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A Deep Convolutional Neural Network for Wafer
Defect Identification on an Imbalanced Dataset in

Semiconductor Manufacturing Processes
Muhammad Saqlain , Qasim Abbas, and Jong Yun Lee

Abstract—Wafer maps contain information about various
defect patterns on the wafer surface and automatic classifi-
cation of these defects plays a vital role to find their root
causes. Semiconductor engineers apply various methods for
wafer defect classification such as manual visual inspection or
machine learning-based algorithms by manually extracting use-
ful features. However, these methods are unreliable, and their
classification performance is also poor. Therefore, this paper pro-
poses a deep learning-based convolutional neural network for
automatic wafer defect identification (CNN-WDI). We applied
a data augmentation technique to overcome the class-imbalance
issue. The proposed model uses convolution layers to extract
valuable features instead of manual feature extraction. Moreover,
state-of-the-art regularization methods such as batch normaliza-
tion and spatial dropout are used to improve the classification
performance of the CNN-WDI model. The experimental results
comparison using a real wafer dataset shows that our model out-
performed all previously proposed machine learning-based wafer
defect classification models. The average classification accuracy
of the CNN-WDI model with nine different wafer map defects
is 96.2%, which is an increment of 6.4% from the last highest
average accuracy using the same dataset.

Index Terms—Wafer maps, wafer defect identification, deep
learning, convolutional neural network, data augmentation, batch
normalization.

I. INTRODUCTION

SEMICONDUCTOR manufacturing processes should pro-
duce high-quality products and improve the wafer yield

to fulfill market demands. However, semiconductor fabrica-
tion is a very complex, costly, and time-consuming process
that involves various chemical, mechanical, and electrical
processes such as deposition, etching, photolithography, chem-
ical planarization, ion implantation, and diffusion [1]. After
applying all these processes, integrated circuits (ICs) are
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composed by making circuit structures on various layers of
the same wafer and joining them with wires. A wafer sur-
face should be very clean, and all layers of the circuit should
be perfectly aligned to produce high-quality ICs. However,
well-trained semiconductor engineers working with highly
automated and precise equipment in a very clean environment,
cannot produce error-free wafer dies [2]. At the end of the fab-
rication process, each wafer goes through a circuit prob test
where defective and defect-free wafer dies are differentiated
and the results of the test are represented in wafer map [WM],
which is a 2-dimensional (2D) wafer image.

Experienced process engineers are hired to define the wafer
defect patterns and give them unique labels such as Center,
Donut, Local, Edge-Loc, Edge-Ring, Scratch, Random, Near-
Full, and None [3]. Additionally, these defects become more
common due to increasing integration density of circuits and
the wafer design complexity. Each wafer defect occurs due
to specific abnormal behavior of some fabrication process.
For instance, Center defects may occur because of uniformity
issues in chemical and mechanical planarization, Edge-Loc
defects may occur because of thin film deposition, and Edge-
Ring defects occur due to etching problems [4]. So, WM
defect analysis provides crucial information to discover the
abnormal processes in semiconductor manufacturing and to
take measures to resolve them.

Accurate classification of WM patterns plays an important
role in identification of wafer defects, which will enhance the
semiconductor yield and quality by improving the wafer fab-
rication process. Previously, wafer defects were examined by
experienced process engineers using high-resolution micro-
scopes by measuring the physical parameters of the WMs
like location, size, and color. Moreover, various machine
learning (ML) based automated defect classification (ADC)
systems were introduced to reduce labor and fabrication costs
while improving quality and yield. Wu et al. [3] proposed
a model called WMFPR, which extracts Radon-based and
geometry-based features from WM and applies a support
vector machine (SVM) classifier to classify wafer defect pat-
terns. Piao et al. [5] extracted Radon transform features and
applied an ensemble-based decision tree model to classify var-
ious WM defects. Recently, Saqlain et al. [6] also proposed
an ensemble-based WM classification model called WMDPI,
which combines state-of-the-art ML classifiers such as ran-
dom forest (RF), logistic regression (LR), SVM, and artificial
neural network (ANN). Three different types of features were
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extracted from the WMs like Radon-based, geometry-based,
and density-based, but the classification accuracy of their
model was very poor for some specific defect classes and
a lot of manual inspections like features extractions and
hyperparameter setting were also needed.

