz8jxvw4YN0qBBA3F2drboUvsF3a5JRCQrK0vGjRsnDz30kLi4uEiNGjVkzJgxkp6enu+5f/zxhzRv3lw8PDykbNmy8tRTT8mKFStyf3/hwgVp06aNeHl5ScWKFWXgwIG5txG4v3+luV2TiMiJEyfkxRdfFC8vL/H09JRWrVrJP//8k+c533zzjTz11FNSvnx58fDwkMDAQPn2229zbyEQExMjw4YNk8DAQClTpoyUK1dOmjZtKr///rtF/SIi9dnD/HvixAnp2bOn1KxZU9zc3KRy5cryyiuvyLFjx/I8Lzo6Wt58803x9vaWcuXKSb9+/eTAgQMCQH777bc8z12zZo088sgj4ubmJg0aNJC1a9c+8HYvRGQf7GE+y1lWQbfDzLmV0qpVq/I8vmjRogJvWZezbjm3Z9qxY4d06tRJqlatKq6urlK1alXp2bOnXLlyJd8yVqxYIWPGjJHKlSuLh4eHdOjQIc9tQUXu3a6pYcOGBa5DZGSk9O/fXypWrCiurq7y6KOP5lvvnNs1TZo0SaZMmSI1atQQNzc3efbZZ+X06dOFjhGpwyDyr+OziIiIyCGsX78eXbp0wf79+21yKCMRkZbt3r0brVq1wqpVq/D6669bdVnXr1/HQw89hEmTJuHjjz+26rJIGTzHmIiIyAGkpaXl+dlkMmHmzJkoW7YsHn/8cZV6RUREZB94jjEREZEDeO+995CWloann34aGRkZWLt2Lf755x989913vOUIERFREVgYExEROYAXXngBU6ZMwZ9//on09HTUrVsXM2fOzL1gIBERET0YzzEmIiIiIiIiXeM5xkRERERERKRrLIyJiIiIiIhI11gYExERERERka6xMCYiIiIiIiJds/iq1AaDwZr9ICKyiBavF8j5kYi0gPMjEVHBLJkf+Y0xERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESkayyMiYiIiIiISNdYGBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6Zqz2h0gIiIqrqpVq8LV1RXx8fGIj49XuztERERk5/iNMRER2Z3Vq1cjODgYGzZswMSJE1G3bl04OTmp3S0iIiKyUwYREYueaDBYuy9EREWycMqyKc6PtlW7dm1s374dDz30UO5j8fHxWLx4MRYtWoQzZ86o2Dsi9XB+pBxeXl7o1q0bnJycEBERgT///FPtLhGpypL5kYWxxgUFBaF///5o27Zt7mMbNmzA7t27cfjwYSQnJ6vYOyLb444flStXDvv370dQUFC+30VERGDjxo1YuXIlTp8+jZiYGBV6SKQOzo+UY/r06Xj//fdhMBiQnJyMY8eO4auvvsL+/fuRlZWldveIbI6FsZ0LDAzEzp074e/vX+Dv9+7di8TExNxCOSwsDJmZmTbuJZFtccePAODw4cN46qmnCn3O0aNHERYWhq+//hoXL17k/EgOj/MjAQ/efzSZTPjuu+/wyy+/AACioqJ4jQbSDYvmR7EQAMbGadasmUXbxmw2S3Z2tixdulQef/xx8fb2Vr3vDGOtaJHaY6LHHD582OLtk52dLZ999pl4eXmp3m+GsWa0SO0x0WNatWr1wO1hNpvFZDKJyWSSXbt2Sc+ePcXT01P1PjOMtWMJfmOsYc2bN8eBAweK9Zrk5GQkJiZi0qRJWLx4MT8JJIdj4ZRlU5wfbc+Sb4zvl52djdDQUMyYMQMigt9++w0JCQmafD8RlZQW38+cH21v165deP755y16bkZGBk6fPo1u3bohLCzMuh0jUpEl8yMLYw37448/0LFjxxK/PmcncN26dbh586aCPSNSD3f8CCh+YfxvoaGhuHHjBiZNmoSrV6/iypUrCvaOSB2cHwko2fx49OhRvP766yyOyWGxMLZzpd3xy3Hu3DksW7YMf/75J1JTU3H9+vXSd45IJdzxI0C5+REArl+/jlWrVmHx4sXIzs5GcHCwJt9nREXR4vuW86PtlXR+vHjxIm7cuIHx48fj2LFjSE1NtULviNTBwtjOKbnjB9x7Q0RHR2PJkiWYPHkyUlJSkJKSolj7RLbAHT8ClJ8fgXvvrZSUFKxYsQInT57Eb7/9hpSUFF60i+wG50cCSj8/igg2btyI4OBgTJo0CdHR0TCbzQr2kMj2WBjbOWvs+AH33hjJyck4e/YsVq1ahS1btuDKlSsQEU3+p0p0Py2+Rzk/2p615scc2dnZSE1NxerVq3Hq1CksXrwYKSkp3DkkTeP8SABw8OBBNGvWrNTtiAgSExMxY8YMxMXFISUlBUuWLEF2dnbu77X4niMqCAtjO2ftHb8ckZGRSEpKwrFjx/Djjz8W+4JfRLakxf+EOT/aVrVq1bBr1y48/PDDNlmeiOD69esIDg7GxIkTsXPnTk2+D4m0+L7k/Gh7r776KjZs2KB4uyaTCdevX899ny1btgwnT55EeHg4Tp06pfjyiJTEwtjOjRkzBt99951Nl5mQkIBt27bh22+/hdlsxpUrV5Cenm7TPhAVhjt+1KNHD6xYsUKVZaenp+PgwYM4dOgQfvvtN1y/fh2JiYmq9IXo3zg/EgA0a9YMBw8etNnyIiIicOHCBSxatAh///03oqOjbbZsIkuxMLZzI0aMwNSpU1Xtw/r16xEbG4s///wT+/fvR2xsLEwmk6p9In3jjh+pWRj/2/bt2zF79mzs378fmZmZSEhIULtLpGOcHwmwfWF8v6NHj2LRokVYvXo1EhISeI0G0gwWxnZOzYnt3zIzM5GZmYmffvoJ0dHR2LFjB06ePMnz7cjmuONH3bt3x2+//aZ2N3LlzI9Xr17F8uXLkZ6ejvnz5/OKrmRznB8JUH//MTs7G+np6Vi5ciXOnj2LBQsWIDk5WbX+EAEsjO2e2hNbYWJjY7Fp0yasX78ee/fu5WEzZDPc8aPAwEBs3boVNWrUULsrBTKbzQgPD8eECRMQEhKC7du3q90l0gnOjwRoa/9RRHLnw7Vr1yIyMlLtLpFOsTC2c1qa2Apz9uxZ3Lp1C8OGDcPVq1fV7g45OO74kZYOpS5Kamoq9u7di6+//hoRERGcI8mqOD8SAHh7e2P9+vV44YUX1O5KHjt37sTo0aNhNptx/vx5ZGRkqN0l0hFL5kdnG/SDSqhXr15qd8Eijz76KB599FFs3LgRS5YswfTp03lOCRFZTdmyZdXugsU8PT3x0ksv4aWXXkJ4eDiWL1+OGTNmFPjc//znP4iOjsaNGzd4FA4RlVhSUpIm55AXXngBR48ehYjgjz/+QGJiIlJSUvDZZ58hJiZG7e4R8RtjLbPV7ZqUZDabsWDBAvz00084ceKE2t0hB8RvRPTN1dUVly9fRq1atdTuSomIyAO/JXFycsq9NVRQUBCysrJs3Duyd5wfCQCqV6+OzZs3IygoSO2uWGTPnj25p5xs2rSJ+49kFTyU2s7ZY2GcIywsDK+99hqOHz+udlfIwXDHT9/c3NwQEhKC6tWrq90VqwkLC0PdunVZGFOxcX4kwH5OxSvIlStX8Nhjj/FWoaQ4S+ZHow36QSXQtm1bNGjQQO1ulFjNmjXx448/wsfHR+2uEBHZlSpVquDNN99UuxtERDZz6tQpHDp0CCEhIZr8gIf0gecYa1SdOnXg5eWldjdKJDo6GkuXLsXSpUsRFxendneIiOyKq6srHnnkEVSvXh0ZGRmaPFeQiLSrb9++qi4/NTUVsbGxWLx4Mc6fP5/nd126dEHz5s1zf16zZg0OHjyIP//8EykpKbbuKlEePJRag1xdXXHlyhUEBASo3ZUimc1mZGZmIjU1FbNmzUJmZiZWrFiBa9eu8R7HZBVa/CSZ86PttGnTBmvXroW3t7faXbEqk8kEk8mE8PBwvPbaa7hy5QoPLaQicX4kJycnHDp0CE888YTNl52VlYVt27Zh3rx52Lx5M7KysvK9J52cnODk5JT7c3Z2NvcXySZ4VWo7FRQUpJmrrkZGRmLbtm0P/P2FCxewePFimM1mREVFleg/5cqVK6Ndu3bIzs7GunXrePl+IiqQh4cHBg0a5JBF8ZkzZ5CYmIgWLVoA+L+dxzp16mD37t1ISEjAhAkTsHLlSsTHx6vbWSLSrI4dO+Kxxx6z+XKjo6Px1ltv4cCBA4V+85vzoR+RJomFADA2yueff27pZrGaa9euyeTJk6VevXpWX9+WLVuKiIjJZJKTJ09K27ZtVd8GjHajRWqPiV5StWpVSU9PV3tzKyopKUkGDRok/v7+UqFCBWnSpIk0adJEFi1aVODz165dKz4+PqpvC0ab0SK1x0RPcXFxkYMHDyq+DWNiYuSNN97InZ+aNGkiy5Ytk6ioKBERiYqKkjZt2qi+/gxTWCyaryz9o1B7ZfQSJycnmTp1aslmLgWNHz9ejEajTdY5pzDOERkZyQmWeWC0SO0x0UtGjx4tJpNJ7c2tqMOHDxe4ro8//rjEx8cX+Jp169ZJuXLlVN8ejPaiRWqPiZ7SvXt3SU1NVXwb/vzzzwUu76mnnpKuXbvKE088ofq6M0xRsQQPpdaYypUrY/DgwWp3AyNGjMDFixexdOlSqy/L1dU1z8+VK1fGihUr8MYbb+Dw4cNIS0vT5HlTRGRbQUFBMBptdzOF8PBwzJo1CwDQtGlTdOnSRfFl1KhRA40bN4a/vz98fX1RoUIFXLhwAe3atYOLi0uBr+ncuTN+//13zJs3D3/++SdPPyEieHt7Y8iQIfDw8FC03a1bt2LUqFEF/u7IkSM4cuSIossjUhMLY40xGAx5LkqglrNnz9qsH5999lm+xypWrIg//vgDqampmDp1Kq5cuYL169ezQCYim8nOzsaqVasQFham6IeEaWlpuHz5cm5B/Omnn6J9+/Zwc3ODk5MT0tPTi7wrQbt27fDss8/i+PHjWLhwITIzM/H777/z3sdEOuXt7Y2nn35a0Tb//vtv9OzZk3cYIf2w9DAKaOArcD3EWufQ3bhxQ6ZPny49evSw6PmjR4+22Tq3b99eoqOjC+1Penq6nD59WqZPny4eHh6qbydGvWiR2mOihzRs2FDi4uJsvm1v3Lghp0+flrCwsGK/9tChQ7Js2TJp3ry5bN68WXbu3ClLly6VBg0aSJUqVaRPnz6yc+dO2blzp+zevVsyMjJK3M/s7Gw5ffq0tGrVSvVtxagXLVJ7TPSSFi1aSGZmpmLbLSkpSdq3b6/6epU2ZcqUkRYtWoiTk5PqfWHUjUXzlaV/IGqvjF4SFBRUqp2jgphMJvn0008FgMyePbvQ56alpcn//vc/qVu3rk3Xu3379nL37l2L1mf79u3c+dNxtEjtMdFDnnjiCbU3s8Wio6Nl4cKFUqZMGYvXz2g0Srt27eSDDz6Q69evl3jZd+7ckTlz5kitWrXEYDCovt0Y20aL1B4TvWTZsmWKbrfTp0+rvk6lzYsvvig7d+6UjIwMGTVqlLi4uKjeJ0a9WDRfWfoHovbK6CVLly4t8ST2IIsWLRJXV1dp1KiR3Lp1q9Dnbt++XbV1/+6778RsNlu0TpGRkfL111+Lr6+vlC1blp8E6ihapPaY6CEtWrRQezMXKTs7W2bNmiWNGzcuVVFavnx5+eOPPyyeDwuSlJQkM2bMkBo1anB+1FG0SO0x0UuULozHjRun+jqVJq6urjJ9+vTc9TGZTDJ69GgpW7aseHl5qd4/xvaxaL6y9A9E7ZXRS5Se2EREBgwYIACkS5cuRT73ueeeU23dy5cvL5s3b7Z4vcxms8TGxsrdu3dl/Pjx0rt3b3F2dlZ9GzLWjRapPSZ6yNatW9XezAXavHmzzJkzR+bMmSMjR45U7BuJsmXLyh9//FHq/sXFxXF+1FG0SO0x0UuU3H+8fv261K9fX/V1Kk0GDBggCQkJedYrMzNT7t69Kzdu3JBhw4aJt7e36v1kbBeL5itL/0jUXhk9pGzZsrJjx47izV5FSEpKkpdeekkAywrjJk2aqDoGAwcOLPG6ZmVlyYULF2TZsmXSrl078fPzU32bMspHi9QeEz1k3759Vtl258+flytXrpTotUuWLLHqjlX58uXlwoULiqxnVlaWnDlzRrp168b50YGjRWqPiR7SsGHDB97erST++OMP1deptKlQoYI0aNBAfvjhB9m5c6eEhobmu5XVlStXZMiQIdKuXTupU6eO6n1mrBuL5itL/0jUXhk9xBrn0G3bti23/bZt28qwYcOkffv2MnXqVLl165akpaXJxYsXc9OwYUNVx6BGjRqlOr/ufidPnpT33ntPAgMDxc3NTfXtyygTLVJ7TBw9LVq0kNjYWMW327Vr16RWrVoyceLEEr2+UaNGD+yzj4+PuLq65nnMy8tLAgMDi3UP4iFDhii81vfkzI/+/v6qb19GuWiR2mOihyi5/2gymaRjx46qr5NSGT58uPj7+0vz5s3lueeee+DRRyEhIbJp0yaZM2eOBAYGiq+vr+p9Z5SNJQz/f9IqksFgsORpVApPPPEEjh49qlh7Z8+excsvv4ybN28W+Pt69eqhUaNGWLNmTe5jFr4drOrIkSN48sknFWtPRLBq1SpcuXIF06ZNQ1xcnCbWk0pGi9uO86N1vf7661i1apXi7Z45cwZt2rTB1atXi7w90r8lJCRg2LBhCA4Ozr2Pp7e3N/z8/PDBBx+gUaNGCAsLQ3x8fO5rateujfbt22Pnzp24ePEiAOCnn37C+fPnH7icqlWrYu3atWjatGnxV9ACly5dwvbt2xEfH8/50QFocdtxfrS+CRMmYPTo0Yq0ZTabUb9+fYSEhCjSntoGDBiA9u3bY/r06di/fz8qVqyI7t2747nnnsPrr78Oo9GY7zUigsOHD+PYsWOYM2cObt++jbS0NN4z3s5ZND9a+gkSNFDpO3pGjBhh6eYoktlslk8++UT1dSpJXnnlFcXG4d9jEh0dLZ9++qlUqlRJ9fVkShYtUntMHD2vv/66VbbbrFmzpHPnzhbfCcBkMklcXJxMmTJFqlatKpMnT5br169Ls2bNZPDgwRIcHCxJSUnF6sOlS5ckMDCw0It1Va9eXY4dO1aSVbRYzvw4ZswY6dKlixiNRtW3O1P8aJHaY6KHKHmqyYkTJxxqH8loNBZ4youHh4csX768yPFISkqS+Ph4+f3336VNmza82r8dxxIsjDUUJSc2k8lk81suKZXGjRvLrl27FBuLgly/fl2GDRum+royxY8WqT0mjhyDwSCfffaZVbbbqlWr5OzZsw/8fVxcnGzcuFE2btwoX375pdSrV09q1aqV2zcPDw+pV6+eDBo0SNLS0krcjzt37sj06dMLPeVj0KBBit6jtDCpqaly4MABad++PW9vYmfRIrXHxNFTpUoVxa5FICISExMjAQEBqq+XLeLl5SU//PCDhIeHWzQ2CQkJsnHjRnn++edV7ztT/FiChbGGomRhvHr1avHw8FB9nUqaevXqiclkUmw8CpKamio7duyQcePGSVBQkAQFBUmFChVUX3em8GiR2mPiyHF2dlbsugP/9tlnnxV4C7vIyEg5c+aMvP766xb10cnJSVq2bCkHDx4scV/MZrPs27dPOnToUOA5yJ6enoUW8daQnZ0tu3fvlpkzZ0pQUJA0aNCA3yRrPFqk9pg4epQ+osZkMkmLFi1UXy9bplmzZhYXxyL39h83btwoTz31lAQFBdntF1F6iyVYGGsoShXGZrNZvv32W6v1s0qVKvLTTz/JTz/9JPXr11fkGwWj0ShvvPGGdO3aVV599VVZuXKlImNRXPv27VN0vRjlo0Vqj4kjx5qF8f327dsnAwcOlIEDB8oTTzxRor5Wr15dkeJ127Zt0rVrV/H19c1zD+LAwMASX0FbCenp6bJw4UKpX7++lC9fXvX3BpM/WqT2mDh6rHGqyYYNG1RfL1vn8ccfl5kzZ5bo6t6xsbEyb9486du3L28BpeFYgoWxRmIwGOTAgQPF/mMsSExMjFWvple5cmWZMWOGpKSkSEJCgowbN06cnZ3zpTjfLNSqVUtSU1MlIyND0tPTJTs7W5GxKKmUlBSZPXu2NG7cOM+OKaN+tEjtMXHkNGvWzCpXpL5fVlaWYvfsHDBggCLnA2dkZEhSUpKMGDEizxzUsGFDuXLlipjNZgXWvGRSUlIkNDRUhg8fLh4eHvwWWUPRIrXHxJFjNBpl5syZim4vs9ksI0aMUH3d1Iizs7MEBgbKpUuXSjR2mZmZcvz4cfn444+lcePGnBs1FkuwMNZIXnrppVKdo3a/MWPGWP3iAEajUWrVqiW1a9eWr7/+Wnbs2CGhoaF5Mm/ePIu/ealSpYpcvnxZRO59c9O0aVMJCQlRZDxKIyoqSoKDg2XAgAG8dL9GokVqj4kj59NPP7X69svKyspz7nBpU6NGDVmxYkWxL8RVkLS0NDly5IjUq1cvt/0qVarIkiVLFFjz0jGZTHLt2jVZv349z7nTSLRI7TFx5FjjiBp7vkaNUvnss89K/eFjVFSUzJ8/Xzp37sz9R43EEiyMNRKlDoVJS0uTbt262bz///vf/wo8PyMqKkqWLl0qjRs3lsaNGxd6QYfJkyeLiOReFGvMmDGqf3N8v1OnTsmgQYN430+Vo0Vqj4mjxtnZWaZPn27VbZeVlSVTpkwRd3d3xfvfr18/uXjxoiL9HDlyZJ62H3vsMUUKb6UkJSXJ7t27ZezYsYp+yMAUL1qk9pg4cqpVqya3b99WdHuxMIb4+fkV65zjomzcuFGCgoJ4RWuVYwkWxhpJ//79S/wHd79Dhw6p9ofXsGFDmThxokREREhUVFSB/QsNDZXFixfL4sWLZd68eVKnTh3x8/OTTz75JPfcvD179oirq6u4uLhIr1695M6dO4qMjVJOnz4tI0aM4DnIKkWL1B4TR03lypUlJSXFqtvu6tWr4unpabV18PHxkaFDh8qNGzckIiJCIiIiSnR00BdffJFnbndxcZGZM2dq6sPDHNeuXZPGjRur/v7RY7RI7TFx5FjjiJotW7bwPFnc+3JGyYvApqamyuLFi3kNGxVjCRbGGoizs7MEBweX+I8tR2hoqDRo0EDVdXFychIPDw+pWLGibNmyRTIzMws9HCUtLU1SU1PzTD4mk0kWLlwozz33nLRu3Tr3EGstyc7OlrFjx6r+3tFjtEjtMXHU+Pv7W7UwjoyMlGbNmtlkXTw8PHLTv39/SU9PL1Zfk5KSpGvXrnnadHFxkVmzZllpdEpHC/8f6TFapPaYOHLGjh2r+PaaNm2a6uulhXh4eMiYMWMU/eZY5N5+L/cf1YklWBhrIEqdIzJ+/HjV1+X+lC1bVmrWrCkTJ06UlStXysqVK+XQoUMWr098fLwkJCRIVlZWqcfGGg4dOqT6GOsxWqT2mDhqpk6datWLTJ0+fVqV9TIajdK3b1/5559/itXf7du3S9myZfO01bhxY4mIiLDSCJVOjx49VH8P6S1apPaYOGp8fX0VP4xahIXxv9OpUyfFx5j7j+rEEs4g1fn7+8PNza3ErzeZTDh16hTmzp2rYK9KLzExEYmJiRg1alTuYxUrVkTbtm0xevRoNGrUCAaD4YGvL1eunC26WSKxsbH49ttv1e4GkUMrX758oXOEvTKbzViyZAn+/PNPPPzww7mPP/HEE3j33XfxyCOPFPi65ORkZGdn53ns1KlT6NmzJ3777TdUrlzZqv0ujgsXLmD79u1qd4PIYdWqVQs+Pj5qd8Ph7dq1Cx07dsScOXNQvXp1RdqcMWOGIu2QFVj66QY0UOk7akp7O5KEhATx8fFRfT2KE09PT+ndu7dcunRJoqOjS7zuapk3b57qY6jXaJHaY+KICQgIkNDQUKtts7S0NHnvvfdUX89/p2LFitKzZ0/p2bOnTJ06VcLDwyU8PFx++ukneeqppx74uu+//17VWzj9W85FFBnbRovUHhNHzcKFCxXfVklJSfLMM8+ovm5aTOPGjXPn5p49e8rKlStLNOdu2bJFKlasqPr66DGWYGGsgZT24gnp6en5zj2zl7i6ukrdunXlyy+/lD179kh6erqmdu7+LS4uTsaNGycVKlRQfez0Gi1Se0xsFScnJ3Fzc8uNNe/xbc3bNJnNZnnvvfc0f4VQo9Fo8VhXrlxZEhMT861rRkaGzefUU6dOSfXq1VUfPz1Gi9QeE0eNNQrjqKgoXnjLwvj4+BT7i53U1FRetV/FWIKFscrx9fVV5PywWbNmqb4upU3ZsmWlWrVqMmXKFPnjjz9KPSZKu3v3rnTo0EH1cdJ7tEjtMbFF3NzcZNasWXLr1q3cLFmyxGpXdN61a5fVtpcj3o6kTJkysm/fvjzrmZWVJa+//rpcu3bNamP5b5mZmRIUFKT6eOg1WqT2mDhifHx8ZPfu3Ypvq1GjRmn+A0OtxGAwyOjRoy0e27S0NHnnnXes+oEyU3gswXOMVfbQQw9p+lxaW8o5J3nkyJFwd3dHUFAQnn32WQwcOPCB59zZ0vvvv4+//vpL7W4Q2VybNm0wceJEPPbYYzAajbmPv/nmm1iwYAH27t2rYu+KJzU1FTt37lS7G4pLSUnBjz/+iIoVKyIwMBAAYDAY0LJlS9SqVctm/Vi2bBmuXLlis+UR6VFAQABatmypaJtpaWkIDg6GiCjarqMSESxevBhDhgxBamoq5s+fj3379gEAqlWrho8//jj3/8uZM2fi0qVLOH36NMdX6yz9pAMaqPQdMUodCuMI3xg/KFWqVJHhw4fL9evXS3UudmkcPnyY54RoJFqk9phYM61bt5bIyMgHrvvcuXMVX6aHh4ccPHjQKtsqNTVV3nvvPfHy8lJ9bK2RqlWryo4dOyQpKckq41eYuLg4efzxx1UfAz1Hi9QeE0dMq1atFN9O58+f57fFJciLL74oVapUUb0fTNGxxP999E82ZzAY4OzML+2LEhERgR9//BEPP/wwXn75Zfz3v//FxYsXkZaWZrM+XL9+HTExMTZbHpEWuLq6YtasWQ+82nFWVhbGjx+v+HLbtGmDpk2bKt5ujuDgYCQnJ1utfTXdvn0b7dq1w5tvvok///zTpt9OJCUl4cKFCzZbHpEeOTk54fPPP1e83b/++ovfZv6Lh4cHPD0988XJySn3OX///TciIiJU7CUpytJPkqCBSt/REhQUJKmpqSX8bO//ZGZmyoABA1RfH1vGx8dHateuLT///LPVvxnJysqSRo0aqb7OzL1okdpjYo24urrK7NmzJTs7+4HrnZmZKTVr1lR82da4b2SO2NjYfPcCdtR4e3vL2rVrrTaW/zZ06FDV11nv0SK1x8TR8tJLL0lmZqbi2+nFF19Ufd20lKeeekpCQkIkMjIyX8aOHctv1+0wFs1Xlv7BqL0yjpjGjRuXeAK736lTpxz2sEBL0rNnT4mPj1dkLP8tMzNTvvjiC3F1dVV9PZl70SK1x0TpeHp6yiuvvFLkh04///yzuLi4KLpso9Eoe/futdq2SkxM1NUHXeXKlZNVq1ZZbTxzXLhwgVfr10C0SO0xcaRYc35kYZw3X3/99QPHKjw8XFq1aiUtW7a02gUoGeVjCRbGKkapwviDDz5QfV3Uzv1XY01KSpLw8HBFxvbSpUvi4eGh+vox/xctUntMlErZsmWlffv2smPHjiLXOS4uTho3bqx4H5ycnCQkJMSq22vatGmqj7Ut06RJE6uOpwi/LdZKtEjtMXGkWGt+PHHihFSuXFn19dNKKlasKOfPn7do7GbNmsX9RDuJJXiCq4rc3NzU7oLDWLt2LZo2bYrU1FQMHToUYWFh2L9/f6nbnTJlik3PZSZSi5ubG5YuXYqOHTvmufL0g2RkZODy5cs26BlpnclkwunTp9XuBhGVUGRkJKKiotTuhmZ4eHigbt26Fj136NChMBqNeP/995GVlWXlnpG1sTBWUdu2bdXugsP44YcfEB0djW3btiE6OhpPPfVUqduMjY3FxYsXFegdkfYZDAa4u7tbVBTbO9HZBWYMBoNV29+8eTOOHDli1WUQEdlK06ZN81xgqzAGgwEDBw7EkSNHsGjRIiv3jKzN8feANIxXpFaOyWTCL7/8gsjISJjNZtSvX7/Ubd68eVORb52J7EF6ejp69eqFzZs3q90Vq0pMTMTs2bPV7oZNjRo1ymptm0wmjB8/HtnZ2VZbBhFZF+89/n/KlSuH4cOHW1wYA/euFO7u7m7FXpGtsDBW0YNugUKl4+3tjY8++qjU7fz8888K9IbIfty9exd9+vTBli1binyuj48PevTooXgffHx84Orqqni7OUREV0Wcl5cXateubbX2Y2NjERYWZrX2iej/WGN+FBHMmTNH0Tbtka+vL3r06IFNmzahZcuWxX59pUqVdHHElaPjFlTRI488onYXHFKHDh3QqFGjUrWRnZ2NM2fOKNQjIvsRExODXr164e+//0Z6evoDn+fq6oqGDRsqfphu7969UaNGDUXbvF+5cuXw/vvvW619rfHz80P58uWt1v7ixYtx8+ZNq7VPRP/H2vOjXvn5+WH9+vX49ddf0bx58xK1MWbMGPTu3Ruenp4K945siYWxipTaodTb+XJFUWJcd+zYgX/++UeB3hDZn9jYWHTp0gVdunTBjz/+iLCwMJjNZogIzGZz7vMGDhyIatWqKbpsW3zibu1zbrUkNDQUd+7csVr7/P+HyHasMT8aDAY8++yzirdrT7755hu0aNGiVP83uLu7Y+7cudi5cyc/vLBjLIxV0rp1a0UuEHX9+nUsX75cgR45BhcXF3zyySelbicrK0tXh1sS/VtaWhq2bNmC9957Dy1atECDBg3wyCOPoEGDBpg5cyZWrlyJZ555BhEREYots3z58hg+fLhi7REROQprzo+vvfaaVdq1F0qdH+zm5oamTZti1apVLI7tFK/+pBIvLy94eHiUup3MzEzExcUp0CPHYDAYUKlSpVK1ISKYO3euQj0isn/h4eF5frbWochOTk6oWLGiVdom5SUkJPCDWSIb4fxoP5o2bYp27dphwYIFaneFionfGNu51NRUtbugKR4eHsW6kmBB0tLScOHCBYV6RESW6ty5M+/vbkeysrIQGhqqdjeIdMGa567+/vvvAO7tQ+npVBMACAgIQLNmzRRt8+bNmzhw4ICibZJt8BtjFRgMhhJd8a4g33zzTZ5z/vTMaDTi3XffRZUqVUrVzsKFC3Ht2jWFekVElnrqqafg4uKidjccSt26dRU/DzzH/v37kZWVZZW2iSivjz/+GF5eXlZpO+cDyf/9739ITEzE3LlzER8fb5VlaU3FihVRt25dRdu8e/cuLl26pGibZBv8xlgFRqMRr776qiJtFXbVWL2ZNGkSPvnkk1J92pmYmIgpU6bwgjJEZPcMBgN69eqFhx56SPG2c+4HnZmZqXjbRJSfNe+TO2jQIFSuXBk+Pj747rvvdHXI9qOPPqpoe5GRkRgxYoSibZLtsDBWQdeuXa32Cb5e1atXD7169YKPj0+p2rl58yaio6MV6hURaY3JZFL0gmFa5u/vj8GDByvebmJiIoYMGYJt27Yp3jYR5efu7g5fX1+rtf+f//wHw4YNQ8eOHbF27VrcunXLasvSGqW/YFq/fj127dqlaJtkOyyMVVCtWjVFPvnLysrip/W4dwjQsGHD4OfnV6p2TCYTJk+ejJSUFIV6RkSWqlq1Kp577jmrLycxMRFz5syx+nLUZjAYMGTIEPj7+yvarojg3XffxYoVKxRtl4gerE6dOla/cvTnn3+O6tWr4+bNm0hLS7PqsrRk27Zt+OijjxQ5LSQ5ORkTJ05UoFekFhbGNubu7q7Yzt8///yDnTt3KtKWvTIajZg0aZIitzAICQnBL7/8okCviKi4fHx8UL9+fbW74TAqV65slauHm0wmHD58WPF2iUg9169fx/Xr15Geno69e/eq3R2bunv3LlauXAmTyVTqthYtWsRr1Ng5XnzLxsqUKYM2bdoo0pbJZFLkD9me5ZyvrcRN781mM+9dTKSSRo0a2eRqqOfOndPFBaNGjRqFsmXLKt7u0qVLcf36dcXbJSL15Fy0NC0tDTt27FC5N7b36KOPlvqOJgkJCZg8eTKvUWPn+I2xHfvhhx/U7oKqnJ2dMXLkyFJfhTrHzJkzOaERqaR///42Wc6KFSsc/jBBDw8PPPzww4p/0JCUlIRp06bxA0QiG3v//fet+sGhu7u7VS/upWX169fHsmXLSn1HhPDwcNy9e1ehXpFa+I2xHdP74RoBAQH44osvFLnvaUZGBi5evKhAr4iouOrXr4969eqp3Q2H8eSTT6Jjx46KtxsXF4cbN24o3i4RFc4aV5YvSGJiom5uAdqxY0e88cYb8PX1RaVKlUrVVnZ2Nq9R4yBYGNtYaQ/VoHsMBgPGjBkDDw8PRdrbu3ev7s6rIdIKEbHJzlhMTAyOHz9u9eWoyWg04vPPP1e8XRHBxIkTkZSUpHjbRPRgdevWRe3ata26DBFBVlYWvv/+eyQnJ1t1WVrg6emJIUOG4OWXX1akvdDQUPz666+KtEXqYmFsYx9//DHKlCmjdjfs3iOPPILu3bsr1t6xY8d08ykpkdZ069bNJt+IREVF4ejRo1Zfjppat26NFi1aKN5uaGgoli5dqni7RFS4hx9+GHXq1LHqMvbs2YPevXsjLi7OqsvRgvLly6N79+6KXe8HAI4fP85TTBwEC2MbK1eunE0uMOPoRo0aBS8vL0XaioiIwLx58xRpi4iKx2g0onfv3mp3wyEYjUZ8+umnipxe8m/BwcG6+CaJSI/S09Nx8+ZNtbthEwEBAfjpp58UbXPZsmW8Ro2D4MW3yO40adIE7du3V6y9tWvX8iqrRCrx8vKCs7NtPqONj4+3yXLU8vLLL+Opp56ySts//PADd/yIbMxgMKBPnz5qd8Nh+Pv7Y9CgQYq2efr0aZw6dUrRNkk9/MbYhipXrownnnhC7W7YNYPBgHfeeQeVK1dWpL3k5GRs27ZNkbaIqPh69epl9cMEc3zzzTcOW9x5eHhg8ODBih1Jc7/g4GBcuXJF8XaJqHAGgwH/+c9/rL6czZs3W30ZanNzc8OuXbsUv9DjwoULERERoWibpB5+Y2xDlSpVUmyCCw4O1sW5IP9mNBrRtm1bxdqbMGECNmzYoFh7RFQ8trog4e3btxEeHm6TZanBw8MDLVu2tErboaGhuHr1qlXaJqIHq1evnlXuR36/S5cuYfXq1VZdhhb069cPdevWVfR0RhHB1q1bFWuP1MfC2IZGjhyp2B/knj17HHon70GqVaum6PlzycnJDvsNEpHWOTk5oVatWlZfjoigX79+OHfunNWXpZZhw4ZZ5cKOIoKpU6cq3i4RFa1Nmzbw9/e3WvsmkwkLFy7E7du3rbYMLShbtiw++ugjxT+IXb16NU/FczAsjG2oevXqanfB7nXt2lWxcbxz5w7++usvRdoiouLz9vbGgAEDrL6cv//+G4cOHbL6ctTi4uKCwMBAGI3K/5eemJjIb4uJHNTNmzd1cfHRvn37Kn7Lq7S0NMyYMQPp6emKtkvqYmFsI4GBgYqe1+Ds7Ax3d3e4uroq1qY9UHJ97969yx0+IhW5urra5Cr9ly5dcuj77zZs2BA9evSwSttLlixBaGioVdomosK5uLhYpd20tDRkZWVh8uTJSEhIsMoytMLPzw9vv/224hd5TElJwfnz5xVtkzRALASAKUXGjRtn6VBbJC0tTQ4ePCiLFi0So9Go+vrZIuXLl5c7d+4oNoY9evRQfZ2Y4keL1B4Te82ECRPEbDZbddskJiZK9erVVV9Xa2bt2rUcO0YAzo+OlLJly8qtW7essk1Gjx4t/fr1E09PT9XX09pp2LChVf6fGTNmjBgMBtXXj7E8luA3xjZgNBrRvXt3Rdt0d3dHs2bN8M8//8BsNivatlYZjUZFz6HjPTmJ1FWmTBmrf2McGhrq0LdpatGihaIXJLyfo48dkZYZjUZ4enpape3//e9/uHr1KlJTU63SvpZ8/PHHiv8/ExYWhgULFvAaNQ6IhbENvPzyy6hWrZri7aalpSE4OFjxdrWqd+/e8PDwUKStM2fO4OjRo4q0RUTF5+LigvLly1t1GVlZWZg+fbpDfwhWu3Ztq9yiCQAWL17s0GNHpGW+vr5Wu2q/l5cXvL29rdK2ljRp0gQdOnRQvN3Zs2cjKipK8XZJfSyMrczDwwPvvvuuVXZcDh48iN27dyverlYFBgYqdo7IzZs3ERkZqUhbRFR8Dz30EHr27GnVZVy/fh2//PKLVZehJnd3d4wdO9YqbUdHR2Pfvn1WaZuIivbBBx/ooni1FoPBgMGDB6NSpUqKt81zix0XC2Mrc3Nzw9NPP22VtnkIR8l99dVXaneBSNcMBoNVrqJ8v/379zv0qSa9e/dG3bp1rdJ2XFwcTp06ZZW2iaho1jzN5ObNm7hx44bV2teCRx99FK+++qri7d68eZO3aHJgLIytrG7duopfCS/H999/b5V2tcjLy0vR212lpaUp1hYRFd/o0aOtfn7xmjVrHPYDRGdnZwQFBVntw4WJEyc69IcKRFoXHByM7Oxsq7R95coVh76vu7OzMwYMGAA/Pz/F23b0sdM7FsZW5OrqihEjRih+GHVUVBQWLlyIgwcPKtqultWsWVOx80S2bNnC2zQRqcwaOyz3S01NdejzY2vVqoX+/ftbpe3U1FTeoolIZbNnz8asWbMUbzcuLg4zZsxQvF0tKVOmDPr06WOVtiMiIqzSLmmDdb7KJAD3dlyUvrdkeHg4unTpguPHjyvartYpdWXGjIwMzJo1y6F3mIn0Lj4+HqNHj8aePXvU7orVvPfee1Y7//DQoUO6un4FkRaZTCbcunVLsfbMZjOio6MxYMAA/PXXX4q1q0UdO3a02hW99XS0ph6xMLYio9Go6KGCN2/exGuvvaa7ohgAPv/8c0XGMjMzE4cOHVKgR0SkRdu3b0fv3r0d+oqhPj4+aNy4sdXa5yHUROorV64cRo4cqVh7v/zyC95//30kJiYq1qZWNW3aFK6uroq3KyKcHx0cC2Mr+vTTTxUtjDdu3Ihjx44p1p69aNmyJVq3bq1IW7NmzUJcXJwibRFRyVSsWBGVK1dWvN2bN2+iZ8+eiImJUbxtLXn++efx7LPPWq39CRMmWK1tIiraU089hXfffVexKyovXrwYw4cPR0pKiiLtaVmHDh3Qq1cvq7S9evVqXLlyxSptkzawMLYiJS8Rv3XrVowePVqx9uyFwWDAxx9/rMghMVlZWbh8+TJMJpMCPSOikvrPf/6DJ554QtE2k5OT8c033+Du3buKtqs1Xl5eGDFihNUuXLZp0yYcPnzYKm0TUdGaNGmCTZs2wdfXt9RtiQiWLVuG999/XxdFsZeXF0aPHg0fHx/F2zabzbh8+TIyMzMVb5s0RCwEgClGGjRoIGFhYZYOb6Hi4+OlQ4cOqq+TrWMwGKRjx44SHx+vyDheu3ZNnJ2dVV8vpnTRIrXHxN7Stm1bxbfBpk2bVF8vW6Rz586Kj12O9PR0ad++verryJQ8WqT2mNhb5s+fr9jYr1q1Sjw8PFRfJ1vFmvNjZGSk+Pr6qr6OTMljCV6V2kqqVauGGjVqlLqdhIQE9OzZE5s2bVKgV/ajYsWKGDt2LH755ReUK1dOkTZ37drFc0OIHIzZbMaZM2fw7rvvqt0Vq2vcuLFVryabkZGBo0ePWq19Iipa06ZNFWknISEB8+bN083tKY1GIz777DOrtT99+nSHPyKJeCi11URFRSEiIgJVqlQpcRuxsbHo168fNm/erGDPtK9y5cr45Zdf0LZtW8XajImJwdy5c1kYEzmQtLQ0fPjhh1i7dq3Dn1fs6emJ33//HTVr1rTaMn788UfExsZarX0iso2c/cdt27ap3RWbeeONN/Doo49ape3U1FRcvHjRKm2Txlh6CAE08BW4vaV9+/ZiNptLdMhGbGysvPrqq6qvg61TsWJF2bp1a4nGrDDLly9Xfd0YZaJFao+JvaVp06aSkJBQqjFPSkqSwYMHi8FgUH19bJH33ntPsrKyFHrH5nf79m0JCAhQfT2Z0kWL1B4Te8vgwYNLPeYrV65UfT1sGQ8PDzl27JgC79aC7d27V5ycnFRfT6Z0sQQLYyumbNmysmbNmmIXx3FxcfLKK6+o3n9bx2AwyIgRI4o1VpZITU2VoKAg1dePUSZapPaY2GNWrFhR4vGOjIyUgQMHqr4OtkqdOnXk7NmzCr5j8zt9+jR3/BwgWqT2mNhb/P39Ze/evSUa66SkJNm8ebNUrFhR9fWwZXr37i3p6ekKv3P/T5cuXVRfR6b0sQQLYyvH29tb1q5da9En/VlZWbJ27Vp58cUXdfMtyP0pV66c3Llzx9K3pMWWL1+uy/F01GiR2mNij/H395eDBw9KZmamxeMcHx8vX3/9tVSuXFlXf9OrVq2y4rtXxGw2S7du3VRfT6b00SK1x8Qe4+/vLxMnTpSUlBSLxzk+Pl7at28vLi4uqvfflilfvnyJP0iwxI0bN6RBgwaqrydT+liChbEN4uXlJW3btpXffvtNQkJCChzf8PBwadGihXh6eqreXzVSpkwZWbZsmZhMJkvfkhZbunSp6uvHKBctUntM7DXly5eXmjVryurVqwsd3/DwcPntt990eSQNAFm/fr1V37+HDh3S1ZVrHTlapPaY2GsMBoO88cYbFhV9sbGxup0fu3btapV9xxzTp09XfR0ZZWIJg4gILGCteybqTe3atVG5cmUAQJcuXbBu3ToA9y6UoOebhrdq1Qrbt2+H0ajshdIzMjLQsmVL3pfTgVg4ZdkU58fSKV++PAIDA/HGG2+gefPmeX63Y8cOLFmyRLfzY+PGjbFz506r3Jczx2uvvZb7fxHZN86Pjuf++fGZZ57BY489Bjc3N2RnZ+PUqVM4ceIEZs6ciXPnzqndVVWsX78enTp1slr7TZo0wYkTJ6zWPtmOJfMjC2NSnaurKzZu3Ih27dop3vaKFSvw9ttvIz09XfG2SR3c8SM9mT9/PgYMGGC19lNTU9G0aVPd7lQ7Gs6Pjs1gMKBDhw7w8vJCRkYG/vjjD5hMJrW7pZrAwEBs27YN1atXt0r7+/btQ6dOnRAXF2eV9sm2LJkfebsmUt0zzzyDNm3aWKXt06dPsygmIrv1+OOPW7X9tWvX4vz581ZdBhEpQ0Tw559/qt0NzejXr5/ViuLs7GzMmzePRbHOKHvcKlEJfPHFF4ofQg0At2/fxrx58xRvl4jIFurUqYMKFSpYrX2TyYTjx49r8ltGIqLC1KlTBz169LBa+ydPnsTGjRut1j5pEwtjUlXlypVRtWpVq7Q9depUxMfHW6VtIiJrMhqN6N27NwICAqy2jKtXr2Lp0qVWa5+IyBqsPT9mZmZi9uzZSEhIsEr7pF0sjEk1BoMBvXr1wsMPP6x42xkZGbh8+TK/CSEiu+Tn54fhw4dbdRlLlixBbGysVZdBRKQ0a8+PkZGRWL58udXaJ+3iOcakGnd3d3zyySdWafvIkSP466+/rNI2Ed3j4uICFxeXPI9lZ2cjMzNTpR45hvLly+O3336Dr6+v1ZaRkJCAPXv2WK19a/Pw8EBGRgbMZrPaXSEiGzIYDPjwww+tOj9u2rRJ1xc10zN+Y0yqMRgMcHJyskrb48aN47fFRFb27rvv4tq1a3myceNGVKxYUe2u2bVy5crh6aeftuoyduzYgYMHD1p1Gdbi4uKC/fv3F3phsrp166J///7o378/evfuDTc3Nxv2kIispVq1ahg8eLDV2o+Ojsb8+fP5oZteWXqDa2jgxsyMY8XT01MiIyOLcZv1opnNZpk5c6Z4enqqvn6MdaJFao+JWnnrrbckPT0933hcuXJF2rZtq3r/7DXTp0+3+nu2e/fuqq9nSeLr6yuHDx+WzMxMWbduXZ7fvf7663Lq1Ck5deqUhIWF5a6ryWSSs2fPyqlTp6RFixaqr4M1o0VqjwnjWKlZs6ZkZmZa7f26dOlS1deRsU4smq8sfaOovTKM48Xd3V0uXLhQ4smrIBkZGVK9enXV142xXrRI7TFRKy4uLnLjxo0Cx2TTpk3i5OSkeh/tMe3bt5fs7GyrvV8vXbokVatWVX09i5OAgACZOnWqbNmyJXds4uLi5I033pChQ4fKhg0bJC4ursh1P3TokPTp00eMRqPq62SNaJHaY8I4VqpWrSpRUVFWe782bdpU9XVkrBOL5itL3yhqrwzjmOnfv3+JJ6+CbN68Wby8vFRfL8Z60SK1x0StGI1GmTlzZoFjEh8fLy1btlS9j/aYGjVqSFJSktXer6NHj1Z9HS2NwWCQl156Se7evVvguphMJjGbzcVa/7S0NOnZs6fq62aNaJHaY8I4Xlq1amWVOfLEiRNSpUoV1dePsU4swXOMSVWi4HnAqampmDt3LpKTkxVrk4gezGw2Y9++fQX+LikpCSdOnLBxjxzDrVu3MH/+fKu0HRISgpUrV1qlbWvw8fHBkiVLHng/Z6PRCIPBUKw23d3d0aJFCyW6R0QqOHz4MFJSUhRt02w2Y/HixYiIiFC0XbIvLIxJVevXr8fFixcVaSs+Ph5btmxRpC0iKh1XV1f4+fmp3Q27VK5cOTRr1kzxdkUEy5cvx/Xr1xVv21oMBgM8PT0Vb7d79+6oVauW4u0SkfWlpaVh2rRpirYZHByMX3/9VdE2yf6wMCZVxcfHIz09XZG2oqOjeSVqIo0wGAwwGvlfTEnExcVh9erVit8uJCsry2rfRFtLv3794OHhoXi7vr6+eO+99xRvl4isT0QQGRmpWHvZ2dmYM2cOYmJiFGuT7BP3WsghmEwmfPfdd8jIyFC7K0S64eTkhC5duhT4u4yMDNy+fdvGPXIcc+bMwd27dxVtc+vWrYiLi1O0TWsyGo149NFHrXZbv06dOqFu3bpWaZuI7EdYWBjmzp2rdjdIA1gYk0M4e/Ys1q1bp3Y3iHTFyckJzzzzTIG/q1atGgYOHKjIcnK+ff53yHLJycn4+eefFT8vz5oGDhyInj17Wq3969evIywszGrtE5F9+O677xQ7epHsG/csSFXVq1dHuXLlSt2OyWRCVlaWAj0iIku4urpi/Pjx8Pf3L/D3BoMB7u7upV5OvXr1cPDgQVy8eDFfRo4cWewLL+nVkSNHsHnzZrW7YbGhQ4di6tSpcHV1tdoynn76aaxbt47vISIdO3fuHH7//Xe1u0Ea4ax2B0jf2rRpg9q1a5e6nVmzZinQGyLtq1mzJubPn4+9e/di/fr1AO5dxdiWh8jWqlULw4cPx4cffmjVb27r16+PtWvXokGDBgX+/ttvv0VkZCR++eUXq/XBUSxcuNBuPjzs3LkzJk+ebJWLbt3P09OTF+Ai0rmpU6ciKSlJ7W6QRrAwJrt34sQJu/omhKg0vLy80KZNG7Rt2xZff/01AGDv3r24cOECpkyZgri4OJjNZqsVys888wxWrVr1wG+KlVKjRg1s2LAB9evXf+Bz3Nzc8Mgjj8BgMPDCe4W4ceMGDh8+rHY3LOLu7o63337b6kUxcO9iZJmZmVZfDhEpr0yZMqVug/uP9G8sjMnuhYSE8L5zpAsPutLzc889h+eeew59+vSB2WxGcnIyZsyYgaysLERERODXX38tdeH43HPPAQB+++03i4tis9lc4uW9/vrrhRbFOd59913MmDEDUVFRJV6Wo4uKikJISIja3bBIeno69uzZg44dOyrSntlszvfez8jIwMKFC3Hu3DlERUXxQxUiO+Ph4YHRo0eXqg2z2YxFixZx/5HyYGFMdi07Oxvff/+92t0gsrpatWqhR48eGDZs2APPicz5ls3Lywvjx48HcK8IePjhh3H8+HFs3brV4iu3u7i4oF27dnBxcYG/vz++++47iAh8fHwsev3t27exYMECi577b/7+/nj77bcteu6CBQsUv3qzo/n222/V7kKxXLp0CcnJyfDy8ipVO7t378a0adNw7ty5PI+bzWaEhYWV6oMbIlKPwWCAm5tbqdq4fPkyVq5cqVCPyGGIhQAwjOLp16+fpW/BAi1btkzc3NxUXw/GdtEiW6z30KFDS9VHk8kkP/zwg3h4eBS5rDp16siECRMkOzu7xMv7559/xNnZuUTr2qlTJ4uWceLECalVq5bq70lrxNPTUyIjI0s8/jni4uKkcePGqq9PcdO3b19JTEws9vpmZmbK119/LS1bthQvLy/V18PW0SK1x4RxvJR2fszKypIPPvhA9fVgbBtL8BtjsltmsxmXL1/mvYvJ4Xl4eOD1118vVRtGoxHvvfceAOCTTz4p9O/mxx9/xEsvvVSq5U2bNg3Z2dkleq23t3eRz8nKysK4ceNw/fr1Ei1D60QESUlJqFy5cqnaWb9+PU6dOqVMp2xoyZIluHPnDt577z106NDBoitHZ2VlYcKECfjyyy/5bTARPVBYWBjmzZundjdIiyz9dAUaqPQZx0tpvjG+c+eOlCtXTvV1YGwbLbL2OpctW1aio6OL1SeTySS7du2SxYsXy5kzZyQzM1Oys7PFZDJJ586dC13e5s2bSzUe4eHhEhQUVKJ1dXJykosXLxa5jEOHDomTk5Mi4+vi4qJYW0pm0KBBpdoOe/bskcqVK6u+HqVJuXLlZNy4cRIdHS1ms7nQ9T148KAmt6Mto0VqjwnjeCntN8YDBw5UfR0Y28cSvI8x2a2JEyciMTFR7W4QWV1SUhKmTp1arNcYjUaEhYVh0KBBeOGFF1C3bl1069YNa9aswZ07dx74Oj8/P1SpUqVU/Q0LC8t3XmdxuLi4FPmcEydOwGQylXgZOVq2bInz589j/fr16NatG1555RWr3oKqOEpzxeS7d++iR48edn9RsoSEBHzxxRd47LHH8P333+PGjRsPfK7ZbFbkPUFEjuvixYtYsWKF2t0gjeKh1GSXQkJCsHz5cl5NlHRBRBAcHIz09HS4u7tb/LqXX34ZP/74IwYNGgTgXsG6bt26PM/5+uuv8cILL+T+XL58+QfeN1grYmNjFbl3ub+/P3788Uc8/PDDePjhh/HKK68gKysLx48fh9lsxvTp07Fjxw7ExsYq0Ovii4mJQWpqaoluXTRr1ixERkZaoVcPVqtWLfTs2ROvvPJKnsePHTuG//73v0hJSSlx27dv38aYMWOwYMECVKlSBZ999hl8fHxQu3ZtZGRk4NatW7hw4UJpV4GI7EB6ejrmzJmDL774otivnTRpEpKTk63QK3IIlh52AA18Bc44Xt544w3JzMws9mEwI0eOVL3vjDrRIlust8FgsOgQ43+LiYmRWbNmSc2aNaVq1ari4uKSp10/Pz/ZtWuXouMxZMiQEq9nhw4dJCkpqdD2V6xYodi4zp8/v9Bl7du3TxYvXiyBgYH5xs4WOXHiRLHH/8aNG1KnTh2b93XJkiUP7NMTTzxhlWU2b968xIftO2K0SO0xYRwzJTkV7/jx4+Ln56d63xl1YgltHC9GurVmzZpif8p/+fJlrFmzxko9ItKuklzMytfXF++++y6uXLmCq1evYubMmQgKCsr9fWRkJLp37459+/aV+GJZ/3bs2LESv7ZevXqF3qbHZDJh69atJW7/37Zt24a0tLQH/r5Fixbo27cvTp8+jVGjRsHV1VWxZVvLihUrEBoaavPlZmVlPfBQ5tJezO1B/vnnn1Idtk9E+iAimD9/vs2PpCH7wsKYVGUymYp19VARwYoVKxz2SrREDyIi2Lx5c4lf7+bmBjc3NwwePBjLly+Hs/P/nUkTFRWFLl26qP6Bk6urKx577LFCn5OdnY1t27YptsxVq1ZhypQpRT7P1dUVn3/+Ofbu3Ztn7LTm5s2bWLx4sSrL/vjjj9G/f3/s378/3+8qVaqkQo+IiO65ePEi1q5dq3Y3SOt4KAyjdopzqGB4eLhUq1ZN9T4z6kWLbLXuLVq0kEuXLuUuNzY2VuLj40VEJCwsTF588UV54okn8mXmzJly8OBByczMlISEBOndu3dum+XKlZOFCxfK8ePHS3Xf4vuV9LBZX1/fIg+jnjdvnuKHNFerVk0OHDhg0bplZGRI3759bbbNi3so9fTp01X/G61QoYIsX748z5XUrXUoNZM3WqT2mDCOmYoVK+b5/7AwWVlZ8uGHH6reZ0bdWEK7H3uTbixZsgT/+c9/inye2WzG/PnzcevWLRv0ikh7QkJC8Pnnn+f+fOvWLTg7O8PPzw+XLl3CmTNnCnzdsWPHYDQa0aFDByQnJ2PXrl25v3Nzc0OjRo3w+OOPK9LH/fv34+rVqyV6bY8ePQq9uFhcXBxmz56NrKysknavQLdu3cIbb7yB7du3IzAwsNDnOjk5lehiWLYQHx+PadOmqd0NxMbGolevXmjWrBlq1qwJAKoc2k1EjismJga3bt1C/fr1i3xuYmIiFixYYINekd3jJ36M2qlRo4ZcuHChyPdgREQE71vMWDpl2ZTaY1Ka1K5dW4KDgxUbixUrVoinp6fF95P18PAQT09PCQgIKPLb0evXr4ubm5vVxmL06NFFrt+VK1fE1dXVZtvn0KFDFo/9pEmTVH8/MepGi9QeE8Zx07JlS4uOdFqxYoVN521Gm7FovuLExmghY8eOFbPZ/MD3X1xcnHTs2FEMBoPqfWXUjRapPSalSatWrRQdi7S0NImIiJCOHTsWueznn39erl27JhERERITE1Nk26W52rUlCQgIkJCQkEL70K9fP5tun1deecWicd+xY4dUrFhR9fcTo260SO0xYRw3Li4u8tVXXxW5/9iqVSvV+8qoH4vmK05sjBZStWpVuX79eoHvvSNHjkjnzp1V7yOjjWiR2mNSmihdGOc4fvy41KpVq8Bl+vj4yOuvvy5RUVEWt5eUlCRt27a1+ng0adJE0tPTC+zDyZMnpXz58jbdPl5eXkXeUiolJUVeffVV1d9LjPrRIrXHhHHsFLb/ePfuXe4/MrmxaL7ixMZoJUFBQTJhwgQJDQ2V0NBQOXv2rPTo0UO8vLxU7xujnWiR2mNSmjRr1kxSUlKsMi6nTp2Sxx57TGrXri1ff/21rFu3TtatW2fxha7uFxERIY8//rjVx8PNzU2WLVtWYB/69++vyjYqU6aMLFy4UEwmU74+bd26VVq3bq36+4jRRrRI7TFhHD85+4+3b98WEZGYmBgJCQmRTp06qd43RjuxhOH/T1pFMhgMljyNqFQMBgOMxv+7i9iD7olJ+mXhlGVT9j4/vvPOO5g6dSq8vb1L3VZycjIAwN3dHc7Ozrl/w0ajsVTjFBkZiQ4dOuD48eOl7mNRRo0ahQkTJuTp74kTJ/Dyyy+rdg9MNzc3vPPOO3kuTmY2m7Fs2TLExMSo0ifSHs6PpFcGgwEBAQHo2rUrdu/ejVOnTnEfkvKwaH7kJ34Mw9hTtEjtMSltjEajVK1aVbZu3VqqcUhPT5eGDRtKgwYN5MyZMwqN7v/54YcfLL6oV2ni5eUla9euzV1udna2DB8+XPXtxDBFRYvUHhOGYRjAsvnx/76aIyIiXTKbzbh9+zbWrVtXqnauXbuGiIgIXL9+HW+++SaefPJJxMbGKtRLYOjQoRg6dKhi7T1IcnIyfvjhByQkJAAAZs+ejZ9++snqyyUiIiL1sDAmIiJFrFixAnfv3kVqairOnTuHEydO4Oeff873vEmTJuGjjz7C/v37i9W+s7Mz6tevD2dnZ6W6/EC7d+/GiBEjcPfuXcyePRvZ2dlWXyYRERGph4UxEREBAA4cOICIiIgSvVZEkJGRkecxs9mMS5cu5XvuyJEj8eijj8JsNhd7OUOGDMHAgQNL1MficHFxQVhYGNLS0nD16lWrL4+IiIjUxcKYiIgAAGfPnn3ghZzk3l0MEBoailOnTuHHH3/EwYMHc4vbO3fuYM6cOfled/HixXyHaBuNRrzwwgsluiiPwWCAk5NTsV9XHM7OzpgwYQLWr1+fu0wiIiJycLx4AsMw9hQtUntMlMxLL70k0dHRuesWFRUl165dk379+klgYKBUq1ZNKleuLADE19dXAgMDZfbs2fLGG2+IwWAosE1PT0+ZOXOmImOdnp4u1atXt9r6t2jRQs6ePStZWVkiIpKVlSVDhw5VfbswjCXRIrXHhGEYBuB9jBmGccBokdpjonTat28vFy5cEJPJJNHR0bJ79+5Stzl8+PA8BXdJZWZmSpMmTay27kuXLs23zJCQEPn222/F3d1d9W3DMIVFi9QeE4ZhGICFMcMwDhgtUntMlI6Tk5MMHjxYMjIyRETk7t27MnnyZHFzcytVu88//7yEh4fL3bt35e7du5Kenl6i8Q4ODpY5c+ZIy5YtpUKFClKmTBlF1rtmzZpy+fLlBy53ypQpUr58edW3D8M8KFqk9pgwDMMAls2Phv8/aRWJ51gRkRZYOGXZlKPMjwaDAQEBARg0aBBGjhwJV1fX3N/FxMSgVq1aSElJKdUyvLy8YDAY4OPjg5UrV6JZs2bFer3ZbIbReO/yGOnp6cjKyso953nVqlWlen80adIEx44de+DvTSYTLl68iMcffxxZWVklXg6RtXB+JCIqmCXzIy++RUREAIAePXrgwIEDGDNmTJ6iuDRq1KiB5s2b5/6cnJyMpKQk3LlzB8HBwcVqKzExEf/73/9y7y/s7u4Ob29vPPvss1iyZAn++9//ok6dOor0uyBOTk4IDAzE5MmT0bhxY6sth4iIiGyP3xgTkV3hNyLWU61aNSxYsADNmzeHt7d3nt9Z+o2xj48PnJycUK1aNbzyyit46623kJycjNatWyMxMTHPcxs3box9+/bBy8vLov5t3LgRBoMBcXFxaN26NapWrZrvOaGhofj999+xcuVKXLt2Ld8yC1PUN8b3i4iIwK+//oqRI0da3D6RtXF+JCIqmEXzI88RYRjGnqJFao9JaeLl5ZXvseHDh+dbx2XLlomLi0uBbfj4+Ejfvn2lZs2asnHjRjl06FCe14aGhkrdunXzva58+fISFxdXojHv06ePnD59utDnbNu2TWbPni0BAQFSuXJlcXV1LXQsWrZs+cC20tLS8vX19u3b0rhxY9W3IcPkRIvUHhOGYRiAF99iGMYBo0Vqj0lp0q5du3yPrVu3Lt86rlix4oGF8Y4dOyQzM1NSUlLEbDbne+3169clMDAw3+vc3d3ljz/+sHic9+7dK9nZ2SJyr1DN+XdRUlJSJCkpSebNm1foFa23b9+e53U7duyQ+Ph4mTp1qvTp00cCAwPlypUreZ7TpUsX1bchw+REi9QeE4ZhGMCy+dEZRESkW1u3bs332OTJk9GpU6fcQyD37duHBQsWFHjBqerVq6NatWpwcXGBi4tLgcvw8/NDjRo1cOnSpTyPp6enY86cOWjVqlWBh1OfO3cOjzzyCJycnLBnzx4EBwfDx8cHQUFBcHd3t3gdPT09AQADBw5E+/bt0bVrVxw5ciTf8w4ePIj4+PjcnxctWgSj0YisrCw89thjqFGjBqpVq5bnNWPGjMGGDRtgNpst7g8RERFpDwtjIiLK49atWzh27BgOHDiA+vXr4/PPP3/gubfNmzdH/fr1C23P3d0do0aNwo4dO/IVkElJSfkK7vj4eISGhuLatWtITU2Fk5MTPvjgA5w+fRqff/45goKCSrxu1atXx5o1a/D000/j5s2beX732WefFfgaZ2dndOrUCW+99VZukZ2jQoUKJe4LERERaQgPhWEYxp6iRWqPiVp59dVXZe/evRaNUVJSkrRv3z73tVWqVJEuXbpItWrVJCQkJPd5iYmJhR6e3KhRI5k8ebLcvn1b0tLSSrS9zGazfPjhhxavp7Ozs7Rv316OHTuWr63ExETp1q2bGAwG1bcHw2iR2mPCMAwD8BxjhmEcMFqk9pioEU9PT9m4cWOxxmnEiBECQGrVqiXTpk2TzMxMSUtLyz0vOTU1Vbp06VJkkWk0GqVOnTpy6tSpEm2vzMzMAs95LizOzs75LiqWIykpSd544w0Wx4zq0SK1x4RhGAawbH7kfYyJiKjY0tPTcf78+RK9VkTw0ksvwcXFBe7u7rnnMh86dAibN28u8pYKZrMZ4eHheOutt3DmzJliL//QoUPw9/cv1muys7PxzTffFPg7Ly8vLFiwAB988EGx2yUiIiJtYGFMRETFZjabMXv27AIvYvUgNWrUgLOzM0SkwItVHThwAJmZmRa1lZmZiXPnzqFLly7Ytm0bkpOTLe7Hs88+izVr1qBr164WvwYA9uzZg127dhX4Oy8vL0ybNg2//fYbnnjiCTg5ORWrbSIiIlIZD4VhGMaeokVqj4maqVGjhly+fNmicUpKShJfX1/x8/OTnTt35vt9TExMgfdVtiSDBw+W1NTUYm23ixcvFnt58+fPL7LdzMxMGTFihFSsWFH17cPoK1qk9pgwDMMAPJSaiIis7NatW4iLi7PouTt37kRqaioiIyMxfPjwIg+ZLo558+ZhxIgRBd5S6kHq16+Pbt26FWs5o0ePxp49ewp9jouLCyZPnoy9e/ciMDCQ3x4TERHZARbGRERUYkFBQahRo0aRz9u9ezfmzJmDtLQ0AEBsbCyWLl2KZcuWITExEQBw8uRJZGdnl6gfIoL58+dj6NChWLZsWe79iI8ePYply5Zh2bJluH37dp7XGAwGPPHEE3B2tvzOhXfv3sXcuXORnp5e6POMRiMeeeQRHDhwANOnT0eTJk2KvU5ERERkOwax8CP7nIujEBGpSclvGZWi9/nxn3/+wdNPP13g7yIjI7Fp0yaMGDECCQkJBT6nYcOGcHd3x40bNxATE6NInwIDA1GmTBmEh4cjKioKAFC3bl0MHjwYI0aMyP0WNzs7GzNmzMDYsWORkZFhUdtGoxEDBgzA1KlT4eXlZdFrIiMjcfPmTdy6dQuTJk3Kffz06dNISkoq5toRFYzzIxFRwSyZH1kYE5Fd4Y6f9qxevRqPP/54vsc3b96MhQsX4vjx4yr0qmAuLi4YP348Pvjgg9xvikUEX331Fb788stitTV48GBMnToVnp6eJe7Pnj17cPfuXWzduhVr165FdHR0idvSugEDBmDdunWIjY1VuysOi/MjEVHBWBgTkcPhjp/2ODk5FTgGZrO5wKtPq83Z2RkXL15E3bp1cx8LDg7Gjz/+iB9++MHidgwGAwYMGIBZs2bB1dW1VH0ym824cOECNm3ahFWrVuH06dPFOl/aHqxevRpHjhzBxIkT1e6Kw+L8SERUMEvmR55jTEREpWIymZCdnZ0vWiyKAaBBgwYoW7ZsnscefvhhfPTRR+jZs6fFF8sSESxcuBDDhw+3+DDsBzEajQgKCsKoUaOwc+dO/Pzzz/Dw8ChVm1qzY8cOnD17Vu1uEBERFYjfGBORXeE3IlQaY8eOxbBhw+Dv71/g7yMiIvDQQw8VeXGt+5UtWxbXrl1DhQoVlOomRAQXL17Ep59+io0bNyrWLjk2zo9ERAXjN8ZERET32b59O0wmU4G/GzNmDPr27YvMzMxitfnmm2/C29tbie7lMhgMaNCgARYtWoQOHToo2jYRERHlx8KYiIhU5+npqXhxWZDDhw+jS5cu+a5+febMGSxduhRbt24t1iHgRqMRjz76KFxcXJTuKgDA19cXv/zyC9q3b89v3oiIiKyIhTEREanGYDAgICAAu3fvxty5c0t9EStLHD9+HH/99VfuYVUnT57ErFmz8t3n2BI1a9ZEv379FO5hXuXLl8eSJUsUPVSbiIiI8mJhTERExRIYGIhOnTqVup2xY8fi3Llz2LdvH5588kk0btw49xZKlnB3d0fbtm0RFBRUrOWKCIYPH462bdtizZo16NSpE+bNm1fc7gMAMjIycODAAatfQdrX1xdTpkyx+L7JREREVDy8+BYR2RVeXEZ9Y8aMwcWLF7F+/foSt1GtWjUcOHAAAQEBuY/dvXsXtWrVQnJyskVtDBs2DD/88AMiIiLQsmVLhISElLg/peHk5ITnn38eY8eORZUqVQAAFSpUgJ+fn+LLevTRR3Hu3DnF2yXHwPmRiKhgFs2PYiEADMMwqkeL1B4TW8dgMJS6jTFjxuQbx/T0dOnRo4fFbVSvXl0iIyPFbDbLd999J2XKlBE3NzdVxyUnjRo1khkzZkhsbKzEx8cr9l778ssvVd/+jHajRWqPCcMwDGDZ/MhvjInIrlg4ZdkU58fiCQgIwKZNm9CgQYN8v9u5cydee+01JCQkFNmOwWCAj48PRowYgaioKDz55JMwGAwYMmQIUlJSrNH1YnF2doanpyc8PT3x0UcfwdXVFa+99hqqVasGo7FkZzJ9/vnn+PrrrxXuKTkKzo9ERAWzZH5kYUxEdoU7fvYtICAAa9asQZMmTQr8vdlsRufOnUt0715/f3/06tULb7/9NqZPn47169cjKiqqtF1WVPXq1VG9enXs2rUL7u7uxX49D6WmwnB+JCIqmCXzIy++RURENpOdnQ1fX98H/t5oNGLEiBEoU6ZMsdu+c+cOpk2bhkGDBuG1115DYGBgabpqFTdv3sSJEyewbNmyYr/2zz//xLVr16zQKyIiIrL88p9EDiEKxAAAd7NJREFURESldOvWLXz00Ue5tx5q3rw5Xn/9dZQtWzb3OT4+PvD29i7R4dAmkwn79+/HSy+9pFiflZaZmYm5c+eia9euFt+CSUQQEhKiiUPEiYiIHBEPpSYiu8JDBR2Li4sLGjZsiPfffx/dunXDggULcPLkSSxZskTtrlmVi4sLQkJCULNmzQc+x2QyAbh31eutW7eie/fuiI+Pt1EPyR5xfiQiKhjPMSYih8MdP8fk4uKCqlWrIiwsTJPbWGmFFcZHjhzB9evX8e2336Jy5cp49913sWTJEmzYsEGFnpI90eLfDudHItICFsZE5HC440eOwNnZGXv27EHz5s1zH4uLi8POnTsxZMgQxMTEqNg7slecH4mICmbJ/MhzjImIiGxMRBAREZH78/r16zFlyhTs379fxV4RERHpFwtjIiIiK6lUqRIGDRqU57G//voLly5dQqNGjWA2mxEfH4/Zs2ezKCYiIlIRD6UmIrvCQwXJnvTu3RtLly7N81hsbCw2btyIU6dOoVy5cvj5559x+/ZtlXpIjoTzIxFRwXgfYyIiIpWUL18e7733Xr7HK1SogL59+2LatGl46qmnkJGRUeDrK1WqhPHjx8PHx8faXSUiItI9FsZEREQK8/b2xvz58/Hkk08W+ryXX34Zv/zyCwICAvIUwL6+vvj111/x6aefYtKkSTAa+d81ERGRNfF/WiIiIoW9/fbbeO211yx67ksvvYQrV67ghx9+gMFggIuLCz7++GO0adMGALB582aYzWZrdpeIiEj3ePEtIiIiBT333HP473//W6xzK11dXdG1a1ecP38eLVu2RIsWLXJ/l52dbY1uEhER0X1YGBMRESmoW7duqFy5crFf5+HhgfHjx1uhR0RERFQUHkpNRESkAcnJyXnubQwAFy5cwNGjR1XqERERkX6wMCYiIlLQtm3bkJSUZNFzzWYzUlNTsXnzZrz11lto1qwZduzYgR07diA1NRXz58/nrZyIiIhsgPcxJiK7wvt0ktYZDAZ06tQJS5YsQdmyZQHce98ePXoUIoKmTZvi9OnTOHHiBMLDwzFr1iykpKQgJSUFAODl5QUA8PT0RGxsLM8xJotxfiQiKpgl8yMLYyKyK9zxI3sRGBiIESNG4OTJkzh48CBu374NEUG1atUQGRmZ77BpotLi/EhEVDAWxkTkcLjjR0RUMM6PREQFs2R+5DnGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6ZvFVqYmIiIiIiIgcEb8xJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjMkuPP/883j++efV7gYRkeZwfiQiR6fGPNevXz/UqlXLpsskdbEwJpu7ffs2vvzyS5w6dapU7cyZMwfdunVDzZo1YTAY0K9fP0X6R0SkFiXmx/DwcIwbNw5PPfUUfHx8ULFiRTz//PPYvn27ch0lIiohe90PvHv3LiZNmoTnnnsOlSpVQvny5dGsWTOsXLnSqssl22FhTDZ3+/ZtjBs3rtQT4vfff4+dO3eiYcOGcHZ2VqZzREQqUmJ+3LBhA77//nvUrVsX33zzDT777DMkJSWhbdu2WLRokXKdJSIqAXvdDzx48CDGjh2LChUq4H//+x++/fZbeHp6okePHvjiiy+svnyyPlYTZLf27NmT+ymhl5eX2t0hItKEVq1aISwsDBUrVsx9bMiQIWjcuDE+//xz9O/fX8XeEREpozT7gbVq1UK/fv3w5ZdfWvyahg0bIjg4GAEBAbmPvfvuu2jTpg2+//57jBo1CmXKlClWP0hb+I2xjj3o3Ikvv/wSBoMh92eDwYDhw4dj/fr1CAoKgpubGxo2bIgtW7bke+2tW7fw9ttvw8/PL/d5CxcuzP397t278eSTTwIA+vfvD4PBAIPBgMWLFxe7/wEBAXn6SUSkFHueHxs2bJinKAYANzc3vPzyy7h58yaSkpKK1R4ROSZ7nucA2+8HPvTQQ3mKYuDe2HTu3BkZGRm4evWqzfpC1sFvjMki+/fvx9q1a/Huu+/C29sbP/zwA7p27YqwsDD4+voCACIjI9GsWbPcCbRSpUrYvHkzBgwYgMTERHz44Yd45JFH8NVXX+Hzzz/HoEGD8OyzzwIAmjdvrubqERGVmL3MjxEREfD09ISnp6ci7RGRftjLPKeGiIgIAMj3gSTZHxbGZJGLFy/iwoULqFOnDoB7h+o99thjWLFiBYYPHw4AGDt2LEwmE86ePZs7SQ4ZMgQ9e/bEl19+icGDB8PPzw/t27fH559/jqeffhpvvfWWautERKQEe5gfQ0JCsHbtWnTr1g1OTk6KtUtE+mAP85waYmNjMX/+fDz77LPw9/dXuztUSjyUmizSpk2b3MkQABo1aoSyZcvmHjYiIlizZg06duwIEUFMTExuXnzxRSQkJODEiRNqdZ+IyGq0Pj+mpqaiW7du8PDwwIQJE6y2HCJyXFqf5wqTkZGRpz8xMTEwm81ITU3N93hxmM1m9OrVC/Hx8Zg5c6aVek+2xG+MySI1a9bM95iPjw/i4uIAANHR0YiPj8e8efMwb968AtuIiooqdBnJyclITk7O/dnJyQmVKlUqRa+JiKxPy/OjyWRCjx49cOHCBWzevBlVq1Yt8jVERP+m5XmuKCtWrCjwooOTJk3CpEmT8jwmIha3+95772HLli1YunQpHnvssVL3k9THwljHHnTBApPJlO+xBx16lzOBmM1mAMBbb72Fvn37FvjcRo0aFdqfyZMnY9y4cbk/BwQE4Pr164W+hojIGhxlfhw4cCD+/PNPLF++HC+88EKRzyci/XCUea4oL774IrZt25bnsbfeegvt2rVDnz59StTmuHHjMHv2bEyYMAG9e/cudR9JG1gY65iPjw/i4+PzPX7jxo1it1WpUiV4e3vDZDKhTZs2hT73QRNxnz590KJFi9yfPTw8it0PIiIlOML8+Mknn2DRokWYPn06evbsWbxOE5HDc4R5zhL+/v75zv91d3dH7dq1i+xrQWbNmoUvv/wSH374IUaPHq1IH0kbWBjrWJ06dZCQkIAzZ87kfop3584drFu3rthtOTk5oWvXrvj1119x7tw5BAUF5fl9dHR07uEwOfd4+/dkXLt2bdSuXbsEa0JEpCx7nx8nTZqEyZMn47///S8++OCDYveZiByfvc9zali5ciXef/999OrVC1OnTlW7O6QwFsY61qNHD4wePRpdunTB+++/j9TUVMyZMwf16tUr0QUSJkyYgF27dqFp06YYOHAgGjRogNjYWJw4cQLbt29HbGwsgHsTcfny5fHTTz/B29sbZcqUQdOmTfHQQw8Va3kbN27E6dOnAQBZWVk4c+YMvvnmGwDAq6++WuQhO0RED2LP8+O6deswatQoPPzww3jkkUfwyy+/5Pl927Zt4efnV+x1ICLHYs/zHGD7/cAjR46gT58+8PX1RevWrbF8+fI8v2/evLnmC3sqHAtjHfP19cW6devw0UcfYdSoUXjooYcwfvx4BAcHl2hC9PPzw5EjR/DVV19h7dq1mD17Nnx9fdGwYUN8//33uc9zcXHBkiVLMGbMGAwZMgTZ2dlYtGhRsSfENWvWYMmSJbk/nzx5EidPngQAVK9enYUxEZWYPc+POTuKwcHBBZ77tmvXLhbGRGTX8xxg+/3ACxcuIDMzE9HR0Xj77bfz/X7RokUsjO2cQYpz+TUiIiIiIiIiB8P7GBMREREREZGusTAmIiIiIiIiXWNhTERERERERLrGwpiIiIiIiIh0jYUxERERERER6RoLYyIiIiIiItI1FsZERERERESka86WPtFgMFizH0REFtPa7dc5PxKRVnB+JCIqWFHzI78xJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1jYUxERERERES6xsKYiIiIiIiIdI2FMREREREREekaC2MiIiIiIiLSNRbGREREREREpGssjImIiIiIiEjXWBgTERERERGRrrEwJiIiIiIiIl1zVrsD9GAGgwGPPvooXF1dkZWVhTNnzkBE1O4WEREREWnU/fuPAHDnzh3cunVL5V4RaR+/Mdawjh074sCBAzh69CgOHTqEpUuXIjAwEC4uLmp3jYhIde7u7vD394efn5/aXSEi0pQePXrg6NGjOHr0KLZs2YJPPvkEFStWVLtbRJrGwljDGjRoAC8vLwD3dgDfeustnDp1Cj/++CMaN24MJycnlXtIRKSeDh064OrVqzh37hzGjRuHbt26wdXVlR8eEpGuiQiOHz+e+3NQUBAmTJiAI0eO4MMPP4SnpyecnXnQKFE+YiEAjI3z6aefPnB73L17VxYuXCjdu3eXNm3aqN5XhrFltEbt8dBjnJ2d5eTJk3m2Q2pqqoSFhcnZs2elZ8+e4unpqXo/GcbW0Rq1x0OPMRgM8vXXXxe4PUwmk4SHh8vGjRu5/8joLkUx/P9Jq0gGg8GSp5GCPv30U4wfP77I5yUnJ+Ps2bPYsmULli9fjtDQUBv0jkg9Fk5bNsP50fb69OmDefPmwc3NDVlZWTh9+jTMZnPukTYighMnTmDixIm4cuUKTp8+rbn3DZE1aO19zvnR9pydnREcHIxatWoV+rz79x+3bNmC8+fPIyUlxTadJFJBUfMjD6V2AF5eXnj66acxbtw47NixA9999x2qVq0Kf39/GI3cxETkeKpWrQo3NzcAgMlkQmhoKEJCQpCWlgbg3s54kyZNsHLlSvzzzz+8RgMR6UaHDh0sOp/4/v3Hw4cPY+3atZg1axZq1KjB/UfSJx4Ko90Udih1Ycxms6Snp0tSUpJMmjRJatWqJa6urqqvD8MoFa1Rezz0mJLMj+np6TJ37lwZMWKEeHp6irOzs+rrwTBKR2vUHg89pqT7jzly9h8HDBjA/UfGoVIUfhzkgAwGA9zc3ODl5YWPP/4Yhw8fxvHjx9GzZ0+4u7ur3T0iIlW4ublh0KBBmDRpEi5fvoy1a9eiR48eqFmzptpdIyJSzKVLl5CcnFzi1+fsP86ePRvHjx/HW2+9hWbNminYQyJt4jnGGmbpOcaWEhGcPHkSEyZMQHBwMM+5I7ultfct50fbq1mzJg4dOgR/f/9StxUcHIyIiAh88803OHDgAM+xI7vG+ZEsPce4OGJiYrBt2zb88MMPCAsLw+3btxVrm8hWipofWRhrmNKF8f1SU1OxceNGmM1mzJgxAzdu3EBERIRVlkWkNO74kTV2/ABg69atCA0Nxffff4/ExETExcUp2j6RtXF+JGvNjznOnDmD8+fPc/+R7A4LYztmzcL4fllZWYiLi8O8efNw6tQp/PHHH8jKyrL6colKijt+ZO0dv8zMTJw9exZ//fUX1q5di0uXLiEjI8MqyyJSEudHsvb8mIP7j2RvWBjbMVsVxvdLTU3FiRMnMHv2bJw8eRKXLl2y6fKJLMEdP7LVjh8AxMbGIjExERMmTEBoaCi2b99u9WUSlRTnR7Ll/JiD+49kD1gY2zE1CuP7hYeH486dO5g0aRJCQkJw6tQp1fpCdD/u+JEaO34AkJSUhIsXLyIzMxNfffUVbt++jfPnz9u0D0SF4fxIas2POcLDw7F+/XrMnTuX8yNpCgtjO6Z2YXy/5ORkbN68GQcPHsTq1asRHR2N9PR0tbtFOsUdPzIYDPjqq6/wv//9T9V+REVFYdeuXfjzzz/x119/8ZxkUh3nR1K7MM5x//y4Z88epKenIzo6WtU+kb6xMLZjWiqMc5jNZmRnZ2Pt2rU4f/48Zs2ahZSUFGRmZqrdNdIR7vgRAHTt2hWrV69WuxsAAJPJhJMnT2LLli1YuXIlQkJC+OEhqYLzI2mlMM5hMplgMplw48YNrFy5Etu3b8fhw4dhNpu5/0g2xcLYjmmxML6fiCAqKgqXL1/GlClTsHHjRs39h0yOSWvvM86P6tBSYXy/uLg4JCQk8JxkUgXnR9JaYfxviYmJSElJQXBwMH7++WccO3aM5ySTTRQ1PzrbqB/kgAwGA/z8/ODn54emTZvi7NmzOHDgAH7++WeeU0JEuuXj4wMfHx/89NNPSExMxJUrV7B27Vr8/vvvCA0NVbt7RESqKlu2LMqWLQt/f38899xzCA8Px9q1a7Fq1SpcuHCBp6SQaviNsUJ8fHzg7e2NtLQ0xc6f0Po3xg8SGRmJNWvWYMyYMUhMTFS7O+SA+I0IOTk5Yc2aNejUqZPaXbHY1atX8euvv2LOnDm4ffu22t0hB8X5kbT+jXFh9u/fj9mzZ+PAgQN5Hn/mmWcQHByMc+fO8TQVKrEi50exEACmkLRu3VpWrlwpp0+flg8//FA8PT3FxcWlVG1++umnlm4eTRo6dKjq24VxzGiN2uOhx3h4eMj169fV3vTFZjabJSIiQpo3b676GDKOGa1Rezz0GHudH3NkZ2dLZmZmnmRnZ0tWVpZMnz5dnJ2dVR9jxj5TFCNIETt27ED//v3x/vvv49lnn0VoaChWrFiBPn36wN/fX+3u2VxiYiJCQkLU7gYROah33nkH1atXV7sbxZZzCkqTJk3U7goROSh7nR9zODk5wcXFJU+cnJzg7OyMYcOGoVevXmp3kRwUC2MFpaamYs+ePejVqxe6deuGcuXK4aeffsKePXuwd+9etGnTBg0aNFC7m1YXHx+PAQMGYNu2bWp3hYgcVJkyZeDk5KR2N0pk165d+P3339XuBhFpWIMGDbB9+/bc/Ud3d3eLXufi4oJHHnnEbufHf0tLS8OdO3dyf3Z2dsann36qi/1pUoGlhzVAA19/22PatWsnw4YNkxs3bojZbJbbt2/L6tWrpXv37uLj4/PA15UrV06OHTtWqkNRbCkrK0uuX78uv/76q7Ro0UL1cWccO1qj9njYe9544w35/fff5auvvpJatWpJjRo1xGAwPPD59jY/5khISJChQ4dKlSpVVB9zxnGjNWqPhz2nW7ducuPGDTGZTLJly5bc/cdatWpJrVq1pGrVqvleM2LECMnOzlZ7sysmMTFRQkND8z0eHBwsq1evlrZt2xb5fwbD5KQoLIxtFG9vbxkxYoQsXLhQ0tLSJDs7W/755x/p16+feHp65jlfwmg0yoABAyQrK6t4s4dK0tLSZPLkyeLq6ipGo7FE42MwGOSVV14RHx8fTm5MkdEatcfD3lOmTBkZOXKkhIWFSWJioiQkJMikSZOkWrVq+eZHANK3b1+7mh/DwsJkzJgx8tJLL5VofPz8/OSzzz7j/MhYFK1RezzsPd7e3jJy5EgJDw8Xk8mUe65tVlaW3Lp1Sz777DMpX768eHp6ypAhQ+TMmTNqb3Kbys7OlsTERHnjjTc4PzJFpigsjG0cV1dXeeyxx2ThwoWyePFiiY6OloiICJk1a5Y0adJEAMiAAQMkLS2tVBOFrVy6dEkaNWokrq6upRqXwMBASUpKkoiICOnevbvq24nRdrRG7fFwlPj6+spjjz0mly9fFhGRmJgYiYyMlFmzZknfvn3F29tbKlSoIPv27VN5ixctMzNTli9fLo0aNRJfX99SjUtQUJCYTCbOj4xF0Rq1x8NR4uvrK2PHjs2dH3OYzWaJioqSyMhIyczMVGkrqy8pKYnzI1NkisLCWOU0aNBAXnnlFdm4caPUqlVLWrVqJUlJSaWaHGzh7NmzMmLECKlRo4Yi4xAUFCRms1lE7h1u2LNnT9W3DaPdaI3a4+FoqVGjhjRu3Fh69+6d55Dp8+fPy6VLl1Tc0pZJTU2VDz74QJycnB64ju7u7tK+fXuLxuPf8+M777zDw7GZB0Zr1B4PR0tgYKBs3brVbr5AsaWEhATZuHGj+Pv7q76dGG2mKCyMNZYuXbqUalKwJrPZLNevX7fKOXJly5aVv//+O3dZCQkJsmzZMgkMDBQ/Pz/VtwujrWiN2uPhyClXrpx06dJFfvjhB7s5fDo4OLjQohi4Vxhbemj11KlT8y1j3759EhgYyNuWMPmiNWqPhyPGYDBIu3btZPfu3WpvXk06ceKEvP/++5wfmXwpikHEsjvB8wbttlG3bl38/fffqF27tlXaz87OxqxZs3D79m288MILaNeuXb5tazabkZqaih07duCff/7JfTwzMxMLFixAUlKSVfrWuXNn/Pbbb3Bzc8vT39DQUGzYsAGpqamYMWMGEhISir5BNzk0rW1/zo/W5+TkhGnTpuG9995TuyuFSktLw6xZszBq1Kgi36dGoxFms/mBv2/VqhVeeukldO/eHQEBAfl+n5WVhUWLFuHSpUuYN28esrKykJmZWep1IPvG+VE/qlSpglWrVuGpp56Cq6ur2t2xquzsbJw7dw5lypTBww8/XOTzTSYTFixYgPj4eGzcuBFHjhzh/EhFz4+WfvoCDVT5eom1PgE8fvy4DBs2LPcTtIoVK0pkZGSe51y5ckXGjh0rlSpVEg8PD5uud5kyZQpdd7PZLJGRkfLxxx/zMEKdR2vUHg+9RItH1Kxbt04WLFggCxYskPnz50tQUFCpr7kAQFq3bi0xMTEW9SErK0uioqLk999/F29vb9W3E6NutEbt8XD0eHt7S7du3SQxMVHtTW01//zzjwwYMEDKlSuX5+hCSyUmJnJ+ZATgodR2GWsUxhEREVK9evXcZbi5ucnkyZPzHJqYlpYmjRs3VnXdu3XrJqmpqUWuz+7du+WZZ54p8VWwGfuO1qg9HnqJlgrj0NBQGT9+vLi7u1tlXT/55JMS3XLlwoULvACNzqM1ao+HHuLk5CRbt25Ve1OXWmxsrOzatStPevTokecChrNmzSpx+xcuXOA1GnSeorAw1liaNWtm8bcExfHVV1/lXsbe3d1dJk2alHsxlxzh4eGlvnqqEvnggw8sKo7T09NlxIgRPAdZh9EatcdDL3nnnXfU3tQSHh4uR44ckfr161t1XV1cXGTChAly584dycjIkISEBIv7GB8fL8uWLePOn06jNWqPh16ipQ8O75eVlSWhoaESEhIit27dyvO71NRUGTNmjHTq1Ek6deokzZo1K3I9vb29ZdmyZWIymUrcp5xzkLn/qL8UhYWxxtKjR48S/6E/yOXLl3N34h5//HH59ddf8xXFIiJjxoxRff2BexeV2Llzp0XrZjab5eLFizJ58mT58ssvxcfHx2rf4DDaidaoPR56iLOzs4SEhCi63bKysoq1c3XkyBHx9/cv8sJaJYmbm5t4eXmJl5eXeHp6CnBvLqxbt67069dPXnzxRVm9enWBc/eDHDx4UCZPniwNGzaUMmXKqL4NGdtEa9QeD73EGvuPpTVlyhR55513xMXFRZycnKRWrVoycuTI3HTr1q1E9x729PSU999/X8LDw0vct5z9xxEjRoiXl5cip8Aw2k9RWBhrKE5OTnL27NkS/5E/SKtWrXLbnzlz5gOf9+mnn6o+BjnZsWNHsdfTbDZLTEyM7Ny5U9555x2pW7eu6uvBWCdao/Z46CHOzs5y9epVxbZZdna2fPLJJ3L8+HGLnp+VlSVDhw612vq9+uqrsmHDBomOjpZ9+/YVuLNYpkwZCQ0NLfa6xsfHy7Vr12Tw4MHi5eWl+rZkrButUXs89BBr7T+WxqVLl/KcwmeNNGvWrFTFsci9uT06OlpWrVrFw6x1kKKwMNZQlN7xExH566+/ci+iFRgYKHfv3n3gc+29MP63sLAwmTx5srRq1UrKlSun+joxykVr1B4PPUTp+XHmzJni7Owshw8ftuj56enp0rx5c6uuo6+vr3Tv3l3++usveeaZZwp8TpcuXSQ2NrZE65zzDcnGjRulRYsWvEaDg0Zr1B4PPcQa+48llZaWJps3b5bAwECbrHu7du0U7X9ISIjs27dP2rZtK25ubqpvW0bZFIWFsYbStWtXSUlJKdUf9L8tX748t/2vv/660OeeOnVK6tSpo/o4AMoUxvfbt28f74vsQNEatcdDD1FyfoyJiZGGDRsKAIsLYxGRNWvWaGJHqWfPnqUeg/T0dNm4caN89dVXUrduXV6t1YGiNWqPhx6ipcL46tWrNr1/cM45x8U5zcQSZrNZtm3bJn/88Ufu/iPvi2z/KQoLYw1l1KhRpfoj/resrCzp0aNHbvtFFcYiIkuXLtXEtwjDhg2TpKQkRcdD5N7hkxcuXMg9p0Tt9WRKFq1Rezz0ECXnx/Dw8NwCd+/evbmPZ2VlyeTJk2XEiBEyatQoiY6OzvM6s9ksy5YtkyeeeELVsahYsaJidy8wm82SnZ0tf/31l0ycOFGqVaumif8DmJJHa9QeDz1ES4VxQkKCtG/fvkTnDpc0np6esnz5csWL4/tlZGTIvHnzWCDbeYrCwlgjcXd3l99++61Uf7T/lpaWJlWrVs1dhiWFcXp6ugwePFj18XBycpIaNWpY7Z7OWVlZcvXqVWnatKlNJ29GmWiN2uPh6FF6fry/MA4KCpKQkBAxm82ycuXKPBfWatWqlURFReV7/Y0bN+Txxx9XdUwqV65slfkxLi5Ovv76a16jwY6jNWqPhx5iq8J47dq1MnfuXJk7d26hF0mNjo6WihUr2nQMPD09ZdmyZVYfg4SEBJk1a5Y0adKE+492mKKwMNZIKlWqpPg3pDnn0OUs49+Fsclkkj179uS7KXxKSoqMGDFCAgICVB+XypUry4oVK0p8Tl1RIiMj5ezZs9K/f39p0aIFJzk7idaoPR6OHqXnx/sLYwBSo0YNCQoKKvBCMW3btpVt27bJtWvX8rRx48YN6dy5szRp0kS1calYsaL06NHDKvNjWFiYTJo0Sdq0aSNly5ZV/T3AWB6tUXs89BBbFMYbN27MvWYNAClfvry8+uqrBc6PZrNZvv32W5uPg7e3txw6dMiq45Dj/v3HNm3aSK1atVR/HzBFpygsjDUSaxTGn3/+eZ5lNGzYUI4ePSqXL1+WsWPHyksvvSRubm7SokUL6dChg3Tp0kWOHz+ee4W/ixcvymeffWb1qwpakq5du0p8fLyi4/NvaWlpsmnTJvnyyy+lXr16PNRaw9EatcfD0aP0/BgRESH+/v7F6kNgYKC88sorsnPnzjw7oDExMbJ48WKpV6+eVW7jZEmaNWsmS5culStXrkhmZqZi45Tj/ms01KtXTxPnWTMPjtaoPR56iLUK4xs3bsjly5dl+vTp0rhx4wcuPzAwUDp06CAdOnSQuXPnyquvviqNGjVSZSzUum3V5cuXZePGjdK6dWvuP2o4RWFhrJHYojAGIEajsdDzx4xGo9SoUUM++OAD+eSTT+TWrVty4cIFmT59urRv317VewS3bdtWVq1aJampqYqOU0FMJpNs3LhRXnnllTyfkDLaiNaoPR6Onho1aih+YcLPPvusRH0xGo3i4+Mj7733nixZskQSEhIkKytL0tPT5aeffpK6deuqslNkMBjE2dlZJk6cKAkJCVYpkE0mk5hMJvn111+lWbNmvO+nRqM1ao+HHmKNwnjfvn3i7+8vRqOxWEfTqX3kXcWKFeWff/5RdCyK4/79x7Jly/KaDRpLUVgYayQdO3aUjIyMUv0x3i8pKUk6duxY6n6VL19emjRpIrNnz5YDBw7Ili1bZOjQoaodMuLu7i4tWrSQW7duKTZWhUlNTZXt27fL0KFDpU6dOqpP+My9aI3a4+HoKez+6yVV0AeHxY2rq2tukXzy5EkRuXf+WXBwsAwcOFA8PDxsPme4uLiIj4+PvPPOO3Lw4EHFxy1HUlKS/PbbbzJkyBCpXLmy6u8R5v+iNWqPhx6idGH8zz//FPuoGi3l559/VmwsSio1NVXu3r0rX3/9tbz11luqHVHE5E1RWBhrIN7e3rJly5ZS/QH+27/PoVMifn5+MmDAAPn777/l2LFj8tVXX4mLi4sqY1arVi35/vvvxWQyKTpuRY3pyZMnpUuXLry1icrRGrXHw9GzYMECRbdXenq69O7dW9E+3j8/RkVFiclkkkuXLsn58+f/X3t3HtfEtf4P/EnCvoMiqKhcRaWA1au4VK2W1rXuVVRqW+W61db161brUq0/16vVauuGK7TiLkoVFRdQ61JREAVFUVFUUDYBCSQkeX5/eKVSlgSYmTNJnvfr9Xm9WkjOnHkSjnOSmTM4depUbNiwoeB1q1OnTqUL5HDlwYMHOGPGDPzkk0/oW2QRRGxY18MYEhgYyOlZIlx8cMgyYpgYv0upVGJcXBwdP4og2tDEWARp2bJlTf7eysXHxPjdtGnTBnv06MFsYgzw5tualStX8nLKoDa7du3Cxo0bM3/vGGvEhnU9DDnu7u4l6x5wRYjx8e2aDU+ePEFExMTERDx27Bh27dpV0DNuevTogSkpKZzWryIqlQpPnz6NHTp0YP6+MeaIDet6GEO4vt2n2CbGLi4ulZ6Z0rhxYzx06BAeP34cjx8/XjLuihEdP7KNNjQxFkEWLVpUoz+y8vB94FdRzMzM0N7eHu3t7QX55kAmk+HKlStRpVJxXkNtcnJysF+/fnR6NYOIDet6GHI6dOjA+et1//59QcYnqVSKDRs2xEmTJmFERATK5XLUaDSYlZWF69evxxEjRqC1tTXv/XBxccFJkybhpEmTcPv27ZzX859SU1Nx0aJFtD4Do4gN63oYemxsbDg/M4TlxFgqlZYcR9rb26ObmxvGxsZiXFwcrlu3DufNm4cODg4lv2/WrBnGx8dzuv98o+NHdtGGJsYiyLlz52ry91UuVhPjdu3a4c6dOzErKwt37dqFXbp04f0P39TUFFeuXMl5DXWRkZGBtWrVYv4eMraIDet6GHKOHTvG+esVGBgo+H5YWlpijx49cP369fj777+jWq3GwsJC/Ouvv/Dbb79FHx8fQQ6S/P39Oa9nedRqNU6aNIn5+8cYIzas62HoGTBgAKdr1CCynRjXrl0bz507h9nZ2ZiTk4N79uxBjUZT0je1Wo05OTkl+ectR/XFq1evsE+fPszfP8YWbWhizDh+fn6cr7aKyG5iDABobW2Nnp6e2Lp1a9y2bRsGBwfj1KlT8ZNPPil1X2UuY2FhgWFhYZzXUZuVK1fSggoMIjas62GoqVOnDt68eZPz12vhwoVMVwo1MzNDT09PHDNmDMbExCAiYlpaGm7evBl79erF24dtEokE582bx3k9y5OamkqLcjGK2LCuhyFn4MCBmJOTw/lrxvpUahcXl1LjoyGSy+Xo7e3N/D1kbNGGJsbvxMHBAbdv344REREYERGBCxYsQE9PT15vvTFgwICa/F1V6Pr160yv/303tWvXxpEjR2JcXByGhIRg165deTl9sEuXLpx/alqZtLQ09PDwYF5fY4zYsK6HoWbcuHG8vF6sJ8bvpnbt2tirVy8MCgrCO3fuoEKhwPDwcPTy8kIXFxdOtmFhYYGenp44ZcoULCws5KWm7yooKMBvv/2WThNkFLFhXQ9DjY2NDV69epXz16u4uBi//fZb5vsH8Pf4OGjQILxx44agx3h8UiqVuGzZMlqskEG0oYnx/2Jubo5Hjx4ts98ajQa3bdvG2z/wfE2MAwICmNf0n5FIJPj+++/jhAkTcN68ebh48WJ0dXXl7ADV1dVVkHscv7Vq1So68GMUsWFdD0OMtbU15/flfGv//v2CXNtblUgkEpRKpRgQEICLFi3CrKwsjI2NxUmTJqGDgwM6ODhU65pdOzs7XLlyZalTEfkWERHBvJ7GHLFhXQ9DzfDhw3l5vbi63SfXeTs+/vXXX3o/QU5ISODtDEpK5dGGJsb/yyeffIL5+fnl7ntSUhJv3y4MHDhQ97+kKhg+fDjzmlYWa2trHD16NKalpeEPP/yAAQEBVb6J/D9Tt25dwSbGz549w/fff595HY01YsO6HoYQiUSCX375JU6aNAl9fX0xJCSEt9uxaTQanD17NvN9rihSqRRdXV1x1apV+OLFC8zJycFXr17h8ePHsW/fviiVSiv9N+ntJNvMzAzj4+MFXZxQo9HQqtSMIzas62GIkclkeOvWLd5eM9anUlcWa2tr/OKLL3D9+vWYlZUl6Id+XHj27Bm2b9+eeR2NNdrQxBgArays8MCBAxXuO18TY5lMhpcuXdL1JdBZXFycXtwnTSqVooeHBw4aNAgPHz6Mp06dws2bN2Pv3r2rfI1dhw4dMDQ0VLABcuPGjczrZ8wRG9b1MIRIpVIMCgrCCxcu4IULF3i9DVthYSF+8cUXzPdZl7i7u+OaNWswMjISVSoV5ufn4927dzEmJgYHDBiAVlZWZZ4THByMd+/exaSkJEFvZ6dSqXDp0qXM1regvInYsK6HIUYmk2FycjIvr5e+jY8fffQRnjp1isndSaqDjh/ZRhujnxhbWVlhr169Kv2DOn/+PC8T4zp16vByr7WRI0cyr2t14uXlhb169cKoqCiMiorC0aNHo5eXV6XXStepUwdDQ0N5WXyiIidPntSLDx4MOWLDuh6GlB49euC9e/d4PchhuThhdWNqaordunXDqKiokrObNBoNXrhwAU+ePImBgYHo5eWFw4cPx+zsbFSpVJiRkcFbDcuTkpKCTk5OzGtl7BEb1vUwxPj7+/N2hlx6ejrWr1+f+T5WJaampujn54fTpk3DhIQEQY8JqyInJwc9PT2Z18uYo41RT4zNzc1x06ZNlX7LeOfOHWzUqBHn2+ZzdVB9P41NIpFg//798cSJE5iRkYHBwcG4YcMG/O9//4v+/v64YcOGkly+fJmXGlZEoVBg//79mdfI2CM2rOthSDl9+jTvr5c+Tozf5u34ePLkyTIHxu/+WyaXy/H69eu81/Ldmvr6+jKvD4XGR0OPtbU1L7f5fJeYT6XWFolEgh999BF+++23eP/+fSwuLua1VlWxY8cO5vUx9mhj1BPjL7/8stJr2DQaDc6bN4+XbdeuXRszMzN1Lb/OkpKSeJnIs4iFhQU6ODjgggUL8PHjx6hSqbCoqIjzmlXFmTNneF2lnKJbxIZ1PQwpCxYs4P2SCH2eGL+NhYUF9u7dG9euXYuPHz9mdp2dRqPB3bt30zVzIorYsK6HocXZ2bnCNXG4Eh4eLroFCqsTGxsbnDJlCt66dYv5tchKpRJHjx7NvCbGHm2MdmIsk8nwv//9b6X7vGfPHt6WUl+6dCkvf6ShoaHMa8tH3NzcsHXr1nj48GFBV55+F92XUzwRG9b1MKSYmZnhvn37eH29MjMz0cvLi/m+chU3NzecP38+Hjt2TNDxUa1W0zXFIozYsK6HoYWv48d3KZVK/OSTT5jvK1dxcXHB8ePHM70v8sqVK1EmkzGvhbFHG6OdGFtbW+PLly8r3F+5XI7t2rXjbftBQUG6ll5nGo0Gf/rpJ+a15TMSiQQ7deqEo0aNwjt37gj2CWBBQQFOmDCBbs8kkogN63oYWvgYH//pzp07VV7kT+x5Oz6GhYUJMj6mpKQYXA0NIWLDuh6GFiHGR8Q33xpX5xZxYo6zs7Pgx4+IiLGxsdi4cWPm+0+hiXGFGTZsGBYWFpa7r2q1Grdt28brp+B8DGxFRUXo5ubGvLZCxcrKCoODg3m7pcu7Tpw4wXx/KX9HbFjXw9AixIFfUVERuru7G+y9JPkeH9VqNU6bNo35flLKRmxY18PQItTEGBFx1apVzPeXjwh5/BgXF0eTYhFFGykYIQcHBxg7dixYWFiU+/uUlBSYOHEiKBQKgXtGqkIul8O4cePg999/531bP/74I+/bIIQI59q1a9C9e3eYMmUK667w4u34uHv3bl7af/bsGWzZsoWXtgnRJ1Kp4R5KDx48GJo1a8a6G5zje3x8CxHh66+/hocPH/K6HcIdw/1rrkCtWrUgJCQEPvnkkwofc+vWLZoU64mioiKYMGECxMTE8LaNp0+fwosXL3hrnxAivGbNmkG7du1gzJgxUK9ePdbd4UVRURGEhYXx0jYiglKp5KVtQvRF7969ISYmBhwdHVl3hRfu7u4wYsQIkEgkrLvCuaKiIti4cSNkZ2fzto2wsDCIjY3lrX3CPaObGPv4+EDfvn0rfcy2bdtAo9EI1CPuSKVScHV1hSZNmoCDgwPr7gimoKAACgsLeWv/7Nmz8ODBA97aJ4QIr06dOjBmzBjw9PSEvXv3Guzk+Pz583Dr1i3O2920aROoVCrO2yVEnxQVFUFhYSEgoiDba9y4MXz66aeCbOut2bNnwxdffCHoNoVy6dIliIyM5KVthUIBq1evpi/a9IzRTYyTkpIgOjq6wonU3bt34ebNm7z2QSaTVXgad02YmprCnj174NKlSzB48GAAADA3Nwd7e3vOtyU2e/fu5a3tgoIC3tomhLDXuXNnOHjwoEFOjjMyMmDz5s2ctqlSqSAhIUGwyQAhYnXu3Dno1KkTvHr1SpDt2djYCD5OmZubwzfffAPu7u5gYmIi6LaFMHHiRDh9+jTn7Wo0GvpSRR/pevE4iOCCaa5iYWGBQ4cOxby8PFSpVKVWpouMjOR9+97e3qhUKqt+BX8VvHjxAmfPno27du3C06dPIwAY9IrK9evXx1u3bnFeR7lcju7u7sz3j1I6YsO6HoYWIReXedelS5dw+vTp6OnpaVDjZf369TE+Pp6zOv35558Gu2iZIURsWNfDkPL+++8zex3z8/NxxowZBnnLoYYNG3J+qzu5XI716tVjvm+U0tHGKCfGAG8mie7u7tikSRNcvHgxhoWFYVhYGLZp04b3bQs9sF26dAnr1q2LP/30Ew4YMKAkzZo1Y/46cJldu3ZxXjtjuAWWPkZsWNfDkGJnZ4enTp1i+nqmp6fj+vXrsXXr1szrwVW8vLwqvBNDVfXq1Yv5/lAqjtiwrochheXEGBGxsLAQz58/b3AfjLm6unI+MdZoNLh//360t7dnvn+Uv6ON0U6MWUbogS0gIAAbNGiACoWi1M8fPnyIK1asQA8PD+Y14SJ8TIwREdPS0vCjjz5ivn+UvyM2rOthSGF94PeutLQ03Lp1K7Zs2RLr1KnDvDY1CZcHfr6+vsz3h1JxxIZ1PQwpvXr1Yv1y4uPHj9HU1JR5LbgMHxPjtwICAmhyLKJoY3TXGIvB8OHDBdvW1atX4fTp06BWq0Eul5f63b/+9S+YNWsWXLhwAbZt2wb+/v5ga2srWN/0haurK4SGhsKqVavAxcXFIFdnJEQsbGxsBN3egwcP4Nq1a+X+ztXVFUaPHg1xcXFw+PBhcHd3N6qFDctz+fJlSElJYd0NQozSjBkzBN9mXl4eZGRkQEZGBhQWFkJWVpbgfdBnu3fvhm3bttHxo77Q9RMPEMEs31By5syZGn36VBXBwcEI8ObU8b59++KKFSswJCSk1HXVbykUCrxw4QLWq1dP766vc3FxwZiYGF5q+PYG8BqNBnNycnDRokV6WSNDitiwroch5fjx44K9biqVCn/88Uf8+uuvsaioCIuLi1GlUlX4+IKCAkxISMDx48ejmZkZSqVS5vXSNfXq1ePkG5GQkBDm+0KpPGLDuh6GkiZNmmBycrKgr11ISAi2a9cOra2t0draGgcNGoRWVlbMa8F1hg0bxuvaP+8eP9atW5f5/hpztKGJscBxdXXldBGUyigUCvTx8SnTB3Nzc1yxYkW5k2NExNTUVJw+fbpeTfxGjRrFef3kcjnu378fR48ejYcOHcJnz56VqtGCBQsM5jR0fYvYsK6HIUWoDw4VCgV26NABzc3NUSaTobu7O7q7u6Ofnx8eOnQIDx06VOGHbcXFxfjw4UMMDQ3Fzp07M6+ZLlmzZk2FY35VaJsYN2zYEAcNGkQHfwwjNqzrYSjp16+foK9bamqq0RzjcH0pnlwux7CwsJJ/Sw4dOoRHjhzBoqIiPH/+PPbo0UOvjrENKdrQxFjgCDWwKZVKXLJkCZqZmZXbD3Nzc1y5ciUWFxeX+/zCwkKMjIxELy8v5jXTFgcHB7xx4wbnNZw9e3apgcvLywu7du2KXbt2xaNHj+KNGzfw0KFDuGTJErS0tGReB2OK2LCuhyFFiIlxXFwc+vn5VTg+vo2Li0vJ33z37t0xOjoab9y4gTdu3MAXL14gImJOTg4ePHgQW7VqJdrVWi0tLTE8PJyT2mmbGLu4uGBgYCDu27cPp02bhg0bNmS+/8YWsWFdD0OJkBNjjUaDK1euZL7PQqRZs2aYnp7OWe3y8/Nx/PjxZSa+UqkUO3TogIGBgXjp0iX85JNPmO+7MUYbmhgLnICAgBr9wenqzp07Wg/6ZDJZpZNjjUaDa9euZV4zbRk5ciTn9bt3755Ot2kyMTHB4cOHo6OjI/M6GFPEhnU9DCWtWrXC58+f8/56BQQE1Livvr6+OGrUKBw1ahROnz4dnzx5gmvWrEFXV1fmdfxnWrduzVntdD2V2tbWFr/66iucMmUK/vTTT+jn54fOzs70LYkAERvW9TCUCHX8iIh44MABgzxlurysWrWK09pFREQw3ydKxdHG8O7ULWIymQzmzZsnyLaWLVsGSqWy0seo1WpYsGABfPzxx/D48WO4d+9eqd8XFxfDmjVr+OxmjZmYmMD333/Pebu7d+/WaYEZlUoFe/bs4Xz7hBgjd3d3qFu3Lu/bQcQatxETEwMxMTEAACCRSGDjxo0AAFBYWFjjtrnWrVs3ztpSq9U6PS4/Px+Cg4PBxMQEmjVrBkOHDoWZM2fCpUuXYOvWrfDixQtOXgdCjIGQx48AAHFxcWUWbDVEEokE2rdvz1l7t2/fhgkTJnDWHhEeTYwFZmZmxvs2srOz4eHDh1ofZ2pqCrNnz4avv/4aEhMT9XIQbNasGTg6OnLa5pMnTyAkJITTNgkhlZNKpTBnzhzet5OdnQ1Pnz7ltE1EFO34Wb9+fRg1ahQnbSkUCli5cmWVnqNSqSAxMREWLlwIjo6OYG9vD6NGjYKzZ89CVlYWPHjwgJO+EWLIPDw8wMnJSZBtpaenw5YtWwTZFms9e/aEtm3bctZeXFwcrdqv52hiLKA6deqAubk579u5d+8eXLx4UevjiouLYdGiRbz3h0/9+/cHZ2dnTts8f/48HawRIjCJRCLIgd/Zs2d1Gh8NgUwmg5CQEHjvvfc4aQ8RIScnp9rPz8nJgZycHFi+fDlYWFiAk5MTdOjQAVJSUiA9PZ2TPhJiiD799FNwdXUVZFuPHz+u0d+5vpDJZDBr1izOjsuVSmXJmUNEf9HEWEDDhw+HBg0asO6GwbCzs4MBAwZw2mZxcTHs3buX0zYJIeKxevVq1l0QhFQqBVdXV/Dw8OCszfDwcHj16hUnbRUVFcHz58/h+fPnnLRHiKGSSCSC3d+9uLgYli9fDsXFxYJsjyUbGxtOx8cjR45AbGwsZ+0RNmhibIBUKhXrLgji008/hTZt2nDapkKhKLlukBAiHKlUChKJhHU3DEadOnXg5s2bnH4LHx8fL8prqAkxZI6OjjB16lRBthUbGwvh4eGCbIslKysr2LlzJ7i5uXHWZmxsLI2PBkDKugPGwszMDLy9vQXZ1tKlSwXZDksODg4wfvx4MDU15bTdTZs2QUZGBqdtEkK0GzlyJDRq1Ih1NwzGrFmzwMnJibMPGwoLCyEpKYmTtgghumvRogVYWloKsq3Y2FidF9jTZx07doTevXtzNj6mpaVBUFAQJ20RtugbY4HY2trC0KFDBdmW2K8N8fHxAQsLi5L/v3XrFigUiiq10aVLF/joo4847dfLly/h119/NYp/FAgRG1tbWzAx4fefpNOnT0NCQgKv2+CCu7s7bN68GRYvXgzp6emQnJxcped7eHjAiBEjOP0GPjMzE44cOcJZe4QYKxsbG9i/f3/J6dFFRUWwePFimDp1Kmg0Gli+fDm8ePECUlNToXHjxrBnzx7BJsY7d+4UZDsseXh4wO+//87pmj+PHj2C3Nxcztoj7NDE2MAUFRVpvU0TS1KpFA4cOADNmzcHgDeLuYSHh8O9e/fghx9+0Hll1//7v//jvG8KhYKudyPEgGVmZkJ+fj7rbmiVk5MDBw4cgIMHD4JSqYSoqCg4ePAgnD17FvLy8rQ+/+uvv4Y6depw2qfQ0FCjuUyHED4NGzYMPv7441J3KXn3lmqDBw+Gu3fvQkxMDDg4OAi26JbYjx+5wsf4uG7dOqO4LtsY0MRYIH5+foKsSB0eHi76i//fHTwkEgn0798fNBoNJCQk6PRpZfPmzXk55fL06dP0bTEhBkqtVsPp06dZd0Mnubm5EBQUBHfu3IFvvvkGRowYAcOGDYNLly7Bhg0bYN++fRU+VyqVQrt27TjtDyLCtWvXQKPRcNouIcaodevWWm/d6enpCZ6engL16A19OH6sKW9vbxg8eDCnbT59+lQvzkQiuqGJsUC6d+/O+z2MNRoNXL9+HRCR1+3UhEajgcmTJ0NoaCi4uLiU/Pz+/ftw4MABrc+XSCTw+eefg7u7O6f9ysrKgi1bttDEmBADdfv2bTh8+DDrblTJxYsXISYmBh48eABNmzYFACj5UNDMzAyaNm1a5oCsR48enE+Mb9y4AcePH+e0TUKMUZMmTeCLL75g3Y0y9OH4sabe3r6O6+PH1NRUuH37NqdtEoZQRwBAqUE2b96sa6mrbevWrWhmZsZ8X3WJn58fpqenl/T92LFjOj3PxMQEHz58yHntLl26xLwmFN0jNqzroe/x9vbGu3fv8vb6KJVKHD9+PPP95DImJibo5uZW6mcymQzPnj3Lef2GDh3KfH8pukdsWNdDTGnevDmq1WrWL0kpSqUSf/zxR705fqxu3Nzc8NmzZ5zXj8ZH/Yo29I2xANzc3MDPz4/XbeTk5MCGDRv05vqQc+fOQd++fUu+BTl37pxOz+vduzc4Oztz3p+QkBDO2ySEaGdiYgLfffddyboDfEhOTja4RWVUKhU8ffq01M8+/fRTaNu2LafbiYiIgDNnznDaJiHGSqVSQUFBAdja2rLuSomMjAxYsmSJ3hw/VodUKoXx48dDvXr1OG87JSWF8zYJOzQxFoCDgwOnNxEvz9GjR+HmzZu8boNrMTExVb5nsI+PD+c3utdoNHDt2jVO2ySE6Mbb2xuGDx/O6zZWrFhR5ZXv9Y2VlRWMGzeO0/FRoVDAhAkTICsri7M2CTFmDx8+hJCQEPjmm29Yd6VEZGSkwS+s5+TkBJMmTeK83Vu3bsGzZ884b5ewQ/cxNhAnT540+Otja9WqxcvApo8fKhBiKObNm8f7bZoM+ZuQt6ytrTm/hV1CQoJOq2ATQnSDiBAXFyeqFYyN4fixVatWpW4TygWNRgMhISE0MTYw9I2xAKZOncrp/ST/KTExEU6dOsVb+2IxceLEUgt2cQER4c6dO6L6R4oQY+Hg4MDLCvPvMpbx8ZtvvgErKyvO2lMqlbBx40bIycnhrE1CCMD27dvB2toaxo8fL/jK0//0+vVrgz8jxMrKCiZPnsz5nWGKi4vh999/57RNwh59Y8wzCwsLXq+dAwDYsGGDwQ9sjRo1gq+++gqkUm7fskqlEn755RdO2ySE6KZTp06cXxP7T0+fPjX48dHU1BQ8PT05HR9fvnxJay8QwgO1Wg1r166Fjz/+GKZOnQpPnz5lthq0MXxw2LZtW+jXrx/rbhA9QRNjnvn5+UGnTp14a//27dtw5MgR3toXi4CAAGjcuDHn7Z4/fx7y8/M5b5cQIg6LFy9m3QXetWjRAvz9/Vl3gxBSBWlpabBu3Trw9vaGOXPmQHBwsOCXfZw4cULQ7bEwb948Xtql40fDRBNjnkmlUl5Po05ISCizMqkh6tmzJy/tXrx4kQY2QgzUkydPID09nXU3eLdgwQKQyWScthkbG2vw1x0SwhoiQl5eHqxYsQLGjRsH7du3h3v37gm2/YiICMG2xYKbmxvUr1+fl7bp+NEw0cSYZ1zfSPxdxcXFsH79et7aF4suXbpAmzZtOG/35cuXEBwczHm7hBDd8Dk+AgBcvnwZkpOTed0Ga126dIGPP/6Y83Z3795t8CvVEiImCoUC4uLiYNCgQXD37l3et3f69Gm4ffs279thafDgwfDee+9x3i4dPxoumhjzSCqVwuTJk3lr/8iRIxAbG8tb+2LwtoZ83PPv5cuX8Pz5c87bJYRox/f4CADw6tUrXtsXg3/961+iuicqIaRmEhMTYdOmTbxv58GDB/D69Wvet8OKTCbj5U4mAAA7duyAJ0+e8NI2YYtWpdZTOTk5sHnzZpDL5ay7wquOHTvy8m0IwJt7mxrDbVwIMSaICAqFAqKjo2HOnDmsu8Mrc3NzmDt3LutuEEL0jFwuh2XLlrHuBq8++OADcHJy4qXtuLg40Gg0vLRN2KJvjHnk6ekJdnZ2nLeblZUFn3/+OZw+fZrztsXE3Nwcxo0bB46Ojry0T6cJEmJ4tm/fDo0bNwZ/f3+Dv9VQYGAgL4sSEkIM18WLF+Gbb76B1NRU1l3hDd/Hj8Rw0cSYR927dwdXV1fO2kNEiImJgZEjRxrFSoI+Pj4wZMgQXtq+ffu2wd+igBAx02g0sHbtWk7bPHPmDEydOhXS0tIMflEUExMTeO+99zhfdAuAxkdCWDIxMYGGDRty3m5WVhYMGzYMBg4cCLt27TLobzxtbW1h0KBBvLRN46Nho1OpeSKVSsHBwYHTNrOzs2HgwIHw7NkzTtsVI1NTU5gxYwZYWlry0n5qaipkZ2fz0jYhRDdcXqOVk5MDq1evNuhr5t7l7u4OY8aM4aXtX375hcZHQhixtbXl/G87JycHvvzyS4Nfhfqtzz//HCwsLHhpm8ZHA4c6AgBKFeLo6IjZ2dm6ller7Oxs7NmzJ/P9EiqtW7dGtVrNWf3epVKpsEOHDsz3kVL9iA3reuhr+vTpU6U6q1QqfPjwIS5duhSVSmXJz/Pz841qfJRIJBgUFMT12xgREW/evIn16tVjvo+U6kdsWNdD3+Lo6Ii5ubmc1d/Yjh9dXV0xNjaWs/q9i8ZH/Y82dCo1j7g6xe3tNcUnT57kpD19MH/+fJBK+Xl7hoeHw/Xr13lpmxCiu7Zt21bp8adOnYK2bdvC2rVrobi4GADejI87duyAc+fO8dFFUWrevDl8/vnnnLer0WggODiYVusnxEAY4/Fjnz59oFWrVry0nZCQQOOjodP1UxIQwSxfn8LVJ36ZmZnYp08f5vsjZLp06YJ5eXk1rl15lEoltm/fnvk+UmoWsWFdD32MVCrFpKSkKtX5/Pnz2KpVK3R0dMRTp07h+fPnjW58dHJywrCwMF7ex0VFRejm5sZ8Hyk1i9iwroe+hY4fqx86fqRoizY0MeYp9vb2+Pjx4xr9EapUKuzXrx/zfREyDg4OeOTIkRrVrTJ79uxBS0tL5vtJqVnEhnU99DVz5sypUp0LCgowPDyceb9ZZuTIkfy8iZHGR0OJ2LCuh76Fi+PH7Oxs7N27N/N9ETJSqRQPHjzI0bu2LBofDSPa0KnUPMnNzYVhw4ZBZmZmtds4ffo0nD9/nsNeid/IkSOhf//+vLSdl5cHmzZtgsLCQl7aJ4RUTWxsLBQVFen0WI1GA1OnTuVtpVF9IJPJeLs3M42PhIjD2+PH6p6ym5OTAwEBAUaz0NZbHTt2BD8/P17aRkS4ffs2jY/GQNdPSkAEs3x9i0QiwZCQkCp/KpWVlYXr169HR0dH5vsgZMzNzTE4OLjK9dLVs2fP0NzcnPl+UmoesWFdD32NmZkZvv/++7h9+3bcuXNnhacPFhYW4s6dO7F27drM+8wyPj4++OLFC17ew2FhYWhiYsJ8Hyk1j9iwroe+Zvjw4VWudVZWFvbq1Yt534UO38ePaWlp6OTkxHw/KTWPNjQx5jl2dnbYu3dvfPbsmdYaazQavHr1qtFdE/I2vr6+WFBQoOtbsspmzpyJEomE+X5Sah6xYV0PQ4mXlxf26dMH//zzT1SpVJiZmYlRUVE4ZswYlEqlzPvHOtOmTePtPRwQEMB8/yjcRGxY10NfY2dnh1u2bMHnz59rrTEdP9LxI0W3aEMTY4HSqlUrHDx4MP7111/48OHDUosDPH/+HOPj43Ho0KFoZWXFvK8sYmpqirt3767eiKWDe/fu0aIyBhSxYV0PQ4uZmRn269ePbqv2TmxtbfHq1au8vH9pfDSsiA3reuh7WrVqhWvWrMGHDx9iYWFhqdoqFAo6fqTjR0oVoo0EERF0IJFIdHkY0UImk4FEIoHu3btDixYtAABg3759kJqaCmq1mnHv2GndujVcu3aNt1s0Xbx4ET788ENe2ibC03HYEgyNj4RvI0aMgO3bt4OZmRnnbc+fPx/+3//7f5y3S9ig8dHwSCQSkMlkMGTIEGjYsGHJz1++fAm//fYbqFQqhr1ji+/jRxofDYu28ZEmxkQUDh8+DAMHDuSt/R49ekBkZCRv7RNh0YEfMSaOjo5w+PBh6Nq1K+dtP3r0CLp37w4PHjzgvG3CBo2PxJjwffz4wQcfwJUrV3hrnwhL2/hIq1IT5jp37gzdunXjrf1Tp07Bn3/+yVv7hBDCp65du/IyKUZECA0NpUkxIRxwcHCAjz76CNzc3Fh3xWgIcfwYHx/PW/tEfGhiTJhr0qQJ2NjY8NK2SqWCNWvWgFwu56V9Qgjhk6+vL2zZsoWXtouLi2HTpk28tE2IsfH09IRjx45BREQEHD58GDp16gRWVlasu2WwJBIJTJs2jY4fCadoYkyYMjc3h++//5639ouKiuD27du8tU8IAfDz84PatWuDpaUl664YFIlEAmPHjgVnZ2de2j937hy8evWKl7YJMTZXrlyBiIgI8PHxgYEDB0J0dDSEhITAqlWrYNiwYTQ+cuzDDz/k7b7FAABnzpyhsw2Nka6rsoEIVhKjGF7GjRuHKpWq6ssE6mjVqlV0mxcDjNiwrgfrODo6YmhoKF66dAmHDBnCvD+GEh8fH0xPT+flPVtQUICDBw9mvo8U7iM2rOshZFq2bIlqtbpMDQoLC/HSpUvo7+9Pt/3hIHzft5jGR8ONNvSNMWHGxMQEvL29QSaT8dJ+ZmYmrFu3DjQaDS/tE0LeyMnJgYkTJ0JERARdj8URExMTGDt2LLi4uPDSfm5uLhw7doyXtgkxVpmZmZCamlrm5xYWFvDBBx9ASEgIzJ07F0xMTBj0znBYWVnBgAEDeGufxkfjRRNjwoytrS2MGjWKt/bT0tLgxYsXvLVPCPlbVlYWLF68GO7du8e6KwaB7/Fx586doFQqeWufEGP07NkzGDJkCOTn55f7e3Nzc5gxYwZv18USbtD4aLxoYswTc3Nz1l0QPblcDidOnOClbY1GA8uWLQOFQsFL+4QQwidE5G38Sk1NheDgYDqbhhAe3Lx5E8LCwir8vaWlJfTu3Vu4DpEqofHRuNHEmCddunSB1q1bg729PeuuiJZCoYBLly7x0vbNmzfh0KFDvLRNCCF8y83NhZ9++omXtg8fPgx3797lpW1CjF1xcTFs2bIFcnJyyv29mZkZdOzYUeBeEV2lp6fT+GjEaGLMk8jISEhJSYHCwkLWXTFKS5cupW+LCSF6CxFh69atEBkZyXnb+/bt47xNQsjfLl68COfOnWPdDVINK1euZN0FwhBNjHmUnZ1N1yho8erVKyguLua0zYsXL8KZM2c4bZMQQoSWmZkJP//8M6dtXrx4ERITEzltkxBS1saNG1l3gVQRHT8SmhhXw7hx42DZsmV0TzoO/Pbbb5CSksJZe2q1GjZt2lThKUyEEH7Y2tqCmZkZ2NnZgZ2dHVhYWLDuEvkHGh8JEU5SUhJ9CMWTPn36cP5vDI2PBIAmxlUikUhg2LBhMGnSJJgyZQp8+OGHnLX7bowJIgIictaeWq2GCxcucNYeIUQ7W1tbuH79OvTo0QOioqLg0aNH8OOPP7Lult6TSCTQqVMnztqj8ZEQ4aSmpsLDhw9Zd8Mg8XG7KxofCQAA3UhNRy1btoStW7dCixYtSlac7tevH5w6dapG7To7O0NQUBA0bdq05Ge//PIL3LlzB86fP0+r4lXRzp07IS0tjXU3CDEqBQUF0K9fP0hJSYH4+HhYsmQJnVHDAYlEAoMHD+asPRofCRGHhg0bgrW1NRQUFNSoHVtbW+jWrRt06tQJTp06BXl5eXDlyhWOeilewcHB0LRpU/j+++85a5PGRwIAAKgjADDqzJs3D9VqdUk91Go1Lly4sMbtjh07ttx6KxQKPH78OPr4+DDfdz4jlUoxKSlJ17dhpbKzsw2+XpQ3ERvW9RBbFixYgOvWrWPeD30PjY+U6kRsWNeDVVq1aoUvX74styYajQY9PT1rvI1ff/21VLu5ubl4/PhxnD59OtarV495DfhM48aNMTU1lZP3qEqlwmnTpjHfJwr/0Tpe6fqmYb0jrGNubo7jxo3De/fuYXFxMf7+++9oYWFRozZlMhnev3+/0rrfv38fmzRpwnz/+QqXB36bN29GExMT5vtE4T9iw7oeYou9vT3OmzePeT/0PTQ+UqoTsWFdD1bp1q0bIiIWFhaiXC4vVZPo6Gh0dHSsUfvt2rWrcGKo0Wjw3r172LJlSzQ1NWVeCz7C5fj46NEjtLKyYr5PFP6jjaiuMRbzNbYKhQK2bNkCbdq0genTp8OWLVugqKioRm22bNkSHBwcKn2Mh4cH1K1bt0bbMRZ//vknqFQq1t3gnEQiAXd3d5gwYQJ4eXmx7g4hWuXl5cGqVatYd4P8T0ZGBmzfvt0gx0dCxCo1NRV++eUX+Oyzz2Du3LklP1coFLB169YaLfIkk8lg27Zt4ObmVu7vJRIJNG3aFC5evMjp5RiGavny5SCXy1l3g4iBrp+mAM8zeA8PD/zzzz/x5MmT2KtXL/Tw8GD+qQLfmT59uk6179y5M/O+8hWuPvFLSEhAe3t75vvDZWxsbHDQoEF448YNfPLkCR49erTGnzAbSsSGdT0ohhmuxseQkBDm+0IRLmLDuh5iiJOTEyYnJyMi4o8//ohSqbRG7TVp0gSfP3+uU/2/+uor5vvPR+j4kVKdaCOab4z9/f2hY8eO0KNHD4iIiIATJ07AsmXLwN3dnXXXeCGTycDZ2Zl1NwxGSkoK5Obmsu4Gp9q2bQsHDx6Ex48fw7hx4yAwMJBuI0AIqZL8/HxYu3Yt624QYtSys7Nh2bJlEB0dDdu3b6/xwqoDBw7U6WzCoqIigzs24pohHj+SGtD1ExXgeQY/Z86ccreblpaG69evx8GDBxvU+f+1a9fGvLw8rXWPjY3FunXrMu8vX+HiE7/Y2FiDW2TC19cXHz9+jAUFBditWzfm/RFbxIZ1PSiGGalUinFxcVV+P6pUKszJycEjR45gr169mO8HRdiIDet6iCkSiaTGbVhbW+PZs2d1qv2FCxeY7zNf4eL4UalUYseOHZnvC0W4aB2vdH3z8N3RiibGbxUVFeH58+dx0qRJ2Lx5c04GF5ZxdnbG/Pz8SvdZrVbj1KlTq70NiUSCUqm0JGKsWU0HNpVKVaMaiTFSqRRjY2MRETEzMxPt7OyY90lsERvW9aAYbgYPHlyl92JycjLOmTMH7e3ta7xAJEU/Izas62FoqV27ttbjx7e6d+/OvL98pabHj2q1GmfOnIkymYz5vlCEi9bxStc3EN8d1TYxftfz589x7dq12LJlS+YFrm6WLl2KGo2m0v1MSkrCOnXqVKt9CwsLXLNmDd69e7cka9asEV3NajKwKRQKnDlzpsGtuCiRSPDw4cP4119/4ciRI2t8LZIhRmxY14NiuLG2tsatW7fq9D68f/8+3ZKJwvNoV3Ws62Fo6dSpExYWFmqt+8mTJ9HS0rJG23JwcEA/Pz+D/GKlJsfYFP2N1vFK1zcQ3x0dN24cKpXKKr2p09LScPPmzejl5YW1a9dmXuyqJCgoqNJ9q+k91SZMmIAqlapMu8+fP8eTJ09iQEAAenp6Mr99R00Gtvj4eIP9RqR27dpYq1Yt5v0Qa8SGdT0o1c+6devw5MmTOHXqVKxfvz7z/pQXGxsbPHbsmNb34YoVK5j3lcI+YsO6HoYWbcePb/3666813lZwcDAWFhZiZGQkLlmyBL28vERzFltNjh/pvsXGG63jla5vIr47KpVKcfny5ZidnV0qxcXFWvum0Wjw6tWrOG7cOHR0dBT9N4j169fHxMTESvfpxYsXaG1tXe1t2NjY4NGjRyvdhlKpxJ07d6KPjw+zFfmqO7CpVCoMCAhg/lpS2ERsWNeDUv1cvXq15HVMSkrCDRs2YJcuXdDR0VFU35Js3rxZ6/uQJsYUABofDTkymQyDg4O11ry4uBjd3d1rvL13x0fEN8fbJ0+exEGDBqGjoyPT05BrMjGm+xYbb7SOV7q+iYTorImJCdrZ2ZXK9OnTMSgoSKdvk5VKJebm5uLq1atFfc1Ay5Ytte7LwYMHazzB79u3r04LfOXn5+Pjx49x2rRp2KNHD0FP3a3uwBYbGyv6D0Ao/EVsWNeDUv2sXLmyzOspl8sxMzMT586di/7+/qK4nIEmxhRdIzas62FI8fb2RoVCobXmV65cQScnpxpvr7zxEfHNuj+5ubm4YsUKbNasGZMxsiYT4/HjxzN/LSlsoo2oJsYVRSaToaenp86r8OXl5WGPHj2YF7+ihIaGVtr/3NxcTlYilkgkOGXKFF1f4pJtHz9+XLBrSqo7sA0ZMoT560hhF7FhXQ9K9dOhQ4dKX1u5XI6XL1/G/v37M12jgSbGFF0jNqzrYUh5//33dar5smXLONmetvER8c0lerdu3cLhw4djhw4dBKtFdY8f9+/fL5rTwSnCRxu9mBi/jYuLC4aHh+OrV68q7euVK1eYXztbWc6cOVNp/2/cuMHZtlxdXfHu3bu6vswl5HI5Dhs2TJB6TJs2rUp9u3DhAjo4ODB/HSnsIjas60Gpfuzt7TEqKkqn1/n58+e4adMmbNasmeD91DYxVqlUOH36dOb1pLCP2LCuhyFlw4YNWuudk5PD2SJ89vb2GBoaqnWx2He3LeQXF1U9fszNzUVfX1/mryOFXbSRgh558eIF9OvXDwYPHgwTJ06ER48eQVZWFmRlZcGLFy9g5syZMH78ePj8889BpVKx7m653n//ffD09Kz0Mfv27eNse+np6bBx40ZQKpVVep65uTnUqVOHs35U5t69ezo/VqPRwIYNG+DVq1f8dYgQYjRyc3Nh/fr18Pr1a62PrVu3LowfPx4iIiLAxMREgN79TS6XAyJW+PunT5/Cpk2bBOwRIURozZs31/oYpVIJDx8+5GR7ubm5MGPGDMjLy9Pp8Q4ODrBt2zbo1asXJ9vXpirHjwAAR48ehZiYGJ56QwyCrp+ygAhm+f+MjY0N2tralkRMC6VUlH79+lVaZ41Gg126dOF0mzKZDPfv36/rS42IiCkpKYItTNC7d2+d+3X16lVOrpuh6HfEhnU9KDWLRCLBAQMG4PHjx3V6vXfs2CH4NXV169bF3NzcCvs0YcIE5nWkiCNiw7oehpRTp05p/fb2wIEDnK7BIpFIcPny5VV6zWfPni1IPby8vPDx48c69am4uBg9PT2Zv4YUttFGr74x/qfXr19Dfn5+SbCST9P1xenTp+HatWuctqlWq2HJkiVQXFys83Nu3boFCoWC035UJDo6Gi5duqT1cUqlErZs2QLZ2dkC9IoQYiwQEY4cOQLDhg2DPXv2aH380aNHQaPRCNCzv7148QKmTp1a7jfbeXl5kJycLGh/CDE23t7erLsAgYGBMHfuXEhMTKzwMX/88UeVjve0QURYs2YNREdH6/ycbt26gbW1NWd9qEhiYqLO3xo/fPgQcnJyeO4R0Xd6PTHWN1KpFCZMmFDpY16/fg2FhYWcbzsrK0vnDw5ev34NP/30E6jVas77UR65XK7TQV1SUhLs3r1bgB4RQoxRfn4+/PLLL5U+5vXr10wu5dBoNLBjxw7o3r07fPzxxzBgwAC4du0axMfHw9dffw2RkZGC94kQY/L2y4KRI0dCx44dwcLCQvA+PHv2DJYtWwYrVqyAx48fl/l9cnIynDx5kvPtvnjxAlatWqXz8WlkZCQUFBRw3o/yPH/+XOtj1Go1bNmyBV68eCFAj4he0/W0CBDB19/6Hmtra3z48GGFNVar1bzdm7dBgwZllvgvKCjAjIyMkoSEhOCYMWOwb9++gtfGx8en1OlBKpUKMzIyMD8/HxER79y5g82bN2f+GlLEEbFhXQ8Kd1m3bh0ivlmAsLxTFqOjo5n3kUKpLGLDuh5cp3PnzpiWloYHDx7EoKAgZndBGThwYJla830K87Vr17S+3mq1GidNmiRYHf55/PhPKpUK165dK+pFeSnCRRthVw8xcqNHjwZ3d/cKf6/RaODy5cu8bDs/Px/++usv+OCDD+D58+ewb98+OHPmDFy4cKHkMQqFgtPTb6oiMzMT4uPjoWXLlqBWq2HDhg3w/fffQ8eOHaFHjx6wfft2SEpKYtI3QojxaNeuHeTk5MB//vMfaNWqFdjY2ECfPn2gefPmIJFIBDuThhAiThcvXgR/f3+YOHEiBAYGQmJiIpw6dUrwfty/fx9SU1OhQYMGAACAiLwdQwIASCQSkEgkWh/35MkT2Lp1K2/9+Cd8c4edcvuGiPDLL7/AzJkzRbsoLxEZrVPn/wERzPL1OQ4ODpiSklJpjYuLi9Hd3Z23Pvj7+2OrVq2wfv36zOtRXqZMmYKJiYnYvn17tLS0ZN4fingjNqzrQeEu9evXx4YNG5b6mYuLC06ePBnDwsLoVh8U0UdsWNeDr1hYWGCTJk3Q3t6eWR8WL16MERERqFKp8OTJk2hhYcHbtgYOHIhFRUVaX++HDx8K+u2smZkZhoaGlunH/fv3cfHixbzWhKJ/0Ubyv0FLK10+JSJ/s7W1hd27d0NKSgps3boVRowYAf/3f/8HMpmswueoVCpo2rQppKSkCNdRAclkMnjvvfdKajBkyBBQq9Vw+PBhAHizzH9AQAAsX77cYGtAuKHjsCUYGh8JIWJB46NxMTU1hfbt28OrV6/g9u3bvGxDIpHAzJkzYcWKFVofW1RUBP/5z38gNDSUl76Up1mzZlC/fn34/vvvwdnZGfbu3Qv79u2DBw8eCNYHoh+0jo/G/okfXzEzM8Ndu3bpWl5ERDx27Bja2toy7ztfsbe3x9TUVK11OHLkCPO+UsQdsWFdDwqFQnkbsWFdD0rNY2Fhgc+fP9f5NZ81axbzPlMo5UUbWpWaJ0qlEm7cuFGl59y+fRvy8/N56hF7ubm58OWXX8L+/ftBpVJVeL1H06ZNK70WmxBCCCGEiJNUStMLop/oncsTU1NTeO+993R+vFKphLt371b4+zZt2oCXlxcXXWMqKioKRo4cCU2bNoVWrVrBnj17ytyX87333oODBw/S5JgQQgghhLHmzZtX6fZU3377LTg5OfHYI0L4QatS82TatGkwZswYnR+fm5sL+/btK/d3zZo1g2PHjoFCoYCwsDDYsWMHPH78WG9vVF5YWFhyDXFAQAD4+vqCh4cHzJo1q+QxzZo1g27dugm6siEhhBBCCCltyJAh4OjoqPPjHRwcKl1ThxCxookxT65duwY5OTlQu3ZtnR5/4MCBkpvH/5OFhQXY29uDhYUFTJ48GSZPngwXLlyALVu2QHh4OOTm5nLZdcHFxMRATEwM7Nmzp+RnPXv2hEePHjHsFSGEEEKI4bG2tgZra2vIyclhdptOQsSITqXmyblz58Df3x/27dundQW0ly9fwvbt2yu85vb27duwf//+Uj/78MMPYfv27RAZGQkjR440uFUfT548Cffu3WPdDUIIIYQQgzJx4kR49OgRzJ49G0xM+PmOjL4xJvqIJsY8ioqKglGjRsHGjRsrfdyJEycgJiamwt9rNBpYunQpFBUVlfq5qakptG3bFrZs2QJz586lxQ4IIYQQQkilHj16BBKJBObPnw/Xr18Hf39/sLS05Kx9a2trmDFjBmftESIYsS+3b2VlhT4+PiiRSJgv8V2TfejZsydeunSp3Jujf/TRR1rbMDU1xYULF6JCoSj39Xn27Bmam5sz31cKRYiIDet6UCgUytuIDet6UMpGIpHgd999V/IaaTQavHr1Kvbs2bPMY+vUqYMPHjyo8uuenp6O27dvR3t7e+b7S6G8jdbxSuwD29q1a7GgoABDQkJw165d2K5dO3R2dmZe2OpEIpHgnDlzSk1uo6Ki0NXVVafnS6VS3LBhAxYXF2NaWlpJlEol3r17lybGFKOJ2LCuB0X4DB06FHfu3Ine3t7M+0KhvBuxYV0Pyt9xcnJCCwsLBAAcM2ZMmdcqIyMDe/bsiS4uLiiVShEA0MvLC5VKZbVf//3796ONjQ3zfadQAAxgYnz+/PlS/SgqKsL09HScP38+Dhw4UO++SZZKpXj69GlUqVR44cIFdHFx0fm5VlZWGBYWhhMnTkRLS8uSTJgwAX19fZnvG4UiVMSGdT0owqdfv36Yl5eHd+/eRU9PT+b9oVDeRmxY14PyJt7e3piUlIShoaE4f/58zMjIQETE8PBwXL58OS5ZsgSfPXuGCoUC8/LycNmyZThnzhy8fv16jV5/jUaDU6ZMYb7/FAqAAUyMfX19MTw8HNVqdZk+FRQUYMuWLZkXuapp1aoV+vv7o4ODg87PcXZ2xsTERJw1axbWqlWL+T5QKCwjNqzrQRE+EokEp0+fjoiI165dQ5lMxrxPFAoAjY+UsjExMcG4uLhyX5/MzEycNm0aAgBevnyZl/fA9u3b0czMjHkdKBRtRD8xBgA0MzPDhQsX4rVr1zA/Px8R33wCtW3bNqM5PWPRokUlHw7Ex8fj6NGj9e7bcgqFq4gN63pQ2MTFxQVHjRqFMTExNDGmiCZiw7oelDfr1Dx+/LjC1+jJkyd44cIFzMvL4+U9kJ+fj7Vr12ZeBwpFG724j7FSqYSFCxfCwoULoVevXlC7dm1Qq9UQFhYGhYWFrLsnCHd395JVp1u0aAHr168HjUYDu3btAo1Gw7h3hBBifF68eAG7d++Gtm3bsu4KIYRUW4MGDaBBgwasu0EIc3oxMX7XiRMnWHeBiTNnzsDnn39ecr85S0vLkttA/fbbb3SDdkIIAQATExOQSqWgVqtBrVbzth2ZTAb//ve/Yfz48dC1a1fetkMIIfrOzMwMunXrBnv37gVEZN0dQipEN77VE6dOnSoz+TU3N4dffvkFzp49Cw0bNmTUM0IIEY+9e/dCcnIyBAUFwbBhw6BWrVqcb6NTp06wY8cOOHnyJIwZM4buIU8IIZUwMzODoKAgGD58OOuuEFIp+tdcz1lZWUHnzp3h9OnTsGDBAmjSpAnrLhFCCDN16tSBBg0aQGBgIOzZsweioqJgwoQJ4OvrC6amppxsAxHBz88PnJycAADAzc0NZs6cCe7u7py0TwghXKpbty6YmZkx7YONjQ1s3LgRAgICmPaDkErpeuE8iOCCaWOOq6sryuVyra9TSkoKLl26tEq3gaJQ9C1iw7oelDdp164dvnz5stzXSK1W4+HDh7FDhw6cjI8rVqwos4379+9jmzZtSu4TSqGwiNiwrgcFcM6cOazfBiXy8vIwICAA7e3tmdeFYnzRhr4xNjCNGjWC7777Dm7dugXdu3dn3R1CCBFMo0aNwNnZudzfISIMHDgQoqOj4datW7BgwQKoVasWZ98iAwB4eHjApUuXICgoCDp37lyyJgQhhBgapVIJCoUClEpllZ5na2sLwcHBEBERAfXq1eOpd4RUD02M9URhYSEkJCTo9FiJRALOzs7w+++/g4uLC889I4QQ8duwYQNs2rQJoqOjwdnZGRYtWgS3bt2COXPmcLodMzMz+OKLL+CPP/6APXv2gJ+fH6ftE0JIVd29exfkcnmN28nMzIQ9e/ZAcHAwtGzZEjw8PKBNmzbw22+/wdWrV3Vux8TEBD744APYu3cv9OnTp8b9IoQzup76ACL4+tvY06hRI0xLS9P5dJWioiKsV68e835TKFxHbFjXg/Imfn5+Ze7DmZ+fj99++y26ubkhAKCNjQ126NChJNbW1tXa1uTJk7G4uFjre+PVq1d4+fJlnDVrFrq7uzOvEcXwIzas60EBNDExwfPnz9fodczIyMBevXpVuA1nZ2dMSkqqcruFhYUYFRWFfn5+aGlpybxWFMOONjQx1qNIJBKcN28eKhSKMq+PWq3G1NRUTE1NLbnG7uXLl3StMcUgIzas60H5O6NGjcKCgoKS1+bq1au8bMfExAQHDRqE8+bN0/kDy/v372NoaCh27dqVeZ0ohhuxYV0Pypv06dOn3ONHXa1fv17rNqZNm1aj98qaNWvQzc2t2h9YUijaog1NjPUsUqkU586di2q1utTrs3PnTrSyskJzc3N0d3fHBQsWoJ+fH/P+Uih8RGxY14PydyQSCY4cORJfvXqFq1atwtGjR/O+PRcXFzx37pxO3yAjIqanp+OPP/6I/fv3R1NTU+Y1oxhWxIZ1PShvUtHxoy4KCwuxQYMGWrfRuXPnarX/lkajwaKiIjxw4ADa29vT+EjhPNrQxFgPY2pqinPnzkWVSoWIiJmZmdixY0fm/aosdnZ2GBAQgL6+vsz7QtH/iA3relBKRyqVYt26dVEmkwm2TTs7Oxw0aBCePn1a5/dNfn4+nj17FgMCAnDIkCF0EEjhJGLDuh6Uv/PP40dERLlcjqGhoXjhwoUKX8PCwkKsW7eu1vbNzMwwIiKixu8ZjUaDaWlpND5SOI/W8UrXNynrHaGUjqmpKfr6+mK7du3Qy8uLeX+0xdPTEzUaDaanp+PVq1cxMDCQTvOmVDtiw7oeFGFjbm6OP/zwA3bv3h29vb1L/c7Ozg7btWuHu3fvrtJ7SKVS4bVr13DgwIF0GxNKjSI2rOtBKR1TU1OcM2cOJiUlYXh4OLZq1QolEgk6OTmhv78/ZmRklHkNFQoFdujQQWvbdnZ2GBUVxfl7SKVSYUxMDO7cuZOzW+5RjDPaSP43aGklkUh0eRgxEDKZDMaOHQsfffQRrFmzBuLj46GwsLDa7Xl6ekJiYmKp99H169fh/v378N///hcSEhJAoVBw0XViBHQctgRD46NxadWqFcTExIBMJoOXL1/CuXPnAADg6tWrcODAAahVqxaEhoaCp6dntdqPjo6GDRs2wOXLl6GwsBAyMzO57D4xcDQ+El00aNAA5HI5ZGVllfp5aGgoDB8+vMzjHz9+DFeuXIG1a9fClStXym1zwIABEBYWxkd3S7l+/TokJyfDnTt3YPv27ZCdnQ0FBQW8b5foP63jo66f1oAIZvkU4eLu7o5FRUWIiKhUKnHPnj04f/58dHJyQjMzsyq3V9mCDEqlEoODg7Fjx45oYmLCfN8p4o/YsK4HpXpp06YNjh8/HqVSaZWet3///nLfB2q1GhUKBSqVyhq/p1QqFSoUCkxMTMTJkyejhYUF83pR9CNiw7oelKpl5MiRpU61/id/f/9yn9euXTtMTU0V8J315pRrhUKBR48exUWLFtE3yRSt0YYmxpRy4+zsjPHx8WUGoPT0dDx//jwOGDAAJRKJzu3pcs3Jq1evcM+ePWhra8t8/ynijtiwrgel6jExMcHff/8dlUolLlq0qEqT40OHDgn6/iouLsbk5GQMDAyk8ZGiNWLDuh6UqsXNza3ki5HylDcxZjEpLk9UVBS6uroyryFFvNGGTqUmFXJzcwNXV9dyf/fll1+Cq6srbNu2DS5evKj1xvERERHQq1cvnba7Z88e+PrrryE3N7fKfSbGQcdhSzA0PuqngIAA2L17NyiVSli2bBksWbIEiouLK31O69at4cyZM+Dg4CBMJ/+BxkeiDY2PpCbc3NwgOTkZzM3Ny/39gwcP4LfffoPIyEgAAAgMDIQ+ffpUeLwotLFjx8LWrVtZd4OIlLbxkSbGpNratWsHO3bsgM8++wySkpIqfJyFhQWcOHECunbtqnPbQ4YMgYMHD3LRTWKA6MCP1JSpqSkcPXq05AM7jUYDx48fL7OWwtq1a+GTTz6BFi1aAACAnZ0dtGjRAurVqyd4n9/6+OOPS65rJuSfaHwkNeHq6grx8fHg7OzMuivVcvfuXWjbti28fv2adVeICGkdH3U9PQFE8PU3RXzRZfn8Hj16oEajqfC9pVarUS6XY2FhIRYXF6NcLseYmBjm+0YRb8SGdT0oVY+5uTkmJyejXC4vk3evrysuLi4Zv65cuYJffvklOjs787Lyqq569erFvH4U8UZsWNeDUvX88MMPJeOeRqMpNT4WFhYyfkdVTqPRYGBgIPMaUsQZbUyAkBrQdtohAIBUKq3wE2NEhBUrVsC6devAysoKOnXqBJGRkTqfdk0IIdWhUCjggw8+AJlMVuZ3I0aMgPfff7/Uz5RKJSxcuBCePXsGAG9WoK7KWTBcmjt3Lpw4cYLJtgkhhu/nn38GX19fkEqlkJycDCtXrgS1Wg0AAA4ODjBr1qxSY6eJiQl89tlnYGFhwarLJSQSSbnjOiG6oFOpCe8mTJgAGzZsKPd3oaGhEBgYSLdqIlWi47AlGBofjc+KFStg1qxZVX7e7t274fXr19CiRQto27YtmJhU/fPp+Ph4aNmyZZWfR4wDjY+EC05OTlBUVKR1DRmAN1+A+Pj4gKenJ8yYMQN8fX2Zve7JycnwwQcf0G3uSLm0jY/0jTHhlUQigUmTJpX7O41GA/fu3aNJMSHEKOTl5cEPP/wAycnJYG9vDykpKcwW8SKEkMpkZ2fr/FiNRgPx8fEQHx8Pf/zxB/Ts2RO6desG33zzTcljXr9+DQUFBeDi4sJHd0vI5XKaFJNqk7LuADFeubm58PPPP7PuBiGECCI0NBSSk5NZd4MQQngjl8vh8OHDsHnzZkhLSwNEhKNHj8LQoUOhU6dOcPPmTV63r8slfoRUhL4xJswgYsk1K4QQoi9sbGzAy8urys/TaDQ89IYQQsQnPj4eXr58CQqFAr744gvIz88HAIDBgwdDWFgY+Pj48LLdxYsX89IuMQ70jTHhFSLC6tWry/3dr7/+SsvpE0L0ir29PQQFBUHfvn1r1I5KpYJHjx5V67kPHjyo0bYJIUQI8+bNg++++65kUgzwZvwaOHAgxMXFcb69rKwsSE1N5bxdYjxoYkx4d//+/TL3BgUASEtLo29QCCF65eeff4bhw4dX+PunT5/C06dPy/y8sLAQdu/eXfL/BQUFsGbNGkhPT69yH9avX1/l5xBCiND++OMP2Lt3b5mfP3jwAFauXMn5ac/h4eFw48YNTtskxoUmxoR3Fy5cgJEjR0J0dHTJz1JTU+Hy5csMe0UIIVX3z9s4Abw5MyYnJwcWLlwIAQEBEBkZWWbly+LiYkhISCj1s99++w0+/PBDuHXrFq99JoQQsdm7d2+Nxz61Wl3yxYtarYbly5dz0TVixOgaY8I7RIT9+/dDVFQULFiwAKysrGDLli28nEZDCCF88fDwgOTkZPDw8IADBw6UTH6zsrJg1apVkJmZCbNnz4bAwECd2kNESE5Ohs8++wyOHDmi03XLqampkJaWVqP9IIQQ1jQaDSxevBgOHz5crecjIixbtgz27t0L+/fvh6ZNm9K6NaTGaGJMBJORkVHhrZsIIUTssrKy4JtvvoHatWvD3bt3y31MRadZP3r0CFQqVbm/S05OhgEDBsChQ4egRYsWAPDmGuTly5dDYmIi/Prrr+Do6AgAAAcOHKhw24QQok/+uc7MX3/9BXK5HExMTKBDhw6V3uc9NTUVNm/eDE+fPoXz58/DtWvX4MmTJ3x3mRg4mhgTQgghOsjJyQEAqPAemXZ2dmBubl7m57du3YIhQ4aULEBjamoKlpaWkJeXV/KY5ORk6N+/P7Rs2RIAAJRKJURGRoJKpYL//Oc/0K1bN1Cr1bBhwwaud4sQQpjatm0bhIeHw9mzZyE/Px9MTEygZ8+eMHfuXGjVqhVYWloCwJvJsFKphIMHD0JISEip9RwyMzNBqVSy2gViIGhiTAghhNSQra0t7Ny5E5o3b17q52q1GmbPng3JyclgamoK06ZNg+bNm0PDhg0hLi4Ofv31V3j58iXI5XJISUmBlJSUMm2fPHkSunXrJtCeEEKIcDIzM2Hjxo1w/fr1kp+pVCo4duwYnDhxAsaOHQs//vgjrFmzBrZu3QrZ2dmg0WhKLmWRSqVgYmJCk2LCDdQRAFAoFIooIjas60FhG1tbWzx06BBqNJoy742oqCg0MzPD1q1b49dff40qlarU77OzszEhIQG9vb0rbH/27NmIiHjz5k2sU6cO8/2liDtiw7oeFPGmW7duuGvXLpRIJBU+RiaToZOTU4WPCQwMxGfPnqGLiwvz/aGIP9rQqtSEEEJIDdja2sK///1vkEgkJT9Tq9WwYsUKGDVqFCiVSqhVqxbMmjULZDJZqec6OjqCu7s7eHh4VNj+sWPHQKlUQlBQELx8+ZK3/SCEECE1bdoU9u3bV/Ltr5OTE9SqVavUY9RqNWRnZ5dZ6R8AoEuXLrBs2TL44YcfICMjQ5A+E8NGp1ITQgghNfD8+XPo06cPjBgxAoYOHQoAAAcPHoT58+eX3KezT58+8K9//avc5z9+/BiOHj1aYftKpRJu3rwJO3bs4L7zhBDCQK9evWDFihUQHR0N9+/fhw4dOsCECRNAIpGU+QDw4MGDcPz48TKTX6lUCgsWLICtW7cK2XViwCRY3kcw5T3wnU/CCSGEJR2HLcHQ+EgA3rwPpNI3J2K9ew2cm5sbHDlyBFq3bl3u8+7cuQPe3t6Vvq+lUiloNBruO00MDo2PRB+MGzcOVq9eDQAAlpaWIJVKK3yvICKsW7cOpk6dKmAPiSHSNj7SqdSEEEIIBxAR1Go1qNXqUv/4rl69usJJsa5oUkwIMSSJiYnQvn178PX1hYSEhEo/QHn3Q0dC+ESnUhNCCCE8qF+/Prz33nvQqFGjSh937949gXpECCHicPHixZL/njVrFhw6dAisrKwY9ogQmhgTQgghnLC3t4fOnTvDkCFDYO3atbB582Zo37691udt2rRJdKe/EkII37p37w6TJ08Gb2/vSifFr1+/ht9++03AnhFjRRNjQgghhANubm6wevVqqF+/Pnz11VcglUrh9evXYGFhASYm5f9zq1KpQKVSCdxTQghhSyKRwOrVq6FFixZaHxsWFgZxcXH8d4oYPTphnxBCCOFAQkICtGvXDv7973/Dpk2bYOPGjdC2bVtYvHhxhdcIR0dHQ3R0tMA9JYQQ9nRdmO3KlSugVCp57g0htCo1IUQPie20UxofSWXMzMzAx8cHtmzZAm3atCn5+ZMnT2Dw4MEQExPDsHfE0ND4SPTFgQMHYPDgwZU+5vXr1zBixIhKb2lHiK60jY80MSaE6B068CP6qGHDhuDt7Q3jxo0Dd3d3GDt2LE2KCedofCT6olatWhAUFAReXl4lP6tfvz7Y2NgAAMCjR49g+fLlsGXLFlZdJAaGJsaEEINDB35En0kkEpBIJHQLJsILGh+JPnk7Hr7Vt29faNSoESAihIaGQlZWFsPeEUNDE2NCiMGhAz9CCCkfjY+EEFI+beMjLb5FCCGEEEIIIcSo0cSYEEIIIYQQQohRo4kxIYQQQgghhBCjpvM1xoQQQgghhBBCiCGib4wJIYQQQgghhBg1mhgTQgghhBBCCDFqNDEmhBBCCCGEEGLUaGJMCCGEEEIIIcSo0cSYEEIIIYQQQohRo4kxIYQQQgghhBCjRhNjQgghhBBCCCFGjSbGhBBCCCGEEEKMGk2MCSGEEEIIIYQYtf8PwcLkQK5DzGAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "id = 7\n", + "\n", + "fig, axs = plt.subplots(3, 3, figsize=(10, 10))\n", + "idx = 0\n", + "for base_dir in base_dirs:\n", + " result_dir = os.path.join(base_dir, 'result')\n", + "\n", + " ##\n", + " lst_data = os.listdir(os.path.join(result_dir, 'numpy'))\n", + "\n", + " lst_gt = [f for f in lst_data if f.startswith('gt')]\n", + " lst_pr = [f for f in lst_data if f.startswith('pr')]\n", + "\n", + " lst_gt.sort()\n", + " lst_pr.sort()\n", + "\n", + " ##\n", + " # img = np.load(os.path.join(result_dir,\"numpy\", lst_img[id]))\n", + " # gt = np.load(os.path.join(result_dir,\"numpy\", lst_gt[id]))\n", + " pr = np.load(os.path.join(result_dir,\"numpy\", lst_pr[id]))\n", + "\n", + " axs[idx//3,idx%3].imshow(pr, cmap='gray')\n", + " axs[idx//3,idx%3].axis('off')\n", + " axs[idx//3,idx%3].set_title(f'{os.path.basename(base_dir)}')\n", + "\n", + " idx += 1\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/unet_batterry.ipynb b/unet_batterry.ipynb new file mode 100644 index 0000000..84764cd --- /dev/null +++ b/unet_batterry.ipynb @@ -0,0 +1,45772 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\pinb\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "from glob import glob\n", + "import numpy as np\n", + "import torch\n", + "from torch.utils.data import Dataset\n", + "from PIL import Image\n", + "import matplotlib.pyplot as plt\n", + "from torchvision import transforms, datasets\n", + "import random\n", + "import cv2\n", + "\n", + "class CustomDataset(Dataset):\n", + " def __init__(self, list_imgs, list_masks, transform=None):\n", + " self.list_imgs = list_imgs\n", + " self.list_masks = list_masks\n", + " self.transform = transform\n", + "\n", + " def __len__(self):\n", + " return len(self.list_imgs)\n", + "\n", + " def __getitem__(self, index):\n", + " img_path = self.list_imgs[index]\n", + " mask_path = self.list_masks[index]\n", + "\n", + " img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)\n", + " mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)\n", + "\n", + " # 이미지 크기를 512x512로 변경\n", + " img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)\n", + " mask = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_NEAREST)\n", + "\n", + " img = img.astype(np.float32) / 255.0\n", + " mask = mask.astype(np.float32) / 255.0\n", + "\n", + " if img.ndim == 2:\n", + " img = img[:, :, np.newaxis]\n", + " if mask.ndim == 2:\n", + " mask = mask[:, :, np.newaxis]\n", + "\n", + " data = {'input': img, 'label': mask}\n", + "\n", + " if self.transform:\n", + " data = self.transform(data)\n", + " \n", + " return data\n", + "\n", + "def create_datasets(img_dir, mask_dir, train_ratio=0.7, val_ratio=0.2, transform=None):\n", + " list_imgs = sorted(glob(os.path.join(img_dir, '**', '*.png'), recursive=True))\n", + " list_masks = sorted(glob(os.path.join(mask_dir, '**', '*.png'), recursive=True))\n", + "\n", + " combined = list(zip(list_imgs, list_masks))\n", + " random.shuffle(combined)\n", + " list_imgs, list_masks = zip(*combined)\n", + "\n", + " num_imgs = len(list_imgs)\n", + " num_train = int(num_imgs * train_ratio)\n", + " num_val = int(num_imgs * val_ratio)\n", + "\n", + " train_set = CustomDataset(list_imgs[:num_train], list_masks[:num_train], transform)\n", + " val_set = CustomDataset(list_imgs[num_train:num_train + num_val], list_masks[num_train:num_train + num_val], transform)\n", + " test_set = CustomDataset(list_imgs[num_train + num_val:], list_masks[num_train + num_val:], transform)\n", + "\n", + " return train_set, val_set, test_set\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Dataset Loader" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAEjCAYAAAAYIvrbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZmUlEQVR4nO29d5xdVb33/zm9l+mTTouGUERBIKKCEMiD0UcQ76NXxajYuIGHoqjcl5eADbtcFMHyQOx4wY6KYmgqkRKMECCRhIRJMr2c3s/Zvz/m912ss2f3s0+ZmfV+vc5rZnZZe+199uz12d+2HJIkSRAIBAKBQCDoIJzt7oBAIBAIBAKBHCFQBAKBQCAQdBxCoAgEAoFAIOg4hEARCAQCgUDQcQiBIhAIBAKBoOMQAkUgEAgEAkHHIQSKQCAQCASCjkMIFIFAIBAIBB2HECgCgUAgEAg6DiFQBAKBQNDxHDhwAA6HA1/5yldsa/PBBx+Ew+HAgw8+aFubAvsQAmWesnXrVjgcDjzxxBPt7goAIJfL4frrrzf8j04Phrvvvru5HRMIBG2l055VgvmDECgCW8jlcrjhhhvEm4hAIBAIbEEIFIFAIBAIBB2HECgLiPe+970Ih8M4fPgwLrjgAoTDYfT19eFjH/sYqtUq24735X7961/HqlWrEAgEcOaZZ2LXrl11bZ511lk466yzFI91xBFHsPb6+voAADfccAMcDgccDgeuv/56U/2//vrr4XA48K9//Qvvfve7EYvF0NfXh//6r/+CJEk4ePAg3vKWtyAajWJwcBBf/epX6/YvlUq47rrrcPLJJyMWiyEUCuF1r3sdHnjggTnHmpqawsUXX4xoNIp4PI5Nmzbhn//8JxwOB7Zu3Vq37e7du/G2t70N3d3d8Pv9OOWUU/Cb3/zG1LkJBAJlzPzfEnrPLUD83y4EhEBZYFSrVWzYsAE9PT34yle+gjPPPBNf/epX8Z3vfGfOtj/4wQ9w8803Y/Pmzbj22muxa9cunH322RgbGzN1zL6+Ptx6660AgAsvvBA//OEP8cMf/hBvfetbLZ3D29/+dtRqNXzhC1/Aaaedhs9+9rO46aabcO6552LZsmX44he/iGOOOQYf+9jH8PDDD7P9UqkUvve97+Gss87CF7/4RVx//fWYmJjAhg0bsHPnTrZdrVbDm9/8Zvz0pz/Fpk2b8LnPfQ4jIyPYtGnTnL4888wzOP300/Hcc8/hk5/8JL761a8iFArhggsuwC9/+UtL5ycQCF7C6P8tYeS5Jf5vFwiSYF5yxx13SACkxx9/nC3btGmTBED69Kc/XbftK1/5Sunkk09mf+/fv18CIAUCAenQoUNs+aOPPioBkK666iq27Mwzz5TOPPPMOcfftGmTtGrVKvb3xMSEBEDasmWLof4/8MADEgDprrvuYsu2bNkiAZA+9KEPsWWVSkVavny55HA4pC984Qts+czMjBQIBKRNmzbVbVssFuuOMzMzIw0MDEjvf//72bKf//znEgDppptuYsuq1ap09tlnSwCkO+64gy0/55xzpBNOOEEqFApsWa1Wk17zmtdIq1evNnSuAsFiRulZxWP0/9bMc8vo/y09hx544IFGT1PQBIQFZQHykY98pO7v173udXjhhRfmbHfBBRdg2bJl7O9TTz0Vp512Gn7/+983vY9afOADH2C/u1wunHLKKZAkCZdccglbHo/H8fKXv7zuvFwuF7xeL4BZK8n09DQqlQpOOeUUPPnkk2y7e++9Fx6PBx/84AfZMqfTic2bN9f1Y3p6Gvfffz/+z//5P0in05icnMTk5CSmpqawYcMGPP/88zh8+LDt5y8QLCaM/t8Ses8t8X+7cBACZYHh9/tZPAjR1dWFmZmZOduuXr16zrKXvexlOHDgQLO6Z4iVK1fW/R2LxeD3+9Hb2ztnufy8vv/97+PEE0+E3+9HT08P+vr68Lvf/Q7JZJJt8+KLL2LJkiUIBoN1+x5zzDF1f+/duxeSJOG//uu/0NfXV/fZsmULAGB8fLzh8xUIFjtG/m8JveeW+L9dOLjb3QGBvbhcLlvbczgckCRpznI+6NZulM5B7bz4vv3oRz/Ce9/7XlxwwQW45ppr0N/fD5fLhRtvvBH79u0z3Y9arQYA+NjHPoYNGzYobiMXNQKBwBzi/1aghhAoi5jnn39+zrJ//etfLDsHmLW+KLmHXnzxxbq/HQ6H7f0zy913342jjjoKv/jFL+r6Q29NxKpVq/DAAw8gl8vVWVH27t1bt91RRx0FAPB4PFi/fn0Tey4QLF6M/t8Ses8t8X+7cBAunkXMr371qzpf7GOPPYZHH30U559/Plt29NFHY/fu3ZiYmGDL/vnPf+Jvf/tbXVs00CcSieZ2WgOysvBWlUcffRTbt2+v227Dhg0ol8v47ne/y5bVajXccsstddv19/fjrLPOwre//W2MjIzMOR5/TQQCgTWM/t8Ses8t8X+7cBAWlEXMMcccg9e+9rW49NJLUSwWcdNNN6Gnpwcf//jH2Tbvf//78bWvfQ0bNmzAJZdcgvHxcdx222047rjjkEql2HaBQABr167Fz372M7zsZS9Dd3c3jj/+eBx//PEtO583velN+MUvfoELL7wQGzduxP79+3Hbbbdh7dq1yGQybLsLLrgAp556Kj760Y9i7969WLNmDX7zm99genoaQL016JZbbsFrX/tanHDCCfjgBz+Io446CmNjY9i+fTsOHTqEf/7zny07P4FgPnP77bfj3nvvnbP8rLPOMvR/Sxh5bon/24WBECiLmPe85z1wOp246aabMD4+jlNPPRXf/OY3sWTJErbNscceix/84Ae47rrrcPXVV2Pt2rX44Q9/iJ/85Cdzytp/73vfw+WXX46rrroKpVIJW7ZsaalAee9734vR0VF8+9vfxh//+EesXbsWP/rRj3DXXXfV9dXlcuF3v/sdrrjiCnz/+9+H0+nEhRdeiC1btuCMM86A3+9n265duxZPPPEEbrjhBmzduhVTU1Po7+/HK1/5Slx33XUtOzeBYL5DtZLkDA0NIZPJ6P7fEkaeW+L/dmHgkJQiIAULmgMHDuDII4/El7/8ZXzsYx9rd3c6hl/96le48MIL8de//hVnnHFGu7sjEAgEixoRgyJYlOTz+bq/q9UqvvGNbyAajeJVr3pVm3olEAgEAkK4eASLkssvvxz5fB7r1q1DsVjEL37xCzzyyCP4/Oc/j0Ag0O7uCQQCwaJHCBTBouTss8/GV7/6Vdxzzz0oFAo45phj8I1vfAOXXXZZu7smEAgEArQ5BuWWW27Bl7/8ZYyOjuIVr3gFvvGNb+DUU09tV3cEAsE8QDw3BILFQdtiUH72s5/h6quvxpYtW/Dkk0/iFa94BTZs2CBKEAsEAlXEc0MgWDy0zYJy2mmn4dWvfjW++c1vApgtlLVixQpcfvnl+OQnP9mOLgkEgg5HPDcEgsVDW2JQSqUSduzYgWuvvZYtczqdWL9+vWL1wGKxiGKxyP6mGS97eno6osS6QLAYkSQJ6XQaS5cuhdPZfGOs2ecGIJ4dAkGnYea50RaBMjk5iWq1ioGBgbrlAwMD2L1795ztb7zxRtxwww2t6p5AIDDBwYMHsXz58qYfx+xzAxDPDoGgUzHy3JgXWTzXXnstrr76avZ3MpnEypUrARifpE6SJN1taRs1r5fWumbgcDgQCASwatUqrFixAitWrEBfXx+i0Sjcbjc8Hg/cbjfcbjdcLhe8Xi+cTidcLhecTif7UL/L5TKq1SpqtVrdeTgcDraPy+WCy+VibdL+wOz14efNoP0cDgdqtRqbRbRSqaBarbLjpdNp7N+/H8888wxWr16NwcFBRKNRSJKEYrHIapI4nU54PB54PJ66fnk8HkSjURSLRZRKJVQqFZRKJXZcOpdarQan04larYZqtQpJkiBJEpt5ORAIIBQK1fWfrpHP50Mmk0GxWEQmk0EikcDk5CT27duHPXv2YHh4mJ2foJ5IJNLuLqii9ewQCATtw8hzoy0Cpbe3Fy6XC2NjY3XLx8bGMDg4OGd7n88Hn883Z7nD4TBlptXblgZyp9OpKVJaBR3L6XTC6/XC7/cjEAjA7/ezgdzr9TKR4vF4mMBwOp1wu93snFwuFwqFAhu4abDl11MbNHC73e46gULLHQ4HqtVqnRCSCxQSEaVSCZFIBLlcDi+88AJCoRCCwSCCwSATYB6PhwkGEln03fp8Pvj9fgSDQeTzeVQqFZTLZRSLRXY8XqDQT1pGIiUajSIYDLJ1vECh7cLhMFwuF6rVKiqVCjKZDLu+dE9Qu/x9IBd7SijtR8vnq6tB7ZyahdnnBqD+7BAIBO3FyHOjLVk8Xq8XJ598MrZt28aW1Wo1bNu2DevWrWvKMY0+RGnA7sRBgxcI/DLekkEDLm/94Jfxooe3mvDWE/m+/DHky/n1/O/0kSQJ8XgcsVgMXq93zvHpd7fbDa/Xy0QWiS6fz4dYLMbOlX7yooE/XyUrUFdXF2KxGBN1/LZ8m3SOvPVI7iNVui/kYoX/0DIj+xpF/v3z/ec/C412PDcEAkH7aJuL5+qrr8amTZtwyimn4NRTT8VNN92EbDaL973vfabbstv10mpXjhZ8P+SWArKE6AUa8S4Y+WAp/0ntKQ1wvAtMPgiSWFDaP5FIAECd64bcOaVSCYFAAPF4HD6fDy6Xi7mIACAYDGLJkiWYnp6G3+9n1hMAKBQKSCaTTFTIrSYOhwPBYBCRSIS1C9QLNYK/NnKhZTUAlL+P5MK3UeuDvB36Xd5eJ93LdmDnc0MgEHQ2bRMob3/72zExMYHrrrsOo6OjOOmkk3DvvffOCYAzwkJ6AKtBIgMAsxB4PB4EAgH2xq9m+aDfS6USG4jl1gMAcwb4Wq3G9ufdQvw+SvvLB3eK7SDXVDQaxeDgILq6ujA1NQW3281iQ4CXBAKdX6FQAABmZQmFQnA6nSiXywiHw2x9KpWC2+1GrVZDqVSC3+9HLBZj/SdhUq1W2fWUiyz+POTnIl9HKC3TEh5a4sSscFH6HtT6tBCw87khEAg6m7YGyV522WUdW1q8mcGyZlxIkiTB7/cjHA6zOIpAIIDe3l72d6lUYtv7fD5UKhXmrnC5XCzAdGRkhLlGePcIb30AwKwt5XIZbrcbfr+/zsIiSRKzhpBwoTZ4awMdH5iNSwkEAohEIli9ejUGBgbqLB3UFvDSQEtBwOS24dun3ymmpVarIRwOo1qtolgswuPxoFKpwOv1srgbvm256OD7oeRC04ohoeVKv/Mota+2jRZ696URF898tqx08nNDIBDYx7zI4uk0Gn2wGw2UpIGTRAJZSoLBIE488UTUajWkUimUy+W6oFISA06nE93d3RgcHMQLL7zAAmC9Xi+LB6FjU4As76ap1WpwuVx1QakUsOt0Oplwojaq1SpKpRIKhQIcDgcLyqVjhUIhxONxRKNRZo0JhUIoFovMqkHXgc45Ho/D5XIhn8/XnSdtT0KLFzGBQIAJKcro4YNceRHFW4nK5TL7fviYG6XvzMj3atZ9Y0fsk5alx8h6gUAg6BSEQNFA/pbZjIe7XltkyaB02VqthlAohFQqxURIIBBAPp+H2+1m8RtkeRkcHES5XGZWFko3drlcLLuB3Ck+n48FpjqdTqRSKdRqNRSLRZYRxKcZVyoVOJ3OurRnp9OJdDrN0oDHx8cxNTWFXC6HdDqNWCwGv98P4KVAWYo3UbrO1E+v1zsnnRgAO1degPDCha4ZCRESKySQ+AwkOj+lwFk11ASF1eBXIxlBVtoF5lqKBAKBoJMRAsUANHA0461Tb7AgIcCLDpfLxdwqZGkgQUBCpFKpIBgMwu12Y3x8nFlDSqUS++lwzKb5ymMXJiYmmHuHxAswKwbIlUPXZGJiAtPT06wfvb29LCWYUndLpRK6u7tZemi5XEYwGGSChuqh8K4pp9OJYDDILEeZTIYJNd7dxPdbKWiXj7fh42roOLxg4eNmlGJ0lL6bRtYrYcQ1Y7R9XpjoxdEIBAJBpzGvBUqz3gSb+ZYpz4SR/1TanqwAAOD3++vcGn6/H36/H+l0mrljHA4Hc1fMzMwgmUwCQF2QKLmC8vk8QqEQC7pNp9Mol8t1hd4o8JSvKUHLqOYJ/Z1IJDAwMIBQKITR0VFks1kUi0XmquJFAAksao/KksuzaDweD+LxOPL5PEql0pw0Xv668lYIEh5Op7POSsMvB8DWyYN7+RgaJeRioVEXjxHUgnTl9xK/rZowkd93QrgIBIJOYl4LlGabq5Ue9HbEnyiZ8bXOo1qtsjd9si6QQCG3jNfrZS4X2mdsbIzFnfDuC9rX4/GgWCwimUwiGo0CmLVKeDweZqEh6wltT/EndA7BYBCSJDHhkMvlMDQ0VJdxRMXOgsEgotEouru7mfWiUCigXC6zTBw6BsWzlEolFvAqd1VRf/mBmc9SUkqXdjqdLN1YKyOHrqNSLRQ7sPPe1XINabl15Pe3QCAQdBLzWqA0C7losPsBbnZgosGZz8DhhUYmk2FiA3jJvZFKpdDd3V1XqZVcPbywyeVyyGazrF4I/+HdWxRMS7EhgUCAxbSUy2VmTaHsG9qOxA5lHYVCIdZuLpdDPp9HPp9HJpNBqVSC0+lEOBxGLBZDLpdjrqpoNIpcLgdJklgALvWxUqmwfpIFiD9vQl4aH5grdkjo0HdlNCuGMCI+7AqGNXo8I/cwL3Tmc5aPQCBYGAiBooLcXE7Lmnkstb8pBoViNvhUWxINsVgM6XSaxazwgzVl0VDmSyQSgc/nY+m4gUCAWSuCwSB8Pl9doCl9SGz4/X4mZsh94/F4kM1mWWwLiQbgpUqxoVCIZdX4fD4mlsLhMNxuN3p6eljxtUQigdHRUQQCAVYOn9ohaw0/5w6feVSr1VAoFJjrSi5ISKjJ59bh3TvUbyPipB3o3TNK7hz5/vL1rbjXBQKBwChCoCigJE5acUxA+c2aYiQoToQvXe92uxEIBDA5OcksGBQvQpkvbrcbuVwOmUwGlUoF2WwW6XQaPp+PuVBorh4ArKIriRoSJ+SuiUajrA8Uk0Ipx2NjY3UZMrw7ilw5+XyeCRQ6N7fbjXA4jFAohFgshu7ubhYPQ26ocrnMRA1dJ74wHe9W4q075CKj49E5kWAD6q0nfCaQXhYP//0ZcdfZidYxteKa+PV8WwKBQNBJzGuB0qyBoNUDjFZwJe9uoLlk+FgUr9eLWq2GmZmZOksCxYWQICC3RygUYuKFBl6ywgSDQVSrVSSTSSY4qA+UpRONRlVFVK1WYynPJGpIOFAcCe+ior7ysTR8QHBfXx/C4TCzdlDKMx+Pw8/nQ+KCZjyuVCooFotM2JBAoWBc2g4AE0/8LMxy0aglWtthZdETREazi0SgrEAg6ETmtUBpdpCsGaxYXMykjFIcB/CSy4Rqljz//PNIpVLMFUQDvcvlgt/vh8/nq7MKaAWQUoBsqVTCzMwMm0E5FAohHA6zIFOK76hWq8jn83WF0/jiaMDsJG9UW4ViSEhM0XKq90KiCpi1yni9XhabEgqFEIlEDH/n1Ca1S+4o+psEDx+AWygUMDMzg2q1imw2y65Lu+8zO4+vJYiV4lBEPIpAIGgH81qgNHvQMPNgtiO7xwgkOoLBICqVCnbt2sXcNZSKS/EqlNbLl6GXB38SNJMwxXhQHEq5XEY6nUa1WkUgEGBWEXK9kIWC+kXpzXQcssxks1k2YR/FyJDLiARRLpdjVg3KFspmsyzbJ5vNsiBb6icJDHJTkdtLXjWXPzfajq4Tf3xeMFWrVTYLc7vRiymRb9fI/wYfGC0QCATtYl4LlGbSSuuM3rH4eIhgMAiXy4WDBw+yCfgoGJTiLgqFArOyULAqDbJ8ijCf1UMT+fHpvnxZe0mSMDY2xqwh5J6h4moUiEtBsmQ9IUsPuZT4mA+5K4qsGrQNVbAlcZHL5VAsFpFOp+vcRGT94K04JEzIdUTTBFBNFEqfBsD2IzcUABZrQ0G6zUg1thsr96yae4cX50KoCASCdrAgBIoRS4dZM3Wzzdpmgir52hzpdBrpdBperxeRSITNZixJs9VYKZCW2q1Wq6yQGh8TQkXWaDuqKEvWEbfbjUKhwFKSyb1TLpcxNjaGcrmMWCxWN5syWU/k50j942uUUFxLsVhEoVBg8R+0PYkS3hLC10OhmBqymJBbiywqJJxIrFApfxJJVJuF+kHXmDKEKKWbF3adhNz1YkaY8PsoBdO2250lEAgEwAIQKEYfplbERqf44MmqQMIiHA4z6wBfp4OsCpQZw2ek8AG5ZHUg4eJwOJhVgj6VSgU+nw8ej4dVryU3SldXFzKZDBKJBBwOB3p7e5llQmmeGxI8ZC3hs2codRkAOx7F2pD1h9xBfJAwn2pMViAqn0+ip1KpoFAoIJPJsGNR+3ydF3IVUUwKX9Olq6uLldvvBLQsG0b/F9RiUNp9nwsEAgFPZzx1bUKrDoRRlMzkzXhoK2VQqMFbOkhA0ODKpxxLksTiQHh3CYkSGoDkFVlp0KdtyUUEgG0bjUaZu4cKrdHkhOl0mpXcJysKiQoSP9R/soCQqKC+U/0V2pcEAn+9KO6GxBnwUvYQfSgoOBQKMeFBJfIrlQoTNjSvD1lJSIBQUHAmk2FTCQAvWVDaOYgrWTvsdkWqBcwKBAJBq5nXAkXt4dzIQ9WoyFHKdrCK3iDDzxUD1BccU1oeCARYii2Ausn+yEpA+/CxHCQwSFg4HA5mPSBBQy4VilmhNlwuF5sPiDJ8CApCJRFA1grqOwXfkpggVxI/Xw6JGHI7keWFz7AhkULxMGSxKZVKbE4gKq1PgoiCZSnQ1uPx1KVlUzYUuZrkxd1aCW85MeoeFAgEgvnKvBYozbB0yP3zam3bVeTKyABDAzzv0uD35wcrGqB9Ph8KhUKdy4csHnzKMV+EjLcqUNAoBbfWajVW3wQACx6t1WrMQlKpVJDJZFjVWLJU8EKnUCgwgURWGAAsi6ZSqbBsH3nBN6rfQhk2/E8+9bpYLCIQCLCJB8vlMgKBAILBYN31pJgVylCiGBcqt08TKtIkiXzMxkKgk9L0BQKBQM68FijNoNUPbK0gR94NREGtvHuHL8xGgqNUKrGgUPlbdqFQqHP10HKqnwKAWT/kxeDy+TwAsMq1gUCA9TMYDLL6JiQI8vk84vE4EyPUH956QlAaMQW2knuHL8gmr6BLoon6TXEjwKwASaVSdfEzFDxLMTG8dcXn88Hv9zNxwosksqCEQiEW39LJIkWphokaSm5GIVoEAkGnMO8FSisGinYNRvKBg5+5F3gpVZeyYmh+HeAlIUEDqsvlQi6Xqyv4xld/pWBZ+pAooIn6+En/5BkttH8qlWKWnlKpxNKSo9EoExtUqZVvg9KMKWiXXC7AS7Mhy2uR0HnLa7yUy2XmuiGx5XK5kM/nmeCgKrLFYhFer5fNEUTCiKxKVBaf5guKRqOYmJhowjetjVIasN628t+tHEue5dOpokwgECxM5r1AUUu1bPRhqpSKqXXsRjCSZkzb0Ns/Dcput5vFjdCkfyQmyEVBbh76AGAFyRwOB3p6epibhlwZ1B6JGT6LhY8NITweD6LRKBMoJERossJwOFxXmI0XWVRaHsAcywkFsCql+ZJg47Nz+BL11CYFDNO1pDgcEk90XLpWdFzKXKJ5guLxOCYnJ1VrhzSbZokEPeuJECcCgaAddFZxBwsoxYLYLRrU2rProW2khgsN0mRdIBFA9UOoHD1ZUfi0YOAlawnV+KB2yb3Bixga8JUqqGoFiXo8HkQiERakSpYdKrhGooOfrI+Kr9F50fEDgUCdWFIbOPkYGjomVblNpVKYmppCoVBgoo4PHg6Hw3UZTmSV4eNuKBaFCr4Z/c7shPpO59gsF4ya9UWIE4FA0A7mvUBZCP5ytXPgl/OuHD6Ow+VyIRKJIB6PszRjCo6lgZUvzsZPrkeCJ5vNzjHnRyKROVYLsnZoFS0Lh8MIh8N1LiOyTpD1hKwYZGHhLTuUrkzWG7V5g5SuW6VSQS6XQy6XQzabZW4dij3h409oRmZ5RgxNbMhbFSjAV5723Cw6LUNH3p9O6ZdAIFjYzHuBIsfOt71G/flG4d+Q5cvpJ18WngI+KTsmFoux9FjgJRcMVWLly85T4CttV6lUMDU1xeqXUL0R3jJBfaBKtXpQCi/1mY/tIEsFFWvjl9Hkh9RnPuhV7frTNZELEz4jiQQQFWGj+XyAl+qbkPXG6/WyGBU+5icajTLRxdNsa4ZeNlmraNV5CwQCAbHgBIrd2Ok2UoIPTNXrBw2wZJWgwFin08mCTGkwp5l7efcIX/OkVCohn8/XZf9Uq1VEIpG6FF+C5ugxUlGVyuPT4E/xKNQPPgiW3FckpsgFlM/nmRDjK88StDybzSKdTiOfz7MPLyxInFDBOYon4VOcaRuKYeEDZh0OB4uhoXot8u+F/y4bQUmM2FVrxw7afXyBQLC4WBACxegg30jbSsubDX8MGmT5PtGAkc/nkcvl2ODqcDhY7Q8+wJQGbBInFI9C6ctUp4SKshGlUgnlcplVVTUCZf/w/ae4DmoPABNQNJcPTTbIp0Tz3wFZZEqlEmZmZpDJZFAsFpHL5VisiVwIkeCo1WrMdcVbZyjImEQPWV74CRqpHoqSe8tIKq+R+0Wtto6aha0dCMuJQCBoFQtCoADNfbvTcr+0Aj4rhU8tJrcFWTcozoJmNaay8nzAKgWJ8hYDGsgjkUhdVgsdu1QqsckEjULuGhIlkiTNqWgLvBTYygfw8qnISnEiJMCojglfwp7aI0sRbw0JhUJMsLndbrZObp3gLU4ULMwHz8pdf1r3gt2B2+0WCCSWOkUwCQSChcuCESjAwjVB04BA5d8piJPEA0+1WoXH42GDPAXR8u4TsmbwFVs9Hg+bnbi7uxupVIq5jajwm1Kf1HA4HHVpyuRuAqBqGSHRks/nmVtH7qaiQNhSqcQKsVG9FpqDhw8EJhESDocRCoWYmJH3lVxm9LfT6UQwGEQ8Hmdl8Pk5e9S+J6toiQ+lde0QyM20VAoEAoGceV8HpRW0K0iRLAJUMZViTqg4GVkI6HeKq/D5fKysO+/CIfcEWQaobaqUShPwOZ1ORKNRjI+PIx6PIxwO1/WLhASJITUCgQC8Xi+zclB/5TEl/MBH1hxKdeZL1NMxAbD+UrwNWVDcbjey2SwLcq3VaqwKLF0DvvYKzTNEFik6P7L+ZLNZdh3dbvec1Gu76uMo1fJR+rsdaLk4F+pLgUAgaD8LxoLS7Ae52oO4mamXcusCVYelZVRLhC8wRsIjEAiwuBR5Ngw/hw3tR4GjdCyv14uenh7MzMwgkUiwPtHATtYVLWhSQXLJUPu8+4iuKwkYCtb1eDzMIsLHffh8PkQiEZZp5HQ6EQgEWEl7fqLBarXKUpbJTcPHkbhcLhbzIo9boTgVCiQmCxSJIvn3JLcGKS3X+66VRJvW9kbpBJEjEAgEZpnXAkUuGtohUpqV5SO32pDVguIp+LgU3iJBAzFVmKUPbz0hywKJFafTyQJgqYgZtdXV1YVkMolkMlmXGkyzDuvN7ksWHxr4yWJB1iESKWQJonMPBAKIRCKGrRHktqEUY7KODAwMMNcVFYojYUPuH7rG/DWk2ZkB1Am/WCxWJ5jUrGv8udHfapYI/hyNnKsV64wQKQKBYL4xrwWKfPBqhrm5FRU8efSOQQMqHwgKvDQI8UXRyHrhcrnYefBxICQaKL6CLCPUB7IYRKNRTE5OYnJyss4V4vF4kMlk2N9KkGCi9hwOB0sFpn5Qn4FZgeTz+RCLxVjMjBo0w3KlUmH95tumKrk0U7HcjZPNZuvqsNB37HK5kMlkmHWFnzgxGo0aqgUDaNcwUVouF21a7TYDIWIEAkEnMa8FCjC3mJrdD1mlN2Gj/WnkmPzvfHwGX7KeMmPkAybFSng8HlYKn5aTq4ivdUKBpeTa4N0wZPUYGBhALpfDoUOH2IR8NGfOxMQEExnyAFQSSmSpcblcLGaEj02hjCMAiMfjdbEtSte0Wq0inU6zcvlUC4bSq7u6uurm+AFQFwOTSCSYOCGhJ0lSXcwMf/2pyB1ZV8ygZElRs/6RSLHzPjZqhTKSjSQQCAStYt4LFDl2Pki13mTV4gsaPb7a/hRXwW9DQoQCOKnSKcV+RKNRlqFDVgxKSQbAYjQikQgbyKmSKh9b4/V6EQgE0NvbC6fTibGxMTidThSLRVaafnJykqU9y68TWR8oiBWon9OHn+QvEAiwOBu+ND9PpVJBIpFAtVqFz+djGT25XA4AEI1GEYvF6uJFqB8AmCWIrCbkEiNrD/8dKM2YrCZQ1Kwi8nVKf9MyLWFi9d6ywxVqJfBXIBAIGsG0QHn44Yfx5je/GUuXLoXD4cCvfvWruvWSJOG6667DkiVLEAgEsH79ejz//PN120xPT+Nd73oXotEo4vE4LrnkEmQyGcsn0cw4ELNBsFbffNX2o3MiK4M85oSfFJAsAlTrgy/UVqvVMD4+zlwi1GY8Hmcl8ikYlNKUKbWZLB+hUAj9/f1MDIRCIRbrQRkvlFXD95/6Sm1RejRZTCTppQkFg8Gg5lw/1WoV09PTqFarCIfDKBQK8Pl8yGazLLiWzlceYOtyuTAxMcGyoXirBS/gSLzw7h+6xmRRUvu+5MLVyj2kRiP3llIQb6uOD3Tmc0MgEHQ2pgVKNpvFK17xCtxyyy2K67/0pS/h5ptvxm233YZHH30UoVAIGzZsqHtzf9e73oVnnnkG9913H+655x48/PDD+NCHPmTpBBoVJ/KBRO3Nlo6hFHCo9/A3ks2hFshI+/ETBNKbP1kmqIgYiRKaZyaXy7GU2qmpKSQSCXYMj8eDaDSKSCTCirBRzRGyGJBFhA+wdbvd6OvrY3PeuN1uFphKwoS39gBgwoPEE++i4uNoyC1FfVG6HolEAqVSiQXQUvVYCtp1Op1IpVLMmkJUq1WMjY0hn8+ztGU6Dl3PbDbL+kWBsXTufB0XEjd636fePWmXcDGDkWM1oz+d9twQCASdj+k6KOeffz7OP/98xXWSJOGmm27Cpz71KbzlLW8BAPzgBz/AwMAAfvWrX+Ed73gHnnvuOdx77714/PHHccoppwAAvvGNb+CNb3wjvvKVr2Dp0qWmT8KI+Zkf9OSBtWqBjEptyPdTC6KVt2NUQCkNDhQTQtk7fMCry+WC3+9HMBhksSEULDoxMcGCPUdHRwHMioVYLIalS5ey8vBdXV1wOBxsrhqK0yAXijxrxeFwoL+/H5OTk+jv74ff70c2m2UWnng8jkKhwKwhFLtBQoQq2VL2Trlcrqt9UiwWmRAhIUZuoGw2i56eHni9XkxPT8PtdjN3D7mgcrlc3XXM5/MYGhrC9PQ0q5RLUEwPBdfy9wlZTigehp8ywMh3qnU/yGNO7MKMK6aVbptOfG4IBILOxtYYlP3792N0dBTr169ny2KxGE477TRs374dALB9+3bE43H2kAGA9evXw+l04tFHH1Vst1gsIpVK1X14zAQAKmVS0KCv1o7R5WrWHKODgNp2VJOD6p0QFDcRiURY4TK3241isYjh4WEcPnwY6XQahw4dYqXeI5EIli1bhr6+PmYVoJRayvohVw+JCPk183g8LF5kbGwMDsds+q3X60W5XGZmd3r79fv9LPCURAmf3kvbeb1eZLNZHD58GDMzM0gmk0gkEpiZmcH09DTy+TwGBgYQjUaRTCaZ0CG3jM/nQzgcRk9PD4LBIAKBAIrFIg4cOIDJyUlWbZasNvwsxwDqit6RtQgAc++QVUlp8kI5Wla2VlpMgPr7khdEauKo1bEmzXpuAPrPDoFA0LnYKlDoLX1gYKBu+cDAAFs3OjqK/v7+uvVutxvd3d1sGzk33ngjYrEY+6xYsaJuvdkHvllfvFb7SlkZdg9ANJ8N8NIgSgMo/1YfCARQqVQwMjKCkZERpNNplMtlSJKEYDCIUCiE7u5uDA4OMncFuUf4IFKaWTgUCtXN68OfXyAQQDweR3d3N8rlMhM/tG8ymUSpVEKhUGAiiIJk+bTiWq2GdDoNt9uNTCaD8fFxZLNZFq9Cac7Lli3DqlWrEAwGkcvlkM1mWSyMPJuJLC6lUgn79+/H1NQUK/rGnycJJa/Xy9w+8nmCKL6GD0Km87GCkWBZK21avac7oUZKs54bgP6zQyAQdC7zIovn2muvZcXCkskkDh48yNaZNVPbGbDIt6H2t5E3ba0gRnI18Bk8vDjxeDzsTb9arWJ8fByTk5NIp9Mshdfn88Hr9SIej6Onp4dZFijlt1gssjoofMwFZcdQrAsVWKN+ud1uhMNhxGIxZLNZFAoF+P1+VKtVxGIxJBKJurokJFD4uXhSqRRLF85kMsjn88wl5Pf7mfDhA175WYspRkZe4bVcLjPLCRWc42dO5q9fIBDAkiVL0NXVhVqthkQigdHRUUxOTiKVSqFYLDLBBrxUz6VTUbrH1WKnaN1CRevZIRAIOhtb5+IZHBwEAIyNjWHJkiVs+djYGE466SS2zfj4eN1+lUoF09PTbH85Pp+PzRPDoxaQqpUazD+o7X5AKw0CcpO6Vl/VxBP9TQM9FVCjcvA0P0wikUAikWBz0ZBLiMrAU9AnDbwul4tlwZAVgqACbgQF4srL29NAHw6HmdvF5/OhVquht7eXiRQKlCVrELlmUqlUXeouuZloIkBKF+b7QdeEBBMfGAzMxpzs27cPMzMzcLlc6O7uZnVbeOhcuru7MT4+jpUrV8Lr9bLaMRQ/w7t26NhaBeRajVrtFLV7S/4/oOT2aaVoadZzA1B/dggEgs7HVgvKkUceicHBQWzbto0tS6VSePTRR7Fu3ToAwLp165BIJLBjxw62zf33349arYbTTjvN1PHU/Ppqlgu5L14p7qSRN2M1C4iZfZWguAj6UDApn2lCtUEou0Y+8R1l5uTzeSYaADBxQ6XuCXm9D3ItkQVkZmYGIyMjmJycZGKmt7cXpVIJMzMzGBsbq8v4SafTCIfD8Hq9kCQJuVwOmUwG5XIZfr+fpTGT9YQsJ/LBhQJ7PR4PKywXDodZG4VCAXv37sXU1BQcDge6urqYVYc+uVwOqVQK+XwekUgE3d3dAIC//e1vSCaTde4qSoumc+cnapyv6LmZeCtZK2j1c0MgEMwPTFtQMpkM9u7dy/7ev38/du7cie7ubqxcuRJXXnklPvvZz2L16tU48sgj8V//9V9YunQpLrjgAgDAsccei//1v/4XPvjBD+K2225DuVzGZZddhne84x0NReLLA1SVHq5Gs3UawUgQolxM6bXHB5aSi4dSY0lYlMtlTE9Ps0GfBmN5MTK/349cLscyf2KxGIB6QUIWDx4KHOVdOy6XCzMzM8jn8+jq6kIwGMTKlSsxMzOD0dFRDA0NMetNMpkEUD/PTTgcRiAQYPVTlixZgvHxcVQqFUSjUTYhIfWF5hWKx+Mol8ssvoXcXLlcDnv27MHMzAzcbjei0SirDMvPP0SxMV6vF/39/ahWqzjiiCNQKpUwOTnJRF8kEkE6nWYxJ5QxRXE9zbQ0mM3GsbJO/r/SzHiUTn1uCASCzsW0QHniiSfwhje8gf199dVXAwA2bdqErVu34uMf/ziy2Sw+9KEPIZFI4LWvfS3uvffeujf0H//4x7jssstwzjnnwOl04qKLLsLNN9/c8MnIzdVy1Pzw/GBjZODROoYR8WH2DZWyaWgfEgrBYJC5XV588UVkMhkUi8W6jB964+/p6WEiolwus989Hg/S6TTy+TxzryQSCRb/QfEp1A7wkrunWq2iv78f2WwWIyMjCAQC6OnpQV9fH3O/kMgIBoNIJpMol8twuVysPD3NKByLxVg9FSqIRtYdgmq3ZLNZBINBpFIpdg2TySSef/55zMzMwOPxIBKJIBaL1QkTiquhcv8DAwPwer3IZDLw+Xx42ctehv7+fqRSKTz55JOIx+NM0NG8PR6PZ05F32ZgpG09YWImDZo/bjNESic/NwQCQWfikOZhhFwqlWKzyvIPYqU3QX6dUu0SLayKFCNtmXlr9fl8WLZsGc444wyceuqpWL16NZYsWYIjjjgC4XAYhw4dwoEDB1g9EBIpFPcRj8dx3HHHwel0Ynp6Gj6fD729vQBm/fjpdJqJGUr57e7uRiaTYenJoVAI5XKZCSTalywzxWIRExMTrPy9w+FgFp9UKoVyucyCYZ9++mkceeSROO6445BIJJBKpVhqsCRJLJ6EBBhfi4QsRIFAAFNTU8wNc+DAASSTSTgcsynPXV1dzB1F1xCYTTstl8tIpVJYu3Yt3G43pqen2aSC5A7asWMHduzYweYgmpqawgsvvIDdu3fj0UcfZUXd7Maslc+qmFD6H1D7v9BKs5ckCclkck59mU6Fnh0CgaC9GHlu2Bok227UggX5dcBccWAlSNDswCAfCLT6yu/Dx5/QPuSq8fl8SCaTGB4eZrMKk3uH3vb9fj96e3tZumy1WkU0GmWBqB6PB9lsFqlUirVLgak0Lw9lEdHcPSRQeDdQIBDAihUrUKlUUCwWUSgUMDk5iUAgwGZNpv5XKhX4fD5mXeHdRocPH0Yul2MF2wKBACKRSN1MyFTYjYJV9+/fz1KVKc6F5vPJ5XJMtJHLh9xEVMROkqS6AGC3242jjjoK//jHPzA2NoZgMMiEED+RYKMo3We8SDByH+oJXCNuRv648n20jt/qYFqBQLC4WBACRelhygsAPj5F78EsX9as/vIiRQ1eLFF9DsrG8fl8yGQyOHToEBKJBJsNmAZu2o4EB7lreKsHkcvlkM/nWaouWaYcDgerg0IiQq+vJHpcLhcymQxLPaZ5d9xuN0tz5gvPBQIBjIyMwO/3IxwOs7Re+h2YTS+mlF+qQHv48GGkUik2OSKJCa/XC5/Ph1wux6rUzszMsIDenp4eJsr4wFc6D5fLhcHBQTz77LMsXoXcWnZlgRkRHzzNEgTy+1AuoLUsKAKBQNAsFoRA4dGyTMgfwkoxK60IpOUx4uLh01xJKDgcDlaQjawE9GZPQiEQCCAcDiMcDtelGVP8B1V4nZmZgSTNFnOjKrQDAwPMCmHEWiTfhjKHSKRQ/2h2ZX6iQLfbjWQyiWq1iq6uLgwODrLsGWq3VquxWisOx2z9k9HRURYv09XVhVAoxGZwBlBn6aHzpTmBKCYmk8kwy0gsFmPfebFYRCQSQSQSwdjYGMsSkp9rK8RsM9crbSO3Jiq5RwUCgaDZzItCbUbQEybyh6vaW3CzH8BKqc1Gtqd5bshVk06nMTo6yiq2UlqxJM2Wrw8EAohGo6wEPjA7UA8ODiKTySCZTKJSqWBsbAy5XA7lcplZXPL5PMbHx5lryQpOpxPxeBxut5tZdvhquMVikQWtlstllEolFi/jcrlQLpdZunStVkOpVGKp0dlsFhMTE0gkEvB4POjr60Nvby96enpYqnKlUkEmk4HL5UI8HseyZcsQi8WYBYXOjSrWlkolpNNp5vLJZDIssygSiSCbzSKbzbLAXrtREsla8SF67kEeq/c0b+kTCASCVrNgLChWggXl/n6lNpudRmrkDVguUCqVCoaGhjA1NcWyXRwOB8tO8fl8iMfjLBCW1lF6MVV+TSaTGBoaYi4Pik0BZgOYJiYm0NPTM8eaYZRwOIyBgQFkMhlks1mEw2GkUil2LjRJH2UJAWDF1UhwUfxLoVBgrqhsNovp6WkEAgH09/ejv78f0WgUkiSxGi+SJLF5h9xuNyYnJ5lbSZKkurgbimWhwZiKyDkcDhbDUywWWRAuX23XLpQyyZTWWcHq/4awnggEgnayICwoelkGhJIpWy8GpBlYGTD4+WtefPFFjIyMsEnuqC4KWUBCoRD6+/tZNgxl6VSrVVZBNhqN4tChQyiVSjj66KPR3d2NWq2GUCjE4jjGxsYwOjrKrBETExMYHx9n7hkjdHV1YdmyZahWq2yuoEqlwiwnFBND1gxyYZFgoTL7FIuSTqeRSqXQ3d2No446CoODgwgEAnUiDQD6+/tZtd18Pl83EzSV1afAXyqxT24p6iMJM5rRmdKVKWDXagaNEloCQG41sfO4RhDiRCAQtIMFIVDUHtitjicxglq8i94+9FY/OTmJZDLJYjcoGJR+hkIhlirLz3FD6buxWAyBQAC1Wg0HDx5ENBpFIpFAJpNh1oRoNMramJiYwMTEBPx+P/x+PwqFAoaHh5FOp1nQKrlr1AiHw6xtqnpLgoQCf6vVKjweDwYHB1lQLMXAkDCgarnLly/HypUrWcE0aguYLQQXjUZZG3T+ZCFxOp0sLobWk5uH0k8peJfcQBT4ywsUO1Fy6diJlXu/1SJIIBAI5CwYF48aelk8hJJZvVloWXXUtq9Wq3WWAGA2EJVP+yWh4na7kc/n4fF4EAwG0dvbC6fTiXK5zOJRJicn2d/d3d1spl8a6Mk9NDk5ibGxMdY2BY1OTU2xwZ1iR8hiIX/Lp/L15GLi3TZ8VszAwACznHi9XhbQOzU1hZGRESQSCRx11FHo7e3F8PAwKzZHMygXi0Xk83l0d3ejUqnA7/djenqauZRI6NEMyGSRIksJzZBM15wESrVaZccB6tOrG83kUdrX6D1hRuA2ijxwtlMEv0AgWLgsGIGi9cCW+9H14k300isbxaho4peTBYWERyAQqJuRl+qeUNl3skwMDg6yiqwOx2yZ91wuh4MHDyIQCKCvrw9dXV3MilAul1kqME3CNj4+juHhYSxfvhzhcBjT09PMakLz8hQKBZZBQyKJ+gbMWlFGRkaY+4YsLxRrEgqFEI/H6859cnISu3fvRiqVQigUwvLlyxGNRnH48GG43W5WjI1mN85kMqzyqMPhQDKZZNVnXS4XstksmzuIUooBsOuXz+cRDAZZEC+JEwqsDYVCLBPKru+/kTbMtGklhsjIcQUCgaBZLBiBYibdUp4RoZYB1CyRIj++0X1KpRKy2SwbyMnd4HK5WHYPiRCXy4Vly5bVlYunqrHFYhHZbBbRaBThcJjVCaHsF6qDQrVAqtUqJicnMT4+jt7eXkSjUUxOTtaV4E8kEhgdHWXCxefzob+/H8FgEKFQiLlhqG/5fB6lUglerxe1Wo1lD9H8Qfv378eBAwcAACtXrkQkEoEkSZiamsL09DSOOeYYpFIp+Hw+VhlWkiR0dXWxY1EFXACYmppiNVFIeACz4iQcDjMLVaFQQKFQqJsNmj7VahXd3d1MpPDnb+X711pvVgjo1UxpVFgopeMLK4pAIGgmC0agyNGylBhZRm3w21j15Vsx4Sv1JZ/PI5/Ps3LtpVKJFVfj3/ZdLhdLu6V9KZ4kEAhgYmIC0WgUTqcThw4dYqKDsoRoQCZrxxFHHIFYLIZDhw5hYmKCTWFPA342m62rd+JwOFAoFBAMBtl2NKin02kAYNYgOl6lUkEqlWJ1WZLJJLxeL1asWAG/388sJPv372d1U3w+H6uDQkKDLEE0kSAJu5GRERZDQgKGYngokJa2pXL6fHo0ub7i8Ti6urpw+PDhhu4LI9+3VVHRDCuHsJwIBIJWs2AFCo8d5m2rg5AdsQk0CCYSCRacSm/v1WoVpVKJWTyoBH4sFmOpvNPT02z2X8r4oUE/n89j9+7dAMAECT8LMgmIQqHAZiSmbByPx8PSf8nNQu4PKkE/OTmJnp4eZh0plUrMlUQT90UiEVSrVRw4cAB+v59Vdu3r62MBqS6XC8PDw6wcP9Ukof4ODAzA4XBgbGyMpRx7PB5I0uxcQBQo7Pf76yrG9vT0MIHk8XiYJYWyjOg7oPOiMvlkbSKsxi8ppRObbUOOne4cYSURCATtYsEKlEZqP9jxgG9GnEEul8Pk5CSWLl3KBlkaRCkuJRAIwOPxsIDU6elpNvuwJElIp9PMxQKAxVZkMhmW7QKAxYdQ2i4JHD4bhtolSExQOi/Fp9BkgSQmqPAazRtEab5utxvxeBwTExMsTiUYDKJarWJsbAzJZBJHHXUUcrkcqwDb09OD/v5+VCoVTE9PI5vNstiUiYkJeDweTExMoFAoMFcOWUOcTidCoRCmpqbY9abaLGQJou+R5jciF5Xb7WZF3ZREhZHvXy3uSe5uNOsS5LOC7AzeVTqOEDACgaBZLFiBQljJdrAiTuQPa7se3PKsiZmZGVawLBwOM8tJT09PXYBoOp2Gz+djswRT5szQ0BASiQQAsHl2qtUqqyNCFgRKM+ZnR6ZjUXow1QuheWro2PSTXCzUd3KjkDuKxA5ZZlwuF6ampljBuWAwCJfLhcnJSbz44ouIRCLMvUXHIVdVKpVicSjFYhGHDx9mfSdRQhYfCiCmirxUlC0SibCMH+ClInGlUgnFYrEue4f/Xeke06ppwgdIy9sw44LUQinOSqkPAoFA0KkseIHSTt95IwOBWpBjMplEKpVCOp1mlV8DgQBisRgbhGmQpjl3AoEAyuUykskkDh06hFQqhVqtxgQEZQCR+CDhQRYFSZKYBQaYzbjhB3JKI6Zjk2VHLkTob74GSiaTYZPw0f7VahWRSASlUgmTk5OYmZlhmUHpdJoJDKfTiXw+D4fDgWw2y/p34MABdu7UP6qxkslkkE6nmUtnbGyM7UfWKOovxaHQtQoGgwgGgwDAspP478bId65kpbNTLKhZT9SEkUAgEHQq81qg2J2ZoNS+0sPcqPCwQ5zITf1utxu5XI5ZMCKRCJvkjzJ5aPB1Op3IZrMsRuTw4cNIJBKs+BjVD6EMHnK7UBAsACYAKMCUhAG5a6j2CQ3mZK2g33mxwn+ommwgEGBBtLQf1TShqrUUkxIOhyFJEivTTwHBU1NTKJVKCIfD8Pv9GB0dZcd1OBysHszk5CRLTx4dHWUCLZPJAABSqRSzsvDl+MmyRNlJdI3URKQRkSL/vs3cE1qobWO3RU8gEAiazbwWKI0+LM3uS4OEPHhV3p7cLWMWtf0laXZ+GZqFGABL000mkyzmBABzk1AQKwWoUryKy+Vipd0ppoS3jJCrhyw08XiciQ5gtihcOp1mlhE+k4gm9qPz4IvL0fZUHI0CUyuVCgu0pVor1WoVfr8f8XicuWHIWkLHPHz4MHNl9fb2MpcTZfLQRIgAEAwGEQ6HEYvFkM/n2bw/+XyeTRhI7ixenEiSVBcQWyqVWEE6qzSaRtzs/dSwGgwsEAgEZpnXAqUVqJnKm+3HVxNf4XAYwKyLoVQqYXR0FLFYjNUJ4QuQkQjwer3MOhKNRhEIBBCJRODz+VhwKs3WS6nDgUAAq1atQigUqpvJl4qYeb1eBAIB5i4BwMQJxYkQ1Ccqc099q1QqzK1CMSE0XxDNv7N8+XLUajUWKyJJErNwkEWD6sPwwojOjwrIvexlL0NXVxeA2QDgWCzGYnkoNZmPSSE3FwkV+p2sPDRHEAk2ve+NR81CZnR/gUAgWAwIgaKDUrChVjBtIy4hPUgc8Gm6NGjSgMnPPExumkwmg6mpKfT09GDVqlV1lg7K7CkWiyiVSvD7/VixYgW6u7sRj8dRKpUQiUQwNDTE0pmB2VgYqrMyMzPDBnASKDRw008+nkWSZuuNkBWILDaU1hyJRBCPx5m1KJFIMPEFvCRuyJJRqVRYfA25jCjLJxAIIBQKobu7m1XY5ef/4d1alFHEBwXz8TL0k85HqaKsFZehHahlnzUzOFYE2woEgmYiBIoOcmGiJkoayQAyAu8aodgSmi+HBloArG4JiYFUKoWJiQmEw2Ece+yxyOfzrKoqXxHV7Xajt7cX4XAYAwMD7BgOhwNerxfd3d2YmppiVoxyuYyRkREcddRRyGazioM4WR7outGA7nA4WDAuABb/UiwWWZ0SiqehEv/UV6pxUi6Xkc/nEQqFWFry9PR0Xel7irMpl8vIZrPM+kTiiPpJgbFU66VSqbAZjPlqsRQDRBlPRiYN1ApW1dq+kfvIrjgUIUAEAkE7EQLFAPIBQ808byfytmmwKBaLLPOFBlmyDFD1VqqFMjw8jOnpafh8PvT19aFUKuHw4cMsjZjiTsrlMrq7u9Hb24t0Oo2hoSEMDAzA4/EglUohEokgEAiwAmkkPIrFIg4cOACfz8cGeT7ehNwjlAVD1hTalrfaALPVZSkI+NChQ4jFYohGoyyF2ev1snl5yEUzMTFRF4SbSCTqSve7XC6EQiEMDQ0xF4/T6cTExATrIwXTJpNJFAoFxGIxJvjoeyAxQxlBlP1EyO8JpcweJaGiJEYaSSuWux8bjYUSCASCdjGvBYrZglRa2xlND9Xqh3wbuwUMuWMoCJRiLiKRCMt+8fv98Hq9OHjwIKamphAOh1nK7tDQEGq1GgKBAMtgKRaLLE2ZD1bdv38/qzZLooMmAyQ3E9Uo6e/vZzExZC0hywNdV6ogS9eYhEg6nYbH46mLneHdV7VaDUuXLsXw8DCreZJOp+H3++FwOJBKpZjVhK9i29/fz+JLHA4HisUiO38AbJoASkemzCEKHs7lckz4Uc0TXqSQBUXJ4qEkYOXr+XvNzrgTrToqZgRHM1KgBQKBwAzzWqC0IlgVMDbxmt3BjWpuI5qRl7JoqKAaBcP6fD5MTExgYmICwWAQbrcb3d3drKYITdBHsw2TGCiVSggGg+z3crmMRCLBLAt9fX1wu91sokDgpQyi8fFxNpcPffjrxosccj85nU5kMhnMzMywuXBoLh2Xy8VmRSaLCKU1864hshpRyi8FxZIwobiS3t5exONxJJNJ7Nmzh8XekOWF3GJkNeHdVSSqyMXGW6z4TB6le9Copc3ofWNENKi5k1qVNSQQCAR2Ma8FilnUBI2ZOhR6VhS7kL9x8/EvNDlfV1cXi98oFAqIx+OYmZnB6OgoAoEAEyBDQ0Pw+/0YGxtjmTxut5tNPFipVNiswzQHT7FYZBk+kiRhYmICS5YsYTVX+AJmJGLIjcNnE/H9JuFC8SbJZJIN8i6XC+FwmLl5aD+aILGnpwdTU1Ms9ZjaIYsOzZFDWUgTExNYsWIFAoEA9uzZg3A4XDfBIZX4J+HE12aharMkjGgb3h3ET6xIlhX6ruT3DL9cKY5JSUToBbwauV/45Y1aGAUCgaDVLCqBAjQWQGg1NsDsfmoxCeSWoQGT2q5Wq8hmsyybhqwDNKNvOp1GuVxmA/zMzAwLct23bx+i0ShWr16NWCzGXCeVSgV+vx9LlixBJpNhVhK/349ly5ZhdHQUo6OjKBaLKBaLzKJAokHuwqDzoNRicu9QfRWn04nJyUnmRqL4kUKhAGBWjExMTLCJDqmWC1kzEokEm+Qwn88zEUJxIlTIjc6LAm7z+TwymQzLBqpUKsjlcsyKUygU2PlR9hMANjcPH1uj9J3pffdaLke9ZXaLCSFOBAJBJ7HoBIoSRlKD9YSGUjqyvD21Y+m1RdAgymfYSJLEgl6HhoZY2XgKQCXrwMTEBEqlUl2J+j179iCVSmFmZgalUgnxeJxVY6VsoXQ6zVwvu3fvxjHHHIO+vj5WHI6ft6ZQKNQVc+PjTmjwr1QqSCQSyOVy6OnpYSKBLBI0rw9ZLPL5fF1VW160BAIBFth78OBBpFIpFp8TDofhdDqRSCRYxdpkMsmERiQSwfT0NKanp1kcDllOMpkM/H4/Ow7VPiFrE/8d0aSB/D1iVXSYvcfkFhr5cv6nHXFaAgGxcuVKvPKVrwQAPPHEExgfH8eKFSvwwgsvtLlngoXEohQoRh7CShYAvTa1/pYvN5Jqyh+f0nRrtRpSqVRdmfZarYZgMMhSb6lYGb35Z7NZjI6OsswbsmLQ75VKhRVH8/l8dVYBn8/HaomEQiHs2rULK1asYBYZmkWZRAS5QKhCK1lTcrkckskk8vk80uk0kskkBgYGsGbNGiacKpUKMpkMQqEQADBxQW4WCuIlkZDL5TA+Po5UKoWnnnoKABCLxRAIBADMlq6neiherxfxeByxWAyhUAgDAwMoFAqszD25qqgonPwakauLL9hG7fJVc9VERqMuQD3hK79X+PVm718hUgQejweRSIT9vWLFCrz+9a8HMHt/vPe972UC5bHHHsOOHTtw3nnn4dZbb2WCnajVavjd736HVCqleCz+RacTCIVC7HlGlMtlpNPpNvVo8eKQ5uGTKJVKIRaLsXgJs3TKA1gpXkFL2Hg8HqxYsQK1Wg1+vx+rV69m+yxbtgwTExM4fPhw3Zw45PYgVxAANshLksSsBuQuIfcQBdHST77SqxLkegkGg2wiPbfbzebqoaDYTCaDbDbLsm9e9apXYc2aNQgEAhgZGYHD4UAwGITf72f9DwaDiEajmJiYYCm+FNRaqVRw4MABNsszTTq4f/9+5PN51rdyucyEViQSgcvlQiQSYW4n6i9ZRLLZLCqVCmKxGJLJJCYmJuDz+dg0A8PDwyw7iS+Dr/Y9m7GUqKF3jxg5fiOWPaV2yZIWjUZN798O6NkhmEskEsHAwAAA4CMf+Qje8573sHU+n6+h75imrpAjSRJuuukm3HXXXXXLp6amMDMzY/l4Zujr62P3RCgUwn//939j7dq1ddu8+OKLuPTSS9lM8Gag0g6Ceow8N+a9QAGsvZ22Q6QYPZ7a+TidTpx22mmoVCp4/vnn2cy6pVIJsVhsTtwDBX3SwMtXYCX3CQB0d3fD5XJhZmYG+XyeFTijPpP1hubNAV4qCEfWA7ImeL1e5jKimixU5ZYGdBI6VOn13HPPRW9vL4aHh1k2Tn9/P3uzCoVCCIfDLAaFD449ePAgDh48iDVr1uD444/HQw89hOeff55ZcqLRKHp6ejA2NoapqSlWI4X6FY/HMT4+zuJ1SIyFQiG43W6ceeaZePHFF/Hoo48ylw+AusBY/jop/W13hlczY6G0stXkLiwhUOY3g4OD+OxnP8uux4oVK/CKV7wCAJirtBXUarU5VpcnnngCn/rUp1AsFgEABw8exOHDh205nsPhQCQSwUknnYT3vOc9eO1rX4tVq1axdXLrCcEXdzTDN77xDXz84x9vqM8LESPPjXnv4rH64Fd6k2xFurLSseUoDSbUvx07drD5ZyiThuI3/H4/c4cAYG4KGpTJhcHPt+NwzE6+R3EgZFGgD1lWHA4Hm1+Hsmiy2Syr/hoOh9ncNjTJIIkjCigFwLJ86O98Po+//e1vrAhbd3c3uru7MTw8zKrAknWGKtlOTk4ik8mwLCS/349//vOfePbZZ+tK1BeLRVb2nq4PBcSuWLECyWSSXVs+gNfpdCKXyyEQCODvf/97Xb+VYj60Aq/lWTtq2Tl697Ed96eaG0op60etD3b1RdB+Xv/61+P973+/7RmIZqH/b57Xvva1ePDBB3HZZZehXC6jr69PU6DwAfFax7n66quxceNGhMNhHH/88ab6SQUjzdLu6zufmfcCxS70akvYdZM1mi1EAZvAS5kkZBmhIFLqL1lLKFiWqqBWq1V4vV42Zw5lxdA/OV9XhYqoVSoVhMNhxONxFkNCJeGp/kgqlaqrFksuGvkASAXYgJeqw7rdbkxOTmJoaIilHvOF3QCw+ikkwkh05fP5uskM+bRgOi65qHp6erBs2TIAs3En5Prxer0snoefHJCKt8kzk7S+M6X4IaP7qmEmYFvvGFp9Ndof8dCd/9x///3Yu3cvVq9e3e6uqPLss8/igQce0NwmFArhjjvuwKte9SrN7RwOB1asWMFc0K2gUqngV7/6VcuOt9BY1ALFqEWjVeLE7JspDdg0fw0VOaMgVYovIUFA88309/ezwZ9iNsrlMmKxGCvutmzZMpRKJRxzzDFIp9N4/PHHMTg4iMOHDyOZTMLpdGLVqlXIZrNIJBJ1AbEEzRHk8/lQq9XqrjcJGa/Xy4JRSdDwkwrKXQ4kXMhlxW9HFiXah4RFpVJBd3c3VqxYgWKxCIfDwYKGAbBAWXJVkdDxer0IhUIsfVv+XfHfqdw6oWZhMXovqd0LdtyLSrFPSu0rnYMQJguHyclJ/PjHP8b111/f7q40RCQSwbnnnot4PN7urtRRqVRw44034rHHHmt3V+Yti1qgmMmkUdvfzAPbaAaP2rHk6+n4ZP0gEUCDMKUl83VFgNmBe2BgAFNTU6jVaujq6sLY2BizjLhcLjZoP//88yxolEysLpcLwWAQwWAQ4+PjyGazc86JFw1UcZaPGaK+kkuFBJSSKOFFCO1Lf9O5kWuHrCtUlwUAyzTK5/OYnJysS2sul8vw+/0swJaESCwWg9frZXEwvBDh+6X0vSltaxY9t1Ej8PehlljROr58X8H85F//+hcefPBBOBwOvOpVr6rL3BFYh8TJZz7zGWbxFpjHVBTUjTfeiFe/+tWIRCLo7+/HBRdcgD179tRtUygUsHnzZvT09CAcDuOiiy7C2NhY3TZDQ0PYuHEjgsEg+vv7cc011+hmQrSaRl0xWm2SJcDM27SauCHrA/BS6XkKOiOLQDAYxKpVq3DiiSfimGOOgdvtRjqdhsvlYvPtUBXaqakpTE5O4vDhw5icnMTMzAxLVwaAcDiMWq2GmZkZPPXUU5iZmakbkOUDF8XA8OdK7hbeksK7dOQf/nrRMrLOUOo0iQsSLFQjxeVyYenSpejq6sL+/fsxNjbGirpRrZNMJsPadrvdiEQicDqdmJ6eZpYhOj8tV4m8r1rfmxm07pVG29VbLj8vq8dcTM+O+cRPf/pTvOENb8BZZ52F973vfbj77rvrgsHbCV8Ycb5Qq9Xwpz/9CZ/85CeFOLEBUwLloYcewubNm/H3v/8d9913H8rlMs477zxks1m2zVVXXYXf/va3uOuuu/DQQw9heHgYb33rW9n6arWKjRs3olQq4ZFHHsH3v/99bN26Fdddd519Z6VCI2+eRgWFkSBDYO7bK79cbZlSH2q1GvL5PHK5HFKpFBKJBEuRLRaLcLvdWLJkCU444QQcffTRGBgYQH9/P3K5HLLZLHK5HLxeL9auXctmJaZqqolEgs2XQ+nBY2NjyGQyKBQKdfEmcpFCkMtEnvnBZwiQYKE5dZT2l//OH4s/Js0tJEkSy8Sh4mu80KI4F0mSWOl9aiebzWJ6epq1o4WSGGkWjbiMtNpUakMraNbKuc73Z8di4Oc//zne8Y534BOf+ERHiJRnn30WTzzxRLu7YZixsTH853/+Jy688EJ89atfFeLEBhpKM56YmEB/fz8eeughvP71r2eTyv3kJz/B2972NgDA7t27ceyxx2L79u04/fTT8Yc//AFvetObMDw8zHLub7vtNnziE5/AxMSEoUjpRuugWMVojIjR7czEGPCDk5KbR8nl4Ha7EQgEcMIJJ2DlypVIJBKsMuzw8DCLH4lEIjjiiCMwMzOD3bt31/1j0TVWso7oQcenyrBKHyoMB4DNzkwPR7lVhfojt67IrxHF4cTjcWYdOvroozE+Po6dO3eiWq3C5/MhGAwilUrVta8UDKt2zmrfiRwjMR5q7cvdRFqxLkbR2kfuwpL3gT8XEptW0ozb/ewQqON0OvG///f/xi233IKlS5e2rR9f/vKXDaXnDg4O4rnnnmtrDMo999yDz33ucyzrT6CPkedGQ4nulKbZ3d0NANixYwfK5TLWr1/PtlmzZg1WrlyJ7du3AwC2b9+OE044gT1gAGDDhg1IpVJ45plnFI9TLBaRSqXqPjytEilalgyzfZGbzZWOYwSlt2o+/oMsHU899RSmp6eRyWQwPT2NQCCAXC6Hrq4ueL1eTE5OYunSpXC73XXpetRPvi6KkfOiAFOKjeEn46NUZLJc0HKKB6H5gPi4FLpWJCAoI0keT0Hb8LMxezwenHvuubj++uvZfUfZUHK3kZI4kVtItOJN1IScUtyHnsvE6LU2ur28L2a3szPmpFOeHYK51Go1/PrXv8ZnPvMZ7Nu3ry2xRhMTE7jtttsMb6+XZdcs0uk0br/9drz73e8W4qQJWBYotVoNV155Jc444wyWTz46OspKivMMDAxgdHSUbcM/YGg9rVPixhtvRCwWY58VK1YAmDs4GKVRQaNnSTBrZZH3R24VUIt7MHLsUqmEJ598Evv27cNTTz2FvXv34plnnsGePXuQyWSQSCTg9XpRKpXwwgsvsLiUYDDIBncSLPwArdRHedVZesMmoUHVbSlWhEQUpQNTHInP52PuGWpDfl6UYk0p0gDYsQiKyUmn0xgaGsK+fftwxBFH1AXpUoCuUgEmuQVB7RrzKAkGLWEjX66G3I2md2wj7aihdT/yy6z+H3XCs0OgjSRJuO222/Da174WX/jCF5BKpSwVKTMDWePuvvtu3H777aYKs33+85/H/fff38TeKfPVr34VH/jAB5jgFtiLZYGyefNm7Nq1C3feeaed/VHk2muvRTKZZJ+DBw8CsK9ImxH0jqUWH2A0JkUNpQFFbi1R248olUooFAooFAqsmBo9cCRpttw9bRONRtnAT5k/dB6U3ksl7KmIG2URUVl7ft4aqidCcScej4dZSfx+P6vaSOKEKtN6PB6EQiFmtuetKQTVMFm+fDkTUXRODoejbuLC++67D3/+85+RTqeZ6NBzEWrFYehdc/l3L3dJ2WH1s9KG1XtSyZpi9Y21E54dAmOMjo5iy5YtOO644/Dd734Xw8PDth8jk8ng0KFDeOyxx3D88cfj3//93/HJT36SBf/rUa1W8a9//QtXXnklc+G2isnJybZYbhYLltKML7vsMtxzzz14+OGHsXz5crZ8cHAQpVIJiUSi7k1obGwMg4ODbBt5XjhF6tM2cqgYWKsxYz5X8tdr7ccPVlpvxPLt+AHGyJu9fBlvOSgUCmx9X18fCoVCnQuEP3+ygFCbainBfIls6j8JFP760LnwMSV0jFwux8QQCRuysFA71FYqlWL1XvhrRRVsqcYLlbLv7e1l66iaLgXIqn1P/PkpWResWPCsxI7I27AbvdgUK+cqZ7E8OxYS5XIZhw4dwmWXXYYtW7bg4osvxpYtWxAOhw23MTQ0hM997nPI5XJz1h08eBC7du1CV1cXDh06ZLp/k5OT+P3vf49qtYrXv/71uO666/C+970PPT09ptsSdBamBIokSbj88svxy1/+Eg8++CCOPPLIuvUnn3wyPB4Ptm3bhosuuggAsGfPHgwNDWHdunUAgHXr1uFzn/scxsfH0d/fD2D27TYajc6ZoKmdGAlWNbuv1vbyt2sjAwEN3Gr+VyUBwweDAmAihYqZpdNpxOPxOtcP9UvtzYT6TvEkvIAg4aHUH3IH8cXRJElix6T5Oej4/Dbyc+BTgck6Qu6hYrEIj8fD0q337NnDJlUkV5J8LhBCLSDViItGy2Ji1frBH7tRkaPWvpF1ZsXKYnp2LFQqlQrGxsbwla98Bffffz/OPvtsbN68GUcccYTuvr/5zW/wne98R3ObqakpS/3inzHpdBof//jHkU6nccMNN1hqT9A5mBIomzdvxk9+8hP8+te/RiQSYX5fmuI+FovhkksuwdVXX43u7m5Eo1FcfvnlWLduHU4//XQAwHnnnYe1a9fi4osvxpe+9CWMjo7iU5/6FDZv3tyUN51G3/qMDPz8cYxaXdSCY5WsDEptUXwIADagqw2a8uX83xQXkslk0N3djUAggMHBQUSjURw6dAijo6Ns8OdFh5K1SCmWg99GzZqjta1ctJF1hiwrVC1W3m65XIYkSUgmk6y8//DwMFavXo3ly5djZGSEpSRrCRS1a6l3XylZvuzAatyVWltm+tXIeczHZ4dAnSeffBJPPvkkEokEvvnNb+pef6/Xa4sFzgiSJOE3v/kNtmzZ0rIJDwXNwdS3d+uttyKZTOKss87CkiVL2OdnP/sZ2+brX/863vSmN+Giiy7C61//egwODuIXv/gFW+9yuXDPPffA5XJh3bp1ePe73433vOc9+PSnP23fWXFYjTfhrQ16okPvH8/IQ13PfaDUBmWiKLlalPor/53+rlQqSKfTSKVS6Ovrw9TUFJYtW4YlS5awYFdeHBiJozB63altpb7xgzGfzUOWI6U4D/nvfOG64eFhll5N21QqFc30VCVhqPS3UkyGPO5EqT0jqMWNNCp6zMaVNHK8+fjsEOhzxx13GJpr5k1velNLXS6lUknRnSSYXzRUB6Vd8HVQCDNvq3Kzvdp6vl1Cyaqhdmy7L60RQWDEBUXr+fZcLhe6urqwZs0aFItFHHnkkXA6nfjTn/7EJtEDrKXzWY1fUBIhwEu1UBwOB5vckA+gpeUOhwN+vx/d3d3snjnppJMwMTGBxx9/nKU1B4NBTE1NacahaLl61GJKzLqEtK5Do22Ywei9RC40K3VQ2oWog2I/p556KrZt26YZk1IqlfDRj34Ut9xyS0usKA6HA+9///tx8803IxgMNu04v/3tb3HhhRfOu4q3nUDT66B0CvzDWv671tunEauD2X7I27RjINE6D7VjGdmehyrSjo6O4rjjjkMikUCtVsPKlSvraqNQPRSzWLmmSm/0lAnkdrvhcDjqUpbl+1LtFZqfhyxFa9asYdO7VyqVunoqShiJHzGyTMviw6+Xf5TWK+1vBj1ribxfAoEajz32GD7zmc9obuP1enHllVciEAi0pE+SJOH222/H//2//1e39s3jjz9uObvrmGOOEW6kJjLvr6zaw9Os+4F/a9QaBOTWFTUTf6vednnkbhGz+9IAnk6n4ff7kU6nsWTJEvh8PiYMvF5vXSG3VsBn6IRCIRx99NEslVltkKd1xWIR09PTcDhmg3gpS6C/v59tR/Vb9NASIUquKr195WhZKpR+NuJi0xKweusEAjkPP/ww0um05jYrV67EmWee2aIezf4P3HHHHXjd616Hv/71r4q1Sg4dOoQLL7wQV1xxhaVj9PT0zAn4FtjHvBcoWvCDhjxuQukhr2VV4dFyV+jFZzRqVVHaV8l6YAWPx4MTTjgBzz77LHp6elAqlVCtVlmMBn9uRqwK/DojViCl/QiyiPCl8LXiV3jy+TxCoRAqlQqy2SxeeOEFLFu2rK6YnNU+Kp2nme2N3m/y9c2MF1FrT8v1KVjcPP3005iZmdHcxuPx4M1vfnOLejRLrVbDU089hfPPPx9nn302/vWvf7F1kiThe9/7HoaHh/HEE09YSnHu7+/Hy1/+cju7LOBYsAJFLT5ESayo7W8knoUw6lIxYlpXa0dtXyOCyQiVSgXJZBKjo6N48cUX4fF4UCqVEAgEmGtHL9XYCEa3UxIfpVIJBw4cYMHBtFxtP3IDDQwMwOVyoVwuI5lMIh6P17l5GrUKWXURNmIFaSed3DdB6ykUCvjTn/6ku91JJ53U/M4okMlk8OSTT2Ljxo143/veh/vvvx8f/vCH8bWvfQ2SJOHgwYP40pe+ZLg4HI8Q681jwQoUQilQkf+p5cKRt9MqrGZ60E+rVoBisYi9e/eiVqvhX//6FwqFArLZLJtTh/pm9VrouUG09uOpVCool8u6Abv8RIczMzMsODKRSKBareLoo4+GJM1mCEUiEdseNFZFh9xFZ8aiYheNfL+CxUu1WsW+fft0t+vt7UVfX18LeqTM3r17sXXrVpxzzjn47ne/W+eWuuOOOzA+Pm66zSuvvHLOFAwCe1jwAgV46WGv5aKQo+fCaIVqNhsn0EicA1EsFhEIBJDJZDA5OYlcLodoNDrnH9DK+dt5zcxaocbGxuDz+VhQbT6fx7nnngu/349kMolcLodgMMisKnai58ZRCp41e38qHctIf4z0RSAwwt13342JiQnNbVavXo13vvOdLepRa3jDG96Az33ucy2PzVsMLAqBAsx9OzWaUtroMa1iJEjRiKVHyUKkBgWVZjIZ5HI5VKvVOancSoOtUraJGlaFjVnrC1WnpX3K5TJSqRQikQgqlQr27duHXC6Ho446qq7abH9/v+0PGrtdX422YTUOyOy+gsXFvn37cM011+hOKnjppZe21YqiRqFQwF//+ldL+77zne/ELbfcIiwpNrNoBAqg7v6QW1fsPJ7S31YsHUbdNo32nwZrSZIwNTXFsnn42YX5/pnN9rAi2hrNiKJ9ZmZmEI/H4XK5UKlU8MQTTzD3lSRJyGazyGQyiEQidZMk2omaqFTKDGsVQnQI7ECSJPziF7/Ajh07NLdbtWpVR9aiqVQq2L17t6V9A4EAPvzhD+M73/mOsKTYyKIRKPI4FKPbE3b55rUCWhtpQy1Q1MrbMllOyPVBMxj7/X42a7FaWi5v7WjVwKck5uQzHwOzb0gvvvgigFkLy8jICKLRKFavXs0KvmWzWXi9XgSDQUVB2eg5qbl4mole+1ZjnoSwEchJp9P4xCc+oZnR4/P58O///u8t7FXrOO+883DJJZe0uxsLhkUjUOwQBY2a6tUycNSQZ7AYOaZS9pIVaDbjWq2GE088EcViEcFgELFYDH6/X7NuiNGMJivoXUNeSPIihdKJ0+k0q4vidrsxMjKCV77ylTjrrLPgdDpRLpeRTqfhcrnY/CFa52SX5a2Zg72Re0BJkOttK+JTBEo8+OCD+MEPfqCa8edwzFZ55Wet7hSy2WxD97Xf78fHP/5xvOMd7xCWFBtYNAIF0A8+tOuBq5epYWRbpQGRj8NoxuAgj9Gp1WqsCqPf74fP50OpVILL5WIuELNVFK1akKyIQ/m1IsGVz+eRTCaRz+cxMzOD/fv3Y9OmTVi6dCmLwykUCgiFQnUiRe0Y/E8rdELmjNFYpUbdbYKFjyRJuPbaa+vmUZIzODiIM844o4W9MsbPf/5zZDKZhto4+uijcfvtt7NZuQXWWfACRc08zwsAvXgKO/vSStO4XhaQXr8qlQoSiQQOHDgAAMzVUywW4fV6WSCqmkixe9BVOx8racuFQgGZTAbFYhGTk5P49a9/jVe/+tXweDysRD6JFCqrr9QXvfglM995u0UKoSeY7BBlgoVNPp/Hn//8Z1Urit/vx1VXXcXKF3QK6XQaIyMjDbcTCATwn//5nzj66KNt6NXiZcELFC2Xhzz9uFX9sSM+w0xwqpo1Rt4npXaKxSJeeOEFeDweFItFDA4OIhwOw+12s4cLP4ArBXw2Eiysd25qy+VZW/J1NDdPPp9HKpXCk08+ibGxsbp4lFKphFKphO7ubkPz9ZDbiH53uVwIBAJ18Sx6+3cSQoAIGuHuu+/Gc889p7r+da97HS677LIW9kifqakpfOtb37Ll3n/FK16Bu+++G+eff76l/YPBoOYEjIuBeT+bsZEHP586rLWdGYyKDH47s5daaWA32oaSVUhJhMj7p2RZ8fl8WLt2LarVKjKZDJYvX45IJIJ//OMfmJycBADVSfuU+qS3XO16abkd9OJDlK4dTYLo8/kQDAaxcuVKHH300fjDH/6A6elpALPBtMFgED6fD9VqFel0ui6Nktqke9HtdqNcLgMAwuEwjj/+eKRSKezduxeFQkHTpddJGLl/yA0oZjMWqPHhD38Yt956q+r9PTQ0hPPPPx/PPvtsi3umTn9/P/7yl7/gZS97mS3t7d27Fz/5yU9w6623YnR0VHGbpUuX4iMf+QibVgQAzjjjDPh8Przzne/E3r17belLJ2HkubEoBAqh5sqxYtGwuo8W8kHUjECxGtuhdB58W2QJWL58OY477jj885//hMvlwrHHHotUKoUXX3wRMzMzzCKhdZ5GlmsNiErbaEHCxOPxsIBZvk2aANHhcCAQCCAQCODII49EMpnEc889x4QGTSYYDAZZbZVIJIJEIoFisciynhyOl7KHXC4X/H4/QqEQfD4fEokEksnknBoR8mtthWZmTCm1LQ88FgJFoMbJJ5+Mxx57TDNWbevWrXjf+97Xwl7p86c//QnnnnuurW1u27YNW7ZsYZWwn3/+ebz85S/HcccdhyuuuAKvfOUrFffbsWMH1q9fj0QiYWt/2o2R58aicPHoDYxWHu52DAhmMieMrDeK0ePwloyZmRkWi5JKpbB7926kUilIkgSPxwOn02k5al0vQ4bfxkqwLLld5IKWd/EVCgWkUim88MIL8Hq9WLp0KXuboXNMpVJIpVKo1WqIRCJ45StfiWg0ygJp6Rherxc+nw/AbFbAzMwMnE4nq1JrJP7JzP1lRqSbRc8yJRBosWfPHvz85z/X3Oa8887ruIDZn/70p7a7OM855xz85S9/wfbt27F9+3b89a9/xaOPPoqtW7eqihNgdv6iCy+80Na+zBcWvEAB5loXlERLqwxJRiwEauvNxGBotWfE2sIPQpI0W4l1bGwMbrebZff4/X643W5Uq1W4XC4mVLTaNDOoNSIg+bd8cq3IBRS/TbVaRbVaRSKRQKFQwAUXXIATTjgBq1atgt/vR6FQYLEpqVQKzz33HB555BEkEom6iQtdLhecTieq1Spze9VqNZTL5ToLk142jJ6rzMz9aqdbqVUB5YKFQSaTwY9+9CPNbZYuXYrbb78dPT09LeqVPj//+c/x/PPP294uPQO9Xi9OPPFEQ1mQLpdr0VaoXRQCBVB/67MraNVMH6yiZQkyMmDJLRL8Tz03S61Wg9PpZEFb5XIZiUSCuUgonkMvmNRo/+jvRq+Z0+lErVZDtVqtExIELSN3RbVaxcTEBHbu3AmXy4Wjjz4aK1aswJIlSxCNRhEMBuH1eploq1QqzK1D14Dup3K5zD6FQoEJFCvXQr7OyHXR28bIPWNUJAsEjXDMMcfgi1/8oumyBc0il8uhVCq1uxuLHne7O9AqeBFiNV5DaT+rbfH7U//s6I8SRgSY3vparYZgMIhgMMgG4WQyCZ/PB7/fD6/Xi3Q6zSwsSmJA71jNtmJVq9U5g3utVmOBrRQfMjU1hZ07dyIWi8Hr9cLtdqO/vx+1Wg2lUglerxcTExPI5XJMuNGHYlKWLl2KsbExlEolZp3Ryiijv1slAIzcO/MwPE0wT3E6nfi3f/s3/PrXv8Zvf/vbdncHkiRheHgYxx9/fLu7gkwmg/vvv7/d3WgLnSFX5zFmTe1Kg1KjA4HeG7URt5LcBSbfl1wk4XAY4XAYkiSxom35fB7pdBqVSgWSJMHn87FCbnrH0utXI5BVRC9mIhwO17l/JElCOp3G8PAwRkdHMTExgUOHDmFychLFYhGxWAzHH388+vr6EAqFmEunVCqxOJTh4WH2N4kBtYBkpd/tuB523VfCaiJoBdFoFD/4wQ+wcePGdncF1WoVX//611EoFNrdFezbtw979uxpdzfawqISKGpiwIy5vNGAWiO/G+2XlXNpZLDJ5/OQJAnBYLBusI1EIgBmfaUkCPjAUfkgpxQTZDdq2VtK55/JZOpEBAXTSpKEXC6HVCrFSuRPTk7iwIEDOHz4MJxOZ125bipeB8ymXWuJE/7vTrdUdHr/BAuHeDyOd7zjHR3h6nnwwQfx8MMPt7sb+POf/4xkMtnubrSF9t8FLUDrAWtUnNjxkFYbpM1kpuhZJfjMFLN9UxNhDoeDWUrGxsZY0GmtVkM2m0V3dzcqlQpcLhdz8Xg8Hs0qkc16K+dFgdbx+KybQqHA3D/AS9eQsn9ohudSqYRCoYBkMomJiQnMzMxgenoabrcbgUAADoeDnTM/G7LRgGS9ZXbQSLvtCiwXLC42btyINWvWtLsbKBQKuO+++9p6nz/99NP4yle+0rbjt5sFLVDkA67Sm7wR9GIDzFg6qC0rFgS97A87zPFq+3u9Xni9XhSLReRyOVbCulAoIJ/PIxAIoFgsAgALBpXPY6P2PciX2TWI6n1n9JZGszNTVhLFolDgK113+pTLZWQyGaTTaWQyGWQyGaRSKRQKBTbJolJ/5Mv0MnXsgr+2Ro5tpB36WyDQY9WqVaa27+rqwmWXXdYRk+39+Mc/ZjOgt4ODBw+qFndbDCxogaL1xseb3htpU22ZHmruDyvYFVypJoCo2mo8HofDMVuMjDJeqFAXPUyouBmJFCUhwhdIo2V2unyUrgfNI0RQ1VtKHaZ+UP/4qri8JYXShyl7h7KDyuUyisUi8vk8isUiWy8vzMZfB6v3oBXsOoawmgjMsHbtWnzuc58zvd/GjRtZ3aB2MjIygr/+9a9tO/5izyRaEAJFL1tELXvCzKBu54PZLlO50nnxH7sCHMnS4Pf7mSuHhIrT6UQ+n4fX62WzHAPQHJwlSZqTcmvEetLI9+XxeFh1V7oufPoxZd+QaKFYGjpHqm9CfacaJ3R9KFCWnxyNT19WO49mB6E2q+1WCSvB/CYYDCIUCpneL5vNdsz91ejsxlYpl8v49re/3ZZjdwoLQqCooWZZkL+5tvIfQcncrhWDYFRMqVl27BAqDocDkUgEbrebpRnz1h9ye/AzGzscDpbVIz+2XEQZxUpQMO1TLpcRDAZZ5VdaTkKKUoj5lGFy19B5kCWFv29IqJAwUQp+beeD1ooYN4pw8Qiaxd13341cLtfubgAAvv3tbyOdTrf8uA8//DC2bdvW8uN2EgtCoGg9KPVEgBm/ut0DjV6sAr+N1nq9fjXytksuj3g8jmAwiCOPPBI9PT11rhG3241sNgufz4dCocAsDXych5ZQVDuu1t9G+s1Tq9VYzZZQKKTo3y6Xy3UiRS4weOsRLZckqU7k8AJFrx6MlfOwgtXvXy+4vFPecAWdi9VsnHPPPRfBYNDm3lhj586dePLJJ1t6zCeeeAIf+MAHmMt8sbIgBIoevMVEzd0j317rb7VlVtBLgdXC6CDeSNsOx2zKcCgUQigUYq4Z3j9cq9VQqVRYJVVgNm6FipwB6tlFasv4dY1af6iPuVwObrcb0WhU0+xM6cJ039A58C4fOicSJiROlARLI1ixGinR6P1lVz8Ei4t3vvOdlkTKySefjDe/+c1N6JE1duzYoeqytpvHH38c//Zv/8bmPlvMLJpKsoRVVwnta9Rsz29rJAhUKS5FbeCWr5MfS96mUnCwVr95KLvF4/EgGAwinU6zNGNy7dDgVyqVEA6HkcvlEAqFWH0RtX4rHdvIW7uR70F+LEmSkM/n4XK5EAqFVGcGdTgc8Pv9yOVybH+v14t8Ps+CZ5VchPJjtephZgWjVjf+egsxIjBLPB7H61//ekv7ejwebN68GXfddVdH/C996lOfQl9fHy6++OKG29q1axd+/OMfs7+POeYYnH322QBms3Y2bdokxMn/z6ISKPKB0sjbrVVTtpIgURugzbSv1hY/mPDbGRUH/Lbydj0eD+LxOCKRCF544YW6qrHVapXV/sjlcujp6akTMHwwrBVxqNZHI8ivR7lcxtTUFDweDwqFwpzvlgZisp7Qej4jiawo8v34YzbrvuKFkZ7rT61vRvbRQrh1BEaJxWJYvXq15f2PP/54HHvssXjmmWds7JU18vk8vvKVr+CMM87AUUcdZbmdTCaDT3/607jrrrvYMrI2A2A1lwSzLFiBojT4yH/XcokYtaQ02je1tvTcN3qxMmrnb+Qc+G34uWYcDgdmZmZQLpfrUnb5rJdUKgWHw4FcLsdSbfnBXt53eX/MCEd5G0rnya+r1WqYnp5m/ZWLSKVrQ4LE4XCwuBs1y5RSf9SwImL0rHB8PxoVI2r/I2bPUyCwSldXF5YsWdIRAgUAnnrqKZxzzjk49dRT8fa3v33O/8bq1atV5+4pFAr485//jB/+8Id14gSYDdTP5/NN6/d8ZsEKFCMWA619lX7nsfoGrLS/0tuwWv/1XCRa22i1qXUuXq8XY2NjzGLi9XpZKXdqk6rHUpAsxaXo9Uet/42+5StdU7lFRKlvNHkgH4NC28stJ2rHNNtHLYyIWaV21SwsjV5bgaCVXHzxxfjzn//c7m4wDhw4gAMHDuB//ud/5qxbuXIlfvSjH+H000+H2+3GQw89hKeeegrAbKDtD37wg7oyBAJ9FqxA4ZEPWI36060+4LUsCITeAGJGZBi1whi5JocPH0Yul4MkvRQ0yk+SR+IFqB/I5a4no+dq1IWhdl5GYieUjl+pVDAyMsIsLFr+bzN91OuzWptGxLISetYxgWA+0N3d3e4uGGZoaAhvfOMb8aY3vQm9vb346U9/iqmpqXZ3a15jKrz61ltvxYknnohoNIpoNIp169bhD3/4A1tfKBSwefNm9PT0IBwO46KLLsLY2FhdG0NDQ9i4cSOCwSD6+/txzTXXzCnaZRX5Q1/PddKIBcQqWm+2/HIll5RWH4y8Wav9rWep8Xg8yGQyGBoaYmKkVquxjB0SArylgZaT66RRV4NaP/nzMXsMNTdeqVTSLDSn1EczLjijlhOrKMXVNNKmHWKn058dAoEdZDIZ3HnnnfjmN78pxIkNmBIoy5cvxxe+8AXs2LEDTzzxBM4++2y85S1vYT7Cq666Cr/97W9x11134aGHHsLw8DDe+ta3sv2r1So2btyIUqmERx55BN///vexdetWXHfddfaelUHMPrDtfvukwcMO4WPkWFZxu90ol8vIZrMoFoustgfVCqHf5QXLeLHFD5JGB021/Y2cX7utZFp90LMaqW1n5Bz1BJ2Ve86OuJOF9uwQCATNxyE1OOp2d3fjy1/+Mt72trehr68PP/nJT/C2t70NALB7924ce+yx2L59O04//XT84Q9/wJve9CYMDw9jYGAAAHDbbbfhE5/4BCYmJlgksx6pVAqxWIzFCRhBy5ffCoGgh9ZgpDRwme2zkjtDrx0KDD322GPx/PPPQ5IkVtI+EokgmUwil8vB5XKht7cXU1NTcyLQ5YOhmbdxef/Mujha/b3qWcXMoOay0woI1ttO3lc1F5vRa0e1XpLJJKLRqO72ctr57BA0n1WrVmHXrl0Ih8OW27jnnns6qh6KwD6MPDcsF2qrVqu48847kc1msW7dOuzYsQPlchnr169n26xZswYrV67E9u3bAQDbt2/HCSecwB4wALBhwwakUinNSO1isYhUKlX3MYNWNkSjg5gdpni9eAm9N2m15XqDu9GAyVQqhWq1yrJYHA5H3WR/APDyl78csVis7g1dK57CaP/po+T6UsPIAGuHNcxoto7ad6tlzVATDmoYsa7IvwcjAeCNuuiUmE/PDkF7Weyl3hc7pgXK008/jXA4DJ/Ph4985CP45S9/ibVr12J0dBRerxfxeLxu+4GBATZd9OjoaN0DhtbTOjVuvPFGxGIx9lmxYoXidlqxAHa4AOx4I5e7PtSEkxkRJT9vflA3Eiiqd5xEIjFn0KcZeylQ1u/3Y/ny5XOsWkbdOUouIF7gGI1FMbK+EYx8L0b6yp+bkgBVug5aLiC5gDMj6LT6x/+UCxuzbXfys0PQeaRSKTz44IPt7oagjZgWKC9/+cuxc+dOPProo7j00kuxadMmPPvss83oG+Paa69FMplkn4MHDypup/Sw13tbtJoZoWVet9KeVjt6b878W65Zq4Vaf/i/qahZsVhkgaP9/f0sHbdWq2HXrl0YHBxUtXaYeQvnt5Vfc6UAUKuDsJUMGS2RIBcmciuE0jqlNvl99K6bkXgW/t6w6m5S+mm2rU5+dgg6i7/85S8444wzsHPnznZ3RdBGTKcZe71eHHPMMQBm50t4/PHH8d///d94+9vfjlKphEQiUfcmNDY2hsHBQQDA4OAgHnvssbr2KFKftlHC5/PB5/OZ7SpDbfC3y72jJAzU+qH0hqv0O79tOywG1CYFwrpcLjZzb6VSweTkJAuWdTgcGB0d1X2zNurKkO+jNJhrHcPIwMkLOy03i5Vrryd85N+xXDwYEaTy35WOp+ZWMnq/qmE1vmc+PjsErSeRSODGG2/Erl272t0VQZtpeLJAKs178sknw+Px1PkM9+zZg6GhIaxbtw4AsG7dOjz99NMYHx9n29x3332IRqNYu3atpeMbeVA2+qathFF/vlaf1Nq0wyogj98w0x6/LdU04dsqlUoYGxtjKceSJNXVD9FrU225VXecfMA1eq5a21kZhJVEpVE3jdF4Frn4Ubq3la6fluXHLHb9H7X72SHoPGq1Gq644grce++97e6KoAMwZUG59tprcf7552PlypVIp9P4yU9+ggcffBB//OMfEYvFcMkll+Dqq69Gd3c3otEoLr/8cqxbtw6nn346AOC8887D2rVrcfHFF+NLX/oSRkdH8alPfQqbN2+2/JZj1oXRDJFipi9qg5hRy4vWOqXBiz+OFfiCZfybPi9EKA7FjAtHzR3CL5P/rRVnYcVdY+f9oCRY1c7BqquFb4c/rpJVRE2YWrlORvqhRyc+OwTNZWxsDB/60Idw8803o7e319A+P//5z/GLX/yi4XtTsDAwJVDGx8fxnve8ByMjI4jFYjjxxBPxxz/+Eeeeey4A4Otf/zqcTicuuugiFItFbNiwAd/61rfY/i6XC/fccw8uvfRSrFu3DqFQCJs2bcKnP/1pe89KRqfc7FoPdKVBh0dtMFVygViNM1ATOPQ3Dz+FOs1tY7YdNcGhdkwj10/p3I1eE6uCRekclcSnVWsboSTM+OPptdvo/4Ge+0iL+frsEFinUCjgpz/9KSYnJ3H77bejv79fMx18165d+OAHP4hMJtPCXgo6mYbroLQDI3VQ1N5W9YSAEawMDEoWACPH0dpH641ZT+So9UnJukHL6W8SJ3x8SrFYhMvlMnwt+DaNbq93Dvw2RlCywPCuLDP90mpbrV96x5Hfw1piVE/Q2mG5kbdBljSrdVDagaiD0h76+vrwmte8Bh//+Mfxmte8pm6dJEnYu3cvPvzhD+OBBx5oUw8FraapdVA6HSPio5E4DzMPej0XhF57RgZC+d9aIsDMm7B84AZecvtQTRS322148DNzzY24I9QsJkaOKY8NMSKc6LsyI07Uvl+148hjRvSuq1K/jVwDs/c/L5TsdJUKFj4TExP49a9/jbe97W143/veh23btrF4orvvvhuvec1rhDgRzGFRW1DMotaW2ZgHtdgJJWuFkfNTOobS30rWC73rZETkUQE3KxYptWuhtb2V694KjFiwCCPna+T+0OuH2vGN9kGvjWq1KiwoAtM4HA4cffTRWLZsGZ588kmk0+l2d0nQYow8NxbsbMZK/n61Qd1sm3rL1PaVD/pqA41Ry488zkFvsNcatNQGfjU3CL9eLk6MXGOlN3EtIaV1DvL+qfXBrLDR6rfS33pWFS1BoOSiUxMn/Pdt1LqmdO81Ik4adRcJFjfk1tm7d2+7uyLoYBasi4cwagmwgtYgqNYPpWVaMRRGrQrUnh0Dh5aQ0RM5apYDLRcN/1Hri9bArvW7kqDg1xu5L7REnJaVRGtA17Lqyfus950qXUO19vWsL1rHUDqmQCAQNIsFL1Dkgye/TP67XZh5+Cu5cYwOmmasN0rXwYgbwChqbekJCzWrknzA1RJ4cguSfBv5965lSTMiZpSupdL+Wm2rrdey0indv/y+SveRXptqaP2PiPgTgUDQChasi4dH621a7Q3Y6ENY7S3ZThO4HRYSM5YeIzEOeuvVLABqbgczYkutv3p94d0jRqxXetdIyyqi1Wd5v/T6oYXa9VC7541ec6Xvz8i9IRAIBHax4C0oei4CpQHGjhgVM64ZI1jtk9pbtdbxjbx5a7k25H+biZVQalutf0a3V9rOroHW6KCtJRD1hIJeu1ptm7n/G7H+CAQCgd3Me4Gi9+DUejBrDXSd6l+38qatJyaUlpsVFUaW67Wp1Ibe4KsX32L0OGYwI6j0YkLMoHQt1NyW8utiJDZKy4Wk145AIBDYzbwXKHqDnpIZXu8BrGd+V9rHDGbcQGYHdCNoHddMW2qxEPRT7+1fbV/5MRoZ0K0KWCNtK7WjFteiZcnSal9P2Gm5rBqx2mihJIAEAoHAbua9QAG0H7ZabgwjD1kzriE9lAYxI4NUM95ajVpH9Pqg9qauNojp/a0mUtSwKoT0XCNK6FnjtPZTOm+te1P+u9K9w7chj1NS2k4ICoFAMJ9YEALFKlqDoV5cgZkB0crgYCZwVO2tnT9+I/3R6os8XsWM4FPrFz/AGr3OjVhCjMTc8H1pJJ7GyPeqJ2S1xKLSMqW4I6tWPyv7CgQCgRUWnUCRD0Zqb9H8A92OQEqzb/lGj2t0G7MDjNp1UWvHqKDSE1NyrAg7qygJECVXjvzDL1drh9/f6DEbERNy15AZt6JWP5XWCQQCQTNYVAJF7tZRczcYeVtt9pu90X2txpJonZfaYGQ2NqdRzFx7LStIs/vUiMDSsjypiSO1fqkJIyvXRE1cCXEiEAhaxaIRKFpBilbeVBtxv5jBjgHBSKyD0t/8/rVabc62jYo0JauM1vZ66xu1dvFiwWg7SqLAzL1hNCBVDyWLh1bfhNAQCASdzqIRKHIRouXyMBMAa2VANGr10AugNfOmbDXmQMmapDbg2RGvY2V7tf6puU/ULBN2x1YYEYby+1Av3kepXTWhoxQcK+JHBALBfGFeCxSzb4F6A5EZF08jGB3IlfoqH4z4QdiKQNAaLPllWm0b6SePXW/xeoJMLeBZHjhqpW3+p9E2lfYxenwr97qZ5VrrmyXgBAKBQIt5LVDMmuHlvyu9Xdo1EDS6v5m34mYc38h+WgOX1jqjYsou65WSBUUpqFWpf2b6qfa9KJ2vWlCsmvWOvzebKaDVLIxKQlgIFoFA0EzmtUAxitJDnx60aoOr1ePYlXVi1D3QSCCt0b400p7VN3l5n4wOikrWGXk2i1ZAqpobxUgfjfRL6W+r36FRy5gVlK6DcBUJBIJWsigEihy1QcqujJt2WzfkmHE7mG1TS+DZdT2V/tY7vpkgXjP90FvO908ppkTp3jP6/fDtqcXRqB3DKnK3GG85E4G2AoGgmSxKgaL3lmz0LZ3f3ul0wul02jYwah3bThO/VcuBnQG5Wu2qBTfzA6aRY2uJJiPnrOXGUtpOPohrfWdGgl7VBIkRwWPH/dLsuCyBQCCQsygFitIbrdZbrt5btJpbodE3TCPuH7sCTqmNThl89AZxtWVK+1oRpFouQL3jaFl1jLSlJNL0Yn7U9uWXmRHejQo6gUAgaJQFIVCa/cCUZ4TwA5Hag7xRS0ojb7pW9m2VO0lve7lLoZFjqH1nVjDiYjIiFtXicrTiO8z2Wev4ZvvWaF8EAoHAKgtCoNj10JRnKJg1n/O06y3TrOVGaXuzQbBWLDpGXB6NBtjK27ciUvSOpXaPmHEJqZ2/XhB3owJOa18hRAQCQbtZEALFDjHAD7ZKgYhmzepaGSxq+2sFPtqFlpvDypu6UmyImX2NBFyaFRRGB3i9dowcm3cFyeNPjPbX6jZay5XuXeGaEQgE84kFIVDseGOUWwHk7hu73uaN9IEXSHa+7fPH0lqmZj2idUoWCTU3mFb/1NwadgX+NtqGUZFCyK+Z0e9Py71j1DojX650P1t1/fHnZfaaCAQCgVUWhEBpRCQYfQttdj+a0U6jxzXiXjCyj5F1Ro5pBDsHTiviUCvY1Uw7amJH637Viz1pxPUnXD8CgaDVzHuBIncVWEErjkTtwWzkeK1+mFs5ntKgZ9Rdo/SWbhUjbgizlgwjga1abRhFKQbHSjuElrXDjOvQDhpxkwkEAkEjzHuB0ohrQM/doZelw9NILIFd2/OYzXTh95HHVBjpl9r3YMc5m42hMHp8O+4XvfaNBFUbcevoxerYLYZF3IpAIGg3816gEFb961rLlAZvrbgJvcwNOwZEJfTOQ+8YjV47u6weau1pWWfULBZ6gatGgl/5/YxkzMgFnlHk94f8pxnXm90Il45AIGgXC0agNIJR64fcmmI0KFX+Rm/VfdDpNOJmM9I2oWU10xq85f2zs69GXS9G3YJmBZXdKN3jzfx+BQKBQM68Fyh2DzJm1iu9pWvBZ1MYHXCsBpaqLW+mONIK5DTrntE6b61AUbVlVoM81QSD0jZaGTZmjq0XO6NlkWvE5al0fGFBEQgE7WLeCxQ7MRoUqhUwa9TdYcYKYyRDw8xytbbN9MkoZiwWagJQbX+jQsiMUDNrMVA6PyWLDS/c1ISF2vEaDdg1K3J5ES2sJgKBoF3Ma4HSaOaI3Ri1jBh5Q9Ub0LTaNjKoKrk71GIg9NASAEpv/1p91BJLSgKGb08rToXWmzm22rmpwZ8r3x8jriWlY+q5Bo0Kh0ZdT63OHBIIBAKgQYHyhS98AQ6HA1deeSVbVigUsHnzZvT09CAcDuOiiy7C2NhY3X5DQ0PYuHEjgsEg+vv7cc0116BSqTTSlZYgf6uUvyGbacfodlrt67kc1NbxQspqkKy8H1oDqNWB1Mi1lfdfK5jZrJvJyD56AtNI1o4cK9+rnahZfuxisT03BAKBNSwLlMcffxzf/va3ceKJJ9Ytv+qqq/Db3/4Wd911Fx566CEMDw/jrW99K1tfrVaxceNGlEolPPLII/j+97+PrVu34rrrrrPUD6tvlUbQcuXIt7HbPWJ0cDayTGvAU3uztxJ/QvvJXQR6rhs9jPRFLevG7ABrJp7HTN+URI9esC+/nRWhYEXQ8N+fWv8boVOeGwKBoPOxJFAymQze9a534bvf/S66urrY8mQyif/3//4fvva1r+Hss8/GySefjDvuuAOPPPII/v73vwMA/vSnP+HZZ5/Fj370I5x00kk4//zz8ZnPfAa33HILSqVSwydkp9/cjoGt0ePbEatiROQoBWBajX2Q/82LBrPXyWzciZGgVjWsBOaqCUIjsSxGrTNW72cr+2gJsUbv8U5+bggEgs7DkkDZvHkzNm7ciPXr19ct37FjB8rlct3yNWvWYOXKldi+fTsAYPv27TjhhBMwMDDAttmwYQNSqRSeeeYZxeMVi0WkUqm6jxZ6wZV2I3/bNCss1No0k5FhZQCRD3zyN3WtuBGt8+LPXe17UBrAtWJDtFxIatktdmSxmF2v1qdm9KOZyN2Ydrh6Wv3cAMw/OwQCQefgNrvDnXfeiSeffBKPP/74nHWjo6Pwer2Ix+N1ywcGBjA6Osq24R8ytJ7WKXHjjTfihhtuUO2TXlBjs333/APcrLDQa9No0K2eJURpuVxMGRnYjfRL7c1fKy7DCEpuEKPbKqHVFyVXnlW3mx5Kg7+ZeBk73YpqrrFGj9GO5wag/+wQCASdiykLysGDB3HFFVfgxz/+Mfx+f7P6NIdrr70WyWSSfQ4ePNiyY+uhZSlp1RuwUraHPCZEaVs5ckuFXMzQ70YsDEqDv7xdJQGj1A+l/ZUGT7MBzGbidYwsN+te02vbyP52uTIbtfhp0a7nBtDZzw6BQKCNKYGyY8cOjI+P41WvehXcbjfcbjceeugh3HzzzXC73RgYGECpVEIikajbb2xsDIODgwCAwcHBOdH59DdtI8fn8yEajdZ9APOBi60QDEYGRittGd1e/nujri6zFha1/jRyLYx8z0qixWwgrpK7S68NpZgnuUCTCzwj2OEiMopS/+w8brueG4D6s0MgEHQ+pgTKOeecg6effho7d+5kn1NOOQXvete72O8ejwfbtm1j++zZswdDQ0NYt24dAGDdunV4+umnMT4+zra57777EI1GsXbtWtMnoPRwteONuVHsbNeMdUZpUOTXGX1T1ouzMOOCMHI8o+1qxbXIj2tW4ClZoozup+XaU7MUKe2vdb2a7apUcwM2Sic+NwQCQedjKgYlEong+OOPr1sWCoXQ09PDll9yySW4+uqr0d3djWg0issvvxzr1q3D6aefDgA477zzsHbtWlx88cX40pe+hNHRUXzqU5/C5s2b4fP5THVeyQVgNguhGQ99+eDU6DGU4h/0rApGLChGBmCtQcuIhcQuF4Rem1quJ6PnKXcVGd1XrS0zVhO1+A++rVa6DNXcdFbotOeGQCCYH5gOktXj61//OpxOJy666CIUi0Vs2LAB3/rWt9h6l8uFe+65B5deeinWrVuHUCiETZs24dOf/nRDx9V7qDb77VMOH0xq5UGvNyApxZaoDbBqbakF1CodS/67HYHASij1Qamf8v5YHby17he7xJWeYNWK+ZFvYzda92YrRVG7nhsCgaBzcUitegLZSCqVQiwWg8PhgNM566VSG9TaSaOWFDOWCiUri1nLgZHja21npu1Gkbdt9li8cNP6nvTEm1q7Sr9r9dVI+3ZfT61zV+u7fP9arYZkMjlvYjvo2SEQCNqLkefGvJ6LBzAfSNpqGgmYVbII8eerNMgpCRUj/dM6vlUa2VcprsPpdKoOmmaPpeRO4dtSCnw10y7/u5G+GhGwjd7nRkV8o1YpgUAgsIN5L1DkGA10bMXD165j6Fk41JYbsbx0GnKRpScSrAgVI/eEXQGifFty8dIqNw5/TPnx9IJ3hUgRCATtYsEJFHmwod4g3irklg+r1gmtt16twXy+DDRqFiL+mlmJf9ESN2quHjPtax1H7XidgJZI6pQ+CgSCxcmCEyg8nTJoqwWZGh385G/gWvtZFT3NFmyNXmujlrFG3CRq7jQly0Kj7jN+fbutW1rXst19EwgEi5cFKVCUBjAjZv1WxLNYeegrWV7sdF81ct5GrQF2WiLMtKfkxpALPSNCQUsgad1rdrmlrGBEjGnFvggLikAgaCcLUqAAc+t1qMU2aGUq2C1YGjHt22mBaNabsVYAr9Y+zUTP6qQkFhqJDTHiVjTrorIjOFYumoy6PoVIEQgE7WLBChS1t1yt+BSlQEZ+Xzv6ZKbPSui5eowMxEaOY3ZQlvfNaFvNihHSCv5UskApxZ+YPZ4Zq4qZ82v0WpixkAhBIhAIOoUFK1DkyMWGfJCyK3DRinig/hixbOhZKRq10BixLKn1h0fPStDItTbjUjIijui7NxLgqtYOfzy58FH6vsxamqwgtyDKl6v1WSAQCDqBRSNQ+IBHpTdnuwIFrQ48dqa0WmlbPlgb2VcvVbbZbjO1towe1+h5GkVu3TJz3Y0u10LrHpZvZyZOq5E+CQQCgVUWjUDhkb/x0jL+72YcU/4ma/cArma9sSqWzFhPlCw7Sm/ojbpS+DaMxhWZEU12DcJKFjq+/2bjUIxg5NoaFTECgUDQbmyfi6fTURug5INds47LD1hK1opGBgo7B1k7AjONLDcSj6G2jdr5armc9Fw1Zs9b7iKUf69yN4tRy0Uz7sNmfacCgUDQDBadBUXvzdWIhcOuPigNVGrmdzUa7aNaTEszMn20RIuV81CzgsnXax1DaVsjqAlNLQEi36eZglitv1bXCwQCQatZdAKFR8/0r7S8WRkVWi4AM+1ooWfeb7eZX02gKQ3kfEwR/U0/7bo2Wt+DkdgcvaDoVogCu11XAoFA0CoWnUDRMv/z65vp6lESPUbEkrwdM9vTcZSWtWKgNDpAGhEESudu9DvUiv+QWzjU2jACL7SMCBa9thrZr1ViSCAQCOxkUQgUI2+zSj/V1lvtg/x3uwJz7QzwtSJ8zLZrZjszbi898al0ndQsZHILjVJ7SuhZo1ptrVI6XifEKAkEAoEei0Kg2OGmUXInWO2D3ZkUaoOpFdTaaCQmxk7UsmLky9T6o3XtlYKWze5vBLMWDavfq57VSalfZtoWIkUgEDSTRSFQAP23ZiODgDxjwyzNDMDVEhZGg02V+qIVw6BmsWhlbIXeMqPrlYKF9bY3i9V4EPl3qGdRsuraMdsvEdciEAiayaIQKI0EOyph1eVj5m3cyP5K28sHMquxD0biJjrlLbodMRZmA2CNCD6tY5l10ViJezFjJRNxLQKBoNksCoGi97aptl5tWbPjCBp5+FuJNWjE8qDk9jJjjTLLfHprVxIWSjVS5L8bbdvIOjMiWK8PdroSBQKBQI9FIVDsotW1K5SObwYz2UBaAs7oG7uZ4zY7o8WuQdQuK4RePIuZe8poDImWaLTqouTFuRAqAoGgmSwIgWL2YWvV5dFqs3ajg5YZYWHFBSY/vtHrY9ZiZYV2ZCABxoVao/FGcuGoFHdiVjQqxbrY0V+BQCCwwrwWKI0GrVo5ltYyMwOsnW+fjZrd7QjaVHuzVhMuRlwMjXyndt0PZq4t7wJRsjBYtT6oWbm0rqsVcSv/3oy4fAQCgaBZzGuBAlgLOmw0A0fell4f7LQMqNHqzBneoqT0Rq/UJ6tZLGrtqS1r5Bhqx1UTXvLflf5W6qsVq4xcfCjFsJg9hvx7U7Oo8d+3CJAVCAStYN4LFKD1g7PaeqU3XaNvtHYMqM26DvJzUwvuVHubt5JRwrehJWzMBgLbdY3k8RhG9zHbBy1RYIcLRq1PZuJZBAKBoBksCIECNFekNBoQ2Mj+Wm+sRtwmdqH2Fi9fryRmtFwUZo4pR+2aKFkz7Mi8aqYlzMi1kIs1K4JH7dhK18WIdVAgEAiaxYIRKM3EqEm73Q/xZog0uchQO47SMrkoMBIrpLZeSdyoWVQaSd812y87s4WMLLf7/JTEnN65CveOQCBoBe52d8AulAL8Gg0eVTuO1mCsNKCr9ZPHqguoGeeodVw9K4hWnITSejWxoxYDQb+rvfErHdMu1NrX+u6aHazbLAuOXlq0QCAQNJsFY0FRevtrxhuf3mCkFHdhR80IowGnzbKi8JhJX5bvr9SWklVATQRaDYZuNEZDfnw72lND3u9m3D/yZc2wOgkEAkEjLBiBwqP21t5MlCwCSoLJ7MBm5a3ZjpgEtb4YiQuxWxhotS8/jtySpdWWERpx7ViNWdETa3quGK3+qAk/rfuWlgnhIhAIWsmCFChGg0rNtilHK6tE7c3X7ENeb+BQolFXgF7cg9I6NfGiFTNh5dqo9UUvNsPOwdWoRamRwGj+dzVrlBnMWPL03JBCqAgEglawIAWK1iBGNMuSofQmbwat7bUyLazGsFjtm1aQqlof+d/prV3J2qK03IxVRs3iYASrAlBNIFkRpPJ4GyvWErW2+Z9q/VMSRXaIJIFAIDDDvBcoWm/rSrTy4ao24Gqh13+jroVmuXl4gaG3j1J8jNJ3pNRf+SCt1y+1fc0KRqOCgheGakLVTOyOkvizy12mdHy9e1Mt5kkgEAhaxbwXKITRYFE74hLMYPdx7LTIaKE0mMndBEoxNvJj68VPyL8PLVeRXhyEkaBPo/sr/a2E2rVQasOIEKDzb6YgMCLkhRtHIBC0G1MC5frrr58Tc7BmzRq2vlAoYPPmzejp6UE4HMZFF12EsbGxujaGhoawceNGBINB9Pf345prrkGlUmn4RIy4H1qBknnerr7ouX+Mxsnotas32NoR4yOP1VFyI2hZVYwEcTZ67bX2VbLIaMXgGHE72tVvPXgrmF68iV108rNDIBB0JqbroBx33HH485///FID7peauOqqq/C73/0Od911F2KxGC677DK89a1vxd/+9jcAQLVaxcaNGzE4OIhHHnkEIyMjeM973gOPx4PPf/7zlk6gU03PaoNrswYetQGajq20rVYciZ6VQwkjIok/ptmgVr3YCK3jGsHq9loxGnKxavXYVmOa5P1TuydaQac9OwQCQYcjmWDLli3SK17xCsV1iURC8ng80l133cWWPffccxIAafv27ZIkSdLvf/97yel0SqOjo2ybW2+9VYpGo1KxWDTcj2QyKQGQAEgOh0P143Q62c92f1wuV1M/brdb8+PxeOo+SsusbCPfXuvYar9b+VttG7N9tvuj9z0Y+dD32Yz7hL8fle5RM/e0w+GQAEjJZHJePjvER3zEp30fI88N0zEozz//PJYuXYqjjjoK73rXuzA0NAQA2LFjB8rlMtavX8+2XbNmDVauXInt27cDALZv344TTjgBAwMDbJsNGzYglUrhmWeeUT1msVhEKpWq+6jRbt+5lslcaqK1h9pXOwa/3mg/zL61y+NHtFwIetkpRiwqStu06/tXOherfTEaM2MU/ntvxBLTKJ3+7BAIBJ2FKYFy2mmnYevWrbj33ntx6623Yv/+/Xjd616HdDqN0dFReL1exOPxun0GBgYwOjoKABgdHa17wNB6WqfGjTfeiFgsxj4rVqxQ3M6oj78VtMq3bxa1QdyIcFHbxujArORmaPb3087rbfXY/HW2o/9aAc/y4zaLTn92CASCzsNUDMr555/Pfj/xxBNx2mmnYdWqVfif//kfBAIB2ztHXHvttbj66qvZ36lUqq0PGv5NVGkd/1Mee6AV+6HVrt1oxUzwfeT7pBdjwp8zj9J5yZdZOW8j16uVAkjtuzaLHVk8ateXvz9bKd7Fs0MgEJiloTTjeDyOl73sZdi7dy8GBwdRKpWQSCTqthkbG8Pg4CAAYHBwcE5kPv1N2yjh8/kQjUbrPko0241CmHmwGxmw1Ab2ZvRLTWDI36jlgay8i0DtHPg25Oettl0jWBU1dm0rF2+NHIvf3i6riVx4yq0n7bQuddqzQyAQdB4NCZRMJoN9+/ZhyZIlOPnkk+HxeLBt2za2fs+ePRgaGsK6desAAOvWrcPTTz+N8fFxts19992HaDSKtWvXNtIVRTrNnaI2ONv1Jit/K1ZzvWgNhFruGSXRwq/XEiVK/VPrg9ZyPfSsMlrXR2tbtfV6liC9WBx5X5TuEaVrbxW7YlAa3b/Tnx0CgaD9OCQTT5qPfexjePOb34xVq1ZheHgYW7Zswc6dO/Hss8+ir68Pl156KX7/+99j69atiEajuPzyywEAjzzyCIDZVMGTTjoJS5cuxZe+9CWMjo7i4osvxgc+8AFTqYLJZHKOv9oIWu6VZqE1cLfzmI30Q8n9o7Reb7meq6zdAc9W0BOFWvsYiVsyIzDUBKvchWcW+T6JRAKxWExzn/n+7BAIBPZi5LlhKs347W9/u7RkyRLJ6/VKy5Ytk97+9rdLe/fuZevz+bz0H//xH1JXV5cUDAalCy+8UBoZGalr48CBA9L5558vBQIBqbe3V/roRz8qlctlM92Q9u3b1/YUKfERH/GZ/Rw8eFA8O8RHfMTH1MfIc8OUBaVTSCQS6OrqwtDQkL4CE5iGAgkPHjwofPZNYKFcX0mSkE6nsXTpUjid82PWDPHsaC4L5d7uVBbC9TXz3DBdSbYToJOKxWLz9kuaD4igwuayEK7vfBvkxbOjNSyEe7uTme/X1+hzY3689ggEAoFAIFhUCIEiEAgEAoGg45iXAsXn82HLli3w+Xzt7sqCRFzf5iKub/sQ1765iOvbXBbb9Z2XQbICgUAgEAgWNvPSgiIQCAQCgWBhIwSKQCAQCASCjkMIFIFAIBAIBB2HECgCgUAgEAg6DiFQBAKBQCAQdBzzUqDccsstOOKII+D3+3Haaafhsccea3eXOp4bb7wRr371qxGJRNDf348LLrgAe/bsqdumUChg8+bN6OnpQTgcxkUXXTRnivuhoSFs3LgRwWAQ/f39uOaaa1CpVFp5KvOCL3zhC3A4HLjyyivZMnF924t4blhDPDtai3h2cJiaaasDuPPOOyWv1yvdfvvt0jPPPCN98IMflOLxuDQ2NtburnU0GzZskO644w5p165d0s6dO6U3vvGN0sqVK6VMJsO2+chHPiKtWLFC2rZtm/TEE09Ip59+uvSa17yGra9UKtLxxx8vrV+/XvrHP/4h/f73v5d6e3ula6+9th2n1LE89thj0hFHHCGdeOKJ0hVXXMGWi+vbPsRzwzri2dE6xLOjnnknUE499VRp8+bN7O9qtSotXbpUuvHGG9vYq/nH+Pi4BEB66KGHJEmSpEQiIXk8Humuu+5i2zz33HMSAGn79u2SJEnS73//e8npdEqjo6Nsm1tvvVWKRqNSsVhs7Ql0KOl0Wlq9erV03333SWeeeSZ7yIjr217Ec8M+xLOjOYhnx1zmlYunVCphx44dWL9+PVvmdDqxfv16bN++vY09m38kk0kAQHd3NwBgx44dKJfLddd2zZo1WLlyJbu227dvxwknnICBgQG2zYYNG5BKpfDMM8+0sPedy+bNm7Fx48a66wiI69tOxHPDXsSzozmIZ8dc5tVsxpOTk6hWq3VfAgAMDAxg9+7dberV/KNWq+HKK6/EGWecgeOPPx4AMDo6Cq/Xi3g8XrftwMAARkdH2TZK157WLXbuvPNOPPnkk3j88cfnrBPXt32I54Z9iGdHcxDPDmXmlUAR2MPmzZuxa9cu/PWvf213VxYMBw8exBVXXIH77rsPfr+/3d0RCJqCeHbYj3h2qDOvXDy9vb1wuVxzopfHxsYwODjYpl7NLy677DLcc889eOCBB7B8+XK2fHBwEKVSCYlEom57/toODg4qXntat5jZsWMHxsfH8apXvQputxtutxsPPfQQbr75ZrjdbgwMDIjr2ybEc8MexLOjOYhnhzrzSqB4vV6cfPLJ2LZtG1tWq9Wwbds2rFu3ro0963wkScJll12GX/7yl7j//vtx5JFH1q0/+eST4fF46q7tnj17MDQ0xK7tunXr8PTTT2N8fJxtc9999yEajWLt2rWtOZEO5ZxzzsHTTz+NnTt3ss8pp5yCd73rXex3cX3bg3huNIZ4djQX8ezQoN1Ruma58847JZ/PJ23dulV69tlnpQ996ENSPB6vi14WzOXSSy+VYrGY9OCDD0ojIyPsk8vl2DYf+chHpJUrV0r333+/9MQTT0jr1q2T1q1bx9ZTKtt5550n7dy5U7r33nulvr6+eZ/K1iz4SHxJEte3nYjnhnXEs6P1iGfHLPNOoEiSJH3jG9+QVq5cKXm9XunUU0+V/v73v7e7Sx0PAMXPHXfcwbbJ5/PSf/zHf0hdXV1SMBiULrzwQmlkZKSunQMHDkjnn3++FAgEpN7eXumjH/2oVC6XW3w28wP5Q0Zc3/YinhvWEM+O1iOeHbM4JEmS2mO7EQgEAoFAIFBmXsWgCAQCgUAgWBwIgSIQCAQCgaDjEAJFIBAIBAJBxyEEikAgEAgEgo5DCBSBQCAQCAQdhxAoAoFAIBAIOg4hUAQCgUAgEHQcQqAIBAKBQCDoOIRAEQgEAoFA0HEIgSIQCAQCgaDjEAJFIBAIBAJBx/H/AROqjcB4EvW7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 사용 예시\n", + "dir_img = 'C:/Users/pinb/Desktop/imgs'\n", + "dir_mask = 'C:/Users/pinb/Desktop/masks'\n", + "train_set, val_set, test_set = create_datasets(dir_img, dir_mask)\n", + "\n", + "# 첫 번째 이미지 확인 (예: train set)\n", + "data = train_set.__getitem__(7777) # 이미지 불러오기\n", + "\n", + "input_img = data['input']\n", + "label = data['label']\n", + "\n", + "# 이미지 시각화\n", + "plt.subplot(121)\n", + "plt.imshow(input_img.reshape(input_img.shape[0], input_img.shape[1]), cmap='gray')\n", + "plt.title('Input Image')\n", + "\n", + "plt.subplot(122)\n", + "plt.imshow(label.reshape(label.shape[0], label.shape[1]), cmap='gray')\n", + "plt.title('Label')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Argumentation" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# 트렌스폼 구현하기\n", + "class ToTensor(object):\n", + " # def __call__(self, data):\n", + " # label, input = data['label'], data['input']\n", + "\n", + " # label = label.transpose((2, 0, 1)).astype(np.float32)\n", + " # input = input.transpose((2, 0, 1)).astype(np.float32)\n", + "\n", + " # data = {'label': torch.from_numpy(label), 'input': torch.from_numpy(input)}\n", + "\n", + " # return data\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " # 이미지가 이미 그레이스케일이면 채널 차원 추가\n", + " if label.ndim == 2:\n", + " label = label[:, :, np.newaxis]\n", + " if input.ndim == 2:\n", + " input = input[:, :, np.newaxis]\n", + "\n", + " # 채널을 첫 번째 차원으로 이동\n", + " label = label.transpose((2, 0, 1)).astype(np.float32)\n", + " input = input.transpose((2, 0, 1)).astype(np.float32)\n", + "\n", + " data = {'label': torch.from_numpy(label), 'input': torch.from_numpy(input)}\n", + "\n", + " return data\n", + "\n", + "class Normalization(object):\n", + " def __init__(self, mean=0.5, std=0.5):\n", + " self.mean = mean\n", + " self.std = std\n", + "\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " input = (input - self.mean) / self.std\n", + "\n", + " data = {'label': label, 'input': input}\n", + "\n", + " return data\n", + "\n", + "class RandomFlip(object):\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " if np.random.rand() > 0.5:\n", + " label = np.fliplr(label)\n", + " input = np.fliplr(input)\n", + "\n", + " if np.random.rand() > 0.5:\n", + " label = np.flipud(label)\n", + " input = np.flipud(input)\n", + "\n", + " data = {'label': label, 'input': input}\n", + "\n", + " return data\n", + " \n", + "# class Resize(object):\n", + "# def __init__(self, output_size):\n", + "# assert isinstance(output_size, (int, tuple))\n", + "# self.output_size = output_size\n", + "\n", + "# def __call__(self, data):\n", + "# label, input = data['label'], data['input']\n", + "\n", + "# h, w = input.shape[:2]\n", + "# if isinstance(self.output_size, int):\n", + "# if h > w:\n", + "# new_h, new_w = self.output_size * h / w, self.output_size\n", + "# else:\n", + "# new_h, new_w = self.output_size, self.output_size * w / h\n", + "# else:\n", + "# new_h, new_w = self.output_size\n", + "\n", + "# new_h, new_w = int(new_h), int(new_w)\n", + "\n", + "# input = cv2.resize(input, (new_w, new_h))\n", + "# label = cv2.resize(label, (new_w, new_h))\n", + "\n", + "# return {'label': label, 'input': input}\n", + "\n", + "class Rotate(object):\n", + " def __init__(self, angle_range):\n", + " assert isinstance(angle_range, (tuple, list)) and len(angle_range) == 2\n", + " self.angle_min, self.angle_max = angle_range\n", + "\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " # NumPy 배열로 변환 (필요한 경우)\n", + " if not isinstance(input, np.ndarray):\n", + " input = np.array(input)\n", + " if not isinstance(label, np.ndarray):\n", + " label = np.array(label)\n", + "\n", + " # (H, W, C) 형태를 (H, W)로 변경 (필요한 경우)\n", + " if input.ndim == 3 and input.shape[2] == 1:\n", + " input = input.squeeze(2)\n", + " if label.ndim == 3 and label.shape[2] == 1:\n", + " label = label.squeeze(2)\n", + "\n", + " # 랜덤 각도 선택 및 회전 적용\n", + " angle = np.random.uniform(self.angle_min, self.angle_max)\n", + " h, w = input.shape[:2]\n", + " center = (w / 2, h / 2)\n", + " rot_matrix = cv2.getRotationMatrix2D(center, angle, 1.0)\n", + " input = cv2.warpAffine(input, rot_matrix, (w, h))\n", + " label = cv2.warpAffine(label, rot_matrix, (w, h))\n", + "\n", + " return {'label': label, 'input': input}\n", + " \n", + "# class Crop(object):\n", + "# def __init__(self, output_size):\n", + "# assert isinstance(output_size, (int, tuple))\n", + "# if isinstance(output_size, int):\n", + "# self.output_size = (output_size, output_size)\n", + "# else:\n", + "# assert len(output_size) == 2\n", + "# self.output_size = output_size\n", + "\n", + "# def __call__(self, data):\n", + "# label, input = data['label'], data['input']\n", + "\n", + "# h, w = input.shape[:2]\n", + "# new_h, new_w = self.output_size\n", + "\n", + "# top = np.random.randint(0, h - new_h)\n", + "# left = np.random.randint(0, w - new_w)\n", + "\n", + "# input = input[top: top + new_h, left: left + new_w]\n", + "# label = label[top: top + new_h, left: left + new_w]\n", + "\n", + "# return {'label': label, 'input': input}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Arguemtation" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAFHCAYAAADUevqbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzbElEQVR4nO29eZgkVZnv/819rbWXahpsBEGxZVMQKFHxQkuL6IjgvepltFWuXrBhUBSV+SmIo4O7KKOgg4qoqAOKM+I2yOaoDUIjSLMJDtIsXb3WmntWxu+Pvu/pN0+diDiRGVmVWf1+nqeeyozlnBORkRHffLcTcRzHgSAIgiAIgrCoiS70AARBEARBEITOI6JPEARBEARhL0BEnyAIgiAIwl6AiD5BEARBEIS9ABF9giAIgiAIewEi+gRBEARBEPYCRPQJgiAIgiDsBYjoEwRBEARB2AsQ0ScIgiAIgrAXIKJPEARBELqMv/3tb4hEIvj85z8fWpu33347IpEIbr/99tDaFHoLEX17Oddccw0ikQjuueeehR4KAKBYLOLjH/+49U2JbmI33HBDZwcmCIJgQbfdUwWBI6JP6CqKxSIuvfRS+SUqCIIgCCEjok8QBEEQBGEvQESfMId3vOMdyOfzeOaZZ3Daaachn89j2bJl+OAHP4jZ2Vm1HY85+dKXvoT9998fmUwGJ5xwAjZt2tTU5qte9Sq86lWvMvb13Oc+V7W3bNkyAMCll16KSCSCSCSCj3/844HG//GPfxyRSAR/+ctf8Pd///cYGBjAsmXL8LGPfQyO4+Cpp57CG97wBvT392PFihX4whe+0LR/tVrFxRdfjKOOOgoDAwPI5XJ4xStegdtuu21OXzt37sTb3vY29Pf3Y3BwEOvWrcP999+PSCSCa665pmnbRx55BG9605swPDyMdDqNo48+Gv/xH/8R6NgEQehtgtxfCL/7KyD3F8EOEX2CkdnZWaxduxZLlizB5z//eZxwwgn4whe+gG984xtztr322mvxla98BevXr8dFF12ETZs24cQTT8TWrVsD9bls2TJceeWVAIA3vvGN+O53v4vvfve7OP3001s6hje/+c1oNBr49Kc/jWOPPRaf/OQncfnll+PVr3419t13X3zmM5/BQQcdhA9+8IP47W9/q/abmprC1VdfjVe96lX4zGc+g49//OPYvn071q5di/vuu09t12g08PrXvx4/+MEPsG7dOnzqU5/Cli1bsG7dujljefDBB3Hcccfh4Ycfxkc+8hF84QtfQC6Xw2mnnYYbb7yxpeMTBKH3sL2/EDb3V7m/CNY4wl7Nt7/9bQeAc/fdd6tl69atcwA4n/jEJ5q2ffGLX+wcddRR6v0TTzzhAHAymYzz9NNPq+V33XWXA8B5//vfr5adcMIJzgknnDCn/3Xr1jn777+/er99+3YHgHPJJZdYjf+2225zADjXX3+9WnbJJZc4AJz3vOc9alm9Xnf2228/JxKJOJ/+9KfV8vHxcSeTyTjr1q1r2rZSqTT1Mz4+7oyMjDjvete71LIf//jHDgDn8ssvV8tmZ2edE0880QHgfPvb31bLTzrpJOewww5zyuWyWtZoNJyXvexlzsEHH2x1rIIgdD+meyrH9v4S5P5qe3+h++Vtt93W7mEKPYpY+gRXzj777Kb3r3jFK/Df//3fc7Y77bTTsO+++6r3xxxzDI499lj84he/6PgYvfg//+f/qNexWAxHH300HMfBWWedpZYPDg7iBS94QdNxxWIxJJNJALutebt27UK9XsfRRx+Ne++9V233q1/9ColEAu9+97vVsmg0ivXr1zeNY9euXbj11lvxv/7X/8L09DR27NiBHTt2YOfOnVi7di0ee+wxPPPMM6EfvyAI3Yft/YXwu7/K/UUIgog+wUg6nVbxdcTQ0BDGx8fnbHvwwQfPWfb85z8ff/vb3zo1PCtWrVrV9H5gYADpdBpLly6ds1w/ru985zs4/PDDkU6nsWTJEixbtgw///nPMTk5qbZ58sknsc8++yCbzTbte9BBBzW9f/zxx+E4Dj72sY9h2bJlTX+XXHIJAGDbtm1tH68gCL2Bzf2F8Lu/yv1FCEJ8oQcgdCexWCzU9iKRCBzHmbOcJ4aEjekY3I6Lj+173/se3vGOd+C0007DhRdeiOXLlyMWi+Gyyy7DX//618DjaDQaAIAPfvCDWLt2rXEbXSgKgrA4kfuLsJCI6BPa5rHHHpuz7C9/+YvKygV2WwlNruEnn3yy6X0kEgl9fEG54YYbcOCBB+InP/lJ03joVzOx//7747bbbkOxWGyy9j3++ONN2x144IEAgEQigTVr1nRw5IIgdDu29xfC7/4q9xchCOLeFdrmpz/9aVPMyB//+EfcddddOOWUU9Sy5z3veXjkkUewfft2tez+++/H73//+6a2SDxNTEx0dtAekDWQW//uuusubNiwoWm7tWvXolar4V//9V/Vskajga9+9atN2y1fvhyvetWr8PWvfx1btmyZ0x8/J4IgLG5s7y+E3/1V7i9CEMTSJ7TNQQcdhJe//OU455xzUKlUcPnll2PJkiX40Ic+pLZ517vehS9+8YtYu3YtzjrrLGzbtg1XXXUVXvSiF2Fqakptl8lksHr1avzoRz/C85//fAwPD+PQQw/FoYceOm/H87rXvQ4/+clP8MY3vhGnnnoqnnjiCVx11VVYvXo1ZmZm1HannXYajjnmGHzgAx/A448/jkMOOQT/8R//gV27dgFotlp+9atfxctf/nIcdthhePe7340DDzwQW7duxYYNG/D000/j/vvvn7fjEwSh83zrW9/Cr371qznLX/WqV1ndXwib+6vcXwRbRPQJbfP2t78d0WgUl19+ObZt24ZjjjkG//Iv/4J99tlHbfPCF74Q1157LS6++GJccMEFWL16Nb773e/iuuuumzPl2tVXX43zzjsP73//+1GtVnHJJZfMq+h7xzvegbGxMXz961/Hr3/9a6xevRrf+973cP311zeNNRaL4ec//znOP/98fOc730E0GsUb3/hGXHLJJTj++OORTqfVtqtXr8Y999yDSy+9FNdccw127tyJ5cuX48UvfjEuvvjieTs2QRDmB6o5qrN582bMzMz43l8Im/ur3F8EWyKOKbpeECz429/+hgMOOACf+9zn8MEPfnChh9M1/PSnP8Ub3/hG/O53v8Pxxx+/0MMRBEEQBAAS0ycIbVEqlZrez87O4oorrkB/fz9e8pKXLNCoBEEQBGEu4t4VhDY477zzUCqVMDo6ikqlgp/85Cf4wx/+gH/+539GJpNZ6OEJgiAIgkJEnyC0wYknnogvfOELuOmmm1Aul3HQQQfhiiuuwLnnnrvQQxMEQRCEJhYspu+rX/0qPve5z2FsbAxHHHEErrjiChxzzDELMRRBEITQkXucIAjdxoLE9P3oRz/CBRdcgEsuuQT33nsvjjjiCKxdu1amihEEYVEg9zhBELqRBbH0HXvssXjpS1+Kf/mXfwGwu6Dtc57zHJx33nn4yEc+Mt/DEQRBCBW5xwmC0I3Me0xftVrFxo0bcdFFF6ll0WgUa9asca1IXqlUUKlU1PtGo4Fdu3ZhyZIlXTFtlyAIC4/jOJiensbKlSsRjS5cYQK5xwmCEDZh3d/mXfTt2LEDs7OzGBkZaVo+MjKCRx55xLjPZZddhksvvXQ+hicIQo/z1FNPYb/99luw/uUeJwhCp2j3/tYT2bsXXXQRLrjgAvV+cnISq1atwrXXXts00T2wWw03Gg3Mzs6iXq9jdnYWtVoNjuOgXq+jVquh0Wio//V6Xf3RPny53g69rlarap1pWbVaRaPRUP/5/jQe/kdjN/2Z1sXjcQwPDyOXyyGXyyGVSiGZTCIej6u5HaPRKCKRCCKRCGKxGCKRiFoWjUabfi2QNYHOn+M4Tcvovb4fvaZtqT89aoDW831NfczOzmJ2dhaNRgPJZBKTk5N45plnEI/Hkc/nkclk1HHW63VEo1Gk02l1fDRG6pPGS+fe9AuJjhmA+swikQhmZ2dVO6lUynhctB8/BrdrsVaroVwuo1wuo1gsYnp6GoVCAdVqFcVicU7bgj+HHHIIPvnJTyKRSKBYLOKtb30r+vr6FnpYgXG7xwmCIHDavb/Nu+hbunQpYrEYtm7d2rR869atWLFihXGfVCqFVCo1Z/lnPvMZALtdIyTWSHi5CahW/wgSKiZRY3poB3HN0P7UFhdEeju0DYmaeDyu/mgZCbxYLKbEDhd/biZiEn2mcVGbBBeWfLnNa9OxkyAn8ZdOp5HNZuE4DlKpFHK5HPr7+5FKpVAul9Wxu/VDx8i348vpPHLxlsvl0Gg01DL+efDtaNy68OPLG41G0zmj44rFYk1/btdPq4TRnt+163aN6terfl2HSaPRQC6XQyKRsB53pwnzHicIgsBp9/4276IvmUziqKOOwi233ILTTjsNwO4b9y233BK4ttmDDz447zd4btEiuDDkDzabsbltq7ejb6eLDX18wO7z6iZ09P5oXaPRMI7btMwrrkB/8PvtzwVWLBZTFjL+PpVKYXBwENlsVgkpboXk/ZAgJqFKQpaLMK/PSRfFXsKf2tfb4ueU1nExysVy2NdxGOLK9GPDdK7dXtO2+jqvsenreVsm6vV611lIw7zHCYIghMmCuHcvuOACrFu3DkcffTSOOeYYXH755SgUCnjnO98Zaj+mh1Yr+5oEl9eDzNSnl4DT9/eylOhtmqxwpn1pG7fzwcUIiRT+0HazYnLLlmmMboLKJBJIcOqCK5lMol6vI5PJIJ1OqzHF43HlCnYTImTlpO3I9c3PBQlEvh+5dk3HyvsxnRfdSmyyqtJxtnONdgovS7OXCHRrh7/X11Mbfv2b1jnO7pCNbmS+7nGCIAhBWBDR9+Y3vxnbt2/HxRdfjLGxMRx55JH41a9+NSfwuV3cRFuQfW3apWU2Fgwvwedn1dAfhLqlz88CQ+910UWxdNwq6HaMentkOaP/JLJMYpTWewkFHlNHD3QSaolEQgk4YLd4rNfrTcLULZZQ30bfnp9LLwumvp+Xtc9LLOnjChO/a9EPk+BzE2+mY/U6brd++DLTa30Z/a9Wq/YHNo/M1z1OEAQhCAuWyHHuuefOm6uj3Yeq24MpaLu60PISZzZCkMeZkXAj8eFn1SMBRvsmEgm1fTweR61WUxYvHhfH29AFZDKZVOMiYUbL4vE4stkscrlc0/6UAANACcJyuYxqtYpEIoFyuazGSbFv8Xhc9U3WPtP54jGNAJri9Phx6OfW5DbXj5u20/vz2pfOuSnRJkzh52eVNeFmxXbbzqt9m+9Lu8KU0ONPu4n5vMcJgiDY0BPZuzZ4PXA64T7zemh5ubRM4zG91y0spna4wOBuUS6IKJuX3mezWSU8KJsUAPL5vBJ6qVQKlUpFZTgT1A6PDUwkEojFYioztlwuN1kN+bjr9TpKpZKy4tE4s9kskskkJiYmlHWP2q7X62qslARBfQK7xSQJQorv0s8VJbfox6N/VjaCJ4h1l9rkbnKTwOuEtc80Dr/1Jsu47mp120+/Xm2snHpfbmLVa/zk4pUkCEEQBH8WjejzskB0qi+/BxLH6+GmPzj1Prza7+vrUyVbyP2pZ/CS8Mtms8hkMiiXy6jVaiiVSnAcB7lcTvWRTqfR19eHHTt2qD509y0toz8SeiRE9VIxjUZDZVdS6RpKMkmlUpidnUU2m0W1WsXExISKv6N2aPy8hAqNAdgj6riY1N3g1J6X+5BEKC/fYvoc9Nd+1j2yRvHPl59LfkydxktctRMG4fdDxrYNt/g9N7o5rk8QBKHbWDSibyEwJTq4PbTcXLl+yQFeFhYSNCSSyBVLNeVItFDNu3Q6jVKphGKxqMqGkGB0HAfJZBJ9fX2o1WqoVquo1WpNrl0u6iiebmZmBgCUy5UnSpClMZVKqXqKxWJRtUH19SqVCqamppTVkfp0HAfpdBqpVEpZ/MhSSQ/7er2OSqWihJUudOmPZ9JyAUaCjYtSsh7Se8dxlGuZ4Mku+jK3z5+fSz2zWL+O2sXvB4m+Xhe0XqEHNv0SbhZE3pcbNlZ6HkogCIIgeCOizxKTu9VPyJlcXW4PslasLNVqFYVCAclkUomVeDyuRApv23F2T+FCUz0lEglkMhlVAgWAspKRKOQuZBJ1JOxqtZpqi9f+4+eD3Mn5fB6RSERZGKn/RCKhEjempqYA7LY0kujkbmkSfxQjqEPFj8kNTC5f6ofHL+rnhR8r7cdLvNDxkEjkiRw8kYW2138EmLKhAe8SOn74WexsQg/c2rOxsOlt+lna3a5vrx9AunXUrW+6pgRBEARvRPS54GbtsHkQuj3oTCJQ38ftvQmaCYTEChdetD+fDYTi4cgKRiKKu1JpxggunOjBGo1GkUgkmqyA1CcXmbQ8kUigv78fsVgMk5OTSkzS9hRTqIststxQAeZEItEkumk7YE9mbywWQzqdVhbASqWCarWqZr8woSde6AWt+WfOLXIEF1eRyJ6kF37u+WfOLbK0D/8LQlBR57etfm226u71wq8d03eACz/9hxeNVyx9giAIdojocyGMB51NnKHJMqNbBd3a4aKCRBZtSw9Cbqkj6x5NYTY7O4tSqYRaraZcmmRl4xYubsGjbbnFTU/uoD9K5iiVSk3iLhKJKEsed79STN7s7CxyuZxyKXPXbKVSUcWZ6Rxxly63eJLbmo+TF32m/WgMFHvIhRt3o9P0fNxyR+v4f9NySpLh0/O1I/pawS1mLox2bfs2Wfb0ZbpbXLf46ZZUiekTBEGwQ0RfiwRxfxFesU28Xf7fqz9uPdLj6fg6co2S1Y6Wk4CJx+NKjHDroT59GwlJ3g+918cWi8UQj8dRLBZVzB2JpWQy2TQtGgkictEmEgn09fVhenpatcvnOAbQJCD1Y+fuU26BTCaTympIVkte+48fny42yAVMAoOSUfhy/bPj4+XThFEmcb1eV0K1HdFncs2a8HKxel3PuhBzw2+9nzXb7YeP23oS1CL6BEEQ7BDR1yK27i83Fy9f77bOBl2I0TISRalUCn19fWo9uWrpYcktZVT2hNy95AqmcVFcH0/m0IUrHQ+JRHow02uKr6NsYxKCFI8XiUSQz+fnxO7pIo/3w5NMSLxRu9yCWCqVUKlUkEgkkE6nlXWzWq0qUUlilY6HHz9ZL3k8H50P3fpH55ULx1gspo6Lzq2pBmI72FxDfmEHJguzzY8ck4gLImZNgtVNxJpiJgVBEARvRPS1gZ9lxG0f3SJkEoKm9yb3GHc38v+UHZtOp5FMJpusVLysyezsLOr1elNSBbAnW7dUKjXNtMEzZ8kayAUlxdyR9YyLTEqs4IKLjqdWq8FxHKRSKeRyuSbLGQlMso5RX9wSScfNBR8/VyRCK5WK+puZmVFjJqscF2nc9UuWSW7d5H2QBZEEoKlANo2BLIk8BlCPo2sXm7bcfnCYrt1WLJFh7qP/qODfCUnkEARBsENEXwsEsWD4PXx1t5lpWz2InffNCw6TlYuyXalMC1mjgD1uUop741ZBSnogYQKgqcAz9c+FFgkmWh+JRFSCCGX4zs7OqrIt3MJF60ulkhKF+XweiURC1RDk9QC5+5nGxgs36y5W3YrGLZn69F00di4cuQAkEchFH4lCHh9oysgltzX1TQk16XRaxWGGGdNnc83ROdKX0XLTeFoJaQgDN+sjIYkcgiAIdojoa4Ggbi6OWzC7aV89gN30IOdFh2dnZ5V1j8QI1ewjwcHns6Up0Hg2KS9xwqc70/un5Xo9OxKJFCfoOLtr7Q0NDanxcGtYuVxWlsdMJoO+vr4m65eeDasnmPBkCe5i5W3Q9jxZhbbjLlou4qg9LgB5H1zsmcQIiWvdBc6TTriFL6jws43dc3OXzpflzoagrmP+A0hi+gRBEOwR0TcP8AeWKZhdd/PqD2svqw2PZyLrni5gyNVKAo8nc5BQ41YxXXCZxsxdnWSlo/2LxaIqtJxMJrFkyZI5JVZqtRqKxaISYMlkEoODg0gkEspqp49Hd7+SmOXWP+pDL7nCS9rQ2Lnoo/35LB9kkaPx8CQS7lLkbZHbmcQzF808eYYvb0X0ma4PU4yeTTu6EGxHGLZCK8fN/4voEwRBsENE3wLiJuyCxHWR2KDsUIrPoxIt5EKtVCpzXJ+UPcuTIUwWMoJeU/atXuOOLIVUEobEZ6FQUMupVEmhUFAilNy6mUxGxWiRqOICjidJ8MQVPgbuZqZ9SCxSe/xYeNKKnqBB8YtkueQWSvoja2YkEmmysPIx8VIxNAbK2NXnM24HP6HmJuq8BGQ34BdvKIkcgiAIdojoW0D0B1hQVxwJILJK1et1Ze2Lx+OoVCooFApz3KSUQMAzcLl1UIe7Ucntq4sYGicJIYpZo7l1SXxSUgkVgCa3LhVxrtfrqvgzFylk1SOhSGPnlj+yrNEyntTBj4Vq8tFr7t7m6+kcU9vUJsUQArsFMBeY3A3ME194cgcv9MzLxnCx7Rbb6bbOdA3x60cPFTBZb/k+3YSXANWtroIgCII7IvpaJEz3F3dXmly8bpYOshRxEUOuS5qFgrsyuWjgfep96duTYKFlvHizDndZkuCJRqOqUHK1WsX09LRyySWTSQwMDCg3KrmhOdx6RgkRJMK4e5pEGc/w1c8zt+p5Wbh4bB+9JislWf54qRj9j849P9+mvvR6gV74xX/qIs9tWx1+XQR1My8E+rUsiRyCIAh2iOhrkaBxSH4PXZNA0fsxWWCWLFmCgYEBVWSZMkVJmNBDXJ+Jws+yo7tTAcyxfpmOjxdgTqfTytoWjUaRTCZVTTyydGUyGZXcQbGHlF1MNe2mp6eVIOIZunQs3H1K6+mY+fhIiFJ/fFsuenmySCQSaZovmFs5eYkcHtNHQs7Unj5NHgn1bDaLiYmJOZ+9m4jTt3O7TtyEob7O9Fl2K/oxiegTBEGwQ0Rfh/FzlenWFTfxB5gf0uVyGbt27cLg4KCazYILPmqDhBF31eqijsfL0TamByoXI+Rq5VDNP56Vm0wmUalUMD09rQRfKpVCPB5XMX+xWEy9zmazSKfTKBaLTdO18RI1ZHXTLWy6q9WUaUuxdLxmIYlOmooOgKp3SMdF1ko6L/q5azQayuWrW/h4P1ywkhAly6D+2Ztctqbt3IS8aT1f5+by7Rb8QhzEvSsIgmBHT4u+bntImSxgQTFZYnTXK4fmzqVkBV5eRd+WrEq83h0JQVN8IblJeXwat1TxfSnWL5VKKQHjOI5KbqjVapiYmFCJD/F4HLlcTpWUoeQNx3GQyWSaatiR65PH39EYdIHHx68LGj7HL63TM5zpGLgLm/fLXd36Z+w4TpM1kH+WfLq1Wq2mjodnTnOxqF8LXteJabkeBuDVTrdhGr8bEtMnCIJgT0+Lvm5zRbkFx9vsY7K42IhGPmcsQQLILROXLEp8yjKymgHNM1vopVw4PBGEBEw8Hm9y2cbjcSX4isWisiTm83nk83lUq1W1b6VSURa2bDar+idhGI1GlRgjyx9ZI3URxs+nLlj5eeJu2UQioebnTaVSqFQqKBaLSuDqtQ55OzypRXcrk3WVzgW3AJLoq9fryGazmJycnGOB1WMx9Wujm74DYWB7PLobXxAEQfCmp0VfL2ISqiahYnptcutxyxMlFujw5ATajluj6I/Ekz7vLc18weEJEbzECc3GwfstFAqqbh+Ng5I36LhmZmZQqVQAANVqFbt27UI2m1VWQRJtdLx8HmAeX8eP36sOHolGfsw8YYTK3NB4yPLp9flRHJ9+3mls+owh/PxWq1Vks1mkUinlcnb73E0/CrxEoNuPo2770RQUOjdSp08QBMEOEX0dxsZVZXqIu7npdKhECu1PLkreP9BcL05vi1vEaJYM7grlwoMSMkg4kjCKRCJIJpPo6+sDsDvLNp1Oo1wuo1AoNBVbzmazTVbF6elpNe0axfbxEic0swUvL0NClxdn5gWWebFo3RJEVk1yp/LPqV6vq6LRPLaPfza8fz4TSSKRMFoBSVDz5BHufiaxSJnMZBG1sRwHsSZ3MzYC1G0bSeQQBEGwo/2KsIIrfgHo/D/gnk1pek1w8aPX2jNZiPg8tHohYVoOoCnDlospcstSvT0SPYlEAplMpqn48ezsLHbt2qUKQ0ciuwsY9/X1KYFVKBTU+lgspqyEek07apOOtVqtqnp+3IJG4+TFp/XzR+2S8CKLY7lcVhZHEpJ6rCBvi7vGyVLIY/T0/ah/HhNIFlI6LpqGju/jZ6XTQwNsY0m7SQy2I17JZS4IgiB4I6Kvg3g9yLwyJk1ize2hxoUXJQpwVycXGgCa3LR6Biot4yKCx/XFYjH09fUp62K5XG4SmqlUCsAeax65dXkh4lwup2LzuNs3FoupdTSOUqnUFFPoVraFH4Mev8frC+oCu1KpYGZmRln2isUiKpWKchmbYgX5uaTzqydj8HIt/DyT2OSijiyb6XRalaqh88jxsvrxY7MVP4tJJEkihyAIgh0i+hYAvwcud+16iUNqS89a5e3wOL94PK7Kj3AXJb3WRSBP3uAxg/pctLFYDJlMpsl6Vi6XMT093TR7RjKZRCaTQbVaRalUQqlUUgItl8upLF2y0JHFjdcb5O5dOkaegcsFGD839J/WUemX2dlZTE1NYWpqSokHcu1yC6eeFU3HSfPs0jI6Tv458s+D/pOLmY41lUqp48/lcsa4PDdh5xbzF3SbXkXcu4IgCHZITN8C4PXA1cWezX48e5Ti32g5L5ZM7kfHcZRFi4Qab5vXj+Oij+L9qMAyWbnS6bRy7SaTSZWtS1Y+ip/LZrPKwlapVJR1MBKJqP9UwJlEGSU1kJjjmbQkmHTrGXdLU6Yv/TcJOHIXE3pZGNP55hZQfh6pHw6fdo3OK30e3PVNgjibzaoSMibRz1/bxsK5LV8M4o8SbQRBEARvRPR1mKAB6n5JHX5xghQbxuP6KMmABBNtwxM4uBgi0cmtblS0eGJiomm7bDaLbDbblDgRjUYxMzOjBF8ikUA+n0c2m1UxeACaavFRNjAJOxKGXFySaONJGzRWysSlPvl5JdHIxTQvzsyTL8h6R+hiklvcqAg1dy86zp7ahNSuLthI9JEopvNLJV1o7mRTKR6/5A7bBBCv5b2GZO8KgiDYIaJvHvEKvvfDbVu3RBBee4/+SKBw8aPXrtNr79Fr7vqt1WoqDm14eFhZ7YDdU6YVi0VlcaQizH19fU2iLJ1OK3HUaDSaCjADuwUVuVh1F66XVYe7QHnCBJ0fHjNIySB0zFzQAXviH/WSMI6zp6wNb49nUvMsXT42EpVcgHPS6TQqlQoSiYTKjNY/Xy/hv1iEXBD0RB5BEATBjMT0dRge19WJBzJ37dJrPjsHn5KNb0vjIQsbt4Rx0afH0FG7RKFQaHLHzszMYHJyck7yRqPRQKVSQaFQgOM4qnizntxA7adSKTWTBxegZOnjcYxcxPLkCXK70h8lTVDffHYQPpMIn12EZw9z9y0vZ6Nn7XKxyuH1FHnGKXdZUzkbPo2ejskazK+HvQ1J5BAEQbBDLH3zQJD4PNv1BAmRer2OSqWixJKe4KFPH0aWLRJ2ujDlMWo8o5eWURFmskaVSiXlviXBQ2VceAYvWcm4JY6XViFRmkgkkE6n52QTA2iaQo7OAf3xeXj5MZEoI4HGy8twt3G5XG5K4tAth3qhahKWvACzKSuaxkH96HP+Uls0Qwkfky18rHuTxU8SOQRBEOxYNKJPz5TcW9CFDl+ul2yh9ySCTIkCPF6PLIM8A5a3kcvlkEwmMTk5iWKxqEQKiUnKbOVWtUwmo2agiMViSizyGERe+65arap4N7LYccuOntRAcCtiIpFQ4+CzetCMIrrLlqylXMBRezR+HgtIY6ckGS7o9KxhAE2iklspaVtKfEkkEk0C0i9WzyvW08Y13KtInT5BEAQ7FoV7d7E9xIBg9dZImHEBw61yunAjFyXtSyKNZ8PyeXnpj0QQCTKKw8vn86oQM8X7JZPJOTNekFWR+iJRRq5hbv2jMZIw4y5eXjSZHzMXwORG5YKPltHrarWKSqWihBVlNJvqHJLgTKVSyOfzqkQNF8nAbgHCS93wa5OSTag9Qo81JNFHfejtBGWhvh/z1a8kcgiCINixKESfHjC/GHArFWKCxIxJaOj1+Ohc8SLGVBiZz7nLXYV8mjMSYHye2UQioVy75MrNZDLI5/Mqk5csY+Vyuan2HiVy8OPm8X08a1cXRzyxg4s1Hk9IwpSLKZ6sQvFzlUoFxWJRWRYpeYXEZzqdVoKR1wPkFtFyuTznM+DZw/zc0nLdQs2tfZlMRpWy6TSd6mM+xi6JHIIgCHYsCtHXKRbKQuL2AHMTguQ+5VOx0Tpe3oTaoPWU2EDCiP54/B25IqnIMgkYbsUj4cinM6PsXcrkpaQM+gP2TAVXq9VUbCAtoz551i5P5CDrjh67R+OOxWLIZrNIJpPq+NPpdFPyBSVulEolFAoFdc6oDeojl8thaGhIHTMXoHQuy+WyEou64ONZwPp6fv7oeGgZZTmHeR16uYDDhv8Y6+R3SRI5BEEQ7Oh50dfJh8lCWQ+CHhMJFN3iR3ArmJ7NSv1RXBTfl7t4edIBt7zx8XJBOD09rdy9elHliYkJTExMNM2KUS6Xm843WfC4IOJ9ksClfnlCCrmfqchxo9FQFj5deBUKBRQKBbUPiVUSiiS8HMdRIpnOKUH1BHmCB7fmkSvZZJHmmdLULmVTkwWVW1V7lU5+l/h0eYIgCII7PZ/IITf7PeiuUd3tqVuoeJkWHgsIYI4rmMeg8Tg5AMpFS+KFLHVTU1Mqvi+bzTZlFBeLRczOziKXyyn3MU0/xq1p1D4XazxWkY4V2FOmhQQTL5Acj8dRLpeb3LRc8FH8HM/CpXNWKpXUmGheXB4HWC6XlRvaVKqFF2nm1j3alpfXISGcTCbRaDSQTqeRy+XU8l5ivpKrxNInCIJgx15r6TPt57as2xNF9Hg2/p4nUpggKxav5UfoFhRymw4MDDTF/5XLZczMzKj3JP5IuFQqFZWtS+5dcqtOTU0pN3SpVFJikwtYOi7dCqlnJ/MkCT6FHIlSKshM/2nWEJr3tlgsqsxcAMrCRlPPUaIHuZfL5bKqO8itgzweUk+iofHxxBTuNnccRxW7pnjDfD7fFBPYK8zXDzKJ6RMEQbCj954kjKBirBXLQy88TLjAIysYt5RxVyNtx4UZxaPRtvRfL1cSjUaRTqdVnT0SKVNTU6jX66roMbdIkXCanJxEOp1GNptVljMqyUJjKRQKKiuYWxy5BY7PEMJj/mhb2pesZuRWpf/kFi6Xy6quIc15SwKNXLz5fF69p77pfbFYbBKNHP45mKxzdC55nCTBE1PI5Uuxh3x+YGEPkr0rCIJgR0+LvqA1x3Srldf6+XJNtQtZuyj2i5cvAfZY3Whbek3ZreSOBaCsXNFotCkxgYhGoyoxgqxplLFL+0ciESXqSPCRsCyVSqroMlnNaLo1Ej/T09MYGhpSY6T/XCBRv8AeUUivuYVwenoapVJpzvmYnp5WLtS+vj44jqPGzGczoeLSlCRDIpgEX7VabZpKjhfFNgk+PamB3MHUF21fLpebhC6VvykWi21dKwuBn6W51Tb5uRT3riAIgh0979414ScE9fVuWbHdDrfekTuQZ7MCc12dtB8AlTCQSqWU0DG5WumPXLqU0es4jhJ8AFRZFiqPks1mkc1mAeyxVk1NTTXFBJIFjsRZrVZrKvFC46Wx0TGZMnh54gcJM7L20ZhJJObzeQwODqpYPxJYfK7fZDLZVHMwmUyiVCqpJBRaRmMyWVf1rGhe9JmsjhRTODQ0hHQ6rc4liUhqv5vx+s7xH2c24RJ6gpAXugtdEARBcKe7nyQ+6NY4P6uC23rdYtjtMXwEP45KpaLq4umZusCehy0XIjxLlCwms7OzKBQKTYWZyRXb19enLIPkIgX2WKJ4zb1MJqMyZmmstGxyclKJTdqHBB8AVKtVFAqFpiQM7g6NRqNzXHp6Nm2pVGrK8CWhmU6nMTw8jL6+PgB7hKqba5zOHcXa7dy5U9Xjoxp6+rmlffhnREKvWCyiVCqhWq02ueWpj3w+35QQwl3sQa6HboGHC9B/23G6bacvF0ufIAiCHYFF329/+1u8/vWvx8qVKxGJRPDTn/60ab3jOLj44ouxzz77IJPJYM2aNXjssceattm1axfOPPNM9Pf3Y3BwEGeddVZTIoAtQdyxQd21vSL8gD21+ijWjic3AHvEHy90TBYlsoTx0ilkdQN2C65cLod0Oq366O/vV1YvXs6lVqupwsuUeED9UTwdvSeLXz6fb3KRkiu1Wq0q4cYzjUmg6jUJuTiixBHqn9zYVPA4k8k0JU4AzdcHubGpj9nZWUxPT2P79u1K6NKYefatnlU8ODioXLVk6SShrRd3rlQqmJmZUVZO7mYmi19QC3a3EHRcQcM23GInW6Gb7m+CIAhhE1j0FQoFHHHEEfjqV79qXP/Zz34WX/nKV3DVVVfhrrvuQi6Xw9q1a5vcgGeeeSYefPBB3Hzzzbjpppvw29/+Fu95z3taOgBbC52f4NPj/brRauJFuVzG1NSUek8PTrLM8TIoiURCJV2USiWUSiVUKhUUCgVVSoXEUiaTwcqVK5FKpVCv15FOp1VSQTabVbFsuVxOWdO4mKLpxGgc3O1br9eRTCaRy+VUhmoqlcLs7KzK8qVZMrjVkkqx0DFScgUJLhoT/fFCx7lcrqmWHwlI+k8JKuQqr9VqKJVK2LVrl3pwJ5NJdYzcnc4TR/r6+pBOp5FKpTA5Oamyl+mz4C5Jbg2cmZlpyhImi2w3CzqvsZGoddvGbbke/+gFTzpql267vwmCIIRJ4ESOU045BaeccopxneM4uPzyy/HRj34Ub3jDGwAA1157LUZGRvDTn/4Ub3nLW/Dwww/jV7/6Fe6++24cffTRAIArrrgCr33ta/H5z38eK1euDDQe7jbyerAEFXGdSuQIasVwQxe75JrVY6fojyxLNBMFWerI3Viv11EqldTcuSQ2hoaGkMlkMD09rTJmafYKSi7IZrNK0JRKpaaYO6qbRwKRZv8ggUTxdFTUuVqtIpfLqTIpfHYQigPkiRvUD4kqAE0uVjrmTCajrHMUc0gzgehTu9F2VKNvx44d6phJMOvJITz7OR6Po6+vD7Ozs+jr60OhUFCZwsAedzV38VI7vEgzZTZ7XQPz/ePET8TZtuHVNn9tc3zcitwu3XZ/EwRBCJNQY/qeeOIJjI2NYc2aNWrZwMAAjj32WGzYsAEAsGHDBgwODqobIgCsWbMG0WgUd911l7HdSqWCqamppj8dU3yfHlflFUzutcwm+NyWMC02unWSZ7jqD0sSFBTXRskaxWJRCSzanyxd2WwWAwMDyr1IbshyuYxEIoFCodA0YwS5JGnOWMp8JWHHZ/MAoNzMNBayfpFAImsgrSNLIp1DcieTK5e7Q+kzI+sigCY3L/XJ5+flMXkkQLdv347JyUklOkm46VY67hqmYyJL5tDQEBKJhBImPNtZt8KS5ZK7unkdOn79LIQ1Wo/N049f/66YfpSZrk3TchNuSVdhWfq86NT9DbC7xwmCILRLqKJvbGwMADAyMtK0fGRkRK0bGxvD8uXLm9bH43EMDw+rbXQuu+wyDAwMqL/nPOc5c7bxK8Hihpf44w+2bnP38vGQhYOSDPQCx7z4byaTQTweR7FYRKFQaCpHwi1j6XRaiRX+4CahVSqVVGYribVisahEEQnP2dnZpni1qakpTExMKCtXNBpFJpNR21UqlSYXczabVfvzKcpisZgaO50DWk+zawBQopSybTOZjHLLplKppoQWfi5LpRK2b9+O6elpAFBimax0gLkINLmRKas3Eomgv78fIyMjWLZsmRLRfNo5EnoA1JjIZU1WLF1cdSum8fn9aDIJRtMyt6xengTUSTp1fwPs7nGCIAjt0hPZuxdddBEmJyfV31NPPTVnm6DZt0Fi/LodnkSglzYhKNs0lUqpmSS4hQ9otoTl83nk83k4jqMEF7A7s5aSKigZhOr6kWuTZ/jy2Siq1SomJiYwPj6OXbt2oVgsqvg7ElTkdp2ensbk5CRKpZKK85uenm5KFCmXy2oKNH6c1B8AJR71kickpuh4uDiu1+vYtm2bcmnzTGPal8QIWSRzuZxK1shkMk2fDQnGoaEhjIyMYGRkRIlcsk4SZG3lY1yo7FTTDyKvbbwEG9/GJiFF385rLHSeehmbe5wgCEK7hFqcecWKFQCArVu3Yp999lHLt27diiOPPFJts23btqb96vU6du3apfbXIbHihu7O9Mvi5f/11177B4mhajXeKmgf3CVJSRpclJCLk5IK6vU6pqenmwQfCUZutaJ6eY7jqHg2vo6yeclKRVOrAXvcbTxhghIiaGo2KstCoo1i7njtPYq/I8HF59+lbahP6r9Wq6njIWFIQnFqakqVWanX6yphglyolKAxPT2tCjiTCCbXOM2BS58TnzGEspup5A2AOUkY5O7dtm0bpqamlLWQC1N+Hmu1mrVQasWy7ec21mP4/Fy0fujxgPr3Vl9nc1zz5d7t1P0N8L/HCYIghEGolr4DDjgAK1aswC233KKWTU1N4a677sLo6CgAYHR0FBMTE9i4caPa5tZbb0Wj0cCxxx7bUr9c5LjhFgvktq2fS8nvIefm5vIjiFA0xSryeDbdXUsWORJbZEHiBYTJLek4zpx6cuQ61YsMU/FjymilBAmywJC1jDJaSQhSYsbMzAzGx8cxNTWFSCSCXC6n1gNQFkG9CC9ZFkl88ZqCfBzkyp6cnMT4+DgKhYJyU5NgoNeTk5OYmJhQMYTpdFoJN3JnA3uSSEi8ktCLRCLK7cytriTkSJhns1lEIhFVIocyiKlt/XMk62q7MaF+oQpeP570UAc/y58NbsdkEny6BZBez5elb6Hub4IgCGER2NI3MzODxx9/XL1/4okncN9992F4eBirVq3C+973Pnzyk5/EwQcfjAMOOAAf+9jHsHLlSpx22mkAgBe+8IV4zWteg3e/+9246qqrUKvVcO655+Itb3lLS5lt/MGgPyD0ZSbcMhH9rButWPE65TKm8emzWNDyZDKJdDoNx3GUhY8sYnoxYW4dJAsdiUZKZKAsXxJdJA6p9AtlnZJoIyFGSSO0jtylVJ6FihdzS1cikUC5XG5KeOCCSH/gZzIZ1R5PHCEXLVk7TfF0xWIRk5OTyupHwlOfGYPvA0CdK27V5HGStJ4+A0r2oOnoSIDzKfE4lHHtZfUKem3ZxsC6xRJ6fWeC/vii5SQoTT+6+DoTYYm+bru/CYIghElg0XfPPffgf/yP/6HeX3DBBQCAdevW4ZprrsGHPvQhFAoFvOc978HExARe/vKX41e/+pWK/wKA73//+zj33HNx0kknIRqN4owzzsBXvvKVwIPnDwaTVaLVB5DfOq995jMW0CRG9dIVPFuVEiL49F9A88wdAJSljdrmCQx8CjayHJKQI7ctsDuBIp1Oo1gsolgsKiHFy67Q2Mjdygsxk3VOF3jktqWyMJVKRVniotEoisUiKpWKKgHDZx3hxau51ZDqFU5NTSlXMLnDyR1NsYFkHSXhqrueKYaPtiPBSLGDvGA2WU0pdpC+I4VCoWkuYGCPm7jV68tmX5Prl7t3TT96vMIkWhmj7TrdDRyWe7eb7m+CIAhhE3F6KWPh/zE1NYWBgYE5os7L7eRlJbDFL/4pKO2KRDr+XC6HXC6HgYEB7LvvvqpYMmUC0gwau3btwsTEBMrlclNNP24RS6fTKvtwZmYGkUgEw8PDSthQqROyrNDDlqxo3BVMSSC5XE7F7JG1kaxtvKQKCVHKbiXLIC0vFArq9fbt21Gv17F8+XJVc5BnzFLJGMqkJfFIcYxkqaRkDopzpCSWbDbbFH8I7HbR0rgpy5aOnyyLPEaQhCcJ04GBAWVp3Lp1q5rDt1wuI5vNYnh4GFNTU9ixYweeeOIJdZ5IUDz11FNKTAaJ+9SxCT3g3xc3V2sQwvj+mdoEdlt3P/GJT+Dggw/GG97wBkxOTqK/vz/UvuYbuscJgiBw2r2/hZrIsdC4PVTC0rW6ZS0sEdnKOLjbjScvkIDj2yYSCTXjBp/JgtaTy5LcuBRDRlY+surRTBhkTaN9SVyRFY8EFtXBowQLXvakVCop8UnWO56FS8dDAo2SKXgcIolQ03YkwOhc8bhFirmj/cg9TSViaNq5aDSqMobJyhmJRJDJZJBIJFRpGbI8csFHllOKbaR4SP650HlPpVJYunQpcrmcGv/WrVuVm5gEJB2/X6KSjUXOxuqnCz++LgidEHz6OOYjkUMQBKHX6XnRZ/tACfOhw+OPwiSI5U9/4NEfiQnuriWLG4kdPRifxCK5NUm08Xl1qV0qIUIijrJguWjkSRdUxiQajaJSqQDYkxASieyZSYSXJaHPlMQqWeTS6bRyJZPY5XPu0vHoZWt4e9Qn1RUkF3EymURfX58q1kxuWV60OZVKqWMg8UVCmPqi80uJJdQ3WUppXLy4c61Ww1NPPYV8Pq+E8cDAAGZmZlTpG24RdXO5UntBsHGp6gIwKJ0QfECzBZKssYIgCII7PS369AefV5B4GH3xtvR+bR62JheaWx+6ZYUfq76OLEwkgEi00X/KLuUWQX08JCpI/ADA+Pi4sjaR65bKs5CgoXl4qW8SSZT9yhNFKFGD1+QjiyCApng5ACp5odFooFAoqBg7qgnILWu0H23vOLtnBqHi0cCe6c/y+byaTo4EXz6fV9uQyOSWUxoLfU48JpBbEAl+jsnySnGB/POmP5rfFwD23Xdf5T4mKymdT5PgM1nj9OtIF21BvxOdEm7twI+bJ9YIgiAIZnqiOLMb3ArV6YeSqQ+eYKCvN42LP+S9RKKXK42LTr49WZF4DBxZnqjIMRcqJsFHoo8sWAMDA6jVaigWi6qmHE2rxt3JFEtHSRs8ZpCLM3K7krWQsnxp1gyqhdff39/k6szlcohEIioZhD/gufWMixyKkSO3MwlAOg/lcllN97Z06VI1Tm6VA6Bq7/EZP/hsGdxyx93GPNuUF8/WLZO0PJFIYMmSJYhEIhgbG1MudrqGSHi7CTd+DkzXon5dLSZIpAuCIAje9LSlr1swPVT1uDl9fSt9uLVPUM07qgFHbi+KwdPHS+KAsltJZAG7BRzFr1Fh5UgkojJNqQQJFZQlN+/MzAwymYzKTKVMWnKvkqgk4ZdOp5HNZpVISiaT6O/vb8pCppi4crmMfD7fVMjYrXbf4OBgU7kXKtQ8OTmJ6elpzMzMqL5o+jeaoo5i51KpFKrVqorXo/PPy6vwzGgSoFzspVIpJRTL5XJTlif/AUBFqEdGRvDMM88A2F1qh1syedYyxyR63QThYkREnyAIgh2LUvR1KnDcqz/A/aFLmB7Epm1MmZN6+yaoWDCJORIjZN0idy9PbCArGIk3slhRhi7NUgFAibpUKoX+/n4leEgAkWuVhBZZuPisGJQEwbNpScgBu8vF8Dg6ihtMp9MolUpNU6bxZA4ef0flYiqVinKRzszMYMuWLRgfH8fs7Cyy2aya83d6elpl65KrlWbrIEFJlr5qtaoEL5VgoePjljwS0v39/cpaSueRXLe6iK9UKsjn81i1ahWeeOIJJcgpa5ifD/2aCxrfZxsa4bVvKwSJWw2CJHIIgiD4syhF30JaNGz7dhOAbhmTfv1wNyM9AKkQM7lhSRQBe8q0JJNJVf6GyqT09fUhFouhVCqh0WioTNadO3ei0Wggm80qCxQlPgBoKucyOzur5qOlen5Ur4+7TynmjqyKJLTq9boqGUPCjdongUgWOT51G9XOo+QSmn5tbGwMk5OTym3NZ/sg4UrCjVzkZH3j55cEJQAljsnSpFv50um0cmPr7m4uKAlKaFm5ciV27dqFLVu2KGsibU9WUy7avEIA3ASh7Q8JnXYFW9A4WNs2F2p+YkEQhF5iUYo+Yr5imdoVmSbXrQk3qwyP6eNTgfFEA7L+kYWJF0cG9iRRUM04XnOPYvmoWDJl7lIMII2B3lerVZXUQCKMRCW5SUmoUZ08mrN2fHwcqVRKiSU+9Rmwu3Ygz06mpBISgmThpJp7k5OT2LFjhyof09fXp4QoFWSmrGDK2KWkCd26R4kU5Mqm2TRoH+qfxkfuYVpHgo+EKhfotJ7iDvv6+rB161YAe2IuyfLKY/bcBJ/JWqwLRFMsqh/d6CLm518QBEFwp6dFn5+biT/UTNmw84XNOG32p3Gb2uPxZOT2pIQM+iOhRCKC3hcKBQB7ihoDUNZBsohRIWEqKZLP5xGJ7Cl/QlmvFLs3PT2NSqWCyclJleyRTqdRKBSajoHcv2QFJFEYi8WUK5iXRCEXNrmHSUDxZAkSl6VSCcViUc2GQYWayXI2PT3dZHmjY6BzlEqllPUtk8mo/mdmZtRyqt1Hrm06rmw221TyRv/cuLWP106kuogkosldT0KSjqFcLs+5dvTkDTfrXivXftghE2F+/0T0CYIg2NHTos/mIWR6uMx3FqONMDWNye3BbRJ+ZDWisijZbLapdIs+6wVZ+sjqRqKIatUBUFaqSqWCqakpALvdsZQoQuOhtmKxGIrFIhKJBPL5PGZmZlCpVDA+Pq6SJCi5gkQWJXRUKhUl3shaR9ZEcr/SuGj2CxJ9JHAp/q1YLCo3M50nEnt0HiYnJ1GtVjE4OKjc4ORGTiaTytJJ54DaoRk06LxRcWZ+PihhhYtmngjCPwc967ZWq2FoaEidHxJ3vHB1Pp9Xx+3m4uXXnds11G0WviCiVP9uiHtXEATBn54WffOFn2UwyANU39btAUzCjrYxjYnDa/VxixkJEl6AmU+7Rn3FYjH09fVhYGAAuVwO09PTKJVKakYKsq6RJZDETjabVTNhkKWQYuHIUlUsFpsKDPOkD3Lj8uxLOvbp6WkUi0XkcjkAu13BPC6OLHa6mCLXLs2iQQKRzwRCbl2aFo3GQZZMEru0fzQaxdTUFMrlclNRaABNBanpPcU8cjFOApAsU6bacuVyGcPDwxgYGMBTTz2lzh8JVsdxkM1mlbC1ufbc4j9tCcMybivobPvRwyFE9AmCIPgjos8CvwdROxYTatstgSPIA5uEhN4OTy7gCR0knmKxGPL5vEq8oLloSRiVSiW1H8Wz0XtKmCArFW+bijNXKhVlSaNMYl6vjwQfF6Lc/UlWRp7IwEu6kEWPhBttSyKR3KIAVGwiLaMZPsgqx/vnCSIzMzMqsYRc6PT58MQROi8kdMmaqYt7PamGrIl0nvr6+lStwi1btqhzRsIvn8+rMjFBCWq1s7W80bZeP2CC9uPWrv6DSBf/giAIwlxE9HUA21hDvzhDtzZMy/mDdXBwEH19fRgfH3d9GJKgoti5vr4+OI6jSpoUi0VVj65arSrrVbVabZr/llvtyLJFYolPD6eLExJI3C3KZ6vgyRp8/LwkDW1D4pUnTPDp10hMFgoFNfsHiSfuZiV3KVlLKTuZzgcX1NQ+recZ0sViEcBuix9ZMSkphM49H5vuPqaZU6LRKPr7+zE+Po7JycmmYs25XA4zMzPK2tcKYcbpeVmlw2iXXvPrRb8uBEEQBG9E9CH8LF9bd5spk5K/D9I2t9yVSiUsW7asyQpC8Xv0xzNzSZzQbBskcAjal9pLJpMqc5VDwkt3t/LMYuqT2uJJJiTk6PhpnPqDX5+Fg4QSz/LlAjAWiynXLBWW5oKV+iELJiWPUHxeJpNRFkp+TDRuKhXDi0HTVG8UE8jnQuazonDhSeeEhHV/fz8ajQby+TxKpZJKSKFxtWPto/47RdiJH7xd03v9uhMEQRDm0tPTsHlh+8DR4+u6hVbGQskF27dvV7M/cNFELlASHXz2CXLpFgoFFT8Wj8dVZi+JMFMGMAkXEkyUgEHWRLJo0dy51Da1xRMoyMXKE1aoHV1M0nuyMHILGY2Z1wicnZ1Vs4XQWHix41gspgpQ02whVKOQF7PmbedyOeTzedVOJpPB0NCQih+ktrmVkCyDelFpSlapVqtwHAfLli1T54USOciK6jgOcrmcKuESFlx8htmmTX/t9C0xfYIgCP4sSkufraXNZDUwJVYslAUhaIIIWXyKxSKmp6cxNDSE6enpJtFEljUSC46zeyYIsnpRbB9Z0CYnJ1WZFV6njlunKG6NW5y4JZGLO/5gTyaTTXPpcpFHLmHdJarHPpI7VrfacUslCSWaSYTc1NQGCTMaP7liuZuarJBUQ5Day2azys2aTCbR19cHAGpuXy58qS8uvHlcZTqdRiaTQSQSQX9/vyoYXavVMD093ZTwQokhuVwOlUol9GvUJvxA356Ox6Y9v76pLdvvIZ+lRBAEQTCzKEVfkKBxN3dRNzxAglo9uECamJhQ876SICOxx+d/BaDm1qWpyEjE1et1le3Kiw/zmDoSgXr5EO6q5a5UKnrsOLsLEXOBxcUaiT5u8fP6zLjLmsbJXcDJZFJZ5HjtOxLBJDTJ+jk7O4tCoaAscJTJy6dlc5zdGcZUx4/iBOv1ujpnfGzkguaimfpKpVJYsWIFIpEISqUSJiYmAOwuzzI5OalcvPrUcH19fao0TqeuWVM4gulz0M87346uiaBjtN1e5t4VBEHwZ1GKPj9sLBh+lg63xItWH7xuyRlBhB+Jp2g0iunpaWQyGSxZskRZtchVSEJDn42DRB65e8nKR22ScOPJESRAKE6OLIRU+49cvTyGL5FINNXX47GHJL64gNXPE0/UoPHTay6IeIkaOnYeX0fHRCK40Wg0nR/KPKb3NC5KOCEhR4WbSeDxuEg6HuqTkkTo86Bzm0wmkclk1L47duxQMYrpdFqV0SHLH10fdI4rlYr1daKfS45+zbXj6rX98RWGVV0sfYIgCP4sGtFncssC/mUggvZB+5n27YSLLSgkKrjVCoCKRyM3JneH8gxcmsGCW6rIFcwTLuhck6ji1jpKDuFTqHGXbTweV6VhgOZ4LP3c0ri4652vSyQSSmCR8KIkDJ6AwsWkPvMGzZ6hC0Lajls66VjofFJ2M4nKUqmEmZkZdSy8Rh+NA4CaVYPc2zTTBx0DzVBCllRyS1OdQEo8KRaLcxJqbHH7EcMtpG7be7XVKrrr3gbaXix9giAI/iwK0eeWDeuGng3qtw29X8hEDxsrIo9L45msPBmAb0MJA+RqJFFE73kcHU/SIJFG2/DZIbLZLAYGBtQ2ZIUjYUl1/igBgqyCeiweCUlT9i6HpnbjiRLUL78uKCmF5gIm8UfCkwoy61mgJHTJkkbzENM6AGqGjlQqpUQZuYz1bGQSgDwTmIQen/+XhCMVmh4ZGUEsFsP4+LiKFaS5g8OwcukC0ITuMvdqww0b62KQ9k3WXkEQBMHMohB9HNNDKUhwuZe40tsOYo1oJYi9lXZIAFDs2NatW1UGKpU2ocxbvSwLLzjMXcBk0UokEk3iimegZjIZZLNZ5HI5ZVGk9rioo/2mpqYwPDyshJI+fy4fm17ihH+2/FioT177jkQpr3HHy6dwS10kElGCjgQuiVyyulHiRqPRUNZMmod3cnJSjYPOUzweb3K90jnjMYxkJS0UCkilUkilUqoYdLFYRF9fnxr30NAQisWiSh7ppNgxCUG/TFy3/Wz6ckvg4G25HatY+gRBEPxZFKJPF2Nugs/mAeQlGlt1PQV5KHsJTr/xk2uT/mq1GlKpFBzHUYH+mUxGuRp5XByfiYInadAcvtw9yl2h0WgUmUymKeuXlxWhfcklyWPjdu7cqbJUeRwfP0632D4OzWhRr9ebLJz8nJHY5bOWUNxhPB5X4oksljw2kB9vJBJBX18fKpUKCoUCksmkEnk8YYbK5ZCbllsF6fyaLIGUdMIzjCORCCYmJhCPxzE0NITJyUlMTEw0fX5hYvoh5Lddu1Zwrz5sf+wIgiAI3vS06CPLDeAeZ+cW60f72AgzPwuEG2E/kP3aI7FC8+QODQ3BcZwmVye1wwUyCTkSIhSnl0qlVHIBFRnm55NEISUSUC0+LmAoSYH3RVCySF9fn4pxI3RRBDQX4KXxk5uUkk9oejdyZfM4NbLIkdWSu53JysfLs9BrPo9vsVhEf3+/sprSFHW81l88Hkc6nVZlVkgcU7FmsqryaeJ4pm+hUFBWPrKubtu2TcUZUv1AHpfZSbwsbybcxsSvG7+4Qb6tV5u0ThI5BEEQ/Olp0eeGboFwe2B4CTi/IPduhMZWrVaVGAOg4vW465SyUOn8RCIRFYfHRV+lUkGlUlEChc4Fd+mSRapQKChLFj20ycJF89xyoUOuVUpo4BmwBHfJcrcvbUfCkGIF6T0fqx4fSNY+immk9rlwmJ2dVSKUYvBoe2BP3cBGo6HWU2IJHVexWFSikayw3J1LVk9K5uCWWkoeicViKBaL6tzW63Wk02kVA+h2nXoRxALtZ4ELsp9Xv/oPEa82TfuLpU8QBMGfnhZ9QQSY/sAwWQD9HmJB4gVNfbQjGN3iD03tklAjd6YOT5Yg4UfTeeVyOSWKqB0upEiopFIpJej4OGh7EmUUowYA2Wy2Kd6NRFKpVGrKAtaP1e3c8xktKpWKis0DoObN5XGCXPSSmNLHT+Mi0ceTVshtSwWaqYYhbU//TQkdvAA0nSeyfJZKpSaL3/bt27Fz504lZKrVqqrFx0WvyboVxPKnH7dNXJ2+b7t4fQfdxmNaRoJaEARBcKenRZ9OEFctobuRbPuwoV2rYKuuu9nZWYyNjWHVqlVqmjUueAgSfLVaDeVyGf39/RgYGFBuyVKpNMfdRq7KSCSCYrGoXMfkGiV3Mo2jUqkglUo1TRlGrlUAyn05MzOjLF56kWU65zyGTbf6URkY/TzwadP4cdB6brmkPgA0xeyl02nVzszMDCYnJ5X1jc4tzdFLgo9bE3XBOTs7qwot03o6d/39/YjH4xgbG1NxmNytza8Hm5g60zVk8+PFKyyC7+MWNuE2LpOYd7P86dt7iVKx9AlCa1DYCPf6cG8JnxedfoAGIRKJ4AUveAFe+MIXqqkvaeKAJ598EjfffLN8f+eRnhZ9fgKs3fXtbk+0Kv7cHvB+7VJc2NNPP63mgdWtIGTlA6DciGTdSiQSSCaTqmYfAGVBIzHD4+/IYsVdqSTCSBhRfCDVxJuamkKlUlEuS7J+8YQS+s9duVxAkXWnXC6rRBJ+TniSBN1UeE1BvfYeFyCTk5PYvHmzEpRcPFJsIAk2soT29fVheHgYxWJRtUWimqyApVKpqT8+rRrN3Ts8PKzOCR2r3+ceNHzBph0v165pma3VnK+3ceXaxBPKQ0MQgpPJZPCOd7wDL3vZy9Q9m+qrUpkv/v+vf/0rPvKRj2DHjh1zxCEJOhJ1tM+SJUtw8cUX48gjj5zzvR8bG8Mpp5yCTZs2LeRp2KvoadEHuJeJ8BNarVrR9L782gvDtdsK1WpVZcz29fWpab1IpHA3KI+LI1FC05VR4gHtS7Fq1WpVxa/xIshU7w6ASjigGSbK5TIGBgYQjUYxOTnZVG6Ex9WRZSsejzdl+1K8G0HJFDRFWi6XUxZFslKSpZPOSSQSQSaTUcdG54HHOpKldPv27QCa5wzm1ik6ThJmMzMz2Llzpxoblbyhmx8AjI+PK2spr4dI/2lGjmg0iuHhYezatUv1oQsdv2vLbbnJfe63j6lft2U2YRJ+VkSbtjgi+gQhGMuWLcM//dM/4cwzz0Q+n7fa59BDD8VLXvIS5UUhAwGF5xC8/BfFh5vYuXNnYMuh0B49L/rc3LNusUF8mRtBAuLdLBym5aYHbVhxfvw1WZAoAQPYU0iYu18BKGsVsGdmDO525Na3Wq2GmZkZbN++HfV6HdlsVk1Bxtvm06vxuWwTiYTKOqXtACgRRCKvVqshGo0im82iVCop1zG3jpF7mcRguVxGo9HAAQccgHQ6PScbmM4BiVZgT+YvF3vlchnbtm3D9u3b5ySE6DX4uCWOLHl03iiT+XnPex7GxsbUXL7koualY3iBZrIo8llNyNqqX1NucW76NcK3dbteworRc8NrXPx9q0j2rhA2JGT4d8z0p69r1Q06n/T19eFNb3oT3vnOdzaVufIjGo1i//33D2UM5XIZH/vYx/Dkk0+G0p5gR8+LPhu8xJfXtjbbA2bh2emHKPXrNhYSYNlsFgCaChYDaJrOS7e8xONxFIvFpoQQchnv2rVLlXAZHx9viq3TBQz1yxNGuPuWxI8uqshNzOcGpsQMGgtvj4Tftm3bAAAHHHCAqlNIlkeyKlLyBT9GctWWSiVMT0+rGT7omEznWxe1dC6pHAxZOSlJA4ASo1SDjxI3CMq4puLP27dvbxLops/cRujYuGw5nbh2223TT5iKpU8Ii1gshiVLluCCCy7Avvvuq1yVFIfG3ZemZfF4HL/73e9w4YUXqhqdJncp7UuvadagX//613O+961CPx6B3d/BwcFBvOUtb8FrXvMavPzlLw8k+MJkdnYW3/ve93D77bfLj7V5pudFX6sPE9PD3C8oXd/fJshct7D4tdsu/BhqtRqmp6cB7EmC4IWTaaYIGiNZ3Gh2iEKhoLJiSXhRHB4JJbKwUJFmsrhRn7zeHv0Bex7SVPKEx9jRNpTwQQkNVKOOjoXHKpKAGhsbw/j4uMrcpRtsqVRSIo9utOSmpn4jkT3zC6fTaWVB5LErNGY6b7wsTiqVwsDAABqNBnK5nHL5kkgFoJJZpqenlUUzEokgl8shlUopKyQvD2P7mXvF6NlaloP+6HGzHtpi+/31246EvyAEJZlMIp/PI5lM4tBDD8Upp5yCgw8+GK997WvV9zYop512Gk444YQmgwC3BNL1rIeOlMtlvOMd78BPf/rTwH1GIhEcddRRGB4eVm7X/fbbD+94xztUvF0ul8O+++47L0YJNxqNBq677jp85CMfUc8nYf7oedFH2LqoTCIs6BfA5FIziUB921aFXquu4Gq1im3btqFWq6Gvrw/AHkFFsXBcBJLLlbteeeICFScmscdr7kUie7KASQRy6yJZ5shSR23zGTtmZ2eRTqdVJhmVYiGRRcKQhCQloJDFDYCaAYPE3vT0tHJT6+5ek1jRb85006dj5GKMLJsk8lKplLIwUixiqVRS1kz6Zc+FMU8SKRaL6le5zS/9MG7cfm3Y/ujx2jboWLxc0V6YyhMJAv9hxv8fdthheOlLX4qXvexlOOmkk9QP1/7+/rb7jEQiGB4eDrxfKpXChz70IfziF79QYR22vOhFL8KPf/xjDA8PN/3IXihrnhv33HMPPvShD6n4Z2F+WTSizy2WzoRfXJNXYLxX235j8LIuej3gbB5++nFUKhWMj48rMURCplQqKQsWzfhAsWME1eyLx+NqW7LykdWPBBvNVAFgjpuX3LWEPm0YL2RMbhAqe1IoFFAsFueUK6HEEhKW/Nzk83nlwuWiibbVz5Pp/PJ6hOSuJfFK4o1DIjSfz6NUKqFQKDS5quv1upqlhMcmktgm8UzBzjR9Gwlbm9ACHdvvQiuhDKbt2/lBwzF9JvprvW+OWPoEnZe97GX4yEc+ouqFksUrnU5j2bJlGBkZWeghzmHlypVIJpOBRd+yZcuwcuVKdc/vRnbt2oUvfelL2Lp160IPZa+le6+OeUC39rUi6vz2sRGTbmNqFRIdxWIRY2NjSKfTKBQKKlECgHLhAntizUjEURYpWdMoXo2XSeEWOl67D4ASTRx+jqLRKIaGhlCv1zEzM9MU9zI8PKzcynxqMoL6o1kwAKiYGkoqIdHL3ad6zKV+rqkf3eJHx8ktc/F4XCVsRCIRNRY+Iwm1QdOyUV0+Pg4eS0mJH2S11OP93D5nW7ibye+HQxjttev2NaH/SOPQtSoIxMqVK/G1r30NRxxxxEIPJRArVqzABz/4QXzmM59R1RRsePjhh3HjjTdizZo1GBoa6uAIW2NychL/+I//iB//+McSx7eA9LTo0wWXyWpn247ptY7JsuFm0bNt0ws/l7GX6w2AEm+VSgXFYhGxWEzFrpAwJPFCJU74lGW8aDBtPzs7q8QVuVdJWFGMG4mgTCaDSqWCeDyOgYEBlEolTE5OqhvS2NiYmrWC4k/i8TieeeaZOeVceBwd7UPu5Xg8rpIgSEDxeMRIJKKmeSNLJwBlMSQxxqG++XkgAcddvlSfLxKJNLnKqT1y1yaTyTlucyIejyOfz6sYRuqj1YxU0/XP37cSzhA0HCKM69+rTdOPLhF9Aueggw7CwQcfvNDDCEwqlcKHP/xhbN++HV/72tesvz9jY2N417vehe9+97s47bTTOjvIgDQaDVx22WW45pprQktSEVqjp0Wfm3vK5qEU1DUV9MHXSryVlyXK1lpoasNx9hQ+dhwHuVxOxcLRrBkkrHh2Lbk09bZIZFGcH7dKUXIICaRUKqVEIcXkbd26talkSSwWw8DAAOLxOJ588kmVuMFFPD9ucjVnMhkVhJ3JZJqOPZfLIZvNKutbIpHAkiVLMDMzg/HxcRXf52at4pYsfU5gnrxCsTsDAwOo1+vYsWOHUTDS+dLFFwlxEqz6sQb57PXtw4j50/sN8r0Jy8LnNyZ6Lw8TgRgZGcGnPvUpZDKZhR5KS6TTaZx99tm48cYb8eyzz1rvNzMzgxtvvBFr167tmmPfsmULbrjhBvzgBz9Qzwdh4ehp0Wei3Qed2wNWt1y024/eRhDriVccl74tX8fr7lERY0ro0OPtTO47KkfCCybz6XtIQNLDt1AoqCBqXnSZBBMJnb6+PpRKJTXfrO5qNZ0vx3GQTCYxNDSkRKw+fRsJKm51I8vbtm3b5tTb0/tyHKdJ9JLI4+ViyN1L603u6EgkgpmZmaa2yPqYz+dVAgjFAFIMpemztMF0fZrOn22Igt5OK2PiBBWxNuiflbB3U6lUsHnzZhx33HFdHePmRavPmZtuugn/9V//hZNPPrkDowrGn/70J/zDP/wD7rnnnjmJdMLC0Jvfhv9H0C+FKSbI9OAJak0LiskN7denl9DzEqg6JPxisRhyuZxy91arVZV5yxMlSOhkMhlVhoSSD+hXG5UCoFg3CkCmxAW66ZJbNJVKYcWKFQB2iy+yxnHR5mbtohi6oaEhLF26FLlcTlkp+T48EYKmfpuensbs7Kwq6sxdxnosnz4GLmwprpEEIM2gQRZTvp8poSUWiyGdTqOvrw+JREJlPZPllNdP9COopdpkBXS7nt2uL9s+3bYJ40eTaQxi6ROIiYkJfOADH8Af//hHnHfeeXje85630EOyplarYcOGDbjooosCWfmIXbt24fe//z1OPPHEBRG8FKt9880347Of/Sw2btwoMXxdRE+LPsC7xp7btm4EjQNs5cHl5iIO0/rh5+amJA7HcdSctcPDwxgbG1OCiCxnsVgMfX19WLJkCaLRqFpP8XJk9SPrIVmt9DIrJNbob9euXapuHs/Q9YKye4eHhzE0NKRKEXBhxV2rfNo2smoWCgWVVGFyW7qJa6rtR21SLCMt27Vr15zMYmqTrKEkqNPptIpBrNVqmJqaQrlcnpOp7PX5ui1zi6ULy9XrNjZTbG27SSNB9necuXMUC3s3Y2NjuOKKK/DQQw/hYx/7GA444ADst99+Cz0sX372s5/h7LPPbgoVCcqPfvQjvOUtb8ELX/jCkEfnDj0Xrr76anzrW9/CY489ppIFhe6hp0WfbexS0Ngir+2DxA267d9q3277tzIWsnhFo1EsXboUiURC1aeiWnfxeBy5XA59fX0ol8uYnJxUAohi9UisUPHmoaEhZTHkblJyXfJj5MkaXsdErtD+/n4MDg4il8spSx6wx7VH/0mYURILlUOhpItkMqmEFndjE1wQcjduLBZT8Ya0LpfLIZPJ4JlnnlEJKdQGsFtsZrPZpvGSoKYEG6rlR8di8/l6xSDy/WyFn1tco+32pjg/29g/t3Zt+yfBJyVbBJ1Go4Hf/OY3uPvuu/Hc5z4X//t//2+cffbZqm5ptzE1NYVrr71WzfvdKo899hguuugiXH311Vi6dGlIo3PniSeewEUXXYQnnngCDz/8sBRd7mKi/pvs4bLLLsNLX/pS9PX1Yfny5TjttNPw6KOPNm1TLpexfv16LFmyBPl8HmecccacmjybN2/Gqaeeimw2i+XLl6vpalohrBg+W9q1xHntH8RqaduXn6u3UChgYmICpVJJxZhRrB2JFKrNR8WKKbYP2D11WDKZVA9dElk89o0gwdjf34/ly5dj6dKlaoYNnjRB1eTT6TTy+Tz6+/uVK5TEKk2nRhmxVBS5XC5jenoa4+PjmJqaUtZEch+nUin09fVhaGhIxfhls1nk83kMDAygv79fJYak02lVUNlxHFWYmRc9HRwcVOcqFoup+YhJlNTrdRSLRczMzKBYLKJQKGBqagoTExMYHx9XLmf++btdF6ZYR9PnbRJ6fmEMrcQN6n3or03YXNt+7ma9f3ofhujrxnuc0B6O42BiYgL33XcfLrnkEpx55pm44447utLlWKlU8Ne//rXtdkjsfv/733dNnti+fTtuvvlm/Pu//ztuu+22lmPunn76aZxzzjn4t3/7N/zxj38UwdflBLL03XHHHVi/fj1e+tKXol6v4x//8R9x8skn46GHHkIulwMAvP/978fPf/5zXH/99RgYGMC5556L008/Hb///e8B7LYwnXrqqVixYgX+8Ic/YMuWLXj729+ORCKBf/7nfw7/CGEntOh1mG4wrz71IHrbvk0B+Rw366epfbKMTUxMYGpqqmk9TUVWLpdRKpVU0WAAKv6PijsnEommWTW46KN+ycrW19enkit48gXFY5FVj4+PrHaUXUyzWNBrmn2DzxxC1j0AykpHiRaUgBKPx1Gr1ZTrln8OfFsSpCT6qKh0KpVCNptFuVxW5WD6+/ubEmcoUcbr8zR9jm7b+WFKzrARUUEJYg13s97pgtTGKuglYsNI5OjVe5xgR6lUws9+9jMUi0V86lOfwgte8AIMDg4u9LAUFD4TBoVCAZdeeilKpRJe97rXNVUTKJVKuPzyy3HjjTei0WjgwAMPxI9//GMceeSRgfv57W9/i1tuuaUrRbQwl4jTxie1fft2LF++HHfccQde+cpXYnJyEsuWLcN1112HN73pTQCARx55BC984QuxYcMGHHfccfjlL3+J173udXj22WdVNfSrrrpK1SWymTJmamoKAwMDTQWB28Umps7kLuvUhW7j9gzaXtCkl76+Puyzzz7YsWMHyuWyElgkiHbu3KksXrxuXyKRUEKHslfT6TT6+/vV9o7jYGZmBqVSSU21pls6aRkfN8X1URYubU9WRb/j5NfMzp071dRnJEDJTczHQxX8ybJIom9wcBBLly7F9u3bsX37djWNHM9UtolX9HKDuiWVuC3T29W3D/P74jZeLxHntd72HJi2SyaTOP/88/HpT38ak5OToUylBSz8PU7oDHQfOvzww3HUUUfhwx/+MFauXNlU5FsvA9UKDz/8MJLJJEZGRpToSqVSyGQyaDQa2LFjByYmJvCzn/0M27dvx6ZNm/DrX/86VKswzfRDYS/0Q5pz9NFH4+abbw4sgIvFIt773vfi2muvFdE3T7R7f2srpm9ychIA1ByDGzduRK1Ww5o1a9Q2hxxyCFatWqVuiBs2bMBhhx3WNP3N2rVrcc455+DBBx/Ei1/84jn9VCqVJmvJ1NRU4LG6PYAIPSbK9MA0PWS9HlxhiUK3IP2gIo7jtj/vY3p6Wv3yJOtXqVRCJBJBf3+/co+WSiWVJeY4DlKpFOLxOIrFIoDdoimfz6vsXl6eJBLZXVxZP78mi6Y+KwYt12P69Ha4xY7qB9L0cVSYmsce6uctnU43fd4Uu0dTr01NTanklVKppKykftX0w7w2/Pqha9tkZW4F22tc/z7wZSYXren7o3833cbTiZItvXSPE+yhwvV//OMfcffdd2PDhg3YZ599lLcgn8/jrW99K9auXdvSHLrAbovvFVdcgVtvvRUjIyNKbI2OjuL9738/Hn74YVxyySXYunUrnn322cDTrtmiX1tutHI/mp2dxZNPPimCr4doWfQ1Gg28733vw/HHH49DDz0UwO5sKYpz4oyMjGBsbExto893SO9pG53LLrsMl156aatDNWKyCrnFPfk9bLzeh0mQ2KkgbbmhZ7jSQzUSiWBiYgKO4yjXar1eRyaTUTN8kLCKRCJzplMjtyfVrjM90HVrGxdv09PTqjwKHyv9SjeVO3EcR8UkkoDliSRuop4sl1x8ALt/PedyOezYsaPJUkkuaNrey5Jlk7Rg6/Z1s/55/dAJw+rnJdy8vjutjM3LagiEPyNHr9/jBDscx8F9992H++67r2n5zTffjLe97W1Yu3YtXv7yl7c0T288Hsejjz7aFBf6pz/9Cb/5zW8wPj6OZ555pt3ht00+n8eZZ56JfD4feN9HH30Ujz/+eAdGJXSKQIkcnPXr12PTpk344Q9/GOZ4jFx00UWYnJxUf0899ZRxO108eFkjdGuQF25i0Ktvv3ZtYpf8rBudwmSR4X8k2ur1OiYnJ1XpFipHAux+YPb39yOVSqnkC3ItAFDzzFICBtX343+0PRdyNHVcoVDAzMyM+qNSLFQcmlwZ3KVB/VA8Ik+gcLs+yKpI54KEI7mw6bj088bb0NtsF9N4Cf26sbl+gmzr1g9fbrLs0bht++XH6DYu/fsddp2+brzHCfNHuVzG1VdfjTPPPBNf+MIXAv+oIC+BTrVaxaZNm7pC8AHAS1/6Urzzne9UyXlB2LFjh+sPGaE7aUn0nXvuubjppptw2223NdU9WrFiBarVKiYmJpq237p1qyrGu2LFijmZbvSettFJpVLo7+9v+jPhZq3R8bLutSu2bPr02q4bsDmHBJUecZzdU71R5i3FyKXTaeXWnZmZUW6GeDyu5vA1CUu/8fH5gXmNPr6/yYqn1/Pz6pOSQUyihUqw0JzF/HxRAosN/HqzFWhBr1G/a8/P2mjC5kePvp2bK9jN2srXm5broRdhWvq69R4nzC90X/vBD36AG264IdA1Fo1G8Xd/93d4wQte0MERtkc8Hsdpp53WcvwoJbcJvUMg0ec4Ds4991zceOONuPXWW3HAAQc0rT/qqKOQSCRwyy23qGWPPvooNm/ejNHRUQDA6OgoHnjgAWzbtk1tc/PNN6O/vx+rV69u51gA2IsprwenboHg/92WcfEQhoUuyIM4zC+d/iD1etjy/sk6R2VWqOzLkiVL1Ly6FFtCsXnpdFpt59W+CS9LF1+vfx768dEy0xjIqkeWTYo/pL9CoTCn1iDfZyFuhp24XrwsbTbWTO7mNZ1/v374OrdrJSzR1wv3OGH+efrpp3HhhRdi48aNgfY7/vjjcf7551sl7ywES5Yswcte9rKW9p2ZmcHVV18t0x/2GIFE3/r16/G9730P1113Hfr6+jA2NoaxsTEVsD4wMICzzjoLF1xwAW677TZs3LgR73znOzE6OorjjjsOAHDyySdj9erVeNvb3ob7778fv/71r/HRj34U69evVyU2ghJUZJlcuyYhw+OT/Nox7dsOfi63INY4L8ISADTv7vT0NEqlkortoyw5iqWbnZ1tWseTJHj7fscUxG3J0YWeSUTQMkoWIfctHQMVpyYXNCcejyuXTlD3vq1gsw1HCOM61MflJbr09Vxw6985t3ZMP7D4Pm4i03HCqdPXrfc4YeF55pln8IlPfCLQ1GiRSARnnHEGVq5c2cGRtU4mk8GBBx7Y0r733ntv048foTcIJPquvPJKTE5O4lWvehX22Wcf9fejH/1IbfOlL30Jr3vd63DGGWfgla98JVasWIGf/OQnan0sFsNNN92EWCyG0dFR/P3f/z3e/va34xOf+ETgwZusYX4WIH07k+Bwe1jp23kJQrextkoQq4gJ03HS61baNrlRZ2dnMT09DcdxsGTJEjjO7rIsVOSYxB9lzVISB4kpL6srf+3nAjRZ+2zdx7SexCq5j8mCR7UB+Ry+fHz5fF4Vs7Y9b/rx6sesC1TTer0Nt3VhYRJ7Nj9ETMdu2td0Tbq1T6/DsDh02z1O6B6o4PG9994baL9sNtuVoi8SieD4449HNpsNvG+1WsVVV12lKjQIvUNbdfoWilbq9Hk9hExiwqtdPwugW99BY6bCemCTW5JKpQQZg96OSVjxcVJNqpUrV2Lbtm2o1+vI5/Mol8soFAoq/i+Xy6kioZR8wdtzExN8bG5C3m3M+jK380vWvL6+viZX9MzMDBKJBPbdd1+kUils2rSpqRRCNBrFihUr1HGbrFJuYinoZx3EimZDkOuZtjeNyWZ7P4HX6hjf8pa34Pvf/36odfoWCqnT151EIhGcdtppuOGGGxCN2tlMHMfBN77xDZx99tkdHl0w8vk8/v3f/x0nnnhi4H03bdqEl73sZTL7xgLQ7v2t5ezdbsXNIuJm5fFy77lZh9we1H5C0W8bt7aCupdNtFvl3Usg8deO4yCbzWJqakrFsZDbjSxojuOoDFuKlXOznnpZbt2sdm6fqcny5XY9RCIRlfnrOE5TAsp+++2nxq9DZWi8BJ/beG0skF7LvCyIfujXdyvXtgmT1VXf12TJ9LJMu1kwZZozodM4joM//elPePLJJ633iUQi2Hfffbsuri+ZTLY0Awew+3kiVr7eZNGJPo4ev8WX2zwYvdxkthYKLhC99vFyxfkt93ogU582M0MQXgLDT4xSeZXJyUkV20biiVy5juMoF6jj7JnWjI/ZTbx7jTnIct6XaRmJPho/WSipZt/k5OQcIc33MbVpckEHHa8+Rr5PkPPl50I2tWMSzCarty7gvQSd17hslvP1ElAuzAdPPvkk1q9fH+hHxpo1a3DwwQd3cFTBoXJarUDhLkLvsehEn61g0dfZuhD1dW4PWjf3p9cDsFVPu5f1shWXnZdlzKtvOo9PP/00gN1Wr3w+r8q6kDuEz8BBM2ToNxC/2Df9ON3GZBoj7et23mhuX4o5pPmEKfZw586dqji1vr+foDFZRt2EoJv1zetHi60l2eaHiKlffWyma9n2x5Dt9m7faf0679SMBoLAcRwHf/nLX3xn3OGkUqmm0j8LTTqdxic/+cmWZxsB9iS6Cb3FohN9HFvrhZv4chOJpnX6w9vL7WYSM60KPjdsH/4cL7GkL/OyrFWrVQwMDKBer6NcLiuXLkGxmCT4IpHInPjMIJYhm3MXxLqby+Wa4nX4NRKLxTA+Pm50bdDsJLZjNwlmv+1M7eri0RY397Bpvf4jh/er7+/23TAdr+0PHz+rIyDuXWH+ePbZZ/HLX/7SevtIJIJ3v/vdLRVA7gRHH3003vjGN7ZsrbvhhhuspnYTuo9FJ/qCuLjaaV9f5me54G6wTo1N7y/MdmysftxytH37diX6kskkBgYGmgopc1FFAsAUGB22GNbHq5NOp5HNZpUQBaBcuiRMKW5PbyuTyag5eEkgegV76xZVG9emlzALeqx+16zXjyXbMdi2wbfR27O1cIqlT5gvSqUSPve5z2HTpk3W+yxfvrylqc7CZmhoCFdccQWGhoZa2r9YLOL++++XcIoeZdGJPjdLlI2lwLTOy/3r1rfpAa632Wrskh9B9vc7LhsxYhIkjuNgfHwcExMTKsavr69P/cql+EIeZ2g6JzZCM8h2+jhNbWSzWUSjUVWahaZwo/mEaVo43WoVjUZRr9eV8IhEdmcAB8kwp/10i5lJAOnvg54D23Ntstrxbd2uEV3sua33EptuVnq377Y8hIT5ZOPGjfja175m7eY95phjcMEFFyx4Qkc0Gm2pTAvx7LPP4s477wxxRMJ8suhEHxBusDh/qHm5qbza4w8rN8uH3wPNBhtLnP7exhJjI3z1dRTHR4WY4/E4li9f3iSEyPLn1oZprJ2yktJnQzOL0NhmZ2dVEkoikcDSpUvnzKcZiUSUIKRsX8dxlGAMaq0M8gPFZj0dn9syG/eqX19eIRFebbUi1k3fJzrfgjBfOI6DH//4x9i4caPVdzyVSuGkk04yzsc7XySTSbz3ve/FqlWrWtq/XC7jO9/5DsbHx0MemTBfLDrR5ybOwmqb/6fXfi5lU9C7VwC/ad92x2zTlltMn8kFaWO5oTp8hUIBxWIRz3nOczA4OIhIJKKSJIA95WRaPdagQtm0nix7fBuy8NH4otGoqg+pQ1nJ3I0ftC5iEFoRv/pnZ2vZ0/GLP7Q9Zr8fTCY3r9cPJbeC2ILQKbZt24bzzjsPTzzxhNX22Wx2QV28p59+Oi688MKWheeWLVvw3e9+V+L5ephFJ/qA4BYEW1qNx3N7kLYiUG1iq0xiMoxx28KPpVarqWSOdDqNffbZB5lMBo6zO3OX5ql161NPJrBNdjAdi5cLM5FIqJlDgN0V5ylrl/4cx8GWLVuwc+dOY9u8HqGX+9JrzEEEU6sE3dckqltxM+sW8lYt8qbt+PkXhPnkwQcfxJe//GVMTk76bnvIIYfg9a9/vXVh5zA56KCD8N73vhd9fX1ttdPJOGuh8yxK0QcEt2rZYBtfZnrvFpgeNCbLTdD5xVSFhY3w1a2LpVJJFWJetmwZli1bpuJaHMdRok8/DpNI8OqTu+FtILdsLpdDX18fUqkUUqlUk1uW2oxGo6hUKti2bRvK5fKcz3N2drbJ0mQj5E1j7ZT7msbkJ8hM49bHaZO04bY+qBtY//54CWURfcJCUKvVcO211+Khhx7y3TaVSmHdunVYsmTJPIxsD8997nPx1a9+Fccff3xb7WzYsAG7du0KaVTCQrDoRJ+t29TGGhEmNmIwyP5eAfB8vdfDMgjtuMtrtRp27NiBsbExpFIpHHjggao+lElsBPncbOIr3dqLx+MYGBjA4OCgsjpSIelEIoFUKqWEUjweV3F7eh9kBfQav8lFrm/bCcGn99mOYLPd1o+g16SfdZfGI+5dYaGYnp7G9ddfb3UNLl26dN6SOeLxOI488kh8+ctfxpo1a9qyME5MTOAHP/gBZmZmQhyhMN8sGtHXajB7K+20i1+ckmkMtrFPpv3DELJ+cYsm+MN9ZmYG27dvx1//+ldEo1GVyUs3IZMl1M3y5xXXZWMxJXduPp9Hf3+/KiMTiewp+5FMJpFMJpWVjxeR9hJ9frFuXsJwvtwmtgIvrB8MrY6D+vb6vPUYUkFYCGZnZ3HvvfdaJTjQD8hOE4vFcPrpp+PGG2/E6173urZdyjMzM/jLX/4S0uiEhWLRiD6g9axdNzrxsDNZ4Frtx+ZY3SxMtu20MiaTsKlWqxgfH8euXbvw+OOPI51OI5FIKCsavyHpNydd+PnFyXG3rEkUx+Nx5PN5FVBdLpfVvlRnD4By/SYSCXWT1l2IkUhkjhDU3fZuYwwTNzexSWzqcZKm/ei1bdhBu+M1rdd/CPhZ/KROn7CQ/P73v8dHP/pRdT9xY2BgAIceemhHxxKNRnHqqafi85//PJ773OeGEkOo36eF3mTRfIImS5Hfdn502t1m81A1beflmnaLvWrXwmQTy+e1XaPRUFm85XIZL33pS7F69WoMDw8jlUrNmX9Xn8XDC9P5dBMz0WgUmUxGCbWZmRlUq1WUy2WUSiVUKhWVdUvlZRzHQblcRrVanSP6otEo+vv7lSgMGlfYCm7u43bachOiYRyH13fTyyXvFt9pWg+Ie1dYWOr1Oh566CHf2NLh4WGcffbZWLlyZcfGss8+++CjH/0onvOc54TWJnk7hN6mp0WfmxvQZp9W+5pP3ALobawkfP923HTcctYuNENHIpHA5s2bAUC5enO5nHKn2rrh/cZkaieZTCKdTqPRaGB6ehqFQgG1Wg2VSgXFYlHV2iPBx8vJRCKROTF9sVgMuVyu6Wbodr68hH6QmDkbV7bXOfQSjZ1ILDEdq+131/QdcAuPEPeusND89a9/tSpc/JrXvAZnn312R8aQTqdx/vnn44gjjgi13UcffRTbt28PtU1h/ulp0eclZsK2tnQ63srLPej3IDYJCZMFpVOCN4jodhwHhUIB999/PzZv3oxCoYBqtYq+vj709/c3xce162rULaMUnxeJRFThZXpNGbtUr69QKGBmZgaJRELN0kFFmznRaBQ7duxAoVBwPV4366qXBdfWqtrOdekloDrVp+24TPiNT9y7wkKzdetWXHXVVb7JDvF4vGOWvnQ6jRNPPDH0ZJEnnngCW7duDbVNYf7padFnQn9g+L3vFoI+8HUrHhDMAmQb+2grPry2pfWNRgOlUgk7duxQs3XQfhMTE6hWq74xIySW/OL6TJYrEn18blxgT6wKWR0bjYZy5c7OziIWiyGRSKBUKs2pKZhIJFQRZ75cPx9elj0vt6pbGzbufi9ajdULw/Ln9x3Uz40+VrcxiKVPWGgcx8GmTZusfoDk8/mmkJaw2G+//bBs2bJQ25yZmcG9994bapvCwrBoRJ9uHfKyFiwkrYhO/eFuygK1jcszvfaLEfOKFTRt42VhJLFHcXK1Wk2tr9frqnQKiTA3sdSKaI1Go6r4Mrf60ftYLIZaraamXXMcB7VaDcViUVkEOZTV6xXDY4ph88JNMAZtx40wfvS0+x1qxVqrY7omJaZP6AYqlYrV9+yVr3wl/uf//J+h93/wwQe3PM2aG7/73e/wjW98I9Q2hYVh0Yg+oLXyHQuFm0jyCqg3WT38BBjgfR5MVrN2XXh+55ySKRzHQbFYRLVaVeIpkUggkUggk8kgmUwiFot5Cp4gbl/abnZ2VpVN4Jm3s7OzyrJH4yRrXrFYnHNOSETaFgX2ivVzOzYvS65+/fgJRX0b03ubY5hva7lNokckEhHRJ3QFtVptzg9EE/vssw8+8IEPYP/99w+1/05YvKemplAsFkNvV5h/FpXoMz0Uu82d62bJMY3VbewmUev2Wm/HbRu/MQdx+folEcTjcaRSKTUFGxVEnp2dRaVSQSQSwcjICEZGRpBOp+dkjJlEoI0FzXEc1ReP46M2Go2GiimkTDVq1/TrncbFb/BeFlEv66m+jf6jwPaHgc02/C8o7f6QasfS7Ye4d4VuwFTA3Y2XvOQl+PrXv47nPve5ofUf9ry4s7Oz+OEPfxhqm8LCsahEn45uEekkQfuwSbIwWS5Ny+m1m0hwa9d2HH5jp/38XK60XzKZRKPRQCqVUpa3RqOBeDyuEixWrVqF448/HvF4HJlMxlgqwCuW0LSs0WgolzJNDUeuZLLCccsiWRopzk93q1M8n1+/+jnzc5Xr7fh9JibrnZsbnFtGbb4bftfSfP6o6tV4XWHvwta9C+z2Frz61a/Gl770JVWwvl1KpVKoP4Ci0Si2bdsWWnvCwtLTos9kgTK5TLvRxWsSSW6uSrdlXu26uUT9xKCbC9IPG3HAP59SqYRMJqMSKyhzlmL6qLI9CbJ0Oj0n6Jm3ZxLEJssaZeDGYjEMDg4ikUiounzcypdMJpWlb2JiQok+3nc6nVZtm3CzSPoJOtN2fHs36y7fXz8/+jqv/t3W+1mebWjnu+h2rgShm6D7iS3RaBQnn3wyzj333FCKH//5z3/Gxo0b226HoB+4wuKgp0WfWyyTvmw+6ER/Xg/ZIJYj0/nxcg/6CRM/i55bHzRuEnlUMoWWUYHmaDSKLVu24N5770U0GlXJHlRU2e1YvSx+1E80GkU6ncaSJUvgOLvLx/Bfxdy1Wy6XXYuRkuizsYJ5WST9sBFufv2b+rZx8bYiqLzGGrZA87qWBWGhcJzgSUXZbBbnn38+nv/857fd/8TEBLZs2dJ2O8T4+Dimp6dDa09YWHpa9PnFxfXCw8A2Bsxmf76Pn/jTt3GzmLq1ZYPb+Kk0SrlcVvEv9D8ej2N2dhaJRAIzMzNIJpPIZDJoNBro7+9HX1+fb1yi2zmIRCIYGhrCihUrUK/XMT4+rn6VU3wh7RuLxVCtVpU41V279OvXyzJqEmxB4iFNnw/1p1/vftZGL+ufG/oPKLfjsf2BENYPI/28dKMlX9h7cRzHdyo2E6tWrcJ3v/tdHHnkkW2PIcykpkceeQQPP/xwaO0JC0tPiz6TpcJLvIRFmA8Zm4ei/nAP2r/uWjX1F9Z5sokRoxk46MbUaDTQaDRU1luj0UClUkEymUQymUQul0M6nUa9Xp9j7dPb1l2j+nhoDuCJiQmVyBGJRJT7NhKJqH4dp3kuXk4kEsHOnTt9g6Z1UeJ3frxc+fyY/MQkPwde7Zl+LPmNzw+bttq53kTkCd2ObUY/JxKJ4Oijj8bXv/71tuvstSI6hb2DnhZ9Ol5WnzDplAXRzR3KcbNyBXV16e3YCBPbc+k3Bpr1glvWyKJGImx6ehqVSkUFRdMUbZFIxNPl6ufqLxQKyqWri8NYLIZUKoVly5Yhn89j6dKlSCaTyv2rtxckWNpkNfMS+abPk1v5vOL9vD5Pt7jCTv2QaWeboN+zXrDsC4ufWq2Gu+++26psi4kjjzwSb3rTm9r6ToY5Ow2VthIWB4tK9PUaYVhXTA9vN/dXq5a9VgWlCYqjowLIvG1K5qDkjomJCdRqNczMzCAWi6Gvr8+Y0BFkLHosG60nl3N/fz9Wr16tYli4hVXfh0rMtCs2TPF1bkLN5M51i8/Ux6sLQr3fbhJNXjGngtDNVKtV/OIXv2jJ2gfsrhrwnOc8py3RF6Z7l5LrhMWB2WTSY7Ti8jS1Acyv68gr/sn0wNYxjdl0LtzOj2m5yQ1s87C1PW+RSAT1eh3xeBx9fX2o1+tqhg49Zs5xHPWLtVqt4uCDD0YymcS2bdvUesp2M02Dpo+dltO2fB1l66ZSKWzZskVZA/VSLfzmF8RCpn9WXp8Jb982Fs/Lpc379VrWTW7TIGPhFlBB6AaCZvDqtDtvbpjuXRF9i4tFa+kLar3oxoeGVwwXrfez3rmJC7fjbfVGFWQ/KoKcyWRUrT46RnLvAlCCENh9E5ucnEQul2vLNek4joobpD6pVEs0GlWJIrQN/VFffIo4mj3E1p1pcj3r27jt65fg4bafvs98W8vC7M/0fQjjB58ghA2VhmoV2/uKG2Fa+hKJhGtIjdB79Lzo0x9sukBaSMudzXo3q5pfWzZxd/qD3jZg30+cuG3rNS59GyqUrP+K5C4REma07NFHH8Wtt96qZu2gbbxuriZLqW6tIxGXy+WwdOlSPPvss0qYurmHg4o+L9xEbCsxbX7CvxUXf7clXbiFLAhCt1Cr1doqkLzffvuhr6+v5f3DtPTts88+OOaYY0JrT1hYel70+bm8bLabj7G4rfdzzZq282rbzaLjJyZNbkQb958p0cCP2dlZzMzMqDl3dQsOzZRBy0jYRaNRFAqFOdOe+Z133aVKbfJ4PioMvWvXLuzcuRO1Wk2JTX5MNJbZ2Vk1V3AYBVX58fA+abymBA0vC66NcBfBJAid4a677sJ1113XclzfiSeeiBNOOKHl72iYiRxDQ0M49NBDQ2tPWFh6XvQRbkHrRDc+4HSxEiQ+zC3+z9bdR/t5xZD59es1bjchRoKrUCigUqmgWCyqbXnNPp4xRrX7SJiRdS7oZ0puW/1GTG7barWKLVu2GGP5aOy6qKaxtApP0qD2+Lj0ZTZu/nbGYqIbvjte7uluTEQR9m7Gx8fxne98B4VCoaX9BwcH8X//7//FkiVLWto/TPcuAKRSqVDbExaORSP6/ALku5EgyQ+ESfCZ3IEmF5ib69st+UNv0/SeL7O1LjnO7or1tVoN5XK5aRwkoGgqtEhk98wXkUgElUol0GTmJkh08nHTvL/1el0FYMfjcWMwNe+bMpApLtFrWy/8rK/6tl6fZzsCqJu/N24C2E0wC8JC024yx8tf/vKWCzWHXadveHhYpmJbJPS86PNzQbYbj9RtDxK3eC/TWG2C3ef7GPUxUWwcWfUoUYLi9sjdG41GVaFkXki5lQe+7jol924kEmmyAnoJTC4eg7pPw7BMmdy4boK+1yxgtmES3fj9FASi3WSOWCzWstAK29L32te+Fvvvv3+obQoLQ8+LPsDdwtHuw66bH5j8mL22IXSR5LefW3KBW/vUR5B2dXctsPtmxS2BjrN7SiN6zePy2oGPg8cV1mo1JTyTyWSTINShYtIkQoP27fV5mCy6tvGrbv0tJK2I8jDaEoSFwm02H1tSqRROP/30lsq3+M0UFJSnnnoKk5OTobYpLAw9LfpMMWg2YiXsMXQak4vVza1rEgedfOByi5PfvnxsFF9H8XQkrLglj7LfKGnCy7oZ1JVKljqaHaSvrw9LlixRWbzJZBLpdFrFFtL4eJ90Q/e6sYf1w4H6NbUXRPB5uec7Sbf+eBKETkE/VFslFovh1FNPxejoaOB9H3jgATz99NMt963zl7/8Bdu3bw+tPWHh6GnRRwR9EIbdd6fb9gvk99qXXgcRZBzbxA0b+H40167j7J7+jOpA8TGQ+ONuVN01axKcQWIlyZIHADMzM4hEIliyZAmSyaRyr9D4TD8oqtWqpyvFy+3uN7agBBHBJlewIAjhQXOJt8PSpUtxwAEHBN7v4YcfDk308R/gQu+zKEQfYFdepFfwsg65Hace56QLFD/XoJ+lTheOrZxfPga6ifBsWmqT3L6m2D3TcepWXhs3KD8eSuAoFouIxWIqaLlSqahkDT22hu8b9IbYiWvT9vqXpAdBmB+GhobaLmociURacu/SPS0MSqUSfvzjH4fSlrDw9LToM8Xv6YKpF91KNu5SWze2zUPeT+z5bRMEGiu3nJGljCxuAwMDWLFihZopg8bh5t7lbk9bNzPfrlQqYdu2bSiVSgD2CNGZmRkUi8WmOYH1PoO6cNpx99pYbG3b6RW6Oa5WENwYHBzEF7/4xZZLrhAU/hIUqiUaBpFIROL5FhE9LfpMVh56rce9hdHXfO7XLYQ9fvpM9F/AuVxO3dwSiQRe+cpXqpItfCx6TB0lUnjFvHkdC7l4+U2yXq8jnU6r7N1oNIpsNttUmoXX8QuaxNHutdSuVXshr8lWxtrr3yFh7yOVSuH5z39+2+1EIpGWauTVajXceeedbfcP7KmoICwOAn2SV155JQ4//HD09/ejv78fo6Oj+OUvf6nWl8tlrF+/HkuWLEE+n8cZZ5yBrVu3NrWxefNmnHrqqchms1i+fDkuvPDCls3QJitUUBdkKzFyQQjDSmGqxxak/U5ZSlppl1ylyWSyaTYLbtUrFAp40YtehOXLlysLm1sGrZfA84ql4+c0n88rERqLxVSNq/7+flWvL5VKqfFS23IjDE5Y34dO0W33OKE3OeaYY9Df3992O+RNCMrs7CyuvvpqPPLII22PIR6Py71uERHok9xvv/3w6U9/Ghs3bsQ999yDE088EW94wxvw4IMPAgDe//7342c/+xmuv/563HHHHXj22Wdx+umnq/1nZ2dx6qmnolqt4g9/+AO+853v4JprrsHFF1/c8gG4iaGgWZ3djI371m//Vvpsdxsvy5rjOCojl25sdGMpFovYuXMnXvSiF8252fh9rraCmCeIUAav4zgolUrYvHkzjjrqKBx00EGqvV27dqFUKqnx82niFppuGMN8Eab13kQ33uOE3iISieDII49ENpttqx3HcXDDDTfgu9/9bkv7P/744/j7v/97bNq0qa1x7NixAxMTE221IXQPEafNJ8bw8DA+97nP4U1vehOWLVuG6667Dm9605sAAI888ghe+MIXYsOGDTjuuOPwy1/+Eq973evw7LPPYmRkBABw1VVX4cMf/jC2b99uHbA6NTWFgYGBJqtLpx8GYaMnV7Qyfr1sS6viLmhMGnczBi2VQuVQeOFScmFUKhUVV/eSl7wEuVwOd955p3Kz8n6ptItpfH7Hxs9TNBpFOp2G4zioVqvKEnn44Yfjb3/7G8bHx1VhaO5eplIuhUKhY1acTl7T8/190T+LoNedDZRlODk5GYqVhVjIe5zQe+RyOTzwwAMtZd1yfvGLX2DdunXYsWNHW+0cfvjh+Pa3v42XvOQlc9bxEBXHcYyJJ9/4xjfw3ve+VzJ4u4R2728tpxbNzs7i+uuvR6FQwOjoKDZu3IharYY1a9aobQ455BCsWrVK3RA3bNiAww47TN0MAWDt2rU455xz8OCDD+LFL36xsa9KpdJUbHJqagoAfAWfTRKClzCYj3Is+rIgD+Kgrmzbcdj22YpYJAFHIm92dlaJOApabjQa2LRpE3K5nOpTt3b61aZzK3ejv280GiiXy00xoI1GA/fee29TvCCwxwVNpVxGRkbw3//9377H3Cq2CSm9gP55BQmrcDtG/TMO+/vaDfc4Ye9kfHwcV155ZduCDwD+/Oc/48wzz8R73vMeRKNRVKtVde+tVCqqEH69Xseb3vQm9Pf3o1qtol6vo1Kp4Jvf/KYIvkVEYNH3wAMPYHR0FOVyGfl8HjfeeCNWr16N++67D8lkEoODg03bj4yMYGxsDAAwNjbWdDOk9bTOjcsuuwyXXnqp6/ogsV6225kyRTspAtux8nkta3UsnTpWerCNjIyociexWAyVSkUJrGg0ilqthunp6TmxfNwt63cMHK9zw29oXPgRvAgzrSsWi3j66aeNVj7bLOJ2CVtQdkJEhi18dYuv17at0o33OKG3qFarLe/rOA6+/vWv49e//nVo43nkkUdw4YUX+iafXXvttSqxDYD6USwsHgJHZ77gBS/Afffdh7vuugvnnHMO1q1bh4ceeqgTY1NcdNFFmJycVH9PPfUUAG+rk8k61A7dFjdlOvZOZnH6WUuD7O84DrZv345yuawsf/xGlEgk5lhvyApIy9r9PFoVI9R3tVpFoVAwCtD5sr4FPQd+560T43aL6wyzvbDppnuc0HvUajX87ne/w8zMTEv7/+53v8M3v/nN0OfPtZkycnp6GpOTk5iensb09DQKhYJY+RYZgUVfMpnEQQcdhKOOOgqXXXYZjjjiCHz5y1/GihUrUK1W5wR8bt26FStWrAAArFixYk6mG72nbUykUimVTUd/gN0UU4sNOkYulNpx7ZqsJm5WRL8x2fZZq9VUTF+j0UC1WkUsFlNz3abTaWOsIs1124pwsbFe+v1I4Ou9BFQ7wiRINnYnRf58hza0007YY+2me5zQe1SrVfzDP/wD/u7v/g6bNm2ytvo1Gg3ceeedOOecc/D44493eJTC3krbediNRgOVSgVHHXUUEokEbrnlFrXu0UcfxebNm9XcgaOjo3jggQewbds2tc3NN9+M/v5+rF69OnDfekxbO27ebsIt/kn/7ydSOiFK2oXcszSfLok4muqMygPwgqRULNk0/y4nSDaxTTykLqptRXY715yX9bpdka+370avxArq56pT3/WFvMcJvUmxWMRtt92GV7/61Xjf+96Hu+66SyWp6TiOg2KxiM997nPzYlUW9m4CxfRddNFFOOWUU7Bq1SpMT0/juuuuw+23345f//rXGBgYwFlnnYULLrgAw8PD6O/vx3nnnYfR0VEcd9xxAICTTz4Zq1evxtve9jZ89rOfxdjYGD760Y9i/fr1LRWgBJoFkOlh1QsPLx23Ywgaw2cjgriQDCvD0iRcdOsUT5Co1+solUqqdMrg4CCq1SqKxaLalrfhNj7Teloe9Fzx89FqEkK76NZOWze6V5xqUFf8QmMz5jATObrxHif0LmNjY7jyyitxww034J3vfCfOOussZLNZrFixArFYDM888wyuv/563H777bj99tslgUfoOIFE37Zt2/D2t78dW7ZswcDAAA4//HD8+te/xqtf/WoAwJe+9CVEo1GcccYZqFQqWLt2Lb72ta+p/WOxGG666Sacc845GB0dRS6Xw7p16/CJT3yipcFzMaRbZPTtesV6YUO7iQJu4rhVt6HfGP0exo7jKNdtvV7Hrl27mtzXuhClffg6PyuvLqBMmZ9u8Wc2buFuSfLpRcu2F14JJ/pnGMZ12233OGFxsH37dlx++eX43ve+h6GhIZx44omIRCK49957cc8990iyhDBvtF2nbyGgGlbpdLope3Kxi735IkzLSSufAReLYV+eXtZALzevG0EEnx5D2YNfva7BLe60E3X6FgKp0ycIgol27289P7eKbs0Jy727EEJxvkWAn4XE1hVoOud8eVA3KcX9uSWaBMV0jejjtk3g8GrbD694vU4SJDmkV5AfcoIgCMHpadGnW6RM7r5WY9Js9gv7wTMfbkI34WEretwEkJ8Fy/R5BBGbYSVHmNoyta3HCvaaKApCL1nDFyq+UhAEYTHQ06KPF+51swp18mHWiQeOn0BphyBtucXK+Qkkr2W2bls9OSds/KzBXlnPvSKOOLaJEL2CKdZTEARB8KenRV+rwdw2iQW2/XcKk+jSM2HDbldPvHBLptDb83Jbeok/L7pFiOgJQq1cGwt9LGFcL92Cm3teEARB8KenRR/Qmhs3rIdFGCLMDa9M0nbH30osW9AHrUmE24omt+QKG3dwGJ9tO8dNdJNYauecLFQcoi0i/ARBEOzpadHnFmfWSTHmNY5u7ctLFHmVKvHqk59zP1dwkNIq+vZe23n16UUrAk63hgZpaz4SKbwssWH3FVYbXgT5jLpRjAqCIHQjPS36CLnp++Mn7GyW6+5et1p3fkkdenteD3gbV3zQz79dd6ee5OGFX/yg33Kb8fi16zfesFzWrSZNmWilDI4gCILgzaIQfXocmul/LxOGFchkdXOLv7MRBm5uWzdBqL+m9wv9wPYTuKbtgwjoTmebBj1/Jgtt0HG57dfKZ2ljofQa20JfP4IgCL1EoBk5ug09xs3G/deLhH0MNkkvbhakIOeaW/7mQ3yH2Y+Ny1vPMm4lvnQ+8LMutiIc/dpuF9O5XgzfZUEQhIWkpy19bgH/nFYfwN324LbFL37OL3FDf+/nPtT35RY/0zIbWi3HEfY++rF4ubbbGcNC0wtjDsudLAiCsDfT06IvGjUPX48rA7rvAdGO1cLP3RVmdrKbdctrTCZXsu0+1E+3WXX0eEW+3PS6lYQPUzs2y93W27bTbefalsUguAVBEOaTnhZ9HP2h7PVgs3nIdfpB2M4DyraMhltsnldcH7XvJ3Bs+jOVPnHbx8aSM9/ixORWtB1T0IQPmzZtra227XSjSPISqm4/Imyt0YIgCHs7i0b0BYk9azVofT5pJaOyle2D7K/H53kJOpPI1h/afuJjISw5bmN069/GFd2tYqQbx9VK/OF8xYwKgiD0Oj0t+mKxGABvK1G7Dzabh74NQR9KYTyQw3Tzmiwtbm5ct8/DJPK6zZXrJlD19W7LuJU0qKgVzJi+yyLyBEEQgrMoRJ8bfg/dMISY34O7FfEZ1gPNTaR6CS1dyJnG73Ye/ASTbcxZJ2jFomkSc7wtN3GrJ4C06i5vddtW6VYh5fXZtZr0IwiCsDfS06IvmUyq1yark9trTrc9TPUYsjDwEiduMWoma5VJ+PDXukD0sui5Wf70Mdoss8FP7Nrs7+X2dUscCuv6CjruTl3X7Zz/VvezTVwS8ScIguBNT4s+svS5JRCYEgmCxJR5YeuyCyo0whR8Nu7FdvpzE3umtr1iLv3cwW59BKWd5Aq9bzerpW7d4/3Ol2BqdXubc9vq+W/1O+B2jYprXBAEITg9L/q4qLN1TQYJ1HfDK3jcT0x1q1uT0K1UbsdjEj50XvQ23ATXQlqwwhDjbq5bt31b+TyC7rOQPzRaxXTNeG2j022xoYIgCN1IT4u+RCLRJDQIv5grHa/t/fCy+Cw0ftYltwQNWsf/mzBZ79zcxbqA9BPbbpZBP2zEmY0o9/v8/OIaqR03t283Mp9jc7tOvLCJRRUEQRDc6WnR5+beJUzCJWyLgK2w9Nun05iSEGwFUqvYPohbcQsH7bMTSSQ2lst2Xbudws1Ky993csx+Ltug502sfIIgCP70tOiLx92nDvZy6Zqwfbi4uYb9xrBQ2IzRFO8YFC9LHl/ears22FrwwhYzfkkp83EdeB1XK2NyuybmS7y28qOj24S1IAhCt7EoRZ8eH+SWLNAKQR9Cttt32rLiFlvHl3lZLU3xkq0kDPiJiHYTHoIIHDeroq3Y8AsL4O3YhhCYXMRBrV2tuk5NfflZWufTkmmy3IvQEwRBsMfdVNYD+NXp80IXOWFaY7jVa6HcU2H1HVS0AO6uTi+XXruWRj9Mgmg+rVim5BibMXTCSuj1Y8QUaxlEAHcCr+9qL8RKCoIgdAs9LfoSiUTL+3byIdUNbl2vRIxOCVx6b3rdDcyXMPALAfASXGGM0TbswOSWNiWfBOkriFD0wytOspuuK0EQhF6hp9270ajd8PnDNAxXVDvux3b2D4qbpS3M/lvNstUJa0ytJNa00q5fVrOX69ht/yCZ0kHX++1jMz4/SIyFKfj09/P9HRIEQVhM9LTo4zNymOKnTISRUNDuQ20+XJmtip9WxmXjKmwV23g8wkt42I7HTbC10paJMK+lMAjLGhzmsejC2ebz6IZzKQiC0M30tOizjenT3VhuVpZ2LC02bXUqhtCtfy83mNuxdtOD028sunjiGad6NnHQvvTYv05YR4PE74WRfe5mJTPF8bXaRxi4xV3qInChMosFQRB6lUUj+oI+mE0PFi+B5Odemo8AfD9sLFSm7WzphKXQL77Ntj1d6HmtN/Vtim8LAz+rHrdMtnN+bYWtX6ynTVJPEPzcsX7rg1wH3fSDRRAEoRvpadHH3bucdl2UbpmWtvvrbc2nhcRWOAQRU4TJGuYmpPR1fjFaXv0GXe/VLx+n7TkIIib8rHVu59P2WgvLZd5pgcSPx2Rx1o83aDiCV5uCIAiCmZ4WfV7uXe7us7HgmESILuRMwqUV8eS1rFvQH8puAq8Va2KnRIeXldM2zjNsF7zenpe1bz7Qvwt+Fut2Ejr0PoOOUf/O+VlNxdInCILgTU+XbPGakaMVV5n+sPJ7GLcSKxZ0/3YwuQ7bcWG6WW1MfZr2tW2/lTG59eXmOrUR4UHG4jZ2rx8R/H+rPwBaEYxe4imIWG51PEHGbBtvKAiCIPjT05a+eDzekgWtVbFlekDzpAnTOLzWtzMG221s3azt9B/U2hnUpetlMdRf8/NtmzDh9/m089n5WZvdYuuCtO+G17g79YOjVZHWijs/DKukIAjC3kRPi75YLNaS6yhILJeXcAtiCfSKGQxCO8H+fH3Q2LEgx+kmolqx5AHm8ZrclG7ud794uXYFELeA2vzg0C1t3CLb6rjaCTOYb7wswUHEnf79FARBELzpadGnz8hhEwzvFxfklwTgFvtl88D3Cl5fqIdWp2Lr3I6t1fguHb8HvR6npwuFVsbjNRb+3w2v+LR2Yz5tXepen40brY6NH5etJdUvOcPPaisIgiC409Oijyx9ujvPRJAHl5t4DCLWTKLELykiLFpJomin/1bd6UGC/Vtxg7YixsLYzm1fG9E431arVuLvWonJ8zt2t/d8f5OrXCx8giAI9iwK0eclcohWLTp+AsrvvY21JQi2Yo67DG36ajdurRX8rKpey4O0Dcy19unuxE5ajHSRZOvKDeO8Bt1eF8o24wrj2vG6FkwxqiL2BEEQgtPToi+RSFgnNtgKQ78g/6BuKlOsV7sWI7fl/IHdDa7jTmNrYXSzNvHrQv/swra86oQRm+nVXxBhZLK42l4/tjF4+vXZqjAVd64gCELr9LToi0b9h28bV0TrbWLF3N67BaO3I/jCECAmS0mnaOfB7obu4nPbxiTu/Vz+pnEuhCUp7P5sr5kw+vWzmpoEpC5M/T4zN0ut2/aCIAjCXHpa9Nlk79oKPsLmgWVq36sNvixoIH2rAsRtnzBEpNc5tRFobrhZZFt1Awe1UM0XQa/JVrGJfbO5Fm3DA2zcvm6ubf0z1i2DfDu3H1Ui/gRBELzpadGXTCatrH1B4Q8X0wOFrwsa32QTM9XqmE3t6eMMKo5M6/1c4K3idV5tx+l1vKZz7+X6X0gREXbffi5ft3PO1/PXpnACvX09xMFrXH7n3yvMwuvaFgRBEPbQlmL69Kc/jUgkgve9731qWblcxvr167FkyRLk83mcccYZ2Lp1a9N+mzdvxqmnnopsNovly5fjwgsvRL1eDz74Dgg+04ORCyo/65FN3CD/Hza6mLQRe7oL3E/k6cvDjoEztc/78RJpfJ2b1TbIeN0sUza0IrCDbmeD23h14RQkrMEPkygzWR5trLG21vywWej7myAIQti0rJruvvtufP3rX8fhhx/etPz9738/fvazn+H666/HHXfcgWeffRann366Wj87O4tTTz0V1WoVf/jDH/Cd73wH11xzDS6++OLAY4jH4x21xugPKb+H+EJai9zGpo8vTAHX6dhAXRj4xQt6WbH0fU1/bvu5uRP96AZ3YxArrJc49DpPtI0uuP365dv7jXO+z2U33N8EQRDCpiXRNzMzgzPPPBP/+q//iqGhIbV8cnIS3/zmN/HFL34RJ554Io466ih8+9vfxh/+8AfceeedAID//M//xEMPPYTvfe97OPLII3HKKafgn/7pn/DVr34V1Wo10Dh00ReWm5G3p+MWc2YbNzUfeFkT/USq1/Zey+YLm779Po+FJkhMZ1iYXN6mHzWmc+dlVfXaxjSGoAJ6IT7Lbrm/CYIghE1Lom/9+vU49dRTsWbNmqblGzduRK1Wa1p+yCGHYNWqVdiwYQMAYMOGDTjssMMwMjKitlm7di2mpqbw4IMPGvurVCqYmppq+gPmJnL4WamCiC/bB5pbn6YYKC/Cfqj5PWBtrDd+uB13N4rCVoV3u/F+bp+Dn4s6LLjL281danKZ22xjM17bcIhusIoS831/A9zvcYIgCGESD7rDD3/4Q9x77724++6756wbGxtDMpnE4OBg0/KRkRGMjY2pbfgNkdbTOhOXXXYZLr300rmD/3+WPr/YHx5obotbcLqN5UsPcHfrWx+XbQxTmHiNzTQWv7hF27hH288jrCD9IOLDZAkL0h6nlesuTPTPy+sHikmA+X3ebm2Y1vEx6N+Rdo87jDaAhbm/Ae73OEEQhDAJZOl76qmncP755+P73/8+0ul0p8Y0h4suugiTk5Pq76mnngKw29LHCdvKY+tK9OonqOUrDMFnMya/PtuxcLXqNnbbrlOWQzeRE3bfNokUXtu127ffjwm35Bf9x0iQcZpi/GwEfCe/q34s1P0NcL/HCYIghEkg0bdx40Zs27YNL3nJSxCPxxGPx3HHHXfgK1/5CuLxOEZGRlCtVjExMdG039atW7FixQoAwIoVK+Zku9F72kYnlUqhv7+/6Q/ofCJHEEwPV7fYP76P6XWr/fPXrbji3Gg17qpbY+rmCy8rscmC5hZD2i5+bXiJO5tEC7d4Qb4PX+523GFZ61ploe5vgPs9ThAEIUwCib6TTjoJDzzwAO677z71d/TRR+PMM89UrxOJBG655Ra1z6OPPorNmzdjdHQUADA6OooHHngA27ZtU9vcfPPN6O/vx+rVqwMNPh6Pq7ItttYUW0yCyQbTg85mTGG6L4OKMD7eVoSHyTVq2m8hH+hBxFMr43Rzg5uEvZsgD2ssbrhdm0F+pHhd27pI1H988PaCWgBtj68duu3+JgiCEDaBYvr6+vpw6KGHNi3L5XJYsmSJWn7WWWfhggsuwPDwMPr7+3HeeedhdHQUxx13HADg5JNPxurVq/G2t70Nn/3sZzE2NoaPfvSjWL9+PVKpVKDBk3vXL8asFYJarYI+cEwut05YLW2OoxV3rF/wfquuYdsYsqAEEdphWEP94uLm2yrqZ4X2wusatQ2B8BKMYR17u5bCbru/CYIghE3gRA4/vvSlLyEajeKMM85ApVLB2rVr8bWvfU2tj8ViuOmmm3DOOedgdHQUuVwO69atwyc+8YnAfemJHIBdvJCNsDAFwPu554JCbS6ki9ov/o9vYztek6uP3rt9BibLWLsslLvQ5tpxWxdkmddy03a2Y/b6jN3W2ViRvda3ynx/f+bz/iYIghA2EacHA6+mpqYwMDCAb33rW/jgBz+IycnJeUuW6ISQsBFTQR5uXmN0S1pwc0+2Yhn0SxzQtwnzwc3bauWz6qRQNIk9UyyoKUYuzDG4iTab5X5j8zt/bscdxnE6joNGo4HJycmej4mje5wgCAKn3ftbT8+9a7L0ecVNhUEYDye3RAu/fWzxGqNNvB+3ztjEnpmsUraCj/67xRMGxc2t7DYek7uzU5Yj/rmbzrFJ/IWJ3peflVe30un/TdexV5tuYrwHf3cKgiD0JKG7d+cTr+xd2wdJK1amoPu4WTK4xSOI67kT2FoHiXbG6WZVDBs/16JpXZgCJKh1lu8TthWM96G/5uiWUr5cH4+fRdckMhcylEEQBGFvp6ctfdFo1Cqw3GSNcHtg2cQE+i3TcbN+uMVuLQStuHFpP/3BzkWBm9gNMp5usgQFHbsbbhYyk+AyvW8H22vc9rPTr28/93onPs+wLMWCIAiLmZ4WfZFIBPG4vbEySDC723q3ZUHdr7rlY74ejhw/V7jJCubmBuZtelmKvFyMprHprzuFrWiwGYubcNP7s2nPxloZFFth14qVURf9eh9hHYfeT6fCOQRBEBYTPS36AAQSfbb4PZjaebj4uRP94qzCxi/Wjcbk9+BuRZyEdXxBBKLX+vkUDW7JEbb7tIpuhbUJjwjygySo5bsdbMS1IAiCsIeejumLRqNzpmIzocdJ8eXA3DglP0uIjVXMDz1uS19u+h82XrGEbsdtI0rdzoXpHIcpZLz6tl3f7jj84hX1z9y03i0EwOYz8cPtunM7Hr+29G3FxSoIgtC99LylL5lMWm3HH3S64PCL7+NZimFlVvoJIz6eTloyTFY8vzhDN3EYJC6wXZef1z6trmtnW8A+5pOEl1fsY6d+bFA7bte6X2yhvk+r/dvAwyDcwgo64ToWBEFYrPS86KNp2ILgZWnSLSFBY/yCYBKQYT3Yg7ThJX65G9AtVsvrwesnnFu1YtpkjNrSjqsyKLoVz9baNl9xjRxbK6Lfj4Qw0IWyqX9x8wqCIHjT0+7dSCSiLH22D3svCwoPCDe5Pm3cd+2OxUSQtmxi9GzGoT/w3QSBreXTVli1+wBvJaYvTAHJ9/Ubj411z2Zdu7j96Gi1z7Bj9kzvOxXyIAiCsJjpeUsfJXIEjW1yi0HysyYQnUoICCKk9H3CtJi5bevlGnRrz0bwteoq7ARhjMVLSPoJlm45D+0Stijz+s6alguCIAjN9Lzo4+5dGytPK3F5XtazdoSWl3ji61uNm2sVN2Gix6GZxhP0wesV2xhE9Nr0H+TzbvWz1dtxa9vvdauEJXy8QiA6PRY9ls903el9iOATBEHwp+dFXyqVarsNr7izTmCyjOnCxc0C2U4iiY0FU1/nZ9kD7EummESEbqEN6hYP0wLbSvya1zLbhANTvFqn3Num8bkt77Sg0gVdkL6CuOkFQRCE3fS06ItEIlYlWwjTQ8a0jWkf6i9Mq5LtWExxVp1w5boJPL8+g1rkeIykblHU+3Kz8njtaxq7zbi9jt1rG78kAy/rspfA7yRelkW/95wwxhm2JV0QBEEw09OiDwASiUQo7Xi5kAB3K5Ub7VicTA873r/J7TUftGoJ89suiAXSTeiZPjuelGPCa51pfLYi0Gs93053oZo+c6/17RD0h48b7YypHcurm1gWBEEQ3Olp0ReJBJuGza2NVjI+W8VGqLltw0VKpywgXoK3m/ASSbbnmPaxwc3ay/vm23pZ97yuOT+rYFh4WUjnK8RBF/Bu2wmCIAjh0NMlW4DW6vRxbCw9buv93J1ursBWsW231X78hKbpPV/u1oYbprbc2jcJIK9EA1M7rXzW/LjcznEQS6XXWN3iOzuJ/tny5X7W6nbGZiOe3cYpCIIgtEZPW/qA5hk5OvVg0N2pXu4+L8KynPj1G2YSQBDhFPT8e8Useo3NNi7Oqw19Gy/3vdvnbXvMukveDS/rY6csvLpl0S/MQR+PH17HHNTKKgiCILRHT1v6wnDvBukLcLeMmLY10YpVbr4eeu1a6TrZr631z2t/PS6S70Pr3drUrXF6m6Zt/capX1N+CRTcJRr2NdGKpdYN/by4idggllNBEAShfXre0scTOeYj9swt1slLgHgJxXYE33zEXrmxkA9mL7eu27aAOdmDY2sd1OPRTNYst3hDv8QPvr2b1a3Vc+8nnIO4qfl6t/3czrduOfU7d4IgCEI49LToI0ufyWoTNl5uKr/+bB/0QdrgY7Jxd+p9tyKAugGTlc60DWEjmt2wccf6CR59mZ8F0Ga7VvFKEGnVBeuXdWxqw++cC4IgCJ2hp0UfAMRisTlCwNZS0Gqyg1eMVytt2z7o9AepKR6Lr3MbN2+rFRf1QtKqK9htuyDbhk0QMRRW/JuXG7UTn7mtAOfrRfgJgiB0hp6P6aNEjm4TKV7iM4zMWnkwdoZOxMu1MgbCRgjxMdtY5tz2038UmNo0XYdBspgX+twKgiDszSwKSx8R9IHSiWB4W3erm2s2yLhMlpogrrvFhF/igC1Bz1UQkaUvs7V8dQo/VzN/7RcyYLoW/SyXQWIzBUEQhPbpedFH2bs2LtcwH6LtJlDYlA8J2oaprW4lrAe9SUDN1/HbWAVN47KNt7SlWz5vU7KK3zUqgk8QBGH+WBSiz+vBEpYFyNS2zTKvvsO2dpisM25jWGih0G7/3VDeI6hw8bL6LQRhjKedHz9+FkRBEAQhXHpe9HH3LtEtbqMgcVbz8eALYkkKMp5ObRuknfk4f50QbQuVPR2031avHRF0giAI3UPPi75EImE9FVvYVgXbB6CbRUN/kHbK6tGKMAmyT5DM0k4J8fkQ+G7W3U4Jm07UYGxnrHrShu31u1C1JAVBEIRmel70UckWjpfbqJNWNRtLkF5aRf/f7sMxrIdrp8Rnt1p+unVcreJW11H/H+SaM5UMcutPF4WL7fwKgiD0IotS9HEWMm6onZIt7YzX9AA2ubyDxiAGxU10dyMLPa4gNfvc8HOr2tRvtB2f7br5QASlIAiCHT1dpw/Y7d61eeiY6pN12nXWatwUYDc9m5c1R0900P/Px4NaF5hBC1YvtJiYT8KIUQxqsaNz3K5oEtElCILQG/S8pS8ajVpbzlopizJftJI16YVf9m634SUcOmWpNSUn7A0Cxi28wG1brzJI84Fff918XQuCIHQTPS/6bC19RLeUidBrmvklefhh46r1K+nSSYLWawvD3Untux1nt2R5t0orWdOma8BGVLnF781HlnGvfj6CIAjdRs+LPr+YPhPznU1oW7BWJ4jLz89aY9PXfIlAG4trmFbZxSoaOpFh7bXfQvxo8OpfEARBCMZeKfpsH1h+LsdW+/Mq42Kzvz6GMB6ArQjhVh78ftuHLSbadZsvNnHR7g+eTp6PIG7cbio0LgiC0Cv0vOgL6t4l2rEgzJfLydat1umZRtyg8fmJUtN+Xm2GMbawWKxWwlbx++zm63x1c3yuIAhCt9Lzos9rGjYv9FplJtysPp2qN+dXTiNMy57eh15XzW8fjtvDvtUZLKSYbzOdOBedsKYGjQ20ISxruyAIgrAIRF9Q965brTL+n157Zb926kFsk5Wrv++0S9R0HoK6qIMi8VsLT5DP1kb4+bXn9iPB67sY5MeKIAjC3k7P1+kLaulzExNccOkZpfo6r+LHXv22UpTZbQym9Z1wO7tZRDstelu1Ei5Gwrbs2uKW9d1Om0Gha8J0fZsyvEX4CYIguLPXWfq84FYDP5Hntr8bNi5k/bVN7Fu7ljYvayYfR6su9FZEhu1yIThupXC8ygfx9TbXQ5iJIqbvRyvfP0EQBGERiD5bS5+bBcnPoqQnT/DkBU4rCRA2lgmbJAn92IJkBfuVTGnnOGlM8jDuLvj1wj9n/QePbTs6nY53DesHjyAIwt5GINH38Y9/fM6v/UMOOUStL5fLWL9+PZYsWYJ8Po8zzjgDW7dubWpj8+bNOPXUU5HNZrF8+XJceOGFqNfrLR+An+gzWexaLffgZ5WzFThusXBBH7pBtzX15TY2U/tB3cdertpWxjbfbSwk83ENBN03aBxnK+My7WNrQQ/DItyN9zhBEISwCBzT96IXvQi/+c1v9jQQ39PE+9//fvz85z/H9ddfj4GBAZx77rk4/fTT8fvf/x4AMDs7i1NPPRUrVqzAH/7wB2zZsgVvf/vbkUgk8M///M8tHYCfe9cUj+Qn0IKKHh535LWdLV7j8sqUDSIau9kCF8TS5HYM7Qqh+Tw3QSzH7VqZTdv7Ha/JkmyyFraD17Xr950L2/3fbfc4QRCEsAgs+uLxOFasWDFn+eTkJL75zW/iuuuuw4knnggA+Pa3v40XvvCFuPPOO3HcccfhP//zP/HQQw/hN7/5DUZGRnDkkUfin/7pn/DhD38YH//4x5FMJgMfQCt1+vgDxvSaMAk+U1KHaXlYdKJNvW19WdiJA52KyeuUMJtvMaxfg16feRjXmb6/bi1zS3DS9/frI4x4Tr8xdOLa6rZ7nCAIQlgEjul77LHHsHLlShx44IE488wzsXnzZgDAxo0bUavVsGbNGrXtIYccglWrVmHDhg0AgA0bNuCwww7DyMiI2mbt2rWYmprCgw8+6NpnpVLB1NRU0586gGi0bauOHsxuK4ZomW1ma6fdlm5jb9cdp4sSt3g/036dEnxBsbUg2bbRqeMy/aDQ+zJ9nu24Ur2yc72uifmKqfO6pjsxjm67xwmCIIRFINF37LHH4pprrsGvfvUrXHnllXjiiSfwile8AtPT0xgbG0MymcTg4GDTPiMjIxgbGwMAjI2NNd0MaT2tc+Oyyy7DwMCA+nvOc56j1kUiESQSCeN+fg9Ck5vMz83kZiUJM8ZJtzDaiCv9ve5qtunbrS9T/KIN3SL4CJN48lqv0wlXsql9blXWQxLCwit203acJsKyTLtZOfXz4fVDrRW68R4nCIIQFoHcu6eccop6ffjhh+PYY4/F/vvvj3/7t39DJpMJfXDERRddhAsuuEC9n5qaaropuok+26QK0zJdeBHz4RIN2qaX+61VC5DJgunXbzdjey3YihYv61gruPVrG7cWdAxelusgbZjGEMb3weZ7psfShkG33uMEQRDCoK3izIODg3j+85+Pxx9/HK9+9atRrVYxMTHR9Et469atKj5mxYoV+OMf/9jUBmW+mWJoiFQqhVQq5bo+Fou1cRTBcLOcecVJ2aJbd4TO4Be/6bcv4SY63GJFvYSd6b2pL5MIdLPO+l1HXqLNrV23cZna49vTOgrHiEQiiEajTctoW1pOr01WvUQigUQigWg0imQyqbL477//fs9jDkq33OMEQRDCoC3RNzMzg7/+9a9429vehqOOOgqJRAK33HILzjjjDADAo48+is2bN2N0dBQAMDo6ik996lPYtm0bli9fDgC4+eab0d/fj9WrV7c0Bi/3bquYBJyXRdDvwRckts3mYe1neWxXeLa6byt9BbVm2goZN2HlJdDcEhv4OtNnza8Bt2vGyxrrtlwXerolkgsp2tfrz20bvjwajSIejyMWiyEejyORSCAWiyGRSCAej1st46/5f2qTt8//qG9aT6KO+qHX/EceP1/FYlHde8KiG+5xgiAIYRFI9H3wgx/E61//euy///549tlncckllyAWi+Gtb30rBgYGcNZZZ+GCCy7A8PAw+vv7cd5552F0dBTHHXccAODkk0/G6tWr8ba3vQ2f/exnMTY2ho9+9KNYv359W79yeUmFVjC5jfTlJtHgZvEwtW+DX6yUrZgLQ7B1MgnDTex5iUC3DE5TPKOX8LY9d/p/3eJE63ThRf/5ev5H4ocLJtOfm6DS/3NB5CWYSGTpwosLMtqHH4dJALeybD5o9z4AdO89ThAEIQwC3SWffvppvPWtb8XOnTuxbNkyvPzlL8edd96JZcuWAQC+9KUvIRqN4owzzkClUsHatWvxta99Te0fi8Vw00034ZxzzsHo6ChyuRzWrVuHT3ziE4EGTQ/6YrGIWq3WdlyPl9Dw2sbkZmtHLHm522wzZoNaz2yOPUwikQgajcacPvhyvoxvZxJ4HBI0yWRSuf24eOLLSUzxZXwdF15ugkm3VnFLlNsyk/D0Elj8tUlshg19Bvpn0QsUi0UA7V273XaPEwRB4LQdL+304N3lv//7v/G85z1voYchCEIX8tRTT2G//fZb6GG0hdzjBEEw0e79rX1/yAIwPDwMYPd0RwMDAws8mvagLL2nnnoK/f39Cz2ctlhMxwIsruPZG47FcRxMT09j5cqVCzi6cJB7XHcix9Kd7A3HEtb9rSdFH7nDBgYGev4DJvr7++VYupTFdDyL/Vh6XSARco/rbuRYupPFfixh3N8Cz8ghCIIgCIIg9B4i+gRBEARBEPYCelL0pVIpXHLJJYuiBIIcS/eymI5HjqW3WEzHKMfSncixdCedPpaezN4VBEEQBEEQgtGTlj5BEARBEAQhGCL6BEEQBEEQ9gJE9AmCIAiCIOwFiOgTBEEQBEHYC+hJ0ffVr34Vz33uc5FOp3Hsscfij3/840IPaQ6//e1v8frXvx4rV65EJBLBT3/606b1juPg4osvxj777INMJoM1a9bgsccea9pm165dOPPMM9Hf34/BwUGcddZZmJmZmcejAC677DK89KUvRV9fH5YvX47TTjsNjz76aNM25XIZ69evx5IlS5DP53HGGWdg69atTdts3rwZp556KrLZLJYvX44LL7wQ9Xp9Pg8FV155JQ4//HBV9HJ0dBS//OUve+44THz6059GJBLB+973PrWsl47n4x//uJpTmP4OOeQQtb6XjqVd5P42v8g9rvuOw0Qv3+O66v7m9Bg//OEPnWQy6XzrW99yHnzwQefd7363Mzg46GzdunWhh9bEL37xC+f/+//+P+cnP/mJA8C58cYbm9Z/+tOfdgYGBpyf/vSnzv333+/83d/9nXPAAQc4pVJJbfOa17zGOeKII5w777zT+a//+i/noIMOct761rfO63GsXbvW+fa3v+1s2rTJue+++5zXvva1zqpVq5yZmRm1zdlnn+085znPcW655RbnnnvucY477jjnZS97mVpfr9edQw891FmzZo3zpz/9yfnFL37hLF261Lnooovm9Vj+4z/+w/n5z3/u/OUvf3EeffRR5x//8R+dRCLhbNq0qaeOQ+ePf/yj89znPtc5/PDDnfPPP18t76XjueSSS5wXvehFzpYtW9Tf9u3be/JY2kHub/N7f3Mcucd143Ho9Po9rpvubz0n+o455hhn/fr16v3s7KyzcuVK57LLLlvAUXmj3xQbjYazYsUK53Of+5xaNjEx4aRSKecHP/iB4ziO89BDDzkAnLvvvltt88tf/tKJRCLOM888M29j19m2bZsDwLnjjjscx9k97kQi4Vx//fVqm4cfftgB4GzYsMFxnN0PiGg06oyNjaltrrzySqe/v9+pVCrzewAaQ0NDztVXX92zxzE9Pe0cfPDBzs033+yccMIJ6obYa8dzySWXOEcccYRxXa8dSzvI/W1h72+OI/e4bjuOxXCP66b7W0+5d6vVKjZu3Ig1a9aoZdFoFGvWrMGGDRsWcGTBeOKJJzA2NtZ0HAMDAzj22GPVcWzYsAGDg4M4+uij1TZr1qxBNBrFXXfdNe9jJiYnJwHsmRB+48aNqNVqTcdyyCGHYNWqVU3Hcthhh2FkZERts3btWkxNTeHBBx+cx9HvYXZ2Fj/84Q9RKBQwOjras8exfv16nHrqqU3jBnrzc3nsscewcuVKHHjggTjzzDOxefNmAL15LK0g97eFv78Bco/rtuNYLPe4brm/xUM4lnljx44dmJ2dbTpwABgZGcEjjzyyQKMKztjYGAAYj4PWjY2NYfny5U3r4/E4hoeH1TbzTaPRwPve9z4cf/zxOPTQQwHsHmcymcTg4GDTtvqxmI6V1s0nDzzwAEZHR1Eul5HP53HjjTdi9erVuO+++3rqOADghz/8Ie69917cfffdc9b12udy7LHH4pprrsELXvACbNmyBZdeeile8YpXYNOmTT13LK0i97eFvb8Bco/rpuMAFs89rpvubz0l+oSFZf369di0aRN+97vfLfRQWuYFL3gB7rvvPkxOTuKGG27AunXrcMcddyz0sALz1FNP4fzzz8fNN9+MdDq90MNpm1NOOUW9Pvzww3Hsscdi//33x7/9278hk8ks4MiEvQm5x3UPi+ke1033t55y7y5duhSxWGxOVsvWrVuxYsWKBRpVcGisXsexYsUKbNu2rWl9vV7Hrl27FuRYzz33XNx000247bbbsN9++6nlK1asQLVaxcTERNP2+rGYjpXWzSfJZBIHHXQQjjrqKFx22WU44ogj8OUvf7nnjmPjxo3Ytm0bXvKSlyAejyMej+OOO+7AV77yFcTjcYyMjPTU8egMDg7i+c9/Ph5//PGe+2xaRe5vC3d/A+QeR2PtluNYzPe4hby/9ZToSyaTOOqoo3DLLbeoZY1GA7fccgtGR0cXcGTBOOCAA7BixYqm45iamsJdd92ljmN0dBQTExPYuHGj2ubWW29Fo9HAscceO29jdRwH5557Lm688UbceuutOOCAA5rWH3XUUUgkEk3H8uijj2Lz5s1Nx/LAAw803eRvvvlm9Pf3Y/Xq1fNzIC40Gg1UKpWeO46TTjoJDzzwAO677z71d/TRR+PMM89Ur3vpeHRmZmbw17/+Ffvss0/PfTatIve3+b+/AXKP69bjWMz3uAW9vwXNQllofvjDHzqpVMq55pprnIceesh5z3ve4wwODjZltXQD09PTzp/+9CfnT3/6kwPA+eIXv+j86U9/cp588knHcXaXNBgcHHT+/d//3fnzn//svOENbzCWNHjxi1/s3HXXXc7vfvc75+CDD573kgbnnHOOMzAw4Nx+++1N6ebFYlFtc/bZZzurVq1ybr31Vueee+5xRkdHndHRUbWe0s1PPvlk57777nN+9atfOcuWLZv3tPmPfOQjzh133OE88cQTzp///GfnIx/5iBOJRJz//M//7KnjcINntjlObx3PBz7wAef22293nnjiCef3v/+9s2bNGmfp0qXOtm3beu5Y2kHub/NfskXucd13HG706j2um+5vPSf6HMdxrrjiCmfVqlVOMpl0jjnmGOfOO+9c6CHN4bbbbnMAzPlbt26d4zi7yxp87GMfc0ZGRpxUKuWcdNJJzqOPPtrUxs6dO523vvWtTj6fd/r7+513vvOdzvT09Lweh+kYADjf/va31TalUsl573vf6wwNDTnZbNZ54xvf6GzZsqWpnb/97W/OKaec4mQyGWfp0qXOBz7wAadWq83rsbzrXe9y9t9/fyeZTDrLli1zTjrpJHUz7KXjcEO/IfbS8bz5zW929tlnHyeZTDr77ruv8+Y3v9l5/PHH1fpeOpZ2kfvb/CL3uO47Djd69R7XTfe3iOM4TjDboCAIgiAIgtBr9FRMnyAIgiAIgtAaIvoEQRAEQRD2AkT0CYIgCIIg7AWI6BMEQRAEQdgLENEnCIIgCIKwFyCiTxAEQRAEYS9ARJ8gCIIgCMJegIg+QRAEQRCEvQARfYIgCIIgCHsBIvoEQRAEQRD2AkT0CYIgCIIg7AWI6BMEQRAEQdgL+P8BqWRdOriGcVgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 트랜스폼 잘 구현되었는지 확인\n", + "transform = transforms.Compose([Normalization(mean=0.5, std=0.5), RandomFlip(), Rotate(angle_range=(-90, 90)), ToTensor()])\n", + "\n", + "dir_img = 'C:/Users/pinb/Desktop/imgs'\n", + "dir_mask = 'C:/Users/pinb/Desktop/masks'\n", + "train_set, val_set, test_set = create_datasets(img_dir=dir_img, mask_dir=dir_mask, transform=transform)\n", + "\n", + "\n", + "data = train_set.__getitem__(12599) # 한 이미지 불러오기\n", + "input = data['input']\n", + "label = data['label']\n", + "\n", + "# 불러온 이미지 시각화\n", + "plt.subplot(122)\n", + "plt.hist(label.flatten(), bins=20)\n", + "plt.title('label')\n", + "\n", + "plt.subplot(121)\n", + "plt.hist(input.flatten(), bins=20)\n", + "plt.title('input')\n", + "\n", + "# 이미지 시각화\n", + "plt.subplot(121)\n", + "plt.imshow(input.squeeze(), cmap='gray')\n", + "plt.title('Input Image')\n", + "\n", + "plt.subplot(122)\n", + "plt.imshow(label.squeeze(), cmap='gray')\n", + "plt.title('Label')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model Network (Origin)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "## 라이브러리 불러오기\n", + "import os\n", + "import numpy as np\n", + "\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch.utils.data import DataLoader\n", + "from torch.utils.tensorboard import SummaryWriter\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "## 네트워크 구축하기\n", + "class UNet(nn.Module):\n", + " def __init__(self):\n", + " super(UNet, self).__init__()\n", + "\n", + " # Convolution + BatchNormalization + Relu 정의하기\n", + " def CBR2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True): \n", + " layers = []\n", + " layers += [nn.Conv2d(in_channels=in_channels, out_channels=out_channels,\n", + " kernel_size=kernel_size, stride=stride, padding=padding,\n", + " bias=bias)]\n", + " layers += [nn.BatchNorm2d(num_features=out_channels)]\n", + " layers += [nn.ReLU()]\n", + "\n", + " cbr = nn.Sequential(*layers)\n", + "\n", + " return cbr\n", + "\n", + " # 수축 경로(Contracting path)\n", + " self.enc1_1 = CBR2d(in_channels=1, out_channels=64)\n", + " self.enc1_2 = CBR2d(in_channels=64, out_channels=64)\n", + "\n", + " self.pool1 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc2_1 = CBR2d(in_channels=64, out_channels=128)\n", + " self.enc2_2 = CBR2d(in_channels=128, out_channels=128)\n", + "\n", + " self.pool2 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc3_1 = CBR2d(in_channels=128, out_channels=256)\n", + " self.enc3_2 = CBR2d(in_channels=256, out_channels=256)\n", + "\n", + " self.pool3 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc4_1 = CBR2d(in_channels=256, out_channels=512)\n", + " self.enc4_2 = CBR2d(in_channels=512, out_channels=512)\n", + "\n", + " self.pool4 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc5_1 = CBR2d(in_channels=512, out_channels=1024)\n", + "\n", + " # 확장 경로(Expansive path)\n", + " self.dec5_1 = CBR2d(in_channels=1024, out_channels=512)\n", + "\n", + " self.unpool4 = nn.ConvTranspose2d(in_channels=512, out_channels=512,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec4_2 = CBR2d(in_channels=2 * 512, out_channels=512)\n", + " self.dec4_1 = CBR2d(in_channels=512, out_channels=256)\n", + "\n", + " self.unpool3 = nn.ConvTranspose2d(in_channels=256, out_channels=256,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec3_2 = CBR2d(in_channels=2 * 256, out_channels=256)\n", + " self.dec3_1 = CBR2d(in_channels=256, out_channels=128)\n", + "\n", + " self.unpool2 = nn.ConvTranspose2d(in_channels=128, out_channels=128,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec2_2 = CBR2d(in_channels=2 * 128, out_channels=128)\n", + " self.dec2_1 = CBR2d(in_channels=128, out_channels=64)\n", + "\n", + " self.unpool1 = nn.ConvTranspose2d(in_channels=64, out_channels=64,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec1_2 = CBR2d(in_channels=2 * 64, out_channels=64)\n", + " self.dec1_1 = CBR2d(in_channels=64, out_channels=64)\n", + "\n", + " self.fc = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0, bias=True)\n", + " \n", + " # forward 함수 정의하기\n", + " def forward(self, x):\n", + " enc1_1 = self.enc1_1(x)\n", + " enc1_2 = self.enc1_2(enc1_1)\n", + " pool1 = self.pool1(enc1_2)\n", + "\n", + " enc2_1 = self.enc2_1(pool1)\n", + " enc2_2 = self.enc2_2(enc2_1)\n", + " pool2 = self.pool2(enc2_2)\n", + "\n", + " enc3_1 = self.enc3_1(pool2)\n", + " enc3_2 = self.enc3_2(enc3_1)\n", + " pool3 = self.pool3(enc3_2)\n", + "\n", + " enc4_1 = self.enc4_1(pool3)\n", + " enc4_2 = self.enc4_2(enc4_1)\n", + " pool4 = self.pool4(enc4_2)\n", + "\n", + " enc5_1 = self.enc5_1(pool4)\n", + "\n", + " dec5_1 = self.dec5_1(enc5_1)\n", + "\n", + " unpool4 = self.unpool4(dec5_1)\n", + " cat4 = torch.cat((unpool4, enc4_2), dim=1)\n", + " dec4_2 = self.dec4_2(cat4)\n", + " dec4_1 = self.dec4_1(dec4_2)\n", + "\n", + " unpool3 = self.unpool3(dec4_1)\n", + " cat3 = torch.cat((unpool3, enc3_2), dim=1)\n", + " dec3_2 = self.dec3_2(cat3)\n", + " dec3_1 = self.dec3_1(dec3_2)\n", + "\n", + " unpool2 = self.unpool2(dec3_1)\n", + " cat2 = torch.cat((unpool2, enc2_2), dim=1)\n", + " dec2_2 = self.dec2_2(cat2)\n", + " dec2_1 = self.dec2_1(dec2_2)\n", + "\n", + " unpool1 = self.unpool1(dec2_1)\n", + " cat1 = torch.cat((unpool1, enc1_2), dim=1)\n", + " dec1_2 = self.dec1_2(cat1)\n", + " dec1_1 = self.dec1_1(dec1_2)\n", + "\n", + " x = self.fc(dec1_1)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model Network (Mini)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "## 라이브러리 불러오기\n", + "import os\n", + "import numpy as np\n", + "\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch.utils.data import DataLoader\n", + "from torch.utils.tensorboard import SummaryWriter\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "## 네트워크 구축하기\n", + "class UNet(nn.Module):\n", + " def __init__(self):\n", + " super(UNet, self).__init__()\n", + "\n", + " # Convolution + BatchNormalization + Relu 정의하기\n", + " def CBR2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True): \n", + " layers = []\n", + " layers += [nn.Conv2d(in_channels=in_channels, out_channels=out_channels,\n", + " kernel_size=kernel_size, stride=stride, padding=padding,\n", + " bias=bias)]\n", + " layers += [nn.BatchNorm2d(num_features=out_channels)]\n", + " layers += [nn.ReLU()]\n", + "\n", + " cbr = nn.Sequential(*layers)\n", + "\n", + " return cbr\n", + "\n", + " # 수축 경로(Contracting path)\n", + " self.enc1_1 = CBR2d(in_channels=1, out_channels=64)\n", + " self.pool1 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc2_1 = CBR2d(in_channels=64, out_channels=128)\n", + " self.pool2 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc3_1 = CBR2d(in_channels=128, out_channels=256)\n", + " self.pool3 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc4_1 = CBR2d(in_channels=256, out_channels=512)\n", + " self.pool4 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc5_1 = CBR2d(in_channels=512, out_channels=1024)\n", + "\n", + " # 확장 경로(Expansive path)의 깊이 감소\n", + " self.dec5_1 = CBR2d(in_channels=1024, out_channels=512)\n", + " self.unpool4 = nn.ConvTranspose2d(in_channels=512, out_channels=512, kernel_size=2, stride=2)\n", + "\n", + " self.dec4_1 = CBR2d(in_channels=512 + 512, out_channels=256)\n", + " self.unpool3 = nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=2, stride=2)\n", + "\n", + " self.dec3_1 = CBR2d(in_channels=256 + 256, out_channels=128)\n", + " self.unpool2 = nn.ConvTranspose2d(in_channels=128, out_channels=128, kernel_size=2, stride=2)\n", + "\n", + " self.dec2_1 = CBR2d(in_channels=128 + 128, out_channels=64)\n", + " self.unpool1 = nn.ConvTranspose2d(in_channels=64, out_channels=64, kernel_size=2, stride=2)\n", + "\n", + " self.dec1_1 = CBR2d(in_channels=64 + 64, out_channels=64)\n", + " self.fc = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0, bias=True)\n", + " \n", + " # forward 함수 정의하기\n", + " def forward(self, x):\n", + " enc1_1 = self.enc1_1(x)\n", + " pool1 = self.pool1(enc1_1)\n", + "\n", + " enc2_1 = self.enc2_1(pool1)\n", + " pool2 = self.pool2(enc2_1)\n", + "\n", + " enc3_1 = self.enc3_1(pool2)\n", + " pool3 = self.pool3(enc3_1)\n", + "\n", + " enc4_1 = self.enc4_1(pool3)\n", + " pool4 = self.pool4(enc4_1)\n", + "\n", + " enc5_1 = self.enc5_1(pool4)\n", + "\n", + " dec5_1 = self.dec5_1(enc5_1)\n", + "\n", + " unpool4 = self.unpool4(dec5_1)\n", + " cat4 = torch.cat((unpool4, enc4_1), dim=1)\n", + " dec4_1 = self.dec4_1(cat4)\n", + "\n", + " unpool3 = self.unpool3(dec4_1)\n", + " cat3 = torch.cat((unpool3, enc3_1), dim=1)\n", + " dec3_1 = self.dec3_1(cat3)\n", + "\n", + " unpool2 = self.unpool2(dec3_1)\n", + " cat2 = torch.cat((unpool2, enc2_1), dim=1)\n", + " dec2_1 = self.dec2_1(cat2)\n", + "\n", + " unpool1 = self.unpool1(dec2_1)\n", + " cat1 = torch.cat((unpool1, enc1_1), dim=1)\n", + " dec1_1 = self.dec1_1(cat1)\n", + "\n", + " x = self.fc(dec1_1)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load, Save Network" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "## 네트워크 저장하기\n", + "def save(ckpt_dir, net, optim, epoch):\n", + " if not os.path.exists(ckpt_dir):\n", + " os.makedirs(ckpt_dir)\n", + "\n", + " torch.save({'net': net.state_dict(), 'optim': optim.state_dict()},\n", + " \"%s/model_epoch%d.pth\" % (ckpt_dir, epoch))\n", + "\n", + "## 네트워크 불러오기\n", + "def load(ckpt_dir, net, optim):\n", + " if not os.path.exists(ckpt_dir):\n", + " epoch = 0\n", + " return net, optim, epoch\n", + "\n", + " ckpt_lst = os.listdir(ckpt_dir)\n", + " ckpt_lst.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))\n", + "\n", + " dict_model = torch.load('%s/%s' % (ckpt_dir, ckpt_lst[-1]))\n", + "\n", + " net.load_state_dict(dict_model['net'])\n", + " optim.load_state_dict(dict_model['optim'])\n", + " epoch = int(ckpt_lst[-1].split('epoch')[1].split('.pth')[0])\n", + "\n", + " return net, optim, epoch" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Train" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "torch.cuda.empty_cache()\n", + "os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "dir_img = 'C:/Users/pinb/Desktop/imgs'\n", + "dir_mask = 'C:/Users/pinb/Desktop/masks'\n", + "transform = transforms.Compose([Normalization(mean=0.5, std=0.5), RandomFlip(), Rotate(angle_range=(-90, 90)), ToTensor()])\n", + "train_set, val_set, test_set = create_datasets(img_dir=dir_img, mask_dir=dir_mask, transform=transform)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# 훈련 파라미터 설정하기\n", + "lr = 1e-3\n", + "batch_size = 4\n", + "num_epoch = 10\n", + "\n", + "# base_dir = './2nd_Battery/unet'\n", + "# base_dir = './2nd_Battery/unet-mini'\n", + "# base_dir = './2nd_Battery/unet-dice-loss'\n", + "# base_dir = './2nd_Battery/unet-focal-loss'\n", + "# base_dir = './2nd_Battery/unet-sgd'\n", + "# base_dir = './2nd_Battery/unet-rmsprop'\n", + "# base_dir = './2nd_Battery/unet-l1'\n", + "base_dir = './2nd_Battery/unet-l2'\n", + "ckpt_dir = os.path.join(base_dir, \"checkpoint\")\n", + "log_dir = os.path.join(base_dir, \"log\")\n", + "\n", + "# 네트워크 생성하기\n", + "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", + "net = UNet().to(device)\n", + "\n", + "# 손실함수 정의하기\n", + "fn_loss = nn.BCEWithLogitsLoss().to(device)\n", + "\n", + "# Optimizer 설정하기\n", + "optim = torch.optim.Adam(net.parameters(), lr=lr)\n", + "\n", + "# 그 밖에 부수적인 functions 설정하기\n", + "fn_tonumpy = lambda x: x.to('cpu').detach().numpy().transpose(0, 2, 3, 1)\n", + "fn_denorm = lambda x, mean, std: (x * std) + mean\n", + "fn_class = lambda x: 1.0 * (x > 0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(net)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - Dice Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "class DiceLoss(nn.Module):\n", + " def __init__(self, smooth=1e-6):\n", + " super(DiceLoss, self).__init__()\n", + " self.smooth = smooth\n", + "\n", + " def forward(self, preds, targets):\n", + " preds = torch.sigmoid(preds)\n", + " intersection = (preds * targets).sum()\n", + " dice = (2. * intersection + self.smooth) / (preds.sum() + targets.sum() + self.smooth)\n", + " return 1 - dice\n", + "\n", + "fn_loss = DiceLoss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - Focal Loss" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class FocalLoss(nn.Module):\n", + " def __init__(self, alpha=0.8, gamma=2.0):\n", + " super(FocalLoss, self).__init__()\n", + " self.alpha = alpha\n", + " self.gamma = gamma\n", + "\n", + " def forward(self, preds, targets):\n", + " BCE = nn.functional.binary_cross_entropy_with_logits(preds, targets, reduction='none')\n", + " BCE_exp = torch.exp(-BCE)\n", + " focal_loss = self.alpha * (1 - BCE_exp) ** self.gamma * BCE\n", + " return focal_loss.mean()\n", + "\n", + "fn_loss = FocalLoss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - SGD Optimizers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "optim = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - RMSprop Optimizers" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "optim = torch.optim.RMSprop(net.parameters(), lr=lr, alpha=0.9)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - L1 Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "class L1Loss(nn.Module):\n", + " def __init__(self):\n", + " super(L1Loss, self).__init__()\n", + "\n", + " def forward(self, preds, targets):\n", + " return torch.mean(torch.abs(preds - targets))\n", + " \n", + "fn_loss = L1Loss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Case - L2 Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "class L2Loss(nn.Module):\n", + " def __init__(self):\n", + " super(L2Loss, self).__init__()\n", + "\n", + " def forward(self, preds, targets):\n", + " return torch.mean((preds - targets) ** 2)\n", + " \n", + "fn_loss = L2Loss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Train" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TRAIN: EPOCH 0001 / 0010 | BATCH 0001 / 3410 | LOSS 0.1304\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0002 / 3410 | LOSS 0.1869\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0003 / 3410 | LOSS 0.1842\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0004 / 3410 | LOSS 0.1529\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0005 / 3410 | LOSS 0.1357\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0006 / 3410 | LOSS 0.1222\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0007 / 3410 | LOSS 0.1111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0008 / 3410 | LOSS 0.1027\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0009 / 3410 | LOSS 0.0988\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0010 / 3410 | LOSS 0.0953\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0011 / 3410 | LOSS 0.0902\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0012 / 3410 | LOSS 0.0866\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0013 / 3410 | LOSS 0.0844\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0014 / 3410 | LOSS 0.0836\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0015 / 3410 | LOSS 0.0805\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0016 / 3410 | LOSS 0.0780\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0017 / 3410 | LOSS 0.0760\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0018 / 3410 | LOSS 0.0738\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0019 / 3410 | LOSS 0.0717\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0020 / 3410 | LOSS 0.0698\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0021 / 3410 | LOSS 0.0684\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0022 / 3410 | LOSS 0.0670\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0023 / 3410 | LOSS 0.0652\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0024 / 3410 | LOSS 0.0639\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0025 / 3410 | LOSS 0.0627\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0026 / 3410 | LOSS 0.0614\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0027 / 3410 | LOSS 0.0603\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0028 / 3410 | LOSS 0.0592\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0029 / 3410 | LOSS 0.0583\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0030 / 3410 | LOSS 0.0573\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0031 / 3410 | LOSS 0.0562\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0032 / 3410 | LOSS 0.0550\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0033 / 3410 | LOSS 0.0540\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0034 / 3410 | LOSS 0.0529\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0035 / 3410 | LOSS 0.0520\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0036 / 3410 | LOSS 0.0511\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0037 / 3410 | LOSS 0.0506\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0038 / 3410 | LOSS 0.0498\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0039 / 3410 | LOSS 0.0492\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0040 / 3410 | LOSS 0.0487\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0041 / 3410 | LOSS 0.0480\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0042 / 3410 | LOSS 0.0476\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0043 / 3410 | LOSS 0.0470\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0044 / 3410 | LOSS 0.0466\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0045 / 3410 | LOSS 0.0461\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0046 / 3410 | LOSS 0.0457\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0047 / 3410 | LOSS 0.0452\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0048 / 3410 | LOSS 0.0446\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0049 / 3410 | LOSS 0.0441\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0050 / 3410 | LOSS 0.0435\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0051 / 3410 | LOSS 0.0429\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0052 / 3410 | LOSS 0.0424\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0053 / 3410 | LOSS 0.0419\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0054 / 3410 | LOSS 0.0413\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0055 / 3410 | LOSS 0.0409\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0056 / 3410 | LOSS 0.0406\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0057 / 3410 | LOSS 0.0401\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0058 / 3410 | LOSS 0.0397\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0059 / 3410 | LOSS 0.0394\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0060 / 3410 | LOSS 0.0390\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0061 / 3410 | LOSS 0.0386\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0062 / 3410 | LOSS 0.0383\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0063 / 3410 | LOSS 0.0381\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0064 / 3410 | LOSS 0.0378\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0065 / 3410 | LOSS 0.0375\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0066 / 3410 | LOSS 0.0371\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0067 / 3410 | LOSS 0.0370\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0068 / 3410 | LOSS 0.0367\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0069 / 3410 | LOSS 0.0364\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0070 / 3410 | LOSS 0.0361\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0071 / 3410 | LOSS 0.0358\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0072 / 3410 | LOSS 0.0355\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0073 / 3410 | LOSS 0.0352\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0074 / 3410 | LOSS 0.0349\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0075 / 3410 | LOSS 0.0347\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0076 / 3410 | LOSS 0.0344\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0077 / 3410 | LOSS 0.0343\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0078 / 3410 | LOSS 0.0341\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0079 / 3410 | LOSS 0.0339\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0080 / 3410 | LOSS 0.0337\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0081 / 3410 | LOSS 0.0335\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0082 / 3410 | LOSS 0.0333\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0083 / 3410 | LOSS 0.0332\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0084 / 3410 | LOSS 0.0330\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0085 / 3410 | LOSS 0.0328\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0086 / 3410 | LOSS 0.0327\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0087 / 3410 | LOSS 0.0324\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0088 / 3410 | LOSS 0.0322\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0089 / 3410 | LOSS 0.0320\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0090 / 3410 | LOSS 0.0318\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0091 / 3410 | LOSS 0.0316\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0092 / 3410 | LOSS 0.0314\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0093 / 3410 | LOSS 0.0312\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0094 / 3410 | LOSS 0.0311\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0095 / 3410 | LOSS 0.0309\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0096 / 3410 | LOSS 0.0307\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0097 / 3410 | LOSS 0.0305\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0098 / 3410 | LOSS 0.0303\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0099 / 3410 | LOSS 0.0301\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0100 / 3410 | LOSS 0.0299\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0101 / 3410 | LOSS 0.0298\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0102 / 3410 | LOSS 0.0296\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0103 / 3410 | LOSS 0.0294\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0104 / 3410 | LOSS 0.0293\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0105 / 3410 | LOSS 0.0291\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0106 / 3410 | LOSS 0.0289\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0107 / 3410 | LOSS 0.0288\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0108 / 3410 | LOSS 0.0286\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0109 / 3410 | LOSS 0.0285\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0110 / 3410 | LOSS 0.0283\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0111 / 3410 | LOSS 0.0282\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0112 / 3410 | LOSS 0.0280\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0113 / 3410 | LOSS 0.0279\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0114 / 3410 | LOSS 0.0277\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0115 / 3410 | LOSS 0.0276\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0116 / 3410 | LOSS 0.0275\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0117 / 3410 | LOSS 0.0274\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0118 / 3410 | LOSS 0.0273\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0119 / 3410 | LOSS 0.0272\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0120 / 3410 | LOSS 0.0271\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0121 / 3410 | LOSS 0.0270\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0122 / 3410 | LOSS 0.0269\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0123 / 3410 | LOSS 0.0268\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0124 / 3410 | LOSS 0.0266\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0125 / 3410 | LOSS 0.0265\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0126 / 3410 | LOSS 0.0265\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0127 / 3410 | LOSS 0.0264\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0128 / 3410 | LOSS 0.0263\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0129 / 3410 | LOSS 0.0261\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0130 / 3410 | LOSS 0.0260\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0131 / 3410 | LOSS 0.0259\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0132 / 3410 | LOSS 0.0258\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0133 / 3410 | LOSS 0.0257\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0134 / 3410 | LOSS 0.0256\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0135 / 3410 | LOSS 0.0255\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0136 / 3410 | LOSS 0.0254\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0137 / 3410 | LOSS 0.0253\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0138 / 3410 | LOSS 0.0252\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0139 / 3410 | LOSS 0.0251\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0140 / 3410 | LOSS 0.0250\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0141 / 3410 | LOSS 0.0249\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0142 / 3410 | LOSS 0.0248\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0143 / 3410 | LOSS 0.0247\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0144 / 3410 | LOSS 0.0246\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0145 / 3410 | LOSS 0.0245\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0146 / 3410 | LOSS 0.0244\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0147 / 3410 | LOSS 0.0243\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0148 / 3410 | LOSS 0.0243\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0149 / 3410 | LOSS 0.0242\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0150 / 3410 | LOSS 0.0241\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0151 / 3410 | LOSS 0.0240\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0152 / 3410 | LOSS 0.0239\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0153 / 3410 | LOSS 0.0238\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0154 / 3410 | LOSS 0.0238\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0155 / 3410 | LOSS 0.0237\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0156 / 3410 | LOSS 0.0236\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0157 / 3410 | LOSS 0.0235\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0158 / 3410 | LOSS 0.0234\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0159 / 3410 | LOSS 0.0233\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0160 / 3410 | LOSS 0.0232\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0161 / 3410 | LOSS 0.0232\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0162 / 3410 | LOSS 0.0232\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0163 / 3410 | LOSS 0.0231\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0164 / 3410 | LOSS 0.0230\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0165 / 3410 | LOSS 0.0230\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0166 / 3410 | LOSS 0.0229\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0167 / 3410 | LOSS 0.0228\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0168 / 3410 | LOSS 0.0227\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0169 / 3410 | LOSS 0.0226\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0170 / 3410 | LOSS 0.0226\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0171 / 3410 | LOSS 0.0225\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0172 / 3410 | LOSS 0.0224\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0173 / 3410 | LOSS 0.0224\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0174 / 3410 | LOSS 0.0223\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0175 / 3410 | LOSS 0.0223\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0176 / 3410 | LOSS 0.0222\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0177 / 3410 | LOSS 0.0221\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0178 / 3410 | LOSS 0.0220\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0179 / 3410 | LOSS 0.0220\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0180 / 3410 | LOSS 0.0220\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0181 / 3410 | LOSS 0.0219\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0182 / 3410 | LOSS 0.0218\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0183 / 3410 | LOSS 0.0217\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0184 / 3410 | LOSS 0.0217\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0185 / 3410 | LOSS 0.0216\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0186 / 3410 | LOSS 0.0216\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0187 / 3410 | LOSS 0.0216\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0188 / 3410 | LOSS 0.0215\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0189 / 3410 | LOSS 0.0214\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0190 / 3410 | LOSS 0.0213\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0191 / 3410 | LOSS 0.0213\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0192 / 3410 | LOSS 0.0212\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0193 / 3410 | LOSS 0.0212\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0194 / 3410 | LOSS 0.0211\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0195 / 3410 | LOSS 0.0211\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0196 / 3410 | LOSS 0.0210\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0197 / 3410 | LOSS 0.0209\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0198 / 3410 | LOSS 0.0209\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0199 / 3410 | LOSS 0.0209\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0200 / 3410 | LOSS 0.0208\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0201 / 3410 | LOSS 0.0208\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0202 / 3410 | LOSS 0.0207\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0203 / 3410 | LOSS 0.0207\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0204 / 3410 | LOSS 0.0206\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0205 / 3410 | LOSS 0.0206\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0206 / 3410 | LOSS 0.0205\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0207 / 3410 | LOSS 0.0205\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0208 / 3410 | LOSS 0.0204\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0209 / 3410 | LOSS 0.0204\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0210 / 3410 | LOSS 0.0204\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0211 / 3410 | LOSS 0.0203\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0212 / 3410 | LOSS 0.0202\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0213 / 3410 | LOSS 0.0202\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0214 / 3410 | LOSS 0.0201\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0215 / 3410 | LOSS 0.0201\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0216 / 3410 | LOSS 0.0200\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0217 / 3410 | LOSS 0.0200\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0218 / 3410 | LOSS 0.0199\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0219 / 3410 | LOSS 0.0199\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0220 / 3410 | LOSS 0.0199\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0221 / 3410 | LOSS 0.0198\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0222 / 3410 | LOSS 0.0198\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0223 / 3410 | LOSS 0.0197\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0224 / 3410 | LOSS 0.0197\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0225 / 3410 | LOSS 0.0197\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0226 / 3410 | LOSS 0.0196\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0227 / 3410 | LOSS 0.0195\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0228 / 3410 | LOSS 0.0195\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0229 / 3410 | LOSS 0.0194\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0230 / 3410 | LOSS 0.0194\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0231 / 3410 | LOSS 0.0194\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0232 / 3410 | LOSS 0.0193\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0233 / 3410 | LOSS 0.0193\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0234 / 3410 | LOSS 0.0192\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0235 / 3410 | LOSS 0.0192\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0236 / 3410 | LOSS 0.0192\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0237 / 3410 | LOSS 0.0191\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0238 / 3410 | LOSS 0.0191\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0239 / 3410 | LOSS 0.0190\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0240 / 3410 | LOSS 0.0190\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0241 / 3410 | LOSS 0.0189\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0242 / 3410 | LOSS 0.0189\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0243 / 3410 | LOSS 0.0189\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0244 / 3410 | LOSS 0.0188\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0245 / 3410 | LOSS 0.0188\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0246 / 3410 | LOSS 0.0188\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0247 / 3410 | LOSS 0.0187\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0248 / 3410 | LOSS 0.0187\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0249 / 3410 | LOSS 0.0187\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0250 / 3410 | LOSS 0.0186\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0251 / 3410 | LOSS 0.0186\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0252 / 3410 | LOSS 0.0186\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0253 / 3410 | LOSS 0.0185\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0254 / 3410 | LOSS 0.0185\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0255 / 3410 | LOSS 0.0185\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0256 / 3410 | LOSS 0.0184\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0257 / 3410 | LOSS 0.0184\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0258 / 3410 | LOSS 0.0184\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0259 / 3410 | LOSS 0.0183\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0260 / 3410 | LOSS 0.0183\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0261 / 3410 | LOSS 0.0183\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0262 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0263 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0264 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0265 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0266 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0267 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0268 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0269 / 3410 | LOSS 0.0182\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0270 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0271 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0272 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0273 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0274 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0275 / 3410 | LOSS 0.0181\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0276 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0277 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0278 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0279 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0280 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0281 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0282 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0283 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0284 / 3410 | LOSS 0.0180\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0285 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0286 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0287 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0288 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0289 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0290 / 3410 | LOSS 0.0179\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0291 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0292 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0293 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0294 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0295 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0296 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0297 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0298 / 3410 | LOSS 0.0178\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0299 / 3410 | LOSS 0.0177\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0300 / 3410 | LOSS 0.0177\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0301 / 3410 | LOSS 0.0177\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0302 / 3410 | LOSS 0.0177\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0303 / 3410 | LOSS 0.0176\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0304 / 3410 | LOSS 0.0176\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0305 / 3410 | LOSS 0.0176\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0306 / 3410 | LOSS 0.0176\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0307 / 3410 | LOSS 0.0176\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0308 / 3410 | LOSS 0.0175\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0309 / 3410 | LOSS 0.0175\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0310 / 3410 | LOSS 0.0175\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0311 / 3410 | LOSS 0.0175\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0312 / 3410 | LOSS 0.0174\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0313 / 3410 | LOSS 0.0174\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0314 / 3410 | LOSS 0.0174\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0315 / 3410 | LOSS 0.0174\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0316 / 3410 | LOSS 0.0174\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0317 / 3410 | LOSS 0.0173\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0318 / 3410 | LOSS 0.0173\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0319 / 3410 | LOSS 0.0173\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0320 / 3410 | LOSS 0.0172\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0321 / 3410 | LOSS 0.0172\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0322 / 3410 | LOSS 0.0172\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0323 / 3410 | LOSS 0.0172\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0324 / 3410 | LOSS 0.0171\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0325 / 3410 | LOSS 0.0171\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0326 / 3410 | LOSS 0.0171\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0327 / 3410 | LOSS 0.0171\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0328 / 3410 | LOSS 0.0171\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0329 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0330 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0331 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0332 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0333 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0334 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0335 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0336 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0337 / 3410 | LOSS 0.0170\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0338 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0339 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0340 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0341 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0342 / 3410 | LOSS 0.0169\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0343 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0344 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0345 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0346 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0347 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0348 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0349 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0350 / 3410 | LOSS 0.0168\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0351 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0352 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0353 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0354 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0355 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0356 / 3410 | LOSS 0.0167\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0357 / 3410 | LOSS 0.0166\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0358 / 3410 | LOSS 0.0166\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0359 / 3410 | LOSS 0.0166\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0360 / 3410 | LOSS 0.0166\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0361 / 3410 | LOSS 0.0166\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0362 / 3410 | LOSS 0.0165\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0363 / 3410 | LOSS 0.0165\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0364 / 3410 | LOSS 0.0165\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0365 / 3410 | LOSS 0.0165\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0366 / 3410 | LOSS 0.0164\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0367 / 3410 | LOSS 0.0164\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0368 / 3410 | LOSS 0.0164\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0369 / 3410 | LOSS 0.0164\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0370 / 3410 | LOSS 0.0164\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0371 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0372 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0373 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0374 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0375 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0376 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0377 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0378 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0379 / 3410 | LOSS 0.0163\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0380 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0381 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0382 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0383 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0384 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0385 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0386 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0387 / 3410 | LOSS 0.0162\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0388 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0389 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0390 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0391 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0392 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0393 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0394 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0395 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0396 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0397 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0398 / 3410 | LOSS 0.0161\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0399 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0400 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0401 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0402 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0403 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0404 / 3410 | LOSS 0.0160\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0405 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0406 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0407 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0408 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0409 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0410 / 3410 | LOSS 0.0159\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0411 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0412 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0413 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0414 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0415 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0416 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0417 / 3410 | LOSS 0.0158\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0418 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0419 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0420 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0421 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0422 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0423 / 3410 | LOSS 0.0157\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0424 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0425 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0426 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0427 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0428 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0429 / 3410 | LOSS 0.0156\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0430 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0431 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0432 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0433 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0434 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0435 / 3410 | LOSS 0.0155\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0436 / 3410 | LOSS 0.0154\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0437 / 3410 | LOSS 0.0154\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0438 / 3410 | LOSS 0.0154\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0439 / 3410 | LOSS 0.0154\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0440 / 3410 | LOSS 0.0154\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0441 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0442 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0443 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0444 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0445 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0446 / 3410 | LOSS 0.0153\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0447 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0448 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0449 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0450 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0451 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0452 / 3410 | LOSS 0.0152\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0453 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0454 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0455 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0456 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0457 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0458 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0459 / 3410 | LOSS 0.0151\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0460 / 3410 | LOSS 0.0150\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0461 / 3410 | LOSS 0.0150\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0462 / 3410 | LOSS 0.0150\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0463 / 3410 | LOSS 0.0150\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0464 / 3410 | LOSS 0.0150\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0465 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0466 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0467 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0468 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0469 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0470 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0471 / 3410 | LOSS 0.0149\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0472 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0473 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0474 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0475 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0476 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0477 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0478 / 3410 | LOSS 0.0148\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0479 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0480 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0481 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0482 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0483 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0484 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0485 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0486 / 3410 | LOSS 0.0147\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0487 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0488 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0489 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0490 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0491 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0492 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0493 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0494 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0495 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0496 / 3410 | LOSS 0.0146\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0497 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0498 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0499 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0500 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0501 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0502 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0503 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0504 / 3410 | LOSS 0.0145\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0505 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0506 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0507 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0508 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0509 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0510 / 3410 | LOSS 0.0144\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0511 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0512 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0513 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0514 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0515 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0516 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0517 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0518 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0519 / 3410 | LOSS 0.0143\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0520 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0521 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0522 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0523 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0524 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0525 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0526 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0527 / 3410 | LOSS 0.0142\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0528 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0529 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0530 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0531 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0532 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0533 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0534 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0535 / 3410 | LOSS 0.0141\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0536 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0537 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0538 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0539 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0540 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0541 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0542 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0543 / 3410 | LOSS 0.0140\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0544 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0545 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0546 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0547 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0548 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0549 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0550 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0551 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0552 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0553 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0554 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0555 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0556 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0557 / 3410 | LOSS 0.0139\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0558 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0559 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0560 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0561 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0562 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0563 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0564 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0565 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0566 / 3410 | LOSS 0.0138\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0567 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0568 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0569 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0570 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0571 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0572 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0573 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0574 / 3410 | LOSS 0.0137\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0575 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0576 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0577 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0578 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0579 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0580 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0581 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0582 / 3410 | LOSS 0.0136\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0583 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0584 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0585 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0586 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0587 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0588 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0589 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0590 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0591 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0592 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0593 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0594 / 3410 | LOSS 0.0135\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0595 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0596 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0597 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0598 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0599 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0600 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0601 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0602 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0603 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0604 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0605 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0606 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0607 / 3410 | LOSS 0.0134\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0608 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0609 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0610 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0611 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0612 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0613 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0614 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0615 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0616 / 3410 | LOSS 0.0133\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0617 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0618 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0619 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0620 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0621 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0622 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0623 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0624 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0625 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0626 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0627 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0628 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0629 / 3410 | LOSS 0.0132\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0630 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0631 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0632 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0633 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0634 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0635 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0636 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0637 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0638 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0639 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0640 / 3410 | LOSS 0.0131\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0641 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0642 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0643 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0644 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0645 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0646 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0647 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0648 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0649 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0650 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0651 / 3410 | LOSS 0.0130\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0652 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0653 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0654 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0655 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0656 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0657 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0658 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0659 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0660 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0661 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0662 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0663 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0664 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0665 / 3410 | LOSS 0.0129\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0666 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0667 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0668 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0669 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0670 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0671 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0672 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0673 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0674 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0675 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0676 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0677 / 3410 | LOSS 0.0128\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0678 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0679 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0680 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0681 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0682 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0683 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0684 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0685 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0686 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0687 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0688 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0689 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0690 / 3410 | LOSS 0.0127\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0691 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0692 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0693 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0694 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0695 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0696 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0697 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0698 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0699 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0700 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0701 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0702 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0703 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0704 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0705 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0706 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0707 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0708 / 3410 | LOSS 0.0126\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0709 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0710 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0711 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0712 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0713 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0714 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0715 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0716 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0717 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0718 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0719 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0720 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0721 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0722 / 3410 | LOSS 0.0125\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0723 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0724 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0725 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0726 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0727 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0728 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0729 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0730 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0731 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0732 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0733 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0734 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0735 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0736 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0737 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0738 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0739 / 3410 | LOSS 0.0124\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0740 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0741 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0742 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0743 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0744 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0745 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0746 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0747 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0748 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0749 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0750 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0751 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0752 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0753 / 3410 | LOSS 0.0123\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0754 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0755 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0756 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0757 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0758 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0759 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0760 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0761 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0762 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0763 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0764 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0765 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0766 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0767 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0768 / 3410 | LOSS 0.0122\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0769 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0770 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0771 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0772 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0773 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0774 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0775 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0776 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0777 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0778 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0779 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0780 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0781 / 3410 | LOSS 0.0121\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0782 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0783 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0784 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0785 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0786 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0787 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0788 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0789 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0790 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0791 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0792 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0793 / 3410 | LOSS 0.0120\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0794 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0795 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0796 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0797 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0798 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0799 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0800 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0801 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0802 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0803 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0804 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0805 / 3410 | LOSS 0.0119\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0806 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0807 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0808 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0809 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0810 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0811 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0812 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0813 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0814 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0815 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0816 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0817 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0818 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0819 / 3410 | LOSS 0.0118\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0820 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0821 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0822 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0823 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0824 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0825 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0826 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0827 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0828 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0829 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0830 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0831 / 3410 | LOSS 0.0117\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0832 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0833 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0834 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0835 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0836 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0837 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0838 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0839 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0840 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0841 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0842 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0843 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0844 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0845 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0846 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0847 / 3410 | LOSS 0.0116\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0848 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0849 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0850 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0851 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0852 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0853 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0854 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0855 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0856 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0857 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0858 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0859 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0860 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0861 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0862 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0863 / 3410 | LOSS 0.0115\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0864 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0865 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0866 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0867 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0868 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0869 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0870 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0871 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0872 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0873 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0874 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0875 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0876 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0877 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0878 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0879 / 3410 | LOSS 0.0114\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0880 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0881 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0882 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0883 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0884 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0885 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0886 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0887 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0888 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0889 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0890 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0891 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0892 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0893 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0894 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0895 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0896 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0897 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0898 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0899 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0900 / 3410 | LOSS 0.0113\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0901 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0902 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0903 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0904 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0905 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0906 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0907 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0908 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0909 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0910 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0911 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0912 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0913 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0914 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0915 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0916 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0917 / 3410 | LOSS 0.0112\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0918 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0919 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0920 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0921 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0922 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0923 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0924 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0925 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0926 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0927 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0928 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0929 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0930 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0931 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0932 / 3410 | LOSS 0.0111\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0933 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0934 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0935 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0936 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0937 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0938 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0939 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0940 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0941 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0942 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0943 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0944 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0945 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0946 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0947 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0948 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0949 / 3410 | LOSS 0.0110\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0950 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0951 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0952 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0953 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0954 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0955 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0956 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0957 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0958 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0959 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0960 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0961 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0962 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0963 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0964 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0965 / 3410 | LOSS 0.0109\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0966 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0967 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0968 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0969 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0970 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0971 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0972 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0973 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0974 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0975 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0976 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0977 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0978 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0979 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0980 / 3410 | LOSS 0.0108\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0981 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0982 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0983 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0984 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0985 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0986 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0987 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0988 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0989 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0990 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0991 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0992 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0993 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0994 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0995 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0996 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0997 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0998 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 0999 / 3410 | LOSS 0.0107\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1000 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1001 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1002 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1003 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1004 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1005 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1006 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1007 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1008 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1009 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1010 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1011 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1012 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1013 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1014 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1015 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1016 / 3410 | LOSS 0.0106\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1017 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1018 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1019 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1020 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1021 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1022 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1023 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1024 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1025 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1026 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1027 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1028 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1029 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1030 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1031 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1032 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1033 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1034 / 3410 | LOSS 0.0105\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1035 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1036 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1037 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1038 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1039 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1040 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1041 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1042 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1043 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1044 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1045 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1046 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1047 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1048 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1049 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1050 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1051 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1052 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1053 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1054 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1055 / 3410 | LOSS 0.0104\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1056 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1057 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1058 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1059 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1060 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1061 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1062 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1063 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1064 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1065 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1066 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1067 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1068 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1069 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1070 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1071 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1072 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1073 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1074 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1075 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1076 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1077 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1078 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1079 / 3410 | LOSS 0.0103\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1080 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1081 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1082 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1083 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1084 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1085 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1086 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1087 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1088 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1089 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1090 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1091 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1092 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1093 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1094 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1095 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1096 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1097 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1098 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1099 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1100 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1101 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1102 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1103 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1104 / 3410 | LOSS 0.0102\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1105 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1106 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1107 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1108 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1109 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1110 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1111 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1112 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1113 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1114 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1115 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1116 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1117 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1118 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1119 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1120 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1121 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1122 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1123 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1124 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1125 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1126 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1127 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1128 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1129 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1130 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1131 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1132 / 3410 | LOSS 0.0101\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1133 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1134 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1135 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1136 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1137 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1138 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1139 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1140 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1141 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1142 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1143 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1144 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1145 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1146 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1147 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1148 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1149 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1150 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1151 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1152 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1153 / 3410 | LOSS 0.0100\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1154 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1155 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1156 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1157 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1158 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1159 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1160 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1161 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1162 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1163 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1164 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1165 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1166 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1167 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1168 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1169 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1170 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1171 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1172 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1173 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1174 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1175 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1176 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1177 / 3410 | LOSS 0.0099\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1178 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1179 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1180 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1181 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1182 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1183 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1184 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1185 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1186 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1187 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1188 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1189 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1190 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1191 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1192 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1193 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1194 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1195 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1196 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1197 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1198 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1199 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1200 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1201 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1202 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1203 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1204 / 3410 | LOSS 0.0098\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1205 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1206 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1207 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1208 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1209 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1210 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1211 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1212 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1213 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1214 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1215 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1216 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1217 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1218 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1219 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1220 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1221 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1222 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1223 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1224 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1225 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1226 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1227 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1228 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1229 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1230 / 3410 | LOSS 0.0097\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1231 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1232 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1233 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1234 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1235 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1236 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1237 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1238 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1239 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1240 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1241 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1242 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1243 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1244 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1245 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1246 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1247 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1248 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1249 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1250 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1251 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1252 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1253 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1254 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1255 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1256 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1257 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1258 / 3410 | LOSS 0.0096\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1259 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1260 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1261 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1262 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1263 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1264 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1265 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1266 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1267 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1268 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1269 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1270 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1271 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1272 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1273 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1274 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1275 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1276 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1277 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1278 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1279 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1280 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1281 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1282 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1283 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1284 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1285 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1286 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1287 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1288 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1289 / 3410 | LOSS 0.0095\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1290 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1291 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1292 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1293 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1294 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1295 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1296 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1297 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1298 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1299 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1300 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1301 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1302 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1303 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1304 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1305 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1306 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1307 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1308 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1309 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1310 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1311 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1312 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1313 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1314 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1315 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1316 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1317 / 3410 | LOSS 0.0094\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1318 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1319 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1320 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1321 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1322 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1323 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1324 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1325 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1326 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1327 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1328 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1329 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1330 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1331 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1332 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1333 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1334 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1335 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1336 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1337 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1338 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1339 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1340 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1341 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1342 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1343 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1344 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1345 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1346 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1347 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1348 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1349 / 3410 | LOSS 0.0093\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1350 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1351 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1352 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1353 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1354 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1355 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1356 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1357 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1358 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1359 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1360 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1361 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1362 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1363 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1364 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1365 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1366 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1367 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1368 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1369 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1370 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1371 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1372 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1373 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1374 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1375 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1376 / 3410 | LOSS 0.0092\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1377 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1378 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1379 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1380 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1381 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1382 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1383 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1384 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1385 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1386 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1387 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1388 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1389 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1390 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1391 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1392 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1393 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1394 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1395 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1396 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1397 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1398 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1399 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1400 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1401 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1402 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1403 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1404 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1405 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1406 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1407 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1408 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1409 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1410 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1411 / 3410 | LOSS 0.0091\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1412 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1413 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1414 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1415 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1416 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1417 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1418 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1419 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1420 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1421 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1422 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1423 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1424 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1425 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1426 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1427 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1428 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1429 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1430 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1431 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1432 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1433 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1434 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1435 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1436 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1437 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1438 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1439 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1440 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1441 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1442 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1443 / 3410 | LOSS 0.0090\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1444 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1445 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1446 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1447 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1448 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1449 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1450 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1451 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1452 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1453 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1454 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1455 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1456 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1457 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1458 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1459 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1460 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1461 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1462 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1463 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1464 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1465 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1466 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1467 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1468 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1469 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1470 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1471 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1472 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1473 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1474 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1475 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1476 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1477 / 3410 | LOSS 0.0089\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1478 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1479 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1480 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1481 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1482 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1483 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1484 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1485 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1486 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1487 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1488 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1489 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1490 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1491 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1492 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1493 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1494 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1495 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1496 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1497 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1498 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1499 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1500 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1501 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1502 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1503 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1504 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1505 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1506 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1507 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1508 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1509 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1510 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1511 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1512 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1513 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1514 / 3410 | LOSS 0.0088\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1515 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1516 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1517 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1518 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1519 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1520 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1521 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1522 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1523 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1524 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1525 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1526 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1527 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1528 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1529 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1530 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1531 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1532 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1533 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1534 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1535 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1536 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1537 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1538 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1539 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1540 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1541 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1542 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1543 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1544 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1545 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1546 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1547 / 3410 | LOSS 0.0087\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1548 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1549 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1550 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1551 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1552 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1553 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1554 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1555 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1556 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1557 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1558 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1559 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1560 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1561 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1562 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1563 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1564 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1565 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1566 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1567 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1568 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1569 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1570 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1571 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1572 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1573 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1574 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1575 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1576 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1577 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1578 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1579 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1580 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1581 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1582 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1583 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1584 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1585 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1586 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1587 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1588 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1589 / 3410 | LOSS 0.0086\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1590 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1591 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1592 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1593 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1594 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1595 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1596 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1597 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1598 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1599 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1600 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1601 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1602 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1603 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1604 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1605 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1606 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1607 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1608 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1609 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1610 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1611 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1612 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1613 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1614 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1615 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1616 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1617 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1618 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1619 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1620 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1621 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1622 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1623 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1624 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1625 / 3410 | LOSS 0.0085\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1626 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1627 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1628 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1629 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1630 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1631 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1632 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1633 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1634 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1635 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1636 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1637 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1638 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1639 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1640 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1641 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1642 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1643 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1644 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1645 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1646 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1647 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1648 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1649 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1650 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1651 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1652 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1653 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1654 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1655 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1656 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1657 / 3410 | LOSS 0.0084\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1658 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1659 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1660 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1661 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1662 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1663 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1664 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1665 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1666 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1667 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1668 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1669 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1670 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1671 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1672 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1673 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1674 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1675 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1676 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1677 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1678 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1679 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1680 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1681 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1682 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1683 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1684 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1685 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1686 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1687 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1688 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1689 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1690 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1691 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1692 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1693 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1694 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1695 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1696 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1697 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1698 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1699 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1700 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1701 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1702 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1703 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1704 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1705 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1706 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1707 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1708 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1709 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1710 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1711 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1712 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1713 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1714 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1715 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1716 / 3410 | LOSS 0.0083\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1717 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1718 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1719 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1720 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1721 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1722 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1723 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1724 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1725 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1726 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1727 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1728 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1729 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1730 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1731 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1732 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1733 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1734 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1735 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1736 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1737 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1738 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1739 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1740 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1741 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1742 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1743 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1744 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1745 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1746 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1747 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1748 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1749 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1750 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1751 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1752 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1753 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1754 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1755 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1756 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1757 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1758 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1759 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1760 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1761 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1762 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1763 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1764 / 3410 | LOSS 0.0082\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1765 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1766 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1767 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1768 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1769 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1770 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1771 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1772 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1773 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1774 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1775 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1776 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1777 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1778 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1779 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1780 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1781 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1782 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1783 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1784 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1785 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1786 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1787 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1788 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1789 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1790 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1791 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1792 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1793 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1794 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1795 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1796 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1797 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1798 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1799 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1800 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1801 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1802 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1803 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1804 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1805 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1806 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1807 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1808 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1809 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1810 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1811 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1812 / 3410 | LOSS 0.0081\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1813 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1814 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1815 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1816 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1817 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1818 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1819 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1820 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1821 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1822 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1823 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1824 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1825 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1826 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1827 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1828 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1829 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1830 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1831 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1832 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1833 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1834 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1835 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1836 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1837 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1838 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1839 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1840 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1841 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1842 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1843 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1844 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1845 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1846 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1847 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1848 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1849 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1850 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1851 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1852 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1853 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1854 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1855 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1856 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1857 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1858 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1859 / 3410 | LOSS 0.0080\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1860 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1861 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1862 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1863 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1864 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1865 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1866 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1867 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1868 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1869 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1870 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1871 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1872 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1873 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1874 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1875 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1876 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1877 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1878 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1879 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1880 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1881 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1882 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1883 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1884 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1885 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1886 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1887 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1888 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1889 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1890 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1891 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1892 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1893 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1894 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1895 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1896 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1897 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1898 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1899 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1900 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1901 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1902 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1903 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1904 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1905 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1906 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1907 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1908 / 3410 | LOSS 0.0079\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1909 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1910 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1911 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1912 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1913 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1914 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1915 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1916 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1917 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1918 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1919 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1920 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1921 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1922 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1923 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1924 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1925 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1926 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1927 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1928 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1929 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1930 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1931 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1932 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1933 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1934 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1935 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1936 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1937 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1938 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1939 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1940 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1941 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1942 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1943 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1944 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1945 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1946 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1947 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1948 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1949 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1950 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1951 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1952 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1953 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1954 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1955 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1956 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1957 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1958 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1959 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1960 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1961 / 3410 | LOSS 0.0078\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1962 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1963 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1964 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1965 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1966 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1967 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1968 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1969 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1970 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1971 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1972 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1973 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1974 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1975 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1976 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1977 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1978 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1979 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1980 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1981 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1982 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1983 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1984 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1985 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1986 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1987 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1988 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1989 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1990 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1991 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1992 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1993 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1994 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1995 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1996 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1997 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1998 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 1999 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2000 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2001 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2002 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2003 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2004 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2005 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2006 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2007 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2008 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2009 / 3410 | LOSS 0.0077\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2010 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2011 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2012 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2013 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2014 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2015 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2016 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2017 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2018 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2019 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2020 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2021 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2022 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2023 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2024 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2025 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2026 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2027 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2028 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2029 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2030 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2031 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2032 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2033 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2034 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2035 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2036 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2037 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2038 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2039 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2040 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2041 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2042 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2043 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2044 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2045 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2046 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2047 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2048 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2049 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2050 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2051 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2052 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2053 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2054 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2055 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2056 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2057 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2058 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2059 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2060 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2061 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2062 / 3410 | LOSS 0.0076\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2063 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2064 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2065 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2066 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2067 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2068 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2069 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2070 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2071 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2072 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2073 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2074 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2075 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2076 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2077 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2078 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2079 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2080 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2081 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2082 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2083 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2084 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2085 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2086 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2087 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2088 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2089 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2090 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2091 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2092 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2093 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2094 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2095 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2096 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2097 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2098 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2099 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2100 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2101 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2102 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2103 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2104 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2105 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2106 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2107 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2108 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2109 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2110 / 3410 | LOSS 0.0075\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2111 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2112 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2113 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2114 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2115 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2116 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2117 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2118 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2119 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2120 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2121 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2122 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2123 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2124 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2125 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2126 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2127 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2128 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2129 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2130 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2131 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2132 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2133 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2134 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2135 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2136 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2137 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2138 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2139 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2140 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2141 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2142 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2143 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2144 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2145 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2146 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2147 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2148 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2149 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2150 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2151 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2152 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2153 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2154 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2155 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2156 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2157 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2158 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2159 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2160 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2161 / 3410 | LOSS 0.0074\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2162 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2163 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2164 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2165 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2166 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2167 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2168 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2169 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2170 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2171 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2172 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2173 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2174 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2175 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2176 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2177 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2178 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2179 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2180 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2181 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2182 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2183 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2184 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2185 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2186 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2187 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2188 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2189 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2190 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2191 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2192 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2193 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2194 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2195 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2196 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2197 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2198 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2199 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2200 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2201 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2202 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2203 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2204 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2205 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2206 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2207 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2208 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2209 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2210 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2211 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2212 / 3410 | LOSS 0.0073\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2213 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2214 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2215 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2216 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2217 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2218 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2219 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2220 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2221 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2222 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2223 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2224 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2225 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2226 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2227 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2228 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2229 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2230 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2231 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2232 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2233 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2234 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2235 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2236 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2237 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2238 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2239 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2240 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2241 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2242 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2243 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2244 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2245 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2246 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2247 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2248 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2249 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2250 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2251 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2252 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2253 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2254 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2255 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2256 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2257 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2258 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2259 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2260 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2261 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2262 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2263 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2264 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2265 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2266 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2267 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2268 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2269 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2270 / 3410 | LOSS 0.0072\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2271 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2272 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2273 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2274 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2275 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2276 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2277 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2278 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2279 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2280 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2281 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2282 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2283 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2284 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2285 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2286 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2287 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2288 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2289 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2290 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2291 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2292 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2293 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2294 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2295 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2296 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2297 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2298 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2299 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2300 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2301 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2302 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2303 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2304 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2305 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2306 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2307 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2308 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2309 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2310 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2311 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2312 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2313 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2314 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2315 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2316 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2317 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2318 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2319 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2320 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2321 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2322 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2323 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2324 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2325 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2326 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2327 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2328 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2329 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2330 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2331 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2332 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2333 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2334 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2335 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2336 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2337 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2338 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2339 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2340 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2341 / 3410 | LOSS 0.0071\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2342 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2343 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2344 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2345 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2346 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2347 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2348 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2349 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2350 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2351 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2352 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2353 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2354 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2355 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2356 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2357 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2358 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2359 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2360 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2361 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2362 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2363 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2364 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2365 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2366 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2367 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2368 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2369 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2370 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2371 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2372 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2373 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2374 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2375 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2376 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2377 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2378 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2379 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2380 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2381 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2382 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2383 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2384 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2385 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2386 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2387 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2388 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2389 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2390 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2391 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2392 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2393 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2394 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2395 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2396 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2397 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2398 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2399 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2400 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2401 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2402 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2403 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2404 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2405 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2406 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2407 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2408 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2409 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2410 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2411 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2412 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2413 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2414 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2415 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2416 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2417 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2418 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2419 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2420 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2421 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2422 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2423 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2424 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2425 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2426 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2427 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2428 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2429 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2430 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2431 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2432 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2433 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2434 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2435 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2436 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2437 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2438 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2439 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2440 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2441 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2442 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2443 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2444 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2445 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2446 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2447 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2448 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2449 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2450 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2451 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2452 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2453 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2454 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2455 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2456 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2457 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2458 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2459 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2460 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2461 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2462 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2463 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2464 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2465 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2466 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2467 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2468 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2469 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2470 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2471 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2472 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2473 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2474 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2475 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2476 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2477 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2478 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2479 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2480 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2481 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2482 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2483 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2484 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2485 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2486 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2487 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2488 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2489 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2490 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2491 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2492 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2493 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2494 / 3410 | LOSS 0.0070\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2495 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2496 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2497 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2498 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2499 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2500 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2501 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2502 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2503 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2504 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2505 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2506 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2507 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2508 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2509 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2510 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2511 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2512 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2513 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2514 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2515 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2516 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2517 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2518 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2519 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2520 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2521 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2522 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2523 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2524 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2525 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2526 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2527 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2528 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2529 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2530 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2531 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2532 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2533 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2534 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2535 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2536 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2537 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2538 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2539 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2540 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2541 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2542 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2543 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2544 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2545 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2546 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2547 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2548 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2549 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2550 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2551 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2552 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2553 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2554 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2555 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2556 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2557 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2558 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2559 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2560 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2561 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2562 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2563 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2564 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2565 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2566 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2567 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2568 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2569 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2570 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2571 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2572 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2573 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2574 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2575 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2576 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2577 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2578 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2579 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2580 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2581 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2582 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2583 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2584 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2585 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2586 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2587 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2588 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2589 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2590 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2591 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2592 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2593 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2594 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2595 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2596 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2597 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2598 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2599 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2600 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2601 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2602 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2603 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2604 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2605 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2606 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2607 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2608 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2609 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2610 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2611 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2612 / 3410 | LOSS 0.0069\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2613 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2614 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2615 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2616 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2617 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2618 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2619 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2620 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2621 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2622 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2623 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2624 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2625 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2626 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2627 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2628 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2629 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2630 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2631 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2632 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2633 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2634 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2635 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2636 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2637 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2638 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2639 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2640 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2641 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2642 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2643 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2644 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2645 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2646 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2647 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2648 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2649 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2650 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2651 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2652 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2653 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2654 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2655 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2656 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2657 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2658 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2659 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2660 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2661 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2662 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2663 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2664 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2665 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2666 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2667 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2668 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2669 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2670 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2671 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2672 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2673 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2674 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2675 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2676 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2677 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2678 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2679 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2680 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2681 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2682 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2683 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2684 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2685 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2686 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2687 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2688 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2689 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2690 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2691 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2692 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2693 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2694 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2695 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2696 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2697 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2698 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2699 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2700 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2701 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2702 / 3410 | LOSS 0.0068\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2703 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2704 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2705 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2706 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2707 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2708 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2709 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2710 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2711 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2712 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2713 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2714 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2715 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2716 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2717 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2718 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2719 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2720 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2721 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2722 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2723 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2724 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2725 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2726 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2727 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2728 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2729 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2730 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2731 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2732 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2733 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2734 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2735 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2736 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2737 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2738 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2739 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2740 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2741 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2742 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2743 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2744 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2745 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2746 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2747 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2748 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2749 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2750 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2751 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2752 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2753 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2754 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2755 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2756 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2757 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2758 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2759 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2760 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2761 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2762 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2763 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2764 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2765 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2766 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2767 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2768 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2769 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2770 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2771 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2772 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2773 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2774 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2775 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2776 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2777 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2778 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2779 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2780 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2781 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2782 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2783 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2784 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2785 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2786 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2787 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2788 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2789 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2790 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2791 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2792 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2793 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2794 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2795 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2796 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2797 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2798 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2799 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2800 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2801 / 3410 | LOSS 0.0067\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2802 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2803 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2804 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2805 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2806 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2807 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2808 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2809 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2810 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2811 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2812 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2813 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2814 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2815 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2816 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2817 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2818 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2819 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2820 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2821 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2822 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2823 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2824 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2825 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2826 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2827 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2828 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2829 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2830 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2831 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2832 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2833 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2834 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2835 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2836 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2837 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2838 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2839 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2840 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2841 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2842 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2843 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2844 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2845 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2846 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2847 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2848 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2849 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2850 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2851 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2852 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2853 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2854 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2855 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2856 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2857 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2858 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2859 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2860 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2861 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2862 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2863 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2864 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2865 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2866 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2867 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2868 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2869 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2870 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2871 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2872 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2873 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2874 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2875 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2876 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2877 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2878 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2879 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2880 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2881 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2882 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2883 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2884 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2885 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2886 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2887 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2888 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2889 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2890 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2891 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2892 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2893 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2894 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2895 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2896 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2897 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2898 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2899 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2900 / 3410 | LOSS 0.0066\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2901 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2902 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2903 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2904 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2905 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2906 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2907 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2908 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2909 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2910 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2911 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2912 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2913 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2914 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2915 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2916 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2917 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2918 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2919 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2920 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2921 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2922 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2923 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2924 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2925 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2926 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2927 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2928 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2929 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2930 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2931 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2932 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2933 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2934 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2935 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2936 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2937 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2938 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2939 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2940 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2941 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2942 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2943 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2944 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2945 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2946 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2947 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2948 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2949 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2950 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2951 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2952 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2953 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2954 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2955 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2956 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2957 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2958 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2959 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2960 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2961 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2962 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2963 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2964 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2965 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2966 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2967 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2968 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2969 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2970 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2971 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2972 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2973 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2974 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2975 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2976 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2977 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2978 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2979 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2980 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2981 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2982 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2983 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2984 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2985 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2986 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2987 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2988 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2989 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2990 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2991 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2992 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2993 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2994 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2995 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2996 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2997 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2998 / 3410 | LOSS 0.0065\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 2999 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3000 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3001 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3002 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3003 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3004 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3005 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3006 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3007 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3008 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3009 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3010 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3011 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3012 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3013 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3014 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3015 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3016 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3017 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3018 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3019 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3020 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3021 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3022 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3023 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3024 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3025 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3026 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3027 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3028 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3029 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3030 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3031 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3032 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3033 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3034 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3035 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3036 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3037 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3038 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3039 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3040 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3041 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3042 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3043 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3044 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3045 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3046 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3047 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3048 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3049 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3050 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3051 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3052 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3053 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3054 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3055 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3056 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3057 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3058 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3059 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3060 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3061 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3062 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3063 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3064 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3065 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3066 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3067 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3068 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3069 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3070 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3071 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3072 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3073 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3074 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3075 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3076 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3077 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3078 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3079 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3080 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3081 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3082 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3083 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3084 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3085 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3086 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3087 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3088 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3089 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3090 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3091 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3092 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3093 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3094 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3095 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3096 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3097 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3098 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3099 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3100 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3101 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3102 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3103 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3104 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3105 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3106 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3107 / 3410 | LOSS 0.0064\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3108 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3109 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3110 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3111 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3112 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3113 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3114 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3115 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3116 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3117 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3118 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3119 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3120 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3121 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3122 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3123 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3124 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3125 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3126 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3127 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3128 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3129 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3130 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3131 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3132 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3133 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3134 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3135 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3136 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3137 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3138 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3139 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3140 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3141 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3142 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3143 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3144 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3145 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3146 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3147 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3148 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3149 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3150 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3151 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3152 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3153 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3154 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3155 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3156 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3157 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3158 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3159 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3160 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3161 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3162 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3163 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3164 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3165 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3166 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3167 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3168 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3169 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3170 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3171 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3172 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3173 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3174 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3175 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3176 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3177 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3178 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3179 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3180 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3181 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3182 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3183 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3184 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3185 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3186 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3187 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3188 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3189 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3190 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3191 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3192 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3193 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3194 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3195 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3196 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3197 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3198 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3199 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3200 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3201 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3202 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3203 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3204 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3205 / 3410 | LOSS 0.0063\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3206 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3207 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3208 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3209 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3210 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3211 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3212 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3213 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3214 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3215 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3216 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3217 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3218 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3219 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3220 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3221 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3222 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3223 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3224 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3225 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3226 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3227 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3228 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3229 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3230 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3231 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3232 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3233 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3234 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3235 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3236 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3237 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3238 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3239 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3240 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3241 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3242 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3243 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3244 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3245 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3246 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3247 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3248 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3249 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3250 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3251 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3252 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3253 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3254 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3255 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3256 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3257 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3258 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3259 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3260 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3261 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3262 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3263 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3264 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3265 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3266 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3267 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3268 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3269 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3270 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3271 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3272 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3273 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3274 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3275 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3276 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3277 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3278 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3279 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3280 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3281 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3282 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3283 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3284 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3285 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3286 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3287 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3288 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3289 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3290 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3291 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3292 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3293 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3294 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3295 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3296 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3297 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3298 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3299 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3300 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3301 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3302 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3303 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3304 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3305 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3306 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3307 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3308 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3309 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3310 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3311 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3312 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3313 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3314 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3315 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3316 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3317 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3318 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3319 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3320 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3321 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3322 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3323 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3324 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3325 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3326 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3327 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3328 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3329 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3330 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3331 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3332 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3333 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3334 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3335 / 3410 | LOSS 0.0062\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3336 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3337 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3338 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3339 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3340 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3341 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3342 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3343 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3344 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3345 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3346 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3347 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3348 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3349 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3350 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3351 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3352 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3353 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3354 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3355 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3356 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3357 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3358 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3359 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3360 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3361 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3362 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3363 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3364 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3365 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3366 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3367 