AI EX 포트폴리오

지능화 캡스톤 - 프로젝트 1. WDI-CNN
-> Wafer Map 데이터를 9개의 클래스로 분류하는 CNN 모델

You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
Go to file
pinb d8ccdc87a7 업데이트 'readme.md' 2 years ago
CNN_Wafer.ipynb init 2 years ago
readme.md 업데이트 'readme.md' 2 years ago

readme.md

지능화 캡스톤 프로젝트 #1 - WDI-CNN

Wafer Map 데이터를 9종류의 Class로 분류하는 CNN 모델 만들기


PINBlog Gitea Repository


논문

반도체 제조공정의 불균형 데이터셋에 대한 웨이퍼 불량 식별을 위한 심층 컨볼루션 신경망

번호 논문 제목 저자 출판사 및 링크
1 Deep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 링크
2 Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan, Andrew Zisserman International Conference on Learning Representations (ICLR), 2015. 링크
3 Going Deeper with Convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. 링크
4 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift Sergey Ioffe, Christian Szegedy International Conference on Machine Learning (ICML), 2015. 링크
5 Dropout: A Simple Way to Prevent Neural Networks from Overfitting Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov Journal of Machine Learning Research (JMLR), 2014. 링크

Dataset

Kaggle - WDI Data

Pickle Dataset

BMP Dataset


수행방법

  • 위 논문을 참고하여 CNN 모델을 구현하고, WDI Dataset을 학습하여 9개의 클래스로 분류한다.
클래스 라벨 Train 이미지 개수 Validation 이미지 개수 Test 이미지 개수
None 0 117,431 15,000 15,000
Center 1 3,294 500 500
Donut 2 444 50 50
Edge-Loc 3 4,189 500 500
Edge-Ring 4 7,680 1,000 1,000
Local 5 2,794 400 400
Random 6 666 100 100
Scratch 7 894 150 150
Near-full 8 149 - -

프로젝트 관련 자료

Model

Code View
import torch
import torch.nn as nn
import torch.nn.functional as F

class CNN_WDI(nn.Module):
    def __init__(self, class_num=9):
        super(CNN_WDI, self).__init__()

        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=0)
        self.bn1 = nn.BatchNorm2d(16)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(16, 16, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(16)

        self.conv3 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
        self.bn3 = nn.BatchNorm2d(32)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.conv4 = nn.Conv2d(32, 32, kernel_size=3, padding=1)
        self.bn4 = nn.BatchNorm2d(32)

        self.conv5 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        self.bn5 = nn.BatchNorm2d(64)
        self.pool3 = nn.MaxPool2d(2, 2)
        self.conv6 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
        self.bn6 = nn.BatchNorm2d(64)

        self.conv7 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.bn7 = nn.BatchNorm2d(128)
        self.pool4 = nn.MaxPool2d(2, 2)
        self.conv8 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.bn8 = nn.BatchNorm2d(128)

        self.spatial_dropout = nn.Dropout2d(0.2)
        self.pool5 = nn.MaxPool2d(2, 2)

        self.fc1 = nn.Linear(4608, 512)
        self.fc2 = nn.Linear(512, class_num)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.pool1(F.relu(self.bn2(self.conv2(x))))

        x = F.relu(self.bn3(self.conv3(x)))
        x = self.pool2(F.relu(self.bn4(self.conv4(x))))

        x = F.relu(self.bn5(self.conv5(x)))
        x = self.pool3(F.relu(self.bn6(self.conv6(x))))

        x = F.relu(self.bn7(self.conv7(x)))
        x = self.pool4(F.relu(self.bn8(self.conv8(x))))

        x = self.spatial_dropout(x)
        x = self.pool5(x)

        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)

        return F.softmax(x, dim=1)

cnn_wdi = CNN_WDI(class_num=9)

Load Data

Code View
from torchvision import transforms, datasets

# 데이터 전처리
rotation_angles = list(range(0, 361, 15))
rotation_transforms = [transforms.RandomRotation(degrees=(angle, angle), expand=False, center=None, fill=None) for angle in rotation_angles]

data_transforms = transforms.Compose([
    transforms.Pad(padding=224, fill=0, padding_mode='constant'),
    transforms.RandomHorizontalFlip(),
    transforms.RandomVerticalFlip(),
    transforms.RandomApply(rotation_transforms, p=1),
    transforms.CenterCrop((224, 224)),
    transforms.ToTensor(),
])

# ImageFolder를 사용하여 데이터셋 불러오기
train_dataset = datasets.ImageFolder(root='E:/wm_images/train/', transform=data_transforms)
val_dataset = datasets.ImageFolder(root='E:/wm_images/val/', transform=data_transforms)
test_dataset = datasets.ImageFolder(root='E:/wm_images/test/', transform=data_transforms)

Settings

Code View
import torch.optim as optim

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cnn_wdi.to(device)
print(str(device) + ' loaded.')