Through previous studies, it can be found that most of the
WM defect classification models require manually extracted
useful features. To do so, experienced semiconductor engineers
first analyze the wafer surface and understand the physical
measurements, and then propose valuable features according
to the corresponding diagnosis issue. Such models are rela-
tively costly, time-consuming, and inefficient in the presence
of big WM datasets. However, a deep learning (DL) based
classifier such as convolutional neural networks (CNNs) does
not require manually extracted features for classification [7].
The CNN consists of three types of layers such as convolution
layers, pooling layers, and fully connected layers. Whereas the
convolution layer is typically used to extract features, the pool-
ing layer summarizes the extracted features by reducing the
size, and fully connected layers finally classify the input image
using the extracted features [8].

Recently, many studies have been conducted that used CNN
models to classify wafer defect patterns from the original WM
images [9]. For example, Nakazawa and Kulkarni [10] applied
CNN with a softmax activation function in the final layer to
classify 22 WM defect patterns. The dataset they used was
very small and highly imbalanced, so only simulated data was
used to train and validate the model. Kyeong and Kim [11]
also proposed a CNN model to classify single as well as mixed
defect patterns on the same WM. They developed multiple
CNN models and each model classifies a specific defect class
which was practically very expensive in sense of time and
computation. Cheon et al. [1] proposed a CNN model that
can extract features from the real wafer image and accurately
classified the input data into five different wafer defect classes.
Their model can also classify the unknown defect classes
after combining the CNN model with the k-nearest neighbors
(k − NN) algorithm. The datasets used by all these stud-
ies were very small and highly imbalanced. Whereas, CNN
models can get higher training accuracy in the presence of big-
ger datasets [12]. Additionally, imbalanced data distribution of
various classes may cause the CNN to be biased for the major-
ity data sample classes [13]. None of the previous studies has
defined a suitable solution to overcome the data imbalanced
issue for WM classification.

In this paper, we propose a deep layered CNN-based wafer
defect identification (CNN-WDI) model in a semiconductor
manufacturing process. We use a real wafer dataset called
WM-811K, which consists of nine different labeled classes of
WM defect patterns. All defect classes are equally important
because each of these occurs due to some specific abnormal
behavior of the fabrication process. Semiconductor engineers
classify the wafer defects to find the abnormal behavior behind
these defects. But the available dataset is highly imbalanced
that may ignore the classification of minority data sample
classes. Thus, we implement a data augmentation method to
increase the size of minority defect classes. Finally, we apply
the proposed CNN-WDI model on the balanced dataset of

9 defect classes. For example, batch normalization and spatial
dropout methods have been applied for regularization of the
model. The experimental results comparison shows that CNN-
WDI model has outperformed all previous models in terms of
classification accuracy. The average classification accuracy of
the proposed model with nine different WM defect patterns
is 96.2%, which is an increase of 6.4% from the last highest
average accuracy using the same dataset.

The remainder of this research study is organized as follows.
Section II introduces methods and material and Section III
describes the proposed CNN-WDI model. Section IV presents
experimental results and performance evaluation. Finally,
Section V summarizes the whole study and gives a plan for
our future research study.

II. METHODOLOGY

It is necessary to have a basic knowledge of CNN operations
to understand the phenomenon of automatic feature extraction
from WMs. This section briefly introduces the dataset, illus-
trates the data augmentation method, and describes the basic
structure of CNN model.

A. Dataset

The WM-811K dataset is a semiconductor dataset which
consists of 811,457 real WM images [3]. The wafer images
were collected from 46,293 lots in a circuit probe (CP) test
of semiconductor fabrication process. A single lot contains
25 WMs, so there should be 1,157,325 WMs in total (i.e.,
46,293 lots × 25 wafer/lot). Since not all lots have exact
25 WMs due to some sensor faults or other unknown reasons,
they were pruned from the dataset. The dataset also contains
additional information about each WM such as lot name, die
size, wafer index number, failure types, and training/test labels.
This is the largest publicly available WM dataset that can be
accessed at the MIR laboratory website [14]. There are dif-
ferent sizes of wafer images because of their two-dimensional
nature and having different pixel values along the length and
width of the image. We found total of 632 various sizes of
wafer images ranging from (6×21) to (300×202).