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3368 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3369 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3370 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3371 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3372 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3373 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3374 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3375 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3376 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3377 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3378 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3379 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3380 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3381 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3382 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3383 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3384 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3385 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3386 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3387 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3388 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3389 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3390 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3391 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3392 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3393 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3394 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3395 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3396 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3397 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3398 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3399 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3400 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3401 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3402 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3403 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3404 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3405 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3406 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3407 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3408 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3409 / 3410 | LOSS 0.0061\n", + "TRAIN: EPOCH 0001 / 0010 | BATCH 3410 / 3410 | LOSS 0.0061\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0001 / 0974 | LOSS 0.0031\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0002 / 0974 | LOSS 0.0033\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0003 / 0974 | LOSS 0.0039\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0004 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0005 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0006 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0007 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0008 / 0974 | LOSS 0.0042\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0009 / 0974 | LOSS 0.0041\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0010 / 0974 | LOSS 0.0041\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0011 / 0974 | LOSS 0.0040\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0012 / 0974 | LOSS 0.0040\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0013 / 0974 | LOSS 0.0041\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0014 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0015 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0016 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0017 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0018 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0019 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0020 / 0974 | LOSS 0.0042\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0021 / 0974 | LOSS 0.0042\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0022 / 0974 | LOSS 0.0041\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0023 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0024 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0025 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0026 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0027 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0028 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0029 / 0974 | LOSS 0.0043\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0030 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0031 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0032 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0033 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0034 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0035 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0036 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0037 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0038 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0039 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0040 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0041 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0042 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0043 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0044 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0045 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0046 / 0974 | LOSS 0.0048\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0047 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0048 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0049 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0050 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0051 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0052 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0053 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0054 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0055 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0056 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0057 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0058 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0059 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0060 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0061 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0062 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0063 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0064 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0065 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0066 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0067 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0068 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0069 / 0974 | LOSS 0.0047\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0070 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0071 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0072 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0073 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0074 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0075 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0076 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0077 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0078 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0079 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0080 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0081 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0082 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0083 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0084 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0085 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0086 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0087 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0088 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0089 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0090 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0091 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0092 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0093 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0094 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0095 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0096 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0097 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0098 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0099 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0100 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0101 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0102 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0103 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0104 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0105 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0106 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0107 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0108 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0109 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0110 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0111 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0112 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0113 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0114 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0115 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0116 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0117 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0118 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0119 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0120 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0121 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0122 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0123 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0124 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0125 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0126 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0127 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0128 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0129 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0130 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0131 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0132 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0133 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0134 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0135 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0136 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0137 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0138 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0139 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0140 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0141 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0142 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0143 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0144 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0145 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0146 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0147 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0148 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0149 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0150 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0151 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0152 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0153 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0154 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0155 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0156 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0157 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0158 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0159 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0160 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0161 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0162 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0163 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0164 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0165 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0166 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0167 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0168 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0169 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0170 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0171 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0172 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0173 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0174 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0175 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0176 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0177 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0178 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0179 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0180 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0181 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0182 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0183 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0184 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0185 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0186 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0187 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0188 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0189 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0190 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0191 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0192 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0193 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0194 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0195 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0196 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0197 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0198 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0199 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0200 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0201 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0202 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0203 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0204 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0205 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0206 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0207 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0208 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0209 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0210 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0211 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0212 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0213 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0214 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0215 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0216 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0217 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0218 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0219 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0220 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0221 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0222 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0223 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0224 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0225 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0226 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0227 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0228 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0229 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0230 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0231 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0232 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0233 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0234 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0235 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0236 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0237 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0238 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0239 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0240 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0241 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0242 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0243 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0244 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0245 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0246 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0247 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0248 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0249 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0250 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0251 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0252 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0253 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0254 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0255 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0256 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0257 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0258 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0259 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0260 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0261 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0262 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0263 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0264 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0265 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0266 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0267 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0268 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0269 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0270 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0271 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0272 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0273 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0274 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0275 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0276 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0277 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0278 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0279 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0280 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0281 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0282 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0283 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0284 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0285 / 0974 | LOSS 0.0044\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0286 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0287 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0288 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0289 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0290 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0291 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0292 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0293 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0294 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0295 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0296 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0297 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0298 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0299 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0300 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0301 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0302 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0303 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0304 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0305 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0306 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0307 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0308 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0309 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0310 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0311 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0312 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0313 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0314 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0315 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0316 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0317 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0318 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0319 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0320 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0321 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0322 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0323 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0324 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0325 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0326 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0327 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0328 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0329 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0330 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0331 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0332 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0333 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0334 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0335 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0336 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0337 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0338 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0339 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0340 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0341 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0342 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0343 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0344 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0345 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0346 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0347 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0348 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0349 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0350 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0351 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0352 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0353 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0354 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0355 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0356 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0357 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0358 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0359 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0360 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0361 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0362 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0363 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0364 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0365 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0366 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0367 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0368 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0369 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0370 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0371 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0372 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0373 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0374 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0375 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0376 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0377 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0378 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0379 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0380 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0381 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0382 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0383 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0384 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0385 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0386 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0387 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0388 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0389 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0390 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0391 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0392 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0393 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0394 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0395 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0396 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0397 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0398 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0399 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0400 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0401 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0402 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0403 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0404 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0405 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0406 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0407 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0408 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0409 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0410 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0411 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0412 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0413 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0414 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0415 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0416 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0417 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0418 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0419 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0420 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0421 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0422 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0423 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0424 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0425 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0426 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0427 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0428 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0429 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0430 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0431 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0432 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0433 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0434 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0435 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0436 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0437 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0438 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0439 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0440 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0441 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0442 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0443 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0444 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0445 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0446 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0447 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0448 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0449 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0450 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0451 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0452 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0453 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0454 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0455 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0456 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0457 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0458 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0459 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0460 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0461 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0462 / 0974 | LOSS 0.0046\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0463 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0464 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0465 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0466 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0467 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0468 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0469 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0470 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0471 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0472 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0473 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0474 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0475 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0476 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0477 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0478 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0479 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0480 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0481 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0482 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0483 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0484 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0485 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0486 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0487 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0488 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0489 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0490 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0491 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0492 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0493 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0494 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0495 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0496 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0497 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0498 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0499 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0500 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0501 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0502 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0503 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0504 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0505 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0506 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0507 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0508 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0509 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0510 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0511 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0512 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0513 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0514 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0515 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0516 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0517 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0518 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0519 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0520 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0521 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0522 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0523 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0524 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0525 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0526 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0527 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0528 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0529 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0530 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0531 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0532 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0533 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0534 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0535 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0536 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0537 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0538 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0539 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0540 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0541 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0542 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0543 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0544 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0545 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0546 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0547 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0548 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0549 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0550 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0551 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0552 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0553 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0554 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0555 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0556 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0557 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0558 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0559 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0560 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0561 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0562 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0563 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0564 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0565 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0566 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0567 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0568 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0569 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0570 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0571 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0572 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0573 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0574 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0575 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0576 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0577 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0578 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0579 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0580 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0581 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0582 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0583 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0584 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0585 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0586 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0587 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0588 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0589 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0590 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0591 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0592 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0593 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0594 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0595 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0596 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0597 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0598 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0599 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0600 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0601 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0602 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0603 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0604 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0605 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0606 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0607 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0608 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0609 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0610 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0611 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0612 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0613 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0614 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0615 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0616 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0617 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0618 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0619 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0620 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0621 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0622 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0623 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0624 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0625 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0626 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0627 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0628 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0629 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0630 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0631 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0632 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0633 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0634 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0635 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0636 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0637 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0638 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0639 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0640 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0641 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0642 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0643 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0644 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0645 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0646 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0647 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0648 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0649 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0650 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0651 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0652 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0653 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0654 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0655 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0656 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0657 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0658 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0659 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0660 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0661 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0662 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0663 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0664 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0665 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0666 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0667 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0668 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0669 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0670 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0671 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0672 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0673 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0674 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0675 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0676 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0677 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0678 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0679 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0680 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0681 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0682 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0683 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0684 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0685 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0686 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0687 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0688 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0689 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0690 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0691 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0692 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0693 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0694 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0695 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0696 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0697 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0698 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0699 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0700 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0701 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0702 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0703 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0704 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0705 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0706 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0707 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0708 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0709 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0710 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0711 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0712 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0713 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0714 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0715 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0716 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0717 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0718 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0719 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0720 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0721 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0722 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0723 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0724 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0725 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0726 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0727 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0728 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0729 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0730 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0731 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0732 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0733 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0734 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0735 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0736 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0737 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0738 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0739 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0740 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0741 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0742 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0743 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0744 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0745 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0746 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0747 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0748 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0749 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0750 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0751 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0752 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0753 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0754 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0755 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0756 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0757 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0758 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0759 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0760 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0761 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0762 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0763 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0764 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0765 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0766 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0767 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0768 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0769 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0770 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0771 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0772 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0773 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0774 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0775 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0776 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0777 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0778 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0779 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0780 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0781 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0782 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0783 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0784 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0785 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0786 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0787 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0788 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0789 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0790 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0791 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0792 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0793 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0794 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0795 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0796 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0797 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0798 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0799 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0800 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0801 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0802 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0803 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0804 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0805 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0806 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0807 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0808 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0809 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0810 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0811 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0812 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0813 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0814 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0815 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0816 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0817 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0818 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0819 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0820 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0821 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0822 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0823 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0824 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0825 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0826 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0827 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0828 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0829 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0830 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0831 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0832 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0833 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0834 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0835 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0836 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0837 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0838 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0839 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0840 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0841 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0842 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0843 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0844 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0845 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0846 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0847 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0848 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0849 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0850 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0851 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0852 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0853 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0854 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0855 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0856 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0857 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0858 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0859 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0860 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0861 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0862 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0863 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0864 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0865 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0866 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0867 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0868 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0869 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0870 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0871 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0872 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0873 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0874 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0875 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0876 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0877 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0878 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0879 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0880 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0881 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0882 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0883 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0884 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0885 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0886 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0887 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0888 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0889 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0890 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0891 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0892 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0893 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0894 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0895 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0896 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0897 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0898 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0899 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0900 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0901 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0902 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0903 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0904 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0905 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0906 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0907 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0908 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0909 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0910 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0911 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0912 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0913 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0914 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0915 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0916 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0917 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0918 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0919 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0920 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0921 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0922 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0923 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0924 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0925 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0926 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0927 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0928 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0929 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0930 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0931 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0932 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0933 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0934 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0935 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0936 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0937 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0938 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0939 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0940 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0941 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0942 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0943 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0944 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0945 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0946 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0947 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0948 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0949 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0950 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0951 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0952 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0953 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0954 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0955 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0956 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0957 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0958 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0959 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0960 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0961 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0962 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0963 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0964 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0965 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0966 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0967 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0968 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0969 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0970 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0971 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0972 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0973 / 0974 | LOSS 0.0045\n", + "VALID: EPOCH 0001 / 0010 | BATCH 0974 / 0974 | LOSS 0.0045\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0001 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0002 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0003 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0004 / 3410 | LOSS 0.0048\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0005 / 3410 | LOSS 0.0045\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0006 / 3410 | LOSS 0.0044\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0007 / 3410 | LOSS 0.0045\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0008 / 3410 | LOSS 0.0043\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0009 / 3410 | LOSS 0.0042\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0010 / 3410 | LOSS 0.0042\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0011 / 3410 | LOSS 0.0041\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0012 / 3410 | LOSS 0.0040\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0013 / 3410 | LOSS 0.0040\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0014 / 3410 | LOSS 0.0039\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0015 / 3410 | LOSS 0.0038\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0016 / 3410 | LOSS 0.0038\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0017 / 3410 | LOSS 0.0037\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0018 / 3410 | LOSS 0.0036\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0019 / 3410 | LOSS 0.0036\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0020 / 3410 | LOSS 0.0035\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0021 / 3410 | LOSS 0.0035\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0022 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0023 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0024 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0025 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0026 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0027 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0028 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0029 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0030 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0031 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0032 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0033 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0034 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0035 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0036 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0037 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0038 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0039 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0040 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0041 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0042 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0043 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0044 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0045 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0046 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0047 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0048 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0049 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0050 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0051 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0052 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0053 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0054 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0055 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0056 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0057 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0058 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0059 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0060 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0061 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0062 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0063 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0064 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0065 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0066 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0067 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0068 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0069 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0070 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0071 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0072 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0073 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0074 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0075 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0076 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0077 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0078 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0079 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0080 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0081 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0082 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0083 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0084 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0085 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0086 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0087 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0088 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0089 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0090 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0091 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0092 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0093 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0094 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0095 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0096 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0097 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0098 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0099 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0100 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0101 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0102 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0103 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0104 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0105 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0106 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0107 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0108 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0109 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0110 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0111 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0112 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0113 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0114 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0115 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0116 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0117 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0118 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0119 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0120 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0121 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0122 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0123 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0124 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0125 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0126 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0127 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0128 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0129 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0130 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0131 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0132 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0133 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0134 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0135 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0136 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0137 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0138 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0139 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0140 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0141 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0142 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0143 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0144 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0145 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0146 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0147 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0148 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0149 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0150 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0151 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0152 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0153 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0154 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0155 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0156 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0157 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0158 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0159 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0160 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0161 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0162 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0163 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0164 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0165 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0166 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0167 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0168 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0169 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0170 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0171 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0172 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0173 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0174 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0175 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0176 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0177 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0178 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0179 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0180 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0181 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0182 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0183 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0184 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0185 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0186 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0187 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0188 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0189 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0190 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0191 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0192 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0193 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0194 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0195 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0196 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0197 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0198 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0199 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0200 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0201 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0202 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0203 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0204 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0205 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0206 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0207 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0208 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0209 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0210 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0211 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0212 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0213 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0214 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0215 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0216 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0217 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0218 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0219 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0220 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0221 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0222 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0223 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0224 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0225 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0226 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0227 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0228 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0229 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0230 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0231 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0232 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0233 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0234 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0235 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0236 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0237 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0238 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0239 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0240 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0241 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0242 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0243 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0244 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0245 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0246 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0247 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0248 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0249 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0250 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0251 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0252 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0253 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0254 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0255 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0256 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0257 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0258 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0259 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0260 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0261 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0262 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0263 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0264 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0265 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0266 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0267 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0268 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0269 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0270 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0271 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0272 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0273 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0274 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0275 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0276 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0277 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0278 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0279 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0280 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0281 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0282 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0283 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0284 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0285 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0286 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0287 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0288 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0289 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0290 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0291 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0292 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0293 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0294 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0295 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0296 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0297 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0298 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0299 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0300 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0301 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0302 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0303 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0304 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0305 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0306 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0307 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0308 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0309 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0310 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0311 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0312 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0313 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0314 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0315 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0316 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0317 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0318 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0319 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0320 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0321 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0322 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0323 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0324 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0325 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0326 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0327 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0328 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0329 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0330 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0331 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0332 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0333 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0334 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0335 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0336 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0337 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0338 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0339 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0340 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0341 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0342 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0343 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0344 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0345 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0346 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0347 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0348 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0349 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0350 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0351 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0352 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0353 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0354 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0355 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0356 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0357 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0358 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0359 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0360 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0361 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0362 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0363 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0364 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0365 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0366 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0367 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0368 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0369 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0370 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0371 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0372 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0373 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0374 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0375 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0376 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0377 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0378 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0379 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0380 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0381 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0382 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0383 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0384 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0385 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0386 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0387 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0388 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0389 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0390 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0391 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0392 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0393 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0394 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0395 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0396 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0397 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0398 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0399 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0400 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0401 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0402 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0403 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0404 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0405 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0406 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0407 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0408 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0409 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0410 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0411 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0412 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0413 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0414 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0415 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0416 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0417 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0418 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0419 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0420 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0421 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0422 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0423 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0424 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0425 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0426 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0427 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0428 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0429 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0430 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0431 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0432 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0433 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0434 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0435 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0436 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0437 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0438 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0439 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0440 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0441 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0442 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0443 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0444 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0445 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0446 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0447 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0448 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0449 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0450 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0451 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0452 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0453 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0454 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0455 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0456 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0457 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0458 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0459 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0460 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0461 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0462 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0463 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0464 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0465 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0466 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0467 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0468 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0469 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0470 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0471 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0472 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0473 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0474 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0475 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0476 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0477 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0478 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0479 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0480 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0481 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0482 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0483 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0484 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0485 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0486 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0487 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0488 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0489 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0490 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0491 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0492 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0493 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0494 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0495 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0496 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0497 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0498 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0499 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0500 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0501 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0502 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0503 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0504 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0505 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0506 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0507 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0508 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0509 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0510 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0511 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0512 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0513 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0514 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0515 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0516 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0517 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0518 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0519 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0520 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0521 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0522 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0523 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0524 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0525 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0526 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0527 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0528 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0529 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0530 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0531 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0532 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0533 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0534 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0535 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0536 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0537 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0538 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0539 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0540 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0541 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0542 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0543 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0544 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0545 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0546 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0547 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0548 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0549 / 3410 | LOSS 0.0034\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0550 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0551 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0552 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0553 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0554 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0555 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0556 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0557 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0558 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0559 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0560 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0561 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0562 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0563 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0564 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0565 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0566 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0567 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0568 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0569 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0570 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0571 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0572 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0573 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0574 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0575 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0576 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0577 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0578 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0579 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0580 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0581 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0582 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0583 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0584 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0585 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0586 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0587 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0588 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0589 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0590 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0591 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0592 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0593 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0594 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0595 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0596 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0597 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0598 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0599 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0600 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0601 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0602 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0603 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0604 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0605 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0606 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0607 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0608 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0609 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0610 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0611 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0612 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0613 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0614 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0615 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0616 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0617 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0618 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0619 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0620 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0621 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0622 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0623 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0624 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0625 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0626 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0627 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0628 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0629 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0630 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0631 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0632 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0633 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0634 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0635 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0636 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0637 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0638 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0639 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0640 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0641 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0642 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0643 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0644 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0645 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0646 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0647 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0648 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0649 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0650 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0651 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0652 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0653 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0654 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0655 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0656 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0657 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0658 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0659 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0660 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0661 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0662 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0663 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0664 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0665 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0666 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0667 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0668 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0669 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0670 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0671 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0672 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0673 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0674 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0675 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0676 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0677 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0678 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0679 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0680 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0681 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0682 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0683 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0684 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0685 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0686 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0687 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0688 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0689 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0690 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0691 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0692 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0693 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0694 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0695 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0696 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0697 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0698 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0699 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0700 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0701 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0702 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0703 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0704 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0705 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0706 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0707 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0708 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0709 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0710 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0711 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0712 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0713 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0714 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0715 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0716 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0717 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0718 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0719 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0720 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0721 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0722 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0723 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0724 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0725 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0726 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0727 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0728 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0729 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0730 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0731 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0732 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0733 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0734 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0735 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0736 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0737 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0738 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0739 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0740 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0741 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0742 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0743 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0744 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0745 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0746 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0747 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0748 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0749 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0750 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0751 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0752 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0753 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0754 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0755 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0756 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0757 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0758 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0759 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0760 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0761 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0762 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0763 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0764 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0765 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0766 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0767 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0768 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0769 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0770 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0771 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0772 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0773 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0774 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0775 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0776 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0777 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0778 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0779 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0780 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0781 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0782 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0783 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0784 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0785 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0786 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0787 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0788 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0789 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0790 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0791 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0792 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0793 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0794 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0795 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0796 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0797 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0798 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0799 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0800 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0801 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0802 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0803 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0804 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0805 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0806 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0807 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0808 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0809 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0810 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0811 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0812 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0813 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0814 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0815 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0816 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0817 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0818 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0819 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0820 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0821 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0822 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0823 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0824 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0825 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0826 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0827 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0828 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0829 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0830 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0831 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0832 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0833 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0834 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0835 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0836 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0837 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0838 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0839 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0840 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0841 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0842 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0843 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0844 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0845 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0846 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0847 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0848 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0849 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0850 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0851 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0852 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0853 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0854 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0855 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0856 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0857 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0858 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0859 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0860 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0861 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0862 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0863 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0864 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0865 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0866 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0867 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0868 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0869 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0870 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0871 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0872 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0873 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0874 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0875 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0876 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0877 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0878 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0879 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0880 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0881 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0882 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0883 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0884 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0885 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0886 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0887 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0888 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0889 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0890 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0891 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0892 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0893 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0894 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0895 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0896 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0897 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0898 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0899 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0900 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0901 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0902 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0903 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0904 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0905 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0906 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0907 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0908 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0909 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0910 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0911 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0912 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0913 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0914 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0915 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0916 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0917 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0918 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0919 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0920 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0921 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0922 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0923 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0924 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0925 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0926 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0927 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0928 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0929 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0930 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0931 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0932 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0933 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0934 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0935 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0936 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0937 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0938 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0939 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0940 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0941 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0942 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0943 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0944 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0945 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0946 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0947 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0948 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0949 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0950 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0951 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0952 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0953 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0954 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0955 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0956 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0957 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0958 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0959 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0960 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0961 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0962 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0963 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0964 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0965 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0966 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0967 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0968 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0969 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0970 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0971 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0972 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0973 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0974 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0975 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0976 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0977 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0978 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0979 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0980 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0981 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0982 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0983 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0984 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0985 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0986 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0987 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0988 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0989 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0990 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0991 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0992 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0993 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0994 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0995 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0996 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0997 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0998 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 0999 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1000 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1001 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1002 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1003 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1004 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1005 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1006 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1007 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1008 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1009 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1010 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1011 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1012 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1013 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1014 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1015 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1016 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1017 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1018 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1019 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1020 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1021 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1022 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1023 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1024 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1025 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1026 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1027 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1028 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1029 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1030 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1031 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1032 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1033 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1034 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1035 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1036 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1037 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1038 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1039 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1040 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1041 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1042 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1043 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1044 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1045 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1046 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1047 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1048 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1049 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1050 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1051 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1052 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1053 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1054 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1055 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1056 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1057 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1058 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1059 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1060 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1061 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1062 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1063 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1064 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1065 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1066 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1067 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1068 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1069 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1070 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1071 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1072 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1073 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1074 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1075 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1076 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1077 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1078 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1079 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1080 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1081 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1082 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1083 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1084 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1085 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1086 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1087 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1088 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1089 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1090 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1091 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1092 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1093 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1094 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1095 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1096 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1097 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1098 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1099 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1100 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1101 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1102 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1103 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1104 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1105 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1106 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1107 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1108 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1109 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1110 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1111 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1112 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1113 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1114 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1115 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1116 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1117 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1118 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1119 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1120 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1121 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1122 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1123 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1124 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1125 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1126 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1127 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1128 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1129 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1130 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1131 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1132 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1133 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1134 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1135 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1136 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1137 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1138 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1139 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1140 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1141 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1142 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1143 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1144 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1145 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1146 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1147 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1148 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1149 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1150 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1151 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1152 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1153 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1154 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1155 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1156 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1157 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1158 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1159 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1160 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1161 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1162 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1163 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1164 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1165 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1166 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1167 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1168 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1169 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1170 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1171 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1172 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1173 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1174 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1175 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1176 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1177 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1178 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1179 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1180 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1181 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1182 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1183 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1184 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1185 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1186 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1187 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1188 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1189 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1190 / 3410 | LOSS 0.0033\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1191 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1192 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1193 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1194 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1195 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1196 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1197 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1198 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1199 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1200 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1201 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1202 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1203 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1204 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1205 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1206 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1207 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1208 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1209 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1210 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1211 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1212 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1213 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1214 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1215 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1216 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1217 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1218 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1219 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1220 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1221 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1222 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1223 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1224 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1225 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1226 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1227 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1228 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1229 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1230 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1231 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1232 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1233 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1234 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1235 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1236 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1237 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1238 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1239 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1240 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1241 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1242 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1243 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1244 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1245 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1246 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1247 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1248 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1249 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1250 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1251 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1252 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1253 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1254 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1255 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1256 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1257 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1258 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1259 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1260 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1261 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1262 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1263 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1264 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1265 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1266 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1267 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1268 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1269 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1270 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1271 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1272 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1273 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1274 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1275 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1276 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1277 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1278 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1279 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1280 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1281 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1282 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1283 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1284 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1285 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1286 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1287 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1288 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1289 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1290 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1291 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1292 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1293 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1294 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1295 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1296 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1297 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1298 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1299 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1300 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1301 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1302 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1303 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1304 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1305 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1306 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1307 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1308 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1309 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1310 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1311 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1312 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1313 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1314 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1315 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1316 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1317 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1318 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1319 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1320 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1321 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1322 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1323 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1324 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1325 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1326 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1327 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1328 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1329 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1330 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1331 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1332 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1333 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1334 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1335 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1336 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1337 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1338 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1339 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1340 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1341 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1342 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1343 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1344 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1345 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1346 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1347 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1348 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1349 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1350 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1351 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1352 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1353 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1354 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1355 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1356 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1357 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1358 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1359 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1360 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1361 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1362 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1363 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1364 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1365 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1366 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1367 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1368 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1369 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1370 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1371 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1372 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1373 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1374 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1375 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1376 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1377 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1378 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1379 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1380 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1381 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1382 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1383 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1384 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1385 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1386 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1387 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1388 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1389 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1390 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1391 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1392 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1393 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1394 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1395 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1396 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1397 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1398 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1399 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1400 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1401 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1402 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1403 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1404 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1405 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1406 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1407 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1408 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1409 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1410 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1411 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1412 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1413 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1414 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1415 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1416 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1417 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1418 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1419 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1420 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1421 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1422 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1423 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1424 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1425 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1426 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1427 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1428 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1429 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1430 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1431 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1432 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1433 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1434 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1435 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1436 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1437 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1438 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1439 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1440 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1441 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1442 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1443 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1444 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1445 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1446 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1447 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1448 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1449 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1450 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1451 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1452 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1453 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1454 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1455 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1456 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1457 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1458 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1459 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1460 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1461 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1462 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1463 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1464 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1465 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1466 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1467 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1468 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1469 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1470 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1471 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1472 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1473 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1474 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1475 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1476 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1477 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1478 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1479 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1480 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1481 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1482 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1483 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1484 / 3410 | LOSS 0.0032\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1485 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1486 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1487 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1488 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1489 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1490 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1491 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1492 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1493 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1494 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1495 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1496 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1497 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1498 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1499 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1500 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1501 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1502 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1503 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1504 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1505 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1506 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1507 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1508 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1509 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1510 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1511 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1512 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1513 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1514 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1515 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1516 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1517 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1518 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1519 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1520 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1521 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1522 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1523 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1524 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1525 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1526 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1527 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1528 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1529 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1530 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1531 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1532 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1533 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1534 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1535 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1536 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1537 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1538 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1539 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1540 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1541 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1542 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1543 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1544 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1545 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1546 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1547 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1548 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1549 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1550 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1551 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1552 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1553 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1554 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1555 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1556 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1557 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1558 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1559 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1560 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1561 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1562 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1563 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1564 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1565 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1566 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1567 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1568 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1569 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1570 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1571 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1572 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1573 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1574 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1575 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1576 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1577 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1578 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1579 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1580 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1581 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1582 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1583 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1584 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1585 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1586 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1587 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1588 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1589 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1590 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1591 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1592 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1593 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1594 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1595 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1596 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1597 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1598 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1599 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1600 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1601 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1602 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1603 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1604 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1605 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1606 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1607 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1608 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1609 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1610 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1611 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1612 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1613 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1614 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1615 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1616 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1617 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1618 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1619 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1620 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1621 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1622 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1623 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1624 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1625 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1626 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1627 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1628 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1629 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1630 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1631 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1632 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1633 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1634 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1635 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1636 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1637 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1638 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1639 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1640 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1641 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1642 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1643 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1644 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1645 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1646 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1647 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1648 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1649 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1650 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1651 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1652 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1653 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1654 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1655 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1656 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1657 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1658 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1659 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1660 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1661 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1662 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1663 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1664 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1665 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1666 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1667 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1668 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1669 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1670 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1671 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1672 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1673 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1674 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1675 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1676 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1677 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1678 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1679 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1680 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1681 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1682 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1683 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1684 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1685 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1686 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1687 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1688 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1689 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1690 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1691 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1692 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1693 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1694 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1695 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1696 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1697 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1698 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1699 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1700 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1701 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1702 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1703 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1704 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1705 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1706 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1707 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1708 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1709 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1710 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1711 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1712 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1713 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1714 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1715 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1716 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1717 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1718 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1719 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1720 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1721 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1722 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1723 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1724 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1725 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1726 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1727 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1728 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1729 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1730 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1731 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1732 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1733 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1734 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1735 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1736 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1737 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1738 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1739 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1740 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1741 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1742 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1743 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1744 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1745 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1746 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1747 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1748 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1749 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1750 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1751 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1752 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1753 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1754 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1755 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1756 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1757 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1758 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1759 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1760 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1761 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1762 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1763 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1764 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1765 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1766 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1767 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1768 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1769 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1770 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1771 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1772 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1773 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1774 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1775 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1776 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1777 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1778 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1779 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1780 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1781 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1782 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1783 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1784 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1785 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1786 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1787 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1788 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1789 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1790 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1791 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1792 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1793 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1794 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1795 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1796 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1797 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1798 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1799 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1800 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1801 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1802 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1803 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1804 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1805 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1806 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1807 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1808 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1809 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1810 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1811 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1812 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1813 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1814 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1815 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1816 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1817 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1818 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1819 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1820 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1821 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1822 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1823 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1824 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1825 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1826 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1827 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1828 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1829 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1830 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1831 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1832 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1833 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1834 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1835 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1836 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1837 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1838 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1839 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1840 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1841 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1842 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1843 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1844 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1845 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1846 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1847 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1848 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1849 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1850 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1851 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1852 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1853 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1854 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1855 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1856 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1857 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1858 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1859 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1860 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1861 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1862 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1863 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1864 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1865 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1866 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1867 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1868 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1869 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1870 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1871 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1872 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1873 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1874 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1875 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1876 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1877 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1878 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1879 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1880 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1881 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1882 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1883 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1884 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1885 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1886 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1887 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1888 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1889 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1890 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1891 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1892 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1893 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1894 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1895 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1896 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1897 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1898 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1899 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1900 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1901 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1902 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1903 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1904 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1905 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1906 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1907 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1908 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1909 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1910 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1911 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1912 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1913 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1914 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1915 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1916 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1917 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1918 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1919 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1920 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1921 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1922 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1923 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1924 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1925 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1926 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1927 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1928 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1929 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1930 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1931 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1932 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1933 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1934 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1935 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1936 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1937 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1938 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1939 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1940 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1941 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1942 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1943 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1944 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1945 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1946 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1947 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1948 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1949 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1950 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1951 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1952 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1953 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1954 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1955 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1956 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1957 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1958 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1959 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1960 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1961 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1962 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1963 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1964 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1965 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1966 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1967 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1968 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1969 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1970 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1971 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1972 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1973 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1974 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1975 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1976 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1977 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1978 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1979 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1980 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1981 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1982 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1983 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1984 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1985 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1986 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1987 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1988 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1989 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1990 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1991 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1992 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1993 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1994 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1995 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1996 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1997 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1998 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 1999 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2000 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2001 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2002 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2003 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2004 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2005 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2006 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2007 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2008 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2009 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2010 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2011 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2012 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2013 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2014 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2015 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2016 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2017 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2018 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2019 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2020 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2021 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2022 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2023 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2024 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2025 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2026 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2027 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2028 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2029 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2030 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2031 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2032 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2033 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2034 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2035 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2036 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2037 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2038 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2039 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2040 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2041 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2042 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2043 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2044 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2045 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2046 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2047 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2048 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2049 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2050 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2051 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2052 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2053 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2054 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2055 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2056 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2057 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2058 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2059 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2060 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2061 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2062 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2063 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2064 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2065 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2066 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2067 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2068 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2069 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2070 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2071 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2072 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2073 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2074 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2075 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2076 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2077 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2078 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2079 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2080 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2081 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2082 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2083 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2084 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2085 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2086 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2087 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2088 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2089 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2090 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2091 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2092 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2093 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2094 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2095 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2096 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2097 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2098 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2099 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2100 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2101 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2102 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2103 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2104 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2105 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2106 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2107 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2108 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2109 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2110 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2111 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2112 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2113 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2114 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2115 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2116 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2117 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2118 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2119 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2120 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2121 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2122 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2123 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2124 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2125 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2126 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2127 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2128 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2129 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2130 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2131 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2132 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2133 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2134 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2135 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2136 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2137 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2138 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2139 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2140 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2141 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2142 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2143 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2144 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2145 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2146 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2147 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2148 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2149 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2150 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2151 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2152 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2153 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2154 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2155 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2156 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2157 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2158 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2159 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2160 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2161 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2162 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2163 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2164 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2165 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2166 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2167 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2168 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2169 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2170 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2171 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2172 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2173 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2174 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2175 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2176 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2177 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2178 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2179 / 3410 | LOSS 0.0030\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2180 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2181 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2182 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2183 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2184 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2185 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2186 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2187 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2188 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2189 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2190 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2191 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2192 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2193 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2194 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2195 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2196 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2197 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2198 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2199 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2200 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2201 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2202 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2203 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2204 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2205 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2206 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2207 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2208 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2209 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2210 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2211 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2212 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2213 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2214 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2215 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2216 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2217 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2218 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2219 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2220 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2221 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2222 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2223 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2224 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2225 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2226 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2227 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2228 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2229 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2230 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2231 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2232 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2233 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2234 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2235 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2236 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2237 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2238 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2239 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2240 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2241 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2242 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2243 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2244 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2245 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2246 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2247 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2248 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2249 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2250 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2251 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2252 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2253 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2254 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2255 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2256 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2257 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2258 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2259 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2260 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2261 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2262 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2263 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2264 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2265 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2266 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2267 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2268 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2269 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2270 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2271 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2272 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2273 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2274 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2275 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2276 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2277 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2278 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2279 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2280 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2281 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2282 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2283 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2284 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2285 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2286 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2287 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2288 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2289 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2290 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2291 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2292 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2293 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2294 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2295 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2296 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2297 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2298 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2299 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2300 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2301 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2302 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2303 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2304 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2305 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2306 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2307 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2308 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2309 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2310 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2311 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2312 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2313 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2314 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2315 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2316 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2317 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2318 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2319 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2320 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2321 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2322 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2323 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2324 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2325 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2326 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2327 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2328 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2329 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2330 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2331 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2332 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2333 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2334 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2335 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2336 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2337 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2338 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2339 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2340 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2341 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2342 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2343 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2344 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2345 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2346 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2347 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2348 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2349 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2350 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2351 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2352 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2353 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2354 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2355 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2356 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2357 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2358 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2359 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2360 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2361 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2362 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2363 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2364 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2365 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2366 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2367 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2368 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2369 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2370 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2371 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2372 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2373 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2374 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2375 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2376 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2377 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2378 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2379 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2380 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2381 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2382 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2383 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2384 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2385 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2386 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2387 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2388 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2389 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2390 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2391 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2392 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2393 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2394 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2395 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2396 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2397 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2398 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2399 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2400 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2401 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2402 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2403 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2404 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2405 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2406 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2407 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2408 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2409 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2410 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2411 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2412 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2413 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2414 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2415 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2416 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2417 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2418 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2419 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2420 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2421 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2422 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2423 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2424 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2425 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2426 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2427 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2428 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2429 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2430 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2431 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2432 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2433 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2434 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2435 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2436 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2437 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2438 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2439 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2440 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2441 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2442 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2443 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2444 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2445 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2446 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2447 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2448 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2449 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2450 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2451 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2452 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2453 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2454 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2455 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2456 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2457 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2458 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2459 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2460 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2461 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2462 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2463 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2464 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2465 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2466 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2467 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2468 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2469 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2470 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2471 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2472 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2473 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2474 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2475 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2476 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2477 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2478 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2479 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2480 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2481 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2482 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2483 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2484 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2485 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2486 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2487 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2488 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2489 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2490 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2491 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2492 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2493 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2494 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2495 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2496 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2497 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2498 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2499 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2500 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2501 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2502 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2503 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2504 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2505 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2506 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2507 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2508 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2509 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2510 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2511 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2512 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2513 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2514 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2515 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2516 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2517 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2518 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2519 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2520 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2521 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2522 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2523 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2524 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2525 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2526 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2527 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2528 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2529 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2530 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2531 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2532 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2533 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2534 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2535 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2536 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2537 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2538 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2539 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2540 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2541 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2542 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2543 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2544 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2545 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2546 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2547 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2548 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2549 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2550 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2551 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2552 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2553 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2554 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2555 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2556 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2557 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2558 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2559 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2560 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2561 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2562 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2563 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2564 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2565 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2566 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2567 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2568 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2569 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2570 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2571 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2572 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2573 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2574 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2575 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2576 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2577 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2578 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2579 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2580 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2581 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2582 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2583 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2584 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2585 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2586 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2587 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2588 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2589 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2590 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2591 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2592 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2593 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2594 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2595 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2596 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2597 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2598 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2599 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2600 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2601 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2602 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2603 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2604 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2605 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2606 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2607 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2608 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2609 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2610 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2611 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2612 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2613 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2614 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2615 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2616 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2617 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2618 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2619 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2620 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2621 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2622 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2623 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2624 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2625 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2626 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2627 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2628 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2629 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2630 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2631 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2632 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2633 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2634 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2635 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2636 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2637 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2638 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2639 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2640 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2641 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2642 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2643 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2644 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2645 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2646 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2647 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2648 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2649 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2650 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2651 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2652 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2653 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2654 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2655 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2656 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2657 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2658 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2659 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2660 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2661 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2662 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2663 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2664 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2665 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2666 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2667 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2668 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2669 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2670 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2671 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2672 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2673 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2674 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2675 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2676 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2677 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2678 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2679 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2680 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2681 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2682 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2683 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2684 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2685 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2686 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2687 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2688 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2689 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2690 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2691 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2692 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2693 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2694 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2695 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2696 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2697 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2698 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2699 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2700 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2701 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2702 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2703 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2704 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2705 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2706 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2707 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2708 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2709 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2710 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2711 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2712 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2713 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2714 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2715 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2716 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2717 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2718 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2719 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2720 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2721 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2722 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2723 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2724 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2725 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2726 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2727 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2728 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2729 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2730 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2731 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2732 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2733 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2734 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2735 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2736 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2737 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2738 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2739 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2740 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2741 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2742 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2743 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2744 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2745 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2746 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2747 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2748 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2749 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2750 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2751 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2752 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2753 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2754 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2755 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2756 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2757 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2758 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2759 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2760 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2761 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2762 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2763 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2764 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2765 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2766 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2767 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2768 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2769 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2770 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2771 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2772 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2773 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2774 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2775 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2776 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2777 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2778 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2779 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2780 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2781 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2782 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2783 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2784 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2785 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2786 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2787 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2788 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2789 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2790 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2791 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2792 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2793 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2794 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2795 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2796 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2797 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2798 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2799 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2800 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2801 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2802 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2803 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2804 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2805 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2806 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2807 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2808 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2809 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2810 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2811 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2812 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2813 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2814 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2815 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2816 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2817 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2818 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2819 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2820 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2821 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2822 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2823 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2824 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2825 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2826 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2827 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2828 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2829 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2830 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2831 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2832 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2833 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2834 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2835 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2836 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2837 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2838 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2839 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2840 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2841 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2842 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2843 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2844 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2845 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2846 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2847 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2848 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2849 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2850 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2851 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2852 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2853 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2854 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2855 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2856 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2857 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2858 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2859 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2860 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2861 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2862 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2863 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2864 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2865 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2866 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2867 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2868 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2869 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2870 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2871 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2872 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2873 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2874 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2875 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2876 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2877 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2878 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2879 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2880 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2881 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2882 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2883 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2884 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2885 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2886 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2887 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2888 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2889 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2890 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2891 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2892 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2893 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2894 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2895 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2896 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2897 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2898 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2899 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2900 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2901 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2902 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2903 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2904 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2905 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2906 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2907 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2908 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2909 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2910 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2911 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2912 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2913 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2914 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2915 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2916 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2917 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2918 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2919 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2920 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2921 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2922 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2923 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2924 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2925 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2926 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2927 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2928 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2929 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2930 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2931 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2932 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2933 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2934 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2935 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2936 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2937 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2938 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2939 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2940 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2941 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2942 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2943 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2944 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2945 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2946 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2947 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2948 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2949 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2950 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2951 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2952 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2953 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2954 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2955 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2956 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2957 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2958 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2959 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2960 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2961 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2962 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2963 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2964 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2965 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2966 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2967 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2968 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2969 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2970 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2971 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2972 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2973 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2974 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2975 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2976 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2977 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2978 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2979 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2980 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2981 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2982 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2983 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2984 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2985 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2986 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2987 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2988 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2989 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2990 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2991 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2992 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2993 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2994 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2995 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2996 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2997 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2998 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 2999 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3000 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3001 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3002 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3003 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3004 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3005 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3006 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3007 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3008 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3009 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3010 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3011 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3012 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3013 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3014 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3015 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3016 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3017 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3018 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3019 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3020 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3021 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3022 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3023 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3024 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3025 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3026 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3027 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3028 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3029 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3030 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3031 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3032 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3033 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3034 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3035 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3036 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3037 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3038 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3039 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3040 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3041 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3042 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3043 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3044 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3045 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3046 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3047 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3048 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3049 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3050 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3051 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3052 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3053 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3054 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3055 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3056 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3057 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3058 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3059 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3060 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3061 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3062 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3063 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3064 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3065 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3066 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3067 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3068 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3069 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3070 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3071 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3072 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3073 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3074 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3075 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3076 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3077 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3078 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3079 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3080 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3081 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3082 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3083 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3084 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3085 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3086 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3087 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3088 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3089 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3090 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3091 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3092 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3093 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3094 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3095 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3096 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3097 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3098 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3099 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3100 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3101 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3102 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3103 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3104 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3105 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3106 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3107 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3108 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3109 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3110 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3111 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3112 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3113 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3114 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3115 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3116 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3117 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3118 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3119 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3120 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3121 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3122 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3123 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3124 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3125 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3126 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3127 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3128 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3129 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3130 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3131 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3132 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3133 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3134 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3135 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3136 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3137 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3138 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3139 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3140 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3141 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3142 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3143 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3144 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3145 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3146 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3147 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3148 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3149 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3150 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3151 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3152 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3153 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3154 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3155 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3156 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3157 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3158 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3159 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3160 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3161 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3162 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3163 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3164 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3165 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3166 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3167 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3168 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3169 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3170 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3171 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3172 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3173 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3174 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3175 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3176 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3177 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3178 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3179 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3180 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3181 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3182 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3183 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3184 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3185 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3186 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3187 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3188 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3189 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3190 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3191 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3192 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3193 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3194 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3195 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3196 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3197 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3198 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3199 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3200 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3201 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3202 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3203 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3204 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3205 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3206 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3207 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3208 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3209 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3210 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3211 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3212 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3213 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3214 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3215 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3216 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3217 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3218 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3219 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3220 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3221 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3222 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3223 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3224 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3225 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3226 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3227 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3228 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3229 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3230 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3231 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3232 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3233 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3234 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3235 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3236 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3237 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3238 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3239 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3240 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3241 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3242 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3243 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3244 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3245 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3246 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3247 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3248 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3249 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3250 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3251 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3252 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3253 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3254 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3255 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3256 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3257 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3258 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3259 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3260 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3261 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3262 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3263 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3264 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3265 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3266 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3267 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3268 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3269 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3270 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3271 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3272 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3273 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3274 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3275 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3276 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3277 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3278 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3279 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3280 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3281 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3282 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3283 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3284 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3285 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3286 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3287 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3288 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3289 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3290 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3291 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3292 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3293 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3294 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3295 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3296 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3297 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3298 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3299 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3300 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3301 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3302 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3303 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3304 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3305 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3306 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3307 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3308 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3309 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3310 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3311 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3312 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3313 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3314 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3315 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3316 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3317 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3318 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3319 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3320 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3321 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3322 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3323 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3324 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3325 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3326 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3327 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3328 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3329 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3330 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3331 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3332 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3333 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3334 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3335 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3336 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3337 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3338 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3339 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3340 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3341 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3342 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3343 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3344 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3345 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3346 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3347 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3348 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3349 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3350 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3351 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3352 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3353 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3354 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3355 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3356 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3357 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3358 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3359 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3360 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3361 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3362 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3363 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3364 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3365 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3366 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3367 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3368 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3369 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3370 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3371 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3372 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3373 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3374 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3375 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3376 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3377 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3378 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3379 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3380 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3381 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3382 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3383 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3384 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3385 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3386 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3387 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3388 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3389 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3390 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3391 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3392 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3393 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3394 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3395 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3396 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3397 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3398 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3399 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3400 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3401 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3402 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3403 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3404 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3405 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3406 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3407 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3408 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3409 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0002 / 0010 | BATCH 3410 / 3410 | LOSS 0.0027\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0001 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0002 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0003 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0004 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0005 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0006 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0007 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0008 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0009 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0010 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0011 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0012 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0013 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0014 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0015 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0016 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0017 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0018 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0019 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0020 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0021 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0022 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0023 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0024 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0025 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0026 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0027 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0028 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0029 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0030 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0031 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0032 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0033 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0034 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0035 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0036 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0037 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0038 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0039 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0040 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0041 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0042 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0043 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0044 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0045 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0046 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0047 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0048 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0049 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0050 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0051 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0052 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0053 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0054 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0055 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0056 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0057 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0058 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0059 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0060 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0061 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0062 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0063 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0064 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0065 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0066 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0067 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0068 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0069 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0070 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0071 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0072 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0073 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0074 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0075 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0076 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0077 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0078 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0079 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0080 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0081 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0082 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0083 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0084 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0085 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0086 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0087 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0088 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0089 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0090 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0091 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0092 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0093 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0094 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0095 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0096 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0097 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0098 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0099 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0100 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0101 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0102 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0103 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0104 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0105 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0106 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0107 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0108 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0109 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0110 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0111 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0112 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0113 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0114 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0115 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0116 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0117 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0118 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0119 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0120 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0121 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0122 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0123 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0124 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0125 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0126 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0127 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0128 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0129 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0130 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0131 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0132 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0133 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0134 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0135 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0136 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0137 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0138 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0139 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0140 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0141 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0142 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0143 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0144 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0145 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0146 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0147 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0148 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0149 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0150 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0151 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0152 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0153 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0154 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0155 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0156 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0157 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0158 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0159 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0160 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0161 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0162 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0163 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0164 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0165 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0166 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0167 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0168 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0169 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0170 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0171 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0172 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0173 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0174 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0175 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0176 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0177 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0178 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0179 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0180 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0181 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0182 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0183 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0184 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0185 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0186 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0187 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0188 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0189 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0190 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0191 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0192 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0193 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0194 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0195 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0196 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0197 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0198 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0199 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0200 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0201 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0202 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0203 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0204 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0205 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0206 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0207 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0208 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0209 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0210 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0211 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0212 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0213 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0214 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0215 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0216 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0217 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0218 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0219 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0220 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0221 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0222 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0223 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0224 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0225 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0226 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0227 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0228 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0229 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0230 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0231 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0232 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0233 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0234 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0235 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0236 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0237 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0238 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0239 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0240 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0241 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0242 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0243 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0244 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0245 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0246 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0247 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0248 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0249 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0250 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0251 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0252 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0253 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0254 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0255 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0256 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0257 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0258 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0259 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0260 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0261 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0262 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0263 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0264 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0265 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0266 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0267 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0268 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0269 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0270 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0271 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0272 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0273 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0274 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0275 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0276 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0277 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0278 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0279 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0280 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0281 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0282 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0283 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0284 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0285 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0286 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0287 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0288 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0289 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0290 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0291 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0292 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0293 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0294 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0295 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0296 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0297 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0298 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0299 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0300 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0301 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0302 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0303 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0304 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0305 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0306 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0307 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0308 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0309 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0310 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0311 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0312 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0313 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0314 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0315 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0316 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0317 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0318 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0319 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0320 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0321 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0322 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0323 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0324 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0325 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0326 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0327 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0328 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0329 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0330 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0331 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0332 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0333 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0334 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0335 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0336 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0337 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0338 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0339 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0340 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0341 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0342 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0343 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0344 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0345 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0346 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0347 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0348 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0349 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0350 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0351 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0352 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0353 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0354 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0355 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0356 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0357 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0358 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0359 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0360 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0361 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0362 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0363 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0364 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0365 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0366 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0367 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0368 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0369 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0370 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0371 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0372 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0373 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0374 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0375 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0376 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0377 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0378 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0379 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0380 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0381 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0382 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0383 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0384 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0385 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0386 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0387 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0388 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0389 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0390 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0391 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0392 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0393 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0394 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0395 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0396 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0397 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0398 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0399 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0400 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0401 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0402 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0403 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0404 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0405 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0406 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0407 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0408 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0409 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0410 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0411 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0412 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0413 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0414 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0415 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0416 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0417 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0418 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0419 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0420 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0421 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0422 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0423 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0424 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0425 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0426 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0427 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0428 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0429 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0430 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0431 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0432 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0433 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0434 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0435 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0436 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0437 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0438 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0439 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0440 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0441 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0442 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0443 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0444 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0445 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0446 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0447 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0448 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0449 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0450 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0451 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0452 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0453 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0454 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0455 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0456 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0457 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0458 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0459 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0460 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0461 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0462 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0463 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0464 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0465 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0466 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0467 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0468 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0469 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0470 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0471 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0472 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0473 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0474 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0475 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0476 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0477 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0478 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0479 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0480 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0481 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0482 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0483 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0484 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0485 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0486 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0487 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0488 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0489 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0490 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0491 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0492 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0493 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0494 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0495 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0496 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0497 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0498 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0499 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0500 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0501 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0502 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0503 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0504 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0505 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0506 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0507 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0508 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0509 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0510 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0511 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0512 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0513 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0514 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0515 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0516 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0517 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0518 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0519 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0520 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0521 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0522 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0523 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0524 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0525 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0526 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0527 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0528 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0529 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0530 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0531 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0532 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0533 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0534 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0535 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0536 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0537 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0538 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0539 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0540 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0541 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0542 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0543 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0544 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0545 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0546 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0547 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0548 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0549 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0550 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0551 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0552 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0553 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0554 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0555 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0556 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0557 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0558 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0559 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0560 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0561 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0562 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0563 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0564 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0565 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0566 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0567 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0568 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0569 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0570 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0571 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0572 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0573 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0574 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0575 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0576 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0577 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0578 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0579 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0580 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0581 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0582 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0583 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0584 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0585 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0586 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0587 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0588 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0589 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0590 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0591 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0592 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0593 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0594 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0595 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0596 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0597 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0598 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0599 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0600 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0601 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0602 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0603 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0604 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0605 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0606 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0607 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0608 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0609 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0610 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0611 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0612 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0613 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0614 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0615 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0616 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0617 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0618 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0619 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0620 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0621 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0622 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0623 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0624 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0625 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0626 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0627 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0628 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0629 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0630 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0631 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0632 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0633 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0634 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0635 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0636 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0637 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0638 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0639 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0640 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0641 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0642 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0643 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0644 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0645 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0646 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0647 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0648 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0649 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0650 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0651 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0652 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0653 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0654 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0655 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0656 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0657 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0658 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0659 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0660 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0661 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0662 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0663 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0664 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0665 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0666 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0667 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0668 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0669 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0670 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0671 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0672 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0673 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0674 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0675 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0676 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0677 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0678 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0679 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0680 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0681 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0682 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0683 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0684 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0685 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0686 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0687 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0688 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0689 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0690 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0691 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0692 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0693 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0694 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0695 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0696 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0697 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0698 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0699 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0700 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0701 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0702 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0703 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0704 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0705 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0706 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0707 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0708 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0709 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0710 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0711 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0712 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0713 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0714 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0715 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0716 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0717 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0718 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0719 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0720 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0721 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0722 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0723 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0724 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0725 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0726 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0727 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0728 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0729 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0730 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0731 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0732 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0733 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0734 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0735 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0736 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0737 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0738 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0739 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0740 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0741 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0742 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0743 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0744 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0745 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0746 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0747 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0748 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0749 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0750 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0751 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0752 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0753 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0754 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0755 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0756 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0757 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0758 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0759 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0760 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0761 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0762 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0763 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0764 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0765 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0766 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0767 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0768 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0769 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0770 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0771 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0772 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0773 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0774 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0775 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0776 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0777 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0778 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0779 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0780 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0781 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0782 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0783 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0784 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0785 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0786 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0787 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0788 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0789 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0790 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0791 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0792 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0793 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0794 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0795 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0796 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0797 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0798 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0799 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0800 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0801 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0802 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0803 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0804 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0805 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0806 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0807 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0808 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0809 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0810 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0811 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0812 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0813 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0814 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0815 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0816 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0817 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0818 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0819 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0820 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0821 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0822 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0823 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0824 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0825 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0826 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0827 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0828 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0829 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0830 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0831 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0832 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0833 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0834 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0835 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0836 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0837 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0838 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0839 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0840 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0841 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0842 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0843 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0844 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0845 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0846 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0847 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0848 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0849 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0850 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0851 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0852 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0853 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0854 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0855 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0856 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0857 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0858 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0859 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0860 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0861 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0862 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0863 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0864 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0865 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0866 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0867 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0868 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0869 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0870 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0871 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0872 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0873 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0874 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0875 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0876 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0877 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0878 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0879 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0880 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0881 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0882 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0883 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0884 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0885 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0886 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0887 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0888 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0889 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0890 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0891 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0892 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0893 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0894 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0895 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0896 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0897 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0898 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0899 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0900 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0901 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0902 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0903 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0904 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0905 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0906 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0907 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0908 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0909 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0910 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0911 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0912 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0913 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0914 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0915 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0916 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0917 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0918 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0919 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0920 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0921 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0922 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0923 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0924 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0925 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0926 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0927 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0928 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0929 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0930 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0931 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0932 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0933 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0934 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0935 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0936 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0937 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0938 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0939 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0940 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0941 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0942 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0943 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0944 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0945 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0946 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0947 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0948 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0949 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0950 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0951 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0952 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0953 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0954 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0955 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0956 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0957 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0958 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0959 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0960 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0961 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0962 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0963 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0964 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0965 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0966 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0967 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0968 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0969 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0970 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0971 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0972 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0973 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0002 / 0010 | BATCH 0974 / 0974 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0001 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0002 / 3410 | LOSS 0.0046\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0003 / 3410 | LOSS 0.0039\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0004 / 3410 | LOSS 0.0035\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0005 / 3410 | LOSS 0.0031\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0006 / 3410 | LOSS 0.0029\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0007 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0008 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0009 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0010 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0011 / 3410 | LOSS 0.0028\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0012 / 3410 | LOSS 0.0027\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0013 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0014 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0015 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0016 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0017 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0018 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0019 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0020 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0021 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0022 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0023 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0024 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0025 / 3410 | LOSS 0.0026\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0026 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0027 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0028 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0029 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0030 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0031 / 3410 | LOSS 0.0025\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0032 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0033 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0034 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0035 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0036 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0037 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0038 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0039 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0040 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0041 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0042 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0043 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0044 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0045 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0046 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0047 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0048 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0049 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0050 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0051 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0052 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0053 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0054 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0055 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0056 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0057 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0058 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0059 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0060 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0061 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0062 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0063 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0064 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0065 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0066 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0067 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0068 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0069 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0070 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0071 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0072 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0073 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0074 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0075 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0076 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0077 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0078 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0079 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0080 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0081 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0082 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0083 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0084 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0085 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0086 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0087 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0088 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0089 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0090 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0091 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0092 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0093 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0094 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0095 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0096 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0097 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0098 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0099 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0100 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0101 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0102 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0103 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0104 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0105 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0106 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0107 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0108 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0109 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0110 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0111 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0112 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0113 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0114 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0115 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0116 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0117 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0118 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0119 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0120 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0121 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0122 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0123 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0124 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0125 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0126 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0127 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0128 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0129 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0130 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0131 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0132 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0133 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0134 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0135 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0136 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0137 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0138 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0139 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0140 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0141 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0142 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0143 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0144 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0145 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0146 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0147 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0148 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0149 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0150 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0151 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0152 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0153 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0154 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0155 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0156 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0157 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0158 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0159 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0160 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0161 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0162 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0163 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0164 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0165 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0166 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0167 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0168 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0169 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0170 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0171 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0172 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0173 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0174 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0175 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0176 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0177 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0178 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0179 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0180 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0181 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0182 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0183 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0184 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0185 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0186 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0187 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0188 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0189 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0190 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0191 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0192 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0193 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0194 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0195 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0196 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0197 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0198 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0199 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0200 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0201 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0202 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0203 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0204 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0205 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0206 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0207 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0208 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0209 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0210 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0211 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0212 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0213 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0214 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0215 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0216 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0217 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0218 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0219 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0220 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0221 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0222 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0223 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0224 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0225 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0226 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0227 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0228 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0229 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0230 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0231 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0232 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0233 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0234 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0235 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0236 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0237 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0238 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0239 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0240 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0241 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0242 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0243 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0244 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0245 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0246 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0247 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0248 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0249 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0250 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0251 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0252 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0253 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0254 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0255 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0256 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0257 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0258 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0259 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0260 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0261 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0262 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0263 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0264 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0265 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0266 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0267 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0268 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0269 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0270 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0271 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0272 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0273 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0274 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0275 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0276 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0277 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0278 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0279 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0280 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0281 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0282 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0283 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0284 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0285 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0286 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0287 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0288 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0289 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0290 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0291 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0292 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0293 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0294 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0295 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0296 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0297 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0298 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0299 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0300 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0301 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0302 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0303 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0304 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0305 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0306 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0307 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0308 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0309 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0310 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0311 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0312 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0313 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0314 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0315 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0316 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0317 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0318 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0319 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0320 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0321 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0322 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0323 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0324 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0325 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0326 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0327 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0328 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0329 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0330 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0331 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0332 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0333 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0334 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0335 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0336 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0337 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0338 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0339 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0340 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0341 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0342 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0343 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0344 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0345 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0346 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0347 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0348 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0349 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0350 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0351 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0352 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0353 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0354 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0355 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0356 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0357 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0358 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0359 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0360 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0361 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0362 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0363 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0364 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0365 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0366 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0367 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0368 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0369 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0370 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0371 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0372 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0373 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0374 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0375 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0376 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0377 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0378 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0379 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0380 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0381 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0382 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0383 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0384 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0385 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0386 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0387 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0388 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0389 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0390 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0391 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0392 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0393 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0394 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0395 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0396 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0397 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0398 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0399 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0400 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0401 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0402 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0403 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0404 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0405 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0406 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0407 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0408 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0409 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0410 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0411 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0412 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0413 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0414 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0415 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0416 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0417 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0418 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0419 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0420 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0421 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0422 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0423 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0424 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0425 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0426 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0427 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0428 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0429 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0430 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0431 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0432 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0433 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0434 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0435 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0436 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0437 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0438 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0439 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0440 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0441 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0442 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0443 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0444 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0445 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0446 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0447 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0448 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0449 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0450 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0451 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0452 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0453 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0454 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0455 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0456 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0457 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0458 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0459 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0460 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0461 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0462 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0463 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0464 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0465 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0466 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0467 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0468 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0469 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0470 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0471 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0472 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0473 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0474 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0475 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0476 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0477 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0478 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0479 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0480 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0481 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0482 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0483 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0484 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0485 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0486 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0487 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0488 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0489 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0490 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0491 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0492 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0493 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0494 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0495 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0496 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0497 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0498 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0499 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0500 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0501 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0502 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0503 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0504 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0505 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0506 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0507 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0508 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0509 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0510 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0511 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0512 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0513 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0514 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0515 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0516 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0517 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0518 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0519 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0520 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0521 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0522 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0523 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0524 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0525 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0526 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0527 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0528 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0529 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0530 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0531 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0532 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0533 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0534 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0535 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0536 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0537 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0538 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0539 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0540 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0541 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0542 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0543 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0544 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0545 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0546 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0547 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0548 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0549 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0550 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0551 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0552 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0553 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0554 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0555 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0556 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0557 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0558 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0559 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0560 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0561 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0562 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0563 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0564 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0565 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0566 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0567 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0568 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0569 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0570 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0571 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0572 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0573 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0574 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0575 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0576 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0577 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0578 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0579 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0580 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0581 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0582 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0583 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0584 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0585 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0586 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0587 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0588 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0589 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0590 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0591 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0592 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0593 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0594 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0595 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0596 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0597 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0598 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0599 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0600 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0601 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0602 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0603 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0604 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0605 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0606 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0607 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0608 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0609 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0610 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0611 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0612 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0613 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0614 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0615 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0616 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0617 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0618 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0619 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0620 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0621 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0622 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0623 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0624 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0625 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0626 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0627 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0628 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0629 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0630 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0631 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0632 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0633 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0634 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0635 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0636 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0637 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0638 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0639 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0640 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0641 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0642 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0643 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0644 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0645 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0646 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0647 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0648 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0649 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0650 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0651 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0652 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0653 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0654 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0655 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0656 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0657 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0658 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0659 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0660 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0661 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0662 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0663 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0664 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0665 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0666 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0667 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0668 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0669 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0670 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0671 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0672 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0673 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0674 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0675 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0676 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0677 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0678 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0679 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0680 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0681 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0682 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0683 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0684 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0685 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0686 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0687 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0688 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0689 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0690 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0691 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0692 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0693 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0694 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0695 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0696 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0697 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0698 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0699 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0700 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0701 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0702 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0703 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0704 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0705 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0706 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0707 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0708 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0709 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0710 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0711 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0712 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0713 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0714 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0715 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0716 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0717 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0718 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0719 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0720 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0721 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0722 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0723 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0724 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0725 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0726 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0727 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0728 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0729 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0730 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0731 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0732 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0733 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0734 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0735 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0736 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0737 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0738 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0739 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0740 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0741 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0742 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0743 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0744 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0745 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0746 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0747 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0748 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0749 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0750 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0751 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0752 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0753 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0754 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0755 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0756 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0757 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0758 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0759 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0760 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0761 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0762 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0763 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0764 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0765 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0766 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0767 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0768 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0769 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0770 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0771 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0772 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0773 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0774 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0775 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0776 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0777 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0778 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0779 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0780 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0781 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0782 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0783 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0784 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0785 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0786 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0787 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0788 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0789 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0790 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0791 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0792 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0793 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0794 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0795 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0796 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0797 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0798 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0799 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0800 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0801 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0802 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0803 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0804 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0805 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0806 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0807 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0808 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0809 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0810 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0811 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0812 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0813 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0814 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0815 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0816 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0817 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0818 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0819 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0820 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0821 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0822 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0823 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0824 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0825 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0826 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0827 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0828 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0829 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0830 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0831 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0832 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0833 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0834 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0835 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0836 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0837 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0838 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0839 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0840 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0841 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0842 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0843 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0844 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0845 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0846 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0847 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0848 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0849 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0850 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0851 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0852 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0853 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0854 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0855 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0856 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0857 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0858 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0859 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0860 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0861 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0862 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0863 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0864 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0865 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0866 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0867 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0868 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0869 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0870 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0871 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0872 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0873 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0874 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0875 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0876 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0877 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0878 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0879 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0880 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0881 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0882 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0883 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0884 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0885 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0886 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0887 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0888 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0889 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0890 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0891 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0892 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0893 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0894 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0895 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0896 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0897 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0898 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0899 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0900 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0901 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0902 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0903 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0904 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0905 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0906 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0907 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0908 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0909 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0910 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0911 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0912 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0913 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0914 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0915 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0916 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0917 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0918 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0919 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0920 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0921 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0922 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0923 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0924 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0925 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0926 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0927 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0928 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0929 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0930 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0931 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0932 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0933 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0934 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0935 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0936 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0937 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0938 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0939 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0940 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0941 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0942 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0943 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0944 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0945 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0946 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0947 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0948 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0949 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0950 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0951 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0952 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0953 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0954 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0955 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0956 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0957 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0958 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0959 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0960 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0961 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0962 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0963 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0964 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0965 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0966 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0967 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0968 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0969 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0970 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0971 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0972 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0973 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0974 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0975 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0976 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0977 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0978 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0979 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0980 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0981 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0982 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0983 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0984 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0985 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0986 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0987 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0988 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0989 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0990 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0991 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0992 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0993 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0994 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0995 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0996 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0997 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0998 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 0999 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1000 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1001 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1002 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1003 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1004 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1005 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1006 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1007 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1008 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1009 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1010 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1011 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1012 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1013 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1014 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1015 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1016 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1017 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1018 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1019 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1020 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1021 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1022 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1023 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1024 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1025 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1026 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1027 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1028 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1029 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1030 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1031 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1032 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1033 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1034 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1035 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1036 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1037 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1038 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1039 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1040 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1041 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1042 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1043 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1044 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1045 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1046 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1047 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1048 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1049 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1050 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1051 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1052 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1053 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1054 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1055 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1056 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1057 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1058 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1059 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1060 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1061 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1062 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1063 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1064 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1065 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1066 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1067 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1068 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1069 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1070 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1071 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1072 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1073 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1074 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1075 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1076 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1077 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1078 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1079 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1080 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1081 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1082 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1083 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1084 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1085 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1086 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1087 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1088 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1089 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1090 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1091 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1092 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1093 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1094 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1095 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1096 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1097 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1098 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1099 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1100 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1101 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1102 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1103 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1104 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1105 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1106 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1107 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1108 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1109 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1110 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1111 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1112 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1113 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1114 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1115 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1116 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1117 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1118 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1119 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1120 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1121 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1122 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1123 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1124 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1125 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1126 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1127 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1128 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1129 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1130 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1131 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1132 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1133 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1134 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1135 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1136 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1137 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1138 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1139 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1140 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1141 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1142 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1143 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1144 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1145 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1146 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1147 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1148 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1149 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1150 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1151 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1152 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1153 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1154 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1155 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1156 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1157 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1158 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1159 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1160 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1161 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1162 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1163 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1164 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1165 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1166 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1167 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1168 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1169 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1170 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1171 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1172 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1173 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1174 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1175 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1176 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1177 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1178 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1179 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1180 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1181 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1182 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1183 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1184 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1185 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1186 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1187 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1188 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1189 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1190 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1191 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1192 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1193 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1194 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1195 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1196 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1197 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1198 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1199 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1200 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1201 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1202 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1203 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1204 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1205 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1206 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1207 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1208 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1209 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1210 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1211 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1212 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1213 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1214 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1215 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1216 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1217 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1218 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1219 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1220 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1221 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1222 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1223 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1224 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1225 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1226 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1227 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1228 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1229 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1230 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1231 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1232 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1233 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1234 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1235 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1236 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1237 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1238 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1239 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1240 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1241 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1242 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1243 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1244 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1245 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1246 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1247 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1248 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1249 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1250 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1251 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1252 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1253 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1254 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1255 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1256 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1257 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1258 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1259 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1260 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1261 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1262 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1263 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1264 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1265 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1266 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1267 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1268 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1269 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1270 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1271 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1272 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1273 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1274 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1275 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1276 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1277 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1278 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1279 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1280 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1281 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1282 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1283 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1284 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1285 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1286 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1287 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1288 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1289 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1290 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1291 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1292 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1293 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1294 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1295 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1296 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1297 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1298 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1299 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1300 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1301 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1302 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1303 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1304 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1305 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1306 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1307 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1308 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1309 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1310 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1311 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1312 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1313 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1314 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1315 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1316 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1317 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1318 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1319 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1320 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1321 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1322 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1323 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1324 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1325 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1326 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1327 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1328 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1329 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1330 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1331 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1332 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1333 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1334 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1335 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1336 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1337 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1338 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1339 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1340 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1341 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1342 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1343 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1344 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1345 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1346 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1347 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1348 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1349 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1350 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1351 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1352 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1353 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1354 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1355 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1356 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1357 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1358 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1359 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1360 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1361 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1362 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1363 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1364 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1365 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1366 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1367 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1368 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1369 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1370 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1371 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1372 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1373 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1374 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1375 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1376 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1377 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1378 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1379 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1380 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1381 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1382 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1383 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1384 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1385 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1386 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1387 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1388 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1389 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1390 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1391 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1392 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1393 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1394 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1395 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1396 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1397 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1398 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1399 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1400 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1401 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1402 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1403 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1404 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1405 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1406 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1407 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1408 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1409 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1410 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1411 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1412 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1413 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1414 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1415 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1416 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1417 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1418 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1419 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1420 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1421 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1422 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1423 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1424 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1425 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1426 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1427 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1428 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1429 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1430 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1431 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1432 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1433 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1434 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1435 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1436 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1437 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1438 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1439 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1440 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1441 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1442 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1443 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1444 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1445 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1446 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1447 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1448 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1449 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1450 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1451 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1452 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1453 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1454 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1455 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1456 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1457 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1458 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1459 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1460 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1461 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1462 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1463 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1464 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1465 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1466 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1467 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1468 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1469 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1470 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1471 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1472 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1473 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1474 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1475 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1476 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1477 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1478 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1479 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1480 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1481 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1482 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1483 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1484 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1485 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1486 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1487 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1488 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1489 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1490 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1491 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1492 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1493 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1494 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1495 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1496 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1497 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1498 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1499 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1500 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1501 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1502 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1503 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1504 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1505 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1506 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1507 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1508 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1509 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1510 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1511 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1512 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1513 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1514 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1515 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1516 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1517 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1518 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1519 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1520 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1521 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1522 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1523 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1524 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1525 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1526 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1527 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1528 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1529 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1530 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1531 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1532 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1533 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1534 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1535 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1536 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1537 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1538 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1539 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1540 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1541 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1542 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1543 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1544 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1545 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1546 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1547 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1548 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1549 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1550 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1551 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1552 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1553 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1554 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1555 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1556 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1557 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1558 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1559 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1560 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1561 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1562 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1563 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1564 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1565 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1566 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1567 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1568 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1569 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1570 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1571 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1572 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1573 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1574 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1575 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1576 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1577 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1578 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1579 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1580 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1581 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1582 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1583 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1584 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1585 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1586 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1587 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1588 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1589 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1590 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1591 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1592 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1593 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1594 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1595 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1596 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1597 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1598 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1599 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1600 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1601 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1602 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1603 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1604 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1605 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1606 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1607 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1608 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1609 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1610 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1611 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1612 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1613 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1614 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1615 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1616 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1617 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1618 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1619 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1620 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1621 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1622 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1623 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1624 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1625 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1626 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1627 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1628 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1629 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1630 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1631 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1632 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1633 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1634 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1635 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1636 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1637 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1638 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1639 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1640 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1641 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1642 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1643 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1644 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1645 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1646 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1647 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1648 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1649 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1650 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1651 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1652 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1653 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1654 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1655 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1656 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1657 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1658 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1659 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1660 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1661 