You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pinb ac750b1d1a | 2 years ago | |
---|---|---|
CNN_Wafer.ipynb | 2 years ago | |
readme.md | 2 years ago |
readme.md
지능화 캡스톤 프로젝트 #1 - WDI-CNN
Wafer Map 데이터를 9종류의 Class로 분류하는 CNN 모델 만들기
논문
반도체 제조공정의 불균형 데이터셋에 대한 웨이퍼 불량 식별을 위한 심층 컨볼루션 신경망
번호 | 논문 제목 | 저자 | 출판사 및 링크 |
---|---|---|---|
1 | Deep Residual Learning for Image Recognition | Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun | IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 링크 |
2 | Very Deep Convolutional Networks for Large-Scale Image Recognition | Karen Simonyan, Andrew Zisserman | International Conference on Learning Representations (ICLR), 2015. 링크 |
3 | Going Deeper with Convolutions | Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich | IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. 링크 |
4 | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift | Sergey Ioffe, Christian Szegedy | International Conference on Machine Learning (ICML), 2015. 링크 |
5 | Dropout: A Simple Way to Prevent Neural Networks from Overfitting | Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov | Journal of Machine Learning Research (JMLR), 2014. 링크 |
Dataset
수행방법
- 위 논문을 참고하여 CNN 모델을 구현하고, WDI Dataset을 학습하여 9개의 클래스로 분류한다.
클래스 | 라벨 | Train 이미지 개수 | Validation 이미지 개수 | Test 이미지 개수 |
---|---|---|---|---|
None | 0 | 117,431 | 15,000 | 15,000 |
Center | 1 | 3,294 | 500 | 500 |
Donut | 2 | 444 | 50 | 50 |
Edge-Loc | 3 | 4,189 | 500 | 500 |
Edge-Ring | 4 | 7,680 | 1,000 | 1,000 |
Local | 5 | 2,794 | 400 | 400 |
Random | 6 | 666 | 100 | 100 |
Scratch | 7 | 894 | 150 | 150 |
Near-full | 8 | 149 | - | - |
Model
Code View
import torch
import torch.nn as nn
import torch.nn.functional as F
class CNN_WDI(nn.Module):
def __init__(self, class_num=9):
super(CNN_WDI, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=0)
self.bn1 = nn.BatchNorm2d(16)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 16, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(16)
self.conv3 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(32)
self.pool2 = nn.MaxPool2d(2, 2)
self.conv4 = nn.Conv2d(32, 32, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(32)
self.conv5 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.bn5 = nn.BatchNorm2d(64)
self.pool3 = nn.MaxPool2d(2, 2)
self.conv6 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.bn6 = nn.BatchNorm2d(64)
self.conv7 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn7 = nn.BatchNorm2d(128)
self.pool4 = nn.MaxPool2d(2, 2)
self.conv8 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.bn8 = nn.BatchNorm2d(128)
self.spatial_dropout = nn.Dropout2d(0.2)
self.pool5 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(4608, 512)
self.fc2 = nn.Linear(512, class_num)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool1(F.relu(self.bn2(self.conv2(x))))
x = F.relu(self.bn3(self.conv3(x)))
x = self.pool2(F.relu(self.bn4(self.conv4(x))))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool3(F.relu(self.bn6(self.conv6(x))))
x = F.relu(self.bn7(self.conv7(x)))
x = self.pool4(F.relu(self.bn8(self.conv8(x))))
x = self.spatial_dropout(x)
x = self.pool5(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.softmax(x, dim=1)
cnn_wdi = CNN_WDI(class_num=9)
Load Data
Code View
from torchvision import transforms, datasets
# 데이터 전처리
rotation_angles = list(range(0, 361, 15))
rotation_transforms = [transforms.RandomRotation(degrees=(angle, angle), expand=False, center=None, fill=None) for angle in rotation_angles]
data_transforms = transforms.Compose([
transforms.Pad(padding=224, fill=0, padding_mode='constant'),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomApply(rotation_transforms, p=1),
transforms.CenterCrop((224, 224)),
transforms.ToTensor(),
])
# ImageFolder를 사용하여 데이터셋 불러오기
train_dataset = datasets.ImageFolder(root='E:/wm_images/train/', transform=data_transforms)
val_dataset = datasets.ImageFolder(root='E:/wm_images/val/', transform=data_transforms)
test_dataset = datasets.ImageFolder(root='E:/wm_images/test/', transform=data_transforms)
Settings
Code View
import torch.optim as optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cnn_wdi.to(device)
print(str(device) + ' loaded.')