Domain experts were responsible for defining nine differ-
ent defect classes of WMs and assigning manual labels to
172,950 (21.3%) WMs in whole dataset. Unfortunately, the
labeled dataset is highly imbalanced and only None defect
class occupied 147,431 (85.2%) WMs of labeled dataset. The
other eight defect classes that contains 25,519 (14.8%) WMs
of labeled dataset as total are given as Center: 4294 (2.5%),
Donut: 555(0.3%), Edge-Loc: 5189 (3.0%), Edge-Ring: 9680
(5.6%), Local: 3593 (2.1%), Random: 866 (0.5%), Scratch:
1193 (0.7%), and Near-full: 149 (0.1%). Fig. 1 shows the
randomly selected wafer defect images from each class.

B. Data Preprocessing

Wafer defect images were sampled from real-world dataset
WM-811K which consists of 811,457 original WMs but only
21% of these wafers contain labeled classes. This dataset is
highly imbalanced which leads to overtraining the majority
data sample classes during the training of CNN-WDI model.
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Fig. 1. Typical examples of nine wafer defect classes.

Thus, we applied data augmentation using random rotation of
10-degree, horizontal flipping, and width shift, height shift,
shearing range, channel shifting, and zooming by 20%, 20%,
15%,10%, and 10%, respectively. Thus, we increased the
size of minority data sample classes up to 133%, 1702%,
93%, 178%, 1055%, 738%, and 6611% from the original
data of Center, Donut, Edge-Loc, Local, Random, Scratch,
and Near-Full classes, respectively. So, our new dataset con-
sists of 90,000 wafer defect images of nine different balanced
classes with 10,000 data samples of each class. The dataset
was distributed into training, validation, and testing subsets at
proportions of 65%, 20%, and 15%, respectively.

C. Data Augmentation

Our dataset is not equally distributed and some of the
wafer defect classes contain abundant data, while other classes
have very little data. This issue is known as class-imbalance
problem, and most image databases face this issue [15].
This unequal distribution of wafer defect classes can force
the classification model to get higher accuracy for majority
data sample classes during their training phase. Consequently,
the training accuracy of the minority data sample class will be
lower. The class-imbalance problem may also result in over-
fitting of training algorithm that means the algorithm will get
higher training accuracy but have low testing performance. As
all the wafer defects are equally important, it is necessary to
correctly identify all wafer defect classes including minority
data sample classes.

The easiest method to handle the class-imbalance and over-
fitting issues is to artificially increase the dataset of minority
data sample classes. This method is called data augmen-
tation and its commonly being used as model regulariza-
tion technique in recent studies [8], [16], [17]. Deep neural
networks (DNNs) can be trained well on massive amount of
image datasets due to recent increasing computation capabil-
ities. Thus, data augmentation becomes an effective method
to improve both diversity and size of dataset by randomly
augmenting the original data. Some common augmentation

methods include flipping the image vertically or horizontally,
shifting the image vertically or horizontally, and slightly rotat-
ing or zooming the image. This method helps the training
model to be highly tolerant to changes in the size, position,
and orientation of defects in the pictures.

D. Convolutional Neural Network (CNN)

Recently neural networks, especially multilayer percep-
tron (MLP) and DNNs which have multilayered neural
network structures got huge attention in the field of machine
learning [18]. The DNN can achieve better performance than
the traditional neural networks because it has more hidden
layers which alternatively means more learning ability. One
of the most popular DNN models is convolutional neural
network (CNN). CNN is an advanced form of MLP and
specially designed to classify the images [19]. It has many
advantages over traditional ML classifiers because of its sim-
ilarity to the human visual cortex and the ability to extract
and learn 2-dimensional (2D) features. Moreover, the number
of parameters of CNN are very few as compared to the same
size of DNN architecture. Most CNN models are trained using
a gradient-based learning approach to overcome the vanishing
gradient problem (VGP). The VGP badly affects the lower
layers of CNN and makes the training process very hard [20].

