You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
786 lines
20 KiB
Markdown
786 lines
20 KiB
Markdown
# 지능화 캡스톤 프로젝트 #2 - YOLOv5 안전모 검출
|
|
|
|
-----
|
|
|
|
|
|
[PINBlog Gitea Repository](https://gitea.pinblog.codes/CBNU/19_YOLOv5)
|
|
* 제출했던 프로젝트 코드가 날라가서 일부만 존재함;;
|
|
|
|
-----
|
|
|
|
### YOLOv5 GitHub
|
|
[YOLOv5](https://github.com/ultralytics/yolov5)
|
|
|
|
|
|
# 프로젝트 목표
|
|
* YOLOv5 모델을 학습하여 영상의 안전모와 마스크를 검출
|
|
|
|
# 특이사항
|
|
* 평가 기준이 성능, 속도 이므로 성능은 버리고 속도에 올인한다.
|
|
* YOLOv5s 모델을 베이스로 학습
|
|
|
|
# 구현 방법
|
|
* 일반적인 1개의 모델로 여러 클래스를 학습하지 않고, Detect Model로 머리를 검출하여 ROI 취득 후,
|
|
해당 ROI를 Crop하여 Classification Model로 안전모, 마스크, 미착용 등을 분류한다.
|
|
* 모델의 성능(Precision) 평가는 Detection 모델의 Confidence와 Classification 모델의 결과 부분을 직접 병합
|
|
|
|
# 데이터셋
|
|
* YouTube, Google, AIHub, Kaggle에서 안전모 관련 데이터셋 확보
|
|
* Roboflow에서 데이터셋 라벨링 진행
|
|
[Roboflow](https://roboflow.com/)
|
|
|
|
# 클래스
|
|
### Detect Model
|
|
* 1개의 뚝배기 클래스
|
|
* 0: dduk
|
|
|
|
### Classification Model
|
|
* 5개의 클래스
|
|
* 0: head
|
|
* 1: helmet
|
|
* 2: face
|
|
* 3: mask
|
|
* 4: helmet & mask
|
|
|
|
# 프로젝트 코드 (Validation)
|
|
|
|
<details>
|
|
<summary>Import Packages</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
import os
|
|
import time
|
|
import cv2
|
|
import math
|
|
import numpy as np
|
|
%matplotlib inline
|
|
import matplotlib.pyplot as plt
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torchvision import transforms
|
|
from sklearn.metrics import accuracy_score
|
|
import yaml
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
<details>
|
|
<summary>Classfication</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
def crop_and_classify(img, boxes, classification_model, transform):
|
|
# classification_model.to(device)
|
|
# classification_model.eval()
|
|
|
|
for box in boxes:
|
|
x1, y1, x2, y2 = box
|
|
# Expand the bounding box by 10%
|
|
width = x2 - x1
|
|
height = y2 - y1
|
|
x1 = max(int(x1 - 0.1 * width), 0)
|
|
y1 = max(int(y1 - 0.1 * height), 0)
|
|
x2 = min(int(x2 + 0.1 * width), img.shape[1] - 1)
|
|
y2 = min(int(y2 + 0.1 * height), img.shape[0] - 1)
|
|
|
|
# Crop the image
|
|
cropped_img = img[y1:y2, x1:x2]
|
|
|
|
# Transform the image to fit the input size of the classification model
|
|
transformed_img = transform(cropped_img)
|
|
transformed_img = transformed_img.unsqueeze(0)
|
|
|
|
# Classify the cropped image
|
|
with torch.no_grad():
|
|
outputs = classification_model(transformed_img)
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
confidence = torch.nn.functional.softmax(outputs, dim=1)[0][predicted].item()
|
|
|
|
# Print the classification result
|
|
print(f"Class: {predicted.item()}, Confidence: {confidence:.2f}")
|
|
|
|
# Draw the bounding box and classification result on the image
|
|
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
cv2.putText(img, f"Class: {predicted.item()}, Confidence: {confidence:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0,255,0), 2)