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1662 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1663 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1664 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1665 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1666 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1667 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1668 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1669 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1670 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1671 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1672 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1673 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1674 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1675 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1676 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1677 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1678 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1679 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1680 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1681 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1682 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1683 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1684 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1685 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1686 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1687 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1688 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1689 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1690 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1691 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1692 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1693 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1694 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1695 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1696 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1697 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1698 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1699 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1700 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1701 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1702 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1703 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1704 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1705 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1706 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1707 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1708 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1709 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1710 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1711 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1712 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1713 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1714 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1715 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1716 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1717 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1718 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1719 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1720 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1721 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1722 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1723 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1724 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1725 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1726 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1727 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1728 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1729 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1730 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1731 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1732 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1733 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1734 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1735 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1736 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1737 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1738 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1739 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1740 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1741 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1742 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1743 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1744 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1745 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1746 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1747 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1748 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1749 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1750 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1751 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1752 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1753 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1754 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1755 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1756 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1757 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1758 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1759 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1760 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1761 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1762 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1763 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1764 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1765 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1766 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1767 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1768 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1769 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1770 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1771 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1772 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1773 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1774 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1775 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1776 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1777 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1778 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1779 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1780 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1781 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1782 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1783 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1784 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1785 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1786 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1787 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1788 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1789 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1790 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1791 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1792 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1793 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1794 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1795 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1796 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1797 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1798 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1799 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1800 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1801 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1802 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1803 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1804 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1805 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1806 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1807 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1808 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1809 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1810 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1811 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1812 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1813 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1814 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1815 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1816 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1817 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1818 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1819 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1820 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1821 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1822 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1823 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1824 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1825 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1826 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1827 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1828 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1829 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1830 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1831 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1832 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1833 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1834 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1835 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1836 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1837 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1838 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1839 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1840 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1841 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1842 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1843 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1844 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1845 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1846 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1847 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1848 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1849 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1850 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1851 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1852 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1853 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1854 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1855 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1856 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1857 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1858 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1859 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1860 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1861 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1862 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1863 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1864 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1865 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1866 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1867 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1868 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1869 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1870 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1871 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1872 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1873 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1874 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1875 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1876 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1877 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1878 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1879 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1880 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1881 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1882 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1883 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1884 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1885 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1886 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1887 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1888 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1889 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1890 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1891 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1892 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1893 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1894 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1895 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1896 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1897 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1898 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1899 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1900 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1901 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1902 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1903 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1904 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1905 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1906 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1907 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1908 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1909 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1910 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1911 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1912 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1913 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1914 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1915 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1916 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1917 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1918 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1919 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1920 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1921 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1922 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1923 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1924 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1925 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1926 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1927 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1928 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1929 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1930 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1931 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1932 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1933 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1934 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1935 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1936 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1937 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1938 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1939 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1940 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1941 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1942 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1943 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1944 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1945 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1946 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1947 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1948 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1949 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1950 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1951 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1952 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1953 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1954 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1955 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1956 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1957 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1958 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1959 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1960 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1961 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1962 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1963 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1964 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1965 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1966 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1967 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1968 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1969 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1970 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1971 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1972 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1973 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1974 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1975 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1976 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1977 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1978 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1979 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1980 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1981 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1982 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1983 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1984 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1985 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1986 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1987 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1988 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1989 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1990 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1991 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1992 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1993 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1994 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1995 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1996 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1997 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1998 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 1999 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2000 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2001 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2002 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2003 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2004 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2005 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2006 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2007 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2008 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2009 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2010 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2011 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2012 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2013 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2014 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2015 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2016 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2017 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2018 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2019 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2020 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2021 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2022 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2023 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2024 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2025 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2026 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2027 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2028 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2029 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2030 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2031 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2032 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2033 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2034 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2035 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2036 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2037 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2038 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2039 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2040 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2041 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2042 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2043 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2044 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2045 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2046 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2047 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2048 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2049 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2050 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2051 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2052 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2053 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2054 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2055 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2056 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2057 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2058 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2059 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2060 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2061 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2062 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2063 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2064 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2065 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2066 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2067 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2068 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2069 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2070 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2071 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2072 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2073 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2074 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2075 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2076 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2077 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2078 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2079 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2080 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2081 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2082 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2083 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2084 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2085 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2086 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2087 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2088 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2089 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2090 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2091 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2092 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2093 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2094 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2095 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2096 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2097 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2098 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2099 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2100 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2101 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2102 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2103 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2104 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2105 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2106 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2107 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2108 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2109 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2110 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2111 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2112 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2113 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2114 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2115 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2116 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2117 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2118 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2119 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2120 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2121 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2122 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2123 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2124 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2125 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2126 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2127 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2128 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2129 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2130 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2131 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2132 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2133 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2134 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2135 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2136 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2137 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2138 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2139 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2140 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2141 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2142 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2143 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2144 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2145 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2146 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2147 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2148 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2149 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2150 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2151 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2152 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2153 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2154 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2155 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2156 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2157 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2158 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2159 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2160 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2161 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2162 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2163 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2164 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2165 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2166 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2167 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2168 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2169 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2170 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2171 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2172 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2173 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2174 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2175 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2176 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2177 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2178 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2179 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2180 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2181 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2182 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2183 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2184 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2185 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2186 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2187 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2188 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2189 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2190 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2191 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2192 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2193 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2194 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2195 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2196 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2197 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2198 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2199 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2200 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2201 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2202 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2203 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2204 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2205 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2206 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2207 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2208 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2209 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2210 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2211 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2212 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2213 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2214 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2215 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2216 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2217 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2218 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2219 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2220 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2221 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2222 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2223 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2224 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2225 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2226 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2227 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2228 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2229 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2230 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2231 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2232 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2233 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2234 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2235 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2236 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2237 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2238 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2239 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2240 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2241 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2242 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2243 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2244 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2245 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2246 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2247 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2248 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2249 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2250 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2251 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2252 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2253 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2254 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2255 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2256 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2257 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2258 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2259 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2260 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2261 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2262 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2263 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2264 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2265 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2266 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2267 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2268 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2269 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2270 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2271 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2272 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2273 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2274 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2275 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2276 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2277 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2278 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2279 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2280 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2281 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2282 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2283 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2284 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2285 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2286 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2287 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2288 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2289 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2290 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2291 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2292 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2293 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2294 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2295 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2296 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2297 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2298 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2299 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2300 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2301 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2302 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2303 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2304 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2305 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2306 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2307 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2308 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2309 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2310 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2311 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2312 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2313 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2314 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2315 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2316 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2317 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2318 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2319 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2320 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2321 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2322 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2323 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2324 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2325 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2326 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2327 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2328 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2329 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2330 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2331 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2332 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2333 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2334 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2335 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2336 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2337 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2338 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2339 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2340 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2341 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2342 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2343 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2344 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2345 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2346 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2347 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2348 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2349 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2350 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2351 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2352 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2353 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2354 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2355 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2356 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2357 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2358 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2359 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2360 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2361 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2362 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2363 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2364 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2365 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2366 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2367 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2368 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2369 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2370 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2371 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2372 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2373 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2374 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2375 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2376 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2377 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2378 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2379 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2380 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2381 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2382 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2383 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2384 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2385 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2386 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2387 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2388 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2389 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2390 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2391 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2392 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2393 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2394 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2395 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2396 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2397 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2398 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2399 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2400 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2401 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2402 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2403 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2404 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2405 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2406 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2407 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2408 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2409 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2410 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2411 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2412 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2413 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2414 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2415 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2416 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2417 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2418 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2419 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2420 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2421 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2422 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2423 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2424 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2425 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2426 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2427 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2428 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2429 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2430 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2431 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2432 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2433 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2434 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2435 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2436 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2437 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2438 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2439 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2440 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2441 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2442 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2443 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2444 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2445 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2446 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2447 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2448 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2449 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2450 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2451 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2452 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2453 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2454 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2455 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2456 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2457 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2458 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2459 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2460 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2461 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2462 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2463 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2464 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2465 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2466 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2467 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2468 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2469 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2470 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2471 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2472 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2473 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2474 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2475 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2476 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2477 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2478 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2479 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2480 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2481 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2482 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2483 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2484 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2485 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2486 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2487 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2488 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2489 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2490 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2491 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2492 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2493 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2494 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2495 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2496 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2497 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2498 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2499 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2500 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2501 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2502 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2503 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2504 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2505 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2506 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2507 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2508 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2509 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2510 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2511 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2512 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2513 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2514 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2515 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2516 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2517 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2518 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2519 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2520 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2521 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2522 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2523 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2524 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2525 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2526 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2527 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2528 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2529 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2530 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2531 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2532 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2533 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2534 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2535 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2536 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2537 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2538 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2539 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2540 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2541 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2542 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2543 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2544 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2545 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2546 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2547 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2548 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2549 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2550 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2551 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2552 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2553 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2554 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2555 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2556 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2557 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2558 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2559 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2560 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2561 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2562 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2563 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2564 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2565 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2566 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2567 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2568 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2569 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2570 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2571 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2572 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2573 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2574 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2575 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2576 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2577 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2578 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2579 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2580 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2581 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2582 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2583 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2584 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2585 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2586 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2587 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2588 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2589 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2590 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2591 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2592 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2593 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2594 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2595 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2596 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2597 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2598 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2599 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2600 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2601 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2602 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2603 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2604 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2605 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2606 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2607 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2608 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2609 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2610 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2611 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2612 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2613 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2614 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2615 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2616 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2617 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2618 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2619 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2620 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2621 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2622 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2623 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2624 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2625 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2626 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2627 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2628 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2629 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2630 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2631 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2632 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2633 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2634 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2635 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2636 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2637 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2638 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2639 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2640 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2641 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2642 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2643 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2644 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2645 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2646 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2647 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2648 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2649 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2650 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2651 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2652 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2653 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2654 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2655 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2656 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2657 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2658 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2659 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2660 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2661 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2662 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2663 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2664 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2665 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2666 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2667 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2668 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2669 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2670 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2671 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2672 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2673 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2674 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2675 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2676 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2677 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2678 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2679 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2680 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2681 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2682 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2683 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2684 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2685 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2686 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2687 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2688 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2689 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2690 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2691 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2692 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2693 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2694 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2695 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2696 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2697 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2698 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2699 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2700 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2701 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2702 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2703 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2704 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2705 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2706 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2707 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2708 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2709 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2710 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2711 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2712 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2713 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2714 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2715 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2716 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2717 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2718 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2719 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2720 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2721 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2722 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2723 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2724 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2725 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2726 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2727 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2728 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2729 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2730 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2731 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2732 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2733 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2734 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2735 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2736 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2737 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2738 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2739 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2740 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2741 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2742 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2743 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2744 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2745 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2746 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2747 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2748 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2749 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2750 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2751 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2752 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2753 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2754 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2755 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2756 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2757 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2758 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2759 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2760 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2761 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2762 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2763 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2764 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2765 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2766 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2767 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2768 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2769 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2770 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2771 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2772 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2773 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2774 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2775 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2776 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2777 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2778 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2779 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2780 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2781 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2782 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2783 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2784 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2785 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2786 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2787 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2788 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2789 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2790 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2791 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2792 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2793 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2794 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2795 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2796 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2797 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2798 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2799 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2800 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2801 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2802 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2803 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2804 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2805 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2806 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2807 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2808 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2809 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2810 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2811 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2812 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2813 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2814 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2815 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2816 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2817 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2818 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2819 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2820 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2821 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2822 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2823 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2824 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2825 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2826 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2827 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2828 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2829 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2830 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2831 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2832 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2833 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2834 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2835 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2836 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2837 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2838 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2839 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2840 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2841 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2842 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2843 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2844 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2845 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2846 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2847 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2848 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2849 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2850 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2851 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2852 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2853 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2854 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2855 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2856 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2857 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2858 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2859 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2860 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2861 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2862 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2863 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2864 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2865 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2866 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2867 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2868 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2869 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2870 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2871 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2872 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2873 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2874 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2875 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2876 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2877 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2878 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2879 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2880 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2881 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2882 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2883 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2884 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2885 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2886 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2887 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2888 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2889 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2890 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2891 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2892 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2893 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2894 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2895 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2896 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2897 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2898 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2899 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2900 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2901 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2902 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2903 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2904 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2905 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2906 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2907 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2908 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2909 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2910 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2911 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2912 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2913 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2914 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2915 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2916 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2917 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2918 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2919 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2920 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2921 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2922 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2923 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2924 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2925 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2926 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2927 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2928 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2929 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2930 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2931 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2932 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2933 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2934 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2935 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2936 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2937 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2938 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2939 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2940 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2941 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2942 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2943 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2944 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2945 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2946 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2947 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2948 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2949 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2950 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2951 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2952 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2953 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2954 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2955 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2956 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2957 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2958 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2959 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2960 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2961 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2962 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2963 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2964 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2965 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2966 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2967 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2968 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2969 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2970 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2971 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2972 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2973 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2974 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2975 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2976 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2977 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2978 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2979 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2980 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2981 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2982 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2983 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2984 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2985 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2986 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2987 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2988 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2989 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2990 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2991 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2992 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2993 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2994 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2995 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2996 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2997 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2998 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 2999 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3000 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3001 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3002 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3003 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3004 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3005 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3006 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3007 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3008 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3009 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3010 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3011 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3012 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3013 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3014 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3015 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3016 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3017 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3018 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3019 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3020 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3021 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3022 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3023 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3024 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3025 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3026 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3027 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3028 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3029 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3030 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3031 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3032 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3033 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3034 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3035 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3036 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3037 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3038 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3039 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3040 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3041 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3042 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3043 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3044 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3045 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3046 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3047 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3048 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3049 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3050 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3051 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3052 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3053 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3054 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3055 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3056 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3057 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3058 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3059 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3060 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3061 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3062 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3063 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3064 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3065 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3066 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3067 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3068 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3069 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3070 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3071 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3072 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3073 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3074 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3075 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3076 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3077 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3078 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3079 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3080 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3081 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3082 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3083 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3084 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3085 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3086 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3087 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3088 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3089 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3090 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3091 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3092 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3093 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3094 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3095 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3096 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3097 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3098 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3099 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3100 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3101 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3102 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3103 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3104 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3105 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3106 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3107 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3108 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3109 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3110 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3111 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3112 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3113 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3114 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3115 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3116 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3117 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3118 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3119 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3120 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3121 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3122 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3123 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3124 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3125 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3126 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3127 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3128 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3129 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3130 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3131 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3132 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3133 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3134 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3135 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3136 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3137 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3138 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3139 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3140 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3141 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3142 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3143 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3144 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3145 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3146 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3147 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3148 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3149 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3150 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3151 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3152 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3153 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3154 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3155 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3156 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3157 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3158 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3159 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3160 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3161 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3162 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3163 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3164 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3165 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3166 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3167 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3168 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3169 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3170 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3171 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3172 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3173 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3174 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3175 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3176 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3177 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3178 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3179 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3180 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3181 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3182 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3183 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3184 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3185 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3186 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3187 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3188 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3189 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3190 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3191 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3192 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3193 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3194 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3195 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3196 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3197 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3198 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3199 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3200 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3201 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3202 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3203 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3204 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3205 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3206 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3207 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3208 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3209 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3210 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3211 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3212 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3213 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3214 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3215 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3216 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3217 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3218 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3219 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3220 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3221 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3222 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3223 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3224 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3225 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3226 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3227 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3228 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3229 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3230 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3231 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3232 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3233 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3234 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3235 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3236 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3237 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3238 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3239 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3240 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3241 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3242 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3243 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3244 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3245 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3246 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3247 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3248 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3249 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3250 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3251 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3252 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3253 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3254 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3255 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3256 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3257 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3258 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3259 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3260 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3261 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3262 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3263 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3264 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3265 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3266 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3267 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3268 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3269 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3270 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3271 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3272 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3273 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3274 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3275 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3276 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3277 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3278 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3279 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3280 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3281 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3282 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3283 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3284 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3285 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3286 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3287 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3288 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3289 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3290 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3291 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3292 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3293 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3294 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3295 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3296 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3297 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3298 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3299 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3300 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3301 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3302 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3303 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3304 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3305 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3306 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3307 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3308 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3309 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3310 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3311 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3312 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3313 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3314 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3315 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3316 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3317 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3318 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3319 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3320 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3321 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3322 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3323 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3324 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3325 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3326 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3327 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3328 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3329 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3330 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3331 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3332 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3333 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3334 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3335 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3336 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3337 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3338 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3339 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3340 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3341 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3342 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3343 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3344 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3345 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3346 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3347 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3348 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3349 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3350 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3351 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3352 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3353 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3354 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3355 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3356 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3357 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3358 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3359 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3360 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3361 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3362 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3363 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3364 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3365 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3366 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3367 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3368 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3369 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3370 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3371 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3372 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3373 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3374 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3375 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3376 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3377 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3378 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3379 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3380 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3381 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3382 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3383 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3384 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3385 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3386 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3387 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3388 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3389 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3390 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3391 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3392 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3393 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3394 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3395 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3396 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3397 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3398 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3399 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3400 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3401 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3402 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3403 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3404 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3405 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3406 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3407 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3408 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3409 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0003 / 0010 | BATCH 3410 / 3410 | LOSS 0.0019\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0001 / 0974 | LOSS 0.0235\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0002 / 0974 | LOSS 0.0170\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0003 / 0974 | LOSS 0.0182\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0004 / 0974 | LOSS 0.0197\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0005 / 0974 | LOSS 0.0168\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0006 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0007 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0008 / 0974 | LOSS 0.0165\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0009 / 0974 | LOSS 0.0171\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0010 / 0974 | LOSS 0.0164\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0011 / 0974 | LOSS 0.0165\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0012 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0013 / 0974 | LOSS 0.0164\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0014 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0015 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0016 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0017 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0018 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0019 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0020 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0021 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0022 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0023 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0024 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0025 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0026 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0027 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0028 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0029 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0030 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0031 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0032 / 0974 | LOSS 0.0161\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0033 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0034 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0035 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0036 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0037 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0038 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0039 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0040 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0041 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0042 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0043 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0044 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0045 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0046 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0047 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0048 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0049 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0050 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0051 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0052 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0053 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0054 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0055 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0056 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0057 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0058 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0059 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0060 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0061 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0062 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0063 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0064 / 0974 | LOSS 0.0149\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0065 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0066 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0067 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0068 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0069 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0070 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0071 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0072 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0073 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0074 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0075 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0076 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0077 / 0974 | LOSS 0.0150\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0078 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0079 / 0974 | LOSS 0.0151\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0080 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0081 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0082 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0083 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0084 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0085 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0086 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0087 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0088 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0089 / 0974 | LOSS 0.0152\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0090 / 0974 | LOSS 0.0153\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0091 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0092 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0093 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0094 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0095 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0096 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0097 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0098 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0099 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0100 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0101 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0102 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0103 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0104 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0105 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0106 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0107 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0108 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0109 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0110 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0111 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0112 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0113 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0114 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0115 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0116 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0117 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0118 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0119 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0120 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0121 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0122 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0123 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0124 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0125 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0126 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0127 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0128 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0129 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0130 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0131 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0132 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0133 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0134 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0135 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0136 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0137 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0138 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0139 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0140 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0141 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0142 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0143 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0144 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0145 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0146 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0147 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0148 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0149 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0150 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0151 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0152 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0153 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0154 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0155 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0156 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0157 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0158 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0159 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0160 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0161 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0162 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0163 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0164 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0165 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0166 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0167 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0168 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0169 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0170 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0171 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0172 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0173 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0174 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0175 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0176 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0177 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0178 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0179 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0180 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0181 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0182 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0183 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0184 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0185 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0186 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0187 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0188 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0189 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0190 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0191 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0192 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0193 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0194 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0195 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0196 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0197 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0198 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0199 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0200 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0201 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0202 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0203 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0204 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0205 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0206 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0207 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0208 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0209 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0210 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0211 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0212 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0213 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0214 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0215 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0216 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0217 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0218 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0219 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0220 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0221 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0222 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0223 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0224 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0225 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0226 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0227 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0228 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0229 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0230 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0231 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0232 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0233 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0234 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0235 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0236 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0237 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0238 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0239 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0240 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0241 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0242 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0243 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0244 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0245 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0246 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0247 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0248 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0249 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0250 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0251 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0252 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0253 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0254 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0255 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0256 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0257 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0258 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0259 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0260 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0261 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0262 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0263 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0264 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0265 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0266 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0267 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0268 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0269 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0270 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0271 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0272 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0273 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0274 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0275 / 0974 | LOSS 0.0154\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0276 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0277 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0278 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0279 / 0974 | LOSS 0.0155\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0280 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0281 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0282 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0283 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0284 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0285 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0286 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0287 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0288 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0289 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0290 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0291 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0292 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0293 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0294 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0295 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0296 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0297 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0298 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0299 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0300 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0301 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0302 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0303 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0304 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0305 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0306 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0307 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0308 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0309 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0310 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0311 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0312 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0313 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0314 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0315 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0316 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0317 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0318 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0319 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0320 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0321 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0322 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0323 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0324 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0325 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0326 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0327 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0328 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0329 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0330 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0331 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0332 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0333 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0334 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0335 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0336 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0337 / 0974 | LOSS 0.0156\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0338 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0339 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0340 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0341 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0342 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0343 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0344 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0345 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0346 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0347 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0348 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0349 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0350 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0351 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0352 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0353 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0354 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0355 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0356 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0357 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0358 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0359 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0360 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0361 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0362 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0363 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0364 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0365 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0366 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0367 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0368 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0369 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0370 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0371 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0372 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0373 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0374 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0375 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0376 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0377 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0378 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0379 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0380 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0381 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0382 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0383 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0384 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0385 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0386 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0387 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0388 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0389 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0390 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0391 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0392 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0393 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0394 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0395 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0396 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0397 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0398 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0399 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0400 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0401 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0402 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0403 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0404 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0405 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0406 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0407 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0408 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0409 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0410 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0411 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0412 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0413 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0414 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0415 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0416 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0417 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0418 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0419 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0420 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0421 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0422 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0423 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0424 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0425 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0426 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0427 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0428 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0429 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0430 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0431 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0432 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0433 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0434 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0435 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0436 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0437 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0438 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0439 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0440 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0441 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0442 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0443 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0444 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0445 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0446 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0447 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0448 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0449 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0450 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0451 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0452 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0453 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0454 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0455 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0456 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0457 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0458 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0459 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0460 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0461 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0462 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0463 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0464 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0465 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0466 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0467 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0468 / 0974 | LOSS 0.0160\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0469 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0470 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0471 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0472 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0473 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0474 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0475 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0476 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0477 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0478 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0479 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0480 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0481 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0482 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0483 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0484 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0485 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0486 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0487 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0488 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0489 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0490 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0491 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0492 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0493 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0494 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0495 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0496 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0497 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0498 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0499 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0500 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0501 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0502 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0503 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0504 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0505 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0506 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0507 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0508 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0509 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0510 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0511 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0512 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0513 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0514 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0515 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0516 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0517 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0518 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0519 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0520 / 0974 | LOSS 0.0159\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0521 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0522 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0523 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0524 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0525 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0526 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0527 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0528 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0529 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0530 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0531 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0532 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0533 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0534 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0535 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0536 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0537 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0538 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0539 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0540 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0541 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0542 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0543 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0544 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0545 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0546 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0547 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0548 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0549 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0550 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0551 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0552 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0553 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0554 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0555 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0556 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0557 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0558 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0559 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0560 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0561 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0562 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0563 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0564 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0565 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0566 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0567 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0568 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0569 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0570 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0571 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0572 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0573 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0574 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0575 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0576 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0577 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0578 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0579 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0580 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0581 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0582 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0583 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0584 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0585 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0586 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0587 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0588 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0589 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0590 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0591 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0592 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0593 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0594 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0595 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0596 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0597 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0598 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0599 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0600 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0601 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0602 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0603 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0604 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0605 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0606 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0607 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0608 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0609 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0610 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0611 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0612 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0613 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0614 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0615 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0616 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0617 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0618 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0619 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0620 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0621 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0622 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0623 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0624 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0625 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0626 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0627 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0628 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0629 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0630 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0631 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0632 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0633 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0634 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0635 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0636 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0637 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0638 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0639 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0640 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0641 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0642 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0643 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0644 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0645 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0646 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0647 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0648 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0649 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0650 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0651 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0652 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0653 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0654 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0655 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0656 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0657 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0658 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0659 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0660 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0661 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0662 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0663 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0664 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0665 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0666 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0667 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0668 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0669 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0670 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0671 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0672 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0673 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0674 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0675 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0676 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0677 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0678 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0679 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0680 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0681 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0682 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0683 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0684 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0685 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0686 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0687 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0688 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0689 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0690 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0691 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0692 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0693 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0694 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0695 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0696 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0697 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0698 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0699 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0700 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0701 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0702 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0703 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0704 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0705 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0706 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0707 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0708 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0709 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0710 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0711 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0712 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0713 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0714 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0715 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0716 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0717 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0718 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0719 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0720 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0721 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0722 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0723 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0724 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0725 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0726 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0727 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0728 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0729 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0730 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0731 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0732 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0733 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0734 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0735 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0736 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0737 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0738 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0739 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0740 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0741 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0742 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0743 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0744 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0745 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0746 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0747 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0748 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0749 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0750 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0751 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0752 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0753 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0754 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0755 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0756 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0757 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0758 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0759 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0760 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0761 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0762 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0763 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0764 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0765 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0766 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0767 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0768 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0769 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0770 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0771 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0772 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0773 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0774 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0775 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0776 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0777 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0778 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0779 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0780 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0781 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0782 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0783 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0784 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0785 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0786 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0787 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0788 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0789 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0790 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0791 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0792 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0793 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0794 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0795 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0796 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0797 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0798 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0799 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0800 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0801 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0802 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0803 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0804 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0805 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0806 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0807 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0808 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0809 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0810 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0811 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0812 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0813 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0814 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0815 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0816 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0817 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0818 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0819 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0820 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0821 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0822 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0823 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0824 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0825 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0826 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0827 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0828 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0829 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0830 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0831 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0832 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0833 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0834 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0835 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0836 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0837 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0838 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0839 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0840 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0841 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0842 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0843 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0844 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0845 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0846 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0847 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0848 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0849 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0850 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0851 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0852 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0853 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0854 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0855 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0856 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0857 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0858 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0859 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0860 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0861 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0862 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0863 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0864 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0865 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0866 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0867 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0868 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0869 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0870 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0871 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0872 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0873 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0874 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0875 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0876 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0877 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0878 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0879 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0880 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0881 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0882 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0883 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0884 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0885 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0886 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0887 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0888 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0889 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0890 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0891 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0892 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0893 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0894 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0895 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0896 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0897 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0898 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0899 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0900 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0901 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0902 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0903 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0904 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0905 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0906 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0907 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0908 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0909 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0910 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0911 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0912 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0913 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0914 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0915 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0916 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0917 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0918 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0919 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0920 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0921 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0922 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0923 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0924 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0925 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0926 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0927 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0928 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0929 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0930 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0931 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0932 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0933 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0934 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0935 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0936 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0937 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0938 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0939 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0940 / 0974 | LOSS 0.0158\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0941 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0942 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0943 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0944 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0945 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0946 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0947 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0948 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0949 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0950 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0951 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0952 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0953 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0954 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0955 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0956 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0957 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0958 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0959 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0960 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0961 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0962 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0963 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0964 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0965 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0966 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0967 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0968 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0969 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0970 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0971 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0972 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0973 / 0974 | LOSS 0.0157\n", + "VALID: EPOCH 0003 / 0010 | BATCH 0974 / 0974 | LOSS 0.0157\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0001 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0002 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0003 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0004 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0005 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0006 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0007 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0008 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0009 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0010 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0011 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0012 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0013 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0014 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0015 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0016 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0017 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0018 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0019 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0020 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0021 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0022 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0023 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0024 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0025 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0026 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0027 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0028 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0029 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0030 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0031 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0032 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0033 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0034 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0035 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0036 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0037 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0038 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0039 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0040 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0041 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0042 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0043 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0044 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0045 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0046 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0047 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0048 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0049 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0050 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0051 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0052 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0053 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0054 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0055 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0056 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0057 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0058 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0059 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0060 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0061 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0062 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0063 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0064 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0065 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0066 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0067 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0068 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0069 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0070 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0071 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0072 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0073 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0074 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0075 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0076 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0077 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0078 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0079 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0080 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0081 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0082 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0083 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0084 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0085 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0086 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0087 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0088 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0089 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0090 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0091 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0092 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0093 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0094 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0095 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0096 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0097 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0098 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0099 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0100 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0101 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0102 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0103 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0104 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0105 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0106 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0107 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0108 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0109 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0110 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0111 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0112 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0113 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0114 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0115 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0116 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0117 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0118 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0119 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0120 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0121 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0122 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0123 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0124 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0125 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0126 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0127 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0128 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0129 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0130 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0131 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0132 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0133 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0134 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0135 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0136 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0137 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0138 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0139 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0140 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0141 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0142 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0143 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0144 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0145 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0146 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0147 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0148 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0149 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0150 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0151 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0152 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0153 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0154 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0155 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0156 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0157 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0158 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0159 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0160 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0161 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0162 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0163 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0164 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0165 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0166 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0167 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0168 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0169 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0170 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0171 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0172 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0173 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0174 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0175 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0176 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0177 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0178 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0179 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0180 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0181 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0182 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0183 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0184 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0185 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0186 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0187 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0188 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0189 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0190 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0191 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0192 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0193 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0194 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0195 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0196 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0197 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0198 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0199 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0200 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0201 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0202 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0203 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0204 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0205 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0206 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0207 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0208 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0209 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0210 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0211 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0212 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0213 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0214 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0215 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0216 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0217 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0218 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0219 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0220 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0221 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0222 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0223 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0224 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0225 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0226 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0227 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0228 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0229 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0230 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0231 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0232 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0233 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0234 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0235 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0236 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0237 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0238 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0239 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0240 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0241 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0242 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0243 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0244 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0245 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0246 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0247 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0248 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0249 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0250 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0251 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0252 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0253 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0254 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0255 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0256 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0257 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0258 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0259 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0260 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0261 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0262 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0263 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0264 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0265 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0266 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0267 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0268 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0269 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0270 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0271 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0272 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0273 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0274 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0275 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0276 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0277 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0278 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0279 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0280 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0281 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0282 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0283 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0284 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0285 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0286 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0287 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0288 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0289 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0290 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0291 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0292 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0293 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0294 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0295 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0296 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0297 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0298 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0299 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0300 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0301 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0302 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0303 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0304 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0305 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0306 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0307 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0308 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0309 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0310 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0311 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0312 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0313 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0314 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0315 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0316 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0317 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0318 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0319 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0320 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0321 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0322 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0323 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0324 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0325 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0326 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0327 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0328 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0329 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0330 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0331 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0332 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0333 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0334 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0335 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0336 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0337 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0338 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0339 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0340 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0341 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0342 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0343 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0344 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0345 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0346 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0347 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0348 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0349 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0350 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0351 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0352 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0353 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0354 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0355 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0356 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0357 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0358 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0359 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0360 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0361 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0362 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0363 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0364 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0365 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0366 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0367 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0368 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0369 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0370 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0371 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0372 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0373 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0374 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0375 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0376 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0377 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0378 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0379 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0380 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0381 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0382 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0383 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0384 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0385 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0386 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0387 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0388 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0389 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0390 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0391 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0392 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0393 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0394 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0395 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0396 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0397 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0398 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0399 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0400 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0401 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0402 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0403 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0404 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0405 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0406 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0407 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0408 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0409 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0410 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0411 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0412 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0413 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0414 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0415 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0416 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0417 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0418 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0419 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0420 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0421 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0422 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0423 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0424 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0425 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0426 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0427 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0428 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0429 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0430 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0431 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0432 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0433 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0434 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0435 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0436 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0437 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0438 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0439 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0440 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0441 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0442 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0443 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0444 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0445 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0446 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0447 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0448 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0449 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0450 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0451 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0452 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0453 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0454 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0455 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0456 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0457 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0458 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0459 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0460 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0461 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0462 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0463 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0464 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0465 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0466 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0467 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0468 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0469 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0470 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0471 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0472 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0473 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0474 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0475 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0476 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0477 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0478 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0479 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0480 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0481 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0482 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0483 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0484 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0485 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0486 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0487 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0488 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0489 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0490 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0491 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0492 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0493 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0494 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0495 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0496 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0497 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0498 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0499 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0500 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0501 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0502 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0503 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0504 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0505 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0506 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0507 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0508 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0509 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0510 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0511 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0512 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0513 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0514 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0515 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0516 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0517 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0518 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0519 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0520 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0521 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0522 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0523 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0524 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0525 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0526 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0527 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0528 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0529 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0530 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0531 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0532 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0533 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0534 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0535 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0536 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0537 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0538 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0539 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0540 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0541 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0542 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0543 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0544 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0545 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0546 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0547 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0548 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0549 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0550 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0551 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0552 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0553 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0554 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0555 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0556 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0557 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0558 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0559 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0560 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0561 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0562 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0563 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0564 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0565 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0566 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0567 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0568 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0569 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0570 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0571 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0572 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0573 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0574 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0575 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0576 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0577 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0578 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0579 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0580 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0581 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0582 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0583 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0584 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0585 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0586 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0587 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0588 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0589 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0590 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0591 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0592 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0593 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0594 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0595 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0596 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0597 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0598 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0599 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0600 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0601 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0602 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0603 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0604 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0605 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0606 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0607 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0608 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0609 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0610 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0611 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0612 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0613 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0614 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0615 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0616 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0617 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0618 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0619 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0620 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0621 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0622 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0623 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0624 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0625 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0626 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0627 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0628 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0629 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0630 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0631 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0632 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0633 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0634 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0635 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0636 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0637 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0638 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0639 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0640 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0641 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0642 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0643 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0644 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0645 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0646 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0647 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0648 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0649 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0650 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0651 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0652 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0653 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0654 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0655 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0656 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0657 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0658 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0659 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0660 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0661 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0662 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0663 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0664 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0665 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0666 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0667 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0668 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0669 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0670 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0671 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0672 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0673 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0674 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0675 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0676 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0677 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0678 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0679 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0680 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0681 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0682 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0683 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0684 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0685 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0686 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0687 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0688 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0689 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0690 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0691 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0692 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0693 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0694 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0695 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0696 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0697 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0698 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0699 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0700 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0701 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0702 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0703 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0704 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0705 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0706 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0707 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0708 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0709 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0710 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0711 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0712 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0713 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0714 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0715 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0716 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0717 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0718 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0719 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0720 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0721 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0722 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0723 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0724 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0725 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0726 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0727 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0728 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0729 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0730 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0731 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0732 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0733 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0734 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0735 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0736 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0737 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0738 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0739 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0740 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0741 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0742 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0743 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0744 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0745 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0746 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0747 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0748 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0749 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0750 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0751 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0752 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0753 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0754 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0755 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0756 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0757 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0758 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0759 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0760 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0761 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0762 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0763 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0764 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0765 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0766 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0767 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0768 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0769 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0770 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0771 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0772 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0773 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0774 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0775 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0776 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0777 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0778 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0779 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0780 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0781 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0782 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0783 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0784 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0785 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0786 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0787 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0788 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0789 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0790 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0791 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0792 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0793 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0794 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0795 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0796 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0797 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0798 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0799 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0800 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0801 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0802 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0803 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0804 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0805 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0806 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0807 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0808 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0809 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0810 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0811 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0812 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0813 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0814 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0815 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0816 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0817 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0818 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0819 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0820 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0821 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0822 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0823 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0824 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0825 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0826 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0827 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0828 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0829 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0830 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0831 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0832 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0833 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0834 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0835 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0836 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0837 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0838 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0839 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0840 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0841 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0842 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0843 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0844 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0845 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0846 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0847 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0848 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0849 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0850 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0851 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0852 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0853 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0854 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0855 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0856 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0857 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0858 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0859 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0860 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0861 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0862 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0863 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0864 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0865 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0866 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0867 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0868 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0869 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0870 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0871 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0872 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0873 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0874 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0875 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0876 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0877 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0878 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0879 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0880 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0881 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0882 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0883 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0884 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0885 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0886 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0887 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0888 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0889 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0890 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0891 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0892 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0893 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0894 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0895 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0896 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0897 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0898 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0899 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0900 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0901 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0902 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0903 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0904 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0905 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0906 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0907 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0908 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0909 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0910 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0911 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0912 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0913 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0914 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0915 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0916 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0917 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0918 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0919 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0920 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0921 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0922 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0923 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0924 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0925 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0926 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0927 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0928 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0929 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0930 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0931 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0932 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0933 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0934 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0935 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0936 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0937 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0938 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0939 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0940 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0941 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0942 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0943 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0944 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0945 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0946 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0947 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0948 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0949 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0950 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0951 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0952 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0953 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0954 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0955 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0956 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0957 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0958 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0959 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0960 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0961 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0962 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0963 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0964 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0965 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0966 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0967 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0968 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0969 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0970 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0971 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0972 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0973 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0974 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0975 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0976 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0977 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0978 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0979 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0980 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0981 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0982 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0983 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0984 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0985 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0986 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0987 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0988 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0989 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0990 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0991 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0992 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0993 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0994 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0995 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0996 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0997 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0998 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 0999 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1000 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1001 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1002 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1003 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1004 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1005 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1006 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1007 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1008 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1009 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1010 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1011 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1012 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1013 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1014 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1015 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1016 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1017 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1018 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1019 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1020 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1021 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1022 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1023 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1024 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1025 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1026 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1027 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1028 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1029 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1030 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1031 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1032 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1033 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1034 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1035 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1036 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1037 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1038 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1039 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1040 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1041 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1042 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1043 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1044 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1045 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1046 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1047 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1048 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1049 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1050 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1051 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1052 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1053 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1054 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1055 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1056 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1057 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1058 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1059 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1060 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1061 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1062 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1063 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1064 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1065 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1066 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1067 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1068 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1069 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1070 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1071 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1072 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1073 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1074 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1075 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1076 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1077 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1078 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1079 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1080 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1081 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1082 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1083 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1084 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1085 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1086 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1087 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1088 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1089 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1090 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1091 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1092 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1093 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1094 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1095 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1096 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1097 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1098 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1099 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1100 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1101 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1102 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1103 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1104 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1105 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1106 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1107 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1108 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1109 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1110 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1111 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1112 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1113 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1114 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1115 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1116 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1117 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1118 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1119 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1120 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1121 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1122 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1123 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1124 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1125 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1126 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1127 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1128 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1129 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1130 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1131 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1132 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1133 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1134 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1135 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1136 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1137 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1138 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1139 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1140 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1141 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1142 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1143 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1144 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1145 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1146 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1147 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1148 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1149 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1150 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1151 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1152 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1153 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1154 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1155 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1156 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1157 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1158 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1159 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1160 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1161 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1162 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1163 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1164 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1165 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1166 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1167 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1168 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1169 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1170 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1171 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1172 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1173 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1174 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1175 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1176 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1177 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1178 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1179 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1180 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1181 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1182 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1183 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1184 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1185 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1186 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1187 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1188 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1189 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1190 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1191 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1192 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1193 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1194 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1195 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1196 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1197 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1198 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1199 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1200 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1201 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1202 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1203 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1204 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1205 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1206 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1207 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1208 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1209 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1210 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1211 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1212 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1213 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1214 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1215 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1216 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1217 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1218 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1219 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1220 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1221 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1222 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1223 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1224 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1225 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1226 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1227 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1228 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1229 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1230 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1231 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1232 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1233 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1234 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1235 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1236 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1237 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1238 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1239 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1240 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1241 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1242 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1243 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1244 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1245 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1246 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1247 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1248 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1249 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1250 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1251 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1252 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1253 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1254 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1255 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1256 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1257 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1258 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1259 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1260 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1261 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1262 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1263 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1264 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1265 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1266 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1267 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1268 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1269 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1270 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1271 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1272 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1273 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1274 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1275 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1276 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1277 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1278 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1279 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1280 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1281 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1282 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1283 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1284 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1285 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1286 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1287 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1288 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1289 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1290 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1291 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1292 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1293 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1294 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1295 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1296 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1297 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1298 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1299 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1300 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1301 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1302 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1303 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1304 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1305 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1306 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1307 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1308 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1309 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1310 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1311 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1312 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1313 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1314 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1315 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1316 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1317 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1318 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1319 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1320 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1321 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1322 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1323 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1324 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1325 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1326 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1327 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1328 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1329 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1330 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1331 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1332 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1333 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1334 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1335 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1336 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1337 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1338 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1339 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1340 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1341 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1342 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1343 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1344 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1345 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1346 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1347 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1348 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1349 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1350 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1351 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1352 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1353 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1354 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1355 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1356 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1357 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1358 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1359 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1360 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1361 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1362 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1363 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1364 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1365 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1366 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1367 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1368 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1369 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1370 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1371 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1372 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1373 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1374 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1375 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1376 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1377 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1378 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1379 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1380 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1381 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1382 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1383 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1384 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1385 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1386 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1387 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1388 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1389 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1390 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1391 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1392 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1393 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1394 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1395 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1396 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1397 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1398 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1399 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1400 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1401 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1402 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1403 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1404 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1405 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1406 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1407 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1408 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1409 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1410 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1411 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1412 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1413 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1414 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1415 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1416 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1417 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1418 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1419 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1420 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1421 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1422 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1423 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1424 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1425 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1426 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1427 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1428 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1429 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1430 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1431 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1432 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1433 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1434 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1435 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1436 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1437 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1438 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1439 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1440 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1441 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1442 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1443 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1444 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1445 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1446 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1447 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1448 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1449 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1450 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1451 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1452 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1453 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1454 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1455 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1456 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1457 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1458 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1459 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1460 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1461 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1462 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1463 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1464 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1465 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1466 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1467 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1468 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1469 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1470 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1471 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1472 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1473 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1474 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1475 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1476 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1477 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1478 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1479 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1480 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1481 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1482 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1483 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1484 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1485 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1486 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1487 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1488 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1489 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1490 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1491 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1492 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1493 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1494 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1495 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1496 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1497 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1498 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1499 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1500 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1501 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1502 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1503 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1504 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1505 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1506 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1507 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1508 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1509 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1510 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1511 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1512 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1513 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1514 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1515 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1516 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1517 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1518 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1519 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1520 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1521 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1522 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1523 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1524 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1525 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1526 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1527 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1528 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1529 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1530 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1531 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1532 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1533 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1534 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1535 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1536 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1537 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1538 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1539 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1540 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1541 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1542 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1543 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1544 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1545 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1546 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1547 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1548 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1549 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1550 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1551 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1552 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1553 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1554 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1555 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1556 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1557 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1558 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1559 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1560 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1561 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1562 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1563 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1564 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1565 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1566 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1567 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1568 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1569 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1570 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1571 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1572 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1573 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1574 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1575 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1576 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1577 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1578 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1579 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1580 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1581 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1582 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1583 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1584 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1585 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1586 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1587 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1588 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1589 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1590 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1591 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1592 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1593 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1594 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1595 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1596 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1597 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1598 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1599 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1600 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1601 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1602 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1603 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1604 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1605 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1606 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1607 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1608 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1609 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1610 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1611 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1612 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1613 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1614 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1615 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1616 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1617 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1618 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1619 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1620 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1621 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1622 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1623 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1624 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1625 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1626 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1627 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1628 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1629 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1630 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1631 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1632 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1633 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1634 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1635 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1636 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1637 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1638 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1639 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1640 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1641 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1642 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1643 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1644 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1645 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1646 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1647 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1648 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1649 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1650 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1651 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1652 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1653 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1654 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1655 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1656 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1657 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1658 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1659 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1660 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1661 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1662 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1663 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1664 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1665 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1666 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1667 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1668 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1669 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1670 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1671 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1672 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1673 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1674 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1675 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1676 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1677 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1678 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1679 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1680 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1681 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1682 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1683 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1684 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1685 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1686 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1687 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1688 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1689 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1690 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1691 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1692 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1693 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1694 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1695 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1696 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1697 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1698 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1699 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1700 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1701 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1702 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1703 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1704 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1705 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1706 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1707 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1708 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1709 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1710 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1711 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1712 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1713 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1714 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1715 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1716 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1717 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1718 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1719 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1720 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1721 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1722 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1723 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1724 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1725 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1726 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1727 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1728 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1729 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1730 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1731 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1732 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1733 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1734 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1735 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1736 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1737 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1738 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1739 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1740 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1741 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1742 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1743 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1744 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1745 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1746 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1747 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1748 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1749 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1750 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1751 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1752 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1753 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1754 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1755 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1756 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1757 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1758 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1759 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1760 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1761 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1762 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1763 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1764 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1765 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1766 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1767 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1768 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1769 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1770 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1771 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1772 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1773 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1774 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1775 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1776 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1777 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1778 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1779 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1780 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1781 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1782 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1783 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1784 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1785 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1786 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1787 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1788 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1789 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1790 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1791 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1792 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1793 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1794 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1795 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1796 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1797 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1798 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1799 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1800 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1801 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1802 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1803 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1804 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1805 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1806 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1807 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1808 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1809 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1810 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1811 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1812 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1813 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1814 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1815 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1816 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1817 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1818 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1819 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1820 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1821 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1822 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1823 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1824 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1825 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1826 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1827 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1828 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1829 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1830 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1831 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1832 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1833 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1834 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1835 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1836 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1837 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1838 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1839 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1840 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1841 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1842 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1843 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1844 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1845 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1846 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1847 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1848 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1849 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1850 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1851 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1852 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1853 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1854 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1855 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1856 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1857 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1858 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1859 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1860 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1861 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1862 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1863 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1864 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1865 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1866 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1867 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1868 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1869 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1870 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1871 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1872 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1873 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1874 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1875 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1876 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1877 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1878 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1879 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1880 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1881 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1882 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1883 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1884 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1885 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1886 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1887 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1888 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1889 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1890 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1891 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1892 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1893 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1894 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1895 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1896 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1897 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1898 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1899 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1900 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1901 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1902 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1903 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1904 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1905 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1906 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1907 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1908 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1909 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1910 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1911 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1912 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1913 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1914 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1915 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1916 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1917 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1918 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1919 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1920 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1921 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1922 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1923 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1924 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1925 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1926 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1927 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1928 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1929 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1930 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1931 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1932 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1933 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1934 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1935 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1936 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1937 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1938 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1939 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1940 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1941 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1942 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1943 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1944 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1945 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1946 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1947 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1948 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1949 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1950 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1951 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1952 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1953 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1954 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1955 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1956 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1957 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1958 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1959 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1960 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1961 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1962 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1963 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1964 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1965 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1966 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1967 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1968 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1969 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1970 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1971 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1972 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1973 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1974 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1975 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1976 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1977 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1978 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1979 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1980 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1981 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1982 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1983 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1984 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1985 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1986 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1987 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1988 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1989 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1990 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1991 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1992 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1993 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1994 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1995 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1996 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1997 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1998 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 1999 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2000 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2001 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2002 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2003 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2004 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2005 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2006 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2007 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2008 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2009 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2010 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2011 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2012 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2013 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2014 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2015 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2016 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2017 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2018 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2019 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2020 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2021 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2022 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2023 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2024 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2025 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2026 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2027 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2028 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2029 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2030 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2031 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2032 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2033 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2034 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2035 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2036 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2037 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2038 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2039 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2040 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2041 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2042 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2043 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2044 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2045 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2046 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2047 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2048 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2049 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2050 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2051 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2052 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2053 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2054 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2055 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2056 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2057 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2058 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2059 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2060 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2061 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2062 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2063 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2064 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2065 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2066 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2067 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2068 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2069 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2070 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2071 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2072 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2073 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2074 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2075 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2076 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2077 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2078 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2079 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2080 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2081 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2082 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2083 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2084 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2085 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2086 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2087 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2088 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2089 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2090 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2091 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2092 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2093 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2094 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2095 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2096 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2097 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2098 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2099 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2100 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2101 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2102 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2103 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2104 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2105 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2106 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2107 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2108 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2109 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2110 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2111 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2112 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2113 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2114 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2115 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2116 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2117 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2118 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2119 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2120 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2121 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2122 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2123 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2124 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2125 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2126 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2127 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2128 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2129 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2130 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2131 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2132 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2133 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2134 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2135 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2136 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2137 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2138 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2139 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2140 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2141 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2142 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2143 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2144 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2145 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2146 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2147 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2148 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2149 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2150 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2151 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2152 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2153 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2154 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2155 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2156 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2157 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2158 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2159 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2160 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2161 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2162 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2163 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2164 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2165 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2166 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2167 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2168 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2169 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2170 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2171 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2172 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2173 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2174 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2175 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2176 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2177 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2178 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2179 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2180 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2181 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2182 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2183 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2184 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2185 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2186 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2187 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2188 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2189 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2190 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2191 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2192 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2193 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2194 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2195 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2196 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2197 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2198 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2199 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2200 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2201 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2202 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2203 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2204 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2205 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2206 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2207 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2208 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2209 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2210 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2211 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2212 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2213 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2214 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2215 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2216 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2217 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2218 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2219 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2220 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2221 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2222 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2223 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2224 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2225 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2226 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2227 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2228 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2229 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2230 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2231 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2232 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2233 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2234 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2235 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2236 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2237 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2238 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2239 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2240 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2241 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2242 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2243 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2244 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2245 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2246 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2247 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2248 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2249 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2250 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2251 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2252 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2253 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2254 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2255 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2256 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2257 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2258 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2259 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2260 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2261 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2262 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2263 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2264 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2265 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2266 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2267 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2268 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2269 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2270 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2271 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2272 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2273 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2274 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2275 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2276 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2277 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2278 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2279 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2280 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2281 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2282 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2283 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2284 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2285 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2286 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2287 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2288 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2289 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2290 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2291 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2292 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2293 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2294 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2295 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2296 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2297 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2298 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2299 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2300 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2301 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2302 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2303 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2304 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2305 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2306 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2307 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2308 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2309 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2310 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2311 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2312 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2313 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2314 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2315 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2316 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2317 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2318 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2319 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2320 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2321 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2322 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2323 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2324 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2325 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2326 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2327 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2328 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2329 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2330 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2331 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2332 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2333 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2334 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2335 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2336 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2337 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2338 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2339 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2340 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2341 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2342 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2343 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2344 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2345 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2346 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2347 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2348 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2349 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2350 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2351 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2352 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2353 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2354 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2355 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2356 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2357 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2358 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2359 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2360 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2361 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2362 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2363 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2364 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2365 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2366 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2367 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2368 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2369 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2370 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2371 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2372 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2373 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2374 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2375 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2376 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2377 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2378 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2379 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2380 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2381 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2382 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2383 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2384 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2385 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2386 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2387 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2388 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2389 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2390 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2391 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2392 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2393 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2394 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2395 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2396 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2397 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2398 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2399 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2400 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2401 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2402 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2403 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2404 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2405 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2406 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2407 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2408 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2409 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2410 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2411 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2412 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2413 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2414 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2415 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2416 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2417 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2418 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2419 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2420 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2421 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2422 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2423 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2424 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2425 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2426 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2427 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2428 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2429 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2430 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2431 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2432 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2433 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2434 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2435 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2436 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2437 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2438 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2439 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2440 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2441 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2442 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2443 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2444 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2445 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2446 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2447 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2448 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2449 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2450 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2451 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2452 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2453 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2454 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2455 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2456 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2457 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2458 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2459 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2460 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2461 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2462 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2463 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2464 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2465 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2466 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2467 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2468 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2469 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2470 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2471 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2472 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2473 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2474 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2475 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2476 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2477 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2478 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2479 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2480 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2481 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2482 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2483 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2484 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2485 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2486 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2487 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2488 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2489 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2490 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2491 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2492 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2493 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2494 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2495 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2496 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2497 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2498 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2499 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2500 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2501 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2502 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2503 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2504 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2505 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2506 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2507 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2508 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2509 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2510 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2511 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2512 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2513 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2514 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2515 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2516 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2517 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2518 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2519 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2520 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2521 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2522 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2523 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2524 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2525 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2526 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2527 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2528 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2529 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2530 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2531 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2532 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2533 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2534 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2535 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2536 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2537 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2538 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2539 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2540 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2541 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2542 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2543 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2544 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2545 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2546 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2547 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2548 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2549 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2550 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2551 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2552 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2553 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2554 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2555 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2556 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2557 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2558 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2559 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2560 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2561 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2562 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2563 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2564 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2565 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2566 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2567 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2568 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2569 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2570 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2571 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2572 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2573 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2574 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2575 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2576 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2577 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2578 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2579 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2580 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2581 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2582 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2583 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2584 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2585 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2586 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2587 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2588 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2589 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2590 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2591 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2592 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2593 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2594 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2595 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2596 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2597 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2598 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2599 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2600 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2601 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2602 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2603 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2604 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2605 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2606 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2607 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2608 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2609 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2610 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2611 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2612 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2613 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2614 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2615 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2616 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2617 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2618 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2619 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2620 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2621 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2622 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2623 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2624 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2625 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2626 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2627 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2628 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2629 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2630 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2631 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2632 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2633 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2634 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2635 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2636 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2637 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2638 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2639 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2640 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2641 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2642 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2643 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2644 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2645 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2646 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2647 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2648 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2649 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2650 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2651 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2652 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2653 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2654 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2655 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2656 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2657 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2658 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2659 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2660 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2661 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2662 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2663 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2664 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2665 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2666 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2667 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2668 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2669 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2670 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2671 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2672 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2673 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2674 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2675 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2676 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2677 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2678 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2679 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2680 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2681 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2682 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2683 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2684 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2685 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2686 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2687 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2688 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2689 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2690 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2691 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2692 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2693 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2694 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2695 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2696 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2697 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2698 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2699 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2700 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2701 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2702 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2703 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2704 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2705 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2706 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2707 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2708 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2709 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2710 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2711 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2712 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2713 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2714 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2715 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2716 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2717 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2718 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2719 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2720 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2721 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2722 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2723 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2724 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2725 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2726 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2727 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2728 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2729 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2730 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2731 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2732 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2733 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2734 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2735 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2736 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2737 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2738 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2739 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2740 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2741 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2742 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2743 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2744 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2745 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2746 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2747 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2748 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2749 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2750 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2751 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2752 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2753 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2754 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2755 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2756 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2757 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2758 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2759 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2760 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2761 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2762 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2763 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2764 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2765 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2766 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2767 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2768 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2769 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2770 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2771 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2772 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2773 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2774 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2775 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2776 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2777 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2778 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2779 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2780 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2781 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2782 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2783 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2784 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2785 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2786 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2787 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2788 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2789 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2790 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2791 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2792 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2793 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2794 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2795 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2796 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2797 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2798 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2799 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2800 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2801 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2802 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2803 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2804 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2805 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2806 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2807 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2808 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2809 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2810 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2811 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2812 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2813 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2814 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2815 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2816 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2817 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2818 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2819 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2820 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2821 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2822 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2823 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2824 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2825 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2826 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2827 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2828 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2829 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2830 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2831 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2832 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2833 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2834 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2835 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2836 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2837 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2838 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2839 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2840 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2841 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2842 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2843 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2844 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2845 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2846 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2847 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2848 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2849 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2850 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2851 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2852 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2853 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2854 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2855 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2856 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2857 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2858 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2859 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2860 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2861 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2862 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2863 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2864 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2865 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2866 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2867 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2868 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2869 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2870 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2871 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2872 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2873 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2874 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2875 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2876 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2877 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2878 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2879 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2880 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2881 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2882 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2883 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2884 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2885 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2886 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2887 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2888 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2889 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2890 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2891 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2892 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2893 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2894 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2895 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2896 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2897 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2898 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2899 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2900 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2901 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2902 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2903 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2904 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2905 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2906 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2907 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2908 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2909 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2910 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2911 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2912 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2913 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2914 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2915 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2916 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2917 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2918 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2919 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2920 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2921 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2922 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2923 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2924 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2925 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2926 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2927 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2928 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2929 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2930 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2931 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2932 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2933 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2934 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2935 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2936 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2937 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2938 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2939 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2940 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2941 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2942 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2943 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2944 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2945 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2946 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2947 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2948 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2949 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2950 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2951 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2952 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2953 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2954 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2955 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2956 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2957 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2958 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2959 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2960 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2961 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2962 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2963 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2964 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2965 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2966 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2967 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2968 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2969 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2970 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2971 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2972 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2973 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2974 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2975 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2976 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2977 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2978 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2979 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2980 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2981 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2982 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2983 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2984 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2985 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2986 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2987 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2988 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2989 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2990 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2991 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2992 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2993 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2994 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2995 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2996 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2997 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2998 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 2999 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3000 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3001 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3002 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3003 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3004 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3005 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3006 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3007 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3008 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3009 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3010 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3011 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3012 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3013 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3014 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3015 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3016 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3017 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3018 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3019 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3020 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3021 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3022 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3023 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3024 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3025 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3026 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3027 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3028 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3029 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3030 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3031 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3032 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3033 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3034 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3035 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3036 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3037 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3038 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3039 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3040 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3041 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3042 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3043 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3044 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3045 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3046 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3047 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3048 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3049 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3050 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3051 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3052 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3053 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3054 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3055 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3056 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3057 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3058 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3059 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3060 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3061 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3062 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3063 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3064 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3065 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3066 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3067 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3068 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3069 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3070 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3071 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3072 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3073 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3074 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3075 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3076 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3077 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3078 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3079 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3080 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3081 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3082 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3083 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3084 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3085 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3086 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3087 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3088 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3089 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3090 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3091 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3092 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3093 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3094 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3095 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3096 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3097 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3098 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3099 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3100 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3101 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3102 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3103 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3104 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3105 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3106 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3107 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3108 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3109 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3110 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3111 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3112 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3113 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3114 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3115 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3116 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3117 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3118 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3119 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3120 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3121 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3122 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3123 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3124 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3125 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3126 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3127 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3128 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3129 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3130 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3131 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3132 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3133 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3134 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3135 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3136 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3137 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3138 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3139 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3140 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3141 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3142 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3143 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3144 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3145 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3146 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3147 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3148 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3149 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3150 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3151 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3152 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3153 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3154 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3155 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3156 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3157 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3158 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3159 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3160 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3161 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3162 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3163 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3164 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3165 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3166 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3167 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3168 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3169 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3170 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3171 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3172 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3173 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3174 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3175 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3176 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3177 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3178 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3179 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3180 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3181 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3182 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3183 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3184 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3185 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3186 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3187 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3188 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3189 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3190 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3191 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3192 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3193 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3194 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3195 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3196 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3197 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3198 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3199 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3200 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3201 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3202 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3203 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3204 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3205 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3206 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3207 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3208 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3209 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3210 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3211 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3212 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3213 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3214 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3215 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3216 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3217 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3218 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3219 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3220 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3221 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3222 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3223 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3224 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3225 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3226 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3227 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3228 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3229 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3230 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3231 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3232 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3233 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3234 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3235 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3236 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3237 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3238 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3239 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3240 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3241 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3242 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3243 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3244 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3245 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3246 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3247 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3248 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3249 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3250 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3251 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3252 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3253 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3254 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3255 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3256 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3257 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3258 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3259 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3260 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3261 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3262 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3263 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3264 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3265 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3266 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3267 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3268 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3269 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3270 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3271 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3272 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3273 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3274 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3275 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3276 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3277 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3278 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3279 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3280 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3281 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3282 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3283 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3284 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3285 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3286 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3287 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3288 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3289 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3290 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3291 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3292 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3293 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3294 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3295 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3296 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3297 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3298 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3299 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3300 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3301 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3302 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3303 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3304 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3305 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3306 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3307 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3308 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3309 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3310 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3311 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3312 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3313 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3314 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3315 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3316 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3317 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3318 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3319 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3320 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3321 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3322 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3323 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3324 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3325 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3326 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3327 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3328 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3329 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3330 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3331 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3332 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3333 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3334 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3335 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3336 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3337 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3338 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3339 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3340 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3341 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3342 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3343 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3344 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3345 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3346 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3347 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3348 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3349 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3350 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3351 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3352 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3353 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3354 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3355 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3356 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3357 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3358 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3359 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3360 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3361 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3362 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3363 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3364 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3365 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3366 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3367 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3368 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3369 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3370 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3371 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3372 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3373 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3374 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3375 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3376 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3377 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3378 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3379 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3380 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3381 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3382 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3383 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3384 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3385 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3386 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3387 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3388 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3389 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3390 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3391 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3392 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3393 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3394 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3395 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3396 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3397 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3398 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3399 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3400 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3401 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3402 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3403 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3404 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3405 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3406 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3407 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3408 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3409 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0004 / 0010 | BATCH 3410 / 3410 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0001 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0002 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0003 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0004 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0005 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0006 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0007 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0008 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0009 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0010 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0011 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0012 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0013 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0014 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0015 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0016 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0017 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0018 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0019 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0020 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0021 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0022 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0023 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0024 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0025 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0026 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0027 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0028 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0029 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0030 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0031 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0032 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0033 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0034 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0035 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0036 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0037 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0038 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0039 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0040 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0041 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0042 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0043 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0044 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0045 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0046 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0047 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0048 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0049 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0050 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0051 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0052 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0053 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0054 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0055 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0056 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0057 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0058 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0059 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0060 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0061 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0062 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0063 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0064 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0065 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0066 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0067 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0068 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0069 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0070 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0071 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0072 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0073 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0074 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0075 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0076 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0077 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0078 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0079 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0080 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0081 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0082 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0083 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0084 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0085 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0086 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0087 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0088 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0089 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0090 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0091 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0092 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0093 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0094 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0095 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0096 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0097 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0098 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0099 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0100 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0101 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0102 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0103 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0104 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0105 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0106 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0107 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0108 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0109 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0110 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0111 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0112 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0113 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0114 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0115 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0116 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0117 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0118 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0119 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0120 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0121 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0122 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0123 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0124 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0125 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0126 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0127 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0128 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0129 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0130 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0131 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0132 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0133 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0134 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0135 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0136 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0137 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0138 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0139 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0140 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0141 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0142 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0143 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0144 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0145 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0146 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0147 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0148 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0149 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0150 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0151 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0152 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0153 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0154 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0155 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0156 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0157 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0158 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0159 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0160 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0161 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0162 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0163 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0164 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0165 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0166 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0167 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0168 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0169 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0170 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0171 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0172 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0173 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0174 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0175 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0176 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0177 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0178 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0179 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0180 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0181 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0182 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0183 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0184 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0185 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0186 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0187 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0188 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0189 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0190 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0191 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0192 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0193 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0194 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0195 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0196 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0197 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0198 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0199 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0200 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0201 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0202 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0203 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0204 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0205 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0206 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0207 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0208 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0209 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0210 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0211 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0212 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0213 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0214 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0215 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0216 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0217 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0218 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0219 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0220 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0221 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0222 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0223 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0224 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0225 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0226 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0227 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0228 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0229 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0230 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0231 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0232 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0233 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0234 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0235 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0236 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0237 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0238 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0239 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0240 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0241 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0242 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0243 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0244 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0245 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0246 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0247 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0248 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0249 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0250 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0251 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0252 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0253 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0254 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0255 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0256 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0257 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0258 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0259 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0260 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0261 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0262 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0263 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0264 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0265 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0266 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0267 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0268 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0269 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0270 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0271 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0272 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0273 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0274 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0275 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0276 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0277 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0278 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0279 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0280 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0281 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0282 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0283 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0284 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0285 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0286 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0287 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0288 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0289 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0290 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0291 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0292 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0293 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0294 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0295 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0296 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0297 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0298 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0299 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0300 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0301 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0302 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0303 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0304 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0305 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0306 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0307 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0308 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0309 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0310 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0311 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0312 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0313 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0314 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0315 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0316 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0317 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0318 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0319 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0320 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0321 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0322 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0323 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0324 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0325 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0326 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0327 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0328 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0329 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0330 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0331 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0332 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0333 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0334 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0335 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0336 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0337 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0338 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0339 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0340 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0341 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0342 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0343 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0344 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0345 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0346 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0347 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0348 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0349 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0350 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0351 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0352 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0353 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0354 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0355 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0356 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0357 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0358 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0359 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0360 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0361 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0362 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0363 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0364 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0365 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0366 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0367 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0368 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0369 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0370 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0371 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0372 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0373 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0374 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0375 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0376 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0377 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0378 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0379 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0380 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0381 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0382 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0383 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0384 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0385 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0386 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0387 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0388 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0389 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0390 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0391 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0392 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0393 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0394 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0395 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0396 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0397 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0398 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0399 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0400 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0401 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0402 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0403 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0404 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0405 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0406 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0407 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0408 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0409 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0410 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0411 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0412 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0413 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0414 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0415 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0416 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0417 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0418 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0419 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0420 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0421 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0422 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0423 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0424 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0425 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0426 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0427 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0428 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0429 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0430 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0431 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0432 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0433 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0434 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0435 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0436 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0437 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0438 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0439 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0440 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0441 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0442 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0443 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0444 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0445 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0446 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0447 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0448 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0449 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0450 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0451 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0452 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0453 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0454 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0455 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0456 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0457 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0458 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0459 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0460 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0461 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0462 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0463 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0464 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0465 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0466 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0467 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0468 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0469 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0470 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0471 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0472 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0473 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0474 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0475 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0476 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0477 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0478 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0479 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0480 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0481 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0482 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0483 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0484 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0485 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0486 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0487 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0488 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0489 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0490 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0491 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0492 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0493 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0494 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0495 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0496 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0497 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0498 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0499 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0500 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0501 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0502 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0503 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0504 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0505 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0506 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0507 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0508 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0509 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0510 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0511 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0512 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0513 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0514 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0515 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0516 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0517 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0518 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0519 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0520 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0521 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0522 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0523 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0524 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0525 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0526 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0527 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0528 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0529 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0530 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0531 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0532 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0533 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0534 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0535 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0536 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0537 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0538 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0539 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0540 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0541 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0542 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0543 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0544 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0545 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0546 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0547 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0548 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0549 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0550 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0551 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0552 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0553 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0554 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0555 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0556 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0557 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0558 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0559 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0560 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0561 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0562 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0563 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0564 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0565 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0566 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0567 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0568 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0569 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0570 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0571 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0572 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0573 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0574 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0575 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0576 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0577 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0578 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0579 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0580 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0581 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0582 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0583 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0584 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0585 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0586 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0587 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0588 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0589 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0590 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0591 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0592 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0593 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0594 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0595 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0596 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0597 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0598 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0599 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0600 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0601 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0602 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0603 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0604 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0605 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0606 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0607 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0608 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0609 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0610 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0611 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0612 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0613 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0614 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0615 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0616 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0617 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0618 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0619 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0620 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0621 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0622 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0623 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0624 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0625 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0626 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0627 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0628 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0629 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0630 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0631 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0632 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0633 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0634 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0635 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0636 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0637 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0638 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0639 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0640 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0641 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0642 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0643 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0644 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0645 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0646 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0647 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0648 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0649 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0650 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0651 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0652 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0653 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0654 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0655 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0656 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0657 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0658 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0659 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0660 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0661 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0662 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0663 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0664 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0665 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0666 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0667 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0668 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0669 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0670 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0671 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0672 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0673 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0674 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0675 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0676 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0677 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0678 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0679 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0680 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0681 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0682 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0683 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0684 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0685 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0686 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0687 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0688 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0689 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0690 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0691 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0692 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0693 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0694 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0695 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0696 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0697 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0698 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0699 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0700 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0701 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0702 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0703 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0704 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0705 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0706 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0707 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0708 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0709 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0710 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0711 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0712 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0713 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0714 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0715 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0716 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0717 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0718 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0719 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0720 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0721 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0722 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0723 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0724 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0725 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0726 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0727 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0728 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0729 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0730 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0731 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0732 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0733 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0734 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0735 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0736 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0737 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0738 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0739 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0740 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0741 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0742 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0743 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0744 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0745 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0746 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0747 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0748 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0749 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0750 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0751 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0752 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0753 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0754 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0755 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0756 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0757 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0758 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0759 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0760 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0761 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0762 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0763 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0764 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0765 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0766 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0767 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0768 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0769 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0770 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0771 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0772 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0773 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0774 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0775 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0776 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0777 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0778 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0779 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0780 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0781 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0782 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0783 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0784 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0785 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0786 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0787 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0788 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0789 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0790 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0791 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0792 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0793 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0794 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0795 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0796 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0797 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0798 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0799 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0800 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0801 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0802 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0803 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0804 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0805 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0806 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0807 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0808 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0809 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0810 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0811 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0812 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0813 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0814 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0815 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0816 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0817 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0818 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0819 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0820 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0821 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0822 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0823 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0824 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0825 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0826 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0827 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0828 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0829 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0830 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0831 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0832 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0833 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0834 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0835 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0836 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0837 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0838 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0839 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0840 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0841 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0842 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0843 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0844 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0845 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0846 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0847 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0848 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0849 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0850 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0851 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0852 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0853 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0854 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0855 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0856 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0857 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0858 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0859 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0860 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0861 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0862 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0863 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0864 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0865 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0866 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0867 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0868 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0869 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0870 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0871 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0872 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0873 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0874 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0875 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0876 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0877 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0878 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0879 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0880 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0881 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0882 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0883 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0884 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0885 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0886 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0887 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0888 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0889 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0890 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0891 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0892 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0893 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0894 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0895 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0896 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0897 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0898 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0899 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0900 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0901 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0902 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0903 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0904 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0905 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0906 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0907 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0908 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0909 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0910 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0911 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0912 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0913 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0914 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0915 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0916 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0917 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0918 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0919 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0920 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0921 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0922 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0923 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0924 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0925 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0926 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0927 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0928 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0929 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0930 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0931 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0932 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0933 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0934 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0935 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0936 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0937 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0938 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0939 