The basic architecture of CNN model consists of two major
parts: a feature extraction network and a classification network
as shown in Fig. 2. The original image enters the feature
extraction network, where it passes through sequential pairs of
convolutional (Conv) and pooling (Pool) layers for extraction
of useful features. These features are used by the classifica-
tion network to classify the input image. Each hidden layer
of the CNN takes the output of the previous layer as its input
and after processing, forwards its output to the next layer as
the input. Both convolution and pooling layers create a group
of 2D planes called feature maps. Higher-level features are
extracted from features generated by lower layers. Various
sizes of kernels are used in convolution layer to reduce the
dimension of extracted features. The output of the last layer of
the feature extraction network is used as the input of the clas-
sification network. The classification network contains a fully
connected feed-forward neural network because of its better
performance [21]. But these layers are comparatively expen-
sive in terms of network parameters because each node of
every layer is fully connected with each other. The final clas-
sification result is calculated by output layer or Softmax layer
by giving the maximum values to the accurate classes. More
details about each layer of CNN model can be found in [22].

III. PROPOSED DEEP CNN MODEL

A supervised learning approach is applied in the presence
of labeled dataset. The WM-811K is a labeled dataset with
9 defect classes and each class contains complex features or
patterns according to the defect nature. In this paper we con-
structed a 2D CNN model for WDI with one input layer, eight
Conv layers each with Batch normalization (BN), padding, and
Rectified Linear Unit (ReLU) activation, five Pool layers (four
stacking pairs of Conv-Pool-Conv), one dropout layer, two
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Fig. 2. The overall architecture of a convolutional neural network.

Fig. 3. Architecture of proposed deep CNN model for wafer defect identification.

fully connect (FC) layers, and one output layer. The layout of
the proposed CNN model for WDI is shown in Fig. 3.

The first Conv layer extracts the features from input train-
ing wafer images of size (224×224). Each Conv layer contains
a set of learnable filters to extract unique feature maps. The
number of filters increases with increasing depth of the Conv
layer, so the number of feature maps also increases. However,
feature maps become smaller and complex due to the Pool
layer in deeper network. The proposed CNN-WDI model
adopts 16, 32, 64, and 128 feature maps for the first, second,
third, and fourth stacking pairs, respectively. As the number of
stacking pairs increases, two results are induced: 1) the abil-
ity of CNN model to extract more distinct features, which is
significant for WDI, is increased, and 2) the chance of loss of
information due to small feature map size is reduced.

In this model, each Conv and Pool layer consists of sub-
sampling filters of size 3×3 and 2×2, respectively. The small
filter size assures the extraction of detailed features. The ReLU
activation function was applied in all layers except Pool and
output layers. The ReLU was proposed to solve the VGP
during training process of deep learning models [8]. It sim-
ply keeps all the values above zero unchanged and replaces
all negative values with zero. Although, the ReLU function
significantly reduces the VGP at the start of training, but it
doesn’t guarantee that the same problem will not come back
during further training. So, we used BN operation to address
the VGP throughout the whole training process of the CNN
model. The BN operation was designed to reduce the shift of
internal covariance of DNNs. In other words, it lets the CNN
model learn the optimal mean and scale of each input of the

Conv layer by normalizing and zero-centering. The more detail
of the BN method can be found in [23].

For regularization of the CNN model, Dropout method is
used which is a very simple but effective approach to prevent
overfitting [24]. It improves the generalization performance of
the network by avoiding activations from becoming highly
correlated, which in turn leads to overfitting [25]. The main
idea is to randomly remove or drop-out neurons and their
connections by zeroing the activation of these neurons during
training with some probability pdrop. We applied an advanced
form of dropout called SpatialDropout (SD), proposed by
Tompson et al. [26]. The standard dropout method fails to
get required results when the network is fully convolutional,
and activations of the feature maps are strongly correlated.
The SD dropped-out entire feature maps of size nf × H × W
from the Conv layer which are then not used by pooling oper-
ation. Therefore, the pixels in the SD feature map are either all
activated or all deactivated. Thus, SD helps to promote inde-
pendence of feature maps of the Conv layer. We applied the
SD function between the last Conv layer and last pooling layer
with a rate of 0.2, that means 20% of the randomly selected
nodes will be dropped-out for each weight update cycle.

Zero padding was applied in all Conv layers to make
sure that the dimensions of input and output feature
maps are same. The Softmax activation function was
applied to the output layer of our model. In addition,
the Adam optimization method, which combines the con-
cepts of Momentum optimization and root mean squared
prop (RMSProp), was selected as the optimizer. This opti-
mizer helps to achieve higher accuracy and improve training
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TABLE I
PROPOSED DEEP CNN MODEL PARAMETERS

process of the CNN model [27]. Besides these, after many
attempts, some other parameters like batch size and the num-
ber of epochs were assigned 100 and 20, respectively. The
smaller batch size improves the generalization ability of the
CNN model by computing an approximation of the gradi-
ent value and then updating the other parameters [28]. The
detailed parameters of CNN-WDI model are given in Table I.