|
|
return img
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>Detection</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
def run_detection_model(img, model_detect):
|
|
# img = transforms.ToTensor()(img).unsqueeze(0).to(device) # Convert image to tensor and add batch dimension
|
|
# model_detect.eval() # Set model to evaluation mode
|
|
img = transforms.ToTensor()(img).unsqueeze(0)
|
|
|
|
# Move the model to the GPU
|
|
model_detect = model_detect.to(device)
|
|
|
|
# Run inference
|
|
with torch.no_grad():
|
|
detections = model_detect(img)
|
|
|
|
# Extract bounding boxes and confidence scores
|
|
boxes = detections.pred[0][:, :4].cpu().numpy().tolist()
|
|
scores = detections.pred[0][:, 4].cpu().numpy().tolist()
|
|
|
|
return boxes, scores
|
|
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>Load detection model</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
weights_detect = "C:/Users/pinb/Desktop/pytorch/yolov5/runs/train/dduk_64_/weights/best.pt"
|
|
model_detect = torch.hub.load('ultralytics/yolov5', 'custom', path=weights_detect)
|
|
model_detect = model_detect.to(device).eval()
|
|
|
|
```
|
|
|
|
``` planetext
|
|
|
|
Using cache found in C:\Users\pinb/.cache\torch\hub\ultralytics_yolov5_master
|
|
YOLOv5 2023-6-12 Python-3.10.9 torch-1.12.1 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
|
|
|
|
Fusing layers...
|
|
Model summary: 157 layers, 7012822 parameters, 0 gradients, 15.8 GFLOPs
|
|
Adding AutoShape...
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>Load classification model</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
weights_cls = "C:/Users/pinb/Desktop/pytorch/yolov5/runs/train-cls/dduk_cls3/weights/best.pt"
|
|
model_cls = torch.hub.load('ultralytics/yolov5', 'custom', path=weights_cls)
|
|
model_cls = model_cls.to(device).eval()
|
|
|
|
```
|
|
|
|
``` planetext
|
|
|
|
Using cache found in C:\Users\pinb/.cache\torch\hub\ultralytics_yolov5_master
|
|
YOLOv5 2023-6-12 Python-3.10.9 torch-1.12.1 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
|
|
|
|
Fusing layers...
|
|
Model summary: 117 layers, 4173093 parameters, 0 gradients, 10.4 GFLOPs
|
|
WARNING YOLOv5 ClassificationModel is not yet AutoShape compatible. You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>Load YAML</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
# # YAML 파일 경로
|
|
yaml_path = "C:/Users/pinb/Desktop/pytorch/yolov5/runs/detect/test/data.yaml"
|
|
|
|
def read_dataset_paths(file_path):
|
|
with open(file_path, 'r') as file:
|
|
data = yaml.safe_load(file)
|
|
test_path = data.get('test')
|
|
train_path = data.get('train')
|
|
val_path = data.get('val')
|
|
|
|
return os.path.join(os.path.dirname(file_path), val_path)
|
|
|
|
# # YAML 파일에서 데이터셋 경로 읽기
|
|
val_path = read_dataset_paths(yaml_path)
|
|
|
|
# 이미지가 있는 폴더 경로
|
|
folder_path = val_path
|
|