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0940 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0941 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0942 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0943 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0944 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0945 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0946 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0947 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0948 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0949 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0950 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0951 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0952 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0953 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0954 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0955 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0956 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0957 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0958 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0959 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0960 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0961 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0962 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0963 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0964 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0965 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0966 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0967 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0968 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0969 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0970 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0971 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0972 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0973 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0004 / 0010 | BATCH 0974 / 0974 | LOSS 0.0015\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0002 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0003 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0004 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0005 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0006 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0007 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0008 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0009 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0010 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0011 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0012 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0013 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0014 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0015 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0016 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0017 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0018 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0019 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0020 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0021 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0022 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0023 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0024 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0025 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0026 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0027 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0028 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0029 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0030 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0031 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0032 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0033 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0034 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0035 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0036 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0037 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0038 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0039 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0040 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0041 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0042 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0043 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0044 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0045 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0046 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0047 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0048 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0049 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0050 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0051 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0052 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0053 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0054 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0055 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0056 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0057 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0058 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0059 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0060 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0061 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0062 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0063 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0064 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0065 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0066 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0067 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0068 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0069 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0070 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0071 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0072 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0073 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0074 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0075 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0076 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0077 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0078 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0079 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0080 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0081 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0082 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0083 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0084 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0085 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0086 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0087 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0088 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0089 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0090 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0091 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0092 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0093 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0094 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0095 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0096 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0097 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0098 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0099 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0100 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0101 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0102 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0103 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0104 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0105 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0106 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0107 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0108 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0109 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0110 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0111 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0112 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0113 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0114 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0115 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0116 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0117 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0118 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0119 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0120 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0121 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0122 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0123 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0124 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0125 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0126 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0127 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0128 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0129 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0130 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0131 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0132 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0133 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0134 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0135 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0136 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0137 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0138 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0139 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0140 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0141 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0142 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0143 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0144 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0145 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0146 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0147 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0148 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0149 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0150 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0151 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0152 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0153 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0154 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0155 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0156 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0157 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0158 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0159 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0160 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0161 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0162 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0163 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0164 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0165 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0166 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0167 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0168 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0169 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0170 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0171 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0172 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0173 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0174 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0175 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0176 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0177 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0178 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0179 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0180 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0181 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0182 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0183 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0184 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0185 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0186 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0187 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0188 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0189 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0190 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0191 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0192 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0193 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0194 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0195 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0196 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0197 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0198 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0199 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0200 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0201 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0202 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0203 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0204 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0205 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0206 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0207 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0208 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0209 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0210 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0211 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0212 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0213 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0214 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0215 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0216 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0217 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0218 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0219 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0220 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0221 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0222 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0223 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0224 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0225 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0226 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0227 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0228 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0229 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0230 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0231 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0232 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0233 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0234 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0235 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0236 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0237 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0238 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0239 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0240 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0241 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0242 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0243 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0244 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0245 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0246 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0247 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0248 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0249 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0250 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0251 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0252 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0253 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0254 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0255 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0256 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0257 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0258 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0259 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0260 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0261 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0262 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0263 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0264 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0265 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0266 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0267 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0268 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0269 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0270 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0271 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0272 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0273 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0274 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0275 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0276 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0277 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0278 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0279 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0280 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0281 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0282 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0283 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0284 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0285 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0286 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0287 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0288 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0289 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0290 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0291 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0292 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0293 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0294 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0295 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0296 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0297 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0298 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0299 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0300 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0301 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0302 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0303 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0304 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0305 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0306 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0307 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0308 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0309 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0310 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0311 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0312 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0313 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0314 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0315 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0316 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0317 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0318 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0319 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0320 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0321 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0322 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0323 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0324 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0325 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0326 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0327 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0328 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0329 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0330 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0331 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0332 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0335 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0336 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0337 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0338 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0339 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0340 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0341 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0342 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0343 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0344 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0345 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0346 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0347 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0348 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0349 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0350 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0351 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0352 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0353 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0354 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0355 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0356 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0357 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0358 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0359 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0360 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0361 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0362 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0363 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0364 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0365 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0366 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0367 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0368 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0369 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0370 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0371 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0372 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0373 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0374 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0375 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0376 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0377 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0378 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0379 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0380 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0381 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0382 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0383 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0384 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0385 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0386 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0387 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0388 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0389 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0390 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0391 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0392 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0393 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0394 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0395 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0396 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0397 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0398 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0399 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0400 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0401 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0402 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0403 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0404 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0405 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0406 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0407 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0408 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0409 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0410 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0411 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0412 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0413 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0414 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0415 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0416 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0417 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0418 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0419 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0420 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0421 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0422 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0423 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0424 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0425 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0426 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0427 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0428 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0429 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0430 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0431 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0432 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0433 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0434 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0435 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0436 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0437 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0438 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0439 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0440 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0441 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0442 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0443 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0444 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0445 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0446 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0447 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0448 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0449 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0450 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0451 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0452 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0453 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0454 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0455 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0456 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0457 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0458 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0459 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0460 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0461 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0462 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0463 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0464 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0465 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0466 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0467 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0468 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0469 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0470 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0471 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0472 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0473 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0474 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0475 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0476 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0477 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0478 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0479 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0480 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0481 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0482 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0483 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0484 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0485 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0486 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0487 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0488 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0489 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0490 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0491 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0492 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0493 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0494 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0495 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0496 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0497 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0498 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0499 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0500 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0501 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0502 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0503 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0504 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0505 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0506 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0507 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0508 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0509 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0510 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0511 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0512 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0513 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0514 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0515 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0516 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0517 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0518 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0519 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0520 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0521 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0522 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0523 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0524 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0525 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0526 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0527 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0528 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0529 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0530 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0531 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0532 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0533 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0534 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0535 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0536 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0537 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0538 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0539 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0540 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0541 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0542 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0543 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0544 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0545 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0546 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0547 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0548 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0549 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0550 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0551 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0552 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0553 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0554 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0555 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0556 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0557 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0558 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0559 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0560 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0561 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0562 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0563 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0564 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0565 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0566 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0567 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0568 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0569 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0570 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0571 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0572 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0573 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0574 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0575 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0576 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0577 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0578 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0579 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0580 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0581 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0582 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0583 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0584 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0585 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0586 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0587 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0588 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0589 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0590 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0591 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0592 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0593 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0594 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0595 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0596 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0597 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0598 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0599 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0600 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0601 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0602 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0603 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0604 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0605 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0606 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0607 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0608 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0609 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0610 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0611 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0612 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0613 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0614 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0615 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0616 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0617 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0618 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0619 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0620 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0621 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0622 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0623 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0624 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0625 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0626 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0627 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0628 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0629 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0630 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0631 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0632 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0633 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0634 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0635 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0636 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0637 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0638 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0639 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0640 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0641 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0642 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0643 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0644 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0645 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0646 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0647 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0648 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0649 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0650 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0651 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0652 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0653 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0654 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0655 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0656 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0657 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0658 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0659 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0660 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0661 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0662 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0663 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0664 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0665 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0666 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0667 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0668 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0669 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0670 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0671 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0672 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0673 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0674 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0675 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0676 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0677 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0678 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0679 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0680 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0681 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0682 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0683 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0684 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0685 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0686 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0687 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0688 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0689 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0690 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0691 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0692 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0693 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0694 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0695 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0696 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0697 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0698 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0699 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0700 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0701 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0702 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0703 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0704 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0705 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0706 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0707 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0708 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0709 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0710 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0711 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0712 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0713 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0714 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0715 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0716 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0717 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0718 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0719 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0720 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0721 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0722 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0723 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0724 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0725 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0726 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0727 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0728 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0729 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0730 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0731 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0732 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0733 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0734 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0735 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0736 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0737 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0738 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0739 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0740 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0741 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0742 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0743 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0744 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0745 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0746 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0747 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0748 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0749 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0750 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0751 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0752 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0753 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0754 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0755 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0756 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0757 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0758 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0759 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0760 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0761 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0762 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0763 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0764 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0765 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0766 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0767 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0768 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0769 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0770 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0771 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0772 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0773 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0774 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0775 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0776 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0777 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0778 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0779 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0780 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0781 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0782 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0783 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0784 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0785 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0786 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0787 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0788 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0789 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0790 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0791 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0792 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0793 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0794 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0795 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0796 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0797 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0798 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0799 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0800 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0801 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0802 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0803 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0804 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0805 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0806 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0807 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0808 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0809 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0810 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0811 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0812 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0813 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0814 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0815 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0816 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0817 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0818 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0819 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0820 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0821 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0822 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0823 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0824 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0825 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0826 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0827 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0828 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0829 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0830 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0831 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0832 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0833 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0834 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0835 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0836 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0837 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0838 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0839 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0840 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0841 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0842 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0843 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0844 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0845 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0846 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0847 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0848 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0849 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0850 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0851 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0852 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0853 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0854 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0855 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0856 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0857 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0858 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0859 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0860 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0861 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0862 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0863 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0864 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0865 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0866 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0867 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0868 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0869 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0870 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0871 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0872 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0873 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0874 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0875 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0876 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0877 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0878 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0879 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0880 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0881 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0882 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0883 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0884 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0885 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0886 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0887 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0888 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0889 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0890 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0891 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0892 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0893 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0894 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0895 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0896 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0897 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0898 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0899 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0900 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0901 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0902 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0903 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0904 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0905 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0906 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0907 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0908 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0909 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0910 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0911 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0912 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0913 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0914 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0915 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0916 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0917 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0918 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0919 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0920 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0921 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0922 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0923 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0924 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0925 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0926 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0927 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0928 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0929 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0930 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0931 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0932 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0933 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0934 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0935 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0936 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0937 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0938 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0939 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0940 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0941 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0942 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0943 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0944 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0945 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0946 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0947 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0948 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0949 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0950 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0951 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0952 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0953 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0954 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0955 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0956 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0957 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0958 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0959 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0960 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0961 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0962 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0963 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0964 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0965 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0966 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0967 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0968 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0969 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0970 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0971 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0972 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0973 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0974 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0975 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0976 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0977 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0978 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0979 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0980 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0981 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0982 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0983 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0984 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0985 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0986 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0987 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0988 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0989 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0990 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0991 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0992 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0993 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0994 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0995 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0996 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0997 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0998 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 0999 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1000 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1001 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1002 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1003 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1004 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1005 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1006 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1007 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1008 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1009 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1010 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1011 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1012 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1013 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1014 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1015 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1016 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1017 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1018 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1019 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1020 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1021 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1022 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1023 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1024 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1025 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1026 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1027 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1028 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1029 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1030 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1031 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1032 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1033 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1034 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1035 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1036 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1037 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1038 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1039 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1040 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1041 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1042 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1043 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1044 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1045 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1046 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1047 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1048 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1049 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1050 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1051 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1052 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1053 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1054 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1055 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1056 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1057 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1058 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1059 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1060 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1061 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1062 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1063 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1064 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1065 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1066 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1067 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1068 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1069 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1070 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1071 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1072 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1073 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1074 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1075 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1076 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1077 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1078 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1079 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1080 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1081 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1082 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1083 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1084 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1085 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1086 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1087 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1088 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1089 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1090 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1091 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1092 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1093 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1094 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1095 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1096 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1097 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1098 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1099 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1100 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1101 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1102 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1103 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1104 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1105 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1106 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1107 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1108 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1109 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1110 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1111 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1112 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1113 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1114 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1115 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1116 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1117 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1118 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1119 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1120 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1121 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1122 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1123 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1124 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1125 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1126 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1127 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1128 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1129 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1130 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1131 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1132 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1133 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1134 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1135 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1136 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1137 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1138 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1139 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1140 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1141 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1142 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1143 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1144 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1145 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1146 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1147 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1148 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1149 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1150 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1151 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1152 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1153 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1154 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1155 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1156 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1157 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1158 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1159 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1160 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1161 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1162 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1163 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1164 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1165 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1166 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1167 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1168 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1169 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1170 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1171 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1172 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1173 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1174 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1175 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1176 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1177 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1178 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1179 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1180 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1181 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1182 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1183 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1184 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1185 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1186 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1187 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1188 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1189 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1190 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1191 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1192 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1193 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1194 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1195 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1196 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1197 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1198 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1199 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1200 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1201 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1202 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1203 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1204 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1205 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1206 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1207 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1208 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1209 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1210 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1211 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1212 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1213 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1214 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1215 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1216 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1217 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1218 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1219 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1220 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1221 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1222 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1223 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1224 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1225 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1226 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1227 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1228 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1229 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1230 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1231 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1232 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1233 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1234 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1235 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1236 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1237 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1238 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1239 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1240 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1241 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1242 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1243 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1244 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1245 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1246 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1247 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1248 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1249 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1250 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1251 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1252 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1253 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1254 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1255 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1256 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1257 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1258 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1259 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1260 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1261 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1262 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1263 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1264 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1265 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1266 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1267 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1268 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1269 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1270 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1271 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1272 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1273 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1274 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1275 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1276 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1277 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1278 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1279 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1280 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1281 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1282 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1283 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1284 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1285 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1286 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1287 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1288 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1289 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1290 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1291 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1292 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1293 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1294 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1295 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1296 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1297 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1298 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1299 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1300 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1301 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1302 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1303 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1304 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1305 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1306 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1307 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1308 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1309 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1310 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1311 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1312 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1313 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1314 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1315 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1316 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1317 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1318 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1319 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1320 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1321 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1322 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1323 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1324 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1325 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1326 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1327 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1328 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1329 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1330 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1331 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1332 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1333 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1334 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1335 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1336 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1337 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1338 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1339 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1340 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1341 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1342 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1343 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1344 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1345 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1346 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1347 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1348 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1349 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1350 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1351 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1352 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1353 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1354 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1355 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1356 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1357 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1358 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1359 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1360 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1361 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1362 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1363 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1364 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1365 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1366 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1367 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1368 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1369 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1370 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1371 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1372 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1373 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1374 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1375 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1376 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1377 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1378 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1379 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1380 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1381 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1382 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1383 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1384 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1385 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1386 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1387 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1388 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1389 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1390 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1391 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1392 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1393 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1394 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1395 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1396 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1397 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1398 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1399 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1400 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1401 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1402 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1403 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1404 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1405 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1406 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1407 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1408 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1409 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1410 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1411 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1412 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1413 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1414 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1415 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1416 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1417 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1418 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1419 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1420 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1421 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1422 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1423 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1424 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1425 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1426 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1427 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1428 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1429 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1430 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1431 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1432 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1433 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1434 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1435 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1436 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1437 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1438 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1439 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1440 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1441 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1442 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1443 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1444 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1445 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1446 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1447 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1448 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1449 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1450 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1451 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1452 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1453 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1454 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1455 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1456 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1457 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1458 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1459 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1460 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1461 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1462 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1463 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1464 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1465 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1466 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1467 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1468 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1469 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1470 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1471 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1472 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1473 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1474 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1475 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1476 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1477 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1478 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1479 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1480 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1481 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1482 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1483 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1484 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1485 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1486 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1487 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1488 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1489 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1490 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1491 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1492 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1493 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1494 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1495 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1496 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1497 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1498 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1499 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1500 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1501 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1502 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1503 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1504 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1505 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1506 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1507 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1508 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1509 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1510 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1511 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1512 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1513 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1514 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1515 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1516 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1517 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1518 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1519 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1520 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1521 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1522 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1523 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1524 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1525 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1526 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1527 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1528 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1529 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1530 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1531 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1532 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1533 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1534 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1535 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1536 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1537 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1538 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1539 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1540 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1541 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1542 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1543 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1544 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1545 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1546 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1547 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1548 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1549 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1550 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1551 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1552 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1553 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1554 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1555 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1556 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1557 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1558 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1559 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1560 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1561 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1562 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1563 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1564 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1565 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1566 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1567 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1568 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1569 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1570 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1571 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1572 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1573 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1574 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1575 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1576 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1577 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1578 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1579 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1580 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1581 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1582 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1583 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1584 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1585 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1586 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1587 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1588 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1589 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1590 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1591 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1592 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1593 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1594 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1595 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1596 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1597 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1598 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1599 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1600 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1601 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1602 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1603 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1604 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1605 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1606 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1607 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1608 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1609 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1610 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1611 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1612 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1613 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1614 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1615 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1616 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1617 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1618 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1619 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1620 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1621 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1622 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1623 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1624 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1625 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1626 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1627 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1628 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1629 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1630 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1631 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1632 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1633 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1634 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1635 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1636 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1637 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1638 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1639 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1640 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1641 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1642 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1643 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1644 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1645 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1646 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1647 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1648 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1649 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1650 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1651 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1652 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1653 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1654 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1655 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1656 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1657 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1658 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1659 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1660 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1661 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1662 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1663 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1664 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1665 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1666 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1667 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1668 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1669 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1670 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1671 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1672 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1673 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1674 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1675 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1676 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1677 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1678 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1679 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1680 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1681 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1682 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1683 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1684 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1685 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1686 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1687 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1688 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1689 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1690 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1691 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1692 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1693 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1694 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1695 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1696 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1697 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1698 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1699 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1700 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1701 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1702 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1703 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1704 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1705 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1706 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1707 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1708 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1709 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1710 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1711 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1712 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1713 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1714 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1715 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1716 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1717 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1718 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1719 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1720 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1721 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1722 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1723 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1724 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1725 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1726 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1727 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1728 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1729 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1730 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1731 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1732 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1733 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1734 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1735 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1736 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1737 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1738 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1739 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1740 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1741 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1742 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1743 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1744 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1745 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1746 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1747 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1748 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1749 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1750 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1751 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1752 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1753 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1754 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1755 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1756 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1757 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1758 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1759 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1760 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1761 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1762 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1763 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1764 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1765 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1766 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1767 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1768 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1769 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1770 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1771 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1772 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1773 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1774 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1775 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1776 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1777 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1778 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1779 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1780 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1781 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1782 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1783 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1784 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1785 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1786 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1787 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1788 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1789 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1790 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1791 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1792 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1793 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1794 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1795 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1796 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1797 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1798 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1799 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1800 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1801 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1802 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1803 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1804 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1805 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1806 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1807 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1808 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1809 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1810 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1811 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1812 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1813 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1814 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1815 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1816 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1817 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1818 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1819 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1820 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1821 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1822 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1823 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1824 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1825 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1826 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1827 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1828 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1829 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1830 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1831 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1832 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1833 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1834 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1835 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1836 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1837 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1838 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1839 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1840 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1841 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1842 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1843 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1844 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1845 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1846 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1847 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1848 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1849 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1850 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1851 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1852 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1853 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1854 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1855 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1856 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1857 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1858 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1859 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1860 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1861 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1862 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1863 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1864 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1865 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1866 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1867 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1868 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1869 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1870 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1871 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1872 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1873 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1874 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1875 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1876 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1877 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1878 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1879 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1880 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1881 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1882 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1883 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1884 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1885 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1886 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1887 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1888 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1889 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1890 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1891 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1892 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1893 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1894 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1895 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1896 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1897 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1898 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1899 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1900 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1901 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1902 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1903 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1904 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1905 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1906 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1907 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1908 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1909 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1910 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1911 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1912 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1913 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1914 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1915 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1916 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1917 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1918 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1919 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1920 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1921 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1922 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1923 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1924 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1925 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1926 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1927 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1928 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1929 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1930 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1931 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1932 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1933 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1934 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1935 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1936 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1937 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1938 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1939 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1940 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1941 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1942 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1943 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1944 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1945 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1946 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1947 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1948 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1949 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1950 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1951 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1952 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1953 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1954 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1955 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1956 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1957 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1958 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1959 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1960 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1961 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1962 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1963 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1964 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1965 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1966 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1967 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1968 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1969 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1970 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1971 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1972 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1973 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1974 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1975 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1976 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1977 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1978 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1979 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1980 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1981 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1982 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1983 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1984 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1985 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1986 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1987 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1988 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1989 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1990 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1991 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1992 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1993 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1994 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1995 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1996 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1997 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1998 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 1999 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2000 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2001 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2002 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2003 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2004 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2005 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2006 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2007 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2008 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2009 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2010 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2011 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2012 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2013 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2014 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2015 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2016 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2017 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2018 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2019 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2020 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2021 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2022 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2023 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2024 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2025 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2026 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2027 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2028 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2029 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2030 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2031 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2032 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2033 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2034 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2035 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2036 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2037 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2038 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2039 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2040 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2041 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2042 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2043 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2044 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2045 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2046 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2047 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2048 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2049 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2050 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2051 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2052 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2053 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2054 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2055 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2056 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2057 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2058 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2059 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2060 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2061 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2062 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2063 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2064 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2065 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2066 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2067 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2068 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2069 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2070 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2071 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2072 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2073 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2074 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2075 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2076 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2077 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2078 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2079 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2080 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2081 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2082 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2083 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2084 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2085 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2086 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2087 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2088 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2089 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2090 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2091 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2092 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2093 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2094 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2095 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2096 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2097 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2098 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2099 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2100 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2101 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2102 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2103 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2104 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2105 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2106 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2107 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2108 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2109 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2110 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2111 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2112 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2113 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2114 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2115 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2116 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2117 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2118 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2119 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2120 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2121 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2122 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2123 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2124 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2125 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2126 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2127 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2128 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2129 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2130 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2131 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2132 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2133 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2134 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2135 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2136 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2137 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2138 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2139 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2140 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2141 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2142 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2143 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2144 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2145 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2146 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2147 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2148 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2149 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2150 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2151 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2152 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2153 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2154 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2155 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2156 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2157 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2158 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2159 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2160 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2161 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2162 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2163 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2164 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2165 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2166 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2167 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2168 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2169 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2170 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2171 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2172 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2173 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2174 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2175 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2176 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2177 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2178 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2179 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2180 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2181 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2182 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2183 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2184 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2185 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2186 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2187 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2188 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2189 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2190 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2191 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2192 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2193 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2194 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2195 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2196 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2197 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2198 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2199 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2200 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2201 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2202 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2203 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2204 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2205 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2206 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2207 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2208 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2209 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2210 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2211 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2212 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2213 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2214 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2215 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2216 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2217 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2218 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2219 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2220 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2221 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2222 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2223 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2224 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2225 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2226 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2227 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2228 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2229 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2230 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2231 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2232 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2233 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2234 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2235 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2236 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2237 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2238 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2239 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2240 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2241 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2242 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2243 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2244 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2245 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2246 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2247 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2248 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2249 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2250 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2251 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2252 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2253 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2254 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2255 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2256 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2257 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2258 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2259 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2260 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2261 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2262 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2263 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2264 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2265 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2266 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2267 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2268 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2269 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2270 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2271 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2272 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2273 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2274 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2275 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2276 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2277 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2278 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2279 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2280 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2281 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2282 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2283 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2284 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2285 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2286 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2287 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2288 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2289 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2290 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2291 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2292 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2293 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2294 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2295 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2296 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2297 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2298 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2299 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2300 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2301 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2302 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2303 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2304 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2305 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2306 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2307 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2308 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2309 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2310 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2311 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2312 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2313 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2314 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2315 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2316 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2317 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2318 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2319 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2320 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2321 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2322 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2323 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2324 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2325 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2326 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2327 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2328 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2329 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2330 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2331 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2332 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2333 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2334 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2335 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2336 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2337 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2338 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2339 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2340 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2341 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2342 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2343 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2344 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2345 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2346 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2347 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2348 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2349 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2350 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2351 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2352 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2353 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2354 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2355 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2356 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2357 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2358 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2359 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2360 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2361 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2362 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2363 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2364 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2365 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2366 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2367 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2368 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2369 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2370 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2371 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2372 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2373 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2374 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2375 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2376 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2377 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2378 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2379 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2380 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2381 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2382 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2383 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2384 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2385 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2386 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2387 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2388 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2389 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2390 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2391 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2392 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2393 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2394 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2395 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2396 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2397 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2398 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2399 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2400 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2401 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2402 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2403 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2404 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2405 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2406 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2407 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2408 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2409 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2410 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2411 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2412 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2413 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2414 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2415 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2416 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2417 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2418 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2419 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2420 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2421 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2422 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2423 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2424 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2425 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2426 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2427 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2428 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2429 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2430 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2431 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2432 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2433 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2434 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2435 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2436 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2437 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2438 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2439 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2440 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2441 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2442 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2443 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2444 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2445 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2446 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2447 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2448 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2449 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2450 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2451 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2452 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2453 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2454 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2455 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2456 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2457 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2458 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2459 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2460 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2461 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2462 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2463 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2464 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2465 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2466 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2467 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2468 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2469 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2470 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2471 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2472 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2473 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2474 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2475 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2476 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2477 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2478 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2479 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2480 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2481 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2482 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2483 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2484 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2485 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2486 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2487 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2488 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2489 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2490 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2491 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2492 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2493 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2494 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2495 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2496 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2497 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2498 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2499 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2500 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2501 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2502 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2503 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2504 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2505 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2506 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2507 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2508 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2509 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2510 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2511 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2512 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2513 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2514 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2515 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2516 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2517 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2518 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2519 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2520 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2521 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2522 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2523 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2524 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2525 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2526 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2527 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2528 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2529 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2530 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2531 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2532 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2533 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2534 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2535 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2536 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2537 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2538 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2539 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2540 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2541 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2542 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2543 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2544 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2545 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2546 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2547 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2548 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2549 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2550 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2551 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2552 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2553 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2554 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2555 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2556 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2557 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2558 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2559 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2560 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2561 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2562 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2563 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2564 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2565 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2566 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2567 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2568 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2569 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2570 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2571 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2572 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2573 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2574 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2575 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2576 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2577 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2578 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2579 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2580 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2581 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2582 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2583 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2584 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2585 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2586 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2587 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2588 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2589 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2590 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2591 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2592 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2593 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2594 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2595 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2596 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2597 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2598 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2599 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2600 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2601 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2602 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2603 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2604 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2605 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2606 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2607 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2608 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2609 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2610 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2611 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2612 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2613 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2614 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2615 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2616 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2617 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2618 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2619 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2620 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2621 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2622 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2623 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2624 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2625 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2626 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2627 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2628 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2629 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2630 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2631 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2632 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2633 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2634 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2635 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2636 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2637 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2638 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2639 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2640 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2641 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2642 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2643 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2644 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2645 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2646 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2647 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2648 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2649 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2650 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2651 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2652 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2653 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2654 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2655 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2656 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2657 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2658 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2659 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2660 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2661 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2662 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2663 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2664 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2665 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2666 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2667 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2668 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2669 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2670 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2671 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2672 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2673 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2674 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2675 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2676 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2677 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2678 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2679 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2680 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2681 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2682 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2683 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2684 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2685 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2686 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2687 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2688 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2689 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2690 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2691 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2692 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2693 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2694 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2695 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2696 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2697 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2698 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2699 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2700 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2701 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2702 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2703 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2704 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2705 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2706 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2707 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2708 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2709 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2710 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2711 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2712 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2713 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2714 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2715 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2716 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2717 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2718 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2719 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2720 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2721 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2722 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2723 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2724 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2725 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2726 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2727 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2728 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2729 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2730 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2731 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2732 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2733 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2734 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2735 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2736 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2737 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2738 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2739 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2740 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2741 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2742 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2743 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2744 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2745 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2746 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2747 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2748 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2749 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2750 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2751 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2752 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2753 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2754 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2755 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2756 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2757 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2758 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2759 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2760 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2761 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2762 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2763 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2764 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2765 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2766 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2767 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2768 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2769 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2770 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2771 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2772 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2773 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2774 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2775 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2776 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2777 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2778 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2779 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2780 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2781 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2782 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2783 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2784 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2785 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2786 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2787 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2788 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2789 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2790 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2791 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2792 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2793 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2794 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2795 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2796 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2797 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2798 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2799 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2800 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2801 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2802 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2803 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2804 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2805 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2806 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2807 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2808 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2809 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2810 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2811 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2812 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2813 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2814 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2815 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2816 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2817 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2818 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2819 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2820 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2821 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2822 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2823 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2824 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2825 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2826 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2827 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2828 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2829 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2830 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2831 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2832 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2833 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2834 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2835 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2836 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2837 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2838 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2839 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2840 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2841 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2842 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2843 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2844 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2845 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2846 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2847 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2848 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2849 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2850 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2851 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2852 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2853 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2854 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2855 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2856 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2857 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2858 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2859 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2860 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2861 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2862 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2863 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2864 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2865 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2866 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2867 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2868 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2869 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2870 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2871 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2872 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2873 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2874 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2875 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2876 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2877 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2878 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2879 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2880 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2881 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2882 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2883 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2884 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2885 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2886 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2887 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2888 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2889 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2890 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2891 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2892 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2893 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2894 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2895 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2896 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2897 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2898 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2899 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2900 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2901 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2902 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2903 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2904 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2905 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2906 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2907 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2908 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2909 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2910 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2911 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2912 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2913 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2914 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2915 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2916 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2917 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2918 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2919 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2920 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2921 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2922 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2923 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2924 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2925 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2926 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2927 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2928 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2929 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2930 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2931 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2932 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2933 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2934 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2935 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2936 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2937 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2938 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2939 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2940 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2941 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2942 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2943 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2944 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2945 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2946 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2947 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2948 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2949 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2950 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2951 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2952 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2953 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2954 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2955 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2956 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2957 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2958 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2959 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2960 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2961 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2962 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2963 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2964 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2965 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2966 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2967 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2968 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2969 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2970 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2971 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2972 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2973 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2974 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2975 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2976 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2977 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2978 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2979 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2980 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2981 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2982 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2983 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2984 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2985 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2986 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2987 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2988 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2989 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2990 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2991 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2992 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2993 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2994 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2995 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2996 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2997 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2998 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 2999 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3000 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3001 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3002 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3003 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3004 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3005 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3006 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3007 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3008 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3009 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3010 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3011 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3012 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3013 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3014 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3015 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3016 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3017 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3018 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3019 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3020 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3021 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3022 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3023 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3024 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3025 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3026 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3027 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3028 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3029 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3030 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3031 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3032 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3033 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3034 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3035 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3036 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3037 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3038 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3039 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3040 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3041 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3042 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3043 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3044 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3045 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3046 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3047 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3048 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3049 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3050 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3051 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3052 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3053 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3054 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3055 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3056 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3057 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3058 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3059 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3060 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3061 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3062 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3063 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3064 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3065 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3066 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3067 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3068 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3069 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3070 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3071 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3072 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3073 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3074 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3075 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3076 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3077 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3078 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3079 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3080 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3081 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3082 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3083 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3084 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3085 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3086 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3087 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3088 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3089 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3090 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3091 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3092 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3093 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3094 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3095 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3096 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3097 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3098 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3099 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3100 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3101 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3102 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3103 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3104 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3105 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3106 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3107 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3108 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3109 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3110 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3111 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3112 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3113 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3114 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3115 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3116 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3117 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3118 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3119 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3120 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3121 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3122 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3123 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3124 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3125 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3126 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3127 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3128 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3129 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3130 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3131 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3132 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3133 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3134 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3135 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3136 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3137 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3138 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3139 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3140 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3141 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3142 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3143 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3144 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3145 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3146 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3147 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3148 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3149 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3150 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3151 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3152 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3153 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3154 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3155 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3156 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3157 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3158 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3159 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3160 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3161 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3162 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3163 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3164 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3165 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3166 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3167 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3168 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3169 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3170 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3171 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3172 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3173 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3174 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3175 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3176 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3177 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3178 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3179 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3180 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3181 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3182 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3183 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3184 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3185 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3186 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3187 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3188 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3189 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3190 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3191 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3192 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3193 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3194 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3195 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3196 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3197 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3198 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3199 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3200 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3201 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3202 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3203 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3204 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3205 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3206 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3207 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3208 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3209 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3210 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3211 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3212 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3213 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3214 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3215 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3216 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3217 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3218 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3219 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3220 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3221 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3222 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3223 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3224 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3225 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3226 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3227 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3228 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3229 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3230 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3231 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3232 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3233 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3234 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3235 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3236 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3237 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3238 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3239 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3240 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3241 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3242 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3243 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3244 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3245 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3246 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3247 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3248 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3249 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3250 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3251 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3252 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3253 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3254 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3255 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3256 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3257 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3258 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3259 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3260 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3261 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3262 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3263 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3264 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3265 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3266 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3267 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3268 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3269 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3270 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3271 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3272 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3273 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3274 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3275 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3276 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3277 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3278 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3279 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3280 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3281 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3282 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3283 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3284 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3285 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3286 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3287 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3288 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3289 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3290 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3291 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3292 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3293 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3294 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3295 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3296 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3297 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3298 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3299 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3300 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3301 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3302 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3303 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3304 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3305 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3306 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3307 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3308 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3309 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3310 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3311 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3312 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3313 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3314 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3315 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3316 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3317 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3318 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3319 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3320 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3321 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3322 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3323 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3324 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3325 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3326 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3327 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3328 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3329 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3330 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3331 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3332 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3335 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3336 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3337 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3338 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3339 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3340 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3341 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3342 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3343 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3344 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3345 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3346 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3347 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3348 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3349 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3350 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3351 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3352 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3353 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3354 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3355 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3356 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3357 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3358 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3359 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3360 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3361 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3362 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3363 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3364 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3365 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3366 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3367 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3368 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3369 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3370 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3371 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3372 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3373 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3374 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3375 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3376 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3377 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3378 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3379 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3380 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3381 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3382 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3383 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3384 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3385 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3386 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3387 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3388 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3389 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3390 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3391 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3392 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3393 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3394 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3395 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3396 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3397 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3398 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3399 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3400 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3401 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3402 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3403 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3404 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3405 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3406 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3407 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3408 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3409 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0005 / 0010 | BATCH 3410 / 3410 | LOSS 0.0013\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0001 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0002 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0003 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0004 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0005 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0006 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0007 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0008 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0009 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0010 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0011 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0012 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0013 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0014 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0015 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0016 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0017 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0018 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0019 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0020 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0021 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0022 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0023 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0024 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0025 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0026 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0027 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0028 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0029 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0030 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0031 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0032 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0033 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0034 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0035 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0036 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0037 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0038 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0039 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0040 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0041 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0042 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0043 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0044 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0045 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0046 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0047 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0048 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0049 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0050 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0051 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0052 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0053 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0054 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0055 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0056 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0057 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0058 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0059 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0060 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0061 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0062 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0063 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0064 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0065 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0066 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0067 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0068 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0069 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0070 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0071 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0072 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0073 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0074 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0075 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0076 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0077 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0078 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0079 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0080 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0081 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0082 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0083 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0084 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0085 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0086 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0087 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0088 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0089 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0090 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0091 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0092 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0093 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0094 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0095 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0096 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0097 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0098 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0099 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0100 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0101 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0102 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0103 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0104 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0105 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0106 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0107 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0108 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0109 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0110 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0111 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0112 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0113 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0114 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0115 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0116 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0117 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0118 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0119 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0120 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0121 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0122 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0123 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0124 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0125 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0126 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0127 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0128 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0129 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0130 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0131 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0132 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0133 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0134 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0135 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0136 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0137 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0138 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0139 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0140 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0141 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0142 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0143 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0144 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0145 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0146 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0147 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0148 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0149 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0150 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0151 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0152 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0153 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0154 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0155 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0156 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0157 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0158 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0159 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0160 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0161 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0162 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0163 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0164 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0165 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0166 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0167 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0168 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0169 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0170 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0171 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0172 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0173 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0174 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0175 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0176 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0177 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0178 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0179 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0180 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0181 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0182 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0183 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0184 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0185 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0186 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0187 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0188 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0189 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0190 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0191 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0192 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0193 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0194 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0195 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0196 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0197 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0198 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0199 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0200 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0201 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0202 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0203 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0204 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0205 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0206 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0207 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0208 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0209 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0210 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0211 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0212 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0213 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0214 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0215 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0216 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0217 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0218 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0219 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0220 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0221 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0222 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0223 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0224 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0225 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0226 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0227 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0228 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0229 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0230 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0231 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0232 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0233 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0234 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0235 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0236 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0237 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0238 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0239 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0240 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0241 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0242 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0243 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0244 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0245 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0246 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0247 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0248 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0249 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0250 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0251 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0252 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0253 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0254 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0255 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0256 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0257 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0258 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0259 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0260 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0261 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0262 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0263 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0264 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0265 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0266 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0267 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0268 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0269 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0270 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0271 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0272 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0273 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0274 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0275 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0276 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0277 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0278 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0279 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0280 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0281 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0282 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0283 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0284 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0285 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0286 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0287 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0288 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0289 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0290 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0291 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0292 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0293 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0294 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0295 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0296 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0297 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0298 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0299 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0300 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0301 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0302 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0303 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0304 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0305 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0306 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0307 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0308 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0309 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0310 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0311 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0312 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0313 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0314 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0315 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0316 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0317 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0318 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0319 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0320 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0321 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0322 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0323 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0324 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0325 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0326 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0327 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0328 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0329 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0330 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0331 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0332 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0333 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0334 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0335 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0336 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0337 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0338 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0339 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0340 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0341 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0342 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0343 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0344 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0345 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0346 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0347 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0348 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0349 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0350 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0351 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0352 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0353 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0354 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0355 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0356 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0357 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0358 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0359 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0360 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0361 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0362 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0363 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0364 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0365 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0366 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0367 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0368 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0369 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0370 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0371 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0372 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0373 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0374 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0375 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0376 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0377 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0378 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0379 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0380 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0381 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0382 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0383 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0384 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0385 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0386 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0387 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0388 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0389 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0390 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0391 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0392 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0393 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0394 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0395 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0396 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0397 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0398 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0399 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0400 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0401 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0402 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0403 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0404 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0405 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0406 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0407 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0408 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0409 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0410 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0411 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0412 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0413 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0414 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0415 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0416 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0417 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0418 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0419 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0420 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0421 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0422 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0423 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0424 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0425 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0426 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0427 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0428 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0429 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0430 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0431 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0432 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0433 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0434 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0435 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0436 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0437 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0438 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0439 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0440 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0441 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0442 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0443 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0444 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0445 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0446 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0447 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0448 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0449 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0450 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0451 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0452 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0453 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0454 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0455 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0456 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0457 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0458 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0459 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0460 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0461 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0462 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0463 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0464 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0465 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0466 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0467 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0468 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0469 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0470 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0471 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0472 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0473 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0474 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0475 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0476 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0477 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0478 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0479 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0480 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0481 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0482 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0483 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0484 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0485 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0486 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0487 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0488 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0489 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0490 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0491 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0492 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0493 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0494 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0495 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0496 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0497 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0498 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0499 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0500 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0501 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0502 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0503 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0504 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0505 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0506 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0507 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0508 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0509 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0510 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0511 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0512 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0513 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0514 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0515 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0516 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0517 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0518 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0519 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0520 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0521 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0522 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0523 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0524 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0525 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0526 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0527 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0528 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0529 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0530 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0531 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0532 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0533 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0534 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0535 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0536 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0537 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0538 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0539 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0540 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0541 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0542 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0543 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0544 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0545 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0546 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0547 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0548 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0549 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0550 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0551 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0552 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0553 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0554 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0555 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0556 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0557 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0558 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0559 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0560 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0561 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0562 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0563 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0564 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0565 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0566 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0567 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0568 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0569 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0570 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0571 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0572 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0573 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0574 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0575 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0576 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0577 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0578 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0579 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0580 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0581 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0582 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0583 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0584 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0585 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0586 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0587 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0588 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0589 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0590 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0591 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0592 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0593 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0594 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0595 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0596 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0597 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0598 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0599 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0600 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0601 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0602 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0603 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0604 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0605 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0606 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0607 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0608 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0609 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0610 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0611 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0612 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0613 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0614 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0615 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0616 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0617 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0618 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0619 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0620 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0621 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0622 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0623 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0624 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0625 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0626 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0627 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0628 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0629 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0630 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0631 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0632 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0633 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0634 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0635 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0636 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0637 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0638 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0639 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0640 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0641 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0642 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0643 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0644 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0645 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0646 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0647 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0648 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0649 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0650 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0651 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0652 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0653 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0654 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0655 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0656 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0657 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0658 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0659 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0660 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0661 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0662 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0663 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0664 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0665 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0666 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0667 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0668 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0669 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0670 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0671 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0672 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0673 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0674 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0675 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0676 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0677 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0678 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0679 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0680 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0681 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0682 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0683 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0684 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0685 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0686 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0687 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0688 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0689 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0690 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0691 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0692 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0693 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0694 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0695 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0696 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0697 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0698 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0699 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0700 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0701 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0702 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0703 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0704 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0705 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0706 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0707 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0708 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0709 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0710 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0711 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0712 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0713 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0714 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0715 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0716 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0717 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0718 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0719 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0720 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0721 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0722 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0723 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0724 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0725 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0726 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0727 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0728 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0729 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0730 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0731 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0732 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0733 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0734 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0735 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0736 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0737 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0738 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0739 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0740 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0741 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0742 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0743 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0744 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0745 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0746 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0747 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0748 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0749 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0750 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0751 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0752 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0753 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0754 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0755 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0756 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0757 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0758 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0759 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0760 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0761 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0762 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0763 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0764 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0765 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0766 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0767 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0768 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0769 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0770 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0771 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0772 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0773 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0774 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0775 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0776 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0777 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0778 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0779 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0780 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0781 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0782 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0783 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0784 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0785 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0786 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0787 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0788 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0789 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0790 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0791 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0792 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0793 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0794 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0795 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0796 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0797 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0798 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0799 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0800 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0801 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0802 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0803 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0804 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0805 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0806 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0807 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0808 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0809 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0810 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0811 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0812 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0813 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0814 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0815 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0816 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0817 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0818 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0819 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0820 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0821 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0822 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0823 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0824 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0825 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0826 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0827 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0828 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0829 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0830 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0831 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0832 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0833 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0834 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0835 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0836 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0837 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0838 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0839 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0840 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0841 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0842 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0843 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0844 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0845 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0846 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0847 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0848 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0849 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0850 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0851 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0852 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0853 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0854 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0855 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0856 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0857 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0858 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0859 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0860 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0861 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0862 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0863 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0864 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0865 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0866 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0867 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0868 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0869 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0870 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0871 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0872 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0873 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0874 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0875 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0876 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0877 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0878 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0879 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0880 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0881 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0882 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0883 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0884 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0885 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0886 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0887 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0888 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0889 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0890 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0891 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0892 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0893 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0894 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0895 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0896 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0897 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0898 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0899 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0900 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0901 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0902 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0903 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0904 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0905 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0906 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0907 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0908 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0909 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0910 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0911 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0912 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0913 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0914 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0915 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0916 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0917 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0918 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0919 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0920 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0921 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0922 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0923 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0924 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0925 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0926 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0927 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0928 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0929 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0930 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0931 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0932 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0933 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0934 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0935 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0936 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0937 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0938 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0939 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0940 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0941 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0942 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0943 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0944 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0945 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0946 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0947 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0948 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0949 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0950 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0951 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0952 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0953 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0954 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0955 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0956 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0957 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0958 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0959 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0960 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0961 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0962 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0963 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0964 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0965 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0966 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0967 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0968 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0969 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0970 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0971 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0972 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0973 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0005 / 0010 | BATCH 0974 / 0974 | LOSS 0.0020\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0001 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0002 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0003 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0004 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0005 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0006 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0007 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0008 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0009 / 3410 | LOSS 0.0024\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0010 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0011 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0012 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0013 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0014 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0015 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0016 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0017 / 3410 | LOSS 0.0023\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0018 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0019 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0020 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0021 / 3410 | LOSS 0.0022\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0022 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0023 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0024 / 3410 | LOSS 0.0021\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0025 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0026 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0027 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0028 / 3410 | LOSS 0.0020\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0029 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0030 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0031 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0032 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0033 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0034 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0035 / 3410 | LOSS 0.0019\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0036 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0037 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0038 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0039 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0040 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0041 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0042 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0043 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0044 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0045 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0046 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0047 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0048 / 3410 | LOSS 0.0018\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0049 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0050 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0051 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0052 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0053 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0054 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0055 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0056 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0057 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0058 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0059 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0060 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0061 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0062 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0063 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0064 / 3410 | LOSS 0.0017\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0065 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0066 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0067 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0068 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0069 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0070 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0071 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0072 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0073 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0074 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0075 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0076 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0077 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0078 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0079 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0080 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0081 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0082 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0083 / 3410 | LOSS 0.0016\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0084 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0085 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0086 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0087 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0088 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0089 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0090 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0091 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0092 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0093 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0094 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0095 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0096 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0097 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0098 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0099 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0100 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0101 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0102 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0103 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0104 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0105 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0106 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0107 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0108 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0109 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0110 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0111 / 3410 | LOSS 0.0015\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0112 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0113 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0114 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0115 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0116 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0117 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0118 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0119 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0120 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0121 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0122 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0123 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0124 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0125 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0126 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0127 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0128 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0129 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0130 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0131 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0132 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0133 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0134 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0135 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0136 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0137 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0138 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0139 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0140 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0141 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0142 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0143 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0144 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0145 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0146 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0147 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0148 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0149 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0150 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0151 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0152 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0153 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0154 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0155 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0156 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0157 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0158 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0159 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0160 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0161 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0162 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0163 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0164 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0165 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0166 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0167 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0168 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0169 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0170 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0171 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0172 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0173 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0174 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0175 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0176 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0177 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0178 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0179 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0180 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0181 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0182 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0183 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0184 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0185 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0186 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0187 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0188 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0189 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0190 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0191 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0192 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0193 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0194 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0195 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0196 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0197 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0198 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0199 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0200 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0201 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0202 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0203 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0204 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0205 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0206 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0207 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0208 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0209 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0210 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0211 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0212 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0213 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0214 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0215 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0216 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0217 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0218 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0219 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0220 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0221 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0222 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0223 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0224 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0225 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0226 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0227 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0228 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0229 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0230 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0231 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0232 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0233 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0234 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0235 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0236 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0237 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0238 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0239 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0240 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0241 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0242 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0243 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0244 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0245 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0246 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0247 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0248 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0249 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0250 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0251 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0252 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0253 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0254 / 3410 | LOSS 0.0013\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0255 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0256 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0257 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0258 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0259 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0260 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0261 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0262 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0263 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0264 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0265 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0266 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0267 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0268 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0269 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0270 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0271 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0272 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0273 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0274 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0275 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0276 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0277 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0278 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0279 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0280 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0281 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0282 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0283 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0284 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0285 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0286 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0287 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0288 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0289 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0290 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0291 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0292 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0293 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0294 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0295 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0296 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0297 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0298 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0299 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0300 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0301 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0302 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0303 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0304 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0305 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0306 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0307 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0308 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0309 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0310 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0311 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0312 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0313 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0314 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0315 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0316 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0317 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0318 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0319 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0320 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0321 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0322 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0323 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0324 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0325 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0326 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0327 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0328 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0329 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0330 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0331 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0332 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0335 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0336 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0337 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0338 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0339 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0340 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0341 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0342 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0343 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0344 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0345 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0346 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0347 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0348 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0349 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0350 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0351 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0352 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0353 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0354 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0355 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0356 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0357 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0358 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0359 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0360 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0361 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0362 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0363 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0364 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0365 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0366 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0367 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0368 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0369 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0370 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0371 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0372 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0373 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0374 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0375 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0376 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0377 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0378 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0379 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0380 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0381 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0382 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0383 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0384 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0385 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0386 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0387 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0388 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0389 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0390 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0391 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0392 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0393 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0394 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0395 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0396 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0397 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0398 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0399 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0400 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0401 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0402 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0403 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0404 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0405 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0406 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0407 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0408 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0409 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0410 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0411 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0412 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0413 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0414 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0415 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0416 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0417 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0418 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0419 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0420 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0421 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0422 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0423 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0424 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0425 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0426 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0427 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0428 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0429 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0430 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0431 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0432 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0433 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0434 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0435 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0436 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0437 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0438 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0439 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0440 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0441 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0442 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0443 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0444 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0445 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0446 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0447 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0448 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0449 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0450 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0451 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0452 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0453 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0454 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0455 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0456 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0457 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0458 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0459 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0460 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0461 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0462 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0463 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0464 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0465 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0466 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0467 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0468 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0469 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0470 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0471 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0472 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0473 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0474 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0475 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0476 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0477 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0478 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0479 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0480 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0481 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0482 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0483 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0484 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0485 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0486 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0487 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0488 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0489 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0490 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0491 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0492 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0493 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0494 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0495 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0496 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0497 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0498 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0499 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0500 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0501 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0502 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0503 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0504 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0505 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0506 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0507 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0508 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0509 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0510 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0511 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0512 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0513 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0514 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0515 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0516 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0517 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0518 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0519 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0520 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0521 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0522 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0523 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0524 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0525 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0526 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0527 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0528 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0529 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0530 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0531 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0532 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0533 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0534 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0535 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0536 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0537 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0538 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0539 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0540 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0541 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0542 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0543 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0544 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0545 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0546 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0547 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0548 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0549 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0550 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0551 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0552 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0553 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0554 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0555 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0556 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0557 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0558 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0559 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0560 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0561 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0562 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0563 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0564 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0565 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0566 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0567 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0568 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0569 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0570 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0571 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0572 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0573 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0574 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0575 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0576 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0577 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0578 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0579 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0580 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0581 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0582 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0583 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0584 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0585 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0586 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0587 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0588 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0589 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0590 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0591 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0592 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0593 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0594 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0595 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0596 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0597 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0598 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0599 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0600 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0601 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0602 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0603 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0604 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0605 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0606 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0607 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0608 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0609 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0610 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0611 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0612 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0613 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0614 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0615 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0616 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0617 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0618 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0619 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0620 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0621 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0622 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0623 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0624 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0625 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0626 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0627 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0628 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0629 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0630 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0631 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0632 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0633 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0634 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0635 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0636 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0637 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0638 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0639 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0640 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0641 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0642 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0643 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0644 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0645 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0646 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0647 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0648 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0649 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0650 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0651 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0652 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0653 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0654 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0655 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0656 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0657 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0658 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0659 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0660 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0661 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0662 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0663 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0664 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0665 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0666 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0667 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0668 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0669 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0670 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0671 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0672 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0673 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0674 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0675 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0676 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0677 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0678 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0679 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0680 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0681 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0682 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0683 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0684 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0685 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0686 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0687 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0688 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0689 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0690 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0691 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0692 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0693 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0694 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0695 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0696 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0697 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0698 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0699 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0700 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0701 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0702 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0703 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0704 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0705 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0706 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0707 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0708 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0709 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0710 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0711 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0712 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0713 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0714 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0715 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0716 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0717 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0718 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0719 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0720 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0721 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0722 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0723 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0724 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0725 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0726 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0727 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0728 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0729 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0730 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0731 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0732 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0733 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0734 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0735 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0736 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0737 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0738 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0739 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0740 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0741 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0742 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0743 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0744 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0745 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0746 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0747 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0748 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0749 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0750 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0751 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0752 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0753 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0754 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0755 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0756 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0757 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0758 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0759 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0760 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0761 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0762 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0763 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0764 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0765 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0766 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0767 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0768 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0769 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0770 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0771 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0772 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0773 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0774 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0775 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0776 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0777 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0778 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0779 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0780 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0781 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0782 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0783 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0784 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0785 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0786 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0787 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0788 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0789 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0790 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0791 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0792 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0793 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0794 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0795 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0796 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0797 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0798 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0799 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0800 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0801 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0802 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0803 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0804 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0805 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0806 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0807 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0808 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0809 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0810 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0811 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0812 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0813 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0814 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0815 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0816 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0817 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0818 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0819 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0820 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0821 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0822 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0823 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0824 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0825 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0826 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0827 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0828 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0829 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0830 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0831 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0832 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0833 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0834 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0835 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0836 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0837 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0838 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0839 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0840 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0841 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0842 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0843 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0844 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0845 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0846 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0847 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0848 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0849 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0850 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0851 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0852 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0853 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0854 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0855 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0856 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0857 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0858 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0859 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0860 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0861 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0862 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0863 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0864 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0865 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0866 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0867 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0868 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0869 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0870 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0871 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0872 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0873 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0874 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0875 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0876 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0877 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0878 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0879 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0880 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0881 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0882 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0883 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0884 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0885 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0886 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0887 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0888 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0889 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0890 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0891 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0892 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0893 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0894 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0895 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0896 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0897 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0898 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0899 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0900 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0901 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0902 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0903 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0904 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0905 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0906 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0907 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0908 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0909 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0910 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0911 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0912 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0913 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0914 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0915 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0916 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0917 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0918 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0919 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0920 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0921 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0922 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0923 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0924 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0925 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0926 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0927 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0928 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0929 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0930 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0931 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0932 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0933 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0934 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0935 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0936 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0937 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0938 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0939 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0940 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0941 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0942 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0943 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0944 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0945 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0946 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0947 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0948 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0949 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0950 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0951 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0952 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0953 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0954 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0955 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0956 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0957 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0958 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0959 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0960 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0961 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0962 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0963 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0964 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0965 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0966 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0967 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0968 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0969 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0970 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0971 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0972 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0973 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0974 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0975 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0976 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0977 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0978 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0979 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0980 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0981 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0982 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0983 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0984 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0985 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0986 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0987 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0988 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0989 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0990 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0991 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0992 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0993 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0994 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0995 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0996 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0997 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0998 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 0999 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1000 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1001 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1002 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1003 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1004 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1005 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1006 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1007 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1008 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1009 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1010 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1011 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1012 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1013 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1014 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1015 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1016 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1017 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1018 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1019 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1020 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1021 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1022 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1023 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1024 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1025 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1026 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1027 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1028 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1029 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1030 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1031 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1032 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1033 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1034 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1035 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1036 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1037 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1038 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1039 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1040 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1041 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1042 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1043 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1044 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1045 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1046 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1047 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1048 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1049 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1050 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1051 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1052 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1053 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1054 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1055 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1056 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1057 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1058 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1059 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1060 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1061 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1062 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1063 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1064 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1065 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1066 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1067 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1068 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1069 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1070 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1071 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1072 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1073 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1074 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1075 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1076 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1077 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1078 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1079 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1080 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1081 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1082 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1083 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1084 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1085 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1086 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1087 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1088 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1089 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1090 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1091 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1092 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1093 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1094 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1095 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1096 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1097 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1098 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1099 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1100 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1101 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1102 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1103 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1104 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1105 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1106 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1107 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1108 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1109 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1110 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1111 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1112 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1113 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1114 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1115 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1116 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1117 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1118 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1119 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1120 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1121 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1122 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1123 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1124 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1125 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1126 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1127 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1128 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1129 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1130 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1131 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1132 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1133 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1134 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1135 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1136 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1137 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1138 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1139 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1140 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1141 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1142 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1143 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1144 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1145 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1146 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1147 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1148 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1149 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1150 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1151 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1152 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1153 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1154 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1155 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1156 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1157 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1158 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1159 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1160 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1161 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1162 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1163 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1164 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1165 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1166 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1167 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1168 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1169 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1170 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1171 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1172 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1173 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1174 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1175 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1176 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1177 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1178 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1179 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1180 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1181 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1182 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1183 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1184 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1185 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1186 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1187 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1188 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1189 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1190 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1191 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1192 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1193 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1194 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1195 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1196 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1197 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1198 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1199 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1200 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1201 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1202 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1203 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1204 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1205 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1206 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1207 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1208 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1209 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1210 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1211 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1212 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1213 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1214 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1215 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1216 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1217 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1218 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1219 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1220 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1221 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1222 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1223 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1224 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1225 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1226 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1227 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1228 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1229 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1230 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1231 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1232 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1233 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1234 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1235 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1236 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1237 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1238 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1239 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1240 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1241 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1242 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1243 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1244 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1245 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1246 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1247 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1248 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1249 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1250 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1251 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1252 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1253 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1254 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1255 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1256 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1257 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1258 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1259 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1260 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1261 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1262 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1263 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1264 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1265 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1266 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1267 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1268 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1269 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1270 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1271 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1272 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1273 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1274 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1275 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1276 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1277 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1278 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1279 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1280 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1281 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1282 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1283 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1284 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1285 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1286 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1287 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1288 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1289 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1290 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1291 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1292 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1293 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1294 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1295 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1296 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1297 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1298 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1299 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1300 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1301 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1302 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1303 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1304 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1305 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1306 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1307 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1308 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1309 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1310 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1311 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1312 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1313 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1314 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1315 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1316 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1317 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1318 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1319 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1320 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1321 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1322 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1323 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1324 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1325 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1326 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1327 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1328 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1329 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1330 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1331 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1332 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1335 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1336 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1337 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1338 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1339 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1340 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1341 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1342 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1343 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1344 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1345 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1346 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1347 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1348 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1349 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1350 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1351 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1352 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1353 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1354 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1355 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1356 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1357 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1358 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1359 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1360 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1361 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1362 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1363 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1364 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1365 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1366 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1367 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1368 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1369 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1370 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1371 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1372 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1373 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1374 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1375 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1376 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1377 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1378 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1379 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1380 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1381 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1382 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1383 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1384 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1385 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1386 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1387 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1388 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1389 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1390 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1391 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1392 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1393 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1394 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1395 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1396 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1397 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1398 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1399 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1400 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1401 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1402 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1403 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1404 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1405 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1406 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1407 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1408 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1409 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1410 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1411 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1412 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1413 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1414 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1415 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1416 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1417 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1418 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1419 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1420 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1421 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1422 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1423 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1424 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1425 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1426 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1427 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1428 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1429 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1430 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1431 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1432 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1433 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1434 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1435 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1436 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1437 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1438 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1439 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1440 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1441 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1442 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1443 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1444 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1445 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1446 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1447 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1448 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1449 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1450 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1451 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1452 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1453 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1454 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1455 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1456 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1457 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1458 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1459 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1460 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1461 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1462 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1463 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1464 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1465 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1466 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1467 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1468 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1469 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1470 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1471 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1472 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1473 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1474 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1475 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1476 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1477 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1478 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1479 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1480 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1481 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1482 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1483 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1484 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1485 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1486 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1487 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1488 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1489 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1490 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1491 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1492 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1493 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1494 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1495 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1496 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1497 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1498 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1499 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1500 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1501 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1502 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1503 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1504 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1505 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1506 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1507 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1508 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1509 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1510 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1511 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1512 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1513 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1514 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1515 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1516 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1517 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1518 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1519 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1520 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1521 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1522 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1523 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1524 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1525 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1526 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1527 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1528 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1529 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1530 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1531 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1532 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1533 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1534 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1535 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1536 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1537 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1538 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1539 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1540 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1541 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1542 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1543 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1544 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1545 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1546 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1547 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1548 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1549 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1550 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1551 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1552 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1553 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1554 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1555 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1556 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1557 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1558 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1559 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1560 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1561 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1562 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1563 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1564 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1565 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1566 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1567 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1568 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1569 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1570 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1571 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1572 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1573 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1574 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1575 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1576 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1577 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1578 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1579 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1580 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1581 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1582 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1583 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1584 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1585 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1586 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1587 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1588 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1589 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1590 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1591 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1592 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1593 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1594 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1595 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1596 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1597 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1598 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1599 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1600 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1601 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1602 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1603 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1604 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1605 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1606 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1607 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1608 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1609 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1610 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1611 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1612 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1613 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1614 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1615 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1616 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1617 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1618 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1619 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1620 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1621 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1622 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1623 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1624 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1625 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1626 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1627 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1628 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1629 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1630 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1631 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1632 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1633 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1634 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1635 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1636 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1637 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1638 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1639 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1640 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1641 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1642 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1643 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1644 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1645 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1646 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1647 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1648 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1649 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1650 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1651 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1652 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1653 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1654 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1655 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1656 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1657 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1658 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1659 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1660 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1661 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1662 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1663 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1664 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1665 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1666 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1667 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1668 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1669 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1670 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1671 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1672 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1673 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1674 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1675 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1676 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1677 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1678 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1679 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1680 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1681 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1682 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1683 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1684 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1685 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1686 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1687 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1688 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1689 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1690 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1691 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1692 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1693 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1694 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1695 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1696 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1697 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1698 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1699 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1700 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1701 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1702 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1703 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1704 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1705 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1706 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1707 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1708 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1709 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1710 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1711 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1712 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1713 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1714 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1715 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1716 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1717 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1718 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1719 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1720 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1721 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1722 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1723 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1724 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1725 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1726 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1727 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1728 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1729 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1730 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1731 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1732 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1733 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1734 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1735 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1736 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1737 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1738 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1739 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1740 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1741 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1742 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1743 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1744 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1745 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1746 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1747 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1748 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1749 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1750 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1751 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1752 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1753 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1754 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1755 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1756 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1757 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1758 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1759 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1760 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1761 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1762 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1763 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1764 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1765 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1766 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1767 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1768 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1769 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1770 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1771 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1772 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1773 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1774 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1775 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1776 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1777 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1778 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1779 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1780 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1781 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1782 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1783 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1784 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1785 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1786 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1787 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1788 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1789 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1790 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1791 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1792 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1793 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1794 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1795 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1796 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1797 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1798 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1799 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1800 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1801 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1802 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1803 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1804 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1805 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1806 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1807 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1808 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1809 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1810 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1811 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1812 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1813 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1814 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1815 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1816 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1817 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1818 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1819 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1820 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1821 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1822 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1823 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1824 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1825 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1826 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1827 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1828 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1829 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1830 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1831 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1832 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1833 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1834 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1835 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1836 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1837 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1838 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1839 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1840 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1841 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1842 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1843 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1844 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1845 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1846 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1847 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1848 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1849 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1850 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1851 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1852 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1853 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1854 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1855 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1856 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1857 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1858 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1859 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1860 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1861 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1862 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1863 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1864 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1865 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1866 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1867 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1868 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1869 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1870 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1871 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1872 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1873 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1874 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1875 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1876 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1877 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1878 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1879 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1880 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1881 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1882 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1883 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1884 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1885 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1886 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1887 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1888 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1889 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1890 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1891 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1892 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1893 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1894 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1895 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1896 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1897 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1898 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1899 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1900 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1901 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1902 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1903 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1904 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1905 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1906 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1907 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1908 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1909 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1910 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1911 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1912 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1913 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1914 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1915 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1916 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1917 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1918 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1919 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1920 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1921 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1922 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1923 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1924 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1925 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1926 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1927 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1928 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1929 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1930 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1931 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1932 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1933 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1934 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1935 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1936 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1937 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1938 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1939 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1940 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1941 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1942 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1943 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1944 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1945 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1946 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1947 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1948 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1949 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1950 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1951 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1952 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1953 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1954 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1955 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1956 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1957 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1958 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1959 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1960 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1961 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1962 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1963 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1964 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1965 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1966 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1967 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1968 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1969 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1970 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1971 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1972 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1973 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1974 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1975 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1976 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1977 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1978 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1979 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1980 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1981 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1982 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1983 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1984 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1985 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1986 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1987 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1988 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1989 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1990 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1991 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1992 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1993 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1994 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1995 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1996 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1997 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1998 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 1999 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2000 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2001 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2002 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2003 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2004 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2005 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2006 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2007 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2008 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2009 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2010 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2011 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2012 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2013 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2014 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2015 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2016 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2017 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2018 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2019 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2020 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2021 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2022 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2023 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2024 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2025 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2026 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2027 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2028 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2029 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2030 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2031 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2032 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2033 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2034 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2035 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2036 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2037 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2038 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2039 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2040 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2041 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2042 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2043 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2044 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2045 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2046 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2047 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2048 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2049 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2050 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2051 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2052 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2053 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2054 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2055 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2056 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2057 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2058 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2059 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2060 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2061 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2062 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2063 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2064 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2065 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2066 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2067 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2068 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2069 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2070 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2071 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2072 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2073 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2074 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2075 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2076 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2077 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2078 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2079 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2080 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2081 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2082 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2083 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2084 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2085 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2086 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2087 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2088 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2089 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2090 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2091 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2092 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2093 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2094 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2095 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2096 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2097 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2098 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2099 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2100 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2101 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2102 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2103 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2104 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2105 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2106 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2107 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2108 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2109 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2110 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2111 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2112 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2113 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2114 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2115 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2116 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2117 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2118 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2119 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2120 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2121 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2122 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2123 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2124 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2125 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2126 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2127 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2128 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2129 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2130 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2131 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2132 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2133 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2134 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2135 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2136 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2137 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2138 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2139 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2140 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2141 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2142 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2143 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2144 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2145 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2146 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2147 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2148 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2149 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2150 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2151 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2152 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2153 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2154 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2155 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2156 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2157 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2158 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2159 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2160 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2161 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2162 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2163 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2164 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2165 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2166 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2167 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2168 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2169 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2170 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2171 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2172 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2173 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2174 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2175 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2176 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2177 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2178 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2179 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2180 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2181 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2182 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2183 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2184 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2185 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2186 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2187 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2188 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2189 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2190 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2191 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2192 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2193 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2194 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2195 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2196 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2197 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2198 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2199 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2200 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2201 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2202 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2203 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2204 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2205 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2206 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2207 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2208 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2209 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2210 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2211 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2212 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2213 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2214 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2215 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2216 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2217 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2218 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2219 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2220 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2221 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2222 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2223 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2224 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2225 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2226 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2227 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2228 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2229 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2230 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2231 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2232 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2233 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2234 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2235 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2236 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2237 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2238 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2239 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2240 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2241 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2242 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2243 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2244 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2245 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2246 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2247 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2248 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2249 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2250 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2251 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2252 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2253 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2254 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2255 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2256 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2257 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2258 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2259 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2260 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2261 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2262 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2263 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2264 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2265 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2266 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2267 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2268 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2269 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2270 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2271 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2272 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2273 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2274 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2275 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2276 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2277 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2278 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2279 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2280 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2281 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2282 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2283 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2284 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2285 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2286 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2287 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2288 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2289 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2290 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2291 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2292 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2293 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2294 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2295 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2296 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2297 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2298 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2299 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2300 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2301 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2302 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2303 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2304 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2305 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2306 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2307 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2308 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2309 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2310 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2311 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2312 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2313 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2314 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2315 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2316 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2317 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2318 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2319 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2320 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2321 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2322 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2323 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2324 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2325 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2326 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2327 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2328 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2329 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2330 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2331 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2332 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2335 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2336 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2337 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2338 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2339 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2340 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2341 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2342 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2343 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2344 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2345 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2346 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2347 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2348 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2349 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2350 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2351 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2352 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2353 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2354 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2355 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2356 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2357 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2358 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2359 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2360 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2361 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2362 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2363 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2364 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2365 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2366 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2367 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2368 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2369 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2370 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2371 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2372 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2373 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2374 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2375 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2376 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2377 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2378 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2379 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2380 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2381 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2382 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2383 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2384 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2385 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2386 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2387 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2388 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2389 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2390 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2391 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2392 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2393 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2394 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2395 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2396 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2397 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2398 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2399 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2400 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2401 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2402 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2403 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2404 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2405 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2406 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2407 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2408 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2409 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2410 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2411 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2412 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2413 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2414 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2415 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2416 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2417 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2418 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2419 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2420 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2421 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2422 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2423 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2424 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2425 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2426 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2427 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2428 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2429 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2430 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2431 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2432 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2433 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2434 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2435 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2436 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2437 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2438 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2439 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2440 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2441 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2442 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2443 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2444 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2445 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2446 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2447 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2448 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2449 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2450 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2451 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2452 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2453 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2454 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2455 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2456 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2457 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2458 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2459 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2460 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2461 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2462 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2463 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2464 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2465 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2466 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2467 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2468 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2469 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2470 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2471 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2472 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2473 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2474 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2475 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2476 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2477 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2478 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2479 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2480 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2481 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2482 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2483 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2484 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2485 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2486 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2487 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2488 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2489 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2490 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2491 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2492 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2493 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2494 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2495 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2496 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2497 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2498 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2499 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2500 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2501 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2502 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2503 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2504 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2505 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2506 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2507 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2508 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2509 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2510 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2511 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2512 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2513 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2514 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2515 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2516 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2517 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2518 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2519 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2520 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2521 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2522 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2523 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2524 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2525 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2526 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2527 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2528 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2529 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2530 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2531 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2532 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2533 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2534 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2535 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2536 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2537 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2538 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2539 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2540 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2541 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2542 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2543 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2544 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2545 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2546 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2547 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2548 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2549 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2550 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2551 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2552 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2553 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2554 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2555 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2556 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2557 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2558 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2559 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2560 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2561 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2562 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2563 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2564 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2565 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2566 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2567 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2568 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2569 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2570 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2571 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2572 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2573 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2574 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2575 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2576 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2577 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2578 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2579 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2580 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2581 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2582 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2583 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2584 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2585 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2586 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2587 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2588 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2589 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2590 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2591 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2592 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2593 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2594 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2595 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2596 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2597 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2598 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2599 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2600 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2601 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2602 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2603 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2604 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2605 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2606 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2607 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2608 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2609 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2610 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2611 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2612 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2613 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2614 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2615 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2616 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2617 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2618 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2619 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2620 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2621 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2622 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2623 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2624 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2625 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2626 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2627 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2628 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2629 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2630 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2631 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2632 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2633 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2634 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2635 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2636 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2637 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2638 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2639 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2640 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2641 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2642 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2643 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2644 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2645 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2646 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2647 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2648 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2649 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2650 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2651 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2652 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2653 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2654 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2655 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2656 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2657 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2658 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2659 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2660 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2661 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2662 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2663 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2664 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2665 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2666 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2667 