IV. EXPERIMENTS AND DISCUSSION

In this section, we describe the training of the proposed
CNN-WDI model, and its performance is compared with
previously proposed models using various performance
measures.

A. Training of CNN-WDI

The training data was used to train the parameters of
proposed CNN-WDI model which helps to reduce the loss
function. We applied the categorical cross-entropy as our
loss function to measure the loss function between estimated
output probability distribution and actual class probability dis-
tribution. Batch normalization and spatial dropout with the
probability of 0.2 were used for the regularization of the
model. During the training, we applied backpropagation algo-
rithm to calculate the gradient of loss function. Moreover,
Adam Stochastic optimizer was applied to minimize the loss
function with the learning rate and batch size of 0.001 and
100, respectively. The validation dataset is used to evalu-
ate the model by fine-tuning its various hyperparameters. We
evaluated the classification accuracy of our trained CNN-
WDI model using this dataset. A well-trained deep learning
model not only gets higher classification accuracy for train-
ing data but also for validation data. When we have all
done for our training the model, next we have checked that
how accurately it performs with testing dataset. The test-
ing dataset is totally unseen for the model and it provides
an unbiased evaluation of the final CNN-WDI model on the
training dataset.

The experiment was conducted on the personal com-
puter with the following hardware specifications: Intel Xeon
CPU E5-2696 v5 @ 4.40 GHz, 512 GB RAM, and
NVIDIA GeForce GTX 1080 24 GB. The model was
developed using TensorFlow [29] and Keras [30] libraries in
Jupyter Notebook [31], which can handle different versions of
Python language.

B. Performance Measures

The proposed CNN-WDI model is evaluated using different
performance measures like accuracy, precision, recall, and F1-
score. The accuracy of a classifier defines that how often it
correctly predicts from whole data and defined as equation (1).

Accuracy = TP + TN

TP + FP + FN + TN
(1)

where TP, FP, FN, and TN show the true positive, false pos-
itive, false negative, and true negative values, respectively.
Both precision and recall are objection functions of any ML
classifier which are defined as follows.

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

Equations (2) and (3) show that both performance measures
are inversely proportional to each other and each of them has
various classification measuring qualities. While, F1-score cal-
culates the harmonic mean of precision and recall, and it is
defined as follows.

F1 − score = 2 × Precision × Recall

Precision + Recall
(4)

Equation (4) shows that F1 − score is the interpretation
between actual and predicted probabilities. If these probabil-
ities are close to each other than F1 − score will show the
higher result and vice versa.
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TABLE II
PERFORMANCE EVALUATION OF CNN-WDI FOR BALANCED AND IMBLANCED DATASETS (%)

C. CNN-WDI Results and Analysis

Table II presents the classification results of the CNN-WDI
model using the original imbalanced dataset and the aug-
mented balanced dataset. It can be seen in Table II that the
proposed model got a very high value of precision, recall, and
F1-score for all defect pattern classes for a balanced dataset.
But the same model performed very poorly for most of the
minority classes in the presence of an imbalanced dataset.
For instance, the values of F1-score of minority classes like
Near-Full, Scratch, and Local defect classes are only 74.2%,
76.6%, and 82.1%, respectively, which are comparatively very
low. Moreover, this model got the value of the FI-score of
None class up to 100% because it is a majority class of imbal-
anced dataset. The average values of the precision, recall, and
F1-score of the CNN-WDI model for the balanced dataset
are 96.24%, 96.24%, and 96.22%, respectively. Whereas, the
same value for the imbalanced dataset are 90.32%, 86.39%,
and 87.72, respectively. Thus, the data augmentation method
improves the performance measure values of precision, recall,
and F1-score up to 6.6%, 11.4%, and 9.7%, respectively. The
reason is simple, CNN model gets better learning in the pres-
ence of large datasets. Therefore, these results show that the
balancing dataset through data augmentation method can play
a vital role in WM defect identification.