result_path = os.path.join(folder_path, "result")
|
|
# folder_path = "C:/Users/pinb/Desktop/pytorch/yolov5/runs/detect/test/"
|
|
# result_path = "C:/Users/pinb/Desktop/pytorch/yolov5/runs/detect/test/result"
|
|
|
|
def get_image_and_label_paths(folder_path):
|
|
image_paths = []
|
|
label_paths = []
|
|
for file_name in os.listdir(folder_path):
|
|
if file_name.endswith(".bmp") or file_name.endswith(".jpg") or file_name.endswith(".png"):
|
|
image_path = os.path.join(folder_path, file_name)
|
|
image_paths.append(image_path)
|
|
file_name = os.path.splitext(file_name)[0] + ".txt"
|
|
label_path = folder_path.replace("images", "labels")
|
|
label_path = os.path.join(label_path, file_name)
|
|
if os.path.exists(label_path):
|
|
label_paths.append(label_path)
|
|
else:
|
|
label_paths.append("")
|
|
|
|
return image_paths, label_paths
|
|
|
|
# 폴더 내의 이미지 파일 경로들을 가져옴
|
|
image_paths, label_paths = get_image_and_label_paths(folder_path)
|
|
|
|
if not os.path.exists(result_path):
|
|
os.makedirs(result_path)
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>Read Label Data</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
def read_label(label_path):
|
|
labels = []
|
|
with open(label_path, 'r') as file:
|
|
lines = file.readlines()
|
|
for line in lines:
|
|
label = line.strip().split(' ')
|
|
label_class = int(label[0])
|
|
bounding_box = tuple(map(float, label[1:]))
|
|
labels.append((label_class, bounding_box))
|
|
return labels
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>Find closet label class</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
def find_closest_label_class(pred_box, labels):
|
|
min_distance = float('inf')
|
|
closest_class = -1
|
|
|
|
for i, label in enumerate(labels):
|
|
label_box = label[1]
|
|
label_center_x = (label_box[0] + label_box[2]) / 2
|
|
label_center_y = (label_box[1] + label_box[3]) / 2
|
|
|
|
pred_center_x = (pred_box[0] + pred_box[2]) / 2
|
|
pred_center_y = (pred_box[1] + pred_box[3]) / 2
|
|
|
|
distance = math.sqrt((label_center_x - pred_center_x) ** 2 + (label_center_y - pred_center_y) ** 2)
|
|
|
|
if distance < min_distance:
|
|
min_distance = distance
|
|
closest_class = label[0]
|
|
|
|
return closest_class
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
|
|
<details>
|
|
<summary>Evaluate</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
lst_result = [[],[],[],[],[]] # class 0~4
|
|
eval_times = []
|
|
|
|
def Evaluate(model_detect, model_cls, img, img_name, labels, output=True):
|
|
height, width, _ = img.shape
|
|
expand_ratio = 0.5 # The ratio to expand the ROI area
|
|
|
|
# Inference detection model
|
|
start_time = time.time()
|
|
results = model_detect(img)
|
|
|
|
# For each detection, crop the ROI and classify it
|
|
for *box, detect_conf, cls in results.xyxy[0]:
|
|
x1, y1, x2, y2 = map(int, box)
|
|
fbox = map(float, box)
|
|
|
|
# Calculate the width and height of the bounding box
|