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2668 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2669 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2670 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2671 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2672 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2673 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2674 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2675 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2676 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2677 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2678 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2679 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2680 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2681 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2682 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2683 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2684 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2685 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2686 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2687 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2688 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2689 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2690 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2691 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2692 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2693 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2694 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2695 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2696 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2697 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2698 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2699 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2700 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2701 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2702 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2703 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2704 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2705 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2706 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2707 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2708 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2709 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2710 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2711 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2712 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2713 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2714 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2715 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2716 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2717 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2718 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2719 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2720 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2721 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2722 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2723 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2724 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2725 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2726 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2727 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2728 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2729 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2730 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2731 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2732 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2733 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2734 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2735 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2736 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2737 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2738 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2739 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2740 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2741 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2742 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2743 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2744 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2745 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2746 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2747 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2748 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2749 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2750 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2751 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2752 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2753 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2754 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2755 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2756 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2757 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2758 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2759 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2760 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2761 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2762 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2763 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2764 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2765 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2766 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2767 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2768 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2769 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2770 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2771 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2772 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2773 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2774 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2775 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2776 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2777 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2778 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2779 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2780 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2781 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2782 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2783 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2784 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2785 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2786 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2787 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2788 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2789 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2790 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2791 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2792 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2793 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2794 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2795 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2796 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2797 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2798 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2799 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2800 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2801 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2802 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2803 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2804 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2805 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2806 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2807 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2808 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2809 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2810 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2811 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2812 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2813 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2814 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2815 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2816 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2817 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2818 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2819 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2820 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2821 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2822 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2823 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2824 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2825 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2826 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2827 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2828 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2829 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2830 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2831 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2832 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2833 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2834 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2835 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2836 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2837 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2838 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2839 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2840 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2841 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2842 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2843 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2844 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2845 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2846 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2847 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2848 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2849 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2850 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2851 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2852 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2853 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2854 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2855 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2856 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2857 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2858 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2859 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2860 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2861 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2862 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2863 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2864 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2865 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2866 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2867 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2868 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2869 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2870 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2871 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2872 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2873 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2874 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2875 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2876 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2877 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2878 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2879 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2880 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2881 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2882 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2883 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2884 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2885 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2886 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2887 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2888 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2889 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2890 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2891 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2892 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2893 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2894 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2895 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2896 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2897 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2898 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2899 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2900 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2901 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2902 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2903 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2904 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2905 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2906 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2907 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2908 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2909 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2910 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2911 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2912 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2913 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2914 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2915 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2916 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2917 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2918 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2919 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2920 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2921 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2922 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2923 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2924 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2925 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2926 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2927 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2928 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2929 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2930 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2931 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2932 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2933 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2934 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2935 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2936 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2937 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2938 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2939 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2940 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2941 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2942 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2943 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2944 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2945 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2946 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2947 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2948 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2949 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2950 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2951 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2952 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2953 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2954 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2955 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2956 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2957 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2958 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2959 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2960 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2961 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2962 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2963 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2964 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2965 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2966 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2967 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2968 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2969 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2970 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2971 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2972 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2973 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2974 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2975 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2976 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2977 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2978 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2979 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2980 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2981 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2982 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2983 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2984 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2985 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2986 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2987 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2988 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2989 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2990 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2991 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2992 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2993 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2994 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2995 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2996 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2997 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2998 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 2999 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3000 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3001 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3002 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3003 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3004 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3005 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3006 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3007 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3008 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3009 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3010 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3011 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3012 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3013 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3014 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3015 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3016 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3017 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3018 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3019 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3020 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3021 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3022 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3023 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3024 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3025 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3026 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3027 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3028 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3029 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3030 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3031 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3032 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3033 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3034 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3035 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3036 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3037 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3038 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3039 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3040 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3041 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3042 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3043 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3044 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3045 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3046 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3047 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3048 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3049 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3050 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3051 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3052 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3053 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3054 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3055 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3056 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3057 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3058 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3059 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3060 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3061 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3062 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3063 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3064 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3065 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3066 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3067 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3068 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3069 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3070 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3071 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3072 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3073 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3074 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3075 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3076 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3077 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3078 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3079 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3080 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3081 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3082 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3083 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3084 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3085 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3086 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3087 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3088 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3089 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3090 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3091 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3092 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3093 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3094 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3095 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3096 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3097 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3098 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3099 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3100 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3101 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3102 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3103 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3104 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3105 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3106 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3107 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3108 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3109 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3110 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3111 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3112 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3113 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3114 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3115 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3116 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3117 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3118 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3119 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3120 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3121 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3122 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3123 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3124 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3125 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3126 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3127 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3128 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3129 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3130 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3131 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3132 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3133 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3134 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3135 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3136 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3137 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3138 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3139 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3140 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3141 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3142 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3143 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3144 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3145 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3146 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3147 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3148 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3149 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3150 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3151 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3152 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3153 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3154 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3155 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3156 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3157 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3158 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3159 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3160 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3161 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3162 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3163 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3164 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3165 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3166 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3167 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3168 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3169 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3170 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3171 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3172 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3173 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3174 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3175 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3176 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3177 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3178 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3179 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3180 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3181 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3182 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3183 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3184 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3185 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3186 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3187 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3188 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3189 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3190 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3191 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3192 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3193 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3194 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3195 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3196 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3197 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3198 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3199 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3200 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3201 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3202 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3203 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3204 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3205 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3206 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3207 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3208 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3209 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3210 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3211 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3212 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3213 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3214 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3215 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3216 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3217 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3218 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3219 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3220 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3221 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3222 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3223 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3224 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3225 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3226 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3227 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3228 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3229 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3230 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3231 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3232 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3233 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3234 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3235 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3236 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3237 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3238 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3239 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3240 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3241 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3242 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3243 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3244 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3245 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3246 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3247 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3248 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3249 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3250 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3251 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3252 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3253 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3254 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3255 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3256 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3257 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3258 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3259 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3260 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3261 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3262 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3263 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3264 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3265 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3266 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3267 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3268 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3269 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3270 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3271 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3272 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3273 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3274 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3275 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3276 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3277 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3278 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3279 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3280 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3281 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3282 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3283 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3284 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3285 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3286 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3287 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3288 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3289 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3290 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3291 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3292 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3293 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3294 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3295 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3296 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3297 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3298 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3299 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3300 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3301 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3302 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3303 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3304 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3305 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3306 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3307 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3308 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3309 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3310 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3311 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3312 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3313 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3314 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3315 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3316 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3317 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3318 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3319 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3320 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3321 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3322 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3323 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3324 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3325 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3326 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3327 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3328 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3329 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3330 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3331 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3332 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3333 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3334 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3335 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3336 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3337 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3338 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3339 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3340 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3341 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3342 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3343 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3344 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3345 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3346 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3347 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3348 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3349 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3350 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3351 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3352 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3353 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3354 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3355 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3356 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3357 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3358 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3359 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3360 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3361 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3362 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3363 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3364 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3365 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3366 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3367 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3368 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3369 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3370 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3371 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3372 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3373 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3374 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3375 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3376 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3377 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3378 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3379 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3380 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3381 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3382 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3383 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3384 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3385 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3386 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3387 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3388 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3389 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3390 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3391 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3392 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3393 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3394 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3395 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3396 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3397 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3398 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3399 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3400 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3401 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3402 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3403 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3404 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3405 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3406 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3407 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3408 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3409 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0006 / 0010 | BATCH 3410 / 3410 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0001 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0002 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0003 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0004 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0005 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0006 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0007 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0008 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0009 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0010 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0011 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0012 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0013 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0014 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0015 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0016 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0017 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0018 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0019 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0020 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0021 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0022 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0023 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0024 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0025 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0026 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0027 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0028 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0029 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0030 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0031 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0032 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0033 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0034 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0035 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0036 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0037 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0038 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0039 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0040 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0041 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0042 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0043 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0044 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0045 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0046 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0047 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0048 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0049 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0050 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0051 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0052 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0053 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0054 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0055 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0056 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0057 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0058 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0059 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0060 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0061 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0062 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0063 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0064 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0065 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0066 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0067 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0068 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0069 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0070 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0071 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0072 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0073 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0074 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0075 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0076 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0077 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0078 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0079 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0080 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0081 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0082 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0083 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0084 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0085 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0086 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0087 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0088 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0089 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0090 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0091 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0092 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0093 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0094 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0095 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0096 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0097 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0098 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0099 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0100 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0101 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0102 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0103 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0104 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0105 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0106 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0107 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0108 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0109 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0110 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0111 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0112 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0113 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0114 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0115 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0116 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0117 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0118 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0119 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0120 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0121 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0122 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0123 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0124 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0125 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0126 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0127 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0128 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0129 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0130 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0131 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0132 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0133 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0134 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0135 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0136 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0137 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0138 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0139 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0140 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0141 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0142 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0143 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0144 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0145 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0146 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0147 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0148 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0149 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0150 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0151 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0152 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0153 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0154 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0155 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0156 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0157 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0158 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0159 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0160 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0161 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0162 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0163 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0164 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0165 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0166 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0167 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0168 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0169 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0170 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0171 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0172 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0173 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0174 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0175 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0176 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0177 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0178 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0179 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0180 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0181 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0182 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0183 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0184 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0185 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0186 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0187 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0188 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0189 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0190 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0191 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0192 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0193 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0194 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0195 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0196 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0197 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0198 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0199 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0200 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0201 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0202 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0203 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0204 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0205 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0206 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0207 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0208 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0209 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0210 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0211 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0212 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0213 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0214 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0215 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0216 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0217 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0218 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0219 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0220 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0221 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0222 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0223 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0224 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0225 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0226 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0227 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0228 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0229 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0230 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0231 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0232 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0233 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0234 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0235 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0236 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0237 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0238 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0239 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0240 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0241 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0242 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0243 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0244 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0245 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0246 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0247 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0248 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0249 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0250 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0251 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0252 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0253 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0254 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0255 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0256 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0257 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0258 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0259 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0260 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0261 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0262 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0263 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0264 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0265 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0266 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0267 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0268 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0269 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0270 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0271 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0272 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0273 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0274 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0275 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0276 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0277 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0278 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0279 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0280 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0281 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0282 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0283 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0284 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0285 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0286 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0287 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0288 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0289 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0290 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0291 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0292 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0293 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0294 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0295 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0296 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0297 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0298 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0299 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0300 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0301 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0302 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0303 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0304 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0305 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0306 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0307 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0308 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0309 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0310 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0311 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0312 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0313 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0314 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0315 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0316 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0317 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0318 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0319 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0320 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0321 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0322 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0323 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0324 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0325 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0326 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0327 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0328 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0329 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0330 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0331 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0332 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0333 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0334 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0335 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0336 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0337 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0338 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0339 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0340 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0341 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0342 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0343 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0344 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0345 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0346 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0347 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0348 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0349 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0350 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0351 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0352 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0353 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0354 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0355 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0356 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0357 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0358 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0359 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0360 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0361 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0362 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0363 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0364 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0365 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0366 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0367 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0368 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0369 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0370 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0371 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0372 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0373 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0374 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0375 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0376 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0377 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0378 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0379 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0380 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0381 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0382 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0383 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0384 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0385 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0386 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0387 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0388 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0389 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0390 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0391 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0392 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0393 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0394 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0395 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0396 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0397 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0398 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0399 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0400 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0401 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0402 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0403 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0404 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0405 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0406 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0407 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0408 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0409 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0410 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0411 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0412 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0413 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0414 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0415 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0416 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0417 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0418 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0419 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0420 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0421 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0422 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0423 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0424 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0425 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0426 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0427 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0428 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0429 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0430 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0431 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0432 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0433 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0434 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0435 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0436 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0437 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0438 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0439 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0440 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0441 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0442 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0443 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0444 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0445 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0446 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0447 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0448 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0449 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0450 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0451 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0452 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0453 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0454 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0455 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0456 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0457 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0458 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0459 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0460 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0461 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0462 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0463 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0464 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0465 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0466 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0467 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0468 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0469 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0470 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0471 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0472 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0473 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0474 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0475 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0476 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0477 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0478 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0479 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0480 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0481 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0482 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0483 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0484 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0485 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0486 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0487 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0488 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0489 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0490 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0491 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0492 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0493 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0494 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0495 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0496 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0497 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0498 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0499 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0500 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0501 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0502 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0503 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0504 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0505 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0506 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0507 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0508 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0509 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0510 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0511 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0512 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0513 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0514 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0515 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0516 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0517 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0518 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0519 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0520 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0521 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0522 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0523 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0524 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0525 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0526 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0527 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0528 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0529 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0530 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0531 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0532 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0533 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0534 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0535 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0536 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0537 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0538 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0539 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0540 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0541 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0542 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0543 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0544 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0545 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0546 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0547 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0548 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0549 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0550 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0551 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0552 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0553 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0554 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0555 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0556 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0557 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0558 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0559 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0560 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0561 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0562 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0563 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0564 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0565 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0566 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0567 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0568 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0569 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0570 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0571 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0572 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0573 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0574 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0575 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0576 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0577 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0578 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0579 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0580 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0581 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0582 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0583 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0584 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0585 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0586 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0587 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0588 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0589 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0590 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0591 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0592 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0593 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0594 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0595 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0596 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0597 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0598 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0599 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0600 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0601 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0602 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0603 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0604 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0605 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0606 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0607 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0608 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0609 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0610 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0611 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0612 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0613 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0614 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0615 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0616 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0617 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0618 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0619 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0620 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0621 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0622 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0623 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0624 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0625 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0626 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0627 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0628 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0629 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0630 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0631 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0632 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0633 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0634 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0635 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0636 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0637 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0638 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0639 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0640 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0641 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0642 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0643 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0644 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0645 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0646 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0647 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0648 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0649 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0650 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0651 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0652 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0653 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0654 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0655 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0656 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0657 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0658 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0659 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0660 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0661 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0662 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0663 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0664 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0665 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0666 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0667 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0668 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0669 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0670 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0671 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0672 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0673 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0674 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0675 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0676 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0677 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0678 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0679 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0680 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0681 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0682 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0683 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0684 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0685 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0686 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0687 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0688 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0689 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0690 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0691 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0692 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0693 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0694 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0695 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0696 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0697 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0698 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0699 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0700 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0701 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0702 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0703 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0704 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0705 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0706 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0707 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0708 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0709 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0710 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0711 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0712 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0713 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0714 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0715 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0716 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0717 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0718 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0719 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0720 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0721 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0722 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0723 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0724 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0725 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0726 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0727 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0728 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0729 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0730 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0731 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0732 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0733 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0734 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0735 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0736 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0737 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0738 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0739 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0740 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0741 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0742 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0743 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0744 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0745 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0746 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0747 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0748 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0749 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0750 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0751 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0752 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0753 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0754 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0755 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0756 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0757 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0758 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0759 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0760 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0761 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0762 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0763 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0764 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0765 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0766 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0767 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0768 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0769 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0770 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0771 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0772 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0773 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0774 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0775 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0776 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0777 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0778 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0779 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0780 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0781 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0782 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0783 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0784 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0785 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0786 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0787 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0788 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0789 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0790 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0791 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0792 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0793 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0794 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0795 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0796 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0797 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0798 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0799 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0800 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0801 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0802 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0803 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0804 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0805 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0806 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0807 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0808 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0809 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0810 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0811 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0812 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0813 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0814 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0815 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0816 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0817 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0818 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0819 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0820 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0821 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0822 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0823 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0824 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0825 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0826 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0827 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0828 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0829 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0830 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0831 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0832 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0833 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0834 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0835 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0836 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0837 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0838 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0839 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0840 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0841 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0842 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0843 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0844 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0845 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0846 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0847 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0848 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0849 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0850 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0851 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0852 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0853 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0854 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0855 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0856 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0857 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0858 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0859 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0860 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0861 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0862 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0863 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0864 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0865 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0866 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0867 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0868 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0869 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0870 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0871 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0872 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0873 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0874 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0875 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0876 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0877 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0878 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0879 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0880 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0881 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0882 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0883 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0884 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0885 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0886 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0887 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0888 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0889 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0890 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0891 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0892 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0893 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0894 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0895 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0896 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0897 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0898 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0899 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0900 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0901 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0902 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0903 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0904 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0905 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0906 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0907 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0908 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0909 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0910 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0911 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0912 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0913 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0914 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0915 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0916 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0917 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0918 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0919 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0920 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0921 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0922 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0923 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0924 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0925 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0926 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0927 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0928 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0929 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0930 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0931 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0932 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0933 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0934 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0935 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0936 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0937 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0938 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0939 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0940 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0941 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0942 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0943 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0944 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0945 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0946 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0947 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0948 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0949 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0950 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0951 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0952 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0953 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0954 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0955 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0956 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0957 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0958 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0959 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0960 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0961 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0962 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0963 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0964 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0965 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0966 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0967 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0968 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0969 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0970 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0971 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0972 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0973 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0006 / 0010 | BATCH 0974 / 0974 | LOSS 0.0012\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0001 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0002 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0003 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0016 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0021 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0022 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0023 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0132 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0133 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0134 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0135 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0136 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0137 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0138 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0139 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0140 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0141 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0142 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0143 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0144 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0145 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0146 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0147 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0159 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0160 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0161 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0162 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0163 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0199 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0200 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0201 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0202 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0203 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0204 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0205 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0206 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0207 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0208 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0209 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0210 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0211 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0212 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0213 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0214 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0215 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0216 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0217 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0218 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0219 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0220 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0221 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0222 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0223 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0224 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0225 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0226 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0227 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0228 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0229 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0230 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0231 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0232 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0233 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0234 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0235 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0236 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0237 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0238 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0239 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0240 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0241 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0242 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0243 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0244 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0245 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0246 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0247 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0248 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0249 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0250 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0251 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0252 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0253 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0254 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0255 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0256 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0257 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0258 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0259 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0260 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0261 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0262 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0263 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0264 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0265 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0266 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0267 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0268 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0269 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0270 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0271 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0272 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0273 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0274 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0275 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0276 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0277 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0278 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0279 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0280 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0281 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0282 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0283 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0284 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0285 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0286 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0287 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0288 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0289 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0290 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0291 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0292 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0293 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0294 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0295 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0296 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0297 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0298 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0299 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0300 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0301 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0302 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0303 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0304 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0305 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0306 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0307 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0308 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0309 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0310 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0311 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0312 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0313 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0314 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0315 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0316 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0317 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0318 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0319 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0320 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0321 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0322 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0323 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0324 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0325 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0326 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0327 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0328 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0329 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0330 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0331 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0332 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0333 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0334 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0335 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0336 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0337 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0338 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0339 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0340 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0341 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0342 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0343 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0344 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0345 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0346 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0347 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0348 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0349 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0350 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0351 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0352 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0353 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0354 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0355 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0356 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0357 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0358 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0359 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0360 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0361 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0362 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0363 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0364 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0365 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0366 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0367 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0368 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0369 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0370 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0371 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0372 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0373 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0374 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0375 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0376 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0377 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0378 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0379 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0380 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0381 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0382 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0383 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0384 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0385 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0386 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0387 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0388 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0389 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0390 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0391 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0392 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0393 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0394 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0395 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0396 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0397 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0398 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0399 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0400 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0401 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0402 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0403 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0404 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0405 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0406 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0407 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0408 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0409 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0410 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0411 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0412 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0413 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0414 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0415 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0416 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0417 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0418 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0419 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0420 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0421 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0422 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0423 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0424 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0425 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0426 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0427 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0428 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0429 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0430 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0431 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0432 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0433 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0434 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0435 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0436 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0437 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0438 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0439 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0440 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0441 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0442 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0443 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0444 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0445 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0446 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0447 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0448 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0449 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0450 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0451 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0452 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0453 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0454 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0455 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0456 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0457 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0458 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0459 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0460 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0461 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0462 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0463 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0464 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0465 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0466 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0467 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0468 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0469 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0470 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0471 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0472 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0473 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0474 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0475 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0476 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0477 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0478 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0479 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0480 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0481 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0482 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0483 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0484 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0485 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0486 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0487 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0488 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0489 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0490 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0491 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0492 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0493 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0494 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0495 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0496 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0497 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0498 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0499 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0500 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0501 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0502 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0503 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0504 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0505 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0506 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0507 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0508 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0509 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0510 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0511 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0512 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0513 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0514 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0515 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0516 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0517 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0518 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0519 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0520 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0521 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0522 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0523 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0524 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0525 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0526 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0527 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0528 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0529 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0530 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0531 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0532 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0533 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0534 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0535 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0536 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0537 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0538 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0539 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0540 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0541 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0542 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0543 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0544 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0545 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0546 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0547 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0548 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0549 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0550 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0551 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0552 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0553 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0554 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0555 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0556 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0557 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0558 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0559 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0560 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0561 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0562 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0563 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0564 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0565 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0566 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0567 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0568 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0569 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0570 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0571 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0572 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0573 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0574 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0575 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0576 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0577 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0578 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0579 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0580 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0581 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0582 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0583 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0584 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0585 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0586 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0587 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0588 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0589 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0590 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0591 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0592 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0593 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0594 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0595 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0596 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0597 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0598 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0599 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0600 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0601 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0602 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0603 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0604 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0605 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0606 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0607 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0608 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0609 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0610 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0611 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0612 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0613 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0614 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0615 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0616 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0617 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0618 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0619 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0620 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0621 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0622 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0623 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0624 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0625 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0626 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0627 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0628 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0629 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0630 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0631 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0632 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0633 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0634 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0635 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0636 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0637 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0638 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0639 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0640 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0641 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0642 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0643 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0644 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0645 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0646 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0647 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0648 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0649 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0650 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0651 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0652 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0653 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0654 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0655 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0656 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0657 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0658 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0659 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0660 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0661 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0662 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0663 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0664 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0665 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0666 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0667 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0668 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0669 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0670 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0671 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0672 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0673 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0674 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0675 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0676 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0677 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0678 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0679 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0680 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0681 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0682 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0683 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0684 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0685 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0686 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0687 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0688 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0689 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0690 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0691 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0692 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0693 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0694 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0695 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0696 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0697 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0698 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0699 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0700 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0701 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0702 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0703 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0704 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0705 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0706 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0707 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0708 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0709 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0710 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0711 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0712 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0713 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0714 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0715 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0716 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0717 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0718 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0719 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0720 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0721 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0722 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0723 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0724 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0725 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0726 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0727 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0728 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0729 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0730 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0731 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0732 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0733 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0734 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0735 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0736 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0737 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0738 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0739 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0740 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0741 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0742 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0743 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0744 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0745 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0746 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0747 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0748 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0749 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0750 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0751 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0752 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0753 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0754 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0755 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0756 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0757 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0758 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0759 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0760 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0761 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0762 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0763 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0764 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0765 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0766 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0767 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0768 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0769 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0770 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0771 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0772 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0773 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0774 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0775 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0776 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0777 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0778 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0779 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0780 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0781 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0782 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0783 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0784 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0785 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0786 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0787 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0788 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0789 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0790 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0791 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0792 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0793 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0794 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0795 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0796 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0797 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0798 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0799 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0800 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0801 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0802 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0803 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0804 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0805 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0806 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0807 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0808 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0809 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0810 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0811 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0812 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0813 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0814 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0815 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0816 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0817 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0818 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0819 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0820 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0821 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0822 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0823 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0824 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0825 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0826 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0827 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0828 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0829 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0830 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0831 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0832 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0833 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0834 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0835 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0836 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0837 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0838 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0839 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0840 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0841 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0842 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0843 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0844 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0845 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0846 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0847 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0848 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0849 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0850 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0851 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0852 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0853 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0854 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0855 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0856 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0857 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0858 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0859 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0860 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0861 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0862 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0863 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0864 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0865 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0866 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0867 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0868 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0869 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0870 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0871 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0872 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0873 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0874 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0875 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0876 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0877 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0878 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0879 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0880 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0881 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0882 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0883 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0884 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0885 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0886 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0887 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0888 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0889 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0890 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0891 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0892 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0893 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0894 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0895 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0896 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0897 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0898 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0899 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0900 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0901 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0902 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0903 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0904 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0905 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0906 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0907 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0908 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0909 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0910 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0911 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0912 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0913 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0914 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0915 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0916 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0917 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0918 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0919 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0920 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0921 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0922 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0923 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0924 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0925 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0926 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0927 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0928 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0929 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0930 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0931 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0932 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0933 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0934 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0935 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0936 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0937 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0938 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0939 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0940 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0941 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0942 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0943 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0944 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0945 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0946 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0947 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0948 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0949 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0950 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0951 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0952 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0953 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0954 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0955 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0956 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0957 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0958 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0959 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0960 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0961 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0962 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0963 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0964 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0965 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0966 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0967 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0968 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0969 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0970 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0971 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0972 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0973 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0974 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0975 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0976 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0977 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0978 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0979 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0980 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0981 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0982 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0983 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0984 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0985 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0986 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0987 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0988 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0989 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0990 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0991 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0992 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0993 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0994 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0995 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0996 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0997 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0998 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 0999 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1000 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1001 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1002 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1003 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1004 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1005 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1006 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1007 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1008 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1009 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1010 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1011 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1012 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1013 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1014 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1015 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1016 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1017 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1018 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1019 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1020 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1021 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1022 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1023 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1024 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1025 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1026 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1027 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1028 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1029 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1030 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1031 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1032 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1033 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1034 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1035 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1036 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1037 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1038 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1039 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1040 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1041 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1042 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1043 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1044 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1045 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1046 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1047 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1048 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1049 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1050 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1051 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1052 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1053 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1054 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1055 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1056 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1057 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1058 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1059 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1060 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1061 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1062 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1063 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1064 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1065 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1066 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1067 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1068 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1069 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1070 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1071 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1072 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1073 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1074 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1075 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1076 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1077 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1078 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1079 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1080 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1081 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1082 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1083 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1084 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1085 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1086 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1087 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1088 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1089 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1090 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1091 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1092 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1093 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1094 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1095 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1096 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1097 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1098 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1099 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1100 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1101 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1102 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1103 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1104 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1105 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1106 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1107 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1108 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1109 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1110 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1111 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1112 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1113 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1114 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1115 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1116 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1117 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1118 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1119 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1120 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1121 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1122 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1123 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1124 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1125 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1126 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1127 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1128 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1129 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1130 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1131 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1132 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1133 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1134 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1135 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1136 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1137 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1138 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1139 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1140 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1141 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1142 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1143 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1144 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1145 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1146 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1147 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1148 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1149 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1150 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1151 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1152 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1153 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1154 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1155 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1156 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1157 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1158 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1159 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1160 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1161 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1162 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1163 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1164 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1165 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1166 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1167 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1168 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1169 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1170 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1171 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1172 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1173 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1174 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1175 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1176 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1177 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1178 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1179 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1180 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1181 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1182 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1183 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1184 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1185 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1186 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1187 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1188 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1189 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1190 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1191 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1192 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1193 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1194 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1195 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1196 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1197 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1198 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1199 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1200 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1201 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1202 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1203 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1204 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1205 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1206 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1207 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1208 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1209 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1210 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1211 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1212 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1213 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1214 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1215 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1216 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1217 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1218 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1219 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1220 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1221 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1222 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1223 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1224 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1225 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1226 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1227 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1228 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1229 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1230 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1231 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1232 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1233 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1234 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1235 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1236 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1237 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1238 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1239 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1240 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1241 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1242 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1243 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1244 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1245 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1246 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1247 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1248 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1249 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1250 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1251 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1252 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1253 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1254 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1255 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1256 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1257 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1258 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1259 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1260 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1261 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1262 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1263 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1264 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1265 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1266 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1267 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1268 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1269 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1270 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1271 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1272 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1273 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1274 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1275 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1276 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1277 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1278 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1279 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1280 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1281 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1282 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1283 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1284 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1285 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1286 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1287 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1288 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1289 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1290 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1291 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1292 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1293 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1294 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1295 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1296 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1297 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1298 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1299 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1300 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1301 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1302 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1303 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1304 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1305 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1306 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1307 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1308 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1309 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1310 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1311 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1312 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1313 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1314 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1315 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1316 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1317 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1318 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1319 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1320 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1321 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1322 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1323 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1324 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1325 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1326 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1327 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1328 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1329 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1330 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1331 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1332 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1333 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1334 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1335 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1336 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1337 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1338 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1339 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1340 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1341 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1342 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1343 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1344 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1345 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1346 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1347 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1348 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1349 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1350 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1351 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1352 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1353 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1354 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1355 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1356 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1357 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1358 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1359 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1360 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1361 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1362 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1363 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1364 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1365 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1366 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1367 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1368 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1369 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1370 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1371 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1372 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1373 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1374 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1375 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1376 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1377 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1378 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1379 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1380 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1381 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1382 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1383 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1384 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1385 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1386 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1387 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1388 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1389 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1390 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1391 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1392 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1393 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1394 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1395 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1396 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1397 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1398 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1399 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1400 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1401 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1402 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1403 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1404 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1405 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1406 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1407 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1408 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1409 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1410 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1411 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1412 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1413 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1414 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1415 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1416 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1417 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1418 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1419 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1420 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1421 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1422 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1423 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1424 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1425 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1426 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1427 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1428 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1429 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1430 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1431 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1432 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1433 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1434 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1435 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1436 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1437 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1438 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1439 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1440 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1441 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1442 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1443 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1444 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1445 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1446 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1447 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1448 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1449 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1450 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1451 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1452 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1453 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1454 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1455 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1456 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1457 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1458 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1459 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1460 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1461 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1462 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1463 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1464 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1465 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1466 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1467 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1468 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1469 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1470 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1471 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1472 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1473 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1474 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1475 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1476 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1477 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1478 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1479 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1480 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1481 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1482 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1483 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1484 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1485 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1486 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1487 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1488 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1489 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1490 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1491 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1492 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1493 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1494 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1495 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1496 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1497 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1498 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1499 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1500 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1501 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1502 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1503 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1504 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1505 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1506 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1507 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1508 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1509 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1510 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1511 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1512 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1513 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1514 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1515 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1516 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1517 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1518 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1519 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1520 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1521 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1522 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1523 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1524 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1525 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1526 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1527 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1528 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1529 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1530 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1531 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1532 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1533 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1534 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1535 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1536 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1537 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1538 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1539 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1540 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1541 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1542 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1543 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1544 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1545 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1546 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1547 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1548 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1549 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1550 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1551 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1552 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1553 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1554 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1555 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1556 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1557 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1558 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1559 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1560 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1561 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1562 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1563 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1564 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1565 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1566 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1567 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1568 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1569 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1570 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1571 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1572 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1573 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1574 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1575 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1576 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1577 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1578 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1579 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1580 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1581 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1582 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1583 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1584 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1585 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1586 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1587 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1588 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1589 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1590 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1591 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1592 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1593 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1594 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1595 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1596 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1597 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1598 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1599 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1600 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1601 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1602 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1603 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1604 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1605 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1606 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1607 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1608 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1609 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1610 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1611 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1612 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1613 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1614 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1615 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1616 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1617 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1618 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1619 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1620 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1621 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1622 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1623 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1624 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1625 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1626 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1627 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1628 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1629 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1630 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1631 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1632 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1633 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1634 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1635 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1636 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1637 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1638 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1639 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1640 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1641 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1642 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1643 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1644 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1645 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1646 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1647 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1648 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1649 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1650 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1651 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1652 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1653 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1654 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1655 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1656 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1657 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1658 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1659 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1660 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1661 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1662 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1663 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1664 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1665 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1666 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1667 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1668 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1669 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1670 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1671 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1672 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1673 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1674 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1675 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1676 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1677 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1678 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1679 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1680 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1681 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1682 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1683 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1684 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1685 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1686 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1687 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1688 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1689 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1690 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1691 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1692 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1693 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1694 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1695 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1696 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1697 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1698 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1699 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1700 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1701 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1702 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1703 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1704 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1705 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1706 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1707 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1708 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1709 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1710 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1711 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1712 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1713 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1714 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1715 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1716 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1717 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1718 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1719 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1720 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1721 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1722 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1723 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1724 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1725 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1726 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1727 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1728 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1729 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1730 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1731 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1732 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1733 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1734 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1735 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1736 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1737 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1738 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1739 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1740 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1741 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1742 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1743 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1744 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1745 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1746 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1747 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1748 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1749 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1750 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1751 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1752 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1753 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1754 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1755 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1756 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1757 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1758 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1759 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1760 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1761 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1762 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1763 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1764 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1765 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1766 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1767 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1768 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1769 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1770 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1771 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1772 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1773 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1774 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1775 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1776 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1777 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1778 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1779 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1780 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1781 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1782 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1783 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1784 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1785 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1786 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1787 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1788 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1789 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1790 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1791 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1792 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1793 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1794 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1795 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1796 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1797 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1798 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1799 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1800 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1801 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1802 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1803 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1804 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1805 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1806 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1807 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1808 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1809 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1810 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1811 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1812 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1813 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1814 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1815 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1816 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1817 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1818 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1819 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1820 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1821 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1822 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1823 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1824 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1825 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1826 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1827 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1828 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1829 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1830 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1831 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1832 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1833 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1834 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1835 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1836 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1837 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1838 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1839 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1840 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1841 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1842 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1843 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1844 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1845 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1846 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1847 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1848 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1849 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1850 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1851 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1852 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1853 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1854 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1855 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1856 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1857 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1858 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1859 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1860 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1861 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1862 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1863 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1864 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1865 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1866 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1867 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1868 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1869 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1870 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1871 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1872 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1873 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1874 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1875 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1876 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1877 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1878 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1879 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1880 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1881 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1882 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1883 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1884 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1885 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1886 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1887 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1888 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1889 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1890 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1891 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1892 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1893 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1894 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1895 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1896 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1897 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1898 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1899 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1900 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1901 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1902 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1903 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1904 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1905 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1906 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1907 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1908 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1909 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1910 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1911 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1912 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1913 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1914 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1915 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1916 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1917 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1918 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1919 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1920 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1921 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1922 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1923 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1924 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1925 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1926 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1927 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1928 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1929 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1930 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1931 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1932 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1933 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1934 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1935 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1936 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1937 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1938 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1939 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1940 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1941 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1942 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1943 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1944 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1945 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1946 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1947 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1948 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1949 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1950 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1951 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1952 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1953 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1954 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1955 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1956 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1957 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1958 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1959 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1960 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1961 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1962 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1963 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1964 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1965 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1966 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1967 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1968 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1969 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1970 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1971 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1972 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1973 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1974 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1975 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1976 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1977 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1978 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1979 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1980 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1981 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1982 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1983 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1984 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1985 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1986 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1987 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1988 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1989 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1990 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1991 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1992 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1993 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1994 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1995 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1996 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1997 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1998 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 1999 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2000 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2001 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2002 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2003 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2004 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2005 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2006 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2007 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2008 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2009 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2010 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2011 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2012 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2013 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2014 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2015 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2016 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2017 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2018 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2019 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2020 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2021 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2022 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2023 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2024 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2025 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2026 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2027 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2028 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2029 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2030 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2031 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2032 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2033 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2034 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2035 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2036 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2037 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2038 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2039 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2040 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2041 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2042 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2043 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2044 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2045 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2046 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2047 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2048 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2049 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2050 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2051 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2052 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2053 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2054 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2055 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2056 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2057 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2058 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2059 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2060 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2061 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2062 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2063 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2064 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2065 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2066 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2067 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2068 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2069 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2070 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2071 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2072 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2073 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2074 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2075 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2076 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2077 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2078 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2079 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2080 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2081 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2082 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2083 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2084 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2085 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2086 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2087 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2088 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2089 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2090 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2091 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2092 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2093 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2094 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2095 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2096 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2097 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2098 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2099 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2100 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2101 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2102 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2103 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2104 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2105 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2106 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2107 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2108 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2109 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2110 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2111 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2112 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2113 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2114 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2115 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2116 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2117 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2118 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2119 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2120 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2121 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2122 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2123 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2124 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2125 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2126 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2127 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2128 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2129 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2130 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2131 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2132 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2133 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2134 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2135 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2136 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2137 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2138 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2139 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2140 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2141 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2142 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2143 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2144 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2145 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2146 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2147 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2148 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2149 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2150 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2151 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2152 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2153 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2154 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2155 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2156 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2157 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2158 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2159 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2160 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2161 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2162 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2163 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2164 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2165 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2166 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2167 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2168 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2169 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2170 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2171 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2172 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2173 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2174 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2175 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2176 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2177 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2178 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2179 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2180 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2181 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2182 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2183 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2184 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2185 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2186 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2187 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2188 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2189 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2190 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2191 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2192 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2193 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2194 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2195 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2196 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2197 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2198 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2199 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2200 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2201 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2202 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2203 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2204 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2205 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2206 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2207 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2208 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2209 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2210 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2211 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2212 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2213 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2214 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2215 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2216 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2217 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2218 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2219 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2220 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2221 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2222 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2223 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2224 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2225 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2226 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2227 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2228 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2229 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2230 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2231 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2232 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2233 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2234 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2235 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2236 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2237 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2238 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2239 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2240 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2241 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2242 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2243 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2244 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2245 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2246 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2247 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2248 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2249 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2250 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2251 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2252 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2253 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2254 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2255 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2256 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2257 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2258 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2259 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2260 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2261 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2262 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2263 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2264 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2265 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2266 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2267 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2268 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2269 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2270 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2271 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2272 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2273 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2274 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2275 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2276 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2277 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2278 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2279 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2280 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2281 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2282 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2283 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2284 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2285 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2286 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2287 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2288 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2289 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2290 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2291 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2292 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2293 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2294 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2295 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2296 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2297 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2298 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2299 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2300 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2301 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2302 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2303 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2304 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2305 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2306 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2307 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2308 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2309 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2310 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2311 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2312 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2313 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2314 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2315 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2316 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2317 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2318 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2319 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2320 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2321 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2322 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2323 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2324 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2325 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2326 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2327 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2328 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2329 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2330 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2331 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2332 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2333 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2334 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2335 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2336 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2337 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2338 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2339 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2340 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2341 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2342 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2343 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2344 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2345 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2346 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2347 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2348 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2349 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2350 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2351 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2352 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2353 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2354 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2355 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2356 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2357 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2358 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2359 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2360 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2361 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2362 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2363 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2364 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2365 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2366 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2367 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2368 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2369 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2370 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2371 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2372 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2373 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2374 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2375 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2376 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2377 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2378 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2379 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2380 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2381 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2382 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2383 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2384 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2385 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2386 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2387 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2388 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2389 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2390 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2391 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2392 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2393 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2394 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2395 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2396 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2397 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2398 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2399 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2400 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2401 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2402 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2403 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2404 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2405 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2406 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2407 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2408 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2409 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2410 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2411 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2412 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2413 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2414 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2415 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2416 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2417 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2418 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2419 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2420 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2421 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2422 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2423 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2424 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2425 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2426 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2427 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2428 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2429 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2430 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2431 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2432 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2433 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2434 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2435 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2436 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2437 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2438 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2439 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2440 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2441 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2442 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2443 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2444 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2445 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2446 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2447 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2448 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2449 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2450 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2451 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2452 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2453 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2454 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2455 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2456 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2457 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2458 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2459 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2460 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2461 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2462 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2463 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2464 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2465 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2466 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2467 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2468 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2469 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2470 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2471 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2472 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2473 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2474 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2475 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2476 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2477 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2478 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2479 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2480 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2481 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2482 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2483 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2484 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2485 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2486 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2487 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2488 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2489 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2490 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2491 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2492 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2493 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2494 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2495 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2496 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2497 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2498 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2499 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2500 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2501 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2502 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2503 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2504 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2505 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2506 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2507 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2508 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2509 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2510 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2511 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2512 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2513 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2514 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2515 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2516 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2517 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2518 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2519 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2520 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2521 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2522 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2523 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2524 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2525 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2526 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2527 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2528 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2529 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2530 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2531 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2532 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2533 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2534 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2535 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2536 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2537 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2538 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2539 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2540 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2541 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2542 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2543 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2544 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2545 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2546 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2547 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2548 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2549 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2550 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2551 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2552 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2553 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2554 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2555 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2556 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2557 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2558 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2559 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2560 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2561 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2562 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2563 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2564 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2565 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2566 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2567 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2568 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2569 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2570 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2571 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2572 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2573 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2574 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2575 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2576 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2577 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2578 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2579 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2580 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2581 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2582 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2583 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2584 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2585 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2586 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2587 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2588 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2589 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2590 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2591 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2592 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2593 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2594 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2595 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2596 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2597 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2598 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2599 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2600 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2601 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2602 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2603 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2604 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2605 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2606 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2607 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2608 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2609 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2610 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2611 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2612 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2613 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2614 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2615 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2616 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2617 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2618 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2619 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2620 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2621 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2622 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2623 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2624 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2625 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2626 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2627 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2628 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2629 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2630 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2631 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2632 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2633 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2634 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2635 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2636 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2637 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2638 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2639 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2640 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2641 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2642 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2643 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2644 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2645 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2646 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2647 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2648 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2649 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2650 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2651 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2652 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2653 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2654 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2655 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2656 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2657 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2658 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2659 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2660 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2661 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2662 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2663 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2664 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2665 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2666 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2667 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2668 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2669 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2670 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2671 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2672 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2673 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2674 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2675 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2676 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2677 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2678 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2679 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2680 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2681 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2682 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2683 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2684 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2685 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2686 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2687 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2688 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2689 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2690 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2691 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2692 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2693 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2694 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2695 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2696 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2697 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2698 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2699 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2700 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2701 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2702 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2703 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2704 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2705 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2706 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2707 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2708 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2709 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2710 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2711 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2712 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2713 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2714 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2715 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2716 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2717 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2718 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2719 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2720 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2721 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2722 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2723 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2724 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2725 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2726 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2727 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2728 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2729 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2730 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2731 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2732 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2733 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2734 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2735 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2736 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2737 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2738 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2739 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2740 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2741 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2742 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2743 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2744 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2745 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2746 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2747 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2748 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2749 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2750 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2751 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2752 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2753 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2754 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2755 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2756 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2757 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2758 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2759 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2760 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2761 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2762 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2763 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2764 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2765 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2766 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2767 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2768 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2769 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2770 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2771 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2772 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2773 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2774 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2775 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2776 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2777 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2778 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2779 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2780 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2781 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2782 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2783 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2784 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2785 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2786 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2787 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2788 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2789 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2790 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2791 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2792 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2793 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2794 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2795 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2796 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2797 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2798 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2799 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2800 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2801 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2802 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2803 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2804 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2805 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2806 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2807 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2808 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2809 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2810 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2811 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2812 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2813 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2814 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2815 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2816 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2817 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2818 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2819 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2820 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2821 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2822 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2823 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2824 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2825 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2826 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2827 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2828 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2829 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2830 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2831 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2832 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2833 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2834 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2835 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2836 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2837 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2838 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2839 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2840 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2841 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2842 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2843 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2844 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2845 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2846 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2847 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2848 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2849 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2850 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2851 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2852 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2853 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2854 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2855 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2856 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2857 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2858 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2859 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2860 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2861 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2862 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2863 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2864 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2865 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2866 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2867 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2868 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2869 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2870 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2871 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2872 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2873 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2874 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2875 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2876 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2877 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2878 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2879 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2880 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2881 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2882 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2883 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2884 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2885 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2886 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2887 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2888 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2889 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2890 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2891 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2892 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2893 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2894 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2895 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2896 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2897 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2898 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2899 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2900 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2901 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2902 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2903 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2904 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2905 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2906 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2907 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2908 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2909 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2910 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2911 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2912 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2913 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2914 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2915 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2916 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2917 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2918 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2919 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2920 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2921 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2922 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2923 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2924 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2925 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2926 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2927 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2928 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2929 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2930 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2931 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2932 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2933 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2934 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2935 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2936 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2937 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2938 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2939 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2940 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2941 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2942 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2943 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2944 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2945 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2946 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2947 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2948 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2949 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2950 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2951 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2952 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2953 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2954 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2955 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2956 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2957 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2958 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2959 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2960 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2961 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2962 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2963 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2964 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2965 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2966 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2967 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2968 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2969 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2970 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2971 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2972 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2973 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2974 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2975 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2976 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2977 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2978 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2979 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2980 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2981 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2982 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2983 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2984 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2985 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2986 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2987 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2988 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2989 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2990 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2991 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2992 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2993 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2994 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2995 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2996 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2997 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2998 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 2999 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3000 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3001 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3002 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3003 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3004 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3005 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3006 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3007 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3008 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3009 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3010 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3011 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3012 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3013 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3014 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3015 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3016 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3017 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3018 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3019 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3020 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3021 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3022 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3023 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3024 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3025 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3026 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3027 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3028 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3029 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3030 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3031 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3032 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3033 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3034 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3035 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3036 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3037 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3038 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3039 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3040 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3041 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3042 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3043 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3044 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3045 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3046 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3047 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3048 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3049 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3050 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3051 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3052 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3053 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3054 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3055 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3056 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3057 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3058 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3059 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3060 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3061 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3062 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3063 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3064 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3065 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3066 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3067 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3068 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3069 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3070 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3071 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3072 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3073 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3074 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3075 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3076 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3077 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3078 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3079 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3080 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3081 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3082 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3083 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3084 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3085 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3086 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3087 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3088 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3089 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3090 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3091 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3092 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3093 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3094 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3095 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3096 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3097 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3098 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3099 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3100 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3101 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3102 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3103 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3104 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3105 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3106 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3107 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3108 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3109 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3110 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3111 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3112 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3113 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3114 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3115 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3116 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3117 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3118 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3119 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3120 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3121 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3122 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3123 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3124 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3125 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3126 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3127 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3128 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3129 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3130 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3131 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3132 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3133 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3134 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3135 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3136 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3137 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3138 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3139 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3140 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3141 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3142 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3143 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3144 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3145 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3146 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3147 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3148 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3149 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3150 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3151 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3152 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3153 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3154 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3155 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3156 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3157 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3158 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3159 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3160 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3161 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3162 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3163 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3164 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3165 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3166 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3167 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3168 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3169 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3170 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3171 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3172 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3173 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3174 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3175 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3176 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3177 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3178 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3179 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3180 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3181 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3182 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3183 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3184 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3185 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3186 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3187 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3188 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3189 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3190 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3191 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3192 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3193 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3194 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3195 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3196 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3197 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3198 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3199 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3200 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3201 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3202 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3203 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3204 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3205 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3206 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3207 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3208 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3209 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3210 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3211 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3212 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3213 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3214 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3215 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3216 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3217 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3218 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3219 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3220 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3221 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3222 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3223 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3224 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3225 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3226 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3227 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3228 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3229 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3230 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3231 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3232 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3233 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3234 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3235 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3236 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3237 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3238 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3239 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3240 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3241 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3242 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3243 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3244 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3245 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3246 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3247 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3248 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3249 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3250 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3251 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3252 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3253 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3254 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3255 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3256 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3257 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3258 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3259 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3260 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3261 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3262 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3263 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3264 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3265 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3266 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3267 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3268 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3269 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3270 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3271 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3272 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3273 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3274 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3275 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3276 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3277 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3278 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3279 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3280 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3281 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3282 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3283 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3284 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3285 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3286 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3287 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3288 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3289 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3290 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3291 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3292 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3293 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3294 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3295 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3296 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3297 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3298 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3299 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3300 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3301 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3302 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3303 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3304 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3305 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3306 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3307 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3308 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3309 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3310 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3311 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3312 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3313 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3314 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3315 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3316 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3317 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3318 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3319 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3320 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3321 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3322 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3323 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3324 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3325 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3326 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3327 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3328 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3329 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3330 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3331 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3332 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3333 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3334 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3335 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3336 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3337 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3338 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3339 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3340 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3341 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3342 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3343 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3344 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3345 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3346 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3347 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3348 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3349 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3350 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3351 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3352 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3353 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3354 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3355 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3356 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3357 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3358 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3359 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3360 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3361 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3362 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3363 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3364 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3365 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3366 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3367 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3368 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3369 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3370 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3371 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3372 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3373 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3374 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3375 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3376 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3377 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3378 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3379 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3380 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3381 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3382 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3383 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3384 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3385 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3386 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3387 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3388 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3389 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3390 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3391 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3392 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3393 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3394 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3395 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3396 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3397 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3398 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3399 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3400 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3401 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3402 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3403 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3404 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3405 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3406 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3407 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3408 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3409 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0007 / 0010 | BATCH 3410 / 3410 | LOSS 0.0010\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0001 / 0974 | LOSS 0.0029\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0002 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0003 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0004 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0005 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0006 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0007 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0008 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0009 / 0974 | LOSS 0.0020\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0010 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0011 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0012 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0013 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0014 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0015 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0016 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0017 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0018 / 0974 | LOSS 0.0022\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0019 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0020 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0021 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0022 / 0974 | LOSS 0.0021\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0023 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0024 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0025 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0026 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0027 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0028 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0029 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0030 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0031 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0032 / 0974 | LOSS 0.0027\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0033 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0034 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0035 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0036 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0037 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0038 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0039 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0040 / 0974 | LOSS 0.0027\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0041 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0042 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0043 / 0974 | LOSS 0.0027\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0044 / 0974 | LOSS 0.0027\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0045 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0046 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0047 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0048 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0049 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0050 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0051 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0052 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0053 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0054 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0055 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0056 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0057 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0058 / 0974 | LOSS 0.0026\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0059 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0060 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0061 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0062 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0063 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0064 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0065 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0066 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0067 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0068 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0069 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0070 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0071 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0072 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0073 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0074 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0075 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0076 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0077 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0078 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0079 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0080 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0081 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0082 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0083 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0084 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0085 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0086 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0087 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0088 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0089 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0090 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0091 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0092 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0093 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0094 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0095 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0096 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0097 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0098 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0099 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0100 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0101 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0102 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0103 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0104 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0105 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0106 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0107 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0108 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0109 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0110 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0111 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0112 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0113 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0114 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0115 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0116 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0117 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0118 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0119 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0120 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0121 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0122 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0123 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0124 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0125 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0126 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0127 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0128 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0129 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0130 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0131 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0132 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0133 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0134 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0135 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0136 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0137 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0138 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0139 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0140 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0141 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0142 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0143 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0144 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0145 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0146 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0147 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0148 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0149 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0150 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0151 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0152 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0153 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0154 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0155 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0156 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0157 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0158 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0159 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0160 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0161 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0162 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0163 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0164 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0165 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0166 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0167 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0168 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0169 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0170 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0171 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0172 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0173 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0174 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0175 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0176 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0177 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0178 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0179 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0180 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0181 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0182 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0183 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0184 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0185 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0186 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0187 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0188 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0189 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0190 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0191 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0192 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0193 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0194 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0195 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0196 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0197 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0198 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0199 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0200 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0201 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0202 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0203 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0204 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0205 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0206 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0207 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0208 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0209 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0210 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0211 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0212 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0213 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0214 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0215 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0216 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0217 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0218 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0219 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0220 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0221 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0222 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0223 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0224 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0225 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0226 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0227 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0228 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0229 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0230 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0231 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0232 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0233 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0234 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0235 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0236 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0237 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0238 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0239 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0240 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0241 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0242 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0243 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0244 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0245 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0246 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0247 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0248 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0249 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0250 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0251 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0252 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0253 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0254 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0255 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0256 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0257 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0258 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0259 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0260 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0261 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0262 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0263 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0264 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0265 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0266 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0267 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0268 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0269 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0270 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0271 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0272 / 0974 | LOSS 0.0023\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0273 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0274 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0275 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0276 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0277 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0278 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0279 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0280 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0281 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0282 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0283 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0284 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0285 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0286 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0287 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0288 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0289 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0290 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0291 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0292 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0293 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0294 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0295 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0296 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0297 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0298 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0299 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0300 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0301 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0302 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0303 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0304 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0305 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0306 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0307 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0308 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0309 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0310 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0311 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0312 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0313 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0314 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0315 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0316 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0317 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0318 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0319 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0320 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0321 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0322 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0323 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0324 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0325 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0326 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0327 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0328 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0329 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0330 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0331 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0332 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0333 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0334 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0335 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0336 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0337 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0338 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0339 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0340 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0341 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0342 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0343 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0344 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0345 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0346 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0347 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0348 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0349 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0350 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0351 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0352 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0353 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0354 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0355 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0356 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0357 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0358 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0359 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0360 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0361 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0362 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0363 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0364 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0365 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0366 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0367 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0368 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0369 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0370 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0371 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0372 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0373 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0374 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0375 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0376 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0377 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0378 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0379 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0380 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0381 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0382 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0383 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0384 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0385 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0386 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0387 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0388 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0389 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0390 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0391 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0392 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0393 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0394 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0395 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0396 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0397 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0398 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0399 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0400 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0401 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0402 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0403 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0404 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0405 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0406 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0407 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0408 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0409 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0410 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0411 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0412 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0413 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0414 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0415 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0416 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0417 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0418 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0419 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0420 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0421 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0422 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0423 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0424 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0425 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0426 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0427 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0428 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0429 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0430 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0431 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0432 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0433 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0434 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0435 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0436 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0437 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0438 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0439 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0440 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0441 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0442 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0443 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0444 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0445 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0446 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0447 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0448 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0449 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0450 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0451 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0452 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0453 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0454 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0455 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0456 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0457 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0458 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0459 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0460 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0461 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0462 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0463 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0464 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0465 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0466 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0467 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0468 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0469 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0470 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0471 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0472 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0473 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0474 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0475 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0476 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0477 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0478 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0479 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0480 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0481 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0482 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0483 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0484 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0485 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0486 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0487 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0488 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0489 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0490 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0491 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0492 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0493 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0494 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0495 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0496 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0497 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0498 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0499 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0500 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0501 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0502 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0503 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0504 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0505 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0506 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0507 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0508 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0509 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0510 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0511 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0512 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0513 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0514 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0515 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0516 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0517 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0518 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0519 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0520 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0521 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0522 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0523 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0524 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0525 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0526 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0527 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0528 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0529 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0530 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0531 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0532 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0533 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0534 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0535 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0536 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0537 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0538 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0539 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0540 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0541 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0542 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0543 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0544 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0545 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0546 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0547 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0548 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0549 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0550 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0551 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0552 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0553 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0554 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0555 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0556 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0557 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0558 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0559 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0560 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0561 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0562 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0563 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0564 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0565 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0566 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0567 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0568 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0569 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0570 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0571 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0572 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0573 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0574 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0575 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0576 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0577 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0578 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0579 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0580 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0581 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0582 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0583 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0584 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0585 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0586 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0587 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0588 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0589 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0590 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0591 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0592 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0593 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0594 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0595 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0596 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0597 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0598 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0599 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0600 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0601 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0602 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0603 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0604 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0605 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0606 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0607 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0608 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0609 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0610 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0611 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0612 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0613 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0614 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0615 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0616 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0617 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0618 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0619 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0620 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0621 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0622 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0623 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0624 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0625 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0626 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0627 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0628 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0629 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0630 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0631 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0632 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0633 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0634 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0635 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0636 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0637 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0638 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0639 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0640 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0641 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0642 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0643 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0644 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0645 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0646 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0647 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0648 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0649 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0650 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0651 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0652 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0653 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0654 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0655 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0656 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0657 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0658 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0659 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0660 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0661 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0662 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0663 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0664 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0665 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0666 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0667 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0668 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0669 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0670 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0671 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0672 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0673 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0674 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0675 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0676 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0677 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0678 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0679 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0680 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0681 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0682 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0683 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0684 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0685 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0686 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0687 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0688 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0689 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0690 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0691 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0692 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0693 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0694 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0695 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0696 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0697 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0698 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0699 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0700 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0701 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0702 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0703 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0704 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0705 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0706 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0707 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0708 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0709 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0710 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0711 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0712 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0713 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0714 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0715 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0716 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0717 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0718 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0719 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0720 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0721 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0722 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0723 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0724 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0725 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0726 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0727 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0728 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0729 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0730 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0731 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0732 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0733 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0734 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0735 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0736 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0737 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0738 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0739 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0740 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0741 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0742 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0743 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0744 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0745 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0746 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0747 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0748 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0749 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0750 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0751 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0752 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0753 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0754 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0755 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0756 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0757 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0758 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0759 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0760 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0761 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0762 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0763 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0764 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0765 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0766 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0767 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0768 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0769 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0770 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0771 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0772 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0773 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0774 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0775 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0776 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0777 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0778 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0779 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0780 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0781 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0782 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0783 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0784 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0785 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0786 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0787 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0788 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0789 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0790 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0791 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0792 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0793 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0794 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0795 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0796 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0797 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0798 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0799 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0800 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0801 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0802 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0803 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0804 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0805 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0806 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0807 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0808 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0809 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0810 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0811 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0812 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0813 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0814 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0815 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0816 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0817 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0818 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0819 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0820 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0821 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0822 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0823 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0824 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0825 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0826 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0827 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0828 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0829 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0830 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0831 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0832 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0833 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0834 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0835 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0836 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0837 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0838 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0839 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0840 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0841 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0842 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0843 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0844 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0845 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0846 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0847 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0848 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0849 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0850 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0851 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0852 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0853 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0854 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0855 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0856 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0857 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0858 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0859 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0860 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0861 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0862 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0863 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0864 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0865 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0866 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0867 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0868 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0869 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0870 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0871 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0872 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0873 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0874 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0875 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0876 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0877 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0878 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0879 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0880 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0881 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0882 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0883 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0884 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0885 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0886 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0887 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0888 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0889 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0890 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0891 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0892 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0893 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0894 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0895 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0896 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0897 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0898 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0899 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0900 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0901 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0902 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0903 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0904 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0905 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0906 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0907 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0908 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0909 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0910 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0911 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0912 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0913 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0914 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0915 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0916 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0917 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0918 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0919 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0920 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0921 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0922 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0923 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0924 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0925 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0926 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0927 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0928 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0929 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0930 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0931 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0932 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0933 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0934 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0935 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0936 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0937 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0938 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0939 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0940 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0941 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0942 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0943 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0944 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0945 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0946 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0947 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0948 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0949 / 0974 | LOSS 0.0025\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0950 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0951 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0952 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0953 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0954 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0955 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0956 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0957 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0958 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0959 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0960 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0961 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0962 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0963 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0964 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0965 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0966 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0967 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0968 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0969 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0970 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0971 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0972 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0973 / 0974 | LOSS 0.0024\n", + "VALID: EPOCH 0007 / 0010 | BATCH 0974 / 0974 | LOSS 0.0024\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0001 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0002 / 3410 | LOSS 0.0014\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0003 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0004 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0005 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0006 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0007 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0008 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0009 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0010 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0011 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0012 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0013 / 3410 | LOSS 0.0012\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0014 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0015 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0016 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0017 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0018 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0019 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0020 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0021 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0022 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0023 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0024 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0025 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0026 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0027 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0028 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0029 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0030 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0031 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0032 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0033 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0034 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0035 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0036 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0037 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0038 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0039 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0040 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0041 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0132 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0133 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0134 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0135 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0136 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0137 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0138 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0139 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0140 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0141 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0142 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0143 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0144 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0145 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0146 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0147 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0159 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0160 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0161 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0162 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0163 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0199 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0200 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0201 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0202 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0203 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0204 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0205 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0206 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0207 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0208 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0209 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0210 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0211 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0212 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0213 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0214 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0215 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0216 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0217 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0218 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0219 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0220 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0221 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0222 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0223 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0224 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0225 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0226 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0227 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0228 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0229 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0230 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0231 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0232 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0233 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0234 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0235 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0236 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0237 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0238 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0239 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0240 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0241 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0242 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0243 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0244 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0245 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0246 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0247 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0248 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0249 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0250 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0251 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0252 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0253 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0254 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0255 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0256 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0257 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0258 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0259 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0260 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0261 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0262 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0263 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0264 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0265 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0266 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0267 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0268 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0269 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0270 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0271 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0272 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0273 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0274 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0275 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0276 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0277 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0278 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0279 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0280 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0281 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0282 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0283 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0284 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0285 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0286 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0287 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0288 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0289 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0290 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0291 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0292 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0293 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0294 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0295 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0296 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0297 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0298 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0299 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0300 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0301 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0302 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0303 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0304 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0305 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0306 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0307 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0308 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0309 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0310 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0311 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0312 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0313 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0314 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0315 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0316 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0317 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0318 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0319 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0320 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0321 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0322 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0323 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0324 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0325 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0326 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0327 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0328 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0329 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0330 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0331 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0332 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0333 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0334 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0335 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0336 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0337 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0338 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0339 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0340 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0341 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0342 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0343 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0344 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0345 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0346 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0347 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0348 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0349 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0350 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0351 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0352 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0353 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0354 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0355 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0356 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0357 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0358 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0359 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0360 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0361 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0362 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0363 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0364 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0365 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0366 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0367 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0368 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0369 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0370 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0371 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0372 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0373 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0374 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0375 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0376 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0377 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0378 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0379 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0380 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0381 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0382 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0383 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0384 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0385 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0386 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0387 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0388 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0389 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0390 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0391 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0392 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0393 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0394 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0395 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0396 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0397 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0398 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0399 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0400 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0401 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0402 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0403 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0404 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0405 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0406 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0407 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0408 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0409 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0410 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0411 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0412 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0413 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0414 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0415 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0416 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0417 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0418 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0419 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0420 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0421 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0422 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0423 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0424 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0425 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0426 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0427 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0428 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0429 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0430 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0431 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0432 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0433 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0434 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0435 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0436 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0437 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0438 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0439 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0440 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0441 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0442 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0443 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0444 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0445 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0446 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0447 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0448 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0449 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0450 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0451 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0452 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0453 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0454 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0455 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0456 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0457 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0458 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0459 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0460 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0461 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0462 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0463 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0464 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0465 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0466 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0467 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0468 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0469 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0470 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0471 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0472 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0473 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0474 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0475 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0476 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0477 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0478 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0479 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0480 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0481 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0482 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0483 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0484 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0485 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0486 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0487 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0488 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0489 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0490 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0491 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0492 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0493 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0494 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0495 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0496 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0497 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0498 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0499 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0500 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0501 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0502 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0503 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0504 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0505 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0506 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0507 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0508 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0509 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0510 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0511 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0512 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0513 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0514 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0515 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0516 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0517 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0518 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0519 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0520 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0521 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0522 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0523 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0524 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0525 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0526 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0527 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0528 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0529 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0530 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0531 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0532 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0533 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0534 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0535 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0536 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0537 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0538 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0539 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0540 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0541 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0542 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0543 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0544 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0545 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0546 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0547 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0548 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0549 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0550 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0551 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0552 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0553 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0554 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0555 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0556 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0557 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0558 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0559 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0560 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0561 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0562 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0563 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0564 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0565 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0566 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0567 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0568 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0569 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0570 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0571 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0572 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0573 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0574 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0575 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0576 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0577 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0578 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0579 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0580 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0581 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0582 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0583 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0584 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0585 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0586 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0587 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0588 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0589 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0590 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0591 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0592 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0593 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0594 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0595 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0596 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0597 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0598 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0599 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0600 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0601 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0602 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0603 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0604 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0605 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0606 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0607 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0608 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0609 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0610 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0611 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0612 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0613 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0614 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0615 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0616 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0617 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0618 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0619 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0620 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0621 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0622 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0623 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0624 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0625 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0626 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0627 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0628 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0629 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0630 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0631 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0632 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0633 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0634 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0635 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0636 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0637 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0638 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0639 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0640 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0641 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0642 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0643 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0644 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0645 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0646 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0647 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0648 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0649 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0650 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0651 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0652 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0653 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0654 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0655 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0656 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0657 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0658 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0659 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0660 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0661 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0662 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0663 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0664 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0665 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0666 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0667 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0668 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0669 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0670 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0671 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0672 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0673 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0674 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0675 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0676 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0677 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0678 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0679 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0680 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0681 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0682 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0683 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0684 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0685 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0686 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0687 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0688 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0689 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0690 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0691 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0692 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0693 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0694 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0695 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0696 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0697 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0698 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0699 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0700 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0701 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0702 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0703 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0704 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0705 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0706 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0707 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0708 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0709 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0710 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0711 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0712 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0713 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0714 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0715 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0716 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0717 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0718 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0719 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0720 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0721 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0722 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0723 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0724 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0725 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0726 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0727 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0728 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0729 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0730 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0731 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0732 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0733 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0734 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0735 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0736 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0737 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0738 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0739 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0740 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0741 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0742 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0743 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0744 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0745 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0746 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0747 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0748 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0749 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0750 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0751 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0752 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0753 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0754 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0755 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0756 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0757 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0758 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0759 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0760 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0761 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0762 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0763 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0764 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0765 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0766 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0767 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0768 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0769 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0770 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0771 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0772 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0773 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0774 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0775 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0776 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0777 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0778 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0779 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0780 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0781 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0782 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0783 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0784 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0785 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0786 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0787 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0788 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0789 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0790 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0791 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0792 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0793 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0794 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0795 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0796 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0797 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0798 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0799 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0800 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0801 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0802 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0803 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0804 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0805 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0806 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0807 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0808 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0809 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0810 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0811 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0812 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0813 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0814 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0815 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0816 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0817 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0818 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0819 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0820 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0821 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0822 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0823 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0824 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0825 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0826 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0827 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0828 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0829 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0830 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0831 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0832 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0833 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0834 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0835 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0836 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0837 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0838 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0839 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0840 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0841 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0842 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0843 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0844 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0845 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0846 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0847 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0848 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0849 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0850 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0851 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0852 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0853 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0854 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0855 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0856 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0857 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0858 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0859 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0860 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0861 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0862 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0863 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0864 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0865 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0866 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0867 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0868 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0869 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0870 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0871 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0872 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0873 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0874 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0875 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0876 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0877 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0878 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0879 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0880 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0881 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0882 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0883 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0884 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0885 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0886 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0887 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0888 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0889 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0890 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0891 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0892 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0893 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0894 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0895 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0896 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0897 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0898 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0899 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0900 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0901 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0902 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0903 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0904 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0905 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0906 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0907 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0908 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0909 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0910 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0911 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0912 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0913 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0914 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0915 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0916 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0917 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0918 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0919 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0920 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0921 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0922 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0923 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0924 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0925 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0926 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0927 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0928 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0929 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0930 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0931 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0932 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0933 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0934 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0935 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0936 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0937 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0938 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0939 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0940 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0941 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0942 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0943 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0944 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0945 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0946 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0947 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0948 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0949 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0950 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0951 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0952 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0953 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0954 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0955 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0956 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0957 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0958 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0959 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0960 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0961 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0962 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0963 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0964 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0965 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0966 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0967 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0968 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0969 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0970 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0971 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0972 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0973 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0974 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0975 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0976 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0977 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0978 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0979 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0980 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0981 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0982 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0983 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0984 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0985 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0986 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0987 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0988 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0989 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0990 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0991 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0992 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0993 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0994 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0995 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0996 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0997 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0998 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 0999 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1000 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1001 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1002 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1003 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1004 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1005 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1006 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1007 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1008 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1009 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1010 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1011 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1012 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1013 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1014 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1015 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1016 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1017 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1018 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1019 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1020 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1021 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1022 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1023 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1024 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1025 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1026 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1027 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1028 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1029 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1030 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1031 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1032 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1033 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1034 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1035 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1036 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1037 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1038 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1039 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1040 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1041 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1042 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1043 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1044 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1045 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1046 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1047 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1048 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1049 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1050 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1051 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1052 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1053 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1054 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1055 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1056 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1057 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1058 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1059 / 3410 | LOSS 0.0011\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1060 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1061 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1062 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1063 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1064 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1065 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1066 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1067 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1068 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1069 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1070 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1071 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1072 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1073 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1074 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1075 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1076 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1077 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1078 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1079 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1080 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1081 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1082 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1083 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1084 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1085 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1086 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1087 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1088 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1089 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1090 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1091 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1092 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1093 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1094 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1095 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1096 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1097 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1098 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1099 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1100 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1101 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1102 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1103 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1104 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1105 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1106 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1107 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1108 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1109 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1110 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1111 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1112 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1113 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1114 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1115 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1116 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1117 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1118 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1119 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1120 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1121 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1122 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1123 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1124 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1125 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1126 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1127 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1128 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1129 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1130 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1131 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1132 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1133 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1134 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1135 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1136 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1137 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1138 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1139 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1140 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1141 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1142 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1143 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1144 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1145 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1146 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1147 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1148 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1149 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1150 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1151 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1152 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1153 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1154 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1155 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1156 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1157 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1158 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1159 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1160 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1161 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1162 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1163 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1164 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1165 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1166 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1167 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1168 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1169 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1170 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1171 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1172 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1173 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1174 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1175 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1176 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1177 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1178 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1179 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1180 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1181 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1182 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1183 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1184 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1185 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1186 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1187 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1188 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1189 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1190 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1191 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1192 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1193 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1194 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1195 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1196 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1197 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1198 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1199 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1200 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1201 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1202 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1203 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1204 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1205 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1206 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1207 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1208 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1209 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1210 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1211 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1212 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1213 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1214 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1215 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1216 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1217 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1218 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1219 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1220 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1221 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1222 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1223 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1224 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1225 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1226 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1227 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1228 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1229 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1230 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1231 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1232 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1233 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1234 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1235 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1236 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1237 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1238 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1239 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1240 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1241 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1242 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1243 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1244 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1245 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1246 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1247 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1248 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1249 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1250 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1251 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1252 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1253 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1254 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1255 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1256 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1257 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1258 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1259 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1260 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1261 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1262 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1263 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1264 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1265 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1266 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1267 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1268 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1269 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1270 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1271 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1272 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1273 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1274 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1275 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1276 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1277 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1278 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1279 