# 손실 함수 및 최적화 알고리즘 설정
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(cnn_wdi.parameters(), lr=0.001)

# 배치사이즈
batch_size = 18063360 #112

# 학습 및 평가 실행
num_epochs = 100 #* 192
# num_epochs = 50

# Random sample size
train_max_images = 95
val_max_images = 25

Train Function

Code View
# 학습 함수 정의
def train(model, dataloader, criterion, optimizer, device):
    model.train()
    running_loss = 0.0
    running_corrects = 0

    for inputs, labels in dataloader:
        inputs = inputs.to(device)
        labels = labels.to(device)

        optimizer.zero_grad()

        outputs = model(inputs)
        _, preds = torch.max(outputs, 1)
        loss = criterion(outputs, labels)

        loss.backward()
        optimizer.step()

        running_loss += loss.item() * inputs.size(0)
        running_corrects += torch.sum(preds == labels.data)

    epoch_loss = running_loss / len(dataloader.dataset)
    epoch_acc = running_corrects.double() / len(dataloader.dataset)

    return epoch_loss, epoch_acc

Evaluate Function

Code View
# 평가 함수 정의
def evaluate(model, dataloader, criterion, device):
    model.eval()
    running_loss = 0.0
    running_corrects = 0

    with torch.no_grad():
        for inputs, labels in dataloader:
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            loss = criterion(outputs, labels)

            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

        epoch_loss = running_loss / len(dataloader.dataset)
        epoch_acc = running_corrects.double() / len(dataloader.dataset)

    return epoch_loss, epoch_acc

Train

Code View
# Train & Validation의 Loss, Acc 기록 파일
s_title = 'Epoch,\tTrain Loss,\tTrain Acc,\tVal Loss,\tVal Acc\n'
with open('output.txt', 'a') as file:
    file.write(s_title)
print(s_title)

for epoch in range(num_epochs + 1):
    # 무작위 샘플 추출
    train_indices = torch.randperm(len(train_dataset))[:train_max_images]
    train_random_subset = torch.utils.data.Subset(train_dataset, train_indices)
    train_loader = torch.utils.data.DataLoader(train_random_subset, batch_size=batch_size, shuffle=True, num_workers=4)
    
    val_indices = torch.randperm(len(val_dataset))[:val_max_images]
    val_random_subset = torch.utils.data.Subset(train_dataset, val_indices)
    val_loader = torch.utils.data.DataLoader(val_random_subset, batch_size=batch_size, shuffle=False, num_workers=4)

    # 학습 및 Validation 평가
    train_loss, train_acc = train(cnn_wdi, train_loader, criterion, optimizer, device)
    val_loss, val_acc = evaluate(cnn_wdi, val_loader, criterion, device)

    # 로그 기록
    s_output = f'{epoch + 1}/{num_epochs},\t{train_loss:.4f},\t{train_acc:.4f},\t{val_loss:.4f},\t{val_acc:.4f}\n'
    with open('output.txt', 'a') as file:
        file.write(s_output)
    print(s_output)

    if epoch % 10 == 0:
        # 모델 저장
        torch.save(cnn_wdi.state_dict(), 'CNN_WDI_' + str(epoch) + 'epoch.pth')
-----

평가방법

  • 모델의 성능지표(Precision, Recall, Accuracy, F1-Score)를 혼동행렬(Confusion Metrix)로 구현한다.

Confusion Metrix

Code View
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import classification_report, confusion_matrix
import pandas as pd

def plot_metrics(title, class_names, precisions, recalls, f1_scores, acc):
    num_classes = len(class_names)
    index = np.arange(num_classes)
    bar_width = 0.2

    plt.figure(figsize=(15, 7))
    plt.bar(index, precisions, bar_width, label='Precision')
    plt.bar(index + bar_width, recalls, bar_width, label='Recall')
    plt.bar(index + 2 * bar_width, f1_scores, bar_width, label='F1-score')
    plt.axhline(y=acc, color='r', linestyle='--', label='Accuracy')

    plt.xlabel('Class')
    plt.ylabel('Scores')
    plt.title(title + ': Precision, Recall, F1-score, and Accuracy per Class')
    plt.xticks(index + bar_width, class_names)
    plt.legend(loc='upper right')
    plt.show()

def predict_and_plot_metrics(title, model, dataloader, criterion, device):
    model.eval()
    running_loss = 0.0
    running_corrects = 0

    all_preds = []
    all_labels = []
    class_names = ['Center', 'Donut', 'Edge-Loc', 'Edge-Ring', 'Loc', 'Near-full', 'none', 'Random', 'Scratch']

    with torch.no_grad():
        for inputs, labels in dataloader:
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            loss = criterion(outputs, labels)

            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

            all_preds.extend(preds.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())

        epoch_loss = running_loss / len(dataloader.dataset)
        epoch_acc = running_corrects.double() / len(dataloader.dataset)