|
bbox_width = x2 - x1
|
|
bbox_height = y2 - y1
|
|
roi = (x1, y1, bbox_width, bbox_height)
|
|
|
|
# Calculate the expanded coordinates
|
|
x1_expanded = max(0, x1 - int(bbox_width * expand_ratio))
|
|
y1_expanded = max(0, y1 - int(bbox_height * expand_ratio))
|
|
x2_expanded = min(width, x2 + int(bbox_width * expand_ratio))
|
|
y2_expanded = min(height, y2 + int(bbox_height * expand_ratio))
|
|
|
|
roi_flat = (x1_expanded,
|
|
y1_expanded,
|
|
bbox_width + int(bbox_width * expand_ratio) * 2,
|
|
bbox_height + int(bbox_height * expand_ratio) * 2)
|
|
|
|
# Crop the expanded ROI from the image
|
|
# roi = img[y1:y2, x1:x2]
|
|
roi_expanded = img.copy()
|
|
roi_expanded = roi_expanded[y1_expanded:y2_expanded, x1_expanded:x2_expanded]
|
|
roi_expanded = cv2.resize(roi_expanded, (224, 224))
|
|
|
|
# Convert numpy array to torch tensor, and normalize pixel values
|
|
roi_expanded = torch.from_numpy(roi_expanded).float().div(255.0)
|
|
|
|
# Reshape tensor to (channels, height, width)
|
|
roi_expanded = roi_expanded.permute(2, 0, 1)
|
|
|
|
# Add an extra dimension for the batch
|
|
roi_expanded = roi_expanded.unsqueeze(0)
|
|
|
|
# Move roi_expanded to the same device as class_model
|
|
roi_expanded = roi_expanded.to(device)
|
|
class_result = model_cls(roi_expanded)
|
|
|
|
# classfication result
|
|
probabilities = F.softmax(class_result, dim=1)
|
|
max_confidence, max_indices = torch.max(probabilities, dim=1)
|
|
class_pred = max_indices.item()
|
|
class_conf = max_confidence.item()
|
|
|
|
# confidence
|
|
total_conf = (detect_conf + class_conf) * 0.5
|
|
|
|
# label - class
|
|
class_gt = find_closest_label_class((x1, y1, x2, y2), labels)
|
|
|
|
# append (class, confidence, bounding box)
|
|
lst_result[class_pred].append((class_pred, class_gt, total_conf, (x1, y1, x2, y2)))
|
|
|
|
# Put classification result on each ROI
|
|
thin = 1
|
|
color = ()
|
|
if class_pred == 0: # head
|
|
color = (0, 0, 255)
|
|
elif class_pred == 1: # helmet
|
|
color = (255, 0, 0)
|
|
elif class_pred == 2: # face
|
|
color = (0, 255, 0)
|
|
elif class_pred == 3: # mask
|
|
color = (255, 0, 255)
|
|
elif class_pred == 4: # helmet & mask
|
|
color = (255, 255, 0)
|
|
cv2.putText(img, f'{class_pred}: {total_conf}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, thin)
|
|
# cv2.rectangle(img, roi_flat, color, thin)
|
|
cv2.rectangle(img, roi, color, thin)
|
|
if output is True:
|
|
print(f'{img_name}\'s det + cls result [{class_pred}]: {total_conf}%, {roi}:')
|
|
|
|
end_time = time.time()
|
|
total_time = end_time - start_time
|
|
eval_times.append(total_time)
|
|
if output is True:
|
|
print(f'Detect + Classfication Time: {total_time}s')
|
|
|
|
# Save image
|
|
cv2.imwrite(f'{result_path}/{img_name}_rst.jpg', img)
|
|
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
|
|
<details>
|
|
<summary>Compare Ground Truth & Bounding Box</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