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1280 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1281 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1282 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1283 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1284 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1285 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1286 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1287 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1288 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1289 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1290 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1291 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1292 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1293 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1294 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1295 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1296 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1297 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1298 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1299 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1300 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1301 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1302 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1303 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1304 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1305 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1306 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1307 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1308 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1309 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1310 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1311 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1312 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1313 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1314 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1315 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1316 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1317 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1318 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1319 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1320 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1321 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1322 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1323 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1324 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1325 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1326 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1327 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1328 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1329 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1330 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1331 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1332 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1333 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1334 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1335 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1336 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1337 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1338 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1339 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1340 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1341 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1342 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1343 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1344 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1345 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1346 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1347 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1348 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1349 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1350 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1351 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1352 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1353 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1354 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1355 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1356 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1357 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1358 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1359 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1360 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1361 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1362 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1363 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1364 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1365 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1366 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1367 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1368 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1369 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1370 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1371 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1372 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1373 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1374 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1375 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1376 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1377 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1378 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1379 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1380 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1381 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1382 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1383 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1384 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1385 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1386 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1387 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1388 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1389 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1390 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1391 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1392 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1393 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1394 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1395 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1396 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1397 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1398 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1399 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1400 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1401 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1402 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1403 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1404 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1405 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1406 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1407 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1408 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1409 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1410 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1411 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1412 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1413 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1414 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1415 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1416 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1417 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1418 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1419 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1420 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1421 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1422 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1423 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1424 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1425 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1426 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1427 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1428 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1429 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1430 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1431 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1432 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1433 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1434 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1435 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1436 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1437 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1438 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1439 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1440 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1441 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1442 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1443 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1444 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1445 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1446 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1447 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1448 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1449 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1450 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1451 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1452 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1453 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1454 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1455 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1456 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1457 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1458 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1459 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1460 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1461 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1462 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1463 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1464 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1465 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1466 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1467 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1468 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1469 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1470 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1471 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1472 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1473 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1474 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1475 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1476 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1477 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1478 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1479 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1480 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1481 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1482 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1483 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1484 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1485 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1486 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1487 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1488 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1489 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1490 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1491 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1492 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1493 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1494 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1495 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1496 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1497 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1498 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1499 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1500 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1501 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1502 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1503 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1504 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1505 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1506 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1507 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1508 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1509 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1510 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1511 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1512 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1513 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1514 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1515 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1516 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1517 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1518 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1519 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1520 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1521 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1522 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1523 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1524 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1525 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1526 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1527 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1528 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1529 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1530 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1531 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1532 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1533 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1534 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1535 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1536 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1537 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1538 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1539 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1540 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1541 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1542 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1543 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1544 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1545 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1546 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1547 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1548 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1549 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1550 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1551 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1552 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1553 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1554 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1555 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1556 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1557 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1558 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1559 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1560 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1561 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1562 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1563 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1564 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1565 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1566 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1567 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1568 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1569 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1570 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1571 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1572 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1573 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1574 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1575 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1576 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1577 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1578 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1579 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1580 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1581 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1582 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1583 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1584 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1585 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1586 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1587 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1588 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1589 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1590 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1591 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1592 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1593 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1594 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1595 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1596 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1597 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1598 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1599 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1600 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1601 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1602 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1603 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1604 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1605 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1606 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1607 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1608 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1609 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1610 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1611 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1612 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1613 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1614 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1615 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1616 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1617 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1618 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1619 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1620 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1621 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1622 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1623 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1624 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1625 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1626 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1627 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1628 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1629 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1630 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1631 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1632 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1633 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1634 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1635 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1636 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1637 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1638 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1639 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1640 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1641 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1642 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1643 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1644 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1645 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1646 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1647 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1648 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1649 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1650 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1651 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1652 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1653 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1654 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1655 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1656 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1657 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1658 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1659 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1660 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1661 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1662 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1663 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1664 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1665 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1666 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1667 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1668 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1669 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1670 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1671 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1672 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1673 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1674 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1675 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1676 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1677 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1678 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1679 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1680 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1681 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1682 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1683 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1684 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1685 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1686 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1687 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1688 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1689 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1690 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1691 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1692 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1693 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1694 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1695 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1696 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1697 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1698 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1699 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1700 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1701 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1702 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1703 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1704 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1705 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1706 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1707 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1708 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1709 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1710 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1711 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1712 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1713 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1714 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1715 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1716 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1717 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1718 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1719 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1720 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1721 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1722 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1723 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1724 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1725 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1726 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1727 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1728 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1729 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1730 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1731 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1732 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1733 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1734 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1735 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1736 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1737 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1738 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1739 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1740 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1741 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1742 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1743 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1744 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1745 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1746 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1747 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1748 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1749 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1750 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1751 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1752 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1753 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1754 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1755 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1756 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1757 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1758 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1759 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1760 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1761 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1762 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1763 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1764 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1765 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1766 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1767 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1768 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1769 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1770 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1771 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1772 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1773 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1774 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1775 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1776 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1777 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1778 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1779 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1780 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1781 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1782 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1783 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1784 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1785 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1786 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1787 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1788 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1789 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1790 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1791 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1792 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1793 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1794 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1795 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1796 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1797 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1798 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1799 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1800 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1801 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1802 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1803 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1804 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1805 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1806 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1807 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1808 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1809 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1810 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1811 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1812 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1813 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1814 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1815 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1816 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1817 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1818 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1819 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1820 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1821 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1822 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1823 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1824 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1825 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1826 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1827 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1828 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1829 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1830 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1831 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1832 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1833 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1834 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1835 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1836 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1837 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1838 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1839 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1840 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1841 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1842 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1843 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1844 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1845 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1846 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1847 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1848 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1849 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1850 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1851 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1852 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1853 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1854 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1855 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1856 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1857 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1858 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1859 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1860 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1861 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1862 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1863 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1864 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1865 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1866 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1867 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1868 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1869 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1870 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1871 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1872 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1873 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1874 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1875 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1876 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1877 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1878 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1879 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1880 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1881 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1882 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1883 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1884 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1885 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1886 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1887 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1888 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1889 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1890 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1891 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1892 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1893 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1894 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1895 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1896 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1897 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1898 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1899 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1900 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1901 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1902 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1903 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1904 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1905 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1906 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1907 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1908 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1909 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1910 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1911 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1912 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1913 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1914 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1915 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1916 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1917 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1918 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1919 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1920 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1921 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1922 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1923 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1924 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1925 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1926 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1927 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1928 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1929 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1930 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1931 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1932 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1933 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1934 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1935 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1936 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1937 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1938 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1939 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1940 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1941 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1942 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1943 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1944 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1945 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1946 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1947 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1948 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1949 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1950 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1951 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1952 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1953 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1954 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1955 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1956 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1957 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1958 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1959 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1960 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1961 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1962 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1963 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1964 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1965 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1966 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1967 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1968 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1969 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1970 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1971 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1972 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1973 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1974 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1975 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1976 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1977 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1978 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1979 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1980 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1981 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1982 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1983 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1984 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1985 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1986 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1987 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1988 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1989 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1990 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1991 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1992 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1993 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1994 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1995 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1996 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1997 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1998 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 1999 / 3410 | LOSS 0.0010\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2000 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2002 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2003 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2016 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2021 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2022 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2023 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2132 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2133 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2134 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2135 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2136 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2137 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2138 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2139 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2140 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2141 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2142 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2143 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2144 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2145 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2146 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2147 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2159 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2160 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2161 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2162 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2163 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2199 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2200 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2201 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2202 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2203 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2204 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2205 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2206 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2207 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2208 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2209 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2210 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2211 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2212 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2213 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2214 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2215 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2216 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2217 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2218 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2219 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2220 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2221 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2222 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2223 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2224 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2225 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2226 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2227 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2228 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2229 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2230 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2231 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2232 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2233 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2234 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2235 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2236 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2237 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2238 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2239 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2240 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2241 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2242 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2243 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2244 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2245 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2246 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2247 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2248 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2249 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2250 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2251 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2252 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2253 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2254 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2255 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2256 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2257 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2258 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2259 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2260 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2261 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2262 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2263 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2264 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2265 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2266 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2267 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2268 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2269 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2270 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2271 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2272 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2273 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2274 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2275 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2276 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2277 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2278 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2279 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2280 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2281 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2282 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2283 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2284 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2285 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2286 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2287 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2288 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2289 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2290 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2291 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2292 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2293 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2294 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2295 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2296 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2297 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2298 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2299 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2300 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2301 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2302 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2303 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2304 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2305 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2306 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2307 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2308 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2309 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2310 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2311 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2312 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2313 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2314 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2315 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2316 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2317 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2318 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2319 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2320 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2321 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2322 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2323 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2324 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2325 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2326 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2327 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2328 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2329 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2330 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2331 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2332 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2333 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2334 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2335 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2336 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2337 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2338 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2339 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2340 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2341 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2342 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2343 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2344 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2345 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2346 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2347 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2348 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2349 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2350 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2351 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2352 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2353 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2354 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2355 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2356 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2357 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2358 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2359 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2360 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2361 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2362 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2363 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2364 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2365 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2366 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2367 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2368 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2369 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2370 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2371 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2372 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2373 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2374 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2375 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2376 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2377 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2378 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2379 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2380 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2381 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2382 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2383 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2384 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2385 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2386 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2387 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2388 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2389 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2390 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2391 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2392 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2393 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2394 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2395 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2396 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2397 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2398 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2399 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2400 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2401 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2402 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2403 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2404 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2405 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2406 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2407 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2408 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2409 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2410 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2411 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2412 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2413 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2414 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2415 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2416 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2417 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2418 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2419 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2420 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2421 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2422 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2423 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2424 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2425 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2426 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2427 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2428 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2429 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2430 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2431 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2432 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2433 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2434 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2435 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2436 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2437 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2438 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2439 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2440 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2441 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2442 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2443 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2444 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2445 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2446 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2447 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2448 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2449 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2450 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2451 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2452 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2453 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2454 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2455 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2456 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2457 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2458 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2459 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2460 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2461 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2462 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2463 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2464 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2465 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2466 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2467 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2468 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2469 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2470 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2471 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2472 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2473 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2474 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2475 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2476 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2477 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2478 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2479 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2480 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2481 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2482 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2483 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2484 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2485 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2486 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2487 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2488 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2489 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2490 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2491 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2492 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2493 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2494 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2495 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2496 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2497 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2498 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2499 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2500 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2501 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2502 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2503 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2504 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2505 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2506 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2507 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2508 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2509 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2510 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2511 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2512 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2513 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2514 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2515 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2516 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2517 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2518 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2519 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2520 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2521 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2522 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2523 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2524 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2525 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2526 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2527 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2528 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2529 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2530 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2531 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2532 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2533 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2534 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2535 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2536 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2537 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2538 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2539 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2540 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2541 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2542 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2543 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2544 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2545 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2546 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2547 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2548 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2549 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2550 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2551 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2552 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2553 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2554 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2555 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2556 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2557 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2558 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2559 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2560 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2561 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2562 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2563 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2564 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2565 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2566 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2567 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2568 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2569 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2570 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2571 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2572 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2573 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2574 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2575 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2576 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2577 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2578 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2579 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2580 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2581 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2582 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2583 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2584 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2585 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2586 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2587 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2588 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2589 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2590 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2591 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2592 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2593 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2594 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2595 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2596 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2597 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2598 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2599 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2600 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2601 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2602 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2603 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2604 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2605 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2606 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2607 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2608 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2609 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2610 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2611 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2612 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2613 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2614 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2615 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2616 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2617 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2618 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2619 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2620 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2621 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2622 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2623 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2624 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2625 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2626 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2627 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2628 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2629 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2630 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2631 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2632 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2633 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2634 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2635 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2636 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2637 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2638 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2639 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2640 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2641 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2642 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2643 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2644 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2645 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2646 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2647 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2648 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2649 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2650 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2651 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2652 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2653 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2654 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2655 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2656 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2657 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2658 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2659 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2660 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2661 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2662 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2663 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2664 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2665 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2666 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2667 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2668 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2669 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2670 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2671 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2672 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2673 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2674 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2675 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2676 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2677 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2678 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2679 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2680 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2681 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2682 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2683 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2684 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2685 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2686 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2687 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2688 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2689 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2690 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2691 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2692 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2693 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2694 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2695 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2696 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2697 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2698 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2699 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2700 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2701 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2702 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2703 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2704 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2705 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2706 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2707 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2708 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2709 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2710 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2711 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2712 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2713 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2714 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2715 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2716 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2717 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2718 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2719 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2720 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2721 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2722 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2723 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2724 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2725 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2726 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2727 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2728 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2729 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2730 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2731 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2732 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2733 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2734 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2735 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2736 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2737 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2738 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2739 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2740 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2741 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2742 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2743 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2744 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2745 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2746 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2747 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2748 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2749 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2750 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2751 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2752 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2753 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2754 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2755 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2756 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2757 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2758 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2759 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2760 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2761 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2762 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2763 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2764 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2765 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2766 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2767 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2768 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2769 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2770 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2771 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2772 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2773 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2774 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2775 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2776 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2777 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2778 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2779 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2780 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2781 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2782 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2783 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2784 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2785 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2786 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2787 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2788 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2789 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2790 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2791 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2792 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2793 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2794 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2795 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2796 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2797 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2798 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2799 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2800 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2801 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2802 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2803 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2804 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2805 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2806 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2807 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2808 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2809 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2810 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2811 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2812 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2813 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2814 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2815 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2816 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2817 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2818 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2819 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2820 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2821 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2822 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2823 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2824 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2825 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2826 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2827 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2828 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2829 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2830 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2831 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2832 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2833 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2834 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2835 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2836 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2837 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2838 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2839 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2840 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2841 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2842 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2843 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2844 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2845 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2846 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2847 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2848 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2849 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2850 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2851 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2852 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2853 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2854 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2855 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2856 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2857 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2858 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2859 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2860 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2861 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2862 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2863 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2864 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2865 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2866 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2867 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2868 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2869 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2870 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2871 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2872 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2873 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2874 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2875 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2876 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2877 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2878 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2879 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2880 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2881 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2882 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2883 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2884 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2885 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2886 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2887 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2888 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2889 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2890 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2891 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2892 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2893 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2894 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2895 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2896 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2897 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2898 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2899 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2900 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2901 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2902 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2903 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2904 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2905 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2906 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2907 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2908 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2909 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2910 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2911 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2912 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2913 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2914 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2915 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2916 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2917 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2918 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2919 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2920 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2921 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2922 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2923 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2924 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2925 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2926 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2927 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2928 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2929 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2930 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2931 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2932 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2933 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2934 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2935 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2936 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2937 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2938 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2939 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2940 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2941 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2942 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2943 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2944 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2945 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2946 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2947 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2948 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2949 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2950 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2951 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2952 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2953 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2954 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2955 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2956 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2957 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2958 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2959 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2960 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2961 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2962 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2963 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2964 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2965 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2966 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2967 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2968 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2969 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2970 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2971 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2972 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2973 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2974 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2975 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2976 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2977 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2978 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2979 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2980 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2981 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2982 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2983 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2984 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2985 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2986 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2987 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2988 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2989 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2990 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2991 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2992 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2993 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2994 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2995 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2996 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2997 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2998 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 2999 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3000 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3002 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3003 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3016 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3021 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3022 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3023 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3132 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3133 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3134 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3135 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3136 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3137 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3138 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3139 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3140 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3141 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3142 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3143 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3144 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3145 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3146 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3147 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3159 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3160 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3161 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3162 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3163 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3199 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3200 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3201 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3202 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3203 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3204 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3205 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3206 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3207 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3208 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3209 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3210 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3211 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3212 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3213 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3214 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3215 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3216 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3217 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3218 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3219 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3220 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3221 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3222 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3223 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3224 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3225 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3226 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3227 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3228 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3229 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3230 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3231 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3232 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3233 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3234 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3235 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3236 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3237 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3238 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3239 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3240 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3241 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3242 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3243 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3244 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3245 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3246 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3247 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3248 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3249 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3250 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3251 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3252 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3253 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3254 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3255 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3256 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3257 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3258 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3259 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3260 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3261 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3262 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3263 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3264 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3265 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3266 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3267 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3268 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3269 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3270 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3271 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3272 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3273 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3274 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3275 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3276 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3277 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3278 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3279 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3280 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3281 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3282 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3283 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3284 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3285 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3286 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3287 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3288 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3289 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3290 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3291 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3292 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3293 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3294 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3295 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3296 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3297 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3298 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3299 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3300 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3301 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3302 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3303 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3304 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3305 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3306 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3307 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3308 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3309 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3310 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3311 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3312 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3313 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3314 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3315 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3316 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3317 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3318 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3319 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3320 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3321 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3322 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3323 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3324 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3325 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3326 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3327 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3328 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3329 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3330 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3331 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3332 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3333 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3334 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3335 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3336 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3337 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3338 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3339 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3340 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3341 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3342 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3343 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3344 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3345 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3346 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3347 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3348 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3349 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3350 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3351 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3352 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3353 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3354 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3355 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3356 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3357 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3358 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3359 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3360 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3361 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3362 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3363 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3364 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3365 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3366 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3367 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3368 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3369 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3370 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3371 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3372 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3373 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3374 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3375 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3376 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3377 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3378 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3379 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3380 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3381 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3382 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3383 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3384 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3385 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3386 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3387 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3388 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3389 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3390 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3391 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3392 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3393 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3394 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3395 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3396 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3397 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3398 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3399 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3400 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3401 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3402 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3403 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3404 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3405 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3406 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3407 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3408 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3409 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0008 / 0010 | BATCH 3410 / 3410 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0001 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0002 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0003 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0004 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0005 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0006 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0007 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0008 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0009 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0010 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0011 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0012 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0013 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0014 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0015 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0016 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0017 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0018 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0019 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0020 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0021 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0022 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0023 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0024 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0025 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0026 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0027 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0028 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0029 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0030 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0031 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0032 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0033 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0034 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0035 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0036 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0037 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0038 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0039 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0040 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0041 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0042 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0043 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0044 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0045 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0046 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0047 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0048 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0049 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0050 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0051 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0052 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0053 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0054 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0055 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0056 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0057 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0058 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0059 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0060 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0061 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0062 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0063 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0064 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0065 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0066 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0067 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0068 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0069 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0070 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0071 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0072 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0073 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0074 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0075 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0076 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0077 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0078 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0079 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0080 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0081 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0082 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0083 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0084 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0085 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0086 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0087 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0088 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0089 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0090 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0091 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0092 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0093 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0094 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0095 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0096 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0097 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0098 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0099 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0100 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0101 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0102 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0103 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0104 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0105 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0106 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0107 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0108 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0109 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0110 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0111 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0112 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0113 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0114 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0115 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0116 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0117 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0118 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0119 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0120 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0121 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0122 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0123 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0124 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0125 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0126 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0127 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0128 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0129 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0130 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0131 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0132 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0133 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0134 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0135 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0136 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0137 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0138 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0139 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0140 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0141 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0142 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0143 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0144 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0145 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0146 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0147 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0148 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0149 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0150 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0151 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0152 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0153 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0154 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0155 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0156 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0157 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0158 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0159 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0160 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0161 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0162 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0163 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0164 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0165 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0166 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0167 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0168 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0169 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0170 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0171 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0172 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0173 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0174 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0175 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0176 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0177 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0178 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0179 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0180 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0181 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0182 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0183 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0184 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0185 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0186 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0187 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0188 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0189 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0190 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0191 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0192 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0193 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0194 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0195 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0196 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0197 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0198 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0199 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0200 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0201 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0202 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0203 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0204 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0205 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0206 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0207 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0208 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0209 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0210 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0211 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0212 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0213 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0214 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0215 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0216 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0217 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0218 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0219 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0220 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0221 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0222 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0223 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0224 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0225 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0226 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0227 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0228 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0229 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0230 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0231 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0232 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0233 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0234 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0235 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0236 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0237 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0238 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0239 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0240 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0241 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0242 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0243 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0244 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0245 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0246 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0247 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0248 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0249 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0250 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0251 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0252 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0253 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0254 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0255 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0256 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0257 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0258 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0259 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0260 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0261 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0262 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0263 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0264 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0265 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0266 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0267 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0268 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0269 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0270 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0271 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0272 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0273 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0274 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0275 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0276 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0277 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0278 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0279 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0280 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0281 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0282 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0283 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0284 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0285 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0286 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0287 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0288 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0289 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0290 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0291 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0292 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0293 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0294 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0295 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0296 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0297 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0298 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0299 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0300 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0301 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0302 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0303 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0304 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0305 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0306 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0307 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0308 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0309 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0310 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0311 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0312 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0313 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0314 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0315 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0316 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0317 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0318 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0319 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0320 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0321 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0322 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0323 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0324 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0325 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0326 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0327 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0328 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0329 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0330 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0331 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0332 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0333 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0334 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0335 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0336 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0337 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0338 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0339 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0340 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0341 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0342 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0343 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0344 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0345 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0346 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0347 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0348 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0349 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0350 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0351 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0352 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0353 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0354 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0355 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0356 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0357 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0358 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0359 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0360 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0361 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0362 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0363 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0364 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0365 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0366 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0367 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0368 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0369 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0370 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0371 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0372 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0373 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0374 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0375 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0376 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0377 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0378 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0379 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0380 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0381 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0382 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0383 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0384 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0385 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0386 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0387 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0388 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0389 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0390 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0391 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0392 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0393 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0394 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0395 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0396 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0397 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0398 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0399 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0400 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0401 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0402 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0403 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0404 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0405 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0406 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0407 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0408 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0409 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0410 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0411 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0412 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0413 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0414 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0415 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0416 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0417 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0418 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0419 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0420 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0421 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0422 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0423 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0424 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0425 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0426 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0427 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0428 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0429 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0430 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0431 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0432 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0433 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0434 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0435 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0436 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0437 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0438 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0439 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0440 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0441 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0442 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0443 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0444 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0445 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0446 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0447 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0448 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0449 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0450 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0451 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0452 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0453 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0454 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0455 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0456 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0457 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0458 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0459 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0460 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0461 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0462 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0463 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0464 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0465 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0466 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0467 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0468 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0469 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0470 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0471 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0472 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0473 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0474 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0475 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0476 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0477 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0478 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0479 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0480 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0481 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0482 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0483 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0484 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0485 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0486 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0487 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0488 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0489 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0490 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0491 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0492 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0493 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0494 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0495 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0496 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0497 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0498 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0499 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0500 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0501 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0502 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0503 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0504 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0505 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0506 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0507 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0508 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0509 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0510 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0511 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0512 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0513 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0514 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0515 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0516 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0517 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0518 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0519 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0520 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0521 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0522 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0523 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0524 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0525 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0526 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0527 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0528 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0529 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0530 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0531 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0532 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0533 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0534 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0535 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0536 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0537 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0538 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0539 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0540 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0541 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0542 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0543 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0544 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0545 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0546 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0547 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0548 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0549 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0550 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0551 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0552 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0553 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0554 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0555 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0556 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0557 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0558 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0559 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0560 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0561 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0562 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0563 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0564 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0565 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0566 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0567 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0568 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0569 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0570 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0571 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0572 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0573 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0574 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0575 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0576 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0577 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0578 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0579 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0580 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0581 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0582 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0583 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0584 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0585 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0586 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0587 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0588 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0589 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0590 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0591 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0592 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0593 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0594 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0595 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0596 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0597 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0598 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0599 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0600 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0601 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0602 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0603 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0604 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0605 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0606 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0607 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0608 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0609 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0610 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0611 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0612 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0613 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0614 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0615 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0616 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0617 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0618 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0619 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0620 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0621 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0622 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0623 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0624 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0625 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0626 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0627 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0628 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0629 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0630 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0631 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0632 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0633 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0634 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0635 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0636 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0637 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0638 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0639 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0640 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0641 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0642 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0643 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0644 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0645 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0646 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0647 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0648 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0649 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0650 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0651 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0652 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0653 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0654 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0655 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0656 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0657 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0658 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0659 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0660 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0661 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0662 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0663 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0664 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0665 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0666 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0667 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0668 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0669 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0670 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0671 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0672 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0673 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0674 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0675 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0676 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0677 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0678 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0679 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0680 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0681 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0682 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0683 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0684 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0685 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0686 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0687 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0688 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0689 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0690 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0691 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0692 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0693 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0694 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0695 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0696 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0697 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0698 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0699 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0700 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0701 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0702 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0703 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0704 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0705 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0706 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0707 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0708 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0709 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0710 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0711 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0712 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0713 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0714 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0715 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0716 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0717 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0718 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0719 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0720 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0721 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0722 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0723 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0724 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0725 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0726 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0727 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0728 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0729 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0730 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0731 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0732 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0733 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0734 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0735 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0736 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0737 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0738 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0739 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0740 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0741 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0742 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0743 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0744 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0745 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0746 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0747 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0748 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0749 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0750 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0751 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0752 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0753 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0754 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0755 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0756 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0757 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0758 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0759 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0760 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0761 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0762 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0763 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0764 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0765 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0766 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0767 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0768 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0769 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0770 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0771 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0772 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0773 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0774 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0775 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0776 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0777 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0778 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0779 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0780 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0781 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0782 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0783 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0784 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0785 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0786 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0787 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0788 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0789 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0790 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0791 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0792 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0793 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0794 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0795 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0796 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0797 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0798 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0799 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0800 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0801 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0802 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0803 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0804 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0805 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0806 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0807 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0808 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0809 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0810 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0811 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0812 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0813 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0814 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0815 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0816 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0817 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0818 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0819 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0820 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0821 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0822 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0823 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0824 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0825 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0826 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0827 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0828 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0829 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0830 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0831 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0832 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0833 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0834 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0835 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0836 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0837 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0838 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0839 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0840 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0841 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0842 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0843 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0844 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0845 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0846 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0847 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0848 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0849 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0850 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0851 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0852 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0853 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0854 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0855 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0856 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0857 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0858 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0859 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0860 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0861 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0862 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0863 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0864 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0865 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0866 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0867 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0868 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0869 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0870 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0871 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0872 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0873 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0874 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0875 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0876 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0877 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0878 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0879 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0880 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0881 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0882 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0883 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0884 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0885 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0886 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0887 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0888 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0889 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0890 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0891 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0892 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0893 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0894 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0895 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0896 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0897 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0898 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0899 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0900 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0901 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0902 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0903 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0904 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0905 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0906 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0907 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0908 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0909 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0910 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0911 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0912 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0913 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0914 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0915 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0916 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0917 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0918 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0919 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0920 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0921 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0922 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0923 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0924 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0925 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0926 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0927 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0928 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0929 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0930 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0931 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0932 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0933 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0934 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0935 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0936 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0937 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0938 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0939 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0940 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0941 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0942 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0943 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0944 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0945 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0946 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0947 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0948 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0949 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0950 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0951 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0952 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0953 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0954 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0955 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0956 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0957 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0958 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0959 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0960 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0961 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0962 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0963 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0964 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0965 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0966 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0967 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0968 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0969 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0970 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0971 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0972 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0973 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0008 / 0010 | BATCH 0974 / 0974 | LOSS 0.0012\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0001 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0002 / 3410 | LOSS 0.0006\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0003 / 3410 | LOSS 0.0006\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0004 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0005 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0006 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0007 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0008 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0009 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0010 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0011 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0012 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0013 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0014 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0015 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0016 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0017 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0018 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0019 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0020 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0021 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0022 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0023 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0024 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0025 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0026 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0027 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0028 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0029 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0030 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0031 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0032 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0033 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0034 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0035 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0036 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0037 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0038 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0039 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0040 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0041 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0042 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0043 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0044 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0045 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0046 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0047 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0048 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0049 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0050 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0051 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0052 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0053 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0054 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0055 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0056 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0057 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0058 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0059 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0060 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0061 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0062 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0063 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0064 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0065 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0066 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0067 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0068 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0069 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0070 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0071 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0072 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0073 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0074 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0075 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0076 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0077 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0078 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0079 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0080 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0081 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0082 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0083 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0084 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0085 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0086 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0087 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0088 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0089 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0090 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0091 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0092 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0093 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0094 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0095 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0096 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0097 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0098 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0099 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0100 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0101 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0102 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0103 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0104 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0105 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0106 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0107 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0108 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0109 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0110 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0111 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0112 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0113 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0114 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0115 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0116 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0117 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0118 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0119 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0120 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0121 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0122 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0123 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0124 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0125 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0126 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0127 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0128 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0129 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0130 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0131 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0132 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0133 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0134 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0135 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0136 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0137 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0138 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0139 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0140 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0141 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0142 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0143 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0144 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0145 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0146 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0147 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0148 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0149 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0150 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0151 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0152 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0153 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0154 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0155 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0156 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0157 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0158 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0159 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0160 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0161 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0162 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0163 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0164 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0165 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0166 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0167 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0168 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0169 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0170 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0171 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0172 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0173 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0174 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0175 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0176 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0177 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0178 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0179 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0180 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0181 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0182 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0183 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0184 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0185 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0186 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0187 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0188 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0189 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0190 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0191 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0192 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0193 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0194 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0195 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0196 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0197 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0198 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0199 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0276 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0277 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0278 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0279 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0280 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0281 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0282 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0283 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0284 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0285 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0286 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0287 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0288 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0289 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0290 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0291 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0292 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0293 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0294 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0295 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0296 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0297 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0298 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0299 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0300 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0301 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0302 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0303 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0304 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0305 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0306 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0307 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0308 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0309 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0310 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0311 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0312 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0313 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0314 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0315 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0316 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0317 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0318 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0319 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0320 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0321 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0322 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0323 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0324 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0325 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0326 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0327 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0328 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0329 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0330 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0331 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0332 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0333 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0334 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0335 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0336 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0337 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0338 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0339 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0340 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0341 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0342 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0343 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0344 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0345 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0346 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0347 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0348 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0349 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0350 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0351 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0352 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0353 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0354 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0355 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0356 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0357 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0358 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0359 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0360 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0361 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0362 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0363 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0364 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0365 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0366 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0367 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0368 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0369 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0370 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0371 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0372 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0373 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0374 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0375 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0376 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0377 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0378 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0379 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0380 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0381 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0382 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0383 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0384 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0385 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0386 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0387 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0388 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0389 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0390 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0391 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0392 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0393 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0394 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0395 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0396 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0397 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0398 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0399 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0400 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0401 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0402 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0403 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0404 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0405 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0406 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0407 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0410 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0411 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0412 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0413 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0414 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0415 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0416 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0417 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0418 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0419 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0420 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0421 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0422 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0423 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0424 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0425 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0426 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0427 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0428 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0429 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0430 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0431 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0432 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0433 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0434 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0435 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0436 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0437 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0438 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0439 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0440 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0441 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0442 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0443 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0444 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0445 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0446 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0447 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0448 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0449 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0450 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0451 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0452 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0453 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0454 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0455 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0456 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0457 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0458 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0459 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0460 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0461 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0462 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0463 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0464 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0465 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0466 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0467 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0468 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0469 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0470 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0471 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0472 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0473 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0474 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0475 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0476 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0477 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0478 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0479 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0480 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0481 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0482 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0483 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0484 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0485 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0486 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0487 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0488 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0489 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0490 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0491 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0492 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0493 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0494 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0495 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0496 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0497 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0498 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0499 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0500 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0501 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0502 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0503 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0504 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0505 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0506 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0507 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0508 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0509 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0510 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0511 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0512 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0513 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0514 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0515 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0516 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0517 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0518 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0519 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0520 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0521 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0522 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0523 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0524 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0525 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0526 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0527 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0528 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0529 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0530 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0531 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0532 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0533 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0534 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0535 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0536 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0537 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0538 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0539 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0540 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0541 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0542 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0543 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0544 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0545 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0546 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0547 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0548 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0549 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0550 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0551 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0552 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0553 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0554 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0555 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0556 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0557 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0558 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0559 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0560 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0561 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0562 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0563 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0564 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0565 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0566 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0567 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0568 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0569 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0570 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0571 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0572 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0573 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0574 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0575 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0576 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0577 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0578 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0579 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0580 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0581 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0582 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0583 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0584 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0585 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0586 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0587 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0588 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0589 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0590 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0591 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0592 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0593 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0594 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0595 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0596 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0597 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0598 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0599 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0600 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0601 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0602 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0603 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0604 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0605 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0606 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0607 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0608 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0609 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0610 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0611 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0612 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0613 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0614 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0615 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0616 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0617 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0618 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0619 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0620 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0621 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0622 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0623 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0624 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0625 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0626 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0627 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0628 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0629 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0630 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0631 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0632 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0633 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0634 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0635 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0636 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0637 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0638 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0639 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0640 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0641 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0642 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0643 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0644 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0645 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0646 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0647 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0648 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0649 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0650 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0651 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0652 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0653 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0654 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0655 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0656 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0657 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0658 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0659 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0660 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0661 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0662 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0663 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0664 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0665 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0666 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0667 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0668 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0669 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0670 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0671 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0672 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0673 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0674 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0675 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0676 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0677 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0678 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0679 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0680 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0681 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0682 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0683 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0684 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0685 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0686 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0687 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0688 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0689 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0690 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0691 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0692 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0693 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0694 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0695 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0696 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0697 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0698 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0699 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0700 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0701 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0702 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0703 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0704 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0705 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0706 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0707 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0708 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0709 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0710 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0711 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0712 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0713 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0714 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0715 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0716 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0717 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0718 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0719 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0720 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0721 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0722 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0723 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0724 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0725 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0726 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0727 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0728 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0729 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0730 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0731 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0732 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0733 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0734 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0735 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0736 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0737 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0738 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0739 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0740 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0741 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0742 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0743 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0744 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0745 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0746 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0747 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0748 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0749 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0750 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0751 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0752 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0753 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0754 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0755 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0756 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0757 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0758 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0759 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0760 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0761 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0762 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0763 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0764 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0765 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0766 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0767 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0768 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0769 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0770 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0771 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0772 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0773 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0774 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0775 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0776 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0777 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0778 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0779 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0780 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0781 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0782 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0783 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0784 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0785 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0786 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0787 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0788 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0789 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0790 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0791 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0792 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0793 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0794 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0795 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0796 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0797 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0798 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0799 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0800 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0801 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0802 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0803 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0804 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0805 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0806 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0807 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0808 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0809 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0810 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0811 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0812 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0813 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0814 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0815 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0816 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0817 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0818 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0819 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0820 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0821 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0822 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0823 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0824 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0825 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0826 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0827 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0828 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0829 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0830 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0831 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0832 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0833 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0834 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0835 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0836 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0837 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0838 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0839 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0840 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0841 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0842 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0843 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0844 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0845 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0846 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0847 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0848 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0849 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0850 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0851 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0852 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0853 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0854 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0855 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0856 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0857 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0858 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0859 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0860 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0861 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0862 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0863 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0864 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0865 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0866 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0867 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0868 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0869 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0870 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0871 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0872 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0873 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0874 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0875 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0876 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0877 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0878 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0879 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0880 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0881 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0882 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0883 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0884 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0885 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0886 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0887 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0888 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0889 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0890 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0891 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0892 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0893 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0894 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0895 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0896 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0897 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0898 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0899 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0900 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0901 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0902 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0903 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0904 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0905 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0906 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0907 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0908 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0909 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0910 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0911 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0912 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0913 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0914 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0915 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0916 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0917 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0918 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0919 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0920 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0921 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0922 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0923 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0924 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0925 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0926 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0927 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0928 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0929 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0930 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0931 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0932 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0933 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0934 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0935 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0936 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0937 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0938 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0939 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0940 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0941 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0942 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0943 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0944 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0945 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0946 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0947 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0948 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0949 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0950 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0951 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0952 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0953 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0954 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0955 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0956 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0957 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0958 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0959 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0960 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0961 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0962 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0963 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0964 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0965 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0966 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0967 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0968 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0969 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0970 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0971 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0972 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0973 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0974 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0975 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0976 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0977 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0978 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0979 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0980 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0981 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0982 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0983 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0984 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0985 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0986 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0987 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0988 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0989 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0990 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0991 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0992 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0993 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0994 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0995 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0996 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0997 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0998 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 0999 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1000 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1002 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1003 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1016 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1021 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1022 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1023 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1132 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1133 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1134 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1135 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1136 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1137 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1138 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1139 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1140 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1141 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1142 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1143 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1144 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1145 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1146 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1147 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1159 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1160 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1161 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1162 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1163 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1199 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1200 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1201 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1202 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1203 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1204 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1205 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1206 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1207 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1208 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1209 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1210 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1211 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1212 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1213 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1214 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1215 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1216 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1217 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1218 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1219 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1220 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1221 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1222 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1223 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1224 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1225 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1226 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1227 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1228 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1229 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1230 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1231 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1232 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1233 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1234 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1235 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1236 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1237 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1238 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1239 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1240 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1241 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1242 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1243 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1244 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1245 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1246 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1247 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1248 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1249 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1250 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1251 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1252 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1253 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1254 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1255 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1256 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1257 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1258 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1259 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1260 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1261 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1262 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1263 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1264 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1265 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1266 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1267 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1268 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1269 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1270 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1271 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1272 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1273 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1274 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1275 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1276 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1277 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1278 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1279 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1280 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1281 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1282 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1283 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1284 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1285 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1286 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1287 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1288 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1289 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1290 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1291 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1292 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1293 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1294 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1295 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1296 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1297 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1298 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1299 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1300 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1301 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1302 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1303 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1304 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1305 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1306 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1307 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1308 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1309 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1310 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1311 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1312 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1313 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1314 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1315 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1316 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1317 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1318 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1319 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1320 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1321 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1322 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1323 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1324 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1325 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1326 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1327 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1328 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1329 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1330 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1331 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1332 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1333 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1334 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1335 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1336 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1337 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1338 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1339 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1340 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1341 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1342 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1343 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1344 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1345 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1346 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1347 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1348 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1349 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1350 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1351 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1352 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1353 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1354 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1355 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1356 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1357 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1358 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1359 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1360 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1361 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1362 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1363 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1364 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1365 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1366 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1367 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1368 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1369 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1370 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1371 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1372 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1373 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1374 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1375 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1376 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1377 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1378 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1379 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1380 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1381 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1382 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1383 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1384 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1385 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1386 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1387 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1388 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1389 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1390 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1391 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1392 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1393 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1394 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1395 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1396 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1397 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1398 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1399 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1400 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1401 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1402 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1403 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1404 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1405 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1406 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1407 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1408 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1409 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1410 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1411 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1412 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1413 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1414 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1415 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1416 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1417 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1418 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1419 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1420 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1421 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1422 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1423 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1424 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1425 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1426 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1427 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1428 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1429 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1430 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1431 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1432 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1433 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1434 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1435 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1436 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1437 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1438 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1439 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1440 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1441 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1442 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1443 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1444 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1445 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1446 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1447 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1448 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1449 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1450 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1451 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1452 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1453 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1454 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1455 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1456 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1457 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1458 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1459 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1460 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1461 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1462 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1463 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1464 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1465 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1466 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1467 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1468 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1469 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1470 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1471 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1472 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1473 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1474 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1475 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1476 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1477 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1478 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1479 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1480 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1481 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1482 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1483 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1484 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1485 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1486 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1487 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1488 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1489 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1490 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1491 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1492 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1493 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1494 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1495 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1496 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1497 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1498 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1499 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1500 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1501 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1502 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1503 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1504 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1505 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1506 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1507 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1508 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1509 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1510 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1511 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1512 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1513 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1514 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1515 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1516 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1517 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1518 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1519 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1520 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1521 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1522 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1523 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1524 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1525 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1526 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1527 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1528 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1529 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1530 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1531 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1532 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1533 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1534 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1535 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1536 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1537 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1538 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1539 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1540 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1541 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1542 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1543 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1544 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1545 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1546 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1547 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1548 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1549 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1550 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1551 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1552 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1553 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1554 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1555 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1556 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1557 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1558 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1559 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1560 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1561 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1562 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1563 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1564 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1565 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1566 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1567 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1568 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1569 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1570 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1571 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1572 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1573 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1574 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1575 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1576 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1577 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1578 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1579 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1580 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1581 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1582 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1583 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1584 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1585 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1586 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1587 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1588 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1589 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1590 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1591 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1592 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1593 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1594 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1595 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1596 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1597 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1598 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1599 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1600 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1601 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1602 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1603 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1604 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1605 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1606 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1607 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1608 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1609 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1610 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1611 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1612 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1613 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1614 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1615 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1616 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1617 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1618 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1619 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1620 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1621 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1622 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1623 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1624 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1625 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1626 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1627 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1628 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1629 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1630 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1631 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1632 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1633 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1634 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1635 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1636 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1637 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1638 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1639 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1640 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1641 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1642 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1643 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1644 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1645 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1646 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1647 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1648 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1649 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1650 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1651 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1652 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1653 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1654 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1655 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1656 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1657 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1658 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1659 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1660 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1661 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1662 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1663 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1664 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1665 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1666 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1667 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1668 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1669 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1670 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1671 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1672 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1673 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1674 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1675 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1676 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1677 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1678 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1679 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1680 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1681 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1682 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1683 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1684 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1685 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1686 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1687 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1688 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1689 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1690 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1691 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1692 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1693 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1694 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1695 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1696 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1697 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1698 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1699 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1700 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1701 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1702 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1703 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1704 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1705 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1706 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1707 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1708 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1709 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1710 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1711 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1712 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1713 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1714 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1715 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1716 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1717 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1718 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1719 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1720 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1721 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1722 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1723 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1724 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1725 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1726 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1727 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1728 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1729 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1730 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1731 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1732 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1733 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1734 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1735 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1736 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1737 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1738 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1739 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1740 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1741 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1742 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1743 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1744 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1745 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1746 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1747 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1748 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1749 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1750 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1751 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1752 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1753 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1754 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1755 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1756 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1757 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1758 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1759 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1760 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1761 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1762 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1763 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1764 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1765 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1766 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1767 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1768 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1769 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1770 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1771 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1772 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1773 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1774 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1775 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1776 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1777 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1778 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1779 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1780 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1781 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1782 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1783 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1784 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1785 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1786 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1787 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1788 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1789 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1790 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1791 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1792 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1793 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1794 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1795 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1796 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1797 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1798 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1799 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1800 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1801 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1802 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1803 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1804 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1805 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1806 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1807 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1808 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1809 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1810 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1811 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1812 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1813 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1814 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1815 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1816 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1817 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1818 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1819 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1820 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1821 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1822 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1823 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1824 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1825 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1826 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1827 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1828 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1829 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1830 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1831 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1832 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1833 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1834 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1835 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1836 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1837 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1838 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1839 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1840 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1841 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1842 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1843 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1844 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1845 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1846 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1847 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1848 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1849 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1850 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1851 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1852 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1853 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1854 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1855 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1856 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1857 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1858 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1859 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1860 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1861 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1862 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1863 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1864 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1865 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1866 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1867 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1868 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1869 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1870 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1871 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1872 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1873 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1874 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1875 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1876 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1877 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1878 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1879 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1880 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1881 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1882 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1883 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1884 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1885 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1886 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1887 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1888 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1889 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1890 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1891 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1892 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1893 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1894 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1895 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1896 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1897 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1898 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1899 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1900 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1901 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1902 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1903 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1904 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1905 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1906 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1907 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1908 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1909 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1910 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1911 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1912 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1913 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1914 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1915 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1916 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1917 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1918 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1919 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1920 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1921 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1922 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1923 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1924 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1925 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1926 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1927 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1928 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1929 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1930 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1931 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1932 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1933 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1934 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1935 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1936 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1937 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1938 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1939 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1940 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1941 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1942 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1943 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1944 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1945 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1946 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1947 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1948 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1949 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1950 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1951 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1952 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1953 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1954 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1955 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1956 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1957 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1958 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1959 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1960 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1961 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1962 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1963 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1964 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1965 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1966 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1967 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1968 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1969 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1970 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1971 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1972 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1973 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1974 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1975 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1976 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1977 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1978 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1979 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1980 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1981 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1982 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1983 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1984 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1985 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1986 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1987 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1988 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1989 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1990 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1991 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1992 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1993 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1994 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1995 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1996 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1997 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1998 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 1999 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2000 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2002 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2003 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2016 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2021 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2022 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2023 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2111 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2112 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2113 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2114 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2115 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2116 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2117 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2118 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2119 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2120 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2121 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2122 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2123 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2124 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2125 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2126 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2127 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2128 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2129 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2130 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2131 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2132 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2133 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2134 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2135 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2136 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2137 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2138 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2139 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2140 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2141 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2142 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2143 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2144 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2145 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2146 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2147 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2148 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2149 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2150 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2151 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2152 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2153 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2154 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2155 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2156 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2157 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2158 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2159 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2160 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2161 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2162 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2163 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2164 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2165 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2166 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2167 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2168 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2169 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2170 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2171 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2172 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2173 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2174 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2175 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2176 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2177 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2178 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2179 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2180 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2181 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2182 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2183 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2184 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2185 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2186 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2187 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2188 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2189 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2190 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2191 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2192 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2193 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2194 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2195 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2196 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2197 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2198 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2199 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2200 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2201 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2202 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2203 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2204 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2205 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2206 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2207 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2208 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2209 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2210 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2211 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2212 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2213 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2214 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2215 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2216 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2217 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2218 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2219 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2220 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2221 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2222 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2223 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2224 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2225 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2226 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2227 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2228 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2229 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2230 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2231 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2232 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2233 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2234 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2235 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2236 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2237 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2238 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2239 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2240 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2241 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2242 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2243 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2244 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2245 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2246 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2247 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2248 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2249 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2250 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2251 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2252 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2253 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2254 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2255 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2256 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2257 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2258 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2259 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2260 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2261 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2262 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2263 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2264 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2265 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2266 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2267 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2268 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2269 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2270 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2271 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2272 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2273 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2274 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2275 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2276 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2277 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2278 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2279 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2280 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2281 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2282 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2283 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2284 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2285 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2286 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2287 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2288 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2289 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2290 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2291 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2292 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2293 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2294 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2295 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2296 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2297 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2298 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2299 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2300 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2301 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2302 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2303 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2304 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2305 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2306 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2307 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2308 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2309 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2310 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2311 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2312 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2313 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2314 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2315 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2316 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2317 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2318 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2319 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2320 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2321 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2322 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2323 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2324 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2325 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2326 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2327 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2328 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2329 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2330 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2331 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2332 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2333 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2334 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2335 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2336 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2337 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2338 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2339 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2340 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2341 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2342 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2343 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2344 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2345 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2346 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2347 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2348 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2349 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2350 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2351 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2352 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2353 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2354 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2355 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2356 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2357 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2358 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2359 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2360 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2361 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2362 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2363 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2364 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2365 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2366 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2367 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2368 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2369 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2370 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2371 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2372 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2373 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2374 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2375 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2376 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2377 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2378 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2379 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2380 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2381 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2382 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2383 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2384 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2385 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2386 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2387 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2388 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2389 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2390 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2391 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2392 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2393 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2394 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2395 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2396 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2397 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2398 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2399 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2400 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2401 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2402 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2403 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2404 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2405 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2406 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2407 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2408 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2409 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2410 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2411 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2412 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2413 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2414 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2415 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2416 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2417 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2418 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2419 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2420 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2421 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2422 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2423 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2424 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2425 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2426 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2427 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2428 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2429 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2430 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2431 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2432 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2433 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2434 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2435 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2436 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2437 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2438 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2439 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2440 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2441 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2442 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2443 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2444 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2445 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2446 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2447 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2448 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2449 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2450 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2451 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2452 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2453 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2454 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2455 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2456 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2457 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2458 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2459 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2460 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2461 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2462 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2463 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2464 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2465 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2466 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2467 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2468 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2469 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2470 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2471 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2472 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2473 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2474 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2475 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2476 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2477 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2478 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2479 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2480 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2481 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2482 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2483 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2484 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2485 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2486 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2487 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2488 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2489 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2490 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2491 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2492 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2493 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2494 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2495 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2496 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2497 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2498 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2499 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2500 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2501 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2502 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2503 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2504 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2505 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2506 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2507 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2508 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2509 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2510 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2511 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2512 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2513 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2514 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2515 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2516 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2517 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2518 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2519 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2520 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2521 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2522 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2523 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2524 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2525 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2526 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2527 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2528 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2529 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2530 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2531 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2532 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2533 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2534 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2535 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2536 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2537 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2538 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2539 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2540 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2541 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2542 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2543 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2544 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2545 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2546 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2547 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2548 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2549 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2550 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2551 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2552 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2553 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2554 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2555 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2556 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2557 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2558 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2559 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2560 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2561 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2562 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2563 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2564 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2565 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2566 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2567 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2568 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2569 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2570 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2571 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2572 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2573 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2574 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2575 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2576 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2577 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2578 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2579 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2580 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2581 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2582 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2583 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2584 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2585 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2586 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2587 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2588 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2589 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2590 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2591 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2592 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2593 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2594 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2595 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2596 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2597 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2598 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2599 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2600 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2601 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2602 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2603 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2604 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2605 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2606 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2607 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2608 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2609 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2610 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2611 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2612 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2613 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2614 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2615 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2616 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2617 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2618 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2619 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2620 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2621 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2622 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2623 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2624 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2625 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2626 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2627 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2628 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2629 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2630 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2631 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2632 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2633 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2634 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2635 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2636 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2637 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2638 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2639 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2640 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2641 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2642 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2643 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2644 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2645 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2646 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2647 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2648 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2649 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2650 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2651 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2652 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2653 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2654 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2655 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2656 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2657 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2658 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2659 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2660 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2661 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2662 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2663 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2664 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2665 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2666 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2667 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2668 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2669 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2670 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2671 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2672 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2673 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2674 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2675 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2676 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2677 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2678 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2679 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2680 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2681 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2682 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2683 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2684 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2685 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2686 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2687 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2688 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2689 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2690 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2691 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2692 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2693 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2694 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2695 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2696 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2697 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2698 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2699 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2700 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2701 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2702 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2703 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2704 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2705 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2706 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2707 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2708 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2709 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2710 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2711 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2712 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2713 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2714 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2715 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2716 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2717 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2718 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2719 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2720 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2721 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2722 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2723 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2724 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2725 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2726 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2727 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2728 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2729 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2730 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2731 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2732 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2733 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2734 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2735 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2736 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2737 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2738 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2739 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2740 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2741 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2742 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2743 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2744 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2745 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2746 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2747 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2748 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2749 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2750 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2751 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2752 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2753 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2754 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2755 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2756 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2757 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2758 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2759 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2760 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2761 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2762 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2763 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2764 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2765 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2766 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2767 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2768 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2769 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2770 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2771 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2772 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2773 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2774 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2775 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2776 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2777 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2778 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2779 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2780 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2781 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2782 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2783 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2784 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2785 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2786 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2787 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2788 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2789 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2790 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2791 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2792 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2793 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2794 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2795 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2796 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2797 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2798 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2799 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2800 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2801 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2802 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2803 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2804 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2805 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2806 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2807 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2808 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2809 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2810 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2811 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2812 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2813 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2814 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2815 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2816 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2817 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2818 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2819 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2820 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2821 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2822 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2823 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2824 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2825 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2826 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2827 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2828 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2829 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2830 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2831 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2832 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2833 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2834 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2835 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2836 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2837 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2838 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2839 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2840 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2841 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2842 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2843 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2844 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2845 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2846 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2847 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2848 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2849 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2850 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2851 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2852 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2853 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2854 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2855 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2856 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2857 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2858 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2859 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2860 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2861 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2862 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2863 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2864 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2865 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2866 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2867 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2868 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2869 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2870 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2871 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2872 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2873 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2874 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2875 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2876 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2877 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2878 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2879 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2880 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2881 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2882 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2883 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2884 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2885 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2886 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2887 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2888 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2889 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2890 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2891 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2892 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2893 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2894 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2895 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2896 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2897 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2898 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2899 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2900 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2901 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2902 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2903 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2904 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2905 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2906 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2907 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2908 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2909 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2910 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2911 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2912 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2913 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2914 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2915 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2916 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2917 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2918 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2919 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2920 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2921 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2922 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2923 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2924 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2925 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2926 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2927 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2928 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2929 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2930 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2931 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2932 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2933 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2934 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2935 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2936 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2937 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2938 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2939 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2940 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2941 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2942 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2943 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2944 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2945 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2946 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2947 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2948 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2949 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2950 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2951 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2952 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2953 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2954 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2955 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2956 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2957 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2958 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2959 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2960 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2961 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2962 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2963 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2964 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2965 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2966 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2967 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2968 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2969 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2970 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2971 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2972 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2973 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2974 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2975 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2976 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2977 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2978 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2979 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2980 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2981 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2982 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2983 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2984 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2985 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2986 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2987 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2988 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2989 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2990 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2991 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2992 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2993 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2994 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2995 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2996 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2997 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2998 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 2999 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3000 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3001 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3002 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3003 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3004 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3005 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3006 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3007 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3008 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3009 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3010 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3011 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3012 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3013 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3014 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3015 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3016 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3017 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3018 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3019 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3020 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3021 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3022 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3023 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3024 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3025 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3026 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3027 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3028 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3029 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3030 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3031 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3032 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3033 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3034 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3035 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3036 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3037 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3038 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3039 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3040 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3041 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3042 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3043 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3044 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3045 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3046 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3047 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3048 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3049 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3050 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3051 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3052 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3053 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3054 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3055 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3056 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3057 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3058 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3059 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3060 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3061 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3062 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3063 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3064 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3065 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3066 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3067 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3068 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3069 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3070 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3071 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3072 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3073 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3074 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3075 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3076 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3077 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3078 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3079 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3080 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3081 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3082 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3083 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3084 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3085 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3086 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3087 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3088 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3089 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3090 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3091 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3092 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3093 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3094 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3095 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3096 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3097 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3098 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3099 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3100 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3101 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3102 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3103 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3104 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3105 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3106 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3107 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3108 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3109 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3110 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3111 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3112 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3113 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3114 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3115 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3116 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3117 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3118 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3119 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3120 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3121 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3122 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3123 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3124 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3125 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3126 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3127 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3128 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3129 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3130 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3131 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3132 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3133 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3134 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3135 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3136 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3137 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3138 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3139 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3140 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3141 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3142 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3143 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3144 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3145 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3146 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3147 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3148 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3149 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3150 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3151 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3152 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3153 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3154 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3155 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3156 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3157 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3158 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3159 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3160 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3161 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3162 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3163 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3164 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3165 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3166 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3167 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3168 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3169 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3170 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3171 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3172 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3173 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3174 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3175 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3176 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3177 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3178 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3179 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3180 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3181 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3182 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3183 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3184 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3185 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3186 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3187 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3188 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3189 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3190 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3191 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3192 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3193 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3194 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3195 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3196 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3197 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3198 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3199 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3276 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3277 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3278 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3279 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3280 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3281 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3282 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3283 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3284 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3285 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3286 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3287 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3288 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3289 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3290 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3291 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3292 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3293 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3294 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3295 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3296 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3297 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3298 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3299 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3300 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3301 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3302 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3303 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3304 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3305 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3306 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3307 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3308 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3309 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3310 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3311 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3312 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3313 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3314 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3315 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3316 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3317 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3318 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3319 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3320 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3321 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3322 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3323 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3324 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3325 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3326 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3327 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3328 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3329 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3330 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3331 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3332 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3333 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3334 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3335 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3336 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3337 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3338 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3339 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3340 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3341 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3342 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3343 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3344 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3345 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3346 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3347 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3348 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3349 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3350 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3351 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3352 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3353 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3354 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3355 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3356 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3357 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3358 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3359 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3360 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3361 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3362 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3363 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3364 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3365 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3366 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3367 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3368 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3369 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3370 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3371 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3372 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3373 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3374 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3375 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3376 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3377 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3378 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3379 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3380 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3381 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3382 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3383 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3384 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3385 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3386 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3387 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3388 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3389 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3390 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3391 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3392 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3393 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3394 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3395 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3396 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3397 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3398 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3399 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3400 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3401 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3402 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3403 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3404 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3405 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3406 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3407 / 3410 | LOSS 0.0009\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0009 / 0010 | BATCH 3410 / 3410 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0001 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0002 / 0974 | LOSS 0.0006\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0003 / 0974 | LOSS 0.0006\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0004 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0005 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0006 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0007 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0008 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0009 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0010 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0011 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0012 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0013 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0014 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0015 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0016 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0017 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0018 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0019 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0020 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0021 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0022 / 0974 | LOSS 0.0007\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0023 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0024 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0025 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0026 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0027 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0028 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0029 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0030 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0031 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0032 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0033 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0034 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0035 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0036 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0037 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0038 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0039 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0040 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0041 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0042 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0043 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0044 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0045 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0046 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0047 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0048 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0049 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0050 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0051 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0052 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0053 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0054 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0055 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0056 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0057 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0058 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0059 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0060 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0061 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0062 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0063 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0064 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0065 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0066 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0067 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0068 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0069 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0070 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0071 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0072 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0073 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0074 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0075 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0076 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0077 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0078 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0079 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0080 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0081 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0082 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0083 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0084 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0085 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0086 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0087 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0088 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0089 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0090 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0091 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0092 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0093 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0094 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0095 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0096 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0097 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0098 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0099 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0100 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0101 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0102 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0103 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0104 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0105 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0106 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0107 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0108 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0109 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0110 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0111 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0112 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0113 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0114 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0115 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0116 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0117 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0118 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0119 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0120 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0121 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0122 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0123 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0124 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0125 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0126 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0127 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0128 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0129 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0130 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0131 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0132 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0133 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0134 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0135 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0136 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0137 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0138 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0139 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0140 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0141 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0142 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0143 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0144 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0145 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0146 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0147 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0148 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0149 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0150 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0151 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0152 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0153 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0154 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0155 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0156 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0157 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0158 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0159 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0160 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0161 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0162 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0163 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0164 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0165 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0166 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0167 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0168 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0169 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0170 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0171 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0172 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0173 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0174 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0175 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0176 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0177 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0178 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0179 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0180 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0181 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0182 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0183 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0184 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0185 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0186 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0187 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0188 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0189 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0190 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0191 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0192 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0193 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0194 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0195 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0196 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0197 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0198 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0199 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0200 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0201 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0202 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0203 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0204 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0205 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0206 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0207 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0208 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0209 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0210 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0211 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0212 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0213 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0214 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0215 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0216 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0217 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0218 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0219 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0220 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0221 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0222 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0223 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0224 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0225 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0226 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0227 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0228 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0229 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0230 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0231 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0232 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0233 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0234 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0235 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0236 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0237 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0238 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0239 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0240 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0241 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0242 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0243 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0244 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0245 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0246 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0247 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0248 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0249 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0250 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0251 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0252 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0253 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0254 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0255 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0256 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0257 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0258 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0259 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0260 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0261 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0262 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0263 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0264 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0265 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0266 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0267 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0268 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0269 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0270 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0271 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0272 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0273 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0274 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0275 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0276 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0277 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0278 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0279 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0280 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0281 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0282 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0283 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0284 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0285 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0286 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0287 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0288 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0289 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0290 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0291 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0292 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0293 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0294 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0295 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0296 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0297 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0298 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0299 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0300 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0301 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0302 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0303 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0304 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0305 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0306 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0307 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0308 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0309 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0310 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0311 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0312 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0313 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0314 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0315 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0316 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0317 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0318 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0319 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0320 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0321 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0322 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0323 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0324 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0325 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0326 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0327 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0328 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0329 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0330 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0331 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0332 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0333 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0334 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0335 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0336 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0337 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0338 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0339 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0340 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0341 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0342 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0343 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0344 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0345 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0346 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0347 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0348 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0349 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0350 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0351 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0352 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0353 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0354 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0355 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0356 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0357 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0358 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0359 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0360 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0361 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0362 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0363 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0364 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0365 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0366 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0367 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0368 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0369 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0370 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0371 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0372 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0373 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0374 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0375 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0376 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0377 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0378 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0379 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0380 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0381 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0382 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0383 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0384 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0385 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0386 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0387 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0388 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0389 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0390 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0391 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0392 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0393 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0394 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0395 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0396 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0397 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0398 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0399 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0400 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0401 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0402 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0403 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0404 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0405 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0406 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0407 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0408 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0409 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0410 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0411 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0412 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0413 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0414 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0415 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0416 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0417 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0418 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0419 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0420 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0421 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0422 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0423 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0424 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0425 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0426 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0427 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0428 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0429 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0430 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0431 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0432 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0433 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0434 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0435 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0436 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0437 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0438 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0439 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0440 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0441 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0442 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0443 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0444 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0445 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0446 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0447 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0448 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0449 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0450 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0451 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0452 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0453 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0454 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0455 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0456 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0457 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0458 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0459 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0460 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0461 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0462 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0463 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0464 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0465 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0466 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0467 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0468 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0469 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0470 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0471 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0472 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0473 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0474 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0475 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0476 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0477 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0478 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0479 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0480 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0481 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0482 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0483 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0484 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0485 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0486 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0487 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0488 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0489 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0490 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0491 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0492 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0493 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0494 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0495 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0496 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0497 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0498 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0499 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0500 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0501 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0502 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0503 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0504 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0505 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0506 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0507 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0508 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0509 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0510 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0511 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0512 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0513 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0514 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0515 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0516 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0517 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0518 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0519 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0520 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0521 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0522 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0523 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0524 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0525 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0526 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0527 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0528 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0529 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0530 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0531 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0532 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0533 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0534 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0535 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0536 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0537 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0538 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0539 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0540 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0541 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0542 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0543 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0544 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0545 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0546 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0547 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0548 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0549 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0550 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0551 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0552 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0553 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0554 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0555 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0556 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0557 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0558 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0559 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0560 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0561 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0562 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0563 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0564 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0565 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0566 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0567 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0568 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0569 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0570 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0571 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0572 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0573 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0574 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0575 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0576 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0577 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0578 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0579 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0580 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0581 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0582 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0583 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0584 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0585 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0586 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0587 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0588 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0589 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0590 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0591 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0592 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0593 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0594 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0595 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0596 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0597 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0598 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0599 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0600 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0601 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0602 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0603 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0604 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0605 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0606 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0607 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0608 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0609 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0610 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0611 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0612 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0613 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0614 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0615 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0616 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0617 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0618 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0619 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0620 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0621 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0622 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0623 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0624 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0625 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0626 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0627 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0628 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0629 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0630 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0631 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0632 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0633 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0634 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0635 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0636 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0637 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0638 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0639 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0640 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0641 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0642 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0643 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0644 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0645 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0646 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0647 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0648 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0649 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0650 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0651 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0652 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0653 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0654 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0655 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0656 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0657 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0658 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0659 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0660 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0661 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0662 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0663 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0664 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0665 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0666 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0667 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0668 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0669 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0670 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0671 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0672 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0673 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0674 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0675 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0676 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0677 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0678 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0679 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0680 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0681 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0682 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0683 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0684 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0685 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0686 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0687 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0688 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0689 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0690 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0691 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0692 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0693 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0694 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0695 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0696 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0697 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0698 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0699 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0700 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0701 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0702 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0703 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0704 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0705 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0706 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0707 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0708 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0709 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0710 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0711 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0712 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0713 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0714 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0715 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0716 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0717 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0718 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0719 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0720 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0721 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0722 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0723 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0724 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0725 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0726 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0727 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0728 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0729 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0730 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0731 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0732 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0733 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0734 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0735 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0736 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0737 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0738 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0739 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0740 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0741 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0742 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0743 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0744 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0745 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0746 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0747 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0748 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0749 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0750 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0751 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0752 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0753 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0754 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0755 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0756 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0757 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0758 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0759 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0760 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0761 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0762 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0763 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0764 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0765 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0766 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0767 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0768 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0769 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0770 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0771 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0772 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0773 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0774 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0775 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0776 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0777 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0778 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0779 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0780 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0781 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0782 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0783 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0784 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0785 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0786 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0787 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0788 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0789 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0790 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0791 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0792 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0793 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0794 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0795 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0796 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0797 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0798 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0799 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0800 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0801 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0802 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0803 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0804 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0805 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0806 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0807 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0808 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0809 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0810 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0811 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0812 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0813 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0814 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0815 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0816 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0817 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0818 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0819 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0820 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0821 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0822 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0823 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0824 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0825 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0826 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0827 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0828 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0829 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0830 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0831 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0832 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0833 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0834 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0835 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0836 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0837 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0838 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0839 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0840 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0841 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0842 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0843 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0844 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0845 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0846 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0847 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0848 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0849 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0850 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0851 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0852 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0853 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0854 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0855 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0856 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0857 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0858 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0859 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0860 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0861 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0862 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0863 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0864 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0865 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0866 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0867 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0868 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0869 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0870 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0871 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0872 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0873 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0874 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0875 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0876 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0877 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0878 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0879 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0880 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0881 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0882 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0883 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0884 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0885 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0886 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0887 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0888 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0889 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0890 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0891 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0892 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0893 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0894 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0895 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0896 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0897 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0898 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0899 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0900 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0901 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0902 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0903 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0904 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0905 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0906 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0907 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0908 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0909 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0910 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0911 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0912 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0913 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0914 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0915 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0916 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0917 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0918 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0919 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0920 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0921 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0922 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0923 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0924 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0925 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0926 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0927 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0928 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0929 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0930 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0931 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0932 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0933 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0934 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0935 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0936 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0937 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0938 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0939 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0940 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0941 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0942 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0943 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0944 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0945 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0946 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0947 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0948 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0949 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0950 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0951 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0952 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0953 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0954 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0955 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0956 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0957 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0958 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0959 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0960 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0961 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0962 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0963 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0964 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0965 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0966 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0967 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0968 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0969 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0970 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0971 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0972 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0973 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0009 / 0010 | BATCH 0974 / 0974 | LOSS 0.0011\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0001 / 3410 | LOSS 0.0006\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0002 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0003 / 3410 | LOSS 0.0006\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0004 / 3410 | LOSS 0.0006\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0005 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0006 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0007 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0008 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0009 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0010 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0011 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0012 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0013 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0014 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0015 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0016 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0017 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0018 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0019 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0020 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0021 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0022 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0023 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0024 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0025 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0026 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0027 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0028 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0029 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0030 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0031 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0032 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0033 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0034 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0035 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0036 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0037 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0038 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0039 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0040 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0041 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0042 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0043 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0044 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0045 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0046 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0047 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0048 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0049 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0050 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0051 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0052 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0053 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0054 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0055 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0056 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0057 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0058 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0059 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0060 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0061 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0062 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0063 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0064 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0065 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0066 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0067 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0068 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0069 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0070 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0071 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0072 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0073 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0074 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0075 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0076 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0077 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0078 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0079 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0080 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0081 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0082 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0083 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0084 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0085 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0086 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0087 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0088 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0089 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0090 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0091 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0092 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0093 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0094 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0095 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0096 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0097 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0098 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0099 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0100 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0101 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0102 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0103 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0104 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0105 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0106 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0107 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0108 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0109 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0110 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0111 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0112 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0113 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0114 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0115 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0116 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0117 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0118 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0119 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0120 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0121 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0122 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0123 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0124 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0125 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0126 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0127 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0128 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0129 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0130 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0131 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0132 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0133 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0134 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0135 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0136 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0137 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0138 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0139 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0140 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0141 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0142 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0143 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0144 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0145 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0146 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0147 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0148 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0149 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0150 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0151 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0152 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0153 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0154 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0155 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0156 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0157 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0158 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0159 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0160 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0161 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0162 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0163 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0164 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0165 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0166 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0167 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0168 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0169 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0170 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0171 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0172 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0173 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0174 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0175 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0176 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0177 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0178 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0179 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0180 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0181 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0182 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0183 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0184 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0185 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0186 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0187 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0188 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0189 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0190 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0191 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0192 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0193 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0194 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0195 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0196 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0197 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0198 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0199 / 3410 | LOSS 0.0007\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0276 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0277 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0278 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0279 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0280 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0281 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0282 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0283 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0284 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0285 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0286 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0287 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0288 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0289 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0290 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0291 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0292 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0293 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0294 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0295 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0296 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0297 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0298 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0299 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0300 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0301 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0302 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0303 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0304 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0305 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0306 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0307 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0308 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0309 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0310 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0311 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0312 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0313 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0314 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0315 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0316 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0317 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0318 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0319 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0320 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0321 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0322 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0323 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0324 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0325 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0326 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0327 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0328 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0329 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0330 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0331 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0332 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0333 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0334 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0335 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0336 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0337 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0338 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0339 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0340 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0341 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0342 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0343 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0344 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0345 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0346 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0347 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0348 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0349 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0350 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0351 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0352 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0353 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0354 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0355 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0356 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0357 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0358 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0359 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0360 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0361 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0362 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0363 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0364 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0365 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0366 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0367 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0368 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0369 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0370 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0371 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0372 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0373 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0374 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0375 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0376 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0377 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0378 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0379 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0380 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0381 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0382 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0383 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0384 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0385 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0386 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0387 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0388 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0389 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0390 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0391 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0392 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0393 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0394 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0395 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0396 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0397 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0398 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0399 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0400 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0401 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0402 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0403 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0404 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0405 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0406 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0407 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0410 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0411 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0412 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0413 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0414 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0415 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0416 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0417 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0418 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0419 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0420 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0421 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0422 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0423 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0424 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0425 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0426 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0427 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0428 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0429 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0430 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0431 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0432 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0433 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0434 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0435 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0436 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0437 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0438 