We draw a confusion matrix to represent the number of
accurately classified and misclassified defect patterns of all
classes as shown in Fig. 4, where predicted label and true label
along the x-axis and y-axes, respectively, represents labels of
various defect classes. The predicted label shows the num-
ber of predicted defect patterns of a specific class and the
true label shows the numbers of actual defect patterns of the
corresponding defect class. The main diagonal values show
the ratio of correctly classified defect patterns. As the Local
defect is very similar to Donut, Edge-Loc, and Random defect
patterns, so CNN-WDI was confused during the feature extrac-
tion of these defect patterns. Thus, the number of misclassified
of Local defect patterns with Donut, Edge-Loc, and Random
defect patterns was up to 2.1%, 1.1%, and 2.1%, respectively.
Due to various reasons, some WMs contain multiple defect
patterns on their surfaces. Therefore, the CNN-WDI model
misclassified some of the defect classes with other defect
patters. The Edge-Loc class was misclassified with Local and

Fig. 4. A normalized confusion matrix of proposed CNN-WDI model.

Center classes with a ratio of 1.5% and 5.0%, respectively.
The Edge-Ring class was misclassified with Scratch and Local
classes with a ratio of 1.8% and 3.5%, respectively. The aver-
age classification result of the proposed model is up to 96.2%,
which shows the importance of our model to classify WM
defect patterns. The None defect class has no actual defect
patterns in its wafer surface and this class contains the major-
ity data like 85% of the original dataset of WM-811K. Thus,
the higher classification result (i.e., 99.7%) of our model for
the None defect class will boost the speed of testing process
of WMs during semiconductor manufacturing.

Three more CNN classifiers (e.g., CNN-D, CNN-BN, and
CNN-SD) with various hyperparameter settings were designed
to evaluate the importance of different hyperparameters of the
proposed model. The CNN-D model does not contain SD and
BN methods, but only contains simple dropout method. The
CNN-BN only contains BN but does not contain SD. The
CNN-SD only contains spatial dropout but does not contain
BN. The performances of all these CNN classifiers which con-
tain various hyperparameter settings are compared with the
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TABLE III
OVERALL PERFORMANCE COMPARISON OF VARIOUS CLASSIFIERS (%)

proposed CNN-WDI classifier which contains both BN and
SD methods.

We also have compared the CNN-WDI classifier with
state-of-the-art DL and ML classifiers like VGG-16, ANN,
and SVM. The VGG-16 network is a well-known CNN
model proposed to classify the image data with very high
accuracy [32]. It composed of 16 layers including 13 Conv
layer, 5 max-pooling layers, and 3 fully connected layers.
Each Conv layer and first 2 fully connected layers have ReLU
activation function, and the final layer has Softmax activation
function for classification. The ANN model defines a relation-
ship between input data and output value in the same way as
derived from the animal brain [33]. We applied an ANN model
with one input layer, one hidden layer with 100 neurons and
ReLU activation function, and one output layer to classify the
input data. The backpropagation algorithm and Adam opti-
mizer were used to train and weight optimization of the ANN
model. The SVM classifier is commonly used for image clas-
sification purpose especially for wafer defect classification [3].
The radial basis kernel function was implemented to handle
the non-linear classification parameters due to complex image
data. The penalty and stopping tolerance parameters were set
to 1.0 and 0.001, respectively. The SVM is a binary clas-
sifier, so we applied one-vs-rest (OvR) method to classify
multiple classes. We manually extracted Radon-based features
by Radon transform from the raw wafer images to train ANN
and SVM models. The same WM image dataset is used to train
all the above classifiers as we used for CNN-WDI model.

Table III presents the performance comparison of all clas-
sifiers with overall performance measures. It shows that the
CNN-WDI model outperformed all the other classifiers to clas-
sify the wafer defects and acquire the highest value of overall
validation accuracy, testing accuracy, precision, recall, and
F1-score of 96.4%, 96.2%, 96.4%, 96.2%, and 96.2%, respec-
tively. Testing accuracy is the most important component of
performance measures because it uses unseen data to evaluate
a model. The proposed model improved the testing accuracy
up to 20.1%, 33.6%, and 195.1% of VGG-16, ANN, and SVM,
respectively. The CNN-WDI model also got the better results
as compare to the CNN-D, CNN-BN, and CNN-SD, which
proves the importance of hyperparameters used in proposed
model. Although, ANN model showed very good performance
measures and got better results of training accuracy, validation
accuracy, and F1-score. However, we need manually extracted
features to train the ANN and SVM model. Moreover, these