# Class
|
|
# 0: head
|
|
# 1: helmet
|
|
# 2: face
|
|
# 3: mask
|
|
# 4: helmet & mask
|
|
|
|
def CompareClass(pr, gt):
|
|
if gt == 0: # head or face
|
|
if pr == 0 or pr == 2:
|
|
return True
|
|
else:
|
|
False
|
|
elif gt == 1: # helmet or mask
|
|
if pr == 1 or pr == 3 or pr == 4:
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
```
|
|
|
|
``` python
|
|
|
|
def CompareGTandBox(predict, setting_mAP=0):
|
|
# 0: mAP@.5, 1: mAP@.5:.95 0
|
|
# 비교하여 TP와 FP 구분
|
|
results = []
|
|
|
|
tp_cnt = 0
|
|
fp_cnt = 0
|
|
totalbox_cnt = 0
|
|
targetbox_cnt = len(predict)
|
|
|
|
for p_class, gt_class, confidence, p_box in predict:
|
|
if CompareClass(p_class, gt_class):
|
|
# iou = calculate_iou(p_box, l_box)
|
|
# iou = confidence
|
|
if setting_mAP == 0: # mAP@.5
|
|
if confidence >= 0.5:
|
|
# True Positive (TP)
|
|
tp_cnt = tp_cnt + 1
|
|
totalbox_cnt = totalbox_cnt +1
|
|
# class, confidence, boudingbox, TP/FP, precision, recall
|
|
results.append((p_class, confidence, p_box, True, tp_cnt/totalbox_cnt, tp_cnt/targetbox_cnt))
|
|
elif setting_mAP == 1: # mAP@.5:.95
|
|
if confidence >= 0.5 and confidence < 0.95:
|
|
# True Positive (TP)
|
|
tp_cnt = tp_cnt + 1
|
|
totalbox_cnt = totalbox_cnt + 1
|
|
# class, confidence, boudingbox, TP/FP, precision, recall
|
|
results.append((p_class, confidence, p_box, True, tp_cnt/totalbox_cnt, tp_cnt/targetbox_cnt))
|
|
else: # all P, R
|
|
tp_cnt = tp_cnt + 1
|
|
totalbox_cnt = totalbox_cnt + 1
|
|
results.append((p_class, confidence, p_box, True, tp_cnt/totalbox_cnt, tp_cnt/targetbox_cnt))
|
|
|
|
else:
|
|
# False Positive (FP)
|
|
totalbox_cnt = totalbox_cnt + 1
|
|
results.append((p_class, confidence, p_box, False, tp_cnt/totalbox_cnt, tp_cnt/targetbox_cnt))
|
|
|
|
return results
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>Get Precisions, Recalls and PR Curve</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
def GetPR(results):
|
|
results = sorted(results, key=lambda x: x[5], reverse=True)
|
|
# results = sorted(results, key=lambda x: x[1], reverse=True)
|
|
precisions = [item[4] for item in results]
|
|
recalls = [item[5] for item in results]
|
|
|
|
return precisions, recalls
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>Calculate AP</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
def calculate_AP(precisions, recalls):
|
|
assert len(recalls) == len(precisions)
|
|
|
|
sorted_indices = sorted(range(len(recalls)), key=lambda i: recalls[i])
|
|
sorted_precisions = [precisions[i] for i in sorted_indices]
|
|
sorted_recalls = [recalls[i] for i in sorted_indices]
|
|
|
|
ap = 0
|
|
for i in range(1, len(sorted_recalls)):
|
|
recall_diff = sorted_recalls[i] - sorted_recalls[i-1]
|
|
ap += recall_diff * (sorted_precisions[i] + sorted_precisions[i-1]) * 0.5
|
|
|
|
return ap
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
<details>
|
|
<summary>Run</summary>
|
|