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0439 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0440 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0441 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0442 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0443 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0444 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0445 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0446 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0447 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0448 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0449 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0450 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0451 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0452 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0453 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0454 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0455 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0456 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0457 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0458 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0459 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0460 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0461 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0462 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0463 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0464 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0465 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0466 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0467 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0468 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0469 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0470 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0471 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0472 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0473 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0474 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0475 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0476 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0477 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0478 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0479 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0480 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0481 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0482 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0483 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0484 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0485 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0486 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0487 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0488 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0489 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0490 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0491 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0492 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0493 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0494 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0495 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0496 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0497 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0498 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0499 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0500 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0501 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0502 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0503 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0504 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0505 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0506 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0507 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0508 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0509 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0510 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0511 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0512 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0513 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0514 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0515 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0516 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0517 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0518 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0519 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0520 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0521 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0522 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0523 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0524 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0525 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0526 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0527 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0528 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0529 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0530 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0531 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0532 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0533 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0534 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0535 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0536 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0537 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0538 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0539 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0540 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0541 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0542 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0543 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0544 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0545 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0546 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0547 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0548 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0549 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0550 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0551 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0552 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0553 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0554 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0555 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0556 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0557 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0558 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0559 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0560 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0561 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0562 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0563 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0564 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0565 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0566 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0567 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0568 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0569 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0570 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0571 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0572 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0573 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0574 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0575 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0576 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0577 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0578 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0579 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0580 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0581 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0582 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0583 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0584 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0585 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0586 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0587 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0588 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0589 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0590 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0591 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0592 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0593 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0594 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0595 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0596 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0597 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0598 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0599 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0600 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0601 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0602 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0603 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0604 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0605 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0606 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0607 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0608 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0609 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0610 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0611 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0612 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0613 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0614 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0615 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0616 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0617 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0618 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0619 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0620 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0621 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0622 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0623 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0624 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0625 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0626 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0627 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0628 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0629 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0630 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0631 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0632 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0633 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0634 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0635 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0636 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0637 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0638 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0639 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0640 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0641 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0642 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0643 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0644 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0645 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0646 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0647 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0648 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0649 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0650 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0651 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0652 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0653 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0654 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0655 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0656 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0657 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0658 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0659 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0660 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0661 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0662 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0663 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0664 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0665 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0666 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0667 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0668 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0669 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0670 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0671 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0672 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0673 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0674 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0675 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0676 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0677 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0678 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0679 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0680 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0681 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0682 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0683 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0684 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0685 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0686 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0687 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0688 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0689 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0690 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0691 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0692 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0693 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0694 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0695 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0696 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0697 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0698 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0699 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0700 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0701 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0702 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0703 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0704 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0705 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0706 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0707 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0708 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0709 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0710 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0711 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0712 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0713 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0714 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0715 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0716 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0717 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0718 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0719 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0720 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0721 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0722 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0723 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0724 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0725 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0726 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0727 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0728 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0729 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0730 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0731 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0732 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0733 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0734 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0735 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0736 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0737 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0738 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0739 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0740 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0741 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0742 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0743 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0744 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0745 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0746 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0747 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0748 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0749 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0750 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0751 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0752 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0753 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0754 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0755 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0756 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0757 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0758 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0759 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0760 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0761 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0762 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0763 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0764 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0765 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0766 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0767 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0768 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0769 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0770 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0771 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0772 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0773 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0774 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0775 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0776 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0777 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0778 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0779 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0780 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0781 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0782 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0783 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0784 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0785 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0786 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0787 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0788 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0789 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0790 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0791 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0792 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0793 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0794 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0795 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0796 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0797 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0798 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0799 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0800 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0801 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0802 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0803 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0804 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0805 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0806 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0807 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0808 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0809 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0810 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0811 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0812 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0813 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0814 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0815 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0816 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0817 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0818 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0819 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0820 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0821 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0822 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0823 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0824 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0825 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0826 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0827 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0828 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0829 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0830 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0831 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0832 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0833 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0834 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0835 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0836 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0837 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0838 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0839 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0840 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0841 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0842 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0843 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0844 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0845 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0846 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0847 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0848 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0849 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0850 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0851 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0852 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0853 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0854 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0855 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0856 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0857 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0858 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0859 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0860 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0861 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0862 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0863 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0864 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0865 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0866 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0867 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0868 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0869 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0870 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0871 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0872 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0873 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0874 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0875 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0876 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0877 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0878 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0879 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0880 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0881 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0882 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0883 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0884 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0885 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0886 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0887 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0888 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0889 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0890 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0891 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0892 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0893 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0894 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0895 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0896 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0897 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0898 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0899 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0900 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0901 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0902 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0903 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0904 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0905 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0906 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0907 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0908 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0909 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0910 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0911 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0912 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0913 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0914 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0915 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0916 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0917 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0918 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0919 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0920 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0921 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0922 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0923 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0924 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0925 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0926 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0927 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0928 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0929 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0930 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0931 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0932 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0933 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0934 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0935 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0936 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0937 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0938 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0939 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0940 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0941 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0942 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0943 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0944 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0945 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0946 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0947 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0948 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0949 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0950 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0951 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0952 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0953 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0954 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0955 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0956 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0957 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0958 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0959 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0960 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0961 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0962 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0963 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0964 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0965 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0966 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0967 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0968 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0969 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0970 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0971 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0972 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0973 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0974 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0975 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0976 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0977 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0978 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0979 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0980 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0981 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0982 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0983 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0984 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0985 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0986 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0987 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0988 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0989 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0990 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0991 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0992 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0993 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0994 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0995 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0996 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0997 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0998 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 0999 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1000 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1001 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1002 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1003 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1004 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1005 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1006 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1007 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1008 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1009 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1010 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1011 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1012 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1013 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1014 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1015 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1016 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1017 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1018 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1019 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1020 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1021 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1022 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1023 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1024 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1025 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1026 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1027 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1028 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1029 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1030 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1031 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1032 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1033 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1034 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1035 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1036 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1037 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1038 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1039 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1040 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1041 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1042 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1043 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1044 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1045 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1046 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1047 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1048 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1049 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1050 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1051 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1052 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1053 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1054 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1055 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1056 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1057 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1058 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1059 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1060 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1061 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1062 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1063 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1064 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1065 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1066 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1067 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1068 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1069 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1070 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1071 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1072 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1073 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1074 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1075 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1076 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1077 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1078 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1079 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1080 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1081 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1082 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1083 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1084 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1085 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1086 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1087 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1088 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1089 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1090 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1091 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1092 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1093 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1094 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1095 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1096 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1097 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1098 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1099 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1100 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1101 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1102 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1103 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1104 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1105 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1106 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1107 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1108 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1109 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1110 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1111 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1112 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1113 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1114 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1115 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1116 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1117 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1118 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1119 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1120 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1121 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1122 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1123 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1124 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1125 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1126 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1127 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1128 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1129 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1130 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1131 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1132 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1133 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1134 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1135 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1136 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1137 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1138 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1139 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1140 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1141 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1142 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1143 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1144 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1145 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1146 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1147 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1148 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1149 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1150 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1151 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1152 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1153 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1154 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1155 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1156 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1157 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1158 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1159 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1160 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1161 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1162 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1163 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1164 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1165 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1166 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1167 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1168 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1169 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1170 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1171 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1172 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1173 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1174 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1175 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1176 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1177 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1178 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1179 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1180 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1181 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1182 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1183 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1184 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1185 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1186 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1187 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1188 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1189 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1190 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1191 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1192 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1193 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1194 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1195 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1196 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1197 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1198 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1199 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1276 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1277 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1278 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1279 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1280 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1281 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1282 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1283 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1284 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1285 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1286 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1287 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1288 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1289 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1290 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1291 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1292 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1293 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1294 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1295 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1296 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1297 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1298 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1299 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1300 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1301 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1302 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1303 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1304 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1305 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1306 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1307 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1308 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1309 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1310 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1311 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1312 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1313 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1314 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1315 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1316 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1317 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1318 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1319 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1320 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1321 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1322 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1323 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1324 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1325 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1326 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1327 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1328 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1329 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1330 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1331 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1332 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1333 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1334 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1335 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1336 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1337 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1338 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1339 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1340 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1341 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1342 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1343 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1344 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1345 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1346 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1347 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1348 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1349 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1350 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1351 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1352 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1353 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1354 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1355 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1356 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1357 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1358 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1359 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1360 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1361 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1362 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1363 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1364 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1365 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1366 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1367 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1368 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1369 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1370 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1371 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1372 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1373 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1374 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1375 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1376 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1377 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1378 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1379 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1380 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1381 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1382 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1383 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1384 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1385 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1386 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1387 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1388 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1389 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1390 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1391 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1392 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1393 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1394 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1395 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1396 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1397 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1398 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1399 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1400 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1401 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1402 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1403 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1404 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1405 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1406 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1407 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1410 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1411 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1412 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1413 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1414 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1415 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1416 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1417 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1418 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1419 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1420 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1421 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1422 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1423 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1424 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1425 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1426 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1427 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1428 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1429 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1430 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1431 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1432 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1433 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1434 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1435 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1436 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1437 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1438 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1439 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1440 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1441 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1442 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1443 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1444 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1445 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1446 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1447 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1448 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1449 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1450 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1451 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1452 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1453 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1454 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1455 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1456 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1457 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1458 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1459 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1460 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1461 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1462 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1463 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1464 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1465 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1466 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1467 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1468 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1469 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1470 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1471 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1472 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1473 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1474 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1475 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1476 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1477 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1478 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1479 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1480 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1481 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1482 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1483 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1484 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1485 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1486 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1487 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1488 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1489 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1490 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1491 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1492 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1493 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1494 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1495 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1496 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1497 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1498 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1499 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1500 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1501 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1502 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1503 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1504 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1505 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1506 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1507 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1508 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1509 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1510 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1511 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1512 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1513 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1514 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1515 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1516 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1517 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1518 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1519 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1520 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1521 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1522 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1523 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1524 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1525 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1526 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1527 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1528 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1529 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1530 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1531 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1532 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1533 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1534 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1535 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1536 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1537 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1538 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1539 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1540 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1541 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1542 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1543 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1544 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1545 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1546 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1547 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1548 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1549 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1550 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1551 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1552 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1553 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1554 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1555 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1556 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1557 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1558 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1559 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1560 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1561 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1562 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1563 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1564 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1565 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1566 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1567 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1568 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1569 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1570 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1571 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1572 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1573 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1574 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1575 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1576 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1577 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1578 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1579 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1580 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1581 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1582 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1583 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1584 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1585 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1586 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1587 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1588 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1589 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1590 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1591 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1592 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1593 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1594 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1595 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1596 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1597 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1598 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1599 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1600 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1601 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1602 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1603 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1604 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1605 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1606 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1607 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1608 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1609 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1610 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1611 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1612 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1613 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1614 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1615 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1616 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1617 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1618 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1619 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1620 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1621 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1622 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1623 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1624 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1625 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1626 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1627 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1628 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1629 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1630 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1631 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1632 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1633 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1634 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1635 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1636 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1637 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1638 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1639 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1640 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1641 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1642 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1643 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1644 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1645 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1646 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1647 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1648 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1649 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1650 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1651 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1652 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1653 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1654 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1655 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1656 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1657 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1658 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1659 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1660 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1661 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1662 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1663 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1664 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1665 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1666 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1667 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1668 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1669 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1670 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1671 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1672 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1673 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1674 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1675 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1676 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1677 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1678 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1679 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1680 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1681 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1682 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1683 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1684 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1685 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1686 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1687 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1688 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1689 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1690 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1691 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1692 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1693 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1694 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1695 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1696 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1697 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1698 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1699 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1700 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1701 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1702 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1703 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1704 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1705 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1706 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1707 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1708 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1709 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1710 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1711 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1712 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1713 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1714 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1715 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1716 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1717 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1718 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1719 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1720 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1721 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1722 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1723 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1724 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1725 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1726 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1727 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1728 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1729 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1730 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1731 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1732 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1733 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1734 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1735 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1736 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1737 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1738 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1739 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1740 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1741 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1742 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1743 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1744 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1745 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1746 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1747 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1748 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1749 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1750 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1751 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1752 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1753 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1754 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1755 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1756 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1757 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1758 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1759 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1760 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1761 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1762 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1763 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1764 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1765 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1766 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1767 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1768 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1769 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1770 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1771 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1772 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1773 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1774 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1775 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1776 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1777 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1778 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1779 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1780 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1781 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1782 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1783 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1784 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1785 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1786 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1787 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1788 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1789 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1790 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1791 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1792 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1793 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1794 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1795 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1796 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1797 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1798 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1799 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1800 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1801 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1802 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1803 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1804 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1805 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1806 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1807 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1808 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1809 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1810 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1811 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1812 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1813 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1814 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1815 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1816 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1817 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1818 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1819 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1820 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1821 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1822 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1823 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1824 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1825 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1826 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1827 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1828 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1829 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1830 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1831 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1832 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1833 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1834 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1835 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1836 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1837 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1838 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1839 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1840 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1841 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1842 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1843 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1844 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1845 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1846 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1847 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1848 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1849 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1850 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1851 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1852 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1853 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1854 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1855 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1856 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1857 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1858 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1859 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1860 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1861 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1862 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1863 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1864 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1865 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1866 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1867 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1868 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1869 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1870 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1871 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1872 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1873 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1874 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1875 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1876 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1877 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1878 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1879 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1880 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1881 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1882 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1883 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1884 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1885 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1886 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1887 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1888 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1889 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1890 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1891 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1892 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1893 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1894 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1895 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1896 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1897 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1898 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1899 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1900 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1901 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1902 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1903 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1904 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1905 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1906 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1907 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1908 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1909 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1910 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1911 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1912 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1913 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1914 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1915 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1916 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1917 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1918 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1919 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1920 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1921 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1922 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1923 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1924 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1925 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1926 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1927 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1928 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1929 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1930 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1931 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1932 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1933 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1934 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1935 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1936 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1937 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1938 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1939 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1940 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1941 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1942 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1943 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1944 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1945 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1946 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1947 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1948 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1949 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1950 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1951 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1952 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1953 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1954 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1955 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1956 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1957 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1958 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1959 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1960 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1961 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1962 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1963 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1964 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1965 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1966 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1967 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1968 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1969 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1970 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1971 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1972 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1973 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1974 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1975 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1976 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1977 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1978 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1979 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1980 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1981 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1982 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1983 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1984 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1985 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1986 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1987 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1988 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1989 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1990 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1991 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1992 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1993 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1994 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1995 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1996 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1997 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1998 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 1999 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2000 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2001 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2002 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2003 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2004 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2005 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2006 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2007 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2008 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2009 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2010 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2011 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2012 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2013 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2014 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2015 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2016 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2017 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2018 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2019 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2020 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2021 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2022 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2023 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2024 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2025 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2026 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2027 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2028 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2029 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2030 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2031 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2032 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2033 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2034 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2035 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2036 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2037 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2038 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2039 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2040 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2041 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2042 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2043 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2044 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2045 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2046 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2047 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2048 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2049 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2050 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2051 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2052 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2053 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2054 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2055 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2056 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2057 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2058 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2059 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2060 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2061 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2062 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2063 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2064 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2065 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2066 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2067 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2068 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2069 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2070 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2071 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2072 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2073 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2074 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2075 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2076 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2077 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2078 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2079 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2080 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2081 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2082 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2083 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2084 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2085 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2086 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2087 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2088 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2089 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2090 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2091 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2092 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2093 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2094 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2095 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2096 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2097 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2098 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2099 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2100 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2101 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2102 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2103 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2104 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2105 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2106 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2107 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2108 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2109 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2110 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2111 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2112 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2113 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2114 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2115 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2116 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2117 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2118 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2119 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2120 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2121 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2122 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2123 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2124 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2125 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2126 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2127 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2128 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2129 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2130 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2131 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2132 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2133 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2134 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2135 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2136 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2137 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2138 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2139 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2140 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2141 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2142 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2143 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2144 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2145 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2146 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2147 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2148 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2149 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2150 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2151 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2152 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2153 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2154 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2155 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2156 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2157 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2158 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2159 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2160 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2161 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2162 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2163 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2164 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2165 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2166 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2167 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2168 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2169 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2170 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2171 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2172 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2173 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2174 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2175 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2176 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2177 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2178 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2179 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2180 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2181 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2182 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2183 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2184 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2185 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2186 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2187 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2188 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2189 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2190 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2191 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2192 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2193 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2194 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2195 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2196 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2197 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2198 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2199 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2276 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2277 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2278 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2279 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2280 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2281 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2282 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2283 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2284 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2285 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2286 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2287 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2288 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2289 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2290 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2291 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2292 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2293 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2294 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2295 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2296 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2297 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2298 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2299 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2300 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2301 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2302 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2303 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2304 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2305 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2306 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2307 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2308 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2309 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2310 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2311 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2312 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2313 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2314 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2315 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2316 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2317 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2318 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2319 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2320 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2321 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2322 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2323 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2324 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2325 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2326 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2327 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2328 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2329 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2330 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2331 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2332 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2333 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2334 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2335 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2336 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2337 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2338 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2339 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2340 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2341 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2342 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2343 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2344 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2345 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2346 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2347 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2348 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2349 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2350 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2351 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2352 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2353 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2354 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2355 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2356 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2357 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2358 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2359 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2360 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2361 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2362 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2363 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2364 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2365 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2366 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2367 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2368 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2369 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2370 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2371 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2372 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2373 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2374 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2375 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2376 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2377 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2378 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2379 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2380 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2381 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2382 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2383 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2384 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2385 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2386 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2387 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2388 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2389 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2390 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2391 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2392 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2393 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2394 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2395 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2396 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2397 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2398 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2399 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2400 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2401 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2402 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2403 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2404 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2405 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2406 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2407 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2410 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2411 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2412 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2413 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2414 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2415 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2416 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2417 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2418 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2419 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2420 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2421 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2422 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2423 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2424 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2425 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2426 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2427 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2428 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2429 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2430 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2431 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2432 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2433 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2434 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2435 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2436 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2437 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2438 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2439 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2440 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2441 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2442 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2443 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2444 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2445 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2446 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2447 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2448 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2449 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2450 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2451 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2452 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2453 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2454 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2455 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2456 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2457 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2458 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2459 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2460 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2461 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2462 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2463 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2464 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2465 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2466 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2467 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2468 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2469 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2470 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2471 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2472 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2473 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2474 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2475 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2476 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2477 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2478 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2479 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2480 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2481 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2482 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2483 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2484 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2485 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2486 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2487 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2488 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2489 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2490 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2491 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2492 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2493 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2494 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2495 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2496 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2497 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2498 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2499 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2500 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2501 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2502 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2503 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2504 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2505 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2506 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2507 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2508 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2509 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2510 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2511 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2512 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2513 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2514 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2515 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2516 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2517 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2518 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2519 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2520 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2521 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2522 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2523 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2524 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2525 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2526 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2527 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2528 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2529 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2530 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2531 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2532 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2533 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2534 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2535 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2536 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2537 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2538 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2539 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2540 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2541 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2542 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2543 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2544 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2545 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2546 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2547 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2548 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2549 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2550 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2551 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2552 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2553 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2554 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2555 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2556 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2557 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2558 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2559 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2560 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2561 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2562 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2563 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2564 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2565 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2566 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2567 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2568 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2569 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2570 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2571 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2572 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2573 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2574 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2575 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2576 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2577 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2578 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2579 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2580 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2581 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2582 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2583 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2584 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2585 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2586 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2587 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2588 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2589 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2590 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2591 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2592 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2593 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2594 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2595 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2596 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2597 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2598 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2599 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2600 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2601 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2602 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2603 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2604 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2605 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2606 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2607 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2608 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2609 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2610 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2611 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2612 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2613 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2614 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2615 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2616 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2617 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2618 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2619 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2620 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2621 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2622 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2623 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2624 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2625 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2626 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2627 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2628 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2629 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2630 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2631 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2632 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2633 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2634 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2635 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2636 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2637 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2638 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2639 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2640 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2641 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2642 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2643 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2644 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2645 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2646 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2647 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2648 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2649 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2650 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2651 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2652 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2653 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2654 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2655 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2656 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2657 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2658 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2659 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2660 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2661 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2662 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2663 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2664 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2665 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2666 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2667 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2668 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2669 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2670 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2671 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2672 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2673 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2674 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2675 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2676 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2677 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2678 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2679 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2680 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2681 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2682 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2683 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2684 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2685 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2686 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2687 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2688 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2689 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2690 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2691 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2692 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2693 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2694 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2695 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2696 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2697 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2698 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2699 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2700 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2701 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2702 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2703 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2704 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2705 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2706 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2707 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2708 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2709 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2710 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2711 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2712 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2713 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2714 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2715 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2716 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2717 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2718 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2719 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2720 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2721 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2722 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2723 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2724 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2725 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2726 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2727 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2728 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2729 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2730 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2731 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2732 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2733 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2734 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2735 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2736 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2737 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2738 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2739 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2740 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2741 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2742 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2743 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2744 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2745 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2746 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2747 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2748 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2749 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2750 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2751 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2752 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2753 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2754 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2755 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2756 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2757 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2758 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2759 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2760 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2761 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2762 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2763 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2764 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2765 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2766 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2767 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2768 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2769 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2770 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2771 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2772 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2773 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2774 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2775 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2776 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2777 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2778 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2779 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2780 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2781 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2782 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2783 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2784 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2785 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2786 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2787 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2788 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2789 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2790 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2791 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2792 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2793 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2794 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2795 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2796 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2797 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2798 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2799 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2800 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2801 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2802 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2803 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2804 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2805 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2806 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2807 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2808 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2809 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2810 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2811 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2812 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2813 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2814 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2815 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2816 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2817 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2818 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2819 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2820 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2821 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2822 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2823 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2824 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2825 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2826 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2827 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2828 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2829 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2830 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2831 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2832 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2833 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2834 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2835 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2836 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2837 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2838 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2839 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2840 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2841 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2842 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2843 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2844 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2845 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2846 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2847 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2848 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2849 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2850 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2851 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2852 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2853 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2854 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2855 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2856 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2857 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2858 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2859 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2860 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2861 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2862 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2863 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2864 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2865 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2866 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2867 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2868 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2869 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2870 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2871 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2872 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2873 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2874 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2875 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2876 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2877 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2878 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2879 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2880 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2881 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2882 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2883 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2884 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2885 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2886 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2887 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2888 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2889 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2890 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2891 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2892 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2893 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2894 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2895 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2896 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2897 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2898 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2899 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2900 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2901 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2902 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2903 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2904 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2905 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2906 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2907 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2908 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2909 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2910 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2911 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2912 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2913 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2914 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2915 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2916 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2917 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2918 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2919 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2920 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2921 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2922 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2923 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2924 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2925 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2926 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2927 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2928 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2929 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2930 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2931 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2932 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2933 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2934 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2935 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2936 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2937 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2938 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2939 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2940 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2941 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2942 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2943 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2944 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2945 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2946 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2947 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2948 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2949 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2950 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2951 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2952 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2953 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2954 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2955 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2956 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2957 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2958 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2959 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2960 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2961 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2962 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2963 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2964 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2965 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2966 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2967 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2968 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2969 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2970 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2971 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2972 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2973 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2974 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2975 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2976 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2977 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2978 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2979 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2980 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2981 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2982 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2983 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2984 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2985 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2986 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2987 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2988 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2989 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2990 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2991 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2992 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2993 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2994 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2995 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2996 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2997 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2998 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 2999 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3000 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3001 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3002 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3003 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3004 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3005 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3006 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3007 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3008 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3009 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3010 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3011 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3012 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3013 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3014 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3015 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3016 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3017 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3018 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3019 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3020 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3021 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3022 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3023 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3024 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3025 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3026 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3027 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3028 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3029 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3030 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3031 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3032 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3033 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3034 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3035 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3036 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3037 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3038 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3039 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3040 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3041 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3042 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3043 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3044 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3045 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3046 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3047 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3048 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3049 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3050 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3051 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3052 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3053 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3054 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3055 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3056 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3057 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3058 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3059 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3060 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3061 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3062 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3063 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3064 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3065 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3066 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3067 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3068 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3069 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3070 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3071 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3072 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3073 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3074 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3075 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3076 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3077 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3078 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3079 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3080 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3081 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3082 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3083 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3084 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3085 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3086 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3087 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3088 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3089 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3090 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3091 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3092 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3093 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3094 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3095 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3096 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3097 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3098 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3099 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3100 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3101 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3102 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3103 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3104 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3105 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3106 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3107 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3108 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3109 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3110 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3111 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3112 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3113 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3114 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3115 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3116 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3117 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3118 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3119 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3120 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3121 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3122 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3123 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3124 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3125 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3126 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3127 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3128 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3129 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3130 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3131 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3132 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3133 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3134 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3135 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3136 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3137 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3138 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3139 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3140 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3141 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3142 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3143 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3144 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3145 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3146 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3147 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3148 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3149 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3150 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3151 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3152 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3153 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3154 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3155 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3156 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3157 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3158 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3159 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3160 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3161 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3162 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3163 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3164 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3165 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3166 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3167 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3168 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3169 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3170 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3171 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3172 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3173 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3174 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3175 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3176 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3177 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3178 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3179 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3180 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3181 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3182 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3183 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3184 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3185 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3186 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3187 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3188 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3189 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3190 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3191 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3192 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3193 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3194 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3195 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3196 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3197 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3198 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3199 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3200 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3201 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3202 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3203 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3204 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3205 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3206 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3207 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3208 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3209 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3210 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3211 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3212 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3213 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3214 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3215 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3216 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3217 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3218 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3219 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3220 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3221 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3222 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3223 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3224 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3225 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3226 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3227 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3228 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3229 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3230 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3231 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3232 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3233 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3234 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3235 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3236 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3237 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3238 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3239 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3240 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3241 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3242 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3243 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3244 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3245 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3246 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3247 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3248 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3249 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3250 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3251 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3252 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3253 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3254 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3255 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3256 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3257 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3258 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3259 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3260 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3261 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3262 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3263 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3264 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3265 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3266 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3267 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3268 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3269 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3270 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3271 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3272 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3273 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3274 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3275 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3276 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3277 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3278 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3279 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3280 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3281 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3282 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3283 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3284 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3285 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3286 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3287 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3288 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3289 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3290 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3291 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3292 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3293 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3294 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3295 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3296 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3297 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3298 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3299 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3300 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3301 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3302 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3303 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3304 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3305 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3306 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3307 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3308 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3309 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3310 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3311 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3312 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3313 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3314 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3315 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3316 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3317 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3318 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3319 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3320 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3321 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3322 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3323 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3324 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3325 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3326 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3327 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3328 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3329 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3330 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3331 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3332 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3333 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3334 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3335 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3336 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3337 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3338 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3339 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3340 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3341 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3342 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3343 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3344 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3345 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3346 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3347 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3348 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3349 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3350 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3351 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3352 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3353 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3354 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3355 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3356 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3357 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3358 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3359 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3360 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3361 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3362 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3363 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3364 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3365 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3366 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3367 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3368 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3369 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3370 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3371 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3372 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3373 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3374 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3375 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3376 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3377 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3378 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3379 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3380 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3381 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3382 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3383 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3384 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3385 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3386 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3387 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3388 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3389 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3390 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3391 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3392 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3393 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3394 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3395 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3396 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3397 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3398 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3399 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3400 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3401 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3402 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3403 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3404 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3405 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3406 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3407 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3408 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3409 / 3410 | LOSS 0.0008\n", + "TRAIN: EPOCH 0010 / 0010 | BATCH 3410 / 3410 | LOSS 0.0008\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0001 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0002 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0003 / 0974 | LOSS 0.0008\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0004 / 0974 | LOSS 0.0012\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0005 / 0974 | LOSS 0.0011\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0006 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0007 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0008 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0009 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0010 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0011 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0012 / 0974 | LOSS 0.0009\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0013 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0014 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0015 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0016 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0017 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0018 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0019 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0020 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0021 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0022 / 0974 | LOSS 0.0010\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0023 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0024 / 0974 | LOSS 0.0013\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0025 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0026 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0027 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0028 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0029 / 0974 | LOSS 0.0014\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0030 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0031 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0032 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0033 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0034 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0035 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0036 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0037 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0038 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0039 / 0974 | LOSS 0.0015\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0040 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0041 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0042 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0043 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0044 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0045 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0046 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0047 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0048 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0049 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0050 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0051 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0052 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0053 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0054 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0055 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0056 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0057 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0058 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0059 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0060 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0061 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0062 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0063 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0064 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0065 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0066 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0067 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0068 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0069 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0070 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0071 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0072 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0073 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0074 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0075 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0076 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0077 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0078 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0079 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0080 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0081 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0082 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0083 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0084 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0085 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0086 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0087 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0088 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0089 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0090 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0091 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0092 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0093 / 0974 | LOSS 0.0019\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0094 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0095 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0096 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0097 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0098 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0099 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0100 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0101 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0102 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0103 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0104 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0105 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0106 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0107 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0108 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0109 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0110 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0111 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0112 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0113 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0114 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0115 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0116 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0117 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0118 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0119 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0120 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0121 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0122 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0123 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0124 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0125 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0126 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0127 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0128 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0129 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0130 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0131 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0132 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0133 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0134 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0135 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0136 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0137 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0138 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0139 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0140 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0141 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0142 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0143 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0144 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0145 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0146 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0147 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0148 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0149 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0150 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0151 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0152 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0153 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0154 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0155 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0156 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0157 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0158 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0159 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0160 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0161 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0162 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0163 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0164 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0165 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0166 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0167 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0168 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0169 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0170 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0171 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0172 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0173 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0174 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0175 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0176 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0177 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0178 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0179 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0180 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0181 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0182 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0183 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0184 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0185 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0186 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0187 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0188 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0189 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0190 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0191 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0192 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0193 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0194 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0195 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0196 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0197 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0198 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0199 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0200 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0201 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0202 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0203 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0204 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0205 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0206 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0207 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0208 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0209 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0210 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0211 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0212 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0213 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0214 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0215 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0216 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0217 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0218 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0219 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0220 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0221 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0222 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0223 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0224 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0225 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0226 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0227 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0228 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0229 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0230 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0231 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0232 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0233 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0234 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0235 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0236 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0237 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0238 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0239 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0240 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0241 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0242 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0243 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0244 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0245 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0246 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0247 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0248 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0249 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0250 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0251 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0252 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0253 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0254 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0255 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0256 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0257 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0258 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0259 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0260 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0261 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0262 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0263 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0264 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0265 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0266 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0267 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0268 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0269 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0270 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0271 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0272 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0273 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0274 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0275 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0276 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0277 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0278 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0279 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0280 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0281 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0282 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0283 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0284 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0285 / 0974 | LOSS 0.0016\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0286 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0287 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0288 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0289 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0290 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0291 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0292 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0293 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0294 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0295 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0296 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0297 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0298 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0299 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0300 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0301 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0302 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0303 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0304 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0305 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0306 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0307 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0308 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0309 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0310 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0311 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0312 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0313 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0314 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0315 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0316 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0317 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0318 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0319 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0320 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0321 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0322 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0323 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0324 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0325 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0326 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0327 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0328 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0329 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0330 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0331 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0332 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0333 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0334 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0335 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0336 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0337 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0338 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0339 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0340 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0341 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0342 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0343 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0344 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0345 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0346 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0347 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0348 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0349 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0350 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0351 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0352 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0353 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0354 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0355 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0356 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0357 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0358 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0359 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0360 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0361 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0362 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0363 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0364 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0365 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0366 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0367 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0368 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0369 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0370 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0371 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0372 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0373 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0374 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0375 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0376 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0377 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0378 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0379 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0380 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0381 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0382 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0383 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0384 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0385 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0386 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0387 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0388 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0389 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0390 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0391 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0392 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0393 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0394 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0395 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0396 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0397 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0398 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0399 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0400 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0401 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0402 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0403 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0404 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0405 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0406 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0407 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0408 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0409 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0410 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0411 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0412 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0413 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0414 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0415 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0416 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0417 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0418 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0419 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0420 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0421 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0422 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0423 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0424 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0425 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0426 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0427 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0428 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0429 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0430 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0431 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0432 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0433 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0434 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0435 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0436 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0437 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0438 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0439 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0440 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0441 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0442 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0443 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0444 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0445 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0446 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0447 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0448 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0449 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0450 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0451 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0452 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0453 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0454 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0455 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0456 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0457 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0458 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0459 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0460 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0461 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0462 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0463 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0464 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0465 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0466 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0467 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0468 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0469 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0470 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0471 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0472 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0473 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0474 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0475 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0476 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0477 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0478 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0479 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0480 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0481 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0482 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0483 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0484 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0485 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0486 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0487 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0488 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0489 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0490 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0491 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0492 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0493 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0494 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0495 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0496 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0497 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0498 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0499 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0500 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0501 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0502 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0503 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0504 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0505 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0506 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0507 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0508 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0509 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0510 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0511 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0512 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0513 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0514 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0515 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0516 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0517 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0518 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0519 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0520 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0521 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0522 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0523 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0524 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0525 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0526 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0527 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0528 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0529 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0530 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0531 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0532 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0533 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0534 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0535 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0536 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0537 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0538 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0539 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0540 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0541 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0542 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0543 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0544 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0545 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0546 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0547 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0548 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0549 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0550 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0551 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0552 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0553 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0554 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0555 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0556 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0557 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0558 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0559 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0560 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0561 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0562 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0563 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0564 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0565 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0566 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0567 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0568 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0569 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0570 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0571 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0572 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0573 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0574 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0575 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0576 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0577 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0578 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0579 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0580 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0581 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0582 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0583 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0584 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0585 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0586 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0587 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0588 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0589 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0590 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0591 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0592 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0593 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0594 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0595 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0596 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0597 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0598 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0599 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0600 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0601 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0602 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0603 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0604 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0605 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0606 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0607 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0608 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0609 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0610 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0611 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0612 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0613 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0614 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0615 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0616 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0617 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0618 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0619 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0620 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0621 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0622 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0623 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0624 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0625 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0626 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0627 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0628 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0629 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0630 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0631 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0632 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0633 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0634 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0635 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0636 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0637 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0638 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0639 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0640 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0641 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0642 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0643 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0644 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0645 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0646 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0647 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0648 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0649 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0650 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0651 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0652 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0653 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0654 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0655 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0656 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0657 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0658 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0659 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0660 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0661 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0662 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0663 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0664 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0665 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0666 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0667 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0668 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0669 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0670 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0671 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0672 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0673 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0674 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0675 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0676 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0677 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0678 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0679 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0680 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0681 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0682 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0683 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0684 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0685 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0686 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0687 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0688 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0689 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0690 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0691 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0692 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0693 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0694 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0695 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0696 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0697 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0698 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0699 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0700 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0701 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0702 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0703 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0704 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0705 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0706 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0707 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0708 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0709 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0710 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0711 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0712 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0713 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0714 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0715 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0716 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0717 / 0974 | LOSS 0.0017\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0718 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0719 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0720 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0721 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0722 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0723 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0724 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0725 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0726 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0727 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0728 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0729 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0730 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0731 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0732 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0733 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0734 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0735 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0736 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0737 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0738 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0739 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0740 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0741 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0742 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0743 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0744 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0745 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0746 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0747 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0748 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0749 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0750 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0751 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0752 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0753 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0754 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0755 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0756 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0757 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0758 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0759 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0760 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0761 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0762 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0763 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0764 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0765 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0766 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0767 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0768 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0769 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0770 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0771 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0772 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0773 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0774 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0775 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0776 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0777 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0778 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0779 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0780 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0781 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0782 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0783 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0784 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0785 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0786 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0787 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0788 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0789 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0790 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0791 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0792 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0793 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0794 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0795 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0796 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0797 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0798 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0799 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0800 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0801 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0802 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0803 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0804 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0805 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0806 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0807 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0808 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0809 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0810 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0811 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0812 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0813 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0814 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0815 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0816 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0817 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0818 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0819 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0820 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0821 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0822 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0823 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0824 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0825 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0826 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0827 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0828 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0829 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0830 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0831 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0832 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0833 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0834 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0835 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0836 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0837 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0838 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0839 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0840 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0841 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0842 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0843 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0844 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0845 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0846 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0847 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0848 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0849 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0850 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0851 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0852 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0853 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0854 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0855 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0856 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0857 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0858 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0859 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0860 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0861 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0862 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0863 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0864 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0865 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0866 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0867 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0868 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0869 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0870 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0871 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0872 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0873 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0874 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0875 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0876 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0877 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0878 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0879 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0880 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0881 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0882 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0883 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0884 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0885 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0886 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0887 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0888 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0889 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0890 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0891 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0892 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0893 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0894 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0895 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0896 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0897 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0898 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0899 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0900 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0901 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0902 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0903 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0904 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0905 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0906 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0907 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0908 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0909 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0910 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0911 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0912 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0913 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0914 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0915 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0916 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0917 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0918 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0919 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0920 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0921 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0922 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0923 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0924 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0925 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0926 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0927 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0928 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0929 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0930 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0931 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0932 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0933 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0934 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0935 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0936 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0937 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0938 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0939 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0940 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0941 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0942 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0943 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0944 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0945 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0946 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0947 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0948 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0949 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0950 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0951 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0952 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0953 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0954 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0955 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0956 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0957 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0958 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0959 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0960 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0961 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0962 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0963 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0964 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0965 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0966 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0967 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0968 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0969 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0970 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0971 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0972 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0973 / 0974 | LOSS 0.0018\n", + "VALID: EPOCH 0010 / 0010 | BATCH 0974 / 0974 | LOSS 0.0018\n" + ] + } + ], + "source": [ + "# 훈련을 위한 Transform과 DataLoader\n", + "loader_train = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0)\n", + "loader_val = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=0)\n", + "\n", + "# 그밖에 부수적인 variables 설정하기\n", + "num_data_train = len(train_set)\n", + "num_data_val = len(val_set)\n", + "\n", + "num_batch_train = np.ceil(num_data_train / batch_size)\n", + "num_batch_val = np.ceil(num_data_val / batch_size)\n", + "\n", + "\n", + "# Tensorboard 를 사용하기 위한 SummaryWriter 설정\n", + "writer_train = SummaryWriter(log_dir=os.path.join(log_dir, 'train'))\n", + "writer_val = SummaryWriter(log_dir=os.path.join(log_dir, 'val'))\n", + "\n", + "# 네트워크 학습시키기\n", + "st_epoch = 0\n", + "# 학습한 모델이 있을 경우 모델 로드하기\n", + "net, optim, st_epoch = load(ckpt_dir=ckpt_dir, net=net, optim=optim) \n", + "\n", + "for epoch in range(st_epoch + 1, num_epoch + 1):\n", + " net.train()\n", + " loss_arr = []\n", + "\n", + " for batch, data in enumerate(loader_train, 1):\n", + " # forward pass\n", + " label = data['label'].to(device)\n", + " input = data['input'].to(device)\n", + "\n", + " output = net(input)\n", + "\n", + " # backward pass\n", + " optim.zero_grad()\n", + "\n", + " loss = fn_loss(output, label)\n", + " loss.backward()\n", + "\n", + " optim.step()\n", + "\n", + " # 손실함수 계산\n", + " loss_arr += [loss.item()]\n", + "\n", + " print(\"TRAIN: EPOCH %04d / %04d | BATCH %04d / %04d | LOSS %.4f\" %\n", + " (epoch, num_epoch, batch, num_batch_train, np.mean(loss_arr)))\n", + "\n", + " # Tensorboard 저장하기\n", + " label = fn_tonumpy(label)\n", + " input = fn_tonumpy(fn_denorm(input, mean=0.5, std=0.5))\n", + " output = fn_tonumpy(fn_class(output))\n", + "\n", + " writer_train.add_image('label', label, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')\n", + " writer_train.add_image('input', input, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')\n", + " writer_train.add_image('output', output, num_batch_train * (epoch - 1) + batch, dataformats='NHWC')\n", + "\n", + " writer_train.add_scalar('loss', np.mean(loss_arr), epoch)\n", + "\n", + " with torch.no_grad():\n", + " net.eval()\n", + " loss_arr = []\n", + "\n", + " for batch, data in enumerate(loader_val, 1):\n", + " # forward pass\n", + " label = data['label'].to(device)\n", + " input = data['input'].to(device)\n", + "\n", + " output = net(input)\n", + "\n", + " # 손실함수 계산하기\n", + " loss = fn_loss(output, label)\n", + "\n", + " loss_arr += [loss.item()]\n", + "\n", + " print(\"VALID: EPOCH %04d / %04d | BATCH %04d / %04d | LOSS %.4f\" %\n", + " (epoch, num_epoch, batch, num_batch_val, np.mean(loss_arr)))\n", + "\n", + " # Tensorboard 저장하기\n", + " label = fn_tonumpy(label)\n", + " input = fn_tonumpy(fn_denorm(input, mean=0.5, std=0.5))\n", + " output = fn_tonumpy(fn_class(output))\n", + "\n", + " writer_val.add_image('label', label, num_batch_val * (epoch - 1) + batch, dataformats='NHWC')\n", + " writer_val.add_image('input', input, num_batch_val * (epoch - 1) + batch, dataformats='NHWC')\n", + " writer_val.add_image('output', output, num_batch_val * (epoch - 1) + batch, dataformats='NHWC')\n", + "\n", + " writer_val.add_scalar('loss', np.mean(loss_arr), epoch)\n", + "\n", + " # epoch 5마다 모델 저장하기\n", + " if epoch % 1 == 0:\n", + " save(ckpt_dir=ckpt_dir, net=net, optim=optim, epoch=epoch)\n", + "\n", + " writer_train.close()\n", + " writer_val.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print('train set: ' + str(len(train_set)))\n", + "print('val set: ' + str(len(val_set)))\n", + "print('test set: ' + str(len(test_set)))\n", + "print('total: ' + str(len(train_set)+ len(val_set)+ len(test_set)))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "loader_test = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0)\n", + "\n", + "# 그밖에 부수적인 variables 설정하기\n", + "num_data_test = len(test_set)\n", + "num_batch_test = np.ceil(num_data_test / batch_size)\n", + "\n", + "# 결과 디렉토리 생성하기\n", + "result_dir = os.path.join(base_dir, 'result')\n", + "if not os.path.exists(result_dir):\n", + " os.makedirs(os.path.join(result_dir, 'png'))\n", + " os.makedirs(os.path.join(result_dir, 'numpy'))\n", + "\n", + "net, optim, st_epoch = load(ckpt_dir=ckpt_dir, net=net, optim=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TEST: BATCH 0001 / 0488 | LOSS 0.0019\n", + "TEST: BATCH 0002 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0003 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0004 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0005 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0006 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0007 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0008 / 0488 | LOSS 0.0010\n", + "TEST: BATCH 0009 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0010 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0011 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0012 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0013 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0014 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0015 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0016 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0017 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0018 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0019 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0020 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0021 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0022 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0023 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0024 / 0488 | LOSS 0.0012\n", + "TEST: BATCH 0025 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0026 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0027 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0028 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0029 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0030 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0031 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0032 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0033 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0034 / 0488 | LOSS 0.0011\n", + "TEST: BATCH 0035 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0036 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0037 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0038 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0039 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0040 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0041 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0042 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0043 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0044 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0045 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0046 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0047 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0048 / 0488 | LOSS 0.0013\n", + "TEST: BATCH 0049 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0050 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0051 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0052 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0053 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0054 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0055 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0056 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0057 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0058 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0059 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0060 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0061 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0062 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0063 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0064 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0065 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0066 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0067 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0068 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0069 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0070 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0071 / 0488 | LOSS 0.0014\n", + "TEST: BATCH 0072 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0073 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0074 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0075 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0076 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0077 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0078 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0079 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0080 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0081 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0082 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0083 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0084 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0085 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0086 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0087 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0088 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0089 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0090 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0091 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0092 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0093 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0094 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0095 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0096 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0097 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0098 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0099 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0100 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0101 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0102 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0103 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0104 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0105 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0106 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0107 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0108 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0109 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0110 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0111 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0112 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0113 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0114 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0115 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0116 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0117 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0118 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0119 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0120 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0121 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0122 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0123 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0124 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0125 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0126 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0127 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0128 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0129 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0130 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0131 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0132 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0133 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0134 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0135 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0136 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0137 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0138 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0139 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0140 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0141 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0142 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0143 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0144 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0145 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0146 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0147 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0148 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0149 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0150 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0151 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0152 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0153 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0154 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0155 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0156 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0157 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0158 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0159 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0160 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0161 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0162 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0163 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0164 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0165 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0166 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0167 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0168 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0169 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0170 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0171 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0172 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0173 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0174 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0175 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0176 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0177 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0178 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0179 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0180 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0181 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0182 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0183 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0184 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0185 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0186 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0187 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0188 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0189 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0190 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0191 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0192 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0193 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0194 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0195 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0196 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0197 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0198 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0199 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0200 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0201 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0202 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0203 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0204 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0205 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0206 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0207 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0208 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0209 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0210 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0211 / 0488 | LOSS 0.0015\n", + "TEST: BATCH 0212 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0213 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0214 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0215 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0216 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0217 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0218 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0219 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0220 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0221 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0222 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0223 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0224 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0225 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0226 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0227 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0228 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0229 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0230 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0231 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0232 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0233 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0234 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0235 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0236 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0237 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0238 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0239 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0240 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0241 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0242 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0243 / 0488 | LOSS 0.0016\n", + "TEST: BATCH 0244 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0245 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0246 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0247 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0248 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0249 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0250 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0251 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0252 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0253 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0254 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0255 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0256 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0257 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0258 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0259 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0260 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0261 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0262 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0263 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0264 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0265 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0266 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0267 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0268 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0269 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0270 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0271 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0272 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0273 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0274 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0275 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0276 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0277 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0278 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0279 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0280 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0281 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0282 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0283 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0284 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0285 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0286 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0287 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0288 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0289 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0290 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0291 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0292 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0293 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0294 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0295 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0296 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0297 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0298 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0299 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0300 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0301 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0302 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0303 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0304 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0305 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0306 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0307 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0308 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0309 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0310 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0311 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0312 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0313 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0314 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0315 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0316 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0317 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0318 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0319 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0320 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0321 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0322 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0323 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0324 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0325 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0326 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0327 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0328 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0329 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0330 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0331 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0332 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0333 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0334 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0335 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0336 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0337 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0338 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0339 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0340 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0341 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0342 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0343 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0344 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0345 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0346 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0347 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0348 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0349 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0350 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0351 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0352 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0353 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0354 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0355 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0356 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0357 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0358 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0359 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0360 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0361 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0362 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0363 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0364 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0365 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0366 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0367 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0368 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0369 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0370 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0371 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0372 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0373 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0374 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0375 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0376 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0377 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0378 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0379 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0380 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0381 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0382 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0383 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0384 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0385 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0386 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0387 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0388 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0389 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0390 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0391 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0392 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0393 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0394 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0395 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0396 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0397 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0398 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0399 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0400 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0401 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0402 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0403 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0404 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0405 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0406 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0407 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0408 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0409 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0410 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0411 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0412 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0413 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0414 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0415 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0416 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0417 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0418 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0419 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0420 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0421 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0422 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0423 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0424 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0425 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0426 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0427 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0428 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0429 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0430 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0431 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0432 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0433 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0434 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0435 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0436 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0437 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0438 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0439 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0440 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0441 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0442 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0443 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0444 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0445 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0446 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0447 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0448 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0449 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0450 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0451 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0452 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0453 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0454 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0455 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0456 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0457 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0458 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0459 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0460 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0461 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0462 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0463 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0464 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0465 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0466 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0467 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0468 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0469 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0470 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0471 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0472 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0473 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0474 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0475 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0476 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0477 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0478 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0479 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0480 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0481 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0482 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0483 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0484 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0485 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0486 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0487 / 0488 | LOSS 0.0017\n", + "TEST: BATCH 0488 / 0488 | LOSS 0.0017\n", + "AVERAGE TEST: BATCH 0488 / 0488 | LOSS 0.0017\n" + ] + } + ], + "source": [ + "with torch.no_grad():\n", + " net.eval()\n", + " loss_arr = []\n", + "\n", + " for batch, data in enumerate(loader_test, 1):\n", + " # forward pass\n", + " label = data['label'].to(device)\n", + " input = data['input'].to(device)\n", + "\n", + " output = net(input)\n", + "\n", + " # 손실함수 계산하기\n", + " loss = fn_loss(output, label)\n", + "\n", + " loss_arr += [loss.item()]\n", + "\n", + " print(\"TEST: BATCH %04d / %04d | LOSS %.4f\" %\n", + " (batch, num_batch_test, np.mean(loss_arr)))\n", + "\n", + " # Tensorboard 저장하기\n", + " label = fn_tonumpy(label)\n", + " input = fn_tonumpy(fn_denorm(input, mean=0.5, std=0.5))\n", + " output = fn_tonumpy(fn_class(output))\n", + "\n", + " # 테스트 결과 저장하기\n", + " for j in range(label.shape[0]):\n", + " id = num_batch_test * (batch - 1) + j\n", + "\n", + " plt.imsave(os.path.join(result_dir, 'png', 'label_%04d.png' % id), label[j].squeeze(), cmap='gray')\n", + " plt.imsave(os.path.join(result_dir, 'png', 'input_%04d.png' % id), input[j].squeeze(), cmap='gray')\n", + " plt.imsave(os.path.join(result_dir, 'png', 'output_%04d.png' % id), output[j].squeeze(), cmap='gray')\n", + "\n", + " np.save(os.path.join(result_dir, 'numpy', 'label_%04d.npy' % id), label[j].squeeze())\n", + " np.save(os.path.join(result_dir, 'numpy', 'input_%04d.npy' % id), input[j].squeeze())\n", + " np.save(os.path.join(result_dir, 'numpy', 'output_%04d.npy' % id), output[j].squeeze())\n", + "\n", + "print(\"AVERAGE TEST: BATCH %04d / %04d | LOSS %.4f\" %\n", + " (batch, num_batch_test, np.mean(loss_arr)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualize" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "##\n", + "lst_data = os.listdir(os.path.join(result_dir, 'numpy'))\n", + "\n", + "lst_label = [f for f in lst_data if f.startswith('label')]\n", + "lst_input = [f for f in lst_data if f.startswith('input')]\n", + "lst_output = [f for f in lst_data if f.startswith('output')]\n", + "\n", + "lst_label.sort()\n", + "lst_input.sort()\n", + "lst_output.sort()\n", + "\n", + "##\n", + "id = 0\n", + "\n", + "label = np.load(os.path.join(result_dir,\"numpy\", lst_label[id]))\n", + "input = np.load(os.path.join(result_dir,\"numpy\", lst_input[id]))\n", + "output = np.load(os.path.join(result_dir,\"numpy\", lst_output[id]))" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAAD4CAYAAAA6lfQMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB69ElEQVR4nO29eZwU1dX//+m9p2eme/YZRjZFlEWQiArjhgsREaNGjNG4YNSoCEYBUYkJosbgEjUxETU+KuoTvrjEbO4EBRLBqCA+iIDiNiCzMFv3zPT0Xr8/+N2yuubeWnp6uqd7zvv16td0Vd2691Z13+lPnXvOuRZJkiQQBEEQBEEQRJawZrsDBEEQBEEQxOCGBClBEARBEASRVUiQEgRBEARBEFmFBClBEARBEASRVUiQEgRBEARBEFmFBClBEARBEASRVUiQEgRBEARBEFmFBClBEARBEASRVUiQEgRBEARBEFmFBGmesnLlSlgsFnz99dfZ7gpB5D2pjreTTz4ZRxxxRFr7MnLkSFx++eVprZMgCKK/IUFK9Duffvopli1bRuKYIAiCyCgrVqzAypUrM9IW/db1DRKkecqll16Knp4ejBgxIttdwaeffoo77riDBilBEASRUTItSOm3LnXs2e4A0T/YbDbYbLZsd4MgCIIgCEIXspDmKWqftpEjR+Kss87Cf/7zHxx77LFwu9045JBD8Oyzz3LP27BhA6655hqUl5fD6/XisssuQ3t7e1JZi8WCZcuW9Wpb6cO2cuVK/OhHPwIAnHLKKbBYLLBYLFi3bl26L5kgBgx///vfMWvWLNTW1sLlcmHUqFG46667EI/HueU3b96M4447DgUFBTj44IPx2GOP9SoTDodx++2349BDD4XL5cKwYcNw8803IxwO9/flEERG+eijjzBz5kx4vV4UFRXhtNNOw3vvvScfX7ZsGSwWS6/zeL9727dvx/r16+XfnpNPPjmpLP3WDRzIQjqI2L17N84//3xceeWVmDNnDp566ilcfvnlmDx5MsaPH59Udv78+SgpKcGyZcuwa9cuPProo/jmm2+wbt067j8CESeddBJ+/vOf4+GHH8YvfvELjB07FgDkvwSRj6xcuRJFRUVYuHAhioqK8Pbbb2Pp0qUIBAK4//77k8q2t7fjzDPPxAUXXICLLroIL7zwAubOnQun04krrrgCAJBIJHD22WfjP//5D66++mqMHTsW27Ztw0MPPYTPPvsMf/vb37JwlQSRfrZv344TTzwRXq8XN998MxwOBx5//HGcfPLJWL9+PaZMmWK4rt/97ne4/vrrUVRUhNtuuw0AUF1dnVSGfusGEBKRlzz99NMSAOmrr76SJEmSRowYIQGQNmzYIJdpbm6WXC6XtGjRol7nTZ48WYpEIvL+++67TwIg/f3vf5f3AZBuv/32Xm2PGDFCmjNnjrz94osvSgCkd955J23XRxADCfV4CwaDvcpcc801ksfjkUKhkLxv2rRpEgDpgQcekPeFw2Fp0qRJUlVVlTwGn3vuOclqtUr//ve/k+p87LHHJADSu+++K+9Tjz+CyCXOPfdcyel0Sl988YW8b9++fVJxcbF00kknSZIkSbfffrvEky/qcShJkjR+/Hhp2rRpwrL0WzdwoCn7QcS4ceNw4oknytuVlZU4/PDD8eWXX/Yqe/XVV8PhcMjbc+fOhd1ux2uvvZaRvhJELlNQUCC/7+zsREtLC0488UQEg0Hs3Lkzqazdbsc111wjbzudTlxzzTVobm7G5s2bAQAvvvgixo4dizFjxqClpUV+nXrqqQCAd955JwNXRRD9Szwex1tvvYVzzz0XhxxyiLx/yJAh+MlPfoL//Oc/CAQCaW2TfusGDjRlP4gYPnx4r32lpaW9/GUAYPTo0UnbRUVFGDJkCEUPEoQBtm/fjl/+8pd4++23e/2A+v3+pO3a2loUFhYm7TvssMMAAF9//TWmTp2Kzz//HDt27EBlZSW3vebm5jT2niCyw/79+xEMBnH44Yf3OjZ27FgkEgns2bMnrW3Sb93AgQTpIEIUdS9JUlrbEQVuEMRgoKOjA9OmTYPX68Wdd96JUaNGwe12Y8uWLbjllluQSCRM15lIJDBhwgQ8+OCD3OPDhg3ra7cJImcQ+XZm+reHfuvSCwlSgsvnn3+OU045Rd7u6upCQ0MDzjzzTHlfaWkpOjo6ks6LRCJoaGhI2mfGMZwgcp1169ahtbUVL7/8Mk466SR5/1dffcUtv2/fPnR3dydZST/77DMAB6J4AWDUqFH4+OOPcdppp9F4IvKWyspKeDwe7Nq1q9exnTt3wmq1YtiwYSgtLQVw4OGvpKRELvPNN9/0Ok9vvNBv3cCBfEgJLn/6058QjUbl7UcffRSxWAwzZ86U940aNQobNmzodZ76qZH90KoHNEHkI2wmQjnzEIlEsGLFCm75WCyGxx9/PKns448/jsrKSkyePBkAcMEFF+Dbb7/FE0880ev8np4edHd3p/MSCCIr2Gw2nH766fj73/+eNGXe1NSEVatW4YQTToDX68WoUaMAIOn3p7u7G88880yvOgsLCzV/e+i3buBAFlKCSyQSwWmnnYYLLrgAu3btwooVK3DCCSfg7LPPlstcddVVuPbaazF79mx8//vfx8cff4w333wTFRUVSXVNmjQJNpsN9957L/x+P1wuF0499VRUVVVl+rIIot857rjjUFpaijlz5uDnP/85LBYLnnvuOaFrTG1tLe699158/fXXOOyww/D8889j69at+NOf/iQHW1x66aV44YUXcO211+Kdd97B8ccfj3g8jp07d+KFF17Am2++iaOPPjqTl0kQ/cKvf/1rrFmzBieccAKuu+462O12PP744wiHw7jvvvsAAKeffjqGDx+OK6+8EosXL4bNZsNTTz2FyspK1NfXJ9U3efJkPProo/j1r3+NQw89FFVVVXIwIEC/dQOKLEf5E/0EL+3TrFmzepWbNm1aUkoMdt769eulq6++WiotLZWKioqkiy++WGptbU06Nx6PS7fccotUUVEheTweacaMGdLu3bu5aWeeeOIJ6ZBDDpFsNhulxSDyDvV4e/fdd6WpU6dKBQUFUm1trXTzzTdLb775Zq/v/rRp06Tx48dLH374oVRXVye53W5pxIgR0h//+MdebUQiEenee++Vxo8fL7lcLqm0tFSaPHmydMcdd0h+v18uR2mfiFxny5Yt0owZM6SioiLJ4/FIp5xyirRx48akMps3b5amTJkiOZ1Oafjw4dKDDz7ITfvU2NgozZo1SyouLpYAyL939Fs38LBIUpojWoicZuXKlfjpT3+KDz74gCwuBEEQRF5Cv3UDD/IhJQiCIAiCILIKCVKCIAiCIAgiq5AgJQiCIAiCILJK1gTpI488gpEjR8LtdmPKlCl4//33s9UVQsHll18OSZLIpyaPoLFGEJmBxlruQL91A4+sCNLnn38eCxcuxO23344tW7bgyCOPxIwZM2j5O4JIMzTWCCIz0FgjiL6RlSj7KVOm4JhjjsEf//hHAAeWxRs2bBiuv/563HrrrZnuDkHkLTTWCCIz0FgjiL6R8cT4kUgEmzdvxpIlS+R9VqsV06dPx6ZNm7jnhMNhhMNheTuRSKCtrQ3l5eW0VBeRN0iShM7OTtTW1sJq7fvkBY01guBDY40gMoOZsZZxQdrS0oJ4PI7q6uqk/dXV1di5cyf3nOXLl+OOO+7IRPcIIuvs2bMHQ4cO7XM9NNYIQhsaawSRGYyMtZxYOnTJkiVYuHChvO33+zF8+HDcdNNNcLlcputLJBLYuHEj2traYLVa5adR5VNpOp6a1W32V92pkkgk5L4o+ydCkiThk7va84PnCWKxWGC321FQUIDi4mL4fD54vV4UFhbC5XINmPuSLcLhMH7729+iuLg4a30QjTWCyEdorBFEZjAy1jIuSCsqKmCz2dDU1JS0v6mpCTU1NdxzXC4XV3i6XC643W7TfQiFQgiHw/I60RaLpZfQUoojI9MnFotFFmHK9wzlNmvPqPuu0bJa7SvrYmVtNpu8X/lejRGxKuoLb393dze6u7vR2NgIi8UCh8OBgoIC+Hw+lJSUwOv1ori4GE6nc1CK1HRN16VzrBFEPkJjjSAyg5GxlvFfe6fTicmTJ2Pt2rXyvkQigbVr16Kuri4jfeju7kYsFjN1jvpmKrfV77XEIE/8mvmnyDtXaeHVe6nr4e1Xb1utVvlls9nk94DY2strl9cfSZIQiUTg9/tRX1+P//u//8PGjRuxdu1abNiwAZs3b8aXX36JlpYWhEKhlMTxYGUgjDWCGAzQWCOIvpOVKfuFCxdizpw5OProo3Hsscfid7/7Hbq7u/HTn/40I+37/X4kEgnNqXqeSDQqJJVWSPbXjBBlQk1kdVXXr66LN7Wu3KesR9mWqG9qkc22laKUCUX2Xu0KYOR+MhKJBCKRCCKRCNrb21FfXw+r1Qq73Y7CwkJ4vV6UlJTA5/PJ0/0UBMAn22ONIAYLNNYIom9kRZD++Mc/xv79+7F06VI0NjZi0qRJeOONN3o5hPcXHR0dvcSoaIq+r9ZLtYg0c65WX7Sm8PXEn6ifIhGrJVhZP5S+uMp7yfNRFYldrX4kEgmEQiGEQiG0trYCOOBm4HA4UFRUhOLiYpSUlKCkpASFhYVwOp0kUpH9sUYQgwUaawTRN7KSh7SvBAIB+Hw+3HbbbaZ9SBOJBP7973+jvb2dK6AAbcuhWURWzL5iVOimqy2edVW5baQOJUan3vWCpdT1KEWq0ieVWVIHMqFQCHfffTf8fj+8Xm+2uwPgu7FGEPkIjTWCyAxGxlpORNmnk0gkgmAw2Gs/z5ppVOwpp6x59IdozKT1T2/6Xo1ayPMErfohgE3zq++j1nUq3QZYHfF4HPF4HKFQCC0tLQAOiFSXy4XCwkJZpPp8Png8HjidTt3rJwiCIAiifxl0grSrqwuRSEQY4KOHWjTx/CiV23p18kQYzyfTCKK6AL5F0kzKJyWpuB/opYxSC1TRdSuFrbo+m80mC17lufF4HMFgEMFgEPv375fLMpHKpvqZJdVut9N0P0EQBEFkkEEnSAOBQJKY4U3XK+FZ8njHlAKSV04kMPsiRtVlRfvU/dVrX00q4liNlsDjBZXx+iLyQ2Vofa7q80Ui1eFwwOv1wufzobS0FMXFxSRSCYIgCKKfGXSCVBnQpCRdYoNNPWtZK/XEkgiR2BWVU06vi4SeqC8sSEk0xS6yFOtdh170v1bglpZAVdetdi3gTe+ricfjiMVi6OnpkfMJ2u12uFwu2Se1tLQUXq8XHo9HzmNLEARBEETfGFSCNJFIoLOzs9d+kRjVEnvq80X5OPXydeqVNdIHZZolJWpBpxZp6mO8c3jtGbkmo9ZUnojUirbnXYfR6X2z5wBALBZDLBaTE/kDB0Sq0+mE1+tFaWmp7JPqdrtJpBIEQRBECgwqQRqJRNDT0yNvK1MViXwcRTk4RQJOy6qoRV9WJDJ6Lu862Hvlfq1Vm3jWV+W9MDrlroeof8p9Rq+bJ3B5fqvKPopywQIHRCoLjmMi1Wq1wuPxJKWf8vl8KCgogN0+qIYZQRAEQZhmUP1SdnV1ySs0qRPgi3xHRUKVl+xeXY6JGxZsw7NQ8vaJLJ56U9t6eU9FbWsFHGkJMz2/UJE1Vst6qpcDVpSSS+kyoBetz8Soekpf3TfedbJ2eWK7q6sLgUAA3377rey2UVhYiKKiIpSWlso+qSRSCYIgCCKZQfWr6Pf7Na2dPPQsqOpyyvcicaOXQ1RtuRWVFR0TpVzSsupqYTQLgZ6o1UuYr4eeBVspFJUrRvHEKS8ZP0+UGr1G3kNFIpGA3++H3+/Ht99+C+DAdL/b7Zb9UZlI9Xg8Rm8DQRAEQeQdg06Qqq2PIsuolsgzGgClnP5WC1qeOOQF4ij3i9wHRP0U9TWVa9HDqPVXTbpST/EEvygll7I8L6eqUjwbEaa86H6RGI7FYujs7ERnZyf27t0Li8Uii9SioiKjl08QBEEQecWgEaTKgCbRlLhyn2i5TC0/TPXa9epzRe/VVkzRFLxo1SKtSHVem3oiUU9IGhGa6nb1XAhSzTzA6w9PbJoJfFK7AqTi+6rl36p+wIhEIohEIvKSqARBEAQx2Bg0gjQUCskBTSIrqBI9Qcl8L/XK6qG2iBr1V1X3RVS3GSFqpJxZi6uRunhllA8NZqP1ecFWgLY1VuszM2ot1QryMrIClVYwGUEQBEHkM4NGkAaDQUSj0ST/TD20fEyVokMpGLUiw7Xa4Fn49PrBsz4amY4XWRSVfTXjX6tE5Fqgrl8U4c9Q+5uKpsCNXJ8aPWEqsoKbyYOqtlqbEaYEQRAEMdgYNILU7/cnbRv1HQX4gUGiekRltKyYWu1qtZMqvL6IrLBGXABEaPnJ8qbKRX0Deuc+7UswlF7wkta1GXEDYHXoBa8ZaY8gCIIgBgOpJ7/MMdSClMHS86jFmFKAak0tG8WoT6kWRqfSlX0203eepdaMWOK1q35vJAjL6L3R89MUCVHlMbP5X9X16vWB12fROSRMCYIgiMHKoBCkohWa2LFU12fnYcZyqFc+VV9Urf1agk99jBfxr9eeqA8ioZqq4AXM+5aKHgr0RCmvn0aFqVabfVkMgSAIgiDyiUHxi6gMaDJiHdPyvVSjJdpEqC2RWm0YFW3qfuj1RcuXU9QX5bl6feK5G/BEqVZgGM/VQTndLlrSlHcdevfRiDgU1aG3lKqWdZxEKUEQBEEMEkHa3d2NaDTaaz+zsPVFFOhZO836gYr8O5XnGxGPWqKUBdnw3BGMCOV0Ti0b8a/kuQLwrKOpWLrV4jDVKXz2YnWo6xFdR6rtEgRBEEQ+MSh+BUX+o0Dyqkj9gZb/pGif3jGleNQSkFoCWa+OvvjL6pGOunnWUaNWTuVfdV9YNL9Z/1ReXUYh31GCIAhisDPoBamaTIgDo36URq2HgDhYyKwfqtY0udZ5vL4ZaU8vxypvO53WRbXl0kxdRvrMq09tVSUIgiCIwU7ep31KJBLo6uoCYMx/1Ih/pBnU9Rm1rImS2hvtm94UPO+YUowqha4RYWwGUfS7Xv+U18QTzqm2z2vLaGJ+3n1ifdNaupTXD5q2JwiCIAYref8L2NPTIwc0KVELBEmSEI/H09p2X8StmaChVC2bvHZEFlez9RpFaSE1YjE0mq/UCCKfTlE9ZlI8mbVM96eLBEEQBEEMdPJekHZ3dyMWi+kKjnSmfmJoRambjYRXRp1r+XzygqjMiEue0FVjVixroexjNoSZkaCzVJLxi+oQQVP3BEEQxGAm7wWp3+83lNrIarXCZrP1mzDQEoyi8noBUUbq4bXflxWEUhGMRqbk03HfWU7ZVCLlRdtm+sVLb6V2ExH5lJptiyAIgiDyibwXpIFAQH6vFEBKaxdL15NJQZCK2NOLhlcHOfHEp960uNoPUt2WkXukJ7SVwUx6Kzfx6k5XMJCWdVgtSo2KXBKVBEEQBGGevBak8XhcuEKTUmD091SxEQutUuwZSevEq58nQrUCiHiCTGuflsuAVr9E1827TjPBWyI3DL38sqL7o3e/RDlGRfWLtil4iSAIgiCSMf3LuGHDBvzgBz9AbW0tLBYL/va3vyUdlyQJS5cuxZAhQ1BQUIDp06fj888/TyrT1taGiy++GF6vFyUlJbjyyivlSPh0olyhCUienu8Pn1E9eMIxkUiY8rlMtU29fX09T5T6iTcdnmrUvp7QU+cQFX3GRn1rleXMfF94U/dq1MJWfV9yaZwRRC5DY40gBgamBWl3dzeOPPJIPPLII9zj9913Hx5++GE89thj+O9//4vCwkLMmDEDoVBILnPxxRdj+/btWLNmDV555RVs2LABV199depXIaCrq4sbOZ8NMarETM5NrXOYUDJ6PTzhq96n5e+pns4344+qhcgyKRLqWv00cz/0+qS85lT9UkX+pHp9zKVxRhC5DI01ghgYWKQ+mOQsFgv++te/4txzzwVwQCjU1tZi0aJFuOmmmwAcCCqqrq7GypUrceGFF2LHjh0YN24cPvjgAxx99NEAgDfeeANnnnkm9u7di9raWt12A4EAfD4fbrvtNrjdbmG5zz77DLt27eolDpi4SDV4RY2eb6XWlLda+Bj9OMwG76j9NbVcBZQR/UbrFtWl17bouMgayqs/HQJU9BmJPhd2//Xa5l2HKMdpPB7Htm3b4Pf74fV65f3ZGmfAd2ONIPIRGmsEkRnUY41HWp3ZvvrqKzQ2NmL69OnyPp/PhylTpmDTpk0AgE2bNqGkpEQeuAAwffp0WK1W/Pe//+XWGw6HEQgEkl5GUK7QpBSMPBHRl6lyI2JU1AbPUqnsn9rip+cfqUR5nnraWdQvPWHMm4YWTddr/TXrpqAO1mKkElVvFCMPCXp+qmbOMUp/jTMg9bFGEPkIjTWCyBxp/SVvbGwEAFRXVyftr66ulo81Njaiqqoq6bjdbkdZWZlcRs3y5cvh8/nk17Bhw3T7EovF5ICm/g5aEqElQLWi7PUECxOWTKyqtxlqC57aZ1FvCp/XP7U1WGRNFW0b+Sy0josCmVJB5LbA2umLqBT5j6aj//01zoDUxhpB5Cs01ggic+REuO+SJUvg9/vl1549e3TPCYfD3BWagO9EgJZo0sKo+FJbEc2KYrX1j2cp1Tomsh4q3QS0AojU/eVZKfWmtrXqMYPeZ2NmTXsjfq/pTN+k5TOcbX9mNamMNYIgzENjjSCSSasgrampAQA0NTUl7W9qapKP1dTUoLm5Oel4LBZDW1ubXEaNy+WC1+tNeunR2dnZK9cog+0XWcG0Uv/wjousnTxfRNa2ljhVTssrxWUqKK2o7KVnrRRZTkWBRurr5LkAsPdmhJ6WCOVZhlO5R0aCuAB+iigziK5dud69UfprnAGpjTWCyFdorBFE5kirID344INRU1ODtWvXyvsCgQD++9//oq6uDgBQV1eHjo4ObN68WS7z9ttvI5FIYMqUKWnri9/vFwqUvk7zGrF0mglOUr4XTb+bRTRVLypjFD1RpjdVz3xZjUbN89rRshQbhfeQIRKZei4JZkWl+uHIbBqygTTOCCKfobFGEJnDbvaErq4u7N69W97+6quvsHXrVpSVlWH48OG48cYb8etf/xqjR4/GwQcfjF/96leora2VoxbHjh2LM844Az/72c/w2GOPIRqNYv78+bjwwgsNRyMaQRnQpEYrEEZvClqE0Wlp0RR8fyLyK1X3xUyAjl5mAQZPzOn5Z5oNeDKLWlTzfGPNtp/uwKpcGWcEkevQWCOIgYFpQfrhhx/ilFNOkbcXLlwIAJgzZw5WrlyJm2++Gd3d3bj66qvR0dGBE044AW+88UZSeqY///nPmD9/Pk477TRYrVbMnj0bDz/8cBou5wCxWExOSsyEFk9wGBWRWlP0WkEwRvwe05U30yhq66LaLUAkWBlG/C956Z/U9yydPppmMNu2EaupmTyw6u+JSMjmwjgjiHyAxhpBDAz6lIc0W+jlIe3q6sL69esRi8WSco4qxYU64lz5Vy1a1ELCzFS1koEWwKKHkaU4RTlIjYh/3n3lpXTi+dSmCyMBbFrWcq3AM7321NcqykOaTSg3IpHP0FgjiMyQ8TykA4VAIIBYLJa0z4hVjBc9rjwmOodHOi2AeoFH2UYv0Elvep6JOLaqltqXlpGuBPhm7h1vMQO2H0gW7UbFKC8lFK1vTxAEQQxm8vJXsKOjI2lbTxxqiU1eeiR1xLkon6VaoKQqOrTSBvU3PJElSrhvVDirg5rUx1gKp3SINCNZFLTOM+pbmkp/1RZSgiAIghis5KUgZQnx04WR9Eh6MAtaqiJLy7KnZ/VL1ZqqletUiZFE/qJzjWQDMIqR6Xcj5QCx37Dy4cTo/TFSL0EQBEEMZkwHNQ10lCs0aaH0S0wl4IbnZ6r8q25HtG2mDXVbevtTTUBv5DyjS5iKrt9IYv/+XBLUjEjX8yMFzIlRns+s1WqVXRYIgiAIYrCRdxbSnp4ehMPhXvuNWBDNpnhS/+Ul3+8LPGuaWSGVbl9TnpBUW0C1kvmbEZlm7yHPrYInJM36kGoJdLMPGLz6zdZDEARBEPlG3glSXkCTFmr/R2UQi56IUUaKi8qYReSPqlW/EeGp9nntj2AstVuC2q9SNHXfH5ZQ3jKnavRSWCm/B8rPmYlUdb+1rsNICjCCIAiCGKzk3ZR9R0cHd9rZSKJ64DvBoBRWepH36nNSXcJSLWyNClxRiiWt6X6eiBaVNytSzV5/X1db0sp5yjsueq/1veEFsZlxx+B9Rsr2yEJKEARBDGbyyiwjSZLmCk089NaKV4oPLdGgTi7fH4gCq1KJJFefJ7Iopivopi/BXFrb6v0iazXPv1Yvub9We4xUIut5YpgspARBEMRgJq8spLyAJvVKTWoRIlqHXG9bS3jyhKuWpdFMhLzRsmYDnHjtaCW6N0tfLIBafVNu88Se0RWlAONiltFXEalsjyykBEEQxGAmr8wywWAQkUgkaZ9ypSYeyqAcPWupaE14M6vzGClnxDqn7rOelTTVoJ50B0XptaX2c2UPEXorP+lZSM20zROpatKVsD+T95cgCIIgBip5JUg7Ozvl1DlqPz8jgowXgKMUfTwRajbdD+/Fw6hQ0fJZ5Yk2M9ZO0fmZRH2f9CyeynKi+847T/k+Ho/3+t6ky4Jp1JeZIAiCIAYTeTVlrwxoUi7tqA5QMmL14h1Tr+1uBqMpm/TKqHN0ioSx8jgvcEu9hryoL+xeak1jp8PPVO+6RUt4qsso6zMyBZ+KwDbzMCJqh9cuidKBj81mo3yxBEEQ/UDe/AKqA5qUP/iiSHqzGBUgasGjZwk1Ynnkte12u+F2uxGJRHqluhLlBlW2y8rw+qAl2owEQ/HOU2PGOqx1741YPs1g9sHDqJDUcgXQC5ojsovb7cZll12GZ599FjfddBNKSkqy3SWCyEusViumTp2Kyy67DCNGjMh2d4gMkjcW0lgshq6url77+zPqnaFnLVRa94xEdisRrWBUW1uLmpoabN26FcFgEADg8XjgdDqFdfDuhdpNga1cJbLoivxSecd4ZdWBUkZdCPR8SM3s08NsrtRUlgzl1U+Wt+xis9ng9XoRDAaTFtfweDxYtGgRbrvtNrhcLlxwwQWwWCz47W9/Sz7ABJFGnE4nbrnlFtx8883weDzYu3cvLrroImzcuDHbXSMyQN5YSLu7uxEKhQD0FiFKf0AjAUNmEAXT8AJ0eO9FQsVisaCwsBA2mw09PT2IRCLyeXa7Haeddhr279+PxsZGNDY2oq2tDX6/P8lSqiVwRaJLaTEVXa/oevTK8o7r1cE7rr5vfU3mr0adeSFdAUxq0r2yF5E6I0eOxJ133on//Oc/WLlyJY4++mj58znzzDNlMQocGH833XQTZs2aRW4WBGGSoUOH4vbbb8eaNWvw3HPPobq6Wj527LHH4rbbbkNRURGsViuGDx+O1atXY9KkSdnrMJEx8sZC2tnZadgHVImRYJm+IBKdWsLYarVi2LBhOOyww7B+/XpIkiQLTafTiUQigc2bN2PXrl3o7OyUp+xjsRgcDge8Xi+AA1ZjLYup8r0o/ZVRf1P1dTHUllaR8BRZXo2kyuI9gGil6RL54Wr55abD0m40OIvILMcffzyeeeYZjBgxAna7HePGjcOoUaPw/e9/H5FIBGeffbYsRhlVVVV48sknsWjRIqxatQoulws9PT1ZugKCyA1OPvlkrFy5Mmkq3uv14kc/+hEikQgmTJjQa6wNGzYMv/nNb3DJJZegra0t010mMkjeCNKOjo5ewkKEWmQp92mVV+/T2tZrT2tVp/Lychx11FEIhULy8puxWAyJREIWpp9++ik6OzsRjUZlwZpIJNDZ2QmPxwMAiEQiXEHKQ+veMX9TkVjVuwdGA7p4pBKAxLsGnvgUpfES0dcVpYDke8HuK5E9nE4nfvWrX2HUqFFJ+ydOnIirrroKlZWV+PGPf8w9t6qqCgsWLEB1dTVGjhyJm266KWmqnyCI7xgzZgxWrVqFIUOGJO2fOXMmfvGLX2Djxo24/vrruefOnDkTt956K1asWIGuri60tLRkostEhskrQarGqH+isjzDbJJ0XpvKlEE8302tdE0WiwWRSAQ2my0pQ4CyTp/Pl7QQgCRJsv+bxWKRxaqZeyCyBKqzFPDui5YlWHSN6jJ6GRBElk+1BZQnOHnXlErEfF/pi0An0svQoUMxfvz4XvtdLhfuuece+YFQxFFHHYWjjjoKe/bswX333Yc9e/b0Z3cJImepqalBTU1Nr/0OhwO333677m/Vz3/+c1x++eX46KOPcN5556G7u7s/u0tkgbxwgIpEIkkBTcwPUo06kbzId1EkrLSEk55fpdF1zyVJwtdff41XXnkFn332WVJb8Xgc8XgcsVgMkiTB4XCgsrISdrtdPpfdi2AwiJ6enpQsNmYT/etZMXn3OhXBzwSk6F5qLW7AyzqQbetkttsngCuvvBK1tbXcY3a73bCbRnV1NS6//HJ5LBIEkczpp5+uKTj1DCculwuVlZU49dRTceaZZ6a7e8QAIC8EaTAYlAOaAMiR4oC2wNGaotdLY6QXsKNOqi/axyMWi+Hjjz/GO++8g9bW1l7BL0rBXVhYmJSCJpFIoKenBz09PbIoTUX4qMWdXvJ91ke9fKEiYarn/8v+xmIxhEIhbt5VpXjQsvJmEtEDj8VikftMgTHZwel0YvLkyWm5/06nEzfddBOmTJmShp4RRH5hsViED35msdvtWLBggeyaRuQPefFL6Pf7UxJdZtIEqYOQeFZBo4JTj66uLkSjUXR1deGbb75BV1eXLOSYhTQej8tTHD6fL8lKGg6H0dPTI1tSeTlIjcKbKuddn57wFy3/yc5TTrfz7iE7brfbZb9Yreh3Xh8zYZHkfS/UabT0sgoQmeHQQw/FhAkT0lZfcXEx5syZA4fDkbY6CSIfKC0txSmnnJK2+o455hjMmjUrbfURA4O8EKRshSajP/JK0cNLDK8VAd8XjNQnSRKi0ai8fGUwGMT+/fvlfUpBygSW2+2WI+sBIBqNymI0EokgGAymFOGtJ0KNXIvyr7JtM5+Vun2RRSvbU+B66ahEyfCz3e/BykUXXZQ2qw1w4PM944wzUFlZmbY6CSIfOO644zB06NC01We32/Gzn/2MspXkGXklSBkiH1It1MKAZ81S+p8qz1P+1Zr+0xs8FRUVqK6uhtVqTRLJwWBQTmuVSCQQiUTkVE/xeBxWqxVlZWVJlkNmGQ0Gg+ju7k4pWl0EL7CI1Styc9DyIxWRDaHWH5ZL5bXzrMJE5rHZbP2S29Dn89EqTgSh4txzz037/7uCgoK01kdkn5z/RQyHw9wVmpToiQx1hLaRwBlRAI0ZEaXuV3l5OSZNmsRNr9TZ2YlwOCyLTSZIWT/cbnevH0JJkhAKhbhi1IhFWRQYJLpGvQh5Nbz2sy3SUs3KoN6Xyv2lafzMUVBQkFbrKEOSJApsIggV77zzTtpXonO73YbTGhK5galf/+XLl+OYY45BcXExqqqqcO6552LXrl1JZUKhEObNm4fy8nIUFRVh9uzZaGpqSipTX1+PWbNmwePxoKqqCosXL+61FrtRlCs0AfzAI/V7NVpTwJmYUmV927t3L/bs2YPi4mK43e6kQKF4PI5AICBP1cfjcXlqnvWvrKws6amRBQFFo9Fe18Dz6TQLT1Cxfcq69Zbd5In8gYzS9UFp9TS7LKwa5fkDcazlE8FgEC+99BI2b96M1tbWtD0MOByOrD9UEeagsdb/vPTSS7jkkkvSmhZt/PjxGDlyZNrqI7KPqf+c69evx7x58/Dee+9hzZo1iEajOP3005PygS1YsAD//Oc/8eKLL2L9+vXYt28fzjvvPPl4PB7HrFmzEIlEsHHjRjzzzDNYuXIlli5dmtIFBAKBJBGjjNo2GnyTDiEkisDnTdWK/FW7u7uxc+dOFBUVYfjw4SgqKkpqIxQKobu7W7aSRqNR2VIKHPCrqayslAUsuy5WTu8+mEGUXkmZr5R3Du8+92ekudG0UnoWTaP+v0bb1PtuDsSxlk8kEgnce++9mDZtGqZNm4bNmzenpV63243Zs2eTlTSHoLHW/4TDYaxevRonnHACdu7cmZY6XS4Xpk2blpa6iIGBReqDMtm/fz+qqqqwfv16nHTSSfD7/aisrMSqVatw/vnnAwB27tyJsWPHYtOmTZg6dSpef/11nHXWWdi3b5+8hu1jjz2GW265Bfv37zdkgg8EAvD5fLjtttvw6aef4vPPPwfwXbontaXKZrMlX3Q/OEIrLWSiqVz1qkbq8spI7EQiIa9Rn0gkks71+XxwOp2wWCyw2+1wOBxwu92w2+2IxWL4+uuv5WUMLRYLCgoKUFZWhpKSkqQfSmX7qd4TdVJ6LdR+tmYfAoxYIXlJ57U+F3V5reT+RlalEvVL2ZZIjMbjcXzyySfw+/1JQWpA9sdavnP++edj1apVaYmQb2trww9+8ANs3LgxDT0j+hMaa5ln7ty5+OMf/5gWI8Qnn3yCk046Ce3t7WnoGdGf8Maamj59I/x+P4ADU8UAsHnzZkSjUUyfPl0uM2bMGAwfPhybNm0CAGzatAkTJkyQBy0AzJgxA4FAANu3b+e2Ew6HEQgEkl7AgR9x3gpNSliAEEOUJ9PstnKfyE1Auc/MKkas316vFx6PRxbUrO+dnZ1y2idmCWVR9Xa7vddawGyKn9evdFlK1fu0puBTsUjr3WuRdVJdjndMlI5KdL+02tLKw6p1r/UeCLI91vKddevWYePGjb1mElKhpKQkaa1uIregsda/rF69Gk888YTub7cRxo0bh8MOO6zvnSIGBCkL0kQigRtvvBHHH388jjjiCABAY2MjnE5nr+Ca6upqNDY2ymWUg5YdZ8d4LF++HD6fT34NGzYMwIEVmvSWDxOldtKyTqoRiSHRPp4oMfOeiTWPx4OhQ4diyJAhKCwslI/HYjEEg0EASBKkzGlcHX3IlhEVpSFKp8WYWUv7+vRr1gLZF2Et+jz0ED1kmL2fev0fCGMt32lpacGFF16IWbNm4c0330xaktcskiQl+bUTuQONtf6nvb0d1113HU444QQ88cQTiEaj2e4SMUBIWTXMmzcPn3zyCVavXp3O/nBZsmQJ/H6//GKO0eqAJi3UKZ20fDq1AqH09ukJUT3hocZut6OkpARDhw5FSUmJLHZCoZC8Vj0T3cxKqgyIUh7nTU33h/uC0WT6Wmjl8DQiQM0eN/Mwot7Ws8AaRVR2IIy1wUBjYyP+9a9/4dxzz8Utt9yS8jSgxWKh6N8chcZaZkgkEti+fTuuu+463H777WmZmSByn5QE6fz58/HKK6/gnXfeSUp2W1NTg0gk0ssU39TUhJqaGrmMOjqRbbMyalwuF7xeb9IL4K/QJJpuVR5X/jUCT2Sq61H7fxpdClO0T32+3W5HdXW17GMUj8fldeqVgjQej8Nms8likAk5m80mTLuRrql7I6slGUX5OabSP61lYdVt8NoUleH1USSWleeJPle9Pg+UsTaYCIVCeOKJJ/Dzn/9cHmNmSOcyiUTmoLGWeWKxGO6//34sW7YsJVFqtVpx3HHH9UPPiGxgSpBKkoT58+fjr3/9K95++20cfPDBSccnT54Mh8OBtWvXyvt27dqF+vp61NXVAQDq6uqwbds2NDc3y2XWrFkDr9eLcePGmeq8OiG+HqJgEj3RoxYcvAT5yve8nKai3KVakedq7HY7Kioq4Ha7ARzwQVL2m9Vls9l6rRhkt9sRDoe5ojQdKaBEyfLV77VQCjmeX6d6m+c/qvcS1cXguXKI2uX1Wwut+8ATwgNprA02YrEY/vnPf+Ktt95Kybp/6qmnyuOUGNjQWMsuTJT+7ne/S+n8H/zgB73iJojcxFSU/XXXXYdVq1bh73//Ow4//HB5v8/nk/0W586di9deew0rV66E1+vF9ddfDwByxGk8HsekSZNQW1uL++67D42Njbj00ktx1VVX4Te/+Y2hfrBoxOOPPx4dHR3cnJd6U9IiH0ct31KRn6lyijoTeTQ7Ojrw7bffIpFIoLS0FE6nEw6HAxaLBW63GzabDV999RXC4TCsVisKCgpQUlIiB0oN1OlEra+iUqSmw5oLmE/Cn0r7et8HpZiNx+PYvn07/H4/br311gE11gYrhx12GN555x3TFs+mpiaccMIJ2L17dz/1jEgHNNYGDtXV1Xjttddw1FFHmTrP7/fjuOOOw6efftpPPSPSQdqj7B999FH4/X6cfPLJGDJkiPx6/vnn5TIPPfQQzjrrLMyePRsnnXQSampq8PLLL8vHbTYbXnnlFdhsNtTV1eGSSy7BZZddhjvvvNPk5UFeEpMnEPSsVlqrBymtiGqrldrKmeoqTX2BTe9I0oEVm5T9YDlJldkFmMW0P/N9ijDaphGfTt5nbeaeK/OypgJr30ybWteuJWwH2lgbrOzevRsrVqww/RBUXl7ey9I2GCkpKYHP5xvQa47TWBsYNDU14Y9//KPp8wZTQFi+06c8pNmCPUmOHTtWnm5W/8NjOUkB84E7PBEhSgCfLhHKm6bWIhAIoL6+Hna7XbZ62u12WK1WOJ1OfPvtt+ju7obNZkNRURF8Ph+sViuKi4vTkmsx3YjcH3hWab18pkpLtfJ9IpFAV1cXOjs74fF4UFhYCKfTaVqkq/Ou8vKwGvleqK9ZaSEdKP5kg91qAwDHHnss1q5d22uhCi38fj+OP/54YcqffMfr9eK0007DbbfdBqfTiRdffBH333//gMs+QGNtYDFixAhs3LjR9IzEGWecgTfffLOfejWw8Xg8mDlzJi677DJYrVY88MADWLduXba71QsjYy2nlxNh/pIifz+A7x9opN50lDECE6JmRXNBQQEcDkdSpD0TNWpxy8SS1WrttUjAQID3TKSVz5Oh/AyUCfrVVutYLIZQKITW1lb09PTIeVkTiQS8Xq8s0HlClidWtcRoqvlVUzmXyAxNTU1obm42JUibmpqwd+/efuzVwKSqqgqnnHIKbrzxRhxxxBHyPTv44IPx+eefZyR6nchd6uvr8cYbb+CKK64wfM7+/ft7LfU6GHC73RgzZgzuuusuzJgxQ/4dmzx5Mk499dS0rYiVSfJi0WWRb59Zq2N/oQ6o0QreMYrNZkNBQYEsuJQiSx24xNbXzoYYNWp95AX1MHjBYGpEmQu6urqwb98+7Nu3D4FAQJ6uD4fDclAY66f6XLZP7aLByyZgNNm/OsBKudQtMTCpr6/HM888Y+qcTz/9VDdHcj5RXl6Os88+G6+++iqeffZZTJ06NUnAezyeAWOJJAYukiSZXuGss7MT+/fv76ceDTxcLhdmz56NNWvWYMOGDTjrrLOSZj2HDBmCn/zkJ1nsYerkvIWU+UaqrYxagSuiJTxTQet8tegQCS61kNaL9AYOXFdhYSH8fj/C4bA8XW+xWJJyjjIharFYZGGaSbR8dbUWI2DnMh9Us4IvHA6jvb0dfr9fFqFK9w7156Y17c87ng4BmYPeMoMSSZLwf//3fwiHw4aieePxON5//33ZnztfsdlsKCsrw9FHH41f/epX+N73vifMLGC1WnHOOefg6aefpkTohCYff/wxQqGQ4SwV69atkxeKyWc8Hg8mTJiA+fPn48ILL0xaBpxXNhfJaUHKUE7dq8UbEzVq8ZEuUaq1vrlSdJlZOlQrSEtZD1tWlE3bq4OuWHn2GijT9VoBTKkGLUUiETmtVWdnJyKRiDw9z2D3wG63y98X5XQ9E+vM4pxu0mEZJ7LDhg0bsGPHDkyaNEm3bHt7O/7xj3/0f6eyhMViweTJk3Heeedh9uzZGDZsWK/V4Xh8/fXXskh3OBzyQh4EoeSTTz7Bzp07DY014MCCFvn6PbLZbJg8eTLOOeccnHXWWRgzZoxulhxJkvDZZ59lqIfpJS8EKWBc/On5a6rTC6nr1LPsqY8bLW+kLvU+h8MBl8uFYDAoWx1sNptsIVXXmw5Bms5gLr0UWkbTaMViMbS3t8tLyTLXBfbgwYQoE6Ps5XA4EI/H4Xa7ccwxx6C7uzsjQSjqRRSIgU97ezvefPNNQz+SWotQ5DoejwdXX301br31VlRVVRl+sAqHw9i0aRMkScLkyZNx2223Yffu3Vi6dOmAC3QisksoFMI///lPQ2MtkUjgtdde6/9OZQGbzYYbb7wRy5YtM+W/HolE8P777wM4MF7vuOMOFBcX44YbbkhpoY9Mkhc+pAytFE/K5TP1LJNqP0/RPqP9UPoN8qbnRcf18l7abDZ4PB5IkoRoNCpfIxNkrA4mxkRT/+yvkRRNRqfO9VA+GPD6ZbSdYDCI5uZmdHR0IBAIIBaLyRZO5s7BLKJK1w6r1SrnbC0tLcVxxx2HL7/8Ei0tLWl72tarR319+fqUnw9IkoT33nsPPT09umUbGhqwb9++DPQqs0yePBnPPvss7rrrLlRXV5uy8r/wwgt4+eWXYbFYMG/ePPzwhz/EFVdcgTFjxvRjj4lc5R//+Ich146uri60trZmoEeZpaKiAn/6059w9913mxKjALB+/Xrs2LEDAHDxxRdj4cKFuPLKK/HLX/5ywOYgZ+S0IDUz5c1QrrLECzbSEp6ibZHYZKgDV0Rt8I6z80WR6IWFhbLfqDLPJrPQKC2EWosEqCPWee/TQSoCX1RPMBhEU1MTOjo6EIlEEI/HEY/HZcGpXEKVF0zEput7enrw5JNPoqGhQbYsp7KMncjVQhTURuQWX331laHPbufOnXkV0GSxWDBt2jQ88cQTmD17tukfyEgkgueeew7BYBAejwfjx48HcCAQ6re//a1waU1i8PLNN98YylJRX1+PL7/8MgM9yhzV1dV47rnncMUVV5hegUqSJLz00kuyJXTGjBmyUebWW2/Fscce2x9dThs5P2WvnppWT3OLRJhIgCnrUf5l56jL6k07A+g1fSfKaapXN28a3ul0ytP0TJiyNtiSoby6Rdta9yUdK1FpuS/w6la7SwAH7mcgEEBbWxui0WhS8IgyyE1Zh7J+Js7tdrv8t6urC11dXYjH47BarSgqKuqTr6fy+0cCND/o7OyUc9hq8dFHH+XNlL3dbscpp5yClStXms4NyQgEAvj8888BAKNHj8aoUaPkY4ceeiiND6IXbW1taGlp0V1cYvv27XkVPDht2jQ8/vjjSSuGmaGjowNr1qwBAIwcOVJe2hZA0szpQCWnLaRKlFO8WkEyrCzv3FRW/eHVK/J/FOW0NNq+2o8VgOwPyQKaLBaLPH3PxBabshf1gddHpUBN1wpPauugEWuhWhDG43G0tbWhqakJPT09SdM6IjGqDPZibhssIX4ikUBHRwcaGxsRDofhcDjgdrtlIS/6Lhm1dOp9F40cIwYGTU1N+OSTTzTLxGIxfPzxxxnqUf9it9uxePFirF69OmUxChyIgm5qakJVVRXuv/9+lJeXAwBaW1uxdOnSQZWyhzCGJEmGZhk++OCDAS+yjDJt2jSsWrUqZTEKAH/5y1/wzTffwOfz4amnnkoat08++ST++9//pqOr/UZOC1I9sZnKNKk656S6TrVwVItJLXGpJWJF9fHKqK/H4XBAkg4kxWcWQ1aGWVCV09fsr9qPk73nTdnzridTKaTYtUSjUbS3t6Otra2XS4LSP1TtfqGeNrdarXC5XEgkEggEAvj2229hs9lQXFyM0tJSuFwuofjkfZdEx0ViNF1+uERm6e7uxuuvv6752XV1dcn+W7mMx+PBokWL8Itf/AJlZWUp1xONRvHss88iGo1i3rx5OPXUUwEcmMa/9957sWrVKhoLRC8SiQRef/11zTLhcDgvVmdisxCrVq3q04NfV1cXHnnkETkY6qSTTpKPvfHGG1i2bNmAn7nJuyl75X7RPr1pWJ4YTPWfZqrnaflxKvtvt9vh8/nQ09MjWzKVEffMEqgUoWqM3A8tP1OjKMWiVg5QhvIzDIVCaG5uRjAYRCwWk69JaTU2Ok3Ocra2t7ejo6MDBQUFsFgs8Hg8mrndzCIK1lLTF19aIrNs2bIF0WhU6Nu1Z88eNDc3Z7hX6cNisWD69Om4+eabeyW3T4VYLAafz4frr78e119/vfx/o6mpCatXr86r6VYivWzcuFEz9++XX36JPXv2ZLhX6cXhcOCXv/wlFi5c2Oextm/fPkSjUdx1111YtGiRPCsaCoWwePHinJiJyHlBCvROz6ScOheJUKPiNFvwxJ+yz+qlQdm1sihz4DvhpRZvrA5lncr96n3psoTyBKOWGGVlgsEgWlpa0NXVBUmSYLVaUVBQIOcSVVqV2dKpvHaV+5ubm9HV1SWnfyoqKkIoFErKW2vEh1RvGt6oDymJ0dyAfd94JBIJ/Pvf/0ZnZ2eGe5U+DjroINx777343ve+l5b6CgoK8D//8z+QJCkp0XllZSVGjRqV84KC6D/27t2r+fD32WefIRAIZLhX6aOyshILFizA4sWL02IIGT16NNatW4eKiopex1IJ0s0GeTFlrzUlrxfZrq7LaLtabWr5DZppRzldrkzjpIZZQZXR9sw6qlzBSdQPZfJ85bYSNi2uxKx/KU8QK6+T1zeW1ikYDMpitLCwEE6ns1d9LJuAUoCzfrNXPB5HR0cHOjs7YbfbUVpaihEjRsDr9cq+t+o+8qbktVwC1O9T8VEmBiY7d+5EU1MT91hXVxdWrFiRsw8Xo0aNwoMPPmg4IblRXC5Xr1V3XC4XpkyZktZ2iPyio6NDGGmfSCTw8ssv5+xYq62txV/+8hcsWbIkbbNyFouFK0btdjvGjh2bljb6m5wWpECy4BQdU8ITD7xjRvwCefWp94vO0drW678Sq9UqC0/lOWw/S/mgRCsHqOiY0v9S6YuqziighZHrVN6zcDgsi1GWzqmwsBAOhwOJRCIp5yjrg91uh9vtRkFBATweDzwej5xvVCkKmWCNRCJobm5Ga2urLN5Z+7zPSU9Ymv0Haca/mcg++/fvFybi/vbbb3M2/2hVVRX+53/+B+eff35GZo0kSUJHR0e/t0PkLh0dHaivr+cea21txdq1azPco/Rgt9txyy234MQTT8xIe4lEQvgQPdDIeUGqRkuYGvFV1DpmRFhqCVaR+BWdq0QUoc8i6R0Oh2whZUE7LpdLjsJXW0HThahfanjXzyvDiMViaGlpSVrFxel0ym4JAOSIeI/Hg8LCQpSWlqKqqgrV1dUoKSmB3W5HIpFAOBxGJBKRLaysrVgshkAggH379iEUCuGggw7qJex5/TSyeIAR1HWTBXXgE4/HhT6iuTqF6PP5sGzZMpx00kkZc2GKRCLYtm1bRtoicpd169Zx97/77rs5+fDHfEbnzp2bsTZ37Nihmx1koJAXPqTq/KA8/1C1KFX6l/Lg+Vjy/AGNWrd45Xj5Us34trIyNpsNDocDkUgEiUQCdrsdLpcLTqcTDodDd0qAl6JK3Tcj16m3rKj6mkQW4Fgshv3796Orq0tO06RMx6RMeq92TVDWG4lEEAwGk1ZtYqJUbQlma3HrZUEw6p6gJy7VU/qZylhA9B3RWNi6deuAj2JVU1xcjGeeeQYzZ87M6Hdw9+7d+OKLLzLWHpGbfPvtt9z9f/vb33JuZomJ0SVLlsiLsmSCHTt2oKurK2Pt9YW8EKTAd6LU6BO+MnJcKzG+3j5lXew90DuPJ6+syGKoFZ3NrpH5Q0YiETidTrjdbnR1dcFischT1Mw6quyPsg1l0I0o6b1StBkRqFpiVM8SzcRZR0cHQqFQUoCa2+2Gw+GQp+UdDkeSqwJwwKoaCoXQ3d2Nzs5OOduA+n4zH1vlMZYaS5TeSu8zVm6bJR0LDhCZY8+ePYjH4/J3CDhgOd26dWv2OpUCpaWlWLhwIWbMmNHvSwqyscl8wm+66aaczkZAZIZPP/1UXuGLEYvFcmYKWsn8+fPxi1/8Iq2ZXHhIkiT/9u3atQsPPPBAv7aXTnJakGqJRrUA0hJ5IjEg8pE0K0D0rG68uvT6zgJ4mAWRrWnPhCqrkxeMpPYRVYpSdf/MWm61rKSiyH4Gm0Jvb2+XfUMlSYLNZpMDI5gbgvrzYEK0u7tbjpZXXxuzspaWlmL06NH46quvYLFYEIvFYLPZeq2JrP5+GMkhawS1dZTILTZv3ozOzk6UlJTI+zo7O7Fz587sdcokpaWluPPOOzF37twkYZ1OQqEQ9u/fj507d2LFihXYu3cv2tra0NHRgba2tn5pk8gv6uvrEQqFkgRpW1sbPvzwwyz2yhwOhwNXXHFF2qLpeUiShG+//Rbr1q3Dli1b5NWa9u7dm1O+2jktSNWorY999YfSSk6vd9ys0BDl+BRdQ0FBAUpLS7F//37Z4seEGludSVmXUqArLYVaiAKeePeWF2xl9B6wAKXm5maEQiE52p3VyUSkejAnEglEIhF0d3ejp6dHDn5SRtmzqPyioiK43W643W5YLBbs379fnjZhvqaZQBToRgx8rFYrhgwZgkAggIaGhiRB2tDQgIaGhux1zgRerxfLly/HlVde2WcxqrYURyIRtLe3Y/369fh//+//4b///S86OztzZsqQGFgUFBT0MqjU19ejp6cnSz0yR39O00uShF27dmHFihXYvHkzvvzySzQ3N+e0kSPnBanIX1SUgzQdQlXUj3TVKxKnytWWWIL4rq4u+P1+RKNROdeYw+GQg5zYtLckSXKOTvZXbaFjQo5F5yvR8ncV7ePBazeRSMh5Rtl6u8q2iouLk8Qom5JQWkRZsvyysjIUFBTI/7DYNH9BQYEcnQ8g475+egFdWvuJ7OFyuTB+/Hicc845OPTQQ3HyySejq6sLI0aMSCrX1NSUE0nenU4nlixZgquuuqpPYrSrqwvr1q3DqlWr4Ha7MWnSJHR0dGDbtm3YsmUL9u7dmzO5D4mBgcViwWGHHSbnwB07dixmzZoFn8+XVG737t0IBoPZ6KIpLBYLlixZ0mcxKkkSWltb8e6778q/a5FIBH/729/w73//Gy0tLenqctbJeUGqxkiqJJ6w6quY5Ak2Zd3qvzx4x5RWX2bx27dvHzo6OpKWz2QijlkmnU4nwuGwHIWvTFekFkdqURqLxeSpcVHuUN495T0UsPcimBhV+owq67bb7SgsLJTbiMViCAaD6OnpQSgUQiQSQTweh8PhQHV1NQoLC2GxWFBUVGTqPqcDkeVYdN9y+Ul2MFBcXIwFCxbg+uuv5+b3U3Lsscfi0Ucfxc0334zGxsYM9dAcFosF06ZNw/z58/skRv1+Px544AHcf//9SVkwCCJViouLcccdd+DSSy/VHWtnnnkm5s2bhzfeeANffPHFgH2QnzZtGm644YY+idFYLIaXX34ZCxcuRGNjY84FTZolpwUps7bxhJ7az1PPmqf+UutNTWv5qCr7pDxHNF2r9OXkWSmZP2VnZ6ccsKP0sVROpcfjcXR3d6OlpUUWciy4iSeYlT6myqn8UCgkR7WLfFh5xONxxONxw0ESyij4aDTa694UFhbCZrMhEokgEomgp6cH4XAY4XBYLu9yuVBVVSVfL+ufXlYEPT/dVFB+Z7Sm50mMDmwqKyvx+OOPY+bMmYb8vjweDy6++GIEg0GsXLkS33zzDVpbW7nf6Wxx7rnn4v777+/TEoXt7e1YtGgR/vd//1cOnCCIvmCxWPDAAw/giiuukA0nWvEZXq8Xf/jDH7B//3784x//wOrVq7Fhw4YBZZGvqanBE088gbKyspTrCAaDWLRoEZ599tmcsAing5wWpGr0LIxa5Xh16UWF623zrGPqbZa6yOFwyFYL5gPK/EGj0Sii0aicBmnYsGFob29HOByW82wqn5xisVjSakQFBQWora2VLZA8oaYOdJIkSbaw2mw2w4LNZrMhHo8n9cnlcvWqn1li2TV2dHT0so6ye9Pe3i73m4nSWCwmZxSorq7utRKM6DNRX7MZgWrUBUSrXS0L/kARLgTkNGCLFy/Gt99+i0mTJuHII4/E2LFjUVNTg6Kiol7/V6xWK6655hrMmTMHLS0t+PLLL/Hxxx/jrbfewmuvvdYvDyFFRUUoKSlBeXk5Zs6ciddffx0ff/xxr3LFxcW4+uqrMWrUqJTb2rdvH6666iq89dZbeW+pITKHxWKBw+HAddddh40bN+Loo4/GqFGjcOqpp2LixInyrJeayspKXHnllbjkkkuwdu1aPPjgg9iwYUO/PSjZ7XaMHDlSfkDds2cPuru7e5WzWq246667cOihh6bcVmNjI5YuXYonn3xyUBkvLFIO/goGAgH4fD4MHz5c/nKIppZ56EXHG/E51bptTOgoU1GJyjNL3qGHHgqr1Yq2tjbEYrFe6YwikQj27duHoqIiFBYWyr6TdrsdsVhMDgTq6upCLBaTBTFrV7mKkc/nk6fymdhUik6lQGJJ9pWWUp6wZr6fXV1daG9vR09PjzyQPB4PysvL5Wl0Vj4ajSIcDqOpqQnd3d297pHT6ZQtrSzPaigUkgOXiouLUVFRIZdJpwuG6LNS3h891JZyPXeSaDSKL7/8En6/H16vNw097jtsrA1GXC6XvKACcOAHqaioCAcddBDGjBkji9QxY8aguroaxcXF3O9dQ0MDfv/73+PFF1/El19+mZa+lZaW4sILL8SPfvQjjB49Gj6fD0VFRdi8eTOeeuopPP/880mR7BdffDGefPJJ4brgWiQSCWzbtg3XXXcd3nvvvbz6gaSxNjBgv2NKHA4HDj/8cFRUVOAHP/gBZs6cKf/+8SyP4XAYa9euxUMPPYQPP/wwbdHldrsdU6dOxYIFC3D66afLU/A7d+7EE088gaeffjrJgjlx4kRs2LAh5c9yx44duOCCC7B9+/a8MlIYGWs5L0iVeSQZRsRIppJAK/Od8mDLX1ZUVMiWROVqQYlEAtFoFKFQCG1tbSgtLYXVapX9J1nwktvtloN92HQ+C3RiUexsOl0plt1utxyBrsxZyoLCJEmC3W6H1+uV22XWSaW4DAaD2L9/P7q7u+V/LEq3B5vNhsrKSlRWVsrXnUgk4Pf70dzcnPTPSJIOpHpS5lMNhUIIhUKySGZWIaVw18qVqiWmjQa96T1Y8I6ZsY7GYjESpDmGw+FAUVERhg0bhsMPPxxHHXUUJk6ciGg0iuLiYowePRqlpaWIx+P4xz/+gauuuqpPU4s2mw3HHHMM7rnnHhx33HFc/7RoNIpNmzbhmmuuweeff46hQ4fi5ZdfxlFHHZVSm6+99hoWLFiAzz77LOV+D1RorOUOzH2rqqoKY8aMAQCUlJRg5syZch7pqVOnwmq1Ytu2bbj88sv77M89depULF68GGeccUZS6ilGLBbDa6+9httvvx3btm1DUVERnnrqKZx33nmm25IkCW+99RYWLVqE7du396nfA5G0C9JHH30Ujz76KL7++msAwPjx47F06VLMnDkTwIG8c4sWLcLq1asRDocxY8YMrFixAtXV1XId9fX1mDt3Lt555x0UFRVhzpw5WL58uan8XGpBykuTJAoy0oKXAF2U1F5NqlYDJhrLyspgs9ng8Xhw8MEHw263o7GxEa2trXIgD/OXdDgcsnWRWS6VKZ9CoZD8PhKJJK09z4RgV1cXurq65IAnVjfzXVWvfuR2u1FYWIjOzs6kYCrmHtDS0pL0Q6sUtRaLRV6LvrKyEqWlpbBYLAiHw2hsbJSvTXkuS/chSZJsFWVC1efzoaKiol/yJ2p9V/SClkRiGNBftpY9JOzevRt+vx9//vOfB9RYI4zDRKLVaoXP58PIkSMRCoXQ0tLSp+UO3W43brrpJsyfPz/pcxbxzTff4J133sHkyZMxfvx40w/h8Xgcb775Jm644Qbs3r071W4PaGis5Q8Wi0X+HQWAjo6OlB/+7HY7zjzzTDz99NOG/EA7Ozuxdu1alJWV4cQTTzQ9QydJEp566inccMMNXDeAfMCIIDXlQzp06FDcc889GD16NCRJwjPPPINzzjkHH330EcaPH48FCxbg1VdfxYsvvgifz4f58+fjvPPOw7vvvgvgwD+4WbNmoaamBhs3bkRDQwMuu+wyOBwO/OY3v0n5QkV+oqnUo/zLq9tIUnszsH6Gw2F5/XWPx4OysjI0NDQgEAjI4o5ZOcvKytDW1oaCggLZwsosjMqpj2g0CovFIi8hygKYmFWHlbPZbIhGowgGgwiHwwgGg+jo6JCtpy6XC11dXejs7EzydWVLfLa2tiYFWDGrqVK4sv1tbW1yn9ra2tDT09NLjDqdTjnIiVl4LRYLXC4XSktL4fV6hWLUzKIFRr43ev9YeMFvyil6Leu42nqqtHYN1LFG6KP0YWtubk7LikQulwu33HILlixZYnjafcSIEbj88stTaq+trQ2PPPIIHnnkkZxcFccMNNbyA0mSei1ukipLly7FggULDAcAFhcX49xzz02pra6uLqxcuRK33npr3opRo/R5yr6srAz3338/zj//fFRWVmLVqlU4//zzARzwsRg7diw2bdqEqVOn4vXXX8dZZ52Fffv2yU+Xjz32GG655Rbs37/fcGQ2b8peidJv00yEeKaRJElOW1RbW4vS0lK43W4cdNBB8Pl8eP3112UBFw6HZX9OZnEEvhM9TPgw0cn2K5/QlamfCgsLZb9TljCe+ZHGYjH09PSgtbVVXiWjoKAAoVAIBQUFch/YdDv7Adbzq2V9Y5+L2mdImdSf+Ziy84qLi1FaWsr9jphdelO0ZKzIAi4KAtMbOlp9UgfNJRIJ+Hw+bN68Wfgkmc2xRmSXmpoafPDBBxg6dGi/t/XNN9/gjjvuwDPPPJNX/qI8aKwRampqarBlyxYMGTKk39sKBAK4+uqr8eKLLw7asaYkZdNePB7H6tWr0d3djbq6OmzevBnRaBTTp0+Xy4wZMwbDhw/Hpk2bAACbNm3ChAkTkqY6ZsyYgUAgoOkzEQ6HEQgEkl6AtgDS8/XTi6JPB8rpWFE0NxNnLHDI7XbD7/dj06ZNCAQCcsASo7u7G4FAAMFgUPbnZAFFTGgzscp8Snt6etDd3Y1wOCxbL9m5wWAQgUAAHR0daG9vR3t7Ozo7OwEAFRUVOOigg+DxeGSByJboZMtzDhkypFdQkehesGtl1l4lSrHK/GCZ0C4sLER5ebnwH3uqq2IpBTrvL3ux6XRlO1qpnNRlRbD7xcqWlpZyyw2EsUZkl7a2Nrz88sv9ngT7iy++wLXXXouVK1fm/Q8kDxprRHt7Ox577DF89dVX/ZpNgonRF154YVCONR6m0z5t27YNdXV1CIVCKCoqwl//+leMGzcOW7duhdPpTFpODwCqq6tlx+LGxsZevk9sW8v5ePny5bjjjjsM91E5basObBGl5Emn1VRPfCr3S5IEh8Mh5w/1er1obGxEU1OTnDpJPR3OE9Oi1EF2uz3Jp40JVxapzqb4leu/M0ssu39smr6oqCjJl7O8vBxutxtOpxOdnZ1ySiY2zc67/ng8Lvum8qbX2b6CggJIkgSPxyNP0fdX9Lzesq96y8Ya2Q+g12eoRj12cmGsEZkhEolg8eLFeOaZZ3DllVdiwoQJGDVqlDyrko5x8cknn+CnP/1pTq0Tni5orBGMcDiMu+66Cw8//DCOOeYYHH300TjrrLMwceLEPuXwVbJjxw4sXboUf/nLX/Iqkr6vmBakhx9+OLZu3Qq/34+XXnoJc+bMwfr16/ujbzJLlizBwoUL5e1AIIBhw4YB0I6KVk/B6olP3nF16h4jU7VGYWLT7XbL/pKBQAB+v1/Otan0D2UoXRKUwk+5zaIOWRvqICPgO/GktqyyNpXlbTabLFKB75LtRyIROUqfRfMzCyq7JiZQWf/UjuYsP6rS5YCl2FG6Eig/I2W/M4nIh9joE64o6p4te6pkoI01IrtEIhFs2bIFW7ZsQUFBAUpKSnDIIYdg/PjxmDlzJs4+++yU/dlDoRBuuukmfPTRR2nudW5AY41QIkkSOjo6sGbNGqxZswa/+93vcNhhh+GMM87AOeecgyOPPJIbdW+07sWLF+PVV19Nc69zH9OC1Ol0yglfJ0+ejA8++AC///3v8eMf/xiRSAQdHR1JT5NNTU2oqakBcMA34/3330+qjznMszI8XC4X15FfbRXkCRStwBVeIIr6vd4xrTq1yjGYAAuFQnC5XGhqakJrayvC4XDSdLzaqsZEKQBZsCmPs2l+llxetIynWsiqy7MybPUmJk5tNht6enqS/FmZLypLUq9cXYkJVPbiTX8r3Q5CoRDC4TAKCwtRVFQkBzpp3UvlPWXHMyFajYhRkQWb4XQ6k1aaYvsGylgjBhY9PT3o6elBQ0MD3n33Xbz88sv4+OOPMXXqVBx66KEYMmQI3G63YYHqdDrx0EMP4YEHHsAzzzzT6yE436GxRmjR09ODjz/+GB9//DF+97vfYfTo0TjrrLPwgx/8AKNGjeqVglALi8WC2267DcFgEOvXr6fpegV9TsbJVgqaPHkyHA4H1q5dKx/btWsX6uvrUVdXBwCoq6vDtm3bkqJO16xZA6/Xi3HjxqXUvhFrpcinTzn9rSdItabhGUohpDxH1EelzyETniwtE3uxKXK1PyqLYme+nco8o+r3kUgE4XBYzl3KRKHa/5QJTV5OV6W1lk3xs6h8VncwGJSXNWXZAkpKSlBTU4Nhw4Zh2LBhGDJkCMrLy1FYWChH/qvvJ7sPsVgMgUAATU1NaG9vT7oXqVipMzU1ov7cjbRbWFjIXW1KSbbHGjFwaWlpwbJlyzBr1ixMnToVxx9/PB588EF8/vnnCAQCut9Bq9WKsWPH4oEHHsCjjz6Kww8/PEM9H5jQWCNEhMNhfPLJJ7jnnntw4okn4thjj8X06dPx0ksvGc57WldXh5dffhm//vWvUV5e3s89zh1MRdkvWbIEM2fOxPDhw9HZ2YlVq1bh3nvvxZtvvonvf//7mDt3Ll577TWsXLkSXq8X119/PQBg48aNAA5MCU+aNAm1tbW477770NjYiEsvvRRXXXWVqfQYLBrxoIMOksWTMv+oFqIco0YQTdcb3a+O/I9Go4jH47JlzOl0IhqNysuCiqyjyvp470Xt8c5V/uW9V4pm1gfmU8r8QZmVl+VDZQFaLGJeWYYtK8osoGx6nwVcqa3AzHfUarXC4/HA5/MJg5t4OWgZ7D5kappfz6quthCPHj0akydPxt133w2/34/ly5cPqLFG5B42mw1erxcHHXQQfvjDH+LCCy/EkCFDNNOmAQe+jzt27MANN9yAdevW5bW1lMYakS5sNhtqa2tx2WWX4ayzzsIRRxyh63OaSCTw/vvv4/LLL8euXbsy1NPskPY8pM3NzbjsssvQ0NAAn8+HiRMnyoMWAB566CFYrVbMnj07KYEww2az4ZVXXsHcuXNRV1eHwsJCzJkzB3feeWcKl5cMz9eThzrHKNA7Z6V6PxOvetP1evtFljNWP5vWVvuFqoWayDVBNKXNE6VaAlftyqBsn/l7MksmC3BStsXuFbOUMkssE5VMgNvtdhQWFiISiaCrq0tOgaXMP6r8XHt6euQ8rMpVpZR9FaVoEl13Kgso6KH1jMdzmQDQ6yl5II81IjeIx+Ny5owdO3bg97//PWprazFz5kxccsklGDFiBIqLi3s94FksFowbNw4vvPACLrroIrz55ptZuoLMQGONSAfxeBx79uzB3XffjQcffBBjx47FjBkzMHXqVEydOhUOhwM+ny/pN8tqtWLq1KnYsGEDZs2aNSgDCpXk9NKhtbW1uhbSvogMXvS3WqTy9rNtvSTt6jygJSUlaGpqgt/vl6fWedHqomvTWkVIXU4p3oyka1KiXq5QGXTEEu8rE/EzNwClzysAOXDKZrMlWWF6enrQ0dEhW4gBJEX3FxcXo7i4uNd9FeUQNYMo0T1vNSblceW5SpQPHTxY3WeccQZ8Pp9sIaXlDIn+gj0YVlVV4bDDDsPEiRNx1FFHyemMioqK5DH+4Ycf4uyzz0ZDQ0OWe90/0Fgj+hur1Yry8nI4HA6ceOKJOO+881BaWgq73Y7vfe97svvav//9b8yaNUtOu5hvpN1CmguoBUNfrF966X5E77WOqZc5tdls8j//UCgkR9eL8p/xxBGriydaeZZjMz6OPEGqjsBXToUryzLLKXsx8cmWEY3H4/JKTUo/VqvVKn9x4/E4XC4XYrGY7K/a2dkJq9WK4uLipH6pPwMtq7ZepgX1fROJUiPWcT2ndbfb3etaCKK/SCS+Wzr4yy+/xBtvvAGLxYKioiJ5nXAmUg899FBMmjQpbwUpQfQ3iUQC+/fvBwA8//zzeP755wEc+H0aOnQojjzySJxzzjk455xzcNxxx+X9jIQWeSFIRVYrre3+RpQKSO07yKLIg8GgbBnVEoypRPGr/RlF0/epCixl+ii1+FXXqRTarC9sap4FYSn7zoSr3W6H0+mEx+NBOByWrcc8K6k6yb3ymLptrQcWnrWT5xuqrEt9jt6yoew74Ha7U153mSD6iiRJ6OzsRGdnJ7744gu8+uqr8qIU2UivRhD5TiKRQH19Perr6/HKK69g+fLlsnAdrOS8IOUJBJ7Frj98BbUwmsrB5XLB6XTKKycpp3h5AshIDlXROSIfS3Ud6rK8e6z0WVULUha8xEQjz99TmaSfnaM8pmyPrValtMY6HI6kNFQOh0MOnlL2SdkWg+cTbNQHWX2/RNZhvfOUf8vKylLOH0kQ/UUikcjb6UOCGEhIkoQvvvgi293IOjkvSBlqQaYn3rTERyatqeFwGBbLd+u6M0uhEWscQxS0Y8Syqjddr97Wq5NNvwOQBTYLaGJ+pMrE/ur62Iv5mbLUV+r6la4AsVgMTqcTxcXFcrqWcDgsn8OzmCqtqyKBqkQrYEyN2bxylPaDIAiCGOzktCDlCRq9qXo9P8tMT0+xfKMsBZRS0Cn7Z3RbFOhkxF9UD55/rjpASnldyjJs6p2drzyPiVQmClkeUlYPO4+t4MTEqlKUAgcEsDLiXw+eQBWlA1NahtXBbrzgNxHqz8FqtQrXsCcIgiCIwULOC1IGT4RqWbx4Qla938j0rRkRy5s+Z0tpslRHTHz1VTiKppFTFdzK+yOqX5Quiu1nwUw80ayctmfnKXOfsnJKFwC2T+kSYLPZktJFmYHnG8sTp7zsCUaFqPJ9IpFAQUFB2tZHJgiCIIhcJacFqRIty2gq4sSIMNWb7tYKlFFayNjqTJIk6U4dq0mnBTQVRH6pRnxV1X1X519VHmPlmcVUKWztdjscDgfcbjfsdjsCgYCwLSNoZU/gldMLXNLyMS0qKtJdoYkgCIIg8p2cF6Ra1jqjlkKjAS1m/C15+3h9YFY2NmVtt9sRCoV6uSP0tT8in01WlhcExrbV/qvqepVt8oSocmpeS+irj4nun7q/iUQCTqcT5eXlaG9v18zdmopA7Svqa1EKWApoIgiCIIg8EKSA8ehzrf0iq6SRgCcjVkmRuGIrGbG/LC+nkTqMIEpHpHVdIlFpBrNiUC0y1RZSrcAtSZIQDofR0NAgW1B5FnOtNvsTkRgFKKCJIAiCIIAcF6RKH0WRT6jI8qesQ89HVIlWhDvvPK1pe+C79E7Mh7Qv60aLxLKWMNOz7KrfK0WrXh+U90BUj3JbZNlUf85q4coE6ZAhQ7B//375fBbdr4Tn4qAVBGcGs6LdbrdTQBNBEARBIMcFKUPPQqonOMxM4xqxtGkJMfX7cDiMeDyelBDfaLtqzAgps5Ze0TS8WREscqHg+Yxq9UVZngn65uZmOd2T2r9TGTCl1Q+tbAtG7xnv8+f5mTqdzgGzbCFBEARBZJO8EKSAOcuWyMKZinVMS0jxjqnfx+NxeYqZ/VUmcudNt/Pa0RNSeuep0QpK0jtfnQrKqAVa63PhXYfy3iQSCTlRPg91xLwZy7CoDO+YnpuA8lhxcTGcTqewDEEQBEEMFnJakGpZ7QBj69kbERFmp/lFfVO/Z3WwaXu2cpE68bten5X9NCuqRaKSZ4VMRfArt7UsxqI6eGIX6J3nlFlJlVP/anjJ8NVtqF0C9MS0XpYDXl9YmdLSUgpoIgiCIAjkuCAF+j5dr1cHO65ET/iZEVpK4allsVS3L6pPeT1GRaRZ30ejLg8isW/2fouOKeuzWq3o7u6Gw+HQ7LtotSZRO3rWY1FfjaxhX1FRodlXgiAIghgs5LQgVYsCkXVUT5QZCYriHTMq5HgiVNQ3tVDtK0atuVr3S8tCqhbRZqateXXp1c/DYjmQPisSiRgS4EqXCN6a91pWS15feHXwUAvosrIy3b4SBEEQxGAgpwWpUURihhfYoiVGteoy2q5auLFttkKT1nS90SlzrX6Lgnm0+qmHWYGuLqsnOLXcHxgsjyuvbrZPPd2vRilSReKUuVaI0BOjDLfbjcLCQmE9BEEQBDGYyHlBKrLu8UQJ71z1cZE/odk+ab1XW0HZevbK7b5YR7UEXCpi26jrg955WuWMWEK1jjFBKhL8ZhGtwmTW51P0+ft8PlqhiSAIgiD+f/IiokIkAC2W3uum653PO6Zl6VSW0ZpmF9WhtLjpCdF0TOGr21a/57WjFLHqHKBG+2qkrJ5FWYTFYoHNZtPtVzrun96a9aJ21W3TCk0EQRAE8R05bSEVWTNFgSh6dWlF5SstbkZ8JI1aSdVT9EZEaaqJ2/X6yTumZVE1UifvM9KzXhoRs2rXCrvdnmQh5bXHqysd99KMNZaVpYAmgiAIgviOnBakPPQEG893UStZu1ZEu1mLG88iqRSiLA+pmfrSKU6NkupUuJHcoqm0b7PZ5HyeIt9UvQeKvt5HkRDmHbPZbBTQRBAEQRAKcl6QKgWFyH+Q954nGIwGA2mlN9Kz7vG2mQ+pWfpTjBqZRk+1zr7UwYNnHWVt8LIkqNHKsqBVTo3e9bF9brcbRUVFwnoIgiAIYrCR84LUCDxh2pd6RAJUJOK0pqYlSZIj7FPpo2gKOp3WUzMWZ722jV6bqA6eeLTZbFx/THV/RPeKLUig10c9cS5aYECN1+uFy+XitkEQBEEQg5GcFqRM0BlJAm8kmTtPXPHK84JUjIhR3nlqMWQEI1a6vohRtTuB2brM+Npq1aG1zdBaDlTPn1S9X9mOEVGtlUNWqx/l5eVZcbUgCIIgiIFKXoX5mhWDenVpCU8j7Rvtm8vlgtVqNSRS0lUmnagj71PxtTUSdMarGzgwBW4kYl3UL63vibpNrWl5PQsqE7kU0EQQBEEQyfRJkN5zzz2wWCy48cYb5X2hUAjz5s1DeXk5ioqKMHv2bDQ1NSWdV19fj1mzZsHj8aCqqgqLFy9GLBZLuR9Gps15ZbXKGWlLuU80da3312azwW63yymVUhVv7HyjYtSoNU9Zt15dZo/ptWukrNVqNR0MxuoQPXSI+sS7V1oinLffZrOhvLzcVF+BgTPWCCKfoXFGENkjZUH6wQcf4PHHH8fEiROT9i9YsAD//Oc/8eKLL2L9+vXYt28fzjvvPPl4PB7HrFmzEIlEsHHjRjzzzDNYuXIlli5dmvpVoLcli7dfvY9n+dISnCLRodUXrf4yodfd3Z3kR6pGPcWcapvqtrWm1fsq3HnoTYFrXYPoXOZDajQorK8PIFoiVs9CLEkSCgoKTK/QNNDGGkHkIzTOCCK7pCRIu7q6cPHFF+OJJ55AaWmpvN/v9+PJJ5/Egw8+iFNPPRWTJ0/G008/jY0bN+K9994DALz11lv49NNP8b//+7+YNGkSZs6cibvuuguPPPIIIpGIqX7wrJJmMWOZE52n3qcldNV9tlgscpS9SJSqhWMqfeP10YhAVPa1r+0b6ZfaGiuyNvP6pbZY8trTEuC8c0U+w3rXJtr2er2mVmgaKGONIPIZGmcEkX1SEqTz5s3DrFmzMH369KT9mzdvRjQaTdo/ZswYDB8+HJs2bQIAbNq0CRMmTEB1dbVcZsaMGQgEAti+fbvpvmhNPYusoEpEqZ5StaTpWVqVsPXS4/F4yqs0aQXWaIlgrXp5glDdhpbl2Yw/qEi48frJE6PM91ZLBPOm0UXfCyPWdSP3QdQXs9P1A2msEUS+QuOMILKP6Sj71atXY8uWLfjggw96HWtsbITT6URJSUnS/urqajQ2NspllAOXHWfHeITDYYTDYXk7EAgkHVeKID1BpBQ8ym1GKknTlVPgWm3ytsPhsOZ0vR5GhLPoWvtar1Z5s1ZdhlY6LR42m81QlgUzFk6eZVjPnUH9+YuEfmVlpWY/lAzEsUYQ+UY2xhlAY40g1JiykO7Zswc33HAD/vznP5uaduwry5cvh8/nk1/Dhg3rVcbM1LuWQNPzDeRZ24y0yYP5PTqdzn5b11zZT3bdSuujGdGoFH7qyHplGWXbZtBamEBUnq1hnw6XDbPHzXznJEmC3W43vELTQB5rBJEv7N27NyvjDKCxRhBqTKmgzZs3o7m5GUcddRTsdjvsdjvWr1+Phx9+GHa7HdXV1YhEIujo6Eg6r6mpCTU1NQCAmpqaXhGKbJuVUbNkyRL4/X75tWfPnl5leFPXWtOyelPrWmJV67jIF1FkMXM6nXA4HADQS5SaEbvKKPtUxJnetZnFrCtEqtZUu92eVLfe9LwePJHJO593TMuNAQAKCgoMr9A0kMcaQeQLW7duzco4A2isEYQaU4L0tNNOw7Zt27B161b5dfTRR+Piiy+W3zscDqxdu1Y+Z9euXaivr0ddXR0AoK6uDtu2bUNzc7NcZs2aNfB6vRg3bhy3XZfLBa/Xm/QCtEUnIPavVGNUgBrx1zRDLBZDT08PgsGg7EfK678RscYTYKLrMbJf6a5gZspf2b7IimoUvXOsVqtsIdU7T0+o8rZ51l7ew41WW8p9Pp/P8ApNA22sEUQ+Mm3atKyMM4DGGkGoMeVDWlxcjCOOOCJpX2FhIcrLy+X9V155JRYuXIiysjJ4vV5cf/31qKurw9SpUwEAp59+OsaNG4dLL70U9913HxobG/HLX/4S8+bNS8tyikoxJPIFNLMCTypTukaFWyQSQTQaRSwWk8VoJpLa867T6HF1wJOZ+6N37/Xuu7pfSuuoFkbzu4ra0zvGs4ry3psJaMqFsUYQuU5xcTEOOuigpH00zggiO6R96dCHHnoIVqsVs2fPRjgcxowZM7BixQr5uM1mwyuvvIK5c+eirq4OhYWFmDNnDu68886U2xRZL/UEFyCeWjbjz8jKGxGnSusZS/ekjLBXi65MCFRe342IR6NilJXXuhalf6refZQkCVarlStIzfqhqsvwlhXlvdeqQ0RVVZVuP8yQjbFGEIMNGmcEkRksUjocBjNMIBCAz+dDaWmpMG8lb1vrGA+tiPu+CBRJkhCPxxEOhxGNRg2tNGRktSSlmEslWImdywQyS6nEXso2jFodjfbHrLXVZrOhpKQEDodDU5BqCWtR3UYxI6CdTidmz56taSUNhUK4++674ff7B8z0HRtrBJGP0FgjiMxgZKyl3UKaacxaOLWmhY34nGpNz+q1ryzPs45qwfPN5AnivgQ0KeEJ4FQj6PsiCHmij0XX22w2zc/DiP+rGWFtNAUUb9vlcqG4uFi3HYIgCIIYjOS8IFULED2Bkg5rGq9u0ZS3etpaeTxV4zQvaEYrF6do6lmN0lKqJXqVZY30M10o27Tb7bpLhpqx4JppW1SPlvgtKyuTsykQBEEQBJFMzgtSRqqWQT2raF+te7xt5j+aiijV82/lWVHVQsmIBbevvqtmxb1eXQx2PWyVq3TBc8kw2zfe58m2y8vLM+IPTBAEQRC5SP9kY88QZqZOterQEoZGjmvl/xRN6bPperOYFTW8/vMEKs8lgFcXOy66LtG9MtpvPeste2+1WjU/fy3U4l1PVKrL8q5TS4wC6LWSC0EQBEEQ35HTglTPuskTDbxyovKi42pBIqpXVJfSOpruaW0j8PquPCbCrPXQaL2ivonaVEfYa33GaiGprNNIv4yIXr06eEsPEgRBEATxHTktSAF9ESoqb7SM0fq1hI96+tpMMFN/IRLEqUxVs22tjAap9oeHzWaTMwDw+qR2TTDzHdF64FC3IzqmfrndbgpoIgiCIAgNctqHVCk49FIiAdpBTDwRyUMruEXZn1RdADKBEUufEWuoSKgZyTeaynnsLxOkRu6hnuDmfQeM1GfGXaC8vJwCmgiCIAhCg5wWpAyeKBWJVC3hKRK3WhZR5bmissr9kiRl3Tqqh/o+iK6Vd54eakEnyiMrsnYyQdoXzFqFUxGxyn5XVFRQQBNBEARBaJAXglQtWgD9FXtEwlMrGb6RPhgpNxCm7BkiEW/E4mykTt55Wkn+9epWrl+v9dBhNIuA6GHDSMJ7I8csFgsqKyuF5xAEQRAEkSeCVAlPTGiJE5E11KzQMVp/qtH1Ax2jgUJGouhFdbDoeqvV2qucyLIqoq8PA0ZcAYADAU2lpaV9aosgCIIg8p2cFqRGRKeynNaUvNY0vciyakR4qQVyqvlH+xvWp1RXY+LVZwSj/pvK6XpmIVUvPJBqP7VWYNL6vLWsq+y9x+NBUVFRSn0jCIIgiMFCTgtSEXr+o7x9RgOkRPVolVG2wdatHwiClHedZn0djbhGKMtp+WMaweFwwGazIRaLmeonr49GxbDRqXueOC4rK4PT6exLVwmCIAgi78lLQQro+xGmw8fUbH/i8fiA8R0F+KJMy39SVIeR/aIpeK06lP6sVqsVLpcLpaWlCIfDvfqv10deNgVRH836j/K+N2wf+Y8SBEEQhD45LUjVQsOM36fWdD8vEtxovVr9Y4J0oPmQqi22evfSqKuEkXaNuFqw/kWjUbS3twsDm9T90vJJ5U3Ji8qmUidwIACrqqpKeH0EQRAEQRwgpwUpoC1K9YSlUTGlF2wj6ov6nEgkglgsxp2yT7VvfcGM3616v3K7P0Wpumw0GoXb7TZU1kzbZtww9Cy67LjdbkdZWZluvQRBEAQx2Ml5QWpkWt3oFKxZYcU7X2Q1SyQSSf6jIvEssvbxMDO1rnVef7gQpNo3I/WqSbUdLZ9hvel7vT5IkoTi4mJ4PJ6U+kYQBEEQg4mcFqQTJ05ER0cHOjo60NPTg3g8zi2nNT3LK6dEzyVA73wGE6Pqes3UweuTcl8qwiyVgB51P1Kp10ybSl9SrRymZuvV268Xxc97iFCeU1JSQgFNBEEQBGGAnBak06ZNg9PpRCgUQkdHB1pbW9HU1ISWlhb4/X6Ew2FhNLaewDQb2KMnztTR9WanqrXQ6ytP4KUjvZOWj63R+2c00p+Xg5T1wchDQ6pWTmX7RoOaGOQ/ShAEQRDGyGlBChwIHPF4PPB4PKitrcWECRMQj8cRDofR0dGBlpYWNDU1obW1VRapIkuqEp5lzIjoEwkXXiCT3pS/UXGl5yOrFp9mfSf7Ez0RqeVba8RlwmgfjJYxamW1Wq0UYU8QBEEQBsl5QcrDZrMliVTgwJQ5s6S2tLSgubkZLS0tCAQCSSI1HUE6apj/aCp1GcmNyot+V/ZFPeXNC6rqC6L+pZI+Sstf1mq1agaN9dUHWO+YUTEqSRIFNBEEQRCECfJSkPKw2WwoLCxEYWEhDjroIAAHRGpPTw86OjrQ3NyM/fv3o6WlBV1dXQiFQmlLz6QMZGLbWgJSVAeQLLrMJvI3U9aMuOuLgOdZcdX9UfqOpsNvVUtYmrkWrc+vqKgIhYWFhusiCIIgiMHMoBGkPGw2G4qKilBUVIShQ4cCOCBSg8EgOjo6sH//fjQ3N6O1tRWdnZ29pvuNihd1QBMgDqDSK6fnGiCaijcrgo24Dqjr7gsiNwKlEFVaSPX6oOeWYNQnVHS+Xpny8nI4HA5u/QRBEARBJDOoBSkPm82G4uJiFBcXY9iwYQCAWCwmi9Tm5mY0NTWhvb0dnZ2diEQimpZUZUCTFumYbtYSWammSzKSNF5kqTXjFqB3/UyQquvVui4zU/JGfYaNilMKaCIIgiAI45AgNYDdbofX64XX68Xw4cMBHBCp3d3dskhtbm5GW1sbOjs7EY1GEY/HZbGkFKz9HUQkSpmkVUZEOn0y+3qu1nS9EQFqpi1eGaNWYEmSYLVaUVFRYagvBEEQBEGQIE0Zu90On88Hn8+HESNGAACi0SiCwSBaW1vlFFStra2IxWKIx+OagU3pEKpmAnGM1mckWMlI0JX6XCNR/kbyj6Zb4GvdQ6PHnE4nysvL09ovgiAIgshnrPpFvmPZsmW9AkzGjBkjHw+FQpg3bx7Ky8tRVFSE2bNno6mpKamO+vp6zJo1Cx6PB1VVVVi8eLEwV2iu4XA44PP5cMghh+CYY47BWWedhYsuughXXXUVLrzwQpx66qkYN24cKisrUVBQoOkTOVAQWVzVwVVa8FI1GYn0V5ZlVmbeebygMd4xrTZFx8xG4gMHApr6ukITjTWCyAw01ghiYGDaQjp+/Hj861//+q4C+3dVLFiwAK+++ipefPFF+Hw+zJ8/H+eddx7effddAAeCe2bNmoWamhps3LgRDQ0NuOyyy+BwOPCb3/wmDZcz8HA6nSgrK0NZWRkOP/xwAAfWtA8EAmhpacG+ffvQ0NAgR/eHw2EA/Tu1byZpPU/kqUWpGQupmWNa5ZRBWrx+mqnXTDJ9I/sqKirSEtBEY40gMgONNYLIPqYFqd1uR01NTa/9fr8fTz75JFatWoVTTz0VAPD0009j7NixeO+99zB16lS89dZb+PTTT/Gvf/0L1dXVmDRpEu666y7ccsstWLZs2aBZZtHpdKKiogIVFRUYM2YMJElCJBKB3+9HS0sLGhoa0NjYKItUvcAps5gVgXr+lEYspH0V2DabjRs0lUquU739ogAtPZcB9j5dCfFprBFEZqCxRhDZx9SUPQB8/vnnqK2txSGHHIKLL74Y9fX1AIDNmzcjGo1i+vTpctkxY8Zg+PDh2LRpEwBg06ZNmDBhAqqrq+UyM2bMQCAQwPbt24VthsNhBAKBpFc+YbFY4HK5UFVVhXHjxuG0007DT37yE1xzzTW46qqrcMEFF+Ckk07CYYcdhvLycjidzl5LaJptr6/oTYGry/YV0fUanfY3ila0vVaqJ/bearWmLcKexhpBZAYaawSRfUxZSKdMmYKVK1fi8MMPR0NDA+644w6ceOKJ+OSTT9DY2Ain04mSkpKkc6qrq9HY2AgAaGxsTBq07Dg7JmL58uW44447zHQ157FYLHC73XC73aiursb48eMhSRJ6enrQ2dmJ5uZm7Nu3D42NjXIKqlgsZsiSmk53gP70gVW6BthstqQcrAytrAKiFE48yyovUEsErxw73+VyobS01NgFakBjjSAyA401ghgYmBKkM2fOlN9PnDgRU6ZMwYgRI/DCCy+goKAg7Z1jLFmyBAsXLpS3A4GAnCN0MGGxWOQlUaurqzFhwgRZpAYCATQ1NcnT/W1tbejq6kIsFutXf1S9nKBsfyp9YMLRarUmWUh5wpTXH619ojKsTVGf9ab907VCE401gsgMNNYIYmDQp7RPJSUlOOyww7B79258//vfRyQSQUdHR9LTZFNTk+ybU1NTg/fffz+pDhatyPPfYbhcLrhcrr50NW9RitSamhoceeSRskjt6OhAY2MjGhoa5BWngsFgv4lUnrUyHe2kK+VTKhZQM/skSUJFRUVSQES6oLFGEJmBxhpBZIc+/XJ2dXXhiy++wKWXXorJkyfD4XBg7dq1mD17NgBg165dqK+vR11dHQCgrq4Od999N5qbm2U/uzVr1sDr9WLcuHGG22VCgEWkE72xWq1ydP+4ceOQSCQQDoflRP4NDQ1oaGhAU1OTZn7UvpAu0cuEbSZEtJkyPDeA0tJShEKhlPqilWEh22ONIPIRGmsEkRkMfb8lEyxatEhat26d9NVXX0nvvvuuNH36dKmiokJqbm6WJEmSrr32Wmn48OHS22+/LX344YdSXV2dVFdXJ58fi8WkI444Qjr99NOlrVu3Sm+88YZUWVkpLVmyxEw3pC+++EICQC965eVrz549NNboRa8MvGis0YtemXnt2bNHdwyYspDu3bsXF110EVpbW1FZWYkTTjgB7733npzm5qGHHoLVasXs2bMRDocxY8YMrFixQj7fZrPhlVdewdy5c1FXV4fCwkLMmTMHd955p5luoKysDMCBZMQ+n8/UuYMB5ou0Z88eeL3ebHdnQDGQ740kSejs7ERtbS2NtRxgIH+XBgID+f7QWMstBvJ3KdsM9HujHGt6WCQp9+YJAoEAfD4f/H7/gPwAsg3dHzF0b8xB90sM3Rtt6P6Yg+6XGLo3YvLp3qSezJIgCIIgCIIg0gAJUoIgCIIgCCKr5KQgdblcuP322yllhgC6P2Lo3piD7pcYujfa0P0xB90vMXRvxOTTvclJH1KCIAiCIAgif8hJCylBEARBEASRP5AgJQiCIAiCILIKCVKCIAiCIAgiq5AgJQiCIAiCILJKTgrSRx55BCNHjoTb7caUKVPw/vvvZ7tL/cry5ctxzDHHoLi4GFVVVTj33HOxa9eupDKhUAjz5s1DeXk5ioqKMHv2bDQ1NSWVqa+vx6xZs+DxeFBVVYXFixcjFotl8lL6nXvuuQcWiwU33nijvI/uTerQWKOxJoLGWvoYbOMMoLFmhkEz1kwttjsAWL16teR0OqWnnnpK2r59u/Szn/1MKikpkZqamrLdtX5jxowZ0tNPPy198skn0tatW6UzzzxTGj58uNTV1SWXufbaa6Vhw4ZJa9eulT788ENp6tSp0nHHHScfZ+stT58+Xfroo4+k1157TaqoqDC93vJA5v3335dGjhwpTZw4Ubrhhhvk/XRvUoPGGo01ETTW0sdgHGeSRGPNKINprOWcID322GOlefPmydvxeFyqra2Vli9fnsVeZZbm5mYJgLR+/XpJkiSpo6NDcjgc0osvviiX2bFjhwRA2rRpkyRJkvTaa69JVqtVamxslMs8+uijktfrlcLhcGYvoB/o7OyURo8eLa1Zs0aaNm2aPHDp3qQOjTUaazxorKUXGmcHoLHWm8E21nJqyj4SiWDz5s2YPn26vM9qtWL69OnYtGlTFnuWWfx+PwCgrKwMALB582ZEo9Gk+zJmzBgMHz5cvi+bNm3ChAkTUF1dLZeZMWMGAoEAtm/fnsHe9w/z5s3DrFmzku4BQPcmVWisHYDGWm9orKUPGmffQWOtN4NtrNmz3QEztLS0IB6PJ91gAKiursbOnTuz1KvMkkgkcOONN+L444/HEUccAQBobGyE0+lESUlJUtnq6mo0NjbKZXj3jR3LZVavXo0tW7bggw8+6HVssN+bVKGxRmONB4219ELj7AA01nozGMdaTglS4sAT0yeffIL//Oc/2e7KgGDPnj244YYbsGbNGrjd7mx3h8gjaKwlQ2ON6C9orCUzWMdaTk3ZV1RUwGaz9Yoka2pqQk1NTZZ6lTnmz5+PV155Be+88w6GDh0q76+pqUEkEkFHR0dSeeV9qamp4d43dixX2bx5M5qbm3HUUUfBbrfDbrdj/fr1ePjhh2G321FdXT1o701foLFGY00NjbX0M9jHGUBjjcegHWvZdmI1y7HHHivNnz9f3o7H49JBBx2U1w7giURCmjdvnlRbWyt99tlnvY4zB+eXXnpJ3rdz506ug7MycvPxxx+XvF6vFAqF+v8i+olAICBt27Yt6XX00UdLl1xyibRt27ZBfW/6Co01GmtKaKz1D4NxnEkSjTUtButYyzlBunr1asnlckkrV66UPv30U+nqq6+WSkpKkiLJ8o25c+dKPp9PWrdundTQ0CC/gsGgXObaa6+Vhg8fLr399tvShx9+KNXV1Ul1dXXycZYC4vTTT5e2bt0qvfHGG1JlZeWATgGRKspoREmie5MqNNZorOlBY63vDMZxJkk01swyGMZazglSSZKkP/zhD9Lw4cMlp9MpHXvssdJ7772X7S71KwC4r6efflou09PTI1133XVSaWmp5PF4pB/+8IdSQ0NDUj1ff/21NHPmTKmgoECqqKiQFi1aJEWj0QxfTf+jHrh0b1KHxhqNNS1orKWHwTbOJInGmlkGw1izSJIkZc5BgCAIgiAIgiCSyamgJoIgCIIgCCL/IEFKEARBEARBZBUSpARBEARBEERWIUFKEARBEARBZBUSpARBEARBEERWIUFKEARBEARBZBUSpARBEARBEERWIUFKEARBEARBZBUSpARBEARBEERWIUFKEARBEARBZBUSpARBEARBEERWIUFKEARBEARBZJX/D2lFCsS73r46AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "## 플롯 그리기\n", + "plt.figure(figsize=(8,6))\n", + "plt.subplot(131)\n", + "plt.imshow(input, cmap='gray')\n", + "plt.title('input')\n", + "\n", + "plt.subplot(132)\n", + "plt.imshow(label, cmap='gray')\n", + "plt.title('label')\n", + "\n", + "plt.subplot(133)\n", + "plt.imshow(output, cmap='gray')\n", + "plt.title('output')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Report" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, precision_recall_curve\n", + "import itertools" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data types: int32 int32\n", + "Shapes: (262144,) (262144,)\n", + "Label sample: [0 0 0 ... 0 0 0]\n", + "Output sample: [0 0 0 ... 0 0 0]\n", + "Accuracy: 0.998199462890625\n", + "Precision: 0.9588396707173658\n", + "Recall: 0.9947132980886539\n", + "F1 Score: 0.9764471057884232\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr0AAAJOCAYAAAC6Ir9vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuTElEQVR4nO3dd3gUZdfH8d+mB0ihJkRD6L1JESNdAqFJl6qG/oiAFGlKBxGlCtJUVIp0KdJEmoBCaIEoICBVUAggkIRQAkn2/YM3K2soCW4mYfP9eM31ujNn7r1n3yfuycmZe0xms9ksAAAAwI45pPUEAAAAgNRG0gsAAAC7R9ILAAAAu0fSCwAAALtH0gsAAAC7R9ILAAAAu0fSCwAAALtH0gsAAAC7R9ILAAAAu0fSC8AunThxQnXq1JGXl5dMJpNWrVpl0/HPnj0rk8mkOXPm2HTcZ1mNGjVUo0aNtJ4GADwUSS+AVHPq1Cn973//U/78+eXm5iZPT09VrlxZU6ZM0e3bt1P1vUNCQnTo0CGNGTNG8+fPV4UKFVL1/YzUvn17mUwmeXp6PvRzPHHihEwmk0wmkyZMmJDi8S9cuKARI0YoPDzcBrMFgPTBKa0nAMA+rVu3Tq+99ppcXV315ptvqmTJkrp7965+/vln9e/fX0eOHNHnn3+eKu99+/ZthYaGavDgwerRo0eqvEdAQIBu374tZ2fnVBn/SZycnHTr1i2tWbNGLVu2tDq2YMECubm56c6dO0819oULFzRy5EjlzZtXZcuWTfZ5GzdufKr3AwAjkPQCsLkzZ86odevWCggI0NatW5U7d27Lse7du+vkyZNat25dqr3/lStXJEne3t6p9h4mk0lubm6pNv6TuLq6qnLlylq0aFGSpHfhwoVq0KCBli9fbshcbt26pUyZMsnFxcWQ9wOAp0F7AwCbGzdunGJiYvTll19aJbyJChYsqF69ellex8XFafTo0SpQoIBcXV2VN29evf/++4qNjbU6L2/evGrYsKF+/vlnvfjii3Jzc1P+/Pk1b948S8yIESMUEBAgSerfv79MJpPy5s0r6X5bQOK/P2jEiBEymUxW+zZt2qQqVarI29tbWbJkUZEiRfT+++9bjj+qp3fr1q2qWrWqMmfOLG9vbzVu3FhHjx596PudPHlS7du3l7e3t7y8vNShQwfdunXr0R/sv7Rt21bff/+9IiMjLfv27dunEydOqG3btknir127pn79+qlUqVLKkiWLPD09Va9ePf3yyy+WmG3btqlixYqSpA4dOljaJBKvs0aNGipZsqTCwsJUrVo1ZcqUyfK5/LunNyQkRG5ubkmuPzg4WFmzZtWFCxeSfa0A8F+R9AKwuTVr1ih//vx6+eWXkxXfuXNnDRs2TOXKldPkyZNVvXp1jR07Vq1bt04Se/LkSbVo0UK1a9fWxIkTlTVrVrVv315HjhyRJDVr1kyTJ0+WJLVp00bz58/XJ598kqL5HzlyRA0bNlRsbKxGjRqliRMnqlGjRtq5c+djz9u8ebOCg4N1+fJljRgxQn379tWuXbtUuXJlnT17Nkl8y5YtdePGDY0dO1YtW7bUnDlzNHLkyGTPs1mzZjKZTFqxYoVl38KFC1W0aFGVK1cuSfzp06e1atUqNWzYUJMmTVL//v116NAhVa9e3ZKAFitWTKNGjZIkde3aVfPnz9f8+fNVrVo1yzhXr15VvXr1VLZsWX3yySeqWbPmQ+c3ZcoU5cyZUyEhIYqPj5ckffbZZ9q4caM+/fRT+fn5JftaAeA/MwOADUVFRZklmRs3bpys+PDwcLMkc+fOna329+vXzyzJvHXrVsu+gIAAsyTzjh07LPsuX75sdnV1Nb/77ruWfWfOnDFLMo8fP95qzJCQEHNAQECSOQwfPtz84H8OJ0+ebJZkvnLlyiPnnfgeX3/9tWVf2bJlzbly5TJfvXrVsu+XX34xOzg4mN98880k79exY0erMZs2bWrOnj37I9/zwevInDmz2Ww2m1u0aGGuVauW2Ww2m+Pj482+vr7mkSNHPvQzuHPnjjk+Pj7Jdbi6uppHjRpl2bdv374k15aoevXqZknmWbNmPfRY9erVrfb98MMPZknmDz74wHz69GlzlixZzE2aNHniNQKArVHpBWBT0dHRkiQPD49kxa9fv16S1LdvX6v97777riQl6f0tXry4qlatanmdM2dOFSlSRKdPn37qOf9bYi/wd999p4SEhGSdc/HiRYWHh6t9+/bKli2bZX/p0qVVu3Zty3U+6K233rJ6XbVqVV29etXyGSZH27ZttW3bNkVERGjr1q2KiIh4aGuDdL8P2MHh/n/24+PjdfXqVUvrxoEDB5L9nq6ururQoUOyYuvUqaP//e9/GjVqlJo1ayY3Nzd99tlnyX4vALAVkl4ANuXp6SlJunHjRrLi//jjDzk4OKhgwYJW+319feXt7a0//vjDan+ePHmSjJE1a1Zdv379KWecVKtWrVS5cmV17txZPj4+at26tZYuXfrYBDhxnkWKFElyrFixYvr777918+ZNq/3/vpasWbNKUoqupX79+vLw8NCSJUu0YMECVaxYMclnmSghIUGTJ09WoUKF5Orqqhw5cihnzpz69ddfFRUVlez3fO6551J009qECROULVs2hYeHa+rUqcqVK1eyzwUAWyHpBWBTnp6e8vPz0+HDh1N03r9vJHsUR0fHh+43m81P/R6J/aaJ3N3dtWPHDm3evFlvvPGGfv31V7Vq1Uq1a9dOEvtf/JdrSeTq6qpmzZpp7ty5Wrly5SOrvJL04Ycfqm/fvqpWrZq++eYb/fDDD9q0aZNKlCiR7Iq2dP/zSYmDBw/q8uXLkqRDhw6l6FwAsBWSXgA217BhQ506dUqhoaFPjA0ICFBCQoJOnDhhtf/SpUuKjIy0rMRgC1mzZrVa6SDRv6vJkuTg4KBatWpp0qRJ+u233zRmzBht3bpVP/7440PHTpzn8ePHkxw7duyYcuTIocyZM/+3C3iEtm3b6uDBg7px48ZDb/5L9O2336pmzZr68ssv1bp1a9WpU0dBQUFJPpPk/gKSHDdv3lSHDh1UvHhxde3aVePGjdO+fftsNj4AJBdJLwCbGzBggDJnzqzOnTvr0qVLSY6fOnVKU6ZMkXT/z/OSkqywMGnSJElSgwYNbDavAgUKKCoqSr/++qtl38WLF7Vy5UqruGvXriU5N/EhDf9eRi1R7ty5VbZsWc2dO9cqiTx8+LA2btxouc7UULNmTY0ePVrTpk2Tr6/vI+McHR2TVJGXLVumv/76y2pfYnL+sF8QUmrgwIE6d+6c5s6dq0mTJilv3rwKCQl55OcIAKmFh1MAsLkCBQpo4cKFatWqlYoVK2b1RLZdu3Zp2bJlat++vSSpTJkyCgkJ0eeff67IyEhVr15de/fu1dy5c9WkSZNHLof1NFq3bq2BAweqadOmeuedd3Tr1i3NnDlThQsXtrqRa9SoUdqxY4caNGiggIAAXb58WTNmzNDzzz+vKlWqPHL88ePHq169egoMDFSnTp10+/Ztffrpp/Ly8tKIESNsdh3/5uDgoCFDhjwxrmHDhho1apQ6dOigl19+WYcOHdKCBQuUP39+q7gCBQrI29tbs2bNkoeHhzJnzqxKlSopX758KZrX1q1bNWPGDA0fPtyyhNrXX3+tGjVqaOjQoRo3blyKxgOA/4JKL4BU0ahRI/36669q0aKFvvvuO3Xv3l2DBg3S2bNnNXHiRE2dOtUSO3v2bI0cOVL79u1T7969tXXrVr333ntavHixTeeUPXt2rVy5UpkyZdKAAQM0d+5cjR07Vq+++mqSuefJk0dfffWVunfvrunTp6tatWraunWrvLy8Hjl+UFCQNmzYoOzZs2vYsGGaMGGCXnrpJe3cuTPFCWNqeP/99/Xuu+/qhx9+UK9evXTgwAGtW7dO/v7+VnHOzs6aO3euHB0d9dZbb6lNmzbavn17it7rxo0b6tixo1544QUNHjzYsr9q1arq1auXJk6cqN27d9vkugAgOUzmlNwxAQAAADyDqPQCAADA7pH0AgAAwO6R9AIAAMDukfQCAADA7pH0AgAAwO6R9AIAAMDu8XCKDCIhIUEXLlyQh4eHTR8xCgBAemc2m3Xjxg35+fnJwSHt63137tzR3bt3bT6ui4uL3NzckhU7duxYrVixQseOHZO7u7tefvllffzxxypSpIglpkaNGknW6P7f//6nWbNmWV6fO3dO3bp1048//qgsWbIoJCREY8eOlZPTPynmtm3b1LdvXx05ckT+/v4aMmSI5QFFiaZPn67x48crIiJCZcqU0aeffqoXX3zRcvzOnTt69913tXjxYsXGxio4OFgzZsyQj49P8j8gMzKE8+fPmyWxsbGxsbFl2O38+fNp/XVsvn37tllOmVLl+nx9fc23b99O1jyCg4PNX3/9tfnw4cPm8PBwc/369c158uQxx8TEWGKqV69u7tKli/nixYuWLSoqynI8Li7OXLJkSXNQUJD54MGD5vXr15tz5Mhhfu+99ywxp0+fNmfKlMnct29f82+//Wb+9NNPzY6OjuYNGzZYYhYvXmx2cXExf/XVV+YjR46Yu3TpYvb29jZfunTJEvPWW2+Z/f39zVu2bDHv37/f/NJLL5lffvnlFH32PJwig4iKipK3t7dciofI5OiS1tMBMqRz2yak9RSADOlGdLQK5vNXZGTkY5+qaITo6Gh5eXnJtXiIZMvv4/i7iv1trqKiouTp6Zni069cuaJcuXJp+/btqlatmqT7ld6yZcvqk08+eeg533//vRo2bKgLFy5YKq6zZs3SwIEDdeXKFbm4uGjgwIFat26dDh8+bDmvdevWioyM1IYNGyRJlSpVUsWKFTVt2jRJ9/867e/vr549e2rQoEGKiopSzpw5tXDhQrVo0UKSdOzYMRUrVkyhoaF66aWXknWNtDdkEIktDSZHF5JeII08zRcRANtJV+19Tm42/T42m/5b20ZUVJQkKVu2bFb7FyxYoG+++Ua+vr569dVXNXToUGXKlEmSFBoaqlKlSlm1GAQHB6tbt246cuSIXnjhBYWGhiooKMhqzODgYPXu3VuSdPfuXYWFhem9996zHHdwcFBQUJBCQ0MlSWFhYbp3757VOEWLFlWePHlIegEAADKi6Ohoq9eurq5ydXV97DkJCQnq3bu3KleurJIlS1r2t23bVgEBAfLz89Ovv/6qgQMH6vjx41qxYoUkKSIiIklPbeLriIiIx8ZER0fr9u3bun79uuLj4x8ac+zYMcsYLi4u8vb2ThKT+D7JQdILAABgNJMkW1ae/38of39/q93Dhw/XiBEjHntq9+7ddfjwYf38889W+7t27Wr591KlSil37tyqVauWTp06pQIFCthk2kYi6QUAALAT58+ft2qlelKVt0ePHlq7dq127Nih559//rGxlSpVkiSdPHlSBQoUkK+vr/bu3WsVc+nSJUmSr6+v5f8m7nswxtPTU+7u7nJ0dJSjo+NDYx4c4+7du4qMjLSq9j4Ykxxpv24HAABARmNysP2m+/cOPLg9Kuk1m83q0aOHVq5cqa1btypfvnxPnHJ4eLgkKXfu3JKkwMBAHTp0SJcvX7bEbNq0SZ6enipevLglZsuWLVbjbNq0SYGBgZLuL7NWvnx5q5iEhARt2bLFElO+fHk5OztbxRw/flznzp2zxCQHlV4AAACjmUw2bm9I2Vjdu3fXwoUL9d1338nDw8PSG+vl5SV3d3edOnVKCxcuVP369ZU9e3b9+uuv6tOnj6pVq6bSpUtLkurUqaPixYvrjTfe0Lhx4xQREaEhQ4aoe/fulmT7rbfe0rRp0zRgwAB17NhRW7du1dKlS7Vu3TrLXPr27auQkBBVqFBBL774oj755BPdvHlTHTp0sMypU6dO6tu3r7JlyyZPT0/17NlTgYGByb6JTSLpBQAAyHBmzpwp6f6yZA/6+uuv1b59e7m4uGjz5s2WBNTf31/NmzfXkCFDLLGOjo5au3atunXrpsDAQGXOnFkhISEaNWqUJSZfvnxat26d+vTpoylTpuj555/X7NmzFRwcbIlp1aqVrly5omHDhikiIkJly5bVhg0brG5umzx5shwcHNS8eXOrh1OkBOv0ZhCWdQFLdWHJMiCNXN83La2nAGRI0dHR8snu9dRr2Np6Ll5eXnIt10Mmx8f326aEOT5WsQempYtrTK/o6QUAAIDdo70BAADAaGnc05sRUekFAACA3aPSCwAAYLh/lhmz2Xh4LJJeAAAAo9HeYDh+LQAAAIDdo9ILAABgNJON2xts2iphn/iEAAAAYPeo9AIAABiNnl7DUekFAACA3aPSCwAAYDR6eg1H0gsAAGA02hsMx68FAAAAsHtUegEAAIxGe4Ph+IQAAABg96j0AgAAGM1ksnGll57eJ6HSCwAAALtHpRcAAMBoDqb7my3Hw2OR9AIAABiNG9kMxycEAAAAu0elFwAAwGg8nMJwVHoBAABg96j0AgAAGI2eXsPxCQEAAMDuUekFAAAwGj29hiPpBQAAMBrtDYbjEwIAAIDdo9ILAABgNNobDEelFwAAAHaPSi8AAIDR6Ok1HJ8QAAAA7B6VXgAAAKPR02s4kl4AAADD2bi9gT/ePxGfEAAAAOwelV4AAACj0d5gOCq9AAAAsHtUegEAAIxmMtl4yTIqvU9CpRcAAAB2j0ovAACA0Xg4heH4hAAAAGD3qPQCAAAYjdUbDEfSCwAAYDTaGwzHJwQAAAC7R6UXAADAaLQ3GI5KLwAAAOwelV4AAACj0dNrOD4hAAAA2D0qvQAAAEajp9dwJL0AAAAGM5lMMpH0Gor2BgAAANg9Kr0AAAAGo9JrPCq9AAAAsHtUegEAAIxm+v/NluPhsaj0AgAAwO5R6QUAADAYPb3GI+kFAAAwGEmv8WhvAAAAgN2j0gsAAGAwKr3Go9ILAAAAu0elFwAAwGBUeo1HpRcAAAB2j0ovAACA0Xg4heFIegEAAAxGe4PxaG8AAACA3aPSCwAAYDCTSTau9NpuKHtFpRcAAAB2j0ovAACAwUyycU8vpd4notILAAAAu0elFwAAwGCs3mA8kl4AAACjsU6v4WhvAAAAgN2j0gsAAGA0G7c3mGlveCIqvQAAALB7VHoBAAAMZusb2Wy7/Jl9otILAAAAu0elFwAAwGBUeo1H0gsAAGA0liwzHO0NAAAAsHskvQAAAAZLbG+w5ZYSY8eOVcWKFeXh4aFcuXKpSZMmOn78uFXMnTt31L17d2XPnl1ZsmRR8+bNdenSJauYc+fOqUGDBsqUKZNy5cql/v37Ky4uzipm27ZtKleunFxdXVWwYEHNmTMnyXymT5+uvHnzys3NTZUqVdLevXtTPJcnIekFAADIYLZv367u3btr9+7d2rRpk+7du6c6dero5s2blpg+ffpozZo1WrZsmbZv364LFy6oWbNmluPx8fFq0KCB7t69q127dmnu3LmaM2eOhg0bZok5c+aMGjRooJo1ayo8PFy9e/dW586d9cMPP1hilixZor59+2r48OE6cOCAypQpo+DgYF2+fDnZc0kOk9lsNj/Nh4VnS3R0tLy8vORaqotMji5pPR0gQ7q+b1paTwHIkKKjo+WT3UtRUVHy9PRM87l4eXkp55tz5eCSyWbjJty9pSvzQp76Gq9cuaJcuXJp+/btqlatmqKiopQzZ04tXLhQLVq0kCQdO3ZMxYoVU2hoqF566SV9//33atiwoS5cuCAfHx9J0qxZszRw4EBduXJFLi4uGjhwoNatW6fDhw9b3qt169aKjIzUhg0bJEmVKlVSxYoVNW3a/f9GJiQkyN/fXz179tSgQYOSNZfkoNILAACQwUVFRUmSsmXLJkkKCwvTvXv3FBQUZIkpWrSo8uTJo9DQUElSaGioSpUqZUl4JSk4OFjR0dE6cuSIJebBMRJjEse4e/euwsLCrGIcHBwUFBRkiUnOXJKD1RsAAAAMllpLlkVHR1vtd3V1laur62PPTUhIUO/evVW5cmWVLFlSkhQRESEXFxd5e3tbxfr4+CgiIsIS82DCm3g88djjYqKjo3X79m1dv35d8fHxD405duxYsueSHFR6AQAADJZaN7L5+/vLy8vLso0dO/aJc+nevbsOHz6sxYsXp/ZlpykqvQAAAHbi/PnzVj29T6ry9ujRQ2vXrtWOHTv0/PPPW/b7+vrq7t27ioyMtKqwXrp0Sb6+vpaYf6+ykLiiwoMx/15l4dKlS/L09JS7u7scHR3l6Oj40JgHx3jSXJKDSi8AAIDRTKmwSfL09LTaHpX0ms1m9ejRQytXrtTWrVuVL18+q+Ply5eXs7OztmzZYtl3/PhxnTt3ToGBgZKkwMBAHTp0yGqVhU2bNsnT01PFixe3xDw4RmJM4hguLi4qX768VUxCQoK2bNliiUnOXJKDSi8AAEAG0717dy1cuFDfffedPDw8LL2xXl5ecnd3l5eXlzp16qS+ffsqW7Zs8vT0VM+ePRUYGGhZLaFOnToqXry43njjDY0bN04REREaMmSIunfvbkm233rrLU2bNk0DBgxQx44dtXXrVi1dulTr1q2zzKVv374KCQlRhQoV9OKLL+qTTz7RzZs31aFDB8ucnjSX5CDpBQAAMFhq3ciWXDNnzpQk1ahRw2r/119/rfbt20uSJk+eLAcHBzVv3lyxsbEKDg7WjBkzLLGOjo5au3atunXrpsDAQGXOnFkhISEaNWqUJSZfvnxat26d+vTpoylTpuj555/X7NmzFRwcbIlp1aqVrly5omHDhikiIkJly5bVhg0brG5ue9JckoN1ejMI1ukF0h7r9AJpIz2u0+vb8Rubr9Mb8dXr6eIa0ysqvQAAAAZL60pvRkTSCwAAYDCSXuOxegMAAADsHpVeAAAAoz2wzJjNxsNjUekF/qN+Hevo52/66/LPE/THlrFaOqmLCgXksor54Yteun1wmtU2dXBrq5iJA1po54IBitwzWbsXD3roewUFFtP2ue/q8s8TdG7rWC2a0Fl5cmezimldr4L2LBmkq7sm6fTGMZo1vJ2yeWW2iunRtoZ+WTlU10In6cT3ozXu3WZydeF3YGRc48d9JHdnk/r17S1Junbtmvr06qnSJYooq4e7CuXPo76931FUVJTVeefOnVPTRg2UzTOT8vjl0nsD+ysuLi4NrgDAk/AtB/xHVcsV1KwlOxR25A85OTlqZI9XtXZmD73Q7APdunPXEvfl8p0aPXOt5fWtO/eSjDXvu92qWCpAJQs9l+RYgF92LZvcVVO/2ar2g+fKK4ubxvVrrsUTu+jlth9LkgLL5Nfs0W9qwMTlWrf9sJ7L5aWpg1trxtA2at1vtiSpVd0KGv1OY701YoFCfzmtQgG59MWoN2SWNHDiCht/OkD6t3/fPn35xWcqVaq0Zd/FCxd08eIFjf14gooVK65z5/5Qz+5v6eLFC1q05FtJUnx8vJo1aiAfX1/9uGOXIiIuqnOHN+Xs7KxRH3yYVpeDZwQ9vcYj6QX+o8Y9rNcJ7Dr8G53f+pFeKO6vnQdOWfbfvnNXl67eeOQ47467/0WaI2v9hya95Yr7y9HBQSOmr1XiSoOfzNuiZZO7ysnJQXFxCapUOp/+uHBVMxZtlyT9ceGqvly+U++2D7KM81KZfAoNP60lG/ZLks5dvKalG/arYsm8T/cBAM+wmJgYdQhppxmzvtBHH35g2V+iZEktXrrc8jp/gQIaMWqMOoa8rri4ODk5OWnzpo06evQ3rfths3x8fFRGZTVsxGgNeX+ghgwbIRcXlocE0hPaGwAb88ziJkm6HnXLan+r+hV0futH2r/sfY3q2Ujubs4pGvfAb+eVYE7Qm41fkoODSZ5Z3NS2wYvauue44uISJEl7fj2j532zKrjK/cc/5srmoaZBZbXh598s4+z+5YxeKO6vCiUCJEl5n8uu4MoltOHnI099zcCzqnfP7qpbr4FeqRX0xNjo/1//1Mnpfr1oz+5QlSxZymoB/dp1ghUdHa3fjvDzhMdLrPTacsPj2X2lN2/evOrdu7d69+6d1lOxmTlz5qh3796KjIxM66ngX0wmk8b3a6FdB0/pt1MXLfuXfL9f5y5e08UrUSpVyE8f9GqswgG5LC0HyfHHhatq+PZ0ffNxR00b3FpOTo7a/ctpNekx0xIT+stpdXh/ruZ/1FFuLs5ydnbU2u2H1PujJf/MZcN+Zc+aWVu+7iOTTHJ2dtTny37S+K822uZDAJ4RS5csVvjBA/p5974nxv79998a++Fodezc1bLvUkSEcj2Q8EqyvL50KcK2k4XdMcnG7Q3cyfZEaVrpbd++vdVvKNmzZ1fdunX166+/puW0gKf2yXstVaJgbr056Gur/V+t2KnNoUd15OQFLf5+vzoNna/Gtcoq3/M5kj22T3YPzRjaVgvW7FGV18crqNNk3b0Xr4UTOlliiub31YQBLTT28+/1cruP9erb0xWQO5s+feCmuarlC6l/x2D1GrtEgW0/Vqu+n6telRIa1KXuf/8AgGfE+fPn1b9vL309b4Hc3NweGxsdHa2mjRqoWLHiGjJshDETBGBzad7eULduXV28eFEXL17Uli1b5OTkpIYNG6b1tB7r7t27Tw5ChjN54GuqX7WkgrtM1V+XIx8bu+/QWUlSAf+cyR7/f62qKTrmtgZP+U6/HP9TOw+cUsfBc/VKpaJ6sVReSVL/DnUUGn5Kk+dt0eETF7Q59Kh6j12i9k1elm+O+4+lHP52Ay1at1dzVobqyMkLWv3jrxo2bY36d6jDn8eQYRw8EKbLly8r8MVyyuLmpCxuTvppx3bNmDZVWdycFB8fL0m6ceOGGjWoKw8PDy35dqWcnf9pS/Lx9dXlS5esxk187ePja9zF4JlEe4Px0jzpdXV1la+vr3x9fVW2bFkNGjRI58+f15UrVyRJAwcOVOHChZUpUyblz59fQ4cO1b171ne9r1mzRhUrVpSbm5ty5Mihpk2bPvL9Zs+eLW9vb23ZskXS/f+gtWvXTpkzZ1bu3Lk1efJk1ahRw6odIm/evBo9erTefPNNeXp6qmvX+3/eWr58uUqUKCFXV1flzZtXEydOtHovk8mkVatWWe3z9vbWnDlzJElnz56VyWTSihUrVLNmTWXKlEllypRRaGio1Tlz5sxRnjx5lClTJjVt2lRXr15N9ucLY0we+JoavVJGdf83VX9cePL/f8oUeV6SFPF31BMi/5HJzUUJCWarffEJ93t5HRzu/8cuk/vDYu6/TvwPovtDxkn4/3H4byYyipqv1NL+g4e0Z3+4ZStXvoJat2mnPfvD5ejoqOjoaDWsV0cuLi76duXqJBXhSi8F6vDhQ7p8+bJl35bNm+Tp6alixYsbfUkAniDNk94HxcTE6JtvvlHBggWVPXt2SZKHh4fmzJmj3377TVOmTNEXX3yhyZMnW85Zt26dmjZtqvr16+vgwYPasmWLXnzxxYeOP27cOA0aNEgbN25UrVq1JEl9+/bVzp07tXr1am3atEk//fSTDhw4kOTcCRMmqEyZMjp48KCGDh2qsLAwtWzZUq1bt9ahQ4c0YsQIDR061JLQpsTgwYPVr18/hYeHq3DhwmrTpo1lncc9e/aoU6dO6tGjh8LDw1WzZk198MEHTxgRRvrkvZZq3aCiQt6fo5ibd+ST3UM+2T3k5nq/IpTv+Rwa1KWuXijmrzy5s6lB9VKaPfoN/RR2QodPXLCMk98/h0oXfk4+OTzl7uqs0oWfU+nCz8nZyVGS9P1PR1S+RB6917WuCuTJqbJFn9dnI17XHxeuKvzYn5KkddsPqfErZdXltSrK+1x2BZbJr4kDWmjfobO6eOV+gr1+x2F1ea2KXgsurwC/7HqlUlEN69ZQ63ccSpIMA/bKw8NDJUqWtNoyZ86sbNmzq0TJkpaE99bNm5r1+ZeKjo5WRESEIiIiLFXgoNp1VKxYcXVq/4Z+/eUXbdr4g0YOH6L/desuV1fXNL5CpHumVNjwWGl+I9vatWuVJUsWSdLNmzeVO3durV27Vg4O9/PxIUOGWGLz5s2rfv36afHixRowYIAkacyYMWrdurVGjhxpiStTpkyS9xk4cKDmz5+v7du3q0SJEpLuV3nnzp2rhQsXWpLgr7/+Wn5+fknOf+WVV/Tuu+9aXrdr1061atXS0KFDJUmFCxfWb7/9pvHjx6t9+/Yp+gz69eunBg0aSJJGjhypEiVK6OTJkypatKimTJmiunXrWq63cOHC2rVrlzZs2PDYMWNjYxUbG2t5HR0dnaI5Ifn+17KaJGnT7N5W+7sMm69v1uzRvXtxeqVSEfVoW1OZ3V3056XrWrUlXB/N/sEqfuawdqpWoZDl9Z4l70mSitQfpnMXr2n7vt/V/v256hMSpL4htXXrzl3t+fWMGnWfoTux9//68c2aPfLI7Ka3WlXXR32aKSrmtrbtPa4hU76zjPvR7A0ym80a/nZD+eXy0t/XY7Rux2GNmLYmNT4e4JkUfvCA9u3dI0kqUbSg1bFjJ84oIG9eOTo6avl3a9WrRzfVqBqozJkzq90bIRo2YlRaTBnAE6R50luzZk3NnHn/7vPr169rxowZqlevnvbu3auAgAAtWbJEU6dO1alTpxQTE6O4uDh5enpazg8PD1eXLl0e+x4TJ07UzZs3tX//fuXPn9+y//Tp07p3755VZdjLy0tFihRJMkaFChWsXh89elSNGze22le5cmV98sknio+Pl6OjY7I/g9Kl/1kQPXfu3JKky5cvq2jRojp69GiSdo3AwMAnJr1jx461+kUAqcf9hR6PPf7npUjV6TzlieMEd3lyzLIfwrTsh7DHxsxcvF0zF29/5PH4+AR9+Pn3+vDz75/4fkBGsnHLNsu/V6teQ7fvPfkvHwEBAVq1Zn0qzgr2iodTGC/N2xsyZ86sggULqmDBgqpYsaJmz56tmzdv6osvvlBoaKjatWun+vXra+3atTp48KAGDx5sdSOZu7v7E9+jatWqio+P19KlS//TPFPKZDJZHiKQ6N/9yJKsboxI/B9tYo/l03rvvfcUFRVl2c6fP/+fxgMAALbDjWzGS/Ok999MJpMcHBx0+/Zt7dq1SwEBARo8eLAqVKigQoUK6Y8//rCKL126tOWmtEd58cUX9f333+vDDz/UhAkTLPvz588vZ2dn7dv3zxqNUVFR+v333584z2LFimnnzp1W+3bu3KnChQtbqrw5c+bUxYv/rNV64sQJ3bpl/cCC5LzPnj17rPbt3r37iee5urrK09PTagMAAMio0ry9ITY2VhER9xfxvn79uqZNm6aYmBi9+uqrio6O1rlz57R48WJVrFhR69at08qVK63OHz58uGrVqqUCBQqodevWiouL0/r16zVw4ECruJdfflnr169XvXr15OTkpN69e8vDw0MhISHq37+/smXLply5cmn48OFycHB44m9M7777ripWrKjRo0erVatWCg0N1bRp0zRjxj+PpH3llVc0bdo0BQYGKj4+XgMHDrSq6ibHO++8o8qVK2vChAlq3Lixfvjhhye2NgAAgPTNZLLtijkUep8szSu9GzZsUO7cuZU7d25VqlRJ+/bt07Jly1SjRg01atRIffr0UY8ePVS2bFnt2rXLcuNYoho1amjZsmVavXq1ypYtq1deeUV79+596HtVqVJF69at05AhQ/Tpp59KkiZNmqTAwEA1bNhQQUFBqly5sooVK/bExcrLlSunpUuXavHixSpZsqSGDRumUaNGWd3ENnHiRPn7+6tq1apq27at+vXrp0yZMqXo83nppZf0xRdfaMqUKSpTpow2btxodXMfAAAAnsxk/nfTaQZ38+ZNPffcc5o4caI6der05BOeEdHR0fLy8pJrqS4yObqk9XSADOn6vmlpPQUgQ4qOjpZPdi9FRUWlebtf4vdx/p7fysE15fcLPUpC7E2d/rRFurjG9CrN2xvS2sGDB3Xs2DG9+OKLioqK0qhR95ea+ffKDAAAAHh2ZfikV7r/4Injx4/LxcVF5cuX108//aQcOXKk9bQAAIC9snFPLw+neLIMn/S+8MILCgt7/LqnAAAAeLZl+KQXAADAaDycwngkvQAAAAZjyTLjpfmSZQAAAEBqo9ILAABgMAcHkxwcbFeeNdtwLHtFpRcAAAB2j0ovAACAwejpNR6VXgAAANg9Kr0AAAAGY8ky45H0AgAAGIz2BuPR3gAAAAC7R6UXAADAYLQ3GI9KLwAAAOwelV4AAACDUek1HpVeAAAA2D0qvQAAAAZj9QbjkfQCAAAYzCQbtzeIrPdJaG8AAACA3aPSCwAAYDDaG4xHpRcAAAB2j0ovAACAwViyzHhUegEAAGD3qPQCAAAYjJ5e45H0AgAAGIz2BuPR3gAAAAC7R6UXAADAYLQ3GI9KLwAAAOwelV4AAACD0dNrPCq9AAAAsHtUegEAAIxm455eUeh9IpJeAAAAg9HeYDzaGwAAAGD3qPQCAAAYjCXLjEelFwAAAHaPSi8AAIDB6Ok1HpVeAAAA2D0qvQAAAAajp9d4JL0AAAAGo73BeLQ3AAAAwO5R6QUAADAYlV7jUekFAACA3aPSCwAAYDBuZDMelV4AAADYPSq9AAAABqOn13gkvQAAAAajvcF4tDcAAADA7lHpBQAAMBjtDcaj0gsAAAC7R6UXAADAYCbZuKfXdkPZLSq9AAAAsHtUegEAAAzmYDLJwYalXluOZa9IegEAAAzGkmXGo70BAAAAdo9KLwAAgMFYssx4VHoBAABg96j0AgAAGMzBdH+z5Xh4PCq9AAAAsHskvQAAAEYz/dPXa4stpU+n2LFjh1599VX5+fnJZDJp1apVVsfbt2+f5D3q1q1rFXPt2jW1a9dOnp6e8vb2VqdOnRQTE2MV8+uvv6pq1apyc3OTv7+/xo0bl2Quy5YtU9GiReXm5qZSpUpp/fr1VsfNZrOGDRum3Llzy93dXUFBQTpx4kTKLlgkvQAAAIZLXLLMlltK3Lx5U2XKlNH06dMfGVO3bl1dvHjRsi1atMjqeLt27XTkyBFt2rRJa9eu1Y4dO9S1a1fL8ejoaNWpU0cBAQEKCwvT+PHjNWLECH3++eeWmF27dqlNmzbq1KmTDh48qCZNmqhJkyY6fPiwJWbcuHGaOnWqZs2apT179ihz5swKDg7WnTt3UnTN9PQCAABkMPXq1VO9evUeG+Pq6ipfX9+HHjt69Kg2bNigffv2qUKFCpKkTz/9VPXr19eECRPk5+enBQsW6O7du/rqq6/k4uKiEiVKKDw8XJMmTbIkx1OmTFHdunXVv39/SdLo0aO1adMmTZs2TbNmzZLZbNYnn3yiIUOGqHHjxpKkefPmycfHR6tWrVLr1q2Tfc1UegEAAAxmSoV/pPvV1Qe32NjYp57jtm3blCtXLhUpUkTdunXT1atXLcdCQ0Pl7e1tSXglKSgoSA4ODtqzZ48lplq1anJxcbHEBAcH6/jx47p+/bolJigoyOp9g4ODFRoaKkk6c+aMIiIirGK8vLxUqVIlS0xykfQCAADYCX9/f3l5eVm2sWPHPtU4devW1bx587RlyxZ9/PHH2r59u+rVq6f4+HhJUkREhHLlymV1jpOTk7Jly6aIiAhLjI+Pj1VM4usnxTx4/MHzHhaTXLQ3AAAAGCy1liw7f/68PD09LftdXV2farwH2wZKlSql0qVLq0CBAtq2bZtq1ar1n+aaVqj0AgAA2AlPT0+r7WmT3n/Lnz+/cuTIoZMnT0qSfH19dfnyZauYuLg4Xbt2zdIH7Ovrq0uXLlnFJL5+UsyDxx8872ExyUXSCwAAYDBbLldm60caP8yff/6pq1evKnfu3JKkwMBARUZGKiwszBKzdetWJSQkqFKlSpaYHTt26N69e5aYTZs2qUiRIsqaNaslZsuWLVbvtWnTJgUGBkqS8uXLJ19fX6uY6Oho7dmzxxKTXCS9AAAAGUxMTIzCw8MVHh4u6f4NY+Hh4Tp37pxiYmLUv39/7d69W2fPntWWLVvUuHFjFSxYUMHBwZKkYsWKqW7duurSpYv27t2rnTt3qkePHmrdurX8/PwkSW3btpWLi4s6deqkI0eOaMmSJZoyZYr69u1rmUevXr20YcMGTZw4UceOHdOIESO0f/9+9ejRQ9L9Xw569+6tDz74QKtXr9ahQ4f05ptvys/PT02aNEnRNdPTCwAAYLCnWVv3SeOlxP79+1WzZk3L68RENCQkRDNnztSvv/6quXPnKjIyUn5+fqpTp45Gjx5t1S6xYMEC9ejRQ7Vq1ZKDg4OaN2+uqVOnWo57eXlp48aN6t69u8qXL68cOXJo2LBhVmv5vvzyy1q4cKGGDBmi999/X4UKFdKqVatUsmRJS8yAAQN08+ZNde3aVZGRkapSpYo2bNggNze3lH1GZrPZnLKPCc+i6OhoeXl5ybVUF5kcXZ58AgCbu75vWlpPAciQoqOj5ZPdS1FRUVY3eaXVXLy8vNTw021yds9is3Hv3Y7R2p410sU1ple0NwAAAMDu0d4AAABgsLRub8iIqPQCAADA7lHpBQAAMJitlxlL7SXL7EGykt7Vq1cne8BGjRo99WQAAACA1JCspDe566CZTCbLM5kBAADwcPT0Gi9ZSW9CQkJqzwMAACDDcDCZ5GDDTNWWY9mr/3Qj2507d2w1DwAAACDVpDjpjY+P1+jRo/Xcc88pS5YsOn36tCRp6NCh+vLLL20+QQAAAHtjSoUNj5fipHfMmDGaM2eOxo0bJxeXf57sVbJkSc2ePdumkwMAAABsIcVJ77x58/T555+rXbt2cnR0tOwvU6aMjh07ZtPJAQAA2KPEJctsueHxUpz0/vXXXypYsGCS/QkJCbp3755NJgUAAADYUoqT3uLFi+unn35Ksv/bb7/VCy+8YJNJAQAA2DMHk+03PF6Kn8g2bNgwhYSE6K+//lJCQoJWrFih48ePa968eVq7dm1qzBEAAMCu8EQ246W40tu4cWOtWbNGmzdvVubMmTVs2DAdPXpUa9asUe3atVNjjgAAAMB/kuJKryRVrVpVmzZtsvVcAAAAMgyKs8Z6qqRXkvbv36+jR49Kut/nW758eZtNCgAAALClFCe9f/75p9q0aaOdO3fK29tbkhQZGamXX35Zixcv1vPPP2/rOQIAANgVenqNl+Ke3s6dO+vevXs6evSorl27pmvXruno0aNKSEhQ586dU2OOAAAAwH+S4krv9u3btWvXLhUpUsSyr0iRIvr0009VtWpVm04OAADAHtl6mTGWLHuyFCe9/v7+D30IRXx8vPz8/GwyKQAAAHtGe4PxUtzeMH78ePXs2VP79++37Nu/f7969eqlCRMm2HRyAAAAgC0kq9KbNWtWq98gbt68qUqVKsnJ6f7pcXFxcnJyUseOHdWkSZNUmSgAAIC9MP3/Zsvx8HjJSno/+eSTVJ4GAAAAkHqSlfSGhISk9jwAAAAyDAeTSQ427MO15Vj26qkfTiFJd+7c0d27d632eXp6/qcJAQAAALaW4hvZbt68qR49eihXrlzKnDmzsmbNarUBAADg8Uwm2294vBQnvQMGDNDWrVs1c+ZMubq6avbs2Ro5cqT8/Pw0b9681JgjAACAXUlcssyWGx4vxe0Na9as0bx581SjRg116NBBVatWVcGCBRUQEKAFCxaoXbt2qTFPAAAA4KmluNJ77do15c+fX9L9/t1r165JkqpUqaIdO3bYdnYAAAB2iPYG46U46c2fP7/OnDkjSSpatKiWLl0q6X4F2Nvb26aTAwAAAGwhxe0NHTp00C+//KLq1atr0KBBevXVVzVt2jTdu3dPkyZNSo05AgAA2BWWLDNeipPePn36WP49KChIx44dU1hYmAoWLKjSpUvbdHIAAACALfyndXolKSAgQAEBAbaYCwAAQIZg6z5cCr1Plqykd+rUqcke8J133nnqyQAAAGQEtl5mjCXLnixZSe/kyZOTNZjJZCLpBQAAQLqTrKQ3cbUGPPvObZvAo6KBNHLnXnxaTwHIkNLjz56DnmIJrSeMh8fjMwIAAIDd+883sgEAACBl6Ok1HpVeAAAA2D0qvQAAAAYzmSQHliwzFEkvAACAwRxsnPTacix79VTtDT/99JNef/11BQYG6q+//pIkzZ8/Xz///LNNJwcAAADYQoqT3uXLlys4OFju7u46ePCgYmNjJUlRUVH68MMPbT5BAAAAe5N4I5stNzxeipPeDz74QLNmzdIXX3whZ2dny/7KlSvrwIEDNp0cAAAAYAsp7uk9fvy4qlWrlmS/l5eXIiMjbTEnAAAAu0ZPr/FSXOn19fXVyZMnk+z/+eeflT9/fptMCgAAALClFCe9Xbp0Ua9evbRnzx6ZTCZduHBBCxYsUL9+/dStW7fUmCMAAIBdMZlsv+HxUtzeMGjQICUkJKhWrVq6deuWqlWrJldXV/Xr1089e/ZMjTkCAADYFQeTSQ42zFRtOZa9SnHSazKZNHjwYPXv318nT55UTEyMihcvrixZsqTG/AAAAID/7KkfTuHi4qLixYvbci4AAAAZgoOe8mEJjxkPj5fipLdmzZqPXQtu69at/2lCAAAAgK2lOOktW7as1et79+4pPDxchw8fVkhIiK3mBQAAYLdsffMZLb1PluKkd/LkyQ/dP2LECMXExPznCQEAAAC2ZrMWkNdff11fffWVrYYDAACwWw4yWVZwsMkmSr1P8tQ3sv1baGio3NzcbDUcAACA3aK9wXgpTnqbNWtm9dpsNuvixYvav3+/hg4darOJAQAAALaS4qTXy8vL6rWDg4OKFCmiUaNGqU6dOjabGAAAgL1yMN3fbDkeHi9FSW98fLw6dOigUqVKKWvWrKk1JwAAAMCmUnQjm6Ojo+rUqaPIyMhUmg4AAID9M5lk0xvZ6Ol9shSv3lCyZEmdPn06NeYCAAAApIoUJ70ffPCB+vXrp7Vr1+rixYuKjo622gAAAPB4ias32HLD4yW7p3fUqFF69913Vb9+fUlSo0aNrB5HbDabZTKZFB8fb/tZAgAA2BFuZDNespPekSNH6q233tKPP/6YmvMBAAAAbC7ZSa/ZbJYkVa9ePdUmAwAAkBGY/v8fW46Hx0tRT6+JhhEAAAA8g1K0Tm/hwoWfmPheu3btP00IAADA3tHTa7wUJb0jR45M8kQ2AAAAIL1LUdLbunVr5cqVK7XmAgAAkCFQ6TVesnt66ecFAADAsyrFqzcAAADgvzGZTDYtKFKcfLJkJ70JCQmpOQ8AAIAMg/YG46X4McQAAADAsyZFN7IBAADgvzOZ7m+2HA+PR6UXAAAAdo9KLwAAgMEcTCY52LA8a8ux7BWVXgAAANg9Kr0AAAAGY/UG41HpBQAAMJrpn5vZbLEphUnvjh079Oqrr8rPz08mk0mrVq2yOm42mzVs2DDlzp1b7u7uCgoK0okTJ6xirl27pnbt2snT01Pe3t7q1KmTYmJirGJ+/fVXVa1aVW5ubvL399e4ceOSzGXZsmUqWrSo3NzcVKpUKa1fvz7Fc0kOkl4AAIAM5ubNmypTpoymT5/+0OPjxo3T1KlTNWvWLO3Zs0eZM2dWcHCw7ty5Y4lp166djhw5ok2bNmnt2rXasWOHunbtajkeHR2tOnXqKCAgQGFhYRo/frxGjBihzz//3BKza9cutWnTRp06ddLBgwfVpEkTNWnSRIcPH07RXJLDZOZRaxlCdHS0vLy8dOlqlDw9PdN6OkCGdOdefFpPAciQoqOjFeCbTVFRaf8dmPh9PP6HX+We2cNm496+eUP9g0s/1TWaTCatXLlSTZo0kXS/surn56d3331X/fr1kyRFRUXJx8dHc+bMUevWrXX06FEVL15c+/btU4UKFSRJGzZsUP369fXnn3/Kz89PM2fO1ODBgxURESEXFxdJ0qBBg7Rq1SodO3ZMktSqVSvdvHlTa9eutcznpZdeUtmyZTVr1qxkzSW5qPQCAADA4syZM4qIiFBQUJBln5eXlypVqqTQ0FBJUmhoqLy9vS0JryQFBQXJwcFBe/bsscRUq1bNkvBKUnBwsI4fP67r169bYh58n8SYxPdJzlySixvZAAAADJZaD6eIjo622u/q6ipXV9cUjRURESFJ8vHxsdrv4+NjORYREaFcuXJZHXdyclK2bNmsYvLly5dkjMRjWbNmVURExBPf50lzSS4qvQAAAHbC399fXl5elm3s2LFpPaV0g0ovAACAwVJrybLz589b9fSmtMorSb6+vpKkS5cuKXfu3Jb9ly5dUtmyZS0xly9ftjovLi5O165ds5zv6+urS5cuWcUkvn5SzIPHnzSX5KLSCwAAYLDEJ7LZcpMkT09Pq+1pkt58+fLJ19dXW7ZsseyLjo7Wnj17FBgYKEkKDAxUZGSkwsLCLDFbt25VQkKCKlWqZInZsWOH7t27Z4nZtGmTihQpoqxZs1piHnyfxJjE90nOXJKLpBcAACCDiYmJUXh4uMLDwyXdv2EsPDxc586dk8lkUu/evfXBBx9o9erVOnTokN588035+flZVngoVqyY6tatqy5dumjv3r3auXOnevToodatW8vPz0+S1LZtW7m4uKhTp046cuSIlixZoilTpqhv376WefTq1UsbNmzQxIkTdezYMY0YMUL79+9Xjx49JClZc0ku2hsAAAAMllo3siXX/v37VbNmTcvrxEQ0JCREc+bM0YABA3Tz5k117dpVkZGRqlKlijZs2CA3NzfLOQsWLFCPHj1Uq1YtOTg4qHnz5po6darluJeXlzZu3Kju3burfPnyypEjh4YNG2a1lu/LL7+shQsXasiQIXr//fdVqFAhrVq1SiVLlrTEJGcuyfqMWKc3Y2CdXiDtsU4vkDbS4zq9U7Ycsvk6vb1qlUoX15heUekFAAAwmIP+6cO11Xh4PHp6AQAAYPeo9AIAABgsrXt6MyKSXgAAAIM5yLZ/budP90/GZwQAAAC7R6UXAADAYCaTSSYb9iTYcix7RaUXAAAAdo9KLwAAgMFM/7/Zcjw8HpVeAAAA2D0qvQAAAAZzMNn44RT09D4RSS8AAEAaIE01Fu0NAAAAsHtUegEAAAzGE9mMR6UXAAAAdo9KLwAAgMF4OIXxqPQCAADA7lHpBQAAMJiDbFt5pIr5ZCS9AAAABqO9wXj8YgAAAAC7R6UXAADAYCbZ9uEU1HmfjEovAAAA7B6VXgAAAIPR02s8Kr0AAACwe1R6AQAADMaSZcYj6QUAADAY7Q3G4xcDAAAA2D0qvQAAAAZjyTLjUekFAACA3aPSCwAAYDCT6f5my/HweFR6AQAAYPeo9AIAABjMQSY52LAT15Zj2SuSXgAAAIPR3mA82hsAAABg96j0AgAAGMz0///Ycjw8HpVeAAAA2D0qvQAAAAajp9d4VHoBAABg96j0AgAAGMxk4yXL6Ol9MpJeAAAAg9HeYDzaGwAAAGD3qPQCAAAYjEqv8aj0AgAAwO5R6QUAADAYD6cwHpVeAAAA2D0qvQAAAAZzMN3fbDkeHo+kFwAAwGC0NxiP9gYAAADYPSq9AAAABmPJMuNR6QUAAIDdo9ILAABgMJNs24dLoffJqPQC6cQHo0bI3dlktZUpWVSSdO3aNfXp1VOlSxRRVg93FcqfR317v6OoqKi0nTTwDLlx44be699XpYrkV+5sWVSnZhUd2L/PcjxrJqeHblMnT7DEnDzxu9q+1lQF/H2Uxyer6taqpp+2//jQ97t29apKFAxQ1kxOioqMTO3LA/AEVHqBdKR4iRJat2Gz5bWT0/0f0YsXLujixQsa+/EEFStWXOfO/aGe3d/SxYsXtGjJt2k1XeCZ0uvtrjr62xHN+nKOcuf209JFC9SkYbB2hx2S33PP6djpP63iN2/coJ7duqhRk2aWfa2bN1b+AgX13fpNcnd318xpU9W6eWMdOPy7fHx9rc7v2a2LipcspQsX/jLk+vBsYcky45H0AumIk6OTfP/1xSlJJUqW1OKlyy2v8xcooBGjxqhjyOuKi4uzJMcAHu727dtavWqFFixdocpVqkmSBg0Zrg3r1+mrL2ZpyIjRSZLW9WtXq2r1GsqbL78k6erff+vUyROaOvNzlSxVWpI0fPSH+vLzmTr622Gr87/8fJaioiI14L0h2rxxg0FXCeBxaG8A0pGTJ08oXx4/FSucX+3faKdz5849MjY6Kkqenp4kvEAyxMXFKT4+Xm5ublb73dzdtDt0Z5L4y5cuaeOG9Xo9pKNlX7bs2VWocBEtWfCNbt68qbi4OM358nPlzJVLZV8ob4k7dvQ3jR/7gWbOniMHB75m8XCmVPgHj8dP43+QN29effLJJ/85BpCkii9W0udfztHqtRs0ddpMnT17RkE1q+rGjRtJYv/++2+N/XC0OnbumgYzBZ49Hh4eqljpJY3/aIwuXrig+Ph4LVm0QPv27NaliIgk8YsWzFMWDw+92ripZZ/JZNLKtT/o11/C5Z/LW75ZM2vG1E/07ap18s6aVZIUGxurzu1f18gPP5a/fx7Drg/PnsQly2y54fFIeh/h/Pnz6tixo/z8/OTi4qKAgAD16tVLV69eTdE4+/btU9eutktMSKLtV3Ddemre4jWVKl1atesEa9Wa9YqKjNTyZUut4qKjo9W0UQMVK1ZcQ4aNSJvJAs+gz76cK7PZrOIF88jHO5M+n/Gpmrds/dBq7IJ5c/Raq7ZWlWGz2az+fXoqR86cWr95m7bsCFX9VxurTYsmirh4UZI0atj7KlykqFq1aWfYdQFIHpLehzh9+rQqVKigEydOaNGiRTp58qRmzZqlLVu2KDAwUNeuXUv2WDlz5lSmTJlScbawV97e3ipYqLBOnTpp2Xfjxg01alBXHh4eWvLtSjk7O6fhDIFnS778BbRu44/680qUDv9+Vlt+2q24e/cUkDefVdyunT/pxO/H9Ub7jlb7d2zbqh++X6cv5y3US4GVVeaFcpo4ZZrc3N21aMG8/4/Zpu9WfKscHq7K4eGqxvXrSJIK+Pto7OgRhlwnng2mVNjweCS9D9G9e3e5uLho48aNql69uvLkyaN69epp8+bN+uuvvzR48GBL7I0bN9SmTRtlzpxZzz33nKZPn2411r8rs5GRkercubNy5swpT09PvfLKK/rll1+szlmzZo0qVqwoNzc35ciRQ02b3v/zWo0aNfTHH3+oT58+MplMMvG3DLsWExOjM6dPydc3t6T7Fd6G9erIxcVF365cnaQ3EUDyZM6cWb65cyvy+nVt2bxR9Rs2sjr+zdyvVfaF8ipVuozV/lu3bklSksqwg4ODEhISJEnzFi3VT3sOaMfuMO3YHaapMz6XJK3fvE2d//d2al0SgGQg6f2Xa9eu6YcfftDbb78td3d3q2O+vr5q166dlixZIrPZLEkaP368ypQpo4MHD2rQoEHq1auXNm3a9MjxX3vtNV2+fFnff/+9wsLCVK5cOdWqVctSPV63bp2aNm2q+vXr6+DBg9qyZYtefPFFSdKKFSv0/PPPa9SoUbp48aIu/v+f02AfBg3op592bNcfZ88qdNcutWrRVI6OjmrZuo0l4b1186Zmff6loqOjFRERoYiICMXHx6f11IFnwpZNP2jzxg364+wZ/bhlk16tG6TChYuo3ZvtLTHR0dH6bsW3Saq8kvRipUB5Z82qt7t00KFff9HJE79r6PsD9MfZM6pTt76k+9Xk4iVKWraAvHklSUWKFFPOXLmMuEw8IxxkkoPJhhu13ifitu9/OXHihMxms4oVK/bQ48WKFdP169d15coVSVLlypU1aNAgSVLhwoW1c+dOTZ48WbVr105y7s8//6y9e/fq8uXLcnV1lSRNmDBBq1at0rfffquuXbtqzJgxat26tUaOHGk5r0yZ+9WGbNmyydHRUR4eHg9d1upBsbGxio2NtbyOjo5OwaeAtPDXX3/qzdfb6NrVq8qRM6derlxF23/erZw5c2rH9m3at3ePJKlE0YJW5x07ccbyxQrg0aKjozVq2GBd+OtPZc2aTa82aaYhI0ZbtQmtWHa/qNG8Zesk52fPkUPfrlqnD0YOVeP6tRV3756KFiuuBUtXJKkKA0h/SHofIbGS+ySBgYFJXj/qRrNffvlFMTExyp49u9X+27dv69SpU5Kk8PBwdenSJeUT/pexY8daJc5I/+YvWPzIY9Wq19Dte8n73ySAh2va/DU1bf7aY2Pad+qi9p0e/d/gF8pX0PLV3yf7PatUq6Hrt+KSHY+Mw9Z9uNR5n4yk918KFiwok8mko0ePWnppH3T06FFlzZpVOXPmTPHYMTExyp07t7Zt25bkmLe3tyQlaal4Wu+995769u1reR0dHS1/f3+bjA0AAP4jsl7D0dP7L9mzZ1ft2rU1Y8YM3b592+pYRESEFixYoFatWlluItu9e7dVzO7dux/ZGlGuXDlFRETIyclJBQsWtNpy5MghSSpdurS2bNnyyPm5uLgkq4fT1dVVnp6eVhsAAEBGRdL7ENOmTVNsbKyCg4O1Y8cOnT9/Xhs2bFDt2rX13HPPacyYMZbYnTt3aty4cfr99981ffp0LVu2TL169XrouEFBQQoMDFSTJk20ceNGnT17Vrt27dLgwYO1f/9+SdLw4cO1aNEiDR8+XEePHtWhQ4f08ccfW8bImzevduzYob/++kt///136n4QAAAgVfBENuOR9D5EoUKFtH//fuXPn18tW7ZUgQIF1LVrV9WsWVOhoaHKli2bJfbdd9/V/v379cILL+iDDz7QpEmTFBwc/NBxTSaT1q9fr2rVqqlDhw4qXLiwWrdurT/++EM+Pj6S7i9LtmzZMq1evVply5bVK6+8or1791rGGDVqlM6ePasCBQo8VYsFAABARmQyJ/eOLTyV3Llza/To0ercuXOaziM6OlpeXl66dDWKVgcgjdy5x/JyQFqIjo5WgG82RUWl/Xdg4vfxlvBzyuJhu7nE3IhWrbJ50sU1plfcyJZKbt26pZ07d+rSpUsqUaJEWk8HAAAgQ6O9IZV8/vnnat26tXr37p1kWTMAAJCx8Rhi41HpTSW9e/dW796903oaAAAgPWLJMsNR6QUAAIDdo9ILAABgMFsvM8aSZU9GpRcAAAB2j0ovAACAwUym+5stx8PjUekFAACA3aPSCwAAYDAWbzAeSS8AAIDRyHoNR3sDAAAA7B6VXgAAAIOxZJnxqPQCAABkMCNGjJDJZLLaihYtajl+584dde/eXdmzZ1eWLFnUvHlzXbp0yWqMc+fOqUGDBsqUKZNy5cql/v37Ky4uzipm27ZtKleunFxdXVWwYEHNmTMnyVymT5+uvHnzys3NTZUqVdLevXtT5ZpJegEAAAyWuGSZLbeUKlGihC5evGjZfv75Z8uxPn36aM2aNVq2bJm2b9+uCxcuqFmzZpbj8fHxatCgge7evatdu3Zp7ty5mjNnjoYNG2aJOXPmjBo0aKCaNWsqPDxcvXv3VufOnfXDDz9YYpYsWaK+fftq+PDhOnDggMqUKaPg4GBdvnz56T7YxzCZzWazzUdFuhMdHS0vLy9duholT0/PtJ4OkCHduRef1lMAMqTo6GgF+GZTVFTafwcmfh//dPhPZfGw3VxibkSrasnnk32NI0aM0KpVqxQeHp7kWFRUlHLmzKmFCxeqRYsWkqRjx46pWLFiCg0N1UsvvaTvv/9eDRs21IULF+Tj4yNJmjVrlgYOHKgrV67IxcVFAwcO1Lp163T48GHL2K1bt1ZkZKQ2bNggSapUqZIqVqyoadOmSZISEhLk7++vnj17atCgQf/1Y7FCpRcAAMBgplTYUurEiRPy8/NT/vz51a5dO507d06SFBYWpnv37ikoKMgSW7RoUeXJk0ehoaGSpNDQUJUqVcqS8EpScHCwoqOjdeTIEUvMg2MkxiSOcffuXYWFhVnFODg4KCgoyBJjS9zIBgAAYLRUWrIsOjraarerq6tcXV2ThFeqVElz5sxRkSJFdPHiRY0cOVJVq1bV4cOHFRERIRcXF3l7e1ud4+Pjo4iICElSRESEVcKbeDzx2ONioqOjdfv2bV2/fl3x8fEPjTl27FjKrj8ZSHoBAADshL+/v9Xr4cOHa8SIEUni6tWrZ/n30qVLq1KlSgoICNDSpUvl7u6e2tNMEyS9AAAABkutJcvOnz9v1dP7sCrvw3h7e6tw4cI6efKkateurbt37yoyMtKq2nvp0iX5+vpKknx9fZOsspC4usODMf9e8eHSpUvy9PSUu7u7HB0d5ejo+NCYxDFsiZ5eAAAAO+Hp6Wm1JTfpjYmJ0alTp5Q7d26VL19ezs7O2rJli+X48ePHde7cOQUGBkqSAgMDdejQIatVFjZt2iRPT08VL17cEvPgGIkxiWO4uLiofPnyVjEJCQnasmWLJcaWqPQCAAAY7GmXGXvceCnRr18/vfrqqwoICNCFCxc0fPhwOTo6qk2bNvLy8lKnTp3Ut29fZcuWTZ6enurZs6cCAwP10ksvSZLq1Kmj4sWL64033tC4ceMUERGhIUOGqHv37pZE+6233tK0adM0YMAAdezYUVu3btXSpUu1bt06yzz69u2rkJAQVahQQS+++KI++eQT3bx5Ux06dLDZZ5OIpBcAACCD+fPPP9WmTRtdvXpVOXPmVJUqVbR7927lzJlTkjR58mQ5ODioefPmio2NVXBwsGbMmGE539HRUWvXrlW3bt0UGBiozJkzKyQkRKNGjbLE5MuXT+vWrVOfPn00ZcoUPf/885o9e7aCg4MtMa1atdKVK1c0bNgwRUREqGzZstqwYUOSm9tsgXV6MwjW6QXSHuv0AmkjPa7TG/rbXzZfpzew+HPp4hrTKyq9AAAARkulJcvwaNzIBgAAALtHpRcAAMBgqbVkGR6NSi8AAADsHpVeAAAAg6X1kmUZEZVeAAAA2D0qvQAAAAZj8QbjkfQCAAAYjazXcLQ3AAAAwO5R6QUAADAYS5YZj0ovAAAA7B6VXgAAAIOxZJnxqPQCAADA7lHpBQAAMBiLNxiPpBcAAMBoZL2Go70BAAAAdo9KLwAAgMFYssx4VHoBAABg96j0AgAAGM3GS5ZR6H0yKr0AAACwe1R6AQAADMbiDcYj6QUAADAaWa/haG8AAACA3aPSCwAAYDCWLDMelV4AAADYPSq9AAAABjPZeMkymy5/Zqeo9AIAAMDuUekFAAAwGIs3GI9KLwAAAOwelV4AAACjUeo1HEkvAACAwViyzHi0NwAAAMDuUekFAAAwmEk2XrLMdkPZLSq9AAAAsHtUegEAAAzGfWzGo9ILAAAAu0elFwAAwGA8hth4JL0AAACGo8HBaLQ3AAAAwO5R6QUAADAY7Q3Go9ILAAAAu0elFwAAwGB09BqPSi8AAADsHpVeAAAAg9HTazySXgAAAIOZ/v8fW46Hx6O9AQAAAHaPSi8AAIDRuJPNcFR6AQAAYPeo9AIAABiMQq/xqPQCAADA7lHpBQAAMBhLlhmPpBcAAMBgLFlmPNobAAAAYPeo9AIAABiNO9kMR6UXAAAAdo9KLwAAgMEo9BqPSi8AAADsHpVeAAAAg7FkmfFIegEAAAxn2yXLaHB4MtobAAAAYPeo9AIAABiM9gbjUekFAACA3SPpBQAAgN0j6QUAAIDdo6cXAADAYPT0Go+kFwAAwGAmGy9ZZtvlz+wT7Q0AAACwe1R6AQAADEZ7g/Go9AIAAMDuUekFAAAwmEm2fXAwhd4no9ILAAAAu0elFwAAwGiUeg1H0gsAAGAwliwzHu0NAAAAsHtUegEAAAzGkmXGo9ILAAAAu0elFwAAwGDcx2Y8Kr0AAACwe1R6AQAAjEap13AkvQAAAAZjyTLj0d4AAAAAu0elFwAAwGAsWWY8kt4Mwmw2S5JuREen8UyAjOvOvfi0ngKQId24cf+7L/G7MD2ItvH3sa3Hs0ckvRnEjRs3JEkF8/mn8UwAAEgbN27ckJeXV5rOwcXFRb6+viqUCt/Hvr6+cnFxsfm49sJkTk+/9iDVJCQk6MKFC/Lw8JCJv4E8c6Kjo+Xv76/z58/L09MzracDZDj8DD7bzGazbty4IT8/Pzk4pP3tTHfu3NHdu3dtPq6Li4vc3NxsPq69oNKbQTg4OOj5559P62ngP/L09OQLF0hD/Aw+u9K6wvsgNzc3ktM0kPa/7gAAAACpjKQXAAAAdo+kF3gGuLq6avjw4XJ1dU3rqQAZEj+DwLOPG9kAAABg96j0AgAAwO6R9AIAAMDukfQCAADA7pH0ApCUvh7PCQCArZH0ApAkmUwmEl8AgN0i6QUyuE6dOqlp06aSSHyB/+rfPz8JCQlpNBMA/0bSC2RgsbGxevHFF7V371517txZEokv8LT++usvmUwmSdJXX30l6f4j4AGkD/w0AhmYq6ur3nzzTX300UfavHmzOnXqJInEF0iprVu3qnHjxvr555/Vp08fde7cWWfOnEnraQF4gFNaTwBA2oiPj5ejo6Pc3d3l4+Oj1q1ba9y4cfLw8NAnn3xiSXwTK1cAHq18+fJycXFRmzZtdOPGDYWFhSlfvnxKSEig2gukE/wkAhmUo6OjJKlfv37q37+/rl69qtKlS+uzzz6j1QFIJrPZrPj4eHl5eal+/fq6dOmS8ubNq8jISMXFxcnBwYGfISCd4DHEQAa2efNmtWzZUqtXr1aVKlV0/fp1LVy4UKNGjVLjxo31+eefSxLVKuAhHvy5iImJ0blz5xQTE6MBAwbo7t27Gjx4sOrWrWv5BfNh5wEwDj91QAZ28eJFeXp6qnz58pKkrFmzqm3bturZs6dmz56t/v37S+JmHODfHkxcP/jgAzVt2lQmk0kvvviili9fLkdHR40ZM0abNm2ynDNmzBhJ/DwBaYWfPCCDeNgfdYoVK6b4+Hjt2LHDsi9r1qxq1KiRsmbNqokTJ2r06NFGThN4JiQmru+9956mT5+uN998U05O92+TyZ49u1avXi1nZ2eNHDlSI0eOVMOGDTV+/HjFx8en5bSBDI2kF8gAEhISLDekmc1mSwLs4+OjggULat68edq3b58lPlOmTAoKCtK6dev0/vvvp8mcgfRu3759WrZsmebPn6833nhDhQoVkiTFxcUpa9as+u6775QvXz7t2rVLknTlyhU5Ojqydi+QRujpBezcgyswTJw4UYcOHVJMTIw++OADFS1aVNu2bVOPHj1UoEAB1ahRQ+XKldOYMWPk7u6uVatWyWQyWVZ6APCP7777Tu+8844OHDig7NmzS/rn5y02Nlaurq6KjY3V7du35eXlJZPJpLi4OEtFGICxqPQCduzBCu/o0aP14YcfysnJSWfPntVLL72k7777TjVq1NBnn32m7Nmz66OPPtLbb7+tW7du6dtvv5XJZFJCQgIJL/CAxFpRlixZlJCQoFOnTlkdM5vNWrhwocLCwuTq6ipvb2/LSigkvEDa4acPsGOJfYcRERG6dOmS1q5dq8DAQElS586d1a5dO82fP19NmzbVSy+9pMjISEVHRytv3rxUpYD/9+/VFhKrufnz55eDg4O+/PJL+fr6Kk+ePHJwcFBcXJy++eYbVahQwXKTqCTWvAbSGO0NgJ1btGiR2rVrpyJFimjBggUqV66c5Vjnzp21ZMkSffPNN2rQoIFVgsuySoD1z8H06dN19OhRHT58WD179lSDBg30008/qVmzZmrcuLEqV66s3Llz69NPP9Xff/+tsLAwfmkE0hG+0QA78++bZJo2baqWLVvq+PHjunDhgqR//jw7e/ZstW3bVk2bNlVoaKjVeSS8wD8/BwMHDtTo0aOVLVs2lStXTp06dVKfPn1Uu3ZtLVu2TFFRURo5cqTGjBmjLFmyaP/+/XJycmK1BiAdodIL2Knvv/9eBQoUUOHChXXnzh21aNFCYWFhWrNmjSpUqGAV+9FHH6lfv35UpYCH+PHHH9WpUyd9++23KleunPbt26dKlSpp/vz5ateunSTp3r17io6OVnx8vHLmzEl7EJAOUcoB7IzZbNbJkyfVoEEDjR8/XqdPn5abm5tWrFihsmXLqnHjxtq/f78lVpIGDRokJycnxcXFpeXUgTQ3atQoHT9+3GrfnTt35O/vr3LlymnRokWqVauWpk+frnbt2unGjRvau3evzGazsmfPrly5cnHTGpBOkfQCduDBP9iYTCYVLFhQ3333nVauXKlx48bp1KlTcnFx0XfffacyZcqoWbNm2rVrV5Iba/iSRkYWFham0NBQFShQwGr/9evXde3aNa1fv17dunXTRx99pG7dukm6/yjvWbNm6erVq1bncNMakP7Q3gDYkcS1QROtXbtWr7/+ulq1aqVBgwYpX758unv3rqpUqaLcuXPru+++S8PZAulP4soM3333nfz8/FSxYkXFxsaqRo0a2rNnj6ZOnaoePXpIuv/z1qJFC3l5eWn+/PkkukA6R9IL2IkPP/xQV69e1eDBg5UtWzbL/nXr1qlp06bq0KGD+vXrp0KFCikuLk4ODg7crAb8i9ls1rlz51SqVCk1aNBAAwcOVNmyZbV69WqNGDFCHh4eGj16tP7880/Nnz9ff/75pw4ePCgnJyerB8EASH/4xgPshLe3tyZPnqypU6fq+vXrku5/gTdo0EDvv/++5s+fb/mydnJykoODA49DBZS0PSggIEArV67U/v37NX78eB09elSvvvqqPvzwQzk4OKh58+aaOnWqvL29deDAAcsqDSS8QPpGpRd4Bj1qDd3Zs2era9euGjJkiHr37m2p+E6cOFEbN26UyWTS+vXrqfAC/+/evXtydnaW9E97UGLFdtOmTeratasCAwM1ZMgQFS9eXJJ0+vRp+fj4KFOmTKzSADxDSHqBZ8yDCe++ffsUHR2tbNmyqWTJknJ2dtbnn3+ut956S0OGDNFrr72mokWLqlWrVurSpYvq1auXZAwgIzpw4IBKly5tSVYnTZqk3bt3Kz4+XlWrVtUbb7yh7NmzWxLfl19+WX379rV6wpokWhqAZwhJL/CMGjhwoJYvX65r167J19dX2bNn1/r16+Xh4aHZs2dryJAhypw5s0wmk9zd3ek7BP7f4MGD9e233+qTTz5RvXr1NG7cOI0ePVrdu3fXL7/8or///lvOzs5atWqVcuXKpc2bN6tLly6qXLmy+vXrp7Jly6b1JQB4CiS9wDNo+vTpGjZsmFatWiUfHx8dP35co0ePVlRUlA4cOKDMmTPr559/1unTpxUTE6OuXbta+g4dHR3TevpAmrpy5YqaNWsms9msvn37auHCheratavq1KkjSdqwYYM++ugjOTk5acWKFfL09NTWrVvVuXNnvfLKK/r444+VPXv2NL4KAClF0gs8A/7djtCxY0dlzZpVEydOlHT/T6xHjhzRm2++qdKlS+urr75K0r5AwouM7sG/cvz9999q3LixYmNjdfPmTS1ZskSlS5eWJMXFxWnlypX64IMPNH36dFWpUkWStGXLFtWuXVuLFy9Wy5Yt0+w6ADwdmvqAdM5sNlsS2O+//1537tzRjRs3FB4ebokxmUwqWbKkGjVqpOPHj+vOnTtJxiHhRUZ3+fJlnT9/XmFhYcqWLZs2b96s5557TsePH9fmzZsVHx8v6f5DWurWrauLFy/q4MGDku7/HNaqVUuVK1fW77//npaXAeApkfQC6diDlamRI0eqT58++uOPP1SnTh1FR0dr1apVVsuOFSxYULGxsQ9NeoGMbOHChXrttddUqVIlVaxYUXnz5tW4ceM0f/58BQUFaf78+Vq9erUlPiEhQT4+PsqSJYuk+79Y/vrrr4qPj1fz5s3T6jIA/AessQKkY4kJ75EjRxQeHq6ZM2eqSJEi8vb21uLFizVr1izFxMSoRYsWunHjhubNm6d8+fIpa9asaTxzIP34+uuv9fbbb2vixIkqWrSonJ2d9dVXX2n06NE6c+aM5s2bpzfeeEP9+vXTxo0bVapUKW3cuFFxcXF64403LOMUKlRIa9eutXr4C4BnBz29QDo3a9YsffXVV5Kk5cuXy9/fX5J07tw5de/eXadPn9aFCxeUN29emc1m7du3T87OzqzSAEg6ePCgXnvtNX344YdWfbhXr17V0qVL1atXL/Xo0UPjxo3Tq6++qh9++EENGjRQxYoV9f7771tuAHVwcODnCXjGUekF0pl/37RWsWJFTZkyRWfOnNHu3bstSW+ePHk0f/58nT9/Xrt27ZKvr68aNmwoR0dHFssH/t/58+eVJUsWVatWzXIzp9lsVvbs2dWmTRtduHBBkyZNUqdOnbRo0SK9/PLLKlasmIYNGyaJG0ABe0KlF0induzYocKFC8vX11dHjx5VixYt9Nxzz2n48OGqXLnyI8/jSxr4x8iRIzVz5kxFRERISvowid9//10lSpTQF198ofbt2ysqKkpZsmSxJMdUdwH7wY1sQDrx4A1pmzZt0ltvvaUZM2bo6tWrKlasmBYuXKjz58/r448/1q5duyyx//69lYQX+EexYsV048YNbdy4UZKSJLH58+eXr6+v5eZPLy8vOTo6Kj4+noQXsDMkvUA68OCyZJ999pm2bNmiS5cuaebMmZoxY4auXLmiMmXKaPHixTp58qTGjx+vH3/8UVLSL3EA/6hQoYLl8dznzp2z7E9cnuzcuXPKkSOHChcubHUevzwC9oekF0gHHlyWbODAgXrhhRc0b9481axZU4sWLdL06dP1999/q0yZMlq0aJG2b9+uDRs2pPGsgfQvf/78mjlzptauXav33ntPBw4ckHQ/qb1165beeecdeXp6qkaNGmk7UQCpjp5eIB0wm836+++/Vbt2bXXp0kXdu3e3HOvVq5eWL1+u//3vf+rWrZty5MihEydOKH/+/FSjgGSIi4vTnDlz1L17d+XMmVNlypSRt7e3zp07pxs3blhWPKEfHrBvVHqBNPJgD6/JZJKnp6ecnJx08+ZNSfe/qCVpypQpyps3r2bPnq2ZM2fq2rVrKlSokKXvEMDjOTk5qXPnztqzZ48aN26s27dvy9nZWQ0bNtT+/fvl7OysuLg4El7AzlHpBdLAg3eFL1++XFWrVlXOnDnVqFEjXbt2TT/++KNcXFwslae33npLYWFhMplMGjRokJo1a8ad5YCNUOEFMgYqvYCBTpw4Iel+ZddsNmvv3r1666235OTkJJPJpJkzZ+rMmTNq3bq1oqOjLZXc69eva8yYMcqWLZsmT55sGQNAyjyszkPCC2QMJL2AQbp3766uXbtq7969ku4nrbdu3ZKnp6eyZMmi+Ph4Pf/881q+fLn27t2rl156SfXr11f58uUVFhamOnXqqF69erp9+7bu3buXxlcDPJv4ZRHIuEh6AYO0a9dOFy5c0Pjx4xUaGipJcnBwUI4cOeTi4mJZDD8wMFC//fabWrRooZIlS6pu3bo6duyYJGnfvn3KkyfPQ6tVAADg0ejpBQyQ+Gjh/fv3q02bNipVqpSGDx+ukydPasqUKdqxY8djz//rr780YcIEzZ8/X9u3b1eJEiUMmjkAAPaBpBdIZYkJb6Ldu3frjTfeULVq1eTt7a2lS5eqT58+unXrlry9veXq6qoTJ07otddeU8WKFRUREaGlS5dq9uzZmjdvnsqWLZt2FwMAwDOKpBdIRQ8mvOvWrVP58uXl6+urPXv26I033tD169fl6empF154QX/99ZcyZcokJycn3b17V5s3b7bcYPP333/LZDIpe/bsaXk5AAA8s0h6gVTy4JJi7733nhYtWqROnTqpf//+cnNzU3h4uFq2bKlSpUppyJAheuGFF5KMERcXJycnJ6OnDgCA3SHpBVLZxx9/rPHjx2vDhg3Knz+/smXLZtXj265dO5UuXVo9e/ZUtWrVLOexDi8AALbD6g1AKrp165Z+/vlnjRgxQhUqVJC3t7ekf9YKrVChgr755htt3LhRP/zwg9W5JLwAANgOfzcFUtGdO3e0Z88e1ahRQ5Is/b2Ojo66deuWYmNjVbFiRYWGhqpIkSJpOFMAAOwblV7ARhKrtw92DLm6uqpSpUr6/fffdfXqVav4ffv2qU+fPrp+/bqKFy8uR0dHyxPYAACAbZH0AjaQkJBgaUeIi4uz7M+cObNeeeUVzZ8/X998840uXbokSYqMjNTkyZN1+fJleXl5WeJ5HCoAAKmDG9mA/+jBZclmzpypbdu2ycHBQWXKlNGgQYMkScOGDdMXX3yhQoUKyd3dXZGRkbp9+7bCwsLk7OycZC1fAABgWyS9gI0MGjRIc+fOVceOHXX37l0tX75cNWrU0FdffSVJWrFihU6ePKkTJ06oSJEi6t27t5ycnFiWDAAAA5D0AjawaNEijRgxQvPmzVOlSpX07bffKiQkRI6OjgoKCtKKFSseel58fDwtDQAAGIC/pwJP4e7du7p165bldVRUlFq3bq1KlSppzZo16tq1qz788ENNmjRJq1evVufOnR86DgkvAADGoNILpNDy5cu1cOFCnTlzRk2bNtXQoUMlSWfOnJGnp6fq1Kmjli1bauDAgTp58qRq1KihCxcuaMCAAfroo4/SePYAAGRMVHqBFPjss8/UsWNHBQQEqHr16ho5cqRmzJghScqXL59OnTqlv//+W82aNbOcU716dW3cuFFjxoxJq2kDAJDhcfcMkEyzZ89Wz549tXTpUjVp0kSSdOnSJcXHx+vSpUvy8fFRjhw55OzsrE8//VTdunVTnz59lClTJtWqVUsmk4keXgAA0gjtDUAybNu2Ta+88opGjBihYcOGWfaXLVtWZrNZZ86cUenSpdWqVSvdu3dPkydPlqOjo3x9ffXTTz/J2dlZZrOZRwsDAJBGaG8AkuG5555TlSpVFBYWpv3790uSmjdvrps3b2rw4MFaunSpIiMjNW/ePAUFBWnPnj1avHixdu3aJWdnZ8XFxZHwAgCQhqj0Asl04sQJvfPOO3J0dLQ8XGL58uXKmzevJOnAgQOqUKGCVq1apUaNGlnO48ETAACkPb6JgWQqVKiQpk6dqtjYWB0+fFiDBg1S3rx5lZCQoMTfHYsVK6bs2bNbnUfCCwBA2qPSC6TQqVOn1L17dzk4OOi9995T1apVJUmvvvqqYmJitGXLFhJdAADSGZJe4CkktjokJr6TJ0/W4cOHdfjwYTk7O9PSAABAOsO3MvAUElsdTCaTXnnlFR05csSS8MbFxZHwAgCQzlDpBf6DY8eOacaMGZo0aZKcnJwUFxcnJyeWvwYAIL0h6QVshIQXAID0i6QXAAAAdo/GQwAAANg9kl4AAADYPZJeAAAA2D2SXgAAANg9kl4AAADYPZJeAAAA2D2SXgD4f+3bt1eTJk0sr2vUqKHevXsbPo9t27bJZDIpMjLykTEmk0mrVq1K9pgjRoxQ2bJl/9O8zp49K5PJpPDw8P80DgCkBZJeAOla+/btZTKZZDKZ5OLiooIFC2rUqFGKi4tL9fdesWKFRo8enazY5CSqAIC0w+OjAKR7devW1ddff63Y2FitX79e3bt3l7Ozs957770ksXfv3pWLi4tN3jdbtmw2GQcAkPao9AJI91xdXeXr66uAgAB169ZNQUFBWr16taR/WhLGjBkjPz8/FSlSRJJ0/vx5tWzZUt7e3sqWLZsaN26ss2fPWsaMj49X37595e3trezZs2vAgAH69wMq/93eEBsbq4EDB8rf31+urq4qWLCgvvzyS509e1Y1a9aUJGXNmlUmk0nt27eXJCUkJGjs2LHKly+f3N3dVaZMGX377bdW77N+/XoVLlxY7u7uqlmzptU8k2vgwIEqXLiwMmXKpPz582vo0KG6d+9ekrjPPvtM/v7+ypQpk1q2bKmoqCir47Nnz1axYsXk5uamokWLasaMGSmeCwCkRyS9AJ457u7uunv3ruX1li1bdPz4cW3atElr167VvXv3FBwcLA8PD/3000/auXOnsmTJorp161rOmzhxoubMmaOvvvpKP//8s65du6aVK1c+9n3ffPNNLVq0SFOnTtXRo0f12WefKUuWLPL399fy5cslScePH9fFixc1ZcoUSdLYsWM1b948zZo1S0eOHFGfPn30+uuva/v27ZLuJ+fNmjXTq6++qvDwcHXu3FmDBg1K8Wfi4eGhOXPm6LffftOUKVP0xRdfaPLkyVYxJ0+e1NKlS7VmzRpt2LBBBw8e1Ntvv205vmDBAg0bNkxjxozR0aNH9eGHH2ro0KGaO3duiucDAOmOGQDSsZCQEHPjxo3NZrPZnJCQYN60aZPZ1dXV3K9fP8txHx8fc2xsrOWc+fPnm4sUKWJOSEiw7IuNjTW7u7ubf/jhB7PZbDbnzp3bPG7cOMvxe/fumZ9//nnLe5nNZnP16tXNvXr1MpvNZvPx48fNksybNm166Dx//PFHsyTz9evXLfvu3LljzpQpk3nXrl1WsZ06dTK3adPGbDabze+99565ePHiVscHDhyYZKx/k2ReuXLlI4+PHz/eXL58ecvr4cOHmx0dHc1//vmnZd/3339vdnBwMF+8eNFsNpvNBQoUMC9cuNBqnNGjR5sDAwPNZrPZfObMGbMk88GDBx/5vgCQXtHTCyDdW7t2rbJkyaJ79+4pISFBbdu21YgRIyzHS5UqZdXH+8svv+jkyZPy8PCwGufOnTs6deqUoqKidPHiRVWqVMlyzMnJSRUqVEjS4pAoPDxcjo6Oql69erLnffLkSd26dUu1a9e22n/37l298MILkqSjR49azUOSAgMDk/0eiZYsWaKpU6fq1KlTiomJUVxcnDw9Pa1i8uTJo+eee87qfRISEnT8+HF5eHjo1KlT6tSpk7p06WKJiYuLk5eXV4rnAwDpDUkvgHSvZs2amjlzplxcXOTn5ycnJ+v/dGXOnNnqdUxMjMqXL68FCxYkGStnzpxPNQd3d/cUnxMTEyNJWrdunVWyKd3vU7aV0NBQtWvXTiNHjlRwcLC8vLy0ePFiTZw4McVz/eKLL5Ik4Y6OjjabKwCkFZJeAOle5syZVbBgwWTHlytXTkuWLFGuXLmSVDsT5c6dW3v27FG1atUk3a9ohoWFqVy5cg+NL1WqlBISErR9+3YFBQUlOZ5YaY6Pj7fsK168uFxdXXXu3LlHVoiLFStmuSkv0e7du598kQ/YtWuXAgICNHjwYMu+P/74I0ncuXPndOHCBfn5+Vnex8HBQUWKFJGPj4/8/Px0+vRptWvXLkXvDwDPAm5kA2B32rVrpxw5cqhx48b66aefdObMGW3btk3vvPOO/vzzT0lSr1699NFHH2nVqlU6duyY3n777ceusZs3b16FhISoY8eOWrVqlWXMpUuXSpICAgJkMpm0du1aXblyRTExMfLw8FC/fv3Up08fzZ07V6dOndKBAwf06aefWm4Oe+utt3TixAn1799fx48f18KFCzVnzpwUXW+hQoV07tw5LV68WKdOndLUqVMfelOem5ubQkJC9Msvv+inn37SO++8o5YtW8rX11eSNHLkSI0dO1ZTp07V77//rkOHDunrr7/WpEmTUjQfAEiPSHoB2J1MmTJpx44dypMnj5o1a6ZixYqpU6dOunPnjqXy++677+qNN95QSEiIAgMD5eHhoaZNmz523JkzZ6pFixZ6++23VbRoUXXp0kU3b96UJD333HMaOXKkBg0aJB8fH/Xo0UOSNHr0aA0dOlRjx45VsWLFVLduXa1bt0758uWTdL/Pdvny5Vq1apXKlCmjWbNm6cMPP0zR9TZq1Eh9+vRRjx49VLZsWe3atUtDhw5NElewYEE1a9ZM9evXV506dVS6dGmrJck6d+6s2bNn6+uvv1apUqVUvXp1zZkzxzJXAHiWmcyPumsDAAAAsBNUegEAAGD3SHoBAABg90h6AQAAYPdIegEAAGD3SHoBAABg90h6AQAAYPdIegEAAGD3SHoBAABg90h6AQAAYPdIegEAAGD3SHoBAABg90h6AQAAYPf+DzSaseg+fGdDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBiUlEQVR4nO3dfZzM9f7/8efM7O7suthdYtdFW+taRdTK/pAj2ixK6dThIJYihRM2FRVbOVlK0oUoJ3TOjYhSQisWFelUrr5dyLVIdlGHZbVXM5/fH9mxY3fZi9mdmY/H/Xab22ne8/58Pq/5cJpX78/r/X5bDMMwBAAAYBJWbwcAAADgSSQ3AADAVEhuAACAqZDcAAAAUyG5AQAApkJyAwAATIXkBgAAmArJDQAAMBWSGwAAYCokN8BlaNCgQYqOji7VMRs2bJDFYtGGDRsqJCZ/d8stt+iWW25xvT948KAsFovmz5/vtZiAyxXJDVAJ5s+fL4vF4noFBweradOmGjlypNLT070dns/LTxTyX1arVTVr1lT37t21efNmb4fnEenp6Ro7dqyaN2+uKlWqqGrVqoqJidE///lPnTx50tvhAX4lwNsBAJeT5557Tg0aNFBWVpY2btyoWbNmadWqVfr+++9VpUqVSotjzpw5cjqdpTrmL3/5i/744w8FBQVVUFSX1rdvX/Xo0UMOh0O7d+/WG2+8oc6dO+ubb75Ry5YtvRZXeX3zzTfq0aOHzpw5o/vuu08xMTGSpG+//VZTpkzR559/rk8//dTLUQL+g+QGqETdu3dXmzZtJElDhgzRFVdcoenTp+ujjz5S3759izwmMzNTVatW9WgcgYGBpT7GarUqODjYo3GU1o033qj77rvP9b5jx47q3r27Zs2apTfeeMOLkZXdyZMndffdd8tms2nbtm1q3ry52+fPP/+85syZ45FrVcTfJcAX8VgK8KIuXbpIkg4cOCDpz1qYatWqad++ferRo4eqV6+u/v37S5KcTqdmzJih6667TsHBwYqMjNSwYcP0v//9r9B5P/nkE3Xq1EnVq1dXaGiobrrpJi1cuND1eVE1N4sWLVJMTIzrmJYtW+qVV15xfV5czc2SJUsUExOjkJAQ1apVS/fdd5+OHDni1if/ex05ckS9evVStWrVVLt2bY0dO1YOh6PM969jx46SpH379rm1nzx5UqNHj1ZUVJTsdrsaN26sqVOnFhqtcjqdeuWVV9SyZUsFBwerdu3a6tatm7799ltXn3nz5qlLly6KiIiQ3W7Xtddeq1mzZpU55gu9+eabOnLkiKZPn14osZGkyMhIPf300673FotFzzzzTKF+0dHRGjRokOt9/qPQzz77TMOHD1dERISuvPJKLV261NVeVCwWi0Xff/+9q+2nn37Svffeq5o1ayo4OFht2rTR8uXLy/elgQrGyA3gRfk/yldccYWrLS8vT/Hx8br55ps1bdo01+OqYcOGaf78+Ro8eLAeeeQRHThwQK+//rq2bdumTZs2uUZj5s+fr/vvv1/XXXedxo8fr/DwcG3btk0pKSnq169fkXGsWbNGffv21a233qqpU6dKknbu3KlNmzZp1KhRxcafH89NN92k5ORkpaen65VXXtGmTZu0bds2hYeHu/o6HA7Fx8crNjZW06ZN09q1a/XSSy+pUaNGevjhh8t0/w4ePChJqlGjhqvt7Nmz6tSpk44cOaJhw4bpqquu0pdffqnx48fr6NGjmjFjhqvvAw88oPnz56t79+4aMmSI8vLy9MUXX+irr75yjbDNmjVL1113ne68804FBATo448/1vDhw+V0OjVixIgyxV3Q8uXLFRISonvvvbfc5yrK8OHDVbt2bU2cOFGZmZm6/fbbVa1aNb333nvq1KmTW9/FixfruuuuU4sWLSRJP/zwgzp06KD69etr3Lhxqlq1qt577z316tVL77//vu6+++4KiRkoNwNAhZs3b54hyVi7dq1x/Phx4/Dhw8aiRYuMK664wggJCTF++eUXwzAMIyEhwZBkjBs3zu34L774wpBkLFiwwK09JSXFrf3kyZNG9erVjdjYWOOPP/5w6+t0Ol3/nJCQYFx99dWu96NGjTJCQ0ONvLy8Yr/D+vXrDUnG+vXrDcMwjJycHCMiIsJo0aKF27VWrFhhSDImTpzodj1JxnPPPed2zhtuuMGIiYkp9pr5Dhw4YEgynn32WeP48eNGWlqa8cUXXxg33XSTIclYsmSJq++kSZOMqlWrGrt373Y7x7hx4wybzWYcOnTIMAzDWLdunSHJeOSRRwpdr+C9Onv2bKHP4+PjjYYNG7q1derUyejUqVOhmOfNm3fR71ajRg2jVatWF+1TkCQjKSmpUPvVV19tJCQkuN7n/527+eabC/259u3b14iIiHBrP3r0qGG1Wt3+jG699VajZcuWRlZWlqvN6XQa7du3N5o0aVLimIHKxmMpoBLFxcWpdu3aioqK0t///ndVq1ZNy5YtU/369d36XTiSsWTJEoWFhem2227TiRMnXK+YmBhVq1ZN69evl/TnCMzp06c1bty4QvUxFoul2LjCw8OVmZmpNWvWlPi7fPvttzp27JiGDx/udq3bb79dzZs318qVKwsd89BDD7m979ixo/bv31/iayYlJal27dqqU6eOOnbsqJ07d+qll15yG/VYsmSJOnbsqBo1arjdq7i4ODkcDn3++eeSpPfff18Wi0VJSUmFrlPwXoWEhLj++dSpUzpx4oQ6deqk/fv369SpUyWOvTgZGRmqXr16uc9TnKFDh8pms7m19enTR8eOHXN7xLh06VI5nU716dNHkvT7779r3bp16t27t06fPu26j7/99pvi4+O1Z8+eQo8fAV/BYymgEs2cOVNNmzZVQECAIiMj1axZM1mt7v+NERAQoCuvvNKtbc+ePTp16pQiIiKKPO+xY8cknX/Mlf9YoaSGDx+u9957T927d1f9+vXVtWtX9e7dW926dSv2mJ9//lmS1KxZs0KfNW/eXBs3bnRry69pKahGjRpuNUPHjx93q8GpVq2aqlWr5nr/4IMP6m9/+5uysrK0bt06vfrqq4Vqdvbs2aP/+7//K3StfAXvVb169VSzZs1iv6Mkbdq0SUlJSdq8ebPOnj3r9tmpU6cUFhZ20eMvJTQ0VKdPny7XOS6mQYMGhdq6deumsLAwLV68WLfeequkPx9JtW7dWk2bNpUk7d27V4ZhaMKECZowYUKR5z527FihxBzwBSQ3QCVq27atq5ajOHa7vVDC43Q6FRERoQULFhR5THE/5CUVERGh7du3a/Xq1frkk0/0ySefaN68eRo4cKDeeeedcp0734WjB0W56aabXEmT9OdITcHi2SZNmiguLk6SdMcdd8hms2ncuHHq3Lmz6746nU7ddtttevzxx4u8Rv6Pd0ns27dPt956q5o3b67p06crKipKQUFBWrVqlV5++eVST6cvSvPmzbV9+3bl5OSUa5p9cYXZBUee8tntdvXq1UvLli3TG2+8ofT0dG3atEmTJ0929cn/bmPHjlV8fHyR527cuHGZ4wUqEskN4AcaNWqktWvXqkOHDkX+WBXsJ0nff/99qX94goKC1LNnT/Xs2VNOp1PDhw/Xm2++qQkTJhR5rquvvlqStGvXLtesr3y7du1yfV4aCxYs0B9//OF637Bhw4v2f+qppzRnzhw9/fTTSklJkfTnPThz5owrCSpOo0aNtHr1av3+++/Fjt58/PHHys7O1vLly3XVVVe52vMfA3pCz549tXnzZr3//vvFLgdQUI0aNQot6peTk6OjR4+W6rp9+vTRO++8o9TUVO3cuVOGYbgeSUnn731gYOAl7yXga6i5AfxA79695XA4NGnSpEKf5eXluX7sunbtqurVqys5OVlZWVlu/QzDKPb8v/32m9t7q9Wq66+/XpKUnZ1d5DFt2rRRRESEZs+e7dbnk08+0c6dO3X77beX6LsV1KFDB8XFxblel0puwsPDNWzYMK1evVrbt2+X9Oe92rx5s1avXl2o/8mTJ5WXlydJuueee2QYhp599tlC/fLvVf5oU8F7d+rUKc2bN6/U3604Dz30kOrWratHH31Uu3fvLvT5sWPH9M9//tP1vlGjRq66oXxvvfVWqafUx8XFqWbNmlq8eLEWL16stm3buj3CioiI0C233KI333yzyMTp+PHjpboeUJkYuQH8QKdOnTRs2DAlJydr+/bt6tq1qwIDA7Vnzx4tWbJEr7zyiu69916Fhobq5Zdf1pAhQ3TTTTepX79+qlGjhnbs2KGzZ88W+4hpyJAh+v3339WlSxddeeWV+vnnn/Xaa6+pdevWuuaaa4o8JjAwUFOnTtXgwYPVqVMn9e3b1zUVPDo6WmPGjKnIW+IyatQozZgxQ1OmTNGiRYv02GOPafny5brjjjs0aNAgxcTEKDMzU999952WLl2qgwcPqlatWurcubMGDBigV199VXv27FG3bt3kdDr1xRdfqHPnzho5cqS6du3qGtEaNmyYzpw5ozlz5igiIqLUIyXFqVGjhpYtW6YePXqodevWbisUb926Ve+++67atWvn6j9kyBA99NBDuueee3Tbbbdpx44dWr16tWrVqlWq6wYGBuqvf/2rFi1apMzMTE2bNq1Qn5kzZ+rmm29Wy5YtNXToUDVs2FDp6enavHmzfvnlF+3YsaN8Xx6oKN6cqgVcLvKn5X7zzTcX7ZeQkGBUrVq12M/feustIyYmxggJCTGqV69utGzZ0nj88ceNX3/91a3f8uXLjfbt2xshISFGaGio0bZtW+Pdd991u07BqeBLly41unbtakRERBhBQUHGVVddZQwbNsw4evSoq8+FU8HzLV682LjhhhsMu91u1KxZ0+jfv79ravulvldSUpJRkn8N5U+rfvHFF4v8fNCgQYbNZjP27t1rGIZhnD592hg/frzRuHFjIygoyKhVq5bRvn17Y9q0aUZOTo7ruLy8POPFF180mjdvbgQFBRm1a9c2unfvbmzZssXtXl5//fVGcHCwER0dbUydOtWYO3euIck4cOCAq19Zp4Ln+/XXX40xY8YYTZs2NYKDg40qVaoYMTExxvPPP2+cOnXK1c/hcBhPPPGEUatWLaNKlSpGfHy8sXfv3mKngl/s79yaNWsMSYbFYjEOHz5cZJ99+/YZAwcONOrUqWMEBgYa9evXN+644w5j6dKlJfpegDdYDOMiY9UAAAB+hpobAABgKiQ3AADAVEhuAACAqZDcAAAAUyG5AQAApkJyAwAATOWyW8TP6XTq119/VfXq1S+6SzIAAPAdhmHo9OnTqlevXqH99y502SU3v/76q6KiorwdBgAAKIPDhw/ryiuvvGifyy65qV69uqQ/b05oaKiXowEAACWRkZGhqKgo1+/4xVx2yU3+o6jQ0FCSGwAA/ExJSkooKAYAAKZCcgMAAEyF5AYAAJgKyQ0AADAVkhsAAGAqJDcAAMBUSG4AAICpkNwAAABTIbkBAACmQnIDAABMxavJzeeff66ePXuqXr16slgs+vDDDy95zIYNG3TjjTfKbrercePGmj9/foXHCQAA/IdXk5vMzEy1atVKM2fOLFH/AwcO6Pbbb1fnzp21fft2jR49WkOGDNHq1asrOFIAAOAvvLpxZvfu3dW9e/cS9589e7YaNGigl156SZJ0zTXXaOPGjXr55ZcVHx9fUWGWSFauQ8cysmUPtMoeYFVwoE1BNqus1ktv8AUAADzHr3YF37x5s+Li4tza4uPjNXr06GKPyc7OVnZ2tut9RkZGhcS2K+207pq5qVB7kO3PZOfPpMd2/n8DzidBf35eRJur/wVt585XZFuBa9hIrAAAlyG/Sm7S0tIUGRnp1hYZGamMjAz98ccfCgkJKXRMcnKynn322QqPLc9pqEqQTVm5DjmN8+05DqdyHE6dzi7+2IoSYLUUm0DZS5pAlTYhO/e/gTZq1QEA3uFXyU1ZjB8/XomJia73GRkZioqK8vh1Yq6uoR+f6yZJynM4lZ3nVFauQ9l5znMvh7Jzi2k797+utoLH5hbRludUdq5DOUVcI9dxPrPKcxrKy3EoM8fh8e97KbZziVXBBCq4QCKVnyydT4oKJlWFk7Dggm3Fne9cW6DNIouFUSsAuFz5VXJTp04dpaenu7Wlp6crNDS0yFEbSbLb7bLb7ZURnkuAzaoAm1VV7ZV/ex1Ow5U0lThZKpAgnU+Wzp/Dre3cOYpKyHLynG5xnM1x6GyOQ1Jupd4Di0WXTKCKTJZKkkC5JVxFJ2QkVgDgXX6V3LRr106rVq1ya1uzZo3atWvnpYh8j81qUZWgAFUJqvxrO52GchzFjTZdYpSqtCNXRYyE5TMMKSvXqaxc50WirThBhWqnSj96dfGErPhHiRSwA4CXk5szZ85o7969rvcHDhzQ9u3bVbNmTV111VUaP368jhw5on//+9+SpIceekivv/66Hn/8cd1///1at26d3nvvPa1cudJbXwEFWK0WBVttCg60SQqs1GsbxrnEqhTJUvYFj/mKTaAuMRKWleeQUbDO6two1umsvEq9B5IUaLMUqpMKKm/h+oV1V8XUYgVQZwXAR3g1ufn222/VuXNn1/v82piEhATNnz9fR48e1aFDh1yfN2jQQCtXrtSYMWP0yiuv6Morr9S//vUvr08Dh/dZLJZzP7Q2hQZXfmKV5zQK1UQVVSdVmgQquwR1V9l5TuUVqGDPdRjKdeR5tYD9UgmU3YOF6/ltAVbqrACcZzGMgv/NaX4ZGRkKCwvTqVOnFBoa6u1wgHLLL2C/aLJUjsL1/LacAtfIyi1cwO5NVosuOgJ1ybqromYUXupR4rm2IBt1VkBlKM3vt1/V3AAo7HwBe+Vf2+E0ziU95xOegsmSW5tHZgwWXcDuNKQ/ch36I7fyZwZKKl3h+iWSpdLUXbFQKFA0khsAZWazWhQSZFNIkK3Sr11UAbtbQlWqGYOXKFy/4HwXFqtfWNRemYIC3JOiMhWuF7nswsVrsVgoFL6M5AaAX/KVAvZSJUtFLL9QlseGzqIK2OWdAvYL66SCPFW47jaiVfh8FLDjYkhuAKCUChawK7hyr51fwO6pwvVCCZTbSNif58u6RAH7GS8UsBdcKLQ0o02e2AKHhUJ9H8kNAPgRi8WiQJtFgTarqnlhodC8c1vKFPX476JtxdZiFU6g3BcSPX++HIdvLRRa1i1riqrFspfwUSILhZYMyQ0AoMTyC9i9tVDohaulF1u47uEZg760UGjxdVIVu2CoPxWwk9wAAPyC1RcK2C8YVcoq4/pUpX1sWHDRFley5YWFQoNsVvdkqEBSVDcsWJN6tVCtal6YunkBkhsAAC7B2wXsuQ6jVKNNJXnMV5LHhoUK2M89lixqodDth6XOzSPUu43nN6cuLZIbAAB8mMViUVCARUEBVlX3wvXzHM4ik6Ws3PNt09fs1vbDJ5XnIwt7ktwAAIBiBdisqnaJAvYF//1ZkuT0kU0PWCgAAACUi/XcDC5f2dGJ5AYAAJRLfnLj9I3chuQGAACU07kZ4ozcAAAAU2DkBgAAmEr+2n4UFAMAAFM4X1Ds5UDOIbkBAADlYmHkBgAAmAk1NwAAwFSouQEAAKbCIn4AAMBULDyWAgAAZsJjKQAAYCoW1wrF3o0jH8kNAAAoF2puAACAqTAVHAAAmAqL+AEAAFNh5AYAAJiK1VVQ7BvZDckNAAAol/MjNyQ3AADABFjEDwAAmAqL+AEAAFM5v86NlwM5h+QGAACUi4WCYgAAYCbU3AAAAFOh5gYAAJgKi/gBAABTYRE/AABgKhYW8QMAAGbCYykAAGAqFBQDAABTYRE/AABgKiziBwAATIVF/AAAgKlQcwMAAEyFmhsAAGAqjNwAAABTYRE/AABgKiziBwAATIW9pQAAgKkwcgMAAEzFQkExAAAwE6aCAwAAU2HkBgAAmAojNwAAwFQYuQEAAKZiZRE/AABgJkwFBwAApsIifheYOXOmoqOjFRwcrNjYWH399dcX7T9jxgw1a9ZMISEhioqK0pgxY5SVlVVJ0QIAgAtZGLk5b/HixUpMTFRSUpK2bt2qVq1aKT4+XseOHSuy/8KFCzVu3DglJSVp586devvtt7V48WI9+eSTlRw5AADIx67gBUyfPl1Dhw7V4MGDde2112r27NmqUqWK5s6dW2T/L7/8Uh06dFC/fv0UHR2trl27qm/fvpcc7QEAABWHqeDn5OTkaMuWLYqLizsfjNWquLg4bd68uchj2rdvry1btriSmf3792vVqlXq0aNHpcQMAAAKs/hYzU2Aty584sQJORwORUZGurVHRkbqp59+KvKYfv366cSJE7r55ptlGIby8vL00EMPXfSxVHZ2trKzs13vMzIyPPMFAACAJGZLlcuGDRs0efJkvfHGG9q6das++OADrVy5UpMmTSr2mOTkZIWFhbleUVFRlRgxAADm52uL+Hlt5KZWrVqy2WxKT093a09PT1edOnWKPGbChAkaMGCAhgwZIklq2bKlMjMz9eCDD+qpp56S1Vo4Vxs/frwSExNd7zMyMkhwAADwIEZuzgkKClJMTIxSU1NdbU6nU6mpqWrXrl2Rx5w9e7ZQAmOz2SQV/5zPbrcrNDTU7QUAADznfEGxb2Q3Xhu5kaTExEQlJCSoTZs2atu2rWbMmKHMzEwNHjxYkjRw4EDVr19fycnJkqSePXtq+vTpuuGGGxQbG6u9e/dqwoQJ6tmzpyvJAQAAlcvXpoJ7Nbnp06ePjh8/rokTJyotLU2tW7dWSkqKq8j40KFDbiM1Tz/9tCwWi55++mkdOXJEtWvXVs+ePfX888976ysAAHDZ87VF/CyGr4whVZKMjAyFhYXp1KlTPKICAMAD/rv/N/V56ys1rF1V6x69pUKuUZrfb7+aLQUAAHyP1coifgAAwETYOBMAAJiMb9XckNwAAIBy8bXZUiQ3AACgXNg4EwAAmMr5FYp9I7shuQEAAOXia3tLkdwAAIByYW8pAABgKvmbCTAVHAAAmAIjNwAAwFSYCg4AAEzFwlRwAABgJucGbhi5AQAA5sAifgAAwFRYxA8AAJgKi/gBAABTsVqZCg4AAEwkfyo4i/gBAABTYBE/AABgKtTcAAAAU2EqOAAAMJX85EbyjbobkhsAAFAulgL/7At1NyQ3AACgXAqO3PhC3Q3JDQAAKBdLgWyC5AYAAPg995obLwZyDskNAAAoF2uBohtGbgAAgN9zr7nxYiDnkNwAAIBysTByAwAAzMSt5sbpxUDOIbkBAADl4pbciJEbAADg59wLir0XRz6SGwAAUC4WFvEDAABm40s7g5PcAACAcvOlncFJbgAAQLlZGbkBAABmkl93Q0ExAAAwBdfIjQ9kNyQ3AACg3Ki5AQAApmJ1PZbyfnZDcgMAAMotfyq491MbkhsAAOABjNwAAABTcY3ckNwAAAAzsDIVHAAAmAmL+AEAAFNxLeLn9HIgIrkBAAAewMgNAAAwFRbxAwAApsJUcAAAYCos4gcAAEyFkRsAAGAqVhbxAwAAZmJhET8AAGAm+TU3Th/IbkhuAABAubH9AgAAMBVqbgAAgKkwcgMAAEzFwlRwAABgJuwtVcDMmTMVHR2t4OBgxcbG6uuvv75o/5MnT2rEiBGqW7eu7Ha7mjZtqlWrVlVStAAAoCiuvaW8HIckBXjz4osXL1ZiYqJmz56t2NhYzZgxQ/Hx8dq1a5ciIiIK9c/JydFtt92miIgILV26VPXr19fPP/+s8PDwyg8eAAC4+FJBsVeTm+nTp2vo0KEaPHiwJGn27NlauXKl5s6dq3HjxhXqP3fuXP3+++/68ssvFRgYKEmKjo6uzJABAEARXDU3Ti8HIi8+lsrJydGWLVsUFxd3PhirVXFxcdq8eXORxyxfvlzt2rXTiBEjFBkZqRYtWmjy5MlyOByVFTYAACiCxYdqbrw2cnPixAk5HA5FRka6tUdGRuqnn34q8pj9+/dr3bp16t+/v1atWqW9e/dq+PDhys3NVVJSUpHHZGdnKzs72/U+IyPDc18CAABIYip4mTmdTkVEROitt95STEyM+vTpo6eeekqzZ88u9pjk5GSFhYW5XlFRUZUYMQAAlwe/r7lxOByaP3++UlNTdezYMTkveMC2bt26S56jVq1astlsSk9Pd2tPT09XnTp1ijymbt26CgwMlM1mc7Vdc801SktLU05OjoKCggodM378eCUmJrreZ2RkkOAAAOBhfr9x5qhRozRq1Cg5HA61aNFCrVq1cnuVRFBQkGJiYpSamupqczqdSk1NVbt27Yo8pkOHDtq7d69bMrV7927VrVu3yMRGkux2u0JDQ91eAADAs3xpnZsyjdwsWrRI7733nnr06FGuiycmJiohIUFt2rRR27ZtNWPGDGVmZrpmTw0cOFD169dXcnKyJOnhhx/W66+/rlGjRukf//iH9uzZo8mTJ+uRRx4pVxwAAKB8rD60QnGZkpugoCA1bty43Bfv06ePjh8/rokTJyotLU2tW7dWSkqKq8j40KFDslrPDy5FRUVp9erVGjNmjK6//nrVr19fo0aN0hNPPFHuWAAAQNm5FvHzfm4ji1GGyp+XXnpJ+/fv1+uvv+56xuYvMjIyFBYWplOnTvGICgAADxnw9n/1xZ4TerlPK919w5UeP39pfr/LNHKzceNGrV+/Xp988omuu+4614J6+T744IOynBYAAPgpqw8t4lem5CY8PFx33323p2MBAAB+yu8LiufNm+fpOAAAgB+z+FDNTblWKD5+/Lh27dolSWrWrJlq167tkaAAAIB/8aWRmzKtc5OZman7779fdevW1V/+8hf95S9/Ub169fTAAw/o7Nmzno4RAAD4OL9fxC8xMVGfffaZPv74Y508eVInT57URx99pM8++0yPPvqop2MEAAA+zpdGbsr0WOr999/X0qVLdcstt7jaevTooZCQEPXu3VuzZs3yVHwAAMAPnF/nxvvJTZlGbs6ePVtoN29JioiI4LEUAACXIb/fFbxdu3ZKSkpSVlaWq+2PP/7Qs88+W+y+UAAAwLws/r4r+CuvvKL4+HhdeeWVro0yd+zYoeDgYK1evdqjAQIAAN/nSyM3ZUpuWrRooT179mjBggX66aefJEl9+/ZV//79FRIS4tEAAQCA7/P7gmJJqlKlioYOHerJWAAAgJ/ypY0zS5zcLF++XN27d1dgYKCWL19+0b533nlnuQMDAAB+xB9Hbnr16qW0tDRFRESoV69exfazWCxyOByeiA0AAPgJv6y5cRbY5tPpC1t+AgAAn+FLNTdlmgpelJMnT3rqVAAAwM/4/SJ+U6dO1eLFi13v//a3v6lmzZqqX7++duzY4bHgAACAf/D7vaVmz56tqKgoSdKaNWu0du1apaSkqHv37nrsscc8GiAAAPB9vvRYqkxTwdPS0lzJzYoVK9S7d2917dpV0dHRio2N9WiAAADA9/nSVPAyjdzUqFFDhw8fliSlpKQoLi5O0p/P2ZgpBQDA5cfq79sv/PWvf1W/fv3UpEkT/fbbb+revbskadu2bWrcuLFHAwQAAL7Pl2puypTcvPzyy4qOjtbhw4f1wgsvqFq1apKko0ePavjw4R4NEAAA+L7z69x4P7spU3ITGBiosWPHFmofM2ZMuQMCAAD+x+IqKPZuHBLbLwAAAA/wy5obtl8AAADF8cvHUmy/AAAAiuNLBcUe234BAABcvnxpEb8yJTePPPKIXn311ULtr7/+ukaPHl3emAAAgJ/x+0X83n//fXXo0KFQe/v27bV06dJyBwUAAPyLLxUUlym5+e233xQWFlaoPTQ0VCdOnCh3UAAAwL/4fc1N48aNlZKSUqj9k08+UcOGDcsdFAAA8C9+OVuqoMTERI0cOVLHjx9Xly5dJEmpqal66aWXNGPGDE/GBwAA/IDVHxfxK+j+++9Xdna2nn/+eU2aNEmSFB0drVmzZmngwIEeDRAAAPg+iw/V3JQpuZGkhx9+WA8//LCOHz+ukJAQ1/5SAADg8mPxocdSZV7nJi8vT2vXrtUHH3zgytJ+/fVXnTlzxmPBAQAA/2D1oYLiMo3c/Pzzz+rWrZsOHTqk7Oxs3XbbbapevbqmTp2q7OxszZ4929NxAgAAH+b3i/iNGjVKbdq00f/+9z+FhIS42u+++26lpqZ6LDgAAOAffGkRvzKN3HzxxRf68ssvFRQU5NYeHR2tI0eOeCQwAADgP3ypoLhMIzdOp7PInb9/+eUXVa9evdxBAQAA/+JLNTdlSm66du3qtp6NxWLRmTNnlJSUpB49engqNgAA4Cd8qeamTI+lpk2bpm7duunaa69VVlaW+vXrpz179qhWrVp69913PR0jAADwcVarn9fcREVFaceOHVq8eLF27NihM2fO6IEHHlD//v3dCowBAMDlwZfWuSl1cpObm6vmzZtrxYoV6t+/v/r3718RcQEAAD9y7qmUTyQ3pa65CQwMVFZWVkXEAgAA/JTfFxSPGDFCU6dOVV5enqfjAQAAfsjqQ1PBy1Rz88033yg1NVWffvqpWrZsqapVq7p9/sEHH3gkOAAA4B98aeSmTMlNeHi47rnnHk/HAgAA/JTFX6eCO51Ovfjii9q9e7dycnLUpUsXPfPMM8yQAgDgMudL2y+Uqubm+eef15NPPqlq1aqpfv36evXVVzVixIiKig0AAPgJ67mMwhdGbkqV3Pz73//WG2+8odWrV+vDDz/Uxx9/rAULFsjpdFZUfAAAwA/47cjNoUOH3LZXiIuLk8Vi0a+//urxwAAAgP/wpUX8SpXc5OXlKTg42K0tMDBQubm5Hg0KAAD4F7/dW8owDA0aNEh2u93VlpWVpYceeshtOjhTwQEAuLxY5KdTwRMSEgq13XfffR4LBgAA+Ce/XcRv3rx5FRUHAADwYxYfWsSvTNsvAAAAFORLNTckNwAAoNx8afsFkhsAAFBu+Yv4+cJCNyQ3AACg3Ki5ucDMmTMVHR2t4OBgxcbG6uuvvy7RcYsWLZLFYlGvXr0qNkAAAHBRVn9dxK8iLF68WImJiUpKStLWrVvVqlUrxcfH69ixYxc97uDBgxo7dqw6duxYSZECAIDinC8o9m4ckg8kN9OnT9fQoUM1ePBgXXvttZo9e7aqVKmiuXPnFnuMw+FQ//799eyzz6phw4aVGC0AACjK+b2lvJ/deDW5ycnJ0ZYtWxQXF+dqs1qtiouL0+bNm4s97rnnnlNERIQeeOCBS14jOztbGRkZbi8AAOBZ5wZueCx14sQJORwORUZGurVHRkYqLS2tyGM2btyot99+W3PmzCnRNZKTkxUWFuZ6RUVFlTtuAADgjoLiMjp9+rQGDBigOXPmqFatWiU6Zvz48Tp16pTrdfjw4QqOEgCAy48vLeJXqu0XPK1WrVqy2WxKT093a09PT1edOnUK9d+3b58OHjyonj17utqcTqckKSAgQLt27VKjRo3cjrHb7W4bfQIAAM+zWvNrbrwciLw8chMUFKSYmBilpqa62pxOp1JTU9WuXbtC/Zs3b67vvvtO27dvd73uvPNOde7cWdu3b+eREwAAXuK3G2dWhMTERCUkJKhNmzZq27atZsyYoczMTA0ePFiSNHDgQNWvX1/JyckKDg5WixYt3I4PDw+XpELtAACg8vhSzY3Xk5s+ffro+PHjmjhxotLS0tS6dWulpKS4iowPHTokq9WvSoMAALjs+NIifhbDF8aPKlFGRobCwsJ06tQphYaGejscAABM4f9+Oak7X9+k+uEh2jSui8fPX5rfb4ZEAABAufnSyA3JDQAAKDeLD00FJ7kBAADlZpHvFBST3AAAgHLLn/vjC6W8JDcAAKDcrD40FZzkBgAAlJsvbb9AcgMAAMotfxE/H8htSG4AAED5MRUcAACYyvm9pbwbh0RyAwAAPICRGwAAYCos4gcAAEyFqeAAAMBULK6aG+9nNyQ3AACg3Bi5AQAApkLNDQAAMBUri/gBAAAzyU9uJO/X3ZDcAACAcrOez228XndDcgMAAMrNUmDkxtt1NyQ3AACg3NxHbkhuAACAn3OvufFiICK5AQAAHmDlsRQAADATCwXFAADATCzU3AAAADNxq7lxejEQkdwAAAAPoOYGAACYSsGp4N7egYHkBgAAlBuL+AEAANOx+sjO4CQ3AADAI3xlZ3CSGwAA4BH5yQ0jNwAAwBQsrsdS3o2D5AYAAHiEK7nxcnZDcgMAADyCmhsAAGAq1NwAAABTyX8sxSJ+AADAFBi5AQAAppK/iJ9BcgMAAMzg/MiNl+Pw7uUBAIBZWHgsBQAAzMS1t5TTy3F49/IAAMAsLGycCQAAzIRF/AAAgKkwFRwAAJgKj6UAAICpuB5LeTsOL18fAACYBIv4AQAAU2ERPwAAYCqumhsvZzckNwAAwCMYuQEAAKZyfp0bRm4AAIAJnJ8K7t04SG4AAIBHsHEmAAAwFSuL+AEAADNhbykAAGAqrkX8vLxGMckNAADwCFfNjdO7cZDcAAAAj6DmBgAAmAqL+BUwc+ZMRUdHKzg4WLGxsfr666+L7Ttnzhx17NhRNWrUUI0aNRQXF3fR/gAAoHKwiN85ixcvVmJiopKSkrR161a1atVK8fHxOnbsWJH9N2zYoL59+2r9+vXavHmzoqKi1LVrVx05cqSSIwcAAAWxiN8506dP19ChQzV48GBde+21mj17tqpUqaK5c+cW2X/BggUaPny4WrdurebNm+tf//qXnE6nUlNTKzlyAABQkIWaGyknJ0dbtmxRXFycq81qtSouLk6bN28u0TnOnj2r3Nxc1axZs8jPs7OzlZGR4fYCAACeZ2WFYunEiRNyOByKjIx0a4+MjFRaWlqJzvHEE0+oXr16bglSQcnJyQoLC3O9oqKiyh03AAAojEX8PGDKlClatGiRli1bpuDg4CL7jB8/XqdOnXK9Dh8+XMlRAgBwebD4yCJ+Ad68eK1atWSz2ZSenu7Wnp6erjp16lz02GnTpmnKlClau3atrr/++mL72e122e12j8QLAACKZ2URPykoKEgxMTFuxcD5xcHt2rUr9rgXXnhBkyZNUkpKitq0aVMZoQIAgEvwlUX8vDpyI0mJiYlKSEhQmzZt1LZtW82YMUOZmZkaPHiwJGngwIGqX7++kpOTJUlTp07VxIkTtXDhQkVHR7tqc6pVq6Zq1ap57XsAAHC585WaG68nN3369NHx48c1ceJEpaWlqXXr1kpJSXEVGR86dEhW6/kBplmzZiknJ0f33nuv23mSkpL0zDPPVGboAACgAIuPzJbyenIjSSNHjtTIkSOL/GzDhg1u7w8ePFjxAQEAgFKzsogfAAAwE9a5AQAApuKaCk5yAwAAzIBdwQEAgKmwtxQAADAVX5kKTnIDAAA8wlcW8SO5AQAAHsHIDQAAMBVfWcSP5AYAAHgEi/gBAABTYRE/AABgKvlbQbKIHwAAMAkW8QMAACbCVHAAAGAqbL8AAABMJX/kxtsL3ZDcAAAAj7AwcgMAAMyEqeAAAMBUWMQPAACYitWav7cUIzcAAMAELEwFBwAAZsJUcAAAYCr5M8EZuQEAAKaQP3Lj5dyG5AYAAHhG/mwpCooBAIApsIgfAAAwFRbxAwAApsIifgAAwFRYxA8AAJgKi/gBAABTYRE/AABgKlZGbgAAgJlYxCJ+AADARKi5AQAApuIr2y8EePfyvskwDOXl5cnhcHg7FJSSzWZTQECAa5VMAEDl8ZWaG5KbC+Tk5Ojo0aM6e/ast0NBGVWpUkV169ZVUFCQt0MBgMvK+XVuvBsHyU0BTqdTBw4ckM1mU7169RQUFMQIgB8xDEM5OTk6fvy4Dhw4oCZNmshq5ckrAFQWi49sv0ByU0BOTo6cTqeioqJUpUoVb4eDMggJCVFgYKB+/vln5eTkKDg42NshAcBlw1ceS/GftUXgv/b9G39+AOAdLOIHAABMJX/khr2lAACAKVgYuYEnDRo0SBaLRRaLRUFBQWrcuLGee+455eXlSZI2bNjg+txisah27drq0aOHvvvuu0ue2zAMvfXWW4qNjVW1atUUHh6uNm3aaMaMGcwqAwC45E/BoeYGHtOtWzcdPXpUe/bs0aOPPqpnnnlGL774olufXbt26ejRo1q9erWys7N1++23Kycn56LnHTBggEaPHq277rpL69ev1/bt2zVhwgR99NFH+vTTT8sc76WuCwDwL9TcwOPsdrvq1Kmjq6++Wg8//LDi4uK0fPlytz4RERGqU6eObrzxRo0ePVqHDx/WTz/9VOw533vvPS1YsEDvvvuunnzySd10002Kjo7WXXfdpXXr1qlz586SpFtuuUWjR492O7ZXr14aNGiQ6310dLQmTZqkgQMHKjQ0VA8++KDat2+vJ554wu2448ePKzAwUJ9//rkkKTs7W2PHjlX9+vVVtWpVxcbGasOGDWW/UQCACpE/n8PbNTdMBb8EwzD0R653VioOCbSVa52dkJAQ/fbbb0V+durUKS1atEiSLrrY3YIFC9SsWTPdddddhT6zWCwKCwsrVUzTpk3TxIkTlZSUJElKSUnRCy+8oClTpri+6+LFi1WvXj117NhRkjRy5Ej9+OOPWrRokerVq6dly5apW7du+u6779SkSZNSXR8AUHHYfsFP/JHr0LUTV3vl2j8+F68qQaX/IzIMQ6mpqVq9erX+8Y9/uH125ZVXSpIyMzMlSXfeeaeaN29e7Ln27NmjZs2alTqG4nTp0kWPPvqo633v3r01evRobdy40ZXMLFy4UH379pXFYtGhQ4c0b948HTp0SPXq1ZMkjR07VikpKZo3b54mT57ssdgAAOXDIn7wuBUrVqhatWrKzc2V0+lUv3799Mwzz7j1+eKLL1SlShV99dVXmjx5smbPnn3Rc3p6aLFNmzZu72vXrq2uXbtqwYIF6tixow4cOKDNmzfrzTfflCR99913cjgcatq0qdtx2dnZuuKKKzwaGwCgfHxlET+Sm0sICbTpx+fivXbt0ujcubNmzZqloKAg1atXTwEBhf94GzRooPDwcDVr1kzHjh1Tnz59XLUtRWnatOlFa3LyWa3WQolQbm5uoX5Vq1Yt1Na/f3898sgjeu2117Rw4UK1bNlSLVu2lCSdOXNGNptNW7Zskc3mfj+qVat2ybgAAJWHgmI/YbFYVCUowCuv0tbbVK1aVY0bN9ZVV11VZGJzoREjRuj777/XsmXLiu3Tr18/7d69Wx999FGhzwzD0KlTpyT9OQJz9OhR12cOh0Pff/99ieK+6667lJWVpZSUFC1cuFD9+/d3fXbDDTfI4XDo2LFjaty4sdurTp06JTo/AKBysIgfvK5KlSoaOnSokpKSiv2L2Lt3b/Xp00d9+/bV5MmT9e233+rnn3/WihUrFBcXp/Xr10v6s5Zm5cqVWrlypX766Sc9/PDDOnnyZIniqFq1qnr16qUJEyZo586d6tu3r+uzpk2bqn///ho4cKA++OADHThwQF9//bWSk5O1cuXKct8DAIDnsIgffMLIkSO1c+dOLVmypMjPLRaLFi5cqOnTp+vDDz9Up06ddP311+uZZ57RXXfdpfj4Px/Z3X///UpISNDAgQPVqVMnNWzY0DVNvCT69++vHTt2qGPHjrrqqqvcPps3b54GDhyoRx99VM2aNVOvXr30zTffFOoHAPCuAKtF9gCrAm1ln+nrCRbD22NHlSwjI0NhYWE6deqUQkND3T7LysrSgQMH1KBBA3aT9mP8OQKA+Vzs9/tCjNwAAABTIbkBAACmQnIDAABMheQGAACYCskNAAAwFZKbIlxmE8hMhz8/ALi8kdwUEBgYKEk6e/aslyNBeeT/+eX/eQIALi8+sbfUzJkz9eKLLyotLU2tWrXSa6+9prZt2xbbf8mSJZowYYIOHjyoJk2aaOrUqerRo0e547DZbAoPD9exY8ck/bmCb2m3QID3GIahs2fP6tixYwoPDy+0FxUA4PLg9eRm8eLFSkxM1OzZsxUbG6sZM2YoPj5eu3btUkRERKH+X375pfr27avk5GTdcccdWrhwoXr16qWtW7eqRYsW5Y4nf7+i/AQH/ic8PJx9pwDgMub1FYpjY2N100036fXXX5ckOZ1ORUVF6R//+IfGjRtXqH+fPn2UmZmpFStWuNr+3//7f2rdurVmz559yeuVdIVDh8NR5K7W8G2BgYGM2ACACZVmhWKvjtzk5ORoy5YtGj9+vKvNarUqLi5OmzdvLvKYzZs3KzEx0a0tPj5eH374YZH9s7OzlZ2d7XqfkZFRothsNhs/kgAA+CGvFhSfOHFCDodDkZGRbu2RkZFKS0sr8pi0tLRS9U9OTlZYWJjrFRUV5ZngAQCATzL9bKnx48fr1KlTrtfhw4e9HRIAAKhAXn0sVatWLdlsNqWnp7u1p6enF1sQWqdOnVL1t9vtstvtngkYAAD4PK8mN0FBQYqJiVFqaqp69eol6c+C4tTUVI0cObLIY9q1a6fU1FSNHj3a1bZmzRq1a9euRNfMr58uae0NAADwvvzf7RLNgzK8bNGiRYbdbjfmz59v/Pjjj8aDDz5ohIeHG2lpaYZhGMaAAQOMcePGufpv2rTJCAgIMKZNm2bs3LnTSEpKMgIDA43vvvuuRNc7fPiwIYkXL168ePHi5Yevw4cPX/K33uvr3PTp00fHjx/XxIkTlZaWptatWyslJcVVNHzo0CFZredLg9q3b6+FCxfq6aef1pNPPqkmTZroww8/LPEaN/Xq1dPhw4dVvXp1jy/Ql5GRoaioKB0+fPiS09RQdtznysF9rhzc58rDva4cFXWfDcPQ6dOnVa9evUv29fo6N2ZSmjn4KDvuc+XgPlcO7nPl4V5XDl+4z6afLQUAAC4vJDcAAMBUSG48yG63KykpiannFYz7XDm4z5WD+1x5uNeVwxfuMzU3AADAVBi5AQAApkJyAwAATIXkBgAAmArJDQAAMBWSm1KaOXOmoqOjFRwcrNjYWH399dcX7b9kyRI1b95cwcHBatmypVatWlVJkfq30tznOXPmqGPHjqpRo4Zq1KihuLi4S/654E+l/fucb9GiRbJYLK494XBxpb3PJ0+e1IgRI1S3bl3Z7XY1bdqUf3eUQGnv84wZM9SsWTOFhIQoKipKY8aMUVZWViVF658+//xz9ezZU/Xq1ZPFYtGHH354yWM2bNigG2+8UXa7XY0bN9b8+fMrPE6v7y3lTxYtWmQEBQUZc+fONX744Qdj6NChRnh4uJGenl5k/02bNhk2m8144YUXjB9//NF4+umnS7UP1uWqtPe5X79+xsyZM41t27YZO3fuNAYNGmSEhYUZv/zySyVH7l9Ke5/zHThwwKhfv77RsWNH46677qqcYP1Yae9zdna20aZNG6NHjx7Gxo0bjQMHDhgbNmwwtm/fXsmR+5fS3ucFCxYYdrvdWLBggXHgwAFj9erVRt26dY0xY8ZUcuT+ZdWqVcZTTz1lfPDBB4YkY9myZRftv3//fqNKlSpGYmKi8eOPPxqvvfaaYbPZjJSUlAqNk+SmFNq2bWuMGDHC9d7hcBj16tUzkpOTi+zfu3dv4/bbb3dri42NNYYNG1ahcfq70t7nC+Xl5RnVq1c33nnnnYoK0RTKcp/z8vKM9u3bG//617+MhIQEkpsSKO19njVrltGwYUMjJyenskI0hdLe5xEjRhhdunRxa0tMTDQ6dOhQoXGaSUmSm8cff9y47rrr3Nr69OljxMfHV2BkhsFjqRLKycnRli1bFBcX52qzWq2Ki4vT5s2bizxm8+bNbv0lKT4+vtj+KNt9vtDZs2eVm5urmjVrVlSYfq+s9/m5555TRESEHnjggcoI0++V5T4vX75c7dq104gRIxQZGakWLVpo8uTJcjgclRW23ynLfW7fvr22bNnienS1f/9+rVq1Sj169KiUmC8X3vod9Pqu4P7ixIkTcjgcrt3K80VGRuqnn34q8pi0tLQi+6elpVVYnP6uLPf5Qk888YTq1atX6P9QOK8s93njxo16++23tX379kqI0BzKcp/379+vdevWqX///lq1apX27t2r4cOHKzc3V0lJSZURtt8py33u16+fTpw4oZtvvlmGYSgvL08PPfSQnnzyycoI+bJR3O9gRkaG/vjjD4WEhFTIdRm5galMmTJFixYt0rJlyxQcHOztcEzj9OnTGjBggObMmaNatWp5OxxTczqdioiI0FtvvaWYmBj16dNHTz31lGbPnu3t0Exlw4YNmjx5st544w1t3bpVH3zwgVauXKlJkyZ5OzR4ACM3JVSrVi3ZbDalp6e7taenp6tOnTpFHlOnTp1S9UfZ7nO+adOmacqUKVq7dq2uv/76igzT75X2Pu/bt08HDx5Uz549XW1Op1OSFBAQoF27dqlRo0YVG7QfKsvf57p16yowMFA2m83Vds011ygtLU05OTkKCgqq0Jj9UVnu84QJEzRgwAANGTJEktSyZUtlZmbqwQcf1FNPPSWrlf/294TifgdDQ0MrbNRGYuSmxIKCghQTE6PU1FRXm9PpVGpqqtq1a1fkMe3atXPrL0lr1qwptj/Kdp8l6YUXXtCkSZOUkpKiNm3aVEaofq2097l58+b67rvvtH37dtfrzjvvVOfOnbV9+3ZFRUVVZvh+oyx/nzt06KC9e/e6kkdJ2r17t+rWrUtiU4yy3OezZ88WSmDyE0qDLRc9xmu/gxVarmwyixYtMux2uzF//nzjxx9/NB588EEjPDzcSEtLMwzDMAYMGGCMGzfO1X/Tpk1GQECAMW3aNGPnzp1GUlISU8FLoLT3ecqUKUZQUJCxdOlS4+jRo67X6dOnvfUV/EJp7/OFmC1VMqW9z4cOHTKqV69ujBw50ti1a5exYsUKIyIiwvjnP//pra/gF0p7n5OSkozq1asb7777rrF//37j008/NRo1amT07t3bW1/BL5w+fdrYtm2bsW3bNkOSMX36dGPbtm3Gzz//bBiGYYwbN84YMGCAq3/+VPDHHnvM2LlzpzFz5kymgvui1157zbjqqquMoKAgo23btsZXX33l+qxTp05GQkKCW//33nvPaNq0qREUFGRcd911xsqVKys5Yv9Umvt89dVXG5IKvZKSkio/cD9T2r/PBZHclFxp7/OXX35pxMbGGna73WjYsKHx/PPPG3l5eZUctf8pzX3Ozc01nnnmGaNRo0ZGcHCwERUVZQwfPtz43//+V/mB+5H169cX+e/b/HubkJBgdOrUqdAxrVu3NoKCgoyGDRsa8+bNq/A4LYbB+BsAADAPam4AAICpkNwAAABTIbkBAACmQnIDAABMheQGAACYCskNAAAwFZIbAABgKiQ3ACDJYrHoww8/lCQdPHhQFouFHdABP0VyA8DrBg0aJIvFIovFosDAQDVo0ECPP/64srKyvB0aAD/EruAAfEK3bt00b9485ebmasuWLUpISJDFYtHUqVO9HRoAP8PIDQCfYLfbVadOHUVFRalXr16Ki4vTmjVrJP25w3NycrIaNGigkJAQtWrVSkuXLnU7/ocfftAdd9yh0NBQVa9eXR07dtS+ffskSd98841uu+021apVS2FhYerUqZO2bt1a6d8RQOUguQHgc77//nt9+eWXCgoKkiQlJyfr3//+t2bPnq0ffvhBY8aM0X333afPPvtMknTkyBH95S9/kd1u17p167Rlyxbdf//9ysvLkySdPn1aCQkJ2rhxo7766is1adJEPXr00OnTp732HQFUHB5LAfAJK1asULVq1ZSXl6fs7GxZrVa9/vrrys7O1uTJk7V27Vq1a9dOktSwYUNt3LhRb775pjp16qSZM2cqLCxMixYtUmBgoCSpadOmrnN36dLF7VpvvfWWwsPD9dlnn+mOO+6ovC8JoFKQ3ADwCZ07d9asWbOUmZmpl19+WQEBAbrnnnv0ww8/6OzZs7rtttvc+ufk5OiGG26QJG3fvl0dO3Z0JTYXSk9P19NPP60NGzbo2LFjcjgcOnv2rA4dOlTh3wtA5SO5AeATqlatqsaNG0uS5s6dq1atWuntt99WixYtJEkrV65U/fr13Y6x2+2SpJCQkIueOyEhQb/99pteeeUVXX311bLb7WrXrp1ycnIq4JsA8DaSGwA+x2q16sknn1RiYqJ2794tu92uQ4cOqVOnTkX2v/766/XOO+8oNze3yNGbTZs26Y033lCPHj0kSYcPH9aJEycq9DsA8B4KigH4pL/97W+y2Wx68803NXbsWI0ZM0bvvPOO9u3bp61bt+q1117TO++8I0kaOXKkMjIy9Pe//13ffvut9uzZo//85z/atWuXJKlJkyb6z3/+o507d+q///2v+vfvf8nRHgD+i5EbAD4pICBAI0eO1AsvvKADBw6odu3aSk5O1v79+xUeHq4bb7xRTz75pCTpiiuu0Lp16/TYY4+pU6dOstlsat26tTp06CBJevvtt/Xggw/qxhtvVFRUlCZPnqyxY8d68+sBqEAWwzAMbwcBAADgKTyWAgAApkJyAwAATIXkBgAAmArJDQAAMBWSGwAAYCokNwAAwFRIbgAAgKmQ3AAAAFMhuQEAAKZCcgMAAEyF5AYAAJgKyQ0AADCV/w+iwWPH2yp6eQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAGJCAYAAAC90mOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHfUlEQVR4nO3deXRU9fnH8c9kMjNJSAK0hCRABEFWQSgg/MKqskTlh6JVKSBEZKkCLRIVoQgBVBaLCK0ICiIu8JNqLdqCmDQSkcWibHUByiJLlQSoxQAhySRzf3/gjI6ZLBeSzEzyfp2Tc5jv3Dv3uclzIA/P9/u9FsMwDAEAAAAAShTi7wAAAAAAINBROAEAAABAGSicAAAAAKAMFE4AAAAAUAYKJwAAAAAoA4UTAAAAAJSBwgkAAAAAykDhBAAAAABloHACAAAAgDJQOAEAUIkyMzNlsVj01ltv+TsUSZUTz8yZM2WxWMp1rMVi0cyZMyvs2gBQVSicAMDPVq1aJYvF4vNrypQpnuPS0tI0atQotW3bVlarVU2aNDF1nfPnzys1NVVt27ZVrVq19POf/1wdOnTQxIkT9c0331TwXVVvJf28fvqVmZnp71ABABUk1N8BAAAumT17tq6++mqvsbZt23r+vGbNGq1du1YdO3ZUgwYNTH220+lUr169tH//fiUnJ+s3v/mNzp8/ry+++EJr1qzRHXfcYfoza7LXXnvN6/Wrr76q9PT0YuOtW7fWvn37qjI0AEAloXACgABxyy23qHPnziW+P2fOHC1fvlw2m03/+7//q88//7zcn71u3Trt3r1bq1ev1tChQ73ey8vLU0FBwWXHbdaFCxdUq1atKrvelSgp1nvvvdfr9ccff6z09PRi45KuuHDKzc1VRETEFX0GAODKMVUPAIJEgwYNZLPZLuvcw4cPS5K6d+9e7L2wsDBFR0d7je3fv1/33HOPYmJiFB4erpYtW2ratGlex+zevVu33HKLoqOjFRkZqT59+ujjjz/2OsY9DfHDDz/UuHHjVL9+fTVq1Mjz/nvvvaeePXuqVq1aioqK0oABA/TFF1+UeT/uz928ebN+/etf6+c//7mio6M1YsQI/fe//y12fHmuc9999ykyMlKHDx/WrbfeqqioKA0bNqzMWMrL5XLpqaeeUqNGjRQWFqY+ffro0KFDXsfccMMNatu2rXbu3KlevXopIiJCv/vd7yRJ+fn5Sk1N1TXXXCOHw6GEhARNnjxZ+fn5Xp+Rnp6uHj16qE6dOoqMjFTLli09n2E2Hkl688031alTJ4WHh6tevXq699579fXXX5d5v/n5+Zo0aZJiYmIUFRWl2267Tf/+97/NfMsAIKDQcQKAAPHdd9/pzJkzXmP16tWrkM9u3LixpEtTyh5//PFSF/L/85//VM+ePWWz2TR27Fg1adJEhw8f1l//+lc99dRTkqQvvvhCPXv2VHR0tCZPniybzaYXXnhBN9xwgz788EN17drV6zPHjRunmJgYzZgxQxcuXJB0abpbcnKykpKSNH/+fOXm5mrp0qXq0aOHdu/eXa41XBMmTFCdOnU0c+ZMHThwQEuXLtWxY8c8GyCYvU5hYaGSkpLUo0cPLViwoEI7PfPmzVNISIgeeeQRfffdd3r66ac1bNgw/eMf//A67j//+Y9uueUW/epXv9K9996r2NhYuVwu3XbbbdqyZYvGjh2r1q1b67PPPtOzzz6rf/3rX1q3bp2kSz+X//3f/9V1112n2bNny+Fw6NChQ9q6detlxbNq1SqNHDlS119/vebOnavs7GwtXrxYW7du1e7du1WnTp0S73f06NF6/fXXNXToUHXr1k0ffPCBBgwYUCHfSwDwCwMA4Fcvv/yyIcnnV0kGDBhgNG7cuNzXyM3NNVq2bGlIMho3bmzcd999xksvvWRkZ2cXO7ZXr15GVFSUcezYMa9xl8vl+fOgQYMMu91uHD582DP2zTffGFFRUUavXr2K3VuPHj2MwsJCz/i5c+eMOnXqGGPGjPG6RlZWllG7du1i4z/l/txOnToZBQUFnvGnn37akGS88847pq+TnJxsSDKmTJlS6rV9GT9+fIk/r02bNhmSjNatWxv5+fme8cWLFxuSjM8++8wz1rt3b0OSsWzZMq/PeO2114yQkBDjo48+8hpftmyZIcnYunWrYRiG8eyzzxqSjNOnT5cYa3njKSgoMOrXr2+0bdvWuHjxoue4v/3tb4YkY8aMGZ6x1NRUr/vfs2ePIckYN26c17WHDh1qSDJSU1NLjA8AAhVT9QAgQCxZskTp6eleXxUlPDxc//jHP/Too49KutRJGDVqlOLj4/Wb3/zGM93r9OnT2rx5s+6//35dddVVXp/h7uAUFRUpLS1NgwYNUtOmTT3vx8fHa+jQodqyZYtycnK8zh0zZoysVqvndXp6us6ePashQ4bozJkzni+r1aquXbtq06ZN5bqvsWPHek1ffPDBBxUaGqoNGzZc9nUefPDBcl3brJEjR8put3te9+zZU5J05MgRr+McDodGjhzpNfbmm2+qdevWatWqldd93HTTTZLkuQ93B+idd96Ry+W6ong+/fRTnTp1SuPGjVNYWJjnuAEDBqhVq1Zav359iZ/t/v7/9re/9Rp/6KGHSo0JAAIZU/UAIEB06dKl1M0hrlTt2rX19NNP6+mnn9axY8eUkZGhBQsW6LnnnlPt2rX15JNPen5p/vFufj91+vRp5ebmqmXLlsXea926tVwul06cOKFrr73WM/7T3QIPHjwoSZ5f/H/qp2uuStK8eXOv15GRkYqPj9fRo0cv6zqhoaFea7Aq0k8L0bp160pSsTVZDRs29CpopEv3sW/fPsXExPj87FOnTkmSBg8erBUrVmj06NGaMmWK+vTpozvvvFN33XWXQkK8/6+0rHiOHTsmST5/zq1atdKWLVtKvNdjx44pJCREzZo18xr39VkAECwonACgBmrcuLHuv/9+3XHHHWratKlWr16tJ598stKuFx4e7vXa3Q157bXXFBcXV+z40NCK+efJ7HUcDkexAqOi/Ljj9mOGYXi9/un3Srp0H+3atdPChQt9fkZCQoLn3M2bN2vTpk1av369Nm7cqLVr1+qmm25SWlqaVwzljQcAcAmFEwDUYHXr1lWzZs08W5u7p96VttV5TEyMIiIidODAgWLv7d+/XyEhIZ5f5Evi7kTUr19fffv2vdzwdfDgQd14442e1+fPn9fJkyd16623Vuh1/K1Zs2bau3ev+vTpU+rGHpIUEhKiPn36qE+fPlq4cKHmzJmjadOmadOmTaa+B+4NRQ4cOFCsY3fgwAHP+yWd63K5dPjwYa8uk6+cAYBgwRonAKgB9u7dW2zHPunSlKovv/zS88ttTEyMevXqpZUrV+r48eNex7o7EVarVf3799c777zjmRInSdnZ2VqzZo169OhR5lS7pKQkRUdHa86cOXI6ncXeP336dLnu68UXX/Q6f+nSpSosLNQtt9xSodfxt3vuuUdff/21li9fXuy9ixcvenYq/Pbbb4u936FDB0kqtm15WTp37qz69etr2bJlXue+99572rdvX6k75Lm//3/4wx+8xhctWmQqBgAIJHScACBI/POf/9S7774rSTp06JC+++47z/S69u3ba+DAgSWem56ertTUVN122236n//5H0VGRurIkSNauXKl8vPzNXPmTM+xf/jDH9SjRw917NhRY8eO1dVXX62jR49q/fr12rNnjyTpySef9DwvaNy4cQoNDdULL7yg/Px8Pf3002XeS3R0tJYuXarhw4erY8eO+tWvfqWYmBgdP35c69evV/fu3fXcc8+V+TkFBQXq06eP7rnnHh04cEDPP/+8evToodtuu61Cr+Nvw4cP15/+9Cc98MAD2rRpk7p3766ioiLt379ff/rTn/T++++rc+fOmj17tjZv3qwBAwaocePGOnXqlJ5//nk1atRIPXr0MHVNm82m+fPna+TIkerdu7eGDBni2Y68SZMmmjRpUonndujQQUOGDNHzzz+v7777Tt26dVNGRobP50QBQLCgcAKAILFr1y5Nnz7da8z9Ojk5udTC6Ze//KXOnTuntLQ0ffDBB/r2229Vt25ddenSRQ8//LDXdLf27dvr448/1vTp07V06VLl5eWpcePGuueeezzHXHvttfroo480depUzZ07Vy6XS127dtXrr79e7BlOJRk6dKgaNGigefPm6fe//73y8/PVsGFD9ezZs9iuciV57rnntHr1as2YMUNOp1NDhgzRH/7wB6/pbBVxHX8LCQnRunXr9Oyzz+rVV1/VX/7yF0VERKhp06aaOHGiWrRoIUm67bbbdPToUa1cuVJnzpxRvXr11Lt3b82aNUu1a9c2fd377rtPERERmjdvnh577DHVqlVLd9xxh+bPn1/qM5wkaeXKlYqJidHq1au1bt063XTTTVq/fn2Z0zgBIFBZDFaBAgCCjPvBrJ988kml7kQIAIAba5wAAAAAoAwUTgAAAABQBgonAAAAACgDa5wAAAAAoAx0nAAAAACgDBROAAAAAFCGGvccJ5fLpW+++UZRUVFez/kAAAAAULMYhqFz586pQYMGCgkpvadU4wqnb775hofvAQAAAPA4ceKEGjVqVOoxNa5wioqKknTpmxMdHe3naCSn06m0tDT1799fNpvN3+EgwJEvMIucgVnkDMwiZ2BWIOVMTk6OEhISPDVCaWpc4eSenhcdHR0whVNERISio6P9njgIfOQLzCJnYBY5A7PIGZgViDlTniU8ft0cYvPmzRo4cKAaNGggi8WidevWlXlOZmamOnbsKIfDoWuuuUarVq2q9DgBAAAA1Gx+LZwuXLig9u3ba8mSJeU6/quvvtKAAQN04403as+ePXrooYc0evRovf/++5UcKQAAAICazK9T9W655Rbdcsst5T5+2bJluvrqq/XMM89Iklq3bq0tW7bo2WefVVJSUmWFCQAAAKCGC6o1Ttu3b1ffvn29xpKSkvTQQw+VeE5+fr7y8/M9r3NyciRdmlvpdDorJU4z3DEEQiwIfOQLzCJnYBY5A7PIGZgVSDljJoagKpyysrIUGxvrNRYbG6ucnBxdvHhR4eHhxc6ZO3euZs2aVWw8LS1NERERlRarWenp6f4OAUGEfIFZ5AzMImdgFjkDswIhZ3Jzc8t9bFAVTpdj6tSpSklJ8bx2bznYv3//gNlVLz09Xf369QuYXUUQuMgXmEXOwCxyBmaRMzArkHLGPRutPIKqcIqLi1N2drbXWHZ2tqKjo312myTJ4XDI4XAUG7fZbH7/Qf1YoMWDwEa+wCxyBmaRMzCLnIFZgZAzZq7v1131zEpMTFRGRobXWHp6uhITE/0UEQAAAICawK+F0/nz57Vnzx7t2bNH0qXtxvfs2aPjx49LujTNbsSIEZ7jH3jgAR05ckSTJ0/W/v379fzzz+tPf/qTJk2a5I/wAQAAANQQfp2q9+mnn+rGG2/0vHavRUpOTtaqVat08uRJTxElSVdffbXWr1+vSZMmafHixWrUqJFWrFgRtFuRH8g6p4NZ32nvfyyyfpGt0FCrv0NCgCssLCJfYAo5A7PIGZhFzqAk7RPqKL627+U0wchiGIbh7yCqUk5OjmrXrq3vvvvO75tDzH1vn1748IhfYwAAAAAqQ6O64dry2E3Fxp1OpzZs2KBbb73V72uczNQGQbU5RHXTqG6EOl1VR9/+97/6Wd26slgs/g4JAc4wDPIFppAzMIucgVnkDH7K6TK098RZ/fu/F2UYRrXJCwonPxr+P431q04Nvq+4u/i94kbg++F/aMgXlA85A7PIGZhFzuCnvst1qv3sNElSocuQzVo9Cqeg2lUPAAAAQGCzh/5QYhQUuvwYScWicAIAAABQYX7cYXIWUTgBAAAAQDGh1hCFfF870XECAAAAgBLYrJfKjHwKJwAAAADwzb3Oial6AAAAAFAC+/cdpwIKJwAAAADwzdNxKjT8HEnFoXACAAAAUKFsno5TkZ8jqTgUTgAAAAAqlLvjVEDHCQAAAAB8s7HGCQAAAABK98MaJwonAAAAAPDJbr30BFw6TgAAAABQAp7jBAAAAABlcK9xymeqHgAAAAD45n4ALh0nAAAAACiBzbMdOYUTAAAAAPjkoOMEAAAAAKXzPMeJjhMAAAAA+ObeVa+gyPBzJBWHwgkAAABAhaLjBAAAAABl4DlOAAAAAFAGu9UiiY4TAAAAAJSIjhMAAAAAlIE1TgAAAABQhh921aNwAgAAAACf6DgBAAAAQBlY4wQAAAAAZbBbmaoHAAAAAKXydJwKDT9HUnEonAAAAABUKPcap3w6TgAAAADg2w8dJwonAAAAAPDJZrVIYo0TAAAAAJTIwa56AAAAAFA6nuMEAAAAAGXgOU4AAAAAUAbPrnp0nAAAAADAN/cDcOk4AQAAAEAJ3FP1WOMEAAAAACVwd5xchlTkMvwcTcWgcAIAAABQoWyhP5QZ1aXrROEEAAAAoEK5O05S9XkILoUTAAAAgApls1o8f6bjBAAAAAA+WCyWarezHoUTAAAAgArn7jrRcaogS5YsUZMmTRQWFqauXbtqx44dpR6/aNEitWzZUuHh4UpISNCkSZOUl5dXRdECAAAAKA/3luR0nCrA2rVrlZKSotTUVO3atUvt27dXUlKSTp065fP4NWvWaMqUKUpNTdW+ffv00ksvae3atfrd735XxZEDAAAAKI3t+6l6+XScrtzChQs1ZswYjRw5Um3atNGyZcsUERGhlStX+jx+27Zt6t69u4YOHaomTZqof//+GjJkSJldKgAAAABVq7p1nEL9deGCggLt3LlTU6dO9YyFhISob9++2r59u89zunXrptdff107duxQly5ddOTIEW3YsEHDhw8v8Tr5+fnKz8/3vM7JyZEkOZ1OOZ3OCrqby+eOIRBiQeAjX2AWOQOzyBmYRc6gJLaQS2uccvMLvPIjkHLGTAx+K5zOnDmjoqIixcbGeo3HxsZq//79Ps8ZOnSozpw5ox49esgwDBUWFuqBBx4odare3LlzNWvWrGLjaWlpioiIuLKbqEDp6en+DgFBhHyBWeQMzCJnYBY5g5/Ku2iVZNHWbf/QmS+NYu8HQs7k5uaW+1i/FU6XIzMzU3PmzNHzzz+vrl276tChQ5o4caKeeOIJTZ8+3ec5U6dOVUpKiud1Tk6OEhIS1L9/f0VHR1dV6CVyOp1KT09Xv379ZLPZ/B0OAhz5ArPIGZhFzsAscgYlWX7sY53MzVGHTp11Y8sYz3gg5Yx7Nlp5+K1wqlevnqxWq7Kzs73Gs7OzFRcX5/Oc6dOna/jw4Ro9erQkqV27drpw4YLGjh2radOmKSSk+JIth8Mhh8NRbNxms/n9B/VjgRYPAhv5ArPIGZhFzsAscgY/5bBZJUkuhfjMjUDIGTPX99vmEHa7XZ06dVJGRoZnzOVyKSMjQ4mJiT7Pyc3NLVYcWa2XfiCGUbz9BwAAAMA/PM9xYnOIK5eSkqLk5GR17txZXbp00aJFi3ThwgWNHDlSkjRixAg1bNhQc+fOlSQNHDhQCxcu1C9+8QvPVL3p06dr4MCBngIKAAAAgP/ZQy/9fu6sJtuR+7VwGjx4sE6fPq0ZM2YoKytLHTp00MaNGz0bRhw/ftyrw/T444/LYrHo8ccf19dff62YmBgNHDhQTz31lL9uAQAAAIAPdjpOFWvChAmaMGGCz/cyMzO9XoeGhio1NVWpqalVEBkAAACAy1XdnuPk1wfgAgAAAKiebNZLpUZBNZmqR+EEAAAAoMLZ3YUTHScAAAAA8M0WSscJAAAAAErl7jixxgkAAAAASmCn4wQAAAAApfuh42T4OZKKQeEEAAAAoMK5d9XLp+MEAAAAAL7xHCcAAAAAKIPNapHEGicAAAAAKJGDjhMAAAAAlM69xomOEwAAAACUwLMdOR0nAAAAAPCNjhMAAAAAlIFd9QAAAACgDO4H4DJVDwAAAABK4Ok4FRp+jqRiUDgBAAAAqHBsDgEAAAAAZWBzCAAAAAAoA2ucAAAAAKAM9lCLJHbVAwAAAIAS2a1WSUzVAwAAAIAS2eg4AQAAAEDp3GucnEWGXK7g35KcwgkAAABAhbOF/lBqOF3B33WicAIAAABQ4dwdJ6l6rHOicAIAAABQ4X5cODmLmKoHAAAAAMWEhFgUGnJpgwg6TgAAAABQAptngwgKJwAAAADwyf79BhH5dJwAAAAAwDc6TgAAAABQBsf3HSfWOAEAAABACWzWS5tD0HECAAAAgBLY6TgBAAAAQOnca5wK6DgBAAAAgG90nAAAAACgDD/sqmf4OZIrR+EEAAAAoFJ4dtUrKvJzJFeOwgkAAABApfB0nArpOAEAAACAT/bvC6d8NocAAAAAAN9soe6OE4UTAAAAAPhkZztyAAAAACidPdQiiY4TAAAAAJSIjhMAAAAAlMFG4QQAAAAApbO7n+PEVD0AAAAA8M3zHCc6TgAAAADgGx2nCrRkyRI1adJEYWFh6tq1q3bs2FHq8WfPntX48eMVHx8vh8OhFi1aaMOGDVUULQAAAIDysns6ToafI7lyof68+Nq1a5WSkqJly5apa9euWrRokZKSknTgwAHVr1+/2PEFBQXq16+f6tevr7feeksNGzbUsWPHVKdOnaoPHgAAAECpqlPHya+F08KFCzVmzBiNHDlSkrRs2TKtX79eK1eu1JQpU4odv3LlSn377bfatm2bbDabJKlJkyZVGTIAAACAcqpOu+r5rXAqKCjQzp07NXXqVM9YSEiI+vbtq+3bt/s8591331ViYqLGjx+vd955RzExMRo6dKgee+wxWa1Wn+fk5+crPz/f8zonJ0eS5HQ65XQ6K/COLo87hkCIBYGPfIFZ5AzMImdgFjmD0lgtlwqmfGdhsVwJhJwxE4PfCqczZ86oqKhIsbGxXuOxsbHav3+/z3OOHDmiDz74QMOGDdOGDRt06NAhjRs3Tk6nU6mpqT7PmTt3rmbNmlVsPC0tTREREVd+IxUkPT3d3yEgiJAvMIucgVnkDMwiZ+DLF2cskqw6mX262L4EgZAzubm55T7Wr1P1zHK5XKpfv75efPFFWa1WderUSV9//bV+//vfl1g4TZ06VSkpKZ7XOTk5SkhIUP/+/RUdHV1VoZfI6XQqPT1d/fr180w/BEpCvsAscgZmkTMwi5xBaaxfZOvVg3sVXednuvXWLpICK2fcs9HKw2+FU7169WS1WpWdne01np2drbi4OJ/nxMfHy2azeU3La926tbKyslRQUCC73V7sHIfDIYfDUWzcZrP5/Qf1Y4EWDwIb+QKzyBmYRc7ALHIGvoQ7LuVEocsolh+BkDNmrn9Z25EXFhbq73//u1544QWdO3dOkvTNN9/o/Pnz5f4Mu92uTp06KSMjwzPmcrmUkZGhxMREn+d0795dhw4dksv1w+Kyf/3rX4qPj/dZNAEAAADwH/euevnVYFc904XTsWPH1K5dO91+++0aP368Tp8+LUmaP3++HnnkEVOflZKSouXLl+uVV17Rvn379OCDD+rChQueXfZGjBjhtXnEgw8+qG+//VYTJ07Uv/71L61fv15z5szR+PHjzd4GAAAAgEpm8zzHKfgLJ9NT9SZOnKjOnTtr7969+vnPf+4Zv+OOOzRmzBhTnzV48GCdPn1aM2bMUFZWljp06KCNGzd6Now4fvy4QkJ+qO0SEhL0/vvva9KkSbruuuvUsGFDTZw4UY899pjZ2wAAAABQyTzPcaqJhdNHH32kbdu2FZsa16RJE3399demA5gwYYImTJjg873MzMxiY4mJifr4449NXwcAAABA1bK7O06Fhp8juXKmp+q5XC4VFRUVG//3v/+tqKioCgkKAAAAQPCrTh0n04VT//79tWjRIs9ri8Wi8+fPKzU1VbfeemtFxgYAAAAgiHnWOFWDzSFMT9VbsGCBbr75ZrVp00Z5eXkaOnSoDh48qHr16un//u//KiNGAAAAAEHIs6teNeg4mS6cEhIStHfvXq1du1Z79+7V+fPnNWrUKA0bNkzh4eGVESMAAACAIGSzWiRd2lXPMAxZLBY/R3T5TBVOTqdTrVq10t/+9jcNGzZMw4YNq6y4AAAAAAQ5h9UqSTKM7x+Caw3ewsnUGiebzaa8vLzKigUAAABANWIL/aFQKgjydU6mN4cYP3685s+fr8LCwsqIBwAAAEA14d6OXAr+h+CaXuP0ySefKCMjQ2lpaWrXrp1q1arl9f7bb79dYcEBAAAACF7WEIsslktT9YK942S6cKpTp45++ctfVkYsAAAAAKoRi8UiuzVE+YWuoH+Wk+nC6eWXX66MOAAAAABUQ57CqaZ1nNxOnz6tAwcOSJJatmypmJiYCgsKAAAAQPVgDw2R8iVnkeHvUK6I6c0hLly4oPvvv1/x8fHq1auXevXqpQYNGmjUqFHKzc2tjBgBAAAABCnb9xtEBHvHyXThlJKSog8//FB//etfdfbsWZ09e1bvvPOOPvzwQz388MOVESMAAACAIGUP/b5wqmlrnP785z/rrbfe0g033OAZu/XWWxUeHq577rlHS5curcj4AAAAAAQx90Nva1zHKTc3V7GxscXG69evz1Q9AAAAAF7soVZJwf8cJ9OFU2JiolJTU5WXl+cZu3jxombNmqXExMQKDQ4AAABAcLNXk46T6al6ixcvVlJSkho1aqT27dtLkvbu3auwsDC9//77FR4gAAAAgODlXuMU7B0n04VT27ZtdfDgQa1evVr79++XJA0ZMkTDhg1TeHh4hQcIAAAAIHh5dtWraYWTJEVERGjMmDEVHQsAAACAasazq16QT9UzvcZp7ty5WrlyZbHxlStXav78+RUSFAAAAIDqobp0nEwXTi+88IJatWpVbPzaa6/VsmXLKiQoAAAAANWDZ41TTes4ZWVlKT4+vth4TEyMTp48WSFBAQAAAKge7DW145SQkKCtW7cWG9+6dasaNGhQIUEBAAAAqB7chZOzyPBzJFfG9OYQY8aM0UMPPSSn06mbbrpJkpSRkaHJkyfr4YcfrvAAAQAAAAQvW+il5zjlB/lUPdOF06OPPqr//Oc/GjdunAoKCiRJYWFheuyxxzR16tQKDxAAAABA8LJbrZJq4HOcLBaL5s+fr+nTp2vfvn0KDw9X8+bN5XA4KiM+AAAAAEHM3XGqcduRu0VGRur6669XVFSUDh8+LJcruL8RAAAAACqew7PGKbjrhXIXTitXrtTChQu9xsaOHaumTZuqXbt2atu2rU6cOFHhAQIAAAAIXp7nONWUjtOLL76ounXrel5v3LhRL7/8sl599VV98sknqlOnjmbNmlUpQQIAAAAITu7nOAX7duTlXuN08OBBde7c2fP6nXfe0e23365hw4ZJkubMmaORI0dWfIQAAAAAglaN6zhdvHhR0dHRntfbtm1Tr169PK+bNm2qrKysio0OAAAAQFBzd5xqzBqnxo0ba+fOnZKkM2fO6IsvvlD37t0972dlZal27doVHyEAAACAoGWvJh2nck/VS05O1vjx4/XFF1/ogw8+UKtWrdSpUyfP+9u2bVPbtm0rJUgAAAAAwemHjpPh50iuTLkLp8mTJys3N1dvv/224uLi9Oabb3q9v3XrVg0ZMqTCAwQAAAAQvKrLGqdyF04hISGaPXu2Zs+e7fP9nxZSAAAAAFBddtW77AfgAgAAAEBZPIVTkHecKJwAAAAAVBqb1SKpBu2qBwAAAABmOZiqBwAAAAClc28O4WSqHgAAAAD4xuYQP3HixAndf//9FfVxAAAAAKqB6rIdeYUVTt9++61eeeWVivo4AAAAANWA3Vo9Ok7lfo7Tu+++W+r7R44cueJgAAAAAFQv7ql6ziLDz5FcmXIXToMGDZLFYpFhlHzDFoulQoICAAAAUD24O05FLkNFruAtnso9VS8+Pl5vv/22XC6Xz69du3ZVZpwAAAAAgpAt9IeSI5if5VTuwqlTp07auXNnie+X1Y0CAAAAUPO4O06SlB/EG0SUu3B69NFH1a1btxLfv+aaa7Rp06bLCmLJkiVq0qSJwsLC1LVrV+3YsaNc573xxhuyWCwaNGjQZV0XAAAAQOWyWX9YzlMjOk49e/bUzTffXOL7tWrVUu/evU0HsHbtWqWkpCg1NVW7du1S+/btlZSUpFOnTpV63tGjR/XII4+oZ8+epq8JAAAAoGpYLJYfdtarCR2nI0eOVMpUvIULF2rMmDEaOXKk2rRpo2XLlikiIkIrV64s8ZyioiINGzZMs2bNUtOmTSs8JgAAAAAVx911CuaOU7l31WvevLlOnjyp+vXrS5IGDx6sP/zhD4qNjb3sixcUFGjnzp2aOnWqZywkJER9+/bV9u3bSzxv9uzZql+/vkaNGqWPPvqo1Gvk5+crPz/f8zonJ0eS5HQ65XQ6Lzv2iuKOIRBiQeAjX2AWOQOzyBmYRc6gPOyhIbpQUKQLeQVyhn9fRAVAzpiJodyF00+7TRs2bNDcuXPLH5UPZ86cUVFRUbHiKzY2Vvv37/d5zpYtW/TSSy9pz5495brG3LlzNWvWrGLjaWlpioiIMB1zZUlPT/d3CAgi5AvMImdgFjkDs8gZlKbIaZVk0aYPN6tRrUtjgZAzubm55T623IVTIDh37pyGDx+u5cuXq169euU6Z+rUqUpJSfG8zsnJUUJCgvr376/o6OjKCrXcnE6n0tPT1a9fP9lsNn+HgwBHvsAscgZmkTMwi5xBefx+32blnM1Tl//ppmvjagVMzrhno5VHuQsni8VS7AG3V/rA23r16slqtSo7O9trPDs7W3FxccWOP3z4sI4ePaqBAwd6xlyuS/MkQ0NDdeDAATVr1szrHIfDIYfDUeyzbDab339QPxZo8SCwkS8wi5yBWeQMzCJnUBp7qFWSZFisnjwJhJwxc31TU/Xuu+8+TxGSl5enBx54QLVq1fI67u233y73xe12uzp16qSMjAzPluIul0sZGRmaMGFCseNbtWqlzz77zGvs8ccf17lz57R48WIlJCSU+9oAAAAAqoY9NPh31St34ZScnOz1+t57762QAFJSUpScnKzOnTurS5cuWrRokS5cuKCRI0dKkkaMGKGGDRtq7ty5CgsLU9u2bb3Or1OnjiQVGwcAAAAQGGzfb0deI3bVe/nllyslgMGDB+v06dOaMWOGsrKy1KFDB23cuNGzYcTx48cVElLuXdMBAAAABBh3xym/JnScKtOECRN8Ts2TpMzMzFLPXbVqVcUHBAAAAKDCVIfnONHKAQAAAFCp3JtDBPMaJwonAAAAAJXKTscJAAAAAErn2VWPwgkAAAAAfHPvqsdUPQAAAAAogd1KxwkAAAAASmX7fqqes9DwcySXj8IJAAAAQKX6oeNU5OdILh+FEwAAAIBK5d4cwllExwkAAAAAfLKzOQQAAAAAlM7G5hAAAAAAUDrPc5zoOAEAAACAbzarRZLkpOMEAAAAAL456DgBAAAAQOnca5zoOAEAAABACdxrnPLpOAEAAACAb3ScAAAAAKAM7KoHAAAAAGWwezpOhp8juXwUTgAAAAAqFR0nAAAAACgDa5wAAAAAoAzsqgcAAAAAZbBZLZLoOAEAAABAiRzuNU4UTgAAAADgm2eNE1P1AAAAAMA3Ox0nAAAAACid7UfPcTKM4HyWE4UTAAAAgErl7jhJUkGQPgSXwgkAAABApbJbfyg7gnVnPQonAAAAAJXK9qPCqSBIN4igcAIAAABQqawhFllDgvtZThROAAAAACqde7pesO6sR+EEAAAAoNLZrN93nArZHAIAAAAAfLKHWiXRcQIAAACAEtmtrHECAAAAgFK5n+XErnoAAAAAUAL3luROHoALAAAAAL55Ok5M1QMAAAAA3zwdJ6bqAQAAAIBvdJwAAAAAoAw/PACXNU4AAAAA4BO76gEAAABAGWw8xwkAAAAASmcPtUpijRMAAAAAlIiOEwAAAACUweFZ48TmEAAAAADgk+c5TnScLt+SJUvUpEkThYWFqWvXrtqxY0eJxy5fvlw9e/ZU3bp1VbduXfXt27fU4wEAAAD4n2c7cnbVuzxr165VSkqKUlNTtWvXLrVv315JSUk6deqUz+MzMzM1ZMgQbdq0Sdu3b1dCQoL69++vr7/+uoojBwAAAFBetlA6Tldk4cKFGjNmjEaOHKk2bdpo2bJlioiI0MqVK30ev3r1ao0bN04dOnRQq1attGLFCrlcLmVkZFRx5AAAAADK64cH4AZn4RTqz4sXFBRo586dmjp1qmcsJCREffv21fbt28v1Gbm5uXI6nfrZz37m8/38/Hzl5+d7Xufk5EiSnE6nnE7nFURfMdwxBEIsCHzkC8wiZ2AWOQOzyBmUl9VyaVOIfGeRZA2MnDETg18LpzNnzqioqEixsbFe47Gxsdq/f3+5PuOxxx5TgwYN1LdvX5/vz507V7NmzSo2npaWpoiICPNBV5L09HR/h4AgQr7ALHIGZpEzMIucQVkOf2ORZNWxE19LzQMjZ3Jzc8t9rF8Lpys1b948vfHGG8rMzFRYWJjPY6ZOnaqUlBTP65ycHM+6qOjo6KoKtUROp1Pp6enq16+fbDabv8NBgCNfYBY5A7PIGZhFzqC8znx8XO8c26969eMkfRMQOeOejVYefi2c6tWrJ6vVquzsbK/x7OxsxcXFlXruggULNG/ePP3973/XddddV+JxDodDDoej2LjNZvP7D+rHAi0eBDbyBWaRMzCLnIFZ5AzKEm6/lB+FrktT9gIhZ8xc36+bQ9jtdnXq1MlrYwf3Rg+JiYklnvf000/riSee0MaNG9W5c+eqCBUAAADAFbB7dtULzgfg+n2qXkpKipKTk9W5c2d16dJFixYt0oULFzRy5EhJ0ogRI9SwYUPNnTtXkjR//nzNmDFDa9asUZMmTZSVlSVJioyMVGRkpN/uAwAAAEDJbFaLJHbVu2yDBw/W6dOnNWPGDGVlZalDhw7auHGjZ8OI48ePKyTkh8bY0qVLVVBQoLvuusvrc1JTUzVz5syqDB0AAABAOTmC/DlOfi+cJGnChAmaMGGCz/cyMzO9Xh89erTyAwIAAABQoWzu5zgVBmfh5PcH4AIAAACo/txrnAqCdI0ThRMAAACASkfHCQAAAADKYA/yNU4UTgAAAAAqnd3dcaJwAgAAAADf6DgBAAAAQBl+WOPE5hAAAAAA4NMPu+rRcQIAAAAAn2xWi6RLU/WMIGw6UTgBAAAAqHQOq1WSZBiSi8IJAAAAAIqzhVo8fw7GZU4UTgAAAAAqnXs7ckkKxmfgUjgBAAAAqHTWEIss3zediug4AQAAAEBxFovF03Viqh4AAAAAlMBTODFVDwAAAAB8cz/LiY4TAAAAAJTA9n3HKRifgUvhBAAAAKBK0HECAAAAgDLYrJe21aPjBAAAAAAlsIdaJUmFhqWMIwMPhRMAAACAKmH/vuPEVD0AAAAAKIFnjRNT9QAAAADAN8+uenScAAAAAMA3Ok4AAAAAUAY6TgAAAABQBjpOAAAAAFAGu5UH4AIAAABAqTyFEx0nAAAAAPDNFnrpOU5FPAAXAAAAAHyzW62S6DgBAAAAQIncHSfWOAEAAABACRzu7cjpOAEAAACAb7Yg3lUv1N8BBCLDMFRYWKiioqJKv5bT6VRoaKjy8vKq5HoIDFarVaGhobJYgm9hJAAAwOXyPMeJwin4FRQU6OTJk8rNza2S6xmGobi4OJ04cYJfomuYiIgIxcfHy263+zsUAACAKmEL4ql6FE4/4nK59NVXX8lqtapBgway2+2VXsy4XC6dP39ekZGRCglh5mRNYBiGCgoKdPr0aX311Vdq3rw5P3sAAFAj0HGqJgoKCuRyuZSQkKCIiIgquabL5VJBQYHCwsL45bkGCQ8Pl81m07Fjxzw/fwAAgOqOB+BWMxQwqArkGQAAqGmCuePEb24AAAAAqsQPa5yCb20/hRMAAACAKkHHCQAAAADKYLNe6jQVUTjBX+677z5ZLJZiX4cOHZIkbd68WQMHDlSDBg1ksVi0bt26Mj+zqKhI8+bNU6tWrRQeHq6f/exn6tq1q1asWFHJd3P5/vznP+uGG25Q7dq1FRkZqeuuu06zZ8/Wt99+6+/QAAAAajxPx4nNIeBPN998s06ePOn1dfXVV0uSLly4oPbt22vJkiXl/rxZs2bp2Wef1RNPPKEvv/xSmzZt0tixY3X27NlKuoNLOxtermnTpmnw4MG6/vrr9d577+nzzz/XM888o7179+q1117zS0wAAAD4gWdXvSDsOLEdeRkMw9BFZ1Glfb7L5dLFgiKFFhQW22Ut3GY19Rwph8OhuLg4n+/dcsstuuWWW0zF9u6772rcuHG6++67PWPt27f3OsblcmnBggV68cUXdeLECcXGxurXv/61pk2bJkn67LPPNHHiRG3fvl0RERH65S9/qYULFyoyMlLSpU7Z2bNndf3112vJkiVyOBz66quvdOLECT388MNKS0tTSEiIevbsqcWLF6tJkyY+Y92xY4fmzJmjRYsWaeLEiZ7xJk2aqF+/fp5iz329H3fcHnroIe3Zs0eZmZmSpBtuuEFt27ZVaGioXn/9dbVr107x8fEqKirS2rVrPec5nU7Fx8dr4cKFGjFihFwul+bPn68XX3xRWVlZatGihaZPn6677rrL1PcdAACgugrmjhOFUxkuOovUZsb7frn2l7OTFGH3348oLi5OH3zwgcaNG6eYmBifx0ydOlXLly/Xs88+qx49eujkyZPav3+/pEtdrqSkJCUmJuqTTz7RqVOnNHr0aE2YMEGrVq3yfEZGRoaio6OVnp4u6VJB4j7vo48+UmhoqJ588kndfPPN+uc//ym73V4sjtWrVysyMlLjxo3zGWedOnVM3fsrr7yiBx98UFu3bpUkHTp0SHfffbfnYcWS9P777ys3N1d33HGHJGnu3Ll6/fXXtWzZMjVv3lybN2/Wvffeq5iYGPXu3dvU9QEAAKojz656dJzgT3/72988v9RLl7pMb7755mV/3sKFC3XXXXcpLi5O1157rbp166bbb7/d07k6d+6cFi9erOeee07JycmSpGbNmqlHjx6SpDVr1igvL0+vvvqqatWqJUl67rnnNHDgQM2fP1+xsbGSpFq1amnFihWeguj111+Xy+XSihUrPB23l19+WXXq1FFmZqb69+9fLNaDBw+qadOmstlsl32/P9a8eXM9/fTTntfNmjVTrVq19Je//EXDhw/33N9tt92mqKgo5efna86cOfr73/+uxMRESVLTpk21ZcsWvfDCCxROAAAAouNUrYXbrPpydlKlfb7L5dK5nHOKio7yOVXPjBtvvFFLly71vHYXK5erTZs2+vzzz7Vz505t3brVs8HEfffdpxUrVmjfvn3Kz89Xnz59fJ6/b98+tW/f3iuO7t27y+Vy6cCBA57CqV27dl5dpL179+rQoUOKiory+ry8vDwdPnzY57UMo2L/26JTp05er0NDQ3XPPfdo9erVGj58uC5cuKB33nlHb7zxhqRLHanc3Fz169fP67yCggL94he/qNDYAAAAgpWdjlP1ZbFYKnW6nMvlUqHdqgh7aLHCyaxatWrpmmuuqaDILgkJCdH111+v66+/Xg899JBef/11DR8+XNOmTVN4eHiFXOOnBd758+fVqVMnrV69utixJU0ZbNGihbZs2SKn01lq1ykkJKRYkeV0OsuMSZKGDRum3r1769SpU0pPT1d4eLhuvvlmT8yStH79ejVs2NDrPIfDUWI8AAAANUkwd5wCYle9JUuWqEmTJgoLC1PXrl21Y8eOUo9/88031apVK4WFhaldu3basGFDFUWKNm3aSLq0fql58+YKDw9XRkaGz2Nbt26tvXv36sKFC56xrVu3KiQkRC1btizxGh07dtTBgwdVv359XXPNNV5ftWvX9nnO0KFDdf78eT3//PM+33dvDhETE6OTJ096vbdnz54SY/mxbt26KSEhQWvXrtXq1at19913e4q0Nm3ayOFw6Pjx48ViTkhIKNfnAwAAVHfuNU4uWVTkCq62k98Lp7Vr1yolJUWpqanatWuX2rdvr6SkJJ06dcrn8du2bdOQIUM0atQo7d69W4MGDdKgQYP0+eefV3HkweX8+fPas2ePp0j46quvtGfPHh0/frzEc+666y49++yz+sc//qFjx44pMzNT48ePV4sWLTyF62OPPabJkyfr1Vdf1eHDh/Xxxx/rpZdeknSpQxMWFqbk5GR9/vnn2rRpk37zm99o+PDhnml6vgwbNkz16tXT7bffro8++khfffWVMjMz9dvf/lb//ve/fZ7TtWtXTZ48WQ8//LAmT56s7du369ixY8rIyNDdd9+tV155RZJ000036dNPP9Wrr76qgwcPKjU11VTuDB06VMuWLVN6erqGDRvmGY+KitIjjzyiSZMm6ZVXXtHhw4e1a9cu/fGPf/RcGwAAoKZzd5wkyVkUXG0nvxdOCxcu1JgxYzRy5Ei1adNGy5YtU0REhFauXOnz+MWLF+vmm2/Wo48+qtatW+uJJ55Qx44d9dxzz1Vx5MHl008/1S9+8QvPepuUlBT94he/0IwZM0o8JykpSX/96181cOBAtWjRQsnJyWrVqpXS0tIUGnpp+uL06dP18MMPa8aMGWrdurUGDx7sKXojIiL0/vvv69tvv9X111+vu+66S3369CnzZxUREaHNmzfrqquu0p133qnWrVtr1KhRysvLU3R0dInnzZ8/X2vWrNE//vEPJSUl6dprr1VKSoquu+46z+YVSUlJmj59uiZPnqzrr79e586d04gRI8r9fRw2bJi+/PJLNWzYUN27d/d674knntD06dM1d+5ctW7dWjfffLPWr1/veZYWAABATWez/vConWArnCxGRa+qN6GgoEARERF66623NGjQIM94cnKyzp49q3feeafYOVdddZVSUlL00EMPecZSU1O1bt067d27t9jx+fn5ys/P97zOyclRQkKCzpw5U+yX8Ly8PJ04ccIzbbAqGIahc+fOKSoqytQzmxD88vLydPToUSUkJJQ735xOp9LT09WvX78K20EQ1Rs5A7PIGZhFzsAMwzDUYsalR9B89HB3xdW5ss3MrlROTo7q1aun7777rtT/oJf8vDnEmTNnVFRUVGzaVmxsrOdZQD+VlZXl8/isrCyfx8+dO1ezZs0qNp6WlqaIiAivsdDQUMXFxen8+fMqKCgwcytX7Ny5c1V6PfhfQUGBLl68qM2bN6uwsNDUue5nXgHlRc7ALHIGZpEzKK9mUVZZLNLmDz9UpJ9r7dzc3HIfW+131Zs6dapSUlI8r90dp/79+5fYcYqMjKTjhEqXl5en8PBw9erVi44TKg05A7PIGZhFzsCsfv0CJ2dycnLKfaxfC6d69erJarUqOzvbazw7O1txcXE+z4mLizN1vMPh8LkdtM1mK/aDKioqksViUUhIyBVvDV5eLteluZ3u66LmCAkJkcVi8ZmLZbmcc1CzkTMwi5yBWeQMzAqEnDFzfb/+pm6329WpUyev7axdLpcyMjKUmJjo85zExMRi21+np6eXeDwAAAAAXCm/T9VLSUlRcnKyOnfurC5dumjRokW6cOGCRo4cKUkaMWKEGjZsqLlz50qSJk6cqN69e+uZZ57RgAED9MYbb+jTTz/Viy++WGEx+XG/DNQg5BkAAEDw8HvhNHjwYJ0+fVozZsxQVlaWOnTooI0bN3o2gDh+/LjXFLZu3bppzZo1evzxx/W73/1OzZs317p169S2bdsrjsXdqsvNzVV4ePgVfx5QGvdiRH+3qAEAAFA2vxdOkjRhwgRNmDDB53uZmZnFxu6++27dfffdFR6H1WpVnTp1vJ5DVNkbNrhcLhUUFCgvL481TjWEYRjKzc3VqVOnVKdOHVmtVn+HBAAAgDIEROEUSNybTLiLp8pmGIYuXryo8PBwdtWrYerUqVPipiYAAAAILBROP2GxWBQfH6/69evL6XRW+vWcTqc2b96sXr16MWWrBrHZbHSaAAAAggiFUwmsVmuV/GJrtVpVWFiosLAwCicAAAAgQLGoBgAAAADKQOEEAAAAAGWgcAIAAACAMtS4NU7uh47m5OT4OZJLnE6ncnNzlZOTwxonlIl8gVnkDMwiZ2AWOQOzAiln3DWBu0YoTY0rnM6dOydJSkhI8HMkAAAAAALBuXPnVLt27VKPsRjlKa+qEZfLpW+++UZRUVEB8dyknJwcJSQk6MSJE4qOjvZ3OAhw5AvMImdgFjkDs8gZmBVIOWMYhs6dO6cGDRooJKT0VUw1ruMUEhKiRo0a+TuMYqKjo/2eOAge5AvMImdgFjkDs8gZmBUoOVNWp8mNzSEAAAAAoAwUTgAAAABQBgonP3M4HEpNTZXD4fB3KAgC5AvMImdgFjkDs8gZmBWsOVPjNocAAAAAALPoOAEAAABAGSicAAAAAKAMFE4AAAAAUAYKJwAAAAAoA4VTJVuyZImaNGmisLAwde3aVTt27Cj1+DfffFOtWrVSWFiY2rVrpw0bNlRRpAgUZnJm+fLl6tmzp+rWrau6deuqb9++ZeYYqh+zf8+4vfHGG7JYLBo0aFDlBoiAYzZnzp49q/Hjxys+Pl4Oh0MtWrTg36caxmzOLFq0SC1btlR4eLgSEhI0adIk5eXlVVG08LfNmzdr4MCBatCggSwWi9atW1fmOZmZmerYsaMcDoeuueYarVq1qtLjNIvCqRKtXbtWKSkpSk1N1a5du9S+fXslJSXp1KlTPo/ftm2bhgwZolGjRmn37t0aNGiQBg0apM8//7yKI4e/mM2ZzMxMDRkyRJs2bdL27duVkJCg/v376+uvv67iyOEvZnPG7ejRo3rkkUfUs2fPKooUgcJszhQUFKhfv346evSo3nrrLR04cEDLly9Xw4YNqzhy+IvZnFmzZo2mTJmi1NRU7du3Ty+99JLWrl2r3/3ud1UcOfzlwoULat++vZYsWVKu47/66isNGDBAN954o/bs2aOHHnpIo0eP1vvvv1/JkZpkoNJ06dLFGD9+vOd1UVGR0aBBA2Pu3Lk+j7/nnnuMAQMGeI117drV+PWvf12pcSJwmM2ZnyosLDSioqKMV155pbJCRIC5nJwpLCw0unXrZqxYscJITk42br/99iqIFIHCbM4sXbrUaNq0qVFQUFBVISLAmM2Z8ePHGzfddJPXWEpKitG9e/dKjROBSZLxl7/8pdRjJk+ebFx77bVeY4MHDzaSkpIqMTLz6DhVkoKCAu3cuVN9+/b1jIWEhKhv377avn27z3O2b9/udbwkJSUllXg8qpfLyZmfys3NldPp1M9+9rPKChMB5HJzZvbs2apfv75GjRpVFWEigFxOzrz77rtKTEzU+PHjFRsbq7Zt22rOnDkqKiqqqrDhR5eTM926ddPOnTs90/mOHDmiDRs26NZbb62SmBF8guV34FB/B1BdnTlzRkVFRYqNjfUaj42N1f79+32ek5WV5fP4rKysSosTgeNycuanHnvsMTVo0KDYXz6oni4nZ7Zs2aKXXnpJe/bsqYIIEWguJ2eOHDmiDz74QMOGDdOGDRt06NAhjRs3Tk6nU6mpqVURNvzocnJm6NChOnPmjHr06CHDMFRYWKgHHniAqXooUUm/A+fk5OjixYsKDw/3U2Te6DgB1cS8efP0xhtv6C9/+YvCwsL8HQ4C0Llz5zR8+HAtX75c9erV83c4CBIul0v169fXiy++qE6dOmnw4MGaNm2ali1b5u/QEKAyMzM1Z84cPf/889q1a5fefvttrV+/Xk888YS/QwOuCB2nSlKvXj1ZrVZlZ2d7jWdnZysuLs7nOXFxcaaOR/VyOTnjtmDBAs2bN09///vfdd1111VmmAggZnPm8OHDOnr0qAYOHOgZc7lckqTQ0FAdOHBAzZo1q9yg4VeX8/dMfHy8bDabrFarZ6x169bKyspSQUGB7HZ7pcYM/7qcnJk+fbqGDx+u0aNHS5LatWunCxcuaOzYsZo2bZpCQvh/e3gr6Xfg6OjogOk2SXScKo3dblenTp2UkZHhGXO5XMrIyFBiYqLPcxITE72Ol6T09PQSj0f1cjk5I0lPP/20nnjiCW3cuFGdO3euilARIMzmTKtWrfTZZ59pz549nq/bbrvNs4tRQkJCVYYPP7icv2e6d++uQ4cOeYpsSfrXv/6l+Ph4iqYa4HJyJjc3t1hx5C68DcOovGARtILmd2B/705Rnb3xxhuGw+EwVq1aZXz55ZfG2LFjjTp16hhZWVmGYRjG8OHDjSlTpniO37p1qxEaGmosWLDA2Ldvn5GammrYbDbjs88+89ctoIqZzZl58+YZdrvdeOutt4yTJ096vs6dO+evW0AVM5szP8WuejWP2Zw5fvy4ERUVZUyYMME4cOCA8be//c2oX7++8eSTT/rrFlDFzOZMamqqERUVZfzf//2fceTIESMtLc1o1qyZcc899/jrFlDFzp07Z+zevdvYvXu3IclYuHChsXv3buPYsWOGYRjGlClTjOHDh3uOP3LkiBEREWE8+uijxr59+4wlS5YYVqvV2Lhxo79uwScKp0r2xz/+0bjqqqsMu91udOnSxfj444897/Xu3dtITk72Ov5Pf/qT0aJFC8NutxvXXnutsX79+iqOGP5mJmcaN25sSCr2lZqaWvWBw2/M/j3zYxRONZPZnNm2bZvRtWtXw+FwGE2bNjWeeuopo7CwsIqjhj+ZyRmn02nMnDnTaNasmREWFmYkJCQY48aNM/773/9WfeDwi02bNvn8/cSdJ8nJyUbv3r2LndOhQwfDbrcbTZs2NV5++eUqj7ssFsOgZwoAAAAApWGNEwAAAACUgcIJAAAAAMpA4QQAAAAAZaBwAgAAAIAyUDgBAAAAQBkonAAAAACgDBROAAAAAFAGCicAAAAAKAOFEwAgIGVmZspisejs2bNVet1Vq1apTp06V/QZR48elcVi0Z49e0o8xl/3BwC4PBROAIAqZ7FYSv2aOXOmv0MEAMBLqL8DAADUPCdPnvT8ee3atZoxY4YOHDjgGYuMjNSnn35q+nMLCgpkt9srJEYAAH6MjhMAoMrFxcV5vmrXri2LxeI1FhkZ6Tl2586d6ty5syIiItStWzevAmvmzJnq0KGDVqxYoauvvlphYWGSpLNnz2r06NGKiYlRdHS0brrpJu3du9dz3t69e3XjjTcqKipK0dHR6tSpU7FC7f3331fr1q0VGRmpm2++2avYc7lcmj17tho1aiSHw6EOHTpo48aNpd7zhg0b1KJFC4WHh+vGG2/U0aNHr+RbCACoYhROAICANm3aND3zzDP69NNPFRoaqvvvv9/r/UOHDunPf/6z3n77bc+aorvvvlunTp3Se++9p507d6pjx47q06ePvv32W0nSsGHD1KhRI33yySfauXOnpkyZIpvN5vnM3NxcLViwQK+99po2b96s48eP65FHHvG8v3jxYj3zzDNasGCB/vnPfyopKUm33XabDh486PMeTpw4oTvvvFMDBw7Unj17NHr0aE2ZMqWCv1MAgMrEVD0AQEB76qmn1Lt3b0nSlClTNGDAAOXl5Xm6SwUFBXr11VcVExMjSdqyZYt27NihU6dOyeFwSJIWLFigdevW6a233tLYsWN1/PhxPfroo2rVqpUkqXnz5l7XdDqdWrZsmZo1ayZJmjBhgmbPnu15f8GCBXrsscf0q1/9SpI0f/58bdq0SYsWLdKSJUuK3cPSpUvVrFkzPfPMM5Kkli1b6rPPPtP8+fMr7PsEAKhcdJwAAAHtuuuu8/w5Pj5eknTq1CnPWOPGjT1Fk3RpGt758+f185//XJGRkZ6vr776SocPH5YkpaSkaPTo0erbt6/mzZvnGXeLiIjwFE3u67qvmZOTo2+++Ubdu3f3Oqd79+7at2+fz3vYt2+funbt6jWWmJhY7u8BAMD/6DgBAALaj6fQWSwWSZfWGLnVqlXL6/jz588rPj5emZmZxT7Lvc34zJkzNXToUK1fv17vvfeeUlNT9cYbb+iOO+4odk33dQ3DqIjbAQAEKTpOAIBqpWPHjsrKylJoaKiuueYar6969ep5jmvRooUmTZqktLQ03XnnnXr55ZfL9fnR0dFq0KCBtm7d6jW+detWtWnTxuc5rVu31o4dO7zGPv74Y5N3BgDwJwonAEC10rdvXyUmJmrQoEFKS0vT0aNHtW3bNk2bNk2ffvqpLl68qAkTJigzM1PHjh3T1q1b9cknn6h169blvsajjz6q+fPna+3atTpw4ICmTJmiPXv2aOLEiT6Pf+CBB3Tw4EE9+uijOnDggNasWaNVq1ZV0B0DAKoCU/UAANWKxWLRhg0bNG3aNI0cOVKnT59WXFycevXqpdjYWFmtVv3nP//RiBEjlJ2drXr16unOO+/UrFmzyn2N3/72t/ruu+/08MMP69SpU2rTpo3efffdYptMuF111VX685//rEmTJumPf/yjunTpojlz5hTbIRAAELgsBpO2AQAAAKBUTNUDAAAAgDJQOAEAAABAGSicAAAAAKAMFE4AAAAAUAYKJwAAAAAoA4UTAAAAAJSBwgkAAAAAykDhBAAAAABloHACAAAAgDJQOAEAAABAGSicAAAAAKAM/w+OTKh6AQfXKAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "threshold = 0.5 # 임계값 설정\n", + "\n", + "# 모델 출력을 이진 형태로 변환 (np.int 대신 np.int32 사용)\n", + "output_binary = (output > threshold).astype(np.int32)\n", + "label_flat = label.flatten().astype(np.int32)\n", + "output_flat = output_binary.flatten().astype(np.int32)\n", + "\n", + "# 데이터 유형과 형태 확인\n", + "print(\"Data types: \", label_flat.dtype, output_flat.dtype)\n", + "print(\"Shapes: \", label_flat.shape, output_flat.shape)\n", + "\n", + "# 데이터 샘플 출력\n", + "print(\"Label sample: \", label_flat[:len(test_set)])\n", + "print(\"Output sample: \", output_flat[:len(test_set)])\n", + "\n", + "# 이진화된 출력으로 지표 계산\n", + "try:\n", + " accuracy = accuracy_score(label_flat, output_flat)\n", + " precision = precision_score(label_flat, output_flat, average='binary')\n", + " recall = recall_score(label_flat, output_flat, average='binary')\n", + " f1 = f1_score(label_flat, output_flat, average='binary')\n", + "\n", + " print(f\"Accuracy: {accuracy}\")\n", + " print(f\"Precision: {precision}\")\n", + " print(f\"Recall: {recall}\")\n", + " print(f\"F1 Score: {f1}\")\n", + "except ValueError as e:\n", + " print(\"Error in metric calculation: \", e)\n", + "\n", + "# Confusion Matrix 계산 및 시각화\n", + "cm = confusion_matrix(label_flat, output_flat)\n", + "plt.figure(figsize=(8, 6))\n", + "plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)\n", + "plt.title('Confusion Matrix')\n", + "plt.colorbar()\n", + "classes = ['Background', 'Object'] # 클래스 이름\n", + "tick_marks = np.arange(len(classes))\n", + "plt.xticks(tick_marks, classes, rotation=45)\n", + "plt.yticks(tick_marks, classes)\n", + "\n", + "# 텍스트 추가\n", + "thresh = cm.max() / 2.