    # Calculate classification report
    report = classification_report(all_labels, all_preds, target_names=class_names, output_dict=True)

    # Calculate confusion matrix
    cm = confusion_matrix(all_labels, all_preds)

    # Calculate precision, recall, and f1-score per class
    precisions = [report[c]['precision'] for c in class_names]
    recalls = [report[c]['recall'] for c in class_names]
    f1_scores = [report[c]['f1-score'] for c in class_names]
    print('p: ' + str(precisions))
    print('r: ' + str(recalls))
    print('f: ' + str(f1_scores))

    # Plot confusion matrix with normalized values (percentage)
    cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    plt.figure(figsize=(12, 12))
    sns.heatmap(cm_normalized, annot=True, fmt='.2%', cmap='Blues', xticklabels=class_names, yticklabels=class_names)
    plt.xlabel('Predicted Label')
    plt.ylabel('True Label')
    plt.title('Normalized Confusion Matrix: ' + title)
    plt.show()

    # Plot precision, recall, f1-score, and accuracy per class
    plot_metrics(title, class_names, precisions, recalls, f1_scores, epoch_acc.item())

    return epoch_loss, epoch_acc, report

Evaluate

Code View
import os
import re

test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=112, shuffle=False, num_workers=4)

dir = '.'
models = [file for file in os.listdir(dir) if file.endswith(('.pth'))]

def extract_number(filename):
    return int(re.search(r'\d+', filename).group(0))

sorted_models = sorted(models, key=extract_number)

for model in sorted_models:
    model_path = os.path.join(dir, model)

    # Load the saved model weights
    cnn_wdi.load_state_dict(torch.load(model_path))

    # Call the predict_and_plot_metrics function with the appropriate arguments
    epoch_loss, epoch_acc, report = predict_and_plot_metrics(model, cnn_wdi, test_loader, criterion, device)
    # print(f'Model: {model} Test Loss: {test_loss:.4f} Acc: {test_acc:.4f}')

Loss Graph

Code View
import matplotlib.pyplot as plt

# 파일에서 데이터를 읽어들입니다.
with open('output.txt', 'r') as file:
    lines = file.readlines()[1:]  # 첫 번째 줄은 헤더이므로 건너뜁니다.

# 데이터를 분석하여 리스트에 저장합니다.
epochs = []
train_losses = []
train_accuracies = []
val_losses = []
val_accuracies = []

for line in lines:
    if line == '\n':
        continue
    # epoch, train_loss, train_acc, val_loss, val_acc = line.strip().split(', \t')
    epoch, train_loss, train_acc, val_loss, val_acc = re.split(r'[,\s\t]+', line.strip())
    epochs.append(int(epoch.split('/')[0]))
    train_losses.append(float(train_loss))
    train_accuracies.append(float(train_acc))
    val_losses.append(float(val_loss))
    val_accuracies.append(float(val_acc))

# 선 그래프를 그립니다.
plt.figure(figsize=(10, 5))

plt.plot(epochs, train_losses, label='Train Loss')
plt.plot(epochs, train_accuracies, label='Train Acc')
plt.plot(epochs, val_losses, label='Val Loss')
plt.plot(epochs, val_accuracies, label='Val Acc')

plt.xlabel('Epochs')
plt.ylabel('Values')
plt.title('Training and Validation Loss and Accuracy')
plt.legend()
plt.show()

Print Selecting Test Model Result

Code View
def output(model, dataloader, criterion, device):
    model.eval()
    running_loss = 0.0
    running_corrects = 0

    all_preds = []
    all_labels = []
    class_names = ['Center', 'Donut', 'Edge-Loc', 'Edge-Ring', 'Loc', 'Near-full', 'none', 'Random', 'Scratch']

    with torch.no_grad():
        for inputs, labels in dataloader:
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            loss = criterion(outputs, labels)

            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

            all_preds.extend(preds.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())

        epoch_loss = running_loss / len(dataloader.dataset)
        epoch_acc = running_corrects.double() / len(dataloader.dataset)


    # Calculate classification report
    report = classification_report(all_labels, all_preds, target_names=class_names, output_dict=True)

    # Calculate precision, recall, and f1-score per class
    precisions = [report[c]['precision'] for c in class_names]
    recalls = [report[c]['recall'] for c in class_names]
    f1_scores = [report[c]['f1-score'] for c in class_names]
    accuracy = report['accuracy']

    precs = sum(precisions) / len(precisions)
    recs = sum(recalls) / len(recalls)
    f1s = sum(f1_scores) / len(f1_scores)
    print('precisions: ' + str(precs))
    print('recalls: ' + str(recs))
    print('f1_scores: ' + str(f1s))
    print('accuracy ' + str(accuracy))


selected_model = 'CNN_WDI_20epoch.pth'
cnn_wdi.load_state_dict(torch.load(selected_model))
output(cnn_wdi, test_loader, criterion, device)

테스트 결과

1차 테스트