<div markdown="1">
|
|
|
|
|
|
``` python
|
|
|
|
lst_result = [[],[],[],[],[]] # class 0~4
|
|
eval_times = []
|
|
|
|
for i in range(0, len(image_paths)):
|
|
# Image name
|
|
img_dir = os.path.dirname(image_paths[i])
|
|
img_name = os.path.basename(image_paths[i])
|
|
|
|
# Load image
|
|
img = cv2.imread(image_paths[i])
|
|
img = cv2.resize(img, (640, 640))
|
|
labels = read_label(label_paths[i])
|
|
Evaluate(model_detect, model_cls, img, img_name, labels, False)
|
|
|
|
Ps = []
|
|
Rs = []
|
|
ap5s = []
|
|
ap95s = []
|
|
|
|
# Class
|
|
# 0: head
|
|
# 1: helmet
|
|
# 2: face
|
|
# 3: mask
|
|
# 4: helmet & mask
|
|
|
|
# each class result
|
|
class_len = len(lst_result)
|
|
|
|
for i in range(0, class_len):
|
|
results_all = CompareGTandBox(lst_result[i], -1) # all P, R
|
|
results_5 = CompareGTandBox(lst_result[i], 0) # mAP@.5
|
|
results_95 = CompareGTandBox(lst_result[i], 1) # mAP@.5:.95
|
|
|
|
p, r = GetPR(results_all)
|
|
p1, r1 = GetPR(results_5)
|
|
p2, r2 = GetPR(results_95)
|
|
ap1 = calculate_AP(p1, r1)
|
|
ap2 = calculate_AP(p2, r2)
|
|
# print(p1)
|
|
# print(r1)
|
|
# print(p2)
|
|
# print(r2)
|
|
if len(p) != 0:
|
|
p = sum(p) / len(p)
|
|
else:
|
|
p = 0
|
|
if len(r) != 0:
|
|
r = sum(r) / len(r)
|
|
else:
|
|
r = 0
|
|
|
|
Ps.append(p)
|
|
Rs.append(r)
|
|
ap5s.append(ap1)
|
|
ap95s.append(ap2)
|
|
print(f'Class {i}')
|
|
print(f'meanP:', p)
|
|
print(f'meanR:', r)
|
|
print(f"AP@.5:", ap1)
|
|
print(f"AP@.5:.95:", ap2)
|
|
|
|
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
|
|
axs[0].plot(r1, p1)
|
|
axs[0].set_xlabel('Recall')
|
|
axs[0].set_ylabel('Precision')
|
|
axs[1].plot(r2, p2)
|
|
axs[1].set_xlabel('Recall')
|
|
axs[1].set_ylabel('Precision')
|
|
plt.suptitle(f'Class {i} Precision-Recall Curve (mAP@.5, mAP@.5:.95)')
|
|
print()
|
|
|
|
# plt.tight_layout()
|
|
plt.show()
|
|
|
|
mP = sum(Ps) / class_len
|
|
mR = sum(Rs) / class_len
|
|
mAP_5 = sum(ap5s) / class_len
|
|
mAP_95 = sum(ap95s) / class_len
|
|
mean_time = sum(eval_times) / len(eval_times)
|
|
|
|
print(f'==> Union Model (Detection + Classification) - 5 classes')
|
|
print(f'[mean Precisions] {mP}')
|
|
print(f'[mean Recalls] {mR}')
|
|
print(f'[mAP@.5] {mAP_5}')
|
|
print(f'[mAP@.5:.95] {mAP_95}')
|
|
print(f'[mean time] {mean_time}s')
|
|
print()
|
|
|
|
|
|
#### Convert to evaluate ####
|
|
|
|
# Class
|
|
# 0: head
|
|
# 1: helmet
|
|
# 2: face
|
|
# 3: mask
|
|
# 4: helmet & mask
|
|
|
|
# => Model 1: (0, 2, 3) - head, (1, 4) - helmet
|
|
# => Model 2: (0, 1, 2) - face, (3, 4) - mask
|
|
|
|
print(f'==> Convert to Model 1')
|
|
print(f'[mean Precisions] {((Ps[0] + Ps[2] + Ps[3]) / 3 + (Ps[1] + Ps[4]) / 2) / 2}')
|
|
print(f'[mean Recalls] {((Rs[0] + Rs[2] + Rs[3]) / 3 + (Rs[1] + Rs[4]) / 2) / 2}')
|
|
print(f'[mAP@.5] {((ap5s[0] + ap5s[2] + ap5s[3]) / 3 + (ap5s[1] + ap5s[4]) / 2) / 2}')
|
|
print(f'[mAP@.5:.95] {((ap95s[0] + ap95s[2] + ap95s[3]) / 3 + (ap95s[1] + ap95s[4]) / 2) / 2}')