\n", + "for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n", + " plt.text(j, i, format(cm[i, j], 'd'),\n", + " horizontalalignment=\"center\",\n", + " color=\"white\" if cm[i, j] > thresh else \"black\")\n", + "\n", + "plt.ylabel('True label')\n", + "plt.xlabel('Predicted label')\n", + "plt.tight_layout()\n", + "\n", + "# PR Curve 계산 및 시각화\n", + "precision_array, recall_array, _ = precision_recall_curve(label_flat, output_flat)\n", + "plt.figure()\n", + "plt.plot(recall_array, precision_array, label='PR Curve')\n", + "plt.xlabel('Recall')\n", + "plt.ylabel('Precision')\n", + "plt.title('Precision-Recall Curve')\n", + "plt.legend()\n", + "plt.show()\n", + "\n", + "# 여러 임계값에 대한 F1 점수 계산\n", + "thresholds = np.linspace(0, 1, num=100)\n", + "f1_scores = []\n", + "\n", + "for t in thresholds:\n", + " output_binary_t = (output > t).astype(np.int32).flatten()\n", + " f1_t = f1_score(label_flat, output_binary_t, average='binary')\n", + " f1_scores.append(f1_t)\n", + "\n", + "# F1 Score Curve 시각화\n", + "plt.figure(figsize=(10, 4))\n", + "plt.plot(thresholds, f1_scores, label='F1 Score Curve')\n", + "plt.xlabel('Threshold')\n", + "plt.ylabel('F1 Score')\n", + "plt.title('F1 Score per Threshold')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB730lEQVR4nO3deViU5f7H8fcAAoKAO7iQuO9i7ktqKYXm0bRMM8u1OpWWZnXKOm51yjY7lVoeza3FMi2trDQ1NVNz1zSXtFxwAbcERQWF5/fH/ZtRFJVl4GHg87quuXjm4ZnhO5Mpn7nv+3s7LMuyEBERERERkWzxsrsAERERERGR/EDhSkRERERExA0UrkRERERERNxA4UpERERERMQNFK5ERERERETcQOFKRERERETEDRSuRERERERE3EDhSkRERERExA0UrkRERERERNxA4UpERERyzKhRo3A4HBw/ftzuUkREcpzClYiIZMnhw4cZNWoUmzdvdvtzL1u2DIfDwZw5c9z+3PmNM7xc6xYbG2t3iSIiBYaP3QWIiIhnOnz4MKNHjyYiIoL69evbXU6B98EHH1CkSJGrzhctWjT3ixERKaAUrkRERPK4s2fPEhAQcN1runXrRsmSJXOpIhERSY+mBYqIeLC+ffsSERFx1XnnVLHLORwOBg0axLx586hTpw5+fn7Url2bBQsWXPX4Q4cO0b9/f0JDQ13XTZ061fX9ZcuW0bhxYwD69evnmoI2ffp0t76+G/nrr7+49957KV68OAEBATRr1ozvvvvuquvGjRtH7dq1CQgIoFixYjRq1IiZM2e6vn/69GmGDBlCREQEfn5+lC5dmttvv52NGzde9+c73+edO3fSvXt3goODKVGiBIMHD+b8+fNXXf/JJ5/QsGFDChcuTPHixbnvvvuIiYlJc82tt95KnTp12LBhA61btyYgIIAXXnghi+/QJc6plrNmzeKFF14gLCyMwMBAOnfufFUNALNnz3bVWrJkSR544AEOHTp01XXO116qVCkKFy5M9erVefHFF6+67tSpU/Tt25eiRYsSEhJCv379OHv2bLZfl4hIXqKRKxGRAuSXX37hq6++4vHHHycoKIj33nuPe+65hwMHDlCiRAkA4uLiaNasmSuMlSpVih9++IEBAwaQkJDAkCFDqFmzJi+99BIjRozgkUceoVWrVgC0aNEi115LXFwcLVq04OzZszz55JOUKFGCGTNm0LlzZ+bMmUPXrl0BmDx5Mk8++STdunVzhZ7ffvuNNWvWcP/99wPw6KOPMmfOHAYNGkStWrU4ceIEv/zyCzt27KBBgwY3rKV79+5EREQwZswYfv31V9577z3+/vtvPvroI9c1r7zyCsOHD6d79+489NBDHDt2jHHjxtG6dWs2bdqUZvreiRMn6NChA/fddx8PPPAAoaGhN6zh5MmTV53z8fG5alrgK6+8gsPh4LnnnuPo0aO88847REVFsXnzZgoXLgzA9OnT6devH40bN2bMmDHExcXx7rvvsnLlyjS1/vbbb7Rq1YpChQrxyCOPEBERwZ9//sm3337LK6+8ctV7VLFiRcaMGcPGjRv58MMPKV26NK+//voNX5uIiMewRETEY/Xp08eqUKHCVedHjhxpXflXPGD5+vpae/bscZ3bsmWLBVjjxo1znRswYIBVpkwZ6/jx42kef99991khISHW2bNnLcuyrHXr1lmANW3aNPe9oP+3dOlSC7Bmz559zWuGDBliAdaKFStc506fPm1VrFjRioiIsFJSUizLsqy77rrLql279nV/XkhIiDVw4MBM1+l8nzt37pzm/OOPP24B1pYtWyzLsqx9+/ZZ3t7e1iuvvJLmuq1bt1o+Pj5pzrdp08YCrIkTJ2aqhvRu1atXd13nfE/LlStnJSQkuM5/8cUXFmC9++67lmVZVnJyslW6dGmrTp061rlz51zXzZ8/3wKsESNGuM61bt3aCgoKsvbv35+mptTU1Kvq69+/f5prunbtapUoUSJDr1FExFNoWqCISAESFRVF5cqVXffr1atHcHAwf/31FwCWZfHll1/SqVMnLMvi+PHjrlt0dDTx8fE3nCqXW77//nuaNGnCLbfc4jpXpEgRHnnkEfbt28f27dsB09Dh4MGDrFu37prPVbRoUdasWcPhw4ezVMvAgQPT3H/iiSdcNQJ89dVXpKam0r179zTvaVhYGFWrVmXp0qVpHu/n50e/fv0yVcOXX37JokWL0tymTZt21XW9e/cmKCjIdb9bt26UKVPGVev69es5evQojz/+OP7+/q7rOnbsSI0aNVzTLo8dO8bPP/9M//79uemmm9L8jCunpIIZHbxcq1atOHHiBAkJCZl6nSIieZmmBYqIFCBX/hIMUKxYMf7++2/A/MJ86tQpJk2axKRJk9J9jqNHj2b65yYnJ181ba1UqVJ4e3tn+rmc9u/fT9OmTa86X7NmTdf369Spw3PPPcfixYtp0qQJVapU4Y477uD++++nZcuWrse88cYb9OnTh/DwcBo2bMidd95J7969qVSpUoZqqVq1apr7lStXxsvLi3379gGwe/duLMu66jqnQoUKpblfrlw5fH19M/SznVq3bp2hhhZX1uBwOKhSpYqr1v379wNQvXr1qx5bo0YNfvnlFwBXIK9Tp06G6rvyz16xYsUA+PvvvwkODs7Qc4iI5HUKVyIiHiy9EQKAlJSUdM9fK8xYlgVAamoqAA888AB9+vRJ99p69epltkxWrVrFbbfdlubc3r17023G4W41a9Zk165dzJ8/nwULFvDll1/y/vvvM2LECEaPHg2Y9UCtWrVi7ty5/Pjjj7z55pu8/vrrfPXVV3To0CHTP/PK/y6pqak4HA5++OGHdP8bXNlC3bn2KT+50Z89EZH8QOFKRMSDFStWjFOnTl113jn6kFmlSpUiKCiIlJQUoqKirnvttYJdeiIjI1m0aFGac2FhYVmq0alChQrs2rXrqvM7d+50fd8pMDCQHj160KNHD5KTk7n77rt55ZVXGDZsmGvqW5kyZXj88cd5/PHHOXr0KA0aNOCVV17JULjavXs3FStWdN3fs2cPqamprvBYuXJlLMuiYsWKVKtWLTsvO9t2796d5r5lWezZs8cVmp3v265du2jbtm2aa3ft2uX6vnNUb9u2bTldsoiIx9CaKxERD1a5cmXi4+P57bffXOeOHDnC3Llzs/R83t7e3HPPPXz55Zfp/tJ87Ngx13FgYCBAuuHuSsWKFSMqKirN7fL1PFlx5513snbtWlavXu06l5iYyKRJk4iIiKBWrVqA6bx3OV9fX2rVqoVlWVy4cIGUlBTi4+PTXFO6dGnKli1LUlJShmqZMGFCmvvjxo0DcAWzu+++G29vb0aPHn3VSI1lWVfVmJM++ugjTp8+7bo/Z84cjhw54qq1UaNGlC5dmokTJ6Z5/T/88AM7duygY8eOgAnirVu3ZurUqRw4cCDNz9BolIgUVBq5EhHxYPfddx/PPfccXbt25cknn+Ts2bN88MEHVKtWLcuNJ1577TWWLl1K06ZNefjhh6lVqxYnT55k48aNLF682LV2qnLlyhQtWpSJEycSFBREYGAgTZs2TTOCk11ffvmlayTqcn369OH555/ns88+o0OHDjz55JMUL16cGTNmsHfvXr788ku8vMznh3fccQdhYWG0bNmS0NBQduzYwfjx4+nYsSNBQUGcOnWK8uXL061bNyIjIylSpAiLFy9m3bp1jB07NkN17t27l86dO9O+fXtWr17NJ598wv33309kZKTrvfrPf/7DsGHD2LdvH126dCEoKIi9e/cyd+5cHnnkEZ555plsvVdz5sy5anohwO23356mlXvx4sW55ZZb6NevH3FxcbzzzjtUqVKFhx9+GDDrv15//XX69etHmzZt6Nmzp6sVe0REBE899ZTrud577z1uueUWGjRowCOPPELFihXZt28f3333HZs3b87W6xER8Ug2dSkUERE3+fHHH606depYvr6+VvXq1a1PPvnkmq3Y02s3XqFCBatPnz5pzsXFxVkDBw60wsPDrUKFCllhYWFWu3btrEmTJqW57uuvv7Zq1apl+fj4uLUtu7Nt+LVuzvbrf/75p9WtWzeraNGilr+/v9WkSRNr/vz5aZ7rf//7n9W6dWurRIkSlp+fn1W5cmXr2WefteLj4y3LsqykpCTr2WeftSIjI62goCArMDDQioyMtN5///0b1ul8n7dv325169bNCgoKsooVK2YNGjQoTRtzpy+//NK65ZZbrMDAQCswMNCqUaOGNXDgQGvXrl2ua9q0aXPD1vHp1XCt29KlS9O8p5999pk1bNgwq3Tp0lbhwoWtjh07XtVK3bIsa9asWdbNN99s+fn5WcWLF7d69eplHTx48Krrtm3bZnXt2tX136B69erW8OHDr6rv2LFjaR43bdo0C7D27t2b4dcqIpLXOSxLY/ciIiJZMWrUKEaPHs2xY8cy1KnPTsuWLeO2225j9uzZdOvWze5yRETyJa25EhERERERcQOFKxERERERETdQuBIREREREXEDrbkSERERERFxA41ciYiIiIiIuIHClYiIiIiIiBtoE+F0pKamcvjwYYKCgnA4HHaXIyIiIiIiNrEsi9OnT1O2bFnXBvXXonCVjsOHDxMeHm53GSIiIiIikkfExMRQvnz5616jcJWOoKAgwLyBwcHBNlcjIiIiIiJ2SUhIIDw83JURrkfhKh3OqYDBwcEKVyIiIiIikqHlQmpoISIiIiIi4gYKVyIiIiIiIm6gcCUiIiIiIuIGWnMlIiIiIh4hJSWFCxcu2F2G5DPe3t74+Pi4ZQsmhSsRERERyfPOnDnDwYMHsSzL7lIkHwoICKBMmTL4+vpm63kUrkREREQkT0tJSeHgwYMEBARQqlQpt4wwiIDZIDg5OZljx46xd+9eqlatesONgq9H4UpERERE8rQLFy5gWRalSpWicOHCdpcj+UzhwoUpVKgQ+/fvJzk5GX9//yw/lxpaiIiIiIhH0IiV5JTsjFaleR63PIuIiIiIiEgBp3AlIiIiIiLiBgpXIiIiIiIeIiIignfeecfuMuQaFK5ERERERNzM4XBc9zZq1KgsPe+6det45JFHslXbrbfeypAhQ7L1HJI+dQsUEREREXGzI0eOuI5nzZrFiBEj2LVrl+tckSJFXMeWZZGSkoKPz41/NS9VqpR7CxW30siV5IwlS6BdO1iwwO5KREREJJ+xLEhMtOeW0T2Mw8LCXLeQkBAcDofr/s6dOwkKCuKHH36gYcOG+Pn58csvv/Dnn39y1113ERoaSpEiRWjcuDGLFy9O87xXTgt0OBx8+OGHdO3alYCAAKpWrco333yTrff3yy+/pHbt2vj5+REREcHYsWPTfP/999+natWq+Pv7ExoaSrdu3VzfmzNnDnXr1qVw4cKUKFGCqKgoEhMTs1WPJ9HIlbhXSgq88gqMGmX+9jl/Htq3t7sqERERyUfOnoXLBn5y1ZkzEBjonud6/vnneeutt6hUqRLFihUjJiaGO++8k1deeQU/Pz8++ugjOnXqxK5du7jpppuu+TyjR4/mjTfe4M0332TcuHH06tWL/fv3U7x48UzXtGHDBrp3786oUaPo0aMHq1at4vHHH6dEiRL07duX9evX8+STT/Lxxx/TokULTp48yYoVKwAzWtezZ0/eeOMNunbtyunTp1mxYgVWRhNpPqBwJe5z9Cg88AAsWnTp3K+/wt9/Q7Fi9tUlIiIikge99NJL3H777a77xYsXJzIy0nX/5ZdfZu7cuXzzzTcMGjToms/Tt29fevbsCcCrr77Ke++9x9q1a2mfhQ+43377bdq1a8fw4cMBqFatGtu3b+fNN9+kb9++HDhwgMDAQP7xj38QFBREhQoVuPnmmwETri5evMjdd99NhQoVAKhbt26ma/BkmhYo7rFiBdx8swlWAQEwYwbUrAmpqWnDloiIiEg2BQSYESQ7bgEB7nsdjRo1SnP/zJkzPPPMM9SsWZOiRYtSpEgRduzYwYEDB677PPXq1XMdBwYGEhwczNGjR7NU044dO2jZsmWacy1btmT37t2kpKRw++23U6FCBSpVqsSDDz7Ip59+ytmzZwGIjIykXbt21K1bl3vvvZfJkyfz999/Z6kOT6VwJdmTmgpvvAG33QaHD5tAtXYt9O4NHTqYa7TuSkRERNzI4TBT8+y4ORzuex2BV8wvfOaZZ5g7dy6vvvoqK1asYPPmzdStW5fk5OTrPk+hQoWueH8cpKamuq/QywQFBbFx40Y+++wzypQpw4gRI4iMjOTUqVN4e3uzaNEifvjhB2rVqsW4ceOoXr06e/fuzZFa8iKFK8m6kyfhrrvguefMWqtevUywql3bfP/ycFWA5tqKiIiIZMXKlSvp27cvXbt2pW7duoSFhbFv375craFmzZqsXLnyqrqqVauGt7c3AD4+PkRFRfHGG2/w22+/sW/fPn766SfABLuWLVsyevRoNm3ahK+vL3Pnzs3V12AnrbmSrFm7Frp3h/37wc8P3nsPHn447cc5rVqZsfMjR+C33+CyOcQiIiIiklbVqlX56quv6NSpEw6Hg+HDh+fYCNSxY8fYvHlzmnNlypTh6aefpnHjxrz88sv06NGD1atXM378eN5//30A5s+fz19//UXr1q0pVqwY33//PampqVSvXp01a9awZMkS7rjjDkqXLs2aNWs4duwYNWvWzJHXkBdp5Eoyx7JMkLrlFhOsKleG1avhkUeuHif384O2bc3xDz/kfq0iIiIiHuTtt9+mWLFitGjRgk6dOhEdHU2DBg1y5GfNnDmTm2++Oc1t8uTJNGjQgC+++ILPP/+cOnXqMGLECF566SX69u0LQNGiRfnqq69o27YtNWvWZOLEiXz22WfUrl2b4OBgfv75Z+68806qVavGv//9b8aOHUsH52ymAsBhFaTeiBmUkJBASEgI8fHxBAcH211O3hEfDw89BHPmmPv33ANTpkBIyLUfM2ECDBoEbdrAsmW5UqaIiIjkL+fPn2fv3r1UrFgRf39/u8uRfOh6f8Yykw00ciUZs3kzNGpkglWhQvDuuzB79vWDFVxad7VyJSQk5HiZIiIiIiJ2sT1cTZgwgYiICPz9/WnatClr16697vWzZ8+mRo0a+Pv7U7duXb7//vs03z9z5gyDBg2ifPnyFC5cmFq1ajFx4sScfAn5m2XB5MnQrBns2QM33WTarj/5ZMba5VSqBFWrwsWLsGRJztcrIiIiImITW8PVrFmzGDp0KCNHjmTjxo1ERkYSHR19zb78q1atomfPngwYMIBNmzbRpUsXunTpwrZt21zXDB06lAULFvDJJ5+wY8cOhgwZwqBBg/jmm29y62XlH2fOmJbqjzwCSUnQsSNs2gRNm2bueZyjV1p3JSIiIiL5mK3h6u233+bhhx+mX79+rhGmgIAApk6dmu717777Lu3bt+fZZ5+lZs2avPzyyzRo0IDx48e7rlm1ahV9+vTh1ltvJSIigkceeYTIyMgbjojJFbZvhyZN4JNPwNsbXn8dvvkGihfP/HM5dwdXS3YRERERycdsC1fJycls2LCBqKioS8V4eREVFcXq1avTfczq1avTXA8QHR2d5voWLVrwzTffcOjQISzLYunSpfzxxx/ccccd16wlKSmJhISENLcC7eOPoXFj2LEDypaFpUvhX/8Cryz+cbn1VvD3h5gYE9pERERERPIh28LV8ePHSUlJITQ0NM350NBQYmNj031MbGzsDa8fN24ctWrVonz58vj6+tK+fXsmTJhA69atr1nLmDFjCAkJcd3Cw8Oz8co82LlzZgpg795w9ixERZlpgK1aZe95Cxc23QLBjF6JiIiIiORDtje0cLdx48bx66+/8s0337BhwwbGjh3LwIEDWbx48TUfM2zYMOLj4123mJiYXKw4j9i9G5o3N80rHA4YNcoEodKl3fP8WnclIiIiIvmcj10/uGTJknh7exMXF5fmfFxcHGFhYek+Jiws7LrXnzt3jhdeeIG5c+fSsWNHAOrVq8fmzZt56623rppS6OTn54efn192X5Lnmj0bBgyA06ehVCmYOdOMWrmTc93VihWmUUaRIu59fhERERERm9k2cuXr60vDhg1Zcll77tTUVJYsWULz5s3TfUzz5s3TXA+waNEi1/UXLlzgwoULeF2xNsjb25vU1FQ3v4J8ICnJtFTv3t0Eq1atzH5W7g5WANWqQcWKkJxs1nCJiIiIiOQztk4LHDp0KJMnT2bGjBns2LGDxx57jMTERPr16wdA7969GTZsmOv6wYMHs2DBAsaOHcvOnTsZNWoU69evZ9CgQQAEBwfTpk0bnn32WZYtW8bevXuZPn06H330EV27drXlNeZZ+/aZMDVunLn//PPw00+mgUVOcDgujV5paqCIiIhIhtx6660MGTLEdT8iIoJ33nnnuo9xOBzMmzcv2z/bXc9TkNgarnr06MFbb73FiBEjqF+/Pps3b2bBggWuphUHDhzgyJEjrutbtGjBzJkzmTRpEpGRkcyZM4d58+ZRp04d1zWff/45jRs3plevXtSqVYvXXnuNV155hUcffTTXX1+e9e23cPPNsG4dFCsG8+fDmDHgk8OzRC9fd6WW7CIiIpKPderUifbOD5avsGLFChwOB7/99lumn3fdunU88sgj2S0vjVGjRlG/fv2rzh85coQOzt/fcsj06dMpWrRojv6M3GTbmiunQYMGuUaerrRs2bKrzt17773ce++913y+sLAwpk2b5q7y8pcLF+DFF+HNN839pk1h1iyoUCF3fv5tt4Gvrxk1++MPqF49d36uiIiISC4bMGAA99xzDwcPHqR8+fJpvjdt2jQaNWpEvXr1Mv28pUqVcleJN3StPghybfmuW6Bcw6FD0LbtpWA1ZAj8/HPuBSswTSycbd3Vkl1ERESyyrIgMdGeWwZn3/zjH/+gVKlSTJ8+Pc35M2fOMHv2bAYMGMCJEyfo2bMn5cqVIyAggLp16/LZZ59d93mvnBa4e/duWrdujb+/P7Vq1WLRokVXPea5556jWrVqBAQEUKlSJYYPH86FCxcAM3I0evRotmzZgsPhwOFwuGq+clrg1q1badu2LYULF6ZEiRI88sgjnDlzxvX9vn370qVLF9566y3KlClDiRIlGDhwoOtnZcWBAwe46667KFKkCMHBwXTv3j1Ng7stW7Zw2223ERQURHBwMA0bNmT9+vUA7N+/n06dOlGsWDECAwOpXbs233//fZZryQjbR64kF/z4I/TqBcePQ3AwTJ0K99xjTy3t28OSJWZq4ODB9tQgIiIinu3sWfs6D585A4GBN7zMx8eH3r17M336dF588UUcDgcAs2fPJiUlhZ49e3LmzBkaNmzIc889R3BwMN999x0PPvgglStXpkmTJjf8Gampqdx9992EhoayZs0a4uPj06zPcgoKCmL69OmULVuWrVu38vDDDxMUFMS//vUvevTowbZt21iwYIFr66KQkJCrniMxMZHo6GiaN2/OunXrOHr0KA899BCDBg1KEyCXLl1KmTJlWLp0KXv27KFHjx7Ur1+fhx9++IavJ73X5wxWy5cv5+LFiwwcOJAePXq4Zrj16tWLm2++mQ8++ABvb282b95MoUKFABg4cCDJycn8/PPPBAYGsn37dork9J8bS64SHx9vAVZ8fLzdpWTPxYuWNWKEZTkclgWWVb++Ze3ebW9N27aZWvz9LevsWXtrEREREY9w7tw5a/v27da5c+fMiTNnzO8TdtzOnMlw3Tt27LAAa+nSpa5zrVq1sh544IFrPqZjx47W008/7brfpk0ba/Dgwa77FSpUsP773/9almVZCxcutHx8fKxDhw65vv/DDz9YgDV37txr/ow333zTatiwoev+yJEjrcjIyKuuu/x5Jk2aZBUrVsw6c9nr/+677ywvLy8rNjbWsizL6tOnj1WhQgXr4sWLrmvuvfdeq0ePHtesZdq0aVZISEi63/vxxx8tb29v68CBA65zv//+uwVYa9eutSzLsoKCgqzp06en+/i6detao0aNuubPvtxVf8Yuk5lsoJGr/CouDu6/33QABPjnP+Gdd8Df39ayqFULwsMhJgaWLbvU5EJEREQkowICzAiSXT87g2rUqEGLFi2YOnUqt956K3v27GHFihW89NJLAKSkpPDqq6/yxRdfcOjQIZKTk0lKSiIggz9jx44dhIeHU/aybs/pbWk0a9Ys3nvvPf7880/OnDnDxYsXCQ4OzvDrcP6syMhIAi8btWvZsiWpqans2rXL1ZCudu3aeHt7u64pU6YMW7duzdTPuvxnhoeHEx4e7jpXq1YtihYtyo4dO2jcuDFDhw7loYce4uOPPyYqKop7772XypUrA/Dkk0/y2GOP8eOPPxIVFcU999yTpXVumaE1V/nR8uVQv74JVoGB8MknMHGi/cEK0rZk17orERERyQqHw/yOY8ft/6f3ZdSAAQP48ssvOX36NNOmTaNy5cq0adMGgDfffJN3332X5557jqVLl7J582aio6NJTk5221u1evVqevXqxZ133sn8+fPZtGkTL774olt/xuWcU/KcHA5Hju43O2rUKH7//Xc6duzITz/9RK1atZg7dy4ADz30EH/99RcPPvggW7dupVGjRoxzbkOUQxSu8pPUVNNSvW1biI2F2rVNu/VeveyuLK3LW7KLiIiI5GPdu3fHy8uLmTNn8tFHH9G/f3/X+quVK1dy11138cADDxAZGUmlSpX4448/MvzcNWvWJCYmJs3WRb/++muaa1atWkWFChV48cUXadSoEVWrVmX//v1prvH19SUlJeWGP2vLli0kJia6zq1cuRIvLy+q51AHaOfri4mJcZ3bvn07p06dolatWq5z1apV46mnnuLHH3/k7rvvTtM5PDw8nEcffZSvvvqKp59+msmTJ+dIrU4KV/nFiRPwj3/ACy+YkNW7N6xZAzVr2l3Z1dq1M3tq7d4Nf/5pdzUiIiIiOaZIkSL06NGDYcOGceTIEfr27ev6XtWqVVm0aBGrVq1ix44d/POf/0zTCe9GoqKiqFatGn369GHLli2sWLGCF198Mc01VatW5cCBA3z++ef8+eefvPfee66RHaeIiAj27t3L5s2bOX78OElJSVf9rF69euHv70+fPn3Ytm0bS5cu5YknnuDBBx90TQnMqpSUFDZv3pzmtmPHDqKioqhbty69evVi48aNrF27lt69e9OmTRsaNWrEuXPnGDRoEMuWLWP//v2sXLmSdevWUfP/f/8dMmQICxcuZO/evWzcuJGlS5e6vpdTFK7yg19/NZsC//CDmfo3ZQpMn56hTja2CA6Gli3NsaYGioiISD43YMAA/v77b6Kjo9Osj/r3v/9NgwYNiI6O5tZbbyUsLIwuXbpk+Hm9vLyYO3cu586do0mTJjz00EO88soraa7p3LkzTz31FIMGDaJ+/fqsWrWK4cOHp7nmnnvuoX379tx2222UKlUq3XbwAQEBLFy4kJMnT9K4cWO6detGu3btGD9+fObejHScOXOGm2++Oc2tU6dOOBwOvv76a4oVK0br1q2JioqiUqVKzJo1CwBvb29OnDhB7969qVatGt27d6dDhw6MHj0aMKFt4MCB1KxZk/bt21OtWjXef//9bNd7PQ7LymCz/gIkISGBkJAQ4uPjM73YL1dZlmlS8a9/wcWLULUqzJ4NkZF2V3Zjr70Gw4aZ0bZvv7W7GhEREcnDzp8/z969e6lYsSL+eWENueQ71/szlplsoJErT3XqlNmrauhQE6y6d4f16z0jWMGldVc//QTnz9tbi4iIiIiIGyhceaKNG6FhQ5g7FwoVgvHj4fPPzXQ7T1GvHpQpYzYB/OUXu6sREREREck2hStPYlmmpXrz5vDXXxARAStXwsCBmW4LarvLW7Kra6CIiIiI5AMKV57i9GnTUv2xxyA5GTp3NiNYjRvbXVnWab8rEREREclHFK48wdatJkR99hl4e8Nbb8G8eVCsmN2VZc/tt4OXF2zfDgcO2F2NiIiI5HHqwyY5xV1/thSu8rrp06FpU9i1C8qVg+XL4emnPW8aYHqKFYNmzcyxRq9ERETkGry9vQFITk62uRLJr86ePQtAoUKFsvU8Pu4oRnLA2bPwxBMwdaq5Hx0NH38MpUrZW5e7degAq1aZdVePPGJ3NSIiIpIH+fj4EBAQwLFjxyhUqBBeXhofEPewLIuzZ89y9OhRihYt6gryWaV9rtJh+z5Xu3bBvfea6YBeXjB6NLzwgjnOb9avN1MeixSBEyfA19fuikRERCQPSk5OZu/evaSmptpdiuRDRYsWJSwsDEc6s8Mykw00cpXXzJoFDz0EZ85AaCjMnAlt29pdVc5p0MCMxh07Zkawbr3V7opEREQkD/L19aVq1aqaGihuV6hQoWyPWDkpXOUVSUlmQ+D33zf327QxDSzKlLG3rpzm5WWmPH7yiZkaqHAlIiIi1+Dl5YW/v7/dZYhcUz6cZ+aB/voLWra8FKxefBEWL87/wcqpQwfzVU0tRERERMSDKVzZ7euvzdS4DRugRAn4/nv4z3/ApwANKt5xh+l++NtvcOiQ3dWIiIiIiGSJwpVdLlwwLdW7dIH4eGjeHDZtujSKU5CULHlpM+SFC+2tRUREREQkixSu7BATY9ZUvf22uf/002b/qvBwe+uykzNU/vCDvXWIiIiIiGSRwlVuW7AAbr4ZVq+GkBCYOxfeeguyuWGZx2vf3nxdtAguXrS3FhERERGRLFC4yi0XL8K//21GaE6cgIYNYeNGMy1QzLTA4sXNFMlff7W7GhERERGRTFO4yg1HjsDtt8Mrr5j7jz8Ov/wClSrZW1de4u1tGluAugaKiIiIiEdSuMppS5eaaYDLlkGRImbvqgkTQHs0XE3rrkRERETEgylc5ZTUVNNSPSoK4uKgbl1Yvx7uu8/uyvKu6GjzdeNG856JiIiIiHgQhauccOwY3HknDB9uQlb//mYdUfXqdleWt4WGmj2/QC3ZRURERMTjKFy528qVZhrgwoVQuDBMmwZTpkBAgN2VeQZn10CtuxIRERERD6Nw5S6WBWPHmv2rDh0yo1Rr1kDfvnZX5lmc664WLoSUFHtrERERERHJBIUrd/j7b+jaFZ55xgSCnj1h3Tqzzkoyp1kzs//XyZNmjZqIiIiIiIdQuMqu9evNOqGvvwZfX/jgA/j0UwgKsrsyz+TjY9rWg7oGioiIiIhHUbjKKssyLdVbtoR9+8yeVatXw6OPgsNhd3WezbnuSuFKRERERDyIwlVWJCSYluqDBkFyspkSuGHDpU53kj3OcLVuHRw/bm8tIiIiIiIZlCfC1YQJE4iIiMDf35+mTZuydu3a614/e/ZsatSogb+/P3Xr1uX7779P832Hw5Hu7c0338x+sVu2QKNG8MUXZgrbf/8LX34JRYtm/7nFKFfOrFezLPjxR7urERERERHJENvD1axZsxg6dCgjR45k48aNREZGEh0dzdGjR9O9ftWqVfTs2ZMBAwawadMmunTpQpcuXdi2bZvrmiNHjqS5TZ06FYfDwT333JP1Qi3LtFRv1gx274bwcFixAoYM0TTAnODsGqiW7CIiIiLiIRyWZVl2FtC0aVMaN27M+PHjAUhNTSU8PJwnnniC559//qrre/ToQWJiIvPnz3eda9asGfXr12fixInp/owuXbpw+vRplixZkqGaEhISCAkJIT4+nuDgYEhMhIEDYcYMc0GHDvDxx1CiRCZfrWTY0qXQti2UKgWxseBl++cAIiIiIlIAXZUNrsPW31iTk5PZsGEDUVFRrnNeXl5ERUWxevXqdB+zevXqNNcDREdHX/P6uLg4vvvuOwYMGHDNOpKSkkhISEhzc9mxA5o2NcHKywtefRXmz1ewymktW0KRInDsGGzaZHc1IiIiIiI3ZGu4On78OCkpKYSGhqY5HxoaSmxsbLqPiY2NzdT1M2bMICgoiLvvvvuadYwZM4aQkBDXLTw83Hzjiy+gcWP4/XcIC4OffoJhwzSKkht8faFdO3OsroEiIiIi4gHyfUqYOnUqvXr1wt/f/5rXDBs2jPj4eNctJibGfOPhh82UwLZtYfNmaNMmd4oWQ+uuRERERMSD+Nj5w0uWLIm3tzdxcXFpzsfFxREWFpbuY8LCwjJ8/YoVK9i1axezZs26bh1+fn74+fml/80RI8zN2/u6zyE5wNmSffVq+PtvKFbM3npERERERK7D1pErX19fGjZsmKbRRGpqKkuWLKF58+bpPqZ58+ZXNaZYtGhRutdPmTKFhg0bEhkZmbUCv/oKRo9WsLJLhQpQsyakpsLixXZXIyIiIiJyXbZPCxw6dCiTJ09mxowZ7Nixg8cee4zExET69esHQO/evRk2bJjr+sGDB7NgwQLGjh3Lzp07GTVqFOvXr2fQoEFpnjchIYHZs2fz0EMPZb0455ofsY9zaqDWXYmIiIhIHmfrtEAwrdWPHTvGiBEjiI2NpX79+ixYsMDVtOLAgQN4XdZAokWLFsycOZN///vfvPDCC1StWpV58+ZRp06dNM/7+eefY1kWPXv2zNXXI27Wvj28/bZZd2VZ2lNMRERERPIs2/e5yosy08tectj586bt/dmzpqlIVqd4ioiIiIhkgcfscyVyQ/7+cNtt5lhdA0VEREQkD1O4krxP665ERERExAMoXEne52zJvnIlJCTYW4uIiIiIyDUoXEneV7kyVK0KFy/CFW34RURERETyCoUr8QzO0SutuxIRERGRPErhSjzD5euu1OBSRERERPIghSvxDG3agJ8fxMTA9u12VyMiIiIichWFK/EMAQFw663mWFMDRURERCQPUrgSz+Fcd6WW7CIiIiKSBylciedwrrtasQLOnLG3FhERERGRKyhcieeoVg0iIiA5GZYutbsaEREREZE0FK7Eczgcl0avtO5KRERERPIYhSvxLJevu1JLdhERERHJQxSuxLO0bQu+vrB3L+zebXc1IiIiIiIuClfiWYoUgVatzLG6BoqIiIhIHqJwJZ7HOTVQ665EREREJA9RuBLP42xqsWwZnDtnaykiIiIiIk4KV+J5atWC8uXh/HlYvtzuakREREREAIUr8USXt2TXuisRERERySMUrsQzad2ViIiIiOQxClfimdq1Ax8f+OMP+Osvu6sREREREVG4Eg8VEgItWphjjV6JiIiISB6gcCWeS+uuRERERCQPUbgSz+Vcd/XTT5CUZG8tIiIiIlLgKVyJ54qMhLAwOHsWVqywuxoRERERKeAUrsRzORyXRq80NVBEREREbKZwJZ7Nue5KTS1ERERExGYKV+LZoqLAywu2b4cDB+yuRkREREQKMIUr8WzFi0OzZuZYo1ciIiIiYiOFK/F8WnclIiIiInmAwpV4Pue6qyVLIDnZ3lpEREREpMBSuBLP16ABlCoFp0/DqlV2VyMiIiIiBZTClXg+Ly+IjjbHWnclIiIiIjZRuJL8wTk1UOuuRERERMQmtoerCRMmEBERgb+/P02bNmXt2rXXvX727NnUqFEDf39/6taty/fff3/VNTt27KBz586EhIQQGBhI48aNOaA23fnbHXeYTYV/+w0OH7a7GhEREREpgGwNV7NmzWLo0KGMHDmSjRs3EhkZSXR0NEePHk33+lWrVtGzZ08GDBjApk2b6NKlC126dGHbtm2ua/78809uueUWatSowbJly/jtt98YPnw4/v7+ma7v4sUsvzTJbSVLQuPG5lhTA0VERETEBg7Lsiy7fnjTpk1p3Lgx48ePByA1NZXw8HCeeOIJnn/++auu79GjB4mJicyfP991rlmzZtSvX5+JEycCcN9991GoUCE+/vjjLNeVkJBASEgIn38eT48ewVl+HsllI0fCSy/BvffCF1/YXY2IiIiI5APObBAfH09w8PWzgW0jV8nJyWzYsIGoqKhLxXh5ERUVxerVq9N9zOrVq9NcDxAdHe26PjU1le+++45q1aoRHR1N6dKladq0KfPmzbtuLUlJSSQkJKS5AcyYkY0XKLnPue5q0SINO4qIiIhIrrMtXB0/fpyUlBRCQ0PTnA8NDSU2Njbdx8TGxl73+qNHj3LmzBlee+012rdvz48//kjXrl25++67Wb58+TVrGTNmDCEhIa5beHg4AAsXwpEj2XmVkqsaN4bixeHUKVizxu5qRERERKSAsb2hhTulpqYCcNddd/HUU09Rv359nn/+ef7xj3+4pg2mZ9iwYcTHx7tuMTEx//988NFHuVK6uIO3t2lsAeoaKCIiIiK5zrZwVbJkSby9vYmLi0tzPi4ujrCwsHQfExYWdt3rS5YsiY+PD7Vq1UpzTc2aNa/bLdDPz4/g4OA0N6cpU8C+VWmSae3bm69qaiEiIiIiucy2cOXr60vDhg1ZsmSJ61xqaipLliyhefPm6T6mefPmaa4HWLRoket6X19fGjduzK5du9Jc88cff1ChQoVM1xgYCLt3w4oVmX6o2MW5mfCGDXBFEBcRERERyUm2TgscOnQokydPZsaMGezYsYPHHnuMxMRE+vXrB0Dv3r0ZNmyY6/rBgwezYMECxo4dy86dOxk1ahTr169n0KBBrmueffZZZs2axeTJk9mzZw/jx4/n22+/5fHHH890fffcY75OmZK91ym5KCwMbr7ZHC9caG8tIiIiIlKg2BquevTowVtvvcWIESOoX78+mzdvZsGCBa6mFQcOHODIZR0lWrRowcyZM5k0aRKRkZHMmTOHefPmUadOHdc1Xbt2ZeLEibzxxhvUrVuXDz/8kC+//JJbbrkl0/X17m2+zp4N8fHZe62Si5xdAzU1UERERERyka37XOVVzl72p07F06JFMNu3w8SJ8M9/2l2ZZMiKFdC6tekcePSoaXQhIiIiIpIFHrHPlSdwOGDAAHP84Yf21iKZ0Lw5hITAyZOwfr3d1YiIiIhIAaFwdQMPPgiFCpnf0X/7ze5qJEN8fMC52bRasouIiIhILlG4uoFSpeCuu8yxGlt4EK27EhEREZFcpnCVAc6pgZ98AufP21uLZJCzJfvatXD8uL21iIiIiEiBoHCVAbffDuHhZgnPvHl2VyMZUr481K1rdoBetMjuakRERESkAFC4ygBvb/j/rbc0NdCTOKcGat2ViIiIiOQChasM6tfPdA9cvBj27bO7GsmQ9u3N14ULITXV3lpEREREJN9TuMqgiAho184cT5tmaymSUS1bQpEiZq+rTZvsrkZERERE8jmFq0xwNraYOhVSUuytRTLA1/dSIlbXQBERERHJYQpXmdClCxQvDgcPqkeCx9C6KxERERHJJQpXmeDvDw88YI7V2MJDONddrV4Nf/9tby0iIiIikq8pXGWSc2rg11/DsWP21iIZUKEC1KxpGlosXmx3NSIiIiKSjylcZVK9etCoEVy4AB9/bHc1kiHO0SutuxIRERGRHKRwlQUPPWS+Tpli9qiVPM657mrBAv0HExEREZEco3CVBffdB4ULw/btsGaN3dXIDbVqBQEBcPgwbN1qdzUiIiIikk8pXGVBSAjce685VmMLD+DvD7fdZo7VNVBEREREcojCVRY5G1t8/jmcOWNvLZIBznVXClciIiIikkMUrrKoVSuoWtUEqy++sLsauSHnuquVKyEhwd5aRERERCRfUrjKIofj0uiVpgZ6gMqVoUoVuHgRliyxuxoRERERyYcUrrKhTx/w9oZVq2DHDrurkRu6vGugiIiIiIibKVxlQ1gYdOxojjV65QEuX3elluwiIiIi4mYKV9nk3PPqo48gOdneWuQGbr0V/PwgJkZDjSIiIiLidgpX2dShA5QpA8eOwfz5dlcj1xUQAG3amGN1DRQRERERN1O4yiYfH7P2CjQ10CNo3ZWIiIiI5BCFKzfo3998XbAADh60txa5AWe4+vlnbVAmIiIiIm6lcOUGVaua2WapqTB9ut3VyHVVqwYREWaB3LJldlcjIiIiIvmIwpWbOPe8mjrVhCzJoxyOS6NXWnclIiIiIm6kcOUm99wDwcGwd68GRPI8tWQXERERkRygcOUmAQFw//3m+MMP7a1FbqBtWyhUyCTh3bvtrkZERERE8gmFKzdy7nn11Vfw99/21iLXUaQItGpljtU1UERERETcROHKjRo0gMhISEqCTz+1uxq5Lq27EhERERE3U7hyI4fjUmOLDz/Ucp48zbnuatkyOHfO1lJEREREJH9QuHKzXr3Azw+2bIGNG+2uRq6pdm0oXx7On4fly+2uRkRERETyAYUrNyteHO6+2xxPmWJvLXIdDkfaroEiIiIiItmUJ8LVhAkTiIiIwN/fn6ZNm7J27drrXj979mxq1KiBv78/devW5fvvv0/z/b59++JwONLc2jt/kc4FzqmBM2dqxlme5lx3paYWIiIiIuIGtoerWbNmMXToUEaOHMnGjRuJjIwkOjqao0ePpnv9qlWr6NmzJwMGDGDTpk106dKFLl26sG3btjTXtW/fniNHjrhun332WW68HABuuw0qVoT4ePjyy1z7sZJZ7dqBjw/88Qf89Zfd1YiIiIiIh7M9XL399ts8/PDD9OvXj1q1ajFx4kQCAgKYOnVqute/++67tG/fnmeffZaaNWvy8ssv06BBA8aPH5/mOj8/P8LCwly3YsWK5cbLAcDLC/r3N8fa8yoPCwmBFi3MsUavRERERCSbbA1XycnJbNiwgaioKNc5Ly8voqKiWL16dbqPWb16dZrrAaKjo6+6ftmyZZQuXZrq1avz2GOPceLEiWvWkZSUREJCQppbdvXta0LW8uWwZ0+2n05yitZdiYiIiIib2Bqujh8/TkpKCqGhoWnOh4aGEhsbm+5jYmNjb3h9+/bt+eijj1iyZAmvv/46y5cvp0OHDqSkpKT7nGPGjCEkJMR1Cw8Pz+YrM43ooqPN8TUG4SQvcK67+ukns0GZiIiIiEgW2T4tMCfcd999dO7cmbp169KlSxfmz5/PunXrWLZsWbrXDxs2jPj4eNctJibGLXU4G1tMnw4XL7rlKcXdIiMhLAzOnoUVK+yuRkREREQ8mK3hqmTJknh7exMXF5fmfFxcHGFhYek+JiwsLFPXA1SqVImSJUuy5xrz8/z8/AgODk5zc4dOnaBUKThyRLPO8qzLW7Jr3ZWIiIiIZIOt4crX15eGDRuyZMkS17nU1FSWLFlC8+bN031M8+bN01wPsGjRomteD3Dw4EFOnDhBmTJl3FN4Bvn6Qu/e5lh7XuVhWnclIiIiIm5g+7TAoUOHMnnyZGbMmMGOHTt47LHHSExMpF+/fgD07t2bYcOGua4fPHgwCxYsYOzYsezcuZNRo0axfv16Bg0aBMCZM2d49tln+fXXX9m3bx9LlizhrrvuokqVKkQ7F0HlIufUwPnz4RrLyMRut99uuo9s3w4HDthdjYiIiIh4KNvDVY8ePXjrrbcYMWIE9evXZ/PmzSxYsMDVtOLAgQMcOXLEdX2LFi2YOXMmkyZNIjIykjlz5jBv3jzq1KkDgLe3N7/99hudO3emWrVqDBgwgIYNG7JixQr8/Pxy/fXVrAnNm0NKCnz0Ua7/eMmI4sWhWTNzrKmBIiIiIpJFDsuyLLuLyGsSEhIICQkhPj7eLeuvpk41I1jVqsHOnWaZj+QxL78MI0ZA167w1Vd2VyMiIiIieURmsoHtI1cFQffuUKQI/PEH/PKL3dVIupwt2RcvhuRke2sREREREY+kcJULihSBHj3MsRpb5FENGpjWjqdPwzU2sBYRERERuR6Fq1zibGwxezbEx9tbi6TDy+vSrs/qGigiIiIiWaBwlUuaNYNatcxetZ9/bnc1ki7tdyUiIiIi2aBwlUscjkujV5oamEfdcYf5D7VlCxw+bHc1IiIiIuJhFK5y0YMPQqFCsG4dbN1qdzVylVKloFEjc7xwob21iIiIiIjHUbjKRaVKQefO5lijV3mUs2ug1l2JiIiISCYpXOWyhx4yXz/+GJKS7K1F0uFcd7VoEVy8aG8tIiIiIuJRshSuYmJiOHjwoOv+2rVrGTJkCJMmTXJbYfnV7bdDeDicPAnz5tldjVylSRMoVgxOnYI1a+yuRkREREQ8SJbC1f3338/SpUsBiI2N5fbbb2ft2rW8+OKLvPTSS24tML/x9oa+fc2xpgbmQd7eprEFaGqgiIiIiGRKlsLVtm3baNKkCQBffPEFderUYdWqVXz66adMnz7dnfXlS/36ma+LFsG+fbaWIulxrrtSS3YRERERyYQshasLFy7g5+cHwOLFi+n8/10aatSowZEjR9xXXT5VsSJERZnjadPsrUXS4dxMeMMGiIuztxYRERER8RhZCle1a9dm4sSJrFixgkWLFtH+/5sAHD58mBIlSri1wPzKuefVtGmQkmJvLXKFsDC4+WZz/OOP9tYiIiIiIh4jS+Hq9ddf53//+x+33norPXv2JDIyEoBvvvnGNV1Qrq9LF9M3ISYGFi+2uxq5irNroNZdiYiIiEgGOSzLsrLywJSUFBISEihWrJjr3L59+wgICKB06dJuK9AOCQkJhISEEB8fT3BwcI79nCefhHHjoFs3mD07x36MZMWKFdC6NZQoYaYGenvbXZGIiIiI2CAz2SBLI1fnzp0jKSnJFaz279/PO++8w65duzw+WOUm555XX38Nx47ZW4tcoVkzCA6GEydg/Xq7qxERERERD5ClcHXXXXfx0UcfAXDq1CmaNm3K2LFj6dKlCx988IFbC8zP6tWDRo3gwgX45BO7q5E0ChUym5KBugaKiIiISIZkKVxt3LiRVq1aATBnzhxCQ0PZv38/H330Ee+9955bC8zvnI0tpkyBrE3QlBzjbMmudVciIiIikgFZCldnz54lKCgIgB9//JG7774bLy8vmjVrxv79+91aYH7XsycULgy//w5r1thdjaThbMm+dq2ZHigiIiIich1ZCldVqlRh3rx5xMTEsHDhQu644w4Ajh49mqMNIPKjkBC4915zPGWKvbXIFcqXh7p1zZCiWrKLiIiIyA1kKVyNGDGCZ555hoiICJo0aULz5s0BM4p1s3N/IMkw59TAzz+HM2fsrUWu4GzJrnVXIiIiInIDWW7FHhsby5EjR4iMjMTLy2S0tWvXEhwcTI0aNdxaZG7LrVbsTpYF1avD7t0wdSr065fjP1IyaulSaNsWSpeGI0fAK0ufR4iIiIiIh8rxVuwAYWFh3HzzzRw+fJiDBw8C0KRJE48PVnZwOKB/f3P84Yf21iJXaNkSihSBo0dh82a7qxERERGRPCxL4So1NZWXXnqJkJAQKlSoQIUKFShatCgvv/wyqamp7q6xQOjTx+xTu2oV7NhhdzXi4usL7dqZY3UNFBEREZHryFK4evHFFxk/fjyvvfYamzZtYtOmTbz66quMGzeO4cOHu7vGAqFMGejY0RxPnWpvLXIFrbsSERERkQzI0pqrsmXLMnHiRDp37pzm/Ndff83jjz/OoUOH3FagHXJ7zZXTN9/AXXeZ5T0xMWbQRPKAffugYkUztHj8OBQtandFIiIiIpJLcnzN1cmTJ9NdW1WjRg1OnjyZlacU4M47ISzMLO+ZP9/uasQlIgJq1ICUFFi0yO5qRERERCSPylK4ioyMZPz48VedHz9+PPXq1ct2UQWVjw/07WuOtedVHtOhg/mqqYEiIiIicg1Zmha4fPlyOnbsyE033eTa42r16tXExMTw/fff06pVK7cXmpvsmhYIph17tWqm4/eBA1CuXK7+eLmWH3+E6GgoWxYOHjQtHkVEREQk38vxaYFt2rThjz/+oGvXrpw6dYpTp05x99138/vvv/Pxxx9nqWgxqlaF1q0hNRWmT7e7GnFp3RoKF4bDh2HrVrurEREREZE8KMubCKdny5YtNGjQgJSUFHc9pS3sHLkC+Ogj05q9YkXYs0f71uYZHTvC99/Da6/Bc8/ZXY2IiIiI5IJc2URYck63bhAcDHv3wrJldlcjLlp3JSIiIiLXoXCVBwUEwP33m2M1tshDnPtd/fILJCTYW4uIiIiI5DkKV3nUgAHm65dfwt9/21uL/L8qVczt4kX46Se7qxERERGRPCZT4eruu+++7u2pp57KUhETJkwgIiICf39/mjZtytq1a697/ezZs6lRowb+/v7UrVuX77///prXPvroozgcDt55550s1WaXhg2hXj1ISoJPP7W7GnFxjl798IO9dYiIiIhInpOpcBUSEnLdW4UKFejdu3emCpg1axZDhw5l5MiRbNy4kcjISKKjozl69Gi6169atYqePXsyYMAANm3aRJcuXejSpQvbtm276tq5c+fy66+/UrZs2UzVlBc4HPDQQ+ZYUwPzkMvXXbmvF4yIiIiI5ANu7RaYFU2bNqVx48auTYlTU1MJDw/niSee4Pnnn7/q+h49epCYmMj8+fNd55o1a0b9+vWZOHGi69yhQ4do2rQpCxcupGPHjgwZMoQhQ4ZkqCa7uwU6nTxptlVKSoING6BBA9tKEaezZ6F4cfMf5fffoVYtuysSERERkRzkMd0Ck5OT2bBhA1FRUa5zXl5eREVFsXr16nQfs3r16jTXA0RHR6e5PjU1lQcffJBnn32W2rVr37COpKQkEhIS0tzyguLFoWtXc6zRqzwiIADatDHH6hooIiIiIpexNVwdP36clJQUQkND05wPDQ0lNjY23cfExsbe8PrXX38dHx8fnnzyyQzVMWbMmDTTG8PDwzP5SnKOs7HFp5/CuXP21iL/zzk1UOuuREREROQy+a5b4IYNG3j33XeZPn06DocjQ48ZNmwY8fHxrltMTEwOV5lxbdtCRATEx5vOgZIHOJta/PwzJCbaW4uIiIiI5Bm2hquSJUvi7e1NXFxcmvNxcXGEhYWl+5iwsLDrXr9ixQqOHj3KTTfdhI+PDz4+Puzfv5+nn36aiIiIdJ/Tz8+P4ODgNLe8wssL+vc3x5oamEdUr24Sb3IyLF1qdzUiIiIikkfYGq58fX1p2LAhS5YscZ1LTU1lyZIlNG/ePN3HNG/ePM31AIsWLXJd/+CDD/Lbb7+xefNm161s2bI8++yzLFy4MOdeTA7q29d0D1y2DPbssbsaweG4NHqldVciIiIi8v9snxY4dOhQJk+ezIwZM9ixYwePPfYYiYmJ9OvXD4DevXszbNgw1/WDBw9mwYIFjB07lp07dzJq1CjWr1/PoEGDAChRogR16tRJcytUqBBhYWFUr17dlteYXeHhl36XnzrV3lrk/12+7kot2UVERESEPBCuevTowVtvvcWIESOoX78+mzdvZsGCBa6mFQcOHODIkSOu61u0aMHMmTOZNGkSkZGRzJkzh3nz5lGnTh27XkKucDa2mD4dLl60tRQBuO02KFQI/voLdu+2uxoRERERyQNs3+cqL8or+1xdLjkZypeHY8fg22/hH/+wuyKhXTv46Sd4913IYGdKEREREfEsHrPPlWScry88+KA5VmOLPMI5V1Mt2UVEREQEhSuP4pwa+O23cI1twCQ3OdddLVumTchEREREROHKk9SqBc2bQ0oKfPSR3dUItWtDuXJw/jwsX253NSIiIiJiM4UrD+McvZoyRU3qbOdwXBq9Ukt2ERERkQJP4crDdO8OgYHwxx+wcqXd1YjWXYmIiIiIk8KVhwkKgvvuM8cffmhvLQJERYG3t0m7f/1ldzUiIiIiYiOFKw/knBo4ezYkJNhbS4EXEgItWphjTQ0UERERKdAUrjxQs2ZQsyacPQuff253NaJ1VyIiIiICClceyeFI29hCbOZcd/XTT5CUZG8tIiIiImIbhSsP9eCDUKgQrF0LW7faXU0BV78+hIVBYiL88ovd1YiIiIiITRSuPFTp0tC5sznW6JXNHA51DRQRERERhStP5pwa+PHHmo1mO2e40rorERERkQJL4cqD3XEHlC8PJ0/C11/bXU0Bd/vt4OUFv/8OMTF2VyMiIiIiNlC48mDe3tCvnznWnlc2K14cmjY1xxq9EhERESmQFK48nDNcLV4M+/fbW0uB52zJrnVXIiIiIgWSwpWHq1gR2rUDy4Jp0+yupoBzrrtavBguXLC3FhERERHJdQpX+YCzscW0aZCSYm8tBVrDhlCyJJw+DatW2V2NiIiIiOQyhat8oGtXKFYMDhwwgyZiEy8viI42x5oaKCIiIlLgKFzlA/7+8MAD5lh7XtnMue5KTS1EREREChyFq3zCOTVw3jw4ftzWUgq2O+4wmwpv2QKHD9tdjYiIiIjkIoWrfCIy0iz5uXABPvnE7moKsFKloFEjc7xwob21iIiIiEiuUrjKRx56yHz98EPTPVBs4uwaqHVXIiIiIgWKwlU+0rMnFC4Mv/8Oa9faXU0B5lx3tWgRXLxoby0iIiIikmsUrvKRkBDo1s0cq7GFjZo0Me0bT52CNWvsrkZEREREconCVT7jbGzx2Wdw5oy9tRRY3t6msQWoa6CIiIhIAaJwlc+0bg1VqphgNXu23dUUYFp3JSIiIlLgKFzlMw7HpdErTQ20kXMz4Q0b4OhRe2sRERERkVyhcJUP9eljZqatXAk7d9pdTQFVpgzUr2+O1ZJdREREpEBQuMqHypSBO+80x1On2ltLgebsGqh1VyIiIiIFgsJVPuXc82rGDLOxsNjAGa4WLoSUFHtrEREREZEcp3CVT915J4SFmeU+8+fbXU0B1awZBAfDiRNm7ZWIiIiI5GsKV/mUj49ZewVqbGGbQoXg9tvNsboGioiIiOR7Clf5WP/+5usPP8ChQ/bWUmA5W7Jr3ZWIiIhIvqdwlY9Vq2b2vUpNhenT7a6mgHKGqzVrzPRAEREREcm38kS4mjBhAhEREfj7+9O0aVPWrl173etnz55NjRo18Pf3p27dunz//fdpvj9q1Chq1KhBYGAgxYoVIyoqijVr1uTkS8iznHteTZ1qQpbksvLloU4dsCxYtMjuakREREQkB9kermbNmsXQoUMZOXIkGzduJDIykujoaI5eY+PVVatW0bNnTwYMGMCmTZvo0qULXbp0Ydu2ba5rqlWrxvjx49m6dSu//PILERER3HHHHRw7diy3Xlae0a2b6anw11+wfLnd1RRQzq6BWnclIiIikq85LMuy7CygadOmNG7cmPHjxwOQmppKeHg4TzzxBM8///xV1/fo0YPExETmX9YCr1mzZtSvX5+JEyem+zMSEhIICQlh8eLFtGvX7oY1Oa+Pj48nODg4i68s73j0Ufjf/6BXL/jkE7urKYB++gnatYPSpeHIEfCy/TMNEREREcmgzGQDW3/LS05OZsOGDURFRbnOeXl5ERUVxerVq9N9zOrVq9NcDxAdHX3N65OTk5k0aRIhISFERkame01SUhIJCQlpbvmJc8+rOXPg77/traVAuuUWCAw0ffE3b7a7GhERERHJIbaGq+PHj5OSkkJoaGia86GhocTGxqb7mNjY2AxdP3/+fIoUKYK/vz///e9/WbRoESVLlkz3OceMGUNISIjrFh4eno1Xlfc0bAj16kFSEsycaXc1BZCvrxm5Ak0NFBEREcnH8u38pNtuu43NmzezatUq2rdvT/fu3a+5jmvYsGHEx8e7bjExMblcbc5yOC41ttCeVzZxrrtSS3YRERGRfMvWcFWyZEm8vb2Ji4tLcz4uLo6wsLB0HxMWFpah6wMDA6lSpQrNmjVjypQp+Pj4MOUaycLPz4/g4OA0t/ymVy8zgLJpE2zcaHc1BZCzJfvq1XDqlK2liIiIiEjOsDVc+fr60rBhQ5YsWeI6l5qaypIlS2jevHm6j2nevHma6wEWLVp0zesvf96kpKTsF+2hSpSAu+82xxq9skFEBNSoASkpsHix3dWIiIiISA6wfVrg0KFDmTx5MjNmzGDHjh089thjJCYm0q9fPwB69+7NsGHDXNcPHjyYBQsWMHbsWHbu3MmoUaNYv349gwYNAiAxMZEXXniBX3/9lf3797Nhwwb69+/PoUOHuPfee215jXmFc2rgp5/CuXP21lIgOUevtO5KREREJF+yPVz16NGDt956ixEjRlC/fn02b97MggULXE0rDhw4wJEjR1zXt2jRgpkzZzJp0iQiIyOZM2cO8+bNo06dOgB4e3uzc+dO7rnnHqpVq0anTp04ceIEK1asoHbt2ra8xryibVszgBIfD199ZXc1BdDl667s3QFBRERERHKA7ftc5UX5bZ+ry730EowcCbfdZrZfklx0/jwUL26GDbdsMS0cRURERCRP85h9riT39etnugcuXQp//ml3NQWMv79JtaCugSIiIiL5kMJVARMeDtHR5njqVHtrKZC07kpEREQk31K4KoCcjS2mT4eLF20tpeBxrrv65Rc4fdreWkRERETErRSuCqDOnaFkSTh8GBYutLuaAqZKFXO7eBGu2FJARERERDybwlUB5OsLvXub4w8/tLeWAsk5NVDrrkRERETyFYWrAso5NXD+fIiLs7eWAsc5NfCHH9SSXURERCQfUbgqoGrVgmbNzOy0jz6yu5oC5tZbwc8PDhyAnTvtrkZERERE3EThqgB76CHzdcoUDaDkqoAAaNPGHKtroIiIiEi+oXBVgHXvDoGBsGsXrFxpdzUFjFqyi4iIiOQ7ClcFWFAQ9OhhjqdMsbeWAse57urnnyEx0d5aRERERMQtFK4KOGdjiy++gIQEe2spUKpXhwoVIDkZli61uxoRERERcQOFqwKueXOoWRPOnoVZs+yupgBxOC6NXqklu4iIiEi+oHBVwDkcl0avtOdVLrt83ZU6ioiIiIh4PIUr4cEHwccH1q6FbdvsrqYAadsWChWCv/6CPXvsrkZEREREsknhSihdGjp3NsdqbJGLgoLgllvMsboGioiIiHg8hSsBLu159fHHkJRkby0FitZdiYiIiOQbClcCwB13QPnycOIEfP213dUUIM51V0uXwrlz9tYiIiIiItmicCUAeHtD377mWFMDc1GdOlCuHJw/b/a8EhERERGPpXAlLv36ma+LFsH+/fbWUmA4HGm7BoqIiIiIx1K4EpdKlaBdO9MVfNo0u6spQLTuSkRERCRfULiSNJx7Xk2bBikp9tZSYLRrZ+Zl7toFe/faXY2IiIiIZJHClaTRtSsUKwYHDsCSJXZXU0AULQotWphjjV6JiIiIeCyFK0nD3x969TLHamyRi5xTA7XuSkRERMRjKVzJVZx7Xs2dC8eP21tLgeFsavHTT9poTERERMRDKVzJVSIjoWFDuHABPvnE7moKiPr1ISwMEhPhl1/srkZEREREskDhStLlbGwxZYrpHig5zOGA6GhzrHVXIiIiIh5J4UrS1bOnWX+1bRusW2d3NQWE1l2JiIiIeDSFK0lX0aJw773m+MMPbS2l4Lj9dvDygt9/h5gYu6sRERERkUxSuJJrck4N/PxzsxRIcljx4tC0qTnW1EARERERj6NwJdfUujVUqQKnT8Ps2XZXU0A4uwZqaqCIiIiIx1G4kmtyOKB/f3OsPa9yiXPd1eLFpl2jiIiIiHgMhSu5rj59wNvbdAffudPuagqAhg2hZEkzXLhqld3ViIiIiEgmKFzJdZUtC3feaY6nTrW3lgLBy0st2UVEREQ8lMKV3JCzscWMGZqpliu07kpERETEI+WJcDVhwgQiIiLw9/enadOmrF279rrXz549mxo1auDv70/dunX5/vvvXd+7cOECzz33HHXr1iUwMJCyZcvSu3dvDh8+nNMvI9+6804IDYWjR+G77+yupgCIjjYL3rZsAf25FREREfEYtoerWbNmMXToUEaOHMnGjRuJjIwkOjqao0ePpnv9qlWr6NmzJwMGDGDTpk106dKFLl26sG3bNgDOnj3Lxo0bGT58OBs3buSrr75i165ddO7cOTdfVr5SqBD07WuOtedVLihVyqy9Ali40N5aRERERCTDHJZlWXYW0LRpUxo3bsz48eMBSE1NJTw8nCeeeILnn3/+qut79OhBYmIi8+fPd51r1qwZ9evXZ+LEien+jHXr1tGkSRP279/PTTfddMOaEhISCAkJIT4+nuDg4Cy+svzljz+genWzJOjAAShXzu6K8rkRI+Dll6F7d5g1y+5qRERERAqszGQDW0eukpOT2bBhA1FRUa5zXl5eREVFsXr16nQfs3r16jTXA0RHR1/zeoD4+HgcDgdFixZN9/tJSUkkJCSkuUla1apBq1aQmmrWXkkOc667+vFHuHjR3lpEREREJENsDVfHjx8nJSWF0NDQNOdDQ0OJjY1N9zGxsbGZuv78+fM899xz9OzZ85pJc8yYMYSEhLhu4eHhWXg1+Z+zscXUqSZkSQ5q0gSKFYNTp+AGaxBFREREJG+wfc1VTrpw4QLdu3fHsiw++OCDa143bNgw4uPjXbeYmJhcrNJzdOsGwcHw55+wfLnd1eRzPj5w++3mWF0DRURERDyCreGqZMmSeHt7ExcXl+Z8XFwcYWFh6T4mLCwsQ9c7g9X+/ftZtGjRdedH+vn5ERwcnOYmVwsMhJ49zfGUKfbWUiB06GC+ar8rEREREY9ga7jy9fWlYcOGLFmyxHUuNTWVJUuW0Lx583Qf07x58zTXAyxatCjN9c5gtXv3bhYvXkyJEiVy5gUUQM6pgV9+aWasSQ5ybia8fj2sWGFvLSIiIiJyQ7ZPCxw6dCiTJ09mxowZ7Nixg8cee4zExET69esHQO/evRk2bJjr+sGDB7NgwQLGjh3Lzp07GTVqFOvXr2fQoEGACVbdunVj/fr1fPrpp6SkpBAbG0tsbCzJycm2vMb8pFEjqFsXzp+HmTPtriafK1MGbrvNHLdpA4MGgZqtiIiIiORZtoerHj168NZbbzFixAjq16/P5s2bWbBggatpxYEDBzhy5Ijr+hYtWjBz5kwmTZpEZGQkc+bMYd68edSpUweAQ4cO8c0333Dw4EHq169PmTJlXLdVq1bZ8hrzE4cDHnrIHGvPq1zw5ZfQvz9YFkyYALVrw2XbEIiIiIhI3mH7Pld5kfa5ur4TJ6BsWUhOho0b4eab7a6oAFiyBP75T9NNBKBHD3j3Xbiic6aIiIiIuJfH7HMlnqlECeja1RyrsUUuadcOfvsN/vUv8PY2GwvXrAnTp5tRLRGRgiA+HiZPNlMovvpK+4KISJ6jcCVZ4mxs8emncO6cvbUUGAEB8PrrZt+rm2+Gv/+Gfv3gjjvgr7/srk5EJGekpprR+wceMGtRH3nEfLJ3zz3QsCF8/bU+ZBKRPEPhSrKkXTuoUMF0DPzqK7urKWAaNDAB6/XXwd8fFi+GOnVg7Fi4eNHu6kRE3OPPP2H4cKhYEaKiLn2aV7OmCVhBQbB5M3TpAo0bm/WoClkiYjOFK8kSLy/TZwE0NdAWPj5miuDWraaj4Llz8Mwz0KyZ+WVDRMQTnT4N06ZB69ZQpQr85z9w4AAULQqPPQZr1sDvv8P//gd798KwYWYTxg0boFMnaNrUbLyukCUiNlFDi3SooUXGHDgAERHm37A9e6ByZbsrKqAsy/wy8vTTZijR2xuefRZGjIDChe2uTkTk+lJT4eefzRrSOXMgMdGc9/Iy05779oW77jIj9ek5dgzeegvGj4ezZ825Zs3gpZfMiJfDkRuvQkTyMTW0kFxx003m3z0wv9uLTRwOM4y4fTt06wYpKfDaaxAZCcuX212diEj69u2D0aPNCNVtt8GMGSZYVasGY8aYT/B++MF0R71WsAIoVcpMk96713zI5O8Pv/5q/oFq1Qp++kkjWSKSazRylQ6NXGXcnDlw772mNfv+/Wa2mths3jwYOBAOHzb3H34Y3njDTKsREbFTYqLZv2/6dFi69NL5oCC47z7TpKdZs+yNNsXGmrD1wQeQlGTOtWljglybNtkqX0QKpsxkA4WrdChcZVxyMpQrB8ePm7XEHTvaXZEApl3x88/DxInmfpkyZhNiZw99EZHcYlmwcqWZ4vDFF3DmjDnvcJjuSH37mr+bAgLc+3MPHzYjYJMmmX+sANq2NSHrllvc+7NEJF/TtEDJNb6+8OCD5liNLfKQkBDzqe3PP5spNkeOwN13m9bFzhEtEZGcdOAAvPKK+TuoVSuYOtUEq8qV4eWXzbTARYugVy/3ByswUyrGjTOLgh97DAoVMlMEW7UyUwZXr3b/zxSRAk8jV+nQyFXm/P676QTu4wMHD0JoqN0VSRrnz5uOW6+/blq1h4TAm2+azcq89PmKiLjRuXMwd64ZpVqy5NJapyJFoHt3M0p1yy32NJnYvx9efdWEPOe2Fe3bm5GsJk1yvx4R8RgauZJcVbu2mSJ/8SJ89JHd1chV/P1NuNqwwewFEx9v9ohp2xb++MPu6kTE01mWGQX65z8hLMyMRC1ebM7feqtpVHHkiJne0KqVfd37KlQwLdz/+MN8uOTtDQsWmPbtnTqZvyNFRLJJ4UrcYsAA83XKFDVlyrPq1TO/AL39tpmCs3y5OTdmDFy4YHd1IuJpDh0ynUlr1oQWLczapoQEs0fHyJHw11+maUXv3mbkKq+oWBE+/BB27YI+fcwI/vz50KiR2ZBYewWKSDZoWmA6NC0w806fNj0TEhPhl1+gZUu7K5Lr2rsXHn0UfvzR3I+MNL9sNGpkb10ikredPw/ffGOm/f34o9mjCswHNt26mWl/bdp41pTjP/4wa8Bmzrz0eu6+G0aNgrp1bS1NRPIGTQuUXBcUZKbTgxpbeISKFc10mI8+guLFYcsWMzXmmWcubeApIgJmOsK6dWaLh7Jlzb5TCxaYINKqlflLPzbWTP+77TbPClZgGm58/LFZQNyzp5m2+NVXZmS/e3dzXkQkgzRylQ6NXGXNqlVmxCogwEyv11vnIY4ehaeeMp/agglekyZBVJS9dYmIvWJj4ZNPzJ5UlweM8HAzna5PH7MBcH7z++/w0kumbTyYsHXffTBiBNSoYW9tImILjVyJLZo3N//unD0Ls2bZXY1kWOnS8Omn8N135pemvXvh9tvNZp4nT9pdnYjkpuRks8lvp05Qvjw8+6wJG/7+cP/9pnX63r1mGl1+DFZgujTNmgW//Wa2r7As+Owzc/7BB2H3brsrFJE8TOFK3MbhSNvYQjzMnXeaX6KeeML8x5w+3SxUnzVLXUpE8jPLgk2b4MknzbS/bt1Mg4eUFPOp2f/+Z0axPv3UjGh7e9tdce6oWxfmzDHvzV13mWmQn3xiPkXs2xf+/NPuCkUkD9K0wHRoWmDWHT0K5cqZtuxbt5r9r8QDrV4NDz0E27eb+//4B7z/vhnZEpH84ehRMx142jQzSuNUtqzp8Ne3L1Svblt5ec6GDabJxfz55r63t5ka+e9/m+nUIpJvaVqg2KZ0aejc2Rxr9MqDNW8OGzeazTULFTK/TNSubQKWs5uWiHieCxfg669Ny/Fy5cx6y99+Az8/06jihx/gwAGzRYOCVVoNG8K338KaNdChgxnZmzrVNMR45BGzSbGIFHgauUqHRq6y5/vvoWNHKFHCbIPi52d3RZIt27fDww+bjiVg9rP58EMzZVBEPMNvv5mpvp98AseOXTrfpIkZobrvPihWzK7qPNOvv5r9vJxbWhQqZEb8X3jBrFcTkXwjM9lA4SodClfZk5ICFSqYYPWvf5mRrNq1oWhRuyuTLEtNhQ8+gOefhzNnwNcXXnzR3Pf1tbs6EUnPiRNm2t/06WYk2ik01DRm6NvX/OUs2bNypQlZS5aY+76+ZiRr2DAzxVJEPJ7CVTYpXGXf8OHwn/+kPVe+vFmDVbu2+Vqnjhn8CAy0p0bJgpgYeOwx01kQzH/MDz+EZs3srUtEjIsXzR5U06ebzX4vXDDnCxUyn3T16wfR0eDjY2uZ+dLPP5t27cuXm/t+fmaz9uefh7Awe2sTkWxRuMomhavsS0iAN94wH5Zu22Z+J0+PwwGVKqUNXHXqmKn+GhDJoyzLdBB88kkzvcjhMB0G//Mfs5u0iOS+7dtNY4qPP4a4uEvnGzQwI1T332/makvOW7rUhKxffjH3Cxc2H0o995xZmCwiHkfhKpsUrtwvPt50+d627dLXbdtMs6r0+PhA1appA1edOlC5csHpApznnTgBTz8NM2aY+zfdBBMnmoXeIpLz/v4bPv/chKp16y6dL1UKHnjAhKp69Wwrr0CzLFi82EwXXL3anAsIgEGDzN5hJUvaW5+IZIrCVTYpXOWeo0dN2Lo8cG3bZsJYevz8zFTCywNX7drm93ov9b60x6JFZn3Bvn3m/v33wzvvmF/wRMS9UlLM/3PTp8O8eZCUZM77+JgtE/r2NXvWFSpkY5HiYlmwcKEJWWvXmnOBgWbk/+mnNZoo4iEUrrJJ4cpelmWaYVwZuH7/Hc6dS/8xRYqknVroPA4LM7PWJIclJppfHv77X9P8okQJE7B69dJ/ABF32LXLBKqPPoLDhy+dr1fPrKO6/35NOcvLLMu00h0x4lJzkaAgGDwYhg5Vp0aRPE7hKpsUrvKm1FQzOHJ54Nq2DXbuvLRm+0rFi18duOrUMeclB6xfDwMGXNqQNDraTBWMiLC1LBGPFB9v1jdOn35pahmYv8B69TKhqn59fYDhSSzL7JU1ciRs3mzOBQeb/caGDFFbXZE8SuEqmxSuPMuFC7Bnz9WjXLt3X3u/2zJlrg5ctWqpH4NbXLgAb71lNiBOSjLrDF55xTS90II5ketLTYWffjLrqL76Cs6fN+e9vc16xr59zfQ/bSDo2VJTzWbOI0fC1q3mXNGiZqrgk0+awCUieYbCVTYpXOUP58+bUa0rm2g4lwalJyLi6s6FNWqAv39uVZ2P/PGH2Xz455/N/SZNTNv2unXtrUskL9qzxzSHmTEjbXvVWrXMCNUDD6idd36UmgpffgmjRpmOj2BGJp95xjS/0Cd+InmCwlU2KVzlb6dPm3/DrlzTdeRI+td7eUGVKld3LqxSRWvGbyg11QSqZ581/fl9fEw74n//W4lV5PRpmD3bjFI523aDGcG4/34zStWokab9FQQpKebPwujR5lNBMGtX//UvGDhQG0KK2EzhKpsUrgqmkyevDlzbtpnz6SlUyIxqXdm5sGJFdS68yuHD5heEefPM/erVYfJkaNXK1rJEcl1qqtlkdvp0mDMHzp4157284I47zChV58768KGgSkkx7fVHjzZz28F0Xn3uObNXVkCAvfWJFFAKV9mkcCVOlmX247wycP3+O5w5k/5jAgLMTJ4r13SVK6cPoPnqKxOyYmPN/Ucfhddeg5AQe+sScYekJPNn+/Bhczty5NKx8/7Bg3Dq1KXHVK9+adpfuXK2lS55zMWLMHMmvPQS/PmnORcaCs8/D//8p9mYWERyjcJVNilcyY1YFhw4cHXg2r790rYzVwoJuTpw1alTALeDOnXKTHWZPNncL1cO3n/ffFovkhclJ6cNTVcGJ+fxiRMZe77gYLjvPhOqmjbVpy5ybRcuwCefmJDlXDBcpgy88AI89JBGOEVyicJVNilcSValpJgPGa9sorFrl/leekqXvjpw1a5dAAZzli41mw/v2WPu33svvPeeFu1L7rlwIWOh6fjxjD+nry+ULWtuZcqkf1y5sn4plsy5cME0O3n5ZfPJHkD58iZk9e+v7pEiOcyjwtWECRN48803iY2NJTIyknHjxtGkSZNrXj979myGDx/Ovn37qFq1Kq+//jp33nmn6/tfffUVEydOZMOGDZw8eZJNmzZRv379TNWkcCXulpRkmudduabrr7/MKFh6ype/1K2wXDnzO5nza9my+WR987lz5hPZN9806bNoURg71nyir0/zJasuXDDzeW8Umo4dy/hzFiqUflC68n6xYvqzKzknORmmTjXbWxw8aM7ddBO8+KJpgOLra2t5IvmVx4SrWbNm0bt3byZOnEjTpk155513mD17Nrt27aJ0OjvNr1q1itatWzNmzBj+8Y9/MHPmTF5//XU2btxInTp1APj444/Zu3cvZcuW5eGHH1a4kjzt7FnYsePqNV3OfzOvJyTk0u9zl4euy++HhXnIv7WbN5vNhzduNPfbtoX//c+0ZBRxcoam9ILSlaEpo/+0FSp0KRxdLzQVL67QJHlHUpLpxPrqq+bPPJi9RIYPhwcfVCtbETfzmHDVtGlTGjduzPjx4wFITU0lPDycJ554gueff/6q63v06EFiYiLz5893nWvWrBn169dn4sSJaa7dt28fFStWVLgSj3TqlFm/tW2bmTXn/N3x0CFzS0zM+HOVLp1+8Lr8uFSpPNDh8OJFeOcdGDHCjGj5+5tRraeeMi3cJf+6eDFjoeno0YyHJh+fa0/LuzI02f6HXySLzp+HSZNgzJhLjYIqVTJ/j/bqpb87RdzEI8JVcnIyAQEBzJkzhy5durjO9+nTh1OnTvH1119f9ZibbrqJoUOHMmTIENe5kSNHMm/ePLZs2ZLm2syEq6SkJJIu60KQkJBAeHi4wpXkWadPXwpblwevy2dBHT5sZpBkhI+PGeVKL3hdfj8kJBc+vP/zT9MNa8kSc//mm2HKFPNVPMvFiyYQ3Sg0xcVlLjSFhd04NJUoodAkBcfZszBxIrz+uvl/DqBqVROyevYEb2976xPxcJkJV7Z9pHH8+HFSUlIIDQ1Ncz40NJSdzg30rhAbG5vu9bHOT2uyaMyYMYwePTpbzyGSm4KCTAfn6tWvfY1lmeZl6QWvy+/HxZnfgQ8evPF0xMKFrz8N0XnL1lYslSvDokVm8fbQobBpEzRuDE8/DaNGqQVxXpCSkvHQlJqasef09s5YaCpZUqFJ5EoBAebvy3/+03RffeMNs0/Wgw/Cf/4DI0dC9+4KWSK5QOPFwLBhwxg6dKjrvnPkSsSTORzm99CSJaFevWtf55yRlV7wuvz45EkzW+/PPy9tu3ItRYtefxqicz3YNZcFOBxmcXaHDjB4MMyaZX5Z+PJL08L9ttuy+K7IDV24YP6Dx8RcfXP+gYiNzVxoCg3NWGjSL34i2RMYCM8+azYcHj/eNAvatQvuv/9SyOrWTR9QiOQg28JVyZIl8fb2Ji4uLs35uLg4wq7RijksLCxT12eUn58ffmpjKgWUj48JPTfav/T8+WuPfl2+HuzsWbNmzLlu7FocjrTrwdIPYaGUnPk5XvffD48/blJd27am+cWbb5rObJJxKSkmGB08mH54iokxo04ZmaLn5XXt0HT5/VKlFJpEcluRImbD4ccfh3Hj4K23zF/IPXqYNrSjR0OXLgpZIjnA9oYWTZo0Ydy4cYBpaHHTTTcxaNCgaza0OHv2LN9++63rXIsWLahXr54aWojkAZZl1oNdbxrioUPm9/cLFzL2nM5mblVKJ/DMyWF0+Ot9AM6FhLJn8Hh8etxD2XIOgoMLeDM3yzJd8q4VmmJizH+Aixdv/Fy+vmYvgPDwSzfnfWd4Kl1aoUnEU8THw7vvwttvm2OAyEiz12BIiNkny3nz97/xsRplSAHjEQ0twLRi79OnD//73/9o0qQJ77zzDl988QU7d+4kNDSU3r17U65cOcaMGQOYVuxt2rThtddeo2PHjnz++ee8+uqraVqxnzx5kgMHDnD48GHXNdWrVycsLCzDI1wKVyI5KzU1/fVgV4ay9PoctOQXJvMwNTFrM+dxFwOZwKmActddC1a8OAQHm1uRIh6WCyzLDAVeLzgdPGjaM9+It7d5Qy4PTlfe8kT7SBFxu7//hv/+13RmPX0668/j7Z35QJZT1ynoSS7wmHAFMH78eNcmwvXr1+e9996jadOmANx6661EREQwffp01/WzZ8/m3//+t2sT4TfeeCPNJsLTp0+nX79+V/2ckSNHMmrUqAzVpHAlkjdcvhfs5cHr6IHztFn5Kj32jqEQF4knmH/xBpN5GIuMhYLAQBO0goIuha6sHAcGumHE7PTpGwenjPTfdzjMYrb0RpyctzJlPCxZiojbnTwJ770HGzaYD2XOnzdfr3V8/nzG11nmNi8ve0Ld5cdBQR6yqaRklUeFq7xI4UrEQ2zdCg8/DGvWABBfrxUr+05mp1X9qtGwU6cgISHj7ekzysvL/LvqDF1Xhq8SAecox0HKXIihdFIMJc7GUPR0DEVOxRBwIgbfuBi8T8dn7IeVLHn9EaeyZfUPvIjkjIsXL4WujASyK4/d+ZiUFLvfjasVLmy6OYWEZO1rkSIFfG573qZwlU0KVyIeJCUFJkyAF14wozt+fjB8OPzrX+m2I0xKMgNFCQmXvmb12CslmXIcIpyYdG/lOUgpjmfoZfxNUQ4SzpFC4RzzC+dkYHnig8NJLBbO2RLhXAgtT+HihTM8onbNTowiIp7uekEvt4Ofu4Kel5cJWjcKYdf6XkiIPlzLQQpX2aRwJeKB9u+HRx+FBQvM/bp14cMPoUmTrD1fSorpvHGNqXpWTAzExeHIwF+hSYUCOREQzlG/cI54h3PQEc7+1HD+TA5n9/lwdp4NJ5EiWavzGvz9szft0fnV49aniYjkposXzadtzja58fGZ/5rRDk83otGzHKNwlU0KVyIeyrJg5kyzN9aJE+aTwMGD4eWXzeIop9RUswnutdY3OTvrZeQTST+/q6fnXbnOqWjR6/6DlZoKZ864ZzTt3Lnsv41Xunx9WlCQ+fc3MNB8vdEtvesCAxXYREQA8+/WuXNZC2XOr9lpTnK5jI6eXWs0LR+PnilcZZPClYiHO3YMhg6FTz4x9yMioGXLtJvhZmTxlXMTsOutcypZMk990nfhgvl3NrshLT4+Y13bs6pw4YwFsYwGtiJFTM7NQ/8pRERyR0qK+cs7q+Hs1Km8MXpWurT5izwPUrjKJoUrkXxiwQL45z/hwIGrv+flZTrnXWu0KTzcbJJbQIdYLMssKbgyeCUmmlG2y2/pnbvWLScbjnl7uz+waZRNRPI9yzLrx64XvnJj9Ozrr6Fz5+w/Tw7ITDbQ5gAikn+1bw+//w5Tp5qkcGVLcnV9uCaHw6zb8vc3Hya6gzOw3SiAZTSsOa9zToVMSTH/xjv3SHWXK0fZshvY/P3NH71ChbSdmIjkAQ6H+YuucGHzb2NWuGP0LCTEPa/HZhq5SodGrkREPEdKyvUDWWbD2pkz5kPY3NjWx+G4FLSud/Pxydh1mbnW3dc5w6KmZopIpjnjSB79C0QjVyIiUmB4e1/qdugu1xtly0pYc96ubDhiWWb5n7v3X7NTboXFy/d09fVNez8z3/PRb0Ii9sujoSor9FeKiIjIFS6fFlmypPueNyXFhLYLF9LeLl68+lx6t4xelxPPmd516bne9/IiL6+sB7OsfC8jjy1UKF/9rilSoChciYiI5BJvbwgIsLsK97AsExbtCHbO0b7L93O98v71vnf5gojUVDOimBPbGGSVw5F+AMtuaLvR+Rsdq7mLyI0pXImIiEimORxmSp2Pj1kH7yksy4S1rAazzHw/M9+7fFs957TUpCT73qf0eHtnLoxlJcBl5djHRyN9kncoXImIiEiBcXkTkSJF7K7mEueUUXeHtht9//L76R1fWWNeG+WDtCN9OR3k0jt2rg10rg9M79h5UwjM/xSuRERERGzmnDKal6aNWtalaZhZDWc5dXx5N8+8OtKXHm/vjAWx6933lGu9vQtmmFS4EhEREZGrOEeEfH3z1igfpB3psyvgOY+dawIvXkx7u1bdztoLAm/vjIe2CRPgllvsrjj7FK5ERERExKPkxZG+yzkbvqQXvK53PzPXZuex7r728jWDl3OGyYw4e9Z977+dFK5ERERERNzo8oYv/v52V5PzLu8emtXQdvPNdr8K91C4EhERERGRLLs8TBZ0XnYXICIiIiIikh8oXImIiIiIiLiBwpWIiIiIiIgbKFyJiIiIiIi4gcKViIiIiIiIGyhciYiIiIiIuIHClYiIiIiIiBsoXImIiIiIiLiBwpWIiIiIiIgbKFyJiIiIiIi4gcKViIiIiIiIGyhciYiIiIiIuIHClYiIiIiIiBsoXImIiIiIiLiBj90F5EWWZQGQkJBgcyUiIiIiImInZyZwZoTrUbhKx4kTJwAIDw+3uRIREREREckLTp8+TUhIyHWvUbhKR/HixQE4cODADd9AubaEhATCw8OJiYkhODjY7nI8kt5D99D7mH16D91D76N76H3MPr2H7qH3Mfs84T20LIvTp09TtmzZG16rcJUOLy+zFC0kJCTP/kf2JMHBwXofs0nvoXvofcw+vYfuoffRPfQ+Zp/eQ/fQ+5h9ef09zOiAixpaiIiIiIiIuIHClYiIiIiIiBsoXKXDz8+PkSNH4ufnZ3cpHk3vY/bpPXQPvY/Zp/fQPfQ+uofex+zTe+geeh+zL7+9hw4rIz0FRURERERE5Lo0ciUiIiIiIuIGClciIiIiIiJuoHAlIiIiIiLiBgpXIiIiIiIibqBwdZmff/6ZTp06UbZsWRwOB/PmzbO7JI8zZswYGjduTFBQEKVLl6ZLly7s2rXL7rI8zgcffEC9evVcG+o1b96cH374we6yPNprr72Gw+FgyJAhdpfiUUaNGoXD4Uhzq1Gjht1leZxDhw7xwAMPUKJECQoXLkzdunVZv3693WV5lIiIiKv+LDocDgYOHGh3aR4lJSWF4cOHU7FiRQoXLkzlypV5+eWXUX+zzDl9+jRDhgyhQoUKFC5cmBYtWrBu3Tq7y8rTbvR7tmVZjBgxgjJlylC4cGGioqLYvXu3PcVmg8LVZRITE4mMjGTChAl2l+Kxli9fzsCBA/n1119ZtGgRFy5c4I477iAxMdHu0jxK+fLlee2119iwYQPr16+nbdu23HXXXfz+++92l+aR1q1bx//+9z/q1atndykeqXbt2hw5csR1++WXX+wuyaP8/ffftGzZkkKFCvHDDz+wfft2xo4dS7FixewuzaOsW7cuzZ/DRYsWAXDvvffaXJlnef311/nggw8YP348O3bs4PXXX+eNN95g3LhxdpfmUR566CEWLVrExx9/zNatW7njjjuIiori0KFDdpeWZ93o9+w33niD9957j4kTJ7JmzRoCAwOJjo7m/PnzuVxpNlmSLsCaO3eu3WV4vKNHj1qAtXz5crtL8XjFihWzPvzwQ7vL8DinT5+2qlatai1atMhq06aNNXjwYLtL8igjR460IiMj7S7Doz333HPWLbfcYncZ+c7gwYOtypUrW6mpqXaX4lE6duxo9e/fP825u+++2+rVq5dNFXmes2fPWt7e3tb8+fPTnG/QoIH14osv2lSVZ7ny9+zU1FQrLCzMevPNN13nTp06Zfn5+VmfffaZDRVmnUauJEfFx8cDULx4cZsr8VwpKSl8/vnnJCYm0rx5c7vL8TgDBw6kY8eOREVF2V2Kx9q9ezdly5alUqVK9OrViwMHDthdkkf55ptvaNSoEffeey+lS5fm5ptvZvLkyXaX5dGSk5P55JNP6N+/Pw6Hw+5yPEqLFi1YsmQJf/zxBwBbtmzhl19+oUOHDjZX5jkuXrxISkoK/v7+ac4XLlxYI/tZtHfvXmJjY9P8Wx0SEkLTpk1ZvXq1jZVlno/dBUj+lZqaypAhQ2jZsiV16tSxuxyPs3XrVpo3b8758+cpUqQIc+fOpVatWnaX5VE+//xzNm7cqHnw2dC0aVOmT59O9erVOXLkCKNHj6ZVq1Zs27aNoKAgu8vzCH/99RcffPABQ4cO5YUXXmDdunU8+eST+Pr60qdPH7vL80jz5s3j1KlT9O3b1+5SPM7zzz9PQkICNWrUwNvbm5SUFF555RV69epld2keIygoiObNm/Pyyy9Ts2ZNQkND+eyzz1i9ejVVqlSxuzyPFBsbC0BoaGia86Ghoa7veQqFK8kxAwcOZNu2bfoUJ4uqV6/O5s2biY+PZ86cOfTp04fly5crYGVQTEwMgwcPZtGiRVd9uigZd/mn2fXq1aNp06ZUqFCBL774ggEDBthYmedITU2lUaNGvPrqqwDcfPPNbNu2jYkTJypcZdGUKVPo0KEDZcuWtbsUj/PFF1/w6aefMnPmTGrXrs3mzZsZMmQIZcuW1Z/HTPj444/p378/5cqVw9vbmwYNGtCzZ082bNhgd2liM00LlBwxaNAg5s+fz9KlSylfvrzd5XgkX19fqlSpQsOGDRkzZgyRkZG8++67dpflMTZs2MDRo0dp0KABPj4++Pj4sHz5ct577z18fHxISUmxu0SPVLRoUapVq8aePXvsLsVjlClT5qoPRWrWrKnplVm0f/9+Fi9ezEMPPWR3KR7p2Wef5fnnn+e+++6jbt26PPjggzz11FOMGTPG7tI8SuXKlVm+fDlnzpwhJiaGtWvXcuHCBSpVqmR3aR4pLCwMgLi4uDTn4+LiXN/zFApX4laWZTFo0CDmzp3LTz/9RMWKFe0uKd9ITU0lKSnJ7jI8Rrt27di6dSubN2923Ro1akSvXr3YvHkz3t7edpfokc6cOcOff/5JmTJl7C7FY7Rs2fKqLSn++OMPKlSoYFNFnm3atGmULl2ajh072l2KRzp79ixeXml//fP29iY1NdWmijxbYGAgZcqU4e+//2bhwoXcdddddpfkkSpWrEhYWBhLlixxnUtISGDNmjUet95c0wIvc+bMmTSfxu7du5fNmzdTvHhxbrrpJhsr8xwDBw5k5syZfP311wQFBbnmyYaEhFC4cGGbq/Mcw4YNo0OHDtx0002cPn2amTNnsmzZMhYuXGh3aR4jKCjoqrV+gYGBlChRQmsAM+GZZ56hU6dOVKhQgcOHDzNy5Ei8vb3p2bOn3aV5jKeeeooWLVrw6quv0r17d9auXcukSZOYNGmS3aV5nNTUVKZNm0afPn3w8dGvMFnRqVMnXnnlFW666SZq167Npk2bePvtt+nfv7/dpXmUhQsXYlkW1atXZ8+ePTz77LPUqFGDfv362V1annWj37OHDBnCf/7zH6pWrUrFihUZPnw4ZcuWpUuXLvYVnRV2tyvMS5YuXWoBV9369Oljd2keI733D7CmTZtmd2kepX///laFChUsX19fq1SpUla7du2sH3/80e6yPJ5asWdejx49rDJlyli+vr5WuXLlrB49elh79uyxuyyP8+2331p16tSx/Pz8rBo1aliTJk2yuySPtHDhQguwdu3aZXcpHishIcEaPHiwddNNN1n+/v5WpUqVrBdffNFKSkqyuzSPMmvWLKtSpUqWr6+vFRYWZg0cONA6deqU3WXlaTf6PTs1NdUaPny4FRoaavn5+Vnt2rXzyP/XHZalLblFRERERESyS2uuRERERERE3EDhSkRERERExA0UrkRERERERNxA4UpERERERMQNFK5ERERERETcQOFKRERERETEDRSuRERERERE3EDhSkRERERExA0UrkRERNzM4XAwb948u8sQEZFcpnAlIiL5St++fXE4HFfd2rdvb3dpIiKSz/nYXYCIiIi7tW/fnmnTpqU55+fnZ1M1IiJSUGjkSkRE8h0/Pz/CwsLS3IoVKwaYKXsffPABHTp0oHDhwlSqVIk5c+akefzWrVtp27YthQsXpkSJEjzyyCOcOXMmzTVTp06ldu3a+Pn5UaZMGQYNGpTm+8ePH6dr164EBARQtWpVvvnmm5x90SIiYjuFKxERKXCGDx/OPffcw5YtW+jVqxf33XcfO3bsACAxMZHo6GiKFSvGunXrmD17NosXL04Tnj744AMGDhzII488wtatW/nmm2+oUqVKmp8xevRounfvzm+//cadd95Jr169OHnyZK6+ThERyV0Oy7Isu4sQERFxl759+/LJJ5/g7++f5vwLL7zACy+8gMPh4NFHH+WDDz5wfa9Zs2Y0aNCA999/n8mTJ/Pcc88RExNDYGAgAN9//z2dOnXi8OHDhIaGUq5cOfr168d//vOfdGtwOBz8+9//5uWXXwZMYCtSpAg//PCD1n6JiORjWnMlIiL5zm233ZYmPAEUL17cddy8efM032vevDmbN28GYMeOHURGRrqCFUDLli1JTU1l165dOBwODh8+TLt27a5bQ7169VzHgYGBBAcHc/To0ay+JBER8QAKVyIiku8EBgZeNU3PXQoXLpyh6woVKpTmvsPhIDU1NSdKEhGRPEJrrkREpMD59ddfr7pfs2ZNAGrWrMmWLVtITEx0fX/lypV4eXlRvXp1goKCiIiIYMmSJblas4iI5H0auRIRkXwnKSmJ2NjYNOd8fHwoWbIkALNnz6ZRo0bccsstfPrpp6xdu5YpU6YA0KtXL0aOHEmfPn0YNWoUx44d44knnuDBBx8kNDQUgFGjRvHoo49SunRpOnTowOnTp1m5ciVPPPFE7r5QERHJUxSuREQk31mwYAFlypRJc6569ers3LkTMJ38Pv/8cx5//HHKlCnDZ599Rq1atQAICAhg4cKFDB48mMaNGxMQEMA999zD22+/7XquPn36cP78ef773//yzDPPULJkSbp165Z7L1BERPIkdQsUEZECxeFwMHfuXLp06WJ3KSIiks9ozZWIiIiIiIgbKFyJiIiIiIi4gdZciYhIgaLZ8CIiklM0ciUiIiIiIuIGClciIiIiIiJuoHAlIiIiIiLiBgpXIiIiIiIibqBwJSIiIiIi4gYKVyIiIiIiIm6gcCUiIiIiIuIGClciIiIiIiJu8H+oOceJ+I/glAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvKklEQVR4nO3dd3iUVfrG8XuSQAohoScBQu8QgrRIkxYIiCgiyiIrRSzrDxRFXUSliYpdVFTUVVFXFEFBRAUC0nsXFFCUXkInIZRAZn5/nJ2EISF1kjeTfD/X9V7MvPPOzDMD7ubOOec5NofD4RAAAAAAIFe8rC4AAAAAAAoDwhUAAAAAuAHhCgAAAADcgHAFAAAAAG5AuAIAAAAANyBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBoQrAAAAAHADwhUAFHF79+6VzWbT1KlTc/R8m82mcePGubUmFA5LliyRzWbTzJkzrS4FAPIF4QoAUODYbDYNGzbM6jIKPGd4ud7x9ddfW10iABQpPlYXAACwVtWqVXXhwgUVK1YsR8+/cOGCfHz4vxMrPfLII2rRokWa861atbKgGgAouvh/QwAo4mw2m/z8/HL8/Nw8F5lLTExUiRIlMrymXbt26tOnTz5VBAC4HqYFAoCHGzdunGw2m/744w/985//VHBwsMqXL6/Ro0fL4XDowIEDuu222xQUFKTQ0FC9/vrrLs9Pb83VoEGDFBgYqEOHDqlXr14KDAxU+fLl9cQTTyg5Odnl+VatuUpMTNTjjz+u8PBw+fr6qm7dunrttdfkcDhcrouNjVXbtm1VqlQpBQYGqm7dunr66addrnnnnXfUsGFDBQQEqHTp0mrevLmmTZuW4fs7p+RNnz5dTz/9tEJDQ1WiRAndeuutOnDgQJrr165dq27duik4OFgBAQFq3769Vq5c6XKN8+/y999/1913363SpUurbdu2OfyGXDmnWn755ZeqW7eu/Pz81KxZMy1btizNtZs3b1b37t0VFBSkwMBAde7cWWvWrElz3ZkzZ/TYY4+pWrVq8vX1VeXKlTVgwACdOHHC5Tq73a4XXnhBlStXlp+fnzp37qzdu3e75XMBQEHCyBUAFBJ9+/ZV/fr19dJLL+nHH3/U888/rzJlyuiDDz5Qp06d9PLLL+vLL7/UE088oRYtWuimm27K8PWSk5MVExOjqKgovfbaa1q4cKFef/111axZUw899FA+far0ORwO3XrrrVq8eLGGDBmiJk2aaP78+XryySd16NAhvfnmm5Kk3377TbfccosaN26s5557Tr6+vtq9e7dLqPnoo4/0yCOPqE+fPho+fLguXryoX3/9VWvXrtXdd9+daS0vvPCCbDabRo4cqWPHjmnSpEmKjo7Wli1b5O/vL0n65Zdf1L17dzVr1kxjx46Vl5eXPv30U3Xq1EnLly9Xy5YtXV7zzjvvVO3atfXiiy+mCYvpSUhISBNoJKls2bKy2Wwp95cuXarp06frkUceka+vr9577z1169ZN69atU6NGjVK+s3bt2ikoKEj//ve/VaxYMX3wwQfq0KGDli5dqqioKEnSuXPn1K5dO+3YsUP33nuvmjZtqhMnTmjOnDk6ePCgypUrl/K+L730kry8vPTEE0/o7NmzeuWVV9S/f3+tXbs2088GAB7FAQDwaGPHjnVIcjzwwAMp565cueKoXLmyw2azOV566aWU86dPn3b4+/s7Bg4cmHJuz549DkmOTz/9NOXcwIEDHZIczz33nMt73XDDDY5mzZq5nJPkGDt2rFs/kyTH0KFDr/v47NmzHZIczz//vMv5Pn36OGw2m2P37t0Oh8PhePPNNx2SHMePH7/ua912222Ohg0bZrvGxYsXOyQ5KlWq5IiPj085/8033zgkOd566y2Hw+Fw2O12R+3atR0xMTEOu92ect358+cd1atXd3Tp0iXlnPPvsl+/ftmq4XrHkSNHUq51ntuwYUPKuX379jn8/Pwct99+e8q5Xr16OYoXL+7466+/Us4dPnzYUbJkScdNN92Ucm7MmDEOSY7vvvsuTV3Oz+msr379+o5Lly6lPP7WW285JDm2bduWpc8JAJ6CaYEAUEjcd999Kbe9vb3VvHlzORwODRkyJOV8qVKlVLduXf39999Zes1//etfLvfbtWuX5efmpZ9++kne3t565JFHXM4//vjjcjgc+vnnnyWZzytJ33//vex2e7qvVapUKR08eFDr16/PUS0DBgxQyZIlU+736dNHYWFh+umnnyRJW7Zs0Z9//qm7775bJ0+e1IkTJ3TixAklJiaqc+fOWrZsWZrarv3eMzNmzBjFxsamOcqUKeNyXatWrdSsWbOU+1WqVNFtt92m+fPnKzk5WcnJyVqwYIF69eqlGjVqpFwXFhamu+++WytWrFB8fLwk6dtvv1VkZKRuv/32NPVcPVomSYMHD1bx4sVT7rdr106SCsS/JQBwJ6YFAkAhUaVKFZf7wcHB8vPzc5me5Tx/8uTJTF/Pz89P5cuXdzlXunRpnT59Otu1HT16NE0NzilzObFv3z5VrFjRJdRIUv369VMel8xUyf/85z+677779NRTT6lz587q3bu3+vTpIy8v8/vFkSNHauHChWrZsqVq1aqlrl276u6771abNm2yVEvt2rVd7ttsNtWqVUt79+6VJP3555+SpIEDB173Nc6ePavSpUun3K9evXqW3tspIiJC0dHR2a5VkurUqaPz58/r+PHjkqTz58+rbt26aa6rX7++7Ha7Dhw4oIYNG+qvv/7SHXfckaX6rv236fysOfm3BAAFGeEKAAoJb2/vLJ2TlKV1PNd7bk6EhYW53P/00081aNAgt73+9fj7+2vZsmVavHixfvzxR82bN0/Tp09Xp06dtGDBAnl7e6t+/fratWuX5s6dq3nz5unbb7/Ve++9pzFjxmj8+PG5rsE5KvXqq6+qSZMm6V4TGBiYpu7CJDf/DgHAkxCuAAB5LjY21uV+w4YNc/V6VatW1cKFC5WQkOAyerVz586Ux528vLzUuXNnde7cWW+88YZefPFFPfPMM1q8eHHKaE+JEiXUt29f9e3bV0lJSerdu7deeOEFjRo1KtNW886RKSeHw6Hdu3ercePGkqSaNWtKkoKCgrI0upSXrq1Vkv744w8FBASkjFIGBARo165daa7buXOnvLy8FB4eLsl8ru3bt+dtwQDgYVhzBQDIc9HR0S7HtSNZ2XXzzTcrOTlZkydPdjn/5ptvymazqXv37pKkU6dOpXmuc/To0qVLkpRmimTx4sXVoEEDORwOXb58OdNaPv/8cyUkJKTcnzlzpo4cOZJSQ7NmzVSzZk299tprOnfuXJrnO6fj5YfVq1dr06ZNKfcPHDig77//Xl27dpW3t7e8vb3VtWtXff/99ynTGiUpLi5O06ZNU9u2bRUUFCRJuuOOO7R161bNmjUrzfswIgWgqGLkCgBQIG3YsEHPP/98mvMdOnRQz5491bFjRz3zzDPau3evIiMjtWDBAn3//fd69NFHU0aLnnvuOS1btkw9evRQ1apVdezYMb333nuqXLlyyv5RXbt2VWhoqNq0aaOQkBDt2LFDkydPVo8ePdKs6UpPmTJl1LZtWw0ePFhxcXGaNGmSatWqpfvvv1+SGTn7z3/+o+7du6thw4YaPHiwKlWqpEOHDmnx4sUKCgrSDz/8kKvvavny5bp48WKa840bN04ZQZOkRo0aKSYmxqUVuySX6Y/PP/98yt5g//d//ycfHx998MEHunTpkl555ZWU65588knNnDlTd955p+699141a9ZMp06d0pw5czRlyhRFRkbm6jMBgCciXAEACqS1a9emuw/ShAkT1LZtW82ZM0djxozR9OnT9emnn6patWp69dVX9fjjj6dce+utt2rv3r365JNPdOLECZUrV07t27fX+PHjFRwcLEl68MEH9eWXX+qNN97QuXPnVLlyZT3yyCN69tlns1Tn008/rV9//VUTJ05UQkKCOnfurPfee08BAQEp13To0EGrV6/WhAkTNHnyZJ07d06hoaGKiorSgw8+mMtvSnr77bfTPT927FiXcNW+fXu1atVK48eP1/79+9WgQQNNnTrV5ZqGDRtq+fLlGjVqlCZOnCi73a6oqCj997//TdnjSjLrxJYvX66xY8dq1qxZ+uyzz1ShQgV17txZlStXzvVnAgBPZHMwdg8AQLYtWbJEHTt21IwZM9SnTx+ry8mUzWbT0KFD00ylBAC4D2uuAAAAAMANCFcAAAAA4AaEKwAAAABwA9ZcAQAAAIAbMHIFAAAAAG5AuAIAAAAAN2Cfq3TY7XYdPnxYJUuWlM1ms7ocAAAAABZxOBxKSEhQxYoV5eWV8dgU4Sodhw8fVnh4uNVlAAAAACggDhw4kOkm6YSrdJQsWVKS+QKDgoIsrgYAAACAVeLj4xUeHp6SETJCuEqHcypgUFAQ4QoAAABAlpYL0dACAAAAANyAcAUAAAAAbkC4AgAAAAA3YM0VAAAAPEJycrIuX75sdRkoZLy9veXj4+OWLZgIVwAAACjwzp07p4MHD8rhcFhdCgqhgIAAhYWFqXjx4rl6HcIVAAAACrTk5GQdPHhQAQEBKl++vFtGGADJbBCclJSk48ePa8+ePapdu3amGwVnhHAFAACAAu3y5ctyOBwqX768/P39rS4HhYy/v7+KFSumffv2KSkpSX5+fjl+LRpaAAAAwCMwYoW8kpvRKpfXccurAAAAAEARR7gCAAAAADcgXAEAAAAeolq1apo0aZLVZeA6CFcAAACAm9lstgyPcePG5eh1169frwceeCBXtXXo0EGPPvporl4D6aNbIAAAAOBmR44cSbk9ffp0jRkzRrt27Uo5FxgYmHLb4XAoOTlZPj6Z/2hevnx59xYKt2LkKgPsUQcAAFDwOBxSYqI1R1Z/PgwNDU05goODZbPZUu7v3LlTJUuW1M8//6xmzZrJ19dXK1as0F9//aXbbrtNISEhCgwMVIsWLbRw4UKX1712WqDNZtN//vMf3X777QoICFDt2rU1Z86cXH2/3377rRo2bChfX19Vq1ZNr7/+usvj7733nmrXri0/Pz+FhISoT58+KY/NnDlTERER8vf3V9myZRUdHa3ExMRc1eNJGLnKwPbtUps2VlcBAACAq50/L1018JOvzp2TSpRwz2s99dRTeu2111SjRg2VLl1aBw4c0M0336wXXnhBvr6++vzzz9WzZ0/t2rVLVapUue7rjB8/Xq+88opeffVVvfPOO+rfv7/27dunMmXKZLumjRs36q677tK4cePUt29frVq1Sv/3f/+nsmXLatCgQdqwYYMeeeQRffHFF2rdurVOnTql5cuXSzKjdf369dMrr7yi22+/XQkJCVq+fLkcRWjEgnCVgUWLCFcAAADIG88995y6dOmScr9MmTKKjIxMuT9hwgTNmjVLc+bM0bBhw677OoMGDVK/fv0kSS+++KLefvttrVu3Tt26dct2TW+88YY6d+6s0aNHS5Lq1Kmj33//Xa+++qoGDRqk/fv3q0SJErrllltUsmRJVa1aVTfccIMkE66uXLmi3r17q2rVqpKkiIiIbNfgyZgWmIFffrG6AgAAAFwrIMCMIFlxBAS473M0b97c5f65c+f0xBNPqH79+ipVqpQCAwO1Y8cO7d+/P8PXady4ccrtEiVKKCgoSMeOHctRTTt27FCba0YX2rRpoz///FPJycnq0qWLqlatqho1auiee+7Rl19+qfPnz0uSIiMj1blzZ0VEROjOO+/URx99pNOnT+eoDk9FuMrAqlVmbi0AAAAKDpvNTM2z4rDZ3Pc5Slwzv/CJJ57QrFmz9OKLL2r58uXasmWLIiIilJSUlOHrFCtW7Jrvxya73e6+Qq9SsmRJbdq0SV999ZXCwsI0ZswYRUZG6syZM/L29lZsbKx+/vlnNWjQQO+8847q1q2rPXv25EktBRHhKgOXL0tLl1pdBQAAAIqClStXatCgQbr99tsVERGh0NBQ7d27N19rqF+/vlauXJmmrjp16sjb21uS5OPjo+joaL3yyiv69ddftXfvXv3yvylfNptNbdq00fjx47V582YVL15cs2bNytfPYCXWXGViwQLp5putrgIAAACFXe3atfXdd9+pZ8+estlsGj16dJ6NQB0/flxbtmxxORcWFqbHH39cLVq00IQJE9S3b1+tXr1akydP1nvvvSdJmjt3rv7++2/ddNNNKl26tH766SfZ7XbVrVtXa9eu1aJFi9S1a1dVqFBBa9eu1fHjx1W/fv08+QwFEeEqE/PnW10BAAAAioI33nhD9957r1q3bq1y5cpp5MiRio+Pz5P3mjZtmqZNm+ZybsKECXr22Wf1zTffaMyYMZowYYLCwsL03HPPadCgQZKkUqVK6bvvvtO4ceN08eJF1a5dW1999ZUaNmyoHTt2aNmyZZo0aZLi4+NVtWpVvf766+revXuefIaCyOYoSr0Rsyg+Pl7BwcHy8joruz1I+/ZJGXS/BAAAQB66ePGi9uzZo+rVq8vPz8/qclAIZfRvzJkNzp49q6CgoAxfhzVXGXA2cGH0CgAAAEBmCFcZ6NTJ/LlggbV1AAAAACj4CFcZiI42fy5cKF25Ym0tAAAAAAo2wlUGmjaVSpeWzpyR1q+3uhoAAAAABRnhKgPe3qmjV0wNBAAAAJARwlUmunY1f9LUAgAAAEBGCFeZiIkxf65dK50+bW0tAAAAAAouwlUmwsOl+vUlu1365RerqwEAAABQUBGusoCpgQAAAAAyQ7jKAufUwPnzJYfD2loAAABQdHTo0EGPPvpoyv1q1app0qRJGT7HZrNp9uzZuX5vd71OUUK4yoL27aXixaX9+6U//rC6GgAAABR0PXv2VLdu3dJ9bPny5bLZbPr111+z/brr16/XAw88kNvyXIwbN05NmjRJc/7IkSPq3r27W9/rWlOnTlWpUqXy9D3yE+EqCwICpHbtzG2mBgIAACAzQ4YMUWxsrA4ePJjmsU8//VTNmzdX48aNs/265cuXV0BAgDtKzFRoaKh8fX3z5b0KC8JVFl09NRAAAAAWcjikxERrjiyuEbnllltUvnx5TZ061eX8uXPnNGPGDA0ZMkQnT55Uv379VKlSJQUEBCgiIkJfffVVhq977bTAP//8UzfddJP8/PzUoEEDxcbGpnnOyJEjVadOHQUEBKhGjRoaPXq0Ll++LMmMHI0fP15bt26VzWaTzWZLqfnaaYHbtm1Tp06d5O/vr7Jly+qBBx7QuXPnUh4fNGiQevXqpddee01hYWEqW7ashg4dmvJeObF//37ddtttCgwMVFBQkO666y7FxcWlPL5161Z17NhRJUuWVFBQkJo1a6YNGzZIkvbt26eePXuqdOnSKlGihBo2bKiffvopx7VkhU+evnohEhMj/fvf0pIl0qVLEiEeAADAIufPS4GB1rz3uXNSiRKZXubj46MBAwZo6tSpeuaZZ2Sz2SRJM2bMUHJysvr166dz586pWbNmGjlypIKCgvTjjz/qnnvuUc2aNdWyZctM38Nut6t3794KCQnR2rVrdfbsWZf1WU4lS5bU1KlTVbFiRW3btk3333+/SpYsqX//+9/q27evtm/frnnz5mnhwoWSpODg4DSvkZiYqJiYGLVq1Urr16/XsWPHdN9992nYsGEuAXLx4sUKCwvT4sWLtXv3bvXt21dNmjTR/fffn+nnSe/zOYPV0qVLdeXKFQ0dOlR9+/bVkiVLJEn9+/fXDTfcoPfff1/e3t7asmWLihUrJkkaOnSokpKStGzZMpUoUUK///67AvP43w3hKosiIqTQUOnoUWnlSqlTJ6srAgAAQEF277336tVXX9XSpUvVoUMHSWZK4B133KHg4GAFBwfriSeeSLn+4Ycf1vz58/XNN99kKVwtXLhQO3fu1Pz581WxYkVJ0osvvphmndSzzz6bcrtatWp64okn9PXXX+vf//63/P39FRgYKB8fH4WGhl73vaZNm6aLFy/q888/V4n/hcvJkyerZ8+eevnllxUSEiJJKl26tCZPnixvb2/Vq1dPPXr00KJFi3IUrhYtWqRt27Zpz549Cg8PlyR9/vnnatiwodavX68WLVpo//79evLJJ1WvXj1JUu3atVOev3//ft1xxx2KiIiQJNWoUSPbNWQX0wKzyGajJTsAAECBEBBgRpCsOLKx3qlevXpq3bq1PvnkE0nS7t27tXz5cg0ZMkSSlJycrAkTJigiIkJlypRRYGCg5s+fr/3792fp9Xfs2KHw8PCUYCVJrVq1SnPd9OnT1aZNG4WGhiowMFDPPvtslt/j6veKjIxMCVaS1KZNG9ntdu3atSvlXMOGDeXt7Z1yPywsTMeOHcvWe139nuHh4SnBSpIaNGigUqVKaceOHZKkESNG6L777lN0dLReeukl/fXXXynXPvLII3r++efVpk0bjR07NkcNRLKLcJUNrLsCAAAoAGw2MzXPiuN/0/uyasiQIfr222+VkJCgTz/9VDVr1lT79u0lSa+++qreeustjRw5UosXL9aWLVsUExOjpKQkt31Vq1evVv/+/XXzzTdr7ty52rx5s5555hm3vsfVnFPynGw2m+x2e568l2Q6Hf7222/q0aOHfvnlFzVo0ECzZs2SJN133336+++/dc8992jbtm1q3ry53nnnnTyrRSJcZUt0tPlz61YzPRAAAADIyF133SUvLy9NmzZNn3/+ue69996U9VcrV67Ubbfdpn/+85+KjIxUjRo19Ec29v2pX7++Dhw4oCNHjqScW7Nmjcs1q1atUtWqVfXMM8+oefPmql27tvbt2+dyTfHixZWcnJzpe23dulWJiYkp51auXCkvLy/VrVs3yzVnh/PzHThwIOXc77//rjNnzqhBgwYp5+rUqaPHHntMCxYsUO/evfXpp5+mPBYeHq5//etf+u677/T444/ro48+ypNanQhX2VChgtS0qbmdTiMWAAAAwEVgYKD69u2rUaNG6ciRIxo0aFDKY7Vr11ZsbKxWrVqlHTt26MEHH3TphJeZ6Oho1alTRwMHDtTWrVu1fPlyPfPMMy7X1K5dW/v379fXX3+tv/76S2+//XbKyI5TtWrVtGfPHm3ZskUnTpzQpUuX0rxX//795efnp4EDB2r79u1avHixHn74Yd1zzz0p661yKjk5WVu2bHE5duzYoejoaEVERKh///7atGmT1q1bpwEDBqh9+/Zq3ry5Lly4oGHDhmnJkiXat2+fVq5cqfXr16t+/fqSpEcffVTz58/Xnj17tGnTJi1evDjlsbxCuMompgYCAAAgO4YMGaLTp08rJibGZX3Us88+q6ZNmyomJkYdOnRQaGioevXqleXX9fLy0qxZs3ThwgW1bNlS9913n1544QWXa2699VY99thjGjZsmJo0aaJVq1Zp9OjRLtfccccd6tatmzp27Kjy5cun2w4+ICBA8+fP16lTp9SiRQv16dNHnTt31uTJk7P3ZaTj3LlzuuGGG1yOnj17ymaz6fvvv1fp0qV10003KTo6WjVq1ND06dMlSd7e3jp58qQGDBigOnXq6K677lL37t01fvx4SSa0DR06VPXr11e3bt1Up04dvffee7muNyM2hyOLzfqLkPj4eAUHB+vs2bMKCgpyeWzpUqlDBzOKdeSI5EU8BQAAyFMXL17Unj17VL16dfn5+VldDgqhjP6NZZQNrkU0yKZWrcy2CseOmbVXAAAAACARrrKteHGpY0dzm6mBAAAAAJwIVzngXHe1YIG1dQAAAAAoOAhXOeDcTHjFCrOXHAAAAAAQrnKgVi2penXp8mVpyRKrqwEAACga6MOGvOKuf1sFIly9++67qlatmvz8/BQVFaV169ZleP2MGTNUr149+fn5KSIiQj/99JPL44MGDZLNZnM5unXr5rZ6bTamBgIAAOQXb29vSVJSUpLFlaCwOn/+vCSpWLFiuXodH3cUkxvTp0/XiBEjNGXKFEVFRWnSpEmKiYnRrl27VKFChTTXr1q1Sv369dPEiRN1yy23aNq0aerVq5c2bdqkRo0apVzXrVs3l92ZfX193Vp3167SlCk0tQAAAMhrPj4+CggI0PHjx1WsWDF5sRcO3MThcOj8+fM6duyYSpUqlRLkc8ryfa6ioqLUokWLlA3I7Ha7wsPD9fDDD+upp55Kc33fvn2VmJiouXPnppy78cYb1aRJE02ZMkWSGbk6c+aMZs+enaOastLL/uxZqWxZKTlZ2rNHqlYtR28FAACALEhKStKePXtkt9utLgWFUKlSpRQaGiqbzZbmsezsc2XpyFVSUpI2btyoUaNGpZzz8vJSdHS0Vq9ene5zVq9erREjRrici4mJSROklixZogoVKqh06dLq1KmTnn/+eZUtWzbd17x06ZIuXbqUcj8+Pj7T2oODzZ5XK1aY0asHH8z0KQAAAMih4sWLq3bt2kwNhNsVK1Ys1yNWTpaGqxMnTig5OVkhISEu50NCQrRz5850n3P06NF0rz969GjK/W7duql3796qXr26/vrrLz399NPq3r27Vq9ene4XN3HiRI0fPz7b9XftasLVggWEKwAAgLzm5eUlPz8/q8sArqtQTlj9xz/+oVtvvVURERHq1auX5s6dq/Xr12vJdVr7jRo1SmfPnk05Dhw4kKX3cTa1WLRIunLFTcUDAAAA8EiWhqty5crJ29tbcXFxLufj4uIUGhqa7nNCQ0Ozdb0k1ahRQ+XKldPu3bvTfdzX11dBQUEuR1Y0ayaVKWPWX61dm6WnAAAAACikLA1XxYsXV7NmzbRo0aKUc3a7XYsWLVKrVq3SfU6rVq1crpek2NjY614vSQcPHtTJkycVFhbmnsL/x9tbio42t2nJDgAAABRtlk8LHDFihD766CN99tln2rFjhx566CElJiZq8ODBkqQBAwa4NLwYPny45s2bp9dff107d+7UuHHjtGHDBg0bNkySdO7cOT355JNas2aN9u7dq0WLFum2225TrVq1FOOcx+dGzpekJTsAAABQtFm+z1Xfvn11/PhxjRkzRkePHlWTJk00b968lKYV+/fvd9nLoHXr1po2bZqeffZZPf3006pdu7Zmz56dsseVt7e3fv31V3322Wc6c+aMKlasqK5du2rChAlu3+tKMk0tJGn9eunUKTNNEAAAAEDRY/k+VwVRdnrZS1KjRtJvv0nffCPdeWc+FAgAAAAgX2QnG1g+LbAwcI5eMTUQAAAAKLoIV25w9borxgEBAACAoolw5QY33ST5+koHD0rX2fsYAAAAQCFHuHIDf38TsCSmBgIAAABFFeHKTWjJDgAAABRthCs3cYarpUulixetrQUAAABA/iNcuUnDhlLFitKFC9KKFVZXAwAAACC/Ea7cxGajJTsAAABQlBGu3Ih1VwAAAEDRRbhyo+hoM4K1bZt05IjV1QAAAADIT4QrNypXTmrWzNxesMDaWgAAAADkL8KVmzE1EAAAACiaCFdu5mxqERsr2e3W1gIAAAAg/xCu3KxVK6lkSenECWnzZqurAQAAAJBfCFduVqyY1KmTuc3UQAAAAKDoIFzlAee6K5paAAAAAEUH4SoPONddrVwpJSRYWwsAAACA/EG4ygM1a5rjyhVp8WKrqwEAAACQHwhXeYSW7AAAAEDRQrjKI86pgay7AgAAAIoGwlUe6dhR8vGRdu+W/v7b6moAAAAA5DXCVR4JCpJatza3mRoIAAAAFH6EqzzE1EAAAACg6CBc5SFnU4tFi6TLl62tBQAAAEDeIlzloaZNpbJlzV5Xa9ZYXQ0AAACAvES4ykNeXlKXLuY2UwMBAACAwo1wlcfY7woAAAAoGghXeczZ1GLDBunECWtrAQAAAJB3CFd5rGJFqVEjyeEwjS0AAAAAFE6Eq3zA1EAAAACg8CNc5YOrw5XDYW0tAAAAAPIG4SoftGsn+flJhw9Lv/9udTUAAAAA8gLhKh/4+Unt25vbTA0EAAAACifCVT5h3RUAAABQuBGu8okzXC1bJl24YG0tAAAAANyPcJVP6teXKlWSLl6Uli+3uhoAAAAA7ka4yic2G1MDAQAAgMKMcJWPCFcAAABA4UW4ykedO5sRrN9+kw4dsroaAAAAAO5EuMpHZctKLVqY2wsWWFsLAAAAAPciXOUzpgYCAAAAhRPhKp917Wr+jI2VkpOtrQUAAACA+xCu8llUlBQUJJ06JW3aZHU1AAAAANyFcJXPihUzjS0kpgYCAAAAhQnhygLOqYE0tQAAAAAKD8KVBZxNLVavluLjra0FAAAAgHsQrixQvbpUu7Z05Yr0yy9WVwMAAADAHQhXFqElOwAAAFC4EK4swrorAAAAoHAhXFmkY0fTOfDvv6Xdu62uBgAAAEBuEa4sEhgotWljbjM1EAAAAPB8hCsLMTUQAAAAKDwIVxZyNrX45RcpKcnaWgAAAADkDuHKQk2aSOXLS+fOmT2vAAAAAHguwpWFvLykLl3MbaYGAgAAAJ6NcGUx9rsCAAAACgfClcWcI1ebNknHj1tbCwAAAICcI1xZLCxMatxYcjikhQutrgYAAABAThGuCgCmBgIAAACer0CEq3fffVfVqlWTn5+foqKitG7dugyvnzFjhurVqyc/Pz9FRETop59+uu61//rXv2Sz2TRp0iQ3V+0+znC1YIEZwQIAAADgeSwPV9OnT9eIESM0duxYbdq0SZGRkYqJidGxY8fSvX7VqlXq16+fhgwZos2bN6tXr17q1auXtm/fnubaWbNmac2aNapYsWJef4xcadtW8veXjhyRtm2zuhoAAAAAOWF5uHrjjTd0//33a/DgwWrQoIGmTJmigIAAffLJJ+le/9Zbb6lbt2568sknVb9+fU2YMEFNmzbV5MmTXa47dOiQHn74YX355ZcqVqxYfnyUHPP1lTp0MLdpyQ4AAAB4JkvDVVJSkjZu3Kjo6OiUc15eXoqOjtbq6+yqu3r1apfrJSkmJsblervdrnvuuUdPPvmkGjZsmGkdly5dUnx8vMuR31h3BQAAAHg2S8PViRMnlJycrJCQEJfzISEhOnr0aLrPOXr0aKbXv/zyy/Lx8dEjjzySpTomTpyo4ODglCM8PDybnyT3nOFq+XLp/Pl8f3sAAAAAuWT5tEB327hxo9566y1NnTpVNpstS88ZNWqUzp49m3IcOHAgj6tMq25dKTxcunRJWrYs398eAAAAQC5ZGq7KlSsnb29vxcXFuZyPi4tTaGhous8JDQ3N8Prly5fr2LFjqlKlinx8fOTj46N9+/bp8ccfV7Vq1dJ9TV9fXwUFBbkc+c1mY2ogAAAA4MksDVfFixdXs2bNtGjRopRzdrtdixYtUqtWrdJ9TqtWrVyul6TY2NiU6++55x79+uuv2rJlS8pRsWJFPfnkk5pfwFML4QoAAADwXD5WFzBixAgNHDhQzZs3V8uWLTVp0iQlJiZq8ODBkqQBAwaoUqVKmjhxoiRp+PDhat++vV5//XX16NFDX3/9tTZs2KAPP/xQklS2bFmVLVvW5T2KFSum0NBQ1a1bN38/XDZ17ix5eUk7dkgHDphpggAAAAA8g+Vrrvr27avXXntNY8aMUZMmTbRlyxbNmzcvpWnF/v37deTIkZTrW7durWnTpunDDz9UZGSkZs6cqdmzZ6tRo0ZWfQS3KV1aatnS3KYlOwAAAOBZbA6Hw2F1EQVNfHy8goODdfbs2XxffzVunDR+vHTnndI33+TrWwMAAAC4RnaygeUjV3DVtav5c+FCKTnZ2loAAAAAZB3hqoBp2VIKDpZOn5Y2bLC6GgAAAABZRbgqYHx8pOhoc5uugQAAAIDnIFwVQM6pgTS1AAAAADwH4aoAcu53tWaNdPastbUAAAAAyBrCVQFUtapUt65paHHNfskAAAAACijCVQHlHL1i3RUAAADgGQhXBZRz3dX8+RI7kQEAAAAFH+GqgOrQQSpeXNq3T/rzT6urAQAAAJAZwlUBVaKE1Latuc3UQAAAAKDgI1wVYLRkBwAAADwH4aoAcza1WLxYSkqythYAAAAAGSNcFWCNG0shIVJiorRypdXVAAAAAMgI4aoA8/KSunQxt5kaCAAAABRshKsCjv2uAAAAAM9AuCrgnCNXmzdLcXHW1gIAAADg+ghXBVxIiNSkibm9cKGlpQAAAADIAOHKAzA1EAAAACj4CFcewBmuFiyQ7HZrawEAAACQPsKVB2jdWgoIMGuufv3V6moAAAAApIdw5QF8faWOHc1tWrIDAAAABRPhykOw7goAAAAo2AhXHsIZrlaskBITra0FAAAAQFqEKw9Ru7ZUtaqUlCQtXWp1NQAAAACuRbjyEDYbUwMBAACAgoxw5UEIVwAAAEDBRbjyIJ06Sd7e0q5d0r59VlcDAAAA4GqEKw9SqpQUFWVu05IdAAAAKFgIVx6GqYEAAABAwUS48jBdu5o/Fy2SrlyxthYAAAAAqQhXHqZFC6l0aenMGWn9equrAQAAAOBEuPIw3t5SdLS5zdRAAAAAoOAgXHkg59RAmloAAAAABQfhygM5m1qsXSudPm1tLQAAAAAMwpUHCg+X6teX7HbT2AIAAACA9QhXHso5NZB1VwAAAEDBQLjyUM6pgQsWSA6HtbUAAAAAIFx5rPbtJV9faf9+adcuq6sBAAAAQLjyUAEBUrt25jZTAwEAAADrEa48GC3ZAQAAgIKDcOXBnOuuliyRLl2ytBQAAACgyCNcebCICCk0VDp/XlqxwupqAAAAgKKNcOXBbDamBgIAAAAFBeHKwzmnBtLUAgAAALAW4crDdeli/ty6VTp61NpaAAAAgKKMcOXhypeXmjY1t2Njra0FAAAAKMoIV4UAUwMBAAAA6xGuCgFnuFqwQLLbra0FAAAAKKoIV4VAq1ZSYKB0/Li0ZYvV1QAAAABFU47C1YEDB3Tw4MGU++vWrdOjjz6qDz/80G2FIeuKF5c6djS3ackOAAAAWCNH4eruu+/W4sWLJUlHjx5Vly5dtG7dOj3zzDN67rnn3FogsoZ1VwAAAIC1chSutm/frpYtW0qSvvnmGzVq1EirVq3Sl19+qalTp7qzPmSRczPhlSulc+esrQUAAAAoinIUri5fvixfX19J0sKFC3XrrbdKkurVq6cjR464rzpkWa1aUvXq0uXL0pIlVlcDAAAAFD05ClcNGzbUlClTtHz5csXGxqpbt26SpMOHD6ts2bJuLRBZY7MxNRAAAACwUo7C1csvv6wPPvhAHTp0UL9+/RQZGSlJmjNnTsp0QeQ/whUAAABgHZvD4XDk5InJycmKj49X6dKlU87t3btXAQEBqlChgtsKtEJ8fLyCg4N19uxZBQUFWV1Olp09K5UtKyUnS3//baYJAgAAAMi57GSDHI1cXbhwQZcuXUoJVvv27dOkSZO0a9cujw9Wniw42Ox5JdGSHQAAAMhvOQpXt912mz7//HNJ0pkzZxQVFaXXX39dvXr10vvvv+/WApE9TA0EAAAArJGjcLVp0ya1a9dOkjRz5kyFhIRo3759+vzzz/X222+7tUBkj7Ml+6JF0pUr1tYCAAAAFCU5Clfnz59XyZIlJUkLFixQ79695eXlpRtvvFH79u3L9uu9++67qlatmvz8/BQVFaV169ZleP2MGTNUr149+fn5KSIiQj/99JPL4+PGjVO9evVUokQJlS5dWtHR0Vq7dm226/JEzZpJZcpI8fFSEfnIAAAAQIGQo3BVq1YtzZ49WwcOHND8+fPV9X/DJceOHct2A4jp06drxIgRGjt2rDZt2qTIyEjFxMTo2LFj6V6/atUq9evXT0OGDNHmzZvVq1cv9erVS9u3b0+5pk6dOpo8ebK2bdumFStWqFq1auratauOHz+ek4/rUby9pS5dzG2mBgIAAAD5J0fdAmfOnKm7775bycnJ6tSpk2JjYyVJEydO1LJly/Tzzz9n+bWioqLUokULTZ48WZJkt9sVHh6uhx9+WE899VSa6/v27avExETNnTs35dyNN96oJk2aaMqUKem+h7PDx8KFC9W5c+dMa/LUboFOn3wiDRkitWzJ6BUAAACQG3neLbBPnz7av3+/NmzYoPlXDY907txZb775ZpZfJykpSRs3blR0dHRqQV5eio6O1urVq9N9zurVq12ul6SYmJjrXp+UlKQPP/xQwcHBKftxXevSpUuKj493OTyZc93V+vXSqVPW1gIAAAAUFTkKV5IUGhqqG264QYcPH9bBgwclSS1btlS9evWy/BonTpxQcnKyQkJCXM6HhITo6NGj6T7n6NGjWbp+7ty5CgwMlJ+fn958803FxsaqXLly6b7mxIkTFRwcnHKEh4dn+TMURJUrSw0bSg6HtHCh1dUAAAAARUOOwpXdbtdzzz2n4OBgVa1aVVWrVlWpUqU0YcIE2e12d9eYIx07dtSWLVu0atUqdevWTXfdddd113GNGjVKZ8+eTTkOHDiQz9W6n3P0inVXAAAAQP7IUbh65plnNHnyZL300kvavHmzNm/erBdffFHvvPOORo8eneXXKVeunLy9vRUXF+dyPi4uTqGhoek+JzQ0NEvXlyhRQrVq1dKNN96ojz/+WD4+Pvr444/TfU1fX18FBQW5HJ7Oud/VggVmBAsAAABA3spRuPrss8/0n//8Rw899JAaN26sxo0b6//+7//00UcfaerUqVl+neLFi6tZs2ZatGhRyjm73a5FixapVatW6T6nVatWLtdLUmxs7HWvv/p1L126lOXaPN1NN0m+vtLBg9KOHVZXAwAAABR+OQpXp06dSndtVb169XQqmx0URowYoY8++kifffaZduzYoYceekiJiYkaPHiwJGnAgAEaNWpUyvXDhw/XvHnz9Prrr2vnzp0aN26cNmzYoGHDhkmSEhMT9fTTT2vNmjXat2+fNm7cqHvvvVeHDh3SnXfemZOP65H8/U3AkpgaCAAAAOSHHIWryMjIlNbpV5s8ebIaN26crdfq27evXnvtNY0ZM0ZNmjTRli1bNG/evJSmFfv379eRI0dSrm/durWmTZumDz/8UJGRkZo5c6Zmz56tRo0aSZK8vb21c+dO3XHHHapTp4569uypkydPavny5WrYsGFOPq7HunpqIAAAAIC8laN9rpYuXaoePXqoSpUqKdPxVq9erQMHDuinn35Su3bt3F5ofvL0fa6ctm+XIiLMKNapU5Kfn9UVAQAAAJ4lz/e5at++vf744w/dfvvtOnPmjM6cOaPevXvrt99+0xdffJGjouF+DRtKFStKFy5Iy5dbXQ0AAABQuOVo5Op6tm7dqqZNmyo5OdldL2mJwjJyJUmDB0tTp0pPPCG9+qrV1QAAAACeJc9HruA5nOuuaGoBAAAA5C3CVSEXHS3ZbNK2bdLhw1ZXAwAAABRehKtCrlw5qVkzczs21tpaAAAAgMLMJzsX9+7dO8PHz5w5k5takEdiYqQNG8zUwIEDra4GAAAAKJyyFa6Cg4MzfXzAgAG5KgjuFxMjvfCCGbmy2yUvxisBAAAAt3Nrt8DCojB1C5Sky5elsmWlhARp/XqpeXOrKwIAAAA8A90C4aJYMalTJ3N7wQJrawEAAAAKK8JVEUFLdgAAACBvEa6KiK5dzZ+rVknx8dbWAgAAABRGhKsiomZNc1y5Ii1ZYnU1AAAAQOFDuCpCmBoIAAAA5B3CVRHinBpIuAIAAADcj3BVhHTsKPn4SH/9ZQ4AAAAA7kO4KkKCgqTWrc1tWrIDAAAA7kW4KmJYdwUAAADkDcJVEeNcd/XLL9Lly9bWAgAAABQmhKsipmlTqVw5KSFBWrPG6moAAACAwoNwVcR4eUldupjbTA0EAAAA3IdwVQTRkh0AAABwP8JVEeQMVxs3SidOWFsLAAAAUFgQroqgihWliAjJ4ZAWLrS6GgAAAKBwIFwVUUwNBAAAANyLcFVEOfe7WrDAjGABAAAAyB3CVRHVrp3k5ycdPiz99pvV1QAAAACej3BVRPn5Se3bm9tMDQQAAAByj3BVhF09NRAAAABA7hCuijBnuFq2TLpwwdpaAAAAAE9HuCrC6teXKleWLl40AQsAAABAzhGuijCbLbUlO1MDAQAAgNwhXBVxzqmBNLUAAAAAcodwVcRFR5sRrN9+kw4etLoaAAAAwHMRroq4MmWkFi3MbaYGAgAAADlHuAIt2QEAAAA3IFwhJVzFxkrJydbWAgAAAHgqwhXUsqUUFCSdOiVt3Gh1NQAAAIBnIlxBxYpJnTub20wNBAAAAHKGcAVJtGQHAAAAcotwBUmpmwmvXi2dPWttLQAAAIAnIlxBklS9ulS7tmlosXix1dUAAAAAnodwhRRMDQQAAAByjnCFFM6pgfPnSw6HtbUAAAAAnoZwhRQdO5rOgXv2SH/9ZXU1AAAAgGchXCFFYKDUpo25zdRAAAAAIHsIV3DBuisAAAAgZwhXcOFcd7V4sZSUZG0t+B8WwAEAAHgEwhVcNGkilS8vnTtn9ryChX7/XWrbVqpUSVq3zupqAAAAkAnCFVx4ebl2DYQFrlyRJk6UbrhBWrlSOnLE/KVs3Gh1ZQAAAMgA4QppEK4stH271KqV9PTTZl5mjx6my8jZs1KXLtKWLVZXCAAAgOsgXCENZ7jatEk6ftzaWoqMy5elF16QmjaVNmyQSpWSPv9c+uEH6eefpRtvlE6flqKjpW3brK4WAAAA6SBcIY3QUCky0tyOjbW2liLh11+lqCjp2WdNyLr1VrPe6p57JJtNKllSmjdPatFCOnlS6tzZPA4AAIAChXCFdDE1MB9cviw995zUvLm0ebNUpoz05ZfS7NlSWJjrtcHB5i+jaVMznNipk7RrlyVlAwAAIH2EK6TLud/VggV0As8TW7ZILVtKY8eakNWrl/Tbb9Ldd5vRqvSULm3+QiIjpbg4E7B2787PqgEAAJABwhXS1bat5O8vHT3KEh+3SkoygapFCxOwypaVvvpK+u47Mx8zM2XLmrmaDRtKhw+bgLVnT56XDQAAgMwRrpAuX1+pQwdzm6mBbrJpkwlVzz1n2q3fcYcZrfrHP64/WpWe8uWlRYukevWkAwekjh2lffvyrm4AAABkCeEK13X11EDkwqVL0ujRZhrgr79K5cpJ33wjzZwphYTk7DVDQqRffpHq1DHBqlMn6eBB99YNAACAbCFc4bqc4Wr5cun8eWtr8VgbNpiGFc8/LyUnS3fdZTr93Xln7l87LMwErJo1pb//NiNYhw/n/nUBAACQI4QrXFfdulJ4uBl4WbrU6mo8zMWLZiPgG280GwNXqGBGqqZPN9P63KVSJROwqlUzzS06dTIL5QAAAJDvCFe4LpuNqYE5snataZk+caIZrerXz6ytuuOOvHm/KlWkxYtNEt61y+yDdexY3rwXAAAArqtAhKt3331X1apVk5+fn6KiorRu3boMr58xY4bq1asnPz8/RURE6Keffkp57PLlyxo5cqQiIiJUokQJVaxYUQMGDNBhpkvliDNc0dQiCy5elEaOlFq3lnbsMOuivvtOmjbNrLPKS9WqmYBVqZKZdhgdLZ04kbfvCQAAABeWh6vp06drxIgRGjt2rDZt2qTIyEjFxMTo2HV+875q1Sr169dPQ4YM0ebNm9WrVy/16tVL27dvlySdP39emzZt0ujRo7Vp0yZ999132rVrl2699db8/FiFRufOkpeXyQoHDlhdTQG2erV0ww3SK69Idrv0z3+a0arbb8+/GmrWNFMEw8JM//wuXaRTp/Lv/QEAAIo4m8Nh7RaxUVFRatGihSZPnixJstvtCg8P18MPP6ynnnoqzfV9+/ZVYmKi5s6dm3LuxhtvVJMmTTRlypR032P9+vVq2bKl9u3bpypVqqR5/NKlS7p06VLK/fj4eIWHh+vs2bMKCgrK7Uf0eK1aSWvWSB99JN13n9XVFDAXLphOgG+8YXZbDg2VPvhAsjLM79wptW9vpgY2ayYtXCiVKmVdPQAAAB4sPj5ewcHBWcoGlo5cJSUlaePGjYqOjk455+XlpejoaK1evTrd56xevdrlekmKiYm57vWSdPbsWdlsNpW6zg+YEydOVHBwcMoRHh6e/Q9TiLHu6jpWrpSaNJFef90EqwEDzGiV1aOk9eqZEaxy5aSNG6Vu3aT4eGtrAgAAKAIsDVcnTpxQcnKyQq7Z6yckJERHr9Px7OjRo9m6/uLFixo5cqT69et33aQ5atQonT17NuU4wPw3F85wtXCh6c9Q5J0/Lz32mNSunfTHH1LFitLcudJnn0llylhdndGwofkLK1PGNNjo3l1KSLC6KgAAgELN8jVXeeny5cu666675HA49P7771/3Ol9fXwUFBbkcSNWihRQcLJ0+La1fb3U1Flu+XIqMlCZNMqNVgweb0aoePayuLK3ISCk21kwJXLVKuuUWKTHR6qoAAAAKLUvDVbly5eTt7a24uDiX83FxcQoNDU33OaGhoVm63hms9u3bp9jYWAJTLvj4mOZzUhGeGpiYKA0fbtYy7d5tuvL99JP0yScFez1T06bmLy0oSFq2zExZZEdoAACAPGFpuCpevLiaNWumRYsWpZyz2+1atGiRWrVqle5zWrVq5XK9JMXGxrpc7wxWf/75pxYuXKiyZcvmzQcoQop0S/alS6XGjaW33zajVffdZ0arune3urKsadHC/MWVLGnWYvXqZdrGAwAAwK0snxY4YsQIffTRR/rss8+0Y8cOPfTQQ0pMTNTgwYMlSQMGDNCoUaNSrh8+fLjmzZun119/XTt37tS4ceO0YcMGDRs2TJIJVn369NGGDRv05ZdfKjk5WUePHtXRo0eVlJRkyWcsDLp2NX+uXSudOWNpKfnn3Dlp2DCpQwfp77/NJr3z5pm2icHBVleXPTfeKP38s1SihJkq2Lu3dFWHTAAAAOSe5eGqb9++eu211zRmzBg1adJEW7Zs0bx581KaVuzfv19HjhxJub5169aaNm2aPvzwQ0VGRmrmzJmaPXu2GjVqJEk6dOiQ5syZo4MHD6pJkyYKCwtLOVatWmXJZywMqlaV6tY1DS1++cXqavLBL79IERHSu++a+w88IG3fnjqE54natJF+/FHy9zdB6847JX7hAAAA4DaW73NVEGWnl31RMny4mRn3wANmK6dCKSFBGjlScjZAqVpV+s9/UhedFQaLFpnmFhcvmk2Op0+XihWzuioAAIACyWP2uYJncU4NnD/fLD0qdBYuNKNVzmD10EPStm2FK1hJUufO0uzZUvHi0qxZUv/+0pUrVlcFAADg8QhXyLIOHczP4/v2SX/+aXU1bhQfLz34oNSli/lw1aqZ0Z333jNNIAqjmBgTrIoVk2bMkAYOZBMzAACAXCJcIctKlJDatjW3C03XwAULpEaNpA8/NPeHDjWjVZ06WVtXfrj5ZmnmTNNrf9o06d57CVgAAAC5QLhCtlw9NdCjnT1rWqrHxEgHDkg1akiLF0uTJ0uBgVZXl39uvVX6+mvJ21v6/HOzoM5ut7oqAAAAj0S4QrY4m+UtXuzBnbx//tmMVn38sbn/yCPSr7+aeY9F0R13SF9+KXl5mU2R/+//CumiOgAAgLxFuEK2NG4shYRI589LHtfZ/swZM/Xt5pulgwelWrWkZcukt94ycx6Lsr59zciVzWZaQT78MAELAAAgmwhXyBYvLw+dGvjjj1LDhtKnn5oA8dhj0tatUrt2VldWcPTvn/r9vPuuNGIEAQsAACAbCFfINo8KV6dPm054t9wiHT4s1a4tLV8uvfGGFBBgdXUFz8CB0kcfmduTJpk9vwhYAAAAWUK4QrY5w9WWLVJcnKWlZGzOHDNa5Zzu9vjjZrSqTRurKyvYhgxJ3evr1VelZ58lYAEAAGQB4QrZVqGCdMMN5nZsrLW1pOvkSemf/5Ruu006ckSqW1dauVJ67TXJ39/q6jzDv/4lvfOOuf3ii9Jzz1lbDwAAgAcgXCFHCuzUwNmzzWiVs/vdv/8tbd4stWpldWWeZ9gwM31SksaNMyELAAAA10W4Qo44W7LHxhaQbZFOnJDuvlu6/XYzV7F+fdPO8OWXGa3Kjccek156ydx+5hkzTRAAAADpIlwhR1q3Nt3L4+LMFlGW+vZbM1r11VdmtGrUKGnTJikqyuLCComRI6UJE8ztf/9bevNNa+sBAAAooAhXyBFf39Q9dy2bGnj8uNmfqU8f6dgxE7DWrDHT1/z8LCqqkHr2WWnMGHN7xAhp8mRr6wEAACiACFfIMefUwAULLHjzGTOkBg2kb76RvL3NlLWNG6UWLSwopogYN86MCkpmk+EPPrC0HAAAgILGx+oC4Lmc4WrFCikx0UwTzHNxcdLQoWYqoCRFRJiNb5s1y4c3L+JsNumFF6TLl03nxX/9S/LxMa3bAQAAwMgVcq52balqVSkpSVqyJI/fzOGQvv7aTP379lvzQ/2YMdKGDQSr/GSzSa+8Ig0fbu7ff7/02WfW1gQAAFBAEK6QYzZbPk0NPHpUuuMOqV8/s4dVZKS0bp00frxUvHgevjHSZbOZphZDh5rQO3iwNG2a1VUBAABYjnCVkcuXra6gwHOGqzxpauFwmP2qGjaUZs0yo1Xjx5tg5dzFGNaw2aS335YeeMD8Pd1zj1n/BgAAUISx5iojFSqYeW+1akk1a5rDebtGjXxaZFSwdepk+kns2iXt22e+Lrc4csSs6Zkzx9y/4Qaztioy0k1vgFzz8pLef1+6ckX65BOzz5iPj9S7t9WVAQAAWMLmcDgcVhdR0MTHxys4OFhnJQVldGFYWNrQ5bxdpkw+VWu9Nm3Mfr0ffGAGMnLF4ZD++1/pkUekM2ekYsXM2qqRI81tFDzJyWZq4BdfmHD17bfSrbdaXRUAAIBbpGSDs2cVFJRhOmDkKkM7d5r9k3bvlv76K/XYvVs6fdqMrhw5YtrlXatUqesHr7Aw81v/QiImxoSrBQtyGa4OHZIefFD68Udzv1kzM1oVEeGWOpFHvL3N39OVK2Yj5z59pNmzpZtvtroyAACAfMXIVTqylE5Pn04NWleHrr/+kg4fzvgN/PzMtML0phtWrepxIzRr10o33igFB0snTpjBi2xxOEzHuUcflc6eNU0qxo2TnnwyBy8Gy1y5YpqOzJxpdpmeM0fq2tXqqgAAAHIlOyNXhKt0ZOcLTNf589Lff6cNXX/9Je3da6ZRXY+3twlY6Y16FdB1XsnJUvnyJm+uXCm1bp2NJx88aIa7fv7Z3G/RwoyCNGyYJ7Uij12+LN11lxm58vMzo5CdOlldFQAAQI4RrnIp1+EqI5cvS/v3pw1dzuPChYyfX0DXed11lzRjhjR2rBl0ypTDYZogjBghxcebkY7nnjP3Ga3ybElJpnX+3LlSQIAJzjfdZHVVAAAAOUK4yqU8DVcZcTjMGq7rTTc8fTrj5zvXeaU33TCP13l9/LF0331meuDq1ZlcvH+/2XzWuTlWVJQZrapfP8/qQz67dEnq1UuaN8+Mts6fbzqfAAAAeBjCVS5ZFq4yc+pU2sYaztsWr/M6cECqUsXktxMnpNKl07nI4ZD+8x/p8celhART04QJ0mOPmemQKFwuXDBdAxculEqWNGH6xhutrgoAACBbCFe5VGDDVUYKwDqvBg2kHTvM9MA+fa55cN8+M7S1cKG537q1mRZYt26OPi48xPnz0i23SIsXS0FB0qJFUvPmVlcFAACQZYSrXPLIcJWR663z2r3bBDI3rfN67DFp0iSToT766H8n7Xbpww9N579z5yR/f+nFF6WHH2a0qqhITJS6d5eWLzdTV3/5xWwKDQAA4AEIV7lU6MJVRpzrvNLbyyub67x2q6ZenF5T8eVracammrIlXTJrq375xVzbtq0ZrapdO88/FgqYhASpWzezIVqZMmYkq3Fjq6sCAADIFOEql4pUuMpMbtZ5OQUESBMnSsOGFarNk5FN8fFSly7SunVSuXLSkiW03AcAAAUe4SqXCFdZdPU6r/+Frg3T/1LpU7tV3WufvOzJpgX3J5+Y0S3gzBkpOlrauFEKCTEBq149q6sCAAC4ruxkAzYUQs4FBEiNGpnjfxZXl/79b+mWLpf1w+enze7CNpuFRaJAKVXKdA3s3FnassVsMLx0KVNFCzKHQ1q7Vpo506zdfOABE5ABAEAajFylg5GrnPv1Vyky0vStOHXKdFsH0jhxwgSrbdukSpVMwGJ0s+Cw26U1a0ygmjnT7LVwtdtvl15/Xape3Zr6AADIR9nJBiyAgVtFREihoaYB4cqVVleDAqtcOdOWv3596dAhE7T27rW6qqLNbpdWrJCGDzeb1rVpI735pglWgYFSv37Sgw+aLp+zZpm/u2efNd0gAQCAJMIV3Mxmk7p2Nbfnz7e2FhRwFSqYfa/q1DHTzTp1SjtCgryVnCwtW2a2RqhcWWrXTnr7bRN4S5aU+veXZs+Wjh2Tpk2Tpkwx0zk7d5YuXZJeeMHsVffVV2b6IAAARRzhCm4XE2P+JFwhU2FhplV/zZrSnj1Sx47mB3vkneRk0wp/6FATqNq3lyZPNlsyBAVJ99wjzZljAtV//yvddpuZ5+vUqJEUGyt9951UrZr5+7r7bhPMNm2y7GMBAFAQsOYqHay5yp3jx00jOIfDdGsPC7O6IhR4Bw6YH/L37DEjWUuW8A/Hna5cMevaZs40oejYsdTHSpUyAerOO02jCl/frL/uxYtm7dWLL5ruoTab2UX8hRdMMxsAAAoB1lzBUuXLS02bmtvTpkmXL1tbDzxAeLgZwapSRfrjDzPtLC7O6qo825UrZoTpgQdMUI2ONtP6jh2TSpeW7r1X+ukn8z1PnSr16JG9YCWZjjXPPCPt2mXWZDkc0kcfme6PkybxHz8AoMhh5CodjFzl3tNPm32DJfPzV4sWUqtWUuvW5s8KFaytDwXU33+bEayDB830s8WLTfMLZM3lyyakzphh1kqdPJn6WNmypsvfnXea6ZfFirn//VeskB55RNq82dyvX9+ELOdCTAAAPBCbCOcS4Sr3Dh2Shg0zM5FOn077eM2aqUGrdWvzc7S3d/7XiQLozz9NwDpyxPT1/+UXqUwZq6squJKSTGMQZ6C6+j+4cuWk3r1NoGrfPm8C1bWSk83G4U8/bVruS9Ktt0pvvEG7fQCARyJc5RLhyn3sdjPLa9UqafVq8+fvv6e9LjBQiopKDVs33mhmLqGI2rXLhIG4ODPHdOFC/kFc7dIlM+Vv5kzp+++lM2dSH6tQITVQ3XST5GPRXvFnzkjjx0vvvGMCV/Hi0uOPm9AVGGhNTQAA5ADhKpcIV3nr9Glp7drUsLV2rZSQkPa6+vVdR7fq1pW8WCVYdPz+u9Shg+mQ0qKFCRPBwVZXZZ2LF6UFC0ygmjNHOns29bHQUOmOO6Q+fUzXvoI0DPz779Kjj5q/P0mqWFF6+WXT5t1ms7Q0AACygnCVS4Sr/JWcLP32m+vo1u7daa8rXdqMaDkDV8uWZiseFGLbtpn1QSdPmr/0+fOL1l/6hQvmM8+YIf3wg+tvISpWTA1UbdoUrEB1LYfDBMIRI8y6Osn8fb79ttS8ubW1AQCQCcJVLhGurHfsmLRmTWrgWrfO/OL+al5eUkSECVvOwFWjBr8ML3S2bDEbDJ8+LbVtK/38c+GeVnb+vDRvnglUc+dK586lPlapkglTd95p/sF72lDuxYvSm2+aVu2JieY/1sGDTSv3kBCrqwMAIF2Eq1wiXBU8ly9LW7e6jm7t35/2ugoVXLsSNm/uuv8pPNTGjaY9+9mzZqrgjz9KAQFWV+U+iYmmLfrMmeazJSamPhYenhqooqI8L1Cl59Ah6amnzCbFktm8eMwY6eGHzdosAAAKEMJVLhGuPMOhQ6lBa/Vq8/P3tdvq+PiYfghXB67wcGvqRS6tXSt16WKmxnXubKbJeXJyPnfOBKmZM02wOn8+9bGqVVMDVcuWhXc4dvVqE6g2bjT369Y1I1vdu1tbFwAAVyFc5RLhyjNdvCht2mTClvNIbx/aypVdG2U0acIvyz3GypVSTIwZ2YmJMa3H/fysrirrEhLMVL8ZM8z0xqvnulavbsJUnz5myLWwBqpr2e1mE+NRo8x8YEm65RbTur12bUtLAwBAIlzlGuGqcHA4pL17U0e3Vq2Sfv3VNNC4mp+f+Vn26tEtln8UYMuWmZGN8+elHj2k774r2Ok4Pt6Mss2YYdZSXbqU+ljNmqmBqmnTohOo0nP2rDRhgvTWW9KVK2ZPrscek559tmg1MQEAFDiEq1wiXBVe585J69e7Tic8dSrtdTVqpN3k2KrtgpCOX34xweriRalXL+mbb/Jng9ysOnMmNVDNn282+nWqXdsEqjvvNJskF+VAlZ6dO02omjfP3A8NlV56SbrnnsKx3gwA4HEIV7lEuCo6HA6zyfHVo1u//27OX61ECdNLwBm4brxRKlPGmprxP7GxUs+eZiSoTx/pq6+sTcCnT5sNfWfONPtRXb0AsG7d1EAVEUGgyozDYdajPfZY6r4MUVGmdXvLltbWBgAocghXuUS4KtrOnHHd5HjNmvQ3Oa5Xz7UNfL16/GI93/38sxm5SkqS/vEP6Ysv8jdgnTpl1n3NnCktXOgaqBo0SG1K0bAhgSonLl0y0wQnTEhtST9okDRxohnRAgAgHxCucolwhaslJ5vRrKvbwP/5Z9rrSpVy3eQ4KoqlIvnihx/MZrqXL0v//KdpjpCXG+qeOJEaqBYtMuuDnBo1Sl1D1aBB3tVQ1Bw5YhpefPaZuV+ypDR6tDR8eMFebwcAKBQIV7lEuEJmjh83I1rOsLVunXThgus1zk2Or26UUbMmAxh5YtYsE2qSk83Ixscfu3cY8fhx8x4zZkiLF7t2RWncODVQ1avnvvdEWmvXSo88Yv6Dk8z6tTffNOvvAADII4SrXCJcIbsuXzadCK8e3dq3L+115cunhq3Wrdnk2K1mzJD69TPB5/77pSlTchew4uJSA9WSJaZluFOTJqmBqk6d3FaO7LDbzfTPkSNT91ro3t2ErLp1ra0NAFAoEa5yiXAFdzh8OO0mx1c3jZPM8qAbbnANXGxynAtffWWmBtrt0kMPSe++m72hwqNHTWv3GTNMy/erA1WzZiZM9ekj1arl/tqRPfHx0vPPS5Mmmd9u+PiYaYJjxkj87zYAwI0IV7lEuEJeuHQpdZPj1avNfrhHj6a9rlIl1zbwN9zAspJs+eILaeBA03HukUfMD98ZBazDh6VvvzVrqJYvd20V2aJFaqCqUSPPS0cO/PGHNGKE6S4oSRUqmIYXgwbRYQYA4BaEq1wiXCE/OBxm6uDVo1tbtqTd5Njb2/xcX7eumYHmPOrWlcLCWMOVrk8+kYYMMbcff1x69VXXL+rgQROoZswwX/7V/zMYFWWm/N1xh1StWr6WjVz4+Wfp0UdN2JJMMH77bdNlBgCAXCBc5RLhClZJTEy7yfHJk9e/vkQJ17B1dfgKDs6/ugukDz+UHnzQ3H7qKTNN0BmoVq92vbZVq9RAVaVK/tcK90hKkt55Rxo/PnX/hHvuMZsQV6xobW0AAI/lUeHq3Xff1auvvqqjR48qMjJS77zzjlpmsEnkjBkzNHr0aO3du1e1a9fWyy+/rJtvvjnl8e+++05TpkzRxo0bderUKW3evFlNmjTJVk2EKxQUDod06JD5Zfwff0i7dqXe3rMn7SjX1UJC0o501aljRsF8ffPvM1jq3XelYcPSf6xNm9RAVbly/taFvBUXJz39tBnBlMxvIZ591mxKXGT+8RdCR4+a5jKLF0u//WY6At1yi3TTTcydBpCnPCZcTZ8+XQMGDNCUKVMUFRWlSZMmacaMGdq1a5cqVKiQ5vpVq1bppptu0sSJE3XLLbdo2rRpevnll7Vp0yY1atRIkvTFF19oz549qlixou6//37CFQqtpCTp779Tw9bV4Su9tVxOXl5mttu1o11165r1XoVumcqkSeaHaptNatfOrJ/q3dt8WBRu69ebdXdr1pj7NWtKb7wh9ezJfFpPEBcnLV1qwtSSJdLOnelfV7KkFBNjgtbNN5u2rADgRh4TrqKiotSiRQtNnjxZkmS32xUeHq6HH35YTz31VJrr+/btq8TERM2dOzfl3I033qgmTZpoypQpLtfu3btX1atXJ1yhSIqPNxsdXz3S5Qxf585d/3n+/mbroPSmGZYpk3/1u91vv5kPEBZmdSXIb3a79OWXpnX7kSPmXNeuJnTXr29pabjG8eOuYer3310ft9nMNggdOphNBFesMI1MnC35ndfceKMJ0LfcYjb2JkgDyCWPCFdJSUkKCAjQzJkz1atXr5TzAwcO1JkzZ/T999+neU6VKlU0YsQIPfrooynnxo4dq9mzZ2vr1q0u12YnXF26dEmXLl1KuR8fH6/w8HDCFQodh8OMaqU3zfCvv6QrV67/3HLl0p9mWLMme3XBAyQkSC++aEaukpJM6/aHHzat20uVsrq6ounkSdcwtX172msiI02Y6tjRjDxf+1seu13asEGaO9ccmze7Pl61qglZt9xiXsfPL48+DIDCLDvhyiefakrjxIkTSk5OVkhIiMv5kJAQ7bzO0P/Ro0fTvf5oRnOgsmDixIkaP358rl4D8AQ2mxm8CQuT2rd3fezKFbOO6+qRLmcAO3RIOnHCHKtWpX3NKlXS72YYHm66HQKWK1nStGgfMsR0kJwzx2w8/N//mtA1eDD/WPPaqVNm/zjnuqlff017TUREapi66SapbNmMX9PLS2rZ0hzPPWc6gf74o/TDD9KiRaYl67vvmqNECalLFxO0evSQQkPz4lMCKOIsC1cFyahRozRixIiU+86RK6Ao8fExUwJr1zY/d1zt3Dlp9+60o127dklnz5qfX/btkxYscH2er6/Zbze9aYblyjFbBxaoVUv6/ntp/nzTun3nTun++6X33zet29u0sbrCwuPMGdcwtXWr67YHktSwoWuYyu16qcqVTZfQBx+Uzp83Acs5qnX4sDR7tjkk067fOX2wSRP+BwmAW1gWrsqVKydvb2/FXT1XWlJcXJxCr/PbpNDQ0Gxdn1W+vr7ypYMUcF2BgeZnj2tn2DocZplEek01du82Gyf/9ps5rlWqVPqjXbVqmV8wA3kqJsaMnLz7rjR2rNnhu21b6e67pVdeoeFJTpw9azbidoapzZvThql69UyQ6tDBHOk0r3KbgAATnnr2NHVs3mxC1g8/mKmE69ebY8wY8/ftnD7YuTNznQHkmOUNLVq2bKl33nlHkmloUaVKFQ0bNuy6DS3Onz+vH374IeVc69at1bhxYxpaAAVMcrK0f3/6TTX278/4uZUrpz/aVa2aGWED3OrYMemZZ6SPPzY/hAcEmFbujz/OGp2MJCS4hqlNm8waqKvVqeMapgrKVLwjR6SffjJBKzbWjHI5+fubgOUMWwRtoMjziIYWkmnFPnDgQH3wwQdq2bKlJk2apG+++UY7d+5USEiIBgwYoEqVKmnixImSTCv29u3b66WXXlKPHj309ddf68UXX3RpxX7q1Cnt379fhw8fTrmmbt26Cg0NzfIIF+EKyFsXLqQ/zfCPPzLeNLlYMdNAI72Nk0NCmNWDXNq40bRudy4srF7dNMC47Tb+cUlmfvCKFalhauPGtJvt1arlGqY8YfPmixfNZ/rhB3McOOD6+A03pE4fbNasEO5XASAzHhOuJGny5Mkpmwg3adJEb7/9tqKioiRJHTp0ULVq1TR16tSU62fMmKFnn302ZRPhV155xWUT4alTp2rw4MFp3mfs2LEaN25clmoiXAHWOXky/WmGf/5pfga6nqAg11EuZ/iqXdv0MgCyxOGQvvpK+ve/TScXSYqOlt56S2rQwNra8ltiorRyZWqY2rAhbUvRGjVcw5Snb8jtcEjbtqWu01qzxnVqY2ioWZR6yy2mOQZzmIEiwaPCVUFEuAIKHrvdNAJLb7Rr7960s5GuFhZmphRWrpz+ERZmRsWAFOfOSS+9JL32mlk86O0tDR0qjRsnlS5tdXV54/x5afVqE6QWL5bWrUsbpqpVcw1TVapYUGg+OnZM+vlnM6I1f77rRoG+vua7cE4frFrVujoB5CnCVS4RrgDPcumS2acrvf27jh3L/Pk2m/mF9PXCV+XKZtkFfW+KoL//NmuvnB3mypWTnn9euu8+z2/dfuGCGZlx7jO1dq3ZA+xq4eEmQDgDVbVqFhRaQCQlme6HzumDe/a4Ph4RkTp9sGVLz//3ASAF4SqXCFdA4XHmjJlSuH+/Gfm69jh0SLp8OWuvVb58xgGscmXTCwGF0MKFpnW7s/VlkyamdXu7dlZWlT0XL5oA5QxTa9aY30xcrVIl1zBVvTrrzdLjcJg2/j/8YKYPrlzpOnxevrx0880maHXtauYtA/BYhKtcIlwBRYfdbtrJpxe8rj4yWu91tdKlMw9g/M+Kh7pyxeyHNWaMSe2S9I9/mNbtBXFvxEuXzNQ+Z5havTrtP+SwMNcwVbMmYSonTp6U5s0zYWvePNOW3qlYMbNr+y23mJGtGjWsqxNAjhCucolwBeBqDod06lTG4evAAbP+PytKlsw8gJUuzc+4Bdbx49Lo0dKHH5p/HP7+0qhR0hNPWLs/UlKS2bfJGaZWrTJT/64WGpq6aW+HDqbjC//Q3OvyZTOS5RzV+uMP18fr108NWq1asb8E4AEIV7lEuAKQXQ6HFB+f+QiYc8AjM/7+mQewcuXoCm2pLVtM6/bly839atVMA4zevfMnsFy+bDr4Obv5rVzpul+TZDbpvTpM1a1LmMpvf/yR2n1w2TLX9vVlykjdu5uw1a2b2V0dQIFDuMolwhWAvHLunFnnlVEAO3Eia69VvLhZIpNRAAsJYV19nnI4pG++kZ58MnV/pI4dTev2iAj3vteVK2ZvKWeYWrEi7XBpuXKpnfw6djSjJISpguPMGdN1cO5cs4nxqVOpj3l7mzV8zlGtOnUsKxOAK8JVLhGuAFjp4kXp8OGMA9jRo67b71yPt7fZxzWjAEYrejc4f156+WWz/uriRTOk+NBD0nPPmdGJnLhyRdq8OTVMLV/u2gpcMq99dZhq0IDhTE9x5YppKuKcPvj7766P166dGrTatuU/UsBChKtcIlwBKOguX5aOHMk4gB0+7DoD6Xqy0oq+YkXJzy/vP5fH27vXrL369ltzv0wZ07r9gQcyH0JMTjZTDa8OU/HxrteULm2aIzjDVKNGHhWmLl+WEhLSP+Ljr//YtceFC+arrVDBjM46j6vvO2+XLOkhg3d//506fXDJEtc2psHBZtrgLbeYaYRly1pWJlAUEa5yiXAFoDBITpbi4jJfB5bVVvSlS0uBgabdvPPw93e9n5vH/Pw85IfgrFi82KzH2r7d3G/c2LRub98+9Rq7Xdq6NTVMLVvm2mVOMj9UXx2mIiLydZ6n3W4Gy7IaejI7ru38nh/8/K4fvK69XaZMAcmq8fFSbKwJWj/+aJqoOHl5Sa1bp45qMfUTyHOEq1wiXAEoKux2s8YrswB2bdO5vOLuwJbe+XwLcVeuSB98YDoLnj5tzt15p/nBeMkSE6ac552CgqSbbkoNU5GR2QpTDof5u3JXGMpqB8zs8vMzI0o5Pfz8zHKluDizUXhcXOpx9f3s1u/tbbaoyiyEhYSY6/Jlpl5ysukCOXeumUL466+uj1evnhq0brqJ3c6BPEC4yiXCFQCkcjhMBjh61CwtOn/e/ADvvH3tkd3HkpLy/zPlxcjbtedTQtzJk2ZvrClTXDealaTAQNnbtNOFGzvqbNOOOhneRAkXfHIchs6dy9pU0Ozy8cldGLr6CAzMv+VDiYmpYSujEHbsmGtviawqUybzEOa877YNxvfvT50++MsvrsOBgYFSTIwJWzffbN4cQK4RrnKJcAUA+Sc52b1hrSCGuIAAKdL2qx4+O0H+V85pRbEO+iW5g1ZcaKYLl/Nmn6PAwKwHnqCgjB/39S38M8+Skszsu2tDV3qB7Pjx7IfYwMCshbCQEDMbNEvfd2KitHBhatg6ejT1MZtNiopKHdWKiCj8f4lAHiFc5RLhCgAKnytXTOjK6yCX0xCX26lyVx8lShSQtUOFlN2eOi0xs1GxuLjsrzUrXjxra8QqVDDd9729/1fUpk2p0wc3bXJ90fDw1KDVsSMdaoBsIFzlEuEKAJBTzhCXXvBKTEx/il1+TpVD/nI4zJTN9KYiphfIrm0QmRkvLxOwrg1eNXwP6YbDP6rWzrkqt3WhvC9dtXAyIEDq0sWs/wsOznjoMiCAES8UeYSrXCJcAQAAK1y4YKYdZmVU7OTJrO1356cL6qRfdIvm6lbbXFVyHMx6QV5eOZ9Tmt5jPnkzDRbIS4SrXCJcAQCAgu7KFdPtMysNO44dc2674FCktuoWzVVd7VJJJaikEhSk+JTbJZWgQJ2Tl/LgR0Tn/NfshrL0HvP3Z1QN+SI72YBfHwAAAHggHx+zAXhoaObXOrt+HjtmU1xcE8XFNdGxY9If14Qx55/nE+0K0Pl0g9e1R5DiFWRLULniCSpTPEGlvP8X0BwJ8r8cL9+kBHlf+d9ixIsXzXH13l05de2oWmadWTJ7nFE1uAH/igAAAAo5m820ji9TRqpXL/PrExO9dOxYoOLiAnXsWFiaEbFdV4WxkyclOSRd+t+RjmJKcglkFQMTFF4qXhUDExRaIkHl/RJUzjdBpXwSFGxLUElHvPyTE+R3OUHe5xNku3bPAYfDNPE4ezbt5ts55e+fs1BWrJgJel5epruI8/bVx/XO5+Q56Z232RjFKyCYFpgOpgUCAABkzeXLrm3s02vccfWfV65k7/X9/VObdVSoIIVWsKtSqURVDk5QWGCCKvgnqJxfgsr4mODmdS7++pvBxafzmBX7NOQFmy1/wl1ePefhh6WGDa3+FtPFtEAAAADki2LFpIoVzZEZu106cybzEOa8nZhomnzs22cOw0tSyf8drry9U7snXt1BsUKdtOfKlzd7uCkpKePwldljycnmsNvTHtc7n9FjV5/PzhiIw5H95FqQ3H57gQ1X2UG4AgAAQL7w8kqdnli/fubXJyZmLYTFxZm9x5KTU89nRalSUkhIcVWoUFYhIWVdRshCQqSQeqm3AwMtmHnncKROgcxqIMtJiCsIz6lVK5+/3LxBuAIAAECBVKKEVL26OTLjnJ54vemI13ZPvHLFjKKdOSPt2pX56187PdH5p7+/2fi5WLHU4+r7GT2W+bU2eXvb2BXcgxCuAAAA4PFyOj0xsxGx609PzB82W05CWc6uzavXKUq9NghXAAAAKFJyMj3xeiNiFy+aUTPnkZSU/u3M7jtvX7vMyuEwj3ly3w0fn8xD2bvvSm3bWl1p7hGuAAAAgAyUKCHVqGGOvJacnPUg5q5A585r0+upceWKOS5cuP7nPn8+777T/ES4AgAAAAoIb29z+PlZXUnOOByuoSuroa1pU6srdw/CFQAAAAC3sNnMVL/ixa2uxBq0HgEAAAAANyBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBoQrAAAAAHADwhUAAAAAuAHhCgAAAADcgHAFAAAAAG5AuAIAAAAANyBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBoQrAAAAAHADwhUAAAAAuIGP1QUURA6HQ5IUHx9vcSUAAAAArOTMBM6MkBHCVTpOnjwpSQoPD7e4EgAAAAAFQUJCgoKDgzO8hnCVjjJlykiS9u/fn+kXiOuLj49XeHi4Dhw4oKCgIKvL8Uh8h+7B95h7fIfuwffoHnyPucd36B58j7nnCd+hw+FQQkKCKlasmOm1hKt0eHmZpWjBwcEF9i/ZkwQFBfE95hLfoXvwPeYe36F78D26B99j7vEdugffY+4V9O8wqwMuNLQAAAAAADcgXAEAAACAGxCu0uHr66uxY8fK19fX6lI8Gt9j7vEdugffY+7xHboH36N78D3mHt+he/A95l5h+w5tjqz0FAQAAAAAZIiRKwAAAABwA8IVAAAAALgB4QoAAAAA3IBwBQAAAABuQLi6yrJly9SzZ09VrFhRNptNs2fPtrokjzNx4kS1aNFCJUuWVIUKFdSrVy/t2rXL6rI8zvvvv6/GjRunbKjXqlUr/fzzz1aX5dFeeukl2Ww2Pfroo1aX4lHGjRsnm83mctSrV8/qsjzOoUOH9M9//lNly5aVv7+/IiIitGHDBqvL8ijVqlVL82/RZrNp6NChVpfmUZKTkzV69GhVr15d/v7+qlmzpiZMmCD6m2VPQkKCHn30UVWtWlX+/v5q3bq11q9fb3VZBVpmP2c7HA6NGTNGYWFh8vf3V3R0tP78809ris0FwtVVEhMTFRkZqXfffdfqUjzW0qVLNXToUK1Zs0axsbG6fPmyunbtqsTERKtL8yiVK1fWSy+9pI0bN2rDhg3q1KmTbrvtNv32229Wl+aR1q9frw8++ECNGze2uhSP1LBhQx05ciTlWLFihdUleZTTp0+rTZs2KlasmH7++Wf9/vvvev3111W6dGmrS/Mo69evd/l3GBsbK0m68847La7Ms7z88st6//33NXnyZO3YsUMvv/yyXnnlFb3zzjtWl+ZR7rvvPsXGxuqLL77Qtm3b1LVrV0VHR+vQoUNWl1ZgZfZz9iuvvKK3335bU6ZM0dq1a1WiRAnFxMTo4sWL+VxpLjmQLkmOWbNmWV2Gxzt27JhDkmPp0qVWl+LxSpcu7fjPf/5jdRkeJyEhwVG7dm1HbGyso3379o7hw4dbXZJHGTt2rCMyMtLqMjzayJEjHW3btrW6jEJn+PDhjpo1azrsdrvVpXiUHj16OO69916Xc71793b079/fooo8z/nz5x3e3t6OuXPnupxv2rSp45lnnrGoKs9y7c/ZdrvdERoa6nj11VdTzp05c8bh6+vr+OqrryyoMOcYuUKeOnv2rCSpTJkyFlfiuZKTk/X1118rMTFRrVq1srocjzN06FD16NFD0dHRVpfisf78809VrFhRNWrUUP/+/bV//36rS/Ioc+bMUfPmzXXnnXeqQoUKuuGGG/TRRx9ZXZZHS0pK0n//+1/de++9stlsVpfjUVq3bq1Fixbpjz/+kCRt3bpVK1asUPfu3S2uzHNcuXJFycnJ8vPzcznv7+/PyH4O7dmzR0ePHnX5/+rg4GBFRUVp9erVFlaWfT5WF4DCy26369FHH1WbNm3UqFEjq8vxONu2bVOrVq108eJFBQYGatasWWrQoIHVZXmUr7/+Wps2bWIefC5ERUVp6tSpqlu3ro4cOaLx48erXbt22r59u0qWLGl1eR7h77//1vvvv68RI0bo6aef1vr16/XII4+oePHiGjhwoNXleaTZs2frzJkzGjRokNWleJynnnpK8fHxqlevnry9vZWcnKwXXnhB/fv3t7o0j1GyZEm1atVKEyZMUP369RUSEqKvvvpKq1evVq1atawuzyMdPXpUkhQSEuJyPiQkJOUxT0G4Qp4ZOnSotm/fzm9xcqhu3brasmWLzp49q5kzZ2rgwIFaunQpASuLDhw4oOHDhys2NjbNbxeRdVf/Nrtx48aKiopS1apV9c0332jIkCEWVuY57Ha7mjdvrhdffFGSdMMNN2j79u2aMmUK4SqHPv74Y3Xv3l0VK1a0uhSP88033+jLL7/UtGnT1LBhQ23ZskWPPvqoKlasyL/HbPjiiy907733qlKlSvL29lbTpk3Vr18/bdy40erSYDGmBSJPDBs2THPnztXixYtVuXJlq8vxSMWLF1etWrXUrFkzTZw4UZGRkXrrrbesLstjbNy4UceOHVPTpk3l4+MjHx8fLV26VG+//bZ8fHyUnJxsdYkeqVSpUqpTp452795tdSkeIywsLM0vRerXr8/0yhzat2+fFi5cqPvuu8/qUjzSk08+qaeeekr/+Mc/FBERoXvuuUePPfaYJk6caHVpHqVmzZpaunSpzp07pwMHDmjdunW6fPmyatSoYXVpHik0NFSSFBcX53I+Li4u5TFPQbiCWzkcDg0bNkyzZs3SL7/8ourVq1tdUqFht9t16dIlq8vwGJ07d9a2bdu0ZcuWlKN58+bq37+/tmzZIm9vb6tL9Ejnzp3TX3/9pbCwMKtL8Rht2rRJsyXFH3/8oapVq1pUkWf79NNPVaFCBfXo0cPqUjzS+fPn5eXl+uOft7e37Ha7RRV5thIlSigsLEynT5/W/Pnzddttt1ldkkeqXr26QkNDtWjRopRz8fHxWrt2rcetN2da4FXOnTvn8tvYPXv2aMuWLSpTpoyqVKliYWWeY+jQoZo2bZq+//57lSxZMmWebHBwsPz9/S2uznOMGjVK3bt3V5UqVZSQkKBp06ZpyZIlmj9/vtWleYySJUumWetXokQJlS1bljWA2fDEE0+oZ8+eqlq1qg4fPqyxY8fK29tb/fr1s7o0j/HYY4+pdevWevHFF3XXXXdp3bp1+vDDD/Xhhx9aXZrHsdvt+vTTTzVw4ED5+PAjTE707NlTL7zwgqpUqaKGDRtq8+bNeuONN3TvvfdaXZpHmT9/vhwOh+rWravdu3frySefVL169TR48GCrSyuwMvs5+9FHH9Xzzz+v2rVrq3r16ho9erQqVqyoXr16WVd0TljdrrAgWbx4sUNSmmPgwIFWl+Yx0vv+JDk+/fRTq0vzKPfee6+jatWqjuLFizvKly/v6Ny5s2PBggVWl+XxaMWefX379nWEhYU5ihcv7qhUqZKjb9++jt27d1tdlsf54YcfHI0aNXL4+vo66tWr5/jwww+tLskjzZ8/3yHJsWvXLqtL8Vjx8fGO4cOHO6pUqeLw8/Nz1KhRw/HMM884Ll26ZHVpHmX69OmOGjVqOIoXL+4IDQ11DB061HHmzBmryyrQMvs52263O0aPHu0ICQlx+Pr6Ojp37uyR/63bHA625AYAAACA3GLNFQAAAAC4AeEKAAAAANyAcAUAAAAAbkC4AgAAAAA3IFwBAAAAgBsQrgAAAADADQhXAAAAAOAGhCsAAAAAcAPCFQAAbmaz2TR79myrywAA5DPCFQCgUBk0aJBsNluao1u3blaXBgAo5HysLgAAAHfr1q2bPv30U5dzvr6+FlUDACgqGLkCABQ6vr6+Cg0NdTlKly4tyUzZe//999W9e3f5+/urRo0amjlzpsvzt23bpk6dOsnf319ly5bVAw88oHPnzrlc88knn6hhw4by9fVVWFiYhg0b5vL4iRMndPvttysgIEC1a9fWnDlz8vZDAwAsR7gCABQ5o0eP1h133KGtW7eqf//++sc//qEdO3ZIkhITExUTE6PSpUtr/fr1mjFjhhYuXOgSnt5//30NHTpUDzzwgLZt26Y5c+aoVq1aLu8xfvx43XXXXfr111918803q3///jp16lS+fk4AQP6yORwOh9VFAADgLoMGDdJ///tf+fn5uZx/+umn9fTTT8tms+lf//qX3n///ZTHbrzxRjVt2lTvvfeePvroI40cOVIHDhxQiRIlJEk//fSTevbsqcOHDyskJESVKlXS4MGD9fzzz6dbg81m07PPPqsJEyZIMoEtMDBQP//8M2u/AKAQY80VAKDQ6dixo0t4kqQyZcqk3G7VqpXLY61atdKWLVskSTt27FBkZGRKsJKkNm3ayG63a9euXbLZbDp8+LA6d+6cYQ2NGzdOuV2iRAkFBQXp2LFjOf1IAAAPQLgCABQ6JUqUSDNNz138/f2zdF2xYsVc7ttsNtnt9rwoCQBQQLDmCgBQ5KxZsybN/fr160uS6tevr61btyoxMTHl8ZUrV8rLy0t169ZVyZIlVa1aNS1atChfawYAFHyMXAEACp1Lly7p6NGjLud8fHxUrlw5SdKMGTPUvHlztW3bVl9++aXWrVunjz/+WJLUv39/jR07VgMHDtS4ceN0/PhxPfzww7rnnnsUEhIiSRo3bpz+9a9/qUKFCurevbsSEhK0cuVKPfzww/n7QQEABQrhCgBQ6MybN09hYWEu5+rWraudO3dKMp38vv76a/3f//2fwsLC9NVXX6lBgwaSpICAAM2fP1/Dhw9XixYtFBAQoDvuuENvvPFGymsNHDhQFy9e1JtvvqknnnhC5cqVU58+ffLvAwIACiS6BQIAihSbzaZZs2apV69eVpcCAChkWHMFAAAAAG5AuAIAAAAAN2DNFQCgSGE2PAAgrzByBQAAAABuQLgCAAAAADcgXAEAAACAGxCuAAAAAMANCFcAAAAA4AaEKwAAAABwA8IVAAAAALgB4QoAAAAA3OD/AQFKuhNsrzBGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2Q0lEQVR4nO3dd3hU1dbH8d8kkEoSQksRSADpQuiIiKBGiopiAxGl2QUUsWKhXFSqyBW8oNyrYAe9olwLCIgIioBAEBUpivRQTUICJJCc94/9TkggCSmTnJnJ9/M855mTM2fOrBkCzJq919oOy7IsAQAAAABKxMfuAAAAAADAG5BcAQAAAIALkFwBAAAAgAuQXAEAAACAC5BcAQAAAIALkFwBAAAAgAuQXAEAAACAC5BcAQAAAIALkFwBAAAAgAuQXAGAlxozZowcDkeuY7GxsRo4cKA9AaFc6dKliy655BK7wwCAMkVyBQBwG86E8MiRI3aH4va6dOkih8OR59aoUSO7wwOAcqmC3QEAAMrO1q1b5ePD92reombNmho/fvx5x8PCwmyIBgBAcgUA5Yi/v7/dIaCQsrKylJGRoYCAgHzPCQsL05133lmGUQEACsLXlwDgBVatWqW2bdsqICBA9erV0+uvv57neXnVXCUlJenRRx9VbGys/P39VbNmTfXv3z/X1Lz09HSNHj1aF198sfz9/VWrVi09+eSTSk9PL82Xla9vvvlGnTp1UnBwsCpXrqwbb7xRW7ZsyXXO8ePHNXz48OzXVaNGDV1zzTXasGFD9jnbt2/XLbfcosjISAUEBKhmzZq6/fbblZycXODzO+uJ1q9fr8suu0yBgYGqU6eOZs2add65hX3vHA6Hhg4dqvfee09NmzaVv7+/Fi1aVIJ3yXBOtfz999/Vu3dvhYaGqmrVqnrkkUd06tSpXOeeOXNG48aNU7169eTv76/Y2Fg988wzef45f/XVV+rcubNCQkIUGhqqtm3b6v333z/vvN9++01XXnmlgoKCdNFFF2nSpEklfk0A4K4YuQIAD7d582Z17dpV1atX15gxY3TmzBmNHj1aERERF3xsamqqOnXqpC1btmjw4MFq1aqVjhw5ooULF2rv3r2qVq2asrKydMMNN2jVqlW677771LhxY23evFmvvPKKtm3bpk8//bT0X2QOS5cuVY8ePVS3bl2NGTNGJ0+e1PTp09WxY0dt2LBBsbGxkqQHHnhAH3/8sYYOHaomTZro6NGjWrVqlbZs2aJWrVopIyND3bp1U3p6uoYNG6bIyEjt27dPn3/+uZKSki44te7vv//Wtddeq969e6tv376aP3++HnzwQfn5+Wnw4MGSVOT37ptvvtH8+fM1dOhQVatWLfu15CczMzPP+rTAwEAFBwfnOta7d2/FxsZq/Pjx+vHHH/Xqq6/q77//1ttvv519zj333KO5c+fq1ltv1WOPPaY1a9Zo/Pjx2rJlixYsWJB93pw5czR48GA1bdpUI0eOVOXKlbVx40YtWrRId9xxR673qHv37rr55pvVu3dvffzxx3rqqafUrFkz9ejRo8DXBgAeyQIAeLRevXpZAQEB1q5du7KP/fbbb5avr6917j/zMTEx1oABA7J/HjVqlCXJ+uSTT867blZWlmVZlvXOO+9YPj4+1sqVK3PdP2vWLEuS9f3337vstYwePdqSZB0+fDjfc1q0aGHVqFHDOnr0aPaxTZs2WT4+Plb//v2zj4WFhVlDhgzJ9zobN260JFkfffRRkePs3LmzJcl6+eWXs4+lp6dnx5aRkWFZVtHeO0mWj4+P9euvvxYphry2+++/P/s853t6ww035Hr8Qw89ZEmyNm3aZFmWZSUkJFiSrHvuuSfXeY8//rglyfrmm28sy7KspKQkKyQkxGrfvr118uTJXOc6f2dyxvf222/neo8iIyOtW265pVCvEQA8DdMCAcCDZWZmavHixerVq5dq166dfbxx48bq1q3bBR//3//+V3FxcbrpppvOu8/Zxv2jjz5S48aN1ahRIx05ciR7u+qqqyRJy5cvd9GrubADBw4oISFBAwcOVJUqVbKPN2/eXNdcc42+/PLL7GOVK1fWmjVrtH///jyv5RyZWrx4sU6cOFHkWCpUqKD7778/+2c/Pz/df//9OnTokNavXy+p6O9d586d1aRJk0LHEBsbqyVLlpy3DR8+/LxzhwwZkuvnYcOGSVL2e+a8HTFiRK7zHnvsMUnSF198IUlasmSJjh8/rqeffvq8erBzW/9XqlQpV02Yn5+f2rVrpz///LPQrxEAPAnTAgHAgx0+fFgnT55U/fr1z7uvYcOGuZKNvPzxxx+65ZZbCjxn+/bt2rJli6pXr57n/YcOHcr3sampqUpNTc3+2dfXN9/rFMauXbskmdd2rsaNG2vx4sVKS0tTcHCwJk2apAEDBqhWrVpq3bq1rr32WvXv319169aVJNWpU0cjRozQ1KlT9d5776lTp0664YYbdOeddxaq2150dPR5U+8aNGggSfrrr7906aWXFvm9q1OnzoXfhByCg4MVHx9fqHPP/R2pV6+efHx89Ndff0ky762Pj48uvvjiXOdFRkaqcuXK2e/9H3/8IUmFWsOqZs2a5yVc4eHh+vnnnwsVMwB4GpIrAECBsrKy1KxZM02dOjXP+2vVqpXvY6dMmaKxY8dm/xwTE5P9Yb609e7dW506ddKCBQv09ddfa/LkyZo4caI++eST7Hqfl19+WQMHDtRnn32mr7/+Wg8//HB2TVLNmjVLHENR37vAwMASP2dhnZv0XOh4cfj6+uZ53LIslz0HALgTkisA8GDVq1dXYGCgtm/fft59W7duveDj69Wrp19++eWC52zatElXX311kT949+/fX5dffnn2zyVNHmJiYiTl/dp+//13VatWLddoUlRUlB566CE99NBDOnTokFq1aqUXX3wxVzOFZs2aqVmzZnruuef0ww8/qGPHjpo1a5ZeeOGFAmPZv39/9iiZ07Zt2yQpuxFFSd47V9u+fXuukbEdO3YoKysrO9aYmBhlZWVp+/btaty4cfZ5Bw8eVFJSUvZ7X69ePUnSL7/8ct4oFwCUd9RcAYAH8/X1Vbdu3fTpp59q9+7d2ce3bNmixYsXX/Dxt9xyizZt2pSrE5yTc3Shd+/e2rdvn2bPnn3eOSdPnlRaWlq+169bt67i4+Ozt44dOxbmZeUrKipKLVq00Ny5c5WUlJR9/JdfftHXX3+ta6+9VpKpRTu3nXqNGjUUHR2d3VY8JSVFZ86cyXVOs2bN5OPjU6gW82fOnMnV8j4jI0Ovv/66qlevrtatW0sq2Xvnaq+99lqun6dPny5J2Ymm872bNm1arvOco27XXXedJKlr164KCQnR+PHjz2vlzogUgPKOkSsA8HBjx47VokWL1KlTJz300EM6c+aMpk+frqZNm16wtuWJJ57Qxx9/rNtuu02DBw9W69atdezYMS1cuFCzZs1SXFyc7rrrLs2fP18PPPCAli9fro4dOyozM1O///675s+fr8WLF6tNmzYufU1Tp05VUFBQrmM+Pj565plnNHnyZPXo0UMdOnTQ3Xffnd2KPSwsTGPGjJFk1riqWbOmbr31VsXFxalSpUpaunSp1q1bp5dfflmSaXs+dOhQ3XbbbWrQoIHOnDmjd955R76+vhesQ5NMzdXEiRP1119/qUGDBpo3b54SEhL0xhtvqGLFipJU6u9dcnKy3n333TzvO3dx4Z07d+qGG25Q9+7dtXr1ar377ru64447FBcXJ0mKi4vTgAED9MYbbygpKUmdO3fW2rVrNXfuXPXq1UtXXnmlJCk0NFSvvPKK7rnnHrVt21Z33HGHwsPDtWnTJp04cUJz584t9usBAI9nc7dCAIALrFixwmrdurXl5+dn1a1b15o1a1Z2C+6czm3FblmWdfToUWvo0KHWRRddZPn5+Vk1a9a0BgwYYB05ciT7nIyMDGvixIlW06ZNLX9/fys8PNxq3bq1NXbsWCs5Odllr8MZc16br69v9nlLly61OnbsaAUGBlqhoaFWz549rd9++y37/vT0dOuJJ56w4uLirJCQECs4ONiKi4uz/vWvf2Wf8+eff1qDBw+26tWrZwUEBFhVqlSxrrzySmvp0qUXjLNz585W06ZNrZ9++snq0KGDFRAQYMXExFgzZsw479zCvneSCmwdn1cM+b1XOf/cne/pb7/9Zt16661WSEiIFR4ebg0dOvS8VuqnT5+2xo4da9WpU8eqWLGiVatWLWvkyJHWqVOnznv+hQsXWpdddln2n0G7du2sDz744Lz36FwDBgywYmJiCv06AcCTOCyLMXwAAIqiS5cuOnLkyAXr1dzBmDFjNHbsWB0+fFjVqlWzOxwA8GrUXAEAAACAC5BcAQAAAIALkFwBAAAAgAtQcwUAAAAALsDIFQAAAAC4AMkVAAAAALgAiwjnISsrS/v371dISIgcDofd4QAAAACwiWVZOn78uKKjo+XjU/DYFMlVHvbv369atWrZHQYAAAAAN7Fnzx7VrFmzwHNIrvIQEhIiybyBoaGhNkcDAAAAwC4pKSmqVatWdo5QEJKrPDinAoaGhpJcAQAAAChUuRANLQAAAADABUiuAAAAAMAFSK4AAAAAwAWouQIAAIBHyMzM1OnTp+0OA17G19dXFSpUcMkSTCRXAAAAcHupqanau3evLMuyOxR4oaCgIEVFRcnPz69E1yG5AgAAgFvLzMzU3r17FRQUpOrVq7tkhAGQzALBGRkZOnz4sHbu3Kn69etfcKHggpBcAQAAwK2dPn1almWpevXqCgwMtDsceJnAwEBVrFhRu3btUkZGhgICAop9LRpaAAAAwCMwYoXSUpLRqlzXcclVAAAAAKCcI7kCAAAAABcguQIAAAA8RGxsrKZNm2Z3GMgHyRUAAADgYg6Ho8BtzJgxxbruunXrdN9995Uoti5dumj48OElugbyRrdAAAAAwMUOHDiQvT9v3jyNGjVKW7duzT5WqVKl7H3LspSZmakKFS780bx69equDRQuxcgVAO+Wmir16SO9847dkQAAXMSypLQ0e7bCrmEcGRmZvYWFhcnhcGT//PvvvyskJERfffWVWrduLX9/f61atUp//PGHbrzxRkVERKhSpUpq27atli5dmuu6504LdDgc+ve//62bbrpJQUFBql+/vhYuXFii9/e///2vmjZtKn9/f8XGxurll1/Odf+//vUv1a9fXwEBAYqIiNCtt96afd/HH3+sZs2aKTAwUFWrVlV8fLzS0tJKFI8nYeQKgHebP99sK1ZId94p0cYXADzeiRNSjoGfMpWaKgUHu+ZaTz/9tKZMmaK6desqPDxce/bs0bXXXqsXX3xR/v7+evvtt9WzZ09t3bpVtWvXzvc6Y8eO1aRJkzR58mRNnz5d/fr1065du1SlSpUix7R+/Xr17t1bY8aMUZ8+ffTDDz/ooYceUtWqVTVw4ED99NNPevjhh/XOO+/osssu07Fjx7Ry5UpJZrSub9++mjRpkm666SYdP35cK1eulFXYjNQLkFwB8G7ffmtuDx6Utm6VGjWyNRwAAJz+8Y9/6Jprrsn+uUqVKoqLi8v+edy4cVqwYIEWLlyooUOH5nudgQMHqm/fvpKkl156Sa+++qrWrl2r7t27FzmmqVOn6uqrr9bzzz8vSWrQoIF+++03TZ48WQMHDtTu3bsVHBys66+/XiEhIYqJiVHLli0lmeTqzJkzuvnmmxUTEyNJatasWZFj8GQkVwC8l2VJy5ef/fnbb0muAMALBAWZESS7nttV2rRpk+vn1NRUjRkzRl988UV2onLy5Ent3r27wOs0b948ez84OFihoaE6dOhQsWLasmWLbrzxxlzHOnbsqGnTpikzM1PXXHONYmJiVLduXXXv3l3du3fPnpIYFxenq6++Ws2aNVO3bt3UtWtX3XrrrQoPDy9WLJ6ImisA3uvPP6W9e8/+7BzFAgB4NIfDTM2zY3Pl7PLgc+YXPv7441qwYIFeeuklrVy5UgkJCWrWrJkyMjIKvE7FihXPeX8cysrKcl2gOYSEhGjDhg364IMPFBUVpVGjRikuLk5JSUny9fXVkiVL9NVXX6lJkyaaPn26GjZsqJ07d5ZKLO6I5AqA93KOWoWGmttvvy18JTIAAGXs+++/18CBA3XTTTepWbNmioyM1F9//VWmMTRu3Fjff//9eXE1aNBAvr6+kqQKFSooPj5ekyZN0s8//6y//vpL33zzjSST2HXs2FFjx47Vxo0b5efnpwULFpTpa7AT0wIBeC/nSNX990vTp1N3BQBwa/Xr19cnn3yinj17yuFw6Pnnny+1EajDhw8rISEh17GoqCg99thjatu2rcaNG6c+ffpo9erVmjFjhv71r39Jkj7//HP9+eefuuKKKxQeHq4vv/xSWVlZatiwodasWaNly5apa9euqlGjhtasWaPDhw+rcePGpfIa3BEjVwC8k2WdTa66d5c6dDD7TA0EALipqVOnKjw8XJdddpl69uypbt26qVWrVqXyXO+//75atmyZa5s9e7ZatWql+fPn68MPP9Qll1yiUaNG6R//+IcGDhwoSapcubI++eQTXXXVVWrcuLFmzZqlDz74QE2bNlVoaKi+++47XXvttWrQoIGee+45vfzyy+rRo0epvAZ35LDKU2/EQkpJSVFYWJiSk5MV6pxOBMCzbN8uNWgg+flJSUnS5MnS6NFmzasPP7Q7OgBAEZw6dUo7d+5UnTp1FBAQYHc48EIF/Y4VJTdg5AqAd3KOUF16qRQYKHXpcvY43ykBAIBSQHIFwDs5m1k4k6p27aSAgLN1VwAAAC5GcgXA++Sst3ImVwEB1F0BAIBSRXIFwPts3y4dOCD5+59NqKTcUwMBAABczC2Sq9dee02xsbEKCAhQ+/bttXbt2nzP/eSTT9SmTRtVrlxZwcHBatGihd55551c51iWpVGjRikqKkqBgYGKj4/X9u3bS/tlAHAXzimBl15qRqycqLsCAAClyPbkat68eRoxYoRGjx6tDRs2KC4uTt26ddOhQ4fyPL9KlSp69tlntXr1av38888aNGiQBg0apMWLF2efM2nSJL366quaNWuW1qxZo+DgYHXr1k2nTp0qq5cFwE7Okakrr8x9nLorAABQimxPrqZOnap7771XgwYNUpMmTTRr1iwFBQXpzTffzPP8Ll266KabblLjxo1Vr149PfLII2revLlWrVolyYxaTZs2Tc8995xuvPFGNW/eXG+//bb279+vTz/9NM9rpqenKyUlJdcGwENZ1vnNLJyouwIAAKXI1uQqIyND69evV3x8fPYxHx8fxcfHa/Xq1Rd8vGVZWrZsmbZu3aorrrhCkrRz504lJibmumZYWJjat2+f7zXHjx+vsLCw7K1WrVolfGUAbLN1qxmZCgiQ2rc//37qrgAAQCmxNbk6cuSIMjMzFRERket4RESEEhMT831ccnKyKlWqJD8/P1133XWaPn26rrnmGknKflxRrjly5EglJydnb3v27CnJywJgJ2fS1KFD7norJ+quAABAKbF9WmBxhISEKCEhQevWrdOLL76oESNG6NsSfAvt7++v0NDQXBsAD5XflEAn6q4AAB6kS5cuGj58ePbPsbGxmjZtWoGPcTgc+ZbDFIWrrlOe2JpcVatWTb6+vjp48GCu4wcPHlRkZGS+j/Px8dHFF1+sFi1a6LHHHtOtt96q8ePHS1L244p6TQBeIOf6Vuc2s3Ci7goAUAZ69uyp7t2753nfypUr5XA49PPPPxf5uuvWrdN9991X0vByGTNmjFq0aHHe8QMHDqhHjx4ufa5zzZkzR5UrVy7V5yhLtiZXfn5+at26tZYtW5Z9LCsrS8uWLVOHnGvTXEBWVpbS09MlSXXq1FFkZGSua6akpGjNmjVFuiYAD7Rli3TokEmg2rXL/zzqrgAApezuu+/WkiVLtHfv3vPue+utt9SmTRs1b968yNetXr26goKCXBHiBUVGRsrf379Mnstb2D4tcMSIEZo9e7bmzp2rLVu26MEHH1RaWpoGDRokSerfv79GjhyZff748eO1ZMkS/fnnn9qyZYtefvllvfPOO7rzzjslmeHL4cOH64UXXtDChQu1efNm9e/fX9HR0erVq5cdLxFAWXEmSx07mgWE80PdFQB4NsuS0tLs2Qr5/8b111+v6tWra86cObmOp6am6qOPPtLdd9+to0ePqm/fvrrooosUFBSkZs2a6YMPPijwuudOC9y+fbuuuOIKBQQEqEmTJlqyZMl5j3nqqafUoEEDBQUFqW7dunr++ed1+vRpSWbkaOzYsdq0aZMcDoccDkd2zOdOC9y8ebOuuuoqBQYGqmrVqrrvvvuUmpqaff/AgQPVq1cvTZkyRVFRUapataqGDBmS/VzFsXv3bt14442qVKmSQkND1bt371wz1DZt2qQrr7xSISEhCg0NVevWrfXTTz9Jknbt2qWePXsqPDxcwcHBatq0qb788stix1IYFUr16oXQp08fHT58WKNGjVJiYqJatGihRYsWZTek2L17t3x8zuaAaWlpeuihh7R3714FBgaqUaNGevfdd9WnT5/sc5588kmlpaXpvvvuU1JSki6//HItWrRIAXkVtwPwHs7kKr96K6f27XPXXTVqVNqRAQBc6cQJqVIle547NVUKDr7gaRUqVFD//v01Z84cPfvss3I4HJKkjz76SJmZmerbt69SU1PVunVrPfXUUwoNDdUXX3yhu+66S/Xq1VO7gmZg/L+srCzdfPPNioiI0Jo1a5ScnJyrPsspJCREc+bMUXR0tDZv3qx7771XISEhevLJJ9WnTx/98ssvWrRokZYuXSrJdNo+V1pamrp166YOHTpo3bp1OnTokO655x4NHTo0VwK5fPlyRUVFafny5dqxY4f69OmjFi1a6N57773g68nr9TkTqxUrVujMmTMaMmSI+vTpk91voV+/fmrZsqVmzpwpX19fJSQkqGLFipKkIUOGKCMjQ999952Cg4P122+/qVJp/95YOE9ycrIlyUpOTrY7FACFlZVlWdWrW5ZkWStXXvj8q64y586cWfqxAQBK5OTJk9Zvv/1mnTx50hxITTX/htuxpaYWOu4tW7ZYkqzly5dnH+vUqZN155135vuY6667znrssceyf+7cubP1yCOPZP8cExNjvfLKK5ZlWdbixYutChUqWPv27cu+/6uvvrIkWQsWLMj3OSZPnmy1bt06++fRo0dbcXFx552X8zpvvPGGFR4ebqXmeP1ffPGF5ePjYyUmJlqWZVkDBgywYmJirDNnzmSfc9ttt1l9+vTJN5a33nrLCgsLy/O+r7/+2vL19bV2796dfezXX3+1JFlr1661LMuyQkJCrDlz5uT5+GbNmlljxozJ97lzOu93LIei5Aa2TwsEAJf47Tfp8GEpMLDgeisn6q4AwHMFBZkRJDu2ItQ7NWrUSJdddpnefPNNSdKOHTu0cuVK3X333ZKkzMxMjRs3Ts2aNVOVKlVUqVIlLV68WLt37y7U9bds2aJatWopOjo6+1hePQbmzZunjh07KjIyUpUqVdJzzz1X6OfI+VxxcXEKzjFq17FjR2VlZWlrju67TZs2la+vb/bPUVFROnToUJGeK+dz1qpVK9catE2aNFHlypW1ZcsWSabE6J577lF8fLwmTJigP/74I/vchx9+WC+88II6duyo0aNHF6uBSFGRXAHwDs4W7B07Sn5+Fz6fuisA8FwOh5maZ8f2/9P7Cuvuu+/Wf//7Xx0/flxvvfWW6tWrp86dO0uSJk+erH/+85966qmntHz5ciUkJKhbt27KyMhw2Vu1evVq9evXT9dee60+//xzbdy4Uc8++6xLnyMn55Q8J4fDoaysrFJ5Lsl0Ovz111913XXX6ZtvvlGTJk20YMECSdI999yjP//8U3fddZc2b96sNm3aaPr06aUWi0RyBcBbXKgF+7lY7woAUAZ69+4tHx8fvf/++3r77bc1ePDg7Pqr77//XjfeeKPuvPNOxcXFqW7dutq2bVuhr924cWPt2bNHBw4cyD72448/5jrnhx9+UExMjJ599lm1adNG9evX165du3Kd4+fnp8zMzAs+16ZNm5SWlpZ97Pvvv5ePj48aNmxY6JiLwvn69uzZk33st99+U1JSkpo0aZJ9rEGDBnr00Uf19ddf6+abb9Zbb72VfV+tWrX0wAMP6JNPPtFjjz2m2bNnl0qsTiRXADxfVlbhm1k4+ftLl11m9pkaCAAoJZUqVVKfPn00cuRIHThwQAMHDsy+r379+lqyZIl++OEHbdmyRffff/95a7UWJD4+Xg0aNNCAAQO0adMmrVy5Us8++2yuc+rXr6/du3frww8/1B9//KFXX301e2THKTY2Vjt37lRCQoKOHDmSvcRRTv369VNAQIAGDBigX375RcuXL9ewYcN01113ZTeiK67MzEwlJCTk2rZs2aL4+Hg1a9ZM/fr104YNG7R27Vr1799fnTt3Vps2bXTy5EkNHTpU3377rXbt2qXvv/9e69atU+PGjSVJw4cP1+LFi7Vz505t2LBBy5cvz76vtJBcAfB8v/4qHT1q5sG3aVP4x1F3BQAoA3fffbf+/vtvdevWLVd91HPPPadWrVqpW7du6tKliyIjI4u0dJCPj48WLFigkydPql27drrnnnv04osv5jrnhhtu0KOPPqqhQ4eqRYsW+uGHH/T888/nOueWW25R9+7ddeWVV6p69ep5toMPCgrS4sWLdezYMbVt21a33nqrrr76as2YMaNob0YeUlNT1bJly1xbz5495XA49Nlnnyk8PFxXXHGF4uPjVbduXc2bN0+S5Ovrq6NHj6p///5q0KCBevfurR49emjs2LGSTNI2ZMgQNW7cWN27d1eDBg30r3/9q8TxFsRhWRQbnCslJUVhYWFKTk5WaGio3eEAuJDp06WHH5a6dpUWLy7841aulK64QoqIkA4cKPI8egBA2Th16pR27typOnXqsLQOSkVBv2NFyQ0YuQLg+ZzNLAo7JdCJuisAAOBCJFcAPFtWlrRihdkvbDMLJ+quAACAC5FcAfBsmzdLx46Z9ritWxf98dRdAQAAFyG5AuDZnEnR5ZdL56ytUSisdwUAAFyE5AqAZyvq+lbnou4KADwGfdhQWlz1u0VyBcBz5ay3KmozCyfqrgDA7fn6+kqSMjIybI4E3urEiROSpIrFmQWTQwVXBAMAtvj5Z+nvv6VKlYpXb+XUpYv0zTcmuXrgAVdFBwBwkQoVKigoKEiHDx9WxYoV5ePD+ABcw7IsnThxQocOHVLlypWzE/niIrkC4LmcLdg7dZIqlOCfs3PrrljvCgDcisPhUFRUlHbu3Kldu3bZHQ68UOXKlRUZGVni65BcAfBczml8xZ0S6HRu3VWjRiWNDADgYn5+fqpfvz5TA+FyFStWLPGIlRPJFQDPlJkpffed2S9uMwsnZ92Vc2ogyRUAuCUfHx8FBATYHQaQLyasAvBMmzZJSUlSSIjUsmXJr8d6VwAAoIRIrgB4JmcSdMUVJau3cmK9KwAAUEIkVwA8k7OZRUnrrZxY7woAAJQQyRUAz+PKeisn1rsCAAAlRHIFwPMkJEgpKVJoqNSiheuuS90VAAAoAZIrAJ7HOSXwiiskF7VOlUTdFQAAKBGSKwCexzmy5KopgU7UXQEAgBIguQLgWc6cOVtv5apmFk7UXQEAgBIguQLgWTZulI4flypXluLiXH996q4AAEAxkVwB8CylVW/lRN0VAAAoJpIrAJ7FOaLk6imBTtRdAQCAYiK5AuA5zpyRVq40+65uZuFE3RUAACgmkisAnmP9eik1VQoPl5o3L73noe4KAAAUA8kVAM/hTHY6d5Z8SvGfL+quAABAMZBcAfAczmYWpVVv5UTdFQAAKAaSKwCe4fRpadUqs1/ayRV1VwAAoBhIrgB4hvXrpbQ0qUoVqVmz0n8+6q4AAEARkVwB8AzOKYGlXW/lRN0VAAAoIpIrAJ7BOYJUWi3Yz0XdFQAAKCKSKwDuLyOj7OqtnKi7AgAARURyBcD9/fSTdOKEVLWq1LRp2T0vdVcAAKAISK4AuD9nctOlS9nUWzlRdwUAAIqA5AqA+yur9a3OlbPu6vffy/a5AQCAxyG5AuDeMjKk7783+2XVzMKJuisAAFAEJFcA3NvatdLJk1K1alKTJmX//NRdAQCAQiK5AuDectZbORxl//zUXQEAgEIiuQLg3sp6fatzOeuuDh2i7goAABSI5AqA+0pPP1tvVdbNLJyouwIAAIVEcgXAfa1dK506JdWoITVubF8c1F0BAIBCILkC4L5ytmC3o97KiborAABQCCRXANyX3fVWTtRdAQCAQiC5AuCeTp2SVq82+3bVWzlRdwUAAAqB5AqAe1qzxiRYkZFSw4Z2R0PdFQAAuCCSKwDuye71rc5F3RUAALgAt0iuXnvtNcXGxiogIEDt27fX2rVr8z139uzZ6tSpk8LDwxUeHq74+Pjzzh84cKAcDkeurXv37qX9MgC4Us5mFu6AuisAAHABtidX8+bN04gRIzR69Ght2LBBcXFx6tatmw4dOpTn+d9++6369u2r5cuXa/Xq1apVq5a6du2qffv25Tqve/fuOnDgQPb2wQcflMXLAeAKp05JP/5o9u1uZuFE3RUAALgA25OrqVOn6t5779WgQYPUpEkTzZo1S0FBQXrzzTfzPP+9997TQw89pBYtWqhRo0b697//raysLC1btizXef7+/oqMjMzewsPDy+LlAHCF1avNAsJRUVL9+nZHcxZ1VwAAoAC2JlcZGRlav3694uPjs4/5+PgoPj5eq51dwi7gxIkTOn36tKpUqZLr+LfffqsaNWqoYcOGevDBB3X06NF8r5Genq6UlJRcGwAbuVu9lRN1VwAAoAC2JldHjhxRZmamIiIich2PiIhQYmJioa7x1FNPKTo6OleC1r17d7399ttatmyZJk6cqBUrVqhHjx7KzMzM8xrjx49XWFhY9larVq3ivygAJecu61udi7orAABQgAp2B1ASEyZM0Icffqhvv/1WAQEB2cdvv/327P1mzZqpefPmqlevnr799ltdffXV511n5MiRGjFiRPbPKSkpJFiAXU6ePFtv5S7NLJycdVfffGMSwMaN7Y4IAAC4EVtHrqpVqyZfX18dPHgw1/GDBw8qMjKywMdOmTJFEyZM0Ndff63mzZsXeG7dunVVrVo17dixI8/7/f39FRoammsDYJPVq6WMDOmii6SLL7Y7mvNRdwUAAPJha3Ll5+en1q1b52pG4WxO0aFDh3wfN2nSJI0bN06LFi1SmzZtLvg8e/fu1dGjRxUVFeWSuAGUopwt2N2p3sqJuisAAJAP27sFjhgxQrNnz9bcuXO1ZcsWPfjgg0pLS9OgQYMkSf3799fIkSOzz584caKef/55vfnmm4qNjVViYqISExOVmpoqSUpNTdUTTzyhH3/8UX/99ZeWLVumG2+8URdffLG6detmy2sEUAQ5m1m4I+quAABAPmyvuerTp48OHz6sUaNGKTExUS1atNCiRYuym1zs3r1bPj5nc8CZM2cqIyNDt956a67rjB49WmPGjJGvr69+/vlnzZ07V0lJSYqOjlbXrl01btw4+fv7l+lrA1BEJ05Ia9aYfXdrZuFE3RUAAMiHw7KY13KulJQUhYWFKTk5mforoCwtXSpdc41Us6a0e7d7TguUpHHjpFGjpN69pXnz7I4GAACUoqLkBrZPCwSAbDlbsLtrYiVRdwUAAPJEcgXAfeRsZuHOqLsCAAB5ILkC4B7S0qS1a82+uydXzroriZbsAAAgG8kVAPfwww/SmTNS7dpSnTp2R3NhrHcFAADOQXIFwD24+/pW56LuCgAAnIPkCoB7yNnMwhNQdwUAAM5BcgXAfqmp0rp1Zt/d662c/P2ljh3NPlMDAQCASK4AuIPvvzf1VjExUmys3dEUHnVXAAAgB5IrAPbztCmBTtRdAQCAHEiuANjPU9a3OlfbtlJgIHVXAABAEskVALsdPy799JPZ97TkivWuAABADiRXAOy1apWUmWnWtoqJsTuaoqPuCgAA/D+SKwD28tR6KyfqrgAAwP8juQJgL0+tt3Ki7goAAPw/kisA9klJkdavN/uemlxRdwUAAP4fyRUA+6xaJWVlSfXqSbVq2R1N8VF3BQAARHIFwE6ePiXQiborAAAgkisAdvL0ZhZO1F0BAACRXAGwS3KytGGD2e/c2d5YSoq6KwAAIJIrAHZZudLUW118sVSzpt3RlBx1VwAAlHskVwDs4S1TAp2ouwIAoNwjuQJgD29pZuFE3RUAAOUeyRWAspeUJG3caPa9Jbmi7goAgHKP5ApA2fvuOzN1rkEDKTra7mhch7orAADKNZIrAGXPmXx4y6iVE3VXAACUayRXAMqetzWzcKLuCgCAco3kCkDZOnZMSkgw+56+vtW5qLsCAKBcI7kCULZWrjRT5ho1kqKi7I7G9ai7AgCg3CK5AlC2vK0F+7mouwIAoNwiuQJQtry1mYUTdVcAAJRbJFcAys6xY9LPP5t9b02uqLsCAKDcIrkCUHZWrDBT5Ro3liIi7I6m9FB3BQBAuURyBaDseGsL9nNRdwUAQLlEcgWg7Hh7Mwsn6q4AACiXSK4AlI0jR6TNm82+t61vdS7qrgAAKJdIrgCUje++M7dNm0o1atgbS1mg7goAgHKH5ApA2SgvUwKdqLsCAKDcIbkCUDbKSzMLJ+quAAAod0iuAJS+w4elX34x+95eb+VE3RUAAOUOyRWA0rdihblt1kyqVs3eWMqSc2qgc0okAADwaiRXAEpfeau3cqLuCgCAcoXkCkDpc06LK2/JlbPu6vBhacsWu6MBAACljOQKQOk6dEj67TezX17qrZyouwIAoFwhuQJQupxJRfPmUtWqtoZiC9a7AgCg3CC5AlC6ylsL9nNRdwUAQLlBcgWgdJXXZhZO1F0BAFBukFwBKD2JiWYBXYdDuuIKu6OxB3VXAACUGyRXBTh61O4IAA/nXN8qLk6qUsXeWOxE3RUAAOUCyVUBZs2yOwLAw5X3KYFO1F0BAFAukFwV4PXXpePH7Y4C8GDlvZmFE3VXAACUC26RXL322muKjY1VQECA2rdvr7Vr1+Z77uzZs9WpUyeFh4crPDxc8fHx551vWZZGjRqlqKgoBQYGKj4+Xtu3by9yXMnJJsECUAz790tbt5p6q06d7I7GXtRdAQBQLtieXM2bN08jRozQ6NGjtWHDBsXFxalbt246dOhQnud/++236tu3r5YvX67Vq1erVq1a6tq1q/bt25d9zqRJk/Tqq69q1qxZWrNmjYKDg9WtWzedOnWqyPFNnSqlpxf75QHll7PeqkULKTzc1lDcAnVXAAB4PYdl2VsA0L59e7Vt21YzZsyQJGVlZalWrVoaNmyYnn766Qs+PjMzU+Hh4ZoxY4b69+8vy7IUHR2txx57TI8//rgkKTk5WREREZozZ45uv/32C14zJSVFYWFhio5O1v79oXrjDenee0v2OoFy5/77pTfekEaMkF5+2e5o7LdqlRnBq15dOnjQjOgBAAC358wNkpOTFRoaWuC5to5cZWRkaP369YqPj88+5uPjo/j4eK1evbpQ1zhx4oROnz6tKv/fiWznzp1KTEzMdc2wsDC1b98+32ump6crJSUl1yZJw4aZ+ydNkjIzi/MKgXKMZha5UXcFAIDXszW5OnLkiDIzMxUREZHreEREhBITEwt1jaeeekrR0dHZyZTzcUW55vjx4xUWFpa91apVS5I0YIBUtaq0Y4f08cdFemlA+bZvn7R9u+TjQ72VE3VXAAB4PdtrrkpiwoQJ+vDDD7VgwQIFBAQU+zojR45UcnJy9rZnzx5JUnCw9PDD5pzx4+mgDBSaM3lo2VKqXNnOSNwLdVcAAHg1W5OratWqydfXVwcPHsx1/ODBg4qMjCzwsVOmTNGECRP09ddfq3nz5tnHnY8ryjX9/f0VGhqaa3MaOlSqVEnatElatKhILw8ov5zJA1MCc2O9KwAAvJqtyZWfn59at26tZcuWZR/LysrSsmXL1KFDh3wfN2nSJI0bN06LFi1SmzZtct1Xp04dRUZG5rpmSkqK1qxZU+A181OliqnLl8zoFYBCYH2rvFF3BQCAV7N9WuCIESM0e/ZszZ07V1u2bNGDDz6otLQ0DRo0SJLUv39/jRw5Mvv8iRMn6vnnn9ebb76p2NhYJSYmKjExUampqZIkh8Oh4cOH64UXXtDChQu1efNm9e/fX9HR0erVq1cxY5T8/KSVK6Xvvy/xSwa82969plDRx0e6/HK7o3Ev1F0BAODVbE+u+vTpoylTpmjUqFFq0aKFEhIStGjRouyGFLt379aBAweyz585c6YyMjJ06623KioqKnubMmVK9jlPPvmkhg0bpvvuu09t27ZVamqqFi1aVOy6rOho09xCYvQKuCBn0tC6tRQWZmsobom6KwAAvJbt61y5o7x62e/YITVsKGVlmfqrHGVeAHK6+27pzTelJ54w6xggN9a7AgDAo3jMOlee5OKLpVtvNfsTJtgbC+DWqLcqGHVXAAB4LZKrInj6aXM7b570xx/2xgK4pd27pT//lHx9pY4d7Y7GPVF3BQCA1yK5KoKWLaXu3c3UwMmT7Y4GcEM5660uMGxerlF3BQCAVyK5KiJn48K33pJy9NkAIDElsLBY7woAAK9EclVEnTqZGT0ZGdK0aXZHA7iZ5cvNLYsHF4y6KwAAvBLJVRE5HGdHr2bOlJKSbA0HcB9//WU2X1/Wt7oQ6q4AAPBKJFfFcN11UrNm0vHj0muv2R0N4CacSULbtlKlSraG4hGouwIAwOuQXBWDw3G2c+C0adKJE7aGA7gHZ5LAlMDCoe4KAACvQ3JVTL17S3XrSkeOSP/5j93RAG6AZhZFQ90VAABeh+SqmCpUkJ54wuxPmSKdPm1vPICtdu6Udu0yfzGctUQoGHVXAAB4HZKrEhg4UIqMNOumvv++3dEANnImB+3aUW9VFNRdAQDgVUiuSiAgQHr0UbM/caJZXBgol2jBXjzUXQEA4FVIrkrogQekypVNycRnn9kdDWADy6KZRXFRdwUAgFchuSqh0FBpyBCzP348Xz6jHNq5U9qzR6pYkXqrovL3lzp2NPtMDQQAwOORXLnAww+bKYLr1knffGN3NEAZc04JbNdOCg62NxZPRN0VAABeg+TKBWrUkO65x+yPH29vLECZowV7yVB3BQCA1yC5cpHHHzddqJctMyNYQLlgWTSzKCnqrgAA8BokVy4SEyPdcYfZZ/QK5cYff0j79pl6qw4d7I7GM/n5UXcFAICXILlyoaeeMrcLFvAFNMoJZzJw6aVSUJCtoXg06q4AAPAKxUqu9uzZo71792b/vHbtWg0fPlxvvPGGywLzRE2aSL16mf1Jk2wNBSgbTAl0DequAADwCsVKru644w4t//8PVYmJibrmmmu0du1aPfvss/rHP/7h0gA9zciR5vbdd6Xdu+2NBShVOde3oplFyVB3BQCAVyhWcvXLL7+oXbt2kqT58+frkksu0Q8//KD33ntPc+bMcWV8HqddO+mqq6QzZ6SXX7Y7GqAUbd8u7d9vaoYuvdTuaDwbdVcAAHiFYiVXp0+flr+/vyRp6dKluuGGGyRJjRo10oEDB1wXnYdyjl7Nnm2+iAa8Us56q8BAW0PxCtRdAQDg8YqVXDVt2lSzZs3SypUrtWTJEnXv3l2StH//flWtWtWlAXqiq6+W2rSRTp6UXn3V7miAUsKUQNei7goAAI9XrORq4sSJev3119WlSxf17dtXcXFxkqSFCxdmTxcszxyOs6NXM2ZIKSn2xgO4HOtbuR51VwAAeLwKxXlQly5ddOTIEaWkpCg8PDz7+H333acg2jFLMl0DGzWSfv9dev116Ykn7I4IcKFt26TERMnfn3orV3HWXS1dakavmjSxOyIAAFBExRq5OnnypNLT07MTq127dmnatGnaunWratSo4dIAPZWPz9l1r6ZOlU6dsjcewKWco1YdOkgBAfbG4k2ouwIAwKMVK7m68cYb9fbbb0uSkpKS1L59e7388svq1auXZs6c6dIAPdkdd0g1a5ov+OfOtTsawIWotyod1F0BAODRipVcbdiwQZ06dZIkffzxx4qIiNCuXbv09ttv61U6OGTz85Mef9zsT5pk2rMDHi/n+lbUW7kWdVcAAHi0YiVXJ06cUEhIiCTp66+/1s033ywfHx9deuml2rVrl0sD9HT33CNVrSr9+af00Ud2RwO4wO+/SwcPmumA7dvbHY13Yb0rAAA8WrGSq4svvliffvqp9uzZo8WLF6tr166SpEOHDik0NNSlAXq64GDpkUfM/oQJzPSBF3B+6L/sMtPQAq5F3RUAAB6rWMnVqFGj9Pjjjys2Nlbt2rVThw4dJJlRrJYtW7o0QG8wdKhUqZL088/SV1/ZHQ1QQrRgL13UXQEA4LEcllW8/70TExN14MABxcXFycfH5Ghr165VaGioGjVq5NIgy1pKSorCwsKUnJzsspG4J56QpkyRLr9cWrnSJZcEyp5lSRERpiZo5UrzCw3XysiQKlc2q5D/+ist2QEAsFlRcoNijVxJUmRkpFq2bKn9+/dr7969kqR27dp5fGJVWh591JRTrFplNsAj/fabSawCA03zBbgedVcAAHisYiVXWVlZ+sc//qGwsDDFxMQoJiZGlStX1rhx45SVleXqGL1CdLQ0cKDZHz/e1lCA4qPeqmxQdwUAgEcqVnL17LPPasaMGZowYYI2btyojRs36qWXXtL06dP1/PPPuzpGr/Hkk2Zx4S+/lDZtsjsaoBhY36psUHcFAIBHKlbNVXR0tGbNmqUbbrgh1/HPPvtMDz30kPbt2+eyAO1QGjVXTn37Sh9+KN1+u/TBBy69NFC6srJMvdWRI2Zuq3PqGlyPuisAANxGqddcHTt2LM/aqkaNGunYsWPFuWS58fTT5nb+fGnHDntjAYrkt99MYhUURL1VaaPuCgAAj1Ss5CouLk4zZsw47/iMGTPUvHnzEgflzeLipGuvNYMAkyfbHQ1QBM4W7B07mg//KF3UXQEA4HEqFOdBkyZN0nXXXaelS5dmr3G1evVq7dmzR19++aVLA/RGI0eauqs5c6TRo02zC8DtOT/ks75V2Ti37srhsDMaAABQCMUauercubO2bdumm266SUlJSUpKStLNN9+sX3/9Ve+8846rY/Q6l19utowM6ZVX7I4GKISsLGnFCrNPM4uy0bataXl/+LCZkgkAANxesRcRzsumTZvUqlUrZWZmuuqStijNhhZOX3whXX+9VKmStHu3FB5eKk8DuMbPP5s5rcHB0t9/SxUr2h1R+XDNNdLSpdKMGdKQIXZHAwBAuVQmiwijZK69VmreXEpNNZ+bALfmnBJ4+eUkVmWJuisAADwKyZVNHI6znQP/+U8pLc3eeIACOZtZUG9VtljvCgAAj0JyZaPbbpPq1pWOHpX+/W+7owHykbPeiuSqbDnrro4coe4KAAAPUKRugTfffHOB9yclJZUklnKnQgXpySelBx6QXn5ZevBBOlzDDW3ebOqsKlWSWre2O5ryxbne1dKlZvSqaVO7IwIAAAUo0shVWFhYgVtMTIz69+9fWrF6pQEDpMhIac8e6f337Y4GyINzSiD1Vvag7goAAI9RpJGrt956q7TiKLcCAqQRI8wI1sSJUv/+kg+TNeFOnB/qacFuD9a7AgDAY/Ax3g088IBUubL0++/Sp5/aHQ2QQ2Ym9VZ2o+4KAACPQXLlBkJCpKFDzf748TQFgxv5+WcpKcn8krZqZXc05ZOz7kpiaiAAAG6O5MpNPPyw+XL6p5+kZcvsjgb4f84P8506mQ4ssAd1VwAAeATbk6vXXntNsbGxCggIUPv27bV27dp8z/311191yy23KDY2Vg6HQ9OmTTvvnDFjxsjhcOTaGjVqVIqvwDWqV5fuvdfsjx9vbyxANta3cg+sdwUAgEewNbmaN2+eRowYodGjR2vDhg2Ki4tTt27ddOjQoTzPP3HihOrWrasJEyYoMjIy3+s2bdpUBw4cyN5WrVpVWi/BpR57zAwOfPONVECOCZSNzEzpu+/MPs0s7EXdFQAAHsHW5Grq1Km69957NWjQIDVp0kSzZs1SUFCQ3nzzzTzPb9u2rSZPnqzbb79d/v7++V63QoUKioyMzN6qVatWWi/BpWrXlu680+wzegXbJSRIyclSaKjUooXd0ZRv1F0BAOARbEuuMjIytH79esXHx58NxsdH8fHxWr16dYmuvX37dkVHR6tu3brq16+fdu/eXeD56enpSklJybXZ5cknTaflTz/lC2rYzPkh/oorqLdyB9RdAQDg9mxLro4cOaLMzExFRETkOh4REaHExMRiX7d9+/aaM2eOFi1apJkzZ2rnzp3q1KmTjh8/nu9jxo8fn2sx5Fq1ahX7+UuqcWOpVy+zP3GibWEA1Fu5G+quAABwe7Y3tHC1Hj166LbbblPz5s3VrVs3ffnll0pKStL8+fPzfczIkSOVnJycve3Zs6cMI84rHnP7/vvSrl22hoLy6swZaeVKs09y5R6ouwIAwO3ZllxVq1ZNvr6+OnjwYK7jBw8eLLBZRVFVrlxZDRo00I4dO/I9x9/fX6Ghobk2O7VtK119tfl8O2WKraGgvEpIkFJSpLAw6q3cBXVXAAC4PduSKz8/P7Vu3VrLcizqlJWVpWXLlqlDhw4ue57U1FT98ccfioqKctk1y4Jz9Orf/5byaZ4IlB7nlMArrpB8fe2NBWdRdwUAgFuzdVrgiBEjNHv2bM2dO1dbtmzRgw8+qLS0NA0aNEiS1L9/f410ZhkyTTASEhKUkJCgjIwM7du3TwkJCblGpR5//HGtWLFCf/31l3744QfddNNN8vX1Vd++fcv89ZXEVVeZEaxTp6RXX7U7GpQ7zg/vtGB3L9RdAQDg1mxtAdanTx8dPnxYo0aNUmJiolq0aKFFixZlN7nYvXu3fHzO5n/79+9Xy5Yts3+eMmWKpkyZos6dO+vb//8wuHfvXvXt21dHjx5V9erVdfnll+vHH39U9erVy/S1lZTDYUavbr5ZmjHDdBG0ebYiygvqrdzXuXVXTZvaHREAAMjBYVl8/XmulJQUhYWFKTk52db6q6ws6ZJLpC1bTOfAJ5+0LRSUJ2vXSu3bS5Urmw/xTAt0L9dcIy1dar51GTLE7mgAAPB6RckNvK5boDfx8ZGeesrsv/KKmSIIlDrnlMDOnUms3BF1VwAAuC2SKzd3xx1S7dpSYqI0Z47d0aBcYH0r90bdFQAAbovkys1VrCg9/rjZnzTJlMMApeb0aWnVKrNPMwv3xHpXAAC4LZIrD3D33VL16tLOnVIBayEDJbd+vZSaKoWHS82a2R0N8sJ6VwAAuC2SKw8QFCQ98ojZnzCBmUAoRTnrrXz458FtUXcFAIBb4tOThxgyRAoJkTZvlr74wu5o4LVY38ozUHcFAIBbIrnyEJUrSw88YPbHj+fzFEpBznormlm4N+quAABwSyRXHuTRRyV/f+mHH86u8Qq4zE8/SWlpUtWqZoE1uC/qrgAAcEskVx4kKkoaONDsjx9vayjwRs4W7NRbeQbqrgAAcDt8gvIwTzxhPvcuWiRt3Gh3NPAqzg/pTAn0DNRdAQDgdkiuPEy9elKfPmZ/4kR7Y4EXyciQvv/e7NPMwjNQdwUAgNshufJATz9tbj/6SNqxw95Y4CXWrZNOnJCqVZOaNLE7GhQGdVcAALgdkisP1Ly5dN11UlaWNGmS3dHAK+ScEki9leeg7goAALfCpygPNXKkuZ07V9q/395Y4AWczSyot/Is1F0BAOBWSK48VMeOUqdOplRm6lS7o4FHS083/f0lkitPQ90VAABuheTKgzlHr2bNko4dszcWeLC1a6WTJ6Xq1am38jTUXQEA4FZIrjxY9+5SixZm3dcZM+yOBh4rZ72Vw2FnJCgO6q4AAHAbJFcezOE42znw1VdNkuU2LEvats103YB7c34opwW7Z6LuCgAAt0Fy5eFuvdWsfXX0qDR7tt3R/L+jR6WbbpIaNpR69ZIyM+2OCPmh3srztW0rBQVRdwUAgBsgufJwvr7Sk0+a/ZdfNg0ubLVihZmr+Nln5uf//U965hlbQ0IB1qyRTp2SIiKkRo3sjgbFQd0VAABug+TKCwwYIEVFSXv3Su++a1MQZ85Io0dLV11lAqlfXxo3ztw3aZL09ts2BYYC5WzBTr2V56LuCgAAt0By5QX8/aURI8z+xIk2zMLbvdvU6/zjH6bGauBAacMG6bnnpGefNefce6/0449lHBguKGczC3gu6q4AAHALJFde4v77pfBw00NiwYIyfOJPPpHi4qRVq6SQEOm996S33pIqVTL3/+Mfpu4qI8Pc7tlThsGhQKdOSatXm32aWXi2Nm2ouwIAwA2QXHmJkBBp6FCzP2FCGXx5ffKk9OCD0i23SElJpqh+40bpjjtyn+fjI73zjtS8uXTwoHTjjW7W1rAc+/FH09AiMlJq0MDuaFAS1F0BAOAWSK68yMMPmy+v16+Xli4txSf65ReTTM2aZX5+8kkzclWvXt7nV6okLVxoFqnduNFMG6RFu/1ytmCn3srzUXcFAIDtSK68SLVqprRJksaPL4UnsCyTULVtK/36q+kwt3ixKfTy8yv4sTExZgphxYrSxx+fbXYB++RsZgHPR90VAAC2I7nyMo89ZvKX5ctNl22XOXbMLKr14IOmVqdbN2nTJqlr18Jf4/LLz452jRkjffSRCwNEkZw8ebbBCMmVd6DuCgAA25FceZlataQ77zT7Lhu9WrnSrF3lHHmaMkX68kszclVUgwdLjz5q9gcMMNMEUfZ+/NE0GYmONm3z4fmouwIAwHYkV17oqadMCc1nn5nZe8WWmWm6/XXpYrr8XXyx9MMPZnjMpwS/OpMmSd27m9GTG26QEhNLECSKhfWtvBN1VwAA2Irkygs1bCjdfLPZnzixmBfZu9csCDx6tGk+cdddZu2qNm1KHmCFCtKHH0qNGpnnuekmM9UQZSdnMwt4D+quAACwFcmVlxo50ty+/770119FfPBnn5m1q777znT6e/tts4WEuC7AsDDTQTA83ExRu/9+PgyWlRMnqLfyVtRdAQBgK5IrL9W6tXTNNWZm35QphXzQyZNmsaxevUwDi9atzWjVXXeVTpD160vz50u+viZ5K3SgKJHVq6XTp6WLLsq/fT48E3VXAADYiuTKizlHr/7zH7N+b4F++01q31567TXz82OPmfqq0m52EB8vTZtm9p96Svr889J9PrC+lbej7goAANuQXHmxLl2kdu1MOdM//5nPSZYlzZ5tphNt3izVqCF99ZUZRbrQ2lWuMmTI2WmBd9xRwi4cuCDWt/Ju1F0BAGAbkisv5nCcHb167TUpOfmcE5KSpD59pPvuM1MCr7nGrF3VvXvZBzp9uvlQePy46SB49GjZxlBepKVJa9eafZpZeCfqrgAAsA3JlZe74QapSRMpJUWaOTPHHT/8YNau+ugj071v0iRp0SIpMtKeQCtWNLHUqSP9+adZsPj0aXti8WY//GDe11q1zHsN70PdFQAAtiG58nI+PqaUSZJeeUU6mZopvfiidMUV0q5dUt260vffS088UbK1q1yhWjXpf/8zHQq//VYaNoxpTa7m/LDN+lbejborAABsQXJVDvTtK8XESBUO7dOx1tdIzz1n2gj27Stt3GgKs9xF06bSBx+YD/6vvy796192R+RdWN+qfKDuCgAAW5BclQMVK0ozun+uTYrTRduWywoOlubMkd57TwoNtTu8811/vTRhgtl/5BFp2TJ74/EWqaln661oZuHdqLsCAMAWJFfe7tQp6ZFHdP3rPVVNR7VBLfW/0eulAQPce1rYE0+Y9bUyM6XbbpO2b7c7Is/3ww/SmTNmGJN6K+9G3RUAALYgufJmv/8udeggvfqqJGntZcPVQav17NsNlZVlc2wX4nBIb7whXXqp9PffpjPHee0OUSS0YC9fnH/Ozj93AABQ6kiuvJFlSW++KbVuLSUkmEYRn3+uBl+8Iv8Qf/3yi/TFF3YHWQgBAdKCBVLNmiZRvP12M5KF4snZzALez/nnvGKF3P/bFAAAvAPJlbdJTjYL8d59t3TihHTVVWbtquuuU+XK0kMPmdPGj/eQOvfISOmzz6TAQNMq/skn7Y7IMx0/Lq1bZ/ZJrsoH6q4AAChzJFfeZM0aqWVL6cMPJV9fk0F9/bUUHZ19yvDhkr+/tHq19N139oVaJK1aSXPnmv2pU82oHIrm++/NqF9srNng/ai7AgCgzJFceYOsLNNd7/LLpZ07zYfnVaukp582SVYOkZHS4MFmf/z4sg+12G67TRo92uw/8IBJFlB4tGAvn1jvCgCAMkVy5ekOHJC6dpVGjjSd4Pr0MXVWl16a70OeeMLkXIsXSxs2lF2oJTZqlHTrrdLp09JNN5lFkFE4NLMon6i7AgCgTJFcebIvv5SaNzfrQAUFSf/5j1mANyyswIfVqWNyMOnsclIewcfHrM/VooV0+LB0441m7SYULCVFWr/e7JNclS/UXQEAUKZIrjxRero0YoR03XXmQ1NcnPTTT2a+XyHXrnr6aXP78cfStm2lGKurBQebBhcREaZRR//+fCN/IatWmXqrunWl2rXtjgZliborAADKFMmVp9m2TbrsMumVV8zPw4ZJP/4oNW5cpMs0ayZdf73pGDhpUinEWZpq1zYt2v38zK2zFgt5owV7+UbdFQAAZYbkylNYlumY16qVKZSqWlVauNAsEBwQUKxLjhxpbt9+W9q714WxloUOHaTZs83+Cy9I8+bZG487o5lF+UbdFQAAZcb25Oq1115TbGysAgIC1L59e61duzbfc3/99Vfdcsstio2NlcPh0LRp00p8TY+QkiLddZc0cKCUlmY+LG3aJPXsWaLLXnaZdMUVpj+EcyDMo/Tvb7pzSOa9+eknW8NxS8nJ1FuVd9RdAQBQZmxNrubNm6cRI0Zo9OjR2rBhg+Li4tStWzcdOnQoz/NPnDihunXrasKECYqMjHTJNd3eunVm7ar33jMt/l54QVq6VLroIpdc3jl69frr0tGjLrlk2Ro/3tSenTplGlzs3293RO5l1SozWnHxxVLNmnZHAztQdwUAQJmxNbmaOnWq7r33Xg0aNEhNmjTRrFmzFBQUpDfzWSS2bdu2mjx5sm6//Xb5+/u75JpuKytLmjzZDC/9+aepM/ruO+nZZ89bu6okunUzuVtamjRjhssuW3Z8faX335eaNDGJVa9e0smTdkflPmjBDom6KwAAyohtyVVGRobWr1+v+Pj4s8H4+Cg+Pl6rV68u02ump6crJSUl12arxESpRw/pySfN2lW33mrWrrrsMpc/lcNxtnPgq696aGfz0FBTf1alihnpu+ceU6MGmlnAoO4KAIAyYVtydeTIEWVmZioiIiLX8YiICCUmJpbpNcePH6+wsLDsrVatWsV6fpdYvNi0Vv/6aykwUHrjDWn+fCk8vNSe8pZbpPr1pWPHzvaI8Dj16pm+8hUqmJEsj1rAq5QkJUkbN5p9kqvyjborAADKhO0NLdzByJEjlZycnL3t2bOn7IPIyDDNGbp3lw4dMr3Sf/pJuvfeQq9dVVy+vmaQTJJeftkso+WRrrxSmj7d7D/7rFkPqzxbudKMUtSv77IaPXgo6q4AACgTtiVX1apVk6+vrw4ePJjr+MGDB/NtVlFa1/T391doaGiurUzt2GE++EyZYn5+6CFpzRpTR1RG7rpLio6W9u2T3n23zJ7W9R54QBoyxEwL7NdP2rzZ7ojsQwt25ETdFQAApc625MrPz0+tW7fWsmXLso9lZWVp2bJl6tChg9tcs9S9+67pKPHTT2bq34IF0muvmSmBZcjfX3rsMbM/caKUmVmmT+9ar7wiXXWV6dJxww3S4cN2R2QPmlkgJ+quAAAodbZOCxwxYoRmz56tuXPnasuWLXrwwQeVlpamQYMGSZL69++vkc5e4TINKxISEpSQkKCMjAzt27dPCQkJ2rFjR6Gv6TaOH5cGDDBDRqmpZsGpTZtMtzub3Hef6Qmxfbv0ySe2hVFyFStKH31k6rD++ssUlWVk2B1V2fr7b9MERSK5gkHdFQAApc7W5KpPnz6aMmWKRo0apRYtWighIUGLFi3Kbkixe/duHThwIPv8/fv3q2XLlmrZsqUOHDigKVOmqGXLlrrnnnsKfU23sH691KqV9Pbbko+PNHas9M03kp2NNCRVqiQNG2b2x4/38IZ7VapI//uf6SS4cuXZqYLlxcqV5vU2bChFRdkdDdwBdVcAAJQ6h2WVp0+chZOSkqKwsDAlJye7tv4qK0uaNs30Pj992iRT770nderkuucooaNHzZJaJ05IixaZdbA82ldfSddfb977f/5TevhhuyMqG48+an7X7r9fmjXL7mjgLl56yTR7ueUW010TAABcUFFyA7oFlpVDh6TrrjOFTadPSzfdZKZtuVFiJUlVq5rpgZIZvfJ4PXqYxZglk3B8/bW98ZQVmlkgL9RdAQBQqkiuysKSJVLz5mYoKCBAmjlT+u9/zdQ1N/TYY6ZsacUKqZjrObuXRx+VBg0yHyZ795a2brU7otJ17Jip35Okzp3tjQXuhborAABKFclVaTp9WnrqKalrV+ngQalpU2ndOtMuvJTXriqJmjVNnw3JS0avHA6T0F52mZScbDoI/v233VGVnu++M/VWjRpJxVzWAF6KuisAAEoVyVVp+fNP6fLLpUmTzM/33y+tXStdcom9cRXSk0+anOR//5N++cXuaFzA39+0QKxdW9q2TerTRzpzxu6oSoezBTtTApEX1rsCAKDUkFyVhg8+kFq0MMlU5cqmcHzWLDMdx0M0bGhq3iWz7pVXiIiQFi40fw5Llpxd2MvbOD8004IdeaHuCgCAUkNy5UqpqdLgwdIdd5h1rDp2NLUvzizFwziXGPvgA2nnTntjcZm4OLNwsyS9+qo0e7a98bja0aPSzz+bfZIr5IW6KwAASg3Jlats3Ci1bi299ZZZu2rUKDOCULu23ZEVW6tWplwsM1OaMsXuaFzoppukcePM/kMPmW/wvYXztTRpItWoYW8scE/UXQEAUGpIrkrKssz6SZdeamp5LrrILAg8dqxUoYLd0ZWYc/TqzTdNTw6v8eyzZ+uubrnFe4bmmBKIwqDuCgCAUkFyVRKHD0s9e0rDh0sZGdKNN5ppgF7U/rpzZ5M3njpl1qT1Gg6HyRhbtzZT6W64wUzl9HQ0s0BhUHcFAECpILkqrm++MfU7X3xhOtHNmCEtWGBW4fUiDsfZ0at//ct0MvcaQUHSZ59JUVGmJeKdd3r2B83Dh8+2dvSiBB+lgLorAABKBclVUZ0+LT3zjBQfLx04IDVubLoCDhni1mtXlcT115slulJSTILlVS66SPr0U5MgL1woPfec3REV33ffmdtLLpGqV7c3Frg36q4AACgVJFdFsXOndMUVZmVdy5LuvdcsCty8ud2RlSofH+npp83+tGnSyZO2huN67dpJ//mP2R8/XnrvPXvjKS7nlEDqrVAY1F0BAOByJFeFNX++Wbvqxx+lsDBp3jzpjTek4GC7IysTffpIMTHSoUOmVMnr9Ot3dv7j3XdLa9bYG09xOD8kU2+FwqDuCgAAlyO5upC0NDNC1aePmRfXoYOUkCD17m13ZGWqYkXpiSfM/uTJZnak13nhBdPYIj1d6tVL2rvX7ogK79Ah6ddfzf4VV9gbCzwDdVcAALgcyVVBNm82H0D+/W9TT/Xss+Zb3thYuyOzxeDBZumkXbukDz+0O5pS4ONjFhi+5BIpMdEkWCdO2B1V4TjXt2rWTKpWzd5Y4BmouwIAwOVIrgpy1VXS77+bbnJLl5qRjYoV7Y7KNoGBpuu8JE2Y4KUziUJCTGOLatWk9etNRmlZdkd1YUwJRHFQdwUAgEuRXBUkI8O0yvv5Z5NoQQ89JIWGmllE//uf3dGUkjp1pP/+1ywCPW+e9OKLdkd0YTSzQHFQdwUAgEuRXBVk4sSzoxiQZHp5PPSQ2Xc2TfRKV1whzZxp9p9/XvrkE3vjKcjBg9KWLWbqKutboSiouwIAwKVIrgrywANeu3ZVSQwfLgUEmIZ6zlIfr3TPPdLDD5v9u+4yjUzckXNKV/PmUpUqtoYCD0PdFQAALkVyhSKLiDClSJIZvfJqL78sXXONaWxxww1mlMjdOD8UMyUQxUHdFQAALkNyhWJ54gnJ11f6+mvT98FrOeuuGjSQ9uyRbr7ZtGp3JzSzQElQdwUAgMuQXKFYYmOlvn3N/oQJtoZS+sLDTe1dWJj0ww/Sgw+6T7HZgQOmo6XDwfpWKB7qrgAAcBmSKxTb00+b2//+V9q61d5YSl3DhtL8+WYtrLfekl55xe6IDGfRW4sWJgkEioq6KwAAXIbkCsXWtKkpQ7IsadIku6MpA127nk2qnnhC+uore+ORaMEO16DuCgAAlyC5QomMHGlu33lH2rvX3ljKxLBhpotgVpZ0++2mBbqdaGYBV6DuCgAAlyC5Qolceqn5XHb6tGms5/UcDum116ROnaSUFKlnT+noUXti2b9f2raNeiuUXNu21F0BAOACJFcoMWft1RtvmM9mXs/PzxSaxcZKf/wh9e5tssuy5hy1atlSqly57J8f3qNiRenyy80+UwMBACg2kiuUWNeu5vP9iRPS9Ol2R1NGqlc3HQQrVZK++UZ69NGyj4EW7HAl6q4AACgxkiuUmMNxtvZq+nTp+HF74ykzzZpJ7713dqrgzJll+/w0s4ArUXcFAECJkVzBJW6+2ayz+/ffZnpguXHDDdJLL5n9YcPOJjylbe9eaccO0xq+U6eyeU54N9a7AgCgxEiu4BK+vtKTT5r9qVOl9HR74ylTTz0l9esnZWZKt95q6rBKm3PqVqtWZnFjoKSouwIAoMRIruAyd90lXXSRaWL3zjt2R1OGHA5p9mypXTvp2DHTQTAlpXSfkxbsKA3UXQEAUCIkV3AZPz/pscfM/qRJZiCn3AgMlD79VIqONmtf3XFH6b4BNLNAaaDuCgCAEiG5gkvde69UpYq0fbvpVl6uREVJn30mBQRIX3xxtsuHq+3ZY6Ye+vicncYFuAJ1VwAAlAjJFVyqUiXp4YfN/vjxkmXZG0+Za9NGmjPH7E+eLM2d6/rncI5atW4thYa6/voov6i7AgCgREiu4HLDhknBwVJCgjRhgvTLL+VsimCfPtJzz5n9++6TVq927fWdHQmZEojSQN0VAADFRnIFl6tSRbr/frP/zDNmOajQUPOF+KOPmqWhtm718pKOsWOlm26SMjKkXr2k3btdd22aWaA0UXcFAECxOSyr3E3cuqCUlBSFhYUpOTlZoUy7KpZTp8y0wBUrpPXrpdTU888JCTEz29q2NbPp2rSR6tQxzfe8QmqqySg3bZJatJBWrTJDeiWxa5cUG2t63//9t3kTAVc6fVqqXFk6cULavFm65BK7IwIAwFZFyQ0qlFFMKGcCAszgjWS+/N66Vfrpp7Pbxo3S8eNmECbn7KMqVc4mWs6tZk0PTbgqVTINLtq2NXMkBwyQ5s83jSiKy/lmtWlDYoXS4ay7+vpr8/tGcgUAQKGRXKHU+fhIjRub7a67zLEzZ0wzspwJ16ZNZpmor782m1NExPkJV2SkPa+lyGJipAULTH3Uf/8r/eMf0pgxxb8eLdhRFrp0OZtcDR1qdzQAAHgMpgXmgWmB9khPN80vciZcmzfn3QyjZs3zE66qVcs+5kKbM0caNMjsz58v3XZb8a4TG2umBi5aJHXr5qrogNxWr5Yuu0yqVk06eLBko60AAHi4ouQGJFd5ILlyHydPmhEtZ7K1bp1Zozev39o6dXInW61bS2FhZR9zvh57TJo61Sw4vGqV1KpV0R7/11/mRVaoYOqtKlUqlTCBXHVXP/9sutIAAFBOUXMFrxEYKF16qdmcUlNNzVbOhGv7dmnnTrN99NHZcxs0yJ1wtWxpY04yaZKZC7lokXTjjdLatWbh4cJyTgls25bECqXr3LorkisAAAqF5Aoep1IlqVMnszklJUkbNuROuP76S9q2zWzvv2/Oc9Z/OZOttm2luDjTgKPU+fpKH35oMsXffzet2r/9tvBP7lzfihbsKAs5666GDbM7GgAAPALTAvPAtEDvcOSIaQOfM+Hat+/88ypUMA3RciZcl1wi+fmVUmDbt0vt25upfXfdJc2de+F2iJZl6q127zYfeK+5ppSCA/6fs+6qalXp0CHqrgAA5RY1VyVEcuW9Dhw4m3CtW2e2w4fPP8/Pz4xo5Uy4Gjc2iZhLLFtmGlJkZkoTJ0pPPlnw+X/+KdWrZwJISir5elnAhVB3BQCAJGqugHxFRUnXX282yQwI7d2be3Trp5/MoJIz+XIKDDQ1W85kq00bU9NVrC/0r75a+uc/TZvrp5+WmjQ5G1RenPVW7dqRWKFsUHcFAECRkVyhXHM4pFq1zHbTTeaYZZnGGDmTrfXrzaLHP/xgNqeQENP0L2fCVbduIRc9fugh03t+1iypb18zDSu/BVtZ3wp2oO4KAIAiYVpgHpgWiHNlZZlSqZwJ14YNplX8ucLDTRt4Z7LVpo1J3vJMuE6flrp2NR9e69QxHQSrVct9jmVJtWubIbYlS6T4+NJ4icD5qLsCAICaq5IiuUJhnDljmv45k62ffpISEqSMjPPPrV499+hWmzY5urAfPWqm+/35p9S5sxkpyNlN448/pIsvNtO0kpKkoKAyeHWAqLsCAEAkVyVGcoXiysiQfv01d8K1ebNJxM4VHX022epS/Vdd9ngH+aQel+67z0wVdA51/fvf0r33mvqXlSvL9gUB3bqZhP/VV5kaCAAol4qSG7jFHI/XXntNsbGxCggIUPv27bV27doCz//oo4/UqFEjBQQEqFmzZvryyy9z3T9w4EA5HI5cW/fu3UvzJQCSzIBTy5YmP3rjDTN18Phxac0aacYMaeBAU1bl4yPt3y999pn0/PNSpweaqmfqB8qSQ3rjDS3p9ZqWLTMDVdn1VqxvBTs4f++cv4cAACBftje0mDdvnkaMGKFZs2apffv2mjZtmrp166atW7eqRo0a553/ww8/qG/fvho/fryuv/56vf/+++rVq5c2bNigS3I0A+jevbveeuut7J/9/f3L5PUA5woIMLP+2rU7eywtzUwhzDnC9eXW6/SUJmqyntSVC4er+8JGWqartd/3W0VJmvHrlXK8JtWvb7oU1qpl1iUGSpUzuVqxwhQfUncFAEC+bJ8W2L59e7Vt21YzZsyQJGVlZalWrVoaNmyYnn766fPO79Onj9LS0vT5559nH7v00kvVokULzZo1S5IZuUpKStKnn35aqBjS09OVnp6e/XNKSopq1arFtECUqeRkaeMGS9WeGKhL1r+tZJ/K6pv1nr7UdUqXnyorSacUmH2+v78pxWrQ4GzC5dxq1Chkx0LgQqi7AgCUcx6zzlVGRobWr1+vkSNHZh/z8fFRfHy8Vq9enedjVq9erREjRuQ61q1bt/MSqW+//VY1atRQeHi4rrrqKr3wwguqWrVqntccP368xo4dW7IXA5RQWJjU5UqHtOp16cptCvvxR33hd5OUIR1rcKmG3RiobdukbdtMj4v0dFPf9euv518rJCR3suVMvurXN5+TgUJjvSsAAArN1uTqyJEjyszMVERERK7jERER+v333/N8TGJiYp7nJyYmZv/cvXt33XzzzapTp47++OMPPfPMM+rRo4dWr14t3zzmUY0cOTJXwuYcuQJsERAgLVggtW0rx969kqSo27toUo78PzNT2r1b2cnW9u1n9//6y9R5rV9vtnPVqHH+SFeDBlK9emahZOA8rHcFAECh2F5zVRpuv/327P1mzZqpefPmqlevnr799ltdffXV553v7+9PTRbcS2SktHChGTE4ceK8ta18fc2yWHXqmGZuOZ06Zbq650y4nAnYgQNmuaJDh6Tvv8/9OOeCyueOdjVoIMXGShW88l8LFAp1VwAAFIqtH5eqVasmX19fHTx4MNfxgwcPKjIyMs/HREZGFul8Sapbt66qVaumHTt25JlcAW6pZUvzYfbXX02SVUgBAVKTJmY71/HjZ5Ouc5OvpCQzGrZ7t7R0ae7HVagg1a2b91TD6Gg+a3u9Nm3M+mpHj0rDh5ssPCzMzDHN6zYggKI/AEC5ZGty5efnp9atW2vZsmXq1auXJNPQYtmyZRo6dGiej+nQoYOWLVum4cOHZx9bsmSJOnTokO/z7N27V0ePHlVU9qqtgIdwrjjsIiEhUqtWZsvJsszn5pzJljMB275dOnny7LFzBQWZRCuvqYb5lDnC01SsaEavvvxSmj79wuf7+RWcfF3oNjSUVpgAAI9ke7fAefPmacCAAXr99dfVrl07TZs2TfPnz9fvv/+uiIgI9e/fXxdddJHGjx8vybRi79y5syZMmKDrrrtOH374oV566aXsVuypqakaO3asbrnlFkVGRuqPP/7Qk08+qePHj2vz5s2Fmv7HIsLAWVlZ0r59eY927dyZ9wLJTuHh+TfWqFSp7F4DXGDnTmnuXJOFJyeboc5zb1NSTKbuCiEhxU/OKldm9AwA4DJFyQ1sT64kacaMGZo8ebISExPVokULvfrqq2rfvr0kqUuXLoqNjdWcOXOyz//oo4/03HPP6a+//lL9+vU1adIkXXvttZKkkydPqlevXtq4caOSkpIUHR2trl27aty4cec1wsgPyRVQOKdPmwYa5452bdsm7dlT8GOjo88f7apf30w/pATSQ2Vlmbmn+SVfed2ee+zUKdfEUrFiyZIzRs8AAP/P45Ird0NyBZTciRPSjh3nj3Zt2yYdOZL/43x8TAONvNbvYuHkciA9Pe+kqyi3rhw9K8n0xsBARs8AwAuQXJUQyRVQuv7+O3fSlXM/NTX/x/n5nV04+dyphhERfI6FzOhZamrJkrOTJ10TS8WKuZMt536lSmbaYkCAGaZ17hdmy+98vnUAgFJDclVCJFeAPSxLSkzMe7Trjz+kjIz8H+tcODmvqYYsnIwiycgoWXKWnGySvLJUoULREzJXnR8QYJ6fbzcAeCmSqxIiuQLcz4UWTi7oX7Lq1U2NV5Uqhd+Y0YVis6yCR89OnDC1ZUXd0tNz/1xQN5my5nCUfgKX8zHBweYvNSN2AMoAyVUJkVwBnuVCCycXh7//2USratXCJ2WVKpGUlXdZWVJammmeePz42VvnflCQFBNjturVS/D7cubM+QnXhRKy4iRx+W0FDSWXhYoVpXr18h6yjoriLyIAlyG5KiGSK8B7HD9uGmscOiQdO1a4rSQDAhUq5J10XShBCw1lMWY7OUu18kuI8rrN776C6gbPFRAg1a59Ntlybs5jF11kcgi3lJVlErHSTODye0xqqmlXmp/g4NxrP+RMvKpUKbv3CIBXILkqIZIroPxyzuhyJlpHjxYuITt6tGRf5Pv4mHXBCjM6ljNRq1y5/M6Mysx0XUKUlub6+CpUMLWAoaFnbytVMs+5a5cZVb3Q/8A+PibByplwnZuEBQe7Pna3l5Vl1ns4d47w9u1mTbbMzPwfW6XK+R1xGjQw3XJYgA95sSzzD/2uXWZ++u7dZ/f37TPfklStKlWrlvv23P2wMEZUPRTJVQmRXAEoKssyTeYKm4jl/PnEiZI9d+XKRasnq1LFJHJ+fi556UWSmVm0pKeg+0r6vuWlQgWTBOVMiEJCzk+SCnOfv3/Bn6MyMqS9e81ntJxbzs9thUnYq1bNf+QrJsbcX64+z2VkmAQrr8Rr796CHxsdnXfiVbeuPX9hUDZOnzZJUs6/fDkTqd27XfMNjHNqQ37JV17JWXh4+f0GzY2QXJUQyRWAsnTqlGlPX9hpi84tJaVkzxsSUrSELDg4dy1RcRIiV3U5z6lixdwJUXESIed9F0qIylJWlnTwYO7PeuduhfkdcNZ45TfyFR1tPvOVC2lpeS/At3174RfgOzfxYgE+95eSkveok/N2//7CdfiMjDR/aZx/mWrXlmrWNP+IHz1qtiNHct8694v7bZDDYRKswoyM5dx32/nEnonkqoRIrgB4gtOnTfO5okxfPHbMPMbuf/n9/Us2MpRz39/f3tdip+Tk/Ee+du0ySxtciK+v+XyY38hX7dqme6bXO3bMJFl5JV5FWYAvZ+LFAnylLyvLzLE9d7Qp51+G5OQLX8fPL3fS5Lx17tesaab/FZczAcsv+corOSvJN2ihoUVPyMrFX/TiIbkqIZIrAN4sM9N81ijqFMa0NFOSUpKRIec+M6zKxqlTpjQpr5Gv3bvNfQX1hXCqUaPgxhvh4V6cQzgX4Dt3mmFhF+DLmWzl3GcBvsI5cSL39LxzR5327i3cL3GVKucnTjkTqBo13K+r0OnT5h/f/JKvvI79/Xfxvz0LCircVMWc++WkRS7JVQmRXAEAyoPMTJM35DfytWtX4bofVqqU96iXc4uKcr/PrS6RcwG+c+u7/vqr4Klm1aqdv+K5s7FGUFCZvQRbWZZ0+HDBo04FTdd0cg6/5pU4xcSYqZvlpVlJZqaZnlDYhMy5X1ATmIL4+RVuZOzcxh4e9g8CyVUJkVwBAGA++/79d/4jX7t2mWUOLqRixfOnHp77Gdjrpnemp5sF+PJKvPbvL/ixNWvmnXjVqeNZtTQ5u7bk1yzi1KkLXyck5PxpejlvWVC6ZCzLTEEszFTFnMfS04v3fL6+Z1vf5ky+hg6VWrRw6UtzFZKrEiK5AgCgcE6ezJ18nZuI7d1buC/FIyPzH/mKiTFfdnsN5wJ8eU01/Pvv/B/n62sSrLymGdasWbajAZZlRkgKGnVKTLzwFDWHwwxt5lXn5Lylhbn7sSwzZbOodWQFdV1ctEjq1q3sXkMRkFyVEMkVAACuceaM6TdQUOONwjRSCw09m2jVqmVmzvn7m1lJ/v659/O7Lcx9ts9WOno09yhXzv2C3qiAgPwba1SvXvTkJOcfXH6jTsePX/g6OVfKzuu2Zk2KMMuT9PT8E7K77jK/E26I5KqESK4AACgblmU+V+U38rVrl7m/rFSoULLkrKTJXb63fpZ8EvfnPdr1558FN3UIC8u7sUZQUN6J065dZt2nwgw5Vq+e/3S9mBgz3YtRJ3g4kqsSIrkCAMB9pKXlTrr27TOlOunpZsvIyPu2oPuct4VpNOcu8kv8gvzOKNaxS3XPbFOdM9sVk7FNtU9u00Untqnaid3yUfE+6mX5VtCp6rWUERmj01G1dSa6tjJrxsiqVVuO2Bj5xNRSxbAg+fmZUjA/PzNzkVwK3obkqoRIrgAAKB+yskyCVdIkrTQe74rEz1+nVE9/qIG2qb62q4G2ZW/+Stdu1dZu1dYuxZy3n6hIZalojSIcDpNk5Uy4zt2Kcry0znUeJxlEYRQlNygva7IDAACcx8fn7LQ8d2NZJtEqWZIWoIyMpkpPb6qMDGlburT5nATO+RwZGeZn/wwpJkOKOud4zvOc25kz58fsjMMT5EwGS5oQXmi/KOcWdA0aI7o3kisAAAA35HCcTfxCQuyOJm+WlXfilV8yZvdxT08GJfOFQGkkbqWZIJanEUKSKwAAABRLzpEfT+CcBuqq5M05+uc8nt+1L7RfUEznFvBkZZmaw8IsEeYuHI4LJ2CvvSZdfrndkZYcyRUAAADKBXeeBpqfzMzCJWLFTeBKem5ej8trhNB5bn4KsySDJyC5AgAAANyUr68UGGg2T5GVZRKsoiRwLVvaHbVrkFwBAAAAcJmcdWHljd3rkAMAAACAVyC5AgAAAAAXILkCAAAAABcguQIAAAAAFyC5AgAAAAAXILkCAAAAABcguQIAAAAAFyC5AgAAAAAXILkCAAAAABcguQIAAAAAFyC5AgAAAAAXILkCAAAAABcguQIAAAAAFyC5AgAAAAAXqGB3AO7IsixJUkpKis2RAAAAALCTMydw5ggFIbnKw9GjRyVJtWrVsjkSAAAAAO7g+PHjCgsLK/Ackqs8VKlSRZK0e/fuC76ByF9KSopq1aqlPXv2KDQ01O5wPBLvoWvwPpYc76Fr8D66Bu9jyfEeugbvY8l5wntoWZaOHz+u6OjoC55LcpUHHx9TihYWFua2f8ieJDQ0lPexhHgPXYP3seR4D12D99E1eB9LjvfQNXgfS87d38PCDrjQ0AIAAAAAXIDkCgAAAABcgOQqD/7+/ho9erT8/f3tDsWj8T6WHO+ha/A+lhzvoWvwProG72PJ8R66Bu9jyXnbe+iwCtNTEAAAAABQIEauAAAAAMAFSK4AAAAAwAVIrgAAAADABUiuAAAAAMAFSK5y+O6779SzZ09FR0fL4XDo008/tTskjzN+/Hi1bdtWISEhqlGjhnr16qWtW7faHZbHmTlzppo3b569oF6HDh301Vdf2R2WR5swYYIcDoeGDx9udygeZcyYMXI4HLm2Ro0a2R2Wx9m3b5/uvPNOVa1aVYGBgWrWrJl++uknu8PyKLGxsef9LjocDg0ZMsTu0DxKZmamnn/+edWpU0eBgYGqV6+exo0bJ/qbFc3x48c1fPhwxcTEKDAwUJdddpnWrVtnd1hu7UKfsy3L0qhRoxQVFaXAwEDFx8dr+/bt9gRbAiRXOaSlpSkuLk6vvfaa3aF4rBUrVmjIkCH68ccftWTJEp0+fVpdu3ZVWlqa3aF5lJo1a2rChAlav369fvrpJ1111VW68cYb9euvv9odmkdat26dXn/9dTVv3tzuUDxS06ZNdeDAgext1apVdofkUf7++2917NhRFStW1FdffaXffvtNL7/8ssLDw+0OzaOsW7cu1+/hkiVLJEm33XabzZF5lokTJ2rmzJmaMWOGtmzZookTJ2rSpEmaPn263aF5lHvuuUdLlizRO++8o82bN6tr166Kj4/Xvn377A7NbV3oc/akSZP06quvatasWVqzZo2Cg4PVrVs3nTp1qowjLSELeZJkLViwwO4wPN6hQ4csSdaKFSvsDsXjhYeHW//+97/tDsPjHD9+3Kpfv761ZMkSq3PnztYjjzxid0geZfTo0VZcXJzdYXi0p556yrr88svtDsPrPPLII1a9evWsrKwsu0PxKNddd501ePDgXMduvvlmq1+/fjZF5HlOnDhh+fr6Wp9//nmu461atbKeffZZm6LyLOd+zs7KyrIiIyOtyZMnZx9LSkqy/P39rQ8++MCGCIuPkSuUquTkZElSlSpVbI7Ec2VmZurDDz9UWlqaOnToYHc4HmfIkCG67rrrFB8fb3coHmv79u2Kjo5W3bp11a9fP+3evdvukDzKwoUL1aZNG912222qUaOGWrZsqdmzZ9sdlkfLyMjQu+++q8GDB8vhcNgdjke57LLLtGzZMm3btk2StGnTJq1atUo9evSwOTLPcebMGWVmZiogICDX8cDAQEb2i2nnzp1KTEzM9X91WFiY2rdvr9WrV9sYWdFVsDsAeK+srCwNHz5cHTt21CWXXGJ3OB5n8+bN6tChg06dOqVKlSppwYIFatKkid1heZQPP/xQGzZsYB58CbRv315z5sxRw4YNdeDAAY0dO1adOnXSL7/8opCQELvD8wh//vmnZs6cqREjRuiZZ57RunXr9PDDD8vPz08DBgywOzyP9OmnnyopKUkDBw60OxSP8/TTTyslJUWNGjWSr6+vMjMz9eKLL6pfv352h+YxQkJC1KFDB40bN06NGzdWRESEPvjgA61evVoXX3yx3eF5pMTERElSREREruMRERHZ93kKkiuUmiFDhuiXX37hW5xiatiwoRISEpScnKyPP/5YAwYM0IoVK0iwCmnPnj165JFHtGTJkvO+XUTh5fw2u3nz5mrfvr1iYmI0f/583X333TZG5jmysrLUpk0bvfTSS5Kkli1b6pdfftGsWbNIrorpP//5j3r06KHo6Gi7Q/E48+fP13vvvaf3339fTZs2VUJCgoYPH67o6Gh+H4vgnXfe0eDBg3XRRRfJ19dXrVq1Ut++fbV+/Xq7Q4PNmBaIUjF06FB9/vnnWr58uWrWrGl3OB7Jz89PF198sVq3bq3x48crLi5O//znP+0Oy2OsX79ehw4dUqtWrVShQgVVqFBBK1as0KuvvqoKFSooMzPT7hA9UuXKldWgQQPt2LHD7lA8RlRU1HlfijRu3JjplcW0a9cuLV26VPfcc4/doXikJ554Qk8//bRuv/12NWvWTHfddZceffRRjR8/3u7QPEq9evW0YsUKpaamas+ePVq7dq1Onz6tunXr2h2aR4qMjJQkHTx4MNfxgwcPZt/nKUiu4FKWZWno0KFasGCBvvnmG9WpU8fukLxGVlaW0tPT7Q7DY1x99dXavHmzEhISsrc2bdqoX79+SkhIkK+vr90heqTU1FT98ccfioqKsjsUj9GxY8fzlqTYtm2bYmJibIrIs7311luqUaOGrrvuOrtD8UgnTpyQj0/uj3++vr7KysqyKSLPFhwcrKioKP39999avHixbrzxRrtD8kh16tRRZGSkli1bln0sJSVFa9as8bh6c6YF5pCamprr29idO3cqISFBVapUUe3atW2MzHMMGTJE77//vj777DOFhIRkz5MNCwtTYGCgzdF5jpEjR6pHjx6qXbu2jh8/rvfff1/ffvutFi9ebHdoHiMkJOS8Wr/g4GBVrVqVGsAiePzxx9WzZ0/FxMRo//79Gj16tHx9fdW3b1+7Q/MYjz76qC677DK99NJL6t27t9auXas33nhDb7zxht2heZysrCy99dZbGjBggCpU4CNMcfTs2VMvvviiateuraZNm2rjxo2aOnWqBg8ebHdoHmXx4sWyLEsNGzbUjh079MQTT6hRo0YaNGiQ3aG5rQt9zh4+fLheeOEF1a9fX3Xq1NHzzz+v6Oho9erVy76gi8PudoXuZPny5Zak87YBAwbYHZrHyOv9k2S99dZbdofmUQYPHmzFxMRYfn5+VvXq1a2rr77a+vrrr+0Oy+PRir3o+vTpY0VFRVl+fn7WRRddZPXp08fasWOH3WF5nP/973/WJZdcYvn7+1uNGjWy3njjDbtD8kiLFy+2JFlbt261OxSPlZKSYj3yyCNW7dq1rYCAAKtu3brWs88+a6Wnp9sdmkeZN2+eVbduXcvPz8+KjIy0hgwZYiUlJdkdllu70OfsrKws6/nnn7ciIiIsf39/6+qrr/bIv+sOy2JJbgAAAAAoKWquAAAAAMAFSK4AAAAAwAVIrgAAAADABUiuAAAAAMAFSK4AAAAAwAVIrgAAAADABUiuAAAAAMAFSK4AAAAAwAVIrgAAcDGHw6FPP/3U7jAAAGWM5AoA4FUGDhwoh8Nx3ta9e3e7QwMAeLkKdgcAAICrde/eXW+99VauY/7+/jZFAwAoLxi5AgB4HX9/f0VGRubawsPDJZkpezNnzlSPHj0UGBiounXr6uOPP871+M2bN+uqq65SYGCgqlatqvvuu0+pqam5znnzzTfVtGlT+fv7KyoqSkOHDs11/5EjR3TTTTcpKChI9evX18KFC0v3RQMAbEdyBQAod55//nndcsst2rRpk/r166fbb79dW7ZskSSlpaWpW7duCg8P17p16/TRRx9p6dKluZKnmTNnasiQIbrvvvu0efNmLVy4UBdffHGu5xg7dqx69+6tn3/+Wddee6369eunY8eOlenrBACULYdlWZbdQQAA4CoDBw7Uu+++q4CAgFzHn3nmGT3zzDNyOBx64IEHNHPmzOz7Lr30UrVq1Ur/+te/NHv2bD311FPas2ePgoODJUlffvmlevbsqf379ysiIkIXXXSRBg0apBdeeCHPGBwOh5577jmNGzdOkknYKlWqpK+++oraLwDwYtRcAQC8zpVXXpkreZKkKlWqZO936NAh130dOnRQQkKCJGnLli2Ki4vLTqwkqWPHjsrKytLWrVvlcDi0f/9+XX311QXG0Lx58+z94OBghYaG6tChQ8V9SQAAD0ByBQDwOsHBwedN03OVwMDAQp1XsWLFXD87HA5lZWWVRkgAADdBzRUAoNz58ccfz/u5cePGkqTGjRtr06ZNSktLy77/+++/l4+Pjxo2bKiQkBDFxsZq2bJlZRozAMD9MXIFAPA66enpSkxMzHWsQoUKqlatmiTpo48+Ups2bXT55Zfrvffe09q1a/Wf//xHktSvXz+NHj1aAwYM0JgxY3T48GENGzZMd911lyIiIiRJY8aM0QMPPKAaNWqoR48eOn78uL7//nsNGzasbF8oAMCtkFwBALzOokWLFBUVletYw4YN9fvvv0synfw+/PBDPfTQQ4qKitIHH3ygJk2aSJKCgoK0ePFiPfLII2rbtq2CgoJ0yy23aOrUqdnXGjBggE6dOqVXXnlFjz/+uKpVq6Zbb7217F4gAMAt0S0QAFCuOBwOLViwQL169bI7FACAl6HmCgAAAABcgOQKAAAAAFyAmisAQLnCbHgAQGlh5AoAAAAAXIDkCgAAAABcgOQKAAAAAFyA5AoAAAAAXIDkCgAAAABcgOQKAAAAAFyA5AoAAAAAXIDkCgAAAABc4P8ASYnChj3vECUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAHWCAYAAAACSaoRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWfElEQVR4nOzdd3hTZfsH8G/a0kEnUOiAAgXKHkWgpawyKmWIVlGGQBFRfBUQxYGDJbw/kPWKgoITVDYIqCijlClURqECMgQsFIGW2ZYWOnN+fzyetOmiI8mTpN/PdZ0rp8nJyZ0Q2tx57ud+NIqiKCAiIiIiIiLpbGQHQERERERERAITNCIiIiIiIjPBBI2IiIiIiMhMMEEjIiIiIiIyE0zQiIiIiIiIzAQTNCIiIiIiIjPBBI2IiIiIiMhMMEEjIiIiIiIyE0zQiIiIiIiIzAQTNCKiSu7IkSPo1KkTnJ2dodFoEBcXJyWOS5cuQaPRYPny5VIen8zb8uXLodFocPToUdmhEBEZFRM0IqJKLDs7G8888wzu3LmDjz76CN9//z3q1asnOyyDUZO++fPnyw7F7KkJUHHb77//LjtEIqJKwU52AEREJM/Fixdx+fJlfPnll3jhhRdkh0NmYMaMGfD39y90faNGjSREQ0RU+TBBIyKqxG7cuAEA8PDwkBsImUR6ejqcnZ1LPKZv375o3769iSIiIqKCWOJIRFRJPffccwgNDQUAPPPMM9BoNOjevbvu9l27dqFr165wdnaGh4cHnnjiCZw5c6bQea5evYrRo0fD19cXDg4O8Pf3x8svv4ysrCwAwJ07d/Dmm2+iVatWcHFxgZubG/r27Ys//vjDJM+zNG7cuIHRo0fDy8sLjo6OaNOmDb799ttCx61Zswbt2rWDq6sr3Nzc0KpVK3z88ce627Ozs/HBBx8gICAAjo6OqFGjBrp06YKoqKgSH18tL9y3bx9eeukl1KhRA25uboiMjMTdu3cLHb9161bdv42rqyv69++PP//8U++Y5557Di4uLrh48SL69esHV1dXDBs2rJyvUJ78ZaMfffQR6tWrBycnJ4SGhuLUqVOFjjfU+0iVmZmJiRMnombNmnB2dsaTTz6JmzdvVvh5ERGZC46gERFVUi+99BJq166NWbNm4dVXX0WHDh3g5eUFANi5cyf69u2LBg0aYPr06Xjw4AEWLVqEzp0749ixY6hfvz4A4Nq1awgKCkJycjLGjBmDpk2b4urVq9iwYQPu378Pe3t7/P3339i8eTOeeeYZ+Pv7IykpCZ9//jlCQ0Nx+vRp+Pr6SnwVgAcPHqB79+64cOECxo0bB39/f6xfvx7PPfcckpOTMWHCBABAVFQUhg4dil69emHOnDkAgDNnzuDAgQO6Y6ZPn47Zs2fjhRdeQFBQEFJTU3H06FEcO3YMjz766ENjGTduHDw8PDB9+nScO3cOS5YsweXLl7Fnzx5oNBoAwPfff4+RI0ciPDwcc+bMwf3797FkyRJ06dIFx48f1/3bAEBOTg7Cw8PRpUsXzJ8/H1WrVn1oDCkpKbh165bedRqNBjVq1NC77rvvvsO9e/cwduxYZGRk4OOPP0bPnj1x8uRJo7yPVOPHj0e1atUwbdo0XLp0CQsXLsS4ceOwdu3ahz43IiKLoBARUaW1e/duBYCyfv16vesDAwOVWrVqKbdv39Zd98cffyg2NjZKZGSk7rrIyEjFxsZGOXLkSKFza7VaRVEUJSMjQ8nNzdW7LT4+XnFwcFBmzJihdx0AZdmyZYZ4anrnnDdvXrHHLFy4UAGgrFixQnddVlaWEhISori4uCipqamKoijKhAkTFDc3NyUnJ6fYc7Vp00bp379/meNctmyZAkBp166dkpWVpbt+7ty5CgDlxx9/VBRFUe7du6d4eHgoL774ot79ExMTFXd3d73rR44cqQBQ3nnnnTLFUNTm4OCgO059TZ2cnJR//vlHd/2hQ4cUAMrrr7+uu86Q7yM1vrCwMN11iqIor7/+umJra6skJyeX6nkSEZk7ljgSEZGe69evIy4uDs899xyqV6+uu75169Z49NFH8euvvwIAtFotNm/ejAEDBhQ5Z0kd8XFwcICNjfhzk5ubi9u3b8PFxQVNmjTBsWPHTPCMSvbrr7/C29sbQ4cO1V1XpUoVvPrqq0hLS8PevXsBiHl66enpJZYrenh44M8//8T58+fLFcuYMWNQpUoV3c8vv/wy7OzsdK95VFQUkpOTMXToUNy6dUu32draIjg4GLt37y50zpdffrlMMXz66aeIiorS27Zu3VrouIiICNSuXVv3c1BQEIKDg3WxGvp9pBozZozedV27dkVubi4uX75cpudJRGSuWOJIRER61A+6TZo0KXRbs2bNsH37dqSnpyMtLQ2pqalo2bJliefTarX4+OOP8dlnnyE+Ph65ubm62wqWzT1Mbm5uoflG1atX1yuBK6vLly8jICBAl0SqmjVrprsdAF555RWsW7cOffv2Re3atdG7d28MGjQIffr00d1nxowZeOKJJ9C4cWO0bNkSffr0wYgRI9C6detSxRIQEKD3s4uLC3x8fHDp0iUA0CV+PXv2LPL+bm5uej/b2dmhTp06pXpsVVBQUKmahBSMFQAaN26MdevWATD8+0hVt25dvZ+rVasGAEXO1SMiskRM0IiIyKhmzZqFKVOm4Pnnn8fMmTNRvXp12NjY4LXXXoNWqy3Tua5cuVKoBfzu3bv1mpsYS61atRAXF4ft27dj69at2Lp1K5YtW4bIyEhdQ5Fu3brh4sWL+PHHH7Fjxw589dVX+Oijj7B06VKDLGOgvl7ff/89vL29C91uZ6f/Zz3/6KW1sLW1LfJ6RVFMHAkRkXEwQSMiIj3qQtXnzp0rdNvZs2fh6ekJZ2dnODk5wc3NrcjOfflt2LABPXr0wNdff613fXJyMjw9PcsUm7e3d6ESwzZt2pTpHAXVq1cPJ06cgFar1Utmzp49q7tdZW9vjwEDBmDAgAHQarV45ZVX8Pnnn2PKlCm6dcKqV6+OUaNGYdSoUUhLS0O3bt0wffr0UiVo58+fR48ePXQ/p6Wl4fr16+jXrx8AoGHDhgBEshgWFlah511RRZVx/vXXX7rGH4Z+HxERVRbW9bUaERFVmI+PDwIDA/Htt98iOTlZd/2pU6ewY8cOXbJgY2ODiIgI/Pzzzzh69Gih86gjGra2toVGN9avX4+rV6+WOTZHR0eEhYXpbWqJW3n169cPiYmJel0Ac3JysGjRIri4uOiWIrh9+7be/WxsbHSli5mZmUUe4+LigkaNGuluf5gvvvgC2dnZup+XLFmCnJwc9O3bFwAQHh4ONzc3zJo1S+84lSnbzW/evFnv3/Dw4cM4dOiQLlZDv4+IiCoLjqAREVEh8+bNQ9++fRESEoLRo0fr2qO7u7tj+vTpuuNmzZqFHTt2IDQ0FGPGjEGzZs1w/fp1rF+/Hr/99hs8PDzw2GOPYcaMGRg1ahQ6deqEkydPYuXKlWjQoIHJnk90dDQyMjIKXR8REYExY8bg888/x3PPPYfY2FjUr18fGzZswIEDB7Bw4UK4uroCAF544QXcuXMHPXv2RJ06dXD58mUsWrQIgYGBuvlqzZs3R/fu3dGuXTtUr14dR48exYYNGzBu3LhSxZmVlYVevXph0KBBOHfuHD777DN06dIFjz/+OAAxx2zJkiUYMWIEHnnkEQwZMgQ1a9ZEQkICfvnlF3Tu3BmLFy+u0Gu1detW3ehhfp06ddL7N2vUqBG6dOmCl19+GZmZmVi4cCFq1KiBt99+W3eMId9HRESVhtwmkkREJFNxbfYVRVF27typdO7cWXFyclLc3NyUAQMGKKdPny503OXLl5XIyEilZs2aioODg9KgQQNl7NixSmZmpqIoos3+G2+8ofj4+ChOTk5K586dlZiYGCU0NFQJDQ3VnceYbfaL277//ntFURQlKSlJGTVqlOLp6anY29srrVq1KhTHhg0blN69eyu1atVS7O3tlbp16yovvfSScv36dd0x//3vf5WgoCDFw8NDcXJyUpo2bar83//9n17r/KKoLeT37t2rjBkzRqlWrZri4uKiDBs2TK9FvWr37t1KeHi44u7urjg6OioNGzZUnnvuOeXo0aO6Y0aOHKk4OzuX+rUqqc1+/n+X/EsXLFiwQPHz81McHByUrl27Kn/88Ueh8xrqfaTGV7AVv/oe3r17d6mfKxGROdMoCmsHiIiIZFq+fDlGjRqFI0eOlKqDokyXLl2Cv78/5s2bhzfffFN2OEREVodz0IiIiIiIiMwEEzQiIiIiIiIzwQSNiIiIiIjITHAOGhERERERkZngCBoREREREZGZYIJGRERERERkJrhQtRFptVpcu3YNrq6u0Gg0ssMhIiIiIiJJFEXBvXv34OvrCxub4sfJmKAZ0bVr1+Dn5yc7DCIiIiIiMhNXrlxBnTp1ir2dCZoRubq6AhD/CG5ubpKjISIiIiIiWVJTU+Hn56fLEYrDBM2I1LJGNzc3JmhERERERPTQqU9sEkJERERERGQmmKARERERERGZCSZoREREREREZoJz0IiIiIio0lAUBTk5OcjNzZUdClkZW1tb2NnZVXh5LSZoRERERFQpZGVl4fr167h//77sUMhKVa1aFT4+PrC3ty/3OZigEREREZHV02q1iI+Ph62tLXx9fWFvb1/hkQ4ilaIoyMrKws2bNxEfH4+AgIASF6MuCRM0IiIiIrJ6WVlZ0Gq18PPzQ9WqVWWHQ1bIyckJVapUweXLl5GVlQVHR8dynYdNQoiIiIio0ijvqAZRaRji/cV3KBERERERkZlggkZERERERGQmmKAREREREVUy9evXx8KFC2WHQUVggkZEREREZKY0Gk2J2/Tp08t13iNHjmDMmDEViq179+547bXXKnQOKoxdHImIiIiIzNT169d1+2vXrsXUqVNx7tw53XUuLi66fUVRkJubCzu7h3/Er1mzpmEDJYPhCBqZtzlzgDFjgJwc2ZEQERGRlVEUID3d9JuilD5Gb29v3ebu7g6NRqP7+ezZs3B1dcXWrVvRrl07ODg44LfffsPFixfxxBNPwMvLCy4uLujQoQN27typd96CJY4ajQZfffUVnnzySVStWhUBAQH46aefKvT6/vDDD2jRogUcHBxQv359LFiwQO/2zz77DAEBAXB0dISXlxeefvpp3W0bNmxAq1at4OTkhBo1aiAsLAzp6ekVisdSmEWC9umnn6J+/fpwdHREcHAwDh8+XOLx69evR9OmTeHo6IhWrVrh119/1d2WnZ2NSZMmoVWrVnB2doavry8iIyNx7do1vXPcuXMHw4YNg5ubGzw8PDB69GikpaXpHXPixAl07doVjo6O8PPzw9y5cw33pOnhbt8G3nsP+PJLYN8+2dEQERGRlbl/H3BxMf12/75hn8c777yDDz/8EGfOnEHr1q2RlpaGfv36ITo6GsePH0efPn0wYMAAJCQklHieDz74AIMGDcKJEyfQr18/DBs2DHfu3ClXTLGxsRg0aBCGDBmCkydPYvr06ZgyZQqWL18OADh69CheffVVzJgxA+fOncO2bdvQrVs3AGLUcOjQoXj++edx5swZ7NmzB0899RSUsmS2lkyRbM2aNYq9vb3yzTffKH/++afy4osvKh4eHkpSUlKRxx84cECxtbVV5s6dq5w+fVqZPHmyUqVKFeXkyZOKoihKcnKyEhYWpqxdu1Y5e/asEhMTowQFBSnt2rXTO0+fPn2UNm3aKL///ruyf/9+pVGjRsrQoUN1t6ekpCheXl7KsGHDlFOnTimrV69WnJyclM8//7zUzy0lJUUBoKSkpJTjlSFl1SpFEV8yKco778iOhoiIiCzYgwcPlNOnTysPHjzQXZeWlvdRw5RbWlr5nsOyZcsUd3d33c+7d+9WACibN29+6H1btGihLFq0SPdzvXr1lI8++kj3MwBl8uTJ+V6bNAWAsnXr1mLPGRoaqkyYMKHI25599lnl0Ucf1bvurbfeUpo3b64oiqL88MMPipubm5KamlrovrGxsQoA5dKlSw99XuamqPeZqrS5gfQRtP/973948cUXMWrUKDRv3hxLly5F1apV8c033xR5/Mcff4w+ffrgrbfeQrNmzTBz5kw88sgjWLx4MQDA3d0dUVFRGDRoEJo0aYKOHTti8eLFiI2N1X1rcObMGWzbtg1fffUVgoOD0aVLFyxatAhr1qzRjbStXLkSWVlZ+Oabb9CiRQsMGTIEr776Kv73v/+Z5oUhIN/IKKKi5MVBREREVqlqVSAtzfRb1aqGfR7t27fX+zktLQ1vvvkmmjVrBg8PD7i4uODMmTMPHUFr3bq1bt/Z2Rlubm64ceNGuWI6c+YMOnfurHdd586dcf78eeTm5uLRRx9FvXr10KBBA4wYMQIrV67E/X+HFtu0aYNevXqhVatWeOaZZ/Dll1/i7t275YrDEklN0LKyshAbG4uwsDDddTY2NggLC0NMTEyR94mJidE7HgDCw8OLPR4AUlJSoNFo4OHhoTuHh4eH3ps5LCwMNjY2OHTokO6Ybt26wd7eXu9xzp07V+wbJDMzE6mpqXoblVNuLrBtW97Px46JkkciIiIiA9FoAGdn028ajWGfh7Ozs97Pb775JjZt2oRZs2Zh//79iIuLQ6tWrZCVlVXieapUqVLg9dFAq9UaNth/ubq64tixY1i9ejV8fHwwdepUtGnTBsnJybC1tUVUVBS2bt2K5s2bY9GiRWjSpAni4+ONEou5kZqg3bp1C7m5ufDy8tK73svLC4mJiUXeJzExsUzHZ2RkYNKkSRg6dCjc3Nx056hVq5becXZ2dqhevbruPMU9jnpbUWbPng13d3fd5ufnV+RxVApHjwK3bgFubkDTpqIiYNcu2VERERERmb0DBw7gueeew5NPPolWrVrB29sbly5dMmkMzZo1w4EDBwrF1bhxY9ja2gIQn7/DwsIwd+5cnDhxApcuXcKufz/vaTQadO7cGR988AGOHz8Oe3t7bNq0yaTPQRarbrOfnZ2NQYMGQVEULFmyxOiP9+6772LixIm6n1NTU5mkldfWreKyd2+gTh3g7FlR5vjMM3LjIiIiIjJzAQEB2LhxIwYMGACNRoMpU6YYbSTs5s2biIuL07vOx8cHb7zxBjp06ICZM2di8ODBiImJweLFi/HZZ58BALZs2YK///4b3bp1Q7Vq1fDrr79Cq9WiSZMmOHToEKKjo9G7d2/UqlULhw4dws2bN9GsWTOjPAdzIzVB8/T0hK2tLZKSkvSuT0pKgre3d5H38fb2LtXxanJ2+fJl7Nq1Szd6pp6jYD1tTk4O7ty5oztPcY+j3lYUBwcHODg4FPd0qSzU+Wf9+gG1agELFwIF2sMSERERUWH/+9//8Pzzz6NTp07w9PTEpEmTjDb1ZtWqVVi1apXedTNnzsTkyZOxbt06TJ06FTNnzoSPjw9mzJiB5557DgDg4eGBjRs3Yvr06cjIyEBAQABWr16NFi1a4MyZM9i3bx8WLlyI1NRU1KtXDwsWLEDfvn2N8hzMjUZR5ParDA4ORlBQEBYtWgQA0Gq1qFu3LsaNG4d33nmn0PGDBw/G/fv38fPPP+uu69SpE1q3bo2lS5cCyEvOzp8/j927dxdaiO/MmTNo3rw5jh49inbt2gEAduzYgT59+uCff/6Br68vlixZgvfffx9JSUm6etz33nsPGzduxNmzZ0v13FJTU+Hu7o6UlBS9BJEeIikJUJPga9cAV1egenUgOxu4cAFo2FBufERERGRxMjIyEB8fD39/fzg6OsoOh6xUSe+z0uYG0rs4Tpw4EV9++SW+/fZbnDlzBi+//DLS09MxatQoAEBkZCTeffdd3fETJkzAtm3bsGDBApw9exbTp0/H0aNHMW7cOAAiOXv66adx9OhRrFy5Erm5uUhMTERiYqJuYmSzZs3Qp08fvPjiizh8+DAOHDiAcePGYciQIfD19QUAPPvss7C3t8fo0aPx559/Yu3atfj444/1ShjJSLZvF5dt2wI+PmLBkJAQcR27ORIRERGRFZM+B23w4MG4efMmpk6disTERAQGBmLbtm26hhwJCQmwscnLIzt16oRVq1Zh8uTJeO+99xAQEIDNmzejZcuWAICrV6/qVj0PDAzUe6zdu3eje/fuAEQb/XHjxqFXr16wsbHBwIED8cknn+iOdXd3x44dOzB27Fi0a9cOnp6emDp1KsaMGWPEV4MA6Jc3qsLCxGLVUVHAf/4jJy4iIiIiIiOTXuJozVjiWA45OWLO2d27wIEDQKdO4vrffxejaB4eorvjv91/iIiIiEqDJY5kClZR4kik59AhkZxVrw4EB+dd37494O4OJCcDsbHSwiMiIiIiMiYmaGRe1PLG8HD9UTI7O6BHD7HPeWhEREREZKWYoJF5URO0otqoPvqouGS7fSIiIiKyUkzQyHxcuwbExQEajRhBK0hN0A4cANLTTRoaEREREZEpMEEj87Ftm7js0EE0CimoUSOgbl2xHtq+faaNjYiIiIjIBJigkfkoqr1+fhoNyxyJiIiIyKoxQSPzkJ0N7Ngh9otL0IC8BI2NQoiIiIhKrXv37njttdd0P9evXx8LFy4s8T4ajQabN2+u8GMb6jyVBRM0Mg8HDgD37gE1awLt2hV/XK9e4vLkSSAx0TSxEREREUkyYMAA9OnTp8jb9u/fD41GgxMnTpT5vEeOHMGYMWMqGp6e6dOnIzAwsND1169fR9+iGsAZ0PLly+Hh4WHUxzAVJmhkHrZuFZd9+gA2JbwtPT2Btm3FfnS08eMiIiIikmj06NGIiorCP//8U+i2ZcuWoX379mjdunWZz1uzZk1UrVrVECE+lLe3NxwcHEzyWNaACRqZh4fNP8uPZY5ERERkCIoiOkObelOUUof42GOPoWbNmli+fLne9WlpaVi/fj1Gjx6N27dvY+jQoahduzaqVq2KVq1aYfXq1SWet2CJ4/nz59GtWzc4OjqiefPmiCric9akSZPQuHFjVK1aFQ0aNMCUKVOQnZ0NQIxgffDBB/jjjz+g0Wig0Wh0MRcscTx58iR69uwJJycn1KhRA2PGjEFaWpru9ueeew4RERGYP38+fHx8UKNGDYwdO1b3WOWRkJCAJ554Ai4uLnBzc8OgQYOQlJSku/2PP/5Ajx494OrqCjc3N7Rr1w5Hjx4FAFy+fBkDBgxAtWrV4OzsjBYtWuBX9bOrEdgZ7cxEpZWQAJw6JUbOevd++PGPPgrMnSsSNEURzUOIiIiIyur+fcDFxfSPm5YGODuX6lA7OztERkZi+fLleP/996H593PP+vXrkZubi6FDhyItLQ3t2rXDpEmT4Obmhl9++QUjRoxAw4YNERQU9NDH0Gq1eOqpp+Dl5YVDhw4hJSVFb76aytXVFcuXL4evry9OnjyJF198Ea6urnj77bcxePBgnDp1Ctu2bcPOf5u5ubu7FzpHeno6wsPDERISgiNHjuDGjRt44YUXMG7cOL0kdPfu3fDx8cHu3btx4cIFDB48GIGBgXjxxRdL9boVfH5qcrZ3717k5ORg7NixGDx4MPbs2QMAGDZsGNq2bYslS5bA1tYWcXFxqFKlCgBg7NixyMrKwr59++Ds7IzTp0/DxYjvGyZoJJ9a3tixI1C9+sOP79wZcHAQ66adPQs0a2bc+IiIiIgkev755zFv3jzs3bsX3bt3ByDKGwcOHAh3d3e4u7vjzTff1B0/fvx4bN++HevWrStVgrZz506cPXsW27dvh6+vLwBg1qxZheaNTZ48Wbdfv359vPnmm1izZg3efvttODk5wcXFBXZ2dvD29i72sVatWoWMjAx89913cP43SV28eDEGDBiAOXPmwMvLCwBQrVo1LF68GLa2tmjatCn69++P6OjociVo0dHROHnyJOLj4+Hn5wcA+O6779CiRQscOXIEHTp0QEJCAt566y00bdoUABAQEKC7f0JCAgYOHIhWrVoBABo0aFDmGMqCCRrJV5byRgBwcgK6dhWt9qOimKARERFR+VStKkazZDxuGTRt2hSdOnXCN998g+7du+PChQvYv38/ZsyYAQDIzc3FrFmzsG7dOly9ehVZWVnIzMws9RyzM2fOwM/PT5ecAUBISEih49auXYtPPvkEFy9eRFpaGnJycuDm5lam53LmzBm0adNGl5wBQOfOnaHVanHu3DldgtaiRQvY2trqjvHx8cHJkyfL9Fj5H9PPz0+XnAFA8+bN4eHhgTNnzqBDhw6YOHEiXnjhBXz//fcICwvDM888g4YNGwIAXn31Vbz88svYsWMHwsLCMHDgwHLN+ystzkEjuTIz85p9lDZBAzgPjYiIiCpOoxGlhqbeyjE9Y/To0fjhhx9w7949LFu2DA0bNkRoaCgAYN68efj4448xadIk7N69G3FxcQgPD0dWVpbBXqqYmBgMGzYM/fr1w5YtW3D8+HG8//77Bn2M/NTyQpVGo4FWqzXKYwGiA+Wff/6J/v37Y9euXWjevDk2bdoEAHjhhRfw999/Y8SIETh58iTat2+PRYsWGS0WJmgk1/79YrKsjw9QRFvWYoWFics9e8QaakRERERWbNCgQbCxscGqVavw3Xff4fnnn9fNRztw4ACeeOIJDB8+HG3atEGDBg3w119/lfrczZo1w5UrV3D9+nXddb///rveMQcPHkS9evXw/vvvo3379ggICMDly5f1jrG3t0dubu5DH+uPP/5Aenq67roDBw7AxsYGTZo0KXXMZaE+vytXruiuO336NJKTk9G8eXPddY0bN8brr7+OHTt24KmnnsKyZct0t/n5+eE///kPNm7ciDfeeANffvmlUWIFmKCRbGp5Y9++Zfs2KTBQtNxPSwMOHTJKaERERETmwsXFBYMHD8a7776L69ev47nnntPdFhAQgKioKBw8eBBnzpzBSy+9pNeh8GHCwsLQuHFjjBw5En/88Qf279+P999/X++YgIAAJCQkYM2aNbh48SI++eQT3QiTqn79+oiPj0dcXBxu3bqFzMzMQo81bNgwODo6YuTIkTh16hR2796N8ePHY8SIEbryxvLKzc1FXFyc3nbmzBmEhYWhVatWGDZsGI4dO4bDhw8jMjISoaGhaN++PR48eIBx48Zhz549uHz5Mg4cOIAjR46g2b/TaF577TVs374d8fHxOHbsGHbv3q27zRiYoJFc+RO0srCxyVu0mmWOREREVAmMHj0ad+/eRXh4uN58scmTJ+ORRx5BeHg4unfvDm9vb0RERJT6vDY2Nti0aRMePHiAoKAgvPDCC/i///s/vWMef/xxvP766xg3bhwCAwNx8OBBTJkyRe+YgQMHok+fPujRowdq1qxZZKv/qlWrYvv27bhz5w46dOiAp59+Gr169cLixYvL9mIUIS0tDW3bttXbBgwYAI1Ggx9//BHVqlVDt27dEBYWhgYNGmDt2rUAAFtbW9y+fRuRkZFo3LgxBg0ahL59++KDDz4AIBK/sWPHolmzZujTpw8aN26Mzz77rMLxFkejKGVYiIHKJDU1Fe7u7khJSSnzBMpK4e+/gYYNAVtb4PZtoIhWrCX66ivgxReBTp2AAweMEyMRERFZhYyMDMTHx8Pf3x+Ojo6ywyErVdL7rLS5AUfQSB61vX6XLmVPzoC8RiGHDgEpKYaLi4iIiIhIEiZoJE9Z2+sXVK8eEBAA5OaKZiFERERERBaOCRrJ8eABsGuX2C9vggbkdXPkPDQiIiIisgJM0EiOPXuAjAygTh2gRYvyn0ctc9y50yBhERERERHJxASN5FDnn/XrV67FGnV69BAdHc+dA/KtbUFERERUFPbHI2MyxPuLCRqZnqIAv/wi9itS3ggAHh5Ahw5in2WOREREVIwqVaoAAO7fvy85ErJm6vtLfb+Vh52hgiEqtfPnRYv9KlXy1jKriEcfFZ0cd+4Enn++4ucjIiIiq2NrawsPDw/cuHEDgFiPS1ORKh6ifBRFwf3793Hjxg14eHjA1ta23Odigkamp3ZvDA0FXFwqfr5HHwX++1+RoGm1ouSRiIiIqABvb28A0CVpRIbm4eGhe5+VFxM0Mj01Qevb1zDn69gRcHYGbt4ETpwAAgMNc14iIiKyKhqNBj4+PqhVqxays7Nlh0NWpkqVKhUaOVMxQSPTSk8H9u4V+xWdf6aytxejcb/+KkbRmKARERFRCWxtbQ3yQZrIGFgLRqa1axeQlQX4+wNNmhjuvGq7fTYKISIiIiILxgSNTEstb6xoe/2C1ARt3z6xvhoRERERkQVigkamoyj6CZohNW8O+PiI5OzgQcOem4iIiIjIRJigkemcPg0kJAAODkD37oY9t0YDhIWJfZY5EhEREZGFYoJGprN1q7js0QOoWtXw5+c8NCIiIiKycEzQyHSMVd6oUhe9PnYMuH3bOI9BRERERGRETNDINFJTgf37xb6h1j8ryNcXaNFCzHXbtcs4j0FEREREZETSE7RPP/0U9evXh6OjI4KDg3H48OESj1+/fj2aNm0KR0dHtGrVCr+qozL/2rhxI3r37o0aNWpAo9EgLi5O7/ZLly5Bo9EUua1fv153XFG3r1mzxmDPu9LZuRPIyQEaNwYaNTLe47DMkYiIiIgsmNQEbe3atZg4cSKmTZuGY8eOoU2bNggPD8eNGzeKPP7gwYMYOnQoRo8ejePHjyMiIgIRERE4deqU7pj09HR06dIFc+bMKfIcfn5+uH79ut72wQcfwMXFBX0LjOwsW7ZM77iIiAiDPfdKR02kjTV6plIbhezcadzHISIiIiIyAo2iKIqsBw8ODkaHDh2wePFiAIBWq4Wfnx/Gjx+Pd955p9DxgwcPRnp6OrZs2aK7rmPHjggMDMTSpUv1jr106RL8/f1x/PhxBAYGlhhH27Zt8cgjj+Drr7/WXafRaLBp06YKJWWpqalwd3dHSkoK3Nzcyn0ei6coQJ06wLVrwPbtQO/exnustDSgenUgOxu4cAFo2NB4j0VEREREVEqlzQ2kjaBlZWUhNjYWYeqIBwAbGxuEhYUhJiamyPvExMToHQ8A4eHhxR5fGrGxsYiLi8Po0aML3TZ27Fh4enoiKCgI33zzDR6Wy2ZmZiI1NVVvIwAnTojkrGpVoFs34z6WiwsQEiL2WeZIRERERBZGWoJ269Yt5ObmwsvLS+96Ly8vJCYmFnmfxMTEMh1fGl9//TWaNWuGTp066V0/Y8YMrFu3DlFRURg4cCBeeeUVLFq0qMRzzZ49G+7u7rrNz8+v3HFZFbW8sVcvwNHR+I/HMkciIiIislDSm4TI9ODBA6xatarI0bMpU6agc+fOaNu2LSZNmoS3334b8+bNK/F87777LlJSUnTblStXjBW6ZTHV/DOV2ihk1y4gN9c0j0lEREREZADSEjRPT0/Y2toiKSlJ7/qkpCR4e3sXeR9vb+8yHf8wGzZswP379xEZGfnQY4ODg/HPP/8gMzOz2GMcHBzg5uamt1V6d+8CagmqqRK09u0Bd3fx2LGxpnlMIiIiIiIDkJag2dvbo127doiOjtZdp9VqER0djRB1DlEBISEhescDQFRUVLHHP8zXX3+Nxx9/HDVr1nzosXFxcahWrRocHBzK9ViVVlSUGMVq3hyoX980j2lnB/Tokff4REREREQWwk7mg0+cOBEjR45E+/btERQUhIULFyI9PR2jRo0CAERGRqJ27dqYPXs2AGDChAkIDQ3FggUL0L9/f6xZswZHjx7FF198oTvnnTt3kJCQgGvXrgEAzp07B0CMvuUfabtw4QL27dtXaB01APj555+RlJSEjh07wtHREVFRUZg1axbefPNNo70WVkt9ffv1M+3jPvoosHmzmIf2/vumfWwiIiIionKSmqANHjwYN2/exNSpU5GYmIjAwEBs27ZN1wgkISEBNjZ5g3ydOnXCqlWrMHnyZLz33nsICAjA5s2b0bJlS90xP/30ky7BA4AhQ4YAAKZNm4bp06frrv/mm29Qp04d9C6i5XuVKlXw6aef4vXXX4eiKGjUqBH+97//4cUXXzT0S2DdtFpg61axLyNBA4ADB4D0dMDZ2bSPT0RERERUDlLXQbN2lX4dtKNHgQ4dROv727cBe3vTPbaiiJLKhAQximeq+W9EREREREUw+3XQqBJQR88efdS0yRkAaDR5o2hst09EREREFoIJGhmPrPlnKjVBY6MQIiIiIrIQTNDIOG7dAg4dEvuyygt79hSXJ08CFVjMnIiIiIjIVJigkXFs3y7mgbVpA9SuLSeGmjWBtm3FfoHlGYiIiIiIzBETNDIOtbxRdnMOljkSERERkQVhgkaGl5srRtAAefPPVPkTNDYsJSIiIiIzxwSNDO/IEdFW390dCAmRG0vnzoCDA3DtGnD2rNxYiIiIiIgeggkaGZ5a3hgeDthJXQsdcHICunYV+yxzJCIiIiIzxwSNDE92e/2COA+NiIiIiCwEEzQyrMREIDZW7PfpIzcWVViYuNyzB8jOlhoKEREREVFJmKCRYanNQdq1A7y85MaiCgwEPD2BtLS8tdmIiIiIiMwQEzQyLHMrbwQAGxugVy+xzzJHIiIiIjJjTNDIcHJyzKe9fkFqmePOnXLjICIiIiIqARM0MpyYGCAlBahRA+jQQXY0+tRGIYcOiRiJiIiIiMwQEzQynK1bxWV4OGBrKzeWgurVAwICxCLae/bIjoaIiIiIqEhM0MhwzHH+WX5qmSPnoRERERGRmWKCRoZx9Srwxx+ARiNG0MyRWubIeWhEREREZKaYoJFhqOWNwcGipb056tFDdHQ8dw64ckV2NEREREREhTBBI8NQyxv79pUbR0k8PPKal7DMkYiIiIjMEBM0qrisrLyyQXOdf6ZimSMRERERmTEmaFRxBw4A9+4BtWoBjzwiO5qS5U/QtFq5sRARERERFcAEjSouf3mjjZm/pTp2BJydgZs3gRMnZEdDRERERKTHzD9Nk0Uw9/b6+dnbA6GhYp9ljkRERERkZpigUcVcvgycPi1GztTyQXOnxslGIURERERkZpigUcWo7fU7dQKqVZMbS2mpCdq+fUBGhtxYiIiIiIjyYYJGFWNJ5Y2q5s0BHx+RnB08KDsaIiIiIiIdJmhUfhkZQHS02LekBE2jAcLCxD7LHImIiIjIjDBBo/Lbtw+4fx/w9QVat5YdTdlwHhoRERERmSEmaFR++dvrazRyYymrXr3E5bFjwO3bcmMhIiIiIvoXEzQqP7VBiCWVN6p8fYEWLQBFAXbtkh0NEREREREAJmhUXhcuAH/9BdjZ5c3nsjQscyQiIiIiM8MEjcpHHT3r2hVwc5MbS3mpiSUXrCYiIiIiM8EEjcrHEtvrFxQaClSpAsTHAxcvyo6GiIiIiIgJGpXD/fvA7t1iv29fubFUhIsLEBIi9lnmSERERERmgAkald2ePUBmJlC3rlj02ZKxzJGIiIiIzIj0BO3TTz9F/fr14ejoiODgYBw+fLjE49evX4+mTZvC0dERrVq1wq9qqd2/Nm7ciN69e6NGjRrQaDSIi4srdI7u3btDo9Hobf/5z3/0jklISED//v1RtWpV1KpVC2+99RZycnIq/HytQv7yRktrr1+Q2ihk1y4gN1duLERERERU6UlN0NauXYuJEydi2rRpOHbsGNq0aYPw8HDcuHGjyOMPHjyIoUOHYvTo0Th+/DgiIiIQERGBU6dO6Y5JT09Hly5dMGfOnBIf+8UXX8T169d129y5c3W35ebmon///sjKysLBgwfx7bffYvny5Zg6daphnrglUxTgl1/EviXPP1O1bw+4uwN37wKxsbKjISIiIqJKTqMoiiLrwYODg9GhQwcsXrwYAKDVauHn54fx48fjnXfeKXT84MGDkZ6eji1btuiu69ixIwIDA7F06VK9Yy9dugR/f38cP34cgYGBerd1794dgYGBWLhwYZFxbd26FY899hiuXbsGLy8vAMDSpUsxadIk3Lx5E/b29qV6fqmpqXB3d0dKSgrcLLXTYUFnzwLNmgH29sCdO4Czs+yIKu7JJ4HNm4H//hd4/33Z0RARERGRFSptbiBtBC0rKwuxsbEIy7eGlo2NDcLCwhATE1PkfWJiYvSOB4Dw8PBijy/JypUr4enpiZYtW+Ldd9/F/fv39R6nVatWuuRMfZzU1FT8+eefxZ4zMzMTqampepvVUdvrh4ZaR3IG5JU5ch4aEREREUlmJ+uBb926hdzcXL0kCAC8vLxw9uzZIu+TmJhY5PGJiYlleuxnn30W9erVg6+vL06cOIFJkybh3Llz2LhxY4mPo95WnNmzZ+ODDz4oUywWxxra6xekJmgHDgDp6daTeBIRERGRxZGWoMk0ZswY3X6rVq3g4+ODXr164eLFi2jYsGG5z/vuu+9i4sSJup9TU1Ph5+dXoVjNSloasHev2LemBK1RI9GRMiEB2LfPspcOICIiIiKLJq3E0dPTE7a2tkhKStK7PikpCd7e3kXex9vbu0zHl1ZwcDAA4MKFCyU+jnpbcRwcHODm5qa3WZXoaCA7G2jYEAgIkB2N4Wg0LHMkIiIiIrMgLUGzt7dHu3btEB0drbtOq9UiOjoaIeriwQWEhIToHQ8AUVFRxR5fWmorfh8fH93jnDx5Uq+bZFRUFNzc3NDc0tf9qgi1vLFvX8tvr1+QmqBxwWoiIiIikkhqiePEiRMxcuRItG/fHkFBQVi4cCHS09MxatQoAEBkZCRq166N2bNnAwAmTJiA0NBQLFiwAP3798eaNWtw9OhRfPHFF7pz3rlzBwkJCbh27RoA4Ny5cwDEyJe3tzcuXryIVatWoV+/fqhRowZOnDiB119/Hd26dUPr1q0BAL1790bz5s0xYsQIzJ07F4mJiZg8eTLGjh0LBwcHU75E5kNR8hqEWFN5o6pnT3F58iSQmAhUcFSWiIiIiKg8pK6DNnjwYMyfPx9Tp05FYGAg4uLisG3bNl1DjoSEBFy/fl13fKdOnbBq1Sp88cUXaNOmDTZs2IDNmzejZcuWumN++ukntG3bFv379wcADBkyBG3bttW14be3t8fOnTvRu3dvNG3aFG+88QYGDhyIn3/+WXcOW1tbbNmyBba2tggJCcHw4cMRGRmJGTNmmOJlMU9//glcuQI4OgLdu8uOxvBq1gTathX7BUZpiYiIiIhMReo6aNbOqtZBmzsXmDRJjJ6pC1Vbm0mTxPMcORJYvlx2NERERERkRcx+HTSyMNbYXr+g/PPQ+L0FEREREUnABI0eLiUF+O03sW/NLeg7dwYcHIBr14Bi1uIjIiIiIjImJmj0cDt3Arm5QJMmQIMGsqMxHicnoGtXsc9ujkREREQkARM0erjKUN6oYrt9IiIiIpKICRqVTFEqV4IWFiYu9+wRi3ITEREREZkQEzQqWVycWBfM2Tmv/M+aBQYCnp5AWhpw6JDsaIiIiIiokmGCRiVTR8969RINNKydjY14rgDLHImIiIjI5JigUcm2bhWXlaG8UaWWOe7cKTcOIiIiIqp0mKBR8e7cAWJixL41t9cvSG0UcuiQWGKAiIiIiMhEmKBR8XbsALRaoGVLoG5d2dGYTr16QECAWFpgzx7Z0RARERFRJcIEjYpXmbo3FsQyRyIiIiKSgAkaFU2rBbZtE/uVqbxRxfXQiIiIiEgCJmhUtNhY4OZNwNUV6NxZdjSm16OH6Oh47hxw5YrsaIiIiIiokmCCRkVTyxt79waqVJEbiwweHkCHDmKfo2hEREREZCJM0KholXn+mUotc+Q8NCIiIiIyESZoVNjNm8CRI2K/Tx+5sciUP0HTauXGQkREhnXqlNiIiMwMEzQqbPt2QFGAwEDA11d2NPJ07Ag4O4uE9cQJ2dEQEZGh3Lwpfsd37AjcuiU7GiIiPUzQqDCWNwr29kBoqNhnmSMRkfVYvRpITxfb2rWyoyEi0sMEjfTl5ua116/sCRrAdvtERNbou+/y9r//Xl4cRERFYIJG+g4dAu7eBapVA4KDZUcjn7pg9b59QEaG3FiIiKji/vxTLCVjZwfY2oq/e3/9JTsqIiIdJmikTy1vDA8Xf7wquxYtAB8fkZwdPCg7GiIiqqhvvxWX/fvnVUmsWCEvHiKiApigkb6tW8Vl375y4zAXGk3eKBrLHImILFtOTl4yNnIkMGKE2F+xQjTHIiIyA0zQKM/168CxY2K/MrfXL4jz0IiIrEN0tPhbV726mGcdEQG4uADx8cCBA7KjIyICwASN8lObg3ToANSqJTcWc9Krl7g8dgy4fVtuLEREVH5qeePQoYCDA1C1KjBwoLiOZY5EZCaYoFEettcvmq+vmIumKMCuXbKjISKi8khJATZtEvsjR+Zdr5Y5rlsHZGaaPi4iogKYoJGQnQ3s2CH2Of+sMJY5EhFZtvXrRcOnZs2A9u3zru/eHahdW3Qw/uUXaeEREamYoJEQEwOkpgKenvp/uEhQG4VwwWoiIsukljdGRooGUCpbW2DYMLHPNdGIyAwwQSNBLW/s00f8sSJ9oaFAlSpiIvnFi7KjISKisrh4EfjtN5GYDR9e+Ha1zPGXXzjXmIikY4JGAueflczFBQgJEfsscyQisizqyFhYGFCnTuHbW7YEAgNFuf+6dSYNjYioICZoBFy5Apw8CdjYAL17y47GfLHMkYjI8mi1wHffif38zUEKUkfRWOZIRJIxQaO89vrBwUCNGnJjMWdqo5Bdu4DcXLmxEBFR6fz2myhPd3EBnnyy+OOGDhVfVMbEABcumC4+IqICmKARyxtLq317wN1ddPqKjZUdDRERlYY6evbMM2Lds+L4+OR9Ecc10YhIIiZolV1mZl7JHhO0ktnZAT16iH2WORIRmb/79/PmlJVU3qhSyxxXrBBrXxIRScAErbL77TcgLQ3w9hYTpKlkXA+NiMhybN4M3LsH1K8PdO368OMjIgBnZ9H1MSbGyMERERWNCVplp5Y39u0rau+pZGqCduAAkJ4uNxYiIipZ/rXPSvM3ztkZGDhQ7LNZCBFJIv0T+aeffor69evD0dERwcHBOHz4cInHr1+/Hk2bNoWjoyNatWqFX9UE418bN25E7969UaNGDWg0GsTFxendfufOHYwfPx5NmjSBk5MT6tati1dffRUpKSl6x2k0mkLbmjVrDPKczcrWreKyb1+5cViKRo2AunVFK+Z9+2RHQ0RExbl6Na8cXS1dLA11nbS1a8U0ACIiE5OaoK1duxYTJ07EtGnTcOzYMbRp0wbh4eG4ceNGkccfPHgQQ4cOxejRo3H8+HFEREQgIiICp06d0h2Tnp6OLl26YM6cOUWe49q1a7h27Rrmz5+PU6dOYfny5di2bRtGjx5d6Nhly5bh+vXrui0iIsIgz9tsxMcDZ86IhanVkSEqmUaT91pxHhoRkflauVK02O/cWXy5Vlo9ewK+vqIhVIEvgYmITEGjKPJmwQYHB6NDhw5YvHgxAECr1cLPzw/jx4/HO++8U+j4wYMHIz09HVu2bNFd17FjRwQGBmLp0qV6x166dAn+/v44fvw4Ah8yt2r9+vUYPnw40tPTYWdnB0CMoG3atKlCSVlqairc3d2RkpICNze3cp/HaD77DBg7FujWDdi7V3Y0lmPtWmDIEKBVK+DECdnREBFRQYoiFp8+fRr44gvgxRfLdv+33gLmzxdt+TduNE6MRFTplDY3kDaClpWVhdjYWISpi/8CsLGxQVhYGGKKmZgbExOjdzwAhIeHF3t8aakvkpqcqcaOHQtPT08EBQXhm2++wcNy2czMTKSmpuptZo3t9cunZ09xefIkkJgoNxYiIiosNlYkZ46OwKBBZb+/WhK5ZQtw545hYyMieghpCdqtW7eQm5sLLy8vveu9vLyQWMyH3sTExDIdX9o4Zs6ciTFjxuhdP2PGDKxbtw5RUVEYOHAgXnnlFSxatKjEc82ePRvu7u66zc/Pr9xxGV1GhlhwGWCCVlY1awJt24r96Gi5sRARUWFqc5CICLF+ZVm1bi227Oy8Nv1ERCYivUmITKmpqejfvz+aN2+O6dOn6902ZcoUdO7cGW3btsWkSZPw9ttvY968eSWe791330VKSopuu3LlihGjr6C9e4EHD4DatUUZCJUN2+0TEZmnrCxg9WqxHxlZ/vOoo2js5khEJiYtQfP09IStrS2SkpL0rk9KSoK3t3eR9/H29i7T8SW5d+8e+vTpA1dXV2zatAlVqlQp8fjg4GD8888/yCyho5ODgwPc3Nz0NrOVv7xRo5EbiyVSS22joriYKRGROfn1V+D2bbG+Z0UaYD37rGjNf/CgWBeNiMhEpCVo9vb2aNeuHaLzlYhptVpER0cjJCSkyPuEhIToHQ8AUVFRxR5fnNTUVPTu3Rv29vb46aef4Ojo+ND7xMXFoVq1anBwcCjTY5ktzj+rmC5dAAcH4No14OxZ2dEQEZFKLW8cPhwoMLe8THx9gV69xP7KlRWPi4iolCrwm6viJk6ciJEjR6J9+/YICgrCwoULkZ6ejlGjRgEAIiMjUbt2bcyePRsAMGHCBISGhmLBggXo378/1qxZg6NHj+KLL77QnfPOnTtISEjAtWvXAADnzp0DIEbfvL29dcnZ/fv3sWLFCr1mHjVr1oStrS1+/vlnJCUloWPHjnB0dERUVBRmzZqFN99805Qvj/GcPw9cuABUqZL3x4fKxskJ6NpVtNqPigKaNZMdERER3boF/PKL2B85suLnGzFC/I7//ntgyhRWnBCRSUhN0AYPHoybN29i6tSpSExMRGBgILZt26ZrBJKQkAAbm7xBvk6dOmHVqlWYPHky3nvvPQQEBGDz5s1omW8O1U8//aRL8ABgyJAhAIBp06Zh+vTpOHbsGA4dOgQAaFRgXZT4+HjUr18fVapUwaefforXX38diqKgUaNG+N///ocXy9qm11ypo2fdugGurnJjsWSPPpqXoL36quxoiIhozRrR2KNtW8PMr37ySaBqVfGl5qFDQMeOFT8nEdFDSF0HzdqZ7TpoffoA27eLNV7eeEN2NJbr2DGgXTvAxUW0YX7IPEYiIjKyDh2Ao0eBhQuBCRMMc84RI4AVK4BXXgE+/dQw5ySiSsns10EjSdLTgT17xD7nn1VMYCDg6QmkpYlvVomISJ7Tp0VyZmcnGnwYitrNcc0a0SGSiMjImKBVNrt3A5mZQP36QNOmsqOxbDY2eXP42G6fiEgutTlIv35ivUpD6dUL8PERlRJbtxruvERExWCCVtmwvb5hqe32d+6UGwcRUWWWmyvKEIGKrX1WFFvbvBE5rolGRCbABK0yUZS8b//69pUbi7VQ19g5dAhISZEbCxFRZRUdLZY9qVYNeOwxw59fLXP8+Wfg7l3Dn5+IKB8maJXJ2bPApUti/a4ePWRHYx3q1QMCAsS3t+rcPiIiMi21vHHoUPE3ztDatAFatRJz0NavN/z5iYjyYYJWmajljd27A87OUkOxKixzJCKSJzUV2LRJ7Bti7bPiqKNoLHMkIiNjglaZ5J9/RoajljmyUQgRkemtXw88eCAaX3XoYLzHefZZMXf7t9+A+HjjPQ4RVXpM0CqLe/eA/fvFPhM0w+rRQ3R0PHcOuHJFdjRERJXLd9+Jy8hI4za/ql07r3Ov2pCEiMgImKBVFtHRQHY20KiR2MhwPDzyvrVlmSMRkenExwP79onETC1BNKb8ZY6KYvzHI6JKiQlaZcHyRuNimSMRkempo2e9egF16hj/8Z58EnByAs6fBw4fNv7jEVGlxAStMlAUJmjGpiZoO3cCWq3cWIiIKgNFyUvQjNkcJD9XV5GkAWwWQkRGwwStMjh5Erh6VXzrFxoqOxrr1LGj6Ix58yZw4oTsaIiIrN+BA8DffwMuLnlJkymoZY5r1oi2+0REBsYErTJQR8969QIcHeXGYq3s7fOSX85DIyIyPnXts6efNu3SMWFhgJcXcPs2sG2b6R6XiCoNJmiVwdat4rJvX7lxWDvOQyMiMo0HD4B168S+qcobVXZ2ouU+wDJHIjIKJmjWLjlZlIEATNCMTV2wet8+ICNDbixERNZs82axQHW9ekC3bqZ/fLXM8eefxd9ZIiIDKleCduXKFfzzzz+6nw8fPozXXnsNX3zxhcECIwOJigJyc4FmzQB/f9nRWLcWLQAfH5GcHTwoOxoiIuulljeOGCHWoTS1wEDxOz8zE9iwwfSPT0RWrVy/1Z599lns3r0bAJCYmIhHH30Uhw8fxvvvv48ZM2YYNECqIHZvNB2NJm8UjWWORETGce1a3u/YyEg5MeRfd41ljkRkYOVK0E6dOoWgoCAAwLp169CyZUscPHgQK1euxPLlyw0ZH1WEVps3/4wJmmkwQSMiMq6VK8Xft06dgIAAeXEMGyYStX37gEuX5MVBRFanXAladnY2HBwcAAA7d+7E448/DgBo2rQprl+/brjoqGLi4oCkJNGCuEsX2dFUDmqCduyY6PBFRESGoyh55Y2mbg5SUJ06QI8eYn/lSrmxEJFVKVeC1qJFCyxduhT79+9HVFQU+vTpAwC4du0aatSoYdAAqQLU8sawMNEGnozP11fMS1AUYNcu2dEQEVmXY8eAP/8EHByAQYNkR6Nf5qgocmMhIqtRrgRtzpw5+Pzzz9G9e3cMHToUbdq0AQD89NNPutJHMgOcfyYH2+0TERnHd9+JyyeeADw8pIYCABg4EHByAs6dA44elR0NEVkJjaKU7yuf3NxcpKamolq1arrrLl26hKpVq6JWrVoGC9CSpaamwt3dHSkpKXBzczPtg9++DdSsKb7Ru3JFlGKQafzyC/DYY6Jr5t9/y46GiMg6ZGUBtWsDt26J37Pm8uXjs88Cq1cD48cDn3wiOxoiMmOlzQ3KNYL24MEDZGZm6pKzy5cvY+HChTh37hyTM3OxY4dIzlq3ZnJmaqGhQJUqQHw8cPGi7GiIiKzD1q0iOfP2Bnr3lh1NHrXMcc0aIDtbbixEZBXKlaA98cQT+O7fMoPk5GQEBwdjwYIFiIiIwJIlSwwaIJWTWt7IxalNz8UFCAkR+yxzJCIyDLU5yLBhgJ2d3Fjye/RRwMsLuHkT2L5ddjREZAXKlaAdO3YMXbt2BQBs2LABXl5euHz5Mr777jt8wuF9+XJzgW3bxL65lIBUNmo3x5075cZBRGQNbt8GtmwR+7LWPiuOnR0wdKjY55poRGQA5UrQ7t+/D1dXVwDAjh078NRTT8HGxgYdO3bE5cuXDRoglcPRo6IMxN09bySHTEttFLJrl0iYiYio/NTywcBAUbpvbtQyxx9/BFJS5MZCRBavXAlao0aNsHnzZly5cgXbt29H739rwW/cuGH6ZhhUmFre2Lu3mAtFpte+vUiQ794FYmNlR0NEZNnMZe2z4rRtCzRvDmRmAhs2yI6GiCxcuRK0qVOn4s0330T9+vURFBSEkH9HaXbs2IG2bdsaNEAqh61bxSXLG+Wxs8tbwJRljkRE5XfmDHDkiPi9+uyzsqMpmkajvyYaEVEFlCtBe/rpp5GQkICjR49ie74Jsb169cJHH31ksOCoHJKSxB8yAPh3AXGShOuhERFVnDp61rcvYM6dotXkce9egNM9iKgCypWgAYC3tzfatm2La9eu4Z9//gEABAUFoWnTpgYLjspBTZgfeUS0IiZ51ATtwAEgPV1uLERElig3F1ixQuybW3OQgurWBbp3F/srV0oNhYgsW7kSNK1WixkzZsDd3R316tVDvXr14OHhgZkzZ0Kr1Ro6RioLdf4Zyxvla9RI/MHOzgb275cdDRGR5dm1C7h6FahWDRgwQHY0D5e/zFFR5MZCRBarXAna+++/j8WLF+PDDz/E8ePHcfz4ccyaNQuLFi3ClClTDB0jlVZOTt4IGhM0+TQaljkSEVWEWt44ZAjg4CA3ltJ4+mnA0RE4e5YNooio3MqVoH377bf46quv8PLLL6N169Zo3bo1XnnlFXz55ZdYvny5gUOkUjt0CEhOBqpXB4KCZEdDABM0IqLySk0FNm4U++bavbEgNzfgiSfEPpuFEFE5lStBu3PnTpFzzZo2bYo7d+5UOCgqJ7W8MTwcsLWVGwsJPXuKy5MngcREubEQEVmSH34AHjwAGje2rC8d1TLH1atFiTsRURmVK0Fr06YNFi9eXOj6xYsXo7U5LiBZWXD+mfmpWVOsjwMA0dFyYyEisiT51z7TaOTGUha9e4vf/TdvsnqCiMqlXAna3Llz8c0336B58+YYPXo0Ro8ejebNm2P58uWYP39+mc716aefon79+nB0dERwcDAOHz5c4vHr169H06ZN4ejoiFatWuFXNSn518aNG9G7d2/UqFEDGo0GcXFxhc6RkZGBsWPHokaNGnBxccHAgQORlJSkd0xCQgL69++PqlWrolatWnjrrbeQk5NTpudmUlevAnFx4o9YeLjsaCg/ljkSEZVNfLxoV59/fTFLUaUKMHSo2GeZIxGVQ7kStNDQUPz111948sknkZycjOTkZDz11FP4888/8X0ZfhmtXbsWEydOxLRp03Ds2DG0adMG4eHhuHHjRpHHHzx4EEOHDsXo0aNx/PhxREREICIiAqdOndIdk56eji5dumDOnDnFPu7rr7+On3/+GevXr8fevXtx7do1PPXUU7rbc3Nz0b9/f2RlZeHgwYP49ttvsXz5ckydOrXUz83ktm0Tl0FB4ps7Mh9hYeIyKopdvYiISkP9LNGzJ+DnJzeW8lCTys2bxVw6IqKyUAwoLi5OsbGxKfXxQUFBytixY3U/5+bmKr6+vsrs2bOLPH7QoEFK//799a4LDg5WXnrppULHxsfHKwCU48eP612fnJysVKlSRVm/fr3uujNnzigAlJiYGEVRFOXXX39VbGxslMTERN0xS5YsUdzc3JTMzMxSP7+UlBQFgJKSklLq+5TbwIGKAijK9OnGfywqm/v3FcXBQfz7nD4tOxoiIvOm1SpKw4bid+a338qOpny0WkVp2lQ8h2++kR0NEZmJ0uYG5V6ouqKysrIQGxuLMHV0AYCNjQ3CwsIQExNT5H1iYmL0jgeA8PDwYo8vSmxsLLKzs/XO07RpU9StW1d3npiYGLRq1QpeXl56j5Oamoo///yz2HNnZmYiNTVVbzOJ7Gxgxw6xz/ln5sfJCejaVeyzzJGIqGQHDwIXLwLOzkC+6haLkr80k2WORFRG0hK0W7duITc3Vy8JAgAvLy8kFtPtLjExsUzHF3cOe3t7eHh4FHue4h5Hva04s2fPhru7u27zM1VZxoEDwL17orSxXTvTPCaVTf4yRyIiKp7aHOTppwEXF7mxVMSwYeJyzx7gyhWpoRCRZZGWoFmjd999FykpKbrtiql+IauNUvr2BWz4T2qW1EYhe/aw7TIRUXEePADWrhX7lrL2WXHq1QNCQ8Xc45UrZUdDRBbEriwHP/WQUoPk5ORSn8vT0xO2traFuicmJSXB29u7yPt4e3uX6fjizpGVlYXk5GS9UbT85/H29i7UTVJ93JIey8HBAQ4ODqWOxWDYXt/8BQYCnp7ArVtiQfEuXWRHRERkfn78UTTVqFtXJDeWbsQI0Y3y+++BSZMsa7kAIpKmTMMt+cv3itrq1auHyMjIUp3L3t4e7dq1Q3S+taG0Wi2io6MREhJS5H1CQkL0jgeAqKioYo8vSrt27VClShW985w7dw4JCQm684SEhODkyZN63SSjoqLg5uaG5s2bl/qxTCIhAfjzTzFypo7SkPmxsQF69RL7LHMkIirad9+JyxEjrKMi5OmnAUdH4PRp4Phx2dEQkYUo0wjasmXLDPrgEydOxMiRI9G+fXsEBQVh4cKFSE9Px6hRowAAkZGRqF27NmbPng0AmDBhAkJDQ7FgwQL0798fa9aswdGjR/HFF1/oznnnzh0kJCTg2rVrAETyBYiRL29vb7i7u2P06NGYOHEiqlevDjc3N4wfPx4hISHo2LEjAKB3795o3rw5RowYgblz5yIxMRGTJ0/G2LFj5YyQlWTrVnEZEgJUry43FipZWJgo3dm5E/jgA9nREBGZl+vXge3bxX4pv+w1e+7uwOOPA+vWiVG0Rx6RHRERWQCpX08NHjwY8+fPx9SpUxEYGIi4uDhs27ZN15AjISEB169f1x3fqVMnrFq1Cl988QXatGmDDRs2YPPmzWjZsqXumJ9++glt27ZF//79AQBDhgxB27ZtsXTpUt0xH330ER577DEMHDgQ3bp1g7e3NzZu3Ki73dbWFlu2bIGtrS1CQkIwfPhwREZGYsaMGcZ+ScqO5Y2WQx3hPHQISEmRGwsRkblZuRLQasUXjo0by47GcNRujqtXAzk5cmMhIougURSunGssqampcHd3R0pKCtzc3Az/AJmZQI0aQHq6KJ0IDDT8Y5BhNW4MnD8vFi994gnZ0RARmQdFAVq3Bk6dApYuBV56SXZEhpOdDdSuDdy8Kb5U7dtXdkREJElpcwMrKPCuxPbvF8mZjw/Qpo3saKg01Hb7O3fKjYOIyJzExYnkzMEBGDRIdjSGVaUKMGSI2OeaaERUCkzQLFn+9vrsDGUZ1DJHNgohIsqjrn32+ONAtWpyYzEGtcxx82axbikRUQmYoFkyzj+zPD16iM5k585x4VIiIkCUAK5aJfYtfe2z4rRvL0rcHzwAfvhBdjREZOaYoFmqixfFh3w7u7yyOTJ/Hh5Ahw5in2WORESiG/HNm0CtWkB4uOxojEOjyRtFY5kjET0EEzRLpbbX79JFtPEly8EyRyKiPOraZ8OGiS8drdXw4eJy927gn3/kxkJEZo0JmqVSEzSWN1oeNUHbuVO0lCYiqqzu3AF+/lnsW2t5o6p+faBrV9GxUi3pJCIqAhM0S/TgAbBrl9hnu17L07Ej4OwsSnpOnpQdDRGRPGvWAFlZohNxZehGnL/MkascEVExmKBZoj17gIwMwM8PaNFCdjRUVvb2QGio2GeZIxFVZmr3RmsfPVM984xYSuDUKeCPP2RHQ0RmigmaJcrfvZHt9S0T56ERUWV39ixw+DBgaws8+6zsaEzDwwMYMEDss1kIERWDCZqlURS217cGaufNffvEaCgRUWWjNgfp0wfw8pIbiympZY6rVgE5OXJjISKzxATN0pw/D/z9tyiT69lTdjRUXi1aAD4+Ijk7eFB2NEREppWbmzeCVFnKG1V9+gA1agCJiUB0tOxoiMgMMUGzNOroWbdugIuL3Fio/DSavFE0ljkSUWWjtprPX/JXWdjbA0OGiH2WORJREZigWRqWN1oPJmhEVFmpzUGGDAEcHeXGIoNa5rhpE5CWJjcWIjI7TNAsSVoasHev2GeCZvnUBO3YMeD2bbmxEBGZyr17wMaNYj8yUm4ssgQFAQEBwP37ea8FEdG/mKBZkl27xHoxDRoAjRvLjoYqytdXzEVTlLx17YiIrN0PP4jEJCBArAtZGWk0+muiERHlwwTNkmzdKi779mV7fWvBMkciqmzyr31Wmf+WDR8uLqOjgatX5cZCRGaFCZqlYHt966Suh7Zzp9w4iIhM4dIlYM8esa+OIFVW/v5Aly7i7/uqVbKjISIzwgTNUpw+DSQkiMnU3bvLjoYMJTQUqFIFiI8HLl6UHQ0RkXGtWCEue/QA6taVG4s5YJkjERWBCZoJ/PCDAU6ijp716AFUrWqAE5JZcHEBQkLEPssciciaKUre4tSVbe2z4jzzjGi7f/Ik8McfsqMhIjPBBM0EXnnFAL931flnLG+0Puo8NJY5EpE1i4kBzp8HnJ2BgQNlR2MeqlXLWweOo2hE9C8maCaQkQFERAC3bpXzBKmpwP79Yr9vX0OFReZCnYe2axeQmys3FiIiY1GbgwwcKKoHSFDLHFet4t8AIgLABM0k/P3FvOjBg4GcnHKcYOdOccfGjYGGDQ0dHsnWvj3g7g7cvQvExsqOhojI8B48ANauFfssb9TXty9QvTpw/bro6EhElR4TNBNYvVpUdOzaBbz1VjlOwO6N1s3OTswtBFjmSETW6eefgZQUwM+Pja4KsrcX3+ACLHMkIgBM0EyiWbO8edELF+btl4qicP5ZZaCWObJRCBFZI7W8ccQIwIYfPQpRyxw3bgTS0uTGQkTS8bekiTz1FDBlitgfMwY4erSUdzxxArh2TXRu7NbNaPGRZGqCduAAkJ4uNxYiIkNKTAS2bxf7kZFyYzFXHTsCjRoB9+8DmzfLjoaIJGOCZkLTp4tmTZmZwJNPAklJpbiTWt7Yqxfg4GDM8EimRo3EmkDZ2XkNYYiIrMHKlaL5RceOQJMmsqMxTxoNMHy42GeZI1GlxwTNhGxsxBqdTZsC//wDPP00kJX1kDtx/lnloNGwzJGIrJNa18/Rs5KpCdrOnaJhCBFVWkzQTMzNTVQvuLkBv/0GvPZaCQffvQscPCj22V7f+jFBIyJrExcnSvXzN8KgojVsCHTqBGi1ouU+EVVaTNAkaNJE/O7VaIAlS4AvvyzmwB07xC/qFi2AevVMGiNJ0LOnuDx5UszZICKydGpzkMcfF63kqWRqsxCWORJVakzQJOnfH5g5U+yPHZs3UKaH3Rsrl5o1gbZtxT7XwiEiS5edLeafAVz7rLQGDRKjjX/8Ib6sI6JKiQmaRO+9BwwcKP6GDRwomjXqaLV5CRrLGysPljkSkbXYvh24eROoVQsID5cdjWWoXl18gwtwFI2oEmOCJpFGAyxfDrRsKSrannpKdHgEABw7Bty4Abi6Ap07ywyTTCksTFxGRYk18IiILJVa3vjss0CVKnJjsSRqmaPa/ZKIKh0maJK5uIimIdWqAYcOAa+88u/ncrV746OPinIHqhy6dBHLKVy7Bpw9KzsaIqLyuXMH+Oknsc/yxrLp1098KLh2Ddi9W3Y0RCQBEzQz0LAhsGaNaMP/zTfAZ5+B7fUrKycnoGtXsc8yRyKyVGvXinVkWrcGAgNlR2NZHBzyOl6yzJGoUmKCZiZ69wbmzBH7MyfcgnL4sPiB888qn/xljkRElkgtb+ToWfmoZY4//ACkp8uNhYhMziwStE8//RT169eHo6MjgoODcVhNToqxfv16NG3aFI6OjmjVqhV+VUeb/qUoCqZOnQofHx84OTkhLCwM58+f192+Z88eaDSaIrcjR44AAC5dulTk7b///rvhX4B/vfEGMHQo0Ct3OzSKgqzmbQBfX6M9HpkptVHInj2igwwRkSU5d07U7NvaivlnVHYhIaK8Jj1dzIMgokpFeoK2du1aTJw4EdOmTcOxY8fQpk0bhIeH48aNG0Uef/DgQQwdOhSjR4/G8ePHERERgYiICJw6dUp3zNy5c/HJJ59g6dKlOHToEJydnREeHo6MjAwAQKdOnXD9+nW97YUXXoC/vz/at2+v93g7d+7UO65du3ZGey00GuCrr4Bh1UTCueJ2Pzx4YLSHI3MVGAjUqAGkpYkPOUREluS778RleDjg7S03Fkul0QDDh4t9ljkSVToaRZHbKi44OBgdOnTA4sWLAQBarRZ+fn4YP3483nnnnULHDx48GOnp6diyZYvuuo4dOyIwMBBLly6Foijw9fXFG2+8gTfffBMAkJKSAi8vLyxfvhxDhgwpdM7s7GzUrl0b48ePx5QpUwCIETR/f38cP34cgeWsn09NTYW7uztSUlLg5uZWujvl5iLXsxZsk++gC/bDf3gXfPed+F1NlcjgwcC6dcDUqcAHH8iOhoiodLRaoH594MoVMQ9t0CDZEVmuCxeAgAAxQf2ffwAfH9kREVEFlTY3kDqClpWVhdjYWISpc24A2NjYICwsDDExMUXeJyYmRu94AAgPD9cdHx8fj8TERL1j3N3dERwcXOw5f/rpJ9y+fRujRo0qdNvjjz+OWrVqoUuXLvhJ7UhVjMzMTKSmpuptZXbkCGyT7yDbxQNHbDpixQrgo4/KfhqycGqZ486dcuMgIiqL3btFcubuDjz+uOxoLFujRqLUUasFVq+WHQ0RmZDUBO3WrVvIzc2Fl5eX3vVeXl5ITEws8j6JiYklHq9eluWcX3/9NcLDw1GnTh3ddS4uLliwYAHWr1+PX375BV26dEFERESJSdrs2bPh7u6u2/z8/Io9tlj/zqer0q835i+0AwC89RY/p1c6aoJ26BCQkiI3FiKi0lLLGwcPBhwd5cZiDdRmISxzJKpUpM9Bk+2ff/7B9u3bMXr0aL3rPT09MXHiRF0J5ocffojhw4dj3rx5xZ7r3XffRUpKim67cuVK2QPK115/3DjguefEl2eDBwN//13205GFqldPlLbk5opmIURE5i4tTXQdBNi90VAGDRKLfMfFAfnm2hORdZOaoHl6esLW1hZJSUl61yclJcG7mInF3t7eJR6vXpb2nMuWLUONGjXweClKMYKDg3HhwoVib3dwcICbm5veViaJiUBsrNjv0wcaDbBkCRAUJNb8jIhgt91KRS3T5fApEVkCtSV8QIAozaOKq1Ejbz1UjqIRVRpSEzR7e3u0a9cO0dHRuuu0Wi2io6MRUswv95CQEL3jASAqKkp3vL+/P7y9vfWOSU1NxaFDhwqdU1EULFu2DJGRkahSpcpD442Li4OPMSfpbtsmLtu3B/4t0XR0BDZuFD+ePAmMGgXIbetCJqOWOXI9NCKyBOraZ5GR7GxlSGqZ48qVoqSGiKyenewAJk6ciJEjR6J9+/YICgrCwoULkZ6ermvYERkZidq1a2P27NkAgAkTJiA0NBQLFixA//79sWbNGhw9ehRffPEFAECj0eC1117Df//7XwQEBMDf3x9TpkyBr68vIiIi9B57165diI+PxwsvvFAorm+//Rb29vZo27YtAGDjxo345ptv8NVXXxnvxdi6VVyq35b9q3Zt8cVkjx7A+vXAI48ARTS4JGvTo4fo3nXunJh0X545jUREpnD5smgQAuQlFGQYjz0GeHgAV6+KkveePWVHRERGJn0O2uDBgzF//nxMnToVgYGBiIuLw7Zt23RNPhISEnD9+nXd8Z06dcKqVavwxRdfoE2bNtiwYQM2b96Mli1b6o55++23MX78eIwZMwYdOnRAWloatm3bBscCE5a//vprdOrUCU2bNi0ytpkzZ6Jdu3YIDg7Gjz/+iLVr1xbZ6dEgcnKA7dvFft++hW7u3Bn4dyUCvPde3lQ1smIeHkCHDmKfZY5EZM5WrBCX3buLObRkOA4OecsVsMyRqFKQvg6aNSvTOmj79wPduol686QkwNa2yMP+8x/g889FB+PDh4HGjY0QOJmPKVOA//4XGDoUWLVKdjRERIUpCtCkCXD+PLBsmehuRYb1229A166Ai4v4jFC1quyIiKgcLGIdNMpHHRLr06fY5AwAPvlEjKalpIimIeVZao0sSP710Dj3gIjM0e+/i+SsalVg4EDZ0Vinzp0Bf3/RKfPHH2VHQ0RGxgTNXORrr18Se3tgwwYxL+3MGTEXm5/brVjHjoCzM3DzpugSQ0RkbtTmIAMHAq6ucmOxVhoNMHy42GeZI5HVY4JmDq5eBU6cEL+Aw8Mferi3N7BpkyhL//FHYOZME8RIctjbA6GhYp/dHInI3GRkAGvXiv3ISLmxWDu1+cqOHaLMkYisFhM0c6B2bwwOFnPQSqFDB2DpUrE/fTqwebNRIiNzwHb7RGSufv4ZSE4G6tQRnWfJeAICxOeE3Fxg9WrZ0RCRETFBMwelLG8s6LnngFdfFfsjRgCnTxs2LDIT6oLV+/eLb6uJiMyFWt44YkSJ86fJQNRRNJY5Elk1JmiyZWXljYyUMUEDgPnzxZeWaWnAE0+ILzLJyrRoAfj4AA8eAAcPyo6GiEhISgK2bRP7LG80jcGDATs74NgxfitLZMWYoMn2228iu/LyAv5dFLssqlQR5f/16gEXLgDPPiuqH8iKaDR5o2gscyQic7FqlfiDExQEFLOeKBmYp2fel7kcRSOyWkzQZFPnn/XtC9iU75+jZk3RNMTJSZxuyhQDxkfmgQkaEZkbtbxx5Ei5cVQ2apnjypVs40xkpZigyabOP+vbt0KnadsW+PprsT97NrBuXQXjIvOiJmjHjgG3b8uNhYjojz/EZm8PDBkiO5rK5bHHAHd34MoVYO9e2dEQkREwQZPp0iVRQ25rm9eprwKGDgXeekvsjxol/naSlfD1FXPRFAXYtUt2NERU2amjZwMGANWry42lsnF0BAYNEvsscySySkzQZFLLGzt1AqpVM8gpZ88GevcG7t8HIiI42GJVWOZIROYgJ0eU1wEsb5RFLXPcsEH8wSciq8IETSY1QStH98bi2NqK5VEaNBADdIMHi7+lZAXUUdadO+XGQUSV2/btwI0bYgJ0nz6yo6mcOncG6tcH7t0DfvpJdjREZGBM0GTJyACio8W+ARM0QFSb/Pgj4OwsHmLSJIOenmQJDRXtlePjgYsXZUdDRJWVWt747LOilTCZno0NMHy42GeZI5HVYYImy759oiyhdm2gVSuDn75lS+C778T+//4HrFhh8IcgU3NxAUJCxD7LHIlIhrt3xTeAAMsbZVMTtO3bxZp0RGQ1mKDJkr97o0ZjlId46ilg8mSx/+KLQGysUR6GTIlljkQk09q1QFaW+GIxMFB2NJVbkyZAhw5iLbo1a2RHQ0QGxARNFjVBM3B5Y0EffCA68mZkiKYh/JLNwqkJ2q5dXJGciExPLc2IjDTal4tUBmqzEJbJEFkVJmgyXLgAnD8vavd79TLqQ9nYiN/bTZoA//wDPPMMkJ1t1IckY2rfXqx/c/cuh0SJyLT++guIiRF/WIYNkx0NAWINOjs74OhR4OxZ2dEQkYEwQZNB7d7YpQvg5mb0h3N3F1MG3NyA/fuB1183+kOSsdjZAT16iH2WORKRKamjZ+HhgI+P3FhIyN9Jk81CiKwGEzQZTFTemF+TJmLZGo0G+PRT4OuvTfbQZGhqmSMbhRCRqWi1eQkAm4OYl/xljlqt3FiIyCCYoJna/fvA7t1i34QJGiDmos2YIfZfeQX4/XeTPjwZipqgHTgApKfLjYWIKoe9e4GEBFGS8fjjsqOh/AYMECUyCQmiTIaILB4TNFPbvRvIzATq1QOaNTP5w7/3nujumJUlLq9dM3kIVFGNGgF164rJhPxjTESmoK59NmgQ4OQkNxbS5+QkJpgDLHMkshJM0ExNnX/Wr5+UDlg2NsDy5UCLFsD168DAgSJfJAui0bDMkYhMJy0N2LBB7LO80TypZY7r1wMPHsiNhYgqjAmaKSkK8MsvYr9vX2lhuLqKpiEeHqLMcexYERpZECZoRGQqGzeKcupGjYBOnWRHQ0Xp2lVUVqSmAj//LDsaIqogJmimdO4ccOkSYG8P9OwpNZSGDcW6ljY2omHI0qVSw6GyUt8/J08CiYlyYyEi68a1z8yfjQ0wfLjYZ5kjkcVjgmZKavfG7t0BZ2epoQCiU/KHH4r9V1/ldCaLUrMm0Lat2I+OlhsLEVmvK1eAXbvEvlpGR+ZJ/ffZtg24eVNuLERUIUzQTElCe/2HefNNsc5lTg7w9NPibzFZCJY5EpGxff+9qIEPDQXq15cdDZWkaVOgfXvxB33NGtnREFEFMEEzlbQ0YN8+sW9GCZpGI0ocAwOBGzeAJ5/k/GKLERYmLnfu5CRCIjI8Rcnr3sjmIJZBHUVjmSORRWOCZirR0aItesOGQECA7Gj0VK0KbNoEeHoCsbHAmDH8vG8RunQBHByAq1eBs2dlR0NE1ubQIeCvv0Qb96eflh0NlcaQIYCtLXDkiJj3TkQWiQmaqZhheWN+9esD69aJ3+srVgAffyw7InooJyfRuQtgmSMRGZ7aHOSpp0T7XzJ/tWoBffqIfY6iEVksJmimoChmn6ABQI8ewP/+J/bffJO9JyyCWubIBI2IDCkzM28eE8sbLYta5rhiBaDVyo2FiMqFCZopnDkD/POPGPEIDZUdTYnGjxd/i3NzgUGDgPh42RFRidRGIXv2iBJaIiJD+Pln4O5doHZt6cvCUBk9/jjg5gZcvgz89pvsaIioHJigmcKOHeKyZ0+RpJkxjUasidahA3DnDhARIdYnJTMVGAjUqCGa0Bw6JDsaIrIWanOQESNE7TtZjvxzBlnmSJVJUpLVjBozQTMFNUHr21duHKXk6Ahs3Ah4eQEnTgDPP8+mIWbLxgbo1Uvss8yRiAzhxg1g61axHxkpNxYqH7XMcf16ICNDbixEpnD8uFgf9p13ZEdiEEzQTCEmRlxaSIIGAHXqAD/8AFSpIpqHzJ0rOyIqllrmuHOn3DiIyDqsWiXq3Dt0AJo1kx0NlUe3boCfH5CSAmzZIjsaIuPaulU0Tbt+XeynpcmOqMKYoJmCVisWkGzQQHYkZdK5M7Bokdh/911g2za58VAx1ATt0CHxx5iIqCK49pnls7EBhg0T+yxzJGv2xRfAgAFiPk6vXmLepYuL7KgqzCwStE8//RT169eHo6MjgoODcfjw4RKPX79+PZo2bQpHR0e0atUKv6odEv+lKAqmTp0KHx8fODk5ISwsDOfPn9c7pn79+tBoNHrbhx9+qHfMiRMn0LVrVzg6OsLPzw9zKzKMZMbdG0vy0kt566INHQoUeBnJHNSrJ9bWy80VzUKIiMrrxAkgLk6UTwwZIjsaqgi1zPHXX4Fbt+TGQmRoigK8/774oJqbK75Q+vVXwN1ddmQGIT1BW7t2LSZOnIhp06bh2LFjaNOmDcLDw3Hjxo0ijz948CCGDh2K0aNH4/jx44iIiEBERAROnTqlO2bu3Ln45JNPsHTpUhw6dAjOzs4IDw9HRoE67BkzZuD69eu6bfz48brbUlNT0bt3b9SrVw+xsbGYN28epk+fji+++KJ8T9RCEzQA+OQToFMnIDlZNA25d092RFSI2m6fZY5EVBHq6NmAAaIBEVmu5s2BRx4BcnKAtWtlR0NkOJmZwPDhwKxZ4udp04BlywB7e7lxGZIiWVBQkDJ27Fjdz7m5uYqvr68ye/bsIo8fNGiQ0r9/f73rgoODlZdeeklRFEXRarWKt7e3Mm/ePN3tycnJioODg7J69WrddfXq1VM++uijYuP67LPPlGrVqimZmZm66yZNmqQ0adKk1M8tJSVFAaCkVK2qKBkZpb6fObp2TVF8fRUFUJSICEXJzZUdEenZuFH845Th/UlEpCc7W1G8vMTvks2bZUdDhvDRR+LfMzhYdiREhnHnjqKEhor3tZ2donzzjeyIykSXG6SklHic1BG0rKwsxMbGIkz99h+AjY0NwsLCEKM21iggJiZG73gACA8P1x0fHx+PxMREvWPc3d0RHBxc6JwffvghatSogbZt22LevHnIycnRe5xu3brBPl82Hh4ejnPnzuHu3btFxpaZmYnU1FS9DQDQvTvg4PDwF8SM+fgAmzaJLyc2bwb++1/ZEZGeHj3EnINz54ArV2RHQ0SWaMcO0aba09OimlpRCYYOFcskHDoE/PWX7GiIKubSJdEgYe9ewNVVlDSOGiU7KqOQmqDdunULubm58PLy0rvey8sLiYmJRd4nMTGxxOPVy4ed89VXX8WaNWuwe/duvPTSS5g1axbefvvthz5O/scoaPbs2XB3d9dtfn5+4obevYs83tIEBYk10gAxmvzTT3LjoXw8PETHNYBljkRUPmp547PPWlepUGXm5ZX3GWTFCrmxEFVEbCzQsSNw5gxQu7ZoBqI2SbNC0uegyTJx4kR0794drVu3xn/+8x8sWLAAixYtQmZmZrnP+e677yIlJUW3XVFHMqzoDTRqFKBO1Rs+XPw/ITOhvs+4HhoRldXdu8CPP4p9dm+0LmqzkBUruKgpWaZffhFLRyQlAa1aAb//DrRuLTsqo5KaoHl6esLW1hZJSUl61yclJcHb27vI+3h7e5d4vHpZlnMCQHBwMHJycnDp0qUSHyf/YxTk4OAANzc3vQ2AWFTMiixYAISGimYhTzwhmoeQGci/HppWKzcWIrIs69eLifctWojFXsl6PPGEKAeLjwcOHJAdDVHZfP458PjjwP37oiHa/v1W97m6KFITNHt7e7Rr1w7R0dG667RaLaKjoxESElLkfUJCQvSOB4CoqCjd8f7+/vD29tY7JjU1FYcOHSr2nAAQFxcHGxsb1KpVS/c4+/btQ3Z2tt7jNGnSBNWqVSv7k7UiVaqIv+V164q2+88+KzqckmQdOwLOzsDNm8DJk7KjISJLkn/tM41GbixkWFWrAgMHin2uiUaWQqsVi/D+5z9i/7nnrKqN/kOZqGlJsdasWaM4ODgoy5cvV06fPq2MGTNG8fDwUBITExVFUZQRI0Yo77zzju74AwcOKHZ2dsr8+fOVM2fOKNOmTVOqVKminDx5UnfMhx9+qHh4eCg//vijcuLECeWJJ55Q/P39lQcPHiiKoigHDx5UPvroIyUuLk65ePGismLFCqVmzZpKZGSk7hzJycmKl5eXMmLECOXUqVPKmjVrlKpVqyqff/55qZ9baTu1WKrYWEVxchKNdN57T3Y0pCiKovTrJ/5B8nUxJSIq0V9/id8bNjaiZS9Zn+ho8W/s4aEo/34WIjJbGRmKMmSIeM8CivLBB4qi1cqOyiBKmxtIT9AURVEWLVqk1K1bV7G3t1eCgoKU33//XXdbaGioMnLkSL3j161bpzRu3Fixt7dXWrRoofzyyy96t2u1WmXKlCmKl5eX4uDgoPTq1Us5d+6c7vbY2FglODhYcXd3VxwdHZVmzZops2bNUjIKtML/448/lC5duigODg5K7dq1lQ8//LBMz8vaEzRFUZSVK/P+/6xbJzsa0rVU7t1bdiREZCkmTxa/N/r0kR0JGUturqLUqSP+nTdskB0NUfFu31aUbt3y2ugvXy47IoMqbW6gURTOGDWW1NRUuLu7IyUlJW8+mhV66y1g/nxRRRETY/XzNs3bqVNiAq2TE3DnDuDoKDsiIjJnWi3QoAFw+TKwejUwZIjsiMhY3nkHmDNHzEnbvFl2NESFxccD/foBZ88Cbm7ADz+IeWdWpLS5QaXt4kiGM3u26E9x/z4QESHyApKkRQuxaN2DB8DBg7KjISJzt2+fSM7c3MQHd7JeajfHX38Fbt+WGwtRQUePirn0Z8+KJiC//WZ1yVlZMEGjCrOzA9asEV/CxscDgwcD+db8JlPSaPJ+obHdPhE9jNocZNAgMfJO1kvt0JmdDaxdKzsaojw//yzag9+4AbRpI9rot2olOyqpmKCRQVSvLiomnJ1Fl/d33pEdUSWmJmhcsJqISpKeDmzYIPa59lnloI6isZsjmYvPPhPlV/fvA+HhYlS/dm3ZUUnHBI0MplWrvC9jFywAVq6UG0+lpSZosbEsYyGi4m3cCKSlifKHzp1lR0OmMHQoYGMjRijOn5cdDVVmWi3w9tvA2LFif/RoMZJmxT0byoIJGhnUwIHA+++L/RdeAI4dkxtPpeTrK0pZFAXYtUt2NERkrr77TlxGRnLts8rC2xvo3Vvsr1ghNxaqvDIyxJcF8+aJn2fOBL78Uiy0SwCYoJERfPAB0L+/+P8XESFKisnEOA+NiEpy5QoQHS32IyPlxkKmpZY5rlghvsgjMqXbt0VnuXXrREL23XfA5Mn8kqgAJmhkcLa24vd+48biM8Azz4g5yWRCjz4qLjkPjYiKon4479YN8PeXHQ2ZUkQE4OIC/P23WBuHyFT+/hvo1El0aHR3B7Zty/vCgPQwQSOj8PAQTUNcXcV8z4kTZUdUyYSGivaa8fHAxYuyoyEic6IoeROG2Ryk8qlaFXjqKbHPZiFkKocPizb6f/0F+PkBBw4APXvKjspsMUEjo2nWLK9RyOLFwDffyI2nUnFxAUJCxD7LHIkovyNHgHPnRFv9p5+WHQ3JoI5arF0LZGbKjYWs348/At27AzdviqUefv9dzJWnYjFBI6MaMACYMUPsv/wycOiQ3HgqFZY5ElFR1NGzJ59kx7TKqkcP0VDq7l2xcDWRsSxeLH7XPHgA9OkD7N0r3ntUIiZoZHTvvy/+b2ZliaqK69dlR1RJqAnarl1Abq7cWIjIPGRmAqtXi32WN1ZetrbAsGFin2WOZAxaLfDmm8D48aKs+sUXRRt9V1fZkVkEJmhkdDY24gvb5s2Ba9dEK35WVJhA+/ZiEu7du2JNNCKiLVvE74TatYFevWRHQzKpZY5btgB37siNhazLgwfA4MFiUVwAmDUL+PxzMTeeSoUJGpmEq6soQfbwEE2j1C9UyIjs7EQZC8AyRyIS1LXPhg8XoyhUebVqBbRpI9osr1snOxqyFrduiaV+NmwQbfRXrgTefZdt9MuICRqZTKNGorLGxkasR/j557IjqgTUMkc2CiGimzfz5htx7TMC8kbRWOZIhnDxomijf/Cg+EZ+xw7g2WdlR2WRmKCRSfXpA8yeLfbHjwf275cbj9VTE7QDB4D0dLmxEJFcq1YBOTmi/Ll5c9nRkDl49lnxrenBg1yShSrm999FG/3z54F69cTnju7dZUdlsZigkcm99ZYoTc7JER2e//lHdkRWrFEjoG5dUcLCbJiocuPaZ1SQj48oRwPE4uVE5bFpk5hScesW8MgjIlnjl0AVwgSNTE6jAb7+WpS+37ghOjxmZMiOykppNHmjaJMnA++9J+pLo6KACxdEa00isn4nTwLHj4s5IUOGyI6GzEn+MkdODqey+vhj0f0tIwPo31+00ff2lh2VxWM7FZLC2RnYvFlU2hw9Crz0ErB8OeeQGsWAASIjjo0t3M3RxkZ0c/P3L3rz9RXHEJFlU5uD9O8PeHrKjYXMy5NPij/KFy+KkY+QENkRkSXIzRVt9BcuFD//5z/AokXs1GggGkXh1yXGkpqaCnd3d6SkpMCNi4EWadcuoHdv8f984UJgwgTZEVkhRREjZidPAvHxedulS6IVbkns7UUteVHJW/364oMes2oi85aTA/j5AYmJohQpIkJ2RGRuIiPFCNrLLwOffSY7GjJ3Dx6ITrAbN4qf58wR81f4eeChSpsbMEEzIiZopfPxx8Brr4mOzzt2AD17yo6oklAUIClJP2nLvyUkPHyBaxcXkagVNwLHBSmJ5Nu6FejXD6hRQyxGaW8vOyIyN1FR4tvS6tWB69f5HqHi3bwJPP64GG21txdzW1k2XWpM0MwAE7TSURTguedEBU6NGqLksX592VERcnKAq1eLT+CuXXv4OWrUKD55q1cPcHAw/vMgquyGDAHWrhWtcz/5RHY0ZI5yc0VDqWvXOMpKxTt/HujbV5TDVqsm5qp06yY7KovCBM0MMEErvQcPxP/xo0dF85CDB4GqVWVHRSXKyAAuXy4+gbtz5+Hn8PUtPoGrU4cL6RJVVHKymLCfmSl+wbZrJzsiMldvvQXMnw889RTwww+yoyFzc/CgGDm7fVt8i751K9C0qeyoLA4TNDPABK1srlwRTUNu3BBf+K5axXJmi5aaqj/frWAC97B12ezsxDe6xSVwtWrxDUL0MF9+CYwZI1penzrF/zNUvBMnxDek9vZivmK1arIjInPxww/AsGHii5727YEtWwAvL9lRWaTS5gZstUJmw88P2LBBzEFbswZo2xZ4+23ZUVG5ubmJP/Zt2hS+TVHEeinFjb5dvizWbvv7b7EVpWpV8S1ecXPgPDyM+OSILET+tc+YnFFJWrcW24kTwLp1or0yVW6KIjq4vfGG2B8wAFi9WnT9JKPiCJoRcQStfJYuFY2kNBrg11+BPn1kR0Qml5sr5kIU7Dqp7v/zz8PX6/HwKH70rX59wMnJBE+ESKILF4CAALFUxpUroqSYqCTz54tSxy5dgP37ZUdDMuXmAq+/LlrnA8Arr4g5rJx6UCEscTQDTNDKR1HEF3dffik+Yx85AjRqJDsqMitZWaLLZHEjcDdvPvwc3t76CVv+BM7PTyzoS2TJpk0DZswAwsOBbdtkR0OW4No1Mf9XUUT1gr+/7IhIhvv3gWefBX78Ufw8b54YReMofIUxQTMDTNDKLzMT6NEDiIkRn6PbtRNf/ha11azJL3SogLS0oue9qdelppZ8f1tb8SGl4Mhbw4ZiUjTnZpC502rF+/XSJWDlSvFhi6g0Hn0U2LlTJPdTpsiOhkztxg1Rynj4sOi0/N13wKBBsqOyGkzQzAATtIq5fh0IChLVbCWxtRVJnK8vULt28Ylc9er88ocgvhm+e7f40bdLl8Q3BCXx8gKaNdPfmjcHfHz4JiPzsHcv0L27WIswMZFtcan0vvtOzFkMCADOnePvtMrkr79EG/2//xYfmn78UZS7ksEwQTMDTNAqLjUV+O03UXVR1JaUJL4oLg17++KTN3WrXVt8nuHfo0pMqxUfaItK3i5cKPkbAze3wolbs2Zi9I3DvGRKzz8PLFsGjB4NfPWV7GjIkqSliS+h7t8XixEHB8uOiEzhwAHRRv/OHfE3a+tWoEkT2VFZHSZoZoAJmvHl5IjR+IKJ29Wr+j/fulX6czo7PzyR8/XlF9KV1r17wNmzwJkzedvp02LhzuK+LXBwABo3FqNs+RO3xo25WDcZXnq6KCtISwP27QO6dpUdEVma4cNFaezYscDixbKjIWNbvx4YMUJUjwQFAT//LJayIYNjgmYGmKCZj8xMMShS3EicuiUnl/6c7u6FR98KJnHe3vz8XWlkZgLnz+snbmfOiBKhjIyi72NjAzRooF8m2ayZmOfG3xlUXitXig/Y/v5i1NfGRnZEZGm2bxctlGvUEH8c7e1lR0TGoCjA//4HvPmm+PmJJ8QitPwG2miYoJkBJmiWJz1dzH0rKYm7elVUfpSWp+fDR+O8vMS6zGSFcnPFum6nTxdO3lJSir9f7dpFz3OrWZM1uFSy3r2BqCjRxXH6dNnRkCXKyRHdbBMTxTykxx+XHREZWm4u8NpreSOk48cDH33EcnwjY4JmBpigWSdFEVVuDyurvHZNdIMvDRsbkaQ9LJHz9OSX4VZDUcSHn/xlkup+YmLx96teveh5bnXr8s1BYo5k3bri/XXxohihJSqPN94QoytPPy1K4Mh6pKeLzq4//SS+8FuwQCRr/PLP6JigmQEmaJWbooi5tg8rq7x+XXyRVRp2dqJRYElllb6+Yv04/p61YMnJhUfbzpwRjUqK+5VdtaqY0F1wnlujRlzTrTL58EPg3XfFvLN9+2RHQ5YsLg5o21bU6Scmij8sZPmSkkQb/SNHxL/tihUiCSeTYIJmBpigUWnk5op1lR+WyN24Ufxn84IcHQsnbY0aialNzZqxG7zFevBAzGkrmLj99ReQnV30fezsxD9+wXluTZqIjjhkPRQFaNFCvCe++kp0cCQqL0UBWrcGTp0CvvgCePFF2RFRRZ07J9rox8eL+YU//gh07iw7qkrFohK0Tz/9FPPmzUNiYiLatGmDRYsWISgoqNjj169fjylTpuDSpUsICAjAnDlz0K9fP93tiqJg2rRp+PLLL5GcnIzOnTtjyZIlCAgIAABcunQJM2fOxK5du5CYmAhfX18MHz4c77//Puz/nQh76dIl+Pv7F3rsmJgYdOzYsVTPiwkaGVJ2tvji62FllXfuPPxcbm55yVr+y4YNORfOIuXkiHVrCs5zO3tWdPIrTr16RZdL1qhhutjJcI4cER3YHB3FiIe7u+yIyNLNnQtMmsQRWWuwf79oAnL3rih93rpVdBImkyptbiD9o9jatWsxceJELF26FMHBwVi4cCHCw8Nx7tw51CqixefBgwcxdOhQzJ49G4899hhWrVqFiIgIHDt2DC1btgQAzJ07F5988gm+/fZb+Pv7Y8qUKQgPD8fp06fh6OiIs2fPQqvV4vPPP0ejRo1w6tQpvPjii0hPT8f8+fP1Hm/nzp1o0aKF7uca/OBCklSpAtSpI7aSZGQUbnTyzz9ikOXMGTEtJTUVOHxYbAUfI/9gi5q8NWkCuLgY77lRBdnZiT+0jRsDERF51yuK+Mcvap7brVuiecnly8C2bfrnq1Wr6MStdm0OvZqzb78Vl08+yeSMDOPZZ4F33hEf7i9dAurXlx0RlcfatUBkpJgYHxws2ujXrCk7KiqB9BG04OBgdOjQAYv/7SKj1Wrh5+eH8ePH45133il0/ODBg5Geno4tW7boruvYsSMCAwOxdOlSKIoCX19fvPHGG3jz37ahKSkp8PLywvLlyzFkyJAi45g3bx6WLFmCv//+G0DeCNrx48cRGBhYrufGETQyR5mZovO2OsCiXp49W3J3Sj+/wqNuzZqJz/L8zG6Bbt0qep5bQkLx93F1Ff/4Bee5+ftz6FW2zExRy3znjki4w8NlR0TWIiwMiI4GZs4EJk+WHQ2VhaIA8+aJUVBAfHmzYgXb6EtkESNoWVlZiI2Nxbvvvqu7zsbGBmFhYYiJiSnyPjExMZg4caLedeHh4di8eTMAID4+HomJiQgLC9Pd7u7ujuDgYMTExBSboKWkpKB69eqFrn/88ceRkZGBxo0b4+2338bjJbSazczMRGZmpu7n1NTUYo8lksXBQUxTyTcwDECssZx/sCV/8nbjBnDlitiiovTv5+FRuFRS/czObr1mzNNTlC0VXMQ4La3wQtxnzois/t49UUZ35Ij+feztxehdwXlujRuLcjsyvl9/FcmZj4/4QE1kKCNGiATt+++B99/nN3KWIicHePVVYMkS8fOECaJbI/8wWwSpCdqtW7eQm5sLLy8vveu9vLxw9uzZIu+TmJhY5PGJ/7alVi9LOqagCxcuYNGiRXrljS4uLliwYAE6d+4MGxsb/PDDD4iIiMDmzZuLTdJmz56NDz74oIRnTGS+bGxEd+66dQt/+X7njv5ndnU/Pl40HIyJEVt++T+z50/emjThl3dmzcUFaN9ebPllZRW/EPeDB6KRwKlT+vexsRGZesFSyaZN2RHO0NTyxuHD+QGMDOupp4CXXxZ18uo8RzJv6enAkCHAli0iof7f/0QbfbIYlb4m5erVq+jTpw+eeeYZvJivQ5Gnp6feSF2HDh1w7do1zJs3r9gE7d1339W7T2pqKvz8/IwXPJGJVK8OdOoktvwyMsTf7Pyjbepn9oyMoj+zA3m9KfKXSjZtypJ4s2ZvX/zQ6+XLRc9zS04Wkx4vXhQfFPKrVStv3lz+rWFDjrqV1c2bwC+/iP2RI+XGQtbH1VWUxq1aJUbRmKCZt8RE4LHHgNhY8bt05UqRZJNFkZqgeXp6wtbWFklJSXrXJyUlwdvbu8j7eHt7l3i8epmUlAQfHx+9YwrOJbt27Rp69OiBTp064YsvvnhovMHBwYgqWN+Vj4ODAxwcHB56HiJr4egoujC3bq1/fW6umMpUsFTyzBng9u3ie1PUqFH0PLd69bgGs9lSR8n8/YF83XShKKLtaFHz3NR1I27cAH77Tf98Go34By8qeatbl6NDRVm9WpQztWtXOIEmMoQRI0SCtmaNGI3h2orm6cwZ0Ub/8mVRxv7TT0BIiOyoqBykJmj29vZo164doqOjEfFv5zGtVovo6GiMGzeuyPuEhIQgOjoar+Ubqo2KikLIv29Af39/eHt7Izo6WpeQpaam4tChQ3j55Zd197l69Sp69OiBdu3aYdmyZbApxae/uLg4vaSPiIpma1v0Z3ZAfNlfMGk7e1Y0CLt9GzhwQGz5OTqK0siCyVtAAODkZLKnRWWh0QDe3mLr0UP/tnv3RLnkX3/pb+fOiRajly6JbccO/fvZ24s2o0Ulb5W5W41a3sjRMzKWsDDAy0t86bJtm1jomMzL3r2ii29ysvg9uXWruCSLJL3EceLEiRg5ciTat2+PoKAgLFy4EOnp6Rg1ahQAIDIyErVr18bs2bMBABMmTEBoaCgWLFiA/v37Y82aNTh69KhuBEyj0eC1117Df//7XwQEBOja7Pv6+uqSwKtXr6J79+6oV68e5s+fj5s3b+riUUfgvv32W9jb26Nt27YAgI0bN+Kbb77BV199ZaqXhsgq1awptoK9Ke7fz1sKIH/y9tdfolzyjz/Elp9GkzfFqWDyVkTPHzIXrq7AI4+ILT9FERl8wcTtr79EQpeVJUooT58ufE43t6ITt4AAcZu1OnUKOHZMdNEcOlR2NGSt7OxEy/2PPhJdAJmgmZdVq4BRo8TvyJAQMXLm6Sk7KqoA6Qna4MGDcfPmTUydOhWJiYkIDAzEtm3bdE0+EhIS9Ea3OnXqhFWrVmHy5Ml47733EBAQgM2bN+vWQAOAt99+G+np6RgzZgySk5PRpUsXbNu2DY7/zmuIiorChQsXcOHCBdQpsKhU/lUHZs6cicuXL8POzg5NmzbF2rVr8fTTTxvz5SCqtKpWBQIDxZZfbq5oRlJUk5LkZLE+899/503BUdWsWfQ8Nz8/lkuaLY1GjITVqgV06aJ/W26uaCNa1Kjb5cti5O3oUbEV5O0thmALJm8NGohROUv23Xfisn9/fiAj4xoxQiRoP/4IpKRwrT1zoCjAnDmA2g194EAxT5ClJRZP+jpo1ozroBEZj6KIKUxFzXO7cqX4+1WtKj6rFxx1CwgQSxCQBcrIEI1Iihp5u3Gj+Pup8+eKGnmrU8f8M/mcHDEv7/p1YONG0ciByFgUBWjZUoxgf/UVMHq07Igqt5wcYOxYQO2hMHGiWPPM3H9vVXKlzQ2YoBkREzQiOdLSxMBKweTt/HkgO7vo+9jaigGVgqWS7Ahv4ZKTi57v9tdf4o1SHEdHkbUXlbzVqGEe8922bRMNAWrUEI1XLH00kMzfhx+K0ZrQUGDPHtnRVF5pacDgwWL9Q40GWLhQrHlGZo8JmhlggkZkXrKzRTlkwRG3M2dE34rieHvnjbLVqAFUqybmuOW/VPddXMzjszs9hKKIdtRFJW4XLxafyQPiH7u4+W7OzqZ7Ds8+Kzo4jhsHLFpkuselyuvKFdFlVVFEI5969WRHVPlcvy7a6B87JkoZV60SzUHIIjBBMwNM0Igsg6KIv3lFlUteu1a2c9nZ6SdsRSVxxd3G5b/MRE6O+PBZVPJWUv0sIEoji0re6tc3bGvylBTxzUFGBnD4MNChg+HOTVSSnj2B3buB//s/4L33ZEdTufz5p2iNnJAgJlr//DMQHCw7KioDJmhmgAkakeVLTRXJ2tmzolnJ3bt52507eZd37ogGWhXh5FRyEldcoufhweXBTOb+feDChaKTt9u3i7+fnZ2ooS0qefP1Lfuw61dfAS++KOpw//yTw7ZkOsuWAc8/L8oKTp/me89Udu8W80xTUsRo/datQMOGsqOiMmKCZgaYoBFVHooCPHign7gVTOKKu+3uXUCrrdjju7uXfrQu/zGurvx8ZTC3bxc/3+3Bg+Lv5+xc/Hy3atWKvk/XrmKR7w8/BCZNMs7zISpKaqpYEy0jAzhyBGjfXnZE1m/FCpEUZ2cDnTuLTpo1asiOisqBCZoZYIJGRKWh1Yo5cCUlccVdljR3rjRsbcs2Wpf/kiWZpaTVilrZc+cKJ27x8WIJgeJ4ehZO2lxdgfBwkVlfuQLUrm2650IEiDX31qwRjSk+/lh2NNZLUYBZs4DJk8XPzzwjltbgL1+LxQTNDDBBIyJjy84WjQofNkpX1GVmZsUeWy3JLGuC5+oqGg5y5A6iLjY+vuhRt4dNgHz0UWDHDtPESZTfr7+Ktfdq1gSuXjXs/EoSsrOBV14R5cwA8OabYs0zttG3aEzQzAATNCIyZwVLMktTjqleVrQk08ZGrElXtapI9NT9slxXmmMcHCw4Ebx3r+j5bufOAenpwJYtYiSNyNRycsTI7Y0b4n3Yv7/siKzLvXtitGz7dvHL8pNPxJpnZPFKmxvYmTAmIiIyI05OYvP1Ldv91JLM8sy3S03NO0daWslLkRmCRlO+xK6sSaOjoxG+2HZ1Bdq2FVt+iiLKIu34J5wksbMTZY4ffwx8/z0TNEO6dk28nnFx4hfMmjXA44/LjopMjCNoRsQRNCIifTk5YvDnwQPREDH/VvC60hxT3HUlLWNmLGrCa6zRQPU6VjiRWYiNFQ1CHB3FmoLu7rIjsnynTok2+leuALVqidFJLqFhVTiCRkREZsfOTnyOM/ZnuZychyd8FUkA1evyz+N78EBsd+4Y97k5OIhErUoV8Xqqm62t/s/G2GQ+hsWWqlqrRx4RyzycOSOSCi8v/X/Ailwa4hzlfSwbGzlvtuho4KmnRJlBkyaijb6/v+njILPABI2IiKyOnZ2oEHR1Ne7j5ObmJWvGSADVLSMj7zEzMyve4MUS2dgYJwlUE938CW9J15nqPma/tqFGI1q/v/UWcPCg7GgMy1BJYmmPzc0FVq0S3yx17Qps3iy6KlGlxQSNiIionGxtARcXsRmTViuStPwJXE5O+bfc3Ird31BbUXEU14BGqxVNLyu6ILyl0GgMk+gZM8msEjABtd+vh6pZyXCokgsHmxw42OXC3iYH9ra5sEO+f+TSXJbl2Iret6QZPur5TP1mGzJELATONvqVHhM0IiIiM5e/66W102pNk0BmZ+c9Tna2/vXFXWes24tKShVFHJOdXfI653JVAfBMsbfa2Yn3rLNz4U3verdiri/u+H9/rtAoo/pGk5UgFrz09xcJGieZEpigERERkRmxsRFbZVpaS6s1fVJoqNuzskQCmZ6et+XkiOeVkyOmVKndWw3NwaF0yVzR19v8u1UpfLyrGMTivEeShQkaERERkUQ2NmLxdnt72ZEYRlaWKMXNn7SpW0Wvv38/rzpRnY9pjMY8Gk3RiV5pR/hKur5qVcP9WyuK/mBg/i3/4J4l3l6ec7RuLVZ+sHRM0IiIiIjIYNRk08PD8OdWlLwmOsZIANUGPIqSd50x2NnpJ2329uVLToqbs1lZOTnJjsAwmKARERERkUVQR7aqVgU8PQ1//pycvGY8xkgAc3PzHiclRWzGpNEUbihZ3FbS7ZZyX2N8KSADEzQiIiIiIogP/G5uYjM0RRHln0UlbllZxklYOI/OMjFBIyIiIiIyMo1GNDZxcOAyZ1Qy9vIkIiIiIiIyE0zQiIiIiIiIzAQTNCIiIiIiIjPBBI2IiIiIiMhMMEEjIiIiIiIyE0zQiIiIiIiIzAQTNCIiIiIiIjPBBI2IiIiIiMhMMEEjIiIiIiIyE0zQiIiIiIiIzAQTNCIiIiIiIjPBBI2IiIiIiMhMMEEjIiIiIiIyE0zQiIiIiIiIzISd7ACsmaIoAIDU1FTJkRARERERkUxqTqDmCMVhgmZEt2/fBgD4+flJjoSIiIiIiMzBvXv34O7uXuztTNCMqHr16gCAhISEEv8RqHipqanw8/PDlStX4ObmJjsci8XXseL4GhoGX8eK42toGHwdDYOvY8XxNTQMS3gdFUXBvXv34OvrW+JxTNCMyMZGTPFzd3c32zeKpXBzc+NraAB8HSuOr6Fh8HWsOL6GhsHX0TD4OlYcX0PDMPfXsTSDNmwSQkREREREZCaYoBEREREREZkJJmhG5ODggGnTpsHBwUF2KBaLr6Fh8HWsOL6GhsHXseL4GhoGX0fD4OtYcXwNDcOaXkeN8rA+j0RERERERGQSHEEjIiIiIiIyE0zQiIiIiIiIzAQTNCIiIiIiIjPBBI2IiIiIiMhMMEEzgn379mHAgAHw9fWFRqPB5s2bZYdkcWbPno0OHTrA1dUVtWrVQkREBM6dOyc7LIuyZMkStG7dWrdgY0hICLZu3So7LIv34YcfQqPR4LXXXpMdikWZPn06NBqN3ta0aVPZYVmcq1evYvjw4ahRowacnJzQqlUrHD16VHZYFqV+/fqF3osajQZjx46VHZrFyM3NxZQpU+Dv7w8nJyc0bNgQM2fOBPvOld29e/fw2muvoV69enByckKnTp1w5MgR2WGZrYd9xlYUBVOnToWPjw+cnJwQFhaG8+fPywm2ApigGUF6ejratGmDTz/9VHYoFmvv3r0YO3Ysfv/9d0RFRSE7Oxu9e/dGenq67NAsRp06dfDhhx8iNjYWR48eRc+ePfHEE0/gzz//lB2axTpy5Ag+//xztG7dWnYoFqlFixa4fv26bvvtt99kh2RR7t69i86dO6NKlSrYunUrTp8+jQULFqBatWqyQ7MoR44c0XsfRkVFAQCeeeYZyZFZjjlz5mDJkiVYvHgxzpw5gzlz5mDu3LlYtGiR7NAszgsvvICoqCh8//33OHnyJHr37o2wsDBcvXpVdmhm6WGfsefOnYtPPvkES5cuxaFDh+Ds7Izw8HBkZGSYONIKUsioACibNm2SHYbFu3HjhgJA2bt3r+xQLFq1atWUr776SnYYFunevXtKQECAEhUVpYSGhioTJkyQHZJFmTZtmtKmTRvZYVi0SZMmKV26dJEdhtWZMGGC0rBhQ0Wr1coOxWL0799fef755/Wue+qpp5Rhw4ZJisgy3b9/X7G1tVW2bNmid/0jjzyivP/++5KishwFP2NrtVrF29tbmTdvnu665ORkxcHBQVm9erWECMuPI2hkEVJSUgAA1atXlxyJZcrNzcWaNWuQnp6OkJAQ2eFYpLFjx6J///4ICwuTHYrFOn/+PHx9fdGgQQMMGzYMCQkJskOyKD/99BPat2+PZ555BrVq1ULbtm3x5Zdfyg7LomVlZWHFihV4/vnnodFoZIdjMTp16oTo6Gj89ddfAIA//vgDv/32G/r27Ss5MsuSk5OD3NxcODo66l3v5OTECoNyiI+PR2Jiot7faXd3dwQHByMmJkZiZGVnJzsAoofRarV47bXX0LlzZ7Rs2VJ2OBbl5MmTCAkJQUZGBlxcXLBp0yY0b95cdlgWZ82aNTh27BjnBVRAcHAwli9fjiZNmuD69ev44IMP0LVrV5w6dQqurq6yw7MIf//9N5YsWYKJEyfivffew5EjR/Dqq6/C3t4eI0eOlB2eRdq8eTOSk5Px3HPPyQ7ForzzzjtITU1F06ZNYWtri9zcXPzf//0fhg0bJjs0i+Lq6oqQkBDMnDkTzZo1g5eXF1avXo2YmBg0atRIdngWJzExEQDg5eWld72Xl5fuNkvBBI3M3tixY3Hq1Cl+m1QOTZo0QVxcHFJSUrBhwwaMHDkSe/fuZZJWBleuXMGECRMQFRVV6FtOKr3836y3bt0awcHBqFevHtatW4fRo0dLjMxyaLVatG/fHrNmzQIAtG3bFqdOncLSpUuZoJXT119/jb59+8LX11d2KBZl3bp1WLlyJVatWoUWLVogLi4Or732Gnx9ffleLKPvv/8ezz//PGrXrg1bW1s88sgjGDp0KGJjY2WHRhKxxJHM2rhx47Blyxbs3r0bderUkR2OxbG3t0ejRo3Qrl07zJ49G23atMHHH38sOyyLEhsbixs3buCRRx6BnZ0d7OzssHfvXnzyySews7NDbm6u7BAtkoeHBxo3bowLFy7IDsVi+Pj4FPpypVmzZiwVLafLly9j586deOGFF2SHYnHeeustvPPOOxgyZAhatWqFESNG4PXXX8fs2bNlh2ZxGjZsiL179yItLQ1XrlzB4cOHkZ2djQYNGsgOzeJ4e3sDAJKSkvSuT0pK0t1mKZigkVlSFAXjxo3Dpk2bsGvXLvj7+8sOySpotVpkZmbKDsOi9OrVCydPnkRcXJxua9++PYYNG4a4uDjY2trKDtEipaWl4eLFi/Dx8ZEdisXo3LlzoeVG/vrrL9SrV09SRJZt2bJlqFWrFvr37y87FItz//592Njof4S0tbWF9v/bu5+QqN4FjOPPKXMcJwv/1MwkjDkkakZBFGS1KRdpIBmGFhKjLkQyscCILNHIWtouwajZlBUGlUE1kdRGKFukuTBBaBFIVFT4B3Iz710Ewlzl/q5x85zxfj9wYOY9o/O8gnCeOec9E43alCj+eTwe+f1+/fjxQ5FIRIcOHbI7UtzJzs6Wz+dTf3//3Njk5KTevHkTd+vvucTxL5ieno75VPjjx48aGhpSWlqaAoGAjcniR0NDg3p6evTo0SOlpKTMXTu8du1aud1um9PFh3PnzqmkpESBQEBTU1Pq6enRq1evFIlE7I4WV1JSUuatffR4PEpPT2dN5CI0NzertLRUWVlZmpiYUFtbm1auXKljx47ZHS1unD59Wrt379aVK1dUUVGhwcFBdXd3q7u72+5ocScajSocDisUCikhgUOhxSotLdXly5cVCARUUFCgd+/eqbOzU7W1tXZHizuRSETGGOXm5mp8fFxnzpxRXl6eampq7I7mSP90jH3q1Cl1dHQoJydH2dnZam1t1YYNG1RWVmZf6D9h920kl6OXL18aSfO2UChkd7S4sdDfT5IJh8N2R4sbtbW1JisryyQmJpp169aZoqIi8/z5c7tjLQvcZn/xKisrjd/vN4mJiSYzM9NUVlaa8fFxu2PFncePH5stW7YYl8tl8vLyTHd3t92R4lIkEjGSzNjYmN1R4tLk5KRpamoygUDAJCUlmWAwaM6fP29mZ2ftjhZ37t27Z4LBoElMTDQ+n880NDSYnz9/2h3Lsf7pGDsajZrW1lbj9XqNy+UyRUVFcfl/bhnD174DAAAAgBOwBg0AAAAAHIKCBgAAAAAOQUEDAAAAAIegoAEAAACAQ1DQAAAAAMAhKGgAAAAA4BAUNAAAAABwCAoaAAAAADgEBQ0AAAeyLEsPHz60OwYAYIlR0AAA+DfV1dWyLGveVlxcbHc0AMAyl2B3AAAAnKi4uFjhcDhmzOVy2ZQGAPD/gjNoAAAswOVyyefzxWypqamSfl9+2NXVpZKSErndbgWDQd2/fz/m50dGRrR//3653W6lp6errq5O09PTMa+5efOmCgoK5HK55Pf7dfLkyZj937590+HDh5WcnKycnBz19fX93UkDAGxHQQMA4A+0traqvLxcw8PDqqqq0tGjRzU6OipJmpmZ0YEDB5Samqq3b9+qt7dXL168iClgXV1damhoUF1dnUZGRtTX16dNmzbFvMfFixdVUVGh9+/f6+DBg6qqqtL379+XdJ4AgKVlGWOM3SEAAHCS6upq3bp1S0lJSTHjLS0tamlpkWVZqq+vV1dX19y+Xbt2afv27bp27ZquX7+us2fP6tOnT/J4PJKkJ0+eqLS0VBMTE/J6vcrMzFRNTY06OjoWzGBZli5cuKBLly5J+l36Vq9eradPn7IWDgCWMdagAQCwgH379sUUMElKS0ube1xYWBizr7CwUENDQ5Kk0dFRbdu2ba6cSdKePXsUjUY1NjYmy7I0MTGhoqKi/5hh69atc489Ho/WrFmjL1++/OmUAABxgIIGAMACPB7PvEsO/1fcbvd/9bpVq1bFPLcsS9Fo9G9EAgA4BGvQAAD4A69fv573PD8/X5KUn5+v4eFhzczMzO0fGBjQihUrlJubq5SUFG3cuFH9/f1LmhkA4HycQQMAYAGzs7P6/PlzzFhCQoIyMjIkSb29vdqxY4f27t2r27dva3BwUDdu3JAkVVVVqa2tTaFQSO3t7fr69asaGxt1/Phxeb1eSVJ7e7vq6+u1fv16lZSUaGpqSgMDA2psbFzaiQIAHIWCBgDAAp49eya/3x8zlpubqw8fPkj6fYfFu3fv6sSJE/L7/bpz5442b94sSUpOTlYkElFTU5N27typ5ORklZeXq7Ozc+53hUIh/fr1S1evXlVzc7MyMjJ05MiRpZsgAMCRuIsjAACLZFmWHjx4oLKyMrujAACWGdagAQAAAIBDUNAAAAAAwCFYgwYAwCKxOgAA8LdwBg0AAAAAHIKCBgAAAAAOQUEDAAAAAIegoAEAAACAQ1DQAAAAAMAhKGgAAAAA4BAUNAAAAABwCAoaAAAAADjEvwA7oNKk/KLjYwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHWCAYAAABACtmGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcKklEQVR4nO3dd3hUdd7+8Xsy6SEJIUASICQ06YQSSgAR1yggi4Ii6LJSLDy7YkF+uopKUR/EvqyisLIKixXFxfVxFRZZdGlSDYIiClKFBBCSkEDqnN8fhxkZEkib5GQy79d1nWvOnDnlM0fA3PmWYzMMwxAAAAAA4KL8rC4AAAAAAGo7ghMAAAAAlIHgBAAAAABlIDgBAAAAQBkITgAAAABQBoITAAAAAJSB4AQAAAAAZSA4AQAAAEAZCE4AAAAAUAaCEwDA5YsvvpDNZtMXX3xhdSmohWbOnCmbzaYTJ05YXQoA1DiCEwCgWjnD2NKlS60updZzBpOLLenp6VaXCAA+y9/qAgAAgLt58+apXr16JbbXr1+/5osBAEgiOAEAUKPOnDmj0NDQS+4zcuRINWzYsIYqAgCUB131AMBLnD59WpMnT1ZiYqKCgoLUuHFjXX311dq2bZvbfq+88opatmypkJAQ9erVS2vWrNHAgQM1cOBAt/0OHz6s4cOHKywsTI0bN9b999+v/Pz8GvxG7n766SfddNNNatCggUJDQ9WnTx/961//KrHfyy+/rI4dOyo0NFRRUVFKTk7WO++84/q8vPfpQs5uct9//71GjRqliIgIRUdH67777lNeXl6J/d966y316NFDISEhatCggW6++WYdOnTIbZ+BAweqU6dO2rp1qwYMGKDQ0FA98sgjlbxDv3J2f1yyZIkeeeQRxcbGKiwsTNddd12JGiTpgw8+cNXasGFD/f73v9fPP/9cYj/nd2/UqJFCQkLUtm1bPfrooyX2y8zM1Pjx41W/fn1FRkZqwoQJOnPmTJW/FwDUZrQ4AYCX+MMf/qClS5fq7rvvVocOHfTLL79o7dq12rVrl7p37y7J7OJ199136/LLL9f999+v/fv3a/jw4YqKilKzZs1c5zp79qyuuuoqHTx4UPfee6+aNGmiN998U//5z38s+W4ZGRnq27evzpw5o3vvvVfR0dH6+9//ruuuu05Lly7ViBEjJEkLFizQvffeq5EjR7oCzTfffKONGzfqd7/7naTy3adLGTVqlBITEzV79mx99dVXeumll3Tq1CktXrzYtc+sWbM0bdo0jRo1SnfccYeOHz+ul19+WQMGDNDXX3/t1qXul19+0ZAhQ3TzzTfr97//vWJiYsqs4eTJkyW2+fv7l+iqN2vWLNlsNj300EM6duyY5syZo9TUVKWlpSkkJESStGjRIk2YMEE9e/bU7NmzlZGRob/85S9at26dW63ffPONLr/8cgUEBGjixIlKTEzU3r179X//93+aNWtWiXvUokULzZ49W9u2bdPf/vY3NW7cWM8880yZ3w0AvJYBAPAKkZGRxqRJky76eX5+vhEdHW307NnTKCwsdG1ftGiRIcm44oorXNvmzJljSDLef/9917bc3FyjdevWhiRj9erVHqt79erVhiTjgw8+uOg+kydPNiQZa9ascW07ffq00aJFCyMxMdEoLi42DMMwrr/+eqNjx46XvF5Z9+liZsyYYUgyrrvuOrftd911lyHJ2L59u2EYhrF//37Dbrcbs2bNcttvx44dhr+/v9v2K664wpBkzJ8/v0I1lLa0bdvWtZ/znjZt2tTIzs52bX///fcNScZf/vIXwzAMo6CgwGjcuLHRqVMn4+zZs679PvnkE0OSMX36dNe2AQMGGOHh4caBAwfcanI4HCXqu+2229z2GTFihBEdHV2u7wgA3oquegDgJerXr6+NGzfqyJEjpX6+ZcsW/fLLL7rzzjvl7/9rh4IxY8YoKirKbd9PP/1UcXFxGjlypGtbaGioJk6cWD3Fl+HTTz9Vr1691L9/f9e2evXqaeLEidq/f7++++47SeY9OHz4sDZv3nzRc5V1n8oyadIkt/f33HOPq0ZJ+sc//iGHw6FRo0bpxIkTriU2NlZt2rTR6tWr3Y4PCgrShAkTKlTDhx9+qJUrV7otCxcuLLHf2LFjFR4e7no/cuRIxcXFuWrdsmWLjh07prvuukvBwcGu/YYOHap27dq5ukIeP35c//3vf3XbbbepefPmbtew2WwlrvuHP/zB7f3ll1+uX375RdnZ2RX6ngDgTeiqBwBe4tlnn9W4ceMUHx+vHj166Nprr9XYsWPVsmVLSdKBAwckSa1bt3Y7zt/fX4mJiW7bDhw4oNatW5f4obht27Zl1lFQUFCiK1mjRo1kt9sr+pXc6undu3eJ7e3bt3d93qlTJz300EP6/PPP1atXL7Vu3VrXXHONfve736lfv36uY8q6T2Vp06aN2/tWrVrJz89P+/fvlyT9+OOPMgyjxH5OAQEBbu+bNm2qwMDAcl3bacCAAeWaHOLCGmw2m1q3bu2q1flnorT/ru3atdPatWslmePLJKlTp07lqu/CcOUM5qdOnVJERES5zgEA3oYWJwDwEqNGjdJPP/2kl19+WU2aNNFzzz2njh076rPPPqvROtavX6+4uDi3pbQJCapD+/bttXv3br333nvq37+/PvzwQ/Xv318zZsxw7ePp+3RhuHQ4HLLZbFq+fHmJVqGVK1fqr3/9q9v+zrFGdcnFQrJhGDVcCQDUHIITAHiRuLg43XXXXfroo4+0b98+RUdHuwbuJyQkSJL27NnjdkxRUZGrBcIpISFBe/fuLfGD7u7du8usISkpqURYiI2NrcK3Musp7drff/+963OnsLAwjR49WgsXLtTBgwc1dOhQzZo1y23mu0vdp7L8+OOPbu/37Nkjh8PharVr1aqVDMNQixYtlJqaWmLp06dPRb9+pV1Yq2EY2rNnj6tW530r7d7u3r3b9bmzNW7nzp3VWC0AeDeCEwB4geLiYmVlZblta9y4sZo0aeKaQjw5OVnR0dFasGCBioqKXPu9/fbbOnXqlNux1157rY4cOaKlS5e6tp05c0avvfZambVERUWVCAvnj5+pjGuvvVabNm3Shg0bXNtyc3P12muvKTExUR06dJBkzlB3vsDAQHXo0EGGYaiwsLBc96ksr7zyitv7l19+WZI0ZMgQSdINN9wgu92uxx9/vETwNAyjRI3VafHixTp9+rTr/dKlS3X06FFXrcnJyWrcuLHmz5/v9v0/++wz7dq1S0OHDpVkdrUcMGCA3njjDR08eNDtGrQiAYCJMU4A4AVOnz6tZs2aaeTIkUpKSlK9evX0+eefa/PmzXrhhRckmSFi5syZuueee/Sb3/xGo0aN0v79+7Vo0SK1atXKrcvZnXfeqblz52rs2LHaunWr4uLi9Oabb5b5YNaq+PDDD10tSOcbN26cHn74Yb377rsaMmSI7r33XjVo0EB///vftW/fPn344Yfy8zN/z3fNNdcoNjZW/fr1U0xMjHbt2qW5c+dq6NChCg8PV2ZmZpn3qSz79u3Tddddp8GDB2vDhg1666239Lvf/U5JSUmSzBan//3f/9XUqVNd072Hh4dr3759WrZsmSZOnKgHHnigSvdq6dKlqlevXontV199tdt05g0aNFD//v01YcIEZWRkaM6cOWrdurXuvPNOSeZ4q2eeeUYTJkzQFVdcoVtuucU1HXliYqLuv/9+17leeukl9e/fX927d9fEiRPVokUL7d+/X//617+UlpZWpe8DAHWCZfP5AQDKLT8/33jwwQeNpKQkIzw83AgLCzOSkpKMV199tcS+L730kpGQkGAEBQUZvXr1MtatW2f06NHDGDx4sNt+Bw4cMK677jojNDTUaNiwoXHfffcZy5cvr7bpyC+2OKcg37t3rzFy5Eijfv36RnBwsNGrVy/jk08+cTvXX//6V2PAgAFGdHS0ERQUZLRq1cp48MEHjaysrArfpws5p9r+7rvvjJEjRxrh4eFGVFSUcffdd7tN5e304YcfGv379zfCwsKMsLAwo127dsakSZOM3bt3u/a54oorypw+vbQaLrY4/7s47+m7775rTJ061WjcuLEREhJiDB06tMR04oZhGEuWLDG6detmBAUFGQ0aNDDGjBljHD58uMR+O3fuNEaMGOH6b9C2bVtj2rRpJeo7fvy423ELFy40JBn79u0r93cFAG9jMwza4AGgLnM4HGrUqJFuuOEGLViwwOpyaq2ZM2fq8ccf1/Hjx8s1o52VvvjiC1155ZX64IMP3KaUBwBUH8Y4AUAdkpeXV2JMyuLFi3Xy5EkNHDjQmqIAAKgDGOMEAHXIV199pfvvv1833XSToqOjtW3bNr3++uvq1KmTbrrpJqvLAwDAaxGcAKAOSUxMVHx8vF566SWdPHlSDRo00NixY/X0009X+CGsAADgV4xxAgAAAIAy1IoxTq+88ooSExMVHBys3r17a9OmTRfdd9GiRbLZbG5LVZ8fAgAAAACXYnlwWrJkiaZMmaIZM2Zo27ZtSkpK0qBBg3Ts2LGLHhMREaGjR4+6lgMHDtRgxQAAAAB8jeVd9Xr37q2ePXtq7ty5ksxpc+Pj43XPPffo4YcfLrH/okWLNHnyZGVmZlbqeg6HQ0eOHFF4eLjbwyABAAAA+BbDMHT69Gk1adLE9bD1i7F0coiCggJt3bpVU6dOdW3z8/NTamqqNmzYcNHjcnJylJCQIIfDoe7du+upp55Sx44dS903Pz9f+fn5rvc///yzOnTo4LkvAQAAAMCrHTp0SM2aNbvkPpYGpxMnTqi4uFgxMTFu22NiYvT999+Xekzbtm31xhtvqEuXLsrKytLzzz+vvn376ttvvy31y86ePVuPP/54ie2HDh1SRESEZ74IAAAAAK+TnZ2t+Ph4hYeHl7mv101HnpKSopSUFNf7vn37qn379vrrX/+qJ598ssT+U6dO1ZQpU1zvnTcnIiKC4AQAAACgXEN4LA1ODRs2lN1uV0ZGhtv2jIwMxcbGluscAQEB6tatm/bs2VPq50FBQQoKCqpyrQAAAAB8l6Wz6gUGBqpHjx5atWqVa5vD4dCqVavcWpUupbi4WDt27FBcXFx1lQkAAADAx1neVW/KlCkaN26ckpOT1atXL82ZM0e5ubmaMGGCJGns2LFq2rSpZs+eLUl64okn1KdPH7Vu3VqZmZl67rnndODAAd1xxx1Wfg0AAAAAdZjlwWn06NE6fvy4pk+frvT0dHXt2lXLly93TRhx8OBBt6kBT506pTvvvFPp6emKiopSjx49tH79embKAwAA8GKGYaioqEjFxcVWl4I6JiAgQHa7vcrnsfw5TjUtOztbkZGRysrKYnIIAACAWqCgoEBHjx7VmTNnrC4FdZDNZlOzZs1Ur169Ep9VJBtY3uIEAAAA3+VwOLRv3z7Z7XY1adJEgYGB5ZrhDCgPwzB0/PhxHT58WG3atKlSyxPBCQAAAJYpKCiQw+FQfHy8QkNDrS4HdVCjRo20f/9+FRYWVik4WTqrHgAAACDJbUw74EmeasHkTygAAAAAlIHgBAAAAABlIDgBAAAAtUBiYqLmzJljdRm4CIITAAAAUAE2m+2Sy8yZMyt13s2bN2vixIlVqm3gwIGaPHlylc6B0vnurHq+9fgqAAAAeMjRo0dd60uWLNH06dO1e/du17bznxdkGIaKi4vl71/2j92NGjXybKHwKN9tcfruO6srAAAAwAUMQ8rNtWYp7+/VY2NjXUtkZKRsNpvr/ffff6/w8HB99tln6tGjh4KCgrR27Vrt3btX119/vWJiYlSvXj317NlTn3/+udt5L+yqZ7PZ9Le//U0jRoxQaGio2rRpo48//rhK9/fDDz9Ux44dFRQUpMTERL3wwgtun7/66qtq06aNgoODFRMTo5EjR7o+W7p0qTp37qyQkBBFR0crNTVVubm5VarHm/hui9P69VJKitVVAAAA4DxnzkjnNdjUqJwcKSzMM+d6+OGH9fzzz6tly5aKiorSoUOHdO2112rWrFkKCgrS4sWLNWzYMO3evVvNmze/6Hkef/xxPfvss3ruuef08ssva8yYMTpw4IAaNGhQ4Zq2bt2qUaNGaebMmRo9erTWr1+vu+66S9HR0Ro/fry2bNmie++9V2+++ab69u2rkydPas2aNZLMVrZbbrlFzz77rEaMGKHTp09rzZo1MnyoF5fvBqcNG6yuAAAAAHXUE088oauvvtr1vkGDBkpKSnK9f/LJJ7Vs2TJ9/PHHuvvuuy96nvHjx+uWW26RJD311FN66aWXtGnTJg0ePLjCNb344ou66qqrNG3aNEnSZZddpu+++07PPfecxo8fr4MHDyosLEy//e1vFR4eroSEBHXr1k2SGZyKiop0ww03KCEhQZLUuXPnCtfgzXw3OK1fb7bHeuiBWAAAAKi60FCz5ceqa3tKcnKy2/ucnBzNnDlT//rXv1wh5OzZszp48OAlz9OlSxfXelhYmCIiInTs2LFK1bRr1y5df/31btv69eunOXPmqLi4WFdffbUSEhLUsmVLDR48WIMHD3Z1E0xKStJVV12lzp07a9CgQbrmmms0cuRIRUVFVaoWb+S7Y5yOHpUOHLC6CgAAAJzHZjO7y1mxePL36WEX9Pl74IEHtGzZMj311FNas2aN0tLS1LlzZxUUFFzyPAEBARfcH5scDofnCj1PeHi4tm3bpnfffVdxcXGaPn26kpKSlJmZKbvdrpUrV+qzzz5Thw4d9PLLL6tt27bat29ftdRSG/lucJKkc302AQAAgOq0bt06jR8/XiNGjFDnzp0VGxur/fv312gN7du317p160rUddlll8lut0uS/P39lZqaqmeffVbffPON9u/fr//85z+SzNDWr18/Pf744/r6668VGBioZcuW1eh3sJLvdtWTpLVrpVtvtboKAAAA1HFt2rTRP/7xDw0bNkw2m03Tpk2rtpaj48ePKy0tzW1bXFyc/t//+3/q2bOnnnzySY0ePVobNmzQ3Llz9eqrr0qSPvnkE/30008aMGCAoqKi9Omnn8rhcKht27bauHGjVq1apWuuuUaNGzfWxo0bdfz4cbVv375avkNt5NvBiRYnAAAA1IAXX3xRt912m/r27auGDRvqoYceUnZ2drVc65133tE777zjtu3JJ5/UY489pvfff1/Tp0/Xk08+qbi4OD3xxBMaP368JKl+/fr6xz/+oZkzZyovL09t2rTRu+++q44dO2rXrl3673//qzlz5ig7O1sJCQl64YUXNGTIkGr5DrWRzfClOQQlZWdnKzIyUlmSIiTp+HGpYUOLqwIAAPBNeXl52rdvn1q0aKHg4GCry0EddKk/Y65skJWliIiIS57Hd8c4tW1rvq5da20dAAAAAGo93w1OffuarwQnAAAAAGXw3eCUkmK+Ms4JAAAAQBkITtu2Sbm51tYCAAAAoFbz3eDUvLkUHy8VFUlffWV1NQAAAABqMd8NTpJ0+eXmK+OcAAAAAFyCbwen/v3NV8Y5AQAAALgE3w5OzhanDRukwkJrawEAAABQa/l2cOrQQYqKks6ckdLSrK4GAAAAQC3l28HJz4/uegAAALDEwIEDNXnyZNf7xMREzZkz55LH2Gw2ffTRR1W+tqfO40t8OzhJBCcAAABUyLBhwzR48OBSP1uzZo1sNpu++eabCp938+bNmjhxYlXLczNz5kx17dq1xPajR49qyJAhHr3WhRYtWqT69etX6zVqEsHp/Jn1DMPaWgAAAFDr3X777Vq5cqUOHz5c4rOFCxcqOTlZXbp0qfB5GzVqpNDQUE+UWKbY2FgFBQXVyLXqCoJTjx5ScLB04oS0e7fV1QAAAPg2w5Byc61ZyvlL9N/+9rdq1KiRFi1a5LY9JydHH3zwgW6//Xb98ssvuuWWW9S0aVOFhoaqc+fOevfddy953gu76v34448aMGCAgoOD1aFDB61cubLEMQ899JAuu+wyhYaGqmXLlpo2bZoKz016tmjRIj3++OPavn27bDabbDabq+YLu+rt2LFDv/nNbxQSEqLo6GhNnDhROTk5rs/Hjx+v4cOH6/nnn1dcXJyio6M1adIk17Uq4+DBg7r++utVr149RUREaNSoUcrIyHB9vn37dl155ZUKDw9XRESEevTooS1btkiSDhw4oGHDhikqKkphYWHq2LGjPv3000rXUh7+1Xp2bxAYKPXuLX35pdldr107qysCAADwXWfOSPXqWXPtnBwpLKzM3fz9/TV27FgtWrRIjz76qGw2myTpgw8+UHFxsW655Rbl5OSoR48eeuihhxQREaF//etfuvXWW9WqVSv16tWrzGs4HA7dcMMNiomJ0caNG5WVleU2HsopPDxcixYtUpMmTbRjxw7deeedCg8P15/+9CeNHj1aO3fu1PLly/X5559LkiIjI0ucIzc3V4MGDVJKSoo2b96sY8eO6Y477tDdd9/tFg5Xr16tuLg4rV69Wnv27NHo0aPVtWtX3XnnnWV+n9K+nzM0ffnllyoqKtKkSZM0evRoffHFF5KkMWPGqFu3bpo3b57sdrvS0tIUEBAgSZo0aZIKCgr03//+V2FhYfruu+9Ur5r/3BCcJLO7njM4VeI/PAAAAHzLbbfdpueee05ffvmlBg4cKMnspnfjjTcqMjJSkZGReuCBB1z733PPPVqxYoXef//9cgWnzz//XN9//71WrFihJk2aSJKeeuqpEuOSHnvsMdd6YmKiHnjgAb333nv605/+pJCQENWrV0/+/v6KjY296LXeeecd5eXlafHixQo7Fxznzp2rYcOG6ZlnnlFMTIwkKSoqSnPnzpXdble7du00dOhQrVq1qlLBadWqVdqxY4f27dun+Ph4SdLixYvVsWNHbd68WT179tTBgwf14IMPqt25ho02bdq4jj948KBuvPFGde7cWZLUsmXLCtdQUQQn6ddxTkwQAQAAYK3QULPlx6prl1O7du3Ut29fvfHGGxo4cKD27NmjNWvW6IknnpAkFRcX66mnntL777+vn3/+WQUFBcrPzy/3GKZdu3YpPj7eFZokKSUlpcR+S5Ys0UsvvaS9e/cqJydHRUVFioiIKPf3cF4rKSnJFZokqV+/fnI4HNq9e7crOHXs2FF2u921T1xcnHbs2FGha51/zfj4eFdokqQOHTqofv362rVrl3r27KkpU6bojjvu0JtvvqnU1FTddNNNatWqlSTp3nvv1R//+Ef9+9//Vmpqqm688cZKjSurCMY4SVJKijk1+f79UimD/AAAAFBDbDazu5wVy7kud+V1++2368MPP9Tp06e1cOFCtWrVSldccYUk6bnnntNf/vIXPfTQQ1q9erXS0tI0aNAgFRQUeOxWbdiwQWPGjNG1116rTz75RF9//bUeffRRj17jfM5uck42m00Oh6NariWZMwJ+++23Gjp0qP7zn/+oQ4cOWrZsmSTpjjvu0E8//aRbb71VO3bsUHJysl5++eVqq0UiOJnCwyXnNI1r11paCgAAALzDqFGj5Ofnp3feeUeLFy/Wbbfd5hrvtG7dOl1//fX6/e9/r6SkJLVs2VI//PBDuc/dvn17HTp0SEePHnVt++qrr9z2Wb9+vRISEvToo48qOTlZbdq00YEDB9z2CQwMVHFxcZnX2r59u3Jzc13b1q1bJz8/P7Vt27bcNVeE8/sdOnTIte27775TZmamOnTo4Np22WWX6f7779e///1v3XDDDVq4cKHrs/j4eP3hD3/QP/7xD/2///f/tGDBgmqp1Yng5ER3PQAAAFRAvXr1NHr0aE2dOlVHjx7V+PHjXZ+1adNGK1eu1Pr167Vr1y79z//8j9uMcWVJTU3VZZddpnHjxmn79u1as2aNHn30Ubd92rRpo4MHD+q9997T3r179dJLL7laZJwSExO1b98+paWl6cSJE8rPzy9xrTFjxig4OFjjxo3Tzp07tXr1at1zzz269dZbXd30Kqu4uFhpaWluy65du5SamqrOnTtrzJgx2rZtmzZt2qSxY8fqiiuuUHJyss6ePau7775bX3zxhQ4cOKB169Zp8+bNat++vSRp8uTJWrFihfbt26dt27Zp9erVrs+qC8HJ6fznOQEAAADlcPvtt+vUqVMaNGiQ23ikxx57TN27d9egQYM0cOBAxcbGavjw4eU+r5+fn5YtW6azZ8+qV69euuOOOzRr1iy3fa677jrdf//9uvvuu9W1a1etX79e06ZNc9vnxhtv1ODBg3XllVeqUaNGpU6JHhoaqhUrVujkyZPq2bOnRo4cqauuukpz586t2M0oRU5Ojrp16+a2DBs2TDabTf/85z8VFRWlAQMGKDU1VS1bttSSJUskSXa7Xb/88ovGjh2ryy67TKNGjdKQIUP0+OOPSzID2aRJk9S+fXsNHjxYl112mV599dUq13spNsPwrae+ZmdnKzIyUllZWe4D5zIypNhYs2/ryZNSHXrKMQAAQG2Vl5enffv2qUWLFgoODra6HNRBl/ozdtFsUApanJxiYqQ2bcwHn61bZ3U1AAAAAGoRgtP5GOcEAAAAoBQEp/MxzgkAAABAKQhO5+vf33zdvFnKy7O2FgAAAAC1BsHpfK1amRNEFBRImzZZXQ0AAIDP8LH5ylCDPPVni+B0PpuNcU4AAAA1KCAgQJJ05swZiytBXVVQUCDJnOK8Kvw9UUydcvnl0gcfMM4JAACgBtjtdtWvX1/Hjh2TZD5TyGazWVwV6gqHw6Hjx48rNDRU/v5Viz4Epws5xzmtXy8VF0tVTKYAAAC4tNjYWElyhSfAk/z8/NS8efMqB3KC04W6dJEiIqTsbOmbb6Ru3ayuCAAAoE6z2WyKi4tT48aNVVhYaHU5qGMCAwPl51f1EUoEpwvZ7VLfvtLy5WZ3PYITAABAjbDb7VUehwJUFyaHKA0TRAAAAAA4D8GpNM5xTmvWSEyNCQAAAPg8glNpevWSAgOl9HRp716rqwEAAABgMYJTaYKDpZ49zXWmJQcAAAB8HsHpYs7vrgcAAADApxGcLoYJIgAAAACcQ3C6mH79JJtN+vFHc6wTAAAAAJ9FcLqY+vWlzp3N9XXrLC0FAAAAgLUITpfCOCcAAAAAIjhdGuOcAAAAAIjgdGnO4JSWJp0+bWkpAAAAAKxDcLqUpk2lFi0kh0PasMHqagAAAABYhOBUFsY5AQAAAD6P4FQWxjkBAAAAPo/gVBZncNq4USoosLYWAAAAAJYgOJWlbVupYUMpL0/autXqagAAAABYoFYEp1deeUWJiYkKDg5W7969tWnTpnId995778lms2n48OHVV5zNxjgnAAAAwMdZHpyWLFmiKVOmaMaMGdq2bZuSkpI0aNAgHTt27JLH7d+/Xw888IAud3alq06McwIAAAB8muXB6cUXX9Sdd96pCRMmqEOHDpo/f75CQ0P1xhtvXPSY4uJijRkzRo8//rhatmxZ/UU6g9O6debU5AAAAAB8iqXBqaCgQFu3blVqaqprm5+fn1JTU7XhEs9NeuKJJ9S4cWPdfvvtZV4jPz9f2dnZbkuFde0qhYZKp05J331X8eMBAAAAeDVLg9OJEydUXFysmJgYt+0xMTFKT08v9Zi1a9fq9ddf14IFC8p1jdmzZysyMtK1xMfHV7zQgAApJcVcp7seAAAA4HMs76pXEadPn9att96qBQsWqGHDhuU6ZurUqcrKynIthw4dqtzFnd311q6t3PEAAAAAvJa/lRdv2LCh7Ha7MjIy3LZnZGQoNja2xP579+7V/v37NWzYMNc2x7kxR/7+/tq9e7datWrldkxQUJCCgoKqXiwz6wEAAAA+y9IWp8DAQPXo0UOrVq1ybXM4HFq1apVSnF3jztOuXTvt2LFDaWlpruW6667TlVdeqbS0tMp1wyuvPn0kf3/p0CHpwIHquw4AAACAWsfSFidJmjJlisaNG6fk5GT16tVLc+bMUW5uriZMmCBJGjt2rJo2barZs2crODhYnTp1cju+fv36klRiu8eFhUndu0ubNpmtTgkJ1Xs9AAAAALWG5cFp9OjROn78uKZPn6709HR17dpVy5cvd00YcfDgQfn51ZKhWJdfbgantWul3//e6moAAAAA1BCbYRiG1UXUpOzsbEVGRiorK0sREREVO/ijj6QRI6QOHaRvv62W+gAAAADUjIpkg1rSlOMlnBNEfPed9Msv1tYCAAAAoMYQnCqiYUOpfXtznWnJAQAAAJ9BcKoonucEAAAA+ByCU0XxPCcAAADA5xCcKsrZ4rR1q5Sba20tAAAAAGoEwamiEhKkZs2koiJzanIAAAAAdR7BqaJsNrrrAQAAAD6G4FQZzu56BCcAAADAJxCcKsMZnDZsMLvsAQAAAKjTCE6V0bGjVL++OTlEWprV1QAAAACoZgSnyvDzk/r1M9fprgcAAADUeQSnymKcEwAAAOAzCE6V5QxOa9dKhmFtLQAAAACqFcGpsnr0kIKDpePHpR9+sLoaAAAAANWI4FRZQUFSr17mOt31AAAAgDqN4FQVjHMCAAAAfALBqSrOH+cEAAAAoM4iOFVFSoo5NflPP0lHjlhdDQAAAIBqQnCqiogIKSnJXKe7HgAAAFBnEZyqinFOAAAAQJ1HcKoqxjkBAAAAdR7Bqar69zdfv/lGysy0tBQAAAAA1YPgVFWxsVLr1pJhSOvXW10NAAAAgGpAcPIExjkBAAAAdRrByRMY5wQAAADUaQQnT3COc9q0ScrLs7YWAAAAAB5HcPKE1q2lmBipoEDavNnqagAAAAB4GMHJE2w2xjkBAAAAdRjByVOc3fUY5wQAAADUOQQnT3G2OK1bJxUXW1sLAAAAAI8iOHlKUpIUHi5lZ0s7dlhdDQAAAAAPIjh5it0u9e1rrtNdDwAAAKhTCE6e5BznxAQRAAAAQJ1CcPKk82fWMwxrawEAAADgMQQnT+rVSwoIkI4elX76yepqAAAAAHgIwcmTQkKknj3NdcY5AQAAAHUGwcnTGOcEAAAA1DkEJ087f5wTAAAAgDqB4ORp/fqZrz/8IGVkWFsLAAAAAI8gOHlaVJTUqZO5vm6dtbUAAAAA8AiCU3Wgux4AAABQpxCcqgPBCQAAAKhTCE7VwRmcvv5aOn3a2loAAAAAVBnBqTo0ayYlJEgOh/TVV1ZXAwAAAKCKCE7Vhe56AAAAQJ1BcKouBCcAAACgziA4VRdncNq4USoosLYWAAAAAFVCcKou7dpJ0dHS2bPStm1WVwMAAACgCghO1cVmk/r3N9fprgcAAAB4NYJTdWKcEwAAAFAnEJyqk7PFad06c2pyAAAAAF6J4FSduneXQkOlkyelXbusrgYAAABAJRGcqlNAgNSnj7lOdz0AAADAaxGcqptznNPatdbWAQAAAKDSCE7VjZn1AAAAAK9HcKpuffpIdrt08KC5AAAAAPA6BKfqVq+eOUmERKsTAAAA4KUITjWBcU4AAACAVyM41QTGOQEAAABejeBUE5zB6dtvpV9+sbYWAAAAABVGcKoJjRpJ7dqZ6+vWWVsLAAAAgAojONUUZ6sT45wAAAAAr0NwqinOCSIY5wQAAAB4nVoRnF555RUlJiYqODhYvXv31qZNmy667z/+8Q8lJyerfv36CgsLU9euXfXmm2/WYLWV5AxOW7ZIZ85YWwsAAACACrE8OC1ZskRTpkzRjBkztG3bNiUlJWnQoEE6duxYqfs3aNBAjz76qDZs2KBvvvlGEyZM0IQJE7RixYoarryCEhOlpk2loiLpEsEQAAAAQO1jeXB68cUXdeedd2rChAnq0KGD5s+fr9DQUL3xxhul7j9w4ECNGDFC7du3V6tWrXTfffepS5cuWlvbxw7ZbExLDgAAAHgpS4NTQUGBtm7dqtTUVNc2Pz8/paamasOGDWUebxiGVq1apd27d2vAgAGl7pOfn6/s7Gy3xTKMcwIAAAC8kqXB6cSJEyouLlZMTIzb9piYGKWnp1/0uKysLNWrV0+BgYEaOnSoXn75ZV199dWl7jt79mxFRka6lvj4eI9+hwpxBqcNG8wuewAAAAC8guVd9SojPDxcaWlp2rx5s2bNmqUpU6boiy++KHXfqVOnKisry7UcOnSoZos9X6dOUmSklJMjbd9uXR0AAAAAKsTfyos3bNhQdrtdGRkZbtszMjIUGxt70eP8/PzUunVrSVLXrl21a9cuzZ49WwMHDiyxb1BQkIKCgjxad6X5+Un9+kmffmp21+vRw+qKAAAAAJSDpS1OgYGB6tGjh1atWuXa5nA4tGrVKqWkpJT7PA6HQ/n5+dVRoucxzgkAAADwOpa2OEnSlClTNG7cOCUnJ6tXr16aM2eOcnNzNWHCBEnS2LFj1bRpU82ePVuSOWYpOTlZrVq1Un5+vj799FO9+eabmjdvnpVfo/zOD06GYc62BwAAAKBWszw4jR49WsePH9f06dOVnp6url27avny5a4JIw4ePCg/v18bxnJzc3XXXXfp8OHDCgkJUbt27fTWW29p9OjRVn2FiklOloKCpOPHpR9/lC67zOqKAAAAAJTBZhiGYXURNSk7O1uRkZHKyspSRESENUUMGGC2OP3tb9Ltt1tTAwAAAODjKpINvHJWPa/HOCcAAADAqxCcrOAMTmvXWlsHAAAAgHIhOFkhJcWcFGLvXunoUaurAQAAAFAGgpMVIiOlpCRzne56AAAAQK1HcLIK45wAAAAAr0FwsgrjnAAAAACvQXCySv/+5uv27VJWlrW1AAAAALgkgpNV4uKkVq0kw5DWr7e6GgAAAACXQHCyEuOcAAAAAK9AcLKSs7se45wAAACAWo3gZCVni9OmTVJ+vrW1AAAAALgogpOV2rSRGjc2Q9PmzVZXAwAAAOAiCE5WstmYlhwAAADwAgQnqznHOTFBBAAAAFBrEZys5mxxWrdOKi62thYAAAAApSI4WS0pSapXz3wI7s6dVlcDAAAAoBQEJ6v5+0t9+5rrjHMCAAAAaiWCU23AOCcAAACgViM41QbOcU5r1kiGYW0tAAAAAEogONUGvXpJAQHSkSPSvn1WVwMAAADgAgSn2iA0VOrRw1xnnBMAAABQ6xCcaovzu+sBAAAAqFUITrUFwQkAAACotQhOtUW/fubr7t3S8ePW1gIAAADATaWC06FDh3T48GHX+02bNmny5Ml67bXXPFaYz2nQQOrY0VxnnBMAAABQq1QqOP3ud7/T6tWrJUnp6em6+uqrtWnTJj366KN64oknPFqgT6G7HgAAAFArVSo47dy5U7169ZIkvf/+++rUqZPWr1+vt99+W4sWLfJkfb6F4AQAAADUSpUKToWFhQoKCpIkff7557ruuuskSe3atdPRo0c9V52vcQanr7+WcnKsrQUAAACAS6WCU8eOHTV//nytWbNGK1eu1ODBgyVJR44cUXR0tEcL9Cnx8VLz5lJxsfTVV1ZXAwAAAOCcSgWnZ555Rn/96181cOBA3XLLLUpKSpIkffzxx64ufKgkuusBAAAAtY5/ZQ4aOHCgTpw4oezsbEVFRbm2T5w4UaGhoR4rziddfrn09tsEJwAAAKAWqVSL09mzZ5Wfn+8KTQcOHNCcOXO0e/duNW7c2KMF+pz+/c3Xr76SCgutrQUAAACApEoGp+uvv16LFy+WJGVmZqp379564YUXNHz4cM2bN8+jBfqc9u3NZzqdPStt22Z1NQAAAABUyeC0bds2XX5uLM7SpUsVExOjAwcOaPHixXrppZc8WqDP8fP7tdWJ7noAAABArVCp4HTmzBmFh4dLkv7973/rhhtukJ+fn/r06aMDBw54tECf5JwgYu1aa+sAAAAAIKmSwal169b66KOPdOjQIa1YsULXXHONJOnYsWOKiIjwaIE+ydnitHat5HBYWwsAAACAygWn6dOn64EHHlBiYqJ69eqllJQUSWbrU7du3TxaoE/q3l0KCZF++UX6/nurqwEAAAB8XqWC08iRI3Xw4EFt2bJFK1ascG2/6qqr9Oc//9ljxfmswECpTx9znXFOAAAAgOUqFZwkKTY2Vt26ddORI0d0+PBhSVKvXr3Url07jxXn0xjnBAAAANQalQpODodDTzzxhCIjI5WQkKCEhATVr19fTz75pByMyfEMZtYDAAAAag3/yhz06KOP6vXXX9fTTz+tfv36SZLWrl2rmTNnKi8vT7NmzfJokT4pJUWy26UDB6RDh6T4eKsrAgAAAHyWzTAMo6IHNWnSRPPnz9d1113ntv2f//yn7rrrLv38888eK9DTsrOzFRkZqaysrNo/A2DPntKWLdLbb0u/+53V1QAAAAB1SkWyQaW66p08ebLUsUzt2rXTyZMnK3NKlOb8ackBAAAAWKZSwSkpKUlz584tsX3u3Lnq0qVLlYvCOc4JIhjnBAAAAFiqUmOcnn32WQ0dOlSff/656xlOGzZs0KFDh/Tpp596tECf5mxx2rlTOnlSatDA2noAAAAAH1WpFqcrrrhCP/zwg0aMGKHMzExlZmbqhhtu0Lfffqs333zT0zX6rsaNpbZtzfX1662tBQAAAPBhlZoc4mK2b9+u7t27q7i42FOn9DivmhxCku64Q3r9delPf5KeecbqagAAAIA6o9onh0ANYpwTAAAAYDmCU23nDE5btkhnz1pbCwAAAOCjCE61XYsWUpMmUmGhtGmT1dUAAAAAPqlCs+rdcMMNl/w8MzOzKrWgNDabObve+++b3fWuuMLqigAAAACfU6HgFBkZWebnY8eOrVJBKMXll/8anAAAAADUuAoFp4ULF1ZXHbgU5zin9euloiLJv1KP3wIAAABQSYxx8gadOkkREVJOjvTNN1ZXAwAAAPgcgpM3sNulfv3MdbrrAQAAADWO4OQteJ4TAAAAYBmCk7dwBqe1ayXDsLYWAAAAwMcQnLxFcrIUGChlZEh79lhdDQAAAOBTCE7eIjhY6tXLXKe7HgAAAFCjCE7ehHFOAAAAgCUITt7k/HFOAAAAAGoMwcmbpKRINps5xik93epqAAAAAJ9BcPIm9etLXbqY63TXAwAAAGpMrQhOr7zyihITExUcHKzevXtr06ZNF913wYIFuvzyyxUVFaWoqCilpqZecv86h3FOAAAAQI2zPDgtWbJEU6ZM0YwZM7Rt2zYlJSVp0KBBOnbsWKn7f/HFF7rlllu0evVqbdiwQfHx8brmmmv0888/13DlFunf33xlnBMAAABQY2yGYe3TVHv37q2ePXtq7ty5kiSHw6H4+Hjdc889evjhh8s8vri4WFFRUZo7d67Gjh1b5v7Z2dmKjIxUVlaWIiIiqlx/jTtyRGraVPLzk06dkrzxOwAAAAC1QEWygaUtTgUFBdq6datSU1Nd2/z8/JSamqoNGzaU6xxnzpxRYWGhGjRoUOrn+fn5ys7Odlu8WpMmUsuWksMhrV9vdTUAAACAT7A0OJ04cULFxcWKiYlx2x4TE6P0cs4a99BDD6lJkyZu4et8s2fPVmRkpGuJj4+vct2WY1pyAAAAoEZZPsapKp5++mm99957WrZsmYKDg0vdZ+rUqcrKynIthw4dquEqq4FznBMTRAAAAAA1wt/Kizds2FB2u10ZGRlu2zMyMhQbG3vJY59//nk9/fTT+vzzz9XFOUV3KYKCghQUFOSRemsNZ4vTxo1Sfr5U174fAAAAUMtY2uIUGBioHj16aNWqVa5tDodDq1atUkpKykWPe/bZZ/Xkk09q+fLlSk5OrolSa5fLLpMaNzZD05YtVlcDAAAA1HmWd9WbMmWKFixYoL///e/atWuX/vjHPyo3N1cTJkyQJI0dO1ZTp0517f/MM89o2rRpeuONN5SYmKj09HSlp6crJyfHqq9Q82w2piUHAAAAapDlwWn06NF6/vnnNX36dHXt2lVpaWlavny5a8KIgwcP6ujRo679582bp4KCAo0cOVJxcXGu5fnnn7fqK1iDcU4AAABAjbH8OU41zeuf4+S0ZYvUs6dUv770yy/mc50AAAAAlJvXPMcJVdC1qxQWJmVmSjt3Wl0NAAAAUKcRnLyVv7/knECDcU4AAABAtSI4eTPntOSMcwIAAACqFcHJm50fnHxrqBoAAABQowhO3qx3b7PL3s8/SwcOWF0NAAAAUGcRnLxZaKjUo4e5Tnc9AAAAoNoQnLwd45wAAACAakdw8nYEJwAAAKDaEZy8Xb9+5uv330vHj1tbCwAAAFBHEZy8XXS01KGDub5unbW1AAAAAHUUwakuoLseAAAAUK0ITnUBwQkAAACoVgSnuqB/f/N12zYpN9faWgAAAIA6iOBUFyQkSPHxUnGx9NVXVlcDAAAA1DkEp7qC7noAAABAtSE41RXO4LR2rbV1AAAAAHUQwamucI5z2rBBKiy0thYAAACgjiE41RUdOkhRUdKZM9LXX1tdDQAAAFCnEJzqCj+/X1udGOcEAAAAeBTBqS5hnBMAAABQLQhOdYmzxWntWskwrK0FAAAAqEMITnVJjx5SSIh04oT0/fdWVwMAAADUGQSnuiQwUOrd21xnnBMAAADgMQSnuub87noAAAAAPILgVNc4J4igxQkAAADwGIJTXZOSYk5Nvn+/dPiw1dUAAAAAdQLBqa4JD5e6dTPX6a4HAAAAeATBqS7iQbgAAACARxGc6iLGOQEAAAAeRXCqi5wtTjt3SqdOWVsLAAAAUAcQnOqimBjpssskw5DWr7e6GgAAAMDrEZzqKsY5AQAAAB5DcKqrGOcEAAAAeAzBqa5yBqfNm6WzZ62tBQAAAPByBKe6qmVLKTZWKiw0wxMAAACASiM41VU2G931AAAAAA8hONVlBCcAAADAIwhOdZkzOK1fLxUXW1sLAAAA4MUITnVZ585SRIR0+rT0zTdWVwMAAAB4LYJTXWa3S337mut01wMAAAAqjeBU1zHOCQAAAKgyglNd5wxOa9dKhmFtLQAAAICXIjjVdT17SoGBUnq6tHev1dUAAAAAXongVNcFB5vhSaK7HgAAAFBJBCdfwDgnAAAAoEoITr6gf3/zde1aa+sAAAAAvBTByRf06yfZbNKPP5pjnQAAAABUCMHJF9Svbz4MV6LVCQAAAKgEgpOvOH9acgAAAAAVQnDyFc5xTkwQAQAAAFQYwclXOFuc0tKk7GxLSwEAAAC8DcHJVzRtKrVoITkc0oYNVlcDAAAAeBWCky9hnBMAAABQKQQnX8I4JwAAAKBSCE6+xNnitHGjlJ9vbS0AAACAFyE4+ZK2baWGDaW8PGnrVqurAQAAALwGwcmX2Gy/dtdjnBMAAABQbgQnX+Psrsc4JwAAAKDcCE6+xhmc1q0zpyYHAAAAUCaCk6/p1k0KC5NOnZK++87qagAAAACvQHDyNf7+Up8+5jrd9QAAAIByITj5IsY5AQAAABVCcPJF5wcnw7C2FgAAAMALEJx8Ue/eZpe9w4elgwetrgYAAACo9SwPTq+88ooSExMVHBys3r17a9OmTRfd99tvv9WNN96oxMRE2Ww2zZkzp+YKrUvCwqTu3c11uusBAAAAZbI0OC1ZskRTpkzRjBkztG3bNiUlJWnQoEE6duxYqfufOXNGLVu21NNPP63Y2NgarraOYZwTAAAAUG6WBqcXX3xRd955pyZMmKAOHTpo/vz5Cg0N1RtvvFHq/j179tRzzz2nm2++WUFBQTVcbR1DcAIAAADKzbLgVFBQoK1btyo1NfXXYvz8lJqaqg0bNnjsOvn5+crOznZbIKlfP/N11y7pxAlrawEAAABqOcuC04kTJ1RcXKyYmBi37TExMUpPT/fYdWbPnq3IyEjXEh8f77Fze7WGDaX27c31deusrQUAAACo5SyfHKK6TZ06VVlZWa7l0KFDVpdUe9BdDwAAACgXy4JTw4YNZbfblZGR4bY9IyPDoxM/BAUFKSIiwm3BOc7gtHattXUAAAAAtZxlwSkwMFA9evTQqlWrXNscDodWrVqllJQUq8ryLf37m69bt0q5udbWAgAAANRilnbVmzJlihYsWKC///3v2rVrl/74xz8qNzdXEyZMkCSNHTtWU6dOde1fUFCgtLQ0paWlqaCgQD///LPS0tK0Z88eq76Cd0tIkJo1k4qKpI0bra4GAAAAqLUsDU6jR4/W888/r+nTp6tr165KS0vT8uXLXRNGHDx4UEePHnXtf+TIEXXr1k3dunXT0aNH9fzzz6tbt2664447Knztf/7TY1/De9lsjHMCAAAAysFmGIZhdRE1KTs7W5GRkZKyNGZMhF5+WYqKsroqC736qjRpkpSaKq1caXU1AAAAQI1xZoOsrKwy50Ko87PqXYzNJr39ttS5s/Tvf1tdjYWcLU4bNphd9gAAAACU4LPB6d//ltq0kX7+WRo0yGx08cn5ETp2NJvccnOlr7+2uhoAAACgVvLZ4NSrl5kTJk0y37/6qtS1q9nw4lP8/KR+/cx1xjkBAAAApfLZ4CRJYWHS3Llm61PTptKePeYM3Y88IhUUWF1dDXJOS87znAAAAIBS+XRwcrr6amnnTunWWyWHQ5o922yR+uYbqyurIec/CNe35goBAAAAyoXgdE79+tLixdLSpVJ0tLR9u5ScLD3zjFRcbHV11Sw5WQoOlo4fl3bvtroaAAAAoNYhOF3gxhulb7+Vhg2TCgulhx+WBgwwu/HVWYGBUu/e5jrd9QAAAIASCE6liIkxH5D7xhtSeLi0fr2UlCTNn1+He7I5xzkxQQQAAABQAsHpImw2acIEaccOaeBA6cwZ6Y9/lIYMMacwr3Oc45wITgAAAEAJBKcyJCRIq1ZJf/6zOQxoxQqpUyfpnXfqWOtTSoo5Nfm+fXU0GQIAAACVR3AqBz8/afJkads2cx6FzExpzBhp9GjpxAmrq/OQiAizP6LEOCcAAADgAgSnCmjf3hzvNHOm5O8vffCB1Lmz9K9/WV2Zh9BdDwAAACgVwamCAgKkGTOkr74yg1R6uvTb30p33imdPm11dVVEcAIAAABKRXCqpB49pK1bpSlTzIkk/vY3qUsX6b//tbqyKnDOrLdjh9kfEQAAAIAkglOVhIRIL7wgrV5tTiKxf785A98DD0h5eVZXVwmxsVLr1uasF+vXW10NAAAAUGsQnDzgiiukb76Rbr/dzBwvvPBri5TXobseAAAAUALByUMiIszueh9/bD5A97vvpD59pCeekAoLra6uAghOAAAAQAkEJw8bNkzauVMaOVIqKjInkujXT/r+e6srKydncNq82Uv7GwIAAACeR3CqBg0bSu+/L739tlS/vplBunWTXnpJcjisrq4MrVqZTWYFBWbhAAAAAAhO1cVmk373O3OCuquvNhtv7rtPSk2VDh60urpLsNnorgcAAABcgOBUzZo1k1askF59VQoNNWfg69xZWrTInEiiViI4AQAAAG4ITjXAZpP++EcpLU1KSZGys6UJE6QRI6Rjx6yurhTO5zmtXy8VF1tbCwAAAFALEJxqUJs2ZiPO7NlSQID0z39KHTtKy5ZZXdkFkpKk8HAz4e3YYXU1AAAAgOUITjXMbpcefticd6FLF+nECemGG6Rx46TMTKurO8dul/r2NdfprgcAAAAQnKySlCRt2mSGKD8/afFic+zT559bXdk5jHMCAAAAXAhOFgoKMrvtrVljzgJ++LA5A98990hnzlhcnHOc09q1tXgWCwAAAKBmEJxqgb59pe3bpbvuMt/PnWs+92njRguL6tXLHIh19Kj0008WFgIAAABYj+BUS4SFSa+8Ii1fLjVpIv3wgxmoHnvMfBZtjQsJkXr2NNfprgcAAAAfR3CqZQYNknbulMaMkRwOadYsqXdvc1uNc45zWrvWgosDAAAAtQfBqRaKipLeekt6/30pOtp8/lOPHtJzz9XwY5Wc45xocQIAAICPIzjVYjfdZLY0/fa3Zne9P/1JGjiwBocc9etnPr33hx+kjIwauigAAABQ+xCcarnYWOnjj6XXX5fq1TN7zXXpIr32Wg1MdhcVJXXqZK7TXQ8AAAA+jODkBWw26bbbpG++kQYMkHJzpf/5H2noUOnIkWq++PnTkgMAAAA+iuDkRVq0kFavll54wXwG1GefmQ1CS5ZU40V5EC4AAABAcPI2fn7SlCnStm1S9+7SqVPSzTdLt9winTxZDRd0Bqevv5ZOn66GCwAAAAC1H8HJS3XoIH31lTRjhmS3S++9Z7Y+ffaZhy/UrJmUmGjOjb5hg4dPDgAAAHgHgpMXCwiQZs4080y7dtLRo9K115rjn3JyPHghxjkBAADAxxGc6oCePc2ue5Mnm+9fe01KSvJgzmGcEwAAAHwcwamOCAmR/vxn6T//kZo3N5/1NGCA+eynvLwqntwZnL76ynygFAAAAOBjCE51zJVXmtOWT5hgPufpuefMFqm0tCqctF07KTraTGDbtnmqVAAAAMBrEJzqoMhI6Y03pH/+U2rcWNq50wxPs2ZJRUWVOKHN9us4J7rrAQAAwAcRnOqw664zQ9MNN5iB6bHHzPzzww+VOBnjnAAAAODDCE51XKNG0tKl0ptvmi1RGzdKXbtKc+eaM4yXmzM4rV1bwQMBAAAA70dw8gE2m/T730s7dkipqdLZs9I990jXXCMdOlTOk3TrJoWGmk/c3bWrWusFAAAAahuCkw+Jj5dWrDBbm0JCpFWrpM6dzdYowyjj4IAAqU8fc53uegAAAPAxBCcf4+cnTZpkzrLXp4+UlSWNHSvdeKN0/HgZBzPOCQAAAD6K4OSjLrvMzD+zZpmNScuWSZ06mTPxXRTBCQAAAD6K4OTD/P2lRx6RNm0yQ9OxY9Lw4eYzoLKySjmgd2/JbjcHRh08WNPlAkDtVlAg5eSUo+8zAMAb2QzDt/6Fz87OVmRkpLKyshQREWF1ObVGfr40fbr5wFzDkJo3lxYtMh+o66ZXL2nzZumtt6QxY6woFQBqTn6+lJFx8SU9/df1U6fMY4KCzClNy7vUr2/O4gOgdnA4pJ9/lvbtM7vltG4tNWzI39M6qiLZwL+GakItFxQkPfOMNGyYNG6c9NNP0m9+I913nzR7tjmZhCSzu97mzWZ3PYITAG909mzJ0HOxpdTm9zLk50uHD5tLefj7mz+UlTdoNWhgtv4DqLy8PDMY/fSTtHev+7Jvn/n3+Hzh4WaAat1aatXK/bVJE3MQOeo8WpxQQk6O9OCD0vz55vt27aTFi6WePSV99JE0YoTUsaP5dF0AqA1ycsoOQc7l9OmKnTsgQGrcWIqJKXsJDpZOnDBn2ynPkpNT8e/q52eGp8aNyxe0GjY0wxnga06eLD0Y7d1rtihd6kdgf38pIcHsgnv48KX3DQ6WWrYsGahatza78AQEeP67wWMqkg0ITriozz6Tbr9dOnrU/OXmo49Kj/3PcQU0bWzucOKEFB1tbZEA6ibDMAPOpbrGnb+cOVOx8wcGSrGx5QtDUVHV10UnL6/8Iev4cSkzs3LXiYqqWPfBoCCPfk2gWji71JUWjPbuLfvvS3i4GXKcizP8tGplPsPF+QsHZ+vUnj3mec9/3b9fKiq6+DXsdikxsWSocl7P1aUHViE4XQLBqWJOnpTuvlt6913zfffu0vpT7RW073tzCr7rrrO2QADewzDMH2TK2zKUl1ex84eElC8IxcRIkZHeOV6hsLBiLVq//FK5ySrCwysWtMLCPP9dAenX0FJaMNq3z2wRupS4uJKhyLl4YtxSUZE5YZYzSF0Yrsr6d6xZs9JDVatW5r9TqHYEp0sgOFXO++9Lf/yjGaT+5jdRtzsWyDHlAfm98JzVpQGwkmGY/zCUFYLS082pO8v6IedCYWFm0ClP61C9et4ZhqpTcbH536e8QevEiUv/9vxiQkIqFrQiIvhvhV+dPFkyFDm72JWnS52zRefCpWVLKTS0xr5GCQ6H2W3nwlYq53pZYygbNizZ9c+5zmQVHkNwugSCU+UdPSrdcYcU/eliLdY4nVWw0v2aqMAvWEX2IBXag1VkD1ZRQLCK/YPlCAiSIzBYjqBgGUHBUlCwFBwsW0iQ/EKCZQsNlj00WPawYPmHBcm/XrD86wUrIDxYgRHBCooIUmBEsILrm4t/vWCz+wiDooHq5XCYLRXlmUDh2LGK/6AdEVH+liFaMmqWs1WwIt0HLxxEXx6BgZeeEKNBA7N7Yf365hIVZf72nbFa3snhMMcJlRaMKtOl7vylWTPv/HNhGOa/sxeGKufrsWOXPt45WUVp46qYrKJCCE6XQHCqGsOQ3n4hXcMfbK16yrWkhkL5K98WrAI/czEDW5CK/M3AVhwQrOLAYBkBQTKcoS3YGdqC5RcSJL9zgc0eFix7vWAFhAUpIPzX0BYYEazAcHM/57GuJTCQf5BQdYZhtgYUFpqtMIWFJZfStpd3W0WPz883WxsyMswfhouLK/Z96td3DzwXayFq3Jg+/XWJYZgTXFQkaOVW4f8d9eq5BypnqCrPer16/Ntdnc6ede9Sd34wqkiXutJajXyxdeX06YuHqrImqwgK+vX+XRiuEhKYrOICBKdLIDh5xtmfT+rU9oPKz85TYXaeCnPyVZSTZy65eXLk5slxJk+Os/kyzubJOJsn5efJlpcnW0Ge/Ary5VeQJ3thnuxFefIvylNAUZ78i/MV4MhTkCNPgUaegmUu/qrgD3HVrMAWqEJ7sGsp9g8yQ1tgsBwBZiubAoNkBJstbbaQc0uoGdzsoWYLmn9YkPzsNtnsNtntNtnsfrL72+Rnd19sfjbzfxrOxc/P/f3FlvLs58lzWXVNw6jZkOGp42u76OjytQo1bsxkAii/s2fLDlenTpmtEM7Xysw+eCE/P7PV6mLhqqzgFRzsez+8n8/ZLbe0YOTsUncpAQElu9Q5xx1Z3aXO2zBZhUcRnC6B4ORdHA7zF+FnTxcpLytfeZl5ys/KU0G2uRTm5KvwdJ4rtBXn5qn4TL4cZ/Okc4HNyDMDm/Lzz4W2PNndQlu+AorzFFCcp0BHnoLOhbUg5buCW7Dy5Cef+qsCK9hs5g8XgYHm6/lLdW9zdp1yhqFGjfitJGqPwkJzPEhmpnugutS68/2pUxUfW1eawMCKh63z9/OGv0/FxWZrxsWm8C5rTE5EROkz1DlnqaOrffW7cLKK88dV/fST+YuLS2natPTnVdXhySoITpdAcEJZiorMf1fcljOG8k4XmqHtdL4Kss2gVpiTp2JnaDuTb7ayncn7tZXNGdjyzcDmV5Anv8I8+RfmyV6UL//iPMlhnGtyN2STIT85ZDu3fqmlPPt58ly1pbaLBdgi2VWogPOWQBXaAlRkM98X2QJUaAtU0bltRbYAFdsCVOQXoKJz24v9zPfFtgAV2QNVfG7dYXd+Fuhad9jPbT+3n+H/6zaHf6Br3bXd3wwqzm0KMLc51w3/APkF2OXnZ/5i3G5Xja87G/Ck0ter+t6qY2uyDmdDqd3u240TtU5eXvnCVmnBKzPT/C1eVYWFlR2uLvZZRITnuhle2KXu/GX//rJDZpMmF5+lLjqaP/i12cUmq3C+VnSyivPHVXlxd0qC0yUQnFBbGYb5b1pRkflLP0++Vsc5rbim+88uv4YpZ6QCapvyBFYrQnJF12v6mhf+/HX++8p+VunzGIb883Lkf/qU7DmZCsjJlP/pU/LPyTSXc+v2nEwFnNvHud1+OlP+Zyr4wOVSGDabiutFqji8vorDo1QUXt+1Xuxar6/iiF/fG3Z/BR3Zp+Cf9yrw8F4FHTJfA44dufS1AgJU1CxRRc1bqSixlYoTWqk48dzSvIX86oVWuGf1xT5zbkctUF2TVbRqZbZi1eLxhQSnSyA4Ad7LOZ9CacHK4fj1tSrrNX1cbTlHcfGvY40No+R6RT6z4jyVuSZQE+wqUoSyFaVTqq9M1Vdmudad70NUweeZlUOWIrRXrUpdDquZHKr5LnWeDGKePKYsZf1bUt2f19Q1QotPq3nhXjUv3KuEwj1qXrjHtR5bdPiSwxnybUH6euAU9fnPU2VfyAIVyQZeOH8jAF9ls5mzzvr7MxcBPMPToc8ZSK0OwrXlHJU57sIJHS/8oe7895f6rCr7evY6/pIaSGqgTEmnDGlfBa4TZOQp3JGlSMcphRdnKsKRqUjHKUU4zls33LdHOjIVqHwdsidqv72V9vu10r5zy36/lvpF0TJkk8Ph/mfYMKTgc70fLtxunLe9Opz/9wi1Ubi2q6ukriU+CVKeWmifWmmvWmuPWmuPaz1R+xVk5CurqG48WoLgBADwWeePUwJqp+BzS0yFj2wqqY+nyzmntEB1saBVXdur+xoOR9n/Nlzqc985NlhSe0nt3T4/IelEUZGCMg6qQyLByWNeeeUVPffcc0pPT1dSUpJefvll9erV66L7f/DBB5o2bZr279+vNm3a6JlnntG1115bgxUDAAD4rvMnSGGyPFycv6SWVhfhMZaP1FqyZImmTJmiGTNmaNu2bUpKStKgQYN07CKD0NavX69bbrlFt99+u77++msNHz5cw4cP186dO2u4cgAAAAC+wvLJIXr37q2ePXtq7ty5kiSHw6H4+Hjdc889evjhh0vsP3r0aOXm5uqTTz5xbevTp4+6du2q+fPnl3k9JocAAAAAIFUsG1ja4lRQUKCtW7cqNTXVtc3Pz0+pqanasGFDqcds2LDBbX9JGjRo0EX3z8/PV3Z2ttsCAAAAABVhaXA6ceKEiouLFRPjPuAxJiZG6enppR6Tnp5eof1nz56tyMhI1xIfH++Z4gEAAAD4DMvHOFW3qVOnKisry7UcOnTI6pIAAAAAeBlLZ9Vr2LCh7Ha7MjIy3LZnZGQoNja21GNiY2MrtH9QUJCCeOALAAAAgCqwtMUpMDBQPXr00KpVq1zbHA6HVq1apZSUlFKPSUlJcdtfklauXHnR/QEAAACgqix/jtOUKVM0btw4JScnq1evXpozZ45yc3M1YcIESdLYsWPVtGlTzZ49W5J033336YorrtALL7ygoUOH6r333tOWLVv02muvWfk1AAAAANRhlgen0aNH6/jx45o+fbrS09PVtWtXLV++3DUBxMGDB+Xn92vDWN++ffXOO+/oscce0yOPPKI2bdroo48+UqdOnaz6CgAAAADqOMuf41TTeI4TAAAAAMmLnuMEAAAAAN6A4AQAAAAAZSA4AQAAAEAZCE4AAAAAUAbLZ9Wrac65MLKzsy2uBAAAAICVnJmgPPPl+Vxw+uWXXyRJ8fHxFlcCAAAAoDY4ffq0IiMjL7mPzwWnBg0aSDKfD1XWzcHFZWdnKz4+XocOHWJa90riHnoG99EzuI9Vxz30DO5j1XEPPYP7WHXecA8Nw9Dp06fVpEmTMvf1ueDkfJhuZGRkrf0P6E0iIiK4j1XEPfQM7qNncB+rjnvoGdzHquMeegb3sepq+z0sb2MKk0MAAAAAQBkITgAAAABQBp8LTkFBQZoxY4aCgoKsLsWrcR+rjnvoGdxHz+A+Vh330DO4j1XHPfQM7mPV1bV7aDPKM/ceAAAAAPgwn2txAgAAAICKIjgBAAAAQBkITgAAAABQBoITAAAAAJTBZ4LTf//7Xw0bNkxNmjSRzWbTRx99ZHVJXmf27Nnq2bOnwsPD1bhxYw0fPly7d++2uiyvM2/ePHXp0sX1MLiUlBR99tlnVpfl1Z5++mnZbDZNnjzZ6lK8ysyZM2Wz2dyWdu3aWV2WV/r555/1+9//XtHR0QoJCVHnzp21ZcsWq8vyKomJiSX+PNpsNk2aNMnq0rxGcXGxpk2bphYtWigkJEStWrXSk08+KeYBq5jTp09r8uTJSkhIUEhIiPr27avNmzdbXVatVtbP2YZhaPr06YqLi1NISIhSU1P1448/WlNsFfhMcMrNzVVSUpJeeeUVq0vxWl9++aUmTZqkr776SitXrlRhYaGuueYa5ebmWl2aV2nWrJmefvppbd26VVu2bNFvfvMbXX/99fr222+tLs0rbd68WX/961/VpUsXq0vxSh07dtTRo0ddy9q1a60uyeucOnVK/fr1U0BAgD777DN99913euGFFxQVFWV1aV5l8+bNbn8WV65cKUm66aabLK7MezzzzDOaN2+e5s6dq127dumZZ57Rs88+q5dfftnq0rzKHXfcoZUrV+rNN9/Ujh07dM011yg1NVU///yz1aXVWmX9nP3ss8/qpZde0vz587Vx40aFhYVp0KBBysvLq+FKq8jwQZKMZcuWWV2G1zt27Jghyfjyyy+tLsXrRUVFGX/729+sLsPrnD592mjTpo2xcuVK44orrjDuu+8+q0vyKjNmzDCSkpKsLsPrPfTQQ0b//v2tLqPOue+++4xWrVoZDofD6lK8xtChQ43bbrvNbdsNN9xgjBkzxqKKvM+ZM2cMu91ufPLJJ27bu3fvbjz66KMWVeVdLvw52+FwGLGxscZzzz3n2paZmWkEBQUZ7777rgUVVp7PtDjB87KysiRJDRo0sLgS71VcXKz33ntPubm5SklJsbocrzNp0iQNHTpUqampVpfitX788Uc1adJELVu21JgxY3Tw4EGrS/I6H3/8sZKTk3XTTTepcePG6tatmxYsWGB1WV6toKBAb731lm677TbZbDary/Eaffv21apVq/TDDz9IkrZv3661a9dqyJAhFlfmPYqKilRcXKzg4GC37SEhIbTIV9K+ffuUnp7u9v/qyMhI9e7dWxs2bLCwsorzt7oAeCeHw6HJkyerX79+6tSpk9XleJ0dO3YoJSVFeXl5qlevnpYtW6YOHTpYXZZXee+997Rt2zb6nVdB7969tWjRIrVt21ZHjx7V448/rssvv1w7d+5UeHi41eV5jZ9++knz5s3TlClT9Mgjj2jz5s269957FRgYqHHjxlldnlf66KOPlJmZqfHjx1tdild5+OGHlZ2drXbt2slut6u4uFizZs3SmDFjrC7Na4SHhyslJUVPPvmk2rdvr5iYGL377rvasGGDWrdubXV5Xik9PV2SFBMT47Y9JibG9Zm3IDihUiZNmqSdO3fy25dKatu2rdLS0pSVlaWlS5dq3Lhx+vLLLwlP5XTo0CHdd999WrlyZYnfCqL8zv8tdJcuXdS7d28lJCTo/fff1+23325hZd7F4XAoOTlZTz31lCSpW7du2rlzp+bPn09wqqTXX39dQ4YMUZMmTawuxau8//77evvtt/XOO++oY8eOSktL0+TJk9WkSRP+LFbAm2++qdtuu01NmzaV3W5X9+7ddcstt2jr1q1WlwaL0VUPFXb33Xfrk08+0erVq9WsWTOry/FKgYGBat26tXr06KHZs2crKSlJf/nLX6wuy2ts3bpVx44dU/fu3eXv7y9/f399+eWXeumll+Tv76/i4mKrS/RK9evX12WXXaY9e/ZYXYpXiYuLK/FLj/bt29PtsZIOHDigzz//XHfccYfVpXidBx98UA8//LBuvvlmde7cWbfeeqvuv/9+zZ492+rSvEqrVq305ZdfKicnR4cOHdKmTZtUWFioli1bWl2aV4qNjZUkZWRkuG3PyMhwfeYtCE4oN8MwdPfdd2vZsmX6z3/+oxYtWlhdUp3hcDiUn59vdRle46qrrtKOHTuUlpbmWpKTkzVmzBilpaXJbrdbXaJXysnJ0d69exUXF2d1KV6lX79+JR7N8MMPPyghIcGiirzbwoUL1bhxYw0dOtTqUrzOmTNn5Ofn/qOd3W6Xw+GwqCLvFhYWpri4OJ06dUorVqzQ9ddfb3VJXqlFixaKjY3VqlWrXNuys7O1ceNGrxvf7TNd9XJyctx+i7pv3z6lpaWpQYMGat68uYWVeY9JkybpnXfe0T//+U+Fh4e7+qVGRkYqJCTE4uq8x9SpUzVkyBA1b95cp0+f1jvvvKMvvvhCK1assLo0rxEeHl5ibF1YWJiio6MZc1cBDzzwgIYNG6aEhAQdOXJEM2bMkN1u1y233GJ1aV7l/vvvV9++ffXUU09p1KhR2rRpk1577TW99tprVpfmdRwOhxYuXKhx48bJ399nfkTxmGHDhmnWrFlq3ry5OnbsqK+//lovvviibrvtNqtL8yorVqyQYRhq27at9uzZowcffFDt2rXThAkTrC6t1irr5+zJkyfrf//3f9WmTRu1aNFC06ZNU5MmTTR8+HDriq4Mq6f1qymrV682JJVYxo0bZ3VpXqO0+yfJWLhwodWleZXbbrvNSEhIMAIDA41GjRoZV111lfHvf//b6rK8HtORV9zo0aONuLg4IzAw0GjatKkxevRoY8+ePVaX5ZX+7//+z+jUqZMRFBRktGvXznjttdesLskrrVixwpBk7N692+pSvFJ2drZx3333Gc2bNzeCg4ONli1bGo8++qiRn59vdWleZcmSJUbLli2NwMBAIzY21pg0aZKRmZlpdVm1Wlk/ZzscDmPatGlGTEyMERQUZFx11VVe+ffcZhg8ThoAAAAALoUxTgAAAABQBoITAAAAAJSB4AQAAAAAZSA4AQAAAEAZCE4AAAAAUAaCEwAAAACUgeAEAAAAAGUgOAEAAABAGQhOAABUgM1m00cffWR1GQCAGkZwAgB4jfHjx8tms5VYBg8ebHVpAIA6zt/qAgAAqIjBgwdr4cKFbtuCgoIsqgYA4CtocQIAeJWgoCDFxsa6LVFRUZLMbnTz5s3TkCFDFBISopYtW2rp0qVux+/YsUO/+c1vFBISoujoaE2cOFE5OTlu+7zxxhvq2LGjgoKCFBcXp7vvvtvt8xMnTmjEiBEKDQ1VmzZt9PHHH1fvlwYAWI7gBACoU6ZNm6Ybb7xR27dv15gxY3TzzTdr165dkqTc3FwNGjRIUVFR2rx5sz744AN9/vnnbsFo3rx5mjRpkiZOnKgdO3bo448/VuvWrd2u8fjjj2vUqFH65ptvdO2112rMmDE6efJkjX5PAEDNshmGYVhdBAAA5TF+/Hi99dZbCg4Odtv+yCOP6JFHHpHNZtMf/vAHzZs3z/VZnz591L17d7366qtasGCBHnroIR06dEhhYWGSpE8//VTDhg3TkSNHFBMTo6ZNm2rChAn63//931JrsNlseuyxx/Tkk09KMsNYvXr19NlnnzHWCgDqMMY4AQC8ypVXXukWjCSpQYMGrvWUlBS3z1JSUpSWliZJ2rVrl5KSklyhSZL69esnh8Oh3bt3y2az6ciRI7rqqqsuWUOXLl1c62FhYYqIiNCxY8cq+5UAAF6A4AQA8CphYWElus55SkhISLn2CwgIcHtvs9nkcDiqoyQAQC3BGCcAQJ3y1VdflXjfvn17SVL79u21fft25ebmuj5ft26d/Pz81LZtW4WHhysxMVGrVq2q0ZoBALUfLU4AAK+Sn5+v9PR0t23+/v5q2LChJOmDDz5QcnKy+vfvr7ffflubNm3S66+/LkkaM2aMZsyYoXHjxmnmzJk6fvy47rnnHt16662KiYmRJM2cOVN/+MMf1LhxYw0ZMkSnT5/WunXrdM8999TsFwUA1CoEJwCAV1m+fLni4uLctrVt21bff/+9JHPGu/fee0933XWX4uLi9O6776pDhw6SpNDQUK1YsUL33XefevbsqdDQUN1444168cUXXecaN26c8vLy9Oc//1kPPPCAGjZsqJEjR9bcFwQA1ErMqgcAqDNsNpuWLVum4cOHW10KAKCOYYwTAAAAAJSB4AQAAAAAZWCMEwCgzqD3OQCgutDiBAAAAABlIDgBAAAAQBkITgAAAABQBoITAAAAAJSB4AQAAAAAZSA4AQAAAEAZCE4AAAAAUAaCEwAAAACU4f8DfVH/W3j9M3IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYnUlEQVR4nOzdeViU5foH8O+wDijgzuIC7ogiuCLuJgZmJmqKZGpmdU5p5bE8J1vU6pRt9muxMjtp5r6bmWlI7uAKuO+puAGiAooKwry/P57eGUZZBmZ5Z/l+rmuueR3embkHFeae577vRyVJkgQiIiIiIiIyipPSARAREREREdkDJldEREREREQmwOSKiIiIiIjIBJhcERERERERmQCTKyIiIiIiIhNgckVERERERGQCTK6IiIiIiIhMgMkVERERERGRCTC5IiIiIiIiMgEmV0RERGS1VCoVJkyYoHQYREQGYXJFRER2p3fv3mjTpo3SYdgElUpV5uWf//yn0uEREdkUF6UDICIiImX169cPo0ePfuj2Fi1aKBANEZHtYnJFRGRl8vPzUa1aNaXDqJCtxOno7t27Bzc3Nzg5lV2s0qJFCzz99NMWjIqIyD6xLJCISEHTp0+HSqXCsWPH8NRTT6FmzZro3r07ACAoKAiPP/44tm7dio4dO8LDwwOhoaHYunUrAGD16tUIDQ2FWq1Ghw4dkJqaqvfYGRkZGDt2LBo0aAB3d3f4+/tj0KBBOH/+vPYc+Tn++OMPhIeHQ61WIyQkBKtXr9Z7rJ9++gkqlQrbtm3DSy+9hHr16qFBgwbar3/77bdo3bo13N3dERAQgPHjxyMnJ0fvMeRSvQMHDqBr167w8PBA48aNMXv2bNN9QyvJkLhPnz6NoUOHws/PD2q1Gg0aNMCIESOQm5urPSchIQHdu3dHjRo1UL16dbRs2RJvvvlmhc8v9xMtWrQILVu21P5dbt++/aFzL1++jGeffRa+vr5wd3dH69atMXfuXL1ztm7dCpVKhaVLl+Ltt99G/fr14enpiby8vKp9g0qozN9fVlYWxo0bB19fX6jVaoSFhWH+/PkPnafRaPDll19q/x3XrVsXMTEx2L9//0Pnrl27Fm3atNG+9o0bNxr9moiITI0rV0REVmDYsGFo3rw5PvzwQ0iSpL39zJkzeOqpp/CPf/wDTz/9ND777DMMHDgQs2fPxptvvomXXnoJADBjxgwMHz4cJ0+e1K5QDB06FEePHsXLL7+MoKAgZGVlISEhAenp6QgKCtI+x+nTpxEXF4d//vOfGDNmDObNm4dhw4Zh48aN6Nevn16cL730EurWrYupU6ciPz8fgEgQ3333XURFReHFF1/EyZMn8d1332Hfvn3YtWsXXF1dtfe/efMmHnvsMQwfPhzx8fFYvnw5XnzxRbi5ueHZZ58117e3VIbEXVhYiOjoaBQUFODll1+Gn58fLl++jPXr1yMnJwc+Pj44evQoHn/8cbRt2xbvvfce3N3dcebMGezatcugOLZt24Zly5bhlVdegbu7O7799lvExMRg79692r6xzMxMdOnSRZuM1a1bF7///jvGjRuHvLw8TJw4Ue8x33//fbi5ueH1119HQUEB3Nzcyo3h3r17yM7Ofuh2b29vvfsa8vd39+5d9O7dG2fOnMGECRPQuHFjrFixAs888wxycnLw6quvah9v3Lhx+Omnn9C/f38899xzKCoqwo4dO7B792507NhRe97OnTuxevVqvPTSS/Dy8sJXX32FoUOHIj09HbVr1zbo+0xEZBESEREpZtq0aRIAKT4+/qGvBQYGSgCkpKQk7W2bNm2SAEgeHh7ShQsXtLd///33EgBpy5YtkiRJ0s2bNyUA0qefflru88vPsWrVKu1tubm5kr+/v9SuXTvtbfPmzZMASN27d5eKioq0t2dlZUlubm7So48+KhUXF2tvnzVrlgRAmjt3rva2Xr16SQCkmTNnam8rKCiQwsPDpXr16kmFhYXlxloZvXr1klq3bl3m1w2NOzU1VQIgrVixoszH+r//+z8JgHTt2rVKxwlAAiDt379fe9uFCxcktVotDR48WHvbuHHjJH9/fyk7O1vv/iNGjJB8fHykO3fuSJIkSVu2bJEASE2aNNHeZmgMpV2WLFmiPc/Qv78vvvhCAiAtXLhQe15hYaEUGRkpVa9eXcrLy5MkSZL+/PNPCYD0yiuvPBSTRqPRi8/NzU06c+aM9raDBw9KAKSvv/7aoNdIRGQpLAskIrICZU1lCwkJQWRkpPbPERERAIBHHnkEjRo1euj2v/76CwDg4eEBNzc3bN26FTdv3iz3uQMCAjB48GDtn729vTF69GikpqYiIyND79znn38ezs7O2j9v3rwZhYWFmDhxol5Pz/PPPw9vb2/89ttvevd3cXHBP/7xD+2f3dzc8I9//ANZWVk4cOBAuXGakqFx+/j4AAA2bdqEO3fulPpYNWrUAAD88ssv0Gg0lY4lMjISHTp00P65UaNGGDRoEDZt2oTi4mJIkoRVq1Zh4MCBkCQJ2dnZ2kt0dDRyc3ORkpKi95hjxoyBh4eHwTEMGjQICQkJD1369Omjd54hf38bNmyAn58f4uPjtee5urrilVdewe3bt7Ft2zYAwKpVq6BSqTBt2rSH4lGpVHp/joqKQtOmTbV/btu2Lby9vbX/3omIrAWTKyIiK9C4ceNSby+ZQAG6N/sNGzYs9XY5kXJ3d8fHH3+M33//Hb6+vujZsyc++eSTh5IlAGjWrNlDb2blKXEl+7NKi/PChQsAgJYtW+rd7ubmhiZNmmi/LgsICHhoCEZZz1XSjRs3kJGRob2U7HeqCkPjbty4MSZNmoT//e9/qFOnDqKjo/HNN9/oPX9cXBy6deuG5557Dr6+vhgxYgSWL19ucKLVvHnzh25r0aIF7ty5g2vXruHatWvIycnBnDlzULduXb3L2LFjAYgep5LK+vdUlgYNGiAqKuqhi6+vr955hvz9XbhwAc2bN39ogEarVq20XweAs2fPIiAgALVq1aowvgf/HwBAzZo1K/zggIjI0phcERFZgbJWGUquEhlyu1SiX2vixIk4deoUZsyYAbVajXfeeQetWrV6aPCFKeI0tyFDhsDf3197Kdm3Y24zZ87EoUOH8Oabb+Lu3bt45ZVX0Lp1a1y6dAmA+J5s374dmzdvxqhRo3Do0CHExcWhX79+KC4uNvr55STt6aefLnV1KSEhAd26ddO7j1J/T+ZiyL93IiJrwOSKiMiONW3aFK+99hr++OMPHDlyBIWFhZg5c6beOWfOnHnoTeqpU6cAQG/wRWkCAwMBACdPntS7vbCwEOfOndN+XXblyhXtIIzKPNfMmTP1kol///vf5cZVkcrGHRoairfffhvbt2/Hjh07cPnyZb0peU5OTujbty8+//xzHDt2DB988AH+/PNPbNmypcJYTp8+/dBtp06dgqenp3aFysvLC8XFxaWuLkVFRaFevXpV+TZUmiF/f4GBgTh9+vRDK3cnTpzQfh0Q/zavXLmCGzdumDlqIiLLYXJFRGSH7ty5g3v37und1rRpU3h5eaGgoEDv9itXrmDNmjXaP+fl5eHnn39GeHg4/Pz8yn2eqKgouLm54auvvtJL0H788Ufk5uZiwIABeucXFRXh+++/1/65sLAQ33//PerWravXd/SgDh066CUTISEh5cZVEUPjzsvLQ1FRkd59Q0ND4eTkpP0+lpYchIeHA8BD3+vSJCcn6/VMXbx4Eb/88gseffRRODs7w9nZGUOHDsWqVatw5MiRh+5/7dq1il+wiRjy9/fYY48hIyMDy5Yt07vf119/jerVq6NXr14AxDRLSZLw7rvvPvQ8XJEiIlvFUexERHbo1KlT6Nu3L4YPH46QkBC4uLhgzZo1yMzMxIgRI/TObdGiBcaNG4d9+/bB19cXc+fORWZmJubNm1fh89StWxdTpkzBu+++i5iYGDzxxBM4efIkvv32W3Tq1OmhjWkDAgLw8ccf4/z582jRogWWLVuGtLQ0zJkzR29kuylcu3YN//3vfx+6vXHjxhg5cqRBcf/555+YMGEChg0bhhYtWqCoqAgLFizQJjwA8N5772H79u0YMGAAAgMDkZWVhW+//RYNGjTQ7llWnjZt2iA6OlpvFDsAvaTjo48+wpYtWxAREYHnn38eISEhuHHjBlJSUrB582ajV39OnTqFhQsXPnS7r6+v3jh+Q/7+XnjhBXz//fd45plncODAAQQFBWHlypXYtWsXvvjiC3h5eQEA+vTpg1GjRuGrr77C6dOnERMTA41Ggx07dqBPnz6YMGGCUa+JiEgRis0pJCIi7Sj20sZ4BwYGSgMGDHjodgDS+PHj9W47d+6c3uj17Oxsafz48VJwcLBUrVo1ycfHR4qIiJCWL19e6nNs2rRJatu2reTu7i4FBwc/NHpcHsW+b9++Ul/HrFmzpODgYMnV1VXy9fWVXnzxRenmzZt658jj0ffv3y9FRkZKarVaCgwMlGbNmlXh96my5LHhpV369u1rcNx//fWX9Oyzz0pNmzaV1Gq1VKtWLalPnz7S5s2bteckJiZKgwYNkgICAiQ3NzcpICBAio+Pl06dOlVhnPLf5cKFC6XmzZtL7u7uUrt27bQj9UvKzMyUxo8fLzVs2FBydXWV/Pz8pL59+0pz5szRniOPYi9vdHxpMZR16dWrl9731NC/v8zMTGns2LFSnTp1JDc3Nyk0NFSaN2/eQ+cVFRVJn376qRQcHCy5ublJdevWlfr37y8dOHDgoe/RgwIDA6UxY8YY/DqJiCxBJUlceyciclRBQUFo06YN1q9fb/bn6t27N7Kzs0stbXNUKpUK48ePx6xZs5QOpUL8+yMiqhh7roiIiIiIiEyAyRUREREREZEJMLkiIiIiIiIyAfZcERERERERmQBXroiIiIiIiEyAyRUREREREZEJcBPhUmg0Gly5cgVeXl5QqVRKh0NERERERAqRJAm3bt1CQEAAnJzKX5ticlWKK1euoGHDhkqHQUREREREVuLixYto0KBBuecwuSqFl5cXAPEN9Pb2VjgaIiIiIiJSSl5eHho2bKjNEcrD5KoUcimgt7c3kysiIiIiIjKoXYgDLYiIiIiIiEyAyRUREREREZEJMLkiIiIiIiIyAfZcEREREZFNKC4uxv3795UOg+yMs7MzXFxcTLIFE5MrIiIiIrJ6t2/fxqVLlyBJktKhkB3y9PSEv78/3NzcjHocJldEREREZNWKi4tx6dIleHp6om7duiZZYSACxAbBhYWFuHbtGs6dO4fmzZtXuFFweZhcEREREZFVu3//PiRJQt26deHh4aF0OGRnPDw84OrqigsXLqCwsBBqtbrKj8WBFkRERERkE7hiReZizGqV3uOY5FGIiIiIiIgcHJMrIiIiIiIiE2ByRURERERkI4KCgvDFF18oHQaVgckVEREREZGJqVSqci/Tp0+v0uPu27cPL7zwglGx9e7dGxMnTjTqMah0nBZIRERERGRiV69e1R4vW7YMU6dOxcmTJ7W3Va9eXXssSRKKi4vh4lLxW/O6deuaNlAyKa5cEVmz778Hnn4auHdP6UiIiIishiQB+fnKXAzdw9jPz0978fHxgUql0v75xIkT8PLywu+//44OHTrA3d0dO3fuxNmzZzFo0CD4+vqievXq6NSpEzZv3qz3uA+WBapUKvzvf//D4MGD4enpiebNm2PdunVGfX9XrVqF1q1bw93dHUFBQZg5c6be17/99ls0b94carUavr6+ePLJJ7VfW7lyJUJDQ+Hh4YHatWsjKioK+fn5RsVjS7hyRWSt7t8HXn8duH0bGDwYGDpU6YiIiIiswp07QImFH4u6fRuoVs00j/XGG2/gs88+Q5MmTVCzZk1cvHgRjz32GD744AO4u7vj559/xsCBA3Hy5Ek0atSozMd599138cknn+DTTz/F119/jZEjR+LChQuoVatWpWM6cOAAhg8fjunTpyMuLg5JSUl46aWXULt2bTzzzDPYv38/XnnlFSxYsABdu3bFjRs3sGPHDgBitS4+Ph6ffPIJBg8ejFu3bmHHjh2QDM1I7QCTKyJrtX+/+AkOAFu3MrkiIiKyM++99x769eun/XOtWrUQFham/fP777+PNWvWYN26dZgwYUKZj/PMM88gPj4eAPDhhx/iq6++wt69exETE1PpmD7//HP07dsX77zzDgCgRYsWOHbsGD799FM888wzSE9PR7Vq1fD444/Dy8sLgYGBaNeuHQCRXBUVFWHIkCEIDAwEAISGhlY6BlvG5IrIWv35p+542zbl4iAiIrIynp66zx+VeG5T6dixo96fb9++jenTp+O3337TJip3795Fenp6uY/Ttm1b7XG1atXg7e2NrKysKsV0/PhxDBo0SO+2bt264YsvvkBxcTH69euHwMBANGnSBDExMYiJidGWJIaFhaFv374IDQ1FdHQ0Hn30UTz55JOoWbNmlWKxRey5IrJWJZOrw4eB7GzlYiEiIrIiKpUozVPiolKZ7nVUe6C+8PXXX8eaNWvw4YcfYseOHUhLS0NoaCgKCwvLfRxXV9cHvj8qaDQa0wVagpeXF1JSUrBkyRL4+/tj6tSpCAsLQ05ODpydnZGQkIDff/8dISEh+Prrr9GyZUucO3fOLLFYIyZXRNbo3j0gKUkc16ghrv+uZyYiIiL7tGvXLjzzzDMYPHgwQkND4efnh/Pnz1s0hlatWmHXrl0PxdWiRQs4OzsDAFxcXBAVFYVPPvkEhw4dwvnz5/Hn3x8Kq1QqdOvWDe+++y5SU1Ph5uaGNWvWWPQ1KIllgUTWaPdukWD5+QFDhgDffiv6rgYPVjoyIiIiMpPmzZtj9erVGDhwIFQqFd555x2zrUBdu3YNaWlperf5+/vjtddeQ6dOnfD+++8jLi4OycnJmDVrFr799lsAwPr16/HXX3+hZ8+eqFmzJjZs2ACNRoOWLVtiz549SExMxKOPPop69ephz549uHbtGlq1amWW12CNuHJFZI3kksBHHgF69xbH7LsiIiKya59//jlq1qyJrl27YuDAgYiOjkb79u3N8lyLFy9Gu3bt9C4//PAD2rdvj+XLl2Pp0qVo06YNpk6divfeew/PPPMMAKBGjRpYvXo1HnnkEbRq1QqzZ8/GkiVL0Lp1a3h7e2P79u147LHH0KJFC7z99tuYOXMm+vfvb5bXYI1UkiPNRjRQXl4efHx8kJubC29vb6XDIUfUvTuwaxfwv/8BAwcCvr6iyDs7G6jCWFUiIiJbdu/ePZw7dw6NGzeGWq1WOhyyQ+X9G6tMbsCVKyJrc/s2sGePOH7kEaBePaBVK7FrIfuuiIiIiKwWkysia7NzJ1BUBAQGAo0bi9vk0sCtW5WKioiIiIgqwOSKyNqU7LeS9eolrtl3RURERGS1FE+uvvnmGwQFBUGtViMiIgJ79+4t9/wVK1YgODgYarUaoaGh2LBhg97Xb9++jQkTJqBBgwbw8PBASEgIZs+ebc6XQGRaW7aI69KSq7Q04OZNi4dERERERBVTNLlatmwZJk2ahGnTpiElJQVhYWGIjo4uc0fppKQkxMfHY9y4cUhNTUVsbCxiY2Nx5MgR7TmTJk3Cxo0bsXDhQhw/fhwTJ07EhAkTsG7dOku9LKKqu3kTSEkRx3366G738wNatmTfFREREZEVUzS5+vzzz/H8889j7Nix2hUmT09PzJ07t9Tzv/zyS8TExGDy5Mlo1aoV3n//fbRv3x6zZs3SnpOUlIQxY8agd+/eCAoKwgsvvICwsLByV8QKCgqQl5endyFSxPbtgEYjEqn69fW/xpHsRERERFZNseSqsLAQBw4cQFRUlC4YJydERUUhOTm51PskJyfrnQ8A0dHReud37doV69atw+XLlyFJErZs2YJTp07h0UcfLTOWGTNmwMfHR3tp2LChka+OqIpK67eSyaWBHGpBREREZJUUS66ys7NRXFwMX19fvdt9fX2RkZFR6n0yMjIqPP/rr79GSEgIGjRoADc3N8TExOCbb75Bz549y4xlypQpyM3N1V4uXrxoxCsjMoIhyVVaGpCTY6mIiIiIiMhALkoHYGpff/01du/ejXXr1iEwMBDbt2/H+PHjERAQ8NCql8zd3R3u7u4PfyEvD+AmwmQpWVmA3D8olwCWFBAANG8OnD4txrU//rhFwyMiIiKi8im2clWnTh04OzsjMzNT7/bMzEz4+fmVeh8/P79yz7979y7efPNNfP755xg4cCDatm2LCRMmIC4uDp999lnlg+TgALIkudyvbVugTp3Sz2HfFRERkUPp3bs3Jk6cqP1zUFAQvvjii3Lvo1KpsHbtWqOf21SP40gUS67c3NzQoUMHJCYmam/TaDRITExEZGRkqfeJjIzUOx8AEhIStOffv38f9+/fh5OT/stydnaGRqOpfJDySGwiSyivJFDGvisiIiKbMHDgQMTExJT6tR07dkClUuHQoUOVftx9+/bhhRdeMDY8PdOnT0d4ePhDt1+9ehX9+/c36XM96KeffkKNGjXM+hyWpGhZ4KRJkzBmzBh07NgRnTt3xhdffIH8/HyMHTsWADB69GjUr18fM2bMAAC8+uqr6NWrF2bOnIkBAwZg6dKl2L9/P+bMmQMA8Pb2Rq9evTB58mR4eHggMDAQ27Ztw88//4zPP/+88gHKb3aJLKEyyVVKCstWiYiIrNi4ceMwdOhQXLp0CQ0aNND72rx589CxY0e0bdu20o9bt25dU4VYobKqyahsio5il8v1pk6divDwcKSlpWHjxo3aoRXp6em4evWq9vyuXbti8eLFmDNnDsLCwrBy5UqsXbsWbdq00Z6zdOlSdOrUCSNHjkRISAg++ugjfPDBB/jnP/9Z+QDPngUuXDD6dRJV6OJF0Uvl5ASUM3wFDRoATZuKce07d1ouPiIiImsiSUB+vjIXSTIoxMcffxx169bFTz/9pHf77du3sWLFCowbNw7Xr19HfHw86tevD09PT4SGhmLJkiXlPu6DZYGnT59Gz549oVarERISgoSEhIfu85///ActWrSAp6cnmjRpgnfeeQf3798HIFaO3n33XRw8eBAqlQoqlUob84NlgYcPH8YjjzwCDw8P1K5dGy+88AJu376t/fozzzyD2NhYfPbZZ/D390ft2rUxfvx47XNVRXp6OgYNGoTq1avD29sbw4cP12sTOnjwIPr06QMvLy94e3ujQ4cO2L9/PwDgwoULGDhwIGrWrIlq1aqhdevW2LBhQ5VjMYTiAy0mTJiACRMmlPq1raWUPg0bNgzDhg0r8/H8/Pwwb948U4UHJCQAzz1nuscjKo1cgtqxI+DjU/65vXuLxH/bNuCxx8weGhERkdW5cweoXl2Z5759G6hWrcLTXFxcMHr0aPz000946623oFKpAAArVqxAcXEx4uPjcfv2bXTo0AH/+c9/4O3tjd9++w2jRo1C06ZN0blz5wqfQ6PRYMiQIfD19cWePXuQm5ur158l8/Lywk8//YSAgAAcPnwYzz//PLy8vPDvf/8bcXFxOHLkCDZu3IjNmzcDAHxKeS+Sn5+P6OhoREZGYt++fcjKysJzzz2HCRMm6CWQW7Zsgb+/P7Zs2YIzZ84gLi4O4eHheP755yt8PaW9Pjmx2rZtG4qKijB+/HjExcVp84SRI0eiXbt2+O677+Ds7Iy0tDS4uroCAMaPH4/CwkJs374d1apVw7Fjx1DdzP9uFE+urN4ffzC5IvOTSwL79Kn43F69gB9/ZN8VERGRlXv22Wfx6aefYtu2bej991CqefPmYejQodr9VV9//XXt+S+//DI2bdqE5cuXG5Rcbd68GSdOnMCmTZsQEBAAAPjwww8f6pN6++23tcdBQUF4/fXXsXTpUvz73/+Gh4cHqlevDhcXl3LLABcvXox79+7h559/RrW/k8tZs2Zh4MCB+Pjjj7WVZzVr1sSsWbPg7OyM4OBgDBgwAImJiVVKrhITE3H48GGcO3dOuw/tzz//jNatW2Pfvn3o1KkT0tPTMXnyZAQHBwMAmjdvrr1/eno6hg4ditDQUABAkyZNKh1DZTG5qkhiIlBcDDg7Kx0J2StJMqzfSib3XR04ANy6BXh5mS82IiIia+TpKVaQlHpuAwUHB6Nr166YO3cuevfujTNnzmDHjh147733AADFxcX48MMPsXz5cly+fBmFhYUoKCiAp4HPcfz4cTRs2FCbWAEodTDcsmXL8NVXX+Hs2bO4ffs2ioqK4F3Jvu3jx48jLCxMm1gBQLdu3aDRaHDy5EltctW6dWs4l3jf7O/vj8OHD1fquUo+Z8OGDbWJFQCEhISgRo0aOH78ODp16oRJkybhueeew4IFCxAVFYVhw4ahadOmAIBXXnkFL774Iv744w9ERUVh6NChVepzqwxFe66snpcXcOOGGB5AZC5//SV6rlxdgW7dKj6/USOgcWOR9O/aZf74iIiIrI1KJUrzlLj8Xd5nqHHjxmHVqlW4desW5s2bh6ZNm6LX3x+Ufvrpp/jyyy/xn//8B1u2bEFaWhqio6NRWFhosm9VcnIyRo4cicceewzr169Hamoq3nrrLZM+R0lySZ5MpVJVbWq3gaZPn46jR49iwIAB+PPPPxESEoI1a9YAAJ577jn89ddfGDVqFA4fPoyOHTvi66+/NlssAJOr8smDBUppDCQyGXnVqksXg2q4AXC/KyIiIhsxfPhwODk5YfHixfj555/x7LPPavuvdu3ahUGDBuHpp59GWFgYmjRpglOnThn82K1atcLFixf1BsDt3r1b75ykpCQEBgbirbfeQseOHdG8eXNceGBgm5ubG4qLiyt8roMHDyI/P197265du+Dk5ISWLVsaHHNlyK/v4sWL2tuOHTuGnJwchISEaG9r0aIF/vWvf+GPP/7AkCFD9OYvNGzYEP/85z+xevVqvPbaa/jhhx/MEquMyVV55P6XP/5QNg6yb5UpCZRxvysiIiKbUL16dcTFxWHKlCm4evUqnnnmGe3XmjdvjoSEBCQlJeH48eP4xz/+oTcJryJRUVFo0aIFxowZg4MHD2LHjh1466239M5p3rw50tPTsXTpUpw9exZfffWVdmVHFhQUhHPnziEtLQ3Z2dkoKCh46LlGjhwJtVqNMWPG4MiRI9iyZQtefvlljBo1SlsSWFXFxcVIS0vTuxw/fhxRUVEIDQ3FyJEjkZKSgr1792L06NHo1asXOnbsiLt372LChAnYunUrLly4gF27dmHfvn1o1aoVAGDixInYtGkTzp07h5SUFGzZskX7NXNhclUe+c1uUpJydb1k3yrbbyWTk6v9+/lvk4iIyMqNGzcON2/eRHR0tF5/1Ntvv4327dsjOjoavXv3hp+fH2JjYw1+XCcnJ6xZswZ3795F586d8dxzz+GDDz7QO+eJJ57Av/71L0yYMAHh4eFISkrCO++8o3fO0KFDERMTgz59+qBu3bqljoP39PTEpk2bcOPGDXTq1AlPPvkk+vbti1mzZlXum1GK27dvo127dnqXgQMHQqVS4ZdffkHNmjXRs2dPREVFoUmTJli2bBkAwNnZGdevX8fo0aPRokULDB8+HP3798e7774LQCRt48ePR6tWrRATE4MWLVrg22+/NTre8qgkycBh/Q4kLy8PPj4+yM3JgXd4OHD+PLB+PTBggNKhkb05ehRo0wZQq4GcHMDd3fD7Nm4s/m1u2gQ8+qi5IiQiIlLcvXv3cO7cOTRu3BhqtVrpcMgOlfdvTJsb5OZWOAiEK1flUal0b1rZd0XmIK9ade9eucQK0K1ese+KiIiIyCowuapIv37imn1XZA7y5sGVKQmUyUMt2HdFREREZBWYXFXkkUcAJyfg+HHg0iWloyF7UlysS4yqklzJK1d79wIlJvcQERERkTKYXFWkVi2gY0dxzNJAMqWDB4GbN8V+ah06VP7+QUFiz6uiIiA52eThEREREVHlMLkyBPuuyBzkfqtevQAXl8rfX6XiSHYiInIonMNG5mKqf1tMrgwh911t3gyYcYdpcjBVGcH+IG4mTEREDsDZ2RkAUFhYqHAkZK/u3LkDAHB1dTXqcarwcbkD6tIFqF4duHZNlHK1a6d0RGTr7t8Htm8Xx/Jm1VUhr1zt2QPcuQN4ehofGxERkZVxcXGBp6cnrl27BldXVzg5cX2ATEOSJNy5cwdZWVmoUaOGNpGvKiZXhnBzEysE69eL0kAmV2SsffvEEIpatYC2bav+OE2aAA0aiGEru3cbtwpGRERkpVQqFfz9/XHu3DlcuHBB6XDIDtWoUQN+fn5GPw6TK0P16yeSqz/+AP79b6WjIVsnj2Dv00dMo6wque9q0SLRd8XkioiI7JSbmxuaN2/O0kAyOVdXV6NXrGRMrgwlD7XYuZPlV2Q8U/RbyXr3FskV+66IiMjOOTk5Qa1WKx0GUZlYsGqoli1F+VVBAbBjh9LRkC27dw/YtUscmyK5kvuudu8G7t41/vGIiIiIqEqYXBlKpeJIdjKN5GSRpPv7i6TdWM2aAQEBQGGhGGxBRERERIpgclUZ8kj2P/5QNg6ybXJJYJ8+Imk3Fve7IiIiIrIKTK4qIypKvJE9fBi4elXpaMhWmbLfSsb9roiIiIgUx+SqMurU0Y1h37xZ2VjINt2+DezdK45NmVzJK1fJyaKni4iIiIgsjslVZbHvioyxcydQVAQEBQGNG5vucVu0APz8RC+XnLwRERERkUUxuaosue8qIQGQJGVjIdtjjpJAgH1XRERERFaAyVVldesGeHgAGRnAkSNKR0O2xlzJFcC+KyIiIiKFMbmqLHd33QoBpwZSZdy8CaSkiOM+fUz/+PK/y6QkUR5IRERERBbF5Koq2HdFVbFtmyglbdlS7EtlasHBQL16YqDFvn2mf3wiIiIiKheTq6qQ+662b+dkNjLcli3i2hwlgYDou5JLA9l3RURERGRxTK6qonVrwN8fuHsX2LVL6WjIVpiz30rGoRZEREREimFyVRUqlf7UQKKKZGbqBqDIq0vmID92UhJQWGi+5yEiIiKihzC5qio5ueJQCzKEvJIUFiY2ozaXVq2AunXFqir7roiIiIgsislVVUVFievUVODaNWVjIetniZJAQH+/K45kJyIiIrIoJldV5ecHtG0rjjdvVjYWsn5ycmWOEewPYt8VERERkSKsIrn65ptvEBQUBLVajYiICOzdu7fc81esWIHg4GCo1WqEhoZiw4YNel9XqVSlXj799FPTBs6R7GSIixeBM2cAJyegZ0/zP5/cd7VrF3D/vvmfj4iIiIgAWEFytWzZMkyaNAnTpk1DSkoKwsLCEB0djaysrFLPT0pKQnx8PMaNG4fU1FTExsYiNjYWR+RhAQCuXr2qd5k7dy5UKhWGDh1q2uBL9l1Jkmkfm+yHPIK9Y0fAx8f8zxcSAtSuDdy5A+zfb/7nIyIiIiIAVpBcff7553j++ecxduxYhISEYPbs2fD09MTcuXNLPf/LL79ETEwMJk+ejFatWuH9999H+/btMWvWLO05fn5+epdffvkFffr0QZMmTUwbfI8egLs7cPkycOKEaR+b7Iel+q1kTk7suyIiIiJSgKLJVWFhIQ4cOIAoeTgEACcnJ0RFRSE5ObnU+yQnJ+udDwDR0dFlnp+ZmYnffvsN48aNKzOOgoIC5OXl6V0M4uEhEiyAUwOpdJJk+eQKYN8VERERkQIUTa6ys7NRXFwMX19fvdt9fX2RkZFR6n0yMjIqdf78+fPh5eWFIUOGlBnHjBkz4OPjo700bNjQ8BfBvisqz9mzoufK1RXo1s1yz8u+KyIiIiKLU7ws0Nzmzp2LkSNHQq1Wl3nOlClTkJubq71cvHjR8CeQ+662buWmrfQwedWqSxfA09Nyz9umDVCrFnD7NpCSYrnnJSIiInJgiiZXderUgbOzMzIzM/Vuz8zMhJ+fX6n38fPzM/j8HTt24OTJk3juuefKjcPd3R3e3t56F4O1bQvUqwfk5wNllCaSA1OiJBDQn0zIvisiIiIii1A0uXJzc0OHDh2QmJiovU2j0SAxMRGRkZGl3icyMlLvfABISEgo9fwff/wRHTp0QFhYmGkDL8nJSbehMEsDqSRJ0k0KtHRyBbDvioiIiMjCFC8LnDRpEn744QfMnz8fx48fx4svvoj8/HyMHTsWADB69GhMmTJFe/6rr76KjRs3YubMmThx4gSmT5+O/fv3Y8KECXqPm5eXhxUrVlS4amUSct8Vh1pQSceOAVlZYvBJRITln1/uu9q5EygqsvzzExERETkYF6UDiIuLw7Vr1zB16lRkZGQgPDwcGzdu1A6tSE9Ph5OTLgfs2rUrFi9ejLfffhtvvvkmmjdvjrVr16JNmzZ6j7t06VJIkoT4+Hjzvwh55Wr/fuDGDdHrQiSXBHbvLkb2W1poKFCjBpCTA6SmAp06WT4GIiIiIgeikiTufvugvLw8+Pj4IDc31/D+qzZtgKNHgeXLgWHDzBsg2YbBg4G1a4EZM4A33lAmhkGDgHXrgE8/BV5/XZkYiIiIiGxYZXIDxcsC7YY8NZB9VwQAxcW6Xicl+q1k7LsiIiIishgmV6ZSsu+Ki4GUlibK8by8gPbtlYtD7rvasUMkfERERERkNkyuTKVnT8DNDbhwAThzRuloSGlyv1WvXoCLgq2NYWGAjw+QlycSPiIiIiIyGyZXplKtGtC1qzjm1EBScgR7Sc7OQI8e4pilgURERERmxeTKlOTSQPZdObb794Ht28Wx0skVoOu74mbCRERERGbF5MqU5KEWf/4p3mCTY9q3D8jPB2rXFuPQlSb3XW3fzr4rIiIiIjNicmVK7dqJN9S3bgF79yodDSlF7rfq0wdwsoL/YuHhgLc3kJsLHDqkdDREREREdssK3vnZEWdnoG9fccy+K8dVMrmyBi4uYiNjgH1XRERERGbE5MrU2Hfl2O7dA5KSxLE19FvJ5NJA9l0RERERmQ2TK1OT+6727BH7HJFjSU4GCgoAf3+gZUulo9GRh1ps3w5oNMrGQkRERGSnmFyZWqNG4k21RqMbx02OQy4JfOQRQKVSNpaS2rcHqlcHbt4EDh9WOhoiIiIiu8Tkyhzk1SuWBjqeksmVNWHfFREREZHZMbkyB7nvikMtHEvJKZHWllwB7LsiIiIiMjMmV+bQu7dYKTh7FvjrL6WjIUvZuRMoKgIaNwaCgpSO5mElNxNm3xURERGRyTG5MgcvLyAyUhyzNNBxWNsI9gd16ABUqwbcuAEcPap0NERERER2h8mVubDvyvFYa7+VzNUV6NZNHLPvioiIiMjkmFyZi9x3lZgIFBcrGwuZ382bQGqqOLbWlSuAfVdEREREZsTkylw6dgRq1BB7Xe3fr3Q0ZG7btgGSBAQHAwEBSkdTtpJ9V5KkbCxEREREdobJlbk4O+vKwzg10P5Ze0mgrGNHwNMTyM4Gjh1TOhoiIiIiu8Lkypzk0kD2Xdk/W0mu3NyArl3FMfuuiIiIiEyKyZU5yUMtkpPFHkhknzIzddP35LI7a8a+KyIiIiKzYHJlTk2aAE2bir2PuEpgv7ZsEddhYUCdOsrGYgg5Ady6lX1XRERERCbE5Mrc5NUr9l3ZLzm5svaSQFmnToCHB3DtGnD8uNLREBEREdkNJlfmxr4r+2cr/VYyd3fdJtcsDSQiIiIyGSZX5tanD+DkBJw8CaSnKx0NmVp6OnDmjJgO2bOn0tEYTu67YrkqERERkckwuTK3GjWAiAhxzNUr+yOXBHbsCHh7KxtLZXC/KyIiIiKTY3JlCXLfFZMr+yOXBPbpo2wcldW5M6BWi0mHJ08qHQ0RERGRXWByZQly39XmzYBGo2wsZDqSZHv9VjK1mn1XRERERCbG5MoSOncGvLyA69eB1FSloyFTOXMGuHQJcHUFunVTOprKKzmSnYiIiIiMxuTKElxddSsbHMluP+R+q8hIwNNT2ViqouRmwuy7IiIiIjIakytLYd+V/bHVkkBZRIQYy371KnD6tNLREDmGv/4S/+eIiMguMbmyFLnvaudOID9f2VjIeLbcbyVTq4EuXcQx+66IzO/KFaBtW/H/rrBQ6WiIiMgMmFyVw6SzJ5o1AwIDgfv3ge3bTfjApIijR4Fr1wAPD92ofVvEvisiy1m2THy4lp4ObNqkdDRERGQGiidX33zzDYKCgqBWqxEREYG9e/eWe/6KFSsQHBwMtVqN0NBQbNiw4aFzjh8/jieeeAI+Pj6oVq0aOnXqhPQqbOC7Y0el71I2lUq3esW+K9snr1p17w64uSkbizHYd0VkOUuX6o4XLVIuDiIiMhtFk6tly5Zh0qRJmDZtGlJSUhAWFobo6GhkZWWVen5SUhLi4+Mxbtw4pKamIjY2FrGxsThy5Ij2nLNnz6J79+4IDg7G1q1bcejQIbzzzjtQq9WVjm/Jkiq/tNKx78p+2HpJoKxLF5EcXr4MnD2rdDRE9uvcOaDkh4e//ALk5SkXDxERmYVKkpT7uDoiIgKdOnXCrFmzAAAajQYNGzbEyy+/jDfeeOOh8+Pi4pCfn4/169drb+vSpQvCw8Mxe/ZsAMCIESPg6uqKBQsWVDmuvLw8+Pj4wNMzF1lZ3qhWrcoPpe/6daBuXbFCcOkSUL++iR6YLKq4GKhTB8jJAfbsEaP2bVnPnmKZ9n//A8aNUzoaIvv00UfAlCniA5krV4ATJ4B584BnnlE6MiIiqoCcG+Tm5sLb27vccxVbuSosLMSBAwcQFRWlC8bJCVFRUUhOTi71PsnJyXrnA0B0dLT2fI1Gg99++w0tWrRAdHQ06tWrh4iICKxdu7bcWAoKCpCXl6d3AYA7d4A1a4x4kQ+qXRvo2FEcb95swgcmi0pLE4mVtzfQvr3S0RiPfVdE5ieXBMbHA08/LY5ZGkhEZHcUS66ys7NRXFwMX19fvdt9fX2RkZFR6n0yMjLKPT8rKwu3b9/GRx99hJiYGPzxxx8YPHgwhgwZgm3lTEObMWMGfHx8tJeGDRtqv/bzz1V9hWWQSwPZd2W75JLAXr0AFxdlYzEF9l0RmdeJE8DBg+LnxZAhwFNPidsTE8UqFhER2Q3FB1qYkubv8X6DBg3Cv/71L4SHh+ONN97A448/ri0bLM2UKVOQm5urvVy8eFH7tc2bRTuKychDLTZvNvE4QrIYe+m3kkVGio2uL14UfSFEZFrLlonrRx8FatUCGjcGunUTH2aUHHJBREQ2T7Hkqk6dOnB2dkZmZqbe7ZmZmfDz8yv1Pn5+fuWeX6dOHbi4uCAkJETvnFatWpU7LdDd3R3e3t56F0C855QkE1duREYC1aoBWVnAoUMmfGCyiMJC3RjJPn2UjcVUPD11fWPc74rItEomUCNG6G6XSwMXLrR8TEREZDaKJVdubm7o0KEDEhMTtbdpNBokJiYiMjKy1PtERkbqnQ8ACQkJ2vPd3NzQqVMnnDx5Uu+cU6dOITAwsNIxxseL6/nzTVgt5eamK8Pi1EDbs2+f2Kemdm0gNFTpaEyHfVdE5nHokCgLdHcHBg3S3T5smCgTTE0Fjh1TLj4iIjIpRcsCJ02ahB9++AHz58/H8ePH8eKLLyI/Px9jx44FAIwePRpTpkzRnv/qq69i48aNmDlzJk6cOIHp06dj//79mDBhgvacyZMnY9myZfjhhx9w5swZzJo1C7/++iteeumlSscXGwuo1eL3Xmqq0S9XhyPZbZdcEtinD+BkR1W1csLP5IrItOSSwMceE0NwZLVri9sADrYgIrIjir47jIuLw2effYapU6ciPDwcaWlp2Lhxo3ZoRXp6Oq5evao9v2vXrli8eDHmzJmDsLAwrFy5EmvXrkWbNm205wwePBizZ8/GJ598gtDQUPzvf//DqlWr0L1790rH5+MjEizAxIMt5L6r7duBu3dN+MBkdlu2iGt76beSde0qPkVPTwfOn1c6GiL7UFZJoKzk1ED24BIR2QVF97myViVn2e/a5Y3HHhPbU12+LPr+jSZJQMOG4gH/+EO3kkXW7e5doGZNoKBAlPm0bKl0RKbVtSuQnMy9d4hMZe9eICJC9DVmZeGhTRPv3gV8fYFbt8SHbT16KBMnERGVyyb2ubIV/fqJ333XrgGbNpnoQVUq3eoVR7LbjuRkkVgFBAAtWigdjenJfVccakFkGnJJ4BNPPJxYAYCHB/Dkk+KYpYFERHaByVUFXFyAkSPFsUlLA9l3ZXtKjmBXqZSNxRzYd0VkOhqNLrkqrSRQJv+CWb5cTCMlIiKbxuTKAKNHi+tffgFu3jTRg0ZFieuDB4EHxsuTlSo5zMIede0KODuLnqsLF5SOhsi27dolSr99fICYmLLP691brIbfvAn8/rvFwiMiIvNgcmWAsDCgbVvxoeLy5SZ60Lp1gXbtxPHmzSZ6UDKbW7dE/wRgf8MsZF5eQMeO4pilgUTGkQdZxMaKMexlcXYGnnpKHHPPKyIim8fkykDy6pVZpgay78r67dwJFBcDjRsDQUFKR2M+7LsiMl5REbBypTguryRQJpcG/vorkJtrvriIiMjsmFwZ6KmnxLZGSUnAmTMmetCSfVcc2mjdSvZb2TP2XREZb+tWMR2wdm2gb9+Kzw8LA1q3FgNzVq0ye3hERGQ+TK4M5O+vW2hasMBED9qtm5gWdfUqcPSoiR6UzMJRkqtu3USZ0l9/ARcvKh0NkW2SSwKHDjVs/w6VSrfnFUsDiYhsGpOrSihZGmiS/R7VaqBnT3HMqYHW68YNIDVVHNvrMAuZtzfQvr04ZmkgUeUVFgKrV4tjQ0oCZfHx4nrrVuDSJZOHRURElsHkqhIGDRI9/+fPi0FQJiGXBrLvynpt2ybKNoODxRKmvZNLA5lcEVVeQoKY/Ofnp/vwzBCBgeJ8SQKWLDFffEREZFZMrirB0xMYNkwcm2ywhVxruG2bqLcn6+MoJYEyeagF+66IKk8uCRw+XJTYVoY82IKlgURENovJVSXJpYHLlwN375rgAdu0EZ9w3r1rwuUwMilHS666dxfTW86cEfv0EJFh7t4VGyICQFxc5e8/bBjg5gYcOgQcPmza2IiIyCKYXFVSjx6ieiMvD1i3zgQPqFLpTw0k65KZCRw7Jo7lcjl75+Oj24ONpYFEhvv9d7EnXqNGQJculb9/zZrAgAHieNEi08ZGREQWweSqkpycgFGjxLHJSgOZXFmvLVvEdXi4GKvsKNh3RVR5cklgXJz4ZVEVcmng4sUmmpxERESWxOSqCuTkatMmICPDBA8YFSWuU1KA7GwTPCCZjKOVBMrYd0VUObdvA+vXi+OqlATKBgwQq8cXLwI7dpgmNiIishgmV1XQooWo+CguNtFQJ39/IDRUTIlKTDTBA5LJOGpy1aOHKFk9dUrsw0ZE5fv1V9Fz1ayZbjuDqlCrdZOTONiCiMjmMLmqojFjxLXJpwZyJLv1uHABOHtWTPzq0UPpaCyrRg1RCgmwNJDIEHJJ4IgR4oMJY8ilgStWAPfuGfdYRERkUUyuqmj4cDHUKS1NDHYyWsm+K0kywQOS0eR+q44dxea6jkbuu2JpIFH5cnLEMAvAuJJAWc+eQIMGQG4usGGD8Y9HREQWw+SqimrVAgYOFMcLFpjgAXv0ANzdRZ39yZMmeEAympxcOVpJoEzuu+LKFVH51q4F7t8HWrcW22sYy8kJeOopcczSQCIim8LkygjynlcLFwJFRUY+mKen2F8I4NRAayBJjttvJZP7rk6cMNHkFiI7VbIk0FSeflpc//YbcPOm6R6XiIjMismVEWJigDp1xPvOzZtN8IDsu7IeZ84Aly6J2s+uXZWORhm1agFt24rj7duVjYXIWl27pvsFYIqSQFloqPj/V1gIrFxpusclIiKzYnJlBDc3ID5eHJtksIXcd7V1q/iFSsqRV60iI8WqoqNi3xVR+VatEqNj27cHmjc37WPLgy1YGkhEZDOYXBlJLg1cswbIyzPywcLCgLp1xX4pu3cbHRsZQU6u+vRRNg6lse+KqHzLlolrU5YEyuLjRWnu9u1AerrpH5+IiEyOyZWROnQAWrUS03KNrtxwctJtKMy+K+VoNBxmIevZU1wfOwZkZSkbC5G1uXJF98HD8OGmf/yGDXWrx4sXm/7xiYjI5JhcGUml0q1embQ0kH1Xyjl6VPRReHgAERFKR6Os2rVF7wfAviuiB61YIYbfREYCgYHmeY6SpYHcpoOIyOoxuTKBkSNFkrVtG3D+vJEPJidX+/cDN24YGxpVhbxq1aOHaKxzdOy7IiqdOUsCZUOHim06jh410aaKRERkTkyuTKBhQ131mNF9xw0aiDpDjUbX90OW5egj2B/Eviuih50/DyQni0/Whg0z3/PUqAE8/rg45mALIiKrx+TKREqWBhpduSGPZGffleUVF+tWaJhcCXLf1ZEjQHa2srEQWYvly8V1796Av795n0ve82rJEvEzioiIrBaTKxMZMkRM7D59Gtizx8gHK9l3xRp7y0pNBXJzAW9voF07paOxDnXrAm3aiGP2XREJckmgKfe2Kkv//kDNmsDly1xBJiKyckyuTKR6dVEaD5hgsEWvXoCrqyg7OXvW2NCoMuSSwF69ABcXZWOxJnJpIPuuiIBTp4CUFMDZWfeD35zc3XWlhywNJCKyakyuTEguDVy6FCgoMOKBqlcHunYVxywNtCz2W5VOHmrBT82JdKtW/foBdepY5jnl0sBVq4C7dy3znEREVGlMrkyoTx+gfn3g5k3gt9+MfDC574oj2S2nsBDYuVMcM7nSJ/ddHToEXL+ubCxESlu6VFxboiRQ1q2bGPeelwesX2+55yUiokphcmVCzs66DxeNLg2U+67+/BMoKjLywcgg+/YB+fnik2i5x4iEevWAkBBxvGOHsrEQKenIEbGptpsbEBtrued1cgKeekocszSQiMhqMbkyMbk08LffjBys1r49UKuW+JRy716TxEYVkEsC+/QRb2RIH/uuiHSrVv37izHpliR/evf771xBJiKyUlbxDvKbb75BUFAQ1Go1IiIisLeCZGLFihUIDg6GWq1GaGgoNmzYoPf1Z555BiqVSu8SExNjzpegFRICdOwoFpvk38FV4uwM9O0rjtl3ZRnstyof+67I0UmS7ge7OTcOLktICBAeDty/D6xYYfnnJyKiCimeXC1btgyTJk3CtGnTkJKSgrCwMERHRyMrK6vU85OSkhAfH49x48YhNTUVsbGxiI2NxZEjR/TOi4mJwdWrV7WXJUuWWOLlANDf88oo7LuynLt3gaQkcdynj7KxWCu57+rgQeDGDWVjIVJCSoqY4OrhodvY19Lk1atFi5R5fiIiKpfiydXnn3+O559/HmPHjkVISAhmz54NT09PzJ07t9Tzv/zyS8TExGDy5Mlo1aoV3n//fbRv3x6zZs3SO8/d3R1+fn7aS82aNS3xcgCIDzRdXEQLz/HjRjyQ3He1Z4/Ye4nMJylJDLQICABatFA6Guvk5wcEB4tP79l3RY5IXrUaOFBMdVVCfDygUonhO+fOKRMDERGVSdHkqrCwEAcOHEBUVJT2NicnJ0RFRSE5ObnU+yQnJ+udDwDR0dEPnb9161bUq1cPLVu2xIsvvojr5dSnFxQUIC8vT+9ijLp1gcceE8dGrV4FBoo3+sXFwJYtRsVEFZC/v488It64UOnkviuWBpKj0Wh0I9iVKAmUBQToSpcXL1YuDiIiKpWiyVV2djaKi4vh6+urd7uvry8yMjJKvU9GRkaF58fExODnn39GYmIiPv74Y2zbtg39+/dHcXFxqY85Y8YM+Pj4aC8NGzY08pXpSgMXLhS5UZXJq1fsuzIv9lsZRu674lALcjTJycDFi4CXlxhmoSS5NHDhQrGSTEREVkPxskBzGDFiBJ544gmEhoYiNjYW69evx759+7C1jDeEU6ZMQW5urvZy8eJFo2N4/HExSOrSJSPfh7Lvyvxu3dJNZGRyVT555SotDcjJUTISIsuSV61iYwG1WtFQMGSIiOHECSA1VdlYiIhIj6LJVZ06deDs7IzMzEy92zMzM+Hn51fqffz8/Cp1PgA0adIEderUwZkzZ0r9uru7O7y9vfUuxnJ311WOGFUa2Lu3mBx45gzr681lxw6xvNikiSjFpLL5+4tSVfZdkSMpLgaWLxfHSpYEyry9gSeeEMfc84qIyKoomly5ubmhQ4cOSExM1N6m0WiQmJiIyMjIUu8TGRmpdz4AJCQklHk+AFy6dAnXr1+Hv7+/aQI3kFwauGoVcPt2FR/E2xvo0kUcszTQPErub0UVY98VOZpt24DMTKBmTeCBnl/FyKWBS5YYWXtORESmpHhZ4KRJk/DDDz9g/vz5OH78OF588UXk5+dj7NixAIDRo0djypQp2vNfffVVbNy4ETNnzsSJEycwffp07N+/HxMmTAAA3L59G5MnT8bu3btx/vx5JCYmYtCgQWjWrBmio6Mt+tq6dAGaNQPy84E1a4x4ILk0kMmVebDfqnLYd0WORi4JHDoUcHNTNhZZdLTYaD4jQ/czjIiIFKd4chUXF4fPPvsMU6dORXh4ONLS0rBx40bt0Ir09HRcvXpVe37Xrl2xePFizJkzB2FhYVi5ciXWrl2LNm3aAACcnZ1x6NAhPPHEE2jRogXGjRuHDh06YMeOHXB3d7foa1OpTLTnlTzUIjGRn1Ca2o0bon8I4MqVoeSVq9RUbhFA9u/+fWDlSnFsDSWBMjc3IC5OHHPPKyIiq6GSJI4aelBeXh58fHyQm5trdP/VuXOilUelAtLTgQYNqvAgRUVAnTrijeyePUDnzkbFRCWsWSOaw1u1Ao4dUzoa29G8uegDXL8eGDBA6WiIzOf338XeGr6+wOXLogfWWiQlAd26iT23MjMBT0+lIyIiskuVyQ0UX7myd40bAz17iv7/Kn+46OKiK1ljaaBpsSSwath3RY5CLgl88knrSqwAIDJS/JK5fRtYt07paIiICEyuLKJkaWCV1wk5kt08mFxVDfuuyBHcu6drmLWmkkCZSgWMHCmOWRpIRGQVmFxZwJNPii1Jjh0DUlKq+CBy31VystiXiYyXkSH+UlQq3UoMGUb+fqWkAHl5ysZCZC4bN4p/3w0aAF27Kh1N6eTkauNG4No1ZWMhIiImV5bg4yP2nQSMGGzRtKlo3rp/n6VYprJli7gOCwNq11Y2FlvTsKH491hcDOzapXQ0ROaxdKm4Hj4ccLLSX5fBwUCHDqI3V96Li4iIFGOlvy3sj1wauHixyI+qRF69Yt+VabAk0DjsuyJ7lp8P/PqrOLbGksCS5D2vWBpIRKQ4JlcW0q8f4OcHZGeL6o0qYd+VackrV0yuqoZ9V2TP1q8H7twRK7QdOyodTflGjBAra8nJwNmzSkdDROTQmFxZiIuLrjS+yqWBjzwifoGeOAFcvGiy2BzShQviTYizM9Cjh9LR2CZ55Wr/fjGtjMieyCWBI0aIvkxr5ucHREWJY65eEREpismVBcmlgevWATdvVuEBatTQ7XHF0kDjyKtWnToBRu5l5rACA4GgIPZdkf3JzRX7WwG6jXqtXcnSQG5fSUSkGCZXFtS2rZidUFio2zql0th3ZRrstzINuTSQfVdkT375BSgoEJuLh4YqHY1hYmMBDw/g1CmxmkxERIpgcmVhJfe8qhK572rzZkCjMUlMDkeSdMlVnz7KxmLr5NJA9l2RPbGlkkCZl5duLC1LA4mIFFOl5OrixYu4dOmS9s979+7FxIkTMWfOHJMFZq+eekrXd3z6dBUeICJC/BLNzgbS0kwdnmM4fRq4fBlwc7PevWtshbxytW+fmK5GZOuuX9dVBthKSaBMLg1cskSMZiciIourUnL11FNPYcvfPSsZGRno168f9u7di7feegvvvfeeSQO0N35+QHS0OF6woAoP4OqqW23h1MCqkVetIiMBT09lY7F1QUFAo0bijVxSktLREBlv9Wrx7zk8HGjZUuloKqdfP6BOHSArS1Q3EBGRxVUpuTpy5Ag6/z1YYfny5WjTpg2SkpKwaNEi/PTTT6aMzy7JpYELFlSxso99V8bhCHbT4kh2siclSwJtjaurLm6WBhIRKaJKydX9+/fh7u4OANi8eTOeeOIJAEBwcDCuXr1quujs1KBBYkDd+fPAzp1VeAA5udq5U+zDQobTaJhcmRo3EyZ7kZGh+5Bg+HBFQ6kyec+P1au5RQIRkQKqlFy1bt0as2fPxo4dO5CQkICYmBgAwJUrV1C7dm2TBmiPPDyAYcPEcZUGW7RoIUqxCguB7dtNGpvdO3oUuHZNlAPKY+3JOPLK1d69TPbJtq1cKT6AiYgAGjdWOpqqiYgAmjYV/xd/+UXpaIiIHE6VkquPP/4Y33//PXr37o34+HiEhYUBANatW6ctF6TyyaWBy5cDd+9W8s4qFUsDq0rut+reXQy0IOM1bgw0aADcvy8mtRDZKlsuCZSpVPp7XhERkUVVKbnq3bs3srOzkZ2djblz52pvf+GFFzB79myTBWfPuncXswBu3arih4vySHYOtagc7m9leioV+67I9qWni82wVSpdaYGtkksD//hDDLcgIiKLqVJydffuXRQUFKBmzZoAgAsXLuCLL77AyZMnUa9ePZMGaK+cnIBRo8RxlUoD+/YVbwKOHAHY52aY4mJdXxCTK9Ni3xXZuuXLxXWPHkD9+srGYqzmzUXZc3GxETvWExFRVVQpuRo0aBB+/jsjyMnJQUREBGbOnInY2Fh89913Jg3QnsnJ1aZNoo+6UmrXBjp0EMcsDTRMaiqQmwv4+ADt2ikdjX2RV6727KlCnSuRFZCTEFsuCSxJLg1cuFDZOIiIHEyVkquUlBT06NEDALBy5Ur4+vriwoUL+Pnnn/HVV1+ZNEB71ry52GpJowEWL67CA7DvqnLkksBevQAXF2VjsTdNmwIBAWLIyu7dSkdDVDlnzgD79wPOzsDQoUpHYxpxceL17N1bxR3riYioKqqUXN25cwdeXl4AgD/++ANDhgyBk5MTunTpggsXLpg0QHsnD7aoUmmg3HeVkABIkslislvstzIf9l2RLZNXrR55BLCX0vZ69XS/IzjYgojIYqqUXDVr1gxr167FxYsXsWnTJjz69w/wrKwseHt7mzRAezd8uBhad/CguFRKZKQYKZ6ZCRw+bJb47EZhIbBjhzhmcmUe7LsiW2VvJYEyebDFwoX8AI6IyEKqlFxNnToVr7/+OoKCgtC5c2dERkYCEKtY7djLUim1agF/78GMBQsqeWd3d91qAacGlk/eg6lOHaB1a6WjsU/yv8Xdu4F79xQNhchgR4+KD6dcXYHBg5WOxrRiY4Fq1YCzZ0U/JBERmV2Vkqsnn3wS6enp2L9/PzZt2qS9vW/fvvi///s/kwXnKOTSwEWLgKKiSt6ZfVeGkUsC+/QRoxrJ9Jo3B/z8gIICvpEj2yGvWsXEAH9PwLUb1arpEkaWBhIRWUSV32X6+fmhXbt2uHLlCi5dugQA6Ny5M4KDg00WnKOIiRELKhkZwObNlbyzXFO/fTtXC8rDfivzY98V2RpJ0iVXcXHKxmIucmng0qVio28iIjKrKiVXGo0G7733Hnx8fBAYGIjAwEDUqFED77//PjQajaljtHuursBTT4nj+fMreedWrcSUtnv3gJ07TR6bXbh7F0hOFsdMrsyLfVdkS9LSgFOnALVaV59tb6KixHCL7GxWOBARWUCVkqu33noLs2bNwkcffYTU1FSkpqbiww8/xNdff4133nnH1DE6BLk0cO1asRWTwVQq3eoV+65Kl5QkBlrUry9K18h85JWr5GRRHkhkzZYuFdePPw78PQHX7ri4APHx4ph7XhERmV2Vkqv58+fjf//7H1588UW0bdsWbdu2xUsvvYQffvgBP/30k4lDdAzt2wMhIWIBauXKSt6ZfVflK1kSqFIpG4u9a9kS8PUV/5D37lU6GqKyOUJJoEwuDVy7Frh1S9FQiIjsXZWSqxs3bpTaWxUcHIwbN24YHZQjUqmM2PMqKkpcp6UBWVmmDMs+lBxmQealUulKA9l3RdZszx7gwgWgenXgsceUjsa8OnYEWrQQJdJr1yodDRGRXatSchUWFoZZs2Y9dPusWbPQtm1bo4NyVCNHivem27cD585V4o716gHh4eK40hMx7FxeHrBvnzhmv5VlyKWB7LsiayaXBA4aJPYLtGcqlf6eV0REZDZVSq4++eQTzJ07FyEhIRg3bhzGjRuHkJAQ/PTTT/jss89MHaPDaNAA6NtXHFf69x9LA0u3YwdQXAw0aQIEBiodjWOQV66Skth3RdapuBhYvlwc29vGwWWRk6vNm8VoWiIiMosqJVe9evXCqVOnMHjwYOTk5CAnJwdDhgzB0aNHsaDSO+FSSSVLAyWpEncsOdSiUne0c1u2iGuuWllOq1ZA3bqiBEleNSSyJjt3AlevAjVq6H522rumTYHISECj0a3aERGRyVV5n6uAgAB88MEHWLVqFVatWoX//ve/uHnzJn788UdTxudwBg8W+z6eOQPs3l2JO3bvLsYJX7kCHD9utvhsDve3srySfVcsDSRrJCcXQ4YAbm7KxmJJLA0kIjK7KidXpvTNN98gKCgIarUaERER2FvBlLEVK1YgODgYarUaoaGh2LBhQ5nn/vOf/4RKpcIXX3xh4qjNo3p1YOhQcVypwRZqNdCzpzjmSHbh+nUx5APgMAtL42bCZK3u39eNZHWUkkDZ8OFiNPuBA8CJE0pHQ0RklxRPrpYtW4ZJkyZh2rRpSElJQVhYGKKjo5FVxtS7pKQkxMfHY9y4cUhNTUVsbCxiY2Nx5MiRh85ds2YNdu/ejYCAAHO/DJOSSwOXLq1kywr7rvRt2yZKJENCAD8/paNxLCX7rgoLlY2FqKQ//xQb6tat63gfutStC8TEiONFi5SNhYjITimeXH3++ed4/vnnMXbsWISEhGD27Nnw9PTE3LlzSz3/yy+/RExMDCZPnoxWrVrh/fffR/v27R+aXnj58mW8/PLLWLRoEVxdXS3xUkymd28x3CInB1i/vhJ3lHsHtm7lIAGAI9iVFBIC1KkD3LkD7N+vdDREOvLeVk8+KVZxHI1cGrhoEftziYjMoFK/WYYMGVLu13Nycir15IWFhThw4ACmTJmivc3JyQlRUVFITk4u9T7JycmYNGmS3m3R0dFYW2LvDo1Gg1GjRmHy5Mlo3bp1hXEUFBSgoEQykpeXV6nXYWrOzsDTTwMffSRKA+UywQqFhooNXDMzgeRkXWmWo2K/lXKcnESZ6urVYgWxa1elIyISHzqtXi2OHa0kUPbEE6L+/Nw58XuC/zeJiEyqUitXPj4+5V4CAwMxWq5pM0B2djaKi4vh6+urd7uvry8yyhgVm5GRUeH5H3/8MVxcXPDKK68YFMeMGTP0XkfDhg0Nfg3mMmqUuN6wAbh2zcA7qVS60kBH77u6elUM9ig5XIEsi31XZG02bQJyc4GAADEEyBF5euo+seNgCyIik6vUytW8efPMFYfJHDhwAF9++SVSUlKgUqkMus+UKVP0VsPy8vIUT7BCQoCOHUVF1dKlwMsvG3jHfv3EL8yEBODDD80ao1WT39CHhwO1aysZieOSk9pdu8QQARsrzyU7JJcEDh8uVlcd1ciRwPz54vvxxReONTGRiMjMFP3tUqdOHTg7OyMzM1Pv9szMTPiVMYDAz8+v3PN37NiBrKwsNGrUCC4uLnBxccGFCxfw2muvISgoqNTHdHd3h7e3t97FGowZI64rNTVQXrk6cEBMy3NULAlUXps2QK1aQH6++PdIpKQ7d4BffhHHjloSKHvkETHk58YNsZpHREQmo2hy5ebmhg4dOiAxMVF7m0ajQWJiIiIjI0u9T2RkpN75AJCQkKA9f9SoUTh06BDS0tK0l4CAAEyePBmbbOyXyIgRot96/37g2DED7+TvL97UShLwwPfJoTC5Up7cdwVwvytS3m+/iUQ/KAjo3FnpaJTl7AzEx4tjlgYSEZmU4nURkyZNwg8//ID58+fj+PHjePHFF5Gfn4+xY8cCAEaPHq038OLVV1/Fxo0bMXPmTJw4cQLTp0/H/v37MWHCBABA7dq10aZNG72Lq6sr/Pz80LJlS0VeY1XVqQMMGCCOK7V6JU8NdNS+q/Pngb/+Em8gevRQOhrHxr4rshZySWBcnOjFdHRPPy2u160DFB7iRERkTxRPruLi4vDZZ59h6tSpCA8PR1paGjZu3KgdWpGeno6rV69qz+/atSsWL16MOXPmICwsDCtXrsTatWvRpk0bpV6CWcnzQRYuBIqLDbxTyf2uHHHU7pYt4rpTJ8DLS9lYHJ3cd7VzJ1BUpGws5Ljy8sTKFcCSQFm7dkCrVsC9e7oJikREZDSVJDniu+/y5eXlwcfHB7m5uYr3XxUUiEq/mzdFrhQVZcCd7twBatYUm7eePAm0aGH2OK3KqFEiG33zTeCDD5SOxrFpNGIJ9uZNYM8elmORMhYuFD8XWrbUTREl8fPx7beBvn2BzZuVjoaIyGpVJjdQfOWKyufurvug1eDSQE9P3ZhhRysNlCTdyhX7rZTn5KQrzWTfFSll6VJxzZJAfU89Ja7//BO4ckXZWIiI7ASTKxsglwauWgXcvm3gnUqWBjqS06eBy5fFaGFujmkd2HdFSrpxQ/chU1ycsrFYm8aNxQdxkgQsWaJ0NEREdoHJlQ2IiACaNxfVfgaXxstDLbZsEXsMOQp5SmDXroCHh7KxkMC+K1LSmjXiZ2DbtmIDQdI3cqS45tRAIiKTYHJlA1Qq3eqVwaWB4eGi1+XWLdHr4ijk5KpPH2XjIJ2wMMDHRwwVSEtTOhpyNHJJIAdZlG7YMLHBd1oacPSo0tEQEdk8Jlc2Qp6a++efwMWLBtzByUk3/cJR+q40GvZbWaOSI/HZd0WWlJWl+8CFJYGlq10b6N9fHC9apGwsRER2gMmVjQgKEtVVklSJ33+O1nd15AiQnS0GenAqnXVh3xUpYeVK8aFLp05AkyZKR2O95E/vFi8W3y8iIqoyJlc2pGRpoEED9OXkau9eMQrb3smfUPfoIQZakPWQk6vt2yuxYRuRkVgSaJjHHwe8vYELF4Bdu5SOhojIpjG5siFPPgmo1WKblgMHDLhDw4ZAcLB+uZw9Y0mg9QoPF2/e8vKAgweVjoYcwaVLwI4d4njYMGVjsXYeHsDQoeKYgy2IiIzC5MqGeHsDgweLY4MHW8hTA+2976qoSFdyxuTK+pTsu2JpIFnCihXiunt38UETlU8uDVyxQuxeT0REVcLkysbIpYFLlgCFhQbcwVH6rlJTxaqIjw/Qrp3S0VBp5JHsHGpBlsCSwMrp1QuoX1+UkP/+u9LREBHZLCZXNiYqCvDzE3MbNm404A69e4sxu3/9BZw9a+7wlCP3W/XqJVZJyPqw74os5a+/RK+pk5Oop6aKOTsD8fHimKWBRERVxuTKxri46PZ8NKg0sHp1IDJSHNvz6pWcXLEk0Hq1awd4eQE5OcDhw0pHQ/Zs+XJx3acP4OurbCy2RC4NXL9e/D8lIqJKY3Jlg+TSwF9/BW7cMOAOct+VvSZXhYXAzp3imMmV9XJxEf0vAPuuyLxYElg1bdsCrVuLnqtVq5SOhojIJjG5skFt24rha4WFug9oyyX3XSUmisEP9mbvXuDOHaBuXfHGgKwX+67I3E6cEBMpXVyAIUOUjsa2qFS61StuKExEVCVMrmyUvHo1f74BJ3foANSsCeTmAvv3mzUuRcglgX36iB4Lsl4l+664WSmZw7Jl4vrRR4FatZSNxRY99ZS43roVuHhR0VCIiGwR34naqPh40X+8ezdw6lQFJzs7A337imN7HMnOfivb0b49UK2aqGc9ckTpaMjeSBJLAo3VqBHQs6f4Xi5ZonQ0REQ2h8mVjfLzA6KjxfGCBQbcwV77ru7cAZKTxXGfPsrGQhVzdWXfFZnPoUOiLNDdHRg0SOlobBdLA4mIqozJlQ2TSwMXLDCgwkruu0pOFvtB2YukJNF8Vr8+0Ly50tGQIdh3ReYir1o99pjYdZ2q5sknATc3kaweOqR0NERENoXJlQ174gnx/uHCBWDHjgpODgoCmjUT+wvZ04pByZJAlUrZWMgwct/Vtm3suyLTkSRdvxVLAo1TsyYwYIA45uoVEVGlMLmyYR4ewPDh4tigPa/k0kB76rtiv5Xt6dgR8PQErl8Hjh1TOhqyF/v2AefOiZ4+OTGgqpNLAxcv5ocgRESVwOTKxsmlgStWiPajcsmlgfbSd5WXp5t+yH4r2+HqCnTrJo7taRWVlCWXBD7xhEiwyDiPPQb4+ACXLonpnkREZBAmVzauWzegcWPg1i3gl18qOLlPHzE58NQpUUto63bsEGWOTZsCgYFKR0OVwb4rMiWNRrfpX1ycsrHYC7UaGDZMHLM0kIjIYEyubJyTEzBqlDiusDTQxweIiBDH9rB6xZJA21Wy70qSFA2F7MCuXcDly+JnXEyM0tHYD7k0cMUK4N49ZWMhIrIRTK7sgJxc/fEHcPVqBSfbU99Vyc2DybZ06iSaBq9dA44fVzoasnVySeDgwWIMO5lGjx5Aw4ZiA/rfflM6GiIim8Dkyg40awZ07SoqYxYvruBkue8qMVGU1Nmq69eBtDRxzOTK9ri5iX+0APuuyDhFRWJlBWBJoKk5OQFPPSWOWRpIRGQQJld2Qh5sUWFpYOfOYn77jRtASorZ4zIb+Q15SIjYUZlsj9x3xeSKjLF1q1gBrV0b6NtX6Wjsj1wa+Ntv4vcGERGVi8mVnRg+XLfn48GD5Zzo4qLrUbLlvqstW8Q1+61sF/uuyBTkksAnnxSTKMm02rQB2rYVm7WvXKl0NEREVo/JlZ2oWVNMIAYMWL2S+65sObniMAvb17mzmEiWlQWcOKF0NGSLCguBVavEMTcONh959YqlgUREFWJyZUfk0sBFi0QbQpnkvqtdu4Dbt80el8ldvSqGIKhUutIysj3u7kBkpDjmSHaqioQEICdHlAb36KF0NPYrPl78vN2+3T628SAiMiMmV3YkJgaoWxfIzKxgUappU7E51v37trk5pFwSGB4O1KqlaChkJLk0kH1XVBVySeDw4WIPPzKPBg10/1eXLFE0FCIia8fkyo64uuoGO5VbGqhS6VavbHEkO0sC7UfJzYTZd0WVcfcusHatOGZJoPnJpYELFvD/KhFROZhc2Rm5NHDtWrE1SZlsue+KyZX9iIgQ5YEZGcCpU0pHQ7ZkwwZR1tyoEdCli9LR2L+hQ8X/1WPHKpiaRETk2Jhc2Zl27YDWrYF793Rbv5TqkUfEHibHjgGXLlksPqOdPw+cOydKgNhjYfvUat0bY/ZdUWUsWyau4+LEajyZl48PMHCgOOZgCyKiMllFcvXNN98gKCgIarUaERER2Lt3b7nnr1ixAsHBwVCr1QgNDcWGDRv0vj59+nQEBwejWrVqqFmzJqKiorBnzx5zvgSroVIZuOdVzZpAx47iePNms8dlMnK/VefOgJeXsrGQabDviirr1i1g/XpxzJJAy5FLAxcvtu1N6ImIzEjx5GrZsmWYNGkSpk2bhpSUFISFhSE6OhpZWVmlnp+UlIT4+HiMGzcOqampiI2NRWxsLI4cOaI9p0WLFpg1axYOHz6MnTt3IigoCI8++iiuXbtmqZelqJEjRZK1Ywfw11/lnCiXBtpS3xVLAu0P+66osn79VfRcNWsmluvJMvr3Fx/MXbnCD0OIiMqgeHL1+eef4/nnn8fYsWMREhKC2bNnw9PTE3Pnzi31/C+//BIxMTGYPHkyWrVqhffffx/t27fHrFmztOc89dRTiIqKQpMmTdC6dWt8/vnnyMvLw6FDhyz1shRVvz4QFSWOFy4s50R5qMXmzYBGY/a4jCZJuuSqTx9lYyHT6dJF7IB95Qpw5ozS0ZAtkEsCR4xgSaAlubmJyYwASwOJiMqgaHJVWFiIAwcOIErOBAA4OTkhKioKycnJpd4nOTlZ73wAiI6OLvP8wsJCzJkzBz4+PggLCyv1nIKCAuTl5eldbF3J0sAyFwO6dAGqVweuXbONBuVTp8QbcDc3oGtXpaMhU/HwEIMtAPZdUcVu3gR+/10csyTQ8kaOFNcrV4rVQyIi0qNocpWdnY3i4mL4+vrq3e7r64uMjIxS75ORkWHQ+evXr0f16tWhVqvxf//3f0hISECdOnVKfcwZM2bAx8dHe2nYsKERr8o6DB4MVKsGnD0LlJF3iiRF7nexhamB8qpV167iDTnZD/ZdkaHWrhV79LVpI6b3kGV16wYEBur3vRERkZbiZYHm0qdPH6SlpSEpKQkxMTEYPnx4mX1cU6ZMQW5urvZy8eJFC0dretWqAU8+KY7LHWxhS31X7LeyX+y7IkOVnBJIlufkpFu9KrfunIjIMSmaXNWpUwfOzs7IzMzUuz0zMxN+fn6l3sfPz8+g86tVq4ZmzZqhS5cu+PHHH+Hi4oIff/yx1Md0d3eHt7e33sUeyKWBy5aJ0eylkvuudu4E7tyxSFxVotHoVjWYXNmfyEixC/alSxVMYSGHdu2abropkyvlyMnVhg3A9evKxkJEZGUUTa7c3NzQoUMHJCYmam/TaDRITExEZGRkqfeJjIzUOx8AEhISyjy/5OMWFBQYH7QN6d0baNgQyMkpp3qjZUtxUkGBGC9orY4cAbKzxZJcp05KR0Om5ukpxusD7Luisq1aJUaAd+gANG+udDSOKyRETGksKqpgQ0UiIsejeFngpEmT8MMPP2D+/Pk4fvw4XnzxReTn52Ps2LEAgNGjR2PKlCna81999VVs3LgRM2fOxIkTJzB9+nTs378fEyZMAADk5+fjzTffxO7du3HhwgUcOHAAzz77LC5fvoxhw4Yp8hqV4uSk25akzNJAlUq3emXNfVdySWCPHqJXjOwP+66oIkuXimuuWilP/uXC0kAiIj2KJ1dxcXH47LPPMHXqVISHhyMtLQ0bN27UDq1IT0/H1atXted37doVixcvxpw5cxAWFoaVK1di7dq1aNOmDQDA2dkZJ06cwNChQ9GiRQsMHDgQ169fx44dO9DaAZufR40S17//DpTRcqbru7KF5Ioj2O0X+66oPFeuANu3i2N5HDgpRx6Dv2sXcO6c0tEQEVkNlSTxXcyD8vLy4OPjg9zcXLvov+rcGdi3D/jyS+CVV0o5ITsbqFdPvKG9ehUoo99NMUVFQO3aQF6eeCEdOyodEZlDfj5Qo4b4+/7rL6BxY6UjImvy5ZfAxIliWuiuXUpHQ4Coeti8Gfjvf4G33lI6GiIis6lMbqD4yhWZX8k9r0pVpw7Qvr04lpvFrUlKikisfHxEnT/Zp5L9dCwNpAfJJYHc28p6lJwayM9piYgAMLlyCCNGAC4uwIEDwNGjZZwk911Z40j2LVvEde/egLOzoqGQmcl9VxxqQSWdPw/s3i3K0OQ9Jkh5Q4YAajVw4gSQmqp0NEREVoHJlQOoUwcYMEAcL1hQxkkl+66s7RNI7m/lOOS+K65cUUnLl4vr3r0Bf39FQ6ESvL2BQYPEMQdbEBEBYHLlMMaMEdcLF4pJxg/p2lWMw87IEGPPrUVhoW5EPJMr+9etm1idvHBBrFYQASwJtGZyaeCSJWX8ciEicixMrhzEY48BtWoBly/rFoL0uLvrVg2saWrgnj3A3btA3bqAA057dDjVq+sGlrA0kADg1ClRcubsLMrQyLpER4uBQxkZZfxyISJyLEyuHIS7u+5D3zIHW1hj31XJEewqlbKxkGWw74pKWrZMXPfrJ2qcybq4uen2HWNpIBERkytHIk8NXL0auHWrlBPk5Gr7duDePYvFVS72WzkebiZMMkkS5WYASwKtmVwauHo1cOeOsrEQESmMyZUD6dwZaNFC/O5bvbqUE1q3Fs3id+9axz4yd+4AycnimMmV45D7rs6dA9LTlY6GlHTkCHD8uFgdiY1VOhoqS2Sk2Jfu9m1g3TqloyEiUhSTKweiUlWw55VKpVu9soa+q6Qk4P59oEEDoFkzpaMhS/HyAjp0EMcsDXRscklg//5inzuyTiqV/p5XREQOjMmVg3n6aXG9ZUsZiwLySHZr6LsqWRLIfivHIg9XYXLluCSJUwJtiZxcbdoEXLumbCxERApicuVgAgNFS4skAYsWlXJCVJS4Tk1V/hck+60cF/uu6MAB4OxZsUXEwIFKR0MVCQ4Wkz6LinT7khEROSAmVw6oZGngQ/sF+/oCYWHiePNmi8alJzcX2LdPHPfpo1wcpIzu3QEnJ/Hm+tIlpaMhJcglgY8/DlSrpmwsZBiWBhIRMblyREOHAh4ewIkTwP79pZxgDX1XO3YAGg3QtCnQqJFycZAyvL2B9u3FMUsDHY9Go0uuWBJoO0aMEB+K7N4tPhghInJATK4ckLc3MHiwOC51sIXcd5WQUMrSloWwJJDYd+W4kpOBixfFcJP+/ZWOhgzl56f7cK7UunMiIvvH5MpByaWBS5YAhYUPfLF7d7Hr8KVLYnlLCVu2iGsmV46LfVeOSx5kERsLqNWKhkKVVLI0UKkP54iIFMTkykH17Su2tLp+Hfj99we+6OEB9OwpjpUoDbx+HUhLE8fst3Jc3buLKZGnTwNXrigdDVlKcTGwYoU4Zkmg7Rk8WAwhOX26jLpzIiL7xuTKQbm46D5gLLU0UC7tUGIku7xS0bq1GLBBjqlGDaBdO3HM0kDHsW0bkJkJ1Kqlm15KtqN6dWDQIHHMwRZE5ICYXDkwuTTw11+BGzce+KLcd7V1ayl1g2Ym91tx1YrYd+V45JLAoUMBNzdlY6GqkTdUXLpUjGYnInIgTK4cWGgoEB4O3L+vG8yl98V69YD8fNFcbkkcZkEy9l05lvv3gVWrxHFcnLKxUNX16wfUrQtkZSm7pQcRkQKYXDm4knte6XFyUmYk+5UrYoiGSqVbtSDH1aOH+Ldw8iRw9arS0ZC5bd4sltF9fXWJNdkeV1ddcszSQCJyMEyuHNxTTwHOzmJbklOnHviiEn1X8pTAdu1EzwU5tpo1dZtab9+ubCxkfnJJ4LBh4gcT2S65NHDNGuD2bWVjISKyICZXDs7XF4iJEccPrV7JzeT795fSlGUmHMFOD5JXMFkaaN/u3RNvxAGWBNqDzp2BZs2AO3eAX35ROhoiIothckXa0sAFCwCNpsQX6tcXE/skCUhMtEww7LeiB8nlYRxqYd82bgRu3QIaNAC6dlU6GjKWSqW/5xURkYNgckUYOBDw8QHS00upvLJk39W5c+Li4iL2OCICRN8VABw/LkZ0k32SSwLj4kTPJ9k+OblKSOD/XSJyGPwNRvDwAIYPF8cPlQbKI9n/+EOsYJmTXBLYqRPg5WXe5yLbUbs20LatOGbflX3Kzxd7QgDcONieNG8uygOLi0sZSUtEZJ+YXBEAXWngihWiRF6rZ0+x18yFC8CZM+YNgiWBVBb2Xdm39evFD54mTYAOHZSOhkxJHmyxaJGycRARWQiTKwIAdOsGNG4shjqtXVviC9WqiS8C5p0aKElMrqhs7Luyb3JJ4IgRoleH7EdcnJj8uHdvKSNpiYjsD5MrAiDez5S555Ul+q5OnRL7GLm7A5GR5nsesk09e4rro0eBa9eUjYVMKzcX2LBBHLMk0P7Uq6crL+fqFRE5ACZXpDVqlLhOSBB7+WrJvxi3bAHu3zfPk8urVl27iiYwopLq1AHatBHH7LuyL7/8AhQWAq1a6f6Oyb6ULA00d+8uEZHCmFyRVtOmogJQowEWLy7xhXbtxFCBvDxR2mEOLAmkisilgey7si8sCbR/gwaJEvOzZ4E9e5SOhojIrJhckR65NHD+/BIfMDo56TYUNkdpoEajmxTYp4/pH5/sgzzUgn1X9iM7W/czhRsH269q1YDBg8Ux97wiIjvH5Ir0DBsm2p6OHAEOHizxBbnvyhxDLQ4fBq5fF7+AO3Uy/eOTfZD7rg4fFm/KyfatXg0UFYnV8ZYtlY6GzEkuDVy2zHzl5UREVoDJFempWRN44glxrDfYQk6u9u4FcnJM+6RySWCPHmLsO1Fp6tUDQkLE8Y4dysZCpiHvfcRVK/vXt6/4P5ydbd7Js0RECrOK5Oqbb75BUFAQ1Go1IiIisLeCvp4VK1YgODgYarUaoaGh2CBPmgJw//59/Oc//0FoaCiqVauGgIAAjB49Glf0JjRQeeTSwEWLxIfKAIBGjcQny8XFuhI+U2G/FRmKfVf24+pV3c8SJlf2z8UFiI8Xx5waSEQPsqNhN4onV8uWLcOkSZMwbdo0pKSkICwsDNHR0cjKyir1/KSkJMTHx2PcuHFITU1FbGwsYmNjceTIEQDAnTt3kJKSgnfeeQcpKSlYvXo1Tp48iSfk5RiqUHQ0ULcukJX1wAeM8tRAU/ZdFRXppr8xuaKKsO/KfqxcKX6ZdukCBAUpHQ1ZglwauHYtcOuWoqEQkRVZsgTo3l1sJm8HVJKkbKoYERGBTp06YdasWQAAjUaDhg0b4uWXX8Ybb7zx0PlxcXHIz8/H+vXrtbd16dIF4eHhmD17dqnPsW/fPnTu3BkXLlxAo0aNKowpLy8PPj4+yM3Nhbe3dxVfmW2bOBH48kvxgbI8zAu//ipqBps2Bc6cMc0T7d0LREQANWqIchFnZ9M8LtmnzEzAz09MlcvOBmrVUjoiqqru3YFdu4D/+z/xA4fsnyQBwcFiX8P583VlEkTkmPLzgZdfBubNE3/+5BNg8mRlYypDZXIDRVeuCgsLceDAAUTJk+gAODk5ISoqCsnJyaXeJzk5We98AIiOji7zfADIzc2FSqVCjRo1Sv16QUEB8vLy9C6OTv6dt3ZtiRar3r1FacfZs8Bff5nmieSSwF69mFhRxXx9xZszSWLflS1LTxeJlUolpuiQY1Cp9Pe8IiLHlZYGdOggEiuVCnjnHeBf/1I6KpNQNLnKzs5GcXExfH199W739fVFRkZGqffJyMio1Pn37t3Df/7zH8THx5eZac6YMQM+Pj7aS8OGDavwauxLu3ZiP8+CAmDFir9v9PICIiPFsalKA9lvRZXFvivbt3y5uO7ZE6hfX9lYyLJGjhTXmzeLvjsiciySBHz9tahaOnkSCAgQ7wXfe098gG8HFO+5Mqf79+9j+PDhkCQJ3333XZnnTZkyBbm5udrLxYsXLRildVKpdKtXpU4NNEVyVVAA7NwpjplckaHkvismV7ZLrjXmIAvH06SJ+JBOoylRc05EDuH6dSA2FnjlFaCwEBg4UOz7I39oaicUTa7q1KkDZ2dnZGZm6t2emZkJPz+/Uu/j5+dn0PlyYnXhwgUkJCSUWx/p7u4Ob29vvQuJDxidnET+c/bs3zfKQy0SE8XkQGPs2QPcvSumZ7RubdxjkeOQk6uDB4GbN5WNhSrvzBngwAFRBjx0qNLRkBJYGkjkeLZuBcLCgHXrxLY7X34J/PILUKeO0pGZnKLJlZubGzp06IDExETtbRqNBomJiYiUy88eEBkZqXc+ACQkJOidLydWp0+fxubNm1G7dm3zvAA7FxAAyO1tCxf+fWPHjmL4RE4OsH+/cU8gj2F+5BGxVEZkCH9/oEUL9l3ZKnlvK3nfI3I8w4eL8p8DB4Djx5WOhojMqagImDpVvNe7fFn8/t69W6xe2el7P8XLAidNmoQffvgB8+fPx/Hjx/Hiiy8iPz8fY8eOBQCMHj0aU6ZM0Z7/6quvYuPGjZg5cyZOnDiB6dOnY//+/ZgwYQIAkVg9+eST2L9/PxYtWoTi4mJkZGQgIyMDhYWFirxGW1ayNFCSID5t7ttX3GjsRpDst6KqkksIOJLd9silYCNGKBsHKadOHSAmRhxz9YrIfqWnA336AO+/L95Ejh0rPlRp107pyMxK8eQqLi4On332GaZOnYrw8HCkpaVh48aN2qEV6enpuFqi6bVr165YvHgx5syZg7CwMKxcuRJr165FmzZtAACXL1/GunXrcOnSJYSHh8Pf3197SUpKUuQ12rLYWKB6dTEcUPvtM0Xf1Z07gDzhkckVVRb7rmzT0aPAkSOAq6v44UKOq2RpoB1tHkpEf1uzBggPF70lXl7A4sXA3LniTaWdU3yfK2vEfa70jR0L/PQT8MILwPffAzh3TjQlu7gAN26I/zSVlZAg+rcaNBCfbNjp0jCZyeXL4t+Ok5NokC1jmwWyMlOnik8wBw4UdffkuO7cEVsr3L4t3nx166Z0RERkCnfvAq+9BsiD5Dp1EpsEN22qbFxGspl9rsg2yKWBy5YB9+4BaNxY/CcpKqr6ykHJkkAmVlRZ9esDzZqJiWPyxEmybpLEkkDS8fTUDTRhaSCRfTh2TIxYlxOryZPF72gbT6wqi8kVVahXL6BhQyA3F/j1179vlKcGVrU0kP1WZCz2XdmW1FTg9GlArRYrV0RyaeCyZWIsMxHZJkkCfvhBDD07fFgMK9q4EfjkEzEZ0MEwuaIKOTkBo0aJY+2eV3LfVVWGWuTm6iYN9uljdHzkoNh3ZVvkKYGPP161UmKyP336iOmfN26IN2JEZHtycsSehS+8IEoC+/UTW6VERysdmWKYXJFB5OTq99+BrCyIX4rOzmJ37fT0yj3Yjh2inKtZM6BRI5PHSg5CTq5SUoC8PGVjofKxJJBK4+wMxMeLY5YGEtme5GQxtGLFCtGH//HH4oOSMvaqdRRMrsggwcFA585i3+AlSyAGCHTuLL5Y2dJAlgSSKTRsKAarsO/K+u3eLT6EqV4deOwxpaMhayKXBq5bJ6oaiMj6FRcDH34I9OgBXLggevF37gT+/W9R7uTg+B0gg5Xc8wpA1fuu5OSKJYFkLPZd2Qa5JHDQIMDDQ9lYyLqEhwOtWolpSatXKx0NEVXkyhVR8vfWWyLJio8XPbUREUpHZjWYXJHB4uLE9jQpKWKrGm3f1ebNYvXAENnZohYXYHJFxpOTK/ZdWa/iYmD5cnHMkkB6kEqlv+cVEVmvDRuAsDAgMVFM/Jw7V/y/9fFROjKrwuSKDFanDjBggDhesACiLNDbW+wzlJpq2IPIb4JbtxZ7nBAZQ+67OnAAuHVL2ViodDt2AFevilJiebWbqKSnnhLXf/4p9rAjIutSUABMmiTeBGZniwTrwAGxESq303kIkyuqFLk0cOFCoNjJVbf6ZOjUQPZbkSk1aiRqvYuLgV27lI6GSiOXBA4Z4pAjeckAQUFA9+76g0+IyDqcPg107Qr83/+JP7/8suijDQ5WNi4rxuSKKuWxx4BatUTJ7Z9/ovJ9V1u2iGsmV2Qq8uoV+66sz/37wMqV4pglgVQeuTRw4UJl4yAinQULgPbtRT9IrVrAL78AX30l9iukMjG5okpxd9dNzp0/H7q+q507gfz88u985Qpw4oRYQpbfEBMZi31X1uvPP0UJSd267LGk8g0bJpp609KAo0eVjobIsd26JUqVRo8Gbt8W79kOHgSeeELpyGwCkyuqNLk0cPVq4JZvMyAwUHxCvX17+XeUV63atwdq1jRvkOQ45ER9/37xS4Csh1zi9eSTYg8UorLUqqUb08/BFkTKOXBAvE9bsECMVX/3XTHAokEDpSOzGUyuqNI6dQJathQbca9ardKVBlbUd8UR7GQOQUEiwS8qApKSlI6GZAUFwJo14pglgWSIklMDDZ1AS0SmodEAn38OREYCZ86IvSS3bgWmThUbfpPBmFxRpalUD+x5JZcGVtR3xWEWZC7y6hVLA63Hpk1iU9iAADGsgKgijz8uJtCmp3NjcCJLysoCBg4EXntNVCLFxooS3R49lI7MJjG5oiqRP2DcsgW42KKvyLiOHhV9VaU5dw44f16UBvGNFpkaNxO2PnJJYFycKC0hqohaLUpIAZYGEllKYqIYrb5hg2is/+Yb0fdRq5bSkdks/sajKmnUSFfdt+C3WkDHjuIPZa1eyatWnTsDXl7mD5Aci7xytXdvxYNVyPzu3AHWrRPHcXHKxkK2ZeRIcb18uSgtJSLzuH8fePNNUX2UkQG0agXs2we89BL3rjISkyuqspKlgVK/CkaycwQ7mVPjxqI+vKgISE5WOhr67TeR5AYFiQ9UiAzVqxdQvz6QkwP8/rvS0RDZp/PngZ49gRkzxP5yzz8vhkKFhiodmV1gckVVNnQo4OEBnDwJnGhYou/qwUZkSWK/FZlXyfH+7LtSnlwSOGIEPwGlynF2Bp56Shxzzysi01uxAggPFxsB+/iIjd7nzAE8PZWOzG4wuaIq8/IChgwRx7MPRgLVqommyMOH9U88eRK4elXU8kZGWj5Qcgzsu7IOeXli5QpgSSBVjVwa+OuvYgWLiIx35w7wwgvA8OFi2FCXLmJoxfDhSkdmd5hckVHk0sCFy92g6dlb/OHBkezyqlXXrtzVm8xHXrnas0f8EiFlrFsnemVathRN0kSV1bYt0KYNUFgIrFqldDREtu/wYdEb/8MPoppgyhSxN2lQkNKR2SUmV2SUvn0Bf3/gxg3gSEAZfVcsCSRLaNpU9Grcvy/KHUgZLAkkY6lUupG0LA0kqjpJAr77TmxQevw44Ocn3qN9+CHg6qp0dHaLyRUZxdlZ9zvwh/N/911t3y52GAZE/xWHWZAlsO9KeTduiP2tAJYEknHi48X11q3AxYuKhkJkk27cEM3xL70kqgn69wcOHhSfipNZMbkio8mlgd9vC0ZxQAPxn1jeAPLwYfEfvFo18ckJkTmx70pZa9aIiY1t24qxvkRV1aiR7sOSJUuUjYXI1uzYIYZWrFkjVqhmzgTWrwfq1VM6MofA5IqM1qYN0K4dcL9IhVON/l69kvuu5JLAnj25BE3mJ78Z271bt3pKllOyJJDIWPJgC5YGEhmmuBh47z3xQePFi0CzZmJ7kkmTuJm7BfE7TSYhr14tyn6g70pOruQdh4nMqXlz0QRYWCgGW5DlZGbq/r+zJJBM4cknATc3UQFx6JDS0RBZt0uXRMnftGmiJWPUKCAlBejQQenIHA6TKzKJ+HjRf/X9mb9reQ8eBC5f1pVnsd+KLIF9V8pZtUr8Qu/UCWjSROloyB7UrAk8/rg4XrRI2ViIrNm6dWI667Ztog3j55/FxctL6cgcEpMrMglfXyAmBshGXVzxbSdu/Phj4NYtoEYNUftLZAnsu1IGSwLJHOTSwMWLH96gnsjR3bsHvPIKMGiQ6G9v3x5ITRWrVqQYJldkMnJp4Nq7f5cGzp4trnv3FstaRJYgJ1fJyeIXD5nfpUuigRrghpRkWo89Jj6gu3RJTKIlIuHECbER8Ndfiz//619AUpIojydFMbkik3niCcDHB1iV9/dQi/v3xTVLAsmSWrQQS6kFBcDevUpH4xiWLxfXPXoADRooGwvZF7UaGDZMHHOwBZHYu2rePNFLdfAgUKcO8NtvwOefA+7uSkdHYHJFJqRWiz72XeiGAmcP3ReYXJElqVS61Sv2XVnGsmXimoMsyBzk0sAVK7gaTY4tN1f8f3j2WeDOHfH+6uBBscJLVoPJFZnU6NFAAdTYjp7ihnr1gJAQZYMixyMPtWDflfn99ZdYIXRyEtPdiEytRw+gYUMgL098Qk/kiPbuFfveLFkiWi0++EBsexMQoHRk9AAmV2RSXbuKQWFrip8QNzz2mFhJILIkeeUqKUmUB5L5yKtWjzwiyjGJTM3JCXjqKXHM0kByNBoN8MknQLduwLlzQGCg6HF98032s1spJldkUiqVWL36Hv/Ae2GrRA0wkaUFB4tV03v3gH37lI7GvrEkkCzh6afF9YYNYioakSPIyAD69wf+8x+gqEj0H6alAZGRSkdG5WByRSY3ahSggTPePTwEl+/UVDocckTc78oyjh8X9f4uLsCQIUpHQ/asTRuxj09hIbBypdLREJnfH3+If/N//AF4eABz5ogPs2rUUDoyqoDiydU333yDoKAgqNVqREREYG8F071WrFiB4OBgqNVqhIaGYsOGDXpfX716NR599FHUrl0bKpUKaWlpZoyeStOkCdC9u1jJHjRIbMHwzTfA5s3AxYvcqoQshMmV+cmrVtHRQK1aysZC9k8ebMHSQH337wPXr4uSsUOHgJ07xQrf0qXiDflnnwFTpwITJ4pBCMOGif+zkZGinHfSJGDBAuDIEbE6QsoqLAT+/W/xd5SVJT5Y2L8feP55tlnYCBcln3zZsmWYNGkSZs+ejYiICHzxxReIjo7GyZMnUa9evYfOT0pKQnx8PGbMmIHHH38cixcvRmxsLFJSUtCmTRsAQH5+Prp3747hw4fj+eeft/RLor/94x/i5/uBA+JSkqenmJbdogXQsqX+hZuJk8mU7LsqLATc3BQNx+5Ikm7jYJYEkiXEx4vyqB07gAsXRO+JrZIkMe3t1i0xqKOiS3nnGTtBccsW3bFaDbRtKzajbddOXEJDxe1kfmfPin/ncjn7iy8CM2eKlSuyGSpJkiSlnjwiIgKdOnXCrFmzAAAajQYNGzbEyy+/jDfeeOOh8+Pi4pCfn4/169drb+vSpQvCw8MxW96w9m/nz59H48aNkZqaivDw8HLjKCgoQEGJpve8vDw0bNgQubm58Pb2NuIVOi5JEh+0HDoEnDypu5w9W/4HY/7+DydcLVoAQUGi8ojIYJIk+q6ys0Wm362b0hHZl4MHgfBwsa9KVhbAn5VkCX37An/+CXz4ITBliuWfv7jYsITIkHNMXcbh6Sn+H3p5ievyLvI5N24AqanikpYG3L798OM6O4upvyUTrvBw/p83tSVLxCfTt26J0r8ff2S5tRXJy8uDj4+PQbmBYm9XCwsLceDAAUwp8cPRyckJUVFRSE5OLvU+ycnJmDRpkt5t0dHRWLt2rVGxzJgxA++++65Rj0H6VCqgUydxKen+feD8ef2ES75kZgJXr4rLg5Vcbm5A06YPJ14tWwK1a1vqVZFNkfuuVq0SI9mZXJmWvGo1YADfZJHljBwpkquFC4E33jCsTEqSxNRQUyREd+6Y9vU4ORmWDFWUNHl5Vf0TyLFjxbVGA5w5IxKtlBRd0pWdDRw+LC7z5+vu16yZfsLVrp34QIsq5/Zt0T8xb574c7duwOLFQKNGysZFVaZYcpWdnY3i4mL4PjC619fXFydOnCj1PhkZGaWen5GRYVQsU6ZM0Uva5JUrMj1XV6B5c3F5/HH9r+XkAKdO6Sdcp06Jy717onf++PGHH7N2bf1VLvm4aVNuVu7w5ORq61YxtpZMo2RJ4IgRysZCjmXoUOCll4Bjx4Dp00VCYUjSdP++aeNwdzcuGZIvnp7W00fj5KSr2ZdLfSUJuHTp4YTr4kWRiJ05AyxfrnuM+vX1E6727cUeZdbyGq1NWpr4GXrypPgevf226I9jqY5N498eAHd3d7jzXbjiatQAOncWl5I0GvFzvLTVrosXRR9vUpK4lOTkBDRuXHqZob8/f9Y7BLnvatcu8ebK1VXRcOzGvn1iCbpaNbFyRWQpPj7AwIFiYuB771X+/hUlPIaW1DlKD6dKJZKjhg2BJ57Q3Z6drUu05KTr1Cng8mVx+fVX3bm1aukSLfm6eXPxS9pRSRLw9dfA5MmiJzggAFi0SPc7i2yaYslVnTp14OzsjMzMTL3bMzMz4efnV+p9/Pz8KnU+2QcnJ9G3HBgIPPqo/tfy84HTpx9e8Tp5UnxYefasuDwwVBJeXqUP1GjRQnyQSHaidWvxi/3GDdEEyL1BTENetXriCf6HIcv7739FH1BlS+qqV3fsN/SmVKcO0K+fuMhu3RK9mCUTrqNHxc/fxERxkVWrJsaMl0y4QkIcI2nNzhZTG+UEdOBAYO5c8T0lu6BYcuXm5oYOHTogMTERsbGxAMRAi8TEREyYMKHU+0RGRiIxMRETJ07U3paQkIBIvmFyWNWqib7aB2eWSJLYe6+01a5z58TvgNImGQLiA7rSygwbNeLvZZvj5CRKA9esEX1X/FlhPI1GVwbEkkBSQsuWugSfrIeXl9iHpXt33W0FBWLEe8mE6+BB8cnogyUnrq5i7HjJssKwMPGL3l5s3Sr6Bq9cEYnkZ58BEyawlMbOKDotcNmyZRgzZgy+//57dO7cGV988QWWL1+OEydOwNfXF6NHj0b9+vUxY8YMAGIUe69evfDRRx9hwIABWLp0KT788EO9Uew3btxAeno6rly5oj2nZcuW8PPzM3iFqzITQcj2FBQAf/1VeuJ1/XrZ91OrRSVDaUM1fHwsFz9V0pdfiv1dVCrxyWDduqLpWr4ueVzyumZNZtOl2bED6NlT/KPPzGRjIxFVTnGx+IX7YB9XTs7D56pU4pfsg4MzbG1fvaIiUcb63/+KT3/lDwgqmGZN1qMyuYGiyRUAzJo1C59++ikyMjIQHh6Or776ChEREQCA3r17IygoCD/99JP2/BUrVuDtt9/G+fPn0bx5c3zyySd47LHHtF//6aefMFaefFPCtGnTMH36dINiYnLluK5ff3igxsmTome3sLDs+/n6ll5m2Lgx23wUl54OdOggSjEqw9lZJGPlJWAlr318HOPTx/HjgW+/BZ55RjfdiojIGJIk+jgfTLiuXi39/MDAhwdnWGszdXo68NRTovcXENMZv/pKlKmSzbCp5MoaMbmiBxUViT0rS1vtKutnPyAG/pQcIV8yAatb1zp/D9iloiKRXGVlicu1a+Vf5+ZW/jlcXStOwEoeV69ue/8AiopE4/W1a8DGjUB0tNIREZE9y8h4OOH666/Sz61X7+GEq0kTZX/Orl4NjBsnVuW8vIDvvxebBJPNYXJlJCZXVBl5eWKoxoNJ16lT5W+JUqNG6SWGzZqJEkRSUEGBLhmrKBHLyip9482KuLtXnICVvLaGvoOEBDFVpk4d0TPAZVkisrScHDHCvGTCdfx46Zsye3uL0ruSgzOCg80/6vzuXeC114DvvhN/7tRJbBLctKl5n5fMhsmVkZhckSloNGIibWmrXenpogqiNCoVEBSkW+Vq3PjhKcElr43ZO5JM5O5dkWyVl4CVPL57t/LP4elZcQJW8tocGfpzzwE//gj84x/A7Nmmf3wioqq4c0dsclwy4Tp0qPR6frUaCA3VT7hCQ033M/PoUTHs58gR8efJk0WvlSNMQrRjTK6MxOSKzO3uXdHHVVriVZWKNA+P0pOushKy8s5lomYB+fnlJ2APXhcUVP45vLwMK0+sW1dcKvrFX1gomgtzcoAtW7gfCxFZt/v3xYrWg2WFpVUaODsDrVrplxWGh1duWpUkAT/8IAYo3b0rfr7+/DPLp+0EkysjMbkipUiSeC9dsrTw4kUxOj4vT//61q2qveeuiIeH4YlYRddM1ExAksSbAUMTsWvXxJuKyvLxKT8Ru3QJ+Pe/RdP4xYvizQgRkS3RaMTmlyUTrpSUsgceNW36cB9XvXoPn5eTA7zwArBihfhzv34iseI+rHaDyZWRmFyRrSgsLD3xKpmAlfW1B88xR6KmVhueiJWXvHl5sb3HYJIklj8NTcSuXROjkQ31yitivD0RkT2QJFHD/2DCdfFi6ecHBOgnXGo18OKLYuqViwvw4Yei34pbedgVJldGYnJFjkhO1KqapJU8994908dXWqJW2aTNy0sM6ePWTCVoNOJTV0MSMScnMf2qWTOloyYiMq/s7IcHZ5w6VXbDdJMmYmhF584WDZMsg8mVkZhcERnn/n3TraiZI1FzddVPth5Mvir7Z3d325uqTkRElXT7NnDwoH7CdfYsEBsLfP115Xq0yKYwuTISkysi6yEnasYmabduVW1InyFcXEybrKnVTNaIiIisRWVyA7abE5FVc3UFatUSF2MVFYlBfXLSJV9u367an+V9zIqKgJs3xcUUnJ1Nm6x5eDBZIyIisgQmV0TkMFxcRNWGqSo3iotFolVRMmZowpafr3vcnBxxMQVnZ13SZUyyVr262G7L05OTIImIiErDX49ERFXk7Gz6ZE1eWavsalppt5VM1nJzq7aHWllcXHSJloeH/nVZx1X5ulrNoVtERGQ7mFwREVkJZ2cx3dBUrZ4ajX4ZZFXLH0v+WVZUJHrZ8vJME2t51GrTJmxlfd3VleWTRERkHCZXRER2yslJV9JnCpIk9kO7c0dc7t7Vvy7r2NDbSh4XFuqe994980yNfJCTk2VW49zdxcofEzkiIvvD5IqIiAyiUolVJLXaNANGylNcbFxyVpn7aDTiOTUaXQ+dJbi66l/c3Mr+c3lfU+pcZ2fLfJ+IiGwJkysiIrI68hCO6tXN+zySJMb9VzVhq0xC9+Dq2/374mKrnJwsn+CV/LOLi+66rEtlv+7kxBVFIjIOkysiInJYKpV4s+7mBtSoYd7n0mhEglVQIJKqwkJdgvXgn8v7minvW5lzH9wVU6MRr6WgwLzfN0szNkEzRZJnyedwdhYXDo4hMg0mV0RERBZQsqfL1kiSKNW0poSvqKjsiyFffzBZlMnnOBqVSpdolUy6eFz2MVc5qTRMroiIiKhcKpVupcPDQ+loTEOjMT5BM+brSj2G3GP4IEnSnWNvq5HmIv+/kBOukseG3mbs1631MR058WRyRURERA7HyUlXEupINBqxCiknXsXFuktREY8fPC4rGQV0PZu23DtpLk5OlU/Ivv0W6N5d6ciNx+SKiIiIyEE4OemGkdjLKqQ5ySWxZSVgD95W8vYHzzHkNmO/bunHLItGo7+lhiHu3DHu78paMLkiIiIiIipFyZJYd3elo7EukqS/EmpsEteundKvyDSYXBERERERUaWUHILiaOW15eHgTSIiIiIiIhNgckVERERERGQCTK6IiIiIiIhMgMkVERERERGRCTC5IiIiIiIiMgEmV0RERERERCbA5IqIiIiIiMgEmFwRERERERGZAJMrIiIiIiIiE2ByRUREREREZAJMroiIiIiIiEzAKpKrb775BkFBQVCr1YiIiMDevXvLPX/FihUIDg6GWq1GaGgoNmzYoPd1SZIwdepU+Pv7w8PDA1FRUTh9+rQ5XwIRERERETk4xZOrZcuWYdKkSZg2bRpSUlIQFhaG6OhoZGVllXp+UlIS4uPjMW7cOKSmpiI2NhaxsbE4cuSI9pxPPvkEX331FWbPno09e/agWrVqiI6Oxr179yz1soiIiIiIyMGoJEmSlAwgIiICnTp1wqxZswAAGo0GDRs2xMsvv4w33njjofPj4uKQn5+P9evXa2/r0qULwsPDMXv2bEiShICAALz22mt4/fXXAQC5ubnw9fXFTz/9hBEjRlQYU15eHnx8fJCbmwtvb28TvVIiIiIiIrI1lckNXCwUU6kKCwtx4MABTJkyRXubk5MToqKikJycXOp9kpOTMWnSJL3boqOjsXbtWgDAuXPnkJGRgaioKO3XfXx8EBERgeTk5FKTq4KCAhQUFGj/nJubC0B8I4mIiIiIyHHJOYEha1KKJlfZ2dkoLi6Gr6+v3u2+vr44ceJEqffJyMgo9fyMjAzt1+XbyjrnQTNmzMC777770O0NGzY07IUQEREREZFdu3XrFnx8fMo9R9HkylpMmTJFbzUsJycHgYGBSE9Pr/AbSGXLy8tDw4YNcfHiRZZXVhG/h6bB76Px+D00DX4fTYPfR+Pxe2ga/D4azxa+h5Ik4datWwgICKjwXEWTqzp16sDZ2RmZmZl6t2dmZsLPz6/U+/j5+ZV7vnydmZkJf39/vXPCw8NLfUx3d3e4u7s/dLuPj4/V/iXbEm9vb34fjcTvoWnw+2g8fg9Ng99H0+D30Xj8HpoGv4/Gs/bvoaELLopOC3Rzc0OHDh2QmJiovU2j0SAxMRGRkZGl3icyMlLvfABISEjQnt+4cWP4+fnpnZOXl4c9e/aU+ZhERERERETGUrwscNKkSRgzZgw6duyIzp0744svvkB+fj7Gjh0LABg9ejTq16+PGTNmAABeffVV9OrVCzNnzsSAAQOwdOlS7N+/H3PmzAEAqFQqTJw4Ef/973/RvHlzNG7cGO+88w4CAgIQGxur1MskIiIiIiI7p3hyFRcXh2vXrmHq1KnIyMhAeHg4Nm7cqB1IkZ6eDicn3QJb165dsXjxYrz99tt488030bx5c6xduxZt2rTRnvPvf/8b+fn5eOGFF5CTk4Pu3btj48aNUKvVBsXk7u6OadOmlVoqSIbj99F4/B6aBr+PxuP30DT4fTQNfh+Nx++hafD7aDx7+x4qvs8VERERERGRPVC054qIiIiIiMheMLkiIiIiIiIyASZXREREREREJsDkioiIiIiIyASYXJWwfft2DBw4EAEBAVCpVFi7dq3SIdmcGTNmoFOnTvDy8kK9evUQGxuLkydPKh2Wzfnuu+/Qtm1b7YZ6kZGR+P3335UOy6Z99NFH2q0ayHDTp0+HSqXSuwQHBysdls25fPkynn76adSuXRseHh4IDQ3F/v37lQ7LpgQFBT30b1GlUmH8+PFKh2ZTiouL8c4776Bx48bw8PBA06ZN8f7774PzzSrn1q1bmDhxIgIDA+Hh4YGuXbti3759Sodl1Sp6ny1JEqZOnQp/f394eHggKioKp0+fViZYIzC5KiE/Px9hYWH45ptvlA7FZm3btg3jx4/H7t27kZCQgPv37+PRRx9Ffn6+0qHZlAYNGuCjjz7CgQMHsH//fjzyyCMYNGgQjh49qnRoNmnfvn34/vvv0bZtW6VDsUmtW7fG1atXtZedO3cqHZJNuXnzJrp16wZXV1f8/vvvOHbsGGbOnImaNWsqHZpN2bdvn96/w4SEBADAsGHDFI7Mtnz88cf47rvvMGvWLBw/fhwff/wxPvnkE3z99ddKh2ZTnnvuOSQkJGDBggU4fPgwHn30UURFReHy5ctKh2a1Knqf/cknn+Crr77C7NmzsWfPHlSrVg3R0dG4d++ehSM1kkSlAiCtWbNG6TBsXlZWlgRA2rZtm9Kh2LyaNWtK//vf/5QOw+bcunVLat68uZSQkCD16tVLevXVV5UOyaZMmzZNCgsLUzoMm/af//xH6t69u9Jh2J1XX31Vatq0qaTRaJQOxaYMGDBAevbZZ/VuGzJkiDRy5EiFIrI9d+7ckZydnaX169fr3d6+fXvprbfeUigq2/Lg+2yNRiP5+flJn376qfa2nJwcyd3dXVqyZIkCEVYdV67IrHJzcwEAtWrVUjgS21VcXIylS5ciPz8fkZGRSodjc8aPH48BAwYgKipK6VBs1unTpxEQEIAmTZpg5MiRSE9PVzokm7Ju3Tp07NgRw4YNQ7169dCuXTv88MMPSodl0woLC7Fw4UI8++yzUKlUSodjU7p27YrExEScOnUKAHDw4EHs3LkT/fv3Vzgy21FUVITi4mKo1Wq92z08PLiyX0Xnzp1DRkaG3u9qHx8fREREIDk5WcHIKs9F6QDIfmk0GkycOBHdunVDmzZtlA7H5hw+fBiRkZG4d+8eqlevjjVr1iAkJETpsGzK0qVLkZKSwjp4I0REROCnn35Cy5YtcfXqVbz77rvo0aMHjhw5Ai8vL6XDswl//fUXvvvuO0yaNAlvvvkm9u3bh1deeQVubm4YM2aM0uHZpLVr1yInJwfPPPOM0qHYnDfeeAN5eXkIDg6Gs7MziouL8cEHH2DkyJFKh2YzvLy8EBkZiffffx+tWrWCr68vlixZguTkZDRr1kzp8GxSRkYGAMDX11fvdl9fX+3XbAWTKzKb8ePH48iRI/wUp4patmyJtLQ05ObmYuXKlRgzZgy2bdvGBMtAFy9exKuvvoqEhISHPl0kw5X8NLtt27aIiIhAYGAgli9fjnHjxikYme3QaDTo2LEjPvzwQwBAu3btcOTIEcyePZvJVRX9+OOP6N+/PwICApQOxeYsX74cixYtwuLFi9G6dWukpaVh4sSJCAgI4L/HSliwYAGeffZZ1K9fH87Ozmjfvj3i4+Nx4MABpUMjhbEskMxiwoQJWL9+PbZs2YIGDRooHY5NcnNzQ7NmzdChQwfMmDEDYWFh+PLLL5UOy2YcOHAAWVlZaN++PVxcXODi4oJt27bhq6++gouLC4qLi5UO0SbVqFEDLVq0wJkzZ5QOxWb4+/s/9KFIq1atWF5ZRRcuXMDmzZvx3HPPKR2KTZo8eTLeeOMNjBgxAqGhoRg1ahT+9a9/YcaMGUqHZlOaNm2Kbdu24fbt27h48SL27t2L+/fvo0mTJkqHZpP8/PwAAJmZmXq3Z2Zmar9mK5hckUlJkoQJEyZgzZo1+PPPP9G4cWOlQ7IbGo0GBQUFSodhM/r27YvDhw8jLS1Ne+nYsSNGjhyJtLQ0ODs7Kx2iTbp9+zbOnj0Lf39/pUOxGd26dXtoS4pTp04hMDBQoYhs27x581CvXj0MGDBA6VBs0p07d+DkpP/2z9nZGRqNRqGIbFu1atXg7++PmzdvYtOmTRg0aJDSIdmkxo0bw8/PD4mJidrb8vLysGfPHpvrN2dZYAm3b9/W+zT23LlzSEtLQ61atdCoUSMFI7Md48ePx+LFi/HLL7/Ay8tLWyfr4+MDDw8PhaOzHVOmTEH//v3RqFEj3Lp1C4sXL8bWrVuxadMmpUOzGV5eXg/1+lWrVg21a9dmD2AlvP766xg4cCACAwNx5coVTJs2Dc7OzoiPj1c6NJvxr3/9C127dsWHH36I4cOHY+/evZgzZw7mzJmjdGg2R6PRYN68eRgzZgxcXPgWpioGDhyIDz74AI0aNULr1q2RmpqKzz//HM8++6zSodmUTZs2QZIktGzZEmfOnMHkyZMRHByMsWPHKh2a1aroffbEiRPx3//+F82bN0fjxo3xzjvvICAgALGxscoFXRVKjyu0Jlu2bJEAPHQZM2aM0qHZjNK+fwCkefPmKR2aTXn22WelwMBAyc3NTapbt67Ut29f6Y8//lA6LJvHUeyVFxcXJ/n7+0tubm5S/fr1pbi4OOnMmTNKh2Vzfv31V6lNmzaSu7u7FBwcLM2ZM0fpkGzSpk2bJADSyZMnlQ7FZuXl5Umvvvqq1KhRI0mtVktNmjSR3nrrLamgoEDp0GzKsmXLpCZNmkhubm6Sn5+fNH78eCknJ0fpsKxaRe+zNRqN9M4770i+vr6Su7u71LdvX5v8v66SJG7JTUREREREZCz2XBEREREREZkAkysiIiIiIiITYHJFRERERERkAkyuiIiIiIiITIDJFRERERERkQkwuSIiIiIiIjIBJldEREREREQmwOSKiIiIiIjIBJhcERERmZhKpcLatWuVDoOIiCyMyRUREdmVZ555BiqV6qFLTEyM0qEREZGdc1E6ACIiIlOLiYnBvHnz9G5zd3dXKBoiInIUXLkiIiK74+7uDj8/P71LzZo1AYiSve+++w79+/eHh4cHmjRpgpUrV+rd//Dhw3jkkUfg4eGB2rVr44UXXsDt27f1zpk7dy5at24Nd3d3+Pv7Y8KECXpfz87OxuDBg+Hp6YnmzZtj3bp15n3RRESkOCZXRETkcN555x0MHToUBw8exMiRI/+/nfsJhS2Mwzj+vKKYg6LJNNlYqGksKFEmNrIQpRRJTRo2mmiyUWpSRqzZmYXsiJqFsvCnWE6JjT+LYa0mUTaaYjNzF2rq5Ha73Y4xd3w/q/e87+mc37t8es/vaHx8XKlUSpKUyWTU39+vuro6XV5eKpFI6PT01Bae4vG4ZmdnNT09rdvbWx0cHKi5udn2juXlZY2Njenm5kaDg4MKBoN6eXkp6D4BAIVlcrlc7ruLAADAKZOTk9re3lZlZaVtPhqNKhqNyhijcDiseDyeX+vq6lJ7e7s2Nja0ubmphYUFPTw8yLIsSdLh4aGGhoaUTqfl8XjU2Nioqakpra6u/rYGY4wWFxe1srIi6SOwVVdX6+joiN4vAChh9FwBAEpOb2+vLTxJUn19fX4cCARsa4FAQFdXV5KkVCqltra2fLCSpO7ubmWzWd3f38sYo3Q6rb6+vj/W0Nramh9blqXa2lo9PT3965YAAP8BwhUAoORYlvXpMz2nVFVV/dV9FRUVtmtjjLLZ7FeUBAAoEvRcAQB+nPPz80/Xfr9fkuT3+3V9fa1MJpNfTyaTKisrk8/nU01NjZqamnR2dlbQmgEAxY+TKwBAyXl/f9fj46Ntrry8XG63W5KUSCTU0dGhnp4e7ezs6OLiQltbW5KkYDCopaUlhUIhxWIxPT8/KxKJaGJiQh6PR5IUi8UUDofV0NCggYEBvb6+KplMKhKJFHajAICiQrgCAJSc4+Njeb1e25zP59Pd3Z2kjz/57e3taWZmRl6vV7u7u2ppaZEkuVwunZycaG5uTp2dnXK5XBoZGdHa2lr+WaFQSG9vb1pfX9f8/LzcbrdGR0cLt0EAQFHib4EAgB/FGKP9/X0NDw9/dykAgBJDzxUAAAAAOIBwBQAAAAAOoOcKAPCj8DU8AOCrcHIFAAAAAA4gXAEAAACAAwhXAAAAAOAAwhUAAAAAOIBwBQAAAAAOIFwBAAAAgAMIVwAAAADgAMIVAAAAADjgF5EWpeMGE/6WAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkZElEQVR4nO3de1iUdf7/8ddwRgQ8gyiClmfxkAdESzQpLNeyrMifecpqa9V0rba0zA5btrW2rlmZtWlnzVrbvm5piMfU8hQeytRK0TRAU0FQQZn798e9MzqCyGHgZuD5uK77mnvu+cw973u03Xn5Odw2wzAMAQAAAADKxcvqAgAAAACgOiBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBoQrAAAAAHADwhUAAAAAuAHhCgAAAADcgHAFAAAAAG5AuAIAAAAANyBcAUANMX/+fNlsNu3fv9/qUuDhbDabxo0bZ3UZAFDlEK4AoAbbuHGj/vSnP6lr167y9fWVzWarsM/q27evOnToUGHnr05sNtslt/vvv9/q8gAAl+BjdQEAAOt88cUXeuutt9SxY0e1aNFCe/bssbok/M91112nESNGFDreqlUrC6oBAJQE4QoAarAHHnhAjz76qAIDAzVu3DjCVSU5c+aM/Pz85OV16QEkrVq10l133VWJVQEAyothgQBQg4WFhSkwMNDqMly89tprat++vfz9/RUREaGxY8fqxIkTLm327t2rIUOGKDw8XAEBAWratKnuvPNOZWVlOdskJyfr6quvVp06dVS7dm21bt1aU6ZMueznO+YTffDBB2rdurUCAgLUtWtXrVmzplDbQ4cO6e6771ZYWJj8/f3Vvn17vf322y5tVq1aJZvNpgULFuiJJ55QkyZNVKtWLWVnZ5ftC7qAY6jlli1b1KtXLwUGBqp58+aaM2dOobaZmZkaM2aMwsLCFBAQoE6dOumdd94p1M5ut+uf//ynYmJiFBAQoIYNG2rAgAHavHlzobafffaZOnTo4Lz2pUuXlvuaAMCT0XMFAKgynnrqKT399NNKSEjQAw88oN27d+v111/Xpk2btG7dOvn6+io/P1+JiYnKy8vT+PHjFR4erkOHDmnJkiU6ceKEQkND9f333+sPf/iDOnbsqGeeeUb+/v766aeftG7duhLVsXr1ai1cuFAPPvig/P399dprr2nAgAHauHGjc95YRkaGevbs6QxjDRs21JdffqkxY8YoOztbEydOdDnns88+Kz8/Pz388MPKy8uTn59fsTWcOXNGR48eLXQ8JCTE5b3Hjx/XjTfeqDvuuENDhw7Vxx9/rAceeEB+fn66++67JUmnT59W37599dNPP2ncuHFq3ry5Fi1apFGjRunEiROaMGGC83xjxozR/PnzdcMNN+iee+7RuXPntHbtWn3zzTfq1q2bs93XX3+tf//73/rTn/6k4OBgzZo1S0OGDNGBAwdUv379En3PAFDtGACAGmHevHmGJGPfvn1Fvj527FijIv9vIT4+3mjfvv0lX8/MzDT8/PyM66+/3igoKHAenz17tiHJePvttw3DMIzvvvvOkGQsWrTokuf6xz/+YUgyjhw5Uuo6JRmSjM2bNzuPpaWlGQEBAcYtt9ziPDZmzBijcePGxtGjR13ef+eddxqhoaHGqVOnDMMwjJUrVxqSjBYtWjiPlbSGoraPPvrI2S4+Pt6QZMyYMcN5LC8vz+jcubPRqFEjIz8/3zAMw5g5c6YhyXj//fed7fLz8424uDijdu3aRnZ2tmEYhrFixQpDkvHggw8Wqslut7vU5+fnZ/z000/OY9u2bTMkGa+88kqJrhEAqiOGBQIAqoTly5crPz9fEydOdJmLdO+99yokJET//e9/JUmhoaGSpGXLlunUqVNFnqtOnTqSpP/85z+y2+2lriUuLk5du3Z1Pm/WrJluvvlmLVu2TAUFBTIMQ59++qkGDRokwzB09OhR55aYmKisrCxt3brV5ZwjR44s1RDMm2++WcnJyYW2fv36ubTz8fHRH//4R+dzPz8//fGPf1RmZqa2bNkiyVy4JDw8XEOHDnW28/X11YMPPqicnBytXr1akvTpp5/KZrNp2rRpheq5eCXJhIQEXXHFFc7nHTt2VEhIiH755ZcSXyMAVDcMCwQAlMmxY8eUn5/vfB4YGOgMPmWRlpYmSWrdurXLcT8/P7Vo0cL5evPmzTVp0iS9/PLL+uCDD3TNNdfopptu0l133eX8/KSkJL311lu655579Nhjj6l///669dZbddtttxW7iIRDy5YtCx1r1aqVTp06pSNHjsjLy0snTpzQ3LlzNXfu3CLPkZmZ6fK8efPml/8SLtC0aVMlJCRctl1ERISCgoIK1SpJ+/fvV8+ePZWWlqaWLVsWuva2bdtKOv/d//zzz4qIiFC9evUu+7nNmjUrdKxu3bo6fvz4Zd8LANUVPVcAgDK59dZb1bhxY+d24bydijZjxgxt375dU6ZM0enTp/Xggw+qffv2+vXXXyWZQW/NmjVavny5hg8fru3btyspKUnXXXedCgoKyv35jt6wu+66q8jepeTkZPXu3dvlPVVt4ZDy8vb2LvK4YRiVXAkAVB30XAEAymTGjBkuvRQRERHlOl9UVJQkaffu3WrRooXzeH5+vvbt21eoFycmJkYxMTF64okntH79evXu3Vtz5szRX//6V0mSl5eX+vfvr/79++vll1/W888/r8cff1wrV668bI/Q3r17Cx3bs2ePatWqpYYNG0qSgoODVVBQUKLepYp0+PBh5ebmuvReOZbUj46OlmR+t9u3b5fdbnfpvfrxxx+dr0vSFVdcoWXLlunYsWMl6r0CALii5woAUCZdu3ZVQkKCc2vXrl25zpeQkCA/Pz/NmjXLpffjX//6l7KysjRw4EBJUnZ2ts6dO+fy3piYGHl5eSkvL0+SOWTxYp07d5YkZ5vibNiwwWXO1MGDB/Wf//xH119/vby9veXt7a0hQ4bo008/1c6dOwu9/8iRI5e/YDc5d+6c3njjDefz/Px8vfHGG2rYsKFz3tiNN96o9PR0LVy40OV9r7zyimrXrq34+HhJ0pAhQ2QYhp5++ulCn0OPFABcHj1XAFCDpaWl6b333pMk532MHD0/UVFRGj58uFs/78iRI87zX6h58+YaNmyYJk+erKeffloDBgzQTTfdpN27d+u1115T9+7dnTfUXbFihcaNG6fbb79drVq10rlz5/Tee+85A48kPfPMM1qzZo0GDhyoqKgoZWZm6rXXXlPTpk119dVXX7bODh06KDEx0WUpdkkuoeOFF17QypUrFRsbq3vvvVft2rXTsWPHtHXrVi1fvrzIgFcae/bs0fvvv1/oeFhYmK677jrn84iICP3tb3/T/v371apVKy1cuFCpqamaO3eufH19JUn33Xef3njjDY0aNUpbtmxRdHS0PvnkE61bt04zZ85UcHCwJKlfv34aPny4Zs2apb1792rAgAGy2+1au3at+vXrp3HjxpXrmgCg2rNyqUIAQOUpail2xzLhRW3x8fFu/XzHsuFFbf3793e2mz17ttGmTRvD19fXCAsLMx544AHj+PHjztd/+eUX4+677zauuOIKIyAgwKhXr57Rr18/Y/ny5c42KSkpxs0332xEREQYfn5+RkREhDF06FBjz549l61TkjF27Fjj/fffN1q2bGn4+/sbXbp0MVauXFmobUZGhjF27FgjMjLS8PX1NcLDw43+/fsbc+fOdbZxfMfFLR1fVA0l+XNxLG+/efNmIy4uzggICDCioqKM2bNnF1nr6NGjjQYNGhh+fn5GTEyMMW/evELtzp07Z7z00ktGmzZtDD8/P6Nhw4bGDTfcYGzZsqXQd3SxqKgoY+TIkSW+TgCobmyGQT8/AAAONptNY8eO1ezZs60u5bL69u2ro0ePFjk0EQBQ+ZhzBQAAAABuQLgCAAAAADcgXAEAAACAGzDnCgAAAADcgJ4rAAAAAHADwhUAAAAAuAE3ES6C3W7X4cOHFRwcLJvNZnU5AAAAACxiGIZOnjypiIgIeXkV3zdFuCrC4cOHFRkZaXUZAAAAAKqIgwcPqmnTpsW2IVwVITg4WJL5BYaEhFhcDQAAAACrZGdnKzIy0pkRikO4KoJjKGBISAjhCgAAAECJpguxoAUAAAAAuAHhCgAAAADcgHAFAAAAAG7AnCsAAAB4hIKCAp09e9bqMlDNeHt7y8fHxy23YCJcAQAAoMrLycnRr7/+KsMwrC4F1VCtWrXUuHFj+fn5les8hCsAAABUaQUFBfr1119Vq1YtNWzY0C09DIBk3iA4Pz9fR44c0b59+9SyZcvL3ii4OIQrAAAAVGlnz56VYRhq2LChAgMDrS4H1UxgYKB8fX2Vlpam/Px8BQQElPlcLGgBAAAAj0CPFSpKeXqrXM7jlrMAAAAAQA1HuAIAAAAANyBcAQAAAB4iOjpaM2fOtLoMXALhCgAAAHAzm81W7PbUU0+V6bybNm3SfffdV67a+vbtq4kTJ5brHCgaqwUCAAAAbvbbb7859xcuXKgnn3xSu3fvdh6rXbu2c98wDBUUFMjH5/I/zRs2bOjeQuFW9FwVx263ugIAAABcxDCk3FxrtpLewzg8PNy5hYaGymazOZ//+OOPCg4O1pdffqmuXbvK399fX3/9tX7++WfdfPPNCgsLU+3atdW9e3ctX77c5bwXDwu02Wx66623dMstt6hWrVpq2bKlPv/883J9v59++qnat28vf39/RUdHa8aMGS6vv/baa2rZsqUCAgIUFham2267zfnaJ598opiYGAUGBqp+/fpKSEhQbm5uuerxJPRcFeeHH6RevayuAgAAABc4dUq6oOOnUuXkSEFB7jnXY489pr///e9q0aKF6tatq4MHD+rGG2/Uc889J39/f7377rsaNGiQdu/erWbNml3yPE8//bRefPFFvfTSS3rllVc0bNgwpaWlqV69eqWuacuWLbrjjjv01FNPKSkpSevXr9ef/vQn1a9fX6NGjdLmzZv14IMP6r333lOvXr107NgxrV27VpLZWzd06FC9+OKLuuWWW3Ty5EmtXbtWRkkTaTVAuCrOqlWEKwAAAFSIZ555Rtddd53zeb169dSpUyfn82effVaLFy/W559/rnHjxl3yPKNGjdLQoUMlSc8//7xmzZqljRs3asCAAaWu6eWXX1b//v01depUSVKrVq30ww8/6KWXXtKoUaN04MABBQUF6Q9/+IOCg4MVFRWlLl26SDLD1blz53TrrbcqKipKkhQTE1PqGjwZwwKLs3Kl1RUAAADgIrVqmT1IVmy1arnvOrp16+byPCcnRw8//LDatm2rOnXqqHbt2tq1a5cOHDhQ7Hk6duzo3A8KClJISIgyMzPLVNOuXbvUu3dvl2O9e/fW3r17VVBQoOuuu05RUVFq0aKFhg8frg8++ECnTp2SJHXq1En9+/dXTEyMbr/9dr355ps6fvx4merwVISr4qxbJ+XlWV0FAAAALmCzmUPzrNhsNvddR9BF4wsffvhhLV68WM8//7zWrl2r1NRUxcTEKD8/v9jz+Pr6XvT92GSvoLUDgoODtXXrVn300Udq3LixnnzySXXq1EknTpyQt7e3kpOT9eWXX6pdu3Z65ZVX1Lp1a+3bt69CaqmKCFfFOX1a2rDB6ioAAABQA6xbt06jRo3SLbfcopiYGIWHh2v//v2VWkPbtm21bt26QnW1atVK3t7ekiQfHx8lJCToxRdf1Pbt27V//36tWLFCkhnsevfuraefflrfffed/Pz8tHjx4kq9Bisx5+pyli+X+va1ugoAAABUcy1bttS///1vDRo0SDabTVOnTq2wHqgjR44oNTXV5Vjjxo310EMPqXv37nr22WeVlJSkDRs2aPbs2XrttdckSUuWLNEvv/yiPn36qG7duvriiy9kt9vVunVrffvtt0pJSdH111+vRo0a6dtvv9WRI0fUtm3bCrmGqoieq8tJTra6AgAAANQAL7/8surWratevXpp0KBBSkxM1FVXXVUhn/Xhhx+qS5cuLtubb76pq666Sh9//LEWLFigDh066Mknn9QzzzyjUaNGSZLq1Kmjf//737r22mvVtm1bzZkzRx999JHat2+vkJAQrVmzRjfeeKNatWqlJ554QjNmzNANN9xQIddQFdmMmrQ2YgllZ2crNDRUWZJCvLyko0elunWtLgsAAKBGOnPmjPbt26fmzZsrICDA6nJQDRX3d8yZDbKyFBISUux56LkqTsuW5o2EV62yuhIAAAAAVRzhqjj9+pmPDA0EAAAAcBmEq+I4wtXy5dbWAQAAAKDKI1wVp3dvydtb2rtXSkuzuhoAAAAAVRjhqjihoVKPHuY+vVcAAAAAimF5uHr11VcVHR2tgIAAxcbGauPGjZds+/3332vIkCGKjo6WzWbTzJkziz33Cy+8IJvNpokTJ5a9wOuuMx8JVwAAAACKYWm4WrhwoSZNmqRp06Zp69at6tSpkxITE5WZmVlk+1OnTqlFixZ64YUXFB4eXuy5N23apDfeeEMdO3YsX5EJCebj8uXmyoEAAAAAUARLw9XLL7+se++9V6NHj1a7du00Z84c1apVS2+//XaR7bt3766XXnpJd955p/z9/S953pycHA0bNkxvvvmm6pb3/lQ9e0q1a5v3utq+vXznAgAAAFBtWRau8vPztWXLFiU4eoYkeXl5KSEhQRs2bCjXuceOHauBAwe6nLs4eXl5ys7OdtmcfH2l+HhznyXZAQAAAFyCZeHq6NGjKigoUFhYmMvxsLAwpaenl/m8CxYs0NatWzV9+vQSv2f69OkKDQ11bpGRka4NLhwaCAAAAFSSvn37uqwfEB0dfdl1B2w2mz777LNyf7a7zlOTWL6ghTsdPHhQEyZM0AcffKCAgIASv2/y5MnKyspybgcPHnRt4FjUYu1a6cwZN1YMAACA6mjQoEEaMGBAka+tXbtWNptN28sw5WTTpk267777yluei6eeekqdO3cudPy3337TDTfc4NbPutj8+fNVp06dCv2MymRZuGrQoIG8vb2VkZHhcjwjI+Oyi1VcypYtW5SZmamrrrpKPj4+8vHx0erVqzVr1iz5+PiooKCgyPf5+/srJCTEZXPRrp3UuLF0+rS0fn2ZagMAAEDNMWbMGCUnJ+vXX38t9Nq8efPUrVu3Mi281rBhQ9WqVcsdJV5WeHh4sescoDDLwpWfn5+6du2qlJQU5zG73a6UlBTFxcWV6Zz9+/fXjh07lJqa6ty6deumYcOGKTU1Vd7e3mUr1mZjaCAAAEBVYRhSbq41m2GUqMQ//OEPatiwoebPn+9yPCcnR4sWLdKYMWP0+++/a+jQoWrSpIlq1aqlmJgYffTRR8We9+JhgXv37lWfPn0UEBCgdu3aKbmINQIeffRRtWrVSrVq1VKLFi00depUnT17VpLZc/T0009r27ZtstlsstlszpovHha4Y8cOXXvttQoMDFT9+vV13333KScnx/n6qFGjNHjwYP39739X48aNVb9+fY0dO9b5WWVx4MAB3Xzzzapdu7ZCQkJ0xx13uHTObNu2Tf369VNwcLBCQkLUtWtXbd68WZKUlpamQYMGqW7dugoKClL79u31xRdflLmWkvCp0LNfxqRJkzRy5Eh169ZNPXr00MyZM5Wbm6vRo0dLkkaMGKEmTZo450/l5+frhx9+cO4fOnRIqampql27tq688koFBwerQ4cOLp8RFBSk+vXrFzpeagkJ0nvvmYtaPP98+c4FAACAsjt1ylzN2Qo5OVJQ0GWb+fj4aMSIEZo/f74ef/xx2Ww2SdKiRYtUUFCgoUOHKicnR127dtWjjz6qkJAQ/fe//9Xw4cN1xRVXqEePHpf9DLvdrltvvVVhYWH69ttvlZWVVeT9XYODgzV//nxFRERox44duvfeexUcHKy//OUvSkpK0s6dO7V06VIt/18nQmhoaKFz5ObmKjExUXFxcdq0aZMyMzN1zz33aNy4cS4BcuXKlWrcuLFWrlypn376SUlJSercubPuvffey15PUdfnCFarV6/WuXPnNHbsWCUlJWnVqlWSpGHDhqlLly56/fXX5e3trdTUVPn6+koyF7nLz8/XmjVrFBQUpB9++EG1K/rvjWGxV155xWjWrJnh5+dn9OjRw/jmm2+cr8XHxxsjR450Pt+3b58hqdAWHx9/yfPHx8cbEyZMKFVNWVlZhiQjKyvr/MFffzUMyTBsNsP4/fdSnQ8AAABld/r0aeOHH34wTp8+bR7IyTF/l1mx5eSUuO5du3YZkoyVK1c6j11zzTXGXXfddcn3DBw40HjooYeczy/+LRsVFWX84x//MAzDMJYtW2b4+PgYhw4dcr7+5ZdfGpKMxYsXX/IzXnrpJaNr167O59OmTTM6depUqN2F55k7d65Rt25dI+eC6//vf/9reHl5Genp6YZhGMbIkSONqKgo49y5c842t99+u5GUlHTJWubNm2eEhoYW+dpXX31leHt7GwcOHHAe+/777w1JxsaNGw3DMIzg4GBj/vz5Rb4/JibGeOqppy752Rcq9HfsAkVmg0uwtOdKksaNG6dx48YV+ZojkTpER0fLKGFX7KXOUWZNmphzr374QVq5UhoyxD3nBQAAQOnUqmX2IFn12SXUpk0b9erVS2+//bb69u2rn376SWvXrtUzzzwjSSooKNDzzz+vjz/+WIcOHVJ+fr7y8vJKPKdq165dioyMVEREhPNYUdNrFi5cqFmzZunnn39WTk6Ozp07V3iNgRJ8VqdOnRR0Qa9d7969ZbfbtXv3bucK4O3bt3eZitO4cWPt2LGjVJ914WdGRka6rOTdrl071alTR7t27VL37t01adIk3XPPPXrvvfeUkJCg22+/XVdccYUk6cEHH9QDDzygr776SgkJCRoyZEiZ5rmVRrVaLbDCOeZdcb8rAAAA69hs5tA8K7b/De8rqTFjxujTTz/VyZMnNW/ePF1xxRWK/989VF966SX985//1KOPPqqVK1cqNTVViYmJys/Pd9tXtWHDBg0bNkw33nijlixZou+++06PP/64Wz/jQo4heQ42m012u71CPksyVzr8/vvvNXDgQK1YsULt2rXT4sWLJUn33HOPfvnlFw0fPlw7duxQt27d9Morr1RYLRLhqnQcS7KzqAUAAABK4I477pCXl5c+/PBDvfvuu7r77rud86/WrVunm2++WXfddZc6deqkFi1aaM+ePSU+d9u2bXXw4EH99ttvzmPffPONS5v169crKipKjz/+uLp166aWLVsqLS3NpY2fn98lV9W+8LO2bdum3Nxc57F169bJy8tLrVu3LnHNpeG4vgtvk/TDDz/oxIkTateunfNYq1at9Oc//1lfffWVbr31Vs2bN8/5WmRkpO6//379+9//1kMPPaQ333yzQmp1IFyVRny85O0t/fyztG+f1dUAAACgiqtdu7aSkpI0efJk/fbbbxo1apTztZYtWyo5OVnr16/Xrl279Mc//rHQbYqKk5CQoFatWmnkyJHatm2b1q5dq8cff9ylTcuWLXXgwAEtWLBAP//8s2bNmuXs2XGIjo7Wvn37lJqaqqNHjyovL6/QZw0bNkwBAQEaOXKkdu7cqZUrV2r8+PEaPny4c0hgWRUUFLis9p2amqpdu3YpISFBMTExGjZsmLZu3aqNGzdqxIgRio+PV7du3XT69GmNGzdOq1atUlpamtatW6dNmzapbdu2kqSJEydq2bJl2rdvn7Zu3aqVK1c6X6sohKvSCA6WevY09+m9AgAAQAmMGTNGx48fV2Jiosv8qCeeeEJXXXWVEhMT1bdvX4WHh2vw4MElPq+Xl5cWL16s06dPq0ePHrrnnnv03HPPubS56aab9Oc//1njxo1T586dtX79ek2dOtWlzZAhQzRgwAD169dPDRs2LHI5+Fq1amnZsmU6duyYunfvrttuu039+/fX7NmzS/dlFCEnJ0ddunRx2QYNGiSbzab//Oc/qlu3rvr06aOEhAS1aNFCCxculCR5e3vr999/14gRI9SqVSvdcccduuGGG/T0009LMkPb2LFj1bZtWw0YMECtWrXSa6+9Vu56i2MzSrtCRA2QnZ2t0NBQZWVlFZ7s9/TT0lNPSbffLn38sSX1AQAA1CRnzpzRvn371Lx5cwUEBFhdDqqh4v6OFZsNLkLPVWk5FrVISZEqcHIeAAAAAM9CuCqtHj3M4YHHjkmpqVZXAwAAAKCKIFyVlq+v1Levuc+S7AAAAAD+h3BVFizJDgAAAOAihKuycMy7WrtWOn3a2loAAABqCNZhQ0Vx198twlVZtGkjRURIeXnSunVWVwMAAFCteXt7S5Ly8/MtrgTV1alTpyRJvr6+5TqPjzuKqXFsNnNo4DvvmEMDHT1ZAAAAcDsfHx/VqlVLR44cka+vr7y86B+AexiGoVOnTikzM1N16tRxBvmyIlyVVUKCGa6Sk6UXXrC6GgAAgGrLZrOpcePG2rdvn9LS0qwuB9VQnTp1FB4eXu7zEK7KytFb9d130tGjUoMG1tYDAABQjfn5+ally5YMDYTb+fr6lrvHyoFwVVbh4VKHDtLOndKKFdIdd1hdEQAAQLXm5eWlgIAAq8sALokBq+Xh6L1iSXYAAACgxiNclQf3uwIAAADwP4Sr8ujTR/L1lfbtk37+2epqAAAAAFiIcFUetWtLcXHmPr1XAAAAQI1GuCovx7yr5GRr6wAAAABgKcJVeTnC1YoVUkGBtbUAAAAAsAzhqry6d5dCQqTjx817XgEAAACokQhX5eXjI/XrZ+4zNBAAAACosQhX7sCS7AAAAECNR7hyB8e8q6+/lk6dsrYWAAAAAJYgXLlDq1ZS06ZSfr4ZsAAAAADUOIQrd7DZzg8NZN4VAAAAUCMRrtzFMTSQeVcAAABAjUS4cpf+/c3H1FTpyBFLSwEAAABQ+QhX7hIWJnXsaO6npFhbCwAAAIBKR7hyJ5ZkBwAAAGoswpU7OeZdJSdLhmFtLQAAAAAqFeHKna65RvLzkw4ckH76yepqAAAAAFQiwpU7BQVJvXqZ+wwNBAAAAGoUwpW7XTg0EAAAAECNQbhyN8eiFitWSAUF1tYCAAAAoNIQrtyta1cpNFTKypI2b7a6GgAAAACVxPJw9eqrryo6OloBAQGKjY3Vxo0bL9n2+++/15AhQxQdHS2bzaaZM2cWajN9+nR1795dwcHBatSokQYPHqzdu3dX4BVcxNtbuvZac595VwAAAECNYWm4WrhwoSZNmqRp06Zp69at6tSpkxITE5WZmVlk+1OnTqlFixZ64YUXFB4eXmSb1atXa+zYsfrmm2+UnJyss2fP6vrrr1dubm5FXoor7ncFAAAA1Dg2w7DuhkyxsbHq3r27Zs+eLUmy2+2KjIzU+PHj9dhjjxX73ujoaE2cOFETJ04stt2RI0fUqFEjrV69Wn369ClRXdnZ2QoNDVVWVpZCQkJK9B4Xe/dKrVpJvr7S8ePmKoIAAAAAPE5psoFlPVf5+fnasmWLEhyr60ny8vJSQkKCNmzY4LbPycrKkiTVq1fvkm3y8vKUnZ3tspXLlVdKUVHS2bPS2rXlOxcAAAAAj2BZuDp69KgKCgoUFhbmcjwsLEzp6elu+Qy73a6JEyeqd+/e6tChwyXbTZ8+XaGhoc4tMjKyfB9ss7EkOwAAAFDDWL6gRUUaO3asdu7cqQULFhTbbvLkycrKynJuBw8eLP+HO8IV864AAACAGsHHqg9u0KCBvL29lZGR4XI8IyPjkotVlMa4ceO0ZMkSrVmzRk2bNi22rb+/v/z9/cv9mS769zcft2+XMjKki3roAAAAAFQvlvVc+fn5qWvXrkpJSXEes9vtSklJUVxcXJnPaxiGxo0bp8WLF2vFihVq3ry5O8otvYYNpc6dzf0LrhEAAABA9WTpsMBJkybpzTff1DvvvKNdu3bpgQceUG5urkaPHi1JGjFihCZPnuxsn5+fr9TUVKWmpio/P1+HDh1SamqqfvrpJ2ebsWPH6v3339eHH36o4OBgpaenKz09XadPn67062NJdgAAAKDmsHQpdkmaPXu2XnrpJaWnp6tz586aNWuWYmNjJUl9+/ZVdHS05s+fL0nav39/kT1R8fHxWrVqlSTJZrMV+Tnz5s3TqFGjSlRTuZdid/jqKykxUWraVDpwwFzoAgAAAIDHKE02sDxcVUVuC1enTkl160r5+dKPP0qtW7uvSAAAAAAVziPuc1Uj1KolXX21uc/QQAAAAKBaI1xVNO53BQAAANQIhKuK5ljUYuVK6dw5a2sBAAAAUGEIVxWtSxdz3lV2trRpk9XVAAAAAKgghKuK5u0tXXutuc+8KwAAAKDaIlxVBsfQQOZdAQAAANUW4aoyOBa12LBBysmxthYAAAAAFYJwVRmuuEJq3txc0GLNGqurAQAAAFABCFeVhSXZAQAAgGqNcFVZHPOuWNQCAAAAqJYIV5WlXz/JZpN27pR++83qagAAAAC4GeGqsjRoYN7zSpJSUqytBQAAAIDbEa4qE0MDAQAAgGqLcFWZLlzUwjCsrQUAAACAWxGuKtPVV0sBAdLhw9KPP1pdDQAAAAA3IlxVpoAAM2BJLMkOAAAAVDOEq8rmGBrIvCsAAACgWiFcVTbHoharVklnz1paCgAAAAD3IVxVts6dpfr1pZMnpY0bra4GAAAAgJsQriqbl5fUv7+5z9BAAAAAoNogXFnhwiXZAQAAAFQLhCsrOMLVN99I2dnW1gIAAADALQhXVmjeXLriCqmgQFqzxupqAAAAALgB4coqDA0EAAAAqhXClVUcS7KzqAUAAABQLRCurNKvn2SzST/8IB06ZHU1AAAAAMqJcGWVevWkrl3N/ZQUa2sBAAAAUG6EKys5hgYy7woAAADweIQrKzkWtVi+XDIMa2sBAAAAUC6EKyv16iUFBkrp6ebcKwAAAAAei3BlpYAA6ZprzH2GBgIAAAAejXBlNZZkBwAAAKoFwpXVHPOuVq2S8vMtLQUAAABA2RGurNaxo9SwoZSbK337rdXVAAAAACgjwpXVvLyk/v3NfYYGAgAAAB6LcFUVOIYGsqgFAAAA4LEIV1WBY1GLjRulrCxrawEAAABQJoSrqqBZM6llS6mgwFzYAgAAAIDHsTxcvfrqq4qOjlZAQIBiY2O1cePGS7b9/vvvNWTIEEVHR8tms2nmzJnlPmeV4RgayLwrAAAAwCNZGq4WLlyoSZMmadq0adq6das6deqkxMREZWZmFtn+1KlTatGihV544QWFh4e75ZxVBve7AgAAADyazTAMw6oPj42NVffu3TV79mxJkt1uV2RkpMaPH6/HHnus2PdGR0dr4sSJmjhxotvO6ZCdna3Q0FBlZWUpJCSk9BdWFidOSPXrS3a7dPCg1LRp5XwuAAAAgEsqTTawrOcqPz9fW7ZsUYJjOJwkLy8vJSQkaMOGDZV6zry8PGVnZ7tsla5OHal7d3Of3isAAADA41gWro4ePaqCggKFhYW5HA8LC1N6enqlnnP69OkKDQ11bpGRkWX6/HJjSXYAAADAY1m+oEVVMHnyZGVlZTm3gwcPWlPIhYtaWDdaEwAAAEAZ+Fj1wQ0aNJC3t7cyMjJcjmdkZFxysYqKOqe/v7/8/f3L9JluFRcn1aolZWZKO3dKMTFWVwQAAACghCzrufLz81PXrl2VkpLiPGa325WSkqK4uLgqc85K5e8v9elj7jM0EAAAAPAolg4LnDRpkt58802988472rVrlx544AHl5uZq9OjRkqQRI0Zo8uTJzvb5+flKTU1Vamqq8vPzdejQIaWmpuqnn34q8TmrPJZkBwAAADySZcMCJSkpKUlHjhzRk08+qfT0dHXu3FlLly51Lkhx4MABeXmdz3+HDx9Wly5dnM///ve/6+9//7vi4+O1atWqEp2zynPMu1q9WsrLM3uzAAAAAFR5lt7nqqqy5D5XDna71LixOe9q1SopPr5yPx8AAACAk0fc5wqX4OXFkuwAAACAByJcVUUXLskOAAAAwCMQrqoiR7jatEk6ccLSUgAAAACUDOGqKoqMlFq3NudfrVxpdTUAAAAASoBwVVWxJDsAAADgUQhXVRWLWgAAAAAehXBVVfXtK3l7S3v3SmlpVlcDAAAA4DIIV1VVaKjUo4e5n5JibS0AAAAALotwVZUxNBAAAADwGISrqsyxqEVKirlyIAAAAIAqi3BVlcXGSkFB0pEj0vbtVlcDAAAAoBiEq6rMz0+Kjzf3WZIdAAAAqNIIV1Ud97sCAAAAPALhqqpzLGqxZo105oy1tQAAAAC4JMJVVde+vRQeLp0+LW3YYHU1AAAAAC6BcFXV2WwsyQ4AAAB4AMKVJ3CEK+ZdAQAAAFUW4coTOMLV5s3S8ePW1gIAAACgSIQrT9CkidS2rWQY0ooVVlcDAAAAoAiEK0/BkuwAAABAlUa48hQsagEAAABUaYQrTxEfL3l7Sz//LO3bZ3U1AAAAAC5CuPIUISFSz57mPkMDAQAAgCqHcOVJWJIdAAAAqLIIV57EsahFSopkt1tbCwAAAAAXhCtP0qOHFBws/f67lJpqdTUAAAAALkC48iS+vlLfvuY+QwMBAACAKoVw5WlYkh0AAACokghXnsYRrtaulU6ftrYWAAAAAE6EK0/Ttq0UESHl5Unr11tdDQAAAID/IVx5GpuNoYEAAABAFUS48kSOJdlZ1AIAAACoMghXnqh/f/Nx61ZzWXYAAAAAliNceaLGjaX27SXDkFassLoaAAAAACJceS6GBgIAAABVCuHKU7GoBQAAAFClEK48VXy85OMj7dsn/fKL1dUAAAAANR7hylPVri3FxZn79F4BAAAAlrM8XL366quKjo5WQECAYmNjtXHjxmLbL1q0SG3atFFAQIBiYmL0xRdfuLyek5OjcePGqWnTpgoMDFS7du00Z86cirwE6ziGBjLvCgAAALCcpeFq4cKFmjRpkqZNm6atW7eqU6dOSkxMVGZmZpHt169fr6FDh2rMmDH67rvvNHjwYA0ePFg7d+50tpk0aZKWLl2q999/X7t27dLEiRM1btw4ff7555V1WZXHsajFihVSQYG1tQAAAAA1nM0wDMOqD4+NjVX37t01e/ZsSZLdbldkZKTGjx+vxx57rFD7pKQk5ebmasmSJc5jPXv2VOfOnZ29Ux06dFBSUpKmTp3qbNO1a1fdcMMN+utf/1qiurKzsxUaGqqsrCyFhISU5xIr1rlzUv36Una2tGmT1K2b1RUBAAAA1UppsoFlPVf5+fnasmWLEhxD2yR5eXkpISFBGzZsKPI9GzZscGkvSYmJiS7te/Xqpc8//1yHDh2SYRhauXKl9uzZo+uvv/6SteTl5Sk7O9tl8wg+PlK/fuY+QwMBAAAAS1kWro4ePaqCggKFhYW5HA8LC1N6enqR70lPT79s+1deeUXt2rVT06ZN5efnpwEDBujVV19Vnz59LlnL9OnTFRoa6twiIyPLcWWVjCXZAQAAgCqhTOHq4MGD+vXXX53PN27cqIkTJ2ru3LluK6ysXnnlFX3zzTf6/PPPtWXLFs2YMUNjx47V8mJ6diZPnqysrCzndvDgwUqsuJwc4errr6VTp6ytBQAAAKjByhSu/t//+39auXKlJLM36brrrtPGjRv1+OOP65lnninRORo0aCBvb29lZGS4HM/IyFB4eHiR7wkPDy+2/enTpzVlyhS9/PLLGjRokDp27Khx48YpKSlJf//73y9Zi7+/v0JCQlw2j9G6tdS0qZSfbwYsAAAAAJYoU7jauXOnevToIUn6+OOP1aFDB61fv14ffPCB5s+fX6Jz+Pn5qWvXrkpJSXEes9vtSklJUZzj/k0XiYuLc2kvScnJyc72Z8+e1dmzZ+Xl5XpZ3t7estvtJb08z2KzsSQ7AAAAUAX4lOVNZ8+elb+/vyRp+fLluummmyRJbdq00W+//Vbi80yaNEkjR45Ut27d1KNHD82cOVO5ubkaPXq0JGnEiBFq0qSJpk+fLkmaMGGC4uPjNWPGDA0cOFALFizQ5s2bncMRQ0JCFB8fr0ceeUSBgYGKiorS6tWr9e677+rll18uy6V6huuuk+bPJ1wBAAAAFipTuGrfvr3mzJmjgQMHKjk5Wc8++6wk6fDhw6pfv36Jz5OUlKQjR47oySefVHp6ujp37qylS5c6F604cOCASy9Ur1699OGHH+qJJ57QlClT1LJlS3322Wfq0KGDs82CBQs0efJkDRs2TMeOHVNUVJSee+453X///WW5VM/Qv7/5+N130pEjUsOG1tYDAAAA1EBlus/VqlWrdMsttyg7O1sjR47U22+/LUmaMmWKfvzxR/373/92e6GVyWPuc3Whjh2lHTukBQukpCSrqwEAAACqhdJkgzL1XPXt21dHjx5Vdna26tat6zx+3333qVatWmU5JcrruuvMcJWcTLgCAAAALFCmBS1Onz6tvLw8Z7BKS0vTzJkztXv3bjVq1MitBaKELrzfVek7IwEAAACUU5nC1c0336x3331XknTixAnFxsZqxowZGjx4sF5//XW3FogS6tNH8vWVDhyQfv7Z6moAAACAGqdM4Wrr1q265pprJEmffPKJwsLClJaWpnfffVezZs1ya4EooaAgqVcvcz852dpaAAAAgBqoTOHq1KlTCg4OliR99dVXuvXWW+Xl5aWePXsqLS3NrQWiFK67znxkSXYAAACg0pUpXF155ZX67LPPdPDgQS1btkzXX3+9JCkzM9NzVterjhzzrlaskAoKrK0FAAAAqGHKFK6efPJJPfzww4qOjlaPHj0UFxcnyezF6tKli1sLRCl07SqFhkonTkhbtlhdDQAAAFCjlClc3XbbbTpw4IA2b96sZcuWOY/3799f//jHP9xWHErJx0e69lpzn6GBAAAAQKUqU7iSpPDwcHXp0kWHDx/Wr7/+Kknq0aOH2rRp47biUAYXLskOAAAAoNKUKVzZ7XY988wzCg0NVVRUlKKiolSnTh09++yzstvt7q4RpeFY1GL9eik319paAAAAgBrEpyxvevzxx/Wvf/1LL7zwgnr37i1J+vrrr/XUU0/pzJkzeu6559xaJErhyiulZs3M+12tXSsNGGB1RQAAAECNUKZw9c477+itt97STTfd5DzWsWNHNWnSRH/6058IV1ay2cyhgW+/bc67IlwBAAAAlaJMwwKPHTtW5NyqNm3a6NixY+UuCuXE/a4AAACASlemcNWpUyfNnj270PHZs2erY8eO5S4K5eRYMXDbNikjw9paAAAAgBqiTMMCX3zxRQ0cOFDLly933uNqw4YNOnjwoL744gu3FogyaNRI6txZSk01byg8dKjVFQEAAADVXpl6ruLj47Vnzx7dcsstOnHihE6cOKFbb71V33//vd577z1314iyYEl2AAAAoFLZDMMw3HWybdu26aqrrlJBQYG7TmmJ7OxshYaGKisrSyEhIVaXUzbLlpmLWURGSmlp5kIXAAAAAEqlNNmgzDcRRhV3zTWSn5908KC0Z4/V1QAAAADVHuGquqpVS/rfPchYNRAAAACoeISr6owl2QEAAIBKU6rVAm+99dZiXz9x4kR5aoG7JSRIU6aYKwaeOyf5lGlxSAAAAAAlUKpf26GhoZd9fcSIEeUqCG501VVS3brS8ePS5s1Sz55WVwQAAABUW6UKV/PmzauoOlARvL3NGwp/+qm5JDvhCgAAAKgwzLmq7hz3u2LeFQAAAFChCFfVnWNRiw0bpJwca2sBAAAAqjHCVXXXooUUHS2dPSutWWN1NQAAAEC1Rbiq7mw2lmQHAAAAKgHhqiZwzLtKTra2DgAAAKAaI1zVBNdea/Zg7dwppadbXQ0AAABQLRGuaoIGDaQuXcz9lBRrawEAAACqKcJVTcHQQAAAAKBCEa5qigsXtTAMa2sBAAAAqiHCVU3Ru7fk7y8dOiT9+KPV1QAAAADVDuGqpggMlK6+2txnSXYAAADA7QhXNQn3uwIAAAAqDOGqJnEsarFypXT2rLW1AAAAANUM4aom6dJFqldPOnlS2rTJ6moAAACAasXycPXqq68qOjpaAQEBio2N1caNG4ttv2jRIrVp00YBAQGKiYnRF198UajNrl27dNNNNyk0NFRBQUHq3r27Dhw4UFGX4Dm8vKT+/c19lmQHAAAA3MrScLVw4UJNmjRJ06ZN09atW9WpUyclJiYqMzOzyPbr16/X0KFDNWbMGH333XcaPHiwBg8erJ07dzrb/Pzzz7r66qvVpk0brVq1Stu3b9fUqVMVEBBQWZdVtTmGBjLvCgAAAHArm2FYd9Oj2NhYde/eXbNnz5Yk2e12RUZGavz48XrssccKtU9KSlJubq6WLFniPNazZ0917txZc+bMkSTdeeed8vX11XvvvVfmurKzsxUaGqqsrCyFhISU+TxV0r59UosWko+PdOyYFBxsdUUAAABAlVWabGBZz1V+fr62bNmiBEdPiiQvLy8lJCRow4YNRb5nw4YNLu0lKTEx0dnebrfrv//9r1q1aqXExEQ1atRIsbGx+uyzz4qtJS8vT9nZ2S5btdW8uRmuzp2TVq+2uhoAAACg2rAsXB09elQFBQUKCwtzOR4WFqb09PQi35Oenl5s+8zMTOXk5OiFF17QgAED9NVXX+mWW27RrbfeqtXFBInp06crNDTUuUVGRpbz6qo4lmQHAAAA3M7yBS3cyW63S5Juvvlm/fnPf1bnzp312GOP6Q9/+INz2GBRJk+erKysLOd28ODByirZGo7ePxa1AAAAANzGx6oPbtCggby9vZWRkeFyPCMjQ+Hh4UW+Jzw8vNj2DRo0kI+Pj9q1a+fSpm3btvr6668vWYu/v7/8/f3LchmeqV8/yWaTfvhBOnxYioiwuiIAAADA41nWc+Xn56euXbsqJSXFecxutyslJUVxcXFFvicuLs6lvSQlJyc72/v5+al79+7avXu3S5s9e/YoKirKzVfgwerXl7p2NfcZGggAAAC4hWU9V5I0adIkjRw5Ut26dVOPHj00c+ZM5ebmavTo0ZKkESNGqEmTJpo+fbokacKECYqPj9eMGTM0cOBALViwQJs3b9bcuXOd53zkkUeUlJSkPn36qF+/flq6dKn+7//+T6tWrbLiEquuhARp82YzXI0YYXU1AAAAgMezNFwlJSXpyJEjevLJJ5Wenq7OnTtr6dKlzkUrDhw4IC+v851rvXr10ocffqgnnnhCU6ZMUcuWLfXZZ5+pQ4cOzja33HKL5syZo+nTp+vBBx9U69at9emnn+rqq6+u9Our0q67TnrhBTNcGYY5TBAAAABAmVl6n6uqqlrf58rhzBmpbl3zcedOqX17qysCAAAAqhyPuM8VLBYQIPXpY+4z7woAAAAoN8JVTcaS7AAAAIDbEK5qMke4WrVKOnvW0lIAAAAAT0e4qsk6dZIaNJByc6Vvv7W6GgAAAMCjEa5qMi8vqX9/c5+hgQAAAEC5EK5quuuuMx9Z1AIAAAAoF8JVTeeYd/Xtt1JWlrW1AAAAAB6McFXTRUVJV14pFRRIq1dbXQ0AAADgsQhXYGggAAAA4AaEK3C/KwAAAMANCFeQ+vUzVw788Ufp11+trgYAAADwSIQrSHXrSt26mfsMDQQAAADKhHAFk2NoIOEKAAAAKBPCFUwXLmphGNbWAgAAAHggwhVMcXFSrVpSRoa0c6fV1QAAAAAeh3AFk7+/1KePuc/QQAAAAKDUCFc4jyXZAQAAgDIjXOE8R7havVrKz7e2FgAAAMDDEK5wXkyM1KiRdOqUtGGD1dUAAAAAHoVwhfO8vKT+/c195l0BAAAApUK4gqsLl2QHAAAAUGKEK7hy9Fxt3CidOGFpKQAAAIAnIVzBVbNmUqtWkt0urVpldTUAAACAxyBcoTDH0ECWZAcAAABKjHCFwhxLsjPvCgAAACgxwhUK69fPXDlwzx7pwAGrqwEAAAA8AuEKhYWGSj16mPv0XgEAAAAlQrhC0ViSHQAAACgVwhWKduG8K7vd2loAAAAAD0C4QtF69pSCgqQjR6QdO6yuBgAAAKjyCFcomp+fFB9v7jM0EAAAALgswhUuzTE0kPtdAQAAAJdFuMKlORa1WLNGysuzthYAAACgiiNc4dLat5fCwqTTp6X1662uBgAAAKjSCFe4NJvNddVAAAAAAJdEuELxHEMDmXcFAAAAFItwheI5eq42b5aOH7e2FgAAAKAKI1yheE2aSG3bSoYhrVxpdTUAAABAlVUlwtWrr76q6OhoBQQEKDY2Vhs3biy2/aJFi9SmTRsFBAQoJiZGX3zxxSXb3n///bLZbJo5c6abq65BWJIdAAAAuCzLw9XChQs1adIkTZs2TVu3blWnTp2UmJiozMzMItuvX79eQ4cO1ZgxY/Tdd99p8ODBGjx4sHbu3Fmo7eLFi/XNN98oIiKioi+jemNRCwAAAOCybIZhGFYWEBsbq+7du2v27NmSJLvdrsjISI0fP16PPfZYofZJSUnKzc3VkiVLnMd69uypzp07a86cOc5jhw4dUmxsrJYtW6aBAwdq4sSJmjhxYolqys7OVmhoqLKyshQSElK+C6wOsrOlevWkggJp3z4pOtrqigAAAIBKUZpsYGnPVX5+vrZs2aIER8+IJC8vLyUkJGjDhg1FvmfDhg0u7SUpMTHRpb3dbtfw4cP1yCOPqH379petIy8vT9nZ2S4bLhASIsXGmvv0XgEAAABFsjRcHT16VAUFBQoLC3M5HhYWpvT09CLfk56eftn2f/vb3+Tj46MHH3ywRHVMnz5doaGhzi0yMrKUV1IDOJZkJ1wBAAAARbJ8zpW7bdmyRf/85z81f/582Wy2Er1n8uTJysrKcm4HDx6s4Co9kKO3MCVFstutrQUAAACogiwNVw0aNJC3t7cyMjJcjmdkZCg8PLzI94SHhxfbfu3atcrMzFSzZs3k4+MjHx8fpaWl6aGHHlL0JeYK+fv7KyQkxGXDRWJjpdq1paNHpW3brK4GAAAAqHIsDVd+fn7q2rWrUlJSnMfsdrtSUlIUFxdX5Hvi4uJc2ktScnKys/3w4cO1fft2paamOreIiAg98sgjWrZsWcVdTHXn6yv17WvusyQ7AAAAUIiP1QVMmjRJI0eOVLdu3dSjRw/NnDlTubm5Gj16tCRpxIgRatKkiaZPny5JmjBhguLj4zVjxgwNHDhQCxYs0ObNmzV37lxJUv369VW/fn2Xz/D19VV4eLhat25duRdX3SQkSEuWmPOu/vIXq6sBAAAAqhTLw1VSUpKOHDmiJ598Uunp6ercubOWLl3qXLTiwIED8vI638HWq1cvffjhh3riiSc0ZcoUtWzZUp999pk6dOhg1SXUHI5FLdaulc6ckQICrK0HAAAAqEIsv89VVcR9ri7BMKSmTaXDh83eq/79ra4IAAAAqFAec58reBib7fyqgSzJDgAAALggXKF0HOGKRS0AAAAAF4QrlI5jKODWrdLvv1tbCwAAAFCFEK5QOhERUvv25vyrlSutrgYAAACoMghXKD2GBgIAAACFEK5Qeo4l2VnUAgAAAHAiXKH0+vSRfHykX34xNwAAAACEK5RBcLDUs6e5T+8VAAAAIIlwVSxur1wMx9BA5l0BAAAAkghXxXrgAenUKaurqKIci1qsWCEVFFhbCwAAAFAFEK6K8dFHUlyctHev1ZVUQT16mMMDjx2TUlOtrgYAAACwHOGqGA0aSNu3S926SYsXW11NFePjI/XrZ+4zNBAAAAAgXBXn66+l3r2l7Gzp1lulRx6Rzp2zuqoqxDE0kEUtAAAAAMJVcRo3llaulCZNMp///e/StddKv/1mbV1VhmNRi6+/lk6ftrYWAAAAwGKEq8vw9ZVmzJAWLTKnGK1dK3XpIq1ebXVlVUDr1lKTJlJenhmwAAAAgBqMcFVCt90mbd4sdeggZWRI/ftLL75Yw5drt9nO914xNBAAAAA1HOGqFFq1kr75Rho+3Fx9/NFHpVtukU6csLoyCznmXbGoBQAAAGo4wlUpBQVJ77wjzZkj+flJ//mPuZrgtm1WV2aR/v3Nx+++k44etbYWAAAAwEKEqzKw2aQ//lFat06KipJ+/lnq2VOaP9/qyiwQHi7FxJj7KSnW1gIAAABYiHBVDt26SVu2SDfcIJ05I40eLd17r7lfo7AkOwAAAEC4Kq/69aUlS6RnnjF7tN56S+rVS/rlF6srq0SORS2Sk2v4Ch8AAACoyQhXbuDlJU2dKi1bZoat776TunaV/u//rK6skvTpY65Zn5ZmjpEEAAAAaiDClRtdd50ZrGJjzRUEb7pJmjJFOnfO6soqWFCQ2V0nMTQQAAAANRbhys0iI6U1a6Tx483n06dL119v3hurWmNJdgAAANRwhKsK4OcnzZolffSR2amzcqV01VXm6oLVliNcrVhh3gQMAAAAqGEIVxXozjuljRultm2lw4elvn2lf/yjmq750K2bFBpqjofcutXqagAAAIBKR7iqYO3amQHrzjvNuVeTJkl33CFlZ1tdmZv5+Ej9+pn7DA0EAABADUS4qgS1a0sffmgOFfT1lT75ROreXdq50+rK3MyxJDuLWgAAAKAGIlxVEpvNXORizRqpaVNpzx5zVcEPPrC6MjdyzLtat046dcraWgAAAIBKRriqZD17mlOSEhLM/HHXXdKf/iTl5VldmRu0bGkul5ifL61da3U1AAAAQKUiXFmgYUNp6VLzxsOS9Prr0jXXmPfg9Wg2G0MDAQAAUGMRrizi7S0984z03/9KdetKmzaZy7UvXWp1ZeXE/a4AAABQQxGuLHbjjeYwwa5dpWPHzOfTpnnwraL69zcft22TMjOtrQUAAACoRISrKiA6Wvr6a+n++817YD3zjBmyjh61urIyaNRI6tTJ3E9JsbYWAAAAoBIRrqqIgABz7tW770qBgdJXX5nDBL/91urKysAxNJB5VwAAAKhBCFdVzPDhZqBq2VI6eNBc6OLVV80eLY/hWNQiOdnDCgcAAADKjnBVBcXESJs3S7feKp09K40bJw0bJuXkWF1ZCV1zjeTnZ6bDvXutrgYAAACoFISrKiokRPrkE2nGDHNlwY8+Mm86vGuX1ZWVQK1aUu/e5v6LL5o9WPv3e/AqHQAAAMDlVYlw9eqrryo6OloBAQGKjY3Vxo0bi22/aNEitWnTRgEBAYqJidEXX3zhfO3s2bN69NFHFRMTo6CgIEVERGjEiBE6fPhwRV+G29ls0qRJ0sqVUuPG0g8/SN27SwsXWl1ZCVx/vfn4r3+Z+82bS0FBUvv20uDB0l/+Ir35prR6tXT4MMMHAQAA4PFshmHtr9qFCxdqxIgRmjNnjmJjYzVz5kwtWrRIu3fvVqNGjQq1X79+vfr06aPp06frD3/4gz788EP97W9/09atW9WhQwdlZWXptttu07333qtOnTrp+PHjmjBhggoKCrR58+YS1ZSdna3Q0FBlZWUpJCTE3ZdcJunp0tCh0qpV5vMHH5ReeskcfVclZWebvVbbt5tDA3/+2RzjeClBQeZEM8fWqtX5/QYNzKQJAAAAVLLSZAPLw1VsbKy6d++u2bNnS5LsdrsiIyM1fvx4PfbYY4XaJyUlKTc3V0uWLHEe69mzpzp37qw5c+YU+RmbNm1Sjx49lJaWpmbNml22pqoYriTp3DnpiSekv/3NfB4XJ338sdS0qbV1lci5c9KBA2bQ2rPHfHTs798v2e2Xfm+dOoUDl2M/NLSyrgAAAAA1UGmygU8l1VSk/Px8bdmyRZMnT3Ye8/LyUkJCgjZs2FDkezZs2KBJkya5HEtMTNRnn312yc/JysqSzWZTnTp1inw9Ly9PeXl5zufZ2dklv4hK5OMjvfCC1KuXNGKEtGGD1KWLOR/Lsfp5leXjI7VoYW6Jia6v5edLv/ziGrgc+wcPSidOSJs2mdvFGjYsOnRdeaXZGwYAAABUEkvD1dGjR1VQUKCwsDCX42FhYfrxxx+LfE96enqR7dPT04tsf+bMGT366KMaOnToJZPm9OnT9fTTT5fhCqxx003Sli3SbbdJqanmlKZnn5UmT5a8qsQsulLy85PatDG3i506ZQ4pvDB0OR4zMqQjR8xt3brC723SxDVwOR5btJD8/Sv+ugAAAFCjWBquKtrZs2d1xx13yDAMvf7665dsN3nyZJfesOzsbEVGRlZGiWV2xRXS+vXS+PHmmhFPPGH2ZL37rlSvntXVuVGtWuba9DExhV/Lzj7fw3Vx+Dp+XDp0yNwcE9UcvLykqKii53dFR5u9bAAAAEApWforskGDBvL29lZGRobL8YyMDIWHhxf5nvDw8BK1dwSrtLQ0rVixotjxkf7+/vL3wJ6MwEDprbfMYYJjx0r//a/Utau5hHvXrlZXVwlCQswLLepif/+96GGGe/aYNwzbt8/cvvrK9X2O4YtFDTVs2tRDuwYBAABQGSwNV35+furatatSUlI0ePBgSeaCFikpKRo3blyR74mLi1NKSoomTpzoPJacnKy4uDjnc0ew2rt3r1auXKn69etX5GVY7u67zblXt91mTl3q1Ut65RXp3ntr8CJ79eubW8+erscNwxxOeHHg2rtX+ukn6cwZ8/mePYXPGRBgzuW6OHS1aiWFhdXgLxsAAABSFVgtcOHChRo5cqTeeOMN9ejRQzNnztTHH3+sH3/8UWFhYRoxYoSaNGmi6dOnSzKXYo+Pj9cLL7yggQMHasGCBXr++eedS7GfPXtWt912m7Zu3aolS5a4zM+qV6+e/EqwdnlVXS3wck6ckEaOlD7/3Hw+YoT0+uvmyDqUgN0u/fpr0cMMf/nFXPHwUmrXvvSKhtU83AMAAFRnHrUUuyTNnj1bL730ktLT09W5c2fNmjVLsbGxkqS+ffsqOjpa8+fPd7ZftGiRnnjiCe3fv18tW7bUiy++qBtvvFGStH//fjVv3rzIz1m5cqX69u172Xo8NVxJZj546SVpyhRzPyZG+vRT8zc+yuHcOSktreger7S04peSr1u38KIajs3D/n4BAADUNB4XrqoaTw5XDitXSnfeKWVmmr/f582Tbr3V6qqqqby880vJXxy+Dh0q/r1hYZdeSj4wsHLqBwAAwCURrsqpOoQrSTp8WEpKkr7+2nz+0EPS9OmSr6+1ddUoubnmUvJF9XhlZhb/3shIM2i1by/16WNujRpVTt0AAACQRLgqt+oSriTp7Fnz/lczZpjPr7lGWrhQatzY2rogKSvr0isanjhR9Hvat5f69jU3whYAAECFI1yVU3UKVw6ffiqNHi2dPGmORFu4UIqPt7oqFMkwzi8lv2ePecfoVaukHTsKt23X7nzYio8nbAEAALgZ4aqcqmO4kszf6UOGSDt3St7e0vPPS488wgriHuPoUWnNGjNoEbYAAAAqBeGqnKpruJLMKUAPPCC99575/OabpfnzpTp1rKwKZXL0qLR27fmwtX174TaELQAAgHIhXJVTdQ5XkjnqbO5c6cEHpfx86YorpE8+kTp3troylAthCwAAwO0IV+VU3cOVw+bN0m23mbdpCgiQXnvNnJeFaoKwBQAAUG6Eq3KqKeFKMtdNGD5c+vJL8/mYMdIrr3CLpWrp999d52wRtgAAAC6LcFVONSlcSZLdLj33nDRtmjlksEsXc5hgixZWV4YKRdgCAAC4LMJVOdW0cOWQnCz9v/9njiarU0d6911p0CCrq0KlIWwBAAAUQrgqp5oariTp4EHpjjukb74xn0+eLD3zjOTjY21dsABhCwAAgHBVXjU5XEnmCoIPP2zOvZKkfv2kjz4ybz6MGuz3310XyNi2rXCbtm1dwxZ/aQAAgIcjXJVTTQ9XDgsWSPfcY94bKyJC+vhjqXdvq6tClUHYAgAANQDhqpwIV+ft2iUNGWI++vhIL74oTZwo2WxWV4Yqh7AFAACqIcJVORGuXOXkSPfea/ZkSea9sf71L4mvBsUibAEAgGqAcFVOhKvCDEOaPVt66CHp7FmpVSvp00+lDh2srgweg7AFAAA8EOGqnAhXl/bNN9Ltt0u//irVqiW98YZ0111WVwWPRNgCAAAegHBVToSr4h05Ig0bZt4XS5IeeED6xz8kf39r64KHuzhsbd9udpleiLAFAAAqGeGqnAhXl1dQYN7/6plnzOfdu0uLFklRUdbWhWrk2LHC99kibAEAgEpGuConwlXJffmlOSzw2DGpXj3pgw+kAQOsrgrV0rFjhYcRErYAAEAFI1yVE+GqdPbvN+dhbd5sLtE+dar05JOSt7fVlaFaK0nYatPmfNjq1Elq1sycLAgAAFBChKtyIlyVXl6eef+rOXPM59dfb/ZiNWhgaVmoSUoStiSpUSNz/Gp09PlHx35UlBQcXKllAwCAqo1wVU6Eq7J77z3pj3+UTp+WmjaVbrpJCgg4v/n7l/25v7/k5WX1FcJjXBi21qyR9u6VTp68/Pvq1XMNXBc/1qlTkVUDAIAqhnBVToSr8tmxQxoyxPwt626+vsWHL3cFuUs99/dnuKPHMgzpxAkpLc0cy+p4vHD/+PHLnyc0tOjg5divV88cHwsAAKoFwlU5Ea7KLztbeucdc9n2M2fMYYNnzhTeL8nzqvY31BHwLtfL5s4eOz+/85uvr/no48NveLfLzi4cvi58PHLk8ueoXbtw4LrwsWFD/uAAAPAghKtyIlxVHYYhnTtX9mBW3PPStLXbrf4minZx4CoqhF3uWGW9v1qEwdxcM2RdqvcrPf3y5wgMLHq4oSOMhYUx/hUAgCqEcFVOhCtcyBHwytP7Vt73nj0r5edb/U2UX2UFvssdK+l+qTPOmTPSgQOFhxs6Hg8fvnxXrJ/f+cU1iur9iohgbCpqJsMw/4Hj5Enz0cvL/FcbHx/zv4lL7Xv8v+oAsBrhqpwIV6iKHCEvP//85ghdlztW2uPuauvpvL3LHsyK2g/wylfDMwfVMHe/6p1MU/2T+1UnK02hx/cr5Nh+1Tr+q7yM4rtJDR8fnW3cTPamUbI3i5YRFSWv5tHybhEl7yui5R3V1PxRCVjNMMx/cDh5suxbTo7rfll+spQ0hDn23d2uIs9dlnbe3vSOo+rJyzv/d7QKIlyVE+EKKL+iwmBFh7lLHb+w9+/Cdhe/x2o+OqsmOqQopSla+xWt/c79KKWpmQ7IV+eKPcc5eeuwmuiAd7QOeUfpsF+0DvtFKyMgShmB0fq9VqS8AvzKHBK9vV1/ozkeS7JfEa/zG9HN8vPLF4Au3goK3F+jl5cUFHT+f2QcG0rOZjP/I/L3N28/camtdu3iX79wCwykl7AmKSgo+r/97Oyy/UPK2bPSihVSv35WX1mRSpMNqmY8BODxbDbzB7mvr/k7qKozDPP/Ky4Vvsq6X7r3+ers2Wjl50drV368tl/U5lxegeqe+U0R+fsVcXa/mp5LUzPDNYD5K1/NdEDNCg5IBZIuCo122XRYEdqvaKUpyuVxv6J1QM2UpwBL/gzKqqoEvdKGQsexcj1XgfzyTsrn9En5njEfHZv3qfOPXrkn5XU6R9655r4t56Rsjscc88eN7eTJivtXhot/pJfmR3tJf8Tb7eeDVkHB5ffd0a6qnKOodsUNHzAM8/WzZ80fyL/9Vv4/Yy+v8v3ZXvw+f3/CmjsZhnmfnJIEnZIEpFOn3F9jSW6X4gHouSoCPVcAPIXjN9TZs1L+GbvOHcqQsW+/lJYmW9p+ef+6Xz6H0uR3eL/809PknXf6sufMCQ7XidAoHQuJ1u+1o3Q0KFqZtaJ11C9C5wxv83dcgU12u1Rgt5m/5ezm83MFNhUUuB6/sP3Zc67tztltKrigXaHXC2wqsEuGzv/Icux76mOAzihYJ4vcaivnkq8VtdXS5f88y+K0ApSjYOXY/rd5BSvXK1in/veY6x2sU97BOu149Pnf5ms+5vkG64xvsPL8gpXnEyQvH6/yB8mLnle1UXdeXlUwC9jtxQe0ooZtFtcTeamey4rg41P6QFbc5utbMXVWpLNnyz6k9uKAlJNTMT3Jvr6X/+5DQkr+51RFhyMwLLCcCFcAqiXDMJeTL2qxDcd+Rf1QQoXKl68zCJ1UsHIUrGwF66RhPs82/ve8BFuOaquAgS1lcnGPZWnCmhXB8MKw6uV1frv4ebHHZJdP/ilnj6mjB/XCnlPH5pV7Ul7Oxxx5XdSDass5KVtF9IhI54dAuqtnzdu78GdcuOiKO4bKnTlTMd9FWXuNiwpJ/v4VU2MVQ7gqJ8IVgBrJMKRjx4pfat4wzi8qYNVjWd9TlTiGUJV1K2oI1WU4hr46OjMcW0U+r+jPquiRdZfaR8XxUkGhHtxQ20mF2E4q2JajUC/zWIjt4l7fkwo2Tqq2cVJB/3usbZyUv5FXIXXmeQeavbQ+teVrP6PAcyflfzZHXnL//+ac8/HX2YBgnQsI1tnAYJ1zbiEqqBV8fgsKlr1WsOxB5zej9vlNwcFSUJC8fb1ceoQvDM8lOXbx61Wux7YCMOcKAFB6NptUv765XXWV1dVUDKuDoWGYQciCyf+ONQxQPobhudO7impnt7tu7jxWXJtL/buHXd7KVqiyFXrBl/6/TTLnkpaCj86Werhtce39ZM5l8y84Lf+C01JeZqHPLJBXKT4tWNkKKfb1c+d8pRyZWxVks5UtpF187LXXpKuvtvpqyo//mQUA1ByOQFMT/qkVFcLxQ9Lbu8aMiKoQjk5wdwe6wsd8VVBQV3Z73VK977hd+r2IdsrLcw5z9Dl9Ul6nc3XO29/sxfIL1imfEOV7BzrnkV543ot7YB2PvgVSHbsUfJl2ZTlW3vOUpPPfsXBneeXmlv8cVQHhCgAAAJXKZjM3x23IPIf//7YGVhdSKRwB2N2hr6hjXbpYfbXu4VF/nQEAAABUjgt7aj1xwUUrVIn1Dl999VVFR0crICBAsbGx2rhxY7HtFy1apDZt2iggIEAxMTH64osvXF43DENPPvmkGjdurMDAQCUkJGjv3r0VeQkAAAAAajjLw9XChQs1adIkTZs2TVu3blWnTp2UmJiozMzCEwQlaf369Ro6dKjGjBmj7777ToMHD9bgwYO1c+dOZ5sXX3xRs2bN0pw5c/Ttt98qKChIiYmJOlNRS1oCAAAAqPEsX4o9NjZW3bt31+zZsyVJdrtdkZGRGj9+vB577LFC7ZOSkpSbm6slS5Y4j/Xs2VOdO3fWnDlzZBiGIiIi9NBDD+nhhx+WJGVlZSksLEzz58/XnXfeedmaWIodAAAAgFS6bGBpz1V+fr62bNmihIQE5zEvLy8lJCRow4YNRb5nw4YNLu0lKTEx0dl+3759Sk9Pd2kTGhqq2NjYS54zLy9P2dnZLhsAAAAAlIal4ero0aMqKChQWFiYy/GwsDClp6cX+Z709PRi2zseS3PO6dOnKzQ01LlFRkaW6XoAAAAA1FyWz7mqCiZPnqysrCzndvDgQatLAgAAAOBhLA1XDRo0kLe3tzIyMlyOZ2RkKDw8vMj3hIeHF9ve8Viac/r7+yskJMRlAwAAAIDSsDRc+fn5qWvXrkpJSXEes9vtSklJUVxcXJHviYuLc2kvScnJyc72zZs3V3h4uEub7Oxsffvtt5c8JwAAAACUl+U3EZ40aZJGjhypbt26qUePHpo5c6Zyc3M1evRoSdKIESPUpEkTTZ8+XZI0YcIExcfHa8aMGRo4cKAWLFigzZs3a+7cuZIkm82miRMn6q9//atatmyp5s2ba+rUqYqIiNDgwYOtukwAAAAA1Zzl4SopKUlHjhzRk08+qfT0dHXu3FlLly51Lkhx4MABeXmd72Dr1auXPvzwQz3xxBOaMmWKWrZsqc8++0wdOnRwtvnLX/6i3Nxc3XfffTpx4oSuvvpqLV26VAEBAZV+fQAAAABqBsvvc1UVcZ8rAAAAAJIH3ecKAAAAAKoLwhUAAAAAuAHhCgAAAADcwPIFLaoixzS07OxsiysBAAAAYCVHJijJUhWEqyL8/vvvkqTIyEiLKwEAAABQFZw8eVKhoaHFtiFcFaFevXqSzGXgL/cF4tKys7MVGRmpgwcPsupiGfEdugffY/nxHboH36N78D2WH9+he/A9lp8nfIeGYejkyZOKiIi4bFvCVREc99UKDQ2tsn/IniQkJITvsZz4Dt2D77H8+A7dg+/RPfgey4/v0D34Hsuvqn+HJe1wYUELAAAAAHADwhUAAAAAuAHhqgj+/v6aNm2a/P39rS7Fo/E9lh/foXvwPZYf36F78D26B99j+fEdugffY/lVt+/QZpRkTUEAAAAAQLHouQIAAAAANyBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBoSrC6xZs0aDBg1SRESEbDabPvvsM6tL8jjTp09X9+7dFRwcrEaNGmnw4MHavXu31WV5nNdff10dO3Z03lAvLi5OX375pdVlebQXXnhBNptNEydOtLoUj/LUU0/JZrO5bG3atLG6LI9z6NAh3XXXXapfv74CAwMVExOjzZs3W12WR4mOji70d9Fms2ns2LFWl+ZRCgoKNHXqVDVv3lyBgYG64oor9Oyzz4r1zUrn5MmTmjhxoqKiohQYGKhevXpp06ZNVpdVpV3ud7ZhGHryySfVuHFjBQYGKiEhQXv37rWm2HIgXF0gNzdXnTp10quvvmp1KR5r9erVGjt2rL755hslJyfr7Nmzuv7665Wbm2t1aR6ladOmeuGFF7RlyxZt3rxZ1157rW6++WZ9//33VpfmkTZt2qQ33nhDHTt2tLoUj9S+fXv99ttvzu3rr7+2uiSPcvz4cfXu3Vu+vr768ssv9cMPP2jGjBmqW7eu1aV5lE2bNrn8PUxOTpYk3X777RZX5ln+9re/6fXXX9fs2bO1a9cu/e1vf9OLL76oV155xerSPMo999yj5ORkvffee9qxY4euv/56JSQk6NChQ1aXVmVd7nf2iy++qFmzZmnOnDn69ttvFRQUpMTERJ05c6aSKy0nA0WSZCxevNjqMjxeZmamIclYvXq11aV4vLp16xpvvfWW1WV4nJMnTxotW7Y0kpOTjfj4eGPChAlWl+RRpk2bZnTq1MnqMjzao48+alx99dVWl1HtTJgwwbjiiisMu91udSkeZeDAgcbdd9/tcuzWW281hg0bZlFFnufUqVOGt7e3sWTJEpfjV111lfH4449bVJVnufh3tt1uN8LDw42XXnrJeezEiROGv7+/8dFHH1lQYdnRc4UKlZWVJUmqV6+exZV4roKCAi1YsEC5ubmKi4uzuhyPM3bsWA0cOFAJCQlWl+Kx9u7dq4iICLVo0ULDhg3TgQMHrC7Jo3z++efq1q2bbr/9djVq1EhdunTRm2++aXVZHi0/P1/vv/++7r77btlsNqvL8Si9evVSSkqK9uzZI0natm2bvv76a91www0WV+Y5zp07p4KCAgUEBLgcDwwMpGe/jPbt26f09HSX/68ODQ1VbGysNmzYYGFlpedjdQGovux2uyZOnKjevXurQ4cOVpfjcXbs2KG4uDidOXNGtWvX1uLFi9WuXTury/IoCxYs0NatWxkHXw6xsbGaP3++Wrdurd9++01PP/20rrnmGu3cuVPBwcFWl+cRfvnlF73++uuaNGmSpkyZok2bNunBBx+Un5+fRo4caXV5Humzzz7TiRMnNGrUKKtL8TiPPfaYsrOz1aZNG3l7e6ugoEDPPfechg0bZnVpHiM4OFhxcXF69tln1bZtW4WFhemjjz7Shg0bdOWVV1pdnkdKT0+XJIWFhbkcDwsLc77mKQhXqDBjx47Vzp07+VecMmrdurVSU1OVlZWlTz75RCNHjtTq1asJWCV08OBBTZgwQcnJyYX+dREld+G/Znfs2FGxsbGKiorSxx9/rDFjxlhYmeew2+3q1q2bnn/+eUlSly5dtHPnTs2ZM4dwVUb/+te/dMMNNygiIsLqUjzOxx9/rA8++EAffvih2rdvr9TUVE2cOFERERH8fSyF9957T3fffbeaNGkib29vXXXVVRo6dKi2bNlidWmwGMMCUSHGjRunJUuWaOXKlWratKnV5XgkPz8/XXnllerataumT5+uTp066Z///KfVZXmMLVu2KDMzU1dddZV8fHzk4+Oj1atXa9asWfLx8VFBQYHVJXqkOnXqqFWrVvrpp5+sLsVjNG7cuNA/irRt25bhlWWUlpam5cuX65577rG6FI/0yCOP6LHHHtOdd96pmJgYDR8+XH/+8581ffp0q0vzKFdccYVWr16tnJwcHTx4UBs3btTZs2fVokULq0vzSOHh4ZKkjIwMl+MZGRnO1zwF4QpuZRiGxo0bp8WLF2vFihVq3ry51SVVG3a7XXl5eVaX4TH69++vHTt2KDU11bl169ZNw4YNU2pqqry9va0u0SPl5OTo559/VuPGja0uxWP07t270C0p9uzZo6ioKIsq8mzz5s1To0aNNHDgQKtL8UinTp2Sl5frzz9vb2/Z7XaLKvJsQUFBaty4sY4fP65ly5bp5ptvtrokj9S8eXOFh4crJSXFeSw7O1vffvutx803Z1jgBXJyclz+NXbfvn1KTU1VvXr11KxZMwsr8xxjx47Vhx9+qP/85z8KDg52jpMNDQ1VYGCgxdV5jsmTJ+uGG25Qs2bNdPLkSX344YdatWqVli1bZnVpHiM4OLjQXL+goCDVr1+fOYCl8PDDD2vQoEGKiorS4cOHNW3aNHl7e2vo0KFWl+Yx/vznP6tXr156/vnndccdd2jjxo2aO3eu5s6da3VpHsdut2vevHkaOXKkfHz4CVMWgwYN0nPPPadmzZqpffv2+u677/Tyyy/r7rvvtro0j7Js2TIZhqHWrVvrp59+0iOPPKI2bdpo9OjRVpdWZV3ud/bEiRP117/+VS1btlTz5s01depURUREaPDgwdYVXRZWL1dYlaxcudKQVGgbOXKk1aV5jKK+P0nGvHnzrC7No9x9991GVFSU4efnZzRs2NDo37+/8dVXX1ldlsdjKfbSS0pKMho3bmz4+fkZTZo0MZKSkoyffvrJ6rI8zv/93/8ZHTp0MPz9/Y02bdoYc+fOtbokj7Rs2TJDkrF7926rS/FY2dnZxoQJE4xmzZoZAQEBRosWLYzHH3/cyMvLs7o0j7Jw4UKjRYsWhp+fnxEeHm6MHTvWOHHihNVlVWmX+51tt9uNqVOnGmFhYYa/v7/Rv39/j/xv3WYY3JIbAAAAAMqLOVcAAAAA4AaEKwAAAABwA8IVAAAAALgB4QoAAAAA3IBwBQAAAABuQLgCAAAAADcgXAEAAACAGxCuAAAAAMANCFcAALiZzWbTZ599ZnUZAIBKRrgCAFQro0aNks1mK7QNGDDA6tIAANWcj9UFAADgbgMGDNC8efNcjvn7+1tUDQCgpqDnCgBQ7fj7+ys8PNxlq1u3riRzyN7rr7+uG264QYGBgWrRooU++eQTl/fv2LFD1157rQIDA1W/fn3dd999ysnJcWnz9ttvq3379vL391fjxo01btw4l9ePHj2qW265RbVq1VLLli31+eefV+xFAwAsR7gCANQ4U6dO1ZAhQ7Rt2zYNGzZMd955p3bt2iVJys3NVWJiourWratNmzZp0aJFWr58uUt4ev311zV27Fjdd9992rFjhz7//HNdeeWVLp/x9NNP64477tD27dt14403atiwYTp27FilXicAoHLZDMMwrC4CAAB3GTVqlN5//30FBAS4HJ8yZYqmTJkim82m+++/X6+//rrztZ49e+qqq67Sa6+9pjfffFOPPvqoDh48qKCgIEnSF198oUGDBunw4cMKCwtTkyZNNHr0aP31r38tsgabzaYnnnhCzz77rCQzsNWuXVtffvklc78AoBpjzhUAoNrp16+fS3iSpHr16jn34+LiXF6Li4tTamqqJGnXrl3q1KmTM1hJUu/evWW327V7927ZbDYdPnxY/fv3L7aGjh07OveDgoIUEhKizMzMsl4SAMADEK4AANVOUFBQoWF67hIYGFiidr6+vi7PbTab7HZ7RZQEAKgimHMFAKhxvvnmm0LP27ZtK0lq27attm3bptzcXOfr69atk5eXl1q3bq3g4GBFR0crJSWlUmsGAFR99FwBAKqdvLw8paenuxzz8fFRgwYNJEmLFi1St27ddPXVV+uDDz7Qxo0b9a9//UuSNGzYME2bNk0jR47UU089pSNHjmj8+PEaPny4wsLCJElPPfWU7r//fjVq1Eg33HCDTp48qXXr1mn8+PGVe6EAgCqFcAUAqHaWLl2qxo0buxxr3bq1fvzxR0nmSn4LFizQn/70JzVu3FgfffSR2rVrJ0mqVauWli1bpgkTJqh79+6qVauWhgwZopdfftl5rpEjR+rMmTP6xz/+oYcfflgNGjTQbbfdVnkXCACoklgtEABQo9hsNi1evFiDBw+2uhQAQDXDnCsAAAAAcAPCFQAAAAC4AXOuAAA1CqPhAQAVhZ4rAAAAAHADwhUAAAAAuAHhCgAAAADcgHAFAAAAAG5AuAIAAAAANyBcAQAAAIAbEK4AAAAAwA0IVwAAAADgBv8fOsWv3EhqNrwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAHWCAYAAACIZjNQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJM0lEQVR4nO3deVhU1f8H8PewLwLuLIqAhqKI4AbiblK4ZJKWa+7Z5prZryy3lm+2We6SLVoarqmZlYZLrriBuJSiJoqKgBsgqCDM/f1xugMjiywzc2eG9+t55uFy587MZyYq3pxzPkclSZIEIiIiIiIi0isLpQsgIiIiIiKqChi+iIiIiIiIDIDhi4iIiIiIyAAYvoiIiIiIiAyA4YuIiIiIiMgAGL6IiIiIiIgMgOGLiIiIiIjIABi+iIiIiIiIDIDhi4iIiIiIyAAYvoiISGPFihVQqVS4dOmS0qWQiVOpVBg/frzSZRARGRWGLyIiKpFarcaKFSvw7LPPwtPTE46OjmjevDk++ugjPHjwQOev17VrVzRv3lznz2uOVCpVibdXX31V6fKIiKgYVkoXQERExuvevXsYNWoU2rVrh1dffRV169ZFTEwMZs2ahZ07d2LXrl1QqVRKl1llPfXUUxg+fHiR840bN1agGiIiehyGLyIiKpGNjQ0OHDiA9u3ba86NHTsW3t7emgAWFhamYIXm68GDB7CxsYGFRcmTVBo3bowXX3zRgFUREVFlcNohERGVyMbGRit4yZ577jkAwJkzZwxdEgBgyZIl8Pf3h62tLTw8PDBu3Dikp6drXXP+/Hn0798fbm5usLOzQ/369TFo0CBkZGRoromOjkbHjh1RvXp1VKtWDU2aNMG777772NeX1zP99NNPaNKkCezs7NC6dWvs3bu3yLXXrl3D6NGj4erqCltbW/j7++P777/Xuuavv/6CSqXCmjVrMH36dNSrVw8ODg7IzMys2AdUiDyVMzY2Fu3bt4e9vT18fHwQGRlZ5Nq0tDSMGTMGrq6usLOzQ2BgIH744Yci16nVasyfPx8BAQGws7NDnTp10KNHDxw7dqzItZs3b0bz5s01733btm2Vfk9ERKaKI19ERFRuKSkpAIDatWsb/LVnz56N999/H2FhYXjttdeQkJCApUuX4ujRozhw4ACsra2Rm5uL8PBw5OTkYMKECXBzc8O1a9ewdetWpKenw8XFBX///TeeeeYZtGjRAh988AFsbW1x4cIFHDhwoEx17NmzB2vXrsXEiRNha2uLJUuWoEePHjhy5Ihm3VpqairatWunCWt16tTBH3/8gTFjxiAzMxOTJ0/Wes4PP/wQNjY2mDp1KnJycmBjY1NqDQ8ePMDNmzeLnHd2dtZ67J07d9CrVy8MGDAAgwcPxrp16/Daa6/BxsYGo0ePBgDcv38fXbt2xYULFzB+/Hj4+Phg/fr1GDlyJNLT0zFp0iTN840ZMwYrVqxAz5498dJLLyEvLw/79u3DoUOH0KZNG811+/fvx8aNG/H666/DyckJCxYsQP/+/ZGUlIRatWqV6XMmIjIrEhER0X+WL18uAZASExNLvS4sLExydnaW7ty5o9PX79Kli+Tv71/i/WlpaZKNjY309NNPS/n5+ZrzixYtkgBI33//vSRJknT8+HEJgLR+/foSn+urr76SAEg3btwod50AJADSsWPHNOcuX74s2dnZSc8995zm3JgxYyR3d3fp5s2bWo8fNGiQ5OLiIt27d0+SJEnavXu3BEBq2LCh5lxZayjutnr1as11Xbp0kQBIc+fO1ZzLycmRgoKCpLp160q5ubmSJEnSvHnzJADSqlWrNNfl5uZKoaGhUrVq1aTMzExJkiRp165dEgBp4sSJRWpSq9Va9dnY2EgXLlzQnDtx4oQEQFq4cGGZ3iMRkbnhtEMiIiqXjz/+GDt27MAnn3yC6tWrG/S1d+zYgdzcXEyePFlrLdTYsWPh7OyM3377DQDg4uICANi+fTvu3btX7HPJtf/yyy9Qq9XlriU0NBStW7fWfN+gQQP07dsX27dvR35+PiRJws8//4w+ffpAkiTcvHlTcwsPD0dGRgbi4uK0nnPEiBGwt7cvcw19+/ZFdHR0kVu3bt20rrOyssIrr7yi+d7GxgavvPIK0tLSEBsbCwD4/fff4ebmhsGDB2uus7a2xsSJE5GVlYU9e/YAAH7++WeoVCrMmjWrSD2PNl8JCwtDo0aNNN+3aNECzs7OuHjxYpnfIxGROeG0QyIiKrO1a9di+vTpGDNmDF577bXHXn/79m3k5uZqvre3t9cEo4q4fPkyAKBJkyZa521sbNCwYUPN/T4+PpgyZQq+/PJL/PTTT+jUqROeffZZvPjii5rXHzhwIL799lu89NJLeOedd9C9e3f069cPzz//fKlNLmS+vr5FzjVu3Bj37t3DjRs3YGFhgfT0dCxbtgzLli0r9jnS0tK0vvfx8Xn8h1BI/fr1y9TwxMPDA46OjkVqBYBLly6hXbt2uHz5Mnx9fYu896ZNmwIo+Oz//fdfeHh4oGbNmo993QYNGhQ5V6NGDdy5c+exjyUiMkcc+SIiojKJjo7G8OHD0bt372KbNRSnX79+cHd319wKrxvSt7lz5+LkyZN49913cf/+fUycOBH+/v64evUqABEE9+7dix07dmDYsGE4efIkBg4ciKeeegr5+fmVfn15NO3FF18sdnQqOjoaHTp00HpMeUa9TIGlpWWx5yVJMnAlRETGgSNfRET0WIcPH8Zzzz2HNm3aYN26dbCyKtv/PubOnas1yuHh4VGpOry8vAAACQkJaNiwoeZ8bm4uEhMTi4wCBQQEICAgANOnT8fBgwfRoUMHREZG4qOPPgIAWFhYoHv37ujevTu+/PJLfPzxx3jvvfewe/fux44onT9/vsi5c+fOwcHBAXXq1AEAODk5IT8/X/F2/MnJycjOztYa/Tp37hwAwNvbG4D4bE+ePAm1Wq01+nX27FnN/QDQqFEjbN++Hbdv3y7T6BcRERXgyBcREZXqzJkz6N27N7y9vbF169Zyjc60bt0aYWFhmluzZs0qVUtYWBhsbGywYMECrdGT7777DhkZGejduzcAIDMzE3l5eVqPDQgIgIWFBXJycgCIKZGPCgoKAgDNNaWJiYnRWrN15coV/PLLL3j66adhaWkJS0tL9O/fHz///DNOnz5d5PE3btx4/BvWkby8PHz99dea73Nzc/H111+jTp06mnVrvXr1QkpKCtauXav1uIULF6JatWro0qULAKB///6QJAnvv/9+kdfhiBYRUek48kVERCW6e/cuwsPDcefOHbz11luahhayRo0aITQ0VKeveePGDc3IVGE+Pj4YOnQopk2bhvfffx89evTAs88+i4SEBCxZsgRt27bVbDi8a9cujB8/Hi+88AIaN26MvLw8rFy5UhOIAOCDDz7A3r170bt3b3h5eSEtLQ1LlixB/fr10bFjx8fW2bx5c4SHh2u1mgegFUo++eQT7N69GyEhIRg7diyaNWuG27dvIy4uDjt27Cg2AJbHuXPnsGrVqiLnXV1d8dRTT2m+9/DwwKeffopLly6hcePGWLt2LeLj47Fs2TJYW1sDAF5++WV8/fXXGDlyJGJjY+Ht7Y0NGzbgwIEDmDdvHpycnAAA3bp1w7Bhw7BgwQKcP38ePXr0gFqtxr59+9CtWzeMHz++Uu+JiMisKdlqkYiIjMujreYTExNLbWk+YsQInb6+3Ba9uFv37t011y1atEjy8/OTrK2tJVdXV+m1117Tant/8eJFafTo0VKjRo0kOzs7qWbNmlK3bt2kHTt2aK7ZuXOn1LdvX8nDw0OysbGRPDw8pMGDB0vnzp17bJ0ApHHjxkmrVq2SfH19JVtbW6lly5bS7t27i1ybmpoqjRs3TvL09JSsra0lNzc3qXv37tKyZcs018it5ktrjV9cDSXdunTpovWZ+vv7S8eOHZNCQ0MlOzs7ycvLS1q0aFGxtY4aNUqqXbu2ZGNjIwUEBEjLly8vcl1eXp70+eefS35+fpKNjY1Up04dqWfPnlJsbGyRz+hRXl5eOv+5ISIyFSpJ4hwBIiKi8lCpVBg3bhwWLVqkdCmP1bVrV9y8ebPYqY9ERGRYXPNFRERERERkAAxfREREREREBsDwRUREREREZABc80VERERERGQAHPkiIiIiIiIyAIYvIiIiIiIiA+AmyxWkVquRnJwMJycnqFQqpcshIiIiIiKFSJKEu3fvwsPDAxYWJY9vMXxVUHJyMjw9PZUug4iIiIiIjMSVK1dQv379Eu9n+KogJycnAOIDdnZ2VrgaIiIiIiJSSmZmJjw9PTUZoSQMXxUkTzV0dnZm+CIiIiIioscuR2LDDSIiIiIiIgNg+CIiIiIiIjIAhi8iIiIiIiID4JovIiIiIjILkiQhLy8P+fn5SpdCZsbS0hJWVlaV3mJK8fC1ePFifP7550hJSUFgYCAWLlyI4ODgEq9fv349ZsyYgUuXLsHX1xeffvopevXqpbl/48aNiIyMRGxsLG7fvo3jx48jKCioyPPExMTgvffew+HDh2FpaYmgoCBs374d9vb2+nibRERERKRHubm5uH79Ou7du6d0KWSmHBwc4O7uDhsbmwo/h6Lha+3atZgyZQoiIyMREhKCefPmITw8HAkJCahbt26R6w8ePIjBgwdjzpw5eOaZZxAVFYWIiAjExcWhefPmAIDs7Gx07NgRAwYMwNixY4t93ZiYGPTo0QPTpk3DwoULYWVlhRMnTpS6IRoRERERGSe1Wo3ExERYWlrCw8MDNjY2lR6hIJJJkoTc3FzcuHEDiYmJ8PX1rXBuUEmSJOm4vjILCQlB27ZtsWjRIgDiXxxPT09MmDAB77zzTpHrBw4ciOzsbGzdulVzrl27dggKCkJkZKTWtZcuXYKPj0+xI1/t2rXDU089hQ8//LDCtWdmZsLFxQUZGRlsNU9ERESkoAcPHiAxMRFeXl5wcHBQuhwyU/fu3cPly5fh4+MDOzs7rfvKmg0UG+rJzc1FbGwswsLCCoqxsEBYWBhiYmKKfUxMTIzW9QAQHh5e4vXFSUtLw+HDh1G3bl20b98erq6u6NKlC/bv31/q43JycpCZmal1IyIiIiLjwVlMpE+6+PlS7Cf05s2byM/Ph6urq9Z5V1dXpKSkFPuYlJSUcl1fnIsXLwIAZs+ejbFjx2Lbtm1o1aoVunfvjvPnz5f4uDlz5sDFxUVz8/T0LPNrEhERERERVbk/D6jVagDAK6+8glGjRqFly5b46quv0KRJE3z//fclPm7atGnIyMjQ3K5cuWKokomIiIiIyAwoFr5q164NS0tLpKamap1PTU2Fm5tbsY9xc3Mr1/XFcXd3BwA0a9ZM63zTpk2RlJRU4uNsbW3h7OysdSMiIiIiMjbe3t6YN2+e0mVQMRQLXzY2NmjdujV27typOadWq7Fz506EhoYW+5jQ0FCt6wEgOjq6xOuL4+3tDQ8PDyQkJGidP3fuHLy8vMrxDoiIiIiIKk6lUpV6mz17doWe9+jRo3j55ZcrVVvXrl0xefLkSj0HFaVoq/kpU6ZgxIgRaNOmDYKDgzFv3jxkZ2dj1KhRAIDhw4ejXr16mDNnDgBg0qRJ6NKlC+bOnYvevXtjzZo1OHbsGJYtW6Z5ztu3byMpKQnJyckAoAlZbm5ucHNzg0qlwltvvYVZs2YhMDAQQUFB+OGHH3D27Fls2LDBwJ8AEREREVVV169f1xyvXbsWM2fO1BogqFatmuZYkiTk5+fDyurxv77XqVNHt4WSzii65mvgwIH44osvMHPmTAQFBSE+Ph7btm3TNNVISkrS+qFs3749oqKisGzZMgQGBmLDhg3YvHmzZo8vANiyZQtatmyJ3r17AwAGDRqEli1barWinzx5MqZNm4Y33ngDgYGB2LlzJ6Kjo9GoUSMDvXMiHfrgA2DCBOC/9YxEREQESBKQna3MrawbOcmDA25ubnBxcYFKpdJ8f/bsWTg5OeGPP/5A69atYWtri/379+Pff/9F37594erqimrVqqFt27bYsWOH1vM+Ou1QpVLh22+/xXPPPQcHBwf4+vpiy5Ytlfp8f/75Z/j7+8PW1hbe3t6YO3eu1v1LliyBr68v7Ozs4Orqiueff15z34YNGxAQEAB7e3vUqlULYWFhyM7OrlQ9JkOiCsnIyJAASBkZGUqXQlVZcrIkif/GS9LRo0pXQ0REpIj79+9L//zzj3T//n3Nuaysgv9FGvqWlVX+97B8+XLJxcVF8/3u3bslAFKLFi2kP//8U7pw4YJ069YtKT4+XoqMjJROnTolnTt3Tpo+fbpkZ2cnXb58WfNYLy8v6auvvtJ8D0CqX7++FBUVJZ0/f16aOHGiVK1aNenWrVsl1tOlSxdp0qRJxd537NgxycLCQvrggw+khIQEafny5ZK9vb20fPlySZIk6ejRo5KlpaUUFRUlXbp0SYqLi5Pmz58vSZIkJScnS1ZWVtKXX34pJSYmSidPnpQWL14s3b17t/wfmoEV93MmK2s2UHTaIRFV0u7dBcd79gBt2ihXCxEREencBx98gKeeekrzfc2aNREYGKj5/sMPP8SmTZuwZcsWjB8/vsTnGTlyJAYPHgwA+Pjjj7FgwQIcOXIEPXr0KHdNX375Jbp3744ZM2YAABo3box//vkHn3/+OUaOHImkpCQ4OjrimWeegZOTE7y8vNCyZUsAYqplXl4e+vXrp+m3EBAQUO4aTFWVazVPZFYKN6DZs0e5OoiIiIyMgwOQlaXMzcFBd++jzSN/WM3KysLUqVPRtGlTVK9eHdWqVcOZM2dK7doNAC1atNAcOzo6wtnZGWlpaRWq6cyZM+jQoYPWuQ4dOuD8+fPIz8/HU089BS8vLzRs2BDDhg3DTz/9hHv37gEAAgMD0b17dwQEBOCFF17AN998gzt37lSoDlPE8EVkynbtKjjet4/rvoiIiP6jUgGOjsrcVCrdvQ9HR0et76dOnYpNmzbh448/xr59+xAfH4+AgADk5uaW+jzW1taPfD4qzf63uubk5IS4uDisXr0a7u7umDlzJgIDA5Geng5LS0tER0fjjz/+QLNmzbBw4UI0adIEiYmJeqnF2DB8EZmqixeBS5cAKyvxX/r0dODUKaWrIiIiIj06cOAARo4cieeeew4BAQFwc3PDpUuXDFpD06ZNceDAgSJ1NW7cGJaWlgAAKysrhIWF4bPPPsPJkydx6dIl7Prvj8YqlQodOnTA+++/j+PHj8PGxgabNm0y6HtQCtd8EZkqecphu3YifG3fLqYeFpoHTkRERObF19cXGzduRJ8+faBSqTBjxgy9jWDduHED8fHxWufc3d3x5ptvom3btvjwww8xcOBAxMTEYNGiRViyZAkAYOvWrbh48SI6d+6MGjVq4Pfff4darUaTJk1w+PBh7Ny5E08//TTq1q2Lw4cP48aNG2jatKle3oOx4cgXkamSpxw++STQubM45rovIiIis/bll1+iRo0aaN++Pfr06YPw8HC0atVKL68VFRWFli1bat2++eYbtGrVCuvWrcOaNWvQvHlzzJw5Ex988AFGjhwJAKhevTo2btyIJ598Ek2bNkVkZCRWr14Nf39/ODs7Y+/evejVqxcaN26M6dOnY+7cuejZs6de3oOxUUlSWXcioMIyMzPh4uKCjIwMODs7K10OVTWSBLi5AWlpInBZWgIdOwK1a4tzupxsTkREZOQePHiAxMRE+Pj4wM7OTulyyEyV9nNW1mzAaYdEpujvv0XIsrcHQkJE2LK3B27eBP75B/D3V7pCIiIiInoEpx0SmSJ5vVenToCtLWBjA4SGinN79ypXFxERERGViOGLyBTJ6726dy8416WL+Mp1X0RERERGieGLyNTk5QF//SWOn3yy4Hzh8MWlnERERERGh+GLyNTExgKZmUD16kDLlgXng4PF9MOUFOD8ecXKIyIiIqLiMXwRmRp5ymHXrqLLoUxuvgFw6iERERGREWL4IjI1crONwuu9ZPLUQzbdICIiIjI6DF9EpuTBA+DAAXFceL2XjOu+iIiIiIwWwxeRKYmJEQHM3R1o2rTo/aGhgJUVcOUKcOmSwcsjIiIiopIxfBGZEnm915NPio2VH+XoCLRpI4657ouIiKhK6Nq1KyZPnqz53tvbG/PmzSv1MSqVCps3b670a+vqeaoKhi8iUyKv9ypuyqGM+30RERGZhD59+qBHjx7F3rdv3z6oVCqcPHmy3M979OhRvPzyy5UtT8vs2bMRFBRU5Pz169fRs2dPnb7Wo1asWIHq1avr9TUMheGLyFRkZgJHjojj4pptyNh0g4iIyCSMGTMG0dHRuHr1apH7li9fjjZt2qBFixblft46derAwcFBFyU+lpubG2xtbQ3yWuaA4YvIVOzbB+TnAw0bAl5eJV/XoQNgYQFcvAgU8x9zIiKiKkGSgOxsZW5lbHr1zDPPoE6dOlixYoXW+aysLKxfvx5jxozBrVu3MHjwYNSrVw8ODg4ICAjA6tWrS33eR6cdnj9/Hp07d4adnR2aNWuG6OjoIo95++230bhxYzg4OKBhw4aYMWMGHj58CECMPL3//vs4ceIEVCoVVCqVpuZHpx2eOnUKTz75JOzt7VGrVi28/PLLyMrK0tw/cuRIRERE4IsvvoC7uztq1aqFcePGaV6rIpKSktC3b19Uq1YNzs7OGDBgAFJTUzX3nzhxAt26dYOTkxOcnZ3RunVrHDt2DABw+fJl9OnTBzVq1ICjoyP8/f3x+++/V7iWx7HS2zMTkW6V1mK+MGdnoFUr4NgxMfVw6FD910ZERGRs7t0DqlVT5rWzssQ67MewsrLC8OHDsWLFCrz33ntQ/beee/369cjPz8fgwYORlZWF1q1b4+2334azszN+++03DBs2DI0aNUJwcPBjX0OtVqNfv35wdXXF4cOHkZGRobU+TObk5IQVK1bAw8MDp06dwtixY+Hk5IT/+7//w8CBA3H69Gls27YNO3bsAAC4uLgUeY7s7GyEh4cjNDQUR48eRVpaGl566SWMHz9eK2Du3r0b7u7u2L17Ny5cuICBAwciKCgIY8eOfez7Ke79ycFrz549yMvLw7hx4zBw4ED89ddfAIChQ4eiZcuWWLp0KSwtLREfHw9ra2sAwLhx45Cbm4u9e/fC0dER//zzD6rp8eeG4YvIVBRutvE4nTszfBEREZmA0aNH4/PPP8eePXvQtWtXAGLKYf/+/eHi4gIXFxdMnTpVc/2ECROwfft2rFu3rkzha8eOHTh79iy2b98ODw8PAMDHH39cZJ3W9OnTNcfe3t6YOnUq1qxZg//7v/+Dvb09qlWrBisrK7i5uZX4WlFRUXjw4AF+/PFHOP4XPhctWoQ+ffrg008/haurKwCgRo0aWLRoESwtLeHn54fevXtj586dFQpfO3fuxKlTp5CYmAhPT08AwI8//gh/f38cPXoUbdu2RVJSEt566y34+fkBAHx9fTWPT0pKQv/+/REQEAAAaNiwYblrKA+GLyJTcOMGcOKEOC5L+OrSBfjySzbdICKiqsvBQYxAKfXaZeTn54f27dvj+++/R9euXXHhwgXs27cPH3zwAQAgPz8fH3/8MdatW4dr164hNzcXOTk5ZV7TdebMGXh6emqCFwCEhoYWuW7t2rVYsGAB/v33X2RlZSEvLw/Ozs5lfh/yawUGBmqCFwB06NABarUaCQkJmvDl7+8PS0tLzTXu7u44depUuV6r8Gt6enpqghcANGvWDNWrV8eZM2fQtm1bTJkyBS+99BJWrlyJsLAwvPDCC2jUqBEAYOLEiXjttdfw559/IiwsDP3796/QOruy4povIlOwe7f4GhAA1K37+Os7dRKt6M+dA65f129tRERExkilElP/lLgVtx1MKcaMGYOff/4Zd+/exfLly9GoUSN0+a+B1ueff4758+fj7bffxu7duxEfH4/w8HDk5ubq7KOKiYnB0KFD0atXL2zduhXHjx/He++9p9PXKEye8idTqVRQq9V6eS1AdGr8+++/0bt3b+zatQvNmjXDpk2bAAAvvfQSLl68iGHDhuHUqVNo06YNFi5cqLdaGL6ITEF5phwCQI0agPxXm3379FMTERER6cSAAQNgYWGBqKgo/Pjjjxg9erRm/deBAwfQt29fvPjiiwgMDETDhg1x7ty5Mj9306ZNceXKFVwv9MfYQ4cOaV1z8OBBeHl54b333kObNm3g6+uLy5cva11jY2OD/Pz8x77WiRMnkJ2drTl34MABWFhYoEmTJmWuuTzk93flyhXNuX/++Qfp6elo1qyZ5lzjxo3xxhtv4M8//0S/fv2wfPlyzX2enp549dVXsXHjRrz55pv45ptv9FIrwPBFZBrK2myjMO73RUREZBKqVauGgQMHYtq0abh+/TpGjhypuc/X1xfR0dE4ePAgzpw5g1deeUWrk9/jhIWFoXHjxhgxYgROnDiBffv24b333tO6xtfXF0lJSVizZg3+/fdfLFiwQDMyJPP29kZiYiLi4+Nx8+ZN5OTkFHmtoUOHws7ODiNGjMDp06exe/duTJgwAcOGDdNMOayo/Px8xMfHa93OnDmDsLAwBAQEYOjQoYiLi8ORI0cwfPhwdOnSBW3atMH9+/cxfvx4/PXXX7h8+TIOHDiAo0ePomnTpgCAyZMnY/v27UhMTERcXBx2796tuU8fGL6IjF1SEnDhgmgf37lz2R/H8EVERGQyxowZgzt37iA8PFxrfdb06dPRqlUrhIeHo2vXrnBzc0NERESZn9fCwgKbNm3C/fv3ERwcjJdeegn/+9//tK559tln8cYbb2D8+PEICgrCwYMHMWPGDK1r+vfvjx49eqBbt26oU6dOse3uHRwcsH37dty+fRtt27bF888/j+7du2PRokXl+zCKkZWVhZYtW2rd+vTpA5VKhV9++QU1atRA586dERYWhoYNG2Lt2rUAAEtLS9y6dQvDhw9H48aNMWDAAPTs2RPvv/8+ABHqxo0bh6ZNm6JHjx5o3LgxlixZUul6S6KSpDJuREBaMjMz4eLigoyMjHIvRiQqlxUrgFGjgJAQ4JFpAqW6caNgfdiNG0Dt2nopj4iISGkPHjxAYmIifHx8YGdnp3Q5ZKZK+zkrazbgyBeRsSvvei9ZnTqAPNd5717d1kRERERE5cbwRWTMJKli671k8tRDhi8iIiIixTF8ERmzhAQgORmwtQXaty//47nui4iIiMhoMHwRGTN5ymH79oC9ffkfLzfoOHECuHNHd3URERERUbkxfBEZs8pMOQQAd3fA11dMX9y/X3d1ERERGSH2kSN90sXPF8MXkbFSq4Hdu8VxeZttFMaph0REZOasra0BAPfu3VO4EjJn8s+X/PNWEVa6KoaIdCw+XkwVdHIC2rat+PN06QJ8+y2bbhARkdmytLRE9erVkZaWBkDsN6VSqRSuisyFJEm4d+8e0tLSUL16dVhaWlb4uRi+iIyVvN6rSxfAqhL/qsojX3FxwN27IswRERGZGTc3NwDQBDAiXatevbrm56yijCJ8LV68GJ9//jlSUlIQGBiIhQsXIjg4uMTr169fjxkzZuDSpUvw9fXFp59+il69emnu37hxIyIjIxEbG4vbt2/j+PHjCAoKKva5JElCr169sG3bNmzatKlcO4YT6ZW83qsyUw4BwNMT8PEBEhOBAweAHj0qXxsREZGRUalUcHd3R926dfHw4UOlyyEzY21tXakRL5ni4Wvt2rWYMmUKIiMjERISgnnz5iE8PBwJCQmoW7dukesPHjyIwYMHY86cOXjmmWcQFRWFiIgIxMXFoXnz5gCA7OxsdOzYEQMGDMDYsWNLff158+ZxWJqMT25uwTTBijbbKKxLFxG+9uxh+CIiIrNmaWmpk1+SifRBJSncFiYkJARt27bFokWLAABqtRqenp6YMGEC3nnnnSLXDxw4ENnZ2di6davmXLt27RAUFITIyEitay9dugQfH58SR77i4+PxzDPP4NixY3B3dy915CsnJwc5OTma7zMzM+Hp6YmMjAw4OztX4J0TlWL/fqBTJ6B2bSA1FbCoZG+c5cuB0aOB0FDg4EHd1EhEREREAEQ2cHFxeWw2ULTbYW5uLmJjYxEWFqY5Z2FhgbCwMMTExBT7mJiYGK3rASA8PLzE60ty7949DBkyBIsXLy7T3M05c+bAxcVFc/P09CzX6xGVS+Eph5UNXkDBuq+jRwF2giIiIiJShKLh6+bNm8jPz4erq6vWeVdXV6SkpBT7mJSUlHJdX5I33ngD7du3R9++fct0/bRp05CRkaG5XblypVyvR1QucrONyq73kvn4APXrA3l5QDn/UEFEREREuqH4mi8lbNmyBbt27cLx48fL/BhbW1vY2trqsSqi/2RnFwQkXaz3AgCVSox+/fSTWPelq+clIiIiojJTdOSrdu3asLS0RGpqqtb51NTUEqcCurm5lev64uzatQv//vsvqlevDisrK1j918a7f//+6Nq1a/neBJGuHTgAPHwINGgANGqku+flZstEREREilI0fNnY2KB169bYKa9vgWi4sXPnToSGhhb7mNDQUK3rASA6OrrE64vzzjvv4OTJk4iPj9fcAOCrr77C8uXLy/9GiHSp8HovXXbi7NxZfD18GHjwQHfPS0RERERlovi0wylTpmDEiBFo06YNgoODMW/ePGRnZ2PUqFEAgOHDh6NevXqYM2cOAGDSpEno0qUL5s6di969e2PNmjU4duwYli1bpnnO27dvIykpCcnJyQCAhIQEAGLUrPDtUQ0aNICPj4++3zJR6eTwpeupgY0bA66uonvi4cMFI2FEREREZBCKjnwBonX8F198gZkzZyIoKAjx8fHYtm2bpqlGUlISrl+/rrm+ffv2iIqKwrJlyxAYGIgNGzZg8+bNmj2+ALGmq2XLlujduzcAYNCgQWjZsmWRVvRERufOHSAuThzrqtmGTF73BRTsIUZEREREBqP4Pl+mqqy9/InKZdMmoF8/wM8POHNG98+/ZAkwbpwYVduxQ/fPT0RERFQFmcQ+X0T0CF23mH+UPPJ18CCQm6uf1yAiIiKiYjF8ERkTfa33kjVtCtSqBdy/Dxw7pp/XICIiIqJiMXwRGYvkZDHVUKUC9LXlgYVFQddDtpwnIiIiMiiGLyJjsXu3+NqyJVCzpv5eh003iIiIiBTB8EVkLPQ95VAmh6/9+4G8PP2+FhERERFpMHwRGQNJ0t5cWZ8CAoDq1YGsLOD4cf2+FhERERFpMHwRGYOLF4GkJMDaGujUSb+vZWlZ8Bpc90VERERkMAxfRMZAbjHfrh3g6Kj/12PTDSIiIiKDY/giMgaGmnIok9d97dsH5Ocb5jWJiIiIqjiGLyKlqdUFI1/6brYha9kScHICMjKAU6cM85pEREREVRzDF5HS/v4buHEDcHAAQkIM85pWVkCHDuKYUw+JiIiIDILhi0hp8pTDTp0AGxvDva489ZDhi4iIiMggGL6IlCZPOTTUei+Z3HRj714x9ZGIiIiI9Irhi0hJeXkFI0+GWu8la9MGsLcHbt0C/vnHsK9NREREVAUxfBEpKTYWyMwEatQAgoIM+9o2NkD79uJ4717DvjYRERFRFcTwRaQkeb1X165i82ND47ovIiIiIoNh+CJSkhy+DD3lUFY4fEmSMjUQERERVREMX0RKefAAOHBAHBu62YYsOBiwtQVSU4Fz55SpgYiIiKiKYPgiUsrBg0BODuDuDvj5KVODnV3B3mKcekhERESkVwxfREop3GJepVKuDnnqIZtuEBEREekVwxeRUpRe7yXjui8iIiIig2D4IlJCZiZw9Kg4Vmq9lyw0FLC2Bq5eBRITla2FiIiIyIwxfBEpYe9eID8faNQI8PJSthYHB6BtW3HMdV9EREREesPwRaQEY5lyKOvcWXxl+CIiIiLSG4YvIiUUbrZhDNh0g4iIiEjvGL6IDC0tDTh5UhwbS/jq0AGwtBRrvq5cUboaIiIiIrPE8EVkaH/9Jb62aAHUqaNoKRpOTkCrVuKYUw+JiIiI9ILhi8jQ5PVexjLqJSvccp6IiIiIdI7hi8jQjK3ZhoxNN4iIiIj0iuGLyJAuXwb+/Vesr5LDjrHo1AlQqYDz54Hr15WuhoiIiMjsMHwRGZLc5bBtW8DZWdlaHlW9OhAYKI7Z9ZCIiIhI5xi+iAzJ2FrMP4rrvoiIiIj0huGLyFAkyXjXe8kYvoiIiIj0huGLyFASEsRaKltboH17paspXqdO4us//wA3bihbCxEREZGZYfgiMhR51KtDB8DOTtlaSlK7NuDvL4657ouIiIhIp4wifC1evBje3t6ws7NDSEgIjhw5Uur169evh5+fH+zs7BAQEIDff/9d6/6NGzfi6aefRq1ataBSqRAfH691/+3btzFhwgQ0adIE9vb2aNCgASZOnIiMjAxdvzWiAsY+5VAmTz1k+CIiIiLSKcXD19q1azFlyhTMmjULcXFxCAwMRHh4ONLS0oq9/uDBgxg8eDDGjBmD48ePIyIiAhERETh9+rTmmuzsbHTs2BGffvppsc+RnJyM5ORkfPHFFzh9+jRWrFiBbdu2YcyYMXp5j0TIzwf++kscG2uzDRnXfRERERHphUqSJEnJAkJCQtC2bVssWrQIAKBWq+Hp6YkJEybgnXfeKXL9wIEDkZ2dja1bt2rOtWvXDkFBQYiMjNS69tKlS/Dx8cHx48cRFBRUah3r16/Hiy++iOzsbFhZWT227szMTLi4uCAjIwPOxtYynIxPbCzQpg3g5ATcvg2U4WdMMSkpgLu72PPr1i2gRg2lKyIiIiIyamXNBoqOfOXm5iI2NhZhYWGacxYWFggLC0NMTEyxj4mJidG6HgDCw8NLvL6s5A+qpOCVk5ODzMxMrRtRmckt5rt0Me7gBQBubkCTJqI74759SldDREREZDYUDV83b95Efn4+XF1dtc67uroiJSWl2MekpKSU6/qy1vHhhx/i5ZdfLvGaOXPmwMXFRXPz9PSs8OtRFWQq671knTuLr5x6SERERKQziq/5UlpmZiZ69+6NZs2aYfbs2SVeN23aNGRkZGhuV65cMVyRZNpycwtGkEwlfLHpBhEREZHOKTr/qXbt2rC0tERqaqrW+dTUVLi5uRX7GDc3t3JdX5q7d++iR48ecHJywqZNm2BtbV3itba2trC1tS33axDh8GHg3j2gTp2CNu7GTg5fcXFAZibAdY1ERERElaboyJeNjQ1at26NnfKULIiGGzt37kRoaGixjwkNDdW6HgCio6NLvL4kmZmZePrpp2FjY4MtW7bAzlj3XSLTJ/+8PvkkYGEig8316wMNGwJqNXDggNLVEBEREZkFxVf+T5kyBSNGjECbNm0QHByMefPmITs7G6NGjQIADB8+HPXq1cOcOXMAAJMmTUKXLl0wd+5c9O7dG2vWrMGxY8ewbNkyzXPevn0bSUlJSE5OBgAkJCQAEKNmbm5umuB17949rFq1SquBRp06dWBpaWnIj4DMndxsw9hbzD+qSxfg4kWx7qtnT6WrISIiIjJ5ioevgQMH4saNG5g5cyZSUlIQFBSEbdu2aZpqJCUlwaLQaEH79u0RFRWF6dOn491334Wvry82b96M5s2ba67ZsmWLJrwBwKBBgwAAs2bNwuzZsxEXF4fDhw8DAJ544gmtehITE+Ht7a2vt0tVTXY2cOiQODaV9V6yLl2A5cvZdIOIiIhIRxTf58tUcZ8vKpPt24EePQAvLyAxUeydZSoSE8XUQysrID0dcHRUuiIiIiIio2QS+3wRmb3C671MKXgBgLc34OkJ5OUBldxHj4iIiIgYvoj0S17vZWpTDgERFuWuh5x6SERERFRpDF9E+nL7tmjVDgDduilbS0UxfBERERHpDMMXkb789RcgSUDTpoCHh9LVVIwcvg4fBu7fV7YWIiIiIhPH8EWkL6baYr6wJ54A3NyA3FwRwIiIiIiowhi+iPRFbrZhiuu9ZIXXfe3dq2wtRERERCaO4YtIH5KTgbNnRXjp2lXpaiqH676IiIiIdILhi0gf5CmHrVoBNWooW0tlyeErJkZMPyQiIiKiCmH4ItIHc5hyKGvaFKhdWzTcOHpU6WqIiIiITBbDF5GuSZJ5NNuQqVRA587imFMPiYiIiCqM4YtI1/79F0hKAqytgY4dla5GN9h0g4iIiKjSGL6IdE0e9WrXDnB0VLYWXZHD14EDQF6esrUQERERmSiGLyJdM6f1XrKAANE4JCsLiItTuhoiIiIik8TwRaRLajWwe7c4NqfwZWEBdOokjrnui4iIiKhCGL6IdOn0aeDGDcDBAQgOVroa3eJ+X0RERESVwvBFpEvylMPOnQEbG2Vr0TW54+G+fUB+vrK1EBEREZkghq9KOnNG6QrIqJhTi/lHBQUBTk5AZiZw8qTS1RARERGZHIavSoqMVLoCMhp5eQVT8sxpvZfMyqqgdT6nHhIRERGVG8NXJa1eDdy6pXQVZBSOHQPu3hVdAQMDla5GP7jui4iIiKjCGL4qKScH+OYbpasgoyCv9+rWDbC0VLYWfSm82bJarWwtRERERCaG4UsHFi8GHj5UugpSnLzeyxynHMpatxadHG/fBv7+W+lqiIiIiEwKw1cl1akDXL0KbNyodCWkqPv3gQMHxLE5NtuQWVsD7duL4717la2FiIiIyMQwfFXSmDHi6/z5ytZBCjt4UMxB9fAAmjRRuhr94rovIiIiogph+Kqk0aPFdk4xMcCRI0pXQ4op3GJepVK2Fn0rHL4kSdlaiIiIiEwIw1cluboCgwaJY45+VWFysw1zXu8lCw4G7OyAtDQgIUHpaoiIiIhMBsOXDkyaJL6uWwckJytbCykgIwM4elQcm/N6L5mtLdCunTjm1EMiIiKiMmP40oFWrYBOncQeu0uWKF0NGZzcdv2JJ4AGDZSuxjA6dxZf2XSDiIiIqMwYvnREHv36+mvR+I6qkKrQYv5RXPdFREREVG4MXzrSty/g5QXcvAlERSldDRmUvN6rKkw5lLVrJ9rOX7sGXLyodDVEREREJoHhS0esrIDx48Xx/PkcDKgy0tKAU6fEcbduytZiSA4OovEGwHVfRERERGXE8KVDY8YAjo7id/Hdu5WuhgxC/gfdooXYcbsq4X5fREREROXC8KVDNWoAI0aIY7adryKqUov5R7HpBhEREVG5MHzp2MSJ4uuvvwL//qtsLWQAVbHZhqx9e8DSErh0CUhKUroaIiIiIqPH8KVjTZoAPXuKNV8LFypdDenV5csiYVtair0GqhonJ6B1a3HMqYdEREREj8XwpQdy2/nvvwcyM5WthfRIHvUKDgacnZWtRSlc90VERERUZgxfevD000DTpsDdu8Dy5UpXQ3pTFVvMP4rhi4iIiKjMjCJ8LV68GN7e3rCzs0NISAiOHDlS6vXr16+Hn58f7OzsEBAQgN9//13r/o0bN+Lpp59GrVq1oFKpEB8fX+Q5Hjx4gHHjxqFWrVqoVq0a+vfvj9TUVJ28H5WqYO3XwoVAfr5OnpaMiSRV7WYbsg4dxA/8hQtAcrLS1RAREREZNcXD19q1azFlyhTMmjULcXFxCAwMRHh4ONLS0oq9/uDBgxg8eDDGjBmD48ePIyIiAhERETh9+rTmmuzsbHTs2BGffvppia/7xhtv4Ndff8X69euxZ88eJCcno1+/fjp7X8OGie6H//4LPJINyRycPQukpAB2dkBoqNLVKKd6dSAoSByz6yERERFRqVSSpOx2wCEhIWjbti0WLVoEAFCr1fD09MSECRPwzjvvFLl+4MCByM7OxtatWzXn2rVrh6CgIERGRmpde+nSJfj4+OD48eMIkn9BBJCRkYE6deogKioKzz//PADg7NmzaNq0KWJiYtCuXbvH1p2ZmQkXFxdkZGTAuYT1Pm+/DXz2mZiVJg+SkJlYtAiYMEGMeu3YoXQ1ynrjDWDePODVV4GlS5WuhoiIiMjgypINAIVHvnJzcxEbG4uwsDDNOQsLC4SFhSEmJqbYx8TExGhdDwDh4eElXl+c2NhYPHz4UOt5/Pz80KBBgxKfJycnB5mZmVq3xxk3TjTC27VLbLxMZqQqt5h/FNd9EREREZWJouHr5s2byM/Ph6urq9Z5V1dXpKSkFPuYlJSUcl1f0nPY2NigevXqZX6eOXPmwMXFRXPz9PR87Os0aADIMxm56bIZyc8Hdu8Wx1W52YZMbrN/5gxQwnRhIiIiIjKCNV+mYtq0acjIyNDcrly5UqbHyW3nf/oJuHlTjwWS4Rw/DqSni/by8j5XVVmtWkBAgDjmui8iIiKiEikavmrXrg1LS8siXQZTU1Ph5uZW7GPc3NzKdX1Jz5Gbm4v09PQyP4+trS2cnZ21bmXRvj3Qpg3w4AGwbFmZSyRjJk857NIFsLJSthZj0bmz+MrwRURERFQiRcOXjY0NWrdujZ2FulGo1Wrs3LkToSV0kAsNDdW6HgCio6NLvL44rVu3hrW1tdbzJCQkICkpqVzPUxYqVcHo1+LFwMOHOn16UgJbzBfFdV9EREREj6X4n+2nTJmCESNGoE2bNggODsa8efOQnZ2NUaNGAQCGDx+OevXqYc6cOQCASZMmoUuXLpg7dy569+6NNWvW4NixY1hWaFjp9u3bSEpKQvJ/+w4lJCQAECNebm5ucHFxwZgxYzBlyhTUrFkTzs7OmDBhAkJDQ8vU6bC8BgwA3npLbIO0YQMweLDOX4IMJTcX2LdPHDN8FZBHvk6dAm7fBmrWVLYeIiIiIiOk+JqvgQMH4osvvsDMmTMRFBSE+Ph4bNu2TdNUIykpCdevX9dc3759e0RFRWHZsmUIDAzEhg0bsHnzZjRv3lxzzZYtW9CyZUv07t0bADBo0CC0bNlSqxX9V199hWeeeQb9+/dH586d4ebmho0bN+rlPdrYAK+/Lo7nzdPLS5ChHDoE3L8P1K0L+PsrXY3xcHUF/PzE5tNyOCUiIiIiLYrv82WqytrLX5aWBnh6ioGTmBhADwNsZAizZwPvvw8MGgSsXq10Ncbl1VeBr78W+359+aXS1RAREREZjEns81WV1K0LDB0qjjn6ZcLk9V5sMV8Um24QERERlYrhy4DkxhsbNgBXrypbC1VAVpaYdghwvVdx5KYbx48DGRnK1kJERERkhBi+DCgwUPx+mp8PLFmidDVUbvv3A3l5gJcX4OOjdDXGp149oFEjQK0GDhxQuhoiIiIio8PwZWCTJ4uvX38N3LunaClUXoVbzKtUytZirNhynoiIiKhEDF8G1qePGDS5fRv46Selq6FykTdX5pTDkjF8EREREZWI4cvALC2BCRPE8fz5ojM3mYDbt8VaJgDo1k3ZWoyZHL6OHRNr5IiIiIhIg+FLAaNHA9WqAX//XTCTjYzcX3+JpNysGeDurnQ1xsvLC2jQQCxsjIlRuhoiIiIio8LwpQAXF2DUKHE8f76ytVAZscV82XHqIREREVGxGL4UMmGC6NmwdStw/rzS1dBjFW62QaVj+CIiIiIqFsOXQnx9gV69xPHChcrWQo9x7RqQkABYWBQECyqZ/BkdOQLcv69sLURERERGhOFLQXLb+eXLuSetUZO7HLZqBdSooWwtpqBRI8DDA8jNLdiUmoiIiIgYvpTUvTvg7y+awn3/vdLVUInYYr58VCqgc2dxvHevsrUQERERGRGGLwWpVMCkSeJ44ULRII6MjCSx2UZFcN0XERERUREMXwobOhSoWRNITAR+/VXpaqiIf/8FrlwBrK2Bjh2VrsZ0yOErJgbIyVG2FiIiIiIjwfClMAcH4OWXxTHbzhshedQrNFT8w6Ky8fMD6tYFHjwAjh5VuhoiIiIio8DwZQTGjQMsLcU+vvHxSldDWthivmIKr/vi1EMiIiIiAAxfRqF+feD558XxggXK1kKFqNXA7t3imOGr/OSph2y6QURERASA4ctoyG3nf/oJSEtTtBSSnToF3LwJODoCbdsqXY3pkUe+DhwAHj5UthYiIiIiI8DwZSTatQOCg8XWSF9/rXQ1BKCgxXznzoCNjbK1mKLmzUU3mexsIC5O6WqIiIiIFMfwZUTktvNLlogQRgpji/nKsbAAOnUSx1z3RURERMTwZUyefx7w8ABSUoB165Supop7+LAgMHC9V8Vxvy8iIiIiDYYvI2JjA7z+ujieP1/s70sKOXYMyMoS0+YCA5WuxnTJ4Wv/fu4iTkRERFUew5eRefllwM5O/O5/8KDS1VRh8pTDbt3E9DmqmMBAwNkZyMwETpxQuhoiIiIiRVXot8orV67g6tWrmu+PHDmCyZMnY9myZTorrKqqUwcYOlQcc9NlBcnNNjjlsHIsLYGOHcUxpx4SERFRFVeh8DVkyBDs/m//o5SUFDz11FM4cuQI3nvvPXzwwQc6LbAqkhtvbNwIJCUpW0uVdP9+wbAjm21UHtd9EREREQGoYPg6ffo0goODAQDr1q1D8+bNcfDgQfz0009YsWKFLuurkgICxO/8+fnA4sVKV1MFHTwI5OQA9eoBjRsrXY3pk8PXvn1i42oiIiKiKqpC4evhw4ewtbUFAOzYsQPPPvssAMDPzw/Xr1/XXXVVmDz69c03YpskMqDCLeZVKmVrMQetWomNqm/fBk6fVroaIiIiIsVUKHz5+/sjMjIS+/btQ3R0NHr06AEASE5ORq1atXRaYFXVuzfQqBFw5w6wcqXS1VQxcvjiei/dsLYG2rcXx3v3KlsLERERkYIqFL4+/fRTfP311+jatSsGDx6MwP9acW/ZskUzHZEqx9ISmDBBHC9YwLbzBpORIVpNAlzvpUtc90VEREQElSRV7Nf6/Px8ZGZmokaNGppzly5dgoODA+rWrauzAo1VZmYmXFxckJGRAWdnZz29BlC/PnD3LrB9O/D003p5GSpsyxagb1/A1xc4d07paszH/v1Ap05A3bpiF3FO5yQiIiIzUtZsUKGRr/v37yMnJ0cTvC5fvox58+YhISGhSgQvQ3F2BkaPFsfz5ilaStXBFvP60bat2MAuLQ04e1bpaoiIiIgUUaHw1bdvX/z4448AgPT0dISEhGDu3LmIiIjA0qVLdVpgVTdhghgk+OMPICFB6WqqgMLNNkh3bG2B0FBxzKmHREREVEVVKHzFxcWhU6dOAIANGzbA1dUVly9fxo8//ogFCxbotMCqrlEjoE8fccyPVs9SUwu68XXrpmwt5khe98WmG0RERFRFVSh83bt3D05OTgCAP//8E/369YOFhQXatWuHy5cv67RAKmg7v2KF6H5IevLfxuEIDARq11a2FnPUubP4umcPO8gQERFRlVSh8PXEE09g8+bNuHLlCrZv346n/+sEkZaWprfmE1VZt25i4+V794DvvlO6GjPGFvP61a4dYGMDJCcD//6rdDVEREREBleh8DVz5kxMnToV3t7eCA4ORuh/azn+/PNPtGzZUqcFkljzJY9+LVoE5OUpW4/ZYrMN/bK3B+StKLjui4iIiKqgCoWv559/HklJSTh27Bi2b9+uOd+9e3d89dVX5X6+xYsXw9vbG3Z2dggJCcGRI0dKvX79+vXw8/ODnZ0dAgIC8Pvvv2vdL0kSZs6cCXd3d9jb2yMsLAznz5/XuubcuXPo27cvateuDWdnZ3Ts2BG75WlnRmjIEKBWLeDyZdENnXTs0iXg4kXAykq0RCf94H5fREREVIVVKHwBgJubG1q2bInk5GRcvXoVABAcHAw/P79yPc/atWsxZcoUzJo1C3FxcQgMDER4eDjS0tKKvf7gwYMYPHgwxowZg+PHjyMiIgIRERE4LTdKAPDZZ59hwYIFiIyMxOHDh+Ho6Ijw8HA8ePBAc80zzzyDvLw87Nq1C7GxsQgMDMQzzzyDlJSUCnwa+mdvD7z6qjhm23k9kEe9goOB/9Yzkh4wfBEREVFVJlVAfn6+9P7770vOzs6ShYWFZGFhIbm4uEgffPCBlJ+fX67nCg4OlsaNG6f13B4eHtKcOXOKvX7AgAFS7969tc6FhIRIr7zyiiRJkqRWqyU3Nzfp888/19yfnp4u2draSqtXr5YkSZJu3LghAZD27t2ruSYzM1MCIEVHR5ep7oyMDAmAlJGRUbY3qgPXrkmSlZUkAZIUG2uwl60ahgwRH+z06UpXYt7u3pUkS0vxWV+6pHQ1RERERDpR1mxQoZGv9957D4sWLcInn3yC48eP4/jx4/j444+xcOFCzJgxo8zPk5ubi9jYWISFhWnOWVhYICwsDDExMcU+JiYmRut6AAgPD9dcn5iYiJSUFK1rXFxcEBISormmVq1aaNKkCX788UdkZ2cjLy8PX3/9NerWrYvWrVsX+7o5OTnIzMzUuhmahwcwYIA4nj/f4C9vviSJ670MpVo1oE0bcczRLyIiIqpiKhS+fvjhB3z77bd47bXX0KJFC7Ro0QKvv/46vvnmG6xYsaLMz3Pz5k3k5+fD1dVV67yrq2uJ0/9SUlJKvV7+Wto1KpUKO3bswPHjx+Hk5AQ7Ozt8+eWX2LZtG2rUqFHs686ZMwcuLi6am6enZ5nfpy7JjTfWrBHbUpEOnDkDpKQAdnaiIx/pF6ceEhERURVVofB1+/btYtd2+fn54fbt25UuSt8kScK4ceNQt25d7Nu3D0eOHEFERAT69OmD69evF/uYadOmISMjQ3O7cuWKgasWgoOB0FAgNxeIjFSkBPMjt5jv2FEEMNIvhi8iIiKqoioUvgIDA7Fo0aIi5xctWoQWLVqU+Xlq164NS0tLpD4yhJOamgo3N7diH+Pm5lbq9fLX0q7ZtWsXtm7dijVr1qBDhw5o1aoVlixZAnt7e/zwww/Fvq6trS2cnZ21bkqRR7+WLAFychQrw3xwyqFhdewIWFiIvb6uXVO6GiIiIiKDqVD4+uyzz/D999+jWbNmGDNmDMaMGYNmzZphxYoV+OKLL8r8PDY2NmjdujV2yiMPANRqNXbu3KnZO+xRoaGhWtcDQHR0tOZ6Hx8fuLm5aV2TmZmJw4cPa665d+8eALG+rDALCwuo1eoy16+Ufv2AevWAtDRg7VqlqzFx+fnAX3+J4yefVLSUKsPZGZD3A9y7V9laiIiIiAyoQuGrS5cuOHfuHJ577jmkp6cjPT0d/fr1w99//42VK1eW67mmTJmCb775Bj/88APOnDmD1157DdnZ2Rg1ahQAYPjw4Zg2bZrm+kmTJmHbtm2YO3cuzp49i9mzZ+PYsWMYP348ALGea/Lkyfjoo4+wZcsWnDp1CsOHD4eHhwciIiIAiABXo0YNjBgxAidOnMC5c+fw1ltvITExEb17967IR2JQ1tbAf28X8+aJfhFUQcePA+npgIsL0KqV0tVUHZ07i6+cekhERERViS5bLMbHx0sWFhblftzChQulBg0aSDY2NlJwcLB06NAhzX1dunSRRowYoXX9unXrpMaNG0s2NjaSv7+/9Ntvv2ndr1arpRkzZkiurq6Sra2t1L17dykhIUHrmqNHj0pPP/20VLNmTcnJyUlq166d9Pvvv5e5ZiVazRd286Yk2duLjt2FOuZTeX3yifgQn31W6Uqqls2bxefu56d0JURERESVVtZsoJIk3Y2bnDhxAq1atUJ+fr6untJoZWZmwsXFBRkZGYqt/3rlFWDZMqB/f2DDBkVKMH1PPw1ER4ve/RMnKl1N1XH7NlC7thi2TUkBHulOSkRERGRKypoNKjTtkIyDnBU2bQIuXVK0FNOUkwPs3y+Oud7LsGrWBAICxDHXfREREVEVwfBlwvz9gbAwQK0GFi9WuhoTdOgQcP++GHXx91e6mqpHbjnP8EVERERVhFV5Lu7Xr1+p96enp1emFqqAyZOBHTuAb74BZs0CqlVTuiITIreYf/JJQKVStpaqqHNnYOFCNt0gIiKiKqNc4cvFxeWx9w8fPrxSBVH59OwJ+PoC588DP/4IvP660hWZEHk7Ak45VIbc8fDUKeDWLaBWLWXrISIiItIznTbcqEqMoeGGbNEiYMIEoHFj4MwZsX8tPUZWFlCjBpCXB1y8CPj4KF1R1dSsmfih3bQJ+G8rCCIiIiJTw4YbVciIEWLf2nPngO3bla7GROzbJ4KXtzeDl5LkdV+cekhERERVAMOXGXByAsaMEcfz5ytbi8mQpxx2765sHVUdwxcRERFVIQxfZmLCBDHdcPt2MYuLHqNwsw1SjrzuKz4eyMhQtBQiIiIifWP4MhM+PsCzz4rjBQuUrcXo3bolftkHGL6U5uEBPPGE2GxZ3nONiIiIyEwxfJmRyZPF1x9+AG7fVrQU4/bXX+KXfX9/wM1N6WqIUw+JiIioimD4MiOdOwOBgWLf4G+/VboaI8YW88aF4YuIiIiqCIYvM6JSAZMmieNFi0QzPyqGvN6LzTaMgxy+YmOBu3eVrYWIiIhIjxi+zMzgwUCdOsCVK2LrJHrEtWtAQoLoTiL/0k/KatBAtPzPzwdiYpSuhoiIiEhvGL7MjJ0d8Oqr4pht54shTzls3RqoXl3RUqgQueshpx4SERGRGWP4MkOvvQZYWwMHDgDHjildjZHhlEPjxHVfREREVAUwfJkhd3dg4EBxzNGvQiSJzTaMlRy+jhwB7t1TthYiIiIiPWH4MlNy2/m1a4Hr1xUtxXhcuABcvQrY2AAdOihdDRXWsCFQrx7w8CFw6JDS1RARERHpBcOXmWrdWuSLhw+BpUuVrsZIyKNeoaGAg4OytZA2lapg9GvvXmVrISIiItIThi8zJredj4wEHjxQthajwPVexo1NN4iIiMjMMXyZseeeAzw9gRs3gNWrla5GYWp1Qfjiei/jJI98HToE5OQoWwsRERGRHjB8mTErK2D8eHE8f77oN1FlnTwJ3LoFVKsGBAcrXQ0Vp0kTwNVVDNMeOaJ0NUREREQ6x/Bl5l56SSxvOnGiis/mkke9OncWffjJ+KhUnHpIREREZo3hy8zVrAkMHy6Oq3TbebaYNw1sukFERERmjOGrCpg4UXz95Rfg4kVla1HEw4cFv8yz2YZxk8PXwYPinxsRERGRGWH4qgKaNgXCw8War0WLlK5GAUePAllZQK1aQIsWSldDpWnWTAzXZmcDsbFKV0NERESkUwxfVYTcdv6774C7d5WtxeDkKYfdugEW/JE3ahYWXPdFREREZou/iVYR4eGimVxmJrBihdLVGBhbzJsWeeohwxcRERGZGYavKsLComDt18KFYturKuHePbF+COB6L1Mhh6/9+4G8PGVrISIiItIhhq8qZPhwwMUFOH8e+OMPpasxkIMHgdxcoH59wNdX6WqoLFq0ED+od++KPRKIiIiIzATDVxVSrRowdqw4njdP0VIMp3CLeZVK2VqobCwtgY4dxTGnHhIREZEZYfiqYsaPF1MQd+wA/v5b6WoMQF7vxSmHpoXrvoiIiMgMMXxVMV5ewHPPiWOz33Q5PR04dkwcs9mGaZHD1759VWiBIhEREZk7hq8qSG47v3IlcOuWsrXo1Z494hf3xo3Fmi8yHa1aiXmyd+4Ap04pXQ0RERGRTjB8VUEdO4rfbR88AJYtU7oaPeKUQ9NlZQV06CCO9+5VthYiIiIiHWH4qoJUqoLRr8WLgYcPla1Hbwo32yDTw82WiYiIyMwwfFVRAwcCrq7AtWvAxo1KV6MHqakFHUW6dVO2FqoYed3X3r2AJClbCxEREZEOGEX4Wrx4Mby9vWFnZ4eQkBAcOXKk1OvXr18PPz8/2NnZISAgAL///rvW/ZIkYebMmXB3d4e9vT3CwsJw/vz5Is/z22+/ISQkBPb29qhRowYiIiJ0+baMmq0t8Npr4tgs287LUw6DgoBatRQthSqobVvA3h64cQM4c0bpaoiIiIgqTfHwtXbtWkyZMgWzZs1CXFwcAgMDER4ejrS0tGKvP3jwIAYPHowxY8bg+PHjiIiIQEREBE6fPq255rPPPsOCBQsQGRmJw4cPw9HREeHh4Xjw4IHmmp9//hnDhg3DqFGjcOLECRw4cABDhgzR+/s1Jq++CtjYAIcOAYcPK12NjnG9l+mzsQFCQ8Uxpx4SERGRGVBJkrLzeUJCQtC2bVssWrQIAKBWq+Hp6YkJEybgnXfeKXL9wIEDkZ2dja1bt2rOtWvXDkFBQYiMjIQkSfDw8MCbb76JqVOnAgAyMjLg6uqKFStWYNCgQcjLy4O3tzfef/99jBkzpkJ1Z2ZmwsXFBRkZGXB2dq7QcxiDkSOBH34ABg8GoqKUrkaHGjYEEhOB334DevVSuhqqqA8+AGbNAgYNAlavVroaIiIiomKVNRsoOvKVm5uL2NhYhIWFac5ZWFggLCwMMTExxT4mJiZG63oACA8P11yfmJiIlJQUrWtcXFwQEhKiuSYuLg7Xrl2DhYUFWrZsCXd3d/Ts2VNr9OxROTk5yMzM1LqZA7nxxvr1Yv2XWUhMFDcrq4KmDWSaCm+2zHVfREREZOIUDV83b95Efn4+XF1dtc67uroiJSWl2MekpKSUer38tbRrLl68CACYPXs2pk+fjq1bt6JGjRro2rUrbt++XezrzpkzBy4uLpqbp6dnOd+tcWrZEujUCcjLA5YuVboaHZGnHIaEiL2iyHQFB4vph9evAxcuKF0NERERUaUovuZLCWq1GgDw3nvvoX///mjdujWWL18OlUqF9evXF/uYadOmISMjQ3O7cuWKIUvWq8mTxdfISOD+fUVL0Q22mDcf9vYiRANc90VEREQmT9HwVbt2bVhaWiI1NVXrfGpqKtzc3Ip9jJubW6nXy19Lu8bd3R0A0KxZM839tra2aNiwIZKSkop9XVtbWzg7O2vdzEXfvoCXF3Drlhms+5IkNtswN4WnHhIRERGZMEXDl42NDVq3bo2d8kgFxKjUzp07ESp3OXtEaGio1vUAEB0drbnex8cHbm5uWtdkZmbi8OHDmmtat24NW1tbJCQkaK55+PAhLl26BC8vL529P1NhaQlMmCCO580z8aU1//wj9viytwfatVO6GtIFrvsiIiIiM6H4tMMpU6bgm2++wQ8//IAzZ87gtddeQ3Z2NkaNGgUAGD58OKZNm6a5ftKkSdi2bRvmzp2Ls2fPYvbs2Th27BjGjx8PAFCpVJg8eTI++ugjbNmyBadOncLw4cPh4eGh2cfL2dkZr776KmbNmoU///wTCQkJeO2/Ta9eeOEFw34ARmLMGMDRETh9Gti9W+lqKkEe9erYUWxmRqYvNFQ0T7lyBbh8WelqiIiIiCrMSukCBg4ciBs3bmDmzJlISUlBUFAQtm3bpmmYkZSUBAuLgozYvn17REVFYfr06Xj33Xfh6+uLzZs3o3nz5ppr/u///g/Z2dl4+eWXkZ6ejo4dO2Lbtm2ws7PTXPP555/DysoKw4YNw/379xESEoJdu3ahRo0ahnvzRqR6dWDECGDJEmD+fBNeLsX1XubH0RFo00ZsSLdnD+DtrXRFRERERBWi+D5fpspc9vkqLCEB8PMDVCrg/HmgUSOlKyqnvDygdm0gIwM4cgRo21bpikhX3nkH+PRTYNQo4Pvvla6GiIiISItJ7PNFxqVJE6BnT7GsZuFCpaupgOPHRfBycQFatVK6GtIlNt0gIiIiM8DwRVrktvPffw+Y3D7S8pTDrl1FFxEyHx06ABYWwMWLwNWrSldDREREVCEMX6TlqaeApk2Bu3eB5cuVrqac2GLefDk7F4xm7t2rbC1EREREFcTwRVpUKmDSJHG8YAGQn69sPWWWkwPs3y+O2WzDPHHqIREREZk4hi8qYtgwoEYNMcPrt9+UrqaMYmKA+/cBNzeg0ObZZEY6dxZfGb6IiIjIRDF8UREODsDYseJ4/nxlaykzecrhk0+K4TsyP506iX+2CQlASorS1RARERGVG8MXFWvcONGzYtcu4ORJpaspA+7vZf5q1ABatBDHXPdFREREJojhi4rVoAHQr584XrBA2Voe6+5dsa8XwGYb5k5e98XwRURERCaI4YtKJLedX7UKuHFD0VJKt2+f2GDZxwfw9la6GtInNt0gIiIiE8bwRSUKDQXatBGNBJctU7qaUrDFfNXRqZP4evo0cPOmsrUQERERlRPDF5WocNv5JUuA3Fxl6ykR13tVHXXqFHSz3LdP2VqIiIiIyonhi0o1YIDo3p6cDGzYoHQ1xbh5E4iPF8cMX1UDpx4SERGRiWL4olLZ2ACvvy6O580DJEnRcor66y/xtXlzwNVV0VLIQBi+iIiIyEQxfNFjvfIKYGsLHD0KHDqkdDWP4JTDqkfebPnECSA9XdFSiIiIiMqD4Yseq25dYMgQcWx0my6z2UbV4+4O+PqKYdj9+5WuhoiIiKjMGL6oTOTGGxs2AFevKluLxtWrwLlzgIVFwWgIVQ2cekhEREQmiOGLyiQwEOjaFcjPBxYvVrqa/8ijXm3aANWrK1oKGRjDFxEREZkghi8qM3n0a9ky4N49ZWsBwPVeVZkcvuLigLt3la2FiIiIqIwYvqjM+vQBfHyA27eBVasULkaSCsIX13tVPZ6e4ocxPx84eFDpaoiIiIjKhOGLyszSEpgwQRzPn69w2/nz54Fr10Qv/A4dFCyEFMOph0RERGRiGL6oXEaPBqpVA/75B9ixQ8FC5FGv9u0Be3sFCyHFyE1WGL6IiIjIRDB8Ubm4uACjRoljRdvOs8U8ySNfR48aySJEIiIiotIxfFG5TZgAqFTAb7+J2X8Gp1YDu3eLYzbbqLp8fID69YGHD4GYGKWrISIiInoshi8qN19foHdvcbxggQIFnDwJ3Lol5j+2batAAWQUVKqC0a+9e5WthYiIiKgMGL6oQuS288uXA+npBn5xeb1Xly6AtbWBX5yMCptuEBERkQlh+KIK6d4d8PcHsrOB77838Itzfy+SyU03Dh0CHjxQthYiIiKix2D4ogpRqQpGvxYuFNstGcTDhwVTzNhsgxo3BlxdgZwc4MgRpashIiIiKhXDV2UputmVsoYOBWrWBC5dAn791UAveuSIGG6rXRsICDDQi5LRKrzui1MPiYiIyMgxfFVWv37AhQtKV6EIBwfglVfE8bx5BnpRucV8t26ABX98CQxfREREZDL422tl7doFNG8OfPihmPpUxbz+OmBpKX7vjY83wAtyvRc9Sg5fBw8CubnK1kJERERUCoavyurWTYSumTOBwMCCkZkqon594IUXxLHeN12+d69gPyeu9yJZs2ZiGur9+0BsrNLVEBEREZWI4auyNm0CVq8Wi/4TEkQoGDYMSEtTujKDkRtvREXp+W0fOCBGNjw9gSee0OMLkUlRqYBOncQxpx4SERGREWP4qiyVChg0CDh7VszBU6mAVauAJk2AZcsAtVrpCvWuXTsgOFjkoq+/1uMLFZ5yqFLp8YXI5HDdFxEREZkAhi9dqV4dWLxY7DfUsqXYefiVV4AOHYATJ5SuTu8mTxZflyzR47IbeUonpxzSo+TwtX8/kJenbC1EREREJWD40rXgYNEOfd48oFo1EcZatwamTgWyspSuTm+efx7w8ABSUoB16/TwAunpBet52GyDHhUQIP4AkpVloM4vREREROXH8KUPVlZiIdTZsyKV5OcDc+eKxgC//KJ0dXphbQ2MGyeO583Tw/Zne/aIKZxNmgD16un4ycnkWVpy3RcREREZPaMIX4sXL4a3tzfs7OwQEhKCI0eOlHr9+vXr4efnBzs7OwQEBOD333/Xul+SJMycORPu7u6wt7dHWFgYzp8/X+xz5eTkICgoCCqVCvG6/ot5vXrA+vXAb78B3t7AlStARATQty9w+bJuX8sIvPwyYGcnBqgOHtTxk7PFPD1O587iK8MXERERGSnFw9fatWsxZcoUzJo1C3FxcQgMDER4eDjSSmibd/DgQQwePBhjxozB8ePHERERgYiICJw+fVpzzWeffYYFCxYgMjIShw8fhqOjI8LDw/HgwYMiz/d///d/8PDw0Nv7AwD06gX8/Tfw7rtiiGjLFjEK9vnnwMOH+n1tA6pdG3jxRXGs802X5fDF9V5UEnnd1759YrSZiIiIyMioJEnnE8TKJSQkBG3btsWiRYsAAGq1Gp6enpgwYQLeeeedItcPHDgQ2dnZ2Lp1q+Zcu3btEBQUhMjISEiSBA8PD7z55puYOnUqACAjIwOurq5YsWIFBg0apHncH3/8gSlTpuDnn3+Gv78/jh8/jqCgoDLVnZmZCRcXF2RkZMDZ2bnsb/iff4BXXxW/IAJig+bISNGYwwycOgW0aCFmgV28CDRooIMnTUkB3N1Fh8MbN4BatXTwpGR28vKAmjWBu3eB48eBMv67TERERFRZZc0Gio585ebmIjY2FmFhYZpzFhYWCAsLQ4y8me4jYmJitK4HgPDwcM31iYmJSElJ0brGxcUFISEhWs+ZmpqKsWPHYuXKlXBwcHhsrTk5OcjMzNS6VUizZmJa1PLlIkScPg107AiMHQvculWx5zQiAQFiZmB+vmj+qBNyl8OgIAYvKpmVVcEfMfbuVbYWIiIiomIoGr5u3ryJ/Px8uLq6ap13dXVFSkpKsY9JSUkp9Xr5a2nXSJKEkSNH4tVXX0WbNm3KVOucOXPg4uKiuXl6epbpccVSqYCRI8WmzGPGiHPffgv4+QE//KCHbhWGJbedX7YMyM7WwROyxTyVFff7IiIiIiOm+JovJSxcuBB3797FtGnTyvyYadOmISMjQ3O7cuVK5QupVUuErn37AH9/4OZNEcq6dQPOnKn88yukd2+gUSPRHX7lSh08IZttUFnJTTf27jX5P2IQERGR+VE0fNWuXRuWlpZITU3VOp+amgo3N7diH+Pm5lbq9fLX0q7ZtWsXYmJiYGtrCysrKzzxxBMAgDZt2mDEiBHFvq6trS2cnZ21bjrTsSMQFwd88glgby/+ah8YCEyfDty/r7vXMRALC2DiRHE8f77oEF9hiYnApUtiSpncSpyoJG3aiH+Hbt4U6yuJiIiIjIii4cvGxgatW7fGTnlkA6Lhxs6dOxEaGlrsY0JDQ7WuB4Do6GjN9T4+PnBzc9O6JjMzE4cPH9Zcs2DBApw4cQLx8fGIj4/XtKpfu3Yt/ve//+n0PZaZjQ3w9tviF8bevUUXxP/9TzTk2LZNmZoqYeRIwMlJbHUWHV2JJ5L/OYaEiE2riUpjYwO0by+OOfWQiIiIjIzi0w6nTJmCb775Bj/88APOnDmD1157DdnZ2Rg1ahQAYPjw4VrTAydNmoRt27Zh7ty5OHv2LGbPno1jx45h/PjxAACVSoXJkyfjo48+wpYtW3Dq1CkMHz4cHh4eiIiIAAA0aNAAzZs319waN24MAGjUqBHq169v2A/gUd7ewK+/Ahs3AvXri5aBPXsCAwYAycnK1lYOzs7A6NHieP78SjwRW8xTeXHdFxERERkpxcPXwIED8cUXX2DmzJkICgpCfHw8tm3bpmmYkZSUhOvXr2uub9++PaKiorBs2TIEBgZiw4YN2Lx5M5o3b6655v/+7/8wYcIEvPzyy2jbti2ysrKwbds22NnZGfz9VYhKBTz3nBgFmzJF9G1fv1405Fi40GT2MJowQbyVP/4QI2DlJklstkHlJ4cvrvsiIiIiI6P4Pl+mqsL7fFVEfLzYG+zwYfF969Zib7AydmpUUt++Yk/p11+vQOv506dF73p7e+DOHcDWVi81kpl58ACoXh3IyREdRf8b2SYiIiLSF5PY54vKKCgIOHgQWLoUcHEBYmOB4GAxtJSRoXR1pZLbzq9YIfJTucijXp06MXhR2dnZiTWCAKceEhERkVFh+DIVFhZi9CshARg6VEynWrRITEVcu9Zop1d17Qq0aAHcuwd89105H8wW81RRXPdFRERERojhy9S4ugKrVgE7dgC+vkBKCjBoENCjB3DhgtLVFaFSFbSdX7QIyMsr4wPz8oC//hLHXO9F5VU4fBnpHyaIiIio6mH4MlXduwMnTwLvvy+m5P35p2hL/+GHYq2LERkyBKhdG7h8GfjllzI+KC4OyMwUa3dattRneWSOQkMBa2vg6lWxTxwRERGREWD4MmV2dsDMmcCpU0BYmAhdM2eKDZp371a6Og17e+CVV8RxmdvOy1MOu3YV3R6JysPBAWjbVhxz6iEREREZCYYvc+DrK0a+oqLEtMSEBLFOavhwIC1N6eoAiG6HVlbAvn1iUOux2GKeKqtzZ/GV4YuIiIiMBMOXuVCpgMGDxYZar78uvl+5EmjSBFi2DFCrFS3Pw0PsEw2UYfTrwQNg/35xzGYbVFFsukFERERGhuHL3FSvLjbUOnRItKhPTxdz/jp2BE6cULS0SZPE19WrRZ+QEh06JAKYmxvQtKlBaiMz1KGDmLKamAhcuaJ0NUREREQMX2YrOBg4ehSYNw+oVg2IiRGbM0+dCmRlKVZSaCjw8KHYI7pEhVvMq1QGqY3MkJMT0KqVON67V9laiIiIiMDwZd6srMRw09mzQP/+QH4+MHcu0KxZOdoO6pY8+rV0aSlNGeXwxfVeVFmcekhERERGhOGrKqhXD9iwAfjtN8DbW0zBiogA+vYV/d8NqF8/oH590QdkzZpiLrh7FzhyRBwzfFFlMXwRERGREWH4qkp69QL+/huYNk2Mim3ZIkbBPv9czAU0AGtrYNw4cTx/fjH73+7dK0boGjYEvLwMUhOZsY4dxdTVc+eA69eVroaIiIiqOIavqsbBAfj4YyA+HujUCbh3D/i//xNrYw4cMEgJY8eKvb+OHxet57WwxTzpUvXqYt87gOu+iIiISHEMX1WVv7+YirV8OVCrFnD6tBglGDsWuH1bry9dqxYwbJg4LtJ2vnCzDSJdkKceMnwRERGRwhi+qjKVChg5UmzKPHq0OPftt2JvsB9/LGZOoO5MnCi+bt4MnDr138mbNwva4XfrprfXpiqG676IiIjISDB8kRiK+u47MTLg7y9C0IgRIgCdOaOXl/T3B556Suz93KIF0LIlsPa13QAAqXlzwNVVL69LVVCnTuLr33+Ln20iIiIihTB8UYFOnYC4OOCTT8SirD17xHqZ6dOB+/d1/nJLlgBduwIWFmIJ2p0NYsrhd5e6Y9w4YPv2UtrRE5VV7doi7QOcekhERESKYvgibTY2wNtvA//8A/TuLbog/u9/QPPmwLZtOn2pJ54Adu8GUlOBH34Anq0mmm38ktUdS5YAPXoAdeoAAwYAP/2k96VoZM449ZCIiIiMAMMXFc/bG/j1V2DjRrFP2MWLQM+eIgklJ+v0pWrXBoZ3uwKPrPOQLCwwYV1nvPIK4O4utv1avx548UWgbl0xE3LePFEOUZkxfBEREZERUEmSHrsqmLHMzEy4uLggIyMDzs7OSpejX3fvArNni9aE+fmAk5MYDXv9dcDSUjev8cMPovlHSAhw6BAAsR4sNhb45RexJZmmMcd/mjcHnn1W7BXdpo2YvkhUrJQUkeZVKuDWLaBGDaUrIiIiIjNS1mzAX1fp8ZycgLlzgWPHgOBgEcYmThRB6dgx3bxGMS3mLSyAtm2Bjz4CTp4E/v1XjHp16yYy3+nTYsuykBCgfn3glVeA334DHjzQTUlkRtzcRBdPSQL271e6GiIiIqqiGL6o7IKCgIMHgaVLARcXMSwVHAxMmABkZFT8eSWpTJsrN2wITJokLr1xQ6wDGzBAZMPr14Fly4BnnhHNG/v1E4NpbG5HGp07i6+cekhEREQK4bTDCqpS0w6Lk5ICTJ0qEhAgRhbmzRNpSKUq33MlJAB+foCtLXDnjui0WA65ucBff4mpib/8Aly9WnCfhQXQvr2Ymvjss0DjxuUrjczITz+JxYNt2gBHjypdDREREZmRsmYDhq8KqvLhS7ZzJ/Daa8D58+L78HBg8WKgUaOyP8eSJcC4cWI+oTwCVkGSJNrWy+vEjh/Xvt/Pr2CdWEiI7paskQm4ehXw9BSJ/M4doCr/e0tEREQ6xTVfZBjdu4sFWbNnizb127eLPZU++qjsm3SVYcphWalUYsPm2bPFlmWXLwOLFokNna2tgbNngc8+Azp0ADw8gDFjRFC7d6/SL03Grn59MXdVrRbTZ4mIiIgMjOGLKs/ODpg1S3TACAsToWvGDLFB8+7dpT9WrS64plCzDV1p0EAMqv35p1gntmYNMGSIWLKWlgZ8/z0QESHWiT37LPDdd2LfMTJTbDlPRERECmL4It3x9RUpJyoKcHUVa7mefBIYPlwkneKcOCF2T3ZyEq0N9cjFBRg4UCz9uXFDzJicOFFsafbggdjW7KWXREfy9u2BTz4Re01zYq4ZYfgiIiIiBTF8kW6pVMDgwWJ+3+uvi+9XrhSLrZYtEyNdhckt5jt3BqysDFamtbXIhfPniw2bT54EPvxQ5D9JAmJigGnTxAzKxo2BN98E9u4F8vIMViLpg9zx8OhRIDtb2VqIiIioymH4Iv2oXl003jh0SLSov3NHbMTVsaNIOjIdrveqKJUKCAgApk8HjhwRfRkiI4GePcUytgsXgC+/FIMmbm7AiBHAzz8DWVmKlUwV5e0tmm7k5YmETUTm6e5d8f8a/sWMiIwMwxfpV3CwGGX46iugWjXxC2+rVsBbb4lAtnevuE7B8PWoevVETvz9d7FP2IYNYuZkzZrArVvAjz8Czz8v1on16gV8/TWQnKx01VQmKlXB1EP5Z4+IzENOjuigNHAgULeuWHfs6QlMmSJa33IOOREZAbaaryC2mq+Aq1eByZPFsBEA1KghAljt2qLLhYVx/y0gL080yfvlF3H791/t+9u2FU07nn1WjKSVd7szMpBvvwXGjhVTELn2i8i05eeLP6RERYm/lKWnF9xnYyM2gpT5+4u9/oYOFaGMiEiHuM+XnjF8VcJvvwHjxwOXLonvBwwA1q5VtKTykiTgzJmCjZ0PH9b+o6q3d8F+Yp06iTVmZCTOnxcL+WxtxS9qdnZKV0RE5SFJYi+RqCjRwrbw1AMPD2DQINHWNiAA2LYNWLVK/Mda3v5EHgEfNkxMY+D/w4lIBxi+9Izhq5Lu3RMdLtasESMRRjTtsCJSUoCtW8X/36OjRfdEWfXqYnris8+KdWT8cVGYJIlf0FJSgL/+KpiGSETG7fx5EbiiooBz5wrOV68uQtSQIWJE29Ky6GPT08XI2KpV2iPednbir2QvvgiEh/MvZURUYQxfesbwRSXJzgZ27BAjYlu3irb2MmtroGtX8f/6Pn3EPmSkgEGDxGjr++8DM2cqXQ0RlSQ5Wfy7GhUFHDtWcN7OTvxFa8gQoEcPMZJdVpcviz1HVq4UnXlldeqI/za8+KKYR86540RUDgxfesbwRWWRny8aPsrTExMStO9v2bJgemJQEP9fbzBLl4qtEJ58smC7AyIyDunpYm1wVBSwe3fBnG5LS+Cpp0TgiogQ+0NWhjx9cdUq8VqF96Ns3FiEsBdfBHx8Kvc6RFQlMHzpGcMXVURCgghiW7aI5h2Ftz2rX78giHXtKtaKk578849YfG9vL37R44dNpKz798VUgago0Wq2cKOM9u1F4HrhBdHFUB/y8sSc8VWrgE2bRD2yjh1FCBswQDSKIiIqRlmzgVG0l1u8eDG8vb1hZ2eHkJAQHDlypNTr169fDz8/P9jZ2SEgIAC///671v2SJGHmzJlwd3eHvb09wsLCcP78ec39ly5dwpgxY+Dj4wN7e3s0atQIs2bNQm7h/9gT6UGTJqLL/r59YsnR8uXAc88BDg6iGeSSJWLZQe3aolvyTz+JhpCkY02biilG9+9rT2UiIsPJywP+/FNsnujqKsLN5s0iePn7Ax9/DFy8CBw4AIwbp7/gBQBWVmJR7k8/ie67K1YAYWFiOsL+/cCrr4qNHvv3F+FMbt5BRFROioevtWvXYsqUKZg1axbi4uIQGBiI8PBwpBUe/i/k4MGDGDx4MMaMGYPjx48jIiICEREROH36tOaazz77DAsWLEBkZCQOHz4MR0dHhIeH48F/XRDOnj0LtVqNr7/+Gn///Te++uorREZG4t133zXIeyYCxO/+I0cCGzeK/cS2bhUd0N3cxP6g69aJP7bWqSNmx82fDyQmKl21mVCpxMJ8gO3miQxJksRc7IkTxaaK4eFi88S7d8Ui2HfeEZsjnz4NTJumzJQ/JycRCKOjgStXgM8+A1q0EKFw40agXz/A3R147TURDDmBiIjKQfFphyEhIWjbti0WLVoEAFCr1fD09MSECRPwzjvvFLl+4MCByM7OxtatWzXn2rVrh6CgIERGRkKSJHh4eODNN9/E1KlTAQAZGRlwdXXFihUrMGjQoGLr+Pzzz7F06VJcvHixTHVz2iHpi1ot9qWW14n9/bf2/QEBBdMTW7c2+u3RjNeCBcCkSeKXv23blK6GyLz9/beYUrh6tfZfkWrXFiNeQ4YAoaHG/R+0kydFk46oKO329g0bFqwP8/VVrj4iUpRJTDvMzc1FbGwswsLCNOcsLCwQFhaGmJiYYh8TExOjdT0AhIeHa65PTExESkqK1jUuLi4ICQkp8TkBEdBq1qxZ4v05OTnIzMzUuhHpg4UFEBIC/O9/4o+/Fy4AX34p1oFZWgKnTon7goPFPqGvvip+n9m9WyxlunVLey0ZlUBuMX/ggJj+RBWXmSl+Mf31V9HO+9IljgaQ6Cr46adAYCDQvLmYRpiYCDg6iqDy++8ixCxeDHToYNzBCxCjX59/DiQliVGx4cPFe7l4EfjgA9Gko1078X5u3lS6WiIyUlZKvvjNmzeRn58PV1dXrfOurq44W7j9ayEpKSnFXp+SkqK5Xz5X0jWPunDhAhYuXIgvvviixFrnzJmD999/v/Q3RKQHjRoBb7whbrdvi99XfvlFDNYkJwNffy1uhVlZiemKrq7iVrduycd16lTRrW0CAsTi+Tt3gOPHRWtpKkqSxGd06ZL4Zbq4r+npRR/n6ip+EQ0JEV/btgWqVTNo6aSAmzeB9evF6ND+/QXnra3FmqohQ8Q+Gw4OytVYWZaWYj1YWJhYqPvLL6JRx59/AocPi9vkyeL9DhsGPPOMaO5DRASFw5cxuHbtGnr06IEXXngBY8eOLfG6adOmYcqUKZrvMzMz4enpaYgSiTRq1iyY3ZKTI/YI3rJFzOhJTRWdkm/fFgM516+LW1nUqlV6SCv8vdn8DmFhAXTqJD7APXuqbviSJLEZXWnhKivr8c9Tqxbg5SXW0504IX4gf/lF3ADxeTdvLoKYfGvSxPhHO+jxsrLEP+eoKBFA5JFklUqMMA8ZIhpVlDK7xGQ5Oor3N2SI+JlfvVoEsdhYMRL866+As7Po1DhsmPhvDn/miao0RcNX7dq1YWlpidTUVK3zqampcHNzK/Yxbm5upV4vf01NTYW7u7vWNUFBQVqPS05ORrdu3dC+fXssW7as1FptbW1hW55NHIn0zNZWLFcKD9c+n5srfpeWw1hqatFj+fsbN8ReZLduids//zz+dZ2cSg5mjx47Oxv53mVduhSEr//WiJodtVq01iwpXF2+rN1WuySuriJceXsX/7XwqNb9+2I08dChgtuVK2Jq4smTgPzfWxcXMX9WDmMhISLEkfHLzRVBKypKBK979wrua9VKhJGBA8UeGlWFq6sY8Zo8WfzHdNUq0T0xKQn47jtxa9AAGDpUBLGmTZWumIgUYBQNN4KDg7Fw4UIAouFGgwYNMH78+BIbbty7dw+//vqr5lz79u3RokULrYYbU6dOxZtvvglAjFLVrVtXq+HGtWvX0K1bN7Ru3RqrVq2CpaVluepmww0yB2q1CF3FBbPijsvbXdnWtvQpj4UDXM2aYjaPQR07Jka8XFzEB2HwAnQgLw+4dq1ooJKPk5K090wqjkoFeHiUHK4aNKj8kGdyspiOJYexo0eLD32+vtqjYwEBVXRerBFSq8VUwqgoMbXw9u2C+554QgSuwYMBPz/lajQ2arXYW2TlSvGZFV4v3qqVCGGDBok2t0Rk0kxmk+W1a9dixIgR+PrrrxEcHIx58+Zh3bp1OHv2LFxdXTF8+HDUq1cPc+bMASBazXfp0gWffPIJevfujTVr1uDjjz9GXFwcmjdvDgD49NNP8cknn+CHH36Aj48PZsyYgZMnT+Kff/6BnZ0drl27hq5du8LLyws//PCDVvAqacTtUQxfVNVIkvi94XGjafLx3bvle34Li4J1ao+b/li3ro72Rc7LE6nv7l0gLg5o2VIHT6pjubli1KikKYFXr4rhy9JYWooRiJLClaen4TeafvhQdJSRw9jhw2IX8kfZ24u2noUDWb16hq21KpMkMY1U7lR49WrBfW5uIjgMGQK0aWPkw9xG4MEDMQ1x5Urgjz8KpmdaWgJPPSWCWN++YiojEZkckwlfALBo0SJ8/vnnSElJQVBQEBYsWICQkBAAQNeuXeHt7Y0VK1Zorl+/fj2mT5+OS5cuwdfXF5999hl69eqluV+SJMyaNQvLli1Deno6OnbsiCVLlqBx48YAgBUrVmDUqFHF1lLWj4Phi6h09++XHNQeDW23bpX/+WvUKPv0x1J/l+nVS/wiNG+eaD1vaPfvi9GpksJVcvLjOwdaW4vRqZLCVb16oguLsbt9GzhyRDuQFdfMo3597TDWqpUZLUY0Ev/+K8JWVBRw5kzBeRcXsX5ryJCCFqxUfjdvAmvXiiB2+HDB+WrVxD5iw4YB3brx8yVSq0WX1Ph40e55xgyj/ffCpMKXKWL4ItKdvLzi16mV9P3jBnoe5eBQckjrHPMpWkS9g7thzyF//Ua4uOj4D/hZWUWnAhb++sga1mLZ2YkgVVK4cnMz2v8ZVYpaDZw7px3GTp4supeClZVoZ144kDVqxJGY8kpJEbu7R0VpBwJbW9GhcMgQ0cHPzk65Gs3R+fNifdiqVaJtvczDQ3zmw4aJNvdE5i47WwSsEycKbidPajd9SkgQ2zoYIYYvPWP4IlKGWi06nz8uqMnHj+slEYJDOIRQ3EQt1EUabGwt4OYGuLuLTFP4Vvicq6v4nRQZGaV3CizLsJ6jY8mNLLy9RVpkkBCyskQnOTmQxcQUH2Br1dIOY/LaPtKWkQFs2iQC186dBcHWwkK0Uh8yBIiI4GdnCJIkfp5XrhSjYnfuFNwXECBC2JAhnHZLpk+SxBTmwiHrxAnxh4jiYomtLeDvL/7INm2a0W5mzvClZwxfRMZPksTv6qVNe7yV8hC/HawOB+kemuMU/kbzws+AmrgNb1yCFy4X+eqjugQXKePxdbi4QFVauKpZk+GqoiRJTNssPDoWG1u0yYhKJbrLFQ5kzZqZ54jh4zx4IDYMjIoCtm7V7qTTrp34BX/AAPEXBlJGTo6YDr1ypfhnJP88q1TAk0+KINavn2g/S2TMcnJE989Hg1bhhj2FubqKkCXfgoLESJcJNF5i+NIzhi8iM/LUU8COHciP6I/saq7Iv3gJllcuwz7tEqxzsh/78JuohUvwxmV4Ffl6GV7ItqoOV9fHj6a5uZn23rNGIydH/M+9cKv7xMSi11WrVrTVfd26hq/XEPLzgd27ReD6+WftrntNm4r254MGiemaZFzu3BGdEleu1N642t5ejEoOGyb+G2YK6zrJvKWlFQ1ZZ84UNJcpzNJSdEYtHLICA036jz4MX3rG8EVkRj76SCziLYmrq9ZIldTAC1m1vZFm74Wrll64llEN16+LJTOFb9evl7+ZiJNT8SHt0aBWp07VHLSpsNRUMSomt7s/cqT4zaN9fLRHx4KCDN8JUlckSbT0j4oS09hSUgru8/QUbeGHDBHriTjyahoSE8XeYStXivWQsrp1xT/PYcNEAxr+8yR9yssTP3+PBq3r14u/vnr1oqNZzZqZ3fpRhi89Y/giMiM3bgATJog08+i0wErucZWbK/4YWDiQPRrS5PNl2etYJrfmL8tompMTfxcrIj9fTIUpPDpW3C7jtrbil9nCgczT07g/0DNnCjoV/vtvwfmaNcV0wiFDgA4dxA8RmSZJEvsUrlwp/lnfvFlwX9OmwIsvitFMLy/laiTzkJFRNGSdPi2mLxfniSeKjmYZ+38zdYThS88YvohIlyRJbDf2aCArLqSlpT2++3xhDg6PH0mTm4iYwLR6/UlPFyNFhTeDLm7o0s1NO4y1aaP83kxXrwJr1ojAdfx4wXkHBzE1bcgQMTXNVEfxqGQPHwJ//imC2C+/aP9S3KWLCGLPPy9GH4hKIrd0fzRoXbpU/PWOjqIRTOGQFRAgpnNXUQxfesbwRURKycsTf+guS1Ar72bXtWs/PqS5uYl91sz+D5mSJEaOCo+OnThRdP2CpaX4paNwIPP11f/I0u3bwIYNInDt3VuQyK2sgB49ROB69lnlgyEZTkYGsHGjCGJ//VXwMyFvFzBsmPjZYAiv2u7dK76le0n/w/D0LDqa1agRR88fwfClZwxfRGQKsrPFcqfHTXtMSSl+TXRJbGyKH02rU0fM0rSzEzf5uLRzNjYmFOTu3wfi4rQD2dWrRa+rXl008JDDWHCwmPZXWdnZwK+/isC1bZsY9ZB17iwC1/PPi1b7VLVduSJ+TlauBP7+u+B8rVrAwIEiiIWEmNC/fFRukgRcu1Z0NOvcueKnT9jYFLR0l0NWixa6+W9XFcDwpWcMX0RkTtRqMZBSltG0wtsP6YJKVRDMyhrYdHVOJ01Lrl7Vnqp47Fjx6yGaNNHurBgQULYOdQ8fAtHR4hfpzZtFAJMFBYnANXCgWJ9I9ChJEr9wr1wpfoYKN1554gkxLfHFF9np0tTl5hZt6R4fX3JL97p1i45mNWlSxeeeVw7Dl54xfBFRVZWToz2aVjio3bolcseDB2KQqPDXR88Zw/99rK11H/DsrR6iVvIp1L5wCNXPHkK104dgc/l80Rd3cBDrxQpPV3R3F/ep1cDBg+KX5XXrtNeeNWwoAtfgwaJjGFFZ5eUBu3aJILZxo5h+JmvfXoSwAQM4cmrsbtwoGrJKa+nepElBwJJvbm6GrtrsMXzpGcMXEVHFSZIY0CkpmOnjnPy18Ew9Q6mFmwjGEbTDIbTDIQTjCKqj6Abd120a4Hy1VmhyLw6uD5I057Md6+LftoOQ3HUI8loFo3oNFVxcABcXMcOxWjUuv6ByysoSI6krVwI7dojAD4i/SPTuLYLYM8+I9WKkjPz8oi3d4+NLbunu4qI9khUYKKYRmllLd2PF8KVnDF9ERKYpP79oQNNX0Hv0nEwFNZogQRPG2uEQmuM0LKHWXJMJJ/yM/ojCEOxGN+Sj5CmKKhXg7FwQxgoHs+KOi7vP3p7Lf6qs69dFy/qVK8Uv9zJ57aKdnQhhj34t6fhx9z96rbU1f/gyMkTTi8Ihq7SW7o0aFR3NatCAn6OCGL70jOGLiIjKQ5LEsoySQlrurbuwPXUMDmfjcMvJG6cb9MLt+/bIyBBd8DMyCm7y9+npuhvJs7J6fGh7XJhjEz0zcPo0sGqV2My5uGYy+qKrIFfZUGhlpd8AI0lFW7rHx5fc0t3BQawPLRy0AgLEBo5kVBi+9Izhi4iIlCZJIrg9GsqK+760+9Tq0l+nrOzsyjbKVlKAc3HRURMUqrz8fODAAREUcnLED1rhr2U5Lu1+Jeb/loWFhe5DnySJNVnx8aW3dK9fv+hoVqNG/JfCRDB86RnDFxERmQNJEst/yhvgCh+Xdz+50lSrVv4pk4+uf+PMKxOgVheEscoGufJe++i5/HzDvncbG9Esp3DQatGCjU5MXFmzQRl63BIREZG5UqnEDCYnJ/GH94rIzwcyMysX4OQ1cVlZ4nbtWsVqsbAQ69+cnMQMMkvLgpuFhfb3xZ0ryzXGdE6fz6/XEGth8V97UHs9vkgZ5efrN/Tl5YmN1+Wg5efHlu5VGMMXERERVYqlJVCjhrhVVG5uyYGtrAHu4UMxoJKeLm5UOSqVGKSRZ9CVdnvcNRW9vyxb4VWapaVYW+XgYIAXo6qO4YuIiIgUZ2MD1KkjbhUhr3+Tw9jdu2JAo/BNrS79e2M6Z4jXLMtnKg/eZGZW7J9LZVla6i7gVeQ5bG05jZV0i+GLiIiITJ5KVTCLTd6rmkonSY8PaQ8fFnTklG/yrLqSbo+7/3HXFO7FkZ8PZGeLm1KKC2TlDXjW1gU3Gxvt70s6V9Zr2Y/DtDB8EREREVVBKpWY1meQqX3lIC/B0nfIK+3+wu3o5Foyiu6LbhTk6aEVCW7lvVbX5+Tzel9jaESM7F83IiIiIqrKlF6CJUnaI366CIEPHxbccnO1vy/vueLqlQOiKStLeNu4EWjYUOlKK4fhi4iIiIjoP/JIko2N6JxpTOSpopUJbxU9p8vnLG5vQfm+0uTl6edzNSSGLyIiIiIiE1B4qqgxdOmvKLW6YiGvotthGBOGLyIiIiIiMhgLC9GYxNZW6UoMz0LpAoiIiIiIiKoChi8iIiIiIiIDYPgiIiIiIiIyAIYvIiIiIiIiA2D4IiIiIiIiMgCGLyIiIiIiIgNg+CIiIiIiIjIAhi8iIiIiIiIDYPgiIiIiIiIyAIYvIiIiIiIiA2D4IiIiIiIiMgCGLyIiIiIiIgNg+CIiIiIiIjIAhi8iIiIiIiIDsFK6AFMlSRIAIDMzU+FKiIiIiIhISXImkDNCSRi+KujWrVsAAE9PT4UrISIiIiIiY3D37l24uLiUeD/DVwXVrFkTAJCUlFTqB0wly8zMhKenJ65cuQJnZ2elyzFZ/Bx1g59j5fEz1A1+jpXHz1A3+DnqBj/HyjOFz1CSJNy9exceHh6lXsfwVUEWFmK5nIuLi9H+EJgKZ2dnfoY6wM9RN/g5Vh4/Q93g51h5/Ax1g5+jbvBzrDxj/wzLMiDDhhtEREREREQGwPBFRERERERkAAxfFWRra4tZs2bB1tZW6VJMFj9D3eDnqBv8HCuPn6Fu8HOsPH6GusHPUTf4OVaeOX2GKulx/RCJiIiIiIio0jjyRUREREREZAAMX0RERERERAbA8EVERERERGQADF9EREREREQGwPBVTnv37kWfPn3g4eEBlUqFzZs3K12SyZkzZw7atm0LJycn1K1bFxEREUhISFC6LJOzdOlStGjRQrPhYGhoKP744w+lyzJpn3zyCVQqFSZPnqx0KSZl9uzZUKlUWjc/Pz+lyzI5165dw4svvohatWrB3t4eAQEBOHbsmNJlmRRvb+8iP4sqlQrjxo1TujSTkp+fjxkzZsDHxwf29vZo1KgRPvzwQ7BHW/ncvXsXkydPhpeXF+zt7dG+fXscPXpU6bKM2uN+z5YkCTNnzoS7uzvs7e0RFhaG8+fPK1NsBTF8lVN2djYCAwOxePFipUsxWXv27MG4ceNw6NAhREdH4+HDh3j66aeRnZ2tdGkmpX79+vjkk08QGxuLY8eO4cknn0Tfvn3x999/K12aSTp69Ci+/vprtGjRQulSTJK/vz+uX7+uue3fv1/pkkzKnTt30KFDB1hbW+OPP/7AP//8g7lz56JGjRpKl2ZSjh49qvVzGB0dDQB44YUXFK7MtHz66adYunQpFi1ahDNnzuDTTz/FZ599hoULFypdmkl56aWXEB0djZUrV+LUqVN4+umnERYWhmvXrildmtF63O/Zn332GRYsWIDIyEgcPnwYjo6OCA8Px4MHDwxcaSVIVGEApE2bNildhslLS0uTAEh79uxRuhSTV6NGDenbb79VugyTc/fuXcnX11eKjo6WunTpIk2aNEnpkkzKrFmzpMDAQKXLMGlvv/221LFjR6XLMDuTJk2SGjVqJKnVaqVLMSm9e/eWRo8erXWuX79+0tChQxWqyPTcu3dPsrS0lLZu3ap1vlWrVtJ7772nUFWm5dHfs9VqteTm5iZ9/vnnmnPp6emSra2ttHr1agUqrBiOfJHiMjIyAAA1a9ZUuBLTlZ+fjzVr1iA7OxuhoaFKl2Nyxo0bh969eyMsLEzpUkzW+fPn4eHhgYYNG2Lo0KFISkpSuiSTsmXLFrRp0wYvvPAC6tati5YtW+Kbb75RuiyTlpubi1WrVmH06NFQqVRKl2NS2rdvj507d+LcuXMAgBMnTmD//v3o2bOnwpWZjry8POTn58POzk7rvL29PWcGVFBiYiJSUlK0/l/t4uKCkJAQxMTEKFhZ+VgpXQBVbWq1GpMnT0aHDh3QvHlzpcsxOadOnUJoaCgePHiAatWqYdOmTWjWrJnSZZmUNWvWIC4ujvPwKyEkJAQrVqxAkyZNcP36dbz//vvo1KkTTp8+DScnJ6XLMwkXL17E0qVLMWXKFLz77rs4evQoJk6cCBsbG4wYMULp8kzS5s2bkZ6ejpEjRypdisl55513kJmZCT8/P1haWiI/Px//+9//MHToUKVLMxlOTk4IDQ3Fhx9+iKZNm8LV1RWrV69GTEwMnnjiCaXLM0kpKSkAAFdXV63zrq6umvtMAcMXKWrcuHE4ffo0/wpUQU2aNEF8fDwyMjKwYcMGjBgxAnv27GEAK6MrV65g0qRJiI6OLvLXSSq7wn8Nb9GiBUJCQuDl5YV169ZhzJgxClZmOtRqNdq0aYOPP/4YANCyZUucPn0akZGRDF8V9N1336Fnz57w8PBQuhSTs27dOvz000+IioqCv78/4uPjMXnyZHh4ePDnsRxWrlyJ0aNHo169erC0tESrVq0wePBgxMbGKl0aKYjTDkkx48ePx9atW7F7927Ur19f6XJMko2NDZ544gm0bt0ac+bMQWBgIObPn690WSYjNjYWaWlpaNWqFaysrGBlZYU9e/ZgwYIFsLKyQn5+vtIlmqTq1aujcePGuHDhgtKlmAx3d/cifzRp2rQpp29W0OXLl7Fjxw689NJLSpdikt566y288847GDRoEAICAjBs2DC88cYbmDNnjtKlmZRGjRphz549yMrKwpUrV3DkyBE8fPgQDRs2VLo0k+Tm5gYASE1N1Tqfmpqquc8UMHyRwUmShPHjx2PTpk3YtWsXfHx8lC7JbKjVauTk5Chdhsno3r07Tp06hfj4eM2tTZs2GDp0KOLj42Fpaal0iSYpKysL//77L9zd3ZUuxWR06NChyJYb586dg5eXl0IVmbbly5ejbt266N27t9KlmKR79+7BwkL7V0RLS0uo1WqFKjJtjo6OcHd3x507d7B9+3b07dtX6ZJMko+PD9zc3LBz507NuczMTBw+fNik1rtz2mE5ZWVlaf01NzExEfHx8ahZsyYaNGigYGWmY9y4cYiKisIvv/wCJycnzTxdFxcX2NvbK1yd6Zg2bRp69uyJBg0a4O7du4iKisJff/2F7du3K12ayXByciqy1tDR0RG1atXiGsRymDp1Kvr06QMvLy8kJydj1qxZsLS0xODBg5UuzWS88cYbaN++PT7++GMMGDAAR44cwbJly7Bs2TKlSzM5arUay5cvx4gRI2BlxV9zKqJPnz743//+hwYNGsDf3x/Hjx/Hl19+idGjRytdmknZvn07JElCkyZNcOHCBbz11lvw8/PDqFGjlC7NaD3u9+zJkyfjo48+gq+vL3x8fDBjxgx4eHggIiJCuaLLS+l2i6Zm9+7dEoAitxEjRihdmsko7vMDIC1fvlzp0kzK6NGjJS8vL8nGxkaqU6eO1L17d+nPP/9UuiyTx1bz5Tdw4EDJ3d1dsrGxkerVqycNHDhQunDhgtJlmZxff/1Vat68uWRrayv5+flJy5YtU7okk7R9+3YJgJSQkKB0KSYrMzNTmjRpktSgQQPJzs5OatiwofTee+9JOTk5SpdmUtauXSs1bNhQsrGxkdzc3KRx48ZJ6enpSpdl1B73e7ZarZZmzJghubq6Sra2tlL37t1N7t91lSRxu3IiIiIiIiJ945ovIiIiIiIiA2D4IiIiIiIiMgCGLyIiIiIiIgNg+CIiIiIiIjIAhi8iIiIiIiIDYPgiIiIiIiIyAIYvIiIiIiIiA2D4IiIiIiIiMgCGLyIiIgWoVCps3rxZ6TKIiMiAGL6IiKjKGTlyJFQqVZFbjx49lC6NiIjMmJXSBRARESmhR48eWL58udY5W1tbhaohIqKqgCNfRERUJdna2sLNzU3rVqNGDQBiSuDSpUvRs2dP2Nvbo2HDhtiwYYPW40+dOoUnn3wS9vb2qFWrFl5++WVkZWVpXfP999/D398ftra2cHd3x/jx47Xuv3nzJp577jk4ODjA19cXW7Zs0e+bJiIiRTF8ERERFWPGjBno378/Tpw4gaFDh2LQoEE4c+YMACA7Oxvh4eGoUaMGjh49ivXr12PHjh1a4Wrp0qUYN24cXn75ZZw6dQpbtmzBE088ofUa77//PgYMGICTJ0+iV69eGDp0KG7fvm3Q90lERIajkiRJUroIIiIiQxo5ciRWrVoFOzs7rfPvvvsu3n33XahUKrz66qtYunSp5r527dqhVatWWLJkCb755hu8/fbbuHLlChwdHQEAv//+O/r06YPk5GS4urqiXr16GDVqFD766KNia1CpVJg+fTo+/PBDACLQVatWDX/88QfXnhERmSmu+SIioiqpW7duWuEKAGrWrKk5Dg0N1bovNDQU8fHxAIAzZ84gMDBQE7wAoEOHDlCr1UhISIBKpUJycjK6d+9eag0tWrTQHDs6OsLZ2RlpaWkVfUtERGTkGL6IiKhKcnR0LDINUFfs7e3LdJ21tbXW9yqVCmq1Wh8lERGREeCaLyIiomIcOnSoyPdNmzYFADRt2hQnTpxAdna25v4DBw7AwsICTZo0gZOTE7y9vbFz506D1kxERMaNI19ERFQl5eTkICUlReuclZUVateuDQBYv3492rRpg44dO+Knn37CkSNH8N133wEAhg4dilmzZmHEiBGYPXs2bty4gQkTJmDYsGFwdXUFAMyePRuvvvoq6tati549e+Lu3bs4cOAAJkyYYNg3SkRERoPhi4iIqqRt27bB3d1d61yTJk1w9uxZAKIT4Zo1a/D666/D3d0dq1evRrNmzQAADg4O2L59OyZNmoS2bdvCwcEB/fv3x5dffql5rhEjRuDBgwf46quvMHXqVNSuXRvPP/+84d4gEREZHXY7JCIieoRKpcKmTZsQERGhdClERGRGuOaLiIiIiIjIABi+iIiIiIiIDIBrvoiIiB7BGflERKQPHPkiIiIiIiIyAIYvIiIiIiIiA2D4IiIiIiIiMgCGLyIiIiIiIgNg+CIiIiIiIjIAhi8iIiIiIiIDYPgiIiIiIiIyAIYvIiIiIiIiA/h/KZRYA25wiKAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHWCAYAAABACtmGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYbElEQVR4nO3dd3xUdb7/8fdMekISAoEUDAk19FBCF8E1AoooqCvLZaW63v2JrgiuDSmKil12xXLXVVx1sa6wrqsgIiJNQDCIUpQWaigCCYSSZOb8/jjMkCG9nkzm9Xw8zmPOnHPmnM8M0eQ933JshmEYAgAAAAAUy251AQAAAABQ2xGcAAAAAKAUBCcAAAAAKAXBCQAAAABKQXACAAAAgFIQnAAAAACgFAQnAAAAACgFwQkAAAAASkFwAgAAAIBSEJwAoBZ58803ZbPZtGfPnhq75tdffy2bzaavv/66xq6JuikpKUnXXXed1WUAQLUgOAFALbdu3Trdcccd6tatmwICAmSz2ar9mh9//LFGjBih5s2bKzQ0VMnJyZoyZYpOnjxZ5dcaO3as6tWrV+XnrYuSkpJks9mKXAYPHmx1eQBQp/lbXQAAoGSfffaZ/v73v6tTp05q3ry5fv7552q/5u233674+Hj9/ve/V9OmTbV582bNnTtXn332mTZu3KiQkJBqrwFF69y5s6ZMmVJoe3x8vAXVAIDvIDgBQC33//7f/9P999+vkJAQ3XnnneUKTjNnztSbb75Z7q5/H330kQYMGOCxrVu3bhozZoz++c9/6rbbbivX+VA2+fn5cjqdCgwMLPaYJk2a6Pe//30NVgUAkOiqBwC1XkxMTI238FwamiRp+PDhkqStW7fWaC0uH374obp166aQkBBFR0fr97//vQ4cOOBxTGZmpsaNG6fLLrtMQUFBiouL0w033OARHL/77jsNGjRI0dHRCgkJUbNmzTR+/PhSr+8av/PFF1+oc+fOCg4OVrt27fTxxx8XOvbkyZOaNGmSEhISFBQUpJYtW+qpp56S0+l0H7Nnzx7ZbDY9++yzmjNnjlq0aKGgoCBt2bKl4h/SBa7uj7t27dKgQYMUFham+Ph4PfroozIMw+PYnJwcTZkyxV1rcnKynn322ULHSdI777yjHj16KDQ0VFFRUbriiiv0xRdfFDpu5cqV6tGjh4KDg9W8eXO99dZblX5PAGA1WpwAAGWSmZkpSYqOjq7xa7/55psaN26cunfvrtmzZ+vw4cP6y1/+olWrVun7779X/fr1JUk33XSTfvrpJ911111KSkrSkSNHtGTJEu3du9f9fODAgWrUqJEeeOAB1a9fX3v27Cky/BTll19+0YgRI/THP/5RY8aM0bx58/Tb3/5WixYt0tVXXy1JOnPmjPr3768DBw7of//3f9W0aVOtXr1aDz74oA4dOqQ5c+Z4nHPevHk6d+6cbr/9dgUFBalBgwYl1pCXl6djx44V2h4WFuYRsB0OhwYPHqxevXrp6aef1qJFizRjxgzl5+fr0UcflSQZhqHrr79ey5Yt04QJE9S5c2ctXrxYf/7zn3XgwAG98MIL7vM98sgjmjlzpvr06aNHH31UgYGBWrt2rb766isNHDjQfdyOHTt08803a8KECRozZozeeOMNjR07Vt26dVP79u3L9DkDQK1kAABqjXnz5hmSjN27dxe5f+LEiUZ5/tc9Y8YMIzExscRjli1bZkgyli1bVuJxEyZMMPz8/Iyff/65zNcvizFjxhhhYWHF7s/NzTUaN25sdOjQwTh79qx7+6effmpIMqZPn24YhmGcOHHCkGQ888wzxZ5rwYIFhiRj/fr15a4zMTHRkGT861//cm/Lysoy4uLijC5duri3zZo1ywgLCyv0OT3wwAOGn5+fsXfvXsMwDGP37t2GJCMiIsI4cuRIuWooapk9e7b7uDFjxhiSjLvuusu9zel0GkOGDDECAwONo0ePGoZhGAsXLjQkGY899pjHdW6++WbDZrMZO3bsMAzDMH755RfDbrcbw4cPNxwOh8exTqezUH3ffPONe9uRI0eMoKAgY8qUKWV6jwBQW9FVDwDqkGPHjnksZ86ckdPpLLT9/Pnz5Trv/Pnz9frrr2vKlClq1apVNVVftO+++05HjhzRHXfcoeDgYPf2IUOGqE2bNvrvf/8rSQoJCVFgYKC+/vprnThxoshzuVqmPv30U+Xl5ZW7lvj4eHeXRUmKiIjQ6NGj9f3337tb5D788EP169dPUVFRHp95WlqaHA6HvvnmG49z3nTTTWrUqFGZa+jZs6eWLFlSaBk5cmShY++88073us1m05133qnc3Fx9+eWXksyJR/z8/PSnP/3J43VTpkyRYRj6/PPPJUkLFy6U0+nU9OnTZbd7/ulw6SyP7dq1U79+/dzPGzVqpOTkZO3atavM7xEAaiO66gFAHVLcH+CXbp83b57Gjh1bpnOuWLFCEyZM0KBBg/T444+XenxWVpbOnj3rfh4YGFhq97OSZGRkSJKSk5ML7WvTpo1WrlwpSQoKCtJTTz2lKVOmKCYmRr169dJ1112n0aNHKzY2VpLUv39/3XTTTXrkkUf0wgsvaMCAARo2bJj+53/+R0FBQaXW0rJly0JBoXXr1pLMMUuxsbH65Zdf9MMPPxT7b3HkyBGP582aNSv1ugVFR0crLS2t1OPsdruaN29ebK2S+dnGx8crPDzc47i2bdu690vSzp07Zbfb1a5du1Kv27Rp00LboqKiig2zAOAtCE4AUIcsWbLE4/lbb72lL774Qu+8847H9rKONdm0aZOuv/56dejQQR999JH8/Uv/tXH33XfrH//4h/t5//79a+zmupMmTdLQoUO1cOFCLV68WNOmTdPs2bP11VdfqUuXLrLZbProo4/07bff6j//+Y8WL16s8ePH67nnntO3335bJfeTcjqduvrqq3XfffcVud8VXlzq2tTufn5+RW43iphsAgC8CcEJAOqQS1siVq5cqeDg4DK1UFxq586dGjx4sBo3bqzPPvuszKHivvvu85guOyoqqtzXLigxMVGStH37dv3mN7/x2Ld9+3b3fpcWLVpoypQpmjJlin755Rd17txZzz33nEd47NWrl3r16qXHH39c8+fP16hRo/Tee++VOs36jh07ZBiGR6uTa3r4pKQk9/VPnz5doc+8KjmdTu3atcsjqF1aa2Jior788kudOnXKo9Vp27Zt7v2S+Z6cTqe2bNmizp0718wbAIBahjFOAIBCMjMzNXDgQNntdi1evLhcY3DatWuntLQ099KtW7dK1ZKamqrGjRvr1Vdf9Rib9fnnn2vr1q0aMmSIJHM2u3Pnznm8tkWLFgoPD3e/7sSJE4VaPlxBoCzjvg4ePKgFCxa4n2dnZ+utt95S586d3d0Bb7nlFq1Zs0aLFy8u9PqTJ08qPz+/DO+6asydO9e9bhiG5s6dq4CAAF111VWSpGuvvVYOh8PjOEl64YUXZLPZdM0110iShg0bJrvdrkcffdRjSnXXeQHAF9DiBAC1XEZGht5++21J5kQJkvTYY49JMlsEbr311iq/5uDBg7Vr1y7dd999WrlypXsckWTeV8o19XZVycvLc7+ngho0aKA77rhDTz31lMaNG6f+/ftr5MiR7unIk5KSdM8990gyW1Ouuuoq3XLLLWrXrp38/f21YMECHT58WL/73e8kSf/4xz/08ssva/jw4WrRooVOnTql1157TREREbr22mtLrbN169aaMGGC1q9fr5iYGL3xxhs6fPiw5s2b5z7mz3/+sz755BNdd9117mm4c3JytHnzZn300Ufas2dPpaZ0P3DgQKGul5JUr149DRs2zP08ODhYixYt0pgxY9SzZ099/vnn+u9//6uHHnrIHYSHDh2qK6+8UlOnTtWePXuUkpKiL774Qv/+9781adIktWjRQpI5tmvq1KmaNWuW+vXrpxtvvFFBQUFav3694uPjNXv27Aq/HwDwGlZO6QcA8FTUdOSu6cKLWvr371/i+So6HXlx1yvLNcvLNXV2UUuLFi3cx73//vtGly5djKCgIKNBgwbGqFGjjP3797v3Hzt2zJg4caLRpk0bIywszIiMjDR69uxpfPDBB+5jNm7caIwcOdJo2rSpERQUZDRu3Ni47rrrjO+++67UOhMTE40hQ4YYixcvNjp16mQEBQUZbdq0MT788MNCx546dcp48MEHjZYtWxqBgYFGdHS00adPH+PZZ581cnNzDcO4OB15SdOnF1VDcZ9VwX9n1xTvO3fuNAYOHGiEhoYaMTExxowZMwpNJ37q1CnjnnvuMeLj442AgACjVatWxjPPPOMxzbjLG2+84f43iIqKMvr3728sWbKk0Gd0qf79+1f5zw0A1DSbYdDGDgBAaZKSktShQwd9+umnVpdSqrFjx+qjjz7S6dOnrS4FAOoMxjgBAAAAQCkITgAAAABQCoITAAAAAJSCMU4AAAAAUApanAAAAACgFAQnAAAAACiFz90A1+l06uDBgwoPD5fNZrO6HAAAAAAWMQxDp06dUnx8vOz2ktuUfC44HTx4UAkJCVaXAQAAAKCW2Ldvny677LISj/G54BQeHi7J/HAiIiIsrgYAAACAVbKzs5WQkODOCCXxueDk6p4XERFBcAIAAABQpiE8TA4BAAAAAKUgOAEAAABAKQhOAAAAAFAKnxvjBAAAgNrHMAzl5+fL4XBYXQrqmICAAPn5+VX6PAQnAAAAWCo3N1eHDh3SmTNnrC4FdZDNZtNll12mevXqVeo8BCcAAABYxul0avfu3fLz81N8fLwCAwPLNMMZUBaGYejo0aPav3+/WrVqVamWJ4ITAAAALJObmyun06mEhASFhoZaXQ7qoEaNGmnPnj3Ky8urVHBicggAAABYzm7nz1JUj6pqweQnFAAAAABKQXACAAAAgFIQnAAAAIBaICkpSXPmzLG6DBSD4AQAAACUg81mK3GZOXNmhc67fv163X777ZWqbcCAAZo0aVKlzoGi+e6seoZhdQUAAADwQocOHXKvv//++5o+fbq2b9/u3lbwfkGGYcjhcMjfv/Q/uxs1alS1haJK+W6L05YtVlcAAACASxiGlJNjzVLW79VjY2PdS2RkpGw2m/v5tm3bFB4ers8//1zdunVTUFCQVq5cqZ07d+qGG25QTEyM6tWrp+7du+vLL7/0OO+lXfVsNpv+/ve/a/jw4QoNDVWrVq30ySefVOrz/de//qX27dsrKChISUlJeu655zz2v/zyy2rVqpWCg4MVExOjm2++2b3vo48+UseOHRUSEqKGDRsqLS1NOTk5larHm/hui9OqVVLv3lZXAQAAgALOnJEKNNjUqNOnpbCwqjnXAw88oGeffVbNmzdXVFSU9u3bp2uvvVaPP/64goKC9NZbb2no0KHavn27mjZtWux5HnnkET399NN65pln9OKLL2rUqFHKyMhQgwYNyl3Thg0bdMstt2jmzJkaMWKEVq9erTvuuEMNGzbU2LFj9d133+lPf/qT3n77bfXp00fHjx/XihUrJJmtbCNHjtTTTz+t4cOH69SpU1qxYoUMH+rF5bvBafVqqysAAABAHfXoo4/q6quvdj9v0KCBUlJS3M9nzZqlBQsW6JNPPtGdd95Z7HnGjh2rkSNHSpKeeOIJ/fWvf9W6des0ePDgctf0/PPP66qrrtK0adMkSa1bt9aWLVv0zDPPaOzYsdq7d6/CwsJ03XXXKTw8XImJierSpYskMzjl5+frxhtvVGJioiSpY8eO5a7Bm/l2cDIMqYpuiAUAAIDKCw01W36sunZVSU1N9Xh++vRpzZw5U//973/dIeTs2bPau3dviefp1KmTez0sLEwRERE6cuRIhWraunWrbrjhBo9tffv21Zw5c+RwOHT11VcrMTFRzZs31+DBgzV48GB3N8GUlBRdddVV6tixowYNGqSBAwfq5ptvVlRUVIVq8Ua+O8bp8GFp506rqwAAAEABNpvZXc6KpSq/Tw+7pM/fvffeqwULFuiJJ57QihUrlJ6ero4dOyo3N7fE8wQEBFzy+djkdDqrrtACwsPDtXHjRr377ruKi4vT9OnTlZKSopMnT8rPz09LlizR559/rnbt2unFF19UcnKydu/eXS211Ea+G5wk6ZtvrK4AAAAAPmDVqlUaO3ashg8fro4dOyo2NlZ79uyp0Rratm2rVatWFaqrdevW8vPzkyT5+/srLS1NTz/9tH744Qft2bNHX331lSQztPXt21ePPPKIvv/+ewUGBmrBggU1+h6s5Ltd9SQzOI0fb3UVAAAAqONatWqljz/+WEOHDpXNZtO0adOqreXo6NGjSk9P99gWFxenKVOmqHv37po1a5ZGjBihNWvWaO7cuXr55ZclSZ9++ql27dqlK664QlFRUfrss8/kdDqVnJystWvXaunSpRo4cKAaN26stWvX6ujRo2rbtm21vIfaiOAEAAAAVLPnn39e48ePV58+fRQdHa37779f2dnZ1XKt+fPna/78+R7bZs2apYcfflgffPCBpk+frlmzZikuLk6PPvqoxo4dK0mqX7++Pv74Y82cOVPnzp1Tq1at9O6776p9+/baunWrvvnmG82ZM0fZ2dlKTEzUc889p2uuuaZa3kNtZDN8aQ5BSdnZ2YqMjFSWzaYIw5D27pUSEqwuCwAAwCedO3dOu3fvVrNmzRQcHGx1OaiDSvoZc2eDrCxFRESUeB7fHePUubP5eGFuegAAAAAoju8Gpz59zEe66wEAAAAohe8Gp759zUeCEwAAAIBS+G5w6t3bfNy6VargTcQAAAAA+AbfDU4NGkgdOpjrK1daWwsAAACAWs13g5MkXXGF+Uh3PQAAAAAl8O3g1K+f+UhwAgAAAFACgpMkpadLWVmWlgIAAACg9vLt4NSkidSihWQY0qpVVlcDAAAAoJby7eAkXRznxI1wAQAAUIMGDBigSZMmuZ8nJSVpzpw5Jb7GZrNp4cKFlb52VZ3HlxCcmCACAAAA5TB06FANHjy4yH0rVqyQzWbTDz/8UO7zrl+/Xrfffntly/Mwc+ZMde7cudD2Q4cO6ZprrqnSa13qzTffVP369av1GjWJ4OQKTuvXS2fOWFsLAAAAar0JEyZoyZIl2r9/f6F98+bNU2pqqjp16lTu8zZq1EihoaFVUWKpYmNjFRQUVCPXqisITs2amWOd8vKktWutrgYAAMC3GYaUk2PNYhhlKvG6665To0aN9Oabb3psP336tD788ENNmDBBv/76q0aOHKkmTZooNDRUHTt21LvvvlvieS/tqvfLL7/oiiuuUHBwsNq1a6clS5YUes3999+v1q1bKzQ0VM2bN9e0adOUl5cnyWzxeeSRR7Rp0ybZbDbZbDZ3zZd21du8ebN+85vfKCQkRA0bNtTtt9+u06dPu/ePHTtWw4YN07PPPqu4uDg1bNhQEydOdF+rIvbu3asbbrhB9erVU0REhG655RYdPnzYvX/Tpk268sorFR4eroiICHXr1k3fffedJCkjI0NDhw5VVFSUwsLC1L59e3322WcVrqUs/Kv17N7AZjNbnd591+yud+WVVlcEAADgu86ckerVs+bap09LYWGlHubv76/Ro0frzTff1NSpU2Wz2SRJH374oRwOh0aOHKnTp0+rW7duuv/++xUREaH//ve/uvXWW9WiRQv16NGj1Gs4nU7deOONiomJ0dq1a5WVleUxHsolPDxcb775puLj47V582b94Q9/UHh4uO677z6NGDFCP/74oxYtWqQvv/xSkhQZGVnoHDk5ORo0aJB69+6t9evX68iRI7rtttt05513eoTDZcuWKS4uTsuWLdOOHTs0YsQIde7cWX/4wx9KfT9FvT9XaFq+fLny8/M1ceJEjRgxQl9//bUkadSoUerSpYteeeUV+fn5KT09XQEBAZKkiRMnKjc3V998843CwsK0ZcsW1avmnxuCk+QZnAAAAIBSjB8/Xs8884yWL1+uAQMGSDK76d10002KjIxUZGSk7r33Xvfxd911lxYvXqwPPvigTMHpyy+/1LZt27R48WLFx8dLkp544olC45Iefvhh93pSUpLuvfdevffee7rvvvsUEhKievXqyd/fX7GxscVea/78+Tp37pzeeusthV0IjnPnztXQoUP11FNPKSYmRpIUFRWluXPnys/PT23atNGQIUO0dOnSCgWnpUuXavPmzdq9e7cSEhIkSW+99Zbat2+v9evXq3v37tq7d6/+/Oc/q02bNpKkVq1auV+/d+9e3XTTTerYsaMkqXnz5uWuobxqRVe9l156SUlJSQoODlbPnj21bt26Mr3uvffek81m07BhwypXgGuc05o1Um5u5c4FAACAigsNNVt+rFjKMb6oTZs26tOnj9544w1J0o4dO7RixQpNmDBBkuRwODRr1ix17NhRDRo0UL169bR48WLt3bu3TOffunWrEhIS3KFJknr37l3ouPfff199+/ZVbGys6tWrp4cffrjM1yh4rZSUFHdokqS+ffvK6XRq+/bt7m3t27eXn5+f+3lcXJyOHDlSrmsVvGZCQoI7NElSu3btVL9+fW3dulWSNHnyZN12221KS0vTk08+qZ07d7qP/dOf/qTHHntMffv21YwZMyo0GUd5WR6c3n//fU2ePFkzZszQxo0blZKSokGDBpX6j7Bnzx7de++96ue6iW1ltG0rRUdLZ89KGzZU/nwAAACoGJvN7C5nxXKhy11ZTZgwQf/617906tQpzZs3Ty1atFD//v0lSc8884z+8pe/6P7779eyZcuUnp6uQYMGKbcKv6Rfs2aNRo0apWuvvVaffvqpvv/+e02dOrVKr1GQq5uci81mk9PprJZrSeaMgD/99JOGDBmir776Su3atdOCBQskSbfddpt27dqlW2+9VZs3b1ZqaqpefPHFaqtFqgXB6fnnn9cf/vAHjRs3Tu3atdOrr76q0NBQd3ovisPh0KhRo/TII49UTbOczSa5Ahjd9QAAAFAGt9xyi+x2u+bPn6+33npL48ePd493WrVqlW644Qb9/ve/V0pKipo3b66ff/65zOdu27at9u3bp0OHDrm3ffvttx7HrF69WomJiZo6dapSU1PVqlUrZWRkeBwTGBgoh8NR6rU2bdqknJwc97ZVq1bJbrcrOTm5zDWXh+v97du3z71ty5YtOnnypNq1a+fe1rp1a91zzz364osvdOONN2revHnufQkJCfrjH/+ojz/+WFOmTNFrr71WLbW6WBqccnNztWHDBqWlpbm32e12paWlac2aNcW+7tFHH1Xjxo3dTaElOX/+vLKzsz2WInE/JwAAAJRDvXr1NGLECD344IM6dOiQxo4d697XqlUrLVmyRKtXr9bWrVv1v//7vx4zxpUmLS1NrVu31pgxY7Rp0yatWLFCU6dO9TimVatW2rt3r9577z3t3LlTf/3rX90tMi5JSUnavXu30tPTdezYMZ0/f77QtUaNGqXg4GCNGTNGP/74o5YtW6a77rpLt956q3t8U0U5HA6lp6d7LFu3blVaWpo6duyoUaNGaePGjVq3bp1Gjx6t/v37KzU1VWfPntWdd96pr7/+WhkZGVq1apXWr1+vtm3bSpImTZqkxYsXa/fu3dq4caOWLVvm3lddLA1Ox44dk8PhKPQPEhMTo8zMzCJfs3LlSr3++utlTpSzZ892D9CLjIz06EfpwRWcVq6USknlAAAAgGR21ztx4oQGDRrkMR7p4YcfVteuXTVo0CANGDBAsbGx5RqXb7fbtWDBAp09e1Y9evTQbbfdpscff9zjmOuvv1733HOP7rzzTnXu3FmrV6/WtGnTPI656aabNHjwYF155ZVq1KhRkVOih4aGavHixTp+/Li6d++um2++WVdddZXmzp1bvg+jCKdPn1aXLl08lqFDh8pms+nf//63oqKidMUVVygtLU3NmzfX+++/L0ny8/PTr7/+qtGjR6t169a65ZZbdM011+iRRx6RZAayiRMnqm3btho8eLBat26tl19+udL1lsRmGGWcsL4aHDx4UE2aNNHq1as9Brvdd999Wr58udZecl+lU6dOqVOnTnr55ZfdM4qMHTtWJ0+e9JiHvqDz5897JOvs7GwlJCQoKytLERERFw90OKSoKOnUKWnjRqlLl6p7owAAACjSuXPntHv3bjVr1kzBwcFWl4M6qKSfsezsbEVGRhbOBkWwdDry6Oho+fn5FWq2PHz4cJFTJu7cuVN79uzR0KFD3dtcA9L8/f21fft2tWjRwuM1QUFBZbsrsp+f1LevtGiR2V2P4AQAAADgAku76gUGBqpbt25aunSpe5vT6dTSpUuLnG6xTZs22rx5s0cfyeuvv15XXnml0tPTi++GV1aMcwIAAABQBMtvgDt58mSNGTNGqamp6tGjh+bMmaOcnByNGzdOkjR69Gg1adJEs2fPVnBwsDp06ODx+vr160tSoe0V4gpOK1ZIhlHuKSkBAAAA1E2WB6cRI0bo6NGjmj59ujIzM9W5c2ctWrTIPWHE3r17ZbfXUMNYaqoUHCwdPSpt3y5duEsxAAAAAN9m6eQQVih1ANiVV0pffy393/9Jt99e4/UBAAD4EtfA/aSkJIWEhFhdDuqgs2fPas+ePZWeHMLyG+DWOoxzAgAAqDEBAQGSpDNnzlhcCeqq3NxcSeYU55VheVe9WscVnJYvZ5wTAABANfPz81P9+vV15MgRSeY9hWz8/YUq4nQ6dfToUYWGhsrfv3LRh+B0qV69JH9/af9+KSNDSkqyuiIAAIA6zXUbGld4AqqS3W5X06ZNKx3ICU6XCgszJ4n49luzux7BCQAAoFrZbDbFxcWpcePGysvLs7oc1DGBgYFVMtkcwakoV1xxMTiNHm11NQAAAD7Bz8+v0uNQgOrC5BBFYYIIAAAAAAUQnIrSt685KcQvv0iHDlldDQAAAACLEZyKUr++lJJirq9YYWkpAAAAAKxHcCoO3fUAAAAAXEBwKg7BCQAAAMAFBKfiXH65+bh5s3T8uLW1AAAAALAUwak4MTFScrK5vnKltbUAAAAAsBTBqSSu7npMEAEAAAD4NIJTSRjnBAAAAEAEp5K5gtOGDdLp09bWAgAAAMAyBKeSNG0qJSZKDoe0Zo3V1QAAAACwCMGpNHTXAwAAAHwewak0BCcAAADA5xGcSuMKTmvXSufOWVsLAAAAAEsQnErTqpV5T6fz56X1662uBgAAAIAFCE6lsdnorgcAAAD4OIJTWRCcAAAAAJ9GcCoLV3BatUrKz7e2FgAAAAA1juBUFh06SPXrSzk50vffW10NAAAAgBpGcCoLu13q189cp7seAAAA4HMITmVFcAIAAAB8FsGprFzjnFaskJxOa2sBAAAAUKMITmXVtasUGiqdOCFt2WJ1NQAAAABqEMGprAICpD59zHW66wEAAAA+heBUHtzPCQAAAPBJBKfyKBicDMPaWgAAAADUGIJTefToIQUGSocOSTt3Wl0NAAAAgBpCcCqPkBAzPEl01wMAAAB8CMGpvBjnBAAAAPgcglN5EZwAAAAAn0NwKq8+fSS7Xdq9W9q3z+pqAAAAANQAglN5hYebN8OVpBUrrK0FAAAAQI0gOFUE3fUAAAAAn0JwqgiCEwAAAOBTCE4Vcfnl5uPWrdKRI9bWAgAAAKDaEZwqomFDqX17c33lSmtrAQAAAFDtCE4VRXc9AAAAwGcQnCrKFZyYWQ8AAACo8whOFdWvn/mYni5lZVlaCgAAAIDqRXCqqCZNpBYtJKdTWr3a6moAAAAAVCOCU2UwzgkAAADwCQSnyiA4AQAAAD6B4FQZruC0fr105oy1tQAAAACoNgSnymjWzBzrlJcnrV1rdTUAAAAAqgnBqTJsNrrrAQAAAD6A4FRZBCcAAACgziM4VZYrOK1ZI+XmWlsLAAAAgGpBcKqstm2l6Gjp7FlpwwarqwEAAABQDQhOlWWzSf36met01wMAAADqJIJTVWCcEwAAAFCnEZyqgqvFaeVKyeGwthYAAAAAVY7gVBVSUqTwcCk7W9q82epqAAAAAFQxglNV8PeX+vY11+muBwAAANQ5BKeqwjgnAAAAoM4iOFWVgsHJMKytBQAAAECVIjhVldRUKThYOnpU2r7d6moAAAAAVCGCU1UJCpJ69TLX6a4HAAAA1CkEp6rEOCcAAACgTiI4VSVXcFq+nHFOAAAAQB1CcKpKvXqZU5Pv3y9lZFhdDQAAAIAqQnCqSmFh5iQREt31AAAAgDqE4FTVGOcEAAAA1DkEp6pGcAIAAADqHIJTVevbV7LZpF9+kQ4dsroaAAAAAFWA4FTV6teXUlLM9RUrLC0FAAAAQNUgOFWHfv3MR7rrAQAAAHVCrQhOL730kpKSkhQcHKyePXtq3bp1xR778ccfKzU1VfXr11dYWJg6d+6st99+uwarLQPXOCdanAAAAIA6wfLg9P7772vy5MmaMWOGNm7cqJSUFA0aNEhHjhwp8vgGDRpo6tSpWrNmjX744QeNGzdO48aN0+LFi2u48hK4Wpw2b5aOH7e2FgAAAACVZjMMw7CygJ49e6p79+6aO3euJMnpdCohIUF33XWXHnjggTKdo2vXrhoyZIhmzZpVaN/58+d1/vx59/Ps7GwlJCQoKytLERERVfMmitKmjbR9u/TJJ9LQodV3HQAAAAAVkp2drcjIyDJlA0tbnHJzc7VhwwalpaW5t9ntdqWlpWnNmjWlvt4wDC1dulTbt2/XFa7ucZeYPXu2IiMj3UtCQkKV1V8ipiUHAAAA6gxLg9OxY8fkcDgUExPjsT0mJkaZmZnFvi4rK0v16tVTYGCghgwZohdffFFXX311kcc++OCDysrKci/79u2r0vdQLIITAAAAUGf4W11ARYSHhys9PV2nT5/W0qVLNXnyZDVv3lwDBgwodGxQUJCCgoJqvkhXcNqwQTp9WqpXr+ZrAAAAAFAlLA1O0dHR8vPz0+HDhz22Hz58WLGxscW+zm63q2XLlpKkzp07a+vWrZo9e3aRwckyTZtKiYlSRoa0Zo1UTIsYAAAAgNrP0q56gYGB6tatm5YuXere5nQ6tXTpUvXu3bvM53E6nR4TQNQadNcDAAAA6gTLu+pNnjxZY8aMUWpqqnr06KE5c+YoJydH48aNkySNHj1aTZo00ezZsyWZkz2kpqaqRYsWOn/+vD777DO9/fbbeuWVV6x8G0W74grp7bcJTgAAAICXszw4jRgxQkePHtX06dOVmZmpzp07a9GiRe4JI/bu3Su7/WLDWE5Oju644w7t379fISEhatOmjd555x2NGDHCqrdQPFeL09q10rlzUnCwtfUAAAAAqBDL7+NU08ozV3ulGYYUFycdPmy2OrlujAsAAADAcl5zH6c6z2ZjnBMAAABQBxCcqhvBCQAAAPB6BKfq5gpOq1ZJ+fnW1gIAAACgQghO1a1DB6l+fSknR/r+e6urAQAAAFABBKfqZrdLl19urq9YYW0tAAAAACqE4FQTGOcEAAAAeDWCU01wBacVKySn09paAAAAAJQbwakmdO0qhYZKx49LW7ZYXQ0AAACAciI41YSAAKlPH3Od7noAAACA1yE41RTGOQEAAABei+BUUwoGJ8OwthYAAAAA5UJwqik9ekiBgdKhQ9LOnVZXAwAAAKAcCE41JSTEDE8S3fUAAAAAL0NwqkmMcwIAAAC8EsGpJhGcAAAAAK9EcKpJffpIdru0e7e0b5/V1QAAAAAoI4JTTQoPN2+GK0krVlhbCwAAAIAyIzjVNLrrAQAAAF6H4FTT+vUzH2lxAgAAALwGwammXX65+bhli3T0qLW1AAAAACgTglNNi46W2rc311eutLYWAAAAAGVCcLIC45wAAAAAr0JwsgLBCQAAAPAqBCcruCaISE+XsrIsLQUAAABA6QhOVmjSRGrRQnI6pdWrra4GAAAAQCkITlahux4AAADgNQhOViE4AQAAAF6D4GQVV3Bav146c8baWgAAAACUiOBklWbNzLFOeXnS2rVWVwMAAACgBAQnq9hsdNcDAAAAvATByUoEJwAAAMArEJys5ApOa9ZIubnW1gIAAACgWAQnK7VtKzVsKJ09K23YYHU1AAAAAIpBcLKSzSb162eur1hhbS0AAAAAikVwshrjnAAAAIBaj+BkNVdwWrlScjisrQUAAABAkQhOVktJkcLDpawsafNmq6sBAAAAUASCk9X8/aW+fc11uusBAAAAtRLBqTZgnBMAAABQqxGcaoOCwckwrK0FAAAAQCEEp9ogNVUKDpaOHpW2b7e6GgAAAACXIDjVBkFBUq9e5jrd9QAAAIBah+BUWzDOCQAAAKi1CE61hSs4LV/OOCcAAACgliE41Ra9eplTk+/fL2VkWF0NAAAAgAIITrVFWJg5SYREdz0AAACgliE41SaMcwIAAABqJYJTbdKvn/lIcAIAAABqlQoFp3379mn//v3u5+vWrdOkSZP0t7/9rcoK80l9+0o2m/TLL1JmptXVAAAAALigQsHpf/7nf7Rs2TJJUmZmpq6++mqtW7dOU6dO1aOPPlqlBfqUqCipUydzfcUKa2sBAAAA4Fah4PTjjz+qR48ekqQPPvhAHTp00OrVq/XPf/5Tb775ZlXW53sY5wQAAADUOhUKTnl5eQoKCpIkffnll7r++uslSW3atNGhQ4eqrjpfRHACAAAAap0KBaf27dvr1Vdf1YoVK7RkyRINHjxYknTw4EE1bNiwSgv0Oa4JIjZvlo4ft7YWAAAAAJIqGJyeeuop/d///Z8GDBigkSNHKiUlRZL0ySefuLvwoYJiYqTkZMkwpFWrrK4GAAAAgCT/irxowIABOnbsmLKzsxUVFeXefvvttys0NLTKivNZV1whbd9udtcbOtTqagAAAACfV6EWp7Nnz+r8+fPu0JSRkaE5c+Zo+/btaty4cZUW6JMY5wQAAADUKhUKTjfccIPeeustSdLJkyfVs2dPPffccxo2bJheeeWVKi3QJ7mC04YN0unT1tYCAAAAoGLBaePGjep3YRKDjz76SDExMcrIyNBbb72lv/71r1VaoE9q2lRKTJQcDmnNGqurAQAAAHxehYLTmTNnFB4eLkn64osvdOONN8put6tXr17KyMio0gJ9Ft31AAAAgFqjQsGpZcuWWrhwofbt26fFixdr4MCBkqQjR44oIiKiSgv0WQQnAAAAoNaoUHCaPn267r33XiUlJalHjx7q3bu3JLP1qUuXLlVaoM9yBae1a6Vz56ytBQAAAPBxNsMwjIq8MDMzU4cOHVJKSorsdjN/rVu3ThEREWrTpk2VFlmVsrOzFRkZqaysrNrdOmYYUlycdPiw2erkujEuAAAAgCpRnmxQoRYnSYqNjVWXLl108OBB7d+/X5LUo0ePWh2avIrNdjEsrVhhbS0AAACAj6tQcHI6nXr00UcVGRmpxMREJSYmqn79+po1a5acTmdV1+i7GOcEAAAA1Ar+FXnR1KlT9frrr+vJJ59U3759JUkrV67UzJkzde7cOT3++ONVWqTPcgWnVauk/HzJv0L/XAAAAAAqqUJjnOLj4/Xqq6/q+uuv99j+73//W3fccYcOHDhQZQVWNa8Z4ySZ93GKjpZOnpTWr5dSU62uCAAAAKgzqn2M0/Hjx4scy9SmTRsdP368IqdEUfz8pMsvN9fprgcAAABYpkLBKSUlRXPnzi20fe7cuerUqVOli0IBjHMCAAAALFehQTNPP/20hgwZoi+//NJ9D6c1a9Zo3759+uyzz6q0QJ/nCk4rVkhOp2Sv8ESIAAAAACqoQn+F9+/fXz///LOGDx+ukydP6uTJk7rxxhv1008/6e23367qGn1b165SaKh0/Li0ZYvV1QAAAAA+qcLNF/Hx8Xr88cf1r3/9S//617/02GOP6cSJE3r99dfLfa6XXnpJSUlJCg4OVs+ePbVu3bpij33ttdfUr18/RUVFKSoqSmlpaSUe7/UCAqQ+fcx1uusBAAAAlrC839f777+vyZMna8aMGdq4caNSUlI0aNAgHTlypMjjv/76a40cOVLLli3TmjVrlJCQoIEDB9bqmfwqjXFOAAAAgKUqNB15cTZt2qSuXbvK4XCU+TU9e/ZU9+7d3ZNNOJ1OJSQk6K677tIDDzxQ6usdDoeioqI0d+5cjR49utTjvWo6cpfly6UBA6S4OOnAAclms7oiAAAAwOtV+3TkVSU3N1cbNmxQWlqae5vdbldaWprWrFlTpnOcOXNGeXl5atCgQZH7z58/r+zsbI/F6/ToIQUGSocOSTt3Wl0NAAAA4HPKNavejTfeWOL+kydPluvix44dk8PhUExMjMf2mJgYbdu2rUznuP/++xUfH+8RvgqaPXu2HnnkkXLVVeuEhJjhaeVKs7tey5ZWVwQAAAD4lHK1OEVGRpa4JCYmlqm7XFV58skn9d5772nBggUKDg4u8pgHH3xQWVlZ7mXfvn01Vl+VYpwTAAAAYJlytTjNmzevSi8eHR0tPz8/HT582GP74cOHFRsbW+Jrn332WT355JP68ssvS7zpblBQkIKCgqqkXktdcYX0xBMEJwAAAMAClo5xCgwMVLdu3bR06VL3NqfTqaVLl7pvrFuUp59+WrNmzdKiRYuUmppaE6Var3dv8+a3u3dL+/dbXQ0AAADgUyyfjnzy5Ml67bXX9I9//ENbt27V//t//085OTkaN26cJGn06NF68MEH3cc/9dRTmjZtmt544w0lJSUpMzNTmZmZOn36tFVvoWZEREhdupjrK1ZYWwsAAADgYywPTiNGjNCzzz6r6dOnq3PnzkpPT9eiRYvcE0bs3btXhw4dch//yiuvKDc3VzfffLPi4uLcy7PPPmvVW6g5jHMCAAAALFGl93HyBl55HyeXhQul4cOldu2kn36yuhoAAADAq3nNfZxQTpdfbj5u2SIdPWptLQAAAIAPITh5k+hoqX17c33lSmtrAQAAAHwIwcnbMM4JAAAAqHEEJ29DcAIAAABqHMHJ2/TrZz6mp0tZWZaWAgAAAPgKgpO3adJEatFCcjql1autrgYAAADwCQQnb0R3PQAAAKBGEZy8EcEJAAAAqFEEJ2/kCk7r10tnzlhbCwAAAOADCE7eqFkzc6xTXp60dq3V1QAAAAB1HsHJG9lsdNcDAAAAahDByVu5piVfscLaOgAAAAAfQHDyVq4Wp9Wrpdxca2sBAAAA6jiCk7dq21Zq2FA6e1bauNHqagAAAIA6jeDkrez2i931GOcEAAAAVCuCkzdjgggAAACgRhCcvJkrOK1cKTkc1tYCAAAA1GEEJ2+WkiKFh0tZWdLmzVZXAwAAANRZBCdv5u8v9e1rrtNdDwAAAKg2BCdvxzgnAAAAoNoRnLxdweBkGNbWAgAAANRRBCdvl5oqBQdLR49K27dbXQ0AAABQJxGcvF1QkNSrl7lOdz0AAACgWhCc6gLGOQEAAADViuBUF7iC0/LljHMCAAAAqgHBqS7o1cucmnz/fikjw+pqAAAAgDqH4FQXhIVJ3bqZ6ytWWFsLAAAAUAcRnOoKxjkBAAAA1YbgVFcQnAAAAIBqQ3CqK/r2lWw26eefpcxMq6sBAAAA6hSCU10RFSV16mSuM84JAAAAqFIEp7qE7noAAABAtSA41SUEJwAAAKBaEJzqkn79zMfNm6Xjx62tBQAAAKhDCE51SUyMlJwsGYa0apXV1QAAAAB1BsGprqG7HgAAAFDlCE51DcEJAAAAqHIEp7rGFZw2bJBOn7a2FgAAAKCOIDjVNU2bSomJksMhrVljdTUAAABAnUBwqovorgcAAABUKYJTXeQKTitWWFsHAAAAUEcQnOoi1/2cvv1WOn/e2loAAACAOoDgVBe1bi01bmyGpvXrra4GAAAA8HoEp7rIZmOcEwAAAFCFCE51FcEJAAAAqDIEp7rKFZxWrZLy862tBQAAAPByBKe6qkMHqX598ya46elWVwMAAAB4NYJTXeXnJ11+ublOdz0AAACgUghOdRnjnAAAAIAqQXCqywreCNfptLYWAAAAwIsRnOqyrl2l0FDp+HFpyxarqwEAAAC8FsGpLgsIkPr0MdfprgcAAABUGMGprmOcEwAAAFBpBKe6rmBwMgxrawEAAAC8FMGpruvRQwoMlA4dknbutLoaAAAAwCsRnOq6kBAzPEnm7HoAAAAAyo3g5Av69TMfGecEAAAAVAjByRcwQQQAAABQKQQnX9Cnj2S3S7t2Sfv3W10NAAAA4HUITr4gIkLq0sVcZ5wTAAAAUG4EJ19Bdz0AAACgwghOvoLgBAAAAFQYwclXXH65+bhli3T0qLW1AAAAAF6G4OQroqOl9u3N9ZUrra0FAAAA8DIEJ19Cdz0AAACgQghOvoTgBAAAAFQIwcmX9OtnPqanS1lZlpYCAAAAeBOCky9p0kRq0UJyOqXVq62uBgAAAPAaBCdfQ3c9AAAAoNwITr6G4AQAAACUG8HJ17iC0/r10tmz1tYCAAAAeAnLg9NLL72kpKQkBQcHq2fPnlq3bl2xx/7000+66aablJSUJJvNpjlz5tRcoXVFs2ZSfLyUlyetXWt1NQAAAIBXsDQ4vf/++5o8ebJmzJihjRs3KiUlRYMGDdKRI0eKPP7MmTNq3ry5nnzyScXGxtZwtXWEzUZ3PQAAAKCcLA1Ozz//vP7whz9o3LhxateunV599VWFhobqjTfeKPL47t2765lnntHvfvc7BQUFleka58+fV3Z2tsfi8whOAAAAQLlYFpxyc3O1YcMGpaWlXSzGbldaWprWrFlTZdeZPXu2IiMj3UtCQkKVndtruYLT6tVSbq61tQAAAABewLLgdOzYMTkcDsXExHhsj4mJUWZmZpVd58EHH1RWVpZ72bdvX5Wd22u1bSs1bGhODrFxo9XVAAAAALWe5ZNDVLegoCBFRER4LD7Pbpf69TPX6a4HAAAAlMqy4BQdHS0/Pz8dPnzYY/vhw4eZ+KEmMM4JAAAAKDPLglNgYKC6deumpUuXurc5nU4tXbpUvXv3tqos3+EKTitXSg6HtbUAAAAAtZy/lRefPHmyxowZo9TUVPXo0UNz5sxRTk6Oxo0bJ0kaPXq0mjRpotmzZ0syJ5TYsmWLe/3AgQNKT09XvXr11LJlS8veh1dKSZHCw6WsLGnzZqlzZ6srAgAAAGotS4PTiBEjdPToUU2fPl2ZmZnq3LmzFi1a5J4wYu/evbLbLzaKHTx4UF26dHE/f/bZZ/Xss8+qf//++vrrr2u6fO/m7y/17SstWmR21yM4AQAAAMWyGYZhWF1ETcrOzlZkZKSysrKYKGL2bOmhh6SbbpI++sjqagAAAIAaVZ5sUOdn1UMJCk4Q4Vv5GQAAACgXgpMvS02VgoOlo0el7dutrgYAAACotQhOviwoSOrVy1xfscLaWgAAAIBajODk67ifEwAAAFAqgpOv69fPfCQ4AQAAAMUiOPm63r3Nqcn37pUyMqyuBgAAAKiVCE6+LixM6tbNXKfVCQAAACgSwQmMcwIAAABKQXACwQkAAAAoBcEJUt++ks0m/fyzlJlpdTUAAABArUNwghQVJXXqZK5zPycAAACgEIITTHTXAwAAAIpFcIKJ4AQAAAAUi+AEk+tGuJs3S8ePW1sLAAAAUMsQnGCKiZGSkyXDkFatsroaAAAAoFYhOOEiuusBAAAARSI44SKCEwAAAFAkghMucgWnjRul06etrQUAAACoRQhOuKhpUykxUcrPl7791upqAAAAgFqD4ARPrtn16K4HAAAAuBGc4IlxTgAAAEAhBCd4cgWnb7+Vzp+3thYAAACgliA4wVPr1lLjxmZoWr/e6moAAACAWoHgBE82G931AAAAgEsQnFAYwQkAAADwQHBCYa7gtGqVOTU5AAAA4OMITiisQwepfn3zJrjp6VZXAwAAAFiO4ITC/Pykyy831+muBwAAABCcUAzGOQEAAABuBCcUzRWcVqyQnE5rawEAAAAsRnBC0bp2lUJDpePHpS1brK4GAAAAsBTBCUULCJD69DHX6a4HAAAAH0dwQvEKdtcDAAAAfBjBCcXr1898/OYbyTCsrQUAAACwEMEJxevZ0+yyd/CgtGuX1dUAAAAAliE4oXghIVKPHuY645wAAADgw3w2OD3+uLRxIz3QSsX9nAAAAADfDU5PPy116yYlJkp/+pP01VdSXp7VVdVCBCcAAADAd4PT0KHmbYr27ZNefFG66iopJkYaPVr6+GMpJ8fqCmuJPn0ku90c47R/v9XVAAAAAJbw2eD0zjvSsWPSJ59I48dL0dHSiRPS229LN91kPr/hBmnePOnoUaurtVBEhNSli7nOtOQAAADwUT4bnCRz7oOhQ6XXX5cyM83eaJMnS82aSefOXQxVsbFS//7SCy/46ORydNcDAACAj7MZhm9Nj5Cdna3IyEhlZWUpIiKiyGMMQ/rxR2nhQnPZuNFzf6dO0rBh5tK5s2SzVW/Nllu4UBo+XGrXTvrpJ6urAQAAAKpEWbKBC8GpDDIypH//28wP33wjORwX9zVtagao4cOlyy+X/P2rpWxrHTsmNWpkrh85cnEdAAAA8GIEpxJUJDgV9Ouv0n//a4aoRYuks2cv7mvQwOz6N2yYNHCgOflEndGhg9na9PHHZkoEAAAAvFx5soFPj3GqiIYNL868d+yY2RI1bpy5/fhx6R//MHNFdLQZoN580zzO6zHOCQAAAD6M4FQJoaHS9ddLb7xhTi6xfLk0aZKUlGS2RLlCVUyMNGCANGeOtGePpSVXHMEJAAAAPoyuetXAMKQffrg4uUR6uuf+zp0vTi7RqZOXTC5x4IB02WXmPZ1OnDCnKQcAAAC8GGOcSlATwelSe/Z4Ti7hdF7cl5R0MUT17VvLJ5do2VLauVP6/HNp8GCrqwEAAAAqhTFOtUxSknT33dKyZdLhw+a4p2HDzPtI7dljduEbMMC8X9S4cWbIOnPGyoqL0a+f+Uh3PQAAAPgYglMNi46WxoyRFiwwJ41YuFAaO9acke/XXy+Gquhoc5KJt94yt9cKjHMCAACAj6KrXi2Rny+tXHlxXFRGxsV9fn5mZhk2TLrhBikx0aIid+40u+sFBEhZWWaTGQAAAOClGONUgtoanAoyDGnTposhatMmz/1dulwcF9WxYw1OLmEY5gQRBw+a/Q4HDKihCwMAAABVjzFOXs5mM2femznTnJFv1y7phRek/v3NSe2+/16aMUNKSZFatJAmTzZ7zzkcNVAY3fUAAADggwhOXqBZM/P+UF9/bU4uMW+e2WUvOFjavftiqIqNlSZMkP7zH/M+UtWC4AQAAAAfRFc9L5aTI33xhdmd7z//MW+v5BIaas4YPmyYNGSIOflElfjpJ6lDB3N808mTUmBgFZ0YAAAAqFmMcSpBXQpOBeXnSytWXBwXtXfvxX1+fmaLlGtyiaZNK3Ehp1Nq3Nic6m/NGqlXr8oVDgAAAFiE4FSCuhqcCjIMc2yUK0T98IPn/q5dL04u0aFDBSaXGD7cPPFTT0n33VcFFQMAfFZ+vnlTw+3bpW3bpB07pKgoqU0bc0lOliIjra4SQB1FcCqBLwSnS+3aZd5Ud8ECadUqs9HIpUWLiyGqd2+zdapUL7xgzkjRoYN0++3m/OiupX796nkTAADvduKEGY5cAcm1/ssvUl5eya+NizMDlCtMuZaEBHPWJACoIIJTCXwxOBV05Ij06admg9EXX0jnz1/c16iRdP31ZohKSzMnnyjSpk3mtH9FiYi4GKKaNvUMVYmJUkwMv+QAoK7KzzdnLSoqIB05UvzrgoPNYJScLLVqZYasbdvM5eDB4l8XEnIxUBUMVq1bm4N9AaAUBKcS+HpwKuj06YuTS3z6qefkEmFhnpNLREVd8uIPPzTHOGVkXFyOHSv9okFB5jeElwYq13LZZeYNdgEAtZer9cgVjFyPO3aU3HrUpMnFkFMw8JTUcpSdffEaBZfSWqoSEz1bp1zXi42twRsgAqjtCE4lIDgVLS/Pc3KJffsu7vP3N+91O2yY2SKVkFDMSXJyzFkp9u71DFSu5cABz36CRbHbpfj4klutwsKq5D0DAEpQsPWoYMvRtm3S0aPFvy4kxGzxuTQgtW4t1atXtfXt2VM4UG3dKh0/XvzrIiIKd/lLTpZatmSmWMAHEZxKQHAqnWGYN9l1hajNmz33p6aaIapbN3NIU8Gl2O59kpnODhwoOlRlZJiBq2DfweI0bFh8i1Viojn3Ot8mAkDZHD9edNe60lqPLruscMtRaa1HNeXYMc/WMNeya1fxX+D5+UnNmxcOVW3aVOE9PQDUNgSnEhCcym/HDnNyiYULzcklSvqJCQoqHKaKWqKiitge4VRQ1pHiW6wyMqSsrNILDgsrvrUqMdEcZFymWTAAoI7IzzdDQ1EBqbTWI1cgKhiQqrr1qKacP2/+UisqVJ06VfzrGjUqenKKpCR+nwBejuBUAoJT5Rw5Yt5s9z//MfPNyZMXl6r4SQoOLjlwNQ7O0mX5GYo9n6HonAxFZmWo3q8ZCjmcIf+DGbIdPlz6RQICzG9Ki2uxSkgwEyAAeBtX69GlXet27ixb61HBsUDJyeZ2q1uPaoJhSIcOFe72t327540RLxUYaIbIS0NVcrIUHl5z9QOoMIJTCQhO1cPpNCebKBikLl1OnCh+X1ZW1QSv+sHn1C58n9qEZKiFf4aSbBm6zJGh2NwLQevUfvk580s/UVxcyeOs+NkBYJW8vOLHHpU0SU9oqOcf+a5WJG9tPaopOTnSzz8XDlU//yydO1f861wTYVw6499ll9GdHKhFCE4lIDjVTk6n2UuipOBVUgArSw8+SbLLoXgdVKIyil1CdbbU8+SG1df5mETlX5YoW2Ki/FskKjjZfFRiotmtg1+MACrj11+LH3uUX8IXQAkJRY898pXWo5ridJqtUZcGqm3bpJJ6P4SFFd1C1aqV2TUSQI0iOJWA4FQ3ORxlD15FhbDsbNeZDEXrmJpqb7HBqqFKmK3pgrO2EB0JbqpjYYnKqp+onIZNzaDVxAxWAUlNFNnQXxERZs9Bf3+zm3xJj5dus9vJZoDXc7UeXdpytH172VqPipq5jplHrXfpzX5dS0mh12Yzx0wVNTkFX8YB1YbgVAKCE4ricJjhqSxh6/yxUwo6vFf1fs1Q/SyzC2Bs7sVgFadDsqvk/6zy5acDaqL9ukz58pch8xeiIVuh9ZL2STbZ7DJ/odps5u9Vm022gs/t5rr9wj7ZbRcOd61fPM61brPbinlurttc++y68HjJPvuFfRfW7Zfss9vN69ldr/NzbTf32ew22fwKvM7Pc5/dz3yd/cLrbP522QMDZLuw2IMCZAv0ly3AfK6AAou/v+fz4raVdKyfH3/EoHxcrUdFjT0qS+vRpQGpSRNaj7xRXp45SUfBMVSuKdRPniz+dfXrFx2omjfn3odAJRGcSkBwQnVwOMzugidPSllHc3X2l/3K32nOBOh/IEPBhzMUdiFoNTi9VwFGCYO04RXybAHKtwXIYQ+QwxYgh93fXC+wOC9sc/oFyGkPkOPCo+Hnb27zC5DT33w0/Pxl+AXI8De3Gf4BMvzMoGb4B8gICJD8zfBm+BUd9GwB5nZbgRApf/9LAuWFxwB/97o9KEB+gX5mIDdUeHEaRa+XsE9GGY9Txc5R5n2XXKvIfZJUhnNceHmJdQSfPaHoX7er4bFtij62XQ2ObVeDI9sUeubX4n+WAkN1MiZZWbHJyopJVnZ8G2XFJutUXGs5Q8LMLwns7u9H3OuXPlZmW1WcoyrPe+lS57+nMAxzdsOiuv3t2VP8IGB/f/P+U0V1/St053r4LIfDDO1FLfn5xe+ryuOGDJF++1urP4kiEZxKQHCC5ZxOKTPTnF790CHzf2iS51+qBZ47nZLTYcjpNOTMN587HBfXnQ7j4nLhuSPfkOE05HCYf+QV3HfpsU6HeazHdQq8zr3PachweK679hV1rArucxY41mHIuPC+dGF7wfMYxoVzGxefu/a5jy+wT5L85FCA8jwWf+VX0bYyTCYClMFeJWib2mi7krVdye71A2oiQ7QelcYVolxdlcu7eOvrAh1n1fDEDkX/uk3RR7ep4bFtanh0mxoc2aaA3DPFfl7nQ+vL6R8ow+4nw2Y3H+1+kt1Phr3Ac5tdhl8R6xeOk/t1F17jd/E4uZ67jruwT36e24t67n6zl66XtO+S42x+9tLX/c3X2fw99xXa7u+5z+Zn7rMZTikvT7b8C4sj/+L6hcVjf4Hnys/32Kb8PNnyCjyvrvBy6bG14U/9+++XnnzS6iqKVJ5s4F9DNZXopZde0jPPPKPMzEylpKToxRdfVI8ePYo9/sMPP9S0adO0Z88etWrVSk899ZSuvfbaGqwYqAS7XYqPN5eyHH5hQdHMIFn0Uty+gtvPOqTTJb0m35AzN19GXr6M3DwZuXly5uZJuXly5l78xWTkXnjMu+QXW36elJdf9C/XAr9UbY482S/8UrY7Ljx3bXPmy8+RJ7szz/1od+TLz5nnsdgNc5u/M09+husx31wvsASKFs/qcs4/TIcjW+tQZBtlRiTrYHiyDka00aF6rXTOL0yGYf6MGYYU5ZR6XviuxLXN9ejt24rbX5m/38wvZUru2Vg3hUjqeGG5yCanmuiAkrVdbbTNY7lMBxR05qQVxcJLmF8R+ivfFmB+VXihF0WezMeC2x02f49t7vVLFo/jLvTIcK0n5PTSzVa/6SpgeXB6//33NXnyZL366qvq2bOn5syZo0GDBmn79u1q3LhxoeNXr16tkSNHavbs2bruuus0f/58DRs2TBs3blSHDh0seAcArOT6Vrb6uvnbJAVcWOrQjFeXdt0o6q/Rgv2jLu0rVd37rL5+BWsLlpR4YUHRSgtYBR8vXVxfbpR3qZuvs8vpTJDTmaBMR5oOOqUvL+wLyj2lBmf2y+7Ml83pkM1wyuZ0yG44Cj2X02luNxyyX9hX8Lii9pnbCq/bLjy3X7pPDvdzj31yys9wFH6uAse51uXw3HfhuU1O+RXcV/AcRe2TQ34lrJvPCyf8XI9+CP6X9FMoeqmtx+XLX7owZtr9Vqu5UeqBeqoTwcnyrno9e/ZU9+7dNXfuXEmS0+lUQkKC7rrrLj3wwAOFjh8xYoRycnL06aefurf16tVLnTt31quvvlrq9eiqBwAAgIIKjZl0OGXkOy52UbwwBvTSY3letueJieZwvNrIa7rq5ebmasOGDXrwwQfd2+x2u9LS0rRmzZoiX7NmzRpNnjzZY9ugQYO0cOHCIo8/f/68zp8/736efXHeaQAAAMA9OYkkyc8mBfhJ8rOyJNRClg6dOHbsmBwOh2JiYjy2x8TEKDMzs8jXZGZmluv42bNnKzIy0r0kJCRUTfEAAAAAfEadH3P+4IMPKisry73s27fP6pIAAAAAeBlLu+pFR0fLz89Phw8f9th++PBhxcbGFvma2NjYch0fFBSkoKCgqikYAAAAgE+ytMUpMDBQ3bp109KlS93bnE6nli5dqt69exf5mt69e3scL0lLliwp9ngAAAAAqCzLpyOfPHmyxowZo9TUVPXo0UNz5sxRTk6Oxo0bJ0kaPXq0mjRpotmzZ0uS7r77bvXv31/PPfechgwZovfee0/fffed/va3v1n5NgAAAADUYZYHpxEjRujo0aOaPn26MjMz1blzZy1atMg9AcTevXtlt19sGOvTp4/mz5+vhx9+WA899JBatWqlhQsXcg8nAAAAANXG8vs41TTu4wQAAABAKl82qPOz6gEAAABAZRGcAAAAAKAUBCcAAAAAKAXBCQAAAABKQXACAAAAgFIQnAAAAACgFAQnAAAAACiF5TfArWmu21ZlZ2dbXAkAAAAAK7kyQVlubetzwenXX3+VJCUkJFhcCQAAAIDa4NSpU4qMjCzxGJ8LTg0aNJAk7d27t9QPB8XLzs5WQkKC9u3bV+pdllE0PsOqwedYNfgcK4/PsGrwOVYen2HV4HOsPG/4DA3D0KlTpxQfH1/qsT4XnOx2c1hXZGRkrf0H9CYRERF8jpXEZ1g1+ByrBp9j5fEZVg0+x8rjM6wafI6VV9s/w7I2pjA5BAAAAACUguAEAAAAAKXwueAUFBSkGTNmKCgoyOpSvBqfY+XxGVYNPseqwedYeXyGVYPPsfL4DKsGn2Pl1bXP0GaUZe49AAAAAPBhPtfiBAAAAADlRXACAAAAgFIQnAAAAACgFAQnAAAAACiFzwSnb775RkOHDlV8fLxsNpsWLlxodUleZ/bs2erevbvCw8PVuHFjDRs2TNu3b7e6LK/zyiuvqFOnTu6bwfXu3Vuff/651WV5tSeffFI2m02TJk2yuhSvMnPmTNlsNo+lTZs2VpfllQ4cOKDf//73atiwoUJCQtSxY0d99913VpflVZKSkgr9PNpsNk2cONHq0ryGw+HQtGnT1KxZM4WEhKhFixaaNWuWmAesfE6dOqVJkyYpMTFRISEh6tOnj9avX291WbVaaX9nG4ah6dOnKy4uTiEhIUpLS9Mvv/xiTbGV4DPBKScnRykpKXrppZesLsVrLV++XBMnTtS3336rJUuWKC8vTwMHDlROTo7VpXmVyy67TE8++aQ2bNig7777Tr/5zW90ww036KeffrK6NK+0fv16/d///Z86depkdSleqX379jp06JB7WblypdUleZ0TJ06ob9++CggI0Oeff64tW7boueeeU1RUlNWleZX169d7/CwuWbJEkvTb3/7W4sq8x1NPPaVXXnlFc+fO1datW/XUU0/p6aef1osvvmh1aV7ltttu05IlS/T2229r8+bNGjhwoNLS0nTgwAGrS6u1Svs7++mnn9Zf//pXvfrqq1q7dq3CwsI0aNAgnTt3roYrrSTDB0kyFixYYHUZXu/IkSOGJGP58uVWl+L1oqKijL///e9Wl+F1Tp06ZbRq1cpYsmSJ0b9/f+Puu++2uiSvMmPGDCMlJcXqMrze/fffb1x++eVWl1Hn3H333UaLFi0Mp9NpdSleY8iQIcb48eM9tt14443GqFGjLKrI+5w5c8bw8/MzPv30U4/tXbt2NaZOnWpRVd7l0r+znU6nERsbazzzzDPubSdPnjSCgoKMd99914IKK85nWpxQ9bKysiRJDRo0sLgS7+VwOPTee+8pJydHvXv3trocrzNx4kQNGTJEaWlpVpfitX755RfFx8erefPmGjVqlPbu3Wt1SV7nk08+UWpqqn7729+qcePG6tKli1577TWry/Jqubm5eueddzR+/HjZbDary/Eaffr00dKlS/Xzzz9LkjZt2qSVK1fqmmuusbgy75Gfny+Hw6Hg4GCP7SEhIbTIV9Du3buVmZnp8bs6MjJSPXv21Jo1ayysrPz8rS4A3snpdGrSpEnq27evOnToYHU5Xmfz5s3q3bu3zp07p3r16mnBggVq166d1WV5lffee08bN26k33kl9OzZU2+++aaSk5N16NAhPfLII+rXr59+/PFHhYeHW12e19i1a5deeeUVTZ48WQ899JDWr1+vP/3pTwoMDNSYMWOsLs8rLVy4UCdPntTYsWOtLsWrPPDAA8rOzlabNm3k5+cnh8Ohxx9/XKNGjbK6NK8RHh6u3r17a9asWWrbtq1iYmL07rvvas2aNWrZsqXV5XmlzMxMSVJMTIzH9piYGPc+b0FwQoVMnDhRP/74I9++VFBycrLS09OVlZWljz76SGPGjNHy5csJT2W0b98+3X333VqyZEmhbwVRdgW/he7UqZN69uypxMREffDBB5owYYKFlXkXp9Op1NRUPfHEE5KkLl266Mcff9Srr75KcKqg119/Xddcc43i4+OtLsWrfPDBB/rnP/+p+fPnq3379kpPT9ekSZMUHx/Pz2I5vP322xo/fryaNGkiPz8/de3aVSNHjtSGDRusLg0Wo6seyu3OO+/Up59+qmXLlumyyy6zuhyvFBgYqJYtW6pbt26aPXu2UlJS9Je//MXqsrzGhg0bdOTIEXXt2lX+/v7y9/fX8uXL9de//lX+/v5yOBxWl+iV6tevr9atW2vHjh1Wl+JV4uLiCn3p0bZtW7o9VlBGRoa+/PJL3XbbbVaX4nX+/Oc/64EHHtDvfvc7dezYUbfeeqvuuecezZ492+rSvEqLFi20fPlynT59Wvv27dO6deuUl5en5s2bW12aV4qNjZUkHT582GP74cOH3fu8BcEJZWYYhu68804tWLBAX331lZo1a2Z1SXWG0+nU+fPnrS7Da1x11VXavHmz0tPT3UtqaqpGjRql9PR0+fn5WV2iVzp9+rR27typuLg4q0vxKn379i10a4aff/5ZiYmJFlXk3ebNm6fGjRtryJAhVpfidc6cOSO73fNPOz8/PzmdTosq8m5hYWGKi4vTiRMntHjxYt1www1Wl+SVmjVrptjYWC1dutS9LTs7W2vXrvW68d0+01Xv9OnTHt+i7t69W+np6WrQoIGaNm1qYWXeY+LEiZo/f77+/e9/Kzw83N0vNTIyUiEhIRZX5z0efPBBXXPNNWratKlOnTql+fPn6+uvv9bixYutLs1rhIeHFxpbFxYWpoYNGzLmrhzuvfdeDR06VImJiTp48KBmzJghPz8/jRw50urSvMo999yjPn366IknntAtt9yidevW6W9/+5v+9re/WV2a13E6nZo3b57GjBkjf3+f+ROlygwdOlSPP/64mjZtqvbt2+v777/X888/r/Hjx1tdmldZvHixDMNQcnKyduzYoT//+c9q06aNxo0bZ3VptVZpf2dPmjRJjz32mFq1aqVmzZpp2rRpio+P17Bhw6wruiKsntavpixbtsyQVGgZM2aM1aV5jaI+P0nGvHnzrC7Nq4wfP95ITEw0AgMDjUaNGhlXXXWV8cUXX1hdltdjOvLyGzFihBEXF2cEBgYaTZo0MUaMGGHs2LHD6rK80n/+8x+jQ4cORlBQkNGmTRvjb3/7m9UleaXFixcbkozt27dbXYpXys7ONu6++26jadOmRnBwsNG8eXNj6tSpxvnz560uzau8//77RvPmzY3AwEAjNjbWmDhxonHy5Emry6rVSvs72+l0GtOmTTNiYmKMoKAg46qrrvLK/85thsHtpAEAAACgJIxxAgAAAIBSEJwAAAAAoBQEJwAAAAAoBcEJAAAAAEpBcAIAAACAUhCcAAAAAKAUBCcAAAAAKAXBCQAAAABKQXACAKAcbDabFi5caHUZAIAaRnACAHiNsWPHymazFVoGDx5sdWkAgDrO3+oCAAAoj8GDB2vevHke24KCgiyqBgDgK2hxAgB4laCgIMXGxnosUVFRksxudK+88oquueYahYSEqHnz5vroo488Xr9582b95je/UUhIiBo2bKjbb79dp0+f9jjmjTfeUPv27RUUFKS4uDjdeeedHvuPHTum4cOHKzQ0VK1atdInn3xSvW8aAGA5ghMAoE6ZNm2abrrpJm3atEmjRo3S7373O23dulWSlJOTo0GDBikqKkrr16/Xhx9+qC+//NIjGL3yyiuaOHGibr/9dm3evFmffPKJWrZs6XGNRx55RLfccot++OEHXXvttRo1apSOHz9eo+8TAFCzbIZhGFYXAQBAWYwdO1bvvPOOgoODPbY/9NBDeuihh2Sz2fTHP/5Rr7zyintfr1691LVrV7388st67bXXdP/992vfvn0KCwuTJH322WcaOnSoDh48qJiYGDVp0kTjxo3TY489VmQNNptNDz/8sGbNmiXJDGP16tXT559/zlgrAKjDGOMEAPAqV155pUcwkqQGDRq413v37u2xr3fv3kpPT5ckbd26VSkpKe7QJEl9+/aV0+nU9u3bZbPZdPDgQV111VUl1tCpUyf3elhYmCIiInTkyJGKviUAgBcgOAEAvEpYWFihrnNVJSQkpEzHBQQEeDy32WxyOp3VURIAoJZgjBMAoE759ttvCz1v27atJKlt27batGmTcnJy3PtXrVolu92u5ORkhYeHKykpSUuXLq3RmgEAtR8tTgAAr3L+/HllZmZ6bPP391d0dLQk6cMPP1Rqaqouv/xy/fOf/9S6dev0+uuvS5JGjRqlGTNmaMyYMZo5c6aOHj2qu+66S7feeqtiYmIkSTNnztQf//hHNW7cWNdcc41OnTqlVatW6a677qrZNwoAqFUITgAAr7Jo0SLFxcV5bEtOTta2bdskmTPevffee7rjjjsUFxend999V+3atZMkhYaGavHixbr77rvVvXt3hYaG6qabbtLzzz/vPteYMWN07tw5vfDCC7r33nsVHR2tm2++uebeIACgVmJWPQBAnWGz2bRgwQINGzbM6lIAAHUMY5wAAAAAoBQEJwAAAAAoBWOcAAB1Br3PAQDVhRYnAAAAACgFwQkAAAAASkFwAgAAAIBSEJwAAAAAoBQEJwAAAAAoBcEJAAAAAEpBcAIAAACAUhCcAAAAAKAU/x9iRA1bMDwMlgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from collections import defaultdict\n", + "\n", + "log_dir = './loss-log/'\n", + "log_files = ['unet',\n", + "'mini',\n", + "'dice',\n", + "'focal',\n", + "'sgd',\n", + "'rmsprop',\n", + "'l1',\n", + "'l2',\n", + "'l1+l2',\n", + "]\n", + "log_ext = '.log'\n", + "\n", + "for log_file in log_files:\n", + " with open(log_dir + log_file + log_ext, 'r') as log_data:\n", + " train_loss_per_epoch = defaultdict(list)\n", + " val_loss_per_epoch = defaultdict(list)\n", + "\n", + " for line in log_data:\n", + " if \"TRAIN\" in line:\n", + " epoch = int(line.split('|')[0].split()[2])\n", + " loss = float(line.split('|')[2].split()[1])\n", + " train_loss_per_epoch[epoch].append(loss)\n", + "\n", + " elif \"VALID\" in line:\n", + " epoch = int(line.split('|')[0].split()[2])\n", + " loss = float(line.split('|')[2].split()[1])\n", + " val_loss_per_epoch[epoch].append(loss)\n", + "\n", + " train_loss_avg = [np.mean(train_loss_per_epoch[e]) for e in sorted(train_loss_per_epoch)]\n", + " val_loss_avg = [np.mean(val_loss_per_epoch[e]) for e in sorted(val_loss_per_epoch)]\n", + " # train_loss_avg = [np.mean(train_loss_per_epoch[e]) for e in train_loss_per_epoch]\n", + " # val_loss_avg = [np.mean(val_loss_per_epoch[e]) for e in val_loss_per_epoch]\n", + " epochs = range(1, len(train_loss_avg) + 1)\n", + "\n", + " max_y = np.maximum(train_loss_avg, val_loss_avg)\n", + "\n", + " plt.figure(figsize=(10, 5))\n", + " plt.plot(epochs, train_loss_avg, label='Train Loss', color='blue')\n", + " plt.plot(epochs, val_loss_avg, label='Validation Loss', color='red')\n", + "\n", + " plt.xlabel('Epoch')\n", + " plt.ylabel('Loss')\n", + " plt.title(log_file + ' - Loss per Epoch')\n", + " plt.legend()\n", + " plt.xticks(epochs)\n", + " plt.xlim([1.0, 10.5])\n", + " plt.show()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/unet_battery_test.ipynb b/unet_battery_test.ipynb new file mode 100644 index 0000000..399daa2 --- /dev/null +++ b/unet_battery_test.ipynb @@ -0,0 +1,1278 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\pinb\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "from glob import glob\n", + "import numpy as np\n", + "import torch\n", + "from torch.utils.data import Dataset\n", + "from PIL import Image\n", + "import matplotlib.pyplot as plt\n", + "from torchvision import transforms, datasets\n", + "import random\n", + "import cv2\n", + "\n", + "class CustomDataset(Dataset):\n", + " def __init__(self, list_imgs, list_masks, transform=None):\n", + " self.list_imgs = list_imgs\n", + " self.list_masks = list_masks\n", + " self.transform = transform\n", + "\n", + " def __len__(self):\n", + " return len(self.list_imgs)\n", + "\n", + " def __getitem__(self, index):\n", + " img_path = self.list_imgs[index]\n", + " mask_path = self.list_masks[index]\n", + "\n", + " img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)\n", + " mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)\n", + "\n", + " # 이미지 크기를 512x512로 변경\n", + " img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)\n", + " mask = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_NEAREST)\n", + "\n", + " img = img.astype(np.float32) / 255.0\n", + " mask = mask.astype(np.float32) / 255.0\n", + "\n", + " if img.ndim == 2:\n", + " img = img[:, :, np.newaxis]\n", + " if mask.ndim == 2:\n", + " mask = mask[:, :, np.newaxis]\n", + "\n", + " data = {'input': img, 'label': mask}\n", + "\n", + " if self.transform:\n", + " data = self.transform(data)\n", + " \n", + " return data\n", + "\n", + "def create_datasets(img_dir, mask_dir, train_ratio=0.7, val_ratio=0.2, transform=None):\n", + " list_imgs = sorted(glob(os.path.join(img_dir, '**', '*.bmp'), recursive=True))\n", + " list_masks = sorted(glob(os.path.join(mask_dir, '**', '*.bmp'), recursive=True))\n", + "\n", + " # combined = list(zip(list_imgs, list_masks))\n", + " # random.shuffle(combined)\n", + " # list_imgs, list_masks = zip(*combined)\n", + "\n", + " num_imgs = len(list_imgs)\n", + " num_train = int(num_imgs * train_ratio)\n", + " num_val = int(num_imgs * val_ratio)\n", + "\n", + " # train_set = CustomDataset(list_imgs[:num_train], list_masks[:num_train], transform)\n", + " # val_set = CustomDataset(list_imgs[num_train:num_train + num_val], list_masks[num_train:num_train + num_val], transform)\n", + " test_set = CustomDataset(list_imgs[num_train + num_val:], list_masks[num_train + num_val:], transform)\n", + "\n", + " # return train_set, val_set, test_set\n", + " return test_set\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Argument" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# 트렌스폼 구현하기\n", + "class ToTensor(object):\n", + " # def __call__(self, data):\n", + " # label, input = data['label'], data['input']\n", + "\n", + " # label = label.transpose((2, 0, 1)).astype(np.float32)\n", + " # input = input.transpose((2, 0, 1)).astype(np.float32)\n", + "\n", + " # data = {'label': torch.from_numpy(label), 'input': torch.from_numpy(input)}\n", + "\n", + " # return data\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " # 이미지가 이미 그레이스케일이면 채널 차원 추가\n", + " if label.ndim == 2:\n", + " label = label[:, :, np.newaxis]\n", + " if input.ndim == 2:\n", + " input = input[:, :, np.newaxis]\n", + "\n", + " # 채널을 첫 번째 차원으로 이동\n", + " label = label.transpose((2, 0, 1)).astype(np.float32)\n", + " input = input.transpose((2, 0, 1)).astype(np.float32)\n", + "\n", + " data = {'label': torch.from_numpy(label), 'input': torch.from_numpy(input)}\n", + "\n", + " return data\n", + "\n", + "class Normalization(object):\n", + " def __init__(self, mean=0.5, std=0.5):\n", + " self.mean = mean\n", + " self.std = std\n", + "\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " input = (input - self.mean) / self.std\n", + "\n", + " data = {'label': label, 'input': input}\n", + "\n", + " return data\n", + "\n", + "class RandomFlip(object):\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " if np.random.rand() > 0.5:\n", + " label = np.fliplr(label)\n", + " input = np.fliplr(input)\n", + "\n", + " if np.random.rand() > 0.5:\n", + " label = np.flipud(label)\n", + " input = np.flipud(input)\n", + "\n", + " data = {'label': label, 'input': input}\n", + "\n", + " return data\n", + " \n", + "# class Resize(object):\n", + "# def __init__(self, output_size):\n", + "# assert isinstance(output_size, (int, tuple))\n", + "# self.output_size = output_size\n", + "\n", + "# def __call__(self, data):\n", + "# label, input = data['label'], data['input']\n", + "\n", + "# h, w = input.shape[:2]\n", + "# if isinstance(self.output_size, int):\n", + "# if h > w:\n", + "# new_h, new_w = self.output_size * h / w, self.output_size\n", + "# else:\n", + "# new_h, new_w = self.output_size, self.output_size * w / h\n", + "# else:\n", + "# new_h, new_w = self.output_size\n", + "\n", + "# new_h, new_w = int(new_h), int(new_w)\n", + "\n", + "# input = cv2.resize(input, (new_w, new_h))\n", + "# label = cv2.resize(label, (new_w, new_h))\n", + "\n", + "# return {'label': label, 'input': input}\n", + "\n", + "class Rotate(object):\n", + " def __init__(self, angle_range):\n", + " assert isinstance(angle_range, (tuple, list)) and len(angle_range) == 2\n", + " self.angle_min, self.angle_max = angle_range\n", + "\n", + " def __call__(self, data):\n", + " label, input = data['label'], data['input']\n", + "\n", + " # NumPy 배열로 변환 (필요한 경우)\n", + " if not isinstance(input, np.ndarray):\n", + " input = np.array(input)\n", + " if not isinstance(label, np.ndarray):\n", + " label = np.array(label)\n", + "\n", + " # (H, W, C) 형태를 (H, W)로 변경 (필요한 경우)\n", + " if input.ndim == 3 and input.shape[2] == 1:\n", + " input = input.squeeze(2)\n", + " if label.ndim == 3 and label.shape[2] == 1:\n", + " label = label.squeeze(2)\n", + "\n", + " # 랜덤 각도 선택 및 회전 적용\n", + " angle = np.random.uniform(self.angle_min, self.angle_max)\n", + " h, w = input.shape[:2]\n", + " center = (w / 2, h / 2)\n", + " rot_matrix = cv2.getRotationMatrix2D(center, angle, 1.0)\n", + " input = cv2.warpAffine(input, rot_matrix, (w, h))\n", + " label = cv2.warpAffine(label, rot_matrix, (w, h))\n", + "\n", + " return {'label': label, 'input': input}\n", + " \n", + "# class Crop(object):\n", + "# def __init__(self, output_size):\n", + "# assert isinstance(output_size, (int, tuple))\n", + "# if isinstance(output_size, int):\n", + "# self.output_size = (output_size, output_size)\n", + "# else:\n", + "# assert len(output_size) == 2\n", + "# self.output_size = output_size\n", + "\n", + "# def __call__(self, data):\n", + "# label, input = data['label'], data['input']\n", + "\n", + "# h, w = input.shape[:2]\n", + "# new_h, new_w = self.output_size\n", + "\n", + "# top = np.random.randint(0, h - new_h)\n", + "# left = np.random.randint(0, w - new_w)\n", + "\n", + "# input = input[top: top + new_h, left: left + new_w]\n", + "# label = label[top: top + new_h, left: left + new_w]\n", + "\n", + "# return {'label': label, 'input': input}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# UNet Model (Origin)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "## 라이브러리 불러오기\n", + "import os\n", + "import numpy as np\n", + "\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch.utils.data import DataLoader\n", + "from torch.utils.tensorboard import SummaryWriter\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "## 네트워크 구축하기\n", + "class UNet(nn.Module):\n", + " def __init__(self):\n", + " super(UNet, self).__init__()\n", + "\n", + " # Convolution + BatchNormalization + Relu 정의하기\n", + " def CBR2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True): \n", + " layers = []\n", + " layers += [nn.Conv2d(in_channels=in_channels, out_channels=out_channels,\n", + " kernel_size=kernel_size, stride=stride, padding=padding,\n", + " bias=bias)]\n", + " layers += [nn.BatchNorm2d(num_features=out_channels)]\n", + " layers += [nn.ReLU()]\n", + "\n", + " cbr = nn.Sequential(*layers)\n", + "\n", + " return cbr\n", + "\n", + " # 수축 경로(Contracting path)\n", + " self.enc1_1 = CBR2d(in_channels=1, out_channels=64)\n", + " self.enc1_2 = CBR2d(in_channels=64, out_channels=64)\n", + "\n", + " self.pool1 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc2_1 = CBR2d(in_channels=64, out_channels=128)\n", + " self.enc2_2 = CBR2d(in_channels=128, out_channels=128)\n", + "\n", + " self.pool2 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc3_1 = CBR2d(in_channels=128, out_channels=256)\n", + " self.enc3_2 = CBR2d(in_channels=256, out_channels=256)\n", + "\n", + " self.pool3 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc4_1 = CBR2d(in_channels=256, out_channels=512)\n", + " self.enc4_2 = CBR2d(in_channels=512, out_channels=512)\n", + "\n", + " self.pool4 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc5_1 = CBR2d(in_channels=512, out_channels=1024)\n", + "\n", + " # 확장 경로(Expansive path)\n", + " self.dec5_1 = CBR2d(in_channels=1024, out_channels=512)\n", + "\n", + " self.unpool4 = nn.ConvTranspose2d(in_channels=512, out_channels=512,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec4_2 = CBR2d(in_channels=2 * 512, out_channels=512)\n", + " self.dec4_1 = CBR2d(in_channels=512, out_channels=256)\n", + "\n", + " self.unpool3 = nn.ConvTranspose2d(in_channels=256, out_channels=256,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec3_2 = CBR2d(in_channels=2 * 256, out_channels=256)\n", + " self.dec3_1 = CBR2d(in_channels=256, out_channels=128)\n", + "\n", + " self.unpool2 = nn.ConvTranspose2d(in_channels=128, out_channels=128,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec2_2 = CBR2d(in_channels=2 * 128, out_channels=128)\n", + " self.dec2_1 = CBR2d(in_channels=128, out_channels=64)\n", + "\n", + " self.unpool1 = nn.ConvTranspose2d(in_channels=64, out_channels=64,\n", + " kernel_size=2, stride=2, padding=0, bias=True)\n", + "\n", + " self.dec1_2 = CBR2d(in_channels=2 * 64, out_channels=64)\n", + " self.dec1_1 = CBR2d(in_channels=64, out_channels=64)\n", + "\n", + " self.fc = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0, bias=True)\n", + " \n", + " # forward 함수 정의하기\n", + " def forward(self, x):\n", + " enc1_1 = self.enc1_1(x)\n", + " enc1_2 = self.enc1_2(enc1_1)\n", + " pool1 = self.pool1(enc1_2)\n", + "\n", + " enc2_1 = self.enc2_1(pool1)\n", + " enc2_2 = self.enc2_2(enc2_1)\n", + " pool2 = self.pool2(enc2_2)\n", + "\n", + " enc3_1 = self.enc3_1(pool2)\n", + " enc3_2 = self.enc3_2(enc3_1)\n", + " pool3 = self.pool3(enc3_2)\n", + "\n", + " enc4_1 = self.enc4_1(pool3)\n", + " enc4_2 = self.enc4_2(enc4_1)\n", + " pool4 = self.pool4(enc4_2)\n", + "\n", + " enc5_1 = self.enc5_1(pool4)\n", + "\n", + " dec5_1 = self.dec5_1(enc5_1)\n", + "\n", + " unpool4 = self.unpool4(dec5_1)\n", + " cat4 = torch.cat((unpool4, enc4_2), dim=1)\n", + " dec4_2 = self.dec4_2(cat4)\n", + " dec4_1 = self.dec4_1(dec4_2)\n", + "\n", + " unpool3 = self.unpool3(dec4_1)\n", + " cat3 = torch.cat((unpool3, enc3_2), dim=1)\n", + " dec3_2 = self.dec3_2(cat3)\n", + " dec3_1 = self.dec3_1(dec3_2)\n", + "\n", + " unpool2 = self.unpool2(dec3_1)\n", + " cat2 = torch.cat((unpool2, enc2_2), dim=1)\n", + " dec2_2 = self.dec2_2(cat2)\n", + " dec2_1 = self.dec2_1(dec2_2)\n", + "\n", + " unpool1 = self.unpool1(dec2_1)\n", + " cat1 = torch.cat((unpool1, enc1_2), dim=1)\n", + " dec1_2 = self.dec1_2(cat1)\n", + " dec1_1 = self.dec1_1(dec1_2)\n", + "\n", + " x = self.fc(dec1_1)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# UNet Model (Mini)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "## 라이브러리 불러오기\n", + "import os\n", + "import numpy as np\n", + "\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch.utils.data import DataLoader\n", + "from torch.utils.tensorboard import SummaryWriter\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "## 네트워크 구축하기\n", + "class UNet(nn.Module):\n", + " def __init__(self):\n", + " super(UNet, self).__init__()\n", + "\n", + " # Convolution + BatchNormalization + Relu 정의하기\n", + " def CBR2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True): \n", + " layers = []\n", + " layers += [nn.Conv2d(in_channels=in_channels, out_channels=out_channels,\n", + " kernel_size=kernel_size, stride=stride, padding=padding,\n", + " bias=bias)]\n", + " layers += [nn.BatchNorm2d(num_features=out_channels)]\n", + " layers += [nn.ReLU()]\n", + "\n", + " cbr = nn.Sequential(*layers)\n", + "\n", + " return cbr\n", + "\n", + " # 수축 경로(Contracting path)\n", + " self.enc1_1 = CBR2d(in_channels=1, out_channels=64)\n", + " self.pool1 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc2_1 = CBR2d(in_channels=64, out_channels=128)\n", + " self.pool2 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc3_1 = CBR2d(in_channels=128, out_channels=256)\n", + " self.pool3 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc4_1 = CBR2d(in_channels=256, out_channels=512)\n", + " self.pool4 = nn.MaxPool2d(kernel_size=2)\n", + "\n", + " self.enc5_1 = CBR2d(in_channels=512, out_channels=1024)\n", + "\n", + " # 확장 경로(Expansive path)의 깊이 감소\n", + " self.dec5_1 = CBR2d(in_channels=1024, out_channels=512)\n", + " self.unpool4 = nn.ConvTranspose2d(in_channels=512, out_channels=512, kernel_size=2, stride=2)\n", + "\n", + " self.dec4_1 = CBR2d(in_channels=512 + 512, out_channels=256)\n", + " self.unpool3 = nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=2, stride=2)\n", + "\n", + " self.dec3_1 = CBR2d(in_channels=256 + 256, out_channels=128)\n", + " self.unpool2 = nn.ConvTranspose2d(in_channels=128, out_channels=128, kernel_size=2, stride=2)\n", + "\n", + " self.dec2_1 = CBR2d(in_channels=128 + 128, out_channels=64)\n", + " self.unpool1 = nn.ConvTranspose2d(in_channels=64, out_channels=64, kernel_size=2, stride=2)\n", + "\n", + " self.dec1_1 = CBR2d(in_channels=64 + 64, out_channels=64)\n", + " self.fc = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0, bias=True)\n", + " \n", + " # forward 함수 정의하기\n", + " def forward(self, x):\n", + " enc1_1 = self.enc1_1(x)\n", + " pool1 = self.pool1(enc1_1)\n", + "\n", + " enc2_1 = self.enc2_1(pool1)\n", + " pool2 = self.pool2(enc2_1)\n", + "\n", + " enc3_1 = self.enc3_1(pool2)\n", + " pool3 = self.pool3(enc3_1)\n", + "\n", + " enc4_1 = self.enc4_1(pool3)\n", + " pool4 = self.pool4(enc4_1)\n", + "\n", + " enc5_1 = self.enc5_1(pool4)\n", + "\n", + " dec5_1 = self.dec5_1(enc5_1)\n", + "\n", + " unpool4 = self.unpool4(dec5_1)\n", + " cat4 = torch.cat((unpool4, enc4_1), dim=1)\n", + " dec4_1 = self.dec4_1(cat4)\n", + "\n", + " unpool3 = self.unpool3(dec4_1)\n", + " cat3 = torch.cat((unpool3, enc3_1), dim=1)\n", + " dec3_1 = self.dec3_1(cat3)\n", + "\n", + " unpool2 = self.unpool2(dec3_1)\n", + " cat2 = torch.cat((unpool2, enc2_1), dim=1)\n", + " dec2_1 = self.dec2_1(cat2)\n", + "\n", + " unpool1 = self.unpool1(dec2_1)\n", + " cat1 = torch.cat((unpool1, enc1_1), dim=1)\n", + " dec1_1 = self.dec1_1(cat1)\n", + "\n", + " x = self.fc(dec1_1)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model - Load, Save" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "## 네트워크 저장하기\n", + "def save(ckpt_dir, net, optim, epoch):\n", + " if not os.path.exists(ckpt_dir):\n", + " os.makedirs(ckpt_dir)\n", + "\n", + " torch.save({'net': net.state_dict(), 'optim': optim.state_dict()},\n", + " \"%s/model_epoch%d.pth\" % (ckpt_dir, epoch))\n", + "\n", + "## 네트워크 불러오기\n", + "def load(ckpt_dir, net, optim):\n", + " if not os.path.exists(ckpt_dir):\n", + " epoch = 0\n", + " return net, optim, epoch\n", + "\n", + " ckpt_lst = os.listdir(ckpt_dir)\n", + " ckpt_lst.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))\n", + "\n", + " dict_model = torch.load('%s/%s' % (ckpt_dir, ckpt_lst[-1]))\n", + "\n", + " net.load_state_dict(dict_model['net'])\n", + " optim.load_state_dict(dict_model['optim'])\n", + " epoch = int(ckpt_lst[-1].split('epoch')[1].split('.pth')[0])\n", + "\n", + " return net, optim, epoch" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Hyper Parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# 훈련 파라미터 설정하기\n", + "lr = 1e-3\n", + "batch_size = 4\n", + "num_epoch = 10\n", + "\n", + "# base_dir = './2nd_Battery/unet'\n", + "# base_dir = './2nd_Battery/unet-mini'\n", + "base_dir = './2nd_Battery/unet-dice-loss'\n", + "# base_dir = './2nd_Battery/unet-focal-loss'\n", + "# base_dir = './2nd_Battery/unet-sgd'\n", + "# base_dir = './2nd_Battery/unet-rmsprop'\n", + "# base_dir = './2nd_Battery/unet-l1'\n", + "# base_dir = './2nd_Battery/unet-l2'\n", + "ckpt_dir = os.path.join(base_dir, \"checkpoint\")\n", + "log_dir = os.path.join(base_dir, \"log\")\n", + "\n", + "# 네트워크 생성하기\n", + "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", + "net = UNet().to(device)\n", + "\n", + "# 손실함수 정의하기\n", + "fn_loss = nn.BCEWithLogitsLoss().to(device)\n", + "\n", + "# Optimizer 설정하기\n", + "optim = torch.optim.Adam(net.parameters(), lr=lr)\n", + "\n", + "# 그 밖에 부수적인 functions 설정하기\n", + "fn_tonumpy = lambda x: x.to('cpu').detach().numpy().transpose(0, 2, 3, 1)\n", + "fn_denorm = lambda x, mean, std: (x * std) + mean\n", + "fn_class = lambda x: 1.0 * (x > 0.95)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - Dice Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "class DiceLoss(nn.Module):\n", + " def __init__(self, smooth=1e-6):\n", + " super(DiceLoss, self).__init__()\n", + " self.smooth = smooth\n", + "\n", + " def forward(self, preds, targets):\n", + " preds = torch.sigmoid(preds)\n", + " intersection = (preds * targets).sum()\n", + " dice = (2. * intersection + self.smooth) / (preds.sum() + targets.sum() + self.smooth)\n", + " return 1 - dice\n", + "\n", + "fn_loss = DiceLoss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - Focal Loss" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "class FocalLoss(nn.Module):\n", + " def __init__(self, alpha=0.8, gamma=2.0):\n", + " super(FocalLoss, self).__init__()\n", + " self.alpha = alpha\n", + " self.gamma = gamma\n", + "\n", + " def forward(self, preds, targets):\n", + " BCE = nn.functional.binary_cross_entropy_with_logits(preds, targets, reduction='none')\n", + " BCE_exp = torch.exp(-BCE)\n", + " focal_loss = self.alpha * (1 - BCE_exp) ** self.gamma * BCE\n", + " return focal_loss.mean()\n", + "\n", + "fn_loss = FocalLoss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - SGD" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "optim = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - RMSProp" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "optim = torch.optim.RMSprop(net.parameters(), lr=lr, alpha=0.9)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - L1" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "class L1Loss(nn.Module):\n", + " def __init__(self):\n", + " super(L1Loss, self).__init__()\n", + "\n", + " def forward(self, preds, targets):\n", + " return torch.mean(torch.abs(preds - targets))\n", + " \n", + "fn_loss = L1Loss().to(device)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TC - L2" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "class L2Loss(nn.Module):\n", + " def __init__(self):\n", + " super(L2Loss, self).__init__()\n", + "\n", + " def forward(self, preds, targets):\n", + " return torch.mean((preds - targets) ** 2)\n", + " \n", + "fn_loss = L2Loss().to(device)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "dir_testset = 'C:/Users/pinb/Desktop/testimages/testset'\n", + "dir_groundtruth = 'C:/Users/pinb/Desktop/testimages/maskset'\n", + "# transform = transforms.Compose([Normalization(mean=0.5, std=0.5), RandomFlip(), Rotate(angle_range=(-90, 90)), ToTensor()])\n", + "transform = transforms.Compose([Normalization(mean=0.5, std=0.5), ToTensor()])\n", + "test_set = create_datasets(dir_testset, dir_groundtruth, 0, 0, transform=transform)\n", + "\n", + "# data = test_set.__getitem__(0) # 이미지 불러오기\n", + "\n", + "# input_img = data['input']\n", + "# label = data['label']\n", + "\n", + "# # 이미지 시각화\n", + "# plt.subplot(121)\n", + "# plt.imshow(input_img.reshape(input_img.shape[0], input_img.shape[1]), cmap='gray')\n", + "# plt.title('Input Image')\n", + "\n", + "# plt.subplot(122)\n", + "# plt.imshow(label.reshape(label.shape[0], label.shape[1]), cmap='gray')\n", + "# plt.title('Label')\n", + "\n", + "# plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "loader_test = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0)\n", + "\n", + "# 그밖에 부수적인 variables 설정하기\n", + "num_data_test = len(test_set)\n", + "num_batch_test = np.ceil(num_data_test / batch_size)\n", + "\n", + "# 결과 디렉토리 생성하기\n", + "result_dir = os.path.join(base_dir, 'result')\n", + "if not os.path.exists(result_dir):\n", + " os.makedirs(os.path.join(result_dir, 'gt'))\n", + " os.makedirs(os.path.join(result_dir, 'img'))\n", + " os.makedirs(os.path.join(result_dir, 'pr'))\n", + " os.makedirs(os.path.join(result_dir, 'numpy'))\n", + "\n", + "net, optim, st_epoch = load(ckpt_dir=ckpt_dir, net=net, optim=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TEST: BATCH 0001 / 0250 | LOSS 0.3965\n", + "TEST: BATCH 0002 / 0250 | LOSS 0.3255\n", + "TEST: BATCH 0003 / 0250 | LOSS 0.3926\n", + "TEST: BATCH 0004 / 0250 | LOSS 0.3913\n", + "TEST: BATCH 0005 / 0250 | LOSS 0.3963\n", + "TEST: BATCH 0006 / 0250 | LOSS 0.3929\n", + "TEST: BATCH 0007 / 0250 | LOSS 0.4026\n", + "TEST: BATCH 0008 / 0250 | LOSS 0.3988\n", + "TEST: BATCH 0009 / 0250 | LOSS 0.4022\n", + "TEST: BATCH 0010 / 0250 | LOSS 0.3956\n", + "TEST: BATCH 0011 / 0250 | LOSS 0.3933\n", + "TEST: BATCH 0012 / 0250 | LOSS 0.3834\n", + "TEST: BATCH 0013 / 0250 | LOSS 0.3889\n", + "TEST: BATCH 0014 / 0250 | LOSS 0.3885\n", + "TEST: BATCH 0015 / 0250 | LOSS 0.3923\n", + "TEST: BATCH 0016 / 0250 | LOSS 0.3851\n", + "TEST: BATCH 0017 / 0250 | LOSS 0.3819\n", + "TEST: BATCH 0018 / 0250 | LOSS 0.3872\n", + "TEST: BATCH 0019 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0020 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0021 / 0250 | LOSS 0.3858\n", + "TEST: BATCH 0022 / 0250 | LOSS 0.3819\n", + "TEST: BATCH 0023 / 0250 | LOSS 0.3796\n", + "TEST: BATCH 0024 / 0250 | LOSS 0.3749\n", + "TEST: BATCH 0025 / 0250 | LOSS 0.3713\n", + "TEST: BATCH 0026 / 0250 | LOSS 0.3668\n", + "TEST: BATCH 0027 / 0250 | LOSS 0.3637\n", + "TEST: BATCH 0028 / 0250 | LOSS 0.3670\n", + "TEST: BATCH 0029 / 0250 | LOSS 0.3629\n", + "TEST: BATCH 0030 / 0250 | LOSS 0.3630\n", + "TEST: BATCH 0031 / 0250 | LOSS 0.3604\n", + "TEST: BATCH 0032 / 0250 | LOSS 0.3624\n", + "TEST: BATCH 0033 / 0250 | LOSS 0.3675\n", + "TEST: BATCH 0034 / 0250 | LOSS 0.3665\n", + "TEST: BATCH 0035 / 0250 | LOSS 0.3683\n", + "TEST: BATCH 0036 / 0250 | LOSS 0.3713\n", + "TEST: BATCH 0037 / 0250 | LOSS 0.3750\n", + "TEST: BATCH 0038 / 0250 | LOSS 0.3744\n", + "TEST: BATCH 0039 / 0250 | LOSS 0.3734\n", + "TEST: BATCH 0040 / 0250 | LOSS 0.3742\n", + "TEST: BATCH 0041 / 0250 | LOSS 0.3724\n", + "TEST: BATCH 0042 / 0250 | LOSS 0.3735\n", + "TEST: BATCH 0043 / 0250 | LOSS 0.3712\n", + "TEST: BATCH 0044 / 0250 | LOSS 0.3719\n", + "TEST: BATCH 0045 / 0250 | LOSS 0.3730\n", + "TEST: BATCH 0046 / 0250 | LOSS 0.3756\n", + "TEST: BATCH 0047 / 0250 | LOSS 0.3745\n", + "TEST: BATCH 0048 / 0250 | LOSS 0.3750\n", + "TEST: BATCH 0049 / 0250 | LOSS 0.3743\n", + "TEST: BATCH 0050 / 0250 | LOSS 0.3746\n", + "TEST: BATCH 0051 / 0250 | LOSS 0.3741\n", + "TEST: BATCH 0052 / 0250 | LOSS 0.3739\n", + "TEST: BATCH 0053 / 0250 | LOSS 0.3728\n", + "TEST: BATCH 0054 / 0250 | LOSS 0.3740\n", + "TEST: BATCH 0055 / 0250 | LOSS 0.3737\n", + "TEST: BATCH 0056 / 0250 | LOSS 0.3734\n", + "TEST: BATCH 0057 / 0250 | LOSS 0.3737\n", + "TEST: BATCH 0058 / 0250 | LOSS 0.3753\n", + "TEST: BATCH 0059 / 0250 | LOSS 0.3751\n", + "TEST: BATCH 0060 / 0250 | LOSS 0.3742\n", + "TEST: BATCH 0061 / 0250 | LOSS 0.3749\n", + "TEST: BATCH 0062 / 0250 | LOSS 0.3773\n", + "TEST: BATCH 0063 / 0250 | LOSS 0.3777\n", + "TEST: BATCH 0064 / 0250 | LOSS 0.3785\n", + "TEST: BATCH 0065 / 0250 | LOSS 0.3801\n", + "TEST: BATCH 0066 / 0250 | LOSS 0.3787\n", + "TEST: BATCH 0067 / 0250 | LOSS 0.3781\n", + "TEST: BATCH 0068 / 0250 | LOSS 0.3788\n", + "TEST: BATCH 0069 / 0250 | LOSS 0.3800\n", + "TEST: BATCH 0070 / 0250 | LOSS 0.3795\n", + "TEST: BATCH 0071 / 0250 | LOSS 0.3797\n", + "TEST: BATCH 0072 / 0250 | LOSS 0.3793\n", + "TEST: BATCH 0073 / 0250 | LOSS 0.3797\n", + "TEST: BATCH 0074 / 0250 | LOSS 0.3800\n", + "TEST: BATCH 0075 / 0250 | LOSS 0.3795\n", + "TEST: BATCH 0076 / 0250 | LOSS 0.3802\n", + "TEST: BATCH 0077 / 0250 | LOSS 0.3791\n", + "TEST: BATCH 0078 / 0250 | LOSS 0.3789\n", + "TEST: BATCH 0079 / 0250 | LOSS 0.3807\n", + "TEST: BATCH 0080 / 0250 | LOSS 0.3817\n", + "TEST: BATCH 0081 / 0250 | LOSS 0.3813\n", + "TEST: BATCH 0082 / 0250 | LOSS 0.3818\n", + "TEST: BATCH 0083 / 0250 | LOSS 0.3824\n", + "TEST: BATCH 0084 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0085 / 0250 | LOSS 0.3825\n", + "TEST: BATCH 0086 / 0250 | LOSS 0.3827\n", + "TEST: BATCH 0087 / 0250 | LOSS 0.3823\n", + "TEST: BATCH 0088 / 0250 | LOSS 0.3820\n", + "TEST: BATCH 0089 / 0250 | LOSS 0.3821\n", + "TEST: BATCH 0090 / 0250 | LOSS 0.3822\n", + "TEST: BATCH 0091 / 0250 | LOSS 0.3821\n", + "TEST: BATCH 0092 / 0250 | LOSS 0.3827\n", + "TEST: BATCH 0093 / 0250 | LOSS 0.3826\n", + "TEST: BATCH 0094 / 0250 | LOSS 0.3826\n", + "TEST: BATCH 0095 / 0250 | LOSS 0.3841\n", + "TEST: BATCH 0096 / 0250 | LOSS 0.3844\n", + "TEST: BATCH 0097 / 0250 | LOSS 0.3822\n", + "TEST: BATCH 0098 / 0250 | LOSS 0.3822\n", + "TEST: BATCH 0099 / 0250 | LOSS 0.3838\n", + "TEST: BATCH 0100 / 0250 | LOSS 0.3844\n", + "TEST: BATCH 0101 / 0250 | LOSS 0.3837\n", + "TEST: BATCH 0102 / 0250 | LOSS 0.3838\n", + "TEST: BATCH 0103 / 0250 | LOSS 0.3841\n", + "TEST: BATCH 0104 / 0250 | LOSS 0.3848\n", + "TEST: BATCH 0105 / 0250 | LOSS 0.3858\n", + "TEST: BATCH 0106 / 0250 | LOSS 0.3860\n", + "TEST: BATCH 0107 / 0250 | LOSS 0.3857\n", + "TEST: BATCH 0108 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0109 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0110 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0111 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0112 / 0250 | LOSS 0.3877\n", + "TEST: BATCH 0113 / 0250 | LOSS 0.3886\n", + "TEST: BATCH 0114 / 0250 | LOSS 0.3885\n", + "TEST: BATCH 0115 / 0250 | LOSS 0.3892\n", + "TEST: BATCH 0116 / 0250 | LOSS 0.3893\n", + "TEST: BATCH 0117 / 0250 | LOSS 0.3906\n", + "TEST: BATCH 0118 / 0250 | LOSS 0.3905\n", + "TEST: BATCH 0119 / 0250 | LOSS 0.3903\n", + "TEST: BATCH 0120 / 0250 | LOSS 0.3891\n", + "TEST: BATCH 0121 / 0250 | LOSS 0.3886\n", + "TEST: BATCH 0122 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0123 / 0250 | LOSS 0.3876\n", + "TEST: BATCH 0124 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0125 / 0250 | LOSS 0.3861\n", + "TEST: BATCH 0126 / 0250 | LOSS 0.3864\n", + "TEST: BATCH 0127 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0128 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0129 / 0250 | LOSS 0.3869\n", + "TEST: BATCH 0130 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0131 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0132 / 0250 | LOSS 0.3872\n", + "TEST: BATCH 0133 / 0250 | LOSS 0.3864\n", + "TEST: BATCH 0134 / 0250 | LOSS 0.3869\n", + "TEST: BATCH 0135 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0136 / 0250 | LOSS 0.3864\n", + "TEST: BATCH 0137 / 0250 | LOSS 0.3864\n", + "TEST: BATCH 0138 / 0250 | LOSS 0.3862\n", + "TEST: BATCH 0139 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0140 / 0250 | LOSS 0.3863\n", + "TEST: BATCH 0141 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0142 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0143 / 0250 | LOSS 0.3868\n", + "TEST: BATCH 0144 / 0250 | LOSS 0.3866\n", + "TEST: BATCH 0145 / 0250 | LOSS 0.3860\n", + "TEST: BATCH 0146 / 0250 | LOSS 0.3858\n", + "TEST: BATCH 0147 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0148 / 0250 | LOSS 0.3861\n", + "TEST: BATCH 0149 / 0250 | LOSS 0.3863\n", + "TEST: BATCH 0150 / 0250 | LOSS 0.3861\n", + "TEST: BATCH 0151 / 0250 | LOSS 0.3863\n", + "TEST: BATCH 0152 / 0250 | LOSS 0.3864\n", + "TEST: BATCH 0153 / 0250 | LOSS 0.3853\n", + "TEST: BATCH 0154 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0155 / 0250 | LOSS 0.3852\n", + "TEST: BATCH 0156 / 0250 | LOSS 0.3852\n", + "TEST: BATCH 0157 / 0250 | LOSS 0.3855\n", + "TEST: BATCH 0158 / 0250 | LOSS 0.3847\n", + "TEST: BATCH 0159 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0160 / 0250 | LOSS 0.3835\n", + "TEST: BATCH 0161 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0162 / 0250 | LOSS 0.3844\n", + "TEST: BATCH 0163 / 0250 | LOSS 0.3842\n", + "TEST: BATCH 0164 / 0250 | LOSS 0.3830\n", + "TEST: BATCH 0165 / 0250 | LOSS 0.3832\n", + "TEST: BATCH 0166 / 0250 | LOSS 0.3833\n", + "TEST: BATCH 0167 / 0250 | LOSS 0.3833\n", + "TEST: BATCH 0168 / 0250 | LOSS 0.3838\n", + "TEST: BATCH 0169 / 0250 | LOSS 0.3848\n", + "TEST: BATCH 0170 / 0250 | LOSS 0.3849\n", + "TEST: BATCH 0171 / 0250 | LOSS 0.3848\n", + "TEST: BATCH 0172 / 0250 | LOSS 0.3847\n", + "TEST: BATCH 0173 / 0250 | LOSS 0.3845\n", + "TEST: BATCH 0174 / 0250 | LOSS 0.3841\n", + "TEST: BATCH 0175 / 0250 | LOSS 0.3843\n", + "TEST: BATCH 0176 / 0250 | LOSS 0.3841\n", + "TEST: BATCH 0177 / 0250 | LOSS 0.3842\n", + "TEST: BATCH 0178 / 0250 | LOSS 0.3844\n", + "TEST: BATCH 0179 / 0250 | LOSS 0.3841\n", + "TEST: BATCH 0180 / 0250 | LOSS 0.3836\n", + "TEST: BATCH 0181 / 0250 | LOSS 0.3840\n", + "TEST: BATCH 0182 / 0250 | LOSS 0.3843\n", + "TEST: BATCH 0183 / 0250 | LOSS 0.3849\n", + "TEST: BATCH 0184 / 0250 | LOSS 0.3855\n", + "TEST: BATCH 0185 / 0250 | LOSS 0.3857\n", + "TEST: BATCH 0186 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0187 / 0250 | LOSS 0.3862\n", + "TEST: BATCH 0188 / 0250 | LOSS 0.3857\n", + "TEST: BATCH 0189 / 0250 | LOSS 0.3854\n", + "TEST: BATCH 0190 / 0250 | LOSS 0.3859\n", + "TEST: BATCH 0191 / 0250 | LOSS 0.3862\n", + "TEST: BATCH 0192 / 0250 | LOSS 0.3868\n", + "TEST: BATCH 0193 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0194 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0195 / 0250 | LOSS 0.3863\n", + "TEST: BATCH 0196 / 0250 | LOSS 0.3869\n", + "TEST: BATCH 0197 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0198 / 0250 | LOSS 0.3877\n", + "TEST: BATCH 0199 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0200 / 0250 | LOSS 0.3869\n", + "TEST: BATCH 0201 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0202 / 0250 | LOSS 0.3869\n", + "TEST: BATCH 0203 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0204 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0205 / 0250 | LOSS 0.3862\n", + "TEST: BATCH 0206 / 0250 | LOSS 0.3867\n", + "TEST: BATCH 0207 / 0250 | LOSS 0.3871\n", + "TEST: BATCH 0208 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0209 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0210 / 0250 | LOSS 0.3872\n", + "TEST: BATCH 0211 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0212 / 0250 | LOSS 0.3878\n", + "TEST: BATCH 0213 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0214 / 0250 | LOSS 0.3873\n", + "TEST: BATCH 0215 / 0250 | LOSS 0.3877\n", + "TEST: BATCH 0216 / 0250 | LOSS 0.3881\n", + "TEST: BATCH 0217 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0218 / 0250 | LOSS 0.3879\n", + "TEST: BATCH 0219 / 0250 | LOSS 0.3872\n", + "TEST: BATCH 0220 / 0250 | LOSS 0.3865\n", + "TEST: BATCH 0221 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0222 / 0250 | LOSS 0.3873\n", + "TEST: BATCH 0223 / 0250 | LOSS 0.3876\n", + "TEST: BATCH 0224 / 0250 | LOSS 0.3872\n", + "TEST: BATCH 0225 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0226 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0227 / 0250 | LOSS 0.3870\n", + "TEST: BATCH 0228 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0229 / 0250 | LOSS 0.3878\n", + "TEST: BATCH 0230 / 0250 | LOSS 0.3881\n", + "TEST: BATCH 0231 / 0250 | LOSS 0.3879\n", + "TEST: BATCH 0232 / 0250 | LOSS 0.3878\n", + "TEST: BATCH 0233 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0234 / 0250 | LOSS 0.3877\n", + "TEST: BATCH 0235 / 0250 | LOSS 0.3876\n", + "TEST: BATCH 0236 / 0250 | LOSS 0.3875\n", + "TEST: BATCH 0237 / 0250 | LOSS 0.3876\n", + "TEST: BATCH 0238 / 0250 | LOSS 0.3874\n", + "TEST: BATCH 0239 / 0250 | LOSS 0.3877\n", + "TEST: BATCH 0240 / 0250 | LOSS 0.3883\n", + "TEST: BATCH 0241 / 0250 | LOSS 0.3881\n", + "TEST: BATCH 0242 / 0250 | LOSS 0.3882\n", + "TEST: BATCH 0243 / 0250 | LOSS 0.3882\n", + "TEST: BATCH 0244 / 0250 | LOSS 0.3878\n", + "TEST: BATCH 0245 / 0250 | LOSS 0.3884\n", + "TEST: BATCH 0246 / 0250 | LOSS 0.3887\n", + "TEST: BATCH 0247 / 0250 | LOSS 0.3890\n", + "TEST: BATCH 0248 / 0250 | LOSS 0.3886\n", + "TEST: BATCH 0249 / 0250 | LOSS 0.3883\n", + "TEST: BATCH 0250 / 0250 | LOSS 0.3879\n", + "AVERAGE TEST: BATCH 0250 / 0250 | LOSS 0.3879\n" + ] + } + ], + "source": [ + "with torch.no_grad():\n", + " net.eval()\n", + " loss_arr = []\n", + "\n", + " for batch, data in enumerate(loader_test, 1):\n", + " # forward pass\n", + " label = data['label'].to(device)\n", + " input = data['input'].to(device)\n", + "\n", + " output = net(input)\n", + "\n", + " # 손실함수 계산하기\n", + " loss = fn_loss(output, label)\n", + "\n", + " loss_arr += [loss.item()]\n", + "\n", + " print(\"TEST: BATCH %04d / %04d | LOSS %.4f\" %\n", + " (batch, num_batch_test, np.mean(loss_arr)))\n", + "\n", + " # Tensorboard 저장하기\n", + " label = fn_tonumpy(label)\n", + " input = fn_tonumpy(fn_denorm(input, mean=0.5, std=0.5))\n", + " output = fn_tonumpy(fn_class(output))\n", + "\n", + " # 테스트 결과 저장하기\n", + " for j in range(label.shape[0]):\n", + " id = num_batch_test * (batch - 1) + j\n", + "\n", + " gt = label[j].squeeze()\n", + " img = input[j].squeeze()\n", + " pr = output[j].squeeze()\n", + "\n", + " plt.imsave(os.path.join(result_dir, 'gt', 'gt_%04d.png' % id), gt, cmap='gray')\n", + " plt.imsave(os.path.join(result_dir, 'img', 'img_%04d.png' % id), img, cmap='gray')\n", + " plt.imsave(os.path.join(result_dir, 'pr', 'pr_%04d.png' % id), pr, cmap='gray')\n", + " np.save(os.path.join(result_dir, 'numpy', 'gt_%04d.npy' % id), gt)\n", + " np.save(os.path.join(result_dir, 'numpy', 'img_%04d.npy' % id), img)\n", + " np.save(os.path.join(result_dir, 'numpy', 'pr_%04d.npy' % id), pr)\n", + "\n", + "print(\"AVERAGE TEST: BATCH %04d / %04d | LOSS %.4f\" %\n", + " (batch, num_batch_test, np.mean(loss_arr)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualize" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\pinb\\AppData\\Local\\Temp\\ipykernel_19912\\3510449017.py:45: RuntimeWarning: invalid value encountered in divide\n", + " precision = tp / (tp + fp) # precision = TP / (TP + FP)\n", + "C:\\Users\\pinb\\AppData\\Local\\Temp\\ipykernel_19912\\3510449017.py:46: RuntimeWarning: invalid value encountered in divide\n", + " recall = tp / (tp + fn) # recall = TP / (TP + FN)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "precision: 0.7764027600652067\n", + "recall: 0.7843549615385272\n", + "accuracy: 0.9770164763057941\n", + "f1: 0.7741721124958945\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAACaCAYAAACHSaGqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP6UlEQVR4nO2deXgUVdbG396XdKcT0iELJAHCEjEsAqIBFNSwiaDsuLHIiEJQtmEchm9YRIn7KMigoyOgMoAsMi4IssoAQZA9YQtICBCykaSz9n6/P5iq6e50J91JdzqdnN/z1JP0rVtVp+7pqnr71rnnChhjDARBEARBEAQRAAj9bQBBEARBEARBuAuJV4IgCIIgCCJgIPFKEARBEARBBAwkXgmCIAiCIIiAgcQrQRAEQRAEETCQeCUIgiAIgiACBhKvBEEQBEEQRMBA4pUgCIIgCIIIGEi8EgRBEARBEAEDiVcPWbt2LQQCAbKysvxtCkEQRKNHIBBgyZIlHm0zefJktGnTxif2EN7F2TNxwIABGDBggN9sIpo+JF4JogaWL1+O7du3+9sMgiAIgiD+i9jfBgQazz//PCZMmACZTOZvU4gGYPny5RgzZgyeeuopf5tCEAFJVVUVxGLPHjWfffYZrFarjywiCCLQoZ5XDxGJRJDL5RAIBP42hSAIF1itVuj1en+bEVD4qs3kcrnH4lUikVAHgYdUVFT42wSiEdBcvgckXj3EMb6nTZs2eOKJJ3DgwAH06tULCoUCXbp0wYEDBwAA27ZtQ5cuXSCXy9GzZ0+cOnWq2j43b96Mzp07Qy6XIzExEd9++y3FfDUAnM/kcjni4+Px6aefYsmSJfwPE4FAgIqKCqxbtw4CgQACgQCTJ0/2r9HNDM4fFy9exLhx4xAcHIywsDDMmjXLTmgJBALMnDkT69evx7333guZTIadO3f60XL/4Y02u3XrFl544QVERERAJpPh3nvvxRdffFHtWHq9HkuWLEHHjh0hl8sRFRWFUaNG4erVq3bHsY15LSsrw+zZs9GmTRvIZDK0bNkSAwcOxMmTJ/k6zu5/FRUVmDdvHmJiYiCTydCpUye89957YIzZ1ePOa/v27UhMTOTtb0rfB87H58+fxzPPPIPQ0FD069cPAPD111+jZ8+eUCgUaNGiBSZMmIAbN25U28evv/6Kxx9/HKGhoQgKCkLXrl3x0Ucf8evPnj2LyZMno127dpDL5YiMjMQLL7yAO3fuNNh5NgauX7+OGTNmoFOnTlAoFAgLC8PYsWOdjnspKSnBnDlz+O9269atMXHiRBQWFvJ1artmDhw4AIFAwGsIjqysLAgEAqxdu5Yvmzx5MlQqFa5evYrHH38carUazz77LADgP//5D8aOHYvY2FjIZDLExMRgzpw5qKqqqmY3d68IDw+HQqFAp06dsHDhQgDA/v37IRAI8O2331bb7l//+hcEAgHS0tI8bdZ6Q2EDXuDKlSt45pln8NJLL+G5557De++9h+HDh+OTTz7BX/7yF8yYMQMAkJqainHjxuHSpUsQCu/+bvjxxx8xfvx4dOnSBampqSguLsbUqVPRqlUrf55Sk+fUqVMYMmQIoqKisHTpUlgsFrz++usIDw/n63z11Vf4wx/+gN69e2PatGkAgPj4eH+Z3KwZN24c2rRpg9TUVBw9ehQrVqxAcXExvvzyS77Ovn378M0332DmzJnQarXN/sdfXdssLy8PDz74IC8Cw8PD8dNPP2Hq1KkoLS3F7NmzAQAWiwVPPPEE9u7diwkTJmDWrFkoKyvD7t27kZ6e7vJaefnll7FlyxbMnDkTnTt3xp07d3Do0CFcuHABPXr0cLoNYwwjRozA/v37MXXqVHTv3h27du3C/PnzcevWLfztb3+zq3/o0CFs27YNM2bMgFqtxooVKzB69GhkZ2cjLCzMOw3cCBg7diw6dOiA5cuXgzGGN998E3/9618xbtw4/OEPf0BBQQFWrlyJhx9+GKdOnUJISAgAYPfu3XjiiScQFRWFWbNmITIyEhcuXMAPP/yAWbNm8XV+//13TJkyBZGRkcjIyMA//vEPZGRk4OjRo83m7ePx48dx5MgRTJgwAa1bt0ZWVhZWr16NAQMG4Pz581AqlQCA8vJyPPTQQ7hw4QJeeOEF9OjRA4WFhfjuu+9w8+ZNaLXaOl8zNWE2mzF48GD069cP7733Hm/P5s2bUVlZienTpyMsLAzHjh3DypUrcfPmTWzevJnf/uzZs3jooYcgkUgwbdo0tGnTBlevXsX333+PN998EwMGDEBMTAzWr1+PkSNH2h17/fr1iI+PR1JSUj1auI4wwiPWrFnDALBr164xxhiLi4tjANiRI0f4Ort27WIAmEKhYNevX+fLP/30UwaA7d+/ny/r0qULa926NSsrK+PLDhw4wACwuLg4X59Os2X48OFMqVSyW7du8WWZmZlMLBYz28siKCiITZo0yQ8WEowxtnjxYgaAjRgxwq58xowZDAA7c+YMY4wxAEwoFLKMjAx/mNmoqG+bTZ06lUVFRbHCwkK78gkTJjCNRsMqKysZY4x98cUXDAD74IMPqtlgtVr5/wGwxYsX8581Gg1LSUmp8RwmTZpkd//bvn07A8DeeOMNu3pjxoxhAoGAXblyxe54UqnUruzMmTMMAFu5cmWNxw0UOB8//fTTfFlWVhYTiUTszTfftKt77tw5JhaL+XKz2czatm3L4uLiWHFxsV1dW79xfrZlw4YNDAA7ePAgX+b4TGSMsf79+7P+/fvX4wwbD87aIS0tjQFgX375JV+2aNEiBoBt27atWn2uXd25Zvbv319NJzDG2LVr1xgAtmbNGr5s0qRJDAD785//7JbdqampTCAQ2OmShx9+mKnVarsyW3sYY2zBggVMJpOxkpISviw/P5+JxWK7a7shobABL9C5c2e7Xx4PPPAAAODRRx9FbGxstfLff/8dAJCTk4Nz585h4sSJUKlUfL3+/fujS5cuDWF6s8RisWDPnj146qmnEB0dzZe3b98eQ4cO9aNlhCtSUlLsPr/yyisAgB07dvBl/fv3R+fOnRvUrsZMXdqMMYatW7di+PDhYIyhsLCQXwYPHgydTse/3t+6dSu0Wi2/X1tq6pULCQnBr7/+ipycHLfPZceOHRCJRHj11VftyufNmwfGGH766Se78uTkZLterK5duyI4OJi/9zYVXn75Zf7/bdu2wWq1Yty4cXZ+i4yMRIcOHbB//34Ad986Xbt2DbNnz+Z7Yjls/aZQKPj/9Xo9CgsL8eCDDwKAXYhHU8e2HUwmE+7cuYP27dsjJCTErh22bt2Kbt26VeudBP7XrnW9Zmpj+vTpNdpdUVGBwsJC9OnTB4wxPnyxoKAABw8exAsvvGCnVRztmThxIgwGA7Zs2cKXbdq0CWazGc8991yd7a4PJF69gKPTNRoNACAmJsZpeXFxMYC7sTTAXdHkiLMywjvk5+ejqqqK2j2A6NChg93n+Ph4CIVCu7iztm3bNrBVjZu6tFlBQQFKSkrwj3/8A+Hh4XbLlClTANy9fgDg6tWr6NSpk8eDsd555x2kp6cjJiYGvXv3xpIlS2oVldevX0d0dDTUarVd+T333MOvt8XxngwAoaGh/L23qWDrv8zMTDDG0KFDh2q+u3Dhgp3fACAxMbHGfRcVFWHWrFmIiIiAQqFAeHg4fzydTuejM2p8VFVVYdGiRXystVarRXh4OEpKSuza4erVq7W2aV2vmZoQi8Vo3bp1tfLs7GxMnjwZLVq0gEqlQnh4OPr37w/gf/7jrrva7E5ISMD999+P9evX82Xr16/Hgw8+6LdnJsW8egGRSORROXMYYEAQhGc466Ww7WkgquNOm3HpqZ577jlMmjTJ6X66du1aLzvGjRuHhx56CN9++y1+/vlnvPvuu3j77bexbds2r735aC73Xlv/Wa1WCAQC/PTTT07P3/btnjuMGzcOR44cwfz589G9e3eoVCpYrVYMGTKkWaUxe+WVV7BmzRrMnj0bSUlJ0Gg0EAgEmDBhgk/awVUPrMVicVouk8n4MTS2dQcOHIiioiK89tprSEhIQFBQEG7duoXJkyfXye6JEydi1qxZuHnzJgwGA44ePYqPP/7Y4/14CxKvfiQuLg7A3QFfjjgrI7xDy5YtIZfL3Wr35jIoobGTmZlp18t05coVWK3WZj8oqybq0mbh4eFQq9WwWCxITk6ucf/x8fH49ddfYTKZIJFIPLItKioKM2bMwIwZM5Cfn48ePXrgzTffdCle4+LisGfPHpSVldn1vl68eJFf39yJj48HYwxt27ZFx44da6wHAOnp6S59XFxcjL1792Lp0qVYtGgRX56ZmeldowOALVu2YNKkSXj//ff5Mr1ej5KSErt68fHxSE9Pr3Ff7lwzoaGhAFBt/45vF2ri3LlzuHz5MtatW4eJEyfy5bt377ar165dOwCo1W4AmDBhAubOnYsNGzagqqoKEokE48ePd9smb0NhA34kOjoaiYmJ+PLLL1FeXs6X//LLLzh37pwfLWvaiEQiJCcnY/v27XZxd1euXKkWOxcUFFTtJkI0PKtWrbL7vHLlSgCgGOUaqEubiUQijB49Glu3bnX6QCsoKOD/Hz16NAoLC532vrjq4bRYLNVeObds2RLR0dEwGAwu7Xr88cdhsViqHetvf/sbBAIBfQ8AjBo1CiKRCEuXLq3W/owxPsVVjx490LZtW3z44YfV7m3cdlzPreN+PvzwQ98Y34gRiUTV2mHlypXVekJHjx6NM2fOOE0pxW3vzjUTFxcHkUiEgwcP2q3/+9//7pHNtvvk/rdNhQbc/bH68MMP44svvkB2drZTezi0Wi2GDh2Kr7/+GuvXr8eQIUOg1WrdtsnbUM+rn1m+fDmefPJJ9O3bF1OmTEFxcTE+/vhjJCYm2glawrssWbIEP//8M/r27Yvp06fzD8bExEScPn2ar9ezZ0/s2bMHH3zwAaKjo9G2bVt+4B3RcFy7dg0jRozAkCFDkJaWhq+//hrPPPMMunXr5m/TGi11bbO33noL+/fvxwMPPIAXX3wRnTt3RlFREU6ePIk9e/agqKgIwN3XiF9++SXmzp2LY8eO4aGHHkJFRQX27NmDGTNm4Mknn6y277KyMrRu3RpjxoxBt27doFKpsGfPHhw/ftyuZ8uR4cOH45FHHsHChQuRlZWFbt264eeff8a///1vzJ49m1LY4W6v3htvvIEFCxYgKysLTz31FNRqNa5du4Zvv/0W06ZNwx//+EcIhUKsXr0aw4cPR/fu3TFlyhRERUXh4sWLyMjIwK5duxAcHIyHH34Y77zzDkwmE1q1aoWff/4Z165d8/dpNjhPPPEEvvrqK2g0GnTu3BlpaWnYs2dPtZRr8+fPx5YtWzB27Fi88MIL6NmzJ4qKivDdd9/hk08+Qbdu3dy6ZjQaDcaOHYuVK1dCIBAgPj4eP/zwAx+z7A4JCQmIj4/HH//4R9y6dQvBwcHYunWr05jvFStWoF+/fujRowemTZuGtm3bIisrCz/++KPdsxC4e82PGTMGALBs2TLPG9ObNHB2g4DHWaqsYcOGVasHoFo6GC7VxbvvvmtXvnHjRpaQkMBkMhlLTExk3333HRs9ejRLSEjw2XkQjO3du5fdd999TCqVsvj4ePb555+zefPmMblczte5ePEie/jhh5lCoWAAKG1WA8OlBDp//jwbM2YMU6vVLDQ0lM2cOZNVVVXx9Zxdb80Vb7RZXl4eS0lJYTExMUwikbDIyEj22GOPsX/84x929SorK9nChQtZ27Zt+XpjxoxhV69etTsOl07HYDCw+fPns27dujG1Ws2CgoJYt27d2N///ne7/TqmymKMsbKyMjZnzhwWHR3NJBIJ69ChA3v33XftUvrUdF5xcXFN5vrlfFxQUFBt3datW1m/fv1YUFAQCwoKYgkJCSwlJYVdunTJrt6hQ4fYwIEDeT907drVLpXYzZs32ciRI1lISAjTaDRs7NixLCcnp1rqs6aeKqu4uJhNmTKFabVaplKp2ODBg9nFixedfp/u3LnDZs6cyVq1asWkUilr3bo1mzRpkl3aOXeumYKCAjZ69GimVCpZaGgoe+mll1h6errTVFlBQUFO7T5//jxLTk5mKpWKabVa9uKLL/Ip42z3wRhj6enpvK/lcjnr1KkT++tf/1ptnwaDgYWGhjKNRmN3L/EHAsaaWAR7E6F79+4IDw+vFqNC+JannnoKGRkZzTK2qzGyZMkSLF26FAUFBX59RRVIUJsRBOELzGYzoqOjMXz4cPzzn//0qy0U8+pnTCYTzGazXdmBAwdw5swZDBgwwD9GNRMcp8nLzMzEjh07qN0JgiAIwoHt27ejoKDAbhCYv6CYVz9z69YtJCcn47nnnkN0dDQuXryITz75BJGRkXYJqAnv065dO37u7uvXr2P16tWQSqX405/+5G/TCIIgCKJR8Ouvv+Ls2bNYtmwZ7rvvPj5frD8h8epnQkND0bNnT3z++ecoKChAUFAQhg0bhrfeeqtJzcHdGBkyZAg2bNiA3NxcyGQyJCUlYfny5dWSuxMEQRBEc2X16tX4+uuv0b17d6xdu9bf5tzFX8G2H3/8MYuLi2MymYz17t2b/frrr/4yhagF8lVgQH4KDMhPgQP5KjAgPzU//BLzumnTJsydOxeLFy/GyZMn0a1bNwwePNijVBBEw0C+CgzIT4EB+SlwIF8FBuSnZoo/FHPv3r3tUplYLBYWHR3NUlNT/WEOUQPkq8CA/BQYkJ8CB/JVYEB+ap40eMyr0WjEiRMnsGDBAr5MKBQiOTkZaWlpTrcxGAx2s69YrVYUFRUhLCyMpu/0Eey/M7J44ivyU8NTFz8B5KuGhvwUGDDGUFZWBq1WS/e+Rg49owID7pqKjo6GUOi9l/0NLl4LCwthsVgQERFhVx4REcHPU+1Iamoqli5d2hDmEU5w11fkJ/9C11RgQH5q/Bw/ftyj5xT5yb+Qnxo/N27cQOvWrb22v4DINrBgwQLMnTuX/6zT6RAbG1vrdhEREQgNDUVubm61nJ4cAoGAn8PX9pcX979AIIBKpUL79u2hVCoBAHK5HEFBQZBKpZBIJAgODobZbIbZbIbJZILRaITBYIDZbAZjzG6xWq0wm80QCoUQCoU4e/asy9gczjbHX4TcZ71eD6vVWms7NBR19RPR8JCvAgNXfrpx4waCg4P9aFnTpLS0FDExMVCpVB5tR35qeDhfeQL5qeHh/KRWq7263wYXr1qtFiKRCHl5eXbleXl5iIyMdLqNTCaDTCZz+xhSqRTR0dGQyWS4desWjEYjADh9LSAQCJyKRIFAAKFQCK1Wi/j4eAQHB0MoFKKyshIymQxCoRAymQwKhQLBwcGwWq0wmUwwGAxgjMFoNKKsrAwmkwlWq5UXr1KpFGKxmK/bsWNHlJSUwGQyOT0Xzj5nZRKJxO4ViC/wxFee+onwHr6+pgjv4C0/BQcH08PWh3j6nCI/+Q/yU2Dg7bCMBs82IJVK0bNnT+zdu5cvs1qt2Lt3L5KSkrxyjNjYWEilUty6datGceeqpxUAxGIx2rRpg4SEBKjVaohEIohEIshkMlitVgiFQohEIgQFBfHnpVKpoFarERISgvDwcKjVaojFYggEAojFYgQHB0OtVkMmk0EikUAsFkOtViM6OrrG82EOM/hyQlgkEvk8Tqd79+4+9RXhHchPgQH5KTBoiOcU4R3ommqe+CVsYO7cuZg0aRJ69eqF3r1748MPP0RFRQWmTJnilf0XFhbyvZ/OXrsD1YWrrUBUKpXo0KEDWrZsyYtW7jW/TCaDwWCAVCqFTCaDVCrlg5BFIhEUCgW/L41Gw4cOiMViiEQiAHfnBxaLxZBKpbBarYiPj0dubm6NQtsxtIE7L64X11ekpKRg+vTpPvMV4R3IT4EB+Slw8PVzivAOdE01T/wiXsePH4+CggIsWrQIubm56N69O3bu3Fkt6Lqu6HQ6SCQS/rMrAWsLt16j0aBjx44IDQ21E63ceqFQCKlUCrlcDrlcDqvVCqvVCrFYzItUs9kMgUAAkUgElUrFx09xMapczCsAfvvY2FhcuXKlWi+rI7brGWNeHb3njNGjR6OiosJnviK8A/kpMCA/BQ6+fk4R3oGuqeaJgNWmlhohpaWl0Gg0Ndbhekw5bGNHnQlZoVCI8PBwtG/fHiqVin8lz4UHOKJWq6HRaHhxq1QqebHLGENVVRVMJhPEYjE/gEsqlfLruMFdBoMBFRUVMBqNSEtLQ1VVFS+2a3ON1WqFxWKBxWJxp9nqhE6nq3MskDt+IrxDffwEkK8aCm/5qb77IZzjrfYlP/keb7Qx+cn3+KqN/TLDVkNQ0yh8R1EokUjQtm1b3HPPPXx8q+NAKbFYzAtViUQCi8UCs9lcbd8WiwXl5eWwWq0QiUQoLy9HVVUVZDIZBAJBtVAGgUAAqVQKqVSKdu3aubSR+2ybscBkMvlUuBIEQRAEQTQ2AiJVVl3gRJ5IJKqxB9NZfKuzgVyccAUAhULBD9wym82QSCRgjMFisaCyshKMMVRUVAAA39tqNBphNBphsVh4e6xWK9+7CwBt2rTBzZs3UVJSUu1cuPqMMT6OliAIgiAIornRZMUrAF68ukKj0aBTp04ICQnhe1adva4XCoUQi8UQi+82l1wu5wdKcSmySktLUVFRwff4SiQSCAQCVFZW8qKTE8K2vcJc3KpEIoHVakWnTp1w7NixanU4MU49rQRBEARBNGeapHi1HZHPpbWyhcvf2rZtWz5/KxcmYLut4zZisRgWiwVWqxUKhQIGg4HvTQX+l21ApVJBIBCgvLycF6fcwCxuXxaLhRfD3D4tFgtiY2Nx4cIF6HQ6u8kNbHtsXZ0z9cYSBEEQBNHUaXIxr46DsZz1ckZGRiI+Ph5KpdLl7FW2YpYTwEqlEmKxmE9ybDAYUFJSAolEAo1Gg5CQEH4mCcYY5HI51Go1QkNDoVKp+AwF3AQDYrHY7rNcLodWq0Xv3r15e7nYWlfC1FF0EwRBEARBNGWaVM+rMwFn+8peJBIhKioKMTExkMvlAOx7WJ1lI+C2FQqFfLiAUChEVVUVH5JgtVpRVVUFlUqFyspKfkYvDovFAqlUCqVSCcYYTCYTP40scDculkuvZbVa0a5dO4hEIn5wV23nahuX25imiyUIgiAIgvA2Tarn1ZXQ417RR0dHIyoqChKJxG4Ali22PZm2PZq2KbMqKipQUVEBk8kEkUgEvV4Pk8kEvV7PTwnLTTig1+uh1+v5zAScELZYLPxfznahUAiDwYCQkBC0b9++VuHqaKdtPlqCIAiCIIimSJMRr65iVYG7PaPh4eHQarWQSCS8COV6OrneWcd9Oe6jsrKSF6oWiwUCgQBBQUHQ6/UwGo187y4385XRaITZbIZIJOLTa1ksFj5O1jZcgNtGIBBAqVTapc1ydp7ORLZt5gKCIAiCIIimSEArHdvZr2x7HZ0JWG6SAC5DgO0MV9yAKUc4QSiRSPh0WHq9nj+W7aQEZrOZF6eO08Bys2/Z9rIajUY+w4Btii6hUIgjR47g+PHjTm2pbakpuwJBEARBEESgE9DilRN7jrGeznpOi4qK+BhTTsDa9lTaZgOwRSwWIygoCGFhYXxvKrcdN4NWUFAQP4sWJ1K5qWC5VFoGgwFmsxlGo5E/flVVFeRyORhj/CQGZrMZx48fR05OTo29q67CG0jA+h6BQMAP2iMIgiCIxgRjjA9dbKoEtHjlsBWhrmI+TSYTcnNzIRKJ+MkFGGN8j6ejeOV6XFUqFcLDwyGTyVBQUACpVAqr1Qq9Xg+RSASxWAylUgmz2czHtnJTw9r2xnJpuziBKhQKERQUBKVSCblcjtLSUpw6dQoXLlxAeXl5tfNzdwFAoQM+QiQSoWvXrvjb3/6G1atXUzs3csLDw/H0009j2LBh/jaFIAjC51gsFty+fRvHjx/Hjz/+2KQHcAd0tgHHaVa5V/jOwgYYY8jPz0fr1q0BgB8wxQ3E4kIHrFYrHyagUqn4CQxycnJgNBqhVCr5HlyJRAKpVAqJRAKlUony8nIolUr+mNyALG7CAi73q9Vq5dNnXb9+HWfOnMGNGzdQWVkJkUiEioqKapkPHGNdbcsc4epQ3lfvERERgTfeeAOjRo1CixYtsH//fn+bRLhAJpNh3Lhx+NOf/oR7770Xn376KX788Ud/m0UQBOEzdDodzpw5g44dO+L++++HRqPxt0k+JaDFqzOB5izulRO5er0ehYWFiIqK4gdScb2hnICVSCSQyWQQi8WQSqVQKBSoqqriJw2wWCx8lgFu6lehUIgWLVqguLgYFRUVaNGiBR8uwL3C57azWCwIDg6GQqFAeno6Dhw4gPLycigUCojFYuj1ertz8US02mKbyYCoOwKBAH379sWKFStw33338eX79+9v0r9qA5VWrVrhww8/xFNPPcXHmqenp/vbLIIgCJ/AGMO1a9cAAH369OHve+Hh4U367WBAi1dHOMFqK2C5Mk7A5uTkICoqih+oxcWPisViBAcH8/lfubyuXDiAwWCAQqHgRaRarYZEIuF7YbkJCMrKyhAUFGSXH5Y7ltFoRHBwMKRSKfbt24eMjAxYrVZ+IFlQUBBKS0vrJVq5c6aUWfVHLpfj5ZdfxqJFixAaGsqXZ2VlYcOGDX60jHBEKBRi4MCBWLFiBTp27MiX5+bmYuvWrX60jCAIwjcYjUZcvXqVz6bEUVhY2OQ1QEDL8tp6XZ2ljiovL0dxcTFEIhHMZjPfexYUFMRnFOD2I5PJwBiDTqeDQCCAVCqFxWKBQqHgMwVwabYqKiqgVqtRVlaGyspKuyljuR7b0NBQCIVCfP/990hPT+fTZCkUCj7sgOsJdjYwizsnxzLb9rBdmvqX15fI5XJ89NFHePfdd+2Eq8lkwvLly3HlyhU/WkfYIhKJMHfuXHzzzTd2whUAQkND0aZNG/8YRriFyWTytwkEEXCYTCZkZ2cjLi7OTriaTCYsW7YMmZmZfrTO9wS0eHUH24wE3Odbt25BLP5fp3NQUBAEAoFd3KtGo+FDDbj0WFyIgFQqhUgkgslkglAohEQigVqt5gWwTqfjB3Nx+1QqlbBarThy5AgMBgPCwsL4eFm5XA6DwcDHutqKVmcClsMxNMLZuROeI5PJ8Pbbb+OFF16w+54AwI4dO7Bu3To/WUY4IhQKMXHiRLz++usIDg6utl4mk6Fly5Z+sIxwlx07dvjbBIIIKEwmE86fP4+4uDi7cTbA3evps88+Q0FBgZ+saxialHh11RPrOKhLp9OhsrKS7/HkYme5rAMc3Kt+27hYLlygsrISFRUVfLYCvV4Pi8UCpVKJsrIymM1mGAwGvrykpAT79+9Hfn4+NBoNFAoFZDIZpFIpIiMjERYWxueNdSVWaztv215Xom60aNECn3/+OWbMmFFNuALgvy+E/5FKpZgzZw5WrFgBhULhtI5AIMDYsWMhlUob2DrCXRwfvgRBuKa8vBzp6elISEiARCKptp6bhn7z5s3VpqpvSjQZ8VqbYOMEB9ezevv2bahUKr7MNkaVS29lsVj4lFoCgQByuRwmkwkVFRXQ6XSQyWR8DyxjjO9pFYlEKCkpgcFggNVqRUFBAU6fPg2RSIS4uDjI5XKoVCr06tULbdq0gV6vR1hYGFq3bo2QkBC3RKytYHV2/o7xv0TtREVFYdWqVXj22WedClcAGDBgAFatWoX27dtT2/oRtVqNt956C6mpqfx17AqVSuX0Jk80DgYMGIB//vOf/jaDIBo95eXlKC8vR9euXV3mGueeUVFRUU160HZAi9ea4j8B54KWS41VXFzMD9LiRCoHN6GAXq/nB3BxkxEIhUJUVVXxvaZcvBY3yxYnPLlcrRUVFSguLkZsbCzi4uJgNpuRm5sLs9mMkpISlJSUoLCwEDk5OejVqxfuv/9+JCYmuuyNcByE5uyvYxsRtdOmTRv88MMPmDBhQo1tJpFIMHXqVBw5cgSLFy9GbGxsA1pJAIBWq8Unn3yC2bNnuyVKk5OT8c477yAyMrIBrCM8hbumCIJwTXl5OW7duoWIiIgaJyLirqelS5eirKysyfa+BrR4tcU2PtTVOtseTYPBgKKiIvTo0QMA+NhUo9HIC1SpVAqj0QiLxQKVSgXGGD8Yi5sZi0uBxeWGDQoKglqtRmhoKNq1a4fMzExcvnwZFy5cwH/+8x+cPHkSOTk5CAkJQVZWFoxGI7RaLcRiMX777TeUlpZCIpEgIiICarUagHOR6ipEgARs3Zg+fTr/XbDF1S/X8PBwLF68GPv27UP//v2pjRuQJ598Es888wwf5sP9GHSFSqXCjBkzsHfvXvTr168BLSWc0ZR7gwIdi8WCmzdv+tsMwgm3b99Gp06d7O57XPpNZygUCrRs2dJuavqmRJMQr7a9ryKRqNprd8fPwF2Rd+nSJVy7do3/AhiNRhiNRj7nq1qthtFohEwmQ1BQED/Nq1Qq5adzFQgECAkJgdFoxJ07dyAUCqHVahEfHw+pVMrnf7158yYfC2s2m3HmzBkUFxejvLwcer0eKpUKVVVVOH/+PIqLi6FWq9GhQwdotVo+JtdZrytHTWETJKxqx3FWM4vFgg0bNmDw4ME4cuSIy+3i4+OxefNmDBs2jNq5gbDtddi8eTPuu+8+bNu2rdbtOnfujA0bNmDcuHEURuBHRCJRjdcU4T82b97MT+RDNC5sB6Ru3rwZvXr1wv/93//V+oySyWSwWCzIy8ur8Ud+oBHw4tVVPlSup5UbUOUYWsAYQ2lpKX7//Xd+NHJVVRW/XiwWo6qqCpWVlVCr1TAYDCgpKYFEIuFnrhCJRAgNDUVRUREyMzNx/fp15OTkoKqqiu/Jzc/Pt0upxS3FxcX8cQoLC1FSUoKQkBBERkaisLCQ//Xbrl07REREQCqV2olY2/OoKWyAcA43KxqHY9tt27YNU6dOxd69e5GamlrjPNHh4eFYt24dJk+ejKCgIJ/ZTNzFto3PnDmD3NxcrF+/HkVFRQCAkpIS3Lhxw+m2rVu3xpdffonVq1fj3nvvrfH1G+E7UlNT/W0C4YQJEyY4Lb9+/XoDW0KYTCZUVlbyn23F65kzZ9CnTx/06NEDp06dQmpqKnJzc13e96RSKdRqNY4ePYqsrKwm0RMb8OLVFe6kl9Lr9cjJyUFsbCw/KwX3y4Qxhjt37vCDtUpLSyESiaDVamGxWCAQCKBQKHD9+nUUFhYiKCgIQUFBuHnzJjQaDVq3bg2r1QqhUAilUonw8HCo1Wq7h2VlZSUfgF1UVISysjKYTCYolUrIZDL+dWhcXBzatWuHe+65ByEhIU6nwaW0We7Tvn17bN26FU8++SRfFh0dDcYYysvL8f7772PWrFn8j5m9e/fi+++/r3GfLVq04KchHTduHFq0aOHTc2guaDQaLFiwAO3bt+fLWrRogStXruDjjz/GN998AwD4/vvvsXz5cpjNZlRWVtYY5yWTyTB16lSkpaVh9erVSExMdDlAj/ANtV1PROMiLi7O3yY0KwoKCnDixAmcOHGCL9Pr9bh69SrWrFmDmJgYfPTRRxg3bhz+8pe/4ODBg9i0aVON9z2lUokHH3wQRUVF2L9/P3JycgK6J7bJildXvZG2Is5qteL69es4f/48oqKi7EIKDAYD/yqZCyUQCoUoKyvjJyvgfsFoNBqYzWZcvHgROp0OVVVVCAkJgVwuh0QiQc+ePaFQKFBeXs5nJgDA53bl9qfT6VBaWgrGGF+Wm5sLrVaL6OhomM1mdO3aFW3btuVn+3I8R+p9rZkePXrghx9+wBNPPGFXvmrVKsyePRujRo3Ca6+9htu3b/PrqqqqsHDhwlonJpBIJOjfvz82bNiAX375hZ+ilKgbISEheOutt/Dmm2/azXL29ttvo3fv3njllVdw9epVAHe/9x9//DHefPNNREZGIj4+vtb9q9VqvPjiizhy5Ag2bdqErl27Uk8sQRB+5ffff0dGRgZ69+6NyspK/i1taWkpjhw5gpiYGEybNo3XLDNnzsScOXPwySef1Pr8F4vF6NGjBx599FGYTCZs3LgR58+fD8ieWI/Ea2pqKu6//36o1Wq0bNkSTz31FC5dumRXR6/XIyUlBWFhYVCpVBg9ejTy8vLs6mRnZ2PYsGFQKpVo2bIl5s+fX6dfALU5qqb1XM9lWVkZMjMzERkZyc8FbDAYUFVVxQc6CwQCfkYtlUoFi8WCO3fuQKFQQK1WIy8vD7/99hufeUCn0+H999/Hrl278MADD0Cn0+HGjRtOvyCVlZWorKyESqWCXC6H0Wjk42i59SdOnOCzI+h0OnTv3h2hoaF2gtv2fBljfKiCbchCXXpfx44dW28/NQaEQiEGDRqEjRs3olOnTgDsYyczMjKwYsUK7N6926mfLl++jLFjx7o1mEEoFCIxMREbNmzA9OnTG0TA3rhxwyvXVGNBq9Xi888/x0svvQSBQIBnn30WBw8eRN++fflZ8hwxGAx477338MUXX/A+NBgMtc7gpFarMWrUKKxfvx5///vffeqvpuYnW+r6w9mbA4S89Yxqyn6qL94Yve4tPwFN5xlltVpx8uRJVFRU8IOAN2zYgIcffhiHDh1CXFwcnn/+eSQnJ9s9u2QyGf74xz+iX79+ePrpp3Hz5s1a73tCoRBxcXEYM2YMDh06hFmzZgVcu3kkXn/55RekpKTg6NGj2L17N0wmEwYNGoSKigq+zpw5c/D9999j8+bN+OWXX5CTk4NRo0bx6y0WC4YNGwaj0YgjR45g3bp1WLt2LRYtWuSx8bYTCtREba/Yr127hvPnz6N169YQiUSwWq38tK5CoZB/mAUHB/ODtlq2bAmRSITDhw/j0KFDkMlksFqtsFgsMBgMCA4OhtlsxpYtW5Cenu7UVs4ui8WC0tJSftIDTriKxWK0aNECUqkUBQUFvBA9fPgwn4/WWQ8zJ1RrCplwF2/4yd+IRCLMnz8fW7duRYcOHQDc/e6YzWaPhMrp06fx/PPPu4wrckQul+Ptt9/G888/Xye7PWHcuHFNwlcA0Lt3b+zduxejRo3iv8NlZWX46quv8Ouvv9a4bXl5OV599VW8/vrr+OabbzBv3rxat+FITEyEwWDwaS9EU/KTI3UNTfLmACFvPKOApu2n+uKNCT+8pSWApvGMslgs+OWXXxASEoLExEQ+o4DRaMTTTz+NBx98sMbtVSoVVqxYgeHDh2Pr1q344IMP3LrvyeVyPP/88xgxYkTgvXVi9SA/P58BYL/88gtjjLGSkhImkUjY5s2b+ToXLlxgAFhaWhpjjLEdO3YwoVDIcnNz+TqrV69mwcHBzGAwOD2OXq9nOp2OX27cuMEAMABMLBYziUTCpFIpv8hkMrv/uc/c/46LXC5n3bp1Y8uWLWNz5sxhEyZMYM899xybOHEimzJlCktJSWFLlixhS5cuZQsXLmSLFi1iU6dOZfHx8UypVLIWLVqwuLg4FhoayiIjI9mQIUPYkCFDWFhYGFMoFHaLXC7nj8nZJZFImEQiYTKZjMXGxrJOnTqxVq1asfj4eNaxY0fWrVs31r17d9ajRw82YsQI1rdvX9a+fXsWFxfHRCIRE4lETCgUVlsEAgETCAR8W9VlyczM9Iqf/LUEBQWxxYsXs6qqqmr2FhQUsMcee8zjfT744IPs3Llzbl8n06ZN8/l5evOa8tciEonYhAkT2I0bN+xsPXz4MOvTp4/H32WhUMhEIhGbPn06KywsdMtXr732WkD4SafTuXU+zR1Pn1E6nY785AfqoiW2bNnCAO88o/zpJ71ezy5evMju3LljV3748GHWr18/9vPPP3u0P4vFwo4fP85WrVrl9n3v6tWrHh3DE7hrytttXK+YV51OBwD84JQTJ07AZDIhOTmZr5OQkIDY2FikpaUBANLS0tClSxdERETwdQYPHozS0lJkZGQ4PU5qaio0Gg2/xMTE8OtsezSZTS+kbTwocxH/arvdtWvXcOLECYjFYsjlclgsFkgkEsjlcmi1WkRGRvKzX2VlZWHnzp3IycmBWCyGUqnkswtERkaipKQEaWlpdiMFbXH2qp87l7y8PFRUVEAikcBkMkGv1/OJho1GI7Kzs6FWq9G2bVt+ZiFn5+XqXD3Fdl74+vjJH7Rp0wYbNmzAokWL+MkmOG7evIk///nPOHjwoMf7PXr0KJ599lmcPHnSrd7/hpj+8t577/XaNeUPRCIRXn31VaxZs4bviSsrK8N3332Hl156CUeOHPH4O829Cfnkk08wbNgwbNq0CZcvX7bLKgLcvVbS09Oh0+kgFPp2GECg+ynQqMszCmiafuLawts4phlkjOH06dMe7aMufjp27BiAwH5G3bx5E2lpaWjXrh1/7tx974033sDkyZMxYMAAj/YpFArRq1cvPPTQQ/jrX/+KLVu21HrfC0TqHNxltVoxe/Zs9O3bF4mJiQCA3NxcSKVS/rU3R0REBHJzc/k6tjcFbj23zhkLFizA3Llz+c+lpaX8l457xQ+4FoW2cMLWcT0nFIVCIcLCwqDX62GxWBAeHg6tVgvGGAoLC3H27FmkpaWhrKwMEokEYrEYJpMJJpMJVquVzxvrzoPWWR1OwHJpvoKCgmAwGBAUFASlUgmVSsVPO3v79m2P4n6dDfDyhPr4qaFp164dPv/8czzyyCPV1un1evzhD3/Arl276rz/s2fP4rHHHsPQoUORlJSEhx56CO3bt682VanFYmmQNDPh4eF2nwPJV3K5HK+88gpef/11/keGTqdDSkoKNmzY4HZ4kCsYY/j111/x9NNPIygoCJ06dcJjjz2Gzp07IywsDJGRkZgyZQrkcrnL9vIWgeynQKOuzyig6fmpuLgYM2bMwIYNG7y+b8d73tGjRzFt2jScO3fOre3r6idn8a+B5Kfbt28jPT0djzzyCJ93mrvvbd++HVu3bsXgwYPrvP8uXbpg+fLl2LVrF9auXYv8/Hy0adMGsbGx0Gq1aNmyJaZMmcKHHLRr185bp9Yg1Fm8pqSkID09HYcOHfKmPU6RyWQu5/EF7AWsOzjrieV6TjnhqlAo+DRXJSUlKC0tRVpaGs6cOcPHSnILN7iLMVbvYHbOJrPZzAtq4O40swKBgJ+m1mq11viLyZlA9zW1+akhEIlEGDp0KFasWIG2bds6rfPdd99h37599T5WSUkJNmzYgA0bNkCpVCI2Nhb33XcfOnbsiJEjRyI+Ph5r1qzBzp07630sb9MYfAXc7R1///33MWLECD7+mDGG999/H//617+8+h1m/02FZpuCRiAQICgoCBaLpVrPRGOgsfgpEGlMzyh/whjDu+++6xPh6oykpCS3hSvQ/PxksVhw4cIFmM1mDBw4kNcutve9sWPH4tFHH633sUJCQjB+/HiMHz8elZWVyM7OxunTp3HixAns2rUL+fn5eOSRR/gfDYFEncTrzJkz8cMPP+DgwYN2wfaRkZEwGo18wn2OvLw8fl7xyMhIvrvfdj23ri5w+VS5QUo1PfAc19mGFYSHh/OhATdu3EDLli2Rk5ODU6dOIT09Hfn5+byAFIlEfAYCZjO6312449qGONRW33ZAmLvH4PBGntf6+snXJCQkYNmyZRgyZEi13gCOwsJCpKam1joC3VMqKytx8eJFXLx4EQDw/vvvIy4uDpcuXWqQUZwFBQV2nxu7r5RKJUaOHIlly5ZV+5Fx69YtfP755w3y44sTtA1FoPkpUKnPMwpoWn66efMm1qxZg+XLl/vblGrUx0+Ob3C59dz2jZHs7GycOnUKffr0qda7z933wsLCsGDBAq/PAqhUKpGQkICEhAQAdwfEZWVlISEhISBTOnoU4MUYw8yZM/Htt99i37591R46PXv2hEQiwd69e/myS5cuITs7G0lJSQD+96ssPz+fr7N7924EBwejc+fOdToJd+NabddxnzlBaLVakZOTg7y8PJw+fRpXr15FZmYmDhw4gN9++w15eXm8aJVKpfzChQh4GivnaLOjffWBOy+O+ghX25t4ff3kSwYNGoSff/4ZY8aMcSlcLRYLPvzwQ5w5c8bn9pSXlyMjI6PB0o9kZGR49ZryJW3atMGmTZuwdu1ap73jV65csTuXpkQg+SkQ8cYzCmhafrpy5Ypd3urGgDf81Lt3bwCB84y6fPkydDodhg0bVk24Anf9dOfOHcyaNQvdunXzuT0qlSqwJ2jxZHTX9OnTmUajYQcOHGC3b9/ml8rKSr7Oyy+/zGJjY9m+ffvYb7/9xpKSklhSUhK/3mw2s8TERDZo0CB2+vRptnPnThYeHs4WLFjgth3c6DXbRSAQVMs6wI3i5xaxWMwvIpGo2uhlsVjMVCoVCw0NZX379mXdu3dncXFxrGXLlkylUjGVSsXCw8NZTEwMe+CBB5hWq2UhISEsKCioWlYBVwuXZYCzQSQS2dnlaKPt4iyjgLPFsW0c26mm9Y7Lo48+6lU/+WLp1q0by87OrtWer776iimVygaxqaGXzp07e/2a8sXStWtXdunSpRptOXz4MJPJZH5v08bsJxrF7pz6PqO49iU/+RZvaImioiIGeOcZ5Ws/lZaW2p2bM44cOcKmTp3KKioqfGpLQ+OrNvZIvLq6Ia9Zs4avU1VVxWbMmMFCQ0OZUqlkI0eOZLdv37bbT1ZWFhs6dChTKBRMq9WyefPmMZPJ5LYdrh60tmmzXAlXTgS6OhcuvZRIJGJqtZp16tSJhYeHsxYtWrDIyEgWFxfHunfvztq3b88eeeQRFhERwZRKJS9Ma1tkMhlvjz/Eq6fLwIEDve4nby+zZ8+u1Zbdu3ez8PBwv4sXXy3nzp3zyTXl7WX48OHMarW6tKOqqoq99tprXv8eN5bFW34iUeQcV+3u7jOKa1/yk2+pr58Y+18be+MZ5Ws/ZWZm1nrf2717d7V0WU0BX7WxgLHAm0+0tLQUGo2mWrlQKKw2cIs5eTXv6pS51+vcjFrBwcFgjEEikcBsNvMxNqWlpVCr1ejbty82bNgAk8nk9lStXIys7Tpnr/Wdbeuuq1zVq4urdTodgoODPd4OcO0nb6LRaPDvf/8b/fv3d1nn/PnzGD58OH7//Xef2uJP6uMnoGF8JZfLsWnTJowYMcLpesYYVq9ejVdffTUgpyt0B2/5qb77IZzjrfYlP/keb7RxQ/jJaDSiqqrK5f2VMYZffvkF7dq1Q2xsrE9s8Ce+amPfJjVsYBwHTDkKVk44OsNWuAqFQoSEhMBsNvP7lMvlqKys5DMRmM1mbN26lR/4YytIHUWy4/FrE5GeiFTHugH4W6RevPjii3j44YerlVssFpSXl8NkMuG1115r0sI1UGjTpo1d3kZbiouLsWTJEixcuLDJCtdAh/xCEJ7z888/O81wYLFYkJ2djTfeeANisbhJCldf0qTEK/A/AWsr7GrLBGArXDnxyglVuVwOtVqNqqoqlJSUIC8vDzdu3EB+fj4/SMtZr25tPb6uRKxjj6w7KcCam2C1hZtKz5EPP/wQ999/Pz799FOUlZX5wTLCkdu3b1fLecsYw9mzZ1FUVISNGzeipKTEP8YRtRJw00c2A9LT0/1tAlELe/bswbVr1+zKGGPYtWsXRo4ciSNHjtAPwzoQoMPMXGO1Wvl0WVxvZ004ClduW247bsYtlUrF9+RxGQq4OZ7decXvKGod1zlL8cUYc/tL7a3e3EAjKyurWpnBYMDGjRtx8eJFzJ07N3BHUzYxTCYT8vLycM899/Bl2dnZGDRoENRqdaMbEU0QjZ2ioiJ/m0DUQnR0dLX7Xn5+Pu655x5s2rQJWq3W77lnA5Em91T35PW8rWC1/SwSiRAVFcWnOcrLy+MnIODEJGMMer2+xlm9PBWwtZ0XYY9UKsVDDz1UrTw/P5//pcvNfkb4nyeffLKav86dO4eCggKns+UQBFEzffv29bcJRA0YjUaEhYVVu+/l5eUhNja22gxihPs0ubABADXGtgL2otU2VID7XyKR8EK1RYsWkEqlEIvFTntBXcW3eiJca8IdEe7L7Rszffr0QZ8+faqVnzt3DsXFxX6wiHBFaGgo/vSnP9m9erZYLPj666/rPf0rQTRXHK8nonFx4cIF9OvXr5qfTp8+TQP56kmTFK814SxMwHERiUQoLy+HQqFAZWWl3WQGroSpO+Xu9K66kxXB2bnUVqepIRQKMWnSJMjlcrtyxhh++OEHEkSNjEGDBqFr1652ZQcPHsSOHTv8ZBFBNC0oJrlxYbVakZubiw4dOtiVHzp0CEKh0OOJjQh7mlXruRKrtusVCgUYY/wsTVyMa6tWrdzqwayt59Xd+u7g2NvbnHjiiScwatSoauU3btzA9u3bG94gwiVisRhTpkypdrO+fPkyDaYjCKJJsnPnTgQHB1e771VWVrrMukK4T7MRr85iWx0FrEgk4kMOrFYrjEYjzGYzlEolSkpK7F7LOOtN9WZ+1ZpwJlZtB6l50nsbiISEhOD99993+tpl48aNNPCnkTFkyJBqsXmlpaX47LPP/GQRQRCE7ygpKcGePXvQpUsXu/LS0lKUl5cjMjLST5Y1HZqFeK2tx5VDLpeDMQapVAqDwQChUAiJRAKVSoWcnByn6a6c/W9b5k3x2FTFqKfExsaiVatW1cpLSkrwzTff+MEiwhVarRazZs2CUqm0K9+7dy9Onz7tH6MIIsChsKjGTXl5OUaNGlXtvnfixAl07NjRT1Y1LZq8eHWVUaAmAWuxWCAQCGA0GiEWi5GTkwOj0ehWz6qvejxrCztoTkgkkmqvYnQ6HZYuXYpTp075ySrCGXFxcejXr59dTuTt27dj7ty5NMCEIOoIxUs2bkwmE3r06GF33ztw4AB0Ol213liibjS5VFmOOBOvrqioqOCncFMqlbBYLLh+/TqMRqPLbeqaRcBdPJltq7nQoUMHPscucDfX4cSJE7Fjx45m1Q6BQEVFhV0v0caNG/Hyyy+jtLTUj1YRBEH4Dp1OZxcasHv3biiVSjz55JNNdhB1Q9Pkf75xEwAA1UfnOwpPuVwOq9UKlUoFqVQKnU7HC1dnIQKeCFdPekg9yU7Q3BAKhXj88cd5HxqNRvzf//0fCddGiEAgwKRJk/hXZydPnsTs2bNJuBIE0WRhjEGr1UKhUAC4OwtaeXk5+vbtS8LVizQL8QrY97g6S18lFoshk8mgUCgglUqRn5+PiooKuzq2/zv7W59X+J724DZXoRYZGYmBAwfynzdu3Ih//vOfzbY9GjOxsbGYOHEigLs/MhYsWID8/Hw/W0UQBOE7DAYDtFotgLv3vbNnz2L48OEkXL1MkxevQO1CTyQSQSaTQalUQiaToby8nBeurvbnTAA7+3LWpcfVHZubIzKZDEuXLkVERASAuwmgFyxYUGNYB+EfQkND8cEHHyA6Ohp6vR7r1q3DwYMH/W0WQRCEz6iqqkJlZSXkcjn0ej2OHTuGoUOHQiKR+Nu0JkezEK/ORmZyolIoFCIsLAwajQYajQZ37tzBnTt3+G1qEpSusg805TRV/kIoFGLu3LmYPHkyiouL8e2332LEiBHIycnxt2mEE5YuXYoRI0Zg//79eOaZZzBjxgzo9Xp/m0UQBOETrFYrLl++DJVKhTNnzmDLli1o3bo1QkND/W1ak6TJD9gCwOdtFQqFdoKSmwpWLBajoqICOTk5/AjomqZ35XKq1tUWx5jbuuyjOSEQCPD0009jwYIFuHz5Mp599llkZGTAZDL52zTCCWKxGFFRUXj11Vexbt06VFZW+tskgiAIn8EYw5YtW6DRaHD48GEkJydj/Pjx1OPqQ5qFeAXu/iqyFY0SiQRhYWGQSCQwGo0oLi52mTvP3dmy3KW+29dHPAciw4cPx0cffYSbN29i9OjRuHjxor9NIpwQHByMlJQUREZGYt++ffj0008pHyVBEE2a0tJS7N+/H0ajEZmZmRg0aBDlcm0AmkXYAOA8TlWtVqOqqgoFBQVuC1d/09zCEWQyGWbNmoUrV65g6NChJFwbMTKZDD179sTu3bvx2WefkXAlCKLJYzKZEBISgqysLIwaNYqEawPRbHpeAftX9iaTCVevXuWngyUaJwaDARMnToTJZKKR6o2cgoICjB8/niYfIAii2RAWFoaEhAR07twZ4eHh/jan2dCsxCsX98ph+5B1V8C6yijgS+obZxvo3Lp1y98mEG5CwpUgiOYGlwGHaDiaTdgAR20ZA2rC1dSyvs7f5ji1LUEQBEEQRHOlWfW8AnXvJRUIBHbzFDcGmnNvLEEQBEEQzZNm1/PqDs56N2sr83WvqLPcsSRcCYIgCIJobtRLvL711lsQCASYPXs2X6bX65GSkoKwsDCoVCqMHj0aeXl5dttlZ2dj2LBhUCqVaNmyJebPnw+z2VwfUzzCmehzDAew/SwUCt3OzeorAduQ4QK2xxo7dqzf/ES4D/kpMLhx44Zf733Njbo+o8hPDUtd/QTQva+5UuewgePHj+PTTz9F165d7crnzJmDH3/8EZs3b4ZGo8HMmTMxatQoHD58GMDdAR3Dhg1DZGQkjhw5gtu3b2PixImQSCRYvnx5/c6mjtgKVmflHM2hp5MT69zEDkajsdH4iXAN+SkwGDduHKKjo8lXDUBdn1EA+akhqY+WAOje12xhdaCsrIx16NCB7d69m/Xv35/NmjWLMcZYSUkJk0gkbPPmzXzdCxcuMAAsLS2NMcbYjh07mFAoZLm5uXyd1atXs+DgYGYwGNw6vk6nYwDqtQgEAiYQCJhQKGRCoZCJRCImEomYWCx2unDruYXbztnC7bs+i6OdjuXeXGz3KxQKmUQiYWKxmAFgmZmZfvUTLe4t9fET+arhFm/d+3Q6ndu+bY7U9RnFtS/5qWGoj5bYsmVLve995Cff46s2rlPYQEpKCoYNG4bk5GS78hMnTsBkMtmVJyQkIDY2FmlpaQCAtLQ0dOnSxS61xODBg1FaWoqMjAynxzMYDCgtLbVb6guzyfnqque1pm1rwhuv+J3F0NZ23PocRyQS8Z9FIhGfYL5ly5Z8XX/4iXAPT/wEkK/8xb333uv3e19zoD7PKID81FDUx0/Hjh0DQM+o5orH4nXjxo04efIkUlNTq63Lzc2FVCpFSEiIXXlERARyc3P5Oo450bjPXB1HUlNTodFo+CUmJsZTs92CORkUxZV7up+6Hr8h4UIEuJheZ2nAbGksfiJqpjY/AeQrf+GYxJyuKe9T32cUQH5qCOrrJ2fxr+Sn5oNH4vXGjRuYNWsW1q9fD7lc7iubqrFgwQLodDp+uXHjhlf2W5NYdCVkfYE7x/GWHbbCVCQS8WJVLBbXu8fYV34ivA/5KjAgP3lGU3tGNVXIT0R98WjA1okTJ5Cfn48ePXrwZRaLBQcPHsTHH3+MXbt2wWg0oqSkxO4XU15eHiIjIwEAkZGRfHe/7XpunTNkMhlkMpknprqFbeiAJ9vUZV1N1GaDNwU0YwxCoZCfFlckEvEi1rY9IiIicPv2bbtt/eUnwjNq8xNAvvIXBQUFdp/pmvIu3nhGAeQnX+MNPzmb1Yr81HzwqOf1sccew7lz53D69Gl+6dWrF5599ln+f4lEgr179/LbXLp0CdnZ2UhKSgIAJCUl4dy5c3bz1O/evRvBwcHo3Lmzl07LfdwRhrX1wta3h7ahwgW4eFZOoAqFQr7HlTsHqVSKCRMmYNGiRQDsb+L+9BNRM+SnwCAjI6PR3PuaIt54RgHkJ1/jDT/17t0bAN37mi31HfFlO0KQMcZefvllFhsby/bt28d+++03lpSUxJKSkvj1ZrOZJSYmskGDBrHTp0+znTt3svDwcLZgwQK3j+ntkdG22QbcySbg7cwC7mQeqEumAW57kUjEfxaLxUwqlTKRSMQEAgGTyWRMLpczoVDIpFIpW7VqFauoqGBFRUUMAHv00UcbjZ9ocb3Ux0/kq4ZbOnfu7JV7H42Odh9PnlFc+5KfGh5PtYQ3n1HkJ9/hqzb2unitqqpiM2bMYKGhoUypVLKRI0ey27dv222TlZXFhg4dyhQKBdNqtWzevHnMZDK5fUxfiFfblFm+EK7cseqTNsuThROtXKov7jxlMhlTKpVMoVDw5QBYaGgo27ZtG7NYLHZtPHDgwEbjJ1pcL/XxE/mq4ZZz58555d5HD1v38eQZxbUv+anh8VRLePMZRX7yHb5qYwFjgZd5v7S0FBqNxqv7FAo9zxrmTtOx/8aR2tZ1J87W2b5t41JdHds2JMD2OFzIgONsYRKJBE8++SSWLVuG2NhYvj7XxjqdDsHBwbXa6wxf+IlwTn38BJCvGgpv+am++yGc4632JT/5Hm8+o8hPvsNXbVznGbaaO55ofk/r1mUAl22uWlshzn22jXXl9tGiRQvMnTsXL730EpRKJb/OYDBg3bp1bttMEARBEATRUJB4/S81iUZOLNbU4+lqG0dqEqa1CVdXdtTW2+ooXK1WKzp37ozU1FQ8+uijdmI3NzcXr7/+OjZu3FjLGRIEQRAEQTQ8JF7/izsC1d0wgfra4U7Pq20IgWNvKwC+t9V2AgKr1QqRSIRhw4Zh+fLlaNeund02J0+exLx583Ds2DHo9fp6nQdBEARBEIQvIPHqgL9DgG3Fc20xrq6Eq0gkskuBBdztbVWr1UhJScGsWbOgVqv5+iaTCVu2bMGSJUtw/fp1mEwmfnpYgiAIgiCIxgSJVxvc6fWsaVtP6zlODOBOXe5/4H9hArY9sFyYgC1WqxXt27fHm2++iaFDh9qtLy4uxrvvvovPP/8cJSUlMJvNfhfwBEEQBEEQriDx6oDjoKbaqI/Q47Z13IejDY4i1nbhhKurQVlCoRCPPPII3nrrLdxzzz12x7lw4QL+/Oc/Y//+/aiqqoLZbK7zuRAEQRAEQTQEJF4dsO0J9VTI1hXb1FWu1tl+dmdQFmMMKpUKU6dOxfz58xEaGsqvs1gs+Omnn7Bw4UJkZmbCYDBQmABBEARBEAEBiVcHPAkdaMjX685Eq2PuVm691WpFbGwsXn/9dTz11FOQSCT8duXl5Vi1ahVWrlyJgoICmEwmChMgCIIgCCJgIPHqBGcC1nHQVH0FX029rc7qOgsT4AZl2e5PIBCgb9++ePfdd9GtWze7/Vy7dg0LFy7Ejh07UFFRQWECBEEQBEEEHCReneAoXh0FpjeEq+0gK9tyx3q1hQnYimC5XI7nn38ef/nLXxAeHs5vY7VacfDgQbz22mtIT0+HXq+nMAGCIAiCIAISEq8ucJWiqq7C1bGntbZMA66Eq1gsrjYZAWMMERER+Otf/4qnn34aMpmMX6fX67FmzRq88847yMnJoTABgiAIgiACmoAUrw0hvhxH+Xtjf7X9D1Sf3pVbz4UJOK5jjOGee+7B22+/jV69esFgMMBgMAAAioqKsGzZMnz77bcoLS2FxWKpl90NuS3hGd6YHIPwPd7yU2lpqTfMIRzg2pX81Pjxhq/IT77HW9eUIwEpXu/cueNvE3wGY8ypyLRYLDCZTE63OXHiBJKTk31iT1lZGTQaTZ22bcp+amzUx08A+aqh8JafYmJivGUS4QTyU+DgjWcU+cn31PeaciQgxWuLFi0AANnZ2V5tDOLur6SYmBhkZ2dDIBAgOjq6zvsiP/kOb/oJIF/5CvJTYEB+ChzoGRUYePuaciQgxSv36lyj0SA4ONjP1jRNvNG25Cff4622JV/5FvJTYEB+ChzoGRUY+KpthbVXIQiCIAiCIIjGAYlXgiAIgiAIImAISPEqk8mwePFiu5RQhHfwZtuSn3yHt9uWfOUbyE+BAfkpcKBnVGDg67YVMMqRQxAEQRAEQQQIAdnzShAEQRAEQTRPSLwSBEEQBEEQAQOJV4IgCIIgCCJgIPFKEARBEARBBAwkXgmCIAiCIIiAISDF66pVq9CmTRvI5XI88MADOHbsmL9NarQsWbIEAoHAbklISODX6/V6pKSkICwsDCqVCqNHj0ZeXp7dPrKzszFs2DAolUq0bNkS8+fPh9lsrvXY5CfP8JevyE+eQX4KDOjeFzjQNRUY+POaqgYLMDZu3MikUin74osvWEZGBnvxxRdZSEgIy8vL87dpjZLFixeze++9l92+fZtfCgoK+PUvv/wyi4mJYXv37mW//fYbe/DBB1mfPn349WazmSUmJrLk5GR26tQptmPHDqbVatmCBQtqPC75yXP84Svyk+eQnwIDuvcFDnRNBQb+uqacEXDitXfv3iwlJYX/bLFYWHR0NEtNTfWjVY2XxYsXs27dujldV1JSwiQSCdu8eTNfduHCBQaApaWlMcYY27FjBxMKhSw3N5evs3r1ahYcHMwMBoPL45KfPMcfviI/eQ75KTCge1/gQNdUYOCva8oZARU2YDQaceLECSQnJ/NlQqEQycnJSEtL86NljZvMzExER0ejXbt2ePbZZ5GdnQ0AOHHiBEwmk117JiQkIDY2lm/PtLQ0dOnSBREREXydwYMHo7S0FBkZGU6PR36qOw3pK/JT3SE/BQZ07wsc6JoKDBr6mnJFQInXwsJCWCwWuxMHgIiICOTm5vrJqsbNAw88gLVr12Lnzp1YvXo1rl27hoceeghlZWXIzc2FVCpFSEiI3Ta27Zmbm+u0vbl1ziA/1Y2G9hX5qW6QnwIDuvcFDnRNBQb+uKZcIa77aRCBwNChQ/n/u3btigceeABxcXH45ptvoFAo/GgZ4Qj5KjAgPwUG5KfAgXwVGDQmPwVUz6tWq4VIJKo2ei0vLw+RkZF+siqwCAkJQceOHXHlyhVERkbCaDSipKTEro5te0ZGRjptb26dM8hP3sHXviI/eQfyU2BA977Aga6pwKAhrilXBJR4lUql6NmzJ/bu3cuXWa1W7N27F0lJSX60LHAoLy/H1atXERUVhZ49e0Iikdi156VLl5Cdnc23Z1JSEs6dO4f8/Hy+zu7duxEcHIzOnTs7PQb5yTv42lfkJ+9AfgoM6N4XONA1FRg0xDXlEs/Hm/mXjRs3MplMxtauXcvOnz/Ppk2bxkJCQuxGrxH/Y968eezAgQPs2rVr7PDhwyw5OZlptVqWn5/PGLub2iI2Npbt27eP/fbbbywpKYklJSXx23OpLQYNGsROnz7Ndu7cycLDw91KF0N+8gx/+Ir85Dnkp8CA7n2BA11TgYG/rilnBJx4ZYyxlStXstjYWCaVSlnv3r3Z0aNH/W1So2X8+PEsKiqKSaVS1qpVKzZ+/Hh25coVfn1VVRWbMWMGCw0NZUqlko0cOZLdvn3bbh9ZWVls6NChTKFQMK1Wy+bNm8dMJlOtxyY/eYa/fEV+8gzyU2BA977Aga6pwMCf15QjAsYY80r/MUEQBEEQBEH4mICKeSUIgiAIgiCaNyReCYIgCIIgiICBxCtBEARBEAQRMJB4JQiCIAiCIAIGEq8EQRAEQRBEwEDilSAIgiAIgggYSLwSBEEQBEEQAQOJV4IgCIIgCCJgIPFKEARBEARBBAwkXgmCIAiCIIiAgcQrQRAEQRAEETD8P+i82/JsqzLfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# base_dir = './2nd_Battery/unet'\n", + "# base_dir = './2nd_Battery/unet-mini'\n", + "base_dir = './2nd_Battery/unet-dice-loss'\n", + "# base_dir = './2nd_Battery/unet-focal-loss'\n", + "# base_dir = './2nd_Battery/unet-sgd'\n", + "# base_dir = './2nd_Battery/unet-rmsprop'\n", + "# base_dir = './2nd_Battery/unet-l1'\n", + "# base_dir = './2nd_Battery/unet-l2'\n", + "result_dir = os.path.join(base_dir, 'result')\n", + "\n", + "##\n", + "lst_data = os.listdir(os.path.join(result_dir, 'numpy'))\n", + "\n", + "lst_img = [f for f in lst_data if f.startswith('img')]\n", + "lst_gt = [f for f in lst_data if f.startswith('gt')]\n", + "lst_pr = [f for f in lst_data if f.startswith('pr')]\n", + "\n", + "lst_img.sort()\n", + "lst_gt.sort()\n", + "lst_pr.sort()\n", + "\n", + "avg_precision = 0\n", + "avg_recall = 0\n", + "avg_accuracy = 0\n", + "avg_f1 = 0\n", + "\n", + "##\n", + "id = 0\n", + "length = len(lst_img)\n", + "\n", + "for id in range(0, length):\n", + " img = np.load(os.path.join(result_dir,\"numpy\", lst_img[id]))\n", + " gt = np.load(os.path.join(result_dir,\"numpy\", lst_gt[id]))\n", + " pr = np.load(os.path.join(result_dir,\"numpy\", lst_pr[id]))\n", + "\n", + " img = np.uint8(img * 255)\n", + " gt = np.uint8(gt * 255)\n", + " pr = np.uint8(pr * 255)\n", + "\n", + " tp = gt & pr # True Positive: gt와 pr이 모두 1인 경우\n", + " fp = pr & ~gt # False Positive: pr은 1이지만 gt은 0인 경우\n", + " tn = ~gt & ~pr # True Negative: gt와 pr이 모두 0인 경우\n", + " fn = ~pr & gt # False Negative: pr은 0이지만 gt은 1인 경우\n", + "\n", + " precision = tp / (tp + fp) # precision = TP / (TP + FP)\n", + " recall = tp / (tp + fn) # recall = TP / (TP + FN)\n", + " accuracy = (tp + tn) / (tp + tn + fp + fn)\n", + " f1 = 2 * precision * recall / (precision + recall)\n", + "\n", + " min_value = np.min(gt)\n", + " max_value = np.max(gt)\n", + " normalized_f1 = ((f1 - min_value) / (max_value - min_value))\n", + "\n", + " s_tp = np.sum(tp) / len(tp.flatten())\n", + " s_fp = np.sum(fp) / len(fp.flatten())\n", + " s_tn = np.sum(tn) / len(tn.flatten())\n", + " s_fn = np.sum(fn) / len(fn.flatten())\n", + " s_precision = s_tp / (s_tp + s_fp)\n", + " s_recall = s_tp / (s_tp + s_fn)\n", + " s_accuracy = (s_tp + s_tn) / (s_tp + s_tn + s_fp + s_fn)\n", + " s_f1 = 2 * s_precision * s_recall / (s_precision + s_recall)\n", + "\n", + " avg_precision += s_precision\n", + " avg_recall += s_recall\n", + " avg_accuracy += s_accuracy\n", + " avg_f1 += s_f1\n", + "\n", + "\n", + "print(f\"precision: {avg_precision / length}\")\n", + "print(f\"recall: {avg_recall / length}\")\n", + "print(f\"accuracy: {avg_accuracy / length}\")\n", + "print(f\"f1: {avg_f1 / length}\")\n", + "\n", + "## 플롯 그리기\n", + "plt.figure(figsize=(8,6))\n", + "plt.subplot(161)\n", + "plt.imshow(img, cmap='gray')\n", + "plt.title('img')\n", + "\n", + "plt.subplot(162)\n", + "plt.imshow(gt, cmap='gray')\n", + "plt.title('gt')\n", + "\n", + "plt.subplot(163)\n", + "plt.imshow(pr, cmap='gray')\n", + "plt.title('pr')\n", + "\n", + "plt.subplot(164)\n", + "plt.imshow(precision, cmap='gray')\n", + "plt.title('precision')\n", + "\n", + "plt.subplot(165)\n", + "plt.imshow(recall, cmap='gray')\n", + "plt.title('recall')\n", + "\n", + "plt.subplot(166)\n", + "plt.imshow(accuracy, cmap='gray')\n", + "plt.title('accuracy')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# UNet\n", + "LOSS 0.2072\n", + "\n", + "# UNet - Mini\n", + "LOSS 0.1324\n", + "\n", + "# UNet - Dice Loss\n", + "LOSS 0.3879\n", + "\n", + "# UNet - Focal Loss\n", + "LOSS 0.0112\n", + "\n", + "# UNet - SGD Opt\n", + "LOSS 0.1787\n", + "\n", + "# UNEt - RMSProp Opt\n", + "LOSS 0.1666\n", + "\n", + "# UNet - L1 Loss\n", + "LOSS 0.0357\n", + "\n", + "# UNet - L2 Loss\n", + "LOSS 0.0241\n", + "\n", + "\n", + "# UNet - L1 + L2 Loss\n", + "LOSS 0.0550\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}