classifiers performed very poorly for minority data sample
defect classes such as Local, Random, Scratch, and Near-
Full defect classes. The VGG-16 has a very high number
of trainable parameters (i.e., 134.2 million of parameters) as
compared to the proposed model which has only 2.7 million
trainable parameters, still our model improved the training
accuracy up to 18.6%. The training time of VGG-16 was up
to 4.5 × 105, whereas CNN-WDI model took only 1.6 × 105

for training.
Table IV shows the testing accuracy performance compari-

son of CNN-WDI model with recently proposed wafer defect
classification models such as WMFPR [3], DTE-WMFPR [5],
and WMDPI [6], using the same dataset of WM-811K. As all
defect patterns are equally important because each of these
has a specific reason to occur. So, we cannot ignore any
defect class during classification. It is clear from the table
that deep learning-based CNN-WDI model outperformed all
the previous models to classify the Center, Donut, Edge-Loc,
Local, Random, Scratch, and Near-Full defect classes with the
accuracy of 98.0%, 98.3%, 93.1%, 90.3%. 96.5%, 98.7%, and
99.9%, respectively. The classification accuracy of remaining
defect classes is also very high such as above 92%. Whereas,
all other classification models have poor accuracy to classify
some of the defect classes. For example, WMFPR has 68.5%
accuracy for Local class, WMDPI has 60.0% and 34.0% for
Local and Scratch classes, respectively, and DTE-WMFRP
has 83.5% for both Edge-Loc and Local classes. The aver-
age wafer defect classification accuracy of proposed model
is 96.2%, which is improved up to 6.4% of the last highest
average accuracy. Thus, these results show the importance of
CNN-WDI model to classify wafer defect patterns.

Fig. 5 shows the comparison of training accuracy and loos
with validation accuracy and loss of CNN-WDI model and
VGG network. In Fig. 5(a), the training accuracy of CNN-WDI
model increases suddenly in initial epoch and then gradually
increases with increasing number of epochs. The behavior of
validation accuracy is opposite because it decreased initially
and then increases gradually and reaches up to 96.4%. But
the training process of VGG-16 is very slow and its validation
accuracy stopes increasing after achieving 80.0% as shown in
Fig. 5(b). The same behavior can be observed for the training
and validation losses of these models. The training and vali-
dation losses of proposed model decreased suddenly at initial
stage and gradually decreased in next epochs and reached the
value of 0.03 and 0.15, respectively, as shown in Fig. 5(c).
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TABLE IV
COMPARISON OF DEFECT CLASSIFICATION RESULTS FOR DIFFERENT CLASSIFICATION MODELS (%)

Fig. 5. The performance results of CNN-WDI model and VGG-16 model: (a) The accuracies of CNN-WDI, (b) The accuracies of VGG-16, (c) The losses
of CNN-WDI, and (d) The losses of VGG-16.

Whereas, for the same number of epochs training and vali-
dation losses of VGG-16 network got the value of 0.48 and
0.80, respectively, as shown in Fig. 5(d).

V. CONCLUSION

In this paper, a deep learning-based CNN-WDI model was
proposed to classify wafer map defects in the semiconductor
fabrication process. Semiconductor engineers apply automatic
wafer classification for early diagnosis of wafer defects with-
out requiring specialized or empirical knowledge. Most of the
previous wafer defect analysis had applied machine learning-
based classification models, which required manual feature
extraction and a lot of hyperparameter settings, whereas CNN
model can automatically extract effective features of various
defect classes. We have used a real wafer map dataset of
WM-811K, that contains nine different defect patterns. This
dataset is highly imbalanced, so we have applied data aug-
mentation technique to solve this issue. The sequence of

convolutional and pooling layers has applied to extract valu-
able features from raw wafer images. Batch normalization
and spatial dropout methods have been used for regulariza-
tion of the proposed model which improves the training speed
and classification accuracy of the model. Our model has got
very high performance for all defect classes as compared to
previously proposed models such as WMFPR, DTE-WMFPR,
and WMDPI using the same dataset, and achieved the clas-
sification accuracy of 96.2% on average. The CNN-WDI
outperformed VGG-16, SVM, and ANN classifiers. For future
work, we will extract multiple defects on the same wafer image
to improve classification accuracy.
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