|
|
print(f'[mean time] {mean_time}s')
|
|
print()
|
|
|
|
print(f'==> Convert to Model 2')
|
|
print(f'[mean Precisions] {((Ps[0] + Ps[1] + Ps[2]) / 3 + (Ps[3] + Ps[4]) / 2) / 2}')
|
|
print(f'[mean Recalls] {((Rs[0] + Rs[1] + Rs[2]) / 3 + (Rs[3] + Rs[4]) / 2) / 2}')
|
|
print(f'[mAP@.5] {((ap5s[0] + ap5s[1] + ap5s[2]) / 3 + (ap5s[3] + ap5s[4]) / 3) / 2}')
|
|
print(f'[mAP@.5:.95] {((ap95s[0] + ap95s[1] + ap95s[2]) / 3 + (ap95s[3] + ap95s[4]) / 2)}')
|
|
print(f'[mean time] {mean_time}s')
|
|
print()
|
|
|
|
```
|
|
|
|
|
|
``` planetext
|
|
|
|
Class 0
|
|
meanP: 0.2451500387154128
|
|
meanR: 0.1266693073789041
|
|
AP@.5: 0.056300405455419165
|
|
AP@.5:.95: 0.056300405455419165
|
|
|
|
Class 1
|
|
meanP: 0.8831870385742567
|
|
meanR: 0.43243055555555554
|
|
AP@.5: 0.6344911937169155
|
|
AP@.5:.95: 0.6344911937169155
|
|
|
|
Class 2
|
|
meanP: 0
|
|
meanR: 0
|
|
AP@.5: 0
|
|
AP@.5:.95: 0
|
|
|
|
Class 3
|
|
meanP: 0.8349450369473351
|
|
meanR: 0.40800165622897366
|
|
AP@.5: 0.591933273620593
|
|
AP@.5:.95: 0.591933273620593
|
|
|
|
Class 4
|
|
...
|
|
meanR: 0.43473958333333357
|
|
AP@.5: 0.727062010345605
|
|
AP@.5:.95: 0.727062010345605
|
|
|
|
```
|
|
|
|
![output1](/images/output1.png)
|
|
![output2](/images/output2.png)
|
|
![output3](/images/output3.png)
|
|
![output4](/images/output4.png)
|
|
![output5](/images/output5.png)
|
|
|
|
|
|
``` planetext
|
|
|
|
==> Union Model (Detection + Classification) - 5 classes
|
|
[mean Precisions] 0.5704349663931353
|
|
[mean Recalls] 0.2803682204993534
|
|
[mAP@.5] 0.40195737662770653
|
|
[mAP@.5:.95] 0.40195737662770653
|
|
[mean time] 0.042649137104018055s
|
|
|
|
==> Convert to Model 1
|
|
[mean Precisions] 0.6230357850195234
|
|
[mean Recalls] 0.3059043619902019
|
|
[mAP@.5] 0.4484272475282988
|
|
[mAP@.5:.95] 0.4484272475282988
|
|
[mean time] 0.042649137104018055s
|
|
|
|
==> Convert to Model 2
|
|
[mean Precisions] 0.6190156182172799
|
|
[mean Recalls] 0.30386862037965345
|
|
[mAP@.5] 0.3349644805230888
|
|
[mAP@.5:.95] 0.8897615083738772
|
|
[mean time] 0.042649137104018055s
|
|
|
|
|
|
```
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
# 결과
|
|
|
|
<details>
|
|
<summary>Detection Result</summary>
|
|
<div markdown="1">
|
|
|
|
![Confusion Matrix](/runs/train/dduk_64_/confusion_matrix.png)
|
|
![F1-Curve](/runs/train/dduk_64_/F1_curve.png)
|
|
![PR-Curve](/runs/train/dduk_64_/PR_curve.png)
|
|
![Results](/runs/train/dduk_64_/results.png)
|
|
![Train-Batch](/runs/train/dduk_64_/train_batch0.jpg)
|
|
![Val-Batch](/runs/train/dduk_64_/val_batch0_pred.jpg)
|
|
|
|
</div>
|
|
</details>
|
|
|
|
<details>
|
|
<summary>Classification Result</summary>
|
|
<div markdown="1">
|
|
|
|
![Train-Images](/runs/train-cls/dduk_cls3/train_images.jpg)
|
|
![Test-Images](/runs/train-cls/dduk_cls3/test_images.jpg)
|
|
|
|
</div>
|
|
</details>
|
|
|
|
|
|
### 참고[¶]()
|
|
|
|
- 지능화캡스톤 과목, 김현용 교수 |