# 손실 함수 및 최적화 알고리즘 설정
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(cnn_wdi.parameters(), lr=0.001)
# 배치사이즈
batch_size = 18063360 #112
# 학습 및 평가 실행
num_epochs = 100 #* 192
# num_epochs = 50
# Random sample size
train_max_images = 95
val_max_images = 25
Train Function
Code View
# 학습 함수 정의
def train(model, dataloader, criterion, optimizer, device):
model.train()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
return epoch_loss, epoch_acc
Evaluate Function
Code View
# 평가 함수 정의
def evaluate(model, dataloader, criterion, device):
model.eval()
running_loss = 0.0
running_corrects = 0
with torch.no_grad():
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
return epoch_loss, epoch_acc
Train
Code View
# Train & Validation의 Loss, Acc 기록 파일
s_title = 'Epoch,\tTrain Loss,\tTrain Acc,\tVal Loss,\tVal Acc\n'
with open('output.txt', 'a') as file:
file.write(s_title)
print(s_title)
for epoch in range(num_epochs + 1):
# 무작위 샘플 추출
train_indices = torch.randperm(len(train_dataset))[:train_max_images]
train_random_subset = torch.utils.data.Subset(train_dataset, train_indices)
train_loader = torch.utils.data.DataLoader(train_random_subset, batch_size=batch_size, shuffle=True, num_workers=4)
val_indices = torch.randperm(len(val_dataset))[:val_max_images]
val_random_subset = torch.utils.data.Subset(train_dataset, val_indices)
val_loader = torch.utils.data.DataLoader(val_random_subset, batch_size=batch_size, shuffle=False, num_workers=4)
# 학습 및 Validation 평가
train_loss, train_acc = train(cnn_wdi, train_loader, criterion, optimizer, device)
val_loss, val_acc = evaluate(cnn_wdi, val_loader, criterion, device)
# 로그 기록
s_output = f'{epoch + 1}/{num_epochs},\t{train_loss:.4f},\t{train_acc:.4f},\t{val_loss:.4f},\t{val_acc:.4f}\n'
with open('output.txt', 'a') as file:
file.write(s_output)
print(s_output)
if epoch % 10 == 0:
# 모델 저장
torch.save(cnn_wdi.state_dict(), 'CNN_WDI_' + str(epoch) + 'epoch.pth')
평가방법
- 모델의 성능지표(Precision, Recall, Accuracy, F1-Score)를 혼동행렬(Confusion Metrix)로 구현한다.
Confusion Metrix
Code View
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import classification_report, confusion_matrix
import pandas as pd
def plot_metrics(title, class_names, precisions, recalls, f1_scores, acc):
num_classes = len(class_names)
index = np.arange(num_classes)
bar_width = 0.2
plt.figure(figsize=(15, 7))
plt.bar(index, precisions, bar_width, label='Precision')
plt.bar(index + bar_width, recalls, bar_width, label='Recall')
plt.bar(index + 2 * bar_width, f1_scores, bar_width, label='F1-score')
plt.axhline(y=acc, color='r', linestyle='--', label='Accuracy')
plt.xlabel('Class')
plt.ylabel('Scores')
plt.title(title + ': Precision, Recall, F1-score, and Accuracy per Class')
plt.xticks(index + bar_width, class_names)
plt.legend(loc='upper right')
plt.show()
def predict_and_plot_metrics(title, model, dataloader, criterion, device):
model.eval()
running_loss = 0.0
running_corrects = 0
all_preds = []
all_labels = []
class_names = ['Center', 'Donut', 'Edge-Loc', 'Edge-Ring', 'Loc', 'Near-full', 'none', 'Random', 'Scratch']
with torch.no_grad():
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
# Calculate classification report
report = classification_report(all_labels, all_preds, target_names=class_names, output_dict=True)
# Calculate confusion matrix
cm = confusion_matrix(all_labels, all_preds)
# Calculate precision, recall, and f1-score per class
precisions = [report[c]['precision'] for c in class_names]
recalls = [report[c]['recall'] for c in class_names]
f1_scores = [report[c]['f1-score'] for c in class_names]
print('p: ' + str(precisions))
print('r: ' + str(recalls))
print('f: ' + str(f1_scores))
# Plot confusion matrix with normalized values (percentage)
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.figure(figsize=(12, 12))
sns.heatmap(cm_normalized, annot=True, fmt='.2%', cmap='Blues', xticklabels=class_names, yticklabels=class_names)
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title('Normalized Confusion Matrix: ' + title)
plt.show()
# Plot precision, recall, f1-score, and accuracy per class
plot_metrics(title, class_names, precisions, recalls, f1_scores, epoch_acc.item())
return epoch_loss, epoch_acc, report
Evaluate
Code View
import os
import re
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=112, shuffle=False, num_workers=4)
dir = '.'
models = [file for file in os.listdir(dir) if file.endswith(('.pth'))]
def extract_number(filename):
return int(re.search(r'\d+', filename).group(0))
sorted_models = sorted(models, key=extract_number)
for model in sorted_models:
model_path = os.path.join(dir, model)
# Load the saved model weights
cnn_wdi.load_state_dict(torch.load(model_path))
# Call the predict_and_plot_metrics function with the appropriate arguments
epoch_loss, epoch_acc, report = predict_and_plot_metrics(model, cnn_wdi, test_loader, criterion, device)
# print(f'Model: {model} Test Loss: {test_loss:.4f} Acc: {test_acc:.4f}')
Loss Graph
Code View
import matplotlib.pyplot as plt
# 파일에서 데이터를 읽어들입니다.
with open('output.txt', 'r') as file:
lines = file.readlines()[1:] # 첫 번째 줄은 헤더이므로 건너뜁니다.
# 데이터를 분석하여 리스트에 저장합니다.
epochs = []
train_losses = []
train_accuracies = []
val_losses = []
val_accuracies = []
for line in lines:
if line == '\n':
continue
# epoch, train_loss, train_acc, val_loss, val_acc = line.strip().split(', \t')
epoch, train_loss, train_acc, val_loss, val_acc = re.split(r'[,\s\t]+', line.strip())
epochs.append(int(epoch.split('/')[0]))
train_losses.append(float(train_loss))
train_accuracies.append(float(train_acc))
val_losses.append(float(val_loss))
val_accuracies.append(float(val_acc))
# 선 그래프를 그립니다.
plt.figure(figsize=(10, 5))
plt.plot(epochs, train_losses, label='Train Loss')
plt.plot(epochs, train_accuracies, label='Train Acc')
plt.plot(epochs, val_losses, label='Val Loss')
plt.plot(epochs, val_accuracies, label='Val Acc')
plt.xlabel('Epochs')
plt.ylabel('Values')
plt.title('Training and Validation Loss and Accuracy')
plt.legend()
plt.show()
Print Selecting Test Model Result
Code View
def output(model, dataloader, criterion, device):
model.eval()
running_loss = 0.0
running_corrects = 0
all_preds = []
all_labels = []
class_names = ['Center', 'Donut', 'Edge-Loc', 'Edge-Ring', 'Loc', 'Near-full', 'none', 'Random', 'Scratch']
with torch.no_grad():
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
# Calculate classification report
report = classification_report(all_labels, all_preds, target_names=class_names, output_dict=True)
# Calculate precision, recall, and f1-score per class
precisions = [report[c]['precision'] for c in class_names]
recalls = [report[c]['recall'] for c in class_names]
f1_scores = [report[c]['f1-score'] for c in class_names]
accuracy = report['accuracy']
precs = sum(precisions) / len(precisions)
recs = sum(recalls) / len(recalls)
f1s = sum(f1_scores) / len(f1_scores)
print('precisions: ' + str(precs))
print('recalls: ' + str(recs))
print('f1_scores: ' + str(f1s))
print('accuracy ' + str(accuracy))
selected_model = 'CNN_WDI_20epoch.pth'
cnn_wdi.load_state_dict(torch.load(selected_model))
output(cnn_wdi, test_